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Zusammenfassung

Der Vulkan Merapi in Zentral–Java in Indonesien ist einer der gefährlichsten Vulkane
weltweit. Aufgrund der hohen Viskosität seiner Magmen kann die austretende Lava
nicht ruhig über die Flanken abfließen, sondern türmt sich zu einem sogenannten
Lavadom auf. Ein Indikator für die Stabilität das Lavadomes sind Steinschläge
und Block- und Aschenströme, die von lokalen Instabilitäten am Dome verursacht
werden. Der Dom kollabiert, wenn er eine kritische Größe erreicht. Das Resul-
tat sind zerstörerischen Block- und Aschenströmen, die mehrere Kilometer in die
Umgebung des Vulkans reichen können. In der Vergangenheit wurde die Aktivität
von Steinschlägen und Block- und Aschenströmen visuell und durch seismische Net-
zwerke beobachtet. Visuelle Beobachtungen sind allerdings oft unmöglich, da am
Merapi in der Regel schlechte Sichtbedingungen herrschen. Seismische Messungen
können solche Ereignisse zwar kontinuierlich beobachten, sie lassen zur Zeit aber nur
wenig Schlüsse über die in das Abbrechen von Dommaterial involvierten dynamis-
chen Prozesse zu.
Um das Monitoring von Lavadomaktivitäten zu verbessern, wurde im Oktober 2001
eine erstes Prototyp Doppler Radarsystem auf der westlichen Flanke des Merapi
installiert. Der Kern dieses Systems ist ein sogenanntes ”frequency modulated con-
tinuous wave” (FMCW) Doppler Radar. Die von dem System registrierten Doppler-
spektren geben Aufschluß über die Größe von Materialbewegungen und die darin
involvierten Geschwindigkeiten. Da das Radarsystem von Wolken nicht beeinflußt
wird, bietet das System erste ”quasi-visuelle” kontinuierliche Beobachtungen von
Dominstabilitäten. Im August 2003 wurde das Radarsystem zu einem komplet-
ten Monitoringsystem erweitert. Um eine präzise Ausrichtung des Radarstrahls
auf den aktiven Bereich am Dom zu erreichen, wurde das Radarsystem mit einem
elektrischen Schwenk-Neige-Kopf ausgerüstet. Eine CCD-Kamera wurde am Radar-
spiegel angebracht, um eine bessere Dokumentation der Ausrichtung des Radarstrahls
zu gewährleisten und um zusätzlich Veränderungen am Dom visuell zu dokumen-
tieren. Über Datenfunk werden die gemessenen Daten, Bilder der Kamera und Sta-
tusinformationen an das Merapi Volcano Observatory übermittelt, wo diese prozes-
siert und interpretiert werden können. Unabhängig vom Datenfunk werden Sta-
tusinformationen ebenfalls über ein GSM Modem per SMS verschickt. Ein zweites
Radarsytem wurde im Januar 2005 installiert.
Anhand der gemessenen Dopplerspektren konnten drei verschiedene Prozesse in
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Verbindung mit Dominstabilitäten identifiziert werden: rutschendes Dommaterial,
gravitative Abbrüche und explosive Ausbrüche. Zusätzlich erlaubt das Dopplerradar
Regenmessungen, anhand derer mögliche Zusammenhänge zwischen Domaktivität
und Regenfall untersucht werden können. Aufgrund der großen Anzahl von Domin-
stabilitäten, die in Zeiten starker Aktivität auftreten, ist eine manuelle Auswertung
solcher Ereignisse ummöglich. Daher wurde ein Klassifikationssystem entwickelt, das
in der Lage ist, die unterschiedlichen Arten von Dominstabilitäten, Regenereignisse
sowie Störungen unbekannten Ursprungs zu unterscheiden. Für die Klassifikation
von einzelnen Dopplerspektren wurden zwei verschiedene Klassifikatoren verwendet:
neuronale Netze und die K-nearest-neighbor Methode. Da Ereignisse in den Radar-
daten aus einer Serie von Dopplerspektren bestehen, kann sich der beobachtete
Prozess während eines Ereignisses ändern. Daher wurde ein Regelsatz erstellt,
mithilfe dessen der Typ des Ereignisses anhand der Sequenz von bereits klassi-
fizierten Dopplerspektren bestimmt wird.
Zwischen November 2001 und Juli 2004 wurden ca. 80000 Radarereignisse registri-
ert. Das Klassifikationssystem hat ungefähr 57000 dieser Ereignisse als Dominsta-
bilitäten identifiziert. Ein Vergleich dieser vom Radarsystem registrierten Domin-
stabilitäten mit Steinschlag-Messungen des seismischen Netzwerks des Merapi Vol-
cano Observatory demonstriert das große Potential von Dopplerradar Messungen
zur Beobachtung von Dominstabilitäten. Wenn das Radarsystem auf den aktivsten
Bereich am Dom ausgerichtet ist, werden mehr Ereignisse identifiziert, als vom seis-
mischen Netzwerk, was überwiegend eine Folge der kürzeren Dauer der Ereignisse
in den Radardaten ist. In Kombination mit seismischen Messungen erlaubt das
Radarsystem, Verlagerungen der Aktivität am Dom zu beobachten. Die unterschied-
lichen Typen von Dominstabilitäten wurden auf ihre relative Häufigkeit, ihre Größe
und ihre Geschwindigkeit untersucht. Gravierende zeitliche Veränderungen konnten
weder in der Häufigkeit noch in den charakteristischen Eigenschaften beobachtet
werden. Es wurde allerdings beobachtet, dass in dem vom stärksten Rückgang der
Aktivität geprägten Zeitraum explosive Ereignisse, die direkt einem gravitativen
Abbruch folgen, schneller zurückgingen, als explosiv beginnende Ereignisse. Eine
Verbindung zwischen Domaktivität und Regenfall konnte über den gesamten unter-
suchten Zeitraum nicht beobachtet werden. Dies mag allerdings an der über den
gesamten untersuchten Zeitraum kontinuierlich sinkenden Aktivität liegen.

vi



Abstract

Merapi volcano in Central Java, Indonesia, is considered one of the most dangerous
volcanoes worldwide. Due to the high viscosity of its magma, the lava emerging at
the top the volcano cannot flow silently down the flanks of the volcano but builds
a lava dome. An indicator for the stability of the lava dome are rockfalls and block
and ash flows, which are caused by local instabilities at the dome. When the lava
dome reaches a critical size, it collapses. This results in dangerous block and ash
flows, which can reach several kilometers into the proximity of the volcano. In the
past rockfall and block and ash flow activity has been observed visually or by seismic
networks. However, visual observations are often impossible due to bad visibility
conditions and until now seismic measurements allow only few insights into the dy-
namic processes that are involved in instability events, i.e. events of material breaks
off the lava dome.
In order to enhance monitoring of lava dome activity, a first prototype Doppler radar
system has been installed at the western of the Merapi in October 2001. This sys-
tem consists of a frequency modulated continuous wave (FMCW) 24GHz Doppler
radar. The Doppler spectra recorded by the system give a relative measure of the
amount of material moving through the beam as well as information about its ve-
locities. Because the radar system is insensitive for clouds, the system provides first
continuous ”quasi-visual” observations of dome instabilities. In August 2003 the
radar system was upgraded, in order to provide a complete Doppler radar monitor-
ing system. For precise positioning of the radar beam the system has been equipped
with an electromechanical mounting. A CCD-camera has also been attached to the
radar mirror to better document the radar beam position and for visual observation
of the dome. Via radio modems the measured data, images from the camera and
status information are transmitted to the Merapi Volcano Observatory, where it can
be processed and interpreted. Status information is also sent independent of the
radio communication as SMS via a GSM-modem. A second radar system has been
installed in January 2005.
From the Doppler spectra we were able to identify three different kinds of processes:
sliding material, gravitational break-offs and explosive outbursts. In addition, our
Doppler radars provide rain measurements, which can be used to investigate pos-
sible correlations between rainfall and dome activity. Due to the large number of
instability events that occur during times of high activity, manual processing and
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analysis of instability events is not practical for monitoring purposes. Therefore, an
automatic classification system has been developed, which is capable of identifying
different kinds of instabilities as well as rainfall and disturbances of unknown ori-
gin. For the classification of single Doppler spectra two different kinds of classifier
models have been used, a neural network and a K-nearest-neighbor classifier. Be-
cause events detected by the radar system consist of a series of Doppler spectra,
they can contain a sequence of different processes. Therefore, a rule set has been
defined, which determines the type of radar event according to the already classified
sequence of Doppler spectra.
Between November 2001 and July 2004 about 80000 radar events have been de-
tected. The classification system identified about 57000 of these events as dome
instability events. A comparison of the record of detected instabilities with rockfall
measurements deduced from the seismic network of the Merapi Volcano Observatory
demonstrates the high potential of Doppler radar measurements for monitoring of
dome activity. When aligned to the most active area at the dome, the radar detects
significantly more events than the seismic system, which is mainly due to the fact
that events in the radar data have a shorter duration than events detected by the
seismic network. In combination with seismic measurements, the Doppler radar al-
lows to identify changes in the location of the most active area at the dome. The
different types of instabilities have been analyzed for their occurrence frequency in
terms of size, volume and mean velocity. Significant temporal changes in the relative
frequencies or the characteristic properties of the different types of instabilities have
not been observed. However, during the period of fastest activity decrease, explo-
sive instability events with a gravitational precursor decreased faster than events
starting explosively. A link between rain and dome activity could not be observed
throughout the observation period, which might be due to the fact that the activity
has been almost continuously decreasing.
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Chapter 1

Introduction

Volcanoes are amongst the most spectacular natural phenomena, and people are
fascinated by their beauty as well as by their dynamic eruptions. They exhibit a
wide variety of eruption styles ranging from effusive eruptions typically resulting in
lava flows or lava fountains, over medium sized explosive Strombolian eruptions, to
large plinian eruptions with eruption columns of several tens of kilometers in height.
Besides earthquakes, floods and storms volcanic eruptions present the largest natural
hazards, and compared to earthquakes, floods and storms, they can even influence
the earth’s climate (see e.g. Schneider, 1983). Volcanic hazards are as diversified
as the eruptions themselves. They can be a direct result of the volcanic activity,
e.g. lava flows, ash fall, pyroclastic flows and gases, or they can be triggered by a
combination of volcanic and non-volcanic processes, i.e. lahars (rain triggered mud
and debris flows), landslides and tsunamis. In the Holocene (past 10.000 years)
about 1370 volcanoes have erupted and on average about 60 were active each year
during the 1990s (Simkin and Siebert, 2000). Many of these volcanoes are located
in developing countries with high population densities, which of course increases the
potential risk presented by a volcano. During the last century about 78.000 people
were killed as a direct result of volcanic activity, most of them during the eruptions
of Montagne Pelée in 1902 (28.000 fatalities) and Nevado del Ruiz in 1985 (25.000
fatalities) (Tanguy et al., 1998). Understanding volcanic eruptions is therefore not
only of scientific but also of a strong public interest.

One of the most dangerous volcanoes worldwide is Merapi volcano, located on the
island of Java, Indonesia, which is one the most active volcanic areas with about 30
currently active volcanoes (Fig. 1.1). Java is part of the Sunda-Arc, where the Indo-
Australian plate is subducted under the Eurasian plate. The subducted oceanic
lithosphere is rich in volatiles (mainly H2O and CO2). The release of volatiles from
the subducted slab into the mantle supports the genesis of magmatic melts, which
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Pos Gemer

Figure 1.1: Location of Merapi volcano in central Java, Indonesia, and deposit
mappings of recent block and ash flows (Schwarzkopf and Schmincke, 2000).

ascent due to their lower density compared to the surrounding mantle rock leading to
volcanism. Merapi’s magma is basaltic andesite, which is typical for the volcanism
in this region. It has a SiO2 content of about 52–58wt% (Gertisser and Keller,
2003) and has a very high viscosity. Thus, when the magma reaches the surface, it
is too viscous to calmly flow down the flank of the volcano, as it is typical for, e.g.
Hawaiian volcanoes. Instead, the lava piles up at the top of the volcano and builds a
so-called lava dome. Although the magma continuously degases while ascending, it
does so at a comparatively low rate and is therefore still rich in gases when reaching
the surface (see e.g. Le Guern et al., 1982, and Zimmer and Erzinger, 2003). This
property combined with high pressures and temperatures of several hundred ◦C
make the dome a highly dynamic system. When the dome reaches a critical size, it
collapses partly or completely generating hazardous so-called nuée ardente or block
and ash flows, which can reach several kilometers into the vicinity of the volcano.

While plinian eruptions occurred at Merapi in the past (the last in 1872), the activity
of the last century was dominated by dome building phases with mostly gravitational
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collapses. Merapi is considered one of the most dangerous volcanoes exhibiting this
type of activity, which was therefore named Merapi-type activity. The high risk is
a combination of the type of activity and the high population density around the
volcano. Due to their fertile soil, the flanks of Merapi are particularly attractive
for farmers, and as a consequence about 80000 people live in the so-called forbidden
zone extending several kilometers around the volcano (see Crandell et al., 1984, and
Voight et al., 2000). Therefore, a dome collapse event in 1930 resulted in a large
number of about 1300 fatalities. Since 1972 Merapi has been almost continuously
active with major dome collapses in 1984, 1994, 1997, 1998, 2001 and 2006. During
the 1994 dome collapse about 60 people were killed, and also during the activity in
2006 three people lost their lives, two of which tried to escape a block and ash flow
inside a bunker.

Following the catastrophic 1930 eruption Merapi has been observed with increasing
effort. Today, a wide variety of geophysical measurement techniques has been setup
to monitor the activity at the dome as well as down in the subsurface deep under
the volcano. This includes seismic measurements (e.g. Ratdomopurbo and Poupinet,
2000, and Wassermann and Ohrnberger, 2001), ground deformation measurements
(Rebscher et al., 2000), gas composition measurements (Zimmer et al., 2000), and
electrical and magnetic field measurements (Friedel et al., 2004, and Zlotnicki et al.,
2000). Direct visual observations of the active dome still plays an important role.
During a volcanic crises the stability of the dome and the most probable direction
of a dome collapse has to be assessed in order to evacuate the threatened areas in
time. However, due to the tropical climate the summit of Merapi is often covered
with clouds and, therefore, continuous visual observations are difficult. An impor-
tant indicator for the stability of the dome is the occurrence frequency and size of
rockfalls and block and ash flows. A fast growing dome can produce several hundred
rockfall events per day. When moving down the flank of the volcano rockfalls gen-
erate seismic wave, which travel through the volcanic edifice. In the past rockfalls,
therefore, have been monitored by seismic measurements (see, e.g. Ratdomopurbo
and Poupinet, 2000, and Ohrnberger, 2001). Of course, an active volcano gener-
ates various types of seismic signals, most of them originating from the subsurface.
Thus, rockfall signals have to be distinguished from other types of seismic signals
to provide accurate monitoring.

In order to enhance the observation of the dome stability, two Doppler radar systems
have been installed at Merapi. Doppler radars send out electromagnetic waves.
When reflected at an object, these waves are received back at the radar. The
amplitude of the received signal gives information about the amount of reflecting
material and due to the Doppler effect information about the velocities of the objects
is also available. Additionally, from the travel time of the waves Doppler radars are
able to provide information about the distance of the objects. The Doppler radar
technique is relatively new in the field of volcanology and has first been applied at
Stromboli volcano, Italy, by Hort and Seyfried (1998) and at Etna, also Italy, by
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Dubosclard et al. (1999). In both cases Strombolian eruptions have been observed
in order to gather new insights into the dynamic processes associated with this
kind of eruption. The Doppler radar monitoring at Merapi volcano started in late
October 2001 and marks the first application of this technique to monitor a dome
building volcano, providing quasi-visual observation of dome processes independent
of visibility conditions.

This thesis is structured in four main chapters. Each chapter presents a paper,
which has been published or is submitted. Chapter 2 consists of the short paper
”Monitoring Volcano Eruptions and Lava Domes with Doppler Radar”, which has
been published in EOS (Voege et al., 2005) and reviews past and present applications
of the Doppler radar technique in the field of volcanology.

Chapter 3 ”Installation of a Doppler Radar Monitoring System at Merapi Volcano,
Indonesia”, submitted to Journal of Volcanology and Geothermal Research, provides
details about the Doppler radar systems installed at Merapi. After a short review
of the various monitoring systems installed at Merapi, a thorough description of
the measurement principle of the Doppler Radar is given. Because setting up a
permanent monitoring system strongly differs from short-term field measurements
a great effort has been undertaken in developing the system’s infrastructure, in-
cluding a specifically for this application developed logging unit, data transmission
via radio modems and storage of the measured data in a state-of-the-art database
system. Examples for the different types of events that are observed by the radar
system, i.e. sliding dome material, gravitational break-offs of dome material and ex-
plosive outbursts, are given in the paper. A fourth non-dome related type of event
is rain fall. In order to show that simultaneous recordings of radar and seismic data
enhance the understanding of the dynamic processes during dome instabilities, se-
lected Doppler radar and seismic recordings are compared (seismic data courtesy of
Joachim Wassermann, LMU, Munich).

Chapter 4 and 5 is a set of companion papers on ”Automatic Classification of Dome
Instabilities based on Doppler Radar Measurements at Merapi Volcano, Indonesia,
Part I+II”, which have been submitted to Geophysical Journal International. Be-
cause of the huge amount of data, i.e. up to several hundred events per day, manual
processing is impossible, especially, in the case of continuous monitoring. Therefore
I have developed an automatic classification system which is described in Chapter
4. First, a I review the different types of events that can be discriminated from
the radar data and the event detection procedure is described. The first step in the
presented classification procedure is the discrimination between five different types
of Doppler spectra: disturbances, rainfall, sliding material, gravitational break-offs
and explosive outbursts. Disturbances are considered not to be linked to any natural
process, however, their source is unknown. Two different classifier models have been
applied to Doppler spectra: artificial neural networks and the K-nearest-neighbor
method. Both models are based on supervised learning and, thus, they had to be
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trained with manually classified Doppler spectra. An important task for classifi-
cation or pattern recognition is feature extraction. The raw Doppler spectra have
been analyzed for features that are characteristic for the different types of processes
leading to the definition of so-called feature vectors. A good feature vector definition
results in similar vectors for spectra of the same class and very different vectors for
spectra of different classes. The feature vectors are fed to the classifier. Several com-
binations of classifier model and feature vector have been tested. To obtain a good
measure of the classification performance I used independent data sets for training,
validation and testing. Because radar events consist of a sequence of Doppler spec-
tra, the resulting sequence of classified spectra is analyzed in order to determine the
correct event class.

The classification system has been applied to a large data set consisting of radar mea-
surements covering 3 years and a total number of about 57000 instability events. In
Chapter 5 ”Automatic Classification of Dome Instabilities based on Doppler Radar
Measurements at Merapi Volcano, Indonesia, Part II”, this data set is used to eval-
uate the performance of Doppler radar measurements for monitoring dome activity.
Therefore, the classified events have been compared to a record of daily numbers of
rockfall events, which have been manually identified from seismic traces measured
by the seismic network of the Merapi Volcano Observatory. The comparison shows
that during times of high activity the radar system identifies considerably more
rockfall events than the combination observer–seismic network. However, since the
radar does not cover the complete dome a precise alignment of the radar beam to the
active spot is necessary. This restriction, however, provides the ability to monitor
changes in the location of the activity, especially, when combining radar and seismic
measurements. I also analyzed the data for changes in the type of activity, i.e. in the
properties and relative occurrence frequency of the different types of instabilities,
and I was able to observe a change in the relative number of dome instabilities with
initial explosive outburst and with a gravitational break-off followed by an explosive
outburst. Because the radar system detects also rain fall I analyzed the radar data
for a correlation of rainfall and dome activity, however, no such correlation could be
found.

Chapter 6 summarizes the thesis and discusses the role of Doppler measurements
for dome monitoring and volcanic hazard mitigation.
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Chapter 2

Monitoring Volcano Eruptions and Lava Domes

with Doppler Radar

by Malte Vöge, Matthias Hort and Ralf Seyfried

Published in EOS, Transactions of the American Geophysical Union, vol. 86(51),
537–548, 2005

About 10 percent of the world’s population lives in the vicinity of one of the planet’s
approximately 1500 active volcanoes. These volcanoes represent a large threat to
human lives and regional economies, especially in highly-populated areas. This
makes effective and reliable volcanic hazard mitigation absolutely mandatory.

Because volcanoes are complex systems, hazard mitigation can be achieved only by
applying numerous techniques, such as geophysical monitoring, thorough mapping
of previous activity, and numerical simulations of different eruption scenarios.

Direct visual observations of eruptions also help in understanding volcanic activ-
ity. However, continuous quantitative observations of near-vent processes are scarce
because in situ placement of measuring devices in volcanic vents is nearly impossi-
ble due to their inhospitable environments. In the past, processes at active vents
(Chouet et al., 1974; Ripepe et al., 1993) or domes (Sato et al., 1992) have been
characterized mainly by photometry or video recordings. However, neither tech-
nique can be effectively applied for continuous measurements because they require
good visibility conditions that are not always available.

7
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Figure 2.1: The Doppler radar system in action at the Merapi and Stromboli volca-
noes.

2.1 The Use of Doppler Radar in Volcanology

Doppler radar-based measurements of material movements at volcanoes, an obser-
vational method introduced over the past decade, has become a powerful tool to
quantify eruption dynamics. Doppler radar instruments transmit a distinct fre-
quency microwave. When this microwave is reflected at an object, the received
signal exhibits a frequency shift that is directly proportional to the object’s velocity
along the beam (radial velocity). The amplitude of the reflected signal is propor-
tional to the number and individual size of the objects. Thus, by measuring the
amplitudes of all frequency shifts within a given bandwidth (velocity interval), a
velocity distribution is recovered that reflects a mass movement as a function of
velocity. To recover the full three-dimensional velocity vector, data from at least
three instruments are needed.

Two different mobile Doppler radar systems have been developed for observing dy-
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MVR-3 VOLDORAD
Signal Continuous wave, 50mW Pulsed system,

pulse length between
0.4-1.5ms,
peak power 60W,
pulse repetition 0.05

or 0.1ms
Frequency
(wavelength)

10GHz (3cm)
24GHz (1.25cm)

1.238GHz (24 cm)
1.274GHz (24 cm)

Antenna Type Offset parabolic mirror Array of 4 Yagi antennas
Sampling rate 1Hz 10Hz or higher

Observation
distance

60 cm mirror: 2000m
120 cm mirror: 5000m

500-5000m

Distance resolution 10-1000m 60-220m
Power consumption 30W 200W
Weight 45kg (60cm mirror)

80kg (120cm mirror)
(including logging unit and
power supply)

60kg (excluding power sup-
ply and antennas)

Transportation 60cm system: 3 backpacks
120cm system: 4 wheel
drive

4 wheel drive

Table 2.1: Comparison of the two Doppler radar systems currently being used in
volcanology

namic processes at volcanoes. The French Volcano Doppler Radar (VOLDORAD)
system (e.g. Dubosclard et al., 2004) is a pulsed Doppler radar, whereas the MVR-3
(MeTek Volcano Radar) (e.g. Hort and Seyfried, 1998) is a frequency modulated
continuous wave (FMCW) system.

The main consequence of this technical difference is that with VOLDORAD, distance
is measured through travel time of the microwave, whereas with the MVR-3 the
frequency modulation allows for distance resolution. The technical details of both
systems are summarized in Table 2.1. Both systems have been used at different
volcanoes –Etna and Arenal (VOLDORAD), and Stromboli, Merapi, and quarry
blasts near Dresden, Germany (MVR-3)– and data processing and interpretation
techniques have been developed (Hort et al., 2003; Dubosclard et al., 2004).
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2.2 Looking Into an Eruption: Strombolian Ac-

tivity and Lava Fountains

The Stromboli volcano in Italy is famous for its continuous eruptions that have
occurred for at least the last 5000 years. Two or three active craters explosively
erupt on average every 15-20 minutes. Eruptions are driven by ascending gas bubbles
within the magma column that explode or collapse upon reaching the surface, giving
rise to the typical Strombolian activity of short-lived outbursts of lava. The first
Doppler radar measurements of volcanic activity using a mobile prototype FMCW
radar were carried out at Stromboli in 1996 and proved that even very weak eruptions
that are hardly visible to the human eye could be detected (Hort and Seyfried, 1998).

During 2000-2001, three experiments were conducted, using one MVR-3 in the first
experiment and three MVR-3 in the second and third experiments. In May 2000,
one instrument was installed at the Pizzo Sopra la Fossa, an older crater rim of
Stromboli, about 350 meters away from the active crater (Figure 2.1). A recording
of a typical explosion is shown in Figures 2.2a and 2.2b.

Processing of data recorded from 702 eruptions that occurred during two weeks in
May 2000 revealed that the average duration of the rise phase (the time from the
onset until the ejecta stop rising and start falling back to the ground) of ejected
material increased from about six seconds before a heavy rainstorm to 10 seconds
after the storm. By analyzing the settling velocities of particles, the average grain
size was found to decrease from about eight millimeters before the rainstorm to
about four millimeters after the storm [Hort et al., 2003]. The longer rise phase and
increased fragmentation can be attributed to the infiltration of rainwater into the
volcanic system, though other reasons, such as changes in the conduit geometry, are
also possible. During the second experiment in September 2000, three instruments
were installed to record the complete eruption vector (Figure 2.2e).

Much stronger eruptions than those seen at Stromboli were observed using VOLDO-
RAD at Mount Etna, Italy, in 1998 and 2001 (Dubosclard et al., 2004), as well as at
Arenal, Costa Rica, in 2004–2005. At Etna, a close correlation was found between
the recorded eruption velocities and the tremor amplitude. Observed time delays
between the maximum tremor amplitude and the highest material flux at the vent
led Dubosclard et al. (2004) to suggest that the reservoir is located either at a depth
of 500 meters or at a depth of roughly seven kilometers. Both depths deduced from
the radar measurements are consistent with different reservoir depths suggested by
seismic observations. The material flux observations are also consistent with video
observations.
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2.3 Monitoring Dome Activity

Volcanoes that produce highly viscous magma often develop a lava dome. During
dome growth, parts of the dome can break off because of local instabilities, resulting
in rock falls or block and ash flows. The whole dome even may collapse, generating
devastating pyroclastic flows.

Gunung Merapi is a dome-building volcano located in Central Java, Indonesia. Be-
cause of its fertile soil, at least 80,000 people (Voight et al., 2000) live along the
flanks of Merapi in the ’forbidden zone’ directly affected by the volcano’s activity.
Major dome collapses have run-out distances of up to 10 kilometers. There have
been about 10 major dome collapses within the past century, resulting in more than
1500 fatalities; a 1930 dome collapse alone caused 1370 fatalities.

Numerous techniques have been used over many years to characterize the state of
the volcano’s activity. However, because Merapi’s dome is in clouds for at least half
the time, continuous visual observation of the activity at the dome has not been
possible.

In collaboration with staff members of the Merapi Volcano Observatory (MVO) in
Yogyakarta, Indonesia, the authors of this article installed in October 2001 a MVR-
3 Doppler radar to continuously monitor Merapi’s dome. The instrument was set
up at a distance of about 4.8 kilometers from the dome. In 2003, the system was
equipped with a motor-powered, geared head allowing for easy reorientation of the
beam (Figure 2.1). A video camera is aligned with the radar beam that is used as
a telescopic sight. The previously measured beam intensity distribution is overlain
onto the camera image, allowing for precise and easy positioning of the beam.

In order to improve the coverage of the dome, a second instrument was installed in
January 2005 at about the same distance but at a different location. Both systems
transmit their data and video images in real time via radio link to the MVO where
the data is analyzed by MVO staff. The systems can also be remotely controlled
via radio from the MVO and via Short Message Service commands from nearly
anywhere on Earth.

Two processes that cause material to break off from the dome have been identified:
explosive instabilities and purely gravitational instabilities. During an explosive
instability (Figure 2.2c) a very broad velocity distribution is observed due to the
wide range of angles and velocities at which material is moving with respect to the
radar beam. The likely cause for such explosive instabilities is the mechanical failure
of material at the dome due to gas overpressure (see also Sato et al., 1992).
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Figure 2.2: (a and b) Two stages of a Strombolian eruption: (a) the initial explo-
sive dispersion and (b) material falling vertically back to the ground. The Doppler
spectra are overlying the corresponding video. (c and d) Doppler spectra of insta-
bility events at Merapi volcano. (e) Results of a three-dimensional measurement at
Stromboli. The small rotation of the eruption vector is probably due to a slight
timing problem between the three instruments.
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In contrast, the velocity distribution during a gravitational instability (Figure 2.2d)
is narrow, with its main peak at low velocities. Also, the material movement is
much more focused than during an explosion because material simply slides down
the slope. A comparison of these Doppler spectra with those recorded at Stromboli
reveals that an explosive instability has a velocity distribution similar to the onset of
a Strombolian eruption (compare Figures 2.2a and 2.2c). The velocity distribution
of a gravitational instability is similar to that of particles falling back at the end
of a Strombolian eruption, when material movement is also nearly unidirectional
(compare Figures 2.2b and 2.2d).

2.4 Hazard Mitigation

To provide an easy-to-use tool for hazard mitigation, an online classification system
that is able to distinguish between non-volcanic signals (e.g. rain) and explosive and
gravitational instabilities is being developed by the authors. Although still under
development, this software is already being used by the staff of the MVO to create
continuous hourly and daily event-type statistics, which can be used to understand
long-term dome growth processes and different types of activity. Thus, this system
has the potential to be a valuable asset in supporting decisions of local authorities
when analyzing Merapi’s state of activity during a future volcanic crisis.
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Abstract

Merapi volcano, Indonesia, is one of the most active dome building volcanoes world-
wide. Instabilities at the growing dome cause rockfalls and hot block and ash flows,
which can reach run-out distances of several kilometers. Therefore, Merapi has
been monitored extensively for many years. However, direct visual observation of
the dome is often impossible due to cloud coverage of the summit. In October 2001,
a first prototype Doppler radar system was installed to overcome this shortcom-
ing. The system is able to penetrate clouds and to observe material movements at
the dome, giving valuable information about dynamic processes in the dome area.
The system also allows detection of rain fall in several distance intervals. For pre-
cise positioning of the beam the system was equipped with an electromechanical
mounting in 2003. A CCD-camera attached to the radar mirror documents the
radar beam position and provides visual observation of the dome. Recorded data,
camera images and status information are telemetered to the Merapi Volcano Ob-
servatory, where they can be processed and interpreted. Status information is also
sent as SMS via a GSM-modem. Processing the Doppler radar data we are able to
discriminate between three different types of instability events: sliding dome mate-
rial, dome material gravitationally breaking off the dome, and explosive outbursts of
dome material due to expansion of volcanic gas. In order to independently verify our

15
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Figure 3.1: Minor block and ash flow on the western flank of Merapi Volcano. The
image was taken on July 19, 1998. Picture courtesy Merapi Volcano Observatory.

observations we compared rockfall events detected by the radar system to seismic
recordings and found a very good correlation.

3.1 Introduction

Aside from earthquakes, floods, and storms volcanic activity is one of the largest
natural hazards to mankind. Every year about 60 volcanoes erupt throughout the
world, and during the last 10000 years at least 1500 volcanoes have been active
(Simkin and Siebert, 2000). About 10% of the world’s population lives in the vicinity
of one of these active volcanoes, which are a thread to human lives and economic
values. Especially in developing countries many people live in the direct vicinity or
even on the flanks of active volcanoes, because volcanic soil is very fertile (Schmincke,
2004), and volcanoes are more and more moving into the focus of tourism. But also in
highly industrialized countries there are big cities being threatened by nearby active
volcanoes (e.g. Mt. Vesuvius near Naples, Mt. Rainer near Seattle and Fudijama
near Tokyo). Therefore volcanic hazard mitigation has become more and more of an
issue over the last decades. For an effective and reliable hazard mitigation as much
information as possible has to be gathered about the volcano’s system. This includes
geological and petrological studies (i.e. event stratigraphy), which show patterns in
the eruptive behavior, as well as geophysical monitoring. Based on this information
hazard maps can be created, and activity alert states can be defined.

Countries located at or near convergent margins are especially endangered by large
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earthquakes as well as devastating volcanic eruptions. Indonesia is one of these coun-
tries with about 130 active volcanoes (Simkin and Siebert, 1994). One of the most
dangerous volcanoes of Indonesia and also worldwide is Merapi Volcano, which is lo-
cated in Central Java. Merapi is a strato volcano rising 2980m above sea level. Two
types of activity have been observed at Merapi: highly explosive plinian eruptions
(St. Vincent type) generating high eruption columns and dome building phases. One
of the largest documented eruptions of Merapi occurred in 1672, leaving about 3000
people dead (Voight et al., 2000), and the last plinian eruption happened in 1872.
Since then the activity at Merapi has been dominated by dome building phases.
The SiO2–rich basaltic andesitic magma emerging at the top of the volcano is too
viscous to flow down the flanks. Instead, it piles up at the top, building a continu-
ously growing lava dome. When the dome reaches a critical size, parts of the dome
or even the whole dome can collapse and generate so-called block and ash flows
(see Fig. 3.1), which can have run-out distances of more than 10km (see, e.g. Fink
and Anderson, 2000, Schwarzkopf et al., 2005, and Voight et al., 2000). The most
devastating dome collapse occurred in December 1930. The resulting block and
ash flow traveled 12km and destroyed 13 villages completely and 23 villages partly.
About 1370 people were killed (Voight et al., 2000). Since 1972 Merapi has been
almost continuously active (Schwarzkopf, 2001). About 60 casualties were caused
by a dome collapse on November 30, 1994, when a large block and ash flow hit the
village of Turgo, which was (and still is) a settlement high up the southwest flank of
the volcano. The last major dome collapses occurred in 1998 (Schwarzkopf, 2001),
2001 and 2006, which fortunately did cause only 2 casualties (in 2006). About 80000
people are currently living in the so-called forbidden zone (186.4km2) and thus are
directly threatened by the volcanic activity (Crandell et al., 1984; Voight et al.,
2000). Therefore, a continuous monitoring of the activity at Merapi is absolutely
necessary.

3.1.1 Monitoring at Merapi

The Merapi Volcano Observatory (MVO), part of the Volcanological Technical Re-
search Center (VTRC), as well as different research groups from France, the US,
Japan, and Germany operate various monitoring systems at Merapi. By far the
most extensive monitoring system is the seismic network, which was installed in
1982 (Ratdomopurbo and Poupinet, 2000). The data are continuously recorded on
drums and, since 1991, also event–based in digital form. The seismograms are an-
alyzed on a daily basis, and statistics about the different types of events (rockfalls,
volcano–tectonic events, multiple–phase events and low frequency events) are cre-
ated. Besides the VSI network a German research group installed a second network
with three seismic arrays each consisting of a broadband and several short period
instruments (Wassermann and Ohrnberger, 2001). The data of this system are fed
into an automatic analysis program (Earthworm), and into a classification software
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(Ohrnberger et al., 2000; Ohrnberger, 2001), allowing an online characterization of
Merapi’s activity.

Deformation at the flanks of Merapi has been measured by EDM (electronic distance
measurement) and, since 1990, by several borehole and platform tiltmeters. The first
tiltmeters were installed near the dome to observe displacement correlated to dome
growth. Later, tiltmeters have also been set up lower on the flanks of Merapi in order
to record the elastic deformation associated with mass displacement further inside
the volcanic edifice. In the late nineties the network was extended by four multi-
parameter stations, including meteorological instruments as well as GPS antennas
and tiltmeters (Rebscher et al., 2000).

Since 1990 the variations in the magnetic field are continuously monitored by four
stations (Zlotnicki et al., 2000). Volcanic gases have been collected and analyzed
on a monthly basis for many years. Since 1984 the SO2 flux has been monitored by
the MVO using COSPEC. In order to continuously monitor the gas composition as
well as temperatures, a measurement station consisting of a gas chromatograph, an
alpha scintillation counter, and a thermocouple have been installed at the fumarolic
vents of Woro, which is located near the summit of Merapi (Zimmer et al., 2000;
Zimmer and Erzinger, 2003). In 2000, a continuous monitoring station for electrical
field and ground temperatures was also installed at Woro (Friedel et al., 2004).

Often an eruption or dome collapse is followed by lahars (rain-triggered volcanic
debris flows) going down the valleys of Merapi (about 50 followed the 1994 dome
collapse). Thus, lahar monitoring has been significantly improved by various mea-
surement techniques, e.g. trip-wire sensors, rain gauges, a weather radar, seismome-
ters, and video cameras (Lavigne et al., 2000a,b).

Because most of the time the summit of Merapi is covered by clouds a continuous
visual observation of the dome is not possible. However, an observation of dynamic
processes at the dome is important in order to assess its activity as well as its
stability. Seismometers are able to detect rockfalls and block and ash flows, but
they don’t provide information about the triggering processes. Since microwaves
penetrate clouds, Doppler radar measurements provide a unique opportunity for
quasi-visual observation of dynamic processes at the dome that cannot be observed
by any other geophysical measurement technique.

3.1.2 Radar observation of volcanic activity

The first successful applications of radar techniques in the field of volcanology have
been made in the mid seventies, when the military radar stations King Salmon
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and Sparrevohn (both in Alaska) were used to observe eruption columns. Kienle
and Shaw (1979) used those data to estimate the height and the lateral extent of
the eruption columns, because this could not be determined visually due to bad
weather and darkness. At Mt. St. Helens Harris et al. (1981) and Harris and Rose
(1983) used weather radar systems to observe the eruption column of the 1980/82
eruptions. Combining these observations with an eruption column model by Wilson
(1976), they were able to estimate the mass eruption rate during the initial phase
as well as after 1-2 hours.

Because some of the most active volcanic areas, e.g. Alaska and Iceland, are located
along highly frequented aviation routes, and the fact that aircrafts can be severely
damaged when flying through volcanic ash clouds, the observation of ash clouds
has become of increasing interest. A ground-based C-Band radar was used during
the 1992 Mt. Spurr eruption (Rose et al., 1995) to observe the resulting ash cloud
in nearly real-time close to the volcano. Additionally, weather satellite data has
been used to track the ash cloud for several hours and thousands of kilometers
(Schneider et al., 1995). Similar observations have been made by Lacasse et al.
(2004) and Rose et al. (2003) at Hekla, Island. In each case the extend of the
volcanic ash cloud was successfully tracked by the systems, and estimates for the
eruption rates and particle sizes could be derived. Recently, Marzano et al. (2006)
have developed an algorithm to derive volcanic ash properties for weather radar
observations and successfully applied this method to observations made during the
2004 Grimsvötn eruption (Marzano and Vulpiani, 2006). However, quantitative data
about the dynamics near the vent could not be collected by these systems.

The use of Doppler radar observations at volcanoes started during the 1990s. Dopp-
ler radars measure the distance and the velocity of moving targets from a remote
position. They allow measurements of particle velocities during explosive eruptions
and dome instabilities, which lead to rockfalls and block and ash flows. A first
experiment was carried out at Stromboli volcano, Italy, in 1996 using a 24GHz
frequency modulated continuous wave (FMCW) rain radar (Hort and Seyfried, 1998;
Seyfried and Hort, 1999). The experiment proved that even Strombolian eruptions
hardly visible to the human eye are detectable using this type of radar. A modified
version of the same radar has been used in three more experiments at Stromboli in
2000/2001. In April/May 2000 a clear change in the eruptive behavior from before
to after a heavy rainstorm was documented (Hort et al., 2003). In September 2000
the complete velocity vector of Strombolian eruptions could be determined using
three Doppler radar systems aiming at the summit from different directions (Voege
et al., 2005).

A 1.2GHz pulsed Doppler radar called VOLDORAD has been used by Dubosclard
et al. (1999) in 1998 at Etna, Italy, and in 2004 at Arenal, Costa Rica (Dubosclard
et al., 2004; Donnadieu et al., 2005). At Etna vertical velocities of lava fountains
of about 230m/s have been measured. During explosive Strombolian eruptions,
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velocities of up to 400m/s occurred. To monitor the growth of the lava-dome of
Soufriere-Hills volcano on Montserrat, Wadge et al. (2005) used a 94GHz FMCW
ranging radar called AVTIS. AVTIS is designed to measure ranges with a precision of
about 1m. The purpose of AVTIS is to create a high resolution topographic model of
lava dome’s by scanning the dome on a 2-dimensional grid. Repeated measurements
reveal even local changes in the dome topography, and thus a detailed investigation
of the dome growth is possible. However, the system was not designed to measure
Doppler shifts, i.e. dynamic processes with velocities in the m/s range cannot be
observed.

To conduct the first Doppler radar observations of dynamic processes at a lava dome,
we installed a Doppler radar system at the flank of Merapi volcano in October 2001.
A second radar system was installed in January 2005. The aim of the radar ob-
servations is to continuously monitor the dome activity and to provide valuable
information to the local authorities in case of a volcanic crisis. Therefore, a great
effort has been undertaken in developing a stable and reliable monitoring system.
Here, we describe the technical development of the Doppler radar monitoring system
installed at Merapi volcano. In the next section we start with a detailed descrip-
tion of the principle of the FMCW Doppler radar and the differences to the more
commonly used pulsed Doppler radar. The technical infrastructure of the moni-
toring system, e.g. data logging device, data transmission and processing facilities,
are summarized in Section 3.3. Section 3.4 presents the setup of the two Doppler
radar stations currently installed at Merapi Volcano. Doppler radar measurements
give new insights into the dynamic processes that take place during instabilities at
the lava dome. Examples of these are given in Section 3.5 as well as a compari-
son of Doppler radar observations and seismic observations done by Wassermann
and Ohrnberger (2001). Section 3.6 summarizes the properties and facilities of the
Doppler radar monitoring system. For the more interested reader, the software con-
trolling the system’s components and all its data flows is presented in Appendix
A. In Appendix B we detail the calibration measurements help to ensure a precise
alignment of the radar beam.

3.2 FMCW - Doppler Radar Principle

Doppler radars send out microwaves of a distinct frequency. When reflected at an
object the microwaves are received by the radar, now containing information about
distance and velocity of reflecting objects. Most commonly used are pulsed Doppler
radars like VOLDORAD (see above), which periodically send out short pulses of
microwaves. When reflected at an object, the object’s distance from the radar can
be calculated from the travel time of the microwave pulse. If the object is moving,
the reflected microwaves exhibit a frequency shift, which is known as the Doppler
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B Bandwidth of the frequency modulation
T Duration of one frequency modulation cycle
tD Two way travel time of the microwaves
D Distance between radar and reflecting object
c Speed of light
λ Wave length
f Frequency
vr Radial velocity

f0 , ω0 Base frequency
ωs(t) Cycle frequency of the transmit signal
ψs(t) Phase of the transmit signal
s(t) Transmit signal
e(t) Received signal
m(t) Mixed signal
ψm(t) Phase of the mixed signal
fm Frequency of the mixed signal
M(f) Spectrum of the mixed signal
M(fi) FFT spectrum of the mixed signal
N Number of samples of the mixed signal per sweep
ND Number of range gates
fm

Ny Nyquist frequency of the mixed signal

Nsw Number of sweep considered for one Doppler spectrum
pi(tj) Time-series of M(fi) over Nsw sweeps
Pi(fj) FFT Doppler spectrum of pi(tj)
f p

Ny Nyquist frequency of Pi(fj)
P (fk) FFT Doppler spectrum of all range gates
P (i, vr) Doppler spectrum as function of range gate and velocity
P (i, vr, t) Time-series of repeated measurements of P (i, vr)

Table 3.1: Table of symbols.

shift. This frequency shift is proportional to the velocity component in direction of
the radar beam. Because the pulses are short compared to the repetition time they
have to be sent out with high power to get a good signal–to–noise ratio.

Frequency modulated continuous wave (FMCW) Doppler radars send out a contin-
uous microwave. In this case the travel time cannot be used to determine distances,
and thus more sophisticated hardware as well as signal processing is required. The
core component of the radar is a frequency modulated Gunn-diode oscillator with
integrated mixing diode (Strauch, 1976). The linear polarized microwaves are fed to
an antenna. The backscattered signal is received with the same antenna assembly
(monostatic radar). In order to achieve distance or range resolution, the transmitted
signal is frequency modulated with the frequency linearly decreasing from f0 +B/2
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Figure 3.2: Frequency modulation of the transmit signal and its time delayed echo
when reflected at a non-moving object. The frequency fm of the mixed signal m(t)
is just the frequency shift between the both signal, which is proportional to the
time-delay tD, and thus to the distance.

to f0 −B/2 and then jumping back to f0 +B/2 (saw–tooth function, see Fig. 3.2).
During one of these so-called sweeps the cycle frequency of the transmitted signal is

ωs(t) = ω0 − 2π
B

T
t, for − T/2 ≤ t ≤ T/2, (3.1)

where B is the bandwidth and T the duration of the frequency modulation, i.e. the
duration of one saw–tooth. The phase of the transmitted signal is the integral of its
cycle frequency over time between 0 and t:

ψs(t) = ω0t− π
B

T
t2 . (3.2)

Thus, the function

s(t) = S sin(ψs(t)) = S sin(ω0t− π
B

T
t2) (3.3)

describes the signal transmitted by the Gunn-diode. S is the amplitude of the
transmitted signal.

3.2.1 Range resolution

First, we consider a resting target. While the transmitted microwave travels to
the target and back to the radar, the transmit frequency is decreasing, due to the
frequency modulation (eq. 3.1). Therefore, the transmitted and the received signal
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exhibit a frequency difference (see Fig. 3.2) that is proportional to the target’s
distance from the radar. The received signal can be described by the function

e(t) = E sin (ψs(t− tD))

= E sin
(
ω0t− ω0tD − 2π B

2T
(t2 − 2ttD + t2D)

) (3.4)

where E is the amplitude of the received signal and tD the time delay due to the
signal’s travel time. The received signal is detected by the mixing diode, which
is biased with a fraction of the transmitted signal. The effect of the mixing-diode
corresponds to a multiplication of s(t) and e(t):

m(t) = S sin(ψs(t)) E sin(ψs(t− tD))

= 1
2
S E cos(ψs(t− tD) + ψs(t))

+1
2
S E cos(ψs(t− tD) − ψs(t)).

(3.5)

The first term is the high frequency part of the signal (frequency is approximately
2ω0), which is suppressed by a low pass filter. Thus, the phase of the mixed signal
can be written as

ψm(t) = ψs(t− tD) − ψs(t)

= −ω0 tD − π B
T
t2D + 2πB

T
t tD.

(3.6)

The frequency of the mixed signal is derived by differentiating ψm(t) with respect
to t:

fm =
B

T
tD . (3.7)

The time-delay tD is given by the object’s distance D from the radar: tD = 2D/c,
where c is the speed of light. Thus, the frequency shift fm is directly proportional
to the object’s distance D and the object’s distance can be calculated from

D =
cT

2B
fm . (3.8)

Because s(t) and e(t) are periodic with T , the mixing signal m(t) is also periodic
with T . However, because of the frequency jump at the end of a sweep, the m(t)
has also a discontinuity at the end of each sweep. Thus, T is the smallest period
that is contained is m(t). Therefore, its power spectrum M2(f) consists of spectral
lines only at multiples (harmonics) of 1/T (see Fig. 3.3a), and two targets can only
be resolved, when separated by a frequency difference of at least δf = 1/T . Thus,
the distance resolution can be calculated from equation (3.8):

δD =
cT

2B
δfm =

c

2B
. (3.9)

Therefore, the larger the bandwidth of the frequency modulation B is chosen, the
better is the distance resolution.
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Now we consider one sweep of duration T digitized with N samples. Because m(t)
is real valued, the resulting FFT M(fi) consists of N

2
components at frequencies of

fi = i
T
, i = 1, ..., N

2
. Here, the frequency resolution is again 1/T , i.e. each spectral

line in M(fi) corresponds to a separate distance range, a so-called range gate (see
Fig. 3.3a), and the Nyquist frequency of m(t) is

fm
Ny =

N

2T
. (3.10)

In order to prevent edge effects, m(t) is multiplied by a window function before
the FFT is calculated. This, however, leads to a ”leakage” between range gates,
i.e. targets also contribute with attenuated amplitude to neighboring range gates as
indicated in Figure 3.3. The number of range gates that can be resolved is

ND =
N

2
(3.11)

and using (3.8) the maximum distance that can be reached is

Dmax =
cN

4B
. (3.12)

3.2.2 Velocity resolution

The equations above only hold for non-moving targets, where the frequency shift is
only caused by the modulation of the transmitted signal. When the target is moving
an additional frequency shift, i.e. the Doppler shift, is observed that is proportional
to the target’s velocity along the radar beam:

fm =

∆fvel
︷︸︸︷

2

λ
v +

∆fdist
︷ ︸︸ ︷

B
2D

cT
, (3.13)

where λ is the wavelength of the microwaves. The velocity v is the projection of
the target’s 3-dimensional velocity vector onto the radar beam axis, i.e. its radial
velocity vr along the radar beam. Because of the additional frequency shift, the
mixed signal is no longer periodic with T . Therefore, the echoes of moving targets
do not appear at harmonics of 1/T (see Fig. 3.3a). If we were able to get the
spectrum of the mixed signal m(t) with arbitrary frequency resolution, targets with
different velocities could be discriminated. As long as the condition

−
1

2T
<

2

λ
vr <

1

2T
(3.14)

holds, the target’s echo in the power spectrum will still appear in the correct range
gate. Thus, the allowed velocity range is

−
λ

4T
< vr <

λ

4T
, (3.15)
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Figure 3.3: (a) Power spectrum of the mixed signal for three targets of different
velocity located in range gate 3. The colored bars show spectral components of
the theoretical continuous power spectrum M2(f). Echoes of the non-moving target
appear at multiples of 1/T . Moving targets exhibit an additional frequency shift due
to the Doppler effect. The discrete power spectrum M2(fi) (gray) of a single sweep
digitized with N samples has a frequency resolution of 1/T , and thus echoes within
the corresponding frequency intervals are superimposed. Each component of M2(fi)
corresponds to one range gate. Note that the echo of the fast moving target (red)
contributes to the wrong range gate. (b) Time-series p3(tj) of Nsw complex power
spectrum components M(f3) for range gate 3 (gray arrows). The colored arrows
show the contributing superimposed echoes, rotating with a frequency proportional
to their object’s velocity. (c) By calculating the FFT P3(fj), the frequencies of all
phase rotations occurring in p3(tj) can be resolved. Because of aliasing the echo of
the fast moving object appears at a negative frequency.
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, and thus the red echoes of fast moving objects

appear at the correct velocities with respect to the correct range gate (compare Fig.
3.3b). Therefore, the ambiguity of range and velocity can be resolved as long as the
signals of neighboring range gates do not overlap.

where objects approaching the radar cause positive velocities, and objects moving
away from the radar cause negative velocities. However, because of the limited
frequency resolution of the FFT of a single sweep M(fi), we only get one spectral
line for each range gate as indicated by the gray areas in Figure 3.3a. Each complex
component ofM(fi) (given by its amplitude and phase) is therefore the superposition
of all echoes within the ith frequency range. Thus, there is an ambiguity between
range and velocity, which cannot be resolved by analyzing only one sweep.

Therefore, we separately calculate the FFT of Nsw subsequent sweeps. Moving
targets change their position during subsequent sweeps, and thus the phase of the
mixed signal m(t) changes from sweep to sweep, too. The phase rotates repeatedly
with a repetition frequency that is proportional to the target’s velocity (see Fig.
3.3b).

In order to get the Doppler spectrum for a single range gate i, we consider the
ith component of M(fi) over Nsw subsequent sweeps as a new time-series pi(tj),
where tj = jT with j = 1, ..., Nsw. By calculating a second FFT of pi(tj), we can
determine the amplitude for each velocity in the corresponding ith range gate (see
Fig. 3.3c). Because pi(tj) is complex–valued, its FFT spectrum Pi(fj) also consists
of Nsw components resulting in a frequency resolution of δf p = 1/TNsw, and the
velocity resolution is

δvr =
λ

2
δf p =

λ

2TNsw

(3.16)

If an object is moving too fast, i.e. vr ≥
λ
4T

, its echo will appear in the wrong range
gate. However, due to the repetition time T of the sweeps, the Nyquist frequency
of Pi(fj) is f p

Ny = 1
2T

, and we will have aliasing exactly when the echo appears in
the wrong range gate. Thus, a target in range gate i with a Doppler frequency of
f > f p

Ny appears in range gate i + 1 at a Doppler frequency of f − f p
Ny (see Fig.
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3.3c), and especially we have:

Pi(f
p
Ny) = Pi+1(−f

p
Ny) . (3.17)

Therefore, we can simply concatenate the Doppler spectra Pi(fj) for all ND range
gates, so that we get a continuous Doppler spectrum P (fk) with k = 1, ..., NDNsw

frequency components. With this we can describe the Doppler spectrum as a func-
tion of range gate i and velocity v (see Fig. 3.4):

P (i, vr) = P (fk) , with k = iNsw +
vr

δvr

. (3.18)

The still existing ambiguity between range and velocity can be solved, as long as the
echoes of neighboring range gates do not overlap. For example, the velocity range
given in relation (3.15) can be shifted to 0 ≤ vr <

λ
2T

, if the sign of all velocities is
a priori known to be positive. Finally, considering repeated measurements, we get
the time-series of Doppler spectra P (i, vr, t).

3.3 The Doppler Radar Monitoring System

Continuous monitoring of volcanic activity is a complex task and differs significantly
from conducting short-term scientific experiments. Usually, in scientific experiments
the measured data is stored locally. The data is processed and analyzed after the
experiment, which can be very time consuming. A monitoring system, however,
has to continuously transmit the data to an observatory, where it can be stored,
processed and analyzed online or at least on a daily basis. In order to keep the system
running continuously over long periods of time, maintenance is very important. As
instruments are often installed in remote places that are difficult to reach, the system
should periodically send some information about its operational status.

3.3.1 Doppler - Radar Setup

At Merapi two FMCW Doppler radar systems have been installed. Both are based
on a low–cost commercial rain radar. Figure 3.5 shows an image of one of the radar
systems. The actual radar device consists of a transmitter/receiver unit and a signal
processing unit. To focus the transmitted signal (50mW ), the transmitter/receiver
unit is mounted at the focus of a parabolic offset mirror. The offset mirror also
collects the reflected signal and feeds it back into the Gunn-diode, which mixes the
transmitted and received signal. The mixed signal is then processed by the signal
processing unit.
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Figure 3.5: Setup of a radar station with additional schematic arrangements. The
picture shows the radar device consisting of a 120cm offset mirror, a transmit-
ter/receiver and a signal processing unit. The CCD-camera is attached to the side
of the mirror. The electromechanical mounting is able to change the orientation of
the mirror/radar/camera assembly in azimuth and elevation. Like the remaining
peripheral components, the radar, camera and mounting are connected to the log-
ging unit, which controls the system, stores measured data to disk and sends it to
the observatory via radio.
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Each frequency sweep of the mixed signal is digitized with 32 samples, thus mea-
surements for up to 16 range gates can be conducted. For each Doppler spectrum
128 sweeps are used, so that each range gate contains 128 spectral lines. The resolu-
tion of radial velocities is 0.285m/s (see eq. 3.16), and velocity distributions with a
width of 36.48m/s can be observed without overlapping of neighboring range gates
(see Section 3.2). The range gate length can be chosen between 25 and 1000m.
Recording and processing of one Doppler spectrum takes about 50ms. Individual
spectra are stacked for a prescribed amount of time, the so-called integration inter-
val, in order to improve the signal–to–noise ratio. The stacked Doppler spectra are
transfered via a serial port to the logging unit. The minimum integration interval
is 1s.

The overall range of the system depends on the size of the offset mirror used to focus
the radar beam. For distances up to 1000m a small offset mirror (60cm diameter)
is sufficient (Hort et al., 2003). At Merapi, however, the distance between radar
station and dome is approx. 4.5km. In this case an offset mirror with a diameter of
120cm is required to guarantee a sufficient signal–to–noise ratio.

Most important during the setup of the radar is knowledge of the orientation of the
radar beam. Because the opening angle of the 120cm offset mirror is 1.5◦, a precise
alignment of the radar beam is mandatory. Therefore, the radar is mounted on top
of an electromechanical mounting. This enables a positioning of the radar beam
with a precision of 0.2◦. The electromechanical mounting can be accessed by the
logging unit via RS232 and a control unit. The mounting is controlled using azimuth
and elevation coordinates relative to the instrument’s own coordinate system. Since
this is fixed, the radar beam can be aligned to previously stored positions without
the need of a clear view. Because most of the time the dome of Merapi is covered
by clouds, this is very important especially during maintenance work.

Orientation and positioning of the radar beam is controlled by a CCD camera with
a zoom lens, which is attached to the side of the offset mirror and whose optical
axis is aligned parallel to the center of the beam. The precision of this alignment
depends on the configuration of the calibration measurement (see Appendix B).
Images of the observed position at the dome can be stored in order to provide
a well documented alignment of the radar beam. Images can also automatically
be stored on a daily or even an hourly basis, so that visually observable changes
at the dome can be documented. In order to align the optical axis of the CCD-
camera parallel to the radar beam, calibration measurements are needed. In addition
to the parallel alignment of camera and radar beam, these measurements provide
an intensity distribution plot that can be overlain onto the camera images. This
provides a visual impression of the coverage of the radar beam at the dome. For
details about the calibration measurements see Appendix B.
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3.3.2 The Logging Unit

The logging unit (Fig. 3.5) controls the whole system and is responsible for a wide
variety of tasks: a) Control the radar device and collect data; b) Change radar beam
alignment; c) Store data on local harddisk; d) Get images from the CCD-camera; e)
Synchronize time; f) Transmission of measured data, images, and status information
via radio; g) Send status information via SMS. During measurements, most of these
tasks have to be executed simultaneously, requiring a multi-tasking platform. For
configurations, beam positioning, and calibration measurements the system needs
an easy-to-use graphical user interface.

The computer-core of the logging-unit is a PC-104+ based low-power computer
system with a 300MHz CPU and 128MB memory. It is fully equipped with an
LCD-display, keyboard, and mouse and is operated by Microsoft Windows 2000 c©.
The integrated exchangeable harddisk has a size of 80GB, which is enough to store
up to 1 year of data in the current configuration. The system provides a total
of 6 COM ports, an Ethernet port and 2 USB ports. It is also equipped with a
framegrabber, which is used to collect video images from the CCD-camera attached
to the offset mirror.

The radar and the logging unit communicate via RS-232 or RS-422 (Baudrate
115.200) depending on the distance between the instrument and the logging unit.
The CCD-Camera is connected via a coaxial cable to the framegrabber. The
framegrabber provides live video with 25 frames per second, which is enough for
a precise and easy orientation and positioning of the radar beam. For documenta-
tion purposes it also takes single images, which can be saved to disk. The system
is synchronized to GPS time (UTC) for later correlation of radar data with, e.g.,
seismic or tilt data. Because the integration interval of the radar systems is usually
set to 3 seconds a low cost GPS - clock with a precision of +/–0.5s can be used,
which is also connected via a RS232 port.

The system has to provide the measured data in real-time to the local authorities
who are responsible to classify the state of activity of the volcano and send out
warnings or evacuate threatened areas. Therefore, the system has to radio the
measured data to an observatory, in our case to the MVO, which is located in the
city of Yogyakarta about 30km south of Merapi. Data transmission can be done
using multiple logical channels simultaneously, allowing transmission of data from
several instruments via the same radio line. The modems are connected to the
logging unit via a RS232 connection. In order to transmit all data measured by the
radar a special transmission protocol is used (see Appendix A). In addition to radar
data, the radio modems can be used to transmit camera images and information
about the system’s status. The logging unit can also receive basic commands via
radio from Yogyakarta, e.g. to reboot the system. For an alternative communication
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line the systems have been equipped with GSM modems. Via these modems the
logging unit is able to send status information and receive commands as SMSs (Short
Message Service). Thus, the system can be controlled from all over the world.

3.3.3 The Observatory Unit

The observatory unit is located in the monitoring room of the MVO, where the data
from all monitoring systems installed at Merapi are collected. It’s primary task is,
of course, to continuously store data measured by the radar systems. Images of the
radar system cameras as well as information about the status of the systems can be
obtained upon request. Finally, it serves the MVO staff as a platform for processing
and analysing of the radar data.

The observatory unit consists of a Windows 2000 c© based computer system and a
radio modem to receive data from the radar stations installed at Merapi. To be
easily accessible for the MVO staff, it is connected to the MVO’s intranet. In case
an internet connection is available the system can also automatically send emails,
in order to send out status information and images. Currently the observatory unit
retrieves data from two radar stations simultaneously. The number of radar systems
that can be controlled by the observatory unit is only limited by the radio commu-
nication. At the moment we use one radio modem (transmission rate 57.600baud)
to receive data from both stations. To reduce the transmission time per Doppler
spectrum, the data is compressed to about 25% of its original size before it is sent
by the stations.

Instead of storing the data to ASCII-files, it is stored using a client–server SQL
database system. Because of its reliability, speed, and good documentation we
chose to use the SQL database system called MySql. For each station, the raw data
is stored in database tables, each containing one month of data (approx. 550Mbyte).
By using index structures, searching datasets by their timestamp is very fast, even
for tables of this size. A so-called merge-table provides a logical concatenation
of all tables for one station. Thus, datasets of a specific station can be retrieved
by only one query to the corresponding merge-table, which takes approximately 5
seconds for 1000 datasets. The database can be accessed via TCP/IP, and thus from
every computer inside the MVO’s intranet. For this purpose, a client software has
been developed that provides easy data access, viewing and processing facilities (see
Appendix A).
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3.4 System Setup at Merapi

To observe the activity at Merapi’s lava dome two Doppler Radar systems were
installed on the western flank of the volcano. A first prototype radar station was
installed in October 2001 at Pos Babadan. Babadan is located at an altitude of
1280m above sea level (asl) and about 4.5km away from the active dome (see Fig.
3.6). Being located at the end of a mostly paved road, Babadan can easily be reached
by car. It is an official observation post of the MVO and is continuously occupied
by a staff member. In addition, Babadan is connected to public power lines, making
power supply a much easier task. The prototype station had no electromechanical
mounting and no video camera. Data transmission was also limited to pre–processed
data, i.e. the total echo power of each range gate. In August 2003 the station has
been upgraded, and all components described above were installed. The second
radar station has been installed in January 2005 near the former village of Gemer.
Similar to Babadan the station is located approximately 4.5km from the dome and
lies at an altitude of 1305m asl. Because of its remote location, this station can only
be reached by 4 wheel drive. Here, power is supplied by solar panels.

The two stations differ in one respect. The radar station at Babadan is equipped with
the same 24GHz Doppler radar that has previously been used at Stromboli volcano.
At Gemer a 10GHz Doppler radar has been installed. The lower frequency results
in a longer wavelength making the instrument less sensitive to small (diameter <
1mm) particles. Thus, the station is less affected by ash clouds and rainfall making
a detection of dome instabilities easier under such conditions.

When pointing at the dome, the radar beams for both radar stations have a similar
elevation angle of about 21–22◦. The opening angle of the radar beams is about
1.5◦, and we estimate the slope in the dome area to be tilted about 45-60◦ to the
horizontal. Thus, each beam covers an elliptical area of approx. 125m width and
250 − 300m height. Since the dome is much bigger than this (about 400m wide
and 200m high), a precise alignment of the radar beam is very important for the
measurements. For a description of the alignment of radar beam and the camera
see Appendix B.

Given the distance of about 4.5km to the dome, the range gate length was fixed at
600m. To reduce the amount of data that has to be transmitted from the radar and
stored on disk, only 4 range gates are activated (1800–2400m, 3000–3600m, 3600–
4200m, 4200–4800m). Figure 3.7a shows a spectrum measured by station Babadan.
The last three range gates record activity at the dome and within a few hundred
meters distance in front of the dome. In order to detect rain falling at the flank, i.e.
having no direct impact to the dome activity, the first range gate observes activities
in free air about half way between the instrument and the dome. For the velocity
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Figure 3.6: System setup at Merapi Volcano. Both stations are located on the west-
ern flank of the volcano at a distance of approx. 4.5km, each. Because of the tilted
slope each radar beam covers an elliptical area. A direct data transmission from
Babadan to Yogyakarta is not possible, thus, the station at Gemer also functions
as repeater. Colored areas mark the deposits of dome collapses of the last 50 years
(taken from Schwarzkopf and Schmincke, 2000). (Digital elevation model provided
by C. Gerstenecker, TU Darmstadt)

range of 0–36.48m/s we have to assume that only positive radial velocities occur.
However, because the elevation angle of the radar beam is quite small, also negative
radial velocities are possible, when rain is falling equally tilted due to strong wind.
In this case, the range and velocity interpretation shown in Figure 3.7b has to be
considered. Because range gates 1200–1800m and 2400–3000m are not stored, no
negative velocities are available for range gates 1800–2400m and 3000–3600m.
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Figure 3.7: Doppler spectrum measured by the radar system at Babadan. (a) shows
the original interpretation of distance and velocity for vertical looking rain measure-
ments, where only positive velocities are observed. (b) shows the same measurements
as (a) with interpretation of distance and velocity for the measurements at Merapi
volcano. Because range gates 3 (1200 − 1800m) and 5 (2400 − 3000m) are not
stored, no negative velocities are available for range gates 4 (1800 − 2400m) and 6
(3000 − 3600m). Both plots show a Doppler spectrum of moving dome material.
The highest amplitude is observed in the 4200 − 4800m range gate.
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3.5 Observations

Active lava domes are highly dynamic systems. The overall dome growth depends
on the magma production rate, which can be observed by, e.g. seismic measurements
(see e.g. Ratdomopurbo and Poupinet (2000), Hidayat et al., 2000 and Wassermann
and Ohrnberger, 2001). The risk of a partial or a full dome collapse, however, also
depends on composition of the dome material and the geometry of the dome. An
indirect indicator for the stability of a certain part of the dome is the number and the
size of instabilities and thus of the resulting rockfalls. Very steep and instable parts
of the dome are much more likely to produce a large number of rockfalls or even block
and ash flows. In the past rockfalls and block and ash flows could only be detected
instrumentally by seismic measurements. However, this has three shortcomings: a)
localization of seismic events is not precise enough to attach them to a certain part
of the dome, save for the use of arrays, b) during times of high activity with several
hundred events per day the duration of several minutes causes events to overlap,
and c) seismic records do not directly reveal the instability mechanism.

Doppler measurements are able to overcome these three shortcomings. By focusing
on a certain spot at the dome, the two radar systems are able to detect even very
weak events. After breaking off the material is moving down the slope of the volcano
leaving the radar beam after a short time (usually less than 20 − 30s). Thus,
the probability of overlapping events is less likely than for seismic measurements.
The Doppler spectra measured by the two radar systems give valuable information
about the instability processes and allow the discrimination of different types of
instability events. Because of the discrimination of different range gates, the radar
measurements also allow the observation of rain falling locally in the dome area,
where the installation of rain gauges is extremely difficult. This provides a unique
opportunity to analyze the impact of rainfall on dome activity (Voege et al., 2006).

As described in Section 3.2, Doppler spectra hold information about echo power as
a function of velocity. The amplitude of the echo power is related to the number and
size of the particles and thus to the mass moving inside the radar beam. A conversion
of the echo power into a total mass is quite difficult and requires knowledge of the
particle size distribution and the reflectivity of the material. However, under the
assumption that these properties vary only slightly over time, the echo power can be
taken as a relative measure of the moving mass. Because the radar beam is pointing
directly at the non-moving dome, we would always get very high amplitudes for the
echo power of radial velocities near 0m/s. Since we are only interested in moving
material, these amplitudes are suppressed by a filter. To enhance the signal–to–noise
ratio, the Doppler spectra are stacked or integrated over a period of 3 seconds.

In order to investigate the evolution of an event, two characteristic values are cal-
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Figure 3.8: Two radar events recorded at station Babadan. (a) shows a typical rain
event. The upper plots are Doppler spectra recorded in three consecutive range
gates. The lower plot shows the calculated total echo power of the Doppler spectra
and the mean velocity calculated from the 4200 − 4800m range gate. (b) shows
an event of moving dome material. Here the Doppler spectrum plots focus on the
positive velocity axis of the 4200 − 4800m range gate.
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culated for each spectrum: the integrated or total echo power and the mean radial
velocity. The total echo power of a range gate i at a time t is defined by

P (i, t) =
vmax∑

vr=vmin

P (i, vr, t) , (3.19)

where P (i, vr, t) is the echo power given by range gate i, radial velocity vr and time
t (Hort et al., 2003). vmin and vmax describe the velocity range that can be resolved
in each range gate. The mean radial velocity in range gate i is given by

vr(i, t) =
1

P (i, t)

vmax∑

vr=vmin

P (i, vr, t) vr . (3.20)

Two kinds of material movement can be observed at the dome: falling raindrops and
material breaking off the dome. Figure 3.8a shows a typical rain event. The lower
plot shows the evolution of the total echo power (eq. 3.19) and the mean velocity (eq.
3.20) throughout the event. The total echo power rises and decreases slowly. From
the Doppler spectra we can see that the ratio of the amplitudes of different range
gates changes during the event. At t = 99s the highest amplitude was measured in
the range gate extending from 4200 − 4800m. About 3 minutes later at t = 312s,
the highest amplitude was measured in the 3000 − 3600m range gate. Thus, the
target, i.e. rain cloud, has drifted towards the radar system. The shape of the
velocity distributions is mainly Gaussian reflecting the raindrop size distribution.
The mean velocity (measured in the 4200 − 4800m range gate) is relatively stable
at about 3 − 4m/s. However, after about 400 seconds the mean velocity begins to
increase slowly to about 7m/s near the end of the event. At t = 525s the velocity
distribution in the range gate 4200 − 4800m differs significantly from the Gaussian
distribution, which is probably due to stronger winds.

For the movement of dome material we focus on one range gate, because the dome
is fixed, and the same range gate will always give the maximum amplitude. Figure
3.7 clearly shows that the highest amplitude for moving dome material is in the
4200 − 4800m range gate. Figure 3.8b shows an event of moving dome material.
The total echo power rises and decreases relatively slowly. The sharp increase of the
mean velocity is due to the fact that until the echo power reaches a certain amplitude,
no reliable mean velocity can be calculated. Starting at 3m/s, the mean velocity
decreases only slightly to about 2m/s. The velocity distributions show that the
highest echo powers are measured for very low velocities. In the Doppler spectrum
the echo power decreases quickly with increasing velocity, and for vr > 5m/s almost
no echo power is detected. The low velocities suggest that the material moves close
to the slope and because of the friction of the slope, the moving material cannot
accelerate further. Thus, this is interpreted as mostly sliding material.

Figure 3.9a shows an event with higher velocities. Here, the mean velocity rises
up to 4.2m/s at t = 12s. The corresponding velocity distribution shows high echo
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Figure 3.9: Two radar events measured by station Babadan. The upper plots show
the positive velocity axis of Doppler spectra from the 4200−4800m range gate. The
lower plot shows the calculated total echo power of the Doppler spectra and the
mean velocity calculated from the 4200 − 4800m range gate. (a) shows an event
of material breaking off the dome due to gravitational forces. (b) shows an event
where material has been accelerated explosively due to gas overpressure.
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power for velocities up to 10m/s. The higher velocities may be due to either a
variation in the particle sizes or, since the measured radial velocities are a function
of the true velocity and the angle between the direction of movement and the radar
beam, to material moving in a broader range of angles. When material breaks off
the dome and fragments, bigger fragments can bounce off the slope and reach higher
radial velocities, before they hit the slope again. Smaller fragments remain on the
slope and slide slowly due to increased friction. After only 3 seconds do the higher
velocities disappear and we only observe sliding material. For t = 0s and t = 6s no
mean velocities can be calculated, because the echo power amplitude is too low.

Some events, however, contain significantly higher velocities that cannot be ex-
plained by acceleration due to gravitational forces (Hort et al., 2006). Figure 3.9b
shows such an event. Both total echo power and mean velocity rise quickly between
t = 12s and t = 18s. The velocity distribution at t = 18s is very broad. Similar
amplitudes for the echo power are measured for velocities of 1− 15m/s. The maxi-
mum radial velocity is at about 18m/s. This maximum value and the wide spread
of the velocities cannot be explained by gravitational acceleration (see Hort et al.
(2006)). Instead, the material movement must have been initiated by an explosion.
Any explosion has a certain opening angle, in which the material is accelerated. The
radar measures radial velocities

vr = vt cos(α) , (3.21)

where vt is the unknown true velocity and α the unknown angle between the radar
beam and the direction of the movement. Thus, for a large angle α the radial velocity
is considerably lower than the true velocity and material moving perpendicular to
the radar beam appears at vr = 0m/s. Because vr is always lower than vt, the
highest radial velocity with a significant echo power amplitude can be assumed to
be less than the true maximum velocity of the explosion. Thus, the maximum
velocity of the explosion in Fig. 3.9b is at least 18m/s. The slightly higher echo
power for 1− 7m/s suggest that the explosion coincides with a gravitational break-
off of material. Whether the explosion is triggered by a gravitational failure of
the dome or vice versa cannot be resolved due to the limited time resolution. At
t = 24s the explosive part already disappeared, and the velocity distribution shows
only material sliding down the slope.

To evaluate the performance of the radar systems, i.e. the ability to detect dome in-
stability events, we compared the radar data to seismic records provided by Joachim
Wassermann, from the University of Munich (see Wassermann and Ohrnberger
(2001); Ohrnberger (2001)). In Figure 3.10 seismic and radar data are compared for
two events. Here, the radar data is plotted as contours. Both seismic and radar data
share the same time axis. The event in Figure 3.10a has a distinct onset at t = 145s
in both time series. Significant echo power in the radar data is only detectable for
velocities below 5 − 6m/s. Thus, this is a gravitational instability event, where
material breaks off the dome and slides downslope. This interpretation corresponds
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a)

b)

Figure 3.10: Comparison of seismic and radar data for (a) a gravitational, and (b)
an explosive instability event. The upper plots show the seismic amplitude recorded
at station Pasar Bubar, about 600m from the dome. The lower plots show the
corresponding radar data. The horizontal axis represents the time, the vertical axis
the velocity and the contour levels represents the echo power. (Seismic data are
courtesy of J. Wassermann, pers. comm. 2006)
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to the seismic signal, whose envelope rises relatively slowly at the beginning of the
event. The event in Figure 3.10b is clearly an explosive instability. At the beginning
of the event at t = 90s the echo power rises for velocities up to 20m/s. After the
onset most echo power is measured in the range of 0–5m/s, which means that dur-
ing this period the loose material slides downslope. The seismic signal corresponds
again very well to this observation. Compared to the event in Figure 3.10a the onset
is very sharp, strengthening the interpretation as an explosive outburst. After the
explosion the signal is visible for another 150 seconds in the seismic record, which is
much longer than the observed time in the radar data. This can be explained by the
fact that only the dome is covered by the radar beam. After a short period of time
the material leaves the radar beam and slides down the slope of the volcano, where
it is still visible in the seismic data. The correlation of radar event type and seismic
signal form could be observed for several events. However, a thorough analysis for
a larger number of events has yet to be done.

Figure 3.11 shows two comparisons of seismic and radar data, each for a continuous
time interval of one hour. Here, the radar signal is plotted as the total momentum,
which is calculated by the product of echo power and velocity:

Mom(i, t) =

vmax∑

v=vmin

P (i, vr, t) vr . (3.22)

The momentum provides a very good discrimination between noise and events (see
Voege and Hort, 2006). In Figure 3.11a the correlation between seismic and radar
data is very good, almost every peak in the radar data has it’s counterpart in the
seismic data and vice versa. Again, the radar signal shows a relatively short peak for
each event, while the events last much longer in the seismic data. The amplitudes of
the events do not correlate very well, as events A, B, and C clearly show. While all
three events appear to have approximately the same amplitude in the radar data,
event B is significantly stronger than A and C in the seismic data. The probable
cause of this is the unknown location of the event within the radar beam. Events
that occur in the center of the radar beam cause the highest echo power.

Figure 3.11b shows another section of data one hour. Here the correlation between
both time series is still good, but event D is only clearly visible in the seismic data,
whereas an increase in the radar data can hardly be observed. Thus, the event
has not occurred in the center of the radar beam, but at a position, where the
transmitted radar signal itself is very weak. Event E shows that on the other hand
events are much more likely to overlap in the seismic data, when they follow each
other quickly. This happens especially during times of high activity, when a few
hundred events can occur each day.
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Figure 3.11: Comparison of radar data and seismic records. The radar data was
measured at the Babadan station and is plotted as momentum over time. The
seismic data was recorded at the station of Pasar Bubar, approx. 600m northwest of
the dome. Time in the upper left corner is station time at the begin of the time series.
Small letters give the event type according to the radar data: s=sliding material,
g=gravitational break-off, e=explosive outburst. Capital letters are referred to in
the text. (Seismic data are courtesy of J. Wassermann, pers. comm. 2006)
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3.6 Conclusion and Outlook

Although a wide variety of monitoring systems has been install at Merapi over the
last decades, continuous direct visual observation of dome activity is still impossible,
because Merapi’s summit is often covered by clouds. The Doppler radar is a first
approach to enable a continuous, ”quasi-visual” observation of lava dome processes.
Independent of the visibility conditions, the radar system is able to detect material
breaking off the dome generating potentially dangerous rockfalls or block and ash
flows. A relative measure of the amount of material involved in the instability events
can be given, and information about the dynamic processes causing the instability
can be derived from the velocity distributions.

Rockfalls and block and ash flows have been monitored by seismic measurements for
many years. A comparison of seismic records and radar measurements shows that the
radar technique can enhance the monitoring of such events. A particular advantage
of the radar measurements is the short duration of events. During times of high
activity seismic events tend to overlap, and especially for events without distinct
onset they are difficult to separate from each other. On the other hand, the seismic
network at Merapi observes the whole dome area, and thus rockfalls are detected
independent of their origin and direction. The setup with 2 radar stations can only
observe a relatively small part of the dome. For example the dome collapse in June
14, 2006, occurred to the southeast and was therefore invisible for the two installed
radars. To achieve complete coverage for the radar measurements about 5 radar
systems would be necessary. However, when combined with seismic measurements,
even a single radar system can significantly enhance the monitoring of the location
of the most active part of the dome. Consider the radar focused on the most active
spot at the dome. When the activity moves to a different location without changing
its magnitude, the number of rockfalls in the radar data will decrease, while the
events recorded in the seismic data remain constant. The seismics alone would
suggest that the activity is not changing, while the radar data would suggest that
the activity decreases. A combination, however, would reveal that the activity has
merely shifted to another part of the dome, which is crucial information for hazard
mitigation.

From the velocity distributions (e.g. Figs. 3.8 and 3.9) we were able to identify dif-
ferent processes, which cause material to break off the dome. During gravitational
instabilities, material breaks off due to a structural failure of part of the dome. Be-
cause the material is moving close to the slope the material movement is dominated
by the friction between material and slope. Therefore, only relatively small veloci-
ties are achieved. Especially when the actual break-off is finished, and the material
is sliding down the slope, most of the material moves with radial velocities of less
than 5m/s. The angle between the radar beam and the material movement has been
estimated to be in the range of 38◦ to 57◦ (see Hort et al. (2006)). Thus, true max-
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imum velocities lie in the range 6− 9m/s. During explosive instabilities we observe
much higher radial velocities of up to 20m/s. Because of the broad opening angle
associated with explosive outbursts and the uncertain direction of the outburst, we
can only estimate that the true maximum velocity is usually at least 20m/s. The
discrimination between gravitational and explosive events is also supported by seis-
mic observation. However, the velocity distributions measured by the radar system
give more detailed information on the dominating processes than the seismic data.

The discrimination between multiple range gates provides a way to measure rainfall
directly at the dome. The dome area is too hazardous to install rain gauges, and
because rainfall might occur very locally, the radar system offers a new source of
information to investigate the influence of rain water on dome activity. By storing
detailed camera images every hour the system can also help to document visual
changes at the dome. When bigger rockfalls or block and ash flows occur, images
from before and after the event can be compared. This can help to identify po-
tentially unstable areas of the dome, which can be selected to be monitored by
radar.

The radar systems are installed as permanent monitoring systems, and thus a great
effort has been made during development to provide stable, reliable systems that
can be maintained by the observatory’s personnel without intensive training. The
radio transmission allows real-time processing of the radar data at the observatory.
Because camera images are transmitted upon request, visual observations are also
possible at the observatory. Finally, status information can be sent via radio to the
MVO and via GSM–modem to each person involved, which helps to maintain the
systems efficiently.

In order to provide statistics about the number and size of instabilities on a daily
basis, instabilities have to be classified automatically. To achieve this, a software
package has been developed, which uses neural network techniques to classify the
events (see Voege and Hort, 2006). This software has also been integrated into the
user interface shown in Figure A.2 in Appendix A.

Future work will include further development of the system infrastructure and, of
course, application of Doppler radar monitoring at other dome building volcanoes.
Crucial for the monitoring of an active lava dome by Doppler radar is the placement
of the system. A safe location within a range of 4 − 6km from the dome and direct
line of sight to the active area of the dome is needed. The installation of a radar
system in a remote area needs a similar effort as for seismic stations, but a radar
system has a slightly higher power consumption of about 30W . Interpretation of the
data is straightforward, and it can easily be correlated with other monitoring data.
The observations presented in this paper make us confident that radar measurements
could significantly enhance the monitoring of dome processes at other dome building
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volcanoes, e.g. Soufriere Hills, Montserrat, or Unzen, Japan.
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Abstract

Monitoring lava dome instabilities is crucial to efficiently monitor active dome build-
ing volcanoes. The Doppler radar technique provides a unique opportunity to gather
information about the number of instability events occurring at the growing dome
and about the dynamic processes that take place during different types of instabili-
ties. So far, three different kinds of processes have been identified: sliding material,
gravitational break-offs and explosive outbursts. In addition, Doppler radars provide
rain measurements, which can be used to investigate possible correlations between
rainfall and dome activity. Two radar systems have been installed at Merapi volcano
in October 2001 and January 2005 to continuously monitor dome instabilities. Due
to the large number of instability events that occur during times of high activity,
manual processing and analysis of instability events is not practical for monitor-
ing purposes. Therefore, an automatic classification system has been developed,
which is capable of identifying different kinds of instabilities as well as rainfall. Two
different kinds of classifier models have been applied: (a) neural network and (b)
K-nearest-neighbor classifier model. Both classify Doppler spectra according to the
underlying dynamic process, i.e. rain, sliding material, gravitational break-off or ex-
plosive outburst. The classifiers are able to identify disturbances, which have no
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physical source, but are merely artifacts from the radar device itself. Because radar
events are sequences of Doppler spectra, a rule set has been defined, which finally
determines the event class. In this paper we present the theoretical background for
the classification methods as well as details for the given application. All classifiers
have been trained and tested on independent data sets to estimate the classification
performance.

4.1 Introduction

Merapi volcano is one of the most prominent examples of dome building volcanoes.
It is located in central Java, Indonesia, and due to its continuous activity and high
population density in the volcano’s vicinity, it is considered one of the most danger-
ous volcanoes worldwide. The lavas of the strato-volcano are of basaltic andesitic
composition. Because of its high viscosity the lava forms a dome within an older
crater (Voight et al., 2000). The typical eruption style of Merapi is dome extrusion
accompanied by partial dome collapses. Dome collapses result in (Merapi-type) py-
roclastic flows with run-out distances of several kilometers. Because temperatures
reach up to about 500◦C (Voight and Davis, 2000) they are particularly hazardous,
and due to the high population density fatalities are not seldom. Therefore, Mer-
api has been continuously monitored for many years using a wide variety of mea-
surement techniques (see e.g. Ratdomopurbo and Poupinet, 2000, Wassermann and
Ohrnberger, 2001, Rebscher et al., 2000, Zimmer et al., 2000, Friedel et al., 2004
and Lavigne et al., 2000a).

In order to enhance monitoring of rockfalls and block and ash flows we installed 2
Doppler radar systems at the western flank of Merapi, the first in October 2001 at
Pos Babadan and the second in January 2005 at Pos Gemer (see Voege and Hort,
2007). Through measuring the velocity distribution of material movements inside
the radar beam, the systems provide useful new information about the processes
causing material to break off the dome (see Hort et al., 2006, and Voege and Hort,
2007). So far, selected events have been analyzed manually, and three different types
of events have been identified. However, due to the large amount of rockfalls and
block and ash flows during times of high activity (several hundreds each day) there
is a strong need for an automatic classification of different types of radar events.
In recent years similar systems have been implemented for different geophysical
observations (see e.g. Dowla et al., 1990, Falsaperla et al., 1996 or Ohrnberger, 2001).
Most of them are based on pattern recognition systems that basically consist of five
components: (a) sensing, (b) segmentation, (c) feature extraction, (d) classification
and (e) post-processing (Duda et al., 2001). The measurement principle is shortly
revised in Section 4.2, and in Section 4.3 we summarize the different types of events.
Segmentation describes the task of identifying events, i.e. separating single events
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from background noise and from each other, which is described in Section 4.4.

One of the most important tasks in pattern recognition is feature extraction. The
purpose of feature extraction is to reduce the data by measuring certain features or
properties, whose values are very similar for objects of the same category and very
different for objects of different categories. When more than one feature is extracted,
each object is represented by a feature vector x, where x is in a d–dimensional
Euclidean space Rd. The task of the classifier component is to use the feature
vector provided by the feature extractor to assign the object to a class or category.
Because perfect classification performance is usually impossible, a more general task
is to determine the probability for each of the possible categories. This approach is
based on the Bayesian decision theory. In order to determine the probability of an
object being of a certain class, two different methods have been used: the K-nearest-
neighbor method and neural networks. Although the Bayesian decision theory, the
K-nearest-neighbor method and neural networks are state-of-the-art in the field of
pattern recognition, we summarize these topics in Sections 4.5–4.6, because they
play a key role throughout this paper. When all probabilities are determined, the
post-processing task finally decides, to which category the object belongs, given the
probabilities calculated by the classifier.

The goal of this paper is to present a procedure to classify different types of radar
event, i.e. a sequence of Doppler spectra which significantly differ from background
noise. However, it is difficult to define a feature vector of fixed size characterizing all
kinds of radar events, because they can differ very much in duration, and because a
dome instability event can consist of different consecutive processes. Therefore, we
first classify single Doppler spectra according to the underlying process. In order
to achieve the best possible classification performance both neural network and K-
nearest-neighbor classifiers are tested with different training parameter sets (Section
4.8). When all Doppler spectra of an event are classified, we analyze the resulting
sequence of class labels to determine the event class, i.e. the event type (Section
4.9). Because the radar station at Pos Gemer has not collected enough data for a
sufficiently large training set, in this paper we focus on the classification of events
detected by the radar station at Pos Babadan.

4.2 System Description

The radar system is a frequency modulated continuous wave (FMCW) Doppler
radar, which sends out electromagnetic waves with a base frequency of 24GHz. As-
suming the particle sizes of the objects do not vary significantly, the amplitude of
the received echo power roughly scales with the volume of the reflecting objects (see
e.g. Seyfried and Hort, 1999). From the received signal the system repeatedly (at
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vr Radial velocity
P (i, vr) Echo power for velocity vr in range gate i

P (i) Summed echo power in range gate i

Mom(i) Momentum in range gate i

mr Statistical moment of order r

µ Mean
σ2 Variance

Skew Skewness
Kurt Kurtosis

ωi Classes/categories
x Feature vector

p(x) probability density
p(x|ωi) State-conditional probability density
P(ωi) Prior probability
P(ωi|x) Posterior probability

αi Classification action
λ(αi, ωj) Loss function
R(αi|x) Expected loss/conditional risk

α(x) Decision function
R Overall risk

gi(x) Discriminant function

ℜ Area of the feature space
V Volume of an area of the feature space
N Number of training samples
K Number of samples considered for K-nearest-neighbor estimate

xi Input layer units of neural network
yj Hidden layer units of neural network
zk Output layer units of neural network
tk Desired activation/output of output unit k

aj , ak Weighted sum of inputs to hidden/output units
wji , wkj Network weights between input–hidden/hidden–output nodes
δj , δk Sensitivity of hidden/output units

E Error function
η Learning rate

∆wji , ∆wkj Weight updates
m Index of learning cycle

Table 4.1: Table of symbols.
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Merapi every 3 seconds) calculates averaged Doppler spectra, which hold informa-
tion on how much echo power has been reflected by objects with certain Doppler
frequencies. The Doppler frequency gives two kinds of information about the re-
flecting object: distance and velocity. The distance measure is very coarse and a
maximum of 16 so-called range gates of equal length can be used. Each range gate
consists of 128 Doppler frequencies, which are proportional to the object’s veloc-
ity component in direction of the radar beam, i.e. the radial velocity vr. The first
Doppler frequency of each range gate corresponds to a radial velocity of vr = 0m/s.
The velocity resolution is ∆vr = 0.285m/s.

Figure 4.1 shows a Doppler spectrum measured by the radar. The spectrum consists
out of 4 range gates and thus out of 512 frequency components in total, each giving
the echo power received for the particular frequency. The frequency axis has an
ambiguous meaning and represents a combination of distance and velocity. The
radars at Merapi are configured with a range gate length of 600m, and range gates
4,6,7 and 8 are recorded (1800–2400m, 3000–3600m, 3600–4200m and 4200–4800m).
Originally being designed for vertical looking rain measurements, where only positive
velocities (towards the radar) are observed (Fig. 4.1a), each range gate has a velocity
range from 0 − 36.48m/s. At Merapi, however, the elevation angle of the radar
beam is only about 21◦, and especially when rainfall is influenced by strong winds,
negative velocities have to be taken into account. Because of the ambiguity of range
and velocity, a negative velocity of, e.g. 10m/s corresponds to a positive velocity of
36.48−10 = 26.48m/s in the left neighboring range gate. However, as long as signals
in neighboring range gates do not overlap and additional knowledge is available, e.g.
about the general direction of the movement, this ambiguity can be resolved. (for
details see Voege and Hort, 2007). Figure 4.1b shows the interpretation of range
and velocity used at Merapi. Each range gate has a velocity axis extending from
−18.24m/s to +18.24m/s. Because range gates 3 and 5 are not stored, no negative
velocities are available for range gates 4 and 6. Instead, negative velocities are
available for range gates 3 (2400–3000m) and 9 (4800–5400m). However, these are
not relevant for monitoring of dome activity, because they provide no echoes for
dome instabilities. For further details on the measurement principle see Voege and
Hort (2007).

4.3 Types of Radar Events

Doppler radar measurements provide a unique opportunity to analyze the underlying
dynamic processes of dome instabilities. Most important for the characterization of
the processes is, of course, the shape of the velocity spectrum in each range gate.
A second important aspect is the distribution of the echo power across the range
gates, providing information on the location of the event. Since radar events usually
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Figure 4.1: Both figures show a Doppler spectrum measured by the radar system.
(a) shows the original interpretation of distance and velocity as intended for vertical
looking rain measurements. Here, all objects move towards the radar, and thus only
positive velocities occur. (b) shows the interpretation of distance and velocity for
the measurements at Merapi volcano. Because range gates 3 (1200–1800m) and 5
(2400–3000m) are not stored, no negative velocities are available for range gates
4 (1800–2400m) and 6 (3000–3600m). For the observation of activity at Merapi’s
dome, only range gates 6, 7 and 8 have to be considered.

last longer than two or three recordings (i.e. 9 sec.), the temporal evolution has also
to be taken into account.

In the following we show 5 different types of radar events (see also Hort et al., 2006,
and Voege and Hort, 2007): rain, disturbances, sliding dome material, gravitational
break-offs and explosive outbursts. For the human eye the distinction between these
types of radar events is not difficult. However, in order to implement a robust and
accurate automatic classification algorithm we have to analyze the events for well
defined features, which make a discrimination of the different event types as easy
as possible. Thus, in this section we will investigate the different radar events for
characteristic properties. Later we discuss, how we use these properties to compute
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Figure 4.2: Types of Doppler spectra observed at Merapi volcano and sketches of
the corresponding dynamic processes. The source of disturbances as shown in (b)
is not known. However, a material movement in the dome area is highly unlikely.

efficient feature vectors for the classification.

4.3.1 Rain

The first type of radar event is simple rainfall. Because rainfall can fill a large
part of the radar beam and liquid water has strong dielectric properties, the echo
power is usually very high. The Doppler spectrum of a typical rainfall looks like
a Gaussian peak (see Fig. 4.2a). The measured radial velocities mainly depend on
droplet sizes, but they are also influenced by the direction and speed of the wind (see
e.g. Rajopadhyaya et al., 1998, Kollias and Albrecht, 2000 and Kollias et al., 2001).
Unlike for pure rain measurements, the radar beam is not oriented vertically upward
and therefore the influence of wind on the measured velocities can be very strong.
In case of strong wind blowing away from the radar, rain appears to have negative
velocities. Sometimes the velocity distribution differs from the typical Gaussian
distribution (see Fig 4.2a, green curve), which presumably is caused by turbulences,
which influence the droplets direction and velocity. Figure 4.3a shows the temporal
evolution of a rain event. The rainfall is clearly visible in all three range gates
covering the dome. However, in the beginning the rain is only visible in range gate
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7 (3600–4200m) and 8 (4200–4800m). After approx. 50s the rain is also visible in
range gate 6 (3000–3600m), where it reaches the largest amplitude. After 400s the
amplitude in range gate 8 is already very low, while in range gate 6 we still observe
a strong echo. Near the end of the event, after about 500s, only range gate 6 shows
an echo. Thus, it seems that the observed part of the rain cloud has moved towards
the radar.

4.3.2 Disturbances

Figure 4.2b shows a Doppler spectrum with clearly visible disturbances, or so-called
ghost echoes. The echoes show a strong symmetry with respect to the vr = 0 axis
and do not change their apparent velocities over time. Figure 4.3b shows that only
the amplitude of the disturbances strongly fluctuates. Interestingly, the amplitudes
of the disturbances scale with the amplitudes of the static echoes, i.e. echoes from
the non-moving dome, (vr = 0m/s, see also Section 4.4). Because static echoes
carry no information about material movements they have already been suppressed
during preprocessing and thus are not visible in Figure 4.2b and 4.3b. Because
the flank of Merapi does not move, the ratio of the amplitudes of static echoes of
different range gates does not change, and Figure 4.3b shows that the same holds
for the disturbances. The symmetry and especially the correlation with the static
echoes rule out any association with material movement. Thus, it is very important
to distinguish these disturbances from real material movements, so that they can be
ignored during further analyzes.

4.3.3 Dome Instabilities

The main purpose of the system is to observe dynamic processes at the dome.
Depending on the process that causes the material to break off the dome, the Doppler
spectra have different characteristic shapes. In the following, we will shortly describe
the interpretation of three different kinds of Doppler spectra that represent material
movements at the dome and characterize three different kinds of instability events.

Sliding Dome Material

Figure 4.2c shows a Doppler spectrum with its highest echo power at very low
velocities. Only because the static echoes are suppressed, there is no echo power at
vr = 0. The echo power decreases rapidly towards higher velocities, and there is no
significant echo power for radial velocities greater than 8m/s. A comparison with
measurements at a target region further down slope of Merapi showed that these
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Figure 4.3: Temporal evolution of two radar events in range gates 6 (3000–3600m),
7 (3600–4200m) and 8 (4200–4800m). The rain event in (a) begins in range gate 7
and 8, then moves towards range gate 6. In all range gates the velocity distribution
has the same Gaussian shape. The mean velocity is approx. 4m/s throughout the
event. (b) shows a time interval with relatively strong disturbances. The so-called
ghost echoes appear at the same velocities in all range gates, but vary in amplitude.
The stable symmetry with respect to the zero velocity axes is a key aspect for the
identification of these disturbances. Please, note the order of magnitude difference
in the echo power between rain and disturbances.
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Figure 4.4: Temporal evolution of two radar events in range gates 6 (3000–3600m),
7 (3600–4200m) and 8 (4200–4800m). (a) shows an event of sliding dome material.
Throughout the event most of the material is moving very slowly with about 0–4m/s
(radial velocity). (b) shows an event with a slightly broader velocity distribution
(sec. 6–12), which is interpreted as material breaking off the dome due to gravita-
tion. After second 12 the material is again sliding down the slope and the velocity
distributions look the same as in (a).
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Doppler spectra are related to material sliding down the slope (Hort et al., 2006).
The velocity distributions are not broad, because nearly all material is moving with
similar velocities in one direction. Most of the material moves rather slowly because
of the friction between material and slope. Some particles or blocks bounce off the
slope and reach slightly higher velocities while moving in free air. Figure 4.4a shows
that some events exclusively contain sliding material. However, in the following we
will see that even when the onset of the event is driven by a gravitational or explosive
instability as described below, at the end of the event the released material is always
sliding down the slope (see Fig. 4.4b and 4.5a and b). Thus, it is possible that an
event registered completely as sliding material has been triggered by those processes
above the area observed by the radar.

Gravitational Dome Instabilities

Gravitational instabilities are similar to sliding material. The mean velocity is very
low and the maximum echo power is at a velocity near vr = 0. However, compared
to sliding material the velocity distribution at the onset of the event is significantly
broader and the decrease of the echo power towards higher velocities is less smooth
(see Fig. 4.2d). Because of the still rather low velocities, we can rule out that the
material has been accelerated by an explosive force and thus is still only driven by
gravitational forces. Therefore, the broader velocity distributions at the beginning
of the event can have two causes: a) the particles are moving in a broader range
of angles, and b) the particle sizes are different. Both can be explained by the
initial fragmentation during the break off of dome material. Big fragments are more
likely to bounce off the slope and thus to cause higher radial velocities, while smaller
fragments remain close to the slope. Therefore, we can assume that for such Doppler
spectra the relative amount of bigger fragments is higher than for Doppler spectra
representing sliding material. Figure 4.4b shows the temporal evolution of a typical
gravitational instability. After the onset with the broader velocity distribution, the
fragmented material is sliding down the slope.

Explosive Dome Instabilities

Figure 4.2e shows a Doppler spectrum which has a much broader distribution than
those in Figure 4.2c and d. Such a distribution cannot be explained by gravitational
acceleration. Hort et al. (2006) show that even if the material originates from above
the radar beam gravitational acceleration cannot explain radial velocities above
15m/s (estimated true velocity: 17.8–25.5m/s). Because of the vertical extent of
the area covered by the radar beam of about 250–300m, such velocities would be
observed for a longer time than only a few seconds. Explosive outbursts at the
dome are assumed to be caused by degassing. In most cases the explosive events
start with the explosive outburst (Fig. 4.5a), in which case we assume that they are
driven from the interior of the dome. In some cases, however, the explosive outburst
follows a gravitational instability (Fig. 4.5b), which causes degassing by release of



58 4. Automatic Classification of Dome Instabilities ...: Part I

pressure. In times of high activity, instability events can occur very often, i.e. the
time between events can be only a few seconds, or events even overlap. Because it
is not always possible to separate overlapping events, we also try to identify events
with multiple explosive outbursts (Fig. 4.5b).

4.4 Detection of Radar Events

The first task when classifying radar events is to detect the events and to separate
them from background noise. A radar event is defined by a significant increase in
echo power in the Doppler spectra, which is related to a material movement inside
the radar beam or to a disturbance.

In order to detect events in a time-series of Doppler spectra, we analyze the overall
echo power. A first approach is to simply calculate the integrated echo power.
Consider P (i, vr) giving the echo power for the radial velocity vr in range gate i, the
integrated echo power for range gate i is given by

P (i) =

vmax∑

vr=vmin

P (i, vr) . (4.1)

For the detection of radar events related to material movements in the dome area,
we only consider range gates 6, 7 and 8. Thus, the calculation of the total echo
power is

Ptotal = P (6) + P (7) + P (8) , (4.2)

with vmax = 18.24m/s and vmin = 0m/s for P (6) and vmin = −18.24m/s for
P (7) and P (8). Figure 4.6d (green line) shows Ptotal for a period of 15 minutes.
Figures 4.6a–c show single Doppler spectra at t = 200s, t = 636s and t = 843s.
For simplicity, only the range gate with the strongest echo is shown (range gate
8). Figure 4.6a shows a Doppler spectrum with no significant increase in echo
power. Only the background noise is visible and therefore Ptotal is very low. Figure
4.6b shows a significantly increased echo power for positive velocities, indicating a
material movement towards the radar. Here, Ptotal also rises significantly. Figure
4.6c also shows an increase in the echo power. However, most of the echo power
is measured at velocities near 0m/s. This is not due to material movement, but
is a static echo by the non-moving volcano itself. Usually, such static echoes are
suppressed by the signal processing of the radar device. However, due to the large
echo from the volcano, slight inaccuracies in the transmit signal generator can cause
the suppression to fail, and thus sometimes static echoes still appear. The smaller
peaks at +/–2.5 and +/–5m/s are disturbances as described in Section 4.3.2. While
this spectrum should not be considered as significant, Ptotal shows an increase as
strong as for t = 636s.
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Figure 4.5: Temporal evolution of two radar events in range gates 6 (3000–3600m),
7 (3600–4200m) and 8 (4200–4800m). The event in (a) begins with a very broad
velocity distribution with velocities up to 18m/s, which presumably are caused by
an explosive outburst. After second 15 the loose material is sliding down the slope.
(b) shows a longer time series with mainly sliding material. At second 87 and 120
material is breaking off the dome. Second 51 and 151 show explosive outbursts.
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Figure 4.6: Three approaches for the detection of radar events. Plots a–c show three
Doppler spectra recorded in range gate 8. While (a) is a pure noise spectrum with
no significant echo power, (b) shows a clearly visible material movement. (c) shows
a noise spectrum with a strong static echo and so-called ghost echoes, which should
not lead to a false detection. (d) shows the calculated total echo power (red: no
preprocessing, green: static echoes suppressed) and (e) the calculated momentum
for the corresponding time interval. The total echo power does only separate the
material movement from unwanted signals, when static echoes are suppressed. How-
ever, the momentum is not influenced by ghost echoes and thus gives a much better
separation than in (d).
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To reduce the strong impact of static echoes, those parts of the Doppler spectra
near velocity vr = 0m/s have to be suppressed when calculating Ptotal. A static
echo extends about +/–1m/s around vr = 0m/s. The easiest way to suppress the
static echoes is simply setting the echo power for these velocities to 0. In order to
prevent the resulting sharp discontinuities, we use the following definition:

P ′(i, vr) = P (i, vr)







1 − e
−v2

r
2ρ2 −1m/s ≤ vr ≤ 1m/s

1 else
(4.3)

Thus, the echo power for vr = 0m/s is P ′(i, vr) = 0. With increasing/decreasing
velocity the influence of the second term decreases exponentially. The parameter ρ
is the standard deviation of the Gaussian, which is set to 1.0. Thus, for a velocity
of vr = 1m/s we get P ′(i, vr) ≈ 1/2P (i, vr). This is sufficient to suppress the static
echo at the edges of the influenced velocity range but still leaves some portion of a
signal caused by slowly moving targets.

Figure 4.6d (red line) shows P ′
total(t) for the same period of time. The whole time

series is less noisy and the events are better separated from the background noise.
But still, there are strong fluctuations, which are caused by ghost echoes. Fortu-
nately, the ghost echoes are approximately symmetric with respect to the vr = 0
axis, which distinguishes them from signals caused by material movements. This
symmetry can be used to alter the detection method, so that less disturbances are
accidentally detected. Instead of calculating the total echo power, we now calculate

Momtotal = Mom(6) + Mom(7) + Mom(8) , (4.4)

with

Mom(i) =

vmax∑

v=vmin

v ∗ P ′(i, v) . (4.5)

In contrast to P ′(i) we now weight each component of the spectrum with its velocity.
Since the echo power can be considered to be a rough measure for the mass involved
in the movement, Mom(i) gives a measure of the momentum of the mass movement.
The influence of ghost echoes to Momtotal is very low. Because of their symmetry the
echo power of ghost echoes is equally weighted by positive and negative velocities
and thus sum approximately to zero. Figure 4.6e shows that Momtotal significantly
increases the separation of radar events caused by material movements from noise
and disturbances.

The actual detection of events can now be implemented as simple threshold detec-
tion. Because all material movements should be detected, independently of whether
they have positive or negative velocities, the absolute value of Momtotal is calculated
and compared to the threshold. Especially for events related to dome activity there
is often a sharp increase of Momtotal at the onset and a slow decrease at the end of
the event. Therefore, two separate thresholds are implemented for the onset and for
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the end of an event. By setting the threshold for the onset higher than for the end,
we can ensure that only events with a reasonable signal–to–noise ratio are detected,
while they are considered to be finished when the signal has decayed to the noise
level.

4.5 Bayesian Decision Theory

Bayesian decision theory is the fundamental statistical approach to the problem of
pattern classification. It was first introduced by Thomas Bayes (see Bayes, 1763) and
is based on quantifying the tradeoffs between various classification decisions using
the probabilities and the costs that accompany such decisions. Bayesian decision
theory has been the subject of many text books and articles and has been used for a
wide variety of applications. For the specific problem of pattern recognition the text
books by Bishop (1995) and by Duda et al. (2001) give a fundamental introduction
and are the basis for the short derivation presented in the following.

Let {ω1, ..., ωc} be a finite set of classes/categories and feature vector x a d–component
random variable. Then, p(x|ωi) describes the state-conditional probability density
function for x, i.e. the probability density function for x conditioned on ωj being
the correct category of x. Then, the posterior probability P(ωj |x) can be calculated
from Bayes formula:

P(ωj |x) =
p(x|ωj)P(ωj)

p(x)
, (4.6)

where P(ωj) is the prior probability that the object is of category ωj and p(x) is
defined by

p(x) =

c∑

j=1

p(x|ωj)P(ωi) . (4.7)

Bayes formula can be expressed informally by

posterior probability =
likelihood × prior probability

evidence
. (4.8)

It expresses the posterior probability, i.e. the probability of category ωj in case we
have observed feature vector x, in terms of the prior probability P(ωj), together
with the state-conditional probability p(x|ωj). p(x|ωj) is called the likelihood of
category ωj with respect to x, to indicate that the category ωj , for which p(x|ωj)
is large, is more ”likely” to be the true category. The product of likelihood and
prior probability are most important in determining the posterior probability. The
evidence factor p(x) can be viewed as merely a scale factor that guarantees that the
posterior probabilities P(ωj|x) for all categories sum to one.
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The goal of Bayesian decision theory is to give a formalism for taking the correct
actions for all possible observations. Suppose we have observed a particular feature
vector x and we have chosen to take the action αi ∈ α1, ..., αa. By definition, λ(αi|ωj)
gives the loss that we incur when taking action αi, in case ωj is the true category.
Because P(ωj|x) is the probability that the correct category is ωj, the expected loss
taking action αi is

R(αi|x) =

c∑

j=1

λ(αi|ωj)P(ωj|x) . (4.9)

In decision theory an expected loss is called risk and R(αi|x) is called the conditional
risk. For each observation, i.e. for each feature vector x, the expected loss can be
minimized by selecting the action that minimizes the conditional risk. To verify this
rule, assume the decision rule or decision function α(x), which selects one action of
α1, ..., αa for every x. Then, the overall risk R is the expected loss associated with
the given decision rule. Given the conditional risk R(αi|x) the overall risk can be
expressed by

R =

∫

R(α(x)|x) p(x) dx , (4.10)

where dx is a d–space volume element and the integral extends over the entire feature
space. If α(x) is chosen so than R(α(x)|x) is minimized for every x, then the overall
risk R is also minimized. Thus, to minimize the overall risk, we first have to calculate
the conditional risk R(αi|x) for each action α1, ..., αa and then select the action αi

that minimizes R(αi|x). This rule is called Bayesian decision rule and the resulting
overall risk is called Bayes risk.

In a classification problem the actions αi are usually directly associated with the
categories ωj, i.e. action αi can be interpreted as the decision to choose category ωi.
In this case, the loss function has to assign high loss for wrong decisions, i.e. i 6= j,
and low loss for correct decisions, i.e. i = j:

λzero-one(αi, ωj) =

{
0 : i = j
1 : i 6= j

i, j = 1, ..., c (4.11)

This so-called zero-one loss function assigns no loss for correct decisions and a unit
loss for any error. Of course, errors have to be avoided, and therefore we have to
seek a decision rule that minimizes the probability of errors, i.e. the error rate. The
corresponding conditional risk for the zero-one loss function is

R(αi|x) =
∑c

j=1 λzero-one(αi|ωj)P(ωj|x)

=
∑

j 6=i P(ωj|x)

= 1 −P(ωi|x) .

(4.12)

In order to satisfy Bayes decision rule, i.e. to minimize the overall risk, we have to
select the action that minimizes the conditional risk for each decision. Thus, we



64 4. Automatic Classification of Dome Instabilities ...: Part I

have to select action αi that maximizes the posterior probability P(ωi|x), and the
rule

”Decide ωi, if P(ωi|x) > P(ωj |x) for all j 6= i.” (4.13)

results in the minimum-error rate.

One of the most useful ways to represent pattern classifiers is in terms of discriminant
functions gi(x), i = 1, ..., c. The classifier assigns a feature vector x to a category ωi

if
gi(x) > gj(x) for all j 6= i . (4.14)

A Bayes classifier can easily by represented this way by defining gi(x) = −R(αi|x),
so that the maximum discriminant function corresponds to the minimum condi-
tional risk. For the minimum-error rate case we would define gi(x) = P(ωi|x).
Because this discriminant function merely chooses the class, which has the highest
prior-probability, it is also referred to as winner-take-all classification rule. The evi-
dence p(x) does not depend on the category ωi, and thus an equivalent discriminant
function is gi(x) = p(x|ωi)P(ωi).

The structure of a Bayes classifier is determined by the state-conditional probability
densities p(x|ωj) and prior probabilities P(ωj). Unfortunately, neither the p(x|ωj)
nor P(ωj) are known in most cases. They have to be approximated, which is usually
accomplished using pre-classified training data. While the prior probabilities can
easily be approximated by examining, how frequent objects of the various categories
occur, this is much more complicated for the state-conditional probability densities
p(x|ωj). There is a huge number of algorithms for approximating p(x|ωj) given pre-
classified samples, also called supervised learning. If the density model is known (e.g.
Gaussian probability density), parametric methods can be used to determine the
parameters for the density function (e.g. maximum likelihood estimation). Because
in our case the parametric form of the probability densities are unknown, we have to
use a non-parametric approach. Two non-parametric approaches have been tested
to classify radar events: (a) K-nearest-neighbor method and (b) artificial neural
networks.

4.6 K-Nearest-Neighbor Classifiers

Most fundamental techniques for probability density estimation rely on the fact that
the probability P of a vector x falling in a region ℜ is given by

P =

∫

ℜ

p(x′)dx′ . (4.15)

Thus, P is a smoothed or averaged version of the density function p(x). Suppose N
samples are drawn according to the probability density p(x). The probability that
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K of these samples fall in ℜ can be estimated by K/N . If we now assume that
region ℜ is so small that p(x) does not vary significantly within it, we can write

∫

ℜ

p(x′)dx′ ≃ p(x)V , (4.16)

where x is a point within ℜ, and V is the volume enclosed by ℜ. Because K/N is a
good estimate of P, equations (4.15) and (4.16) directly lead to an estimate of the
probability density

p(x) ≃
K

NV
. (4.17)

This solution has several problems. If we fix the volume V and tale more and more
training samples, the ratio K/N will converge, but then we have only obtained an
estimate of the (feature) space averaged value of p(x)

P

V
=

∫

ℜ
p(x′)dx′
∫

ℜ
dx′

. (4.18)

In order to obtain p(x) rather than an averaged version of it, V =
∫

ℜ
dx′ needs to

approach zero. However, if we fix the number of samples N and let V approach
zero, the region may become so small that it encloses no samples and our estimate
p(x) ≃ 0 becomes useless. Because the number of training samples is always limited,
V cannot be allowed to become arbitrarily small.

This problem is addressed by the K-nearest-neighbor method. Instead of considering
a region of fixed volume V , now we let V vary and fix K. Thus, to determine p(x)
we consider a hypersphere centered at x and allow the radius of the sphere to grow,
until it contains exactly K data points. If the density is high near x, the cell will be
relatively small, which leads to good resolution. If the density is low, the cell will
grow large, but it will stop soon after it enters a region of higher density.

Together with Bayes formula the density estimation by the K-nearest-neighbor
method can easily be used to derive a classification procedure. Consider classes
ω1, ..., ωc and a data set, which contains Nj data points of class ωj and N data
points in total, so that N =

∑c

j=1Nj . To determine the correct class of a new
data point x, we draw a hypersphere around it, which encompasses K data points
irrespective of their class ωj. If this hypersphere contains Kj data points of class ωj,
we can approximate the state-conditional densities and the unconditional density in
the form

p(x|ωj) =
Kj

Nj V
(4.19)

and

p(x) =
K

N V
. (4.20)

The prior probability can be estimated using

P(ωj) =
Nj

N
. (4.21)



66 4. Automatic Classification of Dome Instabilities ...: Part I

Now we can use Bayes formula to give an estimate for the posterior probabilities:

P(ωj |x) =
p(x|ωj)P(ωj)

p(x)
=
Kj

K
. (4.22)

Thus, for minimum-error classification we assign each new vector x to class ωj, for
which the ratio Kj/K is largest. This is known as the k-nearest-neighbor classifi-
cation rule and corresponds exactly to the winner-take-all rule in Section 4.5. In
practice, it involves to find the K nearest neighbors of the new vector x, and then
to assign x to the class having the largest number of representatives within these
neighbors. For K = 1, we have the nearest-neighbor rule, which simply assigns a
new vector x to the class of the nearest feature vector from the training set.

One disadvantage of the K-nearest-neighbor technique is that all the training data
points must be retained, which may lead to problems of computer storage and can
result in large amounts of processing to evaluate the density for new data points. An-
other disadvantage is that the method does not estimate true probability densities,
because the integral over the feature-space diverges (Bishop, 1995).

4.7 Neural Network Classifiers

Another approach for building a classifier are neural networks. The idea of neural
networks has been inspired by the human brain, which consists of millions of neu-
rons that are connected by synapses. While the functionality of a single neuron is
relatively simple, the brain is able to learn and remember by adapting the synapses.
In general, for building a neural network, there are no limitations in the choice of
network topology. However, the most commonly used type of neural network in
pattern recognition is the so-called multilayer perceptron. The topology of such a
network is organized in successive layers, each consisting of a certain number of
neurons, from here on referred to as nodes or units. The input data is presented
to the first layer of nodes, called input layer. The last layer is called output layer,
because it delivers the resulting data. All other layers are called hidden layers, since
they do not directly interact with the environment. Connections are only allowed
between nodes of successive layers. Multilayer perceptrons have also the restriction
that they are feed-forward, which means that the network does not contain feedback
loops.

Important for the behavior of a neural network is the model of its nodes. For multi-
layer perceptrons we use the perceptron model introduced by Rosenblatt (1958). A
perceptron computes a single output value from a certain number d of input values
and a set bias. Each input of the perceptron is assigned a certain weight. First,
the perceptron forms a linear combination of the input values according to its input
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Figure 4.7: Concept of multilayer perceptrons. (a) A perceptron first calculates the
linear combination of its input values xi weighted by wi. Input x0 is fixed and set to
x0 = 1. Thus, the weight w0 represents the bias of the perceptron. From the linear
combination the output value is calculated by a non-linear activation function f(.).
(b) Example of a multilayer perceptron with the input layer, one hidden layer and the
output layer. Successive layers are fully connected. Because multilayer perceptrons
are feed-forward networks, it contains no feedback loops. The units x0, y0 and z0
are the bias units. (c) The logistic sigmoid activation function f(a) ≡ 1

1+exp(−a)
.

weights. From this linear combination the output is calculated using a non-linear
activation function (see Fig. 4.7a). Mathematically, this can be written as

y = f(

d∑

i=1

xiwi + w0) , (4.23)

where wi are the input weights, xi the input values, w0 the bias and f(.) the activa-
tion function. The bias can be regarded as additional input with a unit value of 1.0
and a weight of w0. The activation function most often used in pattern recognition
applications is the logistic sigmoid

f(a) ≡
1

1 + exp(−a)
, (4.24)
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which is plotted in Figure 4.7c. For small values of |a| the logistic sigmoid function
can be approximated by a linear function, thus, in this sense a linear activation
function is included as special case. Most important the sigmoid is differentiable,
which, as we will see later, is crucial for training algorithms.

Figure 4.7b shows a simple example three-layer network. It consists of an input layer
with nI nodes, one hidden layer with nH nodes and an output layer with nO nodes.
The layers are fully connected, i.e. each node xi of the input layer is connected to
every node yj of the hidden layer with the given weight wij and each node yj of the
hidden layer is connected to every node zk of the output layer with the weight wjk.
With definition (4.23) we can describe the resulting network by

zk = f

(
nH∑

j=1

wkj f

(
nI∑

i=1

wjixi + wj0

)

+ wk0

)

, (4.25)

Despite its simple structure, a three-layer network can describe any continuous func-
tion from input to output, given a sufficient number of hidden units, proper non-
linear functions and weights (see e.g. Kolmogorov, 1957, Hornik et al., 1992 and
Kurková, 1992). Thus, for classification problems we are able to describe any dis-
criminant function by a three-layer network. Although in practice this cannot be
achieved with arbitrary accuracy, three-layer networks have provided good perfor-
mance in many real-life classification problems (Bishop, 1995).

We have to solve several problems, to use a neural network for classification. Obvi-
ously the most difficult problem is the choice of the connection weights, which have
to be adjusted to fit our training data. The most popular training algorithm for
neural networks is called error backpropagation (Rumelhart et al., 1986). Starting
with an untrained network, a training pattern is presented to the network and the
output values at the output layer are determined. These output values are com-
pared to the desired target values and an error is calculated, which minimizes, when
the network outputs match the target values. The training error on a pattern is
considered to be the sum over the squared differences between desired output tk and
actual output zk:

E(w) ≡
1

2

nO∑

k=1

(tk − zk)
2 , (4.26)

where w represents all the weights in the network. The backpropagation learning
rule is based on gradient descent. The weights are initialized with random values,
and then they are changed in a direction that will reduce the error. Thus, we have
to find a procedure to evaluate the derivatives of the error function E with respect
to the weights and biases in the network. First, we consider the hidden-to-output
unit weights wkj. Each output unit of the network computes a weighted sum of its
inputs in the form

ak =

nH∑

j=0

wkj yj , (4.27)
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where yj is the activation of a hidden unit. Note that in this notation the bias is
introduced as additional unit with index ”0” and with fixed activation of ”+1”. The
activation zk of output unit k is then given by

zk = f(ak) . (4.28)

The error E depends on the weight wkj only via the summed input ak and activation
function f(ak). Therefore, we can apply the chain rule for partial derivatives to give

∂E

∂wkj

=
∂E

∂ak

∂ak

∂wkj

= δk
∂ak

∂wkj

, (4.29)

where δk ≡ ∂E
∂ak

is often referred to as sensitivity and with (4.27) we get

∂E

∂wkj

= δk yj . (4.30)

In order to evaluate the sensitivity we again use the chain rule and with the definition
(4.26) of the error function, we get

δk =
∂E

∂zk

∂zk

∂ak

=
∂E

∂zk

f ′(ak) = (zk − tk) f
′(ak) . (4.31)

Together with the learning rate η, which defines the step size of the gradient descend,
these results give the weight update or learning rule for the hidden-to-output weights

∆wkj = −ηδkyj = η (tk − zk) f
′(ak) yj . (4.32)

For the input-to-hidden unit weights, this is more complicated. Again by using the
chain rule, we get for the derivative of the error function

∂E

∂wji

=
∂E

∂aj

aj

wji

, (4.33)

where aj =
∑nI

i=0wji xi is the activation of hidden unit j. The sensitivity of hidden
unit j is defined as δj ≡

∂E
∂aj

and can be evaluated by yet again using the chain rule:

δj = ∂E
∂yj

∂yj

∂aj

= −
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∑nO
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∂zk

∂yj

)
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∂zk

∂ak

∂ak

∂yj

)

f ′(aj)

= − (
∑nO

k=1(tk − zk)f
′(ak)wkj) f

′(aj)
= − (

∑nO

k=1 δk wkj) f
′(aj)

(4.34)

The sensitivities at the hidden unit are simply the sum of the individual sensitivities
at the output units, weighted by the hidden-to-output weights wkj, and multiplied
with f ′(aj). Thus, the output unit sensitivities are propagated ”back” to the hidden
units. The learning rule for the input-to-hidden weights is then

∆wji = ηδjxi = η

(
nO∑

k=1

δk wkj

)

f ′(aj) xj . (4.35)
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Like all gradient descent procedures, the behavior of the backpropagation algorithm
depends on the starting point. Starting with all weights set to zero would not
work, because the back-propagated error would always be zero and the input-to-
hidden weights would never change. For this reason the process of learning is usually
started with random values for all network weights. Although we have derived the
backpropagation algorithm for the special case of the three-layer network, this can
also be done for more general feed-forward networks (Rumelhart et al., 1986). Since
the introduction of the backpropagation algorithm, several improved versions have
been published. Here, we decided to use a relatively simple method for using second-
order information to increase training speed, which is called Quickprop (Fahlman,
1988). In this method the weights are assumed to be independent, and the descend is
optimized separately for each of them. The error surface is assumed to be quadratic
and the coefficients for the particular parabola are determined by two successive
evaluations of E(w) and dE(w)/dw. This leads to the weight update rule

∆w(m+ 1) =
dE
dw
|m

dE
dw
|m−1 −

dE
dw
|m

∆w(m) , (4.36)

where m is the index of the learning cycles (see Fahlman, 1988). When certain
heuristics are imposed, e.g. when the error surface is nearly flat, the method can be
significantly faster than standard backpropagation. Another benefit of this method
is that each weight has its own learning rate, and thus the weights tend to converge
roughly at the same time reducing the problem of nonuniform learning.

There are several different training protocols to train a network by backpropagation.
In virtually every case, several passes through the training data are needed to train
the network sufficiently. The training protocols can be divided into online training
and offline or batch training. During online training the weights of the network are
updated after each pattern presentation. In batch training protocol, all patterns are
presented to the network before learning takes place. Their corresponding weight
updates are summed and then the actual weights are updated. In both cases we
have to make several passes through the training data to achieve a well trained
network. For backpropagation the online training protocol is usually significantly
faster than batch training, especially in the case of large training sets with many
similar training examples. Thus, all networks presented in this article have been
trained with online training protocol. To make sure that the order of the training
patterns has no influence to the training, in each pass or cycle the patterns are
presented to the network in random order.

The most common way to represent a discriminant function by a neural network
is to define the network topology so that the number of input units matches the
dimension of the feature vector and the number of output units matches the number
of categories or classes. Thus, each output node zk corresponds to a category ωk. For
training of the network, the output values of the training patterns are prepared, so
that the output value for the correct category is one and all others are zero. In this
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application, using the logistic sigmoid activation function has another great benefit:
when we present a new pattern to the network, the output values can be interpreted
as posterior probabilities for each category to be the true category (Bishop, 1995).
However, we have to be cautious with this interpretation, since this holds only, when
the network has enough hidden units and when the network weights are trained
sufficiently. When, e.g. the output values do not sum to one, they obviously do not
represent true probabilities. This mainly happens for samples for a region of the
feature space, which is not or only weakly covered by the training data. Ideally, the
output of the network will be one for the output node corresponding to the correct
category and zero for all other outputs. Because this is not always the case we use
the winner-take-all rule to determine the classification result (see Section 4.5).

4.8 Single Spectrum Classification

The classification of radar events bears one main difficulty: during an event the
underlying process might change, e.g. the explosive onset of an event is usually
followed by material sliding down the slope. It is therefore difficult to define features,
which provide information about all processes that occur during the event. Another
problem is that the duration of events is highly variable, and thus it is difficult
to define feature vectors with a fixed number of dimensions. Therefore, we first
classify single Doppler spectra according to the underlying processes defined above
(rain, disturbances, sliding material, gravitational break off and explosive outbursts)
instead of directly classifying complete radar events. When all Doppler spectra of
an event have been classified, we can use this information to determine the event
class (see Section 4.9).

The conceptual boundary between feature extraction and classification is somewhat
arbitrary: an ideal feature extractor makes the job of the classifier trivial; con-
versely, an omnipotent classifier would not need the help of a sophisticated feature
extractor. Therefore, we investigate several different approaches to classify Doppler
spectra. They differ in the type of feature vector, the classifier model and the over-
all classification strategy. First, we will try to build a classifier, which is capable of
discriminating all five categories in one step. Using a hierarchical structure as illus-
trated in Figure 4.8, an alternative approach is to use one classifier to discriminate
the categories rain, disturbance and dome instability, and for those spectra classified
as dome instability a second classifier determines the sub categories sliding material,
gravitational break-off or explosive outburst.

We have tested K-nearest-neighbor (KNN) as well as neural network classifiers. For
both classifier models certain parameters have to be chosen. For the KNN classifier
model this is just the number K of training patterns, which shall be taken into
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radar events

dome instabilities rain disturbance

sliding mat. grav. break off expl. break off

Figure 4.8: Class hierarchy of Doppler spectra observed at Merapi volcano.

account, when determining the posterior probabilities (see Section 4.6). For the
neural network classifier model, the most important parameters are the number of
hidden units and the learning rate (see Section 4.7). Below we will analyze how these
parameters influence the classification results for different types of feature vectors
and determine the best choice of model and parameters.

4.8.1 Training Data

The KNN and the neural network classifier model both need supervised learning
(see Sections 4.6 and 4.7). Thus, the choice of training patterns is very important
to achieve good classification results. Obviously, the more training patterns we use,
the better we can train our classifier, because the coverage of the feature space is
better. However, in practice we won’t have an arbitrary number of training patterns
at hand.

Not only the size, but also the composition of the training patterns is important.
The relative numbers of patterns of each class determines the prior probabilities in
the Bayes formula (see eq. (4.6)). In our case the prior probabilities are not fixed,
but change over time. On the one hand, instabilities are much more likely to occur
in times of high dome activity than at times of low dome activity. On the other
hand, rain events are much more likely in the rainy season than during the dry
season. Therefore, we want to consider the prior probability of all types of Doppler
spectra to be equal, and we have to make sure that our training data sets consist
of an equal number of patterns of all categories. For the generation of the training
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data sets, we have selected several hundred Doppler spectra from April and May
2002, since this has been the most active period that we were able to observe so far.
For each category 200 spectra have been manually classified.

To validate the accuracy of a classifier we use a procedure called cross-validation.
The training data is divided into three disjoint sets of equal size. The first set
is used as training set to train the classifier. The second set –the validation set–
is used to determine the best classification parameters. Thus, the classifiers are
somehow influenced by the validation set, which might lead to some over-fitting to
the validation set. Therefore, the third set –the test set– is used to evaluate the
classification accuracy on a completely independent set of pre-classified samples.

4.8.2 Feature Extraction

In Section 4.3 we discussed Doppler spectra of each type of event, and the charac-
teristic properties have been described. Now, we have to look for differences in these
properties, which can be used to define feature vectors for the classification.

The rain event shown in Figure 4.3a indicates that rain events typically drift across
the range gates, and thus the distribution of the echo power between range gates
6, 7 and 8 is variable. Contrary to this, dome instabilities have a fixed ratio of
the amplitudes in range gate 7 and 8. Only for very strong events there is an echo
visible in range gate 6. Of course, this property does not give any information to
discriminate the different types of dome instabilities. Disturbances also have the
same fixed amplitude ratio in range gate 7 and 8, because they are somehow related
to the static echoes (compare Section 4.3). Thus, the distribution of the echo power
across the range gates only helps to discriminate between rain and all other types
of events.

A second useful property is the symmetry of disturbances with respect to the veloc-
ity v = 0m/s. Rain can also have negative velocities, and thus when the rainfall is
perpendicular to the radar beam, can have symmetric velocity distributions. Dome
instabilities, however, always involve exclusively positive velocities. Thus, the am-
plitude ratio between negative and positive velocities can be used to distinguish
disturbances and dome instabilities, but it can lead to false classifications of distur-
bances and rain events. Both properties do not help to distinguish between different
types of dome instabilities. The amplitude ratio of range gates 7 and 8 and that of
negative and positive velocities is the same for all three instability types. The types
of instability differ only in the shape of the velocity distribution velocity of range
gate 7 and 8.
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One way to characterize the shape of a velocity distribution is to use statistical mo-
ments. For a random variable X with density function f(x) the statistical moment
of order r with respect to value a is defined as

mr(a) =

∫ ∞

−∞

(x− a)r f(x) dx . (4.37)

From this we can derive the definition of the mean and the variance:

µ = m1(0) =

∫ ∞

−∞

x f(x) dx , (4.38)

σ2 = m2(µ) =

∫ ∞

−∞

(x− µ)2 f(x) dx . (4.39)

However, these values only give useful information about the location and the broad-
ness of the distribution. Additional information can be gathered using the third and
fourth statistical moments, which lead to the definition of the skewness and kurtosis:

Skew =
m3(µ)

σ3
, (4.40)

Kurt =
m4(µ)

σ4
− 3 . (4.41)

The skewness of a distribution gives information about the symmetry of a distri-
bution. The symmetric Gaussian distribution has a skewness Skew = 0. When
the distribution is tilted towards lower values we have Skew > 0 and when it is
tilted towards higher values, Skew < 0. The kurtosis describes, if the distribution
is peaked or rather flat. For peaked distribution we will get Kurt > 0 and for flat
distributions Kurt < 0.

To calculate the statistical moments for the velocity distribution of range gate i, we
have to consider the density function P (i, v)/P (i) (see eq. 4.1), i.e. the echo power
as function over velocity divided by the total echo power for range gate i. We also
convert the integral in (4.37) to a sum, since we only have discrete velocities from
vmin to vmax:

mi
r(a) =

1

P (i)

vmax∑

v=vmin

P (i, v) (v − a)r . (4.42)

Before we calculate statistical moments, we have to do some preprocessing to reduce
unwanted effects. First, we again eliminate the static echoes, since they do not carry
any information. Second, the background noise is a problem for the calculation
of statistical moments as it is not related to the velocity distribution of moving
material. Because it is very stable, it can simply be removed by subtracting a
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constant value determined from the training data. Finally, we set all resulting
negative values to zero, since negative echo power values do not make sense in a
velocity distribution.

Most of these characteristic features have different ranges of values, which leads to
some problems. For the KNN classifier model, this is quite intuitive. Suppose our
feature vectors contain two features, one in the range [0, 1] and the other in the
range [0, 100]. When the KNN classifier calculates the distances between training
and test samples, the second feature would influence the result much more than the
first one and the classification result would only depend on feature two. The same
effect can be observed for neural networks. During training the network will adjust
weights for the feature 2 input much more than for the feature 1 input. The error
will hardly depend on feature 1.

In order to avoid such difficulties, the input patterns can be standardized such that
for each feature mean and variance are normalized to zero and one, respectively
(Duda et al., 2001). To achieve this, we calculate mean and variance for each feature
from the training set. Then, the standardized version of a pattern is calculated as
follows: (a) we subtract the corresponding calculated mean from each feature of
the pattern, and (b) we divide each resulting value by the corresponding variance.
Subsequently, the standardized version of the training set has a mean of zero and
a variance of one for each feature. Any new pattern, which is presented to the
classifier after training, has to be subject to exactly the same transformation before
classification. Of course, this transformation only fits arbitrary new data, if the
training data provides good coverage of the feature space.

4.8.3 One-Step Classification

In our first approach we try to build a classifier, which is capable of discriminating
all five categories at once. Considering the observations described above we have
designed four different feature extractors, which have been tested with both the
neural network and KNN classifier model.

Definition of Feature Vectors

Our first type of feature vector is simply based on the original data. If our classifier
model is powerful enough, it will be able to find the important information that
discriminates our categories. Thus, the feature vector is just a copy of all relevant
parts of the Doppler spectrum, i.e. all spectrum lines of range gate 6, 7 and 8.
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Feature description Dimensions

F1 Preprocessed spectrum of rang gate 6–8 320

F2
Summed echo power for positive velocities for range gate 6 and
for positive/negative velocities for range gates 7 and 8

5

F3

Summed echo power, mean, standard deviation, skewness, and
kurtosis of the velocity distribution for each of the range gates
6–8

15

F4
Summed echo power, mean, and standard deviation of the velocity
distribution for each of the range gates 6–8

9

F5 Preprocessed positive half of rang gate 8 64

F6
Preprocessed positive half of rang gate 8 including suppression of
disturbances

64

F7
Mean, standard deviation, skewness, and kurtosis of the velocity
distribution of range gate 8

4

F8
Mean and standard deviation of the velocity distribution of range
gate 8

2

Table 4.2: Definitions of feature vectors.

The resulting feature vector consists of 320 components. To reduce the influence
of unimportant information we have to do some preprocessing. First, we eliminate
the static echoes, because they carry no information. Especially for neural network
classifiers, we have to be cautious with Doppler spectra of very different amplitude.
Training a Doppler spectrum with high amplitudes would cause much larger weight
updates than spectra with low amplitudes. This leads to a non-uniform learning
process. To prevent this effect, we scale the feature vector linearly, such that the
maximum feature value is exactly 1.0 and the vector lies within the interval [0, 1]320.
This type of feature vector will from here on be referred to as F1. Feature vector F2
consists of only 5 values, each giving the summed echo power for either the positive
or the negative velocities of a particular range gate. While for range gate 6 only
positive velocities are available, these summed echo power values are included for
positive and negative velocities for range gates 7, and 8. Again, we suppress the
static echoes and scale the feature vectors to the interval [0, 1]5. This feature vector
does not contain any information about the shape of the velocity distributions. For
feature vector F3 we calculate the summed echo power of each of the range gate 6,
7, and 8, this time without distinguishing positive and negative velocities. Infor-
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Figure 4.9: Mean squared errors (MSE) of the learning procedure for feature vector
types F1–F4 for the ”one-step” classification. (a) shows the learning curves for
neural network with 25 hidden units, trained with a learning rate of η = 0.01. Solid
lines represent the training set and dashed lines the validation set. (b) shows the
MSE of the validation set of KNN classifiers for different values of K.

mation about the location and shape of the velocity distribution of each range gate
is represented by the mean, variance, skewness and kurtosis, which are calculated
as described in Section 4.8.2. The resulting feature vector still only consists of 15
components. Because the vector contains values from different domains, we now
have to standardize all feature vectors (see Section 4.8.2). To analyze the influence
of the skewness and kurtosis, feature vector type F4 is calculated exactly like F3,
while omitting the skewness and kurtosis components. Thus, the feature vector F4
consists of only 9 components.

Training and Performance Tests

Figure 4.9a shows learning curves of neural networks, i.e. the mean squared error
(MSE) as a function of learning cycles for all four types of feature vectors. For each
feature vector the same network topology with 25 hidden units has been used. The
learning rate η has been set to 0.01. These parameters have been chosen empiri-
cally, which will be investigated later in this section. Solid lines represent the MSE
for the training set and the dashed lines for the validation set. At the beginning
of the training procedure, both training error and validation error are very high,
since not much learning has taken place. The training errors decrease monotoni-
cally and reach asymptotic values. The errors for the validation sets, however, reach
a minimum after a certain number of training cycles and increases afterwards with
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further training. This effect is called loss of generalization (see e.g. Bishop, 1995
and Duda et al., 2001). Too long training will cause the network to learn a precise
representation of the training set. The goal of network training, however, is to build
a statistical model of the process which generates the data. A network with good
generalization makes good decisions for new inputs, rather than precisely represent-
ing the training data. Therefore, the minimum of the validation error can be used
to decide, when to stop training.

Both training and validation error show that of all feature vectors the performance
of feature vector F2 is by far the worst. This is obviously due to the fact that F2
does not contain information about the shape of the velocity distributions. Fea-
ture vectors F1, F3 and F4 show a much better performance. For F1 and F3 the
validation error reaches its minimum faster than for F4, but the lowest errors are
reached for F1 and F4, which differ only slightly. For both F1 and F4 the loss of
generalization is moderate, so that it is relatively easy to define the stop criterion
for training.

Figure 4.9b shows the MSE for KNN classifiers with feature vectors F1–F4 applied
to the validation set. The only parameter for the KNN classifier is the number K
of nearest neighbors in the training set, which are taken into account to determine
the correct category of samples from the validation set. For our test, K has been
varied between 1 and 50. Considering the size of our training sets of 66 samples
per category, greater numbers of K would average the posterior probabilities over a
large part of the feature space (see above Section 4.6). Like for the neural networks
the performance of feature vector F2 is significantly worse than for the other feature
vectors. For F1, F3 and F4 the minimum of the validation error is reached for values
of K ≈ 5. Again, features F1 and F4 show the best performance.

While for the KNN classifier we can only vary the parameter K, we now try to adjust
the network topology and the learning rate to enhance the classification performance
of the neural network classifiers. Because feature vectors F1 and F4 showed best
performance, we focus on these two. Figures 4.10a and b show learning curves for
networks with 5, 25 and 100 hidden units. The learning rate has again been set
to η = 0.01. For both feature vectors F1 (Fig. 4.10a) and F4 (Fig. 4.10b) the
network size does not change the classification error significantly. For F1 the loss
of generalization is larger for the small network with 5 hidden units than for larger
networks. But since the large network with 100 hidden units does not enhance
the performance, the network with 25 hidden units is the best choice. For F4 the
differences are even less. Again the network with 25 hidden units shows the smallest
loss of generalization, and thus we will further explore the performance for this
network size.

Figures 4.10c and d show learning curves for learning rates of 0.001, 0.01 and 0.05.
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a) b)

c) d)

Figure 4.10: Learning curves for neural networks for feature vector type F1 (left
column) and F4 (right column) for the ”one-step” classification. Plots (a) and (b)
show learning curves for 5, 25 and 100 hidden units, trained with a learning rate of
0.01. Plots (c) and (d) show learning curves for learning rates of 0.001, 0.01 and 0.5
for networks with 25 hidden units.

The network size is set to 25 hidden units. For F1 (Fig. 4.10c) we can see that the
minimum of the validation error is reached earlier for higher learning rates. However,
even though for a learning rate of η = 0.05 the minimum is reached quickly, the loss
of generalization rises equally fast afterwards. Also the validation error is relatively
spiky, which indicates that the learning rate is too high. The minimum of the
validation error for a learning rate of η = 0.01 is reached earlier than for η = 0.001,
but both minimums have approx. the same MSE. Because η = 0.001 has the smallest
loss of generalization, this is the best choice. For F4 (Fig. 4.10d) the minimum of
the validation error is again reached earlier for higher values of η. The minima have
similar values for all learning rates. However, for η = 0.001 the loss of generalization
is the smallest and, and thus the stop-criterion is easy to define so that we can be
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a)
Single-Step Spectrum
Classification

F1 F4

Neural Network 90.61 % 88.79 %

KNN 86.67 % 84.55 %

b) Neural Network
(F1, H=25, µ = 0.001, cycles=3000)

D R S G E U

D 63 1 2 0 0 0

R 7 58 1 0 0 0

S 2 0 61 3 0 0

G 0 0 4 56 6 0

E 0 0 0 5 61 0

c) KNN
(F1, K=5)

D R S G E U

D 61 1 4 0 0 0

R 12 51 2 0 0 1

S 0 0 62 4 0 0

G 0 0 5 56 5 0

E 0 0 0 10 56 0

Table 4.3: (a) Classification results for the ”one-step” classification of single Doppler
spectra for neural network and KNN classifiers with feature vectors F1 and F4.
(b) Confusion matrix for neural networks using feature vectors F1. (c) Confusion
matrix for the KNN classifier also using F1. (D=disturbance, R=rain, S=sliding,
G=gravitational, E=explosive, and U=unknown)

sure to reach the best possible classification performance.

After selecting the classification parameters, we can now use the test set to analyze
the actual performance of the different classifiers. Table 4.3a shows the resulting
classification rates for all combinations of classifiers and feature vectors F1 and
F4. All classification rates are approx. in the range of 85–90%. For both types
of classifiers feature vector F1 has a better performance than F4, in both cases
about 2%. The performance of the neural network classifier is about 4% higher
than for the KNN classifier for both feature vectors. Table 4.3b and c show the
corresponding so-called confusion matrices for both classifiers and feature vector F1.
A confusion matrix consists of a row and a column for each category. Rows represent
classifications by the expert and columns classifications by the classifier. Each cell
of the confusion matrix gives the number of patterns that have been classified by
the expert and the classifier corresponding to the row and the column of the matrix.
The confusion matrix of a perfect classifier would only consist of entries in the main
diagonal, where the classifications of expert and classifier match. All other matrix
cells show which kind of misclassification have occurred, e.g. the entry in row ”R”
and column ”I” is the number of rain events which have been classified as instability.
Thus, the confusion matrix allows to examine where in particular the classification
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Figure 4.11: Mean squared errors (MSE) of the learning procedure for feature vector
types F1–F4 for the first step of the ”two-step” classification. (a) shows the learning
curves for neural network with 25 hidden units, trained with a learning rate of 0.01.
Solid lines represent the training set and dashed lines the validation set. (b) shows
the MSE of the validation set of KNN classifiers for different values of K.

has problems. The confusion matrices for both classifiers show that especially the
discrimination between disturbance or rain spectra on one side and all kinds of
instability spectra on the other side is very accurate. The discrimination of sliding
material, gravitational break-offs and explosive outbursts is a little more accurate for
the neural network than for the KNN classifier. For both the discrimination between
sliding material and gravitational break-offs is better than between gravitational
break-offs and explosive outburst. Sliding material and explosive outburst are well
separated, which is due to the fact that their properties are very different.

4.8.4 Two-Step Classification

In order to increase the performance we now take into account the hierarchical struc-
ture of the categories. The first step in the classification procedure is to discriminate
disturbances, rain, and dome instabilities. In the second step, we take all Doppler
spectra, which have been classified as dome instability and discriminate between
sliding material, gravitational break-offs, and explosive outbursts. The decisions in
the first and second step are based on very different properties of the Doppler spec-
tra. While for the first step the distribution of echo power across the range gates
is most important, the second step (i.e. the discrimination between the different
instabilities) depends mostly on the shape of the velocity distributions.
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Definition of Feature Vectors

For the first classification step we tested the same feature vector types as for the
”one-step” classifier. For the second classification step, we concentrate on the shape
of the velocity distributions. The shape of the velocity distribution is also always the
same for ranges 6, 7 and 8. Thus, we can limit our feature extraction to the positive
velocity axis of range gate 8, which gives the strongest signal for dome instabilities.
Again, to present all necessary information to the classifier, the easiest way is to take
the original data. Thus, feature vector F5 consists of the 64 spectrum lines of the
positive velocity axis of range gate 8 with the obligatory preprocessing: elimination
of the static echoes and reduction of the background noise. Sometimes relatively
weak disturbances are superimposed on an instability signal. Because we do not
want to consider disturbances in this classification step, we try to eliminate them.
After the background noise has been subtracted from the spectrum all significant
signal components are separated by intervals of zeros. Because disturbances are
relatively sharp peaks compared to instability signals, we simply search for signal
components with a width smaller than a certain threshold and set all found intervals
to zero. Feature vector F6 is defined like F5 including this additional preprocessing
step. Like before both feature vectors are scaled linearly onto the interval [0, 1]64.
The representation of the velocity distribution by statistical moments is given by
feature vectors F7 and F8. F7 consists of the mean, variance, skewness and kurtosis,
while F8 only consists of the mean and the variance. The amplitude of the signal
is not considered. For both F7 and F8 we do the same preprocessing as described
above for F6. Additionally, the training sets are standardized (see Section 4.8.2).

Training and Performance Tests

Figure 4.11a shows the learning curves for the neural network classifiers and Figure
4.11b the classification errors of the KNN classifiers for different values of K. The
error is generally less than for the ”one-step” classifiers, because instead of 5, we
have only 3 output values, which contribute to the squared error of one sample. For
both the neural network and the KNN classifier, feature vectors F1 and F2 have
smaller validation errors than F3 and F4. Thus, information on the shape of the
velocity distributions as represented by mean and variance appears to disturb the
classification process. Especially the good performance of feature vector F2 indicates
that this information is not necessary for this classification step.

For feature vectors F1 and F2, Figure 4.12 shows learning curves for different net-
work sizes and learning rates. For F1 a network with 5 hidden units seems to be
too small, the validation error rises quickly after reaching its minimum (see Fig.
4.12a). The differences between 25 and 100 hidden units are negligible. For F2 the
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Figure 4.12: Learning curves for neural networks for feature vector type F1 (left
column) and F4 (right column) for the first step of the ”two-step” classification.
Plots (a) and (b) show learning curves for 5, 25 and 100 hidden units, trained with
a learning rate of 0.01. Plots (c) and (d) show learning curves for learning rates of
0.001, 0.01 and 0.5 for networks with 25 hidden units.

network size does not have a significant impact (see Fig. 4.12b). The error for F2
is a little less than for F1. Figures 4.12c and d show learning curves for a medium
network sizes of 25 hidden units. For both F1 and F2 the validation converges best
for a learning rate of µ = 0.001. For µ = 0.01 and µ = 0.05 the errors reach their
minimums quickly, but for µ = 0.001 the loss of generalization is less, and thus it is
easier to set the stop-criterion for training. Still the validation error of F2 is a little
less than for F1.

Figure 4.13 shows the learning curves for neural networks and the classification errors
for KNN classifiers. For neural networks both feature vectors based on statistical
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a) b)

Figure 4.13: Mean squared errors (MSE) of the learning procedure for feature vector
types F5–F8 for the second step of the ”two-step” classification. (a) shows the
learning curves for neural network with 25 hidden units, trained with a learning
rate of 0.01. Solid lines represent the training set and dashed lines the validation
set. (b) shows the MSE of the validation set of KNN classifiers for different values
of K.

moments (F7, F8) show smaller validation errors than those based on original data
(5, F6), only their training errors are higher. Thus, with original data reproduction
of the training set is very good, but the generalization to new data is bad. Also
for the KNN classifiers, the classification error is less for F7 and F8. Generally, the
neural networks have smaller errors than the KNN classifiers, only for F8 the errors
are approximately the same. For F8 the best value of K is about 10.

Figure 4.14 shows the learning curves for different network sizes and learning rates
for F7 and F8. For F7, the large network with 100 hidden units has the smallest
validation error, with its minimum at about 2500 learning cycles (see Fig. 4.14a).
Figure 4.14c shows that for this network a small learning rate of 0.001 converges
too slowly and for a higher learning rate of 0.05 the loss of generalization is very
high even after a few learning cycles. For F8 (see Fig. 4.14b) the learning curves
are almost the same for 5, 25 and 100 hidden units, so there is no need for a big
network and we chose the medium network size with 25 hidden units. The best
learning rate is again µ = 0.01. It has only a slightly higher minimum of the
validation error, but the loss of generalization is very moderate. For some of the
network configurations in Figure 4.14 the validation error lies below the training
error. The high training error can be due to a weak expressiveness of the feature
vector. However, in this case we would expect the validation error to be even higher.
In our case, it is most probably due to the fact that the categories of instabilities
are not defined precisely. The transitions between sliding material and gravitational
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a) b)

c) d)

Figure 4.14: Learning curves for neural networks for feature vector type F7 (left
column) and F8 (right column) for the second step of the ”two-step” classification.
Plots (a) and (b) show learning curves for 5, 25 and 100 hidden units, trained with
a learning rate of 0.01. Plots (c) and (d) show learning curves for learning rates of
0.001, 0.01 and 0.5 for networks with 25 hidden units.

break-off as well as between gravitational break-offs and explosive outbursts are
fuzzy and when an expert classifies the samples of the training set, he might label
two sample differently, although they differ only slightly. This will cause the training
error to be relatively high, because the network cannot map both samples exactly
to the correct outputs. For the validation set, however, the influence is smaller,
because the error is always higher for samples near the decision boundary.

To analyze the performance we again applied the different classifiers to the cor-
responding test sets. Table 4.4a shows the resulting classification rates for both
classification steps. In the first classification step feature vector F2 achieves a clas-
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a)
two-step Spectrum Step 1 Step 2 Combined

Classification F1 F2 F7 F8 F2+F8

Neural Network 90.91 % 93.94 % 90.91 % 90.91 % 90.61

KNN 89.39 % 91.92 % 87.88 % 88.89 % 88.18

b) NN – Step 1
(F2, H=25, µ = 0.001, cycles=6000)

D R I U

D 62 2 2 0

R 6 58 2 0

I 0 0 66 0

c) KNN – Step 1
(F2, K=20)

D R I U

D 63 1 2 0

R 9 53 3 1

I 0 0 66 0

d) NN – Step 2
(F8, H=25, µ = 0.01, cycles=4000)

S G E U

S 56 3 0 0

G 6 53 7 0

E 0 8 58 0

e) KNN – Step 2
(F8, K=10)

S G E U

S 65 1 0 0

G 5 51 10 0

E 0 2 64 0

f) NN – Combined F2+F8

D R S G E U

D 62 2 2 0 0 0

R 6 58 1 1 0 0

S 1 0 64 1 0 0

G 0 0 5 51 10 0

E 0 0 0 2 64 0

g) KNN – Combined F2+F8

D R S G E U

D 63 1 2 0 0 0

R 9 53 2 1 0 1

S 1 0 63 2 0 0

G 0 0 3 50 10 3

E 0 0 0 1 62 3

Table 4.4: (a) Classification rates for neural network and KNN classifiers for the
”two-step” classification for single spectra. (b)–(c) Confusion matrices for step 1 us-
ing feature vector F2. (d)–(e) Confusion matrices for the step 2 using feature vector
F8. (f)–(g) Confusion matrices for the complete classification procedure using fea-
ture vectors F2 (step 1) and F8 (step 2). (D=disturbance, R=rain, I=instabilities,
S=sliding, G=gravitational, E=explosive and U=unknown)
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sification rate that is about 1–2% higher than for F1, with 93.94% for the neural
network and 91.92% for the KNN classifier. Presumably, the large feature vector
F1 includes too much unimportant information, which in some cases confuses the
classifier. For both feature vectors the neural network achieves classification rates
that are about 1–2% higher than for the KNN classifier. For the second classifica-
tion step the results are similar, although the differences between feature vectors F7
and F8 are even smaller. Thus, including the skewness and kurtosis of the velocity
distribution does not enhance the classification performance. Again, with 90.91%
the neural networks achieve a classification rates that is about 2–3% higher than for
the KNN classifiers. The confusion matrices in Table 4.4b and c show that for step
one we again have a very good discrimination between rain and disturbances on the
one hand and instabilities on the other hand. The confusion matrices for step two
(Table 4.4d and e) also show that we again have a very good discrimination between
sliding material and explosive outbursts. However, for the discrimination between
sliding material and gravitational break-offs and between gravitational break-offs
and explosive outbursts we still get a significant number of misclassifications.

In order to compare the ”one-step” and the ”two-step” classification procedures, we
tested the complete ”two-step” classification procedure with the same test set that
has been used to test the ”one-step” classifiers. Here, we choose feature vectors
F2 for step one and F8 for step two. A comparison with Table 4.3 shows that
the performance is almost the same as for the ”one-step” classification, especially
for neural networks. Also, the confusion matrices in Table 4.4e and f show that we
still have a very good discrimination between non-instability and instability spectra.
However, the discrimination between the different types of instabilities could not be
enhanced.

4.9 Event Classification

So far we have designed procedures to classify single Doppler spectra. The goal,
however, is to classify complete radar events, which contain a sequence of several
Doppler spectra. In order to determine the category of an event, we first classify
each Doppler spectrum of the event separately as described in the previous sections.
For each spectrum the result is a class vector consisting of five probabilities, one for
each spectrum class (see Sections 4.5–4.7). In the following we describe, how the
class of the complete event can be determined by analyzing the sequence of class
vectors.

First, we discriminate events of disturbances, rain and instabilities. Therefore, we
sum up all class vectors of the sequence and divide it by the length of the sequence,
which results in an average class vector. Thus, this class vector represents the aver-
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Figure 4.15: Classification of a radar event given a sequence of already classified
single Doppler spectra represented by their class vector (upper left table). First,
we determine from the average class vector if the event is an disturbance, rain or
instability event (upper right table). In case the event is a instability, the class
vectors of all spectra are evaluated by the ”winner-take-all” rule, and from the
resulting sequence of spectrum class labels the type of instability event is determined
(lower table).

age classification of single Doppler spectra for the complete event. From this average
class vector we determine the class of the event according to the Bayesian decision
rule (see Section 4.5). In order to apply the Bayesian decision rule we need a loss
function. The easiest choice is the zero-one loss function λzero-one(αi, ωj) (see eq.
(4.11)). However, the confusion matrices in Table 4.3 and 4.4 show that an insta-
bility spectrum is more likely to be classified as rain spectrum than vice versa. This
is due to the fact that rain events often drift across the range gates. Therefore,
it happens that for some of the Doppler spectra of a rain event the echo power is
similarly distributed across the range gates as it is typical for instability spectra.
Besides that, it is especially undesirable to classify rain as instability. Because the
echo power for rain events is often very high (see Section 4.3) such misclassifications
have a strong impact on the analysis of the number and size of instability events (see
companion paper Voege et al., 2006). The same holds for disturbances and insta-
bilities. Therefore, we define another loss function λmerapi(αi, ωj), which associates
higher loss for disturbances and rain events being wrongly classified as instability:

λmerapi(αi, ωj) =







0 : i = j
1 : i 6= j and j 6= 2
2 : i 6= j and j = 2

i, j = 1, ..., c (4.43)

where α0 and ω0 correspond to disturbances, α1 and ω1 to rain and α2 and ω2 to
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instabilities. Regardless of which loss function we use, we can now apply equation
(4.9) to calculate the conditional risks for each event class and the class with the
smallest risk is considered to be the true class. For an illustration of the procedure
to discriminate disturbance, rain and instability events see Figure 4.15.

In case an event is classified as instability, we still have to determine the type of
instability. Usually, explosive instability events contain all three types of spectra.
After the actual outburst, the loosened material is tumbling or sliding down the
slope and will cause spectra of the classes sliding material or gravitational break-
off. Gravitational events consist of a gravitational break-off, which is also followed
by sliding material. Only events whose Doppler spectra are all classified as sliding
material, are considered as sliding material events. Therefore, we take the sequence
of class vectors, but now we evaluate the spectrum class of each single spectrum
using the winner-take-all rule (see Fig. 4.15), i.e. the Bayes decision rule with zero-
one loss function (see Section 4.5). The result is a sequence of class labels, which
can now be analyzed according to the following rules:

1. If one spectrum is labeled as an explosive outburst, the event is labeled as
explosive outburst,

2. else, if at least one spectrum is classified as a gravitational break-off, the event
is labeled as gravitational break-off,

3. else, the event is label as sliding material

Because the event has been classified as instability beforehand (see above) no or
only very few Doppler spectra in the sequence might be classified as disturbance or
rain, which therefore can simply be ignored.

We tested the event classification with a test dataset of 450 events, 90 of each event
category. We combined both loss functions described with several Doppler spec-
trum classifiers. The resulting classification rates are shown in Table 4.5a. Gen-
erally, the loss function λmerapi(αi, ωj) performs slightly better than λzero-one(αi, ωj)
with about 1–2%. The ”two-step” neural network spectrum classifier using feature
vectors F2 and F8 achieved the best classification rate with 88.22% (λzero-one) and
89.59% (λmerapi), respectively. The confusion matrices in Table 4.5b and c show that
for λzero-one(αi, ωj) significantly more non-instability events have been classified as
instability than vice versa. As expected, λmerapi(αi, ωj) results in a larger number
of misclassifications of instability events, which are labeled as disturbance or rain.
Since the choice of the loss function only influences the discrimination between dis-
turbance, rain and instability events, the classification errors within the different
types of instability are almost equal. They only differ, where an instability has been
classified as disturbance or rain event or vice versa.
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a)
λzero-one(αi, ωj) λmerapi(αi, ωj)

one-step-NN (F1) 81.78 % 84.00 %

one-step-NN (F4) 85.56 % 87.56 %

one-step-KNN (F1) 72.67 % 74.22 %

one-step-KNN (F4) 81.11 % 82.44 %

two-step-NN (F1+F8) 83.11 % 84.59 %

two-step-NN (F2+F8) 88.22 % 89.56 %

two-step-KNN (F1+F8) 82.44 % 84.00 %

two-step-KNN (F2+F8) 86.89 % 88.89 %

b) two-step-NN (F2+F8) / λzero-one

D R S G E U

D 78 1 7 1 0 3

R 6 81 2 0 0 1

S 0 1 83 6 0 0

G 0 0 13 68 9 0

E 0 0 1 2 87 0

c) two-step-NN (F2+F8) / λmerapi

D R S G E U

D 87 1 2 0 0 0

R 7 82 1 0 0 0

S 0 1 83 6 0 0

G 4 0 13 65 8 0

E 1 0 1 2 86 0

Table 4.5: (a) Classification rates for the discrimination of disturbance, rain and
instability events for all combinations of spectrum classifiers and loss functions.
(b) Confusion matrix for ”one-step” neural network spectrum classifier and the
λzero-one(αi, ωj) loss function. (c) Confusion matrix for ”two-step” neural network
spectrum classifier and the λmerapi(αi, ωj) loss function.

The ”two-step” Doppler spectrum classifiers achieved significantly better classifica-
tion rates than the corresponding ”one-step” classifiers, although the performance
has been equally good during the tests with single Doppler spectra. Generally,
we again observe that neural network classifiers have better performance than the
corresponding KNN classifier.

4.10 Conclusion and Outlook

The Doppler radar technique provides a unique opportunity to observe dynamic
processes at active lava domes. Three different kinds of dome instability have been
identified using Doppler radar observations. Because a spectrum is recorded every
3 seconds a manual analysis of radar events is time consuming. During periods
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of high activity several hundred instability events can occur each day. Therefore,
an automatic classification system is mandatory in order to continuously monitor
different types of dome instability events. Such a system was described in this paper.

One main difficulty for the classification of radar events is the choice of characteris-
tic features, which are fed into the classifier. Radar events consist of a sequence of
Doppler spectra of variable length. Because the physical process driving an instabil-
ity can change during an event, it was found to be difficult to define feature vectors
with fixed length, which are able to characterize complete radar events. Therefore,
we first classify single Doppler spectra and then classify the event by analyzing the
sequence of classified Doppler spectra. Two different strategies have been followed to
classify Doppler spectra of the categories disturbance, rain, sliding material, grav-
itational break-off and explosive outburst: a) discriminating all five categories at
once and b) first discriminate disturbance, rain and instability spectra and then
discriminate the different types of instability spectra. All classification procedures
and feature vectors have been implemented using either a neural network or a KNN
classifier.

The performance of the classification of the different types of spectra mainly depends
on the type of feature vector. For the discrimination between disturbances, rain and
instability spectra we achieve a classification accuracy of about 94%. However, sub-
dividing the classification task into two steps does not enhance the classification
performance for single Doppler spectra, neither for the discrimination between dis-
turbances, rain and instabilities, nor for the different types of instabilities. The
overall classification rate for both the ”one-step” and the ”two-step” classification
approach is about 90%.

Both classifier models provided good performance, the neural network classifier has
only a slightly better performance than the KNN classifier. The neural network
has also the advantage that it is much less consuming in computation time than the
KNN classifier. The neural network is trained before it is applied to new data. When
new data is presented to the network, the calculation of the outputs is very fast,
because the network size is relatively small. The KNN classifier does not need to
be trained before classifying new data. Instead, it calculates the euclidean distance
between the new pattern and each pattern in the training set. Depending on the
size of the training set and the size of the feature vector, this can be very time
consuming. However, for the KNN classifier only parameter K has to be chosen,
and the fact that no time consuming training has to be done, the KNN classifier is
especially suitable for testing a large number of feature vectors for their expressive
power.

The classification of events has also been tested with two different approaches. The
discrimination between the disturbance, rain and instability events showed signifi-
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cantly better performance for the special λmerapi(αi, ωj) loss function, than for the
standard λzero-one(αi, ωj) loss function. Table 4.5c shows that only about 1.1% of
non-instability events have been classified as instability and with 2.2% only slightly
more instabilities have been classified as non-instability.

The discrimination between the different types of instability events has a higher
rate of misclassifications. Only 86.6% of the instability events have been correctly
classified. However, even for the expert, who assembles the training sets it is not al-
ways easy to decide, e.g. whether an instability event contains an explosive outburst
or if it is merely a bigger gravitational break-off. This is due to the fact that the
characteristics of sliding material, gravitational break-offs and explosive outbursts
are continuous, and thus the boundary between the different types of instabilities
is somewhat fuzzy. Disturbances, rain and instabilities can be discriminated much
easier by the expert. In some cases a rain spectrum might look like an instability
spectrum, but this is rare and usually does not persist for a complete event. In some
cases the events of different types overlap or superimpose, meaning they occur at
the same time. Of course, in this case a clear classification is not ppossible.

Based on the sequence of classified Doppler spectra we can further discriminate
different types of explosive events. Some events start with an explosive outburst,
others start with a gravitational break-off or sliding material followed by an ex-
plosion. In addition, we can distinguish between explosive events with single or
multiple outbursts. To define decision rules we count the explosive instances, i.e.
intervals of explosive spectra interrupted by non-explosive activity. If there is more
than one explosive instance, the event is considered as multiple explosive outbursts.
Besides that, we can determine the time offset between the beginning of the event
and the first explosive spectrum. If this offset is less than 6 seconds, i.e. only one
other spectrum occurred before the outburst, we consider the explosive outburst as
initial.

The classification system developed in this paper has been applied to a huge data
set of radar events, which has been acquired at Merapi volcano between November
2001 and July 2004 and contains about 80.000 events. In part II of this paper (Voege
et al., 2006) the classified radar events have been used to analyze the dome activity
during this period of time.
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Abstract

In this paper we analyze a 3 year long time series of activity at Merapi volcano,
Indonesia, which was recorded using a Doppler radar system. Between November
2001 and July 2004 about 57000 events associated with dome instabilities have been
recorded by the radar system. Because of the huge amount of data an automatic clas-
sification system has been developed, which identifies different types of instabilities
at the lava dome (i.e. sliding material, gravitational break-offs and explosive out-
bursts) as well as rainfall. Comparing the record of detected instabilities to rockfall
measurements deduced from the seismic network of the Merapi Volcano Observa-
tory, we are able to demonstrate the high potential of Doppler radar measurements
for monitoring of dome activity. When aligned to the most active area at the dome,
the radar detects significantly more events than the seismic system. In combination
with seismic measurements, the Doppler radar allows for identifying changes in the
location of the most active area at the dome. This is particularly helpful since the
dome of Merapi is covered by clouds about 50% of the time. Additionally, the radar
data can help to distinguish between rockfalls and multiphase events in the seismic
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measurements.
The different types of instabilities have been analyzed for their occurrence frequency
in terms of size, volume and mean velocity. Significant temporal changes in the rel-
ative occurrence frequencies or the characteristic properties of the different types of
instabilities have not been observed. However, during the period of fastest activity
decrease, explosive instability events with a gravitational precursor decreased faster
than events starting explosively. Because the radar system is able to observe rainfall,
the data has been analyzed for a link between rain and dome activity. Throughout
the observation period no such link could be found, however, this might be due to
the fact that the activity has been almost continuously decreasing.

5.1 Introduction

Merapi volcano, located in Central Java, Indonesia, is one of the most active dome
building volcanoes worldwide, with about 70 major eruptions since 1548 (Simkin and
Siebert, 1994). Since 1972 Merapi is continuously active with periods of increased
activity in 1984, 1994, 1997, 1998, 2001 and 2006. The activity is dominated by
expulsion of viscous and highly crystalline basaltic andesitic lavas, which form dome
structures. Partial or total collapses of these structures lead to highly destructive
pyroclastic flows, so-called nuée ardente or block and ash flows, which can have
run-out distances of several kilometers. Due to the high population density in the
vicinity of Merapi volcano, it is considered one of the most dangerous volcanoes of
this kind. A major dome collapse caused about 60 fatalities in 1994 (Voight et al.,
2000) and during the activity in 2006 three people lost their lives although extensive
evacuation was in place. In order to reduce the hazard associated with eruptions of
Merapi volcano, it has been monitored for many years.

In the past, lave dome activity has mainly been observed by seismic measurements.
Two types of seismic signals are believed to be directly linked to dome growth:
multiphase signals (MP) and signals caused by rockfalls and block and ash flows.
Multiphase events are associated with magma transport just beneath the dome (Rat-
domopurbo and Poupinet, 2000) leading to an increase in dome volume. Rockfalls
and block and ash flows are associated with instabilities at the dome and lead to
a decrease in dome volume. Figure 5.1 shows the record of the daily number of
rockfalls, which have been detected by the seismic network of the Merapi Volcano
Observatory (MVO) between February 2000 and July 2003. In July 2000, the num-
ber of multiphase events started to increase and a new period of dome growth began.
The number of rockfalls did not follow this trend immediately, which indicates that
early on the growing dome was relatively stable. In late December the multiphase
events rose more quickly and starting at January 10, 2001, the number of rock-
falls also increased dramatically, indicating that the dome was beginning to become
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unstable. The peak of the activity is marked by a partial dome collapse, which
occurred in two stages on January 28 and February 10 (e.g. Friedel et al., 2004).
This record demonstrates the important role of these monitoring parameters for
hazard mitigation. While multiphase events give early information about emerging
dome activity, in this case several month in advance, the number of rockfalls give
important information about the stability of the growing dome and how probable a
collapse is in the immediate future.

The goal of our Doppler radar measurements at active lava domes is to enhance
the observation of dome instabilities and the resulting rockfalls and block and ash
flows. Doppler radar measurements can overcome some drawbacks of visual and
seismic monitoring of rockfalls. Visual observations of rockfall activity usually give
only qualitative but no quantitative information about the number and size of rock-
falls. Furthermore, visual observations require continuously good visibility condi-
tions, which is scarce because the summit of Merapi is often covered by clouds.
Seismic measurements are mainly intended to observe changes inside the volcanic
edifice. During high volcanic activity various types of events are observed in the
seismic data, e.g. long-period events, short period events, multiphase events, etc.
(Ratdomopurbo and Poupinet, 2000). Thus, seismic events induced by rockfalls can
be superimposed by events that originate inside the volcano. The higher the activ-
ity, the more probable it is that seismic events overlap. Especially rockfall events
are likely to overlap, because they usually have a relatively long duration of several
minutes. The radar system, however, focuses exclusively on the dome, and thus
only the first few seconds of a rockfall event are observed. This results in a better
discrimination of succeeding rockfall events (Voege and Hort, 2007). The drawback
of focusing solely on one spot of the volcano can be overcome by installing more
radar systems, which together cover a larger area.

Because the radar mainly observes the onset of a rockfall event, we use the term
”instability event” to describe an event of increased echo power in the radar data,
which is associated with a rockfall. So far, three types of dome instability events have
been identified using radar measurements: sliding material, gravitational break-offs
and explosive outbursts (see Hort et al., 2006; Voege and Hort, 2007). In order
to monitor these different types of instabilities, an automatic classification system
has been developed, which is described in the companion paper (Voege and Hort,
2006). In this paper we analyze a 3 year record of Doppler radar monitoring at
Merapi volcano starting in October/November 2001. The most active period has
been observed between November 2001 and January 2003. In 2004 and 2005 the
activity was very low and also the data quality from 2005 is relatively bad due to
technical problems. The recent activity in 2006 has only partially been monitored by
the systems. Unfortunately, the activity was directed towards the southeast, while
the radar systems have been installed in the west and southwest of the the volcano,
and thus most of the activity could not be observed. For the investigations presented
in this paper we therefore focus on the period between November 2001 to July 2004.
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Figure 5.1: (a) Daily number of seismic multiphase events from January 2001 to
November 2003. (b) Daily number of rockfall events for the same period.

Two radar stations have been installed at Merapi volcano at Pos Babadan and Pos
Gemer, respectively (see small map in Fig. 5.2). Since the station at Pos Gemer
has not been installed before January 2005 we will only show data from the radar
system at Pos Babadan.

After a short introduction to the radar system in Section 5.2, we will compare
rockfall monitoring results from seismic and radar measurements (Section 5.3) and
investigate the record for temporal changes in the type of activity, e.g. the number
and size of different types of instabilities and mean event velocity. Because the radar
system is also able to observe rainfall at the dome, we also look for correlations
between rainfall and dome activity. All observations will be thoroughly discussed in
Section 5.4.

5.2 System - Setup

The first radar station was setup in late October 2001 at Pos Babadan, an obser-
vation post on the western flank of the volcano at an altitude of 1280m above see
level. The distance from the active dome is about 4.5km (see Fig. 5.2). The station
is equipped with a frequency modulated continuous wave (FMCW) Doppler radar
with a base frequency of 24GHz. The radar system is intended to detect material
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Figure 5.2: Setup of the radar station at Pos Babadan on the wester flank of Merapi.
The map in the upper left corner shows the locations of stations Babadan and Gemer
as well as the deposits of recent dome collapse events. Deposit mappings are taken
from Schwarzkopf and Schmincke (2000). (Digital elevation model provided by C.
Gertenecker, TU Darmstadt)

movements in the dome area and to provide information about distance and velocity
of moving targets. The distance resolution is rather coarse, and a maximum of 16
distance intervals of equal length, so-called range gates, can be resolved. The veloc-
ity resolution is 0.285m/s ranging from −18.24m/s to +18.24m/s in each distance
interval. We note that the measured velocities are radial velocities, i.e. the veloc-
ity component in direction of the radar beam. Targets approaching the radar have
positive radial velocities, whereas targets moving away from the radar have nega-
tive radial velocities. In order to measure the complete velocity vector of a mass
movement, at least three radar systems are necessary (Voege et al., 2005). The
echo power received by the radar is a function of the total volume of the reflecting
material and the particle size distribution. Because the volcanic material moving
during an instability event does not fill the complete radar beam, the echo power
also depends on the location of the material movement relative to the center of the
beam. Thus, under the assumption that the particle size distribution does not vary
significantly between different events, and that we observe the precise position of
the most active spot at the dome, we can assume that the echo power roughly scales
with the size of an instability event.

When aligned to the dome, the radar beam has an elevation angle of about 21◦ (Fig.
5.2). The opening angle of the radar beam is about 1.5◦. We estimate the slope at
the dome to be about 45 − 60◦, and thus the area covered by the radar beam at
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the dome is an elliptical area of approximately 125m width and 250− 300m height.
The range gate length is set to 600m and data from the range gates 1800− 2400m,
3000−3600m, 3600−4200m and 4200−4800m are stored. For a detailed description
of the system see (Voege and Hort, 2007).

5.3 Observation of Dome Activity between

November 2001 and July 2004

During the observation period between November 2001 and July 2004 about 80000
radar events have been registered. A radar event is considered, when the echo power
in the Doppler spectra increases significantly compared to the background noise.
Such events can be due to rainfall, a dome instability, or it can be a disturbance (see
Voege and Hort, 2006). Of course, we are particularly interested in events associated
with dome instabilities. In total about 57000 instability events have been identified
by the classification system described in Voege and Hort (2006).

In order to demonstrate the performance of Doppler radar measurements to observe
dome activity, we compare instabilities detected by radar to rockfalls detected by the
seismic network of the MVO. Because the rockfall measurements of the MVO have
only been available as number of rockfalls per day, we generated the corresponding
record for instabilities detected by the radar. We note that the analysis of the
seismic data is currently done by an automated processing system. The seismograms
used in this study, however, have been analyzed manually. Figure 5.3 shows the
daily number of rockfalls/instabilities identified from the the seismic measurements
(green) and by detected the Doppler radar (red) from December 2000 to July 2004.
Unfortunately, the activity from January to October 2001 has not been observed by
the radar system because it was installed in late October 2001. In February/March
2002 there is no radar data available for a period of about 3-4 weeks. This is due
to a system damage by lightning. After the system has been repaired, the radar
beam had to be realigned to the active spot at dome. From then on, there are no
additional significant data gaps until November 2003.

From October 2001 to March 2002 the number of rockfalls deduced from the seismic
data increases slightly from about 105 to 120 events per day. Following March 2002
the number of rockfalls continuously decreases. Only slight increases are visible
in September 2002 and August 2003. Clearly, the instability events in the radar
data roughly follow the overall trend of the seismic rockfall events. However, during
times of high activity the number of instabilities observed by the radar system is
much higher than in the seismic data. As the activity decreases, the number of
instabilities in the radar data approaches the number of rockfalls detected by the
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Figure 5.3: (a) Daily number for rockfall events detected by the radar system (red)
and the seismic network (green) between December 2000 and July 2004. Note that
the radar measurements started in late October 2001. Dots show the actual number
of events for each day, while the lines show the running 7-day average. The lower
plots show details from October 2001 to March 2002 (b) and from November 2002
to February 2003 (c). In order to emphasize the good correlation between seismic
and radar data, in (c) the lines represent the non-averaged values.

seismic network. Figure 5.3c shows the good correlation between both data sets
from November 2002 to March 2003. Here, not only the trend matches, but also
the rather strong fluctuations appear to correlate well. While the overall trends
match most of the time, this does not hold for certain time periods. Especially,
from October 2001 to March 2002 the number of instabilities detected by the radar
decreases, while the number of seismically deduced rockfalls slightly increases (see
Figure 5.3b). Also, the radar data does not follow the slight increases in the seismic
data in September 2002 and August 2003 (Fig. 5.3a). The slightly increased activity
in September 2002 is hardly visible in the radar data and during August 2003 we
detect no increase in activity using the radar.
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Figure 5.4: (a) Comparison of the daily number of rockfall events and the daily
averaged event echo power. The event echo power is calculated by summing up the
total echo power of all Doppler spectra of an event. (b) Comparison of the event
echo power distributions during April and November 2002.

The echo power received by the radar system scales roughly with the volume of
the material that moves through the beam (see Section 5.2). Thus, the summed
echo power over the whole duration of a radar event, in the following referred to
as event echo power, is an approximate measure for the event size. Figure 5.4a
shows the daily averaged event echo power. For comparison the red line shows the
daily number of instability events. While the number of events decreases between
April and November 2002 from about 340 events to 40 events per day, the average
event echo power remains roughly constant throughout this time period. A similar
observation holds for the period from October 2001 to February 2002. Only following
January 2003 the data shows more scatter, which is due to a weak statistical basis
(small number of events). Figure 5.4b shows that in fact the distribution of event
sizes estimated by the event echo power does not change significantly from April to
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Figure 5.5: Comparison of occurrence frequency and magnitude of the different
types of radar events. (a) daily number of events, (b) daily summed echo power and
(c) cumulative daily summed echo power.

November 2002.

Changes in the relative frequencies of sliding events, gravitational break-offs and
explosive outbursts would suggest a change in the activity style. The largest activity
change observed so far by the radar has been the decrease during the period from
November 2001 to August 2003. For this period Figure 5.5a shows the daily number
of instability events broken down into events of sliding material, gravitational break-
offs and explosive outbursts. Most events are caused by sliding material, they occur
about 3 times as often as gravitational break-offs and about 6-7 times more often
than explosive outbursts. These ratios remain roughly constant for the whole period
between November 2001 and November 2002. Even the realignment of the radar
beam in March 2002 has no significant impact on the ratio between the different
types of events. Following November 2002 we observe too few events to further
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follow up this observation. Only between December 2001 and January 2002 the
number of sliding events is found to rise compared to gravitational break-offs and
explosive outbursts.

Figure 5.5b shows the daily summed echo power for the three event types. The
amount of material involved in the different types of events appears to be much
more similar than the actual number of events. Especially following March 2002
the summed echo powers per event do not vary significantly. Because most events
are due to sliding material during this time, these events are on average smaller
than gravitational and explosive events. Again, only during the period between
December 2001 and January 2002 we observe an increased echo power for sliding
material compared to gravitational break-offs or explosive outbursts. This is also
confirmed by Figure 5.5c, where the cumulative echo power is plotted. The relative
increase of sliding material with respect to the other event types corresponds well
to the observation of increased relative number of sliding events in Figure 5.5a.

The different types of instability events are mainly characterized by their mean
velocity. We have to note that all velocities reported in the following are radial
velocities (see Section 5.2). The mean velocity is calculated from a Doppler spectrum
by first multiplying each velocity with its echo power, building the sum over all
these products, and then dividing this ”momentum” by the total echo power (see
also Voege and Hort, 2007). An instability event is a sequence of Doppler spectra,
and we get a time series of mean velocities for each event. Out of this series, we
pick the maximum mean velocity throughout the event, which for simplicity will be
referred to as maximum event velocity or just event velocity from here on.

Figure 5.6a shows the distribution of the event velocities for all three types of events.
The distributions are stacked, so that the overall distribution of all events regard-
less of their event type is also shown. The overall distribution of the velocities is
unimodal. The maximum is at about 2m/s and exponentially decreases towards
higher velocities. Below 2m/s the number of events decreases much faster, and be-
low 1.2m/s there is hardly any event. The number of sliding events is much higher
than for gravitational and explosive instabilities as already observed in Figure 5.5.
In order to look closer at the distributions for the different event types, Figure 5.6b
shows the event numbers normalized for each event type. For sliding events the
velocities range from 1.5 to 3.5m/s. Gravitational break-offs have a velocity range
from 3.2 to 5.2m/s and explosive outbursts from 4.8 up to 7.5m/s. These distri-
butions are obtained from the whole data set of nearly 3 years consisting out of
approximately 57000 instability events.

We also looked for temporal variations in these distributions. Therefore, Figure 5.6c
shows the event velocities averaged on a weekly basis for all three types of events
from November 2001 to July 2004. The error bars show the standard deviation of the
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Figure 5.6: (a) Distribution of the maximum event velocities as a function of the
number of events calculated from all instability events detected between November
2001 and July 2004. Each color represents one type of event: sliding material
(green), gravitational break-off (blue) and explosive outburst (red). (b) The same
distribution as in (a) but with event numbers normalized for each type of event.
(c) Temporal evolution the maximum event velocity for each type of event. Dots
are weekly averages and the error bars show the standard deviation during the
corresponding week.
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Figure 5.7: Number of events (7-day running average) with initial explosive outburst
(red) and with gravitational break-off followed by an explosive outburst (green).

maximum event velocities for the corresponding week. The weekly average as well
as the standard deviation of the event velocities do not change significantly between
November 2001 to August 2003, although the dome activity has been continuously
decreasing (compare Fig. 5.3a). The average event velocity for sliding material
is about 2.5m/s. For gravitational break-offs it is about 4m/s and for explosive
outbursts about 6m/s. Only in late 2003 the values scatter more because the total
number of events is very small (< 20). Following August 2003 the event properties
change significantly. This, however, is caused by another realignment of the radar
beam, which has been carried out, after the radar had been replaced by an technically
upgraded radar device.

Amongst the explosive instability events we are able to distinguish between two
different types: events with initial explosive outburst and events with delayed ex-
plosive outbursts (see also Voege and Hort, 2006). In Figure 5.7 we compare the
number explosive of events with initial outburst (red) to events with delayed out-
burst (green). Between November 2001 and March 2002 the numbers for both types
of events are similar and follow the same trend. Only in late January 2002 the num-
ber of initial outburst events is significantly higher than for delayed events. After
the radar beam has been realigned in March 2002, the number of events is again
very similar for both types of events. However, following April 2002 the number of
delayed events decreases faster than the number of initial outbursts until the number
of events becomes very small in August 2003. Possible reasons for this observations
are discussed in Section 5.4.

The radar system used at Merapi is also able to detect rainfall. The advantage of
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Figure 5.8: (a) Echo power of rain events summed on a daily basis from November
2001 to July 2004. Note that in August 2003 the radar device was replaced by a
new instrument, which generally gives slightly higher echo powers. (b) Comparison
of rainfall directly at the dome and rainfall at the lower flank for the rainy season
2002/2003. (c and d) Cumulative number of rockfalls (red) and cumulative echo
power for rain events for the rainy seasons 2001/2002 and 2002/2003.
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measuring rain by radar is that measurements can be made from a distant location
and that measurements can be made for different range gates (see Section 5.2).
Therefore, we measure rain directly at the dome and at a distance of about 2000m
away from the dome in free air above the lower flank. Figure 5.8a shows rain
measurements in the dome area for the period from November 2001 to July 2004
plotted as daily summed echo power. We can clearly see the rainy seasons 2001/2002,
2002/2003 and 2003/2004. In 2001/2002 the rain season seems to be weaker than in
2002/2003 and 2003/2004, but this may actually not be true as there is a significant
data gap in February/March 2002. In addition, we did not observe the beginning
of the season in this case. In Figure 5.8b we compare the rain measurements at
the dome and at the flank of the volcano. The echo power for rain at the dome
is generally less than at the flank. This is due to the geometric attenuation of the
radar measurements, which is higher for larger distances. The correlation of both
datasets, however, is very good, and no significant differences in the ratio between
rain at dome and rain at the flank can be observed.

In order to look for a correlation between rainfall and dome activity we calculated
the cumulative number of instability events and the cumulative sum of the echo
power of rain events for the rainy seasons 2001/2002 (Fig. 5.8c) and 2002/2003 (Fig.
5.8d), respectively. The rainy season 2003/2004 is omitted, because the activity was
too low. Because we are only interested in relative changes, all datasets have been
normalized. Again, during both rainy seasons shown here, we can clearly see the
similarity between rain at the dome and rain at the flank. The possibility of a
correlation between dome instabilities and rainfall will be discussed in Section 5.4.

5.4 Discussion and Conclusion

Comparing rockfall monitoring by the seismic network (with manual detection/
classification) of the Merapi Volcano Observatory with our radar data shows that
the radar system provides useful new information about the lava dome activity. The
radar is able to detect more instabilities/rockfalls than the seismic network during
periods of high activity and similar numbers during times of low activity. From
the radar data we can determine characteristic properties for the different types
of instabilities, and we were able to observe a change in the relative numbers of
events with initial explosive outburst and with a gravitational break-off followed by
an explosive outburst. We have also shown that the radar is able to detect rain
fall separately at the dome and at the lower flank, which can be used to investigate
the impact of rainfall to dome activity. In the following we discuss the observed
differences in the number of events detected by the radar system and the seismic
network. We also investigate the characteristic properties of the different types
of instabilities and discuss possible reasons for the observed change in the relative
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Figure 5.9: Comparison of the daily number of instability/rockfall events detected
by radar and by seismic observations. The event detection for the radar data is
altered in two different ways: (a) The threshold for the event detection is increased
until the number of rockfalls detected by radar and seismics match right after the
realignment of the beam at the end of the data gap in March 2002; (b) Successive
events with a time difference of less than 6 minutes are considered as one event.

numbers of the two different types of explosive events. Finally, we analyze the rain
measurements for possible correlations with dome activity.

5.4.1 Sensitivity of the radar system

During times of low activity the numbers of events are similar for both observational
methods, and the good agreement between both data sets indicates that the fluc-
tuations in the number of instabilities/rockfalls are real and not ”noise” introduced
by the measurement techniques (see Fig. 5.3a and c). However, we have shown that
the radar system detects significantly more events than manually identified from the
seismic data when the activity is high. In order to determine why, we manipulated
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the radar data in order to simulate two different effects, which might cause the lower
number of events identified in the seismic data: (a) higher sensitivity, i.e. the radar
is able to detect smaller events, and (b) events are less likely to overlap due to the
shorter duration than in the seismic data (compare Voege and Hort, 2007). We
assume that the most active spot at the dome has been covered completely by the
radar beam after the realignment in late March 2002. Therefore, the numbers of
events should be similar during the period just following the realignment. In order
to test the first possibility, we reduce the sensitivity of the radar artificially by in-
creasing the threshold for our event detection algorithm, until we reach similar daily
event numbers for the radar and the seismic data for late March 2002 (see Fig. 5.9a).
While now the numbers match for the high activity in April and May 2002, we find
significantly less events than detected by the seismic system during the low activity
in December 2002. The second possibility is tested by simulating longer event dura-
tions. Therefore, we set a threshold for the minimum time-gap allowed between two
successive events. Again, this threshold is increased until the number of daily events
matches for both data sets just after the realignment of the beam. The best match
for the numbers of events is achieved for a minimum gap of 6 minutes between two
events in the radar data. Figure 5.9b shows that now the data sets match during
the whole time series from March 2002 until December 2002. This indicates, that
the overlap of succeeding events has the larger impact on the identification of rock-
falls by the system observer/seismic network. However, we have to note that due
to the manual identification of seismic events, the sensitivity of both systems’s have
to be compare with caution. In the presents of a huge number of events per day an
observer might ignore smaller events, and thus his ”threshold” could vary in time.
Also, in seismic measurements small rockfalls can also appear as multiphase events
(person. comm. J. Wassermann). In this case, the radar measurements could offer a
valuable independent source of information and could help to discriminate seismic
rockfall events from seismic events originating from the inside of the volcano.

Next, we investigate the differences between the trends of the radar data and the
seismic data that we observe between October 2001 and March 2002 (Fig. 5.3b).
Two considerations are important to explain the decrease of events observed by the
radar, while the number of seismic events increases slightly: a) the radar system
observes only a small part of the dome, while the seismic network is able to register
rockfalls independently of their origin and b) following the data loss of a few weeks in
February and March 2002 the radar beam was realigned to observe the most active
spot at the dome. We conclude that the activity at the spot observed by the radar
between October 2001 and March 2002 decreased, while the overall activity at the
dome remained constant. After reorienting the radar beam to the most active spot
in March 2002, the number of rockfalls is nearly at the same level as in November
2001. Therefore, the activity has been shifting to another spot at the dome, which
was also confirmed visually, when the radar beam was realigned in March 2002.
This example shows that combining seismic measurements with radar observations
helps to monitor changes in the location of the main rockfall activity. In fact, this
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is a unique opportunity to observe such changes independent of visual observations.
This is most important, since the summit of Merapi is covered by clouds very often,
making visual observation sometimes impossible for longer periods of time.

However, radar measurements by only one or two radar systems cannot replace
seismic rockfall measurements. The slight increases in the number of rockfalls in
the seismic data in September 2002 and August 2003 is not or only hardly visible
in the radar data (see Fig. 5.3a). These activities must therefore have occurred at
the edge or outside of the area observed by the radar beam. Because the activity
was very low during both time periods an accurate realignment of the radar beam
was not possible. While the measurements of the radar are independent of visibility
conditions, this does not hold for the alignment of the radar beam. Because the
active spot has to be identified visually, this is very difficult, when there is very low
activity with only a few small rockfalls per day. When the activity is high, only a
few minutes of good visibility are needed to identify the active spot and to realign
the radar beam.

5.4.2 Dynamic Processes During Instability Events

A significant change in the dynamic processes during the observation period could
not be observed. The relative numbers of the different types of instability events,
i.e. sliding material, gravitational break-offs and explosive outbursts, did not change
significantly between November 2001 and August 2003. The same holds for the echo
power, i.e. the size of the events. Only between December 2001 and January 2002 the
number of sliding events increased slightly compared to gravitational and explosive
events. This might have several reasons. One possibility is that this is due to the
most active spot moving out of the focus of the radar beam, as discussed above.
According to visual observations from Babadan in March 2002 the activity moved
to the upper right with respect to the center of the radar beam. Thus, the radar did
not observe the onsets of some events, whereas the resulting rockfalls still passed the
radar beam and therefore were classified as purely sliding events. Because we still
observe explosive events, the activity cannot have completely left the radar beam,
though. Another possibility is a change in the style of activity, e.g. the pressure
within the dome material decreases, and thus the number of explosive events also
decreases. However, only from the radar data we are not able to decide, which
reason is most likely.

In September 2003 we also observe a relative increase of sliding material, which is
shown in the blowup section of Figure 5.5a. This, however, is due to a reorientation
of the radar beam in late August 2003. Because the activity was very low, no clear
active spot could be identified. Therefore, the beam was aligned towards a canyon at
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the lower edge of the dome in order to detect material, which is moving through the
canyon after breaking off the dome somewhere above. In this case the canyon acts as
a channel collecting material from a area of the dome larger than it could be covered
by the radar alone. The increase in the number of sliding events is accompanied by
a decrease in the maximum event velocity from about 2.5m/s down to 1.5 − 2m/s
(Fig. 5.6c). The velocity of sliding material mainly depends on the tilt of the slope
and the friction between material and slope. Thus, the lower velocities are likely to
be due to a smaller tilt of the slope below the dome or due to a higher friction of
the material with the ash that has accumulated further away from the dome.

More interesting are the observations of relative changes between the number of
explosive events that start gravitationally and the number of events that start ex-
plosively. Due to magma extrusion the uppermost part of the conduit and the
interior of the dome may be subject to large overpressures (e.g. Melnik and Sparks,
1999). We assume that initial explosive outbursts are triggered by a structural
failure, which causes a release of pressure and leads to degasing and thus to an
explosive outburst. Due to the geometry of the dome such explosive outbursts are
usually small directed lateral blasts. First, this type of event has been observed
at Montagne Pelée during its eruption in 1902 and therefore are called Pelean-type
dome collapse (see e.g. Voight et al., 2000). Events with a delayed explosive out-
burst start as a gravitational instability (Merapi-type). Single blocks produced by
an instability can be rather large (several meters in diameter). When such a block
hits the slope after breaking off the dome it fractures, which again causes a release
of pressure inside the block, and thus the block fragments explosively. At Unzen
Sato et al. (1992) and Ui and Fujinawa (1999) were able to document such processes
using video recordings. However, it is also possible that the gravitational break-off
causes a release of pressure in the underlying dome material, and thus again an
explosive outburst occurs due to degasing. First signs of a change in the relative
number of these two types of explosive events in January 2002 are of relative short
duration (see Fig. 5.7) and might be associated with the shift in activity discussed
above. However, following April 2002 a faster decrease of explosive events starting
gravitationally is observed for about one year. The reason for the faster decrease
might be that with continuously decreasing activity temperature and pressure in
the dome material decrease most quickly near the surface of the dome. Thus, blocks
gravitationally breaking off the dome are less likely to fracture explosively. Initial
events are supposed to be driven from the inside of the dome, where temperature and
pressure decrease slower, and thus also the number of initial events decreases slower.
However, because the difference is not very large, this needs further verification by
additional measurements.
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Figure 5.10: Normalized monthly precipitation at Merapi volcano. Blue: average
precipitation between 1981 and 1990 taken from Hidajat (2001). Red: precipitation
measured by the radar system at the dome between November 2002 and October
2003. Green: precipitation measured by the radar system at the lower flank for the
same period.

5.4.3 Volcanic Activity and Rain

The influence of rainfall on the activity of lava domes has already been discussed by
several authors. At Unzen Yamasato et al. (1998) repeatedly observed an increase
in the number and size of pyroclastic flows due to dome instabilities after heavy
rainfall. At Soufriere Hills Volcano, Montserrat, two major dome collapses were
found to coincide with extremely heavy rainfall events (Matthews et al., 2002).
A thermodynamical model has been introduced by Matthews and Barclay (2004),
which leads to the conclusion that about 20 − 30mm rainfall suffices to trigger a
significant collapse. A thermo-hydrologic mechanism for rainfall-triggered collapses
has been introduced by Elsworth et al. (2004). At Merapi, Neuberg (2000) found a
correlation between rainfall and dome activity. A link between fumarole temperature
and rainfall has been observed by Richter et al. (2004).

The radar systems used at Merapi volcano are modified rain radars. For rain mea-
surements these rain radars are pointed vertically upwards, so that from the terminal
fall velocity and from the reflected echo power a rain rate can be calculated. In order
to calculate an absolute rain rate two conditions must be met: a) the rain has to
cover the complete radar beam, and b) the velocity measured by the radar has to be
the true terminal fall velocity of the rain drops (Peters et al., 2002). Unfortunately,
these conditions do not hold for the installations at Merapi, because the radar beam
is not pointing vertically upward. Because of the small elevation angle, the radar
beam has a much larger horizontal extend, and thus it is less likely than for a vertical
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looking radar that a very local rain event covers the complete radar beam. Vertical
looking radars measure the true fall velocity of the rain drops, even when strongly
influenced by horizontal wind drift. At Merapi, the terminal fall velocity has to be
calculated by projecting the measured velocity to the vertical fall direction. Here,
we have to assume that the rain is actually falling vertically, which is often violated
by horizontal wind drift. Therefore, a determination of an absolute rain rate from
our measurements is impossible. However, rain measurements made by the radar
systems can be used to monitor relative changes in the rain rate over time. Assum-
ing that the raindrop size does not vary significantly the echo power during rain
events roughly scales with the actual rain rate. Although, the rain drop size does
certainly vary from one rain event to another, we assume that on average they do
not vary significantly.

Central Java has a typical tropical climate with two main seasons: dry season and
rainy season. The annual precipitation at Merapi Volcano is about 3200mm (Hi-
dajat, 2001). During the dry season between May and October only very little
precipitation occurs with about 50mm per month. The rainy season usually starts
in mid October and lasts until mid May (see Fig. 5.10). The precipitation rises
to 200 − 500mm per month and has its maximum in January with about 540mm.
Figure 5.10 shows that although it is not possible to give absolute rain rates, the
relative amount of monthly rainfall measured by the radar between November 2002
and October 2003 is consistent with the record of Hidajat (2001). This makes us
confident that the relative amount of rain given by the echo power of rain events (see
Fig. 5.8) can be used to investigate the radar data for possible correlations between
rainfall and dome activity.

However, during the whole observation period no such correlation could be observed.
Even the sharp increase in cumulative rainfall during mid January 2001 has no
impact on the number of instabilities (Fig. 5.8c). Also the onset of the rainy season
2002/2003 does not seem to have any impact on the number of instabilities, which
continue to decrease as during the dry season before (Fig. 5.8d). The lack of a
correlation might just be due to the fact that during the whole period between
November 2001 and July 2004 the activity continuously decreased with no further
dome growth. It is still possible that a correlation can be observed during increasing
activity, when the pressures and temperatures are higher due to fresh material.
Unfortunately, the recent activity between May and July 2006 has not been observed
properly by the radar system. However, since the activity has mainly occurred in
the dry season, it is not very likely that an impact of rainfall on dome activity could
have been observed.

Strong rain fall, however, also influences the detection of instability events by the
radar system. Figure 5.11 shows the number of instabilities and the summed echo
power for rain events as function of the time of day (local time) binned in 15 minutes
intervals, once for the dry season 2002 (Fig. 5.11a, mid May to mid October) and
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Figure 5.11: Number of instabilities (red) and the summed echo power of rain events
(blue) as function of the local time of day binned in 15 minutes intervals: (a) dry
season 2002 (mid May – mid October), and (b) rainy season 2001/2002 (November
– mid May). Please note the differences in echo power amplitude between panel (a)
and (b).
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once for the rainy season 2001/2002 (Fig. 5.11b, beginning of November till mid
May). The instabilities seem to be equally distributed throughout the day during
the dry season. Only at 6am the number of events appears to increase slightly and
decreases again during the day. During the rainy season we observe significantly less
instabilities between about 12am and 8pm compared to the rest of the day. This
clearly correlates with the rain rates for the same hours. However, the decrease of
rockfalls during hours of high rain rates is not due to an influence of rain on the
dome activity. When the radar observes strong rainfall, the echo power is usually
much stronger than the echo power of instability events (see Voege and Hort, 2007).
It is therefore impossible to detect instabilities during heavy rain, because they are
superimposed by the strong rain signal. Figure 5.11b shows no delayed impact of
rainfall to the number of instabilities, and thus we estimate the true numbers of
instabilities (per 15 minutes bin) to be about 400 throughout the day. During about
8 hours the numbers of instabilities are therefore reduced by about 30%. Averaged
over the full day we can estimate that we detect about 10% less instabilities due
to strong rain events occuring during the day. Thus, the impact on instability
monitoring is not very strong.

In Figure 5.11 we also observed that the number of rockfalls increases slightly at
about 6am in the morning. This observation supports the possibility of an influence
of sunlight warming to the stability of parts of the dome as it was discussed by
Neuberg (2000). Due to the high altitude of 2980m above sea level, the temperature
varies significantly between day and night. The rising sun heats the eastern side of
the dome quickly up about 20◦C, while the western side remains in the shade. This
could lead to a temperature-induced stress field, which causes a slightly increased
number of instabilities. However, the heating by sunlight only influences dome
material very close to the surface and since the observed variations are very small
this has to be considered with due caution.

5.4.4 Conclusion

Doppler radar measurements are relatively new in the field of volcanic monitoring
and only few measurements and observations have been published so far. The data
presented in this paper represents the first long–term data set of Doppler radar
measurements available for lava dome activity. Although, no significant changes in
the type of activity could be observed due to the continuously decreasing activity, the
observations provide important information about the activity at the dome. In order
to assess the full potential of the radar system, data from a complete volcanic crisis
would be needed. Unfortunately, this could not be achieved for the activity in 2006,
because the activity has been directed south/southeast, while the radar systems have
been installed in the west of the volcano. However, especially the comparison with
the seismic data shows that Doppler radar measurements can significantly improve
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monitoring of dome instabilities and resulting rockfalls and block and ash flows.

Acknowledgments

We thank the staff of the MVO (especially Agus Sampurno and Anton Sulistio)
for their cooperation and continuous support of this project. Thanks also to Carl
Gerstenecker for providing the digital elevation model of Merapi. This work was
funded by the Deutsche Forschungsgemeinschaft through grants Ho 1411 14-1,2 and
15-1.



118 5. Automatic Classification of Dome Instabilities ...: Part II



Chapter 6

Conclusion and Outlook

The main goal of this thesis was to develop a Doppler radar monitoring system
that is capable of continuous observation and detection of dome instabilities at
the active lava dome of Merapi volcano. Besides the radar device itself, the most
important component of the system is the logging unit. While the radar is a modified
version of a commercial rain radar, the logging unit had to be developed specifically
for this application. The hardware is based on standard but low power computer
technique and therefore all necessary communication interfaces are provided. By
far the largest effort has been undertaken in developing a reliable and easy-to-use
software system that controlls the whole system, stores the measured data and
provides communication via radio transmission and GSM-Modem. The observatory
unit takes advantage of a professional database system that stores the data and
provides access from anywhere in the intranet of the Merapi Volcano Observatory.
A processing and classification software package has also been developed, which can
be used via a comfortable user interface.

The Doppler radar system provides the first ”quasi-visual” observations of of dy-
namic processes at lava domes independent of visibility conditions. They provide
detailed information about the velocity and the amount of material moving at the
dome. This information cannot be obtained by any other measurement technique,
and therefore the radar systems enhance the observation and characterization of the
dome activity significantly. Three different types of instability events could be iden-
tified by Doppler radar measurements: sliding material, gravitational break-offs and
explosive outbursts. Sliding material and gravitation break-offs are considered to
be exclusively driven by gravitational forces, gravitational break-off representing the
mechanical failure of an unstable part of the dome and sliding material representing
loose material sliding/tumbling down the slope. Explosive events are considered to
be driven from the inside of the dome by degasing due to a release of pressure, which
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can in turn result from a mechanical failure of a part of the dome.

Due to the huge amount of data (80GB of raw data and about 80.000 radar events
between October 2001 and August 2004) an automatic classification system has
been developed. Because the types of a radar event is mainly characterized by
the shape of its Doppler spectra, first, each single Doppler spectrum is classified
according to the underlying dynamic process. The event class is then determined
from the resulting sequence of classified Doppler spectra. Single Doppler spectra can
be classified using a variety of different feature vectors and two different classifier
models: artificial neural networks and the K-nearest-neighbor method. Because
both methods require supervised learning, an expert has to classify manually a set
of training spectra, which is used to train the classifier. The best choice of the
feature vector depends on the classification strategy. The discrimination of all five
classes in one classification step achieved best result simply using a preprocessed
section of the Doppler spectrum. The ”two-step” classification achieves the best
performance, when the relative total echo power for each half of each range gate
is used to discriminate disturbances, rain, and instabilities. The mean and the
standard deviation in the range gate at the dome are used to discriminate the
three types of instabilities. The highest classification rate for Doppler spectra with
90.61% is achieved by the neural network classifier. However, the K-nearest-neighbor
classifier achieved only about 2–3% smaller classification rates.

The classification for complete events achieves similar accuracy, with about 89%.
An imortant fact is that the discrimination between disturbances and rain on one
side and instabilities on the other side is much more acurate with about 98% cor-
rect classifications. The classification rate for the discrimination between the three
types of instabilities is lower (about 86%). This is mainly due to the fact that the
characteristics of these events are somewhat continuous. In some cases, also for the
expert it is difficult to descide, whether there is a gravitational break-off or even and
explosive outburst visible.

While the performance is very similar for both classifier models with only a slight
advantage for the neural network, both models have certain advantages and disad-
vantages. Because neural network are trained in advance, they are very fast when
applied to new data. K-nearest-neighbor classifiers have to compare new data to
the complete training set, and thus can be very slow. However, the advantage of
the K-nearest-neighbor classifier is its simple implementation, and during classifier
design, i.e. when search for a suitable feature vector, it can easily and quickly be
applied to test datasets.

The automatic classification system has been applied to a large data set of radar
measurements. Starting in late October 2001 about 57.000 instability events have
been detected until August 2004. Following 2004, the activity had decreased to a
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minimum and hardly any instabilities could be observed. In 2005 and early 2006
several system damages, e.g. by lightning, caused relatively long data gaps. During
the volcanic crisis between April and July 2006 one system (Gemer) has been op-
erating, however, the activity was directed towards the south-east and thus could
not properly be observed by the radar system. Comparison of the daily number of
instability events detected by the radar and the number of rockfall events manually
identified from the data of the MVO seismic network showed that the radar system
detects more events, especially, during periods of high activity. This high level of
sensitivity, however, requires a precise alignment of the radar beam to the active
area at the dome. Tests showed that the higher number of events in the radar data
does not result from a higher sensitivity but from a better separation of events. For
a set minimum gap of 6 minutes between radar events, we achieved the best fit of
radar and seismic data. In combination with seismic measurements the radar can
enhance the monitoring of the location of the most active spot at the dome, even
when the dome cannot be observed by the naked eye. When the number of event
decreases in the radar data, a comparison with the seismic data shows if this is due
to a decrease or a shift in activity.

The relative numbers of the different types of instabilities has been similar through-
out the observation period, and thus a significant change in the type of activity
has not been observed. Most events have been due to sliding material, followed by
gravitational break-offs and explosive outbursts. Only between December 2001 and
February 2002 the number of sliding events increased slightly with respect to grav-
itational and explosive events which is probably associated to the spatially shifting
activity. After the radar beam has been aligned to the lower edge of the dome in
August 2003 we observe almost exclusively sliding material events. Between March
2002 and January 2003 the radar data also shows that events with an initial explo-
sive outburst decrease slower than explosive events with a gravitational precursor.
The later events are associated with large blocks breaking off the dome, which frac-
ture explosively when hitting the slope. The reason for the faster decrease of these
events might be that with continuously decreasing activity temperature and pres-
sure in the dome material decrease most quickly near the surface of the dome. Thus,
blocks gravitationally breaking off the surface of the dome are less likely to fracture
explosively. Initial events are supposed to be driven from the inside of the dome,
where temperature and pressure decrease slower, and thus also the number of initial
events decreases slower. The observed differences are, however, not very large, and
therefore this needs further verification.

The Doppler radar systems provide the first opportunity to observe rain directly
falling at the dome from a remote position. Although no absolute rain rates can
be obtained, the relative rain rates are consistent with long-term rain records. A
correlation between rainfall and instabilities could not be observed. Since the activ-
ity constantly decreased throughout the observation period, this might be different
in case of an arising volcanic crisis. Because the signals of instabilities can be su-
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perimposed by strong rain signals, we detect approximately 10% less instabilities in
the rainy season than in the dry season. Because no delayed impact of rainfall to
the number of instabilities has been observed, this reduced number of instabilities
does not seem to be related to dome activity. However, this should be verified by
comparing the radar data to a seismic event dataset with better temporal resolution
(i.e., at least event per hour).

Although we were not able to properly observe a complete volcanic crisis, the re-
sults of the thesis show that Doppler radar measurements can significantly enhance
monitoring of active lava domes. Even a single instrument provides useful new
information about the processes at the dome and in combination with seismic mea-
surements provide additional information about the location of the main activity.
However, for a complete coverage of the dome at Merapi at least 5 radar systems
would be needed.

The radar systems installed at Merapi still have a prototype character, and therefore
the system’s infrastructure needs further development. Especially the electrome-
chanical mounting caused a lot of trouble. The controll unit is not designed for
long-term application and therefore had always to be deactivated after the radar
beam had been aligned. Therefore, it was not possible to change the radar beam
alignment remotely from the MVO, as considered at the beginning of the project.
Besides that, it turned out that the mounting was too weak for the 120cm offset
mirror and after 3 years it had to be stabilized by additional mechanical fixations.
For future applications a robust mechanical mounting has to be developed, which
also can be adjusted with higher precision. This, however, has not been installed at
Merapi yet.

Providing the logging unit with display, keyboard and mouse also turned out to be
unnecessary. Due to todays networks technology, the system can easily be controlled
remotely from a laptop. Therefore, the software design of the logging unit should
be changed completely to a Linux system. Compared to Windows 2000 c©, Linux
provides easier remote access and it can be reduced to those system components
that are essential for the radar software. Some of the tasks of the logging unit could
also benefit from Linux mechanisms like cron-jobs, which could be used to restart
the system in case the radar software hangs. Such consideration have already been
taken into account during development of the processing and classification software,
which has been designed platform independent and thus can be applied on Linux as
well as on Windows c© systems. Because our colleagues at the MVO are most familiar
with Windows c©, the user interfaces should remain on the Windows platform. In
order to achieve easier and more flexible remote access to the radar system from
the MVO, the current radio modems could be exchanged by bidirectional Wireless-
Lan connections, which have a higher data transmission rate and already provide
basic communication protocols. Especially, when the logging unit is designed to be
exclusively remotely controlled, this would significantly reduce the need to visit the
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station for maintenance work.

Future applications at other dome building volcanoes are important to establish the
Doppler radar measurements as state of the art monitoring technique for lava dome
activity. In case only short-term measurements are planned, the system can easily
be modified to the special needs, e.g. a smaller mirror can be chosen if the distance
between radar and dome is shorter, the camera can be exchanged by a telescopic
sight, and components like the radio transmission or the GSM-modem can be left
out. Interesting volcanoes would be, e.g. Soufriere Hills on Montserrat and Unzen
in Japan.
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Chapter A

Software Development

There are three kinds of information that have to be handled by the monitoring
system: a) Doppler spectra, b) video images and c) status information. Doppler
spectra have the highest priority in the system. They have to be stored to disk and
they are sent via radio modem to the MVO, so that the MVO staff can analyze them
in real-time. Video images also have to be stored to disk. Because sending a video
image via radio takes much longer than sending a Doppler spectrum, they are sent
only upon MVO request. Aside from this the system has to provide several services.
During the measurements the system time has to be synchronized to GPS time and
status information has to be sent via SMS. During maintenance and reconfiguration
of the system the electromechanical mounting has to be controlled, and live video
images as well as live data from the radar have to be displayed. The radar needs
initialization after start–up so that important measurement parameters are set to
the correct values.

Many of these tasks have to run simultaneously, requiring a multi–tasking operating
system. We chose Microsoft Windows 2000 c©, because a) it supports all hardware
components used in the system, b) it has an ”easy-to-use” user interface and c)
our Indonesian colleagues are most familiar with this type of system. All software
applications necessary for the measurements are installed as system processes, i.e.
they are automatically started during system startup. This is especially important
when the system comes back to live after a power failure.

To keep the complexity of the software development to a minimum, the tasks
mentioned above have been divided into several modules/applications. Figure A.1
shows all modules involved in the measurements. Some modules interact and ex-
change information. For the communication between modules a special inter-pro-
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cess-communication (IPC) has been developed.

In the following we will first describe those modules, which control the logging
unit and all its peripherals during the measurements, i.e. RadarServer, VideoServer,
RadarWatchDog and RadarLiveView. Then, we will describe the modules at the
observatory unit, i.e. TNCReceiver and RadarDbView, which receive the data, store
them into the database and provide user-interfaces to the radar data, video images
and status information.

RadarServer: This module is responsible for most of the tasks during measure-
ments: a) configure the radar device and receive radar data, b) write measured data
to disk, c) synchronize the system to GPS time, and d) send data to the MVO via
radio. These tasks have to run simultaneously, therefore each is organized as an
independent thread as shown in Figure A.1. The main thread of the Radarserver
is only responsible for starting and observing all other threads of this module. It
gathers status information from all threads and compiles it to a status message.
This status message is sent to the observatory by the radio-thread and is passed via
IPC to the RadarWatchDog (see below).

Videoserver: The Videoserver mainly controls the framegrabber and retrieves im-
ages from the CCD camera. Executed as system process, the Videoserver is running
throughout the measurements and images can be stored to disk at set intervals to
observe visual changes at the dome. For radar beam alignment the Videoserver
provides a live-image view. To document the radar beam orientation, images can
be stored to disk manually from the live view. Via IPC, the Videoserver provides
status information, i.e. the number of stored images, to the Radarserver and the
RadarWatchDog (see below).

RadarWatchDog: The RadarWatchDog is responsible for keeping all processes
running that are important for the measurements. It analyzes the status informa-
tion received via IPC from the Radarserver and Videoserver and restarts them if
necessary. The status information of both processes is compiled to a compact status
message that can be sent by SMS via the GSM-modem. A SMS is sent out au-
tomatically once a week addressed to an email server, which forwards the message
to email-accounts of the people, who are in charge of the system. In addition the
RadarWatchDog is able to receive simple commands via SMS, i.e. to restart the
whole system or to instantly send a status message.

RadarLiveView: All Doppler spectra are sent from the RadarServer to the Radar-
LiveView via IPC. The RadarLiveView displays the current Doppler spectrum and
shows the echo power for the previous hour. In case the system is not measuring,
i.e. the RadarServer has been stopped, the RadarLiveView can be used to change
the radar’s configuration and to get Doppler spectra directly from the radar and
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Figure A.2: Screenshot of the processing and analysis software RadarDbView. Here
the navigation screen is shown, with Doppler spectrum features for one hour of data
(black: the total reflected radar energy; blue: its long-term-average). You can see
three radar events marked in red, all caused by dome instabilities. Below you see a
complete Doppler spectrum of the first event, which is selected by the green marker
in the feature plot.

display them in real-time.

TNCReceiver: The system process TNCReceiver receives the radar data, video
images and status information at the observatory unit from both stations. The data
streams of the different radar stations are sent via two logical channels of the same
modem. The modem is able to receive data simultaneously for up to 10 channels.
For each channel the received data is stored in an input buffer. To prevent an input
buffer overflow, the TNCReceiver repeatedly reads the data from all input buffers
at set intervals. When a complete dataset has been received an acknowledgment
is sent back to the station via the same channel. In addition, the TNCReceiver is
able to send commands to the station, i.e. to restart the system, to request status
information, or to send a video image. Status information is also automatically
sent by the radar stations every 5 minutes and displayed in a status view window.
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Because of their size, video images are only sent once a day automatically. When
requested by command they are displayed on screen immediately.

RadarDbView: The RadarDbView application is the most important tool to an-
alyze the radar data. It consists of three processing screens: a) navigation screen,
b) day statistics screen, and c) long-term statistics screen. The navigation screen
allows the user to browse through the radar data. A time interval (up to one day)
can be chosen for which the radar data is retrieved from the SQL-database. For each
spectrum some key values, e.g. the total echo power of the whole Doppler spectrum,
are calculated and displayed (see Fig. A.2). This feature (upper) plot gives the user
an overview of the events that occurred during the chosen time interval. An event
detection and classification algorithm marks events of different types by different
colors. The feature plot can be used to browse the Doppler spectra. The Doppler
spectrum marked by the user in the feature plot is displayed in the lower plot. The
Doppler spectra can be displayed using different preprocessing procedures. The day
statistics screen is used to automatically detect and classify all events that occurred
during a selected day (see Voege and Hort, 2006). The resulting statistics shows
the number of events of each type for each hour of the day. The long-term statis-
tics screen does the same for several consecutive days. Here, the statistics shows
the number of events for each event class for each day. Because the database is
connected via TCP/IP, the RadarDbView is not bound to be executed on the ob-
servatory unit and can be used on every computer inside the MVO’s intranet. Thus,
multiple users have access to the radar data and especially during time consuming
analyzes of large amounts of radar data the observatory unit is not blocked for other
users.



Chapter B

Radar Beam Calibration

In order to align the CCD-camera with the radar beam we use rotating corner
reflectors. The corner reflectors are attached to the ends of a 20cm long bar, which
is rotating around a vertical axis at a constant rate (see Fig. B.1b). The rotation
of the corner reflectors results in a well defined peak in the Doppler spectra. The
corner reflector is setup at a position several hundred meters from the radar system.
To make sure the measurements are not influenced by vegetation, it is mounted on
top of a high mast.

In order to aim the radar beam exactly at the corner reflectors, we change the orien-
tation of the radar, until we find the orientation with the strongest echo. Knowing
the exact position the beam is pointing at, we can align the CCD-camera attached
to the side of the radar mirror. During this alignment it is important to take into
account that the camera is mounted approx. 80cm from the center of the mirror.
To achieve an exactly parallel alignment of radar beam and camera, the camera has
to aim at a position near the reflectors that corresponds to the camera’s position in
respect to the beam center.

Once beam and camera are aligned we can determine the intensity distribution of
the beam. In order to do so, we do consecutive measurements on an equally spaced
2-dimensional grid (see Fig. B.1a), which gives a 2-dimensional contour plot in angle
coordinates. Figure B.2 shows such a plot from a calibration measurement made in
2004 at station Babadan.

The calibration of radar and camera has to be done on a regular basis, e.g. every 6
month, to make sure that external influences like heavy weather and temperature
changes have not changed the orientation of camera or radar beam. The calibration
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Figure B.1: Calibration of the radar beam: a) Aiming the radar beam at the target
by searching for the maximum of the radar echo of the corner reflectors in the
Doppler spectra. b) Aligning the camera parallel to the radar beam. To be parallel,
the camera has to be aimed at point beside the target, which corresponds to the
camera’s position relative to the beam center.

can also be lost due to interference by animals or humans. Since finding the center of
the radar beam and especially the grid measurements can be very time consuming,
these tasks have been automated. Once the opening angle of the camera is known,
the beam intensity distribution can be overlain onto the camera image. Now, while
aiming the radar beam at the dome, one can clearly see which part of the dome is
illuminated with which radar beam intensity (Fig. B.2).



140 B. Radar Beam Calibration

Figure B.2: Intensity distribution plot of the beam intensity obtain by an calibra-
tion measurement in 2004 in Babadan. Contour lines represent the attenuation in
dB. The plots in the lower part show the Doppler spectra that have been used to
calculate the intensity of the radar beam at the corresponding grid points. The im-
age underlying the intensity distribution plot shows the area at the dome the radar
beam has been aligned to after the calibration.
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Schließen möchte ich an dieser Stelle mit den Worten meines geschätzten Freundes
Agus Sampurno: Peaceful to be more, Danke!

144


