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Abstract

Within the last decade significant progress in the fabrication of nanoscale island
systems using molecular beam epitaxy (MBE) techniques has stimulated the increased
industrial interest in these structures as building blocks for modern optical devices
exploiting quantum confinement effects.

At the present time the most promising MBE-compatible island systems are
based on III-V compound semiconductors. For technological reasons most activi-
ties now concentrated on the self-organized formation of InAs based quantum dots
on the GaAs(001) and AlAs(001) surfaces exploiting the 3D Stranski-Krastanov (SK)
growth. For these systems the produced quantum dot structures exhibit a pronounced
size-dependent variations of the electronic properties.

The main obstacle for the bulk production of III-V quantum dot based devices is
the unreliable technological yield. The reason for this is the complicated and not well
understood self organization process that is used to generate the nanostructures.

In the systems of interest the topographical quality and electronic properties of
SK-islands depend strongly on the deposition conditions. Furthermore, InAs/GaAs(001)
and InAs/AlAs(001) island systems have quite different characteristics.

In this thesis the InAs/GaAs(001) and InAs/AlAs(001) systems will be analysed
by means of synchrotron based X-ray diffraction tools and complementary imaging
techniques (atomic force and scanning tunneling microscopy). The central topic of
the thesis is the development and testing of X-ray diffraction based techniques for
reliably monitoring island topography, and island structure analysis for island systems
grown on standard wafers. Finite-element calculations of the strain fields in the island
structures have been performed in parallel with the X-ray diffraction studies. The
investigation of temperature dependent material supply mechanisms responsible for
island formation will be provided for both non-capped island systems. Finally the
intermixing in both capped systems will be discussed.



Chapter I

Introduction

I.1 Size influenced energy quantization.

In the atomic model, proposed by Nils Bohr, negatively charged electrons, moving on
the defined distances around the positively charged atomic nuclei, possess the discrete
sharply resolved energy levels En, Fig. 1(d). At temperature, close to ”absolute
zero” 1, the energy resolution limit for these levels is given by Heisenberg uncertainty
principle:

∆t · δEn = h (I.1)

where ∆t is the emission decay time for electron on the n-th orbital, and h is a
Plank’s constant2. On the contrary to atoms, in the ”infinitely” extended solids the
electron positions are delocalised (Fig. 1(a)), leading to the temperature dependent
continuous spectrum of energy states and band gaps [1, 2]. The ”infinity” of the solid
body is characterized by comparison of the electron energy in the solid to the energy
of a free electron in vacuum, given by the de Broglie wavelength 3:

λdeBrogli ≈ h/
√

3meff · kT (I.2)

where meff - is an effective electron mass 4, k - Boltzman’s constant 5, T - absolute
temperature in Kelvin. As a consequence of this definition, the closer the size of solid
body lies to the de Broglie wavelength, the larger is the influence of quantization
effects on its energy spectrum. In crystals with a mosaic structure, the size of each
crystallite is much greater than λdeBroglie and no energy confinement effects are ob-
served. Only when the size of the crystallite is comparable to interatomic distances,

1T0 = 0K = −273.15◦C
2Plank’s constant represents the elementary quantum of energy. h ≈ 6.6261 · 10−34 [J s]
3E = h · ν, ν = c/λ, where c- speed of the light in vacuum. c = 3 · 108 [m/s]
4effective mass is a characteristic value of a particle in the media with dispersion coefficient δ > 0
5k ≈ 1.380658 · 10−23 [J/K]

4
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Figure 1: Size dependence of electron energy state density function D(E) representing
the quantum confinement effect.

are significant quantum confinement effects observed [3]. Furthermore, since the ef-
fective mass of the electron in the crystalline solid can be much smaller than the free
electron mass 6 , the quantization effects at low temperatures can be expected even
at a sub-micrometer size scale [4].

The direct observation and application of quantization effects was the main mo-
tivation for researches within last four decades. At the begin of 1970’s the first
experimental results have been achieved on a thin layer system, exhibiting 1D thick-
ness dependent energy quantization effect [6, 7, 8].The layered structures where this
effect has been observed were called quantum wells, Fig. 1(b). At the end of 1980s
the progress of nano-technological applications allowed researchers to concentrate
their attention on structures where quantization in two (quantum wires) and three
(quantum dots) dimensions can be detected.

In quantum dots, Fig. 1(c), the reduction of all crystal extensions leads to carrier
localization in all three dimensions and breakdown of the band structure model with
a continuous energy dispersion. Like on atomic scale, the energy spectrum of quan-
tum dot crystal is discrete, and a profound size-dependent change of all macroscopic
material properties as compared to the bulk occurs. Typical size of experimentally
created quantum dot structures is on the order of 10-100 nm. The research in the
field of quantum dots presents a new chapter in modern physics. Moreover, many
commercial product related applications of quantum dots have been realized within
the last decade, such as single electron transistors and quantum dot lasers.

6me = 9.1 · 10−31[Kg]
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I.2 Quantum dot based optical devices

Being quasi-zero dimensional, quantum dots have a sharper density of states than
higher-dimensional structures [5]. As a result, they have superior optical properties,
and are being researched as a building blocks for diode lasers and quantum dot
computers [10].

In quantum-dot based light-emitting diodes the principle of stimulated emission
of coherent radiation is used with the radiation energy coupled to the band gap
offset of the semiconductor heterostructure. Due to the technological compatibility
and band gaps for suitable emission energies [11] the QD-heterostructures based on
III-V compounds have found numerous applications. These III-V compounds have
emerged themselves as the materials of choice for laser diodes that emit in the 0.7-1.6
µm wavelength range. This range includes the important fibre-optic communication
bands at 0.85, 1.31 and 1.55 µm, the pumping bands for fibre amplifiers at 1.48 and
0.98 µm, and the wavelength currently used for optical disk players at 0.78 µm.

The main advantage of quantum dot lasers is the discrete wavelength of the laser
response signal [12],[13]. In addition to excellent optical properties quantum dot
lasers also offer a lower threshold current density and good temperature stability
[14], [15].

Quantum dots are also considered as potential core-elements in devices for solid-
state quantum computation. As one of the promising future applications in this field
optical addressing (optical charging) concept should be mentioned [16]. This concept
can be used as the basis for a very-high-density memory device in which information
is written and read by controlling charge storage in quantum dots [17],[18].

I.3 Quantum dot fabrication techniques

In this subsection the main technologies enabling the preparation of quantum dot
structures will be briefly described and compared. In the whole variety of QD pro-
duction methods the two main groups can be distinguished (Fig. 2), namely, chemical
and physical preparation techniques. The chemical methods are based on the colloidal
synthesis of quantum dots from organic solutions, physical methods can in general be
split into lithography and self-organization techniques [9]. Progress in the technology
of colloidal synthesis permits the preparation of monodisperse spherical semiconduc-
tor crystals with sizes in the order of 2-4nm. This technology was developed and
successfully applied for production of II-VI semiconductor crystals, such as CdSe
[19]. Unfortunately, the application of such precipitated structures with an excellent
quality and size dispersion is primarily inhibited by the difficulty of embedding them
in a conducting matrix material. As a solution of this problem, the use of conven-
tional technological materials, i.e. insulating silicates, is possible. But it enavitably
decreases the possibility of electric injection and so the use of colloidal nanoparticles
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Figure 2: Examples of quantum dot structures fabricated by colloidal synthesis (a);
ion beam lithography (b); self-organized epitaxial growth (c).

in opto-electronic devices.
One of the widely used modern QD fabrication processes is based on the artifi-

cial patterning of thin layer structures in three-dimensional regions. This technique
uses different lithographic processes, such as optical lithography, X-ray lithography,
electron and focused ion beam lithography. The main advantage of this techniques is
relatively straightforward way QD fabrication and the possibility of almost arbitrary
QD shape design. The patterning is realized in periodically following steps of mask-
ing and etching of the 2D layer systems with quantum well properties. In this way, a
periodic array of 3D QD structures (microposts) can be fabricated [20],[21]. The key
problem of this technique is the maximum achievable lateral resolution which varies
from 100 nm for optical lithography down to 10-20 nm for X-ray and focused elec-
tron/ion beam techniques. The control of masking processes on the nm-scale requires
a large number of technological steps and expensive equipment.

As an alternative method for QD fabrication, the effect of three dimensional self-
organization during epitaxial growth of highly lattice-mismatched structures can be
used. In this method, structure grown on the substrate with the relative lattice mis-
match of more then 1% accommodates the minimum strain energy state by formation
of 3D conglomerates. In order to achieve the best performance for QD devices the
Stranski-Krastanov growth mode (see section I.4) is used to enable the coherent con-
nection on the interface between the self-assembled 3D islands and the substrate.
The main advantage of the self-organisation process is its simplicity and low pro-
duction cost turning this technique into the most promising fabrication technology
for the modern and future opto-electronic devices. Of course, the difficulties of this
technique such as variable island chemical composition, island size fluctuations and
distribution, represent challenging problems that still remain to be solved [22].

The investigation made in this thesis is primarily related to the development of
self-organisation QD growth technique, and in particular to the monitoring of the
structural properties of SK-grown InAs islands prepared in SK-growth mode.
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Figure 3: Schematic diagram of main epitaxial growth modes: Frank-van der Merwe
(a); Volmer-Weber (b); Stranski-Krastanov (c).

I.4 Regimes of epitaxial growth

In this section the basic principles of epitaxial growth will be described (Fig. 3). In
lattice-matched systems (self-epitaxy), the growth of deposited material is primarily
determined by values of material γ2 and substrate γ1 surface energies and the energy
of material/substrate interface γ12. If condition γ2+γ12 < γ1 is fulfilled, the deposited
material wets the substrate leading to layer-by-layer, or Frank-van der Merwe growth
mode [23]. The changes in γ2 + γ12 can lead to a weak wetting effect and formation
of decoupled 3D conglomerates of deposited material. In this situation the Volmer
- Weber growth takes place [24]. In the case of lattice mismatched heterostructures
(>>1% mismatch) with small interface energies, initial growth mode is layer-by-layer.
Then with increasing layer thickness the misfit strain energy γel becomes dominant,
leading either to the plastic relaxation of epilayer by means of misfit dislocations
after some critical layer thickness hc is reached, or to the γel reduction by means of
isolated island formation. If the layer-by-layer growth proceeds in 3D island growth
the Stranski-Krastanov (SK) mode dominates [25]. Islands formed in the SK growth
mode can be both dislocated and elastically strained. The border between elastic
relaxation and plastic deformation of the SK-island is mainly determined by the
amount of island elastic strain energy. This energy value depends on the island shape
and the island volume. In other words, the volume of islands determines their strain
state. With increasing island volume the plastic deformation becomes an alternative
mechanism of island stress relaxation. Depending on the energetic conditions of the
SK-system the volume of deposited material can induce the change of growth modes
from layer growth to coherent elastic or dislocated island growth. The formation
of an island from a uniform film is accompanied by a relaxation of elastic energy
of the epilayer, ∆EV

elastic < 0 and by a change of the film surface area, ∆A > 0.
This changes proceed by 3D island formation and disappearance of certain areas of
a planar epilayer surface. The change of surface energy in this case is assumed to
be positive, ∆Esurf > 0. The morphology of resulting system is determined by the
relation between the value of ∆Esurf and the energy of the dislocated island/substrate
interface Edisl. Based on this principle, the SK-growth mode can be represented by a
diagram (Fig. 4) showing the dependence of the parameter Γ = Edisl/∆Esurf on the
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Figure 4: The diagram showing the preferred film morphology as a function of the
amount of deposited material Q, and the quantity Γ = Edisl/∆Esurf , where ∆Esurf
is the change of the surface energy due to island formation and Edisl is the energy of
the dislocated island(film)/substrate interface.

deposited material volume Q [26].
If ∆Esurf is large, or the energy of the dislocated interface is relatively small,

the corresponding value Γ is smaller than critical value Γ0 limiting the formation of
elastically strained islands. In this case the increase of the deposited material volume
will proceed in dislocated island growth (dislocated film for low lattice mismatch).
If ∆Esurf is smaller than Edisl the corresponding Γ value is larger then Γ0. With
the increase of the amount of the deposited material, a transformation from layer to
elastically strained (coherent) islands occurs. The surface energy change due to the
formation of coherent islands can be written as:

Eisland = Eedges + ∆Esurf − Erelax (I.3)

where Eedges is a short-range energy of island edges, ∆Esurf is the gain of surface
energy due to island formation, and Erelax - is the energy of elastic relaxation of
the island volume strain. The different energy terms in Eq. I.3 depend on the linear
island dimension L in the following way:

Eedges = AL, ∆Esurf = BL2, Erelax = CL3 (I.4)

with A,B and C - proportionality coefficients. If the surface energy gain dominates
over Eedges, the formation of coherently strained islands is only possible for islands
larger than the critical island size Lcrit = (2B)/(3C). Smaller islands if formed due
to kinetic process will not grow and lose atoms to larger islands via diffusion. Once
islands larger than Lcrit are formed, they are assumed to reduce their overall surface
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undergoing the so-called Ostwald ripening process [27]. The ripening process implies
the further growth of large islands at the expense of the evaporation of small coherent
islands. Islands undergoing ripening are assumed to possess dislocations [28].

I.5 Molecular beam epitaxy of quantum dots

The SK-growth of quantum dot semiconductor heterostructures is usually realized
using molecular beam epitaxy (MBE) under ultra-high-vacuum (UHV) conditions.

The solid-source MBE technique is the main method for preparation of quantum
dots. Here ultra-pure elements - in the case of interest indium (In) / gallium (Ga)/
aluminium (Al) and arsenic (As) - are heated in separate temperature-controlled
quasi-knudsen effusion cells until the correct vapor pressure for the required growth
conditions is achieved. The evaporated atoms or molecules condense on the single-
crystal substrate, usually an n-doped GaAs(001) wafer, where they react with each
other building the desired compounds, i.e. InAs, AlAs, GaAs, which then act as
building blocks for the film/island growth.

In MBE method the term ”beam epitaxy” means that evaporated atoms do not
interact with each other, or any other residual gases until they reach the substrate.
This is possible due to the large mean free path lengths of the beams in the highly
evacuated vacuum chamber. The deposition rates are usually in time scale of 0.01-
0.1 ML/sec (sub-monolayers). For this reason computer controlled shutters regulat-
ing the outgoing material flux are used. RHEED (Reflection High Energy Electron
Diffraction) is used for in-situ monitoring of the overlayer material.

The SK-island samples described in this thesis were prepared in the following way.
After thermal oxide desorption, a ≈ 200nm-thick GaAs buffer was grown on the wafer
at a temperature of 600◦C. The deposition of Ga (further In or Al) proceeded under
a partial pressure of As4 gas of the order of 10−5 − 10−6 mbar.

The formation of the characteristic 2x4 GaAs(001) reconstruction was verified by
the formation of diffraction streaks in the RHEED pattern indicating the cleanliness of
the substrate surface. After this, the substrate temperature was reduced to the region
between 470 and 530◦C, which are the limiting temperatures for the formation of
homogeneous InAs island structures [29]. This results in a change of the GaAs surface
reconstruction to a c(4x4) RHEED pattern, shown in Fig. 5(a). If the InAs growth on
AlAs(001) substrate was investigated, an AlAs buffer layer of thickness ≈ 5nm was
predeposited pseudomorphycally before the InAs deposition started. After the Indium
source shutter is opened, the GaAs reconstruction features immediately disappear,
and the RHEED pattern indicated a degraded two-dimensional surface morphology
(Fig. 5(b)). This situation was maintained until the transition from 2D to 3D InAs
growth took place. At this point, the 2D diffraction spots disappear (Fig. 5(c)) before
new 3D-type diffraction spots emerge. After that the RHEED pattern exhibits the
3D diffraction spots decorated with additional weak intensity tails (Fig. 5(d)), called
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Figure 5: In-situ RHEED patterns observed during MBE growth of InAs on GaAs
(001). (a) c(4x4) reconstructed GaAs substrate at 500◦C; (b) start of InAs growth;
(c) transition from 2D to 3D growth; (d) end of 3D growth; (e) after deposition of
the GaAs capping layer. Taken from [30].

chevrons being the main indication for 2D-to-3D transition of the growth mode from
layer to island growth. After the 3D transition was observed for uncapped islands
(rough capping layer pattern for buried islands) the wafer was cooled down to room
temperature.

In the case of buried dots, the 3D InAs layer was covered after approximately 30s
time delay with a 30-nm GaAs(AlAs) cap at the same substrate temperature as for
InAs layer deposition. The corresponding RHEED pattern is shown in Fig. 5(e).

I.6 Special features of the island growth in

InAs/GaAs(001) and InAs/AlAs(001) systems

The process of island growth during InAs deposition on GaAs(001) and AlAs(001)
substrates can be divided into two main stages. In the first stage (see Fig. 6(a)),
starting from the moment of wetting layer completion, the formation of homogeneous
presumably defect-free nanoscale SK-islands with a narrow size distribution takes
place [31].

For InAs/ GaAs(001) and InAs/ AlAs(001), the process of island formation within
this stage exhibits significant differences. In the case of InAs growth on GaAs(001)
under particular growth conditions the formation of islands with a nearly constant
size takes place. The addition of incoming InAs material seems to influence only the
surface density of the islands, until it reaches some ”critical” density value, at which
point the first stage of island growth is completed [32].

In the case of InAs/AlAs(001) system, during the entire process the island surface
density remains rather constant [33]. The addition of InAs mainly influences the
size of the islands. The first stage is completed when particular ”critical” island
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Figure 6: AFM images (1µm2) of surface topography after deposition of (a) 2.4ML,
and (b) 3ML on the AlAs(001) substrate surface at 500◦C.

dimensions are exceeded.
In the second stage the change of surface topography proceeds similarly for both

systems (see Fig. 6(b)). At the beginning of this stage the formation of homogeneous
3D islands stops. The incoming InAs is not incorporated any more in the already
developed homogeneous islands and further growth proceeds by means of formation
of larger island conglomerates [34],[28]. The initial surface density of islands formed
before the beginning of second growth stage remains unchanged during the further
material deposition.

According to the main features characterizing the resulting surface topography,
the first and second stages of InAs growth in this work will be denoted as stage of
homogeneous growth and the coalescence stage.

Switching from one growth mode to another is a multi-parameter process depend-
ing on different deposition conditions such as material flux, growth temperature,
partial As pressure, etc. [22], [35] and was determined using experimental trial-and-
error procedures. In this work the particular attention will be paid to both island
growth stages in InAs/GaAs(001) and InAs/AlAs(001) systems.

I.7 X-ray diffraction on quantum dots:

advantages of synchrotron radiation

Studies in the field of X-ray crystallography were initiated at the beginning of 20th
century. Low-power, X-ray laboratory sources, X-ray tubes, were used. In an X-ray
tube radiation is created by an electron beam accelerated in vacuum toward a metal
target. The interaction of the high energy electrons with the target material leads to
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two types of radiation. One component is the Bremsstrahlung, the spectrum with a
continuous energy distribution with onset wavelength of:

λmin = 12.4/U [Å] (I.5)

where U is the acceleration voltage in keV. Second part is the characteristic radi-
ation from excited inner K-shell electrons of the target material. The relative in-
tensity of the characteristic radiation is four orders of magnitude higher than the
Bremsstrahlung. Using the X-ray characteristic radiation and standard slit systems
for beam collimation, the lab sources are good tools for the investigation of macro-
scopic polycrystalline and powder samples. Of course, the reduction of size of in-
vestigated objects to thin and ultra-thin films and nanocrystals accompanied with
a progress in lithographic technologies have set new challenges for X-ray structural
analysis. For the investigation of these new objects higher measurement resolution
is required. The usage of smaller slit apertures could provide the necessary beam
divergence but only at the expense of incoming photon flux, making the standard lab
X-ray sources unsuitable for this kind of research.

Synchrotron X-ray radiation has shown itself as a more prospective for the modern
solid body structure analysis. Synchrotron radiation is emitted from the high-energy
electrons (positrons) moving within a storage ring whenever their are accelerated. In
the second-generation synchrotron sources the radiation is produced with the help
of bending magnets. In third-generation synchrotron sources, the so-called insertion
devices (wigglers and undulators) are installed to improve the source properties. The
emission spectrum of synchrotron is well defined. Its calculation is based on a knowl-
edge of the bending radius R and the kinetic energy of the electrons (positrons) Eel.
The spectrum is characterized by the critical energy Ec, given by:

Ec = 3hc/(4πR) · (Eel/m0c
2) (I.6)

where m0c
2 is the rest mass energy of a relativistic particle. The emission spectrum

increases continuously up to the critical energy Ec and then decreases rapidly beyond.
Different X-ray sources are usually compared by specifying the brilliance, charac-

terizing the quality of the emitted radiation defined by:

brilliance =
dN/dt

mrad2 ·mm2 · 0.1% energy interval
(I.7)

The brilliance describes the number of photons N emitted in one second from a source
area of 1mm2 into a radiation cone defined by the special opening angle of 1mrad2

and normalized on a spectral bandwidth of 0.1% [36].
In terms of brilliance even the very-first synchrotron radiation sources were already

1000 times more powerful than X-ray tube sources. Together with the fact, that the
synchrotron radiation energy can be easily chosen in the almost whole X-ray spectrum
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it brought a host of advantages for material structure analysis. It is possible to focus
the synchrotron X-ray beam in such a way that all beam intensity could be brought
to bear on a very small crystal.

Concerning the diffraction experiments presented in this work, the major advan-
tage of synchrotron radiation is its high brilliance, since for diffraction on quantum dot
samples it is necessary to provide a narrow collimated incident beam while maintain-
ing a sufficient intensity and angular resolution to resolve closely spaced diffraction
spots on diffuse scattering pattern. The higher intensity and good collimation of the
probing synchrotron X-ray beam are essential for performing diffraction experiment
on quantum dot structures.



Chapter II

Fundamentals of diffraction theory

Modern X-ray crystallography is a well established field [48],[49],[50]. In general, the
theory describing the scattering of X-rays by an arbitrary object is quite complicated.
In this chapter, on the contrary, the only several aspects will be summarized being
of main importance in the frame of this work.

Below the theory describing the X-ray scattering on a perfectly periodic crystal
and on the crystal with small (elastic) distortions together with the special features
of the grazing incidence geometry will be shortly overviewed.

II.1 Scattering of X-ray photons

Since many decades the phenomena of X-ray scattering on solids has become a sepa-
rated field of structure analysis. From the mathematical point of view the diffraction
experiment with high-energy electromagnetic waves on a system of atoms is the prob-
lem of finding the wave front and resulting intensity distribution formed in the process
of scattering. For the solution of physical problems the reverse calculation with de-
termination of the structure (position of elemental scatterers) of an object from the
experimentally observed diffraction field is necessary.

In the model scattering process the coherent X-ray radiation with energy E =
h · ν, where h is Planck’s constant1 and ν is the radiation frequency, go through the
assembly of point scatterers (atoms). The point scatterers interact with the incident
waves, scattering them. The direction of wave propagation is defined by the wave
vector k, whose modulus is equal to:

|k| = 2 · π
λ

(II.1)

where λ is the wavelength connected with the radiation frequency by:

λ =
c

ν
, (II.2)

1h = 6.626068 · 10−34m
2·kg
sec 15
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where c is the speed of light in vacuum 2. Frequently, the incoming monochromatic
wave is assumed to be a plane wave:

E = E0 · exp(i(k · r) + C)) (II.3)

where E0 is the wave amplitude, r is the radius vector of the point of space, and
C is the initial phase. The expression (II.3) does not include time as a parameter
because as a result one is interested in the diffraction pattern at any arbitrary moment
of time. This assumption is sufficient for establishing the relative phase difference
arising in interference of scattering waves, since this difference depends exclusively
on the spatial arrangement of scatterers and is time independent. The scattering of
the radiation by the object can be elastic or inelastic. In the case of elastic scattering
the interaction between atom and incoming wave proceeds without any loss of energy
(no wavelength changes). On the contrary, in the inelastic case the energy of the
scattered wave is different from its initial value. In general, the scattering process is
assumed to be elastic and its resulting diffraction pattern is used to determine the
spatial arrangement of atoms.

II.2 Scattering amplitude

In general approach, secondary waves coming from all points of the object are consid-
ered. Consider the object consisting of two point scatterers O and O’ (Fig. 1). The
origin in the local coordinate system is chosen to be on one of the points. The relative
position of scattering points is given by vector r. The incident plane wave excite this
centers and each of them becomes the source of a secondary spherical wave. The
initial wave arrives at both centers with different phases leading to a phase difference
of the scattered waves. Depending on relative phase difference both diffracted waves
will interfere constructively or destructively. Of course, these changes of resulting
amplitude will only be significant if the wavelength of the incoming radiation is com-
parable to the distance between scattering points defined by r. The typical distance
between scatterers (atoms) in solids is in the order of 3Å, so to create interference
effects only radiation in the hard X-ray spectrum (λX−ray ≈ 1Å) is suitable.

In Fig. 1 the path difference between waves scatted in the same direction by the
points at positions 0 and r is equal to:

k · r− k0 · r = (k− k0) · r (II.4)

So, in the case of a primary wave with unit amplitude (E0 = 1), the scattering at
point r will produce a wave:

f · exp[i(k− k0) · r] = f · exp[2πi(S · r)] (II.5)

2c=299792458 m
sec
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Figure 1: Scattering schema with two point centers.

where f is the scattering factor, and S is the vector perpendicular to plane P (see
Fig. 1) with respect to which the scattering angle 2θ can be measured.

S =
k− k0

2π
; |S| = 2 sin(θ)

λ
(II.6)

If the object placed in the path of the initial wave consists of n scattering centers
with scattering power fi, located at points rj, the resulting amplitude of the scattering
wave will be:

n∑
j=1

fi · exp[2πi(S · rj)] = F (S) (II.7)

The quantity F(S) is called the scattering amplitude of a given object. For a ”point”
scattering center, the quantity fi is constant and independent on S. In the general
concept of the scattering power f of a given center any type of physical scattering
unit can be used, i.e. atom, molecule, group of molecules, etc.

If the scattering process on an atom is considered, the elastic wave-atom interac-
tion can be split into two processes: the scattering by atomic nuclei and electrons.
Both nuclei and electrons oscillating in the electric field of the primary wave become
the sources of a secondary scattered waves of the same frequency as the incident wave.
The scattering power is inverse proportional to the mass of the scatterer. Taking into
account the nuclei/electron mass difference, mnuclei/melectron ≈ 1840, the scattering
from the nuclei can be neglected and so, only the scattering power of the electrons in
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the atom have to be taken into account:

Fe =
1

R
· e2

(mc)2
· sin(φ) (II.8)

where R is the distance from the scattering center to the point of observation, e and
m are the charge and the mass of the electron, c is the velocity of light, and φ - is
the so-called polarization angle, describing the polarization of the incident wave. To
express the scattering amplitude in absolute units, the scattering amplitude of the
object should be multiplied by the the factor Fe:

Fabs(S) = F (S) · Fe (II.9)

II.3 Electron density. Fourier Integral.

Instead of a discrete set of points n at positions rj one can consider a continuous
distribution of scattering power of the object. Since, as shown previously, the X-rays
are mainly scattered by electrons, the ”continuously scattering matter” is in this case
the time-averaged electron density ρ(r) of the object. This function can be presented
as an average number of electrons ne(r) in a volume element δVr at the point r and
divided by the volume element:

ρ(r) = ne(r)/δVr (II.10)

From the quantum-mechanical point of view this time-averaged electron density is
equal to the wave-function of an object squared

ρ(r) = |ψ(r)|2 (II.11)

In this approach, the sum over discrete scattering centers in (II.7) must be replaced
by an integral over the continuous function ρ(r) :

F (S) =

∫
ρ(r) · exp([2πi(S · r)]) dVr =

=

∫∫∫ +∞

x,y,z=−∞
ρ(x, y, z) · exp([2πi(xX + yY + zZ)]) dx dy dz =

= F [ρ] (II.12)

where dVr is an element of the scattering volume, X, Y, Z are three coordinates of
vector S, and F is the Fourier integral operator. The equation (II.12) assigns the
scattering amplitude as a function of S and defines scattering in any direction in
reciprocal space:

k = k0 + 2π · S(X, Y, Z) (II.13)
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In this case F(S) is the reciprocal ”image” of a function ρ(r), describing the object
structure in the direct space and in one-to-one correspondence with it. The integral
(II.12) is suitable to describe diffraction phenomena for objects with inhomogeneities
comparable to the wavelength of incoming radiation.

II.4 Scattering by a single atom.

Atomic amplitude.

The atomic amplitude defines the scattering by the single atom, where ρa(r) is the
electron distribution function of an object given by electron density of the atom in
Eq.(II.12). The atomic form factor can be written as:

f(S) =

∫
ρa(r) · exp[2πi(S · r)] dVr (II.14)

To a sufficiently good approximation, the inner electron shells of atoms are spherically
symmetric, so ρa(r) = ρa(r) and the integral (II.12) can be written in spherical
coordinates:

f(s) =

∫ ∞
0

4π r2 ρa(r)
sin(s · r)
s · r dr (II.15)

where s = 2π S = 4π sin(θ)
λ

. For the vast majority of cases the spherical approximation

is sufficient, and so if s→ 0 then sin(s·r)
s·r → 1 and:

f(0) =

∫
ρa(r) dVr = Z (II.16)

This means, that for zero scattering angle the atomic amplitude is simply the atomic
number. As the scattering angle increases, the function f( sin(θ)

λ
) decreases. Such func-

tions are called f-functions and can be calculated from the electron distributions of
the atom. The direct determination of the electron density distribution is a relatively
complicated process. For numerical calculation, the relatively reliable approximation
of Cromer and Mann [37] can be used, where the angular dependence of the atomic
scattering factor is represented by a 9-parameter equation:

f(
sin(θ)

λ
) ≈

4∑
i=1

ai · exp[−bi · (sin(θ)

λ
)2] + c (II.17)

with a1−4, b1−4 and c as coefficients, tabulated for each specific atom in the Inter-
national Tables for Crystallography [38]. All 9 coefficients for atoms considered in
this work are given in tab. II.1. If the energy of the incident radiation is close to
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atom a1 a2 a3 a4 b1 b2 b3 b4 c
49In 19.1624 18.5596 4.2948 2.0396 0.5476 6.3776 25.8499 92.8029 4.9391
13Al 6.4202 3.0387 1.9002 0.7426 1.5936 31.5472 1.9646 85.0886 1.1151
31Ga 15.2354 6.7006 4.3591 2.9623 3.0669 0.2412 10.7805 61.4135 1.7189
23As 16.6723 6.0701 3.4313 4.2779 2.6345 0.2647 12.9479 47.7972 2.531

Table II.1: Cromer and Mann coefficients (II.17), used for the numerical calculations
presented in following chapters.

atom f’ (10keV) f”(10keV)
49In 8.71859E-02 3.78407
13Al 1.71425E-01 1.77072E-01
31Ga -2.28343 -5.78347E-01
23As -1.39878 7.52429E-01

Table II.2: Correction coefficients of resonance interaction and absorption for 10 keV.

the absorption edge of the respective atom then the effects of resonance interaction
[39], f ’ , and imaginary absorption part [40], f”, have to be included in the atomic
scattering factor calculations:

fa = f(
sin(θ)

λ
) + f ′ + i · f ′′ (II.18)

Both f ’ and f” coefficients are also tabulated for each particular photon energy. For
10keV radiation energy used in present experiments the coefficients are given in Ta-
ble II.2 .

To calculate the scattering power of a molecule, the sum has to be made over the
waves scattered by atoms in the molecule in Eq.(II.7):

fmol =
n∑
j=1

fa · exp[2πi (S ·Rj)], (II.19)

where Rj describes the positions of the individual atoms. For numerical calculation
of scattering power of the alloy of composition AxB1−xC build from molecules AC
and BC the Vineyard approximation [41], 3 can be used.

fAxB1−xC = (fAB − fAC) · x+ fAC = fAB · x+ fAC · (1− x) (II.20)

3assuming a linear change of the scattering factor of the alloy with concentration x
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Figure 2: Diffraction from a one-dimensional periodic row of points

II.5 Diffraction from a periodic lattice

II.5.1 Crystal periodicity. Reciprocal lattice

By definition definition a crystal is a homogenous solid formed by a repeating three-
dimensional pattern of atoms, ions, or molecules. The periodicity of the crystal in
real space is characterized by the translation (lattice) vector:

t = a1 ·m+ a2 · n+ a3 · p (II.21)

where the crystal in each point can be reproduced by the translation of its unit cell
- the smallest crystal unit built by basis vectors a1, a2, a3 whose size is determined
by the absolute values of these vectors - in three dimensions multiplying the unit cell
vectors with integer numbers m, n and p. For a one-dimensional periodic crystal with
lattice period a (Fig. 2 ) for a monochromatic X-ray wave incident at angle α0 on
each of the lattice atoms it will give a maximum scattered amplitude when:

a (cos(α)− cos(α0)) = h · λ (II.22)

where α is the angle of scattering and h is an integer. The scattering is assumed to
be cylindrically symmetrical, so that scattered beams form cones about the axis of
the 1D atomic lattice.

The condition described by Eq.(II.22) is the Laue criteria for diffraction. If a 3D
periodic lattice is considered the Laue condition should be simultaneously fulfilled in
all three directions, a1, a2, a3. This means that only those reflections are possible
which correspond to the lines of intersection of all three cones. In this case the Laue
condition is:

a1 (k− k0) = 2π h, or a1 · S1 = h

a2 (k− k0) = 2π k, or a2 · S2 = k

a3 (k− k0) = 2π l, or a3 · S3 = l

(II.23)



CHAPTER II. FUNDAMENTALS OF DIFFRACTION THEORY 22

Rewriting Eq.(II.23) as:

S = S1 + S2 + S3 = h a∗1 + k a∗2 + l a∗3 = Hhkl (II.24)

defines the reciprocal lattice vector Hhkl. The unit vectors a∗1−3 of the reciprocal
lattice are related to the unit vectors a1−3 in real space by:

a∗1 · a1 = 2π, a∗2 · a1 = 0, a∗3 · a1 = 0

a∗1 · a2 = 0, a∗2 · a2 = 2π, a∗3 · a2 = 0

a∗1 · a3 = 0, a∗2 · a3 = 0, a∗3 · a3 = 2π

(II.25)

Replacing the diffraction vector S by Hhkl one can write the diffraction law as:

k = k0 + 2πHhkl (II.26)

An infinite point lattice in real space is described by:

T (r) =
+∞∑

m,n,p=−∞
δ(r− t(m,n, p)), (II.27)

where δ is delta-function. For infinite crystal, in which each unit cell has an electron
density of ρcell(r), can be written as a convolution:

ρ∞(r) = ρcell(r) · T (r) (II.28)

If the function ρ∞(r) is arbitrary, then F(S) in Eq.(II.12) may exist at all values of S.
If the function ρ∞(r) is periodic, then integral (II.12) can be taken over one period
and is nonzero only at discrete values of S = Hhkl:

F (S) = Fhkl =

∫
ρ(r) · exp[2πi (Hhkl · r)] dVr =

=

∫ a1

0

∫ a2

0

∫ a3

0

ρ(x, y, z) exp[2πi (
h

a1

x+
k

a2

y +
l

a3

z)] dx dy dz (II.29)

where a1, a2, a3 are the absolute values of the lattice unit vectors a1−3 and define the
lattice period in three main directions, and h, k, l are integers. For an infinite crystal
with allowed values of scattering amplitude, Fhkl, the total scattering amplitude can
be written as:

F∞(S) =
∑

hkl

Fhkl
γ

δ(S−Hhkl) (II.30)

where γ is volume of the crystal unit cell. The last equation defines the periodic set
of nodes in the reciprocal lattice, each described by a delta function and placed at
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Figure 3: Bragg diffraction conditions.

the end of vector Hhkl. The weight of each node is defined by the complex structure
amplitude Fhkl. A particular atomic arrangement (relative atomic positions) within
the crystal unit cell can significantly influence the values of Fhkl for particular sets
of h, k, l. This effect is called the geometrical structure factor of the crystal unit cell
and arises from electron density variations within the crystal unit cell (Eq.II.7). The
destructive interference between waves scattered from the atoms in the unit cell lead
to reduced intensity at particular values of Hhkl in reciprocal space. For instance,
in the case of a base-centered cubic (bcc) cell the destructive interference leads to
intensity reduction at reciprocal points for which the sum h+ k+ l is an odd integer.
In the case of a face-centred cubic (fcc) cell the same effect is produced for the h, k,
l indices being partially even or odd.

Materials like GaAs have a zinc-blende (ZB) structure, which is similar to the
diamond structure but it has different atoms in the unit cell. Relative to fcc cell, in
diamond cell only reflections with order n/4 are allowed. In ZB cell the reflections,
which are forbidden for diamond cell, do not disappear completely. It makes the
ZB-pattern a special case in between the case of fcc and diamond lattices.

II.5.2 Atomic planes. Braggs law.

If the crystal is perfectly periodic in all main directions it is called perfect or a single
crystal. In this case one can describe the periodic arrangement of atoms by the lattice
planes. In this case the conditions at which each particular lattice plane will diffract
incoming X-ray beam can be derived using the usual law of reflection.

Consider a set of parallel lattice planes equally spaced distance d apart (Fig. 3).
Suppose the incident waves to be reflected specularly and each plane reflects only a
small fraction of the incoming radiation like a semi-transparent mirror. The total path
difference between the X-rays reflected from adjacent planes is then 2 d sin(θ), where
θ is measured relative to the surface plane. Constructive interference of the reflected
radiation occurs whenever the path difference is integer number n of wavelengths λ.
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So that:

2 d sin(θ) = nλ (II.31)

This is the Bragg equation [42]. The Bragg equation as well as the Laue conditions
indicates that diffracted beams can be obtained for given dhkl in monochromatic
radiation (λ = const) only by changing the crystal orientation relative to the incoming
beam (angle θ). Since the reciprocal lattice was introduced as a set of points at the
end of the vectors Hhkl, these reciprocal points representing the reciprocal lattice
planes are also indexed in three dimensional space with letters h, k and l. The
absolute length of the normal vector Hhkl is then the inverse of interplanar distance
dhkl:

|Hhkl| = 2π/dhkl (II.32)

So, in the case of diffraction from a perfect crystal, the point-maxima positions in
reciprocal space, S = Hhkl, can be interpreted as a diffraction from particular crystal
lattice planes (hkl) with spacing dhkl. In this case Bragg law can be written as:

2k sin(θ) = |Hhkl| (II.33)

II.5.3 Ewald construction. Reflection sphere.

In order to construct graphically the diffraction conditions for particular points in
reciprocal space the Ewald construction can be used (Fig. 4). For monochromatic
radiation with k0 and k along the directions of the incident and scattered waves, the
set of the ends of vectors S lies on the Ewald sphere with radius |k| = 1/λ.

The construction with k = k0 corresponds to the value of S = H000 = 0, describ-
ing the zero order node in reciprocal space. The diffraction conditions are primarily
determined by the reciprocal lattice, built by unit vectors a∗1, a∗2 and a∗3 by orienta-
tion with respect to k0, and by the absolute value of vector k. The conditions for the
formation of a diffraction maximum at position with indices hkl consist in intersection
by the reflection sphere with the node (hkl) of the reciprocal lattice, corresponding
to condition S = Hhkl.

To summarize, with a monochromatic beam and a single crystal, then to inves-
tigate a particular allowed reflection hkl it is necessary to appropriately orient the
crystal in respect to the incoming X-ray beam. Based on the Ewald construction,
various diffraction geometries can be used to analyse the scattered intensity in the
reciprocal lattice.
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Figure 4: Ewald sphere in the reciprocal lattice of the crystal projected in the plane
of the unit vectors a∗1 and a∗2.
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Figure 5: Schematic representation of the shape function.

II.6 Size of reciprocal lattice points.

Shape function.

Equation (II.29) represents a concept where the infinite periodic function ρ(r) is
integrated over its periods at ”point” nodes of the reciprocal lattice described by
discrete indices h, k, l. A real crystal has finite dimensions and a defined shape and
volume V. Depending on the crystal size truncation effects occur, where the nodes in
reciprocal lattice are not points, described by delta function δ(S −Hhkl), but have
a finite size and defined shape. To take the finite size of the crystal into account a
shape function (Fig. 5) is introduced:

Φ(r) =

{
1 , inside the crystal
0 , outside the crystal

(II.34)

In this case the electron density function ρ(r)cr is the product of the electron
density function of the infinite crystal and its shape function:

ρ(r)cr = ρ∞(r) · Φ(r) (II.35)

The scattering amplitude of the infinite crystal is given by (II.30). The Fourier
transform (amplitude) of the crystal shape is defined by:

D(S) =

∫

V

Φ(r) exp[2πi (S · r)] dVr =

∫

Φ

exp[2πi (S · r)] dVr (II.36)

According to (II.35) the scattering amplitude of the finite crystal is given by:

F (S) = [
∑

hkl

Fhkl
γ

δ(S−Hhkl)] ·D(S) (II.37)
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Replacing δ(S−Hhkl) ·D(S) by D(S−Hhkl) one describes the shape of each ”point”
of reciprocal space determined by Hhkl. The resulting scattering amplitude of a finite
crystal now can be written as:

Fcr(S) =
1

γ

∑

hkl

Fhkl ·D(S−Hhkl) (II.38)

To demonstrate the effect of the crystal shape function on the size of a reciprocal
lattice point a rectangular crystal with finite dimensions A1 , A2 and A3 can be
considered. The shape part is then defined by:

D(S) =

∫ A1/2

−A1/2

∫ A2/2

−A2/2

∫ A3/2

−A3/2

exp[2πi (xX + yY + zZ)] dx dy dz =

=
sin(πA1X)

πX
· sin(πA2Y )

πY
· sin(πA3Z)

πZ
(II.39)

In this case the actual shape of the reciprocal node will be modulated by function
sin(At)

t
, where A is the crystal size in particular direction of real space, in each of three

main directions of reciprocal space. If the total scattering amplitude over such node
is calculated it will be proportional to the crystal volume.

∫
D(S)dvS = A1 · A2 · A3 = V (II.40)

II.7 Coherence length. Position correlation be-

tween crystals.

If the coherence length of the incoming X-ray beam covers more then one single
crystallite the effects of position correlation of these crystallites have to be taken into
account when scattering amplitude is calculated. The spatial or lateral coherence
length Ls0 is determined by geometrical considerations:

Ls0 =
λR

2rs
(II.41)

where R is the source-sample distance and rs is the source size. Ls0 represents the
maximum spacing between two points of an extended source emitting photons which
can interfere at any given sample point. For scattering processes, the projection of
the coherence length onto the sample surface is important, so that:

Ls =
Ls0

sin(αi)
(II.42)

where αi is the angle of incidence.
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In the case of grazing incidence Ls becomes very large. For instance, for set-up
at grazing incidence angle of 0.2 ◦, Ls is in the order of 103 nm. For crystal (island)
size in the order of 102 nm investigated in this work the effect of island short-range
correlation should be considered. The effect of crystal position correlation on the
scattering amplitude is accounted by the additional correlation factor R:

P (r) =
∑
m

Pm(r−Rm) (II.43)

If an array of spatially separated equivalent crystals is considered, the correlation
factor can be rewritten in the form:

P (r) = Pc(r)
∑
m

δ(r−Rm) (II.44)

where Pc(r) is the position function, representing the position of the center point of
each crystal, and δ a delta function, describing the discrete behavior of correlation
factor P (r). Describing the correlation part of scattering amplitude in terms of
Fourier integral (II.12) one obtains:

F (S) =

∫
Pc(S)

∑
m

δ(r−Rm) · exp(iS · r)d3r (II.45)

Since r only takes discrete values r = Rm this integral can be split into a sum:

F (S) ≈
∑
m

exp[i(S‖ ·R‖m + S⊥ ·R⊥m)] (II.46)

where the component S‖ ·R‖m accounts for lateral ordering of crystals within the layer
and the S⊥ ·R⊥m component accounts for the correlation along surface normal. If the
function describing the relative crystal positions Rm known, the scattering amplitude
of a single crystal in the array of equal crystals is then modulated by a factor:

F (S) ≈
∑
m

exp[iS ·Rm] (II.47)

II.8 Crystal with distortions

As derived above, the scattering amplitude of a single atomic scatterer is given by
Eq. (II.14). In the kinematic approximation (see below), the scattering amplitude of
a sample consisting of a discrete number n of scattering points can be written as a
sum of the scattering amplitude of each of the points.

F (S) =
∑
n

fa(S) exp[2πi (S · rn)] (II.48)
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Figure 6: Atom in displacement field (shown in grey). Determination of displacement
vector.

where fa is the atomic scattering factor and rn is the vector describing the position
of the n-th atom. Considering the finite volume of the scattering body its scattering
amplitude should be multiplied by the shape factor D, (see Eq. II.36). For an undis-
torted ideal crystal the diffraction vector S can possess only values with S = Hhkl.
So, equation (II.36) can be written in the form:

D(Hhkl) =

∫

V

F (r) exp[2πi (Hhkl · r)] dVr (II.49)

If particular atoms of the crystal undergo displacements from their initial positions it
influences the phase difference between the scattered waves and changes the value of
the total scattering amplitude. To describe such atomic displacements the displace-
ment vector u(r) is introduced (Fig. 6).

The number of vectors u(r) defines the so-called displacement field in which the
ideal crystal undergoes deformation. In general, atomic displacements are assumed
to be smaller then the absolute value of r. In this case, the electron density of the
ideal crystal lattice is assumed to follow the changes of atomic positions (Takagi
approximation [43]). Under this condition the final position of each atom is described
by:

r = rideal − u(r) (II.50)

Now, the equation for the total scattering amplitude of the object should be written
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as:

Fabs ≈ F (S) ·D(Hhkl) =

=
∑
n

fa(S)

∫

V

F (r) exp[2πi (Hhkl · r)] ·

· exp[2πi (S · (rn − u(rn))] dVr (II.51)

or:

Fabs ≈
∑
n

fa(S)

∫

V

F (r) exp[−2πi (q · rn)] exp[−2πi (S · u(rn))] dVr (II.52)

where vector q = Hhkl−S represents the deviation of the Fabs position of the deformed
crystal relative to its position in the case of scattering by an ”ideal” crystal. If the
position of atomic scatterers are limited by the crystal dimensions Eq.(II.52) should
be rewritten as:

Fabs ≈
∑
n

fa(S)

∫

F

exp[−2πi (q · rn)] exp[−2πi (S · u(rn))] dVr (II.53)

To use the last equation for numerical calculations one should mathematically in-
troduce the shape function of the crystal and to determine the matrix elements of
displacement field.

II.9 Phase problem.

In the intensity signal collected during X-ray diffraction experiment the phase in-
formation - information about the atomic positions - is lost. In the case of crystals
with distortions the main method for extracting information about the positions of
the atoms is based on the comparison of the experimentally derived intensity distri-
bution with that calculated numerically for a model. The main disadvantage of this
technique is the large amount of time needed for the numerical calculations.

As a highlight, recently the new method exploiting the gradient search iterative
algorithms has been announced for the direct retrieval of the phase information from
the intensity signal [44]. This method is at the moment on its development stage and
possibly will replace the conventional technique in the near future [45].

II.10 Kinematic approximation and critical thick-

ness

When calculating the total amplitude of the scattered wave it has been assumed that
the total wave is the sum of the elementary waves. This approach is called kinematic
approximation and ignores the following circumstances:
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(I) When an incident wave is propagating in a crystal, its amplitude must diminish
gradually, because energy is lost due to the excitation of secondary scattered
waves. The initial wave is weakened by the effect of absorption.

(II) Secondary diffracted waves interfere both with the initial wave and among them-
selves and also experience scattering and absorption.

Those effects are taken into account in the more general dynamical theory [46],[47].
Since dynamic effects develop gradually as the initial wave penetrates into the crystal,
the kinematic approach yields fairly accurate results for sufficiently small penetration
thickness. For small thicknesses the primary wave is hardly weakened, the secondary
waves has not yet gained much intensity, and absorption effects can be neglected. In
other words, the kinematic approximation can be used when the absolute intensity
of the scattered beam is weak compared with that of the incident beam.

Assume the single crystal is in the particular position relative to the incoming
beam so that the intensity at particular reciprocal point (h,k,l) can be measured. In
this case, the amplitude of the scattered beam Fcr is given by Eq. II.38. The scat-
tering power of a single electron unit Fe is given by (II.8). Assuming the scattering
crystal to have a cubic shape with sides of length A and the total scattering intensity
to be measured by the flat rectangular detector with detection area of ∆X∆Y (deter-
mines the integration area in the reciprocal space of the point detector moving in the
laboratory system with coordinates x and y). For rectangular crystal its projection
on the detector is approximately ∆X ·∆Y ≈ A2. In the case, where the center of the
reciprocal lattice point hkl intersects the Ewald sphere, the shape factor D in (II.38)
is also proportional to A2. In this case the intensity of the diffracted beam relative
to the incoming beam can be written as [48]:

Ihkl
I0A2

= F 2
e (
Fhkl
γ

)2 λ2A2 (II.54)

where prefactor A2 for the initial intensity describes the fact, that crystal shades the
incoming beam by its area A2 (all other factors have been explained previousely).
This expression shows that the integrated scattered intensity is proportional to the
square of the linear crystal dimension (or crystal thickness) A. Obviously, this can be
true only until this thickness will not exceed some value after which the scattering
intensity will become equal to the incoming beam intensity, so that:

Fe
Fhkl
γ
λAK ≤ 1 (II.55)

where AK is the critical thickness determining the range of validity of the kinematical
approximation. Assuming all atoms to scatter in phase, so that FeFhkl =

∑
Fe

(Fe ≈ 10−11 cm) and taking the volume of each atom to be ≈ 10−23cm3, then for
X-ray radiation with λ ≈ 10−8 cm AK will be in the order of AK ≈ 1 µm.
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Figure 7: Schematic representation of refraction of the light on the border between
two media with different refractive indices (n1 and n2)

The structures studied in this thesis, have linear dimensions far below 10−5 cm.
In this case, the kinematic approximation is adequate for numerical calculations of
the scattered intensities.

II.11 Grazing incidence diffraction.

II.11.1 Total reflection effect. Penetration depth.

Snell’s law (Fig. 7) gives the relationship between angles of incidence and refraction
for a wave impinging on an interface between two media with different indices of
refraction. The law follows from the boundary condition that a wave be continuous
across a boundary, which requires that the phase of the wave be constant on any
given plane, resulting in:

n1 sin(θ1) = n2 sin(θ2) (II.56)

where θ1 and θ2 are the angles from the normal of the incident and refracted waves,
and n1 and n2 are refractive indices of the media.

Analysing Snell’s law one can find certain circumstances under which the ray will
not be refracted, instead it is reflected. This is the case when n1/n2 > 1. In this case
the angle of incidence exceeds the critical angle:

sin(θcr) =
n2

n1

(II.57)

The last equation determines the grazing incidence regime. The average index of
refraction (n) is the fundamental quantity which controls the ”optical effects” in the
grazing incidence regime. In the case of an X-ray beam coming from vacuum(air)
(n1 = 1) into a solid the index of refraction can be written as:

n = 1− δ + iβ (II.58)
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Material δ(10keV) αcr,
◦

AlAs 6.92 E-06 0.213
GaAs 1 E-05 0.256
InAs 1.08 E-05 0.266

Table II.3: Dispersion coefficients and critical angle values of some III-V compound
semiconductors.

where δ and β represent respectively dispersion and absorption of the medium. For
X-ray energies far away from absorption edges of the medium, β is at least one order
of magnitude smaller than δ - the absorption effects can be neglected:

δ ≈ r0
λ2

2π
ρe (II.59)

where r0 is the Bohr atomic radius and ρe is the electron density. To satisfy the
grazing incidence conditions of the Snells law (introduction of angle α = 90 - θ1):

1− δ = cos(αcr) (II.60)

Taking into account that in the case of X-rays grazing incidence the incoming beam
angles αi have values far below one degree one can approximate:

cos(αcr) ≈ 1− α2
cr

2
(II.61)

and so:

αcr ≈
√

2δ = λ
√
ρer0/π (II.62)

The values of δ and critical angle, αcr, at incoming radiation energy of 10 keV for
the materials discussed in this work are shown in Table II.3.

While on the border between both media in the regime of total external reflec-
tion the primary beam is specularly reflected, inside the less dense medium (with
dispersion/absorption) an evanescent wave propagates [51], and E-field decays expo-
nentially within the penetration depth 4. In the absence of absorption the penetration
depth is:

Λ ≈ λ/[2π(2δ − sin(αi)
2)1/2] (II.63)

For incident angles of the order of 0.2◦ the penetration depth is in the nanometers
rage. For the GaAs and AlAs substrate materials the dependence of the penetration
depth on the incident angle is shown in Fig. 8.

It can be seen, that by varying the incoming angle within the range of total
reflection one can significantly influence the penetration depth of the X-rays.

4The depth at which the intensity of the incident wave is reduced by a factor 1
e
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Figure 8: Angular dependence of penetration depth for GaAs and AlAs crystals at
incoming X-ray radiation energy of 10 keV. Area marked grey represents the region
exploited in this work.

II.11.2 Reflection/refraction effects.
Distorted wave approximation.

In the general case of grazing incidence diffraction on a flat crystal surface the in-
tensities of the refracted and reflected X-ray waves and the phase relation between
them and the incident wave field should be corrected by the Fresnel coefficients of
transmission (T) and reflection (R), written in the form:

R(α) =
E1

E0

= sin(α)−
√
n2

0 − cos(α)2

sin(α) +
√
n2

0 − cos(α)2
(II.64)

and

T (α) =
Et
E0

=
2 sin(α)

sin(α) +
√
n2

0 − cos(α)2
(II.65)

The reflectivity coefficient R2 determines the specularly reflected intensity, whereas
the transmittivity, T 2, governs the intensity of the evanescent wave field.

Now the case of a crystal with finite dimensions positioned on/under the surface
of an other laterally flat and infinitely large crystal (substrate) made of different
material should be considered. The incident X-ray wave incoming at angle below the
substrate critical angle interacts with the small crystal positioned on the substrate
(case 1) or below the substrate surface (case 2) at some depth t.

In the first case, because of the small incident angles (smaller then αc), there
is a fraction of the incoming X-rays that is specularly reflected from the substrate
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surface before entering the probed crystal. In this situation the vector of the incoming
wave is modified. It leads to the appearance of additional amplitude in the overall
scattering/diffraction process. The same effects take place for the outcoming waves.
In the second case, refraction effects lead to changes of the incoming and outgoing
wave vector directions inside the substrate material.

Under these circumstances the kinematical approximation does not describe the
scattering process sufficiently well and the so-called distorted wave Born approxima-
tion (DWBA) should be used [52]. The incoming plain wave produces a wave field
inside and outside of the crystal under investigation. The crystal itself is treated as a
wave ”perturbation” described by the perturbation potential [53]. After interaction
with this potential the modified scattered wave leaves the sample. The solution of the
problem consist of two independent components: the dynamical component describ-
ing the scattering by the undisturbed medium (substrate) and the kinematical diffuse
component for the scattering by the crystal on the substrate. The calculation of the
kinematical scattered component involves incident, specularly reflected and diffracted
waves (case 1) or refracted and diffracted waves (case 2), as shown in Fig. 9. The
main processes, determining the scattering by the object on the substrate are:

- scattering/diffraction of the primary incoming wave (kinematic case)

- scattering/diffraction and reflection of the primary incoming wave

- scattering/diffraction of the modified (reflected) incoming wave

- scattering/diffraction and reflection of the modified (reflected) incoming wave

The total scattering amplitude is then the sum of four components:

A1(q1) ≈
∑
n

fa(q1)

∫

F

exp[i (q‖ + q⊥1 ) · rn] dV (II.66)

A2(q2) ≈ R(αf )
∑
n

fa(q2)

∫

F

exp[i (q‖ + q⊥2 ) · rn] dV (II.67)

A3(q3) ≈ R(αi)
∑
n

fa(q3)

∫

F

exp[i (q‖ + q⊥3 ) · rn] dV (II.68)

A4(q4) ≈ R(αi)R(αf )
∑
n

fa(q4)

∫

F

exp[i (q‖ + q⊥4 ) · rn] dV (II.69)

The main process determining the scattering by the object buried under the sub-
strate is diffraction and refraction of the modified (refracted) incoming wave and the
scattering in this case is described by the amplitude:

A5(q5) ≈ T (αi)T (αf )
∑
n

fa(q5)

∫

F

exp[i (q‖ + q⊥5 ) · rn] dV (II.70)
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Figure 9: Schematic representation of scattering by an object on the substrate surface
(a), and by an object buried under the substrate surface (b) under grazing incidence.

In each particular case the diffuse intensity depends strongly on the transmission or
reflection Fresnel coefficients T and R which themselves are functions of the incoming
and outgoing angles αi and αf . The vertical components of the diffraction vectors qd

with d = 1-5 are different for all five waves and are determined by their corresponding
vertical components of incoming kIN and outgoing kOUT wave vectors given as [112]:

q1 = −kOUT − kIN (II.71)

q2 = kOUT − kIN (II.72)

q3 = −kOUT + kIN (II.73)

q4 = kOUT + kIN (II.74)

q5 = −KOUT −KIN (II.75)

where K denotes the wave vector in the substrate material. In the first case the
angular dependence of the coefficients determines the influence of the reflected wave
amplitudes on the total intensity pattern. For the angles below the critical angle of
the substrate, αc, the influence of these amplitudes is the largest, but for angles above
αc the effect diminishes rapidly until only the kinematical amplitude A1 is significant.

Experimentally the waves scattered or diffracted in the grazing incidence regime
from the non-buried island can be detected only separately. The conditions when
only diffracted component is analysed define the grazing incidence diffraction (GID)
case. If the scattered component is investigated the grazing incidence X-ray scattering
(GIXS) geometry is used. If the scattered signal is investigated in the vicinity of the
primary X-ray beam spot, the special regime - grazing incidence small angle scattering
(GISAXS)- is defined. In detailed form these techniques will be described in IV.3.
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Figure 10: Intensity distribution in [100] direction of reciprocal space modulated by
overlapping of Fourier transformed shape functions stemming from two circle-shaped
single-crystals (size 10 nm) having corresponding lattice constants of 0.5 nm and 0.51
nm. The envelope intensity profile is given by addition of intensity profiles from
single-crystals.

II.11.3 Strained island in GID. Iso-strain approximation.

As shown previously, the scattering amplitude of a crystal with final dimensions is
described by the Fourier transform of the crystal shape function and the atomic po-
sitions within the crystal volume (see Eq. II.29). If two crystallites having slightly
different lattice constants, simultaneously scatter an incoming X-ray wave, the result-
ing intensity profile can be interpreted as the overlap of squared Fourier transforms
of the corresponding crystal shape functions. As an example, the linear intensity dis-
tribution along the [100] direction for disc-shaped crystals having diameter of 10nm
and lattice constants 0.5 nm and 0.51 nm, is shown in Fig. 10 .

The resulting envelope intensity function in Fig. 10 represents the sum of two
single intensity distributions from crystallites. Using this approximation, the crystal
with a continuous strain profile can also be roughly subdivided to a number of single
sub-crystals, the ”iso-strain areas” (ISA) [57] so that the final intensity distribution
is the sum of the intensity profiles from all ISAs.

In the in-plane case of GID where only lateral lattice constants of the crystal are
probed (the vertical lattice constant is related to the z-direction in real space) the ISA
model is assumed to be applicable to crystals with strain field gradient parallel to the
crystal z-axis. The structure can be then treated as a vertical stacking of sub-crystals
(ISAs) with shape functions primarily defined by ISA lateral dimensions.

For a vertical arrangement of iso-strain areas the vertical position above the sub-
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Figure 11: General form of the intensity distribution for scattering by a single ISA
under grazing incidence conditions.

strate surface is also important. If one assumes the ISAs are sufficiently thin, so that
their vertical positions can be described by average height, zISA , the total scattering
amplitude in the particular point of reciprocal space with a defined value of lateral
diffraction vector component q‖ - ISA with a particular lateral lattice constant -
described in DWBA, Eq.(II.66), can be rewritten as [58]:

F (αi, αf ) = F0 |k|(αi + αf ) exp(iqzz) t(αi, z)t(αf , z) (II.76)

where t(α) = 1 + r(α) exp(-i k αi,f z) is a modified transmission coefficient. In the
case of a fixed incoming angle αi, the scattered intensity profile is mainly determined
by the t(αf , z) component:

I(αf , z) ≈ |t(αf , z)|2 (II.77)

In the GID regime with αi ≤ αc, this function possess a general form shown in Fig. 11
(Plot taken from [59] ).

The main feature of this function is the pronounced maximum at αmax. Informa-
tion about the height zISA of a particular iso-strain area over the substrate surface
can be derived from αmax:

zISA =
1

|k|αmax arccos(
αmax
αc

) (II.78)

Depending on the relative vertical position of the ISA to the substrate surface this
maximum will shift from values with αmax

αc
< 1 for zISA > zsubstrate up to αmax

αc
⇒ 1

for zISA ≈ zsubstrate.
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II.12 X-ray reflectivity of thin films

X-ray reflectivity (XRR) is a powerful tool for investigating multilayered thin film
structures. XRR is highly sensitive to electron density gradients irrespective of the
crystalline nature of the system [60]. The main advantage of this technique is that it
allows the density and the thickness of thin layers to be determined.

The main goal of analysis of the XRR profile is the determination of the refractive
indices of all layers in the structure. The reflectivity for a system with n thin layers
can be calculated using Parratt’s recursive method. For an arbitrary layer j that is
bound by interfaces j - 1 and j, the total reflectivities at the two interfaces, rFj−1 and
rFj are related to Fj−1 by [61]:

rFj−1 =
Fj−1 + rFj exp(−iqjtj)

1 + Fj−1 · rFj exp(−iqjtj) (II.79)

where rFj is the total reflection coefficient at interface j, defined as the ratio of outgoing
to incoming electric wave amplitudes, and Fj−1 is related to qj by:

Fj−1 =
qj−1 − qj
qj−1 + qj

(II.80)

with qj=4πfi/λ, and fi =
√
α2
j − 2δ − 2iβ. αj is the incident angle in respect to the

interface j.
The boundary condition for Eq. II.79 is found at film/substrate interface n where

rFn =Fn due to the fact that substrate is semi-infinite [62]. Starting from the downmost
interface with j=n, each rFj−1 coefficient up to the rF0 for the uppermost interface can
be recursively determined using Eq. II.79.

Since most interfaces are not ideal on the length scale probed by the hard X-
rays the nonideality of the interface has to be taken into account in the reflectivity
calculations. For a non-ideal interface, the average electron density profile along the
specimen normal is assumed to be modelled by an ”error function” (the Névot-Croce
roughness [63]):

rN−σj = rNj exp(−2σ2
jk

2
0fjfj+1) (II.81)

where k0 = 2π/λ - is the wavevector. The modified reflection coefficient rN−σj is
then used for further calculations.



Chapter III

Elastic deformation of SK-islands

III.1 General elasticity theory

The general theory of elasticity is quite complicated even for simple homogeneous
media [64]. Only the simplest linear elastic deformation process used for interpreting
the data in this thesis will be briefly summarized in this chapter.

The main goal of elasticity theory is to define the displacement field u(x,y,z). u
is a vector that defines the displacement at any point P’ in a strained body from its
original (unstrained) position P. The displacement vector u(x, y, z) is then given by:

u(x, y, z) = ux(x, y, z), uy(x, y, z), uz(x, y, z) (III.1)

where components ux, uy, and uz represent projections of u on the x, y, z axes of a
orthogonal coordinate system. Usually one is only interested in the determination of
local deformations, i.e. the deformation that acts on a volume element dV after it
has been displaced some amount. The local strain ε, is defined by nine components
of the strain tensor εij acting on an elementary volume element dV.

The relation between the displacement field u(r) and the local strain tensor εij
can be derived by considering a uniform elongation in one direction. In this case the
vector u only has a component in x-direction, so |u(r)| = |ux| = a ·x, where a is some
constant. The relative elongation of the length element l0 is given by l, defining the
displacement of each point with initial coordinate x0 to the point x0 + dx. For this
deformation the elementary formula for strain can be written as:

εxx = εx =
(l − l0)

l0
=

(ux(x+ dx)− ux(x))

dx
=
dux
dx

(III.2)

If the deformation takes place in all three main directions, the corresponding expres-
sions for εyy and εzz should be defined. The deformations in main directions given by
components εxx, εyy, and εzz describe the normal strains due to forces acting along

40
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the normals to the surfaces of a unit cubic volume element dV. The deformations in
the orthogonal directions are described by shear strains:

εij = εji =
1

2
(
dui
dxj

+
duj
dxi

) =
1

2
γij (III.3)

giving:

εij =




εx εxy εxz
εxy εy εyz
εxz εyz εz


 =




εx γxy/2 γxz/2
γxy/2 εy γyz/2
γxz/2 γyz/2 εz


 (III.4)

In the case of small deformations (ε <0.01) the generalized approximation called
Hookes law, mechanical stress is directly proportional to strain. The relation between
stress σkl and deformation εmn tensors, is given by:

σkl = Cklmnεmn (III.5)

and vice versa:

εkl = Sklmnσmn (III.6)

where Cklmn and Sklmn = (Cklmn)−1 are respectively the elasticity tensor and its
compliance stiffness tensor. In the general case the elasticity tensor has 81 compo-
nents. For materials with cubic symmetry there are three coefficients: C11 = C1111 =
C2222 = C3333, C12 = C1122 = C2233, etc., and C44 = C1212 = C2323 etc. In isotropic
materials two independent elastic coefficients are sufficient, the Young modulus E and
the Poissons ratio ν:

E = (C11 − C12)(C11 + 2C12)/(C11 + C − 12) (III.7)

ν = C12/(C11 + C12) (III.8)

The main mechanical constants at RT for the materials used in this thesis are given
in Table III.11. For shear stresses the shear modulus G = E/(2(1 + ν)) is useful. In

Material C11, GPa C12, GPa C44, GPa E, GPa ν, GPa
InAs 83.4 45.4 39.5 51.4 0.35
GaAs 118.8 53.8 59.4 85.3 0.31
AlAs 120.2 57 58.9 83.5 0.41

Table III.1: Mechanical constants of InAs, GaAs and AlAs crystals at RT.

1taken from www.ioffe.rssi.ru/SVA/NSM/Semicond/



CHAPTER III. ELASTIC DEFORMATION OF SK-ISLANDS 42

this case Hookes law for each separated strain component can be written as:

εx =
1

E
(σx − ν(σy + σz)) γxy =

τxy
G

εy =
1

E
(σy − ν(σz + σx)) γyz =

τyz
G

εz =
1

E
(σz − ν(σx + σy)) γzx =

τzx
G

(III.9)

With stress tensor defined as:

σij =




σx τxy τxz
τxy σy τyz
τxz τyz σz


 (III.10)

The above relations are used in the main algorithm for the linear solution of mechan-
ical problem in the applied finite element program (see below).

III.1.1 Mechanical model of pseudomorphic growth

The growth of the film is called pseudomorphic if the overgrowing crystalline material
inherits the lateral lattice constant of the underlying substrate. In materials with
cubic crystal symmetry it will lead to an orthogonal deformation in the direction
along the substrate surface normal.

The pseudomorphic deformation can be found in terms of the model describing
the biaxial normal deformation (see fig. 1), where only equal normal stresses act
perpendicularly to the x and y-oriented sides of the cube with volume V0, and no
stress in z-direction exists. In this case only the relations for normal components of
elastic deformation need be considered:

εx = εy = ε =
1

E
(σ − νσ), εz =

1

E
(−2νσ) (III.11)

where σ = σxx = σyy (σzz = 0). Now replacing σ by εz the relation between the
lateral and vertical deformation can be written as:

εz = − 2ν

1− ν · ε (III.12)

The relative volume change after material is pseudomorphically strained can be ap-
proximated by:

∆V = V − V0 ≈ (εx + εy + εz) · V0 (III.13)

where V0 and V are respectively the initial material volume before and the final
volume after deformation. Using equations for ε this relation can be rewritten:

∆V

V0

= 2ε
1− 2ν

1− ν (III.14)
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Figure 1: The mechanical modelling of pseudomorphic growth. (left) separated bulk
crystals of film and substrate. (middle) the biaxial lateral deformation acting on the
film. (right) elastically strained film pseudomorphically grown on the substrate.

Now, if initial volume of the material together with its mechanical properties are
known then for a particular lateral deformation one can estimate the changes of ma-
terial dimension in z-direction (dimensional changes in x-y directions are determined
by the deformation).

III.1.2 Boundary conditions for the search of the diffracted
signal from elastically strained islands.

To describe the atomic displacements within the unit cell of a cubic crystal the biaxial
lateral deformation model should be rewritten in terms of crystal lattice constants.
The lattice constant of the undeformed bulk crystal is a0 and the lateral lattice
constant of the pseudomorphically strained crystal is equal to that of the substrate
material asub. The lateral deformation in this case is given by:

ε = (
asub − a0

a0

) (III.15)

Now eq. III.14 can be rewritten in the form:

aXa
2
sub − a3

0

a3
0

= 2(
asub − a0

a0

)(
1− 2ν

1− ν ) (III.16)

where aX is the vertical lattice constant changed due to the orthogonal deformation
of the cubic lattice. For known asub, a0 and ν the ax value can be calculated.
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The lattice constants of the material determine the positions of corresponding
reflections in reciprocal space. The three main components of reciprocal vector are
related to the crystal lattice constants by:

qx =
2π

ax
, qy =

2π

ay
, qz =

2π

az
(III.17)

Let us assume the bulk lattice constant of the substrate material to be smaller than
the bulk constant of the overlayer, asub < a0, and both materials to have the same
crystal structure and crystallographic orientation. In this case the relative positions
of Bragg reflections will differ in reciprocal space by values:

∆qx = ∆qy = ∆qz =
2π

asub
− 2π

a0

(III.18)

If growing material undergoes pseudomorphic deformation and inherits the lateral
lattice constant of the substrate, the relative position of both Bragg reflections is
then described by:

∆qx = ∆qy = 0, ∆qz =
2π

asub
− 2π

aX
(III.19)

where aX should be calculated from Eq. III.12. In reciprocal space, the line connecting
the positions of Bragg reflections for the pseudomorphically deformed material and
the same material in its fully relaxed (bulk) state is the relaxation line. It describes
the relaxation process of the strained material [65],[66].For out-of-plane reflections
the relaxation line together with lines connecting the substrate bulk reflection with
that of the film in its bulk and pseudomorphically strained states define the so-called
relaxation triangle [67]. The relaxation triangle in the vicinity of the (Qx, 0, Qz)
reflection (Qy = const = 0) for a film grown on a (001)-substrate is shown in Fig. 2(a).
If 3D material undergoes elastic relaxation, the elastic strain field varies gradually
from its maximum to its minimum value and the diffraction pattern is no longer
described by a single Bragg reflection. It becomes diffuse and is mainly concentrated
within the area defined by the relaxation triangle [68].

For mapping in the vicinity of in-plane reflections in GID-geometry (Qz ≈ 0)
the region of interest in reciprocal space is restricted by the position of substrate
Bragg peak and bulk reflection of the film building the relaxation line. Fig. 2(b)
schematically shows the area for measurement along the radial (Qx, Qy = Qx,0)
direction.

III.2 Overview of methods for strain field compu-

tation in microscopic structures

Strain caused by lattice mismatch between the dots and the substrate/matrix materi-
als is very important for both self-organisation mechanisms and for the opto-electronic
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Figure 2: Areas of interest for reciprocal space mapping in the cases of out-of-plane
(a) and in-plane (b) reflections for [001] oriented substrate and film (island) crystals
with different bulk lattice parameters. Relaxation lines define the directions of elastic
relaxation of the film (island) material.

properties of the QD system. Knowledge of the strain distribution in and around the
dots as well as its impact on the electronic band structure are of great importance.

The mechanical strain distribution in solids can be treated in different ways de-
pending on the complexity and size. The main approaches are based on quantum-
mechanics or atomistic elasticity and numerical calculations using a continuum me-
chanical model.

In the atomistic elasticity (EM) model the strain energy is introduced in terms
of few-body potentials E = f(V2(r), V3(q)) between actual atoms, where V2(r) is a
two-body term depending on the actual atomic position vector r, and V3(q) - a three-
body term, a tensor dependent on the bond angle q. The functional form of these
terms is taken to be strain-independent. The strain is determined by minimizing E
with respect to atomic positions r. Atomistic elasticity has been used to determine
strain in quantum dots [69], with V2 and V3 taken from the valence force field model
[70].

In case of atomistic quantum-mechanical approach (QMA) one does not have to
assume any model for interatomic interactions. Instead the total electron and nuclear
energy Etot(r) for each atomic configuration are computed using the Schrödinger
equation. This approach has been applied for small (<100 atoms) atomic wires and
clusters [71] but it is impractical for larger island structures with more than 104

atoms.
The finite element method (FEM) is based on linear elasticity theory. The thermo-

elastic mechanical problem, related to the difference of lattice parameters between
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island and substrate materials, is described by differential equations at particular
points (nodes) and which are then solved to reveal the approximate deformation
of the solid. This method was developed and applied to study the strain fields in
different island systems, such as Si/Ge [72] or InGaAs/GaAs [74].

For small systems with a lattice mismatch far below 1% all three approaches yield
similar results. but discrepancies arise for strains ≈1%. Calculations show noticeable
differences [75]. Since the self-assembled growth of InAs/GaAs quantum dots deals
with relatively large dimensions and lattice mismatches of up to 7%, the first two
methods do not provide sufficient versatility and require long computation times.
For that reason, the strain distribution in quantum dots of arbitrary shape or (and)
elastic properties should be solved numerically using the finite element method [110].
A detailed description of the FEM method is given below.

III.3 Finite element analysis

III.3.1 Introdunction to FEM method

The finite element method (FEM) is a computer-based numerical technique that is
used to solve different types of engineering problems, such as stress analysis, heat
transfer, fluid flow, etc. FEM analysis is based on solving a system of equations that
describes the chosen parameter - in this work displacement - in a continuous physical
system. The main power of FEM lies in its ability to solve the problems numerically
which can not be solved analytically [76].

The FEM analysis involves the partitioning of a continuous object into a finite
number of elements. The materials properties and the governing relationships are ap-
plied over these elements and expressed mathematically in terms of unknown values
at specific points in the elements called nodes. Each element has a simple geometri-
cal shape, such as a triangle or quadrilateral. The standard element shape facilitates
the development of the equations that relate the displacement behaviour within each
element. This piecewise approximation of the physical continuum model on finite ele-
ments provides good precision even with simple approximating functions. By simply
increasing the number of elements one can achieve higher precision.

To completely define a finite element model the nodal points, elements, loads,
supports and element related data, i.e. material properties, must be defined. The
program then formulates a set of simultaneous equations, which are the equilibrium
equations corresponding to each degree of freedom (DOF) - directions in which move-
ment can occur - at each nodal point. A nodal point can have up to six degrees of
freedom - translation and rotation about the principal x, y, and z directions. When
the FEM model is loaded it begins to deform - the force at each nodal point depends
on the force at every other node - so that the whole system acts like a system of
springs, deflecting until all forces balance. Since there are usually hundreds or thou-



CHAPTER III. ELASTIC DEFORMATION OF SK-ISLANDS 47

sands of equilibrium equations generated in the typical finite element model, the use
of a digital computer is mandatory.

In the stress analysis, used in this thesis, the equilibrium equations are solved for
the displacements at each nodal point. In order to define a model that accurately
represents the physical object, a sufficiently fine mesh of elements must be defined.
In addition, the type of element and appropriate boundary conditions must be applied
to represent the physical behavior of the model.

Because FEM models usually involve the preparation of a large number of nodal
points and elements, the process of data preparation and data analysis has developed
into a special field in finite element analysis. These steps are referred to as pre-
processing and post-processing and involve a large amount of user interaction. In
contrast, the analysis process (solving the differential equations) is done entirely by
the computer.

The first step in preparing a finite element model involves defining the input data.
In the case of the FEM model considered in this work, it consists of the following
steps:

• definition of the nodal points (x, y, z coordinates) and elements

• definition of the element related material properties: modulus of elasticity, Pois-
son ratio, and thermal expansion coefficient

• specification of the boundary conditions, locations where the part is limited in
motion or attached to an adjacent part

• Specification of the load (in present case - the load due to thermal expansion)

The actual analysis is usually done in a batch environment, since this phase does not
require any user interaction. During this phase, the program performs the following
steps:

• formulates equations that describe the stiffness of each element and then as-
sembles the equations for all of the elements in a set of simultaneous equations
that represent the total structure stiffness

• solves the system of equations for the displacements at each nodal point

The final phase is post-processing. The primary goal of this phase is to make sense
of the large amount of data that is generated during the analysis. The process of
data examination can be done by retrieving specific data arrays or by reviewing the
graphical output. Contour plotted displacements at nodal points, nodal or elemental
strains and deformed shapes can be displayed.

FEM has the following advantages:

• irregularly shaped parts can be analyzed
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• can be applied to complex objects composed of several different materials with
complex boundary conditions

• provides displacements throughout the entire model

III.3.2 Modeling of elastic strain in SK-island

For the calculation of the diffuse intensity pattern from a SK-island an exact knowl-
edge of the displacement fields within the island are required. In the FEM method
the elastic strain field in the island with lattice mismatch relative to the substrate
is calculated using thermo-elasticity (TE) theory. This approach has been applied
to simulate elastic deformations at coalescent island boundaries [77] in WV [78] and
in SK islands [79]. In the TE model the elastic misfit strain εel is induced by a
corresponding thermal strain εth:

εth = α∆T (III.20)

where α is the thermal expansion coefficient of the material and ∆T is the rela-
tive temperature change. The elastic strain in SK-islands is amulated by assigning
different hypothetical thermal expansion coefficients to the substrate and island:

αsub = 0, αisl = εmaxel (III.21)

with εmaxel = (asub−aisl)/aisl representing the real lattice mismatch between island and
substrate crystals. In this case for a temperature increment ∆T = 1 the maximum
thermal strain at the island/substrate interface εth = ∆α = αisl − αsub will exactly
correspond to εmaxel . The deformation of the island/substrate system for particular
boundary conditions initialized by the island thermal expansion is shown schemati-
cally in Fig. 3. The full relaxation of the heated island which is not rigidly connected
to the substrate is shown in Fig. 3(b). If island is fixed (glued) on the substrate
surface (Fig. 3(c)) it undergoes expansion to relax its thermal strain. The relaxation
of this thermal strain due to island lateral deformation (Eq. III.20) will reach its max-
imum at the top of the island and will gradually fall to zero at the island/substrate
interface where the lateral expansion is inhibited and the island elastic energy reaches
its maximum. Island relaxation in the direction perpendicular to the substrate will
be governed by the relation:

ε⊥th = α⊥∆T (III.22)

where α⊥ = α(−2ν/(1 − ν)). For islands fully surrounded by the substrate ma-
trix (Fig. 3(d)) the deformation field is more complicated, since in this case island
expansion is limited in all directions.
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Figure 3: Schematic principle of the thermo-elastic approach for the simulation of
strain fields in SK-islands. (a) initial condition T=0, thermal expansion coefficient
of island is larger than that of the substrate; (b) island is not rigidly connected to
the substrate. At T=1 island undergoes full elastic relaxation; (c) island is rigidly
”glued” to substrate surface. At T=1 uppermost parts of island undergo maximal
elastic relaxation. At the island/substrate interface, where the elastic strain energy
reaches its maximum value, elastic deformation of the substrate is possible. (d) at
T=1 complicated deformation of the island buried in the substrate matrix takes place.

III.3.3 Finite element modeling of SK-island

The optimization of the FEM model plays crucial role because it directly influences
the computation time and precision of the final solution. In the frame of this the-
sis the SK-islands are assumed to be rotationally symmetric, with the shape of a
rotational trapezoid. This assumption which ignores crystallographic anisotropy of
the InAs/GaAs(001) system was found to be a sufficiently good approximation to
describe the strain field in islands [80],[81]. The strain field in the substrate material
should also be taken into account. Here the strain field in the island is of interest and
so, the 2D rotationally symmetric body can be used as an approximation. The struc-
ture model used for the calculation of the displacement field in non-capped elastically
strained SK-island by means of finite element method 2 is shown in Fig. 4. Because of
rotational symmetry only half of the central 2D cross-section of the island/substrate
system is used. The model island (light blue) is rigidly connected to the wetting layer
of the same material and connected to the substrate material. The red line between
island and wetting layer is a feature of the finite element program. It verifies that
after meshing the closest nodes of island and wetting layer are connected to each
other 3. The necessity of application of this function is the inhomogeneous meshing

2FEM package ANSYS/Multi-physics was used
3command CPINTF. See ANSYS Commands Reference at www.cesup.ufrgs.br/ansys/
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Figure 4: Finite element model of a SK-island on the substrate. The island is rigidly
situated on the wetting layer, which is connected to the substrate. The motion of
axial nodes is fixed in the directions shown by the arrows representing the system
boundary conditions.

within the island region due to its complex shape forcing the standard element shape
to be changed to fill the whole area within the island. The boundary conditions are
represented by arrows pointing towards the directions in which the motion of nodes
on principal axes (X and Y) is fixed. To mesh the model, the specific 2-D coupled-
field solid element 4 defined by four nodes with up to four degrees of freedom per
node was used with its axisymmetric property switched on.

III.3.4 Finite element solution for the SK-islands

The substrate material is taken to be AlAs. The lateral and vertical components
of strain field in non-buried and buried islands calculated using FEM method are
shown in Fig. 5 and Fig. 6. An axially symmetrical islands with constant chemical
composition of InAs and island heights/island radius = 0.5 are used. The following
features can be observed for both models:

• in both cases the islands tend to expand along the island/substrate interface(s)
but are constrained by the substrate

• the non-buried island on the substrate reduces its extensional lateral mismatch
strain gradually from its maximum value of ε‖ = (aAlAs − aInAs)/aInAs ≈-0.067

4element PLANE13. Online ANSYS manual at http://www.cesup.ufrgs.br/ansys/realtoc.html
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Figure 5: FEM solution for axially symmetric InAs island on the AlAs substrate.
Left: lateral component of the strain field. Right: Vertical component of the strain
field. The over-strain at island edge (|ε| >0.067) is caused by the stress singularity
point at island edge.

Figure 6: FEM solution for axially symmetric InAs island in the AlAs matrix. Left:
lateral component of the strain field. Right: Vertical component of the strain field.
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toward the island top by expansion. In the buried island the expansion is more
complicated.

• the substrate also undergoes deformation in directions along the island/substrate
interface(s), providing a strain field in the substrate of the opposite sign to the
island strain. For non-buried islands this strain decays downwards and becomes
insignificant at substrate depth of about two island heights. In the case of a
buried island this substrate strain decays in the same manner both upwards
and downwards from the island basement. In lateral direction substrate strain
decreases much faster.

• when an island tries to expand, it compresses the substrate along the free surface
adjacent to the island edges. This provides a driving force for the repulsion
between the strain fields of neighboring islands. Experimentally island repulsion
phenomena has been observed for the Ge/Si(001) system [28].

• for the non-zero contact angle between island and substrate there is a stress
singularity point at the edge. Here the mechanical stress reaches an infinite
value [82]. The material in the direct vicinity of this point undergoes over-
deformation (see strain scale). It was found that for islands with increasing
height the stress at the island edge is a potential source of dislocations leading
to plastic relaxation of stress in the island [83]. The strain energy at island
edges is considered to be the cause of plastic relaxation of coalescent islands
during the Ostwald ripening process [84].



Chapter IV

Experimental equipment and
techniques

IV.1 Six-circle X-ray diffractometer

IV.1.1 Device overview

X-ray diffraction experiment requires precise control of the sample positioning rela-
tive to the incident X-ray beam, and of relative positioning of sample and detector.
In the simplest case (coplanar diffraction) to set the sample in Bragg conditions it is
necessary to move simultaneously the sample and the detector within the common
plane with corresponding angle misfit θ (θ − 2θ scan). θ − 2θ geometry creates two
degrees of freedom for sample scanning (δ, ω) and additional two degrees of free-
dom for sample alignment on the beam (χ, φ) (see Fig. 1). Such set-up is realized
on a four-circle diffractometer [85]. Implementation of more complicated diffrac-
tion geometries (non-coplanar XRD and GID) requires the higher device flexibility.
This leads to the appearance of further degrees of freedom for sample and detector
(Fig. 1(right)). This particularity supplied such type of devices with an abbreviation
six-circle diffractometer [86]. Here three angles (χ, φ, and ω) are used to align and
scan the sample. The detector can rotate around two perpendicular axes, δ and γ.
The sixths angle, α, enables the rotation of the whole apparatus with respect to the
incident beam what is necessary to control the angle of incidence αi. Under a move-
ment of α, the detector position remains constant with respect to the sample surface,
but changes with respect to the incident beam. The 2θ position of the detector in
this case is a function of both degrees of freedom of the detector and of the incident
beam angle:

cos(2θ) = cos(δ) cos(γ) cos(α)− sin(γ) sin(α) (IV.1)

53
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Figure 1: Four-circle (left) and six-circle (right) diffractometers.

IV.1.2 Diffractometer BW2

The six - circle X-ray diffractometer at the BW2 wiggler beam-line [87] (Fig. 2) is a
highly versatile instrument for different kinds of X-ray diffraction experiments1 [89],
[88]. The X-ray radiation comes from a wiggler in the DORIS electron storage ring.
The beam passes through a Si(111) double-crystal monochromator, which provides
the photon energy selection in the range of ≈7 - 12 keV necessary for X-ray diffraction
experiments. The focussing of the primary beam on the sample is provided by X-ray
mirrors. The motors used on the diffractometer can be separated into three main
groups: motors for beam collimation (slits), motors for instrument alignment, and
the motors for sample/detector movement during the measurement. Slits and their
related motors can be subdivided into absorber slits, monitor slits, and detector slits.
Absorber slits regulate the initial horizontal width of the incoming X-ray beam. The
incoming beam produced by the wiggler magnet is narrow in the vertical direction
(<1mm). The horizontal width of the direct beam is adjustable (absslit function) from
1 - 20 mm. After the monochromator the beam goes through a monitor (ionization
chamber), which measures the intensity of the primary beam. The whole monitor
system including monitor slits can be moved horizontally and vertically (motors moy
and moz). The photon flux can be reduced by introducing an iron or aluminium
attenuator of known thickness between the absorber slits and the monitor (motor
attn).

The beam collimation before the sample is achieved using two sets of vertical
(slud) and horizontal (sllr) straight niobium slits. The beam size can be varied down
to zero. The background noise due to scattering by the air can be reduced by the
front flight tube slit (ftslit) with the minimum size of 0.5 mm.

1www.hasylab.desy.de/facility/experimental stations/stations/BW2.htm
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Figure 2: BW2 diffractometer.
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The detector is mounted at the end of the flight-tube. The appropriate angu-
lar resolution of the detector is provided by the vertical (dsv) and horizontal (dsh)
detector slits with the minimum size of 0.5 mm.

The sample and diffractometer alignment proceeds by means of adjustment of
the position of the sample surface relative to the incident beam, position of detector
relative to the sample, and diffractometer position relative to the beam. Sample
alignment is performed by moving and tilting it in the beam (motors stl, stu, sgl,
sgu). Sample alignment using a laser beam is convenient. Here the sample surface
normal is brought parallel to the sample rotation axis by tilting the sample so that
when it is rotated the laser spot remaines fixed. The sample is positioned to intersect
half of the incident beam using motor dty (diffractometer translation along y axis).

To align the detector relative to the sample, the detector arm is moved with the
flight tube translation motor (ftt) parallel to the sample surface normal. To keep the
common position of the sample and the detector in the area of the incoming X-ray
beam, the whole diffractometer can be moved with the help of three motors (m1, m2,
and m3) using the special command flom. In grazing incidence geometry the sample
movement is controlled by motor alf moving the whole diffractometer relative to the
incident beam.

The rotation of the sample is provided by the motor oms, the rotation of the
detector arm - by the motors 2ts and ftr. These three motors determine the degrees
of freedom for the area, where the detector can collect the signal scattered from
the sample. The movement of motors oms, 2ts, and ftr are controlled by executing
macros, which provide the movement of the sample-detector system in reciprocal (h,
k, l) space.

IV.2 Special equipment

IV.2.1 Vacuum chamber for X-ray diffraction experiments

X-ray diffraction experiments under ultra-high vacuum conditions were performed
using a ”baby-chamber” - a portable vacuum chamber with Be-hemispherical window
(see Fig. 3). The Be hemispherical window is transparent for the X-ray photon
energies above 6 keV. The vacuum is maintained by an ion getter pump (pressure
< 5 · 10−9 mbar). To maintain the high weight of the chamber properly aligned on
the diffractometer a specially designed holder is used.

IV.2.2 He-chamber for X-ray diffraction experiments

In diffraction experiment using highly intensive synchrotron radiation the effects of
the sample-beam interaction cannot be neglected (see section VI). Hence contact
between the sample and the ambient air during experiment should be avoided. The
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Figure 3: BW2 diffractometer set-up with UHV X-ray chamber. 1 - Be window of
the chamber, 2 - chamber metal holder, 3 - vacuum pump, 4 - X-ray eye, 5 - detector
arm, 6 - detector flight tube, 7 - sample goniometer table, 8 - monitor (incoming
beam) slits, 9-monitor electronics.

diffraction experiments on samples, which had been exposed to air, were performed in
a He atmosphere. For this purposes, the special chamber constructed in the University
of Würzburg was used (Fig. 4). The chamber has side walls made of Kapton foil,
transparent for X-ray radiation. It can be filled with He gas with a slight overpressure.

IV.3 X-ray diffraction geometries

IV.3.1 Terminology

The main parameter determining the difference between scattering geometries is the
position of the diffraction vector Q determined by the incoming KIN and scattered
KOUT wave vectors.

Q = KOUT −KIN (IV.2)

The vertical component of reciprocal vector, qz, is set to be parallel to the crys-
tal(substrate) surface normal. The mutually orthogonal qx and qy components lie in
crystal(substrate) surface plane. If both vectors KIN and KOUT are in the plane of
surface normal, this diffraction set-up is called coplanar. If in the coplanar geometry
only variations of the qz component are analyzed, this case is called symmetrical. If
variation of qz and qx(qy) components are necessary, an asymmetrical setup is used.
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Figure 4: BW2 diffractometer set-up with the He-chamber. 1- chamber connection
unit for the diffractometer. 2 - metal holder for the Kapton foil screen (3), 4 -
connection to the He line, 5 - sample goniometer table, 6 - detector flight tube, 7 -
monitor slits

For a thick substrate crystal with a flat surface the Q are restricted. The first
limitation is due to the fact that the Ewald sphere has a maximum radius of 1/λ.
In the presence of a strongly absorbing thick flat crystal one half of the sphere is
”shadowed” by the sample. The vertical components for the incoming and outgoing
wave vectors are also limited by:

kIN
z ≤ 0 and kOUT

z ≥ 0 (IV.3)

This leads to the appearance of additional ”dead” zones, or sub-spheres, within the
Ewald sphere, or half-spheres for the flat sample, with radius of 1/(2λ), which are
inaccessible.

For a [001]-oriented zinc-blende substrate crystal the accessible part of the recip-
rocal space is shown in the Fig. 5. Here the marked lines and colored slices represent
1D scans and 2D cuts of reciprocal space. The reflections being in the dead areas can
be brought into the allowed part of the reciprocal hemisphere by in-plane rotation of
the sample (angle θ in the Fig. 5).

The general diffraction geometry is shown in Fig. 6. Here each of the incoming
and outgoing wave vectors is determined by two main angles, θ and α, corresponding
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Figure 5: Accessible part of the reciprocal space for [001]-oriented zinc-blende single-
crystal. Q values inside the volumes limited by two small hemispheres are forbidden
and can be brought into the allowed part of reciprocal space by in-plane rotation
of the whole coordinate system (angle θ). Numbered lines and slices of reciprocal
space represent the main diffraction geometries used. 1 - GID in-plane mapping; 2
- HRXRD out-of-plane mapping; 3 - GISAXS out-of-plane mapping; 4 - GID line
scanning; 5 - XRD/reflectivity.
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Figure 6: Diffraction geometry in angular space. General case.

to projections on the x(y), and z- axes. Using these angles, vector Q can be written:

Q = k




cos(αf ) cos(2θf )− cos(αi) cos(2θi)
cos(αf ) sin(2θf )− cos(αi) sin(2θi)

sin(αf ) + sin(αi)


 (IV.4)

where k = |k| = 2π/λ.

IV.3.2 Grazing incidence small angle X-ray scattering (GISAXS)

In the GISAXS geometry the momentum transfer varies in the vicinity of the sam-
ple surface normal, see Fig. 7. In the grazing incidence regime with θi = 0, the
components of the diffraction vector are:

qx = k(cos(αf ) cos(2θ)− cos(αi))

qy = k(cos(αf ) sin(2θ))

qz = k(sin(αf ) + sin(αi)) (IV.5)

where the vertical resolution δ(qz) is determined primarily by the angles αi = αf
and is in the order of 10−3 Å−1. The absolute value of the vertical component is
close to zero. From Fig. 5 (cut 3) the one lateral component, say qy, does not have
any restrictions. GISAXS can allow one to investigate the lateral dimensions of the
objects, which are smaller then 0.1µm. The main restriction is the lateral resolution:

dQy

dθ
δ(θ) +

dQy

dαf
δ(αf ) ≈ 2k(δ(θ) + αfθδ(αf )) ≈ 1 · 10−3Å−1 (IV.6)
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Figure 7: Grazing incidence small angle X-ray scattering geometry.

Figure 8: Grazing incidence X-ray diffraction geometry.

When the small values of qz and qy vectors are used (area close to the specular primary
beam), the GISAXS geometry is used for analysis of shape and spatial distribution
of sub-micrometer small crystals [90],[91].

As the diffuse scattered intensity measured in GISAXS is rather weak, long inte-
gration times are required to obtain sufficient statistics of the recorded signal.

IV.3.3 Grazing incidence diffraction (GID)

In the GID geometry, a reflection process at the sample surface due to small angles of
incidence and exit, αi,f , is combined with a diffraction process, Fig. 8. Consequently,
the investigated Bragg reflection lies within the qx−qy plane, and the Bragg condition
is fulfilled for a sample azimuth for which the reflection lies close to the border of the
forbidden zones (cut 1 and line scan 4 in Fig. 5). The reciprocal space coordinates
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are related to the angles by:

qx = −q‖ cos β

qy = −q‖ sin β

qz = k(sin(αf ) + sin(αi)) (IV.7)

with q‖ = k
√

cos2(αi)− 2 cos(αi) cos(αf ) cos(2θ) + cos2(αf ), and sin β =
k cos(αf ) sin(2θ)

q‖
.

The GID-resolution is typically about 5 · 10−3Å−1. As qz is also virtually zero in this
geometry, only lattice strains parallel to the sample surface can be obtained in GID.
In addition, the negligible vertical component of the diffraction vector allows GID-
data to be analysed using the kinematical approximation. The main advantage of
GID is its sensitivity to thin layers near the surface. In GID experiments on nano-
scale objects, the incoming beam covers the maximum surface area and so provides
the highest possible intensity. This is especially important if the surface densities of
scattering objects (islands) are small.

IV.3.4 Surface-sensitive asymmetrical X-ray diffraction (GI-
HRXRD)

This technique combines the advantages of GID and coplanar diffraction (XRD). It
is the sensitivity to thin layers at the sample surface due to the small incidence angle,
and the highly resolved finite vertical momentum transfer qz makes the geometry
sensitive to the vertical arrangement of atoms. The GI-HRXRD technique exploits
a fourth degree of freedom in reciprocal space, as illustrated in Fig. 9. In the GI-
HRXRD geometry, all three components define the respective values of the diffraction
vector Q. The diffraction plane, i.e. the plane spanned by KIN and KOUT, can be
rotated around the diffraction vector Q. In GI-HRXRD, the incidence angle αi is
fixed below the substrate critical angle. For such αi the scattering geometry becomes
surface sensitive. The probed reciprocal lattice points (RLP) for which grazing angle
is allowed are those which lie within the dead zones and are inaccessible in coplanar
XRD geometry, e.g. (202) reflection, (reciprocal cut 2 in Fig. 5) .

This geometry requires a special set-up where the detector can be moved over
a large angular range around two axes, in our case, driven by motors ftr and 2ts.
In addition, due to the small incidence angle, most of the incident intensity is spec-
ularly reflected. Hence this scattering geometry is only feasible with very intense
synchrotron X-ray sources.

IV.3.5 X-ray reflectometry (XRR).

X-ray reflectometry represents an extreme case of coplanar XRD. Here only the vicin-
ity of the origin of reciprocal space is probed. Similar to GISAXS, XRR is completely
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Figure 9: Grazing incidence X-ray diffraction geometry.

insensitive to the crystalline state of the sample. Only the variation of the average
electron density (refractive indices of the constituent materials) in the sample is im-
portant in XRR. Therefore this geometry is suited to determine layer thicknesses,
composition, interface and surface roughness [101], [102],[103].

Due to the coplanar geometry only the vertical component of the diffraction vector
qz need to be considered, Fig. 10. In XRR the incidence angle αi is commonly referred
as ω, and the scattering angle as 2θ. The exit angle is then αf = 2θ-ω. For typical
angular resolution ∆ω = ∆θ = 0.01◦ the reciprocal space resolution is:

|∆qz| = |δqz

δω
|∆ω + |δqz

δθ
|∆θ

= 2k sin(θ) sin(ω − θ)∆ω + 2k cos(ω)∆θ

≈ 2k∆θ ≈ 1.5 · 10−3Å−1 (IV.8)

IV.3.6 Summary

The main differences between the diffraction geometries for [001]-oriented crystals are
summarized in Table IV.1.

IV.4 Surface imaging tools: Atomic force microscopy

Atomic force microscopy (AFM) is a scanning probe technique that can resolve nanome-
ter size features [92]. The basic principle is illustrated in the Fig. 11. AFM works
by bringing a cantilever, typically made of silicon or silicon nitride with a tip size in
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Figure 10: Geometry of X-ray reflectometry.

diffraction Sensitivity to atomic arrangement Sensitivity to crystallite/island shape
geometry in lateral (qx, qy) and relative arrangement

and vertical (qz) directions
qx qy qz qx qy qz

GISAXS no no no yes yes no
GID yes yes no yes yes no

GI XRD yes yes yes yes yes yes
XRR no no no no no yes

Table IV.1: Sensitivity of different diffraction geometries.

the order of nanometers, in contact with the surface to be imaged. A repulsive force
from the surface applied to the tip bends the cantilever upwards. The amount of
bending, measured by a laser spot reflected onto a split photo-detector, can be used
to calculate the force using Hookes law:

∆z =
δF

kc
(IV.9)

where ∆z is the change of cantilever position along z axis detected by the photo-
detector, δF is the force applied to the cantilever, and kc is the spring constant of
the cantilever. Experiments have shown that a repulsive force of 1nN changes the
cantilever height by 1Å. By keeping the force constant while scanning the tip across
the surface, the vertical movement of the tip follows the surface and so the surface
topography can be measured.

The AFM can work well even in air. In addition, AFM measurement does not
depend on the conductivity of the sample. This makes AFM an excellent tool for fast
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Figure 11: Schematic of an AFM.

surface topography investigations. In the ideal case the resolution of AFM depends
on the radius of the cantilever tip [93]:

dexp = 2
√
dreal(Rtip + dreal/4) (IV.10)

where dreal is the real lateral size of the measured object, dexp the lateral size of the
object determined by AFM, and Rtip is the radius of cantilever tip. The tip radius
is the front part of the conical tip closest to the sample surface. For surfaces with
nanometer height roughness - in our case nm-size islands - the resolution decreases
rapidly. If we consider an island size of 20 nm and tip radius of 1 nm, then according
to Eq. IV.10 the estimated island size will differ from its real value by at least 10%.

IV.5 Numerical techniques.

IV.5.1 Calculation of intensity patterns from elastically strained
islands.

The displacement field derived from the finite element (FEM) model was used to
calculate the diffuse intensity distribution.

For non-buried islands on the substrate the kinematical calculations were made
by numerical integration (Eq. II.53) using the island dimensions as a boundary con-
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ditions for shape function. For buried islands the model calculations involved the
displacement field generated in the surrounding matrix material.

A net of acquisition points was created to retrieve the 2D displacement field
from the 2D FEM solution. At these points the vertical and lateral projections of
displacement vector were calculated. At each point (X,Y) in the FEM coordinate
system, the mechanical displacement was determined using a spline procedure. The
derived 2D displacement field was then used for the numerical computation of integral
(II.53).

IV.5.2 Calculation of GISAXS intensities.

In a GISAXS experiment the scattering amplitudes can be determined using the
crystal shape integral (see II.6).

The software package IsGISAXS, developed by R.Lazari [94] can simulate out-
of-plane (qx, 0, qz) GISAXS intensity distributions using both kinematic (BA) and
distorted wave (DBWA) approximations [95].

In this thesis the IsGISAXS program was used to determine the island shape
(including size distribution and inter-island correlation effects) by numerical calcula-
tions.

IV.5.3 Calculation of XRR intensity profiles.

The calculation of the theoretical reflectivity curves and the best-fit model optimi-
sation were done using the fewlay software package [96]. This program is based on
the approximate solution (Parrat; L.N’evot and P.Croce, see II.12) for dynamical
scattering from layered structures [98].



Chapter V

Theoretical study of the
correlations between island shape
and strain and the X-ray diffuse
pattern.

In this chapter the sensitivity of the island strain field to changes in island morphology
and composition will be investigated. The limits of the simplified linear and FEM
approaches to describe the process of elastic relaxation in islands will be discussed.

V.1 Island without displacement field.

Shape function.

In this section the features of diffuse pattern related to the shape function will be
shown.

Kinematical approach. In the absence of a displacement field an island can be
described as a single crystal with a particular lattice constant and shape. The position
of island diffraction maxima can be derived using the equation:

|Qhkl| = 2π

dhkl
(V.1)

where dhkl is a distance between crystal lattice planes of the order (hkl). For a [001]-
oriented single crystal, the projection of each component of diffraction vector Q on
each principal axis in reciprocal space can be simplified to:

|Q| = 2πn

a
(V.2)

67
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Figure 1: In-plane (Q100,Q010, 0) (a) and out-of-plane (Q100, 0,Q001) (b) reciprocal
space cross-sections calculated for conical island (a=5.6533Å, H=50Å, R0=100Å,
α=26.5◦). The areas around (202) and (220) Bragg reflections, marked by black
rectangles, are shown in Fig. 2 with higher resolution

where a is a crystal lattice constant, and n is the order of the Bragg reflection.
The intensity distribution around central diffraction maximum of each reflection is
described by the Fourier transformed crystal shape function.

To show the shape function effect, the diffuse intensity pattern of a conical island
(a=5.6533Å, height H=50Å, diameter D=200Å, base angle 1 α=26.5◦) is presented
in Fig. 1. The kinematically calculated in-plane (Q100, Q010, 0) and out-of-plane
(Q100, 0, Q001) patterns are shown. On both reciprocal space slices, the intensity
maxima from reflections of four orders can be observed, corresponding to the zinc-
blende crystal structure. Pronounced differences between in-plane and out-of-plane
reciprocal lattice point shapes can be observed. In the in-plane projection, the al-
lowed Bragg reflections are the points. In addition, ring-like intensity patterns are
found around forbidden Bragg reflections. These intensities are parts of out-of-plane
truncation cones (see below) coming from allowed Bragg points below the investigated
reciprocal space cut.

This pattern is orders of magnitude weaker, than that of allowed reflections. In
Fig. 1(b) one can see vertical and tilted stripes going through the maximum positions
of the allowed Bragg reflections. These stripes are results of truncation effects on the
island outer surface and are called truncation rods. Higher resolution reciprocal space
maps around the (220) and (202) Bragg reflections are shown in Fig. 2. It can be seen,
that the Fourier transformation of an [001] axially symmetric strain-free island is an
axially symmetric function with the symmetry axis along the Q001 direction. The
complex oscillatory behavior of the intensity pattern in Fig. 2(a) can be described

1angle between the island base normal and the normal to the cone surface
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Figure 2: Calculated intensity patterns in the vicinity of (220) (a) and (202) (c) island
Bragg reflections. Intensity distribution along dashed line cut on plot (a) calculated
using atomistic (full circles) and analytical (line) approaches is shown on plot (b).

analytically by scattering amplitude:

F (Q, R,H, α) =

∫ H

0

2πR2
z

J1(|Q‖|Rz)

|Q‖|Rz

(V.3)

where Q is the diffraction vector with its in-plane projection Q‖, R is the island base
radius, H the island height, α the island base angle, and J1(x) a Bessel function of
first order.

The line scan through the Bragg peak maximum (dashed line in Fig. 2(a)) cal-
culated using both atomistic island model and analytical expression V.3 are plotted
in Fig. 2(b). For a strain-free island both approximations agree well. The full width
half maximum (FWHM) in Fig. 2(b) is related to the maximum island base diameter
(FWHM=0.0155 Å−1 corresponds to an island diameter of ≈ 200Å). From the angle
between the tilted and vertical intensity streaks in Fig. 2(c) one can determine the
island base angle α.

Distorted wave approximation (DWBA). In principle Fourier analysis can reveal
information about the island morphology and crystal structure for nanoscale strain-
free islands. Real SK-islands are not strain-free and the combined effects of shape
function and strain field on the diffuse intensity pattern have to be taken into account
(see II.8). The analysis of the shape function alone for strained islands is only possible
in the GISAXS scattering geometry (see IV.3.2), when the diffuse pattern in the
vicinity of the primary beam is measured. To get a detectable signal from real island
samples, the grazing incidence geometry is used (see IV.3.3). Under these conditions,
four-beam scattering takes place (see II.11.2).

To establish the sensitivity of GISAXS to changes of the parameters of the lens-
shaped islands, model calculations for αin = 0.15◦ were carried out. In the calcula-
tions the lens-shaped islands were approximated by rotational trapezoids. The island
height-to-radius ratio (HRR) was varied. The calculated out-of-plane GISAXS pat-
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Figure 3: Calculated out-of-plane island GISAXS patterns in kinematical (upper row)
and DWBA (lower row) approximations. Conical islands with base radius R0=30nm
and varying HRR ratio (HRR=1 (a,e), 0.75 (b,f), 0.5 (c,g), and 0.25 (d,h)) were used.

terns for conical island (R0=30nm) with varying HRR parameter are shown in Fig. 3.
Both kinematic and DWBA calculations are presented. Reflection/refraction effects
cause significant changes in the kinematic diffraction pattern.

V.2 Island with displacement field.

Linear approximation versus FEM.

Before the complex FEM model is discussed, a simplified approximation for strain re-
laxation will be considered using iso-strain area model (see II.11.3). The assumptions
of this model are fulfilled for islands, in which the lattice constant varies linearly from
the bulk substrate crystal value at the base to the bulk value of island material at
the top. The corresponding changes in vertical lattice displacements are determined
by Hookes law (see Eq. III.12).

The linear approximation (LA) has obvious advantages: It can be easily imple-
mented (see App. B), it is independent of the mechanical properties of the substrate
and does not require complex calculations using FEM. The main weakness of the LA
approach is that it describes the deformation in the island independently on its shape
and mismatch strain relative to the substrate.

The morphology of the island, constrained by the substrate strongly influences
the displacement field (see next sections). The applicability of the LA approximation
to islands with low (εmax =-1%) and high (εmax ≈-6.7%) lattice mismatch will be
compared to the FEM results.
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Figure 4: Lateral lattice constant profile as a function of island height, calculated for
strained conical islands for low (εmax=-0.01 and high (εmax=-0.067) misfit deformation
values for the LA and FEM.

Conical islands with base radius R0=15nm and height H=7nm were usd for the
model calculation2.

Low deformation case. The lateral lattice constant distributions as a function of
the island height for island with εmax =-1%, derived from LA and FEM (in the case
of FEM εlateral = εxx values along the island vertical symmetry axis3), are shown in
Fig. 4. It can be seen, that for small lateral deformation both methods yield similar
results. To analyse the island 3D strain profiles the reciprocal space maps (RSM) in
the vicinity of in-plane (220) and out-of-plane (202) substrate bulk reflections shown
in Fig. 5 were calculated. Diffraction vector values are given in reciprocal lattice units
(r.l.u.) relative to the bulk substrate. It can be concluded, that for deformations up
to ≈1% the strain field in the island can be adequately described by the LA.

Large deformation case. For εmax ≈-6.7% large discrepancies between LA- and
FEM- calculated lateral strain profiles are found (Fig. 4). The difference is largest
at the island base and diminishes continuously towards the top. The origin is the
island/substrate mismatch, which has to be taken into account. The interaction at
the interface leads to a mutual deformation of the island and the underlying substrate

2these dimensions are intermediate between island sizes for InAs/GaAs(001) and InAs/AlAs(001).
See VIII

3axis Y in 2D FEM model
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Figure 5: Diffuse intensity patterns, calculated in the vicinity of the in-plane (220)
(a,b), and out-of-plane (202) (c,d) substrate Bragg reflection (Q100= Q010= Q001=0,
[r.l.u.]) for gradually strained conical islands with a maximum misfit deformation
εmax=-0.01. Island displacement fields were created using LA (a,c) and FEM (b,d).

(see III.3.4).
Calculated in-plane and out-of-plane RSMs are shown in Fig. 6. For both approx-

imations, the influence of the shape function on the in-plane intensity pattern should
also be noticed. In the radial direction (Q100=Q010), the intensity decay from the
position corresponding to the island lateral lattice constant at its base towards the
position of bulk island material (negative Q values on the plot) takes place. Within
this range of Q values, the intensity distribution is related to changes in the island
dimensions. This effect will be analysed in the next section. The additional intensity
streaks on the in-plane pattern are complex. It is known, that the shape and position
of these streaks are connected to the lateral deformation field gradient in the islands.

Under high deformation the outer parts of the conical islands undergo bending
(see III.3.4), which changes the shape of the iso-strain areas. Compared to the LA
diffraction pattern, the out-of-plane FEM patterns then also reveal difference. For
lattice mismatches greater than -1% only FEM calculations give reliable values for
island displacement field.
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Figure 6: Diffuse intensity patterns, calculated in the vicinity of the in-plane (220)
(a,b), and out-of-plane (202) (c,d) substrate Bragg reflection (Q100= Q010= Q001=0,
[r.l.u.]) for gradually strained conical islands with a maximum misfit deformation
εmax=-0.067. Island displacement fields were created using LA (a,c) and FEM (b,d).

V.3 Limitations to analytical shape extraction for

strained islands using in-plane diffraction.

The in-plane diffuse intensity pattern from strained islands contains information
about the island lateral displacement field and shape function. The effect of both
parameters on the diffuse pattern is complex. Certain simplifications, based on ISA
island model (see II.11.3), can be used to separately analyse the lateral strain profile
and the shape of non-capped quantum dots. To provide a sufficient resolution of each
ISA zone with particular lateral lattice constant, the vertical gradient of lateral strain
field should be maximal. If the radial in-plane reflection (i.e. (220)) is analysed, then
this limitation can be written as [97]:

dQ‖
dz

H →∞ (V.4)

where Q‖ = |Q‖| =
√
Q2
x +Q2

x, z is the height of particular ISA over the substrate
level, and H is the maximum island height.

The second limiting parameter is the lateral size R(z) of each particular iso-strain
area, which should be large enough to provide the sufficient sharpening of ISA shape
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function, and so, the maximal separation of neighboring ISA reflections:

R(z)→∞ (V.5)

Both limitations are considered in the relation [97]:

dQ‖
dz

HR(z)� 1 (V.6)

In the LA model (suitable approximation for Eq. V.4), the lateral lattice constant
a in the island with the lattice mismatch relative to that of the substrate (asub)
changes linearly as a function of z up to its maximum atop value at height H at the
top of the island:

a = asub +
atop − asub

H
z (V.7)

In equation V.7 we introduce the mismatch strain, defined as εmax = asub−atop
atop

. Then:

a = asub − εmaxatop
H

z (V.8)

For conical islands, the radius of each ISA as a function of z is given by:

RISA = R0 − z

tan(α)
(V.9)

where R0 is the island base radius, and α is the island base angle.
The size of each ISA in reciprocal space is given by ∆ISA (FWHM). It is related

to the ISA diameter DISA=2RISA:

∆ISA =
2π

DISA

=
π

RISA

(V.10)

For island with gradually vanishing lateral dimensions ∆ISA from linear becomes an
asymptotical function for RISA values in the vicinity of island top (∆ISA → ∞ for
RISA → 0). Equation V.9 can be rewritten in the form:

RISA = R0 − H

tan(α)

(asub − a)

εmaxatop
= R0 − H

tan(α)

εISA
εmax

aISA
atop

(V.11)

where εISA is the lateral misfit strain of particular ISA with lateral constant aISA
relative to the substrate. Function ∆ISA becomes irresolvable (RISA = R0− H

tan(α)
= 0)

for:

εISA
εmax

aISA
atop

→ 1 (V.12)
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Figure 7: In-plane reciprocal space cuts in the vicinity of the (220) substrate Bragg re-
flection (Q100 = Q010 = 0 r.l.u.) for LA deformed conical islands (H=70Å, R0=150Å)
with island/substrate lattice mismatches εmax=-1.7% (a), -3.2% (b), -5.3% (c), and
-6.7% (d).

From last equation follows, that for islands with low lattice mismatch (εmax → 0), the
asymptotical broadening effects (for εISA → εmax) on diffraction pattern will appear
much earlier, than for structures with larger mismatch.

To visualize this effect, the same island model as in previous section was used to
calculate the in-plane diffuse intensity patterns in the vicinity of (220) substrate Bragg
reflection. Patterns (Fig. 7) were created for islands gradually deformed using the LA
for maximal lateral lattice mismatch ε varying from -1.7% up to -6.7%. For a given
strain profile, the values of island radius (∆ISA/2) for particular lattice constants
obtained from the patterns in Fig. 7 (scans transversal to the radial direction) are
shown as lines in Fig. 8. For the smallest lattice mismatch a discrepancy between
estimated and nominal values arises already in the direct vicinity of island base.
For largest mismatch the same situation occurs near the top of the island. In a real
island structures with high nominal lattice mismatch where interdiffusion of substrate
material in the island takes place, the maximum mismatch strain will be reduced. In
this case, the influence of the broadening effect increases, and so the uncertainty in
the analytically estimated island lateral dimensions also increases.

V.4 Morphology induced changes in island’s strain

field.

In this section, the sensitivity of the island displacement field to island morphology
variations will be analysed. Since only axially-symmetric islands are considered only
the deviation of island vertical dimensions relative to its lateral dimensions are sig-
nificant. For model InAs islands the effect of the height to radius ratio (HRR) on
island displacement field was investigated. The main goal was to analyse the specific
changes in the island diffuse pattern (Fourier transformation of island strain field).
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Figure 8: The radius of iso-strain areas with different lateral lattice constant, ex-
tracted from the diffraction patterns in Fig 7. (black lines). The nominal radius
changes are ♦ (ε=-1.7%), © (ε=-3.2%), 4 (ε=-1.7%), and � (ε=-6.7%).

Conical islands with a base radius of 200Å and εmax=-0.067 for the HRR values vary-
ing from 0.25 up to 1 (HRR=1 is the upper physical limit for hemi-spherical droplet
wetting the substrate) were considered. The distributions of lateral strain compo-
nents within the vertical island symmetry axis calculated using FEM are shown in
Fig. 9. The vertical axis on the plot is given as height over the substrate surface, with
negative values corresponding to the underlying substrate material. It can be seen
that for different HRR values the lateral strain profile undergoes significant changes.
The LA is only satisfied for the model with HRR=0.5 (Fig. 9(b)). For the HRR<0.5
(Fig. 9(a)), the island does not relax completely at the top. For HRR>0.5, a full
strain relaxation and further over-relaxation (≈0.2%) occurs. The nature of this ef-
fect is complicated and is primarily related to the mechanical solution for the strained
cone (wedge) on a flat surface [54]. The mechanical strain energy is proportional to
the square of the strain (U∼ ε2) [55]. For εmax=-0.067 conditions with HRR>0.5 do
not correspond to a minimum energy state. This could be the reason, why islands
with HRR above 0.5 are not found in the nature [56].

The in-plane intensity distributions along the radial Q110 direction in the vicinity
of the (220) GaAs Bragg point (vertical dashed line on the plot) are shown in Fig. 10.
All profiles have been rescaled relative to the maximum intensity. Taking the inten-
sity distribution in Fig. 10(b) as a reference, the effect of underrelaxation (Fig. 10(a))
is very clear. However, the tiny overstrain effect cannot be seen because it is mashed
by the finite size induced peak broadening. The peaks in Fig. 10(c,d) arise from
the increase in fully relaxed material in the island. In Fig. 11 the out-of-plane dif-
fuse intensity distributions in the vicinity of the (202) GaAs Bragg reflection (Q100=
Q001=2.22Å−1, Q010=0, the upper right corner of the plot box) are shown. It can be
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Figure 9: FEM lateral strain profile along the island vertical symmetry axis, for
conical InAs island with HRR=0.25 (a), 0.5 (b), 0.75 (c), and 1 (d). The zero-strain
position is indicated by the dashed vertical line.

Figure 10: Calculated intensity distribution along the radial Q110 direction in the
vicinity of the (220) GaAs Bragg position (vertical dashed line) for conical InAs
islands with HRR=0.25 (a), 0.5 (b), 0.75 (c), 1 (d).
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Figure 11: Calculated diffuse intensity patterns in the vicinity of the (202)
GaAs Bragg position (Q100= Q001=2.22Å−1, Q010=0) for conical InAs islands with
HRR=0.25 (a), 0.5 (b), 0.75 (c), 1 (d).

seen, that with increasing HRR values the intensity in the diffuse intensity pattern
shifts gradually towards the position for relaxed bulk InAs ((Q100=Q001=2.07Å)).

The changes in island height to width ratio strongly modify the strain field in
the island. The diffuse intensity patterns represent a fingerprints of an island with a
specific HRR value.

V.5 Effects of interdiffusion.

In real structures grown at temperatures near 500◦C interdiffusion takes place. In
this section homogeneous and front diffusion will be considered: in the first case
diffusion leads to the homogeneous intermixing within the whole island volume, in
the second case, the diffusion proceeds along the z-axis, creating zones with different
concentrations of substrate material.

Homogeneous interdiffusion. For modelling the homogeneous diffusion process,
the assumption is made, that the intermixing with the substrate material reduces the
island mismatch.

A conical island model with HRR=1 on a GaAs substrate was used for the calcu-
lation with nominal In concentrations of CIn=1, 0.5, and 0.2. The FEM calculated
lateral strain profiles are shown in Fig. 12. The elastic deformation is reduced pro-
portional to the value of CGa=1-CIn. The corresponding calculated out-of-plane
diffraction patterns in the vicinity of the (202) GaAs Bragg reflection (upper right
corner on the plots) are shown in Fig. 13. Here the diffuse intensity is localized within
the relaxation triangles for the corresponding InxGa1−xAs alloy. The relaxation of
islands with an arbitrary HRR, composed of a particular InxGa1−xAs alloy is sum-
marized in Fig. 14. Here the lateral strain value at the top of the island is shown for
different HRR values. For HRR=0 εtoplateral represents the maximum mismatch strain
for a pseudomorphically grown film of the same chemical composition.
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Figure 12: FEM calculated lateral strain profile distribution along the vertical symme-
try axis of conical islands (HRR=1) of InAs (a), In0.5Ga0.5As (b), and In0.25Ga0.75As
(c) on a GaAs substrate.

Figure 13: Calculated diffuse intensity patterns in the vicinity of the (202) GaAs
Bragg reflection for conical islands (HRR=1) of InAs (a), In0.5Ga0.5As (b), and
In0.25Ga0.75As (c).
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Figure 14: FEM calculated lateral strain values at the top of conical islands with
varying HRR of InAs (a), In0.5Ga0.5As (b), and In0.25Ga0.75As (c).

Front diffusion.
A conical island with base radius R0=200nm and HRR=1 with initial island lat-

eral composition is shown in Fig. 15(a). Figures 15(b, c, d) show simplified island
compositions. The calculated diffuse intensity patterns in the vicinity of (220) and
(202) GaAs Bragg reflections are shown in Fig. 16. It can be seen, that the simpli-
fication of the initial concentration profile with three- or two-layer approximations
(Fig. 16(b/f, c/g)) does not significantly modify the strain field in the island. Relative
intensity changes occur but the overall shape of pattern remains almost unchanged.
However, the diffraction pattern for averaged composed island looks significantly dif-
ferent. It can be concluded that the two-layer approximation represents a reliable
simplification for the structural analysis of the islands.

V.6 Finite size effects.

The influence of the island strain field on the diffraction pattern has been discussed
under the assumption, that the strain-induced diffraction patterns are sufficiently
well localized in reciprocal space.

For small islands size induced broadening effects should be taken into account.
FEM lateral strain profiles were calculated for InAs conical islands on GaAs sub-

strate with HRR=1 and island base dimensions, decreasing from 60nm down to 10nm
are shown in Fig. 17. It can be seen, that for islands with equal composition and
HRR value, the size reduction only leads to a rescaling of the strain profile. The
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Figure 15: Island with lateral composition profile varying over the island height, with
nine zones (a), and approximated by three (b), two (c) zones, and by constant In
composition (d).

Figure 16: Kinematically calculated diffuse intensity profiles in the vicinities of
the (220) (a,b,c,d,) and (202) (e,f,g,h) GaAs Bragg reflections for conical islands
(HRR=1) with a composition profile variation along the vertical island axis. Profile
with nine layers (a,e), three layers (b,f), two layers (c,g), and by an island model with
constant composition (d,h).
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Figure 17: Lateral strain profile distribution along the vertical symmetry axis for
conical islands (HRR=1) with lateral size of of 60nm (a), 40nm (b), 20nm (c), and
10nm (d) on GaAs substrate.

calculated diffuse intensity patterns in the vicinity of the primary reflection (out-of-
plane GISAX), the (220), and the (202) GaAs Bragg reflections are shown in Fig. 18
and Fig. 19. GISAXS patterns were calculated for an incident angle α=0.2◦ using the
DWBA approximation. The other patterns were calculated using kinematic approx-
imation. In Fig. 18, the Fourier transformed shape function for islands with smaller
dimensions are broadened and have reduced intensity. For islands smaller than 20nm
(Fig. 18(c)) the shape cannot be any more determined. Size-influenced broadening
also strongly affects the strain-induced intensity pattern, when island dimensions are
less then 20nm (Fig. 19(b)).

For island sizes below 20nm (Fig. 19(c)) the size-induced effects predominate.
For smaller structures (Fig. 19(d)) the diffraction patterns become so broad, that the
Fourier pattern of the island strain-field cannot be resolved. The intensity distribu-
tions along radial Q110 reciprocal space direction in the vicinity of (220) GaAs Bragg
position for all island sizes are shown in Fig. 20.

For sufficiently large islands, the intensity distribution can be correlated with the
Fourier transform of island lateral strain field. It can be seen, that for island sizes
less then 20nm, this profile is so strongly changed due the size effect, that the strain
information cannot be recorded.
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Figure 18: Calculated GISAXS patterns for conical islands (HRR=1) on a GaAs
substrate with lateral size of 60nm (a), 40nm (b), 20nm (c), and 10nm (d).

Figure 19: Kinematically calculated diffuse intensity profiles in the vicinities of the
(202) (a,b,c,d,) and the (220) (e,f,g,h) GaAs Bragg reflections for conical islands
(HRR=1) on a GaAs substrate with lateral size of 60nm (a,e), 40nm (b,f), 20nm
(c,g), and 10nm (d,h).
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Figure 20: Calculated intensity distribution along the radial Q110 direction in the
vicinity of the (220) GaAs Bragg position (vertical dashed line) for conical InAs
islands with HRR=1 and lateral size of 60nm (a), 40nm (b), 20nm (c), and 10nm (d).

V.7 Conclusions

(!) The limits of applicability of the ISA island model, based on LA deformation
approach were investigated. The ISA approximation is sufficient to describe
elastic strain relaxation in islands with a lattice mismatch of less than 1%
relative to the substrate. In addition, the island HRR should be in the order
of 0.5. For smaller and larger HRR value, and large misfit strains the LA
deformation model is not applicable.

(!) The applicability of the analytical method for lateral island shape analysis from
in-plane Fourier patterns for elastically strained islands with different lattice
mismatch were investigated. The method was found to be effective for struc-
tures with high lattice mismatch. For low mismatch strains the method was
found to yield unreliable results.

(!) The shape of GISAXS patterns was found to be sensitive to changes of the island
morphology (island HRR parameter). The effectiveness of GISAXS technique
was found to be dependent on the island size. For island sizes below 20nm the
technique is not applicable.

(!) The shape of the strain-induced diffuse patterns (in- and out-of-plane) was
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found to be sensitive to the island morphology (HRR) and the island chemical
composition. It was found, that an arbitrary front diffusion profile in the island
can be adequately well approximated by the two layer model.

(!) The condition where the island size does not modify the strain-induced diffrac-
tion pattern holds for islands larger then then 20nm. For smaller islands the
broadening of the diffuse intensity distribution makes the measurement strain-
insensitive.



Chapter VI

Interaction of high-intensity
synchrotron radiation with
quantum dot samples.

Scientific measurements should record data under reproducible experimental condi-
tions. The prerequisite for reproducible experimental conditions are no or negligible
structural changes of the quantum dot samples within the time-period of the experi-
mental investigation. This requirement can be fulfilled only for samples investigated
under UHV conditions. Unfortunately, the technological process for the preparation
of the quantum dot samples did not enable UHV transfer for all of the samples in-
vestigated in this work. Due to this reason only few samples presented in this thesis
were measured under UHV conditions.

All other samples were transferred in the air and measured without the uhv-
chamber. For such samples the effect of the interaction of high-intensity synchrotron
radiation with the quantum dot material should be taken into account. As an exam-
ple of this interaction, the image of an InAs/AlAs(001) QD sample surface is shown
in Fig. 1 after ≈24h in air in the GID geometry. The oxide tracks on sample surface
marked with arrows correspond to the incoming X-ray beam (10keV) positions. The
cause of this effect is the absorption of radiation in the QD-samples that promotes
the oxidation of the island sample material. This effect is very significant for the
InAs/AlAs(001) island system due to the high reactivity of AlAs. To qualitatively
estimate the oxidation damage, two InAs island samples grown on GaAs(001) and
AlAs(001) substrates were analysed. In Fig. 2 line scans along the radial Q110 re-
ciprocal space direction near (220) substrate Bragg positions (dashed line) for both
samples are shown. The same measurements were done at the beginning (initial) and
at the end (end) of a GID experiment. The distributions on the left-hand side of the
substrate peak were of main interest, since the intensity is related to the strain field in
the islands. The respective intensities were measured by counting on monitor counts
and are shown normalized to the intensity values nearest to the substrate. This scal-

86
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Figure 1: Photograph of a InAs/AlAs(001) sample exposed in air for one day to
synchrotron radiation (E=10keV) in GID geometry.

ing is provided to analyse the relative changes of intensity distributions between the
initial and final curves. It can be seen, that at the end the signal has decreased for
both samples. It represents the change in the quantum dot samples due to oxidation
during the measurement period. The relative intensity losses were estimated to be a
factor of 4 for dots grown on GaAs(001) and 9 for dots grown on AlAs(001). Hence
the affected island volume being correspond to factor of 2 and 3. Interesting, the
intensity profile for both samples did not changed after oxidation. This effect will be
discussed later (see VIII.3).

From Fig. 2 it can be also seen that in the vicinity of substrate reflection almost
no intensity changes for both samples was found. To prove the assumption of neg-
ligible structural changes in the substrate material, an AlAs(001) 100nm thick layer
pseudomorphically grown on GaAs(001) substrate was investigated 1. The sample
was exposed to the X-ray beam in GID geometry on air and then investigated using
XRR2. The reflectivity curves for different exposure times are shown in Fig. 3. The
first XRR scan measured in a He atmosphere is shown as a solid line. No significant
changes in the vertical electron density profile in the AlAs layer are apparent. To
avoid oxidation of the quantum dot samples during the X-ray measurement they were
kept in a protective He atmosphere (see IV). Fig. 4 shows experimental reciprocal
space maps in the vicinity of the (202) AlAs Bragg reflection measured on the same
InAs/AlAs(001) quantum dot system in the air and in the He-chamber.The better
quality of the map recorded in the He environment is clearly visible.

1Due to the high chemical reactivity of AlAs the oxidation effects occur within the shortest
possible times.

2XRR is sensitive to the changes of layer chemical composition
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Figure 2: Intensity distribution along the Q110 reciprocal space direction in the
vicinity of the (220) AlAs and GaAs substrate reflections (vertical dashed lines) for
(a) InAs/AlAs(001) and (b) InAs/GaAs(001) quantum dot samples, exposed to air
and to synchrotron radiation (10keV). For sample (b) the UHV-measured intensity
profile is given as a reference.

Figure 3: Reflectivity scans for AlAs layer 100nm exposed in air to synchrotron
radiation (E=10keV).
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Figure 4: (202)AlAs RSM of the InAs/AlAs(001) quantum dot system measured (a)
in He-atmosphere and (b) in air recorded at 10keV.



Chapter VII

Homogeneous islands

Islands grown in the homogeneous growth regime are particularly interesting as build-
ing blocks for optical devices exploiting 3D quantum confinement effects. For these
application the following requirements have to be fulfilled:

• Reliable control of island size uniformity.

• Precise control of island surface density.

• Knowledge of the chemical composition of the islands.

The sub-micrometer size of the islands limits the techniques available to character-
ize such systems. At the moment the main tools for determining island distribution
and surface density in non-capped systems are imaging techniques such as scanning
tunneling microscopy (STM) [99] and atomic force microscopy (AFM) [100]. A disad-
vantage of these methods is the fact that good resolution can only be achieved over a
small area of the sample. In the case of the InAs/GaAs(001) system AFM/STM pro-
vide images of relatively good quality but hardly permit an occurate determination of
the average island size (island distribution) and the statistically relevant island surface
density. For the InAs/AlAs(001) system the island shape analysis is more compli-
cated, because the typical island dimensions are comparable with the resolution of a
standard AFM (see IV). Precise analysis is only possible using electron-microscopy
techniques.

For comparative analysis of macroscopic samples X-ray techniques have several ad-
vantages. Using grazing incidence X-ray methods, such as GID, GIXRD and GISAXS,
the main parameters of island system can be determined with high accuracy because
the measurements average over sample areas of several square centimeters [112].

VII.1 InAs/GaAs(001) island systems

For our investigations we used three QD samples prepared by MBE-deposition of
InAs at 500◦C onto GaAs(001) single-crystal wafers [30].The InAs deposition was

90



CHAPTER VII. HOMOGENEOUS ISLANDS 91

Sample Deposited InAs, ML ρAFM , 109 cm−2 ρ/ρA

A 2.5 9.5 1
B 2.1 6.3 0.66
C 1.8 3.2 0.33

Table VII.1: Comparison of dot surface density values ρAFM from AFM images for
samples A, B and C with different amount of deposited InAs. ρ/ρA is the dot density
of sample B and C relative to sample A, respectively.

performed at the rate FIn=0.2 monolayers (ML) per second and As4 to In flux ratio
FAs4/FIn ≈10. The amount of deposited InAs was 2.5 ML (sample A), 2.1 ML
(sample B), and 1.8 ML (sample C).

VII.1.1 AFM

The surface topography was analysed using AFM. Large scale topographical images
of all three sample surfaces together with FFT images of the same areas (inserts) are
shown in Fig. 1(a,c,e). To illustrate the island distribution and size in the appropriate
scale, magnified images with height markers are shown in Fig. 1(b,d,f).

They reveal that the dot density ρ increases together with the amount of deposited
InAs. The corresponding values are summarized in Table VII.1. The density increases
linearly and extrapolates to zero dot density at about 1.5 ML deposited InAs reflecting
the amount of InAs in the wetting layer. With RHEED we observe a transition from
2D-growth to dot formation at 1.7 ML. The dot’s size does not change within the
accuracy of AFM micrographs. The respective average island first neighbor distances
of 75nm (A), 95nm (B), and 115nm (C) were determined.

For all three samples islands were found to have approximately equal dimen-
sions, being slightly elongated in [110] direction (vertical direction on the AFM im-
ages) ( W110

W1−10
≈ 1.25). Average island dimensions were found to be: island width

W≈70±7nm and island height H≈10±1nm, with HRR≈0.3.
From the FFT images in Fig. 1 it can be seen, that for the sample A with the

highest island surface density a positional correlation effects between the islands can
be resolved. For samples B and C with lower coverage inter-island correlation is not
detectable.

VII.1.2 GISAXS

Diffraction experiments were performed in the grazing-incidence geometry at an X-
ray photon energy of 9.6keV in the He chamber. For the sample A with the highest
island surface density, the experimentally measured out-of-plane GISAXS map in the
vicinity of the specular reflection for an incoming beam angle αi=0.2◦ is shown in
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Figure 1: AFM images of samples with different amount of deposited InAs ((a,b)
sample A, (c,d) sample B, (e,f) sample C) for surface areas of 25 µm2 (a,c,e) - inserts
are corresponding FFT images - , and 1 µm2 (b,d,f). The [110] crystallographic
direction is towards the top of the page.
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Figure 2: (a) Experimentally measured out-of-plane GISAXS pattern; (b) GISAXS
pattern calculated in DWBA for a single island having the experimentally (AFM)
determined dimensions; (c) GISAXS pattern calculated for an uncorrelated group of
islands with Gaussian size distribution (σ=0.2)

Fig. 2(a). Here the GISAXS-pattern is presented in angular coordinates (vertical
angle (αf ) vs. azimuthal in-plane angle). At the vicinity of zero azimuthal angle,
the truncation rod (CTR) and specular reflection appear. The Fourier transform of
the island shape function calculated using the DWBA for a single island with the
AFM-determined dimensions is shown in Fig. 2(b). The island was approximated
by a rotational trapezoid with width W, height H, and base angle α. The same
calculation done for an uncorrelated Gaussian distribution of islands sizes (σ=0.2),
gave the best fit, as shown in Fig. 2(c). The calculated pattern in Fig. 2(c) shows
a good agreement with the experimental data. The fit gave an island base angle
α ≈30±5◦. The calculations for different island widths changes ∆W=20 (island
inisotropy) did not significantly change the calculated GISAXS pattern. The intensity
maximum of the experimental pattern (Fig. 2(a)) marked by the arrow was found
to be unreproducible for non-correlated islands. This peak arises from positional
correlation similar to the FFT-pattern in Fig. 1(a). The angular position of the
maximum is αazimuth=0.1±0.005◦ and is correlated with the island-neighbor distance
d:

2πn

d
=k sin(α) ≈ 2π

λ
α (VII.1)

or

d ≈ nλ

α
(VII.2)

where k is the absolute value of wavevector k, λ is incoming radiation wavelength,
and n is the order of the correlation maximum. Assuming that the observed peak is a
first-order island correlation peak, from Eq. VII.2 the island short-range correlation
length is ≈75±5nm.
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Figure 3: DWBA calculated GISAXS patterns in the case of specially correlated is-
lands with correlation length Λexp (a,b). Image (a) corresponds to the quasi-periodic
array of dots, when image (b) represents a highly distorted para-crystal island order-
ing. White line represent the border at the right side from which experimental signal
cannot be analysed.

To verify the island correlation effect the inter-island correlation length determined
experimental GISAXS pattern (Λexp) was varied as a fit parameter. As a model for
island ordering the para- crystal approximation [108],[109] was used 1. The calculated
GISAXS pattern in the case of quasi-ideal island super-lattice 2 with a corresponding
correlation length is shown in Fig. 3(a). The same calculation for a strongly distorted
para-crystal is shown in Fig. 3(b). It can be seen, that the correlation length Λexp for
the calculated GISAXS pattern is close to the experimental one.

The correlation length Λexp is an important parameter, which can be used for the
analysis of island surface density. However, to make conclusions about the island
surface density, knowledge about the correlation length alone is not enough. The
short-range nature of the observed correlation peak is the limiting factor. It can lead
to the situation, where islands form domains, which have the observed periodicity,
but overlap over larger distances [111],[112].Conclusions about island packing density
can be made by comparing the average inter-island distance, estimated from AFM
images with the island correlation length found from GISAXS. If these values are
comparable, the islands cover the surface of a the wafer homogeneously and the
inter-island distance can be used to determine the island surface density.

The position of the correlation maximum in the GISAXS pattern was measured by
performing azimuthal line scans for fixed αf=0.4 at different sample rotations around
the surface normal, see Fig. 4. Anisotropy in the inter-island correlation distance
can be observed: the azimuthal maximum position changes from 0.09◦ to 0.11◦ for
orthogonal angles giving an anisotropy coefficient of ≈1.2. For highest island surface

1approximation of a quasi-periodically distorted lattice of quantum dots
2small island super-lattice distortions
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Figure 4: The azimuthal position of GISAXS correlation maximum for different
position of the sample (angle omega). 180-degree oscillatory behavior reveals the
anisotropy of inter-island correlation length.

densities the inter-island distances are approximately the dimensions (W) of a single
island3. For sample A the average island dimensions and island correlation distance
are almost equal. Furthermore the anisotropy in the correlation length corresponds
to the island shape anisotropy coefficient. This means that the islands are so close to
each other, that the inter-island correlation distance is modified.It can be concluded
that the studied sample A had an island surface density close to maximum.

The experimental background-subtracted GISAXS patterns for samples B and C
are presented in Fig. 5(a,c). The GISAXS intensity signal is directly proportional
to the number of scatterers (islands). Since all three investigated samples exhibit
the presence of equally shaped islands, the GISAXS patterns acquired with infinite
measurement times should be identical for all three systems. On the other hand, for
limited but comparable measurement times, the GISAXS patterns from the samples
B and C will have lower intensities than that measured for sample A. This decrease
in the relative intensity should then be directly proportional to the corresponding
difference in the island surface densities.

In Fig. 5(b,d) the same patterns as in Fig. 2(c) are shown rescaled proportional
to the relative surface density ratios for samples B and C compared to the sample A.
For the sample C with island surface density ratio of about 0.33 relative to sample A,
the predicted effect can be observed (Fig. 5(c,d). For sample B with surface density
ratio of 0.66 the expected effect is not observed. The reasons for the descrepancy
can be the bad sensitivity of GISAXS technique as well as the not equal island size
distribution or deviations of the actual island surface densities from those determined

3Closer packing is energetically unfavourable, since the island induced strained fields in the
underlying substrate regions of neighboring islands creates a potential barrier for further coalescence.
See III.3.4
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Figure 5: (a,c) experimentally measured and (b,d) DWBA-calculated GISAXS pat-
terns for samples (upper) B and (lower) C.

by AFM. This result is not clearly understood yet.

VII.1.3 GID

Line intensity profiles in radial [110]-directions made in the vicinity of mutually or-
thogonal (220)-type GaAs Bragg reflections for the sample with the highest island
surface density are shown in Fig. 6(a). The intensity distribution contains informa-
tion about the island lateral strain profile. It can be seen that both intensity profiles
are similar which means that the island lateral displacement field is uniform. The
island formation process [99] leading to island shape anisotropy [113] observed by
AFM, does not influence the axial symmetry of the island strain field! The area in
the vicinity of the grey arrow is shown in Fig. 6(b). The intensity distributions along
[220] and [2-20] directions are shifted in their absolute values to enable their visual
analysis. On both curves one can observe a kink on the left side from the GaAs(220)-
substrate reflection. These kinks can be associated with island position correlation
effects. The position of the kinks marked with arrow in the [110]-directions relative
to the substrate is ≈0.08±0.02Å−1, what reveals the inter-island correlation length
close to that determined from GISAXS.

To qualitatively explain the effect of island position correlation on the in-plane
GID intensity distribution from strained islands, kinematical calculations were made.
In Fig. 7(b,c) the diffuse patterns near (220) Bragg GaAs reflection from a single



CHAPTER VII. HOMOGENEOUS ISLANDS 97

Figure 6: (a) and (b) - Experimentally measured line scans along radial [110] di-
rections in the vicinity of (220)-type orthogonal GaAs Bragg reflections. (b) The
enlarged-scale plot of the area indicated by the grey arrow in plot (a). (c) Same line
scan for a different sample.

InAs island (Fig. 7(a)) with a linearly changing lateral strain field (see II.11.3) are
modulated due to the influence of the 2D periodic island arrangement. In Fig. 7(b)
the domain size of the periodic 2D island super crystal is much larger than the unit
cell creating fine 2D intensity modulation of the initial pattern. The periodicity of the
modulation parallel to each of the main reciprocal space directions is 2π/a, where a
is the inter-island distance. Such modulations were experimentally detected for long-
range periodic arrays of Ge/Si(001) quantum dots investigated at synchrotron beam-
lines with high spatial coherence [45]. If the size of the periodicity domain becomes
comparable to the unit cell (short-range effects) the pattern becomes sensitive to the
periodicity only along the mainly probed crystallographic direction. For the [110]
direction, see Fig. 7(c), this intensity modulation corresponds to the short-range
inter-island periodicity along a[110]. For a para-crystal island arrangement the periodic
pattern in Fig. 7(c) will diminish until only weak short-order modulations close to the
substrate position will be present. The determination of the correlation maximum
position with in-plane GID line scans can be a useful method for investigation of
island surface arrangement. As an example, the results in Fig. 6(c) from different
island sample, revealed pronounced short-range periodicity of islands (especially in
[1-10] crystallographic direction).

In Fig. 8 the GID in-plane and HRXRD out-of-plane reciprocal space maps in
the vicinity of (220) and (202) GaAs Bragg reflections are shown for all samples.
The acquisition times for the in-plane and out-of-plane plots were comparable. The
background signals on the plots are cut off. All in-plane and out-of-plane plots have
a common maximum limit, respectively.

The diffuse intensity part around Bragg reflections in Fig. 8 is associated with
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Figure 7: (a) Calculated in-plane map in the vicinity of (220) GaAs Bragg reflection
(Qx=Qy=2.222Å−1) for single linearly deformed InAs island. (b) Same calculation
for a periodic arrangement of equal islands with superlattice domain size much larger
than the superlattice unit cell. (c) Same calculation for a periodic arrangement of
equal islands with superlattice domain size equal to the superlattice unit cell.

the elastic distortions in our SK-quantum dot structures except the region close to
the Bragg spot, where the substrate signal contributes [72]. The intensity pattern in
the very vicinity of Bragg points mainly stems from the strain field in the deformed
substrate region directly beneath the dots. The relative intensity decrease of the
diffuse patterns qualitatively reflects the decrease of the total amount of scattering
QD volume from sample A towards sample C.

In Fig. 8 it can be also seen that for all investigated samples the diffuse patterns
are almost equal. The almost equal broadening of the in-plane diffuse part in direction
transversal to Q[110] for all samples also reveals their average dot size distributions to
remain unchanged within the whole investigated range of deposited InAs.

These findings are in good correspondence with the observations in Fig. 1 that the
total deposited InAs volume solely increases the dot surface density. The equality
of the diffuse patterns for both reciprocal space projections points to the equal 3-
dimensional strain field in the investigated QD systems, and thus, to their equal
average chemical composition.

In order to corroborate our findings, line scans in radial [110] reciprocal space
direction through the (220) GaAs Bragg reflection (Q[110]=2 ·√2 GaAs r.l.u.) are
shown in Fig. 9. To enable their comparison, all presented line scans were done
under equal measurement conditions. In Fig. 9 the intensity shoulder to the left of
the (220) GaAs Bragg reflection is related to the strain field in the investigated QDs.
It can be observed within the region marked by dashed lines that with decrease of
dot surface density the dot related intensity distribution rescales without changing its
shape. To the left of the marked region the background noise disturbs the comparison,
to the right substrate strain and inter-dot correlation effects, that scale differently
with density, add to the signal. We conclude that the QD composition is independent
on the deposited InAs volume at the growth conditions applied.
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Figure 8: Experimental reciprocal space maps in the vicinity of the (220) GaAs Bragg
reflection (a,c,e), and the (202) GaAs Bragg reflection (b,d,f) for samples A (a,b),
B (c,d), and C (e,f). The substrate Bragg peaks have coordinates Qx=Qy=2 r.l.u.
(in-plane) and Qx=Qz=2 r.l.u. (out-of-plane) (1 GaAs r.l.u.=1.11Å−1).
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r.l.uGaAs2,Q[110]

Figure 9: Line scans along the radial [110] direction in the vicinity of the (220) GaAs
Bragg reflection for samples A, B, and C. Vertical dashed lines mark the region used
for comparison of the dot compositions.

One may expect that the discussed relative intensity differences also quantitatively
correspond to the relative changes of the dot surface densities [73]. However, the
ratio of the diffraction signals from samples B and C relative to A do not reflect the
AFM values in Table VII.1. Assuming a linear relation between the dot density and
the diffraction intensity in the marked region of Fig. 9 we would derive the ratios
ρ/ρGIDA ≈ 0.33 and ρ/ρGIDA ≈ 0.05 for sample B and C, respectively. So far this
discrepancy is not understood.

VII.1.4 Island composition analysis

The chemical composition of the islands was investigated in different ways. The
FEM was used to determine the island shape and composition using an interative
modelling procedure. The experimental X-ray diffraction techniques (II.11.3, V.3)
were used for the comparison. In the FEM method the strain field in the QD
is numerically computed using the thermo-elasticity approach [72]. The extracted
strain was then used to calculate the corresponding diffuse intensity distribution
in reciprocal space in a kinematical approximation. The obtained distribution was
compared to the experimental pattern of sample A. Parameters were adjusted in an
iterative procedure to best describe the experimental X-ray data. The calculated
reciprocal space maps giving the best correspondence to the experiment are shown
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Figure 10: Best corresponding calculated (a) in-plane and (b) out-of-plane diffuse
intensity distributions for elastically strained QD model (Fig. 12).

Figure 11: Line scans along the [100] direction in the vicinity of the (400) (squares)
and the (200) (circles) GaAs Bragg reflections (marked by the vertical line). The
(400) reflection was rescaled to fit the (200)-coordinates. The I(400)/I(200) intensity
ratio is given by the black solid line.
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Figure 12: Height dependence (Dvert) of the lateral dot extend (Dlat) reflecting the
geometry of half the central cross-section through the axially symmetric dot. The
straight line displays the dot geometry assumed in the FEM based results of Fig. 10.
The data points displayed by squares are obtained from experiment by the iso-strain
method [58]. The dashed line separates the dot into two parts of different In content.
The straight line in the inset displays the height dependence of the In content used
for our diffraction intensity maps in Fig. 10. Squares denote data obtained from
experiment.

in Fig. 10.
The dot geometry assumed for the results in Fig. 10 is displayed by the straight line

in Fig. 12. The assumed dot geometry is in good correspondence with experimental
data directly obtained from the in-plane reciprocal space map within the iso-strain
model [58]. Corresponding data points are marked by squares in Fig. 12. The thus
obtained lateral QD dimensions are approximately 20% smaller than those estimated
by AFM. This discrepancy we attribute to the instrumental uncertainty associated
with the finite AFM-tip size. For the calculations a dot height of 8 nm was assumed
in agreement with AFM data (10nm) if a 2nm thick oxide is taken into account VIII
[115].

Furthermore, as can be noted in Fig. 12 we assume the dot to be divided into
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two sections having different chemical compositions. The first 1.5nm of the dot base
are assumed to be of high Ga-content as a result of strong intermixing of Ga atoms
from the substrate. Also this assumption can be corroborated by experimental data
comparing the diffraction intensities in the dot-related foothills of the (200) and (400)
Bragg spots, Fig. 11, since the ratio of corresponding intensities depends on the group
III content of the dots [58]. The corresponding data are marked by squares in the
inset of Fig. 12. We note that due to the reduced scattering volume of the dot tips and
the decreasing difference of the intensities in the corresponding reciprocal space area
the measurement uncertainty of the data points strongly increases with the height in
the dot. Data for higher zones in the dots yield unphysical In concentration values
and thus are not shown. We, therefore, just regard the experimental data points as a
motivation to divide the dot into two regimes of different In-content: a base of high
Ga-content and the rest having much lower Ga content. The absolute numbers have
then been adjusted to best describe our experimental reciprocal space maps by the
FEM based calculations. The best fit is obtained assuming a low In content of only
5% in the base and 65% in the rest of the dot.

From the composition profile and island volume the mean InAs content in island
can be estimated. It is close to 50% which is similar to that from cross-section
HRTEM images of InAs/GaAs(001) islands [116]. For a given chemical composition
and volume of the average island, and the island surface density, the amount of InAs
material VInAs incorporated in the wetting layer can be extracted. The atual wetting
layer thickness can then be estimated using the equation h=VInAs/(S·C) where S
is the unit surface area, and C is the In content in the wetting layer. The amount
of pure InAs incorporated in the quantum dots was found to be equivalent to a
layer with thickness t≈0.3nm. For 2.5 ML deposedted the InAs volume incorporated
in wetting layer was around 1.7 ML or ≈0.5nm. This value does not contradict
with the InAs fraction (>0.3 MLInAs) for wetting layer formation in InAs/GaAs(001)
island system estimated from STM observations [32]. Assuming the wetting layer
composition to be close to that of the island base, the corresponding wetting thickness
should be about 10nm or ≈30 ML. Taking into account the small lattice mismatch
strain for a Ga-rich alloy in the wetting layer (<1%), this result correlates well with
theoretical calculations of the critical WL perturbation thickness amplitude [117].
The wetting layer does not have to be homogeneous. TEM investigations show, that
even for buried island systems the uppermost part of the wetting layer around the
islands remains In rich [118]. In such situation, the wetting layer thickness can be
overestimated by more than 50%. For example, for islands grown at 400◦C the WL
thickness is 4 MLInAs [114]. For the investigated quantum dot system grown at 500◦C
the wetting layer thickness of 10-15 ML logically correlates with [114].
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Figure 13: AFM images (1µm2) of an AlAs(001) surface after deposition of 2ML (a),
2.2ML (b), and 2.4ML (c) of InAs at temperature T=535◦C.

VII.2 InAs/AlAs(001) island systems

Within the homogeneous growth regime the variations of island surface density for
InAs/AlAs(001) system are minimal [33]. The island volume increases continuously
from initial island formation up to the start of the coalescence regime with increasing
amount of deposited InAs (see Fig. 13). This means that for the InAs/AlAs(001)
precise determination of the island surface density requires very high sensitivity. To
detect tiny surface density differences the inter-island correlation effects can be ex-
ploited. For InAs/AlAs(001) systems the island surface density is always high so
it should be possible to observe island position correlation effects. In addition, the
higher surface density of islands compared to that for InAs/GaAs(001) should im-
prove the scattered intensity. For densely packed island systems the inter-island
distance becomes sensitive to the variations in the average island dimensions, which
means that variations in the measured correlation length will reveal variations in the
island surface density.

To illustrate the sensitivity to the correlation effects in InAs/AlAs(001), the
GISAXS pattern measured for a InAs/AlAs(001) sample grown under 500◦C is shown
in Fig. 14(a). The first-order correlation maxima is clearly resolved giving a short-
range inter-island distance of 32±1nm. For the known average island lateral dimen-
sions the calculated GISAXS pattern is shown in Fig. 14(b)). Including the mea-
sured inter-island correlation distance gives the modified calculated GISAXS pattern
in Fig. 14(c). This pattern agrees with the experimentally measured intensity distri-
bution.

VII.3 Conclusions

To conclude, InAs/GaAs(001) QD’s grown with different amount of deposited InAs
were studied.

It was found that under the investigated deposition conditions the average dot
chemical composition is independent on the amount of deposited InAs. Furthermore,
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Figure 14: (a) Experimental out-of-plane GISAXS pattern. The marked area with
specular reflection was not measured. (b) Calculated GISAXS pattern for single InAs
island with width W=30nm. (c) Calculation for same island under influence of island
spatial correlation (Λcorr=32nm).

the increase of deposited InAs primarily leads to a proportional increase of the dot
surface density while the dot size distribution remains unchanged. The GISAXS
and GID was applied to analyse the island positional correlation and to approve the
conservation of island size distribution. The average composition of the investigated
SK-QDs was found to be close to In0.5Ga0.5As. The results establish that the QD
size and in particular the QD composition do not depend on the instant of QD
formation. This finding indicates that once the critical QD size is reached growth
of the particular QD stops. Also, the rate at which substrate material intermixes
into the QDs is significant only during the QD formation process and stops once the
dot is completed. Furthermore, the intermixing rate does not depend on the instant
at which a particular QD starts to form. These findings are important for a better
understanding of the nature of the quantum dot intermixing process and its influence
on the dot formation.

For InAs/AlAs(001) system the idea about surface density analysis using island
positional correlation effects was developed.



Chapter VIII

Investigation of island formation
mechanisms

Islands systems prepared in the coalescence regime (see I) are not of great technologi-
cal interest since their island size non-uniformity. Theoretical studies [84] and experi-
mental observations [28] have shown that the formation of conglomerates of InAs ma-
terial leads to plastic relaxation due to dislocation formation at the island/substrate
interface. Dislocated interfaces form deep traps and non-radiative recombination cen-
ters which are undesirable in quantum-dot based optical devices. These systems can
be useful for understanding the mechanisms driving island formation.

The main processes controlling island formation in the SK-growth mode are the
temperature dependent surface diffusion of deposited InAs and the bulk diffusion of
substrate material into the growing island, see Fig. 1(a). Temperature dependent
InAs desorption should also be taken into account since it modifies the amount of
InAs available. On reaching coalescence stage based on the given material supply
model the island system ”replies” that under these particular thermo-dynamic con-
ditions it does not need InAs material for the formation of homogeneous islands.
The unused InAs is then stored in large conglomerates. The mutual material distri-
bution in such ”over-saturated” system is illustrated in Fig. 1(b). Maintaining the
constant amount of deposited material on the substrate surface (negligible effect of
the process ”2” in Fig. 1(a)) and varying only one of the deposition parameters, say
substrate temperature, one can analyse the influence of this parameter on the growth
process of homogeneous islands by measuring the changes in the distribution of ma-
terial within the given transport chain. Based on these measurements conclusion
about the island formation mechanism can be made. The relative changes of unused
InAs volume relative to the volume of elastically strained islands is needed as an
indicator of the amount of InAs needed for strained island/wetting layer formation.
For such investigation the knowledge of island composition is obligatory. The use of
X-ray diffraction with high intensity synchrotron radiation together with FEM-based
modelling of diffuse diffraction patterns can yield the required information.

106
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Figure 1: (a) Channels for material supply to islands growing in SK mode: 1- de-
posited InAs, 2 - desorbed InAs, 3 - interdiffusion of substrate material. (b) Material
redistribution for SK-islands in the coalescence regime: I - InAs redistribution be-
tween homogeneous islands and InAs conglomerates, II - redistribution of substrate
material in the homogeneous islands and the wetting layer.

VIII.1 Investigation of temperature dependent is-

land growth mechanism in InAs/GaAs(001)

system

Three InAs/GaAs(001) samles grown at 480◦C , 500◦C, and 530◦C with an InAs
deposition rate of 0.04ML/sec were investigated. During MBE growth the volume
of InAs deposited was kept constant at 2.7ML (accounted for desorption) which
corresponds to the moment of island coalescence.

”Differential mode” AFM images of the samples are shown in Fig. 2. X-ray diffrac-
tion measurements were performed on all three samples as described individually for
each sample in the following subsections.

VIII.1.1 Structure analysis of islands grown at 530◦C

For the sample grown at 530◦C the line scan in the radial [110] direction through the
(220) GaAs Bragg reflection is shown in a logarithmic intensity scale in Fig. 3(a). For
comparison with the 2D maps, the projection of the Q[110] reciprocal lattice vector on
the Q[100] axis are used for the horizontal scale. Three different intensity distributions
can be observed. First, the strong substrate reflection at Q100=2 r.l.u. marked by
”I”. Second, the broad intensity distribution (II) starting at the substrate position
and decreasing towards smaller Q values corresponds to the signal from the elastically
strained quantum dots (see VII). Peak (III) with a broad maximum near Q100=1.89
r.l.u. was not observed for samples grown in the homogeneous stage, so, it presum-
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Figure 2: Topographical surface AFM images (25µm2) of InAs(2.7ML)/GaAs(001)
island systems grown at 480◦C (a), 500◦C (b), and 530◦C (c).

ably corresponds to the conglomerates formed in the coalescence stage. Theoretical
calculations (chapter V) have revealed this intensity profile for strained islands with
a height to radius ratio (HRR) close to 1. The topographic analysis of the exper-
imental AFM-data gave average HRR value of 0.4. The large discrepancy between
the expected and measured HRR values is indicative of non-elastic strain relaxation
(chapter V) [107]. The intensity distributions along the [100] direction through the
(400) and (200) GaAs Bragg reflections measured under the same experimental con-
ditions are shown in Fig. 3(b). It can be seen that for region III the intensity for
both reflections is equal again indicating that the composition of the relaxed island
conglomerates is close to that of pure InAs. The intensity of the (200)-signal for the
region II is strongly diminished indicating that a high Ga content is present in the
elastically strained islands.

The experimental in-plane and out-of-plane diffuse X-ray diffraction patterns mea-
sured in the vicinity of the (220) and (202) GaAs Bragg reflections are presented as
contour plots in Fig. 4(a,c). In the 2D in-plane plot the peaks from the strained and
plastically relaxed islands can be easily distinguished. The out-of-plane plot only has
intensity in the region arising from elastically strained dots. The lack of signal from
the relaxed islands is probably due to the lower sensitivity in the out-of-plane geom-
etry (typically a factor of 10). This is expected because the AFM image Fig. 2(c)
shows a low density of relaxed conglomerates. Direct methods were used (see VII) to
provide the sufficient structural information for building a reliable initial FEM model
of the elastically strained islands. The iterative procedure was used to modify the
FEM model until the calculated diffuse diffraction pattern agreed with the experi-
ment data as shown in Fig. 4(b,d). The best fit model revealed the presence of two
zones within the strained islands with composition of In0.05Ga0.95As (island base) and
In0.3Ga0.7As (island top) and the average island composition was In0.2Ga0.8As.
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Figure 3: Experimentally extracted intensity profile along radial [110] reciprocal space
direction through the (220) GaAs Bragg reflection (a), and intensity profiles along
[100] reciprocal space direction through the (400) and (200) GaAs Bragg peaks (b). I -
substrate peak, II - signal from elastically strained islands, III - signal from plastically
relaxed island conglomerates.

VIII.1.2 Structure analysis of islands grown at 500◦C

The X-ray experiments on the sample grown at 500◦C were realized under ultra high
vacuum conditions. The line scan in the radial [110] direction through the (220)
GaAs Bragg reflection is shown on a logarithmic intensity scale in Fig. 5(a). As
for the previous sample, there are three contributions to the intensity profile. First,
there is more plastically relaxed material on the surface, resulting in a higher inte-
grated intensity of (III) compared to the elastically strained islands (II). The chemical
composition analysis (Fig. 5(b)) revealed that the plastically relaxed conglomerates
were pure InAs, whereas the elastically strained islands (grey area) had a high GaAs
content.

The experimental in-plane and out-of-plane diffuse X-ray diffraction patterns mea-
sured in the vicinity of the (220) and the (202) GaAs Bragg reflections together with
calculated patterns for elastically strained islands containing 90% GaAs are shown in
Fig. 6.

VIII.1.3 Structure analysis of islands grown at 480◦C

For the sample grown at 480◦C the line scan in the radial [110] direction through
the (220) GaAs Bragg reflection is shown in Fig. 7(a). Compared with the previous
samples, the region between plastically relaxed and elastically strained islands cannot
be clearly separated. The composition analysis (Fig. 7(b)) also did not separate the
corresponding intensity distributions. Both signals overlap in reciprocal space, so
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Figure 4: Experimental in-plane (a) and out-of-plane (c) reciprocal space maps in the
vicinity of the (220) and the (202) GaAs Bragg reflections for sample grown at 530◦C.
The white vertical line in (c) at Q[100]=2 r.l.u. corresponds to the crystal truncation
rod (CTR), where the signal was not measured. Corresponding best-fit calculations
of the diffuse intensity from elastically strained islands with an average composition
close to In0.2Ga0.8As (b,d).
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Figure 5: Experimentally extracted intensity profile along radial [110] reciprocal space
direction through the (220) GaAs Bragg reflection (a), and intensity profiles along
[100] reciprocal space direction through the (400) and (200) GaAs Bragg peaks (b).
I - substrate peak position, II - signal from elastically strained islands, III - signal
from plastically relaxed island conglomerates.

they cannot be separated analytically. The overlap arises from the broad diffracted
signal from the strained islands and their higher In content relative to the previous
samples. The 2D intensity distributions (Fig. 8) also did not permit the diffuse signals
from the elastically strained islands to be analysed separately.

VIII.1.4 Discussion

Because of the lack of reliable structural data for the sample grown at 480◦C addi-
tional experimental information about In-enrichment are required. The analysis of
topographic images from the samples can yield information about the surface dif-
fusion processes of the deposited InAs material. As shown in the previous chapter
( VII), for In-rich islands grown on GaAs(001) the surface diffusion proceeds differ-
ently along orthogonal <110> crystallographic directions producing the detectable
island shape anisotropy. Conversely, the observation of such anisotropy provides ev-
idence that InAs diffusion on the surface was an important contribution to island
formation. A lower anisotropy implies that InAs surface diffusion has less influence
of on the island formation.

In Fig. 9 STM1 and AFM topographical images of single islands from all three
samples are shown in order of increasing average In content (not by the deposition
temperature!). The first two Ga-rich islands (Fig. 9(a,b)) (average composition esti-

1The information about STM investigation on quantum dots can be found in [104].
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Figure 6: Experimental in-plane (a) and out-of-plane (c) reciprocal space maps in the
vicinity of the (220) and the (202) GaAs Bragg reflections for sample grown at 500◦C.
The white vertical line in (c) at Q[100]=2 r.l.u. corresponds to the crystal truncation
rod (CTR), where the signal was not measured. Best-fit calculations of the diffuse
intensity from elastically strained islands (b,d).
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Figure 7: Experimental intensity profile (a) along the radial [110] direction through
the (220) GaAs Bragg reflection, and (b) along [100] reciprocal space direction
through the (400) and (200) GaAs Bragg peaks. I - substrate peak position, II/III -
mixture of signals from elastically strained islands and from relaxed conglomerates.

Figure 8: Experimentally measured in-plane (a) and out-of-plane (b) reciprocal space
maps in the vicinity of the (220) and the (202) GaAs Bragg reflections for sample
grown at 480◦C.
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Figure 9: The topographical images of single islands with presumably different In
content. The areas are scaled corresponding to their relative size. (a) STM image,
(b,c) AFM images.

mated from diffraction data analysis) exhibit almost negligible shape anisotropy. The
island shown in Fig. 9(c) has a prononced shape anisotropy and therefore a higher In
content.

If the composition of the elastically strained islands is known, then conclusions
about temperature driven island formation processes can be made. As a general ob-
servation, the island chemical composition approaches that of InAs with decreasing
deposition temperature. Surface diffusion and a bulk diffusion are strongly tempera-
ture dependent thermally activated processes. The interplay between these processes
determines the final island composition. From this point of view, In-enrichment
at low island growth temperatures is evidence for temperature dependent InAs-
GaAs intermixing. Furthermore, investigations of the temperature dependence of
the InAs/GaAs diffusion coefficient [119] and Si interdiffusion in GaAs(001) [120]
predict the corresponding process within the investigated island deposition temper-
ature range to be about an order of magnitude. GaAs bulk diffusion processes are
significantly reduced for a deposition temperature reduction of ∆T=50◦C. At the
lowest deposition temperature the minimal bulk diffusion means that InAs surface
diffusion mainly supplying the island material.

An analysis of the relative changes in the amount of relaxed island conglomerates
can help to clarify the distribution of material between islands and WL at each growth
temperature. The structure grown at the moderate temperature of 500◦C is taken as a
reference. According to the proposed model, increasing the deposition temperature to
530◦C should enhance the bulk GaAs diffusion process and the homogeneous islands
should become more Ga-rich than the islands grown at 500◦C. As a consequence,
more unused InAs can be expected to be stored in relaxed conglomerates. In the
reality (Fig. 2(c)), the opposite is observed.
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Figure 10: Surface AFM image of A sample grown at 480◦C. The areas with high
surface density islands are marked by the rings.

This effect can be explained by the increased surface mobility of InAs molecules
at higher deposition temperatures. The higher surface mobility probably leads to the
situation where the island growth due to InAs surface diffusion becomes comparable
to the bulk GaAs material flux. As a result islands are formed with an average com-
position similar to that of samples grown at 500◦C. The In-enrichment of upper parts
of the island at 530◦ extracted from FEM modelling supports assumption concerning
enhances surface diffusion of InAs.

The AFM images reveal small relative volume changes for islands grown at 530◦C
and 500◦C. The relative decrease of the InAs volume in the relaxed conglomerates
points to an additional sink of InAs. This sink could be the wetting layer. For systems
with strong intermixing an increase in the WL thickness with increasing deposition
temperature seems highly realistic.

For the sample grown at 480◦C the thermally activated bulk diffusion is relatively
small. The diffraction data and the anisotropic shape of the homogeneous islands
on the surface indicate that the In content is high. Since a larger amount of the
deposited InAs forms homogeneous islands, the relative volume of the relaxed InAs
conglomerates compared to that for the sample grown at 500◦C should decrease.
The large-scale AFM images (Fig. 2(a)) do not confirm this idea. There must be
additional processes at work. The main possibility would be the decrease of the WL
thickness at the lower deposition temperature. The enlarged AFM image in Fig. 10
reveals a second possibility. On the image one can see two regions (in the rings)
where small islands form zones with very high surface density (≈1011cm−2). The
most of the large island conglomerates are also localized at these positions. The very
small distance between neighboring small islands is indicative of low elastic strain
and, consequently, low In content III.3. The surrounding surface regions have a lower
surface density and larger inter-island distance indicating a higher InAs concentration.
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The presence of densely packed regions can be explained by the low surface mobility
for growth at 480◦C 2. In localized surface regions the mobility is insufficient for
homogeneous material transport and the growing islands cannot obtain sufficient
InAs. To reach the critical island volume, the system has to find more material.
For regions with low surface diffusion, the only possibility is to pump the substrate
material into the growing island. In such situations pure strain-driven GaAs diffusion
seems to take place and, as a consequence, the unused InAs within these regions forms
conglomerates. The proposed explanation should be tested experimentally. The
diffracted signal corresponding to such Ga-rich islands can lie close to the substrate
peak position in reciprocal space (Fig. 7(a)). Unfortunately, this signal is buried
the intensity distribution from In-rich islands (in-plane) (Fig. 8). One possibility to
extract this signal would be to use a synchrotron radiation with a coherence length
comparable to the dimension of the region where Ga-enrichment effects take place.

Final evidence for the proposed surface/bulk diffusion interplay model is provided
by the InAs/GaAs(001) island systems investigated in chapter VII. These structures
were grown at 500◦C with an InAs deposition rate five times faster. The faster
deposition rate minimizes the time for homogeneous island growth. In this case the
bulk diffusion has less time to proceed and as a result the islands become more In
rich.

VIII.2 Investigation of the temperature dependent

island growth mechanism in InAs/AlAs(001).

Three InAs island samples were grown at 480◦C, 500◦C, and 530◦C on an AlAs(001)
buffer layer (100nm on GaAs(001)) with an InAs deposition rate of 0.04ML/sec.
During MBE growth the volume of InAs deposited was kept constant at 2.7ML (ac-
counted for desorption) which corresponds to the moment of island coalescence. The
corresponding large-scale ”differential mode” AFM images are shown in Fig. 11. It
can be seen, that coalescence regime has been reached for all three systems. It can
be also seen that at lower growth temperatures the number of island conglomerates
increases.

The samples grown at 480◦C and 530◦C were covered with a protective coating
directly after preparation. Immediately before the X-ray diffraction experiments the
coating was removed and the sample was put in a He environment. The sample grown
at 500◦C was investigated under ultra-high vacuum conditions [106]. Afterwards it
has been exposed to the ambient air for a short time and then studied again using
X-rays in He atmosphere.

Line scans in the radial [110] direction through the (220) GaAs Bragg reflection

2for given deposition conditions the temperature of 470-480◦C was experimentally found to lay
in the critical low-temperature region for the formation of 3D structures.
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Figure 11: Topographic AFM images (25µm2) for InAs(2.7ML)/AlAs(001) island
systems grown at (a) 480◦C, (b) 500◦C , and (c) 530◦C.

are shown on a logarithmic intensity scale in Fig. 12. Similar to the InAs/GaAs(001)
samples, three main intensity distributions can be distinguished. The main differ-
ence is that region II for all three samples the signal from the strained islands is the
same which indicates that the islands have similar strain states at all three growth
temperatures. The island composition analysis shown in Fig. 13 for samples grown
at the lowest and highest temperatures gave identical measured signals. This situa-
tion allows to analyse the relative amounts of material in relaxed conglomerates and
elastically strained islands. The measured experimental intensity distributions for all
three samples were rescaled relative to the relaxed peaks (III) (horizontal dashed line
in Fig. 12). Since the same amount of InAs was deposited on all three samples, from
the relative changes in intensity in regions III and II one can make conclusions about
the material exchange process. To make this comparison more correct for the sample
grown at 500◦C the intensity profiles measured in vacuum and after exposure to air
are shown. From the plots it can be clearly seen that with increase of growth tem-
perature the relative amount of material stored in relaxed conglomerates decreases.
This effect also can be directly seen in the AFM images in Fig. 11.

The 2D experimental in-plane and out-of-plane diffuse X-ray diffraction patterns
measured in the vicinity of the (220) and (202) AlAs (GaAs) Bragg reflections are
shown in Fig. 14. The 2D diffraction patterns can be analysed taking into account
the dynamics of the material distribution as a function of growth temperature (see
Fig. 1). On the out-of-plane plots, the diffuse part of the diffraction signal which
becomes less intense for samples grown at high temperatures is associated with relaxed
conglomerates. Conversely, the diffuse pattern from the elastically strained islands
should increase with the growth temperature.

The diffuse scattering from both strained and relaxed islands overlap. In this
situation, to analyse the structure of the elastically strained islands a new experi-
mental technique had to be developed, which is described in detail in VIII.3. The
composition of the strained islands was found to be close to In0.8Al0.2As, close to the
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Figure 12: Experimental intensity profiles along the radial [110] reciprocal space direc-
tion through the (220) GaAs Bragg reflection for samples grown at 480◦C, 500◦C, and
530◦C. I marks the substrate peak position, II - signal from the elastically strained
islands, and III - signal from plastically relaxed island conglomerates. For sample
grown at 500◦C both results from uhv-measurements and measurements after expo-
sure to the ambient air are shown. ”C” -marks the correlation peak positions.
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Figure 13: Experimental intensity profiles along the [100] reciprocal space direction
through the (400) and (200) GaAs Bragg peaks for samples grown at (a) 480◦C, and
(b) 530◦C.

composition of islands grown on GaAs(001) surface, where bulk diffusion had been
suppressed by using a high InAs deposition rate. The constant chemical composi-
tion of the elastically strained islands indicates that the process responsible for island
growth is essentially temperature independent. It appears that temperature activated
bulk diffusion of AlAs from the substrate into the islands during homogeneous growth
stage is small. This maximum concentration of 25% AlAs in the strained islands is at
all growth temperatures limited by the solubility of InAs in AlAs. On the in-plane
maps, the areas with signal from the strained islands were analysed by means of
transversal line scans in Fig.15. This analysis revealed the increase in average island
size with deposition temperature. The local topographic analysis of the island size
with increasing deposition temperature (Fig. 16) also qualitatively agrees with X-ray
data. On the Fig. 16(b) the island dimensions comparable to those in Fig. 16(a) can
be associated to the better lateral resolution of the STM relative to the AFM-tool
[105].

In the InAs/AlAs(001) system the growth of islands at different deposition tem-
peratures is controlled by the limited intermixing of the incoming InAs and substrate
material. With increasing deposition temperature the diffusion rate of Al atoms into
the island will increase leading to Al-enrichment of the islands. To maintain the max-
imum allowed Al-concentration a certain InAs volume has to be accommodated in
the island. This explains the increase in average island size with growth temperature.
The demand for additional InAs for the growth of strained quantum dots explains
the decrease of InAs in relaxed conglomerates.



CHAPTER VIII. INVESTIGATION OF ISLAND FORMATION 120

Figure 14: Experimental in-plane (left) and out-of-plane (right) reciprocal space maps
in the vicinity of (220) and (202) GaAs Bragg reflections for samples grown at 480◦C
(a,b), 500◦C (c,d), and 530◦C (e,f). The white vertical lines on the out-of-plane
patterns at Q[100]=2 r.l.u. corresponds to the crystal truncation rod (CTR) position,
where the signal was not measured. The substrate peaks on the in-plane maps are
located at the cut-out intensity at Q[100]= Q[010]=2 r.l.u.
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Figure 15: Experimental intensity distribution along scans transversal to the [110]
direction through the reciprocal in-plane lattice point Q[100]=Q[010]=1.95 GaAs r.l.u.
for samples grown under different deposition temperatures.

Figure 16: Enlarged images of islands grown on an AlAs(001) surface at deposition
temperatures of (a) 480◦C, (b) 500◦C, and (c) 530◦C.
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VIII.3 Structural investigation of elastically strained

InAs/AlAs(001) islands

The analysis of X-ray diffraction data from islands in the situation where the signals
from the elastically strained and plastically relaxed islands overlap in reciprocal space
is a non-trivial problem. It requires the development of special experimental tech-
niques. The main idea of the proposed technique is to separate the diffuse intensity
patterns of strained and partially relaxed islands by exploiting the effect of island
oxidation.

The investigation was done using the sample growth at 500◦C. The sample was
first measured under ultra-high vacuum conditions and then the sample was exposed
to ambient air for a short time to provide surface oxidation and measured again
in He atmosphere keeping all other parameters in the X-ray diffraction experiment
unchanged.

The sample topography was analysed by means of AFM and STM measurements
in order that sufficient resolution could be achieved on both sub-nanometer and mi-
crometer scale. This resolution scale was required to enable the precise determination
of an average size of the small elastically strained islands and larger plastically re-
laxed conglomerates. The corresponding average island dimensions and densities are
given in the Tab. VIII.1.

presumable state height, nm width, nm density, cm−2

elastically strained 4 20 1.2 · 1011

(partially) relaxed >10 >50 ≈ 5 · 109

Table VIII.1: Experimentally determined island dimensions.

VIII.3.1 Method description

To analyse elastically strained islands we propose a new experimental X-ray diffrac-
tion technique based on island oxidation. Relative to the large islands, the volume
of small strained islands diminishes more after oxidation and this effect can be used
to distinguish the diffraction signal from small and large islands. The applicability
of this technique requires the following conditions:

(i) oxidation leads to the formation of a stable amorphous oxide layer with a con-
stant thickness on the top of the islands

(ii) the volume of the oxidized part of the island is smaller than the total volume
of the island before oxidation (islands do not oxidize completely)
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Figure 17: Lateral lattice constant profile over averaged island height for the sample
in vacuum (dots) and directly after exposure to ambient air (circles). The bulk
substrate lattice constant at zero height (grey square) is shown for reference. The
dashed vertical line separates the parts of the curve, where the signals from elastically
strained islands (I) and relaxed islands (II) dominate. The horizontal line is the
average height of small islands from STM-measurements.

(iii) the crystalline part of the island remaining after oxidation inherits the scaled
deformation state of the same island before oxidation

To prove our assumptions the simplified ISA model for the strain field in a non-
buried elastically strained island was used (see II.11.2). Based on this consideration,
the information about the height of each iso-strain part over the substrate surface
was retrieved experimentally ( VII). Figure 17 represents the retrieved average island
lateral strain profile before and directly after oxidation at RT.

This profile is the result of averaging over all islands on the surface, and it does
not fully represent either the strain state in the small strained islands nor in the
large islands. Setting the upper height to the STM-derived height for small islands
we allocate the part of the experimental curve in region (I) to elastically strained
islands. Part (II) of the curve represents the region, where the relaxed islands have
most influence. The bulk substrate lattice constant is shown at zero-height. It should
be mentioned, that the discrepancy between the indirectly derived average height (7
nm) and directly estimated height (10nm) of large islands could be due to the fact,
that on the top of large islands the strain gradient is essentialy zero. This leads to
a reduction of the sensitivity of the method to the uppermost part of the average
island strain profile.

If the requirement (iii) is not fulfilled, the uppermost island sections (larger lattice
constants) after oxidation (amorphisation) should have disappeared. On the contrary,
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one can observe different behavior - the proportional decrease of strain profile along
the height axis for oxidized sample relatively to the non-oxidized one.

This means, that after oxidation in the crystalline part of the island the initial
displacement field is rescaled proportionally to the new island dimensions. The height
difference between the same ”iso-strain” areas before and after oxidation can then
be interpreted as an average oxide layer thickness. For region (I) in Fig. 17 this
oxide layer thickness is 1.8±0.3nm. For comparison the native oxide thickness on a
InAs(001) crystal (see Att. 3) was found to be ≈1.7 nm.

It is assumed that island oxidation leads to loss of material due to the amorphisa-
tion with redistribution of the strain in the remaining crystalline part. So, oxidation
should lead to a decrease in the diffuse diffraction intensity in regions of interest in re-
ciprocal space without changing the profile of the corresponding diffraction patterns.

It is also assumed, that in the case of the nanometer scale islands the changes in
island size after oxidation will not cause a significant broadening in reciprocal space.
Fig. 18 shows the Fourier transform of the shape function of a strain-free island close
to the experimentally determined size for small island in vacuum and corresponding
to the crystalline part of the same island after oxidation. The change in the small
island dimensions (≈15%) correspond to the experimental oxide layer thickness. The
changes of full width half maximum (∆FWHM) are 0.01Å−1. Since the experimental
resolution was δ=0.005Å−1 the changes in island size are not expected to cause any
detectable broadening (this condition holds for δ ≥ 1

2
∆FWHM).

After oxidation the diffracted intensity from the elastically strained islands will
decrease proportionally to the relative amount of material lost by amorphisation. As
an example, in Fig. 18 the oxidation of small strain-free islands will lead to a decrease
in the maximum intensity signal by a factor of three.

Obviously, if two types of islands with different sizes undergo oxidation, the rel-
ative volume losses for smaller islands will be greater than for larger ones. For the
structures under consideration, the relative loss of material will be in the order of
≈55% for small islands and not more than ≈25% for large islands. Since the diffracted
intensity is proportional to the island volume squared, the relative intensity losses in
this case should be at least 4:1. We propose to use the different intensity ratios to
identify the diffraction pattern stemming from small strained islands.

VIII.3.2 Experimental implementation

The scans taken in the radial [110] direction in the vicinity of the (220) AlAs Bragg
reflection for the sample in vacuum and directly after air exposure are shown in
Fig. 19. The projection of Q110 on the Q100 axis was chosen to make the direct
comparison of the data easier. In Fig. 19 three main regions can be distinguished
(vertical lines). The intensity variations representing lateral lattice constant distri-
butions in the elastically strained (region II) and relaxed (region III) islands can be
distinguished. The relaxed islands are characterized by the narrow lattice constant
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Figure 18: Line scan through Fourier transformed shape functions of small strain-free
island in vacuum (dots), and for the crystalline part of the same island after oxidation
(circles).

distribution positioned apart from the bulk substrate peak (region I). The elastically
strained islands exhibit a lateral lattice constant distribution, starting at the position
of the bulk substrate (island/substrate interface), and relaxing slowly to larger lattice
constants (smaller Q values) on the top of the island. The data was normalized to
the maximum intensity in region III (Q100 = 2.09Å−1) from the relaxed islands. The
comparison of the normalized intensity profiles before and after oxidation reveals the
corresponding relative material losses in the small strained islands. The 2D in-plane
intensity distributions in the vicinity of the (220) substrate Bragg peak measured
under UHV-conditions and after air exposure are shown in Fig. 20. The relative
intensity is decreased due to the reduction of the material in the island but no de-
tectable signal broadening is observed. To get sufficient information about the strain
field in small islands, the reciprocal space region containing signals from both lateral
and vertical island strain field components (non-zero Qz component of diffraction
vector) should be investigated. The diffuse intensity patterns in the vicinity of the
AlAs (202) Bragg reflection (Qx = Qz = 2.222Å−1) measured in vacuum and directly
after oxidation in air are shown in Fig. 21. Here, the broad intensity distribution on
the left of the substrate truncation rod (Q100 = 2.222Å−1) is an envelope function re-
sulted from overlap of diffuse signals from strained and relaxed islands. For a known
lateral position of the intensity maximum for relaxed islands (region III in Fig. 19),
the maximum intensity position along Q001 direction in Fig. 21 was found. After
this, both patterns (Fig. 21 (a) and (b)) were rescaled relative to their intensities at
these reciprocal space points. The normalized out-of-plane diffuse intensity pattern
for the oxidized structure (Fig. 21(b)) was subtracted from the pattern measured for
the sample in vacuum (Fig. 21(a)) to reveal the intensity reduction for the elastically
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Figure 19: Line scans along the [110] direction for the same sample in vacuum (dots)
and directly after exposure to air (circles). The vertical dashed line at Q100 =
2.222Å−1 indicates the position of the (220) AlAs substrate bulk peak. Vertical
black lines on the plot mark regions, where signals from the substrate (I), elastically
strained islands (II), and relaxed islands (III) influence the intensity profile. The
intensity at the bulk substrate position is truncated.

Figure 20: Log-Intensity scaled in-plane reciprocal space maps measured in the vicin-
ity of the (220) substrate Bragg peak for the sample (left) under UHV-conditions and
(right) after exposure to air. The cut-out at Q100 = Q010 = 2.222Å−1 marks the
position of the (220) AlAs substrate peak.
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Figure 21: Logarithmically scaled reciprocal space maps in the vicinity of the AlAs
(202) Bragg reflection (Q100 = Q001 = 2.222Å−1) for the sample in vacuum (a) and
after exposure to air at RT (b). The strong signals from the bulk truncation rod and
deformed substrate under the island are cut out.

strained islands. The envelope of resulting intensity profile should be the Fourier
transform of the strain field in the small islands. The difference map is shown in
Fig. 22(a). Knowing the size and shape of the small islands, the analysis of the dif-
ference map reveals the average island chemical composition. Numerical kinematical
calculations of the diffuse intensity pattern based on finite element (FEM) simulations
in frame of elasticity theory were carried out. Only the diffuse part representing the
signal from elastically strained islands was used. Substrate material was not involved
in the calculations, so the signal coming from the bulk substrate (truncation rod) as
well as from deformed substrate under the island (high intensity part near the bulk
substrate position) were not included. The calculated intensity pattern for an island
with composition In0.8±0.05Al0.2±0.05As (Fig. 22(b)) gave the best agreement with the
experimental difference map.

VIII.4 Conclusions

The X-ray structure analysis of InAs/GaAs(001) and InAs/AlAs(001) islands in the
coalescence stage was described for samples grown at different temperatures with a
constant amount of deposited InAs. For the X-ray structure analysis of elastically
strained InAs/AlAs(001) islands a new experimental technique has been developed.
The main idea of the technique is to use the effect of island oxidation to extract the
diffracted signal from elastically strained islands from the envelope signal containing
the contribution stemming from plastically relaxed island conglomerates.

Based on the results of the X-ray analysis and direct observations using AFM
conclusions about the temperature dependant formation mechanism of elastically
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Figure 22: (a) experimental intensity pattern in the vicinity of the AlAs(202) Bragg
reflection, obtained by subtraction of the patterns in Fig. 21; (b) calculated diffuse
pattern for small islands of composition In0.8Al0.2As.

strained islands has been proposed. In InAs/GaAs(001) system strong intermixing
between InAs and GaAs materials was found. The complex temperature-dependent
interplay between the bulk diffusion of GaAs and the surface diffusion of InAs during
island growth process was found to be responsible for the final island composition. In
the InAs/AlAs(001) system the temperature independent limited solubility of InAs
in AlAs was observed. Due to the limited material solubility, in this system the
temperature activated AlAs bulk diffusion process is compensated by the additional
InAs material supply leading to a temperature dependant increase of the strained
island dimensions.



Chapter IX

Capped quantum dot systems

The final part of quantum-dot device preparation is the capping of the self-assembled
islands [121]. Structural changes or intermixing, that may occur during capping are
of technological importance [122], [123]. For buried structures transmission elec-
tron microscopy is the best method for directly measuring the island shape and size
[124], [125]. However, sample preparation required means that the technique is not
non-destructive. Photoluminescence measurements (PL) on buried QD systems is a
widely-used non-destructive tool [126],[127] but the structural information from PL is
indirect and is difficult to extract. X-ray diffraction is non-destructive and a reliable
method for the structural analysis of buried island systems [128],[129].

In this chapter InAs/GaAs(001) and InAs/AlAs(001) islands grown under the
same deposition conditions after capping with substrate material will be analysed.
The good spatial separation of diffraction signal from relaxed InAs conglomerates
is an advantage when following the structural changes and intermixing taking place
during capping.

IX.1 Theoretical calculations

The strain-induced diffuse diffraction patterns for islands with different geometrical
parameters and chemical composition buried in a GaAs matrix material have been cal-
culated using FEM-models in a linear-elasticity approach. The out-of-plane intensity
patterns calculated for InAs islands with a base width of 40nm and height to radius
ratios (HRR) of 1, 0.5, and 0.25 are shown in Fig. 1(a,b,c). The patterns calculated
for islands with the same base width and HRR=1 with varying chemical composition
are presented in Fig. 1(d,e,f). The strain field within the whole model (island in the
matrix) was calculated. On the calculated maps, the horizontal and vertical intensity
stripes going through the (202) substrate position (Q[100]= Q[001]=0) correspond to
truncation effects related to the finite model dimensions. The results correlate well
to similar calculations for Ge islands buried in a Si(001) matrix [130]. For buried
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InAs islands the calculated intensity profiles differ qualitatively from the patterns
calculated for equivalent non-buried islands (see V). For strong intermixing in the
islands these differences disappear. For strong interdiffusion (reduced misfit-strain)
the elastic strain energy is localized in the volume limited by the island dimensions
and in this situation the capping layer has only a minor influence.

IX.2 Experimental investigations

Two samples were prepared at a deposition temperature of 500◦C. This temperature
was chosen, because it corresponds to the deposition conditions for the uncapped
islands measured under UHV (See VIII). 2.7ML of InAs at a deposition rate of
0.04ML/s were deposited onto GaAs(001) and AlAs(001) surfaces. After the forma-
tion of 3D structures was observed in RHEED, both systems were capped with 30nm
of the substrate material. The X-ray measurements on both samples were done in
He atmosphere.

For GaAs/InAs/GaAs(001) and AlAs/InAs/AlAs(001) systems the in-plane diffrac-
tion maps in the vicinity of the (220) GaAs/AlAs Bragg reflection are shown in
Fig. 2(b,d). For comparison the same maps, measured for equivalent uncapped sam-
ples are given in Fig. 2(a,c). It can be seen, that for both buried systems the intensity
signal stemming from the elastically strained islands (see VIII) remains almost un-
altered. From this observation the conclusion can be made, that capping of strained
islands does not affect their chemical composition. This indicates that both systems
already before capping reached an energetically favorable island composition within
their homogeneous growth stage.

The signal stemming from plastically relaxed island conglomerates undergoes
changes in both systems. In GaAs/InAs/GaAs(001) this signal completely disap-
pears, while for AlAs/InAs/AlAs(001) the maximum position of the intensity dis-
tribution is changed slightly. These effects are more apparent in Fig. 3, where the
experimental intensity distributions along the radial [110] direction through (220)
GaAs/AlAs substrate peaks for capped and uncapped systems are shown. The curved
have been rescaled for comparison. The structural changes can be associated with in-
termixing. The InAs conglomerates become enriched with the GaAs(AlAs) substrate
material. Temperature-activated bulk diffusion should be the dominant mechanism
controlling this process. The driving force seems to bring the composition of the
relaxed conglomerates to minimize the elastic misfit strain at the interface between
these conglomerates and the overgrowing matrix material. The intermixing causes
the maximum value of the lateral lattice constant difference between the material in
the relaxed conglomerates and the matrix to decrease. In reciprocal space it results
in a shift of the corresponding intensity distribution towards the position of the sub-
strate peak. The expected behavior can be clearly seen for the AlAs/InAs/AlAs(001)
system, where the final position of the peak from the relaxed material can still be
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Figure 1: Calculated out-of-plane diffuse intensity patterns in the vicinity of the
(202) GaAs Bragg reflection for models of InAs islands (width 40nm) with HRR=1
(a), HRR=0.5 (b), and HRR=0.25 (c) buried in a GaAs matrix. The influence of the
island chemical composition (island width 40nm) on the diffuse intensity distribution
is shown for InAs (d), In0.5Ga0.5As (e), and In0.2Ga0.8As (f). The horizontal and
vertical intensity stripes going through the (202) substrate position (Q[100]= Q[001]=0)
correspond to truncation effects (CTR) related to the finite model dimensions.
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Figure 2: Experimental in-plane diffraction patterns in the vicinity of the
(220) GaAs/AlAs Bragg reflection for (b) buried GaAs/InAs/GaAs(001) and (d)
AlAs/InAs/AlAs(001) islands. The corresponding maps for uncapped samples are
shown on plots (a) and (b).
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Figure 3: Experimental line scans along the radial [110] direction through the
GaAs/AlAs (220) Bragg reflection measured for capped and uncapped (a) InAs/GaAs
and (b) InAs/AlAs systems.

resolved, revealing a small shift and so slight intermixing.
In the case of GaAs/InAs/GaAs(001), the final position of the relaxed conglomer-

ates peak seems to coincide with the substrate reflection, pointing on the maximum
possible enrichment with GaAs. Since the final peak position cannot be directly ob-
served, additional methods were used to find evidence of strong intermixing. The
measurement of capping layer thickness has been done. In the case of strong inter-
diffusion a significant amount of material from the capping layer should have found
its way into the InAs conglomerates. To estimate the GaAs material loss, XRR mea-
surements (Fig. 4(a)) and a CTR-profile measurements in the vicinity of (202) GaAs
bulk reflection (Fig. 4(b)) were performed. As a model to fit the experimental XRR
profile a thin oxide layer (1.5nm), capping GaAs layer (initial thickness 30nm), and a
quantum dot layer of unknown thickness was used. The best fit is shown in Fig. 4(a)
as a solid line. The best fit model gave a capping layer thickness of 25nm. The 5nm
difference from the nominal GaAs cap layer thickness was also checked by measuring
the distance between the capping layer maxima on the CTR. As an additional cross
check the measured average thickness of quantum dot layer in the capped structure
(4nm) was compared to that found from XRR measurements of the same non-capped
sample (2nm). The increase in the average quantum dot layer thickness after capping
accompanied by the decrease of capping layer thickness relative to its nominal value
confirms the intermixing of the plastically relaxed quantum dots with the surrounding
matrix.

In the GaAs/InAs/GaAs(001) system the experimentally found lattice mismatch
less than 1% the strain field is entirely concentrated within the island. So, the
interface between the islands and capping material can be assumed to be free of
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Figure 4: (a) Experimental X-ray reflectivity profile and its theoretical fit, (b) a line
scan along the [001]-crystal truncation rod for GaAs/InAs/GaAs(001).

structural defects.
The situation is different in the AlAs/InAs/AlAs(001) system. Due to insufficient

solubility the lattice mismatch at the island/capping layer interface is 5-6%. In the
Fig. 5(a) the experimentally derived out-of-plane intensity pattern in the vicinity of
the (202) AlAs(GaAs) Bragg peak for AlAs/InAs/AlAs(001) is shown. In this system,
the absence of intermixing in strained islands during capping allows it to be assumed
that the capped islands to have the same shape and composition as they had before
capping.

The calculated (202) diffraction pattern is shown in Fig. 5(b) for capped islands
with a given composition and size for pure elastic deformation. The comparison of
the experimental and calculated patterns reveals significant differences. Furthermore,
the experimental pattern does not correspond to the diffuse signal calculated for the
equivalent uncapped islands (see V). These results show that the misfit strain
accommodation at the island/capping layer interface is complex: misfit dislocations
should form at the interface between the islands and the capping material [131].

IX.3 Conclusions

The structural changes in GaAs/InAs/GaAs(001) and AlAs/InAs/AlAs(001) quan-
tum dots taking place during the capping process have been analyzed. It was found
that due to the mutual solubility of InAs and GaAs the residual elastic misfit strain
is reduced due to bulk diffusion of GaAs material from the capping layer into the
InAs conglomerates. This seems to have a positive effect on the uniformity of the
quantum dot system. The low solubility of InAs and AlAs leads to the less misfit
strain reduction at the island/capping layer interface and, as a consequence, to the



CHAPTER IX. CAPPED QUANTUM DOT SYSTEMS 135

Figure 5: (a) Experimental out-of-plane intensity pattern in the vicinity of the (202)
AlAs(GaAs) Bragg reflection; (b) Intensity pattern for an imaginary island with
moderate dimensions and a composition of In0.8Al0.2As buried in an AlAs matrix
calculated assuming that the system is elastically strained.

creation of structural defects.



Chapter X

Summary and outlook

X.1 Summary

In this work the InAs/GaAs(001) and InAs/AlAs(001) island systems in the uncapped
and capped states were studied using synchrotron X-ray diffraction and AFM(STM).
The iterative FEM-based technique was applied in parallel to analyse the quantum
dot composition.

The theoretical FEM-based calculations of X-ray diffraction patterns were pro-
vided to analyse the sensitivity of the diffraction patterns in the reciprocal space to
structural and morphological changes in the quantum dots. The application limits
for simplified models describing strain distribution in quantum dots were determined.

The homogeneous island growth in the InAs/GaAs(001) system with increasing
amount of deposited InAs was investigated. It was found that within the whole homo-
geneous growth stage the average dot size and chemical composition is independent
on the amount of deposited InAs. The increase of deposited InAs primarily leads to
a proportional increase of the dot surface density. The island positional correlation
analysis for InAs/GaAs(001) sample with high island surface density was provided
using GISAXS and GID tools. Using iterative FEM-based technique and experimen-
tal methods the average composition of In0.5Ga0.5As was found for the investigated
SK-QDs. The conclusions about the nature of the quantum dot intermixing process
and formation in InAs/GaAs(001) system were made.

The analysis of InAs/GaAs(001) and InAs/AlAs(001) systems grown at different
temperatures with a constant amount of deposited InAs in the coalescence regime was
done. For the X-ray structure analysis of elastically strained InAs/AlAs(001) islands
a new experimental technique has been developed. The main idea of the technique
is to use the effect of island oxidation to extract the diffracted signal from elasti-
cally strained islands from the envelope signal containing the contribution stemming
from plastically relaxed island conglomerates. In InAs/GaAs(001) system strong in-
termixing between InAs and GaAs materials was found. The complex temperature-
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dependent interplay between the bulk diffusion of GaAs and surface diffusion of InAs
during the island growth process was found to be responsible for the strong changes
of island composition and wetting layer thickness. In the InAs/AlAs(001) system due
to the probable limited material solubility the temperature the temperature activated
AlAs bulk diffusion process is compensated by the additional InAs material supply
leading to an increase of the dimensions of the strained islands without changing their
composition.

The investigation of capping effect on the island structure in InAs/GaAs(001)
and InAs/AlAs(001) systems in coalescence regime was done. It showed the minor
influence of the capping layer on the structure of homogeneous islands and a strong
effect on the chemical composition of the relaxed conglomerates. The changes of the
chemical composition of relaxed conglomerates during capping process is determined
by the solubility of the matrix and island materials. In the InAs/AlAs(001) system
the complex elastic-plastic deformation on the interface between the homogeneous
islands and overgrowing matrix was assumed.

X.2 Outlook

Based on the results in this thesis the following topics would be interesting for the
future requiring the application of X-ray structure analysis:

- The structural changes in the islands during the 2D-3D growth transition.

- The influence of the deposition parameters on the island spatial arrangement
for systems with high island surface densities.

- The structural investigation of island systems grown in their homogeneous
regime under variation of a single deposition parameter (similar to the increase
of deposited InAs, investigated in this thesis).

- The investigation of island growth mechanisms varying different deposition pa-
rameters using the coalescence regime.

- Detailed analysis of capping effects on the island structure and topography.



Appendix A

List of frequently used
abbreviations

XRD - X-ray diffraction
GID - grazing-incidence diffraction
GISAXS - grazing-incidence small angle X-ray scattering
HRXRD - high-resolution X-ray diffraction
XRR - X-ray reflectivity
RSM - reciprocal space map
HRR - island height to radius ratio
MBE - molecular beam epitaxy
UHV - ultra high vacuum
AFM - atomic force microscopy
STM - scanning tunnelling microscopy
FFT - fast Fourier transform
WL - wetting layer
SK - Stranski-Krastanow growth
FWHM - full width at half maximum
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Appendix B

Linear deformation field algorithm
for elastically strained island

Below is the algorithm for a simple linear deformation of an elastically strained hemi-
spherical island (MATLAB command file). It is based on the approximated ISA
model describing the elastic deformation in uncapped islands. This algorithm was
developed by Alexander Petrov (TUHH) and used for reference numerical calcula-
tions. As shown in V, calculations of the island strain field based on the given
algorithm revealed physically correct results for elastic deformations below 1%.

% Notes:

% 1. Deformation "eps" is a function of Z

% 2. Cylindrical symmetry is taken rad(z)

clear all;

%Note: Below the basis of used crystal structre is given

ra(1,:)=[0 0 0]; %Example: primitive cell

% Variable

ff=1;

% lattice parameter

a=6.0584;

% maximum island hight

zmax=50;

%top (min.) and bottom (max.) deformations
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emin=0;

emax=-0.067;

% Poisson coefficient

nu=0.35;

% number of atoms in the cell

n_atom=length(ra(:,1));

%atom number

n=1;

for k=1:n_atom

%coordinate start

x=a*ra(k,1);

y=a*ra(k,2);

z=a*ra(k,3);

% vertical deformation of first layer is approximated at

% should work quite good at reasonable deformations

eps=emax-(emax-emin)*(z*(1-2*nu*emax)/2)/zmax;

z=z*(1-2*nu*eps);

while (z < zmax)

% radius function

rad=sqrt(zmax^2-z^2);

% deformation function

eps=emax-(emax-emin)*z/zmax;

az=a*(1+eps);

K(ff,1)=az;

K(ff,2)=z;

ff=ff+1;

xz=x*(1+eps);

yz=y*(1+eps);

nx1=fix((rad+xz)/az);
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nx2=fix((rad-xz)/az);

for i=-nx1:nx2

xi=az*i+xz;

radi=sqrt(rad^2-xi^2);

ny1=fix((radi+yz)/az);

ny2=fix((radi-yz)/az);

for j=-ny1:ny2

r(n,:)=[xi (az*j+yz) z k];

T(n,1)=xi;

T(n,2)=(az*j+yz);

T(n,3)=z;

n=n+1;

end

end

% vertical deformation is approximated at a/2

eps=emax-(emax-emin)*(z+a*(1-2*nu*eps)/2)/zmax;

z=z+a*(1-2*nu*eps);

end

end

dlmwrite(’filename.dat’,K,’,’) %file with deformation values

dlmwrite(’filename1.dat’,T,’,’) %file with changed atomic coordinates

%visualize the island

color=[1 0 0; 0 1 0; 0 0 1; 1 0 1];

scatter3(r(:,1), r(:,2), r(:,3), 10, color(r(:,4),:));



Appendix C

Investigation of native oxide on
InAs(001) single-crystal wafer

InAs(001) miscut-free single-crystal wafer produced by GIRMET (Moscow, Russia)
was used for this investigation. The sample was transferred into the UHV-chamber
(10−10 mbar), and cleaned by ion bombardment at RT and annealed at 450◦C un-
til the characteristic (4x2)-c(8x2) LEED-pattern corresponding to the In-terminated
reconstructed surface appeared [132].

For chemical analysis of the oxidized InAs(001) surface the photoemission spectra
from the crystal surface in the vacuum and directly after its short exposure to the
ambient air were collected and compared. The UPS measurements were carried out at
the Flipper-II station of HASYLAB/DESY, Hamburg. The incident photon energy
was 60 eV. The photoemission data for oxide-free and oxidized surfaces are shown in
Figure 1(a).

The analysis of photoemission spectra for the oxide-free InAs(001) surface revealed
its high stoichiometric purity. The signals from In and As atoms can be clearly
resolved. After surface oxidation the signal from the As atoms is no longer visible. In
addition, the shift in binding energy of the surface In atoms shows that the chemical
bonding state has changed. This observation allows to assume the surface to be
covered by indium oxide.

The X-ray reflectivity measurement on the oxidized sample was performed at
the BW2 beam-line at HASYLAB/DESY. The incoming radiation energy was 9.6
keV. The low-angle intensity distribution was recorded for 2θ angles up to 6◦. The
recorded reflectivity curve was fitted using the fewlay software package. As a fit
model an oxide layer of unknown composition and thickness on the InAs substrate was
used. The electron density of the InAs material was set to the tabulated value. The
substrate roughness was the final adjustable parameter. The experimental reflectivity
curve and theoretical curve are shown in figure 1. The extracted best-fit model
parameters are shown in the table below. The oxide layer density is given as a real
component of refraction coefficient. For the oxide layer with the given electron density
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Figure 1: (a) - The electron binding energy calculated from photoemission data for
an InAs(001) single-crystal wafer in vacuum and after oxidation. The parts of the
spectra with As peaks from 3d3/2 and 3d5/2 core levels (B) and In peaks from 4d3/2 and
4d5/2 core levels (A); (b) - Experimental X-ray reflectivity curve and its theoretical
fit.

a corresponding thickness of 1.7±0.4 nm was found.
The estimated electron density of the oxide layer reveals the presence of an In-rich

oxide with density >7g/cm3. This result correlates well with the information derived
from the photoemission data.

t, nm σ, nm δ(δlit)
InO 1.7 0.4 2.4E−5

InAs - 0.1 1E−5
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[65] G. Köstner and U. Gsele, Reduced critical thickness for relaxing heteroepitaxial
films on compliant substrates, Appl. Phys. Lett. 82, 3209 (2003).

[66] D. Maroudas, L. A. Zepeda-Ruiz, and W. H. Weinberg, Kinetics of strain re-
laxation through misfit dislocation formation in the growth of epitaxial films on
compliant substrates, Appl. Phys. Lett. 73, 753 (1998).

[67] A. Zolotaryov, A. Bader, C. Schumacher, P. Bach, L.W. Molenkamp, F. Wu,
A. Stahl, C. Kumpf, E. Umbach, and R.L. Johnson, Investigation of stress re-
laxation in Heusler-alloy thin films: NiMnSb, HASYLAB annual report (2002).

[68] Masao Kimura, Ana Acosta, Hiroshi Fujioka, and Masaharu Oshima, Gen-
eralized grazing-incidence-angle x-ray scattering analysis of quantum dots,
J. Appl. Phys. 93, 2034 (2003).

[69] M. Grundmann, O. Stier, and D. Bimberg, InAs/GaAs pyramidal quan-
tum dots: Strain distribution, optical phonons, and electronic structure,
Phys. Rev. B 52, 11969 (1995).

[70] P. Keating, Phys. Rev. B 145, 637 (1966).



BIBLIOGRAPHY 151

[71] A. M. Saitta, Ab initio molecular-dynamics study of electronic and optical prop-
erties of silicon quantum wires: Orientational effects, Phys. Rev. B 53, 1446
(1996).

[72] S. Christiansen, M. Albrecht, H. P. Strunk, and H. J. Maier, Strained state of
Ge(Si) islands on Si: Finite element calculations and comparison to convergent
beam electron-diffraction measurements, Appl. Phys. Lett. 64, 3617 (1994).

[73] J. Stangl, V. Holy, and G. Bauer, Structural properties of self-organized semi-
conductor nanostructures, Rev. Mod. Phys. 76, 725 (2004).

[74] T. Benabbas, P. Franois, Y. Androussi, and A. Lefebvre Stress relaxation in
highly strained InAs/GaAs structures as studied by finite element analysis and
transmission electron microscopy, J. Appl. Phys. 80, p.2763 (1996).

[75] C. Pryor, J. Kim, L. W. Wang, A. J. Williamson, and A. Zunger, Comparison
of two methods for describing the strain profiles in quantum dots, J. Appl. Phys.
83, 2548 (1998).

[76] M. J. Turner, R. W. Clough, H. C. Martin, and L. J. Topp, Stiffness and
Deflection Analysis of Complex Structures, Journal of Aeronautical Sciences
23, 805 (1956).

[77] M. Benyoucef, M. Kuball, G. Hill, M. Wisnom, B. Beaumont, and P. Gibart,
Finite element analysis of epitaxial lateral overgrown GaN :Voids at the coales-
cence boundary, Appl. Phys. Lett 79, 4127 (2001).

[78] Ashok Rajamani, Intrinsic tensile stress and grain boundary formation during
Volmer-Weber film growth, Appl. Phys. Lett. 81, 1204 (2002).
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