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Zusammenfassung

Seit der Realisierung von Bose-Einstein Kondensaten in Alkaligasen im Jahr 1995 haben diese sich
zu vielseitigen Forschungsobjekten entwickelt. Ein besonders faszinierender Zweig sind Spinor-
Kondensate in optischen Fallen, die die außergewöhnlichen Quantengas-Eigenschaften von Bose-
Einstein Kondensaten auf den Spin als Freiheitsgrad ausdehnen. Spinor-Kondensate ermöglichen
es, Magnetismus in Quantengasen zu erforschen, und verbinden so diese zwei ausgesprochen frucht-
baren Gebiete der Physik. Seit den ersten grundlegenden Experimenten 1998 ist das Gebiet erst in
den letzten Jahren in bemerkenswerter Weise wieder aufgelebt. In diesem Zusammenhang leistet
die vorliegende Arbeit einen bedeutenden Beitrag zum gegenwärtigen Verständnis der Physik der
Spinor-Kondensate.

Die vorliegende Arbeit behandelt kohärente Dynamik in Spinor-Kondensaten und ihre Gren-
zen, Dekohärenz und Dämpfung. Aufbauend auf einer hochentwickelten Apparatur zur Erzeu-
gung großer Spinor-Kondensate in einer optischen Falle, wurden experimentelle Methoden zur
Präparation und Manipulation des Spinzustands sowie zur Kontrolle der Umgebungsparameter ent-
wickelt und verfeinert. Neben den technischen Aspekten wurde insbesondere auch das Verständnis
der Spindynamik, deren mathematische Beschreibung ebenso wie intuitive Vorstellungen, erheblich
weiterentwickelt.

Als ein wichtiger Punkt wurde die Methode der Rabi- und Ramsey-Oszillationen mittels Anre-
gung durch hochfrequente Magnetfelder auf Spin-1 und Spin-2 Systeme verallgmeinert. Angewendet
auf Spinor-Kondensate ergeben sich daraus Rückschlüsse auf Dekohärenzmechanismen und deren
Zeitskalen. Inhärente Spindynamik wurde anhand eines besonderen, vollständig transversal ma-
gnetisierten Anfangszustands untersucht, der robust in der Präparation ist und empfindlich auf
Wechselwirkungseffekte reagiert.

Ein zentrales Ergebnis der vorliegenden Arbeit ist die erstmalige Beobachtung einer Spindy-
namik-Resonanz sowohl in ferro- als auch in antiferromagnetischen Kondensaten. Die Resonanz
kann auf die Konkurrenz von quadratischem Zeeman-Effekt und spinabhängiger Wechselwirkung
zurückgeführt werden; sie ist äquivalent zu nichtlinearer Phasenanpassung bei optischem Vierwel-
lenmischen.

Weiterhin wurde gezeigt, dass die Einmoden-Näherung, obwohl sie jegliche räumliche Ab-
hängigkeit des Spins vernachlässigt, die experimentellen Ergebnisse detailliert wiederspiegelt. Ihre
Gültigkeit ist jedoch durch Thermalisierung und räumliche Strukturbildung begrenzt, und beide
Prozesse werden umfassend analysiert. Im Rahmen dieser Arbeit konnten erstmals auch analytische
Lösungen der Spindynamik in Einmoden-Näherung gefunden werden.

Das besonders interessante Phänomen der räumlichen Strukturbildung wird anhand von Spin-2
Kondensaten in einer eindimensionalen optische Falle weiter untersucht. Die entstehenden beinahe
regelmäßigen Spin-Muster sind ästhetisch faszinierend, und zerfallen in chaotische Strukturen. Als
Ursachen der Strukturbildung werden spontane Musterbildung infolge einer dynamischen Instabi-
lität sowie Rest-Inhomogenitäten im Magnetfeld diskutiert.

Der experimentelle Befund der Strukturbildung wird durch eine numerische Analyse der Ein-
moden-Spindynamik in Spin-2 Kondensaten ergänzt, die eindeutige Anzeichen für deterministisches
Chaos in diesem nichtlinearen komplexen System ergibt.

Darüberhinaus werden in dieser Arbeit experimentelle Techniken vorgestellt, die in zukünftigen
Untersuchungen zum Einsatz kommen werden. Ein Raman-Lasersystem ermöglicht die lokale Ma-
nipulation des Spinzustands eines ausgedehnten Kondensats, beispielsweise um Solitonen zu prä-
parieren. Die Nutzung von räumlich inkohärentem Licht und kurzen Pulsen zur interferenzfreien
Abbildung von Bose-Einstein Kondensaten wird diskutiert; alternativ oder ergänzend dazu besteht
die Möglichkeit, Absorptionsbilder rechnerisch zu verarbeiten, um Interferenzen zu eliminieren.

Das heute bedeutend weiter entwickelte Verständnis der Einmoden-Spindynamik, zu dem die vorlie-
gende Arbeit einen wesentlichen Beitrag liefert, stellt eine gute Grundlage dar um die faszinierenden
Fragen aktueller und zukünftiger Forschung an Spinor-kondensaten anzugehen.



Abstract

Since the realization of Bose-Einstein condensation in alkali gases in 1995, Bose-Einstein conden-
sates (BEC) have developed into a versatile subject of research. A particularly intriguing variant,
extending the extraordinary properties of BEC as quantum gases to the spin as a degree of freedom,
are spinor BEC in optical traps. Spinor BEC allow the study of magnetism in quantum gases,
merging these two fascinating branches of physics. After the pioneering experiments in 1998, the
past few years have seen a remarkable burst of activity on the topic of spinor BEC. In this context,
the present thesis constitutes a significant contribution to the current understanding of spinor BEC
physics.

The present thesis deals with the coherent dynamics of spinor condensates, and with the
mechanisms leading to decoherence and damping. Building on a highly optimized apparatus for the
production of large spinor BEC in an optical trap, experimental methods used for the preparation
and manipulation of the spin state and the control of environmental parameters had to be developed
and sophisticated. Parallel to the experimental aspects, a better understanding of spinor BEC
dynamics, including mathematical modeling and intuitive pictures, had to be developed.

The techniques of radio-frequency induced Rabi and Ramsey oscillations have been generalized
to spin-1 and spin-2 systems and, applied to spinor BEC, provide insight into the mechanisms and
time scales of decoherence. Inherent spin-mixing dynamics is studied using a particular initial
state, a fully transversely magnetized state, which combines ease of preparation and sensitivity to
interaction effects.

As a central result of this thesis, a fundamental resonance phenomenon in the spin-mixing
dynamics of both ferromagnetic and anti-ferromagnetic spinor BEC is demonstrated for the first
time. This resonance is a result of competition between the quadratic Zeeman effect and the spin-
dependent interaction energy, and is analogous to nonlinear phase-matching in optical four-wave
mixing.

The single-mode approximation (SMA), neglecting any spatial variations of the spin state, is
shown to reproduce the experimentally observed population dynamics in great detail. However,
its validity is limited by thermalization processes and spatial structure formation – both of these
effects are analyzed in detail. In the context of the present thesis, analytical solutions of the SMA
equations of spin dynamics could be obtained for the first time.

The particularly intriguing phenomenon of spatial structure formation is further studied with
spin-2 BEC in a single-beam optical trap providing a 1D geometry. Beautiful, almost regular
spin patterns are observed to emerge from a homogeneous initial state and to decay into chaos.
Spontaneous pattern formation due to a dynamical instability as well as residual magnetic field
gradients are discussed as the origin of the observed structure.

The experimental observation of structure formation is complemented by a numerical analysis
of the single-mode dynamics of spin-2 BEC, uncovering clear evidence of deterministic chaos in
this nonlinear complex system.

Moreover, the present work introduces experimental tools that will be useful for future studies.
A Raman laser system allows to manipulate the spin state of a BEC locally, e.g. in order to
prepare solitons. Using spatially incoherent light and short pulses is discussed as a way of avoiding
interference fringes in absorption imaging of condensates. Alternatively or additionally, absorption
images may be post-processed on a computer to eliminate fringes.

The greatly improved understanding of single-mode spinor dynamics, to which the work at hand
has significantly contributed, provides a firm basis for tackling the intriguing questions raised by
current and future research on spinor BEC.
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Chapter 1

Introduction

The realization of Bose-Einstein Condensation in dilute atomic gases in 1995 earned
E. A. Cornell, C. E. Wieman and W. Ketterle the 2001 Nobel Prize in Physics and incited
a rush of activity that has grown into a whole new field of research. Bose-Einstein conden-
sation is a phase transition occuring in ensembles of identical bosonic particles, where the
absolute ground state is macroscopically occupied below the transition temperature. The
macroscopic wavefunction associated with a Bose-Einstein condensate, which can easily
reach a size of a few tenths of a millimeter, renders it a fascinating testing ground for
quantum mechanics, where the wave-like properties of matter can be observed almost “by
eye”. Beautiful experiments have demonstrated the fundamental properties of BEC as
giant matter waves. Questions regarding the interpretation of quantum mechanics and
touching the foundations of our understanding of the microscopic world – “do indepen-
dent particles interfere?” – have become experimentally accessible. Today, research on
and with Bose-Einstein condensates is widely ramified. BEC have been applied in preci-
sion measurements [9, 10] and quantum information processing [11]; beautiful examples
of fundamental research include the oberservation vortex lattices in rotating condensates
[12, 13, 14] and the Hanbury Brown Twiss effect of atoms in optical lattices [15, 16], to
name only a few.

The interest of physicists in magnetism is much older. While electro-magnetism was
comprehensively described by Maxwell’s equations at the end of the 19th century, a sat-
isfactory explanation of ferromagnetism was not found until the advent of quantum me-
chanics and in particular the discovery of the quantized spin by O. Stern and W. Gerlach
in 1922 [17, 18]. It turned out that magnetism in materials in general relies on the mag-
netic moments of atoms and electrons, generated by their internal angular momentum
or spin. The mechanism determining their relative orientation was identified in 1928 by
W. Heisenberg [19] as the exchange interaction, arising from the interplay of the Pauli
exclusion principle and the Coulomb interaction of electrons. Despite 80 years of research
since, and despite the enormous technological relevance of magnetic materials today, the
details of magnetism are not yet fully understood and remain an active area of research.

Spinor Bose-Einstein condensates consist of particles with non-zero internal angular
momentum or spin, whose orientation in space is not externally constrained. Spinor
Bose-Einstein condensates extend the extraordinary properties of a BEC to the spin as a
degree of freedom and allow the study of magnetism in quantum gases, merging these two
fascinating branches of physics.

1



2 CHAPTER 1. INTRODUCTION

The pioneering experiments with spinor BEC were performed not long after the real-
ization of BEC in the group of W. Ketterle. The first observation of a BEC with spin
degree of freedom [20] in an optical trap, together with seminal theoretical work by T.-
L. Ho [21], T. Ohmi and K. Machida [22], established the basic techniques and notions of
spinor BEC physics.

The Ketterle group studied a spin-1 system, namely Na in the F = 1 hyperfine state.
They were the first to study the ground state of a spinor BEC experimentally and to
recognize the importance of spin conservation and the quadratic Zeeman effect [23]. They
also established the validity of the mean-field description proposed in [21, 22], which is now
widely acknowledged as a successful approximation. Further important results include the
interpretation of ground states and domain formation in terms of a phase diagram [23]
and the first observation of spontanous de-mixing of spin states, explained by energetic
arguments [24].

In parallel, the group of E. A. Cornell established a magnetically trapped two-com-
ponent mixture of 87Rb in different hyperfine states as a quasi-spin-1/2 system [25]. Im-
portant results were the demonstration of coherence, i.e. a well-defined relative phase, of
the two components in the condensed state [26, 27], as well as decoherence and its conse-
quences in the non-condensed fraction [28]. Collective excitations in a thermal ensemble
were studied both above [29, 30] and below [31] the transition temperature, as well as
their interaction with the condensed part in the latter case.

Following the ground-breaking work of W. Ketterle and E. A. Cornell, the field was
revitalized by experiments performed in the group of M.-S. Chapman and in our group
in Hamburg. Two main questions determined the track: on the one hand, what are the
characteristics of spin-2 systems in general [32, 33] and 87Rb in particular [34]; on the other
hand, is it possible to observe coherent oscillations in spinor BEC [35]. Both questions were
addressed in the Hamburg group, resulting in the classification of spin-2 spinor ground
states at finite magnetic field in terms of a phase diagram [36] and in a direct experimental
confirmation of the predicted ground state of 87Rb F=2 [7]. The observation of coherent
spinor oscillations however turned out to be difficult in both F = 2 (Hamburg group [8, 7])
and F = 1 (Chapman group [37]).

Today, still only a handful of groups are enganged in experimental research on spinor
BEC [38, 39, 40, 41, 42], despite the spectacular prospects associated with the imple-
mentation of optical lattices [43]. In contrast, theoretical approaches to spinor BEC are
diverse, ranging from the tried and tested mean-field approximation (e.g. [44, 45, 46, 47],
to name a few recent papers utilizing this approach) to exact many-body calculations (e.g.
[35, 48, 49]).

The first observation of clearly coherent spinor oscillations in both F = 1 and F = 2
condensates is one of the highlights of the present work – independent work on F = 1
in the group of Chapman has appeared simultaneously [50], beautifully complementing
our results. We have also been the first to systematically apply the Rabi and Ramsey
methods, known from spin-1/2 physics but extended to F ≥ 1 condensates, establishing
them as a versatile tool for the preparation and analysis of spinor BEC. These experiments
and the theoretical models developed in their context have tremendously advanced our
comprehension of spinor BEC dynamics.

At the core of this understanding is the concept of the single-mode approximation
(SMA), claiming that the spin state of a trapped condensate does not vary in space. The
present thesis highlights the usefulness of the single-mode approximation in the interpre-
tation of dynamical phenomena and at the same time explores its limits. In fact, it takes
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one step beyond those limits in presenting first results on spontaneously formed spatial
spin patterns in antiferromagnetic F = 2 87Rb. However, single-mode F = 2 spinor dy-
namics holds yet another surprise – behind the innocent face of quantum mechanics, spin
dynamics is a beautiful example of nonlinear dynamics in a complex system.

In the following, an overview of the contents of this thesis is presented, in the form of a
short abstract for each chapter.1

Technical note – The symmetry axis or quantization axis is in some cases referred to as
x-axis in this work, in contrast to the usual convention (z-axis). Appendix A clarifies this
issue.

1For the reader’s convenience, each abstract is repeated at the beginning of the respective chapter.
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4 CHAPTER 1. INTRODUCTION

Chapter 2 – Spinor Bose-Einstein condensates Mathematical tools as well as intu-
itive pictures used in the description of spin-1 and spin-2 ensembles are summarized.
In the first part, the generalization of well-known spin-1/2 physics to spin-F is devel-
oped and key concepts such as Rabi and Ramsey oscillations and the Bloch sphere
are discussed. The second part deals with the mean-field description of interacting
spinor Bose-Einstein condensates, focusing on dynamics in the single-mode approxi-
mation but also covering related topics such as ground states and pattern formation.

Chapter 3 – Experimental setup and characterization The observation and ma-
nipulation of ultra-cold spinor gases is a technically demanding task and requires
a complex experimental setup together with an experimentalist’s ability to master
it. Many of the key techniques covered in this chapter, in particular the control of
the magnetic field and the preparation of spin states, had to be specially developed
or improved in order to achieve the results of the following chapters.

Chapter 4 – Additional experimental tools This chapter covers two rather periph-
eral experimental aspects, that yet turn out to be quite rewarding distractions,
uncovering beautiful physics. In the first part, various methods aimed at reducing
the disturbance of absorption images by interference fringes – a problem well known
to anyone working in the field of ultracold gases and probably of much wider impact,
considering the importance of laser light in modern imaging technology. The second
part describes the construction of flexible and easy-to-use light source for driving
Raman transitions between the hyperfine ground states of 87Rb.

Chapter 5 – Spin dynamics from a rotated stretched state This chapter, cover-
ing those of our spinor BEC experiments that can be analyzed under the single-mode
paradigm, is the heart of this thesis. It turns out that fully transversely magnetized
statesare particularly suited to observe fascinating new types of spinor dynamics,
such as the resonance phenomenon central to this chapter. The contents of this
chapter has been the subject of two peer-reviewed publications: work on F = 1 can
be found in Kronjäger et al., Phys. Rev. A 72, 063619 (2005) [2], work on F = 2 in
Kronjäger et al., Phys. Rev. Lett. 97, 110404 (2006) [1].

Chapter 6 – Structure formation in elongated spinor BEC Evidence of sponta-
neous pattern formation in anti-ferromagnetic F = 2 87Rb condensates as well as
a critical analysis thereof is presented in this chapter. Similar phenomena have
been observed before in ferromagnetic spinor condensates only, where they are eas-
ily interpreted as spontaneous symmetry breaking or demixing of components. This
interpretation is not applicable to our observations. Possible explanations discussed
here include a dynamical instability or a twisting of the order parameter by magnetic
field gradients, both leading to the breakdown of the single-mode approximation.

Chapter 7 – Chaotic dynamics in F = 2 A thorough numerical and analytical treat-
ment of the equations of motion of symmetric F = 2 spin dynamics in the single
mode approximation unravels the complex and actually chaotic dynamics of this sys-
tem. A comprehensive treatise of this topic is beyond the scope of the present work,
but an attempt is made to introduce the reader to the beauty of nonlinear dynamics
and deterministic chaos, which in fact is a ubiquitous phenomenon in nature.

4



Chapter 2

Spinor Bose-Einstein condensates
(BEC)

Mathematical tools as well as intuitive pictures used in the description of spin-
1 and spin-2 ensembles are summarized. In the first part, the generalization of
well known spin-1/2 physics to spin-F is developed and key concepts such as
Rabi and Ramsey oscillations and the Bloch sphere are discussed. The second
part deals with the mean-field description of interacting spinor Bose-Einstein
condensates, focusing on dynamics in the single-mode approximation but also
covering related topics such as ground states and pattern formation.

2.1 Introduction to spinor Bose-Einstein condensates

Spinor condensates consist of bosonic particles possessing an internal degree of freedom,
namely the orientation of their spin. While the theory describing the external degrees of
freedom of a Bose-Einstein condensate is well known (see e.g. [51, 52, 53]), the particular
features of spinor Bose-Einstein condensates are the subject of the present chapter.

First and foremost, the order parameter of a spinor BEC becomes a multi-component
spinor wave-function. Compared to general multi-component Bose-Einstein condensates,
e.g. of atoms in different hyperfine states [54, 26] or of different isotopes [55], spinor
condensates are distinguished by the symmetry of the spinor order parameter. Under ro-
tations of the coordinate system, spinor components transform into one another according
to the laws of the corresponding symmetry group. In other words, the number of particles
in each component is not fixed. Internal dynamics may change the individual populations,
only restricted by the conservation of the total spin.

Bose-Einstein condensates of alkali gases are weakly interacting, meaning they can
be well described in the mean-field approximation, which is an effective single-particle
theory. Nevertheless, interactions are important and generally even dominate over kinetic
energy in the ground state. Extending the formalism to spinor BEC, interactions become
dependent on the internal state, leading to complex nonlinear dynamics of the internal
degrees of freedom and a rich manifold of ground states.

This chapter starts with a review of the quantum mechanics of single-particle spin
physics with emphasis on the particularities of spin-1 and spin-2 particles, as compared
to the well-known spin-1/2 or two-level case with its intuitive classical interpretation, the

5



6 CHAPTER 2. SPINOR BOSE-EINSTEIN CONDENSATES (BEC)

Bloch sphere. Understanding single-particle spin physics is the basis for the analysis and
interpretation of many-particle spinor systems.

The second half of this chapter addresses the mean-field theory of spinor condensates,
and in particular the consequences of state-dependent interaction. We concentrate on
dynamical aspects, which are at the core of the present work as a whole. We also point
out the analogy of spinor BEC and nonlinear optics, both obeying wave equations that
share essential features.

2.2 Single atom spin-1 and spin-2 physics

2.2.1 Quantum mechanical description

The quantum mechanical description of single-particle spinor physics is based on a Hamil-
tonian constructed from

1. the respective F -manifold of atomic energy levels in an axial magnetic field B0; the
energy dependence on B0 is taken into account to second order (linear and quadratic
Zeeman effect)

2. the linear interaction with a relatively small, time-dependent transverse field B⊥(t)
produced by a radio frequency antenna.

In the regime of magnetic interaction energy much smaller than the fine structure
splitting ∆ELS, the hyperfine Hamiltonian including an external magnetic field ~B can be
written (following [56])

HHFS = A~I · ~J− (gKµK
~I− gJµB

~J) · ~B (2.1)

where~I and ~J are the angular momentum operators of the nuclear and electronic (including
orbital) spin, respectively, µK and µB are the nuclear and Bohr magneton and gK and
gJ the corresponding Landé factors1. At zero field, ~I and ~J couple to the total spin
~F = ~I+~J, and the energy levels are simultaneous eigenstates of I2,J2,F2,Fz with energies
EHFS = A

2 ((F (F + 1)− I(I + 1)− J(J + 1)).
A small magnetic field ~B = B0 ~ez lifts the mF degeneracy and – using linear per-

turbation theory – leads to Zeeman levels ELZE = gFµBB0mF ≡ ~ pmF . Second order
perturbation theory adds a term quadratic in B0 and mF , EQZE = ~ q m2

F . In the case
of alkali atoms in S-states with J = 1

2 , the Breit-Rabi formula [56] allows to diagonalize
(2.1) exactly:

E

(
F = I ± 1

2
,mF

)
= − ∆Ehfs

2(2I + 1)
−mF gKµKB0 ±

∆Ehfs

2

√
1 +

4mF

2I + 1
x+ x2 (2.2)

with x =
gJµB + gKµK

∆E0
B0 (2.3)

1All four quantities are positive with the sign convention chosen here [57]. The Bohr magneton µB =
e~

2mec
≈ h × 1.4MHz/G and the nuclear magneton µK = e~

2mpc
≈ h × 760Hz/G determine the order of

magnitude of Zeeman energy shifts. For the electronic ground state of 87Rb, the Landé factor is gJ ≈ 2
and the corresponding nuclear g factor gK ≈ 2.75. Since µK � µB , the nuclear contribution to the Zeeman
effect can be neglected for the purposes of the present work.

6



2.2. SINGLE ATOM SPIN-1 AND SPIN-2 PHYSICS 7

∆Ehfs ≡ ~ωhfs = A(I + 1/2) is the hyperfine splitting of the two states F = I ± 1
2 at zero

magnetic field. Expanded to second order in B0, we get for the case of 87Rb with I = 3
2

ELZE = mFµBB0

(
±gj

4
− (3± 1)µK

4µB
gK

)
≈ ±1

2
mFµBB0 (2.4)

EQZE = ±
µ2

BB
2
0

4∆Ehfs

(
gj +

µK

µB
gK

)2(
1−

m2
F

4

)
≈ ±

µ2
BB

2
0

4∆E0
(4−m2

F ) (2.5)

where ± refers to the case F = I± 1
2 , respectively, i.e. F = 1 and F = 2. It thus turns out

that in very good approximation, the Zeeman effect (both linear and quadratic) in 87Rb
F = 1 and F = 2 is equal in magnitude but of opposite sign.

The Wigner-Eckart theorem guarantees that |F,mF 〉 are still energy eigenstates. The
magnetic field dependent part of (2.1) is frequently reduced to

HZE ≡ HLZE + HQZE = −~pFz + ~qF2
z (2.6)

with |p| = 1
2

µB
~ B0 and |q| = p2

ωhfs
. For F = 2 (F = 1) both p and q are negative (positive).

Besides the constant offset B0~ez, the magnetic field can have a time-dependent perpen-
dicular component, e.g. produced by a radio frequency antenna, ~B = B0~ez + b̂ cos(ωt)~ey.
Since the amplitude of such a time-dependent field is typically well within the linear regime,
the quadratic Zeeman effect can be neglected and the corresponding time-dependent
Hamiltonian reads

Hrf = −gFµB b̂ cos(ωt)Fy. (2.7)

Before we proceed to look at the dynamics induced by HZE + Hrf, it is convenient to
transform to a rotating coordinate system. For a coordinate system rotating around the
z-axis at angular velocity ω0, the time-dependent transformation operator is diagonal,

T = e−iω0tFz . (2.8)

It commutes with HZE, but due to its explicit time dependence adds a term i~ṪT−1 =
+~ω0Fz to the effective Zeeman Hamiltonian in the rotating frame,

H̃ZE = THZET−1 + i~ṪT−1 = −~pFz + ~qF2
z + ~ω0Fz. (2.9)

The off-diagonal part Hrf transforms to

THrf T† = −gFµB b̂

4i
(
eiωt + e−iωt

) (
e−iω0tF+ − eiω0tF−

)
(2.10)

with F± = Fx ± iFy. The rotating wave approximation (RWA) consists in expanding the
product and keeping only terms oscillating at the difference frequency ω − ω0 (assuming
both have the same sign). This approximation is used extensively in all kinds of near-
resonant two-level problems and is generally considered adequate if the two frequencies
are sufficiently close [58]. In RWA, the full Hamiltonian in the rotating frame reads

H̃ = −~(p− ω0)Fz + ~qF2
z −

gFµB b̂

2

(
cos(ω − ω0)Fy + sin(ω − ω0)Fx

)
. (2.11)

In principle, the frequency of rotation ω0 is. However, the choice ω0 = ω turns out to be
particularly useful in situations where b̂ 6= 0, since H̃ then becomes time-independent.

7



8 CHAPTER 2. SPINOR BOSE-EINSTEIN CONDENSATES (BEC)

(a) Rabi sequence (b) Ramsey sequence

Figure 2.1: Experimental rf pulse sequence for the Rabi and Ramsey oscillations.

The Schrödinger equation of the full multi-level problem can be solved formally in the
rotating wave approximation, where the Hamiltonian is time-independent,

i~|ζ̇〉 = H̃|ζ〉 ⇔ |ζ(t)〉 = e−i H̃~ t |ζ(0)〉. (2.12)

Since H̃ is a (2F + 1)-dimensional matrix, the exponential can be calculated numerically
using standard linear algebra techniques. Alternatively, the super-operator formalism of
Section 2.2.3 may be applied, in which the time evolution of the density matrix is calculated
in a similar way.

It is instructive to solve the Schrödinger equation with H = HZE+Hrf for some special
cases:

• Larmor rotation is evolution under HLZE = −~pFz only, b̂ = 0 and q = 0. Since
an axial magnetic field B0 is always present in experiments, Larmor rotation is the
fundamental type of dynamics of any superposition of mF states.

• Rabi oscillations arise from the coupling Hamiltonian Hrf, with constant radio fre-
quency amplitude b̂. Rf-induced Rabi oscillations, typically lasting only fractions of
a cycle, are the most important tool for the preparation of spin states used in this
work (Section 3.5).

• Ramsey fringes are the result of a sequence of rf-driven and free evolution in the
presence of HZE, consisting of two Rabi quarter-cycles separated by a variable delay
time. The Ramsey sequence can be regarded as an interferometer in spin space.
Ramsey fringes yield information on the decay of coherence during the delay time
and have been used in the present work for the characterization of magnetic field
fluctuations (Section 3.4) and for probing the coherence of spinor Bose-Einstein
condensates and thermal clouds (Section 5.2).

Larmor rotation

In the simplest non-trivial case of a purely linear Zeeman effect and no radio frequency
coupling, the equations of motion can be solved in the fixed frame of reference in terms of
observables, which has the advantage of being independent of the particular value of F .
From the Heisenberg picture we obtain

〈Ȧ〉 =
i

~
〈[H,A]〉 (2.13)

8



2.2. SINGLE ATOM SPIN-1 AND SPIN-2 PHYSICS 9

for any observableA ≡ 〈A〉. Applied to the spin components and HLZE, using [〈Fx〉, 〈Fy〉] =
i〈Fz〉 and cyclic permutations [59],

Ḟx = +pFy and Ḟy = −pFx. (2.14)

These equations describe Larmor rotation of the spin vector around the z-axis, at the
Larmor frequency ωL = |p|. Fz is a constant of the motion, Ḟz = 0.

Switching to the rotating frame, we note that the Larmor frequency is replaced by the
detuning |p̃| = |p−ω0|. Obviously, in the frame rotating exactly at the Larmor frequency,
p̃ = 0 and the system appears stationary.

The quadratic Zeeman effect introduces another energy scale ~q. Its effect is most
easily calculated using matrix representation. Since it is diagonal in the basis of mF

states, it acts on the relative phases of superposition states only. The time evolution
operator corresponding to HQZE is

e−iqF 2
z t F=1= e−iqt

1
eiqt

1

 (2.15)

F=2= e−4iqt


1

e3iqt

e4iqt

e3iqt

1

 (2.16)

where the pre-factors are arbitrary since they only add a global phase corresponding to a
global energy shift.

Take, for example, the fully transversely magnetized state |ζπ/2〉 (see the following
sections on Rabi oscillations and the Ramsey sequence) with 〈Fx〉 = F ,

|ζπ/2〉
F=1=

(
1
2

1√
2

1
2

)T
, (2.17)

F=2=
(

1
4

1
2

√
3
8

1
2

1
4

)T
. (2.18)

Applying the time evolution operator of the quadratic Zeeman effect to this initial state,
the expectation value

〈Fx(t)〉 = 〈ζπ/2|e+iqF2
ztFxe

−iqF2
zt|ζπ/2〉 (2.19)

can be calculated straight-forwardly. For F = 1, the result is 〈Fx(t)〉 = cos(qt), while the
remaining components of the spin vector remain zero, 〈Fy(t)〉 = 〈Fz(t)〉 = 0. We will get
back to this in the context of the Ramsey fringes below.

Rabi oscillations

Rabi oscillations [60] in the original sense occur in two-level or spin-1/2 systems, where
obviously no quadratic Zeeman effect exists. A similar phenomenon is observed in higher
spin (multilevel ladder) systems when the quadratic Zeeman effect is small or negligible.
The latter case can again be solved in terms of observables, independent of the value of
F .

9
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mF = 0

mF = −1

mF = +1
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Figure 2.2: Detuning of transitions by the quadratic Zeeman effect (F = 1) . Left: Level
scheme for finite B0. Right: Dressed-state energy 〈H̃ZE〉 in the rotating frame versus angular
frequency ω0. HQZE splits the three-fold level-crossing into separate resonances, two of which
satisfy ∆mF = ±1 (circles).
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Figure 2.3: Rabi oscillations in F = 1 including the quadratic Zeeman effect. The plots have been
numerically calculated from RWA solutions of the Schrödinger equation (2.12) with the parameters
p̃ = 0 and q ≈ 0.11Ω0. Note the double scale of the horizontal axis, showing time in units of 2π/q
as well as 2π/Ω0.
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2.2. SINGLE ATOM SPIN-1 AND SPIN-2 PHYSICS 11

In the rotating wave approximation the Hamiltonian becomes time-independent for
ω0 = ω :

H̃ = −~p̃Fz + ~qF2
z −

gFµB b̂

2
Fy (2.20)

where p̃ = p−ω represents the detuning between the Larmor frequency and the excitation
frequency.

Neglecting the quadratic Zeeman effect (q = 0) and assuming resonance (p̃ = 0), the
spin vector evolves according to

Ḟx = −Ω0Fz Ḟy = 0 Ḟz = +Ω0Fx. (2.21)

This is a rotation – in the rotating frame! – of the spin vector around the y-axis at the
Rabi frequency Ω0 = gF µB b̂

2~ . This is analogous to the two-level case except for the fact
that the spin vector ~F = (Fx, Fy, Fz) does not fully characterize the quantum-mechanical
state for F > 1/2.

For nonzero detuning, but still negligible quadratic Zeeman effect, the Hamiltonian
(2.20) takes the form of the generator of a rotation at angular velocity Ω =

√
p̃2 + Ω2

0

around an axis ~n = p̃
Ω~ez + Ω0

Ω ~ey,

H̃ = −~Ω~n · ~F where |~n| = 1. (2.22)

This is analogous to the two-level case [58] and describes a gradual transition from resonant
Rabi oscillations (~n = ~ey, Ω = Ω0) to Larmor rotation at large detunings (~n→ ~ez, Ω → p̃).

As in the case of Larmor rotation, the quadratic Zeeman effect introduces another
energy scale q. Intuitively, the radio frequency driving field couples to ∆mF = ±1 tran-
sitions; the quadratic Zeeman effect detunes the different transitions which otherwise are
all degenerate. Taking F = 1 as an example, there are two transitions with ∆mF = ±1
(Fig. 2.2). Superimposing two slightly detuned oscillators generally yields a beat signal at
the difference frequency, and the same result is obtained in the case of Rabi oscillations.
The “beat” picture is an intuitive explanation for qualitative features that distinguish
F ≥ 1 from the two-level case.

Exact solutions of the equations of motion can be calculated numerically, and an
example for F = 1 is presented in Fig. 2.3, where the beat note is readily identified.
Starting from |ζ(0)〉 = (0, 0, 1), the populations ρ+1 = |ζ+1|2 and ρ−1 = |ζ−1|2 oscillate
exactly π out of phase at the Rabi frequency, while ρ0 = |ζ0|2 oscillates at twice the
Rabi frequency. This reflects the rotation of the spin vector around the y-axis: Fz = ±F
corresponds to ρ±1 = 1, while Fz = 0, corresponding to ρ0 = 1/2, occurs twice per cycle
at Fx = +F and Fx = −F . Accordingly, Fz and Fx oscillate π/2 out of phase. The beat
note resulting from the quadratic Zeeman effect is visible in both Fz and Fx as well as
ρ+1 and ρ−1, but is hardly noticeable in ρ0. The quadratic Zeeman effect also leads to a
small oscillation of Fy at twice the Rabi frequency. A small detuning would also show up
in small oscillations of Fy, however at the same frequency and in phase with Fz.

Ramsey fringes

A powerful technique to study coherences, well known in two-level systems, is Ramsey
interferometry [61]. Generally speaking, a wave packet is split in two and reunited after a
period of free evolution, leading to interference fringes depending on the phase difference
accumulated by the two parts. In the language of two-level systems, a beam-splitting

11
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Figure 2.4: Ramsey fringes including quadratic Zeeman effect for (a) F = 1 and (b) F = 2,
calculated numerically assuming ideal π/2-pulses. In both cases, the detuning ∆ ≡ p̃ sets the
time scale of the fast oscillations, and the quadratic Zeeman effect q ≈ 0.11∆ determines the beat
period. Note the double scale of the horizontal axis, showing time in units of 2π/q as well as 2π/∆.
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(radio frequency or light) pulse prepares the system in a superposition of internal states
evolving at different rates according to their energy difference; a second pulse mixes the
states once again, leading to population oscillations known as Ramsey fringes depending
on the energy splitting and the time interval of free evolution between pulses.

The generalization to F > 1/2 performed here is straight forward. The time evolution
during a Ramsey sequence takes place in three steps:

1. beam-splitting radio frequency pulse of duration τ and amplitude b̂, such that Ω0τ =
π/2 (so-called π/2-pulse). If τ is short compared to the time scale of the quadratic
Zeeman effect q−1, the latter may be neglected and the simplified Rabi picture
discussed above applies.

2. free evolution governed by linear and quadratic Zeeman effect over time T .

3. beam-combining radio frequency π/2-pulse of the same amplitude and duration as
the first pulse.

In general, the evolution during the radio frequency pulses is described by the full
Hamiltonian HZE + Hrf. The π/2-pulse can be thought of as an instantaneous transfor-
mation when its duration τ is much smaller than other time scales of the system, here in
particular that of the quadratic Zeeman effect q−1 and the detuning2 p̃−1,

Rπ/2 = lim
τ→0

Ω0τ=π/2

e−
i
~ (HZE+Hrf)τ = lim

τ→0
e+i(p̃Fz−qF2

z)τ+i π
2
Fy = e+i π

2
Fy (2.23)

F=1=

 1/2 1/
√

2 1/2
−1/

√
2 0 −1/

√
2

1/2 −1/
√

2 1/2

 (2.24)

F=2=


1/4 1/2

√
6/4 1/2 1/4

−1/2 −1/2 0 1/2 1/2√
6/4 0 −1/2 0

√
6/4

−1/2 1/2 0 −1/2 1/2
1/4 −1/2

√
6/4 −1/2 1/4

 (2.25)

Rπ/2 in fact is the transformation operator for a 90◦ active rotation around the y-axis,
or, equivalently, for a (passive) rotation of the coordinate system such that the z-axis takes
the place of the former x-axis. Applying Rπ/2 to a stretched state |−F 〉 with Fz = −F
results in a fully transversely magnetized state |ζπ/2〉 with Fx = F ; another pulse Rπ/2

transforms |ζπ/2〉 to the the opposite stretched state |+F 〉.
It follows that measuring Fz after the final beam-combining π/2-pulse is actually equiv-

alent to measuring Fx before the final rotation. Similarly, the first beam-splitting pulse
can be regarded as preparing a fully transversely magnetized state. During the period of
free evolution, the linear Zeeman effect then induces a Larmor rotation at the detuning
p̃ in the rotating frame, while the quadratic Zeeman effect introduces a beat note of the
order of q, as discussed in the previous section on Larmor rotation.

2From the Rabi formula (2.22), neglecting the quadratic Zeeman effect but not the detuning, one
obtains a width of the resonance of the order of the resonant Rabi frequency Ω0. For a π/2-pulse, the Rabi
frequency is inversely proportional to the pulse duration τ , Ω0 = π

2τ
. The width of the resonance is thus

the same as expected from the Fourier-limited spectral width of the pulse envelope.
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Fig. 2.4 illustrates the Ramsey sequence and the resulting population dynamics for
both F = 1 and F = 2. In F = 1, the dynamics is similar to Rabi oscillations, except that
Fx and Fy are now oscillating in quadrature instead of Fz and Fx, and Fz = 0 exactly.
As expected from the considerations for Larmor rotation in the presence of a quadratic
Zeeman shift, the period of oscillations of Fx and Fy is 2π/p̃ and the beat period introduced
by the quadratic Zeeman effect is π/q. Note the phase jumps caused by the change of sign
of the envelope function cos(qT ) at its zero-crossings. In F = 2, the time scales of both the
oscillation and the beat note are the same as in F = 1, but the details differ significantly.
In particular, population dynamics appears quite irregular, even though no nonlinearity
is present here. The shape of the beat envelope of Fx, Fy oscillations also differs. This
is caused by harmonics of cos(qT ), resulting from the phase factors in the time evolution
operator (2.16).

2.2.2 Classical interpretation

The dynamics of a driven two-level system can be mapped to the classical dynamics of an
angular momentum ~s under the influence of a torque ~Ω. This is expressed by the Bloch
equations [58],

~̇s = −~Ω× ~s with ~Ω =

 0
Ω0 cos(ωt)

ω0

 and ~s =

〈σ1〉
〈σ2〉
〈σ3〉

 . (2.26)

The connection to quantum mechanics is established by identifying the components of
~s as expectation values of observables σi. The operators σi are the Pauli matrices,

σ1 =
(

0 1
1 0

)
σ2 =

(
0 i
−i 0

)
σ3 =

(
1 0
0 −1

)
(2.27)

The Pauli matrices not only play the role of angular momentum operators, Fi = 1
2σi, but

also form a basis in which any spin-1/2 density matrix ρ can be expanded,

ρ =
∑

i=1,2,3

αiσi with αi =
1
2

Tr ρσi = 〈Fi〉 (2.28)

The tip of the Bloch vector ~s, or equivalently the spin vector (Fx, Fy, Fz), moves on
the surface of the Bloch sphere. For F = 1/2, the surface of the Bloch sphere contains all
possible physical states. This is a consequence of the fact that the group of 3D rotations
O(3) and the group of special unitary transformations SU(2) on C2 are isomorphic [62],
and is not true for any Hilbert space dimension larger than two. It also implies that in
F = 1/2, every state is a stretched state in a properly chosen coordinate system.

For F > 1/2, the spin vector is still useful to visualize dynamics on the Bloch
sphere, but only as long as the state remains a stretched state with respect to some
direction in space. For purely linear Zeeman dynamics including rf drive, any stretched
state remains stretched since the time evolution operator e−iH~ t is just a rotation around
~n = (0,Ω0, p)/

√
p2 + Ω2

0,
e−i(−pFz−Ω0Fy)t = eiϕ~n·~F, (2.29)

equivalent to a change in coordinate system. The quadratic Zeeman effect however destroys
this picture.

14
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(a) Rabi oscillations (resonant rf drive for time t). From left to right: Fz(Ω0t = π/2) = 0, Fz(Ω0t = π) = F ,
Fz(Ω0t = 3π/2) = 0.

(b) Ramsey fringes (two π/2-pulses separated by time T , detuned by ∆ = ω − ω0). Fz(∆ · T = 0) = F ,
Fz(∆ · T = π/2) = 0, Fz(∆ · T = π) = −F .

Figure 2.5: Bloch sphere: Rabi and Ramsey oscillations in the rotating frame with the initial
state is on the negative z-axis, Fz = −F , Fx = Fy = 0. Compare to Fig. 2.3 (Rabi) and Fig. 2.4
(Ramsey).
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For example, consider Rabi oscillations in the presence of a quadratic Zeeman shift, as
shown in Fig. 2.3. The initial state |−1〉 can be represented on the Bloch sphere, compare
to Fig. 2.5. However, at the beat nodes t = (2n+1)π/q , all components of the spin vector
(Fx, Fy, Fz) vanish, which is obviously not compatible with any state on the surface of
the Bloch sphere. The same occurs at the beat nodes of Ramsey fringes with quadratic
Zeeman effect (Fig. 2.4).

It is possible to construct a generalized Bloch vector for an N -level system obeying an
equation of motion similar to (2.26) [63]. The method is based on a suitably chosen set
of N × N basis matrices qi, in which the density matrix is expanded, ρ =

∑N2−1
i=1 αiqi.

The expansion coefficients αi form the components of the Bloch vector ~s = (α1, . . . αN2−1).
However, this is an abstract vector in a high dimensional space RN2−1, and its construction
is somewhat arbitrary since it depends on the choice of basis matrices with different
proposals offering specific advantages [64, 65, 66]. We will return to the topic in the
following section in the context of the so-called super-operator formalism, where we will
also go into the details of the expansion of the density matrix.

2.2.3 Decoherence and damping

Decoherence of a quantum mechanical state arises as a result of interaction of the quantum
mechanical system under study with a “bath” of external degrees of freedom, whose details
are unknown. E.g. a single atom as a constituent of a thermal ensemble, or a Bose-
Einstein condensate interacting with its thermal cloud may suffer from decoherence. The
description of decoherence as a statistical phenomenon is based on the density matrix
formulation of quantum mechanics.

The density matrix ρ is defined as a statistical mixture of pure states |ψi〉 with weight
pi,

ρ =
∑

i

pi |ψi〉〈ψi| with
∑

i

pi = 1, (2.30)

and obeys an equation of motion that follows from the Schrödinger equation, the von-
Neumann equation

ρ̇ = − i
~
[H, ρ] with Hamiltonian H. (2.31)

Density matrices describing pure states, in contrast to statistical mixtures, are distin-
guished by Tr ρ2 = 1. An observable A, corresponding to an operator A, is calculated
from

A = Tr ρA. (2.32)

The density matrix formalism thus incorporates both quantum mechanical and statistical
averaging into a single formalism.

The von-Neumann equation conserves not only Tr ρ = 1 (normalization) but also Tr ρ2,
which means that a pure state always remains pure. Thus it cannot describe decoherence,
which is generally associated with the decay of off-diagonal elements of the density ma-
trix. The Lindblad-form [67] is the most general amendment of the equation of motion
fulfilling certain physical requirements, namely the conservation of the trace Tr ρ, complete
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positivity of ρ, and Markovianity3 [68, 69]. The Lindblad form reads

ρ̇ = − i
~
[H, ρ] +

1
2

∑
k

(
[Lkρ,L

†
k] + [Lk, ρL

†
k]
)

(2.33)

= − i
~
[H, ρ]− 1

2

∑
k

(
L†

kLkρ+ ρL†
kLk − 2LkρL

†
k

)
(2.34)

The Lindblad-operators Lk are arbitrary operators in Hilbert space. They have to be cho-
sen in a suitable way such that they lead to the desired decoherence effect, or they may be
calculated from a microscopic theory of the interaction with some specific environment. A
common condition narrowing the range of operators and simplifying the physical interpre-
tation is that the Lk must be observables (hermitian operators) themselves. In this case,
the Lindblad-von-Neumann equation (2.34) is equivalent to an averaged random unitary
evolution [70, 71].

In the simple case of a fixed Hamiltonian H0 with a perturbation of randomly varying
strength α(t)HR, commuting with H0, the Lindblad-equation can be derived by elemen-
tary means as the equation of motion of the averaged density matrix. α(t) is assumed
to be a random walk with bα(t)c = 0 and bα(t)α(t′)c = σ2δ(t − t′), where b·c denotes
the ensemble average of α. Since the time-dependent Hamiltonian H(t) = H0 + α(t)HR

commutes with itself at all times, [H(t),H(t′)] = 0, the time-evolution operator U(t2, t1)
that propagates the density matrix as ρ(t2) = U(t2, t1)ρ(t1)U†(t2, t1) is simply given by

U(t2, t1) = e−
i
~

R t2
t1

H(t′) dt′ = e−
i
~H0t e−

i
~HR

R t2
t1

α(t′)dt′ (2.35)

Expanding the product

e−
i
~HR

R t2
t1

α(t′) dt′ρ(t1)e
i
~HR

R t2
t1

α(t′) dt′ (2.36)

to second order in β =
∫ t2
t1
α(t′) dt′ we obtain

ρ(t1) +
i

~
β[ρ(t1),HR] +

β2

~2

(
−1

2
H2

Rρ(t1) + HRρ(t1)HR −
1
2
ρ(t1)H2

R

)
, (2.37)

and taking the ensemble average we arrive at

bρ(t2)c = e−
i
~ (t2−t1)H0

[
ρ(t1)

− 1
2
σ2

~2
(t2 − t1)

(
H2

Rρ(t1) + ρ(t1)H2
R − 2HRρ(t1)HR

) ]
e

i
~ (t2−t1)H0 . (2.38)

The fact that only the time difference appears in this equation reflects the statistical time
invariance of the problem. Taking the time derivative in the limit t2 → t1, we obtain an
equation of motion of the Lindblad form for the ensemble-averaged density matrix,

˙bρc = − i
~
[H0, bρc]−

1
2
(
L2bρc+ bρcL2 − 2LbρcL

)
, (2.39)

with a single Lindblad operator L = L† = σ
~HR. Assuming ergodicity, the ensemble

average may also be substituted by a time average.
3In this context, Markovianity means that the quantum dynamical map Θ(t) : ρ(0) → ρ(t) possesses a

semi-group structure, i.e. Θ(t1 + t2) = Θ(t1)Θ(t2). This is what remains of the properties of the unitary
time evolution operator T (t) : |ψ(0)〉 → |ψ(t)〉 of the Schrödinger picture.
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18 CHAPTER 2. SPINOR BOSE-EINSTEIN CONDENSATES (BEC)

An example where the above arguments apply would be a Ramsey experiment with an
ensemble of thermal particles in a confining potential and subject to an inhomogeneous
magnetic field. Provided the particle trajectories are sufficiently irregular, the inhomo-
geneity will look like a temporally fluctuating magnetic field, and by determining the
population of spin states we actually measure the ensemble average of the diagonal el-
ements of the density matrix. The Hamiltonian HR in this case is just proportional to
Fz.

The Lindblad-von-Neumann equation (2.34) is still a linear ordinary differential equa-
tion with respect to the components of ρ. In other words, regarding ρ as a vector in
the space O of hermitian operators4, the equation of motion can be written in the form
ρ̇ = Mρ, where M is an operator on O, also called super-operator. O is of the dimension
N2 if the original Hilbert space is N -dimensional, but conservation of trace reduces the
dimension to N2 − 1. For practical calculations, ρ and M are mapped to RN2−1 and
R(N2−1)×(N2−1), respectively, by expanding ρ in a set of suitable basis matrices qi. The
(real) expansion coefficients of ρ =

∑
i αiqi form a vector in RN2−1, and the abstract

super-operator M reduces to a (N2 − 1)× (N2 − 1) matrix.
For example, a suitable set of basis matrices for F = 1 are the Gell-Mann matrices 5

q1 =

1 0 0
0 0 0
0 0 −1

 q2 =

√
1
3

1 0 0
0 −2 0
0 0 1

 (2.40)

q3 =

0 1 0
1 0 0
0 0 0

 q4 =

 0 i 0
−i 0 0
0 0 0

 (2.41)

q5 =

0 0 0
0 0 1
0 1 0

 q6 =

0 0 0
0 0 i
0 −i 0

 (2.42)

q7 =

0 0 1
0 0 0
1 0 0

 q8 =

 0 0 i
0 0 0
−i 0 0

 (2.43)

Note that all basis matrices are traceless, owing to the fact that the trace of ρ can be
absorbed in the expansion coefficient of the identity matrix and ignored since it is fixed.
The basis matrices closely resemble the spin matrices: Fz = q1, Fy = 1√

2
(q4 + q6) and

Fx = 1√
2
(q3 + q5). q2, q7 and q8 are related to higher powers of the spin operators.

The above set of basis matrices possesses a particularly useful property, they form an
orthonormal basis with respect to the scalar product6 (u,v) ≡ Truv, (qi,qj) = 2δij .
This makes the calculation of expansion coefficients very easy.

For F = 1/2, the Pauli matrices (2.27) may serve as an orthonormal basis, and their
expansion coefficients form the Bloch vector as discussed in the previous section. Once
again, it becomes clear that the spin vector, the expansion coefficients of the spin matrices,
is a full description of the system only in the case of F = 1/2.

4Note that the space O of hermitian operators is a real vector space, i.e. allows only scalar multiplication
with real numbers. In contrast, a general Hilbert space is a complex vector space.

5This set of matrices is named after Murray Gell-Mann, who introduced it as a generalization of Pauli
matrices. [72]

6Note that this scalar product on the (real) vector space O is in fact always real since (Truv)∗ =
Tru† v† = Truv

18



2.3. INTERACTING SPINOR BOSE-EINSTEIN CONDENSATES 19

The super-operator approach is used in this work to numerically simulate the dynamics
of non-interacting F = 1 ensembles including decoherence, implemented as a Lindblad
operator proportional to Fz, L = γFz. These simulations can then be compared to
experimental data (Chapter 5). In our experiments on Rabi and Ramsey oscillations in
F = 1, interactions are small enough to be neglected even in the condensed fraction. Of
course, the formalism can also be used to simulate coherent dynamics, e.g. Fig. 2.3 and
Fig. 2.4 (F=1) have been calculated using the super-operator method with a Lindblad
operator set to zero.

2.3 Interacting spinor Bose-Einstein condensates

2.3.1 Mean-field description

Bose-Einstein condensates in dilute gases of weakly interacting particles are customarily
described by the Gross-Pitaevskii equation (see e.g. the review article [51] and references
therein),

i~Φ̇(~r, t) =
(
−~2∇2

2m
+ Vext(~r) + ~g|Φ(~r, t)|2

)
Φ(~r, t). (2.44)

In this version for a single-component or spin-0 gas, Φ(~r, t) is the space- and time-
dependent order parameter of the condensate, which can be interpreted as a wave function
or state vector in the single-particle Hilbert space. The Gross-Pitaevskii equation (2.44)
is then identified as the single-particle Schrödinger equation with an additional nonlinear
term representing the average effect of all remaining particles on any single one (mean
field). Formally, the Gross-Pitaevskii equation is derived from the energy functional

H =
∫
d3~r

[
Φ∗(~r)

(
−~2∇2

2m
+ Vext(~r)

)
Φ(~r) +

~
2
g|Φ(~r)|4

]
(2.45)

as the variational derivative with respect to Φ∗. Note that Φ is normalized to the total
number of particles N , thus |Φ|2 is the density of particles.

The interaction of particles, described by a two-body potential Vint(~r1−~r2), is reduced
to an effective contact interaction ~gδ(~r1 − ~r2) in the s-wave scattering limit, applicable
in a dilute gas at low energies. The coupling constant g = 4π~a

m is related7 to the s-wave
scattering length a.

The Gross-Pitaevskii equation can be cast a into dimensionless form [53] by choosing
suitable length and time scales,

Φ = n̄Φ̃
Vext = UṼext

~r = L~̃r
t = T t̃

with

n̄ arbitrary
U = ~gn̄
L =

√
~

2mgn̄

T = 1
gn̄

(2.46)

resulting in

i∂t̃Φ̃ =
(
−∇2

~̃r
+ Ṽext + |Φ̃|2

)
Φ̃. (2.47)

7Note that like the Zeeman parameters p and q, g has the dimension of an angular frequency. As a
result, the relation of a and g differs by one ~ from [51].
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20 CHAPTER 2. SPINOR BOSE-EINSTEIN CONDENSATES (BEC)

The healing length ξ =
√

~
2mgn̄ thus emerges naturally as the length scale that makes

the Gross-Pitaevskii equation dimensionless, independent of the external potential8. The
healing length is characterized by a balance of kinetic and interaction energy, ~2

2mξ2 = ~gn̄.
In situations where both compete, e.g. when the wave function is forced to zero by a hard
wall [52] or in the core of a vortex [53], it defines the length scale across which the wave
function actually varies.

Generalizing to spin-F particles, Φ(~r, t) is replaced by a (2F + 1)-component wave
function Φm( ~r, t), m = −F . . . + F . If an additional external potential depends on the
spin orientation, it is also replaced with a 2F + 1-component version; for the time being,
we assume that this is not necessary, ignoring linear and quadratic Zeeman effect.

The most general interaction term would have (2F + 1) × (2F + 1) entries, i.e. g
becomes a (2F + 1) × (2F + 1) matrix. Rotational symmetry however allows to greatly
reduce the number of parameters [21]: Two identical spin-F particles (bosons, i.e. F
is integer) colliding may form a total spin Ftot = 0, 2, . . . , 2F depending on the relative
orientation of the colliding particles. Odd Ftot are forbidden in the s-wave limit due to
total symmetry of the combined spatial and spin wave function. Owing to rotational
symmetry, the scattering length depends only on the total spin Ftot, i.e. there are F + 1
potentially different scattering lengths a0, . . . , a2F , and the effective interaction potential
takes the form

Vint(~r1 − ~r2) = δ(~r1 − ~r2)
4π~2

m

∑
f=0,2,...,2F

afPf , (2.48)

where Pf are projectors on the subspace Ftot = f . In order to calculate the spin-dependent
mean-field potential, it is useful to rewrite the projectors as products of single-particle spin
operators. For F = 1 and F = 2, the commonly used decompositions are [22, 21, 32]

F = 1 : P0 =
1
3
(1− ~F1 · ~F2) P2 =

1
3
(2 + ~F1 · ~F2), (2.49)

F = 2 : P2 =
1
7
(4− ~F1 · ~F2 − 10P0) P4 =

1
7
(3 + ~F1 · ~F2 + 3P0). (2.50)

In the case of F = 2, the projection on total spin Ftot = 0 is needed besides the identity
operator and ~F1 · ~F2. Alternatively, it is possible to use ~F2

1 · ~F2
2 instead of P0, leading to

different expansion coefficients [36].
The interaction potential then takes the form

Vint(~r1 − ~r2) = ~δ(~r1 − ~r2)(g0 + g1~F1 · ~F2 +
5
4
g2P0) (2.51)

with

F = 1 : g0 =
4π~
m

a0 + 2a2

3
g1 =

4π~
m

a2 − a0

3
5
4
g2 = 0 (2.52)

F = 2 : g0 =
4π~
m

4a2 + 3a4

7
g1 =

4π~
m

a4 − a2

7
5
4
g2 =

4π~
m

7a0 − 10a2 + 3a4

7
(2.53)

8Other choices are possible, e.g. in a harmonic external potential Vext = 1
2
mω2r2 the oscillator length

aho =
q

~
mω

provides another natural length scale L = aho [51]. While in principle equivalent, different

choices are more or less useful depending on the physical situation.
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and the energy functional leading to the Gross-Pitaevskii equation becomes

H =
∫
d3~r

∑
k

[
Φ∗

k(~r)
(
−~2∇2

2m
+ Vext(~r)

)
Φk(~r)

+
~
2

(
g0n(~r)2 + g1N

2|~F (~r)|2 + g2N
2|S0(~r)|2

)]
(2.54)

where

n(~r) ≡
∑

i

|Φi(~r)|2 (2.55)

~F ≡ (Fx, Fy, Fz) and Fα(~r) ≡ 1
N

∑
ij

Φ∗
i (~r)(Fα)ijΦj(~r) (2.56)

S0(~r) ≡
1
N

(Φ−2Φ2 − Φ−1Φ1 + Φ2
0/2) (2.57)

~F and S0 are normalized such that when integrated over space, the result is the average
spin and the average spin-singlet amplitude per particle. Accordingly, their contribution
to the total energy scales with the square of the particle number.

The multicomponent Gross-Pitaevskii equation itself is easily recovered (though lengthy)
by taking the derivative of the energy functional,

i~Φ̇k(~r, t) =
∂H

∂Φ∗
k(~r, t)

. (2.58)

The spinor wave function Φk(~r, t) can always be written as product of two functions,
one absorbing the total density and one representing the local spin state,

Φk(~r, t) = φ(~r, t)ζk(~r, t) with
∫
d3r |φ|2 = N and

∑
k

|ζk|2 = 1 (2.59)

With this re-definition, the Gross-Pitaevskii equation is the sum of contributions of the
total density and of the spin state plus a coupling term,

0 = ζk

{
−i~φ̇− ~2∇2

2m
φ+ Vextφ+ ~g0|φ|2φ

}
(2.60)

+ φ

{
−i~ζ̇k −

~2∇2

2m
ζk + ~g1|φ|2

∑
α

〈Fα〉
∑

l

(Fα)klζl + ~g2|φ|2S0(−1)kζ∗−k

}
(2.61)

− ~2

2m
∇φ · ∇ζk (2.62)

with
〈Fα〉 ≡

∑
ij

ζ∗i (Fα)ijζj S0 ≡ ζ−2ζ2 − ζ−1ζ1 + ζ2
0/2. (2.63)

Each of the terms in curly brackets {·} is a Gross-Pitaevskii equation of its own. Neglecting
the coupling term (2.62), the Gross-Pitaevskii equation for the total density (2.60) can
be solved without knowledge of the spin state ζk, and then is a parameter only in the
Gross-Pitaevskii equation for the spin state (2.61).
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By analogy with the healing length ξ =
√

~
2mgn that characterizes the competition

between kinetic energy and interaction energy of the total density φ, the spin healing
length may be defined for the spin state from (2.61). Since in F ≥ 2 there are several ways
the spin state can vary in space, each weighted with a different interaction parameter gn,
this definition is arbitrary to some extent. For 87Rb F = 2, g1 and g2 are of the same
order of magnitude, but the states considered in this work turn out to have small S0 and
are thus insensitive to g2. We therefore choose to define the spin healing length using g1,
ξs =

√
~

2mg1n .

2.3.2 Single-mode approximation (SMA)

The Gross-Pitaevskii equation for the spin-F gas is significantly simplified by the assump-
tion that spatial and spin degrees of freedom decouple. This is expressed in a product
ansatz for the wave function,

Φk(~r, t) ≡ φ(~r)ζk(t) with
∫
d3~r|φ|2 = N and

∑
k

|ζk|2 = 1 (2.64)

This ansatz is known as the single mode approximation [35] (also used implicitly in [22, 21]),
and it differs from the general re-definition (2.59) by the assumptions that φ is fixed in
time and ζk does not vary in space. This approximation is generally considered reasonable
if the spin-dependent part of the interaction energy is small, i.e. g1,2 � g0 [35] (also
compare [73] for a more detailed analysis of the validity of the SMA). Summing over mF

states and integrating over space, respectively, the energy functional (2.54) decomposes
into a spin-independent part that takes the same form as for a single-component gas,

H0 =
∫
d3~r φ∗(~r)

(
−~2∇2

2m
+ Vext(~r) +

~
2
g0|φ(~r)|2

)
φ(~r), (2.65)

and a spin-dependent part that takes the average density 〈n〉 ≡
∫
|φ|4 d3~r /N as a param-

eter,

Hspin =
~
2
N〈n〉

(
g1〈~F 〉2 + g2|S0|2

)
(2.66)

with
〈Fα〉 ≡

∑
ij

ζ∗i (Fα)ijζj S0 ≡ ζ−2ζ2 − ζ−1ζ1 + ζ2
0/2. (2.67)

Since both parts are connected only by the weighting factor 〈n〉 in Hspin, the total
ground state can be found by minimizing them independently. The spatial wave function in
the ground state thus can be found as the solution of a time-independent single-component
Gross-Pitaevskii equation, using methods well known from scalar Bose-Einstein conden-
sates such as the Thomas-Fermi approximation. Minimizing Hspin on the other hand is a
finite dimensional problem and as such much easier to solve.

As an example, for a Bose-Einstein condensate in a harmonic trap the Thomas-Fermi
approximation predicts an inverted parabolic density |φ(~r)|2. In this case the average
density is 〈n〉 = 4

7n0, where n0 is the peak density at the center of the trap. n0 is related
to the chemical potential µ through n0 = µ/g0.

Dynamics in single mode approximation is equivalent to the homogeneous spinor Bose
gas if we assume that φ(~r) remains fixed, e.g. in the ground state of H0. This as-
sumption is plausible if the spin-independent interaction energy is much larger than the
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spin-dependent one, effectively freezing out spatial degrees of freedom. The time depen-
dent Gross-Pitaevskii equation for the spin components ζk is obtained from (2.66) by
differentiation with respect to ζ∗k ,

i~Nζ̇k =
∂Hspin

∂ζ∗k
. (2.68)

The particle number N on the left hand side is a result of the normalization of the spatial
wave function,

∫
|φ(~r)|2 = N . It cancels with a corresponding factor in Hspin, such that

the equations of motion for the spinor components do not depend on the absolute particle
number.

The Zeeman effect enters into (2.54) as an additional external potential which is homo-
geneous in space but depends on spin orientation, VZE,mm′(~r) = −~pmδmm′ + ~qm2δmm′ ,
leading to an additional term in the spin-dependent energy functional,

Hspin =
~
2
N〈n〉

(
g1〈~F 〉2 + g2|S0|2

)
+ ~N

(
− p〈Fz〉+ q〈F 2

z 〉
)

(2.69)

with 〈F 2
z 〉 ≡

∑
ijk ζ

∗
i (Fz)ik(Fz)kjζj .

The resulting equations of motion [74] are cited here for reference (also compare [75]
(F=1) and [76] (F=2)), with the additional shorthand |AF |2 = 〈Fx〉2 + 〈Fy〉2:

A2 = 2(ζ+2ζ
∗
+1 + ζ∗−2ζ−1) +

√
6(ζ+1ζ

∗
0 + ζ∗−1ζ0) (2.70)

A1 = 2(ζ+1ζ
∗
0 + ζ∗−1ζ0) (2.71)

Spin equations of motion for F = 2

i ˙ζ+2 =
g1〈n〉

2
[+4Fzζ+2 + 2A2ζ+1] +

g2〈n〉
2

S0ζ
∗
−2 + (−2p+ 4q)ζ+2

i ˙ζ+1 =
g1〈n〉

2

[
+2Fzζ+1 +

√
6A2ζ0 + 2A∗

2ζ+2

]
− g2〈n〉

2
S0ζ

∗
−1 + (−p+ q)ζ+1

iζ̇0 =
g1〈n〉

2

[√
6(A2ζ−1 +A∗

2ζ+1)
]

+
g2〈n〉

2
S0ζ

∗
0

i ˙ζ−1 =
g1〈n〉

2

[
−2Fzζ−1 +

√
6A∗

2ζ0 + 2A2ζ−2

]
− g2〈n〉

2
S0ζ

∗
+1 + (+p+ q)ζ−1

i ˙ζ−2 =
g1〈n〉

2
[−4Fzζ−2 + 2A∗

2ζ−1] +
g2〈n〉

2
S0ζ

∗
+2 + (+2p+ 4q)ζ−2



F = 2

(2.72)

Spin equations of motion for F = 1

i ˙ζ+1 = g1〈n〉 [+Fzζ+1 +A1ζ0] + (−p+ q)ζ+1

iζ̇0 = g1〈n〉 [A∗
1ζ+1 +A1ζ−1]

i ˙ζ−1 = g1〈n〉 [−Fzζ−1 +A∗
1ζ0] + (+p+ q)ζ−1

F = 1 (2.73)

Note that these equations of motion conserve

• the norm
∑

m |ζm|2,

• the z-component of the spin Fz =
∑

mm|ζm|2,

• the energy Hspin.
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Additionally, the equations are invariant under the transformation T : ζ+m → ζ−m, which
becomes obvious if we bear in mind that under this transformation, Fz → −Fz and
AF → A∗

F while S0 is invariant. T is in fact nothing but the equivalent of parity in spin
space. Obviously, T is its own inverse, T−1 = T.

The spin Hilbert space H can be decomposed into a symmetric subspace Hs and an
antisymmetric subspace Ha with respect to the parity operator T. Each of the subspaces
is a vector space as is easily verified, Hs and Ha are orthogonal to each other, and the
full Hilbert space is the direct sum of both, H = Hs ⊕Ha. Writing the right hand side of
(2.72) or (2.73) as a nonlinear operator i ˙|ζ〉 = F(|ζ〉), the fact that the equation of motion
conserves parity means that

F(T|ζ〉) = TF(|ζ〉). (2.74)

Thus, if |ζ〉 is an eigenstate of T, T|ζ〉 = ±|ζ〉, it follows that the time derivative ˙|ζ〉 =
F (|ζ〉) is also an eigenvector of T with the same eigenvalue. In other words, starting in
one of the subspaces, the evolution is confined to this subspace for all times. Note however
that due to the nonlinearity of F it is generally not possible to calculate the dynamics of
an arbitrary state by decomposing it into its symmetric and antisymmetric part.

The situation is different if the equations of motion are linearized in the neighborhood
of a certain state |ζ̄〉 that is stationary or part of a trajectory. The dynamics of a small
deviation |ε〉 is given by the Jacobi matrix of F taken at |ζ̄〉,

ε̇k =
∑

j

∂Fk

∂ζj

∣∣∣∣
ζ̄

εj or ˙|ε〉 = ∂F |ε〉. (2.75)

Now ∂F is a linear operator commuting with T . The symmetric and antisymmetric
component of an arbitrary deviation will evolve separately, without influence on each other.
∂F can be diagonalized in the symmetric and antisymmetric subspace separately, which
is important for the calculations of Lyapunov exponents (see Chapter 7 and Chapter B).

In this work, the focus will be on dynamics in the symmetric subspace, and the equa-
tions of motion for this special case will be used frequently. Note that Fz = 0 and AF = A∗

F

in this case.

Symmetric spin equations of motion

iζ̇2 =
g1〈n〉

2
A22ζ1 +

g2〈n〉
2

S0ζ
∗
2 + (−2p+ 4q)ζ2

iζ̇1 =
g1〈n〉

2
A2

[√
6ζ0 + 2ζ2

]
− g2〈n〉

2
S0ζ

∗
1 + (−p+ q)ζ1

iζ̇0 =
g1〈n〉

2
A22

√
6ζ1 +

g2〈n〉
2

S0ζ
∗
0


F = 2 (2.76)

iζ̇1 = g1〈n〉A1ζ0 + (−p+ q)ζ1
iζ̇0 = g1〈n〉 2A1ζ1

}
F = 1 (2.77)

A2 = 4Re ζ2ζ∗1 + 2
√

6Re ζ1ζ∗0
A1 = 4Re ζ1ζ∗0
S0 = ζ2

2 − ζ2
1 + ζ2

0/2

(2.78)
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Table 2.1: Recently calculated scattering lengths and measured differences cited from [78]. Calcu-
lated and measured differences agree within error-bars; for F = 1, the measurement is significantly
more precise, while for F = 2 errors are about the same.

predicted scattering lengths
F = 1 F = 2

a0/aB 101.78± 0.2 87.93± 0.2
a2/aB 100.40± 0.1 91.28± 0.2
a4/aB — 98.98± 0.2

measured differences
F = 1 F = 2

(a2 − a0)/aB −1.07± 0.09 3.51± 0.54
(a4 − a2)/aB — 6.95± 0.35

2.3.3 Ground states and phase separation

The mean-field ground state of an interacting spinor condensate is defined as the spinor
|ζ0〉 that minimizes the energy functional. Of course, the ground state spinor may be
ambiguous; in particular, rotational symmetry will lead to degeneracy. The ground state
is always stationary, i.e. ∂Hspin/∂ζ

∗
k = 0 (2.68), however there may be stationary states

that are not ground states, in particular, since the spin energy functional is bounded both
from below and above, there will also be a stationary state of maximum energy.

The ground states of the mean-field Hamiltonian (2.69) without quadratic Zeeman
effect have been first analyzed in [22, 21] (F = 1) and [32] (F = 2). Depending on the
scattering lengths, F = 1 spinor gases at zero magnetic field can be classified into either
ferromagnetic (ground state is stretched) or anti-ferromagnetic (also referred to as polar)
ground state has (~F = 0). For F = 2 gases, a so-called cyclic phase comes into play.
This phase is distinguished by a non-vanishing spin-singlet pair amplitude (S0 6= 0) [32].
For alkali gases, the classification as either ferromagnetic, anti-ferromagnetic or cyclic is a
property of the atomic species and the hyperfine state under study.

At finite magnetic field, these phases are modified due to the quadratic Zeeman effect;
also, conservation of magnetization restricts the accessibility of the absolute ground state in
typical experimental situations. The state of lowest energy depending on magnetization
and magnetic field is identified in the phase diagram of a given atomic species. Phase
diagrams for F = 2 have been first calculated in Holger Schmaljohann’s PhD thesis [36];
The ground states for F = 1 have been worked out in [23]. Structured ground states
arise from field gradients and can be understood on the basis of phase diagrams in a local
density approximation [23, 77].

According to the most recent precision measurements [78, 79] of scattering lengths
as well as several experiments aimed directly at the observation of the ground state in a
spinor condensate,

• 87Rb F = 1 is ferromagnetic [37, 50, 2],

• 87Rb F = 2 is most probably anti-ferromagnetic, but very close to cyclic [7, 1].

Values for the scattering lengths af and coupling coefficients gi are given in Tab. 2.1 and
Tab. 2.2, respectively. For all calculations and fits in this work, the measured values of
g1 and g2 from Tab. 2.2 have been used; the value of g0 has been calculated from the
predicted scattering lengths of Tab. 2.1.
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Figure 2.6: Phase diagrams for the ground state of F = 2 spinor condensates (from [36]). In this
graph 〈Sz〉 ≡ Fz is the preserved z-component of the spin or magnetization, while c1 ≡ g1〈n〉/2
and c2 ≡ g2〈n〉. Solid colored areas indicate that the ground state is a mixture of mF -states, while
in hatched areas components are immiscible and phase separation occurs.
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Table 2.2: Calculated and measured coupling parameters, cited from [78]. g2 is hard to determine:
as the authors of [78] note, depending on details of the fitting procedure, even the sign of g2 may
change. Note that g2 ≡ 4c2 when comparing values to [78].

predicted and measured coupling parameters
measured predicted

F = 1 F = 2 F = 1 F = 2
g1/(4πaB~/m) −0.36± 0.04 +0.99± 0.06 −0.46 +1.10
g2/(4πaB~/m) — −2.12± 2.32 — −0.20
g0/(4πaB~/m) — — 100.86 94.58

4πaB~/m = 2π × 7.73× 10−14 Hz cm3

2.3.4 Coherent dynamics

The solution of the equations of motion (2.73) and (2.72) is in general rather complicated
due to their nonlinearity. It is possible, however, to obtain analytical results in some
special cases.

For F = 1, conservation of spin and energy as well as normalization and global phase
invariance reduce the number of degrees of freedom to just two, e.g. the population ρo

of mF = 0 and a relative phase θ ≡ θ+1 + θ−1 − 2θ0 [75], where ζm =
√
ρme

iθm . This
system is integrable, and in fact for the particular initial condition ζ(0) = ζπ/2 an analytic
solution can be obtained [74, 2]. The time-dependent spinor amplitudes can be written in
terms of Jacobi elliptic functions [80]

ζ0(t) =
s√
2

[
(1− k) snk(

qt
2 )

1− k sn2
k(

qt
2 )

−
i cnk(

qt
2 ) dnk(

qt
2 )

1 + k sn2
k(

qt
2 )

]
(2.79a)

ζ±(t) = ∓s e
±ipt

2

[
cnk(

qt
2 ) dnk(

qt
2 )

1− k sn2
k(

qt
2 )

−
i(1 + k) snk(

qt
2 )

1 + k sn2
k(

qt
2 )

]
(2.79b)

where s = exp(−i(g1〈n〉− q)t/2) is a dynamic global phase and k = g1〈n〉/q is the ratio of
interaction energy to quadratic Zeeman effect. For the directly measurable populations,
the solution simplifies to

|ζ0(t)|2 = (1− k sn2
k(qt))/2, (2.80a)

|ζ±1(t)|2 = (1 + k sn2
k(qt))/4. (2.80b)

Fig. 2.7 illustrates the analytic solution across a wide range of k and in the particular case
k = 1.

For small |k| � 1, the Jacobi elliptic functions can be approximated by ordinary
trigonometric ones, i.e., snk(x) ≈ sin(x), cnk(x) ≈ cos(x), dnk(x) ≈ 1. Thus, the popula-
tions of Eqs. (2.80) oscillate with an amplitude given by k, and a period which is π/q for
small |k|.

In the opposite regime, |k| � 1, the identity snk(x) = 1
k sn1/k(kx) leads to another

trigonometric approximation, snk(x) ≈ sin(kx)/k. In this regime, populations oscillate
with amplitude 1/k and period π/(g1〈n〉).
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Figure 2.7: Resonance in F = 1 spin dynamics starting from the fully transversely magnetized
state.

The crossover region |k| ≈ 1 exhibits a maximum of the amplitude, while the oscillation
period diverges. In other words, at |k| = 1 the evolution becomes aperiodic, and the
mF = 0 population asymptotically approaches 1. The experimental observation of this
spin dynamics resonance is a central result of the present work (Chapter 5).

The analytic solution also offers a clear way to determine the magnetic properties of the
system as k is negative/positive for ferromagnetic/anti-ferromagnetic systems, resulting
in an increase/decrease of |ζ0|2 at the beginning of the oscillation (if q > 0 as is the case
for 87Rb F = 1).

Owing to the larger number of degrees of freedom (Chapter 7), the equations of motion
for 87Rb F = 2 are not integrable and no exact analytic solution exists. However, in the
limiting cases of very small and very large quadratic Zeeman effect q, approximate solutions
for the initial condition ζ(0) = ζπ/2 have been obtained [74, 1].

In the Zeeman regime (q →∞), the populations are, to first order in g1 and g2,

|ζ0|2 =
3
8

{
1 +

g1〈n〉
2q

[
2 (1− cos(2qt)) +

1
2

(1− cos(4qt))
]

− g2〈n〉
2q

[
1
4

(1− cos(2qt))− 1
64

(1− cos(8qt))
]} (2.81a)

|ζ1|2 =
1
4

{
1− g1〈n〉

2q

[
3
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]

+
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2q

[
3
16

(1− cos(2t))− 1
48

(1− cos(6qt))
]} (2.81b)

|ζ2|2 =
1
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{
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2q

[
3 (1− cos(2qt)) +

3
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(1− cos(4qt)) +
1
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]

+
g2〈n〉
2q

[
1
12
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64
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]} (2.81c)

Note that all terms related to g2 have pre-factors roughly one order of magnitude
smaller than those related to g1. As a result, these terms are minor contributions only,
even if g2 ≈ g1, a possibility indicated by recent measurements [78], in contrast to earlier
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predictions (compare Tab. 2.2). The fundamental frequency of oscillation is q/π with an
amplitude ∝ g1〈n〉

q , both as in the case of F = 1.
In the opposite limit, the interaction regime q → 0, the approximate populations are

given by

|ζ0|2 =
3
8

[
1 +

q

2g1〈n〉
(1− cos(4g1〈n〉t))

]
(2.82a)

|ζ1|2 =
1
4

(2.82b)

|ζ2|2 =
1
16

[
1− 3q

2g1〈n〉
(1− cos(4g1〈n〉t))

]
(2.82c)

In this limit and to first order, terms related to g2 drop out completely, which can be
understood from the fact that S0 = 0 for the initial state ζπ/2. The frequency of oscillation
2g1〈n〉/π is determined by the same mean-field interaction term as in F = 1.

2.3.5 The four-wave mixing picture

In the following we will develop some more qualitative physical insights by an interpreta-
tion of the resonance phenomenon in terms of phase matching in four-wave mixing (see
Fig. 2.8). We will do this by means of F = 1 as an example; the concept, however, applies
to F = 2 as well.

In contrast to nonlinear optics or four-wave mixing in single component conden-
sates [81] we do not deal with wave vector or momentum modes [82, 83] but with spin
modes. This view is justified, as we are considering trapped samples in a single momen-
tum state. Spin mixing dynamics is then formally equivalent to collinear optical four-wave
mixing: electro-magnetic modes characterized by frequencies $m and corresponding wave
numbers km = n$m/c (with index of refraction n) can be identified with mF states |m〉
and their linear Zeeman energies ωm = −pm. Both kinds of modes have slowly-varying
amplitudes Am(z) or ζm(t), compared to their wavelength or Larmor frequency, respec-
tively. Time in the spinor case takes the role of the z-coordinate in optics. The quadratic
Zeeman effect qm2 plays the role of the dispersion n($) in a linear medium, and finally
spin interactions are analogous to χ(3) nonlinear effects in suitable media [35, 84]. Fig. 2.8
summarizes these relationships.

Along these lines, we identify in the F = 1 spinor equations of motion (2.73), e.g.
for ζ+1, linear dispersion, self- and cross phase modulation terms and four-wave mixing
terms:

iζ̇+1 = g1〈n〉|ζ+1|2ζ+1 self-PM

+ g1〈n〉
[
2|ζ0|2 − |ζ−1|2

]
ζ+1 cross-PM

+ g1〈n〉 2ζ0ζ0ζ∗−1 four-wave mixing
+ qζ+1 linear dispersion

(2.83)

p has been eliminated by choosing a suitable rotating frame, in analogy to choosing
k =

√
ε

c $ for electro-magnetic modes. In both cases, the effect is to cancel trivial rapid
oscillations.

The exact optical analogue to F = 1 spin dynamics is degenerate collinear four-wave
mixing with three modes9 $+1, $0, $−1 and 2$0 = $+1 +$−1. The optical equations of

9Note that the term “four-wave mixing” refers to products of the form A2A3A
∗
4 appearing at the right

hand side of Ȧ1, regardless how many distinguishable modes are involved.
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spinor Index slowly-varying Rotating frame time
ζm(t)eiωmt ±, 0 amplitude ζm(t) ωm = mp t

electro-magnetic frequency slowly-varying wave number distance
Am(z)ei(kmz−$mt) $m amplitude Am(z) km = n

c$m z

Figure 2.8: Four-wave mixing picture. Top: Comparison of terms. Bottom: Schematic repre-
sentation in a) the quadratic Zeeman regime and b) the mean field regime. The direction of spin
mixing is indicated in the upper and lower half of the circle symbolizing the relative phase θ. For
θ > 0 the (0) mode (upper waves) get populated, while for θ < 0 the (+1) and (−1) mode (lower
waves) increase.

motion for this case are worked out in Appendix C. The equations of motion for F = 2
also contain products of three amplitudes only that can be classified in a similar way. In
the following, both the spin component mF = m and the electro-magnetic mode $m will
be refered to as (m).

In view of the optical analogy it is obvious, that phase matching considerations are
essential to understand the resonance in spinor four-wave mixing. The important point is,
that the value of the relative phase of the initial and final modes determines the direction
of wave mixing. In our case the (0) wave will be populated if the combined phase of the
(+1) + (−1) waves is ahead of twice the (0) wave phase, i.e. θ = θ+1 + θ−1 − 2θ0 ∈ [0..π]
and it will be depopulated, if θ ∈ [π..2π] (modulo 2π).

In our system, the competition between mean field driven dephasing or self- and cross-
phase modulation (tending to decrease θ) and quadratic Zeeman shift or linear dispersion
(tending to increase θ) determines the evolution of the system. Most importantly the
evolution depends on the relative size of the quadratic Zeeman energy shift and the max-
imally achievable mean field shifts, as shown in Fig. 2.8. For large magnetic fields, i.e.
always negligible mean field energy shifts, θ will continuously grow, i.e. the (±1) wave
evolves faster than the (0) wave, and the population transfer shows an oscillatory behavior
depending on which wave is lagging behind at which instant (Fig. 2.8a). In this regime
the oscillation period is expected to be given by π

q . Furthermore the oscillation amplitude,
which depends on the unidirectional mixing time, should be proportional to this period.

For small magnetic fields the mean field energy shift grows with increasing population
in the (0) wave, until it exceeds the quadratic Zeeman shift and thus reverses the evolution
of θ, i.e. the (0) wave will speed up and decrease its lag behind the (±1) wave, eventually
overtaking it. In this case θ will remain confined in the interval [−π..π] and oscillate
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around θ = 0 (Fig. 2.8b). In this regime the population oscillation amplitude is expected
to decrease with decreasing q, i.e. at lower magnetic field, as less population transfer is
necessary to create a mean field energy of the order of the quadratic Zeeman shift.

In the resonance region at intermediate magnetic field, the relative movement of the
(0) and (±1) waves is very slow, with θ being on the border of oscillation and continuous
increase. This leads to long time unidirectional spin mixing and thus maximum amplitude.

2.3.6 Beyond SMA

In single-mode approximation, the complexity of a multi-component Bose-Einstein conden-
sate, e.g. a spinor condensate, is reduced to a finite number of internal degrees of freedom.
This approach has been very successful in advancing our understanding of spinor BEC,
and in predicting and explaining fundamental aspects of its dynamics. However, it remains
an approximation of limited validity. Both usefulness and limitations of the SMA become
clear in our experiments (see Chapter 5 and Chapter 6).

In many cases, and in particular in our experiments, the initial state prepared by vari-
ous techniques of spin manipulation is ideally homogeneous, in the sense that it complies to
the single-mode paradigm. Small spatial fluctuations may however be expected from tech-
nical imperfections (such as gradients of magnetic or radio frequency field, see Section 3.4)
as well as finite temperature or even quantum fluctuations, both not covered by the usual
mean-field description of a condensate in terms of a wave function (Section 2.3.1). We will
thus focus on the question how a (nearly) homogeneous state may develop into a strongly
structured one, a phenomenon known as spontaneous pattern or structure formation.

Pattern formation in spatially extended nonlinear systems is an ubiquitous phenomenon
and subject of ongoing research. A common mechanism for spontaneous pattern forma-
tion is linear instability of a homogeneous or continuous-wave solution: linearizing the
equations of motion around the homogeneous stationary state10, one obtains a linear wave
equation for small deviations. Expanding in a suitable basis of modes such as plain waves
ei(kx−ωt), the wave equation becomes diagonal with a dispersion relation ω(k) that can be
complex in general. The imaginary part of the frequency ω describes damping (Imω < 0)
or exponential growth (Imω > 0). In the latter case, the corresponding mode is linearly
unstable and an arbitrarily small initial population will grow to a significant amplitude
in finite time. Once a mode has grown to a point where it can no longer be considered
a small deviation, nonlinear dynamics takes over and stabilizes the pattern at some finite
amplitude. The geometry and size of the pattern is in good approximation given by the
most unstable mode.

In the context of Bose-Einstein condensates, the linear stability analysis can be carried
out classically on the basis of the Gross-Pitaevskii equation alone (see e.g. the review paper
[85] which is however limited to single-component BEC), or quantum-mechanically as a
Bogoliubov analysis (e.g. [86] where the two-component case is treated). In any case, as
is generally true in pattern forming systems, it is essential to take into account the kinetic
energy. It is the balance of kinetic and interaction energy that distinguishes certain modes,
a fact that is also reflected by the observation that generally the healing length ξ =

√
~

2mgn

defines the scale of the spatial modulations.11 This is in contrast to the situation discussed

10The argument can be extended to homogeneous trajectories and is then analogous to the concept of
Lyapunov exponents, where the tangential space now comprises inhomogeneous deviations as well.

11Depending on whether modulations of the total density or of the spin composition are of interest,
g = |g0| or g = |g1|, respectively; n is the typical particle density. At a typical density of 1 × 1014 cm−3,
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in [23, 77] (see Section 2.3.3), where the width of domain boundaries but not the size of
the domains is determined by the spin healing length.

As an example illustrating the concepts and implications of dynamical instability, con-
sider an anti-ferromagnetic 87Rb F = 2 condensate in the mF = 0 state, ζ = (0, 0, 1, 0, 0).
Following [76], there are two degenerate Bogoliubov modes ei(kx−ω(k)t) proportional to
(0, 1, 0, 0, 0) and (0, 0, 0, 1, 0), respectively, with eigen-energies

ω2(k) = (εk + q)(εk + q + 6g1〈n〉 −
2
5
g2〈n〉) where εk =

~
2m

k2 (2.84)

These modes can grow exponentially in time if ω2(k) < 0. ω2 as a function of εk describes
a parabola with two zeros, −q and −q + 6g1〈n〉 − 2

5g2〈n〉, and is negative for

|q| − 6|g1|〈n〉 −
2
5
|g2|〈n〉 < εk < |q|, (2.85)

where the correct signs of the parameters (q < 0, g1 > 0, g2 < 0) have been taken into
account explicitly. The minimum of the parabola is at ε0k = |q| − 3〈n〉

(
|g1|+ 1

12 |g2|
)
.

The interaction parameters g1 and g2 can be combined into an effective parameter ḡ =
|g1|+ 1

12 |g2| that can be used to define a corresponding spin healing length ξ̄ =
√

~
2mḡ〈n〉 .

This healing length is a natural scale of the wavelength λ = 2π/k of a given mode.
Since εk ≥ 0, several cases have to be distinguished, depending on the sign of the lower

limit |q| − 6ḡ〈n〉 and ε0k.

• If 3ḡ〈n〉 > |q|, the minimum of the parabola is on the negative εk-axis and physically
not accessible. The fastest growing mode in this case is the homogeneous k = 0
mode. Wave vectors up to k = |q|, corresponding to a minimum wavelength λmin =
2π
√

~
2m|q| , are also unstable and may produce patterns at the scale of

λmin

ξ̄
= 2π

√
ḡ〈n〉
q
. (2.86)

• For zero magnetic field q = 0, mF = 0 is stable with respect to the considered mode12

at any finite wavelength or k > 0. The homogeneous mode k = 0 is marginally stable.

• If 3ḡ〈n〉 < |q| < 6ḡ〈n〉, the fastest growing mode is given by ε0k and has a wavelength

λ0

ξ̄
=

2π√
|q|

ḡ〈n〉 − 3
. (2.87)

The homogeneous mode k = 0 is still unstable, too.

• If |q| > 6ḡ〈n〉, the homogeneous mode is no longer unstable. A linear stability
analysis not taking into account the kinetic energy, e.g. of the SMA equations of
motion, will falsely suggest that mF = 0 is stable at high magnetic field. The
Bogoliubov analysis reveals that this is not true – mF = 0 is unstable for any finite
magnetic field, and in the present case the fastest growing mode is given by λ0.

the spin healing length using g1 is ξ = 2.7µm in F = 2 and ξ = 4.3µm in F = 1.
12In fact, the same applies to the remaining modes, which are proportional to (1, 0, 0, 0, 0) and

(0, 0, 0, 0, 1). See reference [76] for more details.
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Pattern formation in single- and two-component condensates has been the subject
of several theoretical studies (e.g. [87, 88, 86]; see also the review article [85]). Spinor
condensates differ from these not only in the number of components, but also in the
particular coupling that allows conversion between the spin components. In the language
of nonlinear optics, spinor condensates feature not only self- and cross-phase modulation,
but also four-wave mixing.

Nevertheless, domain formation analogous to that in early spinor BEC experiments
[23] (Section 2.3.3) has been observed in two-component (F = 1,mF = −1) plus (F =
2,mF = +1) 87Rb condensates [31]. Thermal ensembles show similar patterns which have
been identified as spin waves [30, 29]. In both cases, the length scale of structures is rather
large, of the order of the condensate dimensions. Small-scale structure has been seen to
emerge in the condensed system [27], as a result of external gradients “winding up” the
phase of the pseudo-spinor up to a point where kinetic energy comes into play and the
SMA fails even locally. We will resume the discussion of this particular mechanism in the
context of our own observations of pattern formation in Chapter 6.

Pattern formation in F = 1 condensates has been studied in a series of publications,
partly triggered by the recent advances in the experimental possibilities (see below) and
in the general understanding of mean-field spin dynamics. Both analytical [89, 44, 90]
and numerical [91, 92, 93] studies consistently predict the existence of a modulational
instability in the ferromagnetic case, while the anti-ferromagnetic case is dynamically
stable. The patterns generated depend (among others) on the dimensionality of the sample
and include topological defects such as vortices [46].

A corresponding analysis for F = 2 spinor condensates has been performed in [94] for
the case of zero magnetic field. In a more recent study including the quadratic Zeeman
effect [76], it is shown among others that the mF = 0 state in 87Rb is dynamically unstable
against modes populating the mF = ±1 and mF ± 2 states at any finite magnetic field.
Numerical simulations by the same authors [95], analogous to F = 1 [90], have also
demonstrated the dynamical instability.

Pattern formation due to dynamical instability has been experimentally observed in
single-component Bose-Einstein condensates with attractive interactions, where it leads to
collapse [96, 97, 98] or formation of soliton trains [99, 100], as well as in spinor condensates.
The first observation of spontaneous domain formation in F = 1 sodium [24] is in fact a
realization of the immiscible two-component case [86], because only two mF components
mF = +1, 0 are involved. At high magnetic offset field (15 G in [24]) these are immiscible
and thus any homogeneous mixture is unstable with respect to local phase separation.
In contrast, the ferromagnetic instability at negligible magnetic field has recently been
observed in F = 1 87Rb [41] using an in-situ imaging technique that is directly sensitive
to the transverse magnetization [101].

In F = 2 spinor dynamics starting from mF = 0, the formation of dips and correspond-
ing peaks in mF = 0 and mF = ±1, respectively, has been observed [38, 6] and interpreted
as a local density effect. Structure formation in general, and in particular by the local
density mechanism, has been proposed as a reason for apparent damping of coherent spin
oscillations in F = 2 [1, 95]. This aspect is discussed in more detail in Section 5.6.

Chapter 6 of this work is dedicated to the direct observation of pattern formation
in elongated F = 2 BEC. The quasi-1D geometry offers two important advantages: a
large axial extension of the condensates enables the observation of long-wavelength modes,
while a comparatively tight transverse confinement suppresses structure formation in the
direction of detection, which otherwise would be averaged and appear as damping or loss
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of contrast (compare Section 5.6). As a result, local density dynamics as well as previously
unknown, strong wave-like modulations of the spin populations have been observed.
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Chapter 3

Experimental setup and
characterization

The observation and manipulation of ultra-cold spinor gases is a technically
demanding task and requires a complex experimental setup together with an
experimenter’s ability to master it. Many of the key techniques covered in this
chapter, in particular the control of the magnetic field and the preparation of
spin states, had to be specially developed or improved in order to achieve the
results of the following chapters.

3.1 Preparing 87Rb BEC

Our experimental apparatus (Fig. 3.1) forms a complete setup for the creation, preparation
and detection of spinor BEC of 87Rb in F = 1 and F = 2. We prepare 87Rb BEC in a
magnetic trap using a setup optimized for stability and large particle numbers: a 2D-3D
MOT system collects up to about 1010 atoms in 20 s, which are additionally cooled in
an optical molasses and optically pumped to F = 1. The F = 1,mF = −1 fraction1

is loaded into a magnetic trap, compressed by increasing the radial trap steepness and
cooled further using radio frequency forced evaporation over 20 s. Any residual F = 2
atoms are removed during the first of three rf ramps with low-power resonant light. We
end up with nearly pure BEC of several 106 atoms in the magnetic trap. The apparatus
has been described in detail in two PhD theses [57, 36].

In the course of this work, the whole setup has been moved to a brand new laboratory,
and on this occasion has been further improved in terms of stability (mechanical as well
as temperature) and immunity to electromagnetic interference (EMI). Additionally, of
course, it has undergone modifications necessary to perform specific measurements. In the
following, several experimental aspects of special relevance to spinor BEC are discussed
in-depth.

3.2 Optical dipole trap

An important prerequisite for studying spin dynamics is to separate spatial from internal
degrees of freedom as far as possible. An optical dipole trap provides a spin-independent

1Further optical pumping within the F = 1 manifold has proven unnecessary. It is also ineffective due
to re-pumping to F = 2 on transitions where laser frequencies are available from our system.
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optical dipole trap
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Figure 3.1: Schematic experimental setup.

(a) Astigmatic single-beam trap (b) Crossed-beam trap

Figure 3.2: Schematic beam geometries of the astigmatic and crossed-beam optical dipole traps.
Shown are the 1/e2 beam diameter (red wire frame) and the intensity distribution (colored sec-
tions).

trapping potential for atoms [102], assuming the light used is sufficiently far detuned from
the atomic resonance and linearly polarized. In a red-detuned trap, the atoms are localized
at the intensity maximum, and the potential is harmonic to first approximation.

Our experiment uses light from a single-mode Nd:YAG laser (Mephisto by InnoLight)
at 1064 nm, guided to the vacuum chamber in single-mode optical fibers and finally applied
in one or two focused beams in three different geometries, as sketched in Fig. 3.2. These
correspond to different trap geometries with characteristic advantages and disadvantages
for certain experiments.

The trap geometry mostly used in this work and first implemented due to its simplicity
is the astigmatic single focused beam (Fig. 3.2a). This geometry was invented in [36, 57] as
a compromise providing sufficiently tight axial confinement and strong vertical support,
but only moderate overall tightness (measured in terms of the average trap frequency
ω̄ = (ωxωyωz)1/3). Astigmatism is deliberately introduced using a cylindrical lens. A
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Table 3.1: Trapping frequencies and power scaling of the optical dipole traps used in this work.
Data for the crossed-beam trap is taken from [104]. For the stigmatic trap, compare Fig. 3.3.

at power ωx ωy ωz

astigmatic P = 48mW 2π × 16.7 Hz 2π × 118 Hz 2π × 690 Hz
crossed-beam Px = Py = 15mW 2π × 92 Hz 2π × 103 Hz 2π × 138 Hz

optical power ωx ωy ωz

astigmatic P (single beam) ∝
√
P ∝

√
P ∝

√
P

crossed-beam Px,y (beam in x, y dir.) ∝
√
Py ∝

√
Px ∝

√
Px + Py

beam diameter of d ≈ 50 mm at the focusing lens2 (f = 250mm) leads to a tightly focused
beam waist of w0 ≈ 6µm, neglecting adverse effects of the cylindrical lens and other
sources of error. In a first approximation, the effect of the cylindrical lens is to produce
two foci separated by a distance δ ≈ 4 mm and having a beam waist of w0 in one and
400µm in the other transverse direction [36]. Only the vertically tight focus is suitable to
support atoms against gravity. Trapping frequencies for this geometry have been measured
using dipole oscillations of a BEC as well as parametric heating (see Fig. 3.3 and Tab. 3.1).

Experimental data from Section 5.5 and Section 5.3 can be employed to check the
properties of the astigmatic trap. The relevant quantities extracted from two represen-
tative datasets are summarized in Tab. 3.2. The condensed (N0) and total (N) particle
numbers as well as the temperature T are obtained from bimodal fits to absorption im-
ages. Assuming a harmonic trap, the critical temperature Tc is then calculated from
N0/N = 1 − (T/Tc)3 and the average trap frequency from kBTc = 0.94~ω̄(T )N1/3 [51].
On the other hand, the average density of the condensate 〈n〉 can be obtained from
fits to the spin population oscillations observed in Section 5.3, and the trap frequency
can be calculated via ω̄(n) = ~

ma2 (14π〈n〉a3)5/6(15N0)−1/3 [51]3. The scattering length
a = g0

m
4π~ ≈ 5.3 nm corresponds to the spin-independent coefficient g0 of the contact

interaction (Section 2.3.1).
Obviously, none of the experimental methods leads to results consistent with the power

scaling law from Tab. 3.1, neither the absolute values nor the ratio of frequencies at
different optical power conforms to our expectations. Both experimental methods depend
on the accuracy of the number of particles N or N0, but only to the power of 1/3. Thus,
in order to explain a discrepancy by a factor of 2 . . . 3 in either absolute value or ratio,
an error in the number of particles of nearly one order of magnitude has to be assumed,
which appears implausible. A more realistic conjecture is that due to gravitational sag,
the optical potential is skewed in such a way that it deviates strongly from the harmonic
shape assumed in all formulae. Additionally, the minimum of the trap is shifted away
from the maximum of optical intensity, and the trap frequencies may be modified even if
the harmonic approximation still holds. Since the amount of gravitational sag depends on
the optical power, the scaling laws of Tab. 3.1 no longer hold.

In an effort to provide a more isotropic potential, Christoph Becker has implemented
the crossed-beam geometry in our experiment. Details of the setup will be covered in his
PhD thesis [105] (to be published). This type of trap is more flexible since the confinement

2The Gaussian beam emerging from the fiber end is slightly truncated by the aperture of the lens. See
[103] for construction details and [57] for a thorough analysis of the astigmatic beam shape.

3Note that 〈n〉 = 4/7n̂, where n̂ is the peak condensate density at the trap minimum, see Section 2.3.2.
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(a) Center-of-mass oscillations of a cloud of atoms in the astigmatic single-beam trap, used to determine
the trapping frequencies in Tab. 3.1. The measurements have been performed at 48mW optical power.
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(b) Parametric heating spectra for various modulation depths. Measurements have been taken at 68mW
or 48mW (marked (*)) optical power; modulation frequencies have been scaled to 48mW. Vertical lines
mark 2× fx and 2× fy (where 2πfx,y,z = ωx,y,z) as well as 1× fz and 0.5× fz. Excitation at the vertical
trap frequency and sub-harmonics is possible since gravitational sag shifts the trap center.

Figure 3.3: Determination of the trap frequencies of the astigmatic single-beam trap.
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Table 3.2: Comparison of average frequencies of the astigmatic dipole trap, obtained by various
methods. ω̄ is scaled according to Tab. 3.1, ω̄(T ) and ω̄(n) are calculated from measured critical
temperatures and densities, respectively (see text for details).

power experimental data calculated from data scaled
[mW] T/ nK N/105 N0/105 n/ cm−3 Tc/nK ω̄(T )/ s−1 ω̄(n)/ s−1 ω̄/ s−1

44 64 5.0 3.8 0.68× 1014 104 2π × 29 2π × 23 2π × 106
107 205 8.3 2.9 1.9× 1014 229 2π × 54 4π × 96 2π × 165

in all three directions is given by the transverse intensity gradients of the two beams only,
which can be independently adjusted. The beams have circular cross-sections and are
focused to w0 ≈ 25µm; equal power ideally leads to an aspect ratio of ωx : ωy : ωz =
1 : 1 :

√
2 of the trap. Condensates in this trap are tightly localized in all directions and

should conform much better to the single-mode approximation (Section 2.3.2) than in the
astigmatic single-beam trap. Tab. 3.1 lists representative trapping frequencies, determined
in a similar way as for the astigmatic trap. Details of this measurement can be found in
Sebastian Schnelle’s Diploma thesis [104].

The last variant simply consists of just one of the beams of the crossed dipole trap. The
resulting potential shows extremely low confinement in axial direction (ωx ≈ ωy/100 based
on the measured beam waist), leading to the formation of very elongated Bose-Einstein
condensates in this waveguide-like structure. This geometry is useful for observing spatial
structure formation; however, the extreme shape also introduces several technical and
physical complications (Chapter 6). The transverse trapping frequency can be deduced
from the measurement of the crossed beam trap (Tab. 3.1).

Intensity fluctuations of the dipole trap translate to fluctuations of the trapping fre-
quencies and may lead to heating via the mechanism of parametric excitation [106]. It
is therefore important to keep intensity noise low, in particular the Fourier components
at twice the trap frequencies where parametric excitation is resonant. Fluctuations may
result from intensity noise of the laser source itself as well as mechanical and acoustic noise
modulating the coupling efficiency and polarization properties of the fiber used to guide
the light to the experiment.

Fig. 3.4 shows the Fourier spectrum of the light intensity measured behind the fiber
using a battery-powered photodetector and an FFT audio analyzer (Rohde & Schwarz
UPL). The most dominant features result from line frequency modulation, and are sup-
pressed by a factor of more than 1000 even in the worst case. The broad-band noise floor at
−100 dB corresponds to a spectral noise density4 of −110 dB/Hz. Assuming a typical trap

frequency of 690 Hz, this noise translates [106] to a heating rate of Γ =
˙〈E〉

〈E〉 = 5 · 10−5 s−1,
which is completely negligible on typical experimental time scales.

4The FFT analyzers spectral filter is normalized to a peak value of 1. This means that the rms power
of a single-frequency signal can be directly read from the peak of the curve. On the other hand, this means
that the spectral power density of noise is displayed in terms of total power integrated over the effective
filter bandwidth (approx. 10Hz here for the solid curves)
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Figure 3.4: Intensity noise of the astigmatic single-beam dipole trap. Note that “relative power”
refers to the photodiode signal (i.e. 60 dB correspond to a factor of 1000 in light intensity) and is
normalized to the DC signal level. Electronic noise is negligible; it has been checked that with the
laser blocked, the noise level is > 60 dB lower throughout the spectral range.

3.3 Detection

After release from the optical dipole trap and free expansion during time-of-flight, our
spinor condensates are imaged using the standard absorption technique [107]. In order
to obtain information about the spin state, individual mF -components are separated in
a magnetic field gradient (Stern-Gerlach technique). Thus, spin state populations can be
measured in total or spatially resolved, but phases needed for a complete characterization
of the quantum mechanical state are not accessible.5

In order to have a well defined quantization axis ~ex during Stern-Gerlach separation, a
large offset field Bx,offs is applied. For the interpretation of certain experiments, specifically
for magnetic field compensation (Section 3.4), it is important to know whether this offset
field is switched on adiabatically or not. In the former case, any spin state is just rotated
together with the quantization axis, in the latter case it is projected onto the new axis.
Variations of Bx on a time scale much shorter than Larmor precession in the transverse
field B⊥ lead to projection. On the other hand, adiabatic evolution occurs when the speed
of rotation of the magnetic field, | ~̇B|/| ~B|, is much less than the Larmor frequency gF µB

~ | ~B|.
Changes in spin populations with respect to ~ex due to adiabatic rotation can be neglected
when the angle between ~B and ~ex is sufficiently small, the same condition as applies to the
final offset field. This means, that the offset field Bx,offs has to rise to a value sufficiently
large to neglect the transverse field, in a time small compared to the transverse Larmor

5Measuring populations corresponds to projecting the spin onto a quantization axis; the populations
are the diagonal elements of the density matrix. In principle, it is possible to obtain the full density
matrix using tomography, i.e. several projections on different axes. For a spin-F system, in general 4F +1
projections are needed [108]. Tomography has not been performed in the course of this work due to technical
restrictions. The simplest possibility using active rotation by rf pulses (Section 2.2.2) would require a level
of shot-to-shot reproducibility at least one order of magnitude beyond the (already excellent) capabilities
of the current setup. Methods relying on switched magnetic fields [109] are technically demanding and
could not be implemented to date.
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Table 3.3: Key parameters of imaging lenses used in the course of this work. The observed
resolution is also limited by the pixel size (6.8µm × 6.8µm) of the camera. The diffraction limit
s has been calculated according to the Rayleigh-criterion, where s = 1.22 λf

D ≈ 1.22 λ
2 N.A. . (D

diameter, f focal length, N.A. numerical aperture of lens).

achromats B. Halle
working distance 120 mm 105 mm
numerical aperture 0.16 0.20
magnification 1×, 2.17×, 3.75× 2.58×, 9.9×
resolution (diffraction limit) 2.8µm 2.3µm
resolution (best observed) 3.6µm @ 3.75× < 2.2µm

frequency. Assuming linear growth,

∆Bx,offs

∆t
� gFµB

~
B2
⊥ =

2π × 700 kHz
G

B2
⊥ (3.1)

The growth rate of the offset field ∂Bx,offs/∂t has been estimated from current mea-
surements as ≈ 0.1 G/µs. This implies non-adiabatic switching for transverse fields
B⊥ � 150 mG, which is typically fulfilled after and during the compensation of residual
magnetic fields. This is important for the interpretation of Stern-Gerlach images during
the compensation procedure.

The optical setup for absorption detection consists of an illuminating laser beam, an
imaging lens and a CCD camera. The laser beam is fiber-coupled and collimated to
a diameter of several centimeters, illuminating the atoms at typically 20% saturation
(≈ 0.3 mW/cm2). Depending on the density of the atomic cloud, the laser is resonant or
detuned up to one linewidth of the atomic transition (6 MHz). In order to minimize the
spin dependence of the absorption cross-sections [57], the polarization is chosen parallel
to the quantization axis (π polarization).

The imaging lens consists of two 40 mm diameter achromatic lenses mounted back-
to-back in earlier measurements6, and is now a custom-designed multi-lens objective
(B. Halle Nachfl. GmbH, Berlin). Key parameters of the respective lenses are summa-
rized in Tab. 3.3. The imaging systems have been characterized and put into operation
together with Thomas Garl (home-made system) [110] and Lars Neumann (B. Halle ob-
jective) [111] as part of their diploma theses; more details can be found therein.

The CCD camera (SenSys 3200ME) takes three pictures in a row for each run of the
experiment. (1) The absorption image Iabso, (2) the same image after the atoms have
fallen down (reference image) Iref and (3) a dark image Idark where the illuminating laser
beam is off. Each image takes about 4 s to read out, while the exposure time, defined by
the duration of the detection laser pulse, is typically only 50µs. From the three images,
the optical column density of the absorbing atomic cloud is calculated,

nOD = − ln
(
Iabso − Idark

Iref − Idark

)
(3.2)

This is the standard procedure [107] to eliminate background light as well as the structure
of the illuminating beam (Gaussian profile, dust particles, interference fringes).

6dating from before April 2006
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Table 3.4: Characteristics of the compensation coil cube, calculated using Ampère’s law. The
measured value for Bx is 275± 1 mG/A, in good agreement with the calculation. The comparison
may serve as an error estimate for the remaining coefficients.

coil pair quantity coefficient unit
Helmholtz horizontal Bx, By 0.286 G/A
Anti-Helmholtz horizontal ∂Bx/∂x 0.034 G/(A cm)
Helmholtz vertical Bz 0.521 G/A

It turns out, however, that part of the pattern is not fixed but varies in time on a
millisecond scale [112], limiting the effectiveness of the above procedure. We have therefore
developed an algorithm for additional post-processing of the images. The basic idea of
post-processing is to construct for each absorption image an artificial best-fit reference
image from the set of all reference images (of the same day or series) [57, 112]. This is
then used instead of the original reference image to calculate the optical density in the
usual way. Another simple way of avoiding a large part of the smallest-scale fringes is
to use a quarter-wave plate in front of the camera. This seems to suppress the parasitic
resonator formed between the camera chip and the vacuum cell through the imaging lenses.
The fringe problem is discussed again in more detail in Section 4.1.

3.4 Magnetic field control

Every experiment takes place at finite magnetic field ~B0. Precise control of this offset
field and its fluctuations is crucial for any experiment involving spinor physics. Ideally, ~B0

is assumed to have a constant magnitude B0 and a fixed direction ~ex (labeled x-axis by
convention). In our experiment, the actual magnetic field during hold time in the dipole
trap is composed of the desired axial offset field, produced by dedicated offset field coils,
and residual static (DC) and dynamic (AC) fields.

The coils used to compensate and generate magnetic fields have been described in [57].
They are wound along the edges of a cube of dimensions x×y×z = 28 cm×28 cm×18 cm.
Several pairs of 2×10 turns each are available for each direction. The pairs can be used in
Helmholtz7 as well as anti-Helmholtz configuration. The BEC is situated approximately
at the center of the assembly. Some characteristics of the coils are summarized in Tab. 3.4
for reference.

The dominant source of static residual fields, above any technical sources, is the earth’s
magnetic field, which is of the order of 0.5 G [113]. Technical sources comprise e.g. the per-
manent magnets of the ion vacuum pumps, the permanently running coils and dispensers
of the 2D MOT, and residual magnetization in the steel parts of the apparatus8. We
employ computer-controlled constant-current driven compensation coils to cancel static
stray fields down to about 0.5 mG in the transverse direction and about 2 mG in the axial
direction, following the procedure outlined below.

7For simplicity, the terms “Helmholtz” and “anti-Helmholtz” are used not only for the classical
Helmholtz configuration of circular coils separated by half their diameter, but for any equivalent topology,
irrespective of dimensions.

8The vacuum apparatus and the surface of the optical table are made of non-magnetic A4 steel, bolts
and other hardware is usually made of A2 steel which is only slightly magnetic.
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Figure 3.5: Ramsey experiment in F = 1 at 1.1 G offset field. Colored area indicate the expected
envelope assuming a detuning of 480±60 Hz and 480±200 Hz, respectively. The theoretical model
includes exponential damping (Section 2.2.3, γ2 = 100 s−1).

The fundamental problem in cancelling magnetic stray fields is the lack of knowledge
of these fields at the position of the atomic cloud. The way out consists in using the atoms
themselves as a magnetic sensor. The following procedure requires a working spinor BEC
experiment, namely production of BEC in a dipole trap and Stern-Gerlach analysis. Rea-
sonable starting values for the compensation coils are those used for the optical molasses.

After evaporation in the magnetic trap, atoms are in a pure F = 1,mF = −1 state9.
With a sufficiently high offset field B0 = Bini, only the single corresponding Stern-Gerlach
separated cloud should be populated. In a first step, the axial compensation is roughly
adjusted by setting the offset field temporarily to B0 = 0 and ensuring that several mF

components are populated. This means that the resulting field is more or less transverse.
In the next step, the offset field B0 is gradually reduced from its initial value Bini until

a small population in mF = 0 appears. Adjusting the currents through the transverse
compensation coils, this population has to be minimized until it is not visible any more.
The offset field is then further reduced, the compensation currents are re-adjusted and
the procedure is repeated until no further improvement is seen. On a good day (and with
properly compensated gradients, see below), this means that the compensation currents
are finally adjusted by only 1 mA, corresponding to ≈ 0.3 mG.

In a last step, the residual axial field is cancelled. This is done by setting one of
the transverse directions off its correct value by several mG. Ideally, the resulting field
at B0 = 0 is purely transversal and the population distribution seen after Stern-Gerlach
is symmetric around mF = 0. The axial compensation current is adjusted to achieve a
distribution as symmetric as possible. The minimum step size achievable by this criterion
is several times larger than that for the transverse directions.

As a check for good compensation, it is useful to set again B0 = 0 now using the correct
currents for all compensation coils. Compensation is perfect, if all mF components are
populated and spatially structured (Fig. 3.6). The latter means that field variations across

9For simplicity, we use F = 1 as an example. The procedure for F = 2,mF = +2 is analogous.

43



44 CHAPTER 3. EXPERIMENTAL SETUP AND CHARACTERIZATION

the condensate are of the same order as the residual field. With good compensation, an
offset field of 30 mG =̂ 100 mA should be sufficient to suppress any population other than
mF = −1 below the visibility limit. With transverse compensation adjusted to 1 mA
accuracy, even 3 mG=̂ 10mA are sufficient; however, since stray fields seem to drift on the
time scale of hours it is not advisable to rely on this ultra-low offset10. Additionally, it is
possible to obtain rf resonance frequencies (Section 3.5) for various offset field values, and
obtain the residual field from the offset of the linear relationship; the result is again of the
order of mG.

Dynamic (AC) fields usually oscillate at multiples of the line frequency (50 Hz) with
an amplitude of the order of a few mG. They can be minimized to some degree by
keeping power supplies and other line-operated equipment far from the vacuum chamber.
In addition, it is useful to synchronize the experiment to the mains cycle – this improves
shot-to-shot reproducibility, and stabilizes the magnetic field seen by the atoms at least
for hold times much shorter than the mains period. Fig. 3.5 shows the result of a Ramsey
experiment (see Section 2.2.1 and Section 5.2) at 1.1 G offset. Each data point corresponds
to a single run of the experiment, lasting about a minute. The visibility of Ramsey
fringes up to the first beat node implies a shot-to-shot fluctuation of less than ±60 Hz,
corresponding to less than 0.1 mG.

Since the line frequency is not sufficiently stable on the time scale of seconds or minutes,
the experimental sequence control has been modified to pause on demand and wait for a
line-generated trigger signal to continue. This wait-for-trigger state is invoked just before
the critical part of the experimental sequence.

The next level of compensation is to take the variation of magnetic fields across the
condensate into account, or to first order the gradient ∂B{x,y,z}/∂{x, y, z}. With nine
components of the gradient matrix and only one constraint ∇ · ~B = 0, complete com-
pensation is not feasible. However, it is possible to single out the two or three dominant
gradients. First, at finite offset ~B0 = B0~ex, small transverse components contribute only
quadratically to the total magnitude, whereas axial fluctuations enter linearly. Second,
the extension of the atomic cloud is largest in axial direction, except in the crossed dipole
trap where it is more or less spherical. Therefore the most important gradient is ∂Bx/∂x,
which can be compensated (at the cost of additional transverse gradients) using a pair of
anti-Helmholtz coils. Of the transverse gradients of Bx, only ∂Bx/∂z has been compen-
sated using a pair of small off-axis Helmholtz coils. While the ∂Bx/∂x compensation adds
only a very small residual field, the significant additional offset field produced by ∂Bx/∂z
compensation has to be taken into account in the compensation procedure. The effect of
gradient compensation is directly visible in spinor BEC in the crossed-beam dipole trap
(Fig. 3.8).

Best compensation of ∂Bx/∂x is achieved at 0.5 ± 0.1 A, indicating a magnetic field
gradient of the order of 15 mG/cm, which in x-direction is reduced by compensation to a
residual gradient of ∂Bx/∂x ≈ 3 mG/cm. At the same time, however, other components
may increase by the same amount. Across a typical condensate elongation of 100µm,
this residual gradient causes dephasing between adjacent Zeeman sublevels at a rate of
≈ 2π × 20 Hz.

Another estimate of residual gradients can be obtained from the fact that patterns as
illustrated in Fig. 3.6 are observed only when the Helmholtz compensation currents are

10It has been observed that after several hours, the compensation currents have to be re-adjusted by
1 . . . 2mA. Switching off the power supplies of cameras used to monitor the MOTs makes changes of the
same order of magnitude necessary, as does interrupting the experimental cycle for a few minutes.
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mF = +1 mF = 0 mF = −1

(a) Elongated geometry Px � Py

mF = +1 mF = 0 mF = −1

(b) Isotropic geometry Px = Py

Figure 3.6: Typical structured spinor condensates in the crossed dipole trap at zero offset field,
indicating optimum stray field and gradient compensation. Gradient compensation currents are
those deduced from Fig. 3.7 and Fig. 3.8. The pattern as well as the relative population of spin
states varies randomly from shot to shot, probably due to AC stray fields. Since the hold time at
zero offset field is comparatively long, the line trigger is ineffective in this case.
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(b) Position of spin domains relative to thermal cloud vs. ∂Bx/∂x current.

Figure 3.7: Gradient compensation in the astigmatic dipole trap (selected examples). Demixing
of spin components occurs after preparation with π/2 pulse (Section 2.2.1) at 0.7 G offset field;
∂Bx/∂x leads to a deterministic spatial separation. From this experiment, an optimum compen-
sation current of about 0.4 A could be deduced, consistent with Fig. 3.8.
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mF = +1 mF = 0 mF = −1

(a) Varying ∂Bx/∂x (top to bottom: 1A . . . 0A
in steps of 0.2A) at zero ∂Bx/∂z compensation

mF = +1 mF = 0 mF = −1

(b) Varying ∂Bx/∂z (top to bottom: 0A . . . 3A
in steps of 1A) at optimum ∂Bx/∂x

Figure 3.8: Selected images of spinor condensates in the crossed dipole trap at zero offset field,
demonstrating gradient compensation. This kind of experiment has been used to find the optimum
compensation currents. In the left column, it can be seen how the mF = ±1 components separate
under the influence of the magnetic field gradient and swap places when it changes sign (from
both “outwards” with respect to mF = 0 at the center to both “inwards”). In the right column,
similar behavior can be seen in the vertical direction depending on the vertical gradient. Optimum
compensation currents deduced from these images are 0.5 A for ∂Bx/∂x (left) and 2A for ∂Bx/∂z
(right).
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Table 3.5: Examples of initial states that can be prepared from |1,−1〉 using microwave sweeps,
adiabatic rf sweeps and pulses. Notation: |1,−1〉 ≡ (0, 0, 1) etc.

(0, 0, 1)
π/2−−→ (1

2 ,
1√
2
, 1

2)

(0, 0, 1)
rf sweep−−−−−→ (0, 1, 0)

π/2−−→ ( 1√
2
, 0,− 1√

2
)

(0, 0, 1)
rf sweep−−−−−→ (0, 1, 0)
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2
,−1

2)

(0, 0, 1)
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√

3
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1
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4)
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√

3
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√
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1
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optimized at the mA-level, corresponding to changes in offset field of 0.3 mG. Assuming
that the local spin composition reflects the local magnetic field orientation, field variations
across the condensate should be well below this value. This estimate is compatible with
the previous paragraph, though slightly less stringent.

The Helmholtz compensation or offset field coils themselves may be the source of an
unwanted variable gradient.11 Estimating the gradient caused by only an axial deviation
(±1 cm) of the actual condensate position from the symmetry point of the coil pair, a
variable gradient of up to 4 mG/(A cm) may be expected realistically. This is of the same
order of magnitude as the achievable accuracy of gradient compensation.

3.5 Spin state preparation

The main tools used in this work for state preparation and manipulation are radio fre-
quency driven transition between mF substates within a hyperfine manifold, and mi-
crowave driven transitions between F = 1 and F = 2. Both rely on the BEC or atomic
cloud being in a pure state (F = 1,mF = −1) after evaporation in the magnetic trap. Also,
both methods are naturally first-order sensitive to the magnetic field, and precise knowl-
edge of the Zeeman splitting at a given offset field is necessary. The same rf techniques
used for the preparation of spin states can also be employed to determine the Larmor
frequency in the first place; as a by-product, we gain a precise value for the magnetic
offset field.

We distinguish three basic techniques, each relying on specific experimental parameters
and providing specific degrees of freedom for the manipulation of the spin state.

Spin rotations

At small offset field, where the quadratic Zeeman splitting is small compared to the Rabi
frequency of the rf coupling (a few kHz), the dynamics of an initially stretched state is well
described by the classical spin picture (Section 2.2.2). In the frame of reference rotating
at the rate of the radio frequency, applying rf power induces a rotation around the x-axis
at the rate of the Rabi frequency, while just waiting corresponds to a rotation around

11The coils are not in true Helmholtz configuration, i.e. the curvature of the magnetic field as a function
of the position does not vanish at the symmetry point.
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the z-axis at the rate of the detuning between radio and Larmor frequency. Arbitrary
rotations can be achieved by rf pulse sequences; many sophisticated techniques have been
developed in the context of nuclear magnetic resonance (NMR) [114].

Practically, the correct frequency and pulse duration are roughly known from expe-
rience. Precise values for the Larmor frequency are found by choosing an approximate
π-pulse of 80µs and adjusting the frequency for maximum rotation away from the initial
|F,−F 〉 state; ideally, a π-pulse at zero detuning will transfer all atoms to the opposite
stretched state |F,+F 〉. The Rabi frequency is then adjusted by varying the amplitude
such that a pulse duration of 40µs corresponds to a π/2 pulse, i.e. leads to a symmetric
distribution of the population over all mF states. If necessary the procedure is iterated.
Using this protocol, the Larmor frequency can be obtained to a precision of about 1 kHz.

For improved precision, the π-pulse is split into two π/2-pulses (Ramsey sequence)
and the waiting time between them is gradually increased from 10µs up to 1 ms, while the
frequency is continuously adjusted for maximum population of |F,+F 〉 as before. Care
has to be taken not to increase the waiting time by more than a factor of two in each step,
in order to keep the rotation due to detuning always within ±π. The resulting precision
of the Larmor frequency is about 100 Hz. The Larmor frequencies obtained this way are
slightly different (by less than 1%) in F = 1 and F = 2 at the same B0, and also depend
very slightly on the depth of the dipole trap (less than 0.1%).

A π/2-pulse is also employed to prepare the particular superpositions ζπ/2 =
(1/2, 1/

√
2, 1/2) in F = 1 and ζπ/2 = (1/4, 1/2,

√
3/8, 1/2, 1/4) in F = 2 at low offset

fields up to 3 G, corresponding to a Larmor frequency of 2.1 MHz and a quadratic Zeeman
effect of the order of 1 kHz maximum (Section 2.3.4). Both states are fully transversely
magnetized states, ζπ/2 = ei

π
2
Fy ζ−F where ζ−F = (0, 0, 1) or (0, 0, 0, 0, 1), respectively.

The specific advantage of spin rotations is that the relative phases of different mF

components are well defined. Use of the technique is neither limited to stretched states
nor to π/2 pulses. E.g., a π/2 pulse applied to a pure |F = 2,mF = 0〉 state can be used
to prepare a superposition of mF = ±2 and mF = 0 only, a state that is characterized by
the absence of g1 coupling (Section 2.3.1); other useful examples can be found in Tab. 3.5.
Pulse areas � π/2 can be employed to generate small “seed” populations in mF states
adjacent to a single strongly populated one at a well defined phase.

Rf adiabatic passage

The characteristic regime for spin rotations is that of a negligible quadratic Zeeman effect.
As a result, all transitions between adjacent mF levels are degenerate. At larger offset
field, where the quadratic Zeeman effect is of the order of 100 kHz and thus much larger
than the Rabi frequency of the rf coupling, this degeneracy is lifted. Transitions between
specific mF levels can be selectively addressed by tuning the radio frequency (Fig. 3.10).

Rf sweeps can be used to adiabatically transfer population between specific mF sub-
states, enabling access to non-stretched states, e.g. |1,−1〉 → |1, 0〉. Superpositions can
be prepared as well by sweeping more quickly, violating adiabaticity; however, in this case
the phases are not well defined. This technique has been used extensively in earlier exper-
iments of our group [36, 57]. The offset field is chosen at 26 G, corresponding to a linear
Zeeman splitting of 18MHz and transition frequencies between mF components spaced at
47 kHz due to the quadratic Zeeman effect. Sweeping over 50 kHz in 1 ms is sufficient to
ensure adiabaticity [57].

While the use of quick rf sweeps to generate mixtures is problematic, adiabatic sweeps
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Figure 3.9: Rabi-like oscillations in F = 1, driven by continuously applied rf. The condensate is
initially prepared in F = 1,mF = −1 (top row) and is driven through a superposition of all three
mF -states to a pure mF = +1 state, before the dynamics is reversed. The pictures are taken at
intervals of 10µs. (pictures resized - not to scale.)

Figure 3.10: Schematic level diagram of dressed mF states versus detuning of the radio frequency
from the Larmor frequency. Left: The quadratic Zeeman effect lifts the degeneracy of the
resonance. Without it, all levels would intersect at zero detuning. Coupling of adjacent levels
(∆mF = ±1) turns level intersections into avoided crossings. Right: Sweeping the radio fre-
quency, a population prepared in mF = +2 adiabatically follows the dressed state across avoided
intersections and ends as a pure mF = −1 population when the sweep is interrupted between
resonances. (see also [57])
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are an invaluable tool due to their robustness. Used to prepare initial states for subsequent
rotation by pulses, they also greatly increase the range of mixtures accessible by the latter
technique (see also Tab. 3.5).

Hyperfine transitions F = 2 ↔ F = 1

A microwave field at the hyperfine frequency of ≈ 6.8 GHz can drive transitions between
specific mF levels belonging to different hyperfine manifolds. Even at small offset field, mF

levels can be selectively addressed by tuning the precise microwave frequency according
to the linear Zeeman effect. Selection rules limit possible transitions to ∆mF = ±1. For
complete population transfer, adiabatic sweeps have proven useful; pulses may be used
as well, in particular for superpositions. E.g., starting from F = 1,mF = −1 it is thus
possible to transfer to F = 2,mF = 0 or F = 2,mF = −2 in a single sweep. Fig. 3.12
shows how by continuation of this sweep, the population can be successively transferred
in a zig-zag way through all available mF values, alternating between F = 1 and F = 2.

The microwave frequency does not need extra adjustment when the Larmor frequency
has been determined by the procedure described above. The achievable Rabi frequency
for the |1,−1〉 ↔ |2,−2〉 transition is approximately Ω0 = 2π × 10 kHz, a fully adiabatic
sweep may cover a range of detunings of 400 kHz in 0.5 ms.

Apart from the possibility of preparing mixtures, the advantage of using microwave
transitions is that switching between F = 1 and F = 2 is possible without changing
anything in the experimental sequence before loading the dipole trap; in particular loading
and evaporating in the magnetic trap is always done in F = 1.
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Figure 3.11: Preparation scheme using mi-
crowave sweeps. Each colored path can be tra-
versed in a single sweep, taking the population
along from one |F,mF 〉 state to the next. In the
example below, we start in |F = 2,mF = −2〉
and follow the solid path to |F = 2,mF = +2〉.

(a) Various superpositions of F = 2 and F = 1, used to calibrate Stern-Gerlach imaging. F = 1 and F = 2
positions differ due to the quadratic Zeeman effect.

(b) Successive preparations using successive microwave sweeps. From top to bottom: |2,−2〉 → |1,−1〉 →
|2, 0〉 → |1,+1〉 → |2,+2〉. The individual sweeps can also be combined into a single one spanning all
transitions.

Figure 3.12: Preparation of F = 2 and F = 1 using microwave sweeps.
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Chapter 4

Additional experimental tools

This chapter covers two rather peripheral experimental aspects, that yet turn
out to be quite rewarding distractions, uncovering beautiful physics. In the
first part, various methods aimed at reducing the disturbance of absorption
images by interference fringes – a problem well known to anyone working in
the field of ultracold gases and probably of much wider impact, considering
the importance of laser light in modern imaging technology. The second part
describes the construction of flexible and easy-to-use light source for driving
Raman transitions between the hyperfine ground states of 87Rb.

4.1 Fringe reduction in absorption images

4.1.1 Interference fringes in absorption imaging

Absorption imaging of atomic clouds requires highly monochromatic light within the
linewidth of the atomic transition used, which usually means laser light. It is well known
that illumination by laser light produces all kinds of interference patterns, even in the case
of random scattering leading to so-called speckle patterns. This is an unavoidable conse-
quence of the monochromaticity of laser light, although in principle the size of structures
may be pushed down to the scale of the wavelength of the light and thus below the size
of the detector elements (e.g. CCD pixels).

In our experiment, as in many others, diffraction from impurities, such as dust particles
or scratches, and interference between surfaces of optical elements lead to an illuminating
beam profile contaminated with structures of all length scales, from the pixel size to the
field of view. The standard procedure [107] of BEC absorption imaging, in which the
optical density of the atomic cloud is recovered by calculating pixel-wise the ratio of light
intensities with and without absorbing atoms, is expected to eliminate structures together
with the overall Gaussian beam profile of the illumination.

This strategy in fact works well and removes interference fringes as well as the Gaussian
profile to a large degree. However, the method is limited by the movement of the fringes
during the time between taking the absorption and the reference image. This movement
is caused by mechanical vibrations or even changes in air flow. Since the patterns result
from interference, they are sensitive to length changes of the order of the light wavelength
as well as modulations of the index of refraction caused e.g. by changing air temperature.
There are several obvious possibilities to at least alleviate the problem.
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• Reducing mechanical vibration and air turbulence helps (Fig. 4.1), but in the end
such minute variations as the patterns are sensitive to are beyond control.

• Reducing the time between the absorption and the reference image also helps, but
in order to practically eliminate the structures, this time has to be cut down to
the millisecond level, which is only possible using specialized cameras1. Fig. 4.1
demonstrates both the effect of noise and waiting time.

• If optical elements leading to particularly annoying fringes are identified, measures
can be taken to suppress their tendency to oscillation, they may be cleverly re-
arranged to inhibit interference or simply cleansed of dust particles.

As an example, in our experiment the interferometer formed by the camera (window or
chip) and most probably the glass cell has turned out to make a big contribution to moving
fringes. Due to the large separation of the “cavity mirrors” it is particularly sensitive. The
quality of images could be significantly improved by inserting a quarter-wave plate in front
of the camera, rotating the polarization of reflected light and depriving it of its ability to
interfere with illuminating light.

In the following, three more complex and expensive methods to eliminate fringes if
the obvious ones fail will be presented. One of them, post-processing on a computer,
is routinely employed in our analysis of absorption images. Although generally proven
useful, we have shown only recently, together with Diploma student Martin Brinkmann,
that post-processing is actually able to reduce noise in images to the photon shot-noise
limit. The technique of illuminating with randomly scattered light has been developed to
improve image quality where post-processing meets its limits. It has been characterized
experimentally, but currently the cost (in time, mainly) of integrating the method into
the running experiment is not justified by the limited improvement of image quality it
provides under certain conditions. Finally, I propose an idea of using short, spectrally
broad pulses, driving the atomic transition coherently, which possesses a certain elegance
but has not yet been implemented, not least due to the costly technical challenge it poses.

4.1.2 Post-processing: algorithmic fringe reduction

In the standard procedure of absorption imaging, three images are taken in every run of the
experiment: the absorption image Iabso, a reference image Iref using the same parameters
but with no atoms present, and a dark image Idark taken at the same exposure time but
without illumination. Ideally, Iabso and Iref will show the same spatial light distribution,
including the illuminating beam profile and interference fringes, except for the presence of
atoms. The atomic cloud is assumed not to modify interference fringes. Thus, the optical
column density calculated pixel-wise as [107]

nOD = − ln
(
Iabso − Idark

Iref − Idark

)
(4.1)

should be free of interference fringes and should have a homogeneous background.
As a matter of fact, this is not the case due to movement of the fringes in the time

between taking the absorption and the reference image: Iref does not fit Iabso. However,
1Interline CCD cameras such as the PCO Pixelfly QE possess the ability of taking two pictures within

a few milliseconds, and have proven to be very useful [115]. Images taken with the PCO Pixelfly QE at our
experiment show virtually no remaining interference fringes in the calculated optical density distribution.
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Figure 4.1: Temporal autocorrelation of interference fringe patterns. Several oscillations most
probably of mechanical origin can be identified, the most pronounced one at ≈ 17 Hz. The cor-
relation is computed as an average c(∆t) = 〈〈Iij(t2)Iij(t1)〉i,j〉t2−t1=∆t over time and pixels, from
normalized images I(t) (with average 〈Iij(t)〉i,j = 0 and standard deviation 〈I2

ij(t)〉i,j = 1). The
images have been taken at intervals of 2 ms using a high-speed CMOS camera.
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Figure 4.2: Reduction of interference fringes by post-processing with an NB-element basis. His-
tograms are based on a 200× 200 pixel section from 10 random test images. For these histograms,
the artificial reference image has been subtracted from the test images, instead of dividing the test
images by the artificial reference image.
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since the fringes only move a little and cycle their phase, it might be that a different refer-
ence image Ĩref from the same series of experiments, or a linear combination

∑
n cnI

ref,n,
fits better. The idea of our algorithm, which goes back to work in the group of W. Ertmer
at the Universität Hannover, is to construct an optimal reference image Iref

opt for a given
absorption image from a series of reference images taken with identical parameters.

The algorithm has been used in our group from the beginnings of the BEC project, and
has already been described in detail in Michael Erhard’s PhD thesis [57]. In the following
paragraph, we give a short summary for completeness.

Images I, represented as two-dimensional arrays Ii,j of Nx×Ny pixel values, form a real
vector space RNx×Ny , and standard linear algebra methods may be used. The first step
towards an optimal reference image is to construct an orthogonal basis from the set of all
reference images. This is done using the Gram-Schmidt [80] orthonormalization scheme.
The result is a set of pseudo-images {Bn, n = 1 . . . NB} that fulfill (Bn, Bm) = δnm, where
(·, ·) is the canonical scalar product in RNx×Ny , i.e. (A,B) ≡

∑
i,j Ai,jBij . The optimal

reference image is then calculated by projecting each absorption image onto this basis,

Ĩref =
∑

n

(Iabso, Bn)Bn. (4.2)

This artificial reference image can then be used in (4.1) instead of Iref. In a last step, the
reference image is scaled such that nOD = 0 on average outside a specified region which
contains all atoms in all images. This improves the precision of particle numbers calculated
by simply summing the optical density over all pixels. Without this step, summed-up
particle numbers suffer from a fluctuating offset in the optical density. However, the
rescaling factors are generally very close to one.

Together with diploma student Martin Brinkmann [112], we have had a closer look at
the algorithm, in order to improve it further and test its limitations.

Since constructing the basis is rather costly in terms of computing time (proportional
to N2

B) and memory, the number of elements in the basis is practically limited to ≈ 100.
In contrast, a series of reference images can comprise several hundred images easily. It is
thus necessary to pick a subset before actually computing the orthonormal basis.

For any given basis, the best choice to add is that normalized reference image which
has a minimum projection on the existing basis, or, in other words, which is “maximally
orthogonal”.

We have developed a fast algorithm [112] to bring the raw reference images into near
optimal order, such that it is then easy to pick as many as needed. The computing time
needed for this ordering is short compared to the Gram-Schmidt calculation, but ensures
that the subset of reference images used for the basis is as diverse and representative as
possible. Since the algorithm is based on reduced images with a lower number of pixels
(about 1% of the original pixels), the order is not exactly optimal, but large errors turn
out to be rare in daily use.

As can be seen (see Fig. 4.2a), post-processing dramatically improves the quality of
absorption images. One possibility of quantifying the improvement, disregarding, however,
the structured nature of the interferences, is to look at the spread of pixel values in
a homogeneously illuminated portion of the CCD. The read-out values of CCD pixels
illuminated with a constant intensity, or average number of photons per time and pixel,
are expected to obey a Poissonian distribution characterized by the average number of
electrons released in the pixel.2 The numbers of electrons Nel and photons Nph are related

2Other sources of noise, e.g. quantization and read-out noise, are small at typical experimental param-
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by the quantum efficiency q = Nel/Nph, which is ≈ 0.6 for the camera used (SenSys
ME3200+). The number of electrons is related to the final pixel value by a known constant
(e.g. 2.9 electrons per count – see datasheet of the ME32000+), and in the example is
≈ 220 per pixel [112]. In fact, the noise level of images can be reduced to nearly the
shot-noise limit, with an rms value of

√
Nel ≈ 15 (see Fig. 4.2b). The small remaining

discrepancy may well be caused by read-out noise. This result, obtained for a basis size
of 100 elements, is an impressive demonstration of the capabilities of the post-processing
algorithm, and has been observed here for the first time to our knowledge.

Finally, it is worth noting that, since the number of pixels N = Nx×Ny in any image
is finite, the corresponding vector space is also finite-dimensional. This means that in
principle, using a sufficiently large number of elements, the resulting orthonormal basis
spans the whole space RNx×Ny . Obviously, the result of the post-processing algorithm will
be a blank image in this case, regardless of any noise or structure in the original image,
even if all images show only shot noise. However, Nx × Ny is typically > 3 orders of
magnitude larger than the number of basis elements.

Now consider two random vectors in RNx×Ny , v = (v1, . . . , vN ) and b = (b1, . . . , bN ),
representing a test image and an arbitrary basis vector both showing shot-noise only. The
elements vi and bi each follow a probability distribution, Pv(vi) with 〈vi〉 = 0 for simplicity
and 〈v2

i 〉 = σ2
v , and analogously for bi. v and b are independent quantities, i.e. the joint

probability distribution is the product of the individual ones, P (vi, bj) = Pv(vi)Pb(bj).
The same is true for different components of each vector, and as a result 〈vivj〉 = σ2

vδij
and 〈bibj〉 = σ2

b δij . The projection of v on the subspace orthogonal to b results in a
“shorter” (on average) vector ṽ = v − (v,b)

‖b‖2 b, whose norm is

‖ṽ‖2 = ‖v‖2 − |(v,b)|2

‖b‖2
. (4.3)

The average reduction in “length” can be calculated using the assumption that v and b
are independent quantities,〈

|(v,b)|2

‖b‖2

〉
=
〈∑

i,j vibivjbj∑
n b

2
n

〉
(4.4)

=
∑
i,j

〈vivj〉
〈

bibj∑
n b

2
n

〉
, (4.5)

and that the individual components are uncorrelated,

=
∑

i

〈
v2
i

〉〈 b2i∑
n b

2
n

〉
= σ2

v . (4.6)

On the other hand, 〈‖v‖2〉 = Nσ2
v , and the observed rms pixel noise

vrms ≡
√

1
N

∑
i

v2
i =

√
‖v‖2
N

= σv (4.7)

eters. In the case of Fig. 4.2b, the average number of electrons per pixel is ≈ 220, corresponding to a count
of ≈ 100 and quantization noise of the order of 1%, while read-out noise is specified at 8 e− rms.
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is reduced by a factor of

ṽrms

vrms
=

√
‖ṽ‖2
‖v‖2

=

√
1− 1

N
≈ 1− 1

2N
. (4.8)

Since the number of pixels N = Nx ×Ny is always several orders of magnitude larger
than the number of basis vectors NB, the total reduction of shot noise in a Nx ×Ny test
image by NB basis vectors containing shot as well can be approximated as

ṽrms

vrms
≈ 1− NB

2NxNy
(4.9)

and is obviously negligible for realistic numbers.

4.1.3 Random scattering: imaging with spatially incoherent light

Interference fringes result from light taking different paths to the same detector; the
pattern seen by a spatially resolved detector reflects the differences in optical path length.
One way of destroying unwanted patterns is thus to remove the large-scale correlation of
optical path length difference and detector position. Inserting a scattering disk somewhere
between source and detector will scramble the phases along different optical paths and will
result in a random small-scale speckle pattern at the detector instead of large-scale fringes.

Unfortunately, this speckle pattern generally has a much higher contrast than the orig-
inal fringes. Some sort of averaging is thus indispensable. Two effects may be considered
to achieve averaging:

• spatial averaging over the area of a detector element (pixel) is effective if the charac-
teristic speckle size is much smaller than pixel size. Since the speckle size is ultimately
limited only by the optical wavelength (≈ 1µm) which is much smaller than typical
pixel dimensions (≈ 10µm), this option appears to be feasible in principle. However,
as discussed below, the speckle size is actually limited by the resolving power of the
imaging system which is usually significantly larger than the pixel size in order to
avoid unnecessary blurring.

• temporal averaging is achieved by moving or modulating the phase-scrambling ele-
ment.3 The averaging effect is expected to be proportional to the speed of movement
or modulation, and anti-proportional to the speckle size. Since the exposure time
in our experiments is very short (50µs), e.g. compared to conventional microscopy
applications, care has to be taken to achieve a speckle size as small as possible even
though spatial averaging remains out of reach. Still, implementing a sufficiently high
rate of change is challenging.

Characteristics of laser speckle

Laser speckle has been known since the development of cw lasers, and has been the subject
of systematic study since the early 1960s [116]. In its analysis, usually one of two limiting-
case geometries is considered (see Fig. 4.3),

3This amounts to making use of the same mechanisms that otherwise lead to moving fringes, and in
fact the same effect could in principle be achieved by artificially shaking some optical elements in the
conventional detection setup. However, the considerations for speckle patterns applied to fringes quickly
show that this is impractical.
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• the “free space” geometry where the light scattered by a coherently illuminated
object is observed on a screen (in most cases in the far field), and

• the “imaging” configuration, where a real image of the scattering object is projected
on a screen by optical means.

The characteristics discussed below apply equally well to both cases, when correctly in-
terpreted.

More complex assemblies, as they would be used in our experiment, are in general
equivalent to one of the two cases. We have studied both configurations, but have achieved
promising results only with the “free space” equivalent, and therefore restrict our discus-
sion to this case.

Our setup differs from its “free space” equivalent in two ways.

• The lens L1, with the scattering cell mounted at one focal length f1 distance, gen-
erates a virtual image of the cell at infinite distance, while preserving the viewing
angle 2 tan θ = d0/f1. Thus L1 simulates the far field situation, but concentrates the
scattered light to the region of interest, saving orders of magnitude of laser power
compared to the actual “free space” geometry. Note that the aperture of L1 does
not enter in the characteristic size of the speckle pattern produced. The latter is
determined solely by the viewing angle θ. However, D1 determines the illuminated
region and must be larger than the object of interest.

• Instead of directly observing the far-field speckle pattern produced in the principle
plane of L1, it is projected onto a CCD camera through one or two imaging assemblies
L2 and L3, which ideally just transfer the intensity distribution from one plane to
another. This is necessary in general because both the CCD camera and the object
of interest must be physically separated from each other as well as from the lens L1.
In our experiment, this is particularly true because the object of interest is a BEC
trapped in a vacuum cell with limited optical and physical access. The apertures D2

and D3 impose additional restrictions on the speckle size by effectively limiting the
viewing angle to 2 tan θ ≤ min(D2/s2, D3/s3).

Since laser speckle is a random phenomenon, is must be described by statistical meth-
ods. The most important characteristics of speckle are the contrast (or for more complete
information, the probability density of the intensity) and the typical speckle size (or the
autocorrelation of the spatial intensity distribution).

Random-walk arguments based on quite general assumptions of the scattering object
[117] lead to the conclusion that the intensity in the observation plane obeys an exponential
probability distribution,

P(I) =
1
Ī
e−I/Ī dI (4.10)

with 〈I〉 =
√
〈I2〉 = Ī. Note that the contrast c =

√
〈I2〉/〈I〉 = 1, and even excursions

much larger that one standard deviation still occur with a high probability, making a
stationary speckle pattern appear very spiky.

The Wiener-Kinchine theorem states that the autocorrelation function C(δx, δy) of
the intensity distribution I(x, y) is the Fourier transform of its Wiener or power spectrum
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(a) “Free space” (b) “imaging”

Figure 4.3: The two fundamental geometries in which laser speckle is observed.

Figure 4.4: Top: Actual geometry used in the experiment, equivalent to “free space”. Each pair
of si, ti satisfies the Gaussian lens formula, 1

si
+ 1

ti
= 1

fi
. Bottom: Image transfer (4f) geometry,

mapping both phase and intensity from the object to the image plane.
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|F (kx, ky)|2, where F (kx, ky) in turn is the Fourier transform of I(x, y),

C(δx, δy) ∝
∫∫

(I(x, y)− Ī)(I(x+ δx, y + δy)− Ī) dx dy

=
∫∫

|F (kx, ky)|2 ei(kxδx+kyδy) dkx dky (4.11)

In the far field approximation, a single Fourier component in the image plane with a
wave vector (kx, ky) corresponds to an “elementary” interference fringe, resulting from
point sources separated by (λzkx, λzky) in the object plane, where z is the distance from
the scatterer to the observation plane [117]. The larger the viewing angle Θ, the higher
the wave numbers k = tan Θ

λ contributing to the power spectrum, and the narrower the
autocorrelation. The width ∆x of the autocorrelation peak, characterizing the speckle
size, is inversely proportional to the width of the power spectrum ∆k, ∆k∆x ≈ 2π. With
∆k ≈ tan Θmax

λ , we obtain the order of magnitude of the typical speckle size

∆x ≈ λ
2π

tanΘmax
. (4.12)

More precisely, the power spectrum is proportional to the self-convolution of the illu-
minating power distribution R(x′, y′) on the scattering object [117],

|F (kx, ky)|2 ∝
∫∫

R(x′, y′)R(x′ − λzkx, y
′ − λzky) dx′ dy′, (4.13)

up to a delta-function at kx = ky = 0 which accounts for the non-negative average intensity
Ī.

A fluid scattering cell

Instead of e.g. a rotating scattering disk, we chose to try a scattering fluid, hoping that
this would be more adequate to our requirements due to the smaller particle size and the
potentially higher speed. We use a suspension of highly dispersible alumina or boehmite
(Disperalr 40 by Sasol, kindly provided for free by the manufacturer), prepared according
to the standard recipe given in the data sheet.4

The fluid scattering cell basically consists of a two-piece aluminum body housing two
parallel microscope slides at a distance of 1 mm and leaving a free aperture of 20×40 mm2.
Fluid is guided through the resulting L = 40 mm long channel of W = 20 mm × H =
1 mm rectangular cross section. Fig. 4.5 elucidates the geometry, which is known in fluid
dynamics as duct flow. The scattering fluid is illuminated through one of the slides at an
angle of about 45◦, to avoid direct light in both the forward and the backward scattering
geometry. A small centrifugal pump circulates the suspension in a closed loop.

The laminar solution of the Navier-Stokes equation in this geometry is known as plane
Poiseuille flow and exhibits a parabolic velocity profile u(h) = û 4h

H (1 − h
H ) across the

smallest dimension. The Reynolds number is defined as Re = ûH/ν, where ν is the
kinematic viscosity of the fluid, and the volume flow rate is V̇ = 2

3 ûWH. The critical
Reynolds number for the transition to turbulence in the given geometry is Rec = 5772
[118].

4First experiments have proven the suitability of full-fat milk as well, but practical considerations
strongly suggest a less perishable liquid.
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Figure 4.5: Mechanical construction and schematic flow geometry of the scattering cell

At a maximum flow rate of about 2 `/min = 33 cm3/s, the maximum velocity assuming
laminar flow is û = 2.5 m/s and the Reynolds number assuming the viscosity of water,
ν = 10−6 m2/s, is Re = 2500, which still is significantly less than Rec = 5772. The
viscosity of the Disperalr 40 suspension is larger or at least the same as water. Thus it
is in fact safe to assume laminar flow in our scattering cell. In particular, the particle
velocity is purely in-plane, and the Doppler effect for scattered light can be made zero to
first order if the line of sight is perpendicular to the plane of flow.

Note that the actual velocity distribution of the scatterers depends on the depth of
penetration in the suspension. The fluid velocity is maximal at the center plane between
the microscope slides, i.e. at a depth of penetration of 0.5 mm, while it is zero at the
boundaries. Since a significant fraction of the light shines through the scattering cell, it is
probably safe to assume an average velocity of the scattering particles of the same order
of magnitude as û.

Besides the velocity profile discussed above, the scattering particles also move due
to Brownian motion. At room temperature T = 293 K and with an average mass of
the alumina nanoparticles of m = 4.2 × 10−17 kg, we have a mean velocity of v̄3D =√

3kT/m = 0.017 m/s, or v̄2D =
√

2kT/m = 0.014 m/s in plane and v̄1D = 0.01 m/s out
of plane. While the in-plane Brownian velocity is negligible, the out-of-plane velocity leads
to a Doppler effect of the order of ∆f

f = v̄
c = 3× 10−11, which appears to be negligible but

amounts to ≈ 10 kHz at optical frequencies. Compared to the linewidth of 87Rb, however,
this is still small. The example also emphasizes the importance of avoiding a longitudinal
Doppler effect from the average fluid velocity, since that would be two orders of magnitude
larger.

Brownian motion also leads to a continually evolving speckle pattern, even without
mean flow. A statistically independent new speckle pattern may be expected when the
particles have travelled a distance of the order of the inter-particle separation, in our case
d ≡ 3

√
n ≈ 0.75µm where n ≈ 2.4 × 1018 m−3 is the concentration of particles. Since due

to Brownian motion the rms displacement of a particle grows in time as s(t) =
√

kT
2πηr t,

the displacement is s(τ) = d after a typical time τ = 2πηr
kT d2. Again assuming the viscosity

of water, we arrive at τ = 0.13s – by far large enough to regard a 20µs exposure as
instantaneous, but short enough to observe a “swarming” motion in live video at 10
frames per second.
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Characterization of light scattered by fluid

The fluid scattering cell is intended as a way to avoid interference fringes in the detec-
tion of BEC. Together with Diploma student Lars Neumann, we have conducted several
systematic tests in an external test setup in order to check the potential usefulness of the
method. The test setup consists of a glass slide resolution target5 illuminated from behind
with light backscattered from the fluid cell, and is imaged on a CCD camera6 (pixel size
6.8µm × 6.8µm) using the Halle custom-made objective (Section 3.3) configured for a
magnification of 2.58 – corresponding to L3 in Fig. 4.4. The CCD images of the resolution
target contain areas of statistically homogeneous speckle where the slide is transparent,
and at the same time allow to determine directly the resolution achieved.

We start our discussion by looking at a “still” image, i.e. with the fluid at rest and
using the shortest possible exposure time 20µs. Fig. 4.6 shows the tools of the preceding
section applied to images taken with the scattering cell placed at the shortest possible
distance behind the slide and illuminated by a laser beam of ≈ 10 mm diameter. As
discussed in detail below, this configuration leads to the smallest possible speckle size.

The intensity statistics shows a very prominent exponential tail as expected, but has
a maximum somewhat below the average intensity, indicating some spatial or temporal
averaging. Since the fluid is at rest and the Brownian motion is negligible on the time
scale of the exposure time, temporal averaging can be excluded. On the other hand, the
autocorrelation function is obviously pixel-limited, and spatial averaging due to speckles of
the order of the pixel size or less appears to be plausible. The numerical value of 1.7 pixels
for the width of the autocorrelation is calculated from the power spectrum, because this
method is more robust for nearly delta-correlated data.

Further averaging occurs when the fluid is pumped through the cell. Fig. 4.7 shows
how the speckle contrast goes down as the exposure time of the camera becomes larger.
The data has been taken in the realistic double imaging configuration of Fig. 4.4 with a
volume flow rate of V̇ ≈ 9 cm3/s, corresponding to a laminar peak velocity of û ≈ 0.7 m/s.
The speckle contrast at the shortest exposure time of 20µs is about 3× smaller than in the
stationary case, equivalent to an average of 32 ≈ 10 statistically independent realizations
of the speckle pattern. As expected, the contrast roughly follows the ∝ T−1/2 dependence
that results from this intuitive picture, until it is limited by shot noise.

During the shortest exposure time of 20µs, the fluid particles move only 14µm, even
assuming maximum velocity. The number of 10 statistically independent speckle patterns
that result from this movement is roughly compatible with the inter-particle distance of
0.75µm.

Instead of increasing the exposure time, it is also possible to increase the speed or
volume flow rate. From the ∝ T−1/2 dependence it follows that in order to achieve a
speckle contrast equivalent to the shot-noise level at T = 50µs, which is our typical
exposure time for absorption detection, it is necessary to increase the flow speed by a
factor of ≈ 4. This should be technically feasible using a thinner fluid cell in combination
with a pump capable of sufficient pressure.

Fig. 4.8 provides an overview of measurements showing the influence of setup param-
eters on the speckle characterstics. Two important conclusions can be drawn from this
graph.

5Edmund Optics 1951 USAF Glass Slide Resolution Target
6Hamamatsu C8484-05G
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Figure 4.6: Intensity statistics and autocorrelation of a still picture (exposure time 20µs) of speck-
les. The contrast in this example is 0.42 at an average intensity (pixel value) of 522, and the
average spatial frequency is k
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Figure 4.9: Interference fringes from an incoherently illu-
minated etalon. The optical path length difference δ =
RP ′ − RP depends on the angle α, δ = 2d

(
n−1
cos α + cosα

)
.

For small angles, δ ≈ 2d(n + α2(n − 2). n is the index of
refraction inside the etalon; on the outside it is assumed to
be one.

• In accordance with the general argument correlating the speckle size to the spatial
frequency content of the light, smaller illumination spot sizes lead to coarser speck-
les. Increasing the distance of L1 to the resolution target introduces an additional
aperture and has the same effect, which however can be largely neutralized using
the double-imaging configuration (L2 + L3, see Fig. 4.4).

• Contrary to what one might expect, the spot size only has a small effect on contrast,
suggesting that there is no direct relationship between speckle size and contrast.
The significantly larger contrast in imaging configuration thus remains puzzling, in
particular since the contrast is also larger without averaging by fluid motion.

So unlike the original design goal, it may in fact be more useful to have a smaller spot size
and larger speckles, depending on the dimensions of the object one is interested in. We
have also reason to expect that the speckle contrast will not increase much when changing
to larger magnification (10×), as spatial averaging seems to be of secondary relevance.

Close inspection of strongly averaged images also shows the appearance of interference
fringes of unknown origin when the speckle contrast decreases. These fringes do not
influence the contrasts measured in Fig. 4.7 due to a suitably chosen pixel region, but of
course the appearance of fringes is not quite what was intended by the use of scattered
light. The purpose of using randomly scattered light is not just to hide interference fringes
behind a curtain of additional noise.

It is only a certain class of fringes, however, that appears, and with a contrast of only
about 3%. Compared to images taken with fully coherent illumination, where there are all
kinds of fringe patterns with a total contrast of typically 20%, this is still an improvement.
In terms of optical density that can be resolved in absorption imaging, the visibility is
improved by a factor of 10 without any post-processing, which is fully compatible with
incoherent illumination.

As an example of how interference fringes occur even under incoherent illumination,
consider a flat glass plate (etalon) inserted between a source of incoherent light and a
camera (Fig. 4.9). Interference occurs between light transmitted through the etalon and
light reflected once back and forth between the partially reflecting parallel surfaces. The
optical path length difference δ between these two rays of light in general depends on
the position on the plate and on the detector. Light incident at a particular position
of the camera may have passed the plate at any point. For plane wave illumination,
an interference pattern, i.e. a systematic variation of the intensity with the position in
the imaging plane, has maximum contrast if the optical path difference does not depend
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on the position on the plate. Otherwise, averaging reduces the contrast. For incoherent
illumination, the phase of the wavefront at any point of the etalon plane is random, and
rays crossing it at different points will not interfere constructively, even if the crossing
angle is the same. However, any remaining modulation of the resulting speckle pattern at
the imaging plane will still be maximum under the above condition.

More formally, using ABCD-matrices, the distance r to the optical axis and the angle
α of a ray crossing the etalon is related to r′ and α′ in the imaging plane by a transfer
matrix (

r′

α′

)
=
(
A B
C D

)(
r
α

)
. (4.14)

The maximum possible fringe contrast is achieved for A = 0, i.e. when all rays crossing
the etalon at angle α arrive at the same position r′, independent of r. The transfer matrix
may be a product of several matrices each corresponding to a specific optical element. For
example, a simple air space (distance d) is associated with the matrix

Tfree =
(

1 d
0 1

)
(4.15)

and a thin lens (focal length f) is described by

TLens =
(

1 0
−1/f 1

)
. (4.16)

Obviously, a simple air space will never produce optimum contrast since A = 1, however
the relative size of B to A becomes more favorable the larger d. In an imaging arrangement
consisting of a space s, a lens f and another space b, the transfer matrix is the product

T =
(

1 b
0 1

)(
1 0

−1/f 1

)(
1 s
0 1

)
=

(
1− b

f s+ b− bs
f

−1/f 1− s
f

)
(4.17)

In this case, maximum contrast is possible for b = f , i.e. if the etalon is in the focal plane
of the lens.

If s and b fulfill an imaging relation, 1/s + 1/b = 1/f or B = 0, but the etalon is
situated at distance ∆s to the object plane, an equivalent way of looking at the problem
is to transfer the camera backwards into the object plane and thus reduce the setup to
the free space geometry.

The above arguments strongly hint at the fluid scattering cell itself, namely the glass
window at the output, as the most probable source of interference fringes, since this is
situated at a relatively large distance to the object plane in our setup. The glass substrate
of the resolution slide, on the other hand, is not a plausible cause for the fringes because
it is more or less in the object plane. The same applies to the glass cell in the actual
experimental setup.

The radius of the central disk of the interference pattern of an etalon can be determined
from the condition δ(α0)−δ(0) = λ/2. Applying the small-angle approximation, we obtain
α0 =

√
λ

4d|n−2| . For a window of thickness 1 mm and n = 1.5 at 780 nm, the radius is
α0 ≈ 0.02. The diameter of the central disk in the images is roughly 0.25 mm, indicating
an effective distance of 12.5 mm to the window of the fluid cell. This would mean that the
imaging plane corresponding to the CCD camera through L2 and L3 was this distance off
the plane of L1 in our measurements, which appears quite plausible. Also, L1 produces a
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sharp image of the interference fringes at a distance f1 which is of the same order, and it
is well possible that by chance L2 and L3 were aligned to image that plane rather well,
leading to a relatively large contrast.

In conclusion, absorption imaging with light scattered from a moving fluid is indeed
technically feasible and promising. An improved setup, achieving a speckle contrast of the
order of the pixel noise without fringes, requires a higher flow speed (about 4×) and an
anti-reflection coated fluid cell.

4.1.4 Ultrashort pulses: absorption imaging in the Rabi regime

The idea to use ultrashort pulses for absorption detection is based on the observation that
light from mode-locked lasers does not produce the speckle pattern otherwise common to
coherent light sources. The reason is the spectral width of mode-locked lasers, which can
be easily 100 nm e.g. in Ti:Sa lasers. To give an example, a mode-locked laser producing
τp = 100 fs long pulses has a corresponding spectral width of the order of 1/τ = 10THz,
corresponding to 23 nm centered around 830 nm. This broad range of wavelengths leads
to averaging of interference patterns.

Using spectrally broad light appears to be in gross contrast to the usual requirements
of absorption imaging. However, it is actually possible to make a virtue of necessity: pulses
much shorter than the lifetime of the excited state 52P3/2, τexc ≈ 26 ns, manipulate the
atomic state in the coherent regime. Assuming a two-level system, it is then e.g. possible
to choose a pulse length corresponding to a π-pulse, driving the population completely to
the excited state. In the language of absorption imaging , this corresponds to absorption
of exactly one photon per atom per pulse. Choosing the repetition rate of the pulsed light
source low enough to give the excited atoms time to decay, Trep � τexc, every pulse starts
with all atoms prepared in the ground state and ends with all atoms having absorbed
exactly one photon. Thus, the number of photons per atoms absorbed for one image is in
principle exactly controllable.

The simple arguments given in the preceding paragraphs afford a first evaluation of
the feasibility of the scheme. The source of pulsed light has to meet several demands.

• The spectrum should be centered around 780 nm, to a precision given by the spectral
width of the pulsed source.

• Pulses must be shorter than the excited state lifetime, of the order of a few ns.
Calculating with τp = 1 ns, the spectral width is thus of the order of 1 GHz or
2× 10−3 nm.

• In order to average out fringes from Fabry-Perot-like parasitic resonators, the spec-
tral width should be larger than the free spectral range (FSR) of the resonator.
Probably the smallest distance between any pair of surfaces leading to significant
interference is our glass cell with L = 20mm and an FSR of c/(2L) = 7.5 GHz,
corresponding to 15× 10−3 nm.

• On the other hand, to avoid optical pumping, the spectral width should be either
small enough to resolve the excited states F ′ = 3 and F ′ = 2 (∆ν2′3′ = 267MHz cor-
responding to 1/∆ν2′3′ = 3.7 ns), or larger than the ground state hyperfine splitting
(∆ν12 = 6.834 GHz corresponding to 1/∆ν12 = 0.16 ns).
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• The light intensity I is related to the resonant Rabi frequency Ω0 by I
Isat

= 2
(

Ω0
Γ

)2
,

where Isat = 1.67 mW/cm2 is the saturation intensity7 and Γ = τ−1
exc = 2π×6 MHz is

the decay rate from the excited state. Thus in order to achieve a π-pulse, the light
intensity Ip during the pulse duration τp is given by Ip

Isat
=
√

4π
Γτp

. For τp = 1ns,

Ip ≈ 18× Isat or 30 mW/cm2.

• The repetition rate must be a small fraction of the decay rate, but large enough to
absorb of the order of 100 photons in a typical exposure time of 100µs. A rate 1/Tr

of a few MHz appears to satisfy both conditions. For 1/Tr = 5MHz, the probability
of atoms remaining in the excited state after Tr is only e−ΓTr ≈ 5× 10−4. Thus, we
are talking about pulses with a duty cycle of the order of 10−3.

Mode locked Ti:Sa lasers offer ultrashort pulses of typically 100 fs duration at a repeti-
tion rate, given by the cavity length, of the order of 80MHz and in a suitable spectral range
around 800 nm. The repetition rate may be reduced to the required value by extra-cavity
pulse pickers or intra-cavity “cavity dumpers”. Such systems are commercially available
(e.g. from Coherent Inc.). The spectral width may be reduced by Fourier-transform
pulse-shapers, at the cost of intensity, however.

Semiconductor lasers or amplifiers offer the potential to fast gain modulation by
switching the current. Electronically pulsed diode lasers with pulse durations down to
0.1 ns are commercially available (PicoQuant/Toptica). To avoid the difficulties involved
in tuning and stabilizing a switched laser diode with better than GHz precision, the pulsed
diode could be seeded by a cw extended-cavity laser. Tapered amplifiers are by far less
sensitive to varying currents and offer the additional advantage of higher power.

External switching of any suitable cw laser by an electro-optic or acousto-optic mod-
ulator would also be possible, but the necessary electronic and physical bandwidth poses
a major technological challenge. Standard AOMs as those used in our MOT laser system
(Crystal Technology Inc.) have rise times, limited by the speed of sound in the crystal, of
τR > 10 ns, which is by far too slow. Commercial EOMs (e.g. Linos LM0202) claim a band-
width of 100 MHz, probably limited by the relatively large capacitance of 100 pF8, which
is also too slow. Pockels cell based Q-switches might provide the necessary rise time, but
are generally limited to repetition rates in the kHz range at most. EOM- (τR = 5ns) and
AOM- (τR = 15 ns) switched laser pulses of 80 ns duration have been utilized to observe
optical free-induction decay on the D2-line of 85Rb [119]. Even though this experiment
does not resolve optical Rabi oscillations, it obviously does enter the regime of coherent
optical excitation.

In a recent publication [120], J. Dingjan et al. demonstrate a pulsed, frequency-doubled
laser system based on telecommunication components, explicitly designed to coherently
manipulate the 87Rb F = 2 → F ′ = 3 transition. Optical π-pulses of 4 ns duration, at
a repetition rate of 5 MHz, from this laser source have been utilized by the same authors
to trigger controlled single-photon emission from a single trapped two-level atom [121],
claiming an excitation efficiency of 95± 5%.

Questions regarding the feasibility of the coherent-absorption scheme remain. In par-
ticular, in a situation where the optical density of the atomic cloud is not small, the pulse

7For the cycling transition F = 2,mF = ±2 → F ′ = 3,mF = ±3. For spectrally broad pulses, the
excited hyperfine manifold, with splittings of the order of a few 100MHz, cannot be resolved, effectively
lowering Isat. However, the D1 line at 795 nm is sufficiently far detuned to be ignored.

8Charging 100 pF to 250V in less than 1 ns requires a charging current exceeding 25A.
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0〉 ↔ |F = 2,mF = 0〉. The plot shows the relative popula-
tion of |2, 0〉 versus the duration of the laser pulse at resonance.
Taken from [57].

amplitude (and possibly shape) will vary on its way through the cloud. In this case, the
propagation of a pulse has to be calculated using the combined Maxwell- and optical Bloch
equations [58, 119]. This kind of study has not been possible within this work. Other open
questions involve repumping atoms that relax to the F = 1 manifold [121] and possible
nonlinear effects at short pulse widths and high intensity.

4.2 Raman laser system

4.2.1 State manipulation via Raman transitions

Our Raman laser system is a coherent bichromatic light source, intended to drive Λ tran-
sitions between the hyperfine ground states 52S1/2 of 87Rb, |1〉 and |2〉 with F = 1 and
F = 2, respectively, via a virtual state near the excited manifold |e〉 52P3/2. If the single-
photon detuning ∆e between the virtual and the actual excited state is large enough, the
population of the virtual state, and with it the spontaneous decay rate, will be negligible.
The virtual state can then be adiabatically eliminated from the equations of motion, and
the three-level Raman process is reduced to a Rabi-like coupling between the two lower
states |1〉 and |2〉. Assuming the two-photon detuning δ = ω2−ω1−∆hfs is zero, the Rabi
frequency of the two-photon transition is [57]

ΩR =
Ω1Ω2

2∆e
, (4.18)

while the spontaneous scattering rate from the excited level is

Γsc =
γe

4∆2
e

(
Ω′

1
2ρ11 + Ω′

2
2ρ22

ρ11 + ρ22

)
. (4.19)

The term in brackets is a weighted average according to the ground state populations.
The effective Rabi rates Ω′

1,2 take additional excited levels into account. Obviously it is

68



4.2. RAMAN LASER SYSTEM 69

favorable to choose a large ∆e, since the ratio of Rabi frequency to scattering rate increases
proportionally to ∆e. However, the maximum detuning that can be used to still achieve
a given Rabi frequency is eventually limited by the laser power available.

The hyperfine ground states |1〉 and |2〉 can also be coupled by microwave radiation
(Section 3.5). The technical setup necessary for microwave manipulation consists largely
of ready-made equipment and modules and is much less complex than the laser setup
described below. However, the specific advantage of using light is the possibility of local
manipulations, on a length scale much smaller than the extension of the BEC.

The Raman laser system has been used in our experiments on Bose condensation at
constant temperature and in the observation of a mixed-spin Feshbach resonance [57],
both part of Michael Erhard’s PhD thesis. Although the capability of local manipulation
has not been used in these experiments, the Raman laser system has proven useful for
state preparation and population transfer between the F = 2 and F = 1 manifold. As an
example, Fig. 4.10b shows Rabi oscillations of the two-photon transition |F = 1,mF =
0〉 ↔ |F = 2,mF = 0〉. The two-photon resonance is shifted by 2π×8 kHz with respect to
the nominal hyperfine splitting due to slightly different AC Stark shifts of the two states.
The damping can be explained by local dephasing across the laser beam diameter. Both
effects are discussed in detail in [57].

Future experiments using the Raman laser will exploit its capability of local spin
state manipulation, e.g. to produce filled solitons. Solitons have been observed in single-
component BEC and are either dark [122, 123], i.e. manifest themselves as holes in
the atomic density while the BEC serves as a nonlinear medium, or bright, which essen-
tially means stable drops of atoms in an (at least) 1D waveguide. The dark variety can
be prepared by imprinting a π phase step on the condensate wave function, while the
bright variety may form spontaneously but requires either attractively interacting atoms
[99, 100] or an artificially modified dispersion relation [124]. Filled solitons may exist in
two-component condensates and as the name suggests consist of a π phase step in one
component, while the resulting hole in the density distribution is filled with the other
component [125].

The preparation of a filled soliton, starting from a pure F = 1 BEC, can be done
by imprinting the π phase step on the F = 1 component and at the same time locally
transferring the population to F = 2. Using the Raman laser, this can be done in a single
step, using a light pulse equivalent to a full Rabi oscillation between F = 1 and F = 2.
When this light is used to image the edge of a razor blade onto the BEC, the spin state
of the atoms is not changed where the light is either fully screened off (0π-pulse) or not
at all (2π-pulse). However, the 2π-pulse imprints an additional phase of π relative to the
atoms that remain dark.9 Due to the limited imaging resolution, the light intensity will
change smoothly from zero to full at the image of the edge, and so will the imprinted
phase. In addition, about half-way across the edge, the pulse area will be π only, leading
to full transfer of atoms to F = 2 at this point. More elaborate schemes can be realized
using a spatial light modulator and possibly using a second off-resonant laser to decouple
population transfer from phase imprinting.

9Consider a two level system, |a〉 and |b〉 with energies ~ωa and ~ωb, resonantly coupled with Rabi
frequency Ω0. The state of the system is a linear superposition |ψ(t)〉 = α(t)|a〉+β(t)|b〉 of the two energy
eigenstates. In rotating wave approximation, the probability amplitudes evolve as α(t) = cos(Ωt/2) e−iωat

and β(t) = sin(Ωt/2) e−i(ωbt−φ), starting from α(0) = 1. In contrast, the uncoupled system evolves as
α̃(t) = e−iωat and β̃ correspondingly. For a 2π pulse, Ωt2π/2 = π and α(t2π) = −α̃(t2π) = eiπα̃(t2π).
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Figure 4.10: Schematic optical and electronic setup of the Raman laser system. For application at
the experiment, both output beams are coupled into the same optical fiber.

4.2.2 A phase-locked diode laser system

We employ two extended cavity diode lasers (ECDL) at 780 nm, actively stabilized to main-
tain a frequency difference corresponding to the hyperfine splitting ∆hfs ≈ 2π × 6.8 Ghz.
One of them (“Raman Master”) is free-running or frequency stabilized by Doppler-free
87Rb spectroscopy, the other one (“Raman Slave”) is locked relative to the master in an
optical phase-locked loop (OPLL) [126, 127], according to the schematic in Fig. 4.10. The
phase of the two lasers is compared by overlapping them on a photodiode, acting as a
mixer for LO10 and RF signals in the optical frequency domain, and an IF bandwidth in
the GHz range. This phase is compared in two steps to that of two local oscillators, which
together set the desired laser frequency difference. The output of the final phase-frequency
discriminator (PFD) is fed back to the slave laser via a suitable control amplifier or loop
filter.

Phase-locked lasers have been set up and used in a number of quantum optics ex-
periments. Compared to other laser locking schemes, e.g. frequency stabilization by
spectroscopy, the main challenge of an optical phase-locked loop is the large bandwidth
necessary to compensate laser frequency fluctuations. This bandwidth has to be of the
order of the laser linewidth, which is of the order of MHz for our extended cavity diode
laser. The main design goals of our particular Raman laser system have been simplicity
and stability.

• We use as much of the traditional spectroscopy-lock electronics as possible, only
substituting the spectroscopy input signal with the low-frequency component of the
PFD signal. Our ECDL can be tuned by modulating the diode current and by vary-
ing the external cavity length with a piezo-mounted grating acting as outcoupling
mirror. Our traditional lock box feeds the amplified and filtered (PID-controller)

10Mixer terminology: LO = local oscillator, RF = radio frequency, IF = intermediate frequency.
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error signal back to the diode current via the modulation input of the current driver,
and moves the piezo-mounted grating in such a way as to minimize the need for
current modulation. This combined, relatively low-bandwidth loop suffices to keep
the Raman slave on average in lock.

• The high-frequency component of the PFD error signal is amplified and filtered
separately and is added directly to the diode current via a current combining filter
network located close to the laser diode. Potential ground loops are eliminated
by the use of a RF transformer. The path from the PFD output to the combiner
network is designed as a 50Ω transmission line circuit and is thus modular. The
control amplifier can be a simple attenuator (P-Controller) or an optimized filter
and amplifier, and can be substituted by any other 50 Ω component without the
need to change any settings.

• The use of a digital phase-frequency discriminator (Analog Devices AD9901), in
contrast to a conventional mixer, makes the OPLL less sensitive to occasional large
excursions of the relative phase. Although it does not prevent “cycle slip” [126,
127, 128], its saturation characteristic quickly drives the OPLL back into lock. The
same feature also simplifies the locking procedure, extending the capturing range far
beyond the loop bandwidth. In contrast to other digital PFD designs, the AD9901
features constant phase gain near the locking point, leading to low phase noise com-
parable to analog mixers [129]. We use an IF of 20MHz and a 3rd order Bessel filter
with 6 MHz corner frequency to remove the IF after the AD9901.

• Our OPLL has proven to remain in lock for hours. Large excursions and cycle slips
have not been observed under reasonable operating conditions; if they occur, then
only at a rate low enough to be ignored for our purposes.11 In lock, the residual rms
phase noise is ≈ 25◦ = 0.44 rad, which is reasonably competitive [126, 127, 130, 131,
128].

4.2.3 Characteristics of the Raman laser system

The quality of the phase lock can be assessed looking at the output of the PFD, which
is a direct measure of the phase error as long as it is within the the linear regime, or by
looking at the beat spectrum, where phase noise shows up as broadening of the beat note
(“carrier” in rf communications terminology).

The rms phase error 〈φ2〉 as a measure of short-term lock quality is related to the
fraction η of total power contained in the carrier as [126]

η = e−〈φ
2〉, (4.20)

assuming 〈φ2〉 � 1. Alternatively, 〈φ2〉 can be directly calculated from the error signal,
however, it is then subject to the 6 MHz bandwidth limitation given by the PFD low pass
filter.

11Our application requires a rigid phase relationship only for the duration of a sequence of pulses. This
duration is limited by the lifetime of the condensate to several seconds at most, however, typically it may
only be a fraction of a second. Cycle slips occurring from shot to shot are irrelevant. Using OPLLs for
precision measurements, e.g. in a frequency chain, requires keeping track of the phase for hours or days.
For this application, phase-slip-counting PFDs have been developed [126, 128].
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Figure 4.11: Different ways to determine the rms phase error of the OPLL. Spectra are either of
the same beat signal used for feedback (top; bottom – lower curve) or recorded after transmission
through 10 m optical fiber (bottom – higher curve, shaded).

Fig. 4.11 demonstrates that both methods indeed result in the same rms phase error
of ≈ 25◦ = 0.44 rad. Both error signal and beat spectrum show residual IF modulation
at 20 MHz, which is however negligible compared to the overall phase noise. In addition,
the spectrum has several sharp features. Some of them can be traced to specific sources
of interference, e.g. there are sidebands at multiples of the 50 Hz line frequency; another
sideband at 972 kHz carries NDR Info, a radio channel which is broadcast at this frequency
(AM) from a nearby transmitter station.12

After coupling into and transmission through 10 m of single-mode optical fiber, the
beat note is significantly broadened, in particular in the 100 Hz range. In fact, the width
of the carrier is limited by the 1Hz resolution of the spectrum analyzer when the beat is
recorded before fiber transmission, while after the fiber it is clearly noise dominated (see
inset of Fig. 4.11). This is most probably due to acoustic noise modulating the optical
path either spatially before the fiber, or via modulation of the index of refraction in the
fiber. The latter effect should be suppressed when the polarization of the beams in the
fiber is the same, since only differential changes of the index of refraction lead to noise
in the beat note. The broadening could be eliminated by obtaining the OPLL feedback
signal out of light transmitted through the fiber.

12Using a spectrum analyzer capable of AM demodulation and equipped with an headphone jack, it is
even possible to listen to NDR Info when tuned to the corresponding sideband of the beat note. The signal
is encoded in the relative phase of the laser light; it disappears when the light path is obstructed.
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Chapter 5

Spin dynamics of a transversely
magnetized state

The fully transversely magnetized state as a particular superposition of Zeeman
states can be seen as the fixed point of the present work. This chapter, covering
those of our spinor BEC experiments that can be analyzed under the single-
mode paradigm, is the heart of this thesis. The content of the following sections
has been the subject of two peer-reviewed publications: work on F = 1 can be
found in Kronjäger et al., Phys. Rev. A 72, 063619 (2005) [2], work on F = 2
in Kronjäger et al., Phys. Rev. Lett. 97, 110404 (2006) [1].

5.1 Why this initial state?

The first experiments with spinor BEC in our group employed initial states that were either
a single mF -state prepared by rf adiabatic passage techniques, or superpositions produced
by rf sweeps violating adiabaticity [57, 36] (Section 3.5). However, it turns out that single
mF states are not only eigenstates1 of the single-particle Zeeman Hamiltonian, but also
of the mean-field effective Hamiltonian (Section 2.3.1). This means that a pure single mF

state in the framework of the mean-field approximation simply does not evolve; dynamics
observed starting from mF = 0 [36] is a result of instability and is highly sensitive to
imperfections of the preparation. On the other hand, superpositions produced by non-
adiabatic sweeps suffer from ill-defined relative phases and sensitive dependence of the
populations on the sweep speed.

Early experiments aiming at the inherent dynamics of spinor BEC [37, 38, 7] have
started from a pure mF = 0 state, and consequently have suffered from its instability,
obscuring coherent oscillations. Numerical studies related to this type of experiment usu-
ally employ a small seed population in other states to induce dynamics, e.g. [36, 90, 93].
The instability of the mF = 0 state and the resulting spatio-temporal dynamics, on the
other hand, is an interesting phenomenon of its own, and has recently been observed in
experiment [41]. Coherent superposition states, produced by rf pulse techniques, have
been employed in experiments on two-component mixtures [26, 39], but their usefulness
as an initial state of coherent spinor dynamics has been realized only recently [75, 50, 2].

1Strictly speaking, since the interaction Hamiltonian is a nonlinear operator within the framework of
mean-field theory, one cannot simply speak of eigenstates. However, there are extremal states, i.e. states
for which the energy functional is extremal, and which are thus stationary states (compare Section 2.3.3).
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(a) Bloch picture (for F = 1). (b) Simulated Stern-Gerlach images of ζπ/2 in F = 1 and F = 2.

Figure 5.1: The fully transversely magnetized state ζπ/2 on the Bloch sphere and in Stern-
Gerlach separated absorption images (compare Section 2.2.2 and Section 3.3). The spin vector
(〈Fx〉, 〈Fy〉, 〈Fz〉) is rotated from initially (0, 0,−F ) to (F, 0, 0). The orientation of the rotated
state in the xy-plane is arbitrary and has been chosen to give a real, symmetric state vector
(1/2, 1/

√
2, 1/2) and (1/4, 1/2,

√
3/8, 1/2, 1/4) for F = 1 and F = 2, respectively.

The fully transversely magnetized states ζπ/2 as superpositions of all mF states with
well-defined phase are of particular relevance due to several reasons.

• They are easily and reliably prepared from the magnetically trapped state using a
radio frequency π/2-pulse (Section 3.5).

• In the limit of vanishing interaction, the dynamics induced by the Zeeman effect is
strictly limited to the phases of the mF components (Section 2.2.1), i.e. the popu-
lations remain constant. Therefore, any effect of interactions will immediately show
up as population dynamics.

• On the other hand, in the limiting case of zero magnetic field the fully transversely
magnetized states are equivalent to the original stretched state: orientation is irrele-
vant due to the absence of a symmetry-breaking magnetic field. All stretched states
are then stationary due to the symmetry of the interaction Hamiltonian. A small
magnetic field however will break the symmetry and lead to an observable evolution.

• For F = 1, an analytic solution of the nonlinear SMA equation of motion, starting
from ζπ/2, exists [74]. This solution exhibits a resonance phenomenon that can be
traced back to the fundamental competition between Zeeman- and interaction-driven
phase dynamics and is therefore present in F = 2 as well.

• Finally, ζπ/2 is closely related to classical techniques such as Rabi- and Ramsey-
experiments.

Since in both limiting cases (vanishing magnetic field or negligible interaction) the
fully transversely magnetized state is stationary except for trivial phase dynamics, the
driving mechanism behind the phenomena described in detail in the following sections is the
competition between Zeeman and interaction energy. Perturbative solutions (Section 2.3.4)
indeed show small population oscillations whose amplitude is proportional to
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Figure 5.2: Definition of Zeeman and interaction regime. The fully transversely magnetized state
is stationary (up to trivial phase dynamics) in the limiting cases. Oscillation amplitudes obtained
by perturbative methods are indicated schematically.

• the quadratic Zeeman energy q in the regime dominated by interactions2, i.e. |q| �
|g1〈n〉| (interaction regime),

• the interaction energy g1〈n〉 in the regime dominated by the quadratic Zeeman effect,
i.e. |g1〈n〉| � |q| (Zeeman regime).

Obviously, there must be a crossover region |q| ≈ |g1〈n〉| where large effects may be
expected. Fig. 5.2 illustrates the regimes and limiting cases. An alternative interpretation
in terms of four-wave mixing, where the competition between Zeeman and interaction
energy amounts to phase matching taking into account a linear dispersion as well as an
intensity dependence of the index of refraction, is discussed in Section 2.3.5.

5.2 Probing coherence in the Zeeman regime (F = 1)

Besides being invaluable tools for experimental characterization and preparation (Sec-
tion 3.5), rf- and microwave driven oscillations also provide insight into the question of
coherence. Fig. 5.4 and Fig. 5.5 show examples of such oscillations in F = 1 spinor
condensates, for simplicity named after their two-level equivalents Rabi- and Ramsey-
oscillations (Section 2.2.2). Simulations based on mean-field theory and the single-mode
approximation (Section 2.3.2) indicate that in F = 1 interactions should have negligible
effect on Rabi as well as Ramsey oscillations at high magnetic field, i.e. in the Zeeman
regime |g1〈n〉| � |q|. We therefore stick to the non-interacting case for the interpretation
of Fig. 5.4 and Fig. 5.5.

Rabi oscillations

Driven continuously by a radio frequency signal at the Larmor frequency (Fig. 5.4), the
relative populations in the condensed fraction in fact closely follow the single-atom pre-
dictions, the only difference to the well-known two-level case being a beat note due to
the quadratic Zeeman effect. Oscillations can be tracked for up to 100 ms without sig-
nificant deviation from a theoretical curve. The Rabi frequency and the detuning are fit
parameters, while the radio frequency and the quadratic Zeeman effect are known3.

In contrast, the thermal fraction exhibits strong damping on this time scale. Shot-to-
shot fluctuations of e.g. the Rabi frequency cannot be responsible for the damping, since

2we mainly consider the g1 term of interactions, since this is present for any F = 1 as well as F = 2,
and in the latter case plays the dominant role (Section 2.3.4).

3Strictly speaking, the quadratic Zeeman effect is related to the Larmor frequency, which differs from
the rf by a small detuning of the order of 0.1%. This is small enough to be neglected, and calculations of
the quadratic Zeeman effect are thus generally based on the radio frequency applied.
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(a) Rabi sequence (b) Ramsey sequence

Figure 5.3: Schematic rf pulse sequence for the Rabi- and Ramsey experiments.
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Figure 5.4: Rabi oscillations of a BEC with a significant thermal component in F = 1. Fits
are calculated using the super-operator formalism and include damping (γ2 = 40, estimated) for
the thermal component. Parameter values obtained from a least-squares fit are Rabi frequency
Ω0 = 2π × 5.274 Hz and detuning ∆ = −2π × 194 Hz for the BEC, Ω0 = 2π × 5284 Hz and
∆ = −2π × 168 Hz for the thermal cloud. While the difference in detuning is insignificant in view
of the much larger Rabi frequency, the difference in Rabi frequency is in fact noticeable over the
observation time of 100 ms (bottom row).
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Figure 5.5: Ramsey experiment in F = 1. (For another example of a F = 1 Ramsey experiment,
see Section 3.4.) The population of mF = 0 oscillates at twice the Larmor frequency.

they would still lead to data filling the full envelope. However, thermal atoms can be
viewed as a stochastic ensemble of individual non-interacting particles subject to a time-
varying Zeeman Hamiltonian, as a result of different trajectories in space in conjunction
with gradients. This applies to the offset field defining the Larmor frequency as well as the
Rabi frequency given by the driving rf field. Taking into account the gradient of the offset
field in the simplest possible form, i.e. a Lindblad operator L = γFz (Section 2.2.3), leads
to exponential damping. It is not possible however to accurately describe the data in this
way, as is evident from the fact that the exponential damping assumed for the theoretical
curve in Fig. 5.4 overestimates the actual envelope at short times but underestimates it
at long times.

This is possibly explained by the fact that the variations in detuning expected from
magnetic field gradients are of the order of 100Hz (Section 3.4) and much smaller than the
Rabi frequency Ω0. Thus they enter only quadratically into the local oscillation frequency
Ω =

√
Ω2

0 + ∆2, and the damping observed is probably caused by variations of the Rabi
frequency Ω0 rather than the detuning ∆. One can also think in terms of dressed states
(compare [28]), where the Hamiltonian including rf coupling becomes diagonal with energy
eigenvalues that are to first order given by the Rabi frequency near resonance. In this basis,
the initial state |1,−1〉 is a superposition and dephasing by fluctuations of the energy levels
could again be described by a diagonal Lindblad operator.

Ramsey oscillations

Ramsey oscillations (Fig. 5.5) occur at the Larmor frequency which is subject to shot-to-
shot fluctuations large enough to obscure phase evolution after a few milliseconds (Sec-
tion 3.4). Therefore, information has to be gained from the envelope only. Again, shot-to-

77



78 CHAPTER 5. SPIN DYNAMICS OF A TRANSVERSELY MAGNETIZED STATE

shot fluctuations will not change this envelope4. From Fig. 5.5 it is obvious that Ramsey
oscillations are much more strongly damped in both condensed and thermal fraction – in
fact not even a second node of the beat can be distinguished.

The damping of the thermal component can again, in principle, be explained in terms
of a fluctuating Hamiltonian and modeled by a diagonal Lindblad operator L = γFz

(Section 2.2.3). However, the simple exponential does not seem to fit the data well. In
any case, the much smaller time constant compared to Rabi oscillations indicates that
inhomogeneities of the offset field are more pronounced than those of the driving rf field:
the former enter linearly into the phase of the Ramsey oscillation, but are suppressed
quadratically in the effective Rabi frequency Ω =

√
Ω2

0 + ∆2 as discussed in the preceding
section.

Magnetic field gradients may also explain damping in the BEC fraction, however, since
in the framework of mean-field theory all particles are supposed to populate the same
quantum mechanical state or wave function, the Lindblad formalism is not adequate.
Instead, spatial inhomogeneities may lead to deviations from the SMA paradigm, i.e.
spatially structured wave functions for the individual spin components. Depending on the
size and direction of these structures, they will not be resolved in our images and instead
may show up as apparent damping in global quantities like e.g. relative populations.
The length scale of spin structures is bounded from below by the spin healing length,
which in our experiment and for F = 1 typically is 4.3µm (Section 2.3.6). Thus, in the
astigmatic dipole trap, the extension of condensates in the direction of the detection beam
(y-direction) is large enough to allow for domain formation which would not be observable
in absorption images.

Formation of spin patterns has been observed in the crossed-beam dipole trap in the
context of magnetic field compensation (Section 3.4, Fig. 3.6). The rate of dephasing due
to gradients across the condensate is of the order of at least 20 Hz (Section 3.4), resulting
in complete (π) dephasing after less than ≈ 25 ms; this is consistent with the observed
timescale of damping in Fig. 5.5. Gradient induced spin structure is thus a plausible
explanation for the damping of the BEC component in the Ramsey experiment.

Spatial structure formation also plays a role in the experiments aiming at interac-
tion effects (Section 5.3 and Section 5.4) and is covered in more detail in the context of
breakdown of the SMA (Section 5.6). In the elongated dipole trap, the formation of spin
structure has been directly observed both in the interaction and in the Zeeman regime
(Chapter 6). However, none of the above experiments detects the phases of spin compo-
nents or, in other words, the transverse components of the spin vector – in contrast to the
Ramsey experiment.

On the other hand, thermalization effects, which are discussed in Section 5.5, lead
to population redistribution between the thermal cloud and the condensed part. This
redistribution also shows up as a damping of the coherent dynamics, on a time scale com-
patible with observations. The relative phases of mF states may also be expected to vary
randomly from shot to shot, reflecting the statistical nature of the process. Since the
Ramsey experiment is sensitive to these phases, the complete absence of large magnetiza-
tion values at time > 10 ms is not compatible with the assumption of a condensate wave
function with a spatially homogeneous phase. Thus, if thermalization is responsible for

4While in the Rabi case the envelope is simply calculated by plotting only the extrema of the underlying
oscillation, a more sophisticated technique is used in the Ramsey case. The full dynamics is calculated for
a number of detunings chosen randomly from a limited range, and the resulting maximum and minimum
magnetization is evaluated at each time step.
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Figure 5.6: Level schemes of 87Rb F = 1 including quadratic Zeeman energy EQZ and mean-
field energy Emf . Note the sign convention, positive coefficients q and g1 correspond to negative
energies, i.e. lower mF = 0. For 87Rb F = 1, q > 0 and g1 < 0. Also schematically shown is the
coupling of mF states by the mean-field Hamiltonian.

the observed damping, its effects must go beyond what can be described in single-mode
approximation (SMA).

5.3 Effects of interaction in the Zeeman regime (F = 1)

Looking for signs of spin-dependent inter-atomic interaction, it has turned out that for
realistic magnetic fields B > 150 mG (limited by the frequency range of the rf generator
and amplifier, which are needed for state preparation and possibly analysis) an influence
on the shape of Rabi or Ramsey oscillations is barely noticeable even in simulations. Addi-
tionally, Ramsey oscillations are highly sensitive to dephasing through Larmor frequency
variations, which are on the other hand irrelevant for interaction effects due to rotational
symmetry. In fact, it is more promising to perform an incomplete Ramsey experiment
only, omitting the second π/2-pulse. This amounts to preparing of the fully transversely
magnetized state ζπ/2 and watching it evolve.

In the following, we will first develop an intuitive picture of the dynamics of this state
under the influence of interactions and a magnetic field. In order to fit experimental data,
we use an analytic solution of the SMA equations of motion, that may also serve as a
check for the intuitive picture. The latter turns out to pertain to the case of F = 2 where
no analytic solution is available.

Understanding spin dynamics in F = 1

Population dynamics of the fully transversely magnetized state is a result of spin-dependent
interaction, which in the mean-field picture introduces off-diagonal matrix elements into
the spin Hamiltonian. The matrix elements of the effective interaction Hamiltonian depend
on the state, and in particular on the relative phases of themF -components (Section 2.3.2).
Phase dynamics in turn is driven by energy differences represented by diagonal elements.
In this simplified picture, the crossover between Zeeman and interaction regime is a result
of competition between the Zeeman effect, lowering the mF = 0 level relative to mF = ±1,
and mean-field energy lifting or lowering it further depending on the spin state and the
sign of g1 (as illustrated in Fig. 5.6).

One possibility to write the nonlinear spinor equations of motion (2.73) (for Fz = 0)
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in the form of an effective (“mean-field”) Hamiltonian is

Hmf = 2~g1〈n〉

 |ζ0|2 ζ0ζ
∗
−1 0

ζ∗0ζ−1 |ζ+1|2 + |ζ−1|2 ζ∗0ζ+1

0 ζ0ζ
∗
+1 |ζ0|2

 (5.1)

= 2~g1〈n〉

ρ0 0 0
0 1− ρ0 0
0 0 ρ0

 (5.2)

+ 2~g1〈n〉
√
ρ0(1− ρ0)

2

 e−i(θ0−θ−1) 0
ei(θ−1−θ0) 0 ei(θ+1−θ0)

0 e−i(θ+1−θ0) 0

 . (5.3)

The diagonal part, shifting the energies of the mF states, only depends on the population
of mF = 0. For ρ0 = 1/2, as in the case of the fully transversely magnetized state ζπ/2,
the diagonal elements are all equal and have no influence on the dynamics. In contrast,
the off-diagonal elements, coupling different mF states, depend on relative phases. They
vanish only in the case of ρ0 = 0 or ρ0 = 1, i.e. a pure mF = 0 state, and consequently
there is no population dynamics in these cases.

In the Zeeman regime, the mean-field energy is small and phase dynamics dominated
by the Zeeman energy, introducing a linearly growing phase shift of mF = 0 relative to
mF = ±1. As a result, the phase-dependent off-diagonal terms oscillate at the frequency
ωQZ = q/~, driving in turn a population oscillation at twice the frequency and with an
amplitude proportional to the period of oscillation. In the opposite case, where the mean-
field energy dominates, both phase and population oscillate: an increasing phase shift
induces an increasingly rapid changing population, which in turn slows down and finally
reverses phase dynamics. The balanced condition for this oscillation is EQZ = Emf. Since
one turning point of the resulting oscillation is the initial state ζπ/2, the amplitude grows
proportionally to q while the period remains fixed in the limit of small q. Asymptotic
evolution occurs at resonance, when q and g1〈n〉 are balanced such that the equilibrium
condition EQZ = Emf is approached only for an extremal population, i.e. ρ0 → 0 or
ρ0 → 1. This picture is analogous to optical four-wave mixing with nonlinear phase
mathcing (Section 2.3.5).

In F = 1, the only parameter determining interactions is g1〈n〉, and the behavior of
the system is fully characterized by the ratio

k =
g1〈n〉
q

{
|k| � 1 : Zeeman regime
|k| � 1 : interaction regime

(5.4)

The time scale of evolution is given by q or g1〈n〉, depending on which parameter is
dominant.

Analytic results for F = 1

For F = 1, the mean-field equations of motion (2.73) can be identified with those of a
classical non-rigid pendulum [75]. The classical phase space for this system (Fig. 5.7) is
two-dimensional and parameterized by the mF = 0 phase and the population (θ0, ρ0).
There are generally two distinct regions, separated by a critical trajectory. Running phase
trajectories are periodic orbits closed across the θ0-boundaries of the rectangular domain
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[0, 2π] × [0, 1] or, in other words, wrapping around the cylinder formed by joining these
boundaries. They correspond to a rotating pendulum. Oscillating phase trajectories are
closed within the rectangular domain and correspond to a pendulum oscillating around its
stable equilibrium position. The critical trajectory or separatrix is not closed but ends in
singular points, meaning that time evolution must come to a standstill approaching these
points. This corresponds to a pendulum having just enough energy to reach its unstable
equilibrium position. In the context of spin dynamics, the initial state ζπ/2 lies in the
domain of running phase solutions for |k| < 1 (Zeeman regime) and in the domain of
oscillating phase solutions for |k| > 1 (interaction regime). For |k| = 1, it is part of the
separatrix (resonance) and in time asymptotically approaches the unstable equilibrium
state ρ0 = 1.

For the special case of the initial state ζπ/2, the equations of motion (2.73) can be solved
analytically (Patrick Navez [74]) in terms of Jacobi elliptic functions (Section 2.3.4). The
directly measurable populations evolve according to

|ζ0(t)|2 = (1− k sn2
k(qt))/2, (5.5a)

|ζ±(t)|2 = (1 + k sn2
k(qt))/4. (5.5b)

In the limiting cases of vanishing magnetic field or interaction, the solution simplifies
to ordinary harmonic oscillations:

• For small |k| � 1, the Jacobi elliptic functions can be approximated by ordinary
trigonometric ones, i.e. snk(x) ≈ sin(x), cnk(x) ≈ cos(x), dnk(x) ≈ 1. Thus, in the
Zeeman regime the populations of (5.5) oscillate with an amplitude given by |k|, and
a period of π/|q|.

• For large |k| � 1, the identity snk(x) = 1
k sn1/k(kx) leads to the trigonometric

approximation snk(x) ≈ sin(kx)/k. Therefore, in the interaction regime, the popu-
lations oscillate with amplitude 1/|k| and period of π/|g1〈n〉|.

The crossover region |k| ≈ 1 exhibits a maximum of the amplitude while the oscillation
period diverges. In other words, at |k| = 1 the evolution becomes aperiodic, and the
mF = 0 population asymptotically approaches 1. Fig. 5.8 shows both amplitude and
period across two decades of k. The analytical solution for the special case of the fully
transversely magnetized state supports the general considerations of the preceding section.

Experimental results

Across the range of magnetic fields under consideration within this work, 87Rb F = 1 is
well in the Zeeman regime, i.e. the spin-dependent interaction energy is small compared to
the quadratic Zeeman effect. From Patrick Navez’ analytic solution [74], we expect small
oscillations of the mF populations in this regime. The fact that the oscillation frequency
approaches a value given by the quadratic Zeeman effect makes it possible to measure the
effect of an interaction that otherwise is too weak to be observed directly: at low magnetic
field, when interaction energy dominates, the period of oscillation is too long to be reliably
observed before thermalization effects set in.

Fig. 5.10 confirms the behavior expected in the Zeeman regime: population oscillations
are clearly visible for the condensed fraction, with the expected scaling of the frequency
∝ B2 and of the amplitude ∝ 1/B. For the first 10ms, the analytic solution (with k
as a fit parameter) describes the data very well within error bars. The thermal fraction,
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Fig. 5.10.

in contrast, does not show significant oscillations. It is an interesting question whether
in principle there could be coherent mean-field driven spin oscillations in the thermal
component; in any case, however, the thermal density of particles is much smaller than
that of the BEC, rendering the effect, if it exists, invisibly small.

From the fit parameters k and the quadratic Zeeman energies q, estimates of the
interaction parameter g1〈n〉 can be obtained in the two cases “hot” and “cold” (see figure
caption of Fig. 5.10), enabling extrapolation to the interaction regime. The resonance
point would be at 0.27 G (“hot”) and 0.16 G (“cold”), respectively. This is well within
the limits of technical possibilities, but the period of oscillation in the interaction regime
π/|g1〈n〉| would be 95ms or 260 ms, respectively. Comparing this value to the time scale
of Fig. 5.10, the pointlessness of trying to observe the crossover or interaction regime
becomes obvious.

Oscillations for both “hot” and “cold” samples are strongly damped after about 15ms
due to thermalization effects. The mechanism behind these effects is discussed in detail in
Section 5.5. Similar to the case of Ramsey oscillations, formation of spin domains may also
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lead to apparent damping; however, spontaneous structure formation in F = 1 has been
observed [41] and predicted [44, 90, 93] only at low magnetic field, i.e. in the interaction
regime. Structure formation in F = 2 is also considered in Section 5.6 in the context of
deviations from the SMA, and the Zeeman regime turns out to be much more robust than
the interaction regime in that case. We have observed F = 2 structure formation in both
regimes in an elongated geometry, but on a longer time scale; this will be the subject of
Chapter 6. In conclusion, one can safely assume that the formation of spin domains as a
mechanism of damping is of minor relevance in the Zeeman regime, at least on the time
scale of the given experiment.

The value for k = g1〈n〉/q obtained from fitting to our data can be compared with cal-
culations based on predictions [79] and an independent measurement [78] of the scattering
length difference a0 − a2 (Section 2.3.3). The average density 〈n〉 entering through the
single-mode approximation can be determined from the measured particle numbers N and
the trapping frequencies (Section 3.2) via the chemical potential ~µTF in Thomas-Fermi
approximation,

〈n〉 =
4
7
µTF

g0
and µTF =

ω̄

2

(
15Na
ā

)2/5

, (5.6)

where ω̄ = 3
√
ωxωyωz is the average trap frequency, ā =

√
~/(mω̄) is the corresponding

harmonic oscillator length and g0 = 4π~a
m is the spin-independent interaction parameter

corresponding to the “spin-independent” scattering length a = 2a2+a0
3 . The “hot” sample

has been prepared in a deeper as well as steeper trap, and the resulting increase in con-
densate density by far overcompensates the loss in density caused by the lower condensate
fraction compared to the “cold” sample. The absolute number of condensate atoms in the
“hot” sample is actually smaller than in the “cold” sample by about 20%.

Fig. 5.11 shows that the ratio of theoretical ktheo and fitted kfit is fixed within each
class (“hot” or “cold”) of samples, though far from one. While the presumably large error
of the absolute particle number (a factor of two is a common assumption) may account
for a part of the deviation, the origin of the rather large difference between the classes
is not known. Besides true finite temperature effects, one possible source of trouble is
the geometry of the optical trap and the fact that the “hot” sample was prepared in a
significantly deeper trap than the “cold” one (see also the discussion in Section 3.2):

• Gravitational sag in a not truly harmonic potential may alter the scaling of trap
frequencies with laser power (Section 3.2). Trap frequencies have been measured
at the same laser power used for the “cold” sample; for the “hot” sample, less
sag would lead to higher trap frequencies than expected by scaling, thus reducing
kfit/ktheo towards the “cold” value.

• The trapping potential may not be sufficiently harmonic at all, and thus the scaling of
the condensate density with the trapping frequency may differ from Tab. 3.1. This
possibility is supported by the fact that the condensate fraction measured is not
compatible with the fraction calculated from the measured temperature assuming a
harmonic trap.

In conclusion, our data as it appears in Fig. 5.10 clearly confirms the validity of the
SMA mean-field theory and the analytic solution (5.5). The origin of deviations is a
worthy subject of its own, providing insight into much more fundamental questions in the
context of condensate formation; this is discussed in Section 5.5. In addition, the fact that
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(a) Evolution of mF = 0 population at various B-fields.
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Figure 5.12: Resonance phenomenon in F = 2. The B-field is used as a parameter in terms of
q/(g1〈n〉), where q ∼ B2 is the quadratic Zeeman energy and g1〈n〉 the first spin-dependent mean-
field energy (processes up to ∆mF = 1). In this figure, g1〈n〉 = 47 s−1 (corresponding to a density
of 1 × 1014 cm−3) is used as a reference value. This value is obtained from SMA theory fits (see
Fig. 5.14).

the mF = 0 population grows initially is an independent confirmation that 87Rb F = 1 is
indeed ferromagnetic (g1 < 0) [2].

Similar coherent oscillations have been independently observed in the Georgia Tech
group [50]. In their experiments, the authors could demonstrate the coherent manipulation
of trajectories in phase space (Fig. 5.7) by switching the magnetic field, thereby modifying
the energy landscape. Probably due to their different trapping geometry, the authors
were also able to follow the oscillations over several 100ms, allowing them to go to the
interaction regime at low magnetic field.

5.4 Observation of the crossover resonance (F = 2)

While experiments in the previous section have shown the validity, at least for a limited
time, of the SMA theory and the analytic solution for F = 1 in the Zeeman regime, it
has turned out to be not feasible to actually reach the crossover region |q| ≈ |g1〈n〉|. As
discussed in the previous Section 5.3, the reason is that in F = 1 at typical densities
the frequency corresponding to the spin-dependent energy g1〈n〉 is too small to lead to a
full oscillation within the ≈ 15 ms available for coherent dynamics, before thermalization
effects play a dominant role.

Although the analytic solution describing the resonance effect is limited to F = 1, the
mechanism is generic, and a similar phenomenon is in fact observable in F = 2 (Fig. 5.12).
The experimental procedure there is fully equivalent to the F = 1 case, i.e. preparation
of ζπ/2 at a given B-field followed by a variable hold time and Stern-Gerlach analysis.
Looking only at the mF = 0 population, oscillations are clearly visible, with a maximum
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amplitude at |q|/|g1〈n〉| ≈ 3 or |k| ≈ 1/3, corresponding to a magnetic field of B0 ≈ 0.6 G.
Analogous to F = 1, the oscillation frequency increases with q ∝ B2 in the high field
(Zeeman) regime, whereas it is constant towards lower fields (interaction regime). At
and below resonance, oscillations are heavily damped, to a degree where only one (upper)
turning point is discernible. This damping also impedes the observation of the divergence
of the oscillation period, which is expected by analogy and is also reproduced in numerical
solutions of the F = 2 SMA mean-field equations. It is probably caused by domain
formation rather than thermalization effects, since it happens on a shorter time scale and
does not affect the Zeeman regime. The mechanism is discussed in detail in Section 5.6
and, in the context of an experiment where domain formation is actually observed, in
Chapter 6.

Amplitudes and periods (Fig. 5.12) are obtained by fitting a squared sine to the first
15 ms (Zeeman regime, where oscillations are visible) or 10 ms (interaction regime) of the
data. In the latter case, the “period” is defined as twice the time to the first turning point.
Amplitude and period as a function of the quadratic Zeeman energy qualitatively follow
the same laws as for F = 1, except that a clear resonance is missing due to the heavy
damping. In the Zeeman regime, the prediction of the perturbative solution (2.81) can be
verified, in particular the period of oscillation is in fact given by the quadratic Zeeman
effect in this regime.

This is the first experimental observation of a resonance in coherent spinor BEC dy-
namics that has its origin in many-particle interactions leading to nonlinear dynamics.
Work on F = 1 in the Georgia Tech group [50] has demonstrated coherent oscillations
in both the interaction and Zeeman regime and the latter showed the typical scaling of
frequency ∼ B2. However, a divergence of the period or the corresponding maximum of
the amplitude has not been observed5. Our result is also fundamentally different from the
observation [43, 132] of coherent Rabi-oscillations in the effective two-level system formed
by two F = 1 atoms interacting at the individual sites of an optical lattice. While this
is also an effect of the same spin-dependent interaction, it is fully described by (linear)
two-level quantum mechanics. On the other hand, in reducing the complexity of the inter-
acting many-particle system to the lowest non-trivial level, this experiment allows to e.g.
extract precise numbers for the scattering lengths also used to parameterize the mean-field
model (Section 2.3.3).

5.5 Thermalization effects (F = 1)

In the previous sections the focus has been on coherent phenomena. However, it is also
obvious from the data that decohering mechanism play a significant role even on the time
scale of 10 ms. Domain formation has been identified as one such mechanism that, although
in principle coherent, leads to locally dephased oscillations and apparent damping of the
dynamics of averaged quantities; this will be discussed in more detail in Section 5.6. The
present section elucidates the role of a different mechanism of damping, involving thermal
atoms and truly decoherent.

5Partly, this is due to a different choice of the initial state. The fully transversely magnetized state
ζπ/2 is singular in being the ferromagnetic ground state at B = 0, which is the reason why the oscillation
amplitude goes to zero in this limit. The Georgia Tech group used different initial states with non-zero
magnetization, e.g. ρ+1 = 0, ρ0 = ρ−1 = 1/2. ζπ/2 is a particularly suitable choice since the resonance
shows up in both amplitude and period of oscillations.
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Figure 5.13: Short-term thermalization under various conditions. R = Ramsey type experiment;
S = spin dynamics experiment.
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Fig. 5.13 compares representative datasets from different experiments, taken at dif-
ferent parameter values with F = 1 spinor condensates. In all cases, a fully transversely
magnetized state ζπ/2 is prepared and afterwards evolves freely for a certain time, until
the populations of the final state are recorded by Stern-Gerlach analysis. In the case
of a Ramsey experiment, a second π/2-rotation is applied before Stern-Gerlach analysis,
converting phases to populations. The thermal and the condensed parts are separated
computationally by fitting a bimodal density distribution.

Assuming the respective ensemble can be described by a density matrix6 ρ, the effect
of a π/2 pulse is

ρ̄ = exp(i
π

2
Fy) ρ exp(−iπ

2
Fy). (5.7)

Only the diagonal elements of ρ̄ are relevant, since only populations are measured by the
Stern-Gerlach analysis. These diagonal elements are

ρ̄00 =
1
2

(ρ+1+1 + ρ−1−1)− Re ρ+1−1 (5.8)

ρ̄+1+1 =
1
2
ρ00 +

1
4

(ρ+1+1 + ρ−1−1) +
1
2
Re ρ+1−1 +

1√
2
Re (ρ0+1 + ρ0−1) (5.9)

ρ̄−1−1 =
1
2
ρ00 +

1
4

(ρ+1+1 + ρ−1−1) +
1
2
Re ρ+1−1 −

1√
2
Re (ρ0+1 + ρ0−1) (5.10)

These equations can be inverted to give the mF = 0 population before the π/2-pulse, ρ00,
up to some oscillating coherences, as a function of the populations after the pulse only.

ρ00 + 2Re ρ+1−1 = ρ̄+1+1 + ρ̄−1−1 − ρ̄00 (5.11)

This makes it possible to compare the “Ramsey” type experiment to “spin dynamics”
experiments missing the final π/2-pulse, as in the upper row of Fig. 5.13.

The four datasets of Fig. 5.13 have in common a short (≈ 10 . . . 15 ms) period of
damped coherent evolution in the condensed component7, followed by a period (up to
100 ms) of obviously incoherent “drifting” population dynamics (note that the time axes
are scaled differently). Characteristic features of this “drifting” are:

• An increasing difference between the (average) mF = 0 populations of the thermal
and the condensed component, while initially both are prepared at ρ00 = 1/2. At
the same time, the total mF = 0 population remains fixed, at a value defined by the
initial short period of coherent dynamics.8

• Convergence of the thermal populations ρmm(m = −1, 0,+1) towards equipartition,
ρmm = 1/3.

Incoherent dynamics thus clearly is the result of a redistribution between thermal and
condensed population within each spin state. The probable cause of this redistribution

6This is true for the thermal component, which can be understood as a statistical ensemble of non-
interacting particles; for the condensed part, a density matrix description can be used to take into account
a spatially varying spin composition in terms of a distribution of the frequency of occurrence.

7Oscillations of the thermal fraction exist in the Ramsey case, but are very heavily damped, on a
timescale one order of magnitude shorter than the condensed fraction.

8E.g. at 0.22G, the initial increase in total mF = 0 population from its prepared value of 1/2 is due
to coherent dynamics. In other cases, the difference between prepared and asymptotic total population is
negligible.
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becomes manifest in the bottom row of Fig. 5.13. In all cases, the thermal spin components
tend towards an equal population as expected for near-degenerate states. At a temperature
of 100 nK, the mean kinetic energy per 87Rb atom is 3

2kT ≈ h×3 kHz. This is much smaller
than the linear Zeeman energy of ≈ h× 700 kHz/G – changing magnetization thus is not
an issue. However, the quadratic Zeeman energy is only ≈ h × 90 Hz at 1.1 G, so the
equilibrium mF = 0 fraction will be mainly determined by maximum entropy and thus
uniformly distributed.

The classical collision rate τ−1 = σnv in a thermal cloud provides a first estimate of
the time scale on which thermalization processes occur. In our experiments, estimating
the average velocity9 v =

√
3kBT/m ≈ 0.05 cm/s × (T/nK)1/2, the peak density10 n =

ζ(3/2)λ−3
th ≈ 1.3 × 1010 cm−3 × (T/nK)3/2 and the elastic scattering cross-section σ =

8πa2 ≈ 7 × 10−12 cm2, the inverse rate τ ≈ 230 s × (T/nK)−2 varies from about 60 ms at
60 nK to 6 ms at 200 nK. A second timescale is set by the rate of condensate formation,
which has been shown to be smaller than the thermal collision rate (or the time scale larger,
respectively) by about one order of magnitude under typical experimental conditions [133,
134, 135]. The “hot” data in Fig. 5.13 is roughly consistent with these numbers, while for
the “cold” data the period of observation is too short to draw conclusions, but it is clear
that the rapid convergence of the thermal populations observed in the first 30ms does not
fit these simple arguments.

These results can be viewed in the context of earlier work in our own group, namely
on Bose-Einstein condensation at constant temperature [57, 3]. In the latter experiment,
Bose-Einstein condensation in the initially unpopulated F = 1,mF = 0 state is achieved
by conversion of mF = ±1 pairs to mF = 0 at a very small rate of the order of 1 s−1. In
the temperature bath provided by the mF = ±1 thermal components, a thermal cloud
of mF = 0 atoms grows until it reaches the critical particle number and a condensate
appears. In [57], the process of thermalization which leads to the formation of a thermal
cloud, although presumably the atoms are transferred from the condensed fractions of
mF = ±1, is assumed to be much faster than the rate of transfer. In the framework of a
rate-equation model the corresponding rate is 13 s−1, while the condensate appears only
after 5 − 10 s. What has been observed in the work at hand can thus be viewed as a
direct observation of precisely those fast thermalization processes that had to be assumed
previously.

A related phenomenon termed “decoherence-driven cooling” is known from two-
component quasi-spin-1/2 condensates [28], e.g. 87Rb F = 1,mF = −1 and F = 2,mF =
+1. Consider a finite-temperature condensate with all atoms in the same internal state.
This can be seen as a single-component or scalar BEC, and in thermal equilibrium a cer-
tain fraction of atoms populate the condensed state, such that the phase space density of
the non-condensed part is just at the critical value g3/2(1) ≈ 2.612. This is true, if the
atoms are in one of their two energy eigenstates, as well as for any coherent superposi-
tion state. However, decoherence in the thermal cloud destroys the coherent superposition
there, leaving an incoherent two-component mixture, each component having only half the
critical phase space density. By redistribution of atoms from the condensed to the thermal
parts, the phase space density is brought back to the critical value for each component

9In a partly condensed, non-interacting ensemble, the average kinetic energy per thermal particle is
Ekin = 3

2
kBT

ζ(4)
ζ(3)

≈ 0.9× 3
2
kBT [51].

10This applies in a partly condensed, non-interacting ensemble at the minimum of the trapping potential

[51]. The thermal wavelength is defined as λth =
q

2π~2

mkBT
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separately. At the same time, the temperature of the system decreases, since the kinetic
energy available is distributed between a larger number of particles. The mechanism of
particle exchange allowing the system to relax to the thermal equilibrium is the same in
this case as in our F = 1 experiments, and is also included in the rate-equation model of
[57].

Temperature data from our F = 1 experiments, based on the time-of-flight expansion
of the thermal cloud, is not conclusive, but a slight decrease in temperature is compatible.
However the condensed fraction, calculated separately for each spin component, increases
in mF = 0 and decreases in mF = ±1, as the thermal populations approach equipartition.
Interpreting the mF = 0 component as an independent single-component system, an
increase of the condensed fraction in spite of a decrease in the total particle number
implies a lower temperature.

5.6 Validity of the SMA (F = 2)

In both F = 1 and F = 2 data, SMA theory fits the data remarkably well11 for a certain
time interval, after which deviations become significant. For F = 1, these deviations are
likely due to thermalization effects, which set in after ≈ 15 ms in accordance with Fig. 5.13
and cause a damping of the coherent oscillations as well as a slow increase of the mF = 0
population in the condensate. Structure formation in F = 1, implying the breakdown
of the single-mode approximation, has been observed in the groups of Chapman [50] and
Stamper-Kurn [41] in the interaction regime on a time scale of 100 ms, but is not expected
to be an issue in our experiments on F = 1.

The case is different for F = 2, where we are in the crossover and interaction regime,
and the time scale of purely interaction-driven dynamics is well within the limit set by
thermalization. In fact, the time span, over which the SMA description remains valid (see
Fig. 5.12 and Fig. 5.14), depends on g1〈n〉/q and is significantly longer in the Zeeman
regime. This can be understood in a local density picture, noting that the pscillation
frequency depends strongly on the local density in the interaction regime, and spatial
structure will emerge assuming nothing but local dynamics. In contrast, this is not the
case in the Zeeman regime and consequently the whole density distribution remains in
phase. We will get back to the local density argument in Chapter 6.

Direct observation of local dynamics is possible in the nearly isotropic crossed-beam
trap (Fig. 5.15). On the time scale of a few ms, pronounced modulations in the density of

11Note e.g. that for F = 2 the numerical solution reproduces even details like the subtle asymmetry of
the oscillation at large q.

Figure 5.14: Validity of the SMA in the astigmatic trap (see page 91): individual fits (lines) to the
datasets (markers) of Fig. 5.12. Times are in milliseconds. The parameter q is fixed by the known
radio frequency, g1〈n〉 is a fit parameter, as well as time- and population-offsets. The interval used
for fitting extends from zero to the time indicated by the dotted line and has been determined by
visual judgement. Bottom right: Residuals of a fit with fixed g1〈n〉 = 47 s−1 and time offset
for varying fit intervals, for three representative datasets (triangular markers). Note: Fits have
been calculated including the g2 term, assuming a fixed ratio of g2/g1 according to the values of
Tab. 2.2. However, setting g2 to zero has only minor influence on the fit parameters as well as
on the validity of the SMA. E.g., the average g1〈n〉 with g2 = 0 is 54 s−1, compared to 47 s−1 at
g2/g1 = −2.1.
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Figure 5.14: Validity of the SMA in the astigmatic trap (see page 90).
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Figure 5.15: Structure formation in the nearly isotropic crossed-beam dipole trap. Stern-Gerlach
images show the atomic column density in each spin state, plus the computed total density, at
different magnetic fields: in the interaction regime (0.38 G), close to resonance (0.77 G) and in the
Zeeman regime (1.53 G). Note that the Stern-Gerlach images and the computed total density are
scaled and colored separately.
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Figure 5.16: Local density simulation, based on the SMA equations of motion assuming a spherical
parabolic density distribution. The picture shows the column integrated densities for each spin
component. Symmetry with respect to +mF → −mF is assumed in the equations of motion, both
+mF and −mF are shown for clarity only. The magnetic field values chosen here correspond to
those of Fig. 5.15 assuming g1〈n〉 ≈ 107 s−1, such that the intermediate field B = 0.77 G is close
to resonance.
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individual mF -components emerge, while the total density profile, reconstructed by over-
lapping the Stern-Gerlach images, remains largely unchanged. The perfect reproducibility
and the high degree of symmetry of the patterns at first sight seem to counter-indicate a
dynamical instability [44] as their origin.

On the other hand, a numerical simulation in the local density approximation, i.e.
based on the SMA equations of motion and a density distribution n(r) leading to a spatially
varying interaction parameter g1n(r), is only able to reproduce some features in the very
beginning of the evolution. E.g., the appearance of a sharp central peak in mF = ±1
after about 10ms in the resonant case is recognized as a local density effect. However, the
pronounced “hole” forming after 25 ms in the Zeeman regime is not reproduced. Also not
reproducible in the simulation is the large relative population of mF = ±2 that comes up
in the interaction regime after 15ms. In fact, in any regime, the population of mF = ±2
apparently never exceeds the initial value significantly, according to SMA calculations.
The complex non-spherically symmetric patterns, on the other hand, that are particularly
characteristic of the resonant case, may be the result of the gravitational sag deforming
the density distribution.

Experiments in an elongated geometry (Chapter 6) also suggest the existence of an
additional mechanism of structure formation beyond local density effects, which becomes
relevant on a time scale of several times (g1〈n〉)−1, in both the Zeeman and the interaction
regime. This topic will be discussed in detail in Chapter 6.

Concluding, it can be seen from experimental data and simulations that while the local
density picture does provide an explanation for the more extended validity of the (global)
SMA in the Zeeman regime, it is also applicable in a transitional regime only. At longer
times, pattern formation based on different mechanisms such as linear instability or finite
temperature effects take over. For F = 1 and B = 0, this kind of transition has been
observed in numerical simulations [93]. Although not strictly applicable to our case (87Rb
F = 1 is ferromagnetic in contrast to F = 2, and B 6= 0), these simulations may serve as
an example illustrating the underlying idea.
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Chapter 6

Structure formation in elongated
spinor Bose-Einstein condensates

Evidence of spontaneous pattern formation in anti-ferromagnetic F = 2 87Rb
condensates as well as a critical analysis thereof is presented in this chapter.
Similar phenomena have been observed before in ferromagnetic spinor conden-
sates only, where they are easily interpreted as spontaneous symmetry breaking
or demixing of components. This interpretation is not applicable to our obser-
vations. Possible explanations discussed here include a dynamical instability
or a twisting of the order parameter by magnetic field gradients, both leading
to the breakdown of the single-mode approximation.

6.1 Spinor dynamics beyond single-mode approximation

Our understanding of the coherent dynamics in spinor condensates, as it has been devel-
oped in this work, is largely based on the single-mode approximation. The popularity of
the SMA lies in the fact that it reduces the mean-field description of spinor BEC to a small
number of internal degrees of freedom. While important aspects of the interplay of mean-
field and magnetic energy are accurately described in this approximation (in particular
the resonance phenomenon discussed in Section 5.3 and Section 5.4), there is also clear
evidence of dynamics involving more than a single common spatial mode (Section 5.6).

The transition from single-mode to spatially resolved dynamics involves two key ingre-
dients. Spatial dependence may enter through the parameters of the single-mode descrip-
tion, density and magnetic field.

• In the local density approximation, SMA arguments remain valid in any infinites-
imal volume element. Neighboring volume elements are independent in this limit.
Mathematically, the equations of motion are still ordinary differential equations with
respect to time, depending on the position as a parameter.

• When the spin state varies in space, the kinetic energy connected with the gradient
of the wave-function introduces a coupling between neighboring volume elements.
The equations of motion are now nonlinear partial differential equations in space
and time (equations (2.60)-(2.62)).

Structured ground states induced by magnetic field gradients have been observed early
in the history of spinor Bose-Einstein condensates [23, 77] and are well understood (see the
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discussion in Section 2.3.3). Dynamically induced structure as a result of the density profile
of a trapped condensate has been observed in 87Rb F = 2 [38, 6] and has been proposed as
a reason for apparent damping of coherent spin oscillations in F = 2 [1, 95] (Section 5.6).
All these effects can be interpreted in terms of the local density approximation. On the
other hand, local density arguments can hardly explain the strongly modulated patterns
which we have observed in an isotropic trap (Section 5.6).

A different mechanism that can lead to spontaneous structure formation, even in the
absence of locally varying fields as a driving force, relies on kinetic energy and the possible
linear instability of the nonlinear partial differential equations of motion (Section 2.3.2). It
is based on the fact that certain Fourier modes may experience an exponential amplification
in linear approximation, when superimposed on a homogeneous solution of the nonlinear
equations. An initial population of these modes due to e.g. random noise will then
grow and produce a pattern of characteristic size corresponding to the wavelength of the
unstable mode.

The present chapter addresses the dynamics of very elongated spinor Bose-Einstein
condensates. The quasi-1D geometry offers two important advantages: a large axial ex-
tension of the condensates enables the observation of long-wavelength modes, while a
comparatively tight transverse confinement suppresses structure formation in the direc-
tion of detection, which otherwise would be averaged and appear as damping or loss of
contrast (compare Section 5.6).

6.2 Preparation and analysis of elongated BEC

Elongated BEC are prepared in a single-beam dipole trap (Section 3.2) by loading a near-
degenerate spin-polarized ensemble from our magnetic trap and subsequently lowering the
optical power over 10 s down to just above the power necessary to overcome gravity. At
the final power of 22mW, the transverse trap frequency is ωy = ωz = ωrad = 2π × 120 Hz
assuming cylindrical symmetry. Gravitational sag, however, is expected to lower the trap
frequency at least in the vertical direction (compare Section 3.2). The axial trap frequency
ωax, estimated from the shape of a Gaussian beam1, is less than 2π × 1 Hz.

In order to verify that this trap is in fact quasi-1D for the purpose of spin dynamics, it
is necessary to check that the spin healing length ξs is larger than the radial extension of
the condensate. We can estimate the atomic density and the chemical potential ~µ from
the spin dynamics parameter g1〈n〉 ≈ 30 s−1 (Fig. 6.5) and µ ≈ g0〈n〉 ≈ 2.8 × 103 s−1.
Assuming the Thomas-Fermi approximation, the radial harmonic potential is filled up to
a radial distance of RTF =

√
2~µ/m/ωrad ≈ 2.7µm. This has to be compared to the spin

healing length ξs =
√

~/(2mg1〈n〉). The ratio of the two characteristic length scales is

ξs
RTF

=
ωrad

g1〈n〉

√
g1
g0
≈ 2.6 . (6.1)

This means that the formation of transverse structure formation will indeed be suppressed
to a high degree. For comparison, in the nearly isotropic dipole trap of Fig. 5.15 in
Section 5.6 ξs/RTF ≈ 1, and in the astigmatic dipole trap of Fig. 5.12 in Section 5.4
ξs/RTF ≈ 1.5 in the direction of detection.

1For a dipole trap at the focus of a Gaussian beam, the ratio of radial and axial trapping frequencies is
ωrad/ωax =

√
2πw0/λ, where w0 is the beam waist and λ is the wavelength of the laser light.
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(a) Rectification of a single spin component. (b) Shift and stretch different components for maxi-
mum overlap.

Figure 6.1: Shift and stretch algorithm (schematic).

In the single-beam trap, condensates extend over approximately 750µm along the
horizontal axis. Since the horizontal separation of the spin components by the usual
Stern-Gerlach procedure is much smaller than this extension, in particular if the time
of flight is kept small, the Stern-Gerlach procedure has to be modified for this series of
experiments in order to achieve vertical separation. This is done in two steps,

1. after 1ms of time-of-flight, apply the usual Stern-Gerlach field (Section 3.3) for
1 ms in order to preserve the horizontal quantization axis (this also leads to some
horizontal separation),

2. switch on the full gradient, as used for the MOT, plus a vertical offset field, thus
shifting the field zero vertically away from the condensate to achieve vertical sepa-
ration. This second step takes 4 ms; the total time-of-flight from switching off the
trap to the detection light pulse is 6.4 ms.

A drawback of this method is that the separation of the spin components is not purely
transversal to the trap axis, impeding the spatial correlation of patterns in different spin
components. Even worse, the remaining axial shift slightly varies along the condensate,
since the extension of the cloud is not negligible compared to the distance from the field
zero, and the separation is radial following field lines.

To overcome this complication, we have developed an algorithm that determines these
shifts a posteriori from the images, based on transverse excitations of the condensate wave
function that are identical for all spin components Fig. 6.2. The algorithm first rectifies
each spin component by determining the vertical position of the center of mass in each pixel
column and shifting accordingly. As a by-product, we obtain the transverse excursion as a
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Figure 6.2: Transverse excitations in elongated condensates.
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Figure 6.3: Horizontal shift and stretch compensation scheme. Left: Cross-correlation of trans-
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peak at zero displacement, indicating that the horizontal shifts applied are correct. Right: Max-
imum of cross-correlation versus stretch factor. At a stretch factor of mF × 2.5%, the peaks of
all cross-correlations are maximal. The cross-correlations shown are averaged over 170 images
covering the whole series of measurements (more than 600 images). Only images that do not
show significant spin structure enter the cross-correlation. m = 0,m′ = ±2 correlations appear
smaller and noisier because the mF = ±2 population is generally small and the determination of
the transverse excursion is not as reliable as in mF = ±1.
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at 0.55 G

Figure 6.4: Example of structure formation in an elongated spinor BEC.
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function of the axial position for each spin component. An optimal linear transformation
(shift and stretch) reversing the horizontal shifts can be found by maximizing the cross-
correlation of the transformed excursion functions. Fig. 6.1 and Fig. 6.3 illustrate the
procedure in detail. It turns out that the inhomogeneity of the Stern-Gerlach field induces
a mF -dependent stretch of the images by about mF × (2.5 ± 0.5)%. The uncertainty of
the stretch factor corresponds to about 3 pixels or 8µm maximum over the length of the
condensate. The absolute positioning uncertainty is about 1 pixel (2.7µm).

In the following, all Stern-Gerlach images in elongated geometry will be rectified and
shift-stretch-compensated (Fig. 6.4 shows an example). Additionally, it is useful to produce
images where the transverse shape of the condensate is fully eliminated, i.e. color-coded
plots of the column sums of each component. The vertical edges produced this way make
it easier to judge the relative arrangement of structures in different spin components by
eye.

The analysis of correlations between patterns of different mF components turns out to
provide an important insight into the characteristics of structure formation. In order to
suppress density fluctuations, our analysis will be based on local relative spin populations
ρm(x) ≡ |ζm(x)|2, where ζm(x) is a normalized spinor wave function as in equation (2.59)
of Section 2.3.1.

Denoting by ρ̃m(xi) the deviation of the relative population in state mF = m from its
mean value at axial position (pixel) xi,

ρ̃m(xi) = ρm(xi)−
1
N

N∑
i=1

ρm(xi), (6.2)

the correlation coefficients cmm′ are defined as an average over all axial positions (pixels),

cmm′ =
1
N

N∑
i=1

ρ̃m(xi)ρ̃m′(xi), (6.3)

The diagonal element cmm is the square of the rms amplitude of fluctuations in mF = m,
and normalizing an off-diagonal element cmm′ by the product of the two corresponding
rms values

√
cmmcm′m′ results in a value between +1 and −1, indicating fully correlated

(cmm′ = 1) or anti-correlated (cmm′ = −1) fluctuations in mF = m and mF = m′.
If the ρ̃m were uncorrelated independent variables, one would expect

cmm′
√
cmmcm′m′

= δmm′ =

{
1 m = m′

0 m 6= m′ (6.4)

However, since the relative populations are normalized,
∑

m ρ̃m(x) = 0 ∀x, the ρ̃m are
inherently anti-correlated to some degree. Assuming a generalized relation

cmm′
√
cmmcm′m′

= δmm′ + α(1− δmm′) =

{
1 m = m′

α m 6= m′ (6.5)

this inherent anti-correlation α can be determined by summing twice over m,m′ and
solving for α,

α = −1
2

∑
m cmm∑

m′>m

√
cmmcm′m′

(6.6)
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Correlation coefficients in the following are generally shifted by this value α, calculated
separately for each image, to make the distinction between additional correlation (cmm′ −
α > 0) and additional anti-correlation (cmm′ − α < 0) clearer. Note that this shift may
lead to correlation coefficients cmm′ − α larger than one.

6.3 Observation of a dynamical instability in F = 2

As in Chapter 5, we prepare elongated condensates in the fully transversely magnetized
state ζπ/2 =

(
1/4, 1/2,

√
3/8, 1/2, 1/4

)
(see Fig. 5.1). To gain a first impression of spin

dynamics in the elongated trap, we can compare the evolution of the global population
of mF = 0 (Fig. 6.5), disregarding any visible structure, to that observed in the much
tighter astigmatic trap (Fig. 5.12). Both cases agree qualitatively: a maximum of mF = 0
population occurs at intermediate magnetic fields and oscillations are observed in the Zee-
man regime, while the dynamics in the interaction regime appears to be heavily damped.
Structure formation below the limit of spatial resolution, or in a direction not observable
in our experimental setup, has already been pointed out as a possible source of damping
in Section 5.6, and we may expect to gain insight into this mechanism from the present
case where structure formation is directly visible.

Over the magnetic field range covered in the elongated geometry experiments, the
emergence of structure takes place in two successive steps, which are characterized by a
large-scale correlated (in-phase) or small-scale anti-correlated (out-of-phase) spatial mod-
ulation of the relative mF = ±1 populations, respectively.

In the beginning, on a time scale of several 10 ms, a predominantly long-wavelength
in-phase structure appears, which can be understood in terms of the local density approx-
imation using the homogeneous (or SMA) equations of motion. The wavelength of the
modulation in this model is not given by some natural length scale, but depends on the
density gradient ∂n/∂x and varies in time. This regime is more pronounced at low and
intermediate magnetic fields (see Figures 6.8-6.11), which is compatible with our expecta-
tion that the time scale of evolution depends more strongly on density in this limit than in
the Zeeman regime. In the local density approximation, Fz = 0 remains fixed everywhere
and for all times.

As an example of the local density mechanism of structure formation, consider a con-
densate with a typical parabolic density profile n(x) at negligible magnetic field, i.e. in
the interaction regime2. The mF = 0 population at any position x then oscillates at
ω ≈ 4g1n(x) (Section 2.3.4, equation (2.82)), and two points separated by ∆x dephase at
a rate of ∆φ ≈ 4g1 ∂n

∂x ∆x. We estimating the density gradient as ∂n
∂x ≈

2n0
L ≈ 4〈n〉

L , where
L is the extension of the condensate. The characteristic wavelength λ of the resulting
pattern, defined by a dephasing of ∆φ = 2π across ∆x = λ, is given by

λ ≈ 2πL
16g1〈n〉t

. (6.7)

The local density approximation thus leads to patterns with a characteristic length in-
versely proportional to the time of evolution. The approximation breaks down when
λ/(2π) approaches the spin healing length ξs.3

2Since the density goes to zero at the ends of the condensate, only the central part is actually in the
interaction regime. At low magnetic field, however, this is a large fraction of the total condensate.

3 The factor 2π results from the fact that for a sinusoidal modulation of wavelength λ, the maximum
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Figure 6.5: Global population dynamics of mF = 0 in elongated geometry, compare to Fig. 5.12
(note the different viewing angle). The reference value g1〈n〉 = 30 s−1 for the interaction parameter,
obtained from q/(g1〈n〉) ≈ 2.5 at resonance, is smaller than in Fig. 5.12, indicating a lower average
density.
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Figure 6.6: Emergence of longitudinal fluctuations in elongated geometry. Left: Rms fluctuations
of the relativemF = 0 population. An increase indicates the formation of spatial structure. Right:
Correlation between the fluctuations in the mF = +1 and mF = −1 component, normalized by the
respective rms values and shifted to compensate for inherent anti-correlation (see Text). Positive
values indicate correlated structure, negative values anti-correlated structure. Note: Curves have
been offset vertically for clarity, as indicated by the zero baselines.
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After about 100 ms, short-wavelength anti-correlated structure starts to appear on top
of the large-scale modulations, and after 200 ms this is the dominant component of the
fluctuations. The time scale for the onset of short-wavelength structure is roughly the same
across the magnetic field range studied, but the patterns become prominent more quickly
at larger magnetic field. In addition, while the resulting wave-like modulations are clearly
out-of-phase at low and intermediate magnetic field, the “phase shift” between mF = ±1
is closer to 90◦ than to 180◦ at the largest field value. In all cases, the anti-correlated
pattern seems to decay in a chaotic way after several 100 ms, most quickly for B = 0.39 G,
which corresponds to the largest transient total mF = 0 population (“resonance”).

In Fig. 6.6, the rms amplitude
√
c00 of the mF = 0 fluctuations and the normalized

correlation
c̃+1−1 =

c+1−1√
c+1+1c−1−1

− α (6.8)

of the mF = ±1 fluctuations are plotted versus time to demonstrate that they are suitable
indicators of the two-step process mentioned. We concentrate on the mF = 0,±1 popula-
tions, because mF = ±2 is only weakly populated from the start owing to our particular
initial state. Only in the interaction regime at low magnetic field, a significant mF = ±2
population comes up after some time, as can be seen in the images (Fig. 6.8-6.11). As an
example, in the initial state only 1/8 of the total population is in mF = ±2, compared to
1/2 in mF = ±1. A local imbalance of the mF = ±2 populations thus enters into Fz at
half the weight of an imbalance in mF = ±1.

Fig. 6.8-6.11 illustrate the spatial patterns at characteristic times and provide infor-
mation on the length scale of the patterns as well as an overview of all mF populations.

0 ms: Right after preparation, fluctuations are small and uncorrelated.
50 ms: Large-scale in-phase fluctuations are fully developed and still dominant.

The normalized correlation between mF = ±1 is positive.
100 ms: Small-scale out-of-phase fluctuations appear, the correlation approaches

zero.
150 ms: Small-scale out-of-phase fluctuations are more or less fully developed,

the correlation is down to zero or negative.
200 ms: Small-scale out-of-phase fluctuations are fully developed and begin to

decay, the correlation has reached a more or less steady state at or
below zero.

An important conclusion from the observation of anti-correlated local populations of
mF = ±1 is the local non-conservation of magnetization Fz = 2(ρ+2− ρ−2)+ (ρ+1− ρ−1).
This is a fundamental departure from the local density model, and a strong hint to a
mechanism involving kinetic energy, such as dynamical instability as discussed in-depth in
Section 2.3.2.

The small-scale patterns visible in Fig. 6.8-6.11 have a quite characteristic length scale
of the order of λ = 20µm, except for the lowest magnetic field B = 0.15 G where the
length scale seems to be somewhat larger, λ ≈ 35µm. Comparing to the spin healing
length ξs =

√
~

2mg1〈n〉 ≈ 3.5µm, their ratio λ/ξs is indeed of the order of 2π, a value
predicted in this regime by linear instability analysis (Section 2.3.2 as well as the footnote
on page 101). The wave-like patterns emerging are particularly impressive at low magnetic

gradient occurs at the zero crossings and is proportional to 2π
λ

. Since the definition of the (spin) healing
length refers to the gradient of the density and spin composition, respectively, it has to be compared to
λ
2π

in this case.
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field, and Fig. 6.12 demonstrates the long-term behavior in this case. They correspond to
amazingly regular, almost sinusoidal modulations of the axial spin expectation value Fz.

Spontaneous structure formation via dynamical instability has also been observed in
an F = 1 spinor condensate [41] by the group of Stamper-Kurn. Apart from the fact that
our experiments are done in F = 2, there are several other important differences regarding
the setup as well as well as the outcome of the experiments.

• In [41], a spinor condensate is prepared inmF = 0 with respect to an axial offset field,
which is equivalent to a superposition of mF = ±1 with respect to any transverse
direction. In contrast, we prepare a spinor condensate in a state of zero axial, but
maximum transverse magnetization, i.e. mF = +2 with respect to some transverse
direction.

• The initial state |mF = 0〉 used in [41] is a state of maximum interaction energy
relative to the ferromagnetic ground state of F = 1 87Rb, since ~F = 0. For anti-
ferromagnetic F = 2 87Rb, this role is played by the fully transversely magnetized
state |ζπ/2〉 with Fx = 2.

• In [41], a spontaneous, locally varying transverse magnetization, but no longitudi-
nal magnetization has been observed, which can be explained as domain separation
of the immiscible mF = ±1 components with respect to a locally varying trans-
verse direction. In contrast, we observe a spontaneous, locally varying longitudinal
magnetization. The transverse magnetization has not been directly observed in our
experiment. However, Fz 6= 0 implies that the local magnetization is not purely
transversal as prepared initially.

• In [41], the structure formed is rather irregular and at the length scale of the healing
length (2.4µm in this case). The quadratic Zeeman energy is only 1.3 s−1 and
thus negligible compared to the interaction energy. In contrast, we observe much
larger structures at a significantly larger magnetic field (150mG, corresponding to
|q| = 10 s−1) that become smaller at higher field.

• Last but not least, 87Rb F = 1 is ferromagnetic and is known to feature a dynamical
instability, while F = 2 is anti-ferromagnetic. Even though a dynamical instability
has been predicted for the pure mF = 0 state [76] (Section 2.3.2), its interpretation
in terms of spontaneous symmetry breaking as in F = 1 is less obvious and the
question of the relative phase or correlation of the +m and −m modes, i.e. whether
unstable modes lead to a modulation of Fz, has not yet been addressed.

Unpublished numerical simulations by M. Ueda [95, 76] for the case of an initially pure
F = 2,mF = 0 state show very similar behavior to that observed in our experiments.
At low magnetic field, large-scale correlated patterns emerge as expected due to the local
density mechanism, while at large magnetic field small-scale anti-correlated patterns ap-
pear, explaining the strong damping of spinor oscillations observed in [38]. However, the
patterns in [95] lack the wave-like appearance observed here.

As already mentioned earlier, the state mF = 0 differs from our initial state ζπ/2 in the
amount of potential energy available for conversion to kinetic energy. The excess potential
energy per particle, compared to the anti-ferromagnetic ground state, is (see Tab. 6.1 and
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Table 6.1: Potential energies per particle of different F = 2 states (in SMA, see Section 2.3.2).
Note that in 87Rb F = 2, g1 > 0, g2 < 0 and q < 0.

description state ζ potential energy

pure mF = 0 (0, 0, 1, 0, 0) ~× g2〈n〉
8

fully transversely magnetized state
(

1
4 ,

1
2 ,

√
3

8 ,
1
2 ,

1
4

)
~× (2g1〈n〉+ q)

AF ground state [76] 1√
2
(1, 0, 0, 0, 1) ~×

(
g2〈n〉

8 + 4q
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Figure 6.7: Excess potential
energy as function of the
quadratic Zeeman effect, in
units of s−1 and nK. g1〈n〉 =
30 s−1, |g1| = |g2|. The curves
intersect at q = 2〈n〉(g1 +
g2/16). Only if this condition
is met, a free evolution starting
in ζπ/2 can possibly end in |0〉.

Fig. 6.7)

E0/~ = 4|q| for ζ = |0〉, (6.9)

Eπ/2/~ = 2〈n〉
(
|g1|+

1
16
|g2|
)

+ 3|q| for ζ = ζπ/2. (6.10)

Thus at low magnetic field q → 0, there is not enough energy available in the mF = 0
state to drive a dynamical instability at a small wavelength, corresponding to a high
kinetic energy. This is reflected by the divergence of the minimum unstable wavelength
λmin discussed in Section 2.3.2. Only the local density mechanism of structure formation
remains, leading to correlated large-scale patterns. In contrast, the fully transversely
magnetized state has an excess potential interaction energy even at q = 0 and thus will
lead to the small-scale anti-correlated patterns connected with the dynamical instability
in this limit, too.

An alternative explanation for the appearance of regular patterns at the length scale
of 2πξs may be the mechanism observed in a two-component Bose-Einstein condensate
and described in [27] by the group of E. Cornell. A two-component condensate, e.g. 87Rb
F = 2,mF = +1 and F = 1,mF = −1, can be viewed as a quasi-spin-1/2 system (compare
Section 2.2.1 and Section 2.2.2) and described by a F = 1/2 spinor order parameter, where
the stretched states | ± 1

2〉 each correspond to one of the two basis states, and any other
spinor state to a coherent superposition. In their publication [27] with the illustrative
title “watching a superfluid untwist itself”, Matthews et al. show how such a spin-1/2
condensate “winds up” under the influence of a locally varying rate of evolution the autors
call “differential torque”, much like in the case of local density dynamics described above.
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When the size of the structures reaches the order of magnitude of 2πξs, the kinetic energy
of the spinor wave function becomes relevant. Non-local evolution then leads to phase
reversal and subsequent “unwinding” with increasing structure size, until the condensate
is homogeneous once again and the sequence starts over.

In our case, the “differential torque” may result from either the local density mechanism
as described above or from the residual magnetic field gradient of the order of 3 mG/cm
(Section 3.4). Since we do not observe a decreasing structure size but rather small-scale
patterns growing out of a large-scale background, we rule out the local density mechanism
as the origin of a possible “twisting-untwisting” scenario. On the other hand, an axial
magnetic field gradient leads to Larmor rotation at a locally varying rate, which is not
observable with Stern-Gerlach detection4. Thus, only when the “phase reversal” takes
place, rotating the spin vector out of the plane perpendicular to the axial magnetic field,
structure in the axial spin component Fz becomes visible, and should then have a size
of the order of 2πξs from the start. At a residual gradient of B′ = 3 mG/cm or ω′ =
gµB

~ B′ = 2π × 2100 s−1cm−1, it takes T ≈ 1/(ξsω′) = 250 ms to “wind up” the order
parameter down to the spin healing length. This is fairly consistent with the time scale
observed, considering our limited knowledge of the residual gradient. However, we see no
“unwinding” but rather a chaotic decay of the structures for evolution times larger than
a few 100ms. At this point, we can not fully exclude that at least the “twist” part of the
mechanism plays a role at least at intermediate time scales.

Spin waves, as observed in thermal or partially condensed two-component ensembles
[30, 29, 31] by the group of E. Cornell as well, are most likely unrelated to the phenomena
observed here, since they appear at a much longer length scale, basically given by the
condensate dimensions. In addition, the mechanism of spin propagation underlying these
wave phenomena is indeed limited to thermal spinor gases, or condensates having a large
thermal fraction.

In conclusion, we have evidence that what we observe in elongated 87Rb F = 2 con-
densates may indeed be a dynamical instability leading to spontaneous pattern formation
and local symmetry breaking. Additional structure formation preceding the growth of
unstable modes can be identified as quasi-homogeneous dynamics in the local density ap-
proximation. A particularly intriguing feature of our experiments is the direct observation
of characteristic wave-like modes.

In fact, we may assume that the formation of strongly modulated patterns we have
observed in an isotropic dipole trap (Section 5.6) is also a consequence of dynamical
instability rather than local density dynamics. On the other hand, the rapid damping of
coherent oscillations observed in the astigmatic trap (Section 5.4) is likely to be caused by
local density dynamics alone, since it appears in the interaction regime only, even though
no visible structure has been observed in this case.

An alternative explanation of small-scale structures in elongated spinor BEC, relying
on the residual magnetic field gradient, cannot be ruled out from the data available;
experiments clarifying this point are possible and should be awaited for final asessment.

4A Ramsey sequence or final π/2 pulse would make the transverse spin visible in Stern-Gerlach images,
see Section 2.2.1 and compare Section 5.2 as well as Section 5.5. However, this has not yet been applied
to the elongated geometry.
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Figure 6.8: Emergence of spin structure at B = 0.15 G, |q|/|g1〈n〉| ≈ 0.34.
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Figure 6.9: Emergence of spin structure at B = 0.25 G, |q|/|g1〈n〉| ≈ 0.95.
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Figure 6.10: Emergence of spin structure at B = 0.39 G, |q|/|g1〈n〉| ≈ 2.3.
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Figure 6.11: Emergence of spin structure at B = 0.55 G, |q|/|g1〈n〉| ≈ 4.5.
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Chapter 7

Chaotic dynamics in F = 2

A thorough numerical and analytical treatment of the equations of motion of
symmetric F = 2 spin dynamics in the single mode approximation uncovers
the complex and actually chaotic dynamics of this system. A comprehensive
treatise of this topic is beyond the scope of the present work, but an attempt
is made to introduce the reader to the beauty of nonlinear dynamics nd deter-
ministic chaos, which in fact is a ubiquitous phenomenon in nature.

7.1 Signatures of chaos

In the preceding Chapters 5 and 6, we have concentrated on common features of F = 1
and F = 2 spin dynamics in the single-mode approximation. We have shown in particular
that both systems are governed by the competition of quadratic Zeeman energy q and
interaction energy g1〈n〉 and exhibit the same type of resonance in the crossover region
between the Zeeman (|g1〈n〉| � |q|) and the interaction (|q| � |g1〈n〉|) regime (Fig. 7.1).

A close look at the simulated population curves of Fig. 5.12, however, already reveals
that the solutions of the SMA equations of motion (2.76) (summarized again in Tab. 7.1)
are no longer simply periodic, in contrast to F = 1. In addition, it turns out that
the asymptotic case, which in F = 1 defines the position of the resonance |q| = |g1〈n〉|
(Section 5.3), is much less robust in F = 2: obtaining an aperiodic numerical solutions

Table 7.1: Equations of motion of spin dynamics in F = 2, in single-mode approximation and
restricted to the symmetric subspace ζ+m = ζ−m ∀m (Section 2.3.2). This system of nonlinear
ordinary differential equations is the basis of the present chapter. The g2 interaction term is
neglected in this chapter, since it only causes minor quantitative changes. ζm =

√
ρme

iθm is
complex, with modulus

√
ρm and phase θm. Note that in this chapter, the sign of the interaction

parameter (positive in F = 2) and the quadratic Zeeman effect (negative in F = 2) is explicitly
taken into account, and g1〈n〉, q > 0 refers to the modulus of the respective quantity.

iζ̇2 =
g1〈n〉

2
A22ζ1 − 4qζ2

iζ̇1 =
g1〈n〉

2
A2

[√
6ζ0 + 2ζ2

]
− qζ1

iζ̇0 =
g1〈n〉

2
A22

√
6ζ1

with A2 = 4Re ζ2ζ∗1 + 2
√

6Re ζ1ζ∗0 (7.1)
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in the best possible approximation requires extremely fine tuning of the parameter k =
g1〈n〉/q and results in different values depending on the numerical tools used (see Fig. 7.2).

These observations can be viewed as instances of two basic properties of chaotic systems
[136, 137]: recurrence, meaning that trajectories in phase space return arbitrarily close to
their starting point and do not e.g. asymptotically approach a stationary state, and
sensitivity to initial conditions, implying that trajectories starting from two neighboring
points in phase space separate exponentially with time. An intuitive picture of chaotic
systems is that of kneading the dough [136]: by repeated stretching (sensitivity) and folding
(recurrence), the ingredients are thoroughly mixed.

These first indications of chaos are supported by a mathematical analysis of the equa-
tions of spin dynamics. Spin dynamics in F = 2, represented by the symmetric single-mode
mean-field equations (7.1), belongs to the class of nonlinear conservative systems. The lat-
ter means that the phase space volume is preserved along trajectories. As a consequence,
there are no attractors such as stable fixed points, i.e. states that the system is asymp-
totically attracted to. Taking into account normalization

∑
i=0,1,2 ρi = 1 and global gauge

symmetry |ζ〉 ≡ eiθ|ζ〉 ∀θ ∈ R, the six real variables {(ζ ′i = Re ζi, ζ ′′i = Im ζi), i = 1 . . . 3}
of (7.1) reduce to four degrees of freedom. Additionally, conservation of energy constrains
dynamics further to a three-dimensional manifold in phase space. Two necessary con-
ditions for the existence of chaos – nonlinearity and ≥ 3 degrees of freedom – are thus
fulfilled. The system also is bounded, i.e. the phase space available to the system is finite,
owing to the fact that populations and phases are bounded to 0 ≤ ρi ≤ 1 and 0 ≤ θi ≤ 2π,
respectively. For a conservative system, boundedness implies recurrence [137].

Sensitivity to small errors of the initial conditions is quantified in the Lyapunov ex-
ponent of a trajectory, which is defined as the long-term average rate of exponential
separation from a second, infinitesimally close trajectory.1 Positive values indicate un-
stable trajectories sensitive to initial conditions and perturbations, negative (zero) values
mean the trajectory is (marginally) stable. Negative Lyapunov exponents, implying that
the trajectory after a small perturbation converges exponentially back to the unperturbed
one, only occur in dissipative systems. We will employ the Lyapunov exponent as a char-
acteristic of individual trajectories and as a signature of chaos frequently in the present
chapter.

Continuous systems, defined by ordinary differential equations, can be reduced to
discrete ones by means of a Poincaré section. This is a suitably chosen hyper-surface in
phase space that is crossed by trajectories z(t) at times ti, i = 1, 2, 3 . . .. The phase space
points zi ≡ z(ti) constitute a discrete series. The dynamical system ż = F (z) can be
reduced to a discrete map F̃ : z(ti) → z(ti+1) = F̃ (zti) relating a crossing point of any
trajectory to the successive crossing of the same trajectory. Many properties of chaotic
systems are more accessible in such a discrete formulation if the Poincaré section is chosen
cleverly. Additionally, by reducing the dimension of the relevant manifold in phase space,
Poincaré sections are important tools for visualizing chaotic dynamics. In the case of spin
dynamics, the surface of section of a given energy shell is two-dimensional. In Section 7.3
we will make use of a suitable Poincaré section to visualize complex trajectories on a
certain energy shell in a two-dimensional graph.

Conservative non-integrable systems possess an extremely complex phase space struc-

1In fact, there is a whole spectrum of Lyapunov exponents according to the number of degrees of
freedom. In this work, we refer to the largest exponent simply as the Lyapunov exponent. For details of
the definition and numerical calculation of Lyapunov exponents, see Appendix B.
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114 CHAPTER 7. CHAOTIC DYNAMICS IN F = 2

ture. Regions of regular and irregular motion coexist and are densely mixed. The theory
of these systems [138, 139], compared to dissipative dynamics [137, 136], is rather involved.
In the following, we will restrict ourselves to intuitive arguments and general notions of
the theory of dynamic systems.

7.2 Trajectory statistics

In a first step, we take a closer look at the population dynamics starting from the fully
transversely magnetized state, tying in with the experiments of Chapter 5. A typical tra-
jectory (Fig. 7.2) from the crossover region, starting from the fully transversely magnetized
state, clearly looks irregular in some way. However, we have to distinguish pseudo-periodic
trajectories, which appear irregular on time scales less than the smallest common multiple
of all cycle times2, and truly chaotic trajectories. In the present section, several ways of
characterizing trajectories are compared. As it turns out, they consistently indicate true
chaos in certain parameter regions, revealing a rich structure in parameter space.

Periodic signals have a well-defined amplitude and cycle time, that can be obtained
from the difference in value and time of each pair of minimum and maximum. Applying
this method of measurement to an irregular signal such as the mF = 0 population ρ0 as in
Fig. 7.2, we obtain a different amplitude and period for each minimum-maximum pair3:

amplitude A ≡ ρ0(tmax)− ρ0(tmin)
periodic time T ≡ tmax − tmin

(7.2)

where ρ0(t) has a maximum at t = tmax, equivalent to its time derivative having a zero
crossing from positive to negative, ρ̇0(tmax) = 0 ↘ (tmin correspondingly). This can also
be interpreted as taking a Poincaré section with the surface ρ̇0 = 0, and thus allows
to compare the results to one of the most popular routes to chaos, the period doubling
scenario4. In this scenario, the transition from regular to chaotic motion takes place as a
series of period doublings, which in the histogram of amplitudes appear as bifurcations.
We will not go into detail, but Fig. 7.3 should provide an impression.

Applying the method to trajectories (in this case, the mF = 0 population) starting
from the fully transversely magnetized state ζπ/2, we obtain a histogram of amplitudes
and periods as in Fig. 7.4. The plot shows, for a range of given parameters q (horizontal
axis), the frequency of occurrence of an amplitude or period of a given value (vertical axis)
as color-coded pixels. For these simulations, g1〈n〉 = 1 has been assumed which merely
fixes the time scale. First of all, Fig. 7.4 demonstrates once again the prevalence of simple
oscillations of decreasing amplitude in the limiting cases q → 0 (interaction regime) and
q →∞ (Zeeman regime). The broadening of the histograms as q approaches the crossover
region indicates pseudo-periodicity, a fact supported by the Lyapunov exponent being
zero outside the central crossover region 1.8 < q < 3.6. In this central crossover region,
parameter ranges leading to regular and chaotic motion alternate. Positive Lyapunov
exponents and a characteristic “smearing” of the histograms are consistent indicators of

2A fact that has recently been exploited to simulate disorder in optical lattices, superposing two retro-
reflected light beams of incommensurate frequencies [140].

3Actually, this definition yields twice the amplitude and half the periodic time, compared to the usual
definitions.

4The period doubling scenario is a common route to chaos in dissipative systems, but also occurs in
conservative ones. [137]
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Figure 7.1: Spin dynamics resonance at the crossover from Zeeman to interaction regime, illustrated
for F = 1. The same qualitative behavior has been observed in F = 2, see Chapter 5. Note that
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Figure 7.3: Histogram of amplitudes xn of the so-called quadratic iterator, xn+1 = αxn(1−xn), n =
1 . . . 10000. This is an example of a discrete, dissipative system. Depending on the parameter α,
the system state xn is attracted by a fixed point (single line), a periodic cycle of period P (P + 1
lines) and becomes chaotic for α > 3.5699 . . . [136]. It may serve as an example of the period
doubling scenario and is to be compared to Fig. 7.4, see text.

chaos. The sequence of chaotic and regular parameter ranges is very dense; the smallest
structure resolved in parameter space consists of just a single grid spacing (∆q ≈ 10−3).

Comparing the histograms of spin dynamics to Fig. 7.3 demonstrating the period-
doubling scenario, we note agreement in some aspects, but also obvious differences. First
of all, the characteristic period-doubling bifurcations are not seen in spin dynamics. We
merely observe a broadening of the histogram due to pseudo-periodic motion, in particular
in the wings towards the Zeeman and interaction regime, or a completely smeared-out
distribution in the chaotic regimes. This smearing out in the chaotic regime, on the other
hand, is a common characteristic, as well as the interspersed islands of order, where the
motion becomes (pseudo-)periodic for a narrow range of parameters q. One of them, at
q = 2.81, will be studied in more detail in the following Section 7.3 using a different
Poincaré surface of section to visualize trajectories.

Fitting power laws A(q) = aqα and T (q) = tqβ to the center-of-mass of the wings
of the histograms, we recover the asymptotic behavior known from the analytic solution
in F = 1, and expected from perturbative solutions in F = 2. The oscillation period is
constant and of the order of one in the interaction regime, and follows q−1 in the Zeeman
regime. The oscillation amplitude is maximal in the crossover region and decays both in
the Zeeman regime and in the interaction regime. In the latter case, the best-fit exponent
α ≈ 1 is in quantitative agreement with the perturbative solutions. In the Zeeman regime,
the best-fit exponent deviates from the expected value β = 1, probably because at q = 10
we are not close enough to the limiting case.

As an alternative to the histogram technique, it is also possible to determine the spec-
tral composition of trajectories by Fourier transformation of the population as a function
of time. This has been done in Fig. 7.5, where similar to Fig. 7.4 the power spectrum of
the mF = 0 population for a given parameter q is color-coded in each pixel column. Com-
parison to Fig. 7.4 basically confirms the results of the preceding paragraph, clarifying in
particular the pseudo-periodic high-q region. The dynamics there is governed by a set of
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Figure 7.5: Fourier transforms of trajectories (mF = 0 population) of fixed duration, comparable
to those in Fig. 7.4. The Fourier transforms for each q have been normalized to the largest non-
zero component. The periodically modulated background at the 10−6 level is probably an artefact,
caused by the finite time of observation in conjunction with the period of the signal. This effect,
known as leakage, depends on whether an integer number of periods fits into the time of observation
or not. Adequate windowing (Hamming in this case) alleviates leakage, but doesn’t fully remove
the dependency.

several closely spaced modes of comparable spectral power, converging and/or dying out
for q →∞. In contrast, in the interaction regime, there is a single dominant mode only.

Both histograms and Fourier plots exhibit another striking feature at q ≈ 1.72. This
becomes manifest in a divergence of amplitudes and periods in the histograms, and at
the same time a convergence of characteristic frequencies as seen in the Fourier plot. The
Lyapunov exponent is clearly zero at this point. The origin and impact of this feature is
not understood. On the other hand, quite surprisingly, the “critical value” q/g1〈n〉 = 2,
marking the boundary between Fx changing sign along a trajectory or not (see the following
Section 7.3), does not at all show up in either of the graphs.

7.3 Phase space dynamics

The preceding Section 7.2 has brought up clear evidence for chaotic dynamics in the
system of equations (7.1) describing single-mode spinor dynamics. For the purpose of
characterizing this dynamics, it is not sufficient to just look at trajectories starting from a
single initial condition, the fully transversely magnetized state. Rather, we have to look at
the structure of the whole phase space available to the system at given parameter values.

In this section we get back to the concept of the Poincaré section as a powerful tool
for the visualization of complex dynamics in phase space. We first point out a way of
deriving equations of motion for arbitrary observables, and then proceed to pick suitable
observables that allow to define a Poincaré section of physical relevance.

The equations of motion for the spinor |ζ〉 (see Tab. 7.1 and Section 2.3.2) follow
from a variational principle and an energy functional that is not just a quadratic form
in |ζ〉. However, in the present case, neglecting g2 terms, the energy functional depends
on the spinor via expectation values of single-particle observables only. In the subspace of
spinors satisfying ζ+m = ζ−m ∀m = −2 . . . 2, 〈Fy〉 = 〈Fz〉 = 0 identically, and the energy
functional can be expressed in terms of 〈Fx〉 and 〈F 2

z 〉 only:

H =
g1〈n〉

2
〈Fx〉2 − q〈F2

z〉, (7.3)
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leading to an equation of motion for the spinor |ζ〉

i ˙ζm =
∂H
∂ζ∗m

=
∂H
∂〈Fx〉

∂〈Fx〉
∂ζ∗m

+
∂H
∂〈F2

z〉
∂〈F2

z〉
∂ζ∗m

. (7.4)

Returning to Hilbert space notation, we obtain i ˙|ζ〉 = H|ζ〉 with an effective Hamiltonian

H =
∂H
∂〈Fx〉

Fx +
∂H
∂〈F2

z〉
F2

z = g1〈n〉〈Fx〉Fx − qF2
z. (7.5)

This reformulation of the equations of motion (7.1) makes it easy to directly calculate
equations of motion for arbitrary observables A. Noting that ˙〈A〉 = 〈ζ̇|A|ζ〉+ 〈ζ|A|ζ̇〉 we
arrive at the expression

˙〈A〉 = i

[
∂H
∂〈Fx〉

〈[Fx,A]〉+
∂H
∂〈F2

z〉
〈[F2

z,A]〉
]
. (7.6)

Now the question arises how the differences between F = 1 and F = 2 come into play,
which lead to chaotic dynamics in F = 2 but not F = 1. As we have seen, equations of
motion can be formulated without explicit reference to the spinor states, and thus have
the same form for any F . The answer lies in the fact that the equation of motion for any
observable will generally contain other observables which are products of the operators
involved, and will thus not lead to a closed system of equations. As an example that will
also be of use later, we consider 〈Fx〉:

˙〈Fx〉 = −iq〈[F2
z,Fx]〉 = q〈FzFy + FyFz〉 (7.7)

The equation of motion of FzFy + FyFz can be calculated along the same lines, but will
contain products of three operators, and so on. However, since we are operating in a finite-
dimensional Hilbert space, all observables can be expressed as linear combinations of a
finite number of basis operators in this Hilbert space. Doing this one arrives at a closed set
of at most5 (2F + 1)2 equations of motion. For F = 1, these are at most nine equations,
and the number can be further reduced by taking advantage of symmetries and constants
of the motion. In F = 2, symmetries are the same but the number (2F +1)2 = 25 is much
larger from the outset.

From the perspective of dynamic systems, using observables instead of spinor compo-
nents may be seen as a change of variables, and it should be possible to fully describe the
system (7.1) in terms of six suitably chosen observables instead of the real and imaginary
parts of three spinor components ζn = ζ ′n + iζ ′′n, n = 0, 1, 2. Naturally, one chooses known
constants of the motion as new variables. These are the “number of particles” N and the
energy E,

N = 2(ζ ′22 + ζ ′′22 + ζ ′21 + ζ ′′21 ) + ζ ′20 + ζ ′′20

E = 2g1〈n〉
[
2(ζ ′2ζ

′
1 + ζ ′′2 ζ

′′
1 ) +

√
6(ζ ′1ζ

′
0 + ζ ′′1 ζ

′′
0 )
]2
− q

[
8(ζ ′22 + ζ ′′22 ) + 2(ζ ′21 + ζ ′′21 )

]
.

(7.8)

5In order to span the space of complex hermitian N × N matrices using only real coefficients, N2

basis matrices are needed – N real diagonal matrices, N(N − 1)/2 real off-diagonal matrices and another
N(N − 1)/2 imaginary off-diagonal matrices. In our case, N = 2F + 1. Compare Section 2.2.3, where
similar arguments are applied to the density matrix. In this special case, the number of basis matrices is
reduced by one due to the conservation of the trace of the density matrix.
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Figure 7.6: Valid regions in (ρ0, Fx) phase space. The dashed line marks the limit imposed by the
natural relationship of Fx and ρ0, while the lightly shaded areas indicate energy- and parameter-
dependent restrictions in the case of E = E(ζπ/2) that apply to the full trajectory. However, only
within the dark shaded areas (7.8) and (7.9) can be inverted to give a valid state on the surface of
section Fzy = 0.

Additionally, we choose Fx ≡ 〈Fx〉 and Fzy ≡ 〈FzFy + FyFz〉/2 due to their intuitive
meaning as the transverse component of the spin vector and its time derivative,

Fx = 4(ζ ′2ζ
′
1 + ζ ′′2 ζ

′′
1 ) + 2

√
6(ζ ′0ζ

′
1 + ζ ′′0 ζ

′′
1 )

Fzy = 6(ζ ′2ζ
′′
1 − ζ ′′2 ζ

′
1) +

√
6(ζ ′′0 ζ

′
1 − ζ ′0ζ

′′
1 ).

(7.9)

Finally, for compatibility with previous results, we take the population and phase of the
mF = 0 component,

ρ0 = ζ ′20 + ζ ′′20

tan θ0 =
ζ ′′0
ζ ′0
.

(7.10)

θ0 is the only quantity influenced by the choice of the global phase, and consequently is
arbitrary. Ignoring θ0 amounts to projecting the phase space onto a plane of constant
θ0, and the freedom of choice of the global phase ensures that the physically meaningful
dynamics is fully captured in the projection.

It remains to be proven that this choice of quantities indeed constitutes a change of
variables, i.e. that the relation between these quantities and the components of the spinor
is (locally) invertible. First, the populations ρ1 and ρ2 can be calculated explicitly from
(7.8). With EQZ = g1〈n〉〈Fx〉2 − E ≥ 0,

ρ2 =
1
6

(EQZ − (N − ρ0))

ρ1 =
2
3
(N − ρ0)−

1
6
EQZ.

(7.11)

The remaining phases are determined by (7.9)

Fx = 4
√
ρ2ρ1 cos(θ1 − θ2) + 2

√
6
√
ρ1ρ0 cos(θ0 − θ1)

Fzy = 6
√
ρ2ρ1 sin(θ1 − θ2) +

√
6
√
ρ1ρ0 sin(θ0 − θ1),

(7.12)

which can be numerically solved for the phase differences θ0 − θ1 and θ1 − θ2. The global
phase is irrelevant, but defined by tan θ0 for formal completeness. From the populations
and phases, the complex spinor components ζm =

√
ρme

iθm can be recovered.
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Of the six variables (N,E, Fx, Fzy, ρ0, θ0), only Fx, Fzy and ρ0 are dynamically relevant.
In the following, we will further eliminate Fzy by defining a Poincaré surface of section
Fzy = 0. For the remaining free variables, generally not the full domain (ρ0, Fx) ∈ [0 . . . 1]×
[−2 . . . 2] is physically accessible. Apart from the implicit relationship of Fx = 〈Fx〉 and
ρ0 (7.12), the most important restrictions result from 0 ≤ 〈F2

z〉 ≤ 4 and 0 ≤ ρ1,2 ≤ 1. For
the specific energy shell of the fully transversely magnetized state, E = 2g1〈n〉 − q with
N = 1, and g1〈n〉, q > 0 we have the following non-trivial constraints:

F 2
x ≥ 4− 2q

g1〈n〉
ρ0 ≥

g1〈n〉
2q

(4− F 2
x ) ρ0 ≤

1
4

(
3 +

g1〈n〉
2q

(4− F 2
x )
)

(7.13)

The two conditions on ρ0 coincide only in the limiting case |Fx| =
√

4− 2q
g1〈n〉 where ρ0 = 1

necessarily. For q/(g1〈n〉) > 2, the conditions remain valid but do not constrain Fx any
more. Fig. 7.6 illustrates the domains of validity for the different cases. It must be stressed
that these domains correspond to projections of the full phase space of triplets (ρ0, Fx, Fzy)
(neglecting tan θ0) onto a Fzy = const surface. The projection of the full trajectory must
lie within the indicated limits.

On the Poincaré surface of section Fzy = 0, even further restrictions apply as indicated
in Fig. 7.6. The final criterion is simultaneous solvability of (7.9), i.e. whether it is possible
to find, for given populations ρi, phases such that actually 〈Fx〉 = Fx and 1

2〈FyFz +
FzFy〉 = 0. The shaded areas in Fig. 7.6 have been calculated numerically by trying to
invert (7.9) on a dense grid in (ρ0, Fx) phase space.

Note the different meaning of allowed domains on the Poincaré section, as opposed to
a projection of the full phase space. In the former case, a trajectory may “jump” from
one domain to another, even if they are not connected. However, the projection of the
trajectory between intersections with the Poincaré surface is still subject to conditions as
explained previously. Thus for q/g1〈n〉 < 2, Fx can never change sign, but for q/g1〈n〉 > 2
it does even though the dark shaded areas in Fig. 7.6 may not actually meet.

Having found suitable variables and a Poincaré surface of section, we now turn to
applying this technique to gain a deeper knowledge of the dynamical structure of our
system. First of all we note that the Poincaré surface of section Fzy = 0 corresponds to
points of the trajectory where Fx is minimal or maximal (turning points). (Fx, ρ) phase
space is symmetric under Fx → −Fx, i.e. for any trajectory (Fx(t), ρ(t)) there is a mirror
image (−Fx(t), ρ(t)). Minima and maxima of Fx are reversed in the mirror image. Thus,
instead of plotting a Poincaré section of e.g. minima (zero crossings of Fzy with positive
slope) in the full range Fx = −2 . . . 2, it is equivalent to plot only half the range but using
both minima and maxima. Also, 〈F2

z〉 = (g1〈n〉〈Fx〉2/2 − E)/q may be used instead of
Fx when the sign is not important. In the following, we apply both ways of plotting the
Poincaré section to numerical solutions of (7.1) in a series of parameter values q, while
g1〈n〉 = 1 without loss of generality. We look at the energy shell E = 2g1〈n〉 − q, which
is the energy of the fully transversely magnetized state. In this case, the relation of 〈F2

z〉
and 〈Fx〉 is

Fqz ≡ 〈F2
z〉 = 1− 2g1〈n〉

q

(
1− 〈Fx〉2

4

)
, 0 ≤ Fqz ≤ 1. (7.14)

Figures 7.8-7.14 are the result of numerical simulations, in which trajectories starting
from random initial conditions (up to 300) have been followed and the intersections with
the surface of section Fzy = 0 recorded (typically 1000). The trajectories are calculated in
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complex variables using (7.1), and the new variables Fx and ρ0 are extracted at the time of
plotting. Every dot in Fig. 7.8-7.14 corresponds to a single intersection of a trajectory with
the surface of section, and is colored (Fig. 7.8 and 7.9) or shaded (Fig. 7.10-7.14) according
to the Lyapunov exponent λ of the whole trajectory, black corresponding to λ = 0 and
lighter colors or shades of grey to a larger Lyapunov exponent. White areas have not been
visited by any trajectory. The stretched state, which has been used as the initial condition
in the preceding Section 7.2 and in particular in Fig. 7.4, is marked at Fx = 2, ρ0 = 0.375
or Fqz = 1, ρ0 = 0.375. Additionally, in Fig. 7.10-7.14 (shaded), the intersection points
for a set of trajectories from a small neighborhood of the fully transversely magnetized
state (“neighborhood trajectories”) are indicated by thick dots, colored according to the
direction of sign change of Fzy, i.e. whether they cross the drawing plane, corresponding to
the surface of section, from back to front or vice-versa. The fully transversely magnetized
state itself indeed does belong to the surface of section as a point of maximal Fx. Fig. 7.7
illustrates the different coloring schemes.

Figures 7.8-7.10 provide an overview of the crossover regime. Compare the images to the
corresponding vertical slices of Fig. 7.4, and note how the behavior of the neighbor-
hood trajectories is reflected in the histograms of amplitude and period of trajectories
starting exactly from the stretched state.

At the low q end, trajectories are restricted to positive Fx and have a zero or
very small Lyapunov exponent. Phase space is filled with regular structures
resembling filo pastry. The trajectories neighboring the stretched state trace
out a well-defined path along the shells. This is typical of regular motion.

At q = 2, the two lobes of admissible states, characterized by positive and negative
Fx, just meet in Fx = 0, and some trajectories are able to squeeze through
and change sign. At the same time, the Lyapunov exponent of a large number
of trajectories becomes significantly positive. Neighborhood trajectories start
to spread in an irregular way, reflecting the sensitivity to disturbance that is
indicated by a positive Lyapunov exponent. For q > 2, intersections of positive
and negative slope mingle as a result of Fx changing sign.

Also at q = 2, a particularly prominent example of phase space structure can
be seen: a set of closed trajectories orbiting around a fixed point (Fqz ≈
0.6662, Fx ≈ 1.632, ρ0 ≈ 0.5806) on the surface of section, corresponding to
a periodic cycle of the full trajectory. Also at q = 2.90 and q = 3.3, the
stretched state must be close to such a fixed point, since all trajectories from
the neighborhood remain close to each other, trapped in or near a periodic
cycle.

At intermediate values around q ≈ 2.5, chaotic and regular motion coexist in phase
space. The neighborhood of the stretched state obviously belongs to the chaotic
part. Although the chaotic trajectories look as if they filled a whole area in
phase space, this is not exactly the case, since in a conservative system chaotic
and regular trajectories are generally mixed in a highly complicated way [138,
139].

Figure 7.11 attempts to shed light on the yet unexplained feature in the histograms
(Fig. 7.4) at q ≈ 1.72. There is no sign of chaos anywhere in phase space at this
value of the parameter. There seems to be a geometrical change, however, that leads
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to a sudden disruption of the continuous line of negative-slope intersection points
(turning points of maximal Fx or Fqz) of the neighborhood, while at the same time
connecting two previously separate branches of positive-slope points (minimal Fx or
Fsq). This results in a dramatic decrease of the possible spread in vertical separation
that a pair of consecutive extrema can have.

Figures 7.12-7.14 are a close-up of one of the “islands of order” that appear in the his-
tograms (Fig. 7.4), e.g. at q = 2.81. Looking at the whole phase space (Fig. 7.12), we
notice that its overall structure does not change over the narrow range of parameters
chosen here. There is a large part densely filled with chaotic trajectories, changing
shape only very slightly. However, the behavior of neighborhood trajectories varies
dramatically with q, switching from chaotic motion to near-periodic cycles (compare
Fig. 7.4). The reason becomes obvious in a close-up of the neighborhood of the fully
transversely magnetized state: trajectories become trapped when the fully trans-
versely magnetized state happens to be close to a periodic cycle, which passes by as
q varies. At q = 2.850, the fully transversely magnetized state nearly coincides with
the intersection of the periodic cycle and the surface of section.6

The fully transversely magnetized state is an intersection point of negative slope since
it has maximal Fx = 2 – exactly the same behavior is seen for the corresponding
point of positive slope. Interestingly, part of the structure surrounding the periodic
orbit seems to extend across the border of the accessible area. This shows up in
the circular path traced by points of negative slope, half of which is at the high-Fx

boundary and half of it at the low-Fx boundary of the permitted area. This points
to a more complicated topology of the accessible phase space than can be caught in
this projective visualization. There are points at the low-Fx and high-Fx boundary
that must be dynamically equivalent.

The trapping of trajectories near a periodic cycle repeats at q = 2.89, where the
fully transversely magnetized state happens to be close to a secondary periodic cycle,
belonging to the same structure, and forming at slightly lower q. This is beautifully
seen in the distribution of positive-slope points.

7.4 Discussion and outlook

The results of the preceding sections rely on the numerical analysis of a special case of
an approximate description of the dynamics of spinor Bose-Einstein condensates. The
question may be raised, how realistic these results in fact are, and whether they are
observable in experiment.

First of all, we note that – in order to experimentally carry out the kind of analysis
demonstrated here – it is necessary to follow trajectories for at least about 100 oscilla-
tions. At an optimistic period of oscillation of 2π/(g1〈n〉) ≈ 50 ms, this corresponds to
5 s of coherent evolution, which is hard to achieve in the presence of thermalization and
losses. Also, non-destructive spin-sensitive detection [101] would be necessary to track the
evolution of individual condensates, as extreme sensitivity to errors in the initial state is

6Note that this is does not mean the fully transversely magnetized state is stationary at q = 2.85 –
ρ0 oscillates at high amplitude over the whole crossover region. However, at or near this particular q the
oscillation becomes periodic, returning to exactly the same state at regular intervals.
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characteristic of chaotic system and forbids the usual way of tracking time evolution by
repeated destructive observation of identically prepared samples.

Second, our analysis relies on the single-mode approximation, and we have seen in Sec-
tion 5.6 that this breaks down in the interaction and crossover regime. In fact, Chapter 6
deals with the experimental observation of spontaneous formation of spatial structure,
and identifies a dynamical instability as the most likely reason. The chaotic dynamics
that is the subject of the present chapter, however, is caused by the linear instability of
the homogeneous mode. A spinor condensate may be stable with regard to homogeneous
perturbations, or may have a zero Lyapunov exponent in the language of the preceding
sections, but may still be unstable with respect to a spatially modulated disturbance. In
order to experimentally observe homogeneous, or SMA, dynamics only, the condensate has
to be much smaller than the spin healing length (typically ξs ≈ 2− 3µm at realistic den-
sities). This could be achieved in a one-dimensional, deep optical lattice, which amounts
to having a chain of closely-spaced (of the order of half the laser wavelength) individual
condensates (see Chapter 8 for more details on the prospects of optical lattices).

Third, our analysis also ignores a possible instability with respect to homogeneous,
but asymmetric perturbations. Although the total magnetization Fz = 0 is conserved,
redistribution of population between mF = ±1 and mF = ±2 in an asymmetric way is
in principle possible as long as 2ρ+2 + ρ+1 = 2ρ−2 + ρ−1. This has never been observed
experimentally, though. A theoretical analysis of Lyapunov exponents for this generalized
type of disturbance is possible from within the symmetric subspace – only the tangential
space of a trajectory has to be extended. However, this analysis has not been carried out
yet.

Last, but not least, what we observe is not quantum chaos in the conventional sense7

[141]. Rather, it is classical chaos in the dynamics of a mean-field approximation to many-
body quantum mechanics, leading to nonlinear equations of motion. Nevertheless, one
might ask the question whether and how this is reflected in true quantum many-body
properties such as correlations.

In any case, the results presented in this chapter are doubtlessly a beautiful example of
nonlinear chaotic dynamics, and the merging of techniques from both nonlinear quantum
mechanics and the theory of dynamics systems has proven fruitful and fascinating. Ex-
perimental observation will be challenging, but is not out of reach of current experimental
possibilities.

7Chaotic systema are governed by nonlinear equations of motion, such as they may arise in classical
mechanics. Classical mechanics, on the other hand, is just a limiting case of quantum mechanics, obtained
by the “correspondence principle”. Quantum mechanical evolution obeys the linear Schrödinger equation,
which does not feature chaotic solutions. The fundamental question underlying Quantum Chaos is how
chaotic behaviour of a nonlinear classical system is reflected in the properties of the corresponding quantum
mechanical system.
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| is maximum
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Figure 7.7: Coloring schemes and markers used in Fig. 7.8-7.14, see text as well.
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Figure 7.8: Dynamics in the Poincaré section Fx vs. ρ0. Overview of the whole crossover regime
(g1 = 1). Note how from q = 2 onwards, trajectories cross the border of Fx = 0, changing sign
(initial states all have Fx ≥ 0). At about the same time, regions of positive Lyapunov exponent
emerge.
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Figure 7.9: Dynamics in the Poincaré section 〈F 2
z 〉 vs. ρ0. Overview of the whole crossover region.

Compare the different ways of portraying phase space as either (Fx, ρ0) or (Fsq ≡ 〈Fz
2〉, ρ0). Note

the prominent circular structure at q = 2, connected to a fixed point of the Poincaré plane.
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Figure 7.10: Dynamics in the Poincaré section (overview). Regions visited by trajectories starting
near ζπ/2, indicated by the intersection points (zero crossings of Fzy of positive or negative slope).
Note how the neighborhood of the fully transversely magnetized state is caught in a periodic cycle
at q = 2.90.
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Figure 7.11: Dynamics in the Poincaré section: detail at q = 1.72. Note how at q = 1.722, the
topology of the paths traced by intersection points changes.
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Figure 7.12: Dynamics in the Poincaré section: detail at q = 2.81. Overview of the whole phase
space. Note once more how the neighborhood trajectories are caught by periodic cycles at q values
corresponding to “islands of order” in the histograms of Fig. 7.4.
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Figure 7.13: Dynamics in the Poincaré section: detail at q = 2.81. Close-up of the neighborhood
of the fully transversely magnetized state. Note the periodic orbit structure passing the stretched
state as a function of q.

130



7.4. DISCUSSION AND OUTLOOK 131

q = 2.810

ρ 0

0.32

0.34

0.36

0.38

0.4

0.42

q = 2.820 q = 2.830

q = 2.840

ρ 0

0.32

0.34

0.36

0.38

0.4

0.42

q = 2.850 q = 2.860

q = 2.870

ρ 0

0.32

0.34

0.36

0.38

0.4

0.42

q = 2.880 q = 2.890

q = 2.900

ρ 0

F
qz

0.66 0.68 0.7 0.72 0.74

0.32

0.34

0.36

0.38

0.4

0.42

q = 2.910

F
qz

0.66 0.68 0.7 0.72 0.74

q = 2.920

F
qz

0.66 0.68 0.7 0.72 0.74

Figure 7.14: Dynamics in the Poincaré section: detail at q = 2.81. Close-up of the region where
the periodic orbit starting from the stretched state intersects the Poincaré plane a second time
with opposite slope.
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Chapter 8

Summary and outlook

The present work is an important cornerstone of our current understanding of the physics
of spinor Bose-Einstein condensates. In conjunction with recent experimental work in the
group of Chapman [50, 37] and theoretical work by You [44, 75, 142, 73], Ueda [76, 90]
and co-workers, it presents a consistent picture and a deep understanding of the topic of
single-mode coherent spinor dynamics.

A recurring theme of this thesis are the fully transversely magnetized states, which as
initial states of spinor dynamics have proven extremely enlightening. Coherent dynamics
starting from a fully transversely magnetized statehas shown the existence of a generic
resonance phenomenon in spinor dynamics, irrespective of the ground state of the system.
This resonance is analogous to nonlinear phase-maching in optical four-wave mixing, where
the spin-dependent interaction provides the nonlinearity and the quadratic Zeeman effect
plays the role of a linear dispersion.

Single-mode coherent spinor dynamics is constrained by thermalization and spatial
structure formation. As ever so often in physics, the close inspection of these at first sight
detrimental effects uncovers a whole realm of fascinating new phenomena.

Bose-Einstein condensates with their unique combination of a macroscopically popu-
lated quantum state and a finite-temperature environment provide an ideal testing ground
for the paradigmatic situation of quantum system coupled to a thermal reservoir. Spinor
BEC with their limited number of degrees of freedom simplify the control and analysis of
such experiments. The processes observed and characterized in this thesis provide a deeper
understanding of thermalization in Bose-Einstein condensates and connect to the funda-
mental questions of condensate formation [133, 134, 135] on the one hand, and decoherence
[28] on the other hand.

Spatial structure formation is a classical field of nonlinear dynamics, and the results
obtained with spinor BEC in this thesis – marvelous images of spin domain patterns like
beads – merely touch its surface, leaving plenty of unknown terrain to discover. Spon-
taenous structure formation as a way of symmetry breaking also plays a prominent role
in magnetism, e.g. in the formation of ferromagnetic domains. Previous results in spinor
BEC were also limited to the ferromagnetic case [41], where the analogy is obvious. In this
work, spontaneous domain formation is observed for the first time in an antiferromagnetic
quantum gas, raising questions on its origin that could only be answered in part within
the scope of this thesis.

While inherent spatial structure formation is a very promising route to follow, the
future of spinor BEC experiments may lie in external spatial modulation, in the form of
either periodic potentials or tailored wave functions.
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Tailored wave functions of BEC in a conventional trap have been used in the past
to generate dark solitons [122, 123] by imprinting a local phase-jump of π on the wave
function. Spinor BEC on the one hand greatly increase the possibilities for manipulation
of the wave funtion, and on the other hand possess several new types of topological defects
[143, 144, 145, 46, 47, 146]. A particularly intruiging defect would be the magnetic soliton,
consisting of a dark soliton or “hole” in one spin component, “filled” with another com-
ponent. Solitons rely on the balance of the kinetic and the interaction energy associated
with a local change of the wave function. Since the spin-dependent interaction is just a
small fraction of the total interaction, filled solitons are expected to be larger (of the order
of the spin healing length) and also longer-lived than dark ones.

In the course of this work, a Raman laser system suitable for the local manipulation of
a spinor wave function has been set up. Using a spatial light modulator, which is currently
being installed in our experiment, it will become possible to imprint arbitrary population
and phase changes on 87Rb spinor BEC. Besides producing single magnetic solitons, it
will also be possible to study the interaction of several such excitations, as well as possibly
other topological defects, depending on the dimensionality of the BEC.

Periodic potentials can be realized with standing light waves (“optical lattice”) act-
ing as small-scale dipole traps [147, 148]. Ultracold quantum gases, be they bosonic or
fermionic, in such a “crystal of light” form a model system of solid state physics not suf-
fering from crystal defects and other complications present in real solids. The scientific
potential of this technique is reflected by a rapidly growing number of experiments using
it, as well as by a plethora of theoretical proposals. First experiments studying spinor
gases in optical lattices have been performed in the group of Bloch [43, 78], but this rich
and fascinating field remains largly unexplored to date.

In our group, a 3D optical lattice featuring hexagonal symmetry has been set up for
the first time, opening new perspectives on spinor BEC as a quantum simulator of solid
state magnetism. For example, a phenomenon thought to occur on a triangular grid is spin
frustration [149]. On a square lattice, spins with anti-ferromagnetic interactions arrange
their orientation in a staggered way, such that each pair of next neighbours is anti-parallel.
On a triangular lattice, this is no longer possible, since for any pair of anti-parallel next
neighbours, there is a third next-neighbouring site whose orientation is undefined.

The field of spinor Bose-Einstein condensates is still busy. Many fascinating ideas are
being pursued and new proposals put forth, ranging from potential applications (e.g.
magnetometry [150]) to fundamental aspects (e.g. exotic topological defects [146]). The
greatly improved understanding of the bulk properties of spinor BEC, to which the work at
hand has significantly contributed, provides a basis for mastering the challenges of future
research on spinor BEC.
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Appendix A

Coordinate systems

For historical reasons, the usual horizontal quantization axis of our experiment is labeled
“x-axis” and the vertical axis “z-axis”. This coordinate system is used for positions as
well as for magnetic fields. An axial field is thus expressed as ~B = B~ex, and the transverse
gradients of the axial field are ∂Bx

∂z and ∂Bx
∂y .

In contrast, the usual convention in quantum mechanics is to call the axis of quantiza-
tion “z-axis”, and we stick to this convention when talking about spin. This means that
the axial component of the spin ~F , which is also called magnetization, is Fz.

Effectively, we use two coordinate systems in parallel, which are rotated with respect
to each other (Fig. A.1). Note that this does not apply to Chapter 2 – only in chapters
referring to experiments, these complications have to be taken into account.

Figure A.1: Two different coordinate systems are used in parallel in this work. Left: Coordinate
system for position and magnetic fields. Right: Coordinate system for the spin.
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Appendix B

Elementary nonlinear dynamics

Consider a dynamical system of N degrees of freedom, characterized by a state vector
z = (z1, . . . , zN ) in RN . Its time evolution is governed by a set of N coupled ordinary
differential equations, or equations of motion,

ż = F(z). (B.1)

A solution z(t) of this system is called a trajectory, with the initial condition z0 ≡ z(0).
The set of all possible initial conditions constitutes the phase space of the system. Since
any point of a trajectory can be seen as the initial condition of the trajectory from there
on, the phase space defined this way in fact comprises all states the system can possibly
occupy. Important special cases of trajectories are

• the fixed point or stationary state z(t) = z0 ∀t, which is equivalent to the condition
F(z0) = 0, and

• the periodic orbit or cycle, a trajectory which returns to its initial condition in finite
time, z(T ) = z(0), 0 < T <∞.

Now consider a particular solution z(t) and an infinitesimally small perturbation ζ on
top of it. The equation of motion for the combined state is

ż + ζ̇ = F(z + ζ). (B.2)

We obtain an equation of motion for the perturbation by linearizing F in the neighborhood
of the trajectory z(t),

F(z + ζ) = F(z) + ∂F(z) ζ, (B.3)

where ∂F is the Jacobian matrix of F and depends on z. The equation of motion for the
perturbation is linear, but time dependent via the trajectory z(t),

ζ̇ = ∂F(z(t)) ζ. (B.4)

Solving this equation of motion, we obtain the time evolution operator J(z0, t) that maps
any initial perturbation ζ0 to its value at time t,

ζ(t) = J(z0, t)ζ0. (B.5)
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The Lyapunov exponent is a measure of how fast two infinitesimally close trajectories
separate. Identifying one trajectory as z(t) and one as z(t)+ ζ(t), we define the Lyapunov
exponent λ

λ = lim
t→∞

1
t

ln
|ζ(t)|
|ζ0|

. (B.6)

Its value can be calculated from the linear approximation (following [151]),

λ = lim
t→∞

1
t

ln
|J(z0, t)ζ0|

|ζ0|
= lim

t→∞

1
2t

ln
(
nTJTJn

)
, (B.7)

where in the latter variant the length of the initial perturbation has dropped out and the
expression depends only on its orientation n = ζ0/|ζ0|. The matrix M = JTJ is symmet-
ric and positive, and therefore diagonalizable with real positive eigenvalues Λ2

1, . . . ,Λ
2
N .

Choosing the respective eigenvectors as our initial orientation n, we obtain a spectrum of
Lyapunov exponents,

λi = lim
t→∞

1
t

lnΛi. (B.8)

Whether a trajectory is stable or not is determined by the largest Lyapunov exponent
λ0 = max{λi}. If the orientation of an initial perturbation is not exactly perpendicular
to the eigenvector u0 corresponding to λ0, i.e. if ζ0 has a component in direction u0,
this component will grow exponentially at a rate larger than any other component of ζ0,
and will thus dominate in (B.7). In other words, an arbitrary initial orientation (not
perpendicular to u0) will be tilted over time towards the direction of the maximal growth
rate.

The largest Lyapunov exponent can be numerically determined by solving the equa-
tions of motion (B.1) and (B.4) simultaneously for a set of perturbations of length |ζ| = 1
and different initial orientations. Since the length |ζ| of the perturbation grows expo-
nentially in time, it is necessary to rescale ζ to unity at regular intervals and record its
logarithm. The sum of the logarithms, divided by the total time of evolution, is an ap-
proximation for the largest Lyapunov exponent. If the algorithm works as expected and
produces a good approximation, the resulting Lyapunov exponent should be the same for
all initial orientations (except for one, possibly).
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Appendix C

Optical four-wave mixing

Following [84], we derive explicitly the coupled wave equations for the case of three op-
tical modes and a third-order χ(3) nonlinear susceptibility. We will see that this case is
analogous the F = 1 spinor dynamics as described in Chapter 2. We further assume that
all modes are collinear and linearly polarized in the same direction, with electric fields

Ej(r, r) = E(ωj)e−iωjt + E(−ωj)eiωjt

= Aj(z)ei(kjz−ωjt) + c.c.,
(C.1)

where we have adopted the convention E(−ωj) = E∗(ωj), and c.c. denotes the complex
conjugate of the preceding expression. This way, Ej(r, t) is always real.

Each mode obeys a nonlinear wave equation

−∆E(ωn)− ω2
n

c2
ε(1)(ωn)E(ωn) =

4πω2
n

c2
PNL(ωn), (C.2)

where
√
ε(1) is the frequency-dependent linear index of refraction and

PNL(ωn) =
∑

ω′
1,ω′

2,ω′
3

δ(ωn, ω
′
1 + ω′2 + ω′3)χ

(3)E(ω′1)E(ω′2)E(ω′3) (C.3)

is the polarization arising from third-order nonlinear processes.
Now assuming three modes ω1, ω2, ω3 with 2ω1 = ω2 + ω3, we can write the nonlinear

polarization explicitly, e.g. for the ω1 mode,

PNL(ω1) = 3χ(3)E(ω1)E(−ω1)E(ω1) self-PM

+ 6χ(3) [E(ω2)E(−ω2) + E(ω3)E(−ω3)]E(ω1) cross-PM

+ 6χ(3)E(ω2)E(ω3)E(−ω1) four-wave mixing

(C.4)

or in terms of plane wave amplitudes

PNL(ω1) = 3χ(3)|A1|2A1e
ik1z self-PM

+ 6χ(3)
[
|A2|2 + |A3|2

]
A1e

ik1z cross-PM

+ 6χ(3)A2A3A
∗
1e

i(k2+k3−k1)z four-wave mixing

(C.5)
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Inserting E(ω1) and PNL(ω1) into the wave equation we arrive at an equation for the
amplitude A1,

− ∂2A1

∂z2
− 2ik1

∂A1

∂z
+ k2

1A1 =
[
ω2

1

c2
ε(1) +

4πω2
1

c2
χ(3)

(
3|A1|2 + 6|A2|2 + 6|A3|2

)]
A1

+
4πω2

1

c2
χ(3)6A2A3A

∗
1e

i(k2+k3−2k1) (C.6)

In the plane wave ansatz E(ωj) = Aje
ikjz, fast oscillations are absorbed in the exponential

term and Aj varies slowly as a function of z. In a linear medium, with kj = n(ωj)
ωj

c , Aj is
actually a constant, and we use the same definition as a first-order approximation in the
case of a nonlinear medium. The slowly varying amplitude approximation now neglects
the second derivative ∂2A1

∂z2 , and the equation of motion reduces to

− 2ik1
∂A1

∂z
=
[
4πω2

1

c2
χ(3)

(
3|A1|2 + 6|A2|2 + 6|A3|2

)]
A1

+
4πω2

1

c2
χ(3)6A2A3A

∗
1e

i
c
(n(ω2)ω2+n(ω3)ω3−2n(ω1)ω1) (C.7)

with the linear index of refraction n =
√
ε(1). Without dispersion, i.e. if n does not depend

on ω, the exponential drops out since ω2 + ω3 − 2ω1 = 0.
Similarly, equations for the mode A2 can be derived,

− 2ik1
∂A2

∂z
=
[
4πω2

2

c2
χ(3)

(
3|A2|2 + 6|A1|2 + 6|A3|2

)]
A2

+
4πω2

1

c2
χ(3)3A2

1A
∗
2e
− i

c
(n(ω2)ω2+n(ω3)ω3−2n(ω1)ω1), (C.8)

and A3 follows from swapping indices 2 ↔ 3.
In the above equations, we have taken into account a possible dispersion in each

individual wavenumber kj . With this choice of kj , ε(1) ω2
j

c2
− k2

j = 0 cancels in the
equation of motion of all three modes, but at the cost of the non-vanishing exponent
n(ω2)ω2 + n(ω3)ω3 − 2n(ω1)ω1.

Alternatively, we may as well choose kj = n̄
ωj

c with a constant average index of re-
fraction n̄ =

√
ε(1)(ω1). This way, a small part of the fast oscillation of the plane wave is

shifted on to the amplitudes A2 and A3. If the dispersion is small, however, this is just as
good a first-order approximation as the first choice, and the variation of A2(z) and A3(z)
is still slow. As a result, the exponential term vanishes, but at the cost of an additional
term

ω2
m

c2
(
√
ε(1) − n̄)Am (C.9)

in the right-hand side of the equations of motion for m = 2, 3.
In the latter formulation, it becomes clear that dispersion, i.e. the variation of the

linear index of refraction as a function of ω, plays the role of the quadratic Zeeman effect
in spinor dynamics (Chapter 2). The mode A1, whose index of refraction serves as a
reference, plays the role of the mF = 0 spinor amplitude ζ0. The choice of kj = n̄

ωj

c in
the plane wave ansatz is analogous to the transformation to a rotating frame in spinor
dynamics, where Larmor rotation also drops out.

138



Bibliography
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[120] A. Dingjan, B. Darquié, J. Beugnon, M. Jones, S. Bergamini, G. Messin, A. Browaeys
and P. Grangier. A frequency-doubled laser system producing ns pulses for rubidium
manipulation. Appl. Phys. B 82, 47 (2006). doi:10.1007/s00340-005-2027-7.
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of Bose-Einstein Condensates from Thermal Vapor. Phys. Rev. Lett. 88, 080402
(2002). doi:10.1103/PhysRevLett.88.080402.

[135] C. W. Gardiner, P. Zoller, R. J. Ballagh and M. J. Davis. Kinetics of Bose-
Einstein Condensation in a Trap. Phys. Rev. Lett. 79, 1793 (1997). doi:
10.1103/PhysRevLett.79.1793.

[136] H.-O. Peitgen, H. Jürgens and D. Saupe. Chaos and Fractals. Springer-Verlag
(1992).

[137] H. G. Schuster. Deterministic Chaos. VCH Verlagsgesellschaft, Weinheim (1988).

[138] M. V. Berry. Regular and Irregular Motion. In S. Jorna (editor), Topics in Nonlinear
Dynamics, volume 46 of Am. Inst. Phys. Conf. Proc. (1978).

[139] R. H. G. Hellemann. Self-Generated Chaotic Behaviour in Nonlinear Mechanics. In
E. G. D. Cohen (editor), Fundamental problems in Statistical Mechanics, volume 5.
North-Holland Publ., Amsterdam (1980).

[140] L. Fallani, J. E. Lye, V. Guarrera, C. Fort and M. Inguscio. Ultracold Atoms in a
Disordered Crystal of Light: Towards a Bose Glass. Phys. Rev. Lett. 98, 130404
(2007). doi:10.1103/PhysRevLett.98.130404.
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Errata

Section 2.3.3: In Tab. 2.2 on page 27, the numerical value as well as the units of
the constant 4πaB~/m are wrong. The correct value is 4πaB~/m = 2π × 7.73 ×
10−14 Hz cm3. Note that the correct value has been used in Chapter 5, e.g. in
Fig. 5.10.

This error has been corrected in the online version of this thesis.
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