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Abstract

We consider the process γγ → tt̄H which can be studied at a future lin-
ear e+e−-collider operated in the two-photon mode. We compute the QCD
correction in order to increase the accuracy for the prediction of its cross
section.

The associated production of Higgs bosons and heavy quarks in two-
photon collisions allows for a further and direct measurement of the respec-
tive Yukawa coupling. The precise determination of the Higgs properties is
necessary in order to establish the Higgs mechanism of electroweak symmetry
breaking.

We evaluate the occurring tensor integrals by means of a recently pro-
posed reduction method. In case of exceptional phase space points, alterna-
tive recursion relations are used. These involve expansions in those parame-
ters which become small and would spoil the numerical evaluation. In order
to arrive at infrared-finite expressions, which can be numerically integrated
over the respective phase space in four dimensions, we apply a subtraction
method. The results for the subprocess γγ → tt̄H are integrated over the
spectra of the incoming photons in order to obtain a prediction for the parent
process e+e− → γγ → tt̄H, which can be studied at a linear e+e−-collider.

The correction for the subprocess as well as for the parent process amounts
to about 10% for high energies of the colliding particles. Near threshold, it
can reach several tenths of percent. We assess the scheme and scale depen-
dences to be reduced by one order of magnitude. To this end, we convert the
on-shell results to those valid in a mixed scheme.

The calculation of the virtual correction suggests that the recursion rela-
tions for exceptional phase space points, in particular when the determinant
of the kinematical matrix becomes small, are numerically unstable. In those
cases, we may set the integrand equal to zero without affecting the desired
numerical precision.

It turns out that our results for the QCD correction deviate from those
already given in the literature. A further independent calculation is therefore
highly desirable.



Zusammenfassung

Wir betrachten den Prozess γγ → tt̄H, der an einem zukünftigen linearen
e+e−-Beschleuniger im Zwei-Photon-Modus untersucht werden kann. Wir
berechnen die QCD-Korrektur, um die Genauigkeit der Vorhersage für seinen
Wirkungsquerschnitt zu erhöhen.

Die assoziierte Produktion von Higgs-Bosonen und schweren Quarks in
Zwei-Photon-Stößen erlaubt eine weitere und direkte Messung der entspre-
chenden Yukawa-Kopplung. Die genaue Bestimmung der Higgs-Eigenschaf-
ten ist notwendig zur Etablierung des Higgs-Mechanismus der elektroschwa-
chen Symmetriebrechung.

Zur Auswertung der auftretenden Tensorintegrale verwenden wir eine
kürzlich vorgeschlagene Reduktionsmethode. Im Fall von exzeptionellen Im-
pulskonfigurationen werden alternative Rekursionsrelationen benutzt. Hier
wird in denjenigen Parametern entwickelt, die klein werden und so die nu-
merische Auswertung instabil machen würden. Um infrarot-endliche Aus-
drücke zu erhalten, die numerisch in vier Dimensionen über den jeweiligen
Phasenraum integriert werden können, verwenden wir eine Subtraktions-
methode. Die Ergebnisse für den Subprozess γγ → tt̄H werden über die
Spektren der einlaufenden Photonen integriert, um eine Vorhersage für den
Elternprozess e+e− → γγ → tt̄H zu erhalten, welcher an einem linearen
e+e−-Beschleuniger untersucht werden kann.

Die Korrektur beträgt sowohl für den Subprozess als auch für den Eltern-
prozess ungefähr 10% bei hohen Energien der kollidierenden Teilchen. Nahe
an der Schwelle kann sie mehrere zehn Prozent erreichen. Wir schätzen ab,
dass die Schemen- und Skalenabhängigkeiten um eine Größenordnung re-
duziert werden. Hierzu rechnen wir die On-shell-Ergebnisse in solche um,
die in einem Misch-Schema gültig sind.

Die Berechnung der virtuellen Korrektur legt nahe, dass die Rekursi-
onsrelationen für exzeptionelle Phasenraumpunkte, insbesondere wenn die
Determinante der kinematischen Matrix klein wird, numerisch instabil sind.
In solchen Fällen können wir den Integranden gleich Null setzen, ohne dabei
die gewünschte numerische Genauigkeit zu verlieren.

Es zeigt sich, dass unsere Ergebnisse für die QCD-Korrektur von denen
abweichen, die bereits in der Literatur angegeben sind. Eine weitere un-
abhängige Rechnung wäre daher sehr wünschenswert.
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Chapter 1

Introduction

The standard model (SM) describes the fundamental interactions between
the elementary particles. It has been impressively confirmed by many exper-
iments. Among the particles contained in the SM, there is only one remaining
undiscovered. This is the Higgs boson (H), whose mass MH is a free param-
eter of the theory.

In order to generate masses for the fermions and gauge bosons without
violating the gauge symmetry of the theory, it is spontaneously broken by
means of the so-called Higgs mechanism. A complex doublet scalar field is
introduced which has a non-vanishing vacuum expectation value. Through
electroweak symmetry breaking, three massless Goldstone bosons arise which
become the longitudinal degrees of freedom of the massive W± and Z bosons.
The fourth degree of freedom is the Higgs boson which remains in the physical
spectrum.

The Higgs boson has already been directly searched for at the CERN
Large Electron-Positron Collider LEP 2. This led to a lower bound for its
mass of MH > 114.4 GeV at 95% confidence level (CL) [1]. But it is also
possible to search for indirect effects through quantum corrections involving
the Higgs boson. High-precision measurements, especially at LEP and the
SLAC Linear Collider SLC, yielded to the value MH =

(

76+33
−24

)

GeV at 68%

CL together with an upper limit of MH < 144 GeV at 95% CL [2].
On the other hand, theoretical considerations can also restrict the possible

values for the Higgs-boson mass. The vacuum-stability and triviality bounds
suggest that it lies between 130 and 180 GeV if the SM is valid up to the
grand-unification scale (see, for example, Refs. [3, 4]).

These measurements and considerations clearly show that the SM-Higgs

1
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boson, if existent, should be found at the CERN Large Hadron Collider
(LHC), where Higgs bosons with masses up to 1 TeV will be searched for. The
LHC will also be able to perform first measurements of SM-Higgs properties.
However, a detailed study of the Higgs sector is left to a future linear collider
like the International Linear Collider (ILC) [5].

Such a linear e+e−-collider can also be used to study processes where one
or both of the incoming particles are photons (see Ref. [6] and References
therein). Laser back-scattering of electron and positron beams produces
highly energetic photons in large numbers. The cross section for the consid-
ered subprocess is integrated over the photon spectra of the colliding photons
in order to get a prediction for the parent process e+e− → γγ → X.

In this work, we consider the production of SM-Higgs bosons in associ-
ation with a top (t) and an anti-top quark (t̄), γγ → tt̄H. This process
allows for a further and direct measurement of the Htt̄ Yukawa coupling. It
is therefore important to have an accurate prediction for the cross section
of this process. The Yukawa couplings can be significantly different in other
models compared to the SM. The measurement of the Htt̄ Yukawa coupling
thus also provides a means for discriminating different models [7]. Moreover,
it can be used in the determination of the CP properties of the Higgs boson.
A recent review on the SM-Higgs boson is given in Ref. [4]. The measurement
of the Htt̄ Yukawa coupling through the process e+e− → tt̄H was studied in
Refs. [8].

Only for Higgs-boson masses larger than twice the top-quark mass, the
Htt̄ Yukawa coupling could be measured in the decay of the Higgs boson
into a tt̄-pair. For masses favoured experimentally and theoretically, the
associated production of Higgs bosons is the only direct way of probing the
Yukawa coupling at the LHC as well as at a linear collider like the ILC [7].

Let us now summarise the present status of known results for the associ-
ated production of Higgs bosons, including the case of e+e−-collisions. For
completeness, we also list the References for the production of the charged
and neutral Higgs bosons of the minimal supersymmetric extension of the
SM (MSSM). The leading-order results for the production of Higgs bosons
in association with heavy quarks, namely top and bottom quarks, are all
known. For γγ-collisions, the results are specified in Refs. [9], [10], and [11]
for the production of SM-, neutral MSSM-, and charged MSSM-Higgs bosons,
respectively. In the case of e+e−-collisions, they are given in Refs. [12].
In Ref. [13], the QCD and electroweak corrections at next-to-leading order
(NLO) have been calculated for the SM-Higgs case in γγ-collisions. For e+e−-
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collisions, the NLO QCD results are all known. Refs. [14] contain the results
for the SM-Higgs boson, while Refs. [15] consider the neutral MSSM-Higgs
bosons. Within the MSSM, additional QCD corrections arise, which are not
due to the exchange or radiation of gluons. These have been evaluated for
the neutral Higgs bosons in Refs. [16]. The full QCD results at NLO for the
charged Higgs bosons are given in Ref. [17]. Furthermore, the electroweak
corrections are known for the associated production of SM-Higgs bosons in
e+e−-collisions. They can be found in Refs. [18]. A recent review on the
MSSM-Higgs bosons is given in Ref. [19].

Here, we consider the NLO QCD correction to the process γγ → tt̄H.
It is due to the exchange of virtual and the radiation of real gluons. While
a result for this correction already exists in the literature, an independent
calculation is still lacking. However, a confirmation of the result is indispens-
able for such a complex calculation. Furthermore, this computation is the
first step towards a calculation of the missing NLO corrections for the asso-
ciated production of MSSM-Higgs bosons and heavy quarks in two-photon
collisions. Moreover, polarisation effects could be taken into account and the
background to this process could be studied in future extensions of this work.

The inclusion of the QCD correction should reduce the theoretical er-
ror of the prediction for the cross section. In particular, the scheme and
scale dependences are expected to decrease significantly. In order to reduce
the occurring tensor integrals, we apply the method recently developed in
Refs. [20]. The application of the method in this non-trivial case, which in-
cludes massive propagators, allows for a further assessment of its usefulness
in realistic NLO computations. Therefore, the present calculation is also of
conceptual importance.

This work is organised as follows. We first outline the general setup, in-
troduce the notation, and explain the basic calculational methods. This is
done in Chapter 2. The actual calculations are shown in Chapter 3. We dis-
cuss the general approach and address the evaluation of the basis integrals.
Furthermore, we perform the cancellation of the ultraviolet (UV) as well as of
the infrared (IR) divergences. Also diverse calculational details are specified.
We conclude this Chapter by discussing the various checks that have been
considered. Chapter 4 contains the numerical results of our computation. It
also addresses the issue of scheme and scale dependences. Finally, a compar-
ison is drawn with the results specified in the literature. We conclude with
a summary in Chapter 5.



Chapter 2

Calculational Methods

In order to calculate the QCD correction to the process e+e− → γγ → tt̄H,
we have to reduce the occurring tensor integrals to a basis set of known
integrals. The method used here is explained in Section 2.2. The virtual
correction as well as the real one develop IR singularities which only cancel
in the sum of both contributions to the cross section. We apply a subtrac-
tion method in order to deal with these singularities, which is described in
Section 2.3. Since we consider the process γγ → tt̄H, where the two photons
are produced via laser back-scattering, we have to integrate its cross section
over the spectra of the incoming photons. The respective photon spectrum
is discussed in Section 2.4. Before the general methods are outlined, we shall
set the notation and discuss the framework of our calculations. This is done
in Section 2.1.

2.1 General Setup

The Born level diagrams of the subprocess γγ → tt̄H are depicted in Fig. 2.1.
In the six diagrams, the two photons couple to a top quark off which the
Higgs boson is radiated. The momenta of the external particles are defined
as follows:

γ(p1) γ(p2) → t(p3) t̄(p4) H(p5) . (2.1)

Here, the momenta of the two photons are considered incoming while the
others are outgoing. Momentum conservation yields the following relation
between the five momenta:

p1 + p2 − p3 − p4 − p5 = 0 . (2.2)

4
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Figure 2.1: Born level diagrams for the subprocess.

The on-shell conditions read:

p2
1 = 0 , p2

2 = 0 , p2
3 = m2

t , p2
4 = m2

t , p2
5 = M2

H , (2.3)

where mt and MH are the masses of the top quark and of the Higgs boson,
respectively. Furthermore, we define the kinematical invariants

sij = (pi + pj)
2 with i, j ε {1, . . . , 4} . (2.4)

Exploiting momentum conservation and the on-shell conditions, we get the
following relation between the kinematical invariants:

s13 + s14 + s23 + s24 − s12 − s34 − 4m2
t +M2

H = 0 . (2.5)

We call the polarisation vectors of the incoming photons ε1(p1) and ε2(p2).
These are transverse:

ε1(p1) · p1 = 0 and ε2(p2) · p2 = 0 . (2.6)

The spinors of the outgoing top and anti-top quarks are denoted as ū(p3)
and v(p4), respectively. They obey the Dirac equations

ū(p3) · /p3
= ū(p3) ·mt and /p4

· v(p4) = −mt · v(p4) . (2.7)
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The amplitude of the process has the general form

M =
16
∑

i=1

Ci ū(p3) Γi v(p4) , (2.8)

where the Γi are 16 independent structures in Dirac space and the Ci their
coefficients. We choose the Γi as

Γ1 = 1 , Γ2 = /p1
, Γ3 = /p2

, Γ4 = /p1/p2
− /p2/p1

,

Γ5 = /ε1 , Γ6 = /ε1/p1
, Γ7 = /ε1/p2

, Γ8 = /ε1/p1/p2
,

Γ9 = /ε2 , Γ10 = /ε2/p2
, Γ11 = /ε2/p1

, Γ12 = /ε2/p2/p1
,

Γ13 = /ε1/ε2 − /ε2/ε1 , Γ14 = /ε2/ε1/p1
, Γ15 = /ε1/ε2/p2

,

Γ16 = /ε1/p1
/ε2/p2

+ /ε2/p2
/ε1/p1

. (2.9)

The momenta p5 as well as p3 and p4 do not show up in these Dirac structures
since they can be eliminated by the use of momentum conservation and the
Dirac equations, respectively. The coefficients Ci must be of the form

C1 = U (1)ε1 · ε2 +
4
∑

j1,j2=1

U
(1)
j1j2 pj1 · ε1 pj2 · ε2 ,

C2 = U (2)ε1 · ε2 +
4
∑

j1,j2=1

U
(2)
j1j2 pj1 · ε1 pj2 · ε2 ,

C3 = U (3)ε1 · ε2 +
4
∑

j1,j2=1

U
(3)
j1j2 pj1 · ε1 pj2 · ε2 ,

C4 = U (4)ε1 · ε2 +
4
∑

j1,j2=1

U
(4)
j1j2 pj1 · ε1 pj2 · ε2 ,

C5 =
4
∑

j=1

X
(1)
j pj · ε2 ,

C6 =
4
∑

j=1

X
(2)
j pj · ε2 ,

C7 =
4
∑

j=1

X
(3)
j pj · ε2 ,

C8 =
4
∑

j=1

X
(4)
j pj · ε2 ,
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C9 =
4
∑

j=1

Y
(1)
j pj · ε1 ,

C10 =
4
∑

j=1

Y
(2)
j pj · ε1 ,

C11 =
4
∑

j=1

Y
(3)
j pj · ε1 ,

C12 =
4
∑

j=1

Y
(4)
j pj · ε1 ,

C13 = Z(1) ,

C14 = Z(2) ,

C15 = Z(3) ,

C16 = Z(4) . (2.10)

Again, the momentum p5 has been eliminated by means of momentum con-
servation. Note that some of the terms in above sums are equal to zero upon
Eqs. (2.6). We are therefore left with 68 different structures. The U (i), U

(i)
j1j2 ,

X
(i)
j , Y

(i)
j , and Z(i) are the corresponding coefficients which are, however, not

all independent. This leads to different checks on the calculations, as ex-
plained in Section 3.5. The coefficients depend on the sij and on the masses
of the external particles. Due to Eq. (2.5) and the on-shell conditions of
Eqs. (2.3), only mt, MH , and five additional kinematical invariants sij are
independent.

Let us now expand the amplitude in the QCD coupling αs:

M = M0 + αs M1 + . . . , (2.11)

where M0 and M1 denote the amplitude at tree level and at NLO QCD,
respectively, and the ellipsis represents the residual NLO contributions as well
as all contributions beyond NLO. In order to obtain the cross section for the
subprocess, we have to integrate the squared amplitude over the respective
phase space. The squared amplitude reads, using Eq. (2.11) and truncating
the perturbation series after the linear term in αs:

|M|2 = |M0|2 + 2αs< (M1 ·M∗
0) . (2.12)

We consider unpolarised particles in the external state. Therefore, we have
to average over the polarisations of the incoming photons and sum over the
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spins of the outgoing top and anti-top quarks. Also the colour states of the
quarks have to be summed over which leads to an overall factor of NC = 3,
the number of colours, for the Born level diagrams.

At NLO QCD, we have to calculate the one-loop diagrams where a virtual
gluon (g) is exchanged. Additional contributions arise from the radiation of
a real gluon off the top-quark line. If the energy of this gluon is sufficiently
small, it cannot be resolved by the detector due to its finite resolution. In this
case, the original process and the real radiation process are degenerate and
cannot be distinguished. Therefore, we have to take the latter into account.
In fact, the virtual correction and the real correction both develop IR diver-
gences which only cancel in the sum of these contributions (see Section 3.3
and below).

The one-loop diagrams contain tensor integrals with up to five external
legs. In detail, we encounter 12 diagrams with self-energy corrections, 18
with vertex corrections, 12 box diagrams, and 6 pentagon diagrams. Sample
diagrams of each type are depicted in Figs. 2.2, 2.3, 2.4, and 2.5, respectively.
Note, that we have not counted those diagrams where the loop does not
involve a gluon line. If only quark lines are present in the loop, one gluon
is always attached to it. Due to colour conservation, all these contributions
are identically zero. In Fig. 2.6, we exemplarily show some of the 24 real
correction diagrams. The application of the colour algebra to the diagrams
enumerated above always leads to a colour factor of NCCF = 4, CF = 4/3
being the casimir operator of the fundamental representation of the SU(3)
Gauge group.

.
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Figure 2.2: Sample diagrams for the subprocess at NLO QCD; self-energy
corrections.
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Figure 2.5: Sample diagrams for the subprocess at NLO QCD; pentagon
diagrams.

In the case of the real correction diagrams, a gluon appears as a further
particle in the final state. We denote its momentum as p6 and its polarisation
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Figure 2.6: Sample diagrams for the real correction to the subprocess at NLO
QCD.

vector as ε6(p6). They obey:

ε6(p6) · p6 = 0 and p2
6 = 0 . (2.13)

Momentum conservation for this 2 → 4 process reads:

p1 + p2 − p3 − p4 − p5 − p6 = 0 . (2.14)

If we now augment the set of kinematical invariants given in Eq. (2.4) by
those involving the momentum p5 of the external Higgs boson, we can write
down the following relation between them:

s12−s13−s14−s15−s23−s24−s25 +s34 +s35 +s45 +2m2
t +M2

H = 0 . (2.15)

In the case of the real correction, however, we will not make use of a general
form for the amplitude like the one of Eqs. (2.8, 2.9, 2.10).

The loop integrals may develop UV divergences when the loop momentum
approaches ±∞. These divergences are removed through renormalisation of
the mass and the wavefunctions of the top and anti-top quarks in the dia-
grams of Fig. 2.1. Also IR divergences can appear in the loop integration. We
distinguish the two cases of collinear and soft IR divergences. The collinear
divergences show up when an external line with a light-like momentum is
attached to two massless propagators. In this case, a singularity is developed
when the propagator momenta are collinear to the external momentum. In-
spection of our one-loop diagrams reveals that they do not develop collinear
divergences. However, they do produce soft IR divergences. These show
up when a massless particle is exchanged between two on-shell particles.
Here, the singularity appears for integration momenta where the propagator
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momentum of the massless particle approaches zero. Examples for such a
configuration are given by the diagrams of Fig. 2.5. Inspection now reveals
that all diagrams involving pentagon integrals develop soft IR divergences
while none of the other diagrams do so. For a detailed treatment of the IR-
singularity structure of one-loop integrals see, for example, Ref. [21]. On the
other hand, also the phase space integration of the real correction diagrams
may produce such divergences. Here, collinear singularities appear when a
massless external particle splits into two massless particles. The divergence
arises in the region of phase space where the two particles become collinear.
Again, in the process under consideration, this is not the case. Soft singu-
larities show up if a massless particle is radiated off an external line. In the
region of phase space where the momentum of the massless particle tends to
zero, the singularity is developed. This is the case, for example, in the first
diagram of Fig. 2.6. Since we only encounter soft IR divergences, we do not
have overlapping IR singularities. Note that also the wavefunction renormal-
isation contributes IR-divergent terms. This is discussed in Section 3.3. The
soft IR divergences are shown to cancel in the sum of the three contributions
in the same Section.

In order to perform the loop and phase space integrations, we first have
to regularise the integrals. We choose dimensional regularisation, with di-
mension d = (4 − 2ε), for both the UV as well as the IR divergences. Let
us conclude this Section by setting the notation for a generalised N -point
tensor integral of rank m:

Iµ1µ2···µm

N (D; {qi}, {νi}) =
∫

dD`

iπD/2

`µ1`µ2 · · · `µm

dν1
1 d

ν2
2 · · ·dνN

N

, (2.16)

with the propagators defined as

di = (`+ qi)
2 −M2

i + i0. (2.17)

The µj, j ε {1, 2, ..., m}, are Lorentz indices, ` is the loop momentum, and
`+ qi are the momenta of the diverse propagators with masses Mi, with
i ε {1, 2, ..., N}. The integral is generalised with regard to the common N -
point functions in respect that the propagators are raised to the integer
powers νi and the dimension is given as D = (n − 2ε), n also being an
integer. i0 is the common infinitesimal imaginary part. The sum of the
powers of the propagators, νi, is denoted as σ.
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2.2 Tensor Reduction

We have to compute tensor integrals in order to evaluate the one-loop di-
agrams. In our case, they can have up to five external legs (see Fig. 2.5)
with a maximal rank of m = 4. The rank is, however, further reduced to a
maximal value of m = 3 through the application of the Dirac algebra. We
choose to reduce these integrals to a basis set, using the methods worked out
in Refs. [20]. Reviews of the different methods for computing tensor integrals
are given in Refs. [20, 22].

In the following, we outline the approach of Refs. [20]. Thereby, we
restrict ourselves to the case of tensor integrals with N < 6 which may
develop only soft IR singularities. However, we take into account that the
integrands of our tensor integrals contain massive top-quark propagators.

At first, the tensor integrals are reduced to scalar integrals by means of
the method developed in Ref. [23]. This way, the tensor N -point integrals
are expressed as a sum of scalar N -point integrals with higher dimension and
raised powers of the propagators:

Iµ1µ2···µm

N (D; {qi}, {1}) =

∑

λ,x1,x2,...,xN

δ(2λ+
∑

i
xi−m)0

(

−1

2

)λ

x1! x2! · · · xN !

×
{

gλqx1
1 q

x2
2 · · · qxN

N

}µ1µ2 ···µm

× IN (D + 2(m− λ); {qi}, {1 + xi}) . (2.18)
{

gλqx1
1 q

x2
2 · · · qxN

N

}µ1µ2···µm

means that the m Lorentz indices are carried by λ

metric tensors and xi momentum vectors qi, i ε {1, 2, ..., N}, in all possible
manners. We have, for example,

{q1q2}µ1µ2 = qµ1
1 qµ2

2 + qµ2
1 qµ1

2 . (2.19)

The generalised scalar integrals produced this way are UV divergent if
σ = D/2. They may be IR divergent if (σ − N + 2) = D/2. Additional
requirements for IR singularities have already been discussed in Section 2.1.
Integrals which lie between these boundaries are definitely finite. Fig. 2.7 now
shows the scalar integrals as dots in the (D/2, σ−N) plane for N = 2, 3, 4, 5.
We see that the two boundaries are given by the lower and the upper solid
line, respectively. Only the six-dimensional self-energy, which is also UV
divergent, lies beyond these boundaries. The two lines coincide for two-point
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Figure 2.7: The generalised scalar integrals are shown in the (D/2, σ − N)
plane for the different cases N = 2, 3, 4, 5. The Figure has been taken from
the first of Refs. [20].

functions. However, in our case, these integrals have at least one massive
propagator and are therefore UV but not IR divergent. In Fig. 2.8, the
integrals are shown in the (N, σ) plane. This allows to read off all the UV
divergent integrals. In our case, we only have

{I3(6 − 2ε; {qi}, 1, 1, 1), I2(6 − 2ε; {qi}, 2, 1), I2(4 − 2ε; {qi}, 1, 1)} . (2.20)

But also in the general case, there is only a small number of UV-divergent
integrals. These are extracted and considered as basis integrals.

In contrast, the UV-finite integrals are reduced to a basis set of integrals
by means of recursion relations. The latter express an integral through a
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Figure 2.8: The generalised scalar integrals are shown in the (N, σ) plane for
the different cases D = 4, 6, 8, 10. The Figure has been taken from the first
of Refs. [20].

sum of integrals which have a lower dimension and/or smaller propagator
powers. Recursion relations can be obtained as follows. The integration by
parts identity of Refs. [24] is applied to

∫ dD`

(2π)D

∂

∂`µ





(

∑N
i=1 yi

)

`µ +
(

∑N
i=1 yiq

µ
i

)

dν1
1 d

ν2
2 · · ·dνN

N



 , (2.21)

where the {yi} are N arbitrary parameters. We work out the respective
relation and apply the dimensional shift identity,

IN (D − 2; {νk}) = −
N
∑

i=1

νiIN(D; {νk + δik}) . (2.22)
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Here and in the following, we often suppress the argument {qi} of the gener-
alised scalar integral. We get the following base equation:

N
∑

j=1

(

N
∑

i=1

Sjiyi

)

νjIN (D; {νl + δlj}) =

−
N
∑

i=1

yiIN(D − 2; {νl − δli}) −


D − 1 −
N
∑

j=1

νj





(

N
∑

i=1

yi

)

IN(D; {νl}) .

(2.23)

Here, we have introduced the kinematical matrix Sij = (qi− qj)2−M2
i −M2

j .
For N ≤ 6, the determinant of Sij is unequal zero and the inverse of Sij

exists. We can, therefore, choose the {yi} such that
∑N

i=1 Sjiyi = δjk, for any
k ≤ N , is fulfilled. The left-hand side of the base equation then reduces to a
single term and yields a useful recursion relation. The desired {yi} read:

yi = S−1
ik for any k ≤ N . (2.24)

The inverse can be numerically calculated, for example, by means of the
Singular Value Decomposition technique. If we insert Eq. (2.24) into the
base equation, we obtain the basic recursion relation

(νk − 1)IN(D; {νl}) =

−
N
∑

i=1

S−1
ki IN(D − 2; {νl − δli − δlk}) − bk (D − σ) IN(D; {νl − δlk}) ,

(2.25)

with bi =
∑

j S
−1
ij . Summing this equation over k and applying the dimen-

sional shift identity, we get:

(D − 1 − σ) B IN (D; {νl}) =

IN(D − 2; {νl}) −
N
∑

i=1

biIN (D − 2; {νl − δli}) , (2.26)

respectively

IN(D; {νl}) =

(D + 1 − σ) B IN(D + 2; {νl}) +
N
∑

i=1

biIN(D; {νl − δli}) , (2.27)
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with B =
∑

i bi. Combining Eqs. (2.25) and (2.26), we finally find:

(νk − 1)IN(D; {νl}) =

−bk
B
IN(D − 2; {νl − δlk})

+
N
∑

i=1

(

bkbi
B

− S−1
ki

)

IN(D − 2; {νl − δli − δlk}) . (2.28)

Note that above recursion relations can lead to propagator powers equal to
zero. In this case, the respective propagator is pinched out and the N -point
integral becomes an (N − 1)-point integral.

The different recursion relations now shall be exploited in order to sys-
tematically reduce the UV-finite integrals to a basis set. The relations are
illustrated as arrows in Fig. 2.9. First, Eq. (2.27) is applied to the integrals
with N 6= 3 and D = 4. Then, Eq. (2.25) is used for integrals with N 6= 3
and (σ−N+2) = D/2. Now, Eqs. (2.26) and (2.28) are subsequently applied
respecting (σ−N +2) < D/2 ≤ σ. For triangle integrals with mass and mo-
mentum configurations of IR-divergent ones, however, we have det(S) = 0.
Thus, these integrals cannot be reduced as above. They are considered as
basis integrals.

As can be seen from Fig. 2.9, in the case of triangles and boxes, the
recursion relations express finite integrals through UV-divergent ones. Of
course, these artificial UV divergences cancel in the sum. This is due to

N
∑

i=1

(

bkbi
B

− S−1
ki

)

= 0 , (2.29)

which is the prefactor of the UV poles appearing on the right-hand side
of Eq. (2.28) which produces the artificial UV divergences. However, it is
possible to subtract regulator terms from the divergent integrals. These read

R(D, σ) =
1

ε

(−1)σ

Γ(D − σ)
, (2.30)

with D = 2σ. Also these regulator terms cancel in the sum due to Eq. (2.29).
Furthermore, the regulated integrals still respect Eq. (2.26). Since Eq. (2.28),
which produces the artificial divergences, does not contain the dimension as
a factor, we do not get additional finite terms from ε multiplying a divergent
integral. Eq. (2.26), which does contain the dimension as a factor, is now
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Figure 2.9: The generalised scalar integrals as well as the different recursion
relations are shown in the (D/2, σ) plane for the different cases N = 3 (a),
N = 4 (b), and N = 5 (c). The recursion relations are indicated as arrows.
The Figure has been taken from the first of Refs. [20].

only applied to regulated integrals. We also do not get such finite terms from
the reduction of IR-divergent pentagon and box integrals. The only integrals
which are produced by Eqs. (2.25) and (2.27) together with the dimension
as a prefactor are finite.

The result of the procedure outlined above is that the generalised scalar
integrals are expressed through a basis set of integrals. Note, however, that
this set is overcomplete and therefore not a true basis in the mathematical
sense. The basis set consists of the following integrals:

• the IR-divergent triangle integrals which lie on the D = 2(σ − 1) line
in Fig. 2.9,

• the UV-regularised triangle integrals which have an IR-divergent con-



CHAPTER 2. CALCULATIONAL METHODS 18

figuration and lie on the D = 2σ line in Fig. 2.9,

• the UV-regularised self-energy integrals which have D = 2σ,

• the finite four-dimensional triangle integrals with all propagator powers
equal to one,

• the finite six-dimensional box integrals with all propagator powers equal
to one,

• the finite six-dimensional pentagon integrals with all propagator powers
equal to one,

• the UV-divergent integrals which are extracted right from the begin-
ning.

Actually, the six-dimensional pentagon integrals only appear with coefficients
of order O(ε) (see for example [25]). Since these integrals are finite, they thus
do not contribute at NLO.

The application of Eqs. (2.25) and (2.27) to the pentagon and box inte-
grals which lie on the respective IR line (σ−N +2) = D/2 leads to integrals
with pinched propagators. These integrals, however, still lie on an IR line.
Eventually, all IR-divergent integrals are expressed through finite integrals
and IR-divergent triangles. This way, the IR-singularity structure is con-
tained solely in three-point functions. The expression for the IR-divergent
part of an amplitude obtained through the recursion procedure is, however,
quite complex. It is therefore not well suited for an analytic cancellation.
But it can also be determined without recourse to any recursion relations. It
can be directly read off the original tensor integrals. The resulting expression
is very compact and can be used for the cancellation of the IR divergences.
The generalisation of this method to the massive case can be done with the
help of Ref. [21]. Here, we concentrate on the case of integrals which have at
most one massless line. Such integrals can only develop soft IR singularities.
This is the case for the process considered in this work.

As already mentioned in Section 2.1, the IR singularities only occur for the
pentagon integrals. Here, the massless gluon is always exchanged between
on-shell top and anti-top quarks. The loop integration develops a soft IR
singularity when the momentum of the gluon propagator reaches zero. Then
the gluon propagator as well as its neighbouring propagators become singular.
In order to extract this singularity in terms of a three-point function, we
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just have to pick out these three propagators, which now build the desired
triangle, and set the loop momentum in the other two propagators equal to
−qj, where j denotes the propagator of the gluon. If the original integral
contains loop momenta in the numerator, these can either be integrated over
the loop momentum together with the three propagators of the triangle or
also set to −qj. Here, k = max(m + 3 − N, 0) of the loop momenta in the
numerator are chosen as part of the triangle integral while the others are
substituted. The Lorentz indices of the loop momenta are now assigned in a
symmetric way, and the resulting tensor three-point function is reduced by
means of Eq. (2.18). The chosen value for the rank of the triangle integrals
has the effect that the same generalised IR-divergent triangle integrals occur
as in the case of the reduction procedure. This can be seen by inspection
of the recursion relations. From the resulting triangle integrals only the
IR-divergent ones are kept. These now contain the desired IR-singularity
structure. We therefore have:

Iµ1µ2···µm

5 (d; {qi}, {1}) |IR
=

`µk+1 · · · `µm

dadb

|
`→(−qj)

×
∑

0≤x≤k

∑

0≤y≤(k−x)

x! y! (k − x− y)!
{

qx
j−1q

y
j q

k−x−y
j+1

}[µ1µ2···µk ]

× I3 (d+ 2k; qj−1, qj, qj+1, 1 + x, 1 + y, 1 + k − x− y) , (2.31)

where j − 1 and j + 1 denote the neighbouring propagators of the gluon
propagator, and a, b label the residual ones. [µ1µ2 · · ·µk] means that k
Lorentz indices have to be chosen out of the m in all possible ways while their
order does not make a difference. All these different terms are then summed
over and divided by their total number. Note that, on the right-hand side
of the latter Equation, a triangle integral can still be IR finite depending on
the powers of the propagators. As said above, only the IR-divergent ones are
kept.

This expression for the IR-singularity structure is very compact in com-
parison to the one obtained by the reduction procedure. It is therefore better
suited for an analytic cancellation of the IR divergences. Of course, it can
also be used to account for finite terms that appear through multiplication
of IR poles with O(ε)-terms in front of the original integrals. While we now
have an analytic expression for the IR-divergent part, the reduction of the
amplitude can be performed numerically in four dimensions.
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The recursion relations, which have been written down in Eqs. (2.25, 2.26,
2.27, 2.28), are used in order to reduce the generalised scalar integrals to a
basis set of integrals. However, for certain configurations in phase space, the
B parameter and/or the determinant of the kinematical matrix may become
small. The B parameter occurs in denominators of the recursion relations.
A small determinant for the kinematical matrix means that the numerical
inversion of the matrix becomes unstable. In the case that the respective
parameter is exactly zero, it is possible to switch to relations which have
been developed for integrals with more than five external legs. However, if it
is not exactly zero but very small, the above mentioned recursion relations
become numerically unstable. Then, we have to use alternative recursion
relations which involve expansions. We refrain from outlining the whole
method for treating these so-called exceptional momentum configurations,
but only treat the simplest case of a small B parameter while the inversion
of the kinematical matrix is stable. This actually means that the determinant
of the Gram matrix is small. The latter is defined as follows:

Gij = 2 qi · qj with i, j ε {1, . . . , N − 1} , (2.32)

where qN = 0 is assumed. The two determinants and the B parameter are
related as follows:

det(G) = (−1)N−1B det(S) . (2.33)

From this relation we readily see that a small B parameter implicates a small
Gram determinant. In this case, the recursion relations of Eqs. (2.25) and
(2.27) are still numerically stable. In opposition, the relations of Eqs. (2.26)
and (2.28) contain the B parameter in the denominator. They cannot be
used anymore. In this case, Eq. (2.25) is still applied to integrals lying on
the respective IR line while Eq. (2.27) is used in all the other cases. The
latter relation expresses an integral through a higher-dimensional one and a
sum of integrals whose sums of propagator powers are reduced by one. Each
of these integrals is again subject to Eq. (2.27) if none of its propagators
has been pinched out. Eventually, we will arrive at integrals with a pinched
propagator and integrals which have a certain power of the B parameter as a
prefactor. This means we get an expansion in the small B parameter which
can be truncated when the desired accuracy has been achieved. In practice,
we have to scale the B parameter by powers of a typical hard scale of the
process in order to get a dimensionless parameter. Here, we choose the mass
of the top quark as the hard scale.
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Also in the other cases, alternative recursion relations can be set up. In
principle, this allows for the reduction of an arbitrary integral within the
desired precision. However, the alternative relations involve iterations which
slow down the evaluation. Note further that the application of the alternative
recursion relations leads outside the UV/IR boundaries shown in Fig. 2.7.
Moreover, the nice feature that no O(ε)-terms have to be accounted for during
the reduction of an integral is lost. But still, it is possible to numerically
evaluate the coefficients of the Laurent expansions of the integrals. It should
also be noted, however, that the basis box integral is now chosen to be the
four-dimensional one instead of the six-dimensional.

The computation of the virtual part is the bottleneck of NLO calcula-
tions. The method of Refs. [20], which has just been indicated, presents, in
principle, a possibility to evaluate arbitrary tensor integrals in an efficient
way. However, the applicability can only be assessed by computing realistic
NLO cross sections. This has already been done for massless internal par-
ticles in Refs. [20, 26]. In Ref. [27], the method has partly been employed
to a process containing massive particles in the loop. This work allows for
a further assessment of its usefulness. It is concerned with a 2 → 3 process
which includes massive propagators.

2.3 Subtraction Method

As discussed in Section 2.1, the virtual correction and the real correction
separately develop IR singularities. Within dimensional regularisation, these
manifest themselves as poles in the parameter ε. The divergences of the
virtual part stem from the loop integration. Those of the real correction arise
during the phase space integration with respect to the additionally radiated
gluon which then becomes soft. We therefore have two types of contributions,
which are integrated over different phase spaces, and the IR singularities only
cancel in their sum. This prevents a straightforward numerical integration
in four dimensions. If we used a small gluon mass for the IR regularisation
instead of dimensional regularisation, the two contributions would separately
develop logarithms of this small mass. In the sum of the virtual and real
contributions, this would lead to large cancellations which spoil the numerical
evaluation.

One way to deal with the IR singularities is given by the method called
Phase Space Slicing. Here, the integration over the one-particle phase space
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of the gluon is divided into two parts by means of an energy cutoff. If the
energy of the gluon is below the cutoff, the eikonal approximation can be
used. It is then possible to analytically evaluate this integration. Since it
is this part of the phase space which is responsible for the IR singularities,
we now have an analytic expression for it. This procedure is universal and
always leads to a factorisation of the squared amplitude into the squared
Born amplitude times an eikonal factor. On the other hand, the phase space
integration for gluon energies above the cutoff can be performed completely
numerically in four dimensions. The analytic expression for the IR singu-
larities still has to be integrated over the same phase space as the virtual
part. This contribution can therefore be combined with the virtual correc-
tion in order to perform the cancellation of the IR divergences analytically.
The resulting expression can be numerically integrated in four dimensions.
Note that the Phase Space Slicing method can also be used in order to treat
collinear singularities. Further cutoffs extract the parts of phase space where
the collinear singularities are developed.

In this work, however, we employ a subtraction method. Such methods
do not make use of cutoffs and approximations. Therefore, also no tuning
of cutoffs has to be performed in order to find regions for their values where
the results are stable against variations of them. Furthermore, subtraction
methods can automatically avoid double counting in the case of overlapping
divergences. Note further that the Phase Space Slicing method leads to small
parts in phase space which are not integrated over (see for example Ref. [28]).
However, this again only concerns the case of overlapping divergences.

An actual implementation of the subtraction method is given by the
Dipole Subtraction Method, which is also used here. It has first been worked
out for massless, unpolarised QCD partons, within dimensional regularisa-
tion, in Ref. [29]. A generalisation for massive, polarised particles within
QED was achieved in Ref. [30]. In this work, mass regulators have been em-
ployed as it is common for electroweak calculations. In the case of massive
particles, large logarithms can arise due to particles with non-vanishing but
very small masses compared to a typical hard scale of the process. These
small masses act as collinear regulators. In the sum, such logarithms can-
cel like the logarithms of true regulator masses. The subtraction method
has been set up in a way that also these logarithms are accounted for. In
Ref. [31], the results for massive fermions with equal masses have been given
for unpolarised QCD partons and dimensional regularisation. However, large
logarithms are not treated in this work. Finally, the full generalisation for
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massive, unpolarised QCD partons has been obtained in Ref. [32]. Dimen-
sional regularisation is employed and the large logarithms are accounted for.
For other implementations of the subtraction method we refer the reader to
Ref. [33] and References therein.

In this Section, we outline the Dipole Subtraction Method of Ref. [32].
The top quark and the anti-top quark in the final state are the only external
QCD partons at Born level in the process under consideration. The soft IR
divergences of the real cross section are due to the splitting of the top quark
into a top quark and a soft gluon respectively of the anti-top quark into
an anti-top quark and a soft gluon. The treatment of the colour algebra is
simple. As already mentioned in Section 2.1, the Born diagrams all receive a
colour factor of NC = 3 while the real and virtual correction diagrams lead
to a factor of NCCF = 4. The subtraction terms all involve the squared Born
amplitude with an additional colour factor of CF = 4/3. In the following,
we will restrict ourselves to this simplest case. The subtraction terms for the
virtual and for the real part will be written down explicitly.

Several complications arise in the general case. The colour algebra is
more involved. Gluons in the final state demand helicity projections. All
possible splittings of the QCD partons have to be taken into account. Ini-
tial state radiation takes place and collinear divergences occur. Initial state
radiation or final state tagged hadrons lead to leftover singularities which
are absorbed into parton distribution functions respectively fragmentation
functions. Furthermore, large logarithms due to QCD partons with small
but non-vanishing masses occur. These issues are not discussed here. We
just like to note that the special treatment of the large logarithms allows to
perform the massless limit for processes where the respective small parton
mass does not set the hard scale.

The cross section of a process at NLO is built as the sum of the Born cross
section and the NLO correction. The latter consists of a virtual and a real
contribution. The Born cross section as well as the virtual part are integrated
over the phase space of the m external particles of the Born diagrams. The
phase space integration of the real part involves m + 1 particles since an
additional QCD parton is radiated. The situation looks as follows:

σ = σLO + σNLO =
∫

m
dσB +

∫

m+1
dσR +

∫

m
dσV . (2.34)

Within a subtraction method, an auxiliary cross section dσA is introduced
which has the same pointwise singular behaviour in d dimensions as dσR
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(adopting dimensional regularisation). dσA is furthermore chosen simple
enough to enable an analytic integration over the one-parton subspace of the
additionally radiated parton. The auxiliary cross section is then subtracted
from the real contribution and added back to the virtual one:

σNLO =
∫

m+1

[(

dσR
)

ε=0
−
(

dσA
)

ε=0

]

+
∫

m

[

dσV +
∫

1
dσA

]

ε=0
. (2.35)

Here,
∫

1 dσ
A denotes the auxiliary cross section integrated over the one-

parton subspace. As we can see, dσA acts as a local counterterm for dσR

so that the subtracted expression can be integrated numerically in four di-
mensions.

∫

1 dσ
A, on the other hand, cancels the poles of the virtual term

dσV . After this cancellation has been performed (see Section 3.3), the di-
mension can be set to four also for the subtracted virtual expression. Again,
a numerical integration in four dimensions is possible. We therefore obtain
two expressions which are well suited for an implementation in a Monte Carlo
program. Note that the need for numerical methods is clearly given by the
complexity of NLO calculations.

The real cross section dσR obeys soft and collinear factorisation prop-
erties. In the soft and collinear limits, it factorises into the corresponding
Born cross section dσB times a universal singular factor. In this sense, the
IR-singularity structure of the real cross section is process independent. This
fact can be exploited in order to set up a general prescription for constructing
the auxiliary cross section. Here, dσA is built as the sum of so-called dipoles.
These dipoles resemble the real cross section in the singular limits so that
the auxiliary cross section indeed has the same pointwise singular behaviour
as the real one. We can write symbolically:

dσA =
∑

dipoles

dσB ⊗ dVdipole , (2.36)

where the differential dipole factors are denoted as dVdipole. In our case, ⊗
just means the common product. In general, ⊗ involves colour and spin
correlations. Each dipole contains two specific partons, an emitter and a
spectator. The emitter splits into two partons and leads to IR singularities.
The spectator contains information on colour and spin correlations of dσR

and balances momentum conservation. The sum in Eq. (2.36) exhausts all
ordered combinations of two external partons appearing at Born level. A
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dipole interpolates smoothly between soft and collinear limits. Therefore,
double counting is automatically avoided. In addition to the dipole factors,
we need a mapping from the (m+1)-parton phase space to anm-parton phase
space times a 1-parton phase space factor, where the former corresponds to
the Born level phase space. This allows to perform the integral of the dipole
factors over the 1-parton phase space factor in a process-independent way.
Symbolically we can write:

∫

m+1
dσA =

∑

dipoles

∫

m
dσB ⊗

∫

1
dVdipole =

∫

m

[

dσB ⊗ I
]

(2.37)

with I =
∑

dipoles

∫

1
dVdipole . (2.38)

The universal factor I contains all the IR singularities as poles in ε. Using
Eqs. (2.36) to (2.38), we can specify Eq. (2.35) as

σNLO =
∫

m+1





(

dσR
)

ε=0
−




∑

dipoles

dσB ⊗ dVdipole





ε=0





+
∫

m

[

dσV + dσB ⊗ I
]

ε=0
. (2.39)

Let us now, for completeness, specify the general phase space dΦm in d
dimensions:

dΦm(p1, . . . , pm;P ) =

[

m
∏

i=1

ddpi

(2π)d−1
δ+(p2

i −m2
i )

]

(2π)dδ(d)(p1 + . . .+ pm −P ) ,

(2.40)
with the total incoming momentum P and the on-shell masses mi of the final
state particles with momenta pi. Here, we have not included the flux factor,
which of course has to be taken into account.

The next task in order is the derivation of the dipoles. In the soft IR
limit, we can make use of the eikonal approximation with respect to the soft
gluon. Colour conservation can be applied in order to obtain the singular
behaviour of the real matrix element squared in terms of emitter-spectator
terms. This leads to the introduction of colour-correlated amplitudes. How-
ever, the colour algebra is trivial in our case. We therefore just write down
the result for the process under consideration. It reads:
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|Mm+1|2 −→

8πµ2εαsCF · 1

p3 · p6

[

p3 · p4

(p3 + p4) · p6
− m2

t

2p3 · p6

]

· |Mm|2

+ 8πµ2εαsCF · 1

p4 · p6

[

p3 · p4

(p3 + p4) · p6

− m2
t

2p4 · p6

]

· |Mm|2 , (2.41)

where Mm+1 is the real matrix element and Mm the one at Born level.
In writing down a squared matrix element, a summing over colours and
spins/polarisations is always understood. Respective expressions can also be
given for the collinear limits, which appear in the general case. However,
we still need a mapping of the momenta to a new set. This is necessary
in order that momentum conservation is given in a factorisable way. In
detail, the momenta of the emitter and of the spectator are redefined. These
new momenta satisfy their on-shell conditions, and their sum is equal to the
sum of the original spectator momentum and the momenta of the partons
which result from the respective splitting process. Of course, the limiting
behaviour still has to be satisfied. Having the limiting expression and the
mapping at hand, the dipoles can be written down and integrated over the
one-parton phase space. As already mentioned, one dipole is sufficient to
account for both, the soft IR and the collinear singular behaviour, for each
emitter-spectator pair.

We will now explicitly write down the relevant subtraction terms and
mappings for the process under consideration. The subtraction terms contain
two dipoles. Either the top quark is the emitter and the anti-top quark is the
spectator or vice versa. The quark/anti-quark splits into a quark/anti-quark
and a gluon. The subtraction term for the real part can therefore be written
as:

dσA = D63,4 + D64,3 , (2.42)

where the D63,4, D64,3 are the dipoles. The numbering of the external particles
follows Section 2.1. The explicit expressions for the two dipoles read:

D63,4(p3, p4, p6) =
1

2p3 · p6

V63,4|M̃m|2 , (2.43)

with the top quark as the emitter, and

D64,3(p3, p4, p6) =
1

2p4 · p6

V64,3|M̃m|2 , (2.44)



CHAPTER 2. CALCULATIONAL METHODS 27

where the anti-top quark is the emitter. M̃m is the real matrix element where
the gluon and the quark respectively the anti-quark have been substituted
by the parent parton of the corresponding splitting process. This emitter
parton is assigned the momentum p̃ij. Furthermore, the momentum of the
spectator, pk, has been transformed to p̃k. The new momenta are calculated
as follows:

p̃µ
k = p̃µ

4 =

√

Q2(Q2 − 4m2
t )

√

Q2(Q2 − 4p6 · p3 − 4m2
t ) + 4(p6 · p3)2

×
(

pµ
4 −

m2
t + p6 · p4 + p3 · p4

2(m2
t + p3 · p4 + p3 · p6 + p4 · p6)

Qµ

)

+
1

2
Qµ ,

p̃µ
ij = p̃µ

3 = Qµ − p̃µ
4 , (2.45)

respectively

p̃µ
k = p̃µ

3 =

√

Q2(Q2 − 4m2
t )

√

Q2(Q2 − 4p6 · p4 − 4m2
t ) + 4(p6 · p4)2

×
(

pµ
3 −

m2
t + p6 · p3 + p3 · p4

2(m2
t + p3 · p4 + p3 · p6 + p4 · p6)

Qµ

)

+
1

2
Qµ ,

p̃µ
ij = p̃µ

4 = Qµ − p̃µ
3 . (2.46)

Here, we have introduced

Q = p3 + p4 + p6 . (2.47)

The V6j,k, with {j, k} = {3, 4} respectively {4, 3}, are given by:

V6j,k = 8παsCF

{

2

1 − z̃j(1 − y6j,k)
− ṽ6j,k

v6j,k
·
[

1 + z̃j +
m2

t

k6 · kj

]}

. (2.48)

The variables z̃j, y6j,k, ṽ63,4, and v6j,k read

z̃3 = 1 − p6 · p4

p6 · p4 + p3 · p4

, (2.49)
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z̃4 = 1 − p6 · p3

p6 · p3 + p3 · p4
, (2.50)

y6j,k =
p6 · pj

p6 · p3 + p6 · p4 + p3 · p4
, (2.51)

ṽ63,4 = ṽ64,3 =

√

Q2(Q2 − 4m2
t )

Q2 − 2m2
t

, (2.52)

v6j,k =

√

[1 − y6j,k + 2µ2y6j,k]2 − 4µ2

(1 − 2µ2)(1 − y6j,k)
with µ2 =

m2
t

Q2
. (2.53)

The two integrated subtraction terms coincide so that we get only one
term times a factor of two. It reads as follows:

dσB ⊗ I = |Mm|2 ·
{

2
αs

2π

(4π)ε

Γ(1 − ε)

[

CF

(

µ2

2p3 · p4

)ε (

V − π2

3

)

+ Γ

+
3

2
CF ln

(

µ2

2p3 · p4

)

+
3

2
CF +

(

7

2
− π2

6

)

CF

]}

, (2.54)

with

Γ = CF

(

1

ε
+

1

2
ln(

m2
t

µ2
) − 2

)

(2.55)

and

V =

{

1

v34

[

1

ε
ln(ρ) − 1

2
ln2(ρ2

34) −
π2

6

]

+
1

v34
ln(ρ) ln

(

Q2
34

2p3 · p4

)

+
3

2
ln

(

2p3 · p4

Q2
34

)

+
1

v34

[

ln(ρ2) ln(1 + ρ2) + 2Li2(ρ
2)

−2Li2(1 − ρ2
34) −

π2

6

]

+ ln

(

Q34 −mt

Q34

)

− 2 ln

(

(Q34 −mt)
2 −m2

t

Q2
34

)

− m2
t

p3 · p4
ln

(

mt

Q34 −mt

)

− mt

Q34 −mt
+
mt(2mt −Q34)

p3 · p4
+
π2

2

}

.

(2.56)

In the latter expression, we introduced:

Q34 =
√

Q2
34 , (2.57)

Q2
34 = (p3 + p4)

2 = s34 , (2.58)
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v34 =

√

Q2
34(Q

2
34 − 4m2

t )

Q2
34 − 2m2

t

, (2.59)

ρ =

√

1 − v34

1 + v34
, (2.60)

ρ34 =

√

√

√

√

√

√

1 − v34 + 2
m2

t

Q2
34
/(1 − 2

m2
t

Q2
34

)

1 + v34 + 2
m2

t

Q2
34
/(1 − 2

m2
t

Q2
34

)
. (2.61)

Note that Eqs. (2.43) and (2.44) contain the squared Born matrix element
in dependence on the transformed momenta while the original momenta are
used in Eq. (2.54).

The ε-poles are contained in Eqs. (2.55) and (2.56). In Eq. (2.56), how-
ever, it comes with a factor of

1

v34
ln(ρ) =

1

v34
ln

(
√

1 − v34

1 + v34

)

. (2.62)

For the cancellation of the IR divergences in Section 3.3, it will prove useful
to cast this factor into a different form. We define the new variable

ṽ34 =

√

1 − 4m2
t

s34

. (2.63)

The following relations between ṽ34 and v34 can easily be shown to hold:

2

v34

=
1

ṽ34

+ ṽ34 , (2.64)

√

1 − v34

1 + v34

=
1 − ṽ34

1 + ṽ34

. (2.65)

We therefore have:

1

v34
ln

(
√

1 − v34

1 + v34

)

· 1

ε
=

1 + ṽ2
34

2ṽ34
ln
(

1 − ṽ34

1 + ṽ34

)

· 1

ε
. (2.66)

The subtraction terms are now in place. All we need in addition are dσV

in d dimensions, dσR in 4 dimensions, and dσB in d and in 4 dimensions. We
can then implement Eq. (2.39) in a Monte Carlo program which performs the
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numerical integration over the respective phase spaces. Above subtraction
terms have also been given explicitly in one of the examples contained in
Ref. [32].

A last note is in order. If we are interested in a non-trivial jet observable,
the latter has to fulfil the requirement of infrared safety. In general, the jet
observable also has to be collinear safe. In order for the large logarithms to
cancel, it furthermore has to obey quasi-collinear safety. We refer the reader
to Ref. [32] and References therein for a detailed discussion.

2.4 Photon Spectrum

We consider the process γγ → tt̄H, which can be studied at a linear collider
run in the two-photon mode (see Ref. [6] and References therein). In order to
obtain a prediction for the parent process, e+e− → γγ → tt̄H, the subprocess
has to be integrated over the spectra of the incoming photons:

σ(s) =

xu
∫

xl

dx1

xu
∫

xl·
xu
x1

dx2 F (x1)F (x2) σ̂(x1x2s) . (2.67)

Here, σ(s) is the cross section of the parent process, which depends on the
square of the centre-of-momentum-system (CMS) energy, s. σ̂(x1x2s) de-
notes the cross section of the subprocess, whose CMS energy squared is cal-
culated as (x1x2s). x1 and x2 are the energy fractions of the incident electron
and positron carried away by the two back-scattered photons, respectively.
Note, however, that one could also use two electron beams in order to build
up a photon collider. F (x) denotes the photon spectrum which is discussed
in this Section. We have one spectrum for each of the two photons while
it is independent of the type of the incident particle. The spectra depend
on the energy fractions x1 and x2, respectively. The upper limit xu of both
integrations is given by the energy spectrum. The lower limit of the outer
integration is:

xl =
(2mt +MH)2

xus
. (2.68)

This limit results from the need that the CMS energy squared of the sub-
process, (x1x2s), has to be above the threshold for producing the final state
particles. For the same reason, the limit of the inner integration is given by
a rescaling of this limit by the factor xu

x1
.
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In this work, we use the photon spectrum specified in Ref. [6]. This spec-
trum is a parametrisation which resembles a full simulation. The author
also implemented the spectrum in the Fortran function CompAZ. The argu-
ments of this function are the energy fraction and the beam energy as well
as a parameter which controls the output. For the respective value of this
parameter, all contributions to the spectrum are taken into account while
polarisation is not considered. The function delivers the value of the photon
spectrum for the specified energy fraction and beam energy.

However, for comparison with the literature, we also need the spectrum
which is obtained by only taking into account direct Compton scattering.
This case will be discussed first. We then outline the improvements obtained
in Ref. [6].

In order to turn a linear e+e−-collider into a photon collider, a low-energy
laser beam is directed almost head to head onto each incident particle beam.
This way, hard photons are copiously produced nearly in the same direction
as the original beam. Here, we follow the presentation given in the second
of Refs. [9]. The energy of the scattered photon depends on the scattering
angle. The portion of photons with largest energy fractions grows with the
energies of the incident particle and laser beams. The same applies to the
maximum of the energy fraction. But the energy of the laser beam may not
be chosen too large if pair creation of back-scattered photons with incident
photons shall be avoided. If we only consider unpolarised photons and assume
that the number of back-scattered photons produced per electron is one, this
completely determines the energy spectrum of the back-scattered photon in
direct Compton scattering. It reads:

F (x) =
1

D(ξ)

[

1 − x +
1

1 − x
− 4x

ξ(1 − x)
+

4x2

ξ2(1 − x)2

]

, (2.69)

where D(ξ) is given as

D(ξ) =

(

1 − 4

ξ
− 8

ξ2

)

ln(1 + ξ) +
1

2
+

8

ξ
− 1

2(1 + ξ)2
, (2.70)

with
ξ ' 4.8 . (2.71)

The energy spectrum for direct Compton scattering is shown in Fig. 2.10. As
already said above, many hard photons are produced. The maximal energy
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fraction xu carried by the photons turns out to be

xu ' 0.83 . (2.72)

Above this value, the spectrum is set to zero.
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Figure 2.10: Energy spectrum of the back-scattered photon in dependence of
the energy fraction of the incident electron respectively positron; here, only
direct Compton scattering is taken into account.

The spectrum of Fig. 2.10 will be used for comparison of the Born and
NLO results with the literature. As discussed above, it only involves direct
Compton scattering. The parameters have been determined by maximisation
of the portion of hard photons without making pair creation possible. How-
ever, a more realistic description of the photon spectrum has been obtained
by a full simulation of the beam. Ref. [6] gives a parametrisation of the
resulting spectrum which is convenient to use in numerical programs. The
parametrisation is obtained by taking into account the following effects:

• direct Compton scattering,

• nonlinear effects,
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• angular correlations,

• electron rescattering,

• scattering of two laser photons.

Nonlinear QED effects are due to the very high density of the laser beam.
Angular correlations refer to the wider spread of low-energy photons which
leads to a suppression of these. Electron rescattering means that a laser
photon may be scattered off an electron which has already been part of a
Compton scattering process. Finally, two photons may be scattered off an
electron at the same time.

The parametrisation contains 10 free parameters which are determined
by a fit to the simulation results. However, only the high-energy part of the
spectrum is described by the parametrisation. The overall normalisation is
obtained by fitting it to this part of the spectrum. Since we need a CMS
energy of the subprocess which is above the threshold value for producing a
top quark, an anti-top quark and a Higgs boson, only this high-energy part
of the spectrum is relevant and the parametrisation is completely sufficient.

The parametrisation and the full simulation of the photon spectrum are
shown in Fig. 2.11 for a beam energy of 250 GeV. As it turns out, the
spectrum obtained by full simulation contains a large fraction of low-energy
photons. The peak, on the other hand, is less pronounced compared to direct
Compton scattering. It is also shifted towards smaller energies. Because of
the larger number of low-energy photons, the result for the cross section
of e+e− → γγ → tt̄H will be considerably smaller if the realistic photon
spectrum is used.

The beam energy dependence is also reflected by the parametrisation,
and the fit is performed for several beam energies at the same time. This
way, the parametrisation can be used for arbitrary energies between 50 GeV
and 500 GeV.

It should be noted that energy correlations between the two beams of a
photon collider are neglected. However, the fit is performed in a way that the
parametrisation describes the high-energy part of the two-photon spectrum,
obtained by full simulation, very well. As already pointed out, it is this part
of the two-photon spectrum which is needed in our application. We may
therefore just use the product of two photon spectra given by CompAZ, as it
is done in Ref. [6]. Note further that the Photon Collider, which underlies
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Figure 2.11: Parametrisation of the photon spectrum and the full simulation.
The Figure has been taken from Ref. [6].

the full beam simulation, refers to the proposal for TESLA (TeV-Energy
Superconducting Linear Accelerator) [34].



Chapter 3

Calculations

This chapter contains the actual calculations. We outline our approach in
Section 3.1. In Section 3.2, we explain the evaluation of the basis inte-
grals. The cancellation of the occurring IR and UV divergences is shown in
Section 3.3, where also the relevant renormalisation constants are derived.
Section 3.4 contains details on the calculations. Finally, we discuss various
checks of our calculations in Section 3.5.

3.1 General Approach

The general setup of the process under consideration has been discussed in
Section 2.1. We will now give an outline of our actual calculations. We first
consider the subprocess γγ → tt̄H. The diagrams at Born level and at the
NLO level are generated and drawn with the Mathematica package FeynArts
[35]. Sample diagrams have already been shown in Fig. 2.1 respectively in
Figs. 2.2, 2.3, 2.4, 2.5, and 2.6. We then use FeynArts in order to automat-
ically construct the analytic expressions pertaining to the various diagrams.
The Mathematica package FormCalc [36] transforms these expressions into
Form [37] code in order to deal with them further. This Form code is written
to disk before any manipulations are performed by FormCalc. It presents
the starting point for self-made routines which perform the computation of
the cross section.

35
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Born Level

Let us start with the Born level. The automatically generated analytic ex-
pressions are further processed by means of a Form program. This program
first exploits momentum conservation (2.2). Then it simplifies the Dirac
structure. To this end, contracted Lorentz indices as well as multiple occur-
rences of the same slashed momentum are eliminated, and the Dirac equa-
tions (2.7) are applied. Here, we also make use of the Dirac algebra which
reads:

{γµ, γν} = 2gµν . (3.1)

Next, the on-shell conditions (2.3, 2.6) are imposed. The colour algebra is
trivial which has already been mentioned in Section 2.1. In a further step,
the Dirac structure is brought to the form specified in Eqs. (2.8, 2.9). In
principle, one could project out the coefficients of the different structures.
However, the general structure is quite complex in our case. We therefore
exploit the Dirac algebra of Eq. (3.1) in order to achieve this goal. The scalar
products of external momenta are now expressed in terms of the kinematical
invariants defined in Eq. (2.4). We also check analytically that the Ward
identities are fulfilled (see further Section 3.5). Note that the matrix element
for the Born level does not contain the parameter ε = (4− d)/2. Finally, the
resulting expression is stored to disk.

In order to have smaller expressions, which are more convenient to deal
with, we will usually extract the coefficients U (i), U

(i)
j1j2, X

(i)
j , Y

(i)
j , and Z(i)

of the 68 structures, which are specified in Eqs. (2.8, 2.9, 2.10). This is also
done by means of a Form program. The 68 expressions are then stored to
disk.

We now want to simplify these expressions and transform them into code
which is understandable by Fortran. To this end, we first use a Perl script
to change the output into Mathematica code. A Mathematica script is then
applied which converts the expressions into a simpler form. Afterwards, a
Perl script is used as an interface between Mathematica and Fortran. This
Perl script not only translates the Mathematica output to Fortran code,
but also adds some further Fortran code, that turns the expressions into
Fortran functions. These functions can directly be used in a Fortran pro-
gram for performing the phase space integrations. They can furthermore be
pre-compiled and collected in Fortran libraries, which is very convenient.
The application of the diverse scripts to the different expressions is automa-
tised by means of a makefile.
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Real Correction

Now we turn to the real correction. The calculation initially follows the line of
the Born calculations. Here, momentum conservation is given by Eq. (2.14),
and we use in addition Eqs. (2.13). But instead of bringing the expression
to a certain form and extracting the respective coefficients, we directly build
the squared and summed matrix element. In contrast to the virtual part,
which will be discussed next, the resulting expression stays reasonably small.

The averaging over the polarisations of the initial state photons and the
summing over the spins of the final state quarks is done in the common way
by exploiting the completeness relations of the quarks,

∑

Spins

u(p3)ū(p3) = /p3
+mt , (3.2)

∑

Spins

v(p4)v̄(p4) = /p4
−mt , (3.3)

and using the prescription

∑

Polarisations

εµi ε
∗ν
i −→ −gµν with i ε {1, 2} , (3.4)

which leads to the right results due to Ward identities. The summing over
the polarisations of the final state gluon can be carried out using the same
prescription.

For the real correction, the dimension can be set to four, as explained in
Section 2.3. Furthermore, we again employ the on-shell conditions, introduce
kinematical invariants and also make use of the relation given in Eq. (2.15).
The resulting expression is then stored to disk. As in the case of the Born
calculations, it is now treated with Mathematica and turned into a Fortran

function.

Virtual Correction

Finally, we have to deal with the virtual correction. After the trivial colour
algebra has been worked out, we cancel squared loop momenta, which may
appear in the numerator, against the denominators of the respective terms.
Next, we introduce the notation of tensor integrals. The latter include the
propagators contained in a loop as well as the loop momenta in the nu-
merator, as specified in Eq. (2.16). The tensor integrals are now reduced
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to generalised scalar integrals (see Section 2.2). Again, momentum conser-
vation is applied, the Dirac structure is simplified, the on-shell conditions
are employed, the Dirac structure is brought to the general form, and the
kinematical invariants are introduced. The resulting expression is stored to
disk.

The generalised scalar integrals are to be reduced to a basis set of inte-
grals. The respective method has been outlined in Section 2.2. In the case
of non-exceptional phase space points, this reduction can be performed in
Fortran or already in Form. We will follow both paths. The comparison of
the numerical results, obtained in these two independent ways, presents a
strong check on the calculations. We now explain in turn both approaches.

In the first case, we discard the UV-divergent integrals from the expres-
sions and rename the remaining ones. This way, the main Fortran program
will recognise that these integrals still have to be reduced. We then extract
the coefficients of the 68 structures and write them to disk. Note that the di-
mension may not be set to four, as pointed out in Section 2.2. Again, we treat
the coefficients with Mathematica and turn them into Fortran functions.

In the second variant, we may set the dimension to four. This has also
been argued in Section 2.2. We then apply the diverse recursion relations per-
taining to the non-exceptional case. From the resulting expression we sepa-
rately extract the contributions stemming from the six-dimensional pentagon
integrals, the IR-divergent integrals, and the finite part. In each case, the
coefficients of the 68 structures are extracted, simplified with Mathematica,
and turned into Fortran functions.

In the case of exceptional phase space configurations, the application
of the various recursion relations depends on the actual phase space point.
We are thus forced to perform the reduction directly in the main Fortran

program in such cases.
The UV-divergent generalised scalar integrals are not reduced further but

directly extracted. However, here we may not set ε to zero. If it occurs as
a prefactor of such an integral, we get additional finite terms through the
multiplication of ε and the 1/ε-term of the UV-divergent integral. This can
conveniently be accounted for by using Eq. (2.30), which gives the coefficients
of the 1/ε-poles of the integrals. The resulting expression is stored, and the
68 coefficients are again simplified and turned into Fortran functions.

We also want to directly read off the IR-divergence structure from the
original integrals. This way, we get a compact expression for the IR-divergent
part of the matrix element. It will be used in the analytic cancellation of the
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IR divergences. Furthermore, in the second reduction variant, we use it for
taking into account the coefficients of order O(ε). Above, the tensor integrals
have been reduced to generalised scalar integrals. In order to obtain Fortran

functions which contain the 68 coefficients of the compact expression, we
follow the same line. But, in this case, we use Eq. (2.31) for the reduction.
The O(ε)-coefficients are taken into account by renaming an integral if it is
multiplied by ε. The respective factor ε is then set to one. The renaming
indicates that, instead of the finite part, the coefficient of the 1/ε-pole of the
integral has to be calculated in the main Fortran program. Furthermore,
we separately tag the terms containing a factor ε and those which do not.
The first contribution comprises all additional finite terms due to O(ε)-terms.
The second one can be used for the cancellation of the IR divergences, which
is done in Section 3.3.

In the case where the reduction of the generalised scalar integrals is per-
formed directly within Fortran, we generally have to deal with O(ε)-terms.
This is done in the same way as above by introducing a new name for a
divergent integral multiplied by a factor of ε.

Renormalisation

In order to cancel the divergences of UV-nature, we have to renormalise the
top-quark mass and its wavefunction. In case of the wavefunction renormal-
isation, we just have to multiply the Born level matrix element by Z

1/2
V Z

1/2
V

= ZV = (1 + δZV + . . .), where δZV is the corresponding renormalisation
constant at one-loop order and the ellipsis indicates higher-order terms. One
factor Z

1/2
V represents the wavefunction renormalisation of the quark while

the other belongs to the anti-quark. The terms proportional δZV are the
desired contributions from wavefunction renormalisation. For the top-quark
mass renormalisation, we have to substitute the bare mass by (mt +δmt) and
perform a series expansion in δmt, where δmt is the respective renormalisa-
tion constant at one-loop order. The linear terms in δmt are the contribu-
tions from the mass renormalisation. The two renormalisation constants are
derived in Section 3.3. As we will see in that Section, the wavefunction renor-
malisation constant contains poles of UV- as well as of IR-nature. However,
these can be disentangled so that the cancellation of the divergences can be
verified separately for both types. The renormalisation contributions, which
have been obtained this way, are now summed up. The further procedure is
analogue to the Born calculations.
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Squaring and Summing the Matrix Elements

Above, we obtained the coefficients of the 68 structures for the Born level
matrix element and for the various contributions of the virtual correction (in
the form of Fortran functions). However, the cross section is built from the
squared matrix element (see Eq. (2.12)). Furthermore, we consider the case
of unpolarised external particles. In order to get the squared and summed
matrix element, we proceed as follows. First, we take the Born level expres-
sion and follow the line of the corresponding calculations up to the point
where the coefficients of the 68 structures are extracted. Instead, we multi-
ply this expression in turn with the 68 structures, without any coefficients.
Thus, we get 68 expressions, all of which involve the Born matrix element
and one of the 68 structures. These structures contain all Dirac matrices
and polarisation vectors of an amplitude. The squaring and summing is per-
formed in the same way as for the real correction, separately for each of
the 68 expressions. In detail, we revert the order of the Dirac matrices in
the Born matrix element, insert the completeness relations for the quarks,
apply Eqs. (3.4), and take the trace. The full squared and summed matrix
element can now be built up by multiplying each of the expressions by the
corresponding coefficient and summing over them. As mentioned above, the
coefficients are already available in the form of Fortran functions. After the
squaring and summing has been performed, the on-shell conditions are ap-
plied once more, and contracted external momenta are again substituted by
the kinematical invariants. The 68 resulting expressions are then simplified
with Mathematica and turned into Fortran functions.

Note that it is not possible to build up the squared matrix element directly
within a Form program because of the size of the expressions. Note further
that the Born matrix element is a real expression, apart from the spinors
and polarisation vectors. The complex conjugations on the right-hand side
of Eq. (2.12) therefore only have an effect in Eqs. (3.2,3.3,3.4). The same is
true for the matrix element of the real correction.

In order to have a check on this procedure, we also follow a slightly
different path. We multiply each of the 68 structures in turn with each of
the same 68 structures, without any coefficients. This way, we get a (68, 68)-
matrix. For each of these matrix elements the squaring and summing is
performed as above, and the resulting expressions are turned into Fortran

functions. Here, we refrain from a simplification with Mathematica. The
full squared and summed matrix element can now be built up by combining
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each of the (68 · 68) expressions with the two corresponding coefficients and
summing over these.

Further O(ε)-Induced Terms

As it turns out, the squaring and summing leads to terms which contain
the parameter ε. These again lead to additional finite terms whenever they
combine with the pole-parts of divergent integrals. In the following, we
will discuss how these are taken into account. However, we will need the
coefficients of the O(ε)-terms of above 68 expressions. Therefore, in above
calculation, we separately extract the coefficients of the O(ε0)-part and of
the O(ε1)-part of the 68 structures and turn them into different Fortran

functions. Let us call the former b0j and the latter b1j , with j ε {1, . . . , 68}.
We now discuss the treatment of the above-mentioned O(ε)-terms. As

it will turn out in Section 3.3, the UV divergences cancel for each of the
coefficients of the 68 structures separately. Therefore, above 68 expressions
are always multiplied by a UV-finite coefficient. However, this is not the
case for the IR divergences. These only vanish after squaring and summing.
In the latter case, the O(ε)-terms have to be taken into account. This is
done in a different way for both evaluations of the virtual part. In the case
where the reduction is performed within the main Fortran program, we add
up all different sources of IR divergences and multiply them by the factor
ε. Then the coefficients of the 68 structures are extracted, simplified with
Mathematica, and turned into Fortran functions. The latter can now be
combined with the b1j functions in order to get the additional contributions.
The IR divergences stem from three different sources. First, the genuine
virtual correction contributes. Second, we have to take into account the IR
part of the wavefunction renormalisation. These contributions are obtained
as described above. Third, the subtraction term for the virtual part has to
be taken into account. It is specified in Eq. (2.54) and the following. Here,
we only take the Born matrix element instead of its square in Eq. (2.54).

In the case where the reduction has already been performed within Form,
we take the compact IR-divergent expression for the contribution from the
genuine virtual correction. We only keep the coefficients of the pole-parts of
the three different contributions. The pole-parts of the IR-divergent trian-
gles are obtained in Section 3.2. Then we perform the squaring and summing
directly within the Form program, as in the case of the real correction. The
coefficient of the O(ε)-part of the result comprises the desired finite contri-
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butions. It is extracted, simplified with Mathematica, and turned into a
Fortran function.

Subtraction Terms

In Section 2.3, we saw that the virtual and the real corrections cannot directly
be integrated numerically over the respective phase spaces. We therefore
build the subtracted expressions as specified in Eq. (2.39). To this end, we
implement the subtraction terms for the virtual part (2.42 and the following)
and for the real part (2.54 and the following) in Fortran functions. In case
of the real expression, we have to take into account that the squared matrix
element occurring in the two contributions (2.43, 2.44) is calculated in each
case for the respective transformed momenta.

Full Squared and Summed Matrix Elements

All the ingredients are now in place, and we can construct the full squared
and summed (subtracted) matrix elements within a Fortran program. We
begin with the Born level. Here, we just have to multiply each of the b0j
functions with the corresponding coefficient at Born level and sum over the
68 contributions. As a check, we also take the (68 · 68) expressions obtained
above, multiply each by the two corresponding coefficients at Born level, and
sum.

We now turn to the contribution of order O(αs). Here, we always use
the b0j functions. The corresponding coefficients are sums of the different
contributions which we obtained above. Furthermore, we have to take into
account the additional finite contributions due to O(ε)-terms which stem
from squaring and summing. However, in the case of non-exceptional phase
space configurations, we have two independent possibilities to evaluate the
virtual part. Let us again first consider the case where the reduction is
performed in the main Fortran program.

This variant is also used for exceptional phase space points where the
other one is not applicable. The coefficients contain

• the UV-finite part of the genuine virtual correction,

• the UV-divergent integrals,

• the renormalisation contributions.
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The additional finite contributions have also been calculated above. These
are combined with the b1j functions instead of the b0j functions. The two
resulting expressions are added up to give the full virtual correction.

In the case of the second variant, the reduction has already been per-
formed in a Form program. The coefficients are the sums of the following
contributions:

• the finite part,

• the IR-divergent part,

• the O(ε)-induced terms of the compact expression for the IR-divergent
part,

• the UV-divergent integrals,

• the renormalisation contributions.

Here, the additional finite contributions are comprised by a single Fortran

function which only has to be added.
The real correction is also contained in a single Fortran function. Both

the virtual and the real correction can now be combined with the respective
subtraction terms.

We like to emphasise that all O(ε)-induced finite terms have properly
been taken into account. The cancellation of the UV and IR divergences is,
however, postponed to Section 3.3.

As a result of the preceding calculations, we obtain the squared and
summed matrix element at Born level as well as the subtracted expressions
for the NLO correction. In the main Fortran program, we numerically in-
tegrate these expressions over the corresponding phase spaces. We need a
(2 → 3) and a (2 → 4) phase space. The former is taken from Version
3.2 of FormCalc [36], while the latter stems from Version 5.2 [38]. In the
latter Version, an arbitrary phase space can be built up iteratively. The
numerical integrations are performed with the Monte Carlo program Vegas

from the CUBA library [39]. The CUBA library contains three further programs
for numerical integrations. These are used in order to assess the numerical
reliability of the integration.

The main Fortran program also provides the basis integrals which are the
endpoints of the reduction procedure. The calculation of these is postponed
to Section 3.2. In order to get a prediction for the parent process, we finally
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have to integrate over the photon spectra, as specified in Eq. (2.67). This is
done together with the phase space integrations by the Monte Carlo program
Vegas. Further details on the evaluation of the cross sections will be given
in Section 3.4.

3.2 Basis Integrals

The reduction of the generalised scalar integrals finally leads to a number
of basis integrals, which have to be provided by the main Fortran program.
For non-exceptional phase space configurations, these integrals have been
listed in Section 2.2. However, it has been mentioned that the recursion
relations lead outside the UV/IR boundaries for exceptional phase space
configurations. We therefore need the basis self-energy integrals as well as
the basis triangle integrals with an IR-divergent configuration for arbitrary
dimensions and powers of propagators. Note further that the UV-divergent
integrals produced by the reduction procedure are not regularised anymore.

In the case where the reduction is performed directly within the main
Fortran program, we do not extract the IR-divergent part and the O(ε)-
terms are always taken into account. For these reasons, the six-dimensional
box integral may be replaced by the four-dimensional one, though the latter
can be IR divergent. However, the reduction within Form still considers the
six-dimensional box integral as the basis integral. If the respective expres-
sions are used, this integral is further reduced by the main Fortran program
so that we are left with the four-dimensional one also in this case. In Sec-
tion 2.2, it has also been pointed out that the six-dimensional pentagon
integral does not contribute at NLO. This finite integral always occurs with
a prefactor of order O(ε). For the process under consideration, the four-
dimensional basis integrals with all propagator powers equal to one can be
calculated by means of the program package LoopTools [36], which is based
on the FF package [40]. This will be discussed further below.

Before the reduction is performed, the UV-divergent generalised scalar
integrals are extracted. These are considered as basis integrals. In the process
under consideration, they are given by (see Eq. (2.20)):

• the four-dimensional self-energy integrals with both propagator powers
equal to one,

• the six-dimensional self-energy integrals with one propagator power
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equal to one and the other one raised to the value two,

• the six-dimensional triangle integrals with all propagator powers equal
to one.

However, we choose to reduce the six-dimensional triangle integrals further
down within the main Fortran program. Note again that the O(ε)-terms
are always accounted for in this reduction.

We are now left with the following integrals which have to be provided
by the main Fortran program:

• the four-dimensional triangle and box integrals for all powers of prop-
agators equal to one,

• the self-energy integrals for arbitrary dimensions and powers of propa-
gators,

• the triangle integrals with an IR-divergent configuration for arbitrary
dimensions and powers of propagators.

Treatment of Divergences

Let us begin with the four-dimensional integrals which do not have raised
propagator powers. As mentioned above, we calculate them by means of
the program package LoopTools. Finite integrals can be calculated without
any further considerations. On the other hand, LoopTools uses dimensional
regularisation in order to deal with UV divergences, while it employs a small
mass to regulate IR divergences. The IR divergences thus manifest them-
selves through logarithms in the small regulator mass. In this work, dimen-
sional regularisation is applied for both types of singularities. However, we
only encounter soft IR divergences. In this case, there exists a general pre-
scription which allows to rewrite the result for a mass regulator in terms of
dimensional regularisation (see for example Ref. [30]):

ln
(

λ2
)

−→ (4πµ2)
ε
Γ(1 + ε)

ε
+ O(ε) , (3.5)

where λ denotes the mass regulator and µ is the dimensional-regularisation
scale. If we perform a series expansion on the right-hand side of this pre-
scription and subtract ln (m2

t ) on both sides, we find:

ln

(

λ2

m2
t

)

−→ 1

ε
− γE + ln(4π) + ln

(

µ2

m2
t

)

+ O(ε) , (3.6)
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where γE is Euler’s constant. In any case, LoopTools considers the regulator
λ as infinitesimally small. It is only kept as an argument for logarithms,
otherwise it is set to zero. If we set λ2 = m2

t , the left-hand side of Eq. (3.6)
is equal to zero. Accordingly, LoopTools returns a result in dimensional
regularisation where

1

ε
− γE + ln(4π) + ln

(

µ2

m2
t

)

(3.7)

has been set to zero. We know that all poles in ε have to cancel out. If
we always extract above expression, then also its finite terms have to cancel
each other in the end. In conclusion, if we always set λ2 = m2

t within
LoopTools, we get a finite result for the respective IR-divergent integral
where the pole-part in terms of Eq. (3.7) has been subtracted. The additional
finite terms in Eq. (3.7) cancel out together with the 1/ε-poles. We can
therefore use LoopTools in order to obtain the finite parts of the IR-divergent
four-dimensional integrals, without raised propagator powers, in dimensional
regularisation.

However, an integral may be multiplied by the factor ε. In this case,
the integral is always renamed so that the main program recognises that it
has to calculate the coefficient of the respective 1/ε-pole. These coefficients
are directly implemented in the Fortran program. The IR-divergent parts
of the box integrals are taken from Ref. [41], and the ones for the triangle
integrals are extracted from Ref. [42] and compared with Ref. [41]. Also in
Ref. [41], a mass regulator is used. The transformation is again performed
with Eq. (3.5). Note that an IR-divergent integral is obtained by pinching
propagators of a pentagon integral. The resulting integral is IR divergent if
the gluon propagator is still present and attached to top-quark propagators
which are on-shell. We therefore have one topology for IR-divergent triangle
integrals and two different topologies for the divergent boxes. In the case of
the box integrals, either one external leg is light-like or all external legs are
massive.

We will also need the self-energy integrals, which are UV divergent.
LoopTools expresses the UV divergences in terms of

∆ =
1

ε
− γE + ln(4π) . (3.8)

It is well-known that the additional finite terms always occur and drop out
together with the 1/ε-pole. We set ∆ equal to zero, and we furthermore
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choose µ2 = m2
t , where µ is the dimensional-regularisation scale introduced

by LoopTools. This way, the pole-part is subtracted in terms of the same
expression as in the case of the IR-divergent integrals (3.7). Again, the pole-
terms are needed in order to account for O(ε)-terms. For the self-energy
integrals, these are well-known.

Note that we do not have to compute the imaginary parts of the basis
integrals. The squared matrix element is built according to Eq. (2.12). The
Born level matrix element, which occurs in Eq. (2.12), is real, apart from the
spinors and polarisation vectors. The only sources of imaginary contributions
to the matrix element at NLO are the basis integrals, again apart from the
spinors and polarisation vectors. We sum over all spins and polarisations
by means of Eqs. (3.2,3.3,3.4). Hence, the basis integrals deliver the only
imaginary contributions within the formula for the squared and summed
matrix element. Consequently, they are not needed.

Reduction of Basis Self-Energies

The four-dimensional triangle and box integrals with all propagator powers
equal to one are now in place. Furthermore, the respective self-energy in-
tegrals have been dealt with. Let us now turn to the self-energy integrals
with arbitrary dimensions and powers of propagators. These can be further
reduced to four-dimensional self-energy and tadpole integrals with propaga-
tor powers equal to one. The calculation of the tadpoles is trivial while the
self-energies are already in place. Let us now discuss the reduction procedure.

We apply the integration by parts identity of Refs. [24] for the two differ-
ential operators

∂

∂`µ
(`)µ and

∂

∂`µ
(`+ q1)

µ (3.9)

to the generalised scalar self-energy integrals. In addition, we apply Eq. (2.22)
which relates integrals of different dimensions. We thus get three relations,
which can be used in order to reduce these integrals to the master integrals.
The reduction can be done completely automatically by means of the pro-
gram AIR of Ref. [43].

In order to keep the expressions for the diverse integrals compact, we pro-
ceed as follows. The complexity of an integral is given by s = (σ + (n− 4)/2),
where σ was the sum of the propagator powers and n = (D+ 2ε). For n = 4
and all propagator powers equal to one or to zero, the respective integral is a
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master integral. If we now raise s by one, we get the next-complicated inte-
grals. These are reduced to the master integrals through AIR. We then again
raise s by one and reduce the corresponding integrals. This time, however,
all the integrals are considered as master integrals which have already been
reduced, so that the reduction ends at them. This procedure is repeated
up to the value s = 18. All integrals with a value of s up to s = 18 are
now successively expressed through simpler ones, down to the true master
integrals. This way, the expressions indeed remain very compact.

Special Cases for Basis Self-Energies

However, there occur special cases for the self-energy integrals which have to
be treated separately. If one propagator is massless and the propagator mo-
mentum squared is equal to m2

t respectively if both propagators are massive
and the momentum squared is zero, we get zeros in denominators of above
expressions. But these special cases are simple enough to be provided in
closed form. This is done in the following. The integrals read:

I1 =
∫

dD`

(2π)D

1

[`2]α [`2 − 2` · q1]β
with q2

1 = m2
t , (3.10)

I2 =
∫ dD`

(2π)D

1

[`2 −m2
t ]

α
[`2 − 2` · q1 −m2

t ]
β with q2

1 = 0 . (3.11)

We use the Feynman parametrisation in order to evaluate the integrals, which
is given by:

1

aαbβ
=

Γ(α + β)

Γ(α)Γ(β)

∫ 1

0
dx

xβ−1(1 − x)α−1

[a + (b− a)x]α+β , (3.12)

where a and b can be chosen as the two propagators of Eq. (3.10) or Eq. (3.11).
In the first case, this leads to:

I1 =
Γ(α+ β −D/2)

Γ(α)Γ(β)
· i(−1)α+β

(4π)D/2
·

∫ 1

0
dx x(D−2α−β−1)(1 − x)(α−1)

(

m2
t

)(D/2−α−β)
, (3.13)

where the integration over the loop momentum has been performed in the
common way. Using the well-known result for the Beta-function,

∫ 1

0
dt t(x−1)(1 − t)(y−1) =

Γ(x)Γ(y)

Γ(x + y)
, (3.14)
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we get:

I1 =
i

16π2
· 1

(4π)−ε
· (−1)(α+β) ·

(

m2
t

)(D/2−α−β) ·

Γ(α+ β −D/2)Γ(D − 2α− β)

Γ(D − α− β)Γ(β)
. (3.15)

The second case can be treated in the same way. This leads to:

I2 =
i

16π2
· 1

(4π)−ε
· (−1)(α+β) ·

(

m2
t

)(D/2−α−β) · Γ(α+ β −D/2)

Γ(α + β)
. (3.16)

Note that the special case of both propagators being massive and the
squared momentum being equal to 4m2

t is not provided. However, we do
not encounter problems during the numerical evaluations. Note further that
above reduction procedure is performed separately for the two cases of only
one propagator being massive or both. This is again necessary to avoid zeros
in denominators.

Reduction of Basis Triangles

Finally, we need the generalised triangle integrals with an IR-divergent con-
figuration. We encounter only one such topology. Such integrals cannot be
reduced further by means of the recursion relations which pertain to non-
exceptional momentum configurations. The determinant of the kinematical
matrix is always zero so that it cannot be inverted. However, the determinant
of the Gram matrix may only tend to zero for exceptional momentum config-
urations. We treat these cases by the alternative recursion relations within
the main Fortran program. For non-exceptional phase space points, we may
either reduce them further within Fortran or by means of the program AIR.
However, since the determinant of the kinematical matrix is always zero, we
choose to use AIR up to the value s = 14. Only when the recursion relations
for the exceptional momentum configurations lead to integrals with a higher
value for s, these are first reduced further within Fortran.

For the reduction of the triangle integrals within AIR, we need Eq. (2.22)
and, in addition, the three relations which are obtained by applying the
integration by parts identity of Refs. [24] for the three differential operators

∂

∂`µ
(`)µ ,

∂

∂`µ
(`+ q1)

µ ,
∂

∂`µ
(`+ q2)

µ (3.17)
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to the generalised scalar triangle integrals.
In conclusion, arbitrary generalised triangle integrals with an IR-divergent

configuration can, in principle, be evaluated. However, the self-energy inte-
grals are only available up to s = 18. This sets a limit on the number of
iterations in the case of exceptional momentum configurations. The more
iterations are performed the larger values for s appear in the reduction.

Details on the Implementation

When we use AIR, an integral is automatically expressed in terms of the sim-
pler ones. However, also the successive preparation of the list with master
integrals and the invocation of AIR are done completely automatically by
means of a Perl and a shell script. The resulting expressions are written to
disk by the Maple program AIR. These are now expanded within Mathematica

and turned into Form-readable code. The Form program performs a series ex-
pansion in ε. Afterwards, it is checked whether the reductions within AIR

have introduced 1/ε-terms as prefactors of integrals. As it turns out, this
is not the case so that the only 1/ε-terms stem from the integrals them-
selves. For this reason, the master integrals only have to be known up to
and including contributions of order O(ε0). The resulting expressions are
simplified with Mathematica and turned into Fortran functions. All this is
done automatically by means of makefiles and Perl scripts.

In addition, interface functions are produced. The arguments of these
specify the powers of the propagators, the dimension, and the desired co-
efficient of the Laurent expansion of the integral which is to be evaluated.
We have two such interface functions for the self-energy integrals since the
case with one propagator being massless is treated separately. One further
interface function is needed for the triangle integrals. In the main Fortran

program, such a function is called with arguments which correspond to the
desired integral. The interface function then calls the respective function
which contains the reduction of the integral to simpler integrals. The reduc-
tion now proceeds without the need for further interface functions. Finally,
the master integrals are reached, which have to be provided by the main
Fortran program. The use of an interface function is more convenient than
collecting all the expressions of the reductions in one function. The Fortran

functions which contain the reductions as well as the interface functions are
now precompiled and collected in libraries.
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Calculation of 1/ε-Poles

We can also use above expressions in order to calculate the coefficients of
the 1/ε-poles of the basis triangle integrals. Instead of turning them into
Fortran functions, we transform them into Form code. A Form program is
now applied which inserts only the divergent parts of the integrals. We start
with the simplest integrals, which are expressed through master integrals.
The master integrals are replaced by their pole parts. We then proceed with
the next-complicated integrals. Finally, we obtain explicit expressions for
the divergences of the basis triangle integrals. Since we only insert the pole
parts, also these expressions remain compact. They can be used as a means
of checking the results and for the cancellation of the divergences. The pro-
cedure is again automatised with the help of a makefile. Furthermore, when
the integrals for a certain value of s have been treated, they are simplified
by Mathematica, the connections again being made by Perl scripts.

However, only two IR-divergent integrals occur in the expressions for the
IR-divergent part of the virtual correction. These are given by

• the four-dimensional integral with an IR-divergent configuration and
all propagator powers equal to one,

• the six-dimensional integral with an IR-divergent configuration and
only the massless propagator raised to the power two.

If a different propagator is raised to the power two while the others have
power one, the integral is finite, though it has an IR-divergent configuration.
It turns out that the divergent part of the second integral is the same as for
the first one except for the sign. As said above, we take the real part of the
pole term from Ref. [42] and check it against Ref. [41]. We get:

IIR
3 (4 − 2ε; {qi}, 1, 1, 1)|

pole, real
=

−IIR
3 (6 − 2ε; {qi}, 1, 1, 2)|

pole, real
=

1

ε
· 1

s34 β12
ln

(

1 − β12

1 + β12

)

, (3.18)

with

β12 =

√

1 − 4m2
t

s34
. (3.19)

The superscript IR means that the integral has the mass and momentum
configuration of an IR-divergent triangle integral. In the second row of
Eq. (3.18), the raised propagator belongs to the gluon.
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The variable β12 is equal to ṽ34 of Eq. (2.63). Thus, the logarithm which
appears in Eq. (3.18) is the same as the one of the subtraction term for the
virtual part (see Eq. (2.66)). This is important for the cancellation of the IR
divergences, which is shown in Section 3.3.

3.3 Cancellation of Divergences

In this Section, we discuss the cancellation of the UV and IR divergences.
But at first, we have to calculate the relevant renormalisation constants.

Renormalisation Constants

It has already been mentioned in Section 3.1 that the wavefunctions of the top
and anti-top quarks as well as the top-quark mass have to be renormalised.
We need only one wavefunction renormalisation constant since left- and right-
handed particles are not distinguished within QCD. We compare the general
expressions for the renormalisation constants with Ref. [44].

Note that the top quark is an unstable particle. Unstable particles have
complex self-energy amplitudes so that their resummed propagators have
complex poles. In that case, the renormalisation conditions are more com-
plicated (see, for instance, Refs. [45]). However, the self-energy amplitude of
the top quark is real to the order considered in this work. We can therefore
restrict ourselves to the case of stable particles. For the same reason, we are
not concerned with finite width effects.

We define the amputated one-particle-irreducible self-energy of the top
quark as:

iΣ(q) = i/qΣV (q2) + im0
t ΣS(q2) , (3.20)

with the bare mass of the top quark denoted as m0
t and the external momen-

tum as q. The bare mass m0
t and the bare field ψ0

t are expressed through
renormalised parameters and counterterms according to:

m0
t = mt + δmt ,

ψ0
t = ψt

√

ZV = ψt

(

1 +
1

2
δZV

)

. (3.21)

δmt and δZV are the renormalisation constants at one-loop order as intro-
duced in Section 3.1. We now sum up the Dyson series with respect to
the top-quark propagator. The application of renormalisation conditions
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will then give the general expressions for the renormalisation constants. We
have:

S−1(q) =
i

/q −m0
t

·
∞
∑

n=0

(

i(i/qΣV (q2) + im0
t ΣS(q2))

/q −m0
t

)n

=
i

/q −m0
t

·
∞
∑

n=0

(

−
(/qΣV (q2) +m0

t ΣS(q2))

/q −m0
t

)n

=
i

/q −m0
t

· 1

1 + /qΣV (q2)+m0
t ΣS(q2)

/q−m0
t

=
i

/q −m0
t + /qΣV (q2) +m0

t ΣS(q2)
. (3.22)

We now demand that the renormalised mass is identical to the pole of the
propagator including all radiative corrections:

S(q) · u(q)|q2=m2
t

!
= 0 . (3.23)

Using Eqs. (3.22, 3.21) and the Dirac equation for the top-quark spinor,

/q · u(q) = mt · u(q) , (3.24)

this leads to:
(

/q −m0
t + /qΣV (q2) +m0

t ΣS(q2)
)

· u(q)|q2=m2
t

=
(

/q −mt − δmt + /qΣV (q2) +mtΣS(q2) + δmtΣS(q2)
)

· u(q)|q2=m2
t

=
(

−δmt +mtΣV (q2) +mtΣS(q2) + δmtΣS(q2)
)

· u(q)|q2=m2
t

!
= 0 .

(3.25)

The renormalisation constant for the top-quark mass is therefore given by:

δmt =
mt (ΣV (m2

t ) + ΣS(m2
t ))

1 − ΣS(m2
t )

. (3.26)

Since we only need δmt at order O(αs), this expression simplifies to

δmt = mt

(

ΣV (m2
t ) + ΣS(m2

t )
)

, (3.27)
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where ΣV (m2
t ) and ΣS(m2

t ) have to be evaluated at the one-loop order in αs.
The wavefunction renormalisation constant is obtained as the residue of the
propagator at its pole. Using Eqs. (3.22, 3.21, 3.26), we find:

i

/q −m0
t + /qΣV (q2) +m0

t ΣS(q2)
=

i

/q −mt − δmt + /qΣV (q2) +mtΣS(q2) + δmtΣS(q2)
=

i

/q −mt −mtf(m2
t ) + /qΣV (q2) +mtΣS(q2) +mtf(m2

t )ΣS(q2)
∼

i

/q −mt
· 1

1 + ΣV (m2
t ) + 2m2

t Σ
′
V (m2

t ) + 2m2
t Σ

′
S(m2

t ) + 2m2
t f(m2

t )Σ
′
S(m2

t )
,

(3.28)

with

f(m2
t ) =

δmt

mt
=

ΣV (m2
t ) + ΣS(m2

t )

1 − ΣS(m2
t )

,

Σ′
V (m2

t ) =
∂

∂q2
ΣV (q2)|

q2=m2
t
,

Σ′
S(m2

t ) =
∂

∂q2
ΣS(q2)|

q2=m2
t
. (3.29)

We can now read off the wavefunction renormalisation constant from the last
line of Eq. (3.28):

ZV =
1

1 + ΣV (m2
t ) + 2m2

t Σ
′
V (m2

t ) + 2m2
t Σ

′
S(m2

t ) + 2m2
t f(m2

t )Σ
′
S(m2

t )
.

(3.30)
Expanding this expression in αs up to and including order O(αs), we get:

ZV = 1 − ΣV (m2
t ) − 2m2

t Σ
′
V (m2

t ) − 2m2
t Σ

′
S(m2

t ) , (3.31)

where ΣV (m2
t ), ΣS(m2

t ), and their derivatives are again only needed at order
O(αs). The results for these expressions are obtained through evaluation of
the self-energy diagram with a virtual gluon (see Fig. 3.1). They read:

ΣV (m2
t ) =

αs

4π
CF ·

(

∆ + ln

(

µ2

m2
t

)

+ 2

)

,
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Figure 3.1: Top-quark self-energy at order O(αs).

ΣS(m2
t ) =

αs

4π
CF ·

(

−4∆ − 4 ln

(

µ2

m2
t

)

− 6

)

,

Σ′
V (m2

t ) =
αs

4π
CF ·

(

− 1

m2
t

ln

(

λ2

m2
t

)

− 3

m2
t

)

,

Σ′
S(m2

t ) =
αs

4π
CF ·

(

2

m2
t

ln

(

λ2

m2
t

)

+
4

m2
t

)

. (3.32)

∆ is defined in Eq. (3.8). Here and in the following, we truncate the ε-
expansion after the terms of order O(ε0). In order to disentangle the poles
of UV- and of IR-nature, we chose a mass regulator in order to regularise
the IR divergences. The results can be transformed into the results of di-
mensional regularisation by means of Eq. (3.5). In the following, we will
write ∆UV for UV poles and ∆IR for IR poles. We thus get the results for
the renormalisation constants where the different types of divergences are
distinguished:

δmt = mt ·
αs

4π
CF ·

(

−3∆UV − 3 ln

(

µ2

m2
t

)

− 4

)

,

δZV =
αs

4π
CF ·

(

−∆UV − ln

(

µ2

m2
t

)

− 2∆IR − 2 ln

(

µ2

m2
t

)

− 4

)

.

(3.33)

Here, we have employed the on-shell scheme. The renormalisation constant
for the top-quark mass in the modified minimal-subtraction (MS) scheme
is obtained from the on-shell expression by extracting the term containing
∆UV :

δmMS
t = mMS

t · αs

4π
CF · (−3∆UV ) , (3.34)
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with mMS
t denoting the respective MS mass.

Mixed Scheme

The residual error due to the truncation of the perturbative series in αs

after the NLO terms can be assessed by performing the calculations in dif-
ferent schemes and at different renormalisation scales. We can, for example,
compare the results for an on-shell renormalised top-quark mass to those
obtained in the MS scheme. In the latter scheme, the renormalisation scale
for the MS mass can be varied. However, we always employ the on-shell
conditions (2.3) for the top and the anti-top quark in order to simplify the
expressions. This prevents from a simple change to the MS scheme. We thus
consider a mixed scheme where the top-quark mass occurring in the Yukawa
couplings is renormalised MS while the one stemming from the propagators
is kept on-shell. We vary the renormalisation scale from mt/2 to 2mt, where
mt is a typical hard scale of the process. This is done in Section 4.2. For our
numerical analysis in Section 4.1, we always employ the on-shell scheme.

The mixed scheme is advantageous since the on-shell results can readily
be converted to it. First, we have to rescale the Born as well as the NLO
results:

M −→ M · m
MS
t

mt
. (3.35)

This way, the top-quark mass of the Yukawa coupling is converted to the
MS scheme. Second, we have to take into account that the renormalisation
contributions to Eq. (2.12) have been calculated in the on-shell scheme. But
since the Born matrix element is proportional to the Yukawa coupling, we
just have to add the term

−2 · |M0|2 ·




δmt

mt
− δmMS

t

mMS
t



 = +2
αs

4π
CF · |M0|2 ·

(

3 ln

(

µ2

m2
t

)

+ 4

)

. (3.36)

Running mass and coupling

The renormalisation scale is explicitly introduced by the contributions of
Eq. (3.36). Furthermore, the top-quark mass which appears in the Yukawa
coupling is now defined in the MS scheme. We therefore need the running
top-quark mass at the respective renormalisation scale. The running mass
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up to and including the order O(αs) is obtained as follows (see, for example,
Ref. [46]). We first calculate α(5)

s (mt) with five active flavours at lowest order:

1

α
(5)
s (mt)

=
1

α
(5)
s (MZ)

+
β

(5)
0

π
ln

(

m2
t

M2
Z

)

. (3.37)

We now perform the matching with six active flavours at the scale mt:

α(6)
s (mt) = α(5)

s (mt) . (3.38)

α(6)
s (µ) is then obtained with six active flavours according to:

1

α
(6)
s (µ)

=
1

α
(6)
s (mt)

+
β

(6)
0

π
ln

(

µ2

m2
t

)

. (3.39)

Having the running strong coupling at hand, we can evaluate the running
top-quark mass in the MS scheme:

m
MS,(6)
t = mt

(

1 − α(6)
s (mt)

π
CF

)(

α(6)
s (µ)

α
(6)
s (mt)

)γ0/β
(6)
0

. (3.40)

The upper index in parentheses always denotes the number of active quark
flavours. In above formulas, we need the first coefficient of the Callan-
Symanzik beta function for five and six active flavours as well as the first
coefficient of the quark-mass anomalous dimension:

β
(5)
0 =

1

4

(

11

3
CA − 20

3
TF

)

=
23

12
,

β
(6)
0 =

1

4

(

11

3
CA − 24

3
TF

)

=
7

4
,

γ0 =
3

4
CF = 1 , (3.41)

with CA = NC = 3 and TF = 1/2.
The strong coupling αs is only introduced at NLO. For this reason, its

value is not fixed but can be chosen arbitrarily. This is due to the fact that
the contributions to the running of the strong coupling are of order O(αs).
We choose to use αs(MZ) for our numerical evaluations in Section 4.1. In
order to get an idea about the uncertainty induced by the running of the
strong coupling, we will also vary the scale for αs from mt/2 to 2mt at the
one-loop level. This is done in Section 4.2.
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UV and IR divergences

Let us now come to the cancellation of the divergences. In Section 3.1, we
have constructed the renormalisation contributions. The relevant renormal-
isation constants have been derived above (3.33, 3.34). It turns out that the
wavefunction renormalisation constant does not only contain UV but also
IR singularities. They have been disentangled in the explicit expressions so
that the two types of divergences can be treated separately. Actually, in the
expressions for the renormalisation contributions, we do not insert the results
but introduce two variables for the top-quark mass and wavefunction renor-
malisation constants, respectively. In the main Fortran program, we assign
these variables the finite parts of the constants. For the cancellation of the
divergences, we can use the Form expressions where we insert the relevant
divergent parts.

We first discuss the cancellation of the UV divergences. The UV-divergent
generalised scalar integrals are extracted from the beginning. They have
already been listed in Section 3.2. The pole parts are given by Eq. (2.30).
Adding the renormalisation contributions, inserting the UV-divergent parts
for the integrals as well as for the renormalisation constants, and simplifying
the resulting expression, we find that the UV poles cancel for each of the 68
structures of Eqs. (2.8, 2.9, 2.10) separately.

Let us now come to the case of IR divergences. The soft IR singularities
have to cancel out in the sum of the virtual and the real contributions due
to the Bloch-Nordsieck theorem [47]. For the IR-divergent part of the am-
plitude, we use the compact analytic expression which has been derived in
Section 3.1. The pole-parts for the divergent integrals have been obtained in
Eq. (3.18). Below Eq. (3.18), it has been noted that the logarithm appearing
in these expressions is the same as the one of the subtraction term for the
virtual part. The latter is given in Eqs. (2.54 and the following) and has to
be added. Finally, we need the renormalisation contributions where we insert
the IR-divergent part of the wavefunction renormalisation. These contribu-
tions cancel against those of the subtraction term which are not proportional
to the above mentioned logarithm. This cancellation takes place for each of
the 68 structures separately. However, this is not true for the remaining IR
singularities. However, the contributions from the divergent integrals can-
cel against the residual ones from the subtraction term after the squaring
and summing of the matrix element and some simplifications have been per-
formed. The cancellation of the IR singularities is also checked numerically
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within the main Fortran program. Furthermore, it is checked numerically
that the divergent part of the compact expression is equal to the IR part of
the expression obtained by application of the recursion relations.

3.4 Details of the Implementation

We have outlined our approach in Section 3.1. Here, we give details on the
actual calculations within the main Fortran program.

As has been said in Section 3.1, the matrix element is evaluated through
reduction of the occurring tensor integrals. This reduction is performed in
two independent ways. In the first case, it is done by Form routines. The
resulting expressions are turned into Fortran functions and can directly be
used within the main Fortran program. Second, the tensor integrals are
only reduced to generalised scalar integrals through Form routines. The re-
duction to the basis set of integrals is then performed directly within the
main Fortran program. In case an exceptional momentum configuration
has been detected, the reduction is always performed by the Fortran pro-
gram. However, the recursion relations pertaining to the cases, where the
determinant of the kinematical matrix becomes small, do not give reliable
results. This is obvious from the fact that the NLO correction becomes much
larger than the tree result for these momentum configurations. But it turns
out that such phase space configurations only appear a few times during the
phase space integration. It is thus not problematic to set the integrand iden-
tically to zero for these cases. On the other hand, we include the case that
only the determinant of the Gram matrix becomes small. This happens for
about 1% of the phase space points. However, setting the integrand to zero
also for small Gram determinants does not alter the results up to the desired
precision.

We choose to perform the numerical phase space integration with an ac-
curacy of 0.1% with respect to the Born result. To this end, we set the
relative accuracy, which is to be achieved by the numerical integration pro-
gram, to 0.05% for the calculation of the Born cross section, to 0.2% for the
virtual part and to 0.2% for the real correction. The virtual and the real
correction are added to the Born cross section to give the NLO prediction.
The individual integration errors are added quadratically. For our numerical
evaluations, we always use the Monte Carlo program Vegas from the CUBA

library [39]. We furthermore restrict the number of phase space points to be
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evaluated for the calculation of the virtual part to 64000. These settings al-
ways lead to a resulting integration error for the NLO prediction below 0.1%.
The number of phase space points which have to be computed in order to
reach the desired accuracy for the Born result and for the real correction can
exceed 200000 and 100000, respectively.

The real correction has to be computed by an independent integration
since the phase space involves four final state particles in opposition to the
three final state particles in case of the Born level and the virtual correction.
However, also the Born cross section and the virtual correction should be inte-
grated in separate runs of the integration routine. The reason is the following.
The Born expressions are evaluated fast for the individual phase space points
while the computation of the NLO expressions is time-consuming. But we
do not need to evaluate the NLO correction with the same relative accuracy
as the Born result since its value is smaller. Integrating the NLO correction
in a separate run with less accuracy thus saves a large amount of computing
time without spoiling the desired accuracy of the NLO prediction.

Optimisations

Since the calculation of the NLO part is very time-consuming, it is mandatory
to optimise the evaluation. This is done differently for the two independent
implementations of the reduction procedure. We first discuss the case the
reduction is performed within Form. The recursion relations involve the in-
verse of the kinematical matrix and its sums. These objects are transformed
to Fortran functions. In the actual calculations, the same inverse kinemat-
ical matrix and its sums can occur many times. Calculating the respective
function for each occurrence is, therefore, an obvious waste of time. For this
reason, we substitute these functions in the NLO expressions by Fortran

variables. The variables are assigned the respective functions which now
only have to be calculated once. This is done completely automatically by
means of a makefile and a Perl script.

In case the reduction is performed within the main Fortran program,
we store an integral once it has been evaluated. However, we only do so
for non-exceptional phase space configurations. The reduction procedure for
exceptional phase space points involves iterations of the recursion relations.
The same integral can appear at different stages of such expansions so that
the iteration depth for it can vary.

The procedure looks as follows. When an integral is to be calculated, it is
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first checked whether it has already been evaluated before. In this case, the
result is just taken from the storage. Otherwise, it still has to be calculated
and stored. In order to store the result, the integral with its parameters is
translated into a code number which uniquely specifies the integral. This
number is stored in a vector while its result is stored at the same position in
a different vector. In order to find out if an integral has already been com-
puted, the vectors with the code numbers are searched for the corresponding
number. If the code number could be found, the result for the integral can be
taken from the respective result vector at the corresponding position. This
procedure leads to a small amount of memory which has to be allocated.
Also the number of necessary initialisations is small in this way.

Using the expressions obtained through reduction within Form does not
turn out to be faster than performing the reduction directly within the main
Fortran program. Therefore, we choose to always reduce the generalised
scalar integrals within the Fortran program for the numerical evaluations.
The Form expressions are used as a check on the reduction in case of non-
exceptional phase space configurations.

Controlling the Computation

The real correction involves an additional final-state gluon. When it is soft,
it cannot be resolved by the detector due to its finite resolution. However,
when the energy of the gluon is large enough, a (2 → 4) event is detected. If
one is only interested in events where three final state particles are observed,
one has to apply a cut on the energy of the additional gluon. This can be
done by simply setting a preprocessor variable to the desired value. However,
the subtraction term for the real correction is still integrated over the full
one-parton phase space of the gluon. This is necessary since its contribution
has to cancel against the one stemming from the subtraction term for the
virtual part. It is also possible to apply a lower cut on the energy of the gluon.
This prevents the phase space integration from developing an IR singularity.
We can then set the subtraction term for the real part identically to zero
in order to solely compute the genuine real correction. The result can be
compared against an independent calculation, as it is done in Section 3.5.

There are further possibilities to control the main Fortran program. This
is always done by means of preprocessor variables which are collected in a
single file. The first option is to calculate either the subprocess or the par-
ent process. In the latter case, we have to choose between direct Compton
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scattering and the photon spectrum given by CompAZ [6] (see Section 2.4).
For our numerical evaluations in Section 4.1, we always use CompAZ. Sec-
tion 4.3 contains a comparison with the literature. The results for the parent
process which are specified in the literature have been obtained for direct
Compton scattering. We therefore use the respective photon spectrum for
the comparison.

The CMS energy of the subprocess respectively of the parent process
is specified through an energy range and a step value. Furthermore, the
Higgs mass has to be given as well as the residual numerical parameters.
Different values for the parameters are chosen for our numerical analysis and
the comparison with the literature.

In order to assess the residual error due to the truncation of the per-
turbation series, we transform the on-shell results into a mixed scheme (see
Section 3.3). However, this is only done for the subprocess, and only for
a specified energy. Furthermore, the renormalisation scale for the running
top-quark mass has to be given, which is varied from half its value to twice
its value. We choose the on-shell top-quark mass in our evaluations. The
scheme and scale dependences are discussed in Section 4.2.

We also have to specify the threshold in the detection of exceptional mo-
mentum configurations. In order to detect such an exceptional phase space
point, we first have to compute the Eigenvalues of the kinematical matrix
pertaining to the respective integral. The smallest Eigenvalue is then com-
pared to the threshold value. If it is smaller, also the Eigenvalues of the Gram
matrix have to be calculated and compared to the threshold value. The ap-
propriate recursion relation can then be chosen. The existence of at least one
small Eigenvalue means that the determinant of the matrix is small. In this
case, the inversion of the matrix becomes numerically unstable. Recursion
relations which use the inverse of such a matrix are, therefore, also numeri-
cally unreliable. However, when the inverse of the kinematical matrix can be
computed reliably because its determinant is not small, we still have to check
the B parameter which occurs in denominators of the recursion relations. If
it is small compared to the threshold value, the recursion relations for small
Gram determinants are chosen. The relation of the Gram determinant and
the B parameter is given by Eq. (2.33). However, as has been explained
above, we set the integrand to zero for the cases of a small determinant of
the kinematical matrix. Note that it is preferable to compare the smallest
Eigenvalue instead of the determinant of the respective matrix to a thresh-
old value. This is due to the fact that the exceptional recursion relations for
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small determinants of the kinematical matrix rely on the existence of a small
Eigenvalue of the kinematical matrix respectively of the Gram matrix.

Furthermore, the treatment of exceptional phase space points involves
expansions in small parameters (see Section 2.2). An expansion is termi-
nated when the prefactor of an integral is smaller than a certain value. This
iteration depth is also specified by a preprocessor variable.

In our numerical analysis, we choose for the threshold and for the iter-
ation depth the same value of 10−6. As has been mentioned in Section 2.2,
a parameter always has to be turned into a dimensionless quantity before it
can be compared to the specified value for the threshold respectively for the
iteration depth. To this end, it is scaled by powers of the top-quark mass,
which is a typical hard scale of the process. If we choose a smaller threshold
value, the numerical precision gets worse. Larger threshold values lead to
more phase space points which are treated as exceptional cases. This slows
down the computation. Furthermore, the iterations now involve larger ex-
pansion parameters. The reduction then leads to basis integrals with higher
powers of propagators and larger dimensions, which are not provided any-
more. The same applies to much smaller values of the depth. Still, the value
of 10−6, which is specified for the threshold as well as for the depth, seems
to be a reasonable choice.

The inversion of matrices is done by means of the Singular Value Decom-
position. In addition, we have to compute the Eigenvalues and Eigenvectors
of real and symmetric matrices. These are needed in order to detect and
treat the exceptional momentum configurations. We calculate them with the
Jacobi method. The numerical algorithms for the two methods have been
taken from [48].

Uncertainties

Let us now discuss the sources of uncertainties for the prediction of the
cross section. The truncation of the perturbation series after the NLO term
induces an error. As has been said above, one can assess this uncertainty by
comparing results for different renormalisation schemes. And if the result in
a specific scheme depends on the renormalisation scale, as it is the case in
the MS scheme, the scale can be varied around a typical scale of the process.
Such comparisons are performed in Section 4.2.

We only consider the NLO QCD correction in this work. However, in
case of the process e+e− → tt̄H, the electroweak correction turns out to be of
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equal importance for large values of the CMS energy [18]. This contribution
to the cross section should, therefore, also be provided.

In Section 2.4, we have seen that the two-photon spectrum of the photon
collider is obtained from a fit to a beam simulation. The resulting spectrum
has to be compared to measurements in order to investigate its accuracy.
Second, e+e−-collisions can still take place in the photon collider. If the en-
ergy of the laser photons is above a threshold value, e+e−-pair-creation in the
scattering of backscattered photons and laser photons occurs [34]. Choos-
ing the laser wavelength sufficiently large can avoid the pair creation. This
is desired since pair creation lowers the luminosity of two-photon collisions.
However, the actual luminosity of e+e−-collisions depends on the parame-
ters of the photon collider. Such e+e−-collisions can lead to the same final
states as they appear in the signal and background processes in two-photon
collisions. For a thorough estimation of the uncertainty for the cross section
prediction, these issues should be taken into account.

In a detailed study of the possibility to measure the top-quark Yukawa
coupling, one has to include the relevant background processes. Such studies
have already been performed for the case of e+e−-collisions in Refs. [8]. For
Higgs-boson masses below 140 GeV, the Higgs-boson decay into a pair of a
bottom and an anti-bottom quark is important. Above this value, the decay
into a W+W−-pair has to be considered. The main background comes from
the production of a tt̄-pair. Through radiation of a gluon which subsequently
decays into a pair of a bottom and an anti-bottom quark, the signal can be
mimicked (for the QCD correction see [49]). However, a detailed study for
a measurement of the top-quark Yukawa coupling in two-photon collisions is
not the aim of this work.

A final point is to be discussed. The Higgs-boson energy is maximal
when the top quark and the anti-top quark are collinear. The tt̄-system then
moves opposite to the Higgs direction, while the relative velocity vtt̄ between
the quarks is small. In this endpoint region of the Higgs energy, Coulomb
singularities arise which are proportional (αs/vtt̄)

n. In addition, logarithmic
divergences proportional (αs ln (vtt̄))

n show up. Such enhanced contributions
spoil the fixed-order perturbative approach. In Refs. [50], this issue has
been addressed for the process e+e− → tt̄H. The authors applied a non-
relativistic effective theory in order to sum both of these contributions to all
orders. Such corrections become the more important the larger the portion of
phase space is, where the tt̄-system is non-relativistic. This portion increases
for lower CMS energies and larger Higgs masses. As it turned out, for the
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process considered in those papers, the deviation from the pure fixed-order
approach at NLO amounts to several percent at a CMS energy of 600 GeV.
For smaller energies, where the corrections become large, the size of the cross
section decreases since we get close to the threshold. If the corrections are
of a comparable size for the process e+e− → γγ → tt̄H, we can roughly
estimate the respective uncertainty, away from the threshold, to be at the
percent level. Note that the subprocess is integrated over the photon spectra
so that its cross section is calculated for energies between the threshold and
the maximal energy. One could also avoid these additional corrections by
imposing a cut on the Higgs-boson energy or on the invariant mass of the
tt̄-system. However, we do not encounter any problems in integrating the
NLO expressions over the full phase space without special treatment of the
endpoint region of the Higgs-boson energy. Still, the corrections stemming
from this region then have to be taken into account for an estimate of the
residual error on the prediction of the cross section.

3.5 Checks

The preceding Sections have shown that the calculation of the cross section
for e+e− → γγ → tt̄H is nontrivial. It is, therefore, highly desirable to
have strong checks. These should cover as many parts of the calculation as
possible. Let us now discuss the various checks which have been applied in
this work.

Born Level

First of all, we recalculated the Born results of Ref. [13]. This presents a good
check on the automated generation of the Fortran functions which contain
the matrix element. Furthermore, the (2 → 3) phase space is involved in this
calculation. Moreover, the squaring and summing of the matrix element is
checked in this way. This is also done by following two slightly different ways
for the computation (see Section 3.1). In addition, we recalculated the Born
results completely automatically with FormCalc.

Real Correction

In Section 3.4, we mentioned the possibility to apply a lower cut on the en-
ergy of the additionally radiated gluon in case of the real correction. The
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lower cut allows to perform the phase space integration solely for the genuine
real correction without the need for a subtraction term. The IR divergences
stem from the integration region where the gluon becomes soft, which is ex-
cluded in this way. The result has been compared to a completely automated
calculation using Version 5.2 of FormCalc. When no lower cut is applied, the
subtraction terms have to be added to the genuine real correction in order
to avoid the occurrence of IR divergences in the phase space integration.
Thus, the observed convergence of the integration of the subtracted matrix
element, without a lower cut, constitutes another check. Multiplication of
the subtraction terms with a factor different from one leads to an integral
which does not converge anymore. We could furthermore compare the de-
rived subtraction terms for the real as well as for the virtual part with results
stated in the literature [32].

Virtual Correction

The most complex part is the calculation of the virtual correction. The fol-
lowing checks are all concerned with this part of the computation. The first
thing to note is, that it is indispensable to automate the evaluation as much
as possible. This was always done, as already mentioned in the preceding
Sections. FeynArts was used in order to automatically construct the analytic
expressions pertaining to the various diagrams. These were transformed into
Form expressions with FormCalc. We used Form to treat the expressions fur-
ther, and simplifications were performed with Mathematica. Basis integrals
were reduced further by means of the program AIR. The connections between
the different packages were made by means of makefiles, Perl scripts, and
shell scripts. The transformation of the resulting expressions into Fortran

functions has also been done in a completely automated way.
In order to check the reduction procedure, we implemented the tensor

reduction in two independent ways. For non-exceptional phase space points,
we could compare the respective results. This is a very strong check that
the tensor reduction has been implemented correctly. In both cases, we
optimised the evaluation. This speeds up the computation considerably and
is thus mandatory. The results are still in agreement for the two independent
implementations and also agree with a calculation without optimisation. The
O(ε)-terms have also been taken into account in different ways. This way, it
is also checked that these additional finite terms are included correctly.

In Section 3.3, we showed the cancellation of the UV as well as of the



CHAPTER 3. CALCULATIONS 67

IR singularities. These cancellations present further checks on the calcula-
tion. Furthermore, we derived the IR divergences in two different ways. We
could directly read them off the original tensor integrals and obtain them
through reduction. We numerically compared the IR-divergent terms and
found agreement. In addition, we can exploit Bose symmetry and Gauge
invariance in order to check our expressions. Let us start with the Bose-
symmetry property of the matrix element.

Bose Symmetry

The general form of the matrix element for the Born level as well as for
the virtual contribution is specified in Eqs. (2.8, 2.9, 2.10). It involves the

coefficients Ci respectively U (i), U
(i)
j1j2, X

(i)
j , Y

(i)
j , and Z(i). They depend,

amongst others, on the momenta and polarisation vectors of the external
photons. In the following, this will be indicated by four arguments. The first
two arguments of the coefficients are the momenta of the first and second
photon, while the other two are the polarisation vectors of these, respectively.

The amplitude of the process under consideration obeys Bose symmetry
with respect to the two external photons. If we simultaneously interchange
the momenta and the polarisation vectors of the two photons, the value of
the amplitude must not change. This leads to ten Bose symmetry relations
between the coefficients Ci:

C1(p1, p2, ε1, ε2) = C1(p2, p1, ε2, ε1) ,

C2(p1, p2, ε1, ε2) = C3(p2, p1, ε2, ε1) ,

C4(p1, p2, ε1, ε2) = −C4(p2, p1, ε2, ε1) ,

C5(p1, p2, ε1, ε2) = C9(p2, p1, ε2, ε1) ,

C6(p1, p2, ε1, ε2) = C10(p2, p1, ε2, ε1) ,

C7(p1, p2, ε1, ε2) = C11(p2, p1, ε2, ε1) ,

C8(p1, p2, ε1, ε2) = C12(p2, p1, ε2, ε1) ,

C13(p1, p2, ε1, ε2) = −C13(p2, p1, ε2, ε1) ,

C14(p1, p2, ε1, ε2) = C15(p2, p1, ε2, ε1) ,

C16(p1, p2, ε1, ε2) = C16(p2, p1, ε2, ε1) . (3.42)

If we express the Ci as in Eq. (2.10), the coefficients U (i), U
(i)
j1j2, X

(i)
j , Y

(i)
j , and

Z(i) are introduced. Above relations imply for these coefficients the following
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relations:

U (1)(p1, p2) − U (1)(p2, p1) = 0 , U
(1)
21 (p1, p2) − U

(1)
21 (p2, p1) = 0 ,

U
(1)
23 (p1, p2) − U

(1)
31 (p2, p1) = 0 , U

(1)
24 (p1, p2) − U

(1)
41 (p2, p1) = 0 ,

U
(1)
31 (p1, p2) − U

(1)
23 (p2, p1) = 0 , U

(1)
33 (p1, p2) − U

(1)
33 (p2, p1) = 0 ,

U
(1)
34 (p1, p2) − U

(1)
43 (p2, p1) = 0 , U

(1)
41 (p1, p2) − U

(1)
24 (p2, p1) = 0 ,

U
(1)
43 (p1, p2) − U

(1)
34 (p2, p1) = 0 , U

(1)
44 (p1, p2) − U

(1)
44 (p2, p1) = 0 ,

U (2)(p1, p2) − U (3)(p2, p1) = 0 , U
(2)
21 (p1, p2) − U

(3)
21 (p2, p1) = 0 ,

U
(2)
23 (p1, p2) − U

(3)
31 (p2, p1) = 0 , U

(2)
24 (p1, p2) − U

(3)
41 (p2, p1) = 0 ,

U
(2)
31 (p1, p2) − U

(3)
23 (p2, p1) = 0 , U

(2)
33 (p1, p2) − U

(3)
33 (p2, p1) = 0 ,

U
(2)
34 (p1, p2) − U

(3)
43 (p2, p1) = 0 , U

(2)
41 (p1, p2) − U

(3)
24 (p2, p1) = 0 ,

U
(2)
43 (p1, p2) − U

(3)
34 (p2, p1) = 0 , U

(2)
44 (p1, p2) − U

(3)
44 (p2, p1) = 0 ,

U (3)(p1, p2) − U (2)(p2, p1) = 0 , U
(3)
21 (p1, p2) − U

(2)
21 (p2, p1) = 0 ,

U
(3)
23 (p1, p2) − U

(2)
31 (p2, p1) = 0 , U

(3)
24 (p1, p2) − U

(2)
41 (p2, p1) = 0 ,

U
(3)
31 (p1, p2) − U

(2)
23 (p2, p1) = 0 , U

(3)
33 (p1, p2) − U

(2)
33 (p2, p1) = 0 ,

U
(3)
34 (p1, p2) − U

(2)
43 (p2, p1) = 0 , U

(3)
41 (p1, p2) − U

(2)
24 (p2, p1) = 0 ,

U
(3)
43 (p1, p2) − U

(2)
34 (p2, p1) = 0 , U

(3)
44 (p1, p2) − U

(2)
44 (p2, p1) = 0 ,

U (4)(p1, p2) + U (4)(p2, p1) = 0 , U
(4)
21 (p1, p2) + U

(4)
21 (p2, p1) = 0 ,

U
(4)
23 (p1, p2) + U

(4)
31 (p2, p1) = 0 , U

(4)
24 (p1, p2) + U

(4)
41 (p2, p1) = 0 ,

U
(4)
31 (p1, p2) + U

(4)
23 (p2, p1) = 0 , U

(4)
33 (p1, p2) + U

(4)
33 (p2, p1) = 0 ,

U
(4)
34 (p1, p2) + U

(4)
43 (p2, p1) = 0 , U

(4)
41 (p1, p2) + U

(4)
24 (p2, p1) = 0 ,

U
(4)
43 (p1, p2) + U

(4)
34 (p2, p1) = 0 , U

(4)
44 (p1, p2) + U

(4)
44 (p2, p1) = 0 ,

X
(1)
01 (p1, p2) − Y

(1)
02 (p2, p1) = 0 , X

(1)
03 (p1, p2) − Y

(1)
03 (p2, p1) = 0 ,

X
(1)
04 (p1, p2) − Y

(1)
04 (p2, p1) = 0 , X

(2)
01 (p1, p2) − Y

(2)
02 (p2, p1) = 0 ,

X
(2)
03 (p1, p2) − Y

(2)
03 (p2, p1) = 0 , X

(2)
04 (p1, p2) − Y

(2)
04 (p2, p1) = 0 ,

X
(3)
01 (p1, p2) − Y

(3)
02 (p2, p1) = 0 , X

(3)
03 (p1, p2) − Y

(3)
03 (p2, p1) = 0 ,

X
(3)
04 (p1, p2) − Y

(3)
04 (p2, p1) = 0 , X

(4)
01 (p1, p2) − Y

(4)
02 (p2, p1) = 0 ,

X
(4)
03 (p1, p2) − Y

(4)
03 (p2, p1) = 0 , X

(4)
04 (p1, p2) − Y

(4)
04 (p2, p1) = 0 ,

Y
(1)
02 (p1, p2) −X

(1)
01 (p2, p1) = 0 , Y

(1)
03 (p1, p2) −X

(1)
03 (p2, p1) = 0 ,

Y
(1)
04 (p1, p2) −X

(1)
04 (p2, p1) = 0 , Y

(2)
02 (p1, p2) −X

(2)
01 (p2, p1) = 0 ,
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Y
(2)
03 (p1, p2) −X

(2)
03 (p2, p1) = 0 , Y

(2)
04 (p1, p2) −X

(2)
04 (p2, p1) = 0 ,

Y
(3)
02 (p1, p2) −X

(3)
01 (p2, p1) = 0 , Y

(3)
03 (p1, p2) −X

(3)
03 (p2, p1) = 0 ,

Y
(3)
04 (p1, p2) −X

(3)
04 (p2, p1) = 0 , Y

(4)
02 (p1, p2) −X

(4)
01 (p2, p1) = 0 ,

Y
(4)
03 (p1, p2) −X

(4)
03 (p2, p1) = 0 , Y

(4)
04 (p1, p2) −X

(4)
04 (p2, p1) = 0 ,

Z(1)(p1, p2) + Z(1)(p2, p1) = 0 , Z(2)(p1, p2) − Z(3)(p2, p1) = 0 ,

Z(3)(p1, p2) − Z(2)(p2, p1) = 0 , Z(4)(p1, p2) − Z(4)(p2, p1) = 0 .

(3.43)

We checked these relations numerically within the main Fortran program for
the Born level as well as for the virtual part. In case of the Born results, the
relations are fulfilled within machine precision. The situation looks different
for the virtual contribution. For non-exceptional cases, we still observe the
validity of above relations within several orders of magnitude up to machine
precision. However, for phase space points where the Gram determinant
becomes small, they are only poorly fulfilled. The respective recursion re-
lations, therefore, do not seem to lead to results with high accuracy. Still,
since these phase space configurations only occur for about 1% of all phase
space points, this should not spoil the desired accuracy of our calculation.
Furthermore, we showed that the results do not change within this precision
if we set the integrand identically to zero in such cases.

Gauge Invariance

Gauge invariance gives rise to further conditions called Ward identities. If
we substitute the polarisation vector of one of the two photons by its mo-
mentum, the result for the amplitude has to be zero. These identities again
translate into relations for the coefficients U (i), U

(i)
j1j2 , X

(i)
j , Y

(i)
j , and Z(i).

The substitution ε1 → p1 leads to:

U (1) + U
(1)
21 · s12

2
+ U

(1)
31 · (s13 −m2

t )

2
+ U

(1)
41 · (s14 −m2

t )

2
+

X
(3)
01 · s12

2
+ 2Z(1) = 0 ,

U
(1)
23 · s12

2
+ U

(1)
33 · (s13 −m2

t )

2
+ U

(1)
43 · (s14 −m2

t )

2
+X

(3)
03 · s12

2
= 0 ,

U
(1)
24 · s12

2
+ U

(1)
34 · (s13 −m2

t )

2
+ U

(1)
44 · (s14 −m2

t )

2
+X

(3)
04 · s12

2
= 0 ,
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U (2) + U
(2)
21 · s12

2
+ U

(2)
31 · (s13 −m2

t )

2
+ U

(2)
41 · (s14 −m2

t )

2
+X

(1)
01 = 0 ,

U
(2)
23 · s12

2
+ U

(2)
33 · (s13 −m2

t )

2
+ U

(2)
43 · (s14 −m2

t )

2
+X

(1)
03 = 0 ,

U
(2)
24 · s12

2
+ U

(2)
34 · (s13 −m2

t )

2
+ U

(2)
44 · (s14 −m2

t )

2
+X

(1)
04 = 0 ,

U (3) + U
(3)
21 · s12

2
+ U

(3)
31 · (s13 −m2

t )

2
+ U

(3)
41 · (s14 −m2

t )

2
+ 2Z(3) = 0 ,

U
(3)
23 · s12

2
+ U

(3)
33 · (s13 −m2

t )

2
+ U

(3)
43 · (s14 −m2

t )

2
= 0 ,

U
(3)
24 · s12

2
+ U

(3)
34 · (s13 −m2

t )

2
+ U

(3)
44 · (s14 −m2

t )

2
= 0 ,

U (4) + U
(4)
21 · s12

2
+ U

(4)
31 · (s13 −m2

t )

2
+ U

(4)
41 · (s14 −m2

t )

2
+
X

(3)
01

2
= 0 ,

U
(4)
23 · s12

2
+ U

(4)
33 · (s13 −m2

t )

2
+ U

(4)
43 · (s14 −m2

t )

2
+
X

(3)
03

2
= 0 ,

U
(4)
24 · s12

2
+ U

(4)
34 · (s13 −m2

t )

2
+ U

(4)
44 · (s14 −m2

t )

2
+
X

(3)
04

2
= 0 ,

Y
(1)
02 · s12

2
+ Y

(1)
03 · (s13 −m2

t )

2
+ Y

(1)
04 · (s14 −m2

t )

2
− s12Z

(3) = 0 ,

Y
(2)
02 · s12

2
+ Y

(2)
03 · (s13 −m2

t )

2
+ Y

(2)
04 · (s14 −m2

t )

2
= 0 ,

Y
(3)
02 · s12

2
+ Y

(3)
03 · (s13 −m2

t )

2
+ Y

(3)
04 · (s14 −m2

t )

2
− 2Z(1) = 0 ,

Y
(4)
02 · s12

2
+ Y

(4)
03 · (s13 −m2

t )

2
+ Y

(4)
04 · (s14 −m2

t )

2
+ Z(3) = 0 . (3.44)

ε2 → p2 results in the following relations:

U (1) + U
(1)
21 · s12

2
+ U

(1)
23 · (s23 −m2

t )

2
+ U

(1)
24 · (s24 −m2

t )

2
+

s12

2
Y

(3)
02 − 2Z(1) = 0 ,

U
(1)
31 · s12

2
+ U

(1)
33 · (s23 −m2

t )

2
+ U

(1)
34 · (s24 −m2

t )

2
+
s12

2
Y

(3)
03 = 0 ,

U
(1)
41 · s12

2
+ U

(1)
43 · (s23 −m2

t )

2
+ U

(1)
44 · (s24 −m2

t )

2
+
s12

2
Y

(3)
04 = 0 ,
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U (2) + U
(2)
21 · s12

2
+ U

(2)
23 · (s23 −m2

t )

2
+ U

(2)
24 · (s24 −m2

t )

2
+ Z(3) = 0 ,

U
(2)
31 · s12

2
+ U

(2)
33 · (s23 −m2

t )

2
+ U

(2)
34 · (s24 −m2

t )

2
= 0 ,

U
(2)
41 · s12

2
+ U

(2)
43 · (s23 −m2

t )

2
+ U

(2)
44 · (s24 −m2

t )

2
= 0 ,

U (3) + U
(3)
21 · s12

2
+ U

(3)
23 · (s23 −m2

t )

2
+ U

(3)
24 · (s24 −m2

t )

2
+ Y

(1)
02 = 0 ,

U
(3)
31 · s12

2
+ U

(3)
33 · (s23 −m2

t )

2
+ U

(3)
34 · (s24 −m2

t )

2
+ Y

(1)
03 = 0 ,

U
(3)
41 · s12

2
+ U

(3)
43 · (s23 −m2

t )

2
+ U

(3)
44 · (s24 −m2

t )

2
+ Y

(1)
04 = 0 ,

U (4) + U
(4)
21 · s12

2
+ U

(4)
23 · (s23 −m2

t )

2
+ U

(4)
24 · (s24 −m2

t )

2
− 1

2
Y

(3)
02 = 0 ,

U
(4)
31 · s12

2
+ U

(4)
33 · (s23 −m2

t )

2
+ U

(4)
34 · (s24 −m2

t )

2
− 1

2
Y

(3)
03 = 0 ,

U
(4)
41 · s12

2
+ U

(4)
43 · (s23 −m2

t )

2
+ U

(4)
44 · (s24 −m2

t )

2
− 1

2
Y

(3)
04 = 0 ,

X
(1)
01 · s12

2
+X

(1)
03 · (s23 −m2

t )

2
+X

(1)
04 · (s24 −m2

t )

2
− s12Z

(3) = 0 ,

X
(2)
01 · s12

2
+X

(2)
03 · (s23 −m2

t )

2
+X

(2)
04 · (s24 −m2

t )

2
= 0 ,

X
(3)
01 · s12

2
+X

(3)
03 · (s23 −m2

t )

2
+X

(3)
04 · (s24 −m2

t )

2
+ 2Z(1) = 0 ,

X
(4)
01 · s12

2
+X

(4)
03 · (s23 −m2

t )

2
+X

(4)
04 · (s24 −m2

t )

2
+ Z(3) = 0 . (3.45)

We checked these conditions numerically for the Born level as well as for
the virtual contribution. At Born level, the Ward identities have also been
checked analytically within Form (see Section 3.1). Again, the Born expres-
sions fulfil the relations within machine precision. In case of the virtual part,
we only observe a validity of above relations within an accuracy of about two
orders of magnitude. This is already true for non-exceptional phase space
configurations, while it is even worse for exceptional ones. However, this
accuracy should still be sufficient to achieve the desired overall precision for
the cross section at NLO. The reason for the poor accuracy could lie in can-
cellations between terms within a recursion relation. Such cancellations lead
to a loss of precision. The reasoning is the same as for the case of exceptional
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momentum configurations. Within Fortran, the error is always relative to
the respective term. If the addition of two terms leads to a result which
is smaller than the individual terms, the relative accuracy of the result is
obviously worse than the ones for the individual terms. The reduction of an
integral usually involves the repeated application of recursion relations. A
loss of accuracy can happen in each step of the reduction so that the preci-
sion is successively reduced. In the calculation of more complex processes,
such cancellations could necessitate a more advanced implementation of the
recursion relations which avoid these. They could also render the reduction
method inapplicable. In Section 3.4, we varied the threshold for the detection
of exceptional momentum configurations. Furthermore, we checked the inte-
gration by using in turn the different integration routines of the CUBA library.
These investigations also support the conclusion that the desired accuracy is
indeed achieved. Still, an independently obtained result is desirable in order
to thoroughly check the result and its precision for such a calculation. We
compare our cross section prediction with a result already specified in the
literature in Section 4.3.

Further Checks

As has just been mentioned, we have checked that the different integration
routines of the CUBA library lead to the same results within the specified
precision for the phase space integration of the virtual correction. This is a
good way to test the reliability of the Monte Carlo integration.

In addition to above checks, we compared the values for various master in-
tegrals with independent calculations performed by Gudrun Heinrich. These
were partly done also with LoopTools and partly with different methods.
Furthermore, we compared the results for the reduction of sample tensor
integrals with those obtained by Gudrun Heinrich using a different reduc-
tion method [25]. These comparisons constitute a check on the reduction of
the tensor integrals to generalised scalar integrals, their transformation into
Fortran functions, the subsequent reduction to the basis integrals, and the
evaluation of the latter.

Conclusion

In conclusion, we applied several strong checks which cover various parts of
the calculation. Still, it is desirable to have an independently obtained result
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for such a complex calculation. This way, one can also check thoroughly
whether the desired accuracy for the result has been achieved. We observe
that the Gauge invariance relations are only poorly fulfilled. The reason could
be due to cancellations among different terms within a recursion relation. In
case of more complex processes, this may call for an improved implementation
or even prevent from applying the reduction method. However, this has to
be investigated in more detail before a thorough conclusion can be drawn.
For our results, we expect that the desired precision has been reached.



Chapter 4

Numerical Evaluation

In this Chapter, we finally specify our numerical results. The cross sections
at LO and NLO are given in Section 4.1. We then discuss the scheme and
scale dependence of these cross sections in Section 4.2. A comparison with
the results given in the literature is drawn in Section 4.3.

4.1 Numerical Results

In this Section, we give the numerical results for the cross section at Born level
and at NLO. The numerical values for the diverse parameters have been taken
from Ref. [51]. Specifically, we express the vacuum expectation value v of the
Higgs field through Fermi’s constant GF = 1.16637× 10−5 GeV−2 according
to the Born relation 1/v = 21/4G

1/2
F . The electric charge e of the electron is

expressed in terms of the fine-structure constant α = 7.297352568× 10−3 via
the relation α = e2/(4π). At NLO, we need the value for the strong coupling
constant. We choose the mass of the Z boson, MZ = 91.1876 GeV, for the
scale of the running coupling. Its value reads αs(MZ) = 0.1176. We also
need the on-shell mass of the top quark, mt = 174.2 GeV, which has been
taken from Ref. [52].

The Higgs-boson mass is a free parameter of the theory. However, direct
searches, high precision measurements, and theoretical considerations impose
restrictions on its value. This has already been discussed in the introduction.
We assume the Higgs-boson mass to be equal to MH = 130 GeV. The CMS
energy is varied up to the value of 1000 GeV, which is an option for the ILC
[53].

74
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Figure 4.1: Cross section of the subprocess γγ → tt̄H in dependence of its
CMS energy; the Higgs mass is 130 GeV.

In Fig. 4.1, we show the cross section of the subprocess in dependence of
its CMS energy. The threshold for the subprocess is equal to 478.4 GeV. The
CMS energy is varied from 520 GeV to 1000 GeV. We see that the Born level
cross section, which is given by the dotted lines, increases rapidly to values
above 1 fb. The maximum is reached at a CMS energy of 900 GeV, where
its value amounts to 1.88 fb. It then falls off slowly.

Also the NLO prediction for the cross section of the subprocess is given
in Fig. 4.1. It is shown as a solid curve. The NLO correction increases the
Born result by about 64% at a CMS energy of 520 GeV. This large relative
correction may be due to the gluonic Coulomb correction near threshold (see
Section 3.4). For larger values of the CMS energy, the relative correction
decreases. We find 28% at 600 GeV, 15% at 700 GeV, 9.2% at 800 GeV,
6.2% at 900 GeV, and 4.6% at 1000 GeV. For large CMS energies, we thus
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find rather small relative corrections to the Born level result.
The NLO correction to the Born result consists of a virtual and a real

part. However, these cannot be integrated separately over the respective
phase spaces since both develop IR singularities, which only cancel in the sum
of both contributions. We therefore considered subtracted cross sections (see
Section 2.3). The individual contributions of these are also shown in Fig. 4.1.
The virtual part is given by the dashed curve, while the dashed-dotted curve
belongs to the real part. The virtual contribution is dominant at low values
for the CMS energy. For larger values, the real part becomes important,
while the virtual part gets small. Near 1000 GeV, the virtual contribution
becomes negative. Still, for the whole energy range considered here, the total
NLO correction is positive.

Fig. 4.2 contains the cross section of the parent process. This is ob-
tained by integrating the cross section of the subprocess over the spectra of
the incoming photons. For the latter, we choose the CompAZ spectrum (see
Section 2.4). The threshold is higher in this case since the back-scattered
photons cannot be as energetic as the incoming electrons or positrons. The
CMS energy is varied from 700 GeV to 1000 GeV. The Born and the NLO
prediction as well as the individual contributions from the virtual and the
real part are shown as in Fig. 4.1. Since the NLO correction always increases
the Born result for the subprocess, also the cross section of the parent process
is larger for the NLO prediction for the whole considered energy range. The
relative correction amounts to about 40% at 700 GeV, 24% at 800 GeV, 16%
at 900 GeV, and 12% at 1000 GeV. For large values of the CMS energy, the
relative correction is thus moderate. The increase of the relative correction
towards energies near threshold can obviously be explained by the fact that
the relative correction for the subprocess is larger at smaller energies.

At low CMS energies, the virtual part gives the dominant contribution
to the NLO correction, while the real contribution is small. With higher
energies, the importance of the real part grows. At 1000 GeV, the two
contributions are of comparable size. The virtual and the real part are both
positive throughout the considered energy range.

4.2 Scheme and Scale Dependence

In Section 3.3, we have discussed the possibility to transform the on-shell
results of Section 4.1 into results which are valid in a mixed scheme. In the
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Figure 4.2: Cross section of the parent process e+e− → γγ → tt̄H in depen-
dence of its CMS energy; the Higgs mass is 130 GeV.

latter, the top-quark mass occurring in the Yukawa coupling is renormalised
in the MS scheme, while those of the propagators are kept on-shell. We vary
the renormalisation scale from 0.5 till 2 times the on-shell top-quark mass,
for a CMS energy of 800 GeV. This is done only for the cross section of the
subprocess. The result is shown in Fig. 4.3. Again, the Born cross section is
given by a dotted curve and the NLO prediction by a solid one.

From the Figure, it is obvious that the scale dependence is strongly re-
duced. At Born level, the variation of the prediction relative to the central
value amounts to 19.0%. This scale dependence is reduced by more than one
order of magnitude to 1.6% for the NLO prediction.

The scale dependence can be used as a means to assess the residual error
due to truncation of the perturbation series. We observe a reduction of the
scale dependence of more than one order of magnitude in going from the Born
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Figure 4.3: Cross section of the subprocess γγ → tt̄H in dependence of the
renormalisation scale, which is varied from 0.5mt to 2mt; the CMS energy
of the subprocess is 800 GeV; the Higgs mass is 130 GeV.

level to NLO. This supports the conclusion that the uncertainty is reduced
to the percent level for CMS energies away from threshold. By the same
token, also the residual error for the case of the parent process should be of
the order of a few percent if we stay away from the threshold. However, one
should keep in mind that only the top-quark mass occurring in the Yukawa
coupling is affected by the scale variation within the mixed scheme.

In Fig. 4.4, we also show the scale variation of the cross section for the
subprocess. However, we choose the parameters as in Ref. [13] and a Higgs-
boson mass of 150 GeV. These values are also adopted in Section 4.3 for a
comparison with the results stated in the literature. For this set of parame-
ters, we observe a scale reduction from 18.9% to 3.7%, which is slightly less
than an order of magnitude.
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Figure 4.4: Cross section of the subprocess γγ → tt̄H in dependence of the
renormalisation scale, which is varied from 0.5mt to 2mt; the CMS energy of
the subprocess is 800 GeV; the Higgs mass is 150 GeV; the numerical values
for the remaining parameters are chosen as in [13].

We also have mentioned in Section 3.3, that the strong coupling only
is introduced at NLO. Its value is thus not fixed. In order to get an idea
about the uncertainty induced by the running of the strong coupling, we
now vary the scale for the running coupling. This can be done by means
of the Mathematica package RunDec [54]. If we evolve the coupling at
the one-loop order with six active flavours, we get αs(mt/2) = 0.1174 and
αs(2mt) = 0.0993. The relative variation with respect to the central value
thus amounts to 16.6%. In Section 4.1, we saw that the NLO correction
to the Born level amounts to about 10% away from threshold. The NLO
correction is proportional to the running coupling. We may thus also assess
the uncertainty due to the scale dependence of αs to be at the percent level.
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However, in the numerical evaluations in Section 4.1, the running coupling
has been taken at the scale MZ .

Let us now compare the Born and the NLO results for the two schemes. In
case of the mixed scheme, we take the results for the scale of the running top-
quark mass being the on-shell mass of the top quark. Again, we only consider
the subprocess and a CMS energy of 800 GeV. The scheme dependence drops
down from 9.6% to 0.62% if we go from the Born level to NLO. This is again
more than one order of magnitude, which gives further support to our error
estimate.

As we have just said, the NLO correction is about 10% away from thresh-
old. This may also suggest a residual error of the order of a few percent. All
error estimations thus point to a residual uncertainty of several percent.

4.3 Comparison with Literature

In this Section, we compare our results to those specified in the literature.
Let us begin with the cross section at Born level. In Ref. [13], the following
values for the numerical parameters are chosen: α = 1/137.03599976, MW =
80.423 GeV, MZ = 91.1876 GeV. The electric charge is expressed as in
Section 4.1 through α. The vacuum expectation value of the Higgs boson is
replaced via the Born relation 1/v = e/(2sWMW ). This relation contains the

sine of the weak mixing angle sW , which is calculated as sW =
√

1 − c2W . cW
is the cosine of the weak mixing angle and obtained as cW = MW/MZ.

The Born results have already been calculated in Refs. [9]. In Ref. [13],
different results were found. We agree with the results specified in the latter
publication. In particular, we could reproduce Table 3 of Ref. [13]. The
Table contains results for the cross section of the parent process at Born
level. They are specified for diverse values of the top-quark mass, the Higgs-
boson mass, and the CMS energy. Also the results of Refs. [9] are shown in
this Table for comparison. Our results are collected in Table 4.1. We chose
a relative accuracy of 0.1%. The numbers in parentheses give the first digit
of the respective result which lies beyond this accuracy. The numbers agree
with those of Ref. [13] within the specified accuracy. However, variation of
the input parameters does not seem to resolve above mentioned discrepancy.

In Fig. 4.5, we show the cross section for the subprocess in dependence
of its CMS energy. Again, the Born and the NLO prediction as well as the
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mt [GeV] MH [GeV]
√
s [GeV] σ [fb]

120 60 500 0.390(8)
1000 2.18(6)
2000 2.39(1)

150 60 1000 2.74(0)
2000 3.42(1)

140 1000 0.311(7)
2000 0.805(8)

180 140 1000 0.341(2)
2000 1.05(5)

Table 4.1: Cross section of the parent process e+e− → γγ → tt̄H at Born
level for diverse values of the top-quark mass, the Higgs-boson mass, and the
CMS energy.

individual contributions from the virtual and the real part are plotted as in
Fig. 4.1. We also choose the same range for the CMS energy. For the input
parameters, we use the numerical values as given above and, in addition,
a top-quark mass of 174.3 GeV and a Higgs-boson mass of 150 GeV. For
the cross section at NLO, we furthermore need the running coupling αs. In
Ref. [13], the strong coupling is evaluated at the two-loop level with five active
flavours and αs(MZ) = 0.117186. The renormalisation scale is taken to be
(2mt +MH)/2. Using RunDec, we find the value αs(mt +MH/2) = 0.101891.
The resulting cross section at Born level and at NLO can be compared to
Fig. 4.6, which has been taken from Ref. [13].

Fig. 4.6 contains the Born and the NLO prediction for the subprocess,
which have been obtained in Ref. [13]. They are shown for three different
values of the Higgs-boson mass. The dashed curves show the results for
MH = 150 GeV. As we can see, the NLO results of Fig. 4.5 and Fig. 4.6 do
not agree. The NLO correction specified in Ref. [13] is positive for small CMS
energies and becomes negative for larger ones. The change in sign occurs for
CMS energies below 1000 GeV. We thus have a qualitatively different result
from that obtained in this work. In Fig. 4.5, the NLO correction is always
positive within the considered CMS energy range, which extends to the value
1000 GeV.

For completeness, we also show the results for the parent process in
Figs. 4.7 and 4.8. The assignments are the same as in Fig. 4.1 and in
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Figure 4.5: Cross section of the subprocess γγ → tt̄H in dependence of
its CMS energy; the Higgs mass is 150 GeV; the numerical values for the
remaining parameters are chosen as in [13].

Fig. 4.6, respectively. In Ref. [13], the photon spectrum refers to direct
Compton scattering (see Section 2.4). We thus used this spectrum instead
of the CompAZ spectrum for the calculation of the cross section predictions
specified in Fig. 4.7. The deviation of the two results for the NLO prediction
is again obvious.
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ŝ [GeV]

mh = 115 GeV
mh = 150 GeV
mh = 200 GeV

Figure 4.6: Cross section of the subprocess γγ → tt̄H in dependence of its
CMS energy as obtained in Ref.[13]; the dashed curves correspond to a Higgs
mass of 150 GeV; the upper curve for CMS energies above 1000 GeV belongs
to the Born level while the lower shows the NLO result. The Figure has been
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dence of its CMS energy; the Higgs mass is 150 GeV; the numerical values
for the remaining parameters as well as the photon spectrum are chosen as
in [13].



CHAPTER 4. NUMERICAL EVALUATION 85

0

0.5

1

1.5

2

600 800 1000 1200 1400 1600 1800 2000

σ
[f
b
]

√

s [GeV]

mh = 115 GeV
mh = 150 GeV
mh = 200 GeV

Figure 4.8: Cross section of the parent process e+e− → γγ → tt̄H in depen-
dence of its CMS energy as obtained in Ref.[13]; the dashed curves corre-
spond to a Higgs mass of 150 GeV; the upper curve for CMS energies above
1400 GeV belongs to the Born level while the lower shows the NLO result.
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Chapter 5

Summary

The LHC has a high probability of finding Higgs bosons since it will be
capable of producing particles with masses up to 1 TeV. In a next step,
the quantum numbers and couplings of the particles, which may have been
found, have to be measured. However, precision measurements are left to a
linear collider like the ILC. In this work, the process γγ → tt̄H is considered,
which can be studied at a linear e+e−-collider operated in the two-photon
mode. The associated production of Higgs bosons and heavy quarks allows
for a direct measurement of the respective Yukawa coupling.

We computed the NLO QCD correction to γγ → tt̄H. Its inclusion
reduces the scheme and scale dependences by about one order of magnitude.
In order to assess the scheme dependence, we converted the on-shell results
into those valid in a mixed scheme. Within the latter, the top-quark mass
occurring in the Yukawa coupling is renormalised in the MS scheme while
the propagator mass is kept on-shell. The scale dependence was assessed by
varying the renormalisation scale, within the mixed scheme, from 0.5mt to
2mt, where the top-quark mass is a typical hard scale of the process. The
NLO QCD correction for the subprocess γγ → tt̄H is of the order of 10%.
Only near threshold, it reaches several tenths of percent.

However, not the subprocess is measured at a linear collider but the parent
process e+e− → γγ → tt̄H. In order to get a prediction for the parent
process, the subprocess has to be integrated over the spectra of the incoming
photons. We used the spectrum given in Ref. [6]. The NLO QCD correction
for the parent process varies between roughly 10% at high CMS energies
and several tenths of percent for low ones. This can obviously be explained
through the increase of the relative correction for the subprocess towards
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energies near threshold.
Results for γγ → tt̄H and e+e− → γγ → tt̄H already exist in the liter-

ature [13]. Our results deviate from those which necessitates a further in-
dependent calculation. Such a calculation is also desirable in order to check
the achieved precision for the cross section prediction.

In order to reduce the tensor integrals, we applied the method recently
developed in Refs. [20]. The method seems to work reasonably well for non-
exceptional phase space configurations for the process under consideration.
For the calculation of more complex processes, an advanced implementation
of the recursion relations could be necessary. Or the reduction method could
even be inapplicable. However, it did not give reliable results for those points
in phase space where the determinant of the kinematical matrix becomes
small. In our actual calculation, such exceptional cases did not occur very
often. It was therefore possible to set the integrand equal to zero for such
cases, without affecting the desired numerical accuracy of our final results.
Actually, we could also set the integrand to zero for exceptional configura-
tions where only the Gram determinant becomes small. However, we chose
to include the exceptional recursion relations pertaining to this case in our
numerical analysis.

A subtraction method [32] was used for the treatment of the IR singu-
larities. This led to effective cross sections for the virtual and the real part,
respectively. In case of the virtual cross section, the cancellation of the IR
singularities was shown in a semi-analytic way. The divergent part of the
subtraction term was added to the IR-divergent part of the virtual correc-
tion and to the one stemming from the renormalisation of the wave functions
of the external quarks. For the IR-divergent part of the virtual correction,
we used the compact expression which was obtained by directly reading off
the singularity structure from the original tensor integrals. This way, it was
possible to show analytically that the IR poles cancel in the sum. Then it was
checked numerically that the compact expression for the singularities indeed
agrees with the one obtained through the reduction procedure applied to the
tensor integrals. The phase space integration of the effective cross section for
the real part converged fast towards a finite value.

The UV singularities could be demonstrated to cancel upon the common
renormalisation procedure. Here, the mass of the top quark as well as the
wave functions of the external quarks had to be renormalised.

Apart from the cancellation of the divergences, several additional checks
have been performed. In particular, we implemented the tensor reduction
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procedure, for non-exceptional phase space configurations, in two indepen-
dent ways and checked the Bose symmetry as well as the Gauge invariance
property of the virtual amplitude.

In future extensions of this work, the missing NLO corrections for the
associated production of MSSM-Higgs bosons and heavy quarks could be
considered. One could also investigate the case of polarised incoming pho-
tons. Finally, a detailed study of the possibility to measure the top-quark
Yukawa coupling, including the relevant backgrounds, could be performed.
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