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Zusammenfassung

Wir stellen ein numerisch exaktes Verfahren zur Berechnung der lokalen elektronischen Struk-

tur und magnetischer Eigenschaften korrelierter Systeme vor. Das Verfahren verwendet die

kürzlich entwickelte Zeitkontinuum-Determinanten- Quanten-Monte-Carlo Methode zur lösung

des Quanten-Störstellen-Problems. Mit diesem Zugang sind wir in der Lage,multiorbitale Sẗorstellen-

Probleme einschließlich der Coulomb-Wechselwirkung in derallgemeinsten Form anzugehen.

Dieses Verfahren gestattet es, sowohl Spin-Suszeptibilitäten als auch Green-Funktionen zu berech-

nen, indem alle Merkmale der Zustandsdichte der Leitungselektronen genau berücksichtigt wer-

den.

Die Zeitkontinuum-Quanten-Monte-Carlo Methode wurde angewandt, um die Eigenschaften

eine Kondo-Sẗorstelle mit einem einzelnen Spin zu berechnen, der an ein Band von Leitungse-

lektronen mit beliebiger Zustandsdichte gekoppelt ist. Wir erörtern das Verhalten der Spin-

Suszeptibiliẗat einer Kondo-Sẗorstelle in verschiedenen Umgebungen: in einem ultrakleinen

Krümel, im Anderson-Modell eines Gitters mit auf den Gitterplätzen zuf̈allig verteilten En-

ergieniveaus und auf einem zweidimensionalen Gitter, auf dem die Zustandsdichte eine van-

Hove-Singulariẗat aufweist.

Für Atome in realistischen̈Ubergangsmetallen wurde das Fünf-Band-Modell einer Kondo-

Störstelle in einer metallischen Umgebung mit vollem Coulomb-Wechselwirkung-Vertex berech-

net. Die Anwendung auf eine Kobalt Störstelle in einer Kupfer-Umgebung zeigt eine starke

Renormierung einer ursprünglich nicht-wechselwirkenden Zustandsdichte nahe der Fermikante.

Um die Eigenschaften korrelierter Festkörper zu berechnen, wird die Zeitkontinuum-Quanten-

Monte-Carlo Methode als L̈osungsmethode für das Sẗorstellenproblem innerhalb der Dynamis-

chen Molekularfeld-Theorie benutzt. Der Metall-Isolator-Phasen̈ubergang f̈ur zwei und drei

anisotrope Orbitale auf dem Bete-Gitter mit Spin-Umklapp-Wechselwirkung wird betrachtet.

Die gewonnenen Ergebnisse stimmen gut mit bekannten früheren Untersuchungenüberein. Die

Methode wird auf einen realen korrelierten Festkörper, Strontium-Ruthenat (Sr2RuO4), ange-

wandt. Wir untersuchen die Bedeutung nicht-diagonaler Terme im Wechselwirkungsteil des

Hamilton-Operators, der sich auf Spin-Umklapp- und Paar-Hüpf-Prozesse bezieht.
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Abstract

We propose a numerically exact scheme to calculate the localelectronic structure and magnetic

properties of correlated systems. The scheme employs the recently developed determinantal Con-

tinuous Time Quantum Monte Carlo method for the solution of the quantum impurity problem.

With this approach, we are able to treat multiorbital impurity problems, including Coulomb in-

teraction of the most general form. This scheme allows to calculate spin susceptibilities as well

as Green functions, accurately taking into account all the features of the conduction electron

density of states.

The Continuous Time Quantum Monte Carlo method has been applied to calculate proper-

ties of a single-spin Kondo impurity coupled to a band of conduction electrons with an arbitrary

density of states. We discuss the behavior of the spin susceptibility of a Kondo impurity em-

bedded into different environments: an ultrasmall grain, the Anderson model, corresponding to

a lattice with random on-site energy levels, and a two-dimensional lattice, where the density of

states has a van Hove singularity.

The realistic five-band model for transition metal atoms with full Coulomb interaction ver-

tex as a Kondo impurity in a metal matrix has been calculated.Application to a cobalt impurity

in a copper matrix shows a strong renormalization of the initial non-interacting density of states

near the Fermi level.

In order to calculate properties of correlated solids, the Continuous Time Quantum Monte

Carlo method is used as an impurity solver within the dynamical mean-field theory. The metal-

insulator phase transition for two and three anisotropic orbitals on the Bethe lattice with spin-flip

interactions is considered. The results obtained are in good agreement with previous studies.

The method is applied to a real correlated solid, namely strontium ruthenate (Sr2RuO4). We

investigated the role of non-diagonal terms in the interaction part of the Hamiltonian, related to

spin flip and pair hopping interactions.
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1 Introduction

Strongly correlated electronic systems are of great physical interest nowadays. From a techno-

logical point of view, the most interesting feature is that many of such systems are extremely

sensitive to small changes in their control parameters (pressure, temperature, doping, magnetic

field, etc.). Moreover, these systems usually have very complex phase diagrams. The reason of

this unusual behavior is the competition between differentordering states, related to the compli-

cated balance between the kinetic energy and the electron-electron interactions. Because kinetic

and potential energy are of the same order of magnitude, competition between localization and

delocalization of electrons takes place. This leads to variety of nontrivial effects related to spin,

charge and orbital fluctuations. It was found, experimentally, that some oxide systems containing

copper ions (so-called high-Tc) have unexpectedly high superconducting transition temperatures

(above liquid-nitrogen temperatures). Another systems, exhibiting interesting correlation effects

are so-called heavy-fermion systems. These compounds contain rare-earth or actinide elements

where the effective mass of the electrons can be extremely large. This fact in conjunction with

large orbital degeneracy leads to a couple of effects: the exceptionally large Seebeck coefficients,

which can be used for constructing low-temperature thermoelectric devices, colossal magnetore-

sistance, and giant nonlinear optical susceptibility withan ultrafast recovery time. This will be

useful in the design of data storage and processing devices.

The Kondo effect is another demonstration of electron correlations; in the 1930s it was

found that even a little fraction of magnetic transition metal atoms added to nonmagnetic host

metal leds to unusual asymptotic behaviour of resistivity in the low temperature limit. Namely,

lowering the temperatue below some point lead to an increasein the resistivity. The first theoret-

ical explanation was given by Kondo in 1964. He showed that the resistivity increase is related

to spin-dependent scattering of the itinerant electrons bythe magnetic moments of the transition

metal impurities. For a long time, the consequences of this behaviour were investigated with

macroscopic methods, and most experiments were done for dilute 3d transition elements in Au

and Cu host metals. Recently it became possible to measure the properties of isolated impurities

on the atomic scale using Scanning Tunnel Microscopy (STM).The consideration of single sur-
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face Kondo-systems lead to revealing a variety of very interesting many-body effects in chains,

clusters and islands.

Another manifestation of correlation effects is the Mott metal-insulator transition; de Boer

and Verwey in 1937 reported that many transition-metal oxides with a partially filled d-electron

band were nonetheless poor conductors and indeed often insulators. A typical example in their

report was NiO. Concerning their report, Peierls pointed outthe importance of the electron-

electron correlation; strong Coulomb repulsion between electrons could be the origin of the

insulating behavior. These observations launched the longand continuing history of the field of

strongly correlated electrons, particularly the effort tounderstand how materials with partially

filled bands could be insulators and, as the history developed, how an insulator could become a

metal as controllable parameters were varied.

The metal-insulator transition (MIT) in oxide materials isindeed the most outstanding and

prominent feature of strongly correlated electrons and haslong been central to research in this

field. In the past sixty years, much progress has been made from both theoretical and experimen-

tal sides in understanding strongly correlated electrons and MIT. In theoretical approaches, Mott

in 1949 took the first important step toward understanding how electron-electron correlations

could explain the insulating state, and we call this state the Mott insulator.

There are two major approaches to the theoretical understanding of many electron systems:

density-functional theory (DFT) and the simplified model Hamiltonian approach (e.g. Anderson

impurity model (AIM), Kondo impurity model, Hubbard model and its generalizations). On

one hand, we have the simplified model Hamiltonian approaches that can catch these correlation

effects qualitatively but often fails to describe particular real system quantitatively. On the other

hand, the DFT approach allows us to treat quite complicated realistic systems, but because of

its mean-field nature it can overlook some physically relevant effect induced due to electronic

correlations (e.g. MIT cannot be described in framework of the DFT).

The recent breakthrough in this field was done by G. Kotliar, A. Georges, W. Metzner, and

D. Vollhardt (see Refs. [1, 2, 3]). They proposed the way on howto map the lattice problem to a

self-consistent impurity one. This approximate approach is based on taking the limit of infinite

dimensions. Although, this method initially was designed to solve simplified model Hamiltoni-

ans (like Hubbard one), a short time later it was extended to realistic systems, involving DFT

as a starting point [4, 5]. So far this approach has become surprisingly successful in treating

correlated solids, it still has a number of obstacles. First, since DMFT is a local approxima-
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tion, it cannot treat non-local correlations, that are of great importance in a variety of physically

interesting systems (e.g. high-temperature superconductors, low-dimensional conductors). This

problem can be overcome by different extensions of the DMFT approach (e.g. cluster DMFT [6],

dual fermion approach [7], self-energy functional [8]). Another problem of the DMFT technique

is an absence of a universal impurity solver. Attempts to make an impurity solver encountered

many difficulties, and now we have a variety of impurity solvers, each of them can be applied

only within a certain range of parameters (see Chapter 2, sec.2.2). For such interesting systems,

as cobalt impurity on metallic surfaces, taking into account many correlated orbitals is of crucial

importance. Another important requirement is the possibility to take into account coupling of

the impurity to electronic band with an arbitrary density ofstates. Up to now the most promising

method has been quantum Monte-Carlo (QMC). As the base of our approach, we used the so-

called continuous time QMC method (see Chapter 2, sec. 2.3), which is a promising universal

impurity solver.

The main target of the present work is to work out a method thatcan help us explain and

predict properties of correlated systems. The major requirements to the method are following:

• Possibility to treat multiorbital impurity models.

• Ability to take into account complete atomic-like Coulomb interaction, including the com-

plicated terms like spin-flips, pair hoppings, etc.

• Careful treatment of band-structure anomalies in the conduction electron density of states.

The structure of this thesis is the following. In Chapter 2, sec. 2.1 – 2.2 a brief analysis

of present theoretical methods is done, current state of affairs in modern solid-state physics is

discussed. In section 2.3 we describe continuous time quantum Monte-Carlo – the method we

are developing and applying to correlated systems. In Chapter 3 we discuss the Kondo (one-spin)

impurity embedded into a conduction band with arbitrary density of electron states. In order to

do that we construct an extension of the CT-QMC method to spin operators. Chapter 4 contains

technical details of the application of the CT-QMC method to the multiorbital impurity problem,

taking into account full atomic-like Coulomb interaction. In this Chapter we discuss results

for a realistic model, namely a cobalt atom embedded into a copper matrix. In Chapter 5 we

develop the method designed to describe solids with correlated electron subsystems. We apply

our mutiorbital impurity solver to a lattice problem in the dynamical mean-field approximation.

We discuss the physical relevance of full Coulomb interaction on the example of real correlated

solid (Sr2RuO4).
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2 Theoretical approaches to strong

correlated systems

In this Chapter we consider ”state-of-the-art” methods for theoretical description of the elec-

trons in solids. Materials with correlated electrons exhibit one of the most intriguing phenomena

in condensed matter physics. The main aim of theoretical physics is to describe and predict

different properties of the novel materials, based on the electronic structure of these materials.

Modern solid-state theory explains the physical properties of numerous materials, such as sim-

ple metals, important semiconductors and insulators. Theycan be successfully described in the

framework of density functional theory (DFT, see sec. 2.1). However, the materials containing

partially filled d or f electron shells, where electrons occupy narrow bands, often have unusual

properties that are harder to explain and the DFT method using the independent-electron model

is not accurate enough when applied to strongly correlated materials.

The many body effects, however, can be described using simplified model Hamiltonians,

like the Hubbard model. But this approach also has some problems: the Hubbard model can

be solved exactly only in few limit cases (either 1 or∞ dimensionality of the system, or infinite

on-site repulsion, etc.).

The recently developed Dynamical mean-field theory technique (see Chapter 5), that in fact

maps a many-body lattice problem to a single-site problem with effective self-consistent param-

eters, allows to solve a variety of model Hamiltonians on the lattice using effective numerical

techniques such as quantum Monte Carlo, numerical renormalization group, exact diagonaliza-

tion, etc. (see sec. 2.2).
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2.1 Density functional theory

Electronic-structure calculations of solids have considerably evolved from early approaches, such

as band structure calculations in periodic model potentials, aimed at reproducing simple crystals

into very sophisticated and powerful techniques. These techniques usually require no experi-

mental input beyond the basic information on atomic composition and some structural data. This

is the origin of the definitions of ab-initio, or first-principles techniques. In conjunction with the

enormous increase in computer power, ab-initio methods nowallow us to accurately reproduce

and to predict electronic and structural properties of realmaterials, and not just the simplest

ones. This predictive power makes a strong case in favor of ab-initio methods, whenever they

are applicable, with respect to empirical or semiempiricalmethods.

Solving the many-body Schrödinger equation for electrons in a real material is by no means

a trivial task even in the presence of simplifying assumptions (such as perfect periodicity for

crystals). One of the most popular methods corresponds to the Density Functional Theory (DFT)

[9], mainly in the Local Density Approximation (LDA) [10].

The DFT is a ground-state theory in which the emphasis is on the charge density as the

relevant physical quantity. DFT in the LDA has proved to be highly successful in describing

structural and electronic properties in a vast class of materials. Furthermore LDA is compu-

tationally very simple. For these reasons LDA has become a common tool in first-principles

calculations aimed to describe and predict the properties of complex condensed matter systems

(for introduction and review see e.g. [11, 12]).

We can start from the statement that an external potentialV(r) acting on a system ofN

interacting electrons will determine the charge densityn(r) of the ground state. This is exactly

what has been proven by Hohenberg and Kohn [9]: there is only one external potentialV(r)

which yields a given ground-state charge densityn(r).

DFT arises from the Hohenberg and Kohn theorem [9] : the ground state energyE is also

uniquely determined by the ground-state charge density. According to this theorem, no two

different potentials acting on the electrons of a given system can give rise to a same ground-state

electronic charge density. This property can be used in conjunction with the standard Rayleigh-

Ritz variational principle of quantum mechanics to show thatsuchF [n(r)] functional of the

electron charge density exists, that the functional:

E[n(r)] = F [n(r)]+
∫

n(r)V(r)dr (2.1)
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is minimized by the electron charge density of the ground state corresponding to the external

potentialV(r), under the constraint that the integral ofn(r) equals the total number of electrons.

Furthermore, the value of the minimum coincides with the ground-state energy. In this Chap-

ter we use the atomic units:~ = e = m = 1, wheree andm are the electron charge and mass

respectively. The atomic unit of energy 1 a. u.= 27.2 eV.

An enormous conceptual simplification of the quantum-mechanical problem of the search

of the ground-state properties of a system of interacting electrons is gained by replacing the

traditional description based on wave-functions with a much more tractable description in terms

of the charge density. Since the first approach involves 3N independent variables, whereN is the

number of electrons, the second one depends only on 3 variables. The major problem hampering

a straightforward application of this remarkably simple result is that the form of theF functional

is unknown.

One year later, Kohn and Sham (KS) [10] reformulated the problem and opened the way

to practical applications of DFT. First, the system of interacting electrons is mapped on to a

fictitious system of non-interacting electrons having the same ground state charge densityn(r).

This is performed by introducing KS orbitalsψi(r) for N electrons

n(r) =
N

∑
i=1

|ψi(r)|2 . (2.2)

Charge conservation requires that the KS orbitals obey orthonormality condition:

∫
ψ∗

i (r)ψ j(r)dr = δi j . (2.3)

Than the energy functional can be rewritten in the followingform:

E[n(r)] = T0[n(r)]+
1
2

∫
n(r)n(r′)
|r− r′| drdr′ +Exc[n(r)]+

∫
n(r)Vext(r)dr, (2.4)

whereT0[n] denotes the kinetic energy of noninteracting electrons with the densityn(r)

T0[n(r)] = −1
2∑

∫
ψ∗

n(r)
∂2ψn(r)

∂r2 dr, (2.5)

the second term is the Hartree energy, it describes the electrostatic interaction between

clouds of charge. The third term is exchange-correlation energy that include all the rest of
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Coulomb interaction between the electrons. The last term of Eq. (2.4) is a contribution of the

external field described by theVext(r) potential.

Variation of the energy functional with respect ton(r) with the constraint that the number

of electrons is kept fixed
∫

n(r)dr = N leads formally to the same equation that would hold for a

system of non-interacting electrons in effective potential

Ve f f(r) = V(r)+
∫

n(r′)
|r− r′|dr′ +Vxc(r), (2.6)

where

Vxc[n(r)] =
δExc[n(r)]

δn(r)
(2.7)

is a definition of the exchange-correlation potential. Other words, now we have to solve the

one-electron Schrödinger equation:

(
−1

2
∂2

∂r2 +Ve f f(r)
)

ψn(r) = εnψn(r). (2.8)

The Kohn-Sham scheme is a practical way to implement DFT, provided quite accurate ap-

proximation for the exchange-correlation energy,Exc[n(r)]. Kohn and Sham [10] proposed to

assume that each small volume of the system contributes the same constant exchange-correlation

energy as an equal volume of a homogeneous electron gas at thesame density. With this assump-

tion, the exchange-correlation energy functional and potential read:

Exc[n(r)] =
∫

εxc(n(r))n(r)dr, (2.9)

Vxc(n(r)) =

(
εxc(n)+n

dεxc(n)

dn

)

n=n(r)
, (2.10)

whereεxc(n) is the exchange-correlation energy per particle in an homogeneous electron gas at

densityn. This approximation is known as thelocal density approximation(LDA).

Approximate forms forεxc(n) have been known for a long time. Numerical results from

nearly exact Monte-Carlo calculations for the homogeneous electron gas were obtained by Ceper-

ley and Alder [13]. The LDA is exact in the limit of high density or of a slowly varying charge-

density distribution [10]. LDA has turned out to be much moresuccessful than expected [14].

Although it is very simple it yields a description of the chemical bond that is superior to that

obtained by Hartree-Fock, and it compares well to much weightier quantum Chemistry methods.
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For weakly correlated materials such as semiconductors structural and vibrational properties

are accurately described: the correct structure is usuallyfound to have the lowest energy, bond

lengths, bulk moduli and phonon frequencies are accurate within a few percent [14].

LDA also has some well-known drawbacks. It overestimates the crystal cohesive energies

(by ∼ 20%) and underestimates (by∼ 50%) the band gaps in insulators. It leads to inability of

proper description of strongly correlated systems, such astransition-metal oxides. In general,

DFT is a ground-state theory and KS eigenvalues and eigenvectors do not have a well defined

physical meaning. Nevertheless, in the lack of better and equally general methods, KS eigenval-

ues are often used to estimate excitation energies. The general features of the low-lying energy

bands in solids obtained in this way are generally considered to be at least qualitatively correct,

in spite of the fact that the LDA is known to substantially underestimate the optical gaps in

insulators.

The most successful extension of the LDA allowing to treat some of correlated systems

mentioned above was the LDA+U method [15]. This method includes the orbital dependence

of the static self-energy operators, missing from the KS potential, in a relatively crude, pseu-

doatomic way, neglecting the fine details of the spatial variations of the Coulomb potential. But

LDA+U does not contain true many-body physics. This approach is successful in describing

long-range ordered and insulating states of correlated electronic systems, but it fails to describe

strongly correlated paramagnetic states [16, 17].

To go beyond LDA+U and capture the many-body nature of the electron-electron inter-

action, i.e., the frequency dependence of the self-energy,the LDA+DMFT scheme have been

developed [4, 5]. The essence of this scheme is to solve the Hubbard lattice model (that includes

only a few degrees of freedom corresponding to strong correlated orbitals) in dynamical mean-

field theory (DMFT) approximation [1, 18] (for details see Chapter 5) including interacting of

the strong correlated orbitals with the rest of the electronic system obtained in framework of

LDA (or LDA+U).

The LDA+DMFT approach is the only LDA extension that is able to describe the physics of

strongly correlated, paramagnetic metals with well-developed upper and lower Hubbard bands

and a narrow quasiparticle peak at the Fermi level. This characteristic three-peak structure is a

signature of the importance of many-body effects [18, 19].

Due to the equivalence of the DMFT single-site problem and the Anderson impurity prob-

lem, a variety of approximative techniques have been employed to solve the DMFT equations,such
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as the iterated perturbation theory (IPT) and the non-crossing approximation (NCA) as well as

numerical techniques like quantum Monte Carlo simulations (QMC), exact diagonalization (ED),

or numerical renormalization group (NRG). For details of these numerical methods see sec. 2.2.

Since the mentioned above approximative analytical methods like IPT and NCA are uncon-

trollable approximations, we shall stress on numerical methods, especially on numerically exact

continuous time QMC (CT-QMC) method.
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2.2 Many-body impurity solvers

Impurity solvers play an essential role in the numerical investigation of strongly correlated elec-

tron systems. The DMFT scheme (see Chapter 5) give us a simple way to get an insight to

physics of correlated solids. The solution of the impurity problem is usually the most difficult

part of this scheme. Another application of an impurity solver is to obtain spectral and magnetic

properties of quantum impurities such as single adatoms, chains of them, quantum dots, etc. The

physical properties of these systems are caused by many-body effects, and accurate treatment of

this quantum-mechanical model is essential for investigation of a such interesting phenomena as

e.g. Kondo effect (for details see Chapter 3). In this sectionwe give an overview of some of the

methods, pointing out their strengths and limitations. Thetechnical details of different impurity

solvers will be explained in the following subsections.

The use of the terminology ”impurity” is due to historical reasons: this expression is used

in a very general sense, namely a small interacting system (the impurity) with only a few degrees

of freedom coupled to a large single-particle system (the environment or bath) with very many

degrees of freedom, and where both subsystems have to be treated quantum mechanically. In the

Kondo problem (see Chapter 3 and Refs. [20, 21]), the small system is a magnetic impurity, such

as a cobalt ion, interacting with the conduction electrons of a nonmagnetic metal such as gold

[20] (see Chapter 4). Other realizations are for example artificial impurities such as quantum

dots hosting only a small number of electrons. Here, the environment is formed by the electrons

in the leads.

Any theoretical method for the investigation of quantum impurity systems has to face a num-

ber of serious obstacles. First of all, because the environment typically consists of a continuum of

quantum-mechanical degrees of freedom, one has to considera wide range of energies – from a

high-energy cut-off (which can be of the order of severaleV) down to arbitrarily small excitation

energies. On the other hand, because the impurity degrees offreedom usually form an interacting

quantum-mechanical system, their coupling to a continuum of excitations with arbitrarily small

energies can result in infrared divergencies in perturbational treatments. A well-known example

for this difficulty is the Kondo problem (see Chapter 3): Its physics is governed by an energy

scale, the Kondo temperatureTK, which depends non-analytically on the spin-exchange coupling

J between the impurity and the conduction band of the host, lnTK ∝ −1/J (see [20] for a de-

tailed description of the limitations of the perturbational approach for the Kondo model and the

single-impurity Anderson model).
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Another motivation to study impurity solvers is, that lattice models, such as the Hubbard

model, can be mapped in some approximation onto impurity models of the above type. For the

Hubbard model and other lattice models of correlated electrons this is achieved via the dynamical

mean-field theory (DMFT), see Chapter 5.

At the present time, there is no universal impurity solver that works efficiently and produces

accurate solutions for the Green function in all regimes of parameters. Instead what we have is a

large number of techniques, which are good in some regions ofparameters. In many cases when

there are various methods can be applied, there is a conflict between accuracy and computational

cost, and in many instances one has to make a compromise between efficiency and accuracy to

carry out the exploration of new complex materials (for review see e.g. Ref. [22]).

The models we are going to solve are the following: Anderson impurity model (AIM, see

Chapter 4, section 4.1) and Kondo model (see Chapter 3). There are two exactly soluble limits

of the multiorbital Anderson impurity model (see Chapter 4),for a general environment of non-

interacting band electrons (bath). The atomic limit when the hybridization vanishes and the band

limit when the interaction matrixU is zero. There are methods which are tied to expansions

around each of these limits. It is straightforward to construct the perturbative expansion of the

self–energy in powers ofU up to second order, and resum certain classes of diagrams such as

ring diagrams and ladder diagrams. This is an approach knownas the fluctuation exchange

approximation, and it is certainly reliable whenU is less than the half–bandwidth,D. These

impurity solvers are very fast since they only involve matrix multiplications and inversions. They

also have good scaling, going asN3 whereN is the number of orbitals or the cluster size.

The expansion around the atomic limit is more complicated. Ahybridization function with

spectral weight at low frequencies is a singular perturbation at zero temperature. Nevertheless

approaches based on expansion around the atomic limit are suitable for describing materials

where there is a gap in the one–particle spectra, or when the temperature is sufficiently high that

one can neglect the Kondo effect. This includes Mott insulating states at finite temperatures,

and the incoherent regime of many transition metal oxides and heavy fermion systems. Many

approaches that go beyond the atomic limit exist: direct perturbation theory in the hybridization,

resummations based on equation of motion methods, such as the Hubbard approximations, re-

solvent methods, and slave particle techniques such as the non–crossing approximation (NCA)

and their extensions. Mean–field methods are based on a functional integral representation of

the partition function, and the introduction of auxiliary slave bosons [23]. The saddle point ap-
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proximation [24] gives results which are very similar to those of the Gutzwiller method, and

corrections to the saddle point can be carried out by a loop expansion [25]. Unfortunately the

perturbative corrections to the saddle point are complicated and have not been evaluated in many

cases [24]. Interpolative methods bear some resemblance tothe analytic parameterizations of

Vxc in LDA. One uses different approximations to the self–energy of the impurity model, viewed

as a functional of∆(iω), in different regions of frequency. The idea is to constructinterpola-

tive formulae that become exact in various limits, such as zero frequency where the value of the

Green function is dictated by Luttinger theorem, high frequencies where the limiting behavior

is controlled by some low–order moments, and in weak and strong coupling limits where one

can apply some form of perturbation theory. This approach has been very successful in unravel-

ing the Mott transition problem in the context of model Hamiltonians, and it is beginning to be

used for more realistic studies. But all the methods described above involve some approxima-

tions. Although they give a reasonable results in some rangeof parameters, for some regimes

(including physically interesting) results can be even qualitatively wrong, since these approxi-

mations are uncontrollable. On the other hand there are numerically exact methods, such as the

Hirsch-Fye quantum Monte Carlo method (QMC) [26]. In this QMC method one introduces a

Hubbard–Stratonovich fields and averages over these fields using Monte Carlo sampling. This

is a controlled approximation using a different expansion parameter, the size of the mesh for the

imaginary time discretization. Unfortunately, it is computationally very expensive as the number

of time slices and the number of Hubbard–Stratonovich fieldsincreases. This QMC method is

described in section 2.2.3. The main problem of this method is a poor scaling with increasing

number of orbitals, since the number of Hubbard–Stratonovich fields increases as the square of

the number of orbitals.

Another way to solve the impurity problem is to use techniques based on exact diagonaliza-

tion methods (see section 2.2.1), and their modifications such as Wilson renormalization group

(NRG, see section 2.2.2) techniques and density matrix renormalization group methods. These

are very powerful techniques, but due to the exponential growth of the Hilbert space, they need

to be tailored to the application at hand.

2.2.1 Exact diagonalization and Lanczos’s method

The expression ”Exact Diagonalization” (ED) is used to describe a number of different ap-

proaches which yield numerically exact results for a finite lattice system by directly diagonalizing
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the matrix representation of the system’s Hamiltonian in anappropriate many-particle basis (for

a short review on ED and related methods see e.g. [27]). The simplest, and the most time- and

memory- consuming approach is thecomplete diagonalizationof the matrix which enables one

to calculateall desired properties. However the dimension of the basis for astrongly interact-

ing quantum system grows exponentially with the system size, so that it is impossible to treat

systems with more than a few sites or orbitals [28].

A number of software libraries provide complete diagonalization routines which take a ma-

trix as input and return all of the eigenvalues and eigenvectors as output. Among the most useful

are the routines published inNumerical Recipes[29] as well as the LAPACK [30] library, which

in combination with an efficient implementation of the Basic Linear Algebra Subprogrammes the

BLAS [31, 32] provides a very efficient implementation of linear algebra tools. Such routines

can be used to diagonalize the Hamiltonian matrix of a finite quantum lattice system directly.

The approach normally used [29] is first to transform the matrix to tridiagonal form using a

sequence of Householder transformations and then to diagonalize the resulting tridiagonal matrix

T using the QL or QR algorithm, which carries out a factorizationT = QL with Q an orthogonal

andL a lower triangular matrix. The computational cost of this combined approach scales as2
3n3

if only the eigenvalues are obtained, and≈ 3n3 when the eigenvectors are also calculated, where

n is the dimension of the matrix.

A complete diagonalization of the Hamiltonian matrix is nevertheless useful for testing

purposes: to test our CT-QMC solver we used exact diagonalization program [28, 5] designed to

obtain spectral properties of multiorbital impurity in atomic limit (without connection to bath of

free electrons).

Since complete diagonalization of the many-body Hamiltonian is extremely computation-

ally expensive and in the investigation of condensed mattersystems one is often interested in the

low-energy properties, it is possible to reach substantially larger system sizes using iterative diag-

onalization procedures, which also yield results to almostmachine precision in most cases. The

iterative diagonalization methods allow for the calculation of ground state properties and (with

some extra effort) some low-lying excited states are also accessible. In addition, it is possible

to calculate dynamical properties (e.g., spectral functions, time-evolution) as well as behavior at

finite temperature. Nearly every system and observable can be calculated in principle, although

the convergence properties may depend on the system under investigation. For example, with the
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effective atomic Hamiltonian ford or f states

Hat = ∑
mm′σ

εmm′c+
mσcm′σ +

1
2 ∑
{σm}

Um1m2m
′
1m

′
2
c+

im1σc+
im2σ′cim

′
1σ′cim

′
2σ (2.11)

wheremi are orbital indices andσ is spin, we need to diagonalize the atomic many-electron

problem:

Hat|υ >= Eat
ν |υ > (2.12)

and then the exact atomic Green function can be found using eigenfunctions and eigenvectors of

the Hamiltonian the following way [33]:

Gσ
mm′ (iω) =

1
Z ∑

µν

〈µ|cmσ|ν〉
〈

ν
∣∣∣c+

m′σ

∣∣∣µ
〉

iω+Eµ−Eν
(e−βEµ +e−βEν). (2.13)

The basic idea of the Lanczos method [34] for effective diagonalization (search of the

ground state) of Eq. (2.12) is that a special basis set can be constructed where the Hamilto-

nian has a tridiagonal form. This is derived iteratively as shown below. We are starting from

arbitrary wave function|φ0〉. Than we apply the HamiltonianH to this initial state and subtract

the projection over|φ0〉:
|φ1〉 = H |φ0〉−

〈φ0|H |φ0〉
〈φ0 |φ0〉

|φ0〉 (2.14)

which satisfies〈φ0 |φ1〉= 0. The next state that is orthogonal to both previous can be constructed

the following way:

|φ2〉 = H |φ1〉−
〈φ1|H |φ1〉
〈φ1 |φ1〉

|φ1〉−
〈φ1 |φ1〉
〈φ0 |φ0〉

|φ0〉 . (2.15)

The procedure can be written in the recurrent form:

|φn+1〉 = H |φn+1〉−an |φn〉−b2
n |φn−1〉 (2.16)

wherean = 〈φn|H|φn〉
〈φn |φn〉 andb2

n = 〈φn |φn〉
〈φn−1 |φn−1〉 . Here we useb0 = 0 and|φ−1〉 = 0. In this basis the

Hamiltonian matrix becomes tridiagonal

H =





a0 b1 0 0 . . .

b1 a1 b2 0 . . .

0 b2 a2 b3 . . .

0 0 b3 a3 . . .
...

...
...

...
. ..

,





(2.17)
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wheren =1,2,..etc. The matrix elements,an andbn, are related to the moments of the Hamilto-

nian. Whenn increases, the lowest eigenvalue of the tridiagonal matrixapproaches the ground-

state energy. And the eigenfunction of this lowest eigenvalue gets closer to the ground-state wave

function [35]. The Green function also can be obtained usingthis method in spirit of Eq. (2.13)

formalism [28, 3].

Although these methods are applicable to small to moderate systems they meet some obsta-

cles describing Kondo-systems at low temperatures. It is caused by principal discreteness of the

resulting spectrum and can lead to very spiky spectral function. One can overcome this problem

using Numerical renormalization group, that will be discussed in the next section.

2.2.2 Numerical renormalization group

In the beginning of the 1970’s, Wilson developed the conceptof a fully non-perturbative renor-

malization group transformation. Applied to the Kondo problem, this numerical renormalization

group method (NRG) gave for the first time the full crossover from the high-temperature phase

of a free spin to the low-temperature phase of a completely screened spin. It is the substantial

merit of this method in comparison to ED and Lanczos methods described above. The NRG has

been later generalized to a variety of quantum impurity problems, such as Anderson and Kondo

impurity models [20], periodical Anderson model [36] and Holstein model [37] (for review see

e.g. Ref. [21]). The applications of the NRG scheme include variants of the original Kondo

problem as well as lattice systems in the framework of the dynamical mean field theory [38].

The general strategy of the NRG is the following. As specific example, let us consider the

Kondo model which describes magnetic impurity with spinS coupled to the electrons of a single-

particle conduction band via an exchange interaction of theform JS · s, wheres the spin of the

conducting electrons. The NRG starts with a logarithmic discretization of the conduction band in

intervals[Λ−(n+1)ωc,Λ−nωc] and[−Λ−nωc,−Λ−(n+1)ωc] (n = 0,1,2, . . .). We shall callΛ > 1

the NRG discretization parameter. After a sequence of transformations, the discretized model is

mapped onto a semi-infinite chain with the impurity spin representing the first site of the chain.

The Kondo model in the semi-infinite chain form is diagonalized iteratively, starting from the

impurity site and successively adding degrees of freedom tothe chain. Due to the logarithmic

discretization, the hopping parameters between neighboring sites fall off exponentially, i.e. going

along the chain corresponds to accessing decreasing energyscales in the calculation.

In this way, Wilson achieved a non-perturbative description of the full crossover from a free
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impurity spin at high temperatures to a screened spin at low temperatures [39], thus solving the

so-called Kondo problem as discussed in detail in [20]. After that the investigation of the single-

impurity Anderson model [40], which extends the Kondo modelby including charge fluctuations

at the impurity site was performed. The technical details can be found in [41, 42]

In the following, the development of the NRG concentrated on the analysis of more compli-

cated impurity models, involving either more environment or impurity degrees of freedom. The

numerical calculations for these (e.g. two-channel) models are much more cumbersome because

the Hilbert space grows by a factor 16 in each step of the iterative diagonalization, instead of the

factor 4 in the single-channel case.

The two-impurity Kondo model as paradigm for the competition of local Kondo screening

and non-local magnetic correlations was studied with NRG by [43, 44, 45]. Here, the focus was

on the question, if the two regimes are connected by a quantum-phase transition or rather by a

smooth crossover. Later on, such studies were extended to the two-channel situation [46].

Originally, the NRG was used to determine thermodynamic properties of quantum impu-

rity systems. The calculation of dynamic quantities with the NRG started with theT = 0 ab-

sorption and photoemission spectra of the x-ray Hamiltonian [47, 48], followed by theT = 0

single-particle spectral function for the orbitally non-degenerate and degenerate Anderson model

[49, 50]. The resulting spectral functions are obtained on all energy scales, with a resolution pro-

portional to the frequency. Calculation of finite-temperature spectral functionsA(ω,T) are more

problematic since all excitations can, in principle, contribute.

Nevertheless, the NRG has been shown to give accurate resultsfor A(ω,T), which also al-

lows to calculate transport properties [51]. A subsequent development is the introduction of the

concept of the reduced density matrix, which allows to calculate dynamic quantities in equilib-

rium in the presence of external fields [52]. The calculationof non-equilibrium transient dynam-

ics requires a multiple-shell NRG procedure [53] and has beenaccomplished with the aid of a

complete basis set and the reduced density matrix [54]. The first applications of this approach

show very promising results, both for fermionic and bosonicsystems [54, 55]. Another recent

generalization of the NRG approach is its application to quantum impurities coupled to a bosonic

bath [56].

There is no restriction on the structure of the impurity partof the Hamiltonian; it might

contain, for example, a Coulomb repulsion of arbitrarily large strength. The bath, however,

is required to consist of non-interacting fermions or bosons, otherwise the various mappings

22



described below cannot be performed.

Basically all the NRG applications use the following scheme:

a) Division of the bath spectral function into a set of logarithmic intervals in energy.

b) Reduction of the continuous spectrum to a discrete set of states (logarithmic discretization).

c) Mapping of the discretized model onto a semi-infinite chain.

d) Iterative diagonalization of this chain.

e) Further analysis of the many-particle energies, matrix elements, etc., calculated during the

iterative diagonalization. This yields information on static and dynamic properties of the

quantum impurity model.

Parts a),b) and c) of this strategy are sketched in Fig. 2.1. The NRG discretization parameterΛ
defines a set of discretization points,±Λ−n, n = 0,1,2, . . ., and a corresponding set of intervals.

The continuous spectrum in each of these intervals (see Fig.2.1 a) is approximated by a single

state (see Fig. 2.1 b). The resulting discretized model is mapped onto a semi-infinite chain with

the impurity (filled circle) corresponding to the first site of this chain. Due to the logarithmic dis-

cretization, the hopping matrix elements decrease exponentially with distance from the impurity,

tn ∝ Λ−n/2 [20].

Quite generally, a numerical diagonalization of Hamiltonian matrices allows to take into ac-

count the various impurity-related terms in the Hamiltonian, such as a local Coulomb repulsion,

non-perturbatively. Apparently, the actual implementation of such a numerical diagonalization

scheme requires some sort of discretization of the originalmodel, which has a continuum of bath

states.

The quantum impurity model in the semi-infinite chain form issolved by iterative diago-

nalization, which means that in each step of the iterative scheme one site of the chain is added

to the system and the Hamiltonian matrices of the enlarged cluster are diagonalized numerically.

As already pointed out, without taking further steps to reduce the size of the Hilbert space this

procedure would have to end for chain sizes of≈ 10. Here the renormalization group concept

enters the procedure through the dependence of the hopping matrix elements on the chain length,

tn ∝ Λ−n/2. Adding one site to the chain corresponds to decreasing the relevant energy scale by a

factor
√

Λ. Furthermore, because the couplingtn to the newly added site falls off exponentially,

only states of the shorter chain within a comparatively small energy window will actually con-

tribute to the states of the chain with the additional site. This observation allows to introduce a

very simple truncation scheme: after each step only the lowest lying Ns many-particle states are
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Figure 2.1: Initial steps of the NRG illustrated for the single-impurity Andersonmodel in which an im-

purity (filled circle) is coupled to a continuous conduction band with the spectral functionA(ω); a) a

logarithmic set of intervals is introduced through the NRG discretization parameter Λ; b) the continuous

spectrum within each of these intervals is approximated by a single state with corresponding weight; c)

the resulting discretized model is mapped onto a semi-infinite chain where the impurity couples to the first

conduction electron site via the hybridizationV; the parameters of the tight-binding model (see Ref. [21]

for technical details). The figure is adapted from [21].

retained and used to build up the Hamiltonian matrices of thenext iteration step, thus keeping

the size of the Hilbert space fixed as one walks along the chain.

However this method also has some limitations of applicability. Since the logarithmic dis-

cretization is a principal feature of NRG this scheme accurately takes into account only the small

vicinity of Fermi level. For systems with flat DOS of free electrons it works perfectly but all

the fine features of bath DOS apart the Fermi level are taken into account with less precision.

Another problem is, that during the NRG procedure one throws away the highest bath states that

can lead to wrong spectrum of high-energy excitations.
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2.2.3 Quantum Monte Carlo; Hirsch-Fye method

The quantum Monte Carlo (QMC, for review see [57]) scheme is themost universal tool for the

numerical study of quantum many-body systems with strong correlations. So-called determinan-

tal quantum Monte Carlo (QMC) scheme for fermionic systems appeared more than 20 years ago

[58, 59, 60, 61]. This scheme became nowadays standard for the numerical investigation of phys-

ical models with strong interactions, as well as for the quantum chemistry and nanoelectronics.

Although the first numerical attempts were made for a model Hamiltonians with local interaction,

the real systems are described by the many-particle action of a general form. For example many

non-local matrix elements of the Coulomb interaction do not vanish in the problems of quantum

chemistry [62] and solid state physics [63]. For realistic description of Kondo impurities like

cobalt atom on metallic surface it is of crucial importance to use the spin and orbital rotation-

ally invariant Coulomb vertex in the non-perturbative investigation of electronic structure. The

recently developed Dynamical Mean-Field theory (DMFT, seeChapter 5 and Ref. [3]) for corre-

lated materials involves a non-trivial frequency-dependent bath Green function, and its extension

[64] deals with an interaction that is non-local in time. Moreover, the same frequency dependent

single-electron Green-function and retarded electron-electron interaction naturally appear in any

electronic subsystems where the rest of system is integrated out.

The determinantal grand-canonical auxiliary-field scheme[58, 59, 60, 61] is extensively

used for the interacting fermions, since other known QMC schemes (like stochastic series expan-

sion in powers of Hamiltonian [65] or worm algorithms [66]) are suffering from sign problem

for this case.

The following two points are essential for the Hirsch-Fye determinantal QMC approach:

first, the imaginary time is artificially discretized, and the Hubbard-Stratonovich transformation

[67] is performed to decouple the fermionic degrees of freedom. After the decoupling, fermions

can be integrated out, and Monte Carlo sampling should be performed in the space of auxiliary

Hubbard-Stratonovich fields. Hirsch [60] proposed a so-called discrete Hubbard-Stratonovich

transformation to improve the efficiency of original scheme. It is worth to note that for a system

of N atoms the number of auxiliary field scales∝ N for the local (short-range) interaction and as

N2 for the long-range one. This makes the calculation rather ineffective for the non-local case.

In fact the scheme is developed for the local interaction only.
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The one band the single-site impurity model is specified by the imaginary time effective

action

Seff = −
∫ β

0
dτdτ′∑

σ
c†

σ(τ)G−1
σ (τ− τ′)cσ(τ′)

+
∫ β

0
dτUn↑(τ)n↓(τ), (2.18)

G−1
σ (iω) = iω+µ−∆σ(iω), (2.19)

wherec†
σ(τ),cσ(τ) are Grassmann variables,µ denotes the chemical potential,U is on-site repul-

sion and∆σ(iω) is a hybridization function that describes transitions into the bath and back. The

task of the impurity solver is to compute the Green function

G(τ− τ′) = 〈Tτc
†(τ)c(τ′)〉Seff =

Tr
[
Tτe−Seffc†(τ)c(τ′)

]

Tr [Tτe−Seff]
(2.20)

for a given hybridization function.

The algorithm of Hirsch and Fye [26] requires a discretization of imaginary time intoN

slices∆τ = β/N. In each time slice, the four-fermion termUn↑n↓ is decoupled using a discrete

Hubbard-Stratonovich transformation:

e−∆τUn↑n↓+(∆τU/2)(n↑+n↓) =
1
2 ∑

s=±1
eλs(n↑+n↓), (2.21)

where the parameterλ is defined asλ = arccosh(e∆τU/2).

The Gaussian integral over the fermion fields may then be performed analytically, yielding

an expression for the partition function of the form

Z = ∑
{si}

det
[
D↑(s1, ...,sN)

]
det
[
D↓(s1, ...,sN)

]
. (2.22)

Here, Dσ(s1, ...,sN) denotes theN×N matrix of the inverse propagatorG−1 for a particular

configuration of the auxiliary Ising spin variabless1, . . . ,sN [3]. The Monte Carlo sampling

then proceeds by local updates in these spin configurations.Each successful update requires the

calculation of the new determinants in Eq. (2.22), at a computational cost ofO(N2).

The problem with this approach is the highly non-uniform time-dependence of the (metallic)

Green functions at low temperature and strong interactions. The initial drop of the Green function
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Figure 2.2: Computable regions (hatched) in theT-J parameter space that can be computed with advanced

Hirsch-Fye method present in [72] and with conventional Hirsch-Fye QMC (from Ref. [73]) for the two-

orbital Hubbard model withU ′ = 4 eV and bandwidthW = 2 eV. T andJ are ineV. From Ref. [72].

is essentially∼ e−Uτ/2, from which it follows that a fine grid spacingN ∼ βU is required for

sufficient resolution. As noted in Ref. [68] a resolution of atleastN = 5βU is typically needed

to get systematic errors below the statistical errors of a reasonably accurate simulation.

At half filling, the matricesD↑ andD↓ are proportional and following (2.22) one can see

that the Hirsch-Fye algorithm under these conditions does not suffer from a sign problem in

single-orbital case. In fact, a closer analysis reveals that the sign problem is absent for any

choice ofµ for single-orbital impurity problem [69]. Two-orbital extension of QMC was first

done by M. Rozenberg [70]. The general multiorbital QMC formalism for DMFT calculation

proposed by [71]. All the mentioned above QMC schemes were using simplified interaction

part of Hamiltonian containing only terms of density-density form. Including of spin-flips and

pair hoppings terms to these schemes lead to sign problem (orsignificant reducing of allowable

parameter range). Finally some improvements have been done[72], and it became possible

to take into account spin-flip terms in 3-orbital AIM. However this algorithm has very limited

applicability (see Fig. 2.2).

27



The most hampering problem arises from the time discretization: One has to take a large

enough number of time slicesN, or in practice to check that the results are unchanged whenN is

increased, which is costly since the computation time increase approximately likeN3.

The problem of systematic error due to the time discretization was addressed in several

works. For bosonic quantum systems, continuous time loop algorithm [74], worm diagrammatic

world line Monte Carlo scheme [66] and continuous time path-integral QMC [75] overcame this

issue. Recently a continuous-time modification of the fermionic QMC algorithm was proposed

[76]. It is based on a series expansion for the partition function in the powers of interaction. The

scheme is free of time-discretization errors, but the Hubbard-Stratonovich transformation is still

invoked. Therefore the number of auxiliary fields scales similarly to the discrete scheme, so that

the scheme remains local.

Moreover the fact that the imaginary time Green function is given on discrete set of points

leads to another problem: to make in continuous one has to usesplines. However that for this

technique to be precise, one needs to supplement the discrete Green function by the value of its

derivatives atτ = 0,β, which can be reduced to a linear combination of two–particle correlation

functions computed by the QMC calculation [77]. Failure to deal with this problem accurately

can lead in some calculations to large errors.

Another problem is connected to the way of discretization ofthe bare Green function: if

a computation is made far from the particle-hole symmetric case, the Weiss functionG can be

very steep close toτ = 0 or τ = β. As a result, it is not well sampled by the regular mesh

time discretization, leading to potentially large numerical error. A simple practical solution is

to replaceG0 by Ḡ−1
0 (iωn) ≡ G−1

0 (iωn)− α whereα is a diagonal matrix chosen asαµµ =

limω→∞(G−1
0 )µµ(ω). The new impurity problem is equivalent to the initial one, if the α term

(which is quadratic ind and diagonal in the indices) is simultaneously added to the interaction

(or equivalently to the right hand side of the correspondingdecoupling formula). In the new

impurity problem however̄G0 is less steep thanG0 close toτ = 0 or τ = β, so the numerical

error introduced by discretization is less important. The similar problem appears even in the

particle-hole symmetric case if the temperature is low andU is larger than the bandwidth: the

G(τ) becomes very steep close toτ = 0,τ = β and in almost all interval[0,β] it has a very small

values. To overcome this circumstance one can use Projective QMC [78]. The main idea of this

method is the following: the non-interacting Green function G(τ,τ′) is truncated to 0≤ τ,τ′ ≤ θ,

whereθ is cut-off parameter. It means that we have all the time slices exactly in the most
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important region ofG(τ,τ′) function. Then the limitθ → ∞ is taken and the result for ground

state is obtained, so it is a zero-temperature method. This method was actively discussed [79, 80]

but found to be completely applicable for the half-filled systems. Nevertheless some problems

related to Anderson nonorthogonality catastrophe can appear in non-half-filled case [79].

Recently, a new class of continuous-time QMC impurity solvers (CT-QMC) has been devel-

oped [81, 68, 82]. These methods do not suffer from the problems mentioned above. Both these

diagrammatic QMC approaches rely on an expansion of the partition function into diagrams and

the resummation of diagrams into determinants. A local update Monte Carlo procedure is then

used to sample these determinants stochastically. The two approaches are complementary in

the sense that the weak coupling method [81] uses a perturbation expansion in the interaction

part, while the hybridization expansion method [68, 82] treats the local interactions exactly and

expands in the impurity-bath hybridization. In the weak-coupling case, the determinantal formu-

lation, which eliminates or at least greatly alleviates thesign problem, originates from Wick’s

theorem. In the hybridization expansion, when starting from a Hamiltonian formulation, the de-

terminants emerge naturally from the trace over the bath states [82]. The CT-QMC scheme will

be described in section 2.3.

2.3 Continuous time quantum Monte Carlo solver

2.3.1 Perturbation expansion

Recently, A. Rubtsov proposed a new approach for solving quantum impurity models [81]. That

continuous-time method is a diagrammatic QMC algorithm which can be regarded as an exten-

sion of ideas originally introduced in Ref. [66] to fermionicsystems. The algorithm is based

on a diagrammatic expansion of the partition function in theinteraction term and a stochastic

sampling of the resulting diagrams (see Fig. 2.3). This scheme is suitable for non-local time-

dependent interaction, but in this section we shall discussonly the simplest case: one-site impu-

rity model with the local in time interaction term of the formUn↑(τ)n↓(τ). The action (2.18) can

be splitted into two parts: unperturbed actionS0 of a Gaussian form

S0 = −
∫ β

0
dτdτ′∑

σ
c†

σ(τ)G−1
σ (τ− τ′)cσ(τ′)

(2.23)
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and an interaction part

Sint =
∫ β

0
dτUn↑(τ)n↓(τ). (2.24)

The weak coupling expansion ofZ = TrTτe−(S0+Sint) in powers ofU then reads

Z = ∑
k

(−1)k

k!

∫
dτ1 . . .dτkTrTτe

−S0

×Ukn↑(τ1)n↓(τ1)...n↑(τk)n↓(τk). (2.25)

Wick’s theorem leads to 2k! terms for each perturbation order, and their combined weight is the

determinant of the matrix productD↑(τ1, ...,τk)D↓(τ1, ...,τk). The (i,j) element of thesek× k

matrices can be found using the mean field function (2.19)

Di, j
σ = Gσ(τi − τ j). (2.26)

Notice, that the perturbation order (and, as a consequence theMσ matrix size) for different spins

can be different in both weak-coupling and strong-couplingapproaches. In this section this

dependence is omitted for simplicity. Then the partition function reads

Z = ∑
k

(−U)k

k!

∫
dτ1 . . .dτk det

[
D↑
]
det
[
D↓
]

(2.27)

and the Monte Carlo sampling proceeds by local updates (random insertions/removals of ver-

tices). At first sight, it appears that the term(−U)k would lead to a bad sign problem for repulsive

interactions. A. Rubtsov found a way to get around this problem by redefining the interaction

termSint with a small negative constantα as

Sα
int =

U
2

∫
dτ
[
(n↑(τ)−α)(n↓(τ)− (1−α))

+(n↑(τ)− (1−α))(n↓(τ)−α)
]

(2.28)

and the quadratic termS0 in a way to compensate for this change [81]. The detailed description

of this procedure is presented in sec. 2.3.4.
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Figure 2.3: Illustration of the diagrams generated by the continuous-time impuritysolvers. a) Weak-

coupling method: third order diagram consisting of three vertices (diamonds) Un↑(τ)n↓(τ) linked by lines

representing the functionGσ(τi − τ j). b) Hybridization expansion method: here, the orders of the dia-

grams for up- and down-spins can be different. Each creation operator c†
σ(τs) (empty dot) is connected

to an annihilation operatorcσ(τe) (full dot) by a line representing the hybridization function∆σ(τe− τs).

The black lines correspond to a particle number 1, empty spaces to particle number 0, so the overlaps

between the lines for up- and down-spins yield the potential energy. In both approaches, the diagrams cor-

responding to different connectingG or ∆ lines are summed up into a determinant and these determinants

are sampled by a Monte Carlo procedure [83]. The figure is adapted from Ref. [83].

Strong coupling continuous-time algorithm (see Fig. 2.3) is obtained by expanding in the

hybridization functions∆σ, while treating the chemical potential and interaction terms exactly.

This approach has been worked out in Refs. [68, 82]. For the hybridization expansion, one

decomposes the effective action (2.18) into the hybridization part

S∆ = −
∫ β

0
dτdτ′∑

σ
cσ(τ)∆σ(τ− τ′)c†

σ(τ′) (2.29)

and the local part

SL = ∑
σ

∫ β

0
dτc†

σ(τ)
(

∂
∂τ

−µ

)
cσ(τ)+U

∫ β

0
dτn↑(τ)n↓(τ). (2.30)
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Expanding the partition functionZ = TrTτe−(S∆+SL) in powers of∆σ leads to

Z = TrTτe
−SL ∏

σ
∑
k

1
k!

∫ β

0
dτ1...dτk

∫ β

0
dτ′1...dτ′k

×
[
cσ(τ1)∆σ(τ1− τ′1)c

†
σ(τ′1) . . .

. . .cσ(τk)∆σ(τk− τ′k)c
†
σ(τ′k)

]
. (2.31)

The individual terms in this series can have positive or negative sign, but as shown in Ref. [68],

it is possible to express the combined weight of thek! diagrams corresponding to a given set

{c†
σ(τ′i),cσ(τi)}i=1,...,k of creation and annihilation operators as the determinant of a matrixMF,σ,

whose entries are the∆-functions,

Mi, j
F,σ = ∆σ(τi − τ̃ j). (2.32)

The partition function finally reads

Z = TrTτsTτe
−SL ∏

σ
∑
kσ

∫ β

0
dτ′1

∫ β

τ′1
dτ1 . . .

. . .
∫ β

τ′k−1

dτ′k
∫ ◦τ′1

τ′k
dτk detDF,σ sσ

×cσ(τk)c
†
σ(τ′k) . . .cσ(τ1)c

†
σ(τ′1), (2.33)

where◦τ denotes an upper integral bound which ”winds around” the circle of lengthβ. If the

last segment winds around, the signsσ is −1 and otherwise+1, whereassTτ compensates for

any sign change produced by the time ordering operator. The trace finds an easy and intuitive

interpretation in terms of configurations of segments marking the times where a particle of spin

σ is present [68]. In such a representation, theµ-part ofSL is determined by the total length of

the segments while the interaction is given by the total overlap between segments of opposite

spin (see Fig. 2.3).

On Fig. 2.4 one can see the advantage of both CT-QMC methods over Hirsch-Fye one.

However Hybridization expansion method scales slower withlowering the temperature (for

performance comparison between theese methods see Ref. [83]). But it is very nontrivial to

use the hybridization expansion method in case of multi-orbital impurity. At the moment this

solver has been extended to 2-orbital model [82] a complex way that involves explicit trace over

{c†
σ(τ′i),cσ(τi)}i=1,...,k operators (2.33), whereas in the weak-coupling CT-QMC method the ex-

tension to multi-orbital problems can be done straightforward way (see section 2.3.3). With
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Figure 2.4: Scaling of the matrix size with inverse temperature and interaction strength. Temperature

dependence forU/t = 4. In the case of Hirsch-Fye, the resolutionN = βU has been chosen as a compro-

mise between reasonable accuracy and acceptable speed, while the average matrix size is plotted for the

continuous-time solvers [83]. From Ref. [83].

regard to the main aim of this work, namely developing and application of multi-orbital impurity

solver, we shall use weak coupling CT-QMC method.

2.3.2 Weak coupling CT-QMC, detailed description

As far as the weak coupling CT-QMC method is the most simple to be extended to the multior-

bital systems, we shall use it as the main method in our study.In this section we start to describe

this method in details.

First we consider the one-orbital model with on-site interaction that is non-local in time:

U
τ′1τ′2
τ1τ2 c†(τ′1)c(τ1)c†(τ′2)c(τ2). We have no explicit spin indices here, but effectively the first pair

of operatorsc†(τ′1)c(τ1) corresponds to one spin specie andc†(τ′2)c(τ2) to another one [81].

Then the partition function (2.25) reads:
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Z =
∞

∑
k=0

Zk =
∞

∑
k=0

∫ β

0
dτ1

∫ β

0
dτ′1...

∫ β

0
dτ2k

∫ β

0
dτ′2kΩk(τ1,τ′1, ...,τ2k,τ′2k), (2.34)

Ωk = Z0
(−1)k

k!
U

τ′1τ′2
τ1τ2 ...U

τ′2k−1τ′2k
τ2k−1τ2k Dτ1τ2...τ2k

τ′1τ′2...τ
′
2k
.

HereZ0 = Tr(Te−S0) is the partition function for the unperturbed system and

Dτ1...τ2k
τ′1...τ

′
2k

=< Tc†(τ′1)c(τ1)...c
†(τ′2k)c(τ2k) > (2.35)

is a fermionic determinant. Hereafter the triangle brackets denote the average over the unper-

turbed system:< A >= Z−1
0 Tr(TAe−S0). SinceS0 is Gaussian, one can apply Wick theorem

to decouple the average (2.35). Thus similar to Eq. (2.19)Dτ1...τ2k
τ′1...τ

′
2k

is a determinant of 2k×2k

matrix which consists of the bare two-point Green functionsG(τ′,τ) =< Tc†(τ′)c(τ) >:

D(2k) ≡ Dτ1τ2...τ2k
τ′1τ′2...τ

′
2k

= det|G(τ′i,τ j)| (2.36)

Now we can express the interacting two-point Green functionfor the system (2.18) using

the perturbation series expansion (2.34). It reads:

G(τ′,τ) ≡ Z−1 < Tc†(τ′)c(τ)e−W >= Z−1∑
k

∫
dτ1

∫
dτ′1...

∫
dτ′2kG

(2k)(τ′,τ)Ωk(τ1,τ′1, ...,τ
′
2k)

(2.37)

whereG(2k)(τ′,τ) denotes the Green function for a current term of series:

G(2k)(τ′,τ) =
< Tc†(τ′)c(τ)c†(τ′1)c(τ1)...c†(τ′2k)c(τ2k) >

< Tc†(τ′1)c(τ1)...c†(τ′2k)c(τ2k) >

This is nothing else that the ratio of two determinants:D(2k+1)/D(2k). Similarly, one can write

formulas for other averages, for example the two-particle Green function which is related to four-

point correlation functions and contains important information about magnetic excitations (see

sec. 2.3.5):

χ(τ,τ′,τ′′,τ′′′) ≡ Z−1 < Tc†(τ′)c(τ)c†(τ′′′)c(τ′′)e−W >

= Z−1∑
k

∫
dτ1

∫
dτ′1...

∫
dτ′2kχ(2k)(τ,τ′,τ′′,τ′′′)Ωk(τ1,τ′1, ...,τ

′
2k), (2.38)
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where

χ(2k)(τ,τ′,τ′′,τ′′′) =
< Tc†(τ′)c(τ)c†(τ′′′)c(τ′′)c†(τ′1)c(τ1)...c†(τ′2k)c(τ2k) >

< Tc†(τ′1)c(τ1)...c†(τ′2k)c(τ2k) >

is the ratio of two determinants:D(2k+2)/D(2k) .

An important property of the above formulas is that the integrands stay unchanged under

the permutationsτi ,τi′,τi+1,τi′+1 ↔ τ j ,τ j ′,τ j+1,τ j ′+1 with any i, j. Therefore it is possible to

introduce a quantityK, which we call ”state of the system” and that is a combinationof the

perturbation orderk and an unnumbered set ofk points. Now, denoteΩK = k!Ωk, where the

factork! reflects all possible permutations of the arguments. For the Green functions,k! in the

nominator and denominator cancel each other, so thatGK = Gk. In this notation

Z =
∫

ΩKD[K], (2.39)

(2.40)

G(τ′,τ) = Z−1∫ GKΩKD[K],

where
∫

D[K] means the summation overk and integration over all possible realizations of the

above-mentioned unnumbered set at eachk.

The important notice is that the series expansion for an exponentalwaysconverges for the

finite fermionic systems. Mathematically rigorous proof can be constructed for the Hamiltonian

systems. Indeed, many-body fermionic HamiltoniansH0 andW have a finite number of eigen-

states that is 2Norb, whereNorb is the total number of electronic orbitals in the system. Nowone

can observe thatΩk < const·Wk
max, whereWmax is the eigenvalue ofW with a maximal modu-

lus. This proofs a convergence of (2.34), becausek! in the denominator grows faster than the

nominator. In calculations for the non-Hamiltonian systems, no indications of divergence were

observed [81].

Although formula (2.39) looks rather formal, it exactly corresponds to the idea of the pro-

posed QMC scheme. A Markov random walk in a space of all possible K is performed. A

probability density to visit each state isPK ∝ |ΩK|. If such a simulation is organized, one can

extract the sign of each term:

G(τ′,τ) = sG(τ′,τ)/s

Overline here means a Monte Carlo averaging over the random walk, and s = ΩK/|ΩK| is an

average sign. Two kinds of the trial steps are necessary: oneshould try either to increase or to
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Figure 2.5: Schematic picture of random walks in the space of perturbation orderk according to pertur-

bation series expansion (2.34) (upper panel) and an example of the histogram for the perturbation orderk

(lower panel). From Ref. [81]

.

decreasek by 1, and, respectively, to add or to remove the corresponding tetrad of ”coordinates”.

Then the standard Metropolis acceptance criterion can be constructed using the ratio

||w||
k+1

·
∣∣∣∣
D2k+2

D2k

∣∣∣∣ . (2.41)

for the incremental steps and its inverse for the decremental ones.

In general, one may want also to add-remove several tetradessimultaneously. Thus orga-

nized random walk is illustrated by Fig. 2.5, upper panel. The lower panel of the figure presents

a typical distribution diagram for a perturbation orderk in the QMC calculation.

The most time consuming operation of the algorithm is a calculation of the ratio of deter-

minants and Green-function matrix. It’s necessary for calculation of MC weights as well as for

Green function. There exist so called fast-update formulasfor calculation of the ratio of deter-

minants and Green-function matrix. Usual procedure takesN3 operations, while the fast-update

technique allows one to performN2 or less operations, whereN is a matrix size. Usually, the two

considered types of steps (k→ k+1 andk→ k−1) are sufficient. However, the stepsk→ k±2

can be also employed in certain cases and is useful for two-particle Green functions.

The only matrix which one need to keep during MC steps is the inverse matrix of the bare

Green functions:M(2k) = g−1
(2k) . In the following formulae matrixM(2k) is extended to be(2k+
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1)× (2k+1) matrix with M2k+1,2k+1 = 1 andM2k+1,i = 0, Mi,2k+1 = 0 , which does not change

the ratio of determinants.

It is easy to obtain fast-update formulas for the stepk → k+ 1. The expressions for the

matrix M(2k+1) has the following form [81]:

M(2k+1) =





... ... ... −L1,2k+1λ−1

... M′
i, j ... ...

... ... ... −L2k,2k+1λ−1

−λ−1R2k+1,1 ... −λ−1R2k+1,k λ−1





whereM′
i, j = M(2k)

i, j +Li,2k+1λ−1R2k+1, j , Ri, j = ∑ngi,nM(2k)
n, j andLi, j = ∑nM(2k)

i,n gn, j andλ is equal

to the ratio of two determinants:

detD(2k+1)

detD(2k)
= g2k+1,2k+1−

2k

∑
i, j=1

g2k+1,iM
(2k)
i, j g j,2k+1 = λ.

For the stepk → k− 1 (remove of the column and rown) the fast update formulas for matrix

M(2k−1) and the ratio of determinants are as follows:

M(2k−1)
i, j = M(2k)

i, j −
M(2k)

i,n M(2k)
n, j

M(2k)
n,n

, (2.42)

detD(2k−1)

detD(2k)
= M(2k)

n,n .

One can also obtain fast-update formulas in the same manner for steps±2 [81]. Let’s introduce

a 2×2 matrixλ:

λq,q′ = gq,q′ −
2k

∑
i, j=1

Gq,iM
(2k)
i, j G j,q′, (2.43)

where{q,q′} = 2k+1,2k+2. Then, for example, the ratio of two determinants is equal to

detD(2k+2)

detD(2k)
= det|λ|.

Using the fast update formula forM [81], the Green function can be obtained both in imaginary
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time and at Matsubara frequencies:

G(τ,τ′) = G(τ,τ′)−∑
i, j

G(τ,τi)Mi, jG(τ j ,τ′) (2.44)

(2.45)

G(ω) = G(ω)−G(ω)

[
1
β ∑

i, j
Mi, je

iω(τi−τ j )

]
G(ω).

HereG(τ′,τ) andG(ω) are the bare Green functions in imaginary time and Matsubarafrequen-

cies correspondingly.

2.3.3 Multiorbital formalism

The impurity action (2.18) can be rewritten in the general multiorbital form with general time-

independent Coulomb interaction the following way:

Simp = S0 +Sint = − ∑
i j σ

∫ β

0

∫ β

0
c†

iσ(τ)G−1
i j (τ− τ′)c jσ(τ′)dτdτ′

+
1
2 ∑

i jkl σσ′

∫ β

0
Ui jkl c

†
iσ(τ)c†

jσ′(τ)ckσ′(τ)clσ(τ)dτ, (2.46)

wherei, j,k, l are orbital indices,σ,σ′ - spin indices,Gi j local non-interacting Green function for

correlated orbitals andUi jkl is Coulomb interaction matrix element:

Ui jkl = 〈i1 j2 |Vee
12|k2l1〉 (2.47)

herei1 ≡ ψi (r1) is local orthogonal wave function for correlated orbitals and Vee
12 is screened

spin-independent Coulomb pair interaction between electrons at the coordinatesr1 andr2. We

used standard quasiatomic LDA+U parametrization of Coulombmatrix for d-electron via effec-

tive Slater parameters [15] or equivalently via two parameters: screened Coulomb integralU

and Hund exchange integralJ, keeping ratio of multipole parameters equal to atomic values

[15]. We choose the orbital basis related to spherical harmonics to be sure that magnetic orbital

quantum number inUi jkl matrix satisfied the following sum roule:i +k = j + l . In this case we

will get rid of so-called three site terms likeUi jkk with i 6= j which produce a large sign problem

in the case of real cubic harmonics. For details of construction of the interaction part see sec.

4.2.
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Following the general idea of the weak coupling CT-QMC [81] weexpand the partition

function around the Gaussian part of our multiorbital action (2.46):

Z
Z0

=∑
n

(−1)n

n!2n ∑
{i jkl σσ′}

∫ β

0
dτ1...

∫ β

0
dτn

〈
Ui1 j1k1l1c

†
i1σ1

c†
j1σ′

1
ck1σ′

1
cl1σ1...Uin jnknlnc

†
inσn

c†
jnσ′

n
cknσ′

n
clnσn

〉

0
,

where we define the average over Gaussian part of the action as:

〈...〉0 = Z−1
0

∫
D[c†c]...eS0.

The integrating over the Gaussian action gives the fermionic determinant over the non-interacting

Green functions with the rank 2n:

Z
Z0

= ∑
n

(−1)n

n!2n ∑
{i jkl σσ′}

∫ β

0
dτ1...

∫ β

0
dτnUi1 j1k1l1...Uin jnknln detG2n×2n. (2.48)

In order to minimize the number of different interaction vertices we group the different ma-

trix elements of multiorbital Coulomb interaction which have the similar structure of fermionic

operators. SinceUi jkl matrix elements are spin independent, to generate all termsfor the inter-

action in the action (2.46), one should look over all possible combinations of orbital and spin

indices. Some combinations can violate the Pauli principleand should not be taken into ac-

count. For CT-QMC algorithm it is useful to transfer interaction part in the following form:

Ui jkl c
†
iσclσc†

jσ′ckσ′ .

The interaction terms can be transformed to the desired form, depending on relations be-

tween spin and orbital indices:

a) if σ 6= σ′, we can just commuteclσ andckσ′ and thenclσ andc†
jσ′ . Another combination

of indices, that allows the same commutation, is the following: σ = σ′, i 6= j andk 6= l (the

later is following from the Pauli principle), and alsoj 6= l . These terms we can transform to the

following desirable representation:

Hint1 = Ui jkl c
†
iσclσc†

jσ′ckσ′. (2.49)

39



b) in the case whenσ = σ′ and j = l we can commuteckσ′ andc†
jσ′ , since in this casei 6= j

andk 6= l due to the Pauli principle:

Hint2 = −Ui jkl c
†
iσckσc†

jσclσ (2.50)

After generating all this terms it is necessarysymmetrizeall the terms with equivalent quantum

numbers (for example,Ui jkl c
†
iσc jσc†

kσ′clσ′ andUkli j c
†
kσ′clσ′c†

iσc jσ ). Then all the procedures de-

scribed in sec. 2.3.2 are performed without any modifications and Green functions of interacting

system can be extracted from theM matrix similar to (2.46):

Gi j (τ,τ′) = Gi j (τ,τ′)−
K

∑
n,m

Gi jn(τ,τn)Mn,mGim j(τm,τ′) (2.51)

(2.52)

Gi j (ω) = Gi j (ω)− 1
β

K

∑
n,m

Gi jn(ω)Mn,meiω(τn−τm)Gim j(ω), (2.53)

wherei, j are orbital indices andn,m are running indices corresponding to summation over all

the perturbation orders up to the current oneK. The indicesjn and im denotes orbital numbers

corresponding to the part of interaction field containing imaginary time pointτn andτm respec-

tively.

2.3.4 Sign problem. Choice of α parameters

In order to reduce and in many cases avoid the sign problem in CT-QMC, we introduce additional

quantitiesα, which can be in principle a function of time, spin and numberof lattice site (orbital).

Thus up to an additive constant we have the new separation of the action (2.46), see Ref. [81]:

S0 = ∑
i j σ

∫ β

0

∫ β

0

(
−G−1

i j (τ− τ′)+
1
2 ∑
{klσ′}

ασ′
kl (Uilk j +Uli jk )δττ′

)
c†

iσc jσdτdτ′ , (2.54)

(2.55)

Sint =
1
2 ∑
{i jkl σσ′}

∫ β

0
Ui jkl (c

†
iσclσ −ασ

il )(c
†
jσ′ckσ′ −ασ′

jk)dτ.

One can see, that the first item of (2.54) in Matsubara space corresponds to bare Green’s function

G−1
i j = (iωn +µ)δi j −∆i j (ωn), (2.56)
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here∆ is hybridization matrix. The second term is just a constant which we can absorb to the

new chemical potential ˜µ. Therefore we can rewrite the bare Green function in the following

matrix form:

G̃−1 = (iωn + µ̃)1−∆. (2.57)

The optimal choice of prarmetersασ
i j would lead to effective reduction of interaction terms in the

action Eq. (2.54) and minimization of average perturbationoder in Eq. (2.48).

Using the fact thatUilk j = Uli jk following from the definition of the Coulomb matrix ele-

ments (2.47) and Eq. (2.54), the relation betweenG̃ andG can be represented in the following

spin and orbital matrix form:

G̃−1 = G−1−
〈
α̂Û
〉
. (2.58)

Now we can discuss a simple system: 1-band isolated (∆ = 0) Hubbard atom at half-filling.

In order to arrive half-filling in interacting system the chemical potential should beµ = U/2.

Thus the bare Green function (2.56) atU of order of bandwidth have an occupancy close to 1.

(figures with 2 types of chem. potential,G(τ)) It leads to difficulties with numerical evaluating of

G(τ), because on almost all the segment[0,β] it has very small values and all the details of initial

bath DOS become concentrated in small vicinities ofτ = 0 andτ = β. Since we use uniformal

sampling ofτ points in[0,β] range, accumulating of sufficient number of points nearτ = 0 and

τ = β takes unreasonable long time. Therefore from computational reasons we should keep the

occupancy of bath Green function unchanged.

In this case we need to put the many-body chemical potential not to the bath Green function

but into the interaction part of Hamiltonian. In order to do this we have to choose theα in a

propper parameters. For the concerned case of isolated Hubbard atom at half-filling we can put

α1 + α2 = 1, that give us (According to (2.58)) ˜µ = 0 for half-filled case at anyU because of

cancellation ofµ in G−1 and
〈
α̂Û
〉

= (α1+α2
2 )U = U

2 , that corresponds to half-filling. However

the simplest choiceα1 = α2 = 1
2 leads to rejecting of stepsk±1 since the ratio of correspondent

determinants is exactly zero.

We also need to minimize the fermionic sign problem which finally lead us to such expres-

sion for diagonal alpha’s parameters:

αii
σ +α j j

σ′ = ᾱ (2.59)
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whereᾱ has to be found iteratively in order to get a proper occupation number of correlated

electrons. In the case of half-filled one-band Hubbard modelᾱ = 1 leads to the correct chemical

potential shift of theU
2 and averageα = 1

2 which corresponds to the Hartree-Fock substraction.

The diagonal alpha corresponds to the following interaction fieldsUi j ji niσn jσ′ . For non-diagonal

alpha’s which corresponds to the fields of general formUi jkl c
†
iσclσc†

jσ′ckσ′ , wherei 6= l and j 6= k

we find the following optimal condition:

αi j
σ +αkl

σ′ = 0 (2.60)

Since we symmetrize the interactionU matrix it is needed to extend the definition ofα̂
matrix in order to keep all the terms in the interaction part of initial action (the last item in Eq.

(2.54)). It can be done the following way [81, 84]: for everyUi jkl field in 50% of updates we

deliver theα parameters as

αil = αdiag, α jk = ᾱ−αdiag,

and in another 50% as

αil = ᾱ−αdiag, α jk = αdiag

for the case ofi = l and j = k. For non-diagonal fields, i.e.i 6= l and j 6= k

αil = αnd, α jk = −αnd,

with 50% probablility and

αil = −αnd, α jk = αnd

otherwise. It was found that the sign problem is eliminated in the case whenαdiag < 0 andᾱ ≥ 1

for occupancyn≥ 1
2 per orbital andαdiag > 0, ᾱ < 1 otherwise. The optimal choice of

∣∣αdiag
∣∣

parameter is few percent of|ᾱ| to keep minimal average perturbation order. Another problem

is a proper choice of non-diagonalαnd parameter. It is easy to see thatαnd is proportional to

acceptance probability of non-diagonal field in the case where the bare green functionG jk = 0.

Since these processes are unphysical, the natural choice isαnd = 0. But it leads to division on

zero in the updating the inverse Green function matrix [81].On the other hand increasingαnd

parameter cause the sign problem. We find the reasonable choice of αnd to be of the order of

10−4. Moreover for some special cases like atomic limit, whereGmm(τ) = 0.5 a small noise

should be added to all theα parameters to avoid numerical divergency.

If it is not the case (for example if the choice ofα parameters described in (2.59) and (2.60)

leads to the sign problem in some particular form of interaction part of Hamiltonian) the bare

Green function is corrected according to (2.61).
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For the general choice of theα parameters the corresponding new bare Green function can

be written in the following schematic form:

G̃−1 = (iωn + µ̃)−∆−
〈(

α̂− ᾱ1̂
)
Û
〉
. (2.61)

If we choose theα parameters in the above mentioned optimal way, then the lastterm in Eq.

(2.61) vanish automatically.

2.3.5 Four-point correlators

The most interesting quantity for spin systems is the magnetic susceptibility. Studying it give

us insight to low temperature behavior of correlated impurities and other physically interesting

systems.

Let us consider the behavior of impurity model in magnetic field. The z-component of the

magnetization operator is given by

Mtot = Ma +Mc = −gµB(Sz+sz), (2.62)

whereg is Lande factor (it is the same for impurity and bath electrons), Mtot is total system

magnetization,Ma andMc – magnetization of the impurity and band electrons respectively, Sz

sz are correspondingly z-components of the spin operator on impurity and the spin of the band

electrons:

Sz =
1
2
(na↑−na↓), sz =

∫
drsz(r), (2.63)

naσ = a†
σaσ, (2.64)

wherea†
σ andaσ are creation and annihilation operators acting on impuritystate respectively,σ

denotes spin. The definition of total susceptibilityχtot of the system in homogeneous magnetic

field B is the following [20]:

χtot =
d

dB
〈Mtot〉

∣∣∣∣
B=0

= χa +χc, (2.65)

χa =
d

dB
〈Ma〉

∣∣∣∣
B=0

, (2.66)

χc =
d

dB
〈Mc〉

∣∣∣∣
B=0

, (2.67)
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whereMa is the impurity magnetization andMc is a magnetization of conduction electrons,χa

andχc are corresponding susceptibilities. Note, thatχc is not a susceptibility of pure system

without impurity. The susceptibility of the system of free electrons without impurity

χpure≡ χ0
c =

d
dB

〈Mc〉
pure

∣∣∣∣
B=0

(2.68)

is just a Pauli susceptibility of pure metal. Therefore the spin susceptibility due to impurityχimp

can be expressed as a difference between susceptibility of the complete system and the Pauli one:

χimp = χtot −χpure = χa +χc−χ0
c, (2.69)

where The total susceptibilityχtot can be obtained by the linear response theory [85]. One can

show thatχa andχc can be expressed by retarded spin-spin correlation functions:

χa = −(gµB)2
[
χ(R)

aa (ω = 0)+χ(R)
ac (k = 0,ω = 0)

]
, (2.70)

χc = −(gµB)2
[
χ(R)

cc (k = 0,k′ = 0,ω = 0)+χ(R)
ca (k = 0,ω = 0)

]
, (2.71)

whereχ(R) - are results of the Fourier transform of the following retarded response functions:

χ(R)
aa (t − t ′) = −iθ(t − t ′)

〈[
Sz(t),Sz(t

′)
]〉

, (2.72)

χ(R)
ac (k, t − t ′) = −iθ(t − t ′)

√
Ω
〈[

Sz(t),sz(k, t ′)
]〉

, (2.73)

χ(R)
ca (k, t − t ′) = −iθ(t − t ′)

√
Ω
〈[

sz(k, t),Sz(t
′)
]〉

, (2.74)

χ(R)
cc (k,k′, t − t ′) = −iθ(t − t ′)Ω

〈[
sz(k, t),sz(k′, t ′)

]〉
. (2.75)

Here sz(k) is - Fourier transform of the spin densitysz(r), and Ω is volume of the system.

Because the statistical averages in (2.72)-(2.75) are takenwithout external fields, the averages

are commutators of the spin operators in Heisenberg representation. It is known that retarded

response functions can be obtained as analytical continuation of a corresponding temperature

correlation functions [33].

So the local property of the impurity ischiaa ≡ χloc, which is proportional to the local cor-

relation function of the impurity spin. The susceptibilityhas a smooth temperature dependence
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(see e.g. Fig. 3.10). For a system with constant band DOS (flat-band)χloc coincides with the

impurity susceptibility,χimp, which is obtained as the difference between the susceptibility of the

electron system with the impurity and without it (see Eq. (2.69) and Ref. [39]). Wilson defined

the Kondo temperature as the crossover temperature whereTKχimp(TK) = 0.0701 [39, 86]. For

the system with strongly non-constant band DOS, e.g. disordered system,Tχimp(T) can strongly

deviate from the universal scaling curve of the clean system[87]. It turns out, however, that this

is an artefact of the definition ofχimp, since the susceptibility of the electronic system fluctuates

strongly and can result in negative values ofχimp [88]. Therefore, we use instead the local static

magnetic susceptibility,χloc ≡ χaa. The temperature response function in imaginary time reads

χaa(τ) = χloc(τ) = 〈TτS
z(τ)Sz(0)〉, (2.76)

whereTτ is time ordering operator. In Matsubara space it has the following form:

χloc(iωB) =
∫ β

0
eiωBτχloc(τ)dτ, (2.77)

whereωB = 2nπ/β is a bosonic Matsubara frequency (n is an integer number,β = 1/kBT -

inverse temperature) [85].

Since our method is based on perturbation theory with expansion in powers of interaction,

the magnetic susceptibility can be expressed as an expansion in powers ofHint . For example the

〈SzSz〉 correlator according to (2.63) can be expanded the following way [89, 90]:

〈SzSz〉 =
1
Z

〈
1
4
(n↑−n↓)(n↑−n↓)

〉

=
1
β

∞

∑
n=1

(−1)n

n!
1
2
(gµB)2Un

∫ β

0
dτ1...dτn+2

[
D↑

n+2(1,2, ...n+2)D↓
n(2,3, ...n+1)

−D↑
n+1(1,2, ...n+1)D↓

n+1(2,3, ...n+2)
]
. (2.78)

Therefore we have to calculate products of determinants of the formDn+2Dn andDn+1Dn+1

where the index denotes size of the determinant. But we already can calculate such a ratios of

determinants (they are used to perform the fast updates of inverse propagators matrix [81]).
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We could start from the definition (2.76), but from the computational point of view it is more

convenient to calculate the susceptibilities on Matsubarafrequencies. As it was already men-

tioned in sec. 2.3.2, the CT-QMC method is suitable for calculating not only two-point cor-

relators (local and non-local Green functions) but also four-point correlators of a general form

χi jkl = 〈Tτciσc jσ′c†
kσ′′c

†
lσ′′′〉, that contains important information about magnetic excitations in the

system:

χrr ′′
r ′r ′′′ ≡Z−1 < Tc†

r ′c
rc†

r ′′′c
r ′′ >= Z−1∑

k

∫
dr1

∫
dr′1...

∫
dr′2kχrr ′′

r ′r ′′′(r1, r
′
1, ..., r

′
2k)Ωk(r1, r

′
1, ..., r

′
2k),

(2.79)

where

χrr ′′
r ′r ′′′(r1, r

′
1, ..., r

′
2k) =

< Tc†
r ′c

rc†
r ′′′c

r ′′c†
r ′1

cr1...c†
r ′2k

cr2k >

< Tc†
r ′1

cr1...c†
r ′2k

cr2k >

is the ratio of two determinants:D(2k+4)/D(2k) and in principle is equivalent to Eq. (2.78).

Now we consider calculation of theχ+−
loc (τ) = 〈TτS+(τ)S−(0)〉 correlation function, where

S+(τ) = c†
↑(τ)c↓(τ) andS−(τ) = c†

↓(τ)c↑(τ). We can express theD(2k+4)/D(2k) ratio of determi-

nants by the combination ofD(2k+2)/D(2k) terms:

〈
c†

1c2c†
3c4 . . .

〉

〈. . .〉 =

〈
c†

1c2 . . .
〉

〈. . .〉

〈
c†

3c4 . . .
〉

〈. . .〉 −

〈
c†

1c4 . . .
〉

〈. . .〉

〈
c†

3c2 . . .
〉

〈. . .〉 , (2.80)

where ”. . .” is the same set of fermionic operators emerging from the raising ofHint in power of

the perturbation order. Fourier transforms are determinedthe following way:

G(ω) =
∫ β

0
G(τ)e−iωτdτ, (2.81)

G(τ) =
1
β

∞

∑
ω=−∞

G(ω)eiωτ (2.82)

for function of one variable and
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G(ω,ω′) =
1
β

∫ β

0
dτ
∫ β

0
dτ′G(τ,τ′)e−iωτ+iω′τ′ , (2.83)

G(τ,τ′) =
1
β

∞

∑
ω,ω′=−∞

G(ω,ω′)eiωτ−iω′τ′ (2.84)

for function of two variables. We need it because the ”momentary” Green functions (obtained

according to Eq. 2.46, but not averaged over the Monte-Carlo process) used to construct the four-

point correlators (see sec. 2.3.6) essentially depends on two variables. Therefore theχ+−(Ω)

dynamical susceptibility can be calculated on Matsubara frequencies following way [19]:

χ+−(Ω) =
1
β

∫ β

0
dτ
∫ β

0
dτ′G↑(τ,τ′)G↓(τ′,τ)e−iΩ(τ−τ′)

=
1
β

∫ β

0
dτ
∫ β

0
dτ′

1
β2

∞

∑
ω1,ω2,ω3,ω4=−∞

G↑(ω1,ω2)G↓(ω3,ω4)e
i(ω1τ−ω2τ′+ω3τ′)−ω4τ+Ωτ−Ωτ′

=
1
β

∞

∑
ω1,ω2=−∞

G↑(ω1 +Ω,ω2 +Ω)G↓(ω2,ω1), (2.85)

Note, that in Eq. (2.85)Gσ(τ,τ′) denotes not the Green function in the commonly used sense but

tho ”momentary” product of thec†
σ(τ)cσ(τ′) operators, that have not been averaged statistically

over the Monte-Carlo process. The same way we can derive

χi j
loczz

(τ) = 〈TτS
i
z(τ)S

j
z(0)〉, (2.86)

where

Si
z =

ni
↑−ni

↓
2

(2.87)

is operator of thez projection of spin on thei-th orbital. Using the (2.87) definition we can

rewrite the average (2.86) in the following form:

〈Si
z(τ)S

j
z(τ

′)〉 =
1
4

(〈
ni
↑(τ)n

j
↑(τ

′)
〉

+
〈

ni
↓(τ)n

j
↓(τ

′)
〉
−
〈

ni
↑(τ)n

j
↓(τ

′)
〉
−
〈

ni
↓(τ)n

j
↑(τ

′)
〉)

. (2.88)

In this calculation we assumeτ > τ′. Using Eq. (2.80) we can rewrite the items of (2.88) in terms

of ”momentary” Green functions:
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〈
ni

σ(τ)n j
σ(τ′) . . .

〉

〈. . .〉 =

=

〈
ci†

σ (τ)ci
σ(τ) . . .

〉

〈. . .〉

〈
c j†

σ (τ′)c j
σ(τ′) . . .

〉

〈. . .〉 −

〈
ci†

σ (τ)c j
σ(τ′) . . .

〉

〈. . .〉

〈
c j†

σ (τ′)ci
σ(τ) . . .

〉

〈. . .〉 =

= Gii
σ(τ,τ)G j j

σ (τ′,τ′)−Gi j
σ (τ,τ′)G ji

σ (τ′,τ), (2.89)

〈
ni

σ(τ)n j
σ̄(τ′) . . .

〉

〈. . .〉 =

〈
ci†

σ (τ)ci
σ(τ) . . .

〉

〈. . .〉

〈
c j†

σ̄ (τ′)c j
σ̄(τ′) . . .

〉

〈. . .〉 = Gii
σ(τ,τ)G j j

σ̄ (τ′,τ′). (2.90)

Using (2.89) and (2.90) we can rewrite (2.88) as

〈Si
z(τ)S

j
z(τ

′)〉 =

=
1
4

(
Gii
↑(τ,τ)G

j j
↑ (τ′,τ′)−Gi j

↑ (τ,τ′)G ji
↑ (τ′,τ)+Gii

↓(τ,τ)G
j j
↓ (τ′,τ′)−Gi j

↓ (τ,τ′)G ji
↓ (τ′,τ)

− Gii
↑(τ,τ)G

j j
↓ (τ′,τ′)−Gii

↓(τ,τ)G
j j
↑ (τ′,τ′)

)
. (2.91)

Finally we can write downχi j
loczz

in the Matsubara space. To do that, we perform Fourier trans-

form (2.83) of Eq. (2.91):

χi j
loczz

(Ω) =

=
1
4β

∞

∑
ω1,ω3=−∞

[
Gii
↑(ω1,ω1 +Ω)G j j

↑ (ω3,ω3−Ω)+Gii
↓(ω1,ω1 +Ω)G j j

↓ (ω3,ω3−Ω)

− Gii
↑(ω1,ω1 +Ω)G j j

↓ (ω3,ω3−Ω)−Gii
↓(ω1,ω1 +Ω)G j j

↑ (ω3,ω3−Ω)
]

− 1
4β

∞

∑
ω1,ω2=−∞

[
Gi j
↑ (ω1 +Ω,ω2 +Ω)G ji

↑ (ω2,ω1)+Gi j
↓ (ω1 +Ω,ω2 +Ω)G ji

↓ (ω2,ω1)
]
.

(2.92)
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In order to get the dynamical susceptibility (2.92) in this relatively simple form we made some

”shifting” of the running indices (for example,ω3 → ω3−Ω) to reduce the number of variables.

We can do it because of translation invariance of time and therefore we have only 3 independent

parameters in Fourier transform. The summation in (2.92) isformally done over all the frequen-

ciesωn, from n = −∞ to n = ∞, therefore we can add some constant to the running indices.

2.3.6 Practical implementation of the susceptibilities ca lculation

To calculate for example dynamical susceptibilityχ+−(Ω) (2.85) we need 2-frequencies Green

functionsG(ωi ,ω j). They can be obtained from theG(τ,τ′) = G −∑K
i, j=0G(τ,τi)Mi j G(τ j ,τ)

by Fourier transform (2.83). First we calculate the ”exact”part of the susceptibility according to

(2.85) (Fig. 2.6, blocks a). Since we have not so many Matsubara frequencies, we need to include

asymptotics. The first correction to our result is ”head-tail” contribution (Fig. 2.6, blocks b). Here

we have exact values of first ”momentary Green function” and only asymptotics 1/iωn for the

second one (as we know, the Green functions in Matsubara space have the 1/iωn asymptotics at

ωn → ∞). The tail-tail asymptotics (Fig. 2.6, blocks c) for the positive frequencies is defined as

∞

∑
n=nmax+N+1

1
ωn

1
ωn+N

=
∞

∑
n=0

1
ωn

1
ωn+N

−
nmax+N

∑
n=0

1
ωn

1
ωn+N

=
β2

8
−

nmax+N

∑
n=0

1
ωn

1
ωn+N

. (2.93)

From symmetry reasons we have to add (2.93) twice, because wehave a sum over all the Mat-

subara frequenciesωn, from n = −∞ to n = ∞. Here we used the fact thatω−n = −ωn−1, if

the Matsubara frequencies are defined asωn = (2n+1)π
β . Note that only diagonal (where both

frequencies are equal) elements of ”momentary Green functions” have well-defined asymptotics.

Moreover, only diagonal elements survive after the averaging of Green function over the Monte-

Carlo process.

Finally we compared the CT-QMC results for static susceptibility χ+− = χ+−(Ω)|(Ω=0) to

the exact solution for one-orbital Anderson impurity modelin the atomic limit (see Fig. 2.8;

analytical solution is derived in Appendix). A good agreement between CT-QMC and exact

results within broad temperature range is found. However below some critical temperature the

system becomes ”trapped” in one of the local energy minima (in this particular case of one-

orbital AIM the impurity just become magnetized) and loose ergodicity. It leads to considerable
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Figure 2.6: Calculation of susceptibilityχ+−(Ω) (2.85). a - head-head part, calculated exactly; b - head-

tail part, unknown diagonal values of Green function supposed to be equal to 1/iωn; c - tail-tail part

calculated analytically according to Eq. (2.93). The indicesn1, n2 andN corresponds to frequenciesω1,

ω2 andΩ (see Eq. (2.85)) respectively.

underestimation of the susceptibility, although the statistical error of the QMC process is still

quite small.

2.3.7 Analytic continuation

The quantum Monte Carlo simulation yields the Green functionin imaginary timeG(τ). For the

study of the spectral properties, transport or optics, Green function on real axis are needed and

therefore the analytic continuation is necessary. This in practice amounts to solving the following

integral equation [22]:

G(τ) =
∫

dω f (−ω)e−τωA(ω), (2.94)
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Figure 2.7: Typical form of the module of the ”momentary Green function”. The Kondo model in

Abrikosov’s representation (see Chapter 3) is used. The model parameters are: exchange coupling strength

J = −0.2 eV, inverse temperatureβ = 15eV−1, on-site constrainUc = 0.5 eV. The indicesn1 andn2 cor-

responds to frequenciesω1 andω2 (see Eq. (2.85)) respectively.

whereA(ω) is the unknown spectral function, andf (ω) is the Fermi function. This is a numer-

ically ill-posed problem becauseG(τ) is insensitive to the spectral density at large frequencies.

Most often this problem is solved using the maximum entropy method (MEM) [91].

A new functionalQ[A], which is to be minimized, is constructed as follows

Q[A] = αS[A]− 1
2

χ2[A] (2.95)

where

χ2[A] =
L

∑
i j=1

(Ḡ(τi)−G(τi))[C
−1]i j (Ḡ(τ j)−G(τ j)) (2.96)

measures the distance between the QMC data, averaged over many QMC runs (Ḡi) and the

Green functionG(τi) that corresponds to the given spectral functionA(ω) according to equation

Eq. (2.94). TheCi j is the covariant matrix containing the information about statistical errors of

the QMC data. In A. Sandvik’s algorithm [92] we are using, this is a diagonal matrix. Then

Eq. (2.96) can be rewritten as
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Figure 2.8: Magnetic susceptibilityTχ+− = Tχ+−(Ω)|(Ω=0) of one-orbital Anderson impurity model in

atomic limit at half-filling. On-site Coulomb repulsionU = 1 eV, Tχ in (gµB)2, T in eV. Comparison of

exact solution (solid line) and CT-QMC results (red dots). Error bars denotes statistical error of the QMC

process.

χ2[A] =
L

∑
i=1

(Ḡ(τi)−G(τi))
2/σ2

i (2.97)

whereσ2
i is a statistical error of̄G(τi). The entropy term,S[A], takes the form

S[A] =
∫

(A(ω)−m(ω)−A(ω) ln [A(ω)/m(ω)]) , (2.98)

wherem(ω) is the so-called default model, that defines the zero of the entropy and to which the

spectrum reduces in the absence of data, in our case it is constant.

For each value of the parameterα, numeric minimization ofQ gives as the corresponding

spectral functionAα(ω). If α is too large, the solution will not move far from the default model,

while smallα leads to unphysical oscillations caused by over-fitting thenoisy QMC data.

In the so-called historic MEM, the parameterα is chosen such thatχ2 = N, whereN is the
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Figure 2.9: Left panel: Green functionG(τ) for 3-orbital degenerated AIM in atomic limit away from

half-filling, τ in eV−1. Solid line – CT-QMC, dash – exact diagonalization. Right panel: DOS for 3-

orbital degenerated AIM in atomic limit away from half-filling. Solid line – analytical continuation of

the CT-QMC, dash line – exact diagonalization results obtained on real energy axis, dot line – analytical

continuation of the exact diagonalization results obtained in imaginary time. The model parameters are

following: U = 1 eV, J = 0.3 eV, T = 0.1 eV, n̄ = 2
3 pro orbital (ntot = 4 electrons).

total number of real frequency points at whichA(ω) is being determined. In many cases, this

gives already a reasonable spectral functions, however, ingeneral the historic method tends to

underfit the data and makes the resultingA(ω) too smooth.

In the ”classical” MEM we are using, the parameterα is determined from the following

algebraic equation

−2αS(α) = Sp
{

Λ(α) [αI +Λ(α)]−1
}

(2.99)

whereS(α) is the value of the entropy in the solutionAα, which minimizesQ andΛ(α) is

Λ(α)i j =
√

Aα
i

[
KTC−1K

]
i j

√
Aα

j . (2.100)

HereKi j is the discretized kernelKi j ≡ K(τi ,ω j) andAi is the discretized spectral functionAi =

A(ωi)dωi andCi j is the above defined covariant matrix.

In applications of DMFT to real materials, the quasiparticle peak can have a complex struc-

ture since at low temperature we need to reproduce renormalized LDA bands around the Fermi-

level, i.e., the spectral function approaches the LDA density of states contracted for the quasipar-

ticle renormalization amplitudeZ, A(ω) = ρ(ω/Z+µ0). The MEM has a tendency to smear out
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this complex structure because of the entropy term.

From practical point of view for obtaining DOS from Green function given on imaginary

times or Matsubara frequencies it means the following: MEM gives quite smooth DOS, and

(especially at high temperatures) it can overlook fine DOS features, don’t resolve peaks if their

positions are of order of width, etc. As an example we can use the results of a test for 3-orbital

AIM in the atomic limit (see section 4.1). The model parameters are:U = 1 eV, J = 0.3 eV,

T = 0.1 eV, n̄ = 2
3 pro orbital. For this case we have exact DOS obtained by exactdiagonaliza-

tion method. TheG(τ) interacting Green function obtained by CT-QMC (solid line) and exact

diagonalization (dash line) are presented on Fig. 2.9, leftpanel. One can see that the results are

in good agreement, but not in coincedence. The Fig. 2.9, right panel demonstrates exact DOS of

the interacting system (dash line), DOS obtained by MEM fromthe exactG(τ) Green function

(dot line) and from CT-QMC resulting Green function (solid line).
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3 Kondo impurity problem with an arbitrary

density of conducting electron states

The numerically exact determinantal continuous time QMC method has been applied to calcu-

late properties of a Kondo impurity coupled to a band of conducting electrons with an arbi-

trary density of states (DOS). This approach allows to calculate spin susceptibilities as well as

Green functions, accurately taking into account all the features of the conducting electron DOS.

The method was applied to a Kondo impurity embedded into different environments: ultrasmall

grain, Anderson alloy model (lattice with random on-site energy levels) and a two-dimensional

lattice, where the DOS has a van Hove singularity. The CT-QMC method was used to check the

applicability of Numerical Renormalization Group (NRG) to Kondo impurities embedded into

environment with very nonuniformal DOS and to find out how the shape of bath DOS influence

on screening of impurity magnetic moment. All the NRG calculations mentioned in the current

Chapter were performed by A. Zhuravlev [88].

3.1 Kondo effect

Although the Kondo effect is a well known and widely studied phenomenon in condensed matter

physics, it continues to capture the imagination of experimentalists and theorists alike. Interest in

the Kondo effect has therefore persisted because it provides clues to understanding the electronic

properties of a wide variety of materials where the interactions between electrons are particularly

strong, for instance in heavy-fermion materials and high temperature superconductors. In fact,

interest in the Kondo effect has recently peaked thanks to new experimental techniques from

the rapidly developing field of nanotechnology, which have given us unprecedented control over

Kondo systems. The short introduction to the problem can be found in Ref [93].

This effect was discovered in the 1930s [94] while measuringthe resistance of gold samples
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Figure 3.1: Resistance ofAu at low temperatures. On the right panel the resistance minimum atT ≈ 4 K

is shown. The figures were adapted from [94].

at very low (up to 1.63K) temperatures. It was found that withthe lowering temperature below

some point the resistance start to increase (see Fig. 3.1). The Kondo effect originates from

screening of the spin of a magnetic impurity (openedd or f shell of the impurity atom with

non-zero total spin of all the electrons) by conduction bandelectrons of the host metal.

The simplest model of a magnetic impurity, which was introduced by Anderson [40] (see

fig. 3.2 a) has only one electron level with energyε0. In this picture, the impurity has a spin of 1/2

and its z-component is fixed as either ”spin up” or ”spin down”. However, so-called exchange

processes can take place that effectively flip the spin of theimpurity from spin up to spin down,

or vice versa, while simultaneously creating a spin excitation in the Fermi sea. Figure 3.2 (a–c)

illustrates what happens when an electron is taken from the localized impurity state and put into

an unoccupied energy state just above the Fermi level. The energy needed for such a process

is large, between about 1 and 10eV for magnetic impurities. Classically, it is forbidden to take

an electron from the impurity without putting energy into the system. In quantum mechanics,

however, the Heisenberg uncertainty principle allows sucha configuration to exist for a very

short time aroundh/|ε0|, whereh is the Planck constant. Within this timescale, another electron

must tunnel from the Fermi sea back towards the impurity. However, the spin of this electron

can be opposite to the initial one. This spin exchange qualitatively changes the energy spectrum

of the system (fig. 3.2 d) forming a strong peak in the impuritys density of states near the Fermi

level [20].
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Figure 3.2: The Anderson impurity model assumes that it has one electron level with energyε0 below the

Fermi energy (a). This level is occupied by one spin-up electron. Adding another electron is prohibited by

the Coulomb energy, U, while it would cost at least|ε0| to remove the electron. Being a quantum particle,

the spin-up electron may tunnel out of the impurity site to briefly occupy a classically forbidden ”virtual

state” (b) outside the impurity, and then be replaced by an electron from the metal. This can effectively flip

the spin of the impurity (c). Many such events combine to produce the Kondo effect, which leads to the

appearance of an extra resonance at the Fermi energy (d). Since transport properties, such as conductance,

are determined by electrons with energies close to the Fermi level, the extra resonance can dramatically

change the conductance. The figure was adapted from [93]

.

Such a resonance is very effective at scattering electrons with energies close to the Fermi

level. Since the same electrons are responsible for the low-temperature conductivity of a metal,

the strong scattering contributes greatly to the resistance and leads to increasing the resistance at

low temperatures.

This many body resonance also can be observed explicitly using the scanning tunneling

spectroscopy (STS) technique: on single magnetic adatoms [95, 96, 97], in artificial nanostruc-

tures such as quantum corrals [98], and for molecules [99]. In STS spectra, it shows up as a

feature which can be described by a Fano line shape [100, 101,102]. From a fit, the peak width

is obtained which is the characteristic energy scale – the Kondo temperatureTK of the impurity

system. For the Kondo scenario of a single magnetic impurityon a nonmagnetic metal surface a

simple semi-empirical model has been proposed by P. Wahl et al. [103].
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3.2 Abrikosov’s representation of the Kondo model

The main difference of the Kondo impurity model to the Anderson one (see Chapter 4) is that

the only one electron with spinS supposed to occupy the impurity site. Therefore interaction

of the impurity with conduction band electrons due to the Heisenberg exchange can be written

asHKint = −2JSs, whereS is impurity spin ands is spin of the conduction band electron. The

general description of this model is so-calleds−d Hamiltonian [20]:

Hsd = ∑
kσ

εkc†
kσckσ −∑

kk′
Jkk′
[
S+c†

k↓ck′↑ +S−c†
k↑ck′↓ +Sz

(
c†

k↑ck′↑−c†
k↓ck′↓

)]
. (3.1)

It describes the single-spin impurityS with spin operatorsSz andS± = Sx± iSy, coupled to the

band of conduction electrons (c†
kσ andckσ operators) within Heisenberg exchangeJkk′ .

Since the CT-QMC method was originally designed for fermionic systems i.e. systems,

where Wick theorem takes place (for Gaussian action), we usethe fermionic description of

Kondo problem. Following approach of Wilson [39] we approximate theJkk′ exchange by the

constantJ, but keep exact DOS from conduction electron spectrumεk. To use this method for

Kondo systems we replace spin operators to fermionic one by Abrikosov’s transformation [104]:

S+ = a†
↑a↓, S− = a†

↓a↑, Sz =
1
2
(a†

↑a↑−a†
↓a↓). (3.2)

Therefore in fermionic operators the interaction part ofs−d Hamiltonian (3.1) reads

HAb = −2J(Szsz+1/2(S+s− +S−s+))

= −J/2
[
(na

↑n
c
↑ +na

↓n
c
↓)+(na

↑n
c
↓ +na

↓n
c
↑)

+2(a†
↑c↑c

†
↓a↓ +c†

↑a↑a
†
↓c↓)

]
, (3.3)

where

na
σ = a†

σaσ, nc
σ = c†

σcσ

andσ is a spin index. To avoid double occupancy of the impurity we need to include additional

”constrain” term:

H = HAb+Ua(n
a
↓ +na

↑−1)2. (3.4)

Rewritten in Abrikosov’s fermionic operators the (3.4) model can be represented as effective

two-site AIM (see Fig. 3.3) without on-site Coulomb interaction on the ”auxiliary” site 2. The
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Figure 3.3: Thes− d model in fermionic representation (3.4) is equivalent to 2-site AIM without on-

site Coulomb repulsion on the auxiliary site 2. The auxiliary site 2 is coupled to the bath of conduction

electrons with known DOS (yellow), the ”target” site 1 has no hybridization term, its bare Green function

readsG1(iω) = 1
iω+µ. Site 1 corresponds toa operators in (3.3) and 2 – toc correspondingly.

”impurity” site 1 has no explicit hybridization to the bath of conduction electrons, its bare Green

function on Matsubara frequencies readsG1(iω) = 1
iω+µ. This site is coupled to the auxiliary site

2 via Heisenberg exchangeJ. Because of absence of on-site Coulomb repulsionU on the site 2,

its local DOS is the same as a DOS of the conduction electrons bath. Formally we have to take

Ua → ∞, but the tests (performed by NRG [88], see Fig. 3.4) shows thatrelatively small value of

Ua (of order of|J| ) is enough to avoid the double occupancy even at high-temperature regime.

Hereafter in this Chapter under ”high temperatures” we assumeT >> TK.

3.3 Kondo impurity in piecewise-constant DOS, benchmarks

We consider the piecewise-constant DOS because it is the simplest case of non-uniformal density

of conduction electron states that can be relevant to realistic models. It is well known that the

Kondo temperatureTK of the impurity coupled to the conduction electron bath withconstant

DOS (so called ”flat band”) scales as

TK ∝ De
− 1

2Jρ(EF ) , (3.5)

whereD = W/2 is half of the width of conduction band,J is a strength of Heisenberg coupling

between the impurity and conduction electrons andρ(EF) is a bath DOS at Fermi level [20].

Therefore keeping theJ×ρ(EF) product constant we obtaining the same Kondo temperature as

well as the spin susceptibility of the impurity [20]. The interesting question is, what kind of

scaling takes place if the Kondo impurity is embedded into bath of conduction electrons with

non-constant DOS.
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Figure 3.4: Comparing of the impurity magnetic susceptibility (2.76) of the impurity described bys−
d Hamiltonian (”Kondo”, solid line) and its fermionic representation (3.4) with different values of the

constrainUa. The impurity is coupled to bath with constant density of states (bandwidthD = 2 eV),

exchange parameterJ = −0.3 eV, Tχ in (gµB)2, T in eV [88].

The Numerical Renormalization group (NRG) method is known to be an appropriate tool

to solve an impurity problem with uniform bath DOS. Also thismethod has much less com-

putational effort than QMC in physically interesting case of low temperatures, but it is unclear

whether the NRG can be used for treating impurity problems with strongly non-uniform bath

DOS.

In this section we check the reliability of the NRG and CT-QMC results in case of Kondo

impurity embedded into band with piecewise-constant DOS. The bath DOS of the systems stud-

ied in this section are shown on Fig. 3.5, insets. The bandwidth W = 2 eV in both cases, the

band DOS at the Fermi level areρpeak(EF) = 3/4 andρdip(EF) = 1/3 in case of peak or dip at

the Fermi level correspondingly. The width of the peak (and dip) ∆ = 0.2 eV is of order of|J|.
Intuitively one can presume that at low temperatures the impurity can ”feel” band DOS

ρ(E) only in some vicinity ofEF (of order of|J|) and at high temperatures the system’s behavior

is determined only by some averageρ̄(E) = 1/W. To check this assumption we performed two

series of auxiliary NRG calculations: the Kondo impurity wascoupled to flat-band bath DOS
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with D = 1 eV. The exchange coupling parameter values wereJ = −0.2 eV andJ = −0.3 eV.

The local susceptibility (2.76) of these systems is presented on Figs. 3.5, 3.6 with blue and red

dash lines correspondingly. Fig. 3.5 gives an impression onbehavior of the local susceptibility
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Figure 3.5: Non-universal behavior ofTχ obtained by CT-QMC (dots) and NRG (solid lines) for the

Kondo impurity embedded to band with piecewise-constant DOS.

The non-uniform (piecewise-constant) bath DOS are shown on the insets. They have either dip (forJ =

−0.3 eV) or peak (J = −0.2 eV) of the width of 0.2 eV at the Fermi level. The bath DOS at Fermi level

areρdip(EF) = 1/3 eV−1 andρpeak(EF) = 3/4 eV−1 correspondingly.

Main graph: statical susceptibilityTχ in (gµB)2, T in eV. Dots and solid lines are results of CT-QMC and

NRG calculations correspondingly. Red color hereafter denotesJ = −0.2 eV and blueJ = −0.3 eV. The

following NRG results for flat-band bath DOS are shown for the reference.

Dash lines:J = −0.2 eV, W = 2 eV (red);J = −0.3 eV, W = 2 eV (blue).

Red dot line:J = −0.2 eV, W = 4/3 (ρ(EF) = 3/4 = ρpeak(EF), as in peak on the right inset);

Blue dot line:J = −0.3 eV, W = 3 eV (ρ(EF) = 1/3 = ρdip(EF), as in dip on the left inset).

At thehigh temperaturelimit Tχ the systems with piecewise-constant bath DOS have thesameasymptotic

as one for the flat-band case with the same bandwidthD = 1 eV.
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in all the temperature range, one can also estimate the Kondotemperature, according to Ref.

[20] Tχ(TK) ≈ 0.07. The next Fig. 3.6 show us the low temperature behavior of susceptibility

itself (without theT factor) and allow us to compare the low-temperature asymptotic of different

systems.

Next, according to relation (3.5), we performed a linear scaling (see Ref. [20]) of these

results to get the susceptibilities for the following reference systems:J = −0.2 eV, D = 4/3

eV, ρ(EF) = 3/4 = ρpeak(EF) andJ = −0.3 eV, D = 3/2 eV, ρ(EF) = 1/3 = ρdip(EF) that
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Figure 3.6: Non-universal behavior ofχ obtained by CT-QMC (dots) and NRG (solid lines).

The statical susceptibilityχ in (gµB)2/eV, T in eV. Dots and solid lines are results of CT-QMC and

NRG calculations for Kondo impurity embedded into piecewise-constant bath DOS. The Non-uniform

(piecewise-constant) bath DOS is the same as in previous figure, see Fig. 3.5, insets. Red color hereafter

denotesJ = −0.2 eV and blueJ = −0.3 eV.

The following NRG results for flat-band bath DOS are shown for the reference.

Dash lines:J = −0.2 eV, W = 2 eV (red);J = −0.3 eV, W = 2 eV (blue).

Red dot line:J = −0.2 eV, W = 4/3 (ρ(EF) = 3/4 = ρpeak(EF), as in peak on the right inset);

Blue dot line:J = −0.3 eV, W = 3 eV (ρ(EF) = 1/3 = ρdip(EF), as in dip on the left inset).

Thelow-temperaturebehavior isdifferentfrom the flat-band one with the sameρ(EF) (dot lines). We have

a qualitative agreement between NRG ant CT-QMC up to quite low temperatures(T = 0.002eV ≈ 20K)
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corresponds to flat-band systems with the same bath DOS at theFermi level as the piecewise-

constant DOS under consideration. The susceptibilities ofthese reference systems are shown on

the Figs. 3.5, 3.6 using red and blue dot lines correspondingly.

Finally we performed CT-QMC and NRG calculations of local susceptibility (2.76) for the

Kondo impurity embedded to the band of free electrons with piecewise-constant DOS (see Fig.

3.5, insets). The results are shown on Figs. 3.5, 3.6 using dots (CT-QMC) and solid lines (NRG)

correspondingly. Red and blue colors corresponds to systemswith J = −0.2 andJ = −0.3

accordingly.

The assumption to check was the following: At high temperatures (T>̃D) the impurity

”feels” only some average DOS of conduction electrons bath.One can see exactly this depen-

dence on Fig. 3.5. But at low temperatures the susceptibilitydemonstrates strongly non-universal

behavior, i.e. it cannot be reproduced by simple linear scaling of results for corresponding flat-

band bath. On the Fig. 3.6 one can see that at low temperaturesasymptotic of susceptibilities of

the Kondo impurities coupled to piecewise-constant bath DOS (dots for CT-QMC an solid lines

for NRG) do not tends to one for the flat-band problem with the sameρ(0) (dot lines): the results

for piecewise-constant DOS have completely different low-temperature asymptotic comparing

to any of the reference flat-band systems. It is related to thefact that the bath DOS has a features

near the Fermi level and the impurity ”feels” the band DOS features situated closer than≈ |J|
from the Fermi level.

The conclusion is following: simple scaling that keeps the product Jρ(EF) = constant

works only for constant bath DOS (flat-band) and it is completely non-applicable for the systems

that have bath DOS anomalies at the energies of order of|J| near the Fermi level. This calcula-

tion showed good agreement between NRG and CT-QMC in broad range of temperatures, and

the CT-QMC method found to be applicable to this kind of systems.

3.4 Kondo impurity in realistic systems

Atomic clusters, small particles, and nanostructures derived from them constitute a vast research

area with multiple subfields and a truly interdisciplinary character. One of the most interest-

ing and challenging subjects in cluster physics is the studyof many-body phenomena and their

dependence on size, composition and local atomic environment. On the one side, one aims to

identify the effects that are specific to small particles andthat differentiate them from molecules
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and condensed matter. On the other side, one would like to understand how the physical proper-

ties are modified in the finite-size regime, particularly in order to link the behavior of different

atoms and macroscopic solids. From the cluster perspectivethe latter can be regarded as the

limits of a much richer and often quite complex dependence ofmany physical properties as a

function of the number of atoms. In general one may distinguish a small-size or microscopic

regime, where the changes of the physical properties with size are very strong, a large-size or

mesoscopic regime, where statistical and scaling conceptsapply, and in between a more or less

extended crossover region. Cluster magnetism is a problem ofcentral importance in this context.

During past decades, most of the experimental and theoretical studies in the field have been

concerned with transition-metal (TM) clusters which motivate remarkable fundamental and tech-

nological interests. One of the main goals of these investigations is to understand how the mag-

netic behavior evolves as the valence electrons of an isolated atom start to delocalize throughout

the cluster and how the itinerant magnetism characteristicof TM-solids is achieved. In this

case the hybridization among the d shells and the resultingd-band formation play a dominant

role. Consequently, electronic-structure contributions such as size, geometry, and composition

dependence leading to band narrowing, local environment, and proximity effects have attracted

considerable attention [105].

While cluster magnetism has been intensively studied from this itinerant or band perspec-

tive, much less is known about clusters containing magneticatoms with localized states [106,

107, 108, 109]. Therefore, it is very interesting to investigate TM or rare-earth (RE) impurities

in metallic clusters in order to elucidate the magnetic behavior of localized moments in finite

metallic systems, as well as the modifications that are induced in confined conduction electrons

by a magnetic impurity.

In solids, TM and RE systems are known to present remarkable properties, such as Kondo,

intermediate- valence, or heavy-fermion behavior, which are intrinsically related to the local-

ized character of thed or f electrons and to their interactions with the conduction-band states

[110, 111]. The unconventional properties of such strongly-correlated systems reflect the com-

petition between the tendency of electrons to delocalize inorder to form chemical bonds or

energy bands, and the resulting local charge fluctuations, which increase the Coulomb-repulsion

energy and favor the occupation of localized states. A typical manifestation of this interplay

is the presence of small (Kondo) energy scales in the excitation spectrum that lead to striking

low-temperature properties. Clearly, the reduction of sizein clusters can drastically modify and
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Figure 3.7: Main plot: Comparison of the magnetic susceptibilityTχ obtained by CT-QMC with the exact

solution,Tχ in (gµB)2, T andE in eV. Inset: conduction electron states with energiesEk and hybridization

strengthVk (see Eq. (3.6)). Exchange interaction strengthJ = −0.35eV.
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Figure 3.8: Comparison ofTχ on finite 2D lattices of different size (40x40) to (100x100) in low temper-

ature region (T << TK). The exchange coupling strength isJ = −0.3 eV, Tχ in (gµB)2, T in eV. The

CT-QMC method shows a good precision at temperatures below both Kondo temperatureTK and the mean

level spacing∆.
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eventually suppress these phenomena, as a result of the discreteness of the energy spectrum, due

to a reduction of the number of electronic states near the Fermi level, or even as a consequence

of a change in the lattice structure.

In the case of a magnetic impurity in a finite-size metallic environment, the formation of a

Kondo singlet [112, 20, 113] may be significantly affected ifthe number of conduction-electron

states is so small, that the mean level spacing is larger thanthe temperatureskBT. The conse-

quence of that is not complete screening of the impurity magnetic moment.

To check applicability of our method to this class of systemswe performed a benchmark on

exactly diagonalizable system: the conduction electrons have only 5 states. The ED program was

written by A. Zhuravlev [88]. The bath Green function on Matsubara frequencies for CT-QMC

calculation was obtained by discrete Hilbert transform

G(iωn) =
N

∑
k=1

V2
k

iωn−Ek
, (3.6)

whereVk is a hybridization strength between the impurity and k-th level of bath andEk is a

position of that level. This benchmark (Fig. 3.7) shows thatCT-QMC method is suitable for

systems with discrete spectra such as small clusters, grains, etc. The CT-QMC shows a good

precision even at the temperatures much lower than mean level spacing∆ ≈ 0.3 eV.

Another interesting case is Kondo impurity on infinite two-dimensional lattice. Since of

van Hove singularity at the Fermi level (and as a consequenceinfinite DOS atEF ) one cannot

estimate Kondo temperature usingTK ∝ e
− 1

2Jρ(EF ) formula from Ref. [20].

Since our aim is to study realistic models, including impurities coupled to systems with

discrete spectrum of non-interacting electrons, we have topay attention to the effects caused

by finite level spacing. In order to do it we performed a numberof benchmark calculations for

Kondo impurity embedded into finite two-dimensional lattice. The exchange coupling strength

is J = −0.3 eV. First we checked how the size of lattice (and a mean level spacing) affect the

results. On Fig. 3.8 we plot magnetic susceptibility for a low-temperature region (T << TK).

The results for different lattice sizes (from 40x40 to 100x100) are almost coinciding even at

the temperatures below the mean level spacing of the corresponding lattice states. Than we

performed a benchmark calculation of magnetic susceptibility for Kondo impurity coupled to

finite (200x200) two-dimensional lattice. It can be considered as a reference system for Kondo

impurity placed on infinite two-dimensional lattice, sincethe finite-size effects does not play a

role in the temperature range we study, see Fig. 3.8. The results were compared to the NRG
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Figure 3.9: Main plot: Comparison of CT-QMC results (dots) with NRG [88] (solid line) on finite 2D

lattice (200x200). Exchange coupling strength isJ = −0.3 eV, Tχ in (gµB)2, T in eV. The inset gives the

local density of states on the arbitrary lattice site for infinite 2D lattice. The non-interacting DOS have van

Hove logarithmic singularity on the Fermi energy. In this case Kondo temperature TK ≈ 0.05 eV is much

lager than in case of flat-band DOS (TKFB ≈ 0.01eV see Fig. 3.5).

data [88], see Fig. 3.9. These two methods show very good agreement. Comparing Figs. 3.5

and 3.9 one can conclude that in case of infinite two-dimensional lattice the Kondo temperature

TK ≈ 0.05eV is much lager than in case of flat-band DOS of bandwidthW = 2 eV (TKFB ≈ 0.01

eV, see Fig. 3.5).

Another attractive testing ground for the new numerical method is Kondo impurity on dis-

ordered 2D lattice [114]. This model is relevant to disordered metals and Kondo alloys. On

Fig. 3.10 we plot the local impurity spin susceptibility, multiplied by temperatureT for some

given realization of the disorder, obtained in tight-binding model [114]. Here dots denotes the

results obtained with the continuous time quantum Monte Carlo (CT-QMC) method and solid

lines – results of the modified version of NRG [114, 88]. For temperatures close to the Kondo

temperature both methods agree well.

In this chapter we described the Kondo impurity embedded into conduction electrons bath

67



with arbitrary DOS. We show that the CT-QMC method can be applied to a variety of interest-

ing systems. It can treat Kondo impurity problems with arbitrary density of conduction electron

states taking into account all its features. This is relatedto the exact character of Hilbert trans-

form that is used to convert bath DOS to non-interacting Green functionG . The local magnetic

susceptibilityχ of such systems have been studied. We found non-universal behavior of the

local magnetic susceptibility even in such a simple systemsas Kondo impurity embedded into

conduction electrons bath with piecewise-constant DOS. Weshowed applicability of the new

computational method to such an interesting systems as Kondo impurity embedded to disordered

2D lattice, ultra small grain and infinite 2D lattice with van-Hove singularity in the bath DOS.
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Figure 3.10: The impurity susceptibility as function of temperature calculated withthe NRG method for

J/D = 0.35,W/t = 2, L = 70,Tχ in (gµB)2, T in eV [88]. The calculation is done at the site whereTK is

maximal. Our results based on the CT-QMC simulation (discrete points) is included. The inset shows the

local density of states, whereE = 0 denotes the Fermi energy. The mark indicates the mean level spacing

∆ [114].
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4 Multiorbital impurity problem for general

Coulomb interaction

In this Chapter we shall discuss application of the CT-QMC impurity solver to multiorbital An-

derson model for the most general case. The tests with known solutions obtained by exact diag-

onalization method are performed. Two-, three- and five-orbital impurity models are discussed.

Realistic model of cobalt impurity embedded into copper matrix is studied. A brief analysis of

effects emerging due to the spin-flip processes have been made.

4.1 2- and 3-orbital Anderson impurity model

The Anderson impurity model (AIM) play a key role in several recent developments in the

theory of strongly correlated electron systems. For example, the Dynamical Mean-Field The-

ory (DMFT) maps spatially extended system representing correlated solid to Anderson impu-

rity model with a self-consistently determined bath of conduction electrons [3] (see Chapter 5).

Therefore AIM is also essential to our understanding of local moment formation in metals, and

to that of heavy-fermion materials, particularly in the mixed valence regime [20]. It is therefore

important to have at our disposal quantitative tools allowing calculation of physical quantities

associated with the AIM. The quantity of interest depends onthe specific context. Many recent

applications require a calculation of the local Green function (or spectral function), and of some

two-particle correlation functions (e.g. magnetic susceptibilities, see Chapters 2, sec. 2.3.5 and

Chapter 3).

Multiorbital Anderson impurity model is one of the great challenges in many-body theo-

retical physics. Whereas single-orbital AIM can be solved with reasonable precision different

ways (NRG, Hirsh-Fye QMC, etc.), two-orbital model is much more complicated to solve. The

two-orbital AIM with arbitrary hybridization to the bath offree electrons can be solved using
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NRG (with some problems concerning to logarithmic discretization of the bath DOS and grow-

ing Hilbert space), multi-orbital Hirsh-Fye QMC (without spin-flip terms in the interaction, else

the sign problem emerges and hamper the calculations at lower temperatures). Three-orbital AIM

is extremely hard problem for NRG and in Hirsh-Fye QMC including of spin-flip terms leads to

very strong limitation for temperature and Hund exchange parameter (see Chapter 2, sec. 2.2.3).

Five-orbital model with arbitrary DOS of the band electronscan be solved by Hirsh-Fye QMC

only with Coulomb interaction of density-density type.

From the point of view of application to real physical systems, two- and three-orbital AIM

are interesting because 5-fold degenerated atomicd orbitals in cubic crystal field splits to double

degeneratedeg and the triple degeneratedt2g. Then, if the splitting between these levels (t2g and

eg) is large enough, one of them becomes empty (or fully occupied) and in order to find low

energy excitation spectra we have to solve the problem involving only two (eg) or three (t2g)

orbitals (for review see Ref. [115]). One of such interestingsystems, namely strontium ruthenate

Sr2RuO4 is considered in Chapter 5.

For two- and three-orbital AIM discussed in this chapter we used general rotationally in-

variant Hamiltonian [116]. Its local part reads:

H loc
imp = −∑

σ
i 6= j

ti j c
†
iσc jσ +

U
2 ∑

i,σ
niσniσ̄ +U ′ ∑

σ
i 6= j

n†
iσn jσ̄

+(U ′−J)∑
σ

i 6= j

niσn jσ +J∑
σ

i 6= j

(
c†

iσc†
jσ̄ciσ̄c jσ +c†

iσc†
iσ̄c jσc jσ̄

)
,

(4.1)

whereU ′ =U −2J andi, j are the orbital indices. The first term represents interorbital hoppings,

second – diagonal Coulomb repulsion in case of double occupancy of i − th orbital, third and

forth are interorbital repulsion and the last one includes spin-flip and pair-hopping terms. All the

models discussed in this section have full spin and orbital degeneracy. All the densities of states

are normalized by one, i.e. represents partial DOS of one particular orbital.

The main goal of the CT-QMC method is a possibility to treat multiorbital impurities with

Coulomb interaction of arbitrary form, coupled to band of non-interacting electrons with arbi-

trary DOS. Thus our primary intention was to reveal the effects arising in multiorbital systems

due to spin-flip and pair-hopping processes. First, to benchmark our method we performed a
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Figure 4.1: Imaginary time interacting Green functions of the two-orbital (leftpanel) and three-orbital

(right panel) AIM in atomic limit at half-filling,τ in eV−1. Interaction parameters are the same for the

both models:U = 1 eV, J = 0.3 eV, β = 3 eV−1. Solid lines denotes CT-QMC results, dash – exact

diagonalization (ED). Black color corresponds to full Coulomb interaction,red – to density-density one.

number of tests in atomic limit (when impurity has no hybridization to the band of conduction

electrons). In this limit AIM can be solved exactly using Exact diagonalization (ED) method

[28, 5]. The resulting imaginary time Green functions are shown on Fig. 4.1. The Green func-

tions on imaginary time axis show almost perfect coincidence between CT-QMC and ED results

for both (full and density-density) interaction parts of Hamiltonian.

To get an impression what are the qualitative changes of the impurity DOS caused by in-

cluding of non-diagonal Coulomb interaction terms, we show the impurity DOS corresponding

to G(τ) from Fig. 4.1, left panel on the Fig. 4.2, left panel. Note that here we have relatively large

temperature of order of 0.3 eV that leads to significant broadening. Another test also performed

by ED demonstrates the behavior of three-orbital AIM away from half-filling: the occupancy

corresponds to 2 electrons int2g orbitals (see Fig. 4.2, right panel). In comparison to two-band

half-filled model it is more sensitive to the form of interaction Hamiltonian.

Next we performed a series of CT-QMC calculations for three-orbial AIM (see Fig. 4.3).

The system under consideration was the following: three-orbital impurity with occupancyn = 4

electrons int2g orbitals. The impurity is either coupled to band of free electrons with semiellip-

tical DOS (SC) or has no coupling to bath (i.e. AIM in atomic limit, also so-called thermal bath,

TB). The parameters of the Coulomb interaction were the same asin the previous test, namely

U = 1 eV, J = 0.3 eV, but the inverse temperature was increased toβ = 10 eV−1 (T ≈ 1200K).

Comparing imaginary time interacting Green functions of AIMin atomic limit (see Fig. 4.3 left
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Figure 4.2: ED results for DOS of the AIM in atomic limit. Left panel: two-orbital AIM at half-filling,

this DOS corresponds toG(τ) from Fig. 4.1, left panel. Right panel: three-orbital AIM with occupancy

n = 2 per all 3 orbitals. Interaction parameters are the same for the both models:U = 1 eV, J = 0.3 eV,

β = 3 eV−1. Black lines corresponds to full Coulomb interaction, red – density-densityone.

panel, red and black solid lines corresponds to CT-QMC results for diagonal and full Coulomb

interaction; red and black dash lines demonstrates ED results for the same models) we can find

that CT-QMC and ED results are in good agreement. The spectralfunctions of the systems men-

tioned above are shown on Fig. 4.3, right panel. The difference between full and density-density

Coulomb interaction for the case of atomic limit (see Fig. 4.3, right panel, black and red dash

lines) is much smaller than at higher temperature (see Fig. 4.2, right panel). This effect of de-

caying the spin-flip effects with lowering the temperaturein atomic limitcan also be observed in

two- and five-orbital cases.

Another question we would like to discuss is: how coupling ofthe impurity to the bath of

conduction electrons change the effects caused by non-diagonal interaction terms. The resulting

imaginary time Green functions for AIM coupled to the narrowbath with semielliptical DOS of

the widthW = 2D = 0.2 eV are shown on the Fig. 4.3, left panel with brown (full Coulomb inter-

action) and orange (density-density one) lines. These systems exhibit almost the same behavior

as AIM in atomic limit: brown line (full vertex) almost coincides with the atomic limit solution

(black lines) and the orange one (diagonal vertex) also has the same trend as the exact solution

for atomic limit (red dash line). Coupling of this system to the broad (W = 2D = 1 eV) band

with semielliptical DOS (i.e. without any fine structure near the Fermi level) leads to almost

complete decaying of the spin-flip effects (see Fig. 4.3, blue lines denotes full Coulomb interac-
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Figure 4.3: Imaginary time interacting Green functions (left panel,τ in eV−1) and local densities of states

(right panel) of 3-orbital AIM away from half-filling. Dash lines denotesED results, solid – CT-QMC.

Red lines corresponds to AIM in atomic limit with density-density Coulomb interaction, black – atomic

limit and full interaction vertex. Orange and brown lines (shown only on the left panel) –G(τ) for AIM

coupled to narrow (W = 0.2 eV) bands and diagonal and full interaction correspondingly. Magenta and

blue lines denotes results for impurity hybridized with broad (W = 2 eV) bands and diagonal and full

interaction respectively.

tion, magenta – diagonal one). The only small changes inG(τ) aroundτ ≈ 0.8 eV−1 corresponds

to difference in high energy behavior of the DOS around−2 eV.

In order to check whether the spin-flip effects are sensitiveto bath DOS features near the

Fermi level, we performed a number of CT-QMC calculations forthree-orbital AIM. The in-

teraction parameters were following:U = 3.1 eV, J = 0.7 eV and the inverse temperature was

β = 10 eV−1 (T ≈ 1200K). The band DOS was of very specific form: It was 2eV wide and

20% (or 50%) of bath states were concentrated in the peak positioned in the middle of initial

rectangular DOS. Occupancy was constrained to ben = 4 electrons per all 3 orbitals, that led

to shifting the whole bath DOS and the mentioned above peak moved slightly below (or at) the

Fermi level, see Figs. 4.4, 4.5, green lines. We were varyingthe peak widthΓ between 0.1 eV

and 0.2 eV and the weight of this peakWP was either 20% (see Figs. 4.4, 4.5, left panels) or 50%

(see Figs. 4.4, 4.5, right panels).

One of the advantages of the CT-QMC method we use is a possibility to include spin-flip

terms. It is reasonable that spin-flip terms could play important role if there are some anomaly

of bath DOS near the Fermi level on scales of order of exchangeJ. To check this assumption
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Figure 4.4: DOS of AIM hybridized to the bath with a sharp feature near (orat) the Fermi level. Left

panel: the peak of bath DOS is of widthΓ = 0.1 eV and containsWP = 20% of bath states and lie below

the Fermi level. Right panel: the peak of bath DOS is of widthΓ = 0.1 eV and containsWP = 50% of bath

states and crosses the Fermi level. Green line denotes bath DOS, black andred – resulting impurity DOS

obtained using full and diagonal interaction vertex correspondingly. Interaction parameters:U = 3.1 eV,

J = 0.7 eV. Inverse temperature:β = 10eV−1 (T ≈ 1200K).

we performed a number of test calculations using described above piecewise-constant bath DOS

with a peak below (see Figs. 4.4, 4.5, left panels), or at the Fermi level (see Figs. 4.4, 4.5, right

panels).

The results are following: if the peak weight make up 20% (andit is completely under

the Fermi level, see Figs. 4.4, 4.5, left panels) we have essential difference between impurity

density of states obtained using diagonal (red lines) and full (black lines) Coulomb interaction:

in case of full vertex (black) the impurity has pronounced tendency to rise the peak of the density

of states exactly at position of the original bath DOS peak, whereas diagonal interaction (red)

hardly exhibit this feature.

In the situation, when the peak weight make up 50%, the constrain on the occupancy lead

to shifting the whole bath DOS, and its peak becomes located at the Fermi level, see Figs. 4.4,

4.5, right panels. In this case we also observe prominent difference between impurity densities

of states obtained using full and density-density Coulomb interaction respectively. In contrast to

the previous case, the structure of impurity DOS near the Fermi level is almost the same, only

the Hubbard bands differs significantly.

Note that in both cases the effects caused by spin-flips are much more pronounced than in
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Figure 4.5: DOS of AIM hybridized to the bath with a sharp feature near (orat) the Fermi level. Left

panel: the peak of bath DOS is of widthΓ = 0.2 eV and containsWP = 20% of bath states and lie below

the Fermi level. Right panel: the peak of bath DOS is of widthΓ = 0.2 eV and containsWP = 50% of bath

states and crosses the Fermi level. Green line denotes bath DOS, black andred – resulting impurity DOS

obtained using full and diagonal interaction vertex correspondingly. Interaction parameters:U = 3.1 eV,

J = 0.7 eV. Inverse temperature:β = 10eV−1 (T ≈ 1200K).

the case of smooth bath DOS. (see e.g. Fig. 4.3 right panel, blue and magenta lines: the impurity

DOS exhibit almost no dependence on form of the interaction).

4.2 5-orbital Anderson impurity model

The five-orbital model is relevant to 3d and 4d transition metals, that displays a variety of in-

teresting magnetic properties. Scanning tunneling microscopy (STM) has become one of the

most basic tools for the manipulation of matter at the atomicscale. Although this experimental

technique making a big progress, the detailed theoretical understanding of experimental data is

still incomplete. One of the most famous examples of atomic manipulation is associated with

the surface Kondo effect observed when transition metal ions (likeCo) are placed on a metallic

surface (such asCu (111)) [95]. The surface Kondo effect is the basis for the observation of sur-

prising phenomena such as quantum mirages [98], and has attracted a lot of attention and interest

in the last few years. The current understanding of these observations is based on the assump-

tion that only surface states ofCu (111) are involved in the scattering of electron waves by the

Co adatoms [117, 118, 119]. Nevertheless, recent experiments with Co atoms on the Cu (100)
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surface (that does not have any surface state) [97], or in Cu (111) but close to atomic surface

steps (that affect the surface states) [120] have indicatedthat bulk states are behind the surface

Kondo effect. Although the last decade experiments made considerable progress, all the model

calculations done were either used effective one-orbital impurity model [121] or included only

diagonal part of Coulomb interaction [71, 122, 22], even withrealistic hybridization functions

obtained in LDA.

Therefore in order to have a possibility to treat these physically interesting multiorbital

systems accurately, the further development of existing impurity solvers is needed.

We start from multi-orbital Hubbard Hamiltonian, for a general case it can be written in the

following form:

H = − ∑
〈i j 〉σ

tc†
iσc jσ +

1
2 ∑
〈i jkl 〉
σσ′

Ui jkl c
†
iσc†

jσ′ckσ′clσ, (4.2)

wherei, j,k, l are orbital indices,σ,σ′ – spin indices,ti j is hopping amplitude between orbitalsi

and j andUi jkl is coulomb interaction matrix element.

Here we use Slater parametrization ofU matrix. It is based on the multipole expansion of

Coulomb potential:

1
|r− r′| = ∑

kq

4π
2k+1

· rk
<

rk+1
>

Y∗
kq(r̂)Ykq(r̂

′). (4.3)

Then matrix elements of Coulomb interaction in basis of spherical harmonics(Ylm) can be rep-

resented in the following form:

< mm′|U |m′′m′′′ >= ∑
k

ak(m,m′′,m′,m′′′)Fk, (4.4)

where the angular part

ak(m,m′,m′′′,m′′′)=
k

∑
q=−k

(2l +1)2(−1)m+q+m′
(

l k l

0 0 0

)2(
l k l

−m −q m′

)(
l k l

−m′′ q m′′′

)

(4.5)

is represented by 3j-symbols and

Fk = e2
∫ ∞

0
r2dr|ϕd(r)|2

∫ ∞

0
(r ′)2dr′|ϕd(r

′)|2 rk
<

rk+1
>

(4.6)
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are Slater integrals. Hereϕd is atomicd orbital, rk
< (rk

>) is the smallest (largest) value ofr and

r ′, k corresponds to all even numbersk≤ 2l .

Since we have to deal only with outer electronic shell, we will take into account screened

part of Coulomb interaction. In order to do that we determine Coulomb matrix elements accord-

ing to Eq. (4.4) using renormalizedFk parameters instead of Eq. (4.6). The CoulombU and

exchangeJ constants can be expressed as

U =
1

(2l +1)2 ∑
mm′

Umm′ = F0, (4.7)

J =
1

(2l +1)2 ∑
mm′

Jmm′ = ∑
k6=0

(
l k l

0 0 0

)2

Fk. (4.8)

In case ofd electrons Eq (4.8) readsJ = (F2 +F4)/14 and the atomic-like ratioF2/F4 =

0.625 [15]. Ford electrons only non-zero Slater parameters areF0, F2 and F4. Using the

above formulas we can extract effective Slater integralsFk via U andJ parameters, that can be

calculated using constrained LDA technique (see e.g. Ref. [123, 15]). Note that the value of

intra-atomic (Hund) exchange interactionJ is not sensitive to the screening and approximately

equals to 0.7−0.9 eV in different estimations [15].

SinceUi jkl matrix elements are spin independent, to generate all termsfor the interaction,

one should look over all possible combinations of orbital and spin indices. Some combinations

can violate Pauli principle and shouldn’t be taken into account (for details of this procedure see

Chapter 2, sec. 2.3.3).

For the particular problem, namely Co impurity in the copper matrix, the basis set of spheri-

cal harmonicsYlm is used. In this basis the interaction part of the hamiltonian contains only terms

of the following form:

Hdiag
int = Uii j j niσn jσ′ , (4.9)

whereniσ = c†
iσciσ and

Hnd
int = Ui jkl c

†
iσc jσ′c†

kσ′clσ, (4.10)

wherei 6= j andk 6= l . Note that in this basis we have no terms of theUiikl niσc†
kσ′clσ (i 6= j and

k 6= l ) form, that hampers the calculation leading to sign problem.
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The (4.9) terms are so-called diagonal ones, and the Coulomb matrix for thed electron shell

in the basis of complex harmonics contains 45 non-equivalent terms of this kind. The terms of

the (4.10) form can be further classified to a spin-flips, where i = l , j = k and the less symmetric

general fur-indices vertex, where this condition is not fulfilled. Notice, that pair-hopping terms

(i = k, j = l ) in basis of spherical harmonics are restricted by symmetry. Finally for d electron

system in addition to 45 diagonal terms we have 20 non-equivalent spin-flips and 64 terms of

the most general form. To get an understanding of the role of non-diagonal terms of interaction

we performed some tests. Since the exact solution for AIM in the atomic limit can be found

using exact diagonalization (ED) method, we compared CT-QMCresults with ED. On Fig. 4.6,

left panel we compared Green function on imaginary time obtained using full interaction part

of the Hamiltonian and reduced one (with only density-density terms). The model parameters

are following: U = 1 eV, J = 0.4 eV; β = 2 eV−1. SinceG(0) = G(β) = −0.5 the system is

at half-filling (according to Eq. (2.20) atτ = 0, τ′ = 0+). First, there is a very good agreement

between ED and CT-QMC results, especially in case of density-density type interaction. Also

it is worth mentioning that theG(τ) function is symmetric with respect toτ = β/2, that means

the particle-hole symmetry of the system is perfectly described by the CT-QMC method. In the

case of full interaction (including terms of the form 4.10) the agreement is still good but not

perfect anymore. It can be attributed to significant increasing of the number of ”fields”: from 45

terms of the form (4.9) in diagonal case to 129 with fulld orbital atomic Coulomb interaction.

Therefore much more MC steps are needed to reach convergenceof the Green function. Also

the deviation of the CT-QMC result from the exact solution is non-uniform on the[0,β] range: in

vicinity of τ = 0 andτ = β (short time correlations) the coincidence is very good, andthe biggest

deviation can be observed near theτ = β/2 point. The reason of such behavior is that short time

correlations are caused mostly by the ”fields” with the biggest magnitude, i.e. density-density

ones. Whereas the long time correlations (and, as a consequence, behavior ofG(τ) function

nearτ = β/2 and the spectral function near the Fermi level) are more affected by the terms of

interaction of order ofJ. Since the most of these small terms are of the non-diagonal form in the

interaction vertex (e.g. the interaction part of Hamiltonian in case off electrons consists of 91

density-density term and 286 non-diagonal ones), the largest error inG(τ) can be found in the

τ ≈ β/2 region.

Next we performed a test of 5-orbital AIM in atomic limit awayfrom half-filling with the

interaction parametersU = 2 eV, J = 0.7 eV, β = 3.7 eV−1. The results are shown on Fig. 4.6,

right panel. Since the system is fully degenerated over all orbital and spin degrees of freedom,
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the overall occupancy of the impurity is equal to 5orbitals× 2 spins× (1−G(0+)) (see Eq.

(2.20) atτ = 0, τ′ = 0+) and in this case makes up 8 electrons.

The difference between Green function of the interacting system with full Coulomb inter-

action and density-density one is visible on theG(τ). The agreement between CT-QMC and ED

results is worse than in the half-filled case, because the system away from half-filling is related

to larger average perturbation order in Monte-Carlo sampling.

Lowering the temperature toT ≈ 1200K (β = 10eV−1) in theatomic limitleads to decaying

of the Green function features caused by non-diagonal part of Coulomb interaction (see Fig. 4.7).

The results for diagonal and full Coulomb interaction are completely coinciding in half-filled

case. An interesting point is, that agreement between CT-QMCand ED becomes better even at

temperatures lower than in the previous case (see Fig. 4.6).Note that this ”freezing” of non-

diagonal terms of the interaction happensonly in atomic limit for the half-filled case, since the

non-degenerate ground state ford5 configuration.

As it was already mentioned in sec. 2.3.2, increasing of Coulomb interaction strength as

well as decreasing temperature leads to increase of the average perturbation order of our expan-

sion, Eq. (2.25). Typical distribution of the perturbationorder for 5-orbital AIM is shown on

Fig. 4.8, main plot. The model parameters are following:n= 7 electrons,U = 4 eV, J = 0.7 eV,

β = 10 eV−1. Dash line denotes the perturbation order during accepted steps that involved non-

diagonal fields. The coincidence of distributions maxima ofboth histograms demonstrate that

the acceptance rate mostly depends on diagonal interactions.

On the inset of the Fig. 4.8 we show distribution of the non-diagonal terms, i.e. contribution

of the Coulomb fields of the form (4.10) to the resulting Green function. The zero entry of this

histogram counts the number of steps when all the fields contributing to the fermionic determi-

nant (2.35) were of density-density type (4.9). The entry with index 2 show us the number of

steps where the average (2.35) was containing two spin-flip type fields (4.10).

4.3 Realistic system: cobalt atom embedded in copper matrix

The magnetic properties of nanostructures play essential role in the design of miniaturized spin-

based devices. One of the key parameters is the magnetic interaction between the constituent

atoms of a nanostructure. This interaction can be due to direct or indirect coupling as well

as mediated via a supporting substrate or host. Depending onthe strength and sign of the ex-
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Figure 4.6: Interacting Green function on imaginary time for 5-orbital AIM atthe atomic limit,τ in

eV−1. Solid and dash lines denotes CT-QMC results for full and density-densityCoulomb interaction

correspondingly, ”x” and ”+” symbols – ED results for the same systems respectively. Left panel:U =

1 eV, J = 0.4 eV; β = 2 eV−1, 5-orbital impurity at half-filling Right panel:U = 2 eV, J = 0.7 eV,

β = 3.7 eV−1, 5-orbital impurity with 8 electrons.
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Figure 4.7: Interacting Green function on imaginary time for 5-orbital AIM atthe atomic limit. Model

parameters:U = 1 eV, J = 0.4 eV; β = 10eV−1, τ in eV−1. Solid line denotesG(τ) obtained by CT-QMC,

”x” symbols – ED one. Results for full and density-density Coulomb interaction completely coincides.
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Figure 4.8: Main graph: Histograms ofΩk distribution,U = 4 eV, J = 0.7 eV, β = 10 eV−1, 5-orbital

impurity coupled to realistic bath with 7 electrons (Co in Cu). Solid line denotes full histogram, dash

histogram of steps involving non-diagonal fields.

Inset: histogram of non-diagonal interaction fields,〈U〉 = 4 eV, 〈J〉 = 0.7 eV, β = 1 eV−1, 5-orbital

impurity coupled to bath with semi-elliptical DOS (W = 0.5 eV) at half-filling.

change interaction, the nanostructure can be driven into ferromagnetic or antiferromagnetic state

or complex spin structures [124]. The recent STM spin-flip experiments by Hirjibehedin and

co-workers [125] have enabled a direct probing of the magnetic interaction in linear manganese

chains decoupled from the metallic substrate by insulatingspacer layer. Another experiments

to determine the exchange interaction between individual cobalt adatoms on a metallic substrate

as a function of their distance were done by Chen et al. [126] and Wahl et al. [127]. A Cobalt

nanostructures, namely chains and clusters on metallic surface also are of a great experimental

and theoretical interest [128, 129]. One of the most important characteristics of such systems is

Kondo temperature. The Kondo temperatures of different 3d transition metals impurities in non-

magnetic bulk are shown on Fig. 4.9 [130]. The deviation of the impurity’s 3d shell filling from

the half-filled case (that takes place in manganese) leads tosurviving of the Kondo scattering

processes at relatively high temperatures.

Since the Kondo temperature is extremely sensitive to density of states at Fermi energy,

position of the impurity (on the surface at FCC or HCP site, embedded into surface layer of

81



Figure 4.9: Experimental results for Kondo temperatures of different 3d transition metals in bulk copper

matrix. Symbols used to represent each type of measurement are: susceptibility χ, resistivityρ, specific

heatC, thermoelectric powerSand MössbauerM. From Ref. [130].

the substrate or deeper) is also of the critical importance for the many-body effects (see Fig.

4.10). The cobalt impurity embedded into copper matrix exhibit Kondo physics even above

room temperature, therefore we shall use it as a benchmark system for our CT-QMC method.

The Co-Cu system is treated as five-orbital AIM representing 3d electronic shell of the

cobalt atom hybridized with a bath of conductingCu electrons with known DOS. The bath

Green function was obtained using full-potential linearized muffin-tin orbitals method, namely

LmtART code developed by S. Savrasov [131]. The LDA calculation is carried out usingCu3Au

crystal structure with lattice constant corresponding to the pure copper. The further tests with a

bigger supercell were done, but no qualitative difference to theCu3Co system mentioned above

was found.
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Figure 4.10: Experimental results for Kondo temperatures ofCo impurities on (or in)Cu matrix as a

function of coordination number. Four points representsCo atomon Cu(111) andCu (100) surfaces,

Co atom embedded into first layerof Cu (111) surface andbulk environment of the Cobalt impurity

respectively. From Ref. [132].

The interaction part of impurity Hamiltonian was taken according the procedure described

in sec. 4.2. Average parameters of Coulomb interactionU = 4 eV, J = 0.7 eV were taken from

constrained LDA calculations [15]. The complex harmonicsYlm basis is chosen to keep off the

terms ofUiikl niσc†
kσ′clσ′ form in interaction part of Hamiltonian. It was done to avoidnumerical

instability of the algorithm related to the sign problem. Inthe complex harmonics basis the Green

function matrix for 3d orbitals splitted by cubic crystal field intot2g andeg have the following

symmetry:

Gloc
mm′ =

−2 −1 0 1 2

−2

−1

0

1

2





eg+t2g
2 0 0 0 eg−t2g

2

0 t2g 0 0 0

0 0 eg 0 0

0 0 0 t2g 0
eg−t2g

2 0 0 0 eg+t2g
2





(4.11)

and becomes non-diagonal.
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Figure 4.11: Histograms of different distributions of non-diagonal terms for different values ofαnd. Model

parameters:U = 2 eV, J = 0.7 eV, β = 3.7 eV−1, 5 orbitals, realistic bath DOS.
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Figure 4.12: Resulting Green functions in imaginary time for different distributions of non-diagonal terms,

τ in eV−1. Left panel: Green function averaged over alld orbitalsGii (τ). Right panel: diagonal elements

Gmm(τ) for different d orbitals. The symmetry ofGmm(τ) corresponds to Eq. 4.11.Gmm(τ) Model

parameters:U = 2 eV, J = 0.7 eV, β = 3.7 eV−1, 5 orbitals, realistic bath DOS.
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Figure 4.13:Co atom embedded inCu matrix. Partial DOS ofCo 3d orbitals with full Coulomb interac-

tion. Comparison ofd7 (black solid line) andd8 (green solid line) configuration ofCo 3d orbitals. The

LDA result (gray dash line) is given for reference. Model parameters:U = 2 eV, J = 0.7 eV, β = 10eV−1.
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Figure 4.14:Coatom embedded inCumatrix. Partial DOS ofCo3d orbitals (normalized by 1). Compar-

ison of diagonal (red lines) and full (black lines) Coulomb interaction forCo impurity in Cumatrix.

Left panel shows results ford7 configuration, right –d8 correspondingly. The LDA result (gray dash line)

is given for reference.
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Figure 4.15:Co atom embedded inCu matrix. Partial DOS ofCo 3d orbitals (normalized by 1). Test

with full Coulomb interaction and increased temperature. The LDA result (gray dash line) is given for

reference. Model parameters:U = 2 eV, J = 0.7 eV, β = 3.7 eV−1

Another technical issue is a freedom of choosing theα parameters (2.59) and (2.59). Since

introducing of these variables results in change of the formof interaction Hamiltonian, it can

lead to changes in the QMC random walk process. In order to check that QMC random walk

is performed the proper way and non-diagonal terms of interaction (4.10) are taken into account

correctly, we performed a test calculation for five-orbitalAIM with realistic DOS of conducting

electrons band and the following parameters:U = 2 eV, J = 0.7 eV, β = 3.7 eV−1. The auxiliary

parameterαnd was varying from 0.01 to 0.3. The interaction part of Hamiltonian containing 65

non-equivalent terms (45 density-density terms and 20 spin-flips, the terms of most general form

were omitted) was used in order to reduce computational time. The distribution of non-diagonal

terms at different values ofαnd parameters is shown on Fig. 4.11. To improve the quality of

exploring the system’s phase space and to avoid trapping in some local energy minima, we use

so-called cluster steps, i.e. we propose a pack of Coulomb fields (MC steps) and calculate the

acceptance probability taking into account only initial and final state of the system. The ratio of

cluster steps proposed by default was 5% and in one calculation (green lines) it was increased
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Figure 4.16:Coatom embedded inCumatrix. Partial DOS ofCo3d orbitals (normalized by 1). Test with

U increased to 3. The LDA result (gray dash line) is given for reference. Model parameters:U = 3 eV,

J = 0.7 eV, β = 10eV−1.

to 20% to find a balance between smaller number of cluster MC steps, but lager number of total

MC steps to reach convergence in Green function, The resulting local Green functions (averaged

over all the orbitals) are shown on the Fig. 4.12, left panel.The same colors as on Fig. 4.11 were

used, but all the curves are virtually undistinguishable. Orbitally resolved local Green functions

for these cases are shown on Fig. 4.12, right panel. One can clearly see the splitting of the

3d orbitals tot2g, eg and eg+t2g
2 elements according to cubic crystal field symmetry in the basis

of spherical harmonics (4.11). The agreement between the results obtained using differentαnd

parameters is very good. But the average sign is sensitive to increasing ofαnd: it is equal to

0.998 forαnd = 0.01 and 0.59 for αnd = 0.3 correspondingly. Even with such bad average sign

as 0.59 one can obtain spectral properties of the model with high accuracy. However it leads to

increase of number of MC steps required to get a given precision of result.

The particular electronic configuration of cobalt atom in copper matrix is unknown. LDA

give us 7.3 electrons in 3d shell. Since LDA gives not very accurate results (and the fact that

correlated impurity tends to have integer occupation) we performed two series of calculations,
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Figure 4.17:Co atom embedded inCu matrix. Partial DOS ofCo 3d orbitals (normalized by 1). Com-

parison between full (black solid line) and density-density (red dash line)Coulomb interaction. The LDA

result (gray dash line) is given for reference. Model parameters:U = 4 eV, J = 0.7 eV, β = 10 eV−1,

5-orbital impurity with 7 electrons.

namely ford7 andd8 configurations.

First we perform a series of calculations forCo atom embedded toCu matrix. In order to

distinguish the effects caused by electronic configurationwe obtained local densities of states

for Co d-shell withind7 andd8 configurations and with full Coulomb interaction. To speed up

the calculationsU was decreased to 2eV. On Fig. 4.13 we compare total DOS of Co d-shell in

different configurations. Whiled8 qualitatively is similar to the LDA result, in case of 7 electrons

the quasi-particle peak moves towards to the Fermi level.

Another reason to devote our attention to thed7 configuration is more pronounced differ-

ence between results obtained using full and density-density Coulomb interaction (see Fig. 4.14).

The reason of such a difference betweend7 andd8 configuration is following: in cubic crystal

field atomicd orbitals splits to three-fold degeneratedt2g and twice degeneratedeg levels. In

particular case ofCo atom inCu matrix thet2g orbitals moves downwards and becomes com-
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pletely occupied. Therefore the difference betweend7 andd8 configuration is in occupancy of

eg orbitals: 1 or 2 electrons per two levels respectively. Since d8 state leads to half-filling ofeg

orbitals, we get more symmetrical situation (than within a quarter-fillingeg configuration ind7)

and less pronounced multiplet transitions. The width and position of the quasi-particle peak does

not change significantly increasingU to 3eV or decreasingβ to 3.7 eV−1 (see Fig. 4.16, 4.14).

The final results obtained for realistic parametersU = 4 eV, J = 0.7 eV, β = 10 eV−1 in

d7 configuration are shown on Fig. 4.17. Here the difference between DOS calculated with full

interaction part of Hamiltonian and density-density one iswell pronounced.

The summary of this chapter is following: we described the benchmark calculations for the

model systems with 2 and 3 orbitals using multiorbital CT-QMCimpurity solver. We found that

the full Coulomb vertex lead to formation of narrow Kondo-like peak near the Fermi level. We

also applied our CT-QMC solver to a realistic model of Kondo impurity, namely cobalt atom

in copper matrix and studied the effects caused by the spin-flip processes. We found, thatd7

configuration of theCo atom leads to strong renormalization of LDA density of states near the

Fermi level.
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5 Lattice problem

Materials with correlated electrons exhibit variety of interesting phenomena. DFT methods (see

sec. 2.1) explains the physical properties of numerous materials, such as simple metals and some

semiconductors and insulators. But materials with open d andf electron shells, where electrons

occupy narrow orbitals, have properties that are harder to explain without accurate taking into

account many-body part of the problem.

Since there is no exact way to solve the lattice problem in presence of strong electron corre-

lations, we need to use some approximations. A recent theoretical framework, namely Dynamical

Mean-Field Theory (DMFT) [1, 18] allows to calculate the electronic structure of these corre-

lated materials in the best local scheme. The DMFT is an approximation that maps correlated

lattice problem onto single impurity problem. In this case the CT-QMC impurity solver consid-

ered above can be used also for investigation of correlated solids.

5.1 Lattice problem. Approximations.

The discovery of the heavy fermion compounds and of the high-temperature superconductors has

revived interest in strongly correlated electron systems.These are systems in which the strength

of the electron-electron interactions is comparable to or larger than the kinetic energy. Initially

the motivation to study such systems came from experiments on transition metal oxides, from the

Mott metal-insulator transition, and from the problem of itinerant ferromagnetism. Theoretical

progress in the field has been impeded however by the extreme difficulty of dealing with even

the simplest model Hamiltonians appropriate for these systems, such as the Hubbard model and

the Kondo lattice model. Only in the one-dimensional case wehave a variety of theoretical tools

to study these models in a systematic manner. For two- and three-dimensional models, one is

often unable to assess confidently whether a given physical phenomenon is indeed captured by

the idealized Hamiltonian under consideration or whether atheoretical prediction reflects a true
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feature of this Hamiltonian, rather than an artifact of the approximation.

These difficulties originate in the nonperturbative natureof the problem, and reflect the pres-

ence of several competing physical mechanisms for even the simplest models. The interplay of

localization and lattice coherence, of quantum and spatialfluctuations, and of various competing

types of long-range order are important examples. Numerousapproximation schemes (see e.g.

[57]) have been employed to circumvent these difficulties, but all of them are not based on some

controlled limit, i.e. some extreme limit of the model is considered wherein the problem simpli-

fies and can be solved in a controlled manner. The reason to favor these approaches is not that of

out-of-place mathematical rigor, but rather that it is often easier to identify which of the physical

aspects of the problem will be privileged by a specific limit,and thus to choose that specific limit

best adapted to the physical phenomenon under consideration. In favorable cases, the physical

ingredients that have been left out can be reintroduced by expanding around this starting point.

The increase of computational power has also stimulated a direct numerical solution of these

models using exact diagonalization (see sec. 2.2.1) and quantum Monte Carlo methods (see sec.

2.2.3). However, the exact diagonalization technique is limited by the exponential growth of the

computations with system size, while the quantum Monte Carlomethod is restricted to rather

high temperatures by the minus-sign problem. Despite the interest of these numerical studies,

these limitations have often prevented the extraction of reliable low energy information.

Dynamical Mean-Field Theory (DMFT) [1, 18] is a new approachto the problem of strong

correlations that has been developed over recent years and has led to some progress in our un-

derstanding of these systems. The essential idea is to replace a lattice model by a single-site

quantum impurity problem embedded in an effective medium determined self-consistently [3].

The impurity model offers an intuitive picture of the local dynamics of a quantum many-body

system. The self-consistency condition captures the translation invariance and coherence effects

of the lattice [22].

Actually a mean-field theory reduces a many-body lattice problem to a single-site problem

with effective parameters. Consider the classical theory ofmagnetism as an analogy: Spin is the

relevant degree of freedom at a single site and the medium is represented by an effective magnetic

field (the classical mean field). In the fermionic case, the degrees of freedom at a single site are

the quantum states of the atom inside a selected central unitcell of the crystal; the rest of the

crystal is described as a reservoir of noninteracting electrons that can be emitted or absorbed by

correlated site.
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The dynamical mean-field theory becomes exact in the limit oflarge spatial dimensionsd→
∞ [1], or more appropriately in the limit of large lattice coordination (note that the coordination

z is already quite large for several three-dimensional lattices: z=6 for a cubic lattice, z=12 for a

face-centered-cubic lattice). This ensures the internal consistency of the approach and establishes

1/z as a control parameter.

The main merit of the DMFT approximation is a proper description of typical correlation

problems such as the Mott transition and possibility to treat a realistic models of actual mate-

rials, taking into account several orbitals, and specific lattice structure and density of states, as

obtained, e.g., from local density approximation (LDA) calculations [4, 5].

5.2 Dynamical mean-field theory

The main idea of a mean-field theory is to approximate a lattice problem with many degrees of

freedom by a single-site effective problem with less degrees of freedom. Thus the dynamics at

a given site can be represented as the interaction of the degrees of freedom at this site with an

external bath formed by all other degrees of freedom in crystal.

Proposed as an exact solution of Hubbard model in infinite dimensions [1, 18], DMFT

become a very powerful tool for investigation of lattice models of correlated electrons. In DMFT

the lattice model is mapped on an effective quantum impuritymodel in a bath which has to be

determined self-consistently.

Let us consider the Hubbard Hamiltonian:

H = ∑
i j σ

ti j c
†
iσc jσ +U ∑

i
c†

i↑ci↑c
†
i↓ci↓. (5.1)

It is the simplest model of interacting electrons on a lattice. Theti j matrix element describes

hopping of electrons with spin s between sites i and j. The second term in (5.1) is a local Coulomb

interaction U between two electrons occupying the same sitei.

For simplicity it is assumed, that no symmetry breaking occurs, i.e. we have translation-

invariant paramagnetic phase.

In dynamical mean-field description the Hamiltonian (5.1) can be described as an impurity

in some effective field.

The imaginary-time action of this system reads as (2.18), where G−1
imp(iωn) = iωn + µ−
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∆σ(iωn) plays a role of the effective field. In other words, the Anderson impurity model (see

Chapter 4) can be a reference system for the Hubbard model because it yields the exact local

Green function in DMFT when the hybridization function∆(iωn) fulfills a self-consistency con-

dition [2, 3]:

Gloc(iωn) = ∑
k

(G−1
0 (k, iωn)−Σ(iωn))

−1, (5.2)

whereG0(k, iωn) = (iωn +µ− tk)−1 is non-interactingk-dependent Green function of the

initial lattice problem in tight binding scheme and can be obtained, for example, from LDA

calculation. TheΣ(iωn)) is frequency-dependent self-energy (5.5). The initial guess forΣ in

the first iteration is usually zero. The bath Green function obtained from solution of effective

impurity problem with no localΣ:

G−1
imp(iωn) = G−1

loc(iωn)+Σ(iωn). (5.3)

After we find the bath Green function, we approach the most non-trivial part of the DMFT

loop: solving of the corresponding impurity model taking into account electronic correlations.

Using bare green functionGimp(iωn) as an input (Gimp(iωn) = Gloc(iωn) at the first DMFT iter-

ation), as an output the impurity solver produces

Gimp(τ) = −
〈

Tτc(τ)c†(0)
〉

Simp

. (5.4)

This is an interacting Green function of the reference impurity problem. The energy-

dependent self-energyΣ(iωn) is obtained in the following way:

Σ(iωn) = G−1
imp(iωn)−G−1

imp(iωn) (5.5)

Usually one have to use Fourier transform to obtainGimp(iωn) on Matsubara frequencies

from the imaginary time resultGimp(τ). However in the CT-QMC method this transformation

is performed analytically (2.46) and we get rid of additional numerical errors caused by this

operation. It leads to significant reduction of the numerical noise inΣ(iωn) (see Fig. 5.1, lower

panel) and, as a consequence, our DMFT-loop reach self-consistency much faster then using, e.g.

Hirsch-Fye QMC as an impurity solver.
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Since the self-energy (5.5) is used for construction of new bath Green function for the

reference impurity problem (5.2), the equations (5.2, 5.3,5.5) make up the DMFT loop.

When a self-consistency condition is fulfilled, i.e. all the quantities in Eqs. (5.2, 5.3, 5.5)

converges to some stable values and do not changes from one DMFT iteration to another, the

(5.2) become the final local Green function for Hubbard modelin DMFT approximation.

The DMFT is exact in the limit of infinite coordination number(or infinite dimensions). For

any finite-dimensional system, DMFT is an approximation as it fails to take into account non-

local fluctuations, like Cooper pairing or antiferromagnetic correlations. Nevertheless, it can be

used as a reasonable starting point in many cases.

5.3 Two- and three-band lattice model, orbital selective

metal-insulator transition

The Mott metal-insulator transition plays an important role in the physics of strongly correlated

solids [115]. At a qualitative level, localization of the electrons can occur when the kinetic en-

ergy gain (typically given by the bare bandwidth) is smallerthan the cost in on-site repulsive

Coulomb energy (U). Although simplified models like one-band Hubbard model advance our

understanding of correlated phenomena in solids, in real materials however, such as transition

metal oxides, several orbital components are involved. However, most attention has focused on

the one-orbital case, in part because of its presumed relevance to high temperature supercon-

ductivity [133] and in part because appropriate theoretical tools for the multiorbital case have

until recently not been available. This focus on the one-band case is limiting: in most Mott sys-

tems more than one orbital is relevant and the orbitals are occupied by more than one electron

or hole. Intuition gained from studies of single-orbital models may not necessarily carry over

to the multiorbital case [134, 135, 136]. One of the reasons of such behavior of multiorbital

system is emerging of additional degree of freedom and energy scale, namely Hund exchange

J. Furthermore, the inter-site hopping amplitudes can be significantly different for different or-

bital functions (due e.g to their relative orientations). It is therefore essential to understand how

these effects can affect behavior of the correlated solid’sproperties and whether qualitatively

new effects are possible when the orbital degeneracy is lifted. Removing of orbital degeneracy

can lead to variety of interesting effects, such as orbital ordering [137], orbital selective Mott

transition (OSMT) [138, 139], etc. Some works on this subject were done omitting exchange
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and pair hopping terms [136], but a reliable extension of these results to the rotationally invariant

model in the strong coupling regime has until recently not been possible. On a technical level,

multiorbital models are more difficult to study both becauseof the larger number of degrees of

freedom, and because the physically important exchange andpair-hopping terms are not easy to

treat by standard Hubbard-Stratonovich methods [72, 140].

We use the CT-QMC method with the full rotationally invariantinteractions (Eq. (4.1)).

To benchmark our method we performed a DMFT calculation of 2-band strongly anisotropic

lattice model: both bands are at half-filling and their bandwidth areW1 = 2 eV andW2 = 0.2 eV,

i.e. the hoppings between the lattice sites differs by factor of 10 for the different orbitals. The

inverse temperatureβ = 30 eV−1 corresponds to temperatureT ≈ 350 K that is already close

to the room temperature. The Coulomb interaction strengthU = 1.2 eV, exchange parameter

J = 0.2 eV, interaction part of the Hamiltonian is of the form (4.1). The resulting local DOS as

well as local Green functions are presented on Fig. 5.1. In this region of parameters we have

very pronounced orbital-selective metal-insulator transition: The broad band is conductive and

the narrow one is a Mott insulator. Moreover the Luttinger sum rule (”pinning condition”) is

violated due to the interorbital coupling and relatively large temperature, and this fact is in good

agreement with known results [141, 142].

Next we consider three-orbital lattice model. We fitted the chemical potential to get a non-

integer occupancy. This model corresponds to doped Hubbardmodel in infinite dimensions.

We choose the parameters to bring all the orbitals to strong correlated regime: two (broad) bands

are degenerated and their bandwidth isW1 =W2 = 2 eV, the third (narrow) band has a bandwidth

W3 = 0.2 eV. The inverse temperatureβ = 10eV−1 corresponds to temperatureT ≈ 1160K The

Coulomb interaction strengthU = 2.7 eV, exchange parameterJ = 0.7 eV, interaction part of

the Hamiltonian is of the form (4.1). In our case the occupancy is set ton = 1.4 electrons pro all

3 orbitals. The results are presented on the Fig. 5.2. The occupancy of the narrow orbital (red)

is 1 electron (nnarrow = 1/2 pro state, half-filled case) and the broad orbitals (black)contains

approximately 0.4 electrons on both orbitals (nbroad≈ 0.1 pro state). The narrow orbital became

insulating, (Fig. 5.2, inset) whereas the broad ones remains conducting and form a pseudogap

at the Fermi level. For the undoped model (see Fig. 5.3) our system becomes an insulator:

narrow band is still a Mott insulator and the broad ones are pushed out over the Fermi level.

The corresponding occupancies arennarrow = 1/2 andnbroad = 0. Notice, that the particular

model hasU/D = 2.7 ratio for broad orbitals, that is much lower than the critical value for the

degenerated half-filled 3-band modelUc/D ≈ 6.5 [143].
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Figure 5.1: Results for 2-band interacting lattice model in DMFT approximation.Model parameters:

Initial bandwidthW1 = 2 eV, W2 = 0.2 eV. On-cite Coulomb repulsion:U = 1.2 eV, Hund exchange

J = 0.2 eV, the system is at half-filling. Inverse temperatureβ = 30 eV−1 (T ≈ 350 K). Upper panel,

main graph: interacting imaginary time impurity Green functionG(τ) (5.4) for both orbitals,τ in eV−1.

Upper panel, inset: Orbital-resolved DOS. Dash lines denotes initial (non-interacting) local density of

states of a lattice site. Lower panel: Imaginary part of self-energyΣ(iωn) on Matsubara frequencies,ωn

in eV. Black lines corresponds to broad band, red - to the narrow one. The Fermi energy corresponds to

zero.

5.4 Role of spin-flips in Sr2RuO4

The interest to theSr2RuO4 compound emerged in the middle of 90’s, when it was found, that

at temperatures below 1K this compound becomes superconductive [144]. There is still a pos-

sibility, that studying of this system can help to understand the mechanism of high-Tc supercon-

ductivity. However 4d states of Ru in the compound are more broad than the 3d states in high-Tc

cuprates.

96



Figure 5.2: Results for 3-band interacting lattice model in DMFT approximation,doped regime – total site

occupancy isntot ≈ 1.2 electrons. Model parameters: Initial bandwidthW1 = W2 = 2 eV, W3 = 0.2 eV.

On-cite Coulomb repulsion:U = 2.7 eV, Hund exchangeJ = 0.7 eV. Inverse temperatureβ = 10 eV−1

(T ≈ 1160K). The orbital occupancies aren1 = n2 ≈ 0.1, n3 = 1/2. Main graph: interacting imaginary

time impurity Green functionG(τ) (5.4) for all orbitals,τ in eV−1. inset: Orbital-resolved DOS. The

narrow orbital (red) has a gap on the Fermi level whereas the broad orbitals (black) form pseudogap but

still remains conductive. Black lines corresponds to broad bands, red -to the narrow one. The Fermi

energy corresponds to zero.

The first-principle LDA calculation of the electronic structure of Sr2RuO4 [145] is based

on density functional theory (DFT) within the LDA approximation [10] using the linearized

muffin-tin orbitals (LMTO) method. [146] The partial densities of states for Sr2RuO4 are shown

in Fig. 5.4. The strontium 4d states are almost empty and lie above 3eV; the O-2p derived bands

are filled and extend from−8 eV to −1 eV.

Due to the crystal field symmetry the Ru-4d states splits into t2g and eg orbitals (see Fig. 5.5).

Since twoeg bands lie above the three t2g bands in the energy region from 0.5 eV to 5 eV, four

Ru-4d electrons occupy threet2g bands (d4 configuration). The partially filled ruthenium 4d-

states are the most interesting from the point of view of correlation effects. The layered crystal

structure of Sr2RuO4 results in further splitting oft2g orbitals: thexy orbital is almost two-
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Figure 5.3: Results for 3-band interacting lattice model in DMFT approximation,undoped regime – total

site occupancy isntot = 1 electron. Model parameters: Initial bandwidthW1 = W2 = 2 eV, W3 = 0.2 eV.

On-cite Coulomb repulsion:U = 2.7 eV, Hund exchangeJ = 0.7 eV. Inverse temperatureβ = 10 eV−1

(T ≈ 1160K). The orbital occupancies aren1 = n2 = 0,n3 = 1/2. Main graph: interacting imaginary time

impurity Green functionG(τ) (5.4) for all orbitals,τ in eV−1. inset: Orbital-resolved DOS. The narrow

orbital (red) has a gap on the Fermi level whereas the broad orbitals (black) became a band insulator.

Black lines corresponds to broad bands, red - to the narrow one. The Fermi energy corresponds to zero.

dimensional while thexz, yzorbitals have nearly one-dimensional character (see Fig. 5.5). The

initial (non-interacting) DOS for the correlation problemwas obtained by Pchelkina et al. [145]

using Wannier functions formalism [147] which allows one toproject the Hamilton matrix from

the full-orbital space to a selected set of relevant orbitals.

The experiments [148, 149] shows the presence of correlations inSr2RuO4: the quasipar-

ticle (QP) weight is 3-4 times larger than the results obtained from standard band calculations

and position of the QP peak is at Fermi energy or≈ 10 meVabove, whereas tight-binding (TB)

calculation gives≈ 100meV [122] and realistic LDA calculation gives even larger (≈ 200meV,

[145]) shift of the peak. It means that correlations plays a crucial role in understanding of the

material’s properties [145].

There were a number of theoretical works onSr2RuO4 in a framework of the DMFT scheme
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Figure 5.4: Partial LDA DOS for Sr2RuO4. The partially filled ruthenium 4d-states are the most interest-

ing from the point of view of correlation effects [145]. The Fermi level corresponds to zero. From Ref.
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in order to investigate many-body effects leading to unusual spectral properties of this compound

mentioned above. As a many-body impurity solver were used the Hirsch-Fye QMC approach

[145] and finite temperature exact diagonalization method [150].

In the work [145] Hirsch-Fye QMC solver was used. The limitations of this method (see

sec. 2.2.3) have lead to impossibility of including fully rotationally invariant interaction – spin

flips and pair hoppings terms were omitted, i.e the interaction part of Hamiltonian was of the

form (4.1), but without last term. The model parameters werefollowing: inverse temperature

was β = 10 eV−1, the number of imaginary time slices was 40 (∆τ = 0.25 eV−1), Coulomb

interaction parameters wereU = 3.1 eV, J = 0.7 eV. The result of that calculation is presented

on Fig. 5.7.

Another recent attack on this problem was done by Liebsch andIshida [150]. They used
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finite temperature exact diagonalization technique as an impurity solver for the DMFT loop.

Their solver allowed to include full Coulomb matrix, but the bath DOS was (strongly) discretized

in order to represent it as a finite set of levels. The first factmade possible to obtain very reach

structure of all the many-particle states, but the second, although allowing to perform the exact

diagonalization of the system’s Hamiltonian in finite (and relatively small) Hilbert space, led to

very spiked local DOS, corresponding rather to the solutionof the local problem, not the band

one (see Fig. 5.8).

In the CT-QMC formalism we can perform calculation of the spectral properties of the

system with full Coulomb matrix and without any artificial discretization of the input DOS of

non-interacting system.

In order to understand how the spin-flips and pair hopping terms influence on the spectrum

of the system, we performed a number of calculations with different interaction Hamiltonians:

with and without spin-flip and pair hopping terms. To distinguish effects caused by shape of

the non-interacting bath DOS, all the calculations were donfor two bath DOS: first was an
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LDA result from Ref. [145] (see Fig. 5.6, solid line) and the second from Ref. [122] (see

Fig. 5.6, dash line). From the Fig. 5.8 one can conclude that this system has a very reach

structure of many-particle states and it can lead to strong temperature dependence of the system’s

spectrum. Therefore we performed two series of calculations: for inverse temperatureβ = 5eV−1

(T ≈ 2300K) andβ = 10 eV−1 (T ≈ 1160K). The choice of so high temperatures is determined

by limitations of the computational effort: all the resultspresented in this chapter were produced

on a dual-processor workstations with AMD Opteron 1.8 GHz CPU’s. The usual time pro one

DMFT iteration was 10-20 hours.

The interaction part of the Hamiltonian is of the rotationally invariant form (4.1). The values

of the orbitally averaged Coulomb interaction parameterŪ = 1.7 eV and Hund exchange energy

J = 0.7 eV, the same as in [145], were obtained from constrained LDA calculations [123, 151].

In the particular case of threet2g-orbitalsŪ is equal to the inter-orbital Coulomb interaction

U ′. [4, 5] Thus we obtainU = U ′ +2J = 3.1 eV for the local intra-orbital Coulomb repulsion.

Since the one-electron Hamiltonian is diagonal ink space [122], we can use the following

realization of the DMFT: The DOS resulting from LDA calculations is connected to a non-

interacting bath Green function ofRu the following way:Nm(E) = −1
π Im(Gm(E)), wherem is

orbital index. Thus in order to obtain bath green function onMatsubara frequencies for CT-QMC

solver we need to perform the Hilbert transform. In general form it readsG(z) =
∫ −∞

∞
N(E)
z−E dE.

For our purpose one have to usez = iωn + µ−Σ(iωn), whereωn = (2n+ 1)πT is Matsubara

frequency,µ is a chemical potential andΣ(iωn) = G−1(iωn)−G−1(iωn) is a self energy. In other

words, instead of Eq. (5.2) we use local Green function of thefollowing form:

Gm
loc(iωn) =

∫ ∞

−∞
dE

Nbath
m (E)

iωn−Σm(iωn)−E
, (5.6)

whereNbath
m (E) is non-interacting bath DOS of the corresponding orbital (m).

To distinguish the effects caused by spin-flip and pair-hopping terms, the last item in (4.1)

was omitted and DMFT calculations with density-density Coulomb interaction have been per-

formed. First we have done DMFT calculation for bath Green function obtained in LDA ap-

proximation [145], using full and density-density Coulomb interaction (with or without last item

of (4.1)). Resulting DOS is presented on Fig. 5.9, left panel.

The hybridization due to interorbital Coulomb interaction leads to complete different spectra

in comparison to LDA and TB non-interacting results. The DOSfeatures that were apart from
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Figure 5.6: Density of states of of non-interacting system. Solid line – LDA results from Ref. [145], dash

line – tight binding model from Ref. [122] Upper panel:xyorbital, lower panel:xzandyzorbitals.

the Fermi level (especially onxz and yz orbitals) moves towards the Fermi level and form a

quasiparticle peak, the upper (UHB) and lower (LHB) Hubbard bands appears (compare figs.

5.6 and 5.9, left panel).

The result for diagonal Coulomb matrix is in qualitative agreement with with one of Hirsch-

Fye QMC calculation by Pchelkina et al. [145]. The deviations can be attributed to big difference

of temperature (by factor of 2). Including of the spin-flip terms have almost no effect onxy

orbital (see fig 5.9 left panel, (a)), only small weight transfer from the satellite peaks at−1 and

1.7 eV occurs. The LHB stays almost unchanged at−4.3 eV. The derivative of self energy

with respect to Matsubara frequency∂ImΣ(iω)
∂(iω)

∣∣∣
ω=ω1

is positive and the (5.7) definition of the

quasiparticle residue makes no sense. This fact can have twopossible reasons: either we are

at very high temperature and cannot catch the low-temperature behavior, or our system tends

to have a pseudogap. Thexz andyz orbitals (see Fig. 5.9 left panel, (b)) are more sensitive
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to form of Coulomb interaction. It leads to slight narrowing of the peak hear the Fermi level

and the LHB shifts by 0.2 eV: from −3 to −2.8 eV (see fig 5.9 left panel, (b)). Moreover,

the quasiparticle weight (calculated by the (5.7) formula,see Tab. 5.1) of these orbitals slightly

decreases with including the spin-flip terms: fromZdiag = 0.99 for density-density Coulomb

interaction toZf ull = 0.95 in case of full Coulomb vertex. The quasiparticle weight here is

calculated using approximative formula [3]:

Z =

[
1− ∂ImΣ(iω)

∂(iω)

∣∣∣∣
ω=ω1

]−1

. (5.7)

To check the results presented above we performed the calculation with tight-binding model

bath DOS from [122]. Results are presented on Fig. 5.9, right panel. The spin-flip effects are

qualitatively the same as in previous calculation, but muchmore pronounced. Thexy orbital

undergoes almost no changes, the LHB position is−4.4 eV, UHB is at 1.6 eV and the satellite

peak is at−1 eV. The self energy exhibit the same behavior as in the previouscase.

On xz andyz orbitals including of spin-flip terms lead to smearing of thesatellite peak at

−0.7 eV and shifting of the LHB from−3.5 eV to −3.3 eV. Note that this shifting (0.2 eV) is

the same as in the case of realistic bath DOS.

The splitting between LHB ofxy orbital and LHB ofxz, yz orbitals is increased from 1.1

eV for realistic bath DOS to 1.5 eV for the model (TB) one. The quasiparticle renormalization

of the xz and yz orbitals is of the same order as in the previous case: fromZdiag = 0.99 for

density-density Coulomb interaction toZf ull = 0.96 in case of full Coulomb matrix.

Lowering the temperature (β = 10) in case of LDA bath DOS has the following conse-

quences: LHB of thexy orbital moves to−2.7 eV for full Coulomb interaction and to−2.5 eV

for diagonal one (see fig 5.10 left panel, (a)). When includingspin-flip terms to the Coulomb

interaction the satellite peak in thexy orbital moves from−0.3 eV to −0.2 eV and becomes

more pronounced; thexy orbital becomes more correlated: its quasiparticle weightdecreases

from Zdiag = 0.91 toZf ull = 0.84.

Thexzandyzorbitals in this case are also more correlated than thexyone: their quasiparticle

residues without and with spin-flip terms areZdiag = 0.91 andZf ull = 0.84 correspondingly. The

LHB of these orbitals moves from−3.2 eV to −2.6 eV and the UHB at 1.5 eV becomes more

pronounced (see fig 5.10 left panel, (b)). Finally the shifting of the QP peak partially below

the Fermi level caused by non-diagonal terms of Coulomb interaction is observed onxzandyz

orbitals.
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Figure 5.9: Density of states of interacting Ru-4d(t2g) orbitals. Left Panel: bath Green function is taken

from LDA calculations [145]. Right panel: bath Green function is taken from TB calculations [122].

Model parameters are following: inverse temperatureβ = 5 eV−1 (T ≈ 2300K). The interaction param-

eters areU = 3.1 eV, J = 0.7 eV. Solid line denotes rotationally invariant interaction (4.1), dash line –

density-density one (without last item in (4.1)). Upper graphs:xyorbital, lower graphs:xzandyzorbitals.

The last series of calculations have been performed for TB bath DOS with the same pa-

rameters (U = 3.1 eV, J = 0.7 eV, β = 10 eV−1 (T ≈ 1160K)) and fullU matrix (see fig 5.10,

right panel). In this case onxy orbital the LHB at−2.8 eV, UHB at 1.5 eV and the satellite

peak at−0.7 eV become more pronounced (see fig 5.10 right panel, (a)). Position of the LHB

of xz, yzorbitals is−2.5 eV and UHB is at 1.7 eV, quasiparticle weight were fromZxy = 0.84 to

Zxz,yz = 0.74.

The quasiparticle weights of the Ru-4d(t2g) orbitals obtained in DMFT approximation for

full (with spin-flip terms) and diagonal Coulomb interactionand for bath DOS obtained in LDA

approximation [145] or from tight-binding model [122] are presented in Tab. 5.1. The N/A
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Figure 5.10: Density of states of interacting Ru-4d(t2g) orbitals. Left Panel: bath Green function is

taken from LDA calculations [145]. Right panel: bath Green function is taken from TB calculations

[122]. Model parameters are following: inverse temperatureβ = 10 eV−1 (T ≈ 1160K). The interaction

parameters areU = 3.1 eV, J = 0.7 eV. The bath Green function is taken from LDA calculations [145].

Solid line denotes rotationally invariant interaction (4.1), dash line – density-density one (without last item

in (4.1)). Upper graphs:xyorbital, lower graphs:xzandyzorbitals.

Z LDA TB

xy xz,yz xy xz,yz

β = 5 eV−1 diag N/A 0.99 0.99 0.99

β = 5 eV−1 full N/A 0.95 0.98 0.96

β = 10eV−1 diag 0.91 0.82 0.96 0.84

β = 10eV−1 full 0.84 0.76 0.84 0.74

Table 5.1: Values of the quasiparticle weightZ for different model parameters.
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entry for xy orbital atβ = 5 denotes that the self energy derivative∂ImΣ(iω)
∂(iω)

∣∣∣
ω=ω1

was negative

and calculation ofZ according to (5.7) definition was impossible. Analyzing this table we can

conclude thatxzandyzorbitals exhibit more correlated behavior thanxyone. It can be attributed

to the fact that non-interacting band DOS for these orbitalsis almost twice more narrow than the

xyone (see Fig. 5.6).

Another subject to analysis is structure of DOS. Whereas the lower Hubbard band has al-

most the same position in all the calculation series (it may contain some fine structure we can

not resolve because the features of the maximum entropy method we are using for analytical

continuation of the Green function to the real axis, see sec.2.3.7), the DOS features near the

Fermi level exhibit reasonable dependence on both interaction type (full or reduced) and bath

DOS. In case of LDA bath DOS the results (see figs. 5.9 and 5.10,left panels) are qualitatively

consistent with the DOS obtained by Hirsch-Fye QMC [145] (see Fig. 5.7). At high tempera-

ture (β = 5 eV−1, T ≈ 2300K) the satellite peak on thexy orbital at−1 eV is reproduced with

both types of Coulomb interaction we used. With lowering the temperature (toβ = 10 eV−1,

T ≈ 1160K) this feature moves towards the Fermi level and becomes moresensitive to the type

of Coulomb interaction (see Fig. 5.10, left panel): turning on the spin-flip terms leads to stronger

hybridization betweenxy andxz,yz orbitals: position of the satellite peak on thexy orbital be-

comes almost the same as the maximum of quasiparticle peak onxz,yzorbitals, approximately

at−0.25 eV. It is in a good agreement with the ED-DMFT results if Liebschand Ishida [150]

(see Fig. 5.8): In their spectral functionxy andxz,yz orbitals have almost the same structure

nearEF . The similar situation takes place in case of TB bath DOS: at high temperature we have

very pronounced satellite peak on thexyorbital at−1 eV (see Fig. 5.9, right panel) and at lower

temperature this peak moves towards Fermi level and hybridization ofxyandxz,yzorbitals takes

place: the lower Hubbard bands are almost on the same position, at−2.5 eV.

In this chapter we applied CT-QMC multiorbital solver to the lattice problem in DMFT

approximation. We reproduced such features of the multiorbital Hubbard model in infinite di-

mensions as orbital-selective metal-insulator transition (OSMT), conductive character of doped

Hubbard model in doped case and localization phenomena in non-doped one. Also the results for

realistic model describing theSr2RuO4 compound were reproduced and the influence of spin-flip

terms on spectral function was studied. The method showed good precision within a reasonable

computational effort.
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6 Conclusions and outlook

In the present thesis we developed the weak-coupling continuous time quantum Monte-Carlo

(CT-QMC) scheme for the general multiorbital impurity problem. We test this solver on a variety

of physically interesting systems, such as two- and three-orbital impurities, a realistic Kondo

problem of a cobalt atom in a copper matrix and multi-band correlated solids.

A number of technical problems related with the multi-band correlated problem have been

solved. In order to obtain the full atomic-like Coulomb interaction, the matrix in complex har-

monic basis was constructed and symmetrized. The fermionicsign problem was overcome by

introducing additionalα parameters to make all Coulomb interaction elements effectively nega-

tive. These parameters were applied not only to diagonal (density-density) Coulomb interaction

elements, as in the one-band case, but also to spin-flip-liketerms as well. A computationally

inexpensive way to investigate spin susceptibilities has been developed.

In order to describe a single-spin Kondo impurity embedded into a conduction band with

arbitrary density of electron states (DOS), we used the Abrikosov’s transformation to get rid of

spin operators in favor of fermionic ones. This led to an effective two-site Anderson impurity

model, which can be easily solved by the CT-QMC scheme. The non-universality of the mag-

netic susceptibility behavior has been found in case of non-constant conduction electron DOS.

We show a possibility of calculating different magnetic properties of interesting systems, like

magnetic impurity in an ultrasmall grain and disordered Kondo alloys. The obtained results are

in good agreement with other methods, such as exact diagonalization and numerical renormal-

ization group.

We applied the multiorbital CT-QMC solver to the two-, three-and five-orbital Anderson

Impurity models. The benchmark calculations in the atomic limit show a very good agreement

with exact diagonalization results both in the half-filled case and away from half-filling. The

effects of spin-flip terms and their interplay with couplingof the impurity to a conduction band

of non-interacting electrons is studied. The role of singularities in the conduction band DOS on
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the impurity spectral function has been discussed.

A realistic Kondo model, namely a cobalt atom in a copper matrix, is considered. The

effects caused by spin-flip terms of the Coulomb interaction are studied as a function of impurity

occupancy, temperature, and strength of Coulomb interaction. Strong renormalization of initial

DOS, obtained within the density-functional theory in the local density approximation, is found.

In order to calculate a properties of correlated solids, themultiorbital CT-QMC solver is

used as a part of the self-consistent loop in dynamical mean-field theory. Benchmark calcu-

lations for two- and three-band correlated lattice model were performed. The orbital-selective

Mott metal-insulator transition was reproduced. A calculation of a real solid, namely strontium

ruthenate (Sr2RuO4), was performed. The influence of spin-flip terms of the Coulomb interac-

tion as well as dependence of the result on initial non-interacting band DOS were studied. The

obtained spectral functions are in a good agreement with previous studies.

We belive that the developed multiorbital CT-QMC method could be used to describe and

predict spectral and magnetic properties of correlated nanosystems and solids. At the moment

we are working on relativistic generalization of CT-QMC method for transition metals adatoms

on metallic surfaces taking into account spin-orbital coupling. We will also extend the lattice

problem algorithms using CT-QMC to systems with correlatedf electron shell.
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7 Appendix

Magnetic susceptibility calculation for Anderson impurity in the atomic limit.

Consider a simple one orbital AIM without coupling to any bathof free electrons. This

system has only four states (see Fig. 7.1)

Magnetic susceptibilityχ is given by

χ =
∂M
∂H

∣∣∣∣
H=0

, (7.1)

whereM is magnetization of the system andH is magnetic field applied to the system.

Suppose that the magnetic field is applied along z axis. Than the magnetization is given by

M = µBSz (7.2)

Figure 7.1: One orbital AIM without coupling to bath of free electrons.
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whereSz = (n↑−n↓). Thus

〈M〉 =
Sp
[
Me−

E
kBT

]

Sp e−
E

kBT

=
Sp
[
µB(n↑−n↓)e−βE

]

Sp e−βE

= µB
e−βEF+

βmuBH
2 −e−βEF− βmuBH

2

1+e−βEF+
βmuBH

2 +e−βEF− βmuBH
2 +e−2βEF−βU

. (7.3)

From (7.1) and (7.3) obtain:

χ = βµ2
B

e−βEF

1+2e−βEF +e−2βEF−βU
. (7.4)
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[103] P. Wahl, L. Diekḧoner, M. A. Schneider, L. Vitali, G. Wittich, and K. Kern. Kondo tem-

perature of magnetic impurities at surfaces.Phys. Rev. Lett., 93:176603, Oct 2004.

[104] A. A. Abrikosov. Electron scattering on magnetic impurities in metals and anomalous

resistivity effects.Physics, 2(1):5–20, 1965.

[105] G. M. Pastor. Magnetic impurities in small metal clusters. Annalen der Physik, 14(9–

10):547–555, 2005.
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