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Zusammenfassung

Wir stellen ein numerisch exaktes Verfahren zur Berechnuwrdakalen elektronischen Struk-
tur und magnetischer Eigenschaften korrelierter Systeare Das Verfahren verwendet die
krzlich entwickelte Zeitkontinuum-Determinanten- QueamiMonte-Carlo Methode zud$ung

des Quanten-8tstellen-Problems. Mit diesem Zugang sind wir in der Lageltiorbitale Sorstellen-
Probleme einschlief3lich der Coulomb-Wechselwirkung inakyemeinsten Form anzugehen.
Dieses Verfahren gestattet es, sowohl Spin-Suszepiigifitals auch Green-Funktionen zu berech-
nen, indem alle Merkmale der Zustandsdichte der Leituegseinen genau backsichtigt wer-
den.

Die Zeitkontinuum-Quanten-Monte-Carlo Methode wurde avageldt, um die Eigenschaften
eine Kondo-Sirstelle mit einem einzelnen Spin zu berechnen, der an eid Ban Leitungse-
lektronen mit beliebiger Zustandsdichte gekoppelt ist.r @ortern das Verhalten der Spin-
Suszeptibiliat einer Kondo-Sirstelle in verschiedenen Umgebungen: in einem ultra&fein
Krimel, im Anderson-Modell eines Gitters mit auf den Gittatpén zuéllig verteilten En-
ergieniveaus und auf einem zweidimensionalen Gitter, aafi die Zustandsdichte eine van-
Hove-Singulariat aufweist.

Fir Atome in realistischetybergangsmetallen wurde dairif-Band-Modell einer Kondo-
Storstelle in einer metallischen Umgebung mit vollem Coulovieehselwirkung-Vertex berech-
net. Die Anwendung auf eine Kobalt@stelle in einer Kupfer-Umgebung zeigt eine starke
Renormierung einer ursipnglich nicht-wechselwirkenden Zustandsdichte nahe denfkante.

Um die Eigenschaften korrelierter FegtRer zu berechnen, wird die Zeitkontinuum-Quanten-
Monte-Carlo Methode alsdsungsmethodeif das Strstellenproblem innerhalb der Dynamis-
chen Molekularfeld-Theorie benutzt. Der Metall-IsolaRitaseilbergang dir zwei und drei
anisotrope Orbitale auf dem Bete-Gitter mit Spin-UmklappeWselwirkung wird betrachtet.
Die gewonnenen Ergebnisse stimmen gut mit bekanntégrefen Untersuchungérerein. Die
Methode wird auf einen realen korrelierten Fésger, Strontium-RuthenaB(RuQ,), ange-
wandt. Wir untersuchen die Bedeutung nicht-diagonaler &imm Wechselwirkungsteil des
Hamilton-Operators, der sich auf Spin-Umklapp- und PaiapfHProzesse bezieht.



Abstract

We propose a numerically exact scheme to calculate the éeetronic structure and magnetic
properties of correlated systems. The scheme employsdbetig developed determinantal Con-
tinuous Time Quantum Monte Carlo method for the solution efgbantum impurity problem.
With this approach, we are able to treat multiorbital impugroblems, including Coulomb in-
teraction of the most general form. This scheme allows toutale spin susceptibilities as well
as Green functions, accurately taking into account all detures of the conduction electron
density of states.

The Continuous Time Quantum Monte Carlo method has been dgpliealculate proper-
ties of a single-spin Kondo impurity coupled to a band of ammiobn electrons with an arbitrary
density of states. We discuss the behavior of the spin stibdgyp of a Kondo impurity em-
bedded into different environments: an ultrasmall graie, Anderson model, corresponding to
a lattice with random on-site energy levels, and a two-dsim@ral lattice, where the density of
states has a van Hove singularity.

The realistic five-band model for transition metal atomdwitll Coulomb interaction ver-
tex as a Kondo impurity in a metal matrix has been calculatgxblication to a cobalt impurity
in a copper matrix shows a strong renormalization of theahiton-interacting density of states
near the Fermi level.

In order to calculate properties of correlated solids, that@oous Time Quantum Monte
Carlo method is used as an impurity solver within the dynahmean-field theory. The metal-
insulator phase transition for two and three anisotropitals on the Bethe lattice with spin-flip
interactions is considered. The results obtained are i ggveement with previous studies.
The method is applied to a real correlated solid, namelynstrm ruthenate $pRuQ;). We
investigated the role of non-diagonal terms in the inteoagbart of the Hamiltonian, related to
spin flip and pair hopping interactions.
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1 Introduction

Strongly correlated electronic systems are of great physiterest nowadays. From a techno-
logical point of view, the most interesting feature is thainy of such systems are extremely
sensitive to small changes in their control parameters§oure, temperature, doping, magnetic
field, etc.). Moreover, these systems usually have very taghase diagrams. The reason of
this unusual behavior is the competition between diffecedering states, related to the compli-
cated balance between the kinetic energy and the eleckeotran interactions. Because kinetic
and potential energy are of the same order of magnitude, etitiop between localization and
delocalization of electrons takes place. This leads tetaof nontrivial effects related to spin,
charge and orbital fluctuations. It was found, experiméytdiat some oxide systems containing
copper ions (so-called high:) have unexpectedly high superconducting transition teaipees
(above liquid-nitrogen temperatures). Another systemxisipeing interesting correlation effects
are so-called heavy-fermion systems. These compoundainagare-earth or actinide elements
where the effective mass of the electrons can be extremiglg.la his fact in conjunction with
large orbital degeneracy leads to a couple of effects: themionally large Seebeck coefficients,
which can be used for constructing low-temperature thelectéc devices, colossal magnetore-
sistance, and giant nonlinear optical susceptibility vaithultrafast recovery time. This will be
useful in the design of data storage and processing devices.

The Kondo effect is another demonstration of electron ¢ations; in the 1930s it was
found that even a little fraction of magnetic transition elettoms added to nonmagnetic host
metal leds to unusual asymptotic behaviour of resistivityhie low temperature limit. Namely,
lowering the temperatue below some point lead to an incrieabe resistivity. The first theoret-
ical explanation was given by Kondo in 1964. He showed thatdsistivity increase is related
to spin-dependent scattering of the itinerant electronthbynagnetic moments of the transition
metal impurities. For a long time, the consequences of thisabiour were investigated with
macroscopic methods, and most experiments were done tde @t transition elements in Au
and Cu host metals. Recently it became possible to measurederpes of isolated impurities
on the atomic scale using Scanning Tunnel Microscopy (ST consideration of single sur-



face Kondo-systems lead to revealing a variety of very eggng many-body effects in chains,
clusters and islands.

Another manifestation of correlation effects is the Motttaténsulator transition; de Boer
and Verwey in 1937 reported that many transition-metal exigith a partially filled d-electron
band were nonetheless poor conductors and indeed oftelatmisu A typical example in their
report was NiO. Concerning their report, Peierls pointed tbatimportance of the electron-
electron correlation; strong Coulomb repulsion betweetedas could be the origin of the
insulating behavior. These observations launched thedowgcontinuing history of the field of
strongly correlated electrons, particularly the efforuttderstand how materials with partially
filled bands could be insulators and, as the history devedldpewv an insulator could become a
metal as controllable parameters were varied.

The metal-insulator transition (MIT) in oxide materialdnsleed the most outstanding and
prominent feature of strongly correlated electrons andldwag been central to research in this
field. In the past sixty years, much progress has been mawheioth theoretical and experimen-
tal sides in understanding strongly correlated electrowlsMIT. In theoretical approaches, Mott
in 1949 took the first important step toward understanding ktectron-electron correlations
could explain the insulating state, and we call this stageMlott insulator.

There are two major approaches to the theoretical undelisgof many electron systems:
density-functional theory (DFT) and the simplified modehhiilonian approach (e.g. Anderson
impurity model (AIM), Kondo impurity model, Hubbard modeha its generalizations). On
one hand, we have the simplified model Hamiltonian appraattied can catch these correlation
effects qualitatively but often fails to describe partanuleal system quantitatively. On the other
hand, the DFT approach allows us to treat quite complicatatistic systems, but because of
its mean-field nature it can overlook some physically ratewdfect induced due to electronic
correlations (e.g. MIT cannot be described in frameworlkefDFT).

The recent breakthrough in this field was done by G. KotliarG&orges, W. Metzner, and
D. Vollhardt (see Refs. [1, 2, 3]). They proposed the way on tomap the lattice problem to a
self-consistent impurity one. This approximate approadbeised on taking the limit of infinite
dimensions. Although, this method initially was designedalve simplified model Hamiltoni-
ans (like Hubbard one), a short time later it was extende@atistic systems, involving DFT
as a starting point [4, 5]. So far this approach has becomm@isingly successful in treating
correlated solids, it still has a number of obstacles. Fsistce DMFT is a local approxima-



tion, it cannot treat non-local correlations, that are @agimportance in a variety of physically
interesting systems (e.g. high-temperature supercoadydbw-dimensional conductors). This
problem can be overcome by different extensions of the DMpfir@ach (e.g. cluster DMFT [6],
dual fermion approach [7], self-energy functional [8]). d&her problem of the DMFT technique
is an absence of a universal impurity solver. Attempts toerak impurity solver encountered
many difficulties, and now we have a variety of impurity sesyecach of them can be applied
only within a certain range of parameters (see Chapter 2 2s2g.For such interesting systems,
as cobalt impurity on metallic surfaces, taking into acdonany correlated orbitals is of crucial
importance. Another important requirement is the poggihib take into account coupling of
the impurity to electronic band with an arbitrary densitysti#dtes. Up to now the most promising
method has been quantum Monte-Carlo (QMC). As the base of quoagh, we used the so-
called continuous time QMC method (see Chapter 2, sec. 2[8¢hws a promising universal
impurity solver.

The main target of the present work is to work out a method ¢hathelp us explain and
predict properties of correlated systems. The major requaénts to the method are following:

e Possibility to treat multiorbital impurity models.

¢ Ability to take into account complete atomic-like Coulomberaction, including the com-
plicated terms like spin-flips, pair hoppings, etc.

e Careful treatment of band-structure anomalies in the cammuelectron density of states.

The structure of this thesis is the following. In Chapter Z;.s2.1 — 2.2 a brief analysis
of present theoretical methods is done, current state airafin modern solid-state physics is
discussed. In section 2.3 we describe continuous time gomaMonte-Carlo — the method we
are developing and applying to correlated systems. In Ch3pte discuss the Kondo (one-spin)
impurity embedded into a conduction band with arbitrarysigrof electron states. In order to
do that we construct an extension of the CT-QMC method to gpanadors. Chapter 4 contains
technical details of the application of the CT-QMC method nultiorbital impurity problem,
taking into account full atomic-like Coulomb interactionn this Chapter we discuss results
for a realistic model, namely a cobalt atom embedded intoppe&omatrix. In Chapter 5 we
develop the method designed to describe solids with caeelelectron subsystems. We apply
our mutiorbital impurity solver to a lattice problem in thgrémical mean-field approximation.
We discuss the physical relevance of full Coulomb interactio the example of real correlated
solid (SprRuQy).



2 Theoretical approaches to strong

correlated systems

In this Chapter we consider "state-of-the-art” methods foedinetical description of the elec-

trons in solids. Materials with correlated electrons exhitme of the most intriguing phenomena
in condensed matter physics. The main aim of theoreticasiphyis to describe and predict

different properties of the novel materials, based on tleetebnic structure of these materials.
Modern solid-state theory explains the physical propsroénumerous materials, such as sim-
ple metals, important semiconductors and insulators. Tdagybe successfully described in the
framework of density functional theory (DFT, see sec. 2.1gweler, the materials containing

partially filled d or f electron shells, where electrons ocgugarrow bands, often have unusual
properties that are harder to explain and the DFT method gisie independent-electron model
is not accurate enough when applied to strongly correlatetennas.

The many body effects, however, can be described using fs@dpiiodel Hamiltonians,
like the Hubbard model. But this approach also has some prabl the Hubbard model can
be solved exactly only in few limit cases (either Jeodimensionality of the system, or infinite
on-site repulsion, etc.).

The recently developed Dynamical mean-field theory tecienisee Chapter 5), that in fact
maps a many-body lattice problem to a single-site problerh @ffiective self-consistent param-
eters, allows to solve a variety of model Hamiltonians on Higde using effective numerical
techniques such as quantum Monte Carlo, numerical renomatdin group, exact diagonaliza-
tion, etc. (see sec. 2.2).
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2.1 Density functional theory

Electronic-structure calculations of solids have consitlly evolved from early approaches, such
as band structure calculations in periodic model potes)teaimed at reproducing simple crystals
into very sophisticated and powerful techniques. Thesenigaes usually require no experi-
mental input beyond the basic information on atomic contpmsand some structural data. This
is the origin of the definitions of ab-initio, or first-prin@es techniques. In conjunction with the
enormous increase in computer power, ab-initio methodsalmw us to accurately reproduce
and to predict electronic and structural properties of reaterials, and not just the simplest
ones. This predictive power makes a strong case in favor -afiiab methods, whenever they
are applicable, with respect to empirical or semiempincathods.

Solving the many-body Sctdinger equation for electrons in a real material is by nomsea
a trivial task even in the presence of simplifying assummsi¢such as perfect periodicity for
crystals). One of the most popular methods correspondetDémsity Functional Theory (DFT)
[9], mainly in the Local Density Approximation (LDA) [10].

The DFT is a ground-state theory in which the emphasis is erctiarge density as the
relevant physical quantity. DFT in the LDA has proved to bghly successful in describing
structural and electronic properties in a vast class of nase Furthermore LDA is compu-
tationally very simple. For these reasons LDA has becomenamaan tool in first-principles
calculations aimed to describe and predict the properfiesmplex condensed matter systems
(for introduction and review see e.g. [11, 12]).

We can start from the statement that an external potevifig) acting on a system dfl
interacting electrons will determine the charge density of the ground state. This is exactly
what has been proven by Hohenberg and Kohn [9]: there is amdyexternal potentiaV (r)
which yields a given ground-state charge density).

DFT arises from the Hohenberg and Kohn theorem [9] : the gitaiate energ¥e is also
uniquely determined by the ground-state charge densitycodling to this theorem, no two
different potentials acting on the electrons of a giveneystan give rise to a same ground-state
electronic charge density. This property can be used iruomtipn with the standard Rayleigh-
Ritz variational principle of quantum mechanics to show thathF[n(r)] functional of the
electron charge density exists, that the functional:

Eln(r)] = Fln(r)] + [ n(r)V(r)dr @)

11



is minimized by the electron charge density of the grountestarresponding to the external

potentialV (r), under the constraint that the integralmgf ) equals the total number of electrons.
Furthermore, the value of the minimum coincides with theugbstate energy. In this Chap-

ter we use the atomic unitdi = e = m= 1, wheree andm are the electron charge and mass
respectively. The atomic unit of energy 1 a-t127.2 eV.

An enormous conceptual simplification of the quantum-maeid@d problem of the search
of the ground-state properties of a system of interactiegtedns is gained by replacing the
traditional description based on wave-functions with a imenore tractable description in terms
of the charge density. Since the first approach invohn&8lependent variables, whexkis the
number of electrons, the second one depends only on 3 vasiallhe major problem hampering
a straightforward application of this remarkably simplguleis that the form of th& functional
is unknown.

One year later, Kohn and Sham (KS) [10] reformulated the lpralkand opened the way
to practical applications of DFT. First, the system of iatg¢ing electrons is mapped on to a
fictitious system of non-interacting electrons having tame ground state charge density).
This is performed by introducing KS orbitals(r) for N electrons

N
n<r>:_z|wi<r)|2. (2.2)

Charge conservation requires that the KS orbitals obey noitmality condition:

[ wiOw)ar = 5. @)

Than the energy functional can be rewritten in the followioign:

Eln(m)] = o)+ [ 0 L+ Beln(n)] + [ nrvenar, @24

whereTyp[n] denotes the kinetic energy of noninteracting electronk thi¢ densityn(r)

2
o) = 53 [ wan ey, @9

the second term is the Hartree energy, it describes theredtatic interaction between
clouds of charge. The third term is exchange-correlatioerggnthat include all the rest of

12



Coulomb interaction between the electrons. The last termgof(E.4) is a contribution of the
external field described by théy(r) potential.

Variation of the energy functional with respectigr) with the constraint that the number
of electrons is kept fixed n(r)dr = N leads formally to the same equation that would hold for a
system of non-interacting electrons in effective poténtia

Veri(t) =V()+ %dwvﬂ(r), (2.6)

where -
Ve = e

(2.7)
is a definition of the exchange-correlation potential. ©therds, now we have to solve the
one-electron Sclkidinger equation:

2
(3372 +Vere) Un(r) = el 28)

The Kohn-Sham scheme is a practical way to implement DF Niged quite accurate ap-
proximation for the exchange-correlation energy;[n(r)]. Kohn and Sham [10] proposed to
assume that each small volume of the system contributesithe sonstant exchange-correlation
energy as an equal volume of a homogeneous electron gassairtteedensity. With this assump-
tion, the exchange-correlation energy functional andmiakread:

Ecln(r)] = [ excln(r)n(r)dr, (2.9)
Vien(r)) = (sxc<n>+nd€g°r§”)) _(), (2.10)

whereeyc(n) is the exchange-correlation energy per particle in an h@megus electron gas at
densityn. This approximation is known as thecal density approximatio(LDA).

Approximate forms foreyc(n) have been known for a long time. Numerical results from
nearly exact Monte-Carlo calculations for the homogenetaeciren gas were obtained by Ceper-
ley and Alder [13]. The LDA is exact in the limit of high densibr of a slowly varying charge-
density distribution [10]. LDA has turned out to be much msuecessful than expected [14].
Although it is very simple it yields a description of the cheal bond that is superior to that
obtained by Hartree-Fock, and it compares well to much wesghuantum Chemistry methods.
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For weakly correlated materials such as semiconductoustatal and vibrational properties
are accurately described: the correct structure is ustmligd to have the lowest energy, bond
lengths, bulk moduli and phonon frequencies are accurdtena few percent [14].

LDA also has some well-known drawbacks. It overestimatesctigstal cohesive energies
(by ~ 20%) and underestimates (by50%) the band gaps in insulators. It leads to inability of
proper description of strongly correlated systems, suctaasition-metal oxides. In general,
DFT is a ground-state theory and KS eigenvalues and eigeargedo not have a well defined
physical meaning. Nevertheless, in the lack of better andlgggeneral methods, KS eigenval-
ues are often used to estimate excitation energies. Theajdeatures of the low-lying energy
bands in solids obtained in this way are generally constityde at least qualitatively correct,
in spite of the fact that the LDA is known to substantially enestimate the optical gaps in
insulators.

The most successful extension of the LDA allowing to treahswf correlated systems
mentioned above was the LDA+method [15]. This method includes the orbital dependence
of the static self-energy operators, missing from the K& pinl, in a relatively crude, pseu-
doatomic way, neglecting the fine details of the spatialatenns of the Coulomb potential. But
LDA+U does not contain true many-body physics. This appnaacsuccessful in describing
long-range ordered and insulating states of correlateztrel@c systems, but it fails to describe
strongly correlated paramagnetic states [16, 17].

To go beyond LDA+U and capture the many-body nature of thetre-electron inter-
action, i.e., the frequency dependence of the self-enéngyl. DA+DMFT scheme have been
developed [4, 5]. The essence of this scheme is to solve theaid lattice model (that includes
only a few degrees of freedom corresponding to strong aieelorbitals) in dynamical mean-
field theory (DMFT) approximation [1, 18] (for details see @tex 5) including interacting of
the strong correlated orbitals with the rest of the electr@ystem obtained in framework of
LDA (or LDA+U).

The LDA+DMFT approach is the only LDA extension that is ald&éescribe the physics of
strongly correlated, paramagnetic metals with well-depetl upper and lower Hubbard bands
and a narrow quasiparticle peak at the Fermi level. Thisatharistic three-peak structure is a
signature of the importance of many-body effects [18, 19].

Due to the equivalence of the DMFT single-site problem amdAhderson impurity prob-
lem, a variety of approximative techniques have been eneplty solve the DMFT equations,such

14



as the iterated perturbation theory (IPT) and the non-argsspproximation (NCA) as well as
numerical techniques like quantum Monte Carlo simulati@C), exact diagonalization (ED),
or numerical renormalization group (NRG). For details osthaumerical methods see sec. 2.2.

Since the mentioned above approximative analytical mestike IPT and NCA are uncon-
trollable approximations, we shall stress on numericahmgs, especially on numerically exact
continuous time QMC (CT-QMC) method.

15



2.2 Many-body impurity solvers

Impurity solvers play an essential role in the numericakistigation of strongly correlated elec-
tron systems. The DMFT scheme (see Chapter 5) give us a simpléovgget an insight to
physics of correlated solids. The solution of the impurtytylem is usually the most difficult
part of this scheme. Another application of an impurity soig to obtain spectral and magnetic
properties of quantum impurities such as single adatormainshof them, quantum dots, etc. The
physical properties of these systems are caused by marnydbiedts, and accurate treatment of
this quantum-mechanical model is essential for invesbgatf a such interesting phenomena as
e.g. Kondo effect (for details see Chapter 3). In this seatiergive an overview of some of the
methods, pointing out their strengths and limitations. Td@hnical details of different impurity
solvers will be explained in the following subsections.

The use of the terminology "impurity” is due to historicabs®ns: this expression is used
in a very general sense, namely a small interacting systanir(tpurity) with only a few degrees
of freedom coupled to a large single-particle system (ther@nment or bath) with very many
degrees of freedom, and where both subsystems have to tedtcgentum mechanically. In the
Kondo problem (see Chapter 3 and Refs. [20, 21]), the smaksyista magnetic impurity, such
as a cobalt ion, interacting with the conduction electroiha nonmagnetic metal such as gold
[20] (see Chapter 4). Other realizations are for exampl@&aali impurities such as quantum
dots hosting only a small number of electrons. Here, therenment is formed by the electrons
in the leads.

Any theoretical method for the investigation of quantum imiy systems has to face a num-
ber of serious obstacles. First of all, because the enviemtypically consists of a continuum of
guantum-mechanical degrees of freedom, one has to corssuiele range of energies — from a
high-energy cut-off (which can be of the order of sevell down to arbitrarily small excitation
energies. On the other hand, because the impurity degrée®dbdbm usually form an interacting
guantum-mechanical system, their coupling to a continutiexaitations with arbitrarily small
energies can result in infrared divergencies in pertuobatitreatments. A well-known example
for this difficulty is the Kondo problem (see Chapter 3): Itg/pias is governed by an energy
scale, the Kondo temperatufg, which depends non-analytically on the spin-exchangelooyp
J between the impurity and the conduction band of the hodi Id —1/J (see [20] for a de-
tailed description of the limitations of the perturbatibapproach for the Kondo model and the
single-impurity Anderson model).

16



Another motivation to study impurity solvers is, that le¢timodels, such as the Hubbard
model, can be mapped in some approximation onto impurityeisoof the above type. For the
Hubbard model and other lattice models of correlated edastthis is achieved via the dynamical
mean-field theory (DMFT), see Chapter 5.

At the present time, there is no universal impurity solveit thiorks efficiently and produces
accurate solutions for the Green function in all regimesavgmeters. Instead what we have is a
large number of techniques, which are good in some regioparaimeters. In many cases when
there are various methods can be applied, there is a cordtiwelen accuracy and computational
cost, and in many instances one has to make a compromisedresffeciency and accuracy to
carry out the exploration of new complex materials (for egvsee e.g. Ref. [22]).

The models we are going to solve are the following: Andersopurity model (AIM, see
Chapter 4, section 4.1) and Kondo model (see Chapter 3). Thertea exactly soluble limits
of the multiorbital Anderson impurity model (see Chapterfdj,a general environment of non-
interacting band electrons (bath). The atomic limit whenltlibridization vanishes and the band
limit when the interaction matrixJ is zero. There are methods which are tied to expansions
around each of these limits. It is straightforward to camndtthe perturbative expansion of the
self-energy in powers df up to second order, and resum certain classes of diagrarhsasuc
ring diagrams and ladder diagrams. This is an approach krasmie fluctuation exchange
approximation, and it is certainly reliable whehnis less than the half-bandwidt®,. These
impurity solvers are very fast since they only involve mainultiplications and inversions. They
also have good scaling, going M8 whereN is the number of orbitals or the cluster size.

The expansion around the atomic limit is more complicatettyBridization function with
spectral weight at low frequencies is a singular pertudoatit zero temperature. Nevertheless
approaches based on expansion around the atomic limit &ebleufor describing materials
where there is a gap in the one—particle spectra, or whemthpdrature is sufficiently high that
one can neglect the Kondo effect. This includes Mott insgpstates at finite temperatures,
and the incoherent regime of many transition metal oxideshaavy fermion systems. Many
approaches that go beyond the atomic limit exist: dirediuypleation theory in the hybridization,
resummations based on equation of motion methods, sucledsuibbard approximations, re-
solvent methods, and slave particle techniques such athecrossing approximation (NCA)
and their extensions. Mean—field methods are based on ddnaktintegral representation of
the partition function, and the introduction of auxiliafgwe bosons [23]. The saddle point ap-

17



proximation [24] gives results which are very similar to $koof the Gutzwiller method, and
corrections to the saddle point can be carried out by a loparsion [25]. Unfortunately the
perturbative corrections to the saddle point are com@atand have not been evaluated in many
cases [24]. Interpolative methods bear some resemblanite tanalytic parameterizations of
Vyc in LDA. One uses different approximations to the self—ep@&ighe impurity model, viewed
as a functional ofA(iw), in different regions of frequency. The idea is to constinttrpola-
tive formulae that become exact in various limits, such as frequency where the value of the
Green function is dictated by Luttinger theorem, high frexgies where the limiting behavior
is controlled by some low—order moments, and in weak anahgtomupling limits where one
can apply some form of perturbation theory. This approachegn very successful in unravel-
ing the Mott transition problem in the context of model Haomians, and it is beginning to be
used for more realistic studies. But all the methods desdraimve involve some approxima-
tions. Although they give a reasonable results in some rangarameters, for some regimes
(including physically interesting) results can be evenlitptavely wrong, since these approxi-
mations are uncontrollable. On the other hand there are mcalg exact methods, such as the
Hirsch-Fye quantum Monte Carlo method (QMC) [26]. In this QM@&thod one introduces a
Hubbard-Stratonovich fields and averages over these fisldg Monte Carlo sampling. This
is a controlled approximation using a different expansiarameter, the size of the mesh for the
imaginary time discretization. Unfortunately, it is contgtionally very expensive as the number
of time slices and the number of Hubbard—-Stratonovich figldeeases. This QMC method is
described in section 2.2.3. The main problem of this metlsaal poor scaling with increasing
number of orbitals, since the number of Hubbard—-Stratafofields increases as the square of
the number of orbitals.

Another way to solve the impurity problem is to use techngjo@sed on exact diagonaliza-
tion methods (see section 2.2.1), and their modificatioh a3 Wilson renormalization group
(NRG, see section 2.2.2) techniques and density matrix nesdaation group methods. These
are very powerful techniques, but due to the exponentialtfrof the Hilbert space, they need
to be tailored to the application at hand.

2.2.1 Exact diagonalization and Lanczos’s method

The expression "Exact Diagonalization” (ED) is used to désca number of different ap-
proaches which yield numerically exact results for a firaté¢e system by directly diagonalizing
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the matrix representation of the system’s Hamiltonian imppropriate many-particle basis (for
a short review on ED and related methods see e.g. [27]). Thelasst, and the most time- and
memory- consuming approach is tbemplete diagonalizatioof the matrix which enables one
to calculateall desired properties. However the dimension of the basis &irangly interact-
ing quantum system grows exponentially with the system, Siaghat it is impossible to treat
systems with more than a few sites or orbitals [28].

A number of software libraries provide complete diagoradlan routines which take a ma-
trix as input and return all of the eigenvalues and eigemrs@s output. Among the most useful
are the routines published Mumerical RecipeR9] as well as the LAPACK [30] library, which
in combination with an efficient implementation of the Basioear Algebra Subprogrammes the
BLAS [31, 32] provides a very efficient implementation of larealgebra tools. Such routines
can be used to diagonalize the Hamiltonian matrix of a finit@nqum lattice system directly.

The approach normally used [29] is first to transform the m&trtridiagonal form using a
sequence of Householder transformations and then to dadigenthe resulting tridiagonal matrix
T using the QL or QR algorithm, which carries out a factorigafi = QL with Q an orthogonal
andL a lower triangular matrix. The computational cost of thisxained approach scales%s?'
if only the eigenvalues are obtained, aa®n® when the eigenvectors are also calculated, where
nis the dimension of the matrix.

A complete diagonalization of the Hamiltonian matrix is edteless useful for testing
purposes: to test our CT-QMC solver we used exact diagomializprogram [28, 5] designed to
obtain spectral properties of multiorbital impurity in et limit (without connection to bath of
free electrons).

Since complete diagonalization of the many-body Hamitiaris extremely computation-
ally expensive and in the investigation of condensed majtsiems one is often interested in the
low-energy properties, it is possible to reach substdplaiger system sizes using iterative diag-
onalization procedures, which also yield results to almasthine precision in most cases. The
iterative diagonalization methods allow for the calcuatof ground state properties and (with
some extra effort) some low-lying excited states are alsessible. In addition, it is possible
to calculate dynamical properties (e.qg., spectral fumsti®ime-evolution) as well as behavior at
finite temperature. Nearly every system and observable eaaloulated in principle, although
the convergence properties may depend on the system undstigation. For example, with the
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effective atomic Hamiltonian fod or f states

1
at -+ +
H& = Z € CmoCrf s T > z U, - ImlocIm o clmlo clmzo (2.11)
mmo {om}
wherem; are orbital indices and is spin, we need to diagonalize the atomic many-electron
problem:
H¥ o >=E&u > (2.12)

and then the exact atomic Green function can be found usgemainctions and eigenvectors of
the Hamiltonian the following way [33]:

o1 (Memslv) (vt lw)
Gt (10) =5 A éu’g ><e PR 1 e PEy). (2.13)
v

The basic idea of the Lanczos method [34] for effective dmdjaation (search of the
ground state) of Eq. (2.12) is that a special basis set carobstracted where the Hamilto-
nian has a tridiagonal form. This is derived iteratively hewgn below. We are starting from
arbitrary wave functiongy). Than we apply the Hamiltonia to this initial state and subtract

the projection ovefqy):

(@o| H o)

which satisfiesqo (1) = 0. The next state that is orthogonal to both previous can hstaacted

|¢1) =H o) —

the following way:

(@[ H ) (@1 l@n)
@) =Hlp) ————|¢ % (2.15)
92) =Hla (@1 |@n) o0 - <<Po|<po>’ )
The procedure can be written in the recurrent form:
|Phi1) = H [@ns1) — an|@n) — DA [@n-1) (2.16)
wherea,, = <‘?‘“T(L?;> andb? = %. Here we usdsy = 0 and|@_1) = 0. In this basis the
Hamiltonian matrix becomes tridiagonal
ap bl 0 O
b1 al b2 0
H= O by ap bs ..., (2.17)
0O O b3 as
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wheren =1,2,..etc. The matrix element, andb,, are related to the moments of the Hamilto-
nian. Whem increases, the lowest eigenvalue of the tridiagonal mapproaches the ground-
state energy. And the eigenfunction of this lowest eigare/gets closer to the ground-state wave
function [35]. The Green function also can be obtained ugirgmethod in spirit of Eq. (2.13)
formalism [28, 3].

Although these methods are applicable to small to modeyaterss they meet some obsta-
cles describing Kondo-systems at low temperatures. ltused by principal discreteness of the
resulting spectrum and can lead to very spiky spectral fancOne can overcome this problem
using Numerical renormalization group, that will be dissein the next section.

2.2.2 Numerical renormalization group

In the beginning of the 1970’s, Wilson developed the conogpt fully non-perturbative renor-
malization group transformation. Applied to the Kondo peob, this numerical renormalization
group method (NRG) gave for the first time the full crossoveniithe high-temperature phase
of a free spin to the low-temperature phase of a completeesed spin. It is the substantial
merit of this method in comparison to ED and Lanczos methedsiibed above. The NRG has
been later generalized to a variety of quantum impurity [@ais, such as Anderson and Kondo
impurity models [20], periodical Anderson model [36] andi$tein model [37] (for review see
e.g. Ref. [21]). The applications of the NRG scheme includéawgs of the original Kondo
problem as well as lattice systems in the framework of theadyinal mean field theory [38].

The general strategy of the NRG is the following. As specifiaregle, let us consider the
Kondo model which describes magnetic impurity with spicoupled to the electrons of a single-
particle conduction band via an exchange interaction ofdhm JS- s, wheres the spin of the
conducting electrons. The NRG starts with a logarithmicréiszation of the conduction band in
intervals[A~ (™, A" and[—A "o, —A~ (D] (n=0,1,2,...). We shall callA > 1
the NRG discretization parameter. After a sequence of toamsftions, the discretized model is
mapped onto a semi-infinite chain with the impurity spin esgnting the first site of the chain.
The Kondo model in the semi-infinite chain form is diagonadiateratively, starting from the
impurity site and successively adding degrees of freedotha@ahain. Due to the logarithmic
discretization, the hopping parameters between neighdaries fall off exponentially, i.e. going
along the chain corresponds to accessing decreasing estalpg in the calculation.

In this way, Wilson achieved a non-perturbative descriptibthe full crossover from a free
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impurity spin at high temperatures to a screened spin atéomperatures [39], thus solving the
so-called Kondo problem as discussed in detail in [20]. #thiat the investigation of the single-
impurity Anderson model [40], which extends the Kondo mdadeincluding charge fluctuations
at the impurity site was performed. The technical detaitstmafound in [41, 42]

In the following, the development of the NRG concentratednenetnalysis of more compli-
cated impurity models, involving either more environmeninopurity degrees of freedom. The
numerical calculations for these (e.g. two-channel) n®det much more cumbersome because
the Hilbert space grows by a factor 16 in each step of thetiterdiagonalization, instead of the
factor 4 in the single-channel case.

The two-impurity Kondo model as paradigm for the compatitid local Kondo screening
and non-local magnetic correlations was studied with NRG4By §4, 45]. Here, the focus was
on the question, if the two regimes are connected by a quaphase transition or rather by a
smooth crossover. Later on, such studies were extended tavthichannel situation [46].

Originally, the NRG was used to determine thermodynamic g@mogs of quantum impu-
rity systems. The calculation of dynamic quantities witk tHRG started with th& = 0 ab-
sorption and photoemission spectra of the x-ray Hamilwoij, 48], followed by thel = 0
single-patrticle spectral function for the orbitally noaggnerate and degenerate Anderson model
[49, 50]. The resulting spectral functions are obtainedlbereergy scales, with a resolution pro-
portional to the frequency. Calculation of finite-temperatspectral functionf(w, T ) are more
problematic since all excitations can, in principle, cinmite.

Nevertheless, the NRG has been shown to give accurate résmultaw, T), which also al-
lows to calculate transport properties [51]. A subsequeretbpment is the introduction of the
concept of the reduced density matrix, which allows to dateudynamic quantities in equilib-
rium in the presence of external fields [52]. The calculabbnon-equilibrium transient dynam-
ics requires a multiple-shell NRG procedure [53] and has la@eomplished with the aid of a
complete basis set and the reduced density matrix [54]. Tsiedpplications of this approach
show very promising results, both for fermionic and bosayistems [54, 55]. Another recent
generalization of the NRG approach is its application to ¢uanmpurities coupled to a bosonic
bath [56].

There is no restriction on the structure of the impurity paErthe Hamiltonian; it might
contain, for example, a Coulomb repulsion of arbitrarilygkrstrength. The bath, however,
is required to consist of non-interacting fermions or basartherwise the various mappings
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described below cannot be performed.
Basically all the NRG applications use the following scheme:
a) Division of the bath spectral function into a set of logamic intervals in energy.
b) Reduction of the continuous spectrum to a discrete seatds(logarithmic discretization).
c) Mapping of the discretized model onto a semi-infinite nhai
d) Iterative diagonalization of this chain.

e) Further analysis of the many-particle energies, matements, etc., calculated during the
iterative diagonalization. This yields information ontgtaand dynamic properties of the
guantum impurity model.

Parts a),b) and c) of this strategy are sketched in Fig. Zh&.NRG discretization parametar
defines a set of discretization pointsA\~", n=0,1,2,..., and a corresponding set of intervals.
The continuous spectrum in each of these intervals (see2Flga) is approximated by a single
state (see Fig. 2.1 b). The resulting discretized model jgp@d onto a semi-infinite chain with
the impurity (filled circle) corresponding to the first sititlois chain. Due to the logarithmic dis-
cretization, the hopping matrix elements decrease exjpiatigwith distance from the impurity,
ta OA~2[20].

Quite generally, a numerical diagonalization of Hamileonmatrices allows to take into ac-
count the various impurity-related terms in the Hamiltonisuch as a local Coulomb repulsion,
non-perturbatively. Apparently, the actual implememtatof such a numerical diagonalization
scheme requires some sort of discretization of the origimadel, which has a continuum of bath
states.

The quantum impurity model in the semi-infinite chain formsadved by iterative diago-
nalization, which means that in each step of the iterativeste one site of the chain is added
to the system and the Hamiltonian matrices of the enlargesta are diagonalized numerically.
As already pointed out, without taking further steps to Elthe size of the Hilbert space this
procedure would have to end for chain sizesx010. Here the renormalization group concept
enters the procedure through the dependence of the hoppitix lements on the chain length,
t, O A~"/2. Adding one site to the chain corresponds to decreasingtleant energy scale by a
factorv/A. Furthermore, because the couplitpgo the newly added site falls off exponentially,
only states of the shorter chain within a comparatively $ewargy window will actually con-
tribute to the states of the chain with the additional sithisTobservation allows to introduce a
very simple truncation scheme: after each step only thedblyang Ns many-particle states are
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Figure 2.1: Initial steps of the NRG illustrated for the single-impurity Andersmalel in which an im-
purity (filled circle) is coupled to a continuous conduction band with the splefttnction A(w); a) a
logarithmic set of intervals is introduced through the NRG discretization paeavigb) the continuous
spectrum within each of these intervals is approximated by a single state wigsgonding weight; c)
the resulting discretized model is mapped onto a semi-infinite chain where thatymmuples to the first
conduction electron site via the hybridizatidnthe parameters of the tight-binding model (see Ref. [21]
for technical details). The figure is adapted from [21].

retained and used to build up the Hamiltonian matrices ohte iteration step, thus keeping
the size of the Hilbert space fixed as one walks along the chain

However this method also has some limitations of appligdgbibince the logarithmic dis-
cretization is a principal feature of NRG this scheme acelydakes into account only the small
vicinity of Fermi level. For systems with flat DOS of free di@ms it works perfectly but all
the fine features of bath DOS apart the Fermi level are takienaiocount with less precision.
Another problem is, that during the NRG procedure one thramas/ahe highest bath states that
can lead to wrong spectrum of high-energy excitations.
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2.2.3 Quantum Monte Carlo; Hirsch-Fye method

The quantum Monte Carlo (QMC, for review see [57]) scheme isrthst universal tool for the
numerical study of quantum many-body systems with stromgetations. So-called determinan-
tal guantum Monte Carlo (QMC) scheme for fermionic system&apgd more than 20 years ago
[58, 59, 60, 61]. This scheme became nowadays standardfautherical investigation of phys-
ical models with strong interactions, as well as for the quanchemistry and nanoelectronics.
Although the first numerical attempts were made for a modehiHanians with local interaction,
the real systems are described by the many-particle actiamgeneral form. For example many
non-local matrix elements of the Coulomb interaction do rastish in the problems of quantum
chemistry [62] and solid state physics [63]. For realis@scription of Kondo impurities like
cobalt atom on metallic surface it is of crucial importanceuse the spin and orbital rotation-
ally invariant Coulomb vertex in the non-perturbative inigetion of electronic structure. The
recently developed Dynamical Mean-Field theory (DMFT, Gaapter 5 and Ref. [3]) for corre-
lated materials involves a non-trivial frequency-depenid@ath Green function, and its extension
[64] deals with an interaction that is non-local in time. Mover, the same frequency dependent
single-electron Green-function and retarded electrestsdn interaction naturally appear in any
electronic subsystems where the rest of system is intebocate

The determinantal grand-canonical auxiliary-field sch¢&& 59, 60, 61] is extensively
used for the interacting fermions, since other known QM@suss (like stochastic series expan-
sion in powers of Hamiltonian [65] or worm algorithms [66]easuffering from sign problem
for this case.

The following two points are essential for the Hirsch-Fy¢edminantal QMC approach:
first, the imaginary time is artificially discretized, anetHubbard-Stratonovich transformation
[67] is performed to decouple the fermionic degrees of fomedAfter the decoupling, fermions
can be integrated out, and Monte Carlo sampling should benmeed in the space of auxiliary
Hubbard-Stratonovich fields. Hirsch [60] proposed a stedatdliscrete Hubbard-Stratonovich
transformation to improve the efficiency of original schertés worth to note that for a system
of N atoms the number of auxiliary field scalédN for the local (short-range) interaction and as
N? for the long-range one. This makes the calculation rathefféntive for the non-local case.
In fact the scheme is developed for the local interactioy.onl
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The one band the single-site impurity model is specified leyithaginary time effective
action

S = —/OBdeT’ch}(t)gc1(t—T’)co(t’)

B
+/0 dtun; (T)n (1), (2.18)

GoL(iw) =i+ p—Ag(iw), (2.19)

wherecI,(T), Cy(T) are Grassmann variablgsgenotes the chemical potentidl,is on-site repul-

sion andAq(iw) is a hybridization function that describes transitions itlite bath and back. The
task of the impurity solver is to compute the Green function

Tr [Tee el (1)c()]

G(1—T1) = (Tc'(1)e(T)) g = Tr{Tee S|

(2.20)

for a given hybridization function.

The algorithm of Hirsch and Fye [26] requires a discret@atof imaginary time intd\
slicesAt = 3/N. In each time slice, the four-fermion tetdn;n| is decoupled using a discrete
Hubbard-Stratonovich transformation:

e AU N +(ATU /2) (n+n)) _1 z ghsim+n) (2.21)
s=+1

N

where the parametéris defined ad = arccosi{e*V/?).

The Gaussian integral over the fermion fields may then beopadd analytically, yielding
an expression for the partition function of the form

Z= z det[D;(sy,...,sn)] det[D (s1, ...,sn)] - (2.22)
{si}
Here, Dg(s1, ...,sn) denotes theN x N matrix of the inverse propagataj ! for a particular
configuration of the auxiliary Ising spin variablss, ..., sy [3]. The Monte Carlo sampling
then proceeds by local updates in these spin configuratieash successful update requires the
calculation of the new determinants in Eq. (2.22), at a caatmnal cost 0fO(N?),

The problem with this approach is the highly non-uniformeistependence of the (metallic)
Green functions at low temperature and strong interactiohs initial drop of the Green function
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Figure 2.2: Computable regions (hatched) inThé parameter space that can be computed with advanced
Hirsch-Fye method present in [72] and with conventional Hirsch-Fye0Jdivom Ref. [73]) for the two-
orbital Hubbard model witk)’ = 4 eV and bandwidtiW = 2 eV. T andJ are ineV. From Ref. [72].

is essentially~ e Y72 from which it follows that a fine grid spacing ~ U is required for
sufficient resolution. As noted in Ref. [68] a resolution ofesistN = 5BU is typically needed
to get systematic errors below the statistical errors obageably accurate simulation.

At half filling, the matricesD; andD, are proportional and following (2.22) one can see
that the Hirsch-Fye algorithm under these conditions dagssuffer from a sign problem in
single-orbital case. In fact, a closer analysis reveals tthe sign problem is absent for any
choice ofp for single-orbital impurity problem [69]. Two-orbital esttsion of QMC was first
done by M. Rozenberg [70]. The general multiorbital QMC folisra for DMFT calculation
proposed by [71]. All the mentioned above QMC schemes weirggusmplified interaction
part of Hamiltonian containing only terms of density-déy$orm. Including of spin-flips and
pair hoppings terms to these schemes lead to sign problesigfaficant reducing of allowable
parameter range). Finally some improvements have been [d@hpeand it became possible
to take into account spin-flip terms in 3-orbital AIM. Howe\éis algorithm has very limited
applicability (see Fig. 2.2).
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The most hampering problem arises from the time discréizaOne has to take a large
enough number of time slicé$ or in practice to check that the results are unchanged Whsn
increased, which is costly since the computation time emeepproximately likal3.

The problem of systematic error due to the time discretratwas addressed in several
works. For bosonic quantum systems, continuous time logarighm [74], worm diagrammatic
world line Monte Carlo scheme [66] and continuous time patkgral QMC [75] overcame this
issue. Recently a continuous-time modification of the femu@MC algorithm was proposed
[76]. It is based on a series expansion for the partitiontiondn the powers of interaction. The
scheme is free of time-discretization errors, but the Huihi&tratonovich transformation is still
invoked. Therefore the number of auxiliary fields scaledlanhy to the discrete scheme, so that
the scheme remains local.

Moreover the fact that the imaginary time Green functioni&ig on discrete set of points
leads to another problem: to make in continuous one has teplses. However that for this
technique to be precise, one needs to supplement the @isgreen function by the value of its
derivatives at = 0,3, which can be reduced to a linear combination of two—pa&rtcrrelation
functions computed by the QMC calculation [77]. Failure &abwith this problem accurately
can lead in some calculations to large errors.

Another problem is connected to the way of discretizatiothef bare Green function: if
a computation is made far from the particle-hole symmeiaigec the Weiss functiog can be
very steep close to =0 orT = 3. As a result, it is not well sampled by the regular mesh
time discretization, leading to potentially large numatierror. A simple practical solution is
to replaceGp by éo‘l(ioon) = go‘l(ioon) — o wherea is a diagonal matrix chosen ag,, =
liMg—.eo( Gy Hpu(). The new impurity problem is equivalent to the initial onfthie o term
(which is quadratic ird and diagonal in the indices) is simultaneously added torttexaction
(or equivalently to the right hand side of the correspondiegoupling formula). In the new
impurity problem howeveéo is less steep thagy close tot = 0 or 1 = 3, so the numerical
error introduced by discretization is less important. Theilar problem appears even in the
particle-hole symmetric case if the temperature is low @dng larger than the bandwidth: the
G (1) becomes very steep closette- 0,1 = 3 and in almost all intervdl0, B] it has a very small
values. To overcome this circumstance one can use Pr@e@MC [78]. The main idea of this
method is the following: the non-interacting Green funetip(t, ') is truncated to &< 1,7’ < 6,
where 0 is cut-off parameter. It means that we have all the time slieeactly in the most
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important region ofG(t,t’) function. Then the limi® — o is taken and the result for ground

state is obtained, so it is a zero-temperature method. Téikaed was actively discussed [79, 80]
but found to be completely applicable for the half-filled teyss. Nevertheless some problems
related to Anderson nonorthogonality catastrophe canaappaon-half-filled case [79].

Recently, a new class of continuous-time QMC impurity sa\&@T-QMC) has been devel-
oped [81, 68, 82]. These methods do not suffer from the pnodlmentioned above. Both these
diagrammatic QMC approaches rely on an expansion of théiparfunction into diagrams and
the resummation of diagrams into determinants. A local tgptiéonte Carlo procedure is then
used to sample these determinants stochastically. The ppmaches are complementary in
the sense that the weak coupling method [81] uses a pertmbatpansion in the interaction
part, while the hybridization expansion method [68, 82&tsethe local interactions exactly and
expands in the impurity-bath hybridization. In the weakhgling case, the determinantal formu-
lation, which eliminates or at least greatly alleviates sign problem, originates from Wick’s
theorem. In the hybridization expansion, when startingifeoHamiltonian formulation, the de-
terminants emerge naturally from the trace over the bates{82]. The CT-QMC scheme will
be described in section 2.3.

2.3 Continuous time quantum Monte Carlo solver

2.3.1 Perturbation expansion

Recently, A. Rubtsov proposed a new approach for solving guamhpurity models [81]. That
continuous-time method is a diagrammatic QMC algorithmalldan be regarded as an exten-
sion of ideas originally introduced in Ref. [66] to fermiorsgstems. The algorithm is based
on a diagrammatic expansion of the partition function inititeraction term and a stochastic
sampling of the resulting diagrams (see Fig. 2.3). This sehes suitable for non-local time-
dependent interaction, but in this section we shall disoa$sthe simplest case: one-site impu-
rity model with the local in time interaction term of the fotm; (T)n| (1). The action (2.18) can
be splitted into two parts: unperturbed actigof a Gaussian form

S = —/OBdeT/ZCI,(T)ggl(T—T/)CG(T/)
(2.23)
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and an interaction part

B
S = [ dtUn; (O (1), (2.24)

The weak coupling expansion &f= TrTye~ (21Sn) jn powers ofU then reads

1k
7z — Z( 1) /drl...drkTrTTe_SO
k!

xUkn; (ta)n; (t1)...n¢ (TN (Th).- (2.25)

Wick’s theorem leads tok2 terms for each perturbation order, and their combined htagythe
determinant of the matrix produ€; (ts,...,Tx)D|(T1,...,Tx). The (i,j) element of thesk x k
matrices can be found using the mean field function (2.19)

D5 = Go(Ti —T1)). (2.26)

Notice, that the perturbation order (and, as a consequéaedést matrix size) for different spins
can be different in both weak-coupling and strong-coupkpgroaches. In this section this
dependence is omitted for simplicity. Then the partitiondion reads

Z= Z (_lg)k/dn...drkdet[Dﬂ det[D|] (2.27)

and the Monte Carlo sampling proceeds by local updates (randsertions/removals of ver-
tices). Atfirst sight, it appears that the tefmU )X would lead to a bad sign problem for repulsive
interactions. A. Rubtsov found a way to get around this problsy redefining the interaction
term Sy with a small negative constaatas

= 5 [ar[m@-anm-@a-a)
+(0(0) — (1 - a))(ny (1) — ) | (2.28)

and the quadratic tern&, in a way to compensate for this change [81]. The detailedrgesmn
of this procedure is presented in sec. 2.3.4.
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Figure 2.3: lllustration of the diagrams generated by the continuous-time im@alivgrs. a) Weak-
coupling method: third order diagram consisting of three vertices (diamehdst)n, (1) linked by lines
representing the functiogs (Tt —1;). b) Hybridization expansion method: here, the orders of the dia-
grams for up- and down-spins can be different. Each creation opeff(@,) (empty dot) is connected

to an annihilation operatax;(1e) (full dot) by a line representing the hybridization functifg(te — Ts).

The black lines correspond to a particle number 1, empty spaces to partiolegen@, so the overlaps
between the lines for up- and down-spins yield the potential energy.thrapproaches, the diagrams cor-
responding to different connectingor A lines are summed up into a determinant and these determinants
are sampled by a Monte Carlo procedure [83]. The figure is adaptedRef. [83].

Strong coupling continuous-time algorithm (see Fig. 2s3)btained by expanding in the
hybridization functiong\g, while treating the chemical potential and interactiomigrexactly.
This approach has been worked out in Refs. [68, 82]. For theidightion expansion, one
decomposes the effective action (2.18) into the hybrichnagpart

s ana > Co(1)Ao(T-T)c5(T) (2.29)
0 £ oM o :
and the local part
B + a B
S = Z/o dtcg(T) (a - IJ> Co(T) +U/O dng (T)n; (1). (2.30)
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Expanding the partition functiod = TrT;e~ (%) in powers ofA, leads to

Z = Trie ™ 1/BdT dt /Bdr’ dr,
X [co(rl)Ac(rl = A ARE
. Co(T) Ao (T — TL)CI,(t,’()] . (2.31)

The individual terms in this series can have positive or tiegaign, but as shown in Ref. [68],
it is possible to express the combined weight of kheliagrams corresponding to a given set
{cg(ti’), Co(Ti) }i=1,...k Of creation and annihilation operators as the determinaneatrix Mg g,
whose entries are thte-functions,

MEL = Ag(ti — ). (2.32)

The partition function finally reads

s B, /B
Z = TrTisre n%/ dry [ dtp...
o 0 141

B e
/ di/ digdetDr g So

Tea T
X Co(Tk)Ch(Th) ... Co(T1)Ch(Th), (2.33)

whereot denotes an upper integral bound which "winds around” theleiof length. If the
last segment winds around, the signis —1 and otherwiser1, whereasy, compensates for
any sign change produced by the time ordering operator. rHoe finds an easy and intuitive
interpretation in terms of configurations of segments nmaykhe times where a particle of spin
o is present [68]. In such a representation, igart of § is determined by the total length of
the segments while the interaction is given by the total lagebetween segments of opposite
spin (see Fig. 2.3).

On Fig. 2.4 one can see the advantage of both CT-QMC methodsHinszh-Fye one.
However Hybridization expansion method scales slower Wathering the temperature (for
performance comparison between theese methods see Ref. [BH]it is very nontrivial to
use the hybridization expansion method in case of multiterbmpurity. At the moment this
solver has been extended to 2-orbital model [82] a complexthat involves explicit trace over
{cé(r{),co(ri)}izlw_’k operators (2.33), whereas in the weak-coupling CT-QMC ntkthe ex-
tension to multi-orbital problems can be done straightBodvway (see section 2.3.3). With
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Figure 2.4: Scaling of the matrix size with inverse temperature and interactemggtc Temperature
dependence fdd /t = 4. In the case of Hirsch-Fye, the resolutidr= fU has been chosen as a compro-
mise between reasonable accuracy and acceptable speed, while Hgeawaitrix size is plotted for the

continuous-time solvers [83]. From Ref. [83].

regard to the main aim of this work, namely developing andiegtion of multi-orbital impurity
solver, we shall use weak coupling CT-QMC method.

2.3.2 Weak coupling CT-QMC, detailed description

As far as the weak coupling CT-QMC method is the most simplestextended to the multior-
bital systems, we shall use it as the main method in our stadfuis section we start to describe
this method in details.

First we consider the one-orbital model with on-site int&icn that is non-local in time:
UTllTTZZCT( 1)c(t1)c(15)c(t2). We have no explicit spin indices here, but effectively thet fpair

of operators'(t})c(11) corresponds to one spin specie ah(t,)c(t2) to another one [81].

Then the partition function (2.25) reads:
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o © B B B B
Z2=N Z= / dt / dr’.../ dt / At Qu(T1,Th, ., Tk, Toy ), (2.34
kZO K kZO o 0T [ At o dTa | Ty K(T1, 7,0 Tk Tox),  (2.34)

Qk _ ZO< 1)kUT A Ur T 1T2kDT1T2 Tzk
2

T T
k 12 k—1'2k 112 T2k

HereZo = Tr(Te ) is the partition function for the unperturbed system and

DE::;EE =< Tc(t))c(ty)...cT(th)e(taw) > (2.35)
is a fermionic determinant. Hereafter the triangle braskkinote the average over the unper-
turbed system:< A >= Zo‘lTr(TAe—SO). SinceS is Gaussian, one can apply Wick theorem
to decouple the average (2.35). Thus similar to Eq. (ZDTT?')':?‘; is a determinant of Rx 2k
L1,
matrix which consists of the bare two-point Green functigis’, 1) =< Tc'(t)c(1) >:

D2 = Dyt = det| G (1], 1) (2.36)

L
Now we can express the interacting two-point Green fundiorihe system (2.18) using
the perturbation series expansion (2.34). It reads:

G(T,1)=Z2t<Tc(W)c(r)e W >= Z_lz/dTl/dTll.../dT’ZkG(Zk) (U, T)Qu(T1, T, oo, Ty
(2.37)
whereG(®)(1’, 1) denotes the Green function for a current term of series:

< TN (T)e(r)c(t))e(tr)...cT(th)e(tax) >

@07 1) —
G (T aT) < TCT('[&)C(T]_)...CT(TIZK)C<T2|() >

This is nothing else that the ratio of two determinar$?*% /D(%). Similarly, one can write
formulas for other averages, for example the two-partickee@ function which is related to four-
point correlation functions and contains important infatimn about magnetic excitations (see
sec. 2.3.5):

X(T, 7,7, 7" =2 < T (@) e(r) ' (@ )e(r")e W >

=21y fou fan. ot ® @ v i ), (239
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where

2k) (.[ 7.1 T///) < TCT(T,)C(T)CT(T/N>C(TN)CT(T,1)C<T1>---CT(TIZk)C(TZK) >
T < Tt (t))e(ta)...cT(th)c(tx) >

X!

is the ratio of two determinant®(?2) /D(%) |

An important property of the above formulas is that the irsegs stay unchanged under
the permutations;, Ty, Ti+ 1, Tir11 < Tj,Tjr, Tj1+1,Tj41 With anyi, j. Therefore it is possible to
introduce a quantityK, which we call "state of the system” and that is a combinatbnhe
perturbation ordek and an unnumbered set bfpoints. Now, denot€®yx = kIQy, where the
factork! reflects all possible permutations of the arguments. FeiGheen functions! in the
nominator and denominator cancel each other, so@Ghat G. In this notation

Z = [QkDIK], (2.39)
(2.40)
G(t,1) =271 [ Gk QkDIK],

where [ D[K] means the summation ovkrand integration over all possible realizations of the
above-mentioned unnumbered set at dach

The important notice is that the series expansion for anmpi@lwaysconverges for the
finite fermionic systems. Mathematically rigorous prooh ¢ constructed for the Hamiltonian
systems. Indeed, many-body fermionic HamiltonigfagsandW have a finite number of eigen-
states that is%b, whereNp, is the total number of electronic orbitals in the system. Nowe
can observe tha®y < const- WX, whereWay is the eigenvalue oV with a maximal modu-
lus. This proofs a convergence of (2.34), becaklsa the denominator grows faster than the
nominator. In calculations for the non-Hamiltonian systemo indications of divergence were
observed [81].

Although formula (2.39) looks rather formal, it exactly oesponds to the idea of the pro-
posed QMC scheme. A Markov random walk in a space of all ptes&ibs performed. A
probability density to visit each state Bx 0 |Qk|. If such a simulation is organized, one can
extract the sign of each term:

G(t,1) =sG1,1)/5
Overline here means a Monte Carlo averaging over the randdk) a@ds = Qx /|Qk| is an
average sign. Two kinds of the trial steps are necessaryslomead try either to increase or to
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Figure 2.5: Schematic picture of random walks in the space of perturbati@nloaccording to pertur-
bation series expansion (2.34) (upper panel) and an example of theraistéay the perturbation ordér
(lower panel). From Ref. [81]

decreas& by 1, and, respectively, to add or to remove the correspgréinad of "coordinates”.
Then the standard Metropolis acceptance criterion can bgtiea@ted using the ratio

||W|| D2k+2

o1 | o (2.41)

for the incremental steps and its inverse for the decrerhenés.

In general, one may want also to add-remove several tetsanestaneously. Thus orga-
nized random walk is illustrated by Fig. 2.5, upper panelk Tdwer panel of the figure presents
a typical distribution diagram for a perturbation or#en the QMC calculation.

The most time consuming operation of the algorithm is a datmn of the ratio of deter-
minants and Green-function matrix. It's necessary forwakion of MC weights as well as for
Green function. There exist so called fast-update formidasalculation of the ratio of deter-
minants and Green-function matrix. Usual procedure t&kesperations, while the fast-update
technique allows one to perforN? or less operations, whelis a matrix size. Usually, the two
considered types of steps- k+ 1 andk — k— 1) are sufficient. However, the stebs- k+ 2
can be also employed in certain cases and is useful for twitzlgaGreen functions.

The only matrix which one need to keep during MC steps is tiilerse matrix of the bare

-1

Green functionsM ) = 92 - In the following formulae matriM ) is extended to bé2k +
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1) x (2k+ 1) matrix with Moy 1 2x+1 = 1 andMac1i = 0, M 21 = 0, which does not change
the ratio of determinants.

It is easy to obtain fast-update formulas for the step k+ 1. The expressions for the
matrix M(Z+1) has the following form [81]:

—L1 kAt

’

Maki1) = ")
—Lok kAt

A Ry11 o A Rk Al

whereM; ; = Mi(j-k) +Li 2k1A T Roks1j R = zngi,nMr(fjk) andLij =5, Mi(ik)gn,j andA is equal

to the ratio of two determinants:

detD 1) 2 (2K)
= Ok 1,2k+1— » O2k4+1iM 9 k1 = A
detD(Zk) i.,jZ:l NN

For the stegk — k— 1 (remove of the column and rom) the fast update formulas for matrix
M(2-1) and the ratio of determinants are as follows:

(k1) _

MZMm
2k ,
A =m0 - (2.42)

M N (k)

detDip 1) M (29
detD(Zk)

= WMnpn".

One can also obtain fast-update formulas in the same maonstefpst+2 [81]. Let’s introduce
a 2x 2 matrixA:

2% -
Aqgq =Gaqq — Zl GaiMj " Gig (2.43)
=

where{q,q'} = 2k+ 1,2k+ 2. Then, for example, the ratio of two determinants is equal t

detD 24 2)

= det|A|.
detD(2k) e| |

Using the fast update formula féf [81], the Green function can be obtained both in imaginary
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time and at Matsubara frequencies:

G(t,7) = ZQTT. Mi G (1}, T) (2.44)
N

I

(2.45)

éiMi,jé"’“”)] G(w).
1]

Here G(1',1) and G(w) are the bare Green functions in imaginary time and Matsufpegaen-
cies correspondingly.

2.3.3 Multiorbital formalism

The impurity action (2.18) can be rewritten in the generaltiobital form with general time-
independent Coulomb interaction the following way:

Smp=S+Snt= — // io( g” —1)cjo(T')dtdt

|10

2 ijk%o//o Uijia CFG(T)C}G/ (T)Ckor (T)Cia(T)dT, (2.46)

wherei, j,k,| are orbital indicesy, 0’ - spin indicesG; local non-interacting Green function for
correlated orbitals andij, is Coulomb interaction matrix element:

Uik = (i1j2 Vi3] kal1) (2.47)

herei1 = ; (r1) is local orthogonal wave function for correlated orbitat&l & % is screened
spin-independent Coulomb pair interaction between elestet the coordinatag andr,. We
used standard quasiatomic LDA+U parametrization of Coulaomalrix for d-electron via effec-
tive Slater parameters [15] or equivalently via two parareet screened Coulomb integtal
and Hund exchange integrd] keeping ratio of multipole parameters equal to atomic eslu
[15]. We choose the orbital basis related to spherical harcsdo be sure that magnetic orbital
quantum number i;j; matrix satisfied the following sum roulésk = j+1. In this case we
will get rid of so-called three site terms lik&jwk with i # | which produce a large sign problem
in the case of real cubic harmonics. For details of congtnaif the interaction part see sec.
4.2.

38



Following the general idea of the weak coupling CT-QMC [81] &gand the partition
function around the Gaussian part of our multiorbital at{ip.46):

Z < (=n P Pt (U ot T
Z_Z ni2n Z } 0 T1... 0 Tn l1J1k1|1Cilolcjloflck10’lc|101"' |nJnknlncincncjnchckncﬁclnon o’

n {ijkloo’

where we define the average over Gaussian part of the action as
(...>0:ZO‘1/D[CTC]...eS°.

The integrating over the Gaussian action gives the fermideierminant over the non-interacting
Green functions with the rankn2

Z (_1)n g P 2nx2n
Z :; o {”klz }/0 dTl.../o dTnUi, jikyls - Yinjnkal, dELG . (2.48)
ijkloo’

In order to minimize the number of different interactionties we group the different ma-
trix elements of multiorbital Coulomb interaction which lesthe similar structure of fermionic
operators. Sinclij matrix elements are spin independent, to generate all tlantke inter-
action in the action (2.46), one should look over all pogsitdmbinations of orbital and spin
indices. Some combinations can violate the Pauli princgrld should not be taken into ac-
count. For CT-QMC algorithm it is useful to transfer interantpart in the following form:
Uijki CiTgC| oC}rof Cko' -

The interaction terms can be transformed to the desired,fdapending on relations be-

tween spin and orbital indices:

T
jo”

of indices, that allows the same commutation, is the follmyioc = o', i # j andk # | (the

a) if 0 # 0’, we can just commutgs andc,y and thergg andc; ,. Another combination

later is following from the Pauli principle), and al§a# |. These terms we can transform to the
following desirable representation:

Hint1 = Uijui CiTgCIOC}Lo/Cko’- (2.49)
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b) in the case whea = ¢’ andj =1 we can commuteyy andc! , since in this case+# |

jo'r

andk # | due to the Pauli principle:

ta o
Hint2 = —Uijki CigCkoCjg

Clo (2.50)

After generating all this terms it is necessagymmetrizeall the terms with equivalent quantum
numbers (for exampléJ;jy CiTo.Cjo-Clo.,qo-/ andUk”jClo.,Qo-/CiTono- ). Then all the procedures de-
scribed in sec. 2.3.2 are performed without any modificateomd Green functions of interacting
system can be extracted from thematrix similar to (2.46):

Gij(t,T) = Gij (1,7 z Gijo (T, T )Mo mGij (Tm, T') (2.51)
(2.52)
Gij (@) = Gij (@ z Gijn(0)Mnm€“ ™ G i (w), (2.53)

wherei, j are orbital indices and, m are running indices corresponding to summation over all
the perturbation orders up to the current ¢heThe indicesj, andi,, denotes orbital numbers
corresponding to the part of interaction field containinggimary time point, andty, respec-
tively.

2.3.4 Sign problem. Choice of 0 parameters

In order to reduce and in many cases avoid the sign problem-QKT, we introduce additional
guantitiesa, which can be in principle a function of time, spin and nundifdattice site (orbital).
Thus up to an additive constant we have the new separatidre@fdtion (2.46), see Ref. [81]:

@
I
o\
gon)
o\
gon)
|
=
AN
=
H\
+
NI

> ug;(uilkj+ulijk)5rr/> ¢l cjodtdt’ , (2.54)
(KIo"}
(2.55)

t t /
St = 5 / Uiji (CigClo — 01y ) (CjrCkar — A )dT.
{ljkloo’

NI

One can see, that the first item of (2.54) in Matsubara spacesponds to bare Green'’s function

Gyt = (ion+ 1) &j — Bjj (wn), (2.56)
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hereA is hybridization matrix. The second term is just a constalnictv we can absorb to the
new chemical potentigh.” Therefore we can rewrite the bare Green function in thealg
matrix form:

G 1= (itn+i)1-A (2.57)

The optimal choice of prarmeteuxﬁ would lead to effective reduction of interaction terms ia th
action Eqg. (2.54) and minimization of average perturbatider in Eq. (2.48).

Using the fact thaUjk; = Ujijx following from the definition of the Coulomb matrix ele-
ments (2.47) and Eq. (2.54), the relation betwééandg can be represented in the following
spin and orbital matrix form:

G t=g1t-(au). (2.58)

Now we can discuss a simple system: 1-band isolaked Q) Hubbard atom at half-filling.
In order to arrive half-filling in interacting system the chieal potential should bg = U /2.
Thus the bare Green function (2.56)latof order of bandwidth have an occupancy close to 1.
(figures with 2 types of chem. potenti&}(1)) It leads to difficulties with numerical evaluating of
G (1), because on almost all the segmignp] it has very small values and all the details of initial
bath DOS become concentrated in small vicinities ef 0 andt = 3. Since we use uniformal
sampling oft points in|[0, B] range, accumulating of sufficient number of points nearO and
T = 3 takes unreasonable long time. Therefore from computdti@asons we should keep the
occupancy of bath Green function unchanged.

In this case we need to put the many-body chemical poterdtdabrthe bath Green function
but into the interaction part of Hamiltonian. In order to dastwe have to choose thein a
propper parameters. For the concerned case of isolatedadriibbom at half-filling we can put
01+ az = 1, that give us (According to (2.58)) = O for half-filled case at any because of
cancellation ofin G~ and(GU) = (*15%2)U = 4, that corresponds to half-filling. However
the simplest choica; = a, = % leads to rejecting of stepist 1 since the ratio of correspondent
determinants is exactly zero.

We also need to minimize the fermionic sign problem whichligna@ad us to such expres-
sion for diagonal alpha’s parameters:

al +all —a (2.59)
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wherea has to be found iteratively in order to get a proper occupatiomber of correlated
electrons. In the case of half-filled one-band Hubbard madell leads to the correct chemical
potential shift of the% and average = % which corresponds to the Hartree-Fock substraction.
The diagonal alpha corresponds to the following interactieldsU;;;i nishjo. For non-diagonal
alpha’s which corresponds to the fields of general fokm c;rc,qoc}rc,ckg/, wherei #£ | andj # k

we find the following optimal condition:

al +ak =0 (2.60)

Since we symmetrize the interactibh matrix it is needed to extend the definition @f
matrix in order to keep all the terms in the interaction paindial action (the last item in Eq.
(2.54)). It can be done the following way [81, 84]: for evéhyy field in 50% of updates we
deliver thea parameters as

al = Udiag, ak=a- Udiags
and in another 50% as
o =&~ dgiag, 0 = Ogiag
for the case of =1 andj = k. For non-diagonal fields, i.€ # | andj #k

il ik
a" =apg, a=—adpng,

with 50% probablility and

il ik
a' = —dpg, 0 =0apg

otherwise. It was found that the sign problem is eliminatethe case wheagjag < 0 anda > 1
for occupancyn > % per orbital andgiag > 0, a < 1 otherwise. The optimal choice mdiag\
parameter is few percent ¢fi| to keep minimal average perturbation order. Another proble
is a proper choice of non-diagona}q parameter. It is easy to see thgiy is proportional to
acceptance probability of non-diagonal field in the caserevtige bare green functiogjx = 0.
Since these processes are unphysical, the natural chaigg is 0. But it leads to division on
zero in the updating the inverse Green function matrix [&ih the other hand increasirng,q
parameter cause the sign problem. We find the reasonableecbfn,q to be of the order of
104, Moreover for some special cases like atomic limit, wh&kgn(t) = 0.5 a small noise
should be added to all thee parameters to avoid numerical divergency.

If it is not the case (for example if the choicemparameters described in (2.59) and (2.60)
leads to the sign problem in some particular form of inteascpart of Hamiltonian) the bare
Green function is corrected according to (2.61).
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For the general choice of tleeparameters the corresponding new bare Green function can
be written in the following schematic form:

~ ~

G =(icn+f)—-A—((G—al)U). (2.61)

If we choose then parameters in the above mentioned optimal way, then thedastin Eq.
(2.61) vanish automatically.

2.3.5 Four-point correlators

The most interesting quantity for spin systems is the magseisceptibility. Studying it give
us insight to low temperature behavior of correlated impesiand other physically interesting
systems.

Let us consider the behavior of impurity model in magnetitdfidhe z-component of the
magnetization operator is given by

Mot = Ma+Mc = —0gB(S+ ), (2.62)

whereg is Lande factor (it is the same for impurity and bath elect)pM;q; is total system
magnetizationM, and M. — magnetization of the impurity and band electrons respelgiiS,
s; are correspondingly z-components of the spin operator quiity and the spin of the band
electrons:

S= (M ), &= [ drsr), (263)

Nao = &%, (2.64)
Wherea;rj andag are creation and annihilation operators acting on impwtiéye respectivelyy

denotes spin. The definition of total susceptibiligy; of the system in homogeneous magnetic
field B is the following [20]:

Xtot = diB (Mtot) = Xa+Xe; (2.65)
B=0
Xa= - (Ma) (2.66)
a dB a Bzoa .
d
Xc = d_B<MC> B:07 (2.67)
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whereMj is the impurity magnetization and. is a magnetization of conduction electrogs,
andy. are corresponding susceptibilities. Note, tgatis not a susceptibility of pure system
without impurity. The susceptibility of the system of frde@rons without impurity

Xpure = X0 = (2.68)

— (M
dB< C>pure B=0

is just a Pauli susceptibility of pure metal. Therefore thia susceptibility due to impurityimp
can be expressed as a difference between susceptibilig abimplete system and the Pauli one:

Ximp = Xtot — Xpure = Xa+Xc—X8, (2.69)

where The total susceptibility;o; can be obtained by the linear response theory [85]. One can
show thatx, andy. can be expressed by retarded spin-spin correlation furgtio

Xa = —(0bB)? |X6R (©=0) + X (k= 0,0=0)] (2.70)
Xo = —(gre)? [XE5 (k = 0,K' = 0,0=0) + X¢& (k = 0,0 =0)] (2.71)

wherex(R) - are results of the Fourier transform of the following reied response functions:

Xea (t—t') = =i6(t —t') {[S(1), S()]) (2.72)

X (Kt —t') = —i8(t —t)VQ ([Sy(t), s,(k, )] ), (2.73)
X% (Kt —t') = —i8(t —t)VQ { [s2(K, 1), S(t)] ), (2.74)
X (kK t—t) = —i(t —t)Q ( [sy(k. 1), so(K/, )] ). (2.75)

Here s;(k) is - Fourier transform of the spin density(r), andQ is volume of the system.

Because the statistical averages in (2.72)-(2.75) are takbout external fields, the averages
are commutators of the spin operators in Heisenberg rempssm. It is known that retarded

response functions can be obtained as analytical contimuaf a corresponding temperature
correlation functions [33].

So the local property of the impurity @hiaa = Xjoc, Which is proportional to the local cor-
relation function of the impurity spin. The susceptibilitgs a smooth temperature dependence

44



(see e.g. Fig. 3.10). For a system with constant band DO Sbéiad) xjoc coincides with the
impurity susceptibilityXimp, Which is obtained as the difference between the susckytibii the
electron system with the impurity and without it (see Eq692.and Ref. [39]). Wilson defined
the Kondo temperature as the crossover temperature Whgrap(Tk) = 0.0701 [39, 86]. For
the system with strongly non-constant band DOS, e.g. désectisystemT Ximp(T) can strongly
deviate from the universal scaling curve of the clean sy$&th It turns out, however, that this
is an artefact of the definition ofimp, since the susceptibility of the electronic system fluetaat
strongly and can result in negative valuexgfp [88]. Therefore, we use instead the local static
magnetic susceptibilityioc = Xaa- The temperature response function in imaginary time reads

Xaa(T) = Xioc(T) = (Tt S(1)S(0)), (2.76)
whereT; is time ordering operator. In Matsubara space it has theviatlg form:
. B
Xos(ice) = | @ Xioq(T)c (2.77)

wherewg = 2n11/f3 is a bosonic Matsubara frequenay i an integer numbei} = 1/kgT -
inverse temperature) [85].

Since our method is based on perturbation theory with expams powers of interaction,
the magnetic susceptibility can be expressed as an expangiowers oHiy;. For example the
(SS;) correlator according to (2.63) can be expanded the follgwiay [89, 90]:

<§<m—m><m—m>>

100
:BZ

N[

(&S) =

QPB )2un / dts...dTny2
[D,E+2(1,2,...n+2)D#,(2,3,...n+1)

_p!

l1(1,2,..n+1)D}, 1(2,3,..n+2)] . (2.78)

Therefore we have to calculate products of determinantssofidrmDy, 2D, andDy 1Dt 1
where the index denotes size of the determinant. But we alreal calculate such a ratios of
determinants (they are used to perform the fast updatesvefse propagators matrix [81]).
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We could start from the definition (2.76), but from the congtiginal point of view it is more
convenient to calculate the susceptibilities on Matsulfi@guencies. As it was already men-
tioned in sec. 2.3.2, the CT-QMC method is suitable for caliod) not only two-point cor-
relators (local and non-local Green functions) but alsa-fmint correlators of a general form
Xijkl = <TTcicch/cl0,,c,T0,,,>, that contains important information about magnetic exins in the
system:

" N _ "
Xgr’”—z <TC c Cr/”c >=Z 1Z/dr1/drgL"'/dr,ka::Er”’(rl?ra_v'"7r/2k)Qk(r17r§I_a"'7r/2k)7

(2.79)
where
, <Tccc,c cJr crl...ch, ch2 >
rr / / 2k
Xr/r///(rl,rl,...,er) ¥
< Tcr, c'...c, C'k >
1

2k

is the ratio of two determinant® ., 4)/D 2 and in principle is equivalent to Eq. (2.78).

Now we consider calculation of thg- (1) = (T:S"(1)S (0)) correlation function, where

ST(1) = C}Y(T)Cl (1) andS (1) = CI(T)CT (T). We can express the ., 4)/D 2 ratio of determi-

nants by the combination &y 2)/D o) terms:

<cIczc§c4...> <CIC2...> <c§c4...> <c1c4...> <c§cz...>
- = — , (2.80)
(...) (...) (...) (...) (...)
where "...” is the same set of fermionic operators emerging from th&mgiofHi; in power of

the perturbation order. Fourier transforms are determihedollowing way:

G(w) = /O G(1)e ¥dr, (2.81)

i G(w)e*" (2.82)

for function of one variable and

46



BB o
G(oo,oo’):%/o dr/o dU/'G(1, 1) WO (2.83)

G(1,7) ; G(w, w ) —ivT (2.84)

for function of two variables. We need it because the "mormasefitGreen functions (obtained
according to Eq. 2.46, but not averaged over the Monte-Caologss) used to construct the four-
point correlators (see sec. 2.3.6) essentially dependwoivariables. Therefore thet—(Q)
dynamical susceptibility can be calculated on Matsubarqifencies following way [19]:

B /B -
X+(Q)=%/O dT/O dU'G(1,7)G| (T, 1)e 12 T)

/ dt/ dv'ss G (w1, W) G (g, W) (@17~ @2t +esT) —euT+QT-Q
B B wWy,02, (03 Wy=—
1 0
=5 > G+ Q02+ Q)G (w2, 001), (2.85)
W1,0Wp=—00

Note, that in Eq. (2.85F4(T,T’) denotes not the Green function in the commonly used sense but
tho "'momentary” product of the;r,(r)co(r’ ) operators, that have not been averaged statistically
over the Monte-Carlo process. The same way we can derive

Xibe,.(T) = (S,(1)S4(0)), (2.86)
where _ _
. ntb—n'

g =5 (2.87)

is operator of thez projection of spin on the-th orbital. Using the (2.87) definition we can
rewrite the average (2.86) in the following form:

SO = 5 (@) + (i onl @)~ (r@n ) - (don ). @89

In this calculation we assunte> 1. Using Eq. (2.80) we can rewrite the items of (2.88) in terms
of "momentary” Green functions:
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)
(@O ) (H@eb)...)  (@Fmeb)...) (@)
() 0 B O A
=Gl (t,n6H ,v) -G, )6k (), (2.89)

<n| (1 )nl( 7). > B <CIJ( )Cic( T).. ><CJT( )CJ( T).. > :Gici,(T,T)Gg?j (T, 7). (2.90)

(...) (...) (...)
Using (2.89) and (2.90) we can rewrite (2.88) as
(S(DSh(T) =

(G" (L6 (.7) -6 (1. 1)6! (V1) + Gl (1,n6! (v, 1) - G} (r,7)G] (1)
-&f@nel (.7) - ¢l nel (1.1)). (2.91)

Finally we can write dowrx,oc in the Matsubara space. To do that, we perform Fourier trans-
form (2.83) of Eq. (2.91):

Xihe, (Q) =

= f [G”(wl wp +Q)GY (w3, w3 — Q) + Gl (@1, w1 + Q)G (03,5 - Q)
B o o

— G¥ (01, w1 + Q)GP (03, 03— Q) — GE (01,00 + Q)G%j (w3, w3 — Q)}

-y [G'TJ (01+Q, 02+ Q)G (0, w1) + G (w1 + Q, w2+ Q)G (coz,ool)} :
B oy oo

(2.92)
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In order to get the dynamical susceptibility (2.92) in theatively simple form we made some
"shifting” of the running indices (for exampley — ws — Q) to reduce the number of variables.
We can do it because of translation invariance of time anctbee we have only 3 independent
parameters in Fourier transform. The summation in (2.9®)rimally done over all the frequen-

cieswy, fromn = —oo to n = o, therefore we can add some constant to the running indices.

2.3.6 Practical implementation of the susceptibilities ca Iculation

To calculate for example dynamical susceptibijty (Q) (2.85) we need 2-frequencies Green
functionsG(wi,w;j). They can be obtained from the(t,7') = G — zszog(r,ti)Mij G(t,1)

by Fourier transform (2.83). First we calculate the "exauzft of the susceptibility according to
(2.85) (Fig. 2.6, blocks a). Since we have not so many Matsuibaquencies, we need to include
asymptotics. The first correction to our result is "headl-taintribution (Fig. 2.6, blocks b). Here
we have exact values of first "momentary Green function” anl¢g asymptotics liwy, for the
second one (as we know, the Green functions in Matsubara $@ae the 1iw, asymptotics at
wp — ). The tail-tail asymptotics (Fig. 2.6, blocks c) for the fiwe frequencies is defined as

00 1 1 Nmax+N 2 Nmax+N 1

N=Nmaxt+N-+1 ('0“ w”+N (Dn (*)nJrN (Un 00n+N (A)n Wn-+N '

(2.93)

From symmetry reasons we have to add (2.93) twice, becausaveea sum over all the Mat-
subara frequencies,, fromn= —o to n = . Here we used the fact thai , = —wyn_1, if
the Matsubara frequencies are definedoas= (2n+ l)g. Note that only diagonal (where both
frequencies are equal) elements of 'momentary Green fumgthave well-defined asymptotics.
Moreover, only diagonal elements survive after the avexgqgf Green function over the Monte-
Carlo process.

Finally we compared the CT-QMC results for static susceljtiiloy ™ = x+‘(Q)|(Q:0) to
the exact solution for one-orbital Anderson impurity moaethe atomic limit (see Fig. 2.8;
analytical solution is derived in Appendix). A good agreammkeetween CT-QMC and exact
results within broad temperature range is found. Howeveavwbeome critical temperature the
system becomes “trapped” in one of the local energy minimahis particular case of one-
orbital AIM the impurity just become magnetized) and loosgodicity. It leads to considerable
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Figure 2.6: Calculation of susceptibilify" (Q) (2.85). a - head-head part, calculated exactly; b - head-
tail part, unknown diagonal values of Green function supposed to bal ¢g 1/iwy,; ¢ - tail-tail part
calculated analytically according to Eq. (2.93). The indiegs, andN corresponds to frequencies,

wp andQ (see Eqg. (2.85)) respectively.

underestimation of the susceptibility, although the statal error of the QMC process is still
quite small.

2.3.7 Analytic continuation

The quantum Monte Carlo simulation yields the Green fundtidmaginary timeG(t). For the
study of the spectral properties, transport or optics, Gfaaction on real axis are needed and
therefore the analytic continuation is necessary. Thisaegce amounts to solving the following
integral equation [22]:

G(1) = / doof (—w)e @A), (2.94)
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Figure 2.7: Typical form of the module of the "momentary Green function’he Kondo model in
Abrikosov’s representation (see Chapter 3) is used. The model pei@mee: exchange coupling strength
J=—-0.2eV, inverse temperatufg= 15eV 1, on-site constrait). = 0.5 eV. The indices; andn, cor-
responds to frequencies andw, (see Eq. (2.85)) respectively.

whereA(w) is the unknown spectral function, arfidw) is the Fermi function. This is a numer-
ically ill-posed problem becaug®(t) is insensitive to the spectral density at large frequencies
Most often this problem is solved using the maximum entroggirad (MEM) [91].

A new functionalQI[A], which is to be minimized, is constructed as follows

QlA] = aSiA] — 2x[A] (2.95)

where

L
XA = 3 (6(n) - G(ti))[CHij (G(t)) — G(1))) (2.96)
1=

measures the distance between the QMC data, averaged omgr@4C runs G;) and the

Green functiorG(t;) that corresponds to the given spectral functigm) according to equation
Eq. (2.94). Thegj is the covariant matrix containing the information aboatistical errors of

the QMC data. In A. Sandvik’s algorithm [92] we are usingstls a diagonal matrix. Then
EqQ. (2.96) can be rewritten as
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Figure 2.8: Magnetic susceptibilifyx ™ = Tx*‘(Q)](Q:O) of one-orbital Anderson impurity model in
atomic limit at half-filling. On-site Coulomb repulsidth = 1 eV, Tx in (gue)?, T in eV. Comparison of
exact solution (solid line) and CT-QMC results (red dots). Error banetds statistical error of the QMC
process.

L

X2[A = Z@(m ~G(1)))?/a? (2.97)

whereo? is a statistical error o&(t;). The entropy termS[A], takes the form
SA| = / (A(w) = m(0) —A(w) In [A(w)/m(c)]), (2.98)

wherem(w) is the so-called default model, that defines the zero of th@py and to which the
spectrum reduces in the absence of data, in our case it isacdns

For each value of the parameternumeric minimization of) gives as the corresponding
spectral functiolA® (w). If a is too large, the solution will not move far from the defaulbdel,
while smalla leads to unphysical oscillations caused by over-fittingntisy QMC data.

In the so-called historic MEM, the parameteis chosen such thaf = N, whereN is the
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Figure 2.9: Left panel: Green functidd(t) for 3-orbital degenerated AIM in atomic limit away from
half-filling, T in ev-1. Solid line — CT-QMC, dash — exact diagonalization. Right panel: DOS for 3
orbital degenerated AIM in atomic limit away from half-filling. Solid line — analyticantinuation of
the CT-QMC, dash line — exact diagonalization results obtained on reajyearis, dot line — analytical
continuation of the exact diagonalization results obtained in imaginary time. THelmparameters are
following: U =1eV,J=0.3eV, T =0.1eV, n= 2 pro orbital (ot = 4 electrons).

total number of real frequency points at whiabw) is being determined. In many cases, this
gives already a reasonable spectral functions, howevegemeral the historic method tends to
underfit the data and makes the result#k{g) too smooth.
In the "classical” MEM we are using, the parameters determined from the following
algebraic equation
—205(0) :Sp{/\(a)[al +/\<a)r1} (2.99)

whereS(a) is the value of the entropy in the solutiéd, which minimizesQ andA(a) is

Ay = /A8 KTCK],; | /A8, (2.100)

HereKj; is the discretized kernddj; = K(tj, wj) andA is the discretized spectral functién =
A(w)dwy andGj; is the above defined covariant matrix.

In applications of DMFT to real materials, the quasipagtisgtak can have a complex struc-
ture since at low temperature we need to reproduce ren@aaliDA bands around the Fermi-
level, i.e., the spectral function approaches the LDA dgmdistates contracted for the quasipar-
ticle renormalization amplitudg, A(w) = p(w/Z+ Hp). The MEM has a tendency to smear out
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this complex structure because of the entropy term.

From practical point of view for obtaining DOS from Green ¢tion given on imaginary
times or Matsubara frequencies it means the following: MENMeg quite smooth DOS, and
(especially at high temperatures) it can overlook fine DCBuies, don’t resolve peaks if their
positions are of order of width, etc. As an example we can lsedsults of a test for 3-orbital
AIM in the atomic limit (see section 4.1). The model paramet@e:U =1eV,J=0.3¢eV,
T=01leV,n= % pro orbital. For this case we have exact DOS obtained by eltagbnaliza-
tion method. Thes(1) interacting Green function obtained by CT-QMC (solid linepaexact
diagonalization (dash line) are presented on Fig. 2.9pkefiel. One can see that the results are
in good agreement, but not in coincedence. The Fig. 2.9t pghel demonstrates exact DOS of
the interacting system (dash line), DOS obtained by MEM ftbmexaciG(t) Green function
(dot line) and from CT-QMC resulting Green function (solidd).
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3 Kondo impurity problem with an arbitrary

density of conducting electron states

The numerically exact determinantal continuous time QM@hotthas been applied to calcu-
late properties of a Kondo impurity coupled to a band of cartohg electrons with an arbi-
trary density of states (DOS). This approach allows to caltaibpin susceptibilities as well as
Green functions, accurately taking into account all thetdieas of the conducting electron DOS.
The method was applied to a Kondo impurity embedded intadiffenvironments: ultrasmall
grain, Anderson alloy model (lattice with random on-site rggdevels) and a two-dimensional
lattice, where the DOS has a van Hove singularity. The CT-QM@aodewas used to check the
applicability of Numerical Renormalization Group (NRG) torim impurities embedded into
environment with very nonuniformal DOS and to find out how tiape of bath DOS influence
on screening of impurity magnetic moment. All the NRG catmna mentioned in the current
Chapter were performed by A. Zhuravlev [88].

3.1 Kondo effect

Although the Kondo effect is a well known and widely studidetpomenon in condensed matter
physics, it continues to capture the imagination of expentalists and theorists alike. Interestin
the Kondo effect has therefore persisted because it preeides to understanding the electronic
properties of a wide variety of materials where the inteoast between electrons are particularly
strong, for instance in heavy-fermion materials and highperature superconductors. In fact,
interest in the Kondo effect has recently peaked thanks W ex@erimental techniques from
the rapidly developing field of nanotechnology, which haieg us unprecedented control over
Kondo systems. The short introduction to the problem carobed in Ref [93].

This effect was discovered in the 1930s [94] while measutegesistance of gold samples
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Figure 3.1: Resistance & at low temperatures. On the right panel the resistance minimdnrat K
is shown. The figures were adapted from [94].

at very low (up to 1.63K) temperatures. It was found that i lowering temperature below
some point the resistance start to increase (see Fig. 31¢. Kbndo effect originates from
screening of the spin of a magnetic impurity (operkedr f shell of the impurity atom with
non-zero total spin of all the electrons) by conduction baledtrons of the host metal.

The simplest model of a magnetic impurity, which was introebliby Anderson [40] (see
fig. 3.2 &) has only one electron level with eneggyin this picture, the impurity has a spin of4
and its z-component is fixed as either "spin up” or "spin dowHbwever, so-called exchange
processes can take place that effectively flip the spin ointipairity from spin up to spin down,
or vice versa, while simultaneously creating a spin exoitein the Fermi sea. Figure 3.2 (a—C)
illustrates what happens when an electron is taken fromoitedized impurity state and put into
an unoccupied energy state just above the Fermi level. Teggmeeded for such a process
is large, between about 1 and &9 for magnetic impurities. Classically, it is forbidden to ¢éak
an electron from the impurity without putting energy inte teystem. In quantum mechanics,
however, the Heisenberg uncertainty principle allows sadonfiguration to exist for a very
short time aroundh/|eo|, whereh is the Planck constant. Within this timescale, anothertedac
must tunnel from the Fermi sea back towards the impurity. éla@x, the spin of this electron
can be opposite to the initial one. This spin exchange qiigly changes the energy spectrum
of the system (fig. 3.2 d) forming a strong peak in the impsrdgnsity of states near the Fermi
level [20].
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a) ey b) e c) d)

Figure 3.2: The Anderson impurity model assumes that it has one electedmiglv energyeg below the
Fermi energy (a). This level is occupied by one spin-up electron. Adaliother electron is prohibited by
the Coulomb energy, U, while it would cost at legst to remove the electron. Being a quantum particle,
the spin-up electron may tunnel out of the impurity site to briefly occupy aicklisforbidden "virtual
state” (b) outside the impurity, and then be replaced by an electron from tlaé ikis can effectively flip
the spin of the impurity (c). Many such events combine to produce the Kdifieltt,avhich leads to the
appearance of an extra resonance at the Fermi energy (d). Sinsgdraproperties, such as conductance,
are determined by electrons with energies close to the Fermi level, the estreareee can dramatically
change the conductance. The figure was adapted from [93]

Such a resonance is very effective at scattering electrathsenergies close to the Fermi
level. Since the same electrons are responsible for thedowperature conductivity of a metal,
the strong scattering contributes greatly to the resistand leads to increasing the resistance at
low temperatures.

This many body resonance also can be observed explicithgusie scanning tunneling
spectroscopy (STS) technique: on single magnetic adat®m®p, 97], in artificial nanostruc-
tures such as quantum corrals [98], and for molecules [99]STS spectra, it shows up as a
feature which can be described by a Fano line shape [100,102]., From a fit, the peak width
is obtained which is the characteristic energy scale — theddemperaturdx of the impurity
system. For the Kondo scenario of a single magnetic impontg nonmagnetic metal surface a
simple semi-empirical model has been proposed by P. Wall [@t0s3].
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3.2 Abrikosov’s representation of the Kondo model

The main difference of the Kondo impurity model to the Andersne (see Chapter 4) is that
the only one electron with spi8 supposed to occupy the impurity site. Therefore interactio
of the impurity with conduction band electrons due to theddeberg exchange can be written
asHg,, = —2JSs, whereS is impurity spin ands is spin of the conduction band electron. The
general description of this model is so-calked d Hamiltonian [20]:

Hsa = gskclocko - %ka [SJFCLCM + 9CETCk’L +$ (CETCK’T - Cllck’lﬂ : (3.1)
o

It describes the single-spin impuri§with spin operators, andS* = S, +iSy, coupled to the
band of conduction electronslg andcyg operators) within Heisenberg exchanjjg.

Since the CT-QMC method was originally designed for fernsosystems i.e. systems,
where Wick theorem takes place (for Gaussian action), wethesdermionic description of
Kondo problem. Following approach of Wilson [39] we approgte thel,, exchange by the
constant], but keep exact DOS from conduction electron specteumTo use this method for
Kondo systems we replace spin operators to fermionic oneldnik@sov’s transformation [104]:

1
S*za}tal, S“:a‘la% Szzé(a%raT—aIal). (3.2)

Therefore in fermionic operators the interaction par$-efd Hamiltonian (3.1) reads
Hap=  —2J(S+1/2(S's” +Ss"))
= —3/2[(nnf -+ nfnS) + (nen -+ )
+2(a%rcTcIal + c%raTaIci)] : (3.3)

where

ando is a spin index. To avoid double occupancy of the impurity wedto include additional
"constrain” term:
H = Hap+Ua(n?+n? —1)2. (3.4)

Rewritten in Abrikosov’s fermionic operators the (3.4) mochn be represented as effective
two-site AIM (see Fig. 3.3) without on-site Coulomb interanton the "auxiliary” site 2. The
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Figure 3.3: Thes—d model in fermionic representation (3.4) is equivalent to 2-site AIM without on

site Coulomb repulsion on the auxiliary site 2. The auxiliary site 2 is coupled toatieds conduction
electrons with known DOS (yellow), the "target” site 1 has no hybridizatiomtéis bare Green function

readsgi(iw) = ﬁ Site 1 corresponds #operators in (3.3) and 2 — tocorrespondingly.

"impurity” site 1 has no explicit hybridization to the bathanduction electrons, its bare Green
= ﬁ This site is coupled to the auxiliary site
2 via Heisenberg exchandge Because of absence of on-site Coulomb repulsian the site 2,

its local DOS is the same as a DOS of the conduction electratis B-ormally we have to take

function on Matsubara frequencies rea@gsiw)

Ua — oo, but the tests (performed by NRG [88], see Fig. 3.4) showséhatively small value of
U, (of order of|J| ) is enough to avoid the double occupancy even at high-testyrer regime.
Hereatfter in this Chapter under "high temperatures” we assum> Tk .

3.3 Kondo impurity in piecewise-constant DOS, benchmarks

We consider the piecewise-constant DOS because it is th@eshtase of non-uniformal density
of conduction electron states that can be relevant to teaiisodels. It is well known that the
Kondo temperatur@k of the impurity coupled to the conduction electron bath watdnstant
DOS (so called "flat band”) scales as

1
Tk 0 De Do) (3.5)

whereD = W/2 is half of the width of conduction band,is a strength of Heisenberg coupling
between the impurity and conduction electrons @B ) is a bath DOS at Fermi level [20].
Therefore keeping thé x p(Er) product constant we obtaining the same Kondo temperature as
well as the spin susceptibility of the impurity [20]. Theenesting question is, what kind of
scaling takes place if the Kondo impurity is embedded intth fwdk conduction electrons with
non-constant DOS.
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Figure 3.4: Comparing of the impurity magnetic susceptibility (2.76) of the impurisgrileed bys —
d Hamiltonian ("Kondo”, solid line) and its fermionic representation (3.4) withatéht values of the
constrainU,. The impurity is coupled to bath with constant density of states (bandvddth2 eV),
exchange parametdr= —0.3 eV, Tx in (gue)?, T in eV [88].

The Numerical Renormalization group (NRG) method is knowneab appropriate tool
to solve an impurity problem with uniform bath DOS. Also timethod has much less com-
putational effort than QMC in physically interesting cagdoov temperatures, but it is unclear
whether the NRG can be used for treating impurity problemé witongly non-uniform bath
DOS.

In this section we check the reliability of the NRG and CT-QMGuigs in case of Kondo
impurity embedded into band with piecewise-constant DAt Gath DOS of the systems stud-
ied in this section are shown on Fig. 3.5, insets. The bartthd= 2 eV in both cases, the
band DOS at the Fermi level apgea Er) = 3/4 andpgip(Er) = 1/3 in case of peak or dip at
the Fermi level correspondingly. The width of the peak (aip) 4 = 0.2 eV is of order of|J|.

Intuitively one can presume that at low temperatures theuiibypcan "feel” band DOS
p(E) only in some vicinity ofEg (of order of|J|) and at high temperatures the system’s behavior
is determined only by some averagfE) = 1/W. To check this assumption we performed two
series of auxiliary NRG calculations: the Kondo impurity wamipled to flat-band bath DOS
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with D = 1 eV. The exchange coupling parameter values wete—0.2 eV andJ = —0.3 eV.
The local susceptibility (2.76) of these systems is prekoh Figs. 3.5, 3.6 with blue and red
dash lines correspondingly. Fig. 3.5 gives an impressiohedravior of the local susceptibility

0.25

0.20

0.00 T llllll T T T l-.lllll T T T llllll T T T III:II T T T i
-4 3 2 -1
10 10 10 10

Figure 3.5: Non-universal behavior @fx obtained by CT-QMC (dots) and NRG (solid lines) for the
Kondo impurity embedded to band with piecewise-constant DOS.

The non-uniform (piecewise-constant) bath DOS are shown on the.irdsty have either dip (fod =
—0.3eV) or peak § = —0.2 eV) of the width of 02 eV at the Fermi level. The bath DOS at Fermi level
arepgip(Er) = 1/3 eV-1 andppea Er ) = 3/4 V-1 correspondingly.

Main graph: statical susceptibilifyx in (gug)?, T in eV. Dots and solid lines are results of CT-QMC and
NRG calculations correspondingly. Red color hereafter denbtes-0.2 eV and blue] = —0.3eV. The
following NRG results for flat-band bath DOS are shown for the refezenc

Dash linesJ = —-0.2eV,W =2¢V (red);J = —0.3eV,W = 2 eV (blue).

Red dot line:J = —-0.2eV,W = 4/3 (p(Er) = 3/4 = ppea Er ), as in peak on the right inset);

Blue dot line:J = —0.3eV,W =3 eV (p(Er) = 1/3 = pdip(Er ), as in dip on the left inset).

At the high temperaturdmit Ty the systems with piecewise-constant bath DOS haveaheasymptotic
as one for the flat-band case with the same bandviddthl eV.
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in all the temperature range, one can also estimate the Kmmperature, according to Ref.
[20] Tx(Tk) ~ 0.07. The next Fig. 3.6 show us the low temperature behaviousdeptibility
itself (without theT factor) and allow us to compare the low-temperature asyticpibdifferent
systems.

Next, according to relation (3.5), we performed a lineafisga(see Ref. [20]) of these
results to get the susceptibilities for the following refece systemsd = —0.2 eV, D = 4/3
eV, p(Er) = 3/4 = ppeak Er) andJ = —0.3 eV, D = 3/2 eV, p(Er) = 1/3 = p4ip(EF) that

20 N

Figure 3.6: Non-universal behavior pfobtained by CT-QMC (dots) and NRG (solid lines).

The statical susceptibilitx in (gug)?/eV, T in eV. Dots and solid lines are results of CT-QMC and
NRG calculations for Kondo impurity embedded into piecewise-constant b@®. ’he Non-uniform
(piecewise-constant) bath DOS is the same as in previous figure, seeJ;imsets. Red color hereafter
denotes) = —0.2 eV and blue] = —0.3 eV.

The following NRG results for flat-band bath DOS are shown for the eefss.

Dash linesJ = —-0.2eV,W =2¢V (red);J = —0.3eV,W = 2eV (blue).

Red dot line:J = —-0.2eV,W = 4/3 (p(Er) = 3/4 = ppea Er ), as in peak on the right inset);

Blue dot line:J = —0.3eV,W =3 eV (p(Er) = 1/3 = pdip(Er ), as in dip on the left inset).
Thelow-temperaturdehavior idifferentfrom the flat-band one with the sarmpéEg) (dot lines). We have
a qualitative agreement between NRG ant CT-QMC up to quite low temper&iuse.002eV ~ 20K)
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corresponds to flat-band systems with the same bath DOS &ktinei level as the piecewise-
constant DOS under consideration. The susceptibilitiekaxe reference systems are shown on
the Figs. 3.5, 3.6 using red and blue dot lines correspohding

Finally we performed CT-QMC and NRG calculations of local sysibility (2.76) for the
Kondo impurity embedded to the band of free electrons widlt@ivise-constant DOS (see Fig.
3.5, insets). The results are shown on Figs. 3.5, 3.6 usitgy(@3-QMC) and solid lines (NRG)
correspondingly. Red and blue colors corresponds to systdths) = —0.2 andJ = —0.3
accordingly.

The assumption to check was the following: At high tempeesuT >D) the impurity
"feels” only some average DOS of conduction electrons b@the can see exactly this depen-
dence on Fig. 3.5. But at low temperatures the susceptidéitgonstrates strongly non-universal
behavior, i.e. it cannot be reproduced by simple linearisgaif results for corresponding flat-
band bath. On the Fig. 3.6 one can see that at low temperatsyagptotic of susceptibilities of
the Kondo impurities coupled to piecewise-constant batts@dbts for CT-QMC an solid lines
for NRG) do not tends to one for the flat-band problem with threesa(0) (dot lines): the results
for piecewise-constant DOS have completely different temperature asymptotic comparing
to any of the reference flat-band systems. It is related téeittehat the bath DOS has a features
near the Fermi level and the impurity "feels” the band DOSuess situated closer thaa |J|
from the Fermi level.

The conclusion is following: simple scaling that keeps thedpict Jp(Er) = constant
works only for constant bath DOS (flat-band) and it is conglleton-applicable for the systems
that have bath DOS anomalies at the energies of ordgi okar the Fermi level. This calcula-
tion showed good agreement between NRG and CT-QMC in broae maingmperatures, and
the CT-QMC method found to be applicable to this kind of system

3.4 Kondo impurity in realistic systems

Atomic clusters, small particles, and nanostructuressddrirom them constitute a vast research
area with multiple subfields and a truly interdisciplinatyacacter. One of the most interest-
ing and challenging subjects in cluster physics is the stfdyany-body phenomena and their
dependence on size, composition and local atomic envirahn@n the one side, one aims to
identify the effects that are specific to small particles trad differentiate them from molecules
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and condensed matter. On the other side, one would like teratathd how the physical proper-
ties are modified in the finite-size regime, particularly nder to link the behavior of different
atoms and macroscopic solids. From the cluster perspettie/éatter can be regarded as the
limits of a much richer and often quite complex dependenceaiy physical properties as a
function of the number of atoms. In general one may distisig@ small-size or microscopic
regime, where the changes of the physical properties wiih @ie very strong, a large-size or
mesoscopic regime, where statistical and scaling conegyply, and in between a more or less
extended crossover region. Cluster magnetism is a probleendfal importance in this context.

During past decades, most of the experimental and thealstiadies in the field have been
concerned with transition-metal (TM) clusters which matesremarkable fundamental and tech-
nological interests. One of the main goals of these invastgs is to understand how the mag-
netic behavior evolves as the valence electrons of an ebktom start to delocalize throughout
the cluster and how the itinerant magnetism characteridtitM-solids is achieved. In this
case the hybridization among the d shells and the resultibgnd formation play a dominant
role. Consequently, electronic-structure contributiomshsas size, geometry, and composition
dependence leading to band narrowing, local environmeuit peoximity effects have attracted
considerable attention [105].

While cluster magnetism has been intensively studied framitimerant or band perspec-
tive, much less is known about clusters containing magragtims with localized states [106,
107, 108, 109]. Therefore, it is very interesting to invgate TM or rare-earth (RE) impurities
in metallic clusters in order to elucidate the magnetic beheof localized moments in finite
metallic systems, as well as the modifications that are ieduc confined conduction electrons
by a magnetic impurity.

In solids, TM and RE systems are known to present remarkabfeepties, such as Kondo,
intermediate- valence, or heavy-fermion behavior, whiahiatrinsically related to the local-
ized character of thd or f electrons and to their interactions with the conductionebstates
[110, 111]. The unconventional properties of such stromglgrelated systems reflect the com-
petition between the tendency of electrons to delocalizerder to form chemical bonds or
energy bands, and the resulting local charge fluctuatiohghwncrease the Coulomb-repulsion
energy and favor the occupation of localized states. A glpicanifestation of this interplay
is the presence of small (Kondo) energy scales in the ekmitapectrum that lead to striking
low-temperature properties. Clearly, the reduction of gizeusters can drastically modify and
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Figure 3.7: Main plot: Comparison of the magnetic susceptiblljyobtained by CT-QMC with the exact
solution,Tx in (gus)?, T andE in eV. Inset: conduction electron states with energigand hybridization
strengthvi (see Eq. (3.6)). Exchange interaction strenjth —0.35eV.
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ature region T << Tx). The exchange coupling strengthdis= —0.3 eV, Tx in (gu)?, T in eV. The
CT-QMC method shows a good precision at temperatures below both Kamgetaturelk and the mean
level spacing).
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eventually suppress these phenomena, as a result of thetdisess of the energy spectrum, due
to a reduction of the number of electronic states near themHewel, or even as a consequence
of a change in the lattice structure.

In the case of a magnetic impurity in a finite-size metalligiemmment, the formation of a
Kondo singlet [112, 20, 113] may be significantly affectethé number of conduction-electron
states is so small, that the mean level spacing is largerttteatemperaturekgT. The conse-
guence of that is not complete screening of the impurity reigmoment.

To check applicability of our method to this class of systevegerformed a benchmark on
exactly diagonalizable system: the conduction electrane lonly 5 states. The ED program was
written by A. Zhuravlev [88]. The bath Green function on Mdiara frequencies for CT-QMC
calculation was obtained by discrete Hilbert transform
N Vk2

Gliom) =

PR (3.6)

whereV is a hybridization strength between the impurity and k-treleof bath andgy is a
position of that level. This benchmark (Fig. 3.7) shows tGatQMC method is suitable for
systems with discrete spectra such as small clusters,sgraic. The CT-QMC shows a good
precision even at the temperatures much lower than mealsigaeingA ~ 0.3 eV.

Another interesting case is Kondo impurity on infinite twiosénsional lattice. Since of
van Hove singularity at the Fermi level (and as a consequigrficete DOS atEr) one cannot
1
estimate Kondo temperature usifigl] e 2¢EF) formula from Ref. [20].

Since our aim is to study realistic models, including impes coupled to systems with
discrete spectrum of non-interacting electrons, we haveatoattention to the effects caused
by finite level spacing. In order to do it we performed a numifdsenchmark calculations for
Kondo impurity embedded into finite two-dimensional ladticThe exchange coupling strength
isJ = —0.3 eV. First we checked how the size of lattice (and a mean levalisppaffect the
results. On Fig. 3.8 we plot magnetic susceptibility for e@mperature regionl( << Tk).
The results for different lattice sizes (from 40x40 to 100@)Lare almost coinciding even at
the temperatures below the mean level spacing of the camesmy lattice states. Than we
performed a benchmark calculation of magnetic susceyitior Kondo impurity coupled to
finite (200x200) two-dimensional lattice. It can be consadkeas a reference system for Kondo
impurity placed on infinite two-dimensional lattice, sinte finite-size effects does not play a
role in the temperature range we study, see Fig. 3.8. Thdtsesare compared to the NRG
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Figure 3.9: Main plot: Comparison of CT-QMC results (dots) with NRG [88]i¢sline) on finite 2D
lattice (200x200). Exchange coupling strengttl is —0.3 eV, Tx in (gug)?, T in eV. The inset gives the
local density of states on the arbitrary lattice site for infinite 2D lattice. Theim@macting DOS have van
Hove logarithmic singularity on the Fermi energy. In this case Kondo temperB{ux~ 0.05eV is much
lager than in case of flat-band DO, ~ 0.01 eV see Fig. 3.5).

data [88], see Fig. 3.9. These two methods show very gooctamgnet. Comparing Figs. 3.5
and 3.9 one can conclude that in case of infinite two-dimewdilattice the Kondo temperature
Tk ~ 0.05eV is much lager than in case of flat-band DOS of bandwiitk- 2 eV (Tk.; ~ 0.01
eV, see Fig. 3.5).

Another attractive testing ground for the new numericallhmdtis Kondo impurity on dis-
ordered 2D lattice [114]. This model is relevant to disoedemetals and Kondo alloys. On
Fig. 3.10 we plot the local impurity spin susceptibility, ltnplied by temperaturd for some
given realization of the disorder, obtained in tight-bimglimodel [114]. Here dots denotes the
results obtained with the continuous time quantum Monte cCE@IT-QMC) method and solid
lines — results of the modified version of NRG [114, 88]. Forpenatures close to the Kondo
temperature both methods agree well.

In this chapter we described the Kondo impurity embeddesiégonduction electrons bath
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with arbitrary DOS. We show that the CT-QMC method can be agid a variety of interest-
ing systems. It can treat Kondo impurity problems with agwi density of conduction electron
states taking into account all its features. This is reladetthe exact character of Hilbert trans-
form that is used to convert bath DOS to non-interacting GfaactionG. The local magnetic
susceptibilityx of such systems have been studied. We found non-universavize of the
local magnetic susceptibility even in such a simple systamKondo impurity embedded into
conduction electrons bath with piecewise-constant DOS sieved applicability of the new
computational method to such an interesting systems asd<iomglirity embedded to disordered
2D lattice, ultra small grain and infinite 2D lattice with vé&tove singularity in the bath DOS.
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Figure 3.10: The impurity susceptibility as function of temperature calculatedtithNRG method for
J/D=0.35W/t =2,L=70,Txin (gue)? T in eV [88]. The calculation is done at the site whaeis
maximal. Our results based on the CT-QMC simulation (discrete points) is incliitiednset shows the
local density of states, wheEe= 0 denotes the Fermi energy. The mark indicates the mean level spacing
A[114)].
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4 Multiorbital impurity problem for general

Coulomb interaction

In this Chapter we shall discuss application of the CT-QMC intgigolver to multiorbital An-
derson model for the most general case. The tests with knowtiosd obtained by exact diag-
onalization method are performed. Two-, three- and fivetarbnpurity models are discussed.
Realistic model of cobalt impurity embedded into copperrixa studied. A brief analysis of
effects emerging due to the spin-flip processes have bees mad

4.1 2- and 3-orbital Anderson impurity model

The Anderson impurity model (AIM) play a key role in severatent developments in the

theory of strongly correlated electron systems. For exafntple Dynamical Mean-Field The-

ory (DMFT) maps spatially extended system representingetaied solid to Anderson impu-

rity model with a self-consistently determined bath of cactibn electrons [3] (see Chapter 5).
Therefore AIM is also essential to our understanding ofllocament formation in metals, and

to that of heavy-fermion materials, particularly in the etixvalence regime [20]. It is therefore

important to have at our disposal quantitative tools alfmwalculation of physical quantities

associated with the AIM. The quantity of interest dependsherspecific context. Many recent

applications require a calculation of the local Green fiamc{or spectral function), and of some

two-particle correlation functions (e.g. magnetic susibdfiies, see Chapters 2, sec. 2.3.5 and
Chapter 3).

Multiorbital Anderson impurity model is one of the great Bbages in many-body theo-
retical physics. Whereas single-orbital AIM can be solvethweasonable precision different
ways (NRG, Hirsh-Fye QMC, etc.), two-orbital model is much emoomplicated to solve. The
two-orbital AIM with arbitrary hybridization to the bath dfee electrons can be solved using
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NRG (with some problems concerning to logarithmic discegtan of the bath DOS and grow-
ing Hilbert space), multi-orbital Hirsh-Fye QMC (withoytis-flip terms in the interaction, else
the sign problem emerges and hamper the calculations at temgeratures). Three-orbital AIM
is extremely hard problem for NRG and in Hirsh-Fye QMC inchglof spin-flip terms leads to
very strong limitation for temperature and Hund exchangearmeter (see Chapter 2, sec. 2.2.3).
Five-orbital model with arbitrary DOS of the band electraas be solved by Hirsh-Fye QMC
only with Coulomb interaction of density-density type.

From the point of view of application to real physical systemwvo- and three-orbital AIM
are interesting because 5-fold degenerated atdrarbitals in cubic crystal field splits to double
degeneratedy and the triple degeneratég. Then, if the splitting between these levelg @nd
gg) is large enough, one of them becomes empty (or fully ocal)psad in order to find low
energy excitation spectra we have to solve the problem vivglonly two () or three {og)
orbitals (for review see Ref. [115]). One of such interesipgtems, namely strontium ruthenate
SrRuQy is considered in Chapter 5.

For two- and three-orbital AIM discussed in this chapter wedigeneral rotationally in-
variant Hamiltonian [116]. Its local part reads:

U
Hilr%% = — Z t” CiTngO' + E Z nicni6+ul Z niTonja
G i.0 G

i#] i#]
/ . (PN P T AlA A=
+U'=J) > nighjg+J ) (CionoCIGCJG+CioCioCJGCJO> ;
o (&)
i#] i#]

(4.1)

whereU’ =U — 2J andi, j are the orbital indices. The first term represents intetarhbppings,
second — diagonal Coulomb repulsion in case of double ocaypain — th orbital, third and
forth are interorbital repulsion and the last one incluges-$lip and pair-hopping terms. All the
models discussed in this section have full spin and orbagkderacy. All the densities of states
are normalized by one, i.e. represents partial DOS of ortecpbar orbital.

The main goal of the CT-QMC method is a possibility to treattodbital impurities with
Coulomb interaction of arbitrary form, coupled to band of fioteracting electrons with arbi-
trary DOS. Thus our primary intention was to reveal the e¢ffecising in multiorbital systems
due to spin-flip and pair-hopping processes. First, to berack our method we performed a
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Figure 4.1: Imaginary time interacting Green functions of the two-orbital faftel) and three-orbital
(right panel) AIM in atomic limit at half-filling,T in eV—2. Interaction parameters are the same for the
both models:U =1¢eV,J=03¢eV,=3 eV-1. Solid lines denotes CT-QMC results, dash — exact
diagonalization (ED). Black color corresponds to full Coulomb interactied — to density-density one.

number of tests in atomic limit (when impurity has no hykzation to the band of conduction
electrons). In this limit AIM can be solved exactly using Exdiagonalization (ED) method
[28, 5]. The resulting imaginary time Green functions arevamon Fig. 4.1. The Green func-
tions on imaginary time axis show almost perfect coincigdnetween CT-QMC and ED results
for both (full and density-density) interaction parts ofrkiionian.

To get an impression what are the qualitative changes ofntipeiiity DOS caused by in-
cluding of non-diagonal Coulomb interaction terms, we shiogvimpurity DOS corresponding
to G(t1) from Fig. 4.1, left panel on the Fig. 4.2, left panel. Notettiare we have relatively large
temperature of order of.8 eV that leads to significant broadening. Another test alscoperéd
by ED demonstrates the behavior of three-orbital AIM awanfrhalf-filling: the occupancy
corresponds to 2 electronstyy orbitals (see Fig. 4.2, right panel). In comparison to tvemd
half-filled model it is more sensitive to the form of interiact Hamiltonian.

Next we performed a series of CT-QMC calculations for thrasab AIM (see Fig. 4.3).
The system under consideration was the following: thrdetarimpurity with occupancy = 4
electrons irtyg orbitals. The impurity is either coupled to band of free &laas with semiellip-
tical DOS (SC) or has no coupling to bath (i.e. AIM in atomicilinalso so-called thermal bath,
TB). The parameters of the Coulomb interaction were the sanetas previous test, namely
U =1eV,J=0.3eV, but the inverse temperature was increase@l4010eV—1 (T ~ 120(K).
Comparing imaginary time interacting Green functions of Alvatomic limit (see Fig. 4.3 left
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Figure 4.2: ED results for DOS of the AIM in atomic limit. Left panel: two-orbitdlMAat half-filling,
this DOS corresponds (1) from Fig. 4.1, left panel. Right panel: three-orbital AIM with occupancy
n = 2 per all 3 orbitals. Interaction parameters are the same for the both mbdeld: eV, J = 0.3 eV,

B =3eVL Black lines corresponds to full Coulomb interaction, red — density-deasiy

panel, red and black solid lines corresponds to CT-QMC redaitdiagonal and full Coulomb

interaction; red and black dash lines demonstrates EDtssfeulthe same models) we can find
that CT-QMC and ED results are in good agreement. The spéatretions of the systems men-
tioned above are shown on Fig. 4.3, right panel. The difleedretween full and density-density
Coulomb interaction for the case of atomic limit (see Fig., 4ight panel, black and red dash
lines) is much smaller than at higher temperature (see Exg.right panel). This effect of de-

caying the spin-flip effects with lowering the temperaturatomic limitcan also be observed in
two- and five-orbital cases.

Another question we would like to discuss is: how couplingra impurity to the bath of
conduction electrons change the effects caused by nomihteraction terms. The resulting
imaginary time Green functions for AIM coupled to the nardoath with semielliptical DOS of
the widthw = 2D = 0.2 eV are shown on the Fig. 4.3, left panel with brown (full Coulomter-
action) and orange (density-density one) lines. Thesegysexhibit almost the same behavior
as AIM in atomic limit: brown line (full vertex) almost coimes with the atomic limit solution
(black lines) and the orange one (diagonal vertex) alsoli@same trend as the exact solution
for atomic limit (red dash line). Coupling of this system te throad {V = 2D = 1 eV) band
with semielliptical DOS (i.e. without any fine structure n¢lae Fermi level) leads to almost
complete decaying of the spin-flip effects (see Fig. 4.3¢ ilves denotes full Coulomb interac-
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Figure 4.3: Imaginary time interacting Green functions (left panig V') and local densities of states
(right panel) of 3-orbital AIM away from half-filling. Dash lines denoteB results, solid — CT-QMC.
Red lines corresponds to AIM in atomic limit with density-density Coulomb interachiatk — atomic
limit and full interaction vertex. Orange and brown lines (shown only on tfigonel) —-G(1) for AIM
coupled to narrowMy = 0.2 eV) bands and diagonal and full interaction correspondingly. Magerta an
blue lines denotes results for impurity hybridized with bro#d-£ 2 eV) bands and diagonal and full

interaction respectively.

tion, magenta — diagonal one). The only small chang&{in aroundt ~ 0.8 eV~ corresponds
to difference in high energy behavior of the DOS arouritleV.

In order to check whether the spin-flip effects are sensttivieath DOS features near the
Fermi level, we performed a number of CT-QMC calculationstfoee-orbital AIM. The in-
teraction parameters were following: = 3.1 eV, J = 0.7 eV and the inverse temperature was
B=10eV 1 (T ~ 120K). The band DOS was of very specific form: It wa®¥ wide and
20% (or 50%) of bath states were concentrated in the peakigrusil in the middle of initial
rectangular DOS. Occupancy was constrained to be4 electrons per all 3 orbitals, that led
to shifting the whole bath DOS and the mentioned above pealedslightly below (or at) the
Fermi level, see Figs. 4.4, 4.5, green lines. We were varfiegpeak widtih™ between QL eV
and 02 eV and the weight of this peakf was either 20% (see Figs. 4.4, 4.5, left panels) or 50%
(see Figs. 4.4, 4.5, right panels).

One of the advantages of the CT-QMC method we use is a possiilinclude spin-flip
terms. It is reasonable that spin-flip terms could play ingodrrole if there are some anomaly
of bath DOS near the Fermi level on scales of order of exchdng® check this assumption
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Figure 4.4: DOS of AIM hybridized to the bath with a sharp feature neaatjothe Fermi level. Left
panel: the peak of bath DOS is of width= 0.1 eV and contain§\t = 20% of bath states and lie below
the Fermi level. Right panel: the peak of bath DOS is of width 0.1 eV and contain$\p = 50% of bath
states and crosses the Fermi level. Green line denotes bath DOS, blaeklandksulting impurity DOS
obtained using full and diagonal interaction vertex correspondinglgrantion parametersl = 3.1 eV,
J=0.7eV. Inverse temperatur@ = 10eV1 (T ~ 120K).

we performed a number of test calculations using describedeapiecewise-constant bath DOS
with a peak below (see Figs. 4.4, 4.5, left panels), or at grenklevel (see Figs. 4.4, 4.5, right
panels).

The results are following: if the peak weight make up 20% (and completely under
the Fermi level, see Figs. 4.4, 4.5, left panels) we havendsselifference between impurity
density of states obtained using diagonal (red lines) aldfiack lines) Coulomb interaction:
in case of full vertex (black) the impurity has pronouncattiency to rise the peak of the density
of states exactly at position of the original bath DOS peahkengas diagonal interaction (red)
hardly exhibit this feature.

In the situation, when the peak weight make up 50%, the cainstm the occupancy lead
to shifting the whole bath DOS, and its peak becomes locatdted=ermi level, see Figs. 4.4,
4.5, right panels. In this case we also observe prominefardiice between impurity densities
of states obtained using full and density-density Coulontéraction respectively. In contrast to
the previous case, the structure of impurity DOS near thenFlewel is almost the same, only
the Hubbard bands differs significantly.

Note that in both cases the effects caused by spin-flips aoh mare pronounced than in
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Figure 4.5: DOS of AIM hybridized to the bath with a sharp feature neaaijpthe Fermi level. Left
panel: the peak of bath DOS is of width= 0.2 eV and contains\t = 20% of bath states and lie below
the Fermi level. Right panel: the peak of bath DOS is of width 0.2 eV and contain¥\ = 50% of bath
states and crosses the Fermi level. Green line denotes bath DOS, blaeldanesulting impurity DOS
obtained using full and diagonal interaction vertex correspondinglgrdction parametersl = 3.1 eV,
J=0.7 eV. Inverse temperatur@ = 10eV—! (T ~ 120K).

the case of smooth bath DOS. (see e.g. Fig. 4.3 right pang drid magenta lines: the impurity
DOS exhibit almost no dependence on form of the interaction)

4.2 5-orbital Anderson impurity model

The five-orbital model is relevant tad3and 4l transition metals, that displays a variety of in-
teresting magnetic properties. Scanning tunneling mozpyg (STM) has become one of the
most basic tools for the manipulation of matter at the atosnale. Although this experimental
technique making a big progress, the detailed theoretimdérstanding of experimental data is
still incomplete. One of the most famous examples of atomanipulation is associated with
the surface Kondo effect observed when transition meta (bke Co) are placed on a metallic
surface (such aSu (111)) [95]. The surface Kondo effect is the basis for the obs@maif sur-
prising phenomena such as quantum mirages [98], and hastattra lot of attention and interest
in the last few years. The current understanding of thesereatons is based on the assump-
tion that only surface states 6fu (111) are involved in the scattering of electron waves by the
Co adatoms [117, 118, 119]. Nevertheless, recent experamdgtit Co atoms on the Cu (100)
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surface (that does not have any surface state) [97], or in Ci) (iut close to atomic surface
steps (that affect the surface states) [120] have indidatgtdbulk states are behind the surface
Kondo effect. Although the last decade experiments madsiderable progress, all the model
calculations done were either used effective one-orbglurity model [121] or included only
diagonal part of Coulomb interaction [71, 122, 22], even wehlistic hybridization functions
obtained in LDA.

Therefore in order to have a possibility to treat these maHsi interesting multiorbital
systems accurately, the further development of existinguinity solvers is needed.

We start from multi-orbital Hubbard Hamiltonian, for a gesecase it can be written in the
following form:

1
H=— z tCiTGCjo—F > Z Uijk C;LOC}FG,CkG/Cm, (4.2)
(if)o (ijkT)

oo’
wherei, j,k,| are orbital indicesg, 6’ — spin indicest;; is hopping amplitude between orbitals
andj andUjjy is coulomb interaction matrix element.

Here we use Slater parametrizationlbimatrix. It is based on the multipole expansion of
Coulomb potential:

;Zk—}—l rk+1qu(f\)qu< ) (43)

Then matrix elements of Coulomb interaction in basis of spheharmonicgYy,) can be rep-
resented in the following form:

<mniju|m’m” >= Zak(m, nt’ ol m")FK, (4.4)

where the angular part

2
ac(m,d,m” m") = %(2l+1)2(—1)m+‘4+m(<| k |> ( | k | )( Ik |

=k 00O -m —q -m’ g m”
(4.5)
is represented by 3j-symbols and
(2 "2 )2 rlé
= [ g [ (706 i (4.6)
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are Slater integrals. Heug; is atomicd orbital, rﬁ (r';) is the smallest (largest) value ofand
r’, k corresponds to all even numbérs: 21.

Since we have to deal only with outer electronic shell, wé talte into account screened
part of Coulomb interaction. In order to do that we determinal@mb matrix elements accord-
ing to EqQ. (4.4) using renormalizeel parameters instead of Eq. (4.6). The Couldthland
exchange) constants can be expressed as

2
1 B | k| )
_(2|+1)2mzm‘]m”‘_k§0<o 0 o) - (4.8)

In case ofd electrons Eq (4.8) reads= (F? 4 F#)/14 and the atomic-like ratif?/F* =
0.625 [15]. Ford electrons only non-zero Slater parameters e F2 and F4. Using the
above formulas we can extract effective Slater integf&lsia U andJ parameters, that can be
calculated using constrained LDA technique (see e.g. R&f3,[15]). Note that the value of
intra-atomic (Hund) exchange interactidns not sensitive to the screening and approximately
equals to 07 — 0.9 eV in different estimations [15].

SinceU;jq matrix elements are spin independent, to generate all tlntke interaction,
one should look over all possible combinations of orbital apin indices. Some combinations
can violate Pauli principle and shouldn’t be taken into actdfor details of this procedure see
Chapter 2, sec. 2.3.3).

For the particular problem, namely Co impurity in the coppatni, the basis set of spheri-
cal harmonic¥jn, is used. In this basis the interaction part of the hamiltoiantains only terms
of the following form:

Hdlag U||” n|o-nJO-/ (49)

int

wherenjg = c;rocio and
d to of
Hift = Uijii CigCjo'Crgr Gl (4.10)

wherei # j andk # |. Note that in this basis we have no terms of the nic,clc,/q0 (i#]and
k # 1) form, that hampers the calculation leading to sign problem
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The (4.9) terms are so-called diagonal ones, and the Coulaatvipefor thed electron shell
in the basis of complex harmonics contains 45 non-equivaéems of this kind. The terms of
the (4.10) form can be further classified to a spin-flips, wlhet |, | = k and the less symmetric
general fur-indices vertex, where this condition is nofilfeld. Notice, that pair-hopping terms
(i=k, j =) in basis of spherical harmonics are restricted by symméiiryally for d electron
system in addition to 45 diagonal terms we have 20 non-elguivapin-flips and 64 terms of
the most general form. To get an understanding of the rol@pfdiagonal terms of interaction
we performed some tests. Since the exact solution for Alivhadtomic limit can be found
using exact diagonalization (ED) method, we compared CT-Q&KDlts with ED. On Fig. 4.6,
left panel we compared Green function on imaginary time iobthusing full interaction part
of the Hamiltonian and reduced one (with only density-dgn&rms). The model parameters
are following: U =1 eV, J=0.4eV; B=2eV L SinceG(0) = G(B) = —0.5 the system is
at half-filling (according to Eq. (2.20) at= 0, v = 0"). First, there is a very good agreement
between ED and CT-QMC results, especially in case of denkgihsity type interaction. Also
it is worth mentioning that th&(t) function is symmetric with respect o= 3/2, that means
the particle-hole symmetry of the system is perfectly descrby the CT-QMC method. In the
case of full interaction (including terms of the form 4.1@gtagreement is still good but not
perfect anymore. It can be attributed to significant indregef the number of "fields”: from 45
terms of the form (4.9) in diagonal case to 129 with filbrbital atomic Coulomb interaction.
Therefore much more MC steps are needed to reach convergéttoe Green function. Also
the deviation of the CT-QMC result from the exact solutionas{uniform on thg0, 3] range: in
vicinity of T = 0 andt = 3 (short time correlations) the coincidence is very good,thediggest
deviation can be observed near the [3/2 point. The reason of such behavior is that short time
correlations are caused mostly by the "fields” with the bgjgaeagnitude, i.e. density-density
ones. Whereas the long time correlations (and, as a consegjueehavior ofG(1) function
neart = /2 and the spectral function near the Fermi level) are moetdt by the terms of
interaction of order of. Since the most of these small terms are of the non-diagonal ih the
interaction vertex (e.g. the interaction part of Hamilaomin case off electrons consists of 91
density-density term and 286 non-diagonal ones), the sagreor inG(t) can be found in the
T~ /2 region.

Next we performed a test of 5-orbital AIM in atomic limit aw&pm half-filling with the
interaction parametet$ =2 eV, J = 0.7 eV, B = 3.7 eV—1. The results are shown on Fig. 4.6,
right panel. Since the system is fully degenerated overrhital and spin degrees of freedom,
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the overall occupancy of the impurity is equal t@#bitals x 2 spinsx (1—G(0")) (see Eq.
(2.20) att = 0, 7' = 0™") and in this case makes up 8 electrons.

The difference between Green function of the interactirgjesy with full Coulomb inter-
action and density-density one is visible on @@). The agreement between CT-QMC and ED
results is worse than in the half-filled case, because thersyaway from half-filling is related
to larger average perturbation order in Monte-Carlo sargplin

Lowering the temperature D~ 1200K (B = 10eV~1) in theatomic limitleads to decaying
of the Green function features caused by non-diagonal p@bwolomb interaction (see Fig. 4.7).
The results for diagonal and full Coulomb interaction are plately coinciding in half-filled
case. An interesting point is, that agreement between CT-QNLCED becomes better even at
temperatures lower than in the previous case (see Fig. Hlée that this "freezing” of non-
diagonal terms of the interaction happemdy in atomic limit for the half-filled casesince the
non-degenerate ground state @Srconfiguration.

As it was already mentioned in sec. 2.3.2, increasing of Goblmteraction strength as
well as decreasing temperature leads to increase of thageveerturbation order of our expan-
sion, Eq. (2.25). Typical distribution of the perturbatiorder for 5-orbital AIM is shown on
Fig. 4.8, main plot. The model parameters are following: 7 electronsl =4eV,J=0.7 eV,

B =10eV~1. Dash line denotes the perturbation order during accepéps shat involved non-
diagonal fields. The coincidence of distributions maximaeoth histograms demonstrate that
the acceptance rate mostly depends on diagonal interaction

On the inset of the Fig. 4.8 we show distribution of the noagdinal terms, i.e. contribution
of the Coulomb fields of the form (4.10) to the resulting Greamction. The zero entry of this
histogram counts the number of steps when all the fields ibortitng to the fermionic determi-
nant (2.35) were of density-density type (4.9). The entrhwndex 2 show us the number of
steps where the average (2.35) was containing two spinyfig fields (4.10).

4.3 Realistic system: cobalt atom embedded in copper matrix

The magnetic properties of nanostructures play essent&lr the design of miniaturized spin-
based devices. One of the key parameters is the magnetiadgtiten between the constituent
atoms of a nanostructure. This interaction can be due tatdaeindirect coupling as well

as mediated via a supporting substrate or host. Dependirnigeostrength and sign of the ex-
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Figure 4.6: Interacting Green function on imaginary time for 5-orbital AIMhet atomic limit,T in
eV~1. Solid and dash lines denotes CT-QMC results for full and density-de@sityomb interaction
correspondingly, "x” and "+” symbols — ED results for the same systersgetively. Left pandl =
1eV,J=04c¢eV, B=2eVi 5-orbital impurity at half-filling Right panelU =2 eV, J = 0.7 eV,
B = 3.7 eV1, 5-orbital impurity with 8 electrons.
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Figure 4.7: Interacting Green function on imaginary time for 5-orbital AIMha&t atomic limit. Model
parametersd =1eV,J=0.4¢eV, B=10eV 1 tinev!. Solid line denote§(t) obtained by CT-QMC,
"X" symbols — ED one. Results for full and density-density Coulomb interaatmmpletely coincides.

80



5 . Complete histogram
20x10°q 10y [ . steps involving
non-diagonal
10’ interaction terms
1.5x10°
o 10°
Z
1.0x10°4 1°
1 1040 2 46 81012
5.0x10°-
0.0 T T . T T T T T
800 900 1000 1100
<k>

Figure 4.8: Main graph: Histograms @ distribution,U =4 eV, J = 0.7 eV, B = 10 eV—1, 5-orbital
impurity coupled to realistic bath with 7 electrorSq(in Cu). Solid line denotes full histogram, dash
histogram of steps involving non-diagonal fields.

Inset: histogram of non-diagonal interaction fields,) = 4 eV, (J) = 0.7 eV, B = 1 eV—1, 5-orbital
impurity coupled to bath with semi-elliptical DO®/(= 0.5 eV) at half-filling.

change interaction, the nanostructure can be driven intorfeagnetic or antiferromagnetic state
or complex spin structures [124]. The recent STM spin-flipexkments by Hirjibehedin and
co-workers [125] have enabled a direct probing of the magmaeraction in linear manganese
chains decoupled from the metallic substrate by insulatipacer layer. Another experiments
to determine the exchange interaction between individobhlt adatoms on a metallic substrate
as a function of their distance were done by Chen et al. [12é]vsahl et al. [127]. A Cobalt
nanostructures, namely chains and clusters on metalliacialso are of a great experimental
and theoretical interest [128, 129]. One of the most imprtharacteristics of such systems is
Kondo temperature. The Kondo temperatures of differertt@nsition metals impurities in non-
magnetic bulk are shown on Fig. 4.9 [130]. The deviation efithpurity’s 3 shell filling from
the half-filled case (that takes place in manganese) leadsrtaving of the Kondo scattering
processes at relatively high temperatures.

Since the Kondo temperature is extremely sensitive to tdeos$istates at Fermi energy,
position of the impurity (on the surface at FCC or HCP site, esfdled into surface layer of
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Figure 4.9: Experimental results for Kondo temperatures of differérnitadsition metals in bulk copper
matrix. Symbols used to represent each type of measurement are: tsubigey, resistivity p, specific
heatC, thermoelectric powes and MossbhaueM. From Ref. [130].

the substrate or deeper) is also of the critical importamceie many-body effects (see Fig.
4.10). The cobalt impurity embedded into copper matrix leitHkondo physics even above
room temperature, therefore we shall use it as a benchmatémyor our CT-QMC method.

The Co-Cu system is treated as five-orbital AIM representirgdy édectronic shell of the
cobalt atom hybridized with a bath of conducti@y electrons with known DOS. The bath
Green function was obtained using full-potential lineadzanuffin-tin orbitals method, namely
LmtART code developed by S. Savrasov [131]. The LDA caldoiais carried out usin@usAu
crystal structure with lattice constant correspondingh®pure copper. The further tests with a
bigger supercell were done, but no qualitative differerctheCusCo system mentioned above
was found.
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Figure 4.10: Experimental results for Kondo temperature€ @fmpurities on (or in)Cu matrix as a
function of coordination number. Four points represéxsatomon Cu(111) andCu (100) surfaces,
Co atom embedded into first layeof Cu (111) surface andulk environment of the Cobalt impurity
respectively. From Ref. [132].

The interaction part of impurity Hamiltonian was taken adag the procedure described
in sec. 4.2. Average parameters of Coulomb interadtioa 4 eV, J = 0.7 eV were taken from
constrained LDA calculations [15]. The complex harmondigsbasis is chosen to keep off the
terms ofUijj niccﬁc,qo/ form in interaction part of Hamiltonian. It was done to avoumerical
instability of the algorithm related to the sign problemthe complex harmonics basis the Green

function matrix for 3l orbitals splitted by cubic crystal field intgy andey have the following
symmetry:

2 -1 0 1 2
+t —t
_2 & g 2 0 0 0 & > 29
1 0 thg O 0 O
Gloe — . ;9 & 0 o (4.11)
1 0 0 Oty O
2 % g 0 o0 )=

and becomes non-diagonal.
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Figure 4.11: Histograms of different distributions of non-diagonal teondifferent values oé". Model
parameterst) =2eV,J=0.7eV, B = 3.7 eV, 5 orbitals, realistic bath DOS.
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Figure 4.12: Resulting Green functions in imaginary time for different disiobs of non-diagonal terms,
Tin eV~L. Left panel: Green function averaged overdabirbitalsG; (1). Right panel: diagonal elements
Gmm(T) for differentd orbitals. The symmetry o6mm(T) corresponds to Eq. 4.11Gmm(T) Model
parametersd =2eV,J=0.7¢eV,3 =37 eV~1, 5 orbitals, realistic bath DOS.
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Figure 4.14Coatom embedded i@u matrix. Partial DOS o€o 3d orbitals (normalized by 1). Compar-
ison of diagonal (red lines) and full (black lines) Coulomb interactiorCfoimpurity in Cu matrix.

Left panel shows results faf’ configuration, right -d® correspondingly. The LDA result (gray dash line)
is given for reference.
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Figure 4.15:Co atom embedded i€@u matrix. Partial DOS ofCo 3d orbitals (normalized by 1). Test
with full Coulomb interaction and increased temperature. The LDA resuly(dash line) is given for
reference. Model parametets:=2eV,J=0.7eV,=3.7eV?!

Another technical issue is a freedom of choosingalgarameters (2.59) and (2.59). Since
introducing of these variables results in change of the fofnmteraction Hamiltonian, it can
lead to changes in the QMC random walk process. In order tokctiat QMC random walk
is performed the proper way and non-diagonal terms of intema (4.10) are taken into account
correctly, we performed a test calculation for five-orbAdM with realistic DOS of conducting
electrons band and the following parametéis= 2eV, J=0.7 eV, = 3.7eV~L. The auxiliary
parameten™ was varying from 1 to Q3. The interaction part of Hamiltonian containing 65
non-equivalent terms (45 density-density terms and 20#ipis\, the terms of most general form
were omitted) was used in order to reduce computational tirhe distribution of non-diagonal
terms at different values af"® parameters is shown on Fig. 4.11. To improve the quality of
exploring the system’s phase space and to avoid trappingnredocal energy minima, we use
so-called cluster steps, i.e. we propose a pack of Coulondsf(dMC steps) and calculate the
acceptance probability taking into account only initiatldimal state of the system. The ratio of
cluster steps proposed by default was 5% and in one calonlédreen lines) it was increased
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Figure 4.16Coatom embedded i@umatrix. Partial DOS o€o 3d orbitals (normalized by 1). Test with
U increased to 3. The LDA result (gray dash line) is given for refezemdodel parameterd) = 3 eV,
J=07eV,p=10eV L.

to 20% to find a balance between smaller number of cluster M@ssbut lager number of total
MC steps to reach convergence in Green function, The ragutical Green functions (averaged
over all the orbitals) are shown on the Fig. 4.12, left pambke same colors as on Fig. 4.11 were
used, but all the curves are virtually undistinguishablebifally resolved local Green functions
for these cases are shown on Fig. 4.12, right panel. One eanl\clsee the splitting of the
3d orbitals totyg, € and%tzg elements according to cubic crystal field symmetry in thasbas
of spherical harmonics (4.11). The agreement between thatseobtained using differeint"
parameters is very good. But the average sign is sensitivecteasing oti"®: it is equal to
0.998 fora"d = 0.01 and 059 fora™ = 0.3 correspondingly. Even with such bad average sign
as 059 one can obtain spectral properties of the model with hagluiacy. However it leads to
increase of number of MC steps required to get a given pmctis result.

The patrticular electronic configuration of cobalt atom ipger matrix is unknown. LDA
give us 73 electrons in 8 shell. Since LDA gives not very accurate results (and thé tfaat
correlated impurity tends to have integer occupation) wéop@ed two series of calculations,
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Figure 4.17:Co atom embedded i@u matrix. Partial DOS ofCo 3d orbitals (normalized by 1). Com-
parison between full (black solid line) and density-density (red dash@oejomb interaction. The LDA
result (gray dash line) is given for reference. Model parametérs: 4 eV, J=0.7 eV, p=10eV 1,
5-orbital impurity with 7 electrons.

namely ford’” andd® configurations.

First we perform a series of calculations foo atom embedded t6u matrix. In order to
distinguish the effects caused by electronic configuratvienobtained local densities of states
for Co d-shell withind’ andd® configurations and with full Coulomb interaction. To speed up
the calculationt) was decreased to&/. On Fig. 4.13 we compare total DOS of Co d-shell in
different configurations. Whild® qualitatively is similar to the LDA result, in case of 7 elexts
the quasi-particle peak moves towards to the Fermi level.

Another reason to devote our attention to tHeconfiguration is more pronounced differ-
ence between results obtained using full and density-tje@sulomb interaction (see Fig. 4.14).
The reason of such a difference betwerandd® configuration is following: in cubic crystal
field atomicd orbitals splits to three-fold degenerateg and twice degenerateg) levels. In
particular case o€o atom inCu matrix thetyg orbitals moves downwards and becomes com-
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pletely occupied. Therefore the difference betwdémndd® configuration is in occupancy of
gg Orbitals: 1 or 2 electrons per two levels respectively. 8ift state leads to half-filling oy
orbitals, we get more symmetrical situation (than withinuaer-filling g5 configuration ind”)
and less pronounced multiplet transitions. The width arsitipm of the quasi-particle peak does
not change significantly increasikljto 3 eV or decreasing to 3.7 eV (see Fig. 4.16, 4.14).

The final results obtained for realistic parametdrs- 4 eV, J=0.7 eV, B =10eV1in
d’ configuration are shown on Fig. 4.17. Here the differencevéen DOS calculated with full
interaction part of Hamiltonian and density-density oneeésl pronounced.

The summary of this chapter is following: we described thechenark calculations for the
model systems with 2 and 3 orbitals using multiorbital CT-QM@urity solver. We found that
the full Coulomb vertex lead to formation of narrow Kondoeligeak near the Fermi level. We
also applied our CT-QMC solver to a realistic model of Kondgumty, namely cobalt atom
in copper matrix and studied the effects caused by the sipipfbcesses. We found, thef
configuration of theCo atom leads to strong renormalization of LDA density of statear the
Fermi level.
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5 Lattice problem

Materials with correlated electrons exhibit variety of irgsting phenomena. DFT methods (see
sec. 2.1) explains the physical properties of numerousmagesuch as simple metals and some
semiconductors and insulators. But materials with open d fastéctron shells, where electrons
occupy narrow orbitals, have properties that are harder xplain without accurate taking into
account many-body part of the problem.

Since there is no exact way to solve the lattice problem ingores of strong electron corre-
lations, we need to use some approximations. A recent thealrfefmework, namely Dynamical
Mean-Field Theory (DMFT) [1, 18] allows to calculate the dienic structure of these corre-
lated materials in the best local scheme. The DMFT is an appration that maps correlated
lattice problem onto single impurity problem. In this cake CT-QMC impurity solver consid-
ered above can be used also for investigation of correlatdids

5.1 Lattice problem. Approximations.

The discovery of the heavy fermion compounds and of the teghperature superconductors has
revived interest in strongly correlated electron systehimese are systems in which the strength
of the electron-electron interactions is comparable taaydr than the kinetic energy. Initially
the motivation to study such systems came from experimentiaasition metal oxides, from the
Mott metal-insulator transition, and from the problem afétrant ferromagnetism. Theoretical
progress in the field has been impeded however by the extréfioelty of dealing with even
the simplest model Hamiltonians appropriate for theseesyst such as the Hubbard model and
the Kondo lattice model. Only in the one-dimensional caséawe a variety of theoretical tools
to study these models in a systematic manner. For two- aee-thmensional models, one is
often unable to assess confidently whether a given physieaigmenon is indeed captured by
the idealized Hamiltonian under consideration or whethiwearetical prediction reflects a true
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feature of this Hamiltonian, rather than an artifact of thpraximation.

These difficulties originate in the nonperturbative natfréne problem, and reflect the pres-
ence of several competing physical mechanisms for evenrtif@est models. The interplay of
localization and lattice coherence, of quantum and spiéietuations, and of various competing
types of long-range order are important examples. Numeasppsoximation schemes (see e.g.
[57]) have been employed to circumvent these difficulties dll of them are not based on some
controlled limit, i.e. some extreme limit of the model is saered wherein the problem simpli-
fies and can be solved in a controlled manner. The reasondotfaese approaches is not that of
out-of-place mathematical rigor, but rather that it is nfeasier to identify which of the physical
aspects of the problem will be privileged by a specific lirand thus to choose that specific limit
best adapted to the physical phenomenon under considerdtidavorable cases, the physical
ingredients that have been left out can be reintroduced pgrekng around this starting point.

The increase of computational power has also stimulatectataiumerical solution of these
models using exact diagonalization (see sec. 2.2.1) anttgjmaMonte Carlo methods (see sec.
2.2.3). However, the exact diagonalization techniquemétdéd by the exponential growth of the
computations with system size, while the quantum Monte Cawdthod is restricted to rather
high temperatures by the minus-sign problem. Despite ttezast of these numerical studies,
these limitations have often prevented the extractionlable low energy information.

Dynamical Mean-Field Theory (DMFT) [1, 18] is a new appro&eithe problem of strong
correlations that has been developed over recent yearsamledh to some progress in our un-
derstanding of these systems. The essential idea is toceepldattice model by a single-site
guantum impurity problem embedded in an effective mediuterd@ned self-consistently [3].
The impurity model offers an intuitive picture of the locgirdmics of a quantum many-body
system. The self-consistency condition captures thelaos invariance and coherence effects
of the lattice [22].

Actually a mean-field theory reduces a many-body latticélem to a single-site problem
with effective parameters. Consider the classical theomadgnetism as an analogy: Spin is the
relevant degree of freedom at a single site and the mediuepissented by an effective magnetic
field (the classical mean field). In the fermionic case, thgreles of freedom at a single site are
the quantum states of the atom inside a selected centrateihivf the crystal; the rest of the
crystal is described as a reservoir of noninteracting elastthat can be emitted or absorbed by
correlated site.

91



The dynamical mean-field theory becomes exact in the limérge spatial dimensiorts—
o [1], or more appropriately in the limit of large lattice codamation (note that the coordination
z is already quite large for several three-dimensionatkdt z=6 for a cubic lattice, z=12 for a
face-centered-cubic lattice). This ensures the intemasistency of the approach and establishes
1/z as a control parameter.

The main merit of the DMFT approximation is a proper desaipdf typical correlation
problems such as the Mott transition and possibility totteegealistic models of actual mate-
rials, taking into account several orbitals, and specifiick structure and density of states, as
obtained, e.g., from local density approximation (LDA)adhtions [4, 5].

5.2 Dynamical mean-field theory

The main idea of a mean-field theory is to approximate a &ftiloblem with many degrees of
freedom by a single-site effective problem with less degj@&dreedom. Thus the dynamics at
a given site can be represented as the interaction of theeegf freedom at this site with an
external bath formed by all other degrees of freedom in atyst
Proposed as an exact solution of Hubbard model in infiniteedsions [1, 18], DMFT

become a very powerful tool for investigation of lattice retsdof correlated electrons. In DMFT
the lattice model is mapped on an effective quantum impumibgel in a bath which has to be
determined self-consistently.

Let us consider the Hubbard Hamiltonian:

H= ZtijCiTGCjo‘f'U ZCiTTCiTCiTLCU' (5.1)

1jO |
It is the simplest model of interacting electrons on a lattithetj; matrix element describes
hopping of electrons with spin s between sites i and j. Thersgtermin (5.1) is alocal Coulomb
interaction U between two electrons occupying the sama.site

For simplicity it is assumed, that no symmetry breaking oscue. we have translation-
invariant paramagnetic phase.

In dynamical mean-field description the Hamiltonian (5.4) e described as an impurity
in some effective field.

The imaginary-time action of this system reads as (2.18)3rw@ir‘nlp(iwn) =in+H—
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As(ion) plays a role of the effective field. In other words, the Andergmpurity model (see
Chapter 4) can be a reference system for the Hubbard modelisedayields the exact local
Green function in DMFT when the hybridization functif(iwy) fulfills a self-consistency con-
dition [2, 3]:

Gioc(itn) = Z(Ga%k, ion) — Z(ien)) (5.2)

whereGo(k, iwn) = (iwn + U —tx) 1 is non-interacting-dependent Green function of the
initial lattice problem in tight binding scheme and can béaoted, for example, from LDA
calculation. TheX(iwy)) is frequency-dependent self-energy (5.5). The initialsguier in
the first iteration is usually zero. The bath Green functibtamed from solution of effective
impurity problem with no locak:

Gimp(16h) = Giog(icn) + Z(ican). (5.3)

After we find the bath Green function, we approach the mosttneial part of the DMFT
loop: solving of the corresponding impurity model takingoiraccount electronic correlations.
Using bare green functioGimp(itn) as an input Gimp(iwn) = Gioc(itn) at the first DMFT iter-
ation), as an output the impurity solver produces

Gimp(T) = — <TTC(T)CT (0)> (5.4)

Smp

This is an interacting Green function of the reference intpysroblem. The energy-
dependent self-energy(iwy) is obtained in the following way:

Z(ith) = Gimp(ith) — Giap(icn) (5.5)

Usually one have to use Fourier transform to ob@ijnp(iw,) on Matsubara frequencies
from the imaginary time resulBimp(t). However in the CT-QMC method this transformation
is performed analytically (2.46) and we get rid of additibonamerical errors caused by this
operation. It leads to significant reduction of the numénmcase inX(iwy,) (see Fig. 5.1, lower
panel) and, as a consequence, our DMFT-loop reach selfstensy much faster then using, e.g.
Hirsch-Fye QMC as an impurity solver.
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Since the self-energy (5.5) is used for construction of neh liGreen function for the
reference impurity problem (5.2), the equations (5.2, 5.8) make up the DMFT loop.

When a self-consistency condition is fulfilled, i.e. all theagtities in Egs. (5.2, 5.3, 5.5)
converges to some stable values and do not changes from o Libtation to another, the
(5.2) become the final local Green function for Hubbard mad&MFT approximation.

The DMFT is exact in the limit of infinite coordination numier infinite dimensions). For
any finite-dimensional system, DMFT is an approximationtdaiis to take into account non-
local fluctuations, like Cooper pairing or antiferromagoetrrelations. Nevertheless, it can be
used as a reasonable starting point in many cases.

5.3 Two- and three-band lattice model, orbital selective

metal-insulator transition

The Mott metal-insulator transition plays an importanermi the physics of strongly correlated
solids [115]. At a qualitative level, localization of thesetrons can occur when the kinetic en-
ergy gain (typically given by the bare bandwidth) is smatlean the cost in on-site repulsive
Coulomb energyy). Although simplified models like one-band Hubbard modelaate our
understanding of correlated phenomena in solids, in re&mads however, such as transition
metal oxides, several orbital components are involved. él@ry most attention has focused on
the one-orbital case, in part because of its presumed retevim high temperature supercon-
ductivity [133] and in part because appropriate theoretmals for the multiorbital case have
until recently not been available. This focus on the onedbzase is limiting: in most Mott sys-
tems more than one orbital is relevant and the orbitals acaped by more than one electron
or hole. Intuition gained from studies of single-orbital dets may not necessarily carry over
to the multiorbital case [134, 135, 136]. One of the reasdrnsuoh behavior of multiorbital
system is emerging of additional degree of freedom and grergle, namely Hund exchange
J. Furthermore, the inter-site hopping amplitudes can beifsegntly different for different or-
bital functions (due e.g to their relative orientations)isitherefore essential to understand how
these effects can affect behavior of the correlated sofictperties and whether qualitatively
new effects are possible when the orbital degeneracy &llifRemoving of orbital degeneracy
can lead to variety of interesting effects, such as orbitdeong [137], orbital selective Mott
transition (OSMT) [138, 139], etc. Some works on this subjeere done omitting exchange
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and pair hopping terms [136], but a reliable extension odéresults to the rotationally invariant
model in the strong coupling regime has until recently narbpossible. On a technical level,
multiorbital models are more difficult to study both becaaséhe larger number of degrees of
freedom, and because the physically important exchangeainthopping terms are not easy to
treat by standard Hubbard-Stratonovich methods [72, 140].

We use the CT-QMC method with the full rotationally invariamteractions (Eq. (4.1)).
To benchmark our method we performed a DMFT calculation b&a8€d strongly anisotropic
lattice model: both bands are at half-filling and their baitflwvareW;, = 2 eV andW, = 0.2 eV,
i.e. the hoppings between the lattice sites differs by faoctd O for the different orbitals. The
inverse temperatur@ = 30 eV~ corresponds to temperatufe~ 350K that is already close
to the room temperature. The Coulomb interaction strekigth 1.2 eV, exchange parameter
J = 0.2 eV, interaction part of the Hamiltonian is of the form (4.1).€Ttesulting local DOS as
well as local Green functions are presented on Fig. 5.1. inrdgion of parameters we have
very pronounced orbital-selective metal-insulator titams. The broad band is conductive and
the narrow one is a Mott insulator. Moreover the Luttingemswle ("pinning condition”) is
violated due to the interorbital coupling and relativelsglatemperature, and this fact is in good
agreement with known results [141, 142].

Next we consider three-orbital lattice model. We fitted therical potential to get a non-
integer occupancy. This model corresponds to doped Hubbhad#! in infinite dimensions.
We choose the parameters to bring all the orbitals to stronglated regime: two (broad) bands
are degenerated and their bandwidtWis=W, = 2 eV, the third (narrow) band has a bandwidth
Ws = 0.2 eV. The inverse temperatupfe= 10eV~1 corresponds to temperatufe~ 1160K The
Coulomb interaction strengld = 2.7 eV, exchange parametdr= 0.7 eV, interaction part of
the Hamiltonian is of the form (4.1). In our case the occupaseset ton = 1.4 electrons pro all
3 orbitals. The results are presented on the Fig. 5.2. Thapaecy of the narrow orbital (red)
is 1 electron fharrow = 1/2 pro state, half-filled case) and the broad orbitals (bladgtains
approximately 0.4 electrons on both orbitatg,{aq ~ 0.1 pro state). The narrow orbital became
insulating, (Fig. 5.2, inset) whereas the broad ones resm@nducting and form a pseudogap
at the Fermi level. For the undoped model (see Fig. 5.3) ostesy becomes an insulator:
narrow band is still a Mott insulator and the broad ones ashed out over the Fermi level.
The corresponding occupancies &grow = 1/2 andnproad = 0. Notice, that the particular
model hasJ /D = 2.7 ratio for broad orbitals, that is much lower than the caitiealue for the
degenerated half-filled 3-band modikl/D ~ 6.5 [143].
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Figure 5.1: Results for 2-band interacting lattice model in DMFT approximatModel parameters:
Initial bandwidthW, = 2 eV, W, = 0.2 eV. On-cite Coulomb repulsion = 1.2 eV, Hund exchange
J = 0.2 eV, the system is at half-filling. Inverse temperatfire- 30 eV~1 (T ~ 350K). Upper panel,
main graph: interacting imaginary time impurity Green funct@®(t) (5.4) for both orbitalst in ev—1.
Upper panel, inset: Orbital-resolved DOS. Dash lines denotes initial iMeracting) local density of
states of a lattice site. Lower panel: Imaginary part of self-en&fgy,) on Matsubara frequencies,

in eV. Black lines corresponds to broad band, red - to the narrow one. dimei Energy corresponds to
zero.

5.4 Role of spin-flipsin  SKLRUQ,

The interest to th&rnRuQ, compound emerged in the middle of 90’s, when it was found, tha
at temperatures below 1K this compound becomes superctivel{44]. There is still a pos-
sibility, that studying of this system can help to underdttlve mechanism of higl; supercon-
ductivity. However 4 states of Ru in the compound are more broad thandhs&es in highF;
cuprates.
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Figure 5.2: Results for 3-band interacting lattice model in DMFT approximatioped regime — total site
occupancy isyq ~ 1.2 electrons. Model parameters: Initial bandwitlth=W, = 2 eV, W5 = 0.2 eV.
On-cite Coulomb repulsiorlJ = 2.7 eV, Hund exchangd = 0.7 eV. Inverse temperatuf@ = 10eV1
(T =~ 1160K). The orbital occupancies arg = ny ~ 0.1, n3 = 1/2. Main graph: interacting imaginary
time impurity Green functiorG(t) (5.4) for all orbitals,t in eV~1. inset: Orbital-resolved DOS. The
narrow orbital (red) has a gap on the Fermi level whereas the braétdler(black) form pseudogap but
still remains conductive. Black lines corresponds to broad bands, teethe narrow one. The Fermi
energy corresponds to zero.

The first-principle LDA calculation of the electronic sttuce of SpRuQ, [145] is based
on density functional theory (DFT) within the LDA approxitran [10] using the linearized
muffin-tin orbitals (LMTO) method. [146] The partial dened of states for SRuO, are shown
in Fig. 5.4. The strontiumdistates are almost empty and lie abow/3the O-2o derived bands
are filled and extend from8eVto —1eV.

Due to the crystal field symmetry the Ruakdtates splits intgpg and g orbitals (see Fig. 5.5).
Since twoey bands lie above the thregytbands in the energy region from 0.5 eV to 5 eV, four
Ru-4d electrons occupy threlgg bands @* configuration). The partially filled rutheniund4
states are the most interesting from the point of view ofalation effects. The layered crystal
structure of SYIRUQy results in further splitting ofyg orbitals: thexy orbital is almost two-
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Figure 5.3: Results for 3-band interacting lattice model in DMFT approximatiodpped regime — total
site occupancy isi: = 1 electron. Model parameters: Initial bandwidlth =W, = 2 eV, W5 = 0.2 eV.
On-cite Coulomb repulsiond = 2.7 eV, Hund exchangd = 0.7 eV. Inverse temperatug = 10 eV

(T =~ 1160K). The orbital occupancies ang = n, = 0,nz = 1/2. Main graph: interacting imaginary time
impurity Green functiorG(t) (5.4) for all orbitals,T in eV—!. inset: Orbital-resolved DOS. The narrow
orbital (red) has a gap on the Fermi level whereas the broad orbitalklidacame a band insulator.
Black lines corresponds to broad bands, red - to the narrow one. &riv@ Energy corresponds to zero.

dimensional while thexz, yz orbitals have nearly one-dimensional character (see Fy. $he
initial (non-interacting) DOS for the correlation problemas obtained by Pchelkina et al. [145]
using Wannier functions formalism [147] which allows onetoject the Hamilton matrix from
the full-orbital space to a selected set of relevant orbital

The experiments [148, 149] shows the presence of corraRtioSrnLRuQ,: the quasipar-
ticle (QP) weight is 3-4 times larger than the results olgdifrom standard band calculations
and position of the QP peak is at Fermi energy0tO meV above, whereas tight-binding (TB)
calculation givesz 100meV[122] and realistic LDA calculation gives even larger 200meYV,
[145]) shift of the peak. It means that correlations playswial role in understanding of the
material’s properties [145].

There were a number of theoretical works®mRuQ, in a framework of the DMFT scheme
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Figure 5.4: Partial LDA DOS for SRuOy. The partially filled rutheniumd-states are the most interest-
ing from the point of view of correlation effects [145]. The Fermi leveiresponds to zero. From Ref.
[145].

in order to investigate many-body effects leading to unbspectral properties of this compound
mentioned above. As a many-body impurity solver were usedHinsch-Fye QMC approach
[145] and finite temperature exact diagonalization metli&d].

In the work [145] Hirsch-Fye QMC solver was used. The limdas of this method (see
sec. 2.2.3) have lead to impossibility of including fullytabonally invariant interaction — spin
flips and pair hoppings terms were omitted, i.e the inteoacpart of Hamiltonian was of the
form (4.1), but without last term. The model parameters wellewing: inverse temperature
was B = 10 eV, the number of imaginary time slices was 48 < 0.25 eV—1), Coulomb
interaction parameters welttk= 3.1 eV, J = 0.7 eV. The result of that calculation is presented
on Fig. 5.7.

Another recent attack on this problem was done by Liebschisimda [150]. They used
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Figure 5.5: Orbitally projected LDA RuéADOS. Onlyxy, xzandyz orbitals contributes to the DOS at
Fermi level. The Fermi level corresponds to zero. From Ref. [145].

finite temperature exact diagonalization technique as guuiity solver for the DMFT loop.
Their solver allowed to include full Coulomb matrix, but theth DOS was (strongly) discretized
in order to represent it as a finite set of levels. The first faatle possible to obtain very reach
structure of all the many-patrticle states, but the secaitlip@gh allowing to perform the exact
diagonalization of the system’s Hamiltonian in finite (aethtively small) Hilbert space, led to
very spiked local DOS, corresponding rather to the solutibtihe local problem, not the band
one (see Fig. 5.8).

In the CT-QMC formalism we can perform calculation of the spdgoroperties of the
system with full Coulomb matrix and without any artificial distization of the input DOS of
non-interacting system.

In order to understand how the spin-flips and pair hoppingsenfluence on the spectrum
of the system, we performed a number of calculations witfeght interaction Hamiltonians:
with and without spin-flip and pair hopping terms. To distirgh effects caused by shape of
the non-interacting bath DOS, all the calculations were fimntwo bath DOS: first was an
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LDA result from Ref. [145] (see Fig. 5.6, solid line) and themed from Ref. [122] (see
Fig. 5.6, dash line). From the Fig. 5.8 one can conclude thiatdystem has a very reach
structure of many-particle states and it can lead to stremgpéerature dependence of the system’s
spectrum. Therefore we performed two series of calculatitor inverse temperatufie=5eV—1

(T ~ 230(K) andp = 10eV—1 (T ~ 116(K). The choice of so high temperatures is determined
by limitations of the computational effort: all the resyttesented in this chapter were produced
on a dual-processor workstations with AMD Opteron 1.8 GHz GPWhe usual time pro one
DMFT iteration was 10-20 hours.

The interaction part of the Hamiltonian is of the rotatidpatvariant form (4.1). The values
of the orbitally averaged Coulomb interaction param&eﬁ 1.7 eV and Hund exchange energy
J=0.7 eV, the same as in [145], were obtained from constrained LDAutations [123, 151].
In the particular case of thretgg-orbitalsU is equal to the inter-orbital Coulomb interaction
U’. [4, 5] Thus we obtaity = U’ +2J = 3.1 eV for the local intra-orbital Coulomb repulsion.

Since the one-electron Hamiltonian is diagonakispace [122], we can use the following
realization of the DMFT: The DOS resulting from LDA calcutats is connected to a non-
interacting bath Green function &uthe following way: Ny (E) = —%[Im(Gm(E)), wherem is
orbital index. Thus in order to obtain bath green functiorMatsubara frequencies for CT-QMC
solver we need to perform the Hilbert transform. In genevainfit readsG(z) = f;”%d E.
For our purpose one have to use- iw, + P — Z(iwy), wherew, = (2n+ 1)TT is Matsubara
frequencyytis a chemical potential ant{icn) = G~ (iwn) — G (i) is a self energy. In other
words, instead of Eq. (5.2) we use local Green function ofellewing form:

) bath
S L)

e i —Zp(ion) —E’ (5.6)

whereNP2™"(E) is non-interacting bath DOS of the corresponding orbital (

To distinguish the effects caused by spin-flip and pair-lvagperms, the last item in (4.1)
was omitted and DMFT calculations with density-density @mib interaction have been per-
formed. First we have done DMFT calculation for bath Grearcfion obtained in LDA ap-
proximation [145], using full and density-density Coulomkerraction (with or without last item
of (4.1)). Resulting DOS is presented on Fig. 5.9, left panel.

The hybridization due to interorbital Coulomb interactieads to complete different spectra
in comparison to LDA and TB non-interacting results. The Di@&ures that were apart from
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Figure 5.6: Density of states of of non-interacting system. Solid line — LDAlte&om Ref. [145], dash

line — tight binding model from Ref. [122] Upper pan&l orbital, lower panelxzandyzorbitals.

the Fermi level (especially orz andyz orbitals) moves towards the Fermi level and form a
guasiparticle peak, the upper (UHB) and lower (LHB) Hubbarddsaappears (compare figs.
5.6 and 5.9, left panel).

The result for diagonal Coulomb matrix is in qualitative agrent with with one of Hirsch-
Fye QMC calculation by Pchelkina et al. [145]. The deviasican be attributed to big difference
of temperature (by factor of 2). Including of the spin-fliprtes have almost no effect oxy
orbital (see fig 5.9 left panel, (a)), only small weight trmgrom the satellite peaks atl and
1.7 eV occurs. The LHB stays almost unchanged-dt3 eV. The derivative of self energy
with respect to Matsubara frequen(%{%)w_ml
guasiparticle residue makes no sense. This fact can havedsgble reasons: either we are

is positive and the (5.7) definition of the

at very high temperature and cannot catch the low-temperdaehavior, or our system tends
to have a pseudogap. The andyz orbitals (see Fig. 5.9 left panel, (b)) are more sensitive
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Figure 5.7: Ru-d(txg) spectral functions obtained within LDA+DMFT (Hirsch-Fye QMC) by Bikina
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Figure 5.8: Quasi-particle spectra is calculated using ED/DMAT -at50 eV~ (T ~ 220K), U = 3.0
eV. Solid (red) curvesdyy band, dashed (blue) curved,y, bands. From Ref. [150].
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to form of Coulomb interaction. It leads to slight narrowinfgtioe peak hear the Fermi level
and the LHB shifts by @ eV: from —3 to —2.8 eV (see fig 5.9 left panel, (b)). Moreover,
the quasiparticle weight (calculated by the (5.7) formake Tab. 5.1) of these orbitals slightly
decreases with including the spin-flip terms: frag,g = 0.99 for density-density Coulomb
interaction toZ¢ = 0.95 in case of full Coulomb vertex. The quasiparticle weightehis
calculated using approximative formula [3]:

z— [1— —a'm.z(iw)’ ] 1. (5.7)
0(iw) g
To check the results presented above we performed the aatouivith tight-binding model
bath DOS from [122]. Results are presented on Fig. 5.9, righep The spin-flip effects are
qualitatively the same as in previous calculation, but mondre pronounced. They orbital
undergoes almost no changes, the LHB positior4s4 eV, UHB is at 16 eV and the satellite
peak is at-1 eV. The self energy exhibit the same behavior as in the previass.

On xzandyz orbitals including of spin-flip terms lead to smearing of Haellite peak at
—0.7 eV and shifting of the LHB from-3.5 eV to —3.3 eV. Note that this shifting (2 eV) is
the same as in the case of realistic bath DOS.

The splitting between LHB oxy orbital and LHB ofxz yz orbitals is increased from.1
eV for realistic bath DOS to.5 eV for the model (TB) one. The quasiparticle renormalization
of the xz andyz orbitals is of the same order as in the previous case: iz = 0.99 for
density-density Coulomb interactionZg;; = 0.96 in case of full Coulomb matrix.

Lowering the temperaturg3(= 10) in case of LDA bath DOS has the following conse-
guences: LHB of they orbital moves to—2.7 eV for full Coulomb interaction and te-2.5 eV
for diagonal one (see fig 5.10 left panel, (a)). When includipop-flip terms to the Coulomb
interaction the satellite peak in the orbital moves from—0.3 eV to —0.2 eV and becomes
more pronounced; thry orbital becomes more correlated: its quasiparticle wetlgtreases
from Zdiag = 0.91toZsy = 0.84.

Thexzandyzorbitals in this case are also more correlated thamytome: their quasiparticle
residues without and with spin-flip terms afg@,g = 0.91 andZy = 0.84 correspondingly. The
LHB of these orbitals moves from3.2 eV to —2.6 eV and the UHB at b eV becomes more
pronounced (see fig 5.10 left panel, (b)). Finally the sigftof the QP peak partially below
the Fermi level caused by non-diagonal terms of Coulombawten is observed orz andyz
orbitals.
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Figure 5.9: Density of states of interacting Rad{#,) orbitals. Left Panel: bath Green function is taken
from LDA calculations [145]. Right panel: bath Green function is takemffTB calculations [122].
Model parameters are following: inverse temperafiire 5 eV~ (T ~ 2300K). The interaction param-
eters ardJ = 3.1 eV, J=0.7 eV. Solid line denotes rotationally invariant interaction (4.1), dash line —
density-density one (without last item in (4.1)). Upper grapyrbital, lower graphsxzandyzorbitals.

The last series of calculations have been performed for B B&®S with the same pa-
rametersly =3.1eV,J=0.7eV, B =10eV ! (T ~ 1160K)) and fullU matrix (see fig 5.10,
right panel). In this case oxy orbital the LHB at—2.8 eV, UHB at 15 eV and the satellite
peak at—0.7 eV become more pronounced (see fig 5.10 right panel, (a)). iBosif the LHB
of xz yzorbitals is—2.5 eV and UHB is at 17 eV, quasiparticle weight were frod,, = 0.84 to
Zyzyz = 0.74.

The quasiparticle weights of the Rualdyg) orbitals obtained in DMFT approximation for
full (with spin-flip terms) and diagonal Coulomb interactiand for bath DOS obtained in LDA
approximation [145] or from tight-binding model [122] areepented in Tab. 5.1. The N/A
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Table 5.1: Values of the quasiparticle weightor different model parameters.

Z LDA B
Xy XZyz| Xy Xzyz

=5eV" lag . . .
B=5¢eVv! diag| N/A | 0.99 || 0.99| 0.99

=0 ev u . . .
B=5ev1l full | NJA| 0.95| 0.98| 0.96

=10eV™ lag | O. . . .
B=10ev ! diag| 0.91| 0.82 || 0.96| 0.84
B=10evV! full | 0.84| 0.76 || 0.84| 0.74




entry forxy orbital at3 = 5 denotes that the self energy derivat§7l§‘(iztf+)‘*’)‘m_w1 was negative
and calculation oZ according to (5.7) definition was impossible. Analyzingsttable we can
conclude thakzandyzorbitals exhibit more correlated behavior thggone. It can be attributed
to the fact that non-interacting band DOS for these orbitaddmost twice more narrow than the
Xy one (see Fig. 5.6).

Another subject to analysis is structure of DOS. Whereasawer Hubbard band has al-
most the same position in all the calculation series (it maytain some fine structure we can
not resolve because the features of the maximum entropyoahetie are using for analytical
continuation of the Green function to the real axis, see 28.7), the DOS features near the
Fermi level exhibit reasonable dependence on both interatgpe (full or reduced) and bath
DOS. In case of LDA bath DOS the results (see figs. 5.9 and feft(hanels) are qualitatively
consistent with the DOS obtained by Hirsch-Fye QMC [145g(Bey. 5.7). At high tempera-
ture @ =5eV—1, T ~ 230(K) the satellite peak on they orbital at—1 eV is reproduced with
both types of Coulomb interaction we used. With lowering #@perature (1@ = 10 eV 1,

T ~ 1160K) this feature moves towards the Fermi level and becomes saorgtive to the type
of Coulomb interaction (see Fig. 5.10, left panel): turnimgloe spin-flip terms leads to stronger
hybridization betweemy andxz yz orbitals: position of the satellite peak on thgorbital be-
comes almost the same as the maximum of quasiparticle pegk ymorbitals, approximately
at—0.25eV. ltis in a good agreement with the ED-DMFT results if Liebsaid Ishida [150]
(see Fig. 5.8): In their spectral functioty andxz yz orbitals have almost the same structure
nearEg. The similar situation takes place in case of TB bath DOSigit temperature we have
very pronounced satellite peak on thyeorbital at—1 eV (see Fig. 5.9, right panel) and at lower
temperature this peak moves towards Fermi level and hyattidin ofxy andxz yzorbitals takes
place: the lower Hubbard bands are almost on the same postie 2.5 eV.

In this chapter we applied CT-QMC multiorbital solver to tladtice problem in DMFT
approximation. We reproduced such features of the multedrblubbard model in infinite di-
mensions as orbital-selective metal-insulator transif@SMT), conductive character of doped
Hubbard model in doped case and localization phenomenanhdaoped one. Also the results for
realistic model describing ther,RuQ; compound were reproduced and the influence of spin-flip
terms on spectral function was studied. The method showed grecision within a reasonable
computational effort.
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6 Conclusions and outlook

In the present thesis we developed the weak-coupling aomtis time quantum Monte-Carlo
(CT-QMC) scheme for the general multiorbital impurity prableéWe test this solver on a variety
of physically interesting systems, such as two- and threéad impurities, a realistic Kondo
problem of a cobalt atom in a copper matrix and multi-bandedated solids.

A number of technical problems related with the multi-bandelated problem have been
solved. In order to obtain the full atomic-like Coulomb irgetion, the matrix in complex har-
monic basis was constructed and symmetrized. The fermggicproblem was overcome by
introducing additionatx parameters to make all Coulomb interaction elements effdgtnega-
tive. These parameters were applied not only to diagonaisftiedensity) Coulomb interaction
elements, as in the one-band case, but also to spin-fligdikas as well. A computationally
inexpensive way to investigate spin susceptibilities heenldeveloped.

In order to describe a single-spin Kondo impurity embedad & conduction band with
arbitrary density of electron states (DOS), we used thekdisov’s transformation to get rid of
spin operators in favor of fermionic ones. This led to anaite two-site Anderson impurity
model, which can be easily solved by the CT-QMC scheme. Theunorersality of the mag-
netic susceptibility behavior has been found in case of cmrstant conduction electron DOS.
We show a possibility of calculating different magnetic pedies of interesting systems, like
magnetic impurity in an ultrasmall grain and disordered #malloys. The obtained results are
in good agreement with other methods, such as exact diagatnah and numerical renormal-
ization group.

We applied the multiorbital CT-QMC solver to the two-, threed five-orbital Anderson
Impurity models. The benchmark calculations in the atomnnitlshow a very good agreement
with exact diagonalization results both in the half-fillease and away from half-filling. The
effects of spin-flip terms and their interplay with couplioithe impurity to a conduction band
of non-interacting electrons is studied. The role of siagties in the conduction band DOS on
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the impurity spectral function has been discussed.

A realistic Kondo model, namely a cobalt atom in a copper xais considered. The
effects caused by spin-flip terms of the Coulomb interactrerstudied as a function of impurity
occupancy, temperature, and strength of Coulomb interacBtrong renormalization of initial
DOS, obtained within the density-functional theory in thedl density approximation, is found.

In order to calculate a properties of correlated solids,nthétiorbital CT-QMC solver is
used as a part of the self-consistent loop in dynamical nfietcththeory. Benchmark calcu-
lations for two- and three-band correlated lattice modalewgerformed. The orbital-selective
Mott metal-insulator transition was reproduced. A caltalaof a real solid, namely strontium
ruthenate $nRuQ;), was performed. The influence of spin-flip terms of the Couldonterac-
tion as well as dependence of the result on initial non-aaing band DOS were studied. The
obtained spectral functions are in a good agreement withiqure studies.

We belive that the developed multiorbital CT-QMC method ddo¢ used to describe and
predict spectral and magnetic properties of correlatedsystems and solids. At the moment
we are working on relativistic generalization of CT-QMC nadfor transition metals adatoms
on metallic surfaces taking into account spin-orbital dmgp We will also extend the lattice
problem algorithms using CT-QMC to systems with correlatedectron shell.
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7 Appendix

Magnetic susceptibility calculation for Anderson impuwriih the atomic limit.
Consider a simple one orbital AIM without coupling to any bathfree electrons. This
system has only four states (see Fig. 7.1)

Magnetic susceptibility is given by

oM

oH [h_o

whereM is magnetization of the system ahtlis magnetic field applied to the system.
Suppose that the magnetic field is applied along z axis. Th@mignetization is given by

M =S, (7.2)
E (n-n)
2E.+U 4 0
E+uH/2 l -1
H
E. - uH/2 T 1
0 0

Figure 7.1: One orbital AIM without coupling to bath of free electrons.
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whereS; = (n —ny). Thus

sp[Me | Sp[ug(n —n))e e
er Sp ebBE

e BER+PTFT _ opEr - PRET

1+ e—BEF-i‘BmTLBH + e—BEF—BmTLBH + e 2BEF—BU

From (7.1) and (7.3) obtain:

e BEF
1+ 2e PBEF 4 g 2BEF—BU"

X = B3

(7.3)

(7.4)
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