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1 Introduction 

1.1  Oxidative stress: introduction  

 

Oxygen is the molecule essential for aerobic respiration and thus, for animal life. Paradoxically, it 

is also involved in many diseases and degenerative conditions. Indeed, atmospheric oxygen in its 

ground-state is a biradical (O2) whose reduction leads to superoxide (O2
•-), hydrogen peroxide 

(H2O2), perhydroxyl radical (HO2
•) and hydroxyl radical (OH•). These chemical entities are 

known as reactive oxygen species (ROS). ROS are present in all aerobic organisms. In human, 

ROS are continuously produced by the polymorphonuclear leukocytes or neutrophils of the 

immune system to kill bacteria (Forman and Thomas 1986). However, they are unstable, 

therefore extremely reactive and can damage the molecules they react with. Although all cells 

contain antioxidants that aim at reducing or preventing this damage, the situation where ROS 

prevail over antioxidants can occurs and is known as oxidative stress. Oxidative stress contributes 

to tissue injury following irradiation and hyperoxia and is thought to be a cause of 

neurodegenerative diseases such as Alzheimer's disease (Gilbert 2000) Since oxidation of low-

density lipoprotein (LDL) in the endothelium is a precursor to plaque formation, oxidative stress 

is also thought to be linked to cardiovascular diseases. 

ROS can react with lipids, nucleic acids or proteins. Oxidative damage to lipids has been most 

frequently investigated and is addressed in detail below. In DNA, both the sugar and the base 

moieties are susceptible to oxidation, causing base degradation, single strand breakage and cross-

linking protein, and yielding products such as 8-hydroxyguanine (Imlay and Linn 1986). 

Oxidative attack on proteins results in amino-acid modifications, fragmentation of the peptide 

chain, altered electrical charge and increased susceptibility to proteolysis. However, oxidative 

damage to proteins is not pertinent for the present work. 

 

1.2 Phospholipid oxidation 

1.2.1 History 

The reaction of oxygen free radicals with lipids has been noticed since antiquity because of the 

development of undesirable odours and flavours in food and because of its involvement in 

rancidity, for example in the storage of oils. This phenomenon was taken advantage of by ancient 
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civilizations such as the Greek, Roman and Egyptian who created the first oil paint recipe by 

using a mixture of bee wax, pigments such as iron and copper, and vegetable oils like walnut oil. 

This recipe was rendered quick-drying and the resulting colours more brilliant and more intense 

by the replacement of walnut oil with linseed oil by the Flemish Painter Jan Van Eyck in the 15th 

century. It further evolved in the hand of Italian painters such as Leonardo Da Vinci, who 

avoided too dark colours by cooking this oil mixture at low temperature. This and other 

modifications of this recipe were kept secret in Italian ateliers, securing their uniqueness and 

radiance throughout Europe over almost three centuries. Van Eyck’s recipe was also the basis for 

the recipe of the ink used by Johann Gutenberg in 1454 (Mills and White 1999). Today, lipid 

oxidation is still crucial in the fabrication of chemical and industrial products such as paints, inks, 

resins or lacquers but also of food products such as margarine. 

Owing to its critical character in the fabrication of products used for human consumption, the 

oxidation of lipids has been extensively researched. As soon as 1800, the Swiss chemist Nicolas-

Théodore de Saussure observed that linseed oil could absorb more than twelve times its own 

volume of oxygen over a period of four months. Indeed, the drying process of air- and hence, 

oxygen-exposed oil paint, for example, mainly includes the oxidative degradation of unsaturated 

fatty acids leading to the formation of aldehyde groups later transformed into carboxylic groups, 

yielding dicarboxylic acids (Surowiec et al. 2004). The knowledge about lipid peroxidation 

evolved over the years and led, through the first demonstration of free radical oxidation of 

membrane phospholipids by Porter et al. in 1980, to a new era with a constant stream of works 

devoted to biochemistry, biology and medicine. 

 

1.2.2 Enzymatic oxidation 

Arachidonic acid, whether diet-supplied or derived from endogenous linolenic acid, is the center 

molecule for enzymatic oxidation and can be oxidized through three pathways (Figure 1). 

Through the cyclooxygenase (COX) enzymes, which catalyze the addition of molecular oxygen 

to various polyunsaturated acids, arachidonic acid is converted to prostaglandin (PG) G2, which is 

subsequently reduced to PGH2. Under the action of cell-specific isomerases and thromboxane 

(TXA2) synthase, other PGs and TXA2 are produced. 

The lipoxygenase enzymes catalyze reactions between O2 and methylene-containing 

polyunsaturated fatty acids. Among others, arachidonic acid is converted by these enzymes to 

hydroperoxyeicosatetraenoic acids (HPETEs), which are important metabolic intermediates. 
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The CYP450 epoxygenase pathway forms epoxyeicosatrienoic acid (EET) as well as dihydroxy 

acids. 
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Figure 1: Simplified scheme of the arachidonid acid cascade 

 

1.2.3 Auto-oxidation 

The peroxidation of lipids or auto-oxidation involves three steps: initiation, propagation and 

termination. (Figure 2) (Halliwell and Chirico 1993) 

The initiation refers to the abstraction of an H atom from the methylvinyl group of the fatty acid 

by a ROS, leaving a carbon-centered radical that forms a resonance structure sharing the unpaired 

electron. The propagation stage is characterized by a reaction between this resonance structure 

and oxygen in its ground state, yielding a peroxyl radical. This peroxyl radical can then abstracts 

an H atom from a second fatty acid, forming a lipid hydroperoxide and leaving another carbon-

centered free radical that can take part in a second H-abstraction. Therefore, a single H-

abstraction by a hydroxyl radical creates a chain reaction involving the most abundant form of 

oxygen in the cell, namely oxygen in its ground state. The alternative fate of peroxyl radicals, 

especially from polyunsaturated fatty acids such as arachidonic acid, is to be transformed in 

cyclic peroxides or cyclic endoperoxides. Termination is achieved when radicals cross-link or 

react with chain-breaking antioxidants such as α-tocopherol (vitamin E) to form conjugated 

products that are not radicals. 
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Figure 2: Lipid peroxidation leading, for example, to the formation of the isoprostane 8-iso-

PGF2α

 

In 1990, Morrow et al. (1990) reported for the first time the formation by free-radical catalyzed 

lipid peroxidation of prostaglandin F2 isomers, named F2-isoprostanes. Depending on the position 

of the radical after free radical attack (C8, C9, C11 or C12), four F2-isoprostanes could be formed 

(8-F2-IsoP, 5-F2-IsoP, 15-F2-IsoP, 12-F2-IsoP respectively) (Figure 3), each of which can 

comprise a mixture of eight racemic diastereoisomers. Thus, there is a possibility of 64 F2-

isoprostanes and the same applies for the E2 and D2 families (Morrow et al. 1994). 
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Because its structure solely differs from that of prostaglandin F2α in the orientation of the bound 

at C8, 15-F2trans-IsoP is also named 8-iso-prostaglandin F2α (8-iso-PGF2α) (Figure 4A). The same 

applies for isoprostanes of the other families, such as 8-iso-prostaglandin E2 (8-iso-PGE2) (Figure 

4B). This nomenclature will be used throughout the present work. 
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Figure 4: Structure of the isoprostanes A) 8-iso-PGF2α and B) 8-iso-PGE2

 

1.2.4 Photo-oxidation 

In the presence of light and sensitizers such as bilirubin, myoglobin or riboflavin, oxygen can 

react rapidly with unsaturated lipids to form hydroperoxides (Figure 5). 
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Figure 5: Photo-oxidation of an unsaturated fatty acid 
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1.3 Isoprostanes 

1.3.1 Fate of the isoprostanes 

Consistent with the known preference of biological systems to esterify arachidonic acid at the sn2 

position of phospholipids, isoprostanes compounds appear primarily esterified at the same 

position (Kayganich-Harrisson et al. 1993). The enzymes cleaving the sn2 bound of 

phospholipids are the phospholipases A2. Therefore, isoprostanes are presumably released in the 

plasma by a phospholipase A2 (Figure 6) following their formation in situ. 

O 

O 

Phospholipase A2

Isoprostane
R

O  P O  X

 

Figure 6: Cleavage of an isoprostane from a phospholipid 

Subsequently, isoprostanes are filtered by the kidneys and excreted in urine (Morrow et al. 1992). 

Thus, they are found free and esterified to phospholipids in plasma, and free in urine. 

8-iso-PGF2α is chemically stable, whereas 8-iso-PGE2 can spontaneously further degrade to 8-

iso-PGA2. Metabolites of 8-iso-PGF2α have also been identified in human urine, resulting from β-

oxidation with or without subsequent reduction of the ∆5 double bond, resulting in the formation 

of 2,3-dinor-5,6-dihydro-8-iso-PGF2  (Roberts et al. 1996) and 2,3-dinor-8-iso-PGF2α 

respectively (Chiabrando et al. 1999) (Figure 7). 
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Figure 7 : Chemical structures of 8-iso-PGF2α and its metabolites 2,3-dinor-8-iso-PGF2α and 2,3-

dinor-5,6-dihydro-8-iso-PGF2α

 
In human, 2,3-dinor-5,6-dihydro-8-iso-PGF2α appears to be the major metabolite, accounting for 

20% of the total excreted products following infusion of 8-iso-PGF2α (Roberts et al. 1996). 
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1.3.2 Analysis 

1.3.2.1 Preliminary considerations 

Although no standard reference values exist, plasma concentrations of 8-iso-PGF2α in the range 

of 0.01 to 0.1 nM have been reported in healthy individuals, with urine concentrations being up to 

100 times higher (Basu 1998b, Morrow 1990) but highly correlated (Basu 1998b, Oguogho et al. 

1999) to plasma levels. Since, in contrast to plasma, urine contains virtually no lipids such as 

arachidonic acid, thereby bearing no risk of ex vivo auto-oxidation and isoprostanes formation, 

and because it can be noninvasively collected, urine is the preferred medium for isoprostanes 

quantification. Nevertheless, as a precaution, samples should be supplemented with antioxidants 

such as ethylenediaminetetraacetic acid (EDTA) or 4-hydroxy-2,2,6,6,-tetramethylpiperidine 1-

oyl (4-hydroxy-TEMPO), and stored at least at –20 ºC. Initially, a 24-hour collection of urine was 

performed in order to adjust for renal function and eventual intra-day variations in isoprostanes’ 

urinary excretion. However, it was shown that intra-day variations were negligible (Helmersson 

and Basu 1999, Wang et al. 1995, Richelle et al. 1999), and that quantification of isoprostanes in 

a single time point-urine sample normalized for its creatinine content to adjust for renal function 

was an equivalent procedure. Considering that 64 F2-isoprostanes possibly exist, the 

quantification of a single isoprostane appeared advantageous to ease the comparison of methods 

and results from different laboratories. Most investigators focused on 8-iso-PGF2α. 

Thus, ideally, 8-iso-PGF2α will be quantified in urine and expressed as pg/mg creatinine or as 

pmol/mmol creatinine, or as ng/h in case of a 24-hour collection. 

 

1.3.2.2 Analytical methods 

Techniques such as gas chromatography-mass spectrometry (GC-MS), radioimmunoassay (RIA) 

and enzyme immunoassay (EIA) have been used to quantify isoprostanes. Mass spectrometry was 

originally applied to characterize the structure of isoprostanes (Morrow et al. 1990, Waugh et al. 

1997, Roberts et al. 1998, Reich et al. 2000) and became the reference analytical method for their 

quantification. Despite its lower selectivity, GC-MS in the negative ion chemical ionization 

(NICI) mode reliably detects 8-iso-PGF2α with a detection limit of approximately 5 pg/mL 

(Schwedhelm and Böger 2003) if the appropriate prior purification procedures are undertaken, 

that is one solid phase extraction (SPE) and two thin layer chromatography (TLC) steps or one 

SPE, one TLC and one high-performance liquid chromatography (HPLC) step successively. GC-

MS-MS reduced sample preparation to one SPE followed with one TLC step. However, 
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extraction of 8-iso-PGF2α by means of immunoaffinity chromatography (IAC) efficiently 

replaces the time-consuming SPE, TLC and HPLC steps. No other procedure as those specified 

above leads to resolution of 8-iso-PGF2α from other isomers by NICI. The actual quantification of 

8-iso-PGF2α by mass spectrometry is performed by addition of an internal standard, most of the 

time a deuterated analogue of 8-iso-PGF2α. 

Mass spectrometry, however, is a considerably expensive analytical method. For this reason, 

immunoassays have been developed. One RIA has been quantitatively validated by GC-MS 

analysis of 8-iso-PGF2α and presented a negligible cross-reactivity with other F2-isoprostanes 

isomers (Wang et al. 1995). Although the commercially available EIA for the quantification of 8-

iso-PGF2α (Cayman Chemical) has the advantage not to require radioactive tracers, its 

comparability with GC-MS remains uncertain, with correlation coefficients ranging from r = 0.63 

(Proudfoot et al. 1999) to r = 0.80 (Devaraj et al. 2001) and r = 0.88 (Bessard et al. 2001). 

Moreover, none of the immunoassays has been tested for cross-reactivity with F2-isoprostanes 

metabolites. 

 

1.3.3 Significance 

1.3.3.1 Markers of oxidative stress 

As product of free-radical induced lipid peroxidation, isoprostanes are reliable markers of 

oxidative stress. The quantification of isoprostanes altogether and of 8-iso-PGF2α in particular is 

considered to be the best method for measurement of lipid peroxidation in vivo (Basu 2004) and 

has been used as such in many studies investigating a role of oxidative stress in various diseases. 

Consequently, increased isoprostane formation and urinary excretion is reportedly involved in 

numerous pathophysiological states (Table 1). Among others, F2-isoprostanes are elevated in 

chronic renal insufficiency (Ikizler et al. 2002), pulmonary hypertension (Cracowski et al. 

2001a), arthritis (Basu et al. 2001b), chronic obstructive pulmonary diseases (Montuschi et al. 

2000a, Pratico et al. 1998a), asthma (Montuschi et al. 1999, Wood et al. 2003), cystic fibrosis 

(Ciabattoni et al. 2000, Wood et al. 2001) and in Parkinson disease or schizophrenia (Pratico et 

al. 1998c). 

At the latest since the report of Schwedhelm et al. (2004) who showed that 8-iso-PGF2α is 

correlated with the number of cardiovascular risk factors, 8-iso-PGF2α is more specifically 

recognized as risk marker for coronary heart diseases. Indeed, conditions such as diabetes 
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mellitus (Devaraj et al. 2001), hypercholesterolemia (Davi et al. 1997), obesity (Keaney et al. 

2003) and hypertension (Wang et al. 1995) have been associated with an increase in isoprostanes. 

Likewise, chronic healthy smokers have higher free and esterified F2-isoprostane plasma 

concentrations and urinary excretion of F2-isoprostane and F2-isoprostane metabolites compared 

with healthy nonsmokers (Montuschi et al. 2000a, Bachi et al. 1996, Pilz et al. 2000, Reilly et al. 

1996). This hint to a pro-oxidant effect of smoking in vivo is further validated by the fact that 

isoprostanes levels return to baseline values two weeks after smoking cessation (Morrow et al. 

1995). Since LDL oxidation may lead to atherosclerosis, these findings may provide a causative 

link between smoking and the development of atherosclerosis (Morrow et al. 1995 and 1997). In 

line with this hypothesis, F2-isoprostanes have been found in atherosclerotic lesions (Waddington 

et al. 2003) and 8-iso-PGF2α in coronary arteries from coronary heart disease patients (Mehrabi et 

al. 1999). 

 

1.3.3.2 Mediators of oxidative stress 

Isoprostanes levels are not mere indicators of oxidative stress, they are also a marker of disease 

severity. For instance, pericardial F2-isoprostane concentrations increase with the functional 

severity of heart failure and are associated with ventricular dilatation, suggesting a role for 

oxidative stress on ventricular remodeling and the progression to heart failure in vivo (Mallat et 

al. 1998). In patients with lung diseases, 8-iso-PGF2α concentrations in exhaled breath condensate 

reflect the degree of airway inflammation (Montuschi et al. 1999, 2000a and 2000b). Likewise, 

urinary isoprostane concentrations correlate with disease severity in scleroderma (Stein et al. 

1996). In the Alzheimer’s disease, F2-isoprostane concentrations in cerebrospinal fluid are 

elevated early in the course of dementia (Montine et al. 1999a), and correlate with disease 

severity (Pratico et al. 2000, Montine et al. 1999c) and progression. Increase in F2-isoprostane 

levels is an early event in asthma (Montuschi et al. 1999, Dworski et al. 1999), hepatic cirrhosis 

(Pratico et al. 1998b), Alzheimer’s disease (Montine et al. 2002, Pratico et al. 2002) and 

scleroderma (Cracowski et al. 2001b), suggesting a role for oxidative stress or at the least a 

prognostic value of isoprostanes in these pathological states. 
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Table 1: Conditions associated with increased oxidative stress according to assessment of F2-

isoprostanes 

Disease Reference(s) 
Cardiovascular diseases   

Atherosclerosis Waddington et al. 2003 
Pratico et al. 1997 

Ischemia/reperfusion injury Delanty et al. 1997 
Reilly et al. 1997 

Coronary artery disease Vassalle et al. 2003 
Heart failure Mallat et al. 1998 

Nonaka-Sarukawa et al. 2003 
Renovascular disease Minuz et al. 2002 

Risk factors for cardiovascular diseases   
Smoking  Reilly et al. 1996 

Morrow et al. 1995 
Hypercholesterolemia Davi et al. 1997 

Reilly et al. 1998 
Diabetes Devaraj et al. 2001 

Davi et al. 1999 
Hyperhomocysteinemia Davi et al. 2001 
Male gender Ide et al. 2002 
Obesity Keaney et al. 2003 
Hypertension Wang et al. 1995 

Neurological diseases   
Alzheimer’s disease Montine et al. 2002 

Montine et al. 1999a 
Montine et al. 1999c 
Pratico et al. 2000 

Huntington’s disease Montine et al. 1999b 
Multiple sclerosis Greco et al. 2000 
Creutzfeld-Jacob’s disease Greco et al. 2000 

Lung diseases   
Asthma Montuschi et al. 1999 

Wood et al. 2003 
Dworski et al. 1999 

Chronic obstructive pulmonary disease Montuschi et al. 2000a 
Pratico et al. 1998° 
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Cystic fibrosis Ciabattoni et al. 2000 
Wood et al. 2001 
Montuschi et al. 2000b 

Interstitial lung disease Montuschi et al. 1998 
Acute lung injury/adult respiratory distress syndrome Carpenter et al. 1998 
Pulmonary hypertension Cracowski et al. 2001a 

Renal diseases  
Hemodialysis Ikizler et al. 2002 
Rhabdomyolysis induced renal injury Holt et al. 1999 

Moore et al. 1998 
Liver Diseases  

Acute and chronic alcoholic liver disease  Meagher et al. 1999 
Pratico et al. 1998b 

Hepatorenal syndrome Morrow et al. 1993 
Primary biliary cirrhosis Aboutwerat et al. 2003 

Others  
Scleroderma Cracowski et al. 2001b 

Stein et al. 1996 
Crohn’s disease Cracowski et al. 2002 
Osteoporosis Basu et al. 2001a 

 

Although the association between increased oxidative stress and disease does not necessarily 

imply a causative link, the fact is that isoprostanes are not only biomarkers of oxidative stress but 

have numerous biological effects, suggesting they may function as pathophysiologic mediators of 

oxidant injury. 8-iso-PGF2α in particular has established itself as biologically active molecule. 

Indeed, it exerts vasoconstriction in a concentration-dependent manner in several vascular beds 

(Montuschi et al. 2004; also see Table 2). 8-iso-PGF2α affects the integrity and fluidity of cell 

membranes in tissues, a mechanism also involved in oxidative stress (Basu 2004). It also 

stimulates monocyte adhesion to endothelial cells (Leitinger et al. 2001) that synthesize and 

release various factors regulating angiogenesis, inflammatory responses, hemostasis as well as 

vascular tone and permeability. Therefore, the early increase in F2-isoprostane levels in diseases 

such as scleroderma (Cracowski et al. 2001b) is suggestive of an association between 

isoprostanes and endothelial and/or vascular dysfunction. In compliance with this hypothesis, 

isoprostanes correlate with scleroderma activity (Stein et al. 1996). Furthermore, 8-iso-PGF2α 

formation is increased during LDL-oxidation in vitro (Lynch et al. 1994) and exerts activities that 
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could be relevant to the pathophysiology of atherosclerosis: it activates platelets (Patrono and 

FitzGerald 1997), induces mitogenesis in vascular smooth muscle cells in rat (Takahashi et al. 

1992) and favors minimally oxidatively modified LDL-induced adhesive effect on neutrophiles 

(Fontana et al. 2002). 
 

Table 2: Vasoconstrictive effects of 8-iso-PGF2α according to vascular bed and species 

Effect Species Reference 

Pulmonary artery  rat Morrow et al. 1990 

Coronary artery  pig, cattle Kromer et al. 1996 

Cerebral arterioles  pig Hou et al. 2000 

Retinal vessels  piglet Lahaie et al. 2000 

Portal vein  rat Marley et al. 1997 

Mammary artery human Cracowski et al. 2000 

 

Hence, isoprostanes are markers of oxidative stress with significant biological effects. However, 

their action mechanism to these effects is still unclear. Although the early hypothesis concerning 

the existence of a unique isoprostane receptor remains (Longmire et al. 1994, Fukunaga et al. 

1993), increasing and more recent evidence point to an interaction with the thromboxane receptor 

(TXAR) (Kinsella et al. 1997, Janssen et al. 2002, Tang et al. 2005, Tazzeo et al. 2003), a G-

protein-coupled receptor which plays a key role in homeostasis. Indeed, its activation by its 

physiological agonist TXA2 causes platelet aggregation and vasoconstriction, stimulates the 

release of prostacyclin from endothelial cells (Hunt et al. 1992) and can mediate mitogenic 

response in vascular smooth muscle (Dorn et al. 1992, Ali et al. 1993). In human, there are two 

TXAR subtypes, termed TXAR-α and TXAR-β (Hirata et al. 1991, Nusing et al. 1993, 

Raychowdhury et al. 1994). The two receptor subtypes are encoded by a single gene on 

chromosome 19p13.3 (Nusing et al. 1993) and are identical with regard to their 328 N-terminal 

amino acid residues, but differ in their C-terminal cytoplasmic domains, so that TXAR-α have 15 

amino acids residues in its C-tail sequence, whereas the TXAR-β’s C-tail have 79 amino acid 

residues (Figure 8). Whereas TXAR-α expression levels appear similar in most human cell and 

tissue types, extensive differences in the expression levels of the TXAR-β were observed (Miggin 

and Kinsella 1998). Despite the presence of mRNA for both isoforms in human platelets, TXAR 
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isoform-specific antibodies have revealed that they solely express the TXAR-α subtype (Habib et 

al. 1999). Relative expression levels of both subtypes in other cell types or tissues remains largely 

unknown. 

 

TXAR-β

TXAR-α

Kinsella BT, 2001

Outer membrane layer

Inner membrane layer

 

Figure 8: Structural organization of the TXAR-α and –β isoforms 

 

1.3.4 Substances influencing the isoprostanes 

1.3.4.1 Metals 

 

Some of the reactions producing free radicals in aerobic organisms involve metal ions. Metals 

such as iron, copper, chromium, vanadium and cobalt can accept or donate a single electron in 

redox reactions, thereby catalyzing the production of ROS in reactions like Fenton's, first 

described by in 1894: 

 

+++

+−+

+•+→+

+•+→+
23

32

FeOOHRFeROOH
FeROOHFeROOH  
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These radicals can then initiate and/or propagate lipid peroxidation. Thus, the presence of metals 

in biological systems in a free form does not only propagate the chain reactions but also amplifies 

them, thereby significantly increasing the level of oxidative stress. 

More specifically, a detrimental role of iron was hypothesized by J.L. Sullivan (1981) to explain 

the sex difference in cardiovascular diseases. It was later proven that iron overload associated 

with conditions such as hereditary hemochromatosis could lead to serious complications such as 

arrhythmia (Niederau et al. 1985.) or congestive heart failure (Niederau et al. 1996, Bathum et al. 

2001). Hereditary hemochromatosis is most frequent in Caucasians and originates in 90 to 94% of 

the cases from a cystine to tyrosine mutation at position 282 (C282Y) on the autosomal 

hemochromatosis (HFE) gene, the gene which regulates the amount of iron absorbed from food 

(Feder et al. 1996). Through a not yet fully understood mechanism, HFE patients absorb 

excessive amounts of iron from food. This leads, most of the time after decades, to iron overload. 

The prevalence of HFE C282Y homozygotes in Caucasians is about 0.5%. 

 

1.3.4.2 Antioxidants (vitamins, glutathione) 

An antioxidant is a substance that, when present at low concentrations compared with those of an 

oxidizable substrate, significantly delays or prevents oxidation of that substrate (Halliwell 1990). 

Antioxidants can be of endogenous or exogenous (dietary) origin, lipid- or water-soluble, 

according to what compartment they act in. They can be divided into three main groups according 

to their antioxidative mechanism, namely (Young and Woodside 2001): 

- chain breaking antioxidants: small molecules such as vitamin C, vitamin E and presumably 

vitamin A that can donate or receive an electron in the termination step of the lipid peroxidation, 

or carotenoids, which can effectively scavenge free radicals (Fukuzawa et al. 1998) and thereby 

inhibit the iniation step of the lipid peroxidation. Besides, coenzyme Q10 (coQ10), which is 

ubiquitous in the organism and whose lipo- and aquaphilicity allows its insertion into the 

membrane phospholipid bilayer, reacts with ROS or with lipid radicals to yield the 

ubisemiquinone radical, which is converted back to coQ10 in the mitochondria or through 

quinone reductases. Moreover, coQ10 can regenerate the vitamin E from its tocopheroxyl radical 

issued from the termination of lipid peroxidation (Genova et al. 2003). 

- antioxidant enzymes such as superoxide dismutase (SOD), glutathione (GSH) peroxidase and 

catalase, which catalyse the breakdown of ROS; 
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- metal binding proteins like iron-binding proteins transferrin and lactoferrin, and the copper-

binding protein ceruloplasmin: by binding metal ions, they prevent them from reacting to form 

radicals. 

 

1.3.4.3 Pharmacological substances influencing phospholipases 

Phospholipases A2 (PLA2s) are a large family of enzymes that specifically release fatty acids 

from the second carbon atom (sn2, thus PLA2) of the triglyceride backbone of phospholipids, 

producing a free fatty acid and a lyso-phospholipid. PLA2s are ubiquitous enzymes, although the 

individual enzyme expression patterns differ. Initially, PLA2s were named based on location of 

activity (e.g. pancreatic and synovial) or mode of activity (Ca2+-dependent and Ca2+-

independent). A much more structured and accurate system has been developed based on the 

catalytic site (His/Asp, Ser/Asp or Ser/His/Asp hydrolase) as well as on functional and structural 

features, yielding the cytosolic (cPLA2), Ca2+-independent intracellular (iPLA2), lysosomal 

(lPLA2) PLA2s (Table 3), which also hydrolyze the sn1 bond of phospholipids, and the secretory 

(sPLA2) PLA2s and the platelet activating factor-acetylhydrolase (PAF-AH) families, which both 

selectively cleave the sn2 bond of phospholipids and which we will focus on (Dennis 1994, 

Schaloske and Dennis 2006). 

 

Table 3: human cPLA2, iPLA2 and lPLA2 enzymes 

Enzyme Alternate names Size (kDa) Site 

cPLA2 (Ca2+-dependent) 

IVA cPLA2α 85 Ubiquitous, except in mature 

T and B lymphocytes 

IVB cPLA2β 114 Pancreas, brain, heart, liver 

IVC cPLA2γ 61 Skeletal muscle 

IVD cPLA2δ 92-93 Keratinocytes 

iPLA2 (Ca2+-independent) 

VIA-1 iPLA2 84-85 Ubiquitous 

VIA-2 iPLA2β 88-90 Ubiquitous 

VIB iPLA2γ 88-91 Ubiquitous 
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VIC iPLA2δ, neuropathy target esterase 

(NTE) 

146 Neurons 

VID iPLA2ε, adiponutrin 53 Adipocytes 

VIE iPLA2ξ, TTS-2.2 57 Adipocytes 

VIF iPLA2η, GS2 28 Adipocytes 

lPLA2 (Ca2+-independent) 

XV l-O-acylceramide synthase (ACS), 

lysosomal PLA2 (lPLA2), 

lecithin:cholesterol acyltransferase-

like lysophospholipase (LLPL) 

45 Spleen, peritoneal 

macrophages 

Table based on Schaloske and Dennis 2006 and Kudo and Murakami 2002 

 

1.3.4.3.1 The sPLA2 family 

 

The sPLA2s are small secreted proteins containing 5 to 8 disulfide bonds and a His/Asp dyad as 

catalytic site, and requiring µM levels of Ca2+ for activity. These enzymes are found in several 

organs (Table 4) as well as in plants, mollusks, reptiles (e.g. group IIA rattlesnake and group IA 

cobra sPLA2) and insects (e.g. group III bee venom sPLA2). 

 

Table 4: human sPLA2 enzymes 

Enzyme Size (kDa) Site 

IB 13-15 Pancreas 

IIA 13-15 Synovial liquid, spleen, thymus, tonsil, bone marrow, intestine, liver 

IID 14-15 Pancreas, spleen 

IIE 14-15 Brain, heart, uterus 

IIF 16-17 Testis, embryo 

III 55 Kidney, heart, liver, skeletal muscle 

V 14 Heart, lung, macrophage 

X 14 Spleen, thymus, leukocyte 

XII 19 Heart, skeletal muscle, kidney, pancreas 
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One of their functions is the release of arachidonic acid from phospholipids. However, 

additionally, group IB sPLA2 appears involved in the digestion of dietary phospholipids as well 

(Kudo and Murakami 2002). Group IIA sPLA2 exerts physiologically significant antibacterial 

properties, especially against Gram-positive bacteria (Beers et al. 2002). Through a region 

distinct from its catalytic site and similar to a region of the coagulation factor Va, group IIA, IID 

and V sPLA2s can bind to the coagulation factor Xa, thereby bringing about an anti-coagulant 

effect (Mounier et al. 2000). 

sPLA2s in general seem involved in inflammatory diseases such as adult respiratory stress 

syndrome, inflammatory bowel disease and pancreatitis (Nevalainen et al. 2000). More 

specifically, group IIA sPLA2's concentration in serum and tissue correlates with disease severity 

in inflammatory states such as rheumatoid arthritis (Seilhamer et al. 1989), Crohn’s disease 

(Minami et al. 1994), adult respiratory distress syndrome (Touqui et al. 1999) and asthma 

(Bowton et al. 1997). Group IIA and V PLA2s have been found to act jointly in inflammatory 

states (Gilroy et al. 2004). Furthermore, group IIA sPLA2 is also associated with collagen fibers 

in the extracellular matrix of human atherosclerotic plaques (Sartipy et al. 2000) and group V 

PLA2 promotes atherosclerotic lesions by modifying LDL particles (Wooton-Kee et al. 2004). 

Group IIA, IID and V sPLA2s are highly cationic and bind tightly to cell surfaces that are rich in 

the anionic heparin sulphate proteoglycans. Thus, besides their secreted form, significant portions 

of these enzymes are membrane-bound in mammalian cells (Kudo and Murakami 2002). 

Many different classes of compounds have been found to inhibit the sPLA2 family. 

Glucocorticoids, for instance, may inhibit sPLA2s by inducing dephosphorylation of the active 

form of the enzyme (Bailey 1991). The non-steroidal anti-inflammatory drug indomethacin and 

antimalarial agents such as chloroquine and mepacrine, also known as quinacrine, non-

competitively inhibit PLA2 activity by interfering with the substrate-enzyme interface (Chang et 

al. 1987, Jain and Jahagirdard 1985) or with Ca2+ (Volpi et al. 1981). In one clinical study, a 6-

week daily intake of atorvastatin 40 mg or of simvastatin 40 mg led to a reduction in the group 

IIA PLA2 protein levels (Wiklund et al. 2002). The influence on enzyme activity was not 

investigated. 

Structure-based designed inhibitors have recently been described, among which the propane 

sulfonic anid LY311727 (Schevitz et al. 1995) and the indole analogue Me-Indoxam (Smart et al. 

2004). LY311727 is potent in the low nanomolar range and preferentially binds to group IIA 
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sPLA2 over group IB PLA2 (Balsinde et al. 1999). However, it has been shown to bind to group 

V sPLA2 as well (Chen and Dennis 1998). Hence, no isoenzyme-specific sPLA2 is available yet. 

 

1.3.4.3.2 The PAF-AH family 

The platelet activating factor (PAF) is a potent phospholipid that binds the PAF-receptor, causing 

increased vascular permeability and activating platelets and leukocytes, thereby mediating 

platelet aggregation, inflammation and anaphylaxis (Kudo and Murakami 2002). PAF-AHs are 

Ca2+-independent PLA2s with a Ser/His/Asp hydrolase catalytic site that can hydrolyze the acetyl 

group from the sn2 position of PAF, liberating acetate and lyso-PAF (Table 5, Figure 9). Whereas 

group VIIIA and VIIIB sPLA2s selectively hydrolyze PAF, the intracellular group VIIB sPLA2 

also hydrolyzes sn2 acyl chains containing as long as five carbons of the phosphatidylcholine 

backbone (Hattori et al. 1995). Its extracellular counterpart, group VIIA sPLA2, which we will 

focus on, hydrolyzes phospholipids with oxidized fatty acyl groups of up to nine carbons in 

length from the sn2 position of phosphatidylcholine and phosphatidylethanolamine (Kudo and 

Murakami 2002). Unlike the other PLA2s, group VIIA sPLA2 can hydrolyze its substrates in 

monomer form as well as well as in vesicles (Soubeyrand et al. 1998). 

 

Table 5: mammalian PAF-AH enzymes 

 

Enzyme Alternate names Sike (kDa) Site 

VIIA Lipoprotein associated PLA2 (lp-PLA2), plasma PAF-

AH 

45 Plasma 

VIIB PAF-AH II 40 Liver, kidney 

VIIIA PAF-AH Ib (α1 subunit) 26 Brain 

VIIIB PAF-AH Ib (α2 subunit) 26 Brain 
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Figure 9: Catabolism of PAF by the PAF-AHs 

 

The catabolism of PAF should confer group VIIA sPLA2 anti-inflammatory properties but in fact, 

a considerable number of clinical and experimental reports support a role of PAF-AH as pro-

inflammatory molecule and risk factor for coronary heart diseases (Packard et al. 2000, 

Ballantyne et al. 2004, Blankenberg et al. 2003, Tsoukatos et al. 2001, MacPhee et al. 1999, 

Macphee 2001, Macphee 2002). Furthermore, PAF-AH is expressed by macrophages in human 

atherosclerotic lesions (Hakkinen et al. 1999). 

In plasma, 70% of PAF-AH circulates with LDL, in which it exerts a longer half-life than in high-

density lipoprotein (HDL) (Kudo and Murakami 2002, Stafforini et al. 1989). Accordingly, some 

studies have demonstrated concurrent decreases in PAF-AH protein levels (Eisaf and Tselepis 

2003, Blake et al. 2001, Koenig et al. 2006) and activity (Eisaf and Tselepis 2003) in plasma and 

LDL cholesterol in response to different lipid-lowering drugs. A reversible group VIIA sPLA2 

inhibitor, SB-480848, is currently being investigated in clinical trials (Blackie et al. 2003). 
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1.4 Objectives 

 

1) The comparability of IAC-GC-MS to assess 8-iso-PGF2α with other analytical methods such as 

an EIA is still debated. One objective will be to provide a more definite answer to this question. 

2) Also, the value of 8-iso-PGF2α as marker of oxidative stress in various clinical setting 

involving various diseases will be investigated. The goal will be to consider the value of 8-iso-

PGF2α in assessing a) oxidative stress in various pathological states and b) the effect of 

pharmacological and non-pharmacological treatments on oxidative stress. These clinical studies 

will involve measurement of 8-iso-PGF2α in human urine with IAC-GC-MS. 

3) Besides their value as markers of oxidative stress, further biological effects of the isoprostanes 

will be investigated, namely on platelet aggregation and angiogenesis. If applicable, the action 

mechanisms will be elucidated. 

4) That isoprostanes are cleaved from phospholipids by PLA2s has yet to be confirmed. A goal 

will be to find out, in vitro as well as in vivo in a clinical setting, whether an increase in PLA2s 

parallels or leads to a rise in 8-iso-PGF2α and how strong that association is. For methodological 

reasons, group IIA and V PLA2s and plasma PAF-AH will be focused on. 
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2 Methods 

2.1 8-iso-PGF2α extraction and quantification 

2.1.1 Immunoaffinity chromatography 

Urine or cell supernatant samples were collected in polypropylene bottles containing 1 mM each 

of 4-hydroxy-TEMPO and EDTA, immediately 5 mL-aliquoted and stored at –20 °C until 

analysis. 

For extraction of the 8-iso-PGF2α by immunoaffinity, 20 µL of 0.25 ng/µL internal standard 

[2H4]-15(S)-8-iso-PGF2α were added to 5 mL of the sample, to a final concentration of 1 ng/mL. 

Samples were then centrifuged for 5 min at 2,000 rpm and directly applied to the immunoaffinity 

columns (Cayman Chemical, Ann Arbor, USA). Columns were subsequently washed with 10 mL 

of column buffer, then with 10 mL of ultra-pure water. Samples were eluted with 3 mL of elution 

solution. Columns were regenerated by washing with 10 mL of ultra-pure water followed by 10 

mL of column buffer, and stored back at 4 °C containing 10 mL of column buffer. 

 

2.1.2 8-iso-PGF2α derivatizations 

The eluted samples were evaporated down to 0.3-0.5 mL under nitrogen and at 40 ºC, then 

transferred into silanised vials and desiccated, under nitrogen and at room temperature, until 

crystallization. For the first derivatization (Figure 10), the following reagents were added in each 

sample: 

•10 µL methanol, stored on molecular sieve beads 

•100 µL acetonitrile, stored on molecular sieve beads 

•10 µL Hünig’s base 

•10 µL PFB-bromide 33% v/v in acetonitrile 

Samples were then incubated at 30 ºC for 1 hour and desiccated under nitrogen at room 

temperature until they crystallised. 

For the second derivatization (Figure 10), 100 µL of BSTFA was added in each sample 

and they were incubated at 60 ºC for 1 hour. They were subsequently stored at 4 ºC until 

quantification by GC-MS. 
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Figure 10: Derivatization and ionization of 8-iso-PGF2α via GC-MS or GC-MS-MS 

 

2.1.3 GC-MS 

The GC-MS analysis of 8-iso-PGF2α was performed by means of quadrupole mass spectrometer 

1200 (Varian, Walnut Creek, USA) connected with a gas spectrograph CP-3800 (Varian). The 

gaseous separation occurred by means of a 30 m x 0.25 mm (length x diameter) FactorFour™-

5MS capillary column (Varian), with a film thickness of 0.25 µm. The capillary column was 

heated according to the following temperature sequence: 70 ºC for 2 min, heating to 280 ºC at a 

rate of 25 ºC /min, heating at 325 ºC at a rate of 5 ºC/min. The carrier gas was helium, with a 

constant flow of 1 mL/min. The temperature of the injector, 150 ºC at the injection, was increased 

immediately thereafter to 300 ºC at a rate of 200 ºC/min. Injection volume was 2.0 µL in the 
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split/splitless mode. The transfer line and the ion source were heated at a constant temperature of 

300 ºC and 170 ºC respectively. Under the chosen NICI conditions, the ionization energy was 70 

eV and the electron current 150 µA. Methane was used for chemical ionization in the ion source. 

For the detection of the ions, the electron-multiplier was set to a tension of 1.4 kV. 8-iso-PGF2α 

was detected at a mass-to-charge (m/z) ratio of 569.4 and the internal standard [2H]4-8-iso-PGF2α 

at a m/z ratio of 573.4 in the SIM (single ion monitoring) mode. 
 

2.2 Cell Culture 

Human coronary artery endothelial cells (HCAECs, PromoCell) were delivered as an aliquot of 

cells frozen after the third passage. Upon delivery, the cells were thawed, subcultured for one 

further passage, aliquoted and stored in liquid nitrogen. An aliquot of HCAECs in their fourth 

passage was thawed anew for each performed experiment, so as to ensure that no properties 

characteristic of the endothelial cells would be lost. 

HCAECs were cultured in a medium formulated for microvascular cells (Endothelial Cell Growth 

Medium MV [EGM], PromoCell) containing vitamin C, hydrocortisone, gentamicine, 

amphotericine B, fetal bovine serum (FBS) and other growth factors. For the experiments, these 

supplements were replaced with 0.1% bovine serum albumin (BSA) and 10% FBS. 

FBS is an animal serum commonly used to supplement culture media due its high nutritional 

content. It is low in protein and nevertheless effective in promoting and sustaining growth of 

vertebrate mammalian cells. Inactivation is usually performed through a heat treatment, which 

destroys the complement, thereby ensuring that cells are not lysed due to antibody binding and 

complement activation. 

Cells were cultured in 25- or 75-cm2 flasks or in 6-well plates. Medium was changed every other 

day and the cells were sub-cultured when a confluence of 75% was reached. Cells were handled 

under a sterile laminar hood with vertical airflow. All incubations occurred under 5% CO2 and 

37°C. 

 

2.2.1 Expression of phospholipases in HCAECs 

HCAECs underwent a 9-hour incubation first in vehicle (EGM-2 basal medium supplemented 

with 0.1 % BSA and 10 % FBS), then with following test substances: vehicle (control), 5 U/L bee 

venom group III PLA2 as positive control, 15 µM mepacrine and 5 U/L group III PLA2 + 15 µM 

mepacrine. 8-iso-PGF2α was subsequently quantified in the supernatant according to section 2.1. 
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Protein were harvested as described in section 2.4.1 in order to be quantified (section 2.4.2) to 

normalize the 8-iso-PGF2α content in the supernatant of each well with its protein content and to 

be used for immunoblotting (section 2.4.3). 

 

2.2.2 Tube formation 

HCAECs were let to incubate for 1 hour on a 48-well plate previously thin-coated with 

MatrigelTM according to manufacturer’s instructions, at 37 ºC and 5 % CO2. Cell number was 

approximately 30,000 cells/well. They were suspended in 300 µL of basal medium enriched with 

5 % FBS. After one hour, medium was removed and replaced with basal medium enriched with 5 

% FBS in which the vascular endothelial growth factor (VEGF) was diluted, with or without the 

test substances. The stock solutions of the test substances were in ethanol, so that the final 

concentration of ethanol in the wells was 0.1%. This concentration was tested as vehicle. The 

cells were then let to incubate for 24 hours, at 37 ºC and 5 % CO2. A photo of each well was 

taken at a 2.5x magnification with an AxioCam PRc 5 camera, and analyzed with Zeiss LSM 

Image Browser v. 3.2.0. Tubes were measured in a randomly chosen 25 cm2-area of the wells 

(Figure 11A) and only node-to-node continuous structures were counted as tubes (Figure 11B). 

MatrigelTM is a solubilized preparation of extracellular matrix extracted from the Engelbreth-

Holm-Swarm mouse sarcoma, a tumor rich in extracellular matrix proteins. It mainly contains 

laminin and collagen whose interactions provide a foundation for the assembly of other basement 

membrane components. 

VEGF is a potent growth and angiogenic cytokine that causes the differentiation of mesodermal 

cells into endothelial cells as well as their proliferation, thereby promoting angiogenesis and 

vascular permeability. VEGF is expressed in vascularized tissues and plays a prominent role in 

normal and pathological angiogenesis. 
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Magnification: 25x 
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Figure 11: Tube formation experiment: A) a tube network of HCAECs, B) close-up on completed 

and uncompleted tube structures 

 

The vehicle (0.1% v/v ethanol) showed a positive effect on tube formation. However, 

VEGF was able to significantly further improve the tube formation (Figure 12). 
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Figure 12: Effect of vehicle and of VEGF on the basal tube formation (n=7) 

 

2.3 Reverse transcriptase-polymerization chain reaction (RT-PCR) 

RT-PCR is a variation of the standard PCR technique in which complementary DNA (cDNA) is 

synthesized from a mature mRNA template via reverse transcription and subsequently amplified 

using standard PCR protocols (Figure 13). 
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Figure 13: Distinction between standard and the RT-PCR principles 

 

2.3.1 mRNA extraction 

For extraction of the mRNA, cells in 25-cm2 flasks or in 6-well plate were first washed with 

phosphate buffer saline (PBS) and 800 µL of RNAzol per well/flask was added. The content of 

each well/flask was transferred in an Eppi containing 200 µL of ice-cold chloroform. Each 

well/flask was rinsed with 500 µL of RNAzol, which were then pipetted in the corresponding 

Eppi as well. Eppis were vortexed for 30 sec and let 15 min on ice, then centrifuged 15 min at 4 

ºC and 12,000 g. The aqueous supernatant was transferred in new Eppis containing 1 mL of 2-

propanol. These were vortexed and stored at –20ºC for 24 hrs. They were centrifuged anew at 

12,000 g and 4 ºC for 30 min. The supernatant was discarded, the pellet washed with 200 µL of 

ice-cold ethanol 70% v/v and centrifuged once more at 4 ºC and 12,000 g for 10 min. Ethanol 

was pipetted out and the RNA pellet air-dried for 1 to 2 min and resuspended in 12 µL of 0.1% 

v/v diethyl pyrocarbonate (DEPC). 
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2.3.2 cDNA extraction 

RNA content was determined by photometry and the mRNA accordingly diluted to 0.1 µg/µL. 1 

µg of mRNA served for extraction to cDNA using the Omniscript Reverse Transcriptase Kit 

according to manufacturer’s instructions. Briefly, 10 µL (1µg) mRNA was diluted in 10 µL 

Master mix (10 U Rnase inhibitor, 4 U reverse transcriptase, 1 µM oligo-dT primer, 5 mM dNTP 

mix, 1x reverse transcriptase buffer) and incubated at 37ºC for 1 hour. 

 

2.3.3 Primers 

Customs primers were from Höttner und Hüttner AG (Tübingen, Germany). The forward primer 

was the following nucleic sequence: 5’-GTGTTGGCTGCCCCTTCTG-3’ which belongs to the 

exon 2 common to both receptors subtypes. The first reverse primer, 5’-

GCGCTCTGTCCACTTCCTAC-3’, was designed to anneal in the exon 3 of the mRNA coding 

for the alpha-subtype receptor, whereas a second reverse primer was aimed at the exon 4 of the 

mRNA encoding the beta-subtype: 5’-CAAATTCAGGGTCAAAGAGCA-3’ (Figure 13). The 

expected final cDNAs had a weight of 281 and 386 base pairs (bp) for the subtypes alpha and 

beta respectively. 

 

2.3.4 Polymerase Chain Reaction (PCR) 

For each receptor subtype, the following solution was prepared: 

cDNA from section 2.3.2    2.00 µL 

(or aqua ad injectabilia, in blank) 

dNTPs (2.5 mM)     2.50 µL 

Forward primer (0.5 pmol/µL)   1.25 µL 

Reverse primer (0.5 pmol/µL)   1.25 µL 

Buffer Y      2.50 µL 

Thermus aquaticus (Taq)-Polymerase  0.25 µL 

aqua ad injectabilia     q.s. 25.0 µL 

After an initial 5 min at 94 ºC, 20 cycles were run as follows (GeneAmp, Applied Biosystems): 

94ºC for 30 seconds, 

62ºC for 30 seconds at the first cycle and 0.2ºC decrement at each subsequent cycle, 

72ºC for 30 seconds. 
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Subsequently, 15 cycles were run as follows: 

94ºC for 30 seconds, 

58ºC for 30 seconds, 

72ºC for 30 seconds, 

followed by a final step of 72ºC for 7 minutes, and cooling to 4ºC. 

The amplified cDNA was run (100 V, 45 min) on a horizontal 1.5% w/v agarose gel for DNA > 

1,000 bp submerged in 1x TBE buffer and a picture under UV was subsequently shot 

(ChemiGenius2 Bio-imaging System, Syngene). 

 

2.4 Western Blot 

2.4.1 Protein extraction 

Cells were rinsed with PBS and lysed with 80 µL of lysis buffer per 25 cm2. They were then 

mechanically harvested by means of a cell scraper. The so obtained suspension was transferred in 

an Eppi set on ice and centrifuged at 4 ºC and 12,000 g for 5 min. The supernatant was 25 µL-

aliquoted and frozen at –80 ºC until further use. 

 

2.4.2 Protein quantification 

Proteins extracted from cells were quantified according to the method described by Bradford 

(Bradford, 1976). For that purpose, a standard curve was established in the concentrations 3.45, 

6.90, 10.35 and 13.8 µg/mL corresponding respectively to 10, 20, 30 and 40 µL of standard 

protein solution in 790, 780, 770 and 760 µL of aqua ad injectabilia. Similarly, 10 µL of the 

diluted or undiluted cell extracts were pipetted in 790 µL of aqua ad injectabilia. 200 µL of 

Bradford reagent was added in all cuvettes and after stirring and a 15-min incubation, the 

absorbance was assessed at a wavelength of 595 nm. Each measurement was performed in 

duplicate. 

 

2.4.3 Immunoblotting 

50 µg of protein were mixed with 7.5 µL of 3x Laemmli buffer and the volume adjusted to 50 µL 

with aqua ad injectabilia. SDS-polyacrylamide gel electrophoresis was performed at 150 V for 

1.5 hr in 1x running buffer, using 10% v/v acrylamide for the collecting gel and 25% v/v 

acrylamide for the separating gel. Proteins were electrotransferred onto nitrocellulose membrane 

(or on a PVDF membrane for proteins < 15 kDa) at 250 A for 1 hr, in 1x transferring buffer. 
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Blots were saturated for 1.5 hr in TBS-T containing 5% w/v of milk powder as a source of 

albumin. Membranes were further incubated with the corresponding antibody (1/1,000) in TBS-T 

containing 1% w/v milk powder, overnight and at 4 ºC. Membranes were washed three times for 

5 min in TBS-T and incubated 1.5 hr with a 1/2,000 dilution of a secondary antibody i.e. a 

donkey anti-rabbit antibody or a goat anti-mouse antibody, according to the origin of the primary 

antibody. Excess antibody was washed and positive bands were revealed by addition of an ECL 

mixture after a 10-min exposure time. 

 

2.5 Platelet aggregation 

Venous blood samples were collected from healthy adult volunteers who had not been taking any 

drugs during the previous 2 weeks; a citrate mixture-containing monovette (0.106 M trisodium 

citrate, 0.1% v/v citrate solution) was used as anticoagulant. Platelet-rich plasma (PRP) was then 

prepared by centrifugating the blood at 200 g for 15 min at room temperature and platelet-poor 

plasma (PPP) by centrifugating PRP at 2,000 g for 10 min at room temperature. PPP was used as 

blank to set full light transmission on the aggregometer. Aggregation was measured after 3 

minutes starting at addition of agonist, as percent maximum light transmission, according to Born 

(Born 1962). Each measurement was performed in duplicate. All substances were solved in 10% 

v/v ethanol, so that the final concentration of ethanol in plasma was 0.5%. For each agonist, a 

sub-threshold concentration, the highest concentration inducing less than a 10% increase in light 

transmission, and a threshold concentration, the lowest concentration inducing irreversible 

aggregation, that is an increase in light transmission above 65%, were defined (definitions by 

Pratico et al. 1992) (Figure 14). 
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Figure 14: Induction of A) reversible and B) irreversible platelet aggregation by the addition of 

sub-threshold (0.5 µM) and threshold (1 µM) concentrations of the thromboxane receptor agonist 

U46619 

 

2.6 Phospholipase activity assay 

PAF-AH and group II and V phospholipases activities were assayed by use of commercially 

available assay kits (Cayman Chemical), following sample concentration with Amicon Ultra-4 

Centrifugation Filter Devices with a cut-off weight of 10 kDa. A 2:1 concentration ratio was 

achieved by centrifugating the samples for 5 min at 400 g. 

 

2.7 Organ bath 

2.7.1 Preparation of rat aortic rings 

 30

All experiments were conducted in accordance with institutional guidelines and approved by the 

local committee on animal experiments. Since the use of anaesthetics such as nembutal could 

have confounded the results through vasorelaxating effects (Akata 2007), the test animals were 

sedated with ether and subsequently exsanguinated. The thoracic aorta was excised and placed in 

ice-cold Krebs-Henseleit solution. The vessel was pinned in a Petri dish filled with chilled Krebs 

solution (Figure 15A), cleaned of fat and connective tissue (Figure 15B) and cut into segments of 

approximately 0.5 cm in length. Aortic rings were horizontally mounted in 30-mL myograph 

chambers (Figure 15C and D) containing a Krebs solution at 37ºC (Heat Circulator C20CS, 
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Lauda) and continuously bubbled with a mixture of 95% O2 and 5% CO2. The rings were 

adjusted over a period of 45 min approximately to maintain a passive force of 30 mN. After 

equilibration, the aortic rings were challenged with 80 mM KCl as training contraction. Changes 

in isometric force were recorded using IBJ Amon 2.61. 

A

DC

B

 

Figure 15: Picture of a rat thoracid aorta A) freshly excised, B) exempt of fat and connective 

 

.7.2 Vasorelaxation studies 

sodilatation was determined by measuring the vasorelaxation to 

tissue, C) mounted on a transducer apparatus and D) bubbled in Krebs-Henseleit solution in a 

myograph chamber 

2

The endothelium-dependent va

increasing concentrations of acetylcholine (ACh, 10-9-10-4 M) after phenylephrine-induced (PE, 

0.5 µM) contraction of the vessels. Rings were then washed twice to restore baseline tension. 

Next, the endothelium-independent vasodilatation was determined by measuring the 

vasorelaxation to increasing concentrations of nitroprusside (NTP, 10-9-10-4 M) after PE-induced 

(0.5 µM) contraction of the vessels (Figure 16). 
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Figure 16: Vasorelaxation pattern of a thoracic rat aorta 

 

2.7.3 Data analysis 

Experimental values of relaxation were calculated as the changes from the PE-induced 

contraction produced. Data are shown as the percentage of contraction of n experiments, 

expressed as the mean ± SEM. IBJ Bmon 2.61 was used for data analysis and Mann-Whitney or 

Student T-test was used to assess significance of non-parametric or parametric data, respectively. 

A P-value <0.05 was considered to indicate significance. 
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3 Results 

3.1 The analytics of the isoprostanes 

After purification by SPE, it was possible to detect both 5- and 15-F2-IsoP. These substances, 

whether deuterated or not, were all detected not only at the same m/z ratios (Figure 17), but also 

at the same retention time (Figure 18). 
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Figure 17: reconstructed ion chromatogram (RIC) of synthetic A) 15-F2-IsoP; B) [2H]4-15-F2-

IsoP; C) 5- F2-IsoP; D) [2H]4-5- F2-IsoP 
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Figure 18: Spectra of A) 15-F2-IsoP; B) [2H]4-15-F2-IsoP; C) 5- F2-IsoP; D) [2H]4-5- F2-IsoP 

 

When selectively extracted by means of IAC and subsequently detected by GC-MS, 

physiological and deuterated 8-iso-PGF2α were also detected at the m/z ratio 569.3 and 573.3 

respectively with a retention time of about 14.9 min (Figure 19). 
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Physiological 8-iso-PGF2α

Internal standard [2H4]-8-iso-PGF2α

Figure 19: Chromatogram of a sample spiked with 1 ng/mL of internal standard [2H]4-8-iso-

PGF2α and analyzed with GC-MS in SIM mode 

 

Three samples, as is and spiked with 100, 500 and 1000 pg/mL of 8-iso-PGF2α, were aliquoted 

and sent to laboratories quantifying isoprostanes with following methods: IAC-GC-tandem MS 

according to Tsikas et al. (2003), SPE-HPLC-GC-MS according to Proudfoot et al (1999) or EIA 

performed by manufacturer, Cayman Chemical (Ann Harbor, USA), in order to assess the 

comparability of results reported. Additionally, we subjected the same samples to the method 

described in section 2.1, i.e. IAC-GC-MS. The resulting data are illustrated on Figure 20: 
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Figure 20: Comparison of 8-iso-PGF2α quantification methods 
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Although analyzed in separate 

laboratories, data yielded by the 

methods IAC-GC-MS and IAC-GC-

tandem MS were closely correlated 

(Figure 21A). Despite being both 

specific for 8-iso-PGF2α, the correlation 

between IAC-GC-MS and EIA was 

rather poor (Figure 21B) compared with 

that with the unspecific method SPE-

HPLC-GC-MS (Figure 21C). 

Furthermore, the values yielded by the 

latter were significantly higher. 

 

 

 

 

 

 

 

 

 

 

Figure 21: Correlation between IAC-GC-MS and A) IAC-GC-MS-MS, B) EIA, C) SPE-GC-MS 

 

The data of the specific methods were reported on Bland-Altman plots (Bland and Altman 

1986) displaying, for each sample, the percent difference between the values yielded by two 

methods A and B ( ( )

⎟
⎠
⎞

⎜
⎝
⎛ +

−

2

)*100
BA

BA ) on the y axis, versus their average (
2

BA + ) on the x axis. The 

mean difference for IAC-GC-MS-MS compared with IAC-GC-MS was –37.1 pg-mL and the 

agreement limits were –99.9 pg/mL and +25.6 pg/mL (Figure 22). 
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Figure 22: Bland-Altman plot of IAC-GC-MS and IAC-GC-MS-MS 

 

Thus, 95% of samples measured with IAC-GC-MS will yield a value 99.9 pg/mL below 

or 25.6 pg/mL above the value yielded by the same sample measured with IAC-GC-MS-MS. 

When IAC-GC-MS was compared with EIA, the mean difference was –18.0 pg/mL and the 

agreement limits were –118 pg/mL and +82.3 pg/mL (Figure 23). 
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Figure 23: Bland-Altman plot of IAC-GC-MS and EIA 

 

The selective quantification of the isoprostane 8-iso-PGF2α as index of oxidative stress was used 

in subsequent studies. 
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3.2 8-iso-PGF2α as marker of oxidative stress 

3.2.1 The haemochromatosis clinical study 

This study was conducted in collaboration with the Department of Biochemistry and Molecular 

Biology II of the University Medical Center Hamburg-Eppendorf, Germany. The objective was to 

show that iron overload in HFE-related hemochromatosis is associated with increased oxidative stress 

assessed through 8-iso-PGF2α urinary excretion, and that oxidative stress is impacted by iron-

removal treatment (phlebotomy). 

 

3.2.1.1 Study description 

Study participants 

All participants were between 18 and 65 years of age. The groups were matched according to age 

and gender. Individuals with renal insufficiency (serum creatinine >1.5 mg/dL) and infectious 

diseases (body temperature > 37 °C) were excluded from the study. Approval from the local ethics' 

committee for studies in humans was obtained before the beginning of the study, and all participants 

gave their written informed consent to the study. 

Subjects with a history of increased values of serum ferritin and/or serum iron and suspected of 

having iron overload were referred by physicians from around Germany to our outpatient unit for the 

diagnosis or exclusion of hereditary hemochromatosis. For each patient, the HFE C282Y genotype 

was determined, the serum iron parameters (serum iron, transferrin saturation, serum ferritin), and 

liver iron concentration (LIC) were measured. Diagnosis of hemochromatosis was established by at 

least three of the following criteria: (a) transferrin saturation > 62%; (b) serum ferritin > 300 µg/L for 

men, 200 µg/L for women; (c) LIC > 1,000 µg/g wet weight; (d) hepatic iron index (LIC/age) > 30. 

In addition, all subjects were homozygote for the C282Y polymorphism in the HFE gene and naïve to 

hemochromatosis treatment. Patients were recruited over a period of 18 months, from December 

2001 to June 2003. Two patients declined taking part in the follow-up. 

Controls were recruited from the general population via local newspaper advertisement. They were 

exempt of the HFE C282Y mutation and presented a normal phenotype regarding iron parameters 

(serum iron, transferrin saturation, serum ferritin). Three of the 24 individuals screened for the control 

group presented a HFE C282Y-heterozygous genotype, which matches the estimated prevalence of 

10% for this genotype (Feder et al. 1996). 

Although they had normal serum iron, serum ferritin, and transferrin saturation, they were excluded 
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from the study. 

All subjects were being treated and stable for concomitant disorders, e.g., antihypertensive 

medication, stable asthma, or thyroxin supplementation. There was no anaemia in the participants. 

 

Study protocol 

Samples and data regarding the participants were labelled in a way that enabled data 

confidentiality. Blood and urine samples were collected in fasting state. 

Study parameters were defined as 8-iso-PGF2α excretion in urine, vitamins A and E, serum iron, 

serum ferritin, transferrin and transferrin saturation in serum. LIC and non-transferrin-bound iron 

(NTBI) were quantified in patients only. 

LIC was measured prior to starting phlebotomy in the patient group by superconducting quantum 

interference device (SQUID) device and calculated from the specific magnetic susceptibility of 1.6 × 

10-3 SI units (g of iron/g tissue) for ferritin iron. Organ volume was determined by sonography. 

Plasma samples were 2 mL-aliquoted and frozen at –80 °C. Testing for the HFE C282Y mutation 

and the determination of LIC, serum iron, transferrin saturation, serum ferritin, NTBI and vitamins 

were performed in the Department of Biochemistry and Molecular Biology II of the University 

Medical Center Hamburg-Eppendorf, Germany. 

Urine samples were 5 mL-aliquoted and frozen at –20 °C in 1 mM EDTA and 1 mM 4-hydroxy-

TEMPO until analyzed. 8-iso-PGF2α was quantified by GC-MS after purification by immunoaffinity 

chromatography according to section 2.1. 8-iso-PGF2α was detected at a m/z ratio of 569.4 and the 

internal standard [2H4]-8-iso-PGF2α at a m/z ratio of 573.4. 

All other biochemical analyses (e.g. creatinine, cholesterol) were performed using certified assays 

in the local clinical laboratory. 

Patients were treated with weekly removal of 400–500 mL of blood until a mild anemia was 

induced (Hb < 11.5 g/dL) and serum ferritin was below 30 µg/L. This accounted for 13–84 

phlebotomies according to the individual iron load in the patients. After the initial therapy, a 

maintenance therapy was initiated, which consisted in 400–500-mL phlebotomies, 2–5 times a year. 

The follow-up serum and urine samples were collected immediately before one of the routine blood 

removals of the maintenance therapy. 

 

Statistical analysis 

Statistical analysis was performed with SPSS 10.0. Parameters were found not to be normally 
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distributed according to the Shapiro-Wilk test. For that reason, groups are presented as 

nonparametric data, i.e. median and interquartile range (IQR). Comparisons between patients and 

controls were performed with the two-sided Mann-Whitney U test. Comparisons of patients 

before and after treatment were performed with the Wilcoxon test. A P < 0.05 was accepted for 

statistical significance. 

 

3.2.1.2 Study results 

Baseline data 

Results are given in Table 6 and Table 7. There was no significant difference between cases and 

controls in age and body mass index (BMI). Baseline total and low-density lipoprotein (LDL) 

cholesterol were significantly lower in cases than in controls. There was no difference in other 

lipid parameters. Transferrin was significantly lower in patients than in healthy participants while 

serum iron, ferritin, and transferrin saturation were significantly higher. NTBI, first identified by 

Hershko et al. (1998) as a marker of iron overload, was present in patients. 8-iso-PGF2α urinary 

excretion was 192% higher in patients, as illustrated in Figure 24. When excluding smokers, 

median 8-iso-PGF2α urinary excretion in controls was 117 pg/mg creatinine [interquartile range 

105–190] compared with 228 pg/mg creatinine [157–298] P = 0.002, in patients at baseline. 

Serum vitamin A was decreased in patients while vitamin E levels were similar to those of control. 

Frequencies of cardiovascular risk factors were similar in cases and controls, except for diabetes 

mellitus (Table 7). 

Serum iron and ferritin values were significantly lower in female patients than in males (median 

31.9 µM interquartile range [28.8–36.7] vs. 39.6 µM [31.9–42.4] for iron, P = 0.03 and 419 µg/L 

[230–828] vs. 850 µg/L [583–2762] for ferritin, = 0.04, females vs. males, respectively). In 

female controls, only ferritin was significantly decreased compared with males (28.1 µg/L [19.1–

61.9] vs. 152.8 µg/L [91.7–186.9], P < 0.001). However, in neither of the groups was there a sex 

difference in 8-iso-PGF2α urinary excretion. 
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Table 6: Groups' biochemical characteristics 

 Controls (n = 21) Patients at baseline (n = 21b) Treated patients (n = 19) 

 Median IQR Median IQR P vs. 
controlsc

Median IQR P vs. 
baselined

P vs. 
controlsc

Cholesterol parameters 

Total cholesterol 
(mg/dL) 

227 204–235 193 161.0–226 0.01 174 154–202 < 0.01 < 0.001 

HDL (mg/dL) 57 48–75 55 46–63 0.47 50 46–68 0.44 0.39 

LDL (mg/dL) 138 118–159 120 81–139 0.02 92 73–117 0.03 < 0.001 

Triglycerides 
(mg/dL) 

125 84–149 144 116–162 0.17 109 79–178 0.18 0.79 

LDL/HDL ratio 2.30 1.78–3.05 1.99 1.63–2.63 0.43 1.88 1.27–2.29 0.047 0.031 

8-iso-PGF2α 
(pg/mg creat) 

128 106–191 245 157–348 0.002 146 117–198 < 0.001 0.38 

Serum creatinine 
(mg/dL) 

0.90 0.75–0.95 0.90 0.80–1.00 0.55 1.00 0.80–1.20 0.02 0.03 

Iron parameters 

Serum iron (µM) 10.8 7.5–15.2 37.1 30.1–41.0 < 0.001 6.6 4.9–12.9 < 0.001 0.05 

Transferrin (g/L) 2.5 2.4–2.7 1.6 1.5–1.9 < 0.001 2.0 1.9–2.2 < 0.001 < 0.001 

Transferrin 
saturation (%) 

17.0 11.5–24.5 95.0 70.5–114.5 < 0.001 13.0 10.0–28.0 < 0.001 0.50 

Ferritin (µg/L) 83.9 25.8–164.4 735 385–1211 < 0.001 42.6 21.4–59.6 < 0.001 0.19 

LIC (µg of iron/g 
of liver)a, b

n.a. n.a. 1775 1153–2746 – n.a. n.a. – – 

NTBI (µM) n.a. n.a. 2.85 0.55–3.40 – n.a. n.a. – – 

Vitamin E (µg/mL) 14.9 13.1–19.2 14.7 11.5–18.1 0.52 13.0 8.5–14.3 0.08 0.01 

Vitamin A 
(µg/mL) 

3.00 2.11–3.39 0.34 0.25–1.83 < 0.001 1.36 1.08–1.97 0.035 < 0.001 

NTBI, non-transferrin-bound iron; LIC, liver iron concentration; n.a.: not available. 
Significance was defined as P < 0.05. 
IQR: interquartile range. 
a As reference point, values of LIC in healthy individuals are defined by Nielsen et al. (1995) as 100–500 µg/g liver. 
b For LIC, n = 20: one female participant could not undergo this examination due to overweight. 
c Statistics were computed using the Mann-Whitney two-sided test. 
d Statistics were computed using the Wilcoxon test. 
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Table 7: Groups' other characteristics 
 Controls Cases  

Gender, M/F 11/10 11/10  
Hypertension 5 3  
Diabetes mellitus 0 3  
Hypercholesterolemiaa 4 2  
Myocardial infarction 0 1  
Arrhythmia 1 1  
Other diseasesb 6 4  
Smokers 2 4  
 Median IQR Median IQR P 
Age 49.0 42.0-60.5 47.0 42.0-59.5 0.93 
BMI 23.8 19.5-25.6 24.5 22.7-27.0 0.14 
a Hypercholesterolemia was defined as: LDL cholesterol 160 mg/dL, total cholesterol 240 mg/dL or lipid-lowering 
medication. 
b Previous breast cancer (n = 1), varicose veins (n = 5), hypothyroidism (n = 2), anxiety disorder (n = 1), 
gastrointestinal disorder (n = 1), stable asthma (n = 1). 
 

Follow-up data 

A phlebotomy therapy was initiated in all patients. The median follow-up period was 25 [17.5–

32.5] months. All iron parameters were significantly decreased compared with baseline. All iron 

parameters were normalized, except the transferrin, which, at follow-up, remained significantly 

lower than in controls. There was a significant increase in serum vitamin A levels, albeit not up to 

control levels. There was a decrease in vitamin E in cases that, although nonsignificant compared 

with baseline, caused cases to have significantly lower vitamin E levels after phlebotomy 

treatment than controls. As shown on Figure 24, 8-iso-PGF2α urinary excretion was significantly 

decreased after treatment, to levels similar to controls' levels. 
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Figure 24: Median creatinine indexed of 8-iso-PGF2α urinary excretion in controls and patients 

before and after phlebotomy treatment 

 

Figure 25 illustrates the individual change in 8-iso-PGF2α urinary excretion in the patients. 

When individuals who smoked were excluded from the analysis, levels of 8-iso-PGF2α urinary 

excretion in treated patients was 141 pg/mg creatinine [111–198] with P = 0.43 compared with 

controls and P < 0.001 compared with baseline. Although only one of the patients started a lipid-

lowering treatment in the course of the study, total cholesterol and LDL cholesterol were 

significantly decreased in the whole group after phlebotomy treatment in comparison to baseline, 

leading to a significant lowering of the LDL/HDL (high-density lipoprotein) ratio, an indicator of 

cardiovascular risk. Triglycerides and HDL cholesterol levels were not significantly modified. 
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Figure 25: Individual effect of blood letting on oxidative stress measured through 8-iso-PGF2α 

urinary excretion in cases. 
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3.2.2 The VASSc study 

This was an open case-control study conducted in collaboration with the Grenoble University 

Hospital in France. The goal was to test whether there is a link between micro- and/or 

macrovascular dysfunction and oxidative stress damage in patients with systemic sclerosis. The 

endpoints used to test this hypothesis in the correlation analysis were the peak postocclusive 

hyperemia and urinary 8-iso-PGF2α levels. 

 

3.2.2.1 Study description 

Study participants 

This was a descriptive monocentric controlled study performed using methodology previously 

described (Boignard et al. 2005). The study was approved by the Institutional Review Board of 

Grenoble University Hospital, France, and all subjects gave informed written consent. 68 subjects 

were enrolled: 43 patients suffering from systemic sclerosis and 25 healthy volunteers. Patients 

suffering from systemic sclerosis (SSc) were recruited from the Vascular Medicine Department. 

Healthy volunteers were recruited through local newspaper advertisements. The inclusion criteria 

in the SSc group was the diagnosis of systemic sclerosis according to the criteria of LeRoy and 

Medsger (2001). All subjects were 18 years of age or older. Exclusion criteria were cigarette 

smoking, diabetes mellitus, hypercholesterolemia, or any associated severe disease (cancer, cardiac 

and pulmonary failure, myocardial infarction, angina pectoris). Furthermore, patients taking 

statins, nitrates, and/or nonsteroidal anti-inflammatory drugs were excluded. All patients were 

asked to discontinue any vasodilator therapy given for Raynaud’s phenomenon (RP) from 1 week 

before inclusion until the end of the study. Patients unable to discontinue vasodilator therapies 

during the study period were not included. 

The onset of the disease was defined as the first occurrence of symptoms of systemic sclerosis 

apart from the RP. Digital pitting scars, esophageal dysfunction, and RP were diagnosed 

clinically. Skin thickness was quantified using the modified Rodnan skin score (Furst et al. 1998). 

The diagnosis of pulmonary fibrosis was suspected on the basis of clinical data and systematic 

radiographs and confirmed in all cases by computed tomography scans. 
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Study protocol

Subjects arrived at the Clinical Research Center between 8 and 9 am in a fasting state. They were 

placed in the supine position in a quiet room with a stable ambient temperature. Blood samples 

were taken for plasma hsCRP, interleukin-1α, and interleukin-6 quantification and urinary 

samples for quantification of 8-iso-PGF2α. After clinical examination, subjects were placed in the 

supine position, with both forearms resting at heart level. Blood pressure and heart rate were 

recorded, followed by baseline laser Doppler measurements at the left middle finger pad. A 5-min 

postocclusive hyperemia was then performed, followed by nitroglycerin challenge after a 20-min 

resting period. 

 

Laser Doppler measurements 

Cutaneous blood flow was measured using a laser Doppler flowmeter (PeriFlux System 5000; 

Perimed, Järfälla, Sweden). Laser probes (PR457) were attached to the distal pad of the third left 

finger. They were left in place during the whole laser Doppler measurement. The laser Doppler 

flowmeter was interfaced to a personal computer through a converter using Perisoft (Perimed) 

data acquisition software. 

Laser Doppler blood flow was recorded in millivolts (mV), which are directly related to blood 

flow in the microcirculation of the surface tissue. Blood flow was divided by the mean arterial 

pressure in order to take into consideration potential variations in blood pressure to yield values 

of cutaneous vascular conductance (mV/mm Hg). The hyperemia was studied in the following 

sequence: 30 min of rest, postocclusive hyperemia with a 30-min recovery period, followed by the 

nitroglycerin challenge. The recovery periods were determined in a previous experimentation 

(Boignard et al. 2005), to ensure that cutaneous vascular conductance had returned to baseline 

values between protocols. 

After 30 min of rest, the baseline cutaneous conductance being measured in the last 10 min, 

digital blood flow was occluded for 5 min by inflating a cuff placed on the left arm to 50 mm Hg 

above the systolic blood pressure. The cuff was then released and the flow responses were 

recorded. Endothelium-independent vasodilation was tested after another 30-min resting period, 

the baseline cutaneous conductance, blood pressure and heart rate being measured in the last 10 

min. A single high dose of sublingual nitroglycerin (0.4 mg) was administered. Then, digital 

blood flow was occluded for 5 min by inflating a cuff placed on the left arm to 50 mm Hg above 

the systolic blood pressure. The cuff was then released and the flow responses recorded. 
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The amplitude of the response was determined by recording the peak cutaneous vascular 

conductance, expressed in mV/mm Hg. The values of the biological zero were systematically 

subtracted from the data for each individual patient. The kinetics of the response were determined 

by calculating the time to peak hyperemia, expressed in seconds. The day-to-day reproducibility 

was assessed in a previous study (Boignard et al. 2005). Briefly, each examination was repeated 1 

day after the end of the first series on the same subject. The median absolute difference for the 

peak hyperemic conductance was 2 mV/mm Hg [10th-90th percentile 0.5–9]. The median absolute 

difference for the time to peak hyperemia was 20 sec [5–40]. The coefficient of correlation for 

peak hyperemic conductance and the time to peak hyperemia was 0.94 and 0.56, respectively. 

Since correlation coefficients are poor indicators of reproducibility, Bland and Altman plots were 

constructed to measure the agreement between both measures. For the two measures, more than 

95% of the differences were less than 2 standard deviations, and neither proportional error nor 

systematic errors were detected. 

Biology 

Spontaneous morning micturiction samples (20 mL) were collected in polyethylene tubes, 

immediately aliquoted, and stored at -20°C. At the end of the inclusion period, all samples were 

transferred from Grenoble, France, to Hamburg, Germany, in dry ice via an express courier. 

Urinary concentrations of 8-iso-PGF2α were determined by GC–MS after purification by 

immunoaffinity chromatography according to section 2.1. Final results were expressed as 

picograms of 8-iso-PGF2α per milligram of creatinine. Observers were blinded to the source of 

samples for technical analysis. 

Blood samples were collected in EDTA tubes and immediately centrifuged at 4°C. Plasma was 

aliquoted and stored at -80°C. Plasma concentration of hsCRP was measured by a high-

sensitivity assay (N Latex Mono test) on a Behring BN II nephelometer with polystyrene 

microbeads coated with mono-clonal mouse antibodies. The detection limit of the assay was 0.2 

mg/L. Plasma concentrations of interleukin-1α and interleukin-6 were determined with a 

commercially available immunoassay (Beckman, Villepinte, France). Observers were blinded to 

the source of samples for technical analysis. 
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Data analysis 

Quantitative data were expressed as the means ± standard deviation (SD) or median, with 10th 

and 90th percentiles according to the normality of the values. Qualitative data are expressed as 

number and percentage. Normality and variance homogeneity analyses were tested before 

quantitative data analysis (ANOVA and Student t-test for between-group comparisons and 

correlation tests for the relationship between quantitative variables). When data did not follow a 

normal distribution, nonparametric statistical methods were performed: Mann–Whitney test for 

comparisons between groups, and Spearman rank correlation test for the relationship between 

quantitative variables. P values < 0.05 were considered significant. 

  

3.2.2.2 Study results 

Clinical and biological characteristics 

The demographic, clinical, and biological characteristics of the subjects are listed in Table 8. 

Among the 43 patients with systemic sclerosis, 1 patient was treated with methotrexate, 2 with 

cyclophosphamide, 2 with hydroxychloroquine, one with iloprost, and 2 with azathioprine. 16 

patients in the SSc group were taking calcium channel blockers and 5 were taking buflomedil, a 

vasodilator. Both calcium channel blockers and buflomedil were stopped 7 days before 

enrollment in the study. 
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Table 8: Demographic, clinical, and biological characteristics of systemic sclerosis patients and 

healthy controls 

 Healthy controls
(n = 25) 

Systemic sclerosis 
(n= 43) 

Mean age, years 51(10) 52 (11) 

Female 22 (88%) 39 (90%) 
Raynaud's phenomenon 0 (0%) 43 (100%) 

Median number of fingers involved n.a. 10 (8–10) 
Thumb involved n.a. 33 (77%) 
Feet involved n.a. 33 (77%) 
Median SSc disease duration, years n.a. 5 (1–16) 

Digital pitting scars 0 (0%) 23 (53%) 
Sclerodactyly 0 (0%) 34 (79%) 

Median Rodnan modified skin score n.a. 6 (0–23) 
Pulmonary fibrosis 0 (0%) 11(26%) 
Pulmonary arterial hypertension 0 (0%) 1 (2%) 
Esophageal dysmotility 0 (0%) 23 (53%) 
Mean creatinine clearance (mL/min) 88 (22) 89 (25) 
Mean microalbuminuria (mg/L) 15 (11) 16 (17) 
Mean cardiac rate (beat/min) 62(10) 70 (13) 
Mean systolic/diastolic blood pressure (mm Hg) 114 (13)/ 67(8) 118 (19)/ 68(11) 
Autoantibodies   
Anti-centromere 0 (0%) 18 (42%) 
Anti-topoisomerase I 0 (0%) 11(26%) 
Mean plasma LDL cholesterol (mg/dL) 112 (30) 112 (30) 
Mean plasma glycemia (mmol/L) 4.6 (0.6) 4.6 (0.5) 
Data for normality and variance homogeneity are expressed using the mean (SD). In other cases, they are expressed as the 
median (10th–90th percentiles). NA: not applicable. 
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Comparison of the postocclusive hyperemia, lipid peroxidation, and inflammatory parameters 

There was a nonsignificant trend toward a higher baseline cutaneous vascular conductance in 

healthy volunteers (15 mV/ mm Hg, 2–46) compared with patients with systemic sclerosis (8.2 

mV/mm Hg, 1–26). The postocclusive hyperemia was altered in subjects with systemic sclerosis 

compared with controls (Table 9). When data were expressed as an increase over baseline, the 

median increase was lower in the systemic sclerosis group (Table 9). Whereas 8-iso-PGF2α levels 

were increased in the systemic sclerosis group compared with healthy controls, no significant 

increase was found for the systemic parameters of inflammation (Table 9). 

 

Table 9: Microvascular function, lipid peroxidation, and inflammatory biomarkers in patients 

with systemic sclerosis and healthy controls 

 Healthy controls
(n = 25) 

Systemic sclerosis 
(n = 43) P value 

Median digital pad temperature (°C) 33 (24–35) 28 (24–33) < 0.01 
Postocclusive response 
Median peak cutaneous 
vascular conductance (mV/mm Hg) 39.9 (13–63) 28 (7–48) < 0.01 
Median increase vs. baseline (mV/mm Hg) 16.3 (5–36) 10 (5–31) < 0.05 
Median time to peak (s) 32 (16–79) 77 (19–208) < 0.001 
Response to 0.4 mg sublingual nitroglycerin 
Median cutaneous vascular conductance 
increase over baseline (mV/mm Hg) 2 (0.1–7.7)* 2.3 (–0.6–12)* n.s. 

Median 8-iso-PGF2α  
urinary excretion (pg/mg creatinine) 207 (109–291) 230 (155–387) 0.048 
Median hsCRP (mg/L) 1.1 (0.2–13) 1.1 (0.5–12) n.s. 
Median interleukin-1α (ng/L) 10 (5–19.5) 13.5 (10–34) n.s. 
Median interleukin-6 (ng/L) 17 (10–31) 20 (10–45) n.s. 
Laser Doppler probes were placed on the left middle finger pad. Data are expressed using the median (10th–90th 
percentiles). 
n.s.: not significant 
* Sublingual nitroglycerin induced a moderate but significant increase in baseline cutaneous vascular conductance in 
all groups, Wilcoxon rank tests: p < 0.001 in healthy controls and systemic sclerosis. 
 

There was a significant inverse correlation between isoprostanes and postocclusive hyperemia in 

systemic sclerosis patients expressed as raw data (p = 0.007) or as an increase over baseline (p = 

0.04, Figure 26). Conversely, no correlation was found with the nitroglycerin response or the 

basal flux. No correlation was observed between the inflammatory biomarkers and the 

postocclusive response. In healthy controls, 8-iso-PGF2α levels did not correlate with the 
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postocclusive hyperemia. Furthermore, 8-iso-PGF2α levels did not correlate with any biomarker 

of inflammation in both groups. 
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Figure 26: Correlation of 8-iso-PGF2α 

urinary levels with (A) peak postocclusive 

hyperemia vascular conductance, (B) 

postocclusive response (peak postocclusive 

hyperemia minus baseline), and (C) 

response to 0.4 mg sublingual 

nitroglycerin (cutaneous vascular 

conductance 4 min after the nitroglycerin 

challenge minus baseline) in patients with 

systemic sclerosis 

Laser Doppler probes were placed on the left 
middle finger pad. 
 

 

 

 

 

 

 

 

3.2.3 The VIVALDI study 

This study was performed in collaboration with Boerhinger-Ingelheim. It was designed as a 

prospective, multicenter, randomized, double-blind, double-dummy, parallel group trial to 

investigate the efficacy of telmisartan 80 mg versus valsartan 160 mg in hypertensive type 2 

diabetic patients with overt nephropathy. The objective of the study was to compare the effect of 
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telmisartan with that of valsartan on 24-hour proteinuria, blood pressure and oxidative stress after 

one year’s treatment in hypertensive patients with type 2 diabetes and overt nephropathy. 

 

3.2.3.1 Study description 

Study population 

Inclusion criteria were age between 30 and 80 years, a clinical history of type 2 diabetes 

(glycosylated hemoglobin [HbA1c] > 10%), nephropathy (serum creatinine < 265 µmol/L or 3.0 

mg/dL and proteinuria > 900mg/24h), hypertension (mean cuff systolic/diastolic blood pressure 

(SBP/DBP) > 130/80 mmHg or antihypertensive treatment). Premenopausal women who were 

not surgically sterile or using contraception, pregnant and nursing women were not eligible. 

Other exclusion criteria were a recent acute cardiovascular event, congestive heart failure, 

metformin treatment in patients with elevated serum creatinine levels, >30% increase in serum 

creatinine during run-in, secondary hypertension, hepatic dysfunction, biliary obstructive 

disorders, renal arterial stenosis, chronic immunosuppressive therapy, a history of drug or alcohol 

dependency, and SBP > 180 mmHg and/or DBP > 110 mm Hg on two consecutive visits during 

run-in. All patients provided written informed consent. 

 

Study design 

Randomization was preceded with a 2-week screening period and a further 2-week placebo run-in 

period to wash out any previous treatment with angiotensin converting-enzyme (ACE) inhibitors 

or angiotensin receptor blockers (ARBs). Participants were thereafter randomized to telmisartan 

80 mg or valsartan 160 mg titrated after two weeks from 40 and 80 mg respectively. Patients 

were requested to take the study medication with water in the morning at approximately the same 

time every day. If the goal blood pressure of 130/80 mm Hg could not be reached with the study 

medication, additional antihypertensive therapy could be initiated at any time during the study, 

starting two weeks after randomization. 

 

Statistical analysis 

Primary analysis was based on log‑transformed urinary protein excretion rate data and treatment 

effects were compared using ANOVA including terms for treatment and center as main effects, 

and baseline urinary protein excretion rate as a covariate, to establish non‑inferiority. Using an 

estimate for the standard deviation of the change from baseline in urinary protein excretion rate 
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being as much as 2 g/24 h (Lewis et al. 2001), a sample size of 340 patients per treatment group 

would have a power of 0.9 at the 5% (2‑sided) level of significance to demonstrate 

non‑inferiority of telmisartan compared with valsartan.  

 

3.2.3.2 Results 

Participants characteristics 

Participants were recruited from 128 centers in 11 countries in Europe, 3 in Asia and in South 

Africa. A total of 1372 patients were enrolled, 885 of which were randomized. The two treatment 

groups were similar (Table 10). 

 

Table 10: Characteristics of the study participants at baseline 

 Temisartan 
(n=443) 

Valsartan 
(n=442) 

Male sex, % 63.0 65.2 
Age, years 60.9 ±9.2 61.4 ± 9.1 
Ethnic origin, % 

Asian 
Black 
White 

 
20.1 
2.0 
77.9 

 
18.1 
1.6 
80.3 

Glycosylated hemoglobin, % 7.8 ±1.4 7.7 ± 1.3 
BMI, kg/m2 30.0 ± 5.2 30.4 ± 5.6 
Smokers, % 18.1 18.3 
Duration hypertension, years 11.1 ± 9.5 11.6 ± 9.7 
Duration type 2 diabetes, years 13.9 ± 8.1 14.4 ± 8.4 
Duration diabetic nephropathy, years 2.7 ± 3.4 2.8 ± 3.5 
Concomitant antihypertensive medication, %   

Diuretic 59.6 63.1 
Diuretic + beta-blocking agent 3.4 7.0 
Beta-blocking agent 36.8 37.6 
Calcium channel blocker 71.1 71.0 
Calcium channel blocker + beta-blocking agent 0.7 1.1 
Other antihypertensive 35.2 39.1 

Other concomitant medication, %   
Statins 45.1 44.6 
Other lipid-lowering agents 8.4 10.9 
Oral anti-diabetic agents 58.2 57.0 
Insulin 58.7 56.8 
Other drugs 81.3 84.8 

Unless otherwise specified, data are mean ± SD 
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Endpoints 

24‑h urinary protein excretion rate (95% CI) was reduced by a mean of 33% (27%-39%) of 

baseline with telmisartan and 33% (27%-38%) with valsartan, demonstrating non‑inferiority of 

telmisartan (P=0.849). Changes from baseline in secondary end points are summarized in Table 

11. Reduction in urinary albumin excretion was similar to that of urinary protein and 

corresponded to reductions of 39% with telmisartan and 36% with valsartan. No difference 

between treatments was noted for changes from baseline in serum creatinine. However, a 

significant difference in creatinine clearance was noted in favor of valsartan (P=0.001). There 

was no significant difference between treatments in changes in glomerular filtrate rates (GFR). 

Urinary excretion of 8-iso-PGF2α decreased by 14% (P<0.01) with telmisartan and by 7% 

(P<0.01) with valsartan (P=0.04 between treatments). During treatment, SBP and DBP were 

reduced in both treatment groups with no significant differences between telmisartan and 

valsartan. Despite the use of additional antihypertensive therapy during the study, 55.6% of 

telmisartan‑treated patients and 57.4% of those receiving valsartan had a SBP ≥140 mm Hg 

and/or a DBP ≥90 mm Hg at the end of the study. Optimal blood pressure (<120/80 mm Hg) was 

achieved in 5.2% of telmisartan‑treated patients and 6.4% of valsartan‑treated patients. 

 

Table 11: Biochemical parameters at endpoint compared with baseline 

 Telmisartan Valsartan P* 
 Baseline Endpoint Baseline Endpoint  
Urinary protein excretion (g/24h) 3.6 (3.28) 2.89 (3.05) 3.56 (2.86) 2.80 (2.86) n.s. 
Urinary albumin excretion (g/24h) 1.65 (2.17) 0.95 (1.94) 1.76 (2.06) 1.02 (2.08) n.s. 
GFR (mL/min/1.73m2) 56.7 (26.3) 50.88 (30.0) 56.5 (25.4) 51.47 (25.3) n.s. 
Serum creatinine (mg/dL) 1.36 (42.5) 1.50 1.37 (42.3) 1.49 n.s. 
Creatinine clearance (mL/min/1.73m2) 57.2 (36.0) 45.8 (33.5) 58.5 (35.7) 50.9 (35.0) < 0.05 
Systolic blood pressure (mm Hg) 148 (16) 142 (18) 149 (15) 142 (17) n.s. 
Diastolic blood pressure (mm Hg) 82 (10) 79 (10) 82 (10) 78 (10) n.s. 
8-iso-PGF2α urinary excretion (ng/h) 11.3 (7.9) 9.9 (7.0) 12.6 (9.7) 11.7 (8.0) 0.040 
hsCRP (mg/L) 6.28 (10.23) 7.03 (11.02) 6.15 (9.10) 6.29 (11.92) 0.039 
Glycosylated hemoglobin (%) 7.8 (1.4) 7.8 (1.5) 7.7 (1.3) 7.9 (1.6) n.s. 
Data are mean (SD) 
* difference between treatments 
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3.3 The isoprostanes as mediators of the oxidative stress 

3.3.1 Haemochomatosis (HFE) rat model 

 

This study was conducted in collaboration with the Department of Biochemistry and Molecular 

Biology II of the University Medical Center Hamburg-Eppendorf, Germany. The goal of this 

study was to investigate if iron overload-induced oxidative stress is associated with altered 

endothelial function, using an established HFE animal model (Nielsen and Heinrich 1993, 

Nielsen et al.1993). In this model, rats are fed with a diet enriched with 3,5,5-trimethlyhexanoyl 

ferrocene (TMH-ferrocene), a chemically stable, nonionic, lipophilic iron donor that readily 

diffuses into hepatocytes, where a cytochrome P450-dependent reaction metabolizes the 

molecule, releasing iron into the hepatocyte (Cable and Isom 1999). TMH-ferrocene does not 

catalyze oxidation reactions (Bilello et al. 2003). 

 

3.3.1.1 Study description 

Female Wistar rats were fed a control or iron-enriched diet for 10 weeks (n=8 each group). At the 

end of this period, urine samples were collected. Prior to sacrifice, rats were fasted overnight. On 

sacrifice day, they were weighed and anaesthetized with ether. The abdomen and thorax were cut 

open, heparin was injected in the cardiac apex, blood samples were collected and the animals 

were exsanguinated. The thoracic aorta was excised and immediately cleaned and used for organ 

bath according to 2.7. The liver was removed and frozen at –20 degrees until analysis. 

Endothelium-dependent and -independent relaxation of isolated aortic rings was measured in 

organ bath experiments. Urine samples were collected in 4-hydroxy-TEMPO- or EDTA-

containing recipients and stored at –80 degrees until analysis. 8-iso-PGF2α urine excretion was 

quantified according to 2.1. The determination of liver iron content (LIC) was performed in the 

Department of Biochemistry and Molecular Biology II of the University Medical Center 

Hamburg-Eppendorf, Germany. 

 

3.3.1.2 Study results 

 

The groups were significantly different with regard to weight, animals under normal diet being 

heavier (mean 308 g, SD 19 vs. 239±15 g, P<0.05, Figure 27A). Conversely, animals under iron-

enriched diet exhibited liver hypertrophy (liver weight 20.7±2.1 g vs. 9.1±1.6 g, P<0.001, Figure 
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27B), which translated in a significantly higher liver to total body weight ratio (8.7%±0.4 vs. 

3.0%±0.4, P<0.001, Figure 27C). 
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Figure 27: Difference in A) body weight, 

B) liver weight and C) liver to body 

weight ratio under control diet and iron-

enriched diet 

 

Moreover, feeding a diet enriched with TMH-ferrocene for 10 weeks resulted in a very severe 

liver siderosis in the HFE-group compared with controls (0.05±0.02 mg iron/g body weight vs. 

8.88±0.81 mg iron/g body weight, P<0.01, Figure 28A). Furthermore, 8-iso-PGF2α urinary 

excretion was significantly increased in HFE in comparison with control (median 2755 pg/mg 

creatinine, IQR [1605-5384] vs. 698 pg/mg creatinine, [344-938], P<0.01, Figure 28B). 
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Figure 28 : A) Liver iron content and B) urinary excretion of 8-iso-PGF2α under control and iron-

enriched diet 

 

The endothelium-dependent and -independent relaxation responses were substantially altered in 

HFE vs. control group. This effect was concentration-dependent. The HFE group exhibited a 

submaximal relaxation to ACh representing 55.4% of that of the control group, which was 

evoked by a lift of the curve (Figure 29A). Although the maximal NTP-induced relaxation was 

unaffected in the HFE group, the response curve to NTP was shifted to the right (Figure 29B) and 

the EC50 of NTP increased from 0.022 µM in the control group to 0.073 µM in the HFE group. 
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Figure 29: Endothelium-dependent (A) and –independent (B) relaxation to contraction induced 

with 0.5 µM PE 
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3.3.2 Platelet aggregation 

Isoprostanes did not induce irreversible aggregation in concentrations up to 50 µM (Figure 30). 
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Figure 30: Effect of increasing concentrations of U46619, 8-iso-PGF2α and 8-iso-PGE2 on 

platelets (n=6) 

 

Isoprostanes inhibited the aggregation induced by the thromboxane receptor agonist U46619 in a 

concentration-dependent manner (Figure 31). The inhibition was significant at concentrations 10 

µM and higher (P < 0.001). 
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Figure 31: Effect of pre-incubation with 8-iso-PGE2 and 8-iso-PGF2α on the aggregation induced 

by a threshold concentration of U46619 (1µM) (n=6) 

 

3.3.3 Tube formation assay 

The thromboxane receptor agonist U46619 significantly inhibits the tube formation, so did the 

isoprostanes 8-iso-PGF2α and 8-iso-PGE2, at a concentration of 30 µM. The tube formation was 

completely restored when U46619 and 8-iso-PGE2 were incubated with equimolar concentrations 

of the thromboxane receptor antagonist SQ29548. SQ29548 could only partially reverse the 8-

iso-PGF2α-induced tube formation inhibition (Figure 32). 
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Figure 32: Effect of the TXAR agonist U46619 and of the isoprostanes 8-iso-PGF2α and 8-iso-

PGE2 on VEGF-induced tube formation in HCAECs (n=8) 

 

 

A 10-fold lower concentration of 8-iso-PGF2α induced an equally lower inhibition of the tube 

formation (Figure 33). 
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Figure 33: Effect of various concentrations of 8-iso-PGF2α on tube formation by HCAECs 
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3.3.4 Identification of the TXAR subtype(s) present in HCAECs 

PCR was performed as described in section 2.3 to investigate the presence of the mRNA the 

TXAR isoforms in different cell lines. mRNA of both TXAR isoforms were present in HCAECs 

(Figure 34). 

A) TXAR-α B) TXAR-β

300 bp
400 bp

lane 1 lane 1lane 2 lane 2  
Figure 34: Expression of A) the TXAR-α and the B) TXAR-β mRNA in HCAEC (lane 1), 

negative control (aqua ad injectabilia) (lane 2) 

 

3.4 The role of phospholipases A2 in the release of the isoprostanes 

 
3.4.1 In vitro data 

When investigating the role of sPLA2s in the release of 8-iso-PGF2α in HCAECs in vitro as 

described in section 2.2.1, the mean production rate of 8-iso-PGF2α in vehicle was 7.54 ± 1.14 pg 

8-iso-PGF2α/ mg protein/ hour. The production of 8-iso-PGF2α in HCAECs was significantly 

increased in the presence of the bee venom group III sPLA2 and conversely inhibited under 

incubation with the unspecific sPLA2 inhibitor mepacrine (Figure 35). 
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Figure 35: Effect of the PLA2 inhibitor mepacrine on the release of 8-iso-PGF2α in HCAECs 

(n=12) 

 

Western blotting according to 2.4 revealed that HCAECs express both group IIA and group V 

sPLA2s (Figure 36). 
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Figure 36: Expression of A) group IIA and B) group V sPLA2s in HCAECs 

 
3.4.2 The atorvastatin (ATV) study 

We investigated if a statin treatment (atorvastatin 40 mg/day for 6 weeks) in 

hypercholesterolemic patients naïve to lipid-lowering therapy would lead to a lowering in the 
 62
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PAF-AH and/or PLA2s activity and to 8-iso-PGF2α, thereby hinting to which enzyme(s) is/are 

involved in the release of the latter. 

 

3.4.2.1 Study description 

Participants 

24 participants aged between 35 and 60 years old were included in this study. 

Hypercholesterolemia was defined as LDL cholesterol levels ≥ 160 mg/dL (4.2 mmol/L). All 

hypercholesterolemic participants were naïve to statins or other lipid-lowering medications. 

Exclusion criteria were: history of alcoholism or drug abuse; pregnancy or breastfeeding status; 

liver disease or liver insufficiency (serum AST or ALT >1.5-fold above the upper limit of the 

normal range, 10-35 U/L for women, 10-50 U/L for men); advanced kidney disease (creatinine 

clearance < 30 mL/min), nephrotic syndrome or dysproteinemia; diabetes mellitus. We assessed 

eligibility and obtained written informed consent as stipulated in the study protocol approved by 

the local Review Board for Studies in Humans. 

All participants were invited to the study centre in the morning of day one and a 24 hour-urine 

sample collection was started. Urine was collected in a container prepared with 4-hydroxy-

TEMPO and EDTA as antioxidants. 24 hours later, patients returned to the study centre in the 

morning. A fasting blood sample was drawn, blood samples were centrifuged (2000g, 20 min, 

4°C) immediately, and plasma was divided into aliquots and stored at -20°C until analysis. 

Collected urine was retreated and urine samples were divided into aliquots and kept frozen at -

20°C until analysis. Participants were given the study medication or the placebo in a neutral 

packaging, instructed about the intake scheme and dismissed. Two weeks later, they returned to 

the study centre to have their biochemical parameters controlled in order to detect any intolerance 

reaction. On day 42 of the study, participants returned to the study centre and underwent an 

investigation identical to the one on the first day. 

Biochemical Analyses 

Urinary concentration of 8-iso-PGF2α was determined by GC-MS as described in section 2.1. 

Activities of plasma group IIA and V PLA2s and PAF-AH were assessed using commercially 
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available assay kits (Cayman Chemicals), following sample concentration with Amicon Ultra 

Centrifugation Filter Devices. hsCRP was measured on a Dade Behring BN II nephelometer with 

polystyrene microbeads coated with monoclonal mouse antibodies (Ledue et al. 1998). Plasma 

total cholesterol, LDL and HDL levels as well as plasma and urinary creatinine concentrations 

were determined by standard laboratory methods using certified assays in the local clinical 

laboratory. 

Calculations and Statistical Methods 

All data were tested for normal distribution with the Shapiro-Wilk test. The distribution of 8-iso-

PGF2α and hsCRP was skewed, as reported previously (Schwedhelm et al. 2004, Keaney et al. 

2003, Koenig et al. 1999). Differences between groups are given as mean (standard deviation) 

except for not normally distributed parameters (median and interquartile range). Comparisons 

between study end and baseline involving not normally distributed parameters were performed 

with the Wilcoxon test. All other comparisons were performed by Student t-test. Correlation 

coefficients are Pearson’s. A p < 0.05 was accepted for statistical significance. For statistical 

analyses, SPSS version 13.0 was used. 

 

3.4.2.2 Study results 

Participants’ characteristics at baseline are presented in Table 12. There were two smokers in the 

placebo group and none in the treatment group. 

At the end of the study, none of the biochemical parameters (total, HDL- and LDL- cholesterol 

plasma levels (Figure 37A), 8-iso-PGF2α urinary excretion (Figure 37D), PAF-AH (Figure 37B) 

and PLA2s’ activity (Figure 37C), hsCRP) was modified in the placebo group (Table 12). The 

mean change in 8-iso-PGF2α urinary excretion was +0.69 ng/h (95% confidence interval –0.52 to 

+1.90 ng/h). 
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Table 12: Participants’ characteristics at baseline and study end 

 Placebo ATV 

 

P  

placebo vs.ATV  

at baseline 

Baseline baseline study end P  

vs. baseline 

baseline study end P  

vs. baseline 

 

N 12 12 - 12 12 - - 

Men, n (%) 6 (50) 6 (50) - 6 (50) 6 (50) - - 

Age (SD) 58.3 (5.0) 58.3 (5.0) - 58.9 (7.3) 58.9 (7.3) - 0.821 

BMI kg/m2 (SD) 25.3 (1.8) 25.3 (1.8) - 24.2 (4.1) 24.2 (4.1) - 0.405 

Total cholesterol 

 mg/dL (SD) 
284 (30) 289 (35) 0.844 320 (61) 182 (32) <0.001 0.078 

LDL  

mg/dL (SD) 
202 (21) 206 (34) 0.469 231 (54) 103 (31) <0.001 0.102 

HDL  

mg/dL (SD) 
50.6 (13.1) 51.4 (11.5) 0.625 59.1 (11.6) 62.3 (11.8) 0.101 0.103 

8-iso-PGF2α  

urinary excretion 

ng/h (IQR) 

8.0 (6.4-11.1) 8.9 (7.4-12.3) 0.721 9.8 (6.6-12.5) 8.4 (6.9-13.3) 0.875 0.763 

PLA2s’ activity 

 nmol/min/mL (SD) 
4.35 (0.61) 5.25 (2.06) 0.172 4.12 (1.14) 4.45 (0.83) 0.247 0.599 

PAF-AH activity 

 nmol/min/mL (SD) 
16.7 (2.0) 17.3 (1.5) 0.196 16.1 (2.8) 10.9 (2.6) <0.001 0.552 

hsCRP mg/L (IQR) 1.50 (0.70-2.37) 1.60 (0.70-2.00) 0.507 1.35 (0.83-1.80) 0.85 (0.70-2.17) 0.553 0.932 
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Figure 37: Change in A) LDL-cholesterol plasma levels, B), PAF-AH and C) PLA2s’ activity, 

and D) 8-iso-PGF2α urinary excretion in the placebo and atorvastatin groups 

In the atorvastatin group, a non-significant reduction in 8-iso-PGF2α urinary excretion was 

observed, whereas the PLA2s’ activity remained virtually unaffected. Total and LDL-cholesterol 

were significantly lowered, which was paralleled by a decrease of PAF-AH activity in all patients 

with active treatment (Figure 38). 
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Figure 38: Individual change in 1A) LDL-cholesterol plasma levels and 1B) PAF-AH activity in 

the ATV-treated group 

 

 

The change in PAF-AH activity was correlated with the change in LDL-cholesterol levels 

(r=0.574, P=0.03) (Figure 39A) and with that in total cholesterol (r=0.562, P=0.03) but not with 

the change in 8-iso-PGF2α urinary excretion (Figure 39B). 
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Figure 39: Correlation between the change in PAF-AH activity and the change in A) LDL-

cholesterol levels and B) 8-iso-PGF2α urinary excretion, in participants treated with atorvastatin 

 

The mean change in 8-iso-PGF2α urinary excretion was +0.21 ng/h (95% CI –0.92 to +1.35 ng/h). 

No intolerance complaint was recorded in this group, although the liver enzyme ALT was slightly 

increased (43.5 U/L, SD [15.6] vs. 32.6 U/L, SD [12.6], P=0.004). The creatine kinase (155.7 

U/L [97.5] vs. 175.2 U/L [185.3] at baseline, P=0.659) and the AST (33.8 U/L, SD [9.6] vs. 30.1 

U/L, SD [9.6] at baseline, P=0.147) were not modified, nor was the inflammatory marker hsCRP 

(0.85 mg/L, IQR [0.70-2.17] vs. 1.35 mg/L, IQR [0.83-1.80] at baseline, P=0.553). 
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4 Discussion 

 

4.1 Review of the analytics of 8-iso-PGF2α 

 

After purification by SPE, it was possible to detect both 5- and 15-F2-IsoP. However, these 

substances, whether deuterated or not, were detected not only at the same m/z ratios (Figure 17), 

but also at the same retention time (Figure 18). Hence, purification of a single given sample by 

SPE would not allow efficient resolution of 15-F2-IsoP from 5-F2-IsoP and possibly from other 8- 

and 12-F2-isoprostanes by GC-MS in that sample. Much more, 5- and 15-F2-IsoP would appear as 

a single peak. This is in accordance with the methods published by Lee et al. (2004) and 

Proudfoot et al. (1999) reporting total amounts of F2-isoprostanes after purification by SPE. In at 

least one of these methods (Proudfoot et al. 1999), a column with similar polarity was used for 

chromatographical separation, namely an Agilent DB-5MS. Moreover, depending on the 

extraction method, e.g. with different SPE columns, it is not certain that the denomination "total 

F2-isoprostanes" refers to identical mixtures of stereoisomers. Selective extraction of 8-iso-PGF2α 

by means of IAC followed by quantification by GC-MS also allows its detection at the already 

mentioned m/z ratios and retention time (Figure 19), but guarantees the identity of the quantified 

product. Thus, the selective extraction of 8-iso-PGF2α appears to be the most appropriate method 

to allow inter-laboratory comparison. 

In practice, values yielded by IAC-GC-MS were slightly but consistently higher than those 

yielded by GC-MS-MS. Thus, GC-MS and GC-tandem MS following IAC purification are 

interchangeable, with a reference range higher for GC-MS than for GC-tandem MS. In contrast, 

the selective extraction of 8-iso-PGF2α by EIA rather poorly correlates with IAC-GC-MS and 

yields the most spread apart agreement limits. The agreement limits were calculated from a 

modified Bland-Altman plot using a percent y scale, as recommended in cases when the standard 

deviation increases with concentration and/or with a proportional difference (Pollock et al. 1992). 

Moreover, EIA appears to overestimate samples in the lower and medium range, supposedly due 

to cross-reactivity with other products such as other isoprostanes or even prostaglandins, and 

underestimates those in the higher scale, maybe because of a not large enough range of detection. 

This finding is in line with a previous report from Proudfoot et al. (1999). In a clinical setting, 

such bias would lead to a high rate of false positive and negative results, yielding a poor 

predictive value. Thus, this method is not advisable. Expectedly, the non-specific SPE-HPLC-
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GC-MS method yielded much higher results than the specific ones. However, since it does not 

assess the same parameter as the latter, it is neither comparable nor interchangeable with IAC-

GC-MS or IAC-GC-tandem MS. However, its good correlation with IAC-GC-MS is a further 

indication that 8-iso-PGF2α alone is a reliable and representative index of the total amount of 

isoprostanes and thus, of oxidative stress. 

In summary, the method used for assessment of oxidative stress should be taken into account 

when reviewing the literature. Based on our data, specific quantification of 8-iso-PGF2α by 

chromatographic methods appears the most advisable. Nevertheless, the establishment of this 

method as routine means of assessment of oxidative stress in the medical practice not only 

demands a consensus in the scientific community, but also wide access to the necessary 

equipment and the determination of reference values. 

 

4.2 Assessment of 8-iso-PGF2α as marker of oxidative stress 

4.2.1 8-iso-PGF2α as marker of increased oxidative stress in a pathological state: the VASSc 

study 

Results indicate that there is an inverse correlation between 8-iso-PGF2α levels in urine and 

postocclusive hyperemia in patients suffering from systemic sclerosis. In contrast, there was no 

link between 8-iso-PGF2α and the endothelial-independent nitroglycerin response. This suggests 

that microvascular dysfunction is linked to the oxidative stress generation in patients with 

systemic sclerosis. 

Since 8-iso-PGF2α is an independent risk marker for coronary heart disease while also correlating 

to classical cardiovascular risk factors (Schwedhelm et al. 2004), subjects with a history of 

coronary heart disease and those with potential confounding factors such as diabetes, smoking, 

and/or hypercholesterolemia were excluded from the present study. 8-iso-PGF2α urinary levels 

were elevated in the systemic sclerosis population compared with healthy controls. The 

repeatability of the results in different patient groups using different methods further supports the 

fact that oxidative stress biomarkers are increased in patients with systemic sclerosis, irrespective 

of their clinical classification. Indeed, quantification of 8-iso-PGF2α with GC-MS with electronic 

impact (Bessard et al. 2001) in previous studies (Cracowski et al. 2001b, Cracowski et al. 2002, 

Cracowski et al. 2005), a more specific but less sensitive method, revealed exactly the same 
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pattern. No correlation was found between 8-iso-PGF2α urinary levels and inflammatory 

biomarkers, unlike what was previously described in Crohn disease (Cracowski et al. 2002). 

However, plasma CRP was elevated in patients with Crohn disease compared with controls, 

whereas this was not the case in the SSc group. Therefore, 8-iso-PGF2α urinary levels seem to be 

a more sensitive biomarker than hsCRP in patients with SSc. 

The correlation between 8-iso-PGF2α levels and postocclusive hyperemia is driven by the four 

patients with the highest isoprostane levels. However, these four patients had a normal response 

to nitroglycerin. Together with the fact that our whole systemic sclerosis population had a normal 

response to nitroglycerin, this strongly suggests that the impairment of the postocclusive 

hyperemia is specific and related neither to a decreased capillary density nor to a nonspecific 

alteration of vascular smooth muscle cells. However, data reported here show a correlation 

between oxidative stress status and postocclusive hyperemia in systemic sclerosis, they did not 

provide evidence for a causal link. 

Systemic sclerosis remains a complex disease, in which the interactions between vascular 

dysfunction, oxidative stress generation, leukocyte activation and matrix remodeling are poorly 

understood. Patients with SSc exhibit both vascular structure and functional abnormalities that are 

interdependent (Herrick 2000). There is strong evidence of a defect in the microvascular 

endothelial-dependent vasodilation in SSc (Herrick 2000). Laser Doppler flowmetry is a tool that 

allows the investigation of microvascular dysfunction in systemic sclerosis (Kahaleh et al. 2003). 

Although it has no proven interest in the clinical management of individual patients, 

postocclusive hyperemia has been shown to differ in patients with systemic sclerosis compared 

with healthy controls, which reflects an abnormal microvascular structure and function (Wigley et 

al. 1990). Postocclusive hyperemia is characterized by a sudden rise in blood flow after cuff 

release, which can be characterized by measuring the amplitude of the rise. The reproducibility of 

the time to peak hyperemia was not satisfactorily comparable to the peak hyperemic conductance. 

Therefore, the peak hyperemic conductance was used in the correlation analysis. This peak can 

then be corrected for baseline, but since baseline conductance is highly variable, this method of 

quantification is debatable (Bircher et al. 1994). This limitation is the reason both raw and 

corrected amplitude were reported. Laser Doppler flowmetry remains a semiquantitative approach 

to investigating skin blood flow (Carpentier 1999). Expression of data in terms of perfusion units 

does not take into consideration potential variations in blood pressure, which could alter 

microcirculatory conductance, with a specific relevance for the nitroglycerin challenge. In order 
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to account for potential variations in blood pressure that could alter microcirculatory 

conductance, data were expressed in terms of cutaneous vascular conductance rather than flux. 

This gives as a better physiological index to study vasodilation. Based on recent observations that 

local hyperemia induced by 44°C local heating of the skin was impaired in patients with systemic 

sclerosis (Boignard et al. 2005), data were preferentially expressed as a percentage of maximal 

vasodilation. As a consequence, the endothelium-independent relaxation induced by 0.4 mg 

sublingual nitroglycerin was used as a control. This minimizes the individual variability and 

provides support for endothelial versus structural (endothelium-independent) vasodilation. 

 

4.2.2 8-iso-PGF2α as evaluation tool of the effect of a non-pharmacological therapy on 

oxidative stress: the HFE study 

 

There are as many studies that conclude to a deleterious role of iron (Tuomainen et al. 1999, 

Jiang et al. 2004, Piperno et al. 2002) as there are that show its innocuousness (Bozzini et al. 

2002, Sempos et al. 1994, Liao et al. 1994). However, none of these studies was conducted 

exclusively in C282Y homozygote patients. Data reported here show for the first time 

significantly elevated urinary excretion of 8-iso-PGF2α, in untreated patients with HFE-related 

hemochromatosis in comparison with controls with normal iron stores. Secondly, these data 

confirm that hemochromatosis in C282Y homozygotes is associated with lower levels of serum 

vitamin A. 

This report shows that hemochromatosis is associated with oxidative stress, based on elevated 8-

iso-PGF2α urinary excretion measured by GC-MS. This elevated urinary excretion of 8-iso-PGF2α 

could be reversed after normalization of the iron parameters through blood letting. 8-iso-PGF2α 

urinary excretion is considered a highly reliable marker of oxidative stress (Vassalle et al. 2003, 

Schwedhelm et al. 2004) and GC-MS, one of the best methods to quantify it (Schwedhelm and 

Böger 2003, section 4.1). Other studies showed an association between iron overload and 

thiobarbituric acid-reactive substances, another marker of lipid peroxidation (Young et al. 1994, 

Gaenzer et al. 2002), and others found a link between 8-iso-PGF2α and iron overload in other 

populations (Pulliam et al. 2003, Salahudeen et al. 2001, Yeoh-Ellerton and Stacey 2003). 

Oxidative stress might be responsible for the impaired endothelial function and increased intima 

thickness that have been associated with iron overload (Pulliam et al. 2003). Indeed, when 

deferoxamine, an iron chelator, was infused in patients with coronary artery disease without 
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regard to their iron status, results proved iron to have a deleterious action on endothelial function, 

possibly through inactivation of endothelium-derived NO (Duffy et al. 2001). Furthermore, iron 

has been hypothesized to catalyze a cascade of intracellular biochemical reactions that produces 

reactive oxidative species (Ong and Halliwell 2004). Accordingly, high iron availability is 

associated in vitro with increased intracellular oxidant species as well as with enhanced hydrogen 

peroxide-induced intracellular production of oxidant species (Breuer et al. 1997). Altogether, our 

data and these observations strengthen an association between iron and oxidative stress. 

Moreover, the F2-isoprostanes, which includes 8-iso-PGF2α, are increasingly pointed at not only 

as marker, but also as mediator of oxidative stress. Indeed, F2-isoprostanes induce platelet 

activation (Patrono and FitzGerald 1997, section 4.3.1.1), which could lead to thrombotic 

disorders. They are vasoconstrictor in pulmonary artery, coronary arteries, cerebral arterioles, 

retinal vessel, and portal vein (Montuschi et al. 2004). 8-iso-PGF2α promotes monocyte adhesion, 

a process that contributes to atherosclerosis (Leitinger et al. 2001). This implies that C282Y 

homozygote hemochromatosis patients are at risk of further diseases caused by 8-iso-PGF2α 

and/or other isoprostanes. 

Hypovitaminemia A is secondary to hemochromatosis. Although low levels of serum vitamin A 

have already been observed in hemochromatosis patients (Young et al. 1994, Brissot et al. 1978), 

the mechanism remains unknown. Vitamin A being involved in free radicals scavenging (Fang et 

al. 2002), its low levels in hemochromatosis patients could result from increased consumption 

secondary to increased oxidative stress, as reported here. Another hypothesis uttered in liver 

diseases is that of impaired vitamin A absorption due to reduced bile acid (Urayama et al. 1998). 

Another possibility yet is that of faulty mobilization of vitamin A from the liver (Nyberg et al. 

1988). All these hypotheses are compatible with the restoration of serum vitamin A levels after 

treatment. Thus, the data confirm the association of hypovitaminemia A with iron overload, but 

does not point to a definite mechanism leading to this deficiency. 

Hemochromatosis did not lead to lowered serum levels of vitamin E. Data regarding vitamin E 

levels in hemochromatosis is not unanimous: some have found lowered levels of vitamin E in all 

hemochromatosis patients (Young et al. 1994) whereas for others, a specific phenotype and 

biochemical presentation of the disease (high serum iron, low free iron binding capacity, high 

ferritin levels) rather than the hemochromatosis genotype alone seem to be the determining 

factors in the lowering in vitamin E (von Herbay et al. 1994). Regardless, the lack of a significant 

difference in vitamin E between the groups excludes a confounding role of the antioxidant status 
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in the association we establish between increased lipid peroxidation and hemochromatosis. 

Phlebotomy treatment led to impaired vitamin E levels, possibly through a “leak” mechanism 

similar to that observed for cholesterol (Kumar 1994, Facchini and Saylor 2002). 

These and previous data (Kumar 1994, Facchini and Saylor 2002) account for a decrease in total 

and LDL cholesterol and in the LDL/ HDL ratio, an indicator of cardiovascular risk, secondary to 

blood-letting therapy. However, the present study was neither aimed nor designed to investigate 

the effect of hemochromatosis on lipid metabolism. In addition, this change in the patients' lipid 

profile could be due to other factors than hemochromatosis, such as lifestyle changes. 

The main limitation of this study is the number of subjects. Because of the low prevalence of the 

studied genotype, larger cohort studies aiming at confirming the current results or looking to 

determine the predictive value of 8-iso-PGF2α urinary excretion will have to be multicentered. It 

is worth noting that given the prevalence of the studied genotype, such case group represents a 

selection among a population of 4000 individuals. This is the largest study in HFE C282Y 

homozygote patients. Another limitation is that since the hemochromatosis genotype may remain 

unexpressed for years before biochemical parameters are modified and clinical symptoms appear 

(Adams 2000), it is impossible to know if the increase in 8-iso-PGF2α urinary excretion is 

proportional not only to the magnitude but also to the duration of the iron overload. Indeed, the 

prognosis in hemochromatosis depends on both the amount and duration of iron excess (Wojcik 

et al. 2002). A further limitation is the inclusion of smokers, since smoking status is associated 

with oxidative stress (Morrow et al. 1995). However, given the prevalence of the studied 

genotype, it was not affordable to exclude these. The statistical analysis showed that the inclusion 

of smokers did not have a significant influence on the results. 

The observed enhanced oxidative stress measured through 8-iso-PGF2α urinary excretion and 

hypovitaminemia A in C282Y homozygote patients imply that these individuals are at risk of 

further diseases caused by 8-iso-PGF2α, as the isoprostanes are increasingly pointed at not only as 

markers but also as mediators of oxidative stress. Altogether, the normalization of 8-iso-PGF2α 

urinary excretion described here and other studies showing a normalized survival rate in early 

treated hemochromatosis patients (Niederau et al. 1996, Milman et al. 2001, Strohmeyer et al. 

1988) stress the need for awareness in physicians. 
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4.2.3 8-iso-PGF2α as evaluation tool of the effect of phamacological treatment on oxidative 

stress: the VIVALDI Study 

 

Telmisartan and valsartan belong to the angiotensin II (Ang II) type 1 (AT1) receptor blockers 

(ARBs), a class of medication indicated for the treatment of hypertension. Indeed, blockade of the 

AT1 receptor allows the Ang II to bind to the AT2 receptor, which mediates blood pressure 

lowering effects such as vasodilatation (Hernández-Hernández et al. 2002). In this study, 

telmisartan and valsartan are equally efficient in reducing blood pressure and nephropathy in type 

2 diabetes patients. In contrast, although both medications significantly lowered oxidative stress 

assessed by 8-iso-PGF2α urinary excretion, telmisartan was superior to valsartan in this regard. 

Because of the significant difference in creatinine clearance and since 24-h urine was performed, 

the urinary excretion in 8-iso-PGF2α was expressed in ng/h rather than in pg 8-iso-PGF2α/mg 

creatinine. The effect of telmisartan and valsartan on oxidative stress is presumably mediated by 

inhibition of ROS production. Indeed, through the AT1, Ang II potently stimulates NAD(P)H 

oxidases (NOX) in various cell types, among others in cardiomyocytes, vascular smooth muscle 

cells (VSMC) and in endothelial cells (Ushio-Fukai and Alexander 2004). ROS produced 

following Ang II-mediated stimulation of NOX enzymes act as second messengers through 

signaling pathways such as mitogen-activated protein kinases, tyrosine kinases and transcription 

factors, and lead to events such as inflammation, hypertrophy, remodeling and angiogenesis (Cai 

et al. 2003). The physiological function of the NOX family is the generation of ROS. This family 

consists of 7 isoenzymes that share a common structure consisting of 6 transmembrane domains 

which include two heme-binding regions, and a cytoplasmic C-terminus which contains the 

NAD(P)H-binding regions (Krause 2004). The main studied NOX isoform is the phagocytic 

NOX2 which is composed of several subunits, namely the two catalytic units gp91phox, 

p22phox, and the cytosolic units p47phox, p67phox, the G protein Rac and p40phox (Li and Frei 

2006). NOX2 is microbicidal, but it is also involved in several pathological processes, including 

the development of cardiovascular diseases (Ushio-Fukai and Alexander 2004). For example, 

studies in p47phox- and gp91phox-deficient mice show that ROS produced by this oxidase 

contribute to cardiovascular diseases including atherosclerosis and hypertension (Cai et al. 2003). 

Oscillatory shear stress-induced O2
-· production is inhibited in endothelial cells isolated from 

p47phox-deficient mice (Hwang et al. 2003). Similarly, administration of the experimental AT1 

receptor antagonist BAY 10-6734 in a rabbit hypercholesterolemic model of early atherosclerosis 
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normalized O2
-· production and endothelial function and reduced early atherosclerotic lesion 

formation (Warnholtz et al. 1999). Thus, inhibition of NOX could explain the effect of the ARBs 

telmisartan and valsartan on oxidative stress. 

Considering that telmisartan and valsartan exert their effects through the same action mechanism, 

the superiority of telmisartan in lowering oxidative stress is presumably due to its phamacokinetic 

and pharmacodynamic properties. Indeed, of all ARBs, valsartan exerts the lowest affinity to the 

AT1 receptor and telmisartan the highest one, characterized as pseudo-irreversible because higher 

than that of the physiological agonist Ang II (Kakuta et al. 2005, Maillard et al. 2002). Besides, 

telmisartan has a half-life of 24 hours, compared with 6 hours for valsartan (Hernández-

Hernández et al. 2002). Finally, telmisartan is highly lipophilic, a property that, although without 

consequences on its effect on blood pressure, could contribute to higher efficiency in reducing the 

expression of p22phox (Takai et al. 2005). These differences presumably justify the significantly 

higher reduction in oxidative stress, i.e. in 8-iso-PGF2α, observed under telmisartan. 

 

4.3 Assessment of the isoprostane 8-iso-PGF2α and 8-iso-PGE2 as mediator of oxidative 

stress 

4.3.1 Biological effects of the isoprostanes 8-iso-PGF2α and 8-iso-PGE2 

4.3.1.1 Platelet aggregation 

Platelet activation can be triggered by several stimuli, e.g. thrombin, ADP, adrenaline, collagen, 

PAF, TXA2 or vasopressin. These stimuli induce the liberation of TXA2 by platelet, leading to 

platelet aggregation. Platelet aggregation is an essential step of the coagulation process and 

thereby, of hemostasis (Gawaz 2001). Conditions such as hypercholesterolemia, hypertension, 

diabetes mellitus are associated with hyperaggregability of circulating blood platelets, favoring 

atherosclerosis and the onset of acute coronary syndrome or myocardial infarction (Chesebro and 

Fuster 1992, Fuster et al. 1992). 

The isoprostanes 8-iso-PGF2α and 8-iso-PGE2 were not able to induce irreversible aggregation. 

At concentrations ≈10-5 µM, they induce a slight increase in light transmission, corresponding to 

activation and reversible aggregation (Figure 30). In this regard, 8-iso-PGE2 was more potent 

than 8-iso-PGF2α. These data are in line with those of Longmire et al. (1994) in PRP and 

Cranshaw et al. (2001) in whole blood. The aggregation induced by the TXAR agonist U46619 

(EC50 82 nM in human platelets, (Tymkevycz et al. 1991)) was significantly inhibited by both 

isoprostanes (Figure 31), which is in accordance with the literature as well. Indeed, Longmire et 
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al. (1994) reported an inhibition by 8-iso-PGE2 of the irreversible aggregation induced by both 

TXAR agonists U46619 (1 µM) and IBOP (0.33 µM), at EC50 0.5 µM and 5 µM respectively. 

Altogether, these and the present data discount the only report describing the ability of 8-iso-

PGF2α to induce platelet activation and reversible aggregation rather than an irreversible 

aggregation indeed, but also an additive pro-aggregatory effect in the presence of U46619 

(Pratico et al. 1996). Furthermore, they seem to hint to a role of 8-iso-PGF2α and 8-iso-PGE2 as 

TXAR partial agonists in platelets, an observation that was initially considered contradictory to 

the previously reported strong TXAR agonist effect in human (Crankshaw 1995) and rat vascular 

smooth muscle cells (Takahashi et al 1992), leading to the hypothesis of the existence of an 

isoprostane receptor (Longmire et al. 1994) exhibiting a structure similar to that of the TXAR. 

This hypothesis was invalidated by the identification of two TXAR subtypes named α und β 

(Raychowdhury et al. 1994) and the evidence that these two subtypes are present in human and 

rat vascular smooth muscle cells (Krauss et al., 1996) whereas platelets solely express the TXAR-

α subtype (Habib et al. 1999). Furthermore, transgenic mice overexpressing the TXAR-β in the 

vasculature but not in platelets exhibited an increased pressor response to 8-iso-PGF2α whereas 

the effect on platelets was the same as in wild type mice, i.e. as previously described. Moreover, 

the pressor response and the effect on platelet aggregation were abolished in TXAR-knockout 

mice. (Audoly et al. 2000). Thus, 8-iso-PGF2α and 8-iso-PGE2 appear to bind to both TXAR 

subtypes but with distinct affinity and/or effects of different nature, i.e. of agonistic and 

antagonistic nature. 

 

4.3.1.2 Angiogenesis 

Angiogenesis, i.e. the formation of new capillaries from pre-existing vessels, is primordial in the 

development of collateral circulation. When dysregulated, angiogenesis contributes to numerous 

disorders: insufficient vessel growth is involved in Alzheimer disease, atherosclerosis, 

hypertension, diabetes mellitus, Crohn disease, pulmonary fibrosis, nephropathy, osteoporosis 

and several other diseases while on the other hand, excessive or abnormal angiogenesis can 

favour or lead to cancer, primary pulmonary hypertension, ascites and a number of other 

pathologies (Carmeliet 2003). Extracellular matrix (ECM) plays an important role in endothelial 

cell adhesion, differentiation and proliferation (Rakusan 1995) and therefore, in angiogenesis 

(Figure 40). When cultured on an ECM-like substance such as Matrigel™, endothelial cells build 
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up tube-like structures (Grant et al. 1990, Grant et al. 1991), similar to the capillary vessels 

formed in vivo (Rakusan 1995, Folkman and Haudenschild 1980). The in vitro formation of 

endothelial cells tubes can be enhanced by exogenously added growth factors such as VEGF. 

Binding of VEGF to its receptor, a member of the tyrosine kinase family, induces vascular 

permeability (Ferrara et al. 1992) and endothelial cell growth and migration (Leung et al. 1989) 

through relatively well described pathways (Figure 41). VEGF is elevated in the serum of patients 

with acute ischemia from day 3 to 28 postinfarction (Tamura et al. 1999) and stimulates 

revascularization of the myocardium and the development of collateral vessels (Ferrara and 

Bunting 1996). In vitro, VEGF exerts its effects in a concentration dependent manner with 

maximal effects at concentrations ≥ 20 ng/mL (Ashton and Ware 2004). 

 

VEGF

VEGF receptor

endothelial cell

cell proliferation

cell migration

tube formation

endo- or exogenous
angiogenesis stimulus,
e.g. VEGF or endothelial damage

 
Figure 40: Simplified scheme of the angiogenesis process 

 

8-iso-PGF2α and 8-iso-PGE2 inhibited the VEGF-induced tube formation in HCAECs, an effect 

that mimicked that of the TXAR agonist U46619 (Figure 32). Such inhibition has also been 

observed in human umbilical vein endothelial cells (HUVECs) with the TXAR agonist IBOP 

(Ashton et al. 1999). 8-iso-PGF2α could inhibit HCAECs’ VEGF-induced tube formation at a 

concentration of 30 µM as well as at a 10-fold lower concentration (Figure 33). This effect was 
 78
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reversed by simultaneous incubation with an equimolar concentrations of the TXAR antagonist 

SQ29548 (Ki 4.1 nM (Abramovitz et al. 2000)) (Figure 32), suggesting that the effect of the 

isoprostanes are mediated through the TXAR, an observation that seems in opposition with the 

effects of these isoprostanes on platelet aggregation. The hypothesis of an isoprostane receptor 

distinct from but analogous to the TXAR was born from similar apparently paradoxical 

observations. However, as mentioned before, platelets only express the TXAR-α subtype (Habib 

et al. 1999), whereas TXAR-β, but not TXAR-α expression is required for the inhibition of 

VEGF-induced angiogenesis (Ashton and Ware 2004). Indeed, IBOP did not alter VEGF-induced 

tube formation by HUVECs solely expressing TXAR-α, while tube formation by HUVECs 

expressing only TXAR-β was reduced to control levels. Ashton and Ware found out that TXAR-

β stimulation abrogated the activation of PDK1 and c-Src. We have shown that the mRNA for 

both TXAR isoforms is present in HCAECs (Figure 34). Although this observation could not be 

confirmed at the protein levels because of the lack of commercially available isoform-specific 

antibodies, one could hypothesize that 8-iso-PGF2α and 8-iso-PGE2 are partial agonists on the 

TXAR-α, an assumption supported by both the present data and by at least one radioligand 

binding study (Yin et al. 1994), and full agonists on the TXAR-β. In line with this theory, 

nanomolar amounts of 8-iso-PGF2α have been shown to reduce the release of NO by endothelial 

cells (Minuz et al. 1998), an observation that could also result from c-Src and PDK1 inactivation 

by isoprostanes through activation of the TXAR-β. 
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Figure 41: Signaling pathways of the VEGF receptor 

 

A limit of these results is the concentration used in the tube formation assay which, indeed, are 

much higher than 8-iso-PGF2α physiological concentrations in vivo, that range between 0.01 to 

0.1 nM in plasma in healthy individuals, with urine concentrations being up to 100 times higher 

(Basu 1998b, Morrow 1990). However, there are possibly 64 F2-isoprostanes in vivo, and several 

other isoprostanes family. Furthermore, owing to the fact that pathological concentrations are 

higher than in healthy individuals, concentrations in situ being possibly even higher than systemic 

concentrations, the concentrations used in our experiment could be relevant in vivo. 

Macrophages, for instance, can liberate between 0.06 and 0.10 ng/mg protein of free F2-

isoprostanes during the oxidative modification of LDL, with total levels (free and esterified F2-

isoprostanes) ranging from 0.027 to 0.057 ng/mg protein (Gopaul et al.1994). 

 

 80



Discussion 

 81

4.3.1.3 Endothelial dysfunction 

In accordance with the results obtained in the clinical study, the rats fed with the iron-enriched 

diet exhibited significantly increased 8-iso-PGF2α urinary excretion. Moreover, the endothelium-

dependent as well as –independent relaxation was significantly altered in this animal model. 

Endothelial dysfunction is associated with numerous physiological and pathological processes, 

such as atherosclerosis, hypertension, heart and renal failure, obesity, type I and II diabetes, 

hypercholesterolemia, rheumatic arthritis or smoking (Félétou and Vanhoutte 2006). Data 

reported here account for an association between iron overload and endothelial dysfunction. 

In line with clinical observations (section 3.2.1), the increased urinary excretion in 8-iso-PGF2α 

reflects increased oxidative stress, i.e. increased formation of ROS, presumably through the 

Fenton reaction (section 1.3.4.1). It is known that under stimulation with acetylcholine, 

endothelial cells release nitric oxide (NO), the main determinant of endothelium-dependent 

relaxation. NO activates guanylate cyclase, increasing cGMP that in turn decreases intracellucar 

Ca2+, resulting in direct relaxation of vascular smooth muscle and hence, in vasodilation 

(Moncada and Higgs 2006, Furchgott and Vanhoutte 1989). When produced in closed vicinity, 

NO and the hydroxyl radical O2
-· react to form peroxynitrite, ONOO-·, thereby reducing the 

bioavailability of NO (Félétou and Vanhoutte 2006). Moreover, peroxynitrite also uncouples the 

nitric oxide synthase by oxidizing complexes within the enzyme as well as its essential cofactor, 

tetrahydrobiopterin. Furthermore, it directly inhibits NO's main target, guanylate cyclase (Münzel 

et al. 2005). All these mechanisms can lead to an underproduction of NO by endothelial cells, and 

account for the significantly submaximal endothelium-dependent relaxation in the animals having 

been fed the iron-enriched diet. 

In solution, sodium nitroprusside spontaneously decomposes to NO, which shortcuts endothelial 

cells, allowing assessment of endothelium-independent relaxation by VSMC. In this regard, it has 

been shown that ROS promote the contraction of VSMC by facilitating the mobilization of 

calcium and increasing the sensibility of the contractile proteins to calcium ions (Jin et al. 1991, 

Suzuki and Ford 1992). Such observations (decreased NO bioavailability and increase in 

intracellular calcium) have also been directly generated in platelets after incubation with 

isoprostane 8-iso-PGF2α (Minuz et al. 1998), suggesting that isoprostanes are not mere markers of 

oxidative stress in this case: they could antagonize vasorelaxation by activation of the TXAR on 

VSMC (Yang et al. 2004) and endothelial cells (Davidge 2001), leading to increased formation of 

the vasocontrictive prostanoid TXA2. Accordingly, induction of oxidative stress by acute 
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inhibition of glutathione synthesis in rats not only led to higher plasma total isoprostanes levels, 

but also to decreased plasma NO levels, impaired vasopressor response to sodium nitroprusside in 

vivo and higher release of TXA2 from the aorta (Ganafa et al. 2002). Finally, externally added 8-

iso-PGF2α has been shown to induce vasoconstriction of rat thoracic aorta in vitro, an effect that 

was enhanced in endothelium-denuded aorta rings compared with intact ones, and inhibited by 

the TXAR antagonist GR32191 (Cracowski et al. 2002). Altogether, these data indicate that 

impaired endothelium-independent relaxation could be secondary to the action of ROS on 

intracellular calcium or/and to that of isoprostanes on the TXAR. In any case, this impairment 

could be abolished by sufficiently high concentrations of sodium nitroprussside as source of NO. 

Besides, although both diseases involve different physiopathological mechanisms, the lack of 

impairment of the endothelium-independent that we report in scleroderma (section 3.2.2.2) 

indicates that the clinical relevance of this observation in hemochromatosis is uncertain and 

should be investigated. 

Hence, endothelial dysfunction in this hemochromatosis model could be secondary to the actions 

on ROS or to that of isoprostanes acting as TXAR agonists. 

 

4.3.2 Significance regarding the isoprostanes 8-iso-PGF2α and 8-iso-PGE2 as pharmacological 

targets 

 

4.3.2.1 In vitro experiment 

HCAECs liberated 8-iso-PGF2α and this liberation was enhanced by incubation with bee venom 

group III PLA2. The general PLA2 inhibitor mepacrine inhibited the liberation of 8-iso-PGF2α in 

HCAECs, whether intrinsic to the cells or extrinsic induced by group III PLA2 from bee venom. 

Immunoblotting of full cell lysate revealed that HCAECs express both group IIA and V PLA2s, 

indicating that one or both of these enzymes is or are involved in the liberation of 8-iso-PGF2α in 

HCAECs. Secretory porcine and snake PLA2s have been shown to have a strong tendency to 

form dimers (Reynolds et al. 1995, Myatt et al. 1991, Romero et al. 1987), and this property 

appears to apply to the human group IIA and V PLA2s as well. The necessity of dimer formation 

for catalytic activity has not been demonstrated and the physiological relevance of dimer 

formation is not understood. 

Bee venom group III PLA2 was chosen as positive control because it aggressively and with little 

specificity attacks the phospholipids in membrane of intact cells. Mepacrine interacts with the 
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enzyme's binding sites, thereby disrupting the substrate-enzyme interface (Jain and Jahagirdar 

1984), and possibly antagonizes calmodulin, a calcium-binding protein that binds to Ca2+-

activated or -inhibited proteins such as kinases or phosphatases (Volpi et al. 1981). It inhibits 

PLA2 from porcine pancreas with a Ki of 59 µM (Jain and Jahagirdar 1984). Up to 100 µM, it has 

little or no effect on the activity of other phospholipases such as phospholipase C (Walenga et al. 

1981) or phospholipase D (Kiel and Feinmark 1996). The effect of mepacrine on phospholipase B 

is not documented. Moreover, incubation of muscle homogenates with mepacrine has been 

described to inhibit lipid peroxidation (Jackson et al. 1984). Thus, the observed lowering in 8-iso-

PGF2α liberation under mepacrine incubation is in accordance with this previous report and seems 

attributable to PLA2s inhibition. 

However, this experiment is limited by the number of PLA2s potentially present in endothelial 

cells, which makes it impossible to point at a precise phospholipase A2. Unfortunately, due to the 

nonavailability of isoenzyme-specific PLA2 inhibitors, the design of this experiment could not 

lead to more precise conclusions. Furthermore, mepacrine is hydrophobic, which allows its 

passage through cell membranes. Thus, the in vitro observations we report could be led back to a 

secretory PLA2 as well as to another PLA2 subfamily, such as intracellular PLA2s. Thus, we 

investigated the involvement of secretory PLA2s in vivo in a clinical setting. 

 

4.3.2.2 In a clinical setting 

In this study, a reduced PAF-AH activity secondary to cholesterol lowering after a 6-week 

treatment with atorvastatin 40 mg was observed. The treatment did not induce any change in 

other secretory phospholipases activity, nor in the 8-iso-PGF2α urinary excretion. 

The biological functions of PAF-AH appear paradoxical and their pro- or anti-inflammatory and -

atherogenic effects are still a matter of debate. PAF-AH catabolizes the pro-inflammatory PAF 

(Kudo and Murakami 2002) and, in vitro, its activity in HDL parallels HDL’s ability to prevent 

LDL oxidation (Van Lenten et al. 1995). A genetic deficiency in PAF-AH studied in Japanese 

subjects was significantly associated with asthma, stroke, myocardial infarction, brain 

hemorrhage and nonfamilial cardiomyopathy (Tjoelker and Stafforini 2000, Hiramoto et al. 

1997). On the other hand, PAF-AH can transform lyso-PAF back into the biologically active PAF 

and its analogues. This reaction may occur in the atherogenic small dense LDL particles and may 

confer them higher pro-inflammatory potential in atherosclerosis-prone areas (Macphee et al. 

1996). The lysophospholipids and oxidized fatty acids generated by PAF-AH from highly 
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oxidized LDL are pro-inflammatory, upregulating adhesion molecules and cytokine production, 

thereby having a deleterious effect on the arterial wall (Macphee et al 1999, Macphee 2001, 

Macphee and Suckling 2002, Macphee et al. 1996). PAF-AH has been postulated as independent 

risk factor for cardiovascular diseases in healthy middle-aged men (Montuschi et al. 2004) and 

women (Ballantyne et al. 2004) as well as in men with a history of coronary event (Packard et al. 

2000). One other possible mechanism of the pro-inflammatory effect of PAF-AH could have 

been an involvement in the liberation of isoprostanes in the blood stream. Indeed, isoprostanes 

are not mere markers, but also mediators of oxidative stress: they are vasoconstrictors in several 

vascular beds (Montuschi et al. 2004), activate platelets (section 4.3.1), stimulate monocyte 

adhesion to endothelial cells (Leitinger et al. 2001), inhibit angiogenesis (section 4.3.1) and are 

involved in endothelial dysfunction in pathological states such as hemochromatosis (section 

4.3.1). However, the results of the present study, especially the correlation between the change in 

PAF-AH activity and that in LDL-cholesterol levels in such small group, contest an independent 

role of PAF-AH in cardiovascular disease and, in accordance with recent reports (Kardys et al. 

2006, Albert et al. 2005), rather suggest that these observations were actually closely connected 

to LDL-cholesterol levels. Moreover, contrary to recent observations that plasma samples from 

PAF-AH-deficient subjects do not release F2-isoprostanes from esterified precursors ex vivo and 

that PAF-AH transgenic mice have a higher capacity to release F2-isoprostanes compared with 

nontransgenic littermates (Stafforini et al. 2006), the unchanged urinary excretion of 8-iso-PGF2α 

despite the marked atorvastatin-induced lowering in PAF-AH activity rather shows that the 

involvement of plasma PAF-AH in the release of 8-iso-PGF2α in vivo in hypercholesterolemic 

patients is marginal to nil. This is in turn compatible with the observation from Stafforini et al. 

(2006) that the catabolism rate of PAF-AH was much slower for isoprostanes than for its other 

substrates, a hint that this enzyme is not the main one responsible for isoprostane liberation. 

The intake of atorvastatin 40 mg over 6 weeks significantly lowered PAF-AH activity but as the 

exact role of PAF-AH remains controversial, the potential benefits of this reduction are uncertain 

as well. According to the literature, overly increased PAF-AH expression and/or activity are 

associated with pathological states (Macphee et al 1999, Macphee 2001, Macphee and Suckling 

2002, Macphee et al. 1996). Thus, although the decrease in the inflammatory marker hsCRP was 

not significant (Table 12), we hypothesize that in such pathological state as hypercholesterolemia, 

a lowering in PAF-AH activity to normal physiological levels lowers atherogenesis and 

inflammatory potential and is beneficial. However, since overly decreased PAF-AH expression 
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and/or activity are associated with pathological states as well (Tselepis and Chapman 2002, 

Tjoelker and Stafforini 2000, Hiramoto et al. 1997), these should not be excessively lowered 

either. Indeed, PAF-AH is secreted in response to inflammatory stimuli (Castro Faria Neto et al. 

2005), yet it is unclear if this happens in response to or as part of an inflammatory cascade. If 

proven to be a primarily anti-inflammatory and –atherogenic enzyme, PAF-AH’s reported pro-

inflammatory and –atherogenic properties could be a mere imbalance or reversal in its functions 

brought about by unknown pathophysiological conditions. 

The reason why a significant decrease in 8-iso-PGF2α was not observed is not clear. The choice 

of the statin used does not explain this constancy. Indeed, a few studies have reported a decrease 

in 8-iso-PGF2α after atorvastatin treatment (Sinzinger and Oguogho 2003, Sugiyama et al. 2005). 

Sugiyama et al. (2005) observed a significant decrease in 8-iso-PGF2α as soon as 4 weeks of a 10 

mg daily intake of atorvastatin. An insufficient lowering of the cholesterol levels, which has been 

associated in some studies (De Caterina et al. 2002) with that in 8-iso-PGF2α urinary excretion, is 

not the explanation either. Indeed, in a therapy scheme intended to produce a 20% reduction of 

total cholesterol levels after 60 days, simvastatin induced after as soon as one month a significant 

reduction of 8-iso-PGF2α urinary excretion levels (De Caterina et al. 2002). Despite a higher than 

40% lowering in total cholesterol, this result could not be reproduced for atorvastatin in the 

present setting. Since liver and muscle enzymes were not significantly increased, with the 

exception of ALT, which, however, did not reach 1.5 fold of the upper limit of the normal range, 

the hypothesis of oxidation injury in the muscles or liver to explain the lack of change in 8-iso-

PGF2α (Sinzinger et al. 2001) seems irrelevant as well. Of course, the explanation could be that 8-

iso-PGF2α  is in fact liberated by PLA2s (group IIA and V), which activity remained unaltered. 

Indeed, at least one study suggested a link between 15-F2-isoprostanes and group IIA and V 

PLA2s (Staff et al. 2003). 

Wiklund et al. (2002) reported a significant reduction in group IIA PLA2 plasma protein levels 

after a 6-week daily intake of atorvastatin 40 mg. Thus, a likely argument for the lack of change 

in PLA2s’ activity in our study could be the fact that we measured enzyme activity where others 

measured plasma protein levels. Indeed, protein quantification does not give information about 

the catalytic activity of PLA2 present in the sample, and reaction rates can remain unchanged or 

even rise with comparable protein levels (Staff et al. 2003). Since PLA2s are involved in 

inflammatory processes, a reason yet for the lack of change in their activity could be that 
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atorvastatin, as reflected by the hsCRP (Table 12), did not significantly affect the inflammatory 

status of treated participants, although Sugiyama et al. (Sugiyama et al. 2005) reported a 

significant decrease in hsCRP after a 4-week 10 mg/day intake of atorvastatin. Taken together, 

these data and ours demand that the possible association between PLA2s and 8-iso-PGF2α be 

further investigated. 

A limit of this study is that the biochemical parameters were not measured in the same biological 

compartment: all parameters were quantified in plasma, except 8-iso-PGF2α. Nevertheless, there 

is an excellent correlation between plasma and urine 8-iso-PGF2α (Oguogho et al. 1999). Since 

artefactual isoprostane formation through lipid autooxidation is less of an issue in urine samples 

than in plasma (Schwedhelm and Böger 2003), 8-iso-PGF2α quantitation in urine is more reliable 

and was favoured. The possibility that a larger number of participants would have allowed 

drawing more definite conclusions regarding the parameters possibly linked to inflammation, e.g. 

hsCRP, PLA2s and 8-iso-PGF2α, cannot be ruled out. However, in a previous study including 12 

individuals with similar 8-iso-PGF2α baseline levels (Troost et al. 2000), we were able to detect a 

24% significant decrease in 8-iso-PGF2α urinary excretion, i.e. ≈2 ng/h. Finally, it is undeniable 

that PAF-AH plasma protein levels instead of activity could have lead to different conclusions, 

because similar to PLA2s, there is no direct correlation between protein levels and activity 

(O'Donoghue et al. 2006), suggesting that a fraction of the protein can become inactive, and 

because activity seems more closely related to LDL cholesterol than protein levels (Iribarren et al. 

2006). However, since the involvement of in PAF-AH in the enzymatic liberation process of 

isoprostanes was the main interest of this study, its activity was more relevant than its protein 

levels to us. 

Thus, although an association between group IIA and V phospholipase and 8-iso-PGF2α must be 

further looked into, our data strongly suggest that the previously reported increased 

cardiovascular risk associated with PAF-AH was connected with LDL cholesterol. Furthermore, 

we eliminate a key role of the enzyme PAF-AH in the release of 8-iso-PGF2α in our patients.  
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5 Summary 

 

Isoprostanes are by-products of the formation of the prostaglandin from arachidonic acid, 

catalysed by the prostaglandin H2 synthase. They differ from the prostaglandins in their regio- 

and stereochemistry: there are potentially four regioisomers with 64 corresponding stereoisomers 

each. Especially the isoprostanes 8-iso-Prostaglandin F2α und 8-iso-Prostaglandin E2 exert 

biological activity via the thromboxane A2 receptor. They can, as reported in the present work, 

modulate platelet aggregation, inhibit angiogenesis and affect endothelial function. 

 

Since the formation of isoprostanes is catalysed by free radicals, the influence of iron on the 

formation of 8-iso-Prostaglandin F2α, e.g. through the Fenton reaction, was investigated in vitro 

and in vivo. For that purpose, several quantification methods of 8-iso-Prostaglandin F2α were 

compared, showing that specific quantification of 8-iso-Prostaglandin F2α by chromatographic 

methods appeared the most reliable. This method was used in all investigations thereafter, 

yielding to the observation that iron overload is associated with increased formation of 8-iso-

Prostaglandin F2α, a decline in potentially antioxidative mechanisms and an impairment of the 

endothelial function. 

 

A further difference between prostaglandins and isoprostanes is that the latter are synthesized 

esterified to phospholipids, from which they subsequently must be cleaved. In vitro experiments 

aiming at the identification of the enzyme(s) responsible for this cleavage hinted to an 

involvement of the group VII phospholipase A2 (PAF-AH). However, this observation could not 

be confirmed in vivo. Thus, several enzymes still come in question in the liberation of 

isoprostanes from phospholipids. A pharmacotherapy targeting this or these enzyme(s) could lead 

to a reduction in the formation of free radicals and in the liberation of isoprostanes. In this matter, 

blockers of the angiotensin receptor and statins are plausible pharmacological candidates, through 

mechanisms that remain to be elucidated. 
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Zusammenfassung 

 

Isoprostane entstehen aus Arachidonsäure in Analogie zu der durch die Prostaglandin H2-

Synthase katalysierten Bildung der Prostaglandine. Im Unterschied zu den Prostaglandinen 

unterscheiden sich die Isoprostane durch ihre Regio- und Stereochemie. Es sind vier 

Regioisomere mit jeweils 64 Stereoisomeren möglich. Unter den Isoprostanen nehmen 8-iso-

Prostaglandin F2α und 8-iso-Prostaglandin E2 eine Sonderstellung ein, da sie eine über den 

Thromboxan-Rezeptor vermittelte biologische Aktivität aufweisen. Im Rahmen dieser Arbeit 

konnte gezeigt werden, dass 8-iso-Prostaglandin F2α und 8-iso-Prostaglandin E2 die 

Plättchenaggregation regulieren, die Angiogenese hemmen und die Endothelfunktion 

beeinflussen. 

 

Die Bildung der Isoprostane wird durch freie Radikale katalysiert. Es wurde daher untersucht, 

welchen Einfluss freies Eisen auf die Bildung von 8-iso-Prostaglandin F2α in vitro und in vivo, 

z.B. über die Fenton-Reaktion, hat. Hierzu wurden verschiedene analytische Methoden zur 

Quantifizierung von 8-iso-Prostaglandin F2α miteinander verglichen. Eine auf Basis der 

Gaschromatographie-(Tandem-)Massenspektrometrie entwickelte Methode war am geeignetesten 

und wurde für alle weiteren Analysen verwendet. So konnte gezeigt werden, dass eine 

Eisenüberladung sowohl zu einer gesteigerten Bildung von 8-iso-Prostaglandin F2α, zu einer 

Abnahme antioxidativ wirksamer Schutzmechanismen und einer Verschlechterung der 

Endothelfunktion führt.  

 

Ein weiterer Unterschied zwischen Prostaglandinen und Isoprostanen besteht darin, dass 

Isoprostane aus in Phospholipiden veresterter Arachidonsäure gebildet werden. Sie müssen also 

nachfolgend freigesetzt werden. Versuche, welche Enzyme für die Freisetzung von 8-iso-

Prostaglandin F2α verantwortlich sein können, zeigten in vitro eine Beteiligung der Phospholipase 

A2 VII (PAF-AH). In vivo konnte diese Beobachtung jedoch nicht bestätigt werden. Somit 

kommen für die Freisetzung der Isoprostane möglicherweise noch andere Enzyme in Frage. Eine 

Pharmakotheraphie könnte somit zweierlei bewirken, eine Reduktion der Radikalbildung als auch 

der Isoprostanfreisetzung. Eigene Untersuchungen zeigen, dass sowohl Hemmer des 

Angiotensinrezeptors Inhibitoren als auch Lipidsenker (Statine) hier vielversprechende Ansätze 
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sein können. In zukünftige Arbeiten sollen die dahinterstehenden Mechanismen weiter aufgeklärt 

werden. 
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7 Materials 

7.1 Chemicals 

 

Substance Name 

Risks and safety 

statements, when 

applicable Company 

[3H]-SQ29548   

PerkinElmer 

Jügesheim, Germany 

15-F2-IsoP  

Cayman Chemical 

Ann Arbor, USA 

2-Mercaptoethanol 

R: 24-20/22-36/37-41 

S:26-36/37/39-45 

SIGMA GmbH 

Steinheim, Germany 

2-propanol 

R: 11-36-67 

S: 7-16-24/25-26 

Merck KgaA 

Darmstadt, Germany 

40% bis-Acrylamide solution 

R: 45-46-23/24/25-48 

S: 36/37/39-45-60 

Bio-Rad Laboratories 

Hercules, USA 

5-F2-IsoP  

Cayman Chemical 

Ann Arbor, USA 

8-iso-PGE2   

Cayman Chemical 

Ann Arbor, USA 

8-iso-PGF2α   

Cayman Chemical 

Ann Arbor, USA 

Acetic acid C2H4O2

R: 10-35 

S: 23-26-45 

Merck KgaA 

Darmstadt, Germany 

Acetonitrile CH3CN 

R: 11-20/21/22-36 

S: 16-36/37 

Merck KgaA 

Darmstadt, Germany 

Agarose   

Biozym 

Hess. Oldendorf, Germany

Ammonium persulfate (APS) 

R: 8-22-36/37/38-42/43 

S: 22-24-26-37 

Bio-Rad Laboratories 

Hercules, USA 

Aqua ad injectabilia   Baxter Deutschland GmbH
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Unterschleissheim, 

Germany 

Bee venom PLA2   

SIGMA GmbH 

Steinheim, Germany 

Bio-Rad Precision Plus Protein Standards   

Bio-Rad Laboratories 

Hercules, USA 

Bio-Rad Protein Assay 

R: 10-20/21/22-34-

39/23/24/25 

S: 7-26-45 

Bio-Rad Laboratories 

Hercules, USA 

Boric acid   

Merck KgaA 

Darmstadt, Germany 

Bovine serum albumin (BSA)   

SIGMA GmbH 

Steinheim, Germany 

Bromphenol blue     

BSTFA 

R: 10, 35 

S: 7/9, 36/37/39 

Pierce 

Rockford, USA 

Developing solution G150   

 AGFA-Geraert, 

Leverkusen, Germany 

Diethyl pyrocarbonate (DEPC)   

SIGMA GmbH 

Steinheim, Germany 

di-Potassium hydrogen phosphate 

trihydrate, 

K2HPO4.3H2O   

Merck KgaA 

Darmstadt, Germany 

ECL Western Blotting Detection 

Reagents   

Amersham Biosciences 

Little Chalfont, England 

Ethanol 96% 

R: 11 

S: 16-7 

Merck KgaA 

Darmstadt, Germany 

Ethidium Bromide solution   

SIGMA GmbH 

Steinheim, Germany 

Ethylenediaminetetraacetic acid (EDTA)

R: 22-36/37/38 

S: 26-36 

SIGMA GmbH 

Steinheim, Germany 
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Fixer G350   

 AGFA-Geraert, 

Leverkusen, Germany 

FuGENE transfection reagent   

Invitrogen 

Grand Island, USA 

Glycerol   

Merck KgaA 

Darmstadt, Germany 

Glycerol phosphate     

Glycin   

Carl Roth GmbH & Co 

Karlsruhe, Germany 

Heptane   

Merck KgaA 

Darmstadt, Germany 

Hünig’s base 

(N,N-diisopropylethylamine) 

R: 11-22-34 

S: 16-33-26-36/37/39-45 

SIGMA GmbH 

Steinheim, Germany 

Hydrochloric acid HCl, fuming 

R: 34-37 

S: 26-36/37/39-45 

Merck KgaA 

Darmstadt, Germany 

Latex Gloves   

Kimberly-Clark 

Zaventem, Belgium 

Loading Dye Solution   

Fermentas 

St. Leon-Rot, Germany 

MatrigelTM   

BD Biosciences 

Bedford, USA 

Methanol 

R: 11-23/34/35-39/23/24/25 

S: 16-36/37-45-7 

Merck KgaA 

Darmstadt, Germany 

Na3VO4     

Nonidet P-40 substitute 

R: 37-41 

S: 26-39 

SIGMA GmbH 

Steinheim, Germany 

Omniscript Reverse Transcriptase Kit  

QIAGEN GmBH, Hilden, 

Germany 

PFB-Bromide 

R: 34 

S: 26, 36/37/39, 45 

SIGMA GmbH 

Steinheim, Germany 

Phosphate buffered saline (PBS) S: 22-24/25 Biochrom AG 
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Dulbecco powder Berlin, Germany 

Ponceau S red staining solution 

R: 22-36/37/38 

S: 26-36 

SIGMA GmbH 

Steinheim, Germany 

Potassium chloride KCl   

Merck KgaA 

Darmstadt, Germany 

Potassium hihydrogen phosphate 

KH2PO4   

Merck KgaA 

Darmstadt, Germany 

Quinacrine, dihydrochloride   

Calbiochem 

La Jolla, USA 

RNAzol   

WAK Chemie, Steinbach, 

Germany 

Sodium azide NaN3

R: 28-32 

S: 28 

Merck-Schuchardt 

Schuchardt, Germany 

Sodium chloride   

J.T. Baker 

Deventer, Holland 

Sodium dodecyl sulfate (SDS) 

R: 22-36/37/38 

S: 26-36 

SIGMA GmbH 

Steinheim, Germany 

Sodium fluoride NaF 

R: 25-32-36/38 

S: 22-36-45 

SIGMA GmbH 

Steinheim, Germany 

SQ29548   

Cayman Chemical 

Ann Arbor, USA 

Tetramethylethylenediamine 

(TEMED) 

R: 11-20/22-34 

S: 16-26-36/37/39-45 

Merck KgaA 

Darmstadt, Germany 

Tris salt   

SIGMA GmbH 

Steinheim, Germany 

Triton X-100 

R: 22-41 

S: 24-26-39 

Merck KgaA 

Darmstadt, Germany 

Trypsin     

Tween 20   

SIGMA GmbH 

Steinheim, Germany 

U46619   Cayman Chemical 
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Ann Arbor, USA 

VEGF   

Peprotech 

London, England 

17, 17, 18, 18-[2H4]-5-F2-IsoP  

Cayman Chemical 

Ann Arbor, USA 

17, 17, 18, 18-[2H4]-15-F2-IsoP  

Cayman Chemical 

Ann Arbor, USA 

17,18,19,20-[2H4]-8-iso-PGF2α  

Cayman Chemical 

Ann Arbor, USA 

 

7.2 Cells, Cell Culture Media and Consumable 

 

EBM-2 Cambrex, Walkersville, USA 

EGM-2 MV Cambrex, Walkersville, USA 

Fetal bovine serum (FBS), 

heat inactivated 

Invitrogen 

Grand Island, USA 

HCAEC 

PromoCell, Heidelberg, 

Germany 

 

7.3 Consumables Supplies 

 

1,5- and 2-mL Eppis Eppendorf AG, Hamburg, Germany 

10-, 100-, 1000- and 5000-µL pipettes Eppendorf AG, Hamburg, Germany 

10-, 100- and 1000-µL pipette tips Sarstedt AG & Co, Nümbrecht, Germany 

15- and 50-mL Falcon tubes Sarstedt AG & Co, Nümbrecht, Germany 

25- and 75-cm2 cell culture flasks Sarstedt AG & Co, Nümbrecht, Germany 

5000-µL pipette tips Eppendorf AG, Hamburg, Germany 

6- and 48-well plates Nunc, Roskilde, Denmark 

8-iso-PGF2α immunoaffinity columns Cayman Chemical, Ann Arbor, USA 

Blotting paper Whatman, Dassel, Germany 

Cell Scraper Sarstedt AG & Co, Nümbrecht, Germany 
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Curix X-ray film cassettes Agfa, Köln, Germany 

Cuvettes for photometry Sarstedt AG & Co, Nümbrecht, Germany 

Factor-Four-5MS column Varian, Palo Alto, USA 

Glassware Schott Duran, Mainz, Germany 

High performance chemiluminescence 

film Amersham Biosciences, Little Chalfont, England 

Latex Gloves Kimberly-Clark, Zaventem, Belgium 

Microcuvettes for aggregometry, 1.0 x 

4.0 Rolf Greiner Biochemics, Flacht, Germany 

Molecular sieve beads Merck KGaA, Darmstadt, Germany 

Monovettes Sarstedt AG & Co, Nümbrecht, Germany 

Nitrile gloves Ansell, Brussels, Belgium 

Nitrocellulose transfer membrane 

Schleicher & Schuell BioScience GmbH, Dassel, 

Germany 

Omniscript Reverse Transcriptase Kit QIAGEN GmBH, Hilden, Germany 

PAF-AH activity Assay Kit Cayman Chemical, Ann Arbor, USA 

Pasteur Pipettes Brand, Wertheim, Germany 

Polypropylene tubes Greiner Bio-one, Frickenhausen, Germany 

Primers Höttner und Hüttner AG, Tübingen, Germany 

Serological pipettes Sarstedt AG & Co, Nümbrecht, Germany 

sPLA2 activity assay kit Cayman Chemical, Ann Arbor, USA 

Sterile filter (0.22, 0.45 µm) Qualilab, Bruchsal, Germany 

 

7.4 Equipment 

 

-20 ºC Freezer Liebherr, Rostock, Germany 

-80 ºC Freezer Kryotec, Hamburg, Germany 

96-well plate reader, Sunrise Tecan, Crailsheim, Germany 

Accu-jet pipetting aid Eppendorf AG, Hamburg, Germany 

Analytical balance CP225 D Sartorius, Göttingen, Germany 

AxioCam PRc 5 camera Zeiss, Göttingen, Germany 
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Benchtop centrifuge Rotina 35 R Hettich, Tuttlingen, Germany 

ChemiGenius2 Bio-imaging System, 

agarose gel viewing system Syngene, Cambridge, UK 

Eppendorf tubes shaker Thermomixer Compact Eppendorf AG, Hamburg, Germany 

Evaporator, TurboVap LV Zymark, Hopkinton, USA 

GC-MS Varian, Palo Alto, USA 

GeneAmp PCR System 9700 Applied Biosystems, Foster city, USA 

Heat Circulator C20CS Lauda, Lauda-Königshofen, Germany 

Heating blocks Fisher Bioblock Scientific, Tournai, Belgium 

Homogenisator, Polytron Kinematica AG, Littau-Lucerne, Switzerland 

Hood with laminar vertical airflow, LaminAir HB 

2448 Heraeus, Hanau, Switzerland 

Lambda 2S Photometer, for protein quantification PerkinElmer, Jügesheim, Germany 

Magnetic stirrer MR 3002, heating Heidolph, Schwabach, Germany 

Micro centrifuge 5415 R Eppendorf AG, Hamburg, Germany 

Microscope, Axiovert 25 Zeiss, Oberkochen, Germany 

Optical aggregometer, Apact 2 LAbor, Hamburg, Germany 

Orbital shaker DuoMax 1030 Heidolph, Schwabach, Germany 

Organ bath myograph chambers Otto Jahn OHG, Oberhausen, Germany 

PCR Sprint Thermal Cycler ThermoHybaid, Waltham, USA 

pH-meter, digital Knick, Berlin, Germany 

Precision balance BP3100 S Sartorius, Goettingen, Germany 

Pump for Rotational-Vacuum-Concentrator Vacuubrand, Wertheim, Germany 

Refrigerators Liebherr, Rostock, Germany 

Rotational-Vacuum-Concentrator 2-25 Martin Christ, Osterode am Harz, Germany 

SmartSpec 3000 Photometer, for RNA/DNA 

quantification Bio-Rad Laboratories, Hercules, USA 

Thermometer, digital Eutech Instruments, Nijkerk, Holland 

Ultra-Pure Water System Milli-Q Plus Millipore, Schwalbach, Germany 

Vaccum pump Mini-Vac E1 PeqLab, Erlangen, Germany 

Vacuum manifold Macherey-Nagel GmbH & Co. KG, Düren, 
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Germany 

Vertical and Horizontal Systems for Electrophoresis, 

with Power Supply Unit Bio-Rad Laboratories, Hercules, USA 

Vortexer, Reax top Heidolph, Schwabach, Germany 

CO2 Incubator HERACell 

Thermo Electron Corporation, Langenselbold, 

Germany 

 

7.5 Gases 

Carbogen, Carbon dioxide, Argon, Helium, Methane were provided by Linde (Hannover). 

 

7.6 Softwares 

LSM Image Browser v. 3.2.0, Zeiss 

SPSS 10.0.5 

GeneSnap 6.02, Syngene 

AxioVision 4.3.0, Zeiss 

IBJ Amon 2.61 

 

7.7 Buffer and Solution Recipes 

 

Column buffer: 

Potassium phosphate dibasic trihydrate K2HPO4·3H2O 17.40 g 

Potassium phosphate monobasic KH2PO4   3.22 g 

Sodium chloride NaCl     29.20 g 

Sodium azide NaN3      0.5 g 

Ultra-pure water      1,000 mL 

 

Elution solution :  

Absolute ethanol  95% v/v 

Ultra-pure water  5% v/v 

 

Lysis buffer: 

Nonidet P-40 Substitute  10 mL 
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Triton X-100    10 mL 

Tris base    1.2 g 

Potassium chloride KCl  186 mg 

Sodium chloride NaCl  8.7 g 

Glycerol phosphate   6.48 g 

Sodium fluoride NaF   2.1 g 

Sodium orthovanadate Na3VO4 183.9 g 

Protease Inhibitor Cocktail  0.1% 

Aqua ad injectabilia   q.s. 1,000 mL 

 

Basal medium 
0,1% BSA in EBM-2 medium 

 

1 x Tris-Borate-EDTA (TBE) buffer: 

Tris base   10.8 g 

Boric acid   5.5 g 

0.5M EDTA, pH 8.0  4 mL 

aqua ad injectabilia  q.s. 1,000 mL 

 

1x Phosphate buffered saline (PBS): 

according to manufacturer’s instructions 

 

Separating gel: 

bis-Acrylamide 40% solution  2.53 mL 

Aqua ad injectabilia   5.48 mL 

Tris 2 M pH 8.8   2.0 mL 

SDS 20%    50 µL 

TEMED    5 µL 

APS 10% m/v solution  50 µL 

 

Collecting gel: 

bis-Acrylamide 40% solution  0.6 mL 
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Aqua ad injectabilia   3.8 mL 

Tris 0.5 M pH 8.8   1.6 mL 

SDS 20%    30 µL 

TEMED    6 µL  

APS 10% m/v solution  30 µL 

 

3x Laemmli solution: 

1 M Tris 18.75 mL 

Glycerol 30 mL 

20% SDS 30 mL 

2-Mercaptoethanol 15 mL 

Bromphenol blue 2 mg 

 

5x Running buffer: 

Tris base  15 g 

Glycin   72 g 

SDS 20%  25 mL 

Ultra-pure water q.s. 1 L 

 

10x Transfer buffer: 

Tris base  30.2 g 

Glycin   144.2 g 

SDS 20%  10 mL 

Ultra-pure water q.s. 1 L 

 

1x Transfer buffer: 

10x Transferring buffer 100 mL 

Methanol   100 mL 

Ultra-pure water  q.s. 1 L 

  

10x Tris-buffered saline (TBS) buffer: 

Tris base  24.2 g 
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NaCl   80.0 g 

Ultra-Pure water q.s. 1 L 

Adjust pH to 7.6 with 1N hydrochloric acid HCl 

 

1x TBS-Tween (TBS-T) buffer: 

10x TBS buffer 100 mL 

Tween 20  1 mL 

Ultra-pure water q.s. 1 L 

 

Krebs-Henseleit solution: 

Sodium chloride NaCl    13.79 g 

Potassium chloride KCl    0.715 g 

Calcium chloride CaCl2    0.2739 g 

Magnesium sulphate heptahydrate MgSO4·7H2O 0.5915 g 

Potassium dihydrogen Phosphate KH2PO4  0.3265 g 

Sodium bicarbonate NaHCO3    1.05 g 

Glucose      2.1775 g 

Indomethacin      3.578 mg 

Ultra-pure water     q.s. 1 L 
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8 Abbreviations 

 

4-hydroxy-TEMPO 4-hydroxy-2,2,6,6,-tetramethylpiperidine 1-oyl 

8-iso-PGF2α, 8-iso-PGE2, 8-iso-PGA2 8-iso-Prostaglandin F2α, 8-iso-Prostaglandin E2, 

8-iso-Prostaglandin A2

95% CI 96% confidence interval 

A ampere 

ACE angiotensin converting-enzyme 

ACh Acetylcholine 

ADP Adenosine diphosphate 

ALT alanine aminotransferase 

Ang II angiotensin II 

APS Ammonium persulfate 

ARB angiotensin type 1 receptor blocker 

AST asparate aminotransferase 

AT1 (or AT2) angiotensin type 1 (or 2) 

ATV atorvastatin 

BMI body mass index 

Bp base pairs 

BSA bovine serum albumin 

BSTFA N,O-bis(Trimethylsilyl)trifluoroacetamide 

cm, mm, µm centimeter, millimetter, micrometer 

CoQ10 coenzyme Q10 

COX cyclooxygenase 

DBP diastolic blood pressure 

DEPC diethyl pyrocarbonate 

DNA, cDNA deoxyribonucleic acid, complementary DNA 

dNTP deoxyribonucleotide triphosphate 

ECL enhanced chemoluminescent 

ECM extracellular matrix 

EDTA ethylenediaminetetraacetic acid 



Abbreviations 

 127

EET epoxyeicosatrienoic acid 

EGM endothelial Cell Growth Medium 

EIA enzyme immunoassay 

EMB endothelial cell basal medium 

FBS fetal bovine serum 

g, mg, µg, ng, pg gram, milligram, microgram, nanogram, 

picogram 

GC-MS gas chromatography-mass spectrometry 

GSH glutathione 

Hb hemoglobin 

HbA1c glycosylated hemoglobin 

HCAEC Human coronary artery endothelial cells 

HDL high-density lipoprotein 

HFE hemochromatosis 

HPETE hydroperoxyeicosatetraenoic acid 

HPLC high-performance liquid chromatography 

hr hour 

hsCRP high-sensitive C-reactive protein 

HUVEC human umbilical vein cells 

IAC immunoaffinity chromatography 

IBOP [15-(1a,2b(5Z),3a-(1E,3S),4a)]-7-[3-hydroxy-

4-(p-iodophenoxy)- 

1-butenyl-7-oxabicycloheptenoic acid 

IQR interquartile range 

kDa kilodalton 

L, mL, µL liter, milliliter, microliter 

LDL low-density lipoprotein 

LIC liver iron concentration 

m mass 

M, mM, µM, nM, pM molar, millimolar, micromolar, nanomolar, 

picomolar 

m/z mass to charge 
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Min minute 

mm Hg millimetre of mercury 

N, mN Newton, millinewton 

NICI negative ion chemical ionization 

Nox NAD(P)H oxidase 

NTBI non-transferrin-bound iron 

NTP nitroprusside 

ºC grad Celsius 

PAF platelet activating factor 

PAF-AH platelet activating factor-acetylhydrolase 

PBS phosphate buffered saline 

PCR, RT-PCR polymerization chain reaction, reverse 

transcriptase-PCR 

PE phenylephrine 

PFB-bromide 2,3,4,5,6-pentafluorobenzyl bromide 

PG prostaglandin 

PLA2, sPLA2, cPLA2, iPLA2, lPLA2 phospholipase A2 , secretory PLA2, cytosolic 

PLA2, Ca2+ independent intracellular PLA2, 

lysosomal PLA2

PPP platelet-poor plasma 

PRP platelet-rich plasma 

PVDF Polyvinylidene fluorid 

q.s. up to 

RIA radioimmunoassay 

RNA, mRNA ribonucleic acid, messengerRNA 

ROS reactive oxygen species 

RP Raynaud’s phenomenon 

SBP systolic blood pressure 

SD standard deviation 

SDS sodium lauryl sulfate 

sec second 

SEM standard error of the mean 
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SIM single ion monitoring 

SOD superoxide dismutase 

SPE solid phase extraction 

SQUID superconducting quantum interference device 

SSc, lSSc, lcSSc, dcSSc systemic sclerosis, limited SSc, limited 

cutaneous SSc, diffuse cutaneous SSc 

SQ29548 [1S-[1α,2α(Z),3α,4α]]-7-[3-[[2 [(Phenylamino) 

carbonyl]hydrazino]methyl]-7-

oxabicyclo[2.2.1]hept-2-yl]-5-heptanoic acid 

TBE Tris-Borate-EDTA 

TBS, TBS-T Tris-buffered saline, TBS-Tween 

TEMED Tetramethylethylenediamine 

TLC thin layer chromatography 

TXA2 thromboxane A2

TXAR thromboxane receptor 

U unit 

U46619 9,11-dideoxy-9α,11α-methanoepoxy 

Prostaglandin F2α

UV ultraviolet 

v volume 

V, mV volt, milliV 

VEGF vascular endothelial growth factor 

vs. versus 

VSMC vascular smooth muscle cells 
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9 Curriculum Vitae 
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Diplomas and Certifications 
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Institute of Experimental and Clinical Pharmacology,   Hamburg, Germany 

University Hospital Hamburg-Eppendorf 
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Université Laval       Québec city, Canada 

 

Working Experience 
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