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Introduction

This thesis is based on a link between differential geometry and quantum field
theory, which has been developed during the past twenty years by both math-
ematicians and physicists. On the mathematical side it concerns connections
on gerbes over a smooth manifold, on the physical side two-dimensional non-
linear sigma models with Wess-Zumino term on this manifold. Such a sigma
model assigns to any smooth map φ : Σ → M between surfaces Σ and the
manifold M a so-called Feynman amplitude: a complex number A(φ) which
is the integrand in the path integral of the quantum theory. Sigma models are
for instance considered in string theory. Here, Σ parameterizes the surface
that is swept out by a string moving through M . It has now turned out that
connections on gerbes provide an important contribution to the definition of
the Feynman amplitude A(φ).

A first indication for a link between gerbes and sigma models with Wess-
Zumino term is the observation that both theories develop remarkable prop-
erties when considered on a Lie group M = G. In order to motivate this, let
us exhibit some details of the theory of gerbes. Gerbes on a smooth manifold
M are geometric objects whose isomorphism classes parameterize the coho-
mology group H3(M,Z). Such a situation is called a geometric realization; it
is analogous to a classical result of Weil that identifies isomorphism classes
of complex line bundles with elements of the cohomology group H2(M,Z)
[Wei52]. In this identification the cohomology class associated to a line bun-
dle is just its first Chern class, while in the case of gerbes the class of a gerbe
G is called its Dixmier-Douady class dd(G) ∈ H3(M,Z).

There are various approaches to the actual geometric definition of a gerbe,
among them projective Hilbert space bundles [DD63], sheaves of groupoids
[Gir71], bundle gerbes [Mur96] and 2-bundles [Bar04, BS07]. In this thesis we
use bundle gerbes: they are manifestly finite-dimensional objects defined by
basic differential-geometric structures.

The particular behaviour of gerbes over Lie groups becomes clear if one
takes into account that for an important class of Lie groups, namely for com-
pact, simple and simply-connected ones, the classifying cohomology group
H3(G,Z) is canonically isomorphic to the integers. These Lie groups are thus
not only Riemannian manifolds, but also carry a family of canonical gerbes
Gk, one for each integer k. While this is based on purely topological properties,
the Lie group structure can be used even further. In particular in the case of
bundle gerbes explicit constructions of the canonical gerbes Gk could be devel-
oped by Lie-theoretical considerations [GR02, Mei02, GR03]. The existence
of these constructions emphasizes the role of Lie groups among all manifolds
on which gerbes can live.

On the physical side, the prominent role of sigma models on Lie groups
can be traced back to a paper by Witten, where he defines the amplitude A(φ)
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of the sigma model in such a way that the resulting quantum field theory is
conformally invariant [Wit84]. This has been achieved by adding a new term to
the usual kinetic term: this new term is called the Wess-Zumino term, and the
resulting sigma models are known as Wess-Zumino-Witten models. They are of
great importance in theoretical physics: they describe physical systems with
non-abelian symmetries, gauge sectors in heterotic string compactifications
and are a starting point for many constructions in conformal field theory.

The observation that Lie groups are important both for gerbes and for
sigma models is indeed essential for the link between the two. Furthermore,
Witten’s definition of the Wess-Zumino term is restricted to exactly that class
of Lie groups over which we have already found canonical gerbes, i.e. to com-
pact, simple and simply-connected Lie groups. Let us therefore have a closer
look at Witten’s definition of the Wess-Zumino term. We shall thus explain
how to assign a complex number AWZ(φ) to a smooth map φ : Σ → G.
Here one has to restrict oneself to oriented and closed surfaces Σ. First, we
consider a three-dimensional oriented manifold B whose boundary is the sur-
face Σ; such a manifold always exists, but is in general not unique. Now
two properties of the Lie group G become important. The first is the van-
ishing of its second fundamental group, π2(G) = 0. This allows one to
choose an extension Φ : B → G of the map φ, but again, this extension
will not be unique. Secondly, there exists a canonical bi-invariant 3-form
η on G characterized by the property that its de Rham cohomology class
coincides with the image of 1 ∈ Z = H3(G,Z) under the homomorphism
H3(G,Z) → H3(G,R) ∼= H3

dR(G). Equipped with the extension Φ and this
3-form η, Witten’s definition of the Wess-Zumino term is

SWZ
k (φ) := k

∫

B

Φ∗η,

where k is a real parameter. An important question is now to what extent
this expression depends on the choices of B and Φ. According to Witten, the
above-mentioned property of the 3-form η ensures that Wess-Zumino terms
based on different choices differ by a number in kZ. If one now demands k to
be an integer, the amplitude

AWZ
k (φ) := exp

(
2πiSWZ

k (φ)
)

is independent of all choices. This amplitude, together with a second factor
coming from the kinetic term, defines the Wess-Zumino-Witten model at level
k. The condition that the level is an integer can actually be understood anal-
ogously to Dirac’s quantization of the electric charge [GR02].

In order to finally understand the link between the amplitude AWZ
k (φ) and

the canonical gerbes Gk, we need to introduce another aspect of these geomet-
ric objects, namely connections. Connections on gerbes reveal more similarities
between complex line bundles and gerbes, in addition to the analogous clas-
sification by the cohomology groups Hn(M,Z) for n = 2 and 3, respectively.
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A possible way of understanding the algebraic aspects of all these analogies is
provided by Deligne cohomology [Del91, Bry93]. In recent years, the geometric
aspects have motivated the use of higher category theory; gerbes for instance
have the structure of a 2-category [Ste00], see also [Wal07]. This 2-category
can be viewed as the third step in a ladder of geometric structures over a
manifold: a set of U(1)-valued functions, a category of complex line bundles,
a 2-category of gerbes, and so forth.

Let us return to connections on gerbes and discover some of the analogies
between line bundles and gerbes. A connection on a gerbe G over a smooth
manifold M has two characteristic quantities: its curvature, a closed 3-form
on M , and its holonomy, a complex number HolG(φ) for each smooth map
φ : Σ → M from a closed and oriented surface Σ to M . Not only are these
two quantities themselves similar to the respective quantities of connections
on complex line bundles, but also their properties. First of all, the relation
between the curvature of a connection on a line bundle and its first Chern
class – fundamental for Chern-Weil theory – persists for gerbes: the curvature
H ∈ Ω3(M) of a connection on a gerbe G represents the image of its Dixmier-
Douady class dd(G) under the homomorphism H3(M,Z) → H3

dR(M). A sec-
ond similar property is the relation between curvature and holonomy: for a
three-dimensional, oriented manifold B and a smooth map Φ : B → M , this
relation is

exp

(

2πi
∫

B

Φ∗H

)

= HolG(Φ|∂B).

Just as the analogous relation for connections on line bundles, this equation
can be understood as a generalization of Stokes’s Theorem: the integral of a
closed 3-form over a three-dimensional manifold is reduced to a calculation on
the boundary. However, while Stokes’s Theorem is restricted to exact 3-forms,
the curvature H of a connection on a gerbe is generally not exact.

It turns out that compact, simple and simply-connected Lie groups do
not only carry the before-mentioned canonical gerbes Gk, but also provide
canonical connections on these. Their curvature Hk is just the 3-form kη from
the definition of the Wess-Zumino term. From the above relation between
curvature and holonomy of connections on gerbes then follows

AWZ
k (φ) = HolGk

(φ).

We have thus interpreted Witten’s original Wess-Zumino term as the holon-
omy of a connection on a gerbe. This interpretation has first been discovered
in terms of Deligne cohomology [Gaw88]. It provides significant advantages.

First, the holonomy of a connection on a gerbe over a manifold M is
defined independently of topological properties of M . It is hence possible to
consider for instance Wess-Zumino-Witten models on non-simply connected
Lie groups, for which the original definition of the Wess-Zumino term fails
because the second fundamental group may not vanish. The only thing one
needs now is a gerbe with connection; the Wess-Zumino term is then defined
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as the holonomy of this connection. Indeed, all relevant gerbes with connection
on compact and simple Lie groups are classified, in the case of bundle gerbes
there even exist concrete constructions [GR03]. An important observation on
Wess-Zumino-Witten models defined by connections on bundle gerbes is that
they are no longer parameterized by their level k: there may be no or even
several Wess-Zumino-Witten models for a given level k.

Of course these considerations extend to arbitrary manifolds M , and one
can now discuss sigma models with Wess-Zumino term on the basis of a given
gerbe with connection over M . We have thus arrived at the advertised link
between differential geometry and quantum field theory.

The study of sigma models with Wess-Zumino term benefits a lot from this
link, not only with a view to the target spaceM of the model, but also concern-
ing the class of permitted surfacesΣ. As we have described, both the holonomy
of a connection on a gerbe and the original definition of the Wess-Zumino term
require closed and oriented surfaces. Connections on gerbes, however, have the
potential to discuss extensions of the notion of holonomy to a larger class of
surfaces in a purely mathematical way. An interesting class consists for in-
stance of oriented surfaces with boundary. In this case, it has turned out that
a well-defined notion of holonomy for such surfaces requires the choice of addi-
tional structures, so-called gerbe modules [Kap00, CJM02]. Applied to sigma
models, these gerbe modules have substantially improved the understanding
of D-branes. In particular, it was now possible to study symmetric D-branes
in Wess-Zumino-Witten models on non-simply connected Lie groups [Gaw05].
Furthermore, gerbe modules allow a geometrical description of the relation-
ship between twisted K-theory and D-brane charges [BCM+02, Wit98].

In this thesis, we introduce further extensions of the holonomy of connec-
tions on gerbes and study their application to quantum field theory. In the
following, we shall give an outline.

Outline

Gerbe modules extend the notion of holonomy of a gerbe with connection
from closed and oriented surfaces to oriented surfaces with boundary. Beyond
that, the applications of holonomy to Wess-Zumino terms in sigma models
motivate further generalizations, namely to

1.) surfaces with defect lines; these are in the simplest case embedded circles
which divide a surface into several regions on which different gerbes with
connection are relevant, and to

2.) unoriented, in particular unorientable surfaces, like the Klein bottle.

In this thesis, we introduce new structures for bundle gerbes with connection
and use them to define holonomy in both situations. As applications of these
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generalized holonomies, we discuss Wess-Zumino terms in sigma models for
worldsheets with defect lines and unoriented worldsheets.

In the first chapter we review fundamental notions from the theory of bun-
dle gerbes and their connections, and expand on important points mentioned
in the introduction. Among other things, we describe the classifying coho-
mology theory, Deligne cohomology, and the canonical gerbes over compact,
simple and simply-connected Lie groups. We discuss in detail the well-known
definition of holonomy for closed oriented surfaces and their application to
Wess-Zumino terms in sigma models.

In the second chapter we investigate the algebraic structure of bundle
gerbes; here we come to the first original results of this thesis. Bundle gerbes
over a smooth manifold M form a 2-category: there are objects as in an
ordinary category, but instead of Hom-sets it has Hom-categories. We give a
new definition of these Hom-categories, which improves the existing definition
from [Ste00]: first of all there are now also non-invertible morphisms, and
secondly it enables a very elegant definition of the composition rule.

Bundle gerbes allow several natural constructions like pullbacks, tensor
products and a duality, which we describe here for the first time as structures
on a 2-category. We then show that each of the new Hom-categories carries
the structure of a module category over the monoidal category of flat vector
bundles over M . These fundamental results about the new Hom-categories
are of crucial importance for the subsequent chapters.

We begin the third chapter with an overview of gerbe modules and their
applications to D-Branes and Wess-Zumino terms in sigma models for world-
sheets with boundary [Gaw05]. We show that the non-invertible morphisms
in our new Hom-categories enable a clearer and more conceptual formulation
of holonomy for surfaces with boundary.

To discuss defect lines,we introduce gerbe bimodules and the related notion
of a bi-brane. In the case of a defect line that separates two regions, which are
assigned to manifolds M1 and M2 with gerbes G1 and G2, respectively, a bi-
brane is a submanifold Q of the cartesian product M1×M2 as well as a gerbes
bimodule for the pullbacks of G1 and G2 to Q. While D-branes in topologically
simple situations are described by classes in relative cohomology, we show a
similar result for bi-branes; for this purpose, we introduce a new cohomology
theory which is based on two manifolds and a submanifold of their cartesian
product.

In the applications to Wess-Zumino terms we concentrate particularly on
Wess-Zumino-Witten models, for which only special, so-called symmetric D-
branes and bi-branes are relevant. In case that both manifolds of a bi-brane are
a fixed Lie group G, we show that the relevant submanifolds Q are biconjugacy
classes in G × G. Pursuing the relationship between Wess-Zumino-Witten
models and conformal field theories, we discover a new geometric realization
of the moduli space of flat connections on the three-punctured sphere. This
hints a geometric realization of the Verlinde algebra, motivated by physics.
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In the fourth chapter we turn to the holonomy for unoriented surfaces. It
requires a further structure on a bundle gerbe with connection, which we call
Jandl structure. A Jandl structure consists of an involution of the base mani-
fold, and each an object and a morphism of one of the Hom-categories, which
we have introduced in the second chapter. We study the holonomy for unori-
ented surfaces defined by Jandl structures. For instance, we deduce a local for-
mulation which we evaluate on the Klein bottle. Then we show how the theory
of gerbes with Jandl structure can be applied to Wess-Zumino terms in unori-
ented sigma models. Unoriented sigma models with Wess-Zumino term have
been considered in string theory for a long time [BPS92, PSS95b, PSS95a].
On the basis of the theory of gerbes with Jandl structure introduced in this
thesis, we are in particular able to reproduce some results of this research in
a geometrical way. This concerns the 2-dimensional torus and the Lie groups
SU(2) and SO(3).

The goal of the fifth chapter is the classification of all those bundle gerbes
with Jandl structure which are relevant for Wess-Zumino-Witten models on
compact simple Lie groups. Since each of these Lie groups is a quotient of
its simply-connected cover by a finite group, we introduce a general theory of
twisted equivariant structures on bundle gerbes with connection.

These combine the action of a finite group Z on a smooth manifold M with
the involution arising as one ingredient of the Jandl structure. We show that
a gerbe equipped with a twisted equivariant structure over M defines a gerbe
with Jandl structure over the quotient M/Z, and that this relationship is a
bijection. According to these geometrical structures, we introduce a twisted
equivariant version of Deligne cohomology, and use it to classify gerbes with
twisted equivariant structures. We discuss the application of these results to
the canonical gerbes over compact, simple and simply-connected Lie groups.
It leads us to a complete classification of all unoriented Wess-Zumino-Witten
models on compact simple Lie groups.
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likewise I thank Krzysztof Gawȩdzki and Rafal Suszek, additionally for their
kind hospitality during two stays at the École normale Supérieur in Lyon.
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Chapter 1

Motivation:
Bundle Gerbes and the Wess-Zumino Term

This first chapter is to serve as an introduction into the theory of bundle ger-
bes, and shall provide the reader with a deeper understanding of the relation
between the surface holonomy of a bundle gerbe and the Wess-Zumino term;
this relation is essential for the applications to sigma models. We give the
basic definitions and review relevant results.

1.1 From Line Bundles to Bundle Gerbes

As indicated in the introduction, bundle gerbes can be understood as categori-
fied line bundles. One of the basic features of a complex line bundle L → M
over a smooth manifold M is that it is locally trivializable. This is usually
stated with respect to an open cover, but here we state it with respect to a
surjective submersion π : Y →M . Notice that we can produce such a surjec-
tive submersion from any open cover V = {Vi}i∈I of M by defining Y as the
disjoint union of its patches,

Y := MV :=
⊔

i∈I

Vi,

and π as the inclusion Vi ↪→ M on each component. With this notation, a line
bundle is locally trivializable, if there is a surjective submersion π : Y → M
and a commutative diagram

Y × C L

Y π
M ,

meaning that the pullback line bundle π∗L is isomorphic to the trivial line
bundle 11 over Y .
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A local trivialization defines a transition function g : Y [2] → C×, where we
denote by Y [k] := Y ×M ...×M Y the k-fold fibre product of Y with itself. If the
line bundle L is equipped with an hermitian metric, the transition function
can furthermore be normalized to values in U(1). Notice that since π : Y →M
is a surjective submersion, the fibre products Y [k] are again smooth manifolds
in such a way that the canonical projections πi1...ir : Y [k] → Y [r] are smooth
maps. The transition function g is smooth and satisfies the cocycle condition

π∗
12g ∙ π

∗
23g = π∗

13g (1 – 1)

over Y [3]. In the particular case that Y comes from on open cover V, the fibre
product Y [k] is the disjoint union of all k-fold intersections of the open sets
Vi. Accordingly, the transition function g decomposes into smooth functions
gij : Vi ∩ Vj → U(1), and the cocycle condition (1 – 1) becomes gij ∙ gjk = gik

as functions defined on Vi ∩ Vj ∩ Vk.

Bundle gerbes do not have a total space like line bundles. For the definition
of a bundle gerbe we step in after having locally trivialized, i.e. after having
chosen a surjective submersion π : Y →M ,

?

Y π M .

Now we define the bundle gerbe analogous to what remains of the locally
trivialized line bundle. We take the following point of view: if an hermitian
line bundle generalizes U(1)-valued functions, and its transition function is a
U(1)-valued function on Y [2], the transition data of a bundle gerbe should be
a hermitian line bundle L over Y [2]. The next steps are predicted: because we
can not multiply line bundles like the pullbacks of the transition function g
in (1 – 1), the cocycle condition has to be relaxed to an isomorphism

μ : π∗
12L⊗ π∗

23L→ π∗
13L

of hermitian line bundles over Y [3] – called the multiplication of the bundle
gerbe. To capture an essential aspect of the multiplication of functions, we
demand that this isomorphism is associative.

It is straightforward to define a connection on a bundle gerbe. Consider
first a unitary connection on an hermitian line bundle L over M . In a local
trivialization π : Y →M , this connection defines a 1-form A ∈ Ω1(Y ), which
is related to the transition function g by

1
i
g−1dg = π∗

2A− π∗
1A.

Its curvature can be identified with a 2-form curv(L) ∈ Ω2(M) that is given
by dAi on Vi. We call the pair (g,A) a cocycle for the line bundle L with
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connection. For the bundle gerbe, we take a unitary connection on the hermi-
tian line bundle L over Y [2] and impose that the isomorphism μ respects the
connections. Additionally, we take a 2-form C ∈ Ω2(Y ) – called the curving
– which has to be related to the connection on L by its curvature

curv(L) = π∗
2C − π∗

1C.

The connection on L together with the curving C form the connection on
the bundle gerbe. It is shown in [Mur96] that every bundle gerbe admits a
connection.

In some situations, for example generalized geometry [Hit01, Hit03], it
seems to be adequate to discuss the two parts of a connection on a bundle
gerbe, namely the connection on the line bundle and the curving, separately.
Then, the solely choice of a connection on the line bundle is addressed as
a connective structure on the bundle gerbe. In this thesis, however, we only
discuss bundle gerbes with connective structure and curving.

Remark 1.1.1. To avoid a lot of cumbersome notation, we fix the following
conventions for the complete thesis: we will only be concerned with bundle
gerbes with connection, and hence just speak of bundle gerbes . We will also
understand a line bundle as a hermitian line bundle with unitary connection.
Accordingly, all isomorphisms between line bundles will be isomorphisms of
line bundles which preserve the hermitian metric and the connections.

Summarizing, and using the above conventions, we are arrived at the fol-
lowing definition:

Definition 1.1.2 (Murray [Mur96]). A bundle gerbe G over M consists of a
surjective submersion π : Y →M , a 2-form C ∈ Ω2(Y ), a line bundle L over
Y [2] and an isomorphism

μ : π∗
12L⊗ π∗

23L→ π∗
13L

of line bundles over Y [3]. Two axioms have to be satisfied:

(G1) the curvature of L is related to the curving by

curv(L) = π∗
2C − π∗

1C.

(G2) the multiplication is associative in the sense that the diagram

π∗
12L⊗ π∗

23L⊗ π∗
34L

1⊗π∗
234μ

π∗
123μ⊗1

π∗
13L⊗ π∗

34L

π∗
134μ

π∗
12L⊗ π∗

24L
π∗
124μ

π∗
14L

of isomorphisms of line bundles over Y [4] is commutative.
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Notice that in the formulation of axiom (G2) we have tacitly assumed that
pullbacks and tensor products of line bundles are strictly associative. We will
continue in doing so to avoid unessential notation. In the same way we proceed
with pullbacks and fibre products of surjective submersions.

Similar as line bundles (i.e. hermitian line bundles with unitary connec-
tion) have a curvature 2-form, each bundle gerbe G determines a closed 3-form
curv(G) on M , also called the curvature of G: the derivative of axiom (G1)
gives π∗

1dC = π∗
2dC, since the curvature of the line bundle L is a closed form.

This means that dC descends along π : Y → M to a 3-form on M – the
very curvature of the bundle gerbe G. It is obviously a closed form, and it will
turn out later that it has an integral class. We call a bundle gerbe flat , if its
curvature vanishes.

To give an example of a bundle gerbe, we introduce trivial bundle gerbes .
Just as for every 1-form A ∈ Ω1(M) there is a trivial line bundle over M
having this 1-form as its connection, we find a trivial bundle gerbe for every
2-form ρ ∈ Ω2(M). The construction of this bundle gerbe is quite easy: as
surjective submersion we take the identity id : M → M , and the curving is
the given 2-form ρ. The line bundle L is the trivial line bundle with the trivial
flat connection, and the multiplication is the identity isomorphism between
trivial line bundles. Now, axiom (G1) is satisfied since curv(L) = 0 and π1 =
π2 = idM . The associativity axiom (G2) is surely satisfied by the identity
isomorphism. Thus we have defined a bundle gerbe, which we denote by Iρ.
The curvature of a trivial gerbe is curv(Iρ) = dρ. Another important class of
examples of bundle gerbes is studied in §1.4.

Let us again assume that the surjective submersion π : Y →M of a bundle
gerbe G comes from an open cover {Vi}i∈I of M , which is exactly a gerbe in
the sense of [Hit01]. Remember that we introduced the structure of a bundle
gerbe – namely the line bundle L, the multiplication μ and the curving C –
as analogues of a cocycle for a line bundle. To get a similar cocycle for the
bundle gerbe, we trivialize once more: if the open sets Vi are chosen such that
every non-empty double intersection Vi ∩ Vj is contractible, we are able to
choose sections

σij : Vi ∩ Vj → L

of unit length. Then, the connection on L pulls back to 1-forms Aij on each
double intersection Vi ∩ Vj . Furthermore, over a three-fold intersection Vi ∩
Vj ∩Vk, we can multiply two sections using the multiplication μ, and compare
the result with a third section,

μ(σij ⊗ σjk) = gijk ∙ σik

via a smooth function gijk : Vi ∩ Vj ∩ Vk → U(1). Finally, the curving clearly
restricts to a 2-form Bi on each open set Vi. Summarizing, we have extracted
U(1)-valued functions gijk on three-fold intersections, 1-forms Aij on two-fold
intersections, and 2-forms Bi on each open set. We call the collection (g,A,B)
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a cocycle for the bundle gerbe G. We deduce the following relations for such
a cocycle:

gijk ∙ gikl = gjkl ∙ gijl

Aik = Aij +Ajk +
1
i
g−1

ijkdgijk

dAij = Bj −Bi.

(1 – 2)

The first one is a consequence of the associativity of μ from axiom (G2),
the second describes the fact that μ preserves connections, and the third is
the curvature condition (G1). These equations look like analogues of the two
conditions for a cocycle for a line bundle namely

gij ∙ gjk = gik

1
i
g−1

ij dgij = Aj −Ai.
(1 – 3)

The natural way to sort these cocycles and the conditions thereon is Deligne
cohomology, as it will be explained in §1.3.

There are three standard constructions one can do with bundle gerbes:
duals, pullbacks and tensor products, all of them have been defined in [Mur96].
To each bundle gerbe G, we associate a dual bundle gerbe G∗ as follows: It has
the same surjective submersion π : Y →M , but the dual line bundle L∗ over
Y [2] with multiplication

(μ∗)−1 : π∗
12L

∗ ⊗ π∗
23L

∗ → π∗
13L

∗,

and the negative curving −C. Accordingly, the curvature of the dual bundle
gerbe is

curv(G∗) = −curv(G).

It is easy to see that the axioms are satisfied. To define the pullback bundle
gerbe f∗G for a smooth map f : N →M we consider the pullback diagram

Yf

πf

f̃
Y

π

N
f

M

of the surjective submersion π : Y → M of G. Here, πf : Yf → N is again a
surjective submersion, and the covering map f̃ induces smooth maps

f̃ : Y [k]
f → Y [k]

on all fibre products. Now, the surjective submersion πf , the pullback line

bundle f̃
∗
L over Y [2]

f , the isomorphism f̃∗μ and the 2-form f̃∗C over Yf define
the bundle gerbe f∗G. The curvature of the pullback bundle gerbe satisfies
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curv(f∗G) = f∗curv(G).

Finally, the tensor product of two bundle gerbes G1 and G2 is defined in the
following way: we form the fibre product Z := Y1 ×M Y2 regarded as a new
surjective submersion ζ : Z → M sending (y1, y2) ∈ Y1 × Y2 to the point
π1(y1) = π2(y2) in M . The two projections pi : Z → Yi induce smooth maps
between higher fibre products. We define the tensor product G1 ⊗ G2 to have
the surjective submersion ζ : Z → M , the line bundle L := p∗1L1 ⊗ p∗2L2,
the multiplication μ := p∗1μ1 ⊗ p∗2μ2 and the curving p∗1C1 + p∗2C2. For the
curvatures this means

curv(G1 ⊗ G2) = curv(G1) + curv(G2).

The tensor product for bundle gerbes is strictly associative, and we will discuss
it in more detail in §2.5, considered as a monoidal structure on a certain 2-
category.

The three constructions we just have described behave naturally for the
trivial bundle gerbes Iρ:

I∗
ρ = I−ρ , f∗Iρ = If∗ρ and Iρ1 ⊗ Iρ2 = Iρ1+ρ2 .

Furthermore, the trivial bundle gerbe I0 is a tensor unit, G⊗I0 = G = I0⊗G
for any bundle gerbe G over M . The three constructions are also compatible
with cocycles for the involved bundle gerbes: if (g,A,B) is a cocycle for a
bundle gerbe G, one can choose (g−1,−A,−B) as a cocycle for the dual bundle
gerbe G, and one can choose (f∗g, f∗A, f∗B) as a cocycle for the pullback
bundle gerbe f∗G. The discussion of cocycles for the tensor product of two
bundle gerbes is postponed after Lemma 1.2.3 in the next section, where
we also explain how to extract cocycles from bundle gerbes whose surjective
submersion does not come from an open cover.

1.2 Stable Isomorphisms between Bundle Gerbes

To find the appropriate notion of equivalence between two bundle gerbes G1

and G2, we assume again for a moment that their two surjective submersions
πi : Yi → M both come from open covers. To compare the bundle gerbe
structure, it would be natural to go to a common refinement of these covers.
On the double intersections of this common refinement the line bundles L1

and L2 could be compared. For general surjective submersions π1 and π2 the
common refinement amounts to consider the fibre product

Z := Y1 ×M Y2,

which was also relevant for the tensor product of bundle gerbes. The two-fold
intersections amount to consider Z [2] = Z ×M Z. The restriction of the line
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bundle Li to Z [2] is implemented by the pullback along the canonical map
pi : Z [2] → Y

[2]
i . A first idea is to require that the line bundles p∗1L1 and p∗2L2

are isomorphic. In fact, this was the original definition of an isomorphism
between bundle gerbes [Mur96]. However, it turned out that this definition
was too restrictive.

A solution to this was presented in [CMM97]: the line bundles should not
be isomorphic but stably isomorphic in the sense that there is a line bundle
A over Z and an isomorphism

p∗1L1 ⊗ ζ∗2A
∼= ζ∗1A⊗ p∗2L2

of line bundles over Z [2]. Here ζ1 and ζ2 are the two projections from Z [2] to
Z. It is natural to demand that the data of an isomorphism of bundle gerbes
– the line bundle A and an isomorphism α as above – is compatible with
the rest of the structure of the bundle gerbes, namely the curvings and the
multiplications. Summarizing, we have

Definition 1.2.1 (Carey-Mickelsson-Murray [CMM97]). A stable isomor-
phism A : G1 → G2 between bundle gerbes G1 and G2 over M is a line bundle
A over Z together with an isomorphism

α : p∗1L1 ⊗ ζ∗2A→ ζ∗1A⊗ p∗2L2

of line bundles over Z [2]. Two axioms have to be satisfied:

(SI1) the curvature of A is fixed by

curv(A) = p∗2C2 − p∗1C1,

(SI2) the isomorphism α commutes with the multiplications μ1 and μ2 of the
bundle gerbes in the sense that the diagram

p∗1π
∗
12L1 ⊗ p∗1π

∗
23L1 ⊗ ζ∗3A

1⊗ζ∗
23α

p∗
1μ1⊗id

p∗1π
∗
13L1 ⊗ ζ∗3A

ζ∗
13αζ∗12p

∗
1L1 ⊗ ζ∗2A⊗ ζ∗23p

∗
2L2

ζ∗
12α⊗1

ζ∗1A⊗ p∗2π
∗
12L2 ⊗ p∗2π

∗
23L2

1⊗p∗
2μ2

ζ∗1A⊗ p∗2π
∗
13L2

of isomorphisms of line bundles over Z [3] is commutative.

We call two bundle gerbes stably isomorphic, if there exists a stable iso-
morphism between them. This is in fact an equivalence relation, which is not
at all a trivial result: the proof of its transitivity requires descent theory of
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line bundles [Ste00]. We postpone the discussion of the transitivity and the
symmetry of this equivalence relation to Chapter 2, where we introduce a
generalized definition of morphisms between bundle gerbes, for which these
problems become trivial.

Anyway, to give an example of a stable isomorphism, that at the same
time shows that being stably isomorphic is a reflexive relation, we define the
identity stable isomorphism

idG : G → G

associated to any bundle gerbe G over M . It is defined by the line bundle L of
G over Z = Y ×M Y = Y [2] and the isomorphism λ of line bundles over Z [2]

defined from the multiplication of G by

π∗
13L⊗ π∗

34L
π∗
134μ

π∗
14L

π∗
124μ−1

π∗
12L⊗ π∗

24L,

where we identified Z [2] = Y [4], y1 = π13, ζ2 = π34, ζ1 = π12 and y2 = π24.
Axiom (SI1) is the same as axiom (G1) for the bundle gerbe G and axiom
(SI2) follows from axiom (G2).

A second example is the duality stable isomorphism

DG : G∗ ⊗ G → I0

associated to any bundle gerbe G [Wal07]. To construct it, notice that the
bundle gerbe G∗ ⊗ G has the surjective submersion Y [2] → M , the curving
π∗

2C − π∗
1C and the line bundle π∗

13L
∗ ⊗ π∗

24L over Y [4]. We have Z = Y [2]

and define A := L∗ as the line bundle of DG and

δG := π∗
123μ

∗ ⊗ π∗
234μ

−1 ⊗ id : π∗
13L

∗ ⊗ π∗
24L⊗ π∗

34L
∗ → π∗

12L
∗

as its isomorphism, which is an isomorphism of line bundles over Z [2] = Y [4].
Axiom (SI1) is satisfied because of axiom (G1), and axiom (SI2) can be re-
duced to several copies of axiom (G2).

The duality stable isomorphism is important for the following reason: we
consider the set of stable isomorphism classes of bundle gerbes over M as a
monoid, whose product is the tensor product ⊗ defined in the previous section,
and whose unit element is the trivial bundle gerbe I0. The existence of the
duality stable isomorphism infers that this monoid is even a group, the inverse
elements represented by dual bundle gerbes.

There is another important point to notice from the definition of a stable
isomorphism. Given two such stable isomorphisms

A : G1 → G2 and A′ : G1 → G2

providing line bundles A and A′ over the same manifold Z, to compare both
stable isomorphisms it does not make sense to say that they are equal or not:
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to compare line bundles one needs isomorphisms between them. This leads
us forthright to the fact that bundle gerbes form a 2-category [Ste00, Wal07],
which will be the subject of investigation in Chapter 2. Let us nevertheless
introduce now the correct way to compare stable isomorphisms.

Definition 1.2.2 ([Ste00]). Let A : G1 → G2 and A′ : G1 → G2 be two stable
isomorphisms. A 2-isomorphism

β : A ⇒ A′

is an isomorphism β : A → A′ of line bundles over Z, which is compatible
with the isomorphisms α and α′ in the sense that the diagram

p∗1L1 ⊗ ζ∗2A
α

1⊗ζ∗
2 β

ζ∗1A⊗ p∗2L2

ζ∗
1 β⊗1

p∗1L1 ⊗ ζ∗2A
′ α′

ζ∗1A
′ ⊗ p∗2L2

of isomorphisms of line bundles over Z [2] is commutative.

We now use stable isomorphisms to obtain cocycles for general bundle
gerbes and not just for those whose surjective submersion comes from an
open cover. We prepare this by the following general consideration. For two
surjective submersions ξ : X → M and π : Y → M we call a smooth map
f : X → Y a morphism of surjective submersions , if ξ = π ◦ f . Any such
morphism induces smooth maps f : X [k] → Y [k] between the fibre products.
Notice that if G is a bundle gerbe over M with surjective submersion π :
Y → M , and f : X → Y is a morphism of surjective submersions, then the
surjective submersion ξ : X →M , the line bundle f∗L, the isomorphism f∗μ
and the 2-form f∗C form again a bundle gerbe over M , that we denote by Gf .

Lemma 1.2.3 (Murray-Stevenson [MS00]). Let f : X → Y be a morphism
of surjective submersions over M , and let G be a bundle gerbe with surjec-
tive submersion π : Y → M . Then, the bundle gerbes G and Gf are stably
isomorphic.

Proof. We define a stable isomorphism in the following way: the line bundle
A over Z := X ×M Y is the pullback of the line bundle L over Y [2] along the
mixed map f1 : (x, y) 7→ (f(x), y) which is well-defined since f preserves the
fibres, A := f∗1L. Now consider the isomorphism λ of line bundles over Y [4]

used in the definition of the identity stable isomorphism idG . Its pullback f∗1λ
gives the isomorphism α:

α := f∗1λ : p∗1f
∗L⊗ ζ∗2A→ ζ∗1A⊗ p∗2L.

The axioms for the stable isomorphism defined by (A,α) can easily be
identified as the pullbacks of the axioms of idG along f1. �
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Now let G be any bundle gerbe over M . Since its surjective submersion
π : Y → M admits local sections, there exists an open cover V of M with
smooth sections si : Vi → Y . They define a smooth map s : MV → Y that
sends a point x ∈ Vi to si(x) ∈ Y . Since s is moreover a morphism of surjective
submersions, we have

Corollary 1.2.4. Every bundle gerbe over M is stably isomorphic to a bundle
gerbe whose surjective submersion comes from an open cover of M .

Recall that in the previous section we have described how to obtain a
cocycle from a bundle gerbe, whose surjective submersion comes from an open
cover. Corollary 1.2.4 now tells us how to proceed for an arbitrary bundle
gerbe.

Let us also extract local expressions for a stable isomorphism A : G → G′

of bundle gerbes, that is to relate cocycles for the two bundle gerbes G and G′.
Without loss of generality we may assume that both bundle gerbes have the
same surjective submersion π : MV →M , coming from an open cover V with
contractible open sets and contractible two-fold intersections. Like explained
above, the fibre product Z is the common refinement of the open cover V
with itself, so that we have in particular an inclusion ιi : Vi ↪→ Z of any open
set Vi into the component Vi ∩ Vi of Z.

Recall that we have chosen sections σij : Vi∩Vj → L and σ′
ij : Vi∩Vj → L′

by which we obtained local connection 1-forms Aij and A′
ij of the line bundles,

and smooth U(1)-valued functions gijk and g′ijk on three-fold intersections.
Now consider the pullback ι∗iA of the line bundle A of the stable isomorphism
A to a contractible open set Vi. We choose new sections σi : Vi → ι∗iA and
obtain local connection 1-forms Wi ∈ Ω1(Vi). Since the inclusions ιi induce
inclusions on two-fold intersections ιij : Vi∩Vj → Z [2] we are able to pull back
the isomorphism α of the stable isomorphism A, whereby we obtain smooth
functions tij : Vi ∩ Vj → U(1) defined by

ι∗ijα(σij ⊗ σj) = tij ∙ (σi ⊗ σ′
ij).

We call the collection (t,W ) a cochain for the stable isomorphism A. Let us
gather some conditions on this cochain using the axioms from Definition 1.2.1.
We obtain:

tik ∙ gijk = g′ijk ∙ tij ∙ tjk

A′
ij +Wi = Wj +Aij +

1
i
t−1
ij dtij

dWi = B′
i −Bi.

(1 – 4)

The first identity comes from axiom (SI2), the second from the fact that α
preserves the connections, and the third follows directly from (SI1). So, a
cochain for a stable isomorphism relates cocycles for the two bundle gerbes in
a certain way.
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Let us also find a local expression for a 2-isomorphism β : A ⇒ A′. We
may have chosen sections σi : Vi → ι∗iA and σ′

i : Vi → ι∗iA
′ and extracted

1-forms Wi and W ′
i , and smooth functions tij and t′ij . It is clear that the

isomorphism β : A → A′ of line bundles over Z pulls back to Vi, so that it
determines smooth functions bi : Vi → U(1) by

ι∗i β : ι∗iA→ ι∗iA
′.

The compatibility of β with the isomorphisms α and α′, and the condition
that β preserves connections leads to the following two conditions:

bj ∙ tij = t′ij ∙ bi

W ′
i = Wi +

1
i
b−1
i dbi.

(1 – 5)

We call the collection (b) of locally defined functions a cochain for the 2-
isomorphism β. Again, a natural arrangement of all these cochains and con-
ditions is provided by Deligne cohomology, and described in §1.3.

We are now able to relate cocycles for the tensor product G ⊗ G′ of two
bundle gerbes over M to cocycles for G and G′. If we choose an open cover
V which is fine enough to admit local sections to both surjective submersions
π : Y → M and π′ : Y ′ → M of the two bundle gerbes involved, with a
choice of sections σij : Vi ∩ Vj → L and σ′

ij : Vi ∩ Vj → L′ we may have
obtained cocycles (g,A,B) for G and (g′, A′, B′) for G′. We use the inclusion
maps ιi : Vi → Z described above and obtain a morphism ι : MV → Z of
surjective submersions. Applying Lemma 1.2.3 to this morphism s and the
tensor product bundle gerbe G ⊗ G′, we obtain a stably isomorphic bundle
gerbe H whose surjective submersion is again MV →M . By construction, the
line bundle of the bundle gerbe H is ι∗ijL⊗ι

∗
ijL

′ over Vi∩Vj , so that we may use
the sections σij ⊗σ′

ij . This way we obtain the functions gijk ∙ g′ijk, the 1-forms
Aij +A′

ij and the 2-forms Bi+B′
i. Summarizing, the sum (g ∙g′, A+A′, B+B′)

is a cocycle for the tensor product G ⊗ G′.

To close this section, let us discuss an important type of stable isomor-
phisms between bundle gerbes, that will be an essential tool for the definition
of surface holonomy given in §1.5.

Definition 1.2.5. A trivialization of a bundle gerbe G over M is a 2-form
ρ ∈ Ω2(M) and a stable isomorphism

T : G → Iρ.

A bundle gerbe is called trivializable, if it admits a trivialization.

Let us briefly exhibit the details of a trivialization, which follow from the
definition of a stable isomorphism and the one of the trivial bundle gerbe Iρ.
The isomorphism T consists of a line bundle T over the space Z = Y ×M M
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which we identify canonically with Y itself. Under this identification, the two
projections p1 and p2 become the identity id : Y → Y and the surjective
submersion π : Y →M , respectively, so that axiom (SI1) is

curv(T ) = π∗ρ− C. (1 – 6)

We further have an isomorphism τ : L ⊗ π∗
2T → π∗

1T of line bundles over
Z [2] = Y [2]. Because the multiplication of the trivial bundle gerbe Iρ is the
identity, axiom (SI2) for τ reduces to the equation

π∗
13τ ◦ μ = π∗

12τ ◦ π
∗
23τ

of isomorphisms of line bundles over Z [3] = Y [3].

Remark 1.2.6. Often a trivialization is defined as a pair (T, τ) of a line bundle
and an isomorphism τ with the compatibility condition with μ as above. One
can then show that the 2-form curv(T ) + C descends along π : Y → M to a
unique 2-form ρ onM . So, this definition gives exactly the same information as
Definition 1.2.5. What we have gained here is the insight that a trivialization
is nothing but a certain stable isomorphism.

Of course not every bundle gerbe admits a trivialization. We discuss the
obstruction to find a trivialization in detail in §1.3. Note that, if a trivialization
exists, the curvature of the bundle gerbe G is an exact form, and

curv(G) = dρ

for any trivialization T : G → Iρ. This follows from the derivative of equation
(1 – 6). Notice, however, that the 2-form ρ is in general not unique.

1.3 Deligne Cohomology

In this section we describe the appropriate way to sort all local expressions for
line bundles (i.e. hermitian line bundles with unitary connection) and bundle
gerbes. In the first place, these local expressions are differential forms, so it is
natural to consider the de Rham sheaf complex

Ω0
M

d
Ω1

M
d

Ω2
M

d . . .

where Ωk
M denotes the sheaf of (smooth) k-forms on M , and d is the exterior

derivative. We make two modifications in this complex. First notice that no
0-forms appear in the local expressions of line bundles or bundle gerbes but
only U(1)-valued functions. To consider such functions in the context of the
de Rham sheaf complex, we use the sheaf homomorphism

dlog : U(1)M → Ω1
M



1.3 Deligne Cohomology 13

which is defined for a smooth function g : V → U(1) on an open subset V of
M by

dlog(g) :=
1
i
g∗θ ∈ Ω1(V ),

where θ ∈ Ω1(U(1), iR) is the left-invariant Maurer-Cartan form on U(1).
Since dθ = 0 as a 2-form on U(1), it has the property d◦dlog = 0. This allows
us to replace the sheaf Ω0

M of 0-forms in the de Rham sheaf complex by the
sheaf U(1)M of smooth U(1)-valued functions.

The second modification is motivated by the fact that the local connection
1-forms Ai of a line bundle, or, analogously, the local 2-forms Bi of a bundle
gerbe are not closed unless the line bundle or the bundle gerbe is flat. So we
have to truncate our complex at some degree n, whereby we are arrived at
the sheaf complex

U(1)M

dlog
Ω1

M
d

Ω2
M

d . . . d
Ωn

M

that is called the Deligne complex in degree n and that we denote by D•(n).

Definition 1.3.1. The hypercohomology of the complex D•(n) is called De-
ligne cohomology in degree n, and its cohomology groups are denoted by
Hp(M,D(n)).

Remark 1.3.2. Deligne cohomology sometimes refers to the hypercohomology
of the following complex Z•(n)∞D of sheaves [Bry93]:

ZM
i

Ω0
M Ω1

M
. . . Ωn−1

M .

This complex is quasi-isomorphic to our Deligne complex D•(n − 1), so that
the cohomology groups can be identified [Gom03].

We will not introduce sheaf cohomology, and use instead the description of
the sheaf cohomology groups by Čech cohomology. This description is based
on the fact that any sheaf A of abelian groups over M has a resolution by
the Čech cochain groups Čk(V,A) for any open cover V of M . Applied to a
complex K• of sheaves like D•(n), this leads to a double complex Č•(V,K•),
which is in our example called the Čech-Deligne double complex , see Figure
1.1. Note that the squares of this double complex are commutative diagrams.
The total cohomology of this double complex is the cohomology of a complex
composed of diagonal sums

Totk(V,K) :=
⊕

k=p+q

Čp(V,Kq)

and of a coboundary operator, which is in our example of K• = D•(n) the
Deligne coboundary operator
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...
...

...

Č1(V, U(1))

δ

dlog
Č1(V, Ω1)

δ

d . . . d
Č1(V, Ωn)

δ

Č0(V, U(1))

δ

dlog
Č0(V, Ω1)

δ

d . . . d
Č0(V, Ωn)

δ

Figure 1.1: The Čech-Deligne double complex,
where δ denotes the usual Čech coboundary opera-
tor.

D|Čp(V,Dq(n)) :=

{
δ + (−1)pd for q > 0

δ + (−1)pdlog for q = 0.

The sign in this definition guarantees the complex condition D ◦ D = 0. The
total cohomology is denoted by Ȟ•(V,K). By standard arguments in Čech
cohomology, the cohomology groups Ȟk(V,K) form a directed system over
the directed set of open covers of M , whose direct limit is denoted by

Ȟk(M,K) := lim
−→
V

Ȟk(V,K) (1 – 7)

and called the Čech cohomology of M with values in the sheaf complex K•.
It is often convenient to use a good open cover V, where all non-empty
double intersections are contractible. In this case the canonical projection
Ȟk(V,K) → Ȟk(M,K) is an isomorphism, so that every element in Ȟk(M,K)
can be represented by a cocycle in the total complex Totk(Č•(V,K•)).

Lemma 1.3.3 (Godement [God58]). For any complex of sheaves K•, there
exists natural group homomorphisms

Ȟk(M,K) → Hk(M,K)

from the Čech cohomology to the sheaf hypercohomology. If M is paracompact,
these homomorphisms are isomorphisms.

This lemma provides us with a hands on method to compute the sheaf
hypercohomology Hk(M,D(n)) of the Deligne complex. Let us exemplarily
demonstrate this by finding a representative for Deligne cohomology classes
in Hk(M,D(n)) with n = k. We choose a good open cover V, so that by
Lemma 1.3.3 and the remark above Hk(M,D(k)) ∼= Ȟk(V,D(k)). Then, a
class is represented by a cocycle

α := (α0, ..., αk) ∈ Totk(V,D(k)),
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where α0 ∈ Čk(V,U(1)) is nothing but a family of smooth U(1)-valued func-
tions

α0
i0...ik

: Vi0 ∩ ... ∩ Vik
→ U(1)

defined on each (k+ 1)-fold intersection of open sets of V, and αq, q > 0, is a
family of q-forms αq

i0...ik−q
∈ Ωq(Vi0∩...∩Vik−q

) defined on each (k−q+1)-fold
intersection. The coboundary of the cocycle α is

0 = D(α) = (δα0, (−1)kdlog(α0) + δα1, (−1)k−1dα1 + δα2, ..,−dαk−1 + δαk).

Even more concrete, let us give examples for cocycles in the case k = 1. Let
L be a line bundle over M – by which we still mean an hermitian line bundle
with unitary connection according to Remark 1.1.1 – which is trivializable
over V. Then, with a choice of section si : Vi → L, its transition functions
gij : Vi ∩ Vj → U(1) and its local connection 1-forms Ai ∈ Ω1(Vi) define
a cocycle (g,A), which now naturally becomes an element of Tot1(V,D(1)).
The conditions (1 – 3) can be rewritten as

(δg)ijk = 1 and − dlog(gij) + (δA)ij = 0;

these are exactly the components of the cocycle condition D(g,A) = 0. Thus,
cocycles for line bundles are cocycles in Tot1(V,D(1)). It is a nice exercise to
check that its cohomology class

[(g,A)] ∈ H1(M,D(1))

depends neither on the choice of the open cover V nor of the choice of the
sections si : Vi → L, and depends only on the isomorphism class of L: con-
cerning the choice of the open cover it suffices to discuss a refinement U of
V, for which one may choose the restrictions of the sections si to the smaller
open sets. This gives a cochain (g′, A′) which is the image of (g,A) under the
induced map Tot1(V,D(1)) → Tot1(U,D(1)), and thus defines the same class
in the direct limit H1(M,D(1)). Furthermore, both a change of sections and
an isomorphism ϕ : L → L′ give rise to smooth functions hi : Vi → U(1) on
each open set. This defines an element h ∈ Tot0(V,D(1)) in such a way that
the respective cocycles differ by the coboundary of h,

(g′, A′) = (g,A) + D(h). (1 – 8)

So we have a well-defined map from the set of isomorphism classes of line
bundles over M to the Deligne cohomology group H1(M,D(1)). It is easy to
see that this map is even a group homomorphism, with respect to the tensor
product of line bundles.

Theorem 1.3.4 (Kostant [Kos70]). The group homomorphism from the group
of isomorphism classes of hermitian line bundles over M with unitary con-
nection to the Deligne cohomology group H1(M,D(1)) is an isomorphism.
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Proof. Assume that cocycles (g′, A′) and (g,A) for two line bundles L
and L differ by the coboundary of a cochain h as in (1 – 8). Then one can
construct an isomorphism ϕ : L → L′ patched together from the functions
hi : Vi → U(1). This proves that the group homomorphism is injective. The
surjectivity is just the usual reconstruction procedure of a line bundle from
given transition functions and local connection 1-forms. �

Note that without the truncation of the Deligne complex in degree n = 1,
the cocycle condition for a cocycle (g,A) would have a further component,
namely dAi = 0. Accordingly, the group isomorphism from Theorem 1.3.4
restricts to a group isomorphism from the group of isomorphism classes of flat
line bundles to H1(M,D(n)) with n > 1. We will later prove that this group
is isomorphic to H1(M,U(1)).

Next we are going to construct examples for the Deligne cohomology group
Hk(M,D(k)) for k = 2. Let G be a bundle gerbe over M with surjective
submersion π : Y →M , let V be a good open cover which admits local sections
si : Vi → Y , and let s : MV → Y be the corresponding morphism of surjective
submersions. Recall that we have defined a bundle gerbe Gs with surjective
submersion MV → M , which is by Lemma 1.2.3 stably isomorphic to G. As
discussed in section 1.1, with a choice of sections σij : Vi∩Vj → s∗L we obtain
smooth functions gijk : Vi ∩Vj ∩Vk → U(1), 1-forms Aij ∈ Ω1(Vi ∩Vj) and 2-
forms Bi ∈ Ω2(Vi). The cocycle (g,A,B) for the bundle gerbe G obtained like
this is now naturally a cochain in Tot2(V,D(2)). If we rewrite the equations
(1 – 2) as

(δg)ijkl = 1 , dlog(gijk) + (δA)ijk = 0 and − dAij + (δB)ij = 0

they are nothing but the cocycle condition D(g,A,B) = 0. Thus, cocycles for
bundle gerbes are cocycles in Tot2(V,D(2)). We will show in a minute that
the class [(g,A,B)] ∈ H2(M,D(2)) of a cocycle depends neither on the choice
of the open cover nor on the choice of the morphism s, nor on the choice of
the sections σij .

Before we do so, it is convenient to consider a stable isomorphism A :
G → G′. We choose a good open cover V of M which admits sections in the
surjective submersions of both bundle gerbes. We obtain two bundle gerbes
Gs and G′

s′ , and with the stable isomorphisms from Lemma 1.2.3, A induces a
stable isomorphism Gs → G′

s′ . As discussed in §1.2, with respect to choices σij

and σ′
ij as above, we have derived a cochain (t,W ) for the stable isomorphism

A, which now appears as a cochain in Tot1(V,D(2)). It relates the cocycles
(g,A,B) and (g′, A′, B′) by equations (1 – 4), which we rewrite here as

g′ijk ∙g
−1
ijk = (δt)ijk , A′

ij−Aij = (δW )ij−dlog(tij) and B′
i−Bi = dWi,

or, equivalently, in short,

(g′, A′, B′) = (g,A,B) + D(t,W ).
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So, the cocycles of stably isomorphic gerbes differ by a coboundary.
It is an easy exercise to calculate cochains for the three examples of stable

isomorphisms we have introduced in the previous section. Since (1, 0, ρ) is a
cochain for the trivial bundle gerbe Iρ for any 2-form ρ on M , a cochain (t,W )
for a trivialization T : G → Iρ satisfies

(1, 0, ρ) = (g,A,B) + D(t,W )

for any choice of a cocycle (g,A,B) for G. Further, the trivial cochain (1, 0)
is a cochain for both the identity stable isomorphism idG ,

(g,A,B) = (g,A,B) + D(1, 0),

and the duality stable isomorphism DG , if one has chosen the cochain
(g−1,−A,−B) for the dual bundle gerbe G∗,

(1, 0, 0) = ((g,A,B) + (g−1,−A,−B)) + D(1, 0).

For completeness, let us also look at a 2-morphism between two stable
isomorphisms A : G → G′ and A′ : G → G′ both with cochains (t,W ) and
(t′,W ′) respectively, satisfying the above condition. The isomorphism β : A→
A′ together with sections σi and σ′

i used to extract the cochains for A and A′,
defines a cochain (b), which is nothing but a cochain in Tot0(V,D(2)), and
equations (1 – 5) assure

(t′,W ′) = (t,W ) + D(b).

Now we have interpreted cocycles for bundle gerbes, and cochains for 1- and
2-isomorphisms as elements in the total complex Totk(V,D(2)).

Lemma 1.3.5. The Deligne cohomology class [(g,A,B)] ∈ H2(M,D(2)) of a
cocycle for a bundle gerbe G is independent of all choices made. Furthermore,
stably isomorphic bundle gerbes define the same class.

Proof. For the choice of different open covers, we refer to the same argument
given before the proof of Theorem 1.3.4. Let s and s′ be different choices of
morphisms MV → Y of surjective submersions, leading to bundle gerbes Gs

and Gs′ . Since they are both stably isomorphic to G, the associated cocycles
differ by a coboundary as shown above. Finally, a choice of different sections
σ′

ij defines smooth functions tij : Vi ∩ Vj → U(1) with the property g′ = g ∙ δt
and A′ − A = −dlog(t). This is a particular case of a cochain (t, 0) by whose
coboundary the two cocycles differ. �

Summarizing, we have a well-defined map from the set of stable isomor-
phism classes of bundle gerbes over M to the Deligne cohomology group
H2(M,D(2)). Recall that the set of stable isomorphism classes is even a group;
now the discussion of local expressions for dual bundle gerbes and tensor prod-
ucts implies that the map to Deligne cohomology is a group homomorphism.
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Theorem 1.3.6 (Murray-Stevenson [MS00]). The group homomorphism

{
Stable isomorphism classes
of bundle gerbes over M

}

H2(M,D(2))

is an isomorphism.

Proof. To show the surjectivity, assume that (g,A,B) ∈ Tot2(V,D(2)) is a
cocycle for some open cover V. We construct a bundle gerbe Con(g,A,B) in the
following way: let Y := MV be the disjoint union of the open sets of V, and let
π : Y →M be the canonical projection. The curving is defined by C|Vi := Bi.
Consider the trivial hermitian line bundle L over Y [2], which we equip with a
unitary connection using the 1-forms Aij ∈ Ω1(Vi ∩ Vj). Finally, the cocycle
gijk defines an associative isomorphism, which is the multiplication. Evidently,
by choosing the trivial unit sections σij(x) = (x, 1), x ∈ Vi ∩ Vj , we obtain
exactly the cocycle (g,A,B) as a cocycle for the bundle gerbe Con(g,A,B).

To prove the injectivity, assume that a bundle gerbe G has vanishing
Deligne class. So there exists an open cover V of M , a morphism s : MV → Y
of surjective submersions, by Lemma 1.2.3 a stably isomorphic bundle gerbe
Gs, together with sections σij : Vi ∩ Vj → L such that the corresponding
cocycle (g,A,B) is a coboundary,

(g,A,B) = D(t,W ). (1 – 9)

We construct a trivialization T(t,W ) : G → I0 as follows. The line bundle A
over Vi is the trivial line bundle equipped with the connection 1-form Wi. It
has the correct curvature, namely curv(A)|Vi = dWi = Bi = C|Vi . We define
the isomorphism

α|Vi∩Vj
: L|Vi∩Vj

⊗A|Vj
→ A|Vi

: (l, a) 7→ (tij(l) ∙ a).

It respects the connections because of the second component of (1 – 9).
Furthermore, it satisfies axiom (SI2) due to the third component. �

Now that we have discovered the relation between Deligne cohomology and
bundle gerbes, let us return to a general discussion of Deligne cohomology.
From this discussion we will obtain important results for the theory of line
bundles and bundle gerbes, using the two theorems above.

The Deligne complex has a natural projection to the sheaf U(1)M , which
is a chain map when we regard U(1)M as a trivial complex aside from degree
0. So it induces a homomorphism

κ : Hk(M,D(n)) → Ȟk(M,U(1)M ).

The exponential sequence

0 ZM RM

exp 2πi
U(1)M 0
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is an exact sequence of sheaves of groups over M [Bry93], and thus induces
a long exact sequence in Čech cohomology. The sheaf RM is soft, and hence,
since M is paracompact, acyclic. So, the connecting homomorphisms of the
long exact sequence are isomorphisms

Ȟk(M,U(1)M ) ∼= Ȟk+1(M,ZM )

for k > 0. The Čech cohomology of the constant sheaf ZM can in turn be
identified with the singular cohomology Hk+1(M,Z). All together, we have
a well-defined group homomorphism Hk(M,D(n)) → Hk+1(M,Z), which we
also denote by κ. The next proposition shows that κ is surjective provided
that k ≥ n. In this sense, Deligne cohomology refines ordinary cohomology,
and classes in Deligne cohomology become secondary characteristic classes.

Proposition 1.3.7 (Brylinski [Bry93]). The group homomorphism

κ : Hk(M,D(n)) → Hk+1(M,Z)

has the following properties:

a) for k > n it is an isomorphism;
b) for k = n it fits into the exact sequence

0 Ωn
cl,Z(M) Ωn(M) t∗

Hk(M,D(n))
κ

Hn+1(M,Z) 0,

where Ωn
cl,Z(M) denotes the group of closed n-forms on M with integral

class.

Proof. We adapt a very elegant proof from [Bry93] to our notation. Let
Ω•

M (1, n) be the de Rham complex truncated below in degree 1 and above in
degree n, whose cohomology is given by

Hk(M,Ω•
M (1, n)) =

{
Ωk(M)/d(Ωk−1(M)) for k = n

0 for k > n.

We have a canonical chain map t : Ω•
M (n) → D•(n), and the sequence

0 Ω•
M (1, n) t D•(n) κ U(1)M 0

of complexes of sheaves is exact for trivial reasons, where we still regard U(1)M

as a trivial complex. The associated long exact sequence in cohomology is

... Hk−1(M,U(1)M )
ω

Hk(M,Ω•
M (1, n))

t∗

Hk(M,D(n))

Hk(M,U(1)M ) Hk(M,Ω•
M (1, n)) . . .
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Thus, (a) follows immediately, and for (b) it remains to calculate the image
of the connecting homomorphism

ω : Hk−1(M,U(1)M ) → Ωk(M)/d(Ωk−1(M)),

which indeed consists exactly of closed k-forms with integral class. �

Similar to the chain map D•(n) → U(1)M we have used before, we can
regard the exterior derivative d as a chain map

U(1)M

dlog
Ω1

M
d

Ω2
M

d . . . d
Ωk

M

d

Ωk+1
cl,M

which induces a group homomorphism in cohomology,

d : Hk(M,D(k)) → Ωk+1
cl (M).

The two homomorphisms κ and d are related by the following

Proposition 1.3.8 (Brylinski [Bry93]). Let α ∈ Hk(M,D(k)) be a Deligne
cohomology class. The image of the class κ(α) ∈ Hk+1(M,Z) in real cohomol-
ogy corresponds to the de Rham cohomology class [d(α)] ∈ Hk+1

dR (M) under
the identification

Hk+1(M,R) ∼= Ȟk+1(M,R) ∼= Hk+1
dR (M)

between singular cohomology, Čech cohomology and de Rham cohomology.

Proof. Let α be represented by a cochain (α0, ..., αk) ∈ Totk(V,D(k)),
in particular α0 ∈ Čk(V,U(1)M ) The connecting homomorphism of the
exponential sequence sends α0 to the Čech cocycle δ log(α0) ∈ Čk+1(V,RM )
whose class is the image of κ(α) in Ȟk+1(M,R). Now we recall that
elements [β0] in Čech- and [βn] in de Rham cohomology correspond to
each other, if and only if there exists a cochain (c0, ..., cn) in the total
complex Totn(Č•(V, Ω•

M )) of the Čech-de Rham double complex whose total
boundary is (δc0, ..., dcn) = (β0, 0, ..., 0, βn). For c0 = log(α0) and ci := αi,
this gives the correspondence between κ(α) = [δ log(α0)] and [dα]. �

To finish the general discussion of Deligne cohomology, consider the inclu-
sion of the trivial complex which only consists of the sheaf U(1)M of locally
constant U(1)-valued functions on M and trivial groups else, into the Deligne
sheaf complex,

ι : U(1)M ↪→ D•(n).
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Proposition 1.3.9. The induced group homomorphism

ι∗ : Hk(M,U(1)) → Hk(M,D(n))

in cohomology has the following properties:

(a) for 0 ≤ k < n, it is an isomorphism.
(b) for k = n, it fits into the exact sequence

0 Hk(M,U(1))
ι∗

Hk(M,D(k))
d

Ωk+1
cl,Z (M) 0.

Proof. We use the same method as in the proof of Proposition 1.3.7, see
[Gom03]. We denote by D•

cl(n) the Deligne complex in degree n but with
Dn

cl(n) := Ωn
cl,M only the closed n-forms instead of Dn(n) = Ωn

M . We have an
obviously exact sequence

0 D•
cl(n) D•(n) d

Ωn+1
cl,M 0 (1 – 10)

of sheaf complexes. By the Poincaré Lemma, it is easy to see that the
inclusion ι defined above is a quasi-isomorphism ι : U(1)M ↪→ D•

cl(n), so
that it induces isomorphisms Hk(M,U(1)) ∼= Hk(M,Dcl(n)). Under this
identification, the long exact sequence associated to the short exact sequence
(1 – 10) proves both claims. �

Let us now draw some consequences from the last three propositions on
Deligne cohomology, first for the Deligne cohomology group H1(M,D(1))
which classifies line bundles. For a line bundle L over M and its Deligne
class α, we identify the following geometric notions.

(a) The class κ(α) ∈ H2(M,Z) is the first Chern class of L, κ(α) = c1(L);
in particular, isomorphic line bundles have the same Chern class.

(b) The 2-form d(α) ∈ Ω2(M) is the curvature of L, d(α) = curv(L); in
particular, isomorphic line bundles have the same curvature.

(c) The homomorphism t∗ : Ω1(M) → H1(M,D(1)) in the exact sequence
from Proposition 1.3.7 can be represented by the assignment of the trivial
line bundle 11 over M with the given 1-form as global connection 1-form.

With these identifications, it is easy to translate the assertions of the propo-
sitions into a geometric language, by which one can reproduce many familiar
statements about line bundles.

Concerning bundle gerbes and Deligne cohomology, let G be a bundle gerbe
and let α ∈ H2(M,D(2)) be the corresponding Deligne class. We call the
characteristic class

dd(G) := κ(α) ∈ H3(M,Z)

the Dixmier-Douady class of the bundle gerbe G. An important impetus for
the theory of gerbes was, that the Dixmier-Douady class provides geomet-
ric representatives for characteristic classes in degree three cohomology. We
further reproduce the following geometric definitions:
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(a) The 3-form d(α) ∈ Ω3(M) is the curvature of G, d(α) = curv(G); in
particular, stably isomorphic bundle gerbes have the same curvature.

(b) The homomorphism t∗ : Ω2(M) → H2(M,D(1)) in the exact sequence
from Proposition 1.3.7 can be represented by the assignment of the trivial
bundle gerbe Iρ over M for the given 2-form ρ.

Now we reformulate the statements of Propositions 1.3.7 b), 1.3.8 and 1.3.9
b) as follows.

Corollary 1.3.10. Let M be a smooth manifold.

(i) to every class α ∈ H3(M,Z) there exists a bundle gerbe G whose
Dixmier-Douady class is dd(G) = α.

(ii) a bundle gerbe is trivializable if and only if its Dixmier-Douady class
vanishes.

(iii) if T1 : G → Iρ1 and T2 : G → Iρ2 are two trivializations of the same
bundle gerbe G, the difference ρ2 − ρ1 is a closed 2-form with integral
class.

(iv) for any bundle gerbe G over M , the de Rham cohomology class of the
curvature curv(G) corresponds to the image of the Dixmier-Douady class
dd(G) in real cohomology.

(v) the set of stable isomorphism classes of bundle gerbes over M with fixed
curvature is a torsor over the group H2(M,U(1)).

In particular (iii) will prove to be essential for the definition of holonomy
in §1.4. In §2.4 we will give an alternative proof of (iii) using the 2-categorical
features.

To close this section, let us remark that we have seen that we gained a
lot of information about bundle gerbes using the cohomological classification
by Deligne cohomology. However, in some situations one appreciates the ge-
ometric nature of bundle gerbes, for example in the following section, where
we construct examples of bundle gerbes.

1.4 Bundle Gerbes over Lie Groups

After we have introduced bundle gerbes as geometric objects over arbitrary
manifolds, we now specialize to bundle gerbes over Lie groups. We describe
in this section, how the Lie group structure allows constructions of examples
of bundle gerbes, whose Dixmier-Douady classes realize the degree three co-
homology of the Lie group. First constructions of gerbes over different types
of compact Lie groups can be found in [Bry93, Cha98, Bry]. Bundle gerbes
(with connection) have been constructed in [GR02, Mei02, GR03].

We consider a compact, simple (in particular connected) and simply-
connected Lie group G. For the sake of completeness, let us recall the following
well-known fact.
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Theorem 1.4.1 (Cartan [Car36]). Let G be a compact, simple and simply-
connected Lie group. Then,

π2(G) = 0 and H3(G) = Z,

where the second equation means a canonical isomorphism (not just up to
sign).

We denote the generator of H3(G) corresponding to 1 ∈ Z by γ. One
can show that there exists a unique bi-invariant 3-form ω ∈ Ω3(G) such that∫

γ
ω = 1. This 3-form is called the canonical 3-form of the Lie group G. Since

bi-invariant forms are always closed, ω is a closed 3-form with integral class.
To realize this canonical 3-form concretely, consider a symmetric Ad-

invariant bilinear form 〈−,−〉 on the Lie algebra g of any compact simple
Lie group G. We define the 3-form

η :=
1
6
〈θ ∧ [θ ∧ θ]〉 .

on G, where θ denotes the left invariant Maurer-Cartan form. The 3-form η
is bi-invariant and hence closed.

Lemma 1.4.2 (Pressley-Segal [PS86]). If G is compact, simple and simply-
connected, and 〈−,−〉 is normalized such that 〈α̌, α̌〉 = 4π for each coroot
α̌ corresponding to a long root α, the canonical 3-form ω coincides with the
3-form η.

Provided that the normalization condition of the above Lemma is satis-
fied, by Proposition 1.3.8 there exists over any compact, simple and simply-
connected Lie group G a bundle gerbe G with curvature curv(G) = η. We
also have H2(G,U(1)) = 0, so that this bundle gerbe is unique up to stable
isomorphism by Proposition 1.3.9. This unique bundle gerbe is called the ba-
sic bundle gerbe, and denoted by G0. The bundle gerbes Gk of curvature kη,
k ∈ Z can then be obtained from G0 or G∗

0 by a k-fold tensor product. Bundle
gerbes of curvature kη, not only over simply-connected but also over general
compact simple Lie groups, play an important role in Wess-Zumino-Witten
models, as we shall see in §1.6.

We restrict ourselves to the construction given in [GR02], from which we
obtain the basic bundle gerbe G0 over the special unitary groups SU(n) and
the symplectic groups Sp(2n), and only tensor products Gk0

0 for the other
groups. First we consider a general compact, simple and simply-connected Lie
group G with Lie algebra g. We choose a maximal torus T with Lie algebra
t of rank r. We further choose a set of simple roots α1, ..., αr and denote the
associated positive Weyl chamber by C. Let α0 the highest root and let

A := {ξ ∈ C | α0(ξ) ≤ 1}.

be the fundamental alcove. It is bounded by the hyperplanes Hi perpendicular
to the roots αi, and the additional hyperplane H0 consisting of elements ξ ∈ t
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with α0(ξ) = 1. So it is an r-dimensional simplex in t with vertices μ0..., μr

determined by the condition that μi ∈ Hj for all j 6= i.
For simple and simply connected groups, the fundamental alcove parame-

terizes conjugacy classes of G in the sense that each conjugacy class contains
a unique point exp ξ with ξ ∈ A. This defines a smooth map

q : G→ A.

Let Ai be the open complement of the face opposite to the vertex μi in A,
and consider the open sets Vi := q−1(Ai). More generally, for any subset
I ⊂ r = {0, ..., r} we denote by VI the intersection of all Vi with i ∈ I, and
similarly by AI the intersection of all Ai with i ∈ I. Of course VI = q−1(AI).
We use the open sets Vi to construct a surjective submersion π : Y → G as
usual. It is the first ingredient of the basic bundle gerbe we want to construct.
To construct the line bundle L over Y [2] we show next that Y [2], the disjoint
union of all two-fold intersections, projects onto a union of coadjoint orbits.

For any I ⊂ r, all group elements exp ξ with ξ in the open face spanned
by the vertices μi with i ∈ I have the same centralizer GI [Mei02]. For any
inclusion I ⊂ J it follows GJ ⊂ GI ; for I = r we obtain Gr = T . Let SI be
the orbit of exp AI ⊂ T under the conjugation with GI . We consider the set
G×GI SI consisting of equivalence classes of pairs (g, s) ∈ G× SI under the
equivalence relation (g, s) ∼ (gh, h−1sh) for h ∈ GI . We have the canonical
projection ρI : G×GI

SI → G/GI and a smooth map

uI : G×GI
SI → VI

which sends a representative (g, s) to gsg−1 ∈ G. This is well-defined on
equivalence classes, and for h ∈ GI and ξ ∈ AI with s := h exp ξ h−1 we find
q(gsg−1) = ξ and hence gsg−1 ∈ VI . The map uI is even a diffeomorphism:
for g ∈ VI let ξ := q(g) ∈ AI and h ∈ G such that g = h exp ξ h−1. Then, the
inverse sends g to the equivalence class of (h, exp ξ).

Since Gij fixes the difference μij := μj−μi, we can identify G/Gij with the
coadjoint orbit Oij of μij in g∗. Now we specialize our construction to the case
that μij is a weight. This is the case for SU(n) and Sp(2n), where the vertices
of the fundamental alcove are contained in the weight lattice. For μij being a
weight there is a canonical associated line bundle Lij over the coadjoint orbit
Oij . Let us recall the construction of this line bundle: if χij : Gij → U(1) is
the character associated to the weight μij , it is the one-dimensional complex
vector bundle bundle associated to the principal Gij-bundle G over G/Gij in
virtue of the character χij , namely

Lij := G×Gij C.

It inherits a hermitian metric from the standard metric on C, and can also
be equipped with a connection: we consider the 1-form Aij := 〈μij , θ〉 as a
connection 1-form on the principal Gij-bundle G. It induces a connection on
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the associated line bundle Lij because μij is preserved under the action of Gij .
This way we have a defined a hermitian line bundle with unitary connection.
The curvature of this line bundle is the very symplectic form on the henceforth
integral coadjoint orbit Oij .

The line bundles Lij over Oij can be pulled back along

Vi ∩ Vj
∼ G×Gij

Sij G/Gij
∼ Oij

to line bundles over Vi ∩ Vj , and their disjoint union gives a line bundle L
over Y [2]. Now we define the multiplication of the basic bundle gerbe, i.e. an
isomorphism

μ : π∗
12L⊗ π∗

23L→ π∗
13L

of line bundles over Y [3]. Over the component Vi ∩Vj ∩Vk, this can be chosen
as the pullback of the canonical identification

Lij ⊗ Ljk
∼= Lik

of line bundles over G/Gijk, which comes from the coincidence μik = μij +μjk

of the weights from which the line bundles are constructed. This identification
is obviously associative, so that axiom (G2) is satisfied.

To finish the definition of the basic bundle gerbe, we define its curving,
i.e. a 2-form C ∈ Ω2(Y ). We use the fact that the linear retraction ri of Ai to
the vertex μi lifts along the smooth map q : G→ A to a smooth retraction r̃i
of Vi to the conjugacy class Cμi := q−1(μi) [Mei02]:

Vi × [0, 1]
r̃i

q×id

Vi

q

r̃i(−, 0) = idVi and r̃i(−, 1) = Cμi

Ai × [0, 1]
ri

Ai ri(−, 0) = idAi and ri(−, 1) = μi

Another well-known fact is that the 3-form η becomes exact when restricted
to a conjugacy class

ι∗i η = dωμi , (1 – 11)

where ιi : Cμi → G is the inclusion. A choice of the 2-form ω is for example
the bi-invariant 2-form

ωμi :=
〈
ι∗i θ ∧

Ad−1 + idg

Ad−1 − idg

ι∗i θ
〉
∈ Ω2(Cμi),

which also becomes important for the theory of D-branes and bi-branes in
Chapter 3. Here, the homomorphism Ad−1

g − idg : g → g is invertible on the
image of the restricted Maurer-Cartan form, and nominator and denominator
commute.
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Now the de Rham homotopy operator provides us with a 2-form Ci defined
on Vi, for which equation (1 – 11) holds on the whole Vi rather than on the
retract Cμi . Namely, the pullback of ωμi along the retraction r̃i, followed by a
fibre integration, yields a 2-form Ci ∈ Ω2(Vi) with

η|Vi
= dCi.

The particular choice of ωμi above ensures Cj − Ci = 〈μij , dθ〉 on Vi ∩ Vj

[Mei02], which is axiom (SI1).
Summarizing, we have constructed a bundle gerbe over SU(n) and Sp(2n)

with curvature η, thus the basic bundle gerbe. According to Lemma 1.4.2, its
Dixmier-Douady class is 1 ∈ Z = H3(G,Z). For the other compact, simple
and simply-connected Lie groups there exist integers k0 for which the vertices
of k0A lie in the weight lattice. Using the weights k0μij in the construction of
the line bundles Lij , and the 2-forms k0Ci in the definition of the curving, we
obtain bundle gerbes with curvature kη with Dixmier-Douady classes k0 ∈ Z
[Mei02]. These are the powers Gk0

0 of the basic bundle gerbes over these groups.
The smallest such integer k0 is tabulated in [Bou68]:

G SU(n) Spin(n) Sp(2n) E6 E7 E8 F4 G2

k0 1 2 1 3 12 60 6 2

To construct the basic bundle gerbes on the groups with k0 > 1 one has to
use more advanced constructions [Mei02, GR03]. Here it becomes in particular
important that the definition of a bundle gerbes admits π : Y → G to be a
surjective submersion, which is more general than an open cover of G.

1.5 Surface Holonomy

Just as we have introduced bundle gerbes as categorified line bundles, surface
holonomy of a bundle gerbe should generalize the holonomy of a line bun-
dle around a loop. So, it is worthwhile to recall how the holonomy of a line
bundle L (still understood as a hermitian line bundle with unitary connection
according to Remark 1.1.1) over M around a loop γ : S1 →M is defined.

The pullback of L along γ gives a line bundle over the circle, whose first
Chern class vanishes for dimensional reasons. Hence, it becomes isomorphic
to a trivial line bundle 11ω with some connection 1-form ω ∈ Ω1(S1) according
to Proposition 1.3.7 b). Then,

HolL(γ) := exp

(

2πi
∫

S1

ω

)

is a number in U(1) which is in fact independent of the choice of the trivi-
alization: if ω′ is another 1-form, also by Proposition 1.3.7 b) the difference
ω′ − ω is closed and has integral class; hence, the difference of the integrals
gives an integer, whose exponential vanishes.
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We also write out this definition in terms of local expressions. Let (g,A) ∈
Tot1(V,D(1)) be a cocycle for the line bundle L with respect to an open cover
V = {Vi}i∈I . Note that a choice of a 1-form ω is related to this cocycle by

γ∗[(g,A)] = t∗(ω) = [(1, ω)] (1 – 12)

We choose a triangulation Δ of S1 that is subordinated to V by a map i : Δ→
I such that γ(e) ⊂ Vi(e) for any edge e ∈ Δ and γ(v) ∈ Vi(v) for any vertex
v ∈ Δ. Then, by splitting the integral over ω with respect to the triangulation,
and using (1 – 12) and Stokes’s Theorem, one can derive the formula

HolL(γ) =
∏

e∈Δ

exp

(

2πi
∫

e

γ∗Ai(e)

)

∙
∏

v∈∂e

g
ε(e,v)
i(e)i(v)(γ(v))

where ε(e, v) ∈ {−1, 1} is positive, if v is the endpoint of e with respect to the
orientation induced from S1, and negative otherwise.

Remark 1.5.1. The definition of holonomy of line bundles we have given here
coincides with the one obtained by piecewise horizontal lifts of the curve
φ, although this is not completely obvious. The coincidence is based on the
fact that the exponential factors in the above local formula solve the very
differential equations which determine the horizontal lifts, see [SWb].

For the definition of the surface holonomy of a bundle gerbe G we start with
a configuration like in Figure 1.2 and mimic the same procedure as for line

M

Σ

φ

G

Figure 1.2: A closed surface is mapped into some
space M with bundle gerbe G

bundles. Since we have used that the circle is a closed and oriented manifold,
we consider analogously closed and oriented surfaces.

Definition 1.5.2 (Carey-Johnson-Murray [CJM02]). Let G be a bundle gerbe
over M . For a closed oriented surface Σ and a smooth map φ : Σ →M , let
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T : φ∗G → Iρ

be a trivialization of the pullback of the bundle gerbe G along φ. Then we define

HolG(φ,Σ) := exp

(

2πi
∫

Σ

ρ

)

to be the oriented surface holonomy of the bundle gerbe G around φ : Σ →M .

Notice that we have used the orientation on Σ. To show that oriented
surface holonomy is well-defined, we use that Σ is closed: we have to assure
that the number HolG(φ,Σ) is independent of the choice of the trivialization,
which – first of all – exists since the Dixmier-Douady class of the pullback
bundle gerbe vanishes for dimensional reasons. Different trivializations may
have different 2-forms ρ, however, by Corollary 1.3.10 the difference ρ2 − ρ1

between to such 2-forms is a closed form with integral class, whose integral
over the closed surface Σ vanishes. Then, the calculation

exp

(

2πi
∫

Σ

ρ2

)

= exp

(

2πi
∫

Σ

ρ2 − ρ1

)

∙exp

(

2πi
∫

Σ

ρ1

)

= exp

(

2πi
∫

Σ

ρ1

)

shows that the definition HolG(φ,Σ) is independent of the choice of the triv-
ialization.

The following proposition collects several rather obvious properties of Def-
inition 1.5.2.

Proposition 1.5.3. Oriented surface holonomy of the gerbe G has the follow-
ing properties:

i) it is invariant under orientation-preserving diffeomorphisms of Σ.
ii) if Σ̄ denotes the surface with the opposite orientation,

HolG(φ,Σ) = HolG(φ, Σ̄)−1.

iii) for a stable isomorphism A : G → G′, the holonomies HolG(φ,Σ) and
HolG′(φ,Σ) coincide.

iv) the holonomy of the dual gerbe G∗ is HolG∗(φ,Σ) = HolG(φ,Σ)−1.

Now we reformulate the holonomy in terms of local data of the bundle
gerbe, analogous the formula for the holonomy of a line bundle. Recall that
the trivialization T : φ∗G → Iρ chosen in Definition 1.5.2 implies the relation

(1, 0, ρ) = φ∗(g,A,B) + D(t,W )

between a cocycle for the bundle gerbe G and the cocycle for the trivial gerbe,
with respect to some open cover V. Now, following the strategy we have
applied to obtain the local expression for the holonomy of a line bundle, we
choose a triangulation Δ of the surface Σ, consisting of faces f , edges e and
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vertices v. It should be chosen subordinated to the open cover V = {Vi}i∈I

by means of a map i : Δ → I, assigning to each face, edge or vertex f an
index i(f) so that φ(f) ⊂ Vi(f). Now the integral of the 2-form ρ over Σ which
defines the holonomy is decomposed with respect to the triangulation. By a
subsequent use of Stokes’s Theorem and the above formula for the local data,
one ends up with the following formula, see [CJM02]:

HolG(φ,Σ) =
∏

f∈Δ

exp

(∫

f

φ∗Bi(f)

)

∙
∏

e∈∂f

exp

(∫

e

φ∗Ai(f),i(e)

)

∙
∏

v∈∂e

g
ε(f,e,v)
i(f),i(e),i(v)(φ(v)). (1 – 13)

Here, ε(f, e, v) is positive if the vertex v is the endpoint of the edge v with
respect to the orientation induced from the face f . Formula (1 – 13) shows
explicitly what is going on: surface holonomy is the sum of local integrals over
the 2-forms Bi and on the edges and vertices one has corrections by the rest
of the cocycle for the bundle gerbe. This way, the triangulated surface gets
decorated like shown in Figure 1.3.

Σ

i j

k

Bi Bj

Bk

Ajk

Aki

Aij

gijk

Figure 1.3: The triangulated surface Σ is deco-
rated by local data of a bundle gerbe: the faces
with 2-forms Bi, the edges with 1-forms Aij and
the vertices with the functions gijk.

Of course one can define the last expression without knowing bundle gerbes
just by starting with a class in Deligne cohomology represented by a cocycle
(g,A,B). In fact, surface holonomy appeared first in this form [Alv85, Gaw88],
and has then been interpreted geometrically [Bry93, CJM02].

We close this section with the following theorem that provides one of the
facts which are important for the relation between bundle gerbes and Wess-
Zumino terms.
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Theorem 1.5.4 (Gawȩdzki [Gaw88]). Let M be a smooth manifold, G a bun-
dle gerbe over M , and let B be a smooth oriented three-dimensional manifold
with boundary, which is then a closed oriented surface ∂B. For any smooth
map Φ : B →M ,

HolG(Φ|∂B , ∂B) = exp

(

2πi
∫

B

Φ∗curv(G)

)

.

Proof. We choose a triangulation Δ of B subordinated to an open cover
U = {Ui}i∈I of B which admits a cocycle (g,A,B) ∈ Tot2(U,D(2)) for Φ∗G.
The triangulation consists of 3-faces V , 2-faces f , edges e and vertices v, and
the subordinating map is denoted by i : Δ → I. Note that the triangulation
Δ induces a triangulation of the boundary ∂B. Our aim is now to decompose
the integral on the right hand side with respect to Δ, and to show that it (a)
vanishes in the interior of B and (b) produces exactly the formula (1 – 13) on
the boundary, which is the left hand side of the claimed equation.

The right hand side of the claimed equation is, using Stokes’s Theorem
and the third component of the cocycle condition D(g,A,B) = 0,

∑

V ∈Δ

∫

V

dBi(V ) =
∑

V ∈Δ

∑

f∈∂V

∫

f

Bi(V ) =
∑

V ∈Δ

∑

f∈∂V

∫

f

Bi(f) − dAi(V )i(f).

Every 2-face f appears twice in the sum but with opposite orientations, except
those at the boundary. So from the first summand it remains only the first
constituent of the local holonomy formula (1 – 13). The second summand gives,
for a fixed 3-face V , by the second component of the cocycle condition,

∑

f∈∂V

∑

e∈∂f

∫

e

Ai(V )i(f) =
∑

f∈∂V

∑

e∈∂f

∫

e

Ai(V )i(e) −Ai(f)i(e) + dloggi(V )i(f)i(e).

Again, since every edge e appears twice but with different orientations, the
first summand vanishes. The second summand vanishes in the interior of B
by the same reason. On the boundary, it contributes the second constituent
of the holonomy formula (1 – 13). Finally, the remaining terms are, using the
first and last cocycle condition,
∏

f∈∂V

∏

e∈∂f

∏

p∈∂e

g
ε(V,f,e,p)
i(V )i(f)i(e) =

∏

f∈∂V

∏

e∈∂f

∏

p∈∂e

g
ε(V,f,e,p)
i(f)i(e)i(p) ∙g

−ε(V,f,e,p)
i(V )i(e)i(p) ∙g

ε(V,f,e,p)
i(V )i(f)i(p).

The second and the third factor again vanish since they appear twice with
different exponents, and for the first factor the same argument as above
applies. Summarizing, all terms have vanished except those on the boundary,
where we have cooked up the local formula (1 – 13). �

Note that we have now generalized Stokes’s Theorem: let H ∈ Ω3(M) be
any 3-form on a three-dimensional manifold M with boundary, and assume
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that H has integral class. Then there exists a bundle gerbe G over M with
curv(G) = H. By Theorem 1.5.4 we have expressed the integral of H over M
by the holonomy of G around the boundary ∂M ,

exp

(

2πi
∫

M

H

)

= HolG(∂M).

The original Stokes’s Theorem in contrast can only be applied to exact forms.
In particular, the above theorem can not be proven by Stokes’s Theorem
alone, as claimed in various proofs one finds in the literature.

1.6 Application: Sigma Models with Wess-Zumino Term

Let us first summarize Witten’s original definition of the Wess-Zumino term
from [Wit84] and put it in a more general context. We consider a 2-connected
smooth manifold M , i.e. M is connected, simply-connected, and π2(M) = 0,
and a closed 3-form H ∈ Ω3(M) with integral class. Now let Σ be a connected,
oriented closed surface, and let φ : Σ → M be a smooth map. Since Σ is
two-dimensional and oriented, all its Stiefel-Whitney classes vanish, hence, by
Thom’s Theorem [Bre93] it is the boundary of a three-dimensional manifold
B. Because M is 2-connected, there exists an extension of φ to B, i.e. a smooth
map Φ : B → M such that Φ|Σ = φ. According to Witten, the Wess-Zumino
term is given by

SWZ
H (Φ,B) =

∫

B

Φ∗H.

Witten argues that, given other choices B′ and Φ′, one can glue B and B′

along its common boundary Σ to a closed three-dimensional manifold B̃, on
which a map Φ̃ : B̃ → M is defined componentwise by Φ and Φ′. Then, the
difference between the Wess-Zumino terms SWZ

H (Φ,B) and SWZ
H (Φ′, B′) is the

integral of H over B̃, that is, by the integrality condition on H, an integer.
This way, the Wess-Zumino term is well-defined up to integers.

Now let G be a bundle gerbe over M with curvature H. Such a bundle
gerbe always exists by Corollary 1.3.10. Then, by Theorem 1.5.4,

HolG(φ,Σ) = exp
(
2πiSWZ

H (Φ,B)
)
.

This is the basic relation between the Wess-Zumino term and bundle gerbes,
first discovered in [Gaw88]. It is fundamental for all applications of the theory
of bundle gerbes to sigma models we discuss in this thesis.

Notice two important advantages of the holonomy term on the left hand
side, compared to the Wess-Zumino term on the right hand side:

1.) it makes it unnecessary to choose three-dimensional manifolds and exten-
sions.
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2.) it is unambiguously defined for manifolds M with arbitrary topology.

Summarizing, we can give the following definition of a sigma model with
Wess-Zumino term.

Definition 1.6.1. A sigma model for oriented worldsheets is a smooth Rie-
mannian manifold (M, g) together with a bundle gerbe G. The Feynman am-
plitude of a smooth map φ : Σ →M , where Σ is a closed, oriented conformal
surface, is the complex number

Ag,G(φ,Σ) := exp
(
2πiSkin

g (φ,Σ)
)
∙ AWZ

G (φ,Σ) ∈ U(1),

whose two constituents are given by

Skin
g (φ,Σ) :=

1
2

∫

Σ

g(dφ ∧ ?dφ) and AWZ
G (φ,Σ) := HolG(φ,Σ).

To introduce some terminology from physics, we call the manifold M of a
sigma model the target space, and the metric g and the bundle gerbe G the
B-fields. Skin

g (φ,Σ) is called the kinetic term, and the curvature

H := curv(G) ∈ Ω3(M)

of the bundle gerbe G is called the field strength.
To classify sigma models, we consider two sigma models with the same

target space M and bundle gerbes G1 and G2 to be gauge equivalent , if there
exists a stable isomorphism G1 → G2. In this context, we call such a stable
isomorphism a gauge transformation. Before we come to the advantages of
the definition of the Wess-Zumino term via surface holonomy on a general
manifold, let us rediscover Witten’s situation.

Definition 1.6.2. A sigma model is called topologically trivial, if its target
space is 2-connected.

We obtain the following classification of topologically trivial sigma models.

Proposition 1.6.3. Gauge equivalence classes of topologically trivial sigma
models are in bijection with triples (M, g,H) of a 2-connected Riemannian
manifold (M, g) and a closed 3-form H ∈ Ω3(M) with integral class.

Proof. By Hurewicz’s Theorem [BT82] for the simply-connected manifold
M , the vanishing of π2(M) implies H2(M,U(1)) = 0. By Corollary 1.3.10,
there exists a bundle gerbe G with curvature H. Furthermore, the set of
stable isomorphism classes of bundle gerbes over M having this curvature
are a torsor over the trivial group H2(M,U(1)). So, G is unique up to stable
isomorphism. �
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Remark 1.6.4. For topologically trivial sigma models the B-field is, apart from
the metric, a closed 3-form with integral class. Only if this class vanishes, the
B-field may be viewed as a globally defined 2-form B ∈ Ω2(M) with dB = H.
Then, each two such 2-forms which differ by a closed 2-form define gauge
equivalent sigma models.

For general sigma models, we have the following trivial, but important
claim.

Theorem 1.6.5. Gauge equivalence classes of sigma models for oriented
worldsheets with target space M are in bijection with the Deligne cohomol-
ogy group H2(M,D(2)).

As we have indicated in the introduction, there are several motivations
to consider sigma models whose target space is a Lie group G. A purely
mathematical motivation the fact that there is a canonical family of topolog-
ically trivial sigma models. This comes from Theorem 1.4.1 saying that every
compact, simple, simply-connected Lie group G is automatically 2-connected,
and Lemma 1.4.2, that equips us with a canonical family of closed 3-forms
kη ∈ Ω3(G), k ∈ Z, with integral class. This was exactly the setup Witten
considered [Wit84]. At least for G = SU(n) and G = Sp(n), we have con-
structed bundle gerbes associated to these topologically trivial sigma models
with field strength H = kη in §1.4. These constructions realize the bijection
of Proposition 1.6.3.

Now we come to general Lie groups, and capture the important properties
of topologically trivial sigma models as follows.

Definition 1.6.6. A Wess-Zumino-Witten model for oriented worldsheets is
a sigma model for oriented worldsheets, whose target space is a Lie group G,
whose metric g is given by a symmetric Ad-invariant bilinear form 〈−,−〉,
and whose bundle gerbe G has the curvature

curv(G) =
1
6
〈θ ∧ [θ ∧ θ]〉 .

If the Lie group G is compact and simple we can compare the pullback of
the 3-form curv(G) to the simply-connected cover G̃ with the canonical 3-form
η we have on G̃. Their ratio is an integer k ∈ Z, which is called the level of
the Wess-Zumino-Witten model.

It is an interesting question to classify Wess-Zumino-Witten models with
a fixed level k on a compact simple Lie group G. One the one hand, there may
be obstructions on the level; the Lie group SO(3) for instance requires k to be
even. This comes from the fact that the class of the 3-form on SO(3) whose
pullback to its simply-connected cover SU(2) is kη for k odd, is not integral.
On the other hand, there may be several non-equivalent Wess-Zumino-Witten
models with the same level, due to the fact that there exist non-isomorphic
bundle gerbes with the same curvature; this occurs for instance on the Lie
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group SO(4n)/Z2. A complete classification of Wess-Zumino-Witten models
on compact simple Lie groups has been derived in [GR03]. In §5.4 we recall
some aspects of these derivations and give a complete list of Wess-Zumino-
Witten models on compact simple Lie groups, see Table 5.1 on page 143.

The physical motivation to consider sigma models whose target space is
a Lie group is Witten’s claim that that topologically trivial Wess-Zumino-
Witten models lead to conformal (quantum) field theories [Wit84]. Later, it
was argued in [GR02] that the curvature constraint from Definition 1.6.6 has
to be imposed in the general case.

While the topologically trivial Wess-Zumino-Witten models are classified
by their level k ∈ Z, in general there may be non-stably isomorphic bundle ger-
bes having the same curvature, yielding non-gauge equivalent Wess-Zumino-
Witten models with the same level. This is for example the case for the Lie
group G = SO(n)/Z2, which hosts two non-stably isomorphic bundle gerbes
for each level k ∈ Z, see also §5.4. Here, the theory of bundle gerbes explains
precisely the well-established fact that to such a group two different conformal
field theories can be associated that differ by

”
discrete torsion“. We explain

in §5.4 that discrete torsion is nothing but the choice of different equivariant
structures on a bundle gerbe.

Witten already observed two symmetries of the action functional of a topo-
logically trivial Wess-Zumino-Witten model,

SWZW
g,H (φ,Σ) := Skin

g (φ,Σ) + SWZ
H (Φ,B)

for some fixed choice of B and Φ as explained above. The first is translation
symmetry: the action functional is invariant under the translations φ 7→ lh ◦φ
and φ 7→ rh ◦ φ, where lh, rh : G→ G denote the left and right multiplication
by a group element h ∈ G; explicitly

SWZW
g,H (φ,Σ) = SWZW

g,H (lh ◦ φ,Σ) = SWZW
g,H (rh ◦ φ,Σ).

The associated conserved Noether currents are given by

Jl(φ,Σ) := −(1 + ?)φ∗θ and Jr(φ,Σ) := (1 − ?)φ∗θ̄,

where θ̄ is the right invariant Maurer-Cartan form. The currents are closed
1-forms on Σ with values in the Lie algebra of G. They are also called left and
right mover , due to their origin from left and right translation symmetry. To
obtain these conserved currents, Witten derived a specific relative normaliza-
tion of the kinetic and the Wess-Zumino term, which we have also adapted
here implicitly.

The second symmetry Witten observed is the invariance of the action func-
tional under a parity transformation: a flip of the orientation on Σ combined
with an inversion on the group,

SWZW
g,H (φ,Σ) = SWZW

g,H (Inv ◦ φ, Σ̄),
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where Σ̄ denotes the surface Σ with the reversed orientation, and Inv : G→ G
is the inversion g 7→ g−1. Amazingly, parity transformation exchanges the two
conserved Noether currents of the translation symmetry:

Jl(Inv ◦ φ, Σ̄) = Jr(φ,Σ).

In other words, a parity transformation exchanges left and right movers.

It would be desirable to generalize both symmetries to topologically non-
trivial Wess-Zumino-Witten models. A generalization of the translation sym-
metry would require G-bi-equivariant bundle gerbes, and the derivation of the
conserved Noether currents would require a variational calculus for oriented
surface holonomy of a bundle gerbe, which has not yet been studied.

For the purposes of this thesis, we restrict ourselves to a generalization of
parity symmetry. First we consider a general Lie group G. It is a simple con-
sequence of the properties of oriented surface holonomy of G from Proposition
1.5.3, that the parity symmetry

Ag,G(φ,Σ) = Ag,G(Inv ◦ φ, Σ̄) (1 – 14)

holds, if and only if the bundle gerbes Inv∗G and G∗ are stably isomorphic.
Note that in general this is a constraint on the possible bundle gerbes G,
in contrast to topologically trivial Wess-Zumino-Witten models, where no
condition is present:

Lemma 1.6.7. If G is the bundle gerbe of a topologically trivial Wess-Zumino-
Witten model, the bundle gerbes Inv∗G and G∗ are stably isomorphic.

Proof. The curvature of G is fixed by Definition 1.6.6 to a 3-form H which
evidently satisfies Inv∗H = −H. So, Inv∗G and G∗ have the same curvature,
and since G is 2-connected, they have to by stably isomorphic. �

We now give an even more general definition of parity symmetry, which
also applies to sigma models with arbitrary target spaces.

Definition 1.6.8. A parity transformation of a Riemannian manifold M with
a bundle gerbe G is an involutive isometry k : M → M , such that the bundle
gerbes k∗G and G∗ are stably isomorphic.

It is clear that if k : M →M is a parity transformation of a sigma model
(M, g,G), the parity symmetry

Ag,G(φ,Σ) = Ag,G(k ◦ φ, Σ̄)

holds, generalizing (1 – 14). So it is clear that Inv : G→ G is a parity transfor-
mation of a topologically trivial Wess-Zumino-Witten model. However, there
are more parity transformations. Since the curvature of the bundle gerbe does
not only satisfy Inv∗H = −H, but is also bi-invariant, by the same argument
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as given in the proof of Lemma 1.6.7, the bundle gerbes G, l∗hG and r∗hG are
stably isomorphic for any group element h ∈ G. This motivates the ansatz
k(g) := hl ∙ g−1 ∙ hr for a more general parity transformation, and it is easy
to check that the condition that k is involutive, i.e. k2 = idG, implies either
hl = hr or that both hr and hl are in the center of G. In the latter case, we
have parity transformations

k : G→ G : g 7→ z ∙ g−1

for every element z in the center of G.
The observations about the parity symmetry of Wess-Zumino-Witten mod-

els and more general parity transformations will be fundamental for the dis-
cussion of sigma models for unoriented worldsheets we give in Chapter 4.



Chapter 2

Bundle Gerbes as a 2-Category

In the previous chapter we have introduced bundle gerbes and discussed their
structure just as much as it was necessary to define oriented surface holonomy.
For the purposes of the following chapters, namely to extend this notion of
holonomy to more general types of surfaces, it will be essential to gain a deeper
understanding of the structure bundle gerbes have.

From several perspectives it becomes clear that bundle gerbes are objects
in a 2-category: from a bird’s-eye, because gerbes appear as categorified line
bundles, and from a worm’s-eye view on the definitions of bundle gerbes and
stable isomorphisms, which has already lead us in §1.3 to the observation
that there are morphisms between stable isomorphisms. We present a new
definition of this 2-category of bundle gerbes, and derive various new and im-
portant results concerning its properties. We also introduce several additional
structures, that will be used frequently in the following chapters.

2.1 Morphisms between Bundle Gerbes revisited

In [Ste00] a 2-groupoid is defined, whose objects are bundle gerbes, and whose
1-morphisms are stable isomorphisms as we have defined them in Chapter 1.
We recall that bundle gerbes have surjective submersions π : Y → M , and
that a stable isomorphism A : G1 → G2 between two bundle gerbes G1 and
G2 with surjective submersions π1 : Y1 → M and π2 : Y → M consists
of a certain line bundle A over the fibre product Y1 ×M Y2. 2-isomorphisms
between stable isomorphisms are isomorphisms β : A → A′ of those line
bundles, obeying a compatibility constraint. We have already mentioned that
the composition of two stable isomorphisms A : G1 → G2 and A′ : G2 → G3,
and hence the transitivity of the equivalence relation

”
stably isomorphic“, is

an involved issue: one has to define a line bundle Ã over Y1 ×M Y3 using the
line bundles A over Y1 ×M Y2 and A′ over Y2 ×M Y3. In [Ste00] this problem
is solved using descent theory for line bundles.
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Here we describe a new method how to circumvent this descent theory,
and how to add non-invertible morphisms at the same time; those play an
important role in Chapter 3. We achieve this by introducing a generalized
definition of stable isomorphisms, that we just call 1-morphism.

We recall that according to Remark 1.1.1 we use the convention that line
bundles are always hermitian line bundles with unitary connections. Now we
extend this convention to vector bundles of higher rank: a vector bundle is
a hermitian vector bundle with unitary connection, and morphisms between
vector bundles are supposed to preserve the hermitian structure and the con-
nection. The curvature of a vector bundle A over a smooth manifold M is a
2-form with values in the associated adjoint bundle, and we identify its trace
with an ordinary 2-form tr(curv(A)) ∈ Ω2(M).

Definition 2.1.1. A 1-morphism A : G1 → G2 between bundle gerbes G1 and
G2 over M consists of a surjective submersion ζ : Z → Y1 ×M Y2, a vector
bundle A over Z and an isomorphism

α : L1 ⊗ ζ∗2A→ ζ∗1A⊗ L2 (2 – 1)

of vector bundles over Z ×M Z. This structure has to satisfy two axioms:

(1M1) The curvature of A obeys

1
n

tr(curv(A)) = C2 − C1,

where n is the rank of the vector bundle A.
(1M2) The isomorphism α is compatible with the multiplication μ1 and μ2 of

the gerbes G1 and G2 in the sense that the diagram

ζ∗12L1 ⊗ ζ∗23L1 ⊗ ζ∗3A
μ1⊗id

id⊗ζ∗
23α

ζ∗13L1 ⊗ ζ∗3A

ζ∗
13αζ∗12L1 ⊗ ζ∗2A⊗ ζ∗23L2

ζ∗
12α⊗id

ζ∗1A⊗ ζ∗12L2 ⊗ ζ∗23L2
id⊗μ2

ζ∗1A⊗ ζ∗13L2

of isomorphisms of vector bundles over Z×M Z×M Z is commutative.

Additionally to the conventions concerning connections on vector bundles
we just have used the simplifying convention, that we do not introduce no-
tation for canonical projections such as Z → Y1 and Z → Y2 in the above
definition; accordingly we do not write pullbacks along these maps. With this
convention, the line bundles Li in (2 – 1) are pulled back along the canonical
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projections Z [2] → Y
[2]
i for i = 1, 2. Axiom (1M1) is an equation of 2-forms on

Z, where the curvings are pulled back along the canonical projections Z → Y1

and Z → Y2.
Notice that the stable isomorphisms from Definition 1.2.1 are particu-

lar examples of 1-morphisms, so that we really have generalized this defini-
tion. The generalization concerns two points: first, we admit vector bundles of
higher rank than 1, and not just line bundles. They give rise to non-invertible
1-morphisms as to be discussed in §2.3. Second, these vector bundles are de-
fined on the total space Z of a surjective submersion over the fibre product
P := Y1 ×M Y2 rather than on P itself. This generalization is to remove the
difficulties with the composition of 1-morphisms, as we will see in §2.2.

Due to the generalization from stable isomorphisms to 1-morphisms, we
have to give a new definition of 2-morphisms, which generalizes Definition
1.2.2. Let A1 : G1 → G2 and A2 : G1 → G2 be two 1-morphisms, coming with
surjective submersions ζ1 : Z1 → P and ζ2 : Z2 → P , where P := Y1 ×M Y2.
We consider triples

(W,ω, βW ) (2 – 2)

consisting of a smooth manifold W , a surjective submersion ω : W → Z1 ×P

Z2, and a morphism β : A1 → A2 of vector bundles over W . Here we have
according to our conventions suppressed notation for the pullbacks along the
canonical projections W → Z1 and W → Z2. The triples (2 – 2) have to satisfy
one axiom (2M): the morphism β has to be compatible with the isomorphisms
α1 and α2 of the 1-morphisms A1 and A2 in the sense that the diagram

L1 ⊗ ω∗
2A1

α1

1⊗ω∗
2βW

ω∗
1A1 ⊗ L2

ω∗
1βW ⊗1

L1 ⊗ ω∗
2A2 α2

ω∗
1A2 ⊗ L2

of morphisms of vector bundles over W ×M W is commutative. This is the
same condition we have imposed for the 2-isomorphisms in Definition 1.2.2. To
get rid of the unessential choice of the manifold W , we impose an equivalence
relation on the set of all triples (2 – 2) satisfying axiom (2M), according to that
two triples (W,ω, β) and (W ′, ω′, β′) are equivalent, if there exists a smooth
manifold X with surjective submersions to W and W ′ for which the diagram

X

W

ω

W ′

ω′

Z1 ×P Z2

(2 – 3)

of surjective submersions is commutative, and the morphisms β and β′ coin-
cide when pulled back to X.
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Definition 2.1.2. A 2-morphism A1 ⇒ A2 is an equivalence class of triples
(W,ω, β) satisfying axiom (2M).

Now we start to prepare the definition of a 2-category whose objects are
bundle gerbes. As pointed out in the outline of this thesis, a 2-category
has Hom-categories instead of Hom-sets. In our case, the Hom-category
Hom(G1,G2) belonging to two bundle gerbes G1 and G2 has all 1-morphisms
between G1 and G2 as its objects, and all 2-morphisms between those as its
morphisms. In the remainder of this section, we define the identity morphisms
and the composition of 2-morphisms, and show that the usual axioms of a
category are satisfied. For this purpose, we need the following two technical
lemmata.

An important consequence of the existence of the isomorphism μ in the
structure of a bundle gerbe G is that the line bundle L restricted to the image
of the diagonal embedding Δ : Y → Y [2] is canonically trivializable (as a line
bundle with connection):

Lemma 2.1.3. There is a canonical isomorphism tμ : Δ∗L → 11 of line bun-
dles over Y , which satisfies

π∗
1tμ ⊗ id = Δ∗

112μ and id ⊗ π∗
2tμ = Δ∗

122μ

as isomorphisms of line bundles over Y [2], where Δ112 : Y [2] → Y [3] duplicates
the first and Δ122 : Y [2] → Y [3] duplicates the second factor.

Proof. The isomorphism tμ is defined using the canonical pairing with the
dual line bundle L∗ and the multiplication μ:

Δ∗L = Δ∗L⊗Δ∗L⊗Δ∗L∗ Δ∗μ⊗id
Δ∗L⊗Δ∗L∗ = 11

The two claimed equations follow from the associativity axiom (G2) by
pullback along the maps Δ1222 and Δ1112, both going from Y [2] to Y [4] in
the obvious way. �

The following lemma introduces an equally important isomorphism of vec-
tor bundles associated to every 1-morphism.

Lemma 2.1.4. For any 1-morphism A : G1 → G2 there is a canonical iso-
morphism

dA : ζ∗1A→ ζ∗2A

of vector bundles over Z [2] = Z×P Z, where P := Y1×M Y2, with the following
properties:

a) It satisfies the cocycle condition

ζ∗13dA = ζ∗23dA ◦ ζ∗12dA

as an equation of isomorphisms of vector bundles over Z [3].
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b) The diagram

L1 ⊗ ζ∗3A

id⊗ζ∗
34dA

ζ∗
13α

ζ∗1A⊗ L2

ζ∗
12dA⊗id

L1 ⊗ ζ∗4A
ζ∗
24α

ζ∗2A⊗ L2

of isomorphisms of vector bundles over Z [2] ×M Z [2] is commutative.

Proof. Notice that the isomorphism α of A restricted from Z×M Z to Z×P Z
gives an isomorphism

α|Z×P Z : Δ∗L1 ⊗ ζ∗2A→ ζ∗1A⊗Δ∗L2.

By composition with the isomorphisms tμ1 and tμ2 from Lemma 2.1.3 we
obtain the isomorphism dA:

ζ∗1A
id⊗t−1

μ2
ζ∗1A⊗Δ∗L2

α|−1
Z×P Z

Δ∗L1 ⊗ ζ∗2A
tμ1⊗id

ζ∗2A.

The cocycle condition a) and the commutativity of diagram b) follow both
from axiom (1M2) for A and the properties of the isomorphisms tμ1 and tμ2

from Lemma 2.1.3. �

Now we are in the position to define the identity 2-morphism idA : A ⇒ A
associated to every 1-morphism A : G1 → G2. It is defined as the equivalence
class of the triple (Z [2], idZ[2] , dA) consisting of the fibre product Z [2] = Z×PZ
itself, the identity idZ[2] and the isomorphism dA : ζ∗1A → ζ∗2A of vector
bundles over Z [2] from Lemma 2.1.4. Axiom (2M) for this triple is proven
with Lemma 2.1.4 b).

Before we can prove that this 2-morphism is really an identity morphism
in the category Hom(G1,G2), we have to define the composition β′ • β of
two 2-morphisms β : A1 ⇒ A2 and β′ : A2 ⇒ A3. To distinguish it from
the composition of 1-morphisms we define later, the composition rule of the
category Hom(G1,G2) is called vertical composition in agreement with the
diagrammatical notation

G1

A1

A2

A3

G2

β

β′

.
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We choose representatives (W,ω, β) and (W ′, ω′, β′) and consider the fibre
product W̃ := W ×Z2 W

′ with its canonical surjective submersion ω̃ : W̃ →
Z1 ×P Z3, where again P := Y1 ×M Y2. By construction we can compose the
pullbacks of the morphisms β and β′ to W̃ and obtain a morphism

β′ ◦ β : A1 → A3

of vector bundles over W̃ . From axiom (2M) for β and β′ the one for the
triple (W̃ , ω̃, β′ ◦ β) follows. Furthermore, the equivalence class of this triple
is independent of the choices of the representatives of β and β′. So we define
this class to be the composed 2-morphism β′ • β. Clearly, the composition •
of the category Hom(G1,G2) defined like this is associative.

It remains to check that the 2-isomorphism idA : A ⇒ A defined above is
the identity under the composition •. Let β : A ⇒ A′ be a 2-morphism and
(W,ω, β) a representative. The composite β • idA can be represented by the
triple (W ′, ω′, β ◦ dA) with W ′ = Z ×P W , where ω′ : W ′ → Z ×P Z ′ is the
identity on the first factor and the projection W → Z ′ on the second one.
We have to show, that this triple is equivalent to the original representative
(W,ω, β) of β. To see this, consider the fibre product

X := W ×(Z×P Z′) W
′ ∼= W ×Z′ W ,

which satisfies condition (2 – 3). The restriction of the commutative diagram
of morphisms of vector bundles over W ×M W from axiom (2M) for β to X
gives rise to the commutative diagram

ζ∗2A
d−1
A

ω∗
2β

ζ∗1A

ω∗
1β

A′
Δ∗d−1

A′

A′

of morphisms of vector bundles over X, where dA and dA′ are the isomor-
phisms determined by the 1-morphisms A and A′ according to Lemma 2.1.4.
Their cocycle condition from Lemma 2.1.4 a) impliesΔ∗dA′ = idA′ , so that the
last diagram reduces to the equality ω∗

2β ◦ dA = ω∗
1β of isomorphisms of vec-

tor bundles over X. This shows that the triples (W,ω, β) and (W ′, ω′, β ◦ dA)
are equivalent and we have β • idA = β. The equality idA′ • β = β follows
analogously.

Now the definition of the Hom-category Hom(G1,G2) is complete. A mor-
phism in this category, i.e. a 2-morphism β : A ⇒ A′, is invertible if and only
if the morphism β : A→ A′ of vector bundles in any representative (W,ω, β)
of β is invertible. Since – following our convention – morphisms of vector bun-
dles respect the hermitian structures, β is invertible if and only if the ranks
of the vector bundles of the 1-morphisms A and A′ coincide. In this case,
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we also speak of a 2-isomorphism. In the following, we call two 1-morphisms
A : G1 → G2 and A′ : G1 → G2 isomorphic, if there exists a 2-isomorphism
β : A ⇒ A′ between them.

2.2 Composition of Morphisms

The goal of this section is the definition of the composition functor of the
2-category we are going to set up; this is a functor

◦ : Hom(G2,G3) × Hom(G1,G2) → Hom(G1,G3)

between the Hom-categories described in the previous section. Its following
definition on objects (the 1-morphisms) shows immediately that our general-
ized 1-morphisms pay off.

Definition 2.2.1. Let A : G1 → G2 and A′ : G2 → G3 be two 1-morphisms.
The composed 1-morphism

A′ ◦ A : G1 → G3

consists of the fibre product Z̃ := Z ×Y2 Z
′ with its canonical surjective sub-

mersion ζ̃ : Z̃ → Y1 ×M Y3, the vector bundle Ã := A ⊗ A′ over Z̃, and the
isomorphism

α̃ := (idζ∗
1 A ⊗ α′) ◦ (α⊗ idζ′∗

2 A′)

of vector bundles over Z̃ ×M Z̃.

Indeed, this defines a 1-morphism from G1 to G3: we recall that if ∇A

and ∇A′ denote the connections on the vector bundles A and A′, the tensor
product connection ∇ on A⊗A′ is defined by

∇(σ ⊗ σ′) = ∇A(σ) ⊗ σ′ + σ ⊗∇A′(σ′)

for sections σ ∈ Γ (A) and σ′ ∈ Γ (A′). If we take n to be the rank of A and
n′ the rank of A′, the curvature of the tensor product vector bundle is

curv(A⊗A′) = curv(A) ⊗ idn′ + idn ⊗ curv(A′).

Hence its trace

1
nn′

tr(curv(Ã)) =
1
n

tr(curv(A)) +
1
n′

tr(curv(A′))

= C2 − C1 + C3 − C2

= C3 − C1 (2 – 4)

satisfies axiom (1M1). Notice that equation (2 – 4) involves unlabeled projec-
tions from Z̃ to Y1, Y2 and Y3, where the one to Y2 is unique because Z̃ is the
fibre product over Y2. Furthermore, α̃ is an isomorphism



44 Bundle Gerbes as a 2-Category

L1 ⊗ ζ̃∗2 Ã L1 ⊗ ζ∗2A⊗ ζ ′∗2 A
′

α⊗id

ζ∗1A⊗ L2 ⊗ ζ ′∗2 A
′

id⊗α′

ζ∗1A⊗ ζ ′∗1 A
′ ⊗ L3 ζ̃∗1 Ã⊗ L3.

Its axiom (1M2) follows from axioms (1M2) for A and A′.
Notice that even if the two 1-morphisms are stable isomorphisms, the result

will not be a stable isomorphism but only a 1-morphism in the generalized
sense.

Proposition 2.2.2. The composition of 1-morphisms is strictly associative:
for three 1-morphisms A : G1 → G2, A′ : G2 → G3 and A′′ : G3 → G4 we have

(A′′ ◦ A′) ◦ A = A′′ ◦ (A′ ◦ A).

Proof. By definition, both 1-morphism (A′′◦A′)◦A and A′′◦(A′◦A) consist of
the smooth manifoldX = Z×Y2Z

′×Y3Z
′′ with the same surjective submersion

X → Y1 ×M Y4. On X, they have the same vector bundle A ⊗ A′ ⊗ A′′, and
finally the same isomorphism

(id ⊗ id ⊗ α′′) ◦ (id ⊗ α′ ⊗ id) ◦ (α⊗ id ⊗ id)

of vector bundles over X ×M X. �

Remark 2.2.3. The composition of 1-morphisms is only strict because we as-
sumed strict fibre products of surjective submersions and strict tensor prod-
ucts of vector bundles. Without this simplification, there would be a non-
trivial associator composed of the ones of these monoidal categories. However,
the identifications A ◦ idG1

∼= A and idG2 ◦ A ∼= A that we discuss in the next
section, show a different behaviour: the are non-trivial even under the above
strictness assumptions.

Let us continue with the definition of the functor ◦ on morphisms of the
Hom-categories (the 2-morphisms). Let A1,A′

1 : G1 → G2 and A2,A′
2 : G2 →

G3 be 1-morphisms between bundle gerbes. The functor ◦ on morphisms is
called horizontal composition due to the diagrammatical notation

G1

A1

A′
1

β1 G2

A2

A′
2

β2 G3 = G1

A2◦A1

A′
2◦A

′
1

β2◦β1 G3 .
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Recall that the compositions A2 ◦A1 and A′
2 ◦A

′
1 consist of smooth manifolds

Z̃ = Z1 ×Y2 Z2 and Z̃ ′ = Z ′
1 ×Y2 Z

′
2 with surjective submersions to P :=

Y1 ×M Y3, of vector bundles Ã := A1 ⊗A2 over Z̃ and Ã′ := A′
1 ⊗A′

2 over Z̃ ′,
and of isomorphisms α̃ and α̃′ over Z̃ ×M Z̃ and Z̃ ′ ×M Z̃ ′.

To define the composed 2-morphism β2 ◦ β1, we first need a surjective
submersion

ω : W → Z̃ ×P Z̃ ′.

We choose representatives (W1, ω1, β1) and (W2, ω2, β2) of the 2-morphisms
β1 and β2 and define

W := Z̃ ×P (W1 ×Y2 W2) ×P Z̃ ′ (2 – 5)

with the surjective submersion ω := z̃× z̃′ projecting on the first and the last
factor. Then, we need a morphism β : z̃∗Ã→ z̃′∗Ã′ of vector bundles over W .
Notice that we have maps

u : W1 ×Y2 W2 → Z̃ and u′ : W1 ×Y2 W2 → Z̃ ′

such that we obtain surjective submersions

z̃ × u : W → Z̃ [2] and u′ × z̃′ : W → Z̃ ′[2].

Recall from Lemma 2.1.4 that the 1-morphisms A2 ◦ A1 and A′
2 ◦ A′

1 define
isomorphisms dA2◦A1 and dA′

2◦A
′
1

of vector bundles over Z̃ [2] and Z̃ ′[2], whose
pullbacks to W along the above maps are isomorphisms

dA2◦A1 : z̃∗Ã→ u∗Ã and dA′
2◦A

′
1

: u′∗Ã′ → z̃′∗Ã′

of vector bundles over W . Finally, the morphisms β1 and β2 give a morphism

β̃ := β1 ⊗ β2 : u∗Ã→ u′∗Ã′

of vector bundles over W so that the composition

β := dA′
2◦A

′
1
◦ β̃ ◦ dA2◦A1 (2 – 6)

is a well-defined morphism of vector bundles overW . Axiom (2M) for the triple
(W,ω, β) follows from Lemma 2.1.4 b) for A2 ◦ A1 and A′

2 ◦ A
′
1 and from the

axioms (2M) for the representatives of β1 and β2. Furthermore, the equivalence
class of (W,ω, β) is independent of the choices of the representatives of β1 and
β2.

Lemma 2.2.4. The assignment ◦ defined above on objects and morphisms, is
a functor

◦ : Hom(G2,G3) × Hom(G1,G2) → Hom(G1,G3).
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Proof. i) The assignment ◦ respects identities, i.e. for 1-morphisms A1 : G1 →
G2 and A2 : G2 → G3,

idA2 ◦ idA1 = idA2◦A1 .

To show this we choose the defining representatives (W1, id, dα1) of idA1 and
(W2, id, dα2) of idA2 , where W1 = Z1×(Y1×M Y2)Z1 and W2 = Z2×(Y2×M Y3)Z2.
Consider the diffeomorphism

f : W1 ×Y2 W2 → Z̃ ×Y1×M Y2×M Y3 Z̃ : (z1, z
′
1, z2, z

′
2) 7→ (z1, z2, z

′
1, z

′
2),

where Z̃ = Z1 ×Y2 Z2. From the definitions of the isomorphisms dA1 , dA2

and dA2◦A2 we conclude the equation dA1 ⊗dA2 = f∗dA2◦A1 of isomorphisms
of vector bundles over W1 ×Y2 W2. The horizontal composition idA2 ◦ idA1 is
canonically represented by the triple (W,ω, βW ) where W is defined in (2 –
5) and βW is defined in (2 – 6). Now, the diffeomorphism f extends to an
embedding f : W → Z̃ [4] into the four-fold fibre product of Z̃ over P =
Y1 ×M Y3, such that ω : W → Z̃ [2] factorizes over f ,

ω = ζ̃14 ◦ f . (2 – 7)

From the definitions we obtain

βW = dA2◦A1 ◦ (dA1 ⊗ dA2) ◦ dA2◦A1

= f∗(ζ̃∗34dA2◦A1 ◦ ζ̃
∗
23dA2◦A1 ◦ ζ̃

∗
12dA2◦A1).

The cocycle condition for dA2◦A1 from Lemma 2.1.4 a) and (2 – 7) together
give

βW = f∗ζ̃∗14dA2◦A1 = ω∗dA2◦A1 . (2 – 8)

We had to show that the triple (W,ω, βW ) which represents idA2◦idA2 is equiv-
alent to the triple (Z̃ [2], id, dA2◦A1) which defines the identity 2-morphism
idA2◦A1 . For the choice X := W with surjective submersions id : X →W and
ω : X → Z̃ [2], equation (2 – 8) shows exactly this equivalence.

ii) The assignment ◦ respects the composition •, i.e. for 2-morphisms βi :
Ai ⇒ A′

i and β′
i : A′

i ⇒ A′′
i between 1-morphisms Ai, A′

i and A′′
i from Gi to

Gi+1, everything for i = 1, 2, we have an equality

(β′
2 • β2) ◦ (β′

1 • β1) = (β′
2 ◦ β

′
1) • (β2 ◦ β1) (2 – 9)

of 2-morphisms from A2 ◦ A1 to A′′
2 ◦ A′′

1 . This equality is also known as the
compatibility of vertical and horizontal compositions. To prove it, let us intro-
duce the notation Z̃ := Z1 ×Y2 Z2, and analogously Z̃ ′ and Z̃ ′′, furthermore
we write P := Y1 ×M Y3. Notice that the 2-morphism on the left hand side of
(2 – 9) is represented by a triple (V, ν, βV ) with

V = Z̃ ×P (W̃1 ×Y2 W̃2) ×P Z̃ ′′,
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where the fibre products W̃i := Wi×Z′
i
W ′

i arise from the vertical compositions

β′
i • βi. The surjective submersion ν : V → Z̃ ×P Z̃ ′′ is the projection on the

first and the last factor, and

βV = dA′′
2 ◦A

′′
1
◦ ((β′

1 ◦ β1) ⊗ (β′
2 ◦ β2)) ◦ dA2◦A1

is a morphism of vector bundles over V . The 2-morphism on the right hand
side of (2 – 9) is represented by the triple (V ′, ν′, βV ′) with

V ′ = (Z̃ ×P (W1 ×Y2 W2) ×P Z̃ ′) ×Z̃′ (Z̃ ′ ×P (W ′
1 ×Y2 W

′
2) ×P Z̃ ′′)

∼= Z̃ ×P (W1 ×Y2 W2) ×P Z̃ ′ ×P (W ′
1 ×Y2 W

′
2) ×P Z̃ ′′,

where ν′ is again the projection on the outer factors, and

βV ′ = dA′′
2 ◦A

′′
1
◦ (β′

1 ⊗ β′
2) ◦ dA′

2◦A
′
1
◦ (β1 ⊗ β2) ◦ dA2◦A1 ,

where we have used the cocycle condition for dA′
2◦A

′
1

from Lemma 2.1.4 b).
We have to show that the triples (V, ν, βV ) and (V ′, ν′, βV ′) are equivalent.

Consider the fibre product

X := V ×Z̃×P Z̃′′ V
′

with surjective submersions v : X → V and v′ : X → V ′. To show the
equivalence of the two triples, we have to prove the equality

v∗βV = v′∗βV ′ .

It is equivalent to the commutativity of the outer shape of the following dia-
gram of isomorphisms of vector bundles over X:

A1 ⊗A2
dA2◦A1 dA2◦A1

v∗(A1 ⊗A2) dA2◦A1

β1⊗β2

v′∗(A1 ⊗A2)

β1⊗β2

v′∗(A′
1 ⊗A′

2)

dA′
2◦A′

1v∗(A′
1 ⊗A′

2)

β′
1⊗β′

2

dA′
2◦A′

1

dA′
2◦A′

1

v′∗(A′
1 ⊗A′

2)

β′
1⊗β′

2

v∗(A′′
1 ⊗A′′

2) dA′′
2 ◦A′′

1

dA′′
2 ◦A′′

1

v′∗(A′′
1 ⊗A′′

2)

dA′′
2 ◦A′′

1
A′′

1 ⊗A′′
2
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The commutativity of the outer shape of this diagram follows from the
commutativity of its five subdiagrams: the triangular ones are commutative
due to the cocycle condition from Lemma 2.1.4 a), and the commutativity of
the foursquare ones follows from axiom (2M) of the 2-morphisms. �

We have now completed the definition of the composition functor, whereby
we now have important ingredients of a 2-category at hand: the objects, the
Hom-categories and the composition functor.

2.3 The 2-Category of Bundle Gerbes

We do not introduce the general definition of a 2-category, but only summarize
the structure and axioms of the 2-category BGrb(M) of bundle gerbes over a
smooth manifold M : it consists of

1. A class of objects – bundle gerbes over M .
2. A Hom-category Hom(G,H) for each pair G, H of bundle gerbes, whose

objects are called 1-morphisms and whose morphisms are called 2-
morphisms.

3. A composition functor

◦ : Hom(H,K) × Hom(G,H) → Hom(G,K)

for each triple G,H,K of bundle gerbes.
4. An identity 1-morphism idG : G → G for each bundle gerbe G together

with natural 2-isomorphisms

ρA : idH ◦ A =⇒ A and λA : A ◦ idG =⇒ A

associated to every 1-morphism A : G → H.

This structure has to satisfy the axioms of a strictly associative 2-category:

(2C1) For three 1-morphisms A : G1 → G2, A′ : G2 → G3 and A′′ : G3 → G4,
the composition functor satisfies

A′′ ◦ (A′ ◦ A) = (A′′ ◦ A′) ◦ A.

(2C2) For 1-morphisms A : G1 → G2 and A′ : G2 → G3, the 2-isomorphisms
λA and ρA satisfy the equality

idA′ ◦ ρA = λA′ ◦ idA

as 2-morphisms from A′ ◦ idG2 ◦ A to A′ ◦ A.

We collect from §1.1 the definition of a bundle gerbe, from §2.1 the defini-
tion of the Hom-category Hom(G,H) and from §2.2 the one of the composition
functor. Furthermore, we have already shown that axiom (2C1) is satisfied.
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To finish the definition of the 2-category BGrb(M) we have to define the
natural 2-isomorphisms λA : A◦ idG ⇒ A and ρA : idG′ ◦A ⇒ A for a given 1-
morphism A : G → G′, and we have to show that they satisfy axiom (2C2). We
define the 2-morphism λA as follows: the 1-morphism A◦idG has the canonical
surjective submersion from Z̃ = Y [2] ×Y Z ∼= Y ×M Z to P := Y ×M Y ′ and
the vector bundle L⊗A over Z̃. Consider

W := Z̃ ×P Z ∼= Z ×Y ′ Z

and the identity ω := idW . Under the latter identification, let us consider
the restriction of the isomorphism α of the 1-morphism A from Z ×M Z to
W = Z ×Y ′ Z. If s : W → W denotes the exchange of the two factors, we
obtain an isomorphism

s∗α|W : L⊗ ζ∗1A→ ζ∗2A⊗Δ∗L′

of vector bundles over W . By composition with the canonical trivialization of
the line bundle Δ∗L′ from Lemma 2.1.3 it gives an isomorphism

λW := (id ⊗ tμ′) ◦ s∗α|W : L⊗ ζ∗1A→ ζ∗2A

of vector bundles over W . The axiom (2M) for the triple (W,ω, λW ) follows
from axiom (1M2) for the 1-morphism A and from the properties of tμ′ from
Lemma 2.1.3. So, λA is defined to be the equivalence class of this triple.

The definition of ρA goes analogously: we take W = Z ×Y Z and obtain
by restriction the isomorphism

α|W : Δ∗L⊗ ζ∗2A→ ζ∗1A⊗ L′.

Then, the 2-isomorphism ρA is defined by the triple (W,ω, ρW ) with the iso-
morphism

ρW := (tμ ⊗ id) ◦ α|−1
W : ζ∗1A⊗ L′ → ζ∗2A

of vector bundles over W .

Lemma 2.3.1. The 2-isomorphisms λA and ρA are natural in A, i.e. for any
2-morphism β : A ⇒ A′ the naturality squares

idG′ ◦ A

ididG′ ◦β

ρA
A

β

idG′ ◦ A′
ρA′ A′

and

A ◦ idG

β◦ididG

λA
A

β

A′ ◦ idG
λA′

A′

are commutative. In terms of equations, the commutativity of these diagrams
is equivalent to

β • ρA = ρA′ • (ididG′ ◦ β) and β • λA = λA′ • (β ◦ ididG ).
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Proof. To calculate for instance the horizontal composition ididG′ ◦ β in the
diagram on the left hand side first note that ididG′ is canonically represented
by the triple (Y ′[2], id, idL). The isomorphism

didG′◦A : ζ̃∗1 (A⊗ L′) → ζ̃∗2 (A⊗ L′),

which appears in the definition of the horizontal composition, is an isomor-
phism of vector bundles over Z̃×Y ×M Y ′ Z̃, where ζ̃ : Z̃ := Z×MY ′ → Y ×MY ′

is the surjective submersion of the composite idG′ ◦ A. Here it simplifies to

didG′◦A = (tμ ⊗ id ⊗ id) ◦ (α−1 ⊗ id) ◦ (1 ⊗ ζ̃∗1μ
′−1).

With these simplifications and with axiom (1M2) for A and A′, the naturality
squares reduce to the compatibility axiom (2M) of β with the isomorphisms
α and α′ of A and A′ respectively. �

It remains to show that the isomorphisms λA and ρA satisfy axiom (2C2)
of a 2-category.

Proposition 2.3.2. For 1-morphisms A : G1 → G2 and A′ : G2 → G3, the
2-isomorphisms λA and ρA satisfy

idA′ ◦ ρA = λA′ ◦ idA.

Proof. The equation to prove is an equation of 2-morphisms from A′◦idG2 ◦A
to A′ ◦ A. The first 1-morphism consists of the surjective submersion Z̃ :=
Z×M Z ′ → P13, where we define Pij := Yi×M Yj , further of the vector bundle
A⊗L2 ⊗A′ over Z̃. The second 1-morphism A′ ◦ A consists of the surjective
submersion Z̃ ′ := Z ×Y2 Z

′ → P13 and the vector bundle A ⊗ A′ over Z̃ ′.
Let us choose the defining representatives for the involved 2-morphisms: we
choose (Z ′[2], id, dA′) for idA′ , with W := Z ×Y1 Z we choose (W, id, ρW ) for
ρA, with W ′ := Z ′ ×Y3 Z

′ we choose (W ′, id, λW ′) for λA′ , and we choose
(Z [2], id, dA′) for idA.

Now, the horizontal composition idA′ ◦ρA is defined by the triple (V, ν, βV )
with

V = Z̃ ×P13 (W ×Y2 Z
′[2]) ×P13 Z̃

′,

the projection ν : V → Z̃ ×P13 Z̃
′ on the first and the last factor, and the

isomorphism
βV = dA′◦A ◦ (ρW ⊗ dA′) ◦ dA′◦id◦A

of vector bundles over V . The horizontal composition λA′ ◦ idA is defined by
the triple (V ′, ν′, βV ′) with

V ′ = Z̃ ×P13 (Z [2] ×Y2 W
′) ×P13 Z̃

′,

again the projection ν′ on the first and the last factor, and the isomorphism
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βV ′ = dA′◦A ◦ (dA ⊗ λW ′) ◦ dA′◦id◦A

of vector bundles over V .
To prove the proposition, we show that the triples (V, ν, βV ) and

(V ′, ν′, βV ′) are equivalent. Consider the fibre product

X := V ×(Z̃×P13 Z̃′) V
′

with surjective submersions v : X → V and v′ : X → V ′. The equivalence of
the two triples follows from the equation

v∗βV = v′∗β′

of isomorphisms of vector bundles over X. It is equivalent to the commuta-
tivity of the outer shape of the following diagram of isomorphisms of vector
bundles over X:

A⊗ L2 ⊗A′

dA′◦id◦A dA′◦id◦A

v∗(A⊗ L2 ⊗A′)

ρW ⊗dA′

dA′◦id◦A v′∗(A⊗ L2 ⊗A′)

dA⊗λW ′

v∗(A⊗A′)

dA′◦A

dA′◦A v′∗(A⊗A′)

dA′◦A

A⊗A′

The diagram is patched together from three subdiagrams, and the com-
mutativity of the outer shape follows because the three subdiagrams are
commutative: the triangle diagrams are commutative due to the cocycle
condition from Lemma 2.1.4 b) for the 1-morphisms A′ ◦ idG2 ◦ A and A′ ◦ A
respectively. The commutativity of the rectangular diagram in the middle
follows from Lemma 2.1.3 and from axioms (1M2) for A and A′. �

Now we have finished the definition of the 2-category BGrb(M) of bun-
dle gerbes over M . It provides us with a precise framework to work in. For
example, we may now address the question, which of the 1-morphisms are
invertible.
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Definition 2.3.3. In a (strictly associative) 2-category, a 1-morphism A :
G1 → G2 is called invertible or 1-isomorphism, if there exists a 1-morphism
A−1 : G2 → G1 in the opposite direction, together with 2-isomorphisms

il : A−1 ◦ A ⇒ idG1 and ir : idG2 ⇒ A ◦A−1

such that the diagrams

A−1 ◦ A ◦ A−1

idA◦ir

il◦idA−1

idG1 ◦ A
−1

ρA−1

A−1 ◦ idG2 λA−1
A

and

A ◦ A−1 ◦ A

ir◦idA

idA◦il A ◦ idG1

λA

idG2 ◦ A ρA
A

of 2-isomorphisms are commutative.

One can easily show that the inverse 1-isomorphism A−1 is unique up
to a 2-isomorphism, and that the composition of 1-isomorphisms is again a
1-isomorphism. Also notice that if β : A ⇒ A′ is a 2-morphism between
invertible 1-morphisms we can form a 2-morphism β# : A′−1 ⇒ A−1 using the
2-isomorphisms ir for A−1 and il for A′−1. Then, the commutative diagrams
in Definition 2.3.3 induce the equation id#

A = idA−1 .

Proposition 2.3.4. A 1-morphism A : G1 → G2 in BGrb(M) is invertible if
and only if the vector bundle of A is of rank 1.

Proof. Suppose that A is invertible, and let n be the rank of its vector
bundle. Let A−1 be an inverse 1-morphism with a vector bundle of rank
m. By definition, the composed 1-morphisms A ◦ A−1 and A−1 ◦ A have
vector bundles of rank nm, which has – to admit the existence of the
2-isomorphisms il and ir – to coincide with the rank of the vector bundle
of the identity 1-morphisms idG1 and idG2 respectively, which is 1. So
n = m = 1. The other inclusion is shown below by an explicit construction of
an inverse 1-morphism A−1 to a 1-morphism A with vector bundle of rank 1. �

Let a 1-morphism A : G1 → G2 consist of a surjective submersion ζ : Z →
Y1×M Y2, of a vector bundle A over Z and of an isomorphism α of line bundles
over Z×M Z. We construct a 1-morphism A−1 : G2 → G1: it has the surjective
submersion Z → Y1 ×M Y2 → Y2 ×M Y1, where the first map is ζ and the
second one exchanges the factors, the dual vector bundle A∗ over Z and the
isomorphism
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L2 ⊗ ζ∗2A
∗ ζ∗1A

∗ ⊗ ζ∗1A⊗ L2 ⊗ ζ∗2A
∗

id⊗α−1⊗id

ζ∗1A
∗ ⊗ L1 ⊗ ζ∗2A⊗ ζ∗2A

∗ ζ∗1A
∗ ⊗ L1.

Axiom (1M1) for the 1-morphism A−1 is satisfied because A∗ has the negative
curvature, and axiom (1M2) follows from the one for A.

To construct the 2-isomorphism il : A−1 ◦ A ⇒ idG1 notice that the 1-
morphism A−1 ◦A consists of the line bundle ζ∗1A⊗ ζ∗2A

∗ over Z̃ = Z ×Y2 Z.
We identify Z̃ ∼= Z̃×P Y

[2]
1 , where P = Y

[2]
1 , which allows us to choose a triple

(Z̃, idZ̃ , βZ̃) defining il. In this triple, the isomorphism βZ̃ is defined to be the
composition

ζ∗1A⊗ ζ∗2A
∗

id⊗t−1
μ2

⊗id
ζ∗1A⊗Δ∗L2 ⊗ ζ∗2A

∗ α−1⊗id
L1 ⊗ ζ∗2A⊗ ζ∗2A

∗ = L1.

Axiom (2M) for the isomorphism βZ̃ follows from axiom (1M2) of A, so that
the triple (Z̃, idZ̃ , βZ̃) defines a 2-isomorphism il : A−1 ◦ A ⇒ idG1 . The 2-
isomorphism ir : idG2 ⇒ A◦A−1 is constructed analogously: here we take the
isomorphism

L2 = ζ∗1A
∗ ⊗ ζ∗1A⊗ L2

id⊗α−1

ζ∗1A
∗ ⊗Δ∗L1 ⊗ ζ∗2A

id⊗tμ1⊗id
ζ∗1A

∗ ⊗ ζ∗2A.

of line bundles over W . Notice that by using the pairing A∗ ⊗A = 11 we have
used that A is a line bundle as assumed. Finally, the commutativity of the
diagrams in Definition 2.3.3 follows from axiom (1M2) of A.

Proposition 2.3.4 shows that we have many 1-morphisms in BGrb(M)
which are not invertible, in contrast to the 2-groupoid of bundle gerbes defined
in [Ste00]. Notice that we have already benefited from the simple definition of
the composition A−1 ◦A, which makes it also easy to see that it is compatible
with our construction of inverse 1-morphisms A−1:

(A2 ◦ A1)
−1 = A−1

1 ◦ A−1
2 .

In a general 2-category, one forms a groupoid Iso(G,H) as the subgroupoid
of Hom(G,H) consisting of 1-isomorphisms and invertible 2-morphisms be-
tween them. In our case of the 2-category BGrb(M), the groupoid Iso(G,H)
is full. Also notice that the assignment of inverses to 1-morphisms defines an
equivalence of groupoids

()−1 : Iso(G,H) → Iso(H,G),

which sends a 1-isomorphism A : G → H to its inverse A−1 : H → G and a
2-isomorphism β : A ⇒ A′ to the 2-isomorphism β#−1 : A−1 ⇒ A′−1.
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Let us finally stress the particular importance of the Hom-categories of
endomorphisms End(G) := Hom(G,G) for one bundle gerbe G, and its full
subgroupoid of automorphisms Aut(G) := Iso(G,G). Since in a higher gauge
theory like the sigma models we have defined in §1.6 a bundle gerbe G defines
the gauge field to which strings couple, we call Aut(G) the gauge groupoid of
G. It is the appropriate categorification of the gauge group in a gauge theory
for point-like particles.

2.4 Descent Theory for Morphisms

In this section we return to the discussion of the relation between 1-morphisms
in the sense of Definition 2.1.1 and stable isomorphisms in the sense of Defini-
tion 1.2.1. For this purpose, we introduce the subcategory HomFP (G1,G2) of
the Hom-category Hom(G1,G2), consisting of all those 1-morphisms A : G1 ⇒
G2 whose surjective submersion ζ : Z → P := Y1 ×M Y2 is the identity, imply-
ing Z = P , and consisting of all those 2-morphisms β : A ⇒ A′ which can be
represented by a triple (P, ω, β) where ω : P → P ×P P ∼= P is also the iden-
tity. This category HomFP (G1,G2) contains in particular stable isomorphisms
and the 2-isomorphisms from §1.3.

Theorem 2.4.1. The inclusion functor

D : HomFP (G1,G2) → Hom(G1,G2)

is an equivalence of categories.

In the proof we will use the fact that vector bundles form a sheaf of cate-
gories. Following [Bry93] we use surjective submersions instead of open covers
like in [Moe], and define first a presheaf a categories.

Definition 2.4.2. A presheaf of categories F over M consists of

(a) a category F(Y ) for each surjective submersion π : Y →M .
(b) a functor F(p) : F(Y2) → F(Y1) for each morphism p : Y1 → Y2 of

surjective submersions.
(c) a natural equivalence

F(p, p′) : F(p′ ◦ p) → F(p) ◦ F(p′)

for each pair p : Y1 → Y2, p′ : Y2 → Y3 of composable morphisms of
surjective submersions.

We require for three composable morphisms of surjective submersions p, p′

and p′′ : Y3 → Y4 the equality
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F(Y4)

F(p′′◦p′)

F(p′,p′′)

F(p′′)

F(p′′◦p′◦p)

F(p,p′′◦p′)

F(Y1)

F(Y3)
F(p′)

F(Y2)

F(p) =

F(Y4)

F(p′′)

F(p′′◦p′◦p)

F(p′◦p,p′′)

F(Y1)

F(Y3)

F(p′◦p)

F(p,p′)

F(p′)
F(Y2)

F(p)

of natural transformations.

Now we formulate a gluing axiom for a presheaf of categories. For this pur-
pose, we define a descent category Des(F , π) for a given presheaf of categories
F and any surjective submersion π : Y →M as follows:

1.) its objects are pairs (A,α) where A is an object of the category F(Y ) and
α : F(π1)(A) → F(π2)(A) is a morphism in the category F(Y [2]) such
that F(π11)(α) = idF(π1)(A) and

F(π13)(α) = F(π23)(α) ◦ F(π12)(α). (2 – 10)

2.) a morphism (A,α) → (A′, α′) is a morphism β : A → A′ in the category
F(Y ) such that the diagram

F(π1)(A)

α

F(π1)(β)
F(π1)(A′)

α′

F(π2)(A)
F(π2)(β)

F(π2)(A′)

of morphisms in the category F(Y [2]) is commutative.
3.) the composition of morphisms is just the composition of morphisms in

F(Y ).

Notice that the pullback along π defines a canonical functor

Dπ : F(M) → Des(F , π).

Definition 2.4.3. A presheaf of categories F is called sheaf of categories,
provided Dπ is an equivalence of categories for each surjective submersion π.

The example we need here is the presheaf of categories Bun, which assigns
to any surjective submersion π : Y → M the category Bun(Y ) of vector
bundles over Y . It is easy to verify that the conditions on the objects and
morphisms of Des(Bun, π) assure that the functors Dπ are equivalences of
categories, so that Bun is a sheaf of categories.

Now we are ready to give the
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Proof of Theorem 2.4.1. We show that the faithful functor D is an
equivalence of categories by proving (a) that it is essentially surjective and
(b) that the subcategory HomFP (G1,G2) is full.

For (a) we have to show that for every 1-morphism A : G1 → G2 with
arbitrary surjective submersion ζ : Z → P there is an isomorphic 1-morphism
SA : G1 → G2 with surjective submersion idP . Notice that the isomorphism
dA : ζ∗1A → ζ∗2A of vector bundles over Z [2] from Lemma 2.1.4 satisfies the
cocycle condition (2 – 10), so that (A, dA) is an object in Des(Bun, ζ). Now
consider the surjective submersion ζ2 : Z ×M Z → P [2]. By Lemma 2.1.4 b)
and under the identification of Z [2] ×M Z [2] with (Z ×M Z) ×P [2] (Z ×M Z)
the diagram

L1 ⊗ ζ∗2A

1⊗ζ∗
24dA

ζ∗
12α

ζ∗1A⊗ L2

ζ∗
13dA⊗1

L1 ⊗ ζ∗4A
ζ∗
34α

ζ∗3A⊗ L2

of isomorphisms of vector bundles over (Z ×M Z) ×P [2] (Z ×M Z) is commu-
tative, and shows that α is a morphism in Des(Bun, ζ2). Now we use that
ζ∗ = Dζ is an equivalence of categories: we choose a vector bundle S over P
together with an isomorphism β : ζ∗S → A of vector bundles over Z, and an
isomorphism

σ : L1 ⊗ ζ∗2S → ζ∗1S ⊗ L2

of vector bundles over P ×M P such that the diagram

L1 ⊗ ζ∗2 ζ
∗S

id⊗ζ∗
2 β

ζ∗σ
ζ∗1 ζ

∗S ⊗ L2

ζ∗
1 β⊗id

L1 ⊗ ζ∗2A α
ζ∗1A⊗ L2

(2 – 11)

of isomorphisms of vector bundles over Z ×M Z is commutative. Since ζ is an
equivalence of categories, the axioms of A imply the ones of the 1-morphism
SA defined by the surjective submersion idP , the vector bundle S over P
and the isomorphism σ over P [2]. Finally, the triple (Z ×P P, idZ , β) with
Z ∼= Z ×P P defines a 2-morphism SA ⇒ A, whose axiom (2M) is given by
the commutativity of diagram (2 – 11).

(b) We have to show that any morphism β : A ⇒ A′ in Hom(G1,G2)
between objects A and A′ in HomFP (G1,G2) is already a morphism in
HomFP (G1,G2). Let (W,ω, βW ) be any representative of β with a surjective
submersion ω : W → P and an isomorphism βW : ω∗A → ω∗A′ of vector
bundles over W . The restriction of axiom (2M) for the triple (W,ω, βW ) from
W×MW toW×PW shows ω∗

1βW = ω∗
2βW . This shows that βW is a morphism

in the descent category Des(Bun, ω). Let βP : A → A′ be an isomorphism of
vector bundles over P such that
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ω∗βP = βW (2 – 12)

Because ω is an equivalence of categories, the triple (P, idP , βP ) defines a
2-morphism from A to A′ being a morphism in HomFP (G1,G2). Equation
(2 – 12) shows that the triples (P, idP , βP ) and (W,ω, βW ) are equivalent. �

In the following we draw some important consequences. From Proposition
2.3.4 and Theorem 2.4.1 we obtain

Corollary 2.4.4. Every 1-isomorphism is isomorphic to a stable isomor-
phism, so that two bundle gerbes are stably isomorphic if and only if they
are 1-isomorphic objects in BGrb(M).

This corollary tells us that our 2-category BGrb(M) and the 2-groupoid
of [Ste00] have the same skeletons, i.e. the same sets of 1-isomorphism classes.
As a consequence, all classification results we have developed in Chapter 1
remain true when replacing stable isomorphisms by 1-morphisms from Defi-
nition 2.1.1.

Another application of Theorem 2.4.1 is the investigation of the Hom-
category Hom(Iρ1 , Iρ2) between two trivial bundle gerbes given by 2-forms ρ1

and ρ2 on M , which appears at various places in this thesis. Via the functor
D, this category is equivalent to the category HomFP (Iρ1 , Iρ2). In this cate-
gory, an object A : Iρ1 → Iρ2 consists of the smooth manifold Z = M with
the surjective submersion ζ = idM , of a vector bundle A over M and of an
morphism α : A→ A of vector bundles. Axiom (1M2) states

1
n

tr(curv(A)) = ρ2 − ρ1 (2 – 13)

with n the rank of A, and axiom (1M2) reduces to α2 = α, which in turn means
α = idA. In the same way, any morphism β : A ⇒ A′ in HomFP (Iρ1 , Iρ2),
defines a morphism β : A→ A′ of the respective vector bundles. This defines
a canonical equivalence of categories

HomFP (Iρ1 , Iρ2) ∼= Bunρ2−ρ1(M),

where Bunρ2−ρ1(M) is the category of vector bundles over M whose curvature
satisfies (2 – 13). The composite of the functor D from Theorem 2.4.1 with this
equivalence of categories is denoted by Bun.

Proposition 2.4.5. The functor

Bun : Hom(Iρ1 , Iρ2) → Bunρ2−ρ1(M)

is an equivalence of categories. Furthermore,

(i) it respects the composition of 1-morphisms:

Bun(A2 ◦ A1) = Bun(A1) ⊗ Bun(A2) and Bun(idIρ) = 11.
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(ii) it restricts to an equivalence of groupoids

Bun : Iso(Iρ1 , Iρ2) → Linρ2−ρ1(M)

to the groupoid of line bundles over M with curvature ρ2 − ρ1, and this
restriction satisfies

Bun(A−1) = Bun(A)∗ and Bun(β#) = β∗.

The claims of this proposition follow immediately from Theorem 2.4.1, the
definition of the composition functor and the one of inverse 1-isomorphisms.
To give a demonstration of the importance of the Hom-categories between
trivial bundle gerbes, we make the following improvement of Corollary 1.3.10
iii).

Corollary 2.4.6. Two trivializations T1 : G → Iρ1 and T2 : G → Iρ2 of
the same bundle gerbe G determine a line bundle Bun(T2 ◦ T −1

1 ) over M of
curvature ρ2−ρ1. In particular, the 2-form ρ2−ρ1 is closed and has an integral
class.

At the end of the following section we will encounter an even more gen-
eral statement about on observation that two 1-isomorphisms differ by a line
bundle.

2.5 Pullbacks, Tensor Products and Duality

In Chapter 1 we have introduced three natural constructions for bundle gerbes:
pullbacks, duals and tensor products. All these constructions have natural
extensions to the 2-category BGrb(M) of bundle gerbes.

Similarly to the definition of the tensor product of two bundle gerbes we
have given in §1.1 one can define tensor products of 1-morphisms and 2-
morphisms, whose details we omit here. This yields a monoidal structure on
the 2-category BGrb(M) in terms of a strict 2-functor

⊗ : BGrb(M) × BGrb(M) → BGrb(M),

which is strictly associative, and for which the trivial bundle gerbe I0 is a
strict tensor unit. Explicitly, this 2-functor assigns to two bundle gerbes G
and H their tensor product G ⊗ H, to two 1-morphisms A1 : G1 → H1 and
A2 : G2 → H2 a 1-morphism

A1 ⊗A2 : G1 ⊗ G2 → H1 ⊗H2,

and to two 2-morphisms β1 : A1 ⇒ B1 and β2 : A2 ⇒ B2 a 2-morphism

β1 ⊗ β2 : A1 ⊗A2 ⇒ B1 ⊗ B2.
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The strictness refers to the condition that it respects the composition,

(B1 ⊗ B2) ◦ (A1 ⊗A2) = (B1 ◦ A1) ⊗ (B2 ◦ A2) and idG ⊗ idH = idG⊗H,

and strictly associative means that (A1 ⊗ A2) ⊗ A3 = A1 ⊗ (A2 ⊗ A3). The
condition concerning the tensor unit I0, namely I0⊗G = G = G⊗I0, we have
already discovered in §1.1.

In the same way, the pullback of a bundle gerbe over M along a smooth
map f : X → M can be extended to 1-morphisms and 2-morphisms in a
natural way, defining a strict 2-functor

f∗ : BGrb(M) → BGrb(X).

For a second smooth map g : Y → X, we have g∗ ◦ f∗ = (f ◦ g)∗ as an
equality of 2-functors. The 2-functors ⊗ and f∗ are also compatible with the
assignment of inverses A−1 to 1-isomorphisms A from §2.3:

f∗(A−1) = (f∗A)−1 and (A1 ⊗A2)
−1 = A−1

1 ⊗A−1
2 .

To define a duality we have to be a bit more precise, even though we will
strictly confine ourselves on what we need later in Chapters 4 and 5. For those
purposes, it is enough to understand the duality as a strict 2-functor

()∗ : BGrb(M)op → BGrb(M)

where the opposed 2-category BGrb(M)op has all 1-morphisms reversed, while
the 2-morphisms are as before. This 2-functor will satisfy the identity

()∗∗ = idBGrb(M).

As further properties we just note the existence of the duality 1-isomorphism

DG : G∗ ⊗ G → I0

we have defined in §1.3, and neglect all axioms this 1-isomorphism would have
to satisfy in a fully developed theory of a monoidal 2-category with duals, see
e.g. [BL03].

We now give the complete definition of the 2-functor ()∗ on 1-morphisms
and 2-morphisms. We recall that for a bundle gerbe G, the dual bundle gerbe
G∗ consists of the same surjective submersion π : Y →M , the curving −C ∈
Ω2(Y ), the line bundle L∗ over Y [2] and the multiplication

μ∗−1 : π∗
12L

∗ ⊗ π∗
23L

∗ → π∗
13L

∗

of line bundles over Y [3]. We obtain immediately

G∗∗ = G and (G ⊗H)∗ = H∗ ⊗ G∗.
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For a 1-morphisms A : G1 → G2 consisting of a vector bundle A over
Z with surjective submersion ζ : Z → P , where P := Y1 ×M Y2, and of an
isomorphism α of vector bundles over Z×M Z, we define the dual 1-morphism

A∗ : G∗
2 → G∗

1

as follows: its surjective submersion is the composite of ζ with the exchange
map s : P ′ → P , with P ′ := Y2 ×M Y1. The vector bundle of A∗ is just A over
Z, and its isomorphism is

L∗
2 ⊗ ζ∗2A L∗

2 ⊗ L1 ⊗ ζ∗2A⊗ L∗
1

id⊗α⊗id

L∗
2 ⊗ ζ∗1A⊗ L2 ⊗ L∗

1 ζ∗1A⊗ L∗
1.

Axiom (1M1) is satisfied since the dual bundle gerbes have curvings with
opposite signs,

curv(A) = C2 − C1 = (−C1) − (−C2).

Axiom (1M2) relates the isomorphism id ⊗ α ⊗ id to the isomorphisms μ∗−1
1

and μ∗−1
2 of the dual bundle gerbes. It can be deduced from axiom (1M2) of

A using the following general fact, applied to μ∗
1 and μ∗

2: the dual f∗ of an
isomorphism f : L1 → L2 of line bundles coincides with the isomorphism

L∗
2 = L∗

2 ⊗ L1 ⊗ L∗
1

id⊗f⊗id
L∗

2 ⊗ L2 ⊗ L∗
1 = L∗

1,

defined using the duality on line bundles. Dual 1-morphisms defined like this
have the properties

A∗∗ = A , (A′ ◦ A)∗ = A∗ ◦ A′∗ and (A1 ⊗A2)
∗ = A∗

2 ⊗A∗
1,

and are furthermore compatible with the definition of inverse 1-isomorphisms,

(A∗)−1 = (A−1)∗.

Finally, for a 2-morphism β : A1 ⇒ A2 we define the dual 2-morphism

β∗ : A∗
1 ⇒ A∗

2

in the following way. If β is represented by a triple (W,ω, β) with an isomor-
phism β : A1 → A2 of vector bundles over W , the very same triple defines
the dual 2-morphism β∗. So it becomes obvious that dual 2-morphisms are
compatible with horizontal and vertical composition,

(β2 ◦ β1)
∗ = β∗

1 ◦ β∗
2 and (β • β′)∗ = β∗ • β′∗

and satisfy furthermore
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β∗∗ = β and (β1 ⊗ β2)
∗ = β∗

2 ⊗ β∗
1 .

Summarizing, we have defined a monoidal strict 2-functor ()∗, which is
strictly involutive and furthermore compatible with pullbacks:

f∗(G∗) = (f∗G)∗ , f∗A∗ = (f∗A)∗ and f∗β∗ = (f∗β)∗.

Now recall from Proposition 2.4.5 in the previous section that there is a
canonical equivalence of categories

Bun : Hom(Iρ1 , Iρ2) → Bunρ2−ρ1(M)

between the Hom-category between two trivial bundle gerbes over M and the
category of vector bundles over M whose curvature satisfies (2 – 13). We find

Proposition 2.5.1. The functor Bun respects all the additional structure of
the 2-category of bundle gerbes, namely:

a) the monoidal structure,

Bun(A1 ⊗A2) = Bun(A1) ⊗ Bun(A2).

b) pullbacks,

Bun(f∗A) = f∗Bun(A) and Bun(f∗β) = f∗Bun(β).

c) and the duality,

Bun(A∗) = Bun(A) and Bun(β∗) = Bun(β).

In the following we will demonstrate how the additional structures we have
introduced can be used to gain important information about the structure of
the Hom-categories. From the definition of the functor Bun it is clear that it
has a canonical inverse functor, denoted by Bun−1: it sends a vector bundle A
over M whose curvature satisfies (2 – 13) to the 1-morphism Iρ1 → Iρ2 whose
surjective submersion ζ : Z → M ×M M ∼= M is the identity idM , whose
vector bundle is A, and whose isomorphism is α := idA. We use this inverse
functor in the following construction.

Recall that a (strict) module category over a (strict) monoidal category
(C, 11,⊗) is a category M together with a strictly associative functor

� : C × M → M

such that 11 �M = M for all objects M in M.

Proposition 2.5.2. The functor

Bun0(M) × Hom(G,H)
Bun−1×id

End(I0) × Hom(G,H)
⊗

Hom(G,H)

endows the Hom-category Hom(G,H) with the structure of a module category
over the monoidal category Bun0(M) of vector bundles over M whose curva-
ture is of trace zero.



62 Bundle Gerbes as a 2-Category

Proof. Following our conventions, the category Bun0(M) is strict monoidal.
The category End(I0) = Hom(I0, I0) together with the composition functor
◦ and the identity idI0 is also a strict monoidal category. By Proposition
2.4.5 (i), the functor Bun and its inverse are monoidal functors, so that
Bun0(M) and End(I0) are equivalent as monoidal categories. It remains to
check that Hom(G,H) is a module category over End(I0). The condition
idI0⊗A = A is clearly satisfied, and the associativity follows from the associa-
tivity of the 2-functor ⊗ which defines the monoidal structure on BGrb(M). �

We write L ⊗ A : G → H for the action of a vector bundle L on a 1-
morphism A : G → H, and ϕ ⊗ β : L ⊗ A ⇒ L′ ⊗ A′ for the action of a
morphism ϕ : L→ L′ of vector bundles on a 2-morphism β : A ⇒ A′.

Next we consider the groupoid Iso(G,H) of isomorphisms between bundle
gerbes G and H over M as a module category over Lin0(M), by restriction
of the module category defined above according to Proposition 2.4.5 (ii). Our
aim is to establish that Lin0(M) acts in a free and transitive way on Iso(G,H).
We recall that a set M is called a torsor over a monoid G acting on M , if the
canonical map

G×M →M ×M : (g,m) 7→ (g.m,m)

associated to the action is a bijection. This is equivalent to a free and transitive
action: the surjectivity of the above map is equivalent to the transitivity, and
its injectivity is equivalent to its freeness. This motivates the following

Definition 2.5.3. Let M be a module category over a monoidal category C by
means of a functor � : C × M → M. We call M a torsor category over C, if
the functor

C × M
id×Δ

C × M × M
�×id

M × M,

is an equivalence of categories. Here, Δ : M → M×M is the diagonal functor.

A natural example for a torsor category arises in abstract higher cate-
gory theory: first we recall that for any ordinary category, the set of isomor-
phisms Iso(X,Y ) between to fixed objects X and Y is a torsor over the group
Aut(Y ) of automorphisms of Y , where Aut(Y ) acts by post-composition on
Iso(X,Y ). In complete analogy, for any 2-category, the groupoid Iso(G,H) of
isomorphisms between two fixed objects is a torsor category over the monoidal
category Aut(H). We do not further expand on this abstract example and re-
turn to the concrete module category defined in Proposition 2.5.2.

Theorem 2.5.4. The groupoid Iso(G,H) of isomorphisms between bundle
gerbes G and H over M is a torsor category over the category of flat line
bundles Lin0(M) over M .

Proof. We show that the associated functor

Lin0(M) × Iso(G,H) → Iso(G,H) × Iso(G,H) (2 – 14)
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is essentially surjective and fully faithful. To show that it is fully faithful we
have to consider the map

Iso(L1, L2) × Iso(A1,A2) → Iso(L1 ⊗A1, L2 ⊗A2) × Iso(A1,A2) (2 – 15)

where Iso(L1, L2) is the set of isomorphisms between two flat line bundles L1

and L2 over M , and Iso(A1,A2) is the set of 2-isomorphisms between two 1-
isomorphisms A1,A2 : G → H. Notice that Li ⊗Ai is a 1-isomorphism which
consists of the line bundle Li ⊗ Ai over Zi, where the line bundle Ai over Zi

comes from the structure of the 1-isomorphism Ai, and Li is pulled back along
the projection Zi → M . To see that (2 – 15) is injective, it is enough to note
that if two isomorphisms become equal when pulled back along a surjective
map, the must have been equal before.

To see that (2 – 15) is surjective, let an element on the right hand side be
represented by isomorphisms φ : L1 ⊗ A1 → L2 ⊗ A2 and ϕ : A1 → A2; we
may assume over the same manifold W . Then, φ ⊗ ϕ∗−1 is after canonical
identifications an isomorphism of line bundles L1 → L2 over W . The axioms
(2M) for ψ and ϕ combine to the statement that φ ⊗ ϕ∗−1 represents a 2-
isomorphism, namely a morphism in the category End(I0), and hence descends
by Theorem 2.4.1 to an isomorphism λ : L1 → L2 of line bundles over M . By
construction, the image of (λ, ϕ) is (φ, ϕ), this is just element we have started
with.

Finally, we show that the functor (2 – 14) is essentially surjective. Given
two 1-isomorphisms A,B : G → H, we use the functor D from Theorem 2.4.1
and find isomorphic stable isomorphisms A′, B′ which consist of line bundles
A and B over the fibre product p : P → M of the surjective submersions of
the two bundle gerbes, and of isomorphisms α and β of line bundles over P [2].
Now we extend the line bundle A⊗B∗ over P to an object (A⊗B∗, χ) in the
descent category Des(Bun, p) for the surjective submersion p and the sheaf of
groupoids Bun defined in the previous section. The isomorphism

χ : p∗1(A⊗B∗) → p∗2(A⊗B∗)

of line bundles over P [2] is defined by

χ : p∗1(A⊗B∗) ∼= (p∗1A⊗ L′) ⊗ (L′∗ ⊗ p∗1B
∗)

α−1⊗β∗

(L⊗ p∗2A) ⊗ (p∗2B
∗ ⊗ L∗) ∼= p∗1(A⊗B∗)

Using axiom (1M2) for α and β one can show that χ satisfies the cocycle
condition p∗13χ = p∗23χ ◦ p∗12χ of isomorphisms of line bundles over P [3].

Hence we obtain a line bundle N over M together with an isomorphism
ϕ : p∗N → A⊗B∗ in the category Des(Bun, p). Now,N⊗B is a 1-isomorphisms
with the line bundle N ⊗ B that is isomorphic by ϕ to A. The condition the
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morphism ϕ in Des(Bun, p) shows that this is a 2-isomorphism in Iso(G,H). �

If one reduces a category to its skeleton, a monoidal category C gives rise
to a monoid. Accordingly, any module category over C becomes a set with an
action of this monoid. This set will be a torsor, if the module category is a
torsor category. In our example, we obtain

Corollary 2.5.5. The set of equivalence classes of 1-isomorphism between
two fixed bundle gerbes over M is a torsor over the group Pic0(M) of isomor-
phism classes of flat line bundles over M .

With this corollary we have reproduced a well-known fact about isomor-
phism classes of 1-isomorphisms between bundle gerbes [CJM02, SSW07]. By
Theorem 2.5.4 we have lifted this fact from a statement about skeletons to a
statement about categories. This will be important in Chapter 4.

2.6 The Čech-Deligne Complex as a 2-Category

We have described in Chapter 1 how to obtain cocycles in the Čech-Deligne
double complex from bundle gerbes. By Theorem 2.4.1 we can now derive
cochains for arbitrary 1-isomorphisms and 2-isomorphisms: we first go to
isomorphic stable isomorphisms and corresponding 2-isomorphisms between
those, and then apply the procedure described in Chapter 1.

We have also derived with Theorem 1.3.4 a bijective correspondence
between the cohomology classes represented by these cocycles and 1-
isomorphism classes of bundle gerbes. In this section we describe how this
bijection can be interpreted as a bijection between the skeletons of two 2-
categories. Then we lift this bijection between the skeletons to an equivalence
of these 2-categories.

Depending on an open cover V of a smooth manifoldM , we define a strictly
associative 2-category Del2(V) whose objects are cocycles ξ ∈ Tot2(V,D(2)).
The Hom-category Hom(ξ, ξ′) is defined as follows: its objects β : ξ → ξ′ are
cochains β ∈ Tot1(V,D(2)) with the property ξ′ = ξ + Dβ, and a morphism
α : β ⇒ β′ is a cochain α ∈ Tot0(V,D(2)) with β′ = β + Dα. The identity
morphism idβ is the trivial cochain α = 1, and the composition in the category
Hom(ξ, ξ′) is given by the product α ∙ α′. The composition functor

◦ : Hom(ξ2, ξ3) × Hom(ξ1, ξ2) → Hom(ξ1, ξ3)

of the 2-category Del2(V) is defined by

ξ2

β2

β′
2

α2 ξ3 ◦ ξ1

β1

β′
1

α1 ξ2 := ξ1

β2+β1

β′
2+β′

1

α2∙α2 ξ3 ,
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so, the sum β1 +β2 on 1-morphisms, and the product α1 ∙α2 on 2-morphisms.
The identity 1-morphism idξ associated to an object ξ is the trivial cochain
β = 0, and the natural 2-isomorphisms are ρβ = λβ = 1. This way it is obvious
that the two axioms (2C1) and (2C1) of a strictly associative 2-category are
satisfied.

Now we are going to relate the 2-category Del2(V) to the 2-category
BGrb(M) of bundle gerbes over M . Notice that the extraction of cocycles
from bundle gerbes and cochains of their 1-morphisms depends on choices of
sections; thus we do not expect a canonical 2-functor in this direction. How-
ever, the reconstruction of geometric objects from given cochains leads to a
canonical 2-functor

Con : Del2(V) → BGrb(M)

between our two 2-categories. To define Con we recall the construction of the
bundle gerbe Con(ξ) from a given cocycle ξ that we have described in the proof
of Theorem 1.3.6. This construction obeys Con(−ξ) = Con(ξ)∗, and we have a
canonical 1-isomorphism

can : Con(ξ1 + ξ2) → Con(ξ1) ⊗ Con(ξ2)

induced from the morphism MV → M
[2]
V : Vi 7→ Vi ∩ Vi of surjective submer-

sions by Lemma 1.2.3. We recall further that we have constructed a trivial-
ization Tβ : Con(ξ) → I0 associated to a cochain β with ξ + Dβ = 0. From
its definition it is clear that a cochain α ∈ Tot0(V,D(2)) with β′ = β + Dα
defines a 2-isomorphism τα : Tβ ⇒ Tβ′ .

To define the 2-functor Con on 1-morphisms and 2-morphisms, we use the
trivializations Tβ and the 2-isomorphisms τα. If β : ξ → ξ′ is a 1-morphism in
Del2(V), we define its image Con(β) by

Con(ξ)
idCon(ξ)⊗D−1

Con(ξ′)
Con(ξ) ⊗ Con(ξ′)∗ ⊗ Con(ξ′)

can−1⊗idCon(ξ′)

Con(ξ − ξ′) ⊗ Con(ξ′)
Tβ⊗idCon(ξ′)

Con(ξ′),

where we have used the duality 1-isomorphism and the monoidal structure on
the 2-category BGrb(M) we have introduced in §1.2 and §2.5, respectively.
The definition seems to be quite inconvenient on the first view, but the con-
struction of a 1-isomorphism from a given cochain is an involved procedure,
see also [Ste00]. It remains to define the image Con(α) : Con(β) ⇒ Con(β′) of
a 2-morphism α : β ⇒ β′. Now we can even profit from the above definition
of the 1-isomorphism Con(β): we just set

Con(α) := (ididCon(ξ)
⊗ idD−1

Con(ξ′)
) ◦ (idcan−1 ⊗ ididCon(ξ′)

) ◦ (τα ⊗ ididCon(ξ′)
).
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Now we have to show that the assignment Con we have defined is a 2-
functor. Unfortunately, this 2-functor is not strict: it comes with non-trivial
2-isomorphisms

uξ : Con(idξ) ⇒ idCon(ξ) and cβ1,β2 : Con(β2 + β1) ⇒ Con(β2) ◦ Con(β1)

for every object ξ in Del2(V) and every pair β1, β2 of 1-morphisms, respec-
tively. These 2-isomorphisms are called unitor and compositor of the 2-functor
Con. Their definition is straightforward and uses the multiplication of the re-
constructed bundle gerbes. It follows then from its associativity axiom (G1)
that all consistency conditions are satisfied: the compositor cβ1,β2 is associa-
tive, respects the horizontal composition, and is compatible with the unitor.
Finally, the vertical composition is respected; this follows from the identity
τα′∙α = τα′ • τα for the 2-morphism τα. This way, the assignment Con defines
a 2-functor.

Since not every bundle gerbe is 1-isomorphic to a bundle gerbe whose
surjective submersion comes from the fixed open cover V, we can not expect
that the functor Con is an equivalence of 2-categories. To achieve such an
equivalence, we define a sub-2-category BGrb(V) of BGrb(M) consisting only
of those bundle gerbes whose surjective submersion admits sections defined
on the open sets of V. Obviously, the image of the 2-functor Con is contained
in BGrb(V).

Proposition 2.6.1. For a good open cover V, the 2-functor

Con : Del2(V) → BGrb(V)

is an equivalence of 2-categories.

Proof. We prove that the extraction of cocycles and cochains we have de-
scribed in Chapter 1 defines a (non-canonical) inverse functor. For this pur-
pose, we fix choices of sections needed to extract cocycles from all bundle ger-
bes in BGrb(V), where we choose the sections for the reconstructed bundle
gerbes Con(ξ) as described in the proof of Theorem 1.3.6 so that we obtain the
cocycle ξ back. For each pair of bundle gerbes, we fix choices for the sections
needed to extract cochains for all 1-isomorphisms between these two bundle
gerbes, where we choose those for reconstructed 1-isomorphisms Con(β) in
such a way that we get the cochain β back. Then, we reproduce the cochain
α for every reconstructed 2-isomorphism Con(α). These assignments define a
strict 2-functor

Ex : BGrb(V) → Del2(V),

with the properties Ex(idG) = idEx(G) = 0 and Ex(A′ ◦A) = Ex(A′)+Ex(A).
By construction, it has the left inverse property Ex ◦ Con = idDel2(V).

Conversely, the composite Con ◦ Ex is not equal to the identity 2-functor
on BGrb(V) but only equivalent; there is a pseudonatural equivalence
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χ : Con ◦ Ex ⇒ idBGrb(V).

It assigns to every object G of BGrb(V) a 1-isomorphism χ(G) : Con(Ex(G)) →
G and to every 1-isomorphism A : G → G′ in BGrb(V) a 2-isomorphism

χ(A) : χ(G′) ◦ Con(Ex(A)) ⇒ A ◦ χ(G)

in a way that is compatible with the composition of 1-isomorphisms and the
2-isomorphisms. Here, the 1-isomorphism χ(G) is defined in the following
way: we use Z := MV ×M Y and the line bundle A := s̃∗L over Z, where
s̃ : Z → Y [2] is in the first component the morphism s : MV → Y of
surjective submersions chosen to extract local data, and the identity in the
second component of Z. Let 11A be the line bundle of Con(Ex(G)) over M [2]

V

which is clearly isomorphic to s∗L. The composite of this isomorphism with
the isomorphism s∗λ over Z [2], where λ comes from the definition of the
identity 1-isomorphism in §1.3, defines an isomorphism α in such a way that
(A,α) gives the 1-isomorphism χ(G). The 2-isomorphism χ(A) has to be
constructed from the multiplications μ and μ′ of the two bundle gerbes, and
the isomorphism α of the 1-isomorphism A. �

By construction, the skeleton of the 2-category Del2(V) is H2(V,D(2)),
which is in turn isomorphic to H2(M,D(2)) if V is a good open cover. Then,
Proposition 2.6.1 reproduces in particular Theorem 1.3.6 on the level of skele-
tons. The refinement we have achieved here will be important in Chapter 5,
where we are going to use cohomological calculations to classify equivariant
bundle gerbes; those consist of a bundle gerbe, certain 1-isomorphisms and
certain 2-isomorphisms.



Chapter 3

Algebraic Structure for Bundle Gerbes I:
Modules and Bimodules

There are two natural algebraic structures in two-dimensional conformal field
theories: conformally invariant boundary conditions and topological defect
lines. It is natural to ask if these structures can also be found in Wess-Zumino-
Witten models or, more general, in sigma models with Wess-Zumino term.
Such target space interpretations of conformally invariant boundary condi-
tions and topological defect lines are also relevant for string theory. In case
of boundary conditions, the corresponding structures are so-called D-branes,
which we review in the first section of this chapter. The structure correspond-
ing to topological defect lines is introduced in this thesis and called bi-brane;
this is the subject of the remaining sections of this chapter.

From a purely mathematical point of view, D-branes and bi-branes are
structures which allow to extend the holonomy for closed oriented surfaces
from Chapter 1 to oriented surfaces with defect lines.

3.1 D-Branes, relative Cohomology and Gerbe Modules

The study of D-branes in string theory is about open strings moving through
a target space M while its endpoints are restricted to a submanifold Q of M
[Pol]. In the description of sigma models by maps φ : Σ → M this amounts
to consider worldsheets Σ with boundary ∂Σ such that φ(∂Σ) ⊂ Q. We
recall from §1.6 that the Feynman amplitude in a sigma model for oriented
worldsheets is given by

Ag,G(φ,Σ) = exp
(
2πiSkin

g (φ,Σ)
)
∙ AWZ

G (φ,Σ).

The kinetic term Skin
g (φ) has been defined as an integral of a 2-form over Σ,

which is still well-defined when Σ has a boundary. The second term, however,
defined as AWZ

G (φ,Σ) := HolG(φ,Σ), is no longer well-defined in this situation:
the integral of the closed 2-form ρ2 − ρ1 with integral class, which makes the
difference between two choices of trivializations in the definition of oriented
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surface holonomy, gives no longer an integer. More precisely, a boundary term
emerges which has to be compensated to achieve a holonomy independent
of the choice of the trivialization. The definition of this compensating term
involves the choice of additional structure on the submanifold Q.

To find this additional structure, it is helpful to discuss first topologically
trivial sigma models, defined by a 2-connected smooth Riemannian manifold
M and a closed 3-form H ∈ Ω3(M) with integral class. We recall from §1.6
that in this situation the Feynman amplitude AWZ

G (φ,Σ) of a map φ : Σ →M
can be defined by choosing a three-dimensional manifold B with ∂B = Σ and
an extension Φ : B →M of φ, in such a way that AWZ

G (φ,Σ) is the exponential
of the Wess-Zumino term

SWZ
H (Φ,B) =

∫

B

Φ∗H.

For these topologically trivial sigma models, the additional structure on the
submanifold Q is known to be a 2-form ω ∈ Ω2(Q) with the property that
dω = H|Q. The following definition of the Feynman amplitude is given [Gaw].

We assume for simplicity that Σ has only one boundary component, which
is then diffeomorphic to S1. Let D be the two-dimensional disc glued along
its boundary on Σ, so that we obtain a three-dimensional manifold B whose
boundary is ∂B = Σ∪D. We assume that there exists an extension Φ : B →M
of the map φ, which sends D into the submanifold Q. Such an extension exists,
if Q is connected and simply-connected, additional to the condition that M
is 2-connected. Then, the Wess-Zumino term is given by

SWZ
H,ω(Φ,B) :=

∫

B

Φ∗H −
∫

D

Φ∗ω. (3 – 1)

The well-definedness of the associated Feynman amplitude poses a condition
on H and ω; here it is not sufficient that H is a closed 3-form with integral
class. The equations dH = 0 and H|Q = dω rather mean that the pair (H,ω)
defines a cocycle in the relative de Rham cohomology of the inclusion Q ↪→M
[BT82]. The condition is that the corresponding class in the relative cohomol-
ogy H3(M,Q,R) is integral in the sense that it lies in the image of the relative
cohomology with integer coefficients [FOS01].

We have learned before that the theory of bundle gerbes is useful and
by now indispensable to deal with topologically non-trivial sigma models.
Accordingly, we have to adjust the definition of a D-Brane to this more general
situation. It is still build up on a submanifold Q. In a first attempt [GR02],
the 2-form ω was replaced by a trivialization

T : G|Q → Iω

of the bundle gerbe G of the sigma model restricted to Q. Notice that this
reproduces in particular the old conditionH|Q = dω for the curvatureH of the
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bundle gerbe G. Later it was recognized [Kap00, Gaw05] that a trivialization,
i.e. a 1-isomorphism, is too restrictive. In fact a D-brane for a certain bundle
gerbe over SO(4n)/Z2 was found that does not admit a 1-isomorphism but
only a weaker structure – a bundle gerbe module.

To describe bundle gerbe modules in a more convenient way than it has so
far been done in the literature, we use the 1-morphisms of the new 2-category
BGrb(M) of bundle gerbes over M we have introduced in Chapter 2.

Definition 3.1.1. Let G be a bundle gerbe over M . A left G-module is a 1-
morphism E : G → Iω, and a right G-module is a 1-morphism F : Iω → G.

Let us compare this definition with the original definition of (left) bundle
gerbe modules in [BCM+02], that does not make use of 2-categorical struc-
tures. Assume – by Theorem 2.4.1 without loss of generality – that a left
G-module E : G → Iω has the surjective submersion idP with P ∼= Y . Then, it
consists of a vector bundle E over Y and of an isomorphism ε : L⊗π∗

2E → π∗
1E

of vector bundles over Y [2] which satisfies

π∗
13ε ◦ (μ⊗ id) = π∗

23ε ◦ π
∗
12ε

by axiom (1M2). The curvature of E is restricted by axiom (1M1) to

1
n

tr(curv(E)) = π∗ω − C

with n the rank of E. In [BCM+02] a bundle gerbe module was defined as
a pair (E, ε) with the above properties, so that the two definitions coincide.
The purpose of [BCM+02] was to obtain a geometric realization of twisted
K-Theory: a G-module defines a class in degree zero of the K-theory of M
twisted by the Dixmier-Douady class dd(G) ∈ H3(M,Z).

The rank of the vector bundle of the 1-morphism is also called the rank of
the G-module. Let us have a look on the local description of gerbe modules.
Let (g,A,B) be a cocycle for the bundle gerbe G with respect to an open cover
V = {Vi}i∈I of M . Similarly to cochains for a 1-isomorphism it is possible to
extract local expressions from a 1-morphism, in particular of a bundle gerbe
module [Gaw05]

E : G → Iω.

These are smooth functions

Gij : Vi ∩ Vj → U(n)

on double intersections, where n is the rank of the gerbe module, and u(n)-
valued 1-forms Pi on each open set Vi. Like a 1-isomorphism, a 1-morphism
relates a cocycle (g,A,B) for the bundle gerbe G to the one of the trivial
bundle gerbe Iω by the following equations:
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1 = gijk ∙Gij ∙Gjk ∙G−1
ik

0 = Aij + Pj − AdGij
(Pi) −

1
i
G−1

ij dGij

ω = Bi + dPi

In these equations, we identify U(1) with the diagonal subgroup of U(n), and
correspondingly the Lie algebra of U(1) with a subalgebra of u(n). Notice that
if the bundle gerbe G is the trivial bundle gerbe I0 and (g,A,B) = (1, 0, 0), the
three equations would be the usual cocycle conditions for a hermitian vector
bundle with unitary connection of curvature ω. For a non-trivial bundle gerbe,
these cocycle conditions become twisted – for this reason, gerbe modules are
also known as twisted vector bundles .

The definition of bundle gerbe modules as 1-morphisms makes clear that
left and right G-modules form categories LMod(G) and RMod(G), which are
both module categories over the category of vector bundles over M by Propo-
sition 2.5.2. This is useful to see for instance that a 1-isomorphism A : G → G′

defines equivalences of categories

LMod(G) ∼= LMod(G′) and RMod(G) ∼= RMod(G′), (3 – 2)

and that there are equivalences between left modules of G and right modules of
G∗ (and vice versa), by taking duals of the respective 1-morphisms. Moreover,
for a trivial bundle gerbe Iρ the categories LMod(Iρ) and RMod(Iρ) become
canonically equivalent to the category Bun(M) of vector bundles over M via
the equivalence Bun from Proposition 2.4.5. We combine this result with the
equivalences (3 – 2), applied to a trivialization T : G → Iρ of a bundle gerbe G
over M . In detail, a left G-module E : G → Iω first becomes a left Iρ-module

E ◦ T −1 : Iρ → Iω

which in turn defines the vector bundle E := Bun(E ◦ T −1) over M . The
same applies to right G-modules F : Iω → G which defines a vector bundle
Ē := Bun(T ◦ F) over M . This is a generalization of Corollary 2.4.6, where
we have seen that to trivializations T1 : G → Iρ1 and T2 : G → Iρ2 define a
line bundle over M .

Definition 3.1.2 (Gawȩdzki [Gaw05]). Let G be a bundle gerbe over M . A
G-D-brane is a submanifold Q of M together with a left G|Q-module

E : G|Q → Iω.

The 2-form ω on Q is called the curvature, and the submanifold Q is called
the world volume of the D-brane.

The gerbe module E of a G-D-brane will produce a term which compensates
the changes of the 2-form ρ of a trivialization on the boundary. We consider
a configuration like shown in Figure 3.1, and give the following definition of
holonomy.
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M

Σ

φ

G

E

Q

Figure 3.1: A surface is mapped into a target space
with bundle gerbe G, in such a way that its bound-
ary is mapped into the submanifold Q with bundle
gerbe module E .

Definition 3.1.3 ([CJM02, Wal07]). Let G be a bundle gerbe over M with G-
D-brane (Q, E) and let φ : Σ →M be a smooth map from a compact oriented
surface Σ with boundary to M , such that φ(∂Σ) ⊂ Q. Let

T : φ∗G → Iρ

be any trivialization of the pullback bundle gerbe φ∗G and let

E := Bun(φ∗E ◦ T −1|∂Σ)

be the associated vector bundle over ∂Σ. The oriented D-brane holonomy is
defined as

HolG,E(φ,Σ) := exp

(

2πi
∫

Σ

ρ

)

∙ tr (HolE(∂Σ)) ∈ C.

To show that this definition does not depend on the choice of the trivial-
ization, we use the 2-categorical formalism we have developed in this thesis:
for another trivialization T ′ : φ∗G → Iρ′ and the respective vector bundle
E′ := Bun(E ◦ T ′−1) we find by Proposition 2.4.5 (i)

E′ = Bun(E ◦ T ′−1) ∼= Bun(E ◦ T −1 ◦ T ◦ T ′−1) = E ⊗ Bun(T ◦ T ′−1).

Because isomorphic vector bundles have the same holonomies, and the line
bundle Bun(T ◦ T ′−1) has curvature ρ− ρ′ we obtain

tr (HolE′(∂Σ)) = tr (HolE(∂Σ)) ∙ exp

(

2πi
∫

Σ

ρ− ρ′
)

.

This shows the independence of oriented D-brane holonomy of the choice of
the trivialization.
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Proposition 3.1.4. Let G be a bundle gerbe over M and (Q, E) be a G-D-
brane of curvature ω. Oriented D-brane holonomy has the following properties:

(i) for a closed oriented surface Σ and any smooth map φ : Σ → M , ori-
ented D-brane holonomy reduces to ordinary oriented holonomy from
Definition 1.5.2,

HolG,E(φ,Σ) = HolG(φ,Σ).

(ii) if E ′ is another left G|Q-module, and there exists a 2-isomorphism Ei ⇒
E ′

i,
HolG,E(φ,Σ) = HolG,E′(φ,Σ)

for every oriented surface Σ and every smooth map φ : Σ → M with
∂Σ ⊂ Q; similarly, if G′ is another bundle gerbe over M , and A : G′ → G
is an isomorphism of bundle gerbes,

HolG,E(φ,Σ) = HolG′,E◦A(φ,Σ).

(iii) if B is a smooth oriented three-dimensional manifold with boundary, and
∂B is diffeomorphic to a surface Σ∪D obtained by gluing a disc D on a
surface Σ with boundary, for any smooth map Φ : B →M with Φ|D ⊂ Q
we have

HolG,E(Φ|Σ , Σ) = exp 2πi

(∫

B

Φ∗curv(G) −
∫

D

Φ∗ω

)

.

Proof. The only non-trivial part is (iii). By dimensional reasons we can choose
a trivialization T :G|∂B → Iρ of the bundle gerbe over ∂B, thus producing a
vector bundle E over D of curvature

1
n

tr(curv(E)) = (Φ∗ω − ρ)|D.

By definition of oriented D-brane holonomy, we have

HolG,E(Φ|Σ , Σ) = exp

(

2πi
∫

Σ

ρ

)

∙ tr (HolE(∂Σ)) .

The first term can be written as an integral over ∂B minus an integral over
D, where the first is by Theorem 1.5.4

exp

(

2πi
∫

∂B

ρ

)

= HolG(Φ|∂B , ∂B) = exp

(

2πi
∫

B

Φ∗curv(G)

)

.

The second term can be written as

tr(HolE(∂Σ)) = tr(HolE(∂D)) = exp

(

2πi
∫

D

−Φ∗ω + ρ

)

.

Both parts together give the claim. �

It follows in particular, that the pairing of any smooth relative singular
3-chain (B,D) in (M,Q) with the relative de Rham cocycle (H,ω) gives an
integer, which means
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Corollary 3.1.5. If G is a bundle gerbe over M of curvature H, and (Q, E)
is a G-D-brane of curvature ω, the pair (H,ω) defines a cocycle in the relative
de Rham cohomology of (M,Q) with integral class.

Recall that such a relative de Rham cocycle with integral class appeared
in the definition of the Wess-Zumino term in the topologically trivial situation
we have discussed at the beginning of this section. Moreover, by Proposition
3.1.4 (iii), the oriented D-brane holonomy reproduces the Wess-Zumino term
(3 – 1):

HolG,E(φ,Σ) = exp
(
2πiSWZ

H,ω(Φ,B)
)
,

with the same advantages as discussed for oriented surface holonomy in §1.6.
Thus, oriented D-brane holonomy is the appropriate way to define Wess-
Zumino terms for general sigma models for worldsheets with boundary, as
we will do §3.4.

As a last point, we have a look on the oriented D-brane holonomy in
terms of local expressions. We use a triangulation of Σ which is subordinated
to the open cover of M just like we did in §1.5 to derive the formula of the
local expression of the holonomy for a closed oriented surface. Splitting of the
integral of the 2-form ρ over Σ, which build the first factor of HolG,E(φ,Σ),
leads exactly to formula (1 – 13). It has to be amended by the local expression

Σ

∂Σi j

k

Bi Bj Pj

BkAki

Aij

gijk

Pk

Gjk

Figure 3.2: The triangulation of the surface Σ is
decorated by local data as in Figure 1.3, completed
by the local 1-forms Pi and the functions Gij com-
ing from the bundle gerbe module, which are placed
along the boundary ∂Σ.

for the second factor, which is the holonomy of the vector bundle E around the
boundary of Σ. The latter is similar to the local expression for the holonomy
of a line bundle around a loop we also gave in §1.5, namely

tr (HolE(∂Σ)) = tr P

{
∏

e∈Δ∩∂Σ

exp

(

2πi
∫

e

φ∗Pi(e)

)

∙
∏

v∈∂e

G
ε(e,v)
i(e),i(v)

}

.
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The only difference is that the terms now live in the non-abelian group U(n)

and have to be ordered with respect to the induced orientation on ∂Σ, which
is indicated by the path-ordering operator P. The cyclic property of the trace
assures that it does not depend on a specific point from where one starts
multiplying terms. The complete picture where the local data is used is shown
in Figure 3.2.

3.2 Bi-Branes I: Birelative Cohomology

In the previous section we have defined oriented D-brane holonomy, i.e. holon-
omy for oriented surfaces with boundary. Now we consider surfaces with defect
lines.

Definition 3.2.1. Let Σ be an oriented connected compact surface. A defect
line S in Σ is the image of an embedding f : S1 → Σ.

Note that the submanifold Σ\S is either connected or has two components.
If it has two components Σ1 and Σ2, one of them is distinguished by the fact
that the orientation induced on S coincides with the one coming from S1

along the embedding f , see Figure 3.3.

Σ1

Σ2

S

Figure 3.3: A defect line on the 2-sphere.

In general, a surface with several (non-intersecting) defect lines has a num-
ber of components Σi. The setup to discuss the holonomy of such a surface
is to consider smooth maps φi : Σi → Mi, one for each component Σi, to in
general different smooth manifolds Mi, each equipped with a bundle gerbe Gi.
We infer that the definition of this holonomy requires additional structures in
the products Mi ×Mj of the manifolds, and we call this additional structure
a bi-brane.

Analogous to the discussion of D-branes, we gather some motivation from
sigma models. In this section we merely consider the simplest situation: a
worldsheet with one defect line that separates two topologically trivial sigma
models with 2-connected target spaces M1 and M2.
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Definition 3.2.2. A topologically trivial M1-M2-bi-brane between two topo-
logically trivial sigma models (M1, g1,H1) and (M2, g2,H2) is a connected and
simply connected submanifold Q of M1×M2 together with a 2-form $ ∈ Ω2(Q)
such that

p∗1H|Q = p∗2H|Q + d$,

where p1 and p2 are the two projections pi : M1 ×M2 →Mi.

We denote the two components of the worldsheet by Σ1 and Σ2, and
assume without loss of generality ∂Σ1 = S and ∂Σ2 = S̄ as equalities of
oriented manifolds, where S̄ is the manifold S with opposite orientation. Now
we consider a pair (φ1, φ2) of maps

φi : Σi →Mi

such that the image of the combined map

φS : S →M1 ×M2 : s 7→ (φ1(s), φ2(s))

takes its values in the submanifold Q. We next wish to find the Wess-Zumino
term. First, let D be the two-dimensional disc, which we glue along S on
Σ1 and Σ2 respectively. We obtain two closed surfaces. There exist three-
dimensional manifolds B1 and B2 such that

∂B1 = Σ1 ∪S D̄ and ∂B2 = Σ2 ∪S D.

Since Q is 1-connected, there exists an extension ΦS : D → Q of φS . Combined
with φ1 and φ2, they give maps defined on ∂B1 and ∂B2. Since the manifolds
Mi are 2-connected, there also exist extensions Φ1 : B1 →M1 and Φ2 : B2 →
M2. Equipped with such choices, we define the Wess-Zumino term as

SWZ
H1,H2,$(Φ1, Φ2, ΦS) :=

∫

B1

Φ∗
1H1 +

∫

B2

Φ∗
2H2 +

∫

D

Φ∗
S$. (3 – 3)

Note that the expression (3 – 3) depends on the choices of the manifolds B1,
B2 and D and of the extensions. However, the ambiguities are under certain
conditions integers, so that the associated Feynman amplitude – the expo-
nential of (3 – 3) – is actually well-defined. This can be shown with the help
of a homology theory based on two manifolds M1 and M2 and a submanifold
Q⊂M1 ×M2, that we introduce next.

The homology theory we invent is based on singular homology, and can
be understood as a generalization of relative homology. Hence we will call it
birelative homology. The associated cohomology theory with real coefficients
can be identified with a cohomology theory based on differential forms, which
we call birelative de Rham cohomology. These structures enable us to formulate
precise conditions under which the Wess-Zumino term (3 – 3) is well-defined
up to integers.
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We recall that the (singular) homology Hk(M) of a smooth manifold M
is the homology of the singular chain complex with chain groups Δk(M).
These are free abelian groups generated by (smooth) k-simplices in M , and
come with a boundary operator ∂ : Δk(M) → Δk−1(M). If Q ⊂M1×M2 is a
submanifold, we define the kth birelative chain group of the triple (M1,M2, Q)
to be

Δk(M1,M2, Q) := Δk(M1) ⊕Δk(M2) ⊕Δk−1(Q).

Using the projections pi : M1×M2 →Mi, the inclusion map ι : Q ↪→M1×M2,
and the induced chain maps (pi)∗ and ι∗, we define the homomorphism

∂ : Δk(M1,M2, Q) → Δk−1(M1,M2, Q)

(σ1, σ2, τ) 7→ (∂σ1 + (p1)∗ι∗τ, ∂σ2 − (p2)∗ι∗τ,−∂τ).

It is easy to verify that this map satisfies ∂2 = 0, i.e. we have endowed the
birelative chain groups with the structure of a complex. We call its homology
groups the birelative homology groups and denote them by Hk(M1,M2, Q).
Explicitly, an element of Hk(M1,M2, Q) is represented by a triple (σ1, σ2, τ)
of chains σi ∈ Δk(Mi), i = 1, 2, and a cycle τ ∈ Δk−1(Q), such that ∂σ1 =
(p1)∗ι∗τ and ∂σ2 = −(p2)∗ι∗τ . For each degree k, the birelative chain group
fits, by definition, into the short exact sequence

0 Δk(M1)⊕Δk(M2)
α

Δk(M1,M2, Q)
β

Δk−1(Q) 0 , (3 – 4)

of complexes in which α is the inclusion and β is the projection.
To explain the term birelative homology we observe that we have general-

ized relative homology in the following sense: if we take M2 = pt, so that we
can identify Q with a submanifold of M1, there is a canonical isomorphism
Hk(M1, pt,Q)→Hk(M1, Q), where Hk(M1, Q), the relative homology group
of M1 with respect to the submanifold Q.

Dual to the singular homology groups there are singular cohomology
groups, defined to be the cohomology of a complex whose cochain groups
are

Δk(M,R) := Hom(Δk(M), R)

for a coefficient ring R, and whose coboundary operator

δ : Δk(M,R) → Δk+1(M,R)

is given by δϕ(σ) := ϕ(∂σ) for any (k+1)-simplex σ inM . There is a canonical
well-defined pairing

Hk(M,R) ×Hk(M) → R : ([ϕ], [σ]) 7→ ϕ(σ).

It is often convenient to recover the cohomology groups with values in the
real numbers in a geometric way, for instance through differential forms. Let
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us recall how this works: the integrals of k-forms ϕ ∈ Ωk(M) over k-simplices
σ ∈ Δk(M) define homomorphisms Ψk : Ωk(M) → Δk(M,R) which, by
Stokes’s Theorem, fit together to a chain map. The induced homomorphism

Ψ∗ : Hk
dR(M) → Hk(M,R)

from de Rham cohomology to singular cohomology is an isomorphism, which
is known as the de Rham isomorphism [Bre93].

Analogously as for ordinary singular cohomology, we can also define birel-
ative cohomology. Thus there are birelative cochain groups Δk(M1,M2, Q,R),
birelative cohomology groups Hk(M1,M2, Q,R), and a canonical pairing

Hk(M1,M2, Q,R) ×Hk(M1,M2, Q) → R.

Note that because the exact sequence (3 – 4) splits, the dual sequence

0 Δk−1(Q,R) Δk(M1,M2, R) Δk(M1)⊕Δk(M2) 0

is exact, too, and induces a long exact sequence in cohomology:

... Hk−1(Q,R) Hk(M1,M2, Q,R)

Hk(M1, R) ⊕Hk(M2, R) Hk(Q,R) ...

(3 – 5)

We would like to express the birelative cohomology groups with real co-
efficients by differential forms in a similar way as the de Rham isomorphism
does it for ordinary cohomology. To this end we consider the vector spaces

Ωk(M1,M2, Q) := Ωk(M1) ⊕Ωk(M2) ⊕Ωk−1(Q)

together with the linear maps

d : Ωk(M1,M2, Q) → Ωk+1(M1,M2, Q)

(H1,H2, $) 7→ (dH1, dH2, ι
∗(p∗1H1−p

∗
2H2)− d$) .

This defines a complex:

d2(H1,H2, $) = d(dH1, dH2, ι
∗(p∗1H1 − p∗2H2) − d$)

= (d2H1, d
2H2, ι

∗(p∗1dH1 − p∗2dH2)

−dι∗(p∗1H1 − p∗2H2) + d2$)

= (0, 0, 0).

We call the cohomology of this complex the birelative de Rham cohomology
and denote it by Hk

dR(M1,M2, Q). By putting M2 = pt, this is nothing but the
relative de Rham cohomology of the inclusion ι : Q→M [BT82]. Notice that



3.2 Bi-Branes I: Birelative Cohomology 79

a topologically trivial M1-M2-bi-brane (Q,$) provides us with an element
(H1,H2, $) of Ω3(M1,M2, Q). The relation between the 3-forms Hi and the
2-form $ from Definition 3.2.2 shows that (H1,H2, $) is a cocycle and thus
defines a class in the birelative de Rham cohomology.

Similarly to the definition of the homomorphism Ψ : Ωk(M) → Δk(M,R)
mentioned above we obtain a natural homomorphism

Ψbi : Ωk(M1,M2, Q) → Δk(M1,M2, Q,R)

which by definition associates to a triple (H1,H2, $) ∈ Ωk(M1,M2, Q) eval-
uated on an element (σ1, σ2, τ) ∈ Δk(M1,M2, Q) the real number

Ψbi(H1,H2, $)(σ1, σ2, τ) :=
∫

σ1

H1 +
∫

σ2

H2 +
∫

τ

$ . (3 – 6)

Lemma 3.2.3. The homomorphisms Ψbi fit together to a chain map, and the
induced homomorphism

Ψ∗
bi : Hk

dR(M1,M2, Q) → Hk(M1,M2, Q,R)

is an isomorphism.

Proof. We show that Ψbi is a chain map:

(δΨbi(H1,H2, $))(σ1, σ2, τ)

= Ψbi(H1,H2, $)(∂σ1 + (p1)∗ι∗τ, ∂σ2 − (p2)∗ι∗τ,−∂τ)

=
∫

∂σ1+(p1)∗ι∗τ

H1 +
∫

∂σ2−(p2)∗ι∗τ

H2 +
∫

−∂τ

$

=
∫

σ1

dH1 +
∫

σ2

dH2 +
∫

τ

ι∗(p∗1H1 − p∗2H2) − d$

= Ψbi(dH1, dH2, ι
∗(p∗1H1 − p∗2H2) − d$)(σ1, σ2, τ)

= Ψbi(d(H1,H2, $))(σ1, σ2, τ).

To prove the second claim, note that by definition we have an exact sequence

0 Ωk−1(Q)
α

Ωk(M1,M2, Q)
β

Ωk(M1)⊕Ωk(M2) 0 ,

where α($) := (0, 0, $) and β(H1,H2, $) := (H1,H2). It induces a long exact
sequence

... Hk−1
dR (Q)

α∗

Hk
dR(M1,M2, Q)

β∗

Hk
dR(M1) ⊕Hk

dR(M2)

Hk
dR(Q) ...
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in (birelative) de Rham cohomology. Together with the long exact sequence
(3 – 5) in birelative cohomology with values in R, we have the following dia-
gram with exact columns:

Hk−1
dR (M1)⊕H

k−1
dR (M2)

Ψ∗⊕Ψ∗

Hk−1(M1,R) ⊕Hk−1(M2,R)

Hk−1
dR (Q) Ψ∗ Hk−1(Q,R)

Hk
dR(M1,M2, Q) Ψ∗

bi Hk(M1,M2, Q,R)

Hk
dR(M1)⊕Hk

dR(M2) Ψ∗⊕Ψ∗ Hk(M1,R) ⊕Hk(M2,R)

Hk
dR(Q)

Ψ∗ Hk(Q,R)

It is easy to check that all subdiagrams commute, so that the 5-lemma
[Bre93] implies that Ψ∗

bi is an isomorphism. �

In the same way as for ordinary cohomology, we say that a cocycle in
Ωk(M1,M2, Q) has integral class if its class – identified by Ψ∗

bi with a class in
Hk(M1,M2, Q,R) – lies in the image of the induced homomorphism

Hk(M1,M2, Q,Z) → Hk(M1,M2, Q,R) .

In this case the canonical pairing (3 – 6) of Ψ∗
bi([H1,H2, $]) with any birelative

homology class [(σ1, σ2, τ)], given by
∫

σ1

H1 +
∫

σ2

H2 +
∫

τ

$ ,

is an integer.

Proposition 3.2.4. The Wess-Zumino term (3 – 3) of a topologically trivial
M1-M2-bi-brane (Q,$),

SWZ
H1,H2,$(Φ1, Φ2, ΦS) :=

∫

B1

Φ∗
1H1 +

∫

B2

Φ∗
2H2 +

∫

D

Φ∗
S$,

is well-defined up to integers, provided that the cocycle (H1,H2, $) has integral
class.

Proof. To prove this claim, recall that the definition of SWZ
H1,H2,$(Φ1, Φ2, ΦS)

involves choices of a disc D and of three-dimensional manifolds Bi. Let us
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assume for simplicity that the maps Φi : Bi → Mi and ΦS : D → Q are
embeddings, so that we can consider with the images as submanifolds D of Q
and Bi of Mi. In the general case, one can work with pullbacks on the abstract
manifolds. If we represent the submanifolds as singular chains, then

∂D = φS(S), ∂B1 = φ1(Σ1) − (p1)∗D and ∂B2 = φ2(Σ2) + (p2)∗D.

Consider now different choices D′, B′
1 and B′

2, and let τ := D−D′ be a chain
in Δ2(Q) and σi := Bi −B′

i be chains in Δ3(Mi). We find

∂τ = 0, ∂σ1 = −(p1)∗τ and ∂σ2 = (p2)∗τ ,

so that (σ1, σ2, τ) defines a class in the birelative homology H3(M1,M2, Q).
The ambiguities of the Wess-Zumino term are thus of the form

(∫

B1

H1 +
∫

B2

H2 +
∫

D

$

)

−

(∫

B′
1

H1 +
∫

B′
2

H2 +
∫

D′

$

)

=
∫

σ1

H1 +
∫

σ2

H2 +
∫

τ

$.

In view of (3 – 6) these ambiguities are nothing but the pairing of the
birelative cycle (σ1, σ2, τ) with (H1,H2, $). If (H1,H2, $) is integral, this
gives an integer. �

Summarizing, from the discussion of a defect line separating two topolog-
ically trivial sigma models we have seen that a 2-form $ on a submanifold in
the product of the two target spaces is appropriate to define the Wess-Zumino
term, and thus holonomy for surfaces with boundary. In the next section we
consider general sigma models.

3.3 Bi-Branes II: Gerbe Bimodules

Just as in the previous section, we consider a worldsheet Σ with a defect line
S separating sigma models which now may be topologically non-trivial. In
order to generalize Definition 3.2.2 to topologically non-trivial bi-branes, we
invent the following new structure.

Definition 3.3.1. Let G and H be bundle gerbes over M . A G-H-bimodule is
a 1-morphism

D : G → H⊗ I$.

Bundle gerbe bimodules behave similar to bundle gerbe modules. Again, its
definition as 1-morphisms makes it clear that G-H-bimodules form a category
G-H-Bimod. Any pair of 1-isomorphisms A : G → G′ and B : H → H′ defines
an equivalence of categories



82 Modules and Bimodules

G-H-Bimod ∼= G′-H′-Bimod. (3 – 7)

Using the duality on the 2-category of bundle gerbes introduced in §2.5, one
can deduce equivalences of categories

G-H-Bimod ∼= LMod(H∗ ⊗ G) ∼= RMod(G∗ ⊗H). (3 – 8)

There are some more analogies with bimodules over algebras. For example,
if D is a G-H-bimodule, and E is a left H-module, we can form the tensor
product over H, which is here just the composition

G
D

H⊗ I$
E⊗id

Iρ ⊗ I$ = Iρ+$.

This gives obviously a left G-module, which we denote by D ⊗H E . Similarly,
a G-H-bimodule D and a right G-module E give a right H-module E ⊗G D. On
the other hand, a G-H-bimodule can in general neither be considered as a left
G-module nor as a right H-module. Let us finally discuss a Iρ1 -Iρ2 -bimodule
for trivial bundle gerbes Iρ1 and Iρ2 . The equivalence Bun from Proposition
2.4.5 becomes now a functor

Bun : Iρ1 -Iρ2 -Bimod → Bun(M)

whereby such a bimodule is nothing but a vector bundle over M . Moreover,
if D is a G1-G2-bimodule, any pair of trivializations T1 : G1 → Iρ1 and T2 :
G2 → Iρ2 induces by (3 – 7) a functor

G1-G2-Bimod → Bun(M). (3 – 9)

To consider a bundle gerbe bimodule D in terms of local expressions,
let V be an open cover of M , (g,A,B) be a cocycle for G, and (g′, A′, B′)
a cocycle for H. Then, the bimodule has local data (Hij , Qi) consisting of
smooth functions Hij : Vi ∩ Vj → U(n) and u(n)-valued 1-forms Qi on Vi,
similar to a bundle gerbe module, but now satisfying

g′ijk = gijk ∙Hik ∙H−1
jk ∙H−1

ij

A′
ij = Aij +Qj −H−1

ij QiHij − iH−1
ij dHij

B′
i +$ = Bi + dQi.

Now we are ready to generalize Definition 3.2.2 of a topologically trivial bi-
brane to a general bi-brane.

Definition 3.3.2. Let G1 be a bundle gerbe over M1, and G2 be a bundle gerbe
over M2. A G1-G2-bi-brane is a submanifold Q ⊂ M1 ×M2 together with a
(p∗1G1)|Q-(p∗2G2)|Q-bimodule: a 1-morphism

D : (p∗1G1)|Q → (p∗2G2)|Q ⊗ I$.

The two-form $ is called the curvature, and the submanifold Q is called the
world volume of the bi-brane.
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Notice that the curvatures Hi := curv(Gi) and the 2-form $ of a G1-G2-bi-
brane are related in the same way as for a topologically trivial bi-brane. With
the present definition of a bi-brane, the equivalences (3 – 8) between bundle
gerbe bimodules and bundle gerbe modules suggests a certain relation between
bi-branes and D-branes, which are, from the point of view of conformal field
theory, related to the so-called folding trick [WA94, FSW].

We recall that we defined the Wess-Zumino term in the previous section
for the following situation: a closed oriented worldsheet Σ with defect line
S, which separates Σ into two components Σ1 and Σ2, together with maps
φi : Σi →Mi for i = 1, 2 such that the image of the combined map

φS : S →M1 ×M2 : s 7→ (φ1(s), φ2(s))

is contained in Q. The orientation of Σi is the one inherited from the orien-
tation of Σ, and without loss of generality we assume ∂Σ1 = S and ∂Σ2 = S̄,
see Figure 3.3 on page 75.

Definition 3.3.3. Let Gi be a bundle gerbe over Mi for i = 1, 2, and let (Q,D)
be a G1-G2-bi-brane. Let Σ be an oriented closed surface with defect line S,
and let φi : Σi →Mi be smooth maps such that φS(S) ⊂ Q. Let

T1 : φ∗1G1 → Iρ1 and T2 : φ∗2G2 → Iρ2

be trivializations of the pullback bundle gerbes over Σi, and let

F := Bun((T2 ⊗ id)|S ◦ φ∗SD ◦ T −1
1 |S)

be the vector bundle over S associated by (3 – 9). The oriented bi-brane holo-
nomy is the complex number

HolG1,G2,D(φ1, φ2, Σ) := exp 2πi

(∫

Σ1

ρ1 +
∫

Σ2

ρ2

)

∙ tr(HolF (S)) ∈ C.

This definition does not depend on the choice of the trivializations T1

and T2, as we shall now establish. If T ′
1 and T ′

2 are two different choices of
trivializations, and F ′ is the corresponding vector bundle over S, we obtain
the line bundles

Ti := Bun(T ′
i ◦ T −1

i )

over Σi of curvature curv(Ti) = ρ′i − ρi by Corollary 2.4.6. Then we have

(T2 ⊗ id) ◦ φ∗SD ◦ T −1
2

∼= (T2 ◦ (T ′
2 )−1 ⊗ id) ◦ (T ′

2 ⊗ id) ◦ D ◦ (T ′
1 )−1 ◦ T ′

1 ◦ T −1
1 .

Now the compatibility of the functor Bun with the composition of 1-
morphisms by Proposition 2.4.5 (i) gives us an isomorphism

F ∼= T ∗
2 ⊗ F ′ ⊗ T1
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of vector bundles over S. By construction we have ∂Σ1 = S and ∂Σ2 = S,
and since the curvature of the bundles Ti is curv(Ti) = ρ′i−ρi, the holonomies
of T1 and T2 around S are given by

HolT1(S) = exp

(

2πi
∫

Σ1

ρ′1 − ρ1

)

and (HolT2(S))−1 = exp

(

2πi
∫

Σ2

ρ′2 − ρ2

)

respectively. From the isomorphism of vector bundles above we get

tr(HolE(S)) = tr(HolT∗
2 ⊗F ′⊗T1(()S)) = (HolT2(S))−1 ∙tr(HolF ′(S)) ∙HolT1(S).

Together with the above expressions for the holonomies of T1 and T2 this
shows the independence of the holonomy of the choice of the trivializations.

We show in Figure 3.7 on page 89 how oriented bi-brane holonomy can be
computed from local expressions for the bundle gerbes and the bi-modules.

Proposition 3.3.4. Let Gi be bundle gerbes over smooth manifolds Mi, re-
spectively, and let (Q,D) be a G1-G2-bi-brane of curvature $. Oriented bi-brane
holonomy has the following properties:

(i) If there is a 2-isomorphism D ⇒ D′,

HolG1,G2,D(φ1, φ2, Σ) = HolG1,G2,D′(φ1, φ2).

(ii) If Ai : G′
i → Gi are 1-isomorphisms for i = 1, 2, and D′ := (A−1

2 ⊗ id) ◦
D ◦ A1 is the corresponding bimodule under the equivalence (3 – 7)

HolG1,G2,D(φ1, φ2, Σ) = HolG′
1,G′

2,D′(φ1, φ2, Σ).

(iii) If B is a three-dimensional manifold separated in two parts B = B1∪DB2

along a disc D, and Φi : Bi →Mi are smooth maps such that the image
of the combined map

ΦS : D →M1 ×M2 : x 7→ (Φ1(x), Φ2(x))

is contained in the submanifold Q,

HolG1,G2,D(Φ|Σ1 , Φ|Σ2 , ∂B)

= exp 2πi

(∫

B1

Φ∗
1H1 +

∫

B2

Φ∗
2H2 +

∫

D

Φ∗
S$

)

,

where Σi := ∂Bi \D and Hi := curv(Gi).

Proof. The only non-trivial part is (iii), and it can be proven similarly to
Proposition 3.1.4. So, let Ti : Φ∗Gi|∂Bi → Iρi be trivializations of the two
bundle gerbes over ∂Bi, thus producing a vector bundle F over D of curvature

1
n

tr(curv(F )) = Φ∗
S$ + ρ2|D − ρ1|D. (3 – 10)
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The left hand side of the claimed equation is

HolG1,G2,D(Φ|Σ1 , Φ|Σ2 , ∂B) = exp 2πi

(∫

Σ1

ρ1 +
∫

Σ2

ρ2

)

∙ tr(HolF (S)).

Here the holonomy of the vector bundle F around S := ∂Σ1 = ∂D becomes
by (3 – 10)

tr(HolF (S)) = tr(HolF (∂D)) = exp

(

2πi
∫

D

Φ∗
S$ + ρ2 − ρ1

)

. (3 – 11)

The holonomy of the bundle gerbe Gi|∂Bi
around the closed surface ∂Bi is,

by definition,

HolGi(Φi, ∂Bi) = exp

(

2πi
∫

∂Bi

ρi

)

= exp

(

2πi
∫

Σi

ρi ± 2πi
∫

D

ρi

)

with a minus sign for i = 1 and a plus sign for i = 2, according to the relative
orientations of D and ∂Bi. On the other hand, we have by Theorem 1.5.4

HolGi(Φi, ∂Bi) = exp

(

2πi
∫

Bi

Hi

)

.

The last four equalities prove the claim. �

In particular, since we can apply Proposition 3.3.4 to any cycle in the
birelative homology, we reproduce the integrality condition from Proposition
3.2.4,

Corollary 3.3.5. Let Gi be a bundle gerbe over Mi of curvature Hi, for
i = 1, 2, and let (Q,D) be a G1-G2-bi-brane of curvature $. Then, the triple
(H1,H2, $) is a cocycle in the birelative de Rham cohomology with integral
class.

Summarizing, we have – inspired by sigma models – extended the notion
of surface holonomy for oriented closed surfaces from §1.5 and for oriented
surface with boundary from §3.1 to oriented surface with defect lines.

3.4 Application: Worldsheets with Boundaries and
Defects

In this section we discuss sigma models for worldsheets with boundaries and
defect lines, and define Wess-Zumino terms using oriented bi-brane and D-
brane holonomy. Let us start with the situation where there are no defect lines
but boundaries. Compared to Definition 3.1.3, we admit several D-branes,
and different boundary components may be mapped into the world volumes
of different D-branes.
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Definition 3.4.1. A sigma model for oriented worldsheets with boundary is a
smooth Riemannian manifold (M, g), a bundle gerbe G over M and a family
E = {(Qi, Ei)}i∈I of G-D-branes. Let Σ be an oriented conformal surface with
boundary components {Cb}b∈B, and let φ : Σ →M be a smooth map together
with a map i : B → I that assigns to each boundary component b a D-brane
i(b) in such a way that φ(Cb) ⊂ Qi(b). The Feynman amplitude of φ : Σ →M
is the complex number

Ag,G,E(φ,Σ) := Skin
g (φ) ∙ exp

(

2πi
∫

Σ

ρ

)

∙
∏

b∈B

tr (HolEb
(Cb)) ∈ C,

where the 2-form ρ ∈ Ω2(Σ) comes from a trivialization T : φ∗G → Iρ, and
the vector bundles Eb over Cb are defined by Eb := Bun(φ∗Ei(b) ◦ T −1|Cb

).

From the discussion of the oriented D-brane holonomy in Definition 3.1.3
it follows directly that the amplitude Ag,G,E(φ,Σ) does not depend on the
choice of the trivialization.

Let us at this place explain why we still speak about holonomy and not
about parallel transport, even when the surface has boundaries. To see this it
is useful to consider a string moving through a target space M , parameterized
by a worldsheet which is a cylinder Σ = S1×[0, 1]. The situation of Definitions
3.1.3 and 3.4.1 refers to an open string, which moves along a closed line, so that
the cylinder is swept out like in Figure 3.4. Since we have a closed path, we

Q1 Q2

Σ

Figure 3.4: An open string moves on a closed path,
its endpoints restricted to two D-branes with world
volumes Q1 and Q2. It sweeps out a surface Σ with
boundary.

speak about holonomy. In contrast, the same surface Σ can have a completely
different meaning, namely that of a closed string moving along an open path
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Σ

Figure 3.5: A closed string moves along an open
path.

like in Figure 3.5. Situations with such field insertions at the endpoints of
open paths are not covered by Definition 3.4.1.

To deal with them, one has two alternatives: the first is to consider the
cylinder in M as a path in the loop space LM . Parallel transport along such
paths is provided by line bundles with connection on LM . Indeed, any gerbe
over M with connection defines a line bundle with connection over LM by
so-called transgression. This was discovered first on the level of Deligne coho-
mology [Gaw88, Bry93, GT01], but has also found geometric interpretation for
Dixmier-Douady sheaves of groupoids with connection [Bry93], and for bundle
gerbes [GR02, Wal06]. The second alternative is to consider the cylinder as
a 2-morphism in the path 2-groupoid of the manifold M . Then one can use
the theory of transport 2-functors, and perform an actual parallel transport
along this 2-morphism [SWa, SWb].

Now we incorporate defect lines into the above definition of a sigma model
for worldsheets with boundaries. In general, we say that an oriented worldsheet
with boundary and defects is an oriented conformal surface Σ with boundary
components {Cb}b∈B and (non-intersecting) defect lines {Sd}d∈D, see Figure
3.6. The connected components of Σ\{Sd}d∈D are denoted by Σk, labelled by

C

S1

S2

Σ1

Σ2

Figure 3.6: A worldsheet with boundary C is sep-
arated by two defect lines S1 and S2 in two compo-
nents Σ1 and Σ2.
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an index set K. Note that every component Σk inherits a conformal structure
and an orientation from Σ. We denote by k(b) the label of the component
Σk(b) to which the boundary Cb belongs, and similarly by k1(d) and k2(d) the
labels of the components on the two sides of the defect line Sd. We make the
convention that the orientation induced on a defect line Sd from the compo-
nent Σk1(d) coincides with the orientation on Sd, while then the orientation
induced from Σk2(d) is then necessarily opposite.

Definition 3.4.2.

(i) A sigma model for oriented worldsheets with boundary and defects is a
family M = {(Mk, gk,Gk,Ek)}k∈K of sigma models for oriented world-
sheets with boundary, each equipped with a family of D-branes collected in
Ek = {(Qk,i, Ek,i)}i∈Ik

, together with a family D = {(k1
j , k

2
j , Qj ,Dj)}j∈J ,

where k1
j , k

2
j ∈ K and (Qj ,Dj) is a Gk1

j
-Gk2

j
-bi-brane.

(ii) Let Σ be a worldsheet with boundary and defects with components Σk

labelled by the same index set as the sigma models in (i), and let i : B →
Ik(b) and j : D → J be maps assigning to each boundary component a
D-brane and to each defect line a bi-brane. Let {φk}k∈K be a family of
smooth maps φk : Σk →Mk with

φk(b)(Cb) ⊂ Qk(b),i(b) and φSd
(Sd) ⊂ Qj(d),

where φSd
: Sd →Mk1(d) ×Mk2(d) is the map combined from the restric-

tions of φk1(d) and φk2(d) to Sd. The Feynman amplitude of the family
{φk} is the complex number

AM,D({φk}, Σ) :=
∏

k∈K

Skin
gk

(φk) ∙ exp

(

2πi
∫

Σk

ρk

)

∙
∏

b∈B

tr (HolEb
(Cb)) ∙

∏

d∈D

tr (HolFd
(Sd)) ∈ C,

where the 2-forms ρk ∈ Ω2(Σk) come from trivialization Tk : φ∗kGk → Iρk
,

and the vector bundles Eb over Cb and Fd over Sd are defined by

Eb := Bun(φ∗kEk(b),i(b) ◦ T
−1

k |Cb
)

and
Fd := Bun((Tk2(d) ⊗ id)|Sd

◦ φ∗Sd
Dd ◦ T −1

k1(d)|Sd
).

This Feynman amplitude is again independent of the choices of the trivi-
alizations. Notice that we have not imposed any constraints on the topology
of the target spaces or the branes. Finally, we show in Figure 3.7 how the
holonomy of a surface with boundary and defects can be obtained from local
data.
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Σ1

∂Σ Bj Pj

Bk

Aij

gijk

Pk

Gjk

Σ2

i j

kl

S

B′
l

Qi

QkHik

Figure 3.7: A piece of a surface with boundary and
a defect line, and with an adapted triangulation,
becomes decorated with local data of two bundle
gerbes, a bundle gerbe module and a bundle gerbe
bimodule.

3.5 Symmetric Branes in Wess-Zumino-Witten Models

As we have explained in §1.6, a Wess-Zumino-Witten model is a sigma model
whose target space is a Lie group, whose metric is Ad-invariant, and whose
bundle gerbe has a certain curvature. Wess-Zumino-Witten models give rise
to important examples of two-dimensional conformal field theories.

In this section we describe, which of the D-branes and bi-branes can be
used as branes for Wess-Zumino-Witten models. We call them symmetric D-
branes and symmetric bi-branes respectively. In the associated conformal field
theory, symmetric D-branes give rise to conformal boundary conditions, while
symmetric bi-branes give rise to topological defect lines. The definition of
symmetric branes divides in two parts. The first part is to decide which world
volumes one has to consider. One rationale here is to study the scattering of
bulk fields. This is based on the general idea (see e.g. [FG94]) that (a subspace
of) the space of bulk fields can be identified with a truncation and deformation
of the algebra of functions on the target space. The second part is to find
conditions on the bundle gerbe modules and bimodules that live on these
world volumes. In the case of D-branes the study of the scattering of bulk fields
amounts, in tree level approximation to string theory scattering amplitudes, to
computing the two-point functions of bulk fields on a disc with given boundary
condition. By factorization to a three-point function on the sphere and a one-
point function on the disc, this can be reduced [VFPS97, FFFS00] to the
computation of one-point functions of bulk fields on the disc. The result of this
computation is, that the world volumes of symmetric D-branes are conjugacy
classes in the target space Lie group G [FFFS00].

The conditions on the bundle gerbe module of a symmetric D-brane have
been deduced in [Gaw05]. Summarizing, we have
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Definition 3.5.1. Let (G, 〈−,−〉 ,G) be a Wess-Zumino-Witten model. A G-
D-brane (Q, E) is called symmetric, if the following three conditions are sat-
isfied:

1. its world volume Q is a conjugacy class Ch of G;
2. the curvature curv(E) of the vector bundle E of the G-module E takes its

values only in the center of the Lie algebra u(n) and can thus be identified
with a real 2-form;

3. the curvature ω is fixed to multiple of the 2-form

ωh =

〈

θ|Ch
∧

Ad−1 + idg

Ad−1 − idg

θ|Ch

〉

,

which has already appeared in the construction of canonical bundle gerbes
over Lie groups in §1.4.

Conditions 2 and 3 restrict the choice of the conjugacy class to conjugacy
classes that correspond to integrable highest weights [Gaw05]. This amounts in
particular to have a finite number of non-intersecting D-brane world volumes.
Recall that the curvature H := curv(G) is fixed to a multiple kη of the 3-form
η on G, and that η|Ch

= dωh. Among all 2-forms with the latter property,
ωh is distinguished by the fact that it is invariant under the conjugation
action of G on Ch. This invariance is essential for boundary conditions for the
corresponding conformal field theory.

In order to find the world volumes for symmetric bi-branes we use again the
scattering of bulk fields [FSW]. In the tree-level approximation we consider the
two-point function of bulk fields on a world sheet that is a sphere S2 containing
a closed defect line, which is the equator of the sphere. If both bulk field
insertions are on the same hemisphere, then by factorization we just obtain
the correlator in the absence of a defect, multiplied by the quantum dimension
of the defect [FFRS06]. To get information on the relevant geometry of the
target space, we must thus consider the situation with the two bulk insertions
on different hemispheres, i.e. on different sides of the defect line.

In the calculation performed in [FSW], we take both target spaces to be
the same Lie group G, and thus expect to find subsets of the product G×G.
Interestingly, 2-characters of the group G pop up, functions on G × G given
by

χ(2) : G×G→ C : (g1, g2) 7→ tr(g1g
−1
2 )

in some representation. They first appeared in [Fro96] in the expansion of
group determinants. Compared to characters, they contain more information
about the group; e.g. they allow one to determine whether a representation
is real or pseudo-real. Still, 2-characters and characters do not determine a
group up to isomorphism. A surprisingly recent result [Hor99] states that a
finite group is determined by its 1-, 2- and 3-characters.

The result of the calculation from [FSW] is, that the geometric object in
G×G that is relevant for symmetric bi-branes is the set of those points (g1, g2)
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of G×G on which the 2-character of a certain representation is constant: these
subsets of G×G are the following submanifolds:

Definition 3.5.2. For a compact connected Lie group G and elements
h1, h2 ∈ G we call the submanifold

Bh1,h2 :=
{
(g1, g2) ∈ G×G

∣
∣ ∃x1, x2 ∈ G with g1 = x1h1x

−1
2 , g2 = x1h2x

−1
2

}

in G×G the biconjugacy class of the pair (h1, h2).

Biconjugacy classes inherit from the diagonal left and diagonal right ac-
tions of G on G × G two commuting actions of G. Obviously, 2-characters
are constant on biconjugacy classes. In fact, very much like the characters
of irreducible G-representations form a natural basis for the functions on the
space of conjugacy classes, the 2-characters of irreducible representations form
a basis for the space of functions on biconjugacy classes. This leads us to the
conclusion that the world volumes of symmetric bi-branes are biconjugacy
classes. Next we observe that the smooth map

μ̃ : G×G→ G : (g1, g2) 7→ g1g
−1
2 (3 – 12)

intertwines the diagonal left and diagonal right action of G on G × G and
the adjoint and trivial actions of G on itself, respectively. Put differently, μ̃
defines the structure of a trivializable G-equivariant principal G-bundle over
G. Indeed, the G-action on the fibers is by diagonal right multiplication, so
that the G-equivariant diffeomorphism t : (g1, g2) 7→ (g1g2, g2) furnishes a
global trivialization, where the trivial G-bundle p1 : G × G → G over G
projects on the first component.

Lemma 3.5.3. A biconjugacy class in G×G is the preimage of a conjugacy
class in G under the projection μ̃:

Bh1,h2
= μ̃−1(Ch1h−1

2
) =

{
(g1, g2) ∈ G×G

∣
∣ g1g

−1
2 ∈ Ch1h−1

2

}
;

in particular,
Bh1,h2 = Bh1h−1

2 ,e.

Proof. We observe that for every element (g1, g2) ∈ Bh1,h2 we have g1 =
x1h1x

−1
2 and g2 = x1h2x

−1
2 for some x1, x2 ∈ G, and hence

g1g
−1
2 = x1h1h

−1
2 x−1

1 ∈ Ch1h−1
2

Conversely, given (g1, g2) ∈ G × G such that there exists some x ∈ G with
xg1g

−1
2 x−1 = h1h

−1
2 , we set x1 := x−1 and x2 := g−1

2 x−1h2 and obtain
g1 = x1h1x

−1
2 and g2 = x1h2x

−1
2 , which shows that (g1, g2) ∈ Bh1,h2 . �
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To conclude, biconjugacy classes have the topology of a direct product
of G with a conjugacy class. Thus for simply connected groups, they are in
particular simply connected.

The next step is to find conditions on the bundle gerbe bimodule of a
bi-brane. Motivated by Definition 3.5.1 we would like to fix the curvature of
the bi-brane to a canonical 2-form on the biconjugacy class, which is invariant
under a natural action. Consider again the map μ̃ whose restriction maps
the bi-conjugacy class Bh1,h2 to the conjugacy class Ch1h−1

2
. We introduce the

two-form

$h1,h2
:= μ̃∗ωh1h−1

2
−

1
2
〈p∗1θ ∧ p

∗
2θ〉

on Bh1,h2 , where pi, i = 1, 2, is the projection from G×G→ G on its ith factor,
and both summands are restricted to the submanifold Bh1,h2 of G×G. From
the intertwining properties of μ̃ it follows that the two-form $ is invariant
under both diagonal actions of G on Bh1,h2 .

Lemma 3.5.4. Let G be a Lie group, let 〈−,−〉 be an Ad-invariant symmetric
bilinear form on g and let η := 1

6 〈θ ∧ [θ ∧ θ]〉 be the associated 3-form on G.
Restricted to a biconjugacy class Bh1,h2 in G×G, we have

p∗1η = p∗2η + d$h1,h2

Proof. We first recall the relation

μ̃∗η = p∗1η − p∗2η +
1
2
d 〈p∗1θ ∧ p

∗
2θ〉

which can be derived explicitly, see, e.g. [AMM98]. On the other hand, we
find

(μ̃∗η) |Bh1,h2
= μ̃∗(η|C

h1h
−1
2

) = μ̃∗(dωh1h−1
2

) = dμ̃∗ωh1h−1
2

;

together with the definition of$h1,h2 the last two equations imply the claim. �

Summarizing, we expect that a symmetric bi-brane that separates Wess-
Zumino-Witten models whose target spaces are the same Lie group G, satisfies
the following two conditions:

1. its world volume is a biconjugacy class Bh1,h2 in G×G.
2. its curvature is fixed to be the 2-form $h1,h2 .

In the next section we find more evidence that the 2-form $h1,h2 on a bicon-
jugacy class is related to conformal field theories.

3.6 Towards a geometric Realization of the Verlinde
Algebra

As mentioned in the introduction to the present chapter, defect lines appear
naturally in algebraic approaches to rational conformal field theories [PZ01,
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FRS02]. In the TFT approach [FRS02] a complete description of such defects
is available [FFRS04]. It allows one, in particular, to define the fusion of two
defects and of a defect with a conformal boundary condition. To be a bit more
specific, we label by {A1, A2, ...} conformal field theories which are compatible
in a certain sense. Then there exist defect lines which separate the conformal
field theory A1 present on a region of worldsheet to their left (with respect to
the orientation on the defect line) from a conformal field theory A2 to their
right hand side. Such a defect will be denoted by A1BA2 . Then the fusion of
two defects A1BA2 and A2BA3 yields a defect of type A1BA3 :

A1BA3 = A1BA2 ?A2 A2BA3 .

The second type of fusion associates to a defect A1BA2 and boundary condition
A2N for the theory A2 a boundary condition A1N for A1,

A1N = A1BA2 ?A2 A2N .

In the framework of [FRS02], the labels {A1, A2, ...} correspond to certain
algebras in some representation category. Boundary conditions are described
by modules, and defects by bimodules of these algebras; the fusion operation
?A is realized as the tensor product over A.

We expect that the description of D-branes by bundle gerbe modules and
bi-branes by bundle gerbe bi-modules we gave in this chapter has analogous
notions of fusion. Recall that we already defined the tensor product between a
G1-G2-bimodule and a G2-G3-bimodule and the tensor product between a G1-
G2-bimodule and a left G2-module or a right G1-module. However, these bundle
gerbes have to be defined over the same manifold, against what the world
volumes of symmetric bi-branes and D-branes, namely biconjugacy classes
and conjugacy classes, are in general different, even disjoint.

So it is a crucial task to develop fusion rules

Bα ? Bβ =
∑

γ

N γ
αβBγ (3 – 13)

for symmetric bi-branes in Wess-Zumino-Witten models. As has been seen in
the algebraic approach, for these bi-branes there exists a natural notion of
duality. It can be characterized by the property that the fusion of a bi-brane
and its dual contains the special bi-brane which with respect to fusion acts
as the identity. This is the bi-brane whose world volume is the biconjugacy
class B(e,e), i.e. the diagonal G ⊂ G×G. By invoking this duality, instead of
working with the fusion rules (3 – 13) we consider the multiplicities

Nαβγ := N γ∨

αβ .

These structure constants are, in general, not symmetric; from the results
of the algebraic approach, however, we expect them to be invariant under
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cyclic permutations. The algebraic approach also predicts that in the case of
compact connected and simply connected Lie groups, the constants N γ

αβ are
just the ordinary fusion multiplicities arising in the chiral theory, which satisfy
the Verlinde formula.

We now turn our attention to the fusion Bβ ?Cα of a bi-brane whose world
volume is a biconjugacy class Bβ := μ̃−1(Cβ) in G×G, where μ̃ is as in (3 – 12),
with a D-brane whose world volume is a conjugacy class Cα of G. To analyze
this issue, we work with fusion coefficient Nαβγ : it is the multiplicity of a
D-brane with world volume Cγ in the fusion Bβ ? Cα. In the sequel we assume
that all group elements are regular, i.e. contained in just a single maximal
torus of G. We are thus lead to consider the submanifold

Mαβγ := p−1
1 Cα ∩ μ̃−1Cβ ∩ p−1

2 Cγ

=
{
(g1, g2) ∈ G×G | g1 ∈ Cα, g2 ∈ Cγ , g1g

−1
2 ∈ Cβ

}

of G×G. It is equipped with a natural G-action, obtained as the diagonal con-
jugation on both components. Both D-branes and bi-branes are equipped with
two-forms; as a consequence, Mαβγ comes with a natural two-form, namely
the sum

ωαβγ := p∗1ωα|Mαβγ
+ p∗2ωγ |Mαβγ

+$β |Mαβγ
(3 – 14)

of the restrictions of the three two-forms p∗1ωα, p∗2ωγ and $β . According to the
results obtained in the algebraic approach, this space should be linked to the
fusion rules of the chiral Wess-Zumino-Witten theory at level k. To see how
such a relation can exist, we recall that fusion rules are dimensions of spaces
of conformal blocks. The latter can be obtained by geometric quantization
from suitable moduli spaces of flat connections; as such they arise in the
quantization of Chern-Simons theories.

The situation relevant for Verlinde multiplicities is given by the three-
punctured sphere S2, also known as the

”
pair of pants“ or trinion. In classical

Chern-Simons theory one considers the moduli space of flat connections on S2

whose monodromy around the three insertion points takes values in conjugacy
classes Cα, Cβ and Cγ , respectively. Taking the monodromies gα ∈ Cα, gβ ∈ Cβ

and gγ ∈ Cγ along circles of the same orientation around all three insertions,
the relations in the fundamental group of the trinion impose that gαgβgγ =
1. Since monodromies are defined only up to simultaneous conjugation, the
moduli space that matters in classical Chern-Simons theory is isomorphic to
the quotient Mαβγ/G.

Note that the bounds on the range of bi-branes that appear in the fu-
sion are already present before geometric quantization. Indeed, the relevant
product

Ch ? Ch′ := {gg′ | g ∈ Ch, g
′ ∈ Ch′} (3 – 15)

of conjugacy classes has already been considered, for G = SU(2), in [JW92].
It is convenient to characterize a conjugacy class of SU(2) by its trace or,
equivalently, by the angle θ with
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cos θ =
1
2
tr(g),

which takes values θ ∈ [0, π]. One finds [JW92] that the product (3 – 15) of
the two conjugacy classes with angles θ, θ′ is the union of all conjugacy classes
with angle θ′′ in the range

|θ − θ′| ≤ θ′′ ≤ min{θ+θ′, 2π − (θ + θ′)}.

This already yields the correct upper and lower bounds that appear in the
SU(2) fusion rules.

A full understanding of fusion can only be expected after applying geomet-
ric quantization to the so obtained moduli space: this space must be endowed
with a two-form, which is interpreted as the curvature of a line bundle, and the
holomorphic sections of this bundle are what results from geometric quantiza-
tion. In view of this need for quantization it is a highly non-trivial observation
that the two-form ωαβγ from (3 – 14) furnished by the two D-branes and the
bi-brane is exactly the same as the symplectic form which arises from classical
Chern-Simons theory.



Chapter 4

Algebraic Structure for Bundle Gerbes II:
Jandl Structures

A long series of algebraic results indicates that two-dimensional conformal field
theories can consistently be considered on unorientable surfaces. Early results
include a detailed study of the abelian case [BPS92] and of SU(2) [PSS95b,
PSS95a]. The success of the algebraic theory of unoriented conformal field
theory leads, in the description by Wess-Zumino-Witten models, to the quest
for corresponding geometric structures on the target space. From previous
work [BCW01, HSS02, Bru02] it is clear that an involution k : M → M on
the target space will be one ingredient. Examples like the Lie group SO(3),
for which two different unoriented Wess-Zumino-Witten models with the same
involution k are known, already show that this structure does not suffice.

In this chapter, we define an additional structure for a bundle gerbe which
solves this problem. Moreover, we show that it gives rise to a well-defined
notion of holonomy for unoriented surfaces in a completely general context.

4.1 Oriented, orientable and unoriented Surfaces

We start with some basic notions concerning orientations on surfaces, i.e. two-
dimensional smooth manifolds. In general, an orientation on an n-dimensional
smooth manifold M is an equivalence class [ω] of nowhere vanishing n-forms
ω ∈ Ωn(M) under the equivalence relation ω′ ∼ ω if and only if there exists a
positive function f : M → R>0 with ω′ = fω. We call a smooth manifold ori-
ented , if a specific orientation is chosen, and else unoriented . An unoriented
manifold is in turn called orientable, if an orientation exists, and else un-
orientable. Each connected component of an orientable manifold admits two
different choices of an orientation. Examples for orientable smooth manifolds
are simply-connected manifolds, almost complex manifolds and Lie groups.
Symplectic manifolds are even oriented. A diffeomorphism f : M → N be-
tween oriented smooth n-dimensional manifolds with orientations represented
by n-forms ωM and ωN , is called orientation preserving , if f∗ωN ∼ ωM , and
else – provided that M is connected – orientation-reversing .
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Definition 4.1.1. An orientation covering of a surface Σ is a double covering
pr : Σ̂ → Σ with an oriented surface Σ̂, such that the canonical involution

σ : Σ̂ → Σ̂

that preserves fibers and permutes the two sheets, is orientation-reversing on
each connected component of Σ̂.

Orientation coverings have two important properties [BG88]:

(a) it is unique up to orientation-preserving diffeomorphisms of covering
spaces.

(b) under the assumption that Σ is connected, Σ̂ is connected if and only if
Σ is unorientable.

Due to the first point, we denote the unique orientation covering of a surface
Σ by Σ̂. An orientation covering is useful to obtain the following equivalent
formulation of an orientation on a surface.

Lemma 4.1.2. Let Σ be an orientable surface. There is a bijection between
orientations [ω] on Σ and smooth global sections or : Σ → Σ̂ in the orientation
covering.

Now let M be a smooth manifold and let k : M → M be an involution
on M . By C∞(Σ̂,M)σ,k we denote the space of smooth maps φ̂ : Σ̂ →M for
which the diagram

Σ̂
φ̂

σ

M

k

Σ̂
φ̂

M

is commutative. The maps in C∞(Σ̂,M)σ,k are also called equivariant .

Lemma 4.1.3. Let Σ be an orientable surface and M be a smooth manifold
with involution k : M →M . An orientation on Σ defines a bijection

C∞(Σ̂,M)σ,k → C∞(Σ,M).

Proof. Since Σ is orientable, Σ̂ consists of two disjoint copies of Σ with
opposite orientations. An orientation on Σ is a global section or : Σ → Σ̂ in
the covering pr : Σ̂ → Σ. Now let φ̂ : Σ̂ →M be a map. We define its image
as φ := φ̂ ◦ or. On the other hand, given a map φ : Σ → M , we define the
preimage φ̂ on the two sheets of Σ̂ separately as

φ̂|or(Σ) := φ and φ̂|σor(Σ) := k ◦ φ

respectively. �
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Let us now consider the following situation: a sigma model for oriented
worldsheets, which is by Definition 1.6.1 a Riemannian manifold M and a
bundle gerbe G. Furthermore, we assume that k : M → M is a parity trans-
formation, what means by Definition 1.6.6 that k is an involutive isometry,
and that the bundle gerbes k∗G and G∗ are isomorphic. We have seen that
topologically trivial Wess-Zumino-Witten models are examples for this situa-
tion. In general, the Feynman amplitude of a smooth map φ : Σ →M from a
closed oriented conformal surface Σ to M satisfies

Ag,G(φ,Σ) = Ag,G(k ◦ φ, Σ̄) (4 – 1)

where Σ̄ is the surface with the opposite orientation.

Definition 4.1.4. A sigma model for orientable worldsheets is a smooth Rie-
mannian manifold (M, g) together with a bundle gerbe G and a parity trans-
formation k. The Feynman amplitude Aorble

g,G,k(φ̂, Σ) of a smooth equivariant

map φ̂ ∈ C∞(Σ̂,M)σ,k, where Σ is a closed, orientable conformal surface, is
obtained as follows: choose any orientation on Σ, and let φ : Σ → M be the
smooth map corresponding to φ̂ under the bijection from Lemma 4.1.3. Then,

Aorble
g,G,k(φ̂, Σ) := Ag,G(φ,Σ).

This amplitude is well-defined: if we had chosen a different orientation,
the fact that the map φ̂ is equivariant and (4 – 1) assure that we get the same
value.

Note that any sigma model for orientable worldsheets can be regarded as
a sigma model for closed and oriented worldsheets in such a way that the
amplitudes coincide,

Ag,G(φ,Σ) = Aorble
g,G,k(φ̂, Σ). (4 – 2)

Conversely, not any sigma model for oriented worldsheets can be regarded
as a sigma model for orientable worldsheets: one has to choose an additional
information, namely a parity transformation k. This choice does not have to
exist, and if it exists, it may not be unique, as discussed in §1.6 for topologically
trivial Wess-Zumino-Witten models.

To see that the choice of a parity transformation is not yet enough to define
a Feynman amplitude for unorientable surfaces, let us make a naive attempt.
In a situation where we can not choose an orientation like in Definition 4.1.4,
we use the following generalization of an orientation.

Definition 4.1.5. Let Σ be a closed surface and Σ̂ its orientation covering.
A fundamental domain for Σ in Σ̂ is a submanifold F ⊂ Σ̂, possibly with
(piecewise smooth) boundary, satisfying

F ∩ σ(F ) = ∂F and F ∪ σ(F ) = Σ̂.



4.1 Oriented, orientable and unoriented Surfaces 99

This is a generalization of an orientation on Σ in the sense, that the global
section or : Σ → Σ̂ associated to any orientation by Lemma 4.1.2 defines a
fundamental domain, namely F := or(Σ), one of the two copies of Σ in
Σ̂. Unlike global sections, however, fundamental domains exist for arbitrary
closed surfaces, as we shall prove next.

We show the existence of a fundamental domain for an arbitrary closed
surface Σ by an explicit construction, which we will also use in §4.4. Let
U = {Ui}i∈I be an open cover of Σ, chosen small enough to admit local
sections ori : Ui → Σ̂. One can think of such sections as local orientations .
Let T be a dual triangulation of Σ, subordinate to the cover U by a map map
i : T → I. So, for each face f ∈ T there is an index i(f) with f ⊂ Ui(f), as
well as for each edge e ∈ T and for each vertex v ∈ T . Because we have a dual
triangulation, each vertex is trivalent.

Consider a common edge e = f1 ∩ f2 of two faces f1 and f2. We call the
edge e orientation-preserving , if

ori(f1)(e) = ori(f2)(e),

otherwise we call it orientation-reversing . So the set of edges splits in a set E
of orientation-preserving, and a set Ē of orientation-reversing edges. If v is a
vertex, the number of orientation-reversing edges ending in v must be even,
and since we started with a dual triangulation, it is either zero or two. Hence,
the edges contained in Ē form non-intersecting closed lines in Σ. We define
the subset

F :=
⋃

f∈T

ori(f)(f)

of Σ̂ as shown in Figure 4.1 and endow it with the subspace topology. The
boundary of F is exactly the union of the preimages of orientation-reversing
edges under the covering map,

∂F =
⋃

e∈Ē

pr−1(e),

and hence a disjoint union of piecewise smooth circles. This shows that F
is a submanifold of Σ̂ with piecewise smooth boundary. It satisfies the two
properties of a fundamental domain, and hence shows its existence.

Now, the first attempt to generalize the definition of the Feynman ampli-
tude given in Definition 4.1.4 to unorientable surfaces is the following: instead
of choosing an orientation, we choose a fundamental domain F of Σ in Σ̂.
Then we take the Feynman amplitude of the smooth map φ̂|F : F → M , de-
fined on the oriented surface F . However, F is a surface with boundary, and
the Wess-Zumino term is not well-defined, as discussed in §3.1. Nevertheless,
the boundary ∂F has an important property concerning its orientation, which
is induced from the orientation of F , see Figure 4.2.
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Σ Σ̂

σ

pr

Figure 4.1: The construction of a fundamental do-
main F (shaded grey). Local orientations decide
which of the two preimages of a face in the ori-
entation covering belongs to F .

Σ̂

Σ

Σ̂F

F

∂F

∂F

∂F

Figure 4.2: The orientation on ∂F .

Lemma 4.1.6. The quotient ∂F := ∂F/σ is a one-dimensional oriented
closed submanifold of Σ.

Proof. We act with σ on property (i) of the fundamental domain F :

σ(∂F ) = σ(F ∩ σ(F )) = F ∩ σ(F ) = ∂F

This shows that σ restricts to an involution on ∂F . Since σ acts on Σ̂ without
fixed points, the quotient ∂F/σ is a submanifold of Σ, and as ∂F is closed, so
is the quotient. The orientation of Σ̂ induces an orientation on F . Because σ
is orientation-reversing, the orientation of σ(F ) is opposite to the one induced
on σ(F ) as a submanifold of Σ̂. Hence, ∂F and ∂(σ(F )) are equal as sets
as well as as oriented submanifolds. Thus σ preserves the orientation on ∂F . �

Notice that one could already see the orientation of ∂F in Figure 4.1 for
the fundamental domain constructed from an oriented triangulation. Let us
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finally remark that we can not apply the D-brane-formalism described in §3.1
in a reasonable way to fix the problem with the boundary of F : we would have
to demand that the map φ̂ sends ∂F into the world volume Q of a D-brane.
But since the position of ∂F changes with different choices of F , we would
have to choose Q = M . This would mean that the bundle gerbe G is flat and
that its Dixmier-Douady class is torsion.

4.2 Jandl Structures on Bundle Gerbes

In this section, we introduce the above-mentioned additional structure for a
bundle gerbe, that is to provide a well-defined notion of holonomy for un-
oriented surfaces. It exists whenever there are sufficiently well-behaved 1-
isomorphisms between the pullback bundle gerbe k∗G and the dual bundle
gerbe G∗. The formal similarity to the Jandl structures in [FRS04] becomes
apparent, if one realizes that the dual bundle gerbe plays the role of the
opposed algebra. For this reason, we term the additional structure a Jandl
structure on the bundle gerbe. The relation to the austrian poet Erich Jandl
comes from the fact that on unoriented worldsheets there is no distinction
between right and left movers, in contrast to oriented surfaces described in
§1.6. This situation is indicated in the following poem [Jan95]:

manche meinen
lechts und rinks
kann man nicht
velwechsern.
werch ein illtum!

For translations into english, see [Wal00].

In a first attempt we assume that the additional structure is the choice
of a 1-isomorphism A : k∗G → G∗. However, a detailed calculation shows
that it is not enough to choose any such 1-isomorphism. It shows that the
1-isomorphism A itself has to be equivariant in a certain sense. To give a com-
plete definition of the Jandl structure we conveniently use the 2-categorical
language we have introduced in Chapter 2 of this thesis.

Definition 4.2.1. A Jandl structure J on a bundle gerbe G over M is a
collection (k,A, ϕ) of an involution k : M →M , a 1-isomorphism

A : k∗G → G∗

and a 2-isomorphism
ϕ : k∗A ⇒ A∗,

that satisfies k∗ϕ = ϕ∗−1.
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Let us briefly relate Definition 4.2.1 to the original definition of a Jandl
structure, as given in [SSW07] without using the 2-categorical language. For
this purpose we elaborate the details of Definition 4.2.1. We denote the pull-
back of the surjective submersion π : Y → M along k by πk : Yk → M ; for
simplicity we take Yk := Y and πk := k◦π. Now, we assume by Theorem 2.4.1
that the 1-isomorphism A consists of a line bundle A over P := Yk×M Y . The
exchange map s : Y ×M Yk → Yk ×M Y is an involution of P which lifts k,

P

p

s
P

p

M
k

M ,

where p : P → M is the projection on the second factor. The dual 1-
isomorphism A∗ has, following its definition from §2.5, the line bundle s∗A
over P . Now, similarly as for the pullback of π : Y → M we denote the pull-
back of p : P →M by pk : Pk →M and choose Pk := P and pk := k ◦ p. This
way, the pullback 1-isomorphism k∗A has the line bundle A over P . Again by
Theorem 2.4.1, we assume that the 2-isomorphism ϕ can be represented by a
triple (P, idP , ϕP ) with an isomorphism ϕP : A→ s∗A of line bundles over P
satisfying the compatibility axiom (2M) with the isomorphism α of A:

L⊗ ζ∗2A

id⊗ζ∗
2 ϕP

α
ζ∗1A⊗ L

ζ∗
1 ϕP ⊗id

L⊗ ζ∗2s
∗A

s∗α
ζ∗1s

∗A⊗ L

The dual 2-isomorphism ϕ∗ is represented by (P, idP , s
∗ϕP ), and the equation

k∗ϕ = ϕ∗−1 becomes ϕP = s∗ϕ−1
P . So, ϕP is an s-equivariant structure on the

line bundle A. This is exactly the original definition [SSW07]: a 1-isomorphism
A : k∗G → G∗, whose line bundle A is equipped with an s-equivariant struc-
ture which is compatible with the isomorphism α of A in the sense of the
commutativity of the above diagram.

Definition 4.2.2. A morphism β : J → J ′ between Jandl structures J =
(k,A, ϕ) and J ′ = (k,A′, ϕ′) on the same bundle gerbe G over M with the
same involution k is a 2-morphism

β : A ⇒ A′

which commutes with ϕ and ϕ′ in the sense that the diagram

A
ϕ

β

k∗A∗

k∗β∗

A′
ϕ′ k∗A′∗
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of 2-morphisms is commutative.

Since A is invertible, every morphism of Jandl structures is invertible. We
may thus speak of a groupoid Jdl(G, k) of Jandl structures on the bundle
gerbe G with involution k. As always when there is an additional structure to
choose, one would like to know how many inequivalent choices there are.

To see this, it is worthwhile to consider a Jandl structure J = (k,A, ϕ)
on a trivial bundle gerbe Iρ. By definition, this is a 1-isomorphism

A : Ik∗ρ → I−ρ

and a 2-isomorphism ϕ : k∗A ⇒ A∗ satisfying k∗ϕ = ϕ∗−1. Now we apply the
functor Bun from Proposition 2.4.5 and obtain a line bundle R̂ := Bun(A) over
M of curvature −(ρ+ k∗ρ) and, from the properties of Bun from Proposition
2.5.1 an isomorphism ϕ̂ := Bun(ϕ) : k∗R̂ → R̂ of line bundles over M which
satisfies k∗ϕ̂ = ϕ̂−1, summarizing: a k-equivariant line bundle. So, the functor
Bun induces an equivalence of groupoids

Bunk
ρ : Jdl(Iρ, k) → Link

−(ρ+k∗ρ)(M)

between the groupoid of Jandl structures on Iρ with involution k and the
groupoid of k-equivariant line bundles over M with curvature −(ρ+ k∗ρ).

Recall that by Theorem 2.5.4 the groupoid Iso(G,H) of isomorphisms
between two bundle gerbes is a torsor category over the monoidal groupoid
Lin0(M) of flat line bundles overM . For Jandl structures we have the following
refinement.

Theorem 4.2.3. The groupoid Jdl(G, k) of Jandl structures on a bundle gerbe
G with respect to the involution k : M → M is a torsor category over the
monoidal groupoid Link

0(M) of flat k-equivariant line bundles over M .

Proof. First we notice that the monoidal 2-functor ⊗ on the 2-category
BGrb(M) induces a tensor product

⊗ : Jdl(G, k) × Jdl(H, k) → Jdl(G ⊗H, k)

in a straightforward manner. In this context, the equivalence of groupoids
Bunk

0 : Jdl(I0, k) → Link
0(M) deduced above is even a monoidal equivalence.

This endows Jdl(G, k) with the structure of a module category by

Link
0(M) × Jdl(G, k)

(Bunk
0 )−1×id

Jdl(I0, k) × Jdl(G, k)
⊗

Jdl(G, k),

and we have to prove that the canonical functor

Link
0(M) × Jdl(G, k) Jdl(G, k) ⊗ Jdl(G, k)

is an equivalence of categories. Since morphisms of Jandl structures are just
2-isomorphisms, the fully faithfulness follows directly from Theorem 2.5.4. To
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see that it is essentially surjective, let (k,A, ϕ) and (k,A′, ϕ′) be two Jandl
structures on G. By Theorem 2.5.4, we obtain a flat line bundle L over M as
the difference between A and A′, together with an isomorphism φ : k∗L→ L
as the difference between ϕ and ϕ′. The properties of ϕ and ϕ′ induce the
equivariance of φ. This way we have obtained a flat k-equivariant line bundle
over M , whose action on (k,A, ϕ) gives a Jandl structure on G isomorphic to
(k,A′, ϕ′). �

In particular, the set of equivalence classes of Jandl structures on G with
involution k : M → M is a torsor over the group Pick

0(M) of isomorphism
classes of k-equivariant flat line bundles over M .

In general, for an action of a finite group Γ on M , recall the following
facts concerning Γ -equivariant line bundles. There are two obstructions for a
given line bundle L to admit equivariant structures: the first depends on the
bundle and the group action, namely that

x∗L⊗ L∗ ∼= 11, (4 – 3)

for all x ∈ Γ , which is still to be understood as an equation of hermitian
line bundles with unitary connection. The second obstruction is a class in
the group cohomology group H2

Γ (U(1)). Now, if both obstructions vanish and
M is connected, the possible equivariant structures are parameterized by the
group cohomology group H1

Γ (U(1)). For the group PicΓ (M) of isomorphisms
classes of Γ -equivariant line bundles over M there is an equivariant version of
the exact sequence from Proposition 1.3.9, namely [Gom03]

0 H1
Γ (M,U(1)) PicΓ (M) Ω2(M)Γ .

Here,H1
Γ (M,U(1)) is the Γ -equivariant cohomology ofM , i.e. the cohomology

of the associated Borel space. In particular, we get for flat equivariant line
bundles

PicΓ
0 (M) ∼= H1

Γ (M,U(1)). (4 – 4)

In our case of an involution k : M →M , regarded as an action of Γ = Z2

on M , the group cohomology groups appearing above are

H1
Z2

(U(1)) = Z2 and H2
Z2

(U(1)) = 0

so that the second obstruction vanishes, and every line bundle L, which satis-
fies the remaining obstruction (4 – 3) admits exactly two k-equivariant struc-
tures. In particular, this applies to the trivial line bundle 11 itself. We exhibit
its two equivariant structures explicitly. We have to choose an isomorphism

ϕ : k∗11 → 11

of line bundles such that k∗ϕ = ϕ−1. The two choices are either ϕ1 = id or
ϕ−1 : (x, z) 7→ (x,−z). We denote 11 together with the equivariant structure
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ϕ1 by 11k
1 . It represents the unit element of PicZ2

0 (M). We denote 11 together
with the equivariant structure ϕ−1 by 11k

−1. Notice that 11k
−1 ⊗ 11k

−1 = 11k
1 as

equivariant line bundles. Hence 11k
−1 represents a non-trivial element of order

two in PicZ2
0 (M). The whole discussion is completely independent of M , so

PicZ2
0 (M) always contains at least these two elements. As a consequence, if

a bundle gerbe G admits a Jandl structure J , then 11k
−1 ⊗ J is another,

inequivalent Jandl structure on G.

Proposition 4.2.4. Let M be a 2-connected smooth manifold with an invo-
lution k : M → M and let G be a bundle gerbe over M , whose curvature
H := curv(G) satisfies

k∗H = −H.

Then there exist exactly two non-isomorphic Jandl structures on G.

Proof. Since M is simply-connected, there is only one flat line bundle up to
isomorphism, namely the trivial one. As just discussed, it gives rise to two
different elements in Pick

0(M), corresponding to two non-isomorphic Jandl
structures by Theorem 4.2.3.

To show the existence, recall that by Corollary 1.3.10 iv) and with
H2(M,U(1)) = 0 the bundle gerbes k∗G and G∗ have to be stably iso-
morphic, since their curvatures coincide. So, let A : k∗G → G∗ be any
1-isomorphism. The 1-isomorphisms k∗A and A∗ are both objects in the
(non-empty) groupoid Iso(G, k∗G∗) which is a torsor category over the
monoidal groupoid Lin0(M) of flat line bundles over M by Theorem 2.5.4.
Since M is simply-connected, k∗A and A∗ are isomorphic. Let ϕ : k∗A ⇒ A∗

be any 2-isomorphism. In general, it will not satisfy the required identity
k∗ϕ = ϕ∗−1 but k∗ϕ ◦ ϕ∗ : k∗A∗ ⇒ k∗A∗ is some 2-isomorphism. Since
the identity idk∗A∗ is another one, by the torsor argument they differ by an
isomorphism φ of the trivial flat line bundle over M . Since M is connected,
this is a complex number c. The choice of any square root of c defines another
isomorphism of the trivial flat line bundle, whose action on ϕ produces
another 2-isomorphism ϕ′ : k∗A ⇒ A∗ which satisfies k∗ϕ′ = ϕ′∗−1. �

Let us also derive local expressions for a Jandl structure J = (k,A, ϕ)
on a bundle gerbe G. We simplify the situation by considering an open cover
V = {Vi}i∈I of M , which is equivariant under k, i.e. there exists an involution
k : I → I of the index set such that k(Vi) = Vki, and which is still good
enough to enable us to extract cocycles.

Let ξ = (g,A,B) ∈ Tot2(V,D(2)) be a cocycle for the bundle gerbe G, so
that we can choose −ξ for the dual bundle gerbe G∗, and k∗ξ for k∗G. Here,
for example, (k∗B)i = k∗(Bki). As further described in sections §1.2 and
§2.6 the 1-isomorphism A : k∗G → G∗ gives rise to a cochain β = (t,W ) ∈
Tot1(V,D(2)) with

− ξ = k∗ξ + Dβ, (4 – 5)

or equivalently and in more detail:
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−Bi = k∗Bi + dWi

−Aij = k∗Aij − dlog(tij) +Wj −Wi

g−1
ijk = k∗gijk ∙ tjk ∙ t−1

ik ∙ tij

Next, let α = (j) ∈ Tot0(V,D(2)) be a cocycle for the 2-isomorphism ϕ :
k∗A ⇒ A∗,

− β = k∗β + Dα, (4 – 6)

or in turn equivalently

−Wi = k∗Wi + dlog(ji)

t−1
ij = k∗tij ∙ jj ∙ j

−1
i .

The condition k∗ϕ = ϕ∗−1 translates to

k∗α = α−1. (4 – 7)

It is clear that a morphism β : J → J ′ of Jandl structures over G with local
data (β, α) and (β′, α′) respectively induces a cochain τ ∈ Tot0(V,D(2)) with
β′ = β + Dτ and k∗τ ∙ α = α′ ∙ τ .

We will use these cochains in §4.3 where we give a local formula for the
unoriented surface holonomy. In Chapter 5 we develop more systematically a
cohomology theory which describes bundle gerbes with Jandl structures and
more general, bundle gerbes with twisted equivariant structures.

While we have so far considered Jandl structures on a fixed bundle gerbe,
we will now discuss relations between Jandl structures on different bundle
gerbes.

Proposition 4.2.5. Let G and G′ be bundle gerbes over M and let k be an
involution on M . Any 1-isomorphism B : G → G′ induces an equivalence of
groupoids

JB : Jdl(G′, k) → Jdl(G, k)

with the following properties:

a) any 2-morphism β : B ⇒ B′ induces a natural equivalence JB ∼= JB′ .
b) there is a natural equivalence JidG

∼= idJdl(G,k).
c) it respects the composition of 1-morphisms in the sense that

JB′◦B = JB ◦ JB′ .

d) the functors JB and JB−1 are weak inverses.

Proof. The functor JB sends a Jandl structure (k,A, ϕ) on G′ to the triple
(k,A′, ϕ′) with the same involution k, the 1-isomorphism

A′ := B∗ ◦ A ◦ k∗B : k∗G → G∗
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and the 2-isomorphism

k∗A′ k∗B∗ ◦ k∗A ◦ B

idk∗B∗◦ϕ◦idB

k∗B∗ ◦ A∗ ◦ B k∗A′∗

where we use the properties of dual 1-morphisms derived in §2.5. The following
calculation shows that (k,A′, ϕ′) is a Jandl structure:

k∗ϕ′∗ = k∗(idk∗B∗ ◦ ϕ ◦ idB)∗

= idk∗B∗ ◦ k∗ϕ∗ ◦ idB

= idB ◦ ϕ−1 ◦ idB∗

= ϕ′−1.

A morphism β of Jandl structures on G′ is sent to the morphism

JB(β) := idB∗ ◦ β ◦ idk∗B

of the respective Jandl structures on G′. The two axioms of the composition
functor ◦ from Lemma 2.2.4 show that the composition of morphisms of Jandl
structures is respected, so that JB is a functor. It is an equivalence because
JB−1 is an inverse functor, where the natural equivalences JB−1 ◦ JB ∼= id and
JB ◦ JB−1 ∼= id use the 2-isomorphisms ir and il from §2.3 associated to the
inverse 1-morphism B−1.

To prove a), let β : B ⇒ B′ be a 2-morphism. We define the natural
equivalence JB ∼= JB′ , which is a collection of morphisms βJ : JB(J ) →
JB′(J ) of Jandl structures on G for any Jandl structure J on G′ by

βJ := β∗ ◦ idA ◦ k∗β.

This defines indeed a morphism of Jandl structures and makes the naturality
square

JB(J )
βJ

JB(β)

JB′(J )

JB′ (β)

JB(J ′)
βJ′

JB′(J ′)

commutative. The natural equivalence for b) uses the 2-isomorphisms λA
and ρA of the 2-category BGrb(M) and the fact that id∗

G = idG∗ . Finally,
c) follows from the definition of JB and the fact that the duality functor ()∗

respects the composition of 1-morphisms, as derived in §2.5. d) follows from
b) and c). �

We call a pair of a bundle gerbe G over M and a Jandl structure J on G
a Jandl gerbe over M .
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Definition 4.2.6. Two Jandl gerbes (G,J ) and (G′,J ′) are called equivalent,
if there exists a 1-isomorphism B : G → G′ and a morphism β : J ⇒ JB(J ′)
of Jandl structures on G.

It follows from Proposition 4.2.5 that this is indeed an equivalence relation.
There is one important point to notice: if J and J ′ are Jandl structures on
a bundle gerbe G, the Jandl gerbes (G,J ) and (G,J ′) may be equivalent,
although there is no morphism J ⇒ J ′ of Jandl structures on G. This is the
case only if there exists an automorphism B : G → G which is not isomorphic
to the identity idG .

4.3 Unoriented Surface Holonomy

We recall that we have found a canonical equivalence of groupoids

Bunk
ρ : Jdl(Iρ, k) → Link

−(ρ+k∗ρ)(M)

between the groupoid of Jandl structures with involution k on the trivial
bundle gerbe Iρ and the groupoid of k-equivariant line bundles over M with
curvature −(ρ + k∗ρ). In particular, if G is a bundle gerbe over M and T :
G → Iρ a trivialization, by Proposition 4.2.5 we obtain a functor

Jdl(G, k)
JT −1

Jdl(Iρ, k)
Bunk

ρ

Link
−(ρ+k∗ρ)(M)

converting a Jandl structure on the bundle gerbe G into a k-equivariant line
bundle over M .

Definition 4.3.1. Let (G,J ) be a Jandl gerbe over M with involution k :
M →M , let Σ be a closed surface and let φ̂ ∈ C∞(Σ̂,M)σ,k be an equivariant
smooth map. For a trivialization

T : φ̂∗G → Iρ

let R̂ be the σ-equivariant line bundle over Σ̂ determined by the functor

Bunρ
σ ◦ JT −1 : Jdl(φ̂∗G, σ) → Linσ

−(ρ+σ∗ρ)(Σ̂),

In turn, R̂ defines by its equivariant structure a line bundle R over Σ. Let F
be a fundamental domain of Σ in Σ̂. Then,

HolG,J (φ̂, Σ) := exp

(

2πi
∫

F

ρ

)

∙ HolR(∂F )

is the unoriented surface holonomy of the Jandl gerbe (G,J ) around the equi-
variant smooth map φ̂ : Σ̂ →M .
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Notice that we have used that ∂F is oriented and closed by Lemma 4.1.6.
It is important to see that the definition of unoriented surface holonomy does
not depend on the two choices: the one of the fundamental domain F and the
one of the trivialization T . First, let F ′ be another fundamental domain. We
define the set

B := Int(F ) ∩ σ(Int(F ′)),

where Int denotes the interior. As the intersection of two open sets, B is open
and hence a submanifold of Σ̂. It contains those parts of F , which are not
contained in F ′, see Figure 4.3. Because we excluded the boundaries of F and

pr(B)

F F ′

B

orB

Figure 4.3: The difference B between two funda-
mental domains F and F ′.

F ′, we have an empty intersection

B ∩ σ(B) = ∅,

such that there is a unique section orB : pr(B) → Σ̂ with image B. From
Figure 4.3, we have

∫

F ′

ρ =
∫

F

ρ−
∫

B

ρ+
∫

σ(B)

ρ =
∫

F

ρ+
∫

B

curv(R̂),

since σ is orientation-reversing. By Stokes’s Theorem, the exponential of the
integral of the curvature of R̂ over B is nothing but the holonomy of that line
bundle around ∂B. Thus,

exp

(

2πi
∫

B

curv(R̂)

)

= HolR̂(∂B) = HolR(pr(∂B)).

This is the term which is compensated by the change in the boundary term:
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HolR(∂F ′)−1 = HolR(∂F ) ∙ HolR(pr(∂B))−1.

In summary, Definition 4.3.1 is independent of the choice of the fundamental
domain.

Now, secondly, let T ′ : φ̂∗G → Iρ′ be any other trivialization. We consider
the 1-isomorphism

B := T ◦ T ′−1 : Iρ′ → Iρ

and the corresponding line bundle T := Bun(B). To compare the two σ-
equivariant line bundles R̂ and R̂′ corresponding to the two trivializations, we
first compare the Jandl structures JT −1(J ) on Iρ and JT ′−1(J ) on Iρ′ . By
Proposition 4.2.5 a), b) and c), there exists an isomorphism

JT ′−1(J ) ∼= JB(JT −1(J ))

of Jandl structures on Iρ. By definition of the functor JB, this isomorphism
is a 2-isomorphism

A′ ∼= B∗ ◦ A ◦ σ∗B,

where A is the 1-morphism of JT −1(J ) and A′ is the 1-morphism of JT ′−1(J ).
Now we apply the functor Bun and obtain an isomorphism

R̂′ ∼= T ⊗ R̂⊗ σ∗T

of σ-equivariant line bundles over Σ̂, where Q̂ := σ∗T ⊗ T has the canoni-
cal σ-equivariant structure by exchanging the tensor factors. Thus, we have
isomorphic line bundles

R′ ∼= R⊗Q

over Σ. Notice that the holonomy of the line bundle Q is

HolQ(∂F ) = HolT (∂F ) = exp

(

2πi
∫

F

ρ− ρ′
)

This shows

exp

(

2πi
∫

F

ρ′
)

∙ HolR′(∂F ) = exp

(

2πi
∫

F

ρ′
)

∙ HolQ(∂F ) ∙ HolR(∂F )

= exp

(

2πi
∫

F

ρ

)

∙ HolR(∂F )

so that Definition 4.3.1 does not depend on the choice of the trivialization. So
we have assured that unoriented surface holonomy is well-defined.

Proposition 4.3.2. Let Σ be a closed surface and φ̂ : Σ̂ → M be an equiva-
riant smooth map. Unoriented surface holonomy has the following properties:

i) If (G,J ) and (G′,J ′) are equivalent Jandl gerbes,

HolG,J (φ̂, Σ) = HolG′,J ′(φ̂, Σ).
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ii) If Σ is orientable, unoriented surface holonomy coincides, for any choice
of an orientation, with oriented surface holonomy from Definition 1.5.2,

HolG,J (φ̂, Σ) = HolG(φ,Σ),

where φ and φ̂ are related by the bijection of Lemma 4.1.3.

Proof. i) Let J and J ′ be two isomorphic Jandl structures on G. Then, also
the two k-equivariant line bundles R̂ and R̂′ are isomorphic and thus determine
isomorphic line bundles R and R′ over Σ, whose holonomies coincide. If now
B : G → G′ is a 1-isomorphism, and one has chosen a trivialization T : φ̂∗G′ →
Iρ to derive HolG′,J ′(φ̂, Σ), the claim follows if one chooses the trivialization
T ◦ φ̂∗B in the derivation of HolG,J (φ̂, Σ).

ii) Let or : Σ → Σ̂ be a choice of an orientation on Σ. Then F := or(Σ) is
a fundamental domain with empty boundary ∂F = ∅. For any trivialization
T of φ̂∗G one obtains

HolG,J (φ̂, Σ) = exp

(

2πi
∫

or(Σ)

ρ

)

,

Because φ̂ and φ correspond to each other, or∗φ̂∗G is the same gerbe as φ∗G,
and or∗T is a trivialization with 2-form or∗ρ. Thus, the right hand side is
equal to exp 2πi

∫
Σ

or∗ρ and therefore coincides with the ordinary holonomy. �

In the next section we derive a local formula for the unoriented surface
holonomy of a Jandl gerbe.

4.4 Local Description of unoriented Surface Holonomy

Let V = {Vi}i∈I be a good open cover of M . We assume again that it is in-
variant under the involution k : M →M as in §4.2. Let (g,A,B) be a cochain
for the bundle gerbe G and ((t,W ), j) be cochains for the Jandl structure
J , extracted as explained in §4.2. We pull back the cover V along a smooth
equivariant map φ̂ : Σ̂ → M and obtain a cover {Ûi}i∈I with Ûi := φ̂−1(Vi),
together with pullback cochains of the bundle gerbe and its Jandl structure.
Next, we choose a cochain (h,M) for a trivialization T of the pullback gerbe
and a 2-form ρ ∈ Ω2(Σ̂), so that

(1, 0, ρ) = φ̂∗ (g,A,B) + D (h,M) (4 – 8)

holds. Combining the definition of the functor JT from Proposition 4.2.5 with
results from §2.6,

(r,R) := φ̂∗(t,W ) − σ∗(h,M) − (h,M)
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is a cochain for the σ-equivariant line bundle R̂ over Σ̂.
Because φ̂ is equivariant, the pullback cover is invariant under σ. Hence

it projects to a cover of Σ with open sets Ui := pr(Ûi). We choose local
sections ori : Ui → Σ̂ and a dual triangulation T of Σ, subordinate to the
cover {Ui}i∈I , together with a subordinating map i : T → I. As we explained
in §4.1 we choose the fundamental domain

F :=
⋃

f∈T

ori(f)(f),

where the f ’s are the faces of the triangulation.
We now introduce three abbreviations in order to simplify forthcoming

expressions. Let ω2
i ∈ Ω2(Ûi), ω1

ij ∈ Ω1(Ûi∩Ûj) and ωijk : Ûi∩Ûj∩Ûk → U(1)

be some local forms and functions. First we denote their integral over a face
f by

If (ω, ω1, ω2) := exp



2πi
∫

ori(f)(f)

ω2
i(f) + 2πi

∑

e∈∂f

∫

ori(f)(e)

ω1
i(f)i(e)





∙
∏

v∈∂e

ω
ε(f,e,v)
i(f)i(e)i(v)(ori(f)(v)),

where ε(f, e, v) ∈ {1,−1} indicates, whether v is the end or the starting point
of the edge e with respect to the orientation ori(f).

Second, we denote the integral of some local 1-forms ω1
i ∈ Ω1(Ûi) and

functions ωij : Ûi ∩ Ûj → U(1) along an edge e of a face f by

Ie,f (ω, ω1) := exp

(

2πi
∫

ori(f)(e)

ω1
i(e)

)

∙
∏

v∈∂e

ω
ε(f,e,v)
i(e)i(v) (ori(f)(v)).

Recall that the set of edges in T splits into the set E of orientation-preserving
edges and the set Ē of orientation-reversing edges. For an orientation-
preserving edge e ∈ f1 ∩ f2 we have

Ie,f1(ω, ω
1) = Ie,f2(ω, ω

1)−1, (4 – 9)

while for an orientation-reversing edge

Ie,f1(ω, ω
1) = Ie,f2(σ

∗ω, σ∗ω1)

holds. In the latter case, since e is orientation-reversing, we have either
ori(e)(e) = ori(f1)(e) or ori(e)(e) = ori(f2)(e), so that we can write just
Ie(ω, ω1), where the for f the choice of the face with the coinciding orien-
tation is understood.

Third, if v is a vertex of an edge e, we define for some smooth function
ωi : Ûi → U(1)
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Iv,e,f (ω) := ω
ε(f,e,v)
i(v) (ori(f)(v)).

If now v is the common vertex of two orientation-reversing edges e1, e2 ∈ Ē, we
call v orientation-preserving, if ori(e1)(v) = ori(e2)(v) and orientation-reversing
otherwise. Let us denote the set of orientation-reversing vertices by V̄ . If v is
such a vertex, we just write Iv(ω) instead of Iv,e,f (ω), where for e the choice of
the edge as well as for f the face with the coinciding orientation is understood.

Now the first factor in the holonomy formula from Definition 4.3.1 is

exp

(

i
∫

F

ρ

)

= exp



2πi
∑

f∈T

∫

ori(f)(f)

φ̂∗Bi(f) + dMi(f)



 .

Just as in the derivation of the local formula for ordinary surface holonomy in
§1.5, using Stokes’s Theorem, equation (4 – 8) and our abbreviations, we end
up with

exp

(

i
∫

F

ρ

)

=
∏

f∈T

If (φ̂∗g, φ̂∗A, φ̂∗B) ∙
∏

f∈T

∏

e∈∂f

Ie,f (h,M)−1. (4 – 10)

Here the second factor collects the boundary contributions that appear in the
application of Stokes’s Theorem.

Let us assume for the moment that Σ was oriented, and all sections ori

coincide with the global orientation restricted to Ui. In this situation, we
have only orientation preserving edges, and each of them appears twice in the
second factor. Since the contributions are inverse by (4 – 9), the second factor
vanishes. We obtain the local holonomy formula expressed only by the local
data of the bundle gerbe, as in §1.5.

If Σ is not oriented, the second factor still consists of two contributions
for each orientation-reversing edge e ∈ Ē, which are

Ie,f1(h,M) ∙ Ie,f2(h,M) = Ie(h ∙ σ∗h,M + σ∗M).

Hence, in the general case, the second factor of (4 – 10) is

∏

f∈T

∏

e∈∂f

Ie,f (h,M)−1 =
∏

e∈Ē

Ie(h ∙ σ∗h,M + σ∗M)−1. (4 – 11)

For the second factor of the holonomy formula from Definition 4.3.1 we
have to compute the holonomy of the quotient line bundle R around ∂F . It is
easy to see that this holonomy is equal to the parallel transport of R̂ around
the open line

ˆ̄E :=
⋃

e∈Ē

ori(e)(e),

where at the boundary points the equivariant structure of R̂ is used, this is
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HolR(∂F ) =
∏

e∈Ē

Ie(r,R) ∙
∏

v∈V̄

Iv(φ̂∗j).

Since e is orientation-reversing,

Ie(r,R) = Ie(φ̂
∗t ∙ σ∗h−1 ∙ h−1, φ̂∗W − σ∗M −M)

= Ie(φ̂
∗t, φ̂∗W ) ∙ Ie(h ∙ σ∗h,M + σ∗M)−1.

The second factor cancels (4 – 11) so that all the local data coming from the
trivialization drops out. It remains

HolG,J (Σ, φ̂) =
∏

f∈T

If (φ̂∗g, φ̂∗A, φ̂∗B) ∙
∏

e∈Ē

Ie(φ̂
∗t, φ̂∗W )−1 ∙

∏

v∈V̄

Iv(φ̂
∗j),

depending only on the cocycle for the bundle gerbe and the cochains for the
Jandl structure. We visualize this formula in Figure 4.4.

Σ Σ̂

Bl

l

i

j

k

Bi

Bk

Aik

Wi

tik

Wl

jkWk

Bj

Figure 4.4: Assignment of local data of a Jandl
gerbe to a triangulated surface Σ with local orien-
tations.

In the remainder of this section we will apply the local formula for unori-
ented surface holonomy that we have just derived to two examples of surfaces
Σ. For this purpose, it is enough to start with the pullback gerbe φ̂∗G which
allows us to choose a triangulation adapted to Σ (and not to M).

Example 4.4.1 (The Klein bottle). We think of the Klein bottle as a rectangle
with the identifications of the boundary as indicated by arrows in Figure
4.5. The identification by the vertical arrows is orientation-preserving, while
the one by the horizontal arrows is orientation-reversing. Note that the dual
triangulation shown in Figure 4.5 is a triangulation with only one face. We
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Figure 4.5: A Klein bottle (left) and a dual trian-
gulation with one face (right).

choose a local section from that face into the double cover, and define the
fundamental domain F as its image, as shown in Figure 4.6. Here we dropped
the arrows, but the identifications are still to be understood, so that both
points labelled by v are identified. This means, that we can choose the local

F

F

v v

Figure 4.6: A fundamental domain for the Klein
bottle in its orientation covering.

orientations of the edges such that the orientation-reversing edges form a
closed line, as indicated by the thick line. So there is no orientation-reversing
vertex, and the local datum j of the Jandl structure is not relevant for the
holonomy around the Klein bottle.

Example 4.4.2 (The real projective plane). We proceed in the same way as for
the Klein bottle, we thus think of the real projective plane RP 2 as a two-gon

i

i jj

Figure 4.7: The real projective plane (left) and a
dual triangulation with two faces (right).

with the identification on the boundary indicated by the arrows in Figure 4.7.
The identification is orientation-reversing. An example of a dual triangulation
is also shown in Figure 4.7. Now we choose local sections from these two faces
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F

F

v

v

Figure 4.8: A fundamental domain of the real pro-
jective plane in its double covering.

into the double cover, for example as shown in Figure 4.8. Note that here
the thick line is not closed in Σ̂, and v is an orientation-reversing vertex.
According to the local holonomy formula here the local datum j of the Jandl
structure enters in the holonomy.

4.5 Application: Sigma Models for unoriented Surfaces

In the first section of this chapter we generalized the sigma model for oriented
worldsheets to orientable worldsheets by the choice of an additional structure,
namely a parity transformation k : M → M of the target space, i.e. an invo-
lutive isometry such that k∗G and G∗ are 1-isomorphic. We have argued that
already the sigma model for orientable surfaces suggests to consider equiva-
riant maps φ̂ ∈ C∞(Σ̂,M)σ,k instead of maps φ : Σ → M . We then have
discovered that the choice of a parity transformation is not sufficient to make
the Wess-Zumino term term well-defined for unoriented surfaces. It suffices
however for the kinetic term, as we shall see next.

We define the kinetic term for an equivariant smooth map φ̂ in such a way
that it reduces – if Σ is orientable, for any choice of an orientation – to the
kinetic term Skin

g (φ) of the map φ corresponding to φ̂ by Lemma 4.1.3. Note
that the Lagrangian

L(φ̂) :=
1
2
g
(
dφ̂ ∧ ?dφ̂

)

is a 2-form on Σ̂, which satisfies

σ∗L(φ̂) = −L(φ̂), (4 – 12)

because σ is orientation-reversing and k is an isometry of g. This property tells
us that L(φ̂) defines a 2-density Lden(φ̂) [BT82, BG88] on Σ. The integral of a
2-density over a surface is well-defined without the necessity of an orientation,
in particular for unorientable surfaces. We write

Skin
g (φ̂) :=

∫

Σ

Lden(φ̂)
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for this integral. With the choice of a fundamental domain F of Σ in Σ̂, one
can make it explicit, even without using the theory of densities, Namely,

∫

Σ

Lden(φ̂) :=
∫

F

L(φ̂).

It is easy to see that due to the property (4 – 12) this does not depend on the
choice of F . Furthermore, if Σ is orientable, for any choice or : Σ → Σ̂ and
F := or(Σ), we find

Skin
g (φ̂) =

∫

F

L(φ̂) =
∫

Σ

L(φ) = Skin
g (φ)

as required.

To define the Wess-Zumino term for a smooth equivariant map φ̂ ∈
C∞(Σ̂,M)σ,k we use the theory of Jandl structures and unoriented surface
holonomy developed in this chapter. So we amend the choice of a parity trans-
formation k to a complete Jandl structure J = (k,A, ϕ), and are then able
to define the non-linear sigma model for unoriented, and in particular unori-
entable worldsheets.

Definition 4.5.1. A sigma model for unoriented worldsheets is a smooth Rie-
mannian manifold (M, g) together with a Jandl gerbe (G,J ), whose involution
k : M →M is an isometry. The Feynman amplitude of an equivariant smooth
map φ̂ ∈ C∞(Σ̂,M)σ,k, where Σ is a closed and conformal surface, is defined
by

Aunor
g,G,J (φ̂, Σ) := exp

(
2πiSkin

g (φ̂)
)
∙ HolG,J (φ̂, Σ).

According to the definition of both factors, if Σ is orientable, we have

Aunor
g,G,J (φ̂, Σ) = Aorble

g,G,k(φ̂, Σ).

If Σ is even oriented, by (4 – 2) we have

Aunor
g,G,J (φ̂, Σ) = Ag,G(φ,Σ).

In this sense, Definition 4.5.1 generalizes the former definitions of sigma mod-
els, namely Definition 4.1.4 from §4.1 and in particular Definition 1.6.1 from
§1.6.

The natural notion of gauge equivalence between sigma models for un-
oriented worldsheets would be the equivalence of the respective Jandl gerbes
according to Definition 4.2.6. By Proposition 4.3.2 i) this implies that the
respective Feynman amplitudes are equal. However, it turns out that – by
purely physical reasons – the correct notion of equivalent sigma models for
unoriented worldsheets is weaker.
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To explain this, let B : G → G′ be a 1-isomorphism between two Jandl
gerbes (G,J ) and (G′,J ′) over M with the same involution k. We recall from
Theorem 4.2.3 that the two Jandl structures JA(J ′) and J on G differ by the
action of a k-equivariant flat line bundle L on M , and that on any manifold
there is a flat equivariant line bundle 11k

−1 which is trivializable but has a
non-trivial k-equivariant structure.

Definition 4.5.2. Two sigma models for unoriented worldsheets on the same
target space (M, g), and Jandl gerbes (G,J ) and (G′,J ′) with the same involu-
tion k are called gauge equivalent, if there exists a 1-isomorphism A : G → G′

and either a morphism

JA(J ′) ⇒ J or JA(J ′) ⇒ 11k
−1 ⊗ J

of Jandl structures on G.

We will now investigate the difference between the Feynman amplitudes
of gauge equivalent sigma models for unoriented worldsheets. For this pur-
pose, let {Vi}i∈I be a good open cover of M , and let (α, β) be cochains for
the Jandl structure J as explained in §4.2. According to the definition of the
groupoid Jdl(G, k) as a module category over Lin0(M), it follows that (−α, β)
are cochains for the Jandl structure 11k

−1 ⊗ J , so that only the cochain α
changes. Now observe the occurrences of α = (j) in the local holonomy for-
mula from §4.4: it appears for each orientation-reversing vertex v ∈ V̄ . Follow-
ing our example of the real projective plane in the same section, this happens
in the presence of a crosscap. We conclude that the amplitudes of a smooth
equivariant map φ̂ : Σ̂ →M in equivalent sigma models for unoriented world-
sheets are either equal or differ by a sign for each crosscap in Σ.

In the sequel, we discuss three examples, namely Wess-Zumino-Witten
models with target spaces SU(2) and SO(3), and sigma models with target
space T 2 = S1 × S1.

Example 4.5.3. We consider a topologically trivial Wess-Zumino-Witten
model with the 2-connected target space SU(2) at some fixed level. Following
our general discussion in §1.6, the parity transformations are given by k(g) :=
g−1 and k(g) := −g−1, where −1 is the non-trivial element in the center of
SU(2). The same involutions have been considered in [HSS02, Bru02, BCW01].
Since the curvature H of the bundle gerbe G satisfies k∗H = −H for both
parity transformations, by Proposition 4.2.4 there exist two non-isomorphic
Jandl structures J and J ′ on G with 11k

−1 ⊗ J = J ′. Separately for each k,
they give rise to equivalent non-linear sigma models according to Definition
4.5.2. Hence we have all together two non-equivalent Wess-Zumino-Witten
models for unoriented worldsheets on SU(2) for each level, the number com-
ing from the choice of two different involutions. This is in agreement with the
results of [PSS95a, PSS95b] and also matches the general results we derive in
Chapter 5.
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Example 4.5.4. We consider the Wess-Zumino-Witten model with target space
SO(3) at some fixed level. Since SO(3) is not simply-connected, it is topolog-
ically non-trivial. The center of SO(3) is trivial, so that we have only one
parity transformation to consider, namely k(g) := g−1. We assume here that
the bundle gerbe G admits Jandl structures; we will see in Chapter 5 that this
is the case if and only if the level is even. To classify the Jandl structures, by
Theorem 4.2.3 we have to investigate the group Pick

0(SO(3)) of flat equivari-
ant line bundles. This is possible in a very explicit way: with π1(SO(3)) = Z2

we have
Hom(π1(SO(3)),U(1)) = Hom(Z2,U(1)) = Z2,

so there are - up to isomorphism - two flat line bundles: as SO(3) is the
quotient of SU(2) by the map q : SU(2) → SU(2) : g 7→ −g, the two flat line
bundles over SO(3) are quotients of the two equivariant flat line bundles over
SU(2), namely 11q

1 and 11q
−1, see §4.2. Clearly, 11q

1 descends to the trivial flat
line bundle 1̃1 on SO(3), which admits equivariant structures, more precisely,
according to the discussion in §4.2, there are two of them. 11q

−1 descends to a
non-trivial flat line bundle L̃ on SO(3), and we have to ask whether it admits
k-equivariant structures. This is equivalent to the condition, that

dL̃ := k∗L̃⊗ L̃∗ ∼= 1̃1. (4 – 13)

Now dL̃ is a flat line bundle, and hence either isomorphic to L̃ or to 1̃1. Because
Pic0(SO(3)) is a group of order two, we have L̃ ⊗ L̃ = 1̃1. The assumption
dL̃ ∼= L̃ would therefore mean k∗L̃ ∼= 1̃1 which is a contradiction since 1̃1 is
the trivial bundle and k∗L̃ is not. Hence (4 – 13) is true, and L̃ admits two
equivariant structures. All together, there are four equivariant flat line bundles
over SO(3) and hence four non-isomorphic Jandl structures on G.

Now it is a crucial question whether two of them give rise to equivalent
Jandl gerbes (G,J ) and (G,J ′) or not. This would be possible because Aut(G)
is a torsor category over Lin0(M) by Theorem 2.5.4, whose skeleton contains
two elements, represented by 1̃1 and L̃. So it contains a non-trivial automor-
phism B := L̃ ⊗ idG and we have to identify the Jandl gerbes (G,J ) and
(G,J ′) if JB(J ′) ∼= J , four two of the four non-isomorphic Jandl structures
we have found. This is actually not the case: following the definition of JB, the
1-isomorphism A of the Jandl structure J ′ is changed to (k∗L̃⊗ L̃∗)⊗A, so,
by (4 – 13), by a trivializable line bundle. Hence J ′ and JB(J ′) are isomor-
phic Jandl structures, and JB(J ′) ∼= J is only possible if the Jandl structures
J and J ′ are isomorphic. Thus we have four inequivalent Jandl gerbes with
underlying bundle gerbe G on SO(3).

After the identification according to Definition 4.5.2, there remain two
gauge equivalence classes of Wess-Zumino-Witten models for unoriented
surfaces on SO(3) for each even level. Again, this is in agreement with
[PSS95a, PSS95b], and with our results from Chapter 5.

Example 4.5.5. We discuss a sigma model for unoriented worldsheets whose
target space is the torus T 2. For dimensional reasons, its bundle gerbe is
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trivializable (and flat), so we assume G = IB for some 2-form B ∈ Ω2(T 2), the
B-field or Kalb-Ramond-field. We want to discuss the parity transformation
k = id, which allows us to make contact with the discussion in [BPS92].
We recall from §4.2 that we have an equivalence between the groupoid of
Jandl structures on a trivial bundle gerbe and the groupoid of equivariant
line bundles, which here is

Bunid
B : Jdl(IB , id) → Linid

−2B(T 2).

A sufficient condition for the existence of a line bundle with curvature 2B
is that 2B has integral class. Then, by Proposition 1.3.9 v), the set of iso-
morphism classes of such line bundles is a torsor over H1(T 2,U(1)), which
is U(1) × U(1). Note that both obstructions for equivariant structures on
these line bundles vanish: the first (4 – 3) because k = id and the second be-
cause HZ2(U(1)) = 0. So the set of isomorphism classes of Jandl structures
is parameterized by Z2 ×U(1) ×U(1). One obtains the same result using the
classification (4 – 4) of flat equivariant line bundles by equivariant cohomol-
ogy: the Borel space associated to the trivial action is T 2

K = EZ2×Z2 T
2. With

EZ2/Z2 = BZ2 = RP∞ we have

H1
K(T 2,U(1)) = H1(T 2

K ,U(1))

= H1(RP∞,U(1)) ⊕H1(T 2,U(1))

= Z2 × U(1) × U(1).

Thus we have derived the quantization condition that the Kalb-Ramond-field
B has half integer valued periods. This condition was originally found in
[BPS92] by an analysis of the bulk spectrum of right and left movers.



Chapter 5

Twisted Equivariant Bundle Gerbes
and finite Group Cohomology

In the previous chapters we have discussed sigma models for oriented world-
sheets defined by a bundle gerbe over the target space. We have introduced
algebraic structures on bundle gerbes in order to study sigma models for world-
sheets with boundary and defects and for unoriented worldsheets, namely D-
branes, bi-branes and Jandl structures. An important tool to discuss a sigma
model on a target space X is to regard so-called orbifold models, certain sigma
models on a smooth manifold M whose quotient by a finite group Z is X.

In general, bundle gerbes over a quotient manifold X = M/Z can be
obtained from bundle gerbes over M equipped with a Z-equivariant structure
[GR02]. In this chapter, we introduce the notion of a twisted equivariant
structure. We enhance the Z-action on M in such a way that the quotient X
is naturally equipped with an involution; moreover, the twist in the equivariant
structure gives rise to a Jandl structure on the quotient bundle gerbe over X
with this involution.

To classify twisted equivariant bundle gerbes, we invent a new cohomol-
ogy theory based on Deligne cohomology and finite group cohomology. We
compute the obstructions against twisted equivariant structures and their
classifying groups for all the bundle gerbes over compact, simple and simply-
connected Lie groups G which are relevant for Wess-Zumino-Witten models.
We classify thereby all Wess-Zumino-Witten models on compact simple Lie
groups.

5.1 Twisted equivariant Structures on Bundle Gerbes

The natural way to introduce a notion of an equivariant structure on a bundle
gerbe is the categorification of an equivariant structure on a line bundle. If Γ
is a discrete group acting smoothly on the left on M , and L is a line bundle
over M , a Γ -equivariant structure relates the pullbacks x∗L of the line bundle
L along the smooth map x : M →M associated to any group element x ∈ Γ ,
to the line bundle L itself. Notice that there is a subtlety concerning left and
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right actions: since for all group elements x, y ∈ Γ the associated maps satisfy
x ◦ y = xy, the pullback x∗ – regarded as an endofunctor of Lin(M) – has
the property x∗y∗ = (yx)∗, so that it gives a right action on line bundles. It
will be convenient to circumvent this by introducing a new pullback functor
x? := (x−1)∗, which now satisfies

x?y? = (x−1)∗(y−1)∗ = (y−1 ◦ x−1)∗ = (x ◦ y)? = (xy)?.

With this modified pullback, a Γ -equivariant structure on a line bundle
L over M is a family {ϕx}x∈Γ of isomorphisms ϕx : L → x?L satisfying
x?ϕy ◦ ϕx = ϕxy. The natural categorification of this structure to bundle
gerbes would be to replace the isomorphisms ϕx by 1-isomorphisms

Ax : G → x?G,

and the equalities by 2-isomorphisms

ϕx,y : x?Ay ◦ Ax ⇒ Axy,

and to pose a coherence condition on these 2-isomorphisms.

Before we fix this as the final definition, we modify the pullback once more
for further purposes. This is because we want to regard a Jandl structure on
a bundle gerbe G as a particular example of an equivariant structure, namely
for the group Γ = Z2. However, a Jandl structure relates the pullback x?G
to the dual bundle gerbe G∗ instead to G. To incorporate this behaviour we
consider a group homomorphism ε : Γ → Z2 = {−1, 1} indicating whether a
group element x ∈ Γ relates the pullback x?G to G (for ε(x) = 1) or to G∗

(for ε(x) = −1). We have to implement this properly in terms of 2-functors

x~ : BGrb(M) → BGrb(M)

associated to every group element x ∈ Γ . We set

x~ := x? for ε(x) = 1.

For the elements with ε(x) = −1, consider the strict 2-functor

()† : BGrb(M) → BGrb(M)

which combines the duality 2-functor ()∗ from §2.5 and the functor ()−1 on
isomorphism categories from §2.3 as follows

1) for a bundle gerbe G, we set G† := G∗.
2) for a 1-isomorphism A : G → H we set A† := A∗−1; this is a 1-isomorphism

A† : G† → H†.

3) for a 2-isomorphism β : A ⇒ A′ we set β† := β∗#−1; this gives a 2-
isomorphism

β† : A† ⇒ A′†.
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Actually this 2-functor is only defined on a sub-2-groupoid of BGrb(M), whose
morphism categories are Iso(G,H) instead of Hom(G,H), but this will be
unessential in the sequel. Anyway, the 2-functor ()† is strictly involutive:

G†† = G , A†† = A and β†† = β.

Now we define the 2-functors x~ by

x~ := ()† ◦ x? for ε(x) = −1.

Finally, the modified pullback 2-functors satisfy

x~ ◦ y~ = (xy)~,

for all x, y ∈ Γ . This follows from the involutive property of ()† and from the
fact that it commutes with the pullbacks x?, as proved in §2.5.

Definition 5.1.1. Let Γ be a finite group acting smoothly on the left on a
smooth manifold M , let ε : Γ → Z2 be a group homomorphism and let x~

denote the 2-functor associated to a group element x ∈ Γ depending on ε(x)
as described above. A twisted equivariant structure or Γ ε-equivariant structure
on a bundle gerbe G over M is a family {Ax}x∈Γ of isomorphisms

Ax : G → x~G

together with a family {ϕx,y}x,y∈Γ of 2-isomorphisms

ϕx,y : x~Ay ◦ Ax ⇒ Axy

such that the diagram

x~y~Az ◦ x~Ay ◦ Ax

x~ϕy,z◦id

id◦ϕx,y

x~y~Az ◦ Axy

ϕxy,z

x~Ayz ◦ Ax ϕx,yz
Axyz

of 2-isomorphisms is commutative.

We call a Γ ε-equivariant structure on a bundle gerbe G normalized , if the
following choices concerning the neutral group element 1 ∈ Γ are present:

(a) the 1-isomorphism A1 : G → G is the identity 1-isomorphism idG .
(b) the 2-isomorphism ϕ1,x : Ax ◦ idG ⇒ Ax is the natural 2-isomorphism

λAx
from the 2-category of bundle gerbes.

(c) accordingly, the 2-isomorphism ϕx,1 : idx~G ◦ Ax ⇒ Ax is the natural
2-isomorphism ρAx from the 2-category of bundle gerbes.



124 Equivariant Bundle Gerbes and finite Group Cohomology

Note that the 2-isomorphism ϕ1,1 : idG ◦ idG ⇒ idG is then equal to both λidG

and ρidG , whose equality follows from Proposition 2.3.2. We will in the follow-
ing for simplicity assume that all Γ ε-equivariant structures are normalized.

Definition 5.1.2. Let G be a bundle gerbe over M , and let

J = ({Ax}x∈Γ , {ϕx,y}x,y∈Γ ) and J ′ =
(
{A′

x}x∈Γ , {ϕ
′
x,y}x,y∈Γ

)

be Γ ε-equivariant structures on G. A morphism of Γ ε-equivariant structures

β : J ⇒ J ′

is a collection {βx}x∈Γ of 2-morphisms βx : Ax ⇒ A′
x, such that the diagram

x~Ay ◦ Ax

ϕx,y

x~βy◦βx

Axy

βxy

x~A′
y ◦ A′

x
ϕ′

x,y

A′
xy

of 2-morphisms is commutative.

According to the normalization condition on twisted equivariant struc-
tures, we say that a morphism of normalized twisted equivariant structures
is normalized if β1 = ididG . We assume for the sequel that all morphisms of
twisted equivariant structures are normalized.

The composition of such morphisms is obviously associative, and there
exist identity morphisms, so that we can speak of a category Eq(Γ ε,G) of Γ ε-
equivariant structures on the bundle gerbe G. Since any 2-morphism between
1-isomorphisms is invertible, this is moreover a groupoid. We will see in §5.5
that this groupoid generalizes the groupoid Jdl(k,G) of Jandl structures on
G. With this hint, the following Proposition generalizes Proposition 4.2.5 for
Jandl structures.

Proposition 5.1.3. A 1-isomorphism B : G → G′ between bundle gerbes G
and G′ over M induces an equivalence of groupoids

JB : Eq(Γ ε,G′) → Eq(Γ ε,G)

which is compatible with the composition of 1-isomorphisms in the sense that

JB′◦B = JB ◦ JB′ and JidG
∼= idEq(Γ ε,G).

Proof. Using the 2-categorical language, the proof is rather the same as the
one of Proposition 4.2.5. If J is a Γ ε-equivariant structure on G′, consisting
of 1-isomorphisms A′

x and 2-isomorphisms ϕ′
x,y, we define the Γ ε-equivariant

structure on G by the 1-isomorphisms
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Ax := x~B−1 ◦ A′
x ◦ B

and the 2-isomorphisms ϕx,y given by

x~Ay ◦ Ax x~y~B−1 ◦ x~A′
y ◦ x~B ◦ x~B−1 ◦ A′

x ◦ B

id◦id◦i−1
r ◦id◦id

x~y~B−1 ◦ x~A′
y ◦ A′

x ◦ B

id◦ϕx,y◦id

(xy)~B−1 ◦ A′
xy ◦ B A′

xy

The diagram for ϕγ1,γ2 from Definition 5.1.1 is commutative, and the claimed
compatibility with the composition of 1-isomorphisms follows directly from
the definition. �

It will be useful to exhibit explicitly the details of a Γ ε-equivariant
structure J on a bundle gerbe G. We call a Γ ε-equivariant Jandl struc-
ture descended, if the 1-isomorphisms Ax are objects in the subcategory
HomFP (G, x~G), see §2.4, and if the 2-isomorphisms ϕx,y can be represented
by triples (Wx,y, ωx,y, ϕx,y) whose surjective submersion ωx,y is the identity.

Lemma 5.1.4. Let G be a bundle gerbe over M with Γ ε-equivariant structure
J . Then there exists an isomorphic descended Γ ε-equivariant structure J ′.

Proof. Let J consist of 1-isomorphisms Ax and 2-isomorphisms ϕx,y. Using
the equivalenceD : HomFP (G, x~G) → Hom(G, x~G) from Theorem 2.4.1, and
a choice of an inverse functor D−1, we obtain 1-isomorphisms A′

x := D−1(Ax)
together with 2-isomorphisms βx : Ax ⇒ A′

x. Then we use the functor D
again, now for the category Hom(G, (xy)~G) and obtain 2-isomorphisms
ϕ′

x,y : D−1(x~Ay ◦ Ax) ⇒ A′
xy. Now, ϕ′

x,y and βx commute in the sense of
the commutative diagram in Definition 5.1.2, since D−1 is an equivalence
of categories. Finally, since D−1(x~Ay ◦ Ax) ∼= D−1(x~A′

y ◦ A′
x), we can

pullback ϕ′
x,y to a 2-isomorphism ϕ′′

x,y : x~A′
y ◦ A′

x ⇒ A′
xy. By functorality,

these 2-isomorphisms make the diagram from Definition 5.1.1 commutative. �

We can now assume without loss of generality, that a Γ ε-equivariant struc-
ture J on G is descended. If the bundle gerbe G has – following our standard
conventions – the surjective submersion π : Y → M , the bundle gerbe x?G
has the surjective submersion πx : Yx →M with Yx := Y and πx := x ◦ π, so
that the diagram
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Yx

πx

Y

π

M
x−1

M

is commutative. The 1-isomorphism Ax : G → x~G consists of a line bundle
Ax over Zx := Y ×M Yx and a certain isomorphism αx of line bundles over
Zx ×M Zx. We denote the projection from Zx to M by ζx : Zx → M , and
the projections to the factors by π1 : Zx → Y and π2 : Zx → Yx; both are
morphisms of surjective submersions. Note that axiom (1M1) for Ax gives

curv(Ax) = ε(x)π∗
2C − π∗

1C.

To discuss the 2-isomorphism ϕx,y, we first look at the pullback 1-
isomorphism x~Ay. For the pullback of the surjective submersion ζy : Zy →
M along x−1 we set Zx

y := Zy with the surjective submersion ζx
y := x ◦ ζy,

yielding the commutative diagram

Zx
y

ζx
y

Zy

ζy

M
x−1

M .

Now we make use of the simple definition of the composition of 1-morphisms
introduced in Chapter 2. Accordingly, for the 1-isomorphism x~Ay ◦ Ax we
have to consider the fibre product

Zx,y := Zx ×Yx
Zx

y = Y ×M Yx ×M Yxy

whose projections to the factors we denote by π12 : Zx,y → Zx, π23 : Zx,y →
Zx

y and π13 : Zx,y → Zxy. Notice that for ε(x) = −1, the line bundle of the 1-

isomorphism x~Ay = x?A†
y = x?A∗−1

y is dualized, what we indicate by Aε(x)
y .

So, the composed 1-isomorphisms provides the line bundle π∗
12Ax ⊗ π∗

23A
ε(x)
y

over the fibre product Zx,y. Since J was assumed to be descended, we may
represent the 2-isomorphism ϕx,y by a triple (Wx,y, ωx,y, ϕx,y) with Wx,y :=
Zx,y, ωx,y := id, and an isomorphism

ϕx,y : π∗
12Ax ⊗ π∗

23A
ε(x)
y → π∗

13Axy

of line bundles over Zx,y. Finally, the commutative diagram from Definition
5.1.1 for the 1-isomorphisms ϕx,y gives a commutative diagram for isomor-
phisms of line bundles over the fibre product
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Zx,y,z := Y ×M Yx ×M Yxy ×M Yxyz, (5 – 1)

namely

π∗
12Ax ⊗ π∗

23A
ε(x)
y ⊗ π∗

34A
ε(xy)
z

id⊗π∗
234ϕε(x)

y,z

π∗
123ϕx,y⊗id

π∗
13Axy ⊗ π∗

34A
ε(xy)
z

π∗
134ϕxy,z

π∗
12Ax ⊗ π∗

24A
ε(x)
yz π∗

124ϕx,yz

π∗
14Axyz.

(5 – 2)

Let us summarize all these results in the following

Lemma 5.1.5. A descended Γ ε-equivariant structure J on a bundle gerbe G
defines

(a) for each x ∈ Γ a line bundle Ax over Zx of curvature

curv(Ax) = ε(x)π∗
2C − π∗

1C,

(b) and for each pair x, y ∈ Γ an isomorphism

ϕx,y : π∗
12Ax ⊗ π∗

23A
ε(x)
y → π∗

13Axy

of line bundles over Zx,y which are associative in the sense that diagram
(5 – 2) is commutative.

The normalization condition on Γ ε-equivariant structures infers here that
A1 over Z1 = Y [2] is the line bundle L of G, that ϕ1,x and ϕx,1 are the
isomorphisms λW and ρW from §2.3, and that the isomorphism ϕ1,1 of line
bundles over Z1,1 = Y [3] is just the multiplication μ of G.

A bundle gerbe G over M with Γ ε-equivariant structure is now called
twisted equivariant bundle gerbe, or more precisely, Γ ε-equivariant bundle
gerbe. Combining Definition 5.1.2 with Proposition 5.1.3 we obtain a notion
of equivalence between Γ ε-equivariant bundle gerbes.

Definition 5.1.6. Two Γ ε-equivariant bundle gerbes (G,J ) and (G′,J ′) are
considered to be equivalent, if there exists a 1-isomorphism

B : G → G′

of bundle gerbes over M and a morphism

β : JB(J ′) ⇒ J

of Γ ε-equivariant structures on G.

In the next section, we derive a cohomological classification of the set of
equivalence classes of Γ ε-equivariant bundle gerbes over a smooth manifold
M . Equipped with this classification, we are ready to discuss the descent
theory of bundle gerbes and Jandl structures in the following sections §5.4
and §5.5.
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5.2 Twisted equivariant Deligne Cohomology

The setup to describe equivalence classes of equivariant bundle gerbes over
a smooth manifold M by Deligne cohomology will again be a finite group Γ
acting smoothly on the left on M , and a group homomorphism ε : Γ → Z2.
In this section, we incorporate this group action in the Deligne cohomology
groups.

We recall from §1.3 that Deligne cohomology is the hypercohomology of
a sheaf complex D•(n), which we have calculated in the following way: we
considered the double complex Čp(V,Dq(n)) consisting of the Čech cochain
groups with respect to an open cover V and with values in the sheaves
Dq(n), and have formed its total complex Totn(V,D(n)). The cohomology
Ȟ•(V,D(n)) of this total complex forms an inductive system, whose limit
can be identified with the hypercohomology H•(M,D(n)), the Deligne coho-
mology in degree n. Let us start the modification of the Deligne sheaf complex
D•(n) by incorporating the group action of Γ . As before, we denote the diffeo-
morphism associated to a group element x ∈ Γ by x : M →M ; furthermore,
we denote the pushforward of a sheaf F over M along a map f : M → N by
f∗F ; this sheaf assigns to an open subset U of N the set F(f−1(U)). We use
the following notion of an equivariant sheaf.

Definition 5.2.1. Let Γ be a finite group acting smoothly on the left on a
smooth manifold M , and let F be a sheaf over M . A Γ -equivariant structure
on F is a family of sheaf homomorphisms

φx : F → x−1
∗ F ,

one for each group element x ∈ Γ , such that

φ1 = idF and x−1
∗ φy ◦ φx = φxy.

A sheaf with Γ -equivariant structure is called Γ -equivariant sheaf.

In our case the relevant sheaves are D0(n) = U(1)M and Dq(n) = Ωq
M , on

which we now define Γ -equivariant structures. The sheaf homomorphisms φx

are defined over an open subset V of M as follows. For t ∈ C∞(V,U(1)), we
set

φx(t) := (x−1)∗tε(x) ∈ C∞(x(V ),U(1)),

and for W ∈ Ωq(V ), we set

φx(W ) := ε(x)(x−1)∗W ∈ Ωq(x(V )).

This way we imitate the action of Γ on the 2-category BGrb(M) by the
functors x~.

A key ingredient for the description of Γ ε-equivariant bundle gerbes is
the observation that group cohomology is relevant. The proper way to deal
with this would be to introduce group cohomology with values in equivariant
sheaves, but this is beyond the scope of this thesis. So we decide at this point
to continue using Čech cohomology, similarly to §1.3.
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Lemma 5.2.2. Let F be a Γ -equivariant sheaf of abelian groups over M ,
and let V = {Vi}i∈I be an open cover of M together with a left action of
Γ on the index set I, such that x(Vi) = Vxi. Then, the Čech cochain groups
Čp(V,F) and the Čech cohomology groups Ȟp(M,F) are left Γ -modules, and
the projection

kerδ|Čp(V,F) → Ȟp(M,F)

to cohomology classes is a homomorphism of Γ -modules.

Proof. Notice that for any x ∈ Γ there is a canonical group isomorphism

Čp(V,F) ∼= Čp(V, x−1
∗ F)

which just resorts direct summands. Under this identification, the sheaf ho-
momorphisms φx of the Γ -equivariant sheaf F induce group homomorphisms

x := (φx)∗ : Čp(V,F) → Čp(V,F),

and the conditions on the φx infer that these group homomorphisms put
a left module structure on Čp(V,F). In the same way, we obtain induced
group homomorphisms in Čech cohomology. �

We assume that open covers V with the invariance property from Lemma
5.2.2 always exist, and assume furthermore that these covers can even be
chosen to be good. It will be convenient to consider the total complex
Tot•(V,D(n)), defined as a direct sum of the left Γ -modules Čp(V,Dq(n)),
itself as a left Γ -module. The differential

D : Totk(V,D(n)) → Totk+1(V,D(n))

of this total complex, composed in §1.3 from the exterior derivative d and the
Čech coboundary operator δ, is then a homomorphism of Γ -modules. Note
that the Γ -module structures imposed by Lemma 5.2.2 on the cohomology
groups Hk(M,U(1)) and Hk(M,D(n)) are (in the additive notation) just
given by

xα := ε(x)(x−1)∗α

for any cohomology class α.

In general, for any left Γ -module A, the group cohomology of A is the
cohomology of a complex composed of cochain groups Ck

Γ (A) := Map(Γ k, A).
We denote the value of a map n ∈ Ck

Γ (A) at x1, ..., xk ∈ Γ by nx1,...,xk
∈ A .

The coboundary operator is the group homomorphism

Δ : Ck
Γ (A) → Ck+1

Γ (A)

defined by
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(Δn)x1,...,xk+1 := x1nx2,...,xk+1 − nx1x2,...,xk+1 + ...

+ (−1)knx1,...,xkxk+1 + (−1)k+1nx1,...,xk
.

By standard arguments Δ2 = 0. More general, if A• is a complex of Γ -
modules, we obtain a double complex Ck

Γ (Al).
We apply this general setup to the complex A• := Tot•(V,D(n)) of Γ -

modules, and denote the total complex of the associated double complex by

Totp
Γ (V,D(n)) :=

⊕

p=k+l

Ck
Γ (Al) =

⊕

p=k+l

Ck
Γ (Totl(V,D(n))).

Its differential is
DΓ |Ck

Γ (Al) := Δ+ (−1)k+1D.

The cohomology of the complex Totp
Γ (V,D(n)) with the differential DΓ is

denoted by Ȟ•
Γ (V,D(n)). The groups Ȟ•

Γ (V,D(n)) form a directed system
over the directed set of open covers of M , whose direct limit we denote by

Hp
Γ (M,D(n)) := lim

−→
V

Ȟp
Γ (V,D(n)).

We call this cohomology the twisted equivariant Deligne cohomology or Γ ε-
equivariant Deligne cohomology , and will also use the notation Hp

Γ,ε(M,D(n))
to emphasize that the action of Γ is not only induced by an action of Γ on
M but also modified by ε. It is to expect that these cohomology groups can
also be obtained as the hypercohomology of a sheaf double complex, coming
from the group cohomology complex with values in the complex D•(n) of Γ -
equivariant sheaves. Another way to define equivariant Deligne cohomology
that also applies to topological group actions is by simplicial sheaves [Gom03,
LU01].

Now we are going to relate the Γ ε-equivariant Deligne cohomology we just
have defined to Γ ε-equivariant bundle gerbes. For this purpose, let us begin
with extracting local data from a Γ ε-equivariant bundle gerbe (G,J ) with
respect to a good open cover V of M satisfying the assumption of Lemma
5.2.2. First of all, let ξ ∈ Tot2(V,D(2)) be a cocycle for the bundle gerbe
G. Then, for any x ∈ Γ , let βx ∈ Tot1(V,D(2)) be a cochain for the 1-
isomorphism Ax : G → x~G of the Γ ε-equivariant structure, i.e.

xξ = ξ + Dβx. (5 – 3)

Here, xξ is the image of ξ under the action of x ∈ Γ using the Γ -module
structure we have on Tot•(V,D(2)). Then, according to the discussion in
§2.6 the 1-isomorphism x~Ay ◦ Ax has the cochain xby + bx. If now αx,y ∈
Tot0(V,D(2)) is a cochain for the 2-isomorphism ϕx,y, i.e.

βxy = xβy + βx + Dαx,y, (5 – 4)
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the commuting diagram from Definition 5.1.1 becomes

xαy,z + αx,yz = αxy,z + αx,y. (5 – 5)

So, the Γ -module structure on the total complex Totk(V,D(n)) we have de-
fined fits conveniently to equivariant structures. Next we recognize that the
cochains ξ, βx, and αx,y give rise to elements in the double complex Ck

Γ (Al),
namely ξ ∈ C0

Γ (A2), β ∈ C1
Γ (A1) and α ∈ C2

Γ (A0). Notice that the normal-
ization condition we imposed for twisted equivariant structures gives rise to
cochains α ∈ C2

Γ (A0) and β ∈ C1
Γ (A1) which are normalized in the sense used

in group cohomology: αx,y = 1 if either x = 1 or y = 1 and β1 = 0.
Using the coboundary operator Δ one can rewrite the three equations

(5 – 3) to (5 – 5) as

(Δξ)x = Dβx , (Δβ)x,y = −Dαx,y and (Δα)x,y,z = 0. (5 – 6)

Now it is not far to recognize that the triple (α, β, ξ) is a cochain in the total
complex Tot2Γ (V,D(n)), and the equations (5 – 6), together with the cocycle
condition Dξ = 0 give the cocycle condition

DΓ (α, β, ξ) = 0.

This way, we have assigned a cohomology class in H2
Γ,ε(M,D(2)) to any Γ ε-

equivariant bundle gerbe over M .

Lemma 5.2.3. The cohomology class [(α, β, ξ)] ∈ H2
Γ,ε(M,D(2)) of a Γ ε-

equivariant bundle gerbe depends neither on the choice of the cochains nor on
the equivalence class of the Γ ε-equivariant bundle gerbe.

Proof. Let ξ′ be another cocycle for the bundle gerbe G, i.e. there exists a
cochain λ ∈ Tot1(V,D(2)) with ξ′ = ξ + D(λ). With this new choice, the
cochains βx become β̃x := βx + (Δλ)x. If β′

x is another choice, there exists a
cochain κ ∈ C1

Γ (Tot0(V,D(2))) with

β′
x = β̃x + Dκx = βx + (Δλ)x + Dκx.

With this new choice, the cochains αx,y become α′
x,y := αx,y +(Δκ)x,y. Sum-

marizing,
(α′, β′, ξ′) = (α, β, ξ) + DΓ (κ, λ).

In the same way, equivalent Γ ε-equivariant bundle gerbes define equivalent
cocycles: the isomorphism B : G → G′ defines the cochain λ, and the
morphism ϕ of Γ ε-equivariant structures defines the cochain κ. �

It is convenient to notice that the monoidal structure on the 2-category
BGrb(M) of bundle gerbes induces a tensor product on Γ ε-equivariant bundle
gerbes. The trivial bundle gerbe I0 together with a trivial Γ ε-equivariant
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structure J0 defined by identity 1-isomorphisms Ax = idI0 and identity 2-
isomorphisms ϕx,y = ididI0

is a tensor unit for this tensor product. This way,
equivalence classes of Γ ε-equivariant bundle gerbes form a monoid. It is also
clear that the cohomology class of a tensor product (G ⊗ G′,J ⊗ J ′) is the
sum of the classes of the Γ ε-equivariant bundle gerbes (G,J ) and (G′,J ′).

Theorem 5.2.4. The assignment of a cohomology class in H2
Γ,ε(M,D(2)) to

a Γ ε-equivariant bundle gerbe over M defines a group isomorphism






Equivalence classes
of Γ ε-equivariant

bundle gerbes over M






∼=
H2

Γ,ε(M,D(2)).

Proof. This is a direct consequence of Proposition 2.6.1. To prove the
surjectivity, one uses the 2-functor Con to construct a Γ ε-equivariant bundle
gerbe from a given cocycle in Tot2Γ (V,D(2)). To prove the injectivity assume
that the class of a Γ ε-equivariant bundle gerbe (G,J ) vanishes. From any
trivializing cochain we reconstruct a 1-isomorphism B : I0 → G, and a
morphism from the Γ ε-equivariant structure JB(J ) on I0 to J0. So we
have found an isomorphism of monoids, which shows that the monoid of
equivalence classes of Γ ε-equivariant bundle gerbes is even a group. �

5.3 Obstruction Theory and Classification

In general, there are obstructions against the existence of a Γ ε-equivariant
structure on a bundle gerbe G, and if these vanish, there may be inequivalent
choices. We use Theorem 5.2.4 to study these issues in a purely cohomological
way. So we are looking for the image and the kernel of the homomorphism

pr : Hp
Γ,ε(M,D(n)) → Hp(M,D(2))

which sends a twisted equivariant Deligne class to the underlying ordinary
Deligne class. We recall that Γ ε-equivariant cohomology is the cohomology of
the complex

Totp
Γ (V,D(n)) :=

⊕

p=k+l

Ck
Γ (Al), (5 – 7)

where we use the abbreviation Al := Totl(V,D(n)) throughout this sec-
tion. The above homomorphism pr is induced from the projection into the
direct summand C0

Γ (Ap) = Ap, which is indeed a chain map. If we denote by
Totp

Γ (V,D(n))1 the direct sum (5 – 7) with k restricted to k ≥ 1, the cobound-
ary operator DΓ restricts to an operator on these cochain groups, so that we
have a complex Tot•Γ (V,D(n))1. The cohomology of this complex is, in the
direct limit, denoted by Hp

Γ,ε(M,D(n))1.



5.3 Obstruction Theory and Classification 133

Proposition 5.3.1. The homomorphism pr from twisted equivariant Deligne
cohomology to ordinary Deligne cohomology fits into an exact sequence

0
Hp

Γ,ε(M,D(n))1

Hp−1(M,D(n))
Hp

Γ,ε(M,D(n))
pr

Hp(M,D(n))
ω

Hp+1
Γ,ε (M,D(n))1;

in particular, for n = p = 2, a bundle gerbe with Deligne cohomology class
ξ ∈ H2(M,D(2)) admits Γ ε-equivariant structures if and only if the class ω(ξ)
vanishes. In this case, inequivalent choices are parameterized by the quotient
H2

Γ,ε(M,D(2))1/(H1(M,D(2)).

Proof. The exact sequence comes from the long exact sequence induced from
the short exact sequence of complexes

0 Tot•Γ (V,D(n))1 Tot•Γ (V,D(n))
pr

Tot•(V,D(n)) 0.

Notice that the connecting homomorphism

ω : Hp(M,D(n)) → Hp+1
Γ,ε (M,D(n))1

sends a representing cocycle ξ ∈ Ap to the cocycle (0, ..., 0,Δξ). �

Let us first discuss the obstruction class ω(ξ) ∈ H3
Γ,ε(M,D(2))1 of a

cochain ξ ∈ A2 for a bundle gerbe G. Its vanishing ω(ξ) = 0 is equivalent to
find cochains β ∈ C1

Γ (A1) and α ∈ C2
Γ (A0) such that DΓ (α, β) = (0, 0,Δξ),

which are just the equations (5 – 6), namely

Δξ = Dβ , Δβ = −Dα and Δα = 0.

The first equation is soluble if and only if the Deligne cohomology classes

oD1,x(ξ) := [Δξx] ∈ H2(M,D(2))

of the cocycles (Δξ)x ∈ A2 are trivial for all x ∈ Γ . This gives us a family of
obstruction classes {oD1,x(ξ)}x∈Γ . In the case that all these obstruction classes
vanish, we may choose a cochain β ∈ C1

Γ (A1) with Δξ = Dβ. The calculation

DΔβ = ΔDβ = Δ2ξ = 0

shows that τx,y := (Δβ)x,y is a Deligne cocycle and defines a class [τx,y] ∈
H1(M,D(2)). Since by Lemma 5.2.2 the projection to cohomology classes is
a homomorphism of Γ -modules, we have an element [τ ] ∈ C2

Γ (H1(M,D(2))).
Since moreover Δ[τ ] = 0, we have found a class

oD2 (ξ) := [[τ ]] ∈ H2
Γ,ε(H

1(M,D(2))),

which is indeed independent of β: for a different choice β′ with Δξ = Dβ′ and
the corresponding cochain τ ′x,y := (Δβ)x,y, we have D(β′

x −βx) = 0, and thus
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a cochain [β′ − β] ∈ C1
Γ (H1(M,D(2))), whose coboundary is obviously the

difference between [τ ′] and [τ ].
We claim that the second equation, Δβ = −Dα, is soluble if and only if

the class oD2 (ξ) is trivial. To see this, notice that if α is a solution, τx,y =
(Δβ)x,y = −Dαx,y so that already the classes [τx,y] in Deligne cohomology
vanish. Conversely, suppose that [[τ ]] = 0. Equivalently, there exist cochains
χ ∈ C1

Γ (A1) with Dχx = 0 and α ∈ C2
Γ (A0) with

τx,y = (Δχ)x,y − Dαx,y.

Now we define β′ := β −χ which still solves the first equation Δξ = Dβ′, but
also the second one:

Δβ′
x,y = τx,y − (Δχ)x,y = −Dαx,y.

The calculation DΔα = ΔDα = Δ2β′ shows that λx,y,z := (Δα)x,y,z is a
Deligne cocycle and defines a class [λx,y,z] ∈ H0(M,D(2)), so that we have
an element λ ∈ C3

Γ (H0(M,D(2))). Since Δλ = 0, it represents a class

oD3 (ξ, β′) := [λ] ∈ H3
Γ,ε(H

0(M,D(2))),

which is independent of α: for a different choice α′ with Δβ′ = −Dα it follows
that D(α′ − α) = 0 so that [α′ − α] ∈ C2

Γ (H0(M,D(2))); its coboundary is
the difference between the cocycles λ and λ′.

We claim that the third equation Δα = 0 is soluble if and only if the class
oD3 (ξ, β′) vanishes. Any solution of this equation leads to the trivial cocycle
λx,y,z = 0, so that [λ] = 0. Conversely, supposed [λ] = 0, there exists a cochain
κ ∈ C2

Γ (A0) with Dκx,y = 0 and λ = Δκ. Now we define α′ := α − κ so that
the second equation is still satisfied, Δβ′ = −Dα = −Dα′, but also the third,
Δα′ = Δα−Δκ = 0.

All obstruction classes we have extracted from the cocycle ξ of a bun-
dle gerbe G take values in the Deligne cohomology groups. Before we sum-
marize our results in Theorem 5.3.2 below, we shall express these classes
by singular cohomology classes. It will be convenient to split the family
oD1,x(ξ) ∈ H2(M,D(2)) of obstruction classes in two parts: we recall the group
homomorphism

d : Hk(M,D(k)) → Ωk+1(M)

that fits by Proposition 1.3.9 into the exact sequence

0 Hk(M,U(1))
f

Hk(M,D(k))
d

Ωk+1(M).

The 3-form d([ξ]) is just the curvature of the bundle gerbe G. We say that a
bundle gerbe G has Γ ε-equivariant curvature, if

curv(x~G) = curv(G)
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for all x ∈ Γ . Notice that this is the case if the classes oD1,x(ξ) vanishes.
Conversely, assume that the bundle gerbe G has Γ ε-equivariant curvature.
Then, the classes oD1,x(ξ) are in the kernel of d, and hence in the image of the
injective group homomorphism f . So they define unique classes

o1,x(ξ) := f−1oD1,x(ξ) ∈ H2(M,U(1)).

For the remaining obstruction classes recall from Proposition 1.3.9 that
the group homomorphism f is for k < n an isomorphism. It is even more an
isomorphism of Γ -modules with respect to the Γ -action on cohomology groups
induced by Lemma 5.2.2. The induced isomorphism f∗ in group cohomology
defines the classes

o2(ξ) := f−1
∗ oD2 (ξ) ∈ H2

Γ,ε(H
1(M,U(1)))

and
o3(ξ, β) := f−1

∗ oD3 (ξ, β) ∈ H3
Γ,ε(H

0(M,U(1))).

Let us now summarize these results in the following

Theorem 5.3.2. Let G be a bundle gerbe over M , let V be an open cover
of M satisfying the assumptions of Lemma 5.2.2, and let ξ ∈ Tot2(V,D(2))
be a cocycle for G. There are two necessary conditions for the existence of a
Γ ε-equivariant structure on G:

1.) G has Γ ε-equivariant curvature, and, if so,
2.) the obstruction classes o1,x(ξ) and o2(ξ) vanish.

In the case that both conditions are satisfied, let (α, β) be cochains as above
with Δξ = Dβ and Δβ = −Dα. Then, a sufficient condition for the existence
of a Γ ε-equivariant structure on G is the vanishing of the third obstruction
class o3(ξ, β).

Now that we have discussed the obstructions against the existence of Γ ε-
equivariant structures, we come to their classification. By Proposition 5.3.1 we
have to compute the group H2

Γ,ε(M,D(2))1/H1(M,D(2)). For this purpose,
we have the following useful

Lemma 5.3.3. For n ≥ 0 we have an exact sequence

0 H2
Γ,ε(H

0(M,D(n))) H2
Γ,ε(M,D(n))1 C1

Γ (H1(M,D(n))),

where the Deligne cohomology groups Hk(M,D(n)) are Γ -modules as ex-
plained subsequent to Lemma 5.2.2.

Proof. Recall that Hp
Γ,ε(M,D(n))1 is the cohomology of a complex with

cochain groups Totk
Γ (V,D(n))1, where we have omitted one of the direct sum-

mands, C0
Γ (Ak). If we again split off a direct summand, now C1

Γ (Ak−1), this
yields a short exact sequence of complexes
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0 Tot•Γ (V,D(n))2 Tot•Γ (V,D(n))1 C1
Γ (Tot•(V,D(n))) 0.

The induced long exact sequence in cohomology is

... Hp−1
Γ,ε (M,D(n))1 C1

Γ (Hp−2(M,D(n)))

Hp
Γ,ε(M,D(n))2 Hp

Γ,ε(M,D(n))1 C1
Γ (Hp−1(M,D(n))) . . .

and the connecting homomorphism is, like in Proposition 5.3.1, given by the
coboundary operator Δ. In the relevant case p = 2, it is easy to see that

H2
Γ,ε(M,D(n))2 = kerΔ|C2

Γ (H0(M,D(n))),

so that the claim follows. �

The latter Lemma is actually sufficient to compute the classifying group
in the case of a 2-connected manifold. The following result generalizes Propo-
sition 4.2.4 for Jandl structures.

Proposition 5.3.4. Let M be a 2-connected smooth manifold and let G be a
bundle gerbe over M with Γ ε-equivariant curvature.

(a) G admits Γ ε-equivariant structures if and only if the third obstruction
class o3 ∈ H3

Γ,ε(U(1)) vanishes.
(b) if G admits Γ ε-equivariant structures, equivalence classes of Γ ε-equivari-

ant bundle gerbes whose underlying bundle gerbe is isomorphic to G are
parameterized by the group H2

Γ,ε(U(1)).

Proof. Recall that for a 2-connected manifold M , we have H1(M,U(1)) =
H2(M,U(1)) = 0, so that both necessary conditions in Theorem 5.3.2 are
satisfied. Since H0(M,U(1)) = U(1), the remaining obstruction class o3 is an
element of H3

Γ,ε(U(1)). If it vanishes, the Deligne class of the bundle gerbe
G lies in the image of the homomorphism pr. The classifying group is by
Proposition 5.3.1 given by H2

Γ,ε(M,D(2))1/H1(M,D(2)), but this is here be-
cause of H1(M,D(2)) ∼= H1(M,U(1)) = 0 just H2

Γ,ε(M,D(2))1. According to
Lemma 5.3.3 this group is isomorphic to H2

Γ,ε(H
0(M,D(n))) = H2

Γ,ε(U(1)). �

In the next three sections it will become clear why the classification of
Γ ε-equivariant structures on bundle gerbes over 2-connected manifolds is im-
portant.

5.4 Quotients of Equivariant Bundle Gerbes

In the previous sections we have discussed a finite group Γ acting smoothly
on the left on a smooth manifold M . For a group homomorphism ε : Γ → Z2
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we have defined modified pullback 2-functors x~ and used them to define Γ ε-
equivariant structures on bundle gerbes. We have also extended the action of Γ
to Deligne cohomology in order to classify these Γ ε-equivariant bundle gerbes.
Concerning the choice of the group homomorphism ε, we now distinguish two
situations, namely whether ε is trivial, ε(x) = 1 for all x ∈ Γ , or non-trivial.
In this section we discuss the trivial case, and the non-trivial one is to be
discussed in the next section.

We call a Γ ε-equivariant structure on a bundle gerbe G just a Γ -equivariant
structure, if ε is trivial. Accordingly, a Γ ε-equivariant bundle gerbe is just
called Γ -equivariant bundle gerbe. Note that for trivial ε, the functor x~ is
just the pullback by inverse diffeomorphisms,

x~ = x? = (x−1)∗ : BGrb(M) → BGrb(M).

To prepare the following definition of a quotient bundle gerbe notice that
provided that the action of Γ on M is free, the quotient X := M/Γ is a
smooth manifold in such a way that the quotient map p : M → X is a
surjective submersion. If π : Y →M is the surjective submersion of a bundle
gerbe G over M , the fibre products of the surjective submersion ω : Y → X
defined by ω := p ◦ π are disjoint unions

Y ×X Y ∼=
⊔

x∈Γ

Zx and Y ×X Y ×X Y ∼=
⊔

(x,y)∈Γ 2

Zx,y.

Recall from Lemma 5.1.5 that a descended Γ -equivariant structure on G de-
fines, in the notation of Lemma 5.1.5,

(a) line bundles Ax over Zx of curvature curv(Ax) = π∗
2C − π∗

1C , where C
is the curving of G.

(b) isomorphisms ϕx,y : π∗
12Ax ⊗ π∗

23Ay → π∗
13Axy of line bundles over Zx,y

which are associative in the sense of diagram (5 – 2).

Definition 5.4.1. Let Γ be a finite group acting smoothly and free on a
smooth manifold M , and let (G,J ) be a Γ -equivariant bundle gerbe over M ,
where we assume that J is descended. The quotient bundle gerbe G/Γ over
the smooth manifold X := M/Γ is defined as follows:

(i) its surjective submersion ω : Y → X is the composition of the surjective
submersion π : Y →M of G with the quotient map p : M → X.

(ii) its curving is the curving C ∈ Ω2(Y ) of G.
(iii) its line bundle A over Y ×X Y is given by the line bundle A|Zx

:= Ax of
J over each component Zx of Y ×X Y .

(iv) its multiplication is over each component Zx,y of Y ×X Y ×X Y given by
the isomorphism ϕx,y of J .

The axioms (G1) and (G2) for the quotient bundle gerbe follow from Lemma
5.1.5 (a) and (b), respectively.
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In order to obtain a correspondence between Γ -equivariant bundle gerbes over
M and bundle gerbes over the quotient X := M/Γ , let now G be any bundle
gerbe over the quotient X. The pullback H := p∗G along the quotient map
is a bundle gerbe over M which has a canonical (descended) Γ -equivariant
structure Jcan: since p = p◦x−1 we have x?G = G and are hence able to choose
Ax := idG . By the same argument, the 2-isomorphism ϕx,y : idG ◦ idG ⇒ idG

can be chosen to be the natural 2-isomorphism ϕx,y := ρidG = λidG . The axiom
(2C2) of the 2-category BGrb(M) then implies the commutativity condition
for the ϕx,y.

Lemma 5.4.2. For any Γ -equivariant bundle gerbe (G,J ) over M with as-
sociated quotient bundle gerbe G/Γ over X, the Γ -equivariant bundle gerbes
(G,J ) and (p∗(G/Γ ),Jcan) are equivalent.

Proof. If π : Y → M is the surjective submersion of G, the pullback bundle
gerbe H := p∗(G/Γ ) has the surjective submersion π′ : Y ′ → M with Y ′ :=
Y × Γ and π′(y, x) := x(π(y)). Its curving is the pullback of the curving C of
G along the projection y : Y ′ → Y . Notice that Y ′[2] decomposes as a disjoint
union of fibre products Wx,y := Yx ×M Yy with projections Wx,y → Zx−1y, so
that the line bundle L′ of the bundle gerbe H is given by L′|Wx,y := Ax−1y.
To define the 1-isomorphism B : G → H, we write the fibre product Y ×M Y ′

as the disjoint union
Y ×M Y ′ ∼= Z :=

⊔

x∈Γ

Zx.

We let the line bundle B over Z be defined by B|Zx
:= Ax. Its curvature

satisfies axiom (M1). Notice that Z [2] identifies with the disjoint union of the
fibre products Zx,x−1,y defined in (5 – 1). Now we use the following pullbacks
of the 2-isomorphisms ϕx,y to that space,

π∗
134ϕ1,y : π∗

13L⊗ π∗
34Ay → π∗

14Ay

and π∗
124ϕx,x−1y : π∗

12Ax ⊗ π∗
24Ax−1y → π∗

14Ay,

so that the composite π∗
124ϕ

−1
x,x−1y ◦ π∗

134ϕ1,y defines an isomorphism

β : π∗
13L⊗ π∗

34B → π∗
12B ⊗ π∗

24L
′

of line bundles over Z [2]. It satisfies the axiom (M2) due to the associativity
condition for the ϕx,y; hence we have defined a 1-isomorphism B = (B, β).

Now let us compute the canonical Γ -equivariant structure Jcan on the
pullback bundle gerbe H = p∗(G/Γ ). Its 1-isomorphisms are all idH; these
are 1-isomorphisms consisting of the line bundle L′ over Y ′[2] and of the iso-
morphism λ := π∗

124ϕ
−1 ◦ π∗

134ϕ over Y ′[3]. We have in turn to compute the
equivariant structure JB(Jcan) on G. By definition of the functor JB in Propo-
sition 5.1.3 it consists of the 1-isomorphisms A′

x := x?B−1 ◦ idH ◦B, these are
given by the fibre product
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Z ′
x :=

⊔

y,z∈Γ

Zy,y−1xz,z−1

and the line bundle A′
x over Z ′

x given by

A′
x|Zy,y−1xz,z−1 := π∗

12Ay ⊗ π∗
23Ay−1xz ⊗ π∗

34s
∗A∗

z.

To finish the proof, we need to define a morphism γ : JB(Jcan) → J of Γ -
equivariant structures on G. We define the 2-isomorphism γx : A′

x ⇒ Ax by
the triple (Z ′

x, id, γx) where γx is composed as

π∗
12Ay ⊗ π∗

23Ay−1xz ⊗ π∗
34s

∗A∗
z

π∗
123ϕy,y−1xz⊗id

π∗
13Axz ⊗ π∗

43A
∗
z

π∗
143ϕ−1

x,y⊗id

π∗
14Ax ⊗ π∗

43Az ⊗ π∗
43A

∗
z π∗

14Az.

This 2-isomorphism satisfies the condition on morphisms of Γ -equivariant
structures due to the associativity condition for the ϕx,y. �

Quotient bundle gerbes are useful to produce examples of bundle gerbes
over manifolds M/Γ from given bundle gerbes over M . For instance, we can
take the bundle gerbes Gk

0 over a compact simple, simply-connected Lie group
G we have constructed in §1.4, and consider the action of a subgroup Z of the
(finite) center of G by multiplication,

z : G→ G : g 7→ z ∙ g.

Recall that the bundle gerbes Gk
0 have the curvature curv(Gk

0 ) = kη, and
that the 3-form η ∈ Ω3(G) is bi-invariant. In particular, Gk

0 has Z-equivariant
curvature.

By Proposition 5.3.4 (a), the remaining obstruction against Z-equivariant
structures on Gk

0 is the class o3(k) := o3(Gk
0 ) in the group cohomology

H3
Z(U(1)), where U(1) is the trivial Z-module. The subgroups Z in ques-

tion are either Z = Zm or Z = Z2 × Z2 in the case G = Spin(4n). Their
cohomology is [Wei94]

Hq
Zm

(U(1)) =






U(1) if q = 0

0 if q even

Zm if q odd

(5 – 8)

and, via the Künneth formula,

Hq
Z2×Z2

(U(1)) =

{
Z2 q = 2

Z2 × Z2 q = 3
(5 – 9)
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Since the group H3
Z(U(1)) itself does not vanish, the obstruction classes o3(k)

of the bundle gerbes Gk
0 have to be derived explicitly. This has been done using

the construction from §1.4, and the enhanced constructions from [GR03]. The
results are collected in Table 5.1 on page 143.

By Proposition 5.3.4 (b), equivalence classes of Z-equivariant bundle ger-
bes whose underlying bundle gerbe is isomorphic to Gk

0 are classified by
H2

Z(U(1)), which vanishes in all cases except G = Spin(4n) where it is Z2.
This is an important result for the classification of Wess-Zumino-Witten mod-
els with non-simply connected target spaces, as we shall see later.

Let us next investigate how the definition of the quotient bundle gerbes
depends on the bundle gerbe G and the equivariant structure J .

Lemma 5.4.3. Suppose that the Γ -equivariant bundle gerbes (G,J ) and
(G′,J ′) over M are equivalent in the sense of Definition 5.1.6. Then, the
quotient bundle gerbes G/Γ and G′/Γ over X are isomorphic.

Proof. Let B : G → G′ be a 1-isomorphism, and let β : J ⇒ JB(J ′) be a
morphism of Γ -equivariant structures on G. We may assume for simplicity that
both equivariant structures are descended and that B and β live in the Hom-
category HomFP . So, B consists of a line bundle B over Z := Y ×M Y ′, and
of an isomorphism β of line bundles over Z ×M Z. The equivariant structure
JB(J ′) has 1-isomorphisms x~B−1 ◦A′

x ◦B with line bundles π∗
12B⊗π∗

23A
′
x ⊗

π∗
34s

∗B over a component Y ×M Z ′
x ×M Yx in the notation of Lemma 5.1.5.

Thus, the morphism β of Γ -equivariant structures has isomorphisms

βx : π∗
14Ax → π∗

12B ⊗ π∗
23A

′
x ⊗ π∗

34s
∗B∗

of line bundles over Y ×M Z ′
x ×M Yx. Notice that β1 coincides with the iso-

morphism of B.
Now we define a 1-isomorphism B̃ : G/Γ → G′/Γ . Consider the surjective

submersion π13 : Z̃x := Z ×Y ′ Z ′
x → Y ×M Y ′

x into the component Y ×M Y ′
x

of the fibre product of the surjective submersions of the two quotient bundle
gerbes, and the line bundle B̃|Z̃x

:= B⊗A′
x, which has the correct curvature:

curv(B̃x) = curv(B) + curv(A′
x) = π∗

3C
′ − π∗

2C + π∗
2C − π∗

1C = π∗
3C

′ − π∗
1C.

To define the isomorphism of B̃, we consider the fibre product

Z̃x ×X Z̃y
∼=
⊔

z∈Γ

Y ×M Y ′ ×M Y ′
x ×M Yxy ×M Y ′

xy ×M Y ′
xyz

and set
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π∗
14Axy ⊗ π∗

456B̃z π∗
14Axy ⊗ π∗

45B ⊗ π∗
56A

′
z

π∗
1254βxy⊗id⊗id

π∗
12B ⊗ π∗

25A
′
xy ⊗ π∗

56A
′
z

id⊗π∗
256ϕ′

xy,z

π∗
12B ⊗ π∗

25A
′
xyz

id⊗π∗
236ϕ′−1

x,yz

π∗
12B ⊗ π∗

23A
′
x ⊗ π∗

36A
′
yz π∗

123B̃x ⊗ π∗
36A

′
yz.

This isomorphism satisfies axiom (1M2) due to the commutative diagram for
the isomorphisms βxy from Definition 5.1.2 and the one for the ϕ′

x,y from
Definition 5.1.1. �

With this result, we have established that forming the quotient bundle
gerbe defines a map from the set of equivalence classes of Γ -equivariant bundle
gerbes over M to the set of 1-isomorphism classes of bundle gerbes over the
quotient X. It is not hard to see that this map is even a group homomorphism.

Proposition 5.4.4. The assignment of a quotient bundle gerbe G/Γ over X
to every Γ -equivariant bundle gerbe (G,J ) over M establishes a group iso-
morphism






Equivalence classes
of Γ -equivariant

bundle gerbes over M






∼=






Isomorphism classes
of bundle gerbes
over X := M/Γ





.

Proof. With Lemma 5.4.2 we have shown that we have a left inverse group
homomorphism, namely the pullback p∗ along the quotient map p : M → X.
To see that this is also a right inverse, assume a bundle gerbe G over X. We
have to show that it is isomorphic to the quotient bundle gerbe (p∗G)/Γ . Let
π : Y → X be the surjective submersion of G, so that the pullback bundle
gerbe p∗G has the projection from Y ′ := M ×X Y to the first component
as its surjective submersion, and the quotient bundle gerbe p∗G/Γ the
projection from Y ′ to X. Notice that the projection f : Y ′ → Y on the
second component defines a morphism of surjective submersions over X.
From the definition of the canonical equivariant structure Jcan on p∗G and
the one of the quotient bundle gerbe it follows that Gf = (p∗G)/Γ , where Gf

is the bundle gerbe over X which is isomorphic to G by Lemma 1.2.3. �

For the corresponding cohomology theories from Theorems 1.3.6 and 5.2.4,
the latter Proposition infers a bijection

H2
Γ (M,D(2)) ∼= H2(M/Γ,D(2)).
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This bijection can also be defined explicitly for representing cochains [GR02].

To close this section, let us draw some conclusions concerning Wess-
Zumino-Witten models.

Definition 5.4.5. A Wess-Zumino-Witten orbifold is a Wess-Zumino-Witten
model for oriented worldsheets together with a finite subgroup Z of the center
of the target space G and a Z-equivariant structure J on G for the action of
Z on G by multiplication.

Any Wess-Zumino-Witten orbifold (G, 〈−,−〉 ,G, Z,J ) defines a Wess-
Zumino-Witten model for oriented worldsheets on the Lie group G/Z: since G
and G/Z have the same Lie algebra g, we use the same bilinear form 〈−,−〉 on
the quotient, and furthermore the bundle gerbe G/Z. It remains to check the
curvature condition from Definition 1.6.6: the left invariant Maurer-Cartan-
form θG ∈ Ω1(G, g) descends to the left invariant Maurer-Cartan-form θG/Z

on G/Z, and so does the 3-form ηG. Hence, the curvature of the quotient
bundle gerbe is kηG/Z .

Conversely, every Wess-Zumino-Witten model with target space G/Z de-
fines a Wess-Zumino-Witten orbifold with target space G. By Proposition
5.4.4, we have encountered a bijection between gauge equivalence classes of
Wess-Zumino-Witten orbifolds with target space G and Wess-Zumino-Witten
models with target space G/Z.

This result has been used to classify all Wess-Zumino-Witten models whose
target space is a compact simple Lie group by classifying equivariant struc-
tures on bundle gerbes [GR03], the results collected in Table 5.1. They re-
produce earlier results [FGK88] in a geometric way, and explain in particular
why there are two different Wess-Zumino-Witten models with target space
Spin(4n)/(Z2×Z2), a phenomenon which is called discrete torsion in the liter-
ature: the two models correspond to the two inequivalent (Z2×Z2)-equivariant
bundle gerbes over Spin(4n).
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G Center k o3(k) = 0 if... |H2
Z(U(1))|

SU(n) Zn
even
odd

always
|Z| odd or n

|Z| even
1

n = 2r + 1 Z2 all always 1

Spin(n) n = 4r + 2 Z4
even
odd

always
|Z| = 2

1

n = 4r Z2 × Z2
even
odd

always
n even

2

Sp(2n) Z2
even
odd

always
n even

1

E6 Z3 all always 1

E7 Z2
even
odd

always
never

1

Table 5.1: Obstructions and classification of equi-
variant structures on the bundle gerbes Gk

0 over
compact, simple and simply-connected Lie groups.
For example, the bundle gerbe Gk

0 over Spin(6) ad-
mits Z-equivariant structures, if k is even or if
Z = Z2.

5.5 Jandl Structures on Quotient Bundle Gerbes

Let us start this section with a first glimpse on the relation between Γ ε-
equivariant structures on a bundle gerbe G over M and Jandl structures on
G for the case that Γ is the group Γ = Z2 with ε = id. Its action on M
is an involution denoted by k : M → M . Note that k~ = ()† ◦ k∗. Ac-
cording to the normalization convention described after Definition 5.1.1, a
Zid

2 -equivariant structure consists of one 1-isomorphism Ak : G → k∗G∗ and
one 2-isomorphism ϕk,k : k∗A†

k ◦ Ak ⇒ idG ; and the commutative diagram
becomes the equality

ρAk
• (k∗ϕ†

k,k ◦ id) = λAk
• (id ◦ ϕk,k) (5 – 10)

of 2-isomorphisms from Ak◦k∗A
†
k◦Ak to Ak. This does not reproduce exactly

the Definition 4.2.1 of a Jandl structure due to conventional choices we had
to make in order to use Deligne cohomology. However, the 1-isomorphism
A := k∗Ak and the 2-isomorphism ϕ defined by

k∗A
ρ−1

k∗A idG ◦ k∗A
ir◦idk∗A

A∗ ◦ A† ◦ k∗A
idA∗◦ϕk,k

A∗ ◦ idG
λA∗

A∗

yield a Jandl structure as defined before. In the same way one can check that
two Zid

2 -equivariant bundle gerbes are equivalent in the sense of Definition
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5.1.6 if and only if the respective Jandl gerbes are equivalent in the sense of
Definition 4.2.6. Together with Theorem 5.2.4, this gives

Corollary 5.5.1. The group of equivalence classes of Jandl gerbes over
M is isomorphic to the twisted equivariant Deligne cohomology group
H2

Z2,id(M,D(2)).

Now let us return to the general case of a smooth action of a finite group
Γ on a manifold M , where we now assume in contrast to the previous section
that the group homomorphism ε : Γ → Z2 is non-trivial, i.e. surjective. The
kernel of ε is the normal subgroup Z, and we have an exact sequence

0 Z Γ
ε

Z2 0,

of groups. For the action of Γ on M we make the assumption of the following
definition.

Definition 5.5.2. An orientifold group for a smooth manifold M is a finite
group Γ acting smoothly on M , together with a surjective group homomor-
phism ε : Γ → Z2, such that the induced action of the normal subgroup
Z := kerε on M is free.

Thus, if (Γ, ε) is an orientifold group for M , the quotient X := M/Z is
again a smooth manifold as discussed in the previous section. Note that a
Γ ε-equivariant structure J on G restricts to a Z-equivariant structure. This
implies that we have a quotient bundle gerbe G/Z overX, given by the explicit
construction from the previous section. In the following we show that the full
Γ ε-equivariant structure defines a Jandl structure J /Z on the quotient bundle
gerbe G/Z. The first ingredient – an involution – is provided by the following

Proposition 5.5.3. Let (Γ, ε) be an orientifold group for M with normal sub-
group Z. Then, there is a unique involution k : X → X on the quotient
X := M/Z such that for any element x ∈ Γ with ε(x) = −1 the diagram

M
x

p

M

p

X
k

X

is commutative, where p : M → X is the projection in the quotient.

Proof. The involution k is the action of Γ/Z ∼= Z2 on M/Z = X. By
definition of the smooth structure on X, the commutativity of the diagram
shows that k is a smooth map. �

Now we construct the remaining parts of the Jandl structure J /Z on
G/Z, which we understand here as a Zid

2 -equivariant structure. Recall first
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from Lemma 5.1.5 that the Γ ε-equivariant Jandl structure, which we assume
to be descended, defines for each x ∈ Γ a line bundle Ax over Zx of curvature

curv(Ax) = ε(x)π∗
2C − π∗

1C,

and for each pair x, y ∈ Γ an isomorphism

ϕx,y : π∗
12Ax ⊗ π∗

23A
ε(x)
y → π∗

13Axy

of line bundles over Zx,y which is associative in the sense that diagram (5 – 2) is
commutative. Recall further that the quotient bundle gerbe G/Z is defined on
the surjective submersion ω : Y → X whose two- and three-fold fibre products
are disjoint unions of the smooth manifolds Zx and Zx,y, respectively, for
x, y ∈ Z. The line bundle A of G/Z is the union of the line bundles Ax over
the component Zx, and its multiplication is the union of the isomorphisms
ϕx,y over the component Zx,y.

Let us for simplicity denote by Γ− ⊂ Γ the subset of elements x ∈ Γ
with ε(x) = −1. To define a Jandl structure on the quotient bundle gerbe
G/Z we use the remaining structure, namely the line bundles Ax over Zx for
x ∈ Γ−, and the isomorphisms ϕx,y for elements x, y ∈ Γ with either x ∈ Γ−

or y ∈ Γ−. The 1-isomorphism A : G → k∗G∗ is defined as follows: the fibre
product P := Y ×X Yk of the surjective submersions of the two bundle gerbes
can be written as

P ∼=
⊔

x∈Γ−

Zx,

and the line bundle A over P is defined as A|Zx
:= Ax. It has the correct

curvature curv(A) = −π∗
2C − π∗

1C in the sense of axiom (1M1). The two-fold
fibre product has the components

P ×X P ∼=
⊔

x,y,z∈Γ−

Zx,y,z

Now we have to define an isomorphism α of line bundles over P ×X P , which
is on the component Zx,y,z an isomorphism

α|Zx,y,z
: π∗

13Axy ⊗ π∗
34Az → π∗

12Ax ⊗ π∗
24A

∗
yz,

where we have a dual line bundle because the target of the isomorphism A is
the dual bundle gerbe. We define this isomorphism as the composition of

π∗
134ϕxy,z : π∗

13Axy ⊗ π∗
34Az → π∗

14Axyz,

where here is no dual line bundle since ε(xy) = 1, with the inverse of

π∗
124ϕx,yz : π∗

12Ax ⊗ π∗
24A

∗
xz → π∗

14Axyz.

The isomorphism α defined like this satisfies axiom (1M2) for 1-morphisms
due to the commutativity condition on the isomorphism ϕx,y from Lemma
5.1.5. This completes the definition of the 1-isomorphism A.
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We are left with the definition of the 2-isomorphism ϕ : k∗A†
k ◦Ak ⇒ idG ,

for which we use the remaining structure, namely the 1-isomorphisms ϕx,y for
x, y ∈ Γ−. We represent ϕ as a triple (W, id, ϕ) where W = P ×X Y , which
can be written as

W ∼=
⊔

x,y∈Γ−

Zx,y.

Then, over the component Zx,y, the isomorphism ϕ is an isomorphism

ϕ|Zx,y : π∗
12Ax ⊗ π∗

23A
∗
y → π∗

13Axy

of line bundles, since the 1-isomorphism idG has the line bundle of the bundle
gerbe G/Z, which is Axy. We define ϕ|Zx,y := ϕx,y. The axiom (2M) for the
triple (W, id, ϕ) can be deduced from the commutativity condition for the
2-isomorphisms ϕx,y.

Finally we have to assure that the 2-isomorphism ϕ satisfies the equation
(5 – 10) for Jandl structures. To see this, we have to express the natural 2-
isomorphisms ρA and λA by the given 2-isomorphisms ϕx,y. According to their
definition in §2.3, we find ρA|Zx,y = ϕx,y and λA|Zx,y = ϕy,x for x ∈ Γ− and
y ∈ Z. Then, equation (5 – 10) reduces to the commutativity condition for the
2-isomorphisms ϕx,y. This finishes the definition of the Jandl structure J /Z
on the bundle gerbe G/Z.

Concerning the relation between Jandl gerbes on the quotient and Γ ε-
equivariant bundle gerbes over M , all statements from the previous section
generalize. For example, on the pullback bundle gerbe p∗(G/Z), the Jandl
structure p∗(J /Z) and the canonical Γ -equivariant structure Jcan combine
to a canonical Γ ε-equivariant structure, which is still denoted by p∗(J /Z).

Lemma 5.5.4. For the quotient Jandl gerbes we have the following general-
izations of Lemmata 5.4.2 and 5.4.3 for quotient bundle gerbes:

(i) For any Γ ε-equivariant bundle gerbe (G,J ) over M with associated quo-
tient Jandl gerbe (G/Z,J /Z) over X, the Γ ε-equivariant bundle gerbes
(G,J ) and p∗(G/Z,J /Z) are equivalent.

(ii) Suppose that the Γ ε-equivariant bundle gerbes (G,J ) and (G′,J ′) over
M are equivalent. Then, the Jandl gerbes (G/Z,J /Z) and (G′/Z,J ′/Z)
over X are also equivalent.

Proof. In the proof of Lemma 5.4.2 we have constructed a 1-isomorphism B :
G → p∗(G/Z) and a morphism γ : JB(Jcan) → J of Z-equivariant structures
on G. The definition of the quotient Jandl structure J /Z shows that the
definition of the 2-isomorphism γx extends from group elements x ∈ Z to those
in Γ−. This defines the equivalence (i). For the second claim, we recall from
the proof of Lemma 5.4.3 the construction of a 1-isomorphism B̃ : G/Z → G′/Z
from a given 1-isomorphism B : G → G′ and a morphism β : J → JB(J ′)
of Γ ε-equivariant structures on G. To prove (ii), we construct a morphism
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β̃ : J /Z → JB̃(J ′/Z) of Jandl structures on G/Z. In the notation of Lemma
5.4.3, this is a 2-morphism

β̃ : A ⇒ k∗B̃∗ ◦ A′ ◦ B̃.

It is defined as an isomorphism of line bundles over Z̃ ×Y ′ P ′ ×Y ′ Z̃, which
we write as a disjoint union

Z̃ ×Y ′ P ′ ×Y ′ Z̃ =
⊔

x∈Γ−,y∈Z

Y ×M Y ′ × Y ′
y ×M Y ′

xy ×M Y ′
x ×M Yx.

We use the isomorphisms βx of the morphism β of Γ ε-equivariant structures,
now for x ∈ Γ− and define β̃x,y by

π∗
16Ax

π∗
1256βx

π∗
12B ⊗ π∗

25A
′
x ⊗ π∗

65B
id⊗π∗

254ϕx,y⊗id
π∗

12B ⊗ π∗
24A

′
xy ⊗ π∗

54A
′
y ⊗ π∗

65B

id⊗π∗
234ϕ−1

y,y−1xy
⊗id

π∗
12B ⊗ π∗

23A
′
y ⊗ π∗

34A
′
y−1xy ⊗ π∗

54A
′
yπ

∗
65B

This 2-morphisms satisfies the condition on morphisms of Jandl structures
from Definition 5.1.2. �

Due to (ii), we have a well-defined map from the set of equivalence classes
of Γ ε-equivariant bundle gerbes over M and Jandl gerbes over M/Γ . It is
further a group homomorphism.

Theorem 5.5.5. Let (Γ, ε) be an orientifold group for M . The assignment
of a quotient Jandl gerbe (G/Γ,J /Z) over X to every Γ ε-equivariant bundle
gerbe (G,J ) over M establishes a group isomorphism






Equivalence classes
of Γ ε-equivariant

bundle gerbes over M






∼=






Isomorphism classes
of Jandl gerbes
over X := M/Γ





.

Proof. We recall from the proof of Proposition 5.4.4 that for a bundle gerbe
G over X, we have the relation Gf = (p∗G)/Z where f is a certain morphism
of surjective submersions over X. Let B : Gf → G be the 1-isomorphism
from Lemma 1.2.3. Using the natural 2-isomorphism λA and ρA from the
2-category BGrb(X), one can deduce a morphism (p∗J )/Z → JB(J ) of
Jandl structures on Gf . Thus, the Jandl gerbes (G,J ) and (p∗G, p∗J )/Z are
equivalent. The injectivity follows from Lemma 5.5.4 (i). �
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For the cohomology theories from Theorem 5.2.4 and Corollary 5.5.1, the
latter theorem infers a bijection

H2
Γ,ε(M,D(2)) ∼= H2

Z2,id(M/Z,D(2)).

This bijection can again be defined explicitly for representing cochains [GSW].
In the next section we discuss an application of Theorem 5.5.5.

5.6 Application: Wess-Zumino-Witten Orientifolds

In §5.4 we have used the theory of equivariant bundle gerbes to produce bundle
gerbes over quotients M/Γ of a smooth manifold M by a finite group Γ . In
particular, for M = G a compact simple and simply-connected Lie group and
Γ = Z a subgroup of its center, we have classified all bundle gerbes over all
compact simple Lie groups, whose curvature is an integer multiple kη of the
3-form η on G/Z.

In this section, we extend these results to the classification of all Jandl
gerbes over all compact simple Lie groups with this curvature. For this pur-
pose, we consider the following orientifold group (Γ, ε): the group Γ is the
semidirect product Γ = Z2 n Z of a subgroup Z of the center of G with Z2,
where Z2 acts on Z by inversion. Explicitly, this is the set Z2 × Z, equipped
with the product

(ε1, z1) ∙ (ε2, z2) := (ε1ε2, z
ε2
1 z2)

for εi = ±1 and z ∈ Z. In the case that Z = Zn for some n, this is just the
dihedral group D2n. The surjective group homomorphism ε : Z2 n Z → Z2

is the projection on the first component. The action of Γ on G is defined for
elements z ∈ Z as before,

(1, z) : G→ G : g 7→ z ∙ g,

and by
(−1, 1) : G→ G : g 7→ ζ ∙ g−1

for a fixed element ζ in the center of G (not necessarily in Z). The element ζ is
called the twist element. For an element (−1, z) ∈ Γ , the action is determined
by the above definitions due to (−1, z) = (−1, 1) ∙ (1, z).

Definition 5.6.1. A Wess-Zumino-Witten orientifold is a Wess-Zumino-
Witten model for unoriented worldsheets together with a finite subgroup Z of
the center of its target space G and a Γ ε-equivariant structure on its bundle
gerbe G, where Γ = Z2 n Z is the orientifold group defined above.

Any Wess-Zumino-Witten orientifold defines a Wess-Zumino-Witten
model for unoriented worldsheets on the quotient G/Z and this is in fact
an equivalence. So we have reduced the classification of Wess-Zumino-Witten
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models for unoriented worldsheets whose target space is a compact simple Lie
group G/Z to the classification of Γ ε-equivariant basic bundle gerbes over the
compact, simple and simply-connected Lie group G. By Proposition 5.3.4, this
amounts to compute the obstruction classes o3(Gk

0 ) ∈ H3
Γ,ε(U(1)) of the basic

bundle gerbes and the classifying cohomology group H2
Γ,ε(U(1)).

The calculation of the relevant group cohomology groups are – compared
to the group cohomology calculations in §5.4 – more difficult, firstly because
Γ is non-abelian unless Z ∼= Z2 × ... × Z2, and secondly because now U(1)

is a non-trivial Γ -module, where (ε, z) acts by λ 7→ λε for λ ∈ U(1). A lot
of these calculations can be covered by the Lyndon-Hochschild-Serre spectral
sequence.

Theorem 5.6.2 (Lyndon/Hochschild-Serre [Wei94]). Let Γ be a group with
a normal subgroup Z and a left module M . Then there is a first quadrant
spectral sequence Ep,q

r with

Ep,q
2 := Hp

Γ/Z(Hq
Z(M))

which converges to the group cohomology of Γ with values in M ,

Ep,q
r ⇒ Hp+q

Γ (M).

Recall that a first quadrant spectral sequence Ep,q
r consists of pages E•,•

r ,
which are bi-graded groups with Ep,q

r = 0 unless p ≥ 0 and q ≥ 0, and which
are equipped with a family of group homomorphisms

dp,q
r : Ep,q

r → Ep+r,q−r+1
r

satisfying dp+r,q−r+1
r ◦ dp,q = 0. From a given rth page one determines the

groups of the next page as the graded cohomology Ep,q
r+1 := Hp,q(Er, d). Recall

further that the symbol Ep,q
r ⇒ Hp+q

Γ (M) means that there exists a number
n for each pair (p, q), such that Ep,q

n = Ep,q
n+1 = ..., and a filtration

0 = F k
k+1 ⊂ F k

k ⊂ ... ⊂ F k
1 ⊂ F k

0 = Hk
Γ (M)

such that
F k

p /F
k
p+1

∼= Ep,k−p
n .

In our example of the orientifold group Γ = Z2 n Z, for which Z is in
particular a normal subgroup and ε induces an isomorphism Γ/Z → Z2 the
second page of the Lyndon-Hochschild-Serre spectral sequence is

Ep,q
2 = Hp

Z2,id(Hq
Z(U(1))),

where the action of Z2 on Hq
Z(U(1)) is given by

(−1.n)x0,...,xq
:= n−1

x−1
0 ,...,x−1

q
(5 – 11)
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for a cocycle n ∈ Cq
Z(U(1)). Let us start with the cyclic group Z = Zm for

which we have stated the cohomology groups Hq
Z(U(1)) in §5.4, see (5 – 8),

namely

Hq
Zm

(U(1)) =






U(1) if q = 0

0 if q even

Zm if q odd.

The action (5 – 11) of Z2 reduces to the inversion for q even and the trivial
action for q odd. Thus we further need

Hp
Z2,id(U(1)) =

{
Z2 if p even

0 if p odd

and

Hp
Z2,id(Zm) =






Zm if p = 0

Z2 if p > 0 and m even

0 if p > 0 and m odd.

Now we have calculated the second page of the Lyndon-Hochschild-Serre spec-
tral sequence, namely:

Ep,q
2 =

0

Zm 0

0 0 0

Zm 0 0 0

Z2 0 Z2 0 Z2

(for m odd)

Since there are no non-trivial homomorphisms from Zm to Z2 for m odd, the
spectral sequence collapses already at the second page, and we conclude

Hn
Γ,ε(U(1)) =

{
Z2 if n even

Zm if n odd.
(for m odd)

For m even, the second page is:

Ep,q
2 =

0

Zm Z2

0 0 0

Zm

d0,1
2

Z2 Z2

d2,1
2

Z2

Z2 0 Z2 0 Z2

(for m even)
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Here it is at first sight not clear what the homomorphism d0,1
2 : Zm → Z2 does.

It is shown in [Sah74] that there exists a seven term exact sequence, associated
to the semi-direct product Γ = Z2 n Z and a Γ -module M , namely:

0 H1
Z2,id(H0

Z(M)) H1
Γ,ε(M) res H0

Z2,id(H1
Z(M))

d01
2

H2
Z2,id(H0

Z(M)) H2
Γ,ε(M)1 H1

Z2,id(H1
Z(M))

d11
2

H3
Z2,id(H0

Z(M))

Here, res denotes the restriction map and H2
Γ,ε(M)1 is defined by the exact

sequence

0 H2
Γ,ε(M)1 H2

Γ,ε(M) H2
Z(M)Z2 ,

where the last group is the subgroup of Z2-invariant elements of H2
Z(M). In

our situation of a cyclic subgroup Z the restriction map is surjective, and
H2

Z(U(1)) = 0, so that H2
Γ,ε(U(1))1 ∼= H2

Γ,ε(U(1)). Together with the calcula-
tions above, for Z = Zm with m even the seven term exact sequence reduces
to

0 H1
Γ,ε(U(1)) res

Zm

d0,1
2

Z2 H2
Γ,ε(U(1)) Z2 0

In particular, res is an isomorphism and d0,1
2 = 0. So we conclude

Hn
Γ,ε(U(1)) =






Z2 if n = 0

Zm if n = 1

Z4 or Z2 × Z2 if n = 2

Z2k or Z2 × Zk if n = 3, for k = m, m
2 ,

m
4

(for m even)

By an explicit calculation one can show that H2
Γ,ε(U(1)) is actually Z2 × Z2

and not Z4 [GSW].
Finally, we need the cohomology groups Hn

Γ,ε(U(1)) for the case when the
normal subgroup is Z = Z2 × Z2. We have

Hq
Z2×Z2

(U(1)) =






U(1) if q = 0

Z2 × Z2 if q = 1

Z2 if q = 2

Z2 × Z2 if q = 3.

It follows then from the spectral sequence, that H2
Γ,ε(U(1)) is of order less or

equal to 16. By an explicit calculation [GSW], one finds:
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H2
Γ.ε(U(1)) = Z2 × Z2 × Z2 × Z2 (for Z = Z2 × Z2).

Summarizing, we have computed the cohomology group H2
Γ,ε(U(1)) in all

cases, providing us with the precise number of equivalence classes of Γ ε-
equivariant bundle gerbes over G with fixed underlying bundle gerbe. In
the situation with Z = {0} the trivial group, for which Γ ε-equivariant bun-
dle gerbes are just Jandl gerbes, we have seen that the cohomology group
H3

Z2,id(U(1)), where the obstruction class o3 of the bundle gerbe lives, van-
ishes. This means:

Lemma 5.6.3. Let G be a bundle gerbe over a compact, simple and simply-
connected Lie group G with curvature kη. Then, G admits Jandl structures
for any involution of the form g 7→ ζ ∙ g−1 for ζ in the center of G, and there
exist exactly two inequivalent Jandl gerbes which are isomorphic to G.

This reproduces in particular Example 4.5.3. For non-trivial Z, however, the
cohomology groups H3

Γ,ε(U(1)) do not vanish, and one has to derive the ob-
struction classes o3(Gk

0 ) for every basic bundle gerbe explicitly. This has been
accomplished in [GSW], the results being collected in Table 5.2.

Applied to Wess-Zumino-Witten models, Table 5.2 contains all obstruc-
tions against the existence of such a model for unoriented worldsheets on
quotients G/Z of a compact, simple and simply connected Lie group G in
terms of the level k, the subgroup Z and the choice of the twist element ζ.
In the case that the obstruction vanishes, the number of gauge equivalence
classes of Wess-Zumino-Witten models for unoriented worldsheets on G/Z is
given by the order of the cohomology group |H2

Γ,ε(U(1))| divided by two: this
factor has to be taken into account according to Definition 4.5.2.
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G Center Z k o3(k) = 0 if... |H2
Γ,ε(U(1))|

{0} all always 2

SU(n) Zn Z2m
even
odd

always
ζ and n

2m
even

4

Z2m+1 all always 2

Spin(n)

n = 2r + 1 Z2

{0} all always 2

Z2 all always 4

n = 4r + 2 Z4

{0} all always 2

Z2
even
odd

always
ζ even

4

Z4
even
odd

always
never

4

{0} all always 2

Zright
2

even
odd

always
ζ = (0, x)

4

n = 4r Z2 × Z2 Zleft
2

even
odd

always
r even and ζ = (x, 0)

4

Zdiag
2

even
odd

always
r even and ζ = (x, x)

4

Z2 × Z2
even
odd

always
never

16

Sp(2n) Z2

{0} all always 2

Z2
even
odd

always
n even

4

E6 Z3 all all always 2

E7 Z2

{0}
even
odd

always
never

2

Z2 all always 4

E8, F4, G2 {0} {0} all always 2

Table 5.2: Obstructions and classification of
twisted equivariant structures on the bundle ger-
bes Gk

0 over compact, simple and simply-connected
Lie groups. For example, the bundle gerbe Gk

0 over
SU(8) admits Z2 nZ4-equivariant structures, if k is
even or if the twist element ζ is even.



Summary

Gerbes are geometrical objects which can be understood as generalizations
of fibre bundles. In particular gerbes can be equipped with connections; their
holonomy has been discussed in this thesis. This holonomy is not defined on
closed curves as for fibre bundles, but on closed oriented surfaces.

In theoretical physics the geometrical description of so-called Wess-
Zumino-Witten models has been substantially improved by connections on
gerbes and their holonomy: an important component of its action functional,
the Wess-Zumino term, has been identified as the holonomy of a gerbe around
the worldsheet. Based on this fact connections on gerbes now offer the pos-
sibility to define Wess-Zumino-Witten models for more complicated types of
worldsheets in a geometrical setup, namely

1.) for oriented surfaces with boundary,

2.) for oriented surfaces with defect lines and

3.) for unoriented surfaces.

To extend the original holonomy to these more general situations requires
the choice of additional structures on gerbes with connection. For oriented
surfaces with boundary it is well-known that this additional structure consists
of a gerbe module that is defined over a region in which the boundary of the
surface lies. In the context of Wess-Zumino-Witten models such gerbe modules
are called D-branes.

In this thesis we have introduced additional structures appropriate for
the remaining two situations, and have applied them to Wess-Zumino-Witten
models. For this purpose, we first discussed the mathematical structure of
bundle gerbes with connection in the context of 2-categories. We have achieved
a substantial simplification of this 2-category by an improved definition of
morphisms between gerbes. We have identified gerbe modules as certain in
general non-invertible morphisms, so that we have been able to explain D-
branes and their holonomy for oriented surfaces with boundary in a more
compact and concise manner.

The defect lines we consider are certain embedded circles which divide a
surface into several regions to which in general different gerbes can be as-
signed. In this thesis we have introduced gerbe bimodules and bi-branes, and
have shown that they merge the holonomies of these different gerbes to a
well-defined quantity. We have thus enabled a geometric description of sigma
models with topological defect lines.

In particular, we have examined in this description the geometry of those
bi-branes in Wess-Zumino-Witten models that are relevant for conformal field
theories. We have been able to identify the submanifolds they are based on as
biconjugacy classes in the cartesian product of the involved Lie groups.
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A further interesting observation of this thesis concerns the fusion of defect
lines which arises naturally in conformal field theory. We have shown that it
leads – in the description by bi-branes we suggested – to a new realization of
the moduli space of flat connections on a three-punctured sphere.

In order to define holonomy for unoriented and in particular unorientable
surfaces, we have introduced the notion of a Jandl structure a on bundle
gerbe. For this purpose we have used the 2-categorical structure of gerbes
compiled before. Jandl structures add terms to the original holonomy that
compensate changes of local orientations in such a way that a well-defined
quantity appears, even if no global orientation is selected or does not even
exist.

We have suggested how the holonomy of gerbes with Jandl structure de-
fined like this can be used to define Wess-Zumino terms for unoriented world-
sheets. We have thus achieved a geometric description of unoriented Wess-
Zumino-Witten models.

Not every bundle gerbe permits Jandl structures, and if it does, there may
be inequivalent choices. We have developed a cohomology theory in which
appropriate obstruction classes live, and whose cohomology groups label the
inequivalent choices. Since many examples of bundle gerbes appear as quo-
tient bundle gerbes, we have likewise introduced an equivariant version of this
cohomology theory: twisted equivariant Deligne cohomology.

Another important result of this thesis is the computation of all obstruc-
tion classes and all those cohomology groups of twisted equivariant Deligne
cohomology, which are relevant for Jandl structures on gerbes that define
Wess-Zumino-Witten models on compact, simple Lie groups. We have thereby
classified all unoriented Wess-Zumino-Witten models on these Lie groups com-
pletely. Our results reproduce some well-established results from the algebraic
approach to conformal field theory in a geometrical way.
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[FFFS00] G. Felder, J. Fröhlich, J. Fuchs and C. Schweigert, The Geometry of

WZW Branes, J. Geom. Phys. 34, 162–190 (2000), hep-th/9909030.

http://arxiv.org/abs/hep-th/9909030
http://arxiv.org/abs/hep-th/9511151
http://arxiv.org/abs/hep-th/0204199
http://arxiv.org/abs/math/0511710
http://arxiv.org/abs/math/0002158
http://arxiv.org/abs/hep-th/0110219
http://arxiv.org/abs/math/9811139
http://arxiv.org/abs/hep-th/0111002
http://arxiv.org/abs/hep-th/0106194
http://arxiv.org/abs/dg-ga/9707021


Bibliography 157

[FFRS04] J. Fröhlich, J. Fuchs, I. Runkel and C. Schweigert, Kramers-
Wannier Duality from conformal Defects, Phys. Rev. Lett. 93 (2004),
cond-mat/0404051.

[FFRS06] J. Fjelstad, J. Fuchs, I. Runkel and C. Schweigert, TFT Construction of
RCFT Correlators V: Proof of modular Invariance and Factorisation, Theory
Appl. Categories (16), 342–433 (2006), hep-th/0503194.
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Zusammenfassung

Die geometrische Beschreibung von Wess-Zumino-Witten Modellen wird
durch die Verwendung der Holonomie von Zusammenhängen auf abelschen
Gerben wesentlich verbessert. Auch bietet die Theorie solcher Zusammen-
hänge die Möglichkeit, Wess-Zumino-Witten Modelle für verallgemeinerte
Typen von Weltflächen geometrisch zu diskutieren: zum Beispiel orientierte
Flächen mit Defektlinien und nicht-orientierte Flächen.

In dieser Arbeit haben wir an diese Situationen angepasste Zusatzstruk-
turen für Gerben mit Zusammenhang eingeführt, untersucht und auf Wess-
Zumino-Witten Modelle angewendet. Grundlegend dafür haben wir die math-
ematische Struktur von Gerben mit Zusammenhängen im Rahmen der Theorie
von 2-Kategorien dargestellt und weiterentwickelt.

In der Situation von Weltflächen mit Defektlinien – hier sind das eingebet-
tete Kreise – wird die Fläche in verschiedene Gebiete zerlegt; diesen Gebieten
können dann im Allgemeinen unterschiedliche Gerben über unterschiedlichen
Räumen zugeordnet werden. Wir haben in dieser Arbeit Gerbenbimoduln und
Bi-branes eingeführt und gezeigt, dass sie die einzelnen Holonomien dieser
Gerben über die jeweiligen Gebiete zu einer wohldefinierten Größe verbinden.
So haben wir eine geometrische Beschreibung von Wess-Zumino-Witten Mod-
ellen mit Defektlinien ermöglicht. Eine interessante Beobachtung dieser Arbeit
ist, dass die Fusion von Defektlinien in der von uns vorgeschlagenen Beschrei-
bung durch Bi-branes zu einer neuen Realisierung des Modulraumes flacher
Zusammenhänge auf einer drei-punktierten Sphäre führt.

Um Holonomie für nicht orientierbare Flächen zu definieren, haben wir
Jandl-Strukturen als Zusatzstruktur für Gerben mit Zusammenhang einge-
führt. Wir zeigen, dass sich diese Holonomie zur Definition des Wess-Zumino
Terms für nicht-orientierte Weltflächen eignet. Damit haben wir eine ge-
ometrische Beschreibung nicht-orientierter Wess-Zumino-Witten Modelle er-
halten.

Nicht jede Gerbe erlaubt Jandl-Strukturen, und falls doch, kann es nicht-
äquivalente Wahlen geben. Wir haben in dieser Arbeit eine Kohomologietheo-
rie entwickelt, in der entsprechende Obstruktionsklassen leben und deren Ko-
homologiegruppen nicht-äquivalente Wahlen parameterisieren. Ein wichtiges
Resultat dieser Arbeit ist die Berechnung aller Obstruktionsklassen und Ko-
homologiegruppen für Jandl-Strukturen in Wess-Zumino-Witten Modellen auf
beliebigen kompakten, einfachen Liegruppen. Wir haben damit alle nicht-
orientierten Wess-Zumino-Witten Modelle auf diesen Liegruppen vollständig
klassifiziert.
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