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Abstract

In this thesis the non-hydrostatic atmospheric mesoscale model METRAS is ex-

tended for employing multiple grids. By this the model domain can be decomposed

into several fully coupled grids with different resolutions. The multiple grids allow

to directly simulate some scale interactions.

An essential part of multiple grids models are robust numerical schemes when used

on several coupled grids of different resolutions. To achieve this the advection

schemes originally used in METRAS have been replaced by second order essentially

non-oscillatory advection (ENO) methods, which are shown to cope with grid refine-

ment. For momentum a plain ENO scheme is used, for scalars a newly developed

flux integrated ENO scheme is applied.

Gravity waves are numerically dispersive, which results in wave reflection at the

inner boundary to coarser grids. A theoretic dispersion relation is derived that

confirms that gravity waves are the slower the coarser the grid as shown by nu-

merical experiments. Simulations with different grid refinement factors reveal that

coarsening factors larger than three are not recommendable due to wave reflection.

METRAS is an anelastic model, therefore, pressure is solved diagnostically from an

elliptic equation. For this purpose two solvers, MULTIGRID and preconditioned

Bi-CGSTAB, are modified for the needs of the multiple grids model. When multiple

grids are applied, MULTIGRID converges faster than Bi-CGSTAB. Only when a

single grid is used and ∆z/∆x << 1, Bi-CGSTAB is superior to MULTIGRID.

Using the new second order ENO advection schemes and 3-level MULTIGRID, the

multiple grids METRAS has been validated for three test cases. For comparison,

each test case has been performed with a coarse grid, a fine grid and a refined grid

(refinement factor of 3). The test cases for a rising bubble and a polynia show good

agreement of the results on the fine grid and the refined grid, while the length of the

simulation on the refined grid is three to four times shorter than on the fine grid.

The improvement to the coarse grid and the CPU times justify grid refinement for

these test cases. In the third test case the wind conditions at the America’s Cup

2007 sailing site are simulated. For this case the results in the refined area, which

is located over water, is not as good as with the homogeneous fine grid. Relocating

the fine grid might improve the simulation with two grids.



Zusammenfassung

In dieser Dissertation wird das nicht-hydrostatische mesoskalige Modell METRAS

um eine Option erweitert, mit der das Modellgebiet in mehrere Gitter verschiedener

Auflösung zerlegt werden kann. Dadurch kann die Wechselwirkung von Prozessen

verschiedener Skalen direkt simuliert werden.

Ein wichtiger Aspekt für das Mehrfachgittermodell sind robuste numerische Schema-

ta, damit Gitter verschiedener Auflösung verwendet werden können. Dafür werden

die in METRAS vorhandenen Advektionsschemata durch wesentlich nicht-oszillatori-

sche (ENO) Schemata zweiter Ordnung ersetzt, die sich für Gitterverfeinerung eignen.

Für die Impulsadvektion kommt dabei ein einfaches ENO-Schema zum Einsatz, für

die skalaren Größen wurde ein flussintegriertes ENO-Schema entwickelt.

Schwerewellen sind numerisch dispersiv. Dies führt dazu, dass sie reflektiert wer-

den können, wenn sie sich vom feinen ins grobe Gitter bewegen. Eine theoreti-

sche Dispersionsbeziehung wird abgeleitet, die bestätigt, dass Schwerewellen auf

einem gröberen Gitter langsamer sind. Dies wird in numerischen Simulationen

bestätigt. Simulationen mit verschiedenen Verfeinerungsfaktoren zeigen, dass kein

Faktor größer als drei verwendet werden sollte.

METRAS ist ein anelastisches Modell, so dass der Druck diagnostisch durch eine

elliptische Gleichung ermittelt wird. Vorhandene iterative Löser, Bi-CGSTAB und

MULTIGRID, werden für Mehrfachgitter angepasst, wobei sich MULTIGRID für die

Verwendung von Mehrfachgittern als der schnellere Löser herausstellt. Lediglich bei

Verwendung von nur einem Gitter und ∆z/∆x << 1 ist Bi-CGSTAB zu empfehlen.

Unter Verwendung der ENO Schemata für die Advektion und Level-3 MULTIGRID

wird die Mehrfachgitterversion von METRAS für drei Testfälle validiert. Jeder

Test wird auf einem groben, einem feinen und einem verfeinertem Gitter (Fak-

tor 3) durchgeführt. Ein Warmluftblasen- und ein Polyniatestfall zeigen eine gute

Übereinstimmung der Ergebnisse auf verfeinertem Gitter und feinem Gitter bei nur

einem Drittel bis Viertel der Simulationszeit. Im dritten Testfall werden die Wind-

verhältnisse für das Segelgebiet des America’s Cup 2007 vor Valencia simuliert. Hier

zeigt sich, dass die Simulation mit verfeinertem Gitter weniger gute Ergebnisse liefert

als die Simulation mit feinem Gitter. Dies liegt vermutlich an der nicht idealen Lage

des verfeinerten Gitters.
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1 Introduction

The atmospheric flow is characterised by phenomena of different temporal and spa-

tial scales, ranging from turbulent eddies being the smallest and most transient

to planetary waves being the largest and most persistent phenomena. The differ-

ent scales are linked by nonlinear processes leading to complex circulation systems.

Modelling the atmosphere needs to take this into account in order to resemble na-

ture as closely as possible. Despite continuously growing computer power it is still

not feasible to explicitly simulate all atmospheric processes. Simulations are re-

stricted by the resolution of the grid, and processes smaller than the grid width

must be parameterised as subgrid-scale processes. Generally, it must be assumed

that parameterisations are less accurate than the explicit simulation of the respective

processes. Therefore, it is desirable to explicitly resolve as many scales as possible.

On the other hand, increasing resolution is accompanied by increasing computa-

tional costs which makes it desirable to resolve not more scales than necessary. A

solution for an efficient simulation is having different resolutions within the domain

and resolving only those areas and processes that are relevant for the solution.

There are two philosophies on how the resolution of the domain should be dis-

tributed. One is that the ideal model should have a grid that has a high resolution

only in regions where relevant small scale phenomena (e.g. clouds, frontal processes)

are present that have significant influence on the large-scale flow. By this the overall

accuracy of the simulation can be maintained. This philosophy leads to adaptive

modelling. The second philosophy focuses on having a higher resolution in areas

of interest. On the one hand these can be areas, where local effects are of great

importance (e.g. precipitation or wind fields over mountainous terrain). On the

other hand, e.g. in weather forecasts or for regional climate predictions, detailed

information is relevant where people are affected, but it is not necessarily important

1



2 1. Introduction

over the oceans or in sparsely populated areas. Different approaches are used to

receive a high resolution within a coarse model domain.

Nesting methods

A standard approach to refine areas of interest are nesting methods. A model with

a fine grid is nested into a model with a coarse grid. Both coarse and fine grid can

be uniform (Fig. 1.1a), but this is not mandatory. Basically, there are two different

methods, one-way and two-way nesting (Phillips and Shukla, 1973). For one-way

nesting the simulation on the coarse grid is independent of the fine grid simulation

and is used to prescribe the boundary conditions of the fine grid (e.g. Davies, 1976).

Usually, this is done by pulling (nudging) the fine grid simulation to the coarse grid

results with strong nudging at the boundaries and vanishing nudging in the model

interior (Bungert, 2007). A disadvantage of this method is that for longer integration

times the fine grid simulation and the coarse forcing may diverge. This can be

overcome by two-way nesting (e.g. Zhang et al., 1986). Here, coarse and fine grid

simulations run simultaneously with mutual influence. This can be achieved, e.g.,

by exchanging fluxes between coarse and fine grids. Two-way nesting has also been

applied to regional climate modelling by Lorenz and Jacob (2005). Skamarock and

Klemp (1993) have presented a non-hydrostatic model that can cope with several

internal (two-way) nests used for adaptive refinement. They apply the adaptive

method of Berger and Oliger (1984). Density current experiments and a supercell

storm simulation show the suitability of their set-up for atmospheric simulations.

Nonuniform grids

A seemingly straightforward way to refine a certain area are nonuniform grids. They

are usually based on a coordinate transformation that projects a grid that is de-

formed in physical space to a regular computational grid. In areas that need higher

resolutions the coordinate lines accumulate. This can be done in each horizontal di-

rection separately (Fig. 1.1b) or in both directions at once (Fig. 1.1c). In literature

these configurations are referred to by both terms, nonuniform grid and stretched

grid. In the vertical nonuniform grid spacing is standard, since the boundary layer

needs a higher resolution than the free atmosphere. One of the first using stretched

grids was Anthes (1970) who applied them to the shallow water equations. He also

faced the problem of instabilities and accumulation of energy in the small scales
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(a) (b)

(c) (d)

(e) (f)

Figure 1.1: Horizontal sketches of different grid types. (a) uniform grid, (b,c) nonuniform

(stretched) grid, (d) unstructured grid, (e) block-structured grid and (f) spectral element refine-

ment by factor 3 (after Baer et al., 2006).

caused by the nonuniform grid.

To avoid numerical noise caused by the grid in conjunction with standard numer-

ical schemes it is necessary to smoothly vary the mesh size. Schlünzen (1990) al-
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lowed refinement in each spatial direction separately by a refinement factor of 1.2.

With this configuration sea breezes over tidally flooded mudflats could be success-

fully simulated with high resolution over the coastline and coarser resolution at the

boundaries.

Sündermann (1990) successfully applied the Brackbill-Saltzmann method (Brackbill

and Saltzman, 1982) to calculate optimally stretched grids for the simulation of

roll convection. This method is based on minimising a weighting function. The

weighting function becomes small when the grid lines are close to being orthogonal

and large gradients are resolved with many grid points. This guarantees stability

of the numerical schemes and high accuracy in regions with large gradients. The

changing grid is accounted for by additional fluxes between the computational grid

cells. The disadvantage of the Brackbill-Saltzmann method is that the minimisation

of the weighing function involves solving a large linear system of equations at each

time step which is computationally expensive.

Dietachmayer and Droegemeier (1992) applied continuous dynamic grid adaption

(CDGA) to meteorological modelling. For CDGA the grid is changed continuously

which leads to additional terms in the equations instead of interpolating fields from

the old to the new grid. This method is also based on the grid optimisation scheme

of Brackbill and Saltzman (1982). The scheme was successfully tested with a simple

two-dimensional passive scalar advection test as well as a rising warm bubble test.

Prusa and Smolarkiewicz (2003) used continuously changing stretched grids in a

multi-scale anelastic model. Again this leads to additional terms in the governing

equations due to the moving grid. The mesh size is advected by a special velocity

with the monotone positive definite advection algorithm (MPDATA, Smolarkiewicz

and Margolin, 1998). The advective velocity for the mesh size can be defined by

the velocity of the phenomenon to be followed. The performance of the model

presented by Prusa and Smolarkiewicz (2003) was analysed with a mesoscale test

case (gravity waves) as well as a global scale test (Held-Suarez test). The advantage

in comparison to CDGA is that it is not necessary to solve an optimisation problem

which is computationally expensive. The disadvantage is that simply advecting the

mesh size is not truly adaptive. Furthermore, physical parameterisations are not

included in the model, and it is only a research model.

Stretched grids have also been used in global models for weather and climate fore-

casts (Fox-Rabinovitz et al., 2006). Fox-Rabinovitz et al. (1997), e.g., used a finite

difference general circulation model in conjunction with stretched grids. They ap-
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plied local stretching factors of less than 1.1, resulting in total stretching factors of

4 to 32. Their method needed the application of a polar filter and a Shapiro (1971)

filter to stabilise simulations with nonuniform grids. With this configuration they

compared the results on a fine uniform grid to results on nonuniform stretched grids

for two different types of simulation. The first, a 10 day simulation, showed good

agreement between the refined grid result and the uniformly fine grid result. For

the second, a three year climate simulation, the means of the meteorological fields

were very similar for the refined grid results and the uniformly fine grid result.

Spectral global models need the application of transformed spherical harmonics for

grid refinement (Schmidt, 1977). Cote et al. (1998b) and Cote et al. (1998a) describe

the Global Environmental Multiscale (GEM) model, which is applying this method

and is used by the Canadian Meteorological Centre (CMC). Latitude and longitude

grid lines can be concentrated at the area of interest which keeps them orthogonal.

Forecast experiments yielded results with good agreement of fine grid and refined

grid simulations in the refined area.

Another possibility of grid refinement in a global model is a combination of grid

stretching and moving the pole of a rotated longitude-latitude coordinate system

to the area of interest. When the longitude and latitude grid is uniform, at the

pole the zonal distance between grid points is smaller than at the equator, leading

to a higher zonal resolution at the pole. The method of moving the pole has been

successfully applied, e.g. by Hardiker (1997) for the simulation of a hurricane.

Unstructured grids

Stretched grids lack flexibility when refining the grid. Unstructured grids circumvent

this problem. While unstructured grids have commonly been used in aerodynamics,

they have only recently become popular in atmospheric modelling (Fig. 1.1d).

Läuter et al. (2007) presented a shallow water model that is discretised on a trian-

gular grid in the horizontal and applies the grid generator amatos (Behrens et al.,

2005). Among other tests they validated their model with the simulation of Rossby-

Haurwitz waves and the flow over a mountain. The results on a uniform resolution

grid and the adaptive grid correspond well to each other and an efficient grid adap-

tion to the flow was achieved.

Bacon et al. (2000) introduced the non-hydrostatic model OMEGA (Operational

Multiscale Environment Model with Grid Adaptivity). It is based on triangular
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grids as well and can adapt to orography and to flow features with large gradients.

Parameterisation of cumulus convection is scale dependent which is achieved by a

weighting factor. OMEGA is run operationally for hurricane forecasting (Gopalakr-

ishnan et al., 2002; Bacon et al., 2007).

The German Weather Service (DWD) and the Max Planck Institute for Meteorol-

ogy are currently developing a non-hydrostatic global model on an icosahedral grid

(ICON, Bonaventura et al., 2005; Gassmann et al., 2007). It is supposed to be used

for weather forecasts as well as climate simulation with the option of triangular grid

refinement.

Block-structured grids

One of the disadvantages of unstructured grids is the difficult data handling and less

efficient algorithms compared to structured grids (especially on vector computers).

A good compromise between structured grids and unstructured grids are block-

structured grids (Fig. 1.1e). These decompose the domain into blocks where the

grid is uniform. Each block can be treated like a regular grid.

Schimmel (2002) used this approach to develop a fully compressible dynamical core

that is based on the essentially non-oscillatory interpolation method (ENO, Harten

et al., 1987). He showed in a density current experiment that despite a refinement

factor of four explicit diffusion for stabilisation is not necessary due to the non-

linearity of the implicit diffusion of the ENO scheme.

Fournier et al. (2004) presented a global model based on the spectral element method

(SEAM). With this method the domain is decomposed into spectral elements (Fig.

1.1f). Each element is subdivided into a Gauss-Lobatto grid (e.g. 8x8 points) and

Legendre cardinal functions are used as basis functions for each element. The ad-

vantage of this method is that recursive refinement is easily done. A disadvantage

is that due to the small amount of basis functions in each element this method

lacks efficiency on vector computers compared to traditionally gridded data. Baer

et al. (2006) compared SEAM to the spectral NCAR (National Center for Atmo-

spheric Research) model applying the same physical parameterisations and found

good agreement between both model versions. Experiments with grid refinement

did not change zonal mean fields in comparison to experiments without refinement,

but the solution in the refined region was more detailed. However, the authors do

not validate the refined solution against a uniform fine grid solution.
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Jablonowski (2004) and Jablonowski et al. (2006) tested a block-structured hydro-

static global model with two-dimensional shallow water tests and a baroclinic wave

test. There, a local refinement factor of two was applied and the model has an adap-

tive option. Again, good agreement between refined and uniform fine grid results

was found.

The different models and methods described above all have advantages and disadvan-

tages. Most of them are hydrostatic, others do not include physical parameterisation

schemes for subgrid-scale processes. Some need explicit numerical diffusion to con-

trol the change in mesh size. Furthermore, there seems to be a general agreement

not to apply refinement factors larger than four to avoid wave reflection (Zhang

et al., 1986), even though this has not been analysed for waves more complex than

advection waves.

It is the purpose of this work to analyse computational methods suitable for grid

refinement as well as to estimate the restriction the numerical dispersion of gravity

waves imposes on grid refinement. The knowledge gained from these studies is used

to add a multiple grids option with grid refinement to the non-hydrostatic model

METRAS. METRAS includes parameterisation schemes necessary to adequately

simulate the atmosphere. In Chapter 2 METRAS is described and the changes nec-

essary for a multiple grids option are stated. Chapters 3 to 5 are direct copies of

published (Chapter 3) papers or papers that are intended for publication (Chapters

4 and 5). In Chapters 3 and 4 new advection schemes are introduced and applied to

METRAS. These schemes preserve large gradients and can handle grid refinement

without adding explicit diffusion. In Chapter 5 the numerical dispersion of gravity

waves is analysed and a recommendation is given, which refinement factors are jus-

tifiable in the context of gravity wave dispersion. Chapter 6 focuses on the iterative

elliptic solver for pressure. The problem that grid refinement easily slows down iter-

ative solvers is outlined and a fast solution based on MULTIGRID is presented. In

Chapter 7 the new METRAS version with multiple grids is tested. A warm bubble

test for the dynamical core and two realistic tests with the full model are presented.

Chapter 8 gives conclusions and an outlook to future work.



2 Concept of the multiple grids

METRAS

The Mesoscale Transport- and Stream model METRAS has been developed at the

University of Hamburg and is described in Schlünzen (1990) and Schlünzen et al.

(1996). It is able to simulate air flow over steep terrain (Niemeier and Schlünzen,

1993) and was validated by Schlünzen (1996) and Dierer (1997). It has been used

for various applications. METRAS was coupled to a sea-ice model to calculate

the cyclone sea-ice interaction in the Fram Strait (Dierer et al., 2005; Dierer and

Schlünzen, 2005). Furthermore, it was used to calculate pollen transport (Schueler

et al., 2005; Schueler and Schlünzen, 2006) and pollutant deposition in conjunction

with a chemistry model (Trukenmüller et al., 2004; Schlünzen and Meyer, 2007). In

all these applications one resolution or one-way nesting was used. The corresponding

single grid METRAS version is described in this chapter in Sections 2.1 to 2.3. These

sections explain the main parts of the model and their state prior to this work.

For this thesis METRAS is transformed into a model with multiple grids that are

fully coupled. Section 2.4 describes the changes in the grid configuration and in the

numerical integration that were made for this work. For using multiple grids with

different resolution, robust and computationally inexpensive numerical schemes are

necessary. These are not described in this chapter but in Chapters 3, 4 and 6.

2.1 Model equations

The METRAS model equations are based on the Reynolds-averaged Navier-Stokes

equations in flux form. Before they are Reynolds-averaged, they are converted from

Cartesian (x, y, z) into surface-following coordinates (ẋ, ẏ, ż):

8



2.1 Model equations 9

ẋ = ẋ(x)

ẏ = ẏ(y)

η(z) = zt
z−zs(x,y)
zt−zs(x,y)

ż(x, y, z) = z(x, y, η)

(2.1)

where zt = const is the height of the upper model boundary, and zs(x, y) the height

of the lower boundary corresponding to the topography height. Given the Cartesian

velocity components (u, v, w) the contravariant velocity components (u̇, v̇, ẇ) are

created in the new coordinate system. These are normal to the coordinate surfaces:

u̇ =
∂ẋ

∂x
u

v̇ =
∂ẏ

∂y
v

ẇ =
∂ż

∂x
u+

∂ż

∂y
v +

∂ż

∂z
w.

These are the velocities that advect through the surfaces of a grid cell after discreti-

sation along the new coordinates (ẋ, ẏ, ż). An important transformation constant

is

α∗ =
∂x

∂ẋ

∂y

∂ẏ

∂z

∂ż
(2.2)

which can be interpreted as the volume of a grid cell.

The METRAS equations are derived from the compressible equations which are

simplified by the anelastic and Boussinesq approximation (Ogura and Phillips, 1962;

Dutton and Fichtl, 1969) to eliminate time step restricting sound waves. This leads

to replacing the density ρ(x, y, z) = ρ̃(x, y, z)+ρ0(z) by the background density ρ0(z)

in most terms. Only in the buoyancy term the whole density ρ(x, y, z) is needed

including the mesoscale part ρ̃(x, y, z). Furthermore, the continuity equation is no

longer dependent on time and becomes a diagnostic equation.

The resulting system of equations is Reynolds-averaged and contains three prog-

nostic equations for momentum, prognostic equations for potential temperature θ,

specific humidity qv, cloud liquid water content ql and rain water content qr, and

diagnostic equations for the mesoscale density ρ̃, and pressure p. Here · indicates

Reynolds-averaging.

The momentum equations using the Reynolds-averaged velocity components u,v and

w can be written as

∂α∗ ~m

∂t
= −A(α∗~m) − ~P(p) − ~B(ρ) + ~C(u, v, w) − ~F~m (2.3)



10 2. Concept of the multiple grids METRAS

where ~m is the momentum vector

~m = (uρ0, vρ0, wρ0)
τ

with τ indicating the transpose of the vector. The following operators and definitions

have been used:

Advection : A(χ) =
∂

∂ẋ
(u̇χ) +

∂

∂ẏ
(v̇χ) +

∂

∂ż
(ẇχ)

Pressure gradient : ~P(p) =





α∗
∂ẋ

∂x

∂p

∂ẋ
+ α∗

∂ż

∂x

∂p

∂ż

α∗
∂ẏ

∂y

∂p

∂ẏ
+ α∗

∂ż

∂y

∂p

∂ż

α∗
∂ż

∂z

∂p

∂ż





Coriolis force : ~C(u, v, w) =




fρ0α

∗v − f ′ρ0α
∗w

−fρ0α
∗u+ f ′ρ0α

∗w

ρ0α
∗f ′(u− v)





Buoyancy force : ~B(ρ) = (0, 0, ρα∗g)τ

Turbulent diffusion : ~F~m = (Fu, Fv, Fw)τ

(2.4)

Here, f = 2Ω sin(ϕ) and f ′ = 2Ω cos(ϕ) are the Coriolis parameters with earth

angular momentum Ω and the latitude ϕ. Note that an operator applied to a vector

(e.g. A(~m)) means applying the operator to each component separately, which

results in a new vector. While the third component of the pressure gradient vector

above is given for the real vertical momentum ρ0w, the pressure gradient is actually

calculated for the transformed vertical velocity in METRAS:

Ṗ3 = α∗

[(
∂ż

∂x

)2

+

(
∂ż

∂y

)2

+

(
∂ż

∂z

)2
]
∂p

∂ż

+α∗

[
∂ẋ

∂x

∂ż

∂x

∂p

∂ẋ
+
∂ẋ

∂x

∂ż

∂x

∂p

∂ẋ

] (2.5)

After the calculation of the pressure gradient the transformed vertical velocity is

transformed to the real vertical velocity.

Additionally, like density, pressure and potential temperature are also separated into

a large-scale and mesoscale part to use typical physical balances in the equations:

p(x, y, z) = p0(z) + pg(x, y, z) + p1(x, y, z) + p2(x, y, z) (2.6)

θ(x, y, z) = θ0(z) + θ̃(x, y, z) (2.7)
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The pressure terms p0 and p1 result from hydrostatic balance with the density terms

ρ0 and ρ̃:

∂p0

∂ż
= −gρ0

∂z

∂ż
(2.8)

∂p1

∂ż
= −gρ̃

∂z

∂ż
(2.9)

Therefore, the background pressure p0 contains the major pressure portion. p2

is a dynamic pressure that acts to keep the momentum free of divergence. The

geostrophic pressure pg which contains the large scale horizontal pressure gradient

is not directly calculated. It is assumed to be in balance with the geostrophic wind:

ug = −
1

ρ0f

(
∂ẏ

∂y

∂pg
∂ẏ

+
∂ż

∂y

∂pg
∂ż

)
(2.10)

vg = +
1

ρ0f

(
∂ẋ

∂x

∂pg
∂ẋ

+
∂ż

∂x

∂pg
∂ż

)
(2.11)

The background pressure is not needed in the equations for the geostrophic wind,

because p0 only depends on z. The geostrophic wind is derived from observations

or reanalysis data for case studies, or it is prescribed according to the settings of

idealised experiments.

Using hydrostatic and geostrophic balance, the momentum equations result into:

∂α∗ ~m

∂t
= −A(α∗ ~m) − ~P(p1 + p2) − ~B(ρ̃) + C(u− ug, v − vg, w) − ~F~m.(2.12)

Note that the term ~B(ρ̃) is only kept for completeness. Actually, it cancels out

with the pressure term ~P3(p1) in the equation for vertical momentum according to

equation (2.9). Consequently, neither term is calculated in the model.

The conservation of a scalar quantity χ is given by

∂ρ0α
∗χ

∂t
= −A(ρ0α

∗χ) − Fχ − Sχ (2.13)

Again, Fχ denotes turbulent diffusion of the respective quantity. Sources and sinks

(Sχ) for the different quantities may be:

quantity χ sources and sinks

θ divergence of radiative and surface fluxes, cloud effects

qv, qc surface fluxes, cloud effects

qr sedimentation, cloud effects

The continuity equation in anelastic form is:

0 =
∂

∂ẋ
(u̇ρ0α

∗) +
∂

∂ẏ
(v̇ρ0α

∗) +
∂

∂ż
(ẇρ0α

∗) = A(ρ0α
∗) = ~∇ • ~m (2.14)
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For simplicity, the operator ~∇ • ~m is evaluated in Cartesian coordinates.

The perfect gas law for a gas of temperature T with the gas constant R is

ρ =
p

RT

The gas law is linearised about the background state under inclusion of the specific

humidity, cloud and rain water content (Schlünzen et al., 1996)

ρ̃

ρ0
= −

θ̃

θ0
+
cv
cp

p1 + p2

p0
−

(
Rv

Rd
− 1

)
qv + qc + qr (2.15)

with the gas constants for dry air (Rd) and water vapour (Rv). cv is the specific

heat of air at constant volume, cp is the specific heat of air at constant pressure.

Equations (2.12) to (2.15) form the mathematical model of METRAS.

2.2 Model physics - parameterisations

In this section a short overview on the applied parameterisation schemes is given;

they have not been changed for this work. Details can be found in Schlünzen et al.

(1996). It should be noted that most parameterisations are only suitable for a lim-

ited range of scales. Using the same parameterisations on coupled grids strongly

limits the refinement factors that can be used. Currently, scale dependent parame-

terisations for METRAS are investigated by Bohnenstengel (2007) and Ries (2009).

Turbulent flux divergences (FX) and the sources and sinks (SX) mentioned in the

previous section are calculated by parameterisations. The physical processes are:

• turbulence

Turbulent fluxes are calculated with a first order closure. For the exchange co-

efficients a mixing length approach is used for stable stratifications with a mix-

ing length after Blackadar (1962) and stability functions after Dyer (1974). For

unstable stratifications the counter-gradient scheme of Lüpkes and Schlünzen

(1996) is applied. At the surface (z < 10m) the Monin-Obhukov similarity

theory (e.g. Stull, 1988) is assumed.

• radiation

Without liquid water in the atmosphere only the surface energy balance is

calculated, and an empirical cooling rate for the atmosphere is assumed. With
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the presence of cloud and rain droplets a two-stream approximation for short-

and longwave radiation is applied, where absorption depends on the droplet

size (Schlünzen et al., 1996).

• cloud microphysics

Cloud microphysics is parameterised after Kessler (1969). The scheme does

not contain the ice phase. The main processes included are condensation, evap-

oration, autoconversion (colliding cloud droplets form rain drops), acreation

(rains drops collect cloud droplets and thereby grow) and sedimentation.

• surface representation

To account for subgrid-scale surface heterogeneities, a blending height concept

(von Salzen et al., 1996; Schlünzen and Katzfey, 2003) is available. With this

scheme, surface fluxes are calculated for each subgrid surface class separately

and then aggregated per grid cell at the blending height.

2.3 Grid structure and numerical integration for

a single grid

In this section the grid structure is described and the numerical integration is out-

lined for the original single grid version of METRAS. Besides the numerical schemes

these are parts of the model that need to be changed for the new multiple grids

version. These changes are described in Section 2.4.

The model equations are spatially discretised on an Arakawa-C-Grid (Mesinger and

Arakawa, 1976). The wind vector components u,v,w are shifted eastward, north-

ward, upward, respectively, against the scalar quantities. ẋ is discretised on vector

levels by ẋi+1/2, ẏ by ẏj+1/2 and ż by żk+1/2 (see Eq. (2.1) for the transformation).

The vector levels mark the boundaries of the scalar boxes. The location of the scalar

levels is given by

ẋi =
ẋi−1/2 + ẋi+1/2

2

ẏj =
ẏj−1/2 + ẏj+1/2

2

żk =
żk−1/2 + żk+1/2

2
.
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The scalar levels mark the boundaries for u in x-direction, v in y-direction and w

in z-direction. Fig. 2.1 and Fig. 2.2 show the staggered grid in the xy-plane. Grid

staggering has the advantage that the accuracy is increased. For calculating the

scalar advection fluxes, the cell boundary normal wind is automatically given by the

three wind components. Due to the staggered grid the pressure is located at the cell

boundaries of wind cells with no need for further interpolation when the pressure

gradient is calculated. Again this increases the accuracy.

Time integration is also staggered. Scalar quantities are integrated to time levels

tn, the velocity components to tn+1/2 (Fig. 2.3).

The operators are discretised in flux form with a finite volume approach to conserve

momentum and the thermodynamic quantities. Advection and turbulent diffusion

(~F~m) are solved centred in space and with a second order Adams-Bashforth scheme in

time for momentum. For numerical stability and to remove small scale disturbances

caused by nonlinear interaction and limited model resolution, a Shapiro (1971) seven-

point filter is used for the momentum components in the horizontal. For scalar

quantities advection is solved with a first order upstream scheme and forward in

time. The advection of background fields like θ0 is calculated centred in space.

Scalar diffusion and pressure gradient are solved centred in space and forward in

time. Coriolis force is solved forward in time. When vertical diffusion imposes a too

strong constraint on the time step, it is not solved as described above but with the

p−cells

u−cells

i

i−0.5 i+0.5

i−1

x

y

Figure 2.1: Staggered Arakawa-C-grid in the xy-plane. Here the cells of u and p are shown

(staggered in west-east direction, index i).
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x

y

v−cells

u−cellsj−1

j

j−0.5

j+0.5

Figure 2.2: Staggered Arakawa-C-grid in the xy-plane. Here the cells of u and v are shown

(staggered in west-east and south-north direction, indices i and j, respectively; only index j is

shown).

implicit Crank-Nicholson scheme.

In the following, one integration is outlined at a point where the scalar quantities

are known at tn and the velocity components at tn−0.5. The only exception is p2

which is known at tn−1. Note that the advection operator is time dependent with

An+1/2(χ) =
∂

∂ẋ
(u̇

n+1/2
χ) +

∂

∂ẏ
(v̇
n+1/2

χ) +
∂

∂ż
(ẇ

n+1/2
χ).

The following steps are taken:

• Calculate the preliminary momentum fields (denoted by ·̂ ; preliminary, be-

cause pn2 is not known yet):

ρ0α
∗û

n+0.5
= ρ0α

∗un−0.5 +
[

−1.5An−0.5(ρ0α
∗un−0.5)

+0.5An−1.5(ρ0α
∗un−1.5)

−P1(p
n
1 + pn−1

2 )

+C1(u
n−0.5 − ug, v

n−0.5 − vg, w
n−0.5)

−1.5F n−0.5
u + 0.5F n−1.5

u

]
∆t

(2.16)
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t=tn+0.5 t=t n+1.5t=t n+1t=t nt=t n−0.5 time

∆ ∆        t        t

SS

M M M

Figure 2.3: Staggering of time integration of scalar (S) and momentum quantities (M). The open

boxes mark the period of one time step. At the end of the time step the respective quantity

(momentum or scalar) is updated.

ρ0α
∗v̂
n+0.5

= ρ0α
∗vn−0.5 +

[
−1.5An−0.5(ρ0α

∗vn−0.5)

+0.5An−1.5(ρ0α
∗vn−1.5)

−P2(p
n
1 + pn−1

2 )

+C2(u
n−0.5 − ug, v

n−0.5 − vg, w
n−0.5)

−1.5F n−0.5
v + 0.5F n−1.5

v

]
∆t

(2.17)

ρ0α
∗ŵ

n+0.5
= ρ0α

∗wn−0.5 +
[

−1.5An−0.5(ρ0α
∗wn−0.5)

+0.5An−1.5(ρ0α
∗wn−1.5)

−P3(p
n−1
2 )

+C3(u
n−0.5, vn−0.5, wn−0.5)

−1.5F n−0.5
w + 0.5F n−1.5

w

]
∆t

(2.18)

• Calculate the correction of dynamic pressure p̂ with the preliminary momen-

tum vector ~̂m = (ρ0û, ρ0v̂, ρ0ŵ)τ from the continuity equation. This involves

solving a Poisson equation:

~∇ • ( ~P(p̂)) = ~∇ • ~̂mn+0.5/(∆t) (2.19)

Note that for simplicity Eq. (2.19) is written in Cartesian coordinates. Differ-

ent methods for the solution of p̂ are compared in Chapter 6.

• Correct the dynamic pressure with pn2 = pn−1
2 + p̂. Note that the pressure

p2 is defined at t = tn, because p2 acts on momentum in the time interval
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from tn−0.5 to tn+0.5. The new momentum field is calculated by applying the

gradient of the perturbation pressure p̂:

~mn+0.5 = ~̂mn+0.5 − ~P(p̂)∆t. (2.20)

At this stage the new momentum field is known at tn+0.5 and can be used for

advecting the scalar quantities:

• Calculate the prognostic scalar (thermodynamic quantities) at the new time

step:

ρ0α
∗χn+1 = ρ0α

∗χn +
[

−An+0.5(ρ0α
∗χn) − Snχ

]
∆t.

• Calculate the mesoscale density ρ̃n+1 and the hydrostatic pressure pn+1
1 with

(2.15) and (2.9). Actually, these two equations cannot be solved independently

from each other, and an iteration of (2.15) and (2.9) would be required. How-

ever, for p1 and ρ̃ the changes per time step are small, so that the iteration is

not necessary.

Now the velocities can be forwarded again to tn+1.5 by repeating the process for

momentum as described above.

2.4 Grid structure and numerical integration for

multiple grids

The new METRAS version developed in this thesis can operate with several nested

(refined) grids of different resolution. Besides the necessity to use robust and com-

putationally inexpensive numerical schemes (Chapters 3, 4 and 6) the numerical

integration as well as the grid structure need to be changed as well. This is de-

scribed in this section.

When multiple grids are used, it is necessary that each subgrid is surrounded by

only one higher ranking (coarser) grid (Fig. 2.4). The vertical grid needs not to

be changed, since it is generally of much higher resolution in a mesoscale model.

Horizontal refinement factors must be odd numbers to be able to conserve grid

staggering (Fig. 2.5). Fig. 2.6 and Fig. 2.7 show an example grid with the

refinement factors in x- and y-direction Nx = Ny = 3. It is important to note that



18 2. Concept of the multiple grids METRAS

grid 0

grid 1

grid 2 grid 3

x

y

Figure 2.4: Grid hierarchy. Main grid 0 with three refined subgrids. Refinement is only possible

in the horizontal, a refined grid can only be adjacent to either a coarser or a finer grid, not both

at once.

factor 2 factor 3

u

p

Figure 2.5: Schematic clarification of necessity of odd refinement factors for a staggered grid.

With even factors the fine grid is not staggered anymore.

(nx +1) u-vector grid cells are refined due to staggering if nx scalar coarse grid cells

are refined to a fine grid in x-direction. On the fine grid the outermost u cell, i.e. the

cell of the boundary normal velocity, has an extension in x-direction of Nx+1
2

times

the extension of the remaining fine cells. For a refinement factor of 3 the outermost

u cell (in ẋ-direction) is twice as large as the inner u-cells (Fig. 2.6).

For practical applications refinement factors larger than 3 are not recommended

due to wave dispersion (Chapter 5, Schroeder and Schlünzen, 2007b). For larger

refinement factors too much energy of gravity waves with scales close to the coarse

grid resolution is reflected when the waves are travelling from the fine to the coarse
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0.5
i+

0.5
i−

x

y

p−cells

i+1ii−1

u−cells

Figure 2.6: Staggered Arakawa-C-grid in the xy-plane with a refined subgrid. Here the cells of u

and p are shown (staggered in west-east direction in index i).

0.5
j−

0.5
j+

x

y

j−1

j

j+1

v−cells

u−cells

Figure 2.7: Staggered Arakawa-C-grid in the xy-plane with a refined subgrid. Here the cells of u

and v are shown (staggered in west-east and south-north-direction in indices i and j, respectively;

only index j is shown).

grid. The waves may be trapped within the fine grid. Furthermore, the current

parameterisation schemes cannot be used for too large ranges of resolution.

Additional numerical problems occur even with a grid refinement factor of 3, if

the numerical schemes are not suitable for stepwise changes in grid spacing. For
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example, central differences tend to produce spurious oscillations. Therefore, new

advection schemes based on the essentially non-oscillatory method are implemented

and tested. Chapters 3 and 4 explain the new advection schemes for momentum

and scalar quantities. These schemes are able to cope with grid refinements.

Another important topic when using stepwise changes in grid spacing is the speed

of the solvers on multiple grids. This is crucial for iterative schemes that need

rapid convergence. For METRAS the most time consuming iterative scheme is the

solution of the elliptic equation (2.19) that arises from demanding a divergence free

momentum field. A perturbation pressure is calculated to correct the divergences

caused by the processes acting on momentum. In Chapter 6 different methods to

solve the perturbation pressure p̂ for the dynamic pressure p2 are compared.

The time integration on multiple grids consists of the same steps as on a single grid

(Section 2.3). The difference is that on the fine grid there may be a smaller time

step.

Fixed time step refinement factor

The time integration is outlined here for a fixed time step refinement factor 3 (Fig.

2.8). This factor was chosen in consistency with the grid refinement factor of 3, but

other refinement factors are possible. The time steps on the coarse grid are counted

as tn, tn+1, ... for scalars and as tn−3/6, tn+3/6, ... for momentum. For the fine grid the

time steps are counted as tn−2/6, tn, tn+2/6, .. for scalars and as tn−3/6, tn−1/6, tn+1/6, ...

for momentum.

• ...

• t = tn−1/6

At this time one momentum step has been performed on the fine grid from

t = tn−3/6 to t = tn−1/6 (small red box to the right of t = tn−3/6, Fig. 2.8).

During this step the coarse momentum field was held constant at t = tn−3/6

and the (fine grid) momentum fluxes ~F
n−1/6
m at the internal boundaries are

saved. The momentum field is made divergence free by having solved the

Poisson equation on the fine grid with Dirichlet boundary conditions at the

internal boundaries (i.e. the coarse grid values are held constant).

• t = tn
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Figure 2.8: Staggering of time integration of scalar (S) and momentum quantities (M) for fine

and coarse grid. The colours mark which time steps of coarse and fine grid belong to each other

(with exchanging fluxes). The red arrow marks the exchange of the momentum fluxes at t = tn+3/6

(the fluxes ~F
n−1/6
m + ~F

n+1/6
m + ~F

n+3/6
m are given from the fine to the coarse grid). The green arrow

marks the exchange of the scalar fluxes at t = tn+6/6 (the fluxes F
n+2/6
s + F

n+4/6
s + F

n+6/6
s are

given from the fine to the coarse grid).

The scalar quantities are known on all grids, and scalar fluxes at the internal

boundaries have just been given from the fine to the coarse grid.

• t = tn+1/6

Another momentum step has been performed on the fine grid with storing

the fluxes ~F
n+1/6
m at the internal boundaries and again solving the Poisson

equation on the fine grid.

• t = tn+2/6

A scalar step has been performed on the fine grid with storing the fluxes F
n+2/6
s

at the internal boundaries.

• t = tn+3/6

A momentum step has been performed on the fine grid with storing the fluxes
~F
n+3/6
m at the internal boundaries. The fluxes ~F

n−1/6
m + ~F

n+1/6
m + ~F

n+3/6
m are
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used when forwarding the coarse grid momentum from t = tn−3/6 to t = tn+3/6

along with all other preliminary processes. The Poisson equation is solved on

both grids at once. Note that the divergences need to be divided by each grid’s

own time step in order to get a correct perturbation pressure with Eq. (2.20).

For the coarse grid this would be three times the fine grid time step in this

particular case.

• t = tn+4/6

Another scalar step has been performed on the fine grid with storing the fluxes

F
n+4/6
s at the internal boundaries.

• t = tn+5/6

Another momentum step has been performed on the fine grid with storing

the fluxes ~F
n+5/6
m at the internal boundaries and again solving the Poisson

equation on the fine grid.

• t = tn+6/6

Another scalar step has been performed on the fine grid with storing the fluxes

F
n+6/6
s at the internal boundaries. The fluxes F

n+2/6
s + F

n+4/6
s + F

n+6/6
s are

taken to forward the coarse grid scalars from t = tn to t = tn+6/6.

• ...

Transition from uniform time step to time step refinement factor 3

There are situations when the time step does not need to be different on grids

with different resolution. This is the case when vertical diffusion is restricting the

time step, because the vertical resolution is the same on all grids. Consequently, a

transition from uniform time stepping to nonuniform time stepping is necessary.

Fig. 2.9 shows a schematic on how such a transition is performed. The text descrip-

tion is starting from a uniform time step:

• ...

• t = tn

The scalar quantities are known on all grids. The momentum field is divergence

free by having solved the Poisson equation on all grids at t = tn−1/6. Up to

now on the coarse and fine grid the same time stepping was used.
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Figure 2.9: Staggering of time integration of scalar (S) and momentum quantities (M). Transition

from initially synchronous time integration of fine and coarse grid to greater time steps for the

coarse grid. The colours mark which time steps of coarse and fine grid belong to each other. The

red arrow marks the exchange of the momentum fluxes at t = tn+3/6 (the fluxes ~F
n+1/6
m + ~F

n+3/6
m

are given from the fine to the coarse grid). The green arrow marks the exchange of the scalar fluxes

t = tn+6/6 (the fluxes F
n+2/6
s + F

n+4/6
s + F

n+6/6
s are given from the fine to the coarse grid).

• t = tn+1/6

A momentum step has been performed on the fine grid storing the fluxes
~F
n+1/6
m at the internal boundaries and solving the Poisson equation on the

fine grid applying Dirichlet boundary conditions (the coarse grid momentum

is held constant).

• t = tn+2/6

A scalar step has been performed on the fine grid with storing the fluxes F
n+2/6
s

at the internal boundaries. The coarse grid scalars are held constant.

• t = tn+3/6

A momentum step has been performed on the fine grid with storing the fluxes
~F
n+3/6
m at the internal boundaries. The fluxes ~F

n+1/6
m + ~F

n+3/6
m are taken to

forward the coarse grid momentum from t = tn−1/6 to t = tn+3/6 along with

all other preliminary processes. The Poisson equation is solved on both grids.
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Note that the divergences need to be divided by each grid’s own time step in

order to get a correct perturbation pressure. For the coarse grid this would

be twice the fine grid time step. Now the transition to different time steps is

complete.

• t = tn+4/6

Another scalar step has been performed on the fine grid with storing the fluxes

F
n+4/6
s at the internal boundaries.

• to be continued as in the fully time staggered algorithm outlined above ...



3 Use of (weighted) essentially

non-oscillatory advection

schemes in a mesoscale model

This chapter was published as:

Schroeder, G., Schlünzen, K. H. and Schimmel, F. (2006): Use of (weighted) essen-

tially non-oscillatory advection schemes in a mesoscale model. Q. J. R. Meteorol.

Soc., 132, 1509-1526.

Since this chapter has been published, the notation may sometimes deviate from the

one used in the other chapters of this thesis.
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Summary

Plain and weighted essentially non-oscillatory advection schemes (ENO and WENO)

are implemented in the atmospheric model METRAS to solve the advective terms

in the momentum equations. They are an alternative to the currently used centered

differences that are stabilised by a Shapiro filter. For the (W)ENO schemes two

approaches are tested for reconstructing the advective fluxes on an Arakawa-C-

grid. The resulting four second order (one filtered and three unfiltered) and two

(unfiltered) third order numerical schemes are tested for three different types of

test cases, i.e. one type consisting of three idealised density current cases, one case

with stationary mountain waves and one case with land-sea breeze combined with

mountain-valley wind circulations (LSBM). The results are compared to each other

and to results of METRAS with centered differences (CDF). When using uniform

grids, one of the (W)ENO schemes is ruled out as it turns out to be unstable. The

(W)ENO results as well as the CDF result are altogether plausible. They are very

similar for stationary and non-convective situations. For convective situations (case

LSBM) the results are spread leading to a multi-numeric ensemble. By comparison

of the results of the filtered and unfiltered second order ENO scheme it is shown

that one reason for the spread is the Shapiro filter. As the filter is only meant

to stabilise the solution it must be assumed that the changes caused by the filter

are artificial. A grid with step-wise changes in mesh size tested for the density

current identifies some shortcomings in the numerical schemes. On this grid the

CDF solution contains a high amount of non-physical oscillations while the (W)ENO

schemes show reasonable results. When using the second order (W)ENO schemes

the total CPU time is not much larger than for the CDF scheme. Therefore, two

second order (W)ENO schemes are recommended for step-wise changes in mesh size.

The use of the third order (W)ENO schemes is not justifiable as they do not provide

considerably better results but may need more total CPU time.

3.1 Introduction

A huge amount of literature deals with scalar advection schemes. This can be

explained with the need to simulate the advective transport of tracers and pollu-

tants at a high accuracy and with little numerical diffusion. Several schemes have

been compared by Sokol (1999) with the conclusion that the modified Bott scheme

(Bott, 1989; Easter, 1993) provides the best results. Semi-Lagrangian schemes (e.g.
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Staniforth and Cote, 1991) have been shown to be very accurate, as well as the

multidimensional flux integrated UTOPIA scheme by Leonard et al. (1995). The

development of sophisticated flux limiters has ensured shape preservation and posi-

tive definiteness for multidimensional applications (e.g. Thuburn, 1996).

For calculating the advection of momentum fewer efforts were made to improve the

numerical schemes. More sophisticated advection schemes are also desirable for the

momentum equations, since the flow field is of relevance for all transports in the

atmosphere. Many models apply simple second order central advection schemes

(e.g. Schlünzen, 1990; Grell et al., 1994; Xue et al., 2000; Steppeler et al., 2003).

ARPS (Xue et al., 2000) alternatively employs a fourth-order central scheme. Cen-

tral schemes are easy to implement and relatively cheap to compute. Nevertheless,

they lack stability and tend to produce artificial oscillations making it necessary to

introduce numerical diffusion. This can be done by filtering or by using minimum

diffusion coefficients. Furthermore, central schemes can lead to oscillations if the

computational grid contains sudden changes in mesh size. Those large changes in

mesh size are helpful to avoid nesting or to allow for adaptivity.

With models in development that use self-refining grids, sudden changes in mesh

size will become standard in future numerical models. Numerical schemes need to be

employed that are capable of grid changes. The class of essentially non-oscillatory

(ENO) schemes and weighted essentially non-oscillatory (WENO) schemes seems to

be very suitable for this purpose. ENO schemes have first been presented by Harten

et al. (1987) and WENO schemes are a further improvement of them (e.g. Jiang and

Shu, 1996). These schemes are shock-capturing high resolution schemes and have

been successfully used when simulating shock turbulence interactions (e.g. Garnier

et al., 2002). A good overview of ENO and WENO schemes is given by Shu (1999).

The objective of this work is to present and compare numerical schemes for mo-

mentum advection with focus on (W)ENO methods. They are implemented in the

mesoscale model METRAS and results are compared to the standard centered differ-

ences for several test cases. Special interest is given to the stability of the numerical

schemes and to the ability of handling sudden changes in mesh size.

Section 2 presents the model METRAS that has been used for the test of the ad-

vection schemes. Section 3 describes the (W)ENO advection schemes and different

numerical flux functions. Results of test simulations are given and compared in

Section 4. The conclusions are drawn in Section 5.
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3.2 Model METRAS

The atmospheric mesoscale transport and stream model METRAS is used to test

the advection schemes. Here only a short description of the numerics is given. Phys-

ical parameterisations are described in Schlünzen (1990) and Lüpkes and Schlünzen

(1996).

METRAS is based on the equations for conservation of momentum, mass and energy,

resulting in prognostic equations for the three wind components, potential temper-

ature, humidity, cloud and rain water content as well as pollutants. To avoid sound

waves, the anelastic and Boussinesq approximations are applied. The equations are

volume integrated and solved in flux form. A first order closure is employed using

a counter gradient scheme for convective situations (Lüpkes and Schlünzen, 1996)

To account for orography the model is written in terrain-following coordinates. The

equations are discretised on an Arakawa-C-grid (Mesinger and Arakawa, 1976).

In the momentum equations advection and diffusion are simultaneously solved with

the second order Adams-Bashforth scheme in time and centered differences in space.

This scheme was shown to be stable for Courant numbers (CFL) up to 1 if a sufficient

amount of turbulent diffusion exists in the atmosphere (Schumann et al., 1987).

Coriolis force and buoyancy are solved forward in time. Pressure gradient force

is calculated iteratively from a Poisson equation using the Bi-CGSTAB algorithm

(Van der Vorst, 1992) with ILU preconditioning. This solver is named pressure

solver in the following. To avoid nonlinear instability a seven point filter is applied

to the wind components every time step (Shapiro, 1971).

Temperature, humidity, cloud and rain water content as well as pollutant concen-

trations equations are solved forward in time. For these a first order upstream

scheme is used for advection. Vertical diffusion is solved semi-implicitly with the

Crank-Nicholson scheme if the otherwise used explicit approach leads to a too strong

constraint on the time step.

3.3 (W)ENO interpolation

The essentially non-oscillatory (ENO) schemes go back to Harten et al. (1987).

In contrast to central schemes they do not require any artificial diffusion as they

largely avoid generating spurious oscillations and have some scheme inherent dif-

fusivity. The backbone of the ENO scheme is the ENO interpolation used for the
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reconstruction of values at the cell boundaries. These are essential for calculating

flux divergences. For example, for a quantity q(x) discretised by qi = q|xi
at the cell

centre xi the boundary value qi+1/2 is obtained by calculating an auxiliary polyno-

mial Qx
i for each cell so that qi+1/2 = Qx

i (xi+1/2) (ENO interpolation in x-direction,

indicated by superscript x). To obtain a scheme of n-th order the polynomial must

be based on a stencil (qk, . . . qk+n−1) with Qx
i (xl) = ql and i, l ∈ {k, . . . , k+n−1}. So

n possibilities for choosing a stencil exist. The idea behind ENO interpolation is to

choose the stencil on which the smoothest interpolation polynomial Qx
i is obtained.

This automatically precludes interpolation across discontinuities and, thus, avoids

artificial oscillations. For calculating the interpolants divided differences are helpful.

They are commonly defined recursively. Here we only state divided differences with

order less than three:

q[xi] = qi (3.1)

q[xi, xi+1] = (qi+1 − qi)/(xi+1 − xi) (3.2)

q[xi, xi+1, xi+2] = (q[xi+1, xi+2] − q[xi, xi+1])/(xi+2 − xi) (3.3)

For a second order reconstruction the polynomial can be written as

Qx
i = qi + (x− xi)(αiq[xi−1, xi] + βiq[xi, xi+1]) (3.4)

αi =

{
1 : |q[xi−1, xi]| < |q[xi, xi+1]|

0 : else
(3.5)

βi = 1 − αi, (3.6)

the third order polynomial is given by

Qx
i = qi + αi{(x− xi)q[xi−1, xi] + (x− xi)(x− xi−1)q[xi−2, xi−1, xi]}

+ βi{(x− xi)q[xi−1, xi] + (x− xi)(x− xi−1)q[xi−1, xi, xi+1]}

+ γi{(x− xi)q[xi, xi+1] + (x− xi)(x− xi+1)q[xi, xi+1, xi+2]}

(3.7)

αi =

{
1 : |q[xi−1, xi]| < |q[xi, xi+1]| ∧ |q[xi−2, xi−1, xi]| < |q[xi−1, xi, xi+1]|

0 : else
(3.8)

γi =

{
1 : |q[xi, xi+1]| < |q[xi−1, xi]| ∧ |q[xi, xi+1, xi+2]| < |q[xi−1, xi, xi+1]|

0 : else
(3.9)

βi = 1 − αi − γi. (3.10)

For an exact finite volume formulation the interpolation needs to conserve the cell

averages. This can be achieved by setting Q̃x
i (x) = qi+Q

x
i (x)−

1
∆x

∫ xi+1/2

xi−1/2
Qx
i (x

′) dx′.
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This becomes only necessary for interpolants with orders larger than one (i.e. schemes

of orders larger than two). The third order results in this paper are produced with-

out a cell average conserving interpolation as the cell average conserving scheme

tested did not show a noticeable improvement. Unlike the schemes presented here,

cell average conservation is especially important for flux integrated schemes like

UTOPIA (Leonard et al., 1995).

Weighted essentially non-oscillatory (WENO) schemes (e.g. Liu et al., 1994; Jiang

and Shu, 1996) are a further development of ENO schemes. Instead of choosing the

smoothest interpolation polynomial a weighted convex combination of the interpola-

tion polynomials is used for the reconstruction. The weights αi, βi and γi are chosen

as in Shu (1999). The smoother the polynomial the larger is its weight. Note that

while each single polynomial is interpolating at n+1 points, the convex combination

for the WENO scheme is only interpolating at xi. Figure 3.1 shows an example of a

third order ENO interpolated quantity. In the general case the interpolant in each

cell can be based on different stencils. At the cell boundaries discontinuities are

apparent for which numerical flux functions have to be found.

The (W)ENO interpolation is applied to the advection terms of the momentum

equations:

∂ρ0u

∂t
= −

∂

∂x
(uρ0u) −

∂

∂y
(vρ0u) −

∂

∂z
(wρ0u) +Rx

q

x

Value at cell boundary
Cell value

Figure 3.1: Example of a third order ENO interpolated quantity. Solid line: reconstruction of

the discrete quantity q. Dashed line: Interpolant through the neighbouring values.



3.3 (W)ENO interpolation 31

∂ρ0v

∂t
= −

∂

∂x
(uρ0v) −

∂

∂y
(vρ0v) −

∂

∂z
(wρ0v) +Ry

∂ρ0w

∂t
= −

∂

∂x
(uρ0w) −

∂

∂y
(vρ0w) −

∂

∂z
(wρ0w) +Rz

where (u, v, w) is the velocity vector, ρ0 the large scale density and (Rx, Ry, Rz) the

vector of the remaining terms of the momentum equations (e.g. pressure gradient

force). In case a coordinate transformation is used (e.g. terrain-following coordinates

as used in METRAS) only the advected quantity itself (i.e. u, v and w) is ENO

interpolated. The metric terms must not be ENO interpolated as an interpolation

of a product of quantity and the metric term would lead to distortion.

u, v, w and ρ0 are staggered on the Arakawa-C-grid (Mesinger and Arakawa, 1976).

The scalar points in x- and y-direction are given by xi and yj, the vector points by

xi+1/2 and yj+1/2. u is defined at (xi+1/2, yj) by ui+1/2,j , v is defined at (xi, yj+1/2)

by vi,j+1/2, ρ0 at (xi, yj) by ρ0i,j. Figure 3.2 explains how the advection flux is

calculated for the term ∂
∂x

(uρ0v). The advecting velocity component is averaged to

the cell centre, the advected velocity component is ENO interpolated. As shown in

Fig. 3.1 the ENO interpolated function may be discontinuous if the polynomials of

two adjacent cells are based on different stencils. In this case the upstream value

is taken (UP) or the simple average of both values (AV). With these flux functions

the flux through the cell faces is calculated, and Euler forward is used for time

integration.

ui−1/2, j+1

v i, j+1/2

ui−1/2, j i, j
ρ

i−1, j
ρ

v i−1, j+1/2

i, j+1
ρ

i−1, j+1
ρ

i+1, j+1
ρ

i+1, j
ρ

v i+1, j+1/2

i+1/2, j+1u

ui+1/2, j

� � �
� � �
� � �

� � �
� � �
� � �

ENO

Figure 3.2: Horizontal cross-section of the Arakawa-C-grid. The (i,j+1/2) v-cell is outlined. For

the advection flux through the left and right cell face (bold lines), the advecting wind u is simply

averaged to the centre of the cell face, the advected wind v is ENO interpolated along the dashed

line.
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3.4 Testing the schemes

Three different types of test cases are performed. These are selected to detect

shortcomings in the numerical schemes and numerical flux functions. Results from

six different schemes are compared with results from the centered differences (CDF).

Table 3.1 gives an overview of the schemes, their order and the applied numerical

flux functions. CDF uses a CFL number of 0.8, the four second order (W)ENO

schemes apply a CFL number of 0.63 and the two third order schemes 0.3. The

CFL number has been determined from experiments with Burgers’ equation. A

seven point filter (Shapiro, 1971) is used for stabilisation of the centered difference

scheme (CDF). It is also used for comparison in conjunction with a second order

ENO scheme (E2UPF).

Table 3.1: Overview of schemes tested with different test cases.

Label Class Order flux function filter CFL

CDF central scheme 2 - seven point filter 0.8

E2AV ENO 2 AV - 0.63

E2UPF ENO 2 UP seven point filter 0.63

E2UP ENO 2 UP - 0.63

W2UP WENO 2 UP - 0.63

E3UP ENO 3 UP - 0.3

W3UP WENO 3 UP - 0.3

3.4.1 Idealised density current

An idealised density current is used to test the robustness of the schemes for inviscid,

time dependent solutions. The test case is based on papers by Skamarock and

Klemp (1993), Carpenter et al. (1990) and Schimmel (2002), the same experimental

set-up is used. A two-dimensional y-z domain of 40 km length and 10 km height is

prescribed. In contrast to open boundary conditions common for limited area models

a solid wall is prescribed at the southern boundary for these experiments. Free-slip

conditions are applied at all solid boundaries (i.e. the ground and the south). At

model initialisation the atmosphere is at rest, and the potential temperature is given



3.4 Testing the schemes 33

by

θ =





290 K +

10 K

5000 m
z for z ≤ 5000 m and y ≤ 0 m;

300 K elsewhere.
(3.11)

The initial atmosphere is in hydrostatic equilibrium with a vanishing horizontal

pressure gradient for z > 5000 m. The model simulations are performed without

considering the influence of turbulence. Thus, only advective processes are accounted

for in this inviscid flow. This is the basic configuration of three tests. Case one has

a homogeneous horizontal and vertical mesh size of 125 m (DC125), case two a

step-wise change in mesh size (factors 2 and 4, DCstep), and case three includes a

density current over a mountain (DCMOUNT).

(i) 125 m mesh size (DC125)

Figure 3.3 shows the results for the experiment with 125 m mesh size as vertical

cross-section for all schemes except for E2AV after 15 minutes integration time. The

E2AV run does not remain stable and crashes after less than 13 minutes. Therefore,

in Fig. 3.3 the E2AV result is shown after 12 minutes simulation time. Oscillations

caused by the advection of momentum are clearly visible even in the field of potential

temperature.

All other schemes show a clear front at about y = 15 km after 15 minutes, but differ

in the intensity and wave length of the Kelvin-Helmholtz billows behind the frontal

head. CDF shows the shortest waves (wave length of about 5 km), the second order

(W)ENO schemes are more diffusive. Only one clear billow is visible. The third

order schemes are somewhat less diffusive, the development of a small billow close

to the frontal region is apparent (Fig. 3.3(e,f)). The results compare well to those by

Carpenter et al. (1990) and Skamarock and Klemp (1993) who used different mesh

sizes. The Piecewise Parabolic Method (PPM) used by Carpenter et al. (1990) is

third order like E3UP and W3UP. With 83 m mesh size it shows five billows and the

solution seems to be a lot less smooth than the results presented here. One reason

for this is the lower mesh size. Additionally, the third order (W)ENO schemes

are more diffusive by choosing the smoothest stencil. However, the main reason is

probably that temperature is advected with first order upstream. The very fine scale

simulation of Skamarock and Klemp (1993) with ∆x ≈ 29m shows a lot more small

scale billows as well. Due to the nonlinear behaviour of the simulation an aggregated

fine scale solution is not a meaningful reference for the large scale simulation (e.g.
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Figure 3.3: Results of DC125: Potential temperature from 290 K to 300 K, increment 0.5 K, for

(a) the reference case (CDF), (b) E2AV, (c) E2UP, (d) W2UP, (e) E3UP and (f) W3UP. Except

for (b) all plots are given after 15 minutes integration time. For (b) the result after 12 minutes

integration time is shown (shortly before the model run aborted).
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for the locations of billows).

CDF shows also some numerically caused very short waves of wave length 1 km and

less. This is a disadvantage of the centered differences which becomes visible when

the physical diffusion is small.

The second order (W)ENO results are very similar. The same is true for the third

order results (Fig. 3.3(e, f)). All four stable (W)ENO schemes show no noticeable

numerical noise. Due to a lack of validation data it can not be decided which of

these results is most realistic, but all three classes of numerical schemes are believed

to show a reliable density current.

To get an estimate of the numerical stability a horizontal Fourier analysis of the

temperature and wind fields is performed. With the vertical grid index k and ψj,k

being the discretised field ψ at the grid point (j,k), the vertically maximal spectral

coefficient is defined by

ψ̂l = max
k

∣∣∣∣∣

N−1∑

j=0

ψj,ke
−i2πlj/N

∣∣∣∣∣ , (3.12)

where N is the number of horizontal grid levels taken into account. Note that l

is the wave number. It is assumed that the variability associated with waves with

wave lengths fitting into 2 to 8 grid cells is not supposed to grow in time for a stable

numerical scheme. To evaluate the numerical schemes, the average variability per

wave number is calculated for waves within 2 to 8 grid cells:

o

ψ=
1

N/2 −N/8 + 1

N/2∑

l=N/8

ψ̂l. (3.13)

Figure 3.4a shows the time dependence of
o

ψ for the horizontal wind v. For the

unstable E2AV scheme a large increase of
o
v is visible after 10 minutes for case

DC125. For the other schemes
o
v remains bounded. However, the CDF scheme

produces a little more variability in the short waves than the other stable methods.

The Fourier analysis can clearly identify the unstable scheme, but similarly stable

experiments cannot be distinguished.

(ii) 125 m to 500 m step-wise change in mesh size (DCstep)

To test the robustness of the numerical schemes when dealing with a sudden change

in mesh size, a grid with refinement factors of two and four is tested for the same
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Figure 3.4: The average variability of the horizontal wind within 2-8 grid cells (Eq. (3.13)) for

different numerical methods as function of integration time for cases (a) DC125 and (b) DCstep.

experimental set-up as before. It is well known that abrupt changes in mesh size are

accompanied by a loss of order and by refraction and reflection of waves. Therefore,

the change of mesh size should not be too large. Factors up to four are still acceptable

and commonly used for two-way nesting (e.g. Zhang et al., 1986). The grid in this

simulation has a mesh size of 500 m in y and z direction except for an area in the

centre. For -2.5 km < y < 15 km the horizontal mesh size is 125 m. Below 1000

m the vertical mesh size is 250 m, for 1000 m < z < 3000 m it is 125 m. Thus

it is ensured that the region of strong Kelvin-Helmholtz instability lies within the

refined area. Therefore, results similar to those of case DC125 are expected if the

advection scheme can handle the refinement. Figure 3.5 shows the results for CDF

and E2UP. The CDF solution visibly differs from the one on the uniform grid and is

influenced by spurious oscillations. The flow pattern simulated on the uniform grid

is more or less destroyed. The (W)ENO results with exception of E2AV remain free

of numerical noise as exemplarily shown for E2UP. The results are very similar to

the results with a constant mesh size of 125 m. The main difference is that the front

is somewhat slower for case DCstep than in the constant mesh size case DC125.

This is due to the smaller gradients on the coarser grid.

For DCstep the Fourier analysis is done in the same way as for DC125 because

computational waves are expected to appear in grid point space. Therefore, the

change in mesh size does not need to be accounted for in the calculation. The Fourier

analysis results are similar to DC125 except for CDF and E2AV (Fig. 3.4(b)). For
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Figure 3.5: Results of DCstep. As in Fig. 3.3 but with a mesh size of 125 m - 500 m. (a) CDF

and (b) E2UP.

CDF the variability is continuously larger in DCstep than in DC125 until it starts

growing. After 15 minutes it is more than three times larger. E2AV remains stable

for a longer time in the DCstep simulation than in DC125, but in the end it leads

to a large increase in short wave variability as well.

(iii) Density current over a mountain (DCMOUNT)

DCMOUNT has the same experimental set-up as DC125 except that it includes a

mountain of height H = 1500 m. The surface elevation zs is given by

zs = H
L2
h

L2
h + (y − ys)2

(3.14)

with the half-width Lh = 3000 m, and the peak is located at ys = 5000 m. Figure

3.6 shows the result for CDF and E2UP. The air ahead of the front is moved over the

ridge without great resistance, because it is neutrally stratified. As soon as the cold

air reaches the top it overshoots and the reverse current aloft causes the development

of a billow. At this time the front slows down due to the bifurcation of the current.

The CDF solution (Fig. 3.6(a)) shows oscillations, because the diffusion of the seven

point filter is not strong enough. The (W)ENO results except for E2AV are free of

numerical noise. However, one best scheme cannot be identified. When looking at

the Fourier analysis (not shown) only E2AV shows a strong increase of short wave
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Figure 3.6: Results of DCMOUNT. As in Fig. 3.3 but with a mountain included. (a) CDF and

(b) E2UP.

variability as for DC125 and DCstep.

3.4.2 Mountain waves (MWAVE)

In this experiment a two-dimensional inviscid flow over a mountain ridge is simulated

within a domain of 1200 km in horizontal and 15 km in vertical direction. The mesh

size is 250 m in the vertical and 10 km in the horizontal. The surface height is

given by Eq. (3.14) with y substituted by x, Lh = 30 km, H = 10 m and xs=0 km.

The simulation is performed without Coriolis force effects. The approach flow is 5

ms−1 and the static stability of the atmosphere is N =
√

g
θ0

Γ ≈ 0.013 s−1 assuming

θ0 = 290 K. The analytical solution after Long (1953) yields a vertical wave length

of 2500 m. The configuration is chosen to get a flow similar to Schumann et al.

(1987) so that the numerical solution can match the analytic solution. Consequently,

the simulated quantities do not deviate much from the large scale flow except for

E2AV which became unstable. For the vertical velocity component the maximum

differences between analytical solution and simulation is about 0.00052 ms−1 for

CDF and ranging from 0.00053 for W3UP to 0.00062 for E2UP for the (W)ENO

schemes. CDF seems to perform better and to be a bit less diffusive than all other

schemes (Fig. 3.7). However, in this simulation the flow is quasilinear. The role

of the nonlinear advection of momentum is of secondary nature. Therefore, the
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Figure 3.7: Results of MWAVE for (a) the analytical solution, (b) CDF and (c) E2UP. Shown is

the vertical velocity component w. Positive contours are solid, negative contours dashed with an

increment of 0.0002 ms−1.

differences between the model results should not be overemphasised.

3.4.3 Land-sea breeze with an idealised mountain (LSBM)

To test the different methods using the full model dynamics and physics a land-sea

breeze experiment is set up including a bell-shaped west-east oriented mountain

ridge. The model area extends from ys=-70 km to yn=130 km in the horizontal and

over 10 km in the vertical direction. It is homogeneous in x-direction. The mountain

shape is given by Eq. (3.14) with H=1000 m, Lh=3000 m and ys=20 km. South

of y=0 km the surface is defined as water. Between 0 km ≤ y ≤ 10 km the surface

has the characteristics of an urban area while the rest of the surface is characterised
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as sand desert. The initial surface sea-level temperature is chosen to be 288 K. A

geostrophic wind of 0.5 ms−1 from North (off-shore) reflects the influence of a small

large-scale pressure gradient. The model simulation is performed for 53o N starting

at midnight at summer solstice. The initial atmosphere is stably stratified with a

temperature gradient of γ = 0.0035 K m−1. Relative humidity is linearly decreasing

from 80% at the ground to 5% at the tropopause.

The model simulation includes effects of cloud formation and precipitation and dif-

ferent stratifications including convective ones. The system is highly nonlinear.

The simulations employing different advection schemes are expected to produce a

range of solutions, if they differ in their performance. The simulation is performed

with CDF, E2AV, E2UP, W2UP, E3UP, W3UP and E2UP with seven point filter

(E2UPF). Again, E2AV became unstable.

Table 3.2: Maxima ψ+ and minima ψ− in defined boxes (Fig. 3.8) for the second day. AVE is

the average of the CDF result and the average of the (W)ENO schemes’ results. P is the total

precipitation. All other values are relative to the average and given in per cent. Bold values are

differences exceeding 20 per cent.

time box ψ± AVE CDF E2UPF E2UP W2UP E3UP W3UP

10h 1 v+ 3.1 10 6 -16 -10 -19 -13

10h 1 v− -3.1 -4 -9 2 5 10 11

10h 3 w+ 0.79 -15 -20 10 19 19 45

10h 2 v+ 2.3 1 -6 4 -6 4 1

12h 4 v+ 3.5 -2 -3 0 9 -3 7

12h 4 v− -3.7 11 -4 -7 -21 -4 -21

12h 5 v+ 1.8 0 4 22 -14 -10 0

12h 5 v− -2.5 12 10 -13 -19 -20 -20

21h 6 v+ 5.7 11 -14 -35 34 -52 11

Σ24 h,j P 38 -26 63 2 23 21 22

For the evaluation of the differences between the results the development of signif-

icant features is compared for the second day of the simulation. The features are

specified in the following text, they are marked with boxes in Fig. 3.8 with the

results of E2UP. The evaluation is given in Tab. 3.2. At 10 LST (Local Standard

Time) a sea-breeze (box 2) and an anabatic wind circulation (boxes 1, 3) are visible

(Fig. 3.8(a, b)). At 12 LST (Fig. 3.8(c)) a pronounced zone of horizontal conver-

gence accompanied by updrafts develops above the ridge (box 4). Over the sand area

thermals are visible (box 5). The updrafts above the ridge trigger the development
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of clouds, which are fed by humid air advected from the sea. At 21 LST the sea

breeze front has crossed the ridge (Fig. 3.8(d)). The zone of horizontal convergence

is now located at about 45 km inland (box 6). The mainly orographically caused

precipitation P is quite local and differs considerably in the whole model area (Fig.

3.9c for E2UP). For E2UP the sum over each column in y-direction and over 24 h,

Σ24 h,jPj, is 39 mm for the second day. The distribution of the overall rainfall of the

second day is shown in Fig. 3.9 for all simulations.

The described features are found for all numerical schemes, but their intensity and

distribution varies. To get an estimate on model result similarities and differences,

maximum and minimum values of the wind components in the defined boxes around

Figure 3.8: Results of LSBM at 10 LST (a, b), 12 LST (c) and 21 LST (d) on the second day

as simulated with E2UP. Shown are two components of the wind, v (a, c, d) and w (b). Positive

values are contoured, negative values are shaded. The increment is 0.5 ms−1 for v and 0.1 ms−1

for w.
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Figure 3.9: Results of LSBM at 24 LST. Shown is the 24 h integral of precipitation P of (a)

CDF, (b) E2UPF, (c) E2UP, (d) W2UP, (e) E3UP and (f) W3UP.

the respective feature (Fig. 3.8) are compared (Tab. 3.2). The deviations are listed

relative to the corresponding average AVEψ = 0.5(ψCDF + 1
5

∑
i∈M ψi) where M is

the set of the five (W)ENO methods tested (Tab. 3.1, E2AV is excluded). By this
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formulation the CDF result and the averaged (W)ENO results get the same weight.

AVEψ can be interpreted as result of a multi-numerics ensemble.

Most values do not deviate more than 20% from the average. Largest deviations

are found for the onshore flow within the sea breeze (box 6), the vertical velocity

component w and the precipitation P . For the w and P this is not surprising as

their intensity strongly depends on nonlinear interactions. While some numerical

schemes produce quite similar model results for the previous test cases, results for

case LSBM differ considerably. In LSBM, where adiabatic and superadiabatic con-

ditions become relevant, small differences in the advection can lead to solutions

with strong variations in the intensity of some features, especially those associated

with vertical motion and precipitation. When comparing the results of E2UP and

E2UPF, a dramatic difference is visible in the distribution of rainfall (Fig. 3.9(b,c)).

The simulation with filter yields precipitation resulting in three peaks whereas the

simulation without filter only gives one peak. Furthermore, the total precipitation

is more than 60% higher with E2UPF. The CDF simulation which needs the ap-

plication of the seven point filter does also shows the spread (Fig. 3.9(a)), but the

precipitation is reduced by 26% compared to the average. The (W)ENO methods

without filter show one distinct (Fig. 3.9(d-f)) maximum. As the filter is only ap-

plied for stabilisation without physical meaning it must be assumed that the spread

distribution of precipitation is less accurate.

The results of the simulations show that the different numerical schemes can fi-

nally lead to different solutions albeit the physical boundary conditions provoke

similar physical features as described above. Despite being different the results of

all schemes are physically plausible. Results for precipitation suggest that a filter

might cause artificial structures. Except for the filter effect it cannot be decided

which result is better and which is worse. Note that for application in atmospheric

models the numerical scheme can indeed influence model results considerably in the

case of relevant nonlinear physical effects.

3.4.4 Computational costs

Simulations applying more complex advection schemes are assumed to need more

CPU time than centered differences. Figure 3.10 shows the increase of CPU time

for each advection scheme relative to centered differences. The values range from

+26% for E2AV to +116% for W3UP. Obviously, the less complicated numerical

flux function AV needs less CPU time than UP. WENO schemes are more costly
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Figure 3.10: CPU time of the algorithm of different advection schemes. All values are given as

surplus relative to CDF (≡ 0%) as derived from the DC125 simulation.

than the corresponding ENO scheme due to the calculation of the extra weighting

terms. Not surprisingly the third order schemes (E3UP, W3UP) need considerably

more CPU time than the corresponding second order schemes (E2UP, W2UP).

However, when the CPU times of the advection schemes are seen in the context

of total CPU time the situation is different. Figure 3.11 shows the CPU times

for the experiments DCstep, DCMOUNT, LSBM and a case similar to MWAVE

(MWAVE(2)). For DCMOUNT and DCstep the time step is fixed. Therefore, the

CFL criterion has no influence on CPU time in these cases. Furthermore, the time

consumption of the pressure solver (ca. 80% for DCstep and DCMOUNT relative

to the total time) is dominating the whole CPU time making the time needed by

the advection scheme negligible. This time can be reduced when allowing a greater

residual and thus larger remaining divergences. The maximum residual has been

adjusted for this test case as in Smolarkiewicz et al. (1997) so that a smaller residual

does only lead to an unneeded extra accuracy. The strong pressure gradients within

the frontal region cause large divergence and convergence patterns leading to very

large CPU times needed by the pressure solver to determine the balancing pressure

field. However, the advection scheme itself indirectly influences the pressure solver.

If the advection scheme produces a smooth divergence field the pressure solver needs

less time to converge. This seems mostly to be the case for CDF where the filter



3.4 Testing the schemes 45

Figure 3.11: CPU time of the (a) DCstep, (b) DCMOUNT, (c) MWAVE(2), a case similar to

MWAVE, and (d) LSBM experiment for all (W)ENO schemes. Times are given relative to CDF

(≡ 100%) and separated into the CPU time needed for pressure solver, advection routine and the

rest.

results in smoothing, but E2UP and W2UP are not much more time consuming, in

some cases even less. For LSBM the effect of the filter is also visible for E2UPF in

reduced times for the pressure solver compared to E2UP. The filtered wind field can

be made convergence free by the pressure solver with less iterations. For atmospheric

problems solvers designed for the Helmholtz equation like the ADI preconditioned

conjugate-residual solver proposed by Skamarock et al. (1997) may be more efficient

then the Bi-CGSTAB algorithm used in this work. This has not been investigated

by the authors.

For MWAVE(2) the CFL criterion is important leading to much longer CPU times

for the third order (W)ENO schemes. For the most complex simulation, LSBM,

the time step is dominated by vertical diffusion. Therefore, the CPU times of all

schemes are almost the same.
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These results show that for an anelastic model it is impossible to predict the CPU

time on the basis of the advection scheme alone. The nonlinearity of the model and

the slow convergence of the pressure solver for complex wind fields can lead to CPU

times nearly independent of the advection scheme. For realistic experiments with

full model physics (W)ENO schemes may be applied without having to fear much

larger CPU times than needed for the CDF scheme. Time splitting (Strang, 1968)

can be used to avoid longer time steps needed for high order ENO schemes.

It should be pointed out that the conclusions above are only true for the advection

of momentum. When more sophisticated methods are also used for scalar quantities,

e.g. a huge amount of chemical constituents, the computational cost of the respective

advection scheme will be very important.

3.5 Conclusions

The aim of the work was to apply and test (W)ENO methods for the advection of

momentum in an anelastic mesoscale model. Their performance was compared to a

commonly used central scheme with a stabilising seven point filter (CDF).

Associated with ENO and WENO schemes is an interpolation polynomial in each

cell, where discontinuities might occur at the cell boundaries. Two numerical flux

functions, AV and UP, have been presented to compute fluxes at the cell boundaries.

In combination with second and third order (W)ENO interpolation six schemes

(E2AV, E2UP, E2UPF, W2UP, E3UP and W3UP) and centered differences (CDF)

have been examined in different test cases.

The first set of test cases is based on an idealised density current. The stability of

the schemes has been tested with and without orography and with changes in mesh

size by a factor of two and four. E2AV is generally unstable and leads to unphysical

short wave oscillations. This is probably caused by the downstream part of the flux

which is not physically meaningful. CDF is unable to cope with large step-wise

changes in mesh size and tends to produce some oscillations in the experiment with

orography. The other schemes (E2UP, E2UPF, W2UP, E3UP and W3UP) yield

better results and are stable. They are also accurate in the refined area where the

solution does not differ much from the solution with an equally spaced grid. With

respect to total CPU time the (W)ENO schemes do not differ much from CDF.

The second test case is a two-dimensional flow over a mountain ridge, for which
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an analytical solution is known. Comparing the fields themselves and with the

analytical solution reveals that all methods perform similarly well. Experiments

with the third order schemes are very CPU time demanding due to their stronger

constraint on the time step. The schemes E2UP and W2UP also need some but

only little more CPU time than CDF.

The third test case includes the full model dynamics and physics. It contains a

land-sea breeze and mountain-valley wind circulation. The model results differ as a

result of the relevance of nonlinear interactions. Especially the amount and the dis-

tribution of precipitation differs remarkably. The distribution seems to be strongly

influenced by the seven point filter. For flow over mountains Zängl (2002) showed

that horizontal diffusion that is not calculated truly horizontally in terrain-following

coordinates can distort the solution. The filter applied for CDF and E2UPF acts as

unphysical terrain-following diffusion as well and introduces errors.

The differences in the simulations, however, cannot be used to judge on the quality

of the model results, but they do show the important influence the advection scheme

and employed filter can have. This leads to the conclusion that for ensemble forecasts

it should not only be thought of perturbing the initial fields but also of using different

numerical methods e.g. for advection. For LSBM the difference in CPU time was

especially influenced by the pressure solver. Schemes (like CDF and E2UPF) which

produce smoother wind fields lead to faster convergence, but the CPU time increase

was below 20% for the two stable second order (W)ENO schemes.

When uniform grids are used a general recommendation cannot be given and (W)ENO

schemes and CDF scheme give similar results. However, if step-wise changes of mesh

size are needed the CDF scheme is not suitable and the E2UP or W2UP scheme

should be used instead. They are the only schemes that use about the same CPU

time as scheme CDF and are thus most cost effective (better results for the same

price) whereas the two third order schemes might use more computing time.



4 Flux integrated (weighted)

essentially non-oscillatory

advection schemes

This chapter will be submitted to Q. J. R. Meteorol. Soc. as:

Schroeder, G. and Schlünzen, K. H.(2007): Flux integrated (weighted) essentially

non-oscillatory advection schemes.

Since the chapter is intended for publication, the notation may sometimes deviate

from the one used in the other chapters of this thesis.
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Summary

(Weighted) essentially non-oscillatory ((W)ENO) advection schemes have been shown

to be suitable for momentum advection when nonuniform grids associated with grid

refinement are involved. One drawback of these schemes is that the third order ver-

sion needs a Courant number of 0.3 and for scalar advection even less. Furthermore,

these schemes are not multidimensional. Therefore, in this work two new multidi-

mensional flux integrated advection schemes for momentum and scalar quantities are

presented. These have a Courant number of one and are based on the flux integrated

advection scheme of Leonard et al. (1995) UTOPIA and on (W)ENO interpolation.

The schemes are compared to the original UTOPIA scheme that applies centered

interpolation. Simple two-dimensional advection tests as well as a rising bubble sim-

ulation show that the new schemes are superior to UTOPIA, since the third order

flux integrated ENO (FIENO3) scheme produces no spurious oscillations. With the

third order flux integrated WENO (FIWENO3) scheme oscillations of much smaller

amplitude than simulated with UTOPIA are visible. For momentum advection it

is shown that the one-dimensional FIENO3 scheme performs similarly as the ENO

scheme proposed by Schroeder et al. (2006) with the advantage of a CFL number 1.

4.1 Introduction

The accurate simulation of advective transport of quantities like temperature or

tracers were of interest since the first development of numerical models for the

atmosphere. Various approaches to numerically solve the advection problem have

been developed. One of the first schemes, the first order upstream scheme, is stable

for Courant numbers smaller than or equal to one. It is conservative and positive

definite but not very accurate for small Courant numbers. In these cases upstream

is very diffusive and smoothes out extrema. The second order Lax-Wendroff scheme

(Lax and Wendroff, 1960) adds antidiffusion to the upstream advection to increase

accuracy. It has the same stability properties as the upstream scheme but lacks

positive definiteness which can lead to spurious oscillations. The Smolarkiewicz

scheme (Smolarkiewicz, 1983) is of similar type as Lax-Wendroff. Its antidiffusive

step is governed by an antidiffusive velocity which advects the field in an upstream

manner. The resulting scheme preserves positivity for positive fields. It has been

extended and generalised by multiple options (e.g. non-oscillatory) resulting in the

class of MPDATA schemes (Smolarkiewicz and Margolin, 1998). By including cross
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derivatives it has also been made multidimensional. Unlike one-dimensional schemes

a multidimensional scheme has the advantage of not distorting the field in case of

diagonal advection.

A different approach was introduced by Crowley (1968). He used interpolating

polynomials to reconstruct the field and favoured the advective form over the con-

servation form (better known as flux form), since the conservation form based on

integrated fluxes lacks accuracy for higher orders of the numerical scheme. This

problem has been removed by Tremback et al. (1987) by making the interpola-

tion cell-average conserving. They named the resulting scheme a constant grid flux

scheme. However, their scheme was by no means positive definite which has been

achieved by Bott (1989) by applying flux limiters. Chlond (1994) has presented a

modified version of this scheme that switches locally to a more diffusive exponential

upwind scheme wherever the Bott scheme would violate monotonicity.

A method similar to Crowley’s conservation form is the QUICKEST scheme (Leonard,

1979). In addition to the Crowley scheme it also handles diffusion. It is cell-average

conserving so that its advection part is identical to the constant grid flux form of

Tremback et al. (1987). The improved multidimensional form of QUICKEST is

UTOPIA (Leonard et al., 1995) to which a multidimensional flux limiter has been

applied by Thuburn (1996). UTOPIA is also called a flux integrated scheme.

Another approach to the advection equation are semi-Lagrangian schemes (Stani-

forth and Cote, 1991) which are similar to Crowley’s advective form. One of their

advantages are Courant numbers larger than one. One of their disadvantages is that

they are usually not conservative in the general form though efforts have been made

to overcome this drawback. For example, Lin and Rood (1996) and similarly Leonard

et al. (1996) combine advective and flux form to get a multidimensional, flux limited

semi-Lagrangian-like scheme based on time splitting with unrestricted time steps.

Skamarock (2006) presents an improved form of limiters used for unrestricted-time-

step transport schemes.

More recently, Finite Volume Evolution Galerkin (FVEG) methods have been pro-

posed (Lukácǒvá-Medvid’ová et al., 2004; Lukácǒvá-Medvid’ová and Saibertova-Zato-

cilová, 2006; Lukácǒvá-Medvid’ová et al., 2007). These schemes are designed for

complex hyperbolic systems of equations and are based on the calculation of charac-

teristics along which the system is evolved. The finite volume property is achieved by

calculating the integrated finite volume fluxes at an intermediate update time step

with the evolution Galerkin method, and forwarding the prognostic variables with
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theses fluxes. Multidimensionality is achieved by using bicharacteristics. FVEG

methods were developed for complex systems like the Euler equations, but when ap-

plied to a simple advection equation they are similar to semi-Lagrangian advection

schemes with the advective velocity as the characteristic.

Most of the schemes described above are based on the reconstruction of the field

by interpolation which often leads to oscillatory under- and overshoots for higher

order schemes. This can cause problems since most scalars are needed to be positive

for physical reasons. Furthermore, overshoots in potential temperature can force

artificial lifting, overshoots in humidity can cause artificial condensation. Therefore,

to reach monotonicity or positive-definiteness it is necessary to use flux-limiters.

These are diffusive and can become very complex for multidimensional schemes. It

is the motivation for this paper to construct a multidimensional scheme that can be

used for advecting scalars without applying flux limiters. A promising method seems

to be the application of (weighted) essentially non-oscillatory schemes ((W)ENO

Harten et al., 1987; Liu et al., 1994; Jiang and Shu, 1996; Shu, 1999). These have

been shown to be (essentially) free of artificial oscillations even when simulating

flow with shocks. Schroeder et al. (2006) have also described (W)ENO schemes that

are suitable for momentum advection when discontinuous grid spacing is used in

atmospheric models. The drawback of these schemes is that they require a Courant

number of smaller than one, e.g. for the third order schemes 0.3. Therefore, in this

work the (W)ENO interpolation is applied in conjunction with the flux-integration

methods that was also used for UTOPIA. This leads to two new combined schemes.

In Section 4.2 the combined schemes are described. Their phase accuracy and am-

plification factors for one dimension are analysed in Section 4.3, followed by simple

two-dimensional tests in Section 4.4. A rising bubble experiment outlines the prop-

erties of the schemes within an anelastic model framework in Section 4.5. The

suitability of FIENO for momentum advection is demonstrated in Section 4.6. Con-

clusions are drawn in Section 4.7.

4.2 Flux integrated (W)ENO scheme

Under the assumption of a divergence free momentum field (ρu, ρv) the two-dimensional

advection equation for a scalar quantity q is given by:

∂ρq

∂t
+
∂uρq

∂x
+
∂vρq

∂y
= 0 (4.1)
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Here ρ is the density of air and (u, v) the two-dimensional wind vector. The

two-dimensional field q is discretised with qni,j at grid point (xi, yj) and time step

tn =
∑n

l=1 ∆tl. (i, j) are the grid indices in x- and y-direction. Applying the two-

dimensional flux integration (Leonard et al., 1995) leads to the equation

(ρq)n+1
i,j = (ρq)ni,j − αx(F

x
i+1/2,j − F x

i−1/2,j) − αy(F
y
i,j+1/2 − F y

i,j−1/2). (4.2)

where F x
i+1/2,j and F y

i,j+1/2 are the fluxes through each cell face in x- and y-direction

and αx = ∆t/∆x and αy = ∆t/∆y. ∆x and ∆y are the horizontal grid widths. It is

assumed that during one time step ∆t air from a defined upstream area is advected

through each cell face by a constant wind (u,v). Figure 4.1 shows examples for two

wind directions. The average flux through each cell face is given by the respective

wind component and the average of the scalar quantity in the area. This can be

calculated if the discretised field qi,j is reconstructed to get a continuous field Q̃(x, y).

qxi,j is defined to be the average of Q̃ over the area that is advected through the cell

face in x-direction:
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Figure 4.1: Schematic view of flux integration in x-direction. (a) scalar grid; integration over

grey area a = sx (yj+1/2 − yj−1/2) = sx(∆yU + ∆yL) when wind comes from (b) south-west or (c)

north-east.
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qxi,j =
1

a

∫ xi+1/2

xi+1/2−sx

∫ yj+1/2−δy

yj−1/2−δy

Q̃(x′, y′)d y′d x′ (4.3)

with the distance sx = u∆t the air moves in x-direction, δy = (v/u)x′ and the area

a = sx (yj+1/2 − yj−1/2). Then, for example, the flux in x-direction is given by

F x
i+1/2,j =

u

a

∫ xi+1/2

xi+1/2−sx

∫ yj+1/2−δy

yj−1/2−δy

Q̃(x′, y′)d y′d x′ = u qxi,j. (4.4)

It is important to demand that the reconstruction is cell-average conserving, i.e.

1

Vi,j

∫ xi+1/2

xi−1/2

∫ yi+1/2

yi−1/2

Q(x′, y′)d y′d x′ = qi,j (4.5)

with the cell-volume Vi,j = (xi+1/2 − xi−1/2)(yi+1/2 − yi−1/2). Only by this it is

guaranteed that e.g. for v = 0 and u = ∆x/∆t the flux through the cell face is uqi,j,

which leads to a displacement of the field by one grid cell in x-direction.

The reconstructed field Q̃(x′, y′) can be created by defining separate polynomials for

each cell. The polynomials are only valid within the associated cell which can lead

to discontinuities at the cell boundaries. For the third order scheme the polynomial

Qi,j of cell (i, j) has the form:

Qi,j(x, y) = qi,j + Ai,j(x− xi) +Bi,j(x− xi)
2

+ Ci,j(y − yj) +Di,j(y − yj)
2

(4.6)

Here the missing ·̃ above Q indicates that Qi,j is not cell-average conserving.

For UTOPIA the polynomial reconstruction is based on centred interpolation so

that the following conditions hold:

Qi,j(xk, yj) = qk,j for k ∈ {i− 1, i, i+ 1} and

Qi,j(xi, yl) = qi,l for l ∈ {j − 1, j, j + 1}.

Qi,j interpolates through the cell value (i, j) and the values of its adjacent cells. A

cell-averaging reconstruction Q̃i,j can be achieved by setting

Q̃i,j(x, y) = Qi,j(x, y) + qi,j −
1

Vi,j

∫ xi+1/2

xi−1/2

∫ yi+1/2

yi−1/2

Qi,j(x
′, y′)d y′d x′ (4.7)

with the cell volume Vi,j. The resulting scheme is UTOPIA.

Since centred interpolation leads to under- and overshoots in the vicinity of dis-

continuities or sharp gradients (e.g. Thuburn, 1996), in this work the essentially
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non-oscillatory method (ENO, Harten et al., 1987) as well as the weighted ENO

method (WENO, Liu et al., 1994; Jiang and Shu, 1996; Shu, 1999) are used instead.

They are applied in each dimension separately. With the ENO interpolation, e.g.

in x-direction, for each cell (i,j) three parabolas are possible based on the stencils

{i − 2, i − 1, i}, {i − 1, i, i + 1} and {i, i + 1, i + 2}. The smoothest parabola is

chosen so that interpolation across discontinuities is avoided. For WENO the three

parabolas are weighted according to their smoothness. The resultant is based on

a five-point stencil. The smoother the parabola the larger is its weight. Here the

weights of Shu (1999) are applied.

The (W)ENO interpolation in each direction yields the coefficients Ai,j , Bi,j, Ci,j

and Di,j of (4.6). As mentioned before, the interpolants Qi,j are not cell-average

conserving.

The schemes derived here are named FIENO3 (third order flux integrated ENO

scheme) and FIWENO3 (third order flux integrated WENO scheme). The necessary

calculations are given in the following:

Inserting the (W)ENO interpolation polynomial of cell (i, j) (4.6) into (4.7) yields

the cell-average conserving reconstruction:

Q̃i,j(x, y) = q̃i,j + Ai,j(x− xi) +Bi,j(x− xi)
2 + Ci,j(y − yj) +Di,j(y − yj)

2

where the cell-average conserving term is added to qi,j to get q̃i,j :

q̃i,j = qi,j −
1

Vi,j

∫ xi+1/2

xi−1/2

∫ yi+1/2

yi−1/2

Qi,j(x
′, y′)d y′d x′

= qi,j − 1/2Ai,j(∆xRi − ∆xLi)

− 1/2Ci,j(∆yUj − ∆yLj)

− 1/3Bi,j(∆xRi
3 + ∆xLi

3)/(∆xRi + ∆xLi)

− 1/3Di,j(∆yUj
3 + ∆yLj

3)/(∆yUj + ∆yLj).

The meaning of ∆xRi (R=right), ∆xLi (L=left), ∆yUj (U=upper) and ∆yLj (L=lower)

is demonstrated in Fig. 4.1. Note that a nonuniformly spaced Arakawa C-grid is

assumed so that it is possible that for e.g. the x-direction ∆xLi 6= ∆xRi 6= ∆xRi+1.

This is the reason for introducing an upper/lower/right/left grid spacing within one

cell (Fig. 4.1).

The final result of the scheme for the flux in x-direction is given using some abbrevi-

ations that are explained in the following. To be able to use the formula for all wind
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directions, the neighbouring cell (in y-direction) that is involved gets the index m:

m =
{
j − 1 : v > 0
j + 1 : else

. (4.8)

Furthermore, in certain terms either the upper y-half-width (∆yUj) or the lower

half-width (∆yLj) of cells (i, j) and (i,m) is needed depending on the sign of v:

∆yh =
{

∆yUj : v > 0
∆yLj : else

∆ŷh =
{

∆yUm : v > 0
∆yLm : else

. (4.9)

Here and in the following the ·̂ indicates that the value belongs to cell (i,m). In

x-direction the sign of u decides, if the flux through the left or right face of cell (i, j)

is calculated. Consequently, either ∆xRi or ∆xLi is needed:

∆xh =
{

∆xRi : u > 0
∆xLi : else

. (4.10)

sx and sy are the distance in x- and y-direction, respectively, the air moves during

one time step. For both the sign indicates the direction of the flow:

sx = u∆t sy = v∆t. (4.11)

ry is the fraction of the cell width in y-direction the air moves during one time step:

ry = sy/(∆yU + ∆yL). (4.12)

The remainder of the abbreviations serves the purpose to reduce the number of

indices in the formula:

∆yU = ∆yUj ∆yL = ∆yLj

q̃ = q̃i,j q̂ = q̃i,m

A = Ai,j Â = Ai,m

B = Bi,j B̂ = Bi,m

C = Ci,j Ĉ = Ci,m

D = Di,j D̂ = Di,m.

(4.13)

Using the above abreviations the average of Q̃ over the area advected through a cell
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face in x-direction is given by:

qxi,j =
1

a

∫ xi+1/2

xi+1/2−sx

∫ yj+1/2−δy

yj−1/2−δy

Q̃(x′, y′)d y′d x′

= q̃(1 − 1/2|ry|)

+ A[SIGN(u)∆xh − 1/2sx − SIGN(u)|ry|(1/2∆xh − 1/3|sx|)]

+ C[1/2(∆yU − ∆yL) − ry(1/2∆yh − 1/6|sy|)]

+ B[1/3s2
x + ∆xh(∆xh − |sx|) − |ry|(1/4s

2
x − 2/3∆xh|sx| + 1/2∆xh

2)]

+ D[1/3(∆yU
3 + ∆yL

3)/(∆yU + ∆yL) − |ry|(1/12s2
y − 1/3∆yh|sy| + 1/2∆yh

2)]

+ 1/2q̂|ry|

+ ÂSIGN(u)|ry|(1/2∆xh − 1/3|sx|)

+ Ĉry(1/2∆ŷh − 1/6|sy|)

+ B̂|ry|(1/4s
2
x − 2/3∆xh|sx| + 1/2∆xh

2)

+ D̂|ry|(1/12s2
y − 1/3∆ŷh|sy| + 1/2∆ŷh

2).

The area a does not explicitly appear in the final formula, because parts of it (either

sx or ∆yU + ∆yL or both) cancel out or are contained in the fractional value ry.

Fluxes in y-direction are calculated in the same way by exchanging x- and y-

direction.

4.3 One-dimensional results

For the one-dimensional scheme the phase accuracy and wave amplification of FIENO3

and FIWENO3 are calculated and compared to the constant grid flux form (Trem-

back et al., 1987) which is identical to the QUICKEST scheme (Leonard, 1979).

Table 4.1 summarises the compared schemes. The phase accuracy is an indicator

for numerical dispersion, while the wave amplification factor is an indicator for sta-

bility and the scale dependent diffusifity of the scheme. The von Neumann stability

analysis, necessary for the calculation of accuracy and wave amplification, cannot be

done analytically, since FIENO3 and FIWENO3 are nonlinear advection operators.

Moreover, phase accuracy and wave amplification are not constant but depending

on the current phase shift of the wave. Therefore, on a domain with 40 grid cells

and cyclic boundary conditions waves with λ = 4∆x and λ = 8∆x are prescribed

for a scalar quantity. They are advected using different Courant numbers (CFL) for

60 time steps. Their relative phase speed and amplification factors are calculated
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Table 4.1: Overview of different advection schemes applied in this section to scalar quantities.

Scheme order description

QUICKEST 3 Leonard (1979)

FIENO3 3 flux integrated ENO scheme

FIWENO3 3 flux integrated WENO scheme

FIENO2 2 flux integrated ENO scheme

E2UP 2 ENO scheme (Schroeder et al., 2006)

E3UP 3 WENO scheme (Schroeder et al., 2006)

UP1 1 upstream scheme

by Fourier analysis at each time step. The average amplification factor and average

relative phase speed are given in Tables 4.2 and 4.3, respectively. For compari-

son, the results for the first order upstream scheme (UP1), the second order FIENO

scheme (FIENO2) and the second (E2UP) and third (E3UP) order ENO schemes

of Schroeder et al. (2006) are also given.

For the QUICKEST scheme the results are very similar to those given by Tremback

et al. (1987) for the constant grid flux scheme. Differences are in the third digit

and can be attributed to roundoff errors. For 8∆x waves the amplification factors

(Table 4.2) and relative phase speeds (Table 4.3) are nearly identical for the three

third order schemes. This is similarly valid for the amplification factors of λ4 = ∆x,

though the QUICKEST scheme is slightly better than the others. For small Courant

numbers the phase speed is most accurate for QUICKEST. For Courant numbers

of 0.1 and larger the differences between the schemes are small and below 5%. The

first order upstream scheme (UP1) is much less accurate than the other schemes.

Especially 4∆x waves are damped much more for CFL numbers close to 0.5, whereas

the phase speed becomes the more inaccurate the smaller the CFL number. Not

surprisingly, concerning the amplification factor FIENO2 is somewhere between UP1

and FIENO3. For the CFL numbers 0.01 and 0.3, however, the phase speed is closer

to 1 for FIENO2 than for FIENO3. E2UP and E3UP are not stable for all CFL

numbers smaller than 1. Especially for E3UP this is a dramatic drawback as even

using a the CFL number of 0.3 fails. For momentum advection it was shown that

a CFL number of 0.3 is sufficient (Schroeder et al., 2006). Consequently, for scalar

advection these schemes are not recommended.
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Table 4.2: Amplification factor of 4∆x and 8∆x waves for different Courant numbers and ad-

vection schemes as determined numerically in a one-dimensional advection test (averaged over 60

time steps).

CFL

Scheme 0.01 0.10 0.30 0.50 0.70 0.90 1.00

4∆x

QUICKEST 0.997 0.966 0.908 0.884 0.908 0.966 1.000

FIENO3 0.998 0.958 0.890 0.866 0.893 0.958 1.000

FIWENO3 0.998 0.966 0.906 0.888 0.892 0.957 1.000

FIENO2 0.993 0.929 0.828 0.791 0.828 0.929 1.000

E2UP 0.993 0.932 0.853 0.866 0.965 unstable unstable

E3UP 0.998 0.966 0.942 0.974 unstable unstable unstable

UP1 0.990 0.906 0.762 0.707 0.762 0.906 1.000

8∆x

QUICKEST 1.000 0.997 0.993 0.992 0.993 0.997 1.000

FIENO3 1.000 0.997 0.993 0.991 0.993 0.997 1.000

FIWENO3 1.000 0.999 0.997 0.996 0.996 0.998 1.000

FIENO2 0.999 0.988 0.972 0.966 0.972 0.988 1.000

E2UP 0.999 0.990 0.983 0.991 unstable unstable unstable

E3UP 1.000 1.000 unstable unstable unstable unstable unstable

UP1 0.997 0.973 0.936 0.924 0.936 0.973 1.000

As expected, the third order schemes are less diffusive than the lower order schemes.

For simple wave advection it can be concluded that FIENO3 and FIWENO3 are

as appropriate as the QUICKEST scheme. Their advantage will be visible when

advecting square waves which can be decomposed into the sum of an infinite number

of sine waves of different frequencies. For square waves the nonlinearity of the

(W)ENO interpolation helps avoiding under- and overshoots. This is shown in the

following section with two-dimensional simulations.

4.4 Two-dimensional advection test cases

Three two-dimensional test cases are presented in this section. These are based

on solving Eq. (4.1) with ρ = 1. The first two cases have also been used by
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Table 4.3: Relative phase speed of waves with λ = 4∆x and λ = 8∆x for different Courant

numbers and advection schemes as determined numerically in a one-dimensional advection test

(averaged over 60 time steps).

CFL

Scheme 0.01 0.10 0.30 0.50 0.70 0.90 1.00

4∆x

QUICKEST 0.852 0.879 0.945 1.000 1.023 1.013 1.000

FIENO3 0.696 0.864 0.958 1.000 1.019 1.015 1.000

FIWENO3 0.736 0.849 0.906 0.998 0.992 1.006 1.000

FIENO2 0.759 0.828 0.924 1.000 1.033 1.019 1.000

E2UP 0.759 0.842 0.948 1.000 0.989 unstable unstable

E3UP 0.691 0.866 0.952 0.954 unstable unstable unstable

UP1 0.643 0.704 0.859 1.000 1.060 1.033 1.000

8∆x

QUICKEST 0.988 0.991 0.996 1.000 1.002 1.001 1.000

FIENO3 0.981 0.995 0.999 1.000 1.000 1.001 1.000

FIWENO3 0.995 0.992 0.990 0.991 0.994 0.998 1.000

FIENO2 0.990 0.984 0.993 1.000 1.003 1.002 1.000

E2UP 0.991 0.989 0.999 1.000 unstable unstable unstable

E3UP 0.980 0.993 unstable unstable unstable unstable unstable

UP1 0.903 0.926 0.970 1.000 1.013 1.008 1.000

Thuburn (1996). They are based on diagonal advection in a domain with 31x31

grid points and cyclic boundary conditions. A Gaussian cone of 3∆x standard

deviation (GAUSSIAN) and a square step profile of width 15∆x (SQRSTEP) are

advected with a Courant number of 0.25 in x- and y-direction. Results are evaluated

after a full advection cycle, corresponding to 124 time steps (Fig. 4.2).

For UTOPIA and FIWENO3 spurious oscillations are visible within the domain.

Note that Thuburn (1996) has calculated slightly different results for UTOPIA. The

reason is that he left out some higher order terms (the last two terms in Eq. (39)

in Leonard et al., 1995), while in this work these terms are kept. Table 4.4 lists

minimum and maximum field values as well as common error norms for the three

schemes showing that they are similarly accurate, but undershoots are three orders

of magnitude larger for UTOPIA than for FIENO3 and FIWENO3, respectively.

Here, || · ||∞ is the maximum norm, || · ||1 the L1-norm and || · ||2 the L2-norm.
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Table 4.4: Minimum and maximum values as well as common error norms for different two-

dimensional advection tests. GAUSSIAN: diagonal advection of the Gaussian cone after 124 time

steps. SQRSTEP: diagonal advection of the square step signal after 124 time steps. ROT: advection

of the Gaussian cone with maximum 1 in a rotational flow field after 600 time steps (one revolution).

In all cases the initial maximum value of q is 1.

test case Scheme min max || · ||∞ || · ||1 || · ||2

GAUSSIAN UTOPIA -3.53E-03 0.884 0.120 7.554E-03 1.871E-02

GAUSSIAN FIENO3 -6.45E-06 0.887 0.126 7.226E-03 1.859E-02

GAUSSIAN FIWENO3 -2.56E-05 0.954 0.092 5.958E-03 1.606E-02

SQRSTEP UTOPIA -5.97E-02 1.115 0.672 8.163E-02 0.140

SQRSTEP FIENO3 -3.22E-05 1.000476 0.693 8.491E-02 0.158

SQRSTEP FIWENO3 -1.33E-04 1.000686 0.697 7.510E-02 0.146

ROT UTOPIA -8.685E-03 0.807 0.1892 2.622E-03 1.254E-02

ROT FIENO3 8.254E-25 0.807 0.1896 2.349E-03 1.220E-02

ROT FIWENO3 -2.170E-06 0.936 0.0772 9.977E-04 5.445E-03

Figure 4.2: A Gaussian cone (a, b, c) and a square step profile (d, e, f) are diagonally advected

with a Courant number of 0.25 using cyclic boundary conditions. Results are given with contour

increment 0.1 after 124 time steps for UTOPIA (a,d), FIENO3 (b,e) and FIWENO3 (c,f). Areas

with negative values are shaded.
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Figure 4.3: A Gaussian cone is advected in a rotational flow field. Shown is the field after one

revolution (600 time steps) for (a) UTOPIA, (b) FIENO3 and (c) FIWENO3 (contour increment

0.1). Areas with negative values are shaded.

The third test has a rotational flow field with a constant angular velocity (ROT). On

a domain with 61x61 grid cells a Gaussian cone initially centred at grid point (31,

16) is advected. The results after 600 time steps (one revolution) are shown in Fig.

4.3 with error norms in Tab. 4.4. Again, UTOPIA and FIWENO3 show spurious

oscillations. FIENO3 remains positive during the integration. The undershoots

of FIWENO3 are, however, three orders of magnitude smaller than for UTOPIA.

Compared to UTOPIA and FIENO3 the || · ||∞ error is reduced by a factor of two.

This accuracy is gained since FIWENO3 is based on a real five-point stencil.

4.5 Rising bubble experiment

Another common test for numerical schemes is the rising bubble experiment (e.g.

Smolarkiewicz and Pudykiewicz, 1992; Robert, 1993; Laprise and Plante, 1995). For

these tests the scalar advection schemes are implemented in the anelastic model ME-

TRAS (Schlünzen, 1990; Dierer et al., 2005). The METRAS model equations consist

of three equations for momentum conservation with the Boussinesq approximation,

a potential temperature conservation equation, the perfect gas law and a mass con-

servation equation in anelastic form. All equations are solved in flux form. The

anelastic approximation results in a divergence free momentum field which is guar-

anteed by a pressure correction in the model. The pressure correction is calculated
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iteratively with Bi-CGSTAB (Van der Vorst, 1992), therefore small residual diver-

gences cannot be avoided. For this two-dimensional experiment Coriolis force and

all physical parameterisations (e.g. turbulence parameterisation, cloud processes,

radiation) are omitted. Density effects are included. Momentum advection is solved

with E3UP (Schroeder et al., 2006). The domain extends over 2000 m in horizontal

as well as in vertical direction. The grid spacing is 10 m in both directions. The time

step is 0.5 s. The potential temperature θ is separated by θ(x, z) = θ0(z) + θ̃(x, z)

into a background part θ0 and a mesoscale deviation θ̃(x, z). The background po-

tential temperature is 300 K throughout the atmosphere. The centre of the bubble

(diameter 500 m) is located 290 m above the ground at x = 0 m with a temperature

excess of 0.5 K. The advection operators are only applied to the mesoscale potential

temperature deviation.

The results (Fig. 4.4) are very similar to what can be found in literature. Due to

the strong wind shear billows develop at the temperature discontinuity. However, all

three schemes produce potential temperatures below 300K and above 300.5K. This

is physically not plausible. For UTOPIA and FIWENO3 this is associated with

spurious oscillations. After 500 s overshoots for UTOPIA (approximately 13.6% of

the initial temperature excess of 0.5 K) are larger than for FIWENO3 (2.1%) and

FIENO3 (0.2%). These overshoots are not only caused by the advection scheme but

Figure 4.4: Potential temperature of the rising bubble experiment after 500 s for (a) UTOPIA,

(b) FIENO3 and (c) FIWENO3 (contour increment 0.05K). Minimum (maximum) values are

given on top of the figure as negative (positive) deviations from 300K (300.5K) relative to the

initial temperature excess of the bubble (0.5K). Areas with potential temperatures below 300K are

shaded.
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also by the momentum field. The latter is not completely divergence free as required

for (4.1), as the divergences are corrected by an iterative pressure solver that gives

only an approximate solution. However, for FIWENO and UTOPIA, this effect

is negligible, as the total overshoots are of greater magnitude than for FIENO3.

Therefore, for FIWENO3 and UTOPIA the overshoots must mainly be caused by

the advection schemes themselves. The undershoots occur in areas with a smoother

wind field where rest divergences are less problematic. Here, they are much smaller

for FIENO3 (-0.003%) and FIWENO3 (-0.1%) while for UTOPIA (-16.0%) they are

approximately as large as the overshoots.

When positive quantities like cloud water content or chemical concentrations are

simulated, negative values caused by undershoots are a problem. To avoid negative

values a correction option is included in the schemes. A quantity q is corrected as

qci = max(qi, Lq)

∑
i qimi∑

i max(qi, Lq)mi

(4.14)

where mi is the mass of air in cell i. Lq is the lower limit of the quantity q. Fig.

4.5 shows the same result as Fig. 4.4 but with correction (4.14) after each execution

of the advection operator. Here the mesoscale deviation of potential temperature

θ̃ from 300K is corrected to be positive (Lθ̃ = 0). For FIWENO3 and FIENO3

the results for corrected and uncorrected simulations are almost the same with very

small damping of the positive values. The damping of the extrema is less than

0.004 % for FIWENO3 and about three orders of magnitude smaller for FIENO.

Figure 4.5: As Fig. 4.4, but with temperatures below 300K corrected by using Eq. (4.14). The

effective damping of positive values due to the correction is given on top of the figures as well as

maximum deviations from 300.5K relative to the initial temperature excess of the bubble (0.5K).
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However, for UTOPIA the damping reaches over 3% after 500s, and the overshoots

still have a magnitude of more than 9% of the initial temperature excess. This shows

that Eq. (4.14) is an effective solution for preserving positivity only if the negative

values produced by the advection schemes are very small.

4.6 Application for momentum advection

The described schemes can not only be applied to scalar quantities but also to mo-

mentum advection. Schroeder et al. (2006) have shown that schemes based on the

(weighted) essentially non-oscillatory (ENO) interpolation are suitable for momen-

tum advection with uniform and nonuniform grids. These schemes are not based

on flux integration, but interpolate the advected wind to the cell face and use this

value for flux calculation. For very small time steps the schemes nearly coincide,

i.e. FIENO3≈ E3UP, as the average of advected quantity over the area a close to

the cell face (Fig. 4.1) consists roughly of the cell face value only. However, when it

comes to larger CFL numbers, the schemes differ. The non-flux integrated schemes

have the main drawback that they restrict the time step with a CFL number smaller

than 1 (0.63 for E2UP and 0.3 for E3UP, Schroeder et al., 2006). In contrast to

that FIENO2 and FIENO3 have a CFL number of 1 in one dimension.

The suitability of FIENO for momentum advection is tested with a density current

experiment (e.g. Skamarock and Klemp, 1993; Carpenter et al., 1990; Schroeder

et al., 2006). The two-dimensional atmosphere extends over 40km in the horizontal

(y-direction) and 10km in the vertical. The vertical and horizontal grid spacing is

125m. In the beginning the air is neutrally stratified with a background potential

temperature of θ0 =300K and zero wind. A block of cold air located at y < 0km is

the driving force. Its potential temperature is decreasing linearly from 300K in 5km

height to 290K at the surface:

θ̃ =





290 K +

10 K

5000 m
z for z ≤ 5000 m and y ≤ 0 m;

300 K elsewhere.

Figure 4.6 shows the potential temperature after 15min simulation time for different

advection schemes with time step ∆t = 1s. When first order upstream is used

for temperature and momentum (Fig. 4.6a), a smooth cold front has propagated

15km northward. The result with second order FIENO advection for scalar and

momentum quantities shows two distinct billows (4.6b) caused by Kelvin-Helmholtz

instability.
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Figure 4.6: Potential temperature of the density current experiment after 15 min for (a) first order

upstream, (b) FIENO2, (c) FIENO3, (d) E2UP for momentum and FIENO2 for temperature, (e)

E3UP for momentum and FIENO3 for temperature (increment 0.5K). For all experiments ∆t = 1s

which corresponds to a maximum CFL number of 0.25.
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Figure 4.7: As Fig. 4.6 but with ∆t = 3s which corresponds to a maximum CFL number of 0.75.

(a) FIENO2, (b) FIENO3.

When FIENO2 is only applied to potential temperature and E2UP to momentum

advection (Fig. 4.6d), the potential temperature is nearly indistinguishable from

the results where FIENO2 is used for scalar and momentum advection. The same is

true for the third order scheme. The result with FIENO3 for momentum and scalar

advection (Fig. 4.6c) looks very similar to the result with FIENO3 for momentum

and E3UP for scalar advection (Fig. 4.6e). The higher order schemes produce three

to four Kelvin-Helmholtz billows. The main billow has a slightly different structure

in both versions, but the main flow properties are the same. The four billows have

developed at the same locations for both schemes.

When the time step is increased to ∆t = 3s, the simulations applying the ENO

schemes for momentum advection fail as high velocities develop (vmax > 30ms−1 <=>

CFL > 0.7). The FIENO results are shown in Fig. 4.7. They differ only slightly

from the ∆t = 1s simulations. Only the main billow for the third order scheme has

a different structure being more distinct from its northern neighbour in the ∆t = 3s

simulation. Consequently, it is recommended to use FIENO instead of ENO for

advection when the time step is constrained by advection. Tests have also indicated

that FIENO is similarly able to cope with changes in grid spacing as ENO (not

shown here) which makes FIENO also suitable for simulations with grid refinement.
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4.7 Summary and conclusions

In this work the flux integrated method for advection has been combined with the

essentially non-oscillatory (ENO) interpolation and the weighted ENO interpolation

(WENO). (W)ENO schemes have been shown to be very suitable for momentum ad-

vection especially in conjunction with discontinuous grid spacing (Schroeder et al.,

2006). However, they require a CFL number smaller than one and are not suitable

for scalar advection. This drawback is overcome with the flux integration method

that was originally used by Leonard et al. (1995) for the derivation of UTOPIA.

The combination of (W)ENO interpolation and flux integration that has been de-

veloped in this work leads to two new schemes (FIENO and FIWENO). The new

schemes have been analysed in terms of phase speed and amplification factor for one-

dimensional wave propagation and are compared to other schemes like first order

upstream and QUICKEST. The latter is the one-dimensional version of UTOPIA.

The new schemes are shown to be similarly accurate as the QUICKEST scheme of

Leonard (1979).

Simple two-dimensional advection tests show that over- and undershoots produced

by the new multidimensional schemes are between two and three orders of magnitude

smaller than for the comparable UTOPIA scheme. The third order FIENO3 scheme

produces no spurious oscillations. A rising bubble experiment in an anelastic model

shows that for UTOPIA the intensity of oscillations reaches about 16% of the initial

temperature excess of the bubble. For the third order FIWENO3 scheme overshoots

are about 6 times smaller, while FIENO3 remains free of oscillations, even though

temperatures below the initial 300K occur (0.003% of the initial temperature excess).

None of the schemes conserves positivity.

For the discretisation of scalar advection FIENO3 is the most recommended of all

three schemes. It is successfully used for temperature advection. Even though simple

tests show that FIWENO3 is slightly more accurate its usage is not recommended,

because it has a too oscillatory nature. For advection of positive quantities FIENO3

should be used in conjunction with a correction scheme like Eq. (4.14) to avoid un-

dershoots. This adjustment is justifiable as in the presented test case the correction

scheme had almost no effect on positive values.

It should be pointed out that Jiang and Shu (1996) have shown that when used with

Runge-Kutta time integration, formally, WENO schemes have a higher accuracy

than ENO schemes (eg. Jiang and Shu, 1996). This is not a contradiction to the
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results found here, since in this work a complete different methodology is used for

time integration and only the spatial interpolation is based on (W)ENO. Time is

treated continuously by the integration of fluxes in contrast to Runge-Kutta time

integration. For classical WENO schemes the weights are calculated by optimisation

under consideration of the Runge-Kutta time integration (e.g. Jiang and Shu, 1996),

but they are not necessarily optimal for flux integration.

For momentum advection FIENO was successfully applied in a density current ex-

periment producing results that are nearly identical to the non-flux integrated ENO

scheme of Schroeder et al. (2006) for small CFL numbers. However, with FIENO

larger time steps are possible (up to CFL number one) and therefore it is more

recommended than the comparable ENO scheme if the time step is dominated by

advection.



5 Numerical dispersion of

gravity waves

This chapter will be submitted to Mon. Wea. Rev. as:

Schroeder, G. and Schlünzen, K. H. (2007): Numerical dispersion of gravity waves.

Since the chapter is intended for publication, the METRAS equations are written

in a simplified way. Only the dynamical core of METRAS is needed here so that

Reynolds averaging is not applied (indicated by the missing · ). Furthermore, the

equations are not transformed into the surface following coordinate system, and all

geometric coefficients are omitted (e.g. α∗).

69
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Summary

When atmospheric gravity waves are simulated in numerical models, they are not

only dispersive for physical but also for numerical reasons. Their wave properties

(e.g. damping or propagation speed and direction) can depend on grid spacing as

well as on the numerical schemes.

In this work numerical dispersion relations for atmospheric gravity waves are the-

oretically derived as well as experimentally measured using the anelastic mesoscale

model METRAS. Both, the theoretical solution and the numerical model show a

retardation of the gravity waves with decreasing grid spacing. Furthermore, the

influence of a Shapiro seven-point filter is analysed. The Shapiro seven-point filter

causes damping of the shorter waves. Therefore, shorter waves can only be simu-

lated without the seven-point filter. The influence of different advection schemes is

analysed by prescribing a background wind. A second order flux integrated essen-

tially non-oscillatory (FIENO) scheme is superior to a corresponding third and first

order scheme concerning the group velocity. The damping is the smaller the higher

the order of the scheme, as expected.

The numerical dispersion has severe consequences, when nonuniform grid spacing is

used. Waves moving from the fine grid to the coarse are reflected due to numerical

dispersion if they are only poorly resolved on the coarse grid. In tests with different

refinement factors and wave lengths the reflection is found to be the larger the

greater the refinement factor. The results show that refinement factors larger than

three should not be used with nonuniform grid spacing or two-way nested grids.

5.1 Introduction

Solutions of the Navier-Stokes equations can include several types of waves. For

the atmospheric flow internal gravity waves are especially important. These waves

can be found on different scales throughout the atmosphere wherever it is stably

stratified. They can be excited by e.g. mountains, convection, shear instability and

many more processes (Holton, 1992; Zhang, 2004). In atmospheric models, however,

gravity waves can also be generated by dynamic and thermodynamic imbalances (e.g.

caused by numerical noise or unbalanced initial conditions). Their group velocity

depends on their wave length and the buoyancy frequency. When gravity waves

propagate upward, their amplitude increases with decreasing density (e.g. Zhang
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and Yi, 2004). In the troposphere the wave energy density is highest close to the

tropopause (Allen and Vincent, 1995). They play also an important role in the

middle atmosphere for energy and momentum transport (e.g. in the quasi-biennial

oscillation, Dunkerton, 1997), and they are a dominant source for turbulence due to

gravity wave breaking and dissipation (cf. Fritts and Alexander, 2003, for a review

of middle atmospheric gravity waves).

As gravity waves influence the mesoscale flow (e.g. Zhang, 2004), their accurate

simulation is of great interest. One of the problems associated with the simulation

of gravity waves is their dispersive property. The physical dispersion is mainly

influenced by the static stability of the air. However, in numerical models the type

of grid spacing as well as grid size and the numerical methods used additionally

influence the properties of the waves. If different grid sizes are used within one

domain, gravity waves that cannot be resolved on the coarse grid cannot leave the

fine grid and are reflected at the internal boundary. In the most extreme case

where the wave cannot be resolved on the coarse grid it is trapped within the fine

grid. Consequently, the stretching factor between fine and coarse grid is usually

kept smaller than four (Zhang et al., 1986) which still leaves some reflection. While

in many publications factors of four or smaller are used for grid refinement, to

our knowledge an actual thorough analysis of numerical gravity wave dispersion

and reflection and the influence of the refinement factor thereupon has never been

published. Wave reflection due to grid refinement has only been analysed for simple

wave problems like the advection of a wave structure (e.g. Vichnevetsky, 1987) which

is relevant for atmospheric models. In the field of general relativity theory this effect

has also been investigated for gravitational waves by Choi et al. (2004).

Since high resolution atmospheric simulations on large domains are still not feasible

in terms of computational cost, two-way nesting and adaptive grid methods are

frequently used accompanied by nonuniform grid spacing (e.g. Lorenz and Jacob,

2005; Bacon et al., 2007). Consequently, a justification of the acceptable refinement

factors is needed, which can be achieved by quantifying gravity wave reflection.

This is the motivation for this work, in which the numerical dispersion properties

of gravity waves are analysed. Numerical simulations of gravity waves on different

grids are presented for different numerical methods. Section 2 describes the non-

hydrostatic model METRAS used for the simulation. Section 3 shortly describes

analytical properties of gravity waves as found in text books and then presents

a new theoretical derivation of the numerical dispersion related to grid refinement.

Section 4 analyses the numerical dispersion with numerical simulations in METRAS.
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Furthermore, the influence of different numerical advection schemes is investigated.

The consequences of grid refinement, namely reflection, are shown in Section 5. The

intensities of reflected waves are measured in different simulations. Conclusions are

drawn in Section 6.

5.2 Model METRAS

The mesoscale model METRAS (Schlünzen, 1990; Dierer et al., 2005) is used for test-

ing the properties of gravity waves under different numerical conditions. METRAS

is a three-dimensional, non-hydrostatic model in which the three wind components

u, v, w and the potential temperature θ = T (100000Pa
p

)R/cp (with the temperature

T , the specific gas constant R for dry air and the specific heat capacity of dry air

at constant pressure cp) as well humidity, cloud liquid water content and rain water

content are calculated from prognostic equations. The equations are solved in flux

form. The pressure p is calculated diagnostically. A perfect gas law relates density

ρ to the potential temperature θ and pressure. Turbulence, radiation and cloud

processes are parameterised.

Since for this work only the dry, dynamical core of the model is applied without fric-

tional effects, Coriolis force and the parameterisation of turbulence, in the following

only the simplified model equations are stated without the overbar commonly used

to denote Reynolds-averaged quantities. Furthermore, all simulations presented here

are two-dimensional, so that the equation for v and dependencies on y are omitted.

In the equations of motion the Boussinesq approximation and the anelastic approx-

imation are applied. It is assumed that ρ ≈ ρ0 except for the buoyancy term which

nearly cancels out with the vertical pressure gradient. The anelastic approximation

assumes that density changes slowly with time. To make use of major balances

in the atmosphere, the thermodynamic quantities are separated into a background

part (subscript 0, only depending on z) and a deviation part (denoted by ·̃):

p(x, z) = p0(z) + p̃(x, z)

θ(x, z) = θ0(z) + θ̃(x, z)

ρ(x, z) = ρ0(z) + ρ̃(x, z)

with p̃(x, z) = p1(x, z)+p2(x, z). p0 and ρ0 as well as p1 and ρ̃ satisfy the hydrostatic

equation

∂p0

∂z
= −gρ0;

∂p1

∂z
= −gρ̃
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with the gravity acceleration g. p2 is the dynamic pressure calculated diagnostically

from a Poisson equation to keep the momentum field divergence free.

This leads to two momentum equations

∂ρ0u

∂t
= −

∂

∂x
(uρ0u) −

∂

∂z
(wρ0u) −

∂p1 + p2

∂x
∂ρ0w

∂t
= −

∂

∂x
(uρ0w) −

∂

∂z
(wρ0w) −

∂p2

∂z
,

a thermodynamic energy equation

∂ρ0θ

∂t
= −

∂

∂x
(uρ0θ) −

∂

∂z
(wρ0θ) ,

the continuity equation

0 =
∂

∂x
(uρ0) +

∂

∂z
(wρ0)

and a linearised perfect gas law

ρ̃

ρ0
= −

θ̃

θ0
+
cv
cp

p1 + p2

p0
.

Here, cv is the specific heat capacity of dry air at constant volume.

For the results presented here advection of potential temperature and momentum is

solved with first order upstream (UP1) or a second (FIENO2) or a third (FIENO3)

order flux integrated essentially non-oscillatory scheme (Schroeder and Schlünzen,

2007a). Pressure p2 is solved from a hyperbolic Poisson equation by an ILU(1)

preconditioned Bi-CGSTAB algorithm (Van der Vorst, 1992).

5.3 Theoretical analysis - properties of gravity

waves on grids of different resolution

The linearised model equations yield gravity waves as solution. The derivation of the

physical dispersion relation of linear gravity waves can be found in many text books

(e.g. Holton, 1992). In this section, the results are briefly stated. The linearisation

of the velocities u = u + u′ and w = w′ leads to a wave equation for the vertical

deviation velocity w′

∂2

∂t2

(
∂2w′

∂x2
+
∂2w′

∂z2

)
+N2∂

2w′

∂x2
= 0 (5.1)
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Note that in this case w′ is not associated with turbulence, but with the deviation

part that arises from the linearisation. This is a common notation in dynamic me-

teorology. It can be shown that the group velocity depends on the vertical (λz) and

horizontal (λx) wave lengths as well as on the static stability (buoyancy frequency)

N =
√
g∂ ln θ/∂z. The horizontal group velocity for a solution to this equation is

given by

ca = N
m2

(k2 +m2)1.5
(5.2)

with the horizontal wave number k = 2πλ−1
x and the vertical wave number m =

2πλ−1
z .

While the derivations above can be found in standard text books, to our knowledge

a theoretical derivation of the numerical dispersion relation of gravity waves has

never been published. The numerical dispersion relation can be calculated in two

steps. Firstly, Eq. (5.1) is discretised spatially with the horizontal and vertical grid

spacing ∆x and ∆z, respectively,
(
∂2

∂t2
+N2

)(
w′
j+1,l − 2w′

j,l + w′
j−1,l

∆x2

)
+
∂2

∂t2

(
w′
j,l+1 − 2w′

j,l + w′
j,l−1

∆z2

)
= 0 (5.3)

Secondly, a wave function w′
j,l(t) is inserted in Eq. (5.3) (similarly to a von Neumann

stability analysis):

w′

j,l(t) = ŵ exp(i[kj∆x+ml∆z − νt])

with the frequency ν and the amplitude ŵ. This yields

(−ν2 +N2)
exp(ik∆x) − 2 + exp(−ik∆x)

∆x2
− ν2 exp(im∆z) − 2 + exp(−im∆z)

∆z2
= 0.

Solving this for ν leads to

ν = N

(
ck

ck + cm

)0.5

with the abbreviations

ck =
1 − cos(k∆x)

∆x2

cm =
1 − cos(m∆z)

∆z2
.

The numerical horizontal group velocity in x-direction is

cxn =
∂ν

∂k
= 0.5Nsk

{
[ck(ck + cm)]−0.5 − c0.5k (ck + cm)−1.5

}
(5.4)
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where the abbreviation

sk =
sin(k∆x)

∆x

has been used. From (5.4) it is clear that for ∆x ≈ λx/2 the numerical horizontal

group velocity tends against zero. In this case the waves are stationary.

5.4 Model analysis - properties of gravity waves

Zhang and Yi (2004) analysed the propagation of gravity wave packets in a global

atmospheric model. Their method to initialise gravity waves is also used in this

work to investigate the numerical dispersion of gravity waves with METRAS. The

hydrostatic background atmosphere is assumed to be isothermal:

T0 = Tc; ρ0 = ρc exp

(
−
gz

RTc

)
.

This leads to a stable stratification where θ0 increases with height. The horizontal

wind field perturbation is initialised by

u′(x, z, t = 0) = uc exp

[
−

(x− x0)
2

2σ2
x

−
(z − z0)

2

2σ2
z

]
cos

[
(x− xc)

2π

λx
+ (z − z0)

2π

λz

]
.

where (xc, zc) =(-30km,3km) is the centre of the wave packet. For the analysis

the following values are chosen: Tc = 250K, uc = 0.8ms−1, σx = λx = 15km

and σz = σz = 1km. In this case the static stability is N = 0.02s−1 and the

analytical horizontal group velocity is ca = 3.09ms−1. Figure 5.1 shows the initial

conditions for u. The amplitudes of the initial waves are kept small in order to

Figure 5.1: Initial condition for the horizontal wind u. Contours are 0.1 ms−1. Negative contours

are shaded.
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avoid non-linear effects like wave breaking. The initial vertical wind, deviation

pressure, deviation density and deviation temperature are calculated with phase

shifts to match the linear wave solution with a group velocity pointing upward and

in positive x-direction.

The model results are analysed in terms of the wave energy density which is given

by Zhang and Yi (2004)

I =
1

2
ρ0(u

′2 + w′2) +
(p1 + p2)

2

2ρ0c2a
+

(p1 + p2 − ρ′c2a)
2

2ρ0(1 − cp
cv

)c2a
(5.5)

In this work the wave energy density is averaged over one wave length in each spatial

direction to get a smoother field:

I ′(x, z) =

∫ x′=x+λx/2

x′=x−λx/2

∫ z′=z+λz/2

z′=z−λz/2

I(x′, z′)d x′d z′ (5.6)

At each time step the maximum of the smoothed wave energy density, I ′, is located,

and its location and intensity stored. With a regression method the group velocity

and the e-folding time (damping coefficient) of the wave intensity are estimated. It

should be noted that the measured group velocity and damping can have an error of

about 10% for highly damped waves. This estimation is based on a linear regression.

For all simulations the vertical mesh size is ∆z = λz/10, the horizontal mesh size

is varied from ∆x = λx/3 to ∆x = λx/20. An additional test simulation with

∆x = λx/2 yields gravity waves that dissipate too rapidly to be analysed.

5.4.1 Background wind u = 0 ms−1

The simulations with zero background wind (u = 0) are performed with a third order

flux integrated essentially non-oscillatory advection scheme (FIENO3, Schroeder and

Schlünzen, 2007a). Two types of simulation are made - one where the wind fields

are filtered after each time step (FIENO3F) and one where the filter is omitted

(FIENO3). The filter is a Shapiro (1971) seven-point filter written in flux form

(comparable to 6th order hyperdiffusion) with a flux limiter (Xue, 2000). This kind

of filtering is commonly applied to unstable schemes like centred differences. It is also

used to avoid energy accumulation at the small scales due to nonlinear interaction.

Fig. 5.2 shows the horizontal group velocity for both the filtered and unfiltered runs

and the theoretical solution cxn of Eq. (5.4) in Section 5.3. All values are normalised
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Figure 5.2: Results of gravity wave experiments with zero background wind. (a) Simulated

gravity wave group velocity cs normalised by the analytical group velocity ca (Eq. 5.2) for different

horizontal grid configurations with FIENO3 with and without filter compared to the theoretical

solution of Eq. (5.4). (b) Equivalent to left but for simulated e-folding time of the wave intensity.

with the analytic solution for the group velocity (Eq. 5.2). The e-folding time is

shown for the two types of model runs (Fig. 5.2b).

The coarser the resolution the lower is the group velocity (Fig. 5.2a). This behaviour

is similar for both, model simulations and theoretical solution. Waves with λx ≤ 4∆x

cannot be resolved with the filtered model, whereas the unfiltered model can resolve

waves with λx ≥ 3∆x. For λx = 3∆x the group velocity is only about 55% of the

analytical solution ca. The theoretical solution cxn predicts 50% for this resolution.

For higher resolutions, the theoretical and simulated group velocities are similar

with the theoretical group velocity being somewhat higher. The differences can be

explained with the different discretisation. The analytical solution is derived by

discretising the wave equation (5.1) for w′ derived from the linearised equations

which is in contrast to the METRAS discretisation on an Arakawa-C-grid.

As expected, the damping of FIENO3 and FIENO3F is quite different. The effect

of the seven-point filter is clearly visible for the filtered version with the strong

decrease of the e-folding time for decreasing resolution (Fig. 5.2b). 20∆x waves

remain nearly unchanged by the filter. However, when smaller time steps are used,

the filter will be applied more often and will therefore add more diffusion to the

solution.

With the amplitudes chosen for this test the simulated wave is nearly linear. Con-

sequently, the applied advection scheme is almost negligible (except for vertical

advection of the background potential temperature).
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5.4.2 Background wind u = ±10ms−1

The effect of advection schemes on gravity wave dispersion can be measured when

using a background wind. Fig. 5.3 and Fig. 5.4 show the gravity wave group

velocity and damping for first order upstream advection (UP1), second (FIENO2)

and third (FIENO3) order flux integrated ENO schemes for a background wind

of ±10ms−1 and different resolutions. The Shapiro seven-point filter is not used.

The simulated wave is the same as presented before. The time step for each grid

configuration is chosen to get a CFL number of 0.1 with respect to the background

wind.

It is clearly visible that the damping is dominated by the order of the advection

scheme (Fig. 5.3b and Fig. 5.4b). Furthermore, when the intrinsic group velocity

has the same direction as the background wind (here +10ms−1, Fig. 5.3b) the

damping is less than when the intrinsic group velocity is opposed to the background

wind (Fig. 5.4b). Shorter waves are damped more than longer waves as seen before.

With a background wind this effect is intensified due to the diffusion of the advection

schemes.

The group velocity should be approximately 13ms−1 and -7ms−1, respectively. As

observed for zero wind background conditions coarser resolutions give smaller (ab-

solute) group velocities. This effect is intensified by the advection schemes used

that also tend to be dispersive (Section 4.3, Schroeder and Schlünzen, 2007a). The

lowest order scheme, UP1, has the strongest negative effect on the group velocity.

However, for waves resolved with 6 or more grid cells the second order FIENO2
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Figure 5.3: Results of gravity wave experiments with 10ms−1 background wind. (a) Simulated

gravity wave group velocity cs for different horizontal grid configurations and numerical advection

schemes. (b) Equivalent to (a) but for the simulated e-folding time of the wave intensity.
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Figure 5.4: As Fig. 5.3 but for -10ms−1 background wind. Note the different scalings.

performs better than FIENO3 concerning the group velocity. Consequently, it can

be concluded that FIENO2 has the best overall performance.

5.5 Reflection of gravity waves

The same wave as in Section 5.4 is simulated for horizontally nonuniform grid con-

figurations. For comparison, Fig. 5.5a and Fig. 5.5b show the results on uniform

grids with ∆x = λx/20 and ∆x = λx/5 horizontal resolution, respectively. As seen

before, the wave damping is higher and the group velocity smaller on the coarse grid

(Fig. 5.5a). If the grid spacing changes, e.g. with a factor of four (Fig. 5.5c,d,f),

reflections take place. The reflection is total, if the wave cannot be resolved on the

coarse grid (5.5c). Even if the wave can be resolved on both, the fine and the coarse

grid, reflections occur, but they have a smaller amplitude (Fig. 5.5d). This is due

to the dependence of group velocities on grid spacing as seen in Sections 5.3 and

5.4. When the wave packet moves from the fine to the coarse grid the energy cannot

enter the coarse grid fast enough and some energy is reflected. For the same grid

configuration (∆x = λx/20 for x < 0, ∆x = λx/5 for x > 0) the reflection is slightly

stronger for the filtered than for the unfiltered simulation (Fig. 5.5d,f). The reason

is that the additional damping due to the filter is much higher in the coarse grid

region than in the fine grid region. Thereby the property of the gravity wave is

changed differently in both regions compared to the unfiltered case.

The intensity of the reflected waves can be measured and related to the intensity

of the unreflected wave of the simulation on a uniform grid. For this purpose the

results of several simulations are evaluated. They have been performed with a grid
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Figure 5.5: Gravity wave simulation after 3h for different horizontal grid configurations. Shown

is u with scalings as in Fig. 5.1. The horizontal grid spacing is (a) ∆x = λx/5, (b) ∆x = λx/20,

(c) ∆x = λx/5 for x < 0 and ∆x = λx/1.25 for x > 0, (d,f) ∆x = λx/20 for x < 0 and ∆x = λx/5

for x > 0. (a-d) simulation without filter , (f) simulation with filter.

spacing of ∆x = λx/r for x < 0. The resolution indicator r is an integer that

describes how many grid cells resolve one wave length. For x > 0 the grid spacing

is ∆x = λxc/r, where the coarsening factor c is an integer. In this region r/c cells

resolve one wave length. The magnitude of the reflected wave is estimated as follows:

For an experiment with a fine resolution indicator r and a coarsening factor c > 1,
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the maximum averaged wave energy density I ′ (Eq. 5.6) is determined in the fine

region (x < 0). This is related to the maximum averaged wave energy density in the

whole domain of the corresponding run with the resolution indicator r on a uniform

grid (c = 1) at the same time step. The result is the relative intensity RI

RI =
maxx<0,c=c′(I

′)

maxc=1(I ′)
. (5.7)

The denominator always corresponds to an unreflected wave. Strictly speaking, RI

does not indicate the relative intensity of a reflected wave, since it the maximum

averaged wave energy density on the coarse grid and can still be related to parts of

the unreflected wave. However, after a sufficient time the unreflected wave should

have left the coarse grid, and RI should reach a saturation value that gives a hint

on the magnitude of the reflection. If no reflection takes place, RI should approach

zero.

Fig. 5.6 shows the relative intensities for r = 5, 8, 10, 20 and coarsening factors of

c = 2, 3, ..., 7. There are two types of curves. This will be described for the example

of r = 5. For a reflected wave (e.g. Fig. 5.6a with c > 2) RI is 1 as long as the

wave has not reached the internal boundary with the grid discontinuity (t < 1.5h).

When it reaches this point, reflection takes place. The already reflected part and the

unreflected part are superimposed which can lead to values larger than 1 (overshoot,

t =2-3h). The reflected wave is damped, and with increasing time the reflected and

unreflected ways diverge in different directions so that they cannot overlap anymore.

Consequently, RI decreases. When the total reflection is finished and parts of the

wave that may not have been reflected have left the coarsely resolved region (x < 0),

the RI curve has reached its saturation value (after 5-7h simulation time, depending

on the configuration).

The second type of curve corresponds to waves that are not reflected. This will be

described for r = 20 and c = 2 (Fig. 5.6d). Here the overshoot does not happen, as

there is no reflected wave to overlap the unreflected wave. The RI value is decreasing

with time until it has reached zero when no parts of the wave are left in the fine

grid (x < 0). It is interesting to note that e.g. for c = 2 the decrease of the RI value

starts the later the larger r. The reason for this is probably the damping caused by

the internal boundary. The damping is weaker when the wave is better resolved on

the coarse grid (larger r/c). This means for larger c, RI decreases not only due to

the wave leaving the fine grid but also due to damping.

After 8h of simulation time in all simulations RI has reached saturation and the

relative intensities can be compared and treated as the intensity of the reflected
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Figure 5.6: The relative intensity RI according to Eq. (5.7). The results are given for different

resolutions. The fine grid resolution (x < 0) is (a) r = 5: ∆x = λx/5, (b) r = 8: ∆x = λx/8, (c)

r = 10: ∆x = λx/10 and (d) r = 20: ∆x = λx/20 in the horizontal. For x > 0 the resolution is

∆x = λxr/c, i.e. c is the coarsening factor.

wave. As expected the intensity of the reflected wave is lower for a smaller coarsening

factor c. When r = 20 only coarsening factors of 5, 6 and 7 show a reflected wave

of about 5%, 12% and 23%, respectively. For c < 5 there is almost no reflection.

For r = 5 the result is completely different. For c > 2 the reflected wave keeps about

63% of the unreflected wave intensity. This value does not vary much for different

factors of c, as in neither grid configuration the wave can be resolved on the coarse

grid (x > 0). Only for c = 2 the reflected wave has a lower intensity, but it still has

about 30% of the unreflected wave intensity. This change in grid width seems to

absorb more of the reflected wave than with larger coarsening factors, which means

that the coarse grid still reacts to some extent as would be demanded by the wave

to remain undisturbed.

For r = 8 and 10 only with c = 2 reflection is nearly avoided. For c = 3 the

reflected wave intensity is less than 26%, for c = 4 it is less than 50%. However, for

the remaining coarsening factors the reflected wave intensity reaches up to 71% for



5.6 Conclusions and outlook 83

c = 7 and r = 8. Again, the reason for the different reflected wave intensities is that

the coarse grid can react more quickly and in a more physical way if the coarsening

factor is smaller and the resolution for x > 0 is higher.

From these results it can be concluded that coarsening factors of 3 are still accept-

able. For longer waves (with respect to the grid) the reflection is hardly more than

a fourth of the original intensity. Smaller waves, e.g. r = 5 have a strong damping

even on the fine grid (Section 5.4) which means they can be neglected. For coars-

ening factors larger than 3 the reflection can be significant even for well resolved

waves, i.e. waves for which the damping or e-folding time is large on the fine grid

(see Fig. 5.2 for the e-folding times). This is typically the 8∆x wave (r=8), if a

Shapiro seven-point filter is applied (e.g. Chapter 3, Schroeder et al., 2006). To

avoid reflected waves distorting the solution, either coarsening factors larger than 3

should not be used, or measures need to be taken to avoid reflection.

5.6 Conclusions and outlook

The dispersion of gravity waves and their reflection, when a sudden coarsening of a

grid is given, were investigated in this paper. The influence of a background wind

and the applied advection scheme were tested for a first order upstream scheme and a

second and third order flux integrated essentially non-oscillatory scheme (Schroeder

and Schlünzen, 2007a) for a CFL number of 0.1. Not surprisingly, the third order

scheme FIENO3 is much less damping than the first order upstream scheme and

less damping than the second order scheme FIENO2. However, the second order

scheme simulated the group velocity for waves longer than 3∆x more accurately.

The numerical damping is stronger when the background wind is opposed to the

horizontal group velocity in comparison to the case where the background wind is

blowing in the same direction.

It was shown that even for grid coarsening/refinement factors of 4 a significant

reflection of gravity waves can take place. It amounts to almost 50% for waves that

are well resolved on the fine grid (e.g. by 8 grid cells) but have too few grid points

on the coarse grid. A reason for the reflection of waves that can be resolved on the

coarse grid are the different group velocities on grids with different resolutions. A

numerical dispersion relation was derived theoretically that confirms that the coarser

the grid the more the gravity wave is retarded. Results from numerical experiments

of gravity waves on grids with different resolution agree well with the theoretical
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numerical dispersion relation.

Consequently, when two-way nesting or grid refinement is applied, the refinement

factor should not be larger than 3 to keep the reflected gravity wave energy small.

The results from this paper can be transferred to other spatial and time scales as

long as the gravity wave intensity is weak enough to be accurately described by

the linearised equations. Simulations in which the relation of horizontal grid width

to wave length are the same as in this work should yield similar group velocities

(normalised by the analytical solution) as presented here.



6 Solving the pressure equation

on a set of grids

This chapter describes how the perturbation pressure p̂ is calculated from Eq. (2.19)

and discusses the complications arising from a solution on multiple grids. Prior to

this work three pressure solvers were available for METRAS: the idealised gener-

alised conjugate gradient method (IGCG, Kapitza and Eppel, 1987), Bi-CGSTAB

(Van der Vorst, 1992) and MULTIGRID (e.g. Hackbusch, 1985). The latter was orig-

inally only available for simulations without topography. Preliminary tests showed

that IGCG is not suitable when the number of grid points is large or the asymmetry

of the pressure matrix is increased. Therefore, this method was discarded for the

multiple grids version since the introduction of multiple grids leads to an additional

asymmetry of the pressure matrix. However, MULTIGRID and Bi-CGSTAB also

need adjustment for the multiple grids version to make them converge properly. The

basic schemes are described in Appendix B. They are tested in this chapter to in-

vestigate which solver is most efficient for solving the pressure equation on multiple

grids.

6.1 Derivation of the pressure equation

The anelastic approximation leads to the requirement of a divergence free momentum

field (Eq. (2.14)). However, when the preliminary momentum vector field ~̂mn+0.5

has been calculated according to Eq. (2.16)-(2.18), this vector field is generally

not divergence free, since the dynamic pressure pn−1
2 of the previous time step was

used for the preliminary step. A pressure perturbation p̂ needs to be calculated so

that the updated momentum vector ~mn+0.5 can be calculated with Eq. (2.20). The

requirement of the divergence free momentum ~∇ · ~mn+0.5 = 0 leads to Eq. (2.19).

85
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When the pressure perturbation equation that ensures non-divergent momentum

fields is discretised in space, this leads to a system of equations (one equation for

each grid point), that can be written as

Ax = b. (6.1)

The matrix A is the composition of divergence operator and pressure operator, ~∇• ~P.

The solution vector x (not to be confused with the x-coordinate) corresponds to

p̂. b on the right-hand-side of Eq. (6.1) is the preliminary momentum divergence

normalised by the time step, ~∇• ~̂mn+0.5/(∆t). Equations of this type can be solved

iteratively with Krylov subspace or MULTIGRID methods (Appendix B).

It is very important that not the analytical composition of divergence and pressure

gradient operator in Eq. (2.19) are discretised to calculate p̂, but the operators are

discretised separately thereby considering the discretisations used in the momen-

tum equations. This is the only way to make sure that the resulting discretised

momentum field is divergence free according to the discretised divergence operator.

A divergence free momentum field is not only important to solve the momentum

fields correctly, but also influences the conservation of scalar quantities. The dis-

cretised divergence operator indirectly appears in the advection of scalar quantities,

since A(ρ0α
∗χ) = ∇ • (~mχ) for scalar quantities. To clarify the impact one could

assume that χ is constant with respect to space. In this case advection must not

change this property. This is only guaranteed if the discretised divergence of mo-

mentum is zero.

The remainder of this chapter is structured as follows: Section 6.2 describes how the

matrix A is set up for a single grid in the original METRAS version. In addition, the

calculation of the new matrix elements are derived for multiple grids. In Section 6.3

the stopping criterion for the iterative solvers of Appendix B is described. In Section

6.4 the performance of MULTIGRID and Bi-CGSTAB is compared for different grid

configurations, i.e. single grid versus multiple grids and different aspect ratios of

horizontal and vertical grid width.

6.2 Setting up the matrix

In this section the pressure gradient and divergence operators are given in discretised

form for a single grid and are derived for coupled multiple grids. This is a prerequisite
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for deriving the coefficients of matrix A belonging to the discretisation of

~∇ • ~P (6.2)

The actual composition of both discretised operators leads to the coefficients and is

presented in Appendix A.

For defining the operators the following grid transformation coefficients are used

A =
∂x

∂ẋ
scalar grid width in x-direction

B =
∂y

∂ẏ
scalar grid width in y-direction

G =
zt − zs
zt

vertical compression of the grid

∆zG =
∂z

∂ż
vertical grid width for vectors

CG vertical grid width for scalars

D =
∂zs
∂x

surface slope in x-direction

E =
∂zs
∂y

surface slope in y-direction

F =
∂z

∂zs

∣∣∣∣
ż=const

= 1 −
z − zs
zt − zs

z-dependent intensity of grid deformation

Note that here and in the following A should not be confused with the matrix A in

Eq. (6.1). While A and D are defined at u grid points, B and E at v grid points, C

and F at w grid points, and G is defined at scalar grid points. Further coefficients

of the coordinate transformation can be expressed by these factors:

∂ż

∂x
=
∂ż

∂z

∂z

∂zs

∣∣∣∣
ż=const

∂zs
∂x

=
FD

CG

∂ż

∂y
=
∂ż

∂z

∂z

∂zs

∣∣∣∣
ż=const

∂zs
∂y

=
FE

CG

Details on the coordinate transformation and their use in the transformed equations

can be found in Schlünzen et al. (1996).
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6.2.1 Using a single grid

The momentum divergence in transformed coordinates is used in the continuity

equation (2.14). On a single grid the discretised divergence of the preliminary mo-

mentum can be written written as
[
~∇ · (ρ0α

∗~̂v)
]

ijk
= ∆yj∆zk

[(
ρ0
ẋG

•ẋ
û
)

i+0.5jk
−
(
ρ0
ẋG

•ẋ
û
)

i−0.5jk

]
(a)

+ ∆xi∆zk

[(
ρ0
ẏG

•ẏ
v̂
)

ij+0.5k
−
(
ρ0
ẏG

•ẏ
v̂
)

ij−0.5k

]
(b)

+ ∆xi∆yj

[(
ρ0
żCG ˆ̇w

)

ijk+0.5
−
(
ρ0
żCG ˆ̇w

)

ijk−0.5

]
(c).

(6.3)

While in the above equation the non-transformed preliminary horizontal velocities

(û and v̂) appear, the transformed preliminary vertical velocity ˆ̇w is used to simplify

setting the Neumann boundary conditions for the Poisson equation.

The pressure gradient in transformed coordinates for the momentum components

(uρ0, vρ0, ẇρ0) is given in the list of operators (2.4) and by Eq. (2.5). When the

pressure gradient operator is discretised this leads to

Pi+0.5jk =

(
1

A
δẋp̂−

F
ż
D

C
ż
G

•ẋ
δżp̂

ẋ,ż

)

i+0.5jk

(6.4)

Pij+0.5k =

(
1

B
δẏp̂−

F
ż
E

C
ż
G

•ẏ
δżp̂

ẏ,ż

)

ij+0.5k

(6.5)

Ṗijk+0.5 =

{
1

(CG)2

[
1 + F 2

(
D
ẋ2

+ E
ẏ2)]

δżp̂

−
F

CG

[
D
ẋ

A
ẋ
δẋp̂

ẋ,ż
+
E
ẏ

B
ẏ
δẏp̂

ẏ,ż

]}

ijk+0.5

.

(6.6)

Here δ is a simple difference operator in one spatial direction, e.g. (δẋp̂)i+0.5jk =

p̂i+1 jk − p̂ijk. Again, for the horizontal components the pressure gradient is calcu-

lated in the Cartesian x- and y-directions (for momentum associated with the real

velocities u and v), whereas in the vertical it is calculated for the transformed verti-

cal momentum ẇ. In this way the Neumann boundary conditions at the surface can

be set by requiring Ṗijk+0.5 = 0 at the surface. Note that the equations (6.4)-(6.6)

describe the pressure gradient acting on ρ0u, ρ0v and ρ0ẇ, therefore α∗ does not

appear in them.

With the definitions above the pressure matrix can be set up by replacing momentum

in the discrete divergence equation (6.3) by the discrete pressure gradients (6.4)-(6.6)
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(i.e. (ρ0
ẋû)ijk by Pijk, ρ0

ẏ v̂ by Pij+0.5k and ρ0
ż ˆ̇w by Ṗijk+0.5, see Appendix A). Figure

6.1 shows the structure of the matrix for an exemplary grid. Here the grid points

are ordered lexicographically (Appendix B.3).

It should be noted that Neumann boundary conditions are used with zero gradient.

To obtain a unique solution it is additionally demanded that the average pressure

perturbation p̂ is zero at the model top.

6.2.2 Using multiple grids

When the domain is decomposed into two or more grids of different resolution,

the internal boundaries must be taken care of. There, the momentum field must

be divergence free as in the rest of the model area. It it very important to define

the discrete pressure gradient operator and divergence operator properly. Otherwise

numerical noise is likely to be introduced, and the iteration to solve the perturbation

pressure may converge only slowly. The pressure gradient operator also needs to

conserve momentum.

Figure 6.1: Schematic of a matrix for a single grid (only the upper part is shown). Each point

represents a non-zero matrix element.
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Actually, there are four different cases of boundaries: fine grid to the west, fine grid

to the east, fine grid to the north and fine grid to the south. Here, only the case with

the fine grid to the east is described (Fig. 6.2), as the different cases are analogous.

In the following capital letters are used for coarse grid horizontal indices, lower case

letters for the fine grid and vertical indices. The scalar boundary of the coarse grid

is located at i = r, while the scalar boundary of the coarse grid is located at I = R

(Fig. 6.2). Additionally, the following abbreviations are used (Fig. 6.3):

Nx refinement factor between two grids in ẋ-direction

Ny refinement factor between two grids in ẏ-direction

ψc = 4
3+Nx

weighting factor for mass flux from cell r − 0.5

ψf = Nx−1
3+Nx

weighting factor for mass flux from cell r + 0.5

ψu = 2
Nx+1

reduction of x-gradient through boundary cell ur − 0.5jk

ψw = 1
Nx+3

reduction of x-gradient of cell wrjk+0.5

ψW = Nx

3Nx+1
reduction of x-gradient of cell WRJk+0.5

The divergence on the coarse grid caused by mass fluxes in x-direction is then given

r−0.5

R

r

0.5
r+ J

J+1

J−1

j+1

j

j−1

p−cells

u−cells

R−0.5R−1.5

R−1

r+1

y

x

Figure 6.2: Horizontal schematic of scalar (p) and u grid with grid refinement. J and j are indices

in y-direction, R and r denote indices in x-direction. R and r are the grid points at the boundary

of coarse and fine grid.
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A
c

A
f

ψ
u

−1
A

f

ψ
W

−1
A

c
0.5

ψ
w

−1
A

f

d
f

d
c

0.5

RR−1 r+1r

R−0.5 r−0.5
0.5

r+

p−cells

u−cells

x
Figure 6.3: Schematic of the grid with refinement in x-direction. The meaning of the factor ψu,

ψw and ψW used in the formulas for divergence and pressure gradient are demonstrated. The

weighting factors ψc and ψf can be calculated from the distances dc and df : ψc = df/(df + dc)

and ψf = dc/(df + dc).

by:

(
∂

∂x
ρ0α

∗Û)RJk = ∆yJ∆zk

{[
ψc

1

Ny

j2∑

j=j1

(
ρ0
ẋG

•ẋ
û
)

r−0.5 jk

+ψf
1

Ny

j2∑

j=j1

(
ρ0
ẋG

•ẋ
û
)

r+0.5 jk

]

−
(
ρ0
ẋG

•ẋ
Û
)

R−0.5 Jk

}

(6.7)

The eastern mass flux at the internal boundary (I = R + 0.5) is changed in com-

parison to the corresponding term in Eq. (6.3a). The total mass flux from the Ny

fine grid cells covering the coarse grid cell R is taken. Because the most western
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u-cell (r − 0.5) on the fine grid has a longer extension (Ar−0.5/ψu) than the inner

u-cells (Ai), the flux taken is a weighted average of cell r − 0.5 (factor ψc) and cell

r+0.5 (factor ψf ). This is equivalent to a linear interpolation of the flux to ẊR+0.5.

Furthermore, due to the possible refinement in y-direction the fluxes from Ny cells

must be averaged in y-direction. At non-corner boundary points the remaining di-

vergence in y- and ż-direction is unchanged in comparison to Eq. (6.3). At corner

points the divergence in y-direction is changed in the same way as in x-direction.

For the fine grid the divergence in cell r in x-direction is almost unchanged compared

to term (a) of Eq. (6.3). Since the mass flux at I = R + 0.5 is needed, again the

weighted average of the flux at i = r+0.5 and i = r− 0.5 is needed. However, since

1 − ψf = ψc, this can also be interpreted as the divergence acting over the longer

distance of the extended u boundary cell at i = r − 0.5. Therefore, this leads to a

correction by factor ψc in comparison to term (a) of Eq. (6.3):

(
∂

∂x
ρ0α

∗û

)

rjk

= ∆yj∆zk

{ (
ρ0
ẋG

•ẋ
û
)

r+0.5 jk

− ψf

(
ρ0
ẋG

•ẋ
û
)

r+0.5 jk

− ψc

(
ρ0
ẋG

•ẋ
û
)

r−0.5 jk

}

= ∆yj∆zkψc

{ (
ρ0
ẋG

•ẋ
û
)

r+0.5 jk

−
(
ρ0
ẋG

•ẋ
û
)

r−0.5 jk

}

(6.8)

The pressure gradient force does not need to be changed for the coarse grid cell

R− 0.5 in comparison to Eq. (6.4). For the fine grid the pressure gradient force in

x-direction is changed in two ways for cell ûr−0.5 :

Pr−0.5jk =

{
ψu

1

Ar−0.5

(
prjk − PRjk

ẏ
)

−
1

2

(
F
ż
D

C
ż
G

•ẋ

)

r−0.5 jk[
δż

(
prj + PRj

ẏ
)ż]

k

}
(6.9)

In the first term the contribution of the gradient in x-direction is corrected by the

factor ψu due to the special extension of the boundary normal u cell at r = i− 0.5.

Furthermore, for the western pressure not simply the neighbouring coarse grid value
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PRJk is taken, but a value parabolically interpolated in y-direction from PRJ−1k, PRJk

and PRJ+1k:

PRjk
ẏ

= a1jPRJ−1k + a2jPRJk + a3jPRJ+1k (6.10)

a1j =
1

2
(δ2
j − δ2

j ) (6.11)

a2j = 1 − δ2
j (6.12)

a3j =
1

2
(δ2
j + δ2

j ) (6.13)

δj = (ẏj − ẎJ)/(ẎJ+0.5 − ẎJ−0.5) (6.14)

with the coarse grid levels ẎJ and the fine grid levels ẏj in y-direction (denoted

by their indices J and j, respectively, in Fig. 6.2). The parabolic interpolation is

necessary, because for solving the dynamic pressure p2 the Laplacian of pressure

is calculated which is a second order operator. Consequently, the coarse pressure

should also be reconstructed to the fine grid by a second or higher order interpolation

to avoid artefacts. The interpolated values PRjk
ẏ

are also taken for the contribution

of the ż-direction, for which horizontal averaging is necessary.

The pressure gradients in ż-direction for the transformed vertical velocity need to

be corrected for the coarse grid ( ˆ̇WRJk+0.5) and the fine grid ( ˆ̇wrjk+0.5). In both

cases only the horizontal contribution is affected by the factors ψW for the coarse

grid and ψw for the fine grid to correct the distance between the two grid cells due

to the change of the grid spacing. For the coarse grid the vertical pressure gradient

is then:

ṖRJk+0.5 =

{
1

(CG)2

[
1 + F 2

(
D
ẋ2

+ E
ẏ2)]

δżp2

−
F

CG

[
E
ẏ

B
ẏ δẏp2

ẏ,ż

]}

RJk+0.5

+

(
F

CG

D
ẋ

A
ẋ

)

RJk+0.5

ψW

[
1

Ny

(
j2∑

j=j1

prjk +

j2∑

j=j1

prjk+1

)
− PR−1 Jk − PR−1 Jk+1

]

(6.15)
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For the fine grid the vertical pressure gradient is:

Ṗrjk+0.5 =

{
1

(CG)2

[
1 + F 2

(
D
ẋ2

+ E
ẏ2)]

δżp2

−
F

CG

[
E
ẏ

B
ẏ
δẏp2

ẏ,ż

]}

rjk+0.5

+
1

ρ0 rjk+0.5
ż

(
F

CG

D
ẋ

A
ẋ

)

rjk+0.5

ψw

[
pr+1 jk + pr+1 jk+1 − PRjk

ẏ
− PRjk+1

ẏ
]

(6.16)

The composition of divergence and pressure operator leads to the coefficients of the

system of equations for the divergence caused by pressure. The derivations are given

in Appendix A.

Figure 6.4 shows an example matrix for a domain on two grids. The elements linking

the coarse and the fine grid are clearly visible.

Figure 6.4: Schematic of a matrix for a main grid and a subgrid (only the upper part is shown).

Each point represents a non-zero matrix element.
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6.3 Stopping criteria

For the iterative solution of the dynamic pressure perturbation p̂ a stopping criterion

is necessary. With each iteration step the solution becomes more and more accurate.

As soon as a sufficient accuracy has been reached, any further iteration would lead

to an unnecessary waste of CPU time. The accuracy can be measured using the

remaining divergence. The latter causes an error in the advection step due to the

flux form. In this section a stopping criterion is derived by defining a maximum

error that a remaining momentum divergence is allowed to cause in the solution of

scalar quantities.

Without coordinate transformation the momentum divergence can be approximated

by

Di,j,k =
(ρ0u)i+0.5jk − (ρ0u)i−0.5jk

∆x

+
(ρ0v)ij+0.5k − (ρ0v)ij−0.5k

∆y

+
(ρ0w)ijk+0.5 − (ρ0w)ijk−0.5

∆z

(6.17)

and corresponds to the residual Axk− b of Eq. (6.1) with xk being the approximate

solution after k iterations. With the error norm e a stopping criterion can be defined

by demanding e(Axk− b) < rmax, where rmax is the maximum allowed residual. rmax

is derived in the following.

The flux form of the advection is derived by assuming a divergence free momentum

vector. The advection can be approximated by

A(χi,j,k) =
(ρ0uχ)i+0.5jk − (ρ0uX)i−0.5jk

∆x

+
(ρ0vχ)ij+0.5k − (ρ0vX)ij−0.5k

∆y

+
(ρ0wχ)ijk+0.5 − (ρ0wX)ijk−0.5

∆z

(6.18)

where the quantity χ is advected. Note that this is only an approximate advection

operator which should not be confused with the advection schemes described in

Chapters 3 and 4. For the derivations here only the approximate magnitude of the

advection is important. To estimate the error in the tendency of quantity χ resulting

from a divergent momentum field, χ is assumed to be constant (denoted by ·). This
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leads to an absolute error tendency of

Ea(A(χi,j,k)) = χ(
(ρ0u)i+0.5 − (ρ0u)i−0.5

∆x

+
(ρ0v)j+0.5 − (ρ0v)j−0.5

∆y

+
(ρ0z)k+0.5 − (ρ0w)k−0.5

∆z
)

= χDi,j,k

(6.19)

The error depends on the momentum divergence Di,j,k. For a constant value of

Di,j,k the error in χ grows with increasing time integration. After ∆ts seconds of

simulation time the error relative to χ will have grown to approximately

Er(A(Xi,j,k)) = Di,j,k∆ts (6.20)

if non-linear effects are neglected. This simple calculation shows that the specifi-

cation of the accuracy is application dependent, since for micro-scale simulations

the total integration time ∆ts is much smaller than for mesoscale simulations. A

plausible request is |Di,j,k| < 0.01ρ0/∆ts = rmax. This means the error in quan-

tity χ caused by a divergent momentum field is less than 1% during the simulation

time. The error measure of the residual rk for this particular stopping criterion

is the maximum norm: e(rk) = max |rk|. Note that for practical applications ρ0

can be approximated by 1kg m−3 in the formula for the stopping criterion, leading

to e(rk) < 0.01/∆tskg m−3. This leads to a somewhat higher accuracy in lower

altitudes compared to higher altitudes.

6.4 Pressure solver experiments

Finding a solution to the systems of equations Ax = b is not a simple task, since the

system contains as many equations as there are grid points in the model. The direct

(explicit) solution of the equations or inverting the matrix A is computationally too

expensive. Iterative solvers as presented in Appendix B are needed. When more

than one grid is present or the grid spacing is nonuniform, the matrix condition

κ(A) =
λmax

λmin
(6.21)

becomes very large. Here, λmax and λmin are the maximum and minimum Eigenval-

ues of the matrix A. A large matrix condition leads to slow convergence of iterative
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solvers. Therefore, in this section the performance of different solvers is investigated

in the context of grid refinement. The ILU(0) preconditioned Bi-CGSTAB scheme

(Appendix B.1.3, B.2) and MULTIGRID (with 1, 2 and 3 levels of refinement, de-

noted as MULTIGRID1L, MULTIGRID2L and MULTIGRID3L, Appendix B.4) are

tested for different divergence fields on two types of grids. One has a grid aspect

ratio ∆z/∆x close to 1 (e.g. micro-scale grid) and the other a grid aspect ratio of

much less than one (e.g. mesoscale grid). The CPU time is measured for an AMD

Opteron 2.6 GHz CPU.

6.4.1 Aspect ratio ∆z
∆x ≈ 1

The aspect ratio of vertical and horizontal grid cells is usually close to one for micro-

scale grids at lower altitudes and for some mesoscale grids at the model top. This

leads to a matrix with the coefficients for pi,j,k±1, pi,j±1,k and pi±1,j,k and the main

diagonal (pi,j,k) being of similar magnitude in the equation for grid point (ijk).

The test domain ranges from xmin = ymin = −630m to xmax = ymax = +630m in

the horizontal, and from zmin = 0m to zmin = 2000m in the vertical. The surface

elevation is given by a bell-shaped curve

zs(x, y) = 100m
10002m2

10002m2 + x2 + y2
(6.22)

The divergence fields are created from the wind fields, setting v̂ = 0, ˆ̇w = 0 and

û(x, y, z) =






10

k
sin

(
2πk(x− x0)

∆xd

)
∗ sin

(
2πk(y − y0)

∆yd

)
for x0 < x < x0 + ∆xd

0 else

(6.23)

where k/∆xd and k/∆yd are the horizontal wavenumbers, x0 = y0 = −600m, and

the domain width ∆xd and length ∆yd is 1200m. Note that the area where û 6= 0

is smaller than the total area to make sure that there is no mass flux out of the

domain. The density is set to ρ0 = 1kg m−3. The resulting momentum field is

divergent, and the horizontal extension of the divergence structures depends on k.

The experiment is performed for different grid configurations and values of k. As

stopping criterion it is demanded that the divergence of the momentum field is

Di,j,k < 0.0001d−1 kg m−3 (d is one day or 86400 s).

The domain is resolved with 42x42 grid points in the horizontal (∆x = ∆y =30m)

and 39 grid points in the vertical (∆z varying from 4m at the surface to 100m at the
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top) for the single grid case. In the simulation with two grids the main background

grid is the same as in the single grid simulation. Around the center of the model area

the grid is refined with a factor three (∆x = ∆y =10m). The fine grid has 42x42

grid points in the horizontal. For both simulations the wavenumber k is varied from

0.5 to 20.

Figure 6.5 shows the resulting relative CPU times. For larger wavenumbers (higher

frequencies) Bi-CGSTAB converges faster than for smaller wavenumbers. This is a

well known phenomenon for the CG methods as per each iteration step information

cannot be spread very far over the domain. This would be necessary to reduce

divergences of small wavenumbers. For the current test case this effect is not very

strong, possibly due to the small total number of grid points. The MULTIGRID

methods also show an increase at very small wave numbers, even though they are

designed to decrease low frequency disturbances faster. The reason may be that more

refinement levels are necessary to see this effect for wave numbers like 0.5. However,

MULTIGRID2L and MULTIGRID3L perform similarly well and need about 40%

less time than Bi-CGSTAB. MULTIGRID1L needs a similar amount of time as Bi-

CGSTAB. The reason is that the direct solve on MULTIGRID level 1 is still very

complex and takes more time than adding coarser levels with a faster direct solve.

For the single grid case it is visible that the CPU time is zero for wavenumber

k = 20. This is due to the staggered grid on which the 2∆y wave is zero, since the

u grid point always coincides with points where the sine wave is zero. In these cases

the initial divergence is zero.
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Figure 6.5: CPU times for different schemes and divergence disturbances with different wavenum-

bers k for grid aspect ratios ∆z/∆x ≈ 1. CPU times are normalised with the Bi-CGSTAB average

over all simulations. The grid aspect ratio is typical for micro-scale type models. (a) Single grid

result. (b) Result on two grids with a refinement factor of three.
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When the refined grid is added (Fig. 6.5b) the relation of the relative CPU times

is similar, though MULTIGRID1L performs somewhat better (relative to the other

schemes).

Generally, MULTIGRID with more than 1 coarsening level can be recommended for

a grid with aspects ratios between ≈ 1 and larger than one.

6.4.2 Aspect ratio ∆z
∆x << 1

In the mesoscale, aspect ratios of vertical and horizontal grid cells are typically dif-

ferent to the micro-scale. The very small aspect ratios at the surface result from

a vertical grid spacing that can be two to three orders of magnitude smaller than

the horizontal grid spacing. For the equation for grid point (ijk) this leads to large

coefficients for pijk±1 and pijk (main diagonal) in comparison to the remaining diag-

onals. At the model top this effect can be much smaller with a vertical grid spacing

that is usually not more than one order of magnitude smaller than the horizontal

grid spacing (aspect ratios typically between 0.1 and 1).

The topography of the chosen test case is given in Fig. 6.6. It is located at central

Europe with a refined area centered over eastern Germany and western Poland.

The vertical grid spacing varies from 20m at the surface to 1km at 12km height

with 33 levels. For the horizontal there are three configurations: a uniform grid

with ∆x = ∆y = 6km (334 horizontal levels each, EURO6), a uniform grid with

Figure 6.6: Surface height for a typical model area over Europe. (a) Single grid model domain and

background grid for domain with two grids. (b) refined area (central east Europe) for simulation

with two grids (corresponding to the box indicated in (a)).
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∆x = ∆y = 18km (111 horizontal levels each, EURO18) and a domain discretised

by a uniform background grid with ∆x = ∆y = 18km and a refined grid as shown in

Fig. 6.6b with ∆x = ∆y = 6km (102 levels in x- and in y-direction, EURO18+6).

The divergence fields are created from the wind fields similarly to the test case in

Section 6.4.1, setting v̂ = 0, ˆ̇w = 0 and û according to Eq. (6.23) with ∆xd = 2000

km, ∆yd = 1200 km, x0 = −1500km+∆x and y0 = −1100km+∆y.

The EURO6 simulation shows the advantage of MULTIGRID with at least 2 levels

over Bi-CGSTAB and MULTIGRID1L for low wavenumber disturbances (Fig. 6.7).

For larger wavenumbers (small disturbances) the difference between the schemes is

smaller, as expected. For the large domain Bi-CGSTAB can remove the small distur-

bances with a few iteration steps, large disturbances take many more iteration steps

due to the high number of grid points. This problem is overcome by MULTIGRID

by transforming the small disturbances into larger ones relative to the grid spac-

ing on the coarser levels and thereby making it possible to propagate information

much faster than on the finest grid. The positive influence of the grid coarsening

is more relevant when two or three refinement levels are used. In comparison to

the micro-scale test case the effect of the MULTIGRID is much larger, possibly due

to the larger number of grid cells. Again the MULTIGRID1L is not recommended,

because the direct solve on level 1 is computationally too expensive.

When the horizontal grid size is increased by a factor of three and very small as-

pect ratios occur (order 10−2), MULTIGRID is not the best option (EURO18, Fig.

6.8a). Here Bi-CGSTAB performs best. The reason is possibly the low number

of grid points and the very small vertical mesh size relative to the horizontal grid
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Figure 6.7: As Fig. 6.5 but for the mesoscale 6km resolution domain of Europe (EURO6, Fig.

6.6a).
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Figure 6.8: As Fig. 6.7 but for (a) 18km resolution (EURO18), and (b) with a refined grid

(EURO18+6, Fig. 6.6).

spacing. This leads to a matrix main diagonal with much larger entries than the

side diagonals, and the matrix has a better condition (Eq. 6.21). The resulting

system of equations can be solved by Bi-CGSTAB with a few iterations, while the

MULTIGRID schemes produce an unjustifiable overhead due to the repeated V-cycle

and the permanent coarsening and refinement. However, when a refined subgrid is

added (EURO18+6, Fig. 6.8b), the MULTIGRID schemes perform better than Bi-

CGSTAB. This is likely caused by the bad condition of the matrix resulting from

the varying horizontal mesh size and non-symmetric coupling terms in the matrix

(Fig. 6.4). On the coarser MULTILEVEL grids the matrices are based only on

single, uniform grids (Appendix B.4, Fig. B.5). Therefore, these matrices are better

conditioned.

Generally, MULTIGRID can be recommended if a subgrid is used, the total number

of grid points is large (≈ 106) or grid aspect ratios are close to one (accompanied

by main and side matrix diagonals of similar magnitude). For domains with very

small aspect ratios or few grid points (≈ 105) Bi-CGSTAB works similarly well or

even better.



7 Use of the multiple grids

model in different test cases

The results of the previous chapters lead to the optimal set-up that is used for

the METRAS version on two grids which is tested in this chapter. In Chapter

5 it was shown that for grid refinement a factor of three is adequate (Schroeder

and Schlünzen, 2007b). Larger refinement factors lead to stronger gravity wave

dispersion. The pressure solver is also likely to need more time for convergence as

the matrix condition gets worse for larger refinement factors due to the increasing

asymmetry of the matrix, albeit this was not tested for this work. Consequently,

a factor of three is used in this work. MULTIGRID with three coarsening levels is

applied with an ILU(0) factorisation of the pressure matrix as Gauss-Seidel smoother

(Chapter 6). For advection second order essentially non-oscillatory schemes are

used (Chapters 3 and 4, Schroeder et al., 2006; Schroeder and Schlünzen, 2007a),

E2UP for momentum advection and FIENO2 for scalar advection. The hitherto

implemented centered differences are not stable and cannot be used. Higher order

schemes are also not justifiable as they need more computation time and do not

significantly improve the solution when turbulent diffusion is present.

The set-up described above is used for three test cases. A rising bubble experiment

is used to test the dry dynamical core (Section 7.1), while two test cases apply the

full model version including the parameterisation of sub-grid scale physics. These

are a cyclogenesis experiment with an idealised polynia (Section 7.2) and a hindcast

of the wind conditions at the America’s Cup 2007 sailing site (Section 7.3). The

test cases are performed with fine and coarse resolution single grids as well as on a

set of two grids (a coarse background grid with a coupled fine subgrid).

This test bed gives the opportunity to see the effect of grid refinement for simulations

of different complexity. If there are any failures, these are expected to be visible

for the least complex test case (rising bubble), while the America’s Cup simulation

102
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allows for comparison with measurements.

7.1 Rising bubble experiment

The rising bubble experiment is set up in a similar way as in Section 4.5 (Schroeder

and Schlünzen, 2007a). The main difference is that in this section it is three-

dimensional. The domain is 2x2x2km3. A bell shaped mountain is prescribed by

zs(x, y) = H
L2
h

L2
h + (x− xc)2 + (y − yc)2

with the peak at xc = 0m and yc = 200m, the height H = 300m and the half width

Lh = 500m (Fig. 7.1). The bubble has a diameter of 500 m and its center is located

at x = y = 0 and z = 590m. The initial potential temperature is 300K everywhere

except for the region where the bubble is located. Within the bubble the potential

temperature is 300.5K. Neither the bubble nor the orography is symmetric to the

refined grid in order to have surface slopes at the internal boundaries and to see the

effect of a refined grid in different regions of the bubble. Only the dry dynamical core

without Coriolis force is used for the simulations, all parameterisations are omitted.

Four simulations are performed, BUB30, BUB90, BUB30-90 and BUB30-90TS (Tab.

7.1). The vertical grid spacing is 20m in all simulations, the horizontal grid spacing

Figure 7.1: Topography for the rising bubble experiment. The rectangle marks the refined area

for BUB30-90 and BUN30-90TS.
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is 30m everywhere for BUB30 and 90m everywhere for BUB90. For BUB30-90 and

BUB30-90TS the grid spacing is 90m except for the refined region which has a grid

spacing of 30m and is located at -525m< x <75m and -255< y <255m. The time

step ∆t is 1s for BUB30, BUB90 and BUB30-90. For BUB30-90TS ∆t is 3s on the

coarse grid and 1s on the fine grid applying time splitting described in Section 2.4.

Table 7.1 summarises the differences of the test cases.

Figures 7.2-7.5 show different cross-sections of the experiment after 10min simu-

lation time. BUB30 acts as reference. In comparison to the two-dimensional result

of Section 4.5 (Fig. 4.4), no clear billows develop. This is mainly due to the coarser

resolution of the three-dimensional test. Furthermore, in this section only second

order advection schemes were applied in contrast to the third order schemes used

in Section 4.5. However, due to the strong vertical motion at the bubble’s center

and the weaker vertical motion further away from the center a mushroom shaped

temperature distribution develops. For BUB30 and BUB90 the shape is symmetric

to the yz-plane at x = 0 (Fig. 7.2a,b) as the initial conditions and the hill are sym-

metric to x = 0. However, as the mountain peak is shifted by 200m in y direction

against the center of the bubble, there is no symmetry to the xz-plane at y = 0

(Fig. 7.3a,b). The general difference between coarse and fine grid solution is that

the solution on the coarse grid is much smoother, as expected.

The solutions look different on two coupled grids. The symmetry to the yz-plane

at x = 0 is lost, as the location of the fine grid is not symmetric to x = 0 (Fig.

7.2c,d, the results shown are aggregated to the grid of BUB90). In the western finely

resolved area (-525m < x < 75m) gradients are stronger than in the eastern coarsely

resolved area. The difference in the isolines in the finely resolved area of Fig. 7.2c,d

and Fig. 7.2a is an artefact resulting from aggregation to the coarse resolution that

is used for the plot. This can be verified by comparing the non-aggregated results

(Fig. 7.4c,d). Here, only the area is shown that is actually refined. In the centre

Table 7.1: Overview of the different rising bubble test cases.

case ∆x = ∆y time step

BUB30 30m 1s

BUB90 90m 1s

BUB30-90 30m/90m 1s

BUB30-90TS 30m/90m 1s/3s
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Figure 7.2: Rising bubble experiment after 10min at y = 0m (xz-cross-section). Shown is the

potential temperature deviation (increment 0.03K). Configuration: (a) BUB30, (b) BUB90, (c)

BUB30-90 and (d) BUB30-90TS (see Tab 7.1 for the configurations). For plotting the results of

(c,d) are aggregated to the grid of (b).

of the area the results on the refined grids (Fig. 7.4c,d) are nearly indistinguishable

from the fine grid result BUB30 (Fig. 7.4a). At the eastern boundary the influence

of the coarse region can be noticed. This is also visible at the yz-cross-section at

x = 0 (Fig. 7.5). The BUB30-90 and BUB30-90TS solutions (Figs. 7.3c,d and

7.5c,d) are smoother than the BUB30 solution.

The effect off different time stepping and the resulting time splitting of the two grids

is hardly noticeable. The results of BUB30-90 and BUB30-90TS look virtually the

same in all figures.

The rising bubble experiments have all been performed without the parametrisation

of turbulent diffusion. Consequently, the difference in diffusion visible in the results

is caused only by the difference in resolution. On grids with different resolution
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Figure 7.3: As Fig. 7.2 but yz-cross-section at x = 0m.

the solutions evolve in a different way, even though the physical conditions are the

same. This reveals the importance of resolution dependent parameterisation schemes

to achieve consistent results for different grid configurations. However, an important

result of the test is that the new dynamical core is able to simulate the bubble on

two different grids without unphysical disturbances.

7.2 Cyclogenesis over an idealised polynia

This test case is similar to the ones presented in Bungert (2002) and Hebbinghaus

et al. (2007). The full model is used containing turbulent diffusion, Coriolis force,

cloud processes and radiative processes. The surface properties are that of sea ice

(z0 = 1 mm) with an initial temperature of 237.15K except for the area of an open

water surface. Here the surface properties of water are simulated with an initial

temperature of 271.35 K. A geostrophic north wind of 3.0ms−1 is prescribed. The



7.2 Cyclogenesis over an idealised polynia 107

Figure 7.4: As Fig. 7.2 but only the area is shown that is refined in (c) and (d). The results of

(c) and (d) are not aggregated.

Figure 7.5: As Fig. 7.4 but yz-cross-section at x = 0m.

simulation is started at 18 h local time for geographic conditions at 75◦N. Due

to the strong differential heating which is a common condition in the Arctic sea,

cyclogenesis is likely to happen (Hebbinghaus et al., 2007).

Three simulations are performed. A fine grid simulation with 2km resolution (POLY2),

a coarse grid simulation with 6km resolution (POLY6) and a simulation on two grids

(POLY2-6) with a background resolution of 6km and a refined area of 2km resolution

(marked by the black boxes in Fig. 7.6).

Fig. 7.6 shows the surface pressure and wind vectors at 10 m height for the second

day at 16h local time (after 22h of simulation). A low pressure area can be found

over the polynia and a small vortex has formed and moved southward. The small

vortex is clearly visible in the pressure field (relative minimum of 997hPa) and in the
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Figure 7.6: Results of the polynia test case at 16 h on the second day. Shown are surface

pressure and wind vectors at 10m height for (a),(b) the 2km resolution run POLY2, (c),(d) the

6km resolution run POLY6 and (e),(f) the 2km-6km run POLY2-6. (a),(c),(e) show the entire

model area with a box marking the refined area of POLY2-6. Here the POLY2-6 result of (e) is

aggregated to the 6km grid of POLY6. (b),(d),(f) show the area that is refined in POLY2-6.

wind field (Fig. 7.6a,b). On the coarse grid (POLY6) the vortex is weaker with the

minimum being 0.5 hPa higher (Fig. 7.6c,d). As in the section before the simulation

with a refined grid within the coarse grid (POLY2-6, Fig. 7.6e,f) yields better results

than the coarse grid simulation. The POLY2-6 results are nearly indistinguishable
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from the POLY2 results.

This can also be found when looking at the time series of the minimum pressure

(Fig. 7.7). This is located over the polynia due to thermal effects. The curves

for POLY2 and POLY2-6 are nearly identical, while the pressure minimum for the

POLY6 simulation is about 0.5hPa higher at the end of the second day.

It can be argued that the results of all three simulations are quite similar and the

small deviation of the coarse grid results from the other two simulations is negligible

for practical applications. However, it is a striking result that the simulation POLY2-

6 with a refined grid gives the same results as the simulation on a homogeneous

grid (POLY2). The applied numerical methods do not introduce any unphysical

disturbances.

7.3 Valencia test case

The original single grid version of METRAS was used to forecast wind fields for

the South African sailing team Shosholoza at the America’s Cup 2007 (Augustin

et al., 2007; Schlünzen et al., 2007). The modelled domain is shown in Fig. 7.8a
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Figure 7.8: Model area and orography height of the Valencia test case. (a) Complete model area

with a box marking the refined area of the simulation with two grids. NC marks the north course

and SC the south course. (b) Refined area for the test case with two grids. Dots mark the position

of buoy measurements of north and south course.

along with the north sailing course (NC) and the south course (SC). The Bay of

Valencia is in the centre of the model area. The forecast simulations were forced by

the 0 UTC HIRLAM forecasts of the Spanish Weather Service (INM). These were

available on 9 vertical levels (surface, 975hPa, 950hPa, 900hPa, 850hPa, 775hPa,

700hPa, 500hPa, 200hPa) with a horizontal resolution of 0.05◦ (about 5km). The

model fields temperature, humidity and the horizontal components of wind were

nudged each time step by

χ(x, y, z) = χ̂(x, y, z) + ν(x, y, z)(χf(x, y, z) − χ̂(x, y, z))∆t

χ̂ denotes the nudged quantity before nudging, χ is the same quantity after nudging,

χf the forcing field and n is the nudging coefficient that is strongest at the model

boundaries and vanishes in the model interior. The METRAS results were compared

to buoy measurements available at the two courses (Fig. 7.8b). At spring time,

when the America’s Cup was held, land-sea-breeze circulations are typically observed

during the afternoon. The simulations were started at 3 UTC model time (5 h local

summer time) and lasted until 18 UTC (20 h local time).

For this work experiments with different model configurations were performed (Tab.

7.2). Four days were simulated, May 3rd to May 6th, 2007. On May 3rd a cut-off low

pressure system, which has separated from a North Atlantic trough, was situated

over Spain. During the following three days the low pressure system weakened and
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Table 7.2: Overview of different model configurations for the Valencia test case.

∆x = ∆y momentum advection scalar advection

MCD 1km centered differences + filter upstream

MEF 1km E2UP FIENO2

MEF3 3km E2UP FIENO2

MEF1-3 1-3km E2UP FIENO2

MFF 1km FIENO2 FIENO2

MFFF 1km FIENO2 + filter FIENO2

moved eastward to the west of Italy. Associated with this low is an occlusion that

has just passed the Valencia area on May 3rd. On this day the formation of a sea-

breeze is inhibited by the frontal clouds (due to a lack of solar insolation). On the

subsequent days the Valencia area is more and more influenced by the high pressure

ridge over the Azores. Small large-scale pressure gradients and only partly cloudy

skies allow the development of a sea breeze. This is the reason why these days were

chosen to be simulated, since a simulation is more likely to be improved by local

refinement, if the circulation is mainly locally driven. Furthermore, the operational

forecast performance of METRAS on May 4th was excellent, and it is of interest if

similar results can be achieved with grid refinement.

Fig. 7.9 shows the wind fields simulated with METRAS in the configuration used

for the Valencia forecasts with centered differences (MCD) at four different times

for 04/05/07. The land breeze that has developed over night (Fig. 7.9a) changes

to a sea breeze as the land is heated up during daytime (Fig. 7.9c). The small

large-scale pressure gradients are beneficial to this development.

The model results agree well with buoy measurements. The wind speed and direction

simulated by MCD for the location of the buoys of north (Fig. 7.10a,b) and south

course (Fig. 7.12a,b) develop in a similar way as observed.

To test the effect of different advection schemes three further simulations are per-

formed on the same 1km grid: MEF (second order ENO advection for wind and

second order FIENO advection for scalars), MFF (second order FIENO advection

for all scalars and momentum) and MFFF (second order FIENO advection for all

scalars and momentum plus the additional application of the Shapiro filter for the

wind fields at each time step). All three set-ups perform (Fig. 7.11 and Fig. 7.13)

slightly worse than MCD (Figs. 7.10a and 7.12a). Among the three ENO set-ups
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Figure 7.9: Wind speed and wind vector at 10 m height at (a) 10 LT, (b) 11 LT, (c) 15 LT and

(d) 20 LT for 04/05/07. The 1km resolution simulation with standard METRAS (MCD) is shown.
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Figure 7.10: North course buoy results (blue dots = single measurements, green lines = 15min

average ± standard deviation) and model results (red crosses) on 04/05/2007. Shown is the

horizontal wind speed (a, c, e) and the wind direction (b, d, f) for three different simulations,

MCD (a,b) MEF3 (c,d) and MEF1-3 (e,f).
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Figure 7.11: As Fig. 7.10 but shown are the 1km METRAS runs with different numerical

schemes: (a,b) MEF, (c,d) MFF and (e,f) MFFF.
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Figure 7.12: As Fig. 7.10 but for the south course.
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Figure 7.13: As Fig. 7.11 but for the south course.
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the filtered one (MFFF) performs worst. Overall, a clear similarity between all four

1km results is visible.

The METRAS version that can contain several grids is comparable to MEF. Not

surprisingly, its 3km coarse resolution simulation (MEF3) performs worse than MCD

and MEF. Especially, predicting the turning of the land-breeze to a sea-breeze is

predicted worse in the coarse simulation (Figs. 7.10c,d and 7.12c,d). This is possibly

due to the influence of small-scale orography that is not properly resolved by the

3km grid. When a refined grid is added (MEF1-3, Fig. 7.8b) the improvement is

very limited (Figs. 7.10e,f and 7.12e,f). While wind direction is predicted almost as

accurate as for MCD and MEF and certainly better than for MEF3, the wind speed

is underestimated as in run MEF3. In comparison to MEF it is slightly worse (Figs.

7.11a,b and 7.13a,b).

When looking at the wind fields it is visible that the refined area (7.8b) does not

have a great influence (compare Figs. 7.14 and 7.15). Only at 15h local time

the simulation with refinement (Fig. 7.15c) shows a different wind pattern than

the simulation without (Fig. 7.14c). This is reflected by the more accurate wind

direction for the refined simulation. The reason for the only small improvement

is possibly the high importance of the small-scale orography, which is not covered

by the refined area. A second reason may be the difference in the effect of the

forcing fields. The strength of the forcing is decreasing with a greater distance to

the boundaries; the distance is measured in grid points. This means that the area

in which the forcing has an effect is larger in a coarse grid simulation which has less

grid points than in a fine grid simulation.

For comparison and to estimate the significance of the results discussed for May 4th,

hit rates and root mean square (RMS) errors are calculated for all four simulated

days. The buoy measurements are averaged over 15 minutes to make the data

more comparable to the Reynolds averages of the model results. The latter are

interpolated to the buoy locations. For each simulation between 12 to 13 hourly

values of up to 21 buoys are available leading to 240 to 273 comparison values per

simulation for both, wind speed and wind direction. Wind speed is treated as hit if

the difference is less than 1ms−1, for wind direction the difference must be less than

30◦ (Schlünzen and Katzfey, 2003). Tab. 7.3-7.6 summarise the hit rates and RMS

errors for the different simulations. The significance of the values is estimated by a

simple test: The hit rates and RMS errors for May 4th are calculated twice, once

with all data and once by using only 50% of the buoys. According to this test the

hit rates can be assumed to have an uncertainty of less than 4%, the RMS error of



118 7. Use of the multiple grids model in different test cases

Figure 7.14: As Fig. 7.9 but for the 3km resolution MEF3 simulation.

the wind speed of less than 0.1−1 and the RMS error of the wind direction of less

than 3◦.

As seen above in the time series for 04/05/07 the advection schemes have little in-

fluence on the performance (Tabs. 7.3-7.6) While the wind direction is very similar

for the four model configurations (hit rates of about 77%), MCD outperforms the

other three for the wind speed (hit rates ranging from 53% for MFFF to 77% for

MCD). In contrast to that the coarse run MEF3 performs much worse, and the

refined run MEF1-3 shows only small improvement over MEF3. For the wind direc-

tion the hit rate is about 60% for MEF1-3 compared to 40% for MEF3. For wind

speed the hit rate on the coarse grid (47%) is similar to the one on the refined grid

(42%), the difference is not significant. To test the influence of the resolution itself

the MEF1-3 results are aggregated to the MEF3 grid and the hit rates and RMS

errors are calculated based on the interpolated aggregated fields. It is interesting to

observe that neither hit rate nor RMS error change significantly compared to the
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Figure 7.15: As Fig. 7.9 but for the 1km/3km resolution MEF1-3 simulation.

high resolution values of MEF1-3. Some hit rates are even slightly better when they

are derived from the interpolated aggregated field, but this is within the range of

uncertainty. These findings suggest that (under the current meteorological situa-

tion) an improvement of the simulation is not gained due to higher resolved data,

but only due to resolving important phenomena more accurately.

On May 3rd the situation is different. Due to the influence of the occluded front

and the weak solar forcing the wind is much more variable in space and time. Not

surprisingly, all simulations of the day have comparably low hit rates of 22% to 38%.

No significant superiority of the fine or refined grid simulation over MEF3 can be

found.

On May 5th the hit rates for wind speed are very low again (less than 30%). The

sea breeze intensity is underestimated by all simulations. In contrast to that the

wind direction is simulated well and it is improved by a higher resolution (MEF1-3).

The hit rates reach 78% for MCD, 54% for MEF3 and with the refinement 61% for
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MEF1-3.

May 6th is interesting in the sense that MCD performs worst regarding wind speed

(48%) compared to 73% for MEF1-3. The wind direction is simulated slightly better

with MCD (78%) than with MEF3 and MEF1-3 (70-71%).

In summary, the results of the four simulated days show that there is a clear tendency

that the 1km resolution METRAS (MCD) results are better than the 3km resolution

METRAS results especially in terms of wind direction. This effect is stronger on

days when the model performance is generally good. With the refined grid placed

as shown in Fig. 7.8 the simulation of locally driven meteorological situations can

be improved in comparison to the coarse grid simulation (Tab. 7.3-7.6).

In the simulations of this section the area of interest was refined, in this case with

focus on the area over the water where the sailing races took place. However, refining

areas with significant influence on the mesoscale meteorological situation may be

more important for a good forecast. In the present simulations this could mean

that refining the area over the mountains to the west of Valencia would improve the

simulations since the small-scale topography may have an influence on the solution.

Generally, it is also likely that the quality of the simulations can be enhanced by

relocating the refined area depending on the meteorological situation. This indicates

that more research needs to be done on where to place the refined grid under which

conditions (adaptivity).

Table 7.3: RMS error of wind direction in ◦ for different model configurations.

day MCD MEF3 MEF1-3 MEF1-3** MEF MFF MFFF

03/05/07 79 90 74 75

04/05/07 34 60 42 42 30 33 34

04/05/07* 34 58 41 41 31 33 31

05/05/07 36 51 44 43

06/05/07 32 62 50 51

average 45 66 53 53

* results are compared to every second buoy only, not included in the average

** the results are aggregated to the grid of MEF3 and then compared to the buoys
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Table 7.4: Hit rates of wind direction in % for different model configurations.

day MCD MEF3 MEF1-3 MEF1-3** MEF MFF MFFF

03/05/07 37 35 38 37

04/05/07 77 40 59 60 76 77 79

04/05/07* 77 41 61 61 76 76 79

05/05/07 78 54 59 61

06/05/07 78 70 71 71

average 68 50 57 57

* results are compared to every second buoy only, not included in the average

** the results are aggregated to the grid of MEF3 and then compared to the buoys

Table 7.5: RMS error of wind speed in ms−1 for different model configurations.

day MCD MEF3 MEF1-3 MEF1-3** MEF MFF MFFF

03/05/07 3.2 2.9 2.9 2.9

04/05/07 1.0 1.6 1.5 1.6 1.2 1.1 1.4

04/05/07* 1.0 1.6 1.5 1.5 1.2 1.2 1.4

05/05/07 1.7 2.0 1.9 1.9

06/05/07 1.4 1.2 1.0 1.0

average 1.8 1.9 1.8 1.8

* results are compared to every second buoy only, not included in the average

** the results are aggregated to the grid of MEF3 and then compared to the buoys

7.4 Efficiency of grid refinement

The reason for grid refinement is saving CPU time in comparison to simulations with

a uniform fine grid spacing. In addition, the amount of data storage can be reduced

and, compared to nested runs, the complexity of the model set-up is low. Here

the focus is on CPU time since this is most important when considering weather

forecast systems to use multiple grids. For the three test cases of this chapter the

CPU time is compared for the different model configurations (Tab. 7.7). The times

are measured on an AMD Opteron 2.6 GHz CPU for the polynia test case, and on

an Intel Xeon 3.20 GHz CPU for the rising bubble and Valencia test case. Only one

CPU was used for all tests. Generally, the fine grid needs approximately 10 times as

much CPU time as the coarse grid, because the fine grid has 9 times as many grid

points as the coarse grid. In addition, due to the CFL criterion the time step can

be smaller if restricted by advection. This is usually the case when the turbulent

diffusion is small, e.g. during the night time. However, the time stepping for the
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Table 7.6: Hit rates of wind speed in % for different model configurations.

day MCD MEF3 MEF1-3 MEF1-3** MEF MFF MFFF

03/05/07 30 22 24 25

04/05/07 77 47 41 42 70 67 53

04/05/07* 76 45 43 43 66 65 52

05/05/07 26 27 27 27

06/05/07 48 60 73 72

average 45 39 41 42

* results are compared to every second buoy only, not included in the average

** the results are aggregated to the grid of MEF3 and then compared to the buoys

polynia and Valencia test case was mainly dominated by vertical diffusion, so the

same time step on coarse and fine grid was used. For the rising bubble test case the

time step was set to 1s for BUB30 and BUB90, even though it could have been set

to 3s for the coarse grid.

The refined simulations need between two and three times as much CPU time as the

coarse simulation although they have only about twice the number of grid points.

This can be explained by the overhead caused by handling the internal boundaries

between the grids and the reduced convergence of the pressure solver due to the poor

matrix condition when two grids are present. This is especially visible for the polynia

test case. The single grid simulation has a matrix that is only slightly non-symmetric

due to the vertically varying grid spacing, but no orography is present. When a

subgrid grid is added the matrix becomes much more non-symmetric compared to

the single grid case. For the Valencia this effect cannot be observed, since the single

grid matrix is non-symmetric due to the orography and the grid transformation.

Here the CPU time is nearly proportional to the number of grid points, which is a

sign for the good efficiency of the MULTIGRID pressure solver. When time splitting

is applied for the rising bubble experiment (BUB30-90TS, Tab. 7.7) the CPU time

is more than 15% smaller than without time splitting (BUB30-90). This is less than

half of the expected value 33% (two thirds of the time on the coarse grid, i.e. two

thirds of 50%, is saved). This can partly be attributed to the pressure solver which

still needs to be calculated every time step.

When the CPU times are related to the actual performance it can be concluded that

for the Valencia test case the refinement (MEF1-3) is not justified, as the refined

simulation only leads to a small forecast improvement compared to MEF3. However,

it is likely that positioning of the refined grid above the mountains could improve the
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Table 7.7: CPU time of different test cases and model configurations.

test case fine grid coarse grid refined grid refined grid + time splitting

rising bubble 56 min 6 min 17 min 14 min

polynia 199.4 h 18.7 h 53.2 h

Valencia 70.9 h 6.5 h 13.3 h

refined simulation for the area of interest which lies over the bay. For the polynia case

the improvement due to grid refinement is significant and the refinement is justifiable

as the refined POLY2-6 results is virtually identical to the fine grid result POLY2.

For this test case it could be easily estimated in advance that large gradients would

occur at the polynia, where the grid then was refined. The rising bubble simulation

is improved in the refined area at a highly reduced CPU time, but this has no

meaning for practical applications since the test case is highly idealised.

It should be noted at this point that the refinement does not lead to results that

are worse than on the coarse grid, i.e. no unphysical disturbances are caused by the

nonuniform grid. Under suitable conditions with the fine grid located at the right

place the results are improved compared to the coarse grid with the CPU time being

much smaller than with a uniform fine grid. Therefore, the multiple grids version of

METRAS can be recommended whenever the location of the refined grid is clear,

e.g. for downscaling areas of interest.



8 Conclusions and outlook

In this work methods and schemes necessary to transform a non-hydrostatic model

into a model with fully coupled multiple grids and grid refinement are investigated.

They are implemented in the non-hydrostatic model METRAS and tested in dif-

ferent applications. The possibility to use multiple grids in METRAS is the key

prerequisite for the future development of an adaptive model. The overall goal is to

save CPU time, to reduce the necessary storage of model results and minimise the

handling time for a model forecast with METRAS while retaining a simulation with

high accuracy.

Robust numerical schemes are crucial for a successful grid refinement. Many stan-

dard advection schemes like centered differences tend to create spurious oscillations

when the grid spacing changes abruptly. This is due to numerical dispersion of

advected wave structures. Short waves that are created and resolvable on the fine

grid might not be resolved on a coarse grid. When these waves propagate from the

fine grid to the coarse grid, they are likely to be reflected at the interface between

the two grids. It is shown in Chapter 3 that advection schemes based on essentially

non-oscillatory (ENO, Harten et al., 1987) reconstruction and upwind calculation

of fluxes (E2UP) do not create spurious oscillations when the grid is refined. The

advection schemes themselves are non-linear and thereby avoid exciting the growth

of extrema. The schemes solely based on the ENO method are suitable for mo-

mentum advection, but for scalar advection they are likely to become unstable and

require small CFL numbers. Therefore, for scalar advection a flux-integrated ENO

scheme is developed (FIENO, Chapter 4) which is applied in different test cases

and proves to be stable for multiple grids. For scalars the FIENO scheme is more

recommendable than the ENO scheme.

The numerical dispersion of gravity waves is more difficult to handle on multiple
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grids. Disturbances and imbalances of both numerical and physical origin are likely

to excite gravity waves. These waves are much more complex than simple advection

waves and depend on wind, temperature and pressure. While the physical dispersion

mainly depends on static stability, the numerical dispersion in an atmospheric model

depends on the grid widths. The group velocity of simulated gravity waves is smaller

for coarser grids as the discrete gradients become more inaccurate. The retardation

is theoretically derived in Chapter 5 and verified in model simulations. As a result

of the dispersion the waves are at least partially reflected when leaving a fine grid

and entering a coarse grid. In the worst case, when the wave cannot be resolved

on the coarse grid, the wave is trapped within the fine grid region. In Chapter 5

the intensity of reflected waves with different wave length is measured depending

on the refinement factor. For waves that are well resolved on the fine grid (8∆x)

with a refinement factor of 3 not more than 26 % of the wave intensity is reflected.

For larger refinement factors the reflection becomes much stronger. Consequently,

a refinement factor of 3 is used in this work when applying multiple grids.

A main idea of the application of multiple grids is saving CPU time, data storage

and handling time by not resolving the entire domain with a fine grid or applying a

nesting approach. The used numerical schemes should therefore not be too compu-

tationally expensive, when the grid is refined. For explicit schemes the use of grid

refinement does not change the CPU time per grid point except for the small over-

head caused by the exchange of values at the boundaries. However, when iterative

schemes like the solvers for the elliptic pressure equation are used, the convergence

rate may decrease when grid refinement is involved. This is mainly due to a bad ma-

trix condition resulting from the increased asymmetry of the matrix. In METRAS

pressure is solved iteratively to keep the momentum field free of divergence. For this

work two options in METRAS to solve the elliptic pressure equation are extended

for the use of multiple grids. In Chapter 6 the methods are compared. The first

is an ILU(0) preconditioned Bi-CGSTAB algorithm, the second is a 2- and 3-level

MULTIGRID scheme applying an ILU(0) decomposition of the pressure matrix as

Gauss-Seidel smoother. The efficiency of the schemes depends on the number of

grid points and the grid aspect ratio. If the domain is decomposed into more than

one grid, generally MULTIGRID is recommended. Especially for low frequency dis-

turbances it is superior to Bi-CGSTAB. The same is true for a single grid where the

grid aspect ratio is ∆z/∆x ≈ 1 (micro-scale type grid). In this case the matrix has

several diagonals of similar magnitude which reduces the efficiency of the precondi-

tioner for Bi-CGSTAB. When the aspect ratio is ∆z/∆x << 1 (mesoscale type grid)
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the main diagonal and two additional diagonals are much larger than the remaining

diagonals. In this case with a small number of grid points (≈ 105) Bi-CGSTAB can

outperform MULTIGRID even for low frequency residuals. This is reversed if the

number of grid points is increased (≈ 106).

The multiple grids version of METRAS is based on the findings above: for momen-

tum advection the E2UP scheme of Schroeder et al. (2006) (Chapter 3) is used,

for scalar advection the flux-integrated ENO scheme (FIENO, Chapter 4, Schroeder

and Schlünzen, 2007a) is selected. To avoid the problem of gravity wave reflection

(Chapter 5, Schroeder and Schlünzen, 2007b) the refinement factor is restricted to

3. The MULTIGRID scheme is applied for solving pressure, when multiple grids are

present. Three test cases are performed with three grid configurations (coarse, fine,

refined). The first, an idealised rising bubble experiment, mainly serves as a test

of the model robustness. The second, an idealised polynia experiment, is included

to have a test, where the major physical processes are concentrated in an area that

is known a priori. The third test, a hindcast of the America’s Cup 2007 wind con-

ditions at the Bay of Valencia, is used to investigate the suitability of the multiple

grids model for real applications. The most important result is that spurious distur-

bances due to the internal boundary between grids with different resolution are not

visible in any test case. The CPU time of the refined grid simulation is always much

less than in the uniform grid simulation (factor 3-5). The effect of time splitting,

i.e. using a smaller time step in the refined grid, is investigated for the rising bubble

experiment and shows no significant difference to the uniform time step simulation.

In two cases (rising bubble and polynia) the result in the refined grid region is as

good as in the uniform grid simulation. For the Valencia test case, however, there is

only some improvement of the refined solution over the uniform coarse grid solution.

Here, the refined grid was placed where a higher resolution of the wind field was

needed. Instead, the refined grid should be placed where physical processes take

place that have major influence on the overall solution. In the polynia and rising

bubble test case the region of refinement is obvious - it is the region of the polynia

itself where large gradients can be expected. For the simulation of the wind con-

ditions at the America’s Cup 2007 sailing site this is different. It cannot be easily

estimated in advance where the refined grid(s) should be placed, since this is also

likely to depend on the meteorological situation.

This shows that adaptive methods are necessary to gain maximum benefit from grid

refinement. Most dynamic adaptive methods work with gradients (e.g. Brackbill

and Saltzman, 1982; Berger and Oliger, 1984). If sharp gradients develop in an
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area (e.g. frontogenesis) refinement can improve the solution as for the polynia and

rising bubble test cases (Chapter 7). Bacon et al. (2000) point out that gradients in

the atmosphere are generally weak and difficult to detect due to almost ubiquitous

turbulence. Therefore, more sophisticated physical indicators must be developed.

For example, they can be based on pressure minima (e.g. for tornados or hurricanes)

or temperature and moisture stratification (for convection). Static adaption can also

be derived from experience. Local flow patterns that develop due to orographic or

land-sea effects may only be simulated if the respective area is resolved with a fine

grid throughout the entire simulation and entire domain.

For steady flows Feistauer et al. (2003) describe indicators based on residual errors

and on shocks. While shocks are not of any relevance for mesoscale or micro-scale

flow, the residual error methods may be useful for stationary atmospheric simula-

tions.

Noelle and Steiner (2007) have a different approach for adaptivity. They define a

target functional that is calculated from the model variables. The value of the target

functional is supposed to be simulated as accurate as possible thereby assuming the

whole simulation will improve. The simulation is run forward on a coarse grid. Then

the adjoint problem for the target functional is solved to determine the (space-time

split) error source and thereby the time step and area to be refined. Noelle and

Steiner (2007) test this approach successfully for Burger’s equation and time adap-

tion. Ideal target functionals for meteorological applications would be accumulated

rain or the amount of deposited pollutants.

A further problem that arises from using multiple grids is to account for the scale

dependence of parameterisations. In this work only one level of refinement was

applied within a range of scales (1km/3km, 2km/6km) where using the same pa-

rameterisation schemes for coarse and fine grid is still acceptable. However, when

several refinement levels are used and grid spacing of less than 1km are used the

parameterisation schemes must be adjusted accordingly. The finer the grid is the

more processes are explicitly simulated by the model and its effects must not be

included in any parameterisation scheme. For example, Bacon et al. (2000) report

that they apply a continuous weighting factor to their convection scheme. Where

the resolutions is 3km or higher the scheme is switched off, while it is assumed that

the effect of cumulus convection must be fully parameterised for resolutions coarser

than 50km. For METRAS a similar method will be necessary if a grid width of

smaller than 1km is used in order account for turbulence which is more and more

explicitly resolved the higher the resolution. A possible method is to use the large
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eddy simulations (LES) approach, where the mixing length depends on grid width.

Thereby the amount of parameterised turbulence is reduced for smaller grid spac-

ing. Currently, Fock (2007) investigates this LES approach with METRAS where

the mixing length is proportional to the grid width.

Bohnenstengel (2007) is currently investigating the effect of resolution and subgrid-

scale surface parameterisations on the model performance. When subgrid-scale sur-

face information is available the surface fluxes can be determined in two alternative

ways. The fluxes can be calculated for each surface class separately and are then

aggregated (flux aggregation method with blending height concept). The second

method is to create an artificial surface class whose surface parameters (e.g. rough-

ness length z0) are given by a weighted average of the respective parameter of each

contributing surface class (parameter averaging). The artificial parameters are used

to calculate the surface fluxes. Generally, the flux aggregation method is superior

to parameter averaging, but also computationally more expensive. It was shown by

Schlünzen and Katzfey (2003) that the flux aggregation is nearly independent of

the resolution which makes the method very suitable for grid refinement. Recent

studies of Bohnenstengel (2007) have shown that at resolutions of ≈ 1km results for

parameter averaging are already close to results using flux aggregation.

When the grid is dynamically adaptive, the values of the meteorological fields on the

newly created refined grid need to be defined. Simple interpolation from the formerly

coarse grid is likely to create unbalanced fields. The problem becomes significant if

the orography on the fine grid contains small scale features that are not resolved on

the coarse grid. In many cases the spurious generation of gravity waves will occur.

Additionally, it is questionable how fine surface grid cells should be treated that are

below the surface of the coarse grid. Extrapolation will certainly cause disturbances

since in the surface layer the distance to the surface is determining the flow rather

than the height above sea level. Bacon et al. (2000) try to avoid this extrapolation

problem by simply not allowing the surface on the refined grid to have a lower

elevation than the surface on the coarse grid. The drawback of this is that fine scale

topographic features are lost. These features may have important influence on the

flow and the grid refinement will be less successful when they are omitted.

An adaptive multiscale model can be built, when all these problems are solved, i.e.

finding suitable adaptive refinement methods, scale dependent parameterisations

and interpolation methods for defining the refined grid values. The results presented

in this thesis are an important step towards this goal by proving a robust dynamical

core.
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List of important symbols

A advection operator

B buoyancy operator

C Coriolis force operator

D divergence operator

P pressure operator

α∗ grid cell volume

δẋ difference operator in x-direction

δẏ difference operator in y-direction

δż difference operator in the vertical direction

δij Kronecker symbol

∆t time step

∆x horizontal extension of a scalar grid cell in x-direction

∆y horizontal extension of a scalar grid cell in y-direction

∆z vertical extension of a scalar grid cell

η transformed vertical coordinate

ρ0 background density, only dependent on z

ρ̃0 mesoscale deviation density

ν nudging coefficient

Ω angular momentum of the earth

ϕ latitude
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ψc weighting factor for momentum flux for cell r − 0.5

ψf weighting factor for momentum flux for cell r + 0.5

ψu reduction of x-gradient in boundary cell u

ψw reduction of x-gradient of boundary cell w

ψW reduction of x-gradient of boundary cell W

χ̂ variable before forcing

χ any variable, e.g. as parameter for operators, could also be a vector

χf forcing variable taken from HIRLAM

θ0 background potential temperature

θ̃ mesoscale deviation potential temperature

· •ẋ weighted average in x-direction

· •ẏ weighted average in y-direction

· ẋ average in x-direction

· ẏ average in y-direction

· ż average in z-direction

·
ẏ

parabolic interpolation in y-direction

· Reynolds average

Aτ , xτ transpose of matrix A and vector x

A horizontal extension of a vector grid cell in x-direction;
also used as the matrix in the equation Ax = b

B horizontal extension of a vector grid cell in y-direction

C vertical extension of a vector grid cell

cp specific heat for air at constant pressure

cv specific heat for air at constant volume

D ∂zs/∂x

E ∂zs/∂y

f Coriolis parameter



132 List of important symbols

f ′ Coriolis parameter

FD ∂z/∂x|ż=const

FE ∂z/∂y|ż=const

~F~m turbulent diffusion for momentum vector

~Fχ turbulent diffusion for quantity χ

Fu turbulent diffusion for u-momentum

Fv turbulent diffusion for v-momentum

Fw turbulent diffusion for w-momentum

~F
n−3/6
~m momentum boundary flux vector from the fine grid to the coarse

grid at t = tn−3/6 for all three momentum components

F n
s scalar boundary fluxes from the fine grid at t = tn

F x
i+1/2j advection flux in x-direction

F y
ij+1/2 advection flux in y-direction

G vertical grid transformation coefficient

g acceleration of gravity

i index in x-direction on fine or single grid

I index in x-direction on coarse grid

j index in y-direction on fine or single grid

J index in y-direction on coarse grid

k index in z-direction

~m momentum field

~̂m preliminary non-divergence free momentum field

Nx refinement factor (x-direction) between coarse and fine grid

Ny refinement factor (y-direction) between coarse and fine grid

p pressure

P pressure coarse grid

p0 background pressure only dependent on z

p1 mesoscale hydrostatic part of pressure

p2 pressure that makes the momentum field divergence free
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p̂ pressure perturbation to correct p2 at the new time step

pg large scale pressure (used for geostrophic wind)

qv water vapour content

ql cloud liquid water content

qr rain water content

Rd gas constant for dry air

Rv gas constant for water vapour

Sχ sources and sinks of quantity χ

û preliminary velocity in x-direction

Û preliminary velocity in x-direction (coarse grid)

u velocity in x-direction

ug large scale geostrophic wind in x-direction

ˆ̇u preliminary transformed vertical velocity

v velocity in y-direction

vg large scale geostrophic wind in y-direction

v̂ preliminary velocity in y-direction

~̂v preliminary velocity vector

ˆ̇W preliminary transformed vertical velocity (coarse grid)

ẇ = u ∂ż
∂x

+ v ∂ż
∂y

+ w ∂ż
∂z

, transformed vertical velocity

x west-east coordinate

ẋ transformed west-east coordinate

y south-north coordinate

ẏ transformed south-north coordinate

z vertical coordinate

η transformed vertical coordinate

ż transformed vertical coordinate, computational grid

zs surface elevation above sea level

z0 roughness length



A Pressure matrix

The definitions of pressure gradient and divergence operator in Chapter 6 directly

lead to the pressure matrix. In this appendix the original matrix on a single grid

is derived and the matrix elements for the internal boundaries between a coarse

and a fine grid. It should be noted that in the following the coarse grid pressure

perturbation values are denoted by capital P̂ , the fine grid values by lower case p̂.

A.1 Matrix coefficients - single grid

The composition of the divergence operator (6.3) and the pressure gradient operator

(6.4)-(6.6) leads to the divergence caused by the pressure gradients.

The divergence balanced by the pressure gradient in x-direction can be calculated

by taking term (6.3a) and replacing (ρ0
ẋû)i+0.5jk by Pi+0.5jk from Eq. (6.4):

∆yj∆zk

[
δẋ

(
ρ0
ẋG

•ẋ
û
) ]

ijk

= ∆yj∆zk

[Gi+1/2 j
•ẋ

Ai+1/2

(p̂i+1 jk − p̂ijk) −
Gi−1/2 j

•ẋ

Ai−1/2

(p̂ijk − p̂i−1 jk)

−
Fk

ż
Di+1/2 j

Ck
ż

0.25(p̂i+1 jk+1 + p̂ijk+1 − p̂i+1 jk−1 − p̂ijk−1)

+
Fk

ż
Di−1/2 j

Ck
ż 0.25(p̂i−1 jk+1 + p̂ijk+1 − p̂i−1 jk−1 − p̂ijk−1)

]

(A.1)

The divergence balanced by the pressure gradient in y-direction is calculated by
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taking term (6.3b) and replacing (ρ0
ẏv̂)ij+0.5k by Pij+0.5k from Eq. (6.5):

∆xi∆zk

[
δẏ

(
ρ0
ẏG

•ẏ
v̂
) ]

ijk

= (∆x∆z)ijk
[Gij+1/2

•ẏ

Bj+1/2

(p̂ij+1k − p̂ijk) −
Gij−1/2

•ẏ

Bj−1/2

(p̂ijk − p̂ij−1k)

−
Fk

ż
Eij+1/2

Ck
ż

0.25(p̂ij+1k+1 + p̂ijk+1 − p̂ij+1 k−1 − p̂ijk−1)

+
Fk

ż
Eij−1/2

Ck
ż 0.25(p̂ij−1k+1 + p̂ijk+1 − p̂ij−1k−1 − p̂ijk−1)

]

(A.2)

The divergence balanced by the pressure gradient in z-direction is calculated by

taking term (6.3c) and replacing (ρ0
ż ˆ̇w)ijk+0.5 by Ṗijk+0.5 from Eq. (6.6)):

∆xi∆yj

[
δż

(
ρ0
żCG ˆ̇w

) ]

ijk
= (∆x∆y)ijk

[1 + F 2
k+1/2(Dij

ẋ2
+ Eij

ẏ2
)

Ck+1/2Gij
(p̂ijk+1 − p̂ijk)

−
1 + F 2

k−1/2(Dij
ẋ2

+ Eij
ẏ2

)

Ck−1/2Gij

(p̂ijk − p̂ijk−1)

−Fk+1/2
Dij

ẋ

Ai
ẋ

0.25(p̂i+1 jk+1 + p̂i+1 jk − p̂i−1 jk+1 − p̂i−1 jk)

−Fk+1/2
Eij

ẏ

Bi
ẏ

0.25(p̂ij+1k+1 + p̂ij+1k − p̂ij−1 k+1 − p̂ij−1k)

+Fk−1/2
Dij

ẋ

Ai
ẋ 0.25(p̂i+1 jk−1 + p̂i+1 jk − p̂i−1 jk−1 − p̂i−1 jk)

+Fk−1/2
Eij

ẏ

Bi
ẏ 0.25(p̂ij+1k−1 + p̂ij+1k − p̂ij−1k−1 − p̂ij−1k)

(A.3)

The matrix coefficients can be taken directly from the equations (A.1)-(A.3). With

the abbreviation

sk =
∆zk

Ck
ż
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this leads to the following coefficients for grid cell (ijk):

variable coefficient

p̂ijk −Gi+1/2 j
•ẋ

∆yj∆zk / Ai+1/2

−Gi−1/2 j
•ẋ

∆yj∆zk / Ai−1/2

−Gij+1/2
•ẏ

∆xi∆zk / Bj+1/2

−Gij−1/2
•ẏ

∆xi∆zk / Bj−1/2

−∆xi∆yj(1 + F 2
k+1/2(Dij

ẋ2
+ Eij

ẏ2
)) / (Ck+1/2Gij)

−∆xi∆yj(1 + F 2
k−1/2(Dij

ẋ2
+ Eij

ẏ2
)) / (Ck−1/2Gij)

p̂i+1jk ∆yj∆zkGi+1/2 j
•ẋ

/ Ai+1/2

− 0.25 ∆yjDij
ẋ
(Fk+1/2 − Fk−1/2)

p̂i−1jk ∆yj∆zkGi−1/2 j
•ẋ

/ Ai−1/2

+ 0.25 ∆yjDij
ẋ
(Fk+1/2 − Fk−1/2)

p̂ij+1k ∆xi∆zkGij+1/2
•ẏ

/ Bj+1/2

−0.25 ∆xiEij
ẏ
(Fk+1/2 − Fk−1/2)

p̂ij−1k ∆xi∆zkGij−1/2
•ẏ

/ Bj−1/2

+ 0.25 ∆xiEij
ẏ
(Fk+1/2 − Fk−1/2)

p̂ijk+1 ∆xi∆yj(1 + Fk+1/2
2(Dij

ẋ2
+ Eij

ẏ2
)) / (Ck+1/2Gij)

− 0.25 ∆yjskFk
ż
(Di+1/2 j −Di−1/2 j)

− 0.25 ∆xiskFk
ż
(Eij+1/2 −Eij−1/2)

p̂ijk−1 ∆xi∆yj(1 + F 2
k−1/2(Dij

ẋ2
+ Eij

ẏ2
)) / (Ck−1/2Gij)

+ 0.25 ∆yjskFk
ż
(Di+1/2 j −Di−1/2 j)

+ 0.25 ∆xiskFk
ż
(Eij+1/2 − Eij−1/2)

p̂i+1jk+1 −0.25 ∆yj(skFk
ż
Di+1/2 j + Fk+1/2Dij

ẋ
)

p̂i−1jk+1 +0.25 ∆yj(skFk
ż
Di−1/2 j + Fk+1/2Dij

ẋ
)

p̂i+1jk−1 +0.25 ∆yj(skFk
ż
Di+1/2 j + Fk−1/2Dij

ẋ
)

p̂i−1jk−1 −0.25 ∆yj(skFk
ż
Di−1/2 j + Fk−1/2Dij

ẋ
)

p̂ij+1k+1 −0.25 ∆xi(skFk
ż
Eij+1/2 + Fk+1/2Eij

ẏ
)

p̂ij−1k+1 +0.25 ∆xi(skFk
ż
Eij−1/2 + Fk+1/2Eij

ẏ
)

p̂ij+1k−1 +0.25 ∆xi(skFk
ż
Eij+1/2 + Fk−1/2Eij

ẏ
)

p̂ij−1k−1 −0.25 ∆xi(skFk
ż
Eij−1/2 + Fk−1/2Eij

ẏ
)
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A.2 Matrix coefficients - boundary between two

grids

When multiple grids are used, the coefficients change for the elements at the internal

boundaries. In this section capital indices I and J are just for the coarse grid

x- and y-direction, lower case indices are used for the vertical and the fine grid.

Furthermore, the coarse grid pressure perturbation is denoted by capital P̂ , the fine

grid pressure perturbation by lower case p̂.

The calculation of the divergence in x-direction in the coarse grid cell I = R caused

by the pressure gradient starts from Eq. (6.7). Here, (ρ0
ẋû)r−0.5 jk is replaced by

Pr−0.5 jk from Eq. (6.9), (ρ0
ẋû)r+0.5 jk by Pi+0.5jk from Eq. (6.4) and (ρ0

ẋÛ)R−0.5 Jk

by PR−0.5 Jk from Eq. (6.4). This yields:

(
∂

∂x
[ρ0α

∗Û ]

)

RJk

= ∆yJ∆zk

{
ψcψu

1

Ar−0.5

1

Ny

j2∑

j=j1

Gr−0.5 j
•ẋ
(
p̂rjk − P̂Rjk

ẏ)

−ψc
Fk

ż

Ck
ż 0.25

1

Ny

j2∑

j=j1

Dr−0.5 j (p̂rjk+1 − p̂rjk−1

+P̂RJk+1

ẏ

− P̂RJk−1

ẏ)

+
ψf

Ar+0.5

1

Ny

j2∑

j=j1

(
Gr+0.5 j

•ẋ
(p̂r+1 jk − p̂rjk)

)

−ψf0.25
Fk

ż

Ck
ż

1

Ny

j2∑

j=j1

[Dr+0.5 j(p̂r+1 jk+1 + p̂rjk+1

−p̂r+1 jk−1 − p̂rjk−1)]

−
GR−0.5 J

•ẋ

AR−0.5
(P̂RJk − P̂R−1 Jk)

+
Fk

ż
DR−0.5 J

Ck
ż 0.25(P̂R−1Jk+1 + P̂RJk+1

−P̂R−1 Jk−1 − P̂RJk−1)
}

In the equation above the blue colours denote pressure values with additional coef-

ficients in comparison to Eq. (A.1) which is still valid for non-boundary grid points.
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Red colours denote dependencies on the neighbouring fine grid.

For the fine grid at the boundary (cell i = r) the procedure is similar to the one

described for the coarse grid. The derivation starts from Eq. (6.8). Pr−0.5jk from

Eq. (6.9) is inserted for (ρ0
ẋû)r−0.5, and replacing (ρ0

ẋû)r+0.5ij by Pr+0.5ij from Eq.

(6.4) yields:

(
∂

∂x
[ρ0α

∗û]

)

rjk

= ∆yJ∆zkψc

{
+
Gr+0.5 j

•ẋ

Ar+0.5

(p̂r+1jk − p̂r jk)

−
Fk

ż
Dr+0.5 j

Ck
ż 0.25(p̂r+1 jk+1 + p̂rjk+1 − p̂r+1 jk−1 − p̂rjk−1)

−ψu
Gr−0.5 j

•ẋ

Ar−0.5

(
p̂rjk − P̂Rjk

ẏ)

+
Fk

ż
Dr−0.5 j

Ck
ż

0.25

(
p̂rjk+1 − p̂rjk−1 + P̂Rjk+1

ẏ

− P̂Rjk−1

ẏ)

}

Again, blue colours denote pressure values with additional coefficients in comparison

to Eq. (A.1) and red colours dependencies on the neighbouring coarse grid.

For the divergence in the coarse grid cell R caused by the pressure gradient in z-

direction term (6.3c) is taken and ṖRJk±0.5 from Eq. (6.15) is inserted for (ρ0
ż ˆ̇W )RJk±0.5:
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( ∂
∂ż

[ρ0α
∗ ˆ̇W ]

)

RJk
= ∆xR∆yJ

{
1 + F 2

k+0.5(DRJ
ẋ2

+ ERJ
ẏ2

)

Ck+0.5GRJ

(P̂RJk+1 − P̂RJk)

−
1 + F 2

k−0.5(DRJ
ẋ2

+ ERJ
ẏ2

)

Ck−0.5GRJ

(P̂RJk − P̂RJk−1)

−Fk+0.5
ERJ

ẏ

BR
ẏ 0.25(P̂RJ+1 k+1 + P̂RJ+1 k − P̂RJ−1 k+1 − P̂RJ−1 k)

+Fk−0.5
ERJ

ẏ

BR
ẏ 0.25(P̂RJ+1k−1 + P̂RJ+1 k − P̂RJ−1 k−1 − P̂RJ−1 k)

−Fk+0.5
DRJ

ẋ

AR
ẋ ψW

[
1

Ny

j2∑

j=j1

(p̂rjk + p̂rjk+1) − P̂R−1 Jk − P̂R−1 Jk+1

]

+Fk−0.5
DRJ

ẋ

AR
ẋ
ψW

[
1

Ny

j2∑

j=j1

(p̂rjk + p̂rjk−1) − P̂R−1 Jk − P̂R−1 Jk−1

]}

Blue colours denote pressure values with additional coefficients in comparison to Eq.

(A.3) and red colours dependencies on the neighbouring fine grid.

For the divergence in the fine grid cell r caused by the pressure gradient in z-direction

term (6.3c) is taken and Ṗrjk±0.5 from Eq. (6.16) is inserted for (ρ0
ż ˆ̇WRJk±0.5):

( ∂
∂ż

[ρ0α
∗ ˆ̇w]
)

rjk
= ∆xr∆yk

{
1 + F 2

k+0.5(Drj
ẋ2

+ Erj
ẏ2

)

Ck+0.5Grj
(p̂rjk+1 − p̂rjk)

−
1 + F 2

k−0.5(Drj
ẋ2

+ Erj
ẏ2

)

Ck−0.5Grj
(p̂rjk − p̂rjk−1)

−Fk+0.5
Erj

ẏ

Br
ẏ

0.25(p̂rj+1k+1 + p̂rj+1k − p̂rj−1 k+1 − p̂rj−1k)

+Fk−0.5
Erj

ẏ

Br
ẏ

0.25(p̂rj+1k−1 + p̂rj+1k − p̂rj−1k−1 − p̂rj−1k)

−Fk+0.5
Drj

ẋ

Ar
ẋ
ψw

(
p̂r+1 jk + p̂r+1 jk+1 − P̂Rjk

ẏ

− P̂Rjk+1

ẏ)

+Fk−0.5
Drj

ẋ

Ar
ẋ
ψw

(
p̂r+1 jk + p̂r+1 jk−1 − P̂Rjk

ẏ

− P̂Rjk−1

ẏ)}
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Again, blue colours denote pressure values with additional coefficients in comparison

to Eq. (A.3) and red colours dependencies on the neighbouring coarse grid.

The matrix coefficients can be taken directly from the equations for the divergence

caused by the pressure gradients. Changes in comparison to matrix elements belong-

ing to the inner grid are denoted with blue colour. The red colour indicates, that

there is no dependency anymore (0) due to the replacement by the neighbouring grid.

Note that factors a1j , a2j and a3j have their origin from the parabolic interpolation

in y-direction ( ·
ẏ
). The factors are calculated as indicated in Eq. (6.11)-(6.13).



A.2 Matrix coefficients - boundary between two grids 141

A.2.1 Elements of coarse grid

The coefficients of the coarse grid internal boundary cell (RJk) (Fig. 6.2) for vari-

ables belonging to the coarse grid pressure field variables are

variable coefficient

P̂RJk −ψcψu
1
Ny

∑j2
j=j1

a2jGr−1/2 j
•ẋ

∆yJ∆zk / Ar−1/2

−GR−1/2 J
•ẋ

∆yJ∆zk / AR−1/2

−GRJ+1/2
•ẏ

∆xR∆zk / BJ+1/2 −GRJ−1/2
•ẏ

∆xR∆zk / BJ−1/2

−∆xR∆yJ(1 + F 2
k+1/2(DRJ

ẋ2
+ ERJ

ẏ2
)) / (Ck+1/2GRJ )

−∆xR∆yJ(1 + F 2
k−1/2(DRJ

ẋ2
+ ERJ

ẏ2
)) / (Ck−1/2GRJ )

P̂R+1Jk 0

P̂R−1Jk ∆yJ∆zkGR−1/2 J
•ẋ

/ AR−1/2

+ ∆yJDRJ
ẋ
ψW (Fk+1/2 − Fk−1/2)

P̂RJ+1k ∆xR∆zkGRJ+1/2
•ẏ

/ BJ+1/2

−0.25 ∆xRERJ
ẏ
(Fk+1/2 − Fk−1/2)

−ψcψu
1
Ny

∑j2
j=j1

a3jGr−1/2 j
•ẋ

∆yJ∆zk / Ar−1/2

P̂RJ−1k ∆xR∆zkGRJ−1/2
•ẏ

/ BJ−1/2

+ 0.25 ∆xRERJ
ẏ
(Fk+1/2 − Fk−1/2)

−ψcψu
1
Ny

∑j2
j=j1

a1jGr−1/2 j
•ẋ

∆yJ∆zk / Ar−1/2

P̂RJk+1 ∆xR∆yJ(1 + Fk+1/2
2(DRJ

ẋ2
+ ERJ

ẏ2
)) / (Ck+1/2GRJ )

− 0.25 ∆yJskFk
ż
( ψc

Ny

∑j2
j=j1

a2jDr−1/2 j −DR−1/2 J)

− 0.25 ∆xRskFk
ż
(ERJ+1/2 − ERJ−1/2)

P̂RJk−1 ∆xR∆yJ(1 + F 2
k−1/2(DRJ

ẋ2
+ ERJ

ẏ2
)) / (Ck−1/2GRJ)

+ 0.25 ∆yJskFk
ż
( ψc

Ny

∑j2
j=j1

a2jDr−1/2 j −DR−1/2 J)

+ 0.25 ∆xRskFk
ż
(ERJ+1/2 −ERJ−1/2)

P̂R+1Jk+1 0

P̂R−1Jk+1 +0.25 ∆yJ(skFk
ż
DR−1/2 J) + ΨW∆yJFk+1/2DRJ

ẋ

P̂R+1Jk−1 0

P̂R−1Jk−1 −0.25 ∆yJ(skFk
ż
DR−1/2 J) − ΨW∆yJFk−1/2DRJ

ẋ
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variable coefficient

P̂RJ+1k+1 −0.25 ∆xR(skFk
ż
ERJ+1/2 + Fk+1/2ERJ

ẏ
)

− 0.25 ∆yJskFk
ż ψc

Ny

∑j2
j=j1

a3jDr−1/2 j

P̂RJ−1k+1 +0.25 ∆xR(skFk
ż
ERJ−1/2 + Fk+1/2ERJ

ẏ
)

− 0.25 ∆yJskFk
ż ψc

Ny

∑j2
j=j1

a1jDr−1/2 j

P̂RJ+1k−1 +0.25 ∆xR(skFk
ż
ERJ+1/2 + Fk−1/2ERJ

ẏ
)

+ 0.25 ∆yJskFk
ż ψc

Ny

∑j2
j=j1

a3jDr−1/2 j

P̂RJ−1k−1 −0.25 ∆xR(skFk
ż
ERJ−1/2 + Fk−1/2ERJ

ẏ
)

+ 0.25 ∆yJskFk
ż ψc

Ny

∑j2
j=j1

a1jDr−1/2 j

Ny fine grid indices j = j1, ..., j2 correspond to the coarse y-index J . The associ-

ated fine grid pressure variables are part of the equation for grid cell (IJk). The

coefficients the these fine grid pressure variables are:

variable coefficient

p̂rjk +ψcψu
1
Ny
Gr−1/2 j

•ẋ
∆yJ∆zk / Ar−1/2

− ψf
1
Ny
Gr+1/2 j

•ẋ
∆yJ∆zk / Ar+1/2

− 1
Ny

∆yJDRJ
ẋ
ψW (Fk+1/2 − Fk−1/2)

p̂r+1jk +ψf
1
Ny
Gr+1/2 j

•ẋ
∆yJ∆zk / Ar+1/2

p̂rjk+1 −0.25 ∆yJskFk
ż ψc

Ny
Dr−1/2 j

−0.25 ∆yJskFk
ż ψf

Ny
Dr+1/2 j

− 1
Ny

∆yJDRJ
ẋ
ψWFk+1/2

p̂rjk−1 +0.25 ∆yJskFk
ż ψc

Ny
Dr−1/2 j

+0.25 ∆yJskFk
ż ψf

Ny
Dr+1/2 j

+ 1
Ny

∆yJDRJ
ẋ
ψWFk−1/2

p̂r+1k+1 −0.25 ∆yJskFk
ż ψf

Ny
Dr+1/2 j

p̂r+1jk−1 +0.25 ∆yJskFk
ż ψf

Ny
Dr+1/2 j
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A.2.2 Elements of fine grid

The coefficients of the fine grid internal boundary cell (rjk) (Fig. 6.2) belonging to

the fine grid pressure field variable are

variable coefficient

p̂rjk −ψcGr+1/2 j
•ẋ

∆yj∆zk / Ar+1/2 − ψcψuGr−1/2 j
•ẋ

∆yj∆zk / Ar−1/2

−Grj+1/2
•ẏ

∆xr∆zk / Bj+1/2 −Grj−1/2
•ẏ

∆xr∆zk / Bj−1/2

−∆xr∆yj(1 + F 2
k+1/2(Drj

ẋ2
+ Erj

ẏ2
)) / (Ck+1/2Grj)

−∆xr∆yj(1 + F 2
k−1/2(Drj

ẋ2
+ Erj

ẏ2
)) / (Ck−1/2Grj)

p̂r+1jk ψc∆yj∆zkGr+1/2 j
•ẋ

/ Ar+1/2

−ψw ∆yjDrj
ẋ
(Fk+1/2 − Fk−1/2)

p̂r−1jk 0

p̂rj+1k ∆xr∆zkGrj+1/2
•ẏ

/ Bj+1/2

−0.25 ∆xrErj
ẏ
(Fk+1/2 − Fk−1/2)

p̂rj−1k ∆xr∆zkGrj−1/2
•ẏ

/ Bj−1/2

+ 0.25 ∆xrErj
ẏ
(Fk+1/2 − Fk−1/2)

p̂rjk+1 ∆xr∆yj(1 + Fk+1/2
2(Drj

ẋ2
+ Erj

ẏ2
)) / (Ck+1/2Grj)

− 0.25 ∆yjψcskFk
ż
(Dr+1/2 j −Dr−1/2 j)

− 0.25 ∆xrskFk
ż
(Erj+1/2 − Erj−1/2)

p̂rjk−1 ∆xr∆yj(1 + F 2
k−1/2(Drj

ẋ2
+ Erj

ẏ2
)) / (Ck−1/2Grj)

+ 0.25 ∆yjψcskFk
ż
(Dr+1/2 j −Dr−1/2 j)

+ 0.25 ∆xrskFk
ż
(Erj+1/2 − Erj−1/2)

p̂r+1jk+1 −0.25 ∆yj(ψcskFk
ż
Dr+1/2 j) − ψw∆yjFk+1/2Drj

ẋ

p̂r−1jk+1 0

p̂r+1jk−1 +0.25 ∆yj(ψcskFk
ż
Dr+1/2 j) + ψw∆yjFk−1/2Drj

ẋ

p̂r−1jk−1 0

p̂rj+1k+1 −0.25 ∆xr(skFk
ż
Erj+1/2 + Fk+1/2Erj

ẏ
)

p̂rj−1k+1 +0.25 ∆xr(skFk
ż
Erj−1/2 + Fk+1/2Erj

ẏ
)

p̂rj+1k−1 +0.25 ∆xr(skFk
ż
Erj+1/2 + Fk−1/2Erj

ẏ
)

p̂rj−1k−1 −0.25 ∆xr(skFk
ż
Erj−1/2 + Fk−1/2Erj

ẏ
)

The coefficients for the coarse grid pressure field variables in the pressure equation
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for the fine grid cell (ijk) are:

variable coefficient

P̂RJk +a2j

[
ψuψcGr−1/2 j

•ẋ
∆yj∆zk / Ar−1/2

+ψw ∆yjDrj
ẋ
(Fk+1/2 − Fk−1/2)

]

P̂RJk+1 +a2j

[
∆yj0.25ψcskFk

ż
Dr−1/2 j

+ψw ∆yjDrj
ẋ
Fk+1/2

]

P̂RJk+1 −a2j

[
∆yj0.25ψcskFk

ż
Dr−1/2 j

+ψw ∆yjDrj
ẋ
Fk−1/2

]

P̂RJ−1k +a1j

[
ψuψcGr−1/2 j

•ẋ
∆yj∆zk / Ar−1/2

+ψw ∆yjDrj
ẋ
(Fk+1/2 − Fk−1/2)

]

P̂RJ−1k+1 +a1j

[
∆yj0.25ψcskFk

ż
Dr−1/2 j

+ψw ∆yjDrj
ẋ
Fk+1/2

]

P̂RJ−1k+1 −a1j

[
∆yj0.25ψcskFk

ż
Dr−1/2 j

+ψw ∆yjDrj
ẋ
Fk−1/2

]

P̂RJ+1k +a3j

[
ψuψcGr−1/2 j

•ẋ
∆yj∆zk / Ar−1/2

+ψw ∆yjDrj
ẋ
(Fk+1/2 − Fk−1/2)

]

P̂RJ+1k+1 +a3j

[
∆yj0.25ψcskFk

ż
Dr−1/2 j

+ψw ∆yjDrj
ẋ
Fk+1/2

]

P̂RJ+1k+1 −a3j

[
∆yj0.25ψcskFk

ż
Dr−1/2 j

+ψw ∆yjDrj
ẋ
Fk−1/2

]



B Solvers for the elliptic

equation

This appendix describes iterative solvers for elliptic equations like Eq. (2.19). When

equations of this type are discretised this generally leads to a systems of equations

of the form

Ax = b (B.1)

with the coefficient matrix A ∈ R
nxn, the right-hand-side b ∈ R

n and the solution

vector x ∈ R
n. Note that x should not be confused with the Cartesian coordinate.

x corresponds to the pressure vector p̂, A to the discretised operator ~∇• ~P and b to

the momentum divergence. Since for the pressure equation the system of equations

has as many unknowns and equations as there are grid points (= n in the example

above), its direct solution is not feasible. Therefore, approximate iterative solvers

are needed. This appendix describes two types of methods, namely Krylov subspace

methods (Section B.1) and MULTIGRID methods (Section B.4). Additionally, the

preconditioning of matrix A is described. Preconditioning is a standard method to

speed-up the convergence (Section B.2). The triangular solve of preconditioners on

vector computers is explained in Section B.3.

B.1 Krylov subspace methods

Krylov subspace methods were developed to calculate iteratively the solution x ∈

R
n of Eq. (B.1). For a symmetric and positive definite matrix A the method of

the conjugate gradients (CG) is very efficient. They were developed by Hestenes

and Stiefel (1952). It is based on defining an appropriate (Krylov) subspace of R
n

to which a projection of x is calculated. In each iteration step the subspace is

extended by one dimension by demanding the residual of each iteration step to be

perpendicular to the Krylov subspace.

145
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As the pressure matrix A of METRAS is not symmetric, CG are expected to fail

in many cases even for a single grid. The asymmetry of A is caused by the surface

following coordinate transformation and by the nonuniform grid. The latter is com-

monly applied at least in the vertical. Furthermore, if more than one grid is used,

coupling terms lead to additional non-symmetry.

For non-symmetric matrices A methods based on biorthogonalisation were derived.

These methods can also be interpreted as projections of the system of equations

to a lower dimensional subspace, which is extended with each iteration step. In

METRAS Bi-CGSTAB (Van der Vorst, 1992) is implemented.

The CG methods are described briefly in the following (Section B.1.1). Bi-CG

(Fletcher, 1975, Section B.1.2) is also explained as a step towards Bi-CGSTAB

(Section B.1.3). Details can be found in various text books (e.g. Hackbusch, 1993;

Deuflhard and Hohmann, 2003; Van der Vorst, 2003; Saad, 2003). A collection of

algorithms is given by Barret et al. (1994).

B.1.1 Conjugate gradients

For the system (B.1) it is the aim of the conjugate gradients methods to find an

appropriate subspace of R
n out of which a best approximation to x is calculated

relative to a previously defined error norm. If A is symmetric and positive definite

it can be used to define the inner product

< x, y >A =< x,Ay > (B.2)

with the scalar product < x, y >= xτy. Again, x and y ∈ R
n are not Cartesian

coordinates.

Let Uk be a k-dimensional vector subspace of R
n, and Vk the parallel vector space

Vk = x0 +Uk, then < x, y >A can be used to calculate an A-orthogonal basis (pi) of

Uk (i.e. < pi, pj >A= δij where δij is the Kronecker delta). With pi a projection xk

(with respect to < ·, · >A) of the solution x to Vk can be calculated so that

< A(x− xk), v − x0 >=< rk, v − x0 > 0 for all v ∈ Vk. (B.3)

The residual rk is orthogonal to the subspace Uk which means that | < (x−xk), A(x−

xk) > | cannot be decreased be adding any vector y ∈ Uk to xk.

To find a solution means to create a reasonable Uk. An efficient way is to expand
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Uk by the orthogonal vector rk to get Uk+1, so we can demand

Uk = span{r0, Ar0, ..., A
k−1r0} (B.4)

This is the Krylov subspace. This way we make sure to continuously expand the

space of approximate solutions and that at least after n iterations we will end up

with the exact solution. However, usually only a certain accuracy is needed, and the

iteration stops after the error norm of the residual is less than a preciously defined

maximum residual rmax (Section 6.3).

This leads immediately to the conjugate gradient (CG) iteration algorithm: If we

start with an approximate solution x0, the first A-basis vector is p1 = r0 = A(x −

x0) = b−Ax0 (1., Fig. B.1). In line 2.1 and 2.2 the new projection of x is calculated,

along with the new residual in 2.3. In 2.4 the residual is tested by an error norm e.

This can be defined e.g. as the || · ||2 norm. If the result is lower than the maximum

allowed residual rmax, the iteration is finished. Section 6.3 gives a more sophisticated

solution how to define e and rmax. If the residual is not small enough, a new vector

pk+1 is calculated to expand the Krylov subspace (line 2.5 and 2.6).

B.1.2 Bi-CG

The conjugate gradients can also be derived by projecting the systems of equa-

tions. As seen in Section B.1.1 the residual vectors rk of each iteration step are

perpendicular to each other. They can be used to form the columns of the matrix

Rk = (r1, r2, ..., rk). With y = (Rk)
τx (y ∈ R

k) the systems of equations can be

1.p1 = r0 = A(x− x0) = b− Ax0

2.for k=1, 2, ...

2.1 αk =
<rk−1,rk−1>

<pk,pk>A

2.2 xk = xk−1 + αkpk

2.3 rk = rk−1 − αkApk

2.4 if (e(rk) < rmax) exit

2.5 βk+1 = <rk,rk>
<rk−1,rk−1>

2.6 pk+1 = rk + βk+1pk

end

Figure B.1: Algorithm for the iterative solution of Ax = b with conjugate gradients.
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written as

Rτ
kARky = Rτ

kb (B.5)

It can be shown that Rτ
kARk is a tridiagonal matrix, which is the projection of the

systems of equations to the Krylov subspace. The projected system can be used to

derive the recurrence formula of the Section B.1.1.

Conjugate gradients are likely to fail for a non-symmetric A. In this case Rτ
kARk is

not tridiagonal, and rk is not perpendicular to the Krylov subspace. However, it can

be shown that the vectors r̃k = Pk(A
τ )r0 are perpendicular to the vectors r0, ..., rk−1

(rk = Qk(A)r0), where Pk and Qk are polynomials of degree k. This also means

that the vectors rk are perpendicular to the vectors r̃0, ..., r̃k−1 (biorthogonality).

The corresponding matrices Rk and R̃k = (r̃1, r̃2, ..., r̃k) can be used to calculate a

projection of the systems of equations with

R̃τ
kARky = R̃τ

kb. (B.6)

Again, R̃τ
kARk is tridiagonal and can be used to calculate a recurrence formula

similar to that of CG. If for the rk and r̃k the residuals of rk = Axk − b and

r̃k = Aτ x̃k − b̃ (with arbitrary b̃ or r̃0) are taken, the resulting scheme is Bi-CG

and can also be used for solving systems of equations with non-symmetric A. The

Bi-CG algorithm is similar to the CG-algorithm (Fig. B.2). Note that the x̃k are

not needed and therefore not calculated.

1.a p1 = r0 = A(x− x0) = b− Ax0

1.b p̃1 = r̃0 = r0

2.for k=1, 2, ...

2.1 αk =
<r̃k−1,rk−1>

<p̃k,pk>A

2.2 xk = xk−1 + αkpk

2.3.a rk = rk−1 − αkApk

2.3.b r̃k = r̃k−1 − αkA
τ p̃k

2.4. if (e(rk) < rmax) exit

2.5. βk+1 = <r̃k,rk>
<r̃k−1,rk−1>

2.6.a pk+1 = rk + βk+1pk

2.6.b p̃k+1 = r̃k + βk+1p̃k

end

Figure B.2: Algorithm for the iterative solution of Ax = b with Bi-CG.
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B.1.3 Bi-CGSTAB

Bi-CG is disadvantageous as basically two systems of equations are solved at once,

but only the solution of one system is needed. Furthermore, the convergence can be

quite irregular if αk ≈ 0 in step 2.1 of the algorithm (Fig. B.2). Bi-CGSTAB uses

a different approach to circumvent this problem. In Bi-CG

< r̃i, rk >=< Pi(A
τ )r̃0, Pj(A)r0 >= 0 (B.7)

which can be rewritten to

< r̃0, Pi(A)Pj(A)r0 >= 0. (B.8)

This shows that instead of creating r̃k and rk it is also possible to create rk in a

different way based on

ri = Qi(A)Pi(A)r0 (B.9)

with the Pi as in Bi-CG and Qi(A) = (1 − ωiA)(1 − ωi−1A) · · · (1 − ω1A). It is

possible to exploit the recurrences of Bi-CG for the calculation of the residual and

the basis vectors of the Krylov subspace pi and then minimise ri with respect to wi.

The resulting scheme is Bi-CGSTAB (Fig. B.3).

B.2 Preconditioning

The Krylov subspace methods introduced in Section B.1 converge only slowly if the

matrix is not well-conditioned, i.e. if

κ(A) =
λmax

λmin

is very large where λmax denotes the largest eigenvalue and λmin the smallest eigen-

value. For this reason preconditioning is necessary, which means instead of solving

Ax = b, AK−1y = b is solved with a matrix K that is easily invertible. As soon as a

solution for y has been calculated, x is calculated by x = K−1y. Details on different

preconditioning techniques can be found in Van der Vorst (2003) and Saad (2003).

K is usually taken to be an approximate of A. In METRAS this is achieved by an

incomplete LU factorisation of A. The idea is to create a lower triangular matrix

L and an upper triangular matrix U so that [(L + I)(U + I)D]i,j = ai,j for the

non-zero elements (i, j) ∈ NZ(A) = {(i, j)|ai,j 6= 0}. Here I is the identity matrix.
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The algorithm for calculating the elements of L and U can be interpreted as an

incomplete Gaussian elimination (Fig. B.4).

This leads to K = (L + I)(U + I)D ≈ A. In the algorithms for Krylov subspace

methods where Ax is evaluated (Section B.1), AK−1y is evaluated instead. The

inversion of K only demands inverting triangular matrices, which is can easily be

achieved by a serial algorithm.

B.3 Triangular solve on vector computers

The direct solve of a general triangular system cannot be easily vectorised or paral-

lelised. However, for sparse triangular matrices like the matrices used in METRAS

there is a way to reorder the equations and create groups of equations that can

be calculated independently. This is the so called wavefront ordering (e.g. Van der

Vorst, 1989). If the basic matrix is ordered lexicographically, i.e. with i, j, k as

1.a p1 = r0 = A(x− x0) = b− Ax0

1.b r̃0 = r0

2.for k=1, 2, ...

2.1 ρk−1 =< r̃0, rk−1 >

2.2 if k = 1

pk = rk−1

else

βk−1 =
<r̃0,rk−1>

<r̃0,rk−2>

αk−1

ωk−1

pk = rk−1 + βk−1(pk−1 − ωApk−1

endif

2.3 αk =
<r̃0,rk−1>

<r̃0,pk>A

2.4 s = rk−1 − αkApk

2.5 ωk = <As,s>
<As,As>

2.6 xk = xk−1 + αkpk + ωks

2.7 rk = s− ωkAs

2.8 if (e(rk) < rmax) exit

end

Figure B.3: Algorithm for the iterative solution of Ax = b with Bi-CGSTAB.
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indices in (x, y, z)-direction and (Nx1, Nx2, Nx3) as number of grid points in (x, y, z)-

direction, the < ind >th equation in lexicographical ordering is related to (i, j, k)

by

< ind >= k + 1 + jNx3 + iNx3Nx2

for i = 1, ..., n

for j = 1, ..., n and (i, k) ∈ NZ(A)

dij = aij for i = j

dij = 0 for i 6= j

lij = aij for i > j

lij = 0 for i <= j

uij = aij for i < j

uij = 0 for i >= j

end

end

for i = 1, ..., n

dii = 1/dii

for k = 1, ..., i-1 and (i, k) ∈ NZ(A)

lik = likdkk

for j = k+1, ..., i-1 and (i, k) ∈ NZ(A)

lij = lij − likukj

end

If (i, k) ∈ NZ(A) then dii = dii − likuki

for j = i+1, ..., n and (i, k) ∈ NZ(A)

uij = uij − likukj

end

end

end

for i = 1, ..., n

for j = i+1, ..., n and (i, k) ∈ NZ(A)

uij = uijdii

end

end

Figure B.4: Algorithm for the incomplete LU decomposition of the matrix A.
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with k = 0, ..., Nx3 − 1, j = 0, ..., Nx2 − 1 and i = 0, ..., Nx1 − 1. Each equation of

the full matrix has the stencil

(i, j + 1, k + 1)

(i, j + 1, k)

(i, j + 1, k − 1)

(i− 1, j, k + 1) (i, j, k + 1) (i+ 1, j, k + 1)

(i− 1, j, k) (i, j, k) (i+ 1, j, k)

(i− 1, j, k − 1) (i, j, k − 1) (i+ 1, j, k − 1)

(i, j − 1, k + 1)

(i, j − 1, k)

(i, j − 1, k − 1)

. (B.10)

Equations of the lower triangular matrix have the stencil

−

(i− 1, j, k + 1)

(i− 1, j, k) (i, j, k)

(i− 1, j, k − 1) (i, j, k − 1)

(i, j − 1, k + 1)

(i, j − 1, k)

(i, j − 1, k − 1)

. (B.11)

For the upper triangular matrix the stencil is reversed with (i, j, k) being part of

both stencils. This shows that equations belonging to grid points with i+ j + 2k =

c = const can be solved simultaneously, as they do not depend on each other. It is,

however, necessary that all equations with i+ j + 2k < c have already been solved

for the lower triangular matrix and all equations with i+ j + 2k > c for the upper

triangular matrix. The outlined independence of the equations can be exploited for

vectorisation.

B.4 MULTIGRID

Basic iteration schemes like Gauß-Seidel or successive overrelaxation (SOR) as well

as the ILU preconditioning step described in Section B.2 reduce high frequency

residuals with a few iteration steps while low frequency residuals need many iteration

steps. The information is spread by the solver only over short grid distances. For this

reason MULTIGRID methods have been developed (e.g. Hackbusch, 1985; Briggs



B.4 MULTIGRID 153

et al., 2000; Trottenberg et al., 2001). The basic idea is that the problem is also

solved on a coarser grid where the residual has a higher frequency with respect to

the grid. While on the high frequencies are removed on the initial fine grid, the low

frequencies are removed on the coarse grid. A basic MULTIGRID scheme consists of

the following elements which will be explained in this section: a restriction operator,

a smoother, a prolongation operator and a direct solver on the coarsest grid. Let

Gi be n + 1 grid levels for i = 0, ..., n where G0 is the main grid. Higher i indicate

a coarser grid (Fig. B.5). For each grid level the problem to solve is Aixi = bi.

Note that in this section the superscript does not denote potentiation but that the

quantity is on grid level i. The restriction operator Ri+1
i acts on the residual ri on

level i to yield the residual ri+1 = Ri+1
i ri on level i+1. This means that the residual

ri is coarsened to grid Gi+1. The prolongation operator P i
i+1 does the reverse -

it interpolates the solution xi+1 on level i + 1 to the solution xi = P i
i+1x

i+1. The

smoother Si is an operator that removes the high frequencies on level i that have not

been removed by the coarse grid solution and are also caused by the prolongation.

The basic algorithm used in METRAS is based on a V-cycle (Fig. B.6). In the

coarsening stage the residual on level i is smoothed and thereby a correction to the

solution on this level is found. The new residual is restricted to level i+1 where the

steps as on level i are taken. If the coarsest level has been reached, the residual on

this level is not smoothed, but a direct solution to remove it completely (in terms of

the requested accuracy) is sought. Now the refining stage is started. The solution on

level i+ 1 is prolongated to level i, where it is used to correct the hitherto solution

on this level. This new residual is smoothed again and the improved solution is

prolongated again unless the finest level has been reached.

Basically, there are two methods to set up the matrices Ai. Algebraic MULTIGRID

uses the prolongation and restriction operators to transform the matrix on level i

level 0’ level 0 level 1 level 2

Figure B.5: Different grid levels for multigrid (horizontal cross-section). Level 0’ is only used if

a refined grid is present.
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to get the matrix on level i+ 1:

Ai+1 = Ri+1
i AiP i

i+1

In this case prolongation operator and restriction operator are usually chosen to

satisfy Ri+1
i = cP i

i+1
τ
. This means they are adjoint operators except for the constant

c.

The alternative is geometric MULTIGRID. This method can be chosen when the

matrix A is derived by the discretisation of a differential equation. In this case the

discretisation can be performed on a coarser grid to yield the higher level matrices.

In the context of multiple grids geometric MULTIGRID is also easier to implement.

Tests for this work have shown that geometric MULTIGRID is superior to algebraic

MULTIGRID methods for the METRAS matrix on a single grid (not presented

here). Therefore, the experiments presented in this thesis are always performed

with geometric MULTIGRID (or Bi-CGSTAB).

For METRAS the grid is coarsened in each spatial direction by a factor of two from

one level to the next (Fig. B.5). If a refined grid is present, an extra level 0’ is

added. The coarsening from level 0’ to level 0 takes place in the area of the refined

grid and only in the horizontal - the fine grid is removed (Fig. B.5). This means

that from level 0’ to level 0 the grid is not coarsened by a factor of two but by the

actual refinement factors Nx and Ny of the subgrid, i.e. three in Fig. B.5.

For this work the restriction operation is based on aggregation, while the prolon-

gation operator distributes the solution from the coarse cell to the fine cell. The

latter can be interpreted as 0th order interpolation. Higher order interpolation is

G 2

G 1

G 3

G 0

S

S

S

D

R

R

R
S

S

S

P

P

P

Figure B.6: V-cycle for MULTIGRID. Gi is the grid level, S = smoothing, P = prolongation, R

= restriction, D = direct solve.
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not necessary, since the coarse grid solution is only an approximation where higher

order interpolation does not create additional information. Furthermore, a smooth-

ing operator quickly eliminates the high frequency disturbances caused by the 0th

order interpolation. As smoothing operator the inverse of the ILU(0) factorisation

of Ai is taken (Si = (U i + I)−1(Li + I)−1, Section B.2). Here it is assumed that Ai

has already been scaled with Di. As outlined in the algorithm in Fig. B.7 within

each smoothing step the smoothing operator is applied twice.

x = 0

r0 = b

for k=1, 2, ...

for i=0, ..., n-1

x′i = Siri

r′ = ri − Aix′i

x′i = x′i + Sir′

r′ = ri − Aix′i





smoothing

ri+1 = Ri+1
i r′ restriction

end

solve of Anxn = rn with Bi-CGSTAB

for i=n-1, ..., 0

x′i = x′i + P i
i+1x

i+1 prolongation

r′ = ri − Aix′i

x′i = x′i + Sir′

r′ = ri − Aix′i

x′i = x′i + Sir′





smoothing

end

r0 = A0x′0 − r0

x = x+ x′0

end

Figure B.7: Algorithm for the iterative solution of Ax = b with MULTIGRID.
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Lukácǒvá-Medvid’ová, M., S. Noelle and M. Kraft (2007): Well-balanced

Finite Volume Evolution Galerkin methods for the shallow water equations. J.

Comp. Phys., 221, 122–147.
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