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Abstract

This thesis deals with the static and dynamic properties of nano- and micrometer-sized fer-

romagnets in interaction with time-dependent electric currents and magnetic fields studied

by micromagnetic simulation, magnetoresistance measurements, and X-ray microscopy.

First equilibrium magnetization configurations of iron, nickel and permalloy microele-

ments in arrays were studied depending on inter-element distance, film thickness, as well

as strength and direction of applied magnetic fields. The magnetization dynamics of thin

permalloy squares in response to nanosecond short magnetic field pulses was then inves-

tigated with an enhanced micromagnetic simulation code, and the extracted spin-wave

spectrum was compared to current theories of spin-wave eigenmodes. The magnetic

eigenmodes of a thin permalloy platelet to periodic field excitation were also studied by

micromagnetic simulation and compared to X-ray microscopy data. Then I investigated

the influence of the local magnetization on the electric current by means of micromagnetic

simulations and measurements of the anisotropic magnetoresistance (AMR) effect. These

studies were done by comparing measured AMR signals to those from micromagnetic

simulations as well as performing AMR measurements and X-ray microscopy simulta-

neously on the same samples. Finally, these topics and techniques are brought together

in a study of the magnetization changes in permalloy wires and rectangles due to spin-

polarized currents and magnetic fields. Domain-wall oscillations driven by spin-polarized

ac-currents and the interaction of nanosecond current pulses with domain walls were in-

vestigated numerically and by X-ray microscopy. Time- and phase resolving X-ray mi-

croscopy and micromagnetic simulations were used to study the dynamics of magnetic

vortices and antivortices driven by ac-currents and magnetic fields.

This thesis encompasses the work of several people from different research groups

through a number of collaborations. In the individual chapters I focussed on my con-

tributions within these collaborations from the work of the other members. However, as

the nature and beauty of scientific collaborations is the mutual sharing and learning that is

beneficial and inspiring for all participants, it is impossible to fully isolate my part from

the final results. In the individual chapters of this thesis I nevertheless tried to clarify my

contributions.
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Kurzfassung

Diese Arbeit behandelt die statischen und dynamischen Eigenschaften von Nano- und

Mikrometer-großen Ferromagneten in Wechselwirkung mit zeitabhängigen Strömen und

Magnetfeldern. Die Untersuchungen wurden mit Hilfe von mikromagnetischen Simula-

tionen, Magnetowiderstandsmessungen und Röntgenmikroskopie durchgeführt.

Zunächst wurden die magnetischen Grundzustände von Eisen, Nickel und Permalloy-

Mikroelementen in Arrays in Abhängigkeit von Abstand, Filmdicke sowie Stärke

und Richtung des externen Feldes untersucht. Die Magnetisierungsdynamik dünner

Permalloy-Quadrate, die durch Nanosekunden-Magnetfeldpulse angeregt wurden, wurde

dann mit Hilfe mikromagnetischer Simulations studiert. Das sich ergebende Spinwellen-

spektrum wurde mit aktuellen Theorien verglichen. Die magnetischen Eigenmoden in

dünnen Permalloy-Plättchen, die durch periodische Anregung entstehen, wurden eben-

falls simuliert und mit Röntgenmikroskopie-Daten verglichen. Dann habe ich den Ein-

fluß der lokalen Magnetisierung auf elektrische Ströme mit Hilfe von Simulationen

und Messungen des Anisotropen Magnetowiderstands (AMR) sowie durch gleichzeit-

ige Detektion des AMRs und der Domänenstruktur durch Röntgenmikroskopie unter-

sucht. Schließlich wurden alle Themen und Meßmethoden zusammengeführt, um die

Magnetisierungsänderungen durch spin-polarisierte Ströme und Magnetfelder zu bestim-

men. Domänenwand-Oszillationen durch spin-polarisierte ac-Ströme und der Einfluß

von Nanosekunden-Strompulsen auf Domänenwände wurden numerisch und mit Hilfe

von Röntgenmikroskopie untersucht. Zeit- und phasen-auflösende Röntgenmikroskopie

und mikromagnetische Simulationen halfen, die Dynamik von strom- und feldgetriebenen

magnetischen Vortizes und Antivortizes zu verstehen.

Diese Arbeit ist in Zusammenarbeit mit vielen Wissenschaftlern aus mehreren For-

schungsgruppen entstanden. In den einzelnen Kapiteln habe ich mich auf meinen Beitrag

in diesen Kollaborationen konzentriert. Es liegt jedoch in der Natur und im Zweck der

Sache begründet, dass gegenseitiges Mitteilen und Lernen zu einer Vermischung von

Gedankengut führen. Deshalb ist es oft nicht möglich, eine vollständige Trennung der

Beiträge durchzuführen. In den einzelnen Kapiteln habe ich mich dennoch bemüht, die

einzelnen Beiträge zu trennen.
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1 Introduction

Even though magnetism has been known to mankind for more than two millenia, it still

holds exciting surprises today. In fact, due to the applications like touchless magnetic

sensors, ultra-dense magnetic data storage, and permanent magnets in motors and genera-

tors, ferromagnetic systems enjoy an unprecedented popularity, and each household owns

literally dozens of them. Research on the origin and behavior of magnetism in ferromag-

netic materials under external influences such as temperature, stress, pressure, magnetic

fields, electric currents, etc. is currently one of the most active fields in solid state physics.

The development of semiconductor-based computers and mass data storage via mag-

netic harddisk media have profoundly changed the world in which we live. Directly

they have brought forth new technologies such as the internet, mobile telephony, digi-

tal photography, digital video, and many others. Indirectly, they have spawned the rise of

countless innovations through the millionfold increase in computing power and storage

capacity over the last fifty years. Without the help of computers to solve complex cal-

culations or to simulate the behavior of new materials and designs, space flight, decisive

advances in physics [1, 2, 3, 4], chemistry [5], medicine [6], and material science [7], to

just name a few, would have been impossible. In fact, the advances in all technologies of

the last decades, also in the semiconductor and magnetic storage technology themselves,

would not have been possible without the increasing ability to model and simulate com-

plex physical systems with the advent of computer-aided hardware design (CAD) [8] and

the ability to store vast amounts of data.

Magnetic data storage constitute the "memory of humanity". Everything from vital

records over personal memories like photos, correspondence, and videos to trivial data

such as consumer or internet statistics and spam emails is nowadays stored digitally on

these media. The millionfold increase in storage capacity has reduced the size of one bit

to less than one-thousandth of the width of a hair, and the total capacity of all the magnetic

storage now amounts to a staggering sum of 166 exabytes (1018 bytes)[9]. This represents

6 tons of paper per person on this planet. It is estimated that this number will increase six-

fold to almost one zetabyte (1021 bytes) by 2010. Hitachi Global Storage Technologies,

for example, has recently started to sell harddisks with a capacity over 1 Terabyte (1012
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1 Introduction

bytes) each [10]. The harddisk industry’s goal is to produce magnetic storage devices with

an areal storage density of 1 Terabit per square inch (Tb/in2) by 2010 with an average bit

size of 25 nm in diameter. In order to constantly expand the limits of what is possible re-

quired the ingenuity of corps of engineers but also fundamentally new storage paradigms.

For example, the newest development that led to the 1 Terabyte harddisk was to store the

information in vertical bits instead of horizontally on the surface. This paradigm is called

perpendicular recording [11]. The next major advance will likely require that bits are no

longer written on continuous magnetic films, but in very small separate magnetic islands

- in so-called bit patterned media [12]. But is has been shown that the maximum storage

capacity of bit patterned media is limited, both by the superparamagnetic effect as well

as by limits in switching speeds to about 5 Tb/in2 [13].

New approaches are needed to continue the current increase of 40% more storage capacity

per year and thus satisfy the ever-growing demand for storage space. Over the past years,

new magnetic storage concepts have been suggested, such as the magnetic bubble memory

[14, 15], magnetic random access memory devices (MRAM) [16], the magnetic domain-

wall storage devices [17] or the magnetic racetrack memory [18]. Some even suggested to

use magnetic cells as basic computation units to unite data storage and computation unit

and create new computer architecture concepts [17, 19, 20, 21]. While bubble memory

and MRAM devices have been and are being delivered to serve in niche markets, the

other technologies are still in earlier stages of research and development in which the

underlying physics is yet to be understood to the degree that reliable storage applications

can be implemented.

Recently, one key discovery was made that could change the way magnetic storage media

are conceptualized. It was discovered that spin-polarized electric currents can alter the

magnetization of MRAM cells [22, 23] as well as move magnetic domain walls forward

[24, 25, 26, 27, 28, 29]. In this way MRAMs could be made much smaller and thus poten-

tially compete with current volatile storage technologies such as DRAM or SRAM. This

would make the main memory of a computer non-volatile and could lead to many new

hardware architectures. On the other hand, magnetic domain walls could be moved by

these currents in threedimensional arrays of ferromagnetic stripes and increase the storage

capacity by many times. Despite the intense research on current-induced magnetization

switching and domain-wall motion, or spin-transfer torque, as the underlying mechanism

is called, much of the exact physics remains unknown. For example, it is currently hotly

debated how fast current-induced domain-wall motion can be [30, 31, 28, 32] and if the

motion is continuous or stochastic. Also, the influence of time dependent electric currents

and magnetic fields on the magnetization is under intense investigation. The latter topic
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is closely related to the magnetic system’s inherent dynamic states, its eigenmodes [33].

This thesis deals with the static and dynamic behavior of nano- and micrometer-sized fer-

romagnets in interaction with time-dependent electric currents and magnetic fields. The

fundamental concepts of magnetism are explained in Chapter2 along with two models

that allow to numerically simulate the dynamic behavior of nanomagnets. This chapter

also expounds on the interaction between electric currents and the local magnetization,

namely magnetoresistance and spin-transfer torque. In Chapter3 I introduce the methods

used to obtain the results presented in this thesis. These methods are micromagnetic sim-

ulation, magnetoresistance measurements, and X-ray microscopy. The results constitute

work in a research field that was new for our group and were obtained in collaboration

with other groups from the University of Hamburg, the Johann-Gutenberg University of

Mainz, the Technical University of Kaiserslautern, the Advanced Light Source in Berke-

ley, USA, the Chungbuk National University, South Korea, the Max-Planck Institute of

Metal Research, Stuttgart, and Ghent University, Belgium. Since the work developped

towards the final field of current-induced magnetization dynamics, I will also present the

results from intermediate topics categorized into four sections as follows:

In Section 4.1 I investigate the magnetic interaction between ferromagnetic elements in

dot arrays to study the minimum distance between magnetic storage cells. In Section

4.2 the dynamics of such elements due to pulsed or periodic field excitations was stud-

ied with the help of micromagnetic simulations. The effect of the magnetization on an

electric current was examined in Section 4.3. Finally, in Section 4.4 I combined the expe-

rience gained in the previous experiments to study current-induced domain-wall motion

and magnetic vortex and antivortex rotation. As far as the results have been published in

scientific journals, they are reprinted with permission from the corresponding publishers.

Some parts of the thesis have not been published yet and will therefore be included in this

thesis in more detail.

In Chapter 5 I will give an outlook on ongoing and future projects that could be done based

on this thesis, and in Chapter 6 the published journal articles, conference contributions,

and invited talks are listed.
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2 Theoretical Concepts

2.1 Magnetism

The earliest references of magnetism are from the 6th century BC Greek philosopher

Thales of Milet mentioning that lodestone (now known as magnetite - Fe3O4) attracts

iron. The name is thought to come from the Magnesia region in today’s Turkey where

this magnetic ore is found. The Chinese scientist Shen Kuo (1031-1095 AD) invented the

compass when he described that small iron needles would align to the earth’s magnetic

field [34]. Much later, in the early 19th century AD, scientific research on magnetism

began with the discovery of Hans Christian Oersted that an electric current influences a

compass needle. Ampére later quantified the strength of the influence in a mathemati-

cal equation. This and other relations were unified by James C. Maxwell into the four

Maxwell equations that macroscopically describe the static and dynamic interactions of

electric charges, fields, and currents with magnetic fields.

The magnetic properties of matter can be classified by its susceptibility χ to a magnetic

field H. The magnetization

M = m
N
V

= χ ·H (2.1)

is defined as the dipole moment m per unit volume V . For negative χ , the material is

called diamagnetic, for small positive χ , one speaks of paramagnets, and when a field

induces strong magnetic moments (χ � 1) the material is called a ferromagnet. The

overall susceptibility of a material is the sum of all susceptibilities

χ = χdia + χpara + χ f erro + . . . . (2.2)

As the Maxwell equations are normally given for the magnetic induction B, the relation

B = µ0 (H+M) = µ0 µrH (2.3)

with the magnetic permeability µr = 1+ χ is also defined.1

1There exists a great confusion in the magnetism community as to the units of magnetic properties [35].

This text uses the SI units as suggested by Hubert and Schäfer [36]. Thus the magnetization of a body

and the magnetic field strength are given in A/m.
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2 Theoretical Concepts

2.1.1 Diamagnetism

In analogy to Lenz’ rule the diamagnetism acts against its driving field. Electrons on a

circular orbit of radius r around the nucleus are equivalent to a current loop and thus to a

magnetic moment

|m|= πr2 q
T

=−πr2 Zeω

2π
=−1

2
Zer2

ω. (2.4)

Here q=-Ze is the charge of the electrons and T the period. When subject to a magnetic

field, the rotation frequency is the Larmor frequency ωL = eB
2me

, and we use the quantum

mechanical square mean distance to the nucleus 2
3 r̄2 (for spherical symmetry). Thus the

susceptibility is

χdia =−µ0NZe2r̄2

6meV
∝ −Zr̄2 < 0. (2.5)

This relation is valid to good extent, e.g., for nobel gases [37] where χ ≈ −10−6 Z is

proportional to the atomic number Z. Every material has a diamagnetic term to its sus-

ceptibility since a magnetic field always induces circular motion of electrons, but in gen-

eral its contribution to the total susceptibility is small in comparison to the other terms.

In some cases the diamagnetism is so strong that the induced current completely cancels

the applied magnetic field, i.e., χ = −1. This is true for superconductors in which elec-

trons with opposite spin and k-vector couple via interaction with the atomic lattice to a

current that suffers no measurable resistance [38]. The current remains after the field is

switched off, and the superconductor emanates a magnetic field up the critical magnetic

field (Meissner-Ochsenfeld-effect).

2.1.2 Paramagnetism

Paramagnetism is a material’s tendency to align its existing magnetic moments parallel

to a magnetic field to reduce the Zeeman energy. The susceptibility of paramagnets is

usually in the order of 10−3 to 10−5. Depending on the electronic band structure of

the material the origin of paramagnetism is described by either the Pauli model or the

Langevin model.

The Langevin model

According to the Langevin model for materials with non-interacting localized spins the

net magnetic moment of each atom is randomly distributed due to thermal excitation over

the surface of a unit sphere. An external magnetic field brings an alignment of the mag-

netic moments proportional to the field strength (see Figure 2.1). Hence the susceptibility

6



2.1 Magnetism

χpara is positive. For increasing temperatures T the alignment lessens according to the

Curie law

χpara,L =
C
T

(2.6)

where C is the material dependent Curie constant.

Fig. 2.1: Sketch of the alignment of the magnetic moment in a paramagnet (dots on a

sphere) due to an external field. From Ref. [39].

The Pauli model

The Pauli model is true for materials with free electrons in a conduction band. This is valid

for most paramagnetic materials. An external magnetic field causes a spin-dependent shift

in the density of states proportional to the field strength. The difference in the occupied

states is equal to the magnetic moments aligned parallel to the field. The temperature

dependence of this type of paramagnetism is due to the changes in the band structure;

therefore the Curie law (Eqn. 2.6) is generally not valid for Pauli paramagnets.

2.1.3 Ferromagnetism

Ferromagnetism is the form of magnetism that is most familiar to man. In a ferromagnet

the magnetic moments align even without an external field. The susceptibility χ f erro is

not a constant, but depends on the history of the magnet. Strong fields can completely

align all magnetic moments in a ferromagnet. Then the strength of the magnetization M
assumes its maximum value which is called the saturation magnetization Ms, a material

and temperature dependent macroscopic parameter. If the field is reduced, some moments

relax into other directions while the others remain aligned, reducing the magnetization to

7



2 Theoretical Concepts

the remanence magnetization Mr. If a field in reverse direction is applied, the magnetiza-

tion slowly realigns itself to the field. At a field strength called the coercive field Hc half

the magnetic moments have switched from their original direction. At negative saturation,

all magnetic moments have switched from their original direction. A sufficiently strong

field in the original direction will close the so-called hysteresis loop. Figure 2.2 shows

an exemplary hysteresis loop. Knowledge of a ferromagnet’s hysteretic behavior reveals

many of its magnetic properties. For example, the area within the hysteresis is equal to

the energy needed to switch the ferromagnet or stored in the ferromagnet.

Fig. 2.2: Exemplary hysteresis of a ferromagnetic material. From Ref. [39].

The saturation magnetization is temperature dependent because thermal fluctuation com-

petes against the alignment of the magnetic moments. If a critical temperature, known

as the Curie temperature TC, is exceeded, all moments point in arbitrary directions. The

ferromagnet behaves as a paramagnet, in other words:

χ =
C

T −TC
, (2.7)

for T > TC.

Origin of Ferromagnetism

The paramagnetic behavior of ferromagnets above the Curie temperature was found by

Pierre Weiss [40] in 1907 when he used a mean-field approximation to explain the strong

interaction that constitutes ferromagnetism. He proposed that a strong magnetic field,

called the molecular field, mean field, or exchange field, caused by the magnetic moments

themselves act on their nearest neighbors. This field should be much stronger than the

8



2.1 Magnetism

dipolar field of the magnetic moments and would cause the moments to co-align. This

model explained many phenomena such as the formation of magnetic domains, regions in

a ferromagnet having the same magnetization direction, and domain walls, the transitions

between different domains. It could also give a reasonable estimate for the Curie temper-

ature. However, a closer examination showed that the temperature dependent saturation

magnetization below Tc could not be satisfactorily explained by a classical approach [37].

To explain the origin of ferromagnetism, one needs to understand some fundamentals of

quantum mechanics. In quantum mechanics, any particle is described by a wave function

Ψ(r, t) with the following properties:

• The particle’s location in space cannot be exactly defined, rather, there is a proba-

bility density

Ψ
∗ (r, t) ·Ψ(r, t)dV (2.8)

that the particle is within the volume element dV.

• The wave function can be decomposed into a spatially dependent part and a spin-

dependent part

Ψ(r, t,σ) = ψ (r, t) ·σ ,with σ = 〈↓,↑〉 . (2.9)

• As electrons are fermions, the wave function for electrons is antisymmetric, i.e.,

Ψ(q1,q2) =−Ψ(q2,q1) . (2.10)

Here q denote the space and spin coordinates of an electron. This means that two electrons

with all quantum numbers being the same cannot occupy the same single-particle state at

the same time. If the space function ψ (r, t) is symmetric, the spin function σ must be

antisymmetric and vice versa.

A measurable quantity or observable is computed by calculating the expectation value of

the corresponding operator. For example, to calculate the energy of an electron, this is

done by

〈E〉=
∫

Ψ
∗ĤΨdV , (2.11)

where Ĥ is the Hamilton operator of a free electron in a potential

Ĥ =
(−ih̄∇)2

2me
+V (r, t) . (2.12)

Here the first term describes the kinetic energy of the electron as given by the momentum

operator −ih̄∇ and the potential energy V (r, t). To determine whether a system of many

9



2 Theoretical Concepts

electrons is ferromagnetic, one needs to calculate if the energies are lower for symmet-

ric (parallel spins) or for antisymmetric (antiparallel spins) spins. The energetic differ-

ence between the parallel or antiparallel configurations of spins Si and Sj is called the

exchange integral Ji j. It is positive for ferromagnets and negative for antiferromagnets.

According to Heisenberg, the ferromagnetic energy is determined by the Hamiltonian of

the exchange interaction (see Section 2.2.1)

Ĥexch =−∑Ji jSi ·S j. (2.13)

Band-Ferromagnetism

To compute the energies of a crystalline solid, it is practical to resort to models such as

the tight binding model or the free electron gas model [37]. In metals itinerant electrons

are not localized at specific atoms but can freely move throughout the crystal lattice.

According to the free electron gas model, the electrons at the Fermi energy can experience

a spontaneous band splitting even without an external magnetic field if the resulting loss in

potential energy is higher than the increase in kinetic energy (see Fig. 2.3). The increase

in kinetic energy

∆Ekin =
1
2

g(EF)δE2 (2.14)

comes about as 1
2g(EF)δE electrons below the Fermi energy of one spin band are moved

by δE above the Fermi energy of the other spin band. g(EF) is the density of states at

the Fermi energy. This leads to a spin-dependent electron density for each spin band of

n↓,↑ = 1
2n(1±g(EF)δE) and a magnetization M = µB

(
n↓−n↑

)
= µBg(EF)δE. µB =

eh̄
2me

= 9.27 · 10−27J/T is the Bohr magneton. The potential energy decreases due to a

parallel alignment of an electron’s magnetic moment to the magnetic mean field λdM

and forms a positive feed-back. The more electrons are aligned the stronger is the mean

field
∆Epot =−

∫
µ0MλdM =−1

2 µ0λM2

=−1
2 µ0λ µ2

B
(
n↓−n↑

)2 =−1
2U (g(EF)δE)2 .

(2.15)

with U = µ0λ µ2
B, the Stoner exchange integral. Spontaneous ferromagnetism occurs

when ∆Etot = ∆Ekin +∆Epot = 1
2g(EF)δE2 (1−Ug(EF))≤ 0 or

Ug(EF)≥ 1 (2.16)

This is the so-called Stoner criterion for ferromagnetism. It turns out that the only ferro-

magnetic elements at room temperature are iron, cobalt, and nickel [37].
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2.2 Micromagnetic theory

Fig. 2.3: Spontaneous band splitting for up- and down-spins without an external field.

From [41].

2.2 Micromagnetic theory

The computation of the energies of even the smallest magnetic systems with quantum me-

chanical methods requires approximations and is limited in the number of atoms or cells

that can be computed in reasonable time. The micromagnetic theory simplifies the exact

quantum mechanical model by using standard material parameters such as the exchange

integral Ji j and the saturation magnetization Ms as spatially continuous scalar functions.

The magnetization M and the magnetic field H are spatially continuous vector functions.

The micromagnetic model describes the magnetic behavior of ferromagnetic systems on

the nano- and micrometer scale. It can correctly model the static structure of ferromag-

nets, the formation of magnetic domains and domain walls, but also the dynamics up to

the THz-regime, the magnetic hysteresis, the switching of small magnetic grains, etc. In

1935, Landau and Lifshitz [42] laid the foundation to this theory, with major contribu-

tions also coming from Gilbert [43], Néel [44], Bloch [45], Brown [46], and many others.

Several excellent reviews and books [47, 36, 48] describe this theory in great detail.

2.2.1 Magnetic fields and energies

There are four important contributions to the Gibbs free energy of a ferromagnetic body:

The exchange energy, the demagnetization energy, the crystalline anisotropy energy, and

the energy due to an external magnetic field, the Zeeman energy. All magnetic interactions
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can be written as a magnetic field interacting with local magnetic moments, even though

the origins of the fields differ. For example, the exchange interaction as already mentioned

is of quantum mechanical nature, but can be described by the mean field mentioned in

Section 2.1.3. The interactions are briefly explained in the following sections.

The relation between a magnetic field due to an interaction and its energy is generally

given by

E =−
∫

µ0 M ·HdV . (2.17)

In the simplest way the field can be seen as an external magnetic field, also called Zeeman

field, e.g., from a magnetic coil or from the write head of a magnetic hard drive. The field

is potentially inhomogeneous in space and can alter over time. Sometimes it is easier to

calculate the interaction energy first. Following the definition of the Gibbs free energy,

the corresponding field is then

H =−
(

∂E
µ0 ∂M

)
. (2.18)

Exchange energy

The exchange integral Ji j introduced in Section 2.1.3 vanishes rapidly with increasing

distance between the atoms i and j so that normally only the nearest neighboring atoms

have to be taken into account in Eqn. 2.13 to calculate the exchange energy

Eexch =−∑
NN

Ji j Si · Sj. (2.19)

Approximating the cosine of the scalar product by its Taylor series up to second order and

using the magnetization M instead of the spin, one arrives at

Eexch =
∫ A

M2
S

((
∂M
∂ x

)2

+
(

∂M
∂ y

)2

+
(

∂M
∂ z

)2
)

dV , (2.20)

with material dependent exchange constant A = c
a0

JS2 where a0 is the lattice constant and

c ∈ {1,2,4} describes the lattice symmetry (sc, bcc, and fcc, respectively). Using Eqn.

(2.18) and some vector analysis, one finds that the interaction between the electron spins

of neighboring atoms can be mimicked by a magnetic field of the strength

Hexch =
2A

µ0M2
S

∇
2M. (2.21)

12



2.2 Micromagnetic theory

Demagnetizing energy

Magnetic moments interact also via their magnetic fields. With the Maxwell equations in

the absence of electric field and currents ∇ ·B = 0 and ∇×H = 0 the field in a magnetized

body can be written as

H =−∇Φm, (2.22)

with the scalar potential determined by the magnetization [49]

Φm (r) =
1

4π

∫
M
(
r′
)
·∇′
(

1
|r− r′|

)
dV ′. (2.23)

For uniformly magnetized bodies H can be defined as

H =−M · N̂, (2.24)

where N̂ is the demagnetization tensor with the elements

Ni j =
1

4πV

∫
V

dV
∫

V ′
∇
′
i∇

′
j

(
1

|r− r′|

)
dV ′. (2.25)

N̂ is symmetric and its trace is one if V and V ′ are identical. The trace is zero if V and V ′

are dissimilar. For highly symmetric bodies such as ellipsoids there exist analytical solu-

tions for N̂ [47, 36]. For example, a sphere has tensor elements Nii = 1
3 for all symmetry

axes, while for an elongated ellipsoid (thin wire), Nii = 1 in the direction of the long axis

and zero in the direction of the other axes. This means that due to the demagnetizing field,

the magnetization tends to align itself parallel to any surfaces. This is easy to understand:

Any magnetization vector pointing out of a surface leads to magnetic charges that are the

origin for a magnetic field, in analogy to the electric field in a capacitor. The energy con-

tained in this magnetic field increases the energy of the ferromagnet. For general bodies

a numerical solution was derived by Newell et al. [50, 51]. The demagnetizing energy is

found by inserting Eqn.2.24 into Eqn.2.17:

Edemag =−µ0

2
M · N̂ ·M′V (2.26)

Here, M and M′ are the magnetization vectors of two disjoint volumes V and V ′.

Anisotropy Energy

Equation 2.19 assumes that the spins are localized classical spins. However, the electrons’

positions are not defined with arbitrary exactness, rather they are situated in orbitals that

surround the nuclei. Through spin-orbit interaction, the orbits for 3d-electrons that con-

stitute the magnetization in typical ferromagnets are anisotropic. One usually defines a

13
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preferred direction of the electron spins due to the crystal structure of the ferromagnet

called the easy axis of the magnetization. For materials with hexagonal atomic lattices

such as cobalt, there is one easy axis (uniaxial anisotropy), for iron and nickel there are

three (cubic anisotropy). An extra energy term can be defined that corrects the exchange

energy. For uniaxial anisotropy the term is written as a Taylor series up to first order as

EAniso =
∫

K1sin2
θdV , (2.27)

where θ is the angle between the magnetization and the easy axis. In Section 2.3 the

anisotropy is used to define a simple model for the switching behavior of single-domain

ferromagnets. Section 2.5.2 describes how the anisotropy can cause an angle-dependent

change in magnetoresistance.

Zeeman Energy

The Zeeman field is the field an experimentator can use to purposely alter the magnetiza-

tion. It is the superposition of all (temporally and spatially varying) external fields. The

Zeeman energy can be calculated by Eqn. 2.17.

2.2.2 Equation of motion

From Eqns. 2.21, 2.24, and the Zeeman field, an effective field can be defined at every

point in a magnetic body:

He f f =
2A

µ0M2
S

∇
2M−M · N̂+Hext (2.28)

For parallel alignment of M and He f f , i.e., M×He f f = 0, the energy of the ferromagnet

is minimal. This criterion for equilibrium is known as Brown’s equation [46]. If, due

to sudden changes in the effective field, the magnetization is no longer parallel to He f f ,

a torque L = M×He f f acts on the magnetization and causes it to precess around He f f .

Torque is defined as the change in angular momentum g over time. The magnetization

is linked to g by the gyromagnetic ratio γ = µ0g|e|
2me

= 2.21 ·105 m/As, where g ≈ 2 is the

Landé factor of the free electron. This leads to

dM
dt

=−γM×Hext (2.29)

The magnetization M precesses around the local magnetic field He f f with the Larmor

frequency ωL = γHe f f . It is clear that the precession cannot continue for infinitely long

times. The magnetic energy stored in the precession angle dissipates through interaction
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2.2 Micromagnetic theory

Fig. 2.4: Formation of domains reduces the magnetic stray field. From left to right,

the demagnetizing energy is reduced by the formation of domains, especially by closure

domains. Modified from Ref.[36].

of the magnetization with the crystal lattice. The magnetization is damped towards equi-

librium which is parallel to the effective field. A damping term was originally added into

Eqn. 2.29 with a phenomenological damping parameter called Gilbert damping α to form

the Landau-Lifshitz equation [42, 43, 46]

dM
dt

=−|γ|M×He f f −
|γ|α
MS

M×
(
M×He f f

)
. (2.30)

The microscopic origin of this damping is still subject of research. Spin-orbit-interaction

[52], phonon-mediated spin-flip scattering [53], and magnon-magnon interaction [54]

have been proposed as contributors to intrinsic damping.

2.2.3 Domain walls

The energy terms mentioned in Section 2.2.1 act differently on the magnetization. De-

pending on the material and the geometry of a ferromagnetic body one or the other energy

term dominates, leading to different magnetic behavior. While the exchange energy is

minimal when all magnetic moments are parallel, the demagnetizing energy is the small-

est when the fewest magnetic moments point perpendicular to the surface. For small

bodies the exchange energy dominates so that the magnetization is aligned. This state is

called the single-domain limit. For larger structures it becomes favorable for the magne-

tization to break down into regions of different magnetization alignment with transition

regions called domain walls. In this way the magnetic field, also called the stray field due

to magnetic charges at the surfaces is reduced as depicted in Fig. 2.4. The width of the
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domain wall is determined by the exchange length

λ =
√

A
KD

(2.31)

where KD = 1
2 µ0NM2

s. λ here determines the width of a domain wall in a particular ma-

terial and is not to be confused with the mean field constant in Section 2.1.3 that was

assigned the same symbol. In iron, λ ≈ 3.4 nm, in cobalt λ ≈ 4.9 nm, and in permalloy,

λ ≈ 5.3 nm. In the domain wall the magnetization rotates. In thin films the rotation axis

depends on the thickness of the film: For thinner films the magnetization rotates around

the surface normal because it would be energetically more expensive to create magnetic

charges at the surfaces by turning the magnetization out-of-plane. This type of domain

wall was first found by Louis Néel [44], hence it is called a Néel wall (see Fig. 2.5(a)). The

rotation out of-plane costs less exchange energy since the angles between two neighboring

spins are smaller than for the in-plane rotation. In thicker films the decrease in exchange

energy compensates the increase in demagnetization energy due to surface charges, so that

Bloch walls [45] (see Fig. 2.5(b)) with out-of-plane magnetization components are pre-

dominant. In permalloy (Ni80Fe20) of thicknesses between 20 nm and 40 nm Bloch walls

appear [55, 56, 57]. For even thicker films, combinations of Néel and Bloch walls are

visible. In asymmetric Bloch walls [58], the magnetization turns in-plane at the surfaces

to reduce the demagnetizing energy and out-of-plane in the films to reduce the exchange

energy (see Fig. 2.5(c)). In cross-tie walls [59, 60], the Néel-wall-like in-plane rotation

at the surfaces changes signs periodically so as to curl around singular points (see Fig.

2.5(d)). These points are called curling Bloch lines or magnetic vortices [36]. Half-way

between two vortices the magnetization points to and away from singular points to form

a magnetization pattern that looks like a cross – hence the name cross-tie wall. These sin-

gular points are called cross Bloch lines or magnetic antivortices. In the center (core) of

either vortices or antivortices the exchange energy forces the magnetization out-of-plane.

A magnetic (anti-)vortex can be described by the out-of-plane orientation of the magneti-

zation in the core, the (anti-)vortex polarization, and the sense of rotation of the in-plane

magnetization around the core, called the chirality. Recently, vortices have attracted a lot

of attention as it was shown that magnetic fields and spin-polarized currents can cause

vortices to gyrate around their equilibrium position [61, 62, 63] and even switch their po-

larization [64, 65]. Our contributions to understanding the dynamics of magnetic vortices

and antivortices are presented in Section 4.4.
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2.3 Stoner-Wohlfarth Theory

Fig. 2.5: Domain wall types. (a) Néel wall, (b) Bloch wall, (c) asymmetric Bloch wall,

and (d) cross-tie wall. Modified from Ref. [36].

2.3 Stoner-Wohlfarth Theory

The domain theory described in the previous section allows the analytical treatment of

multi-domain ferromagnets. It is often useful to deal with single-domain particles, e.g.,

ferromagnetic grains on the surface of a hard disk. The corresponding model has been
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Fig. 2.6: The Stoner-Wohlfarth model. From Ref. [66]. (a) The ferromagnetic particle

sketched as an ellipsoid. (b)Stoner-Wohlfarth-asteroid. From Ref. [67].

developed by E. C. Stoner and E. P. Wohlfarth [66]. In the Stoner-Wohlfarth-model, the

particle has a uniform magnetization and a uniaxial anisotropy so that the particle has

two preferred magnetization directions (see Fig. 2.6(a)). With the assumption of uniform

magnetization, exchange interaction is assumed to be constant, and the shape or crystal

anisotropy competes against an applied magnetic field. With Eqns. 2.27 and 2.17 the

energy of the particle is

E = K1V sin2
θ −µ0MSHV cosφ , (2.32)

where θ is the angle between magnetization and easy axis and φ the angle between easy

axis and applied field. The energy of the particle is minimal when the magnetization

is either parallel or antiparallel to the anisotropy axis. The magnetization has to move

through the hard axis when switching from one stable state to the other. The energy

barrier is calculated by differentiation of Eqn. 2.32 in θ for a set φ :

EBarrier = K1V

(
1+
(

H
HK

)2
)

(2.33)

with the switching field HK = 2K1
µ0MS

. The second derivative in θ for all φ yields the region

in which a magnetization state has minimal energy. The limiting field, given by Hsw =(
|Hx|

2
3 + |Hy|

2
3

) 3
2 , forms the so-called Stoner-Wohlfarth or switching asteroid as shown

in Fig. 2.6(b).
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2.4 Magnetization Dynamics - Spin Waves

To understand the fundamental nature of spin waves, whose quanta are called magnons,

we shall begin with spin-1
2 moments in a one-dimensional chain with a lattice constant

a (Ising-model)[68, 37]. As described in Section 2.2.1 and 2.4, the magnetization con-

figuration with minimal energy in a single-domain particle is reached when all magnetic

moments are aligned parallel. One might think that the energetically next higher con-

figuration would be with one magnetic moment flipped in opposite direction. Following

Eqn. 2.19 that would increase the exchange energy by ∆E = 8Ji jS2. Instead, the mini-

mal change in magnetic moment by h̄ is distributed over all the magnetic moments of the

ferromagnet (see Fig. 2.7). The magnetic moments change continuously by precessing

around the local effective field to form a complete rotation over the distance L, the exten-

sion of the ferromagnet. In this way, the angle between two moments is always very small.

The next higher configuration is a change in magnetic moment by two complete rotations

and so forth. A wave length λ = L
n = 2π

k can be assigned for the n-th quantized increase

in energy. The increase in exchange energy depends on the wave vector k = 2πn
L and is

with En =
(
n+ 1

2

)
h̄ω (k) = 4Ji jS (1− cos(ka)) usually very small. In a three-dimensional

Fig. 2.7: Sketch explaining why the introduction of a magnon requires less energy than

switching one magnetic moment. (a) Fully aligned moments, a being the lattice constant.

(b) One magnetic moment switched. (c) All magnetic moments turn a little to create a

360° rotation. From Ref. [37].

ferromagnet, the propagation direction of a spin wave is identified by the normal to the

wave front, i.e., magnetic moments having the same phase in their precession. According

to the ansatz of Kalinikos and Slavin [69] the magnetization can be written as

M = Msêz +m(x,y)ei(kζ ζ−ωt), (2.34)

where ζ is the propagation direction of the spin wave. We have here assumed that the

magnetization’s deviation from the effective field in z-direction is small. The Landau-

Lifshitz-Gilbert-equation (Eqn. 2.30) describes the precession of the magnetization. To

find the spin-wave dispersion, Kalinikos and Slavin neglected the damping term since
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α � 1 and used the same ansatz for the effective field in Eqn. 2.28 as for the magneti-

zation in Eqn. 2.34 (see also Ref. [70]). With the Rado-Weertman boundary conditions

[71, 72] describing the amplitude of m at the surfaces one can after lengthy calculations

derive the general dispersion relation for spin waves in thin films [69]

ω
(
kζ ,ϕ

)
= γ

[(
H +

2A
Ms

k2
)(

H +
2A
Ms

k2 +4πMsF00

)] 1
2

. (2.35)

The dipole-dipole matrix elements F00 = 1−P00cos2 (ϕ)+4πMs
P00(1−P00)sin2(ϕ)

H+ 2A
Ms k2 take the

dipolar field of the magnetic surface charges into account. ϕ is the angle between the

static magnetization and the in-plane component k|| of the spin-wave vector, d the thick-

ness, and P00 = 1− 1−e
−k||d

k||d
. Here we have only considered the spin-wave modes that are

homogeneous in z-direction, hence the index 0. Higher order modes which occur in films

due to a reflection at the surfaces are called perpendicular standing spin waves (PSSW).

For bulk-like volumes, Eqn. 2.35 becomes the Herring-Kittel-formula [73]

ω (k,ϕ) = γ

√
(H +λexk2)(H +λexk2 +4πMssin2ϕ). (2.36)

In the limit of zero wave number(k = 0) Eqn. 2.36 simplifies to the Kittel-formula for

ferromagnetic resonance [74]

ω = γ

√
H (H +4πMssin2ϕ). (2.37)

One can see that the frequency of a spin wave greatly depends on its propagation direction

with respect to the static magnetization. For ϕ = 90°, i.e., spin waves propagating perpen-

dicular to the static magnetization, the dispersion relation has a monotonously increasing

slope. These spin waves are historically called Damon-Eshbach modes [75] or magne-

tostatic surface waves (MSSW). Their group velocity is always positive, while the spin

waves propagating in the direction of the static magnetization have negative group veloc-

ities for small wave vectors, i.e., k||d < 1. Hence they are called magnetostatic backward

volume waves (MSBVW). For higher wave vectors the exchange interaction dominates the

dispersion and the group velocity becomes positive.

Recently, a quantization of the spin waves due to their lateral confinement has been ob-

served [76, 77]. It was also shown [78], that an inhomogeneity in the local effective field,

e.g., through the demagnetizing field at domain walls or surfaces, would lead to a local-

ization and even trapping of spin waves. In Section 4.2 we will show the influence of the

effective field in Landau patterns on the spin-wave dispersion.
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2.5 Electronic Transport in Metals

In the presence of an electric field E the electrons experience the force F = −eE. In

a perfect conductor this would lead to continuous acceleration and thus infinitely high

currents. In real conductors the conductance is finite as the electrons interact with lattice

oscillations (phonons), impurities, or other electrons. In the Drude-Sommerfeld model of

the free electron gas [79, 80] the distance that an electron in a real conductor can travel

before it is scattered is expressed by the mean free path λ . The conductance electrons are

moving at a velocity vF , the velocity of the electrons at the Fermi energy,≈ 105 m/s. Thus

the average time before an electron is scattered due to the various interactions is given by

the scattering time τ = λ/vF . The scattering is random so that the average velocity is

zero in the absence of an electric field. Due to their negative charge −e electrons in an

applied electric field E move opposite to the direction of the field with a nonzero average

velocity called the drift velocity

vD =
eE
m

τ. (2.38)

For ne electrons per unit volume in a conductor, a current density

j = neevD =
nee2τ

m
E (2.39)

results. Comparing Eqn. 2.39 to Ohm’s law j = σE yields the conductance

σ =
nee2τ

m
(2.40)

of a free electron gas in a conducting material. In semiconductors, one often defines the

electron (hole) mobility µ =∓eτ/m so that σ = neµ . The resistivity ρ = 1/σ is inversely

proportional to the mean free path, i.e., ρ ∝ 1/λ . According to the Matthiesen rule the

resistivities due to the different scattering mechanisms are added up to obtain the total

resistivity of a material. Gold, for example, has a total resistivity of 2.2 ·10−8Ωm, while

permalloy as a typical ferromagnet has a resistivity of 14 · 10−8Ωm. These values can

differ depending on the quality of the samples. Williams et al. have shown [81] that high

sputter rates greatly deteriorate the conductance of thin films as they become more and

more inhomogeneous and large clumps of material form with little connecting surfaces.

Thickness-Dependent Conductance

The film thickness also affects the conductance. As first predicted by Fuchs and Sond-

heimer [82, 83] diffusive scattering occurs at the surfaces of the film in addition to the

21



2 Theoretical Concepts

scattering in the bulk of the film. The model predicts that to first order the resistivity

depends on the thickness t as

ρ(t) = ρ0 +
3
8

λ0

t
. (2.41)

Here ρ0 is the total resistivity of bulk material and λ0 is the total mean free path as given

by the Matthiesen rule. The model has been experimentally confirmed in its general

correctness [81, 84, 85]. Mayadas and Shatzkes improved the model to include also scat-

tering at grain boundaries [86]. The model yields a homogeneous resistivity and mean

free path throughout the thickness of the thin film. However, it has been stated [84] that

for a more appropriate description the requirement of a uniform resistivity and mean free

path must be dropped. Indeed, in the course of this thesis, we have found experimen-

tal indications that the current density in permalloy microelements is inhomogeneous in

thickness, resulting in a nonzero average Oersted field caused by a current passing through

the permalloy. The methods and results are described in detail in Section. 4.4.

2.5.1 Electronic Transport in Ferromagnets

The above considerations are valid for materials with partially filled conduction bands.

In ferromagnets, the density of states for the two spin configurations spin-↑ and spin-↓
are shifted due to the exchange interaction. Following Mott’s two-channel model [87]

the spin-↑ and spin-↓ electrons can be seen as two separate sets of charge carriers with

separate transport properties. Hence their transport can be described as occurring through

two separate channels. If one of the conduction channels has a lower scattering rate τ−1

and thus a lower resistivity, its total resistivity is lower. This model is valid as long as

the interexchange between the channels is small, i.e., as long as the spin-diffusion length

λs f =
√

λ0vF τs f
3 is longer than the electron mean free path λ0 [88, 89]. Typical values

for λs f in common ferromagnetic transition metals or alloys are 3.3 nm to 5.3 nm in

permalloy [90], 45 nm to 60 nm in cobalt [91], and 21 nm in nickel [92].

2.5.2 Magnetoresistance

Magnetic fields applied to a conductor can either lead to an increase of the electric re-

sistance through a localization of the conduction electrons, or to a decrease in resistance.

The positive magnetoresistance is due to the Lorentz force that forces the electrons on

circular paths and is called normal magnetoresistance (NMR). It is described in more de-

tail in the next paragraph. Examples for negative magnetoresistances are the anisotropic
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magnetoresistance (AMR), the giant magnetoresistance GMR, and the tunnel magnetore-

sistance TMR which are not explained here.

Normal Magnetoresistance

Fig. 2.8: Illustration of the normal magnetoresistance effect. From Ref. [93].

An applied magnetic field H causes a Lorentz force F = −ev× µ0H on the electrons

of a conducting material. Instead of a linear motion between two scattering sites the

electrons move on circular paths with the radius r = v/ωc, where ωc is the cyclotron

frequency ωc = eB/m (see Fig. 2.8). The effective mean free path is decreased to the

length λe f f = 2r · sin(λ0/2r) where λ0 = vFτ is the mean free path without the magnetic

field (see Fig. 2.8(c)). Except for very pure metals or very high magnetic fields the radius

is much larger than the mean free path. This means that the sine can approximated by the

Taylor series expansion up to third order. This yields the effective mean free path

λe f f = 2r ·
(

λ0

2r
− 1

6
·

λ 3
0

8r3

)
= λ0

(
1− 1

24
τ

2
ω

2
c

)
. (2.42)

It is reduced by 1
24τ2ω2

c . With Eqn. 2.40 and the definitions of ωc and τ the relative

change in resistivity due to the normal magnetoresistance can be written as

∆ρ

ρ0 NMR
≡ ρ −ρ0

ρ0
=

1
24n2

ee

(
B
ρ0

)2

. (2.43)

Figure 2.9 shows this parabolic field dependence of the relative resistivity for high mag-

netic fields.

Anisotropic Magnetoresistance

The anisotropic magnetoresistance (AMR) occurs in ferromagnetic materials and de-

scribes the dependence of the ferromagnet’s resistivity as a function of the angle between

the electric current and the magnetization. This effect has been used in magnetic angle and

rotation rate sensors and in read heads for magnetic data storage. In the latter application,

it has been replaced by read heads utilizing the much more sensitive GMR.
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Fig. 2.9: For the explanation of the anisotropic and the normal magnetoresistance. From

Ref. [93].

The AMR is due to the anisotropic distribution of the electronic orbits of the 3d-electrons

in ferromagnets [94, 95, 96] that also account for crystal anisotropy (see Section 2.2.1). As

the spin direction defines also the symmetry axis of the orbits, a rotation of the spin mo-

ments due to an external field causes also a reorientation of the charge densities around the

nuclei. This causes a different scattering cross-section for conduction electrons (shown

by the blue ellipsoids in Fig. 2.9). When applying a magnetic field to a ferromagnet

one measures different resistivities ρ|| and ρ⊥ whether the field is applied parallel or

perpendicular to the electric current. Figure 2.9 shows that for strong fields the normal

magnetoresistance (see Section 2.5.2) is dominant while the angle dependent splitting for

fields below the saturation field Hs is due to the AMR. To derive the values for ρ|| and

ρ⊥ from measurements one needs to extrapolate the resistivities for vanishing fields as

shown in the figure by the dashed lines. The difference between the resistivity ρ|| in a

perpendicularly aligned magnetic field and the resistivity in a parallel magnetic field ρ⊥

in permalloy is typically a few percent at room temperature. With the so-called sponta-

neous resistivity anisotropy (SRA) ∆ρ = ρ||−ρ⊥ and the average resistivity 1
3

(
ρ||+2ρ⊥

)
the AMR is defined as

AMR =
∆ρ

ρave

(
cos2

θ − 1
3

)
, (2.44)

where θ is the angle between the magnetization and the current. It should be mentioned

that the general cos2-dependence applies only to large magnetic systems or single domain

structures [97]. In ferromagnets with only a few domains the switching of individual

domains or the motion of single domain walls will cause a deviation from this approxi-

mation. In Section 4.3 the AMR of multidomain structures as investigated by resistance
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measurements, micromagnetic simulation, and magnetic force and X-ray microscopy will

be described in detail.

2.5.3 Spin-Transfer Torque

In 1996, L. Berger [22] and J. Slonczewski [23] independently found that a high-density

electric current would induce a strong torque on magnetic multilayers. In their model, one

magnetic layer would polarize the spin of the conduction electrons, and, separated by an

non-magnetic layer, another layer potentially having a different magnetization direction,

would filter the conduction electrons. Part of the spin is reflected if the magnetization of

the two layers is not aligned, in analogy to the GMR and accumulate in the non-magnetic

layer. The transmitted electrons have their spin aligned to the second magnetic layer.

The change in spin of the transmitted conduction electrons causes an inverse torque on

the magnetization of the second layer to conserve the total angular momentum. This

effect has become known as spin-transfer torque and was first experimentally verified

by the Cornell group [98]. It is currently one of the most actively studied fields in solid

state physics due to its potential application in magnetic random access memory devices

(MRAM).

In the following I shall outline a somewhat different model since the geometry is different

in our experiments. In our case, the current is applied laterally in a single magnetic layer.

An inhomogeneous magnetization can occur at domain walls in which the magnetization

gradually changes. L. Berger predicted [24] that the 4s-conduction electrons would feel a

changing potential due to s-d exchange interaction when passing through the domain wall.

The spins would adiabatically rotate to align with the magnetization; in turn the domain

walls would experience a torque compensating the spin rotation [99, 26, 27]. He predicted

the driving force on the domain wall and its resulting speed. Domain-wall motion by spin-

polarized currents has since been shown experimentally [25, 100, 101, 102, 103, 30, 104,

105, 106, 31, 107]. It was found that the experimentally observed domain-wall velocities

were two orders of magnitude smaller than the ones theoretically predicted [27, 28, 32].

It was also found that high-density currents can change the internal structure of domain

walls [105, 106, 108, 109, 110], e.g., from a Néel wall into a vortex wall [105, 106].

I shall here follow the model of S. Zhang and Z. Li [28] which was recently extended

for time-dependent currents by B. Krüger et al. [29]. It is currently the most general

model for the description of current-induced domain-wall motion. S. Zhang and Z. Li

found that another torque term could be accountable for the discrepancy between theory

and experiment. This torque term is due to a spatial lag of the conduction electron spin
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behind changes of the local magnetization and is termed nonadiabatic spin-torque. They

assumed s-d-electron interaction to be the predominant influence of the current on the

magnetization, but they also took time- and spatially varying local moments for a full

description of the magnetization dynamics into account. By considering variations from

the adiabatic process up to first order and a domain-wall width (see Eqn. 2.31) larger than

the transport length scale, they derived four new torque terms for the LLG-equation (Eqn.

2.30)
T = 1

1+ξ 2

[
−m0

Ms
∂M
∂ t + ξ m0

M2
s

M× ∂M
∂ t

]
− 1

1+ξ 2

[
µBP
eM3

s
M× [M× (je ·∇)M]+ µBPξ

eM2
s

M× (je ·∇)M
] (2.45)

where m0 is the local equilibrium spin density of the conduction electrons and P the spin-

polarization of the current je. The ratio between exchange relaxation time τex and spin-flip

relaxation time τs f

ξ =
τex

τs f
(2.46)

is called the degree of nonadiabaticity. The first two terms in Eqn. 2.45 which are inde-

pendent of the current can be eliminated by renormalizing γ and α . By defining je = jeex

and b j = P jeµB/eM3
s
(
1+ξ 2), Eqn. 2.45 can be placed into the LLG equation (Eqn.

2.30) to yield the spin-torque dependent LLG in Gilbert form [32, 29]

d ~M
dt

=− γM×Heff +
α

Ms
M× dM

dt

−
b j

M2
s

M× (M× (je ·∇)M)

−ξ
b j

Ms
M× (je ·∇)M.

(2.47)

The first spin-torque term describes the adiabatic torque on a domain wall in the direction

of the current, the second term describes the nonadiabatic torque perpendicular to it. The

nonadiabatic spin-torque term has also been introduced by Waintal et al. as based on

Larmor precession of the conduction electron around the axis of the local magnetization

vector [108] and by Thiaville et al. who suggested an influence of surface roughness [32].

The magnitude of ξ has been estimated as either ξ ≈ 0 or ξ ≈ α . In Chapter 4.4 I will

describe X-ray microscopy experiments that we performed. These experiments indicate

that (ξ = 0.95±0.02)α [110]. We measured domain-wall velocities of about 100 m/s

confirming the theoretical predictions. We also observed a high measure of randomness

in the domain-wall motion. We could show, however, that this is due to pinning sites and

not due to thermal effects as suggested by other authors [111, 112, 113, 114].
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Techniques

In this chapter I will describe the main methods used to acquire the results summarized

in this thesis, namely micromagnetic simulations, magnetoresistance measurements, and

X-ray microscopy. As depicted in Fig. 3.1, each method works on completely differ-

ent principles and has different advantages, disadvantages, and constraints. Optimally,

a combination of these methods magnifies the advantages of each method and therefore

makes the interpretations more reliable than each method alone. In the worst case the

constraints of each method add up so that the study is impeded and no meaningful con-

clusion can be drawn. Performing micromagnetic simulations gives one immense control

over the material and simulation parameters, but one needs to ensure that the parameters

Fig. 3.1: The combination of micromagnetic simulations and different measurement

techniques lead to a greater depth of understanding than each method alone.
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used are also physically meaningful. There are also a number of constraints that could

invalidate the results or greatly prolong the computing time. Magnetoresistance measure-

ments are extremely sensitive to small changes in the magnetization and can potentially

give ps-time resolution [115]. On the other hand, the integrated signals are ambiguous

due to the cos2-dependence of the AMR, and the true AMR-signals can be obscured by

unwanted side effects as shown for example in Section 4.3.2. Finally, X-ray microscopy

allows domain imaging in applied fields without interaction with the magnetization. It

is element-specific and potentially time-resolving down to ≈ 70 ps, but these advan-

tages come at the cost of difficult preparation processes as the samples need to be placed

on 100 nm thin Si3N4 membranes. Also there are only a half-dozen X-ray microscopes

world-wide that can deliver the temporal and spatial resolution at the right energy required

for meaningful inquiries, so that beam time is difficult to obtain. In the following I shall

explain the fundamental principles and modi operandi of each method.

3.1 Micromagnetic Simulation

Originally it was the purpose of the micromagnetic theory (see Section 2.2) to analyt-

ically estimate the energetically favored magnetization states. These laws are still the

foundation to micromagnetic simulations today, the exact analytical calculation of the

magnetization, however, is possible only for ferromagnetic bodies of high rotational sym-

metry [116, 117, 118]. For more complex geometries the magnetization cannot be de-

scribed analytically, instead one must employ numerical computation. Over the past three

decades computing power has increased exponentially, and micromagnetic simulation as

simulation in general has become well established as "a third pillar of research next to ex-

periment and (analytical) theory" [1]. In the 1990s the methodology and algorithms con-

stituting micromagnetic frameworks were still a matter of research and discussion [119]

and led to the establishment of so-called standard problems [120] with which the simu-

lation results from different codes could be compared. While the first standard problems

showed that there was much left to be desired in terms of agreement between different

codes [120], today, more than eleven years later, there is little discussion about micro-

magnetic simulation as an eligible scientific tool. Each year, hundreds of articles [121]

in scientific journals are published in which the results heavily rely on insights gained by

micromagnetic simulation. In this thesis I have used micromagnetic simulations in every

study I performed. The advantages of using micromagnetic simulation in combination

with experiment and theory was fourfold:

28



3.1 Micromagnetic Simulation

• verification of experimental results or theoretical predictions,

• interpretation of experimental data by varying simulation parameters,

• analysis of the magnetization dynamics’ dependence on internal parameters,

• and prediction of behavior, thus being able to give suggestions for the design of

samples used in experiments.

Over the years, several individuals and groups have developed their own versions of a

micromagnetic simulation program. The most widely used publicly-available simulation

codes are OOMMF by M. Donahue and D. Porter from NIST [121], M. Scheinfein’s

LLG Micromagnetics Simulator [122], D. Berkov’s Micromagus [123], MagPar from W.

Scholz [124], and more recently K. Rivkin’s RKmag [125]. In the course of my thesis,

as well as previously in my Master’s theses [126], I have mainly used the OOMMF code

because it is open-source and thus extendible, even though we also had the commercial

LLG program available for comparison. I extended the OOMMF code by a faster integra-

tion method, a component computing the AMR, and a component for the calculation of

the spatially resolved spin-wave spectra. I contributed to Benjamin Krüger’s expansion

of the OOMMF code who included the spin-transfer-torque model from Zhang and Li

[28] and to Massoud Najafi’s development of a micromagnetic simulation framework in

Matlab [127] for his Masters thesis [51].

The micromagnetic equations noted in Section 2.2 cannot be solved analytically for any

shape and with arbitrary accuracy on finite precision computers. To numerically solve

the micromagnetic behavior of ferromagnets, all micromagnetic codes implement certain

approximations: First, a spatial discretization of the ferromagnetic body for discrete com-

putation. Secondly, and connected to that, ways to calculate the effective magnetic fields.

Thirdly, the main equation is solved numerically, either by minimizing the total magnetic

energy with Brown’s equation (see Section 2.2.1) or by solving the equation of motion,

the LLG-equation (see Eqn. 2.30). These approximations are explained in more detail in

the following sections.

3.1.1 Spatial Discretization

The investigated volume needs to be discretized into smaller volumes or points in which

the magnetization assumes a finite value. For the spatial discretization one uses either

the finite-element (FE) method or the finite-difference (FD) method. Since in this thesis I

extended and used mainly the OOMMF code which applies the finite-difference method,

it is explained in greater detail.
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Finite-Element Method

Fig. 3.2: Spatial discretization via the finite-difference method (a) and via the finite-

element method (b) - (d) as described in the text. Modified from Ref. [128].

The FE method originated in civil and aeronautical engineering out of a need to solve

complex problems regarding the elasticity of bodies and has since been successfully ap-

plied to electromagnetism, fluid dynamics and many other fields. It has the advantage that

it can model arbitrary geometries. This however, comes at the cost of higher computation

complexity.

Three main steps are necessary for the solution of a partial differential equation (PDE)

with the FE method (see Ref. [128] and references therein). The first step is to discretize

the space, on which the PDE should be solved, into finite elements. These can be triangles

or squares in two dimensions or tetrahedrons or cubes for three-dimensional problems as

shown in Fig. 3.2(b). Hence this process is called triangulation. Secondly, the solution of

the PDE, in the case of micromagnetics the poisson equation for the scalar potential of the

magnetization U = ∇M [129], has to be found for every nodal point. The values within

the elements are derived by interpolation from the nodal points of each element (see Fig.

3.2(c)). The solution of the PDE is approximated by piecewise continuous polynomials

and the PDE is hereby discretized and split into a finite number of algebraic equations.

In the third step, the unknown coefficients of these polynomials are determined in such a

way, that the distance from the exact solution becomes a minimum [128, 129].

Finite-Difference Method

The FD method, on the other hand, partitions the volume into rectangular prisms of equal

size, and the function value in each prism, in this case the magnetization, is averaged to a

value at the center of the prism (see Fig. 3.2 (a)). The interaction between the magnetiza-
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tion and the effective field can now be expressed by a finite sum over all elements. In the

following, the FD-computation of the exchange energy and the demagnetization energy

shall be explained in greater detail. The computation of the anisotropy and the Zeeman

energies are left out as they can be directly derived from the corresponding equations in

Section 2.2.1 by substituting integrals by sums.

Computation of the exchange and demagnetization fields

To compute the exchange field one must find an efficient discretization of computing the

partial differential in Eqn. 2.21. This is done by using a Taylor-polynomial to determine

the change in magnetization between two cells. As the exchange interaction is of a very

short-ranged nature it is generally sufficient to limit the computation to nearest neighbors.

For the j-th simulation cell one then gets

Hexch, j =
2A

µ0M2
S

∑
i∈NN

Mi(
ri− r j

)2 (3.1)

where the sum i is over the nearest neighbors, which, for three-dimensional problems,

would typically be the six cells with common surfaces [130].

To discretize the demagnetization field one must first solve the demagnetization tensor N̂
(see Eqn. 2.25) for every cell. Newell et al. [50] first delivered a solution for the de-

magnetization tensor of rectangular bodies. By applying Gaussian’s integral law, Newell

reduced the demagnetization tensor elements to the surface integrals of a simulation cell.

The diagonal elements, Nii, describe the interaction of the magnetization at opposite sur-

faces of a cell, and the non-diagonal elements Nij describe the interaction between the

corresponding other surfaces. Applying some mathematics, Newell et al. derived a closed

formula for the tensor elements. The demagnetization field

Hdemag, j =
N

∑
i=1

N̂ij ·Mi (3.2)

needs to be computed for all j cells at every time step, making it by far the costliest part

of the computation. To reduce the computing time, one can make use of the regular grid

of the FD method and Fourier transform the tensor and the magnetization vectors. The

convolution integral can then be substituted by a discrete convolution sum. Since the

geometry of the simulated volume does not change in the course of the simulation, the

demagnetization tensor elements need only be computed once, at the initialization phase

and is stored as its Fourier transform. At every simulation step, M is Fourier transformed

and the field is computed and then inversely transformed back into real space.
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As each dimension of the simulated volume is to be divided into an integer number

of cells, only rectangular structures can be effectively and correctly simulated. Conse-

quently, errors occur on the edges of curved geometries as the approximated solution

potentially differs significantly from the correct one. Several correction algorithms have

been suggested [131, 132]. However, for the rectangular structures mainly investigated in

this thesis, the FD method is considerably faster than the FE method.

3.1.2 Numerical Solution by Time Integration of the LLG Equation

The time evolution of the magnetization of a ferromagnetic element follows the LLG-

equation. By employing numerical integration, one can calculate the magnetization dy-

namics to a high degree of accuracy. For the numerical integration of the LLG-equation

one needs to define an initial magnetization configuration as starting value of the function

to be integrated (initial value problem). The next time steps are computed from either the

current function value (single-step methods) or from several values in the past (multi-step

methods). Some multi-step methods even use predictions of future values (predictor-

corrector methods). Explicit methods use only known function values to compute the

next step, while implicit methods find the function values of the next step by solving

an equation involving both the current and the future function values. For example, the

LLG-equation as written in Eqn. 2.30 could be solved explicitly, while the Gilbert-form

[43, 46] of the LLG-equation could be solved by implicit methods. Depending on the

exact nature of the problem, each method would have different convergence, stability, and

performance.

The classical fourth-order Runge-Kutta method is one of the most reliable and fastest

integration methods for micromagnetic problems [133]. It is a single-step multi-stage

explicit numerical integration method. It is an extension of the 1st-order explicit Euler

method (see Fig. 3.3(a)) which approximates the magnetization in each cell Mi,tn+1 at the

next time step tn+1 by adding the derivative dMi,tn
dt multiplied by the time step δ tn to the

current magnetization Mi,tn . Runge-Kutta methods use midpoints at which the function

values are approximated via the Euler method. The first midpoint is then used as a starting

point for the second stage and so forth (see Fig. 3.3(b)). The number of midpoints or

iterations (called stages) corresponds to the order of the algorithm. The final function

value for one step is the weighed sum of the derivatives at the midpoints. The advantage

of higher-order Runge-Kutta algorithms lies in the higher accuracy of the approximation

which allows to expand the step size of the integration. The open-source OOMMF code

uses an explicit Euler-method [121]. For my Masters thesis I implemented an adaptive-
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time step Runge-Kutta method [133] which increased the speed of the simulation by an

order of magnitude [126].

Fig. 3.3: (a) A 1st-order Runge-Kutta (explicit Euler) method and (b) a higher order

Runge-Kutta method with three midpoints.

There are also completely different ways to derive the magnetization configuration. For

example, by minimizing the total energy via Brown’s equation (see Section 2.2.1) and

conjugate gradient methods [134], the magnetization state in equilibrium can be deter-

mined. Iterative methods such as the Gauss-Seidel methods [135, 136, 137] or Jacobi

methods can also be used to approximate the solution.

Having explained the main components of a micromagnetic simulation program, one can

now understand how they work together to compute longer periods of the magnetization

dynamics. Figure 3.4 shows a simplified flow diagram of an exemplary simulation code.

The different codes might vary in detail, but the basic structure remains. A simulation run

can be broken down into hierarchical levels of execution, the stages and steps. A simula-

tion step forwards the numerical integration of the LLG-equation by one time step in the

following way: Starting from an initial magnetization configuration, the corresponding

magnetic fields, e.g., exchange or stray fields, are computed. From the effective field and

the current magnetization the LLG-equation is solved. Then the magnetization for the

next time step is computed by numerical integration. Finally, an error estimate and the

step size for the next steps are computed. If the error is below a predetermined boundary,

the simulation continues, otherwise, the step is repeated with a smaller time step. The

simulation continues with the same outer parameters until some stopping criterion, e.g.,

time duration, number of steps, or change in magnetization, is met. Then some simulation

parameters are changed and the simulation continues again or stops altogether. A stage

defines a number of steps with the same outer parameters. Stages are especially useful to

incorporate into a simulation framework when one wants to simulate magnetic hysteresis,

frequency sweeps and the like.
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Fig. 3.4: Flow diagram of a micromagnetic simulation program solving the LLG-

equation: (a) flow diagram of a simulation run consisting of possibly several stages, (b)

flow diagram of a stage consisting of many steps, and (c) flow diagram of the necessary

procedures to advance the simulation by one time step.
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3.2 Measurement Techniques

There are numerous ways today to investigate the magnetization configuration of mag-

netic thin films. They can roughly be divided into electronic probing and domain imag-

ing techniques. Electronic probing techniques are those in which electric currents are

used to test the interaction between the conduction electrons and the local magnetiza-

tion or their stray fields. These interaction are detected by a change in voltage. Exam-

ples are magnetoresistance measurement techniques (see Section 2.5.2) such as AMR,

GMR, and TMR measurements, but also micro-Hall-magnetometry [138, 139] and Hall-

measurements [140, 61]. In all these methods, the local interaction is integrated to one

voltage value. Electronic signals are very sensitive but conceal the local magnetization

pattern.

Domain-imaging techniques, on the other hand, disclose the local magnetic structure but

are subject to noise. Excellent reviews on domain-imaging techniques are found in Refs.

[36, 141, 142, 143]. I shall here focus on the techniques that were used for this thesis,

namely magnetic-force and transmission X-ray microscopy.

Fig. 3.5: Selected domain-imaging techniques and their properties. φ is the phase shift

between two electron beams due to magnetic stray fields. (U)HV stands for (ultra) high

vacuum. (modified from Ref. [143]).

3.2.1 Magnetoresistance Measurements

For magnetoresistance measurements, one usually uses the lock-in technique in four-point

geometry. The latter puts the current and voltage contacts in close proximity of the mag-

netic structure to be investigated, thereby reducing any serial resistances of the wires and

connectors. For lock-in measurements the input signal, here the current, is modulated by

low-frequency (mHz to a few hundred Hz) alternating signals. The output signal, i.e.,

the voltage, is multiplied by the same alternating signal and is integrated over several pe-

riods. Only components of the output signal with the same frequency and phase as the
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input signal remain while other contributions are attenuated. In this way very small volt-

age changes can be detected. Our lock-in measurements were performed with a Stanford

Research SR830 lock-in amplifier typically at currents of 10µA, supplied by a Keithley

2400 current source. In our simultaneous magnetoresistance/X-ray microscopy investi-

gations, we had to greatly increase the integration time of the lock-in amplifier to ensure

it was longer than the exposure time of the CCD-chip (≈ 1−2s). More details to simul-

taneous magnetoresistance/X-ray microscopy are given in Section 4.3.2. Usually AMR

measurements are performed at low temperatures to reduce thermal noise. The studies

presented in Section 4.3.1 were done by Marcus Steiner at liquid helium temperatures. At

the XM-1 beam line all measurements were done at room temperature.

3.2.2 Magnetic-Force Microscopy

Fig. 3.6: (a) Electron microscopy image of a Co-coated MFM tip (from Ref. [144]).

(b) Approximation of the magnetic coating of the tip as a dipole within the tip volume

(from Ref. [145]). (c) Finite-element computation of the magnetic stray field of the tip.

The field values are in mT and the length scales are given by the bar in the bottom right

corner which is 100 nm long (from Ref. [146]).

Y. Martin and H. K. Wickramasinghe first used magnetic tips in scanning-force mi-

croscopy to image magnetic domains [147]. Since then it has become possible to use

magnetic-force microscopy (MFM) also to quantitatively investigate magnetic systems

[145, 146, 138, 139]. With MFM, a magnetic tip (see Fig. 3.6(a)) is positioned at the end

of a cantilever that oscillates in resonance (tapping mode [148]). The cantilever reflects a

laser beam onto a photo diode which detects the oscillations. When the tip interacts with

the stray field of a magnet, the frequency of the oscillation slightly changes as [146]

∆ω =
ω0F ′

2k
(3.3)
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with the force gradient of the stray field H

F ′ = µ0

∫
tip

[
Mz,tip

(
r′
)
· ∂ 2

∂ z2 Hz
(
r− r′

)
d3r′

]
(3.4)

where k is the cantilever’s spring constant (typically ≈ 3 N/m), Mz,tip the z-component of

the magnetization of the MFM tip, and ω0 its resonance frequency (60−80 kHz). The tip

scans the surface of a sample and the frequency shift is recorded as a function of location

to create an image. Alternatively, the oscillation amplitude or the phase shift, which are

also linear functions of the force gradient, can also be utilized for MFM imaging [55]. As

shown by Eqn. 3.4, the MFM signal is sensitive to the second derivative of the sample’s

stray field z-component in the tip volume. To first approximation, the interaction can be

calculated by seeing the magnetization in the tip as a point dipole located somewhere

within the tip volume [145] (see Fig. 3.6(b)). More precise finite-element calculations

yielded a stray field of the tip of more than 50 mT for hard-magnetic tips (see Fig. 3.6(c)).

These strong local fields have been shown to be sufficient to alter the magnetization of the

investigated sample [149]. MFM must therefore be seen as a partially invasive technique.

However, with precaution MFM is a very useful technique for the characterization of

magnetic samples.

Fig. 3.7: Comparison of MFM measurements (a) to simulations (b) and (c) for the

1× 2 µm2 structure with a thickness of 70 nm in external magnetic fields between -50

mT and +50 mT. (b) Simulations of the MFM signal. (c) Underlying magnetization. One

of the vortices driven through the magnetization configuration by the external magnetic

field is indicated by circular arrows. From [P5].

In our group the simplified dipole model was implemented in an extension of the OOMMF

code to compute MFM images of micromagnetic magnetization states (see for example

Fig. 3.7). The detailed algorithm for this procedure is presented in Appendix A of Ref.

[55]. The magnetic-force microscope used in our group is a Nanoscope III microscope

by Digital Instruments with integrated Helmholtz coils that provide external magnetic
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fields of up to 100 mT. Both the simulation code and the MFM were used for the pre-

liminary studies for this thesis (see Refs. [150, 151, 152] and Section 4.1) and for pre-

characterizing the samples for X-ray microscopy studies.

3.2.3 Magnetic Transmission X-ray Microscopy

Magnetic transmission X-ray microscopy works by a completely different contrast mech-

anism than magnetic-force microscopy: The interaction of soft X-ray photons with the

core electrons of ferromagnets. In this energy regime (≈ 1 keV) the thickness-dependent

absorption of photons by matter is governed by Beer’s law [143]:

I (E,Z) = I0e−µ(E,Z)z (3.5)

where E is the energy of the photons, Z the atom number of the transmitted material

and z its thickness. The absorption coefficient µ can be calculated by Fermi’s Golden

Rule [153]. For the transition metals investigated here, this involves the integral over the

density of unoccupied states. When the energy of the photons is sufficiently high, the core

electrons can be excited into the 2p1/2 and 2p3/2 states. At the corresponding energies,

called the L2 and L3 edges, respectively, the absorption is greatly enhanced (see Fig. 3.8).

Absorption at these edges depends on the polarization of the photons. This effect, called

the X-ray magnetic circular dischroism (XMCD) [154], can be used to image magnetic

Fig. 3.8: (a) Absorption spectrum of iron at the L3 and L2 edges. The absorption of right-

and left-circularly polarized X-ray light differs at these edges, resulting in a detectable

difference in absorption (bottom graph of (a)). (b) When imaging magnetic domains, the

different magnetization directions then appear as gray color contrast. From Ref. [143]
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domains by alternating the X-ray polarization. The XMCD contrast is then defined as

µs

µ0
(E) =

µ+−µ−

µ+ + µ− (E) (3.6)

where µs = 1
2 (µ+−µ−) is the spin-dependent absorption coefficient. Equation 3.6 can

be rewritten as
µs

µ0
(E) =

σs

σ0
(E)

(M ·P)
|M|

(3.7)

where P is the direction and degree of polarized light, and σs and σ0 are the magnetic

and atomic absorption cross sections, respectively [155, 143]. Equation 3.7 says that the

XMCD contrast is proportional to the component of the sample magnetization in direction

of the X-ray beam. Thus if one wants to study materials with perpendicular magnetization

such as CoPd-multilayers or FeGd thin films, the sample is placed normal to the X-ray

beam (see Figure 3.8). When one wants to study thin films with an in-plane anisotropy

(Fe, Ni, Co, and Py), the sample needs to be placed at an angle to make the magnetization

visible. With the XCMD contrast mechanism, one can even separate the spin- and the

orbital contributions to the material’s magnetic moments [156] by calculating the proba-

bility of the different transitions according to the so-called sum rules, provided that the

microscope has sufficiently high energetic resolution, but this has not been pursued in

this thesis. But in alloys, the XMCD can be used to identify the magnetic moments of

the alloy compounds by measuring at different transition energies [157, 158]. XMCD’s

companion contrast mechanism, the X-ray magnetic linear dichroism (XMLD), allows to

observe also antiferromagnetic magnetic moments [159, 160].

The resolution of X-ray microscopes is achieved with the help of Fresnel zone plates

[161, 162] that consist of concentric rings of alternating transparent and opaque material.

Fig. 3.9: Optical setup of the XM-1 microscope (not drawn to scale). From Ref. [143]
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For soft X-rays the zone plates are typically made of nickel or gold. One zone plate,

called the condenser zone plate (CZP), focusses the beam onto the sample (see Fig. 3.9).

Together with a pinhole it also serves as a monochromator for the X-rays since the focal

length is inversely proportional to the photon wave length. A central stop blocks out

the direct light from the synchrotron ring so that only refracted light of the m-th order

comes throught the pinhole. The other zone plate, the micro zone plate (MZP), projects

the transmitted beam onto a CCD chip. The resolution of the microscope is given by

the Rayleigh criterion for incoherent illumination and is proportional to the width of the

outermost transparent rings of the MZP. To achieve a high degree of refraction and high

resolution, thick zone plates with small outer ring widths are desirable. Even though

this presents severe requirements for the zone plate preparation, zone plates having a

resolution of better than 15 nm have been reported recently [163].

At synchrotron light sources, the X-rays are not continuous but are generated in packages

called bunches. They are created as bunches of electrons circulate in the storage ring at

Fig. 3.10: Set-up of the XM-1 X-ray microscope at beam line 6.1.2 of the Advanced

Light Source in Berkeley, CA. (a) Photo of the beam line with its main components as

described in the text. (b) Sketch of the timing and control units in quasi-static measure-

ments.
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almost the speed of light and are deflected by bending magnets or undulators. At the

Advanced Light Source (ALS), the 1.5 mA electron bunches have a full width at half

maximum (FWHM) of about 70 ps representing the optimal time resolution for dynamic

measurements at the ALS. In the normal multibunch mode, the bunches arrive at the

endstation every 2 ns. 328 bunches fit in the 196 m long storage ring. To enable time

calibrations in multibunch mode, one bunch, the camshaft (see the sketch in Fig. 3.10(b)),

carries 10 mA current, surrounded by 20 ns gaps. The bunches have a life time of ≈ 8

hours so that currently three times a day the measurements need to be interrupted to refil

the storage ring. There is also a special two-bunch mode during which only two bunches

circulate in the ring and give off light every 328 ns. The storage ring facility sends a

synchronized timing signal to each beam line to allow time calibrations of the detection

electronics (see Fig. 3.11 and Fig. 3.12(c)).

Full-field X-ray Microscopy at the XM-1 beam line (BL 6.1.2)

The magnetic transmission X-ray microscope XM-1 of beam line 6.1.2 of the Advanced

Light Source in Berkeley, is set-up as shown in Fig. 3.9 and Fig. 3.10. For higher in-

tensity the X-rays are transmitted in vacuum except for a 0.75 mm air gap in which the

sample is positioned. The CZP is located in the condenser box (’1’ in Fig. 3.10(a)) to

allow shifts in the focal length for energy selection. The transmitted beam is directed

through the MZP stage (’3’) to the CCD camera (’6’) that is situated 2 m from the sam-

ple. An electromagnet (’2’) can apply up to 100 mT for in-plane fields and 400 mT for

out-of-plane fields, depending on the pole shoes used. The visible light microscope (’4’)

is needed to adjust the optical path of the microscope and can be swung into the optical

axis in place of the condenser box. Finally, the SR830 lock-in amplifiers used in the si-

multaneous AMR/domain imaging studies are shown in ’5’ (see Section 4.3.2). For our

investigations on stochastic domain-wall motion described in Section 4.4.2 we applied the

current pulses manually with the help of an Agilent 33250A 80 MHz Function/Arbitrary

Waveform Generator and an Avtech AVN-3 Ultra High Speed Pulse Generator. The out-

going and reflected pulses were detected by a Tektronix TDS 640A Digital Real-Time

Oscilloscope.

The time-resolved measurements at the XM-1 beam line are done during the two-bunch

mode in pump-probe technique (see Fig. 3.11). In this mode the magnetization is excited

by a current or field pulse or a laser beam. With a delay line the excitation (pump) can be

varied with respect to the fixed probe flash of the X-ray. The two-bunch mode is necessary

to allow the magnetic system to relax back before the next X-ray pulse probes again. The
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Fig. 3.11: Set-up for time-resolved measurements at the XM-1 beam line. The time

delay is realized by a coarse and a fine delay line and synchronization of the pulser to

the synchrotron timing signal.

CCD camera collects the transmitted X-rays until the signal-to-noise is sufficient. Varying

the time delay between excitation and probing allows to measure the time response of the

magnetic system to the excitation with a resolution of approximately 100 ps.

Time-resolved X-ray Microscopy at the STXM beam line (BL 11.0.2)

The Scanning Transmission X-ray Microscope (STXM), beam line 11.0.2, at the ALS

does not project the X-ray beam onto a CCD chip. Instead the monochromatic, circularly

polarized X-rays from the undulator beam line are focused to a spot of ca. 30 nm onto the

sample with the help of a condenser zone plate. The sample is scanned in the xy-plane

with a high resolution scanning stage under interferometric control (see in Fig. 3.12(a)).

For greater accuracy and higher intensity, the STXM is situated in a vacuum chamber

filled with Helium (see Fig. 3.12(b)). The transmitted intensity is recorded by a fast

avalanche photo diode (APD). The APD’s short recombination time (≈ 1 ns) is many

orders of magnitude shorter than that of a CCD chip (1− 2 s) and allows to detect each

photon bunch individually. With programmable hardware, sequences of X-ray bunches

can be channeled and stored in arbitrary order (see Fig. 3.12(c)). At beam line 11.0.2 the

channeling was done by a FPGA (field programmable gate array) and software supplied

by Y. Acremann from the Stanford Linear Accelerator Center (SLAC).

To excite magnetic structures by alternating spin-polarized currents or fields as described

in Section 4.4.3 the detection of the magnetization at constant phases was guaranteed

by selecting an excitation frequency, and integer multiples of the excitation frequency
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corresponded to the synchrotron frequency of 500 MHz. Figure 3.12(c) shows how the

response of the magnetization at eight different phases is recorded in eight different chan-

nels simultaneously. In principle the set-up allows for an arbitrary number of channels.

The determination of the absolute phase between the recorded images and the excitation

is made possible by sending a short pulse through the detector electronics. The alignment

of its arrival to the pulse produced by the photons of the camshaft yielded our time zero.

This procedure yields an accuracy in time of better than 160 ps.

Fig. 3.12: Set-up of the scanning transmission X-ray microscope (STXM) beam line

11.0.2 at the ALS. (a) Sketch of the optical path of the STXM. (b) Photo of the vacuum

chamber containing the STXM. (c) Sketch of the timing and control units of the STXM.
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4 Results

In this chapter the results achieved by the methods outlined in the previous chapter are

summarized. The results are divided into different topics. In Section 4.1, I studied

the static magnetization configuration of ferromagnetic microelements by micromagnetic

simulation as well as by magnetic force and X-ray microscopy. In Section 4.2 an en-

hanced micromagnetic simulation code was used to study the dynamics of such elements

and to identify their spin-wave eigenmodes. In Section 4.3 the influence of the magne-

tization of ferromagnetic microelements and wires on the conduction electrons via the

anisotropic magnetoresistance effect was investigated. The studies were done by micro-

magnetic simulation, magnetoresistance measurements, and X-ray microscopy. Finally,

these topics and techniques are interwoven to study spin-torque driven domain-wall mo-

tion and vortex gyration in Section 4.4.

4.1 Magnetic Domains

As described in Chapters 2.1.3 and 2.2.3, the energetic ground state of a ferromagnet de-

pends on its material parameters as well as on its history. In ferromagnetic thin films,

these ground states are unique magnetization patterns or domain-wall types. They can

change when one or more parameters are altered. The ferromagnetic system then crosses

a phase boundary. For example, depending on the thickness of magnetic films, different

domain-wall types occur, separated by phase boundaries [56]. In permalloy microstruc-

tures the domain-wall type changes from single-domain over Néel wall, Bloch wall, and

asymmetric Bloch wall to cross-tie wall for increasing film thicknesses. In permalloy

nanowires the domains are aligned parallel to the wire. For thin and narrow wires, trans-

verse domain walls appear which are essentially Néel walls separating domains in which

the magnetizations point head-to-head or tail-to-tail to each other. For thicker (> 15 nm)

or wider wires, vortex domain walls are known to exist [57, 164, 165, 166]. For even

thicker (> 60 nm) and wider wires multi-vortex walls appear [110]. In magnetic rings

transverse, vortex or multi-vortex domain walls [167] can be present in the onion state,

depending on the width and thickness of the ring [168, 97].
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In the following subsections I summarize the results on the static and hysteretic behav-

ior of magnetic domains in ferromagnetic micro- and nanoelements. Starting in Section

4.1.1 I briefly summarize our findings about the comparability of two domain-imaging

techniques and micromagnetic simulation. I do so to lay a reliable foundation to the inter-

pretation of the subsequent results as there I use these techniques interchangeably. In Sec-

tion 4.1.2 I describe the results on the distance-dependent stray-field interaction between

ferromagnetic squares in arrays. This is an important issue for the design of MRAM

cells as one wants to minimize the interaction between neighboring storage units. We

then optimized the geometry of the individual ferromagnetic elements and investigated

the angle- and distance-dependent switching distribution of these elements in rectangular

and hexagonal arrays.

4.1.1 Comparison of Domain-Imaging Techniques

In the first part of my thesis I continued the work of my diploma thesis [126] and Miriam

Barthelmeß’ dissertation [55] to compare the energetic ground states of ferromagnetic

rectangles of various materials and thicknesses as derived by micromagnetic simulations

to those found by magnetic-force microscopy (MFM). The goal was to map out a phase

diagram for the domain-wall types in films of different thicknesses for various materials.

During my diploma thesis we had already started this study and published three articles

on our results. I will briefly outline the content of the three articles as they constitute the

starting point for this thesis.

In the first article, we compared the magnetic images of Ni-Fe bilayered rectangles made

by MFM to those taken at the X-ray microscope at the ALS in Berkeley, USA, to study the

magnetostatic interaction between neighboring ferromagnetic elements [150]. The X-ray

microscope shows magnetic domains parallel and antiparallel to the X-ray’s polarization

in bright and dark contrast while domains perpendicular to the polarization remain gray.

The gray-scale contrast in the MFM images, on the other hand, is proportional to the

second derivative in the stray field perpendicular to the surface [145, 55] so that domain

walls give high contrast. As the stray fields of a domain wall often yield ambiguous sig-

nals, MFM images cannot be directly compared to the domain images due to the XMCD

contrast. So we had to extend the OOMMF code to produce MFM images besides the

magnetization images the code already produced. We then compared the magnetization

images to the X-ray images and the corresponding simulated MFM images to the mea-

sured MFM images. We found good agreement between the two experimental techniques.

The work was published as [P3] in G. Meier, R. Eiselt, M. Bolte, M. Barthelmeß, T.
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Eimüller, and P. Fischer, "Comparative study of magnetization reversal in isolated and

strayfield coupled microcontacts", Appl. Phys. Lett. 85, 1193 (2004) and presented at

international conferences as [C2] and [C3].

We then used the same techniques to evaluate the strength of the magnetostatic coupling

between the elements [151]. The X-ray images revealed that the magnetization was not

in its ground state, and we simulated the magnetization pattern. This allowed the exact

calculation of the magnetic field between the elements. In this way we could show that

the coupling amounted to several Millitesla. We could also show that the magnetization

pattern observed in the X-ray images could only be explained when assuming that part of

the magnetization was pinned. This article was published as [P4] in M. Bolte, R. Eiselt,

T. Eimüller, P. Fischer, and G. Meier, "Micromagnetic simulation as a bridge between

magnetic-force and magnetic-transmission x-ray microscopy", J. Magn. Magn. Mat. 290-
291, 723-726, Copyright Elsevier (2005), and presented at an international workshop as

[C4].

In a third publication, I calculated the MFM images from micromagnetic simulations

of permalloy rectangles of various thicknesses in externally applied magnetic fields and

compared them to the MFM images taken by Christian Pels [152]. For this the simu-

lated magnetization was relaxed for every field step in the hysteresis loop. Because the

magnetization is hysteretic, the simulation had to be done sequentially and was very time

consuming. Simulation and experiment both showed the same transition behavior of the

magnetization: When the field is applied along the long axis of a 1×2 µm2 large and 70

nm thick permalloy rectangle, the magnetization reverses with increasingly negative fields

by two magnetic vortices entering at the long edges at opposite sides of the rectangle. At

remanence, the magnetization is in a double-Landau state with the vortices halfway be-

tween the two long edges. When further decreasing the field, the vortices travel through

the rectangle and leave the rectangle at the other long edge, thereby reversing the mag-

netization. Simulation and experiment agree qualitatively on the MFM images as well

as quantitatively on the field values at which the transitions occur. This work was pub-

lished as [P5] in C. Pels, M. Barthelmeß, M. Bolte, A. Thieme, and G. Meier, "Thickness

and magnetic-field dependence of domain switching in isolated and interacting permalloy

contacts", J. Magn. Magn. Mat. 293, 885-891, Copyright Elsevier (2005). The findings

confirm the valid description of experimental magnetization configurations by micromag-

netic simulations for static multi-domain systems.
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4.1.2 Domain Imaging of Magnetic Dot Arrays

I contributed to the previous articles by performing the micromagnetic simulations and

helping with the subsequent analysis. The X-ray microscopy measurements were done

by Peter Fischer from the Center for X-ray Optics, Berkeley, USA, and the MFM im-

ages were taken by Christian Pels and Miriam Barthelmeß from our group. René Eiselt

and Christian Pels prepared the samples. At the beginning of my doctoral thesis I started

to also perform the X-ray microscopy measurements at the Advanced Light Source in

Berkeley, USA. We first measured at the full-field magnetic transmission X-ray micro-

scope XM-1 beam line 6.1.2 and later also at the scanning transmission X-ray microscope

STXM at beam line 11.0.2. Altogether, I spent about 80 eight-hour shifts in measurements

at the Advanced Light Source. The results are presented in the following sections as well

as in sections 4.3.2 and 4.4.

Distance-Dependent Dipolar Interaction of Iron Elements

In our first X-ray microscopy experiment we investigated the stray-field interaction in

arrays of iron, nickel, and permalloy microelements with different inter-element distances

[169]. We experimented with different element geometries, namely squares and ellipsoids

flattened on one of their sides. They were arranged in hexagonal and square lattices. The

inter-element distances in all the geometries were varied by preparing arrays with minimal

distances ranging from 100 nm over 200 nm, 300 nm, 400 nm, 600 nm, 800 nm, and 1

µm to 2 µm between neighboring elements. Since the square elements turned out to be

qualitatively the best from the preparation process, we focused our studies on those arrays.

Figure 4.1.2 shows an image of one of the samples investigated.

With the magnet built into the XM-1 we applied magnetic fields to run hysteresis loops.

We then imaged the field dependent magnetization and analyzed the gray-scale contrast

of the images with a self-written MATLAB image processing script to derive the average

value for the gray-scale of a defined region. This value is proportional to the magnetic

moments aligned parallel to the X-ray polarization. In this way we could both image the

exact domain patterns and also determine the magnetic hysteresis of the arrays, i.e., the

remanence magnetization and the coercive field. We found in the images as well as in the

hysteresis that the magnetization reversal in the array elements was affected by stray-field

interaction (see Fig. 1 and Fig. 3 of Ref. [169]). We compared the distance-dependent

coercive fields and remanence magnetizations and found good qualitative agreement with

an analytical model by Zhang et al. [170] in which the stray-field interaction decreases

sharply with increasing distance. We also performed micromagnetic simulations of in-
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Fig. 4.1: Optical micrograph of a Si3N4 membrane with arrays of iron elements on it.

The letters indicate different array types, here the size of the squared elements of the

array, and the inter-element distance increases from left to right.

dividual Fe microelements and computed their stray field for the different magnetization

states of a hysteresis loop. We found that the stray field at a distance of 250 nm from

the microelement can still exceed 10 mT strong. Depending on the magnetization state,

the stray field is inhomogeneously distributed around the microelement, leading to an

anisotropic interaction of the elements in a square array (see Fig. 2 of Ref. [169]). I

here reprint the article as [P10] with permission from Markus Bolte, René Eiselt, Guido

Meier, Dong-Hyun Kim, and Peter Fischer, "Real space observation of dipolar interac-

tion in arrays of Fe microelements", J. Appl. Phys. 99, 08H301-1 - 08H301-3, Copyright

(2006), American Institute of Physics. It was presented at the 10th Magnetism and Mag-

netic Materials Conference in San Jose, CA, USA. It was also presented at a workshop on

synchrotron radiation sources in Hamburg [C9].
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Real space observation of dipolar interaction in arrays of Fe microelements
Markus Bolte, René Eiselt, and Guido Meiera�

Institut für Angewandte Physik und Zentrum für Mikrostrukturforschung, Universität Hamburg,
Jungiusstrasse 11, 20355 Hamburg, Germany
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Center for X-Ray Optics, Lawrence Berkeley National Lab, 1 Cyclotron Road, Mail Stop 2R0400,
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�Presented on 2 November 2005; published online 17 April 2006�

Square lattice arrays of thin microelements of Fe are investigated by magnetic transmission x-ray
microscopy. The influence of dipole interaction is analyzed by varying the interelement distance.
For comparison isolated elements are prepared on the same sample. The magnetostatic field caused
by interelement interaction leads to a substantial stabilization of the elements in the center of the
array comparable to the magnetization process previously found by numerical solution of the
Landau-Lifshitz equation for magnetic dot arrays. Micromagnetic simulations show that for high
field strengths the dipolar interaction is collinear with the external field while in the low-field regime
the strayfields have significant perpendicular components leading to a complex reversal
mechanism. © 2006 American Institute of Physics. �DOI: 10.1063/1.2158387�

I. INTRODUCTION

Arrays of magnetic micro- and nanoelements are the ba-
sis for magnetic data storage and magnetic memory
applications.1–3 Dipolar interactions in dense arrays are im-
portant to consider because the magnetic properties such as
magnetization process, remanence, and coercive field can be
significantly different from those of noninteracting
systems.4–6 Arrays of magnetic elements exhibiting dipolar
interactions have been studied theoretically4–8 and
experimentally.1,3,9,10 Dipole interactions significantly affect
the high-frequency response and the reversal dynamics of
coupled arrays.11 A nontrivial variation of the switching time
as a function of the packing density is predicted. Because of
its relevance for magnetic random access memory cells, it is
interesting to use time resolved microscopy techniques to
measure directly the expected influence on the reversal dy-
namics.

Here we focus on the real space observation of the ef-
fects of dipolar interaction on the static magnetic properties
and the magnetization process in arrays of Fe microelements.

II. SAMPLE PREPARATION AND MEASUREMENT
SETUP

We have prepared arrays of Fe microelements on Si3N4

membranes consisting of 5 nm Al as a seed layer and 20 nm
Fe as a ferromagnetic layer. A 3 nm thick Al cap serves as
protection. The microelements are defined by electron-beam
lithography, electron-beam evaporation of the Fe layer at a
rate of 0.1 nm/s with a base pressure in the 10−8 mbar range,
and lift-off processing.

We use magnetic transmission x-ray microscopy
�MTXM� in external magnetic fields of up to ±100 mT.12

MTXM is an excellent tool to investigate the fragile and
complex dipolar magnetic interaction in arrays of micro- and

nanostructured elements. It allows noninvasive exploration
of magnetic reversal within large arrays due to the full-field
scope with a high spatial resolution.13,14

The MTXM images taken at the Fe L3 absorption edge at
a photon energy of 706 eV exhibit a contrast reversal from
dark to light when the external field is reversed from +100 to
−100 mT. With a proper normalization of each image to the
saturated images, MTXM can be used as a highly sensitive
local magnetometer. To achieve this, the mean value of the
gray scale data in the magnetic part of an image is offset by
the corresponding mean value of the nonmagnetic neighbor-
hood and normalized with it. By this method, possible spatial
fluctuations of the synchrotron light intensity are signifi-
cantly reduced and hysteresis loops of a single microelement
can be measured. The magnetic moment of one Fe microele-
ment of 1.36�10−13 A m2=0.136 nemu illustrates the ultra-
high sensitivity.

III. RESULTS AND DISCUSSION

Figure 1 shows representative images of four arrays with
different interelement spacings at equal external magnetic
field. The field is applied in the horizontal direction indicated
by the arrow. The dichroic contrast measures the projection
of the local magnetization onto the photon propagation di-
rection; i.e., the gray scale of the MTXM image is propor-
tional to their scalar product. For in-plane magnetizations as
in the present case, the sample has to be tilted so as to obtain
a nonvanishing projection.15 Areas of magnetization in Fig. 1
pointing to the right appear white, while the ones in the
opposite direction appear dark gray. Domains in the perpen-
dicular, i.e., in the vertical direction in Fig. 1, exhibit an
intermediate gray value. An example of a magnetization state
of a single element interpreted using this gray scale is given
in the inset of Fig. 1�d�.

Before discussing the hysteresis loops inferred from the
sequences of images we estimate the interelement spacing,a�Electronic mail: meier@physnet.uni-hamburg.de
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where significant dipolar interaction is expected. For this, an
isolated Fe microelement and its strayfield was simulated.
We use the object oriented micromagnetic framework
�OOMMF�16 with standard iron parameters �saturation mag-
netization 1.700 kA/m, anisotropy constant 48.0 kJ/m3, ex-
change constant 21�10−12 J /m�, and a cell size of 5 nm in
each direction. The evaporation process yields polycrystal-
line films with virtually no texture, thus justifying the choice
of a random distribution of anisotropy axes in the simula-
tions. Two representative results are shown in Fig. 2, where
the magnetization of the microelement is plotted on top of
the strayfield distribution. Although the exact magnetization
state as measured in the nearly noninteracting elements of
the array in Fig. 1�d� could not be reproduced by the micro-
magnetic simulation, it is worth calculating the strayfields.
Significant field strengths of 16 and 6.5 mT at distances of
200 and 400 nm, respectively, are obtained. While at satura-
tion the strayfield is almost completely aligned in the direc-
tion of the external field �see Fig. 2�b��, it has significant
perpendicular components at zero applied field �see Fig.
2�a��. This will cause a complex interaction while reversing
the magnetization of an array of such elements. Although
there is a long tradition in using computer simulations to

understand the magnetic dipole interaction problem,7 the
simulation of arrays of real microelements is even today a
time- and resource-consuming task. Often the elements of
the array are assumed to be uniformly magnetized. If essen-
tial features of the magnetic ordering are governed by the net
magnetic moment of the particle this is a reasonable
assumption.4 However, in the present case we can merely
expect a qualitative description of the magnetization process
by such an approach.

In the following, we discuss hysteresis loops inferred
from MTXM images like the ones in Fig. 1 that were taken
at 29 magnetic fields in the ±100 mT range. The hysteresis
curves of the arrays with interelement spacings of 200 and
2000 nm are shown in Fig. 3. Magnetization state A corre-
sponds to the images in Fig. 1. It is obvious that the hyster-
esis loops widen as the interelement distance is decreased.
This is due to the dipolar coupling and is theoretically
predicted.4–6

For a more quantitative interpretation it is interesting to
study the dependence of the dipolar interaction characterized
by the interelement distance on the reduced remanence
MR /MS and the reduced coercive field HC /MS. The values
can either be directly read off the raw data or deduced from
sigmoidal fits. Results are shown in Fig. 4. The reduced co-
ercive field HC /MR goes up steadily when dipolar interaction
becomes stronger. This implies that a substantial additional
field is required to change the ferromagnetic order of the
magnetic moments. The reduction of coercivity with decreas-
ing interaction strength is confirmed by micromagnetic simu-
lations of interacting chains of Permalloy™ elements.6

A remanence MR�0.6Ms is measured when the dipolar
interaction is strong; i.e., at a spacing of 200 nm. The rema-
nence sharply drops as the interelement distance is increased

FIG. 1. MTXM images of arrays of Fe microelements with �a� 200 nm, �b�
600 nm, �c� 800 nm, and �d� 2000 nm interelement spacing in a magnetic
field of �0H= +8.7 mT �state A in Fig. 3�. Its direction is indicated by the
arrow. The inset in �d� is an enlarged zoom of one microelement of this array
with the magnetization indicated by arrows.

FIG. 2. �Color online� Micromagnetic simulation of the magnetization and
the strayfield of an isolated element at zero field �a� and next to saturation at
100 mT �b�. The color scale indicates the strength of the strayfield outside
the element. A field strength of more than 10 mT is present up to a distance
of 250 nm indicated by the sharp transition from red to white.

FIG. 3. Normalized hysteresis curves of the arrays determined from MTXM
images at different fields for an interelement distance of �a� 200 nm and �b�
2000 nm.

08H301-2 Bolte et al. J. Appl. Phys. 99, 08H301 �2006�
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�spacing �400 nm�. This is in good qualitative agreement
with the results of Zhang et al.5 Using their notation D
=a /R with the lattice constant a, the element radius R, and
by describing the size of the microelements by the radius R,
our arrays range from D=2.2 to D=4. Thus, a direct com-
parison of the reduced remanences of our arrays with this
theory is possible. They agree qualitatively well as can be
seen in Fig. 4. It is clear that a quantitative agreement cannot
be expected because the model describes arrays of interact-
ing single-domain dots. However, the sharp decrease of the
reduced remanence is seen in the calculation as well as in our
experiment. The offset in the measured remanence in com-
parison to the calculated one is presumably caused by the
additional shape anisotropy of our Fe microelements. When
subtracting the anisotropy offset from the experimental re-
manences, an almost perfect quantitative agreement is ob-
tained.

The high value of the reduced remanence at a spacing of
200 nm represents the tendency of the magnetization to sta-
bilize itself at zero field. This effect can be observed directly
in the images shown in Fig. 5, where magnetization states
next to zero field are shown. They correspond to states B and
C of Fig. 3. In case of stronger interaction, i.e., for an inter-
element spacing of 200 nm, an almost saturated state is kept
�see Figs. 5�a� and 5�c��, while in case of nearly isolated
elements irreversible magnetization processes have already
switched significant parts of the element’s magnetization �see
Figs. 5�b� and 5�d��.

IV. CONCLUSION AND OUTLOOK

With MTXM we have directly observed the influence of
dipolar interaction on dense arrays of Fe microelements. The
magnetization processes are in qualitative agreement with
the theoretical predictions. Arrays of increased density and
reduced interelement spacing will be accessible with a new
type of zone plates.17 Future time-resolved investigations of

nanostructured magnetic arrays prepared on strip lines with
MTXM in the pump-and-probe mode are very tempting and
of great interest for fast magnetic memories.
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ercive fields �solid diamonds� of the arrays versus interelement distance.
Open symbols are reduced remanences taken from numerical calculations by
Zhang et al. �see Ref. 5�. Lines are guides to the eye.

FIG. 5. Magnetization states next to zero applied field. State B in the up-
ward sweep of the array with an interelement distance of �a� 200 nm and �b�
2000 nm. �c� and �d� corresponding magnetization in the down sweep �state
C, see Fig. 3�.
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After I had investigated the static magnetization configuration of ferromagnetic microele-

ments, I studied the dynamic behavior of permalloy microelements due to pulsed or har-

monic magnetic-field excitation via micromagnetic simulation. I had already optimized

the micromagnetic simulation code during my masters thesis by using a Runge-Kutta al-

gorithm with adaptive time steps [126]. This allowed me to simulate much longer time

intervals (≈ 100 ns) and larger elements than I could have with the normal OOMMF

code. For the computation of a static magnetization configuration, one would usually

choose a highly damped system, i.e., α ≈ 0.1 or even larger, to achieve critical damping

and thus to arrive at the equilibrium state in minimal computation time. For a study of the

dynamic behavior, such a high damping parameter would of course be unreasonable. As

shown in my masters thesis, the Runge-Kutta integrator outperforms the Euler integrator

for very small dampings by one to two orders of magnitude, depending on the problem

size. For the present studies, damping parameters of α =0.005 [171] to α =0.008 [172]

were used to conform to realistic values.

It was found that many modes superpose each other so that the observation of the spin-

wave eigenmodes in real space is extremely difficult. I therefore programmed a spin-

wave analysis tool in MATLAB that transformed the simulated magnetization states into

Fourier space and thus allowed a detailed analysis of mode amplitudes and phases. MAT-

LAB [127] has a long history in providing software for signal processing, and its near-

mathematical notation made it an ideal language for this analysis tool. The resolution in

the Fourier space ∆ f = 1/T is limited by the length of the time interval T for which data

is available, i.e., the simulation run [173]. Due to the Nyquist–Shannon sampling theorem

[173] the sampling frequency fs = 1/∆t must be at least twice the maximum frequency

fNy (Nyquist frequency) that one wants to investigate. This is because the spectrum is

mirrored around fNy and the higher frequencies would otherwise overlap (alias-effect).

These limitations outline the constraints on the simulation – a short simulation run will

yield a rough resolution in the frequency space, and making the time intervals too large re-

duces the cut-off frequency or introduces aliases into the spectra. For example, in Section

4.2.2 where I describe the simulation of 16 × 32 µm2 large and 10 nm thick permal-

loy rectangles, excited by an oscillatory magnetic field at a frequency of 500 MHz, the

constraints made it necessary to spatially partition the simulation data and compute the

amplitude and phase images for individual regions before reassembling them for the final

results.

Also, in comparing the calculated Fourier or spin-wave spectra to measured spectra, e.g.,
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from ferromagnetic resonance experiments, one must be careful to not misinterpret the re-

sults. From the micromagnetic simulations one can compute the spectrum of the spatially

averaged magnetization by Fourier transforming the averaged magnetization. Alterna-

tively, one can first Fourier transform the magnetization for every magnetization vector

and then average the amplitudes and phases. In this case one would preserve the modes

with even spatial symmetry that cancel out in the spatial average. These two routes of

computation correspond to spatially averaging methods such as ferromagnetic resonance

spectroscopy [174] or spatially resolving measurement methods such as Kerr microscopy

[175, 176], photoemission electron microscopy [171, 177], or time resolved X-ray mi-

croscopy [178].

Inspired by an experimental work done by the Regensburg group [175] I began my dy-

namic micromagnetic simulations with the investigations of Landau domain patterns ex-

cited by short field pulses with different spatial symmetries. The results of this study are

outlined in Section 4.2.1. In Section 4.2.2 I report the results of a magnetic system driven

by harmonic field excitation, leading to an unexpected excited state. The understanding

gained in these two projects proved invaluable when we investigated magnetic structures

excited by spin-polarized current pulses (see Section 4.4.2) and ac-currents (see Sections

4.4.1 and 4.4.3).

4.2.1 Spin-Wave Eigenmodes of Landau Domain Patterns

As a test case for my extended micromagnetic simulation code I simulated a permalloy

square of the same dimensions as Perzlmaier et al. studied in their experimental work

[175]. At remanence the magnetization in these squares forms a so-called Landau do-

main pattern, four triangular domains with ×-shaped 90° domain walls and a vortex at

the center. Perzlmaier et al. used time-resolved scanning Kerr microscopy [176] and

micro-focus Brillouin light scattering [179] to detect the magnetic response to short field

pulses created by a microcoil (see Fig. 4.2(a)) so that the field acting on the magnetization

was out-of-plane. They observed standing spin waves in the domains of the Landau pat-

terns and could identify distinct modes (see Fig. 4.2(b)) that they called "transversal" and

"longitudinal" modes. In my simulations I could observe those same mode but also iden-

tified other modes with even number of antinodes, that were not observed experimentally.

In collaboration with Christian Bayer from the Technical University of Kaiserslautern I

could show [180] that the spin-wave modes observed in the experiments and in the sim-

ulations could be described analytically by Damon-Eshbach Modes and magnetostatic

backward volume spin-wave modes (see Section 2.4). This is evident from the dispersion
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4.2 Magnetization Dynamics in Confined Systems

relation computed from the simulation. I could also show that the symmetry and the fre-

quencies of the spin-wave modes are determined by the symmetry of the exciting torque

and the symmetry of the magnetization [172, 180].

Fig. 4.2: Setup and results of the experiments of Perzlmaier et al. [175]. (a) Microcoil

with the permalloy square, here from another experiment [178]. The coil is not a closed

loop leading to a spatial inhomogeneity of the out-of-plane field pulse. (b) Results from

Kerr microscopy (top halves of the images) and Brillouin light scattering (bottom halves)

for different transversal quantization numbers denoted by n. From Ref. [175].

The work was published as [P9] and is reprinted here with permission from M. Bolte,

G. Meier, and C. Bayer, Phys. Rev. B 73, 052406 (2006), with Copyright (2006) by

the American Physical Society. A conference article with a focus on the symmetry-

dependence was published as [P13] in M. Bolte, G. Meier, and C. Bayer, "Symmetry

dependence of spin-wave eigenmodes in Landau-domain patterns", J. Magn. Magn. Mat.

316, e526, Copyright Elsevier (2007). This work was presented at the Joint European

Magnetism Symposia 2006 in San Sebastian, Spain. The work was also presented at

other international workshops and conferences as [C6] and [C7], at the Ludwig Maximil-

lian University in Munich [I2], the Johannes Gutenberg University in Mainz, [I3], the

Technical University of Kaiserslautern [I4], and at a user meeting at the Advanced Light

Source in Berkeley, CA, USA [I5].
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We present micromagnetic simulations of the spin-wave spectra in Landau domain patterns. Ultrashort field
pulses of various spatial symmetries are used to excite distinct spin-wave eigenmodes. The frequencies as well
as the symmetry of the mode patterns depend on the symmetry of the exciting torque. The latter is determined
by the symmetries of the field pulse and the magnetic ground state. Landau domain patterns have collective
excitations, i.e., the spin-wave modes cannot be considered for each domain individually. We find transversal
modes as well as longitudinal modes as observed experimentally. From the mode profiles an effective disper-
sion relation is deduced which resembles the dispersion relation for infinitely extended thin films.
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Understanding the magnetization dynamics of nano- and
micrometer sized ferromagnets has been the aim of many
recent experimental1–6 and theoretical5,7–10 studies. The inter-
est is driven by potential applications in ultrafast nonvolatile
magnetic storage cells11 and logical units.12 Ultrafast switch-
ing and reliable magnetization states require an accurate
knowledge of the underlying eigenmodes and eigenfrequen-
cies in micro- or nanomagnets. Micromagnetic simulation
has become a powerful tool to study the static and dynamic
magnetization processes in all these structures.7,8,13,14

The spectrum of confined spin waves in magnetic ele-
ments reflects the static magnetization and the internal field
in these elements. So far several different effects have been
discovered and described theoretically. First, the quantization
of spin waves due to the spatial confinement was
observed.15,16 Then it was found that the inhomogeneous in-
ternal field in nonellipsoidal elements leads to localization of
spin-wave modes.8,17–20 Substantial effort has also been
made in the understanding of inhomogeneously magnetized
microstructures. Examples of these structures are inhomoge-
neously magnetized stripes,21,22 ferromagnetic disks with a
vortex and well-defined cylindrical symmetry,1,2,5,7,9,10,13,23

rings with different spin-wave eigenmodes in varying mag-
netic field directions,24 or squares.1,3,4,6

The study of Landau domain patterns which form
in squares at remanence to minimize the magnetic stray-field
energy25 is of great interest because it allows the investiga-
tion of the basic magnetic constituents and properties in
structured ferromagnets, namely, domains, domain walls,
vortices, and their dynamics. It has been shown by Brillouin
light scattering,4 time-resolved scanning Kerr-effect
microscopy,1,4,6 and magnetic transmission x-ray
microscopy,3 that domains, domain walls, and vortices evoke
distinct spin-wave modes. Experimentally, a number of fac-
tors such as the rise and fall times of exciting field pulses and
the limited spatial and temporal resolution influence the
spectra of observable spin-wave eigenmodes.

In this Brief Report, we present micromagnetic simula-

tions of thin permalloy squares to identify their fundamental
spin-wave eigenmodes. Our claim is that even small spatial
asymmetries in the exciting field pulses can evoke different
observable mode patterns and that properly chosen spatial
symmetries of the pulses give access to the rich set of eigen-
modes in ferromagnetic micro- and nanostructures. By using
spatially inhomogeneous field pulses, we excite different
modes and show that they reflect the symmetry of the excit-
ing torque. We study the fundamental spin-wave eigenmodes
of high symmetry as well as those that occur frequently in
experiments due to an inhomogeneous spatial field distribu-
tion, e.g., in microcoils. In order to explain the basic prin-
ciples, we here focus only on the fundamental modes with
high symmetry. The discussion is also restricted to modes
with maximum amplitude within the four domains. The dis-
cussion of low-frequency domain wall and vortex modes will
be published elsewhere. The simulations show two main
quantization directions for spin waves in each domain, per-
pendicular to and along the static magnetization. Both have
been observed experimentally.4 We count the maxima in the
local power density with the mode numbers m and n. By m
we denote the number of maxima perpendicular to the mag-
netization. As the four domains are triangular, the length of
each domain along the magnetization is smaller close to the
center of the square than at its edge. Therefore, we need m
numbers n1 , . . . ,nm to count the maxima along the magneti-
zation from the center outward. The spin-wave modes need
to be considered for the whole square and not for the indi-
vidual domains. From the mode profiles an effective disper-
sion relation is derived which is linear in the wave vectors
along the magnetization direction. We show that the spatial
symmetry of the field pulses leads to corresponding rota-
tional symmetries of the spin-wave eigenmodes and directly
affects their spectra.

With NIST’s micromagnetic framework OOMMF,26 the
time evolution of the magnetization was computed. We ex-
tended OOMMF with a fifth-order Runge-Kutta integrator with
an adaptive time step for the Landau-Lifshitz equation in-
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4.2 Magnetization Dynamics in Confined Systems

stead of the standard Euler evolver. This accelerated the
simulations by about two orders of magnitude.27 Permalloy
parameters were used, i.e., exchange constant A=1.3
�10−11 J /m, saturation magnetization Ms=8�105 A/m,
uniaxial anisotropy K1=100 J /m3, and damping constant �
=0.008. Squares of four lateral sizes 750 nm, 1 �m, 2 �m,
and 4 �m and a thickness of 16 nm were simulated. The
lateral cell size was 5 nm except for the 4 �m square where
it was 10 nm. The ground state was determined for each size
separately. The magnetization was excited by out-of-plane
field pulses with full width at half maximum �FWHM� of
2.5 ps and a peak amplitude of 20 mT. The pulses have ex-
ponentially rising and falling edges to account for a gradual

change in the simulation’s time step. The frequency response
of the field pulse is virtually constant between zero and well
over 100 GHz. The pulse lengths and heights were chosen
small enough to ensure that all spin-wave modes are in the
linear regime. The external field pulses are simulated to be in
the out-of-plane direction to prevent unwanted domain wall
or vortex motion. Such motion would change the magnetic
state and thus the spin-wave spectrum.14 Because the mag-
netization precesses around the effective internal field, a
small in-plane excitation can be simulated by a correspond-
ing out-of-plane field if the resulting torque remains the
same. The pulse was spatially modulated to locally invert its
direction and thus to allow the excitation of spin-wave eigen-
modes of distinct symmetries. The magnetization response to
the excitation was recorded for simulation times T between
20 and 45 ns, long enough to achieve the frequency resolu-
tion ��=1/T necessary to resolve adjacent modes in the
spectra. The magnetization precession was first locally Fou-
rier transformed and then the local power density was inte-
grated over the square to yield the global power
density.1,7,22,28

Figure 1 shows the global power density of four different
simulations. The peaks correspond to spin-wave eigenmodes.
Their intensities are at least four times higher than the back-
ground level. Figure 2 shows the local power densities �top�
and the corresponding phases �bottom� for exemplary eigen-
modes �compare peaks in Figs. 1�b� and 1�c��. The most
prominent feature in Fig. 1 is the variation of the spectra for
different spatial symmetries of the exciting pulse fields. To
understand how modes are affected by the symmetry of a
pulse field, it is important to realize that even a spatially

homogeneous magnetic pulse H� pulse can lead to inhomoge-
neous modes. If the magnetization is inhomogeneous, an in-

homogeneous torque M� �r� , t��H� pulse�t� is created by a homo-
geneous pulse.22 In Figure 1�a� the initial state was taken
artificially so that the static magnetization rotates around the
center without any out-of-plane components. The relaxation
to the ground state leads to a radially homogeneous torque in
the domains. Only modes with even indices n are excited. As
the Fourier transform of the torque perpendicular to the static
magnetization has its maximum at k�=0, only waves with
wave vectors k��0, i.e., m=1 modes, are excited. Along the
magnetization the torque contains higher Fourier compo-
nents due to the domain walls. Oscillations of the vortex do
not contribute to the eigenmodes shown in Fig. 2 since there
is no intensity in the center of the structure but only inside
the domains. Nevertheless, the existence of the vortex sub-
stantially determines which kind of modes are excited. In

FIG. 1. �Color online� Spin-wave spectra for three out-of-plane
excitations. All excitations were done on a 1�1 �m2 16-nm-thick
permalloy square with a sharp pulse of a FWHM of 2.5 ps. �a�
Relaxation without pulse from a nonequilibrium initial state, and
excitation �b� with a 20 mT pulse having a � /2 rotational symmetry
�see inset�, �c� with a 20 mT pulse having a � rotational symmetry
�inset�, and �d� with a 20 mT spatially uniform pulse �inset� on a
fully relaxed ground state. The peaks in the spectra are identified for
the transversal orders m=1, 2, and 3 �see also Figs. 2 and 3�.

FIG. 2. �Color online� Spatial
images of the squared amplitude
�top row� and the phases �bottom
row� of five exemplary longitudi-
nal eigenmodes of the 1�1 �m2

square. The numbers n1 indicate
the order of the longitudinal
modes for the first transversal
mode m=1 �see Fig. 1�.
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4 Results

Fig. 1�b�, the completely relaxed ground state with a vortex
is taken as the initial state for the simulation, excited with a
pulse of � /2 rotational symmetry. The same modes as in Fig.
1�a� and also additional higher-order transversal eigenmodes
appear. This supports the assumption that the relaxation cre-
ates spin waves of opposite phase that propagate parallel and
antiparallel to the static magnetization on both sides of a
domain wall. It also shows the impact of the vortex, even
though it is not excited.

The modes in Fig. 1�b� show the same � /2 rotational
symmetry as the exciting torque. The odd modes in Figs. 1�c�
and 2, on the other hand, were obtained after applying a
pulse field with � rotational symmetry. Their magnitudes and
phases show the same spatial symmetry as the exciting
torque. This is true for all investigated excitations. Modes
that result from the torque due to a homogeneous out-of-
plane field pulse are depicted in Figs. 1�d� and 3. In this case,
the exciting torque is � /2 rotationally symmetric and inho-
mogeneous perpendicular to the static magnetization. Waves
with k��0 and transversal modes, i.e., mixtures of Damon-

Eshbach and backward volume modes, are excited because
the maximum in the Fourier transform of the exciting torque
is at k��0. Figure 3 shows the local power density and the
corresponding phases for some modes which have nodes per-
pendicular to the magnetization. Also simulated were excita-
tions with 2� rotational symmetry, with the transition line
between different pulse-phase regions lying either diagonally
or along one of the in-plane axes of the square. The eigen-
modes that result when two opposing domains are excited
exactly out of phase show an odd number of maxima in these
domains and an even number in the domains over which the
pulse phase changes its sign, because a nodal line has to be
in the latter domains. Similar modes have been experimen-
tally observed before �see the bottom part of Fig. 4�b� of Ref.
4�. Due to space limitation, the results for 2� rotationally
symmetric pulses cannot be shown here.

These excitation properties have several interesting impli-
cations. For odd modes, the outermost maxima of each do-
main are in phase, while for the even modes they are exactly
out of phase. Furthermore, in the domains with an odd num-
ber of maxima there is a nonzero average amplitude, while in
the case of even modes the averaged amplitude over one
domain is always zero. For � and � /2 rotationally symmet-
ric excitations, the neighboring outer maxima of adjacent
domains always exhibit a phase shift of � to minimize the
stray-field energy.29 In other words, the spin-wave excita-
tions discussed here are excitations of the whole structure
that cannot adequately be discussed when restricting oneself
to an individual domain. Since in experiments typically only

FIG. 3. �Color online� Spatial images of the squared amplitudes
�top row� and the phases �bottom row� for a 1�1 �m2 square. �a�
m=2 transversal modes excited by a uniform field pulse �see Fig.
1�d��. Dashes indicate modes with maximum excitation in a domain
wall. m= �b� 2 and �c� 3 transversal modes excited by the field
pulses shown in the insets of Fig. 1�c�.

FIG. 4. �Color online� Dispersion relations of the longitudinal
eigenmodes for different squares and transversal orders m=1–3.
Closed symbols denote m=1 modes. �Green� diamonds are for the
4�4 �m2, �blue� triangles for the 2�2 �m2, �red� solid circles for
the 1�1 �m2, and �black� squares for the 750�750 nm2 pattern.
The higher transversal modes �open �red� circles� m=2 and 3 are for
the 1�1 �m2 square. Lines represent analytical predictions for an
infinite thin film. The inset shows the local internal field with the
colors ranging from fields with values below zero �blue� up to
6.7 kA/m �red�.

BRIEF REPORTS PHYSICAL REVIEW B 73, 052406 �2006�

052406-3

58



4.2 Magnetization Dynamics in Confined Systems

one type of pulse is used, not all modes are necessarily ob-
served. Actually, it is very difficult to predict which modes
will be observed, as even a slight asymmetry in the experi-
mental setup will affect the excitation. Equally, small devia-
tions in the micromagnetic structure of a sample can lead to
the excitation of measurably altered modes.

Another interesting feature is that the modes are nearly
equidistant in frequency as a function of n for constant m.
From spatial mode profiles as in Figs. 2 and 3 the effective
wave vectors of a specific mode can be deduced from the
distance between maxima parallel �k�� or perpendicular �k��
to the static magnetization. The eigenfrequencies and wave
vectors of the individual eigenmodes lead to their effective
dispersion relations. In Fig. 4. the dispersion relations for the
spin waves of Landau patterns with lateral dimensions of
750 nm, 1 �m, 2 �m, and 4 �m as well as higher-order
transversal modes for the 1�1 �m2 square are shown. There
are two remarkable features. The dispersion relation for m
=1 is linear and the modes for structures of different sizes
have the same dispersion relation. The solid lines are from
analytical results for an infinite thin film30 with the same
material parameters as for the micromagnetic simulation of
the squares. The lower line was calculated with k�=0 for a
maximum internal field strength of Hint=6.7 kA/m. This
value was determined from the simulation �see inset of Fig.
4�. The simulation and the analytical description agree very
well, even though it has to be remembered that the internal
field is inhomogenenous as shown in the inset. The m=2 and

3 transversal modes are fitted by spin waves with larger per-
pendicular components k� and an Hint of 6.7 kA/m within
the same model. The slopes of these curves do not fit the
simulated results. This implies that one cannot conclusively
calculate the spin-wave eigenmodes for Landau domain pat-
terns within the infinite film model, but that the dispersion
relation depends on the location of the eigenmodes within
the square.

To conclude, we describe spin-wave eigenmodes in Lan-
dau domain patterns of different lateral dimensions. The
modes are excited with pulse fields of various spatial sym-
metries. The spin-wave eigenmodes of Landau domain pat-
terns are collective excitations, and cannot be considered for
each domain individually. The eigenmodes are quantized and
localized in the domains along and perpendicular to the static
magnetization. They are equidistant in frequency and lead to
linear effective dispersion relations. The excited modes re-
flect the spatial symmetry of the magnetic pulse field. Small
deviations of the micromagnetic initial state can lead to dif-
ferent modes.
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Abstract

Spin-wave eigenmodes in thin permalloy squares with Landau-domain patterns are investigated by micromagnetic simulation. Both

the spatial symmetry of an exciting field pulse and the symmetry of the internal field determine the frequency and spatial distribution of

the spin waves. With each symmetry, only a subset of all the possible eigenmodes can be observed. Our findings confirm the presence of

longitudinally and transversally localized modes. Comparison with dispersion relations from analytical theory allows the unambiguous

identification of the modes as backward volume and Damon–Eshbach modes, respectively.

r 2007 Elsevier B.V. All rights reserved.
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1. Introduction

The magnetization dynamics of small ferromagnetic

particles are actively studied experimentally [1–4] and

theoretically [3–5] due to their potential application as

ultrafast magnetic storage elements. Reliable switching and

thermally stable magnetization states require an accurate

knowledge of the underlying eigenmodes and eigenfre-

quencies. In recent years, micromagnetic simulation has

become a powerful tool to study the static and dynamic

magnetization processes in small magnetic particles [4–5].

The spectrum of confined spin waves in magnetic

elements reflects the energy density given by the static

magnetization and the internal field. Standing spin waves

in finite structures are known to be energetically quantized

[6] and, in case of an inhomogeneous internal field

distribution, spatially localized [4,7,8]. Landau-domain

patterns (LDP) which form in squares at remanence to

minimize the magnetic stray-field energy allow the inves-

tigation of the basic magnetic constituents in structured

ferromagnets, namely domains, domain walls, and vortices.

It is known that these constituents evoke distinct spin-wave

modes. Recently, we presented results from micromagnetic

simulations of thin permalloy squares that showed that the

spatial symmetry of the exciting torque leads to corre-

sponding symmetries of the spin-wave eigenmodes and

directly affect their spectra, i.e., the eigenfrequencies of the

magnetic system [5]. Here we demonstrate how due to the

symmetries of a field pulse only distinct spin-wave vectors

are excited so that only a subset of the possible eigenmodes

can be observed. As an example, we focus on transversal

modes in such squares and show that they can be

approximated by the spin-wave dispersion relation for

infinite thin films.

To accomplish this, we used the micromagnetic simula-

tion package OOMMF [9], extended with a fifth-order

adaptive time step Runge–Kutta, to compute the influence

of a magnetic field pulse on the magnetization over time.

Standard parameters for permalloy were used, i.e.,

exchange constant A ¼ 1.3� 10�11 J/m, saturation magne-

tizationMS ¼ 8� 105A/m, uniaxial anisotropy K1 ¼ 100 J/

m3, and damping constant a ¼ 0.008. The simulated
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squares had the dimensions of 750 nm, 1, 2, and 4 mm in the

lateral direction and a thickness of 16 nm. The lateral cell

sizes were 5 and 10 nm. The magnetization was excited by

out-of-plane field pulses with full widths at half maximum

of 2.5 ps and a peak amplitude of 20mT. The pulse was

periodically modulated in space to locally invert its

direction and thus to allow the excitation of spin-wave

eigenmodes of distinct symmetries. The magnetization was

Fourier transformed for each simulation cell individually

after zeropadding and applying a Hamming window to

ensure minimal alias frequencies in the spectrum. The local

power density was then integrated over the volume of the

square to yield the global power density. Just as in Ref. [5],

the eigenmodes were determined by selecting frequencies at

which the averaged oscillation amplitude is enhanced and

the spatial phase distribution shows abrupt phase transi-

tions hinting at standing spin waves.

2. Results

Fig. 1 shows the local power densities (top rows) and the

corresponding phases (bottom rows) for three different

exciting torques. The symmetry of the torques is indicated

on the right. The most prominent feature in Fig. 1 is the

variation of the local power density for different spatial

symmetries of the exciting field pulses. In Fig. 1(a) the

Landau state is excited with a pulse of p/2 rotational

symmetry. The modes show the same symmetry as the

exciting torque, and adjacent oscillation maxima are

exactly out-of-phase, suggesting the presence of standing

spin waves for given frequencies. The odd modes in

Fig. 1(b) were obtained after applying a pulse field with p

rotational symmetry. Modes that result from a torque due

to a homogeneous out-of-plane field pulse are depicted in

Fig. 1(c). They show longitudinal as well as transversal

components in the spin-wave vector, visible by nodes and

antinodes both parallel and perpendicular to the static

magnetization. In the following, we focus on modes

originating from this excitation.

Fig. 2 shows power density maps of 750 nm (a)–(c) and

2 mm (d)–(f) sized LDPs excited by phase-uniform out-of-

plane field pulses at 9.6GHz (a), 10.5GHz (b), 10.9GHz

(c), 5.4GHz (d), 10.0GHz (e), and 15.7GHZ (f). The

uniform out-of-plane excitation causes a discretization of

the spin-wave modes perpendicular to the static magnetiza-

tion. Even though the modes are a combination of

longitudinal and transversal modes, the modes presented

here, with the exception of Fig. 2(f), are mainly parallel to

the static magnetization.

The triangular geometry of the domains in LDPs leads to

a varying number of longitudinal antinodes for each

transversal antinode if the spin-wave vector is to remain

constant. Therefore, the nomenclature in Fig. 1 assigns

each mode pattern a tuple of integer numbers representing

the number of maxima along the static magnetization in

the first, second, etc. transversal mode, counted from the

edge inward. The nomenclature shall not infer such

quantization to be present in all the possible modes, as

ARTICLE IN PRESS

Fig. 1. Squared amplitudes (top rows) and phases (bottom rows) of a 1� 1mm2 16 nm thick permalloy square excited by a 20mT out-of-plane field pulse

with three different spatial symmetries. (a) Excitation pulse having a p/2 rotational symmetry, (b) a p-rotational symmetry, and (c) homogeneous

excitation. Shown are the first six modes and their mode numbers (cf. Fig. 2 of Ref. [5]).
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other, e.g., radial symmetries are evident in LDPs (see

Fig. 2(c) of Ref. [10]). The distance between two maxima in

the direction of the magnetization, or perpendicular to it in

the case of the transversal modes such as shown in Fig. 2(f),

was used to determine the wave length and thus the wave

vector. The wave vectors were plotted against the

respective eigenfrequency. The resulting effective spin-wave

dispersion relations are seen in Fig. 3. It shows that the first

three longitudinal orders (filled shapes, circles, and circles

with dots) have linear dispersions, thus justifying them to

be called backward-volume modes. The frequency differ-

ence between them can be understood by the varying

internal fields in the center of a domain or closer to the

vortex core. The dispersion relation, indicated by crosses,

originates from predominantly transversal spin waves (see

Fig. 2(f)). Fitting the data points with the analytical theory

for infinite thin films [11] yields good agreement justifying

them to be called Damon–Eshbach modes.

3. Conclusion

We simulated spin-wave eigenmodes in Landau-domain

patterns of different lateral dimensions. The spatial

localization, the amplitude, and the phase of the modes

are derived by Fourier transformation. By analyzing their

effective dispersion relations, the longitudinal and trans-

versal modes can be unambiguously linked to backward-

volume and Damon–Eshbach modes of infinitely extended

thin films.
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Fig. 2. Power densities of a 750� 750 nm2 (a)–(c) and a 2� 2mm2 (d)–(f)

square excited by a homogeneous out-of-plane field pulse for selected

frequencies.

Fig. 3. Effective spin-wave dispersion relation for thin permalloy squares

of 750 nm (black), 1mm (red), 2mm (blue), and 4mm (green) lateral sizes.

The shapes denote the number i of maxima perpendicular to the static

magnetization (see Fig. 1): i ¼ 1—solid shapes, i ¼ 2—circles, i ¼ 3—

circles with dots. Crosses represent wave vectors almost perpendicular to

the static magnetization (see Fig. 2(f)).
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4.2 Magnetization Dynamics in Confined Systems

4.2.2 Mode-Trapping in Landau Flux-Closure Structures

I also investigated large (16 × 32 µm2) and 10 nm thin permalloy rectangles with a

Landau domain pattern that were excited by magnetic field pulses with a repetition rate

of 500 MHz. These pulses were applied through a copper stripline on which the samples

lay. The magnetic structures were imaged by X-ray photoemission electron microscopy

performed at the Berlin Light Source (BESSY) by Alexander Krasyuk and coworkers

from the Johannes Gutenberg University of Mainz during the so-called low α-mode. In

this mode, the X-rays had an extremely short full width at half maximum (FWHM) of

only 3 ps which allowed them with their microscope and special electronic equipment

to have an excellent time resolution. They observed a puzzling phenomenon that they at

first could not understand: Under the influence of the stroboscopic field pulses the center

domain wall was moved in the direction of the field pulses proportional to the strength

of the field pulses. One would expect that the domains with parallel magnetic moments

would be enlarged so that the wall would move perpendicular to the field direction.

Alexander Krasyuk approached me during tthe IFF Spring School in Jülich, and we started

a collaboration in the course of which I simulated the dynamics of such a permalloy rect-

angle. In the simulations I had to deal with severe constraints: The exact damping pa-

rameter and saturation magnetization were not known. Also, to observe the effect I knew

I had to simulate longer than the settling time of the magnetization (more than 50 peri-

ods, i.e., 100 ns). In addition, the sample was unusually large. This meant either making

the simulation cell size much larger than the exchange length λ making the results less

reliable or taking much more time and computer memory. I approached the problem by

simulating the dynamics of the permalloy rectangles with varying cell sizes for short peri-

ods of time. Then I compared the magnetization oscillations, i.e., their eigenfrequencies.

I found that for cell sizes smaller than 10 nm the time-dependent magnetization was vir-

tually the same. Due to memory constraints I simulated a 8 × 16 µm2 rectangle instead

of the 16 × 32 µm2 which still took many weeks to simulate.

My simulations showed several details that helped to solve the riddle: First an initial

asymmetry was needed to cause the domain wall motion in the right direction. Second, by

performing Fourier transforms of the oscillations I could show that the same modes exist

in the experiment as in the simulation (see Figs. 4.3(a) and (b), respectively). Professor

Hans Joachim Elmers then came up with a model that explained the observations: A

self-trapping of the dominant spin-wave mode when the system is excited just below

resonance. Assuming an initial asymmetry of the domain wall to the right, the left domain

has a slightly lower resonance frequency than the right domain and is thus closer to the
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4 Results

Fig. 4.3: Amplitudes and phases of the second eigenmode of a permalloy platelet. The

colors in (a) and (c) represent the amplitude of the mode, ranging from blue for low

intensity over yellow to red for high intensity. The corresponding phases ((b) and (d))

range from −π (blue) over 0 (green) to π (red). (a) and (b): Amplitudes and phases

at 1.25 MHz, derived by Fourier transforming the photoemission electron microscopy

images. (c) and (d): Amplitudes and phases at 1.5 MHz derived from micromagnetic

simulation.

excitation frequency. This results in a higher oscillation amplitude in the left domain,

and the domain expands. Counteracting is the increase in magnetostatic energy from the

increase of the domain so that the new equilibrium position of the domain wall is input-

power dependent. The work was published as [P7] and is reprinted here in its entirety with

permission from A. Krasyuk, F. Wegelin, S. A. Nepijko, H. J. Elmers, G. Schönhense, M.

Bolte, and C. M. Schneider, Phys. Rev. Lett. 95, 207201 (2005). Copyright (2005) by the

American Physical Society. The results were also presented at a workshop on synchrotron

radiation (see [C8]) and at a talk at the University of Mainz (see [I3]).
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Self-Trapping of Magnetic Oscillation Modes in Landau Flux-Closure Structures
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We investigated the magnetodynamics in rectangular Permalloy platelets by means of time-resolved
x-ray photoemission microscopy. 10 nm thick platelets of 16� 32 �m size were excited by an oscillatory
field along the short side of the sample with a fundamental frequency of 500 MHz and considerable
contributions of higher harmonics. Under the influence of the oscillatory field, the Néel wall in the initial
classical Landau pattern shifts away from the center, corresponding to an induced magnetic moment
perpendicular to the exciting field. This phenomenon is explained by a self-trapping effect of the
dominating spin-wave mode when the system is excited just below the resonance frequency. The basic
driving mechanism is the maximization of entropy.

DOI: 10.1103/PhysRevLett.95.207201 PACS numbers: 75.40.Gb, 75.60.�d, 75.75.+a

Excitations of magnetic moments in nanostructures have
recently attracted considerable attention [1–5] due to their
relevance to high-frequency applications of magnetic par-
ticles in data storage devices. Advanced magnetic record-
ing technology pushes the switching time into the
gyromagnetic regime. For mesoscopic elements, the
high-frequency behavior is governed by confined spin-
wave eigenmodes as visible, e.g., in Brillouin light scat-
tering [2,6]. So far, most studies have addressed the sim-
plest case of elements in an almost monodomain state
[6,7]. In larger microstructures, magnetic stray fields are
minimized by the formation of multidomain configura-
tions. Thin rectangular platelets of Permalloy often exhibit
a Landau flux-closure structure comprising a Néel wall in
the center [8].

The magnetization dynamics is quantitatively described
by the Landau-Lifshitz-Gilbert equation [9] that resembles
the equation of motion for a spinning top, because the
magnetic moment is accompanied by an angular momen-
tum. In the ultrafast regime, the torque acting on the local
magnetization ~M becomes the dominant factor. This torque
may initiate a precessional motion of ~M, which can be
observed, if the Fourier spectrum of the excitation by an
external field comprises significant components of the
precessional eigenfrequency of the system. In particular,
~M should not be affected, if the local torque disappears.

In this Letter, we report on the striking phenomenon
of a magnetic moment induced perpendicular to an excit-
ing ac magnetic field. This phenomenon occurs for a
Landau flux-closure structure excited slightly off reso-
nance. We show that the induced perpendicular moment,
which leads to a domain wall shift despite zero local
torque, is caused by a self-trapping of an oscillating mode,

thus maximizing the energy exhausted off the exciting
field.

The time dependent spatial distribution of the magneti-
zation was measured using a photoemission electron mi-
croscope (PEEM) [10]. The PEEM measures the spatial
distribution of the x-ray absorption via the electron yield of
secondary electrons [11]. When the energy of circularly
polarized (polarization vector ~P) photons is tuned to the
Ni-L3 absorption edge, the electron yield varies with the
relative orientation of magnetization ( ~M) and ~P. X-ray
magnetic circular dichroism (XMCD) images are obtained
from two images taken with opposite polarization (� and
�). In order to visualize magnetic domains, we calculated
the asymmetry Ii � �I

�
i � I

�
i �=�I

�
i � I

�
i � at each pixel

(Fig. 2), which is proportional to ~M � ~P. The samples are
Permalloy (Ni80Fe20) platelets with 16 �m width, 32 �m
length, and 10 nm thickness, placed on a coplanar wave-
guide (Cu, 50 �m width, 200 nm thickness) with the long
side parallel to the waveguide. The in-plane direction of the
x-ray beam (incident angle 65�) was oriented perpendicu-
lar to the waveguide and parallel to the exciting field.
Because of the grazing incidence of the x rays, we are
most sensitive to the in-plane magnetization component
along the short side of the platelet.

An externally triggered pulse generator injected the
high-frequency current pulses into the waveguide. The
actual pulse shape [see curves I, II, and III in Fig. 1(a)]
was derived from the apparent change of the sample size,
when the current pulse passes the field of view. The voltage
pulse accompanying the current pulse slightly changes the
magnification of the electron optical lens [12]. An absolute
value for the magnetic field results from the voltage signal
measured at the output of the waveguide using a fast
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4 Results

oscilloscope. The maximum field values are of the order of
2 Oe [Fig. 1(a)]. The output shield of the pulse generator
was set to floating ground. Thus, the mean current through
the waveguide remains zero, and we merely apply a
500 MHz ac signal with considerable contribution of
higher harmonical components [Fig. 1(b)] and synchro-
nized with the x-ray pulses from the synchrotron.

Time-resolved experiments are performed by strobo-
scopic illumination of the sample by x-ray pulses produced
by electron bunches in the synchrotron ring (tFWHM �
3 ps, low � mode [13]) with a repetition rate of
500 MHz. The ac driving current and the probe pulses
are synchronized via a variable electronic delay t. The
sample is thus excited and probed every 2 ns. To acquire
an image, we typically integrate the signal for 30 s, thus
averaging over 1:5� 1010 pump-probe cycles.

Snapshots of the time evolution of the magnetization ~M
in the Permalloy platelet comprising a Landau flux-closure
pattern are shown in Fig. 2 for the smallest field pulse.
Micromagnetic simulations [14] were used to verify the
experimental findings. Permalloy rectangles of the same
aspect ratio were excited with periodic pulses of the same
magnetic pulse shapes and strengths as the experimental
samples [see Fig. 1(a)]. The time evolution of the magne-
tization was stored, until the oscillations converged. The
spin-wave eigenfrequencies were then determined by local
Fourier transformations, and the local power density was
integrated over the volume to a global power density. The
local power density yields the location and relative phases
of specific eigenmodes.

The domains oriented parallel and antiparallel to ~P
appear black and white, while the two domains oriented
perpendicular to ~P both appear gray. A 180�-Néel wall
along the y axis separates the two large domains with ~M
upward (left) and downward (right). In the Néel wall, ~M
is oriented to the left; thus, the Néel wall appears black.
Because of the high driving frequency, the image at t � 0

corresponding to the onset of the field pulse does not
represent the equilibrium case before the excitation. The
system does not have enough time to relax back into the
equilibrium state before the next pulse arrives. Instead, the
image shows already a dynamical state of the magnetiza-
tion pattern.

At t � 600 ps, the intensity has increased in the left and
right domains, indicating a rotation of the magnetization
vector towards the direction of the applied field, i.e., clock-
wise in the left domain and counterclockwise in the right
domain. At t � 1100 ps, the left and right domains appear
dark, because ~M has rotated in the opposite direction. A
second oscillation is indicated by the snapshot at t �
1400 ps. Micromagnetic simulations yield very similar
oscillations of the magnetization, even though the exact
pattern has not been reproduced.

In our experiment, the predominant excitation mode is a
precession of the magnetization in the two large domains.
It is excited by the external field pulse directed perpen-
dicular to ~M in these domains. Our observation of two
pronounced maxima of the magnetization component par-
allel to the field confirms the dynamical motion of ~M. In
our case, the excitation field can be described as an oscil-
lating field with considerable contribution of overtones
rather than a field pulse. Thus, the system resembles a

FIG. 1 (color online). (a) Time dependence of the exciting
magnetic field Hx�t�. Two periods are shown in order to empha-
size the repetition rate. (b) Fourier transformation of 50 periods
of amplitude I into frequency space.

FIG. 2. Selected XMCD images showing the time evolution of
the x component of the magnetization (bright areas are magne-
tized to the right, dark areas to the left) in a Permalloy platelet
(16 �m� 32 �m) for delay times t � 0 ps (a), 600 ps (b),
1100 ps (c), and 1400 ps (d). The orientation of the exciting
ac field and the photon polarization ~P are in the x direction.
Sketches of the corresponding domain patterns are shown in the
second row. In the third row, micromagnetic simulation results
are shown for a Permalloy platelet with linearly reduced dimen-
sions (8 �m� 16 �m� 5 nm, cell size 10 nm).
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4.2 Magnetization Dynamics in Confined Systems

driven oscillator, and we observe the dynamical answer of
the system to the periodic excitation instead of a damped
oscillatory relaxation to equilibrium.

To determine the frequencies and amplitudes of the data
shown in Figs. 2(a)–2(d), we analyze the rotation angle
��t� � 	 arccos�Mx=M� by averaging over the boxes
shown in Fig. 2(a). The intensity of the small closure
domains was taken as a reference, since no initial torque
acts on the magnetization within these domains. The rota-
tion angle shows pronounced extrema at t � 600, 1100,
1450, and 1900 ps in the left domain [Fig. 3(a)]. A rough
estimate of the eigenfrequency can be made from the
second oscillation of ~M (indicated by the period T). In
this case, the least altering of the eigenfrequency can be
expected. For the left domain, we thus estimate a value of
1.25 GHz.

The domain walls and, particularly, the 180�-Néel wall
move only very little throughout the series shown in
Figs. 2(a)–2(d). Close to the maximum of the field pulse
at t � 600 ps, the upper triangular domain [ ~M k ~H�t�]
grows while the lower black domain shrinks. This occurs
through a bulging of the 90� domain walls downwards.
This bulging behavior is similar to an observation in square
particles [1]. The wall velocity [Fig. 3(b)] does not exceed
103 m s�1 in agreement with Ref. [1]. The 180�-Néel wall
movement is in close relation to the oscillation of the
magnetization in the left and right domains. We do not
observe a significant movement of the vortex. This is not a
contradiction to previous observations of a vortex motion
perpendicular [1] or parallel to the applied field [3], be-
cause in our case the excitation frequency is too high for
the slow velocity of the vortex.

The most interesting phenomenon is the mean shift of
the 180�-Néel wall out of its symmetrical position to the
right [see Figs. 4(b)– 4(d)]. This shift increases with the

amplitude of the exciting field. This shift cannot be caused
by the external field directly, because the field is directed
parallel to the magnetization in the domain wall and, thus,
causes no torque. Moreover, the field is oscillating and the
mean field averaged over one cycle disappears. Of course,
a movement of the wall could be induced by a magnetic
field along the y axis. Since the domain walls can move
freely in our low-anisotropy sample, the walls will adjust in
a quasistatic external field such that the sum of the demag-
netizing fieldHd and the external field is zero.Hd � NyM�
is given by the magnetic moment m � MV� of the particle
(� � 2�x=w, denoting the relative shift of the 180� do-
main wall) and the demagnetizing factor Ny 
 t=l (thick-
ness t and length l) roughly approximated assuming an
ellipsoidal particle. The required external field for a do-
main wall shift to the right edge (� � 1) is 3 Oe, i.e., on the
same order of magnitude as the field amplitude. Such a
large field component can certainly not be caused by a
misalignment of the particle and the waveguide or by stray
fields from the leads. The presence of static fields can also
be excluded (the vacuum chamber itself is made out of �
metal in order to shield external fields fields), as the shift of
the domain wall would then be independent of the exciting
field. However, Fig. 4 clearly shows that � increases with
the field amplitude. For the largest field amplitudes applied
in this experiment, the platelet is nearly saturated with the
magnetization vector pointing upwards [Fig. 4(d)].

The observed effect can be explained only by the fol-
lowing dynamic response of the system on the periodic
excitation: As a general physical principle, a system with a
continuous source (exciting field) and sink (spin damping)
of power assumes a state with maximum energy stored in
the system and, thus, maximizes the entropy production.

FIG. 3. (a) Time evolution of Mx averaged over the box shown
in Fig. 2(a) for field amplitudes I and II. Two periods are shown.
(b) Displacement � � 2�x=w of the 180�-Néel wall parallel to
Hx�t�.

FIG. 4. Snapshots of the Permalloy platelet with the domain
pattern sketched in (a) at the time t � 600 ps excited with three
different amplitudes [see Fig. 1(a)] denoted as I (b), II (c), and
III (d). In (c), the domain wall comprises additional vortices
appearing aperiodically, in some cases at higher amplitudes. A
comparison of the numerical solution obtained from Eq. (3) and
the experimentally determined mean domain wall shift � is
shown in (e).
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The energy stored in our particle is given mainly by the
magnetization precession in the large domains. The system
is excited with a significant oscillating field component of
1 GHz, i.e., just below the resonance frequency of the free-
running system. If the domain wall is shifted to the right,
the effective field determining the precession frequency
and, consequently, the resonance frequency will be re-
duced in the left domain and vice versa in the right domain.
As a consequence, the amplitude of the precession will
increase in the left domain and decrease in the right do-
main. Since the precession energy is proportional to the
square of the amplitude, the total energy has increased.
Moreover, the domain with the larger amplitude has grown,
which also helps to increase the stored energy. The stored
precession energy is finally balanced by the stray field
energy, because of the resulting finite magnetic moment
of the particle. The initial domain wall movement can
occur to the left or to the right. However, we observed
exclusively a shift to the right. Small inhomogeneities or a
small vortex motion as described in Ref. [3] could be the
reason.

In order to substantiate this qualitative picture, we esti-
mate the contributing energies in the following. The am-
plitude of a forced oscillator with small damping is given
by A��� � C�1� �2��1 at the exciting frequency � �
!=!0 normalized to the resonance frequency !0. If !0

is varied, the amplitude will change by:

� �
A0���
A���

�!0 � �
2�2

1� �2

�!0

!0
: (1)

The resonance frequency !0 of the two large domains can
be derived from the Landau-Lifshitz-Gilbert equation:
!0��� � ��0M

������������������
Nx � Ny

p

 ��0M

���������������������������
�t=w�1� ��

p
, as-

suming demagnetization factors Ni for an ellipsoidal par-
ticle of similar dimensions as the magnetic domains. The
resonance frequency decreases with increasing shift � �
2�x=w of the domain wall: �!0=!0�0� � ��1� ��

�1=2 �
1�. We calculate the change of the precession energy when
the domain wall is shifted by � as

�Ep=Ep � �2 � 2��; (2)

where Ep denotes the total precession energy of the excited
mode. Using the experimentally accessible amplitude of
the magnetization component Mx � Mmx along the x axis
and the demagnetization factor Nx, we can express the
energy as Ep �

1
2V�0NxM

2m2
x. The stray field energy

�Es balancing �Ep also increases with increasing domain
wall shift: �Es �

1
2V�0NyM

2�2. From the equilibrium
condition �Ep � �Es, one obtains the implicit equation:

�Nx=Ny���2 � 2���m2
x � �2; (3)

determining the shift � as a function of the oscillation
amplitude mx. If mx exceeds a critical value, a nontrivial
solution � � 0 exists. As expected, � increases with in-
creasing amplitude of the oscillation. A comparison of

��mx� obtained from Eq. (3) to the experimental data is
shown in Fig. 4(e) with the parameter 2�2=�1� �2� � 3:8
corresponding to a relative exciting frequency � � 0:81,
i.e., !=2� 
 1 GHz. Even though we performed a rough
approximation of the contributing energies, the experimen-
tal data can be described by our model quite well, thus
confirming our assumptions. Micromagnetic simulations
confirm the basic assumptions of this model, as will be
discussed in more detail in a forthcoming publication.

In conclusion, we found an induced magnetic moment in
a rectangular platelet oriented perpendicular to an exciting
oscillatory magnetic field. This phenomenon can be ex-
plained by a self-trapping spin-wave mode. When the
system is excited just below the resonance frequency, the
magnetization distribution adapts itself to gain more en-
ergy out of the exciting field. In the dynamically steady
state of feeding constantly energy into the platelet by the
exciting field that finally dissipates into the heat bath by
magnon-phonon interaction, the increase of entropy is thus
maximized. Above a threshold, the near-resonance spin-
wave mode thus causes an effective force perpendicular to
the 180�-Néel wall in the center of the particle that is
balanced by the restoring force due to the stray field
energy.
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4.3 Anisotropic Magnetoresistance in Permalloy

Microstructures

As mentioned in Chapter 3, magnetoresistance measurements can sensitively detect small

changes in the magnetization of a ferromagnetic material. However, the measured signals

are often ambiguous as they are derived by the interaction between the local magnetiza-

tion and the conduction electrons integrated along their paths. For an AMR signal the

cosine-square dependence of the resistance gives rise to further ambiguity. There are in

essence two ways to increase the significance of AMR measurements: One way is to make

the sensitive volume smaller so that the measurement approaches a local probing of the

magnetization instead of an average of a large volume. Then there is less variability in the

magnetization configuration possible. This approach was followed in the study outlined

in Section 4.3.1 as well as in a number of studies by other authors [61, 181]. We investi-

gated the AMR response in a permalloy rectangle if the voltage contacts encompass only

a small region of the magnetic structure.

The other way to increase the significance of AMR measurements is to directly compare

the AMR signal at a certain external magnetic field to the actual magnetization configu-

ration at that field. The latter can be obtained either by domain imaging techniques (see

Section 3) or via micromagnetic simulation. This is the path we pursued in Section 4.3.1

as well as in Section 4.3.2. This path has been applied by other groups as well [31, 182].

4.3.1 Comparison of Micromagnetic Simulation and Experiment

Marcus Steiner had been working on the switching behavior of single-domain ferromag-

netic electrodes for spin injection into semiconductors for spintronic applications [183].

He also studied the transport characteristics of larger, multi-domain permalloy structures.

For an investigation of the change of anisotropic magnetoresistance due to different mag-

netization states, he contacted micrometer-sized permalloy rectangles of various thick-

nesses and measured the output voltage for fixed input currents. The voltage contacts

overlapped approximately only one-fourth of the permalloy rectangles. He measured the

AMR for magnetic fields perpendicular and parallel to the long axis of the rectangles and

for various temperatures (see Section 5.2 of Ref. [183]).

I completed his study by comparing his measured data to results from micromagnetic

simulations. For this I extended the OOMMF code with a tool that calculates the AMR

for simulated magnetization patterns. For a physically correct calculation it was required

that the assumed current flow through the rectangles was homogeneous in one direction,
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even though the software interface allowed for general vector fields. The scalar product

of the magnetization of each cell with the local current vector was added along each of

the three coordinate axes for the total AMR contribution. The code does not allow for set-

ting boundary conditions, i.e., spatially separating current and voltage contacts. For our

simple model the current was assumed to be homogeneous in the x-direction, we defined

the current to be only between the voltage probes. An exemplary correlation between a

ferromagnet’s magnetization and the corresponding AMR signal in shown in Fig. 4.4.

I simulated hysteresis sweeps for several initial magnetization states (S-state and C-state,

see Ref. [36, 134]) and thicknesses. The qualitative agreement between the measurements

and the simulations was already good, but a discrepancy in the absolute values caused us

to turn to Matthias Holz, who from a diffusive transport model calculated the expected

current density distribution in our measured and simulated samples. We found that due

to the low-ohmic gold voltage contacts on top of the higher-ohmic permalloy most of the

current flowed through the contacts causing a high current density in the permalloy ad-

jacent to the gold contacts. Thus in these regions the AMR was measured with greater

sensitivity than in the others, and in other regions the magnetization would have no influ-

ence on the AMR as no current passed through the voltage probes. With this advanced

model we recalculated the expected AMR signals from the simulated hysteresis sweeps

and found a much better correlation between measurement and simulation. We confirmed

our simulated magnetization states with magnetic-force microscopy images taken from

samples with similar aspect ratios. Thus we have shown that AMR can be used to locally

detect magnetization changes and that with the help of micromagnetic simulation one can

obtain information about a ferromagnetic system not accessible by AMR measurements

alone.

The work was published as [P8] and is reprinted here in its entirety with permission from

M. Bolte, M. Steiner, C. Pels, M. Barthelmeß, J. Kruse, U. Merkt, G. Meier, M. Holz,

and D. Pfannkuche, Phys. Rev. B 72, 224436 (2005). Copyright (2005) by the American

Physical Society. The work was also presented at the DPG Spring conference in Berlin

(Germany) in 2005 [C5] and at the Technical University of Eindhoven, NL (see [I1]).
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4.3 Anisotropic Magnetoresistance in Permalloy Microstructures

Fig. 4.4: (a) Hysteresis and (b) corresponding AMR for a 400× 400 nm2 and 10 nm

thick permalloy sample. The simulation started at +50 mT in a flower-state and went into

an S-state at -50 mT to reverse into another S-state at +50 mT. Therefore the up–sweep

and the down–sweeps are not symmetric.
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Magnetotransport through magnetic domain patterns in permalloy rectangles
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We study the influence of multidomain configurations on the magnetoresistance of rectangular permalloy
microstructures with various thicknesses. The anisotropic magnetoresistance �AMR� is the dominating resis-
tance contribution in these systems. Reversible and irreversible magnetization reversals lead to complex AMR
signals. Appropriate positioning of the voltage probes allows the local detection of the magnetoresistance. Two
methods for calculating the local AMR, the uniform-current model and diffusive transport calculations, are
described. The latter takes potential differences and inhomogenous current paths into account. By comparing
magnetoresistance measurements, micromagnetic simulations, and images of magnetic-force microscopy for
various film thicknesses, we can exactly link the transitions between magnetic configurations to changes
observed in the magnetoresistance.

DOI: 10.1103/PhysRevB.72.224436 PACS number�s�: 75.47.�m, 75.50.Bb, 75.60.Ch, 75.60.Jk

I. INTRODUCTION

Electron transport through ferromagnetic microstructures
and nanostructures is a hot issue due to its relevance for
magnetic memories.1,2 At present, a lot of progress in under-
standing the interaction between itinerant and localized elec-
trons is being made.3–8 With high current densities, the local
magnetization can be controlled by the spin-transfer torque
which is most attractive as a direct writing process in mag-
netic random access memory devices �MRAM�.9 In the re-
gime of low current density, the resistance of a ferromagnetic
metal can be probed without deteriorating the local
magnetization.7,8 Low current densities are thus used to read
out information. Experiments have been performed to ana-
lyze the access memory devices �AMR�10,11 and the resis-
tance caused by a domain wall.12–17 For the latter there is an
ongoing discussion about its sign and existence. Negative as
well as positive domain-wall resistances have been theoreti-
cally predicted and experimentally demonstrated. It has also
been stated that without impurities the resistance of a domain
wall vanishes.18 A possible reason for the contradictive inter-
pretation of the experimental work might be the presence of
a local AMR that dominates the domain wall contribution.
Thus a proper description and a detailed understanding of the
local AMR is essential. To this aim, micromagnetic simula-
tions have proven to be an important tool.19–23

We measure the magnetoresistance of permalloy micro-
structures with local voltage probes and compare the experi-
mental data with simulations. We use the three-dimensional
version of the micromagnetic simulation package OOMMF

�Ref. 24� which we extended in order to be able to describe
local AMR and inhomogeneous current distributions. Thus it
is possible to calculate the magnetoresistance of simulated
magnetic configurations and to observe transitions between
magnetic states through reversible and irreversible changes.
The results are compared with AMR measurements and
cross-checked by magnetic-force microscopy �MFM�.

II. SAMPLE PREPARATION

We have prepared permalloy rectangles with thicknesses
between 10 and 100 nm. The different domain patterns that
arise due to the distinct thicknesses and lateral sizes of these
rectangles have been described in earlier publications.21,25,26

Gold contacts for magnetoresistance measurements were
added to the 4�2-�m2-sized rectangles with thicknesses 20,
40, and 70 nm as can be seen in Fig. 1. The voltage probes
were prepared to cover a rectangle approximately one-fourth
of its width. This way we are able to resolve local magnetic
configurations with a mirror symmetry along the long axis
�the x direction in Fig. 1�. External fields can be applied
in-plane under an arbitrary angle � with respect to the long
axis. All transport measurements were performed in a helium
cryostat at temperatures between 2 and 50 K.

FIG. 1. Array of 4�2 �m2 permalloy rectangles, three of them
contacted. The current contacts are labeled with I+ and I−. The
in-plane angle � between the magnetic field B and the current I is
illustrated. The inset shows the 40 nm thick element with its current
and voltage probes. The voltage probes are l=1 �m apart and reach
w=500 nm across the sample.

PHYSICAL REVIEW B 72, 224436 �2005�
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4.3 Anisotropic Magnetoresistance in Permalloy Microstructures

III. MICROMAGNETIC SIMULATIONS

For the simulations, the AMR with its well-known cos2

dependence between the magnetization and the current,

� = �� + �� cos2 � , �1�

is used.10,27 Here, � is the angle between the local magneti-
zation and the local current, since the AMR is calculated for
every simulation cell and not according to the macrospin
model, ��=�� −�� is the change in resistivity due to the
AMR, and �� and �� are the resistivities of the thin film
when the magnetic field is perpendicular ��=90° � and par-
allel ��=0° � to the current direction, respectively. An aver-
age value, �ave= �2��+��� /3 is defined for the resistivity at
remanence for bulk material and �ave= ���+��� /2 for ex-
tended thin films.10 The AMR typically adds about 2% to the
total resistivity of permalloy.27,28

To calculate the domain patterns, the 4�2 �m2 elements
were simulated by applying a finite-difference mesh with a
cubic cell size of 10 nm. The material parameters for the
simulation are as follows: The anisotropy constant 100 J /m3,
the saturation magnetization 8.6�105 A/m, and the ex-
change constant 1.3�10−11 J /m. For the 20-nm-thin rect-
angles, the simulations were repeated for the s-ground state
using a conjugate gradient algorithm for the magnetization
relaxation and a cell size of 5 nm. The magnetization pat-
terns are virtually unaltered and lead to almost identical
AMR curves as the 10 nm cells. The damping coefficient �
was set to 0.5 and the precession term of the Landau-Lifshitz
equation was turned off to minimize computation time. In
quasistatic state transitions such as the present ones, the pre-
cession term does not lead to different results since the angle
between effective field and magnetization remains small, and
the magnetization can move straight towards the direction of
the effective field. Also to optimize performance, the conven-
tional Euler evolver as opposed to a more sophisticated
Runge-Kutta scheme was used for the present quasistatic
problem.19

Two different approaches are used to simulate the local
AMR. The first one, hereafter called the uniform-current
model, assumes that the electric current density is uniform
and propagates along the x direction through the ferromag-
net, thus neglecting the influence of the magnetization and
the impact of the low-ohmic gold contacts on the current.
The AMR was computed separately for each simulation cell
and not simply integrated over the whole sample volume as
in the macrospin model. The macrospin model averages out
local effects which often leads to wrong results. The voltage
calculated between the voltage probes is the sum of all cell-
wise resistivities multiplied by the incoming current and the
ratio l /wt of the distance l=1 �m between the voltage
probes and the product of the probes’ extension across the
rectangle w=500 nm and the thickness t of the film.

The second approach computes the actual, nonhomoge-
neous current density by taking the gold contacts and the
influence of the AMR on the current into account. This is
done by solving the diffusive transport equation,29 thereby
extending the model that has previously been applied for
ferromagnetic disks.30 It generates a finite-element mesh and

uses the local magnetization from the micromagnetic simu-
lation. The potential difference between the voltage contacts
is computed from the resistivities �� and �� by taking into
account the geometry of the permalloy and gold structures.

The resistivities of the permalloy were determined by
mapping the real geometry of the magnetic structure and its
contacts onto a three-dimensional finite-element �FE� mesh.
The thicknesses of the permalloy and of the gold �40 nm�
were taken into consideration. A current matching the input
current of the experiment �50 �A� was placed between the
left and right current contacts. By solving the diffusive trans-
port and Poisson’s equation, the potential at every node of
the FE mesh was derived �see Sec. VII�. The resistivity ��

was thereby used as a fit parameter to adjust the resulting
potential difference at the voltage contacts to the values of
the measurements. This yielded a value for �� of 44 �	 cm.
For the resistivity of gold, 2.2 �	 cm was used.

The AMR ratios �� /�ave were determined experimentally.
The magnetoresistances for angles �=0° and close to 90° are
depicted in Fig. 2. The curvature of the AMR signals due to
the Lorentz force can be neglected. All curves show irrevers-
ible and reversible transitions in the magnetization marked
by abrupt and gradual changes in the resistivity, respectively.
For 20-, 40-, and 70-nm-thick rectangles, we obtain AMR
ratios of 1.4%, 1.9%, and 2.4%, respectively. The highest
resistances are observed in saturation for �=0°, when the
magnetic field is parallel to the current. For decreasing field
strengths, the magnetization turns out of the long axis to
reduce the stray-field energy and states with magnetization
components perpendicular to the x direction appears. These
states decrease the resistivity. At saturation in transverse ge-
ometry, when � is close to 90° �Ref. 31�, all magnetic mo-
ments are oriented perpendicular to the current resulting in
the lowest possible resistance. In the thicker structures, the

FIG. 2. �Color online� Magnetoresistance measurements of the
20 nm �red�, 40 nm �green�, and 70 nm �blue� permalloy element at
T=50 K. The AMR is measured in magnetic fields parallel and
perpendicular to the principal direction of the current.

BOLTE et al. PHYSICAL REVIEW B 72, 224436 �2005�
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cos2 term dominates the irreversible magnetization changes.
Also noticeable in Fig. 2 is the different shape of the corre-
sponding curves for different thicknesses. For the thin ele-
ment, the transitions are abrupt and occur within a narrow
field interval. In thicker films vortices can nucleate easier
than in thinner films, causing wider field intervals in which
the transitions can occur. Because the absolute value of the
AMR increases less �from 1.4% to 2.4%� than the interval
width �from 7 to 30 mT�, the average slopes decrease from
4�10−3 /mT to 1.6�10−3 /mT. This corresponds to the fact
that there are less geometric constraints acting on the mag-
netization in thicker films so that the vortices can move more
easily.23

IV. MINOR LOOPS

To understand the interplay between reversible and irre-
versible magnetization reversals, minor-loop measurements
were performed in longitudinal geometry ��=0° � for all
thicknesses at 2.0 K. In Fig. 3 results are shown for the 40
-nm-thick element. In curves 1 and 2 the magnetoresistance
remains virtually constant at fields higher than 4 mT. An
irreversible change is recorded in curve 3 between 2 and
5 mT with the typical hysteretic signature. Curves 4 to 6
reveal a subsequent reversible magnetization change. In
curve 7, the loop is different from the previous ones, in par-
ticular it is asymmetric. In curves 8 to 10, the reversible and
irreversible changes occur at the same field strengths and the

AMR signals have the same shape. Hence it can be assumed
that the sequence of magnetic configurations remains the
same. An irreversible change is noted at about −6 mT, so
that curves 8 to 10 become symmetric. Finally, curve 11
shows a sweep into saturation and back. Its transition pattern
is like the one in curves 8 to 10 for the downward sweep, but
different for the upward sweep. The assumed cause for this
deviation as well as for the deviation in curve 7 are the
different paths the magnetic configuration follows on the en-
ergy surface. Impurities such as oxides at the surface can pin
the magnetization with an unknown strength. Such pinning
on oxide particles was observed on deteriorated samples by
MFM. This assumption is investigated further in Sec. VIII
with temperature-dependent experiments.

V. UNIFORM-CURRENT MODEL

It has been known for years that only a very limited num-
ber of magnetic transitions are possible in soft magnetic
rectangles.32–34 The so-called c, s, and flower states are the
high-remanent ground states for thin permalloy rectangles.
The flower state can be disregarded because its total energy
is much higher than the ones for the c or s state.32,33 In the
following, results from micromagnetic simulations are com-
pared to experimental resistances.

In Fig. 4 simulated and measured AMR curves of a
4�2 �m2 permalloy element with 20 nm thickness are
shown in external fields ranging from −20 to 20 mT. The
simulations were done according to the uniform-current
model with the resistivities determined by diffusive transport
calculations �see Sec. III�. The geometry of the voltage
probes and strength of the current were taken from the ex-
periment. As the actual magnetic configuration in the real
sample is unknown and since only the c and s states exist as
high-remanent ground states,32 these states were used to ini-
tialize the simulations. Figures 4�a� and 4�b� refer to the c
and the s state, respectively.

The transitions between magnetization states can be re-
versible or irreversible. Experimentally, reversible and irre-
versible transitions are defined from minor loops. For the
simulations, the definition is derived from the underlying
magnetization states. We consider a transition irreversible
when a vortex or a domain wall nucleates or dissolves. Re-
versible transitions are vortex or domain wall propagations.
The measurements were performed at 2.0 K and repeated 20
times for each thickness in positive and negative field direc-
tion. Due to temperature and training effects, individual mea-
surements of the same element yield different curves for the
first cycles �see Sec. VIII�. After about 10 cycles, the AMR
curves became stable. Exemplary successive measurements
are shown in the lower parts of Figs. 4�a� and 4�b�. The step
size of the external field for the measurements was 0.1 mT,
while the discretization in the simulation was 5 mT between
−40 and −10 mT and between 10 and 40 mT, and 1 mT
between −10 and 10 mT in Fig. 4�a�. For the s state, 0.25 mT
steps were chosen between 2 and 9 mT.

Figure 4�a� shows two simulated AMR curves for an ini-
tial c state. To account for mirror-symmetric states, bottom
and top contacts at the vertical edges of the boxes enclosed

FIG. 3. �Color online� Minor loops of the 40-nm-thick element
at T=2 K. The traces 2 to 11 are successively shifted upwards by
5 �V.
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4.3 Anisotropic Magnetoresistance in Permalloy Microstructures

by solid lines were assumed in the calculations. Because of
the symmetric positions of the voltage probes with respect to
the long edge of the sample, the two possible s states yield
the same AMR.

When the strength of the external field increases from
−40 mT towards zero, the diagonal end domains grow. At a
field strength of about 1 mT �state A�, the domain walls are 

shaped.35 This causes a noticeable reduction in resistance in
the bottom box �bottom curve�, while the top region remains
uniformly magnetized parallel to the current density. To-
wards 2 mT �state B�, the legs of the 
 pattern are pushed
towards the center of the element. In this situation, the walls
enter the top box and a drastic drop in resistance occurs �top
curve�. The bottom probes notice no major change between
states A and B. For even higher fields �3 mT�, the domain
between the outer legs of the 
 state collapses and the outer
domain walls merge into a vortex. This vortex moves to-
wards the bottom edge of the structure until it reaches equi-
librium in state C. This transition has been previously dem-
onstrated for similar geometries by simulation35 and x-ray
microscopy.36 It does not result in significant changes in the
AMR signal as can be seen in the top two curves of Fig. 4�a�

because the average angle of the magnetization with respect
to the current density remains basically the same in both
regions. In the bottom region, the resistance even increases
slightly because the vortex has not entered the bottom box.
The unexpected configuration in state C, in which a rather
thin area is pinned against the edge of a structure, is ex-
plained by the torque acting on the magnetic moments due to
the strong shape anisotropy at the edges.35 This torque pre-
vents the magnetic moments from switching into an energeti-
cally more favorable direction until the external field is
strong enough to overcome the energy barrier between the
parallel and the antiparallel configuration. The simulation
shows that the domain wall between the pinned domain and
the center domain is of a Néel type, with a wall width of
about 120 nm. The existence of this narrow edge domain
was substantiated by simulations with a smaller cell size
�5 nm� and with an external field that was tilted by 0.6° off
the long axis. By further increasing the external field, the
vortex is moved toward the edge of the sample until, in state
E �15 mT�, the vortex has left the structure and a state close
to saturation is reached. This is seen in the bottom contact.
The top contact, however, seems to detect a transition into
saturation already at point D, when the upper domain wall is
dissolved. When increasing the thickness of the structure to
40 nm, the domain at the edges dissolves already at about
6 mT.

The measurements in Fig. 4�a� closely correspond to the
simulated curve for the top contacts. The same reversible and
irreversible resistance changes can be seen, even though the
first change, from the initial state over state A to B, occurs
more smoothly in the measurement and at a slightly higher
field strength compared to the simulations. An intermediate
state C and a subsequent jump to a final state D can be
assumed from the measurements. No further transitions can
be seen. Assuming the same underlying transitions in the
measurement and in the simulation, we conclude that a C
state with top-contact arrangement was present in the mea-
surements shown in Fig. 4�a�.

In the simulation of Fig. 4�b� which starts with an s state
at −40 mT, the change of state A to B appears because a
domain wall forms in the sensitive region. From state B to C,
the configuration changes irreversibly by uniting the outer
two legs of the N-shaped domain pattern into one. The center
domain enlarges, while the upper and lower closure domain
reduce until at point D the 180° walls break apart. At this
instance, vortices form at the lower left and upper right ends
of the 180° walls. The vortices then move up and down,
respectively, through the element to irreversibly form state
D. This drastic change in magnetization is barely visible in
the AMR, because the average angle between local current
and magnetization remains almost constant. With increasing
field strength, the vortices move towards the upper left and
lower right corner of the element, respectively, until the thin
Néel walls at the element’s upper right and lower left edges
collapse. Then the magnetization state is irreversibly trans-
formed into state E. The AMR signal does not change any
further from that point on because the vortices are well out-
side the voltage probes. In the measurements, two to three
distinct intermediate states can be inferred from the transi-
tions. Even though the measured curves are confined to a
smaller field region, the shapes are alike.

FIG. 4. �Color online� Simulated and experimental traces of the
AMR of a 4�2 �m2 large and 20-nm-thick permalloy structure
with two different initial magnetic configurations. �a� Top curves
show the simulated AMR for the initial c-state, with the upper one
offset by +10 �V for clarity. The bottom curves are two corre-
sponding measured AMR signals, the lower one offset by −10 �V.
�b� Simulated sweep for the initial s-state �top curve� and measure-
ments �bottom� akin to the simulation. Between configurations A to
E irreversible changes occur. The small outlined boxes represent the
regions in which the AMR is measured �see voltage probes in Fig.
1� and simulated.
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Simulated and measured data for different thicknesses are
compared in Fig. 5 in the field range of −20 to 20 mT. The
field was applied in the x direction, increasing from
−40 to 40 mT. Figure 5 shows good agreement in the abso-
lute values of the AMR as well as in the shapes and locations
of the transitions. For the 70 nm-thick rectangles, the mag-
netization reversal takes place over an extended field interval
of about 30 mT, starting with a sharp change in resistance.
Changes occur within the same regime for simulation
�−10 to 20 mT� and measurement �−6 and 12 mT�. For the
thinner elements, the transitions are confined to more narrow
field ranges. Due to limitations in storage space, the
simulations for the 70-nm-thick element were done for a
2�1 �m2 rectangle. This approach is justified because the

magnetization depends more on thickness than on lateral size
for elements several microns wide.20,21,37,38 A more detailed
comparison of measurement and simulation follows in
Sec. VI.

For the 40-nm-thick element, the measured AMR shows a
gradual increase in resistance between −10 and 0 mT, a
sharp drop at 2 mT, and a smaller but also sharp increase at
3 mT. The resistance stays almost unchanged up to a field of
+8 mT, where the configuration irreversibly changes again
and slowly saturates. Two intermediate magnetic states be-
tween 2 and 3 mT and between 3 and 8 mT are likely. The
simulated transitions are quite similar: between 0 and 3 mT
the resistance decreases slowly and at 3 mT it drops sharply.
Due to the 1 mT resolution of the simulation, the transition
moves from the initial state to the higher intermediate state
in one simulation stage as can be seen by the vertical line at
3 mT. The transition shows about the same resistance change
as the measurements �0.6 �V�. A gradual change from the
second intermediate state to the final state is also not seen in
the simulation, again due to the limited field resolution. It
may also be possible that the vortices in the real sample
could not leave the sensitive area between the contacts due to
edge roughness39 or strain caused by the contacts. That
would explain the irreversible jump at +8 mT in the experi-
ment. Experiments and simulations for the 20 nm-thin rect-
angle have already been compared in Fig. 4.

VI. MAGNETIC-FORCE MICROSCOPY

To derive more conclusive information about the magne-
tization configurations that result in the measured AMR sig-
nals, MFM was employed. There is an inherent difficulty to
carry out magnetoresistance and MFM measurements simul-
taneously due to the interaction of the magnetic tip with the
sample, which creates a stray field of up to 50 mT.40,41

Hence, micromagnetic simulations serve as a bridge between
AMR and MFM.

In Fig. 6�a�, measured �first row� and simulated MFM
images �second row� together with their underlying magnetic

FIG. 5. �Color online� Comparison of measurements at 2 K and
simulations for 20-nm- �blue�, 40-nm- �yellow�, and 70-nm- �red�
thick rectangles.

FIG. 6. �Color online� �a� 2�1-�m2-large
and 70-nm-thick permalloy rectangles, measured
by MFM �top row�. The middle and lower rows
show simulated MFM images according to Ref.
26. The gray scale of the lower row ranges from
white �magnetization along the long axis� to
black �magnetization perpendicular to long axis�.
�b� Three consecutive AMR measurements �lower
curves� performed at 2.0 K on a 4�2-�m2-large
and 70-nm-thick rectangle and an AMR curve
simulated for the rectangle in �a�.
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4.3 Anisotropic Magnetoresistance in Permalloy Microstructures

configurations �third row� are shown for a 2�1 �m2 large
and 70 nm-thick rectangle. Labels A to E correspond to
strengths of the magnetic field as indicated in Fig. 6�b�. The
calculated MFM images were derived by our OOMMF

extension21,26 according to the algorithm described in Ref.
41. The simulated AMR signal in Fig. 6�b� considers only the
region within the black boxes �see also Fig. 4�. For compari-
son, three distinct AMR measurements on a structure with
the same lateral aspect ratio and thickness �4�2 �m2,
70 nm thick� are shown. These measurements show that the
transitions observed by MFM coincide almost exactly with
the simulated magnetic states �third row� and their MFM
images �second row�. The simulated magnetizations, in turn,
cause the local AMR �Fig. 6�b�, top curve�. That AMR curve
agrees with the principle shape of the measured signals. The
good agreement of measurement and simulation in Fig. 6
demonstrates that the simulated magnetic states A to E actu-
ally occur in real samples and that they lead to AMR signals
expected from the geometric positions of the voltage probes
in Fig. 1.

VII. DIFFUSIVE TRANSPORT CALCULATIONS

To understand the impact of the low-resistive voltage con-
tacts on the current paths and to calculate the influence of the
local AMR more accurately, the conductivities of permalloy
and gold, the geometric boundary conditions as well as the
local AMR were included in a diffusive transport calculation
of the local electric potentials and the current density. The
calculations were used first of all to determine the resistivity.
For this, the potential difference between the voltage probes
was calculated and compared to the measured voltage. The
fitting resulted in a resistivity of 44 �	 cm. The result of
such a calculation is shown in Fig. 7. The background color
coding reveals a spatial variation of the current density at the
top of the permalloy rectangle of about an order of magni-
tude. It ranges from the permalloy regions right below the
highly conductive gold current and voltage contacts �blue,
0 A/m2 to regions in the permalloy at the corners of the
voltage contacts �red, 2.0�109 A/m2.

The calculation of the local current densities and of cur-
rent paths reveal a noticeable deviation from the uniform-

current model. In comparison to the uniform-current model,
the current paths change little due to the local AMR, but are
largely influenced by the shape and position of the gold con-
tacts. Future work would allow determining the quantitative
values of the influences.

The potential difference between the voltage contacts was
computed for hysteresis loops and yielded results such as the
center �red� curve in Fig. 8. The bottom three curves depict
measurements. These curves differ in their details due to the
low temperature as will be discussed in Sec. VIII. However,
the down-sweeps all show two to three irreversible jumps
hinting at intermediate magnetic states. The diffusive trans-
port calculation �center curve� shows a similar decrease in
resistance with decreasing field strength down to the mini-
mum resistance between −4 and −5 mT, then an increase
with two sharp irreversible jumps. The magnetic transitions
are more pronounced than for the uniform-current approach
�top curve in black�. This is even though identical magneti-
zation patterns were used to compute the AMR. The conclu-
sion is that the local AMR is weighed by the absolute value
of the current density. In Fig. 7, the corners of the voltage
contacts contribute most, so that any resistance changes in
these areas, e.g., caused by passing vortices, are amplified in
comparison to other regions of the sample.

VIII. TEMPERATURE DEPENDENCE

Temperature-dependent AMR measurements for the
70-nm-thick element are shown in Fig. 9. The hysteretic

FIG. 7. �Color online� Current distribution just below the sur-
face of the 20-nm-thick permalloy rectangle. The current contacts
are attached on the left- and right-hand sides, while the voltage
probes lie in the lower part of the figure, on top of the structure. The
bright lines illustrate five current paths. Colors represent absolute
values of the current density between 0 A/m2 �blue� and
2.0�109 A/m2 �red�.

FIG. 8. �Color online� Comparison of the AMR of the two simu-
lation models with experiments: Bottom three curves �blue� are
measured AMR signals for the 4�2-�m2-large and 20-nm-thick
permalloy rectangle at 2 K, the top curve �black� shows the results
of the uniform-current approach and an initial s state, and the
middle curve �red� results from the diffusive-transport calculation.
Curves 2 to 4 are shifted upwards by 6, 12, and 21 �V.
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magnetoresistances become more symmetric when the
temperature is increased. The transition temperature
from asymmetric to symmetric reversals decreases with
increasing thickness from about 50 K �20 nm� over
35 K �40 nm� to 25 K �70 nm�. This behavior originates
from the complex magnetization patterns of the multidomain
configurations. The curves will never be completely symmet-
ric, though, due to the random nature of Barkhausen jumps.
Samples with simpler magnetic configurations such as
nanorings42–45 do not show a significant temperature-
dependence in the AMR curve in the temperature range be-
tween 2 to 50 K. This is because the geometrical constric-
tions in nanorings allow only a very limited number of
ground states, namely the onion, the global vortex, and the
local vortex state.45 Such magnetization states are very ro-
bust, i.e., they are separated by large energy barriers.

Thermal excitation energies are very small compared to
the total energy of the micromagnets. However, the energy
differences between different reversal paths can be tiny. This
may explain the asymmetry of the magnetoresistance curves
for lower temperatures. In the picture of an energy land-
scape, the system follows local paths for low temperatures.
For a flat landscape near equilibrium, a small thermal energy
suffices to reach global minima which correspond to sym-
metric magnetization reversals. In thin films, the energy bar-
riers between distinct magnetic configurations increase.
Hence, thin elements show more pronounced irreversible re-
sistance changes and the hysteresis becomes symmetric at
higher transition temperatures.

IX. CONCLUSIONS

In conclusion, we have investigated permalloy rectangles
with different thicknesses by magnetotransport measure-
ments and compared the results to local AMR simulations.
We employed uniform current and diffusive transport calcu-
lations. The latter were used to determine the resistivity of
the permalloy, the current density, and the current paths
through the element. There is good agreement of both calcu-
lations with the experiment in respect to the overall value
and shape of the AMR signals. However, one must include in
the calculations both the presence of the current and voltage
contacts and the variation in the local current density to ar-
rive at the absolute values of the resistance and a more pre-
cise shape of the hysterectic AMR curves. The reversible and
irreversible jumps observed in the measurements can be
linked to changes in the magnetic states observed in micro-
magnetic simulations. The magnetic configurations found in
the simulations are supported by MFM. Deviations in the
AMR curves are linked to temperature effects. Future inves-
tigations would allow the study of interactions between non-
uniform currents and the local magnetization with the aid of
diffusive-transport calculations in combination with magne-
totransport measurements and simulations, e.g., the study of
the influence of “hot-spots” in magnetic trilayers46 or the
current flow through nanoconstrictions.
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4 Results

4.3.2 Simultaneous X-ray Microscopy and Magnetoresistance

Measurements

In Section 4.3.1 we have shown that micromagnetic simulation in connection with AMR

measurements can be used to obtain detailed information of a sample’s magnetization

configuration. In real samples, however, several magnetization states are often energeti-

cally close together. Also, due to the cos2-dependence of the AMR several magnetization

states with identical AMR values can exist so that an AMR signal cannot always be unam-

biguously interpreted. We have used the excellent spatial resolution of X-ray microscopy

in combination with the sensitivity of AMR measurements to discriminate between two

domain wall types in permalloy wires. The measurements were performed simultane-

ously, so that changes in the AMR could be matched with corresponding X-ray images.

Similar experiments have been successfully done on Nickel strips in a combination of

AMR and Lorentz microscopy [182].

The combination has allowed us to control the type of domain wall in ferromagnetic

nanowires for spin-torque driven domain-wall motion as will be described in Section 4.4.

In those measurements, domain walls in permalloy wires were imaged quasi-statically,

i.e., a nanosecond pulse was applied and then an image of the domain structure was taken.

It also enabled a study of the training effect in permalloy microwires. In the following

paragraphs preliminary results are presented.

Sample Preparation

The samples for these experiments were prepared by René Eiselt. Permalloy rings with

a diameter of 40 µm and ring widths of 200 nm, 300 nm, 500 nm, and 1000 nm were

prepared by electron-beam lithography, electron-beam evaporation, and lift-off processing

on 1 × 1 mm2 large and 200 nm thick Si3N4 membranes to allow for minimal X-ray

absorption by the substrate. Permalloy thicknesses varied between 20 nm, 40 nm, 60 nm,

and 80 nm. The rings were contacted by 40 nm thick gold wires, leading from the rings

on the membrane to bond pads on the 500 µm thick frame. Four contacts for every ring

allow for four-point resistance measurements. The inner contacts were ≈ 4.2 µm apart,

constituting the region in which the AMR is detected. The samples were bonded to a PC

board, and the current lines of individual rings were connected to the lock-in amplifier, as

shown in Fig. 4.5.
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4.3 Anisotropic Magnetoresistance in Permalloy Microstructures

Fig. 4.5: (a) Image of the sample holder and the Si3N4 membrane placed in the XM-

1 microscope with wires leading to the lock-in amplifier. The pole shoes on the left

and right create the in-plane magnetic field. (b) Optical micrograph of the gold wiring

on the membrane with four write fields having four permalloy ring structures each. (c)

Magnification of one permalloy ring with its current and voltage contacts. (d) Electron

micrograph image of the region sensitive to the AMR measurements.

Measurement Setup

The samples were placed in the X-ray microscope as shown in Fig. 4.5 and connected

to the lock-in amplifier. The lock-in measurements were performed with a Stanford Re-

search SR830 lock-in amplifier at a frequency of 377.3 Hz and a current of 10 µA. A

Keithley 2400 was used for a current source to be able to automatically sweep the mag-

netic fields with high accuracy. The limited photon flux of the X-ray microscope necessi-

tates ≈ 30 exposures for one high-resolution image. The exposure time is limited by the

recombination time of the CCD-chip which is ≈ 1− 2 two seconds long. It was found

that the X-ray photons created enough photoemission electrons in the permalloy to signif-

icantly influence the AMR measurements. When an X-ray image has been taken, a shutter

opens for the time of exposure, and the measured voltage would increase. When the shut-

ter closes after the image was taken, the AMR voltage slowly reduces to its original value.

To reduce this parsitic effect we increased the integration time of the lock-in. It had to
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be longer than the exposure time of the CCD-chip and was set to 3 s. The field sweep

rate was also increased to ≈ 50 mT/min as the X-ray beam spot on the sample was only

stable for about an hour. In this way a whole AMR sweep could be run without unaccept-

able deterioration of the XMCD contrast in the images. Therefore we measured in two

modes: To run repeated AMR sweeps without spatially resolving the domain structure, a

finer field scan (10 mT/min) and a shorter integration time (0.1 s) was used. For AMR

sweeps in synchronization with the XM-1 microscope, the aforementioned compromise

of 50 mT/min sweep rate and 3 s integration time was used. Since the samples were

placed in the microscope, all measurements were performed at room temperature.

Results and Discussion

In Fig. 4.6(a) the first five AMR sweeps on a 300 nm wide and 40 nm thick permalloy ring

segment are shown. Clearly visible is the typical cos2-shape of the curves according to the

model for the AMR in single-domain elements, overlayed with jumps in the resistance that

are caused by changes in the domain structure. Especially the first curve exhibits many

of such jumps, while consecutive sweeps have smoother curves but also at least one large

jump for each sweep direction. Even after multiple sweeps (see Fig. 4.6(b)) the curves

are not completely identical. The change in resistance due to the AMR was 0.8 Ω on a

total resistance of 139 Ω (ρ = 40 µΩcm), so that the AMR ratio was 0.58 %. Figure

4.7 shows five consecutive AMR sweeps of a 500 nm wide and 60 nm thick permalloy

ring segment. The resistance of the samples was 569 Ω (ρ = 41 µΩcm) and the change

in resistance due to AMR was 3 Ω, leading to an AMR ratio of 0.53 %. The individual

sweeps are non-repetitive, but some transitions always occur at the same field values, e.g.,

at ±15 mT. During the fifth sweep (blue curve) the X-ray microscope was imaging the

domain structure. The effect of the opening and closing of the shutter for the CCD chip

can be clearly seen, even though the long integration of the lock-in already averages out

most of the oscillations.

The previous AMR measurements show that the magnetization took several paths through

the energetic landscape as the external magnetic field was swept from one saturation di-

rection to the other. The transition states cannot be identified from the AMR alone. A

system that showed only two transition paths was the 1000 nm wide and 80 nm thick

ring segment. Its AMR is shown in Fig. 4.8. The sharp jumps in AMR for four con-

secutive sweeps occur in seven out of eight magnetization reversals at exactly the same

fields (±21.5 mT and ±24 mT), even though the intermediate transitions differed (see

blue curve). This suggests that pinning at the surfaces is one source of randomness in the
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Fig. 4.6: (a) AMR sweeps No. 1-5 of the 300 nm wide and 40 nm thick permalloy ring

section. A strong variation in the signal reveals a training effect of the magnetization.

(b) sweeps No. 19-23. The agreement is better but still not complete. The curves are

off-set for clarity.

magnetization switching since the magnetic volume of this sample is larger in comparison

to its surface than the two other samples previously discussed. One jump occured at lower

fields ( +18.5 mT instead of +21.5 mT).

Several AMR curves were measured simultaneously to X-ray imaging. A part of one

of the AMR curves is shown in Fig. 4.9(a). It shows transitions at the two different

fields. Figure 4.9(b) shows the corresponding magnetic XMCD contrast in the sample

at the field values identified by colored markers. Figure 4.9(c) shows a sketch of the

magnetization states at these fields. The X-ray images show that, sweeping down from

positive saturation, the magnetization contains a double-vortex wall. Such a wall is known
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Fig. 4.7: Five AMR curves for a 500 nm wide and 60 nm thick permalloy ring segment.

The curves are off-set for clarity. The fifth AMR sweep (blue curve) shows the jitter due

to the periodic opening and closing of the beam shutter.

to be present in permalloy rings thicker than 65 nm [167]. In the positive sweep direction

the domain wall consists of a vortex elongated to an asymmetric Bloch wall as is visible by

the bright line reaching towards the upper contacts from the bright domain in the center.

The magnetic contrast in these images is very limited due to the short exposure time, but

Fig. 4.8: Four AMR sweeps of a 960 nm × 80 nm permalloy wire from positive mag-

netic field to negative field and back.
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can be enhanced to the human eye when viewing successive images as a movie.

To confirm that these domain wall types, the asymmetric Bloch wall and the double-vortex

wall can both exist in permalloy rings having the same dimensions as in our samples, we

performed micromagnetic simulations. Figure 4.10 shows a comparison of the domain

walls seen in X-ray images and in simulation. The double-vortex wall appeared as the

magnetization initially pointing in the y-direction was relaxed.

These preliminary results have been presented at the 51st Conference on Magnetism and

Magnetic Materials (MMM) in Baltimore, MD, USA in January 2007 (see [C15]) and

Fig. 4.9: (a) AMR sweep of a 960 nm × 55 nm permalloy wire from positive magnetic

field to negative field and back. Eight exemplary magnetic states as distinguished by

their magnetoresistance are marked by colored dots. (b) X-ray microscopy images taken

at these field values show distinct magnetic contrast. (c) Sketches of the magnetization

pattern from the images in (b). Note the different domain-wall types around the peaks in

the AMR.
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Fig. 4.10: (a) Comparison of the two domain wall types in Fig. 4.9(b) with micromag-

netic simulations. Shown on the left is the double-vortex wall, on the right a cross-tie

wall in combination with a vortex wall.

during a talk at the group of Stuart Parkin at the IBM Research Center in Almaden, San

Jose, CA, USA, [I6] but have not been published in a journal so far.
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4.4 Spin-Torque Induced Magnetization Dynamics

With the experience in the static and dynamic behavior of magnetic domains and domain

walls as well as in the influence of the local magnetization on the magnetoresistance in

permalloy microelements described in the previous sections I investigated the changes in

magnetization due to high-density currents. Magnetization switching induced by spin-

transfer torque [23, 22, 98, 101] and domain-wall motion [30, 109, 184, 100, 103, 185,

186] has recently drawn a lot of attention as it is currently viewed as a promising solution

for the realization of magnetic random access memories [187, 101, 188]. Current-induced

domain-wall motion has potential application in spintronic data storage devices, e.g. in

the racetrack memory [18], or data transfer schemes [189, 21, 190]. Several theoretical

models have been established to explain the electronic origin of current-induced magneti-

zation changes and to predict their effects (see Section 2.5.3). However, many aspects are

still under active discussion, for example, the microscopic mode of domain-wall propaga-

tion: Do domain walls propagate continuously or discretely in form of a series of random

pinning-depinning processes? How does temperature influence domain-wall propagation?

Does the nonadiabatic spin-torque really exist and if so, how strong is it?

Also, a number of advanced issues have emerged, e.g., the influence of dynamic spin-

polarized currents on the magnetization: What happens when the risetime of a current

pulse becomes very short? And what if the frequency of an ac-current matches the eigen-

frequency of a magnetic object, i.e., a domain wall or a magnetic vortex? What if a domain

wall experiences a periodic potential as for example in the racetrack memory where bits

are stored in regions of same magnetization separated by domain wall pinned by periodic

notches?

In this thesis I have focussed on spin-torque phenomena in single-layer permalloy systems

with lateral current flows. These systems constitute the ideal testbeds for studying the fun-

damental physics of current-induced domain-wall motion. In the following I subdivided

the results of my studies into four categories that address one or more of the questions

stated above.

First, I describe the influence of ac-currents on the dynamics of a domain wall with the

help of micromagnetic simulations and an analytic model in Section 4.4.1. In Section

4.4.2 I describe our observations from X-ray microscopy on the current-induced domain-

wall motion with nanosecond short current pulses. Our results on the gyration of magnetic

vortices and antivortices induced by spin-torque are summarized in Section 4.4.3.
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4 Results

4.4.1 Spin-Torque Induced Domain-Wall Dynamics

I began to numerically investigate the spin-torque induced magnetization dynamics in

2005 when I worked with Benjamin Krüger for his Masters thesis dealing with "Current-

Induced Domain-Wall Dynamics in Ferromagnetic Nanowires" [191]. He used my

Runge-Kutta micromagnetic simulation code and extended it further by implementing

the adiabatic and the non-adiabatic spin-torque terms suggested by S. Zhang and Z. Li

[28] into the LLG equation. We tested the improved code on a system for which both an

analytical approximation and experimental data exist: The ac-current driven domain-wall

oscillation in thin ferromagnetic nanowires. Saitoh et al. have presented data for Néel

walls in thin curved nanowires in an external magnetic field [184]. The wire curvature

and the field created a parabolic potential for the wall in which the wall could oscillate

if excited at resonance. They showed resonance peaks in the ac resistances for different

field strengths.

Benjamin Krüger established an analytical model in which this spin-torque driven

domain-wall oscillation was seen as an harmonic oscillator. We compared the numer-

ical results from simulations with the extended code to predictions from the analytical

model and derived the parameters that unambiguously define an harmonic oscillator, i.e.,

domain-wall mass, resonance frequency, damping constant, and the force acting on the

wall. The ability to calculate the force acting on a magnetic object due to spin-torque has

proven important for the analysis of further studies of spin-torque driven magnetization

dynamics. The difference between Saitoh’s model and ours is that Saitoh et al. assumed

the wall to behave as an harmonic oscillator and arrived at several incorrect conclusions.

Our only assumption was that the domain wall in thin nanowires remains rigid, which we

verified numerically (see Ref. [29] [P12] for details).

The work was published as [P12] and is reprinted in its entirety with permission from B.

Krüger, D. Pfannkuche, M. Bolte, G. Meier, and U. Merkt, Phys. Rev. B 75, 054421

(2007). Copyright (2007) by the American Physical Society. It was presented at an

international workshop, an international conference, and in an invited talk (see [C12],
[C19], and [I6]). A conference article for the Joint European Magnetism Symposia 2006

(JEMS2006) in San Sebastian, Spain, focussing on the computed domain-wall eigen-

modes and the domain-wall velocities was published as [P14] in G. Meier, M. Bolte, U.

Merkt, B. Krueger, and D. Pfannkuche, "Current-induced domain-wall motion in permal-

loy semi rings", J. Magn. Magn. Mat., 316, e966, Copyright Elsevier (2007). It is also

reprinted here.
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Current-driven domain-wall dynamics in curved ferromagnetic nanowires
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The current-induced motion of a domain wall in a semicircle nanowire with applied Zeeman field is inves-
tigated. Starting from a micromagnetic model we derive an analytical solution which characterizes the domain-
wall motion as a harmonic oscillation. This solution relates the micromagnetic material parameters with the
dynamical characteristics of a harmonic oscillator: i.e., domain-wall mass, resonance frequency, damping
constant, and force acting on the wall. The time derivative of the current density greatly contributes to the force
on the domain wall. For wires with strong curvature the dipole moment of the wall as well as its geometry
influence the eigenmodes of the oscillator. Based on these results we suggest experiments for the determination
of material parameters which otherwise are difficult to access. Numerical calculations confirm our analytical
solution and show its limitations.

DOI: 10.1103/PhysRevB.75.054421 PACS number�s�: 75.60.Ch, 72.25.Ba, 76.50.�g

I. INTRODUCTION

The field-driven dynamics of magnetic domain walls has
been intensely studied over the last decades.1,2 The topic has
recently regained interest by the discovery that spin-
polarized currents of high density can alter magnetization
configurations3–6 and move domain walls.7–11 Current-
induced magnetic switching is viewed as a promising solu-
tion for the realization of magnetic random access
memories,6,12,13 while current-induced domain-wall motion
has potential applications in spintronic data storage devices:
e.g., in the racetrack memory14 or data transfer schemes.15–17

Several models of current-driven magnetization dynamics
have been established to explain the electronic origin of
current-induced magnetization changes and to predict their
effects.3,4,18–21 At first it was assumed that for finite domain
walls the spins of the conduction electrons adiabatically fol-
low the local magnetic moments.18,22 Later the theoretical
model was extended to include a nonadiabatic mismatch be-
tween the polarization of the current and the direction of the
magnetization.19–21

The measured and calculated velocities of current-driven
magnetic domain walls in thin nanowires vary by several
orders of magnitude even for the same material.7,21,23–25

While it has been originally suggested that the discrepancy
could be due to thermal activation11,25–28 or surface
roughness,25 it has recently been found that the domain-wall
velocity depends on the type of the domain wall26,29 which
can be changed by a spin-polarized current.8,26,30,31 Recently
it has been observed that the velocity of field-driven domain-
wall motion32 can be altered by ±100 m/s by a pulsed spin-
polarized current33 and that the motion can even be halted
completely.34 It is now assumed that the adiabatic term is
largely responsible for the acceleration of the domain wall
while the nonadiabatic term will cause the wall to continu-
ally move.21

In this paper we use an alternating current to excite trans-
verse walls in thin narrow rings. From a micromagnetic de-

scription we derive a hitherto phenomenological harmonic
oscillator model which well describes the wall motion in this
geometry. Experimentally it has been shown that domain-
wall oscillations excited with an alternating current at their
resonance frequency require current densities one to two or-
ders of magnitude less �1010 A/m2; see Refs. 9 and 35� than
for pulsed excitations �1011–1012 A/m2; see Refs. 6, 7, 11,
and 26�. Our calculations show that the time derivative of the
current density greatly contributes to the force on the domain
wall which could be an explanation for this phenomenon.
Experimentally alternating current excitation is advantageous
because it allows for time-resolved imaging of the domain-
wall motion by its periodic return to the initial state.

This work is organized in two parts presenting an analyti-
cal model for the description of domain walls in curved
nanowires and a numerical investigation supporting the ana-
lytical model as well as showing its limitations. The analyti-
cal model used to describe the motion of a domain wall in a
nanowire is developed in the framework of the one-
dimensional �1D� approximation as done previously for
field-driven motion36 and direct-current-driven spin
torque.21,25,34 We here limit ourselves to the spin-transfer
torque. This approach is valid to describe ferromagnetic met-
als where the Fermi wavelength is much smaller than the
size of the magnet and the width of the domain wall.18 Solv-
ing analytically the Landau-Lifshitz-Gilbert equation ex-
tended by the current corrections due to Zhang and Li21 we
are able to express the properties of the driven oscillator by
the quantities determining the micromagnetic model. Fur-
thermore, we are able to include the influence of alternating
current excitation, i.e., the time derivative of the current den-
sity. A comparison of the numerical calculations with our
analytical solution confirms the importance of the geometry
due to the curved wires. Finally, we suggest experiments
which can determine the values of the nonadiabatic spin
torque and the Gilbert damping parameter from the phase of
the oscillation with respect to the exciting current.
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4 Results

II. MODEL

Figure 1 shows a ferromagnetic semicircle nanowire with
a domain wall at its bottom placed in an external magnetic
field.37 The wall is excited by an oscillating current flowing
between the two contacts.9

The magnetization dynamics of a magnetic wire is well
described by the Landau-Lifshitz-Gilbert �LLG� equation.38

In the presence of a spin-polarized current density j�, the
interaction between the itinerant electrons and the magneti-

zation M� leads to an extension of the LLG equation. This
extension was derived from a quantum mechanical model by
Zhang and Li.21 Their semiclassical approximation results in
the extended LLG equation in Gilbert’s form

dM�

dt
= − �M� � H� eff +

�

Ms
M� �

dM�

dt

−
bj

Ms
2 M� � �M� � �j� · �� �M� � − �

bj

Ms
M� � �j� · �� �M� ,

�1�

with the gyromagnetic ratio �, the Gilbert damping param-
eter �, the saturation magnetization Ms, and the ratio be-
tween exchange relaxation time and spin-flip relaxation time
�=�ex/�sf. The effective magnetic field Heff includes the ex-
ternal as well as the internal fields. In this model the spin
current is sensitive to the spatial inhomogeneities of the mag-
netization with a coupling constant bj =

P�B

eMs�1+�2� where P de-

notes the spin polarization of the current and �B is the Bohr
magneton.

Since the saturation magnetization is constant for a given

material at fixed temperature, M� is perpendicular to dM�

dt and
Eq. �1� can be reformulated to an explicit equation of motion
for the magnetization

dM�

dt
= − ��M� � H� eff −

���

Ms
M� � �M� � H� eff�

−
bj�

Ms
2 �1 + ���M� � �M� � �j� · �� �M� �

−
bj�

Ms
�� − ��M� � �j� · �� �M� , �2�

with the abbreviations ��= �

1+�2 and bj�=
bj

1+�2 . This equation
is the starting point for the analytical as well as for the nu-
merical calculations presented in the following.

III. ANALYTICAL CALCULATIONS OF THE STRAIGHT
WIRE

For the analytical treatment of Eq. �2� we transform the
semicircle wire in a homogeneous Zeeman field to a straight
wire in a spatially varying field. For this we consider the
parallel component of the field. The perpendicular compo-
nent does not contribute to the domain-wall motion in a
straight wire and is included in the shape anisotropy. In Sec.
IV we will investigate the effect of the perpendicular com-
ponent of the field on the motion of the domain wall in the
curved wire and the increase of the exchange energy due to
the curvature.

The wire is directed along the x axis and the direction of

the magnetization is expressed in a polar spin basis M�

=Ms�cos � , sin � cos 	 , sin � sin 	�. In the absence of elec-
tric current and external magnetic field the energy of a do-
main wall within the wire is

E = S� �A� ���x�
�x

�2

+ K sin2 ��x�	dx , �3�

where � denotes the angle between the wire axis and the
magnetization. A and K denote the exchange and shape an-
isotropy constants. This functional can be minimized by the
well known Néel wall described by the angle

� = 
 − 2 arctan�e�x−X�/�� . �4�

The center of the wall is at position X, and the width of the
domain wall is �=
A /K. From Eq. �4� two expressions

cos � = tanh� x − X

�
�, sin � =

1

cosh� x − X

�
� �5�

can be derived which will be useful in our further calcula-
tions.

In the presence of an external field Hext the demagnetiza-
tion energy K� sin2 � sin2 	 caused by the rotation of the
wall around the wire axis can no longer be neglected. We
include the external field perpendicular to the wire into the
shape anisotropy K�. The energy functional in Eq. �3� has to
be extended to

E =� �K sin2 � + A� ��

�x
�2

+ A sin2���� �	

�x
�2	dV

+� �K� sin2 � sin2 	 − �0MsHext�x�cos ��dV . �6�

Here we have restricted ourselves to an external field parallel
to the wire. Also the crystalline anisotropy has been
neglected.39 From the energy functional in Eq. �6� we derive

the effective magnetic field through the relation H� eff=
− 1

�0

�E

�M�
.

FIG. 1. Scheme of the semicircle nanowire with radius r in a
magnetic field H. The static magnetization in the absence of a cur-
rent is indicated by small arrows. The two rectangles under angles

= ±45° are the electrical contacts.

KRÜGER et al. PHYSICAL REVIEW B 75, 054421 �2007�

054421-2

90



4.4 Spin-Torque Induced Magnetization Dynamics

We can then write the extended LLG equation �2� in the
polar spin basis

�̇ = −
��

�0Ms sin���
�E

�	
−

���

�0Ms

�E

��
+ bj��1 + ���j� · �� �

+ bj��� − ��sin���j� · �� 	 �7�

and

	̇ sin � =
��

�0Ms

�E

��
−

���

�0Ms sin���
�E

�	

+ sin���bj��1 + ���j� · �� 	 − bj��� − ��j� · �� � . �8�

Assuming that the moving wall stays a Néel wall �see
Sec. VI� we can describe its motion, following the descrip-
tion of Schryer and Walker2 by two dynamical variables: the
position of its center X and its angle around the wire axis
	�x�=	, which is uniform along the wire. With Eqs. �5� and
�6� we get from Eqs. �7� and �8�

sin���
�

Ẋ = −
2K���

�0Ms
sin���sin�	�cos�	� − ��� sin���Hext�x�

−
bj�

�
sin����1 + ���j

−
2K����

�0Ms
sin���cos���sin2�	� �9�

and

	̇ sin � = sin�����Hext�x� + sin���
bj��� − ��j

�

− 2 sin������K� sin�	�cos�	�
1

�0Ms

+
2K���

�0Ms
sin���cos���sin2�	� , �10�

with the wall width �=
 A
K+K� sin2 	

�
A
K .40 Note that X and

	 depend on the position x along the wire. In the following
we show that a solution consistent with our initial assump-
tions exists for small exitations.2 Note that this condition
holds for realistic current densities.

Assuming that Hext�x� varies slowly on the length scale of
the domain-wall width �=
A /K, sin � is replaced by a
�-function 
���x−X� in view of Eq. �5�. Also we neglect
terms which are nonlinear in 	. This approximation holds for
angles 	 smaller than about 10°.

The equations of motion for the domain wall then become

Ẋ = − �2��K�	
1

�0Ms
− ����Hext�X� − bj��1 + ���j

�11�

and

	̇ = ��Hext�X� − 2���K�	
1

�0Ms
+

bj��� − ��j

�
. �12�

These equations are general equations of motion with a time-
dependent current density j. In the limit of a steady current
and a homogeneous magnetic field one can calculate the ini-
tial velocity of the wall by setting 	=0, the initial condition

of the Néel wall. This leads to the initial velocity Ẋi=
−����Hext−bj��1+���j which is exactly the value obtained

by Zhang and Li.21 The terminal velocity Ẋf =−���Hext

+bj�j� /� is calculated by setting 	̇=0, i.e., stationary mo-
tion. This velocity is also identical to the one calculated by
Zhang and Li. Similar relations have recently been found by
Dugaev et al.41

The domain-wall mass is obtained by comparing the
	-dependent part of the wall energy in Eq. �6� to the energy
E of the domain-wall quasiparticle:

1

2
mẊ2 = E = S� dxK� sin2����Ẋ

�0Ms

�2��K�

�2

=
1

2

S�0
2Ms

2

���2K�

Ẋ2.

�13�

Here we used

	 = − Ẋ
�0Ms

2���K�

, �14�

derived from Eq. �11� for stationary motion and in the ab-
sence of electric currents and external fields. We arrive at the
domain-wall mass

m =
S�0

2Ms
2

���2K�

. �15�

Note that this result relates the phenomenological domain-
wall mass of a Néel wall to the micromagnetic material pa-
rameters.

In the case of a curved wire the projection of a uniform
external field along the wire is given by Hext�x�
=H0 sin�x /r�. Transferring this to our straight wire model, at
small displacements of the domain wall �X�r� the wall is
exposed to the external field Hext�H0X /r. Then the equa-
tions of motion become a system of two coupled linear dif-
ferential equations of first order:

�Ẋ

	̇
� = ���− ��H0

1

r
− �2K�

1

�0Ms

H0
1

r
− 2�K�

1

�0Ms


�X

	
�

+ bj�j�− �1 + ���
�� − ��

�

 . �16�

Except for the nonvanishing first matrix element −��H0 /r
these equations are equivalent to those of a driven harmonic
oscillator. For a time-dependent current density of the form
j0ei�t the general solution
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�X�t�
	�t�

� = �X+

	+
�e−�t+i�ft + �X−

	−
�e−�t−i�ft +

1

�r
2 − �2 + 2i��

F�

m

�17�

consists of an exponentially damped starting configuration
with the initial conditions described by X± and 	± and a

current-driven oscillation with the driving force F� . The
damping constant

� = �����H0

2r
+

K�

�0Ms
� �18�

depends on the ratio of applied magnetic field and ring ra-
dius. It represents the restoring force acting on the domain
wall. This dependence of the damping constant on the restor-
ing force expresses that the damping is spatially dependent.
This also leads to a second term in the frequency of the free
oscillation,

� f =
2��2H0�K�

�0Msr
− �2��2� K�

�0Ms
−

�H0

2r
�2

, �19�

which is different from �. Hence the resonance frequency

�r = 
� f
2 + �2 =
2��2H0�K�

�0Msr
�1 + �2� �20�

depends explicitly on the Gilbert damping parameter � and
differs from the resonance frequency of a normal harmonic
oscillator,

�0 =
D

m
=
2��2H0�K�

�0Msr
, �21�

by the factor 
1+�2. The constant D is given by D=FH /X
where FH is the force on the domain wall due to the external
magnetic field. The force

F� = − mbjj0ei�t�2��K��

�0Ms
+

1 + ��

1 + �2 i��e�X

− mbjj0ei�t���H0
1

r
−

� − �

1 + �2

i�

�
�e�	, �22�

induced by the current, depends on the frequency � of the
applied current. The terms in Eq. �22� can be understood as
direct forces due to the spin torque and the precessions of the
magnetization in the external and anisotropy fields depicted
in Fig. 2. The terms proportional to i� express the current-
induced spin torque. They are the time derivatives of the

inhomogenities in Eq. �16�. The H0-dependent term is a re-
sult of the precession of the magnetization in the external
field which causes a rotation of the wall around the wire axis.
The precession in the anisotropy field, described by the K�

term in Eq. �22�, causes a change of the wall velocity.
Except that the force depends on the frequency � of the

applied current the result for the domain-wall displacement
�Eq. �17�� is equal to the one in a harmonic oscillator. With
increasing � the force increases and its phase shifts up to
90°. In the absence of a nonadiabatic spin torque ��=0�,
current and domain-wall displacement at resonance have op-
posite sign. In case of a nonadiabatic torque the phase at
resonance frequency between the current and the magnetiza-
tion in the z direction is 90° when the ratio � of exchange and
spin-flip relaxation time equals the Gilbert damping param-
eter ��=��. The phase can be used to find out whether a
nonadiabatic spin torque exists and to determine the value of
� in comparison to the damping parameter �.

The influence of the adiabatic torque on the position of
the wall is obtained by setting �=0 in Eq. �22�. The x com-

ponent of the force F� due to the adiabatic torque is propor-
tional to the time derivative of the current density. Therefore,
the adiabatic torque does not accelerate the wall when the
current does not change in time. This explains the observa-
tion of Zhang and Li21 that without a nonadiabatic spin
torque a domain wall subjected to a steady current stops
moving. In contrast the nonadiabatic contributions to the
force are proportional to the current density as well as to its
derivative.

In Eq. �17� the starting configuration depends on 	± and
X±. The equation that follows from decoupling of Eq. �16�,

	± = � �

2�
−

�H0�0Ms

4rK�

� i
� f�0Ms

2���K�

�X±, �23�

connects 	± with X±. Hence we have two parameters left for
our starting configuration as expected for an oscillation.

With the above analytical model—i.e., Eqs. �15� and
�17�–�22�—we are able to derive the hitherto phenomeno-
logical oscillator model9 and to express its characteristics by
the micromagnetic material parameters. Likewise, the mea-
surement of the domain-wall motion allows the determina-
tion of micromagnetic quantities.

IV. CURVED WIRES

For curved wires in a homogeneous magnetic field its
component perpendicular to the wire has to be taken into
account. Also the change of the magnetization due to the
curvature becomes important. To include the perpendicular
field we calculate the force on the domain wall as the spatial
derivative of its Zeeman energy. The total magnetic moments
parallel to the wire,

m� =� Ms cos���x��dV = − 2MsSX , �24�

and perpendicular to the wire,

FIG. 2. �Color online� Schematic illustration of the magnetiza-
tion in the Néel wall �solid red arrows� in a straight wire of width w
and thickness t. H� and Ha are the parallel components of the ex-
ternal field and the anisotropy field, respectively.
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4.4 Spin-Torque Induced Magnetization Dynamics

m� =� Ms sin���x��dV = 
MsS� , �25�

are volume integrals over its magnetization that are readily
calculated using the relations in Eq. �5�. Note that m� is the
magnetic moment of an abrupt domain wall. With the mag-
netic field H0 in the y direction the Zeeman energy can be
written as

E� = �0MsHt�
r−w/2

r+w/2

r���
−
/2


0

sin�
�d


− �

0


/2

sin�
�d
	dr�, �26�

where 
0= X
r is the angle of the position of the domain wall

�see Fig. 1� and r, w, and t are the radius, the width, and the
thickness of the wire. We get

E� = − 2�0MsSrH cos�
0� = 2�0MsSHY , �27�

with the cross section S=wt. One recognizes that the energy
is equivalent to the energy of a monopole with magnetic
charge QM =2�0MsS. For small domain-wall displacements
we can write the cosine in Eq. �27� as a Taylor series up to
second order in X and get

E� � − 2�0MsSrH�1 −
X2

2r2� . �28�

The monopole has been included in the calculations in Sec.
III as well as in the calculations of Saitoh et al.9 The perpen-
dicular magnetization contributes to the Zeeman energy by a
term

E� = − �0m�H cos�X

r
� � − PMH�1 −

X2

2r2� , �29�

which can be interpreted as the energy of a magnetic dipole
with moment PM =�0
MsS�. The potential E=E� +E� is
parabolic like for the straight wire.9,34 However, the reso-
nance frequency is higher. The Zeeman energy of the perpen-
dicular magnetization has previously not been included in
the magnetic energy. It gives a correction to the magnetic
force on the domain wall,

Fx = −
dE

dX
� −

2�0MsSH

r
X −


�0MsS�H

r2 X

= −
QMH

r
X −

PMH

r2 X = −
QM

r
XH�1 +


�

2r
� . �30�

Thus, we include the action of a field component perpendicu-
lar to the wire by replacing the field in Eq. �17� by an effec-
tive field

He = H�1 +

�

2r
� . �31�

For example, a ring with a width of 370 nm �Ref. 42� and
radius of 500 nm experiences an increase in the effective
field of approximately 31%.

We now take into acount the curvature of the wire. With
decreasing ring radius the angle between neighboring spins
in the domain wall shrinks. This leads to an additional con-
tribution to the exchange energy of the wall when its mag-
netization points out of the wire plane.

To calculate the new exchange energy we change the spin
basis to Cartesian coordinates. To distinguish the spin basis
from the basis in space we introduce the coordinates �
=cos �, �=sin � cos 	, and �=sin � sin 	. Moving along the
wire the magnetization performs a rotation in the −� direc-
tion due to the domain wall as well as a rotation around the
� axis due to the curvature. For small rotations �� and �

the Cartesian coordinates are given by

� = cos��
�cos�� + ��� − sin��
�sin�� + ���cos�	� ,

� = cos��
�sin�� + ���cos�	� + sin��
�cos�� + ��� ,

� = sin�� + ���sin�	� . �32�

The exchange energy density is given by

Wex = A�� ��

�x
�2

+ � ��

�x
�2

+ � ��

�x
�2	 . �33�

From Eq. �32� we obtain

Wex = A� ��

�x
�2

+ 2A
��

�x

1

r
cos 	 − A

1

r2 sin2 � sin2 	 +
A

r2 .

�34�

The first term is equal to the exchange energy density of the
straight wire. The last term is constant and does not depend
on the magnetization. In the approximation for small 	 the
other two terms can be rewritten:

�Wex = A
��

�x

1

r
�2 − 	2� − A�	

r
�2

sin2 � . �35�

Integration leads to the contribution

� dV�Wex = �AS


r
−

AS2�

r2 �	2 −
2AS


r
�36�

of the curvature to the anisotropy energy. The last term is a
constant which depends neither on X nor on 	. The perpen-
dicular anisotropy energy can be written as

� dVWa� =� dVK� sin2 � sin2 	 = K�S2�	2. �37�

Comparing Eqs. �36� and �37� one can see that the additional
exchange energy due to the curvature can be included into
the perpendicular anisotropy by defining an effective aniso-
tropy constant

K�eff = K� +
A


2�r
−

A

r2 . �38�

By this equation and Eq. �31� for the effective field we
have shown that the modifications result in a higher reso-
nance frequency, higher damping constant, and in a lower
domain-wall mass in comparison to the straight wire.
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V. NUMERICAL CALCULATIONS

To check the applicability of the approximations made in
our analytical model—i.e., the form invariance of the domain
wall at small displacements—we have performed micromag-
netic simulations. We have modeled current-induced domain-
wall oscillations in curved nanowires as described in Sec. II.
The current contacts are arranged under an angle of 90° to
have sufficient distance to the domain wall as well as to the
ends of the wire �see Fig. 1�.

We extended the implementation of the Landau-Lifshitz-
Gilbert equation in the object-oriented micromagnetic
framework43 �OOMMF� by the additional current-dependent
terms of Eq. �2� and implemented Runge-Kutta and Adams-
Bashforth-Moulton algorithms of higher order to speed up
the calculations. The calculations presented here have been
performed using the explicit embedded Runge-Kutta 5�4� al-
gorithm by Cash and Karp.44 The current density is calcu-
lated by locally solving Ohm’s law, thus taking the curvature
of the wire and the contacts into account. For the spatial
discretization a cell size of 1 nm in the x and y directions and
10 nm in the z direction was chosen. Numerical calculations
were performed for radii of 45 nm, 55 nm, 65 nm, 70 nm,
85 nm, and 95 nm with different polarized current densities
jp= jP. Small radii are chosen so that the corrections from
Sec. IV become pronounced. We use the material parameters
of Permalloy: i.e., the exchange constant A=13�10−12 J /m
and the saturation magnetization Ms=8�105 A/m. All
wires have a quadratical cross section S=wt=100 nm2. The
applied field in the y direction was chosen to be 125 mT to
increase the resonance frequency �see Eq. �20�� and thus to
reduce the simulation time necessary for the domain wall to
perform several oscillations. Due to the small width of the
wire, this high field has virtually no effect on the ground
state �H=0� of the magnetization. In the ground state we
obtain a domain-wall width of �=9.25 nm. The difference in
the magnetization orientation � between the analytical de-
scription of the Néel wall and the micromagnetic ground
state in the curved wire is less than 5°.

We have determined the eigenmodes of the magnetization
in the wire by applying a magnetic � pulse in the z direction
�see Fig. 1�, thus exciting all frequencies with equal ampli-
tude. To mimic an applied current, the magnetic field pulse
has been chosen to point in the z direction so that the torque
of the field points in the same direction as the torque of the
applied current �see Eq. �2��. After this excitation the system
performs damped free oscillations. The eigenmodes of the
wire are found by spatially resolved discrete Fourier trans-
formation �see Fig. 3�.45,46 The higher harmonics and the
standing spin waves in the wire are neglected in the analyti-
cal description. The resonance of the ground mode is ob-
served at a frequency of �=15.7 GHz. The higher modes are
also indicated in Fig. 3. However, in the following we focus
on the ground mode.

We simulated an alternating current with frequencies
close to the resonance frequency of the domain wall for dif-
ferent radii r and Gilbert damping parameters �. Figure 4
shows the numerically obtained amplitudes for different radii
at fixed �=0.05 and �=0.01. For each radius the position and
the width of the resonance curve have been fitted to the ana-

lytical model, Eq. �17�, to determine the parameters F�r�,
�r�r�, and ��r�. Note that all resonance curves are in excel-
lent agreement with the harmonic-oscillator model. The fre-
quencies �r�r� and the damping constants ��r� have been
summarized in Fig. 5 where they are compared to the ana-
lytical expressions in Eqs. �18� and �20�. The results coincide
if we assume K�eff=K�+ A


2�r − A
r2 with K�=60 000 J /m3 for

the perpendicular anisotropy �see Eq. �38��. The dependence
of the resonance frequency �r on the radius r according to
the phenomenological model of Saitoh et al.9 is also shown.
It is visible from Fig. 5 that the analytical model and the
phenomenological oscillator model yield the same eigenfre-

FIG. 3. �Color online� Fourier transform M��� of the simulated
magnetization Mx�t� in a curved nanowire with radius r=45 nm and
Gilbert damping parameter �=0.05. The wire is excited with a
magnetic � pulse. The lines show the spatially resolved �solid line�
and the integral response �dashed line�. The insets show the spa-
tially resolved discrete Fourier transforms for seven selected
eigenfrequencies.

FIG. 4. �Color online� Amplitude of the domain-wall displace-
ment versus frequency of the applied current for different radii r.
The Gilbert damping �=0.05, the ratio of the exchange and spin-
flip relaxation time �=0.01, and the polarized current density jp

=1011 A/m2 are fixed. The crosses denote numerical values while
the lines are fits with the analytical result of Eq. �17�.
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4.4 Spin-Torque Induced Magnetization Dynamics

quencies in the limit of a straight wire �r�1 �m�. For
smaller radii the phenomenological model gives eigenfre-
quencies which are significantly lower than the ones of the
numerical calculations. Our analytical model including the
geometrical corrections fits the numerical data very well.

Figures 6 and 7 show the corresponding data for a ring
with a radius of 45 nm and different values of the Gilbert
damping parameter �. The analytical solutions are calculated
with no free fit parameter. While the data points for the
damping constant ���� coincide with the analytical result,
small deviations occur in the resonance frequency �r���.
These deviations can be attributed to the finite cell size in our
simulations.

In Figs. 8 and 9 the values for the fit parameter F�� ,r� are
compared with the analytical result. The analytical values
exceed the numerically obtained parameters by up to a factor

of 2. This difference has several reasons. In Sec. III we as-
sumed that the ground mode can be described by the motion
of the center of the wall X and the magnetization angle 	.
This neglects spin-wave excitations and higher wall modes.
Calculating the mode spectrum excited with a single driving
frequency revealed a strong coupling between the ground
mode and higher modes. This coupling is enhanced for small
radii. Therefore, the force is distributed over several modes,
thus decreasing the amplitude of the ground mode. More-
over, in wires with small radii the current distribution is very
inhomogeneous with a higher current density at their inner
edge. We expect that this leads to an additional deformation
of the Néel wall. Another aspect is the finite cell size. In the
numerical calculations the curved surface has been approxi-
mated with rectangular prisms. The resulting kinks in the
wire wall have a measurable effect on the domain-wall mo-
tion similar to surface roughness.

VI. RELATION TO EXPERIMENT

In the analytical calculations we assume the linear ap-
proximations sin�X /r��X /r and sin 	�	. Nonlinearities

FIG. 5. �Color online� Resonance frequency �r and damping
constant � versus reciprocal ring radius. Shown are the values de-
termined from the fits in Fig. 4 �data points� and the analytical
values �solid lines�. The dashed line indicates the behavior of the
resonance frequency as expected from the phenomenological model
of Saitoh et al. �Ref. 9�

FIG. 6. �Color online� Amplitude of the domain-wall displace-
ment versus frequency of the applied current for different Gilbert
damping parameters �. The ring radius r=45 nm, the ratio of the
exchange and spin-flip relaxation time �=0.01, and the polarized
current density jp=1010A/m2 are fixed. The crosses denote numeri-
cal values while the lines are fits with the analytical result of Eq.
�17�.

FIG. 7. �Color online� Resonance frequency �r and damping
constant � versus Gilbert damping parameter �. Shown are the
values determined from the fits in Fig. 6 �data points� and the ana-
lytical values �solid lines�.

FIG. 8. �Color online� Force per wall mass at the resonance
frequency versus reciprocal ring radius. Shown are the numerical
values �crosses� and the analytical values �line�. The polarized cur-
rent density is jp=1011A/m2.
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cause the deviation of the resonance frequency in Fig. 10
from the analytical form at the current density jp
=1011 A/m2 and Gilbert damping parameters below 0.05.
Note that these nonlinearities are small ��5% �. The pre-
sented model clearly fails beyond Walker’s breakdown.2 The
current densities at which nonlinearities become important
strongly depend on the geometry of the wire. Our analytical
model allows us to derive them for typical experimental pa-
rameters. In the rest of this section we will assume that the
damping constant � is not field dependent � �H

2r �
K�

�0Ms
� and

that the squared Gilbert damping parameter is small ��2

�1�. These assumptions usually hold in experiments be-
cause the domain-wall width � is small compared to the
radius r and the usual values of the damping parameter � are
lower than 0.1. We can express all terms in Eq. �22� with the
expressions for � and �r in Eqs. �18� and �20�, respectively,
when we assume that the ratio of exchange and spin-flip
relaxation time � is comparable or less than the Gilbert
damping parameter �. In the case of a noncritically damped
oscillation ��r��� the oscillation becomes nonlinear if the
current density is approximately

j = min� �r

4bj
,

�2�

2��rbj
� . �39�

The experimental current densities which Saitoh et al.9

applied on a wire with cross section S=3150 nm2 and radius
r=50 �m are well below this current density. They have
determined a domain-wall width �=70 nm, a domain-wall
mass m= �6.55±0.06��10−23 kg, and a domain-wall relax-
ation time �= 1

2� = �1.4±0.2��10−8 s. Calculating the demag-
netization energy for a straight wire numerically and fitting
with the expression for the shape anisotropy K� sin2 �sin2 	,
we get an anisotropy constant of K�=76175 J /m3. This
yields an effective anisotropy of K�eff=76175 J /m3+ A


2�r
− A

r2 . Using Saitoh’s experimental parameters we obtain from
Eq. �15� a domain-wall mass m�1.2�10−23 kg. Tatara and
Kohno’s approach18 used in the paper of Saitoh et al.9 deliv-
ers exactly the same result.

As mentioned in Sec. 3 the analytical calculations lead to
relations between the micromagnetic material parameters
and the parameters of the harmonic oscillator. These can be
used to experimentally determine the Gilbert damping pa-
rameter � from the experimental data. From Eqs. �18�, �20�,
and �15� one can derive the relation

� =
2��H�

�r
2r

=
m���

�0MsS
. �40�

With the domain-wall mass and the domain-wall relaxation
time of the experiment of Saitoh et al. we get a Gilbert
damping parameter of �=0.0114±0.0017. This value agrees
quite well with the experimental values of Nibarger et al.47

and Schneider et al.48 which range from 0.008 to 0.017 for
film thicknesses between 10 nm and 93 nm.

VII. CONCLUSION

The current-induced motion of a domain wall in thin
curved nanowires has been investigated. A harmonic-
oscillator model which so far had only been introduced phe-
nomenologically is derived from the LLG equations ex-
tended by the spin torque according to Zhang and Li.21 This
derivation relates micromagnetic material parameters to the
characteristic quantities describing the oscillating domain
wall under the influence of an alternating driving current. It
is shown that the dipole moment of the wall and the curva-
ture of the wire have an important influence on the resonance
frequency and damping constant of the oscillation. The do-
main wall can be seen as a quasiparticle in a parabolic po-
tential well which is acted upon by a current-induced force.
An important result is that the time derivative of the current
density greatly contributes to the force on the domain wall.
The phase and magnitude of the force depend on the fre-
quency of the current. The analytical results have been com-
pared to numerical simulations. They agree very well. Our
analytical solution suggests new methods to determine mate-
rial parameters which are otherwise difficult to measure: e.g.,
the nonadiabatic term of the spin torque can be determined
from the phase shift between the applied current and the
overall magnetization. Moreover, the Gilbert damping pa-

FIG. 9. �Color online� Force per wall mass at the resonance
frequency versus Gilbert damping parameter. Shown are the nu-
merical �crosses� and the analytical values �line�. The polarized cur-
rent density is jp=1011A/m2.

FIG. 10. �Color online� Resonance frequency �r versus Gilbert
damping parameter �. The data points are the numerical values
obtained for a wire with radius 45 nm and two different densities of
the polarized current jp. The line is a fit according to the analytical
result �r=C /
1+�2 from Eq. �20� with the fit parameter C.
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4.4 Spin-Torque Induced Magnetization Dynamics

rameter � and the domain-wall mass m follow from a mea-
surement of the resonance frequency �r and the damping
constant � of the oscillations.
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Abstract

We have incorporated the model of Zhang and Li [Phys. Rev. Lett. 93 (2004) 127204] for spin-transfer torque into the

Landau–Lifshitz–Gilbert equation and have investigated the current-induced magnetization dynamics of permalloy ðNi80Fe20Þ semi

rings. The distribution of the current density within the ring is taken into account. Current-induced eigenmodes with distinct resonance

frequencies and higher harmonics are observed as well as a dependence of the resonance frequency on the ring radius. The domain-wall

mass determined from the micromagnetic simulation and an analytical model is in agreement with recent experiments. Maximum

domain-wall velocities between 30 and 34ms�1 are deduced.

r 2007 Published by Elsevier B.V.

PACS: 75.45.+j; 72.25.Ba; 75.60.Ch; 75.40.Mg

Keywords: Spin-transfer torque; Micromagnetic simulation; Magnetization dynamics

The spin-polarized current within a ferromagnet trans-
fers a torque when passing through a locally varying
magnetization. This mechanism is currently discussed as a
technologically simple writing scheme for magnetic mem-
ory devices as it would drastically reduce the complexity of
the wiring. Berger [2,3] and Slonczewski [4] described
independently the interaction between conduction elec-
trons and localized spins of magnetic multilayers. Recently,
current-driven magnetization reversal has been studied
experimentally in nanopillars [5,6]. In the last two years
considerable progress has been made in understanding the
current-induced domain wall motion in magnetic nano-
wires [1,7–10]. Experimentally the velocity of current-
induced domain wall motion in nanowires and other
constrained geometries has been investigated with current
pulses and subsequent quasi-static detection by magnetic-
force microscopy [11] and by scanning-electron microscopy
with polarization analysis [12]. The dynamics of a domain
wall has been measured with the help of resonant high-
frequency current excitation [13]. Domain-wall velocities in
the range of 0:323ms�1 and threshold current densities

from 1011 up to 1012 Am�2 have been determined.
Theoretically there has been extensive effort to expand
the existing micromagnetic models to include the influence
of spin-polarized currents [1,2,4,7,9,10]. Threshold current
densities of 1012 Am�2 and wall velocities in the range of
100ms�1 are obtained. So far, the discrepancy to the
experimental velocities is not understood. Edge roughness
as well as excitation of spin waves have been proposed as
possible explanations [7,8].
Current-induced magnetization dynamics of permalloy
ðNi80Fe20Þ semi rings as shown in Fig. 1 are studied
numerically and fitted with a harmonic-oscillator model
[14]. Ferromagnetic semi rings are interesting because they
can give access to the dynamic properties of a single
domain wall [13]. We have extended the micromagnetic
simulation package OOMMF [15] to include spin-polarized
currents according to the model of Zhang and Li [1]. In
their model the conduction electrons are assumed to
propagate without reflection. Their spin direction follows
approximately the direction of the local magnetization at
the wall. This approach is suitable to describe ferromag-
netic metals where the Fermi wavelength is much smaller
than the size of the magnet and the width of the domain
wall. The corresponding equation of motion is deduced by
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adding the adiabatic and the non-adiabatic spin-torque
term to the Gilbert form of the Landau–Lifshitz equation.
Then, the explicit form of the equation of motion for the
local magnetization reads:

dM

dt
¼ �

1

1þ a2
½gM�Hþ agM� ðM�HÞ

þ bjð1þ axÞM� ðM� ðj � rÞMÞ

þ bjðx� aÞM� ðj � rÞM�, ð1Þ

with the local magnetizationM, the local effective magnetic
field H, the gyromagnetic ratio g, the Gilbert damping
parameter a, and the local current density j. The prefactors
bj and cj ¼ xbj are defined in Ref. [1]. The first and the
second terms in Eq. (1) are the well-known precession and
damping terms, respectively. The third and fourth terms
are the adiabatic and non-adiabatic spin-torque terms.

The two spin-torque terms introduce local derivatives of
the magnetization. We have implemented these in the
micromagnetic code by a finite difference method con-
sidering the nearest and next nearest neighbors. The
performance of the code has been improved by a fifth-
order Cash–Karp Runge–Kutta algorithm [16]. A gain of
performance of up to two orders of magnitude in
comparison with an Euler evolver could be obtained
depending on the size of the problem and the damping
parameter. The calculations are performed with permalloy
parameters, i.e. exchange constant A ¼ 1:3� 10�11 J=m,
saturation magnetization MS ¼ 8:0� 105 A=m, uniaxial
anisotropy K1 ¼ 0, and damping constant a ¼ 0:05. The
cell size used in all simulations is 1, 1, and 10 nm in x, y,
and z-direction, respectively.

The detailed current distribution is important when
electron transport through ferromagnetic micro- and
nanostructures is considered [17]. Therefore the geometry
of the ring was included in a diffusive transport calculation
of the local electrical potentials and the current density
[18]. The current distribution for the semi ring with a radius
of 45 nm is shown in Fig. 1. The location of the contacts far
away from the domain wall and the ends of the semi ring
guarantees a homogeneous static magnetization in the

contact area. Note that the current density varies by nearly
a factor of two within the ring. A rather small system size
has been chosen to enable a thorough study of current-
induced magnetization dynamics in rings.
To prepare the magnetization state with the domain wall

in the middle of the semi ring a strong static magnetic field
of 1 T is applied in y-direction to saturate the magnetiza-
tion. Then the strong external field in the simulation is
reduced to a confining field of 0.125T. By this procedure a
single domain wall, i.e. Néel or transverse wall, is
introduced in the middle of the semi ring in a controllable
manner. In the next step an alternating current with a
specified frequency is applied. The domain wall oscillates
with this frequency. The magnitude of the oscillation is
expected to have its maximum amplitude when the
frequency of the current is close to the eigenfrequency of
the domain-wall in the semi ring. To obtain the eigenmode
spectrum the permalloy semi ring is excited with a
homogeneous magnetic field in z-direction with a full-
width-at-half-maximum of 2.6 ps. Such pulses excite all
frequencies relevant for spin-wave modes in ferromagnetic
micro- and nanostructures. The torque generated by such
pulses resembles the torque due to a current through the
ring. The eigenmodes of the semi ring are found by
spatially resolved discrete Fourier transformation. A sum
over all cells yields the spectrum with the eigenmode
frequencies. Fig. 2 shows the Fourier transform of the
modes excited in the ring with a radius r ¼ 45 nm with a
current of a frequency of 2.5GHz. The strong resonance at
2.5GHz is accompanied by resonances with strongly
decreasing intensity at higher harmonics [19]. An image
of the amplitude of the current-induced eigenmode is
shown in the inset. Fig. 3(a) shows simulated resonances of
the magnetization excitation versus frequency of the
exciting current. The shape of the curves confirm the
description of a domain wall as a particle with a finite mass
as predicted by Döring [14]. As expected according to Eq.
(1) of Ref. [13] the resonance frequencies increase with
increasing confinement, i.e., decreasing ring radius. In Fig.
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Fig. 1. Geometry of the semi rings. Radii r of 45, 55, 65, 70, 85, and 95 nm

have been simulated. The width w of all rings is 10 nm, the thickness t is

10 nm. The current distribution between the contacts is shown as color

contour ranging from 0:8� 1011 to 1:3� 1011 A=m2.

Fig. 2. Fourier transform of the ring modes excited with a current of

frequency n ¼ 2:5GHz. The inset shows the amplitude of the fundamental

mode at 2.5GHz.
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UNCORRECTED P
ROOF

3(a) the numerical results (dots) are excellently fitted by the
harmonic-oscillator model (lines) [13]. Fig. 3(b) shows the
ring radius times the squared angular frequency o2

0r versus
the inverse ring radius. From the linear fit of the oscillator
model to the numerical data in Fig. 3(b) we deduce a
domain wall mass of 11� 10�23 kgfor the parameters of the
experimental setup of Ref. [13]. This value is comparable to
the domain-wall mass of 6:6� 10�23 kg deduced there. The
displacement of the wall times the angular resonance

frequency yields the maximum domain-wall velocity. We
obtain values between 30 and 34ms�1.
In conclusion we have implemented Zhang and Li’s

extension of the Landau–Lifshitz–Gilbert equation [1] to
consider the interaction of spin-polarized currents with the
locally varying magnetization of ferromagnetic micro- and
nanostructures. Single domain walls in permalloy semi
rings have been simulated. The current-induced magnetic
resonances are excellently fitted by a harmonic-oscillator
model.

Financial support by the Deutsche Forschungsge-
meinschaft via SFB 508 ‘‘Quantenmaterialien’’, SFB 668
‘‘Magnetismus vom Einzelatom zur Nanostruktur’’, and
via Graduiertenkolleg 1286 ‘‘Functional Metal-Semicon-
ductor Hybrid Systems’’ is gratefully acknowledged.

References

[1] S. Zhang, Z. Li, Phys. Rev. Lett. 93 (2004) 127204.

[2] L. Berger, J. Appl. Phys. 71 (1992) 2721.

[3] L. Berger, Phys. Rev. B 54 (1996) 9353.

[4] J.C. Slonczewski, J. Magn. Magn. Mater. 159 (1996) L1.

[5] J.A. Katine, F.J. Albert, R.A. Buhrman, E.B. Myers, D.C. Ralph,

Phys. Rev. Lett. 84 (2000) 3149.

[6] E.B. Myers, F.J. Albert, J.C. Sankey, E. Bonet, R.A. Buhrman, D.C.

Ralph, Phys. Rev. Lett. 89 (2002) 196801.

[7] A. Thiaville, Y. Nakatani, J. Miltat, Y. Suzuki, Europhys. Lett. 69

(2005) 990.

[8] G. Tatara, H. Kohno, Phys. Rev. Lett. 92 (2004) 086601.

[9] X. Waintal, M. Viret, Europhys. Lett. 65 (2004) 427.

[10] J. Ohe, B. Kramer, Phys. Rev. Lett. 96 (2006) 027204.

[11] A. Yamaguchi, T. Ono, S. Nasu, K. Miyake, K. Mibu, T. Shinjo,

Phys. Rev. Lett. 92 (2004) 077205.
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4.4 Spin-Torque Induced Magnetization Dynamics

4.4.2 Direct Imaging of Stochastic Domain-Wall Motion Driven by

Nanosecond Current Pulses

Following the AMR studies (see Section 4.3.2) Guido Meier, René Eiselt, and I performed

our first spin-torque experiments at the XM-1 beam line with the help of the beam line

scientist Peter Fischer and his PostDoc Dong-Hyun Kim. After having characterized the

switching fields in permalloy rings with AMR measurements and X-ray microscopy (see

Fig. 4.5), we applied 1.0 ns short current pulses between the voltage contacts with the

help of an Avtech AVN-3 Ultra High Speed Pulse Generator (see Fig. 1(a) of [P15]). We

imaged the magnetization before and after each pulse to see whether the magnetization

had changed. This process was repeated ≈ 50 times. In the thicker rings (960 nm wide

and 80 nm thick) multi-vortex domain walls were observed [167], while in the rings with

smaller cross sections (300 nm width and 40 nm thickness) single vortex domain walls

prevailed [166].

At current densities of 7.5×1012 A/m2 to 1.0×1011 A/m2 we observed stochastic motion

of the domain walls in the rings. The jumps in domain-wall position from one image to

the next were up to 100 nm, corresponding to domain wall velocities of about 100 m/s,

while at other times the walls would not move at all. Most of the times the domain walls

did not move as a composite particle, but only regions of the walls changed while oth-

ers remained unaltered. With the micromagnetic code enhanced by Benjamin Krüger I

simulated the magnetic response of permalloy rings of different thicknesses to nanosec-

ond current pulses. Figure 4.11 shows the simulated static magnetization for three ring

sections with 20 nm, 60 nm, and 80 nm thickness before and after a 1 ns current pulse

of density 1.0× 1012 A/m2. The simulations showed transitions from Néel like walls to

vortex walls for the thinner rings, in agreement with Kläui et al. who had first observed

this structural change [105]. In 60 nm thick permalloy the simulated single domain wall

was elongated and several vortex-antivortex pairs were created [106], confirming our own

observations by X-ray microscopy (see Fig. 2(b) and 2(d) of [P15]). The double-vortex

wall in the simulated 80 nm thick permalloy ring showed both wall deformation as well as

displacement with an average velocity of ≈ 100 m/s. This velocity is remarkably higher

than what had been observed with longer current pulses [31], but in line with current-

assisted field-driven domain-wall motion [115] as well as what theory predicts [28, 107].

It appears that long current pulses average out the peak velocity that can be discriminated

with nanosecond current pulses. Our present point of view is that the time derivative of

the current also induces a torque on a domain wall that for nanosecond pulses exceeds the

torque of the current itself. This is indicated by the iΩ-dependent terms of Eqn. (22) in
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4 Results

Fig. 4.11: Simulated magnetization in a 960 nm wide permalloy ring segment with a

radius of 25 µm before ((a), (b), and (c)) and after ((d), (e), and (f)) a nanosecond

current pulse of 1.0× 1012 A/m2. The thicknesses of the ring segments are 20 nm ((a)

and (d)), 60 nm ((b) and (e)), and 80 nm ((c) and (f)).

[P12] (see previous Section).

The investigation yielded another important contribution to the fundamentals of spin-

torque driven domain walls, namely the strength of the nonadiabatic spin-torque. He et

al. predicted a displacement of a vortex in a vortex wall perpendicular to the current that

is linear in the degree of nonadiabaticity ξ . By analyzing the position of the vortices in

the double-vortex walls we estimated the strength of the nonadiabatic spin-torque to be

roughly proportional to the damping factor α . Finally, we derived a rough estimate for the

critical exponent of the stochastic domain-wall motion. The work was published as [P15]
and is reprinted here with permission from G. Meier, M. Bolte, R. Eiselt, B. Krüger, D.-H.

Kim, P. Fischer, Phys. Rev. Lett., 98, 187202 (2007). Copyright (2007) by the American

Physical Society. The work was also presented at several international conferences and

invited talks (see [C13], [C16], [C20], [I6], [I9], [I11], and [I12]).
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I. Institut für Theoretische Physik, Universität Hamburg, Jungiusstrasse 9, 20355 Hamburg, Germany

Dong-Hyun Kim
Department of Physics and Institute for Basic Research, Chungbuk National University, Cheongju 361-763, South Korea

Peter Fischer
Center for X-Ray Optics, Lawrence Berkeley National Lab, 1 Cyclotron Road, Mail Stop 2R0400, Berkeley, California 94720, USA

(Received 27 December 2006; published 2 May 2007)

Magnetic transmission x-ray microscopy is used to directly visualize the influence of a spin-polarized
current on domain walls in curved permalloy wires. Pulses of nanosecond duration and of high current
density up to 1:0� 1012 A=m2 are used to move and to deform the domain wall. The current pulse drives
the wall either undisturbed, i.e., as composite particle through the wire, or causes structural changes of the
magnetization. Repetitive pulse measurements reveal the stochastic nature of current-induced domain-
wall motion.

DOI: 10.1103/PhysRevLett.98.187202 PACS numbers: 75.60.Ch, 68.37.Yz, 72.25.Ba, 75.60.Ej

Current-driven domain-wall (DW) dynamics paves the
way to novel concepts for memory [1] and logic devices
[2]. The underlying physics is still under debate [3–6].
Several models have been proposed to predict the effects of
a spin-polarized electric current interacting with a locally
inhomogeneous magnetization [3–5,7–11]. It was initially
assumed that for DWs wider than the magnetic coherence
length the spins of the conduction electrons adiabatically
follow the local magnetic moments [4,12]. Later a non-
adiabatic term was added [3,4,9] to account for the differ-
ent DW velocities of theory and experiment [6,13]. It has
be shown that the adiabatic term is largely responsible for
the initial velocity of the DW while the nonadiabatic term
controls its terminal velocity [3]. The velocity of magnetic
DWs in thin nanowires has been stated to be between
tenths of m=s [3,14,15] up to several 100 m=s [3,16,17].
The velocities reported by experiments tend to be less than
those from theoretical predictions. Various suggestions
have been proposed to account for this discrepancy, in
particular, thermal activation [14,16,18,19] and surface
roughness [16]. On the other hand, it has been found that
the DW velocity depends on the DW type [14,20] and that
a spin-polarized current can change the topology of a wall
[14]. Moreover, it has been predicted that fast-changing
currents should exert a force on a DW much stronger than
the constant current alone [10] which implies that the time
structure of the fast-changing current should be considered.
Thus, to understand the underlying physics of current-
driven DW motion it is required to determine the DW
velocity and to simultaneously observe the DW type and
topology as well as to accurately control the time structure
of the current.

In this Letter we report spatially resolved experiments
and micromagnetic simulations of the motion of vortex
DWs in curved wires driven by current pulses. Nanosecond
current pulses are used to determine the DW velocity. In
case of microsecond pulses an average velocity including
pinning and depinning of the wall might be measured. We
show that DW velocities comparable to the field-driven
case are obtained and that the current-driven motion fol-
lows a statistical distribution comparable to Barkhausen
jumps in the field-driven case.

Curved wires with a radius of 25 �m were patterned by
electron-beam lithography and lift-off processing from
permalloy films deposited by electron-beam evaporation.
Curved wires are most convenient for the field-controlled
creation and destruction of a single DW. Four electrical
contacts on each wire are patterned from a 60 nm thick Au
layer for injection of current pulses and measurement of
the dc impedance. Figure 1 shows an optical micrograph of
a permalloy wire on a 100 nm thick Si3N4 membrane. The
membrane is required for transmission soft x-ray micros-
copy. The distance between the two inner Au contacts is
4:2 �m.

Measurements of the anisotropic magnetoresistance
(AMR) at low current densities of 1:0� 109 A=m2 prior
to the pulse experiments provide full control over the field-
induced generation of a single DW between the inner
contacts. An example of an AMR measurement is depicted
in Fig. 1(d). The resistance is lowest at saturation and
highest at remanence, as expected [21]. For the pulse
measurements we use the onion states with either a tail-
to-tail or a head-to-head DW between the contacts de-
pending on the magnetic history. From the absolute resist-
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4 Results

ance at zero field, the geometry of the wire, and the
distance between the voltage contacts we obtain a specific
resistivity of 45 �� cm for the permalloy on the Si3N4

membrane. After the AMR characterization, magnetic
transmission x-ray microscopy (MTXM) [22] with high
lateral resolution down to 15 nm utilizing Fresnel zone
optics [23] is used to image the magnetization of the wire.
Figures 1(b) and 1(c) show an MTXM image and a scheme
of a single-vortex wall, respectively.

Figure 2 shows MTXM images of double-vortex walls in
the 960 nm wide wire. Prior to each image current pulses of
1.0 ns duration and a density of 1:0� 1012 A=m2 are sent
through the wire in the direction indicated. In Fig. 2(a) and
2(b) the current-induced motion of a double-vortex wall in
the direction of the conduction electrons is observed. Here,
the wall moves with an undisturbed shape, i.e., as compos-
ite particle as predicted theoretically in Ref. [20]. A sketch
of the motion is given in Fig. 2(c). However, in the repeti-

tive pulse experiments also a current-induced distortion of
the double-vortex wall is observed as vividly displayed in
Fig. 2(d). Note that a vortex-antivortex pair has been
created with the current pulse. Figures 2(e)–2(h) show
MTXM images of a double-vortex wall which correspond
to the results shown in Fig. 3. The current pulses succes-
sively move the lower vortex in a Barkhausen-like manner
from pinning site to pinning site to the left, i.e., perpen-
dicular to the direction of the conduction electrons.

It is well known that field-driven magnetization reversal
is mediated via a sequence of Barkhausen jumps [24].
Disorder plays a significant role in the process of field-
driven Barkhausen avalanches as there are pinning sites
which cause a local distribution for the probability of DW
depinning and motion [25]. We assume a similar mecha-
nism in case of current-driven DW motion and expect a
thermally activated process for the room temperature mea-
surements with an energy barrier related to pinning by
defects or to wall transformations at the wire borders as
demonstrated in Ref. [16]. To analyze the stochastic nature
of current-induced DW motion in more detail we have
repeatedly imaged a double-vortex wall and sent current
pulses of 1.0 ns duration, 100 ps rise time, and 7:5�
1011 A=m2 (1:0� 1012 A=m2) density through it. In the
present experiment the DW width is much larger than the
magnetic coherence length of the conduction electrons
[11]. Thus the spins of the conduction electrons can follow
the direction of the local magnetization [4,9] although the

 

FIG. 2 (color online). (a) MTXM image of a double-vortex
wall before and (b) after sending ten current pulses of 1.0 ns
duration and 4.0 ns periodicity through the wire. (c) Sketch of the
wall positions in (a) and (b) illustrating the motion of the double-
vortex wall as composite particle. (d) Another pulse sequence
generates a vortex-antivortex pair. (e)–(h) Sequence of MTXM
images of a double-vortex wall taken after single 1.0 ns long
current pulses with a current density of 1:0� 1012 A=m2. The
lower vortex moves successively to the left edge of the wire.

 

FIG. 1 (color online). (a) Optical micrograph of a curved
permalloy wire on a Si3N4 membrane with four gold contacts.
A slit on the left side avoids dc current flow through this part.
(b) MTXM image and (c) scheme of a vortex wall in the section
between the inner contacts. (d) Measured AMR. The up-sweep
(down-sweep) is plotted in blue (red). The arrows indicate the
magnetization states. Shown are schemes of the two saturated
states, the two global-vortex states, and the two onion states. At
remanence the onion states exhibit either a tail-to-tail (blue) or a
head-to-head (red) DW in the region of interest for the pulse
experiments.
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4.4 Spin-Torque Induced Magnetization Dynamics

nonadiabatic correction introduces an angle between the
local magnetization and the magnetic moment of the con-
duction electrons. From the difference of two successive
x-ray images the lateral area A in which the magnetization
has been changed by one current pulse is determined.
Following the approach of Ref. [6], the efficiency of DW
displacement � � �m=mcurrent, where �m � 2MSAd is
the change of the magnetic moment in the wire and
mcurrent � 2P�Bwtj�t=e is the magnetic moment carried
by the current pulse, can be determined. The spin polar-
ization of P � 35% is determined by point-contact
Andreev spectroscopy [26]. With the thickness d �
80 nm and the width w � 960 nm of the wire, the satura-
tion magnetization MS � 800 kA=m2, and the pulse dura-
tion �t � 1:0 ns we calculate the efficiency plotted in
Fig. 3 for 49 pulses and two different current densities. It
clearly shows the stochastic nature of the process; e.g., for
a number of pulses no motion of the DW is observed. We
believe that the stochastic nature, i.e., a continuous pinning
and depinning, is the reason for the extremely low DW
velocities obtained from measurements with long current
pulses [14]. It is interesting to compare the distribution
P�A� of the current-driven jump size A to the field-driven
case of Barkhausen jumps. The inset of Fig. 3 shows a
power-law behavior for P�A� akin the field-driven case.
The experimental data are fitted by P�A� / A�� with a
critical exponent of � � 0:9� 0:2. This exponent differs
from the universality class for field-driven Barkhausen
jumps in thin films of various thicknesses and materials
[25]. However, for a final quantitative determination of the
critical exponent the number of repetitions must be in-
creased to improve the statistics.

To compare the experimental results with theory we
implemented the spin-torque transfer model of Zhang
and Li [3] in the micromagnetic framework OOMMF [27]
and simulated the influence of current on a DW in curved
wires [10]. Here, we apply this code to determine the
current-induced DW velocity using the material parame-
ters of permalloy, i.e., an anisotropy constant of K �
100 J=m3, an exchange constant of A � 1:3�
10�12 J=m, and a saturation magnetization of MS �
800 kA=m, the Gilbert damping parameter � � 0:01, the
degree of nonadiabaticity � � 0:01, and the geometry of
the approximately 1 �m wide wire of Fig. 2. Figure 4
shows the simulation of a double-vortex wall while a
current of density 1:0� 1012 A=m2 is sent through the
wire. The time difference between Figs. 4(a) and 4(b) is
1.0 ns. Taking the right end of the double-vortex wall as a
measure for the motion one obtains a velocity of 110 m=s.
A comparison with the experimental data in Fig. 2 reveals
that the simulated and the measured static domain structure
are consistent [28]. The current-induced DW velocities
determined from simulation and experiment are also in
good agreement. The simulated DW velocity is not homo-
geneous in time and space as DW motion occurs in jumps
from pinning center to pinning center given by the edge
roughness due to the discretization. A strong influence of
the edge roughness of the wire on the DW velocity for the
field-driven case is well known from the literature [16].
Furthermore, inner excitations of DWs are observed under
the influence of the current, e.g., the generation of a vortex-
antivortex pair, which is in turn annihilated under emission
of spin waves (not shown). Thus micromagnetic simula-
tions support the interpretation of the experimental results
and underline the importance of the stochastic nature of
current-driven DW motion [29].

In the following, we focus on the perpendicular motion
of vortex cores observed repeatedly, e.g., in Fig. 2(e)–2(h).

 

FIG. 4. Micromagnetic simulation of the influence of a spin-
polarized current with a current density of 1:0� 1012 A=m2 on a
double-vortex wall in a curved permalloy wire of 1 �m width
and 80 nm thickness. The time difference between (a) and (b) is
1 ns. The right edge of the wall has moved 110 nm.

 

FIG. 3 (color online). Efficiency of DW displacement for 49
pulses of 1.0 ns duration. The current density of the pulses was
increased from 7:5� 1011 A=m2 to 1:0� 1012 A=m2 after pulse
No. 25.
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4 Results

The perpendicular motion of a vortex core was calculated
analytically and by micromagnetic simulation in Ref. [20].
There, the number of vortex cores was reduced by one
from a vortex wall to a transverse wall. The description of
the vortex motion by a restoring force, i.e., the coupling of
vortices via a spring constant, can also be used to describe
the more complex walls of the present experiments. The
vortex polarity p determines to which edge of the wire the
vortex moves. We deduce a perpendicular displacement
y0 of 83� 36 nm of the lower vortex core in Fig. 2 for a
single 1.0 ns long current pulse of density 1:0�
1012 A=m2. If the deduced perpendicular displacement y0

is applicable we can solve Eq. (21) of Ref. [20] and extract
the ratio between the degree of nonadiabaticity � and the
Gilbert damping parameter �

 

�
�
� 1�

�y0

Gvb
c
j
; (1)

where � � 4K3=2

�
���

A
p is the spring constant, Gv � �

2�MSpt
� the

value of the gyrocoupling vector with the gyromagnetic
ratio �, the parameter of the current density bcj �
Pjc�B

eMS�1��2�
, and jc the critical current density that moves

the vortex to the next pinning site. In the present wire the
anisotropy is comparable to the one of an extended film;
i.e., the shape anisotropy is small, justifying the value of
K � 100 J=m3 in agreement with the phase diagram for
DWs in nanowires [30]. Since �2 � 1 we neglect this term
in bcj and obtain � � �0:96� 0:02�� in good agreement
with the experiments of Ref. [17]. This evidences that the
nonadiabatic spin-torque term is important for DW motion.

To exclude Joule heating [18] as a possible cause for
DW motion we calculate the heat deposited by a single
current pulse of 1.0 ns duration and 1:0� 1012 A=m2

current density from the sample geometry, the specific
resistivity, and the heat capacity of permalloy. A tempera-
ture increase of 115 K is calculated which is considerably
lower than the Curie temperature of permalloy (850 K) and
room temperature where the experiments were performed.
In the above estimate the heat flow through the wire is
neglected; i.e., the calculated temperature increase is an
upper limit that is in agreement with the detailed calcula-
tions of Ref. [31] that yield 68 K for our parameters. Thus
we conclude that in the present experiments the motion of
the DW is caused by the spin-transfer torque and is not
much affected by Joule heating.

In conclusion, we have performed soft x-ray microscopy
with high spatial resolution to image the current-induced
motion of vortex-DWs in curved wires. Nanosecond cur-
rent pulses were used to determine a DW velocity of
110 m=s which is in agreement with recent theories and
is comparable to the case of field-driven motion. We found
that the current-driven motion exhibits a statistical distri-
bution like Barkhausen jumps for the field-driven case.
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4.4 Spin-Torque Induced Magnetization Dynamics

4.4.3 Spin-Torque Induced Magnetic Vortex and Antivortex Gyration

Observing the time dependence of magnetic configurations with X-rays is a challenge

since the photon flux of even 3rd generation synchrotron light sources is too low to yield

a enough signal-to-noise ratio in one light flash for an image. There are currently two op-

tions: Either one measures quasi-statically before and after an event to detect the changes

in the magnetic system as was done in the previous experiment. Alternatively, one needs

repeatable processes to perform time-resolved X-ray microscopy. Here one has again two

choices as described in Section 3.2.3: Either to detect in pump-probe mode or in harmonic

excitation mode. We performed pump-probe measurements at the XM-1 beam line 6.1.2

and harmonic excitation measurements at the STXM beam line 11.0.2 at the Advanced

Light Source in Berkeley, CA, USA.

We studied the dynamics of magnetic vortices and antivortices in permalloy thin film

structures since the cylindrical symmetry of the vortices allows for a relatively simple

analytical description. Magnetic vortices form in laterally confined thin films when it is

energetically favorable for the magnetization to point in-plane and parallel to the edges.

In the center the magnetization is forced out-of-plane to avoid large angles between mag-

netic moments that would drastically increase the exchange energy. Antivortices, also

called cross Bloch lines (see Section 2.2.3 and Ref. [36]), form either in cross-tie walls

or when the magnetic thin film is artificially patterned in such a way that the magnetiza-

tion of four domains meet radially in one point (see Fig. 4.12 and Fig. 3 of Ref. [192]).

In both cases, the region with a strong out-of-plane magnetization component is called a

(anti-)vortex core and is only a few nanometers in diameter [193, 194]. The direction of

the magnetization in the core, also called the (anti-)vortex polarization, can only assume

two values p = +1(−1) for the (anti-)vortex core pointing out of (into) the plane (see Fig.

4.12). The direction of the in-plane magnetization with respect to the polarization is called

the chirality c = +1(−1) for counterclockwise (clockwise) in-plane curling of the magne-

tization. Chirality and polarization unambiguously define the (anti-)vortex configuration

as noted by Shibata et al. (see Ref. [195]). Vortices and antivortices can be analytically

described by the same formalism by introducing a third quantity, the skyrmion number

q = n p/2 where n is the winding number.

It has been shown that vortices can be excited to rotate around their equilibrium position

by in-plane magnetic field pulses [196] or in-plane alternating fields [197]. The direc-

tion of gyration is governed by the vortex polarization according to the right-hand rule.

Recently our collaborators from the Max-Planck-Institute for Metal Research in Stuttgart

and the University of Ghent, Belgium, have shown that a combination of alternating fields
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Fig. 4.12: Simulated image of a vortex in a Landau-domain pattern in a permalloy

square. The magnetization in the horizontal direction is displayed as gray contrast.

and field pulses of higher field amplitude can switch the polarization of vortices [64]. This

opened a way of manipulating the vortex polarization. It has been shown that electric cur-

rents of high density can switch the vortex in the same way [198, 65], and micromagnetic

simulations have confirmed these findings [199, 200, 201, 202, 203].

In the following I present the results from experimental, numerical, and analytical investi-

gations of magnetic vortex and antivortex dynamics. At first I show the first time-resolved

detection of the spin-torque driven vortex gyration in permalloy squares that have been

observed at the STXM beam line. This method is very sensitive to the gyration phase

with respect to the excitation. From deviations in the phase we could show that in typical

permalloy thin film structures the Oersted field of the conducting current induces a phase

shift to the gyration even though the field amplitude is rather small (≈ 40 µT for a current

of 1.2× 1011 A/m2). This work has recently been submitted as [P18] but has not been

published yet. It has been accepted for an oral presentation at the 52nd Conference on

Magnetism and Magnetic Materials in Tampa, FL, USA, in November 2007 (see [C24]).
It was also presented at several international conferences, workshops and in invited talks

(see [C11], [C14], [C18], and [I9]). It is printed as a preprint on the following pages.

During the writing of the above manuscript Benjamin Krüger, André Drews, and I de-

veloped a two-dimensional harmonic oscillator model for the analytical description of

field-and current-induced vortex gyration. It has been accepted as [P17] in the Physical

Review B, but has not been printed yet. It is included as a preprint in this thesis as well.

Parallel to the development of the vortex-oscillator model, André Drews, with the help

of Benjamin Krüger and myself, simulated the dynamics of an antivortex excited by field

or current. So far, no one has dynamically observed antivortex motion in experiments.

Therefore there is no accurate description or prediction for its dynamics. André Drews

108



4.4 Spin-Torque Induced Magnetization Dynamics

Fig. 4.13: Chirality-dependent enhancement or suppression of gyration amplitude.

has performed numerous simulations, and together we derived a similar analytical model

as for the vortex, but found also important differences between vortices and antivortices.

Magnetic vortices have integer chirality being either −1 or +1, whereas antivortex chi-

ralities can be non-integer within the interval (−2,2]. A combination of field- and spin-

torque excitation will therefore cause chirality-dependent enhancement or suppression of

gyration amplitude as shown in Fig. 4.13. This study has been submitted as [P19] and

was accepted for oral presentation at the 52nd Conference on Magnetism and Magnetic

Materials in Tampa, FL, USA, in November (see [C23]). It was also presented at an in-

ternational conference and during a poster session of the international summer school of

the Graduiertenkolleg 1286 in Hamburg (see [C18] and [C21], respectively).

Finally, a conference article for the 52nd Conference on Magnetism and Magnetic Materi-

als in Tampa, FL, USA, in November with Benjamin Krüger as first author combines the

analytical models for vortex and antivortex gyration driven by magnetic fields and electric

currents (see [C25]). It has been accepted as [P20] in the Journal of Applied Physics and

was presented during two invited talks (see [I9] and [I11]).
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Direct Observation of Spin-Torque- and Oersted Field-Induced Magnetic Vortex
Gyration with X-ray Microscopy
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Spin-polarized currents used for switching the magnetic state of novel data storage cells are a
promising alternative to magnetic fields generated by nearby currents. A current in a ferromagnet
exerts a torque on the magnetization proportional to the magnetization’s spatial derivative. We
have imaged the influence of alternating high-density currents on the magnetization dynamics of
ferromagnetic vortices via time-resolved X-ray microscopy. Spin-torque induced vortex gyration is
observed in micrometer-sized permalloy squares at current densities between 4.7 · 1010 A/m2 and
1.2 · 1011 A/m2. The phase of the gyration in structures with different chirality were compared
to an analytical model and micromagnetic simulations, considering both alternating spin-polarized
currents and the current’s Oersted fields. This analysis revealed that also effective Oersted fields are
present. These are attributed to inhomogeneous current densities within the thin films. In the 20
nm thick squares the driving force of the effective Oersted field is about forty percent of the driving
force due to spin-torque. As this might be a general feature of sputtered and evaporated thin films,
this finding has implications to magnetic storage devices using spin-torque driven magnetization
switching.

PACS numbers: 68.37.Yz, 72.25.Ba , 75.25.+z, 75.40.Mg, 85.75.-d

The discovery that spin-polarized electrons travelling
through ferromagnets apply a torque on their local mag-
netization [1, 2] opened up a new field of research in solid
state physics that could potentially result in new mag-
netic storage media. Random access memories in which
magnetic layers are aligned parallel or antiparallel with
respect to each other can use this spin-transfer torque
to change the direction of the magnetization and thus
change the stored magnetic information[3, 4]. Also, mag-
netic domain walls, i.e., the interfaces between regions of
same magnetization, can be driven by spin-polarized cur-
rents to store information in bit registers and can even be
used for computation [5, 6]. It is now understood that
the spin-transfer torque acts on inhomogeneities in the
magnetization, e.g., on interfaces between magnetic lay-
ers [2], on domain walls [7, 8], or on magnetic vortices
[9–12].

∗Electronic address: mbolte@physnet.uni-hamburg.de

Vortices form in laterally confined thin films when it
is energetically favorable for the magnetization to point
in-plane and parallel to the edges. In the center the mag-
netization is forced out-of-plane to avoid large angles be-
tween magnetic moments that would drastically increase
the exchange energy. The region with a strong out-of-
plane magnetization component is called a vortex core
and is only a few nanometers in diameter [13, 14]. The
direction of the magnetization in the vortex core, also
called the vortex polarization, can only assume two val-
ues. They are separated by a high energy barrier, hence
ferromagnetic elements could be used for data storage.
To denote the possible vortex configuration, we shall use
the chirality c = +1(−1) for counterclockwise (clockwise)
in-plane curling direction of the magnetization and the
vortex polarization p = +1(−1) for the vortex core point-
ing out of (into) the plane as was defined by Shibata et
al. (see Ref. [9]).

It is known that vortices can be excited to gyrate
around their center position by in-plane magnetic field
pulses [15] or resonantly by alternating fields[16]. The
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direction of gyration is governed by the vortex polariza-
tion according to the right-hand rule (see Fig. 2 of Ref.
[15]). Recently it has been shown that sinusoidal in-plane
field excitation coupled with a short burst of higher field
amplitude can even switch the polarization of the vor-
tices [17] and simulations indicate that very short field
pulses might do the same[18]. This opened a way of ma-
nipulating the vortex polarization.

It was predicted that also electric currents of high den-
sity could excite a vortex in the same way[9] as an exter-
nal magnetic field. However, the experimental verifica-
tion requires careful analysis, as all electric currents are
accompanied by magnetic fields. For perfectly homoge-
neous currents the average magnetic field would cancel
out while inhomogeneous currents result in an additional
field-driven excitation. Generally, a non-uniform resis-
tivity and hence a non-uniform current density along the
perpendicular direction might be expected in thin films.

Spin-torque induced vortex gyration does not depend
on the chirality, but only on the polarization [9, 11]. This
is not the case for field-driven gyration where the phase
of gyration depends not only on the vortex core polariza-
tion, but also on the curling direction of the in-plane mag-
netization around the vortex core. Hence, experimentally
resolving the absolute phase of the gyration and compar-
ing different magnetization configurations is the way to
discriminate between spin-torque driven and field-driven
vortex rotation.

Here we show via time- and phase-resolving X-ray mi-
croscopy that magnetic vortices in confined structures
can be excited to gyration by high-frequency currents of
high density passing directly through the sample. By
observing the phase of the rotation relative to the exci-
tation, we could discriminate between the current’s spin-
torque and its Oersted field contributions to the vortex
motion. We investigated two 2 × 2 µm2 large and 20 nm
thick permalloy (Ni80Fe20) squares. In this geometry
Landau patterns (see Fig. 1(A)) with a single vortex are
energetically favorable at remanence. To excite the struc-
tures with alternating currents, they were contacted by
40 nm thick gold strip lines with an overlap of 150 nm (see
Fig. 1(A) and (B)). Thus the current had to pass through
the ferromagnetic material. The samples were placed in
the scanning transmission X-ray microscope (STXM) of
beam line 11.0.2 at the Advanced Light Source (ALS) in
Berkeley. This instrument offers a high lateral resolution
of about 30 nm, and, by exploiting the pulsed nature of
the synchrotron light, temporal resolution of about 70 ps.
Magnetic sensitivity is obtained by using the X-ray circu-
lar dichroism (XMCD) [19] at the nickel L3-edge. There
the transmitted photon intensity is higher when the mag-
netic moments and polarization are antiparallel than in
the parallel case. The sample plane is set at an angle of
60◦ with respect to the incident beam (see Fig. 1(A))
so that the microscope can detect the in-plane magneti-
zation. From the polarization of the X-rays we identify
the dark (bright) regions in the images to be magnetized
in the negative (positive) x-direction. We can thus un-

FIG. 1: (A) Scheme of the permalloy square contacted by
two gold wires. The sample is tilted by 60◦ relative to the
incident X-ray beam. (B) Optical micrograph of a permalloy
square and its contacts on the Si3N4-membrane (deep brown).
(C) Magnetic contrast of the relaxed permalloy square with a
thickness of 20 nm showing the x-component of the magneti-
zation as black-to-white contrast.

ambiguously determine the chirality of the vortices. An
alternating current with a frequency of 62.5 MHz was
sent through the structures (see Fig. 2(A)). Figures 2(B)
and 2(C) show the time-resolved magnetic contrast of the
different samples (see also movie1.avi and movie2.avi in
the online supporting material). The square in Fig. 2(B)
with the chirality c = +1 was excited with a current den-
sity amplitude j = 1.2 · 1011 A/m2. The vortex performs
a counterclockwise gyration. Therefore, it must have a
positive polarization p = +1. The radius of gyration is
220 nm, i.e., the vortex gyrates at a speed of 87 m/s. The
vortex in Fig. 2(C) was excited with j = 4.7 ·1010 A/m2.
It has a negative chirality c = −1 and also gyrates coun-
terclockwise, i.e., the polarization is positive (p = +1).
The radius of gyration is much smaller, approximately 60
nm, leading to a vortex velocity of 24 m/s. Even though
the two vortices have opposite chiralities, at phase 0◦ of
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FIG. 2: (A) Sampling of the response to an 62.5 MHz excita-
tion with eight different channels. Colors represent different
phases from 0◦ to 315◦ in steps of 45◦. Shown in (B) and
(C) are four channels at 0, 4, 8, and 12 ns corresponding to
phases 0◦, 90◦, 180◦, and 270◦. (B) X-ray images portraying
the magnetization of a 2 × 2 µm2 permalloy square with 20
nm thickness. The vortex of chirality c = +1 and polarization
p = +1 is excited with a current density of j = 1.2·1011 A/m2.
(C) Magnetization of a square having c = −1 and p = +1 ex-
cited with j = 4.7 · 1010 A/m2.

the ac-excitation both vortices are in the upper left quad-
rant. A closer investigation of the gyrations in the two
Landau patterns reveals that at phase 0◦ the c = +1 vor-
tex points more in the positive y–direction (to the top of
the image) while the c = −1 vortex points more in the
negative x–direction (to the left of the image). The phase
difference between the gyration of these vortices is about
45◦. This phase difference is due to a combination of the
chirality neutral spin torque and the chirality sensitive
Oersted field of the current (see differential images in the
online supporting materials). It is clear, however, that
the observed vortex gyrations are mainly caused by spin
torque since a field-driven gyration would have a phase
difference of 180◦ between the gyrations of the two Lan-
dau patterns of Figs. 2(B) and (C).

To better understand the dependence of the phases
on current and field excitation, micromagnetic simula-
tions were performed (for a description of the simula-
tions see online supporting material). An ac-excitation
of a small permalloy square with either spin-polarized
currents jx or magnetic fields Hy was simulated at differ-
ent frequencies. The amplitudes of the excitations were
found to influence only the radius of the gyration but
not its phase. In the simulations the sense of gyration
was governed in both cases by the polarization accord-
ing to the right-hand rule, while its phase with respect
to the ac-excitation differs between spin-transfer torque
and field-excitation, because the latter depends on the
chirality. This is in agreement with previous micromag-
netic simulations[9, 10]. Figure 3 shows schematically
the simulated phases of the vortex gyration as functions

FIG. 3: Expected vortex positions in a square due to the
current’s spin torque (A) and Oersted field (B) when excit-
ing just below resonance. The current flows from the left to
the right. The red arrows depict the sense of rotation of the
vortices according to the right-hand rule and the colored stars
correspond to gyration phases 0◦(red), 90◦(yellow), 180◦(light
blue), and 270◦(violet) (see Fig. 2(A)).

of the vortex chirality and polarization for spin-torque
induced and field-induced gyration (see Fig. 3(A) and
3(B), respectively). Following the ’rigid model’ for mag-
netic vortices in thin films [20, 21], the vortex gyration
due to alternating fields or currents can be described by a
two-dimensional harmonic oscillator [11]. An alternating
magnetic field or an alternating current forces the vor-
tex to oscillate along the direction of the field or current.
The magnetostatic field due to the deviation of the vortex
from its equilibrium position drives the oscillator perpen-
dicular to the direction of the field or current. Since in
our case the current passes through the permalloy square
along the x-direction (see Fig. 1), the Oersted field is
along the y-direction. Thus the equation of motion for
the vortex in the oscillator model reads[11](

X
Y

)
= eiΩt

ω2+(iΩ+Γ)2

×
(

γl
2π cHy

(
−ω
iΩp

)
− bjjx

(
iΩ
pω

))
.

(1)

Here, Ω is the excitation frequency, ω the rotation
frequency of the free vortex, Γ the damping con-
stant proportional to the Gilbert damping α, and
γ = 2.21 · 105 m/As the gyromagnetic ratio for permal-
loy. The constant bj = PµB/(eMs) with the saturation
magnetization Ms and the spin polarization P describes
the coupling between the current density and the mag-
netization. Gilbert damping terms of higher order were
neglected as they are at least one order of magnitude
smaller than the leading terms. We simulated the relax-
ation of excited Landau patterns with the experimental
dimensions and derived a resonance frequency both vor-
tices that is in good agreement with previous calculations
[22]. If the magnetization configuration (p,c) is known Γ
and the ratio Hy/jx are the only variable parameters
in Eqn. (1). In the following it is assumed that Γ and
Hy/jx are the same for both vortices because the permal-
loy squares were prepared from the same thin film. Hy/jx

is found by comparing the relative phase between the vor-
tex gyrations in Fig. (2) to the analytical model. Γ/2π is
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derived by fitting the simulated absolute phases of each
vortex to the experimental phases (see online support-
ing material) and is found to be approximately 10 MHz
for both vortices. According to the model the phase dif-
ference observed in the experiment is due to an Oersted
field exercising a force of about 40% of the one due to
spin-torque.

The origin of the unexpected Oersted field contribution
can be attributed to a thickness dependent resistivity of
thin metal films[23]. Using Eqn. (1) to calculate the
average Oersted field one derives a strength of approxi-
mately 3.0·10−5 T for a current density of 1.2 ·1011A/m2.
Micromagnetic simulations were performed using both
spin-torque and field excitation with the above parame-
ters and yielded 40◦, almost the same phase difference as
in the X-ray microscopy measurements. Experimentally
field-induced vortex gyration has been observed at field
values as low as 5.0·10−4 T. Due to vortex pinning at
surfaces[24] the excitation field apparently needs to be
stronger to get the vortex moving than if it is already
gyrating due to spin torque. Indeed, at slightly lower in-
put powers (jx = 1.1 · 1011A/m2) the excitation reached
a threshold. At some lines of the scanning X-ray micro-
scope image no gyration was observed while at others the
vortex gyrated at approximately the same radius as with
the jx = 1.2 · 1011A/m2 current.

The existence of Oersted fields due to inhomogeneous
current densities is of a general nature and will not be
limited to our samples. The observations of the phase of
magnetic vortex gyration were possible due to its periodic
motion in a confined structure. The dynamics of other
magnetic objects, e.g., vortex domain walls, are more
difficult to record, but are also subject to Oersted fields
from a spin-polarized current. We feel that the Oersted

fields of an inhomogeneous current density have not been
adequately taken into account in previous measurements
and that one must be careful to rule out field-driven or
field-assisted magnetization dynamics in spin-torque ex-
periments. As seen from our observations, one cannot
safely assume that the change of a magnetic structure is
due to a traversing spin-polarized current alone.

With the help of time-resolved X-ray microscopy we
have observed magnetic vortex gyration driven by spin-
polarized currents that can be described by a har-
monic oscillator model. We have also recognized a non-
negligible contribution of the current’s Oersted field even
though the current was transmitted directly through the
magnetic layer. In experiments, one needs to resolve the
phase and the sense of gyration to separate the contribu-
tion of the current’s spin-torque to magnetic vortex gy-
rations from the current’s Oersted field. Time-resolved
X-ray microscopy has proven to be an excellent method
for detecting even small contributions from Oersted fields
to the gyration of vortices. These observations are rel-
evant to technological applications since spin-polarized
currents that switch the polarization of vortices have
been suggested for data storage devices [12].
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Experimental details

The time and space resolved response of the sam-
ple magnetization was imaged by a stroboscopic Scan-
ning Transmission X-ray Microscope (STXM) at the Ad-
vanced Light Source (ALS, BL 11.0.2). The monochro-
matic, circularly polarized X-rays from the undulator
beam line are focused to a spot of 30 nm onto the sam-
ple with the help of a Fresnel zone plate. The sample is
scanned in the xy-plane with a high resolution scanning
stage under interferometric control and the transmitted
intensity is recorded. The photon energy was set at the
Ni L3-absorption edge (852.7 eV), where X-ray circular
dichroism (XMCD) [1] gives a high magnetic contrast.

In this stroboscopic technique, the temporal resolution
(70 ps) is given by the width of the electron bunches that
produce the photon flashes. In the standard multi-bunch
operation mode of the synchrotron used here, the flash
repetition rate is 500 MHz. To resolve the individual
flashes, a fast avalanche photodiode was used as a pho-
ton detector. With fast data acquisition electronics, the
intensity of the individual bunches could be recorded.
An RF signal generator was synchronized with the syn-
chrotron RF main oscillator to deliver an alternating cur-
rent to the sample. An excitation frequency 500 MHz / 8
= 62.5 MHz was selected. This frequency is close to the
expected resonance frequency of the structure and allows
us to record the response of the magnetization at eight
different phases simultaneously in eight different chan-
nels. At the ALS, the synchrotron is not filled uniformly
with electrons, but contains a larger electron bunch sur-
rounded by a gap. This bunch produces a brighter flash
and is used as a reference marker to align the excitation
signal with the data acquisition. The absolute phase re-
lation between the eight recorded images and the excita-
tion current was made by sending a short pulse through
the detector electronics. By aligning its arrival to the
pulse produced by the photons of the reference marker
we achieved an accuracy in the phases of approximately
4◦.

Microstructured permalloy squares were prepared on
200 nm thin Si3N4 membranes for minimal absorp-
tion of the X-rays. The squares were prepared onto
the membranes by electron-beam lithography, electron-
beam evaporation, and lift-off processing. The permalloy
squares were contacted by 40 nm thick gold strip-lines.
The overlap of the gold contacts with the permalloy was
150 nm wide (see Fig. 1) ensuring the current to flow
through the ferromagnet.

Differential images

The differential images yield the phase and the ampli-
tude of the gyration with greater accuracy than the ab-
solute images. They were calculated by subtracting an

image taken at 180◦ excitation phase from the 0◦ phase
image, the 225◦ image from the 45◦ image, and so forth.
A white (black) cross in the differential images means
that the vortex is positioned opposite to the magnetic
domain represented by bright (dark) contrast. For ex-
ample, the white contrast in phases 270◦ to 45◦ in Fig.
1 (see Fig. 2(B) of the main article) represent the vortex
being in the upper quadrants, as the domain with bright
XMCD contrast is shown at the bottom of the image.
Likewise, in Fig. 2 (see Fig. 2(C) of the main article) the
black contrast in phases 225◦ to 0◦ represent the vortex
being in the upper quadrants as the chirality and there-
fore the contrast is inversed. For detailed information on
how to calculate the vortex position from differential im-
ages see Ref. [2]. The phases at which maximum white
(black) contrast in the differential images occurs yields
the estimate for the gyration amplitude. Since the vor-
tices gyrate in the same direction, comparing Fig. 1 and
2 yields the phase difference of ≈ 45◦ mentioned in the
main article.

FIG. 1: Differential images of a 2 × 2 µm2 large and 20 nm
thick permalloy square excited by a current of j0 = 1.2 · 1011

A/m2 at 62.5 MHz. Compare Fig. 2(B) of the main article.

FIG. 2: Differential images of a 2 × 2 µm2 large and 20 nm
thick permalloy square excited by a current of j0 = 4.7 · 1010

A/m2 at 62.5 MHz. Compare Fig. 2(C) of the main article.
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Micromagnetic simulation parameters

Simulations were performed to investigate the phase
between vortex core motion and exciting magnetic field
or spin current, and the results are plotted in Fig. 3
of the main article. The simulations were done below
resonance, at resonance, and above resonance for all chi-
ralities and polarizations. For this a version of the Object
Oriented Micromagnetic Framework OOMMF extended
by additional spin-torque terms [3] was used. A size of
the vortex element of 200×200×20 nm3 was chosen. We
assumed a saturation magnetization of Ms = 8·105 A/m,
an exchange constant of A = 1.3 · 10−11 J/m, a Gilbert
damping of α = 0.01, and the ration between spin-flip
and spin-relaxation time ξ = α [4]. The amplitude of the
electrical current was set to P · j = 1 · 1011A/m and the
amplitude of the magnetic field to H = 50 mT. Simula-
tion cells of size 2×2× 20 nm3 was chosen. The resonance
frequency ωr of the vortex element was derived from a
fit to the relaxed vortex core motion by the equation of
motion of a damped harmonic oscillator [5].

Harmonic oscillator model

The use of one resonance frequency for both vortices is
justified, even though it is known that pinning sites can
cause the resonance frequency to differ by a factor of two
or more [6]. As it is stated in Ref. [6], the gyrotropic
frequency decreases abruptly to the value expected by
the magnetostatic potential, i.e., the resonance frequency
for perfect vortex structures, when the radius of the gy-
rotropic orbit exceeds the range of the pinning centers
(. 25 nm). Since our gyration amplitude is many times
the critical value, pinning does not influence the reso-
nance frequency in our experiments.

The magnitude of the Oersted field was estimated in
the following way: Starting with the harmonic oscillator
model for magnetic vortices (see Ref. [5]) we discarded
the terms proportional to Γ/ω to arrive at Eqn.(1) of the
present article since Γ � ω. The position of the vortex
is then given by(

X
Y

)
= − eiΩt

ω2 + (iΩ + Γ)2

(
H̃ω + ij̃Ω
j̃ωp − iH̃Ωp

)
(1)

with H̃ = γHylc/(2π) and j̃ = bjjx. Equation (1) de-
pends on the chirality of the vortex. One can get an
expression which is independent of the chirality by ro-
tating the coordinate system of each vortex individually
by

τ = −arctan

(
H̃p

j̃

)
= −cp arctan

(
γHyl

2πbjjx

)
. (2)

The vortex position then is

(
X ′

Y ′

)
= − eiΩt

ω2 + (iΩ + Γ)2

√
H̃2 + j̃2

(
iΩ
ωp

)
. (3)

Due to the different chirality of the vortices, the angles
τ+ (c = +1) and τ− (c = −1) have different signs. The
phase difference φ observed in the experiment is set equal
to the difference between the rotating angles

τ− − τ+ = 2 arctan
(

γHyl

2πbjjx

)
≡ φ ≈ π

4
. (4)

Assuming a spin polarization of P = 0.5 this leads to
a ratio Hy/jx ≈ 0.2 nm which corresponds to the field
strengths stated in the main article.

We performed micromagnetic simulations with simul-
taneous current- and field-excitation. We used the same
sample dimensions as in the experiment. The current-
and field values were determined as described above. We
found that the amplitudes and the phases of the gyra-
tions agree very well with the experiment.

Comparison of Eqn. (3) with Eqn. (1) shows that in
the rotated system the vortex is driven with an effective

current j̃eff =
√

H̃2 + j̃2. The position at phase zero is
determined only by Ω, ω, and Γ, leading to the fit for
the damping constant Γ. When rotating the coordinate
system back and applying the fitted parameters, we find
that for a sample thickness slightly smaller than in the
experiment (17.3 nm) and a Gilbert damping of α = 0.01
the model leads to a gyration amplitude of ≈ 160 nm for
an excitation with P · j = 6 · 1010A/m. The amplitudes
and the phases are almost identical to those observed in
the simulation and in the experimental data.
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In experiments the distinction between spin-torque and Oersted-field driven magnetization dy-
namics is still an open problem. Here, the gyroscopic motion of current- and field-driven magnetic
vortices in small thin-film elements is investigated by analytical calculations and by numerical sim-
ulations. It is found that for small harmonic excitations the vortex core performs an elliptical
rotation around its equilibrium position. The global phase of the rotation and the ratio between
the semi-axes are determined by the frequency and the amplitude of the Oersted field and the spin
torque.

PACS numbers: 75.60.Ch, 72.25.Ba

Recently it has been found that a spin-polarized cur-
rent flowing through a magnetic sample interacts with
the magnetization and exerts a torque on the local mag-
netization. [1, 2] A promising system for the investiga-
tion of the spin-torque effect is a vortex in a micro- or
nanostructured magnetic thin-film element. Vortices are
formed when the in-plane magnetization curls around a
center region. In this few nanometer large center re-
gion [3], called the vortex core, the magnetization turns
out-of-plane to minimize the exchange energy. [4] It is
known that these vortices precess around their equilib-
rium position when excited by magnetic field pulses [5, 6]
and it was predicted that spin-polarized electric currents
can do the same. [7] The spacial restriction of the vortex
core as well as its periodic motion around its ground state
yield an especially accessible system for space- and time-
resolved measurements with scanning probe and time-
integrative techniques such as soft X-ray microscopy or
X-ray photoemission electron microscopy. [5, 6, 8–10]
Magnetic vortices also occur in vortex domain walls. The
motion of such walls has recently been investigated in-
tensively. [11, 12] Understanding the dynamics of con-
fined vortices can give deeper insight in the mechanism
of vortex-wall motion. [13] An in-plane Oersted field ac-
companying the current flow also influences the motion
of the vortex core. For the interpretation of experimental
data it is crucial to distinguish between the influence of
the spin torque and of the Oersted field. [14]

In this Letter we investigate the current- and field-
driven gyroscopic motion of magnetic vortices in square
thin-film elements of size l and thickness t as shown in
Fig. 1 and present a method to distinguish between spin
torque and Oersted field driven magnetization dynam-
ics. In the presence of a spin-polarized current the time
evolution of the magnetization is given by the extended

(a)

l

X

(b)

FIG. 1: (a) Scheme of the magnetization in a square magnetic
thin-film element with a vortex that is deflected to the right.
(b) Magnetization of a vortex in its static ground state. The
height denotes the z-component while the gray scale corre-
sponds to the direction of the in-plane magnetization.

Landau-Lifshitz-Gilbert equation

d ~M

dt
=− γ ~M × ~Heff +

α

Ms

~M ×
d ~M

dt

−
bj

M2
s

~M ×

(

~M × (~j · ~∇) ~M
)

− ξ
bj

Ms

~M × (~j · ~∇) ~M

(1)

with the coupling constant bj = PµB/[eMs(1 + ξ2)] be-
tween the current and the magnetization where P is the
spin polarization, MS the saturation magnetization, and
ξ the degree of non-adiabaticity. [15] If the vortex keeps
its static structure, its motion with the velocity ~v can
be described using the Thiele equation. [16] This equa-
tion was expanded by Nakatani et al. [17] to include the
action of a spin-polarized current flowing in the sample,

~F + ~G× (~v + bj
~j) + D(α~v + ξbj

~j) = 0. (2)

Denoting the out-of-plane angle of the magnetization
with θ and the angle of the in-plane magnetization with
φ, the force due to the external and the stray field is

~F = −µ0

∫

dV

[

(~∇θ)
∂

∂θ
+ (~∇φ)

∂

∂φ

]

( ~Hsz ·
~M). (3)
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The gyrovector

~G = −
Msµ0

γ

∫

dV sin(θ)(~∇θ × ~∇φ)

= −
2πMsµ0tp

γ
~ez = G0~ez,

(4)

indicates the axis of precession and points out-of-plane.
The dissipation tensor is given by

D = −
Msµ0

γ

∫

dV (~∇θ~∇θ + sin2(θ)~∇φ~∇φ). (5)

It is diagonal with

Dxx = Dyy = D0 ≈ −
πMsµ0t ln(l/a)

γ
, Dzz = 0. (6)

The constant a is the lower bound of the integration. It
is in the order of magnitude of the radius of the vortex
core. [3, 13, 18, 19] A polarization p of +1 (−1) denotes
that the magnetization in the vortex core is parallel (an-
tiparallel) to the z-axis. The velocity of the vortex core
is in-plane and hence perpendicular to the gyrovector.
Thus Eq. (2) can be rewritten as

~G× ~F −G2
0(~v + bj

~j) + D0
~G× (α~v + ξbj

~j) = 0. (7)

By calculating ~G×~v from Eq. (7) and inserting the result
in Eq. (2) we can derive the velocity

~v =
~G× ~F −D0α~F − (G2

0 + D2
0αξ)bj

~j + bjD0
~G×~j(ξ − α)

G2
0 + D2

0α
2

(8)
of the vortex core. As for any square-symmetric confining
potential, the stray-field energy for small deflections can
be modeled as a parabolic potential

Es =
1

2
mω2

r(X2 + Y 2) (9)

with the coordinates X and Y of the vortex core (see
Fig. 1a).

In the following a spacially homogeneous current in x-
direction is investigated. Due to possible inhomogeneities
in real samples the current flow may vary in the out-of-
plane direction. This results in an in-plane Oersted field
which is perpendicular to the direction of the current
flow. In the following this Oersted field is accounted for
by a homogeneous magnetic field in y-direction. Both
driving forces may depend on time. To estimate the Zee-
man energy due to the Oersted field H , the magnetiza-
tion pattern is divided into four triangles (see Fig. 1a).
Assuming that the magnetization is uniform in each of
these triangles the total Zeeman energy is given by

Ez =
µ0MsHltc

2

[(

l

2
+ X

)

−

(

l

2
−X

)]

, (10)

with the chirality c of the vortex. A chirality of +1
(−1) denotes a counterclockwise (clockwise) curling of
the magnetization around the vortex core. We will
see that this simple approximation describes the field-
induced vortex motion sufficiently well. In this case the
force is given by

~F = −~∇(Es+Ez) = −µ0MsHltc~ex−mω2
rX~ex−mω2

rY ~ey.
(11)

Inserting Eq. (11) in Eq. (8) yields the equation of mo-
tion for the vortex. In the absence of current and field
the excited vortex performs an exponentially damped spi-
ral rotation around its equilibrium position with its free
frequency

ω = −
pG0mω2

r

G2
0 + D2

0α
2

(12)

and the damping constant

Γ = −
D0αmω2

r

G2
0 + D2

0α
2
. (13)

From Eqs. (12) and (13) one easily obtains that

D0α =
ΓpG0

ω
. (14)

For thin-film systems (t/l . 0.1) the resonance frequency
of a vortex is proportional to the inverse lateral dimension
1/l. [20] Here, we obtain from Eq. (14) that the damping
constant Γ also has a characteristic length dependence,
Γ ∝ ln(l/a)/l. Substituting D0α using Eq. (14) the equa-
tion of motion of the vortex can be written as
(

Ẋ

Ẏ

)

=

(

−Γ −pω
pω −Γ

)(

X
Y

)

+

(

pωΓ

ω2+Γ2

µ0MsHltc
G0

− bjj −
Γ

2

ω2+Γ2

ξ−α
α

bjj

−
ω2

ω2+Γ2

µ0MsHltc
G0

+ pωΓ

ω2+Γ2

ξ−α
α

bjj

)

.

(15)

In the following we assume harmonic excitations, i.e., the
magnetic field and the electrical current are of the form
H(t) = H0e

iΩt and j(t) = j0e
iΩt. The magnetic (Oer-

sted) field and the electrical current are in phase. Assum-
ing that the squared Gilbert damping is small (α2 ≪ 1),
the damping constant of the vortex is small compared to
its frequency (Γ2 ≪ ω2). Then Eq. (15) has the solution

(

X
Y

)

= A

(

i
p

)

e−Γt+iωt + B

(

−i
p

)

e−Γt−iωt

−
eiΩt

ω2 + (iΩ + Γ)2

×





(

H̃ + Γ

ω
ξ
α
j̃
)

ω +
(

Γ

ω
H̃ + j̃

)

iΩ

j̃ωp −

(

H̃ + Γ

ω
ξ−α

α
j̃
)

iΩp



 ,

(16)

with H̃ = γH0lc/(2π) and j̃ = bjj0. The first two terms
with prefactors A and B are exponentially damped and
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FIG. 2: (Color Online) Dependence of the frequency ω and
the damping constant Γ on the length l for various thicknesses
t of the system. The symbols denote numerical results while
the lines are fits with the analytical results.

depend on the starting configuration. Independent of
the source of excitation, i.e., field or current, the sense
of rotation of the vortex is given by its polarization, i.e.,
p = +1 (p = −1) denotes a counterclockwise (clockwise)
rotation of the vortex core. Changing the sign of the
chirality has the same effect as turning the magnetic field
by 180◦. Similar to the motion of magnetic domain walls
in thin nanowires [21] the vortex is driven by the current
and the magnetic field as well as by their time derivatives.

At resonance the amplitude of the vortex core displace-
ment in x- and y-direction is the same and the vortex
performs a circular rotation. A vortex which is excited
with a non-resonant frequency has an elliptic trajectory.
The ratio between the semi-axes is given by the ratio be-
tween the frequency of the excitation and the resonance
frequency.

To test the applicability of the approximations leading
to the analytical result in Eq. (16) we performed mi-
cromagnetic simulations for magnetic thin-film elements
with different lengths, thicknesses, polarizations, and chi-
ralities. The material parameters of permalloy are used,
i.e., an exchange constant of A = 13 · 10−12 J/m and
a saturation magnetization of Ms = 8 · 105 A/m. For
the Gilbert damping we use a value of α = 0.01 which
is in the regime as found by recent experiments. [22–24]
The degree of non-adiabaticity ξ is chosen to be equal to
α. [11, 25]

For the micromagnetic simulations we extended the
implementation of the Landau-Lifshitz-Gilbert equation
in the Object Oriented Micro Magnetic Framework
(OOMMF) by the additional current-dependent terms of
Eq. (1). [21, 26] The simulation cells are 2 nm in x- and
y-direction which is well below the exchange length of
permalloy. One cell of thickness t was used in z-direction.
As in the analytical model we substitute the Oersted field
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FIG. 3: (Color Online) Amplitude of the (a) current-driven
and (b) field-driven vortex oscillation in x-direction (solid red
line, pluses) and y-direction (dashed blue line, crosses) for a
spin-polarized current density of jP = 2.5 · 1010 A/m2 and
a field of H = 250 A/m. The insets show the phases be-
tween the maximum of the applied current or field and the
core displacement in x-direction (solid red line, pluses) and
y-direction (dashed blue line, crosses). The symbols denote
numerical results while the lines are derived from the analyt-
ical expression in Eq. (16).

by a homogeneous magnetic field.
At first the four ground states with c ± 1 and p ± 1

are calculated for each l and t. The ground states are
then excited by a short current pulse. The frequency
ω and the damping constant Γ are obtained by fitting
the subsequent free oscillation with the first two terms
in Eq. (16). Results are presented in Fig. 2 and exhibit
a good agreement between the analytical model and the
micromagnetic simulations. [27]

For the driven oscillation we choose a magnetic film
element with length l = 200 nm and thickness t =
20 nm. This system size allows for reasonable com-
puting time. The magnetization is excited with har-
monic currents with a spin-polarized current density
jP = 2.5 · 1010 A/m2 in x-direction. The field excitation
was performed with a harmonic field of H = 250 A/m
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FIG. 4: (Color Online) Analytically calculated phase between
the maximum current or magnetic field and the x-deflection
of the vortex core for a 200 nm x 200 nm x 20 nm permalloy
square excited with a frequency of Ω = 4.8 GHz (above the
resonance frequency of ω = 4.4 GHz). The inset shows a
section of the sample with the simulated trajectories of the
vortex core excited with i) (solid red line) a spin-polarized
current density with an amplitude of jP = 1.2 · 1011 A/m2

and ii) (dashed blue line) a magnetic field with an amplitude
of H = 1000 A/m. Points denote the position of the vortex
at maximum current (i) and magnetic field (ii), respectively.

in y-direction. The amplitudes and the phases of the
oscillation in x- and y-direction of a vortex with posi-
tive polarization and chirality are depicted in Fig. 3. In
the current-driven oscillation an excellent accordance be-
tween analytical calculations and numerical simulations
is found. In the field-driven case the amplitudes of the
analytical solution are smaller than the amplitudes ob-
tained from the micromagnetic simulations. These devi-
ations are caused by the differences between the approx-
imate magnetization depicted in Fig. 1 and the exact
state. The phases between the maximum of the excit-
ing magnetic field and the maximum deflection in x- and
y-direction agree very well. Vortices with other polar-
ization and chirality (not shown) yield the same accor-
dance. [28]

From Eq. (16) one can see that the current and field
induced forces on the vortex are of the same form. For
experiments it is important to separate the Oersted-field
and the spin-torque driven case. We describe the ratio
between the field and current-induced forces on the vor-
tex by tan ζ = FOe/Fst, i.e., a mixing angle of ζ = 0 and
ζ = ±π/2 denote the fully spin-torque driven and the
fully field-driven case, respectively. There are two pos-
sibilities to determine the ratio of both forces. On the
one hand for non-resonant excitations the trajectory of
the vortex core is elliptical as illustrated in Fig. 4. Ac-
cording to Eq. (16) the direction of the major axis of the
ellipse is determined by ζ. The amplitude of the vortex
motion decreases very fast when the excitation frequency

deviates from resonance, i.e., for experimental observa-
tion very high current densities with frequencies close to
resonance are needed. On the other hand the excitation
mechanisms can be distinguished using the phase of the
vortex deflection. [14] As indicated by the dots in Fig. 4
the position of the vortex at maximum current depends
on ζ, which can be determined from Eq. (16). The latter
method is also applicable with excitations at resonance
frequency.

In conclusion we derived an analytical expression for
the current- and field-driven trajectory of a vortex in
thin-film elements. The analytical result is compared
to micromagnetic simulations. The accordance between
both approaches is very good. The analytical expression
enables us to determine the ratio between spin torque
and Oersted field driven motion.
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[21] B. Krüger et al., Phys. Rev. B 75, 054421 (2007).
[22] J. Nibarger et al., Appl. Phys. Lett. 82, 2112 (2003).
[23] M. Schneider et al., Appl. Phys. Lett. 87, 072509 (2005).
[24] Z. Liu et al., Phys. Rev. Lett. 98, 087201 (2007).
[25] M. Hayashi et al., Phys. Rev. Lett. 96, 197207 (2006).
[26] OOMMF User’s Guide, Version 1.0 M.J. Donahue

and D.G. Porter Interagency Report NISTIR 6376, Na-
tional Institute of Standards and Technology, Gaithers-
burg, MD (Sept 1999) (http://math.nist.gov/oommf/).

[27] Note: a is a fit parameter. The values used are 8.85 nm,
11.66 nm, and 13.59 nm for film thicknesses of 10 nm,
20 nm, and 30 nm, respectively.

[28] During the preparation of this manuscript a publication
of Yamada et al. [29] came to our attention that con-

5

tains first steps towards the inclusion of spin-polarized
currents into the dynamics of vortices, however without
consideration of the phase and the excentricity of the

vortex motion.
[29] K. Yamada et al., Nature Materials 6, 269 (2007).

119



4 Results

Influence of chirality on the dynamics of current- and field-driven magnetic

antivortices
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Antivortices in ferromagnetic thin-film elements are in-plane magnetization configurations with a
core pointing perpendicular to the plane. We find, that antivortices gyrate on elliptical orbits when
excited by an alternating magnetic field or by a spin current. Their sense of gyration and the phase
between high-frequency excitation and gyration are numerically investigated. Simultaneous current-
and Oersted field-excitation for chiralities c = 0 and c = 2 can lead to a maximum enhancement
or to an entire suppression of the amplitude of the antivortex core gyration, which is not found in
magnetic vortices. This variation of the deflection of the antivortex core can be used to distinguish
between spin torque and Oersted-field excitation in experiments.

PACS numbers: 75.60.Ch, 72.25.Ba, 76.50.+g

Magnetic vortices and antivortices exist in ferromag-
netic thin-film elements. Due to the interplay of de-
magnetization and exchange energy the magnetization
is forced out-of plane to form a core in the center. The
orientation of the core, denoted as the polarization p,
is highly interesting for technical applications, e.g., mag-
netic memory devices, as it can be binary-coded1–3. Mag-
netic vortices have been studied intensively in the last
years. It has been shown, that when exciting a vortex by
a magnetic field or by spin torque the core precesses4–6

around its equilibrium position. The stray field exerts
a force on the core, which is similar to that of a two-
dimensional damped harmonic oscillator7. Hitherto the
magnetic antivortex has not been studied so intensively.
Antivortices appear, e.g., in clover shaped samples or
cross-tie walls8. As illustrated in Fig. 1 their in-plane
magnetization shows a twofold rotational symmetry dif-
ferent to the continuous symmetry of a vortex state. Due
to their different in-plane configuration antivortex dy-
namics differs from vortex dynamics. An understanding
of the dynamics of both, antivortex and vortex, is cru-
cial for the description of vortex-antivortex creation and
annihilation. These processes have recently received a
lot of attention as they are predominant in cross-tie wall
motion or vortex core switching9,10.
Here we investigate the dynamical characteristics of the
motion of antivortex cores, i.e., sense, phase, and ampli-
tude of gyration. We then compare the antivortex dy-
namics to vortex dynamics and develop a notation that
describes both. We show that generally the skyrmion
number determines the sense of gyration. The chirality
of the antivortex plays a role for the phase between excit-
ing field and antivortex core position only for excitation
with magnetic fields.
To classify vortices and antivortices the winding num-
ber n and the chirality c are defined by the relation11

φ = nβ+cπ

2
between the angle of the local magnetization

φ and the angle in real space β with respect to the center
of the (anti-)vortex core, as shown in Fig. 1. We assume

that φ and β follow the mathematical sense of rotation.
The chirality c corresponds to a constant phase between
φ and β. Both, vortices with the winding number n = 1
and antivortices with the winding number n = −1 exhibit
chiralities c of real numbers in the intervall (−2, 2]. In
standard geometries such as discs or squares the vortex
state solely possesses the chiralities c = 1 and c = −1.
The chirality of an antivortex can be altered by rota-
tions of the whole sample. Integer chiralities for both
topological objects are depicted in Fig. 1. The winding

(a) (b)

(c) (d)

(e) ( f )

β
y

x 0

/2

0Φ

/2π

π

π

π

3 /2π

Mx
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3 /2π

FIG. 1: Magnetic configurations of vortices with the winding
number n = 1 and the chiralities (a) c = −1, (b) c = 1 and of
antivortices with the winding number n = −1 and the integer
chiralities (c) c = 1, (d) c = −1, (e) c = 2, and (f) c = 0.
Black arrows illustrate the local magnetization. The black
round arrow shows the angle in real space β. Dotted round
arrows demonstrate the angle of the local magnetization as
defined by φ = nβ + cπ

2
, the black line at the dotted round

arrows indicates the angle φ = 0.
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4.4 Spin-Torque Induced Magnetization Dynamics

(a) (b)

200 nm 500 nm

FIG. 2: Size and shape of (a) the vortex and (b) the antivortex
sample.

number and the skyrmion number12 q = n · p/2 cannot
be transformed by continuous operations such as rota-
tions, hence both are topological charges13,14. Here, the
skyrmion number is used to describe the sense of gyra-
tion of antivortices and vortices.
To simulate magnetic-field induced antivortex dynamics
the OOMMF15 code sped up by Runge-Kutta algorithms
was used. The spin-torque effect was implemented using
the Landau-Lifshitz-Gilbert equation extended by Zhang
and Li16,17,

dM

dt
=− γM ×

(

Heff +
α

MS

M ×Heff

)

− (1 + αξ)
bj

M2
s

M × (M × (j · ∇)M)

− (ξ − α)
bj

Ms

M × (j · ∇)M ,

(1)

where γ is the gyromagnetic ratio, α the Gilbert damp-
ing, ξ the ratio between spin flip and exchange relaxation
time, and bj the coupling constant between local current
and magnetization. We simulated the excitation of a
vortex in a 200 × 200 × 20 nm3 permalloy square and
an antivortex in a 500 × 500 × 40 nm3 clover-shaped
sample, as shown in Fig. 2. An external alternating
magnetic field is applied in y-direction of amplitude
H = 70 mT for the antivortex sample and H = 50 mT
for the vortex sample. Different thicknesses of t = 20 nm
and t = 40 nm for the vortex and antivortex sample were
chosen in order to obtain similar eigenfrequencies for the
two geometries. Current excitation of both structures
was performed with a spin-polarized alternating current
of amplitude j · P = 1 · 1011 A/m

2
in x-direction. We

assume a saturation magnetization Ms = 8.6 · 105 A/m,
an exchange constant A = 1.3 · 10−11 J/m, a Gilbert
damping parameter α = 0.01, and a ratio between spin
flip and exchange relaxation time ξ = 0.9α18,19. A
cell size of 5 × 5 × 20 nm3 for the vortex and a cell
size of 5 × 5 × 40 nm3 for the antivortex sample was
chosen. Thus the lateral cell size is below the exchange
length of permalloy of lex =

√

2A/µ0M2
s ≈ 5.3 nm. The

(b)
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FIG. 3: Spatially resolved simulations of the current-induced
(anti-)vortex core dynamics with the skyrmion number q =
−1/2 and the chirality c = 1. The antivortex core and the
vortex core were excited in (a) and (b) below resonance in (c)
and (d) at resonance, and in (e) and (f) far above resonance.
A scheme of the core’s trajectory is shown on the right.

eigenfrequencies of both samples were determined by
fitting the solution of a damped harmonic oscillator to
the free relaxation of the (anti-)vortex cores yielding
a free frequency of ωV /2π = 744 MHz for the vortex
and ωAV /2π = 759 MHz for the antivortex. Because
the frequency of the free oscillation is much larger
than the damping (ω2

f � Γ2), the resonance frequency

ωr =
√

ω2
f + Γ2 is approximately equal to the free

frequency ωf . To compare the phases of the core
dynamics, zero of the time scale t = 0 is defined at
the maximum of the harmonic excitations. Accordingly
current and magnetic field both are cosine functions,
i.e. A(t) = A0 cos(ωt). Both samples were excited
below, at, and above resonance for all integer chiralities
and polarizations. Exemplary results of the simulated
current-induced motion of antivortex cores (polarization
p = 1), and vortex cores (polarization p = −1) with
the same skyrmion number q = 1/2 are presented
in Fig. 3. The position of the current-driven vortex
core excited quasistatically at Ω0/2π = 398 MHz, at
resonance Ωr/2π = 744 MHz, and above resonance
Ω∞/2π = 1034 MHz is displayed in Fig. 3(b), (d), (f).
The core moves on elliptical orbits. The semi-major axis
of the ellipse at frequency Ω0 points into y-direction,
at resonance Ωr the trajectory is a circle, and at the
frequency Ω∞ the semi-major axis of the ellipse points
into the x-direction. Between the frequencies Ω0 in
Fig. 3(b) and Ω∞ in Fig. 3(f) the angle of the core’s
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FIG. 4: (Color online) (a) Position of a current- and (b) a
field-driven vortex core excited quasistatically Ω0, at reso-
nance Ωr, and far above resonance Ω∞ for all polarizations
and integer chiralities at t = 0. The magnetic field is applied
in y-direction, the spin current in x-direction. (c) Position
of a current- and (d) of a field-driven antivortex core. The
black arrows illustrate the trajectory of the (anti-)vortex core
motion at the resonance frequency Ωr.

position shifts by π. The antivortex core excited by
an electrical current at frequencies Ω0/2π = 398 MHz,
Ωr/2π = 759 MHz, and Ω∞/2π = 1034 MHz in Fig. 3(a),
(c), (e) shows the same elliptical trajectory and the
same shift of the angle of the core’s position between
Ω0 and Ω∞. Hence, antivortices and vortices possessing
equal skyrmion numbers show similar dynamics. For all
polarizations and chiralities the senses of gyration and
the phases between excitation and the vortex and the
antivortex cores have been derived from simulations.
The results are summarized in Fig 4. The simulated
vortex dynamics shows, that the sense of gyration
of the vortex core follows the right-hand rule, i.e., a
positive polarization yields a gyration in mathematically
positive direction. The gyration of the antivortex follows
the left-hand rule, i.e, a positive polarization yields a
negative sense of gyration of its core. In general two
times the skyrmion number is equal to the mathematical
sense of rotation, i.e., 2q = 1 and 2q = −1 denote a
counterclockwise and clockwise gyration, respectively.

It is known, that the model of a harmonic oscilla-

(a)H (c)(b)

Ω
r

Ω
∞

Ω
0

j (e)

Ω
∞

Ωr

Ω0
(d)

(a)

FIG. 5: Phenomenological consideration of the motion of an
antivortex core. (a) Scheme of an antivortex with the chi-
rality c = 2 and the polarization p = 1. (b) Excitation
with a magnetic field in y-direction and (d) with a current
in x-direction. (c) Frequency-dependent change of the initial
phases for magnetic-field excitation and (e) for spin-polarized
current excitation.

tor can analytically describe the motion of a vortex
core and its phase with respect to the excitation7. An-
tivortices and vortices with the same skyrmion number
show the same dynamical behavior, as illustrated in
Fig. 3 and Fig. 4. Hence, the harmonic oscillator model
can also describe the antivortex dynamics. Considering
the susceptibility of a driven harmonic oscillator and
the position of the (anti-)vortex cores for the three
frequencies Ω0, Ωr, and Ω∞, the phase ζ between the
current and the x-deflection of the (anti-)vortex core
motion at all frequencies is

ζ(Ω, ωr) = −e
2qi

[

arctan

(

ω
2
r
−Ω

2

2ΓΩ

)]

. (2)

From this it follows, that electrical currents excite an-
tivortices of different chiralities with the same phase.
When exciting with an alternating magnetic field the
phase of the (anti-)vortex dynamics is

ζ(Ω, ωr) = 2qe
2qi

[

arctan

(

ω
2
r
−Ω

2

2ΓΩ

)]

+ π

2
ci

. (3)

For magnetic-field excitation the phase of the position of
the core at time t = 0 depends on the chirality. The phase
ζ is increased by π/2 when the chirality is increased by 1.

The dynamics of an antivortex core can be under-
stood phenomenologically. Let us consider an antivortex
with the chirality c = 2 and the polarization p = 1
excited in y-direction by a magnetic field and in x-
direction by a current as illustrated in Fig. 5. In case
of a quasi-static magnetic-field the domain, which is
aligned parallel to the field, grows as shown in Fig. 5(b).
The current’s adiabatic spin-torque term can be written
as an effective magnetic field

Hj = M ×
bj(j · ∇)M

M2
s γ

(4)
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c=2

c=0

y
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~ Iac

FIG. 6: Proposed experimental setup with electrical contacts
to excite an antivortex with the polarization p = 1. The
chirality depends on the direction of the exciting alternating-
current through two contacts in y-direction (chirality c = 0) or
x-direction (chirality c = 2). The chirality can be changed by
using the toggle switch. In x-direction a quenched deflection
and in y-direction an amplified deflection of the antivortex
core is expected.

which leads to

dM

dt
= −γM ×Hj −

αγ

Ms

[M × (M ×Hj)]. (5)

This result resembles the Landau-Lifshitz-Gilbert form
of the equation of motion. If the technical current
direction is the positive x-direction, the effective field
Hj points into the negative y-direction. This leads to a
growth of the lower domain as shown in Fig. 5(d).

For the superposition of spin-torque and magnetic-
field excitation we get from Eqs. (2) and (3)

2qe
π

2
ci = ±1. (6)

The plus sign holds for destructive and the minus sign
for constructive interference. For a given skyrmion
number q antivortex states possessing the chiralities
c = −1 and c = 1 exhibit a phase shift of −π/2 either
or π/2 between current and magnetic-field excitation.
Antivortices with the chiralities c = 0 and c = 2 show a
phase shift of 0 or π, i.e., a maximum variation of the
amplitude.

From Eqn. (6) we obtain two solutions for de-
structive interference, namely, c = 0, q = 1/2 and
c = 2, q = −1/2. If the contribution to the deflection

due to the magnetic field and spin current is the same,
the amplitude of the gyration of the antivortex core
is completely suppressed. We note, that maximum
amplitude modulation, i.e. quenching or doubling of
the core deflection is not possible with vortices since no
stable states for chiralities c = 0 and c = 2 exist.

In an experiment with combined Oersted fields and
spin-polarized currents one can control the amplitude of
the antivortex core motion by the direction of the alter-
nating current. For the experimental proof of a quenched
excitation we propose the setup illustrated in Fig. 6. Ex-
citation by a spin current in the x-direction or y-direction
through electrical contacts corresponds to a chirality of
c = 2 or c = 0. For the positive polarization in Fig. 6
(q = −1/2) we expect a quenched motion for a cur-
rent applied in x-direction. For a current applied in y-
direction an amplified deflection is expected. The varia-
tion of the amplitude of antivortex cores with the chiral-
ities c = 0 and c = 2 could also be used to determine the
ratio between the forces on the antivortex core that are
due to magnetic field and current, respectively.

In conclusion, we have demonstrated by micromagnetic
simulations that antivortices can be caused to gyrate on
elliptical orbits by a magnetic field or by spin torque.
The sense of gyration of antivortices solely depends on
the skyrmion number. The phase of antivortex motion
excited by an alternating magnetic field depends also on
the chirality. Antivortices with chiralities c = 0 and c = 2
that are excited simultaneously by spin torque and mag-
netic Oerstedt field show constructive and destructive su-
perposition of the respective deflections. This can be
used to experimentally investigate the influence of Oer-
sted fields in current-induced antivortex dynamics.
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5 Conclusion and Outlook

The magnetization dynamics of micro- and nanometer-sized ferromagnetic elements has

been investigated by micromagnetic simulations, magnetoresistance measurements, and

X-ray microscopy. Summarizing the results described in Chapter 4, I combined micro-

magnetic simulations, magnetic-force microscopy, and X-ray microscopy to study the

stray-field interaction in arrays of Fe nanostructures. I found that for distances less than

800 nm the elements interact strongly leading to an enlarged saturation magnetization and

coercive field (see [P10]).
By simulating the response of micrometer-sized permalloy elements to magnetic field

pulses the spin-wave eigenmodes were investigated and compared to theoretical approx-

imations (see [P9] and [P13]). A strong dependence of the eigenmodes on the spatial

symmetry of the exciting pulse and the static magnetization was observed, and the modes

could be unambiguously identified with backward-volume and Damon–Eshbach modes.

In another study thin permalloy rectangles were periodically excited by field pulses at a

frequency close to the one of a higher harmonic of the main magnetic eigenmode. This led

to a resonant amplification of the motion of the domain wall into an excited magnetization

state (see [P7]).
In an investigation of the local anisotropic magnetoresistance in permalloy microstruc-

tures ([P8]), we used a combination of micromagnetic simulations, diffusive transport

calculations, magnetic-force microscopy, and AMR measurements to associate AMR sig-

nals to transitions between magnetization configurations. We found that the actual lo-

cal current distribution with respect to the magnetization can greatly alter the measured

AMR signals. We therefore used the spatial resolution of X-ray microscopy to discrim-

inate between different domain-wall types in permalloy wires. The measurements were

performed simultaneously, so that changes in the AMR were successfully attributed to

magnetization patterns observed by X-ray microscopy.

For my studies of the influence of spin-polarized currents on the magnetization dynamics

of permalloy structures I built upon the above investigations. First I contributed to the ex-

tension of a micromagnetic simulation tool to include the adiabatic and the nonadiabatic

spin-transfer torque terms. The tool was then used to simulate the ac-driven oscillation of
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5 Conclusion and Outlook

a domain wall in a curved nanowire. An analytical model was developed that describes

the domain-wall dynamics by a harmonic oscillator (see [P12] and [P14]). This model

was successfully applied also to magnetic vortices and antivortices (see [P17-P19], and

[P20]). With quasi-static X-ray microscopy a randomness in the domain-wall motion

in permalloy wires was observed ([P16]), and with time-resolved X-ray microscopy the

dynamic phase relation between spin-polarized ac-currents and magnetic vortex gyration

could be pinpointed ([P18]). From this we could determine the strength of a traversing

current’s Oersted field. Figure 5.1 shows the methods used for the studies on the respec-

tive topics.

Fig. 5.1: Table showing what methods were used to obtain results on the different topics

in the respective journal articles.

Even though much has been learned in the course of this thesis, much more remains to be

explored. Many questions still elude an answer, for example:

• How does current-induced domain-wall motion depend on the dynamics of the spin-

polarized current, i.e., the rise time of a current pulse or the frequency of an ac

current with respect to the domain-wall eigenfrequencies?

• What really is the value for the non-adiabaticity parameter?

• Do the same exponential laws govern stochastic spin-torque driven domain-wall

motion as in the case of field-driven motion? What are the underlying mechanisms

and what role does the temperature play?

To answer these and other questions, scientists will undoubtedly turn to micromagnetic

simulations and time-resolved imaging techniques, as sensitive, time-resolved magnetore-

sistance measurements have become increasingly popular to investigate the dynamics of

ever-smaller magnetic systems [115, 186].
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