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Notation

The following notation (which in many cases is standard in the
literature) is used throughout the thesis. Further notation is also
introduced in the text. An additional list of special symbols, con-
taining the most important variables that occur in the text, is given

in the end of the thesis, on p. [177]

distributed according to

~ asymptotic equivalence of sequences,
an >~ by, < a,/b, — 1

C, C subset, possibly including equality, or exclud-
ing equality

= equivalent measures; sometimes also used in or-
der to state that a function is constant,

< less or equal up to a positive constant, a(s) <
b(s) means that a(s) < Cb(s) with some con-
stant C' not depending on the argument s

<> mutually contiguous

< absolutely continuous

=4 equality in distribution

~ convergence in distribution

5 weak convergence of statistical experiments

X product of (probability) measures or measur-
able spaces

# cardinality of a (finite) set

o composition of maps

4 f(z) derivative of a function f: R — R

v



Notation

Cov(X,Y), CovZ

Corr(X,Y)

do

diag(wy, ..., wy)

EX

partial derivative of a function f: R — R
with respect to the ith component

transpose of the Jacobi matrix of a function
f:RP - R% it g=1, Vf is the gradient
Hessian matrix of a function f: R? — R

unit matrix

indicator of the set or statement A

closure of a set A

boundary of a set A

Borel algebra on R and R, respectively
covariance of a pair of real random variables X
and Y and covariance matrix of a vector-valued
random-variable Z, respectively; occasionally,
we add an additional subscript, e.g. we write
Covy(X,Y), to emphasize the underlying mea-
sure

correlation of a pair of real random variables X
and Y

Dirac measure with mass 1 at the point zero
diagonal matrix with entries wq, ..., wy on the
main diagonal

expectation of a random variable X'; sometimes
we also use a more specific notation, e.g. Ey X
or Ep X, in order to emphasize the underlying
measure

ith unit vector in R?

Hellinger distance

Lebesgue measure on (R, B)

law of a random variable X under some prob-
ability measure P

space of p-fold p-integrable functions

normal distribution with mean (or mean vec-
tor) p and variance (or covariance matrix) v
natural numbers excluding zero

Landau symbols

stochastic Landau symbols

pdf and cdf, respectively, of the standard nor-
mal distribution

vi



Notation

I
- llp

<'7 '>M
<'7 >
[z, y]

u,d

a.e.
a.s.
cdf
1.1.d.
pdf

real numbers

d-dimensional Euclidean space

space of real m X n-matrices

sign of the real number,

sgn(z) := 1{z > 0} — 1{z < 0}

transpose of a matrix (or a vector) A
variance of a real random variable X
maximum of x and 0

Euclidean norm

1-norm on R, ||z||; := 2%, |zl

matrix norm induced by the Euclidean norm
Frobenius norm

maximum norm for vectors,

lellse = max{lz], ..., [zal}

uniform norm (supremum norm) for real func-
tions

uniform norm for d-variate functions, see Sec-
tion

p-norm on the space L, (u)

variational norm for probability measures
inner product on the Banach space Lo ()

inner product in Euclidean space

closed cuboid in RY,

[l’,y] = [xhyl] X X [xdayd]

almost everywhere

almost surely

cumulative distribution function
independently and identically distributed
probability density function

end of a proof

vii






CHAPTER 1

Introduction

In statistical estimation theory and applications one is often con-
fronted with the question of how good a certain estimation proce-
dure is in comparison with others. Of course, this “goodness” has
to be quantified somehow. One possibility to do so is to use con-
cepts from statistical decision theory and consider upper and lower
bounds for the minimax risk. Such an approach is examined by
Drees| (2001) for the estimation of the extreme value index. We
want to follow the ideas of that paper in order to derive minimax
risk bounds for the estimation of a smooth parameter function.

1.1 The problem

We consider a stochastic process {Y; : t € [0,1]} with mutually
independent random variables Y; taking values in a measurable
space (Y, B). The arguments ¢ € [0,1] are mostly interpreted
as time points. We assume that Y; ~ Py for each t. Here
P = {P : 0 € O} (with an open subset © C RY) is a paramet-
ric family of probability measures and £: [0,1] — © is a smooth
parameter function from a suitable function space .%#. Such a
modelling approach is e.g. used by Drees and Starica (2002) and
Jonck| (2008)) for the description and prediction of time series of
log-returns. In case of P being a location family we obtain a non-
parametric regression model. It is needless to say that this model
plays an important role for many kinds of applications.

We assume that for given time points 0 < 1 < -+ < xp, < 1

1



2 Chapter 1. Introduction

the corresponding random variables Y,,; := Y, . can be observed.
The joint distribution of these Y;; is then given by the product
measure

Pgn) = ® P&(:Enj)' <1.1)
Jj=1

Let g € (0,1) be a fixed time point and

~ ~

gn(xo) = fn(x(), Ynl: cee 7Ynn)

an estimator for £(xg), the true distribution parameter of the pro-
cess at xg. In order to evaluate such an estimator we consider
the loss function 1_s,, sq,c, Where & = (dy,...,0q)" is a vector
with positive components §; and a, > 0. Here [—da,,da,| =
[—01an, 61a,] X ... X [=84an, 64a,] denotes a cuboid in R%; we use
this notation throughout the paper. The minimax risk with respect
to this loss function is then given by

inf sup Pé”){fn(xo) — &(mo) € [—dan, 6an)}, (1.2)
gn(x()) gey

where the infimum is taken over all sequences of (possibly ran-
domised) estimators én(xo). The aim of this thesis is to analyse the
asymptotic minimaz risk, i.e. the behaviour of for n — oc.
Since an exact analysis of this expression is most often not possible,
we have to content ourselves with the attempt of deriving upper and
lower bounds. More precisely, we want to derive upper and lower
bounds for the limit inferior and the limit superior of the minimax
risk, respectively.

Localising the model. The basic idea for our examinations is to
first localise the model and to consider the (asymptotic) minimax
risk in the resulting local models. From the results within these
local models one can then also deduce minimax risk bounds in the
global model

(V" B" AP € € F)).

For the localisation we consider a constant function v = 1y €
F—also called centre of localisation—and we assume that the true
function £ € .Z does not vary significantly from ~ around the point
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xo. Concretely, we assume that in a sufficiently small neighbour-
hood of x( the function £ can be represented by

'Yg,n(x) =+ ang (bn(x - 1‘0)) RS [07 1]’ (13)

where ¢g: R — R? is a function with compact support from a cer-
tain function space ¢ and a,, — 0, b, — 0o. The function ~,,(-)
from is often also referred to as a local alternative to ~. In-
deed, the above properties of a,, b, and g guarantee that ~,,(-)
only differs from v in a neighbourhood of xy. In the first instance,
we examine the sequence of the resulting local models

V", B" {P) g€ 9}),

where, in analogy to ([1.1)),

Py = Q) Py o) (1.4)
j=1

In the local model the parameter value (o) equals v, (x0). Since

Vg,n(x()) =7 =+ ang(o)

it suffices to consider estimates for g(0). Let now §,(0) be an
arbitrary estimator for g(0). Then

%,n(xo) 1=y + angn(0)

yields an estimator for v, ,(zo), which satisfies

(Yg.n(0) = Ygn(@0))/ tn = 9n(0) = 9(0).

The benefit of first considering the local models is that these can
be shown to converge against a Gaussian shift model. These limit
experiments can be examined fairly well. It is possible to derive
non-trivial minimax risk bounds. We will show that under certain
conditions these bounds carry over to the estimation problem in

the local model and finally also in the global model (Y™, B", { ;" :
(e F}).

1.2 Thesis outline

Chapter [2| gives a short overview of some concepts of asymptotic
statistics, especially of the Le Cam theory and statistical decision
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theory. Chapter |3 formulates in detail the model which is to ex-
amine and its underlying assumptions. In Chapter 4| we show that
the above local experiments converge weakly to a Gaussian exper-
iment, and in Chapter | upper and lower bounds for the minimax
risk in this limit experiment are derived. The general ideas for the
examinations of these two chapters follow those of Drees (2001)). In
Chapter @ we then construct an estimator for the parameter g(0)
in the local model. The construction principle for this estimator
is based upon the proven weak convergence and the results in the
Gaussian experiment. We show that—provided some smoothness
conditions hold—the asymptotic maximal risk of this estimator con-
verges to the upper minimax risk bound from the Gaussian limit
experiment, which thus yields an upper bound for the asymptotic
minimax risk in the sequence of the local models. Indeed, these risk
bounds carry over to the global model, which is proven in Chap-
ter [7l In Chapter [§ we discuss some concrete models to which our
theory applies, such as the nonparametric regression model. On
p. we summarise the results of this thesis.

1.3 Related research

There are some other papers in the literature that discuss the min-
imax risk in models with independent observations, distributed ac-
cording to some parametric family, with the parameter being driven
by a smooth function. The focus of these papers is clearly on non-
parametric regression models, and thus more specific than the ap-
proach followed here. Brown and Low (1996 show that the clas-
sical nonparametric regression model with Gaussian noise is under
certain conditions asymptotically equivalent—with respect to the
Le Cam deficiency pseudo-distance—to a white noise model with
drift. Therefore, the asymptotic risks in both models must be the
same. |Nussbaum (1996, Grama and Nussbaum (1998)), |Jédhnisch
and Nussbaum (2003) as well as Rohde (2004) and Reif (2008)
expand these results. Cal and Low| (2004), Donoho (1994) and
Donoho and Liu| (1991)) also investigate the minimax risk for the
estimation of functionals in the white noise model.

Apart from this work, Grama and Nussbaum| (2002)) consider a
setup, which is a bit closer to our model from Section [I.1]} In their
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paper the distributions are given by one-parametric exponential
families. They are able to show that their model is asymptotically
equivalent (again, with respect to the Le Cam deficiency pseudo-
distance) to a Gaussian location model. However, their approach to
the problem is in some major aspects different from that followed
in this thesis. Moreover, they do—as well as the other papers men-
tioned above—mnot assess the asymptotic minimax risk directly.

Drees| (2001) considers the classical i.i.d. setup. He derives
asymptotic minimax risk bounds for the estimation of the extreme
value index. Even though Drees| paper deals with a completely dif-
ferent topic, it can be considered a role model for this thesis. Many
(yet, not all) techniques used there also apply in the proofs of this
thesis.






CHAPTER 2

Preliminaries

This chapter gives an overview of some basic concepts from (asymp-
totic) statistics and statistical decision theory, which are used
throughout the thesis. A list of some general notation is given
at the beginning of the thesis.

On the used asymptotics. Throughout this work n denotes
an index tending to infinity. Usually, n represents the number of
observations. If not stated otherwise (or if it is clear from the
context) all asymptotic expressions, e.g. convergence statements,
presume that n — oo.

2.1 Basics of stochastics

We denote the space of p-fold integrable functions on a measurable
space (€2, A, i) by L,(p) = L,(€, A, ). For p > 1 this is—as long
as we identify equivalence classes of p-a.e. equivalent functions with
their representatives—a Banach space with respect to the norm
1 fllup = ([ |fIP du)'/P. For p = 2 the norm is induced by the
inner product (f, g), := [ fg dp, whereby Lo(u) becomes a Hilbert
space. The Lebesgue measure on (R, B) is denoted A. For vector-
valued functions f = (fi,..., fa)' we write f € L,(p) if and only
if f; € L,(p) for all i. The integral [ f du is then to be interpreted
component-wise, i.e. as a vector ([ fi du,..., [ fadu)'. Integrals
of matrix-valued functions are to be interpreted likewise. Let P
and @) be probability measures on a space (£2,.4), dominated by

7



8 Chapter 2. Preliminaries

a o-finite measure pu (e.g. 4 = P + Q). The Hellinger distance
is then defined by H(P,Q) = (1/2 [(\/b — \/7)* du)*?, where
p = dP/dy and ¢ = dQ/dp. The variational distance is given by
|P — Q|lv = supgea|P(A) — Q(A)|. Note the inequality ||P —

Convergence in distribution (or weak convergence) of probability
measures or random variables is denoted by the symbol “~»”. We
also use the convenient stochastic Landau notation often used in
the literature. Hence, for a sequence of random variables

Xn: (QTHATZ) Pn) - (Rk?lBk)

and a real sequence ¢, we write X,, = op (¢,) if X,,/¢, — 0 in
P,-probability. We write X,, = Op (c,) if X, /¢, is stochasti-
cally bounded, i.e. if for each € > 0 there is an M > 0 such that
PA|| X /cnl] > M} < € for all n.

2.2 Contiguity and differentiability in quadratic mean

In the following, we assume that the reader is familiar to the con-
cept of the likelihood ratio d@/dP for two probability measures
defined on some measurable space (£2,.A) (cf. van der Vaart| 1998,
Section 6.1).

2.1 Definition. Let P, and @), be sequences of probability mea-
sures on measurable spaces (£, .4,). These are called (mutually)

contiguous iff for each sequence of measurable sets A, € A,, holds:
P.,(A,) — 0< Q,(A,) — 0. In that case we also write @, <> P,.

The contiguity @),, <> P, states that the measures P, and ),, can
be considered asymptotically mutually continuous to each other.
“<” defines an equivalence relation on the space of the sequences
of probability measures on (£2,,.4,). However, @, = P, for each
n does not necessarily imply P, <> @),,. Under certain conditions,
asymptotic normality of log-likelihood ratios implies contiguity:

2.2 Lemma (Le Cam’s first lemma). Let P, and Q,, be proba-
bility measures on (2, A,) such that

dQn
Z |1
( S p

n

Pn> ~ N (—K)2,K2).
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Then P, and @), are contiguous, P, <> Q),, and
dQy,

Z (1
( 8 4p,

A proof of the lemma is given in|Witting and Miiller-Funk (1995),
p. 311. Assume we are given a certain statistic, which is observed

Qn) ~ N (K22, K?).

under P,, and we are interested in its asymptotic behaviour under
Q. If P, <> @Q,, then it is sometimes possible to deduce the
statistic’s behaviour under ), from that under P,. For such a
result the reader might confer to Theorem 6.6 in van der Vaart
(1998). Here we want to consider a consequence of that theorem,

which covers the special case of asymptotically normal statistics (cf.
van der Vaart, 1998, Example 6.7).

2.3 Lemma (Le Cam’s third lemma). Let P, and Q,, be prob-
ability measures on (Q,, An), and X,: (Qn, A,) — (REBY) be
random variables such that

| )= (L) (7 5))

dP,
Then L (X, | Qn) ~ A (n+ v, X%).

In the following, let P = {Py : 6 € O} be a family of proba-
bility measures on some measurable space. The parameter set ©
is assumed an open subset © C R?. Furthermore, we presume P

Z (Xn, log

to be dominated by a o-finite measure u, such that we have pdf’s
Po = dPg/d,u.

2.4 Definition. The family P = {F; : § € O} is differentiable
i quadratic mean at some point 6 € ©, if a measurable function
log= (Lg1,...,0gq)" exists such that

[ (Vo= v = i) dn=ollbl), B0, (21)

The function ég 1s then also called the Lo-derivative at 6 or score
function. We say that P is differentiable in quadratic mean on a
set © C O if this is also true at each point 6 € ©'.

Due to the following lemma (which is part of Theorem 7.2 in
van der Vaart| 1998, and proved there) the score function has mean
zero and existing covariance matrix.



10 Chapter 2. Preliminaries

2.5 Lemma. If P is differentiable in quadratic mean at 0, then
ffg dPy = 0 and the Fisher information matrix Ly = fﬁg@r dPy
erists.

Condition ([2.1) states that the map 7 — ,/p;, interpreted as a
map with values in the Banach space Loy (u), is Fréchet differentiable
at 0 (cf. Heuser|, 1990, Number 175). The Fréchet derivative—which
is not to be mistaken for the Lo-derivative—is then given by £ /Do
According to this we will say that P is continuously differentiable
in quadratic mean, if the map 7 — /p; is continuously Fréchet
differentiable.

2.6 Definition. If P is differentiable in quadratic mean on an open
subset © C O, and if the Lo(u)-valued maps

0 loi\/po, i=1,....d,

are continuous on ©’, then P is called continuously differentiable
in quadratic mean on ©'.

2.7 Lemma. Suppose P is continuously differentiable in quadratic
mean on ©. Then the following statements hold:

(i) The information matriz function 0 — Ty = f@@r dPy is
continuous on © (i.e. continuous in each component).

(11) For each 0 € © there is an open neighbourhood Uy of 6 and
a constant Ly > 0 such that for all 7,7 € Uy the inequality
H(P., P.) < Lg||11 — 72| holds.

Proof. Ad m Let 8 € © and 0,, — 6 be given. Then égmi Do, —
é@ji\/p_g in Lo(p) for all ¢ = 1,...,d. According to Satz 15.9 in
Bauer| (1992) the products égmié.gmj.pgn converge in mean with re-
spect to p, with limits given by £y ;¢ jpe. In other words,

1£6,.i¢6,.iPs, — Co.ilo. o]l u1 — O,
and Satz 15.1 in |Bauer| (1992) implies

/ ly by, ; APy = / Co, ilo, ipa, dp

— / Co.ilo jpo dp = / lo.ilgj dPy.
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Ad .' By assumption the map 7 — ,/p; is continuously dif-
ferentiable on ©, and thus in particular locally Lipschitz, which
follows from the mean value theorem (cf. Heuser, 1990, p. 337).

Since H(P,,, Pr,) = (1/V2)||\/Pr, — /Dyl .2 this implies the asser-
tion. H

Differentiability in quadratic mean is a suitable framework for
proving local asymptotic normality (LAN). In the most simple case
of an i.i.d. setting this means that for every sequence h,, — h the
likelihood quotients fulfil

dP}

log — 2 B — BTN,y — LT Th + opp(1
og dPen 0 0 +Op()

with a matrix Iy and random variables A, y such that
L (Do | P) ~ A (0, 1p).

Asymptotic expansions of this type are important for proving weak
convergence of experiments, which shall be introduced in the next
section. The following theorem provides general conditions under
which the log-likelihood ratios of product measures allow for such
asymptotic expansions. It is taken from van der Vaart| (1988), but
can in similar form also be found in Rieder| (1994)), Theorem 2.3.5.

2.8 Proposition. forn =1,2,... and j =1,...,n let P,; and
Qnj be probability measures on measurable spaces (2, Ayj) with
pdf’s ppj and q,; with respect to a o-finite measure fi,; satisfying
P i+Qnj < piyj. Let P, = ®?:1 P,; and @, = ®;L:1 Qnj denote

the product measures on the corresponding product spaces. Suppose
that there are measurable functions Uy;: (0, Anj) — (R, B) such
that:

S [ [ = o = 3] s = o), 2
zn:/Unj dPy; = o(1), (2.3)
Z/U2 db,; = O(1), (2.4)
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Z/Uﬁjll{wnﬂ > e} dP,; =o(1) for alle > 0. (2.5)
j=1

Then

dQ,
log P ; Uy + 362 = op,(1). (2.6)

Addendum. If in addition to the above conditions also

K2 — k% € [0,00), (2.7)
i (/ Unj dPnj>2 — 0, (2.8)

then P, and @), are mutually contiguous, and

dQn
dp,

A (log

Pn> s N (=367, K).

Here A(0,0) is identified with &y, the Dirac measure with proba-
bility 1 at the origin.

2.9 Remark. In triangular schemes U,,; of the above type we typ-
ically interpret each U,; as a random variable on the product space
®?:1(an, Apj, pnj). This can be done by identifying U,; and the
corresponding variable U, ;(m,;), where

Tnjt (1 X oo X Q) = Qg (Wnts v Wan) > Whj

denotes the jth canonical projection. For the sake of simplicity
the projections will however mostly be suppressed in the notation,
e.g. as is the case in ([2.6]).

Proof of Proposition [2.8 The first part of the proposition cor-
responds to Proposition A.8 invan der Vaart| (1988) if the functions
gnj/+/n are replaced by the U,,;. It remains to prove the addendum.
The Lindeberg-Feller theorem (see van der Vaart| 1998, Proposi-
tion 2.27) yields L (327 Unj | Py) ~ A(0,5%). Together with
(2.6) and Slutsky’s lemma this proves the asymptotic normality of
the log-likelihood quotients. Contiguity follows from Le Cam’s first
lemma. |
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2.3 Statistical decision theory

Let T # () be an arbitrary set. A triple (22,.4, Q), consisting of a
space €, a g-algebra A and a family Q = {Q; : t € T'} of probabil-
ity measures on (£2,.4) is called statistical experiment or statistic
model with parameter space T. We often simply call Q a statistical
experiment. An experiment is dominated, if the corresponding class
Q is dominated by a o-finite measure. Suppose we are given a space
D endowed with some o-algebra D. We also call D a decision space
and interpret it as the set of all possible statements which shall be
assessed by means of the observation of the experiment E (cf. Wit-
ting, (1985, p. 11). In the context of a testing problem for a simple
hypothesis Hy a suitable decision space would be

D = {*Hj is accepted”, “Hy is rejected”},

with D being the power set of D. In the context of estimation prob-
lems D should be chosen as the space which contains the parameter
of interest. In the following, D is always assumed to be a metric
space, where D is the Borel algebra induced by the metric.

2.10 Definition. Let an experiment £ = (2, A, Q) and a decision
space (D, D) be given. A Markov kernel p from (2,.4) to (D, D)
(which is sometimes also written as a map g: Q@ x D — [0,1]) is
called decision function. The set of all such decision functions is
denoted R(E, D). If o(-, B) € {0,1} Qa.s. for every t € T and
all B € D, then p is called non-randomised.

Suppose we have a decision function p. Then the quantity
o(w, B) can be interpreted as the probability with which we choose
the event B given the fact that the outcome of the observed ex-
periment is w. In case of a non-randomised o this means that we
choose such a B which satisfies o(w, B) = 1.

2.11 Definition. A loss function W = {W, : t € T} is a family
of functions W;: D — [0, 00) that are measurable with respect to
D. The corresponding risk function R: T x R(E, D) — [0,00) is
defined as

R(t, 0) = Rw(t, 0) / W) olw, da) Qi (dw),
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R(t, o) is called the risk of o with respect to W. The triple (T',D,IV)
is called a decision problem. We also say that a loss function W
possesses a certain property (like continuity, boundedness etc.) iff
each W; possesses this property.

2.12 Example. When a RF-valued parameter v = «(t) (t €
T) is to be estimated, one often considers a measurable function
A: RF — [0,00) and then defines a loss function Wy(a) := A(a —
v(t)). Often, the function A itself is called loss function. Typical
examples of such loss functions are the quadratic loss A(a) := ||al|?
or a zero-one loss functions of the form A(a) := 1{a € [~z, 2]°}.

The quantity R(t, 0) can be interpreted as the loss that we suffer
if the underlying distribution is given by J; and we decide according
to the decision rule p. Thus, it is evident to consider a decision rule
to be good if the maximal loss that can result from it becomes min-
imal. This leads to the following concepts for evaluating decision
procedures:

2.13 Definition. Let (T, D, W) be a decision problem. For o €
R(E, D) we then call sup,cr R(t, o) the mazimal risk of o. The
mainimazx risk of the decision problem is defined by
inf  sup R(t, ).
QER(EvD) teT
A decision function ¢* € R(FE, D) for which this infimum is attained
is called minimaz optimal.

The aim of this thesis is to investigate the asymptotic behaviour
of the minimax risk in a sequence of models. For that purpose we
need a concept for convergence of sequences of statistical experi-
ments.

2.14 Definition. Let a non-empty parameter set 1" and statistical
experiments E, = (Q, A,{Q, :t € T})and F = (Q,A,{Q: : t €
T}) be given. Then E,, is said to converge weakly to E if

Qun L
o <{ dQS,n }teTo Qsm) o ({ dQS }teTo QS)

for all finite subsets Ty € T and all s € T. In that case we also
write E,, - E.
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2.15 Remark. (i) Sometimes one is not interested in the com-
plete experiments E and FE,, but rather in certain subexperi-
ments £’ and E] indexed by a non-empty subset 7" C T'. Of
course, F, — E also implies E! = E.

(ii) Convergence in distribution is also referred to as “weak con-
vergence”. However, this should not cause any confusion, be-
cause convergence in distribution and weak convergence of ex-
periments are two convergence concepts for different objects.
Thus, it will always be clear from the context which kind of
“weak convergence” is meant.

The idea behind the concept of weak convergence of experiments
is that for large n the limit experiment E can be considered an ap-
proximation for the true model E,. From the properties of this
limit experiment one might then draw conclusions for the experi-
ments F,. The following theorem—which can be found in [Strasser
(1985)), Theorem 61.6—yields a sufficient criterion for proving weak
convergence.

2.16 Definition. A sequence of experiments F,, is said to be con-
tiguous iff Qs <> Q¢ for all s, € T

2.17 Theorem. Let E, be a contiguous sequence of experiments.
Then E,, ~ E holds if and only if
o)

d d
({0 | 9) == (i)
thoﬂl teTy thO teTy
for all finite subsets Ty C T and some ty € T.

Consequently, one may verify E, — E by showing that FE, is
contiguous and that certain likelihood ratios converge in distribu-
tion. For that purpose Theorem may be used. Weak conver-
gence of experiments allows us to draw conclusions for the relation

between the minimax risk in a sequence of experiments and the
minimax risk in a limit experiment. Indeed, if F, — FE, then
the minimax risk in the limit experiment is a lower bound for the
asymptotic minimax risk in the sequence of experiments F,,.

2.18 Definition. Let D be a metric space. A function f: D — R
is called level-compact if {x : f(x) < y} is compact for all y <
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sup{f(x) : © € D}. f is called lower semi-continuous if it is
bounded from below and {z : f(z) <y} is closed for all y € R.

2.19 Theorem. Let E, and E be dominated experiments with
E, & E. Moreover, let (T,D,W) be a decision problem with
level-compact, lower semi-continuous loss function W, and let D
be a separable metric space which is locally compact. Then for each
sequence o, € R(E,, D):

liminf sup R(t,0,) > inf sup R(t, o).

n—00  eT 0ER(E.D) teT

Proof. Follows from Corollary 62.6 and Theorem 43.5 in [Strasser
(1985). |

2.4 Uniform convergence in distribution

We introduce the concept of uniform convergence in distribution
(or: wuniform weak convergence) of probability measures on Eu-
clidean space and discuss some connected results. First, we discuss
a criterion for the weak convergence of measures on (R¢, B?). In
the following, ¢¢ C B? denotes the class of convex Borel sets, 9C
denotes the boundary of a set C.

2.20 Theorem. Let QQ,, and Q be probability measures on (R?, BY).
Suppose that Q(OC) = 0 for all C € €. Then: Q, ~ Q &

subee |@n(C) = Q(O)] — 0.

The theorem is due to Rao| (1962)), cf. Theorem 4.2; an alterna-
tive proof can be found in |[Fabian| (1970). Throughout the rest of
this section we consider statistical experiments (R9, BY, {Qsn:s€
S}) and (R4, B4, {Q, : s € S}). Here S is always assumed to be
a metric space, the Borel algebra induced by the metric is denoted

S.

2.21 Definition. The sequence @), is said to converge uniformly

in distribution to Qs on a subset S” C .S (we also formulate this as
“Qsn ~ Qs uniformly on S’7) if

[ 1~ [ 14,

for all bounded, continuous functions f: RY — R.

sup — 0

ses’
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If Qspn ~ Qs uniformly on §’, then of course also Qs, ~» Qs
uniformly on every subset S” C S’. In particular, this holds true for
all subsets S” consisting of a single point. The following, equivalent
characterisation of uniform convergence in distribution generalises

the result from Theorem 2.201

2.22 Theorem. Le S be a metric space which is locally compact.
Furthermore, assume that the map s — Qg is continuous in the
sense that Qs ~ Qs as Sy — . Suppose that Qs(0C) = 0 for all
C € ¢ and alls € S. Then the following assertions are equivalent:

(i) Qsn ~> Qs uniformly on all compact sets K C S.

(ii) sup sup |Qsn.(C)—Qs(C)| — 0 for all compact sets K C S.
seK Cegd

Proof. Every metric space is a Hausdorff space and satisfies the
first axiom of countability (cf. |Lipschutz, (1977, p. 131). Thus, tak-
ing into account Remark 6.7.7 in Pfanzagl| (1994)), the assertion is
a direct consequence of |Pfanzagl’s Theorem 7.7.10. |

We recall Slutsky’s famous lemma for sequences X,, and Y,, of
vector-valued random variables. The lemma states (roughly formu-
lated) that if X,, ~ X and Y, — ¢ in probability, where ¢ is a
constant, then also X,, +Y,, ~ X + c¢. It turns out that this result
also holds true in the generalised context of uniform convergence.

2.23 Definition. Let statistical experiments (€2, A,, {Psn : s €
S}) be given, and a sequence of measurable maps

fo: (2 x S, A, ®8) — (RY, BY.
Then f, is said to converge uniformly in probability to zero with
respect to { Py, : s € S}if
sup Py p{wn € Q¢ || fulwn, s)|| >} — 0

seS

for all e > 0.

2.24 Lemma (Slutsky’s lemma, generalised). Let T,, and f,
be measurable maps (in the sense of Definition , and Qsp =
L(To(-,s) | Psn). Let K C S be a compact subset such that
Qsn ~ Qs uniformly on K. Furthermore, assume that f, con-

verges uniformly in probability to zero with respect to {Ps, : s €
K}. Then Z(T,(-,s) + fu(-,8) | Psn) ~ Qs, uniformly on K.
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A proof of this result can be found in Pfanzagl (1994), Lemma
7.7.8.

2.5 Remarks and related literature

The concepts introduced and discussed in this chapter provide only
a small insight into the theory of asymptotic statistics and statis-
tical decision theory. Of course, not all connections to other fields
from stochastics could be pointed out, which was not the aim of
this chapter, either. However, the given survey is sufficient for
our purposes. The above examinations were mainly based on the
nice monograph by van der Vaart| (1998)), and on Strasser| (1985))
and Pfanzagll (1994). Detailed and profound information on the
discussed topics can also be found in Witting (1985)), Witting and|
Miiller-Funk (1995)) and Rieder| (1994) as well as in the monographs
Le Cam| (1986)) and |Le Cam and Yang] (2000)), partly also in

ot al (1905).




CHAPTER 3

Model assumptions

In this chapter we specify the model for the process {Y; : t € [0, 1]}
from Chapter [I, We formulate exact conditions which the underly-
ing family of distributions and the other quantities involved in the
definition of the global and local models are presumed to fulfil. We
make use of the notation already introduced in Section [I.1]

3.1 General distributional assumptions

In the following, let P = {Fy : § € O} denote a family of prob-
ability measures on some measurable space (), ), with an open
parameter space © C RY We assume P to be dominated by a
o-finite measure p. Thus, we have densities pg = dFPy/du. Further-
more, for § € R?\ © we set Py := Py, with some arbitrarily chosen
0 € O.

We presume that P is continuously differentiable in quadratic
mean on O (in the sense of Definition [2.6), the score function is
denoted fy. Then the information matrices Zy = f éaég dPy are
defined for all § € © and continuous, which follows from Lemma[2.7]
In addition, we assume that Zy is positive definite for all 0 € ©.

Throughout the rest of this thesis we assume that the above
distributional assumptions do hold.

At this stage, the reader may recall the Cholesky decomposition
of a positive definite matrix. According to this the symmetric,
positive definite matrix Zy can be written as a product Zy = CJ Cy
with a unique, invertible upper triangle matrix Cg € R%*?. The

19
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entries of Cy are linear combinations of that of Zy (cf. Opfer], 2001,
p. 175 f.). Consequently, if Zy is continuous in #, then also C,, C9_1
and \|Cg|\1 (7=1,...,d), with Cg denoting the jth row vector of Cy.
Note that the Cholesky decomposition satisfies C,*(C,;1)T = Z, .
For further information on the Cholesky decomposition cf. Stoer
(1999), p. 207 f.

3.2 Further regularity conditions

Besides the conditions from the previous section, we need to im-
pose some further regularity conditions on the distribution family
P. These additional assumptions are essential for the proofs of
Chapters [6] and [7]

We assume that there is a set N C Y with u(N) = 0 and
po(y) > 0 for all y € N¢ and all # € ©. In particular, this implies
that Py = v for all . Furthermore, we assume that for all y € N¢
and all § € © the log-density log py(y) is three times continuously
partially differentiable with respect to the parameter #, and that
the score function satisfies

~ Vpe(y)

ly(y) = p—n p-a.e. (3.1)

As a consequence, the score function permits a Taylor expansion in
the parameter, which yields

losn(y) = lo(y) + Lo(y)h + O(R]?), h—0,  (32)
where here and in the following
Zg = Vg log pg.

(The remainder in (3.2)) of course depends on € and y, which for
the moment shall not concern us.) We further require that the
third partial derivatives of the log-densities are dominated in some
sense. More precisely, we assume that there is a measurable func-

tion J: )Y — IR such that
33

—1 < for all 11 :
50:00:00; ogpe(y)| < J(y) forall € ©andally, (3.3)

i k=1,....d
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and we assume that Ey J is uniformly bounded on ©.

Besides these “point-wise” assumptions, we have to impose some
smoothness conditions concerning the moments of the score func-
tion and its derivatives. We assume that the Fisher information
satisfies

Ty = / lol) dPy = — / (g dPy (3.4)

for all # € © and that the functions
(0.7) — / (Fo.)51 (i) AP, Ky ky € {0,1,2}

are continuous on O x O for ky, ky € {0, 1,2}, continuously partially
differentiable for k1 = 2 and ko = 0, and two times continuously
partially differentiable for k; = 1 and ky = 0. Likewise we presume
the maps

('977-) = /(E.G,rs)k dPT, k € {0, 1, 2},

to be continuously partially differentiable on © x ©, where gg’m
denotes the rs-entry of the matrix (. This means in particular that
the entries of the information matrix Zy are continuously partially
differentiable with respect to 6. Finally, we assume that certain
interchangeability properties for integration and differentiation hold
true, namely

VT/ngT dp = /é@(VTpT)T dp. (3.5)

Many of the above assumptions reflect classical regularity condi-
tions used to prove consistency or asymptotic normality of certain
estimators, such as maximum likelihood or other likelihood-based
estimators. See for example Lehmann and Casellal (1998), Sec-
tions 6.5 and 6.6, or Aerts and Claeskens| (1997). Although the
above conditions may appear somewhat restrictive, they are sat-

isfied by a large class of distribution families, e.g. by exponential
families (see Chapter [g)).

3.3 The global and local function spaces

In Section the one-dimensional marginals of the process {Y; :
t € [0,1]} were modelled according to the approach Y; ~ Py,
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with an unknown parameter function .# > €:[0,1] — ©O. In the
following, we assume this global function space % to be given by

F = F(xy,0%, u)
= {£:[0,1] — © | &(x0) € OF, £ continuous, (3.6)
1€(z0 + 8) — E(m0)|oe < uls), s € [—x0,1 — 2]}

Here || - || denotes the maximum norm on R% ©* = ©*(v*, &*)
denotes an open cuboid centred around some fixed point v* € O,
more precisely:

O = (y] —el, i +e)) X ... x (v —eqnvi+ey), e >0.
(More generally, one could also choose ©* as an open, bounded
neighbourhood of 4*.) The additional function u indicates the de-
gree of how much the £’s may vary in a neighbourhood of z relative
to £(xg). In the following, we will always assume that u is of the
specific form

u: R —[0,00), s+ Als|’,

with A,p > 0. For large values p and small values A, respec-
tively, the last condition from (3.6)—in the following often simply
referred to as growth condition—becomes more restrictive and thus
the model, too. To shorten notation we often omit the arguments
and simply write # instead of Z (z(, 0", u). From the definition
of .% and the above choice of u, one easily concludes that

O = {(x) |z €[0,1],6 € F} CO (3.7)

(note that of course ©* C ©’, too) is bounded and thus has compact
closure ©’. We further presume this set to be included in ©, in other
words, we assume that © is a relatively compact subset of ©,

e co. (3.8)

For some examinations it will be necessary to further restrict .# to
such functions which fulfil a certain growth condition on the whole
interval [0, 1] as well as at xy. To this end, we set

JJZH = gZH(IQ, @*, u)
3.9

e F|&x) — W)l < ulz —y), z,y €[0,1]}
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The restriction on the variation of the parameter functions is in
the literature sometimes referred to as Hélder condition (or Hélder
continuity). For p = 1 this is Lipschitz continuity.

The time points x,; at which the model-—i.e. the random vari-
ables Y,; = Y, ——can be observed, and for which we consider
the parameter function &, are supposed to be given by equidistant
points on the unit interval: we assume that

x -':j_l

neN, j57=1,...,n.

The resulting product measures Pg") are then defined according to

D).

The scope of this thesis is to investigate the asymptotic be-
haviour of estimates for £(xy) under a sequence of loss functions
1i_g,5a,5¢- Throughout this thesis

5= (61,....00)"

denotes a fixed vector with entries §; > 0. (The sequence a, is
defined below.)

In order to assess the asymptotic minimax risk with respect to
this loss function we choose a localisation procedure, as mentioned
in Section [1.1l For that purpose we consider the following local
function space ¢, which is defined by

G =9 (K, p,d)
={9: R—R"[lg(s) = 9(0)]l < [s]”, s € R,
9|~k is continuous,
g(z) =0for z ¢ [-K, K|}
Note that the growth condition in (3.10)) holds for all s € R. The
elements g € ¢4 are also referred to as local functions. The exact

(3.10)

value of the constant K is not of so great importance. It merely
has to be chosen sufficiently large, such that for certain parameters
[ the maps s — (8 — [s|?)T are included in ¥ (K, p,1). These
maps are essential for the construction of suitable estimators. In
Section [3.5 we will state more precisely what “sufficiently large”
means. Throughout the thesis we assume that K is chosen accord-
ing to the criteria presented in that section. Note that

G(K,p,d) =9 (K,p,1) x ... x94(K,p,1) (d times).
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For (bounded) functions f: R — R? we define the uniform norm
by

1 f g == max{|[ fillu, - - I fallu},

where ||fi|l. = sup{|fi(z)| : © € R} is the usual uniform norm
(supremum norm) for real functions. The growth condition in the
definition of ¢ implies that

M = sup{||g|lua: g € 9} < . (3.11)

In the same way that the space .# was restricted to those functions
which satisfy a Holder condition, we also restrict ¢, setting

gH = gH(KJ P, d)

={g €9 (K. p.d) | g(x) — gl < |z —yl",  (3.12)
T,y € [—K,K]}.

Moreover, we set
=149 € % :g(0) =0}. (3.13)

The relations between the spaces . and ¢, and %y and %, re-
spectively, will become clear in later examinations. The limitations
(like the growth conditions and the boundedness of the functions)
are mainly necessary in order to take advantage of some compact-
ness arguments, as shall be seen later, too.

For g € ¢4 and v € © the local alternatives v, ,(-) with respect
to v may now be defined according to (|1.3)), where a,, and b, in the
following always are given by

b, = AQ/(2P+1)H1/(QP+1),

a, = u(1/b,) = AYCr0p=p/Cot1) (3.14)
As a consequence of this definition we have
2 bn
=" mEN. (3.15)

n

To shorten notation we further define the transformed time points
by
fénj = bn(ﬂfnj —SU()), j = 1,...,71. (316)
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With this notation, the local alternative from ([1.3) can also be
written as

Vg,n(xnj) =7+ ang(bn(xnj - l’o))

= + ang(Zn;). (317)

The product measure P{") corresponding to this local alternative
Vg.n may be defined according to . Moreover, for g = 0 we
use the convention PV := Pv(i%' (In that case, P\" is of course
equal to the product of n independent copies of P,, i.e. PV(”) = PV”)
For some choices of v and g it might turn out that v, ,(z,;) ¢ ©.
This can of course only happen for small indices n. However, by
the convention Py = Pp- for all 6§ ¢ © (see Section [3.1)) we then
have P.

Yg.n(Tnj)

well-defined.

= Py-. Hence, the product measures P.") are always

3.4 Existence of a preliminary estimator

Finally, we presume that there is a uniformly (1/a,)-consistent es-
timator £ = £ (xg) for the true parameter £(x). This means that
for each ¢ > 0 there is a constant C' = C, > 0 such that

sup {65 (an) — €G] 2 € <

(e s

for sufficiently large n. Of course, it is equivalent to require that

: 1

s sup P € on) ~ 6Gan)]| = € < .
n—oo (EF Qn

The question of the existence of such preliminary estimators will

be discussed Chapter [§ for some models.

3.5 Supplement: specifying K

To completely describe the local function space 4 = 9 (K, p, d), we
still have to specify the constant K from the definition of the space
G (K,p,d). As was stated before, the exact value of this constant
is not so important, it is only important that it is sufficiently large
to allow for certain local functions to be included in ¢. In this
section—which can be omitted in the first reading—we describe how
K can be chosen in order to guarantee that this is the case. The
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approach may appear somewhat complicated, but it will become
clear in the course of Chapter [5| why it precisely satisfies our needs.

Note that in the definition of ¢, K is the only parameter that
is not yet defined through the global function space .%. Hence,
it is quite clear that K in some way has to depend on the vector
0 that defines the loss function. In order to find an answer how
large K must at least be, we first consider the simple case of a
one-dimensional parameter space ©® C R, and hence the function
space ¢ = 9G(K, p,1). Subsequently, we consider the general case
O C R

3.5.1 The univariate parameter case

In the one-dimensional case the vector ¢ that specifies the loss func-
tion 1j_s40c is a real number, § > 0. We consider the map

ﬁl—kl/p
"~ logl(B+0)/(B—0)]

Since the function § +— log[(8+40)/(8—0)] is strictly decreasing on
(6,00), it is clear that f is strictly increasing. Furthermore, f(/3)
tends to 0 as B | ¢ and to oo as  — oo. Since the distribution

family P is assumed continuously differentiable in quadratic mean

f:(6,00) = [0,00), 0

the map v — Z, is continuous on O, and by assumption it is strictly
positive (see Section [3.1). We further assumed in (3.8)) that ©’ C ©.
This implies that there is a compact interval I C (0, 00) such that

p+1 /
: C I.
G

Due to the monotonicity and continuity properties, f~1(I) is also
a compact interval, say [s, t], which is included in (0, 00). We now
choose the constant K such that the condition t/? < K is satisfied.
As was stated at the beginning, f(() tends to zero as 5 | 9, and
to infinity as 8 — oo. Hence, it is clear that for each v € © the
equation
ﬁl—kl/p P +1
log[(8 +0)/(8—0)] 21,6
has a unique solution §* = §*(y). If K is chosen according to the
above criterion, then we have §*(y) < K’ for all v € ©'. This
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assures that each of the corresponding functions s +— (5*(y) —
|s]7)*, v € © is included in ¥ (K, p, 1).

3.5.2 The multivariate parameter case

We generalise the above procedure in order to derive a criterion for
a suitable choice of K for ¥ = 9 (K, p,d), with d > 1. To this end,
we first generalise the above function f, setting

1+1/p
0,00 = 0.09) (08) = oyt 0> )

Of course, f has similar properties as the corresponding map from
Section . In particular, for fixed x the map 5 — f(x, () is
strictly increasing on (z, 00), and for fixed 3, z — f(x, () is strictly
decreasing on (0, 3). Furthermore, f is continuously differentiable
at all points (x,3) for which f(z,3) # 0. In the following, let a
family of strictly positive, continuous functions

vj: © — (0,00), j=1,....d,

be given. A suitable choice of such functions, which also satisfy
certain additional conditions, will be described in detail in Sec-
tion [3.5.3] and we will in the following always assume that the v;’s
are of the specific form described there. As in the one-dimensional
case, we exploit that Z, is positive definite for each v € © and
that the map v + Z, is continuous. In particular, each component

of Z, is continuous in 7. The same holds true for the Cholesky
decomposition C, and for the maps v — [|CI|1 (j = 1,...,d),
with CJ denoting the jth row vector of C, (cf. Section 3.1)). Since
the Cholesky matrices are invertible, each of the maps v +— ||C]||;

is strictly positive on ©, and the same holds true for the maps
v — v;(7)/[|C]|1. From ©’ C © (by assumption (3.8)) and an ad-
ditional continuity argument we conclude that there are compact
intervals Iy, Is C (0, 00) such that

a p+1
—:ye@f}g . and { f}gQ.
U{Zvj(v)HC%Hl U HCJIM

j=1
For each fixed x € Iy the map § — f(x,ﬁ) is continuous and
strictly increasing on (z, 00), with

lim f(2.9) =0 and lim f(z,3) = oc.
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Hence, the set J, := {6 : f(z,8) € L} is a compact interval,
say J, = [az, 0] C (x,00). If we write Iy =: [a,b], then, by the
monotonicity, we have f(x,b,) = b > 0 for all z. An application
of the implicit function theorem yields that the map = +— b, is
continuous, and thus in particular bounded on I5. In other words,
t := sup,cr, b, 1s finite. We now choose the constant K such that
t1/7 < K holds.

The consequences of this special choice of K are similar to those
from the one-dimensional case. Let an arbitrary parameter v € ©’
be given. Then t; := v;(7)/||CI|l1 € Iy and (p+1)/(2v;(7)[ICI|1) €
I for all j = 1,...,d. From the monotonicity properties of the
functions 8 — f(t;, ) we conclude that each of the equations

T B 9 (I
log i 2w 0lG

f(t;, ) j=1,....,d,

possesses a unique solution 37 = Bi(y) € Jy,, i.e. 87 < t. These
solutions then satisty 07 < K” for all j. In particular, for all v € o’
the functions

s (B0 — 18, (Ban) — 1s10)%) |
are included in 9 (K, p, d).

3.5.3 Specifying v

For a precise specification of the constant K in the general case
d > 1 we still have to define the function

v=0v(y) = (vi(y),-- - va() "
Our approach is to define v in such a way that it satisfies
[_U(’Y):U(’Y)] C A’ya
where A, is defined by
A, ={Cyx:x € [-4,0]}.

In the course of the examinations in Section [5.3lit will become clear
why this is a useful condition. Let us first consider an arbitrary
v € O, and let C, be the corresponding Cholesky matrix. In order
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to determine an appropriate vector v = v(7y) such that [—v,v] C A,
holds, we denote the 2¢ corners of the cuboid [—6, §] by

50 — (551')7 N _’56(;))T, where |5§.i)\ =9; forj=1,...,d
Furthermore, we set . .
w' .= C,0". (3.18)
These points w( are the corners of the parallelogram A,. Setting

w = (wy,...,wg)", with w;:= max |w§j)| (3.19)
J

the set [—w, w] is the smallest cuboid which includes A, as a subset.
In general, of course we have A, C [—w,w]. We determine now v
as a scalar multiple of w in such a way that the resulting “shrunk”
cuboid [—v,v] becomes a subset of A,. To this end, denote the 2
corners of [—w, w] by the vectors

ol = ({EY), e ,@C(;))T, where |&7](.Z)\ = wj (3.20)
for y=1,...,d.
Setting z() := C;lﬁ(i) and
= maX{|z](-i)|/5j i=1,...,2% j=1,.. .,d}, (3.21)
we then define the vector v by
1
v = —w.
Q

The corners of the cuboid [—v, v] are given by the 2¢ vectors v() :=
w"/a = C,2% /a, and because of 2V /a € [—§, 8] we have v(¥) €
A,. Hence, we achieve [—v,v] C A,. Note that in the special case
of a diagonal matrix C, = diag(\i, ..., Ag) (and thus in particular
for the case d = 1) the above procedure yields v; = \;0;, and thus
A, =[—-v,].

The Cholesky matrix C, is an invertible upper triangle matrix.
Therefore, all components of the vector w are strictly positive, and
with the same argument we conclude that o > 0, too. As a con-
sequence, all the components v;(y) of the vector v(vy) are strictly
positive—as required in Section [3.5.2] It remains to prove that v(-)

1s continuous on ©.

DNote that all the quantities w®, w, @@, 2() and «, which are defined in the following
are functions of the parameter . However, to keep the notation simple this dependence on
~ is often suppressed.
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3.1 Lemma. The maps v — v;(y) (j = 1,...,d) are continuous
on ©.

Proof. From Section 3.1 we know that C, and C’ I are continuous
in v, and therefore also all of the quantities defined in equations

(3.18)—(3.21)). From that follows the continuity of v = v(7). H

To sum up, with the above choice of the function v the con-
stant K—and thus the space ¥ = ¥ (K, p, d)—can now be precisely
specified. We will see in our later examinations that if K is chosen

according to the above criterion it is always sufficiently large such
that all functions of interest are in included in ¢. Note that in the
special case d = 1 the above procedure yields v(y) = C,6. In that
case we get (with the notation from Sections|3.5.1land (3.5.2) I = 1
and Iy = {0}. Hence, both, the approach for the specification of
K in the univariate parameter case (from Section and in the
multivariate parameter case (from Section , do coincide.

3.2 Example. To better understand what really happens during
the above construction procedure, we consider a simple example
for the case of a two-dimensional parameter v € R?  Consider
the Cholesky matrix C, = ({1), and 6 = (). Using the above
notation, we have

M=), W=, ¥=(1), §W=(1),
and therefore, according to (3.18)),
w =(2), w?=(9), w®= (1), w =(9).
)

From (3.19) we get w = (%), and the resulting cuboid [—w, w] has
the corners

o= (1), @¥=(P), a¥=(F), a¥=(2).
With 07—1 = (¢ 7") this yields
M=(1), @D=(P), H=(d), M=(2),
and therefore o = 3 (according to (3.21])), which leads to

(

v=wja=14(3).

The following plots illustrate what happens during the construction
of the cuboid [—wv,v].
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2 2

1 6(2) 5(1) : w(2) w(l)
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Figure (a) shows the cuboid [—§, 6], and Figure (b) plots the set A,
(solid lines) and the cuboid [—w, w] (dotted lines). The “shrunk”
cuboid [—v,v] is depicted in Figure (c), together with A, (dotted
lines). This last plot clearly shows that indeed [—v,v] C A,.






CHAPTER 4

Convergence of the local experiments

In this chapter we prove that the sequence of local experiments

(V" B (P : g € 4}) (4.1)

9

converges weakly to a Gaussian limit experiment. This Gaussian
experiment is introduced in Section [4.1] the weak convergence of
the local experiments is proven in Section .2 It turns out that
differentiability in quadratic mean is a suitable framework for this
purpose. Furthermore, we show in Section that the minimax
risk in this limit experiment yields an asymptotic lower bound for
both, the minimax risk in the local model and the minimax risk in
the global model.

4.1 Characterising the limit experiment

Throughout this section, let v € © be an arbitrary, but fixed cen-
tre of localisation. We define a special Gaussian shift experiment
which will later turn out to be the weak limit of the local models.
For intervals X C R we denote the space of continuous functions
f: X — RY by C%X). The o-algebra generated by the projec-
tions m;: C4X) — RY, s +— s(t), is denoted €%(X). In the fol-
lowing, we always consider the special case of the compact interval
X = [-K,K], in which €'([-K, K]) coincides with the Borel
algebra induced by the uniform norm || - ||,. As a consequence,
CY([-K, K]) is separable, and thus is

¢(-K,K]) = €(-K,K)®... ¢ ([-K,K]) (d times).

33
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(For the above assertions see e.g. |Ganssler and Stute, 1977, p. 21
ff., or Billingsley, 1968, pp. 54 ff. and 220 ff.) In the following, let

w={w,=w" . wNT . te|-K K|}

be a (time-shifted) d-dimensional Brownian motion on some ab-
stract probability space (2, A, P), with W_g = 0 P-a.s. On the
space (CY([-K, K]), 6|~ K, K])) we consider the induced distri-
butions

Q= Q.= ( /_ 'K C.g(s) ds + W) . (4.2)

The integral is of course to be interpreted component-wise. The
index v is sometimes omitted, if—like in this Chapter—a fixed v is
considered. The underlying space (€2, .4, P) can be chosen equal to

(CU[-K, K]), ¢*([- K, K]), Q).
provided that we identify W with the coordinate mapping
chd([_KvK])_)Cl([_K7K])7 f:(f17"'7fd)T'_>fi

(cf. Karatzas and Shreve, 1988, p. 72 f.). Moreover, we set x =
(1, %a)

In the course of this chapter we want to show that the sequence
of local experiments from (4.1 converges weakly to

(CU[-K,K]), ¢ ([~ K,K]), {Q+: g €F})

(in the sense of Definition . To this end, we have to show that
the log-likelihood ratios in the local experiments converge in dis-
tribution to the log-likelihood ratios of the Gaussian experiment.
We shall first examine the latter. For this purpose we use some
concepts from the Ito integration theory, however, only for the sim-
ple case of deterministic integrands. [Klebaner (1998) provides a
very nice presentation of this theory. We introduce some further
notation for the stochastic integral calculus: Suppose a function
f=(,...,f)" € CY[-K,K]) is given. With the above con-
siderations of the underlying probability spaces, we simply write
the stochastic integrals [ f; AW as [ fi dx;. Moreover, we set
[ fdx:= S [ fi dx;. This notation for the stochastic integrals
corresponds to that used by [Strasser| (1985), Section 70, and Drees
(2001).
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4.1 Theorem. Let g1,...,9m €Y and v € O be given. Then
dQy.g;
2({1og 552t | Qu) = U thisien ).
Qv J1<j<m

with Q.4 according to (4.4), = [gi(s) TZ,9i(s) ds and K =
(]{IZ]) e R™mxm,

Proof. The proof is based on the Girsanov theorem, which can be
found in Karatzas and Shreve (1988), p. 190 ff., or in a simpler, but
for our purpose sufficient version in Bingham and Kiesel (1998),
Theorem 5.8.1. The Girsanov formula yields

Qg L
ot =ew | [caa— [ eaePas]. @)

Exploiting the isometry and linearity properties of the It6 integral
(%) we conclude that

dQ+.4
Q0

o (log ) = Z([Crg dx— 1 [lCyg(s)|* ds | Q-0)

*

= N (= 3J1ICg(s)]1? ds, [IC,g(s)|I* ds).
In order to prove that also the complete vector
{log(dQ~.4,/dQ~0) 5 =1,...,m}

is normally distributed, it suffices to show that any linear combi-

nation 40 Q

dQv,O dQV 0
is normally distributed. With the stochastic integral notation intro-
duced above, and using the linearity of the It integral we conclude
that under Q4

& dQ~ o
a; log —=L%
Z’:Z1 dQ’y,O

£ S (femit [1caon s)
- [(Gren) =t (Reicawn) o

=1 i=1

—~
~—
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The random variable in the last expression is normally distributed.
These arguments imply that {log(dQ7 9,/ Q0 )}1<j§m is Gaussian
under Q.. with mean vector {—3 [ [|C,g;(s)||* ds}i<j<m. The
covariance function can be calculated to

Cov([C,g: dx, [C,g; dx) i f(cvgi< ))chgj( ) ds

= f gi\s 791 ) ds,

where (f) follows from Klebaner| (1998), p. 116. This proves the
assertion of the theorem. |

4.2 Proving weak convergence

We prove that the local experiments (4.1)) converge weakly to the
Gaussian experiment from the preceding section. As before, v € ©
denotes an arbitrary, but fixed centre of localisation.

4.2 Theorem. Consider an arbitrary, but fized v € ©. Under the
assumptions given in Sections[3.1] and [3.5 we have

(", B" {P" : g € %})
= (CY[-K,K)),C([-K,K]),{Qy4: g € 9}).

For the lengthy proof of the theorem we first show that all finite-
dimensional vectors of the form

AP dP;gg !
1 | L o gm €Y, 4.4

converge in distribution under P{" = P7 o- From that one can easily
conclude the weak convergence of the local experiments. We first
address the special case m = 1, which is discussed in the following

proposition.

4.3 Proposition. Let arbitrary, but fized g € ¢4 and v € O be
given. Under the assumptions from Sections[3.1] and [3.5 we have

7 (log Pé") s N (—1K7 K,

(n)

i

where
K* = /g(s)TIvg(s) ds > 0.

In particular, we have P "> P("
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4.4 Remark. For xk? = 0 we identify .47(0,0) with the Dirac mea-
sure g, as in the addendum to Proposition 2.8] In that case, the
positive definiteness of 7, and the continuity of g on the compactum
[— K, K] imply g = 0. Then, of course, the assertion is trivial.

In preparation of the proof, for g € ¢4 we define a triangular
scheme of stochastically independent real random variables Ugj on

(Y, B), setting

Ugj = a,g(%n;) 0, MEN, j=1,...,n. (4.5)

In the context of Remark [2.9] this triangular scheme can be inter-
preted as a family of random variables

Ui (V" B") — (R, B),

provided that we identify U7, with U} (7,;), where again 7,; de-
notes the jth canonical projection. If we write the elements of the
space V" of the form

(Ynla o 7Ynn>T7

then we can simply write Uy, = Uy (m,;) as Uy;(Y,;). We will use
this notation throughout the thesis. However, we will often also
simply omit the argument Y,,; if this does not lead to misinterpre-
tations. In addition, we set,

Ug =Y U, (4.6)
j=1

which is to be interpreted as a random variable U¢: ()", B") —
(R, B), more formally written as

US = Ud(Yor, ... Yon) = Y UL (Yrj).
7=1

Furthermore, in the following let

IKn — {]:17,n|xnj_x0‘§b5n

—{j=1,...,n: |, <K}, (4.7)
kn = #]Knv
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where K is the constant from (3.10) and the z,; are defined ac-

cording to (3.16). From (3.14)—(3.16) we conclude that k, — oo
and k, ~ 2Kn/ b, and therefore

a? ~ 2K /k,. (4.8)

The random variables UJ as well as the quantities K,, and k,, play
an important role throughout this thesis.

Proof of Proposition 4.3 The proof is based on an application
of Proposition 2.8] First we consider the expressions a,g(,;). Note
that for all vectors v € R? the inequality ||v|| < v/d||v]|s holds (cf.
Konigsberger, 2000, p. 11). Thus, we get

I* < dagllg(@n)l5

da?|lgl?,, 1{j € K.}
a’dM?* 1{j € K,},

Hang(*%nj)

IA A IA

with M as in (3.11]). Setting A,, := a, M+/d, we thus have

max{||a,g(Z,;)|| : j=1,...,n} <A, — 0. (4.9)

In addition, we conclude with (4.8]) that

A = sup { Z ‘|ang(jnj)‘|2 ‘n e ]N}

j=1
< sup{ak, :n € N} < oo.

(4.10)

Forn € N and j =1,...,n we define

Unj = UTng — ang(i‘nj)—l—gva

according to (4.5). In the following, we show that this choice of
random variables U,; fits the requirements from Proposition [2.8]
where P, P, ) and p take the roles of the measures Pyj, Gy
and fu,, respectively. The assertion of our proposition follows then
immediately from that of Proposition [2.8]

DFor sequences d,, and e,, we write d,, ~ e, iff d,,/e,, — 1.
2 For two expressions a(s) and b(s) we write a(s) < b(s) iff a(s) < kb(s) with a positive
constant k, which does not depend on the argument s.
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Proof of (2.4). From the definitions of Uy; and 7,,(-) (see also
(3.17)) we get

Roj 1= [ VPt = VB~ Ws/57] d
— [ [VPrraton — v~ a0 i) d

Let an arbitrary € > 0 be given. Due to the presumed differentia-
bility in quadratic mean at «y there is a 0 > 0, such that (using the
convention 0/0 := 0)

I 1H2/{\/m VPy — 3 Tgv\/_} dﬂ<%>

as long as ||s|| < §. Provided that n is sufficiently large, we know
from (4.9) that sup; [|a,g(Zn;)|| < A, < 9, and thus
an £

T /~ N1o <
lang(@nj)I* A
for all 7. Summation of the R,; yields

n n e ~
SRy < S g ()P
j=1 j=1
Since € > 0 can be chosen arbitrarily small, this yields ([2.2)).
Proof of and (@ Lemma implies
/Unj dP, = ang(:znj)T/é7 dP, =0,

and hence (2.3)) and hold.

Proof of and . The positive definiteness of Z, implies

= [ g (6T g(s) ds 20,

as stated in the proposition. We show now that Z -y U2 ar,
converges to 2, i.e. (2.7) holds, and thus of course “also (2.4)). A

simple calculatlon yields
Z / UZ dP, =
j=

- Z aig(i'nj)TIWQ(fnj)' (4'11)

n

> ang(F)’ ( / 0,0} dP v) ng(Tn;)

1
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In order to prove that the second moments converge, we first con-
sider the case of a one-dimensional parameter space ©® C R and
then the general case © C R? with d > 1.

Special case © C R. In this case (4.11)) is reduced to

> [z ar -1 dta )
j=1 j=1

where the Fisher information Z, is a non-negative number. We
show that the sum term converges to fg(s)2 ds. To this end, for
fixed n we consider the set

n={-K=zxn<zn<..<z, =K},
where
2K
kn

ZjZ:—K—|— ]:0,,]€n

This partition divides the interval [— K, K] into k, equally large
subintervals [2;_1, ;) of length 2K /k,. Obviously, each such subin-
terval includes one and only one of the points z,; with index j €
K,. According to (4.8) we have a? ~ 2K /k, = z; — z;_1. Hence,
> i1 ang(Zn;)? can be interpreted as a Riemann sum for g*(-) with
respect to the partition 3,. With a,, — 0 the fineness of the par-
tition tends to zero, too. Consequently, since g is continuous and
thus integrable (on [—K, K]), we have

n K
Zaig(:%nj)Q — / g(s)* ds.
j=1 ok

Applying that g/ _g gje = 0, we finally obtain

S [uar, =1,y g — 1. [ oo ds
j=1

j=1

Hence, we have shown ([2.7)) holds for the case of a one-dimensional
parameter space © C R.
General case © C R, d > 1. For the general case © C R% we get
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from (4.11)) and some simple matrix multiplication

n n d d
Z/Uij dr, = Zzzaigk(jnj)gl(jnj)zy,kl
j=1

j=1 k=1 I=1

d d n
= ) D> alge(Fnj)gi(En) Ty -
k=1 I=1 j=1
Here g;(-) and Z, ; denote the corresponding components of the
vector-valued function ¢(-) and the matrix Z, respectively. The
same arguments as in the above discussed case of a one-dimensional
parameter yield

n

> dgulins)@) T — T [ a(Sals) ds.

=1
and thus
n d d
> [uzar, — 33 T [ aloal) ds
=1 k=1 I=1
d d
= (Z T kg (s ) ds
k=1 =1

g(s)TIVg(s) ds.

Proof of (2.5). Let an arbitrary e > 0 be given. The Cauchy-
Schwarz inequality (applied point-wise) yields

— —

2 o e, @
Unj = lang(Znj) " 617 < Nlang@ap) I 1617 < Al 11

which implies

Z/ 1{|U,,] > <} dP, = Z/ 2 1{|U, > &2} dP,
< (Z lanal@l?) [ 1 PHAZIER > 2} ar,

Due to (4.10) the sum in the last expression is bounded by A.
Since A, — 0, the dominated convergence theorem implies that
the integral converges to zero. |
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4.5 Corollary. Under the assumptions of Proposition[{.3 we have

p(n) n L
log Z — 5k | = Opyb)(l),

with k* = [ g(s)'Z,g(s) ds.

Proof. The assertion follows directly from the above proof and

(2.6)) in Proposition [2.§| H

Next, we want to show that the vector from (4.4)) also converges
in distribution in the multi-dimensional case. To this end, we con-
sider m arbitrary, but fixed functions gi,..., g, € ¢. The corre-
sponding local alternatives 7, , may be defined according to (|1.3)).
We generalise the result from Proposition 4.3}

4.6 Proposition. Let m arbitrary, but fized functions g1, ..., gm €
¢ and some fixed v € © be given. Moreover, let the assumptions

from Sections[3.1) and [3.3 hold. Then

dP™
,,2”({ log 7(’5” }
dP'V 1<5<m

where

pyw) ~ J/({—%kjj}lgjgma K),

kij = /gi(S)TIvgj(S) ds
and IC = (ki;) € R™™ (cf. Theorem :

The proposition follows from several auxiliary results, which will
be verified separately. Again, we consider random variables

Uy = angi(Zn;) €, and U = Z U’

nj’

defined according to (4.5)) and (4.6)), respectively, where the vari-

ables U;‘Z}, 7 =1,...,n, are assumed independent. We examine the
asymptotic behaviour of the corresponding vector (U9, ... Udn)T,

Note that in the further examinations of this section all expecta-
tions and covariances are to be built with respect to the product
measure P,
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4.7 Lemma. Let the assumptions from Proposition[{.6 hold. Then
Cov(Ugr,U%) — ks for r;s € {1,...,m}, and thus in particular

E[(U%, ..., U)w)* — w'Kw
for all w € R™.

Proof. With Lemma 2.5 we have

for all 4 and all n, j. Furthermore, U;; and Uy are independent
for j # k. We conclude that

n n

Cov(Ugr,US) = Y Y E(ULUS)

= > alge(@nj) Tog(Fn)).

j=1

The last expression converges to ks, as in the proof of (2.7)) in
Proposition 4.3, This implies the assertion. |

4.8 Lemma. Under the assumptions from Proposition [{.0
Z(Ug, ..U | P) ~ A4(0,K).
Proof. Using the Cramér-Wold device it suffices to show that
L(Ug, ..., Ul yw | P&) ~ A (0,w" Kw) (4.13)

for all vectors w € R™. Let some w = (wy,...,w,) € R™ be
given. Lemma yields E[(U2, ..., U w]* — w'Kw. More-
over, E[(U¢,...,Uf)w] = 0, as a consequence of (£.12)). In the
case w' Kw = 0 we have Var[(U¥, ..., Ufm)w| — 0, which implies
(Us,...,U9)w ~» &y (the Dirac measure), and thus the conver-
gence (4.13). It remains to prove for the case w'Kw > 0.
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This can be done with an application of the Lindeberg-Feller theo-
rem. We simply have to show that the Lindeberg condition for the
functions Y ;" w;U5 holds, i.e. to verify that

n m 2 m
-3/ (gmen) o
j=1 k=1 1=1

6} dP, — 0

for all € > 0. The Cauchy-Schwarz inequality implies

(wag;) < |Jw]|? Z U%)?  Pas.
k=1

Moreover, we have

m
Y
1=1

gi

of = e}

m

< > YwUy;

1=1

>¢e/m}  Py-as.

Altogether, this yields

< Y030

3

/ (U921 { iU > e/m} dP,.

With some minor modifications of the calculations for the proof of
(2.5) in Proposition [4.3| one concludes that

Z/ (U2)* 1{jwi U

and thus L,(g) — 0, too. Now the assertion is a direct consequence
of the Lindeberg-Feller theorem (van der Vaart, [1998, Proposi-
tion 2.27). [

>¢e/m} dPy, — 0,

Proof of Proposition [4.6. Since a sequence of vector-valued ran-
dom variables converges in probability if and only if each of its
components converges, Corollary yields

dP™
{10% d;’f;} - ((Urgzl7 . Uﬁ’”)T—{%kjj}lngm) = 0pm (1)
v Ji<j<m !
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Furthermore, Lemma [4.§| implies
LU U = Gk hziem | PYY)
> N (—{5kj5 < jzm, K).
The assertion follows from Slutsky’s lemma. |

With the above results and some additional arguments from the
theory of weak convergence of experiments we are now able to prove

Theorem [4.2]

Proof of Theorem 4.2l From Proposition [£.3) we obtain P") <>
P for each g € 4. Since “<w>” is an equivalence relation this

implies Py <> PV(’:;L for all g,h € 4. Therefore, the local exper-
iments (V",B",{P{") : g € ¢}) are contiguous in the sense of
Definition 2.16] Furthermore, for arbitrary gi,...,9m € ¢, and
with PV = P we conclude from Proposition 4.6/ and from The-

7,0
Q..
P“”) o 0%({ logﬂ} Q o),
! Qo J1cjem| "

orem [4.1] that
and the continuous mapping theorem (cf. van der Vaart, 1998, p. 7)

dP™
< ({ log 7(’5)] }
dP7 1<5<m

yields
dP™ d .
(V) 2) -2 ({Gas) L [ on)
APy ) 1cjcm dQ@v0 ) 1<j<m
The assertion follows now from Theorem [2.17] |

4.9 Remark. Note that all of the above calculations were done
without the additional growth condition from (3.10). Indeed, in
all of the above proofs we only used the assumption that the func-
tions ¢ are continuous on [— K, K] and equal to zero outside of this
compactum.

4.3 Lower asymptotic minimax risk bounds

The above proven weak convergence of the local experiments has
some immediate consequences for the asymptotic minimax risk
within these experiments. The following theorem states that the
maximal risk of any sequence of estimators in the local experiments
is asymptotically bounded from below by the minimax risk in the
limit experiment.
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4.10 Theorem. Consider an arbitrary, but fived centre of locali-
sation v € O, and suppose that the assumptions from Sections
and hold (in particular, let § = (01,...,0q4)" be given, with com-
ponents §; > 0). Moreover, let 4,,(xo) be an arbitrary estimator
for the parameter v, (xo) (with unknown g € ). Then

lim inf sup P {Agn(20) — Ygm(w0) € [—0an, dan)C}

n—00 ged

> int sup [ (= [900) = 5.9(0) + 51°) 4@, (2

geY

holds for arbitrary subspaces G C 4. The infimum in the above dis-
play is built over the class of all randomised estimators o for g(0),
i.e. over all Markov kernels o from (CY|—K, K]),¢%([-K, K]))
to (R4, BY).

Proof. Consider the loss function W = {W, : g € ¢4}, where
W,(s) :==1{s —g(0) € [-4,6]°}, se€R"

W is lower semi-continuous and level-compact (cf. Definition [2.18)).
To simplify notation we write the local experiments and the limit
experiment in this proof as

B, =" B" {P:g€¥9})
and
E = (CY[-K,K]), ¢ ([~ K,K]),{Q,4: 9 € ¥4}),

respectively. It is clear that each of the experiments F, is domi-
nated, and the application of the Girsanov theorem in the proof of
Theorem [4.1] implies that the same holds true for the experiment
E. Moreover, we have shown in Theorem 4.2/ that E,, — E. Hence,
the conditions from Theorem [2.19] apply, and therefore—using the
notation from Definition [2.11}—every sequence of decision functions
0n € R(E,, RY) satisfies the inequality

liminf sup R(g,0,) > inf sup R(g,o0). 4.14
N0 ey (9 &) 0eR(ERY) geg (9.0) (4.14)

For g(0) we consider the estimator ¢,(0) = (Y4.(z0) — 7)/an.
Clearly, (4.14)) also holds if we specialise g,, to

on: (V" BY) = [0,1],  (y.B) = 1{ga,(0) € B}.
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Here we use the notation gy, (0) to clarify that §,(0) is based on
the observation y = (y1,...,y,)' from the local experiment E,,.
This special choice of p,, fulfils

R(g7 Qn) - // Wg(S)Qn(y’ds) P(n (dy)
B //1{5 —9(0) € [=6,0] }ou(y, ds) PLy(dy)

- / 1{4.,(0) — g(0) € [—5,6]°} P(d

= P9 {9.(0) —, 50}
= %g{'Yg,n L0 _797n(x0) [_&Lméanlc}-

An analogue calculation for o € R(E,R?) yields

R(g, 0) = / 0 (2. [9(0) — 6,(0) + 81°) dQ, ().

Plugging these results into (4.14)) proves the assertion of the the-
orem for ¢ = ¢. Passing over from the experiments F, and E
to corresponding subexperiments the assertion follows for general

subsets 4 C ¢, too (cf. Remark [2.15)). [ |

Note that Theorem holds for arbitrary sequences of esti-
mators 7, (zo). Consequently, the minimax risk in the limit ex-
periment (and every lower bound on it) is asymptotically a lower
bound for the minimax risk in the sequence of the local models. It
can even be shown that this lower bound in a certain way carries
over to the global model.

4.11 Theorem. Let fn(xo) be an arbitrary estimator for &(xy),
the value of the parameter function at xy in the global model F =
F (xg, 0%, u). Presume that the assumptions from Sections and
hold. Then

lim inf sup P {fn ro) — &(20) € [—5(1”,5@”]0}

> sup inf sup / 0 (2.19(0) — 8,9(0) +81) dQs,(2),

~NeEO* 0 gc9

with o as in Theorem [{.10.
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Proof. Let B.(v) denote the open ball with radius €, centred around
the point v. We set H := (0*)¢, H. := H U (U,cg B:(v)) and
OF := (H.)°. Then ©F C ©* for all ¢ > 0 and ©F 1 ©* as ¢ — 0.
From the definition of ¢ in (3.10) and from (3.11) we conclude
that sup,cy [|@n9(0)||c < anM — 0. Thus, for every given (small)
e > 0 there is an index N such that, firstly, for all n > N holds:

vyE€OL, 9€9 = vuulro) =7+ ayg(0) €O

Secondly, for each s € [—x¢,1 — x| we have

(19
[Vgn (o +8) = Ygn(@o)llw = anllg(bns) — g(0)[

(13.10)
< an(bnls|)”

Alsl? = u(s).
Let us presume for a moment that n is fixed and sufficiently large.
The product measure P.") only depends on the values 7, (7,;),
which follows from the definition in ([1.4). For all other arguments
Ygn () may be changed without having impact on the resulting
product measure. Hence, from the just shown properties we con-
clude that for each ,,, with v € © and g € ¢ there is a function
¢ € # (which may vary with n) such that ~,,(zo) = &(x) and
Yy (Tn;) = E(xp;) for all . In addition, the estimator &, (xg) can of
course also be interpreted as an estimator for the parameter v, ,, (o)
in the sequence of local models. Thus, we get
liminf sup Pé”){én(xo) — &(m9) € [—day, 0a,)”}

=00 g

> liminf sup sup Py(:g{én(x()) - Vg,n(xO) S [_5an75an]c}

=00 Ne@r gey

(%) .
> sup liminf sup P {&(20) — ygm(20) € [—Say, da,)“}
Ne@r N0 gey ’

> sup inf sup / 0 (2,19(0) = 6, 9(0) + ) Q- 4(2).
~EO: 0 ge¥9
(4.15)

The last inequality follows directly from Theorem [4.10, In order to
prove (%) we set

dn(y) = sup PO €, (w0) — Vg (w0) € [0an, 0ay) ).
ge
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It is clear that the smallest accumulation point of the sequence
sup,, d,,(7y) is not smaller than the smallest accumulation point of
any sequence d, (") with arbitrary, but fixed 7/. In other words,
we have

liminf sup d,(y) > liminf d,(y)

n—oo ~y n—oo

for all 4/. Consequently,

liminf sup d,(vy) > sup liminf d,(v),

n—00 n—00
v v

and thus (x) holds. Letting ¢ — 0 in (4.15)) implies the assertion of
the theorem. [

According to this theorem a lower minimax risk bound in the
limit experiment always yields a lower asymptotic bound on the
minimax risk in the global model. The question of how to compute
reasonable lower bounds in the limit experiment will be discussed
in Sections [5.1.4/and [5.3.2] Finally, we derive an assertion on lower
asymptotic minimax risk bounds in the restricted global model .#y.

4.12 Corollary. Consider the restricted global model Fy(xo,0%u)
from (3.9). Let &,(xo) be an arbitrary estimator for (xy), and let
the assumptions from Sections and [3.3 hold. Then

liminf sup Pg"){én(xo) —&(x0) € [—5%,5%]0}

=00 cc gy

> sup inf sup [ o (Z: [9(0) —4,9(0) + 5]0) dQ'y,g(z)a
NeO* @ gex

with & = {g € %1 : g is continuous on R} and o as in Theo-

rem [{.10).

Proof. Suppose that v € ©f and g € ¥ are given. From the
definition in (3.12)) follows that for x,y € [0, 1]

1790 (%) =Yg (W)lloo < ullz —yl).

With this additional argument the proof is a simple copy of the
proof to Theorem [{.11], replacing there .# by .y and ¢4 by &,
respectively. |
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4.13 Remark. The results from Theorems [4.10] and 4.11] corre-
spond to those of Corollaries 2.1 and 2.2 in Drees| (2001)). For the
proofs we mainly used properties of the functions from the spaces
Z and ¥. Moreover, we exploited that the loss function under
consideration is lower semi-continuous and level-compact in order
to prove the central inequality of Theorem (which is based on
Theorem [2.19). Thus, similar results should be reached for gen-
eral lower semi-continuous and level-compact loss functions—such
as quadratic loss—by simple modifications of the above proofs.



CHAPTER D

Assessing the limit experiment

Up to this point, we have proved that the local experiments con-
verge weakly to a Gaussian limit experiment. We now consider the
problem of estimating the local parameter g(0) within this limit
experiment, where g € ¢4. We want to assess the corresponding
minimax risk under zero-one loss. More precisely, we want to de-
rive upper and lower bounds for the minimax risk. In Section
this is done for the special case of a one-dimensional parameter
space, i.e. for the special case ¥ = ¥(K,p,1). In Section
we expand these results to the general multivariate case in which
Y = 9(K,p,d) with d > 1. To distinguish these two cases we
shortly speak of the “one-dimensional” (or “univariate”) and the
“multi-dimensional” (or “multivariate”) limit experiment, respec-
tively. Section gives some supplementary results on the theory
of hardest linear submodels and may be omitted in first reading.
We conclude this chapter with a discussion of the results and the
used methodology.

5.1 Minimax risk bounds in the univariate limit experi-
ment

Throughout this section we restrict ourselves to the case of a uni-
variate parameter space © C R. Moreover, in this section v € ©’
(defined according to (3.7))) always denotes an arbitrary, but fixed
centre of localisation, for which we consider the corresponding limit

o1
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experiment
(Cl([_Kv K])acgl([_[Q K])v {Q%Q tgc %})7

where 4 = 4(K, p,1) as in (3.10). Within this model we discuss
the problem of estimating the local parameter g(0). We derive
upper and lower bounds for the minimax risk under zero-one loss
I;_ss5c. Note that in the one-dimensional case the information
matrix Zg and the Cholesky matrix C, are simply positive constants.

5.1.1 Estimating Gaussian means

First we show that the problem of estimating the local parameter
within the limit experiment can be reduced to the problem of esti-
mating the mean in certain Gaussian location models. To this end,
let us presume for a moment that the local function, which is an
element of the local function space ¢, is not completely unknown.
Suppose we have the information that the local function is of the
form (g, with known ¢g € ¢ but unknown parameter ¢ € [—1,1]
which thus has to be estimated. Hence, for given g € ¢ we consider
the (centrosymmetric) linear submodel

{Qy¢o: C€[-1,1]}. (5.1)

Within this model we want to assess the minimax risk for the esti-
mation of the parameter (g(0), given the loss function 1j_s5c. If

g(0) = 0, then each estimator ¢ for ¢ fulfils ]ég(O) —(g(0)| =0 <9,
leading to a minimax risk of zero. Consequently, in the following
we can restrict ourselves to the case g(0) # 0, and because of the
symmetry of the space ¥ we can even assume g(0) > 0. Using the
notation for the stochastic integrals from Section [.I}—adapted to
the here considered univariate case—we set

_ fcvg dx
1C,gllr2

Then Z(Y, | Q10) = A7(0,1), and
LYy | Qrgg) = A0, 1), 0 :=([[Cygllr2.
The fact that ¢ € [—1, 1] leads to the additional constraint

Y, : (5.2)

9] < ICygllne =: 7. (5:3)
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Given an estimator o for 9, then

¢:=10/(ICygllxs (5.4)
yields an estimator for (. The resulting estimator é’ g(0) satisfies
€C9(0) = ¢g(0)] > 6 & [0 = 9| >4, (5.5)
where silc 5

g(0)  g(0)"
The primary task was to find a minimax estimator or an upper
minimax risk bound for the estimation of (g(0) in the model (5.1,
given the loss function 1j_sg5c. As a consequence of (.5 this is
equivalent to finding such an estimate (and an upper bound, re-

spectively) for the estimation of the parameter ¢ in the model
{AN(0,1) -0 € |—1,4, 74}, (5.7)

given the loss function 1j_s 5 c. In other words, it suffices to con-
sider the problem of estimating the mean in the Gaussian model
(15.7), which we want to assess in the following. All the results found
for this model then easily carry over to the model .

In the case ¥ € R, a minimax estimator for ¢ with respect to
the loss function 1j_s 5 ¢ is given by Y (which follows e.g. from
Strasser, (1985, Theorem 38.22). However, the constraint |J]| <
7,—1i.e. the additional information on the location of ¥—somewhat
complicates the situation. In the following, we consider so-called
affine estimators, i.e. estimators which take the form

cgYy +d,g.
The minimax risk in the model ((5.7)) is given by

inf sup Ay {0 -0 > 5},
v |9|<T,

where the infimum is taken over all estimators o for 9. Analogously,
we define the minimax affine risk by

inf  sup L/Vw’l){\@ — 9| > 04}

Y affine |9|<7,

An affine estimator ¥* whose maximal risk equals the minimax
affine risk is called a minimaz affine estimator.
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5.1 Theorem. Consider the model with the loss function
1 5,5,c- Then the minimaz affine risk is given by

alo) = |0 (<)o (2]
1{g(0) > ¢},

where

2047, Ty — Og

(1, e e8]
- *_4+26||cvgui,2lgg<o>—5] ) Hol0)= o}

-1
1 1 1 46,142
o=5+ [Tt ) >0

Moreover, c,Y, is a minimaz affine estimator for v.

Addendum. Let the loss function 1;_sgsc be given. Then

CqYy 9(0)/”Cvg||A,2

is a minimaz affine estimator for the parameter Cg(0) within the
linear submodel {Q~ ¢y : ¢ € [—1,1]}, the minimax affine risk is

giwven by Rg(g).

Proof. In the case 7, < §,—which is equivalent to 1{g(0) > é} =
0—the minimax affine risk is equal to zero, as stated in the asser-
tion. Otherwise, if 7, > d, the assertion of the theorem coincides
with Theorem 1 in Drees (1999). To see this, one simply has to
replace there 7 with 7,, x with d,, ¢ with ¢, and Y with Y,. Fur-
thermore, the quantity U4 -(z) from|Drees’ paper equals 1— R’ (g),
and thus

. Ty + 0 Ty — 0
o) =1- [0 (B )~ 0 (B2 )]
g g

) )
:@(_Eiﬁ+@)+¢(@ g_%).
Cg Cg

The assertion of the addendum follows from ((5.4)) and the equiva-
lence in ([5.5)). H
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5.1.2 The theory of hardest linear submodels

Which benefits do we actually get from the above examinations of
the minimax affine risk in linear submodels of type ? To give
an answer to this question, we have to do a short excursion into
the theory of the estimation of linear functionals. Suppose we are
given an observation y that satisfies

y= Az + 2, (5.9)

where x is an element of a convex subset 2~ C Lo(R,B,\), A
is a linear operator, and z is a random variable, interpreted as
noise. We are interested in the value of L(z), where L: 2 — R is
some linear operator. Suppose we are given a loss function A as in
Example 2.12] Let the corresponding minimax risk with respect to
this loss function be denoted R*(Z"), i.e. we have

R(Z) = if sup E[A(L(y) — L(=))],

where the infimum is taken with respect to all possible estimators
for L(x). In the following, we focus on affine estimators L, we
denote the corresponding minimax affine risk by
(27) = inf  sup E[A(L(y) — L(2))].
L affine zeZ’

Let now some elements x1,x9 € 2 be given, and let
[Il,.’ﬁg] = {txl + (1 — t)LUQ it e [0, 1]}

denote the set of convex combinations of x; and x9. We consider
the minimax affine risk in the corresponding linear submodel

Rig([x1,29]) == inf  sup E[A(L(y) — L(z))]. (5.10)
L affine x€[xq,25]
Trivially, we have R!¢(Z") > Rig([x1,x9]) for each choice of 4
and xo, which is due to the simple fact that in no case the loss will
increase if we are given the additional information that = € [z1, x9],
and therefore

ar(27) = sup{Rog([71,72]) s w1, 20 € 27}

Donoho (1994)) and Donoho and Liu| (1991) show that for certain
loss functions A (such as quadratic loss) and with some additional
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regularity conditions the above formula is an equality, and that
the supremum is attained (and thus a maximum). That is, under
certain conditions

() = sup{Rig([z1,22]) : 1,20 € X'} (5.11)
o (21, 73])

holds for some z7,25 € 2. The linear submodel corresponding
to the family [z7, 23] is also called a hardest linear submodel (also:
least favourable linear submodel).

5.1.3 An upper minimax risk bound

According to arguments of [Donoho| (1994) (cf. there Section 9), our
white noise model

X = / Cyg(s)ds+W, ge¥ (5.12)
~K

from Section [4.1] can be identified with a model of the type (5.9). In
this case the linear operator A from ([5.9)) is simply a constant factor.
The space 2 and the linear map L from the above description
correspond in our setting to the space ¢ and to the linear map
g — ¢(0), respectively. The affine estimators T' for ¢(0) are of the
general form T'(x) = e + [ U dx (see Donoho and Liu| 1991} for
details). As loss function we take A = 1;_;5c.

For fixed g € ¢ let R};(g) be the minimax affine risk with
respect to the loss function 1_sc for the estimation of g(0) in the
submodel {Q4 ¢, @ ¢ € [—1,1]}. Let R':(%¢) denote the minimax
affine risk in the complete model {Q,, : g € ¥}. It is clear that
¢ is convex. Hence, it can be concluded from the arguments of
Section 9 and Theorem 1 in Donoho (1994) that

#(9) = sup{Ry(9) 1 g € 9}, (5.13)

which is a special case of ((5.11)).

5.2 Remark. The supremum in is built over the minimax
affine risks corresponding to the linear submodels {Q, ¢, @ ¢ €
[—1,1]}, with ¢ € 4. Apparently, this is a smaller class of sub-
models than that considered in (5.11)). Furthermore, the results
from Donoho| (1994)) are formulated for a quadratic loss function
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(amongst others), yet they do not take into account zero-one loss
functions. Therefore, some additional arguments are needed in or-
der to prove that indeed holds true. These arguments are
assembled in Section [5.2]

The main goal of the remaining part of this Section is to show
that there even is a function g* such that the supremum in (5.13])
is attained, i.e.

ai(g") = sup{Rig(g) 19 €9} = Ryg(9). (5.14)

In other words, we want to find a hardest linear submodel. If we
are able to find such a ¢*, then

% % (15.13)) % %
R'(9) < Rw(@) "2 Rig(9).

where R*(¢) denotes the minimax risk for the estimation of ¢(0)
with respect to the loss function 1;_s5c. The minimax affine risk
“¢(g") from the hardest submodel thus yields an upper bound for
R*(¢). Note that the above inequality is quite trivial, because the
class of affine estimators for the parameter ¢(0) in the (complete)
limit experiment {Q,, : ¢ € ¥} is a subset of the class of all
estimators for g(0). Therefore the minimax affine risk can never
be smaller than the minimax risk—which takes into account all
possible estimators.
Consequently, it remains to assign a function ¢* which defines a
least favourable linear submodel. To this end, we first consider the
subspace

@) — {9€9:lgllr2=0a} C¥9,

with some fixed a > 0. We investigate the minimax affine risks
in the corresponding linear submodels {Q ¢, : ¢ € [-1,1]}. For
symmetry reasons, we can assume without loss of generality that

g(0) > 0. According to the arguments from Section this is
equivalent to investigating the minimax risk in the models

{A(0,1) 20 € [=74, 7]},

with 7, and 9, defined according to ((5.3) and ([5.6)), respectively. As
g ranges over 4@ then clearly

79 = [ICygllr2 = Cy,
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which means that 7, is constant for whatever choice of g € ¢ (o),
Furthermore, 6, = 7,6/¢(0) is strictly decreasing in ¢(0). This
implies that R’ (g) is strictly increasing in ¢(0) (for g ranging over
%(?)). These arguments lead to the following conclusion:

5.3 Proposition. Only such functions g € 9 can describe a
least favourable submodel for which the value g(0) is mazimal.

With this result and the additional growth condition from ((3.10))
one can now easily conclude that a function ¢ € ¢ to define a
hardest submodel must be of the general form

gs(s) = (B — [s]")". (5.15)

Comparing all functions g € ¢ that have constant norm it becomes
clear that the functions of this specific type have the maximal
value at the origin. Hence, a hardest linear submodel exists, and
thus holds, if the function 8 — R!¢(gs) has a maximum,
say (3%, for which the corresponding function gg- lies in ¢. This is
indeed the case, as is shown in the following theorem.

5.4 Theorem. Consider the loss function 1_s5c. Let 3 > 0 be
the unique positive solution of the equation

Bt/ _p+1 (5.16)
log 5t0 2,0 '

and let gg be defined according to . Then

1 1
5(0) = — (14 1) g-a+ue / g
9(0) ZCW(JFp)ﬁ gp dx

is a minimaz affine estimator for g(0) in the model {Q~4: g € 4}.
The corresponding minimazx affine risk is given by

o (- )

(e )

(5.17)
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Proof. The proof mainly follows the lines of the proof of Theo-
rem 3.1 in Drees| (2001). With the above examinations it suffices for
the definition of a hardest linear submodel to restrict ourselves to
functions of the form g3 according to (5.15)), with 8 > 9. The min-
imax affine risk in the corresponding submodels is then a function
of 8. According to Theorem [5.1] it is given by

#(8) = Rig(gs)
- @ (—Tﬁ 0 T@> +® (Tﬁ — % _ Tﬁ) . (5.18)

g g
where 75 1= 7,,, 05 := 04, and cg := ¢y,. In order to determine a 3"

and thus a function gg- for a hardest linear submodel we maximise
R with respect to 5. According to Theorem cp is defined by

1 1 1 ot 0s1Y2\
cﬁ<_+[_+ g 250 ) e

2 4 27130p T3 — 03

and thus

1 1 1 )
o1 10g76+ 8
Cﬂ C@ QTﬂ(Sg Tﬁ-dg

1

s = 0p g \Cp
o -0 )
N M:¢<Tﬂ ﬂ—7'5>/90<7—ﬂ+5—7'5). (5.20)
s — 0p cs Cp
Differentiation of ([5.18)) and the symmetry of ¢ hence yield
d _, - T3 + (55 d T3 + 55
d/B aff(ﬁ) _ 90< cs +7—ﬁ> dﬁ ( cs +Tﬂ

Tg—&g_ i 7'5—55_
+¢( ca Tﬁ) dﬁ( cg Tﬁ)
(6-20) T8+ 05 d [ 13+ 03
(b [

Tﬂ—i_éﬁ.i 7'5—(55_
+7‘g—55 dﬁ C@ Tﬁ '

B 9 B 4p262+1/p
ool = [ (G=1s07) s = s G2)

Note that
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and therefore

20311/ (20)
73 = Cyllgsllr2e = C :
B e o7y EE
5 @ C gl = ¢, 020
T TS T T+ e+ DI
With these expressions one further concludes that
d (2p+ 1) 1
—T3 = T —,
s’ I\ 2 )
d (15+05\ _ Fog/B+ A £6/B)[L+1/(2p)]7s/0
— | — = (5.23)
dﬁ Ca Cp

(75 % 05) 45¢5
2
s

)

and some additional calculations yield

d Tg-|—55 Tg+55 d Tg—(55
dﬁ( cs +Tﬁ>+7ﬂ_5ﬁ g\ ¢s "
( 7'5—1-55) d d (75—1—55)

— (1= ey — —
T8 —03) dp g\ c¢s
T3 + 0 i T3 — 03

75—55 dﬁ Cﬁ

(5.23) (I—Tﬁ—i_&ﬁ) <2p+1> l
N m—05) "\ 20 )
B (W +(1+6/B)1+1/@p)ms/8 (T8 + M%Cﬂ)
Cﬁ C%

RS (w + (L= 0/B)1+1/2p)l7s/
75— 0p Cp

_l_

(- 5@)%%)

2
€3
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- 27‘5(55 (Qp-i—l) 1

=05\ 20 )8
L TB 03 (%/ﬁ —(1+9/8)[1+ 1/(2/))]Tﬁ/ﬂ)
T8 — 0p cs

=1
L T8+ 9 <5ﬂ/ﬁ +(1—0/8)[1+ 1/(20)]Tﬁ/ﬁ>
78— 0p cg
_ 27503 (2,0+1) 1 n 1 .QTﬁ(sﬁ/ﬂ

T3—0s\ 2p ) B T13—0p ca
- 2750 [i_ 2p—|—1]
B(ms — dp) Lcs 20 |’

Plugging this into the above expression for %Rzﬂ(ﬁ) we finally get

d .
%Raﬁ'(ﬁ)
(5.24)
_ gp(Tﬁ+5ﬁ—Tg> 27305 [i_Qp—i—l]
Cs Blrs —ds) Les 2p |7
and thus:
d _, B I 2p+1
m [1 1 551" 1
(619 L 10g7’@+ & _pri
4 27’555 Tg—(Sg 2p
1 o 2 1
N 10g75+ g _2p+
2Tﬁ55 Tg—(;g 4/)2

ogl(B+0)/(B—0)] _ 2Z,0

The last equivalence follows from inserting the expressions for 7,
d, from ((5.22)). This last equation possesses a unique solution 3* €
(6,00). This follows from the fact that the map

61+1/p
£(6) = ,
log[(6+6)/(8 —9)]
is strictly increasing and tends to 0 as 3 | d and to oo as 3 — oo.
The monotonicity of f is a consequence of the observation that
x — log[(z 4+ 0)/(x — §)] is strictly decreasing on (d,00). (Note

B € (6,00)
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that this is the map f that we considered in Section [3.5.1]in order
to specify the constant K.) Furthermore, if we plug the definitions
of 753 and d3 into (5.19)) we get

1 1 J1 3 B+6]Y?

—=_ |7+ log ,
1 250y, B F -9

for [ >9.
Cp 2

Again using the fact that 8 — log[(8 + 9)/(8 — §)] is strictly
decreasing in 3, as well as the quotient ﬁ/||g5|\§\2 (which is clear
from ([5.21])), we see that 1/cg is strictly decreasing in 5. Thus, the
derivative in ([5.24]) is positive for 3 < #* and negative for § > %,
and therefore 3" is a unique maximum of R};(3) (see Konigsberger,
2001} p. 146). Note that by the specification of the constant K it
is assured that the function gg- is included in 4 = ¥ (K, p,1).
Therefore, according to the arguments preceding this theorem, gg-
defines a hardest linear submodel, such that holds with g* =
gs+. Moreover, from the addendum to Theorem we see that

9(0) := c5-Yy,. 95-(0)/||Cy g+ |22,

is a minimax affine estimator for the parameter (gs+(0) in the corre-
sponding submodel, and thus for the parameter ¢(0) in the complete
limit experiment {Q,,: g € 4}, too. Some additional calculations
(in which we shortly write 8 instead of 3*) yield

.
1C-g511x.2

g2 /gﬁdx
Cillgslia 20 +1

20 (p+1)(@2p+1)8  2p /
= - gp dx
4C, p? 3>+ 1r 20+ 1

1 1
LY ga / s
26, ( i P) ’ 9

Y,

95

9(0) =
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Therefore, §(0) has the same form as stated in the theorem. More-
over, we obtain

+6 2p+1 5
X0 _ . - 22T (1:|:—>Tg—7'5
s 2p p

2p+1 o 2
Y <1i5_2pi1)T5
(L L ot 1)6) C,2pB" /)
2p 2p8 ) l(p+1)(2p+ 1)]1/2
) (1 L (@0t 1)5) C. g1+1/2)
3 [(p+1)(2p + 1]V

Plugging this into ([5.8]) yields the minimax affine risk for the hard-
est linear submodel and thus for the complete model. It is easily
verified that this coincides with the expression from ([5.17)). This
concludes the proof of the theorem. |

5.5 Remark. Using the definitions of 7, and d,, the expressions
*¢(B) and cs from (5.18)) and (5.19)), respectively, can also be
written as

C 1446
;ﬂ(ﬁ): [q)<_ 7”95”%262 + /6>+07H95H/\,2>
v SIbeC0 s ) 145 > o)
B

and

-1
1 [1 i 5+5]1/2

cg= =+ |-+ lo {5 > o).

g (2 i 2%5C2gsE, B B0 >0

This specific representation will turn out helpful in later examina-
tions for the multivariate parameter case.

5.6 Remark. In Section [3.5.1]we provided an approach that should
assure that K is sufficiently large such that specific functions of the
type gs are included in ¢4 = ¥ (K, p, 1). With regard to the proof of
Theorem[5.4]it is now evident why this effort was made: by choosing
K according to the approach from Section |3.5] it is guaranteed that
a hardest linear submodel exists.
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5.1.4 A lower minimax risk bound

So far we have derived an upper minimax risk bound for the estima-
tion of the parameter g(0) within the univariate limit experiment
(CH[-K,K)),CY[-K,K]),{Q~, : g € 4}). We now want to
derive a suitable lower bound for the minimax risk. Since we are
here considering the case of a univarate parameter the used meth-
ods are exactly the same as those in Drees| (2001)). For the sake of
completeness, we repeat the main ideas from that paper.

Assessing the linear submodels. Again, for given g € ¢ we
first consider the corresponding linear submodel

{Qreo: ¢ e[=1,1]}

from (5.1). The minimax risk with respect to the loss function
1_s4c for the estimation of the unknown parameter (g(0) in this
submodel is denoted R*(g). Note that in contrast to Sections[5.1.]]
and [p.1.3}—where we investigated the minimax affine risk Rig(g)—
we now allow for arbitrary, not necessarily affine estimators for (.
For symmetry reasons we can (and will) in the following assume
without loss of generality that g(0) > 0. Following the arguments
from Section [5.1.1, R*(g) equals the minimax risk in the Gaussian
model

{AV(0,1):0 e€7,}

from ({5.7)), with underlying loss function 1_; s5ic, where 7, =

1C9llr2 and 6, = 7,6/9(0) according to (5.3) and ({.6]), respec-

tively. In other words,

R'(g) = inf sup Mo {0 = 9] > 6,}. (5.25)
<7y

This quantity is investigated in detail by Zeytinoglu and Mintz
(1984)), and also by Drees (1999): following their results R*(g)
depends on 7, and ¢, only through the smallest integer [ which is
greater than or equal to the quotient 7,/6, = ¢(0)/d. If | = 1, then
g(0) <9, and thus R*(g) = 0. Otherwise, for the case when [ > 2

DIndeed, all of the following results are directly deduced from Drees (1999), p. 400 f., if
there—similar to the proof of Theorem [5.1}—7 is replaced with 7,, z is replaced with J, and
a; with ¢;. The quantity ¥y , from Drees| paper equals 1 — R*(g).
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the minimax risk is then given by

R*(g) = ®(c|g-1)/2] — Ig), (5.26)

where | 2| denotes the largest integer less than or equal to z; the fac-
tor ¢|(j—1)/2) is determined through a system of nonlinear equations
given by

(—cj — 0g) + P(cj—1 — dg) = D(ci-1)/2) — ),
for j=1,...,[(1—1)/2],

with c¢g := —cy if [ is odd and ¢y := 0 if [ is even.

Computation of a lower bound. Let R*(¥) denote the mini-
max risk (with respect to the loss function 1;_55c) in the complete
limit experiment {Q,, : g € ¥}. Obviously, R*(¢) > R*(g) for all
g, and thus

R*(¢) > sup{R*(g) : g € ¥}. (5.27)

To derive a lower bound for R*(¢) we thus only have to com-
pute R*(g) and then maximise this expression with respect to g.
The ideas for this maximisation are exactly the same as in Drees
(2001)). For symmetry reasons we can restrict ourselves to the case
g(0) > 0. Furthermore, all of the arguments directly preceding
Proposition [5.3| and Theorem do also hold if the restriction to
affine estimators is dropped. Hence, it is sufficient to consider on
the right side of only those functions g which are of the spe-
cific type g = g, defined according to (5.15). To this end, we first
fix an integer [ > 2 and consider all values (3 such that

(l—1)5 < B <10
Then equation (5.26)) yields
R*(gs) = @(c|-1)/2) — Ig5):

with 0y, = 0]|C,gg|[x2/8. Because of (5.22)) d,, is strictly increasing
in 3, and in combination with some arguments from the proof of

Theorem 2 in Drees (1999), this implies that R*(gs3) is maximised
as 0 | (I —1)d. Therefore,

su lim R*
lzg BL(I-1)d (gﬂ)
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yields a reasonable lower bound for R*(%), the minimax risk cor-
responding to the problem of estimating the local parameter ¢(0)
in the univariate limit experiment {Q,, : ¢ € ¢}, when the loss
function 1_55c is given.

In practice, this lower bound has of course to be calculated
numerically. One might do this in two steps, firstly computing
limg|;_1y5 B*(gg) for each | = 2,3,..., and, secondly, maximising
the resulting expressions with respect to [. Combining these argu-
ments with the results from Section 4.3, we are now able to compute
lower bounds for the asymptotic minimax risk in the global model
(y", B", {Pg") : £ € #}) (provided that the parameter space © is
one-dimensional).

5.2 On the theory of Donoho and Liu

In Section [5.1.3| we referred to results from the theory of Donoho
(1994) and Donoho and Liu/ (1991) in order to justify (5.13). Doing

so, we accepted however two inaccuracies:

Problem 1. In the supremum is taken over the minimax
affine risks corresponding to submodels indexed by the func-
tions (g, with fixed g and ¢ € [—1, 1]. However, following the
lines of Donoho), the supremum ought to be taken over the min-
imax affine risks corresponding to a larger class of submodels,
namely—as in —to the class of all submodels indexed
by the sets of convex combinations {tg+ (1 —t)h : t € [0,1]}
(with g, h € ¢). 1t therefore remains to prove that it is indeed
sufficient to take the supremum over to the smaller class of
centrosymmetric submodels {Q~ ¢, : ¢ € [—1,1]}.

Problem 2. Donoho and Liul show that the minimax affine risk
in the complete model equals the supremum over the mini-
max affine risks in the linear submodels, which they prove for
certain classes of loss functions, such as for quadratic loss and
some “fixed-length confidence statements”. It remains to prove
that such a statement also holds in case of our specific zero-one
loss function 1_s 5c.

In the following, we will discuss these two problems and show that
(5.13)) indeed holds.
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Throughout this section let the assumptions made at the begin-
ning of Section hold, i.e. we suppose that a fixed v € © C R
is given, for which we consider the corresponding limit experiment

{Qyg:9g €9}, with 9 = 9(K,p,1). We also use the notation
from that section. For arbitrary g, h € ¢ let in the following

lg,h] :=={tg+ (1 —t)h : t €]0,1]}

denote the set of convex combinations of g and h. The correspond-
ing linear submodel is then defined by

Q@ jgn) = { Qs : [ € [g, R},

and the minimax affine risk (with respect to the loss 1;_;45c) is
denoted R’4([g, h,]). With the choice h = —g we obtain the special
submodels already considered in (j5.1)), for which we shortly write

a(9) for Rig(1—9,9]).

5.2.1 Restriction to centrosymmetric models

In this section we discuss the first of the two problems described
above. We show that the supremum taken over the the minimax
affine risks of all linear submodels is the same as the supremum
taken over the minimax affine risks of the centrosymmetric linear

submodels {Q, ¢, : ¢ € [—1,1]} considered in Section 5.1} In other
words, we have to prove that

sup{ Ry ([g, h]) : g, h € G} = sup{Ry(g) 1 g € G}

To this end, let some arbitrary g, h € ¢ be given. We consider the
corresponding one-dimensional submodel Q%[g,h]' Setting k =
(9+ h)/2 and w := (g — h)/2 each f € [g, h] has a unique repre-
sentation as

f=k+Cw, Ce[-1,1].

In order to estimate the parameter of interest f(0) = k(0) 4 Cw(0),
we have to estimate (. For that purpose we consider the random
variable

v [ Cow dx
w — )
1Cyw|lx2
2)Note that in the case h = —g the notation introduced in the following is completely

compatible with that from Section @
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defined according to . Without loss of generality, we can as-
sume that w(0) > 0. Again, we have Z(Y,, | Q,0) = A4(0,1)
and

LYo | Qrrcw) = A (9,1),
where

(Cyw, Cy(k + Cw))

[Cywl[x2
(Cyw,C k) ClICwl%
+
|Cyw||x2 [Cywl[x2
C, (Hg||%\2_Hh||§\2)
= L. ’ ~ + (||Cyw
2 g — R|lx2 Clicywll
=: agn+ (Tw.

Since ¢ € [—1, 1], the location parameter ¥ underlies the restriction
VS [ag,h — Tw, Qg h + Tw].

Let an arbitrary estimator J for 19A be given. We set f = (5l —
agn)/l|Cywlxe and f(0) := k(0) + Cw(0), and therefore we get

1£(0) = f(0)] >0 <« |(—¢| > 6/w(0)

N o||C
PN |19 _19| > || 'YwH)\72 —
w(0)
Thus, the problem of finding minimax affine estimators (with re-

spect to the loss function 1;_55c) for the parameter f(0) in the
model @, 4.5 15 equivalent to finding such estimators in the model

{ANV(0,1) 0 € lagh — Tw, agn + Tw|}

: Oy

given the loss function 1j_s,_ 5 1c. For the case a4, = 0 this problem
has already been solved in Setion[5.1} As a consequence of the calcu-
lations there—using the same notation—the estimator c,,Y,, is min-
imax affine for estimating ¢ (see Theorem [5.1)). For the remaining
case a 1= agyp 7 0 we consider the affine estimator ¢, (Y, —a) + a.
It satisfies

sup My {lcw(Yw —a) +a =19 > 0}
[9—a|<Ty

= sup Ay {lcwYw — U] > du},

|1§|§Tw
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and from that one concludes R’ ([g, h]) = Riz(w). Consequently,
sup{ R.¢([g,h]) : g,h € 9} = sup{Rig(w) : w € 4}, (5.28)

which was to be shown. Furthermore, the preceding arguments
imply that the supremum on the left hand side of ([5.28)) is attained
if and only if it is attained on the right hand side of that equation.

5.2.2 The use of a zero-one loss function

The solution to the second problem is somewhat more complicated
and needs some more sophisticated arguments. We start with a gen-
eralisation of the notation. For > 0 we consider the loss function
Il[ vajo- Let Rig (¢) denote the corresponding minimax affine risk
in the limit experiment {Q, 4 : g € 4}. Likewise, Ryq ([g,h]) and

a2 (g) for g, h € & may be defined. So far, we have always consid-
ered the minimax affine risk for the case of a fixed x = 9, for which
we did not use an additional subscript x. First we present some aux-
iliary results for the functions z — R (¢) and x — Ryg ([g, h]).

5.7 Lemma. Let g,h € 4. Then the following assertions hold:

(i) The maps x — Rig ([g,h]) and x — Rig (9) are strictly de-
creasing on their support. Moreover, Raﬂcx([g, h]) < Ryg .(9)
for all x and Raﬂfo(%) = amo([g, h]) =1.

(ii) x — Rig (g, h]) is continuous on {z : 0 < Ryg ([g,h]) < 1}.

(i1i) Let g € G such that g(0) > 0. Then Rz (g) | ®(—7,) as
z 1 9(0).

Proof. Ad (i) ' Since most of the assertions are trivial, we only
prove that the map z — Ry () is strictly decreasing on its
support. To this end, let x > 0 be given such that Rz (¢) > 0,
and let & > x be given. We have to show that R} (¥) < Ry (9).
By definition, we have

w.(9) = inf sup Q, {|T — g(0)] > «},
T affine ge¥

where the affine estimators T" are of the specific form as given on
p. . We choose a sequence T,, of affine estimators for the param-
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eter g(0) such that

_inf  sup Q%g{‘T —g(0)] >z}
T affine ge¥

— liminf sup Q. ,{|T, — g(0)] > z}.
n—oo ge
Furthermore, we can choose a suitable sequence of functions g, € ¢
such that

liminf sup Q. ,{|T, — g(0)| > &}

n—oo ge

= liminf Q. {|T) — 9.(0)] > &}.

n—oo

(5.29)

From that we conclude that

ot (9) = liminf sup Q79{|T g(0)] >z}

n—oo ge

= liminf sup (Qw{\T g(0)] >z}
n—oo gE
+Qu AT — 9(0)] € (2,7}
liminf (Qy,{|7, — 9u(0)] > 7}
+Qrg, 1T = 9a(0)] € (2,21})
> liminf Q. {|T), — g.(0)| > &}

+Hliminf Qu,{IT = 6:(0)] € (2,31},

IV

—
*
N

where (*) is a direct consequence of Exercise 14. on p. 58 of Ko6nigs-
berger| (2001). Note that

liminf Q. , {|T — g.(0)| > &} C2) limint sup Q. 1T — g(0)] > 7}

n—oo

> inf sup Q%g{|T—g( )| > 2}
T affine ¢gc¥

- sz,i(g)u

and that
liminf @, g, {|Tn — ga(0)] € (z, 2]} > 0,

n—oo

which follows from the fact that the affine estimators Tn are nor-
mally distributed under every measure (), 4, and that the sequence
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of the corresponding maximal risks converges to Ryg (%) which,
by assumption, is greater than zero. Putting together the above
results, we conclude that Rjg (¥) > Rpg (%), which had to be
shown.
Ad .' Following the discussion in Section m, it is clear that
we can without loss of generality assume h = —g, and for sym-
metry reasons we may further assume that g(0) > 0. Clearly,
ai.(9) > 0if and only if 2 < g(0). Let now 7, be defined as in
(5.3), and define x, according to (5.6), with d replaced by z, i.e.
zy = ||Cyg|lr2/9(0). Furthermore, let

1/2\ 1

! 1{4(0) > =},

Cg(ﬂf) = 5 +

1 9(0)
s

log 9(0) +x
2z(|Cygll5,  9(0) —

which coincides with the constant ¢, from Theorem |5.1] (again, with
d replaced by ). Theorem yields

o) =@ (-5 ) (T2 ) e (0,900

Obviously, z, and ¢,(z) are continuous functions of z, for z ranging
over (0, ¢(0)). This proves the assertion.

Ad [(ir): From the definition of ¢y(x) it is clear that ¢y(z) — 0
as « T ¢g(0), and thus ®(—[1; + x4]/cy4(z) + 7,) — 0. It remains
to prove that (17, — x,)/cy(x) — 0 as x T ¢(0), which implies
O (|1, —xy4]/cy(x) —15) — P(—7,) and thus the stated convergence.

For z T ¢(0) the following chain of equivalences holds:
Tg — Xy

cg(T)

T 1|1 g(0) g(0) + :1:] 12
STl - —= ——I—{——% log — 0
9 ( g<o>> (2 17 2l glR, Hg(0) 4
1 1/2
9(0) log 9(0) +x] 0
25’7”679”,\,2 9(0) —
1 9(0) 9(0) +x
& (g(0) — x)? [— + log — 0
4 22(Cygll3, T 9(0) —
9(0) +=
s (g(0) — z)?log ==—=
(9(0) — = 10g S
The last assertion can easily be verified with L’Hospital’s rule. W

— 0

& (900) )| 7 +

— 0.
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Figure. Plot of the function v — Rig (g9), where g = 1;_1y), and T, = 1.
Note that Ryg,(9) = 0, and Rig, (g9) > 0, which we tried to indicate by the
special marks.

The third assertion of the lemma says that the map z — Rjg (9)
is discontinuous at the point z = ¢(0) (provided that g(0) > 0).
This is not what one might expect—indeed, this fact will somewhat
complicate the discussion of the second problem. The figure on the
top of this page shows a typical graph of a a function x — Rz (g).

aff .

Now let a fixed « € [0, 1] be given. We define
Xafia(¥) :=inf{z > 0: R (¥4) < a}.

aff .«

One can interpret 2x.4..(%¢) as the length of a minimal symmetric
fixed-size confidence interval to the level 1—« resulting from the use
of an affine estimator (see Stark, [1992). Analogously, Xag.a([g, h])
is defined for the linear submodel Q. 4. Since the function space
¢ is convex, Theorem 1 in Donoho| (1994)), together with the argu-
ments from Section 9 of the same paper, implies the existence of
functions g*, h* € ¢ such that

Xafta(9) = Xamallg",27]) (5.30)
= sup{Xafta(lg; h]) : 9,1 € G}

In other words, a hardest linear submodel exists, as far as yag.()
is considered as a performance criterion.

We show that a similar statement holds true for the minimax
affine risk with respect to our usual loss function 1j_s5c. More
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precisely, we want to prove that for 6 > 0 the minimax affine risk
in the complete experiment equals the supremum over all minimax
affine risks from the linear submodels, i.e.

ot 5(4) = sup{Rzg 5([g, h]) : 9, h € ¥} (5.31)
In the following, let o := R3g 5(¢) and

O/ = Sup{R:ﬂ,é([ga h]) -9 h € %}

It is clear that o/ < «, and for a proof of we have to show
that even o/ = «. Since there is nothing to prove if @ = 0, we
can and will in the following assume that o > 0. We choose the
functions ¢* and h* such that they satisty .

Let us assume that the assertion o/ = « is false. Then it may
be either o/ = 0 or 0 < o’ < . We show that each of these two
cases leads to a contradiction.

Case 1: o’ = 0. If o/ = 0 then also R} 5(g9) = Oforallg € 4. By
Theorem [5.1] this is equivalent to [g(0)| < § for all g. In particular,
this would imply R ;(¢) = 0, which is a contradiction to the
assumption o > 0.

Case 2: 0 < o’ < a. By definition, x.g.(¥) < d, and because
r — Ry (9) is strictly decreasing on its support, this relation
even holds with equality, and thus

(5.30)

0= Xaﬁ,a(g) = Xaff,a([g*a h*]) (532)

If o € (0,«), then in particular

*

o = Ry s([g", h']) <o <o

If now a* > 0, then assertion from Lemma implies that
there is some §* < ¢ for which Raﬁ s:([g", h*]) < a. Therefore, we
have

0 = Xaft.a([g", P7])

5.33
—inf{e > 0: Rig, (g W) <o} <5 <s, OO

which is contradictory to ([5.32)).
It remains to consider the case o = 0. In this case one of the
following assertions holds true:

a) there is a 6" < ¢ such that Ryg 5.([g%, h']) < o, or
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b) for all @ < ¢ we have Ry ([g%,h']) > «

Case a) can be discussed with the same arguments as before, which
led to the contradiction in ([5.33)). It thus remains to investigate

Case b).
From the discussion in Section [5.2.1] we know that
2tz ([g7 P]) = R (w)

for all z, where w* = (¢* — h*)/2 (which is an element of ¥).
Furthermore, we have

Xafta([g" 1)) = inf{e > 0: R ([g" 17]) < a}
= inf{z > 0: Rz, (w") < a}
= Xaff.o(W").
Assertion in Lemma yields
;ffz([ h*]) - aff:c( *) l (I)(_Tw*) as T T w*(O)

Since we consider the case that Rys (w*) = Ry (9", h"]) >
for all x < §, this implies ®(—7,+) > «a, and thus w*(0) =
Consequently, we have

0= Xaff,a([g*a h*]) = Xaff,a(w*) = w*(O)

Consider now a sequence g, € ¢ that satisfies the following condi-
tions:

Q
J.

gn(0) > w*(0), ¢,(0) | w*(0), and 7, — Ty

The existence of such a sequence g, follows with some simple ar-
guments from the definition of the space &. Because of g,(0) >
w*(0) = § and by the definition of o’ we have 0 < Ryg 5(g,) < o
for all n. Using property from Lemma these arguments
yield

o > o > limsup Ry 5(gn) > limsup &(—7,,) = ®(—7,+) > a,

n—oo n—oo

and hence the contradiction a > a.

Summarising, we have shown that both cases o’ = 0 and o/ €
(O «) lead to contradictions and therefore must be false. Hence,

o/ = «a, and therefore (5.31)) holds. Combining (5.31)) and -

we have proven the following result:
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5.8 Proposition. Equation holds, i.e. the minimaz affine
risk with respect to the loss function 1_sg5c satisfies Rig(¥Y) =

sup{R}4(9) : g € Y}.

5.3 Minimax risk bounds in the multivariate limit exper-
iment

So far we have derived upper and lower bounds for the miniax
risk in the univariate limit experiment. In this section we want to
expand these to the case of the multivariate limit experiment. In
the following, let v € ©’ be a fixed centre of localisation, where
now ©'——defined according to (3.7)—is a subset of © C R%, d > 1.
We consider the corresponding multivariate limit experiment

(Cd([_Kv K])v%d([_Ka K])a {Q%Q 19 € %}),

with & = 9(K, p,d) according to (3.10). Within this experiment
we want to estimate the local parameter g(0). As in Section
R*(¢) denotes the corresponding minimax risk with respect to the
loss function 1j_;gc (with 6 = (61,...,d4)" as in Section [3.3)).

The aim of this section is to derive upper and lower bounds for
R*(¢). To this end, we first consider such bounds for the mini-
max risk corresponding to the estimation of the parameter C,g(0).
Here, the basic idea consists of splitting the multivariate exper-
iment into several univariate experiments, for which the results
from the preceding sections apply. Having derived upper mini-

max risk bounds for the estimation of C,g(0), we can deduce upper
bounds for R*(¥¢). In the following, we write the Cholesky matrix
as Cy = (CY7). We set

i (il id
C = (,....CY),
which is simply the 7th row vector of the matrix C,.

5.3.1 An upper minimax risk bound

In order to derive an upper bound for R*(¢) we first consider the
problem of estimating the parameter C,¢(0) in the limit experiment

{Qyy : g € 4}. In the characterisation the limit experiment in
Section 4.1 we saw that (C([~ K, K]), ¢%([~ K, K])) is the product
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of d copies of (CH([-K, K]), ¢ ([-K, K])). Due to the definition
in (4.2)) we can therefore write @), 4 as a product

Qg = Q% ®...® Q%ﬁ

with probability measures
Q% = (/_K Clg(s) ds + W(j)) (5.34)

defined on the space (C'([~K, K1), €' (|- K, K])). Here W) de-
notes the jth component of a d-dimensional Brownian motion (see
also Section [4.1] for the notation used here). Since v is fixed, we
will in the followmg often suppress 1t in the notation, i.e. we shortly
write (), and Qg for @, 4 and Q7 g, respectively.

Let us now consider an observation from the limit experiment,
i.e. a random variable x = (x1,...,%4)' with independent compo-
nents x; ~ Qéj). Estimators # for C,g(0) are then in general of the
type

k= /%(X) = (l%l(X), ceey /%d(X))T.
In the following, we first examine the minimax risk corresponding
to the problem of estimating C,g(0). As underlying loss function
we consider the function 1j_, ¢, where the vector

v=(vi,...,v9)", v >0,

is defined according to Section [3.5.3] The minimax risk for the
estimation of C,g(0) in the experiment {Q, : ¢ € ¢} under this
loss function is denoted R*(¥), i.e. we have

RY9Y) = inf sup Qu{i —C,9(0) € [~v,v]}, (5.35)
ge

where the infimum is taken over the class of all estimators & for
the parameter ¢(0). We want to derive an upper bound for R*(#).
With our special choice of v from Section [3.5.3] this will yield an
upper bound for R*(¥¢), too, as will be shown later. Note that we
here and in the following will suppress the dependence of v = v(7)
on the parameter 7. Of course, other choices for a suitable vector
v are possible, some alternative approaches will be discussed in

Section 5.4l
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5.9 Remark. One should distinguish carefully between the just
defined risk R*(%) and R*(%). The latter denotes—as in Sec-
tions [b.1]and [5.1.4}—the minimax risk with respect to the loss func-
tion 1j_sgc for the estimation of g(0). Eventually, it is of course
R*(%), which we are interested in.

For our considerations such estimators & are of special interest,
that estimate C/g(0) (the jth component of the vector C,g(0)) only
on the basis of the component x;, in other words: estimators that

fulfil
Ri(x) = kj(m;(x), J=1,....d, (5.36)
where 7;: (x1,...,%4)" — (0,...,%j,...,0)".

of the components x; implies that for such an estimator

Qg{/%—Cvg(O) € [—v,v]c}
= 1- Qg{’% - CVQ(O) S [_Uav]}

d
= 1- [ @I~ — Clg(0)] < v;}. (5.37)
j=1

The independence

If we consider the definition of the minimax risk R* (¥¢), it is clear
that the right hand side of will not decrease if the infimum
is not taken with respect to all possible estimators, but only with
respect to those estimators & satisfying ([5.36)), and therefore,

B() < | b sup Qu{# —Cy9(0) € [-v,0]“}.  (5.38)
This inequality is presumably in general a strict equality. The fol-
lowing heuristic argument may support this idea—though it does
of course not replace a proof. Suppose for a moment that
always holds with “=". Of course, then the right hand side of the
formula equals that of . Heuristically formulated, this means
that the estimate of a component CJg(0) cannot be improved by
incorporating any information that might be obtained for the loca-
tion of other components C,iyg(O) (i # 7). As a consequence, the set
{C,9(0) : g € 4} would have to be a cuboid in RY. However, this
is in general not the case. (As a counter-example, consider Exam-
ple[3.2] in which © C R* and C, = (}1). Theset {C,g(0) : g € ¢}
would qualitatively look the same as the set A, depicted in Figure
(b) of that example.)
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Let us now examine the right hand side of ((5.38]). Some elemen-
tary calculations yield

inf sup Qg{fi —Cy9(0) € [_U7U]C}

# with (5.36) geg
d
(6-37)
= f s 0)] <w,
s (o H 5 - Clal0)] < 3}
d
=1— sup inf {\/% —Clg(0)| < v}
i with (5.36) 9€¢ =1 ! ! ’
d

< 1-— su inf ki —Clg(0)] < v;
[T, s i @1l = Cil0) < )

d
=1- H <1 — inf __ sup Q i — C%g(())] > vj}>.

ey £ with (5.36] - gl
In the last product term

inf sup — C7g(0)] > v,
it s QIR — Clgl0)] > )

represents the minimax risk for the estimation of the real parameter
C%'g(O) in the univariate, jth subexperiment {ng) : g € 9}, with
underlying loss function 1, ,jc. To examine this experiment we
consider the function space

%” ={h:h= Cvg,geg}.

Each h is a continuous function hA: [-K, K] — R, which follows
from the properties of the functions g € 4. Furthermore, h(0) =

Clg(0) for h = Clg. We set

QY = & </_K K(s) ds + W(J’)) , hexY. (5.39)

Obviously, @g) corresponds to the measure Qé‘j ) from (5.34 , and

we can thus identify the experiments {@g) 1 he %%(j)} and {ng)
g € ¢}. Therefore, the minimax risk with respect to the loss

function 1, ,jc is the same in both experiments. In other words,
inf sup QU{|it; — Clg(0)] > v;)

kg geY
= inf sup Q' {[&; — h(0)] > vy},
Kj he%y(])

(5.40)
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with the infima taken over all estimators &; satisfying . We
are now going to provide an upper bound for the expression on the
right hand side of , which will eventually yield an upper bound
on R*(¥¢), the minimax risk for the estimation of the parameter
9(0).

Note that the random variable

/ h(s) ds + WU
-K

from (5.39)) is of the same type as the white noise model (5.12))

considered in the univariate case. The only difference to that equa-
tion is that the factor C, from is already included in the
function A and therefore does not appear any more in the above
integral expression. Furthermore, %”‘7 C Ly(R,B, ), and %”
is symmetric and convex. This follows simply from the fact that
the space ¢ has these properties and that each i € %ﬂ is a linear
combination of the components of a function g € ¢4. Consequently,
Donoho and Liu's theory of hardest linear submodels as well as the
results from Section [5.2] also hold true if we consider the function
space %(J ) instead of ¢. Consequently,

NZH(%U)) = sup {Eéﬁ(h) he %y(j)}7 (5.41)

where E;ﬁ(%(j )) denotes the minimax affine risk for the estimation
of the parameter A(0) in the model {@g) th e %(j)}, with loss
function 1_,, , jc, and R*(h) denotes the minimax affine risk in the
corresponding submodel {@éjh) : ( € [-1,1]}, with given h € Jﬁ(j)

The results from Section can now easily be transferred to
the present setting. Again, we use the notation for the stochastic
integrals introduced in Section [£.1} First we compute the minimax
affine risk E;“Lﬂf(h) from the linear submodel corresponding to a fixed

h € ,%”7(] ). For symmetry reasons we can assume without loss of
generality that A(0) > 0

5.10 Theorem. Let h € %(j) be given, h(0) > 0. We consider
the loss function 1_, ,c. Let

12\ 1

h(O) + Uy v
R0) — o, 1{h(0) > v;}.

! + ! —|— AO) log
Ch -— — —
2 2051113 2
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Then cy [ h dx; h(0)/||RlI5 5 is a minimaz affine estimator for the

parameter Ch(0) in the linear submodel {QCh : ¢ € [-1,1]}, the
corresponding minimax affine risk is given by

ot = [ (VL 0IO) )

o (1HR2C=0O) o) | 14000) > 03,

Proof. The assertion is a direct consequence of the arguments from
Section and Theorem [5.1] - There the quantities Q¢y, g and 0
have to be replaced by Q(iw h and vj, respectively. Furthermore,
the Cholesky matrix C, in the quantities from Section[5.1.1has to be
replaced by 1, because it is now already included in the function A.
The expressions for ¢ and E;ﬁ(h) then correspond to ¢, and R;(g)
from Theorem [5.1], respectively. Therefore, cx( [ h dx;/||h|x2) is
minimax affine for the estimation of ||A||»2 (which corresponds to
the parameter ¢ in Theorem [5.1)), and thus cx( [k dx;/||h||lr2) -
(R(0)/]|R]|r2) is minimax affine for the estimation of (A(0). |

We want to show that there is a hardest submodel for theNes_ti—
mation of the parameter /(0) in the complete experiment {Qg)

h € %(j)}, in other words, that a function h* € %(j) exists for
which the supremum on the right hand side of is attained.
To this end, we have to maximise the minimax affine risk E;ﬂf(h)
with respect to A, ranging over j%(j ). For fixed a > 0 we define
the subspace

A = {he AV ||k =a} C AV

For symmetry reasons, it is sufficient to restrict ourselves to the
case h(0) > 0. It is clear from Theorem [5.10| that R};(h) depends

only on the value h(0), as h ranges over %y(j’a), and with the same
arguments as in Section [5.1.3| we conclude that R};(h) is strictly
increasing in A(0). In complete analogy to Proposition this
yields:

5.11 Proposition. Only such functions h € ,%%(j’a) can describe
a least favourable submodel for which the value h(0) is mazimal.
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By definition each h € %(j ) has the form

d
ﬁzC%g = ZC%"QZ', g=1(g1,....q2) €9,

1=1

and 1(0) = CJg(0). Let us consider the special functions

d
hg = Cligr
6 ; 7 9is (5.42)

gi(z) = sgn(C]') (B~ |2")" = sgn(C])gs(x),

with some G > 0, and with gg according to (5.15). Here sgn(a) :=
1{a > 0} — 1{a < 0} denotes the sign function. If 3 is chosen
appropriately, then of course hg € %@(‘j’a). From the definitions
of the spaces %(j) and ¢ and the growth condition in (3.10) one
concludes that every function h with ||hl[x2 = ||hs||r2 and R(0) >
0 must also satisfy h(0) < hg(0). In other words, amongst all
functions A with constant Ly-norm the functions hg of the type
have the largest possible value at the origin.

Due to this observation and Proposition [5.11]it therefore suffices
to consider the functions Az and the corresponding minimax affine

~

risks R’ () in order to determine a hardest linear submodel. Note
that hg can also be written as

hig(w) = [IC] |11 gs() (5.43)

(where || - ||1 denotes the 1-norm), i.e. the functions hg and gg have
completely the same structure, the only difference lies in a constant
factor. Because of this observation, one will of course expect that
the calculation of a hardest linear submodel for the problem of es-
timating the parameter A(0) in the experiment {Qv;f) :he %”7(‘7)}
can be done with the same techniques applied to the problem of

finding a hardest submodel in the univariate case, discussed in Sec-
tion [5.1.3] This is indeed the case.

5.12 Theorem. Let 3; > 0 be the unique positive solution to the

equation

1+1
ﬁj /p B p—{—l
Bu/IC  2uC],
I T

(5.44)
log
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and let hg, be defined according to (with B; replacing [3).
Then—using the notation from —

ok Ak 1 1 —(1+1
Ry o= Ri(m(x)) = 2120 (1 + ;) B; (1t /”)/hﬂj dx; (5.45)

is a minimax affine estimator for h(0) in the model {Qvg) : h o€
%(])}, given the loss function 1, ,c, and the minimaz affine

risk is given by
o NGB [ 20+,
[(p+ 1)(2p + 1)]1/2 12113,
o[ NGsE T 20+ 1)
(p+ 1)(2p + 1)]'/2 I |)

Proof. Due fo the preceding arguments we only have to maximise
+¢(Bj) == Rig(hg,) with respect to 3;. By definition, we have

1hslnz = G311 lgs,llae - and B, (0) = [IC] |11 B;.
Plugging this into the formulae from Theorem [5.10, we get

(5.46)

; v;/|IC2
_ ICls lgs lha(1+2570)
(05) = | @ — o +[IC11 [lgg; a2
Bj
. i/lci -
630 llgn lha (1 = 2500)
+@ - — 1111 Nlgs,lIx2
B i
/l}.
]l{ﬁj> J },
Il
with

cy, ==+~ P
SR CA P NCR T Y PN
a2y -1
o UN?M]) oo o)
B = (vi/IC 1) 1G4l
Note that these expressions for E;ﬁ(ﬁj) and Ch, correspond to those

for R':(5) and cg given in Remark (5.5)), if there 3, ¢ and C,
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are replaced by 8;, v;/[|C]||1 and [|C]]|1, respectively. With these
changes of the constants, a copy of the proof of Theorem yields
that E;ﬁ(ﬁj) is maximal for 3; satisfying (5.44)), in which case Chy, =
2p/(2p + 1). Furthermore, the approach from Section for the
specification of the constant K makes sure that the function hg, =
IC |1 gs, corresponding to that 3; (as solution to (5.44))) is included

in %”7(1 ) and therefore defines a hardest linear submodel. Plugging
¢y, = (2p)/(2p + 1) and the integral from (5.21)) into the above
expression for the minimax affine risk completes the proof. |

5.13 Remark. As in the proof of Theorem it now becomes
clear why such a complicated approach was chosen in Section [3.5
in order to specify the constant K for the definition of the space
¢ = 9(K,p,d). This approach is adapted to the needs of the
above theorem and guarantees that a hardest linear submodel for
the estimation of 2(0) exists.

We know that the experiments {@%‘j) th € %%(j)} and {Qé‘j) ;
g € 9} can be identified, and therefore the (affine) minimax riks in

*

the corresponding models are the same. Hence, the estimator &7,
defined according to ((5.45)), is minimax affine (with respect to the
loss function 1, ,c) for the estimation of the parameter C%'g(())

in the model {Qé]) 1 g € 4}, For the estimation of the complete
vector C,g(0) we now consider the estimator

By definition, &* satisfies (5.36), i.e. #}(x) = &}(m;(x)) for all j,

and with the above results we can calculate an upper bound on its
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maximal risk under the loss function 1_, ,¢. We have

geY
d
" ] Ak ]
Ei (1 CTIQV I - cigo)] < vj})
geY =1
d . .
< 1- _ngig; Q{15 — Clg(O)] < vy}
J:

d
1— H (1 — sup Qéj){h%;f — Cig(O)\ > @j})

=1 s

‘%ﬂ—f[l-@ el
- [(p+1)(2p+ 1]/

j=1

1 Rl+1/(2
o (il

(2/) + 1)Uj

E >
)} 5.47)

Evidently, the maximal risk of any estimator & for the parameter
C,g(0) is an upper bound for the minimax risk. In other words, the

1C5118;

[(p+D)(2p+ 1))

expression from (5.47) is an upper bound for R* (), the minimax
risk for the estimation of C,g(0) with respect to the loss function
1;_yc. We can now show that this also yields an upper bound for
R*(¢), the minimax risk with respect to the loss function 1j_5c
for the estimation of ¢g(0). To this end, we consider for g(0) the
estimator

§(0) = ;"

where /" is the estimator with components #7 according to The-

orem [5.12l We assess the maximal risk of §(0). In the following,
let

A, ={Cux:x€[=56]}

be as in Section [3.5.3] Keep in mind, that in that section we chose
the vector v = v(7y) such that the inclusion

[—v,v] C A,.
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holds. From this we get the inequality

R (%) < supQy{g(0) — ¢(0) € [-4,0]°}

geY

= 81615 Qg{/%* —C,9(0) € (AW)C}

< sup Qy{#* — C,g(0) € [—v,v]°}. (5.48)
geY

Therefore, the expression in ((5.47)) is an upper bound for R*(¥),
too. We summarise the main results from the considerations of this
section in the following theorem:

5.14 Theorem. Let the loss function 1_szc be given, and let

v = (v1,...,vq)" be constructed according to the procedure pro-
vided in Section [3.5.9. Then the estimator §(0) = C;ll%*—wz'th
k* = (k},..., k5" according to Theorem |5.1%—satisfies
R(#) < sup Q4,419(0) — 9(0) € [-6,0]°}

ge

J 0 al+1/(2p)
1C1115; (2p+1)v;
< 1- 1-0 (- L=
B ng{ ( [(p+1)(2p + 1)]1/2 ! i IC111.5;
o (NG T e+ ]\
[(p +1)(2p + 1)]1/2 IG5 11135

Addendum. In the special case d =1 (i.e. for a one-dimensional
parameter space) the theorem coincides with Theorem since
in this case ||C||y = Cy and v = 6C,. In particular G(0) is then a
manimaz affine estimator, and the last inequality from the preceding
display holds with equality.

5.3.2 A lower minimax risk bound

As before, R*(¢) denotes the minimax risk for the estimation of the
unknown parameter g(0) with respect to the loss function 1_ss0c-
So far, we have derived an upper bound for R*(%). Now we address
the question of a suitable lower bound. We use similar ideas as in
Section[5.1.4] Let us first consider the minimax risk in some specific
linear submodels of the form

{Q¢: C € [-1,1]}
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with fixed g € 4. Of course, the minimax risk in any such submodel
is smaller than the minimax risk in the complete model, and this
yields

R (¥) > sup(mf sup ngg{Cg —(g(0) € [—5,(5]0}).

9€9 \ ¢ (e[l
(5.49)
We now aim to derive lower bounds for the expression in the brack-
ets, which yield a lower bound for R*(¥), too.
To this end, we restrict ourselves to such functions g € ¢ which
do only in one component, say the kth, differ from zero. In other
words, we consider special functions of the form

g=0,....9r...,0)" €4, g.(0)#0. (5.50)

Using the notation for the stochastic integrals from Section .1}, we
consider the random variable

_ f Cyg dx . 2?21 f Cfiykgk dx;
g « | - K .
(i IC a3 )2 (i lIC gil13 )1

The stochastic integral calculus yields

L([CFgr dxi | Qv) = A (0, ICFgill3),

which in combination with the independence of the components x;

implies that
X(Zg | Q%O) = A4(0,1).

Furthermore, setting
d 1/2
ik
o= ( S letalk. )
i=1

we conclude that

L(Zy | Qreg) = AN (0,1), 9J:=C(aq

which follows for example from Problem 5.6 in Karatzas and Shreve
(1988)). Hence, we obtain again a Gaussian location model

{A(9,1) : 9 € [—ay,a4]}.
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Given an estimator ¢ within this model, then { := ﬁ/ag is a an
estimator for ¢ that satisfies

€g(0) — Cg(0) € [-6,6]° = |Cgr(0) — Cgr(0)] > 0y,

5kag

|91 (0)

& [0-9 >

This equivalence implies that

inf sup chg{Cg — (g(0) € [-6,6]“}

¢ cel-1
= Hclf CS[UP Q+.¢o11€g1(0) — Cgi(0)| > 6;}
e_
= i Sup Mo {10 = 9] > drag/|gk(0)]}.
<ag

If we take the supremum on the right hand side of not with re-
spect to all possible functions g € % but only with respect to those
g which are of the special form (5.50)) (for some k € {1,...,d}), we
conclude from the above equatlon that

> s (it sup 0 (1= 01 > B0} )
V|<aq

The expression in brackets on the right hand side of this inequality
corresponds to the quantity R*(g) from (5.25), if there 7, and d, are
replaced with a, and dra,/|gi(0)], respectively. We can therefore
compute this expression with the same ideas that were presented
in Section [5.1.4] This yields a lower bound for R*(¥).

In combination with the results from Section |4.3|this also permits
the computation of a lower minimax risk bound in the global model

(y", B", {Pg") Ee 7).
5.4 Discussion

Theorems [5.4] and [5.14], respectively, provide devices to calculate
concrete upper bounds for the minimax risk R*(¢) in the limit

experiment. Of course, the question arises how precise these upper
bounds really are.
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The univariate parameter case. Again, we first consider the
case of a univariate parameter, investigated in Section .1}, i.e. we
consider the limit experiment {Q,,: g € ¢} with ¢ = 9 (K, p, 1).
In this case the upper minimax risk bound from Theorem [5.4]equals
the minimax affine risk R!;(¥¢). Thus, the behaviour of the ra-
tio R'¢(¢)/R*(¢), in words: the quotient of the minimax affine
risk and the minimax risk, is of interest. The closer this quotient
is to 1, the more accurate is the upper bound. For the problem
of estimating the mean in a Gaussian location model, and using
quadratic loss, it is known from the literature that there is a con-
stant p* < 1.25—sometimes referred to as Ibragimov-Khas minski
constant—which serves as an upper bound for the quotient of the
corresponding minimax affine risk and the minimax risk. Similar re-
sults do also hold for other performance criteria than quadratic loss.
(For more detailed information on this topic, see e.g.[Donoho, (1994]
Donoho et al. [1990], Drees| 1999| and [Ibragimov and Khas’minski,
1985, as well as the references within these papers.) From that
one may draw the conclusion that affine estimators are in general
only insignificantly less good than other, arbitrary estimation pro-
cedures. This suggests that for the estimation of the parameter ¢g(0)
in the limit experiment, with loss function 1;_s 5c the restriction to
affine estimators should not lead to a great additional loss, and one
might expect that the quotient R’;(¥)/R*(¥¢) behaves fairly well.

The multivariate parameter case. In the multivariate case—
i.e. for the model {Q,,:9 € ¥} with¥ =¥ (K, p,d) and d > 1—
the situation is considerably more complicated. In contrast to the
univariate case, the results from the multivariate case use several
additional inequalities. The cruder these inequalities are, the big-
ger, and hence less accurate becomes of course the derived upper
bound. The most critical of these inequalities is certainly that in
5.48)), where we turn over from the set (A,)¢ to [—v,v]% D (4,)C,
which is in general a strict inclusion. Hence, is in most cases
a strict inequality, which may in the worst case lead to unnecessar-

ily large upper minimax risk bounds. It is therefore reasonable to
think about conditions under which holds with equality.

To this end, let us for a moment consider the special case that
C, is a diagonal matrix, say C, = diag(Ai,...,Ag), with A; > 0.
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With our special choice of v = v(7) according to Section we
then have v; = A;d; and thus A, = [—v,v]. In this case (5.48)
holds with equality. Consequently, given the underlying distribu-
tion family {Fy : 0 € O}, it appears favourable to find an or-
thogonal parametrisation, i.e. a parametrisation under which the
information matrices Z,—and therefore also their Cholesky decom-
positions C,—have diagonal form. Huzurbazar (1950) shows that
such an orthogonal parametrisation can be found by solving a sys-
tem of d(d — 1)/2 differential equations. He shows that for d = 2
this problem is usually solvable, whereas for d > 3 this is in general
not the case. [Mitchell (1962) extends these results and discusses
certain distribution families with three-dimensional parameter for
which the pertaining system of differential equations is also solvable.
We conclude: if it is possible to find an orthogonal parametrisation,
this will certainly lead to an improvement of the upper minimax
risk bound, but unfortunately not every distribution family pos-
sesses such an orthogonal parametrisation.

We therefore want to briefly sketch a few ideas for modifications
and alternative approaches to derive upper minimax risk bounds.

The most simple modification of the approach from Section|5.3|is
of course to use a different v = (v1,...,v4)". So far, we only made
use of the fact that the components v; are strictly positive and—for
the specification of the constant K in Section [3.5.2—continuous in
7, and that in addition [—v,v] C A,. Of course, there are other
possibilities to chose an appropriate v that fits these conditions.
The aim of any such choice should be to define v in such a way
that the resulting upper bound is preferably small. Thus,
the components v; should be as large as possible. One approach to
determine an optimal vector v is to minimise the expression from
(6.47) with respect to the components v;. This is however a very
complex task, because the §;’s, as solutions of , also depend
on the components v;. Moreover, the specification of a suitable con-
stant K (according to Section j that guarantees the existence
of a hardest linear submodel, becomes very complicated, too.

In order to derive upper bounds for R*(¢) we did in Section
not estimate ¢g(0) directly, but made a long way round, by first
estimating C,g(0) with respect to the loss function 1j_,c. This
contributes to and increases the inaccuracy of the provided upper
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bounds. One may therefore ask if the idea of first estimating C,g(0)
is adequate at all. Instead, one might as well try to estimate g(0)
directly. A reasonable approach might be to try and boil down
this problem to that of estimating a mean vector in some Gaussian
model, similar to the ideas from Section [5.I The work of [Donoho
et al| (1990) might provide some hints on how to follow such an
approach.

To sum up, there are certainly reasonable alternatives to the
approach that we chose in Section 5.3 which however are very
complex to fully investigate. An examination of these would go far
beyond the scope of this thesis, and it is a priori not clear that these
alternatives really lead to better (i.e. smaller) upper minimax risk
bounds than our approach from Section does. Of course, this
approach has some drawbacks, and may not yield the best possible
upper bounds for the minimax risk. In return, it is however some-
what convenient, because it allows us to reduce the examinations
in the multivariate case to those of the univariate case, and the
procedure yields expressions for the upper bounds that are rather
simple to calculate (e.g. no integrals have to be calculated). This
might be a benefit in practice. Note also that Theorem always
provides an upper bound which is smaller than 1 and thus of at
least some worth.



CHAPTER 0

Upper minimax risk bounds in the local model

So far we proved that lower minimax risk bounds in the limit ex-
periment {Q, 4 : g € 4} always provide lower asymptotic minimax
risk bounds in both the local and the global model. We now want
to show that such a statement also holds true for upper bounds. In
this chapter we consider the sequence of local models

V", B" {P) ge9}), (6.1)

in which we want to estimate the local parameter g(0). The aim
is to derive an upper bound for the corresponding asymptotic min-
imax risk. To this end, we first construct an estimator 7, within
the model (6.1). This estimator is essentially based upon and mo-
tivated by the results from the previous chapters. Subsequently,
we show that the maximal risk of this estimator—and hence, the
minimax risk in the local model—is asymptotically bounded from
above by the expressions from Theorems and [p.14], respectively.

Throughout this chapter we presume that the assumptions from
Sections hold. (Note that the additional regularity condi-
tions for the family {F : 8 € O} have not been needed in the
preceding chapters.) As in Chapter 5| we write the Cholesky matrix
as C, = (CY), the ith row vector of C, is written C! = (C!!, ... ,Cid).

6.1 Constructing an estimator for the local parameter

Throughout this section let v € © denote a fixed centre of locali-
sation (@' C © as defined in (3.7))). Within the corresponding local

91
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model we construct an estimator for the parameter g(0). To
better motivate our choice of such an estimator, we first consider the
more simple case of a univariate parameter space ©; subsequently,
we generalise these ideas to the case © C RY. Moreover, first results
on the asymptotic behaviour of this estimator are formulated.

6.1.1 A local estimator for the univariate parameter case

For the sake of simplicity let us first consider the special case of a
one-dimensional parameter, i.e. we assume that v € © C R and
¢ =9 (K,p,1). In this case the limit experiment for the sequence
of the local experiments is given by

(CH[-K, K]), €N ([~ K, K]),{Q+4 : g € 9}).

According to Theorem [5.4

1 1

is a minimax affine estimator for the local parameter g(0) within
this model, where § = [(v) is the solution to (5.16) and gz is
defined according to (5.15). By virtue of the Girsanov formula

(4.3)) and Corollary we have

dQ,, 1
log —1%2 — /Cygg dx — 5 /gﬂ(s)fygg(s) ds,

dey,O
and
P & 1
0 j=1

respectively, with Ug? = oxngg(fnj)é7 according to (4.5). Obviously,

the random variable Z;-lzl Ug? from the second display corresponds
to the stochastic integral [C,gs dx from the first display. Thus,
taking the structure of the above estimator ¢(0) from the limit
experiment as a basis, it is somewhat intuitive to choose

1 1 n
— 1+—> BN "y 6.2
oz (1) 52
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as an estimator for the unknown parameter ¢g(0) in the local ex-
periment. Note that the parameter = [((7) is a function of the
previously fixed centre of localisation v, and therefore the proposed
estimator depends on -y, too.

6.1.2 The general multivariate parameter case

The ideas for the case of a one-dimensional parameter can easily be
transferred to the general case of a (possibly) multivariate parame-
ter space © C le, d > 1. In this case the corresponding Gaussian
limit experiment is given by

(Cd([_K7 K])’ng([_K’ K])? {Q%g 19 € g})a
with ¥4 = 9 (K, p,d). In Section [5.3| we considered

9(0) =C;'&*

as an estimator for g(0), with #* = (&%,...,&5) " and

R RI(m(x)

1 L —<1+1/p>/
2[C: 1 ( p ’

1 _
(1 + ;) 52 (1+1/p) /ggi dXi (63)

according to Theorem [5.12, The parameter §; = 3;(y) is defined
as the solution to equation ((5.44)), the corresponding functions gg,

are defined according to ((5.15]). For the following considerations we
define

B
Il
DO | =

G =CN0,..., 950, ---,0)", i=1,....d (6.4)

Using the conventions on the stochastic integral notation from Sec-
tion 1] we thus have

/CWGQ dx = /(0,...,9@@),...,0)T dx

<z
- /gﬂi(V) dx;.

In addition, we define a family of random variables

U = anGl (30g) Ly,

: r : 6.5
Ul = Z U (6.5)
j=1

nj o
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according to (4.5)) and (4.6]), respectively. The Ugf, 7=1,...,n,

are assumed independent. With similar arguments as in the above
case of a one-dimensional parameter one may now replace the
stochastic integrals [ gg,,) dx; = fCWG?y dx in (6.3) by U} in
order to get an estimator within the local models. Setting

1
Si(7v) === ; A+1/e) 4 =1,...,d,
()= (143) By, o)
Sy = diag(51(7), - .-, Sa(7)),
we define an estimator 7, for the local parameter g(0) by
Mo =M (7) = C 'S, (U, ..., U (6.7)

Note that for d = 1 this estimator coincides with that proposed in

(6.2).

6.1 Remark. As in Section 4.2/ we interpret Ugjz and U" as ran-
dom variables on the product space (J",B"). To emphasize this,
we occasionally write Uw =U “(Yn]) with the interpretation of
Y, as the jth coordlnate projection on the product space Y™ (see
also the comments on p. and Remark . Then 7, can be
written 7, = M, (7, Yo, - - 5 Yon)-

6.1.3 Asymptotic normality

The aim of this section is to prove that 7, is asymptotically normal
under PI"); the product measure corresponding to the local alter-

native 7,,(+) (see (1.4) and (L.3), respectively). For that purpose
we first introduce some new notation. For ¢ € 4 and v € ©" we

define

ey = (Jo®)TT,CLE) dr..... [9t) T,G(0) dt)
Py g = (C7157)6%9 _9(0)’

Ty = diag(llga,) 52 198, 113.2);

5, = (0170,

(6.8)

In case that a fixed centre of localisation «y is considered (like in this
section), we often drop the argument «y in the quantities introduced
in , or in other variables that depend on .



6.1. Constructing an estimator for the local parameter 95

6.2 Theorem. Let a fized v € ©" be given and let 1, = 1,(7y) be
the local estimator from . Then

2L (N — g(0) | Py(ngg) ~ JV(M%Q: Zv)
forall g € 9.
Proof. Proposition 4.0}, in combination with Remark [4.9] implies

dP(n dP(n) dP(n) T
v,G 7.G4 7.9
$<<10g P o108 pm 18 dPé”’)

(2 (0)- (7 2)

where V = (lga | 5.- . llgs,]2,) ™ and o2 = [ g(s)T,g(s) ds.
With Corollary |4.5) and Slutsky’s lemma we further conclude that

dPIN '
>1 d n
f((Ug oo, Un logdp(ng)> Pv( )>

= (L) (7 )

The assertion follows now from Le Cam’s third lemma (Lemma[2.3)
and an application of the delta method (van der Vaart, 1998, The-
orem 3.1). |

In combination with the portmanteau theorem the above theo-
rem implies that

PYolin — 9(0) € A} — A, 5)(A)
for all sets A € B satistying A, x) (6A) = 0. In particular, this

holds for the choice A = [-9, 5] (Wlth 6 = (8y,...,04)" from
Section [3.3)), and thus
PO 0(0) € (6.5} — Hm([-68). (69

In other words: given a fixed v and a local function g € ¢, the risk
of 7, under the loss function 1|_;5c converges to the limit given in
the preceding display. It would be desirable if we were able to show
that the convergence from holds uniformly on ¢, or at least
on suitable subspaces g C ¢, such that

sup P\ {7 — g —6,6]°} — sup A, ) ([—6,0]°). (6.10)

geY ged
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The expression on the right hand side is bounded by the upper
minimax risk bound from Theorem [5.14] (see the following Theo-
rem . Therefore, it is also an upper bound for the asymptotic
minimax risk in the sequence of local models, provided that we
are able to prove ([6.10)). The concept of uniform convergence in
distribution from Section turns out to be an adequate tool to
derive a supremum convergence statement of this type. (Actually,
uniform convergence in distribution is of course an even stronger
result than the simple convergence of the suprema.) We will show
in the next section that the convergence result from Theorem
holds uniformly in g (and even uniformly in 7). Eventually, this
implies an assertion of type ([6.10)).

6.3 Theorem. Let v € ©' be fized and let 6 = (01, ...,0q4)" be as

in Section |3.9. Furthermore, let v = (vl, .., vq) " (which depends
on 7y) be deﬁned as proposed in Section . Then
sup A, .5, ([—5, 5]0)

geY

)
)}

Addendum. In the special case d =1 the above inequality always
holds with “="

; 1+1/(2
I o Y i PO 52 1
- A o+ Do+ 1172 [ [ci]8,
o (NG T @p
[(p+1)(2p + 1)]1/2 1C3111.3;

which is the upper bound given in Theorem |H.14).

Proof. Clearly, for g € ¢ the function h := g — g(0)1|_g g is
also an element of ¢. In a first step we prove that p, = pp. With
the definitions from (6.8)), we have

Hg — Hn = (Cy_ls’yeg - 9(0)) - (C;lSyeh - h\(?l)
=0
[ 9(0) TI GL(t) dt
= C;'s, —g(0).  (6.11)
[ ¢(0) TI GY(t) dt
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Since Z, = C, C, (by definition), the entries of the vector from the
last expression can be written as

/()TIGZ()dt ./ CTC)C ( ...,ggi(t),...O)Tdt

= [m@a o).

Thus, we get for the complete vector

[ 9(0) TI Gl (t) dt
= diag ([gs,(t) dt,.... [g5,(t) dt)C,9(0).
[ 9(0) TI Gd (t) dt
The entries of the above diagonal matrix can be computed to
P 1+1/p 1
gp,(t) dt = 2——03; = —, 6.12
/ w(0) p+1 Si(7) (612)

and therefore

diag ([gg,(t) dt,. .., [gs,(t) dt) = S .
From the above calculations we conclude that
[ g(0 TI GL(t) dt
C'S, = C;'5,5,'C,9(0) = g(0).
J g(0 TI GY(t) dt
Hence, the expression in (6.11)) is equal to zero, which implies p, =
iy, For the assessment of the supremum it is therefore sufficient to
consider only such g € ¢ with ¢(0) = 0.
Let A, = {C,x : v € [-0,0]} and v = v(y) be as in Sec-
tion [3.5.3, and thus in particular AS C [—v,0]”. If we write
eg = (€g1,...,€44)", then for each g 6 2 (Wlth g(0) =0)

Ny ((20,01°) & Hs., 575{47)
< MSe,.578) ([=v, U]C)
= 1- </Vseg s7s)([—v,v])

- 1_H€/V369] ||gﬁj||>\2 ([ Uj’vj])

—~
*
~

1 —

(1 = Msieps. 80y, 2.0 ([~ 05 vj]c)) - (6.13)

—e

j=1



98 Chapter 6. Upper minimaz risk bounds in the local model

Passing over to the one-dimensional normal distributions in (%) is
unproblematic, because the covariance matrix SJS has diagonal
form, and thus the components of the multivariate normal distri-
bution are independent. According to Anderson’s lemma (see e.g.
Ptanzagl, 1994, p. 87) the probability

C
‘/V(Sjeg,jasf\lgﬁj 13.2) ([_Ujv vj] )

is maximal if
o = | [ a0 2,640 | = | [ etotogn a

is maximal. Note that we assumed ¢(0) = 0, and therefore

lg(®)llec = llg(t) = g(O)]lo < [t)°

(according to (§3.10))). In combination with the triangle inequality
the integrand can thus be bounded according to

d
gl < Y Ic)] ait)]

1=1

d
< e = Il
i=1

and we conclude that for every g

Silewl < Sl [ o0l d
| 1 1
= S||ci|, 267t -
.7” ’}/”1 BJ p+1 2p+1
g GillGlh (1_ ,0+1>
p 2p+1
gl
= —— = €.
2p+1 J

Hence, with Anderson’s lemma () each of the probabilities in ((6.13])
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can be bounded from above in the following way:

C
MSie0552098, 12.0) (=05, 03]°)

0

C

< Mers2lgs, 13 (=07 0317
A,

~ % (_M> LD (_M>
Sillgs;lirz Sillgs;lirz
[ 20+ 1)v
- ¢ [( TTN

p+1)(2p+1)]1/2 H@”lﬁj )

o (NGB T @pt 1y
b+ D@+ I [ el

) |

In the last equation we simply plugged in e} and the expressions for
195,|lr2 and S; from ((5.21]) and (6.6)), respectively. Together with
(6.13) this implies
Ay ([=0,0])
nAlt1/(2
<1 —f[ Y B 1 1 Bty
=1l G+ v+ 17 | ehs;
legllug (20 + v,
— & 73 l— :
[(p+1)(2p+1)] IG5 11165
Taking the supremum with respect to g yields the assertion of the
theorem. The addendum follows from the fact that for d = 1 we
have [—v,v] = A,. |

6.2 Uniform convergence of the local estimator

The aim of this section is to prove that the local estimator 7),, con-
verges uniformly in distribution to a family of normal distributions.
This would allow us to derive an upper bound for the asymptotic
maximal risk of 7),,, and thus for the minimax risk in the sequence of
the local models (6.1)). Throughout this section we use the assump-
tions and the notation from the preceding section. Note, however,
that ~y is now no longer fixed. The vector v = v(y), which will often
be used in the following, is defined as in Section [3.5.3]
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In this section we restrict the local parameter functions g to the
space ¢ from (3.12)). We consider the product space

AN=O" XY=y -, yf+e]l x ... x [y —eh v+ €] X %,

which we endow with the product metric

|u,d}-

By passing over from ¢ to %y we enforce that the resulting space

da((71,91), (2, 92)) := max{ [y = 7], lg1 — 92

A is compact. Hence, each sequence in A possesses a convergent
subsequence. This property will turn out to be fundamental for our
examinations.

We formulate the main result of this section:

6.4 Theorem. Presume the assumptions from Sections
hold. Let f), = 1,(7) be defined according to (6.7). Then

ZL((v) — 9(0) | Py(:lg);) ~ L/V(H%gy 27)
uniformly on A = ©* x %y (in the sense of Definition |2.21)).

To prove the theorem we first present several more or less tech-
nical auxiliary results. Subsequently, we prove the assertion.

6.5 Proposition. % is compact with respect to the metric induced
by the uniform norm || - ||u4, and A = O* X %y is compact with
respect to the product metric dy.

Proof. From the definition of the space %y = % (K, p, d) in (3.12)
follows that this can be written as a product space

(K, p,d) =K, p, 1) x ... x%(K,p,1) (d times).

We show that the space 411 := %u(K, p, 1) is compact. By virtue
of the Arzela-Ascoli theorem this is the case if we can prove that
%11 C C([—-K, K|,R) is bounded point-wise and equi-continuous
(cf. Heuser, 2000} Satz 106.2). Point-wise boundedness follows triv-
ially from (3.11). In order to prove the equi-continuity let an ar-
bitrary € > 0 be given. We set ¢ := ¢'/#. The Holder condition
from the definition of %y holds of course also for ¢ ;. Thus, for all
h € %, and all x,y € [—K, K| with |x — y| < ¢ we have

B12)
h(z) —h(y)] < Jz—yff < P =
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Therefore, % ; is equi-continuous and thus compact. From Satz12.9
in Lipschutz (1977) it follows then that %y as a product of the
spaces ¢ is compact with respect to the product norm || - ||,.q
(i.e. compact with respect to the topology induced by the corre-
sponding metric). With the same argument we conclude that A is
compact. |

6.6 Lemma. Let (;(v) be defined as the solution (5.44)), and let
S;j(v) be according to (6.6). The functions gg (-) are defined ac-
cording to . Then the following statements hold:

(i) Both of the maps v +— B(y) = (B1(7),---,Ba(7))" and v —
(S1(7), .., Sa(y)) T are continuous on ©.

(i) If v — v, then ||93,v,) — 98,(3)llu — 0.

Proof. Ad[(i): Let an arbitrary point vy € © be given. We con-
sider the function

L1+1/p p+1 1f > x/
1 ) — F = Y
. (07 )3 IR,, (5[;7 Y, Z) — log% 2xy 3

0, otherwise.

Of course, this F' is closely related to the function f from Sec-
tion [3.0.2, For the special point

(@",y", 2) == (v;(%), €], I1, B (70))

we have F(x*,y*, z*) = 0, which follows directly from the defini-
tion of 3;(7) as the solution to equation (5.44). Obviously, there
is a neighbourhood U* of (z*,y*, 2*) such that F': U* — R is con-
tinuously differentiable. Furthermore, the map z — F(z*,y*, 2)
is strictly increasing (which follows with the same arguments as
the monotonicity of the function f from Section . In partic-
ular, the partial derivative V,F(z*, y*, 2) is strictly positive, and
thus invertible. Hence, the implicit function theorem (Heuser|, (1990,
p. 292 f.) guarantees the existence of neighbourhoods Uly- ,+ and
U.- of (z*,y*) and z*, respectively, as well as a unique continuous

(even continuously differentiable) function f: Uye oy — U+ such
that f(x*,y*) = z* and

Flo,y f(r.9) =0, (2.9) € Upyy  (614)
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From the arguments in Section [3.1] and Lemma [3.1] we know that
the maps v — [|C/|l; and v +— v;(v) are continuous on ©. Thus,
there is a neighbourhood U, of 7y, such that q(v) := (v;(v), IC][[1)
is a continuous map q: U,, — U ,+). Clearly, the composition
foq: U, — U, is continuous, too, as well as the map

Uy, 3 v+ F(v;(7), IC]]l1, f o a(7))-

From (6.14)) and the fact that equation ([5.44]) has a unique solution
we conclude that 5;(y) = f oq(y) for all v € U,,. Consequently,
B;(+) is continuous on U,,. Since 7y was chosen arbitrarily, we

conclude that v — 3;(7) is continuous on ©. The continuity of the
maps y — S;(7) follows directly from the definition in (6.6).

Ad((ii): From|[(i))it follows that 5;(v,) — 3;(7), as v, — v, and the
definition of the function gs(-) in (5.15) yields ||gg,(y,) — 95,01 l« =

185 (m) = B;(7)| — 0. =

6.7 Proposition. Assume the conditions of Theorem hold.
Furthermore, let a fived g € % be given and a convergent sequence
Vo € O, v, — . Then

ZL () = 9(0) | Py) ~> A (py 9, 5r)-

Proof. It suffices to show that

LUt U DT P ) s N (€9, T5). (6.15)

With the definition of 7, in (6.7) and the convergence CW_IS% —
C, 1S, —as a consequence of the arguments in Section [3.1] and
Lemma [6.6—the assertion then follows from an application of the
delta method and Slutsky’s lemma.

We prove ((6.15) with the Lindeberg-Feller theorem (van der
Vaart, 1998, Proposition 2.27). According to this, we have to show
that the means and the variances of (U)»!,... U converge
to the mean and the variance of the normal distribution in (|6.15)),
respectively, and that a Lindeberg condition is satisfied. If not ex-
plicitly stated otherwise, in the following calculations all means and
variances are to be built with respect to the measure PW(Z),g'

Convergence of the covariances: We use the notation from Sec-
tion [6.1.3, By definition, for all r;s € {1,...,d} and i # j, the
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random variables U,%" and U introduced in (6.5)) are indepen-
dent. Hence,

cov(UW UW)

Y S B[ - BUS) (U — EUR)]

j=1 i=1

=3 B |uruy| —euy BUy
= Z ( T 5,’”] /g'}/ne’—l}/—n dP’Yn""ang('i‘nj)G'SVn (fén‘])>
Z H (Gq ':Z.TL] \/E’Yn dP’Yn"‘ang(‘%nj)) : (616>

q=r,s

In order to examine the first sum in (6.16)) we first simplify it,
replacing the integrals by the information matrix Z, and G’ and

G by GI and G7, respectively. The resulting expression
n
> @Gl (En) T,GE (F))
j=1
is of the same type as that in (4.11]). Hence, with the ideas of the
proof of in Proposition it can be interpreted as a Riemann
sum satisfying

aQGT(aﬁm)TI G2 (Tnj) — /Gr )'T /G (w) dw

po (6.17)

= Ly—sllgs )3

where the last equality follows from the definition in . We
can now use this observation to examine the asymptotic behaviour
of the first sum in : from the arguments in Section we
know that the Cholesky matrix is continuous in the parameter, and
together with|(ii)|in Lemma 6.6 we conclude that |G} —G! |[,.q — 0
as n — oo. Furthermore, we postulated in Section the maps
0,7) — f€97kl59,5 dP; (k,l = 1,...,d,) to be continuous. As a

consequence, we have

/€7n€’—|Y—n dP’YnJrang('%nj) - /6761— dP'Y - I’Y'
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With these observations we conclude that
,}E{}O Z ( ar :fjn] /f%fjn dp“/n-Fang(r?nj)nyn (fn])>

. . ()
,}E&Za ) TG ng) B Wiy g 3

The second sum in (6.16|) converges to zero. This results from the
following calculation:

(Gq jn] /E’Yn dP%—Fang(fEnj)) ‘

Z a, H <quyn(33nj /£ dP%#GnQ@nj)) ‘

JEK,  g=rs

q=r,s

2
< kpa® max sup G4 (@nj)|I?

0y, dP -
=5 ek, / T L mtang(Eng)

with K,, and k, as in (4.7). Due to ({.8) we have k,a? = O(1).
From the boundedness of the maps G4 (-) (¢ = r, s) and the con-
tinuity of the map (0,7) — [ £y dP; (cf. Section [3.2) we conclude
that the supremum in the last expression—and thus the second sum
in (6.16)—tends to zero as n — oo. Summarising, the above ex-
aminations yield Cov(U)»", UJ"*) — Lg—ggs, §72’ and therefore

Cov((Ut, ..., UMDY — ..

Y

Convergence of the means: According to the assumptions from Sec-
tion 3.2] the map (0, 7) — [ €y dP; is twice continuously partially
differentiable. Hence, for fixed 6 a Taylor expansion yields

/ lp APy ), = / lp APy + thT< / lo dPT) +r(0,h),
|T=6

where (6, h) is short for a remainder depending on 6 and h (see
below). The first term on the right hand side of the above display
is equal to zero, and for the second term we get

vr</é9 dPT) /ég(vp Tia du
|T=6

&9 / 0T dp, = 1.
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Hence, we see that
/ée APy, = Tyh + (6, h). (6.18)

With the above Taylor expansion we can now write the expectation
EU* as

n

E Ugrhk - Z a’nG’]f/n (jn])T / é'}‘n dP’yn—'—ang(i.”j)

j=1
n

(6.18) _ N
= ZanGﬁn(xnj)TI%ang(xnj)

J=1

+ 3 anGE (80)) (s ang(#ny))- (6.19)
=1

With the same arguments that were used in the investigation of the
first of the two sums in (6.16)) we conclude that

n

ZanG{;ﬂ(in]’)TI’mang(i’nj) — /Gs(w)TIV.g(w) dw.

j=1

The limit equals the kth component of the vector e, , from (6.8).
If we can show that the second summand in tends to zero,
this implies E(U», ..., U») T — e, ,. To this end, we will now
take a closer look at the Taylor expansion from (|6.18]) and assess
the remainder (6, h). The underlying function (6,7) +— [ { dP;
was in Section assumed twice continuously differentiable. In
particular, this implies that the second order partial derivatives are
continuous on © and therefore bounded on the compactum ©* C ©.
Consequently, the remainder 7(6, h) is also uniformly bounded on
©O* in the sense that there is a constant C' which does not depend
on # and which satisfies

sup{[[7(6,h)|| : 0 € ©7} < C||h|*

(cf. Heuser, 1990, p. 285). From that and the Cauchy-Schwarz
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inequality it follows that

Z anGﬁn (fnj)—rr(’)/n; ang(”%nj))

n |
j=1

n

< Y allGE @)l (s ang(@ng)) |

j=1
< CY arllGh (@) g@p)I® an— 0.
3:1 J/
—0()

Proof of the Lindeberg condition: Let ¢ > 0 be given. For a simpli-
fication of notation we set

hnj = Mn T ang(i'nj)-

We have to prove that the Lindeberg expression

L)=Y / N U
j=1

ol i\ T
IL{H(U’y ...,Ugj )| >L} dPy,,,

nj

converges to zero. As is known, on R? all norms are equivalent.
In particular, the Euclidean and the maximum norm satisfy ||z|| <
Vd||z||s for all vectors z. Hence,
nyl rud n,k‘
{2, U T > ) < n{ﬂkrﬂaxdng > L}

nj

.....

< > {jupt| > v},

k=1

Furthermore, a simple application of the Cauchy-Schwarz inequality
yields

ok - \T; " :
U1 = 1anG5 (30g) "6, < anll G5 (Eng)I] 16,1

From the definition in (6.4]) one can conclude that the expressions
|G (Zn;)|| are uniformly bounded, more precisely, there is a con-
stant D > 0 such that

IG5, (@)l < D 1{j € Ka}.
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This follows from the continuity of the inverse of the Cholesky ma-
trix (cf. the remarks in Section , the fact that gg,,) — 930y
(Lemma and the assumption that the sequence ~, lies in the
compactum ©*. With the above arguments we can now bound the
Lindeberg expression as follows

d

Ln(t) < ZZ/\U”}“W L{|U > o/Vd} dPy,,
=1 k=1 j=1
d d
<Y [@n e ry g
=1 k=1 j=1

1{Day,||l,.|| > ¢/Vd} dP,,,

< a’k, (sup /||€% ]l{HE%H > my, } dth> (6.20)
]6 n
with m,, := +/(v/dDa,). According to (4.8) we have a2k, = O(1),

and therefore it only remains to show that the supremum in (6.20))
tends to zero. From Holder’s inequality we get

sup / Vo 12 L{1, || > ma} dP,

JeK,

/2 . 1/2
< sup (/ 14, ]I dth> sup (/E{HK%H > m, } dPhnj)
JEK, JEK,

/2 . 1/2
= s ([, H4dph) T G
]e n

JjeK,

In Section [3.2) we assumed the maps (0,7) +— f(ég’i)kl (by ;)" dP;
to be continuous on © x © (for ky, ko € {0,1,2}). This implies that
the first of the two suprema in the preceding display is bounded.
It remains to prove that the second supremum converges to zero:

Markov’s inequality yields

. 1 .
Pu Al > mk < o [ 1P P,

and with the same smoothness arguments as before we conclude
that

sup [ |1, dp,, < .

JeK,
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Since m,, — 0o, this yields

: 1/2 1
sup (Phnj{Hf%H > mn}) < - 0

jeK, My,

These calculations show that the supremum in ((6.20]) converges to
zero, and thus L,(¢) — 0. u

In the next step for the proof of the uniform convergence in
distribution of the estimator 7, we generalise the proposition insofar
as we replace the single function g with a sequence g, € %.

6.8 Proposition. Assume that the conditions of Theorem[6.4] hold.
In addition, let a sequence g, € 9y be given such that g, — g (with
respect to || - ||u.a). Let v, € ©F be a convergent sequence, v, — 7.

Then
L (10 (Yn) = gu(0) | P52, )~ A (g, 5

Proof. By assumption we have ||g, — ¢||,.a — 0 and thus in par-
ticular g,(0) — ¢(0). Therefore, it is sufficient to show that

L () | P)g,) ~ A (1.9 + 9(0), X5), (6.21)

which, in combination with Slutsky’s lemma, implies the assertion.
For the proof of (6.21])) we show that

sup | P () € O} = Aoy 5(C)] =0, (622)
where €7 denotes the class of all convex Borel sets in R?. Note
that any non-degenerated multivariate normal distribution .4{,
is continuous with respect to Lebesgue measure, and therefore sat-
isfies A, 1)(0C) = 0 for all C' € €4 (cf. Elstrodt, 1996, p. 68).
Therefore, by virtue of Theorem [2.20] (6.22) is equivalent to (6.21]).
The triangular inequality yields

sup | P, {n(vn) € C} — t/V(uy,ﬁg(O),Ew)(C)‘
Ceed
< sup [P, {i() € C} = P, {i(a) € CY|
Ceed
50 [P (0) € CF = My g5, (C | (629
S

In combination with Slutsky’s lemma Proposition [6.7] yields
L () | P';:),g) ~ L/V(Mv,g + 9(0), E'y)-
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Therefore, we conclude with Theorem that the second supre-
mum on the right hand side of tends to zero. It remains to
show that the first of the two suprema tends to zero, too. From the
definition of the variational distance (cf. Section we conclude

sup | P, () € CF = Py i) € CY
Ceed
(n) (n)
S HP’angn o P’angHV
(n) (n)
< VZH(PY, P,

IA

n 1/2
VB P vt Prsaaiens)) - (620
j=1

In the last step we used an inequality for the Hellinger distance
of product measures, given in Reiss (1993), p. 23 f. Note that for
j ¢ K,, we have

Yn + angn(jn]) = Yn + ang(fnj) = Yn;

and thus
H(P7n+angn(f77,j)7 P’Yﬂ"’ang(‘%n])) - 0

|angn(Znj) || —
0 and, by assumption, v, — <. Hence, for large n all points
Yo + @nGn(Zn;) and v, + ang(Z,;) are in a sufficiently small neigh-
bourhood of v, on which assertion ((ii)| of Lemma holds ().
Combining these observations we conclude that the sum in (6.24))
can be bounded in the following way:

Furthermore, because of (3.11), we have sup;_; _,

2
Z H (P’YnJFangn(i’nj)’ P’Yn+an9(jnj))
7=1

- Z HQ(P’Vn“V‘angn(i'nj)’ P’yn'i_ang(jnj))

JEK,

(%)

< 3 0+ g (Eag)) = (v + g ()|
JEK,

= Z Hangn(i'nj) - ang(i'nj)HQ
JEK,

IA

knaiugn —4g |u,d-
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Because of ||g, — g|luqd — 0 and k,a? = O(1) (according to (4.8))),
this last expression tends to zero, and in combination with ([6.24))
we conclude that

sup
Cegd

P, L) € CY = P {i(3) € C} =0,

To sum up, we have shown that both of the suprema on the right
hand side of (6.23) converge to zero. Hence, (6.22) holds, and
according to the above discussion this implies the assertion. |

Proof of Theorem [6.4. According to Proposition A =0 x
% is compact. Moreover, for every convergent sequence (7Vy, gn) —
(7, 9) in A we have py, 4 — py4 and X, — 3., which is a simple
consequence of the definitions in , Lemma and the conti-
nuity of the information and Cholesky matrices (see Section .
Consequently, any such sequence satisfies

N (g By) > A (9, 7). (6.25)

By virtue of Theorem it therefore suffices to prove

sup sup sup
veO* gEYn Ceed

Pin(v) = 9(0) € C = A, 5)(C)] = 0,

(6.26)
where, again, ¢ = {C € B? : C convex}. Let us assume that
(6.26)) does not hold. Then there is an € > 0 such that

limsup sup sup sup
n—oo  yeO* g% Cedd

PO (1) =9(0) € Ch= A, 5,)(C)] > =

In particular, there is a sequence (7, g,) € A such that

limsup sup
n—oo  (Ceed

Py A0 () = gn(0) € Ct = A, gn,zw)(c)‘ > e/2.

(6.27)
Without loss of generality, we can assume that this limit superior is
actually a limit. If necessary, one can do so by passing over to some
suitable subsequence. The compactness of A = ©* x %; implies
that there is a subsequence n', such that (v, gv) — (v,9) € A.
(In order not to unnecessarily complicate the notation, we further
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write n for n’.) The Triangle Inequality yields

sup | P, {in() = 90(0) € C = A, 5 (O)
Ceed
< sup [P, (i) = 0a(0) € C} = Ay, 3,(C)
Ceed
+ sup Jl/(ﬂmgazv)(c)_JV(Uvn,gnvan)(C))' (628)
Ceed

Combining Theorem with the results from Proposition [6.8] and
(6.25)), respectively, we conclude that both of the suprema in ([6.28])
tend to zero, and thus

Py () = 9n(0) € C} = Ay, 5, (€)] = 0.

sup

Ceed
This is a contradiction to (6.27)), and therefore the hypothesis that
(6.26) does not hold must be false. This implies the assertion of
the theorem. |

As a direct consequence of the above results we obtain the de-
sired upper bound for the asymptotic minimax risk in the sequence
of the local models.

6.9 Corollary. Assume that the conditions from Theorem[6.4] hold.
Then

sup sup P {7 (v) — 9(0) € [0, I
veO* 9EYH

— sup sup A, 5 )([=0,0]%),
ve®* gEYH
and the limit is bounded by the supremum (with respect to ) over
the expressions from Theorem[6.3.

Proof. With the same arguments that were used at the end of the
proof of Theorem we first conclude that

liminf sup sup P(”){nn € [-4,6)¢ }
T N eBF gEYn
> sup sup liminf P{"{7,(7) € [-4,6°}
veO* g€ T
sup sup A, 5 )([—5, 5]0). (6.29)

y€O* 9<Gu
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Furthermore, we have

sup sup P {7, (7) ) € [-6,0]“}
veO* 9EGH
= sup sup (1 — PO{in() — 9(0) € [-5,9]})
ve®* gEGH
< sup sup [P {i(7) — 9(0) € (8,61} — A, 5.(~8.8)
vEO* 9EGH

+ sup sup A, 727)([—5, 5]0).

veO* 9EGH

Since [—§, ] is measurable and convex (i.e. [—4, ] € €9), it follows

from (6.26)) that

P (1) = 9(0) € [=6,8} = Ay, )((=5,8))| = 0,

sup sup
veO* 9EGH

and thus

limsup sup sup P {7.(v) —g(0) € [, 8¢}

n—oo  ~Ne@* gEGy

< sup sup A, .z )([—5,5]0).

ve®* gEYH
Together with (6.29) this proves the assertion. H

6.10 Remark. Passing over from A to subsets of the form A’ =
{7} X ¥, the above results yield the convergence assertion ([6.10)
with & = %y, which has been the starting point and motivation for
the examinations of this section.



CHAPTER 7

Upper minimax risk bounds in the global model

In the preceding chapter we proved that the local estimator 7, con-
verges uniformly in distribution to a family of normal distributions.
This allowed us to derive an upper bound for the asymptotic mini-
max risk in the local model. We now want to expand these results to
the global model. To this end, we use an adaptive estimator, i.e. we
combine a preliminary estimator (that converges with appropriate
rate) with the local estimator 7,. This yields the desired upper
minimax risk bounds. The ideas of this chapter are based on those
in [Pfanzagl| (1994), cf. in particular the proof of Proposition 7.4.13
of that book.

7.1 An upper minimax risk bound in the global model

Throughout this chapter we use the notation introduced in Chap-
ter [0l Furthermore, we assume that the conditions from Sections
hold. In addition, we assume that there is a wuniformly
(1/ay)-consistent preliminary estimator according to Section [3.4]
That is, we have an estimator £& = £*(xg) for £(xg) such that for
every ¢ > 0 there is a constant C' = C, > 0 satisfying

1
limsup sup P {a—HfffL —&(zo)|| > C} < L. (7.1)

n—oo  fEF

We consider the adaptive estimator

~

En = &+ anin(&y)- (7.2)

113
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Here the local estimator 7,,(£) is defined according to (6.7)), i.e. we
have

Ba(€0) = CASe (U, ... USH)T,
with S according to and

n
Ut =Y U, Usi' = anGi (#n) ley
j=1

Confer also (6.5 and (6.4) for the definition of the Uf{;l and G.,,
respectively.

The construction of this estimator reflects the idea of the local-
isation of the model. In a first step one estimates roughly the un-
known parameter £(zg) by the preliminary estimator . This cor-
responds to the localisation idea of the previous chapters of passing
over from the global to the local model, and thus to a fixed centre
of localisation. Subsequently, one tries to refine the estimator &,
using the results achieved for the estimation of the parameter g(0)
in the local models. We will show that én in some sense—namely,
as concerns the maximal risk—possesses the same asymptotic prop-
erties as 7, does in the sequence of local models. This is exactly
the assertion of the following theorem, which at the same time is
one of the main results of this thesis.

7.1 Theorem. Let the assumptions from Sections hold,
i.e. assume thaf)

o the family P = {Py : 0 € O} is continuously differentiable in
quadratic mean,

e the information matrices Iy are positive definite for all 0 € O,

e the log-densities logpy are three times continuously partially
differentiable with respect to the parameter, and the third par-
tial derwatives of the log-densities are dominated by an inte-
grable function J,

e the moments of the score function satisfy certain smoothness
conditions.

DWe recap only the main assumptions from Sections , for the details see Chapter
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Let the function space Fy be defined according to . Moreover,
let £ = & (xg) be a preliminary (1/ay)-consistent estimator that
satisfies the above conditions, and let the resulting estimator én =
fn(xo) be defined according to (7.9). Then

sup P {0 (x0) — £(a0) € [~a,8, 0,0}

£€EFn
— Sup sup ‘/V(N%gvzv)q_d’ 510)
vEO* geEYGY

In particular, the limit expression is an upper bound for the asymp-
totic minimax risk in the global model {Pf(") & € Fu}t, given by

:

Proof. Throughout the following calculations let & := &(xp). The
definition of the adaptive estimator yields

~

En— 8 = (& — o) + anfn(&)
= (& — &) + an (Ma(&) — M () + anin(&o)- (7.3)

Using the definition of the local estimator 7, in (6.7) we further

get?

ﬁn(&)) _ Cg_olsfo(Ugml? o Urflo,d)—l'
Gl (i’ ,)T
n g\
(6.5) _ . ;
- Z ancgols&) : Efo (Yn3>
i=1 Ge (Tnj)

6D ~— . i INT
DS 0,05 S B e (Vi)
s

where here and in the following

B?oj = diag (9s,(e0) (Zng)s - - - > Gputeo) (Enj)) - (7.4)

The parameters 3;(&y) are the solutions of (5.44]) (with 7 replaced
by &). The above calculations do of course also hold, if &, is re-

2)As in Chapter @ we interpret Y;,; as the jth canonical projection on the product space
Y™ see also Remark @
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placed with &;. Hence, we can write

(&) — (o)

n

= an (€S BECENT) {le (V) — ls (Va)}  (7.5)
j=1
+ Rl (50? 5:;)7

where

n

Ri(60,6) = a, (cg*lsg* (ol
j=1 (7.6)

'S BE(C)T ) ey (Vo).

In Section we required the log-densities to be three times par-
tially differentiable with respect to the parameter and thus in par-
ticular to permit a certain Taylor expansion. As a consequence, we
may write

)

=
[k

2532 (YHJ) - éfo (Yn]) Zfo (Ynj)(é;; - 50) + 7n(&Oa Sju Ynj)v

with fg, = V: log pe, and some remainder term r(-) (which is to be
discussed below), and we conclude that ([7.5) can be written as

u(€3) — (&)
- Zan( . Se: Bel (Ce. T) {le;(Ya)) = le,(Yaj) } + Ru(&0,€3)
= 2o (GG SaBEC)T) fa (6~ 6 .

+ R1(%0, &) + R2(0,65),

where

n

an< C:'Se, B (C)) )r(go,g;;,ynj). (7.8)

Jj=1
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Summarising, the above calculations yield
L . .
a—(fn—fo) — 1 (&0)
]‘ * A k A

@ (a_n " Z e L) [

2
s=1

Setting
R3(&0,€5)

<1+Z (5*1S§ (Cg*))ego( ))ain(g;_go), (7.9)

and R(&, &) = Zs | Rs(&o, &) the above display can be abbrevi-

ated to
1

— (& — &) = (&) + R(&, &) (7.10)

n

We continue with an examination of the asymptotic behaviour of
N, under the product measures Pg(") = (X)?:1 Pe(z,;)- From the
definition Us‘j” = anGéo(:T:nj)TQo, according to (6.9)), it follows that
Ugg’ = 0 for j ¢ K,. Hence, we conclude for the estimator 7,
from that of the total of n values £(z,;)—and thus from the
corresponding distributions P, y—only those have an influence
on the estimator’s behaviour, for which |x,; — x9] < K/b,. In
other words: the stochastic behaviour of 7, only depends on the k,
distributions Py, ) with j € K, (cf. (4.7) for the definition of k,
and K,,).

Let for a moment n be fixed, and consider now some arbitrary,
but fixed £ € .. Without loss of generality we may assume that
n is sufficiently large, such that xy + K /b, € [0,1]. If we define a
map g = g(&,n) according to

g(z) = {(5($0+$/bn) —&(x0)) Jan, € [-K, K],
0, v ¢ [-K, K.
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then the local alternative v, around the point v := &(x) satisfies
(3) -
Yon(Tnj) = 7+ ang(Tnj)

bn ni —
= 7+§<ﬂfo+ @ ?jan xo))—v = &(wnj),

for all j € K,,, and

Wg,n(xo) = 7 = &(x0).

Since, by assumption, £ is continuous on [0, 1], g is continuous
n [—K, K], and g(0) = 0. Furthermore, we conclude from the
properties of & that

19(2) = (1)l Hé“(fﬂoﬂ/bn) ~ &(wo :ny/bn) |
ai (|Jz —y|/bn)" E1Y 1z —yl”,

n

and therefore g € ¥4 (i.e. ¢ € % and ¢g(0) = 0, see (3.13)).
Consequently, for each & € %y and each index n there is a map
g € % such that the local alternative v,, (around the point v =
£(zo)) and & have the same values at the points z¢ and x,;, j €
IK,,. The converse of this assertion also holds true. If v € ©* and
g € % are given, then the resulting local alternative v, , coincides
on [xg — K/b,,xo+ K/b,)—and only this interval is of importance
for our examinations—with a function £ € Fy with &(xg) = 7.
Indeed, we have v, ,(x0) = v + ang(0) = v and

anlg (b — xo» - g(bn<y — 20))llse
y))”

1790 (%) = Y90 ()lloo

an(bn|z — u(le —yl),

and 7, , is also continuous on [zg— K/b,, 9+ K /b,]. These notions
yield the following equality of families of distributions,

{ @ Peice ) ={ @ Pw1co o)
J€K, jeK,

As was mentioned before, the distribution of the estimator 7, de-
pends on the product measure Pé") = ® 1 Pe(z,;) only through the
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components P, y with j € K,. From that we can now conclude

that

Tnj)

sup P {ia(&) € [~6,0)

(egy
= sup sup PO {.(7) € [-6,0]°},
1€0* geYy

(7.11)

where &y = &(xg) as before.
In Theorem [6.4] it was shown that £ (9,(y) | P{)) converges

uniformly in distribution on A = ©* x %; to a family of normal
distributions. Together with the preceding observations this implies
that Z(0,(&o) | Pf(")) converges uniformly in distribution on %y
(to the same family of normal distributions). If in addition we are
able to show that the remainder R(&p, &) from ((7.10)) converges
uniformly in probability to zero (in the sense of Definition [2.23)),
ie.

sup P"{[| R, &)l > e} — 0 (7.12)

£eFn

for all ¢ > 0, then the generalised version of Slutsky’s lemma

(Lemma implies that
2 (1(&0) + R(&0, &) | )

converges uniformly in distribution on %y, too. To sum up, the
above arguments then yield

sup Pg(”){én — & € [—ay, ané]c}

£€EFn
(7-10) o .
= aw P {0 (&) + R(%, &) € [-6,6)}
€FH
~ sup Pg"){ﬁn(f’o) € [0, 5]0}
IS

1) w {
=" sup sup Py {in(y) € 0,0}
1€EO* ge¥y

— Sup Sup °/V(/‘%ga2'y) ([_5’ 5]C) )
YEO* gEYy
The convergence in the last step follows from Corollary if 4y is
replaced by ¥}, and the arguments at the beginning of the proof of
Theorem imply that it does not play a role, if the supremum is
built with respect to % or with respect to ¥.
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Therefore, the theorem is proved if we can show that ((7.12)
holds. Following the definition of R(&, ") we have

3
s PR >} < s 2L S [Ru(en 6> <

§€Tn §€Fn

s=1
3
n . €
< > s r{Ir@e)l > 5.
s=1 §eFn
The assertion ([7.12)) follows now from Lemmas 7.4 n

7.2 Lemma. supgg, Pé"){HRl(ﬁo,f;;)H >¢e} — 0 foralle > 0.
7.3 Lemma.  supees, P Ra(6o. €]l > <} — 0 for all e > 0.

7.4 Lemma. supe g, P {I|R3(&0, &)l > €} — 0 for all e > 0.

7.2 Proofs

In this section we give the proofs of Lemmas [7.2H7.4. Throughout
this complete section we presume that the assumptions from The-
orem hold, of course we use the notation used in the previous
section.

7.2.1 Preliminary considerations

Before we start with the proots, we provide some tools and auxiliary
results, which will be needed later.

On Lipschitz conditions. From the discussion in Section 3.1 we
know that the Cholesky matrix C, is continuous in the parameter.
Furthermore, we have seen in Lemma [3.1] that the map v — v(7)
is continuous. These results will now be refined: we will show that
v(-) and certain other maps even satisfy Lipschitz conditions. To
this end, we first provide some basic results on Lipschitz continuous
functions.

7.5 Lemma. (i) Let f1,..., fn: R? — [0,00) be Lipschitz con-
tinuous on U C RP with Lipschitz constants L;. Then [ :=
max; f; 1s Lipschitz continuous on U, too, with constant L :=
max; Lz
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(ii) Let f: RY — R and g: R? — RY be Lipschitz continuous
on sets W C R and V C RP, respectively, with Lipschitz
constants Ly and Lg,. Suppose that g(V)) CW. Then fog is
Lipschitz continuous on V' with Lipschitz constant L¢L,.

(111) Let f,g: RP — R be Lipschitz continuous on U C RP with
Lipschitz constants Ly and L, respectively. Presume that f
and g are also bounded on U, i.e. we have sup,cy | f(z)| < My

and sup,cir |g(x)| < My. Then fg is Lipschitz continuous on
U with constant LM, + LyMy.

(iv) Let f: RP — R be Lipschitz continuous on U C RP with
constant L, and suppose that f(x) € [a,00) for all x € U,
where a > 0. Then 1/f is Lipschitz continuous on U with
constant L/a?.

(v) Let U C RP be compact and conver. Let f: U — RY be
locally Lipschitz in the sense that for each x € U there is an
open neigbourhood U, of x on which f is Lipschitz continuous.
Then f is Lipschitz continuous on U.

Proof. Ad|[(i): Let z and y be arbitrary points in U. Then | f(z)—
f)| = |fu(x) — fily)| for certain indices k,l € {1,...,m}. In
case k = [ the Lipschitz continuity of fj implies |f(z) — f(y)| <
L||z — y||. In the remaining case k # [ we can assume without
loss of generality that fi(x) > fi(y) > 0. We also have fj(y) =
max; fi(y) > fx(y), and thus

|fe(z) = fily)l = filx) = fily)
< filz) = fuly)
= |fe(z) = fi(y)| < Lillz —yl|-

Ad|(i): Trivial.
Ad : For all x,y € U we have

|f(x)g(z) — f(y)g(v)] |f(x)g(z) — f(x)g(y)]
+[f(x)g(y) — f(y)g(y)]

< Mylg(x) — g(y)| + My|f(z) — f(y)]
< (Mng+MgLf)Hx—y||-

IA
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Ad .' For all x,y € U we have

‘ 11 ‘ _ ' f(y) f(z)
flx)  f) f 561) - f@)f(y) 1
= mﬁ(@—f@)’ < ELHI—QH-

Ad .' Obviously, the sets U, build an open cover of U. By
compactness, we can select a finite subcover, i.e. we can select
T1,...,Tm € U such that U C U~ U,. We denote the lo-
cal Lipschitz constants on the sets U,, by L;, and we set L :=
mmax;—i_mL;. Let now arbitrary points x,y € U be given.
If z,y € U,, for some index i, then of course ||f(z) — f(y)| <
Li||x — y|| < L||z — y||- It remains to investigate the case that no
such index 7 exists, i.e. we have v € U,,, y € U,, and @ # j. Since U
is convex, the connecting line V' = V (z,y) lies in U. Consequently,
there are s < m —1 points y1,...,ys € V and a sequence of indices
i =11,...,is = j such that y. € U,, N Uxim- From the triangle
inequality and the local Lipschitz property we get

1f () = FI = 1F (@) F fly) F "':|:f<ys)_f(y)”
< [[f(x) = f(n IHZHf yr) = f(yr)|l

1) - 1))
s—1
< Lolo sl + 3" Liullge = veall + Lellye — o1
r=1
s—1
< mac Ll = ol + 3 e = ool + e =

r=1
< mmax Lillz -y
)

The last inequality is a consequence of the fact that the distance
between any two points ¥,., ys € V can never be greater than that
between x and y. Altogether, the above calculations yield

17 (z) = fFWIl < mmax Lil|lz —yl| = Lz —y,

and thus the stated global Lipschitz continuity of f. |
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We will apply this lemma for the proofs of the following results.
Moreover, we will use some of the notation that was already used for
the construction of v = v(y) in Section [3.5.3 Recall the definition
of the set ©' = {{(x) | v € [0,1],& € F} given in (3.7).

7.6 Proposition. The maps v — C,, v +— C;', v — ||C||, and
v v;(y) (j=1,...,d) are Lipschitz continuous on ©'.

Proof. According to the assumptions from Section [3.2] the entries
of the information matrix 7., are—as functions of y—continuously
partially differentiable on ©. Since the entries of the corresponding
Cholesky decomposition C, and its inverse C ! result from linear
combinations of the entries of Z,, it follows that the components
of the maps v +— C, are continuously partially differentiable on ©,
too (cf. (Opfer, 2001, p. 175 f.). An analogue result holds for the
maps 7»—>C§1 and HIv_l'

As a consequence, the maps v — C,Jy' (7 =1,...,d) are con-
tinuously partially differentiable. In particular, they are Lipschitz
continuous on ©' C O, which follows from the compactness of ©’
and an application of the mean value theorem (cf. [Konigsberger,
2000, p. 56). An analogue result holds of course for v — [|CI]|;.
This proves the first part of the assertion.

Furthermore, the just shown partial differentiability of the map
C(, implies that the vectors w® = w(y) = C,6% from (3.18)—
interpreted as R%valued functions—are continuously partially dif-
ferentiable on O, and thus of course Lipschitz continuous on ©'.
From (i) and in Lemma then it follows that also the maps
v +— w(7) (since the absolute value is Lipschitz continuous) and
v = @ () as in (3.19) and (3.20)) are Lipschitz continuous on €.
The same also holds for the maps 2 (). With |(i)|in Lemma [7.5|it
follows, that the function a = «(y) from ({3.21)) is Lipschitz continu-
ous on ©’. Furthermore, a is on ©’ strictly bounded away from zero,
which follows from the continuity of the z(?)(v) and the definition
of a. Therefore, assertions and in Lemma imply that
the map v — 1/a(y), and hence the product v(vy) = w(v)/a(v),
too, are Lipschitz continuous on ©. |

7.7 Proposition. The maps v — Bj(v) and v — S;(v) (j =
1,...,d) are Lipschitz continuous on €,
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Proof. In Lemma 6.6/ we already proved that () is continuous.
As in the proof of that lemma, let an arbitrary vy € © be given
and let
(=%, 9%, 2") = (v;(7), IG5, 111, B(70))-

The implicit function theorem guaranteed the existence of open
neighbourhoods Uy, ,+) and U« of (z*,y") and 2%, respectively, and
of a unique, continuously differentiable function f: Uge )y — U~
satisfying f(z*,y*) = z* and (6.14). We may without loss of gen-
erality assume that the partial derivatives of f are bounded on
Utzey+). (Otherwise, one may simply scale down the sets Uy -
and U,- and thus pass over to suitable subsets for which this holds
true.) Thus, as a consequence of the mean value theorem f is
Lipschitz continuous. In combination with Proposition fol-
lows the existence of a neighbourhood U,, of 7y such that ¢ =
(vi(-), HC{)Hl): Uy, — U=y is Lipschitz continuous. Then f o
q is Lipschitz continuous on U,,, too. This follows from in
Lemma [7.5, With similar arguments as in the proof of Lemma
we conclude from the uniqueness of f that the map v — 3;(v) is
Lipschitz continuous on U,,. Since 79 € © was chosen arbitrar-
ily, this implies that 3; and thus 8 are locally Lipschitz on ©. In
combination with of Lemma this implies the assertion. W

7.8 Remark. In the univariate case (i.e. for d = 1) the result from
Proposition can be proved much more simple. In this special
case, the function F' from the proof of Lemma (which is used
to prove continuity of §(-)) can be simplified to

F:0 x (§,00) = R, (x,z)Hlogz_tg ~ o7

The implicit function theorem directly implies that for each 0 there
is a neighbourhood Uy on which v +— ((7) is continuously differ-
entiable and thus locally Lipschitz. Global Lipschitz continuity of
B(+) is then of course deduced with the same argument as in the
proof of Proposition [7.7]

The problem of the general multivariate case d > 1 in comparison
with the univariate one is that the additional functions v — v;(7)
must be incorporated. In general, these are not differentiable, be-
cause in the construction of these functions we often take abso-
lute values (such as in (3.19))), which might destroy differentiability
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properties. This prohibits us to directly conclude that the function
f o q from the proof of Lemma is continuously differentiable
and thus (locally) Lipschitz. Therefore, we are forced to make the
above detour to prove the assertion of the theorem.

Matrix norms. As is well known, the Euclidean norm ||-|| on R¢
induces a norm || - || on R, the vector space of d x d-matrices,
by the relation

Ax
IIA]l == sup A} H, A€ R™,
r€R® x#0 ’ I‘H
Since A is a linear map (or operator), ||| is sometimes also referred

to as the operator norm with respect to the Euclidean norm. Note
that all norms on R%“ are equivalent, which means in particular
that for matrices A,, A € R™? the following holds:

A, — A with respect to || - || & A, — A component-wise

(cf. [Konigsberger, 2000, p. 27). In particular, one may conclude
that if A, — A component-wise, then also ||A,[ — [|A[. (Of
course, the inverse statement does in general not hold true.) A

different norm on R is given by the Frobenius norm, which is
defined as

d 1/2
= () A=(w) e R

ij=1

Of course, one may rearrange the elements of A and write it as a
vector of length d2. In this case, the Frobenius norm coincides with
the Euclidean norm on R?. Note that we have the inequalities

A (] < JlAT ol

7.13
AB| < |lA| IB|l, for all A, B € R™*¢ v € R (7.13)
[ : , :

These will be of great value for the proofs of the lemmas. For

further information on matrix norms see Opfer| (2001)), p. 228 ff.,
or Konigsberger| (2000)), p. 25 ff.

The role of the preliminary estimator. For the proof of Lem-
mas we have to show that for s = 1,2,3 and every € > 0
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holds
sup P RulE0. €] > <} — 0.
E€EFn

To do so, we can often exploit the properties of the preliminary

estimator. Besides € > 0 let some ¢ > 0 be given, and let C' = C,
be such that ([7.1]) is satisfied. Then

sup Pe{|| Rs(&o, &)l > €}

£€Fn
< ésup SR (o, EDI > &, oo llEn — &l > C
€Fu
+ sup P{||Rs(&, &)l > &, = l16, — &l < C}
§€EFn
< sup P{NE - &l > CF
£€Fn
rsw Pof s IR >,
§€Fn |z—&ol|<anC

According to , the limit superior of the first of these two sum-
mands is bounded by ¢ (as n — 00). If, in addition, we are able to
show that the supremum on the right hand side of the last display
converges to zero, we can conclude that

limsup sup P"{[|Rs(&, )] > €}

n—oo (T

< ¢ + limsup sup P ){ sup  ||Rs( o, 2)|| > 8} =

n—oo  (eFy lz—&oll<a,C

Since ¢ can be chosen arbitrarily small, this implies

sup P{|| Rs(&o. &) > €} — 0,

£eFu

and thus one of the Lemmas (depending on whether s =
1,2,3). Therefore, it remains to prove that for all C' > 0, € > 0
and s = 1,2, 3 the assertion

sup P { sup  ||Rs(&o, 2)|| > 5} — 0 (7.14)

£€Fu lz=6ol|<anC

holds true.
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7.2.2 Proof of Lemma (7.2

Throughout the following calculations let £, = &(z). We prove

(7.14)) for the case s = 1. To this end, let some arbitrary, but fixed
C > 0 and € > 0 be given. We show that

sup Pg"){ sup || R1(&, 2)]| > 5} — 0. (7.15)

£ lz—=&ol|<a,C

Together with the considerations from the end of Section this
implies the assertion of Lemma [7.2]

Some notation and auxiliary results. Let us first consider a fixed
£ € Fy, and let & = £(xp). We set

671111111 ‘= ﬁrrlnin(éb) = lnf{ﬁZ(z) : HZ - 50” S anC7 1= 17 S 7d}7
B = B (&) = sup{fFi(2) : ||z — &l < a,C, i =1,...,d}.

As usual, §;(z) denotes the solution to equation ([5.44]) with ~ re-
placed by z. By definition each of the functions (;(-) is strictly
positive and furthermore continuous on © (Lemma , and thus
0 < inf liminf B™"(&)

£eOF N0

1
< sup limsup G;*(&) < oc. (7.16)

§€O  NT00

Moreover, it is clear that for & € ©* and all 2 such that ||z — & <
a,C holds, we eventually have z € ©', provided that n is sufficiently
large. Since 3(+) is even Lipschitz continuous on that set (according

to Proposition we conclude that
sup {8,"(6) — B;"(€0)} = O(an)- (7.17)

§oeO*

Besides the above quantities we introduce index sets
H,:=H,(&%) =K, Nn{j=1,...,n:|Z,] < (ﬁgﬂn)l/’o},
and

M,, = Mn(fO)
=K, N{j=1,...,n: (B < |2, < (B},
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where K,, is defined as in (4.7). Because of H, C K, we have
#H,, (&) < #K,, = k, for all . Moreover,

(B P — (B 7] /b,

#M, < |
(ﬂmax /BTILIIIH)n/bn .

S
S

The last inequality follows from ([7.16)) in combination with the fact
that the map = — x'/? is Lipschitz continuous on every compact
interval lying in (0, 00). Together with ([7.17)) this leads to

ann

sup  #M, (&) S

£oeO* n

(7.18)

The index set H,, is motivated by the following observation: let &,
be given and z be such that ||z — & < a,C. Then, of course,

B(&), B(z) > ™1 and thus

195(2) (Znj) — 9p(e) (Tnj)] = 18(&) — B(2)], jeH,. (7.19)

This relation will turn out helpful in later investigations.

In the following calculations we will often consider the supremum
with respect to the set {z : ||z — & < a,C}, for given & € O
In order to keep the notation short, we will often write this as

SUD|.—go [ <anc (- - - ) or shortly sup,(...).

Proof of Lemma[7.2.  With these additional considerations we can
now assess the asymptotic behaviour of the remainder term R; from
the definition in (7.6)). If we replace £ with z in that definition, we
get

Ri(€o, 2) an< C.1S.BY(CY)T — € MSe, BU(C: ) )égo(ynj).

Jj=1

From the definition in ([7.4)) it follows that Bgoj = B" = 0 for all

indices j with |Z,;| > (87*)Y/7. Therefore, it suffices to build the
sum in the above display only with respect to all 5 for which this




7.2. Proofs 129

is satisfied, namely for 5 € H, UM,,. Hence,

sup || Ri(&o, 2)|

l2—&ol|<anC
< | S fersmiery
“ Wjem,
o C&)ISfOBng(Cgol)T)éfo (Ym) ‘
| 3 aesmiery

JEM,

N Cf_ol‘S%O ngj (Cg_ol)T) éfo (Ynj)

‘. (7.20)

In order to prove that Ry(&p, z) converges uniformly in probability
to zero we show that both of the suprema on the right hand side of

(7.20)) do so.

Assessment of the first expression in . To prove that the first
expression in ([7.20]) converges uniformly in probability to zero, we
first derive a (rather crude) upper bound, which does only depend
on the previously fixed &. We then show that this upper bound
converges uniformly in probability to zero. Adding and subtracting
an additional term Cgongong(CZ_l)T, we obtain

C.1S.BY(C.1)T = Cg'Sa By (Cg )T |
= CS.BI(C) T 0 S BY(C) — €yl By (e
= (e1s = cg'se ) BU(C)T

+ Cg_olsfo (BQJ<CZ—1)T _ ng(cg—ol)T> (7.21)

Hence, a multiple application of the triangle inequality and the
inequalities for the operator norm yield



130 Chapter 7. Upper minimaz risk bounds in the global model

sup
z

< sup

z

> an (G718 BIC)T = 051, BE(CDT ) U ()
JjeH,

5 o (€515 - €5l B o ()|
jel,

> @il Se (BIC)T = BE(C)T) fe (Vi)

jeH,

+ sup

_ -
< sup mcz 1SZ o Cgolsfo m sup
z z

> anBY(CY) g (Yay)

JeH,

g ol swp| Sa (BT - BCT) i)
jelH,
(¥) d .
S sup[|C1S. = € Sl Y sup | Y ane] BI(CY) T, (Vi)
z i=1 * ljem,
d
s sl S sup| 3 ane] (B:%c;lf
i=1 * ljem,
gy <c;1>T)ego<Ynj> .

Note that in the last step (%) we simply exploited that [|w] <
w1 = Zle lw;| for all vectors w € RY. Here e; denotes the ith
unit vector. Since the matrices Cry and S (i.e. their components)
are Lipschitz continuous on ©’, the same holds true for the map
C(f)lS(.) (see the results from Section [7.2.1]). Hence,

(7.22)

1 1
sup C:15. — €5 Se l S
where the right hand side does not depend on &y. Moreover, because
the considered map is continuous, we can bound [|C;, LS¢, || uniformly
in &. These properties, combined with the preceding calculations,
yield
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> an (C1SBY(CT)T = 5186 BE(CDT) by (Va)

JjeH,

d
< anZsup
S el (BE(EHT - BEC,) ) le (Vi)

+ Z sup
J€EH,

(7.4) ~ — ;
0, S sup | S augne (ng)el (€21 g, (Vi)
i=1 % ljeH,

+2_ 5w | Y anef <9ﬁi<z>(ﬂ?m)(C; D'

i=1 * ljem,

sup
z

> awe! BY(CY) g, (Yay)

jEH,

(7.23)

— 9aie (@) (C5 D) ) ey (Vo).

Using the Cauchy-Schwarz inequality we find an upper bound for
the summands of the first sum in ([7.23)) by

Z angﬁi(z)(:ﬁnﬂej(cz_l)Téfo (Y’ﬂ])

JjeH,
< el || ST angne u)ie (¥, )\
JjeH,
13
= 1| \Zangﬂ #01)le (Vi)
JjeH,
S| Do @95 Fp) e (Yay)|| (7.24)

JjeHy
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This last expression can further be bounded from above in the fol-
lowing way:

Z Angp,(= xnj gfo( )

Jj€EH,
< 1D an (98,00 Fni) = 98060) (Fng)) Loy (Vo)
jeH,
+ Zangﬁi(fo)(‘%nj)éﬁo(ynj)
jeH,,

T 15.(2) - sico)|

Z a”éﬁo (Yﬂj)

JEH,
+ Za”gﬁi(fo)(fnj)éﬁo(ynj)
JEH,
(1) ) ) .
S an Zangéb(ynj) T Zangﬁi(fo)(xnj)gfo(ynj) 5 (7-25)
JEH, J€EH,

where () is a consequence of the Lipschitz continuity of g;(-)
(Proposition [7.7)). Note that (7.25]) also incorporates the inequality

Z aiéfo (Ynj)

JjeH,

> an (95, (Fns) = 9560 (Fni)) Ley (V)

JjeHy

(7.26)

which turns out useful in later examinations. Summarising, the
above calculations yield the following upper bound for the first of
the two expressions in (|7.23)):

d
Qp Z sup Z angﬁi(z)(inj)ez—’r (Cz_l)—rgfo (Ynj)
i=1 * |jem,
() d .
< an ) s sup > angs)(Fng)le, (Yay)
i=1 jEH,
[7-25) d )
S anp sw | || D anle(Yiy)
=1 J€H,
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- Z Angp;(&o) (inj )é&) (Ynj)

jeH,

Z a?méfo (Yﬂ])

JjeHy

S On

d

+anz

1=1

D s (Eng)le,(Yay) |- (7.27)

JjeH,

With similar calculations we may bound the second sum in ([7.23]).
From an application of the triangle and Cauchy-Schwarz inequatl-
ities we get

D ane; (9@ (Zn)(CZ1) " — gﬁi(fo)(inj)(cgol)—r> ley (Vo)

jEH,

< |3 el (940 @€ = g1 @) (€T ) e (Vi)
| S ane! (9@ DT = g (@0) (€51)T) e (Vo)
JjeH,

< et = Cgeill

> angs, () (Fnj) ey (Yg)

JjeHy ‘

Z tn (95,(:)(Fng) — 9560) (Fng)) Ley(Yaj)
JjeH,,

Z angs;(z) ('%nj)éfo (Ynj)

JjeH,

> an (95, (Fns) — 9560 (Eni)) Loy (Vi) |-

JjeHy,

+ICg, eill

[13)

let =gl

o

The same Lipschitz and continuity arguments that were used before
for the proof of (7.22)) yield ||C;! — Cgolm < ay, and, in addition,




134 Chapter 7. Upper minimaz risk bounds in the global model

ICe, Ul can be uniformly bounded by some constant. Consequently,

>~ ane! (9@ (€)= 93 E)(Ce D) LaVa)

JeHy

S Z Angp,(2) (Tnj gfo( j)
J€EH,

{1 D an (950 (Fng) — 9060 (Fny)) Lo (Yay)

JeH,
< an< > anle,(Yay) > @npe) (Tnj) e (Yag) )
J€EH, JjEeH,
11 D an (95:)(@ng) = 95060 (Fn)) ey (Yag)
JeH,
< an< > anle,(Yay) > @ne) (Tng) e (Yag) )
J€EH, JjEeH,
+ Y anle, (Y| (7.28)
JeH,

Therefore, for the second expression in ([7.23)) we find an upper
bound by

jeH, i=1

d
> sup | 3 el (33 @) €)= e (E)(CD)) e (Vo)
i=1 * ljem,

(17.28)) o : 9

~ o Gn Z angfo(ynj) + Z anggo(ynj)

Jj€H, je]H
+ Z Z ngﬂ (o) (xnj)gfo(y )
=1 " jeH,
. d .
S > adle, (Vo) + D11 D argsie) (Eng)le, (Yaj) ‘

JjeHy

The last step follows simply from the inequality 1 + a,, < 2. Com-
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bining this result with (7.27)) and (7.23)), we get

sup | > an (CT1SBY(CT) T = S BE (C)T) ey (Vi)
le—&oll<anc || 5,
. d .
S D0 akle, (V) ‘ + ) D abgsien (Eni)le, (Yay)||. (7.29)
JjeH, i=1 " jeH,

Next we prove that both of the expressions in ([7.29)) converge uni-
formly in probability to zero. For arbitrary, but fixed £ € Fy
Markov’s inequality yields

2

n ; 3 4 .
P ){ > anle,(Yag)| > 5} < SE| Y @iy . (730
jeH, jeH,,
and
d . .
S| S s @aic 0 > 5
=1" jeH,
d . .
< S {| S e @ioln)| > 55
=1 jeH,,
142 _ 2
= Zg—gE > angpe) (Enj)ley (Yag) (7.31)
=1 jeH,,

The expectation in the above displays is to be built with respect to
the product measure P”. In order to prove that the expressions
from ([7.29)) converge uniformly in probability to zero, it is sufficient
to prove that the expectations in ((7.30) and converge to zero
uniformly as n — oo. We can also write these expectations as

2

B ) apwnile,(Ya))

Jjely,

Y

where either w,; = g3,(Z,,) for all n,j, or w,; = 1 for all n,j.
Moreover, we set

w::sup{lJrﬂi({O):&)E@, izl,...,d}<oo,

which yields w,; < w for all n,j and for either choice of w,;.
Note that this inequality does not depend on the choice of the
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point & and thus not on the choice of & € Fy either. Further-
more, we observe that for arbitrary stochastically independent, R%
valued random variables X1, ..., X,, with finite second moments
(in vector notation written as X; = (Xj1,...,X;q)") the follow-
ing (in)equalities hold:

. Zd:E(in,kf
= Z{varZXjk+(E§:X],k> }

k=1

— Z{Z\/ar k+(ZEXM> }

k=1

SZ{ZE k+(ZE )} (7.32)

Together with the above definition of w (7.32)) yields

2
E Z aiwnjgfo(ynj)
jeH,
d
<

{ W ny/fgokdpéwm
jeEH,
. 2
+ ( Z aiwnj/égmk dpg(xnj)> }

1€,

k=1

d
< Z{ na w? sup Ef i dPg(xn]

=1 jEH,

2
+ (knaiw sup /ka dPg(a:m)> } (7.33)
JeH, ‘

In the above inequalities we further used that #H, (&) < k, (for
each &). Moreover, from H,, C K, it follows that |x,;—zo| < K/b,
for all indices 5 € H,,. According to the smoothness assumptions
from Section 3.2, the maps (0, 7) f€ (for [ = 1,2) are
continuously partially differentiable on ) and thus—by virtue of
the mean value theorem—Lipschitz continuous on the compact and
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convex set ©. Since £(z9) = & € O and &(z,;) € O (which
follows from the definition of ©’) this implies for the case [ = 1 and

all k =1,...,d that
/ leyie APey, ) — / be s AP,

—
=0

sup
JjeHy

= sup
JjeHy

/éfoak de(xnj)

S osup [[€(zng) — S|
jeH,

= sup [|{(xn;) — E(x0)])-

JjeHy

As a consequence of the above considerations we have sup g, [7,;—
zo| < K /by, and in combination with the growth condition in ((3.6])
and the definition of a,, in (3.14)) it follows that the last expression
is of the order O(ay,).

As a further consequence of the differentiability of the maps
0,7) — féle’k dP; we can conclude for the case [ = 2 that

f@gk dP; is bounded for all §, 7 € ©', and thus

sup / lo APeiz, ) S 1

JjeH,

forallk =1,...,d. In addition, one can conclude from the smooth-
ness assumptions in Section that the upper bounds just derived
do not depend on the choice of £ and &, = £(xg), respectively. Con-
sequently, if instead of a single function & we consider the whole
class Zy, we get

[l dria| 5 sw s et - €l 5 an

Sup sup

(eu jeM, (¢eFu jeH,

sup sup /@ok dPe(y,,) < 00. (7.34)
(eu jeH,

According to (4.8) we have a? ~ 2K /k,, and thus in particular
kna;t = o(1), for m > 2. From the above calculations we conclude
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that
2
sup / Z aZwyile, (Yr;) dPg")
£eFu jeH,
733) ¢
Z {knaflwz sup sup /fgok dPe(,,)
1 (e jel,
. 2
+ (knaiw sup sup /E&hk dPg(xnj)) }
{eFu jeH,
(734)
< kpat 4 (knad)? = o(1). (7.35)

Of course, the “<” symbol in ([7.29) can be replaced by “<” by
multiplying the right hand side of that inequality with some positive
constant, say N. Let now some arbitrary € > 0 be given. Putting
together the above results, we have shown that

sup Pé”){ sup Z a, (C;'S.BM(C;)T

eIy lz=Coll<anC 11 jopg,
~Cy 'S, B ()T ) b (Vo)

Z aiéfo (Yn])

> <}

(7-29)
< sup P {N

(eFy ¢ e,
+NZ S 029560 (ng) s (Vo) >g}
=1 " jeH,
) g
S Sup P(" { Z aiefo (Ynj) > —}
fEJH ]€IHn N2
d . .
+ sup £ ){ DD angsie)@a)le, (Yo))|| > m}
CTn i=1 Il jem,
(7.30) )
(7.31)) .
D oy (|5 it are
$€Tn jeH,
£3 s S X o @nis i Cap
=1 £€Tn

Jj€EH,

7.35
S
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To sum up, we have shown that

> an(CrSBY(CHT
JeHn (7.36)

I

for all ¢ > 0. In other words, the first of the two expressions

sup Pé”){ sup
§€ETn lz—&o]<a,C

in ([7.20) converges uniformly in probability to zero. In the next
step we show that the same holds true for the second expression in

(7-20).

Assessment of the second expression in . With similar, but
much more simple arguments it can be shown that the second ex-
pression on the right hand side of (7.20)) converges uniformly in
probability to zero, too. To this end, we first note that the follow-
ing inequalities hold:

sup || 3 4 (€18 BY(C) T - €5 S, BE(C D) ey (Vi)
le=6ol<anC 1R
< sup|| Y aClS.BI(C) e, (Vo))
“ Wjem,
| S 002180 BICTY) T (Vi) \
JjeM,
< 2sup || Y auC'S.BY(C) g, (Yay)
= jem,
< 2 ) ausup [CISLBI(C) e ()
jeM,, &
[7-13) i ni T .
< 2> apsup (IC1S0 IBZL IE) T e, (V)
jeM, &
< 2sup (JCUSl 1EHT) - awsup IBYY] (1€, (V)
z jeM,, z
< S ausup IBY] [lfg, (Yas)ll. (7.37)

jeM,, §
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Note that in the last step we exploited the usual continuity argu-
ment, according to which

sup (€S ez )

can be bounded by a constant that does not depend on the param-
eter §o = &(xo). ‘

Next we investigate the expressions ||B77|. By the notions on
matrix norms from Section [7.2.1] we know that all norms on R**¢
are equivalent. In particular, ||A[| < [|Al|¢ (the Frobenius norm)
for every matrix A. Hence,

IBZI < I1BY[le

~Y

(7.4) - -
L TP PR SN G

S 980 (@ng)s - - - 9Bage) (@)

d
=1

where we used that [|- || and [ -|[; are equivalent norms. Due to the
definition of the index set M,, we have S < |Z,,;|? < B2 for all
j € M,,, and thus

sup | g, () (Zny)|

[z=&oll<anC
< sup {(ﬁz - |jnj‘p)+ : ﬁz S (ﬁrlznin(g())a ﬁ;naX(é-O)]}
< By (&) — B (%)

for all j € M,,. By virtue of ((7.17) this last expression can be
bounded by a term of the order O(a,), which does not depend on
the parameter & = £(x¢). From these calculations it follows

d
sup  [IBY] S Y sup |gs, ) ()|
i=1

[2=&oll<anC
< B (&) — By (&) (7.38)

for all j € M,,. We now combine the above results. Multiplying
the right hand side of ([7.37)) with a suitable constant, say N > 0,
we may of course replace there “<” with “<”. Applying Markov’s
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inequality, we conclude that for all € > 0

sup P { sup

£€Fn |lz—&ol|<anC

> an(CMSBY(CT

jGMn

_Cf_ol'S%O Bgoj (Cg_ol)T) éfo (Ynj)

> }
(7-37
< sup P,

™ an  sup || BY| ||, (Yn))|| > i}
s 20 S 1B e (¥l > =

B leli<anc

S osup /(Zan sup [|BY]] e, nj)ll) dr;"

Eegy jeM,, |z—&ol|<anC

(17.38])

< asup () - @) 3 [ gl arc,)
§€Fn

jeM,,

< an sup (#Mn@o) (575 (6) — A0(&,)

sup / e, | dPes,. )
jeM,,

< ay sup (B7™() — Br(&)) sup #M,(&)

£oeO* &EO*

sup sup / Vg P, (7.39)
(eI jeM,

By virtue of ([7.17)) we have

sup (B2(&) — 8™ (&) — 0,

506@

and ([7.18]) in combination with (3.15]) implies

CLQTL

an sup #M, (&) S l? = 1.
§oEO* n

Moreover, with the same arguments that lead to ([7.34)) we conclude
that

Sup sup /HEEOH de(mnj) <00

(eFy jeM,,

Altogether, these considerations show that the expression in ([7.39)
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converges to zero, and thus

Z Qn (CQISZB?j(CQI)T

JEM,

~C5 S4B (C)T) ey (Vi)

sup PE("){ sup
£ lz—&ol|<a,C

>z—:}—>0,

(7.40)

i.e. we have proved that the second expression in ([7.20) converges
uniformly in probability to zero, too.

Completion of the proof. To sum up, a combination of ([7.20)),
(7.36]) and ((7.40]) yields

sp 20w (g2 > <
§€Tn I€o—2]<anC

< sup Pé"){ sup

> an(CPS.BY(ECHT
£eEFn llz—&l|<anC

JEH,

_C§>15§0 Bgoj (Cg_ol)T) éﬁo (Ynj>

>€
2

> an(Cls.BY(CYT

+ sup Pé"){ sup

A N el =
-1 nj(A—1NT Y / €
_Cfo S&)B&)‘](C&) ) )€§O(Ynj) ‘ > 5} — 0,
and thus ([7.15) holds. With the preliminary considerations from
Section this proves the assertion of Lemma [7.2] |

7.2.3 Proof of Lemma |7.4

In order to prove the lemma, we show that (7.14) holds for s = 3,
i.e. for every fixed C' > 0 and ¢ > 0, and with § = £(x0)

sup Pg”){ sup || R3(&, 2)|| > 5} — 0. (7.41)
(ETH lz=8oll<anC

According to the definition in ([7.9)) (with & replaced by z) we have

! (2 — &)

n

fﬁ@ma::(ﬂ+§jaiwg%uﬁ%@1f>&xzw)
j=1
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Since B = 0 for j ¢ K, it is of course sufficient to build the sum
with respect to the index set K,,. The multiplicative inequality for
the operator norm yields

sup || R3(&o, 2) |

lz—&oll<anC
(713) 5 1 LT 1
< sup (|14 ak CMS-BY(CT) le, (V)| sup—|1z — &l
‘ jeK, ¢ On
< sup ‘ 1+ Y a2 (€18 BY(CY)T) le, (Vay) | C.  (1.42)
¢ €K,
In order to shorten notation, we set
T .=C;'s.BY(Cc. T, (7.43)

likewise we define Tg) 7 With this notation and an application of
the triangle inequality, we get an upper bound for the supremum

in (7.42) by

sup ‘ 1+ Z a? (CZ_lSZB?j(CZ_l)T) EgO(Ynj) |
le-€oll<anC jex%,
= v ST @i viy) \
jeK,
< ML= @I || +sup || Y alTTy, — > alTVI,
jeK, “ ek, jeK,
+sup || Y araTVIe, + Y anTiie, (V) ‘
= ek, jeK,
— ‘H 1— Z afszjIO + sup Z ai (Tg)j — T?j) T,
jeK, # ek,
+ sup Z aiT;‘j <I§o + gfo (Ym)> H‘ (744)
= ek,

Note that only the third expression has a stochastic component,
whereas the first and the second one are purely deterministic. We
will show that each of these three expressions converges uniformly
(in probability) to zero, for £ ranging over Fy.
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Assessment of the first expression in . In order to prove that

'H 1— Z a2 TV I,

JeKy

— 0, (7.45)

it is sufficient to show that these matrices converge component-wise

(see the remarks in Section [7.2.1)). Since Z¢, = CgTOC&), we have

Y aTdT, = > aC;'SeB(C.N) I,

jekK, jekK,
2,—1 ]
= Y alC.'Se,BlC,
jeK,
1
= ¢, (Z a;,Se, By )Cfo

jeK,

The matrix in parentheses is diagonal, and because of ([7.4)) the ith
entry on the main diagonal is given by

ni  ([T4) .
Z SZ-(&))B&)] Si(&o) Z a%gﬂi(fo)(xnj)
jeK, JEK,
=~ 56 [ gae(s) ds
1

9

where the stated convergence follows with the same arguments that
were used in the calculations from the proof of Proposition 4.3|
Consequently,

> alTVI, — C11C, = 1,

JeKy

which implies ([7.45)). This convergence is even uniform for &, € ©*,
1.e.

1- ) a)TP T || —
1€K,

sup — 0. (7.46)

§ocO*

For a proof, let us again take a look at the maps (;(+): According

to Lemma [6.6| these are continuous and thus {8;(y) : v € ©'} is a
compact interval, say [a, b]. (Note that by definition of the constant
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K in Section we have §;(y) < K” for all v € ©’ and hence
b < K?”.) Let us now consider the sequence of maps

far 0] = R, (Y ange(dng). (7.47)

JeK,

Each f,, is continuous, strictly increasing and uniformly bounded.
A universal upper bound N such that f,,({) < N for all ¢ and all n
is for example given by N := sup,, f,(b). Note that this IV is finite,
because f,(b) < k,a2b = O(1) by (L.8). For fixed e > 0 let now
v = ¢/L, where

L :=sup aikn < 00,

again by (4.8]). For all points (1, (s € [a, b] satistfying |(1 — (| < ¢
we then have

falG) = ful@)] = | D anl9(@ng) — 96 (F0))

JEK,
S aiangC1 _ gCQHU
< LG -Gl <e

for all n € N. Hence, we have shown that the sequence f,, is equi-
continuous, and thus converges in C([a,b], R), which is a conse-
quence of the Arzela-Ascoli theorem (cf. [Heuser, 2000, Satz 106.2).
Consequently, f,,(¢) — [ g¢(s) ds uniformly in ¢, and therefore

Z imy D a o8 (£ L(5u6) = [ 90 (o) ds

uniformly on ©’ (and thus in particular on ©* C ©’). From the
Lipschitz properties of the maps v — C, and v — S(7) (see Propo-
sitions and we further conclude that

Z a%C;S&BgC@ — ]1,

JeKy

uniformly on ©*, and thus (7.46)) holds.
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Assessment of the second expression in . Obviously,

> o (1 1) 7,

sup sup
§EO* |[z—&|<anC

jekK,
< sup Z aiT?Igo —1 ‘H
€0 Il jox,
+ sup  sup | I— Z a, TV,
506@* ||Z_£O||Sanc ]EIKn
< sup Z CLiTg)j_'Z'go —1
6069* jE]Kn
+sup  sup 1- ) aTT.
5066* ||Z_£0||§anc jE]Kn
+sup sup | > @ TVT — Y an T || (7.48)
&)E@* ||Z*£0||§anc ]E]Kn ]E]Kn

As was just shown in the proof of , the first of the three
suprema in the preceding equation converges to zero. Moreover,
for a given & € O* all points z that satisty ||z — &l < a,C lie
in ©', provided that n is sufficiently large. We conclude from the

proof of (7.46)) that for large n

‘ 1 apTVI.

sup  sup
§€0" |2l <anC =
< sup |Il— Z aiT?}jIO — 0.
£oe®’

JeKy

[t remains to investigate the third expression from ([7.48]). For this
we have

5066* ||Z_§0||§anc jE]Kn jEJKn
= sup* sup Z aiT;j (Z. — Z¢,) H
£o€eO HZ—fOHSanC jeK,,
(7.13) j
I O D B - ) B
§€0” [[z=&ol<anC

JeKy
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< s sup (Z a%IHTZ”jHI) sp s T — el
0" 2=&oll<anC \ g £€0” |z—=&ol|<anC

The definition of 77 in ([7.43)) and the fact that all the components
on the right hand side of (7.43)) are bounded implies that sup, |77/
is bounded by some constant, which does not depend on n, 7 and
&o. Hence, the first of the suprema in the preceding display is of the
order O(1). With Lipschitz arguments, that in similar form have
been used in the above proof of Lemma [7.2] one further argues that
the second of these suprema is of the order O(a,). Hence,

> eIV =y T

JEK, JEK,

sup sup — 0.

§€0" ||lz—¢o|<anC

To sum up, we have shown that all three suprema in ([7.48)) converge
to zero, and thus

sup sup
§€O* ||2—&|<anC

S a2 (ng - T;J’) I&]m 0,  (7.49)

JEK,
i.e. the second expression in ([7.44)) converges to zero.
Assessment of the third expression in . It remains to prove

that the third summand in ([7.44]) converges uniformly in probability
to zero. The triangle inequality in combination with ([7.13)) yields

S aared (1, + i )|

J€K,
< | T (- 1) (74 Eai) |
JEK,
o) 3 (7 + i) |
JeK,
< 3 RUTY = T [Ty + i (Vi)
JeK,
v S (7 + ) || (7.50)

JeKy
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In order to examine the first of these two expressions we first note
that

Iz - "fm e S BIC) T = € e B (C
H\ (cs. =5t BY(ENT
leatse (BrehT - BlegT) |

lc2s. — €' Sell 1827 (€)'
HICg, Se 1B (€)' = Bgl(Ce D).

13)

From ([7.22)) we know that

sup  ||C.1S. —Cg, 1550

1€0—2[[<anC

which even holds uniformly in &). From the definition of the ma-
trices B™ in ([7.4) one further concludes (again, with a Lipschitz
argument and Proposition that

sup | BH(C.Y)" =Byl (C)'

1€0—2[|<anC

<

which holds for all j, and uniformly in &, too. Furthermore,
I1B27(C;1) M| and IC, 1550 | are uniformly bounded, because the en-
tries of these matrices are all continuous on © (see the results from
Section [7.2.1]). To sum up, we conclude that there is a constant D
such that

sup sup  ||[TV — Tg) /|l < Day,

§0€O* |2—&|<anC

for all j € K,,. In combination with ([7.50)) this yields

> aprr <I§o + Eso(Ynj)) |||

jeK,
< Y ar(Dan) | Ze,+le,(YVog) I+ Y anT? (Iso +E£O(Ynj))
jeK.,

1€k,

sup
[[z=&oll<anC

Y
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»e}

and thus, for every ¢ > 0,

rof s S (541 00)

le—toli<anc Il JR,

< 7] S DablTe + i V)

J€K,
| S e (g + i) m . }
JeK,
< p{ Y DallTy + o)l > 5
J€K,
n n P 8
+P£>{ > @21 (T, + l (V) >§}. (7.51)

JeK,

We show that both probabilities in ([7.51)) converge to zero. An
application of Markov’s inequality yields

ro{ ¥ padiz + f il > 5

JeK,

2 .
< g E Z Daimzfo + gﬁo (Ynj)m

je]Kn
S kaad sup (1 |l + B e, (Yi)1)
J€K,
= kuad sup (IZ | + [Well dPes, )
1€k,

Here and in the following the expectation is understood as expec-
tation with respect to the product measure Pé"). Since any two

norms on R™? are equivalent we have ||A| < ||A||r for every ma-
trix A € R¥9. Hence, the definition of the Frobenius norm and
Holder’s inequality yield

/ Vol Py, < / Vel dPeo,

. 1/2
< ( [l dPW)

d ) 1/2
( Z /(65077"5)2 dPé(fEnj)) :

r,s=1

A
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Recall that in Section [3.2) the maps

0,7) — /(Zg,m)’f dP., ke {0,1,2}, (7.52)

were presumed continuously partially differentiable on © x ©. As a
consequence of the above arguments both ||Z¢[ and
sup; [ [|4g || dPe(s,,) are bounded, even uniformly in &, and thus

sup sup (1Tl + [Wlgll dPe,)) = O().  (7.53)

tegy jeK,

Since kpa2 = O(1) (see (4.8))) this implies

kaa sup sup (1l + [le ) dPecs,)) = 0,
feﬁ’H jelKn
and therefore
. . IS
sup 70{ 5 DT + il > S0 (s
EeFy jeK,

It remains to show that the second probability in ((7.51]) converges

S
2

to zero: Markov’s inequality yields

(n)
P

> @21 (T, + Uy (Vi)

jeKn,
4 . 3} 2
< A 3w (3 + i)
jeKn,
. .o 2
s E| T (m k)| o
jeKy F

Again, in the last step we exploited that ||A[| < ||A||r for every ma-
trix A € R%?, because any two norms on this space are equivalent.
For the following calculations, we set

Vaj = Ty (T, + Ly (Vo)) (7.56)

and we write the rs-entries of these matrices as V,,;(r,s). As we
observed in Section [7.2.1] the Frobenius norm ||- || can be identified
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with the Euclidean norm on R®. Therefore,

2 2
B a7y <I§0 + é'go(ynj)) —E| Y v,
jEK, F jeK, F
733 <& 2
< Z [ Z ay BV,;(r,s)? + ( Z a2 B V,,(r, s)) ]
r,s=1 L jeK, jeK,

(ZK: /njrsdpg >>] (7.57)

We investigate the expectations in ([7.57)) and show that these con-
verge to zero. For the first of the two expectations this proof is
rather simple. Obviously,

Vaj(r,s)* < Vsl
< Vil

1T (Ze, + Lea(Yai))II?

y .. :
< TN (Zel + Nee, (Y
< NTEN? 2(0Ze 1P + e, Youi)I?).  (7.58)
Note that
sup sup |73 < oo, (7.59)
e jekK,

which follows from the definition of Tg)‘j in (|7.43)) and the fact that
all of the components involved in this definition are bounded. In
addition, we conclude with the arguments leading to (7.53)) that
also

swp sup (IZ P + [ | dPy, ) = O(1).

cegn jek,
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Moreover, we have atk, — 0. These results yield

sup { D> G / Vg (r,s)° dPg(wm)}
je]Kn

{€Fn
728 4 Tnj 2 I 2 E 2dP
< sup Z ap I T 1 W Ze ™+ Ilell® dPea,))
A=
729 AL Te |12 O |I? dP, 0. (7.60
S apkn sup sup ([ Zg | + [ W lI° dPe,,y | — 0. (7.60)
fGﬁH .]e]Kn

[t remains to prove that also the second expectation in ([7.57)) con-
verges to zero. From the definition of the matrices V,,; it is clear
that every V,;(r, s) is a linear combination of the form

d
an (7’, S) - Z ngj (7’, q) (Ifqus + gﬁo,qs (Ynj))7 (7'61)
q=1

where Z¢, 45 and 250 ¢s denote the gs-entries of the matrices Z¢, and
le,, respectively, and T, j(r q) is the rg-entry of the matrix T, "
Furthermore, one concludes with (7.59) that

sup sup |17 (q,7)| < oo, (7.62)
&eo* jeK,

and therefore

/ V(1 s) dPg(xnj)‘

d
Tg)j (Tv q) (Iﬁo,qs + Efoaqs(ynj)) dpﬁ(xnj)

d
Z |Tg)] (T, Q)| Ifmqs + /ggo,qs(ynj) dPg(xm)

d
(3.4) nj J )
— E :|T§](T Q)| - /fﬁo,QS(YnJ) deo + /€§O7q5(Ynj) dPﬁ(znj)

5

=1

52
S

/650 qs nj) dpﬁo /ffo qS( ) de(xnj) .

=)

Due to the growth conditions of the functions & we have [|€(xy;) —
&l < ay for all 7 € K, and all €. Moreover, the continuous
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partial differentiability of the maps in (7.52)) implies that these are
Lipschitz continuous on the compactum ©’ x ©’. Combining these
two arguments, it follows that

/an (7“, S) de(mnj)

sup sup
£egn jek,

< sup sup Y
p

S sup sup [|§(zn;) — &oll
SGJJZH jelKn

= O(ay).

From this calculation, in combination with the property a2k, =
O(1), it follows that

2
sup ( > a / Vi (1 ) dPg(w)
56%{ jE]Kn

2
/an(’l“, S) dPg(xm)‘)

2
[t ar, [ o oo
Putting together the above results yields

n n‘ .e 8
Sup Pé ){ Z anggoj (Ifo + €§O(Ynj)) H‘ > 5}
§€EFn :

‘

~Y

~ [lol¥es) dPe + [ lo0l¥es) dPy,

2
< sup (sup arkn
56%{ jelKn

= (a’k,)* sup sup
(e jeK,

2

> @21 (T, + Uy (V)

JeK,

F

757 4

< Z sup Z afl/an(r, $)* dPy, )

a7
r,s=1 (€T 1€K,

2
+ sup (Z ai/an(T: s) dP£(xnj)> '
jeK,

£

According to ([7.60) and (7.63]) the last expression tends to zero,

and therefore
sup Pé"){ > %} — 0.

§€EFn

> @21 (T, + e (Vi)

JeKy
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In combination with ([7.51)) and ([7.54)) this implies

> @ (Ifo + g&(Ynj)) H‘ > 5} — 0,
€k,

(7.64)
and thus the third expression in ([7.44]) converges uniformly in prob-
ability to zero.

sup Pg") { sup

{eFn lz=6oll<anC

Completion of the proof. To sum up, we have shown that for all
C>0ande>0

sup P s a2 > e
£eFn z—&oll<anC

([7-42)
< sup § sup
56,94}1 z

s =
C

| L+ > ap (CMS.BY(CNT) I, (Vo)

JeK,
(7-4) . c
< sup P(")HH 1— 2T T, || > —}
669}1 3 JEZKn n=&o €o 03
. . e
+ su P("){ su a’ (T”y — T”J) Te || > —}
bk S (e j;K e =127 ) Lol > 73
. . 8
+ sup Pf(") sup Z a?Tm (Zgo +€5O(Ynj)) > —
geyH z jE]K 03
< sup || 1-— Z aiT?I&)
EOGG* jE]Kn
) . .
+ ;161(]5))* Sup Z a; <Tg)‘7 — T;”) T,

JeK,

> apT <I€0 + E§0(Ynj))

JeKy

L€
C3]’
where the last step follows with Markov’s inequality. By virtue of

(7.46)), (7.49)) and ([7.64)), respectively, the expressions from the last

inequality all tend to zero. Consequently,

+ sup Pg"){ sup
§€EFn z

sp £0{ w2 > e .

£€Tm lz=6oll<anC

i.e. (7.41)) holds. This completes the proof of Lemma [7.4] H
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7.2.4 Proof of Lemma (7.3

With the usual argumentation it suffices for the proof of Lemma
to verify that

sup P { sup || R2(&, 2)|| > 5} — 0 (7.65)
(€Fn lz=8oll<anC

for all e > 0 and C' > 0. From the definition of Ry in ([7.8)) we get

Ry(€0.2) = ) an (C21S.BY(CINT) (&0, 2. Yay).
j=1
Of course, it suffices to build the sum only with respect to the
indices j € K, because otherwise B = 0. Using the variables
T from the proof of Lemma [7.4) we get

sup || Rz(&o, 2) |

[z=&oll<anC
= sup|[ > a, (C1S.BY(C)T) (€, 2, Yey)
= ek,
‘ Z CLnTnj éO;Z Yn])
Z 1€K,
- .
< sup Y a7 Ir(€o, 2, Vo)l
& 1€K,
SJ Sup Z an” 5072 Yn])“ (766)
jeK,

Note that the last inequality does not depend on the value &;. Let
us next consider the remainder terms r(&p, 2, Y,;) in greater detail.
These result from the Taylor expansion of the score function in
and depend on the third partial derivatives of the log-densities
log py (partial derivative means here with respect to the parameter).
The latter are—by the smoothness assumptions from Section
continuous for all parameters § € O, and therefore in particular
bounded on the compactum ©’. According to Heuser| (1990), p. 285,
therefore

d
2
e =0l 5 e, g o) = I

S Tz =&l
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where J is the dominating function from (3.3). Plugging this into

(7.66)) yields
sup  [[Ra(&, 2)l S sup D anllr(€o, 2, Vo))

lz=&oll<anC

JjeK,
N apJ (Vo)
JeEK,
This can of course also be written as
sup HRQ(&% Z)H < N Z ai‘](yﬂj)7 (767)
[z—=&oll<anC jekK,,

with some suitable constant N > 0 (which does not depend on &).
The above arguments and an additional application of Markov’s
inequality yield

sap P s [l )] > <

£ lz—&ol|<a,C
£
< sw e Y @iy > 4
§ETm jeK,
N 3 ‘ (n)
< sup Z ayJ (Yog)| dP;
§efu € jeK,,
N 3
= sup — Z a, | J(Yn;) dPea,,)
(e © jeK,,
< alk,.

In the last step we exploited that, by assumption, Eg J is uniformly
bounded on O (see Section 3.2). Since k,a2 = O(1) and a,, = o(1)

(see (4.8)) and ([3.14), respectively) the last expression tends to zero.
This proves (7.65)), and thus the assertion of Lemma [7.3] H



CHAPTER 8

Applying the theory

In this Chapter we discuss some aspects of an application of the
theoretical results presented in the preceding chapters. One of
the most important models (maybe the most important model)
to which our theory applies is clearly the classical nonparametric
regression model. This is discussed in Section 8.1 In Section
possible extensions of these results to more general models are ex-
plored. In Section [8.3| we discuss in detail exponential families and
prove that these always meet the regularity conditions presented in

Sections [3.1] and 3.2,

8.1 The nonparametric regression model

In this section we show that the theory provided in the preceding
chapters is in some sense tailor-made to derive asymptotic minimax
risk bounds in a nonparametric regression model.

Let independent observations (z,1, Yn1), - - -, (Znn, Yan) be given.
The x,; are here interpreted as time points and the (real) vari-
ables Y;,; describe a certain process which evolves over time. In
the classic nonparametric regression setup it is assumed that these
observations obey a model of the form

Yij = &§(@nj) + enj,

where the unknown regression function £ is assumed to be a smooth
function, and the ¢,; are interpreted as noise. More precisely, for
each n we assume that ¢,,1, ..., e,, build a sequence of 1.i.d. random

157
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variables with mean zero and finite variance. A very popular ap-
proach to estimate the value of the regression function at some point
x( 18 to use kernel estimators like the Nadaraya-Watson estimator.
These estimate &(xg) as a weighted average over the observations
Y,,;, where the observations for which the corresponding x,,; lie close
to xg are usually assigned larger weights than that which are further
distant in time. There is a vast, ever-growing literature on nonpara-
metric regression, see for example Fan and Gijbels| (1996), Gyorfi
et al.| (2002)), Hérdle (1990) or Loader| (1999)just to mention a
few. Rohde (2004) and [Reifs (2008) show that the nonparametric
regression model is asymptotically equivalent to a Gaussian white
noise model (cf. also the references given in Section [1.3).

Assume that the distribution of €,,; has Lebesgue density p = py.
For 0 € R we set

po(y) :==ply—10), yeR,

and we define
P9 = Do dA.

We consider the resulting family P := {Fy : § € O}, where O is an
open interval in R with compact closure. Let us assume that the
(unknown) regression function & belongs to a function space .# =
F (19, 0%, u) of the form (3.6), where ©* C © is an open interval,
and the function w is according to u: R — [0,00), s — |s]’. If,
in addition, the time points are given by x,; = (5 — 1)/(n — 1),
as in Section (which may always be achieved through a re-
scaling), and xo € (0,1), we regain our model from Section[I.1] The
measurable space (), B, 1) from that section is in this case equal to
(R, B, A). If the distributions Py fit the needs of Sections and
B.2) and if we are able to prove that a preliminary estimator exists
(as in Section , the theory from the preceding chapters applies,
which yields upper and lower asymptotic minimax risk bounds for
the estimation of £(zy).

Checking the regularity conditions. First we formulate con-
ditions on the density p which guarantee that the resulting location
family P = {Fy : 0 € O} satisfies the regularity conditions. As-
sume that p is strictly positive and A-a.e. three times continuously
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differentiable (with derivative p’). If the density further satisfies

Ji o () o<

then the location family P is differentiable in quadratic mean on
R, and thus on ©, too. The score function is given by

and therefore satisfies (see e.g. Witting, 1985, p. 181). To
conclude that P is even continuously differentiable in quadratic
mean, we observe that for fixed 6, € © and a sequence 6,, — 6, we
have égn\/]Tpn — ég[)\/]T% A-a.s. Since we are considering an open
interval © with compact closure, it is in most cases possible to find
a square-integrable function H such that |fy(y)/pe(y)| < H(y) for
all y and all 6. In that case the dominated convergence theorem
implies

. . . . 2
1im g, /b, — lo/p 3 = T [ (G, /B, — a/a;) dA

= [ Jim (lo. v — dom)
= 0,

and thus the continuous LL,-differentiability. Note that the Fisher
information in location families is constant and thus in particular
continuous. The remaining conditions from Section [3.2] i.e. the
differentiability assumptions for the moments of the score function
can often be proved directly. We do this exemplarily for the case
of a Gaussian location model.

The Gaussian location model. Let p = ¢ denote the pdf of a stan-
dard normal distribution, i.e. p(y) = 1/v/2mexp(—y?/2). We first



160 Chapter 8. Applying the theory

compute the derivatives of the (log-)densities. These are given by

poly) = \/Z—Wexp{— (y—29)2}7

= (y—0)pe(y),

(y)

(y) 2
logpy(y) = log\/12—7r— (y—20) ,

(y)

= y_ea
fg(y) = —1.

It is clear that the third derivative of the log-density is equal to zero,
and therefore a function J exists which satisfies the condition from
3.3). Condition ((3.4)) also follows directly, because — f gg dPy =
[1dPy=1and [(;dPy= [(y—0)*dPy =1 (note that Y ~ Py
has variance equal to 1). Evidently, the remaining assumptions
from Section imposing smoothness conditions for the moments
of the score functions are also fulfilled. It remains to prove (3.5)).

With the above expression we calculate

VT [lop, A\ = ny—@pTd)\()

= V. (Jyp-(y) d\(y) — 0 [ p-(y) dA(y))
VT(T_Q)
= 1,

and

SV dN = [(y—0)(y — 7)p:(y) dA(y)

= [v*p:(y) d\(y) — (0 + 7) [yp:(y) dA(y) + 07 [p, dX

= 1+ —O+1)T+071
= 1.

Altogether, these calculations yield V7 f éng d\ = f égVTpT d,
and thus (3.5). To sum up, we have shown, that the Gaussian
location model fits all the conditions from Sections B.1] and B.2l
Likewise, the regularity conditions for large classes of other distri-
butions can be verified.

The existence of a preliminary estimator. For regression
models of the above type, Stone (1980) gives an affirmative an-
swer to the question of the existence of a preliminary estimator.
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The following presentation reflects the main ideas and concepts of
Stonels article.

Stone discusses optimal rates of convergence in the above regres-
sion setting. Assume that 7' = T'(£) is a real valued functional, and
T, is a sequence of estimators based on a sample of size n. Since we
want to estimate the parameter value £(x), we will in the following
always assume that T'(§) = £(x). In order to quantify and to com-
pare the speed at which sequences of estimators do converge [Stone
defines the following concepts (cf. Stone, (1980, p. 1348): A positive
constant r is called an upper bound to the rate of convergence if for
every sequence of estimators T, and every C' > (

lim inf sgp Pg"){\fn —T(&)]>Cn"} >0,

n—oo
and if in addition

éir% liminf sup Pg("){|Tn ~T()|>Cn"} =1.
— n—oo 5
Moreover, r is called an achievable rate of convergence if a specific
sequence of estimators T, exists, for which
lim limsup sup Pé"){|Tn ~T(&)]>Cn"} =0.
3

C—00  pooo

r is called the optimal rate of convergence if it is both achievable
and an upper bound to the rate of convergence.

Stone (1980) provides results on the optimal rate of convergence
in the nonparametric regression model. In his paper he postulates
that certain smoothness conditions hold for the parameter functions
(more precisely, these are Lipschitz and Hoélder conditions on the
parameter functions and their derivatives). As a special case this
includes models with parameter functions & ranging over a function
spaces of the type F (see , Section , i.e. for functions that
satisfy a Holder condition with coefficient p. For such models [Stone
shows that—provided that the densities py satisfy some regularity
conditions—the optimal rate of convergence is given by

P
2p+1
This means that there is a sequence of estimators T, =: &* for &£(xp)
such that
lim limsup sup Pé”){\@; —&(z0)| > C’n_p/@p“)} =0. (8.1)

C—00  nooo (e
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By the definition from (3.14)) (here we presume A = 1), we have

2p+1) —r

a, =n " =n

From (8.1) we conclude that for every ¢ > 0 there is a constant
C = C, for which

lim sup sup Pg"){\f}i — &(xo)| > C’n*p/@”*l)} <,

n—oo  (eF
and therefore

lim sup sup Pé"){|§; — &(m)| > Cay}

n—oo  {eF

1
= limsup sup Pg”){—\@*l — &(zo)| > C} <.
a,

n—oo  {eF

Hence the assumption of a (1/a,)-consistent preliminary estimator
in the sense of Section |3.4]is fulfilled in the nonparametric regression
model.

Note that the assumptions Stone/imposes on the densities py are
mainly conditions concerning interchangeability of certain differ-
entiation and integration procedures. In general, these conditions
are already included within our conditions from Sections [3.1] and
B.2] In particular, Stone’s assumptions hold for the Gaussian loca-
tion model, which was discussed above (cf. Stone, 1980, for more
details).

Conclusion. The results of this thesis on asymptotic upper and
lower minimax risk bounds hold for certain nonparametric regres-
sion models—in particular they hold for the nonparametric regres-
sion model with Gaussian noise.

8.2 Extensions to other models

For the nonparametric regression model discussed in the previous
section, we could verify that all the conditions from Chapter |3 hold.
In particular, we saw that the existence of a (1/a,)-consistent pre-
liminary estimator, as postulated in Section |3.4] is guaranteed.
However, the results in [Stone (1980) also hold for other
regression-type models—i.e. for models as described in Section
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[[.]}—in which the parameter function £ does not necessarily de-
scribe a location parameter. For the estimation of the parameter
function one may use so-called local likelihood estimators, as dis-
cussed by |Aerts and Claeskens (1997). As concerns the rate of
convergence, Stone shows that also for this more general class of
models an optimal rate of convergence

_ P
r —=
2p+1

can be established, provided that the parameter functions £ satisty
a Holder condition with coefficient p > 0, and that the densities
pg satisfy certain regularity conditions. The latter are in general
covered by our assumptions from Sections [3.1 and 3.2, As exam-
ples for models which satisfy these conditions [Stone| presents the
following distribution families P = {Py : 6 € O} (see Stone, (1980,
Examples 2-5):

Exponential distributions. The density of an exponential distribu-
tion with parameter 8 > 0 is given by

po(y) = %exp{—y/e}, y > 0.

The parameter space under consideration is assumed to be a rela-
tively compact interval © C (0, c0).
Poisson distributions. For § > 0 and Y := N U {0}

Gve?

defines the probability function of a Poisson distribution. The pa-
rameter space © is assumed to be a relatively compact subset of
(0, 00).

Geometric distributions. The probability function of the geometric
distribution with parameter 8 > 0 is defined by

poly) = <1i9) <1i0)y’ yed,

with ) as in the preceding example. The parameter space © is
assumed to be a relatively compact subset of (0, 00).




164 Chapter 8. Applying the theory

Bernoulli distributions. For 6 € (0, 1)

p@(y) — Qy(l - 9)1_y7 y € {07 1}
defines the probability function of the Bernoulli distribution with

parameter 6. The parameter space © is assumed to be a relatively
compact subset of (0, 1).

Conclusion. In all models in which the distributions are given
by either of the above families P = {F : § € O} the results from
Stone| (1980)—in combination with the arguments from the preced-
ing section—guarantee the existence of a preliminary estimator &'
for £(zp) that converges with the optimal rate, and thus satisfies
the needs of Section 3.4l

For the above distribution families {F : 6 € ©} it remains of
course to prove that—besides the conditions from [Stone| (1980)—
also the regularity assumptions from Sections 3.1 and [3.2| hold. Ob-
serve that all the above distribution families are one-dimensional
exponential families (see the table in Lehmann and Casella, 1998,
p. 25). We will prove in the next section that exponential families
in most cases satisfy the conditions from Sections[3.1]and 3.2 Con-
sequently, our results on asymptotic upper and lower minimax risk
bounds do also hold for these specific models.

8.3 Exponential families

We show that exponential families P = { Py : § € ©} usually satisfy
the regularity conditions from Sections [3.1] and [3.2]

Definition and general properties. In the following, let P =
{Py: 0 €0} (6CRYopen) be a dominated family of probability
measures with some dominating, o-finite measure p and densities
po = dPy/dpu. The underlying measurable space is denoted (), B).
P is called a d-dimensional exponential family in ¢ and T if the den-
sities have a—not necessarily unique—representation of the form

poly) = c(O)h(y) exp{(¢(0). T(y))} p-a.e. (8.2)
with measurable functions
¢.T:(¥,B) — (R, BY),
h: (Y,B)— (R,B), h=>0.
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The function T' = (11, ...,T,)" is also called the generating statis-
tic of the exponential family. Passing over from the dominating
measure i to the also dominating measure v = h du, we can—
and will in the following—assume without loss of generality that
h = 1. For the sake of simplicity, we will further restrict ourselves
to the special case ((6) = 0 and therefore for the rest of this section
presume that the densities under consideration are of the specific
canonical form

po(y) = c(0) exp{(0, T(y))} p-aell] (8.3)

Checking the regularity conditions. Exponential families in
the canonical representation are differentiable in quadratic mean.
The score function satisfies

lo(y) = Vyloge(d) + T(y)
— T(y) —EyT, (8:4)

and thus in particular (3.1).  Continuous differentiability in
quadratic mean can be established with the same ideas as proposed
in Section 8.1 Moreover, we have the relations

EoT = —Vylogc(0),

8.5
Ty = CovygT = —Vjlogc(h). (8.5)

(Cf. van der Vaart| |1998, pp. 38 and 95 f. for proofs of these state-
ments.) According to Satz 1.153 and 1.164 in Witting (1985) Zy is
positive definite for all € © if and only if this is the case for a sin-
gle point #* € ©. This is equivalent to the components 11, . .., Ty of
T being P-affinely independent, which means that the implication

d
D bTi(y) =by Ppras. forall@ = by=b=...=bs=0
j=1

U Although we discuss only exponential families in the canonical representation, most of
the following statements also hold for general exponential families with densities according
to (8.2). In most relevant cases, the map ¢ in is one-to-one and sufficiently smooth. The
properties of an exponential family in ( and 7" can then be deduced with a parameter trans-
formation from that of the exponential family in canonical representation, see e.g. Witting
(1985), p. 154., and [van der Vaart| (1998), Example 7.7.
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holds true. Furthermore, Satz 1.164 in Witting (1985) states that
the generating statistic T possesses moments of arbitrary order and
the maps 0 — Ey Tfl : ..de and 0 — c¢(f) are infinitely often
differentiable. Using the representations of the score function in
(8.4) one concludes that the functions

0,7) /(ég’i)’ﬁ@@,j)k? AP, kyky—0.1.2.3....

and
0,7) — /(é'e,rs)’f dP., k=0,1,2,3,...

are infinitely often partially differentiable on © x ©. In the follow-
ing we may assume that all of the above functions are also bounded.
(This can always be achieved by replacing © with a suitable rela-
tively compact subset. )

Evidently, the (log-)densities of an exponential family possess
partial derivatives (with respect to the parameter) of up to third
order, outside an appropriate set N C ) with u(N) = 0. Moreover,
it becomes clear from the expression for the score-function from
that the second and third order partial derivatives of the log-
likelihood function do not depend on y. Consequently, there is a
function J which satisfies (3.3)), and for which Eg.J is uniformly
bounded on ©. The boundedness follows from the property that
the map 6 — Ey T is infinitely often partially differentiable on ©.
Differentiation of with respect to 6 further yields

—/29 dPy = —/vg log ¢(0) dPy =" Ty,

and thus (3.4)). Finally, we prove (3.5)). To this end, we first observe

that
- S4)
VT/ZQPT d,u \Z (/ Tpr d,u - /(EH T)pT d,u)

= V. (E,T—-EyT)
= V,E. T
Cov,T.

On the other hand, differentiation of (8.3)) yields

Vope(y) = (Vee(r)) exp{(r,T(y))} + c(7)T(y) exp{(7, T(y))}
(Vrloge())p-(y) + T(y)p-(y),
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and therefore

/ i5(V1p,)T dp

/ lg(V;loge(r)) ' py dp + / T p- dp
( / (T —EyT) dPT> (V. loge(r))"

+ /(T —EyT)T" dP;

= (B T-ET)(-ET) + / IT' dF
—(EyT)(E,T)"
E(TT") - (E, T)(E, T)"
= Cov,T.

These calculations show that holds.

Conclusion. To sum up, we have shown that the regularity con-
ditions from Sections[3.I]and [3.2] are in general satisfied if P is given
by an exponential family. Together with the examples from the pre-
ceding Section and the results from Stone| (1980)) this opens diverse
opportunities to apply the theoretical results from this thesis.






Summary

To better understand the time-dependent development of certain
phenomena—e.g. in economy, meteorology or science—the statisti-
cian has to fit a suitable model to a given series of observed data
points. This always comes with the task of estimating certain model
parameters on the basis of the observed data. Naturally, the ques-
tion of the quality of the used estimation procedures arises. This
problem was tackled in the thesis. A rather abstract stochastic
model was considered, in which the distributions of the independent
observations were assumed to be given by a parametric distribution
family, while the distribution parameter was supposed to be driven
by an unknown, smooth function. As an important special case
this approach covers the nonparametric regression model. Within
this model the minimax risk with respect to a zero-one loss function
was investigated. In simple terms, this means that an estimator is
judged by the probability with which the estimate takes a value out-
side of a specific neighbourhood of the true value of the parameter
to estimate. The scope of this thesis was to derive asymptotic min-
imax risk bounds under rather general conditions. The basic idea
for the examinations was to use a localisation procedure, which
is a common technique in asymptotic statistics. This means that
first a localised model was considered in which certain estimators
were shown to be asymptotically normally distributed. Both up-
per and lower bounds for the asymptotic minimax risk within this
local model could be established. In a second step these bounds
could be transferred to the original model, too. Furthermore, it
could be shown that the general nonparametric regression model
and also some other models satisfy the regularity conditions that
were imposed to derive the asymptotic minimax risk bounds.
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Zusammenfassung

In den Wirtschafts- und Naturwissenschaften tritt hdufig die Frage
auf, wie man bestimmte sich zeitlich entwickelnde Prozesse geeignet
beschreiben kann. Aufgabe der Statistik ist es, fiir solche Prozesse
passende Modelle zu entwickeln, um mit diesen die beobachteten
Daten beschreiben und erkldren zu konnen. Damit einher geht
die Aufgabe, eine bestimmte Anzahl von Parametern innerhalb
eines solchen Modells auf Grundlage der vorliegenden Daten zu
schiatzen. Es stellt sich die Frage nach der Giite der dazu verwen-
deten Schatzverfahren. Diese Frage wurde im Rahmen der Disserta-
tion behandelt. Grundlage fiir die Untersuchungen war ein abstrak-
tes stochastisches Modell, bei dem die als unabhéangig angenomme-
nen Beobachtungen durch eine parametrische Verteilungsfamilie
modelliert werden. Von dem Verteilungsparameter wird angenom-
men, dass dieser durch eine unbekannte, hinreichend glatte Funk-
tion gesteuert wird. FEin wichtiger Spezialfall dieses Modells ist
das klassische nichtparametrische Regressionsmodell. In dem be-
trachteten Modell wurde das Minimax-Risiko unter Verwendung
einer 0-1-Verlustfunktion untersucht. Einfach ausgedriickt bedeutet
dies, dass ein Schétzer fiir den unbekannten Verteilungsparameter
danach beurteilt wird, wie grofs die Wahrscheinlichkeit ist, dass
er einen Wert in einer Umgebung des wahren Parameterwertes
annimmt. Ziel der Arbeit war es, unter moglichst allgemeinen
Bedingungen asymptotische obere und untere Schranken fiir das
Minimax-Risiko herzuleiten. Eine grundlegende Idee der Unter-
suchungen hierzu bestand darin, eine Lokalisierung des Modells
vorzunehmen, und das Minimax-Risiko zunéchst in den resultieren-
den lokalen Modellen zu untersuchen. In diesen konnte die asymp-
totische Normalitdt gewisser Schétzer nachgewiesen und damit
obere und untere Schranken fiir das Minimax-Risiko hergeleitet wer-
den. Durch die Konstruktion von Schétzern mit einer hinreichend
guten Konvergenzrate konnten diese Schranken in einem zweiten
Schritt auf das urspriingliche Modell iibertragen werden. Es wur-
den zudem Beispiele fiir Modelle gebracht, auf die die Theorie dieser
Arbeit anwendbar ist.
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