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Notation

The following notation (which in many cases is standard in the
literature) is used throughout the thesis. Further notation is also
introduced in the text. An additional list of special symbols, con-
taining the most important variables that occur in the text, is given
in the end of the thesis, on p. 177.

∼ distributed according to
' asymptotic equivalence of sequences,

an ' bn ⇔ an/bn → 1
⊆, ( subset, possibly including equality, or exclud-

ing equality
≡ equivalent measures; sometimes also used in or-

der to state that a function is constant
. less or equal up to a positive constant, a(s) .

b(s) means that a(s) ≤ Cb(s) with some con-
stant C not depending on the argument s

/. mutually contiguous
� absolutely continuous
L
= equality in distribution
 convergence in distribution
w−→ weak convergence of statistical experiments⊗

product of (probability) measures or measur-
able spaces

# cardinality of a (�nite) set
◦ composition of maps
d
dxf(x) derivative of a function f : R→ R

v



Notation

∂
∂xi
f(x) partial derivative of a function f : Rd → R

with respect to the ith component
∇f transpose of the Jacobi matrix of a function

f : Rp → R
q; if q = 1, ∇f is the gradient

∇2f Hessian matrix of a function f : Rd → R

1 unit matrix
1{A}, 1A indicator of the set or statement A
A closure of a set A
∂A boundary of a set A
B, Bd Borel algebra on R and Rd, respectively
Cov(X, Y ), CovZ covariance of a pair of real random variables X

and Y and covariance matrix of a vector-valued
random-variable Z, respectively; occasionally,
we add an additional subscript, e.g. we write
Covθ(X, Y ), to emphasize the underlying mea-
sure

Corr(X, Y ) correlation of a pair of real random variables X
and Y

δ0 Dirac measure with mass 1 at the point zero
diag(w1, . . . , wd) diagonal matrix with entries w1, . . . , wd on the

main diagonal
EX expectation of a random variableX; sometimes

we also use a more speci�c notation, e.g. EθX

or EP X, in order to emphasize the underlying
measure

ei ith unit vector in Rd

H(·, ·) Hellinger distance
λ Lebesgue measure on (R,B)
L (X | P ) law of a random variable X under some prob-

ability measure P
Lp(µ) space of p-fold µ-integrable functions
N (µ, ν2) normal distribution with mean (or mean vec-

tor) µ and variance (or covariance matrix) ν2

N natural numbers excluding zero
O, o Landau symbols
OP , oP stochastic Landau symbols
ϕ, Φ pdf and cdf, respectively, of the standard nor-

mal distribution
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Notation

R real numbers
R
d d-dimensional Euclidean space

R
m×n space of real m× n-matrices

sgn(x) sign of the real number,
sgn(x) := 1{x > 0} − 1{x < 0}

A> transpose of a matrix (or a vector) A
VarX variance of a real random variable X
x+ maximum of x and 0
‖ · ‖ Euclidean norm

‖ · ‖1 1-norm on Rd, ‖x‖1 :=
∑d

i=1 |xi|
||| · ||| matrix norm induced by the Euclidean norm
‖ · ‖F Frobenius norm
‖ · ‖∞ maximum norm for vectors,

‖x‖∞ := max{|x1|, . . . , |xd|}
‖ · ‖u uniform norm (supremum norm) for real func-

tions
‖ · ‖u,d uniform norm for d-variate functions, see Sec-

tion 3.3
‖ · ‖µ,p p-norm on the space Lp(µ)
‖ · ‖V variational norm for probability measures
〈·, ·〉µ inner product on the Banach space L2(µ)
〈·, ·〉 inner product in Euclidean space
[x, y] closed cuboid in Rd,

[x, y] := [x1, y1]× . . .× [xd, yd]
a.e. almost everywhere
a.s. almost surely
cdf cumulative distribution function
i.i.d. independently and identically distributed
pdf probability density function
� end of a proof
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CHAPTER 1

Introduction

In statistical estimation theory and applications one is often con-
fronted with the question of how good a certain estimation proce-
dure is in comparison with others. Of course, this �goodness� has
to be quanti�ed somehow. One possibility to do so is to use con-
cepts from statistical decision theory and consider upper and lower
bounds for the minimax risk. Such an approach is examined by
Drees (2001) for the estimation of the extreme value index. We
want to follow the ideas of that paper in order to derive minimax
risk bounds for the estimation of a smooth parameter function.

1.1 The problem

We consider a stochastic process {Yt : t ∈ [0, 1]} with mutually
independent random variables Yt taking values in a measurable
space (Y ,B). The arguments t ∈ [0, 1] are mostly interpreted
as time points. We assume that Yt ∼ Pξ(t) for each t. Here
P = {Pθ : θ ∈ Θ} (with an open subset Θ ⊆ Rd) is a paramet-
ric family of probability measures and ξ : [0, 1] → Θ is a smooth
parameter function from a suitable function space F . Such a
modelling approach is e.g. used by Drees and St ric  (2002) and
Jönck (2008) for the description and prediction of time series of
log-returns. In case of P being a location family we obtain a non-
parametric regression model. It is needless to say that this model
plays an important role for many kinds of applications.

We assume that for given time points 0 ≤ xn1 < · · · < xnn ≤ 1

1



2 Chapter 1. Introduction

the corresponding random variables Ynj := Yxnj can be observed.
The joint distribution of these Ynj is then given by the product
measure

P (n)

ξ :=
n⊗
j=1

Pξ(xnj). (1.1)

Let x0 ∈ (0, 1) be a �xed time point and

ξ̂n(x0) = ξ̂n(x0, Yn1, . . . , Ynn)

an estimator for ξ(x0), the true distribution parameter of the pro-
cess at x0. In order to evaluate such an estimator we consider
the loss function 1[−δan,δan]C , where δ = (δ1, . . . , δd)

> is a vector
with positive components δi and an > 0. Here [−δan, δan] :=
[−δ1an, δ1an]× . . .× [−δdan, δdan] denotes a cuboid in Rd; we use
this notation throughout the paper. The minimax risk with respect
to this loss function is then given by

inf
ξ̂n(x0)

sup
ξ∈F

P (n)

ξ

{
ξ̂n(x0)− ξ(x0) ∈ [−δan, δan]C

}
, (1.2)

where the in�mum is taken over all sequences of (possibly ran-
domised) estimators ξ̂n(x0). The aim of this thesis is to analyse the
asymptotic minimax risk, i.e. the behaviour of (1.2) for n → ∞.
Since an exact analysis of this expression is most often not possible,
we have to content ourselves with the attempt of deriving upper and
lower bounds. More precisely, we want to derive upper and lower
bounds for the limit inferior and the limit superior of the minimax
risk, respectively.

Localising the model. The basic idea for our examinations is to
�rst localise the model and to consider the (asymptotic) minimax
risk in the resulting local models. From the results within these
local models one can then also deduce minimax risk bounds in the
global model

(Yn,Bn, {P (n)

ξ : ξ ∈ F}).

For the localisation we consider a constant function γ ≡ γ1[0,1] ∈
F�also called centre of localisation�and we assume that the true
function ξ ∈ F does not vary signi�cantly from γ around the point
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x0. Concretely, we assume that in a su�ciently small neighbour-
hood of x0 the function ξ can be represented by

γg,n(x) := γ + ang (bn(x− x0)) , x ∈ [0, 1], (1.3)

where g : R → R
d is a function with compact support from a cer-

tain function space G and an → 0, bn → ∞. The function γg,n(·)
from (1.3) is often also referred to as a local alternative to γ. In-
deed, the above properties of an, bn and g guarantee that γg,n(·)
only di�ers from γ in a neighbourhood of x0. In the �rst instance,
we examine the sequence of the resulting local models

(Yn,Bn, {P (n)

γ,g : g ∈ G }),

where, in analogy to (1.1),

P (n)

γ,g :=
n⊗
j=1

Pγg,n(xnj) (1.4)

In the local model the parameter value ξ(x0) equals γg,n(x0). Since

γg,n(x0) = γ + ang(0)

it su�ces to consider estimates for g(0). Let now ĝn(0) be an
arbitrary estimator for g(0). Then

γ̂g,n(x0) := γ + anĝn(0)

yields an estimator for γg,n(x0), which satis�es

(γ̂g,n(x0)− γg,n(x0))/an = ĝn(0)− g(0).

The bene�t of �rst considering the local models is that these can
be shown to converge against a Gaussian shift model. These limit
experiments can be examined fairly well. It is possible to derive
non-trivial minimax risk bounds. We will show that under certain
conditions these bounds carry over to the estimation problem in
the local model and �nally also in the global model (Yn,Bn, {P (n)

ξ :
ξ ∈ F}).

1.2 Thesis outline

Chapter 2 gives a short overview of some concepts of asymptotic
statistics, especially of the Le Cam theory and statistical decision
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theory. Chapter 3 formulates in detail the model which is to ex-
amine and its underlying assumptions. In Chapter 4 we show that
the above local experiments converge weakly to a Gaussian exper-
iment, and in Chapter 5 upper and lower bounds for the minimax
risk in this limit experiment are derived. The general ideas for the
examinations of these two chapters follow those of Drees (2001). In
Chapter 6 we then construct an estimator for the parameter g(0)
in the local model. The construction principle for this estimator
is based upon the proven weak convergence and the results in the
Gaussian experiment. We show that�provided some smoothness
conditions hold�the asymptotic maximal risk of this estimator con-
verges to the upper minimax risk bound from the Gaussian limit
experiment, which thus yields an upper bound for the asymptotic
minimax risk in the sequence of the local models. Indeed, these risk
bounds carry over to the global model, which is proven in Chap-
ter 7. In Chapter 8 we discuss some concrete models to which our
theory applies, such as the nonparametric regression model. On
p. 169 we summarise the results of this thesis.

1.3 Related research

There are some other papers in the literature that discuss the min-
imax risk in models with independent observations, distributed ac-
cording to some parametric family, with the parameter being driven
by a smooth function. The focus of these papers is clearly on non-
parametric regression models, and thus more speci�c than the ap-
proach followed here. Brown and Low (1996) show that the clas-
sical nonparametric regression model with Gaussian noise is under
certain conditions asymptotically equivalent�with respect to the
Le Cam de�ciency pseudo-distance�to a white noise model with
drift. Therefore, the asymptotic risks in both models must be the
same. Nussbaum (1996), Grama and Nussbaum (1998), Jähnisch
and Nussbaum (2003) as well as Rohde (2004) and Reiÿ (2008)
expand these results. Cai and Low (2004), Donoho (1994) and
Donoho and Liu (1991) also investigate the minimax risk for the
estimation of functionals in the white noise model.

Apart from this work, Grama and Nussbaum (2002) consider a
setup, which is a bit closer to our model from Section 1.1. In their



1.3. Related research 5

paper the distributions are given by one-parametric exponential
families. They are able to show that their model is asymptotically
equivalent (again, with respect to the Le Cam de�ciency pseudo-
distance) to a Gaussian location model. However, their approach to
the problem is in some major aspects di�erent from that followed
in this thesis. Moreover, they do�as well as the other papers men-
tioned above�not assess the asymptotic minimax risk directly.

Drees (2001) considers the classical i.i.d. setup. He derives
asymptotic minimax risk bounds for the estimation of the extreme
value index. Even though Drees' paper deals with a completely dif-
ferent topic, it can be considered a role model for this thesis. Many
(yet, not all) techniques used there also apply in the proofs of this
thesis.





CHAPTER 2

Preliminaries

This chapter gives an overview of some basic concepts from (asymp-
totic) statistics and statistical decision theory, which are used
throughout the thesis. A list of some general notation is given
at the beginning of the thesis.

On the used asymptotics. Throughout this work n denotes
an index tending to in�nity. Usually, n represents the number of
observations. If not stated otherwise (or if it is clear from the
context) all asymptotic expressions, e.g. convergence statements,
presume that n→∞.

2.1 Basics of stochastics

We denote the space of p-fold integrable functions on a measurable
space (Ω,A, µ) by Lp(µ) = Lp(Ω,A, µ). For p ≥ 1 this is�as long
as we identify equivalence classes of µ-a.e. equivalent functions with
their representatives�a Banach space with respect to the norm
‖f‖µ,p := (

∫
|f |p dµ)1/p. For p = 2 the norm is induced by the

inner product 〈f, g〉µ :=
∫
fg dµ, whereby L2(µ) becomes a Hilbert

space. The Lebesgue measure on (R,B) is denoted λ. For vector-
valued functions f = (f1, . . . , fd)

> we write f ∈ Lp(µ) if and only
if fi ∈ Lp(µ) for all i. The integral

∫
f dµ is then to be interpreted

component-wise, i.e. as a vector (
∫
f1 dµ, . . . ,

∫
fd dµ)>. Integrals

of matrix-valued functions are to be interpreted likewise. Let P
and Q be probability measures on a space (Ω,A), dominated by

7



8 Chapter 2. Preliminaries

a σ-�nite measure µ (e.g. µ = P + Q). The Hellinger distance
is then de�ned by H(P,Q) := (1/2

∫
(
√
p − √q)2 dµ)1/2, where

p = dP/dµ and q = dQ/dµ. The variational distance is given by
‖P − Q‖V = supA∈A |P (A) − Q(A)|. Note the inequality ‖P −
Q‖V ≤

√
2H(P,Q).

Convergence in distribution (or weak convergence) of probability
measures or random variables is denoted by the symbol � �. We
also use the convenient stochastic Landau notation often used in
the literature. Hence, for a sequence of random variables

Xn : (Ωn,An, Pn)→ (Rk,Bk)

and a real sequence cn we write Xn = oPn(cn) if Xn/cn → 0 in
Pn-probability. We write Xn = OPn(cn) if Xn/cn is stochasti-
cally bounded, i.e. if for each ε > 0 there is an M > 0 such that
Pn{‖Xn/cn‖ > M} < ε for all n.

2.2 Contiguity and di�erentiability in quadratic mean

In the following, we assume that the reader is familiar to the con-
cept of the likelihood ratio dQ/dP for two probability measures
de�ned on some measurable space (Ω,A) (cf. van der Vaart, 1998,
Section 6.1).

2.1 De�nition. Let Pn and Qn be sequences of probability mea-
sures on measurable spaces (Ωn,An). These are called (mutually)
contiguous i� for each sequence of measurable sets An ∈ An holds:
Pn(An)→ 0⇔ Qn(An)→ 0. In that case we also write Qn /. Pn.

The contiguityQn /. Pn states that the measures Pn andQn can
be considered asymptotically mutually continuous to each other.
�/.� de�nes an equivalence relation on the space of the sequences
of probability measures on (Ωn,An). However, Qn ≡ Pn for each
n does not necessarily imply Pn /. Qn. Under certain conditions,
asymptotic normality of log-likelihood ratios implies contiguity:

2.2 Lemma (Le Cam's �rst lemma). Let Pn and Qn be proba-
bility measures on (Ωn,An) such that

L

(
log

dQn

dPn

∣∣∣∣ Pn) N (−κ2/2, κ2).
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Then Pn and Qn are contiguous, Pn /. Qn, and

L

(
log

dQn

dPn

∣∣∣∣ Qn

)
 N (κ2/2, κ2).

A proof of the lemma is given inWitting and Müller-Funk (1995),
p. 311. Assume we are given a certain statistic, which is observed
under Pn, and we are interested in its asymptotic behaviour under
Qn. If Pn /. Qn, then it is sometimes possible to deduce the
statistic's behaviour under Qn from that under Pn. For such a
result the reader might confer to Theorem 6.6 in van der Vaart
(1998). Here we want to consider a consequence of that theorem,
which covers the special case of asymptotically normal statistics (cf.
van der Vaart, 1998, Example 6.7).

2.3 Lemma (Le Cam's third lemma). Let Pn and Qn be prob-
ability measures on (Ωn,An), and Xn : (Ωn,An) → (Rd,Bd) be
random variables such that

L

(
Xn, log

dQn

dPn

∣∣∣∣ Pn) N

((
µ
−1

2σ
2

)
,

(
Σ ν
ν> σ2

))
.

Then L (Xn | Qn) N (µ+ ν,Σ).

In the following, let P = {Pθ : θ ∈ Θ} be a family of proba-
bility measures on some measurable space. The parameter set Θ
is assumed an open subset Θ ⊆ Rd. Furthermore, we presume P
to be dominated by a σ-�nite measure µ, such that we have pdf's
pθ = dPθ/dµ.

2.4 De�nition. The family P = {Pθ : θ ∈ Θ} is di�erentiable
in quadratic mean at some point θ ∈ Θ, if a measurable function
˙̀
θ = ( ˙̀

θ,1, . . . , ˙̀
θ,d)
> exists such that∫ [√

pθ+h −
√
pθ − 1

2h
> ˙̀

θ
√
pθ

]2
dµ = o(‖h‖2), h→ 0. (2.1)

The function ˙̀
θ is then also called the L2-derivative at θ or score

function. We say that P is di�erentiable in quadratic mean on a
set Θ′ ⊆ Θ if this is also true at each point θ ∈ Θ′.

Due to the following lemma (which is part of Theorem 7.2 in
van der Vaart, 1998, and proved there) the score function has mean
zero and existing covariance matrix.



10 Chapter 2. Preliminaries

2.5 Lemma. If P is di�erentiable in quadratic mean at θ, then∫
˙̀
θ dPθ = 0 and the Fisher information matrix Iθ =

∫
˙̀
θ

˙̀>
θ dPθ

exists.

Condition (2.1) states that the map τ 7→ √pτ , interpreted as a
map with values in the Banach space L2(µ), is Fréchet di�erentiable
at θ (cf. Heuser, 1990, Number 175). The Fréchet derivative�which
is not to be mistaken for the L2-derivative�is then given by ˙̀

θ
√
pθ.

According to this we will say that P is continuously di�erentiable
in quadratic mean, if the map τ 7→ √pτ is continuously Fréchet
di�erentiable.

2.6 De�nition. If P is di�erentiable in quadratic mean on an open
subset Θ′ ⊆ Θ, and if the L2(µ)-valued maps

θ 7→ ˙̀
θ,i
√
pθ, i = 1, . . . , d,

are continuous on Θ′, then P is called continuously di�erentiable
in quadratic mean on Θ′.

2.7 Lemma. Suppose P is continuously di�erentiable in quadratic
mean on Θ. Then the following statements hold:

(i) The information matrix function θ 7→ Iθ =
∫

˙̀
θ

˙̀>
θ dPθ is

continuous on Θ (i.e. continuous in each component).

(ii) For each θ ∈ Θ there is an open neighbourhood Uθ of θ and
a constant Lθ > 0 such that for all τ1, τ2 ∈ Uθ the inequality
H(Pτ1, Pτ2) ≤ Lθ‖τ1 − τ2‖ holds.

Proof. Ad (i): Let θ ∈ Θ and θn → θ be given. Then ˙̀
θn,i
√
pθn →

˙̀
θ,i
√
pθ in L2(µ) for all i = 1, . . . , d. According to Satz 15.9 in

Bauer (1992) the products ˙̀
θn,i

˙̀
θn,jpθn converge in mean with re-

spect to µ, with limits given by ˙̀
θ,i

˙̀
θ,jpθ. In other words,

‖ ˙̀
θn,i

˙̀
θn,jpθn − ˙̀

θ,i
˙̀
θ,jpθ‖µ,1 → 0,

and Satz 15.1 in Bauer (1992) implies∫
˙̀
θn,i

˙̀
θn,j dPθn =

∫
˙̀
θn,i

˙̀
θn,jpθn dµ

→
∫

˙̀
θ,i

˙̀
θ,jpθ dµ =

∫
˙̀
θ,i

˙̀
θ,j dPθ.
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Ad (ii): By assumption the map τ 7→ √
pτ is continuously dif-

ferentiable on Θ, and thus in particular locally Lipschitz, which
follows from the mean value theorem (cf. Heuser, 1990, p. 337).
Since H(Pτ1, Pτ2) = (1/

√
2)‖√pτ1−

√
pτ2‖µ,2 this implies the asser-

tion. �

Di�erentiability in quadratic mean is a suitable framework for
proving local asymptotic normality (LAN). In the most simple case
of an i.i.d. setting this means that for every sequence hn → h the
likelihood quotients ful�l

log
dP n

θ+n−1/2hn

dP n
θ

= h>∆n,θ − 1
2h
>Iθh+ oPnθ (1),

with a matrix Iθ and random variables ∆n,θ such that

L (∆n,θ | P n
θ ) N (0, Iθ).

Asymptotic expansions of this type are important for proving weak
convergence of experiments, which shall be introduced in the next
section. The following theorem provides general conditions under
which the log-likelihood ratios of product measures allow for such
asymptotic expansions. It is taken from van der Vaart (1988), but
can in similar form also be found in Rieder (1994), Theorem 2.3.5.

2.8 Proposition. For n = 1, 2, . . . and j = 1, . . . , n let Pnj and
Qnj be probability measures on measurable spaces (Ωnj,Anj) with
pdf 's pnj and qnj with respect to a σ-�nite measure µnj satisfying
Pnj+Qnj � µnj. Let Pn :=

⊗n
j=1 Pnj and Qn :=

⊗n
j=1Qnj denote

the product measures on the corresponding product spaces. Suppose
that there are measurable functions Unj : (Ωnj,Anj)→ (R,B) such
that:

n∑
j=1

∫ [
q

1/2
nj − p

1/2
nj − 1

2Unjp
1/2
nj

]2
dµnj = o(1), (2.2)

n∑
j=1

∫
Unj dPnj = o(1), (2.3)

κ2
n :=

n∑
j=1

∫
U 2
nj dPnj = O(1), (2.4)
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n∑
j=1

∫
U 2
nj1{|Unj| ≥ ε} dPnj = o(1) for all ε > 0. (2.5)

Then

log
dQn

dPn
−

n∑
j=1

Unj + 1
2κ

2
n = oPn(1). (2.6)

Addendum. If in addition to the above conditions also

κ2
n → κ2 ∈ [0,∞), (2.7)
n∑
j=1

(∫
Unj dPnj

)2

→ 0, (2.8)

then Pn and Qn are mutually contiguous, and

L

(
log

dQn

dPn

∣∣∣∣ Pn) N (−1
2κ

2, κ2).

Here N (0, 0) is identi�ed with δ0, the Dirac measure with proba-
bility 1 at the origin.

2.9 Remark. In triangular schemes Unj of the above type we typ-
ically interpret each Unj as a random variable on the product space⊗n

j=1(Ωnj,Anj, µnj). This can be done by identifying Unj and the
corresponding variable Unj(πnj), where

πnj : (Ωn1 × . . .× Ωnn)→ Ωnj, (ωn1, . . . , ωnn) 7→ ωnj

denotes the jth canonical projection. For the sake of simplicity
the projections will however mostly be suppressed in the notation,
e.g. as is the case in (2.6).

Proof of Proposition 2.8. The �rst part of the proposition cor-
responds to Proposition A.8 in van der Vaart (1988) if the functions
gnj/
√
n are replaced by the Unj. It remains to prove the addendum.

The Lindeberg-Feller theorem (see van der Vaart, 1998, Proposi-
tion 2.27) yields L (

∑n
j=1 Unj | Pn)  N (0, κ2). Together with

(2.6) and Slutsky's lemma this proves the asymptotic normality of
the log-likelihood quotients. Contiguity follows from Le Cam's �rst
lemma. �
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2.3 Statistical decision theory

Let T 6= ∅ be an arbitrary set. A triple (Ω,A,Q), consisting of a
space Ω, a σ-algebra A and a family Q = {Qt : t ∈ T} of probabil-
ity measures on (Ω,A) is called statistical experiment or statistic
model with parameter space T . We often simply call Q a statistical
experiment. An experiment is dominated, if the corresponding class
Q is dominated by a σ-�nite measure. Suppose we are given a space
D endowed with some σ-algebra D. We also call D a decision space
and interpret it as the set of all possible statements which shall be
assessed by means of the observation of the experiment E (cf. Wit-
ting, 1985, p. 11). In the context of a testing problem for a simple
hypothesis H0 a suitable decision space would be

D = {�H0 is accepted�, �H0 is rejected�},

with D being the power set of D. In the context of estimation prob-
lems D should be chosen as the space which contains the parameter
of interest. In the following, D is always assumed to be a metric
space, where D is the Borel algebra induced by the metric.

2.10 De�nition. Let an experiment E = (Ω,A,Q) and a decision
space (D,D) be given. A Markov kernel % from (Ω,A) to (D,D)
(which is sometimes also written as a map % : Ω × D → [0, 1]) is
called decision function. The set of all such decision functions is
denoted R(E,D). If %(·, B) ∈ {0, 1} Qt-a.s. for every t ∈ T and
all B ∈ D, then % is called non-randomised.

Suppose we have a decision function %. Then the quantity
%(ω,B) can be interpreted as the probability with which we choose
the event B given the fact that the outcome of the observed ex-
periment is ω. In case of a non-randomised % this means that we
choose such a B which satis�es %(ω,B) = 1.

2.11 De�nition. A loss function W = {Wt : t ∈ T} is a family
of functions Wt : D → [0,∞) that are measurable with respect to
D. The corresponding risk function R : T ×R(E,D) → [0,∞) is
de�ned as

R(t, %) := RW (t, %) :=

∫∫
Wt(x)%(ω, dx)Qt(dω),
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R(t, %) is called the risk of % with respect toW . The triple (T,D,W )
is called a decision problem. We also say that a loss function W
possesses a certain property (like continuity, boundedness etc.) i�
each Wt possesses this property.

2.12 Example. When a Rk-valued parameter γ = γ(t) (t ∈
T ) is to be estimated, one often considers a measurable function
Λ: Rk → [0,∞) and then de�nes a loss function Wt(a) := Λ(a −
γ(t)). Often, the function Λ itself is called loss function. Typical
examples of such loss functions are the quadratic loss Λ(a) := ‖a‖2

or a zero-one loss functions of the form Λ(a) := 1{a ∈ [−x, x]C}.

The quantity R(t, %) can be interpreted as the loss that we su�er
if the underlying distribution is given byQt and we decide according
to the decision rule %. Thus, it is evident to consider a decision rule
to be good if the maximal loss that can result from it becomes min-
imal. This leads to the following concepts for evaluating decision
procedures:

2.13 De�nition. Let (T,D,W ) be a decision problem. For % ∈
R(E,D) we then call supt∈T R(t, %) the maximal risk of %. The
minimax risk of the decision problem is de�ned by

inf
%∈R(E,D)

sup
t∈T

R(t, %).

A decision function %∗ ∈ R(E,D) for which this in�mum is attained
is called minimax optimal.

The aim of this thesis is to investigate the asymptotic behaviour
of the minimax risk in a sequence of models. For that purpose we
need a concept for convergence of sequences of statistical experi-
ments.

2.14 De�nition. Let a non-empty parameter set T and statistical
experiments En = (Ω,A, {Qt,n : t ∈ T}) and E = (Ω,A, {Qt : t ∈
T}) be given. Then En is said to converge weakly to E if

L

({
dQt,n

dQs,n

}
t∈T0

∣∣∣∣ Qs,n

)
 L

({
dQt

dQs

}
t∈T0

∣∣∣∣ Qs

)
for all �nite subsets T0 ⊆ T and all s ∈ T . In that case we also
write En

w−→ E.
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2.15 Remark. (i) Sometimes one is not interested in the com-
plete experiments E and En, but rather in certain subexperi-
ments E ′ and E ′n indexed by a non-empty subset T ′ ⊆ T . Of
course, En

w−→ E also implies E ′n
w−→ E ′.

(ii) Convergence in distribution is also referred to as �weak con-
vergence�. However, this should not cause any confusion, be-
cause convergence in distribution and weak convergence of ex-
periments are two convergence concepts for di�erent objects.
Thus, it will always be clear from the context which kind of
�weak convergence� is meant.

The idea behind the concept of weak convergence of experiments
is that for large n the limit experiment E can be considered an ap-
proximation for the true model En. From the properties of this
limit experiment one might then draw conclusions for the experi-
ments En. The following theorem�which can be found in Strasser
(1985), Theorem 61.6�yields a su�cient criterion for proving weak
convergence.

2.16 De�nition. A sequence of experiments En is said to be con-
tiguous i� Qs,n /. Qt,n for all s, t ∈ T .

2.17 Theorem. Let En be a contiguous sequence of experiments.
Then En

w−→ E holds if and only if

L

({
dQt,n

dQt0,n

}
t∈T0

∣∣∣∣ Qt0,n

)
 L

({
dQt

dQt0

}
t∈T0

∣∣∣∣ Qt0

)
for all �nite subsets T0 ⊆ T and some t0 ∈ T .

Consequently, one may verify En
w−→ E by showing that En is

contiguous and that certain likelihood ratios converge in distribu-
tion. For that purpose Theorem 2.8 may be used. Weak conver-
gence of experiments allows us to draw conclusions for the relation
between the minimax risk in a sequence of experiments and the
minimax risk in a limit experiment. Indeed, if En

w−→ E, then
the minimax risk in the limit experiment is a lower bound for the
asymptotic minimax risk in the sequence of experiments En.

2.18 De�nition. Let D be a metric space. A function f : D → R

is called level-compact if {x : f(x) ≤ y} is compact for all y <
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sup{f(x) : x ∈ D}. f is called lower semi-continuous if it is
bounded from below and {x : f(x) ≤ y} is closed for all y ∈ R.

2.19 Theorem. Let En and E be dominated experiments with
En

w−→ E. Moreover, let (T,D,W ) be a decision problem with
level-compact, lower semi-continuous loss function W , and let D
be a separable metric space which is locally compact. Then for each
sequence %n ∈ R(En, D):

lim inf
n→∞

sup
t∈T

R(t, %n) ≥ inf
%∈R(E,D)

sup
t∈T

R(t, %).

Proof. Follows from Corollary 62.6 and Theorem 43.5 in Strasser
(1985). �

2.4 Uniform convergence in distribution

We introduce the concept of uniform convergence in distribution
(or: uniform weak convergence) of probability measures on Eu-
clidean space and discuss some connected results. First, we discuss
a criterion for the weak convergence of measures on (Rd,Bd). In
the following, Cd ⊆ Bd denotes the class of convex Borel sets, ∂C
denotes the boundary of a set C.

2.20 Theorem. Let Qn and Q be probability measures on (Rd,Bd).
Suppose that Q(∂C) = 0 for all C ∈ Cd. Then: Qn  Q ⇔
supC∈Cd |Qn(C)−Q(C)| → 0.

The theorem is due to Rao (1962), cf. Theorem 4.2; an alterna-
tive proof can be found in Fabian (1970). Throughout the rest of
this section we consider statistical experiments (Rd,Bd, {Qs,n : s ∈
S}) and (Rd,Bd, {Qs : s ∈ S}). Here S is always assumed to be
a metric space, the Borel algebra induced by the metric is denoted
S.

2.21 De�nition. The sequence Qs,n is said to converge uniformly
in distribution to Qs on a subset S ′ ⊆ S (we also formulate this as
�Qs,n  Qs uniformly on S ′ �) if

sup
s∈S′

∣∣∣∣∫ f dQs,n −
∫
f dQs

∣∣∣∣→ 0

for all bounded, continuous functions f : Rd → R.
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If Qs,n  Qs uniformly on S ′, then of course also Qs,n  Qs

uniformly on every subset S ′′ ⊆ S ′. In particular, this holds true for
all subsets S ′′ consisting of a single point. The following, equivalent
characterisation of uniform convergence in distribution generalises
the result from Theorem 2.20.

2.22 Theorem. Le S be a metric space which is locally compact.
Furthermore, assume that the map s 7→ Qs is continuous in the
sense that Qsm  Qs as sm → s. Suppose that Qs(∂C) = 0 for all
C ∈ Cd and all s ∈ S. Then the following assertions are equivalent:

(i) Qs,n  Qs uniformly on all compact sets K ⊆ S.

(ii) sup
s∈K

sup
C∈Cd

|Qs,n(C)−Qs(C)| → 0 for all compact sets K ⊆ S.

Proof. Every metric space is a Hausdor� space and satis�es the
�rst axiom of countability (cf. Lipschutz, 1977, p. 131). Thus, tak-
ing into account Remark 6.7.7 in Pfanzagl (1994), the assertion is
a direct consequence of Pfanzagl's Theorem 7.7.10. �

We recall Slutsky's famous lemma for sequences Xn and Yn of
vector-valued random variables. The lemma states (roughly formu-
lated) that if Xn  X and Yn → c in probability, where c is a
constant, then also Xn + Yn  X + c. It turns out that this result
also holds true in the generalised context of uniform convergence.

2.23 De�nition. Let statistical experiments (Ωn,An, {Ps,n : s ∈
S}) be given, and a sequence of measurable maps

fn : (Ωn × S,An ⊗ S)→ (Rd,Bd).

Then fn is said to converge uniformly in probability to zero with
respect to {Ps,n : s ∈ S} if

sup
s∈S

Ps,n{ωn ∈ Ωn : ‖fn(ωn, s)‖ > ε} → 0

for all ε > 0.

2.24 Lemma (Slutsky's lemma, generalised). Let Tn and fn
be measurable maps (in the sense of De�nition 2.23), and Qs,n :=
L (Tn(·, s) | Ps,n). Let K ⊆ S be a compact subset such that
Qs,n  Qs uniformly on K. Furthermore, assume that fn con-
verges uniformly in probability to zero with respect to {Ps,n : s ∈
K}. Then L (Tn(·, s) + fn(·, s) | Ps,n) Qs, uniformly on K.
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A proof of this result can be found in Pfanzagl (1994), Lemma
7.7.8.

2.5 Remarks and related literature

The concepts introduced and discussed in this chapter provide only
a small insight into the theory of asymptotic statistics and statis-
tical decision theory. Of course, not all connections to other �elds
from stochastics could be pointed out, which was not the aim of
this chapter, either. However, the given survey is su�cient for
our purposes. The above examinations were mainly based on the
nice monograph by van der Vaart (1998), and on Strasser (1985)
and Pfanzagl (1994). Detailed and profound information on the
discussed topics can also be found in Witting (1985), Witting and
Müller-Funk (1995) and Rieder (1994) as well as in the monographs
Le Cam (1986) and Le Cam and Yang (2000), partly also in Bickel
et al. (1998).



CHAPTER 3

Model assumptions

In this chapter we specify the model for the process {Yt : t ∈ [0, 1]}
from Chapter 1. We formulate exact conditions which the underly-
ing family of distributions and the other quantities involved in the
de�nition of the global and local models are presumed to ful�l. We
make use of the notation already introduced in Section 1.1.

3.1 General distributional assumptions

In the following, let P = {Pθ : θ ∈ Θ} denote a family of prob-
ability measures on some measurable space (Y ,B), with an open
parameter space Θ ⊆ Rd. We assume P to be dominated by a
σ-�nite measure µ. Thus, we have densities pθ = dPθ/dµ. Further-
more, for θ ∈ Rd \Θ we set Pθ := Pθ∗, with some arbitrarily chosen
θ∗ ∈ Θ.

We presume that P is continuously di�erentiable in quadratic
mean on Θ (in the sense of De�nition 2.6), the score function is
denoted ˙̀

θ. Then the information matrices Iθ =
∫

˙̀
θ

˙̀>
θ dPθ are

de�ned for all θ ∈ Θ and continuous, which follows from Lemma 2.7.
In addition, we assume that Iθ is positive de�nite for all θ ∈ Θ.

Throughout the rest of this thesis we assume that the above
distributional assumptions do hold.

At this stage, the reader may recall the Cholesky decomposition
of a positive de�nite matrix. According to this the symmetric,
positive de�nite matrix Iθ can be written as a product Iθ = C>θ Cθ
with a unique, invertible upper triangle matrix Cθ ∈ Rd×d. The

19
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entries of Cθ are linear combinations of that of Iθ (cf. Opfer, 2001,
p. 175 f.). Consequently, if Iθ is continuous in θ, then also Cγ, C−1

θ

and ‖Cjθ‖1 (j = 1, . . . , d), with Cjθ denoting the jth row vector of Cθ.
Note that the Cholesky decomposition satis�es C−1

θ (C−1
θ )> = I−1

θ .
For further information on the Cholesky decomposition cf. Stoer
(1999), p. 207 f.

3.2 Further regularity conditions

Besides the conditions from the previous section, we need to im-
pose some further regularity conditions on the distribution family
P . These additional assumptions are essential for the proofs of
Chapters 6 and 7.

We assume that there is a set N ⊆ Y with µ(N) = 0 and
pθ(y) > 0 for all y ∈ NC and all θ ∈ Θ. In particular, this implies
that Pθ ≡ ν for all θ. Furthermore, we assume that for all y ∈ NC

and all θ ∈ Θ the log-density log pθ(y) is three times continuously
partially di�erentiable with respect to the parameter θ, and that
the score function satis�es

˙̀
θ(y) =

∇θpθ(y)

pθ(y)
µ-a.e. (3.1)

As a consequence, the score function permits a Taylor expansion in
the parameter, which yields

˙̀
θ+h(y) = ˙̀

θ(y) + ῭
θ(y)h+O(‖h‖2), h→ 0, (3.2)

where here and in the following

῭
θ := ∇2

θ log pθ.

(The remainder in (3.2) of course depends on θ and y, which for
the moment shall not concern us.) We further require that the
third partial derivatives of the log-densities are dominated in some
sense. More precisely, we assume that there is a measurable func-
tion J : Y → R such that∣∣∣∣ ∂3

∂θi∂θj∂θk
log pθ(y)

∣∣∣∣ ≤ J(y) for all θ ∈ Θ and all y, (3.3)

i, j, k = 1, . . . , d,
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and we assume that Eθ J is uniformly bounded on Θ.
Besides these �point-wise� assumptions, we have to impose some

smoothness conditions concerning the moments of the score func-
tion and its derivatives. We assume that the Fisher information
satis�es

Iθ =

∫
˙̀
θ

˙̀>
θ dPθ = −

∫
῭
θ dPθ (3.4)

for all θ ∈ Θ and that the functions

(θ, τ) 7→
∫

( ˙̀
θ,i)

k1( ˙̀
θ,j)

k2 dPτ , k1, k2 ∈ {0, 1, 2}

are continuous on Θ×Θ for k1, k2 ∈ {0, 1, 2}, continuously partially
di�erentiable for k1 = 2 and k2 = 0, and two times continuously
partially di�erentiable for k1 = 1 and k2 = 0. Likewise we presume
the maps

(θ, τ) 7→
∫

(῭
θ,rs)

k dPτ , k ∈ {0, 1, 2},

to be continuously partially di�erentiable on Θ × Θ, where ῭
θ,rs

denotes the rs-entry of the matrix ῭
θ. This means in particular that

the entries of the information matrix Iθ are continuously partially
di�erentiable with respect to θ. Finally, we assume that certain
interchangeability properties for integration and di�erentiation hold
true, namely

∇τ

∫
˙̀
θpτ dµ =

∫
˙̀
θ(∇τpτ)

> dµ. (3.5)

Many of the above assumptions re�ect classical regularity condi-
tions used to prove consistency or asymptotic normality of certain
estimators, such as maximum likelihood or other likelihood-based
estimators. See for example Lehmann and Casella (1998), Sec-
tions 6.5 and 6.6, or Aerts and Claeskens (1997). Although the
above conditions may appear somewhat restrictive, they are sat-
is�ed by a large class of distribution families, e.g. by exponential
families (see Chapter 8).

3.3 The global and local function spaces

In Section 1.1 the one-dimensional marginals of the process {Yt :
t ∈ [0, 1]} were modelled according to the approach Yt ∼ Pξ(t),
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with an unknown parameter function F 3 ξ : [0, 1] → Θ. In the
following, we assume this global function space F to be given by

F := F (x0,Θ
∗, u)

:=
{
ξ : [0, 1]→ Θ | ξ(x0) ∈ Θ∗, ξ continuous,

‖ξ(x0 + s)− ξ(x0)‖∞ ≤ u(s), s ∈ [−x0, 1− x0]
}
.

(3.6)

Here ‖ · ‖∞ denotes the maximum norm on Rd; Θ∗ = Θ∗(γ∗, ε∗)
denotes an open cuboid centred around some �xed point γ∗ ∈ Θ,
more precisely:

Θ∗ := (γ∗1 − ε∗1, γ∗1 + ε∗1)× . . .× (γ∗d − ε∗d, γ∗d + ε∗d), ε∗i > 0.

(More generally, one could also choose Θ∗ as an open, bounded
neighbourhood of γ∗.) The additional function u indicates the de-
gree of how much the ξ's may vary in a neighbourhood of x0 relative
to ξ(x0). In the following, we will always assume that u is of the
speci�c form

u : R→ [0,∞), s 7→ A|s|ρ,

with A, ρ > 0. For large values ρ and small values A, respec-
tively, the last condition from (3.6)�in the following often simply
referred to as growth condition�becomes more restrictive and thus
the model, too. To shorten notation we often omit the arguments
and simply write F instead of F (x0,Θ

∗, u). From the de�nition
of F and the above choice of u, one easily concludes that

Θ′ := {ξ(x) | x ∈ [0, 1], ξ ∈ F} ⊆ Θ (3.7)

(note that of course Θ∗ ⊆ Θ′, too) is bounded and thus has compact
closure Θ′. We further presume this set to be included in Θ, in other
words, we assume that Θ′ is a relatively compact subset of Θ,

Θ′ ⊆ Θ. (3.8)

For some examinations it will be necessary to further restrict F to
such functions which ful�l a certain growth condition on the whole
interval [0, 1] as well as at x0. To this end, we set

FH := FH(x0,Θ
∗, u)

:=
{
ξ ∈ F | ‖ξ(x)− ξ(y)‖∞ ≤ u(x− y), x, y ∈ [0, 1]

}
.
(3.9)
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The restriction on the variation of the parameter functions is in
the literature sometimes referred to as Hölder condition (or Hölder
continuity). For ρ = 1 this is Lipschitz continuity.

The time points xnj at which the model�i.e. the random vari-
ables Ynj = Yxnj�can be observed, and for which we consider
the parameter function ξ, are supposed to be given by equidistant
points on the unit interval: we assume that

xnj :=
j − 1

n− 1
, n ∈ N, j = 1, . . . , n.

The resulting product measures P (n)

ξ are then de�ned according to
(1.1).

The scope of this thesis is to investigate the asymptotic be-
haviour of estimates for ξ(x0) under a sequence of loss functions
1[−anδ,anδ]C . Throughout this thesis

δ = (δ1, . . . , δd)
>

denotes a �xed vector with entries δi > 0. (The sequence an is
de�ned below.)

In order to assess the asymptotic minimax risk with respect to
this loss function we choose a localisation procedure, as mentioned
in Section 1.1. For that purpose we consider the following local
function space G , which is de�ned by

G := G (K, ρ, d)

:=
{
g : R→ R

d | ‖g(s)− g(0)‖∞ ≤ |s|ρ, s ∈ R,
g|[−K,K] is continuous,

g(x) = 0 for x /∈ [−K,K]
} (3.10)

Note that the growth condition in (3.10) holds for all s ∈ R. The
elements g ∈ G are also referred to as local functions. The exact
value of the constant K is not of so great importance. It merely
has to be chosen su�ciently large, such that for certain parameters
β the maps s 7→ (β − |s|ρ)+ are included in G (K, ρ, 1). These
maps are essential for the construction of suitable estimators. In
Section 3.5 we will state more precisely what �su�ciently large�
means. Throughout the thesis we assume that K is chosen accord-
ing to the criteria presented in that section. Note that

G (K, ρ, d) = G (K, ρ, 1)× . . .× G (K, ρ, 1) (d times).
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For (bounded) functions f : R → R
d we de�ne the uniform norm

by

‖f‖u,d := max{‖f1‖u, . . . , ‖fd‖u},

where ‖fi‖u := sup{|fi(x)| : x ∈ R} is the usual uniform norm
(supremum norm) for real functions. The growth condition in the
de�nition of G implies that

M := sup{‖g‖u,d : g ∈ G } <∞. (3.11)

In the same way that the space F was restricted to those functions
which satisfy a Hölder condition, we also restrict G , setting

GH := GH(K, ρ, d)

:=
{
g ∈ G (K, ρ, d) | ‖g(x)− g(y)‖∞ ≤ |x− y|ρ,

x, y ∈ [−K,K]
}
.

(3.12)

Moreover, we set

G ∗H := {g ∈ GH : g(0) = 0}. (3.13)

The relations between the spaces F and G , and FH and GH, re-
spectively, will become clear in later examinations. The limitations
(like the growth conditions and the boundedness of the functions)
are mainly necessary in order to take advantage of some compact-
ness arguments, as shall be seen later, too.

For g ∈ G and γ ∈ Θ the local alternatives γg,n(·) with respect
to γ may now be de�ned according to (1.3), where an and bn in the
following always are given by

bn := A2/(2ρ+1)n1/(2ρ+1),

an := u(1/bn) = A1/(2ρ+1)n−ρ/(2ρ+1).
(3.14)

As a consequence of this de�nition we have

a2
n =

bn
n
, n ∈ N. (3.15)

To shorten notation we further de�ne the transformed time points
by

x̃nj := bn(xnj − x0), j = 1, . . . , n. (3.16)
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With this notation, the local alternative from (1.3) can also be
written as

γg,n(xnj) = γ + ang(bn(xnj − x0))

= γ + ang(x̃nj).
(3.17)

The product measure P (n)

γ,g corresponding to this local alternative
γg,n may be de�ned according to (1.4). Moreover, for g ≡ 0 we
use the convention P (n)

γ := P (n)

γ,0. (In that case, P (n)

γ is of course
equal to the product of n independent copies of Pγ, i.e. P

(n)

γ = P n
γ .)

For some choices of γ and g it might turn out that γg,n(xnj) /∈ Θ.
This can of course only happen for small indices n. However, by
the convention Pθ = Pθ∗ for all θ /∈ Θ (see Section 3.1) we then
have Pγg,n(xnj) = Pθ∗. Hence, the product measures P (n)

γ,g are always
well-de�ned.

3.4 Existence of a preliminary estimator

Finally, we presume that there is a uniformly (1/an)-consistent es-
timator ξ∗n := ξ∗n(x0) for the true parameter ξ(x0). This means that
for each ι > 0 there is a constant C = Cι > 0 such that

sup
ξ∈F

P (n)

ξ

{
1

an
‖ξ∗n(x0)− ξ(x0)‖ ≥ C

}
< ι

for su�ciently large n. Of course, it is equivalent to require that

lim sup
n→∞

sup
ξ∈F

P (n)

ξ

{
1

an
‖ξ∗n(x0)− ξ(x0)‖ ≥ C

}
< ι.

The question of the existence of such preliminary estimators will
be discussed Chapter 8 for some models.

3.5 Supplement: specifying K

To completely describe the local function space G = G (K, ρ, d), we
still have to specify the constant K from the de�nition of the space
G (K, ρ, d). As was stated before, the exact value of this constant
is not so important, it is only important that it is su�ciently large
to allow for certain local functions to be included in G . In this
section�which can be omitted in the �rst reading�we describe how
K can be chosen in order to guarantee that this is the case. The
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approach may appear somewhat complicated, but it will become
clear in the course of Chapter 5 why it precisely satis�es our needs.

Note that in the de�nition of G , K is the only parameter that
is not yet de�ned through the global function space F . Hence,
it is quite clear that K in some way has to depend on the vector
δ that de�nes the loss function. In order to �nd an answer how
large K must at least be, we �rst consider the simple case of a
one-dimensional parameter space Θ ⊆ R, and hence the function
space G = G (K, ρ, 1). Subsequently, we consider the general case
Θ ⊆ Rd.

3.5.1 The univariate parameter case

In the one-dimensional case the vector δ that speci�es the loss func-
tion 1[−δ,δ]C is a real number, δ > 0. We consider the map

f : (δ,∞)→ [0,∞), β 7→ β1+1/ρ

log[(β + δ)/(β − δ)]
.

Since the function β 7→ log[(β+δ)/(β−δ)] is strictly decreasing on
(δ,∞), it is clear that f is strictly increasing. Furthermore, f(β)
tends to 0 as β ↓ δ and to ∞ as β → ∞. Since the distribution
family P is assumed continuously di�erentiable in quadratic mean
the map γ 7→ Iγ is continuous on Θ, and by assumption it is strictly
positive (see Section 3.1). We further assumed in (3.8) that Θ′ ⊆ Θ.
This implies that there is a compact interval I ⊆ (0,∞) such that{

ρ+ 1

2Iγδ
: γ ∈ Θ′

}
⊆ I.

Due to the monotonicity and continuity properties, f−1(I) is also
a compact interval, say [s, t], which is included in (0,∞). We now
choose the constant K such that the condition t1/ρ < K is satis�ed.

As was stated at the beginning, f(β) tends to zero as β ↓ δ, and
to in�nity as β → ∞. Hence, it is clear that for each γ ∈ Θ the
equation

β1+1/ρ

log[(β + δ)/(β − δ)]
=
ρ+ 1

2Iγδ
has a unique solution β∗ = β∗(γ). If K is chosen according to the
above criterion, then we have β∗(γ) < Kρ for all γ ∈ Θ′. This
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assures that each of the corresponding functions s 7→ (β∗(γ) −
|s|ρ)+, γ ∈ Θ′ is included in G (K, ρ, 1).

3.5.2 The multivariate parameter case

We generalise the above procedure in order to derive a criterion for
a suitable choice of K for G = G (K, ρ, d), with d ≥ 1. To this end,
we �rst generalise the above function f , setting

f : (0,∞)2 → [0,∞), (x, β) 7→ β1+1/ρ

log[(β + x)/(β − x)]
1{β > x}.

Of course, f has similar properties as the corresponding map from
Section 3.5.1. In particular, for �xed x the map β 7→ f(x, β) is
strictly increasing on (x,∞), and for �xed β, x 7→ f(x, β) is strictly
decreasing on (0, β). Furthermore, f is continuously di�erentiable
at all points (x, β) for which f(x, β) 6= 0. In the following, let a
family of strictly positive, continuous functions

vj : Θ→ (0,∞), j = 1, . . . , d,

be given. A suitable choice of such functions, which also satisfy
certain additional conditions, will be described in detail in Sec-
tion 3.5.3, and we will in the following always assume that the vj's
are of the speci�c form described there. As in the one-dimensional
case, we exploit that Iγ is positive de�nite for each γ ∈ Θ and
that the map γ 7→ Iγ is continuous. In particular, each component
of Iγ is continuous in γ. The same holds true for the Cholesky
decomposition Cγ and for the maps γ 7→ ‖Cjγ‖1 (j = 1, . . . , d),
with Cjγ denoting the jth row vector of Cγ (cf. Section 3.1). Since
the Cholesky matrices are invertible, each of the maps γ 7→ ‖Cjγ‖1

is strictly positive on Θ, and the same holds true for the maps
γ 7→ vj(γ)/‖Cjγ‖1. From Θ′ ⊆ Θ (by assumption (3.8)) and an ad-
ditional continuity argument we conclude that there are compact
intervals I1, I2 ⊆ (0,∞) such that

d⋃
j=1

{
ρ+ 1

2vj(γ)‖Cjγ‖1
: γ∈Θ′

}
⊆ I1 and

d⋃
j=1

{
vj(γ)

‖Cjγ‖1
: γ∈Θ′

}
⊆ I2.

For each �xed x ∈ I2 the map β 7→ f(x, β) is continuous and
strictly increasing on (x,∞), with

lim
β↓x

f(x, β) = 0 and lim
β↑∞

f(x, β) =∞.
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Hence, the set Jx := {β : f(x, β) ∈ I1} is a compact interval,
say Jx = [ax, bx] ⊆ (x,∞). If we write I1 =: [a, b], then, by the
monotonicity, we have f(x, bx) = b > 0 for all x. An application
of the implicit function theorem yields that the map x 7→ bx is
continuous, and thus in particular bounded on I2. In other words,
t := supx∈I2 bx is �nite. We now choose the constant K such that
t1/ρ < K holds.

The consequences of this special choice of K are similar to those
from the one-dimensional case. Let an arbitrary parameter γ ∈ Θ′

be given. Then tj := vj(γ)/‖Cjγ‖1 ∈ I2 and (ρ+1)/(2vj(γ)‖Cjγ‖1) ∈
I1 for all j = 1, . . . , d. From the monotonicity properties of the
functions β 7→ f(tj, β) we conclude that each of the equations

f(tj, β) =
β1+1/ρ

log
β+vj(γ)/‖Cjγ‖1
β−vj(γ)/‖Cjγ‖1

!
=

ρ+ 1

2vj(γ)‖Cjγ‖1
, j = 1, . . . , d,

possesses a unique solution β∗j = β∗j (γ) ∈ Jtj , i.e. β
∗
j ≤ t. These

solutions then satisfy β∗j < Kρ for all j. In particular, for all γ ∈ Θ′

the functions

s 7→
(
(β∗1(γ)− |s|ρ)+, . . . , (β∗d(γ)− |s|ρ)+)>

are included in G (K, ρ, d).

3.5.3 Specifying v

For a precise speci�cation of the constant K in the general case
d ≥ 1 we still have to de�ne the function

v = v(γ) = (v1(γ), . . . , vd(γ))>.

Our approach is to de�ne v in such a way that it satis�es

[−v(γ), v(γ)] ⊆ Aγ,

where Aγ is de�ned by

Aγ := {Cγx : x ∈ [−δ, δ]}.

In the course of the examinations in Section 5.3 it will become clear
why this is a useful condition. Let us �rst consider an arbitrary
γ ∈ Θ, and let Cγ be the corresponding Cholesky matrix. In order
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to determine an appropriate vector v = v(γ) such that [−v, v] ⊆ Aγ

holds, we denote the 2d corners of the cuboid [−δ, δ] by

δ(i) = (δ
(i)
1 , . . . , δ

(i)
d )>, where |δ(i)

j | = δj for j = 1, . . . , d.

Furthermore, we set1)

w(i) := Cγδ(i). (3.18)

These points w(i) are the corners of the parallelogram Aγ. Setting

w := (w1, . . . , wd)
>, with wi := max

j
|w(j)

i | (3.19)

the set [−w,w] is the smallest cuboid which includes Aγ as a subset.
In general, of course we have Aγ ( [−w,w]. We determine now v
as a scalar multiple of w in such a way that the resulting �shrunk�
cuboid [−v, v] becomes a subset of Aγ. To this end, denote the 2d

corners of [−w,w] by the vectors

w̃(i) = (w̃
(i)
1 , . . . , w̃

(i)
d )>, where |w̃(i)

j | = wj

for j = 1, . . . , d.
(3.20)

Setting z(i) := C−1
γ w̃(i) and

α := max
{
|z(i)
j |/δj : i = 1, . . . , 2d, j = 1, . . . , d

}
, (3.21)

we then de�ne the vector v by

v :=
1

α
w.

The corners of the cuboid [−v, v] are given by the 2d vectors v(i) :=
w̃(i)/α = Cγz(i)/α, and because of z(i)/α ∈ [−δ, δ] we have v(i) ∈
Aγ. Hence, we achieve [−v, v] ⊆ Aγ. Note that in the special case
of a diagonal matrix Cγ = diag(λ1, . . . , λd) (and thus in particular
for the case d = 1) the above procedure yields vj = λjδj, and thus
Aγ = [−v, v].

The Cholesky matrix Cγ is an invertible upper triangle matrix.
Therefore, all components of the vector w are strictly positive, and
with the same argument we conclude that α > 0, too. As a con-
sequence, all the components vj(γ) of the vector v(γ) are strictly
positive�as required in Section 3.5.2. It remains to prove that v(·)
is continuous on Θ.

1)Note that all the quantities w(i), w, w̃(i), z(i) and α, which are de�ned in the following
are functions of the parameter γ. However, to keep the notation simple this dependence on
γ is often suppressed.
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3.1 Lemma. The maps γ 7→ vj(γ) (j = 1, . . . , d) are continuous
on Θ.

Proof. From Section 3.1 we know that Cγ and C−1
γ are continuous

in γ, and therefore also all of the quantities de�ned in equations
(3.18)�(3.21). From that follows the continuity of v = v(γ). �

To sum up, with the above choice of the function v the con-
stantK�and thus the space G = G (K, ρ, d)�can now be precisely
speci�ed. We will see in our later examinations that if K is chosen
according to the above criterion it is always su�ciently large such
that all functions of interest are in included in G . Note that in the
special case d = 1 the above procedure yields v(γ) = Cγδ. In that
case we get (with the notation from Sections 3.5.1 and 3.5.2) I1 = I
and I2 = {δ}. Hence, both, the approach for the speci�cation of
K in the univariate parameter case (from Section 3.5.1) and in the
multivariate parameter case (from Section 3.5.2), do coincide.

3.2 Example. To better understand what really happens during
the above construction procedure, we consider a simple example
for the case of a two-dimensional parameter γ ∈ R2. Consider
the Cholesky matrix Cγ = ( 1 1

0 1 ), and δ = ( 1
1 ). Using the above

notation, we have

δ(1) = ( 1
1 ) , δ(2) = ( −1

1 ) , δ(3) =
( −1
−1

)
, δ(4) = ( 1

−1 ) ,

and therefore, according to (3.18),

w(1) = ( 2
1 ) , w(2) = ( 0

1 ) , w(3) =
( −2
−1

)
, w(4) = ( 0

−1 ) .

From (3.19) we get w = ( 2
1 ), and the resulting cuboid [−w,w] has

the corners

w̃(1) = ( 2
1 ) , w̃(2) = ( −2

1 ) , w̃(3) =
( −2
−1

)
, w̃(4) = ( 2

−1 ) .

With C−1
γ = ( 1 −1

0 1 ) this yields

z(1) = ( 1
1 ) , z(2) = ( −3

1 ) , z(3) =
( −1
−1

)
, z(4) = ( 3

−1 ) ,

and therefore α = 3 (according to (3.21)), which leads to

v = w/α = 1
3 ( 2

1 ) .

The following plots illustrate what happens during the construction
of the cuboid [−v, v].
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(a) (b)

(c)

Figure (a) shows the cuboid [−δ, δ], and Figure (b) plots the set Aγ

(solid lines) and the cuboid [−w̃, w̃] (dotted lines). The �shrunk�
cuboid [−v, v] is depicted in Figure (c), together with Aγ (dotted
lines). This last plot clearly shows that indeed [−v, v] ⊆ Aγ.





CHAPTER 4

Convergence of the local experiments

In this chapter we prove that the sequence of local experiments

(Yn,Bn, {P (n)

γ,g : g ∈ G }) (4.1)

converges weakly to a Gaussian limit experiment. This Gaussian
experiment is introduced in Section 4.1, the weak convergence of
the local experiments is proven in Section 4.2. It turns out that
di�erentiability in quadratic mean is a suitable framework for this
purpose. Furthermore, we show in Section 4.3 that the minimax
risk in this limit experiment yields an asymptotic lower bound for
both, the minimax risk in the local model and the minimax risk in
the global model.

4.1 Characterising the limit experiment

Throughout this section, let γ ∈ Θ be an arbitrary, but �xed cen-
tre of localisation. We de�ne a special Gaussian shift experiment
which will later turn out to be the weak limit of the local models.
For intervals X ⊆ R we denote the space of continuous functions
f : X → R

d by Cd(X ). The σ-algebra generated by the projec-
tions πt : C

d(X ) → R
d, s 7→ s(t), is denoted C d(X ). In the fol-

lowing, we always consider the special case of the compact interval
X = [−K,K], in which C 1([−K,K]) coincides with the Borel
algebra induced by the uniform norm ‖ · ‖u. As a consequence,
C1([−K,K]) is separable, and thus is

C d([−K,K]) = C 1([−K,K])⊗ . . .⊗ C 1([−K,K]) (d times).

33
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(For the above assertions see e.g. Gänssler and Stute, 1977, p. 21
�., or Billingsley, 1968, pp. 54 �. and 220 �.) In the following, let

W =
{
Wt = (W

(1)
t , . . . ,W

(d)
t )> : t ∈ [−K,K]

}
be a (time-shifted) d-dimensional Brownian motion on some ab-
stract probability space (Ω,A,P), with W−K = 0 P-a.s. On the
space (Cd([−K,K]),C d([−K,K])) we consider the induced distri-
butions

Qg := Qγ,g := L

(∫ ·
−K
Cγg(s) ds+W

)
. (4.2)

The integral is of course to be interpreted component-wise. The
index γ is sometimes omitted, if�like in this Chapter�a �xed γ is
considered. The underlying space (Ω,A,P) can be chosen equal to

(Cd([−K,K]),C d([−K,K]), Qγ,0),

provided that we identify W (i) with the coordinate mapping

xi : C
d([−K,K])→ C1([−K,K]), f = (f1, . . . , fd)

> 7→ fi

(cf. Karatzas and Shreve, 1988, p. 72 f.). Moreover, we set x =
(x1, . . . , xd)

>.
In the course of this chapter we want to show that the sequence

of local experiments from (4.1) converges weakly to

(Cd([−K,K]),C d([−K,K]), {Qγ,g : g ∈ G })

(in the sense of De�nition 2.14). To this end, we have to show that
the log-likelihood ratios in the local experiments converge in dis-
tribution to the log-likelihood ratios of the Gaussian experiment.
We shall �rst examine the latter. For this purpose we use some
concepts from the Itô integration theory, however, only for the sim-
ple case of deterministic integrands. Klebaner (1998) provides a
very nice presentation of this theory. We introduce some further
notation for the stochastic integral calculus: Suppose a function
f = (f1, . . . , fd)

> ∈ Cd([−K,K]) is given. With the above con-
siderations of the underlying probability spaces, we simply write
the stochastic integrals

∫
fi dW

(i) as
∫
fi dxi. Moreover, we set∫

f dx :=
∑d

i=1

∫
fi dxi. This notation for the stochastic integrals

corresponds to that used by Strasser (1985), Section 70, and Drees
(2001).
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4.1 Theorem. Let g1, . . . , gm ∈ G and γ ∈ Θ be given. Then

L

({
log

dQγ,gj

dQγ,0

}
1≤j≤m

∣∣∣∣ Qγ,0

)
= N ({−1

2kjj}1≤j≤m,K),

with Qγ,gj according to (4.2), kij =
∫
gi(s)

>Iγgj(s) ds and K =
(kij) ∈ Rm×m.

Proof. The proof is based on the Girsanov theorem, which can be
found in Karatzas and Shreve (1988), p. 190 �., or in a simpler, but
for our purpose su�cient version in Bingham and Kiesel (1998),
Theorem 5.8.1. The Girsanov formula yields

dQγ,g

dQγ,0
(x) = exp

[ ∫
Cγg dx− 1

2

∫ K

−K
‖Cγg(s)‖2 ds

]
. (4.3)

Exploiting the isometry and linearity properties of the Itô integral
(∗) we conclude that

L

(
log

dQγ,g

dQγ,0

∣∣∣∣ Qγ,0

)
= L

(∫
Cγg dx− 1

2

∫
‖Cγg(s)‖2 ds

∣∣ Qγ,0
)

(∗)
= N

(
− 1

2

∫
‖Cγg(s)‖2 ds,

∫
‖Cγg(s)‖2 ds

)
.

In order to prove that also the complete vector

{log(dQγ,gj/dQγ,0) : j = 1, . . . ,m}

is normally distributed, it su�ces to show that any linear combi-
nation

a1 log
dQγ,g1

dQγ,0
+ . . .+ am log

dQγ,gm

dQγ,0

is normally distributed. With the stochastic integral notation intro-
duced above, and using the linearity of the Itô integral we conclude
that under Qγ,0

m∑
i=1

ai log
dQγ,gi

dQγ,0

L
=

m∑
i=1

ai

(∫
Cγgi dx− 1

2

∫
‖Cγgi(s)‖2 ds

)
=

∫ ( m∑
i=1

aiCγgi
)
dx− 1

2

∫ ( m∑
i=1

ai‖Cγgi(s)‖2
)
ds.
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The random variable in the last expression is normally distributed.
These arguments imply that {log(dQγ,gj/dQγ,0)}1≤j≤m is Gaussian
under Qγ,0, with mean vector {−1

2

∫
‖Cγgj(s)‖2 ds}1≤j≤m. The

covariance function can be calculated to

Cov(
∫
Cγgi dx,

∫
Cγgj dx)

(�)
=
∫

(Cγgi(s))>Cγgj(s) ds
=
∫
gi(s)

>Iγgj(s) ds,

where (�) follows from Klebaner (1998), p. 116. This proves the
assertion of the theorem. �

4.2 Proving weak convergence

We prove that the local experiments (4.1) converge weakly to the
Gaussian experiment from the preceding section. As before, γ ∈ Θ
denotes an arbitrary, but �xed centre of localisation.

4.2 Theorem. Consider an arbitrary, but �xed γ ∈ Θ. Under the
assumptions given in Sections 3.1 and 3.3 we have

(Yn,Bn, {P (n)

γ,g : g ∈ G })
w−→ (Cd([−K,K]),C d([−K,K]), {Qγ,g : g ∈ G }).

For the lengthy proof of the theorem we �rst show that all �nite-
dimensional vectors of the form(

log
dP (n)

γ,g1

dP (n)
γ
, . . . , log

dP (n)

γ,gm

dP (n)
γ

)>
, g1, . . . , gm ∈ G , (4.4)

converge in distribution under P (n)

γ = P (n)

γ,0. From that one can easily
conclude the weak convergence of the local experiments. We �rst
address the special case m = 1, which is discussed in the following
proposition.

4.3 Proposition. Let arbitrary, but �xed g ∈ G and γ ∈ Θ be
given. Under the assumptions from Sections 3.1 and 3.3 we have

L

(
log

dP (n)

γ,g

dP (n)
γ

∣∣∣∣ P (n)

γ

)
 N (−1

2κ
2, κ2),

where

κ2 =

∫
g(s)>Iγg(s) ds ≥ 0.

In particular, we have P (n)

γ /. P (n)

γ,g.
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4.4 Remark. For κ2 = 0 we identify N (0, 0) with the Dirac mea-
sure δ0, as in the addendum to Proposition 2.8. In that case, the
positive de�niteness of Iγ and the continuity of g on the compactum
[−K,K] imply g ≡ 0. Then, of course, the assertion is trivial.

In preparation of the proof, for g ∈ G we de�ne a triangular
scheme of stochastically independent real random variables U g

nj on
(Y ,B), setting

U g
nj := ang(x̃nj)

> ˙̀
γ, n ∈ N, j = 1, . . . , n. (4.5)

In the context of Remark 2.9, this triangular scheme can be inter-
preted as a family of random variables

U g
nj : (Yn,Bn)→ (R,B),

provided that we identify U g
nj with U

g
nj(πnj), where again πnj de-

notes the jth canonical projection. If we write the elements of the
space Yn of the form

(Yn1, . . . , Ynn)
>,

then we can simply write U g
nj = U g

nj(πnj) as U
g
nj(Ynj). We will use

this notation throughout the thesis. However, we will often also
simply omit the argument Ynj if this does not lead to misinterpre-
tations. In addition, we set

U g
n :=

n∑
j=1

U g
nj, (4.6)

which is to be interpreted as a random variable U g
n : (Yn,Bn) →

(R,B), more formally written as

U g
n = U g

n(Yn1, . . . , Ynn) =
n∑
j=1

U g
nj(Ynj).

Furthermore, in the following let

Kn :=
{
j = 1, . . . , n : |xnj − x0| ≤ K

bn

}
=
{
j = 1, . . . , n : |x̃nj| ≤ K

}
,

kn := #Kn,

(4.7)
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where K is the constant from (3.10) and the x̃nj are de�ned ac-
cording to (3.16). From (3.14)�(3.16) we conclude that kn → ∞
and kn ' 2Kn/bn

1), and therefore

a2
n ' 2K/kn. (4.8)

The random variables U g
n as well as the quantities Kn and kn play

an important role throughout this thesis.

Proof of Proposition 4.3. The proof is based on an application
of Proposition 2.8. First we consider the expressions ang(x̃nj). Note
that for all vectors v ∈ Rd the inequality ‖v‖ ≤

√
d‖v‖∞ holds (cf.

Königsberger, 2000, p. 11). Thus, we get

‖ang(x̃nj)‖2 ≤ da2
n‖g(x̃nj)‖2

∞

≤ da2
n‖g‖2

u,d 1{j ∈ Kn}
≤ a2

ndM
2
1{j ∈ Kn},

with M as in (3.11). Setting ∆n := anM
√
d, we thus have

max{‖ang(x̃nj)‖ : j = 1, . . . , n} ≤ ∆n → 0. (4.9)

In addition, we conclude with (4.8) that

∆ := sup

{ n∑
j=1

‖ang(x̃nj)‖2 : n ∈ N
}

. sup{a2
nkn : n ∈ N} <∞.2)

(4.10)

For n ∈ N and j = 1, . . . , n we de�ne

Unj := U g
nj = ang(x̃nj)

> ˙̀
γ,

according to (4.5). In the following, we show that this choice of
random variables Unj �ts the requirements from Proposition 2.8,
where Pγ, Pγg,n(xnj) and µ take the roles of the measures Pnj, Qnj

and µnj, respectively. The assertion of our proposition follows then
immediately from that of Proposition 2.8.

1)For sequences dn and en we write dn ' en i� dn/en → 1.
2)For two expressions a(s) and b(s) we write a(s) . b(s) i� a(s) ≤ kb(s) with a positive

constant k, which does not depend on the argument s.
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Proof of (2.2). From the de�nitions of Unj and γg,n(·) (see also
(3.17)) we get

Rnj :=

∫ [√
pγg,n(xnj) −

√
pγ − 1

2Unj
√
pγ

]2
dµ

=

∫ [√
pγ+ang(x̃nj) −

√
pγ − 1

2ang(x̃nj)
> ˙̀

γ
√
pγ

]2
dµ.

Let an arbitrary ε > 0 be given. Due to the presumed di�erentia-
bility in quadratic mean at γ there is a δ > 0, such that (using the
convention 0/0 := 0)

1

‖s‖2

∫ [√
pγ+s −

√
pγ − 1

2s
> ˙̀

γ
√
pγ

]2
dµ <

ε

∆
,

as long as ‖s‖ < δ. Provided that n is su�ciently large, we know
from (4.9) that supj ‖ang(x̃nj)‖ ≤ ∆n < δ, and thus

Rnj

‖ang(x̃nj)‖2 <
ε

∆

for all j. Summation of the Rnj yields
n∑
j=1

Rnj <

n∑
j=1

ε

∆
‖ang(x̃nj)‖2

(4.10)
≤ ε.

Since ε > 0 can be chosen arbitrarily small, this yields (2.2).
Proof of (2.3) and (2.8). Lemma 2.5 implies∫

Unj dPγ = ang(x̃nj)
>
∫

˙̀
γ dPγ = 0,

and hence (2.3) and (2.8) hold.
Proof of (2.4) and (2.7). The positive de�niteness of Iγ implies

κ2 =

∫
g>(s)Iγg(s) ds ≥ 0,

as stated in the proposition. We show now that
∑n

j=1

∫
U 2
nj dPγ

converges to κ2, i.e. (2.7) holds, and thus of course also (2.4). A
simple calculation yields

n∑
j=1

∫
U 2
nj dPγ =

n∑
j=1

ang(x̃nj)
>
(∫

˙̀
γ

˙̀>
γ dPγ

)
ang(x̃nj)

=
n∑
j=1

a2
ng(x̃nj)

>Iγg(x̃nj). (4.11)
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In order to prove that the second moments converge, we �rst con-
sider the case of a one-dimensional parameter space Θ ⊆ R and
then the general case Θ ⊆ Rd with d ≥ 1.
Special case Θ ⊆ R. In this case (4.11) is reduced to

n∑
j=1

∫
U 2
nj dPγ = Iγ

n∑
j=1

a2
ng(x̃nj)

2,

where the Fisher information Iγ is a non-negative number. We
show that the sum term converges to

∫
g(s)2 ds. To this end, for

�xed n we consider the set

Zn := {−K = z0 < z1 < . . . < zkn = K} ,

where

zj := −K +
2jK

kn
, j = 0, . . . , kn.

This partition divides the interval [−K,K] into kn equally large
subintervals [zj−1, zj) of length 2K/kn. Obviously, each such subin-
terval includes one and only one of the points x̃nj with index j ∈
Kn. According to (4.8) we have a2

n ' 2K/kn = zj − zj−1. Hence,∑n
j=1 a

2
ng(x̃nj)

2 can be interpreted as a Riemann sum for g2(·) with
respect to the partition Zn. With an → 0 the �neness of the par-
tition tends to zero, too. Consequently, since g is continuous and
thus integrable (on [−K,K]), we have

n∑
j=1

a2
ng(x̃nj)

2 →
∫ K

−K
g(s)2 ds.

Applying that g|[−K,K]C ≡ 0, we �nally obtain

n∑
j=1

∫
U 2
nj dPγ = Iγ

n∑
j=1

a2
ng(x̃nj)

2 → Iγ
∫
g(s)2 ds.

Hence, we have shown (2.7) holds for the case of a one-dimensional
parameter space Θ ⊆ R.
General case Θ ⊆ Rd, d ≥ 1. For the general case Θ ⊆ Rd we get
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from (4.11) and some simple matrix multiplication

n∑
j=1

∫
U 2
nj dPγ =

n∑
j=1

d∑
k=1

d∑
l=1

a2
ngk(x̃nj)gl(x̃nj)Iγ,kl

=
d∑

k=1

d∑
l=1

n∑
j=1

a2
ngk(x̃nj)gl(x̃nj)Iγ,kl.

Here gk(·) and Iγ,kl denote the corresponding components of the
vector-valued function g(·) and the matrix Iγ, respectively. The
same arguments as in the above discussed case of a one-dimensional
parameter yield

n∑
j=1

a2
ngk(x̃nj)gl(x̃nj)Iγ,kl → Iγ,kl

∫
gk(s)gl(s) ds,

and thus

n∑
j=1

∫
U 2
nj dPγ →

d∑
k=1

d∑
l=1

Iγ,kl
∫
gk(s)gl(s) ds

=

∫ ( d∑
k=1

d∑
l=1

Iγ,klgk(s)gl(s)
)
ds

=

∫
g(s)>Iγg(s) ds.

Proof of (2.5). Let an arbitrary ε > 0 be given. The Cauchy-
Schwarz inequality (applied point-wise) yields

U 2
nj = |ang(x̃nj)

> ˙̀
γ|2 ≤ ‖ang(x̃nj)‖2 ‖ ˙̀

γ‖2
(4.9)
≤ ∆2

n‖ ˙̀
γ‖2,

which implies

n∑
j=1

∫
U 2
nj1{|Unj| > ε} dPγ =

n∑
j=1

∫
U 2
nj1{|Unj|2 > ε2} dPγ

≤
( n∑

j=1

‖ang(x̃nj)‖2
)∫

‖ ˙̀
γ‖2
1{∆2

n‖ ˙̀
γ‖2 > ε2} dPγ.

Due to (4.10) the sum in the last expression is bounded by ∆.
Since ∆n → 0, the dominated convergence theorem implies that
the integral converges to zero. �
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4.5 Corollary. Under the assumptions of Proposition 4.3 we have

log
dP (n)

γ,g

dP (n)
γ
−
( n∑

j=1

U g
nj − 1

2κ
2
)

= o
P

(n)
γ

(1),

with κ2 =
∫
g(s)>Iγg(s) ds.

Proof. The assertion follows directly from the above proof and
(2.6) in Proposition 2.8. �

Next, we want to show that the vector from (4.4) also converges
in distribution in the multi-dimensional case. To this end, we con-
sider m arbitrary, but �xed functions g1, . . . , gm ∈ G . The corre-
sponding local alternatives γgj ,n may be de�ned according to (1.3).
We generalise the result from Proposition 4.3:

4.6 Proposition. Let m arbitrary, but �xed functions g1, . . . , gm ∈
G and some �xed γ ∈ Θ be given. Moreover, let the assumptions
from Sections 3.1 and 3.3 hold. Then

L

({
log

dP (n)

γ,gj

dP (n)
γ

}
1≤j≤m

∣∣∣∣ P (n)

γ

)
 N ({−1

2kjj}1≤j≤m,K),

where

kij =

∫
gi(s)

>Iγgj(s) ds

and K = (kij) ∈ Rm×m (cf. Theorem 4.1).

The proposition follows from several auxiliary results, which will
be veri�ed separately. Again, we consider random variables

U gi
nj := angi(x̃nj)

> ˙̀
γ and U gi

n :=
n∑
j=1

U gi
nj,

de�ned according to (4.5) and (4.6), respectively, where the vari-
ables U gi

nj, j = 1, . . . , n, are assumed independent. We examine the

asymptotic behaviour of the corresponding vector (U g1
n , . . . , U

gm
n )>.

Note that in the further examinations of this section all expecta-
tions and covariances are to be built with respect to the product
measure P (n)

γ .
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4.7 Lemma. Let the assumptions from Proposition 4.6 hold. Then
Cov(U gr

n , U
gs
n )→ krs for r, s ∈ {1, . . . ,m}, and thus in particular

E[(U g1
n , . . . , U

gm
n )w]2 → w>Kw

for all w ∈ Rm.

Proof. With Lemma 2.5 we have

EU gi
nj = angi(x̃nj)

>
∫

˙̀
γ dPγ = 0 (4.12)

for all i and all n, j. Furthermore, U gr
nj and U

gs
nk are independent

for j 6= k. We conclude that

Cov(U gr
n , U

gs
n ) =

n∑
j=1

n∑
k=1

E(U gr
njU

gs
nk)

=
n∑
j=1

E(U gr
njU

gs
nj)

=
n∑
j=1

a2
ngr(x̃nj)

>
(∫

˙̀
γ

˙̀>
γ dPγ

)
gs(x̃nj)

=
n∑
j=1

a2
ngr(x̃nj)

>Iγgs(x̃nj).

The last expression converges to krs, as in the proof of (2.7) in
Proposition 4.3. This implies the assertion. �

4.8 Lemma. Under the assumptions from Proposition 4.6

L ((U g1
n , . . . , U

gm
n )> | P (n)

γ ) N (0,K).

Proof. Using the Cramér-Wold device it su�ces to show that

L ((U g1
n , . . . , U

gm
n )w | P (n)

γ ) N (0, w>Kw) (4.13)

for all vectors w ∈ Rm. Let some w = (w1, . . . , wm)> ∈ Rm be
given. Lemma 4.7 yields E[(U g1

n , . . . , U
gm
n )w]2 → w>Kw. More-

over, E[(U g1
n , . . . , U

gm
n )w] = 0, as a consequence of (4.12). In the

case w>Kw = 0 we have Var[(U g1
n , . . . , U

gm
n )w]→ 0, which implies

(U g1
n , . . . , U

gm
n )w  δ0 (the Dirac measure), and thus the conver-

gence (4.13). It remains to prove (4.13) for the case w>Kw > 0.
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This can be done with an application of the Lindeberg-Feller theo-
rem. We simply have to show that the Lindeberg condition for the
functions

∑m
i=1wiU

gi
nj holds, i.e. to verify that

Ln(ε) :=
n∑
j=1

∫ ( m∑
k=1

wkU
gk
nj

)2

1

{∣∣∣∣ m∑
i=1

wiU
gi
nj

∣∣∣∣ > ε

}
dPγ → 0

for all ε > 0. The Cauchy-Schwarz inequality implies( m∑
k=1

wkU
gk
nj

)2

≤ ‖w‖2
m∑
k=1

(U gk
nj)

2 Pγ-a.s.

Moreover, we have

1

{∣∣∣∣ m∑
i=1

wiU
gi
nj

∣∣∣∣ > ε

}
≤ 1

{ m∑
i=1

|wiU gi
nj| > ε

}
≤

m∑
i=1

1{|wiU gi
nj| > ε/m} Pγ-a.s.

Altogether, this yields

Ln(ε) ≤ ‖w‖2
m∑
i=1

m∑
k=1

n∑
j=1

∫ (
U gk
nj

)2
1{|wiU gi

nj| > ε/m} dPγ.

With some minor modi�cations of the calculations for the proof of
(2.5) in Proposition 4.3 one concludes that

n∑
j=1

∫ (
U gk
nj

)2
1{|wiU gi

nj| > ε/m} dPγ → 0,

and thus Ln(ε)→ 0, too. Now the assertion is a direct consequence
of the Lindeberg-Feller theorem (van der Vaart, 1998, Proposi-
tion 2.27). �

Proof of Proposition 4.6. Since a sequence of vector-valued ran-
dom variables converges in probability if and only if each of its
components converges, Corollary 4.5 yields{

log
dP (n)

γ,gj

dP (n)
γ

}
1≤j≤m

−
(

(U g1
n , . . . , U

gm
n )>−{1

2kjj}1≤j≤m

)
= o

P
(n)
γ

(1).
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Furthermore, Lemma 4.8 implies

L ((U g1
n , . . . , U

gm
n )> − {1

2kjj}1≤j≤m | P (n)

γ )

 N (−{1
2kjj}1≤j≤m,K).

The assertion follows from Slutsky's lemma. �

With the above results and some additional arguments from the
theory of weak convergence of experiments we are now able to prove
Theorem 4.2.

Proof of Theorem 4.2. From Proposition 4.3 we obtain P (n)

γ,g /.
P (n)

γ for each g ∈ G . Since �/.� is an equivalence relation this
implies P (n)

γ,g /. P
(n)

γ,h for all g, h ∈ G . Therefore, the local exper-
iments (Yn,Bn, {P (n)

γ,g : g ∈ G }) are contiguous in the sense of
De�nition 2.16. Furthermore, for arbitrary g1, . . . , gm ∈ G , and
with P (n)

γ = P (n)

γ,0, we conclude from Proposition 4.6 and from The-
orem 4.1 that

L

({
log

dP (n)

γ,gj

dP (n)
γ

}
1≤j≤m

∣∣∣∣P (n)

γ

)
 L

({
log

dQγ,gj

dQγ,0

}
1≤j≤m

∣∣∣∣Qγ,0

)
,

and the continuous mapping theorem (cf. van der Vaart, 1998, p. 7)
yields

L

({
dP (n)

γ,gj

dP (n)
γ

}
1≤j≤m

∣∣∣∣ P (n)

γ

)
 L

({
dQγ,gj

dQγ,0

}
1≤j≤m

∣∣∣∣ Qγ,0

)
.

The assertion follows now from Theorem 2.17. �

4.9 Remark. Note that all of the above calculations were done
without the additional growth condition from (3.10). Indeed, in
all of the above proofs we only used the assumption that the func-
tions g are continuous on [−K,K] and equal to zero outside of this
compactum.

4.3 Lower asymptotic minimax risk bounds

The above proven weak convergence of the local experiments has
some immediate consequences for the asymptotic minimax risk
within these experiments. The following theorem states that the
maximal risk of any sequence of estimators in the local experiments
is asymptotically bounded from below by the minimax risk in the
limit experiment.
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4.10 Theorem. Consider an arbitrary, but �xed centre of locali-
sation γ ∈ Θ, and suppose that the assumptions from Sections 3.1
and 3.3 hold (in particular, let δ = (δ1, . . . , δd)

> be given, with com-
ponents δi > 0). Moreover, let γ̂g,n(x0) be an arbitrary estimator
for the parameter γg,n(x0) (with unknown g ∈ G ). Then

lim inf
n→∞

sup
g∈G̃

P (n)

γ,g

{
γ̂g,n(x0)− γg,n(x0) ∈ [−δan, δan]C

}
≥ inf

%
sup
g∈G̃

∫
%
(
z, [g(0)− δ, g(0) + δ]C

)
dQγ,g(z)

holds for arbitrary subspaces G̃ ⊆ G . The in�mum in the above dis-
play is built over the class of all randomised estimators % for g(0),
i.e. over all Markov kernels % from (Cd([−K,K]),C d([−K,K]))
to (Rd,Bd).

Proof. Consider the loss function W = {Wg : g ∈ G }, where

Wg(s) := 1
{
s− g(0) ∈ [−δ, δ]C

}
, s ∈ Rd.

W is lower semi-continuous and level-compact (cf. De�nition 2.18).
To simplify notation we write the local experiments and the limit
experiment in this proof as

En := (Yn,Bn, {P (n)

γ,g : g ∈ G })

and

E := (Cd([−K,K]),C d([−K,K]), {Qγ,g : g ∈ G }),

respectively. It is clear that each of the experiments En is domi-
nated, and the application of the Girsanov theorem in the proof of
Theorem 4.1 implies that the same holds true for the experiment
E. Moreover, we have shown in Theorem 4.2 that En

w−→ E. Hence,
the conditions from Theorem 2.19 apply, and therefore�using the
notation from De�nition 2.11�every sequence of decision functions
%n ∈ R(En,R

d) satis�es the inequality

lim inf
n→∞

sup
g∈G

R(g, %n) ≥ inf
%∈R(E,Rd)

sup
g∈G

R(g, %). (4.14)

For g(0) we consider the estimator ĝn(0) := (γ̂g,n(x0) − γ)/an.
Clearly, (4.14) also holds if we specialise %n to

%n : (Yn,Bd)→ [0, 1], (y,B) 7→ 1{ĝn,y(0) ∈ B}.



4.3. Lower asymptotic minimax risk bounds 47

Here we use the notation ĝn,y(0) to clarify that ĝn(0) is based on
the observation y = (y1, . . . , yn)

> from the local experiment En.
This special choice of %n ful�ls

R(g, %n) =

∫∫
Wg(s)%n(y, ds) P

(n)

γ,g(dy)

=

∫∫
1
{
s− g(0) ∈ [−δ, δ]C

}
%n(y, ds) P

(n)

γ,g(dy)

=

∫
1
{
ĝn,y(0)− g(0) ∈ [−δ, δ]C

}
P (n)

γ,g(dy)

= P (n)

γ,g

{
ĝn(0)− g(0) ∈ [−δ, δ]C

}
= P (n)

γ,g

{
γ̂g,n(x0)− γg,n(x0) ∈ [−δan, δan]C

}
.

An analogue calculation for % ∈ R(E,Rd) yields

R(g, %) =

∫
%
(
z, [g(0)− δ, g(0) + δ]C

)
dQγ,g(z).

Plugging these results into (4.14) proves the assertion of the the-
orem for G̃ = G . Passing over from the experiments En and E
to corresponding subexperiments the assertion follows for general
subsets G̃ ⊆ G , too (cf. Remark 2.15). �

Note that Theorem 4.10 holds for arbitrary sequences of esti-
mators γ̂g,n(x0). Consequently, the minimax risk in the limit ex-
periment (and every lower bound on it) is asymptotically a lower
bound for the minimax risk in the sequence of the local models. It
can even be shown that this lower bound in a certain way carries
over to the global model.

4.11 Theorem. Let ξ̂n(x0) be an arbitrary estimator for ξ(x0),
the value of the parameter function at x0 in the global model F =
F (x0,Θ

∗, u). Presume that the assumptions from Sections 3.1 and
3.3 hold. Then

lim inf
n→∞

sup
ξ∈F

P (n)

ξ

{
ξ̂n(x0)− ξ(x0) ∈ [−δan, δan]C

}
≥ sup

γ∈Θ∗
inf
%

sup
g∈G

∫
%
(
z, [g(0)− δ, g(0) + δ]C

)
dQγ,g(z),

with % as in Theorem 4.10.
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Proof. LetBε(v) denote the open ball with radius ε, centred around
the point v. We set H := (Θ∗)C , Hε := H ∪ (

⋃
v∈H Bε(v)) and

Θ∗ε := (Hε)
C . Then Θ∗ε ⊆ Θ∗ for all ε > 0 and Θ∗ε ↑ Θ∗ as ε → 0.

From the de�nition of G in (3.10) and from (3.11) we conclude
that supg∈G ‖ang(0)‖∞ ≤ anM → 0. Thus, for every given (small)
ε > 0 there is an index N such that, �rstly, for all n ≥ N holds:

γ ∈ Θ∗ε, g ∈ G ⇒ γg,n(x0) = γ + ang(0) ∈ Θ∗.

Secondly, for each s ∈ [−x0, 1− x0] we have

‖γg,n(x0 + s)− γg,n(x0)‖∞
(1.3)
= an‖g(bns)− g(0)‖∞

(3.10)
≤ an(bn|s|)ρ

(3.14)
= A|s|ρ = u(s).

Let us presume for a moment that n is �xed and su�ciently large.
The product measure P (n)

γ,g only depends on the values γg,n(xnj),
which follows from the de�nition in (1.4). For all other arguments
γg,n(·) may be changed without having impact on the resulting
product measure. Hence, from the just shown properties we con-
clude that for each γg,n with γ ∈ Θ∗ε and g ∈ G there is a function
ξ ∈ F (which may vary with n) such that γg,n(x0) = ξ(x0) and
γg,n(xnj) = ξ(xnj) for all j. In addition, the estimator ξ̂n(x0) can of
course also be interpreted as an estimator for the parameter γg,n(x0)
in the sequence of local models. Thus, we get

lim inf
n→∞

sup
ξ∈F

P (n)

ξ

{
ξ̂n(x0)− ξ(x0) ∈ [−δan, δan]C

}
≥ lim inf

n→∞
sup
γ∈Θ∗ε

sup
g∈G

P (n)

γ,g

{
ξ̂n(x0)− γg,n(x0) ∈ [−δan, δan]C

}
(∗)
≥ sup

γ∈Θ∗ε
lim inf
n→∞

sup
g∈G

P (n)

γ,g

{
ξ̂n(x0)− γg,n(x0) ∈ [−δan, δan]C

}
≥ sup

γ∈Θ∗ε
inf
%

sup
g∈G

∫
%
(
z, [g(0)− δ, g(0) + δ]C

)
dQγ,g(z).

(4.15)

The last inequality follows directly from Theorem 4.10. In order to
prove (∗) we set

dn(γ) := sup
g∈G

P (n)

γ,g

{
ξ̂n(x0)− γg,n(x0) ∈ [−δan, δan]C

}
.
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It is clear that the smallest accumulation point of the sequence
supγ dn(γ) is not smaller than the smallest accumulation point of
any sequence dn(γ

′) with arbitrary, but �xed γ′. In other words,
we have

lim inf
n→∞

sup
γ

dn(γ) ≥ lim inf
n→∞

dn(γ
′)

for all γ′. Consequently,

lim inf
n→∞

sup
γ

dn(γ) ≥ sup
γ

lim inf
n→∞

dn(γ),

and thus (∗) holds. Letting ε→ 0 in (4.15) implies the assertion of
the theorem. �

According to this theorem a lower minimax risk bound in the
limit experiment always yields a lower asymptotic bound on the
minimax risk in the global model. The question of how to compute
reasonable lower bounds in the limit experiment will be discussed
in Sections 5.1.4 and 5.3.2. Finally, we derive an assertion on lower
asymptotic minimax risk bounds in the restricted global model FH.

4.12 Corollary. Consider the restricted global model FH(x0,Θ
∗,u)

from (3.9). Let ξ̂n(x0) be an arbitrary estimator for ξ(x0), and let
the assumptions from Sections 3.1 and 3.3 hold. Then

lim inf
n→∞

sup
ξ∈FH

P (n)

ξ

{
ξ̂n(x0)− ξ(x0) ∈ [−δan, δan]C

}
≥ sup

γ∈Θ∗
inf
%

sup
g∈K

∫
%
(
z, [g(0)− δ, g(0) + δ]C

)
dQγ,g(z),

with K := {g ∈ GH : g is continuous on R} and % as in Theo-
rem 4.10.

Proof. Suppose that γ ∈ Θ∗ε and g ∈ GH are given. From the
de�nition in (3.12) follows that for x, y ∈ [0, 1]

‖γg,n(x)− γg,n(y)‖∞ ≤ u(|x− y|).

With this additional argument the proof is a simple copy of the
proof to Theorem 4.11, replacing there F by FH and G by K ,
respectively. �
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4.13 Remark. The results from Theorems 4.10 and 4.11 corre-
spond to those of Corollaries 2.1 and 2.2 in Drees (2001). For the
proofs we mainly used properties of the functions from the spaces
F and G . Moreover, we exploited that the loss function under
consideration is lower semi-continuous and level-compact in order
to prove the central inequality of Theorem 4.10 (which is based on
Theorem 2.19). Thus, similar results should be reached for gen-
eral lower semi-continuous and level-compact loss functions�such
as quadratic loss�by simple modi�cations of the above proofs.



CHAPTER 5

Assessing the limit experiment

Up to this point, we have proved that the local experiments con-
verge weakly to a Gaussian limit experiment. We now consider the
problem of estimating the local parameter g(0) within this limit
experiment, where g ∈ G . We want to assess the corresponding
minimax risk under zero-one loss. More precisely, we want to de-
rive upper and lower bounds for the minimax risk. In Section 5.1
this is done for the special case of a one-dimensional parameter
space, i.e. for the special case G = G (K, ρ, 1). In Section 5.3
we expand these results to the general multivariate case in which
G = G (K, ρ, d) with d ≥ 1. To distinguish these two cases we
shortly speak of the �one-dimensional� (or �univariate�) and the
�multi-dimensional� (or �multivariate�) limit experiment, respec-
tively. Section 5.2 gives some supplementary results on the theory
of hardest linear submodels and may be omitted in �rst reading.
We conclude this chapter with a discussion of the results and the
used methodology.

5.1 Minimax risk bounds in the univariate limit experi-
ment

Throughout this section we restrict ourselves to the case of a uni-
variate parameter space Θ ⊆ R. Moreover, in this section γ ∈ Θ′

(de�ned according to (3.7)) always denotes an arbitrary, but �xed
centre of localisation, for which we consider the corresponding limit

51



52 Chapter 5. Assessing the limit experiment

experiment

(C1([−K,K]),C 1([−K,K]), {Qγ,g : g ∈ G }),

where G = G (K, ρ, 1) as in (3.10). Within this model we discuss
the problem of estimating the local parameter g(0). We derive
upper and lower bounds for the minimax risk under zero-one loss
1[−δ,δ]C . Note that in the one-dimensional case the information
matrix Iθ and the Cholesky matrix Cγ are simply positive constants.

5.1.1 Estimating Gaussian means

First we show that the problem of estimating the local parameter
within the limit experiment can be reduced to the problem of esti-
mating the mean in certain Gaussian location models. To this end,
let us presume for a moment that the local function, which is an
element of the local function space G , is not completely unknown.
Suppose we have the information that the local function is of the
form ζg, with known g ∈ G but unknown parameter ζ ∈ [−1, 1]
which thus has to be estimated. Hence, for given g ∈ G we consider
the (centrosymmetric) linear submodel

{Qγ,ζg : ζ ∈ [−1, 1]}. (5.1)

Within this model we want to assess the minimax risk for the esti-
mation of the parameter ζg(0), given the loss function 1[−δ,δ]C . If

g(0) = 0, then each estimator ζ̂ for ζ ful�ls |ζ̂g(0)−ζg(0)| = 0 < δ,
leading to a minimax risk of zero. Consequently, in the following
we can restrict ourselves to the case g(0) 6= 0, and because of the
symmetry of the space G we can even assume g(0) > 0. Using the
notation for the stochastic integrals from Section 4.1�adapted to
the here considered univariate case�we set

Yg :=

∫
Cγg dx

‖Cγg‖λ,2
. (5.2)

Then L (Yg | Qγ,0) = N (0, 1), and

L (Yg | Qγ,ζg) = N (ϑ, 1), ϑ := ζ‖Cγg‖λ,2.

The fact that ζ ∈ [−1, 1] leads to the additional constraint

|ϑ| ≤ ‖Cγg‖λ,2 =: τg. (5.3)
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Given an estimator ϑ̂ for ϑ, then

ζ̂ := ϑ̂/‖Cγg‖λ,2 (5.4)

yields an estimator for ζ. The resulting estimator ζ̂g(0) satis�es

|ζ̂g(0)− ζg(0)| > δ ⇔ |ϑ̂− ϑ| > δg, (5.5)

where

δg :=
δ‖Cγg‖λ,2
g(0)

=
δ

g(0)
τg. (5.6)

The primary task was to �nd a minimax estimator or an upper
minimax risk bound for the estimation of ζg(0) in the model (5.1),
given the loss function 1[−δ,δ]C . As a consequence of (5.5) this is
equivalent to �nding such an estimate (and an upper bound, re-
spectively) for the estimation of the parameter ϑ in the model

{N (ϑ, 1) : ϑ ∈ [−τg, τg]}, (5.7)

given the loss function 1[−δg,δg]C . In other words, it su�ces to con-
sider the problem of estimating the mean in the Gaussian model
(5.7), which we want to assess in the following. All the results found
for this model then easily carry over to the model (5.1).

In the case ϑ ∈ R, a minimax estimator for ϑ with respect to
the loss function 1[−δg,δg]C is given by Yg (which follows e.g. from
Strasser, 1985, Theorem 38.22). However, the constraint |ϑ| ≤
τg�i.e. the additional information on the location of ϑ�somewhat
complicates the situation. In the following, we consider so-called
a�ne estimators, i.e. estimators which take the form

cgYg + dg.

The minimax risk in the model (5.7) is given by

inf
ϑ̂

sup
|ϑ|≤τg

N(ϑ,1){|ϑ̂− ϑ| > δg},

where the in�mum is taken over all estimators ϑ̂ for ϑ. Analogously,
we de�ne the minimax a�ne risk by

inf
ϑ̂ a�ne

sup
|ϑ|≤τg

N(ϑ,1){|ϑ̂− ϑ| > δg}.

An a�ne estimator ϑ̂∗ whose maximal risk equals the minimax
a�ne risk is called a minimax a�ne estimator.
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5.1 Theorem. Consider the model (5.7) with the loss function
1[−δg,δg]C . Then the minimax a�ne risk is given by

R∗aff(g) =

[
Φ

(
−τg + δg

cg
+ τg

)
+ Φ

(
τg − δg
cg

− τg
)]

1{g(0) > δ},
(5.8)

where

cg =

(
1

2
+

[
1

4
+

1

2δgτg
log

τg + δg
τg − δg

]1/2
)−1

1{g(0) > δ}

=

(
1

2
+

[
1

4
+

g(0)

2δ‖Cγg‖2
λ,2

log
g(0) + δ

g(0)− δ

]1/2
)−1

1{g(0) > δ}.

Moreover, cgYg is a minimax a�ne estimator for ϑ.

Addendum. Let the loss function 1[−δ,δ]C be given. Then

cgYg g(0)/‖Cγg‖λ,2

is a minimax a�ne estimator for the parameter ζg(0) within the
linear submodel {Qγ,ζg : ζ ∈ [−1, 1]}, the minimax a�ne risk is
given by R∗aff(g).

Proof. In the case τg ≤ δg�which is equivalent to 1{g(0) > δ} =
0�the minimax a�ne risk is equal to zero, as stated in the asser-
tion. Otherwise, if τg > δg the assertion of the theorem coincides
with Theorem 1 in Drees (1999). To see this, one simply has to
replace there τ with τg, x with δg, c with cg and Y with Yg. Fur-
thermore, the quantity ΨA,τ(x) from Drees' paper equals 1−R∗aff(g),
and thus

R∗aff(g) = 1−
[
Φ

(
τg + δg
cg

− τg
)
− Φ

(
τg − δg
cg

− τg
)]

= Φ

(
−τg + δg

cg
+ τg

)
+ Φ

(
τg − δg
cg

− τg
)
.

The assertion of the addendum follows from (5.4) and the equiva-
lence in (5.5). �



5.1. Minimax risk bounds in the univariate limit experiment 55

5.1.2 The theory of hardest linear submodels

Which bene�ts do we actually get from the above examinations of
the minimax a�ne risk in linear submodels of type (5.1)? To give
an answer to this question, we have to do a short excursion into
the theory of the estimation of linear functionals. Suppose we are
given an observation y that satis�es

y = Ax+ z, (5.9)

where x is an element of a convex subset X ⊆ L2(R,B, λ), A
is a linear operator, and z is a random variable, interpreted as
noise. We are interested in the value of L(x), where L : X → R is
some linear operator. Suppose we are given a loss function Λ as in
Example 2.12. Let the corresponding minimax risk with respect to
this loss function be denoted R∗(X ), i.e. we have

R∗(X ) = inf
L̂

sup
x∈X

E[Λ(L̂(y)− L(x))],

where the in�mum is taken with respect to all possible estimators
for L(x). In the following, we focus on a�ne estimators L̂, we
denote the corresponding minimax a�ne risk by

R∗aff(X ) = inf
L̂ a�ne

sup
x∈X

E[Λ(L̂(y)− L(x))].

Let now some elements x1, x2 ∈X be given, and let

[x1, x2] := {tx1 + (1− t)x2 : t ∈ [0, 1]}

denote the set of convex combinations of x1 and x2. We consider
the minimax a�ne risk in the corresponding linear submodel

R∗aff([x1, x2]) := inf
L̂ a�ne

sup
x∈[x1,x2]

E[Λ(L̂(y)− L(x))]. (5.10)

Trivially, we have R∗aff(X ) ≥ R∗aff([x1, x2]) for each choice of x1

and x2, which is due to the simple fact that in no case the loss will
increase if we are given the additional information that x ∈ [x1, x2],
and therefore

R∗aff(X ) ≥ sup{R∗aff([x1, x2]) : x1, x2 ∈X }.

Donoho (1994) and Donoho and Liu (1991) show that for certain
loss functions Λ (such as quadratic loss) and with some additional
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regularity conditions the above formula is an equality, and that
the supremum is attained (and thus a maximum). That is, under
certain conditions

R∗aff(X ) = sup{R∗aff([x1, x2]) : x1, x2 ∈X } (5.11)

= R∗aff([x∗1, x
∗
2])

holds for some x∗1, x
∗
2 ∈ X . The linear submodel corresponding

to the family [x∗1, x
∗
2] is also called a hardest linear submodel (also:

least favourable linear submodel).

5.1.3 An upper minimax risk bound

According to arguments of Donoho (1994) (cf. there Section 9), our
white noise model

x =

∫ ·
−K
Cγg(s) ds+W, g ∈ G (5.12)

from Section 4.1 can be identi�ed with a model of the type (5.9). In
this case the linear operatorA from (5.9) is simply a constant factor.
The space X and the linear map L from the above description
correspond in our setting to the space G and to the linear map
g 7→ g(0), respectively. The a�ne estimators T̂ for g(0) are of the
general form T̂ (x) = e +

∫
Ψ dx (see Donoho and Liu, 1991, for

details). As loss function we take Λ = 1[−δ,δ]C .
For �xed g ∈ G let R∗aff(g) be the minimax a�ne risk with

respect to the loss function 1[−δ,δ]C for the estimation of g(0) in the
submodel {Qγ,ζg : ζ ∈ [−1, 1]}. Let R∗aff(G ) denote the minimax
a�ne risk in the complete model {Qγ,g : g ∈ G }. It is clear that
G is convex. Hence, it can be concluded from the arguments of
Section 9 and Theorem 1 in Donoho (1994) that

R∗aff(G ) = sup{R∗aff(g) : g ∈ G }, (5.13)

which is a special case of (5.11).

5.2 Remark. The supremum in (5.13) is built over the minimax
a�ne risks corresponding to the linear submodels {Qγ,ζg : ζ ∈
[−1, 1]}, with g ∈ G . Apparently, this is a smaller class of sub-
models than that considered in (5.11). Furthermore, the results
from Donoho (1994) are formulated for a quadratic loss function
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(amongst others), yet they do not take into account zero-one loss
functions. Therefore, some additional arguments are needed in or-
der to prove that (5.13) indeed holds true. These arguments are
assembled in Section 5.2.

The main goal of the remaining part of this Section is to show
that there even is a function g∗ such that the supremum in (5.13)
is attained, i.e.

R∗aff(g∗) = sup{R∗aff(g) : g ∈ G } = R∗aff(G ). (5.14)

In other words, we want to �nd a hardest linear submodel. If we
are able to �nd such a g∗, then

R∗(G ) ≤ R∗aff(G )
(5.13)
= R∗aff(g∗),

where R∗(G ) denotes the minimax risk for the estimation of g(0)
with respect to the loss function 1[−δ,δ]C . The minimax a�ne risk
R∗aff(g∗) from the hardest submodel thus yields an upper bound for
R∗(G ). Note that the above inequality is quite trivial, because the
class of a�ne estimators for the parameter g(0) in the (complete)
limit experiment {Qγ,g : g ∈ G } is a subset of the class of all
estimators for g(0). Therefore the minimax a�ne risk can never
be smaller than the minimax risk�which takes into account all
possible estimators.

Consequently, it remains to assign a function g∗ which de�nes a
least favourable linear submodel. To this end, we �rst consider the
subspace

G (α) := {g ∈ G : ‖g‖λ,2 = α} ⊆ G ,

with some �xed α > 0. We investigate the minimax a�ne risks
in the corresponding linear submodels {Qγ,ζg : ζ ∈ [−1, 1]}. For
symmetry reasons, we can assume without loss of generality that
g(0) > 0. According to the arguments from Section 5.1.1 this is
equivalent to investigating the minimax risk in the models

{N (ϑ, 1) : ϑ ∈ [−τg, τg]},

with τg and δg de�ned according to (5.3) and (5.6), respectively. As
g ranges over G (α), then clearly

τg = ‖Cγg‖λ,2 = Cγα,



58 Chapter 5. Assessing the limit experiment

which means that τg is constant for whatever choice of g ∈ G (α).
Furthermore, δg = τgδ/g(0) is strictly decreasing in g(0). This
implies that R∗aff(g) is strictly increasing in g(0) (for g ranging over
G (α)). These arguments lead to the following conclusion:

5.3 Proposition. Only such functions g ∈ G (α) can describe a
least favourable submodel for which the value g(0) is maximal.

With this result and the additional growth condition from (3.10)
one can now easily conclude that a function g ∈ G to de�ne a
hardest submodel must be of the general form

gβ(s) := (β − |s|ρ)+. (5.15)

Comparing all functions g ∈ G that have constant norm it becomes
clear that the functions of this speci�c type (5.15) have the maximal
value at the origin. Hence, a hardest linear submodel exists, and
thus (5.14) holds, if the function β 7→ R∗aff(gβ) has a maximum,
say β∗, for which the corresponding function gβ∗ lies in G . This is
indeed the case, as is shown in the following theorem.

5.4 Theorem. Consider the loss function 1[−δ,δ]C . Let β > 0 be
the unique positive solution of the equation

β1+1/ρ

log β+δ
β−δ

=
ρ+ 1

2Iγδ
, (5.16)

and let gβ be de�ned according to (5.15). Then

ĝ(0) =
1

2Cγ

(
1 +

1

ρ

)
β−(1+1/ρ)

∫
gβ dx

is a minimax a�ne estimator for g(0) in the model {Qγ,g : g ∈ G }.
The corresponding minimax a�ne risk is given by

Φ

(
− Cγβ1+1/(2ρ)

[(ρ+ 1)(2ρ+ 1)]1/2

[
1 +

(2ρ+ 1)δ

β

])
+ Φ

(
Cγβ1+1/(2ρ)

[(ρ+ 1)(2ρ+ 1)]1/2

[
1− (2ρ+ 1)δ

β

])
.

(5.17)
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Proof. The proof mainly follows the lines of the proof of Theo-
rem 3.1 in Drees (2001). With the above examinations it su�ces for
the de�nition of a hardest linear submodel to restrict ourselves to
functions of the form gβ according to (5.15), with β > δ. The min-
imax a�ne risk in the corresponding submodels is then a function
of β. According to Theorem 5.1 it is given by

R∗aff(β) := R∗aff(gβ)

= Φ

(
−τβ + δβ

cβ
+ τβ

)
+ Φ

(
τβ − δβ
cβ

− τβ
)
, (5.18)

where τβ := τgβ , δβ := δgβ and cβ := cgβ . In order to determine a β∗

and thus a function gβ∗ for a hardest linear submodel we maximise
R∗aff with respect to β. According to Theorem 5.1 cβ is de�ned by

cβ =

(
1

2
+

[
1

4
+

1

2τβδβ
log

τβ + δβ
τβ − δβ

]1/2
)−1

, (5.19)

and thus

1

c2
β

− 1

cβ
=

1

2τβδβ
log

τβ + δβ
τβ − δβ

⇒ τβ + δβ
τβ − δβ

= exp

[
2
τβδβ
cβ

(
1

cβ
− 1

)]
⇒ τβ + δβ

τβ − δβ
= ϕ

(
τβ − δβ
cβ

− τβ
)/

ϕ

(
τβ + δβ
cβ

− τβ
)
. (5.20)

Di�erentiation of (5.18) and the symmetry of ϕ hence yield

d

dβ
R∗aff(β) = ϕ

(
−τβ + δβ

cβ
+ τβ

)
d

dβ

(
−τβ + δβ

cβ
+ τβ

)
+ϕ

(
τβ − δβ
cβ

− τβ
)

d

dβ

(
τβ − δβ
cβ

− τβ
)

(5.20)
= ϕ

(
τβ + δβ
cβ

− τβ
)[

d

dβ

(
−τβ + δβ

cβ
+ τβ

)
+
τβ + δβ
τβ − δβ

· d
dβ

(
τβ − δβ
cβ

− τβ
)]

.

Note that

‖gβ‖2
λ,2 =

∫ (
(β − |s|ρ)+)2

ds =
4ρ2β2+1/ρ

(ρ+ 1)(2ρ+ 1)
, (5.21)
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and therefore

τβ
(5.3)
= Cγ‖gβ‖λ,2 = Cγ

2ρβ1+1/(2ρ)

[(ρ+ 1)(2ρ+ 1)]1/2
,

δβ
(5.6)
= Cγ‖gβ‖λ,2

δ

β
= Cγ

δ2ρβ1/(2ρ)

[(ρ+ 1)(2ρ+ 1)]1/2
.

(5.22)

With these expressions one further concludes that

d

dβ
τβ = τβ

(
2ρ+ 1

2ρ

)
1

β
,

d

dβ

(
τβ ± δβ
cβ

)
=
∓δβ/β + (1± δ/β)[1 + 1/(2ρ)]τβ/β

cβ
(5.23)

−
(τβ ± δβ) d

dβcβ

c2
β

,

and some additional calculations yield

d

dβ

(
−τβ + δβ

cβ
+ τβ

)
+
τβ + δβ
τβ − δβ

· d
dβ

(
τβ − δβ
cβ

− τβ
)

=

(
1− τβ + δβ

τβ − δβ

)
· d
dβ
τβ −

d

dβ

(
τβ + δβ
cβ

)
+
τβ + δβ
τβ − δβ

· d
dβ

(
τβ − δβ
cβ

)
(5.23)
=

(
1− τβ + δβ

τβ − δβ

)
τβ

(
2ρ+ 1

2ρ

)
1

β

−

(
−δβ/β + (1 + δ/β)[1 + 1/(2ρ)]τβ/β

cβ
−

(τβ + δβ) d
dβcβ

c2
β

)

+
τβ + δβ
τβ − δβ

(
δβ/β + (1− δ/β)[1 + 1/(2ρ)]τβ/β

cβ

−
(τβ − δβ) d

dβcβ

c2
β

)
. . .
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= − 2τβδβ
τβ − δβ

(
2ρ+ 1

2ρ

)
1

β

+
τβ − δβ
τβ − δβ︸ ︷︷ ︸

=1

(
δβ/β − (1 + δ/β)[1 + 1/(2ρ)]τβ/β

cβ

)

+
τβ + δβ
τβ − δβ

(
δβ/β + (1− δ/β)[1 + 1/(2ρ)]τβ/β

cβ

)
= − 2τβδβ

τβ − δβ

(
2ρ+ 1

2ρ

)
1

β
+

1

τβ − δβ
· 2τβδβ/β

cβ

=
2τβδβ

β(τβ − δβ)

[
1

cβ
− 2ρ+ 1

2ρ

]
.

Plugging this into the above expression for d
dβR

∗
aff(β) we �nally get

d

dβ
R∗aff(β)

= ϕ

(
τβ + δβ
cβ

− τβ
)

2τβδβ
β(τβ − δβ)

[
1

cβ
− 2ρ+ 1

2ρ

]
,

(5.24)

and thus:

d

dβ
R∗aff(β) = 0 ⇔ 1

cβ
=

2ρ+ 1

2ρ

(5.19)⇔
[

1

4
+

1

2τβδβ
log

τβ + δβ
τβ − δβ

]1/2

=
ρ+ 1

2ρ

⇔ 1

2τβδβ
log

τβ + δβ
τβ − δβ

=
2ρ+ 1

4ρ2

⇔ β1+1/ρ

log[(β + δ)/(β − δ)]
=
ρ+ 1

2Iγδ
.

The last equivalence follows from inserting the expressions for τg,
δg from (5.22). This last equation possesses a unique solution β∗ ∈
(δ,∞). This follows from the fact that the map

f(β) :=
β1+1/ρ

log[(β + δ)/(β − δ)]
, β ∈ (δ,∞)

is strictly increasing and tends to 0 as β ↓ δ and to ∞ as β →∞.
The monotonicity of f is a consequence of the observation that
x 7→ log[(x + δ)/(x − δ)] is strictly decreasing on (δ,∞). (Note
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that this is the map f that we considered in Section 3.5.1 in order
to specify the constant K.) Furthermore, if we plug the de�nitions
of τβ and δβ into (5.19) we get

1

cβ
=

1

2
+

[
1

4
+

β

2δC2
γ‖gβ‖2

λ,2
log

β + δ

β − δ

]1/2

, for β > δ.

Again using the fact that β 7→ log[(β + δ)/(β − δ)] is strictly
decreasing in β, as well as the quotient β/‖gβ‖2

λ,2 (which is clear
from (5.21)), we see that 1/cβ is strictly decreasing in β. Thus, the
derivative in (5.24) is positive for β < β∗ and negative for β > β∗,
and therefore β∗ is a unique maximum of R∗aff(β) (see Königsberger,
2001, p. 146). Note that by the speci�cation of the constant K it
is assured that the function gβ∗ is included in G = G (K, ρ, 1).
Therefore, according to the arguments preceding this theorem, gβ∗

de�nes a hardest linear submodel, such that (5.14) holds with g∗ =
gβ∗. Moreover, from the addendum to Theorem 5.1 we see that

ĝ(0) := cβ∗Ygβ∗ gβ∗(0)/‖Cγgβ∗‖λ,2,

is a minimax a�ne estimator for the parameter ζgβ∗(0) in the corre-
sponding submodel, and thus for the parameter g(0) in the complete
limit experiment {Qγ,g : g ∈ G }, too. Some additional calculations
(in which we shortly write β instead of β∗) yield

ĝ(0) =
β

‖Cγgβ‖λ,2
cβYgβ

=
β

Cγ‖gβ‖2
λ,2
· 2ρ

2ρ+ 1

∫
gβ dx

(5.21)
=

(ρ+ 1)(2ρ+ 1)β

4Cγρ2β2+1/ρ · 2ρ

2ρ+ 1

∫
gβ dx

=
1

2Cγ

(
1 +

1

ρ

)
β−(1+1/ρ)

∫
gβ dx.
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Therefore, ĝ(0) has the same form as stated in the theorem. More-
over, we obtain

τβ ± δβ
cβ

− τβ =
2ρ+ 1

2ρ

(
1± δ

β

)
τβ − τβ

=
2ρ+ 1

2ρ

(
1± δ

β
− 2ρ

2ρ+ 1

)
τβ

(5.22)
=

(
1

2ρ
± (2ρ+ 1)δ

2ρβ

)
Cγ2ρβ1+1/(2ρ)

[(ρ+ 1)(2ρ+ 1)]1/2

=

(
1± (2ρ+ 1)δ

β

)
Cγβ1+1/(2ρ)

[(ρ+ 1)(2ρ+ 1)]1/2
.

Plugging this into (5.8) yields the minimax a�ne risk for the hard-
est linear submodel and thus for the complete model. It is easily
veri�ed that this coincides with the expression from (5.17). This
concludes the proof of the theorem. �

5.5 Remark. Using the de�nitions of τg and δg, the expressions
R∗aff(β) and cβ from (5.18) and (5.19), respectively, can also be
written as

R∗aff(β) =

[
Φ

(
− Cγ‖gβ‖λ,2(1 + δ/β)

cβ
+ Cγ‖gβ‖λ,2

)
+ Φ

(
Cγ‖gβ‖λ,2(1− δ/β)

cβ
− Cγ‖gβ‖λ,2

)]
1{β > δ}

and

cβ =

(
1

2
+

[
1

4
+

β

2δC2
γ‖gβ‖2

λ,2
log

β + δ

β − δ

]1/2
)−1

1{β > δ}.

This speci�c representation will turn out helpful in later examina-
tions for the multivariate parameter case.

5.6 Remark. In Section 3.5.1 we provided an approach that should
assure that K is su�ciently large such that speci�c functions of the
type gβ are included in G = G (K, ρ, 1). With regard to the proof of
Theorem 5.4 it is now evident why this e�ort was made: by choosing
K according to the approach from Section 3.5, it is guaranteed that
a hardest linear submodel exists.
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5.1.4 A lower minimax risk bound

So far we have derived an upper minimax risk bound for the estima-
tion of the parameter g(0) within the univariate limit experiment
(C1([−K,K]),C 1([−K,K]), {Qγ,g : g ∈ G }). We now want to
derive a suitable lower bound for the minimax risk. Since we are
here considering the case of a univarate parameter the used meth-
ods are exactly the same as those in Drees (2001). For the sake of
completeness, we repeat the main ideas from that paper.

Assessing the linear submodels. Again, for given g ∈ G we
�rst consider the corresponding linear submodel

{Qγ,ζg : ζ ∈ [−1, 1]}

from (5.1). The minimax risk with respect to the loss function
1[−δ,δ]C for the estimation of the unknown parameter ζg(0) in this
submodel is denoted R∗(g). Note that in contrast to Sections 5.1.1
and 5.1.3�where we investigated the minimax a�ne risk R∗aff(g)�
we now allow for arbitrary, not necessarily a�ne estimators for ζ.
For symmetry reasons we can (and will) in the following assume
without loss of generality that g(0) > 0. Following the arguments
from Section 5.1.1, R∗(g) equals the minimax risk in the Gaussian
model

{N (ϑ, 1) : ϑ ∈ τg}

from (5.7), with underlying loss function 1[−δg,δg]C , where τg =
‖Cγg‖λ,2 and δg = τgδ/g(0) according to (5.3) and (5.6), respec-
tively. In other words,

R∗(g) = inf
ϑ̂

sup
|ϑ|≤τg

N(ϑ,1){|ϑ̂− ϑ| > δg}. (5.25)

This quantity is investigated in detail by Zeytinoglu and Mintz
(1984), and also by Drees (1999)1): following their results R∗(g)
depends on τg and δg only through the smallest integer l which is
greater than or equal to the quotient τg/δg = g(0)/δ. If l = 1, then
g(0) ≤ δ, and thus R∗(g) = 0. Otherwise, for the case when l ≥ 2

1)Indeed, all of the following results are directly deduced from Drees (1999), p. 400 f., if
there�similar to the proof of Theorem 5.1�τ is replaced with τg, x is replaced with δg and
aj with cj . The quantity ΨN,τ from Drees' paper equals 1−R∗(g).
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the minimax risk is then given by

R∗(g) = Φ(cb(l−1)/2c − δg), (5.26)

where bzc denotes the largest integer less than or equal to z; the fac-
tor cb(l−1)/2c is determined through a system of nonlinear equations
given by

Φ(−cj − δg) + Φ(cj−1 − δg) = Φ(cb(l−1)/2c − δg),
for j = 1, . . . , b(l − 1)/2c,

with c0 := −c1 if l is odd and c0 := 0 if l is even.

Computation of a lower bound. Let R∗(G ) denote the mini-
max risk (with respect to the loss function 1[−δ,δ]C) in the complete
limit experiment {Qγ,g : g ∈ G }. Obviously, R∗(G ) ≥ R∗(g) for all
g, and thus

R∗(G ) ≥ sup{R∗(g) : g ∈ G }. (5.27)

To derive a lower bound for R∗(G ) we thus only have to com-
pute R∗(g) and then maximise this expression with respect to g.
The ideas for this maximisation are exactly the same as in Drees
(2001). For symmetry reasons we can restrict ourselves to the case
g(0) > 0. Furthermore, all of the arguments directly preceding
Proposition 5.3 and Theorem 5.4 do also hold if the restriction to
a�ne estimators is dropped. Hence, it is su�cient to consider on
the right side of (5.27) only those functions g which are of the spe-
ci�c type g = gβ, de�ned according to (5.15). To this end, we �rst
�x an integer l ≥ 2 and consider all values β such that

(l − 1)δ < β ≤ lδ.

Then equation (5.26) yields

R∗(gβ) = Φ(cb(l−1)/2c − δgβ),

with δgβ = δ‖Cγgβ‖λ,2/β. Because of (5.22) δgβ is strictly increasing
in β, and in combination with some arguments from the proof of
Theorem 2 in Drees (1999), this implies that R∗(gβ) is maximised
as β ↓ (l − 1)δ. Therefore,

sup
l≥2

lim
β↓(l−1)δ

R∗(gβ)
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yields a reasonable lower bound for R∗(G ), the minimax risk cor-
responding to the problem of estimating the local parameter g(0)
in the univariate limit experiment {Qγ,g : g ∈ G }, when the loss
function 1[−δ,δ]C is given.

In practice, this lower bound has of course to be calculated
numerically. One might do this in two steps, �rstly computing
limβ↓(l−1)δ R

∗(gβ) for each l = 2, 3, . . . , and, secondly, maximising
the resulting expressions with respect to l. Combining these argu-
ments with the results from Section 4.3, we are now able to compute
lower bounds for the asymptotic minimax risk in the global model
(Yn,Bn, {P (n)

ξ : ξ ∈ F}) (provided that the parameter space Θ is
one-dimensional).

5.2 On the theory of Donoho and Liu

In Section 5.1.3 we referred to results from the theory of Donoho
(1994) and Donoho and Liu (1991) in order to justify (5.13). Doing
so, we accepted however two inaccuracies:

Problem 1. In (5.13) the supremum is taken over the minimax
a�ne risks corresponding to submodels indexed by the func-
tions ζg, with �xed g and ζ ∈ [−1, 1]. However, following the
lines of Donoho, the supremum ought to be taken over the min-
imax a�ne risks corresponding to a larger class of submodels,
namely�as in (5.11)�to the class of all submodels indexed
by the sets of convex combinations {tg + (1− t)h : t ∈ [0, 1]}
(with g, h ∈ G ). It therefore remains to prove that it is indeed
su�cient to take the supremum over to the smaller class of
centrosymmetric submodels {Qγ,ζg : ζ ∈ [−1, 1]}.

Problem 2. Donoho and Liu show that the minimax a�ne risk
in the complete model equals the supremum over the mini-
max a�ne risks in the linear submodels, which they prove for
certain classes of loss functions, such as for quadratic loss and
some ��xed-length con�dence statements�. It remains to prove
that such a statement also holds in case of our speci�c zero-one
loss function 1[−δ,δ]C .

In the following, we will discuss these two problems and show that
(5.13) indeed holds.
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Throughout this section let the assumptions made at the begin-
ning of Section 5.1 hold, i.e. we suppose that a �xed γ ∈ Θ′ ⊆ R
is given, for which we consider the corresponding limit experiment
{Qγ,g : g ∈ G }, with G = G (K, ρ, 1). We also use the notation
from that section. For arbitrary g, h ∈ G let in the following

[g, h] := {tg + (1− t)h : t ∈ [0, 1]}

denote the set of convex combinations of g and h. The correspond-
ing linear submodel is then de�ned by

Qγ,[g,h] := {Qγ,f : f ∈ [g, h]},

and the minimax a�ne risk (with respect to the loss 1[−δ,δ]C) is
denoted R∗aff([g, h, ]). With the choice h = −g we obtain the special
submodels already considered in (5.1), for which we shortly write
R∗aff(g) for R∗aff([−g, g]).

5.2.1 Restriction to centrosymmetric models

In this section we discuss the �rst of the two problems described
above. We show that the supremum taken over the the minimax
a�ne risks of all linear submodels is the same as the supremum
taken over the minimax a�ne risks of the centrosymmetric linear
submodels {Qγ,ζg : ζ ∈ [−1, 1]} considered in Section 5.1. In other
words, we have to prove that

sup{R∗aff([g, h]) : g, h ∈ G } = sup{R∗aff(g) : g ∈ G }.

To this end, let some arbitrary g, h ∈ G be given. We consider the
corresponding one-dimensional submodel Qγ,[g,h].

2) Setting k :=
(g + h)/2 and w := (g − h)/2 each f ∈ [g, h] has a unique repre-
sentation as

f = k + ζw, ζ ∈ [−1, 1].

In order to estimate the parameter of interest f(0) = k(0)+ζw(0),
we have to estimate ζ. For that purpose we consider the random
variable

Yw =

∫
Cγw dx

‖Cγw‖λ,2
,

2)Note that in the case h = −g the notation introduced in the following is completely
compatible with that from Section 5.1.
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de�ned according to (5.2). Without loss of generality, we can as-
sume that w(0) > 0. Again, we have L (Yw | Qγ,0) = N (0, 1)
and

L (Yw | Qγ,k+ζw) = N (ϑ, 1),

where

ϑ =
〈Cγw, Cγ(k + ζw)〉λ

‖Cγw‖λ,2

=
〈Cγw, Cγk〉λ
‖Cγw‖λ,2

+
ζ‖Cγw‖2

λ,2

‖Cγw‖λ,2

=
Cγ
2
·

(‖g‖2
λ,2 − ‖h‖2

λ,2)

‖g − h‖λ,2
+ ζ‖Cγw‖λ,2

=: ag,h + ζτw.

Since ζ ∈ [−1, 1], the location parameter ϑ underlies the restriction

ϑ ∈ [ag,h − τw, ag,h + τw].

Let an arbitrary estimator ϑ̂ for ϑ be given. We set ζ̂ := (ϑ̂ −
ag,h)/‖Cγw‖λ,2 and f̂(0) := k(0) + ζ̂w(0), and therefore we get

|f̂(0)− f(0)| > δ ⇔ |ζ̂ − ζ| > δ/w(0)

⇔ |ϑ̂− ϑ| > δ‖Cγw‖λ,2
w(0)

=: δw.

Thus, the problem of �nding minimax a�ne estimators (with re-
spect to the loss function 1[−δ,δ]C) for the parameter f(0) in the
model Qγ,[g,h] is equivalent to �nding such estimators in the model

{N (ϑ, 1) : ϑ ∈ [ag,h − τw, ag,h + τw]}

given the loss function 1[−δw,δw]C . For the case ag,h = 0 this problem
has already been solved in Setion 5.1. As a consequence of the calcu-
lations there�using the same notation�the estimator cwYw is min-
imax a�ne for estimating ϑ (see Theorem 5.1). For the remaining
case a := ag,h 6= 0 we consider the a�ne estimator cw(Yw − a) + a.
It satis�es

sup
|ϑ−a|≤τw

N(ϑ,1){|cw(Yw − a) + a− ϑ| > δw}

= sup
|ϑ̃|≤τw

N(ϑ̃,1){|cwYw − ϑ̃| > δw},
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and from that one concludes R∗aff([g, h]) = R∗aff(w). Consequently,

sup{R∗aff([g, h]) : g, h ∈ G } = sup{R∗aff(w) : w ∈ G }, (5.28)

which was to be shown. Furthermore, the preceding arguments
imply that the supremum on the left hand side of (5.28) is attained
if and only if it is attained on the right hand side of that equation.

5.2.2 The use of a zero-one loss function

The solution to the second problem is somewhat more complicated
and needs some more sophisticated arguments. We start with a gen-
eralisation of the notation. For x ≥ 0 we consider the loss function
1[−x,x]C . Let R

∗
aff,x(G ) denote the corresponding minimax a�ne risk

in the limit experiment {Qγ,g : g ∈ G }. Likewise, R∗aff,x([g, h]) and
R∗aff,x(g) for g, h ∈ G may be de�ned. So far, we have always consid-
ered the minimax a�ne risk for the case of a �xed x = δ, for which
we did not use an additional subscript x. First we present some aux-
iliary results for the functions x 7→ R∗aff,x(G ) and x 7→ R∗aff,x([g, h]).

5.7 Lemma. Let g, h ∈ G . Then the following assertions hold:

(i) The maps x 7→ R∗aff,x([g, h]) and x 7→ R∗aff,x(G ) are strictly de-
creasing on their support. Moreover, R∗aff,x([g, h]) ≤ R∗aff,x(G )
for all x and R∗aff,0(G ) = R∗aff,0([g, h]) = 1.

(ii) x 7→ R∗aff,x([g, h]) is continuous on {x : 0 < R∗aff,x([g, h]) < 1}.

(iii) Let g ∈ G such that g(0) > 0. Then R∗aff,x(g) ↓ Φ(−τg) as
x ↑ g(0).

Proof. Ad (i): Since most of the assertions are trivial, we only
prove that the map x 7→ R∗aff,x(G ) is strictly decreasing on its
support. To this end, let x > 0 be given such that R∗aff,x(G ) > 0,
and let x̃ > x be given. We have to show thatR∗aff,x̃(G ) < R∗aff,x(G ).
By de�nition, we have

R∗aff,x(G ) = inf
T̂ a�ne

sup
g∈G

Qγ,g{|T̂ − g(0)| > x},

where the a�ne estimators T̂ are of the speci�c form as given on
p. 56. We choose a sequence T̂n of a�ne estimators for the param-
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eter g(0) such that

inf
T̂ a�ne

sup
g∈G

Qγ,g{|T̂ − g(0)| > x}

= lim inf
n→∞

sup
g∈G

Qγ,g{|T̂n − g(0)| > x}.

Furthermore, we can choose a suitable sequence of functions gn ∈ G
such that

lim inf
n→∞

sup
g∈G

Qγ,g{|T̂n − g(0)| > x̃}

= lim inf
n→∞

Qγ,gn{|T̂n − gn(0)| > x̃}.
(5.29)

From that we conclude that

R∗aff,x(G ) = lim inf
n→∞

sup
g∈G

Qγ,g{|T̂n − g(0)| > x}

= lim inf
n→∞

sup
g∈G

(
Qγ,g{|T̂n − g(0)| > x̃}

+Qγ,g{|T̂n − g(0)| ∈ (x, x̃]}
)

≥ lim inf
n→∞

(
Qγ,gn{|T̂n − gn(0)| > x̃}

+Qγ,gn{|T̂n − gn(0)| ∈ (x, x̃]}
)

(∗)
≥ lim inf

n→∞
Qγ,gn{|T̂n − gn(0)| > x̃}

+ lim inf
n→∞

Qγ,gn{|T̂n − gn(0)| ∈ (x, x̃]},

where (∗) is a direct consequence of Exercise 14. on p. 58 of Königs-
berger (2001). Note that

lim inf
n→∞

Qγ,gn{|T̂n − gn(0)| > x̃} (5.29)
= lim inf

n→∞
sup
g∈G

Qγ,g{|T̂n − g(0)| > x̃}

≥ inf
T̂ a�ne

sup
g∈G

Qγ,g{|T̂ − g(0)| > x̃}

= R∗aff,x̃(G ),

and that
lim inf
n→∞

Qγ,gn{|T̂n − gn(0)| ∈ (x, x̃]} > 0,

which follows from the fact that the a�ne estimators T̂n are nor-
mally distributed under every measure Qγ,g, and that the sequence
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of the corresponding maximal risks converges to R∗aff,x(G ) which,
by assumption, is greater than zero. Putting together the above
results, we conclude that R∗aff,x(G ) > R∗aff,x̃(G ), which had to be
shown.
Ad (ii): Following the discussion in Section 5.2.1, it is clear that
we can without loss of generality assume h = −g, and for sym-
metry reasons we may further assume that g(0) > 0. Clearly,
R∗aff,x(g) > 0 if and only if x < g(0). Let now τg be de�ned as in
(5.3), and de�ne xg according to (5.6), with δ replaced by x, i.e.
xg = x‖Cγg‖λ,2/g(0). Furthermore, let

cg(x) :=

1

2
+

[
1

4
+

g(0)

2x‖Cγg‖2
λ,2

log
g(0) + x

g(0)− x

]1/2
−1

1{g(0) > x},

which coincides with the constant cg from Theorem 5.1 (again, with
δ replaced by x). Theorem 5.1 yields

R∗aff,x(g) = Φ

(
−τg + xg

cg(x)
+ τg

)
+Φ

(
τg − xg
cg(x)

− τg
)
, x ∈ (0, g(0)).

Obviously, xg and cg(x) are continuous functions of x, for x ranging
over (0, g(0)). This proves the assertion.
Ad (iii): From the de�nition of cg(x) it is clear that cg(x) → 0
as x ↑ g(0), and thus Φ(−[τg + xg]/cg(x) + τg) → 0. It remains
to prove that (τg − xg)/cg(x) → 0 as x ↑ g(0), which implies
Φ([τg−xg]/cg(x)− τg)→ Φ(−τg) and thus the stated convergence.
For x ↑ g(0) the following chain of equivalences holds:

τg − xg
cg(x)

→ 0

⇔ τg

(
1− x

g(0)

)(
1

2
+

[
1

4
+

g(0)

2x‖Cγg‖2
λ,2

log
g(0) + x

g(0)− x

]1/2
)
→ 0

⇔ (g(0)− x)

[
1

4
+

g(0)

2x‖Cγg‖2
λ,2

log
g(0) + x

g(0)− x

]1/2

→ 0

⇔ (g(0)− x)2
[

1

4
+

g(0)

2x‖Cγg‖2
λ,2

log
g(0) + x

g(0)− x

]
→ 0

⇔ (g(0)− x)2 log
g(0) + x

g(0)− x
→ 0.

The last assertion can easily be veri�ed with L'Hospital's rule. �
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Figure. Plot of the function x 7→ R∗
aff,x(g), where g = 1[−1,1], and Iγ = 1.

Note that R∗
aff,1(g) = 0, and R∗

aff,1−(g) > 0, which we tried to indicate by the

special marks.

The third assertion of the lemma says that the map x 7→ R∗aff,x(g)
is discontinuous at the point x = g(0) (provided that g(0) > 0).
This is not what one might expect�indeed, this fact will somewhat
complicate the discussion of the second problem. The �gure on the
top of this page shows a typical graph of a a function x 7→ R∗aff,x(g).

Now let a �xed α ∈ [0, 1] be given. We de�ne

χaff,α(G ) := inf{x ≥ 0 : R∗aff,x(G ) ≤ α}.

One can interpret 2χaff,α(G ) as the length of a minimal symmetric
�xed-size con�dence interval to the level 1−α resulting from the use
of an a�ne estimator (see Stark, 1992). Analogously, χaff,α([g, h])
is de�ned for the linear submodel Qγ,[g,h]. Since the function space
G is convex, Theorem 1 in Donoho (1994), together with the argu-
ments from Section 9 of the same paper, implies the existence of
functions g∗, h∗ ∈ G such that

χaff,α(G ) = χaff,α([g∗, h∗]) (5.30)

= sup{χaff,α([g, h]) : g, h ∈ G }.

In other words, a hardest linear submodel exists, as far as χaff,α(·)
is considered as a performance criterion.

We show that a similar statement holds true for the minimax
a�ne risk with respect to our usual loss function 1[−δ,δ]C . More
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precisely, we want to prove that for δ > 0 the minimax a�ne risk
in the complete experiment equals the supremum over all minimax
a�ne risks from the linear submodels, i.e.

R∗aff,δ(G ) = sup{R∗aff,δ([g, h]) : g, h ∈ G }. (5.31)

In the following, let α := R∗aff,δ(G ) and

α′ := sup{R∗aff,δ([g, h]) : g, h ∈ G }.

It is clear that α′ ≤ α, and for a proof of (5.31) we have to show
that even α′ = α. Since there is nothing to prove if α = 0, we
can and will in the following assume that α > 0. We choose the
functions g∗ and h∗ such that they satisfy (5.30).

Let us assume that the assertion α′ = α is false. Then it may
be either α′ = 0 or 0 < α′ < α. We show that each of these two
cases leads to a contradiction.
Case 1: α′ = 0. If α′ = 0 then also R∗aff,δ(g) = 0 for all g ∈ G . By
Theorem 5.1 this is equivalent to |g(0)| ≤ δ for all g. In particular,
this would imply R∗aff,δ(G ) = 0, which is a contradiction to the
assumption α > 0.
Case 2: 0 < α′ < α. By de�nition, χaff,α(G ) ≤ δ, and because
x 7→ R∗aff,x(G ) is strictly decreasing on its support, this relation
even holds with equality, and thus

δ = χaff,α(G )
(5.30)
= χaff,α([g∗, h∗]). (5.32)

If α′ ∈ (0, α), then in particular

α∗ := R∗aff,δ([g
∗, h∗]) ≤ α′ < α.

If now α∗ > 0, then assertion (ii) from Lemma 5.7 implies that
there is some δ∗ < δ for which R∗aff,δ∗([g

∗, h∗]) ≤ α. Therefore, we
have

δ = χaff,α([g∗, h∗])

= inf{x ≥ 0 : R∗aff,x([g
∗, h∗]) ≤ α} ≤ δ∗ < δ,

(5.33)

which is contradictory to (5.32).
It remains to consider the case α∗ = 0. In this case one of the
following assertions holds true:

a) there is a δ∗ < δ such that R∗aff,δ∗([g
∗, h∗]) < α, or
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b) for all x < δ we have R∗aff,x([g
∗, h∗]) ≥ α.

Case a) can be discussed with the same arguments as before, which
led to the contradiction in (5.33). It thus remains to investigate
Case b).
From the discussion in Section 5.2.1 we know that

R∗aff,x([g
∗, h∗]) = R∗aff,x(w

∗)

for all x, where w∗ = (g∗ − h∗)/2 (which is an element of G ).
Furthermore, we have

χaff,α([g∗, h∗]) = inf{x ≥ 0 : R∗aff,x([g
∗, h∗]) ≤ α}

= inf{x ≥ 0 : R∗aff,x(w
∗) ≤ α}

= χaff,α(w∗).

Assertion (iii) in Lemma 5.7 yields

R∗aff,x([g
∗, h∗]) = R∗aff,x(w

∗) ↓ Φ(−τw∗) as x ↑ w∗(0).

Since we consider the case that R∗aff,x(w
∗) = R∗aff,x([g

∗, h∗]) ≥ α

for all x < δ, this implies Φ(−τw∗) ≥ α, and thus w∗(0) = δ.
Consequently, we have

δ = χaff,α([g∗, h∗]) = χaff,α(w∗) = w∗(0).

Consider now a sequence gn ∈ G that satis�es the following condi-
tions:

gn(0) > w∗(0), gn(0) ↓ w∗(0), and τgn → τw∗.

The existence of such a sequence gn follows with some simple ar-
guments from the de�nition of the space G . Because of gn(0) >
w∗(0) = δ and by the de�nition of α′ we have 0 < R∗aff,δ(gn) ≤ α′

for all n. Using property (iii) from Lemma 5.7 these arguments
yield

α > α′ ≥ lim sup
n→∞

R∗aff,δ(gn) ≥ lim sup
n→∞

Φ(−τgn) = Φ(−τw∗) ≥ α,

and hence the contradiction α > α.
Summarising, we have shown that both cases α′ = 0 and α′ ∈

(0, α) lead to contradictions and therefore must be false. Hence,
α′ = α, and therefore (5.31) holds. Combining (5.31) and (5.28)
we have proven the following result:
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5.8 Proposition. Equation (5.13) holds, i.e. the minimax a�ne
risk with respect to the loss function 1[−δ,δ]C satis�es R∗aff(G ) =
sup{R∗aff(g) : g ∈ G }.

5.3 Minimax risk bounds in the multivariate limit exper-
iment

So far we have derived upper and lower bounds for the miniax
risk in the univariate limit experiment. In this section we want to
expand these to the case of the multivariate limit experiment. In
the following, let γ ∈ Θ′ be a �xed centre of localisation, where
now Θ′�de�ned according to (3.7)�is a subset of Θ ⊆ Rd, d ≥ 1.
We consider the corresponding multivariate limit experiment

(Cd([−K,K]),C d([−K,K]), {Qγ,g : g ∈ G }),

with G = G (K, ρ, d) according to (3.10). Within this experiment
we want to estimate the local parameter g(0). As in Section 5.1
R∗(G ) denotes the corresponding minimax risk with respect to the
loss function 1[−δ,δ]C (with δ = (δ1, . . . , δd)

> as in Section 3.3).

The aim of this section is to derive upper and lower bounds for
R∗(G ). To this end, we �rst consider such bounds for the mini-
max risk corresponding to the estimation of the parameter Cγg(0).
Here, the basic idea consists of splitting the multivariate exper-
iment into several univariate experiments, for which the results
from the preceding sections apply. Having derived upper mini-
max risk bounds for the estimation of Cγg(0), we can deduce upper
bounds for R∗(G ). In the following, we write the Cholesky matrix
as Cγ = (Cijγ ). We set

Ciγ := (Ci1γ , . . . , Cidγ ),

which is simply the ith row vector of the matrix Cγ.

5.3.1 An upper minimax risk bound

In order to derive an upper bound for R∗(G ) we �rst consider the
problem of estimating the parameter Cγg(0) in the limit experiment
{Qγ,g : g ∈ G }. In the characterisation the limit experiment in
Section 4.1 we saw that (Cd([−K,K]),C d([−K,K])) is the product
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of d copies of (C1([−K,K]),C 1([−K,K])). Due to the de�nition
in (4.2) we can therefore write Qγ,g as a product

Qγ,g = Q(1)
γ,g ⊗ . . .⊗Q(d)

γ,g,

with probability measures

Q(j)
γ,g := L

(∫ ·
−K
Cjγg(s) ds+W (j)

)
(5.34)

de�ned on the space (C1([−K,K]),C 1([−K,K])). Here W (j) de-
notes the jth component of a d-dimensional Brownian motion (see
also Section 4.1 for the notation used here). Since γ is �xed, we
will in the following often suppress it in the notation, i.e. we shortly
write Qg and Q

(j)
g for Qγ,g and Q

(j)
γ,g, respectively.

Let us now consider an observation from the limit experiment,
i.e. a random variable x = (x1, . . . , xd)

> with independent compo-

nents xj ∼ Q
(j)
g . Estimators κ̂ for Cγg(0) are then in general of the

type
κ̂ = κ̂(x) = (κ̂1(x), . . . , κ̂d(x))>.

In the following, we �rst examine the minimax risk corresponding
to the problem of estimating Cγg(0). As underlying loss function
we consider the function 1[−v,v]C , where the vector

v = (v1, . . . , vd)
>, vi > 0,

is de�ned according to Section 3.5.3. The minimax risk for the
estimation of Cγg(0) in the experiment {Qg : g ∈ G } under this
loss function is denoted R̃∗(G ), i.e. we have

R̃∗(G ) = inf
κ̂

sup
g∈G

Qg

{
κ̂− Cγg(0) ∈ [−v, v]C

}
, (5.35)

where the in�mum is taken over the class of all estimators κ̂ for
the parameter g(0). We want to derive an upper bound for R̃∗(G ).
With our special choice of v from Section 3.5.3 this will yield an
upper bound for R∗(G ), too, as will be shown later. Note that we
here and in the following will suppress the dependence of v = v(γ)
on the parameter γ. Of course, other choices for a suitable vector
v are possible, some alternative approaches will be discussed in
Section 5.4.
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5.9 Remark. One should distinguish carefully between the just
de�ned risk R̃∗(G ) and R∗(G ). The latter denotes�as in Sec-
tions 5.1 and 5.1.4�the minimax risk with respect to the loss func-
tion 1[−δ,δ]C for the estimation of g(0). Eventually, it is of course
R∗(G ), which we are interested in.

For our considerations such estimators κ̂ are of special interest,
that estimate Cjγg(0) (the jth component of the vector Cγg(0)) only
on the basis of the component xj, in other words: estimators that
ful�l

κ̂j(x) = κ̂j(πj(x)), j = 1, . . . , d, (5.36)

where πj : (x1, . . . , xd)
> 7→ (0, . . . , xj, . . . , 0)>. The independence

of the components xj implies that for such an estimator

Qg

{
κ̂−Cγg(0) ∈ [−v, v]C

}
= 1−Qg{κ̂− Cγg(0) ∈ [−v, v]}

= 1−
d∏
j=1

Q(j)
g {|κ̂j − Cjγg(0)| ≤ vj}. (5.37)

If we consider the de�nition of the minimax risk R̃∗(G ), it is clear
that the right hand side of (5.35) will not decrease if the in�mum
is not taken with respect to all possible estimators, but only with
respect to those estimators κ̂ satisfying (5.36), and therefore,

R̃∗(G ) ≤ inf
κ̂ with (5.36)

sup
g∈G

Qg

{
κ̂− Cγg(0) ∈ [−v, v]C

}
. (5.38)

This inequality is presumably in general a strict equality. The fol-
lowing heuristic argument may support this idea�though it does
of course not replace a proof. Suppose for a moment that (5.38)
always holds with �=�. Of course, then the right hand side of the
formula equals that of (5.35). Heuristically formulated, this means
that the estimate of a component Cjγg(0) cannot be improved by
incorporating any information that might be obtained for the loca-
tion of other components Ciγg(0) (i 6= j). As a consequence, the set
{Cγg(0) : g ∈ G } would have to be a cuboid in Rd. However, this
is in general not the case. (As a counter-example, consider Exam-
ple 3.2, in which Θ′ ⊆ R2 and Cγ = ( 1 1

0 1 ). The set {Cγg(0) : g ∈ G }
would qualitatively look the same as the set Aγ depicted in Figure
(b) of that example.)
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Let us now examine the right hand side of (5.38). Some elemen-
tary calculations yield

inf
κ̂ with (5.36)

sup
g∈G

Qg

{
κ̂− Cγg(0) ∈ [−v, v]C

}
(5.37)
= inf

κ̂ with (5.36)
sup
g∈G

(
1−

d∏
j=1

Q(j)
g {|κ̂j − Cjγg(0)| ≤ vj}

)

= 1− sup
κ̂ with (5.36)

inf
g∈G

d∏
j=1

Q(j)
g {|κ̂j − Cjγg(0)| ≤ vj}

≤ 1−
d∏
j=1

sup
κ̂ with (5.36)

inf
g∈G

Q(j)
g {|κ̂j − Cjγg(0)| ≤ vj}

= 1−
d∏
j=1

(
1− inf

κ̂ with (5.36)
sup
g∈G

Q(j)
g {|κ̂j − Cjγg(0)| > vj}

)
.

In the last product term

inf
κ̂ with (5.36)

sup
g∈G

Q(j)
g {|κ̂j − Cjγg(0)| > vj}

represents the minimax risk for the estimation of the real parameter
Cjγg(0) in the univariate, jth subexperiment {Q(j)

g : g ∈ G }, with
underlying loss function 1[−vj ,vj ]C . To examine this experiment we
consider the function space

H (j)
γ := {~ : ~ = Cjγg, g ∈ G }.

Each ~ is a continuous function ~ : [−K,K] → R, which follows
from the properties of the functions g ∈ G . Furthermore, ~(0) =
Cjγg(0) for ~ = Cjγg. We set

Q̃
(j)
~ := L

(∫ ·
−K

~(s) ds+W (j)
)
, ~ ∈H (j)

γ . (5.39)

Obviously, Q̃
(j)
~ corresponds to the measure Q

(j)
g from (5.34), and

we can thus identify the experiments {Q̃(j)
~ : ~ ∈H

(j)
γ } and {Q(j)

g :
g ∈ G }. Therefore, the minimax risk with respect to the loss
function 1[−vj ,vj ]C is the same in both experiments. In other words,

inf
κ̂j

sup
g∈G

Q(j)
g {|κ̂j − Cjγg(0)| > vj}

= inf
κ̂j

sup
~∈H

(j)
γ

Q̃
(j)
~ {|κ̂j − ~(0)| > vj},

(5.40)
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with the in�ma taken over all estimators κ̂j satisfying (5.36). We
are now going to provide an upper bound for the expression on the
right hand side of (5.40), which will eventually yield an upper bound
on R∗(G ), the minimax risk for the estimation of the parameter
g(0).

Note that the random variable∫ ·
−K

~(s) ds+W (j)

from (5.39) is of the same type as the white noise model (5.12)
considered in the univariate case. The only di�erence to that equa-
tion is that the factor Cγ from (5.12) is already included in the
function ~ and therefore does not appear any more in the above
integral expression. Furthermore, H

(j)
γ ⊆ L2(R,B, λ), and H

(j)
γ

is symmetric and convex. This follows simply from the fact that
the space G has these properties and that each ~ ∈H

(j)
γ is a linear

combination of the components of a function g ∈ G . Consequently,
Donoho and Liu's theory of hardest linear submodels as well as the
results from Section 5.2 also hold true if we consider the function
space H

(j)
γ instead of G . Consequently,

R̃∗aff(H (j)
γ ) = sup

{
R̃∗aff(~) : ~ ∈H (j)

γ

}
, (5.41)

where R̃∗aff(H
(j)
γ ) denotes the minimax a�ne risk for the estimation

of the parameter ~(0) in the model {Q̃(j)
~ : ~ ∈ H

(j)
γ }, with loss

function 1[−vj ,vj ]C , and R̃
∗
aff(~) denotes the minimax a�ne risk in the

corresponding submodel {Q̃(j)
ζ~ : ζ ∈ [−1, 1]}, with given ~ ∈H

(j)
γ .

The results from Section 5.1 can now easily be transferred to
the present setting. Again, we use the notation for the stochastic
integrals introduced in Section 4.1. First we compute the minimax
a�ne risk R̃∗aff(~) from the linear submodel corresponding to a �xed

~ ∈ H
(j)
γ . For symmetry reasons we can assume without loss of

generality that ~(0) > 0.

5.10 Theorem. Let ~ ∈ H
(j)
γ be given, ~(0) > 0. We consider

the loss function 1[−vj ,vj ]C . Let

c~ :=

1

2
+

[
1

4
+

~(0)

2vj‖~‖2
λ,2

log
~(0) + vj
~(0)− vj

]1/2
−1

1{~(0) > vj}.
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Then c~
∫

~ dxj ~(0)/‖~‖2
λ,2 is a minimax a�ne estimator for the

parameter ζ~(0) in the linear submodel {Q̃(j)
ζ~ : ζ ∈ [−1, 1]}, the

corresponding minimax a�ne risk is given by

R̃∗aff(~) =

[
Φ

(
−‖~‖λ,2(1 + vj/~(0))

c~
+ ‖~‖λ,2

)
+Φ

(
‖~‖λ,2(1− vj/~(0))

c~
− ‖~‖λ,2

)]
1{~(0) > vj}.

Proof. The assertion is a direct consequence of the arguments from
Section 5.1.1 and Theorem 5.1. There the quantities Qζg, g and δ

have to be replaced by Q̃
(j)
ζ~ , ~ and vj, respectively. Furthermore,

the Cholesky matrix Cγ in the quantities from Section 5.1.1 has to be
replaced by 1, because it is now already included in the function ~.
The expressions for c~ and R̃

∗
aff(~) then correspond to cg and R

∗
aff(g)

from Theorem 5.1, respectively. Therefore, c~(
∫

~ dxj/‖~‖λ,2) is
minimax a�ne for the estimation of ζ‖~‖λ,2 (which corresponds to
the parameter ϑ in Theorem 5.1), and thus c~(

∫
~ dxj/‖~‖λ,2) ·

(~(0)/‖~‖λ,2) is minimax a�ne for the estimation of ζ~(0). �

We want to show that there is a hardest submodel for the esti-
mation of the parameter ~(0) in the complete experiment {Q̃(j)

~ :

~ ∈ H
(j)
γ }, in other words, that a function ~∗ ∈ H

(j)
γ exists for

which the supremum on the right hand side of (5.41) is attained.
To this end, we have to maximise the minimax a�ne risk R̃∗aff(~)

with respect to ~, ranging over H
(j)
γ . For �xed α > 0 we de�ne

the subspace

H (j,α)
γ :=

{
~ ∈H (j)

γ : ‖~‖λ,2 = α
}
⊆H (j)

γ .

For symmetry reasons, it is su�cient to restrict ourselves to the
case ~(0) > 0. It is clear from Theorem 5.10 that R̃∗aff(~) depends

only on the value ~(0), as ~ ranges over H
(j,α)
γ , and with the same

arguments as in Section 5.1.3 we conclude that R̃∗aff(~) is strictly
increasing in ~(0). In complete analogy to Proposition 5.3 this
yields:

5.11 Proposition. Only such functions ~ ∈ H
(j,α)
γ can describe

a least favourable submodel for which the value ~(0) is maximal.
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By de�nition each ~ ∈H
(j)
γ has the form

~ = Cjγg =
d∑
i=1

Cjiγ gi, g = (g1, . . . , gd)
> ∈ G ,

and ~(0) = Cjγg(0). Let us consider the special functions

~β :=
d∑
i=1

Cjiγ g∗i ,

g∗i (x) := sgn(Cjiγ ) (β − |x|ρ)+ = sgn(Cjiγ )gβ(x),

(5.42)

with some β > 0, and with gβ according to (5.15). Here sgn(a) :=
1{a > 0} − 1{a < 0} denotes the sign function. If β is chosen

appropriately, then of course ~β ∈ H
(j,α)
γ . From the de�nitions

of the spaces H
(j)
γ and G and the growth condition in (3.10) one

concludes that every function ~ with ‖~‖λ,2 = ‖~β‖λ,2 and ~(0) ≥
0 must also satisfy ~(0) ≤ ~β(0). In other words, amongst all
functions ~ with constant L2-norm the functions ~β of the type
(5.42) have the largest possible value at the origin.

Due to this observation and Proposition 5.11 it therefore su�ces
to consider the functions ~β and the corresponding minimax a�ne

risks R̃∗aff(~β) in order to determine a hardest linear submodel. Note
that ~β can also be written as

~β(x) = ‖Cjγ‖1 gβ(x) (5.43)

(where ‖ · ‖1 denotes the 1-norm), i.e. the functions ~β and gβ have
completely the same structure, the only di�erence lies in a constant
factor. Because of this observation, one will of course expect that
the calculation of a hardest linear submodel for the problem of es-
timating the parameter ~(0) in the experiment {Q̃(j)

~ : ~ ∈ H
(j)
γ }

can be done with the same techniques applied to the problem of
�nding a hardest submodel in the univariate case, discussed in Sec-
tion 5.1.3. This is indeed the case.

5.12 Theorem. Let βj > 0 be the unique positive solution to the
equation

β
1+1/ρ
j

log
βj+vj/‖Cjγ‖1
βj−vj/‖Cjγ‖1

=
ρ+ 1

2vj‖Cjγ‖1
, (5.44)
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and let ~βj be de�ned according to (5.43) (with βj replacing β).
Then�using the notation from (5.36)�

κ̂∗j := κ̂∗j(πj(x)) :=
1

2‖Cjγ‖1

(
1 +

1

ρ

)
β
−(1+1/ρ)
j

∫
~βj dxj (5.45)

is a minimax a�ne estimator for ~(0) in the model {Q̃(j)
~ : ~ ∈

H
(j)
γ }, given the loss function 1[−vj ,vj ]C , and the minimax a�ne

risk is given by

Φ

(
−
‖Cjγ‖1β

1+1/(2ρ)
j

[(ρ+ 1)(2ρ+ 1)]1/2

[
1 +

(2ρ+ 1)vj

‖Cjγ‖1βj

])

+ Φ

(
‖Cjγ‖1β

1+1/(2ρ)
j

[(ρ+ 1)(2ρ+ 1)]1/2

[
1− (2ρ+ 1)vj

‖Cjγ‖1βj

])
.

(5.46)

Proof. Due to the preceding arguments we only have to maximise
R̃∗aff(βj) := R̃∗aff(~βj) with respect to βj. By de�nition, we have

‖~β‖λ,2 = ‖Cjγ‖1 ‖gβj‖λ,2 and ~βj(0) = ‖Cjγ‖1 βj.

Plugging this into the formulae from Theorem 5.10, we get

R̃∗aff(βj) =

[
Φ

(
−
‖Cjγ‖1 ‖gβj‖λ,2

(
1 +

vj/‖Cjγ‖1
βj

)
c~βj

+ ‖Cjγ‖1 ‖gβj‖λ,2

)

+Φ

(‖Cjγ‖1 ‖gβj‖λ,2
(

1− vj/‖Cjγ‖1
βj

)
c~βj

− ‖Cjγ‖1 ‖gβj‖λ,2

)]

1

{
βj >

vj

‖Cjγ‖1

}
,

with

c~βj =

(
1

2
+

[
1

4
+

βj

2
vj

‖Cjγ‖1
‖Cjγ‖2

1 ‖gβj‖2
λ,2

log
βj + (vj/‖Cjγ‖1)

βj − (vj/‖Cjγ‖1)

]1/2)−1

1

{
βj >

vj

‖Cjγ‖1

}
.

Note that these expressions for R̃∗aff(βj) and c~βj correspond to those

for R∗aff(β) and cβ given in Remark (5.5), if there β, δ and Cγ
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are replaced by βj, vj/‖Cjγ‖1 and ‖Cjγ‖1, respectively. With these
changes of the constants, a copy of the proof of Theorem 5.4 yields
that R̃∗aff(βj) is maximal for βj satisfying (5.44), in which case c~βj =

2ρ/(2ρ+ 1). Furthermore, the approach from Section 3.5.2 for the
speci�cation of the constant K makes sure that the function ~βj =
‖Cjγ‖1 gβj corresponding to that βj (as solution to (5.44)) is included

in H
(j)
γ and therefore de�nes a hardest linear submodel. Plugging

c~βj = (2ρ)/(2ρ + 1) and the integral from (5.21) into the above
expression for the minimax a�ne risk completes the proof. �

5.13 Remark. As in the proof of Theorem 5.4 it now becomes
clear why such a complicated approach was chosen in Section 3.5
in order to specify the constant K for the de�nition of the space
G = G (K, ρ, d). This approach is adapted to the needs of the
above theorem and guarantees that a hardest linear submodel for
the estimation of ~(0) exists.

We know that the experiments {Q̃(j)
~ : ~ ∈ H

(j)
γ } and {Q(j)

g :
g ∈ G } can be identi�ed, and therefore the (a�ne) minimax riks in
the corresponding models are the same. Hence, the estimator κ̂∗j ,
de�ned according to (5.45), is minimax a�ne (with respect to the
loss function 1[−vj ,vj ]C) for the estimation of the parameter Cjγg(0)

in the model {Q(j)
g : g ∈ G }. For the estimation of the complete

vector Cγg(0) we now consider the estimator

κ̂∗ := (κ̂∗1, . . . , κ̂
∗
d)
>.

By de�nition, κ̂∗ satis�es (5.36), i.e. κ̂∗j(x) = κ̂∗j(πj(x)) for all j,
and with the above results we can calculate an upper bound on its
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maximal risk under the loss function 1[−v,v]C . We have

sup
g∈G

Qg

{
κ̂∗ − Cγg(0) ∈ [−v, v]C

}
(5.37)
= sup

g∈G

(
1−

d∏
j=1

Q(j)
g {|κ̂∗j − Cjγg(0)| ≤ vj}

)

≤ 1−
d∏
j=1

inf
g∈G

Q(j)
g {|κ̂∗j − Cjγg(0)| ≤ vj}

= 1−
d∏
j=1

(
1− sup

g∈G
Q(j)
g {|κ̂∗j − Cjγg(0)| > vj}

)
(5.46)
= 1−

d∏
j=1

{
1− Φ

(
−
‖Cjγ‖1β

1+1/(2ρ)
j

[(ρ+ 1)(2ρ+ 1)]1/2

[
1 +

(2ρ+ 1)vj

‖Cjγ‖1βj

])

− Φ

(
‖Cjγ‖1β

1+1/(2ρ)
j

[(ρ+ 1)(2ρ+ 1)]1/2

[
1− (2ρ+ 1)vj

‖Cjγ‖1βj

])}
. (5.47)

Evidently, the maximal risk of any estimator κ̂ for the parameter
Cγg(0) is an upper bound for the minimax risk. In other words, the

expression from (5.47) is an upper bound for R̃∗(G ), the minimax
risk for the estimation of Cγg(0) with respect to the loss function
1[−v,v]C . We can now show that this also yields an upper bound for
R∗(G ), the minimax risk with respect to the loss function 1[−δ,δ]C

for the estimation of g(0). To this end, we consider for g(0) the
estimator

ĝ(0) := C−1
γ κ̂∗,

where κ̂∗ is the estimator with components κ̂∗j according to The-
orem 5.12. We assess the maximal risk of ĝ(0). In the following,
let

Aγ = {Cγx : x ∈ [−δ, δ]}

be as in Section 3.5.3. Keep in mind, that in that section we chose
the vector v = v(γ) such that the inclusion

[−v, v] ⊆ Aγ.
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holds. From this we get the inequality

R∗(G ) ≤ sup
g∈G

Qg

{
ĝ(0)− g(0) ∈ [−δ, δ]C

}
= sup

g∈G
Qg

{
κ̂∗ − Cγg(0) ∈ (Aγ)

C
}

≤ sup
g∈G

Qg

{
κ̂∗ − Cγg(0) ∈ [−v, v]C

}
. (5.48)

Therefore, the expression in (5.47) is an upper bound for R∗(G ),
too. We summarise the main results from the considerations of this
section in the following theorem:

5.14 Theorem. Let the loss function 1[−δ,δ]C be given, and let
v = (v1, . . . , vd)

> be constructed according to the procedure pro-
vided in Section 3.5.3. Then the estimator ĝ(0) = C−1

γ κ̂∗�with
κ̂∗ = (κ̂∗1, . . . , κ̂

∗
d)
> according to Theorem 5.12�satis�es

R∗(G ) ≤ sup
g∈G

Qγ,g

{
ĝ(0)− g(0) ∈ [−δ, δ]C

}
≤ 1−

d∏
j=1

{
1− Φ

(
−
‖Cjγ‖1β

1+1/(2ρ)
j

[(ρ+ 1)(2ρ+ 1)]1/2

[
1 +

(2ρ+ 1)vj

‖Cjγ‖1βj

])

− Φ

(
‖Cjγ‖1β

1+1/(2ρ)
j

[(ρ+ 1)(2ρ+ 1)]1/2

[
1− (2ρ+ 1)vj

‖Cjγ‖1βj

])}
.

Addendum. In the special case d = 1 (i.e. for a one-dimensional
parameter space) the theorem coincides with Theorem 5.4, since
in this case ‖C1

γ‖1 = Cγ and v = δCγ. In particular ĝ(0) is then a
minimax a�ne estimator, and the last inequality from the preceding
display holds with equality.

5.3.2 A lower minimax risk bound

As before, R∗(G ) denotes the minimax risk for the estimation of the
unknown parameter g(0) with respect to the loss function 1[−δ,δ]C .
So far, we have derived an upper bound for R∗(G ). Now we address
the question of a suitable lower bound. We use similar ideas as in
Section 5.1.4. Let us �rst consider the minimax risk in some speci�c
linear submodels of the form

{Qγ,ζg : ζ ∈ [−1, 1]},
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with �xed g ∈ G . Of course, the minimax risk in any such submodel
is smaller than the minimax risk in the complete model, and this
yields

R∗(G ) ≥ sup
g∈G

(
inf
ζ̂

sup
ζ∈[−1,1]

Qγ,ζg

{
ζ̂g(0)− ζg(0) ∈ [−δ, δ]C

})
.

(5.49)
We now aim to derive lower bounds for the expression in the brack-
ets, which yield a lower bound for R∗(G ), too.

To this end, we restrict ourselves to such functions g ∈ G which
do only in one component, say the kth, di�er from zero. In other
words, we consider special functions of the form

g = (0, . . . , gk, . . . , 0)> ∈ G , gk(0) 6= 0. (5.50)

Using the notation for the stochastic integrals from Section 4.1, we
consider the random variable

Zg :=

∫
Cγg dx

(
∑d

i=1 ‖Cikγ gk‖2
λ,2)

1/2
=

∑d
i=1

∫
Cikγ gk dxi

(
∑d

i=1 ‖Cikγ gk‖2
λ,2)

1/2
.

The stochastic integral calculus yields

L (
∫
Cikγ gk dxi | Qγ,0) = N (0, ‖Cikγ gk‖2

λ,2),

which in combination with the independence of the components xi
implies that

L (Zg | Qγ,0) = N (0, 1).

Furthermore, setting

ag :=

( d∑
i=1

‖Cikγ gk‖2
λ,2

)1/2

we conclude that

L (Zg | Qγ,ζg) = N (ϑ, 1), ϑ := ζag

which follows for example from Problem 5.6 in Karatzas and Shreve
(1988). Hence, we obtain again a Gaussian location model

{N (ϑ, 1) : ϑ ∈ [−ag, ag]}.
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Given an estimator ϑ̂ within this model, then ζ̂ := ϑ̂/ag is a an
estimator for ζ that satis�es

ζ̂g(0)− ζg(0) ∈ [−δ, δ]C ⇔ |ζ̂gk(0)− ζgk(0)| > δk

⇔ |ϑ̂− ϑ| > δkag
|gk(0)|

.

This equivalence implies that

inf
ζ̂

sup
ζ∈[−1,1]

Qγ,ζg

{
ζ̂g(0)− ζg(0) ∈ [−δ, δ]C

}
= inf

ζ̂
sup

ζ∈[−1,1]
Qγ,ζg{|ζ̂gk(0)− ζgk(0)| > δk}

= inf
ϑ̂

sup
|ϑ|≤ag

N(ϑ,1){|ϑ̂− ϑ| > δkag/|gk(0)|}.

If we take the supremum on the right hand side of (5.49) not with re-
spect to all possible functions g ∈ G , but only with respect to those
g which are of the special form (5.50) (for some k ∈ {1, . . . , d}), we
conclude from the above equation that

R∗(G )

≥ max
k

sup
g=(0,...,gk,...,0)>

(
inf
ϑ̂

sup
|ϑ|≤ag

N(ϑ,1){|ϑ̂− ϑ| > δkag/|gk(0)|}
)
.

The expression in brackets on the right hand side of this inequality
corresponds to the quantity R∗(g) from (5.25), if there τg and δg are
replaced with ag and δkag/|gk(0)|, respectively. We can therefore
compute this expression with the same ideas that were presented
in Section 5.1.4. This yields a lower bound for R∗(G ).

In combination with the results from Section 4.3 this also permits
the computation of a lower minimax risk bound in the global model
(Yn,Bn, {P (n)

ξ : ξ ∈ F}).

5.4 Discussion

Theorems 5.4 and 5.14, respectively, provide devices to calculate
concrete upper bounds for the minimax risk R∗(G ) in the limit
experiment. Of course, the question arises how precise these upper
bounds really are.
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The univariate parameter case. Again, we �rst consider the
case of a univariate parameter, investigated in Section 5.1, i.e. we
consider the limit experiment {Qγ,g : g ∈ G } with G = G (K, ρ, 1).
In this case the upper minimax risk bound from Theorem 5.4 equals
the minimax a�ne risk R∗aff(G ). Thus, the behaviour of the ra-
tio R∗aff(G )/R∗(G ), in words: the quotient of the minimax a�ne
risk and the minimax risk, is of interest. The closer this quotient
is to 1, the more accurate is the upper bound. For the problem
of estimating the mean in a Gaussian location model, and using
quadratic loss, it is known from the literature that there is a con-
stant µ∗ ≤ 1.25�sometimes referred to as Ibragimov-Khas'minskii
constant�which serves as an upper bound for the quotient of the
corresponding minimax a�ne risk and the minimax risk. Similar re-
sults do also hold for other performance criteria than quadratic loss.
(For more detailed information on this topic, see e.g. Donoho, 1994,
Donoho et al., 1990, Drees, 1999 and Ibragimov and Khas'minski,
1985, as well as the references within these papers.) From that
one may draw the conclusion that a�ne estimators are in general
only insigni�cantly less good than other, arbitrary estimation pro-
cedures. This suggests that for the estimation of the parameter g(0)
in the limit experiment, with loss function 1[−δ,δ]C the restriction to
a�ne estimators should not lead to a great additional loss, and one
might expect that the quotient R∗aff(G )/R∗(G ) behaves fairly well.

The multivariate parameter case. In the multivariate case�
i.e. for the model {Qγ,g : g ∈ G } with G = G (K, ρ, d) and d ≥ 1�
the situation is considerably more complicated. In contrast to the
univariate case, the results from the multivariate case use several
additional inequalities. The cruder these inequalities are, the big-
ger, and hence less accurate becomes of course the derived upper
bound. The most critical of these inequalities is certainly that in
(5.48), where we turn over from the set (Aγ)

C to [−v, v]C ⊇ (Aγ)
C ,

which is in general a strict inclusion. Hence, (5.48) is in most cases
a strict inequality, which may in the worst case lead to unnecessar-
ily large upper minimax risk bounds. It is therefore reasonable to
think about conditions under which (5.48) holds with equality.

To this end, let us for a moment consider the special case that
Cγ is a diagonal matrix, say Cγ = diag(λ1, . . . , λd), with λi > 0.
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With our special choice of v = v(γ) according to Section 3.5.3 we
then have vj = λjδj and thus Aγ = [−v, v]. In this case (5.48)
holds with equality. Consequently, given the underlying distribu-
tion family {Pθ : θ ∈ Θ}, it appears favourable to �nd an or-
thogonal parametrisation, i.e. a parametrisation under which the
information matrices Iγ�and therefore also their Cholesky decom-
positions Cγ�have diagonal form. Huzurbazar (1950) shows that
such an orthogonal parametrisation can be found by solving a sys-
tem of d(d − 1)/2 di�erential equations. He shows that for d = 2
this problem is usually solvable, whereas for d > 3 this is in general
not the case. Mitchell (1962) extends these results and discusses
certain distribution families with three-dimensional parameter for
which the pertaining system of di�erential equations is also solvable.
We conclude: if it is possible to �nd an orthogonal parametrisation,
this will certainly lead to an improvement of the upper minimax
risk bound, but unfortunately not every distribution family pos-
sesses such an orthogonal parametrisation.

We therefore want to brie�y sketch a few ideas for modi�cations
and alternative approaches to derive upper minimax risk bounds.

The most simple modi�cation of the approach from Section 5.3 is
of course to use a di�erent v = (v1, . . . , vd)

>. So far, we only made
use of the fact that the components vi are strictly positive and�for
the speci�cation of the constant K in Section 3.5.2�continuous in
γ, and that in addition [−v, v] ⊆ Aγ. Of course, there are other
possibilities to chose an appropriate v that �ts these conditions.
The aim of any such choice should be to de�ne v in such a way
that the resulting upper bound (5.47) is preferably small. Thus,
the components vj should be as large as possible. One approach to
determine an optimal vector v is to minimise the expression from
(5.47) with respect to the components vj. This is however a very
complex task, because the βj's, as solutions of (5.44), also depend
on the components vj. Moreover, the speci�cation of a suitable con-
stant K (according to Section 3.5.2), that guarantees the existence
of a hardest linear submodel, becomes very complicated, too.

In order to derive upper bounds for R∗(G ) we did in Section 5.3
not estimate g(0) directly, but made a long way round, by �rst
estimating Cγg(0) with respect to the loss function 1[−v,v]C . This
contributes to and increases the inaccuracy of the provided upper
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bounds. One may therefore ask if the idea of �rst estimating Cγg(0)
is adequate at all. Instead, one might as well try to estimate g(0)
directly. A reasonable approach might be to try and boil down
this problem to that of estimating a mean vector in some Gaussian
model, similar to the ideas from Section 5.1. The work of Donoho
et al. (1990) might provide some hints on how to follow such an
approach.

To sum up, there are certainly reasonable alternatives to the
approach that we chose in Section 5.3, which however are very
complex to fully investigate. An examination of these would go far
beyond the scope of this thesis, and it is a priori not clear that these
alternatives really lead to better (i.e. smaller) upper minimax risk
bounds than our approach from Section 5.3 does. Of course, this
approach has some drawbacks, and may not yield the best possible
upper bounds for the minimax risk. In return, it is however some-
what convenient, because it allows us to reduce the examinations
in the multivariate case to those of the univariate case, and the
procedure yields expressions for the upper bounds that are rather
simple to calculate (e.g. no integrals have to be calculated). This
might be a bene�t in practice. Note also that Theorem 5.14 always
provides an upper bound which is smaller than 1 and thus of at
least some worth.



CHAPTER 6

Upper minimax risk bounds in the local model

So far we proved that lower minimax risk bounds in the limit ex-
periment {Qγ,g : g ∈ G } always provide lower asymptotic minimax
risk bounds in both the local and the global model. We now want
to show that such a statement also holds true for upper bounds. In
this chapter we consider the sequence of local models

(Yn,Bn, {P (n)

γ,g : g ∈ G }), (6.1)

in which we want to estimate the local parameter g(0). The aim
is to derive an upper bound for the corresponding asymptotic min-
imax risk. To this end, we �rst construct an estimator η̂n within
the model (6.1). This estimator is essentially based upon and mo-
tivated by the results from the previous chapters. Subsequently,
we show that the maximal risk of this estimator�and hence, the
minimax risk in the local model�is asymptotically bounded from
above by the expressions from Theorems 5.4 and 5.14, respectively.

Throughout this chapter we presume that the assumptions from
Sections 3.1�3.3 hold. (Note that the additional regularity condi-
tions for the family {Pθ : θ ∈ Θ} have not been needed in the
preceding chapters.) As in Chapter 5 we write the Cholesky matrix
as Cγ = (Cijγ ), the ith row vector of Cγ is written Ciγ = (Ci1γ , . . . , Cidγ ).

6.1 Constructing an estimator for the local parameter

Throughout this section let γ ∈ Θ′ denote a �xed centre of locali-
sation (Θ′ ⊆ Θ as de�ned in (3.7)). Within the corresponding local
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model (6.1) we construct an estimator for the parameter g(0). To
better motivate our choice of such an estimator, we �rst consider the
more simple case of a univariate parameter space Θ; subsequently,
we generalise these ideas to the case Θ ⊆ Rd. Moreover, �rst results
on the asymptotic behaviour of this estimator are formulated.

6.1.1 A local estimator for the univariate parameter case

For the sake of simplicity let us �rst consider the special case of a
one-dimensional parameter, i.e. we assume that γ ∈ Θ′ ⊆ R and
G = G (K, ρ, 1). In this case the limit experiment for the sequence
of the local experiments is given by

(C1([−K,K]),C 1([−K,K]), {Qγ,g : g ∈ G }).

According to Theorem 5.4

ĝ(0) =
1

2Iγ

(
1 +

1

ρ

)
β−(1+1/ρ)

∫
Cγgβ dx

is a minimax a�ne estimator for the local parameter g(0) within
this model, where β = β(γ) is the solution to (5.16) and gβ is
de�ned according to (5.15). By virtue of the Girsanov formula
(4.3) and Corollary 4.5 we have

log
dQγ,gβ

dQγ,0
=

∫
Cγgβ dx− 1

2

∫
gβ(s)Iγgβ(s) ds,

and

log
dP (n)

γ,gβ

dP (n)
γ

=
n∑
j=1

U
gβ
nj −

1

2

∫
gβ(s)Iγgβ(s) ds+ o

P
(n)
γ

(1),

respectively, with U
gβ
nj = angβ(x̃nj) ˙̀

γ according to (4.5). Obviously,

the random variable
∑n

j=1 U
gβ
nj from the second display corresponds

to the stochastic integral
∫
Cγgβ dx from the �rst display. Thus,

taking the structure of the above estimator ĝ(0) from the limit
experiment as a basis, it is somewhat intuitive to choose

1

2Iγ

(
1 +

1

ρ

)
β−(1+1/ρ)

n∑
j=1

U
gβ
nj (6.2)
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as an estimator for the unknown parameter g(0) in the local ex-
periment. Note that the parameter β = β(γ) is a function of the
previously �xed centre of localisation γ, and therefore the proposed
estimator depends on γ, too.

6.1.2 The general multivariate parameter case

The ideas for the case of a one-dimensional parameter can easily be
transferred to the general case of a (possibly) multivariate parame-
ter space Θ ⊆ Rd, d ≥ 1. In this case the corresponding Gaussian
limit experiment is given by

(Cd([−K,K]),C d([−K,K]), {Qγ,g : g ∈ G }),
with G = G (K, ρ, d). In Section 5.3 we considered

ĝ(0) = C−1
γ κ̂∗

as an estimator for g(0), with κ̂∗ = (κ̂∗1, . . . , κ̂
∗
d)
> and

κ̂∗i := κ̂∗i (πi(x))

:=
1

2‖Ciγ‖1

(
1 +

1

ρ

)
β
−(1+1/ρ)
i

∫
~βi dxi

(5.43)
=

1

2

(
1 +

1

ρ

)
β
−(1+1/ρ)
i

∫
gβi dxi (6.3)

according to Theorem 5.12. The parameter βi = βi(γ) is de�ned
as the solution to equation (5.44), the corresponding functions gβi
are de�ned according to (5.15). For the following considerations we
de�ne

Gi
γ := C−1

γ (0, . . . , gβi(γ), . . . , 0)>, i = 1, . . . , d. (6.4)

Using the conventions on the stochastic integral notation from Sec-
tion 4.1 we thus have∫

CγGi
γ dx =

∫
(0, . . . , gβi(γ), . . . , 0)> dx

L
=

∫
gβi(γ) dxi.

In addition, we de�ne a family of random variables

Uγ,i
nj := anG

i
γ(x̃nj)

> ˙̀
γ,

Uγ,i
n :=

n∑
j=1

Uγ,i
nj ,

(6.5)



94 Chapter 6. Upper minimax risk bounds in the local model

according to (4.5) and (4.6), respectively. The Uγ,i
nj , j = 1, . . . , n,

are assumed independent. With similar arguments as in the above
case of a one-dimensional parameter one may now replace the
stochastic integrals

∫
gβi(γ) dxi =

∫
CγGi

γ dx in (6.3) by Uγ,i
n in

order to get an estimator within the local models. Setting

Si(γ) :=
1

2

(
1 +

1

ρ

)
βi(γ)−(1+1/ρ), i = 1, . . . , d,

Sγ := diag(S1(γ), . . . , Sd(γ)),

(6.6)

we de�ne an estimator η̂n for the local parameter g(0) by

η̂n := η̂n(γ) := C−1
γ Sγ(U

γ,1
n , . . . , Uγ,d

n )>. (6.7)

Note that for d = 1 this estimator coincides with that proposed in
(6.2).

6.1 Remark. As in Section 4.2 we interpret Uγ,i
nj and Uγ,i

n as ran-
dom variables on the product space (Yn,Bn). To emphasize this,
we occasionally write Uγ,i

nj = Uγ,i
nj (Ynj), with the interpretation of

Ynj as the jth coordinate projection on the product space Yn (see
also the comments on p. 37 and Remark 2.9). Then η̂n can be
written η̂n = η̂n(γ, Yn1, . . . , Ynn).

6.1.3 Asymptotic normality

The aim of this section is to prove that η̂n is asymptotically normal
under P (n)

γ,g, the product measure corresponding to the local alter-
native γg,n(·) (see (1.4) and (1.3), respectively). For that purpose
we �rst introduce some new notation. For g ∈ G and γ ∈ Θ′ we
de�ne

eγ,g :=
(∫
g(t)>IγG1

γ(t) dt, . . . ,
∫
g(t)>IγGd

γ(t) dt
)>
,

µγ,g := (C−1
γ Sγ)eγ,g − g(0),

Jγ := diag(‖gβ1(γ)‖2
λ,2, . . . , ‖gβd(γ)‖2

λ,2),

Σγ := (C−1
γ Sγ)Jγ(C−1

γ Sγ)
>.

(6.8)

In case that a �xed centre of localisation γ is considered (like in this
section), we often drop the argument γ in the quantities introduced
in (6.8), or in other variables that depend on γ.
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6.2 Theorem. Let a �xed γ ∈ Θ′ be given and let η̂n = η̂n(γ) be
the local estimator from (6.7). Then

L (η̂n − g(0) | P (n)

γ,g) N (µγ,g,Σγ)

for all g ∈ G .

Proof. Proposition 4.6, in combination with Remark 4.9, implies

L

((
log

dP (n)

γ,G1
γ

dP (n)
γ

, . . . , log
dP (n)

γ,Gdγ

dP (n)
γ

, log
dP (n)

γ,g

dP (n)
γ

)> ∣∣∣∣ P (n)

γ

)
 N

(
−1

2

(
V
σ2

)
,

(
J eg
e>g σ2

))
,

where V = (‖gβ1
‖2
λ,2, . . . , ‖gβd‖2

λ,2)
> and σ2 =

∫
g(s)>Iγg(s) ds.

With Corollary 4.5 and Slutsky's lemma we further conclude that

L

((
Uγ,1
n , . . . , Uγ,d

n , log
dP (n)

γ,g

dP (n)
γ

)> ∣∣∣∣ P (n)

γ

)
 N

((
0
−1

2σ
2

)
,

(
J eg
e>g σ2

))
.

The assertion follows now from Le Cam's third lemma (Lemma 2.3)
and an application of the delta method (van der Vaart, 1998, The-
orem 3.1). �

In combination with the portmanteau theorem the above theo-
rem implies that

P (n)

γ,g{η̂n − g(0) ∈ A} → N(µg,Σ)(A)

for all sets A ∈ B satisfying N(µg,Σ)(∂A) = 0. In particular, this
holds for the choice A = [−δ, δ]C (with δ = (δ1, . . . , δd)

> from
Section 3.3), and thus

P (n)

γ,g

{
η̂n − g(0) ∈ [−δ, δ]C

}
→ N(µg,Σ)

(
[−δ, δ]C

)
. (6.9)

In other words: given a �xed γ and a local function g ∈ G , the risk
of η̂n under the loss function 1[−δ,δ]C converges to the limit given in
the preceding display. It would be desirable if we were able to show
that the convergence from (6.9) holds uniformly on G , or at least
on suitable subspaces G̃ ⊆ G , such that

sup
g∈G̃

P (n)

γ,g

{
η̂n− g(0) ∈ [−δ, δ]C

}
→ sup

g∈G̃

N(µg,Σ)
(
[−δ, δ]C

)
. (6.10)
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The expression on the right hand side is bounded by the upper
minimax risk bound from Theorem 5.14 (see the following Theo-
rem 6.3). Therefore, it is also an upper bound for the asymptotic
minimax risk in the sequence of local models, provided that we
are able to prove (6.10). The concept of uniform convergence in
distribution from Section 2.4 turns out to be an adequate tool to
derive a supremum convergence statement of this type. (Actually,
uniform convergence in distribution is of course an even stronger
result than the simple convergence of the suprema.) We will show
in the next section that the convergence result from Theorem 6.2
holds uniformly in g (and even uniformly in γ). Eventually, this
implies an assertion of type (6.10).

6.3 Theorem. Let γ ∈ Θ′ be �xed and let δ = (δ1, . . . , δd)
> be as

in Section 3.3. Furthermore, let v = (v1, . . . , vd)
> (which depends

on γ) be de�ned as proposed in Section 3.5.3. Then

sup
g∈G

N(µγ,g,Σγ)
(
[−δ, δ]C

)
≤ 1−

d∏
j=1

{
1− Φ

(
−
‖Cjγ‖1β

1+1/(2ρ)
j

[(ρ+ 1)(2ρ+ 1)]1/2

[
1 +

(2ρ+ 1)vj

‖Cjγ‖1βj

])

− Φ

(
‖Cjγ‖1β

1+1/(2ρ)
j

[(ρ+ 1)(2ρ+ 1)]1/2

[
1− (2ρ+ 1)vj

‖Cjγ‖1βj

])}
,

which is the upper bound given in Theorem 5.14.

Addendum. In the special case d = 1 the above inequality always
holds with �=�.

Proof. Clearly, for g ∈ G the function h := g − g(0)1[−K,K] is
also an element of G . In a �rst step we prove that µg = µh. With
the de�nitions from (6.8), we have

µg − µh =
(
C−1
γ Sγeg − g(0)

)
−
(
C−1
γ Sγeh − h(0)︸︷︷︸

=0

)

= C−1
γ Sγ


∫
g(0)>IγG1

γ(t) dt
...∫

g(0)>IγGd
γ(t) dt

− g(0). (6.11)
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Since Iγ = C>γ Cγ (by de�nition), the entries of the vector from the
last expression can be written as∫
g(0)>IγGi

γ(t) dt
(6.4)
=

∫
g(0)>(C>γ Cγ)C−1

γ (0, . . . , gβi(t), . . . 0)> dt

=

∫
gβi(t) dt Ciγg(0).

Thus, we get for the complete vector
∫
g(0)>IγG1

γ(t) dt
...∫

g(0)>IγGd
γ(t) dt

 = diag
(∫
gβ1

(t) dt, . . . ,
∫
gβd(t) dt

)
Cγg(0).

The entries of the above diagonal matrix can be computed to∫
gβi(t) dt = 2

ρ

ρ+ 1
β

1+1/ρ
i =

1

Si(γ)
, (6.12)

and therefore

diag
(∫
gβ1

(t) dt, . . . ,
∫
gβd(t) dt

)
= S−1

γ .

From the above calculations we conclude that

C−1
γ Sγ


∫
g(0)>IγG1

γ(t) dt
...∫

g(0)>IγGd
γ(t) dt

 = C−1
γ SγS

−1
γ Cγg(0) = g(0).

Hence, the expression in (6.11) is equal to zero, which implies µg =
µh. For the assessment of the supremum it is therefore su�cient to
consider only such g ∈ G with g(0) = 0.

Let Aγ = {Cγx : x ∈ [−δ, δ]} and v = v(γ) be as in Sec-
tion 3.5.3, and thus in particular AC

γ ⊆ [−v, v]C . If we write
eg = (eg,1, . . . , eg,d)

>, then for each g ∈ G (with g(0) = 0)

N(µg,Σ)
(
[−δ, δ]C

) (6.8)
= N(Seg,SJ S)

{
AC
γ

}
≤ N(Seg,SJ S)

(
[−v, v]C

)
= 1−N(Seg,SJ S)([−v, v])

(∗)
= 1−

d∏
j=1

N(Sjeg,j ,S2
j ‖gβj‖

2
λ,2)([−vj, vj])

= 1−
d∏
j=1

(
1−N(Sjeg,j ,S2

j ‖gβj‖
2
λ,2)
(
[−vj, vj]C

))
. (6.13)
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Passing over to the one-dimensional normal distributions in (∗) is
unproblematic, because the covariance matrix SJ S has diagonal
form, and thus the components of the multivariate normal distri-
bution are independent. According to Anderson's lemma (see e.g.
Pfanzagl, 1994, p. 87) the probability

N(Sjeg,j ,S2
j ‖gβj‖

2
λ,2)
(
[−vj, vj]C

)
is maximal if

|eg,j| =
∣∣∣∣∫ g(t)>IγGj

γ(t) dt

∣∣∣∣ =

∣∣∣∣∫ Cjγg(t)gβj(t) dt

∣∣∣∣
is maximal. Note that we assumed g(0) = 0, and therefore

‖g(t)‖∞ = ‖g(t)− g(0)‖∞ ≤ |t|ρ

(according to (3.10)). In combination with the triangle inequality
the integrand can thus be bounded according to

|Cjγg(t)| ≤
d∑
i=1

|Cjiγ | |gi(t)|

≤
d∑
i=1

|Cjiγ | |t|ρ = ‖Cjγ‖1 |t|ρ,

and we conclude that for every g

Sj|eg,j| ≤ Sj‖Cjγ‖1

∫
gβj(t)|t|ρ dt

= Sj‖Cjγ‖1 2β
2+1/ρ
j

(
1

ρ+ 1
− 1

2ρ+ 1

)
(6.6)
=

βj‖Cjγ‖1

ρ

(
1− ρ+ 1

2ρ+ 1

)
=

βj‖Cjγ‖1

2ρ+ 1
=: e∗j .

Hence, with Anderson's lemma (�) each of the probabilities in (6.13)
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can be bounded from above in the following way:

N(Sjeg,j ,S2
j ‖gβj‖

2
λ,2)
(
[−vj, vj]C

)
(�)
≤ N(e∗j ,S

2
j ‖gβj‖

2
λ,2)
(
[−vj, vj]C

)
= Φ

(
−

vj − e∗j
Sj‖gβj‖λ,2

)
+ Φ

(
−

vj + e∗j
Sj‖gβj‖λ,2

)
= Φ

(
−
‖Cjγ‖1β

1+1/(2ρ)
j

[(ρ+ 1)(2ρ+ 1)]1/2

[
1 +

(2ρ+ 1)vj

‖Cjγ‖1βj

])

+ Φ

(
‖Cjγ‖1β

1+1/(2ρ)
j

[(ρ+ 1)(2ρ+ 1)]1/2

[
1− (2ρ+ 1)vj

‖Cjγ‖1βj

])
.

In the last equation we simply plugged in e∗j and the expressions for
‖gβj‖λ,2 and Sj from (5.21) and (6.6), respectively. Together with
(6.13) this implies

N(µg,Σ)
(
[−δ, δ]C

)
≤ 1−

d∏
j=1

{
1− Φ

(
−
‖Cjγ‖1β

1+1/(2ρ)
j

[(ρ+ 1)(2ρ+ 1)]1/2

[
1 +

(2ρ+ 1)vj

‖Cjγ‖1βj

])

− Φ

(
‖Cjγ‖1β

1+1/(2ρ)
j

[(ρ+ 1)(2ρ+ 1)]1/2

[
1− (2ρ+ 1)vj

‖Cjγ‖1βj

])}
.

Taking the supremum with respect to g yields the assertion of the
theorem. The addendum follows from the fact that for d = 1 we
have [−v, v] = Aγ. �

6.2 Uniform convergence of the local estimator

The aim of this section is to prove that the local estimator η̂n con-
verges uniformly in distribution to a family of normal distributions.
This would allow us to derive an upper bound for the asymptotic
maximal risk of η̂n, and thus for the minimax risk in the sequence of
the local models (6.1). Throughout this section we use the assump-
tions and the notation from the preceding section. Note, however,
that γ is now no longer �xed. The vector v = v(γ), which will often
be used in the following, is de�ned as in Section 3.5.3.
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In this section we restrict the local parameter functions g to the
space GH from (3.12). We consider the product space

Λ := Θ∗ × GH = [γ∗1 − ε∗1, γ∗1 + ε∗1]× . . .× [γ∗d − ε∗d, γ∗d + ε∗d]× GH,

which we endow with the product metric

dΛ((γ1, g1), (γ2, g2)) := max{‖γ1 − γ2‖, ‖g1 − g2‖u,d}.

By passing over from G to GH we enforce that the resulting space
Λ is compact. Hence, each sequence in Λ possesses a convergent
subsequence. This property will turn out to be fundamental for our
examinations.

We formulate the main result of this section:

6.4 Theorem. Presume the assumptions from Sections 3.1�3.3
hold. Let η̂n = η̂n(γ) be de�ned according to (6.7). Then

L (η̂n(γ)− g(0) | P (n)

γ,g) N (µγ,g,Σγ)

uniformly on Λ = Θ∗ × GH (in the sense of De�nition 2.21).

To prove the theorem we �rst present several more or less tech-
nical auxiliary results. Subsequently, we prove the assertion.

6.5 Proposition. GH is compact with respect to the metric induced
by the uniform norm ‖ · ‖u,d, and Λ = Θ∗ × GH is compact with
respect to the product metric dΛ.

Proof. From the de�nition of the space GH = GH(K, ρ, d) in (3.12)
follows that this can be written as a product space

GH(K, ρ, d) = GH(K, ρ, 1)× . . .× GH(K, ρ, 1) (d times).

We show that the space GH,1 := GH(K, ρ, 1) is compact. By virtue
of the Arzelà-Ascoli theorem this is the case if we can prove that
GH,1 ⊆ C([−K,K],R) is bounded point-wise and equi-continuous
(cf. Heuser, 2000, Satz 106.2). Point-wise boundedness follows triv-
ially from (3.11). In order to prove the equi-continuity let an ar-
bitrary ε > 0 be given. We set ι := ε1/ρ. The Hölder condition
from the de�nition of GH holds of course also for GH,1. Thus, for all
h ∈ GH,1 and all x, y ∈ [−K,K] with |x− y| ≤ ι we have

|h(x)− h(y)|
(3.12)
≤ |x− y|ρ ≤ ιρ = ε.
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Therefore, GH,1 is equi-continuous and thus compact. From Satz12.9
in Lipschutz (1977) it follows then that GH as a product of the
spaces GH,1 is compact with respect to the product norm ‖ · ‖u,d
(i.e. compact with respect to the topology induced by the corre-
sponding metric). With the same argument we conclude that Λ is
compact. �

6.6 Lemma. Let βj(γ) be de�ned as the solution (5.44), and let
Sj(γ) be according to (6.6). The functions gβj(·) are de�ned ac-
cording to (5.15). Then the following statements hold:

(i) Both of the maps γ 7→ β(γ) = (β1(γ), . . . , βd(γ))> and γ 7→
(S1(γ), . . . , Sd(γ))> are continuous on Θ.

(ii) If γn → γ, then ‖gβj(γn) − gβj(γ)‖u → 0.

Proof. Ad (i): Let an arbitrary point γ0 ∈ Θ be given. We con-
sider the function

F : (0,∞)3 → R, F (x, y, z) =


z1+1/ρ

log z+x/y
z−x/y

− ρ+1
2xy , if z > x/y,

0, otherwise.

Of course, this F is closely related to the function f from Sec-
tion 3.5.2. For the special point

(x∗, y∗, z∗) := (vj(γ0), ‖Cjγ0
‖1, βj(γ0))

we have F (x∗, y∗, z∗) = 0, which follows directly from the de�ni-
tion of βj(γ0) as the solution to equation (5.44). Obviously, there
is a neighbourhood U ∗ of (x∗, y∗, z∗) such that F : U ∗ → R is con-
tinuously di�erentiable. Furthermore, the map z 7→ F (x∗, y∗, z)
is strictly increasing (which follows with the same arguments as
the monotonicity of the function f from Section 3.5.1). In partic-
ular, the partial derivative ∇zF (x∗, y∗, z) is strictly positive, and
thus invertible. Hence, the implicit function theorem (Heuser, 1990,
p. 292 f.) guarantees the existence of neighbourhoods U(x∗,y∗) and
Uz∗ of (x∗, y∗) and z∗, respectively, as well as a unique continuous
(even continuously di�erentiable) function f : U(x∗,y∗) → Uz∗ such
that f(x∗, y∗) = z∗ and

F (x, y, f(x, y)) = 0, (x, y) ∈ U(x∗,y∗). (6.14)
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From the arguments in Section 3.1 and Lemma 3.1 we know that
the maps γ 7→ ‖Cjγ‖1 and γ 7→ vj(γ) are continuous on Θ. Thus,
there is a neighbourhood Uγ0

of γ0, such that q(γ) := (vj(γ), ‖Cjγ‖1)
is a continuous map q : Uγ0

→ U(x∗,y∗). Clearly, the composition
f ◦ q : Uγ0

→ Uz∗ is continuous, too, as well as the map

Uγ0
3 γ 7→ F (vj(γ), ‖Cjγ‖1, f ◦ q(γ)).

From (6.14) and the fact that equation (5.44) has a unique solution
we conclude that βj(γ) = f ◦ q(γ) for all γ ∈ Uγ0

. Consequently,
βj(·) is continuous on Uγ0

. Since γ0 was chosen arbitrarily, we
conclude that γ 7→ βj(γ) is continuous on Θ. The continuity of the
maps γ 7→ Sj(γ) follows directly from the de�nition in (6.6).
Ad (ii): From (i) it follows that βj(γn)→ βj(γ), as γn → γ, and the
de�nition of the function gβ(·) in (5.15) yields ‖gβj(γn) − gβj(γ)‖u =
|βj(γn)− βj(γ)| → 0. �

6.7 Proposition. Assume the conditions of Theorem 6.4 hold.
Furthermore, let a �xed g ∈ GH be given and a convergent sequence
γn ∈ Θ∗, γn → γ. Then

L (η̂n(γn)− g(0) | P (n)

γn,g
) N (µγ,g,Σγ).

Proof. It su�ces to show that

L
(
(Uγn,1

n , . . . , Uγn,d
n )> | P (n)

γn,g

)
 N (eγ,g,Jγ). (6.15)

With the de�nition of η̂n in (6.7) and the convergence C−1
γn
Sγn →

C−1
γ Sγ�as a consequence of the arguments in Section 3.1 and

Lemma 6.6�the assertion then follows from an application of the
delta method and Slutsky's lemma.

We prove (6.15) with the Lindeberg-Feller theorem (van der
Vaart, 1998, Proposition 2.27). According to this, we have to show
that the means and the variances of (Uγn,1

n , . . . , Uγn,d
n )> converge

to the mean and the variance of the normal distribution in (6.15),
respectively, and that a Lindeberg condition is satis�ed. If not ex-
plicitly stated otherwise, in the following calculations all means and
variances are to be built with respect to the measure P (n)

γn,g
.

Convergence of the covariances: We use the notation from Sec-
tion 6.1.3. By de�nition, for all r, s ∈ {1, . . . , d} and i 6= j, the
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random variables Uγn,r
nj and Uγn,s

ni introduced in (6.5) are indepen-
dent. Hence,

Cov(Uγn,r
n , Uγn,s

n )

=
n∑
j=1

n∑
i=1

E
[(
Uγn,r
nj − EUγn,r

nj

)(
Uγn,s
ni − EUγn,s

ni

)]
=

n∑
j=1

E
[
Uγn,r
nj Uγn,s

nj

]
− EUγn,r

nj EUγn,s
nj

=
n∑
j=1

a2
n

(
Gr
γn

(x̃nj)
>
∫

˙̀
γn

˙̀>
γn
dPγn+ang(x̃nj)G

s
γn

(x̃nj)

)

−
n∑
j=1

a2
n

∏
q=r,s

(
Gq
γn

(x̃nj)
>
∫

˙̀
γn dPγn+ang(x̃nj)

)
. (6.16)

In order to examine the �rst sum in (6.16) we �rst simplify it,
replacing the integrals by the information matrix Iγ and Gr

γn
and

Gs
γn

by Gr
γ and G

s
γ, respectively. The resulting expression

n∑
j=1

a2
nG

r
γ(x̃nj)

>IγGs
γ(x̃nj)

is of the same type as that in (4.11). Hence, with the ideas of the
proof of (2.7) in Proposition 4.3 it can be interpreted as a Riemann
sum satisfying

n∑
j=1

a2
nG

r
γ(x̃nj)

>IγGs
γ(x̃nj) →

∫
Gr
γ(w)>IγGs

γ(w) dw

= 1{r=s}‖gβs‖2
λ,2,

(6.17)

where the last equality follows from the de�nition in (6.4). We
can now use this observation to examine the asymptotic behaviour
of the �rst sum in (6.16): from the arguments in Section 3.1 we
know that the Cholesky matrix is continuous in the parameter, and
together with (ii) in Lemma 6.6 we conclude that ‖Gi

γn
−Gi

γ‖u,d → 0
as n → ∞. Furthermore, we postulated in Section 3.2 the maps
(θ, τ) 7→

∫
˙̀
θ,k

˙̀
θ,l dPτ (k, l = 1, . . . , d,) to be continuous. As a

consequence, we have∫
˙̀
γn

˙̀>
γn
dPγn+ang(x̃nj) →

∫
˙̀
γ

˙̀>
γ dPγ = Iγ.
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With these observations we conclude that

lim
n→∞

n∑
j=1

a2
n

(
Gr
γn

(x̃nj)
>
∫

˙̀
γn

˙̀>
γn
dPγn+ang(x̃nj)G

s
γn

(x̃nj)

)

= lim
n→∞

n∑
j=1

a2
nG

r
γ(x̃nj)

>IγGs
γ(x̃nj)

(6.17)
= 1{r=s}‖gβs‖2

λ,2.

The second sum in (6.16) converges to zero. This results from the
following calculation:∣∣∣∣ n∑

j=1

a2
n

∏
q=r,s

(
Gq
γn

(x̃nj)
>
∫

˙̀
γn dPγn+ang(x̃nj)

) ∣∣∣∣
=

∣∣∣∣ ∑
j∈Kn

a2
n

∏
q=r,s

(
Gq
γn

(x̃nj)
>
∫

˙̀
γn dPγn+ang(x̃nj)

) ∣∣∣∣
≤ kna

2
n max

q=r,s
sup
j∈Kn

‖Gq
γn

(x̃nj)‖2
∥∥∥∥∫ ˙̀

γn dPγn+ang(x̃nj)

∥∥∥∥2

,

with Kn and kn as in (4.7). Due to (4.8) we have kna
2
n = O(1).

From the boundedness of the maps Gq
γn

(·) (q = r, s) and the con-

tinuity of the map (θ, τ) 7→
∫

˙̀
θ dPτ (cf. Section 3.2) we conclude

that the supremum in the last expression�and thus the second sum
in (6.16)�tends to zero as n → ∞. Summarising, the above ex-
aminations yield Cov(Uγn,r

n , Uγn,s
n )→ 1{r=s}‖gβs‖2

λ,2, and therefore

Cov((Uγn,1
n , . . . , Uγn,d

n )>)→ Jγ.

Convergence of the means: According to the assumptions from Sec-
tion 3.2 the map (θ, τ) 7→

∫
˙̀
θ dPτ is twice continuously partially

di�erentiable. Hence, for �xed θ a Taylor expansion yields∫
˙̀
θ dPθ+h =

∫
˙̀
θ dPθ + h>∇τ

(∫
˙̀
θ dPτ

)
|τ=θ

+ r(θ, h),

where r(θ, h) is short for a remainder depending on θ and h (see
below). The �rst term on the right hand side of the above display
is equal to zero, and for the second term we get

∇τ

(∫
˙̀
θ dPτ

)
|τ=θ

(3.5)
=

∫
˙̀
θ(∇pθ)>

pθ
pθ
dµ

(3.1)
=

∫
˙̀
θ

˙̀>
θ dPθ = Iθ.
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Hence, we see that ∫
˙̀
θ dPθ+h = Iθh+ r(θ, h). (6.18)

With the above Taylor expansion we can now write the expectation
EUγn,k

n as

EUγn,k
n =

n∑
j=1

anG
k
γn

(x̃nj)
>
∫

˙̀
γn dPγn+ang(x̃nj)

(6.18)
=

n∑
j=1

anG
k
γn

(x̃nj)
>Iγnang(x̃nj)

+
n∑
j=1

anG
k
γn

(x̃nj)
>r(γn, ang(x̃nj)). (6.19)

With the same arguments that were used in the investigation of the
�rst of the two sums in (6.16) we conclude that

n∑
j=1

anG
k
γn

(x̃nj)
>Iγnang(x̃nj) →

∫
Gk
γ(w)>Iγg(w) dw.

The limit equals the kth component of the vector eγ,g from (6.8).
If we can show that the second summand in (6.19) tends to zero,
this implies E(Uγn,1

n , . . . , Uγn,d
n )> → eγ,g. To this end, we will now

take a closer look at the Taylor expansion from (6.18) and assess
the remainder r(θ, h). The underlying function (θ, τ) 7→

∫
˙̀
θ dPτ

was in Section 3.2 assumed twice continuously di�erentiable. In
particular, this implies that the second order partial derivatives are
continuous on Θ and therefore bounded on the compactum Θ∗ ⊆ Θ.
Consequently, the remainder r(θ, h) is also uniformly bounded on
Θ∗ in the sense that there is a constant C which does not depend
on θ and which satis�es

sup{‖r(θ, h)‖ : θ ∈ Θ∗} ≤ C‖h‖2

(cf. Heuser, 1990, p. 285). From that and the Cauchy-Schwarz
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inequality it follows that∣∣∣∣ n∑
j=1

anG
k
γn

(x̃nj)
>r(γn, ang(x̃nj))

∣∣∣∣
≤

n∑
j=1

an‖Gk
γn

(x̃nj)‖ ‖r(γn, ang(x̃nj))‖

≤ C
n∑
j=1

a2
n‖Gk

γn
(x̃nj)‖ ‖g(x̃nj)‖2

︸ ︷︷ ︸
=O(1)

an → 0.

Proof of the Lindeberg condition: Let ι > 0 be given. For a simpli-
�cation of notation we set

hnj := γn + ang(x̃nj).

We have to prove that the Lindeberg expression

Ln(ι) =
n∑
j=1

∫
‖(Uγn,1

nj , . . . , Uγn,d
nj )>‖2

1
{
‖(Uγn,1

nj , . . . , Uγn,d
nj )>‖ > ι

}
dPhnj

converges to zero. As is known, on Rd all norms are equivalent.
In particular, the Euclidean and the maximum norm satisfy ‖z‖ ≤√
d‖z‖∞ for all vectors z. Hence,

1
{
‖(Uγn,1

nj , . . . , Uγn,d
nj )>‖ > ι

}
≤ 1

{√
d max
k=1,...,d

|Uγn,k
nj | > ι

}
≤

d∑
k=1

1
{
|Uγn,k

nj | > ι/
√
d
}
.

Furthermore, a simple application of the Cauchy-Schwarz inequality
yields

|Uγn,k
nj | = |anGk

γn
(x̃nj)

> ˙̀
γn| ≤ an‖Gk

γn
(x̃nj)‖ ‖ ˙̀

γn‖.

From the de�nition in (6.4) one can conclude that the expressions
‖Gk

γn
(x̃nj)‖ are uniformly bounded, more precisely, there is a con-

stant D > 0 such that

‖Gk
γn

(x̃nj)‖ ≤ D 1{j ∈ Kn}.
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This follows from the continuity of the inverse of the Cholesky ma-
trix (cf. the remarks in Section 3.1), the fact that gβ(γn) → gβ(γ)

(Lemma 6.6) and the assumption that the sequence γn lies in the
compactum Θ∗. With the above arguments we can now bound the
Lindeberg expression as follows

Ln(ι) ≤
d∑
l=1

d∑
k=1

n∑
j=1

∫
|Uγn,k

nj |
2
1
{
|Uγn,l

nj | > ι/
√
d
}
dPhnj

≤
d∑
l=1

d∑
k=1

n∑
j=1

∫
a2
nD

2
1{j ∈ Kn} ‖ ˙̀

γn‖2

1
{
Dan‖ ˙̀

γn‖ > ι/
√
d
}
dPhnj

. a2
nkn

(
sup
j∈Kn

∫
‖ ˙̀

γn‖2
1
{
‖ ˙̀

γn‖ > mn

}
dPhnj

)
, (6.20)

with mn := ι/(
√
dDan). According to (4.8) we have a2

nkn = O(1),
and therefore it only remains to show that the supremum in (6.20)
tends to zero. From Hölder's inequality we get

sup
j∈Kn

∫
‖ ˙̀

γn‖2
1
{
‖ ˙̀

γn‖ > mn

}
dPhnj

≤ sup
j∈Kn

(∫
‖ ˙̀

γn‖4 dPhnj

)1/2

sup
j∈Kn

(∫
1
{
‖ ˙̀

γn‖ > mn

}
dPhnj

)1/2

= sup
j∈Kn

(∫
‖ ˙̀

γn‖4 dPhnj

)1/2

sup
j∈Kn

(
Phnj

{
‖ ˙̀

γn‖ > mn

})1/2
.

In Section 3.2 we assumed the maps (θ, τ) 7→
∫

( ˙̀
θ,i)

k1( ˙̀
θ,j)

k2 dPτ
to be continuous on Θ×Θ (for k1, k2 ∈ {0, 1, 2}). This implies that
the �rst of the two suprema in the preceding display is bounded.
It remains to prove that the second supremum converges to zero:
Markov's inequality yields

Phnj
{
‖ ˙̀

γn‖ > mn

}
≤ 1

m2
n

∫
‖ ˙̀

γn‖2 dPhnj ,

and with the same smoothness arguments as before we conclude
that

sup
j∈Kn

∫
‖ ˙̀

γn‖2 dPhnj <∞.
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Since mn →∞, this yields

sup
j∈Kn

(
Phnj

{
‖ ˙̀

γn‖ > mn

})1/2
.

1

mn
→ 0.

These calculations show that the supremum in (6.20) converges to
zero, and thus Ln(ι)→ 0. �

In the next step for the proof of the uniform convergence in
distribution of the estimator η̂n we generalise the proposition insofar
as we replace the single function g with a sequence gn ∈ GH.

6.8 Proposition. Assume that the conditions of Theorem 6.4 hold.
In addition, let a sequence gn ∈ GH be given such that gn → g (with
respect to ‖ · ‖u,d). Let γn ∈ Θ∗ be a convergent sequence, γn → γ.
Then

L (η̂n(γn)− gn(0) | P (n)

γn,gn
) N (µγ,g,Σγ).

Proof. By assumption we have ‖gn − g‖u,d → 0 and thus in par-
ticular gn(0)→ g(0). Therefore, it is su�cient to show that

L (η̂n(γn) | P (n)

γn,gn
) N (µγ,g + g(0),Σγ), (6.21)

which, in combination with Slutsky's lemma, implies the assertion.
For the proof of (6.21) we show that

sup
C∈Cd

∣∣∣P (n)

γn,gn
{η̂n(γn) ∈ C} −N(µγ,g+g(0),Σγ)(C)

∣∣∣→ 0, (6.22)

where Cd denotes the class of all convex Borel sets in Rd. Note
that any non-degenerated multivariate normal distribution N(ν,Γ)

is continuous with respect to Lebesgue measure, and therefore sat-
is�es N(ν,Γ)(∂C) = 0 for all C ∈ Cd (cf. Elstrodt, 1996, p. 68).
Therefore, by virtue of Theorem 2.20, (6.22) is equivalent to (6.21).
The triangular inequality yields

sup
C∈Cd

∣∣∣P (n)

γn,gn
{η̂n(γn) ∈ C} −N(µγ,g+g(0),Σγ)(C)

∣∣∣
≤ sup

C∈Cd

∣∣∣P (n)

γn,gn
{η̂n(γn) ∈ C} − P (n)

γn,g
{η̂n(γn) ∈ C}

∣∣∣
+ sup

C∈Cd

∣∣∣P (n)

γn,g
{η̂n(γn) ∈ C} −N(µγ,g+g(0),Σγ)(C)

∣∣∣. (6.23)

In combination with Slutsky's lemma Proposition 6.7 yields

L (η̂n(γn) | P (n)

γn,g
) N (µγ,g + g(0),Σγ).
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Therefore, we conclude with Theorem 2.20 that the second supre-
mum on the right hand side of (6.23) tends to zero. It remains to
show that the �rst of the two suprema tends to zero, too. From the
de�nition of the variational distance (cf. Section 2.1) we conclude

sup
C∈Cd

∣∣∣P (n)

γn,gn
{η̂n(γn) ∈ C} − P (n)

γn,g
{η̂n(γn) ∈ C}

∣∣∣
≤ ‖P (n)

γn,gn
− P (n)

γn,g
‖V

≤
√

2 H(P (n)

γn,gn
, P (n)

γn,g
)

≤
√

2

( n∑
j=1

H2(Pγn+angn(x̃nj), Pγn+ang(x̃nj))

)1/2

. (6.24)

In the last step we used an inequality for the Hellinger distance
of product measures, given in Reiss (1993), p. 23 f. Note that for
j /∈ Kn we have

γn + angn(x̃nj) = γn + ang(x̃nj) = γn,

and thus

H(Pγn+angn(x̃nj), Pγn+ang(x̃nj)) = 0.

Furthermore, because of (3.11), we have supj=1,...,n ‖angn(x̃nj)‖ →
0 and, by assumption, γn → γ. Hence, for large n all points
γn + angn(x̃nj) and γn + ang(x̃nj) are in a su�ciently small neigh-
bourhood of γ, on which assertion (ii) of Lemma 2.7 holds (∗).
Combining these observations we conclude that the sum in (6.24)
can be bounded in the following way:

n∑
j=1

H2(Pγn+angn(x̃nj), Pγn+ang(x̃nj))

=
∑
j∈Kn

H2(Pγn+angn(x̃nj), Pγn+ang(x̃nj))

(∗)
.
∑
j∈Kn

∥∥(γn + angn(x̃nj))− (γn + ang(x̃nj))
∥∥2

=
∑
j∈Kn

‖angn(x̃nj)− ang(x̃nj)‖2

≤ kna
2
n‖gn − g‖u,d.
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Because of ‖gn − g‖u,d → 0 and kna
2
n = O(1) (according to (4.8)),

this last expression tends to zero, and in combination with (6.24)
we conclude that

sup
C∈Cd

∣∣∣P (n)

γn,gn
{η̂n(γn) ∈ C} − P (n)

γn,g
{η̂n(γn) ∈ C}

∣∣∣→ 0.

To sum up, we have shown that both of the suprema on the right
hand side of (6.23) converge to zero. Hence, (6.22) holds, and
according to the above discussion this implies the assertion. �

Proof of Theorem 6.4. According to Proposition 6.5 Λ = Θ∗ ×
GH is compact. Moreover, for every convergent sequence (γn, gn)→
(γ, g) in Λ we have µγn,gn → µγ,g and Σγn → Σγ, which is a simple
consequence of the de�nitions in (6.8), Lemma 6.6 and the conti-
nuity of the information and Cholesky matrices (see Section 3.1).
Consequently, any such sequence satis�es

N (µγn,gn,Σγn) N (µγ,g,Σγ). (6.25)

By virtue of Theorem 2.22 it therefore su�ces to prove

sup
γ∈Θ∗

sup
g∈GH

sup
C∈Cd

∣∣∣P (n)

γ,g{η̂n(γ)− g(0) ∈ C} −N(µγ,g,Σγ)(C)
∣∣∣→ 0,

(6.26)
where, again, Cd = {C ∈ Bd : C convex}. Let us assume that
(6.26) does not hold. Then there is an ε > 0 such that

lim sup
n→∞

sup
γ∈Θ∗

sup
g∈GH

sup
C∈Cd

∣∣∣P (n)

γ,g{η̂n(γ)−g(0) ∈ C}−N(µγ,g,Σγ)(C)
∣∣∣ > ε.

In particular, there is a sequence (γn, gn) ∈ Λ such that

lim sup
n→∞

sup
C∈Cd

∣∣∣P (n)

γn,gn
{η̂n(γn)−gn(0) ∈ C}−N(µγn,gn ,Σγn)(C)

∣∣∣ > ε/2.

(6.27)
Without loss of generality, we can assume that this limit superior is
actually a limit. If necessary, one can do so by passing over to some
suitable subsequence. The compactness of Λ = Θ∗ × GH implies
that there is a subsequence n′, such that (γn′, gn′) → (γ, g) ∈ Λ.
(In order not to unnecessarily complicate the notation, we further
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write n for n′.) The Triangle Inequality yields

sup
C∈Cd

∣∣∣P (n)

γn,gn
{η̂n(γn)− gn(0) ∈ C} −N(µγn,gn ,Σγn)(C)

∣∣∣
≤ sup

C∈Cd

∣∣∣P (n)

γn,gn
{η̂n(γn)− gn(0) ∈ C} −N(µγ,g,Σγ)(C)

∣∣∣
+ sup

C∈Cd

∣∣∣N(µγ,g,Σγ)(C)−N(µγn,gn ,Σγn)(C)
∣∣∣. (6.28)

Combining Theorem 2.20 with the results from Proposition 6.8 and
(6.25), respectively, we conclude that both of the suprema in (6.28)
tend to zero, and thus

sup
C∈Cd

∣∣∣P (n)

γn,gn
{η̂n(γn)− gn(0) ∈ C} −N(µγn,gn ,Σγ)(C)

∣∣∣→ 0.

This is a contradiction to (6.27), and therefore the hypothesis that
(6.26) does not hold must be false. This implies the assertion of
the theorem. �

As a direct consequence of the above results we obtain the de-
sired upper bound for the asymptotic minimax risk in the sequence
of the local models.

6.9 Corollary. Assume that the conditions from Theorem 6.4 hold.
Then

sup
γ∈Θ∗

sup
g∈GH

P (n)

γ,g

{
η̂n(γ)− g(0) ∈ [−δ, δ]C

}
→ sup

γ∈Θ∗
sup
g∈GH

N(µγ,g,Σγ)
(
[−δ, δ]C

)
,

and the limit is bounded by the supremum (with respect to γ) over
the expressions from Theorem 6.3.

Proof. With the same arguments that were used at the end of the
proof of Theorem 4.11 we �rst conclude that

lim inf
n→∞

sup
γ∈Θ∗

sup
g∈GH

P (n)

γ,g

{
η̂n(γ)− g(0) ∈ [−δ, δ]C

}
≥ sup

γ∈Θ∗
sup
g∈GH

lim inf
n→∞

P (n)

γ,g

{
η̂n(γ)− g(0) ∈ [−δ, δ]C

}
(6.9)
= sup

γ∈Θ∗
sup
g∈GH

N(µγ,g,Σγ)
(
[−δ, δ]C

)
. (6.29)
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Furthermore, we have

sup
γ∈Θ∗

sup
g∈GH

P (n)

γ,g

{
η̂n(γ)− g(0) ∈ [−δ, δ]C

}
= sup

γ∈Θ∗
sup
g∈GH

(
1− P (n)

γ,g{η̂n(γ)− g(0) ∈ [−δ, δ]}
)

≤ sup
γ∈Θ∗

sup
g∈GH

∣∣∣P (n)

γ,g{η̂n(γ)− g(0) ∈ [−δ, δ]} −N(µγ,g,Σγ)([−δ, δ])
∣∣∣

+ sup
γ∈Θ∗

sup
g∈GH

N(µγ,g,Σγ)
(
[−δ, δ]C

)
.

Since [−δ, δ] is measurable and convex (i.e. [−δ, δ] ∈ Cd), it follows
from (6.26) that

sup
γ∈Θ∗

sup
g∈GH

∣∣∣P (n)

γ,g{η̂n(γ)− g(0) ∈ [−δ, δ]} −N(µγ,g,Σγ)([−δ, δ])
∣∣∣→ 0,

and thus

lim sup
n→∞

sup
γ∈Θ∗

sup
g∈GH

P (n)

γ,g

{
η̂n(γ)− g(0) ∈ [−δ, δ]C

}
≤ sup

γ∈Θ∗
sup
g∈GH

N(µγ,g,Σγ)
(
[−δ, δ]C

)
.

Together with (6.29) this proves the assertion. �

6.10 Remark. Passing over from Λ to subsets of the form Λ′ =
{γ} × GH, the above results yield the convergence assertion (6.10)
with G̃ = GH, which has been the starting point and motivation for
the examinations of this section.



CHAPTER 7

Upper minimax risk bounds in the global model

In the preceding chapter we proved that the local estimator η̂n con-
verges uniformly in distribution to a family of normal distributions.
This allowed us to derive an upper bound for the asymptotic mini-
max risk in the local model. We now want to expand these results to
the global model. To this end, we use an adaptive estimator, i.e. we
combine a preliminary estimator (that converges with appropriate
rate) with the local estimator η̂n. This yields the desired upper
minimax risk bounds. The ideas of this chapter are based on those
in Pfanzagl (1994), cf. in particular the proof of Proposition 7.4.13
of that book.

7.1 An upper minimax risk bound in the global model

Throughout this chapter we use the notation introduced in Chap-
ter 6. Furthermore, we assume that the conditions from Sections
3.1�3.3 hold. In addition, we assume that there is a uniformly
(1/an)-consistent preliminary estimator according to Section 3.4.
That is, we have an estimator ξ∗n = ξ∗n(x0) for ξ(x0) such that for
every ι > 0 there is a constant C = Cι > 0 satisfying

lim sup
n→∞

sup
ξ∈F

P (n)

ξ

{
1

an
‖ξ∗n − ξ(x0)‖ ≥ C

}
< ι. (7.1)

We consider the adaptive estimator

ξ̂n := ξ∗n + anη̂n(ξ
∗
n). (7.2)

113



114 Chapter 7. Upper minimax risk bounds in the global model

Here the local estimator η̂n(ξ
∗
n) is de�ned according to (6.7), i.e. we

have

η̂n(ξ
∗
n) = C−1

ξ∗n
Sξ∗n(U

ξ∗n,1
n , . . . , U ξ∗n,d

n )>,

with S according to (6.6) and

U ξ∗n,i
n =

n∑
j=1

U
ξ∗n,i
nj , U

ξ∗n,i
nj = anG

i
ξ∗n

(x̃nj)
> ˙̀

ξ∗n

Confer also (6.5) and (6.4) for the de�nition of the U
ξ∗n,i
nj and Gi

ξ∗n
,

respectively.

The construction of this estimator re�ects the idea of the local-
isation of the model. In a �rst step one estimates roughly the un-
known parameter ξ(x0) by the preliminary estimator ξ∗n. This cor-
responds to the localisation idea of the previous chapters of passing
over from the global to the local model, and thus to a �xed centre
of localisation. Subsequently, one tries to re�ne the estimator ξ∗n,
using the results achieved for the estimation of the parameter g(0)
in the local models. We will show that ξ̂n in some sense�namely,
as concerns the maximal risk�possesses the same asymptotic prop-
erties as η̂n does in the sequence of local models. This is exactly
the assertion of the following theorem, which at the same time is
one of the main results of this thesis.

7.1 Theorem. Let the assumptions from Sections 3.1�3.3 hold,
i.e. assume that1)

� the family P = {Pθ : θ ∈ Θ} is continuously di�erentiable in
quadratic mean,

� the information matrices Iθ are positive de�nite for all θ ∈ Θ,

� the log-densities log pθ are three times continuously partially
di�erentiable with respect to the parameter, and the third par-
tial derivatives of the log-densities are dominated by an inte-
grable function J ,

� the moments of the score function satisfy certain smoothness
conditions.

1)We recap only the main assumptions from Sections 3.1�3.3, for the details see Chapter 3.
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Let the function space FH be de�ned according to (3.9). Moreover,
let ξ∗n = ξ∗n(x0) be a preliminary (1/an)-consistent estimator that
satis�es the above conditions, and let the resulting estimator ξ̂n =
ξ̂n(x0) be de�ned according to (7.2). Then

sup
ξ∈FH

P (n)

ξ

{
ξ̂n(x0)− ξ(x0) ∈ [−anδ, anδ]C

}
→ sup

γ∈Θ∗
sup
g∈GH

N(µγ,g,Σγ)
(
[−δ, δ]C

)
.

In particular, the limit expression is an upper bound for the asymp-
totic minimax risk in the global model {P (n)

ξ : ξ ∈ FH}, given by
(1.2).

Proof. Throughout the following calculations let ξ0 := ξ(x0). The
de�nition of the adaptive estimator yields

ξ̂n − ξ0 = (ξ∗n − ξ0) + anη̂n(ξ
∗
n)

= (ξ∗n − ξ0) + an (η̂n(ξ
∗
n)− η̂n(ξ0)) + anη̂n(ξ0). (7.3)

Using the de�nition of the local estimator η̂n in (6.7) we further
get2)

η̂n(ξ0) = C−1
ξ0
Sξ0(U

ξ0,1
n , . . . , U ξ0,d

n )>

(6.5)
=

n∑
j=1

anC−1
ξ0
Sξ0

G1
ξ0

(x̃nj)
>

...
Gd
ξ0

(x̃nj)
>

 ˙̀
ξ0(Ynj)

(6.4)
=

n∑
j=1

anC−1
ξ0
Sξ0B

nj
ξ0

(C−1
ξ0

)> ˙̀
ξ0(Ynj),

where here and in the following

Bnj
ξ0

:= diag
(
gβ1(ξ0)(x̃nj), . . . , gβd(ξ0)(x̃nj)

)
. (7.4)

The parameters βj(ξ0) are the solutions of (5.44) (with γ replaced
by ξ0). The above calculations do of course also hold, if ξ0 is re-

2)As in Chapter 6, we interpret Ynj as the jth canonical projection on the product space
Yn; see also Remark 6.1.
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placed with ξ∗n. Hence, we can write

η̂n(ξ
∗
n)− η̂n(ξ0)

=
n∑
j=1

an

(
C−1
ξ∗n
Sξ∗nB

nj
ξ∗n

(C−1
ξ∗n

)>
){

˙̀
ξ∗n(Ynj)− ˙̀

ξ0(Ynj)
}

+R1(ξ0, ξ
∗
n),

(7.5)

where

R1(ξ0, ξ
∗
n) :=

n∑
j=1

an

(
C−1
ξ∗n
Sξ∗nB

nj
ξ∗n

(C−1
ξ∗n

)>

− C−1
ξ0
Sξ0B

nj
ξ0

(C−1
ξ0

)>
)

˙̀
ξ0(Ynj).

(7.6)

In Section 3.2 we required the log-densities to be three times par-
tially di�erentiable with respect to the parameter and thus in par-
ticular to permit a certain Taylor expansion. As a consequence, we
may write

˙̀
ξ∗n(Ynj)− ˙̀

ξ0(Ynj)
(3.2)
= ῭

ξ0(Ynj)(ξ
∗
n − ξ0) + r(ξ0, ξ

∗
n, Ynj),

with ῭
ξ0 = ∇2

ξ0
log pξ0 and some remainder term r(·) (which is to be

discussed below), and we conclude that (7.5) can be written as

η̂n(ξ
∗
n)− η̂n(ξ0)

=
n∑
j=1

an

(
C−1
ξ∗n
Sξ∗nB

nj
ξ∗n

(C−1
ξ∗n

)>
){

˙̀
ξ∗n(Ynj)− ˙̀

ξ0(Ynj)
}

+R1(ξ0, ξ
∗
n)

=
n∑
j=1

an

(
C−1
ξ∗n
Sξ∗nB

nj
ξ∗n

(C−1
ξ∗n

)>
)

῭
ξ0(Ynj)(ξ

∗
n − ξ0)

+R1(ξ0, ξ
∗
n) +R2(ξ0, ξ

∗
n),

(7.7)

where

R2(ξ0, ξ
∗
n) :=

n∑
j=1

an

(
C−1
ξ∗n
Sξ∗nB

nj
ξ∗n

(C−1
ξ∗n

)>
)
r(ξ0, ξ

∗
n, Ynj). (7.8)
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Summarising, the above calculations yield

1

an
(ξ̂n−ξ0)− η̂n(ξ0)

(7.3)
=

1

an
(ξ∗n − ξ0) + (η̂n(ξ

∗
n)− η̂n(ξ0))

(7.7)
=

(
1

an
1+

n∑
j=1

an

(
C−1
ξ∗n
Sξ∗nB

nj
ξ∗n

(C−1
ξ∗n

)>
)

῭
ξ0(Ynj)

)
(ξ∗n − ξ0)

+
2∑
s=1

Rs(ξ0, ξ
∗
n).

Setting

R3(ξ0, ξ
∗
n)

:=

(
1+

n∑
j=1

a2
n

(
C−1
ξ∗n
Sξ∗nB

nj
ξ∗n

(C−1
ξ∗n

)>
)

῭
ξ0(Ynj)

)
1

an
(ξ∗n − ξ0),

(7.9)

and R(ξ0, ξ
∗
n) :=

∑3
s=1Rs(ξ0, ξ

∗
n) the above display can be abbrevi-

ated to
1

an
(ξ̂n − ξ0) = η̂n(ξ0) +R(ξ0, ξ

∗
n). (7.10)

We continue with an examination of the asymptotic behaviour of
η̂n under the product measures P (n)

ξ =
⊗n

j=1 Pξ(xnj). From the

de�nition U ξ0,i
nj = anG

i
ξ0

(x̃nj)
> ˙̀

ξ0, according to (6.5), it follows that

U ξ0,i
nj ≡ 0 for j /∈ Kn. Hence, we conclude for the estimator η̂n

from (6.7) that of the total of n values ξ(xnj)�and thus from the
corresponding distributions Pξ(xnj)�only those have an in�uence
on the estimator's behaviour, for which |xnj − x0| ≤ K/bn. In
other words: the stochastic behaviour of η̂n only depends on the kn
distributions Pξ(xnj) with j ∈ Kn (cf. (4.7) for the de�nition of kn
and Kn).

Let for a moment n be �xed, and consider now some arbitrary,
but �xed ξ ∈ FH. Without loss of generality we may assume that
n is su�ciently large, such that x0 ±K/bn ∈ [0, 1]. If we de�ne a
map g = g(ξ, n) according to

g(x) :=

{
(ξ(x0 + x/bn)− ξ(x0)) /an, x ∈ [−K,K],

0, x /∈ [−K,K].
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then the local alternative γg,n around the point γ := ξ(x0) satis�es

γg,n(xnj)
(1.3)
= γ + ang(x̃nj)

= γ + ξ
(
x0 +

bn(xnj − x0)

bn

)
− γ = ξ(xnj),

for all j ∈ Kn, and

γg,n(x0) = γ = ξ(x0).

Since, by assumption, ξ is continuous on [0, 1], g is continuous
on [−K,K], and g(0) = 0. Furthermore, we conclude from the
properties of ξ that

‖g(x)− g(y)‖∞ =

∥∥∥∥ξ(x0 + x/bn)

an
− ξ(x0 + y/bn)

an

∥∥∥∥
∞

(3.9)
≤ 1

an
A(|x− y|/bn)ρ

(3.14)
= |x− y|ρ,

and therefore g ∈ G ∗H (i.e. g ∈ GH and g(0) = 0, see (3.13)).
Consequently, for each ξ ∈ FH and each index n there is a map
g ∈ G ∗H such that the local alternative γg,n (around the point γ =
ξ(x0)) and ξ have the same values at the points x0 and xnj, j ∈
Kn. The converse of this assertion also holds true. If γ ∈ Θ∗ and
g ∈ G ∗H are given, then the resulting local alternative γg,n coincides
on [x0−K/bn, x0 +K/bn]�and only this interval is of importance
for our examinations�with a function ξ ∈ FH with ξ(x0) = γ.
Indeed, we have γg,n(x0) = γ + ang(0) = γ and

‖γg,n(x)− γg,n(y)‖∞ = an‖g(bn(x− x0))− g(bn(y − x0))‖∞
(3.12)
≤ an(bn|x− y|)ρ

(3.14)
= u(|x− y|),

and γg,n is also continuous on [x0−K/bn, x0+K/bn]. These notions
yield the following equality of families of distributions,{⊗

j∈Kn

Pξ(xnj) : ξ ∈ FH

}
=

{⊗
j∈Kn

Pγg,n(xnj) : γ ∈ Θ∗, g ∈ G ∗H

}
.

As was mentioned before, the distribution of the estimator η̂n de-
pends on the product measure P (n)

ξ =
⊗n

j=1 Pξ(xnj) only through the
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components Pξ(xnj) with j ∈ Kn. From that we can now conclude
that

sup
ξ∈FH

P (n)

ξ

{
η̂n(ξ0) ∈ [−δ, δ]C

}
= sup

γ∈Θ∗
sup
g∈G ∗H

P (n)

γ,g

{
η̂n(γ) ∈ [−δ, δ]C

}
,

(7.11)

where ξ0 = ξ(x0) as before.
In Theorem 6.4 it was shown that L (η̂n(γ) | P (n)

γ,g) converges

uniformly in distribution on Λ = Θ∗ × GH to a family of normal
distributions. Together with the preceding observations this implies
that L (η̂n(ξ0) | P (n)

ξ ) converges uniformly in distribution on FH

(to the same family of normal distributions). If in addition we are
able to show that the remainder R(ξ0, ξ

∗
n) from (7.10) converges

uniformly in probability to zero (in the sense of De�nition 2.23),
i.e.

sup
ξ∈FH

P (n)

ξ {‖R(ξ0, ξ
∗
n)‖ > ε} → 0 (7.12)

for all ε > 0, then the generalised version of Slutsky's lemma
(Lemma 2.24) implies that

L (η̂n(ξ0) +R(ξ0, ξ
∗
n) | P

(n)

ξ )

converges uniformly in distribution on FH, too. To sum up, the
above arguments then yield

sup
ξ∈FH

P (n)

ξ

{
ξ̂n − ξ0 ∈ [−anδ, anδ]C

}
(7.10)
= sup

ξ∈FH

P (n)

ξ

{
η̂n(ξ0) +R(ξ0, ξ

∗
n) ∈ [−δ, δ]C

}
' sup

ξ∈FH

P (n)

ξ

{
η̂n(ξ0) ∈ [−δ, δ]C

}
(7.11)
= sup

γ∈Θ∗
sup
g∈G ∗H

P (n)

γ,g

{
η̂n(γ) ∈ [−δ, δ]C

}
→ sup

γ∈Θ∗
sup
g∈GH

N(µγ,g,Σγ)
(
[−δ, δ]C

)
.

The convergence in the last step follows from Corollary 6.9 if GH is
replaced by G ∗H, and the arguments at the beginning of the proof of
Theorem 6.3 imply that it does not play a role, if the supremum is
built with respect to GH or with respect to G ∗H.
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Therefore, the theorem is proved if we can show that (7.12)
holds. Following the de�nition of R(ξ0, ξ

∗
n) we have

sup
ξ∈FH

P (n)

ξ {‖R(ξ0, ξ
∗
n)‖ > ε} ≤ sup

ξ∈FH

P (n)

ξ

{ 3∑
s=1

‖Rs(ξ0, ξ
∗
n)‖ > ε

}

≤
3∑
s=1

sup
ξ∈FH

P (n)

ξ

{
‖Rs(ξ0, ξ

∗
n)‖ >

ε

3

}
.

The assertion (7.12) follows now from Lemmas 7.2�7.4. �

7.2 Lemma. supξ∈FH
P (n)

ξ {‖R1(ξ0, ξ
∗
n)‖ > ε} → 0 for all ε > 0.

7.3 Lemma. supξ∈FH
P (n)

ξ {‖R2(ξ0, ξ
∗
n)‖ > ε} → 0 for all ε > 0.

7.4 Lemma. supξ∈FH
P (n)

ξ {‖R3(ξ0, ξ
∗
n)‖ > ε} → 0 for all ε > 0.

7.2 Proofs

In this section we give the proofs of Lemmas 7.2�7.4. Throughout
this complete section we presume that the assumptions from The-
orem 7.1 hold, of course we use the notation used in the previous
section.

7.2.1 Preliminary considerations

Before we start with the proofs, we provide some tools and auxiliary
results, which will be needed later.

On Lipschitz conditions. From the discussion in Section 3.1 we
know that the Cholesky matrix Cγ is continuous in the parameter.
Furthermore, we have seen in Lemma 3.1 that the map γ 7→ v(γ)
is continuous. These results will now be re�ned: we will show that
v(·) and certain other maps even satisfy Lipschitz conditions. To
this end, we �rst provide some basic results on Lipschitz continuous
functions.

7.5 Lemma. (i) Let f1, . . . , fm : Rp → [0,∞) be Lipschitz con-
tinuous on U ⊆ Rp with Lipschitz constants Li. Then f :=
maxi fi is Lipschitz continuous on U , too, with constant L :=
maxi Li.
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(ii) Let f : Rq → R
d and g : Rp → R

q be Lipschitz continuous
on sets W ⊆ R

q and V ⊆ R
p, respectively, with Lipschitz

constants Lf and Lg. Suppose that g(V ) ⊆ W . Then f ◦ g is
Lipschitz continuous on V with Lipschitz constant LfLg.

(iii) Let f, g : Rp → R be Lipschitz continuous on U ⊆ Rp with
Lipschitz constants Lf and Lg, respectively. Presume that f
and g are also bounded on U , i.e. we have supx∈U |f(x)| ≤Mf

and supx∈U |g(x)| ≤ Mg. Then fg is Lipschitz continuous on
U with constant LfMg + LgMf .

(iv) Let f : Rp → R be Lipschitz continuous on U ⊆ R
p with

constant L, and suppose that f(x) ∈ [a,∞) for all x ∈ U ,
where a > 0. Then 1/f is Lipschitz continuous on U with
constant L/a2.

(v) Let U ⊆ R
p be compact and convex. Let f : U → R

q be
locally Lipschitz in the sense that for each x ∈ U there is an
open neigbourhood Ux of x on which f is Lipschitz continuous.
Then f is Lipschitz continuous on U .

Proof. Ad (i): Let x and y be arbitrary points in U . Then |f(x)−
f(y)| = |fk(x) − fl(y)| for certain indices k, l ∈ {1, . . . ,m}. In
case k = l the Lipschitz continuity of fk implies |f(x) − f(y)| ≤
L‖x − y‖. In the remaining case k 6= l we can assume without
loss of generality that fk(x) > fl(y) ≥ 0. We also have fl(y) =
maxi fi(y) ≥ fk(y), and thus

|fk(x)− fl(y)| = fk(x)− fl(y)

≤ fk(x)− fk(y)

= |fk(x)− fk(y)| ≤ Lk‖x− y‖.

Ad (ii): Trivial.
Ad (iii): For all x, y ∈ U we have

|f(x)g(x)− f(y)g(y)| ≤ |f(x)g(x)− f(x)g(y)|
+|f(x)g(y)− f(y)g(y)|

≤ Mf |g(x)− g(y)|+Mg|f(x)− f(y)|
≤ (MfLg +MgLf)‖x− y‖.
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Ad (iv): For all x, y ∈ U we have∣∣∣∣ 1

f(x)
− 1

f(y)

∣∣∣∣ =

∣∣∣∣ f(y)

f(x)f(y)
− f(x)

f(x)f(y)

∣∣∣∣
=

1

f(x)f(y)
|f(x)− f(y)| ≤ 1

a2L‖x− y‖.

Ad (v): Obviously, the sets Ux build an open cover of U . By
compactness, we can select a �nite subcover, i.e. we can select
x1, . . . , xm ∈ U such that U ⊆

⋃m
i=1 Uxi. We denote the lo-

cal Lipschitz constants on the sets Uxi by Li, and we set L :=
mmaxi=1,...,m Li. Let now arbitrary points x, y ∈ U be given.
If x, y ∈ Uxi for some index i, then of course ‖f(x) − f(y)‖ ≤
Li‖x− y‖ ≤ L‖x− y‖. It remains to investigate the case that no
such index i exists, i.e. we have x ∈ Uxi, y ∈ Uxj and i 6= j. Since U
is convex, the connecting line V = V (x, y) lies in U . Consequently,
there are s ≤ m−1 points y1, . . . , ys ∈ V and a sequence of indices
i = i1, . . . , is = j such that yr ∈ Uxir ∩ Uxir+1

. From the triangle
inequality and the local Lipschitz property we get

‖f(x)− f(y)‖ = ‖f(x)∓ f(y1)∓ · · · ∓ f(ys)− f(y)‖

≤ ‖f(x)− f(y1)‖+
s−1∑
r=1

‖f(yr)− f(yr+1)‖

+ ‖f(ys)− f(y)‖

≤ Li1‖x− y1‖+
s−1∑
r=1

Lir+1
‖yr − yr+1‖+ Ls‖ys − y‖

≤ max
i
Li

(
‖x− y1‖+

s−1∑
r=1

‖yr − yr+1‖+ ‖ys − y‖
)

≤ mmax
i
Li‖x− y‖.

The last inequality is a consequence of the fact that the distance
between any two points yr, ys ∈ V can never be greater than that
between x and y. Altogether, the above calculations yield

‖f(x)− f(y)‖ ≤ mmax
i
Li‖x− y‖ = L‖x− y‖,

and thus the stated global Lipschitz continuity of f . �
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We will apply this lemma for the proofs of the following results.
Moreover, we will use some of the notation that was already used for
the construction of v = v(γ) in Section 3.5.3. Recall the de�nition
of the set Θ′ = {ξ(x) | x ∈ [0, 1], ξ ∈ F} given in (3.7).

7.6 Proposition. The maps γ 7→ Cγ, γ 7→ C−1
γ , γ 7→ ‖Cjγ‖1 and

γ 7→ vj(γ) (j = 1, . . . , d) are Lipschitz continuous on Θ′.

Proof. According to the assumptions from Section 3.2 the entries
of the information matrix Iγ are�as functions of γ�continuously
partially di�erentiable on Θ. Since the entries of the corresponding
Cholesky decomposition Cγ and its inverse C−1

γ result from linear
combinations of the entries of Iγ, it follows that the components
of the maps γ 7→ Cγ are continuously partially di�erentiable on Θ,
too (cf. Opfer, 2001, p. 175 f.). An analogue result holds for the
maps γ 7→ C−1

γ and γ 7→ I−1
γ .

As a consequence, the maps γ 7→ Cjγ (j = 1, . . . , d) are con-
tinuously partially di�erentiable. In particular, they are Lipschitz
continuous on Θ′ ⊆ Θ, which follows from the compactness of Θ′

and an application of the mean value theorem (cf. Königsberger,
2000, p. 56). An analogue result holds of course for γ 7→ ‖Cjγ‖1.
This proves the �rst part of the assertion.

Furthermore, the just shown partial di�erentiability of the map
C(·) implies that the vectors w(i) = w(i)(γ) = Cγδ(i) from (3.18)�
interpreted as Rd-valued functions�are continuously partially dif-
ferentiable on Θ, and thus of course Lipschitz continuous on Θ′.
From (i) and (ii) in Lemma 7.5 then it follows that also the maps
γ 7→ w(γ) (since the absolute value is Lipschitz continuous) and
γ 7→ w̃(i)(γ) as in (3.19) and (3.20) are Lipschitz continuous on Θ′.
The same also holds for the maps z(i)(γ). With (i) in Lemma 7.5 it
follows, that the function α = α(γ) from (3.21) is Lipschitz continu-
ous on Θ′. Furthermore, α is on Θ′ strictly bounded away from zero,
which follows from the continuity of the z(i)(γ) and the de�nition
of α. Therefore, assertions (iv) and (iii) in Lemma 7.5 imply that
the map γ 7→ 1/α(γ), and hence the product v(γ) = w(γ)/α(γ),
too, are Lipschitz continuous on Θ′. �

7.7 Proposition. The maps γ 7→ βj(γ) and γ 7→ Sj(γ) (j =
1, . . . , d) are Lipschitz continuous on Θ′.



124 Chapter 7. Upper minimax risk bounds in the global model

Proof. In Lemma 6.6 we already proved that β(γ) is continuous.
As in the proof of that lemma, let an arbitrary γ0 ∈ Θ be given
and let

(x∗, y∗, z∗) = (vj(γ), ‖Cjγ0
‖1, βj(γ0)).

The implicit function theorem guaranteed the existence of open
neighbourhoods U(x∗,y∗) and Uz∗ of (x∗, y∗) and z∗, respectively, and
of a unique, continuously di�erentiable function f : U(x∗,y∗) → Uz∗

satisfying f(x∗, y∗) = z∗ and (6.14). We may without loss of gen-
erality assume that the partial derivatives of f are bounded on
U(x∗,y∗). (Otherwise, one may simply scale down the sets U(x∗,y∗)

and Uz∗ and thus pass over to suitable subsets for which this holds
true.) Thus, as a consequence of the mean value theorem f is
Lipschitz continuous. In combination with Proposition 7.6 fol-
lows the existence of a neighbourhood Uγ0

of γ0 such that q =
(vj(·), ‖Cj(·)‖1) : Uγ0

→ U(x∗,y∗) is Lipschitz continuous. Then f ◦
q is Lipschitz continuous on Uγ0

, too. This follows from (ii) in
Lemma 7.5. With similar arguments as in the proof of Lemma 6.6
we conclude from the uniqueness of f that the map γ 7→ βj(γ) is
Lipschitz continuous on Uγ0

. Since γ0 ∈ Θ was chosen arbitrar-
ily, this implies that βj and thus β are locally Lipschitz on Θ. In
combination with (v) of Lemma 7.5 this implies the assertion. �

7.8 Remark. In the univariate case (i.e. for d = 1) the result from
Proposition 7.7 can be proved much more simple. In this special
case, the function F from the proof of Lemma 6.6 (which is used
to prove continuity of β(·)) can be simpli�ed to

F : Θ× (δ,∞)→ R, (x, z) 7→ z1+1/ρ

log z+δ
z−δ
− ρ+ 1

2Ixδ
.

The implicit function theorem directly implies that for each θ there
is a neighbourhood Uθ on which γ 7→ β(γ) is continuously di�er-
entiable and thus locally Lipschitz. Global Lipschitz continuity of
β(·) is then of course deduced with the same argument as in the
proof of Proposition 7.7.
The problem of the general multivariate case d ≥ 1 in comparison
with the univariate one is that the additional functions γ 7→ vj(γ)
must be incorporated. In general, these are not di�erentiable, be-
cause in the construction of these functions we often take abso-
lute values (such as in (3.19)), which might destroy di�erentiability
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properties. This prohibits us to directly conclude that the function
f ◦ q from the proof of Lemma 6.6 is continuously di�erentiable
and thus (locally) Lipschitz. Therefore, we are forced to make the
above detour to prove the assertion of the theorem.

Matrix norms. As is well known, the Euclidean norm ‖·‖ on Rd

induces a norm ||| · ||| on Rd×d, the vector space of d × d-matrices,
by the relation

|||A||| := sup
x∈Rd,x6=0

‖Ax‖
‖x‖

, A ∈ Rd×d.

Since A is a linear map (or operator), |||·||| is sometimes also referred
to as the operator norm with respect to the Euclidean norm. Note
that all norms on Rd×d are equivalent, which means in particular
that for matrices An, A ∈ Rd×d the following holds:

An → A with respect to ||| · ||| ⇔ An → A component-wise

(cf. Königsberger, 2000, p. 27). In particular, one may conclude
that if An → A component-wise, then also |||An||| → |||A|||. (Of
course, the inverse statement does in general not hold true.) A
di�erent norm on Rd×d is given by the Frobenius norm, which is
de�ned as

‖A‖F :=

( d∑
i,j=1

a2
ij

)1/2

, A = (aij) ∈ Rd×d.

Of course, one may rearrange the elements of A and write it as a
vector of length d2. In this case, the Frobenius norm coincides with
the Euclidean norm on Rd2

. Note that we have the inequalities

‖Av‖ ≤ |||A||| ‖v‖,
|||AB||| ≤ |||A||| |||B|||, for all A,B ∈ Rd×d, v ∈ Rd.

(7.13)

These will be of great value for the proofs of the lemmas. For
further information on matrix norms see Opfer (2001), p. 228 �.,
or Königsberger (2000), p. 25 �.

The role of the preliminary estimator. For the proof of Lem-
mas 7.2�7.4 we have to show that for s = 1, 2, 3 and every ε > 0
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holds

sup
ξ∈FH

P (n)

ξ {‖Rs(ξ0, ξ
∗
n)‖ > ε} → 0.

To do so, we can often exploit the properties of the preliminary
estimator. Besides ε > 0 let some ι > 0 be given, and let C = Cι
be such that (7.1) is satis�ed. Then

sup
ξ∈FH

P (n)

ξ {‖Rs(ξ0, ξ
∗
n)‖ > ε}

≤ sup
ξ∈FH

P (n)

ξ

{
‖Rs(ξ0, ξ

∗
n)‖ > ε, 1

an
‖ξ∗n − ξ0‖ > C

}
+ sup

ξ∈FH

P (n)

ξ

{
‖Rs(ξ0, ξ

∗
n)‖ > ε, 1

an
‖ξ∗n − ξ0‖ ≤ C

}
≤ sup

ξ∈FH

P (n)

ξ

{ 1
an
‖ξ∗n − ξ0‖ > C

}
+ sup

ξ∈FH

P (n)

ξ

{
sup

‖z−ξ0‖≤anC
‖Rs(ξ0, z)‖ > ε

}
.

According to (7.1), the limit superior of the �rst of these two sum-
mands is bounded by ι (as n→∞). If, in addition, we are able to
show that the supremum on the right hand side of the last display
converges to zero, we can conclude that

lim sup
n→∞

sup
ξ∈FH

P (n)

ξ {‖Rs(ξ0, ξ
∗
n)‖ > ε}

≤ ι + lim sup
n→∞

sup
ξ∈FH

P (n)

ξ

{
sup

‖z−ξ0‖≤anC
‖Rs(ξ0, z)‖ > ε

}
= ι.

Since ι can be chosen arbitrarily small, this implies

sup
ξ∈FH

P (n)

ξ {‖Rs(ξ0, ξ
∗
n)‖ > ε} → 0,

and thus one of the Lemmas 7.2�7.4 (depending on whether s =
1, 2, 3). Therefore, it remains to prove that for all C > 0, ε > 0
and s = 1, 2, 3 the assertion

sup
ξ∈FH

P (n)

ξ

{
sup

‖z−ξ0‖≤anC
‖Rs(ξ0, z)‖ > ε

}
→ 0 (7.14)

holds true.
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7.2.2 Proof of Lemma 7.2

Throughout the following calculations let ξ0 = ξ(x0). We prove
(7.14) for the case s = 1. To this end, let some arbitrary, but �xed
C > 0 and ε > 0 be given. We show that

sup
ξ∈FH

P (n)

ξ

{
sup

‖z−ξ0‖≤anC
‖R1(ξ0, z)‖ > ε

}
→ 0. (7.15)

Together with the considerations from the end of Section 7.2.1 this
implies the assertion of Lemma 7.2.

Some notation and auxiliary results. Let us �rst consider a �xed
ξ ∈ FH, and let ξ0 = ξ(x0). We set

βmin
n := βmin

n (ξ0) := inf{βi(z) : ‖z − ξ0‖ ≤ anC, i = 1, . . . , d},
βmax
n := βmax

n (ξ0) := sup{βi(z) : ‖z − ξ0‖ ≤ anC, i = 1, . . . , d}.

As usual, βi(z) denotes the solution to equation (5.44) with γ re-
placed by z. By de�nition each of the functions βi(·) is strictly
positive and furthermore continuous on Θ (Lemma 6.6), and thus

0 < inf
ξ0∈Θ∗

lim inf
n→∞

βmin
n (ξ0)

≤ sup
ξ0∈Θ∗

lim sup
n→∞

βmax
n (ξ0) < ∞. (7.16)

Moreover, it is clear that for ξ0 ∈ Θ∗ and all z such that ‖z−ξ0‖ ≤
anC holds, we eventually have z ∈ Θ′, provided that n is su�ciently
large. Since β(·) is even Lipschitz continuous on that set (according
to Proposition 7.7) we conclude that

sup
ξ0∈Θ∗
{βmax

n (ξ0)− βmin
n (ξ0)} = O(an). (7.17)

Besides the above quantities we introduce index sets

Hn := Hn(ξ0) := Kn ∩ {j = 1, . . . , n : |x̃nj| ≤ (βmin
n )1/ρ},

and

Mn := Mn(ξ0)

:= Kn ∩ {j = 1, . . . , n : (βmin
n )1/ρ < |x̃nj| ≤ (βmax

n )1/ρ},
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where Kn is de�ned as in (4.7). Because of Hn ⊆ Kn we have
#Hn(ξ0) ≤ #Kn = kn for all ξ0. Moreover,

#Mn . [(βmax
n )1/ρ − (βmin

n )1/ρ]n/bn

. (βmax
n − βmin

n )n/bn.

The last inequality follows from (7.16) in combination with the fact
that the map x 7→ x1/ρ is Lipschitz continuous on every compact
interval lying in (0,∞). Together with (7.17) this leads to

sup
ξ0∈Θ∗

#Mn(ξ0) .
ann

bn
. (7.18)

The index set Hn is motivated by the following observation: let ξ0

be given and z be such that ‖z − ξ0‖ ≤ anC. Then, of course,
β(ξ0), β(z) > βmin

n , and thus

|gβ(z)(x̃nj)− gβ(ξ0)(x̃nj)|
(5.15)
= |β(ξ0)− β(z)|, j ∈ Hn. (7.19)

This relation will turn out helpful in later investigations.

In the following calculations we will often consider the supremum
with respect to the set {z : ‖z − ξ0‖ ≤ anC}, for given ξ0 ∈ Θ∗.
In order to keep the notation short, we will often write this as
sup‖z−ξ0‖≤anC(. . . ) or shortly supz(. . . ).

Proof of Lemma 7.2. With these additional considerations we can
now assess the asymptotic behaviour of the remainder term R1 from
the de�nition in (7.6). If we replace ξ∗n with z in that de�nition, we
get

R1(ξ0, z) =
n∑
j=1

an

(
C−1
z SzB

nj
z (C−1

z )> − C−1
ξ0
Sξ0B

nj
ξ0

(C−1
ξ0

)>
)

˙̀
ξ0(Ynj).

From the de�nition in (7.4) it follows that Bnj
ξ0

= Bnj
z = 0 for all

indices j with |x̃nj| > (βmax
n )1/ρ. Therefore, it su�ces to build the

sum in the above display only with respect to all j for which this
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is satis�ed, namely for j ∈ Hn ∪Mn. Hence,

sup
‖z−ξ0‖≤anC

‖R1(ξ0, z)‖

≤ sup
z

∥∥∥∥ ∑
j∈Hn

an

(
C−1
z SzB

nj
z (C−1

z )>

− C−1
ξ0
Sξ0B

nj
ξ0

(C−1
ξ0

)>
)

˙̀
ξ0(Ynj)

∥∥∥∥
+ sup

z

∥∥∥∥ ∑
j∈Mn

an

(
C−1
z SzB

nj
z (C−1

z )>

− C−1
ξ0
Sξ0B

nj
ξ0

(C−1
ξ0

)>
)

˙̀
ξ0(Ynj)

∥∥∥∥. (7.20)

In order to prove that R1(ξ0, z) converges uniformly in probability
to zero we show that both of the suprema on the right hand side of
(7.20) do so.

Assessment of the �rst expression in (7.20). To prove that the �rst
expression in (7.20) converges uniformly in probability to zero, we
�rst derive a (rather crude) upper bound, which does only depend
on the previously �xed ξ0. We then show that this upper bound
converges uniformly in probability to zero. Adding and subtracting
an additional term C−1

ξ0
Sξ0B

nj
z (C−1

z )>, we obtain

C−1
z SzB

nj
z (C−1

z )> − C−1
ξ0
Sξ0B

nj
ξ0

(C−1
ξ0

)>

= C−1
z SzB

nj
z (C−1

z )> ± C−1
ξ0
Sξ0B

nj
z (C−1

z )> − C−1
ξ0
Sξ0B

nj
ξ0

(C−1
ξ0

)>

=
(
C−1
z Sz − C−1

ξ0
Sξ0

)
Bnj
z (C−1

z )>

+ C−1
ξ0
Sξ0

(
Bnj
z (C−1

z )> −Bnj
ξ0

(C−1
ξ0

)>
)
. (7.21)

Hence, a multiple application of the triangle inequality and the
inequalities for the operator norm yield
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sup
z

∥∥∥∥ ∑
j∈Hn

an

(
C−1
z SzB

nj
z (C−1

z )> − C−1
ξ0
Sξ0B

nj
ξ0

(C−1
ξ0

)>
)

˙̀
ξ0(Ynj)

∥∥∥∥
≤ sup

z

∥∥∥∥ ∑
j∈Hn

an

(
C−1
z Sz − C−1

ξ0
Sξ0

)
Bnj
z (C−1

z )> ˙̀
ξ0(Ynj)

∥∥∥∥
+ sup

z

∥∥∥∥ ∑
j∈Hn

anC−1
ξ0
Sξ0

(
Bnj
z (C−1

z )> −Bnj
ξ0

(C−1
ξ0

)>
)

˙̀
ξ0(Ynj)

∥∥∥∥
(7.13)
≤ sup

z
|||C−1

z Sz − C−1
ξ0
Sξ0||| sup

z

∥∥∥∥ ∑
j∈Hn

anB
nj
z (C−1

z )> ˙̀
ξ0(Ynj)

∥∥∥∥
+ |||C−1

ξ0
Sξ0||| sup

z

∥∥∥∥ ∑
j∈Hn

an

(
Bnj
z (C−1

z )> −Bnj
ξ0

(C−1
ξ0

)>
)

˙̀
ξ0(Ynj)

∥∥∥∥
(∗)
. sup

z
|||C−1

z Sz − C−1
ξ0
Sξ0|||

d∑
i=1

sup
z

∣∣∣∣ ∑
j∈Hn

ane
>
i B

nj
z (C−1

z )> ˙̀
ξ0(Ynj)

∣∣∣∣
+ |||C−1

ξ0
Sξ0|||

d∑
i=1

sup
z

∣∣∣∣ ∑
j∈Hn

ane
>
i

(
Bnj
z (C−1

z )>

−Bnj
ξ0

(C−1
ξ0

)>
)

˙̀
ξ0(Ynj)

∣∣∣∣.
Note that in the last step (∗) we simply exploited that ‖w‖ .
‖w‖1 =

∑d
i=1 |wi| for all vectors w ∈ Rd. Here ei denotes the ith

unit vector. Since the matrices C(·) and S(·) (i.e. their components)
are Lipschitz continuous on Θ′, the same holds true for the map
C−1

(·) S(·) (see the results from Section 7.2.1). Hence,

sup
z
|||C−1

z Sz − C−1
ξ0
Sξ0||| . an, (7.22)

where the right hand side does not depend on ξ0. Moreover, because
the considered map is continuous, we can bound |||C−1

ξ0
Sξ0||| uniformly

in ξ0. These properties, combined with the preceding calculations,
yield
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sup
z

∥∥∥∥ ∑
j∈Hn

an

(
C−1
z SzB

nj
z (C−1

z )> − C−1
ξ0
Sξ0B

nj
ξ0

(C−1
ξ0

)>
)

˙̀
ξ0(Ynj)

∥∥∥∥
. an

d∑
i=1

sup
z

∣∣∣∣ ∑
j∈Hn

ane
>
i B

nj
z (C−1

z )> ˙̀
ξ0(Ynj)

∣∣∣∣
+

d∑
i=1

sup
z

∣∣∣∣ ∑
j∈Hn

ane
>
i

(
Bnj
z (C−1

z )> −Bnj
ξ0

(C−1
ξ0

)>
)

˙̀
ξ0(Ynj)

∣∣∣∣
(7.4)
= an

d∑
i=1

sup
z

∣∣∣∣ ∑
j∈Hn

angβi(z)(x̃nj)e
>
i (C−1

z )> ˙̀
ξ0(Ynj)

∣∣∣∣
+

d∑
i=1

sup
z

∣∣∣∣ ∑
j∈Hn

ane
>
i

(
gβi(z)(x̃nj)(C

−1
z )>

− gβi(ξ0)(x̃nj)(C−1
ξ0

)>
)

˙̀
ξ0(Ynj)

∣∣∣∣. (7.23)

Using the Cauchy-Schwarz inequality we �nd an upper bound for
the summands of the �rst sum in (7.23) by∣∣∣∣ ∑

j∈Hn

angβi(z)(x̃nj)e
>
i (C−1

z )> ˙̀
ξ0(Ynj)

∣∣∣∣
≤ ‖C−1

z ei‖
∥∥∥∥ ∑
j∈Hn

angβi(z)(x̃nj)
˙̀
ξ0(Ynj)

∥∥∥∥
(7.13)
≤ |||C−1

z |||
∥∥∥∥ ∑
j∈Hn

angβi(z)(x̃nj)
˙̀
ξ0(Ynj)

∥∥∥∥
.

∥∥∥∥ ∑
j∈Hn

angβi(z)(x̃nj)
˙̀
ξ0(Ynj)

∥∥∥∥. (7.24)
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This last expression can further be bounded from above in the fol-
lowing way:∥∥∥∥ ∑

j∈Hn

angβi(z)(x̃nj)
˙̀
ξ0(Ynj)

∥∥∥∥
≤

∥∥∥∥ ∑
j∈Hn

an
(
gβi(z)(x̃nj)− gβi(ξ0)(x̃nj)

)
˙̀
ξ0(Ynj)

∥∥∥∥
+

∥∥∥∥ ∑
j∈Hn

angβi(ξ0)(x̃nj) ˙̀
ξ0(Ynj)

∥∥∥∥
(7.19)
= |βi(z)− βi(ξ0)|

∥∥∥∥ ∑
j∈Hn

an ˙̀
ξ0(Ynj)

∥∥∥∥
+

∥∥∥∥ ∑
j∈Hn

angβi(ξ0)(x̃nj) ˙̀
ξ0(Ynj)

∥∥∥∥
(�)
. an

∥∥∥∥ ∑
j∈Hn

an ˙̀
ξ0(Ynj)

∥∥∥∥+

∥∥∥∥ ∑
j∈Hn

angβi(ξ0)(x̃nj) ˙̀
ξ0(Ynj)

∥∥∥∥, (7.25)

where (�) is a consequence of the Lipschitz continuity of βi(·)
(Proposition 7.7). Note that (7.25) also incorporates the inequality∥∥∥∥ ∑

j∈Hn

an
(
gβi(z)(x̃nj)− gβi(ξ0)(x̃nj)

)
˙̀
ξ0(Ynj)

∥∥∥∥
.

∥∥∥∥ ∑
j∈Hn

a2
n

˙̀
ξ0(Ynj)

∥∥∥∥, (7.26)

which turns out useful in later examinations. Summarising, the
above calculations yield the following upper bound for the �rst of
the two expressions in (7.23):

an

d∑
i=1

sup
z

∣∣∣∣ ∑
j∈Hn

angβi(z)(x̃nj)e
>
i (C−1

z )> ˙̀
ξ0(Ynj)

∣∣∣∣
(7.24)
. an

d∑
i=1

sup
z

∥∥∥∥ ∑
j∈Hn

angβi(z)(x̃nj)
˙̀
ξ0(Ynj)

∥∥∥∥
(7.25)
. an

d∑
i=1

sup
z

(∥∥∥∥ ∑
j∈Hn

a2
n

˙̀
ξ0(Ynj)

∥∥∥∥ . . .
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+

∥∥∥∥ ∑
j∈Hn

angβi(ξ0)(x̃nj) ˙̀
ξ0(Ynj)

∥∥∥∥
)

. an

∥∥∥∥ ∑
j∈Hn

a2
n

˙̀
ξ0(Ynj)

∥∥∥∥
+ an

d∑
i=1

∥∥∥∥ ∑
j∈Hn

angβi(ξ0)(x̃nj) ˙̀
ξ0(Ynj)

∥∥∥∥. (7.27)

With similar calculations we may bound the second sum in (7.23).
From an application of the triangle and Cauchy-Schwarz inequatl-
ities we get

∣∣∣∣ ∑
j∈Hn

ane
>
i

(
gβi(z)(x̃nj)(C

−1
z )> − gβi(ξ0)(x̃nj)(C−1

ξ0
)>
)

˙̀
ξ0(Ynj)

∣∣∣∣
≤

∣∣∣∣ ∑
j∈Hn

ane
>
i

(
gβi(z)(x̃nj)(C

−1
z )> − gβi(z)(x̃nj)(C

−1
ξ0

)>
)

˙̀
ξ0(Ynj)

∣∣∣∣
+

∣∣∣∣ ∑
j∈Hn

ane
>
i

(
gβi(z)(x̃nj)(C

−1
ξ0

)> − gβi(ξ0)(x̃nj)(C−1
ξ0

)>
)

˙̀
ξ0(Ynj)

∣∣∣∣
≤ ‖(C−1

z − C−1
ξ0

)ei‖
∥∥∥∥ ∑
j∈Hn

angβi(z)(x̃nj)
˙̀
ξ0(Ynj)

∥∥∥∥
+ ‖C−1

ξ0
ei‖
∥∥∥∥ ∑
j∈Hn

an
(
gβi(z)(x̃nj)− gβi(ξ0)(x̃nj)

)
˙̀
ξ0(Ynj)

∥∥∥∥
(7.13)
≤ |||C−1

z − C−1
ξ0
|||
∥∥∥∥ ∑
j∈Hn

angβi(z)(x̃nj)
˙̀
ξ0(Ynj)

∥∥∥∥
+ |||C−1

ξ0
|||
∥∥∥∥ ∑
j∈Hn

an
(
gβi(z)(x̃nj)− gβi(ξ0)(x̃nj)

)
˙̀
ξ0(Ynj)

∥∥∥∥.

The same Lipschitz and continuity arguments that were used before
for the proof of (7.22) yield |||C−1

z − C−1
ξ0
||| . an and, in addition,
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|||C−1
ξ0
||| can be uniformly bounded by some constant. Consequently,

∣∣∣∣ ∑
j∈Hn

ane
>
i

(
gβi(z)(x̃nj)(C

−1
z )> − gβi(ξ0)(x̃nj)(C−1

ξ0
)>
)

˙̀
ξ0(Ynj)

∣∣∣∣
. an

∥∥∥∥ ∑
j∈Hn

angβi(z)(x̃nj)
˙̀
ξ0(Ynj)

∥∥∥∥
+

∥∥∥∥ ∑
j∈Hn

an
(
gβi(z)(x̃nj)− gβi(ξ0)(x̃nj)

)
˙̀
ξ0(Ynj)

∥∥∥∥
(7.25)
. an

(∥∥∥∥ ∑
j∈Hn

a2
n

˙̀
ξ0(Ynj)

∥∥∥∥+

∥∥∥∥ ∑
j∈Hn

angβi(ξ0)(x̃nj) ˙̀
ξ0(Ynj)

∥∥∥∥
)

+

∥∥∥∥ ∑
j∈Hn

an
(
gβi(z)(x̃nj)− gβi(ξ0)(x̃nj)

)
˙̀
ξ0(Ynj)

∥∥∥∥
(7.26)
. an

(∥∥∥∥ ∑
j∈Hn

a2
n

˙̀
ξ0(Ynj)

∥∥∥∥+

∥∥∥∥ ∑
j∈Hn

angβi(ξ0)(x̃nj) ˙̀
ξ0(Ynj)

∥∥∥∥
)

+

∥∥∥∥ ∑
j∈Hn

a2
n

˙̀
ξ0(Ynj)

∥∥∥∥. (7.28)

Therefore, for the second expression in (7.23) we �nd an upper
bound by

d∑
i=1

sup
z

∣∣∣∣∑
j∈Hn

ane
>
i

(
gβi(z)(x̃nj)(C

−1
z )> − gβi(ξ0)(x̃nj)(C−1

ξ0
)>
)

˙̀
ξ0(Ynj)

∣∣∣∣
(7.28)
. an

∥∥∥∥ ∑
j∈Hn

a2
n

˙̀
ξ0(Ynj)

∥∥∥∥+

∥∥∥∥ ∑
j∈Hn

a2
n

˙̀
ξ0(Ynj)

∥∥∥∥
+

d∑
i=1

∥∥∥∥ ∑
j∈Hn

a2
ngβi(ξ0)(x̃nj) ˙̀

ξ0(Ynj)

∥∥∥∥
.

∥∥∥∥ ∑
j∈Hn

a2
n

˙̀
ξ0(Ynj)

∥∥∥∥+
d∑
i=1

∥∥∥∥ ∑
j∈Hn

a2
ngβi(ξ0)(x̃nj) ˙̀

ξ0(Ynj)

∥∥∥∥.
The last step follows simply from the inequality 1 + an ≤ 2. Com-
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bining this result with (7.27) and (7.23), we get

sup
‖z−ξ0‖≤anC

∥∥∥∥∑
j∈Hn

an

(
C−1
z SzB

nj
z (C−1

z )>−C−1
ξ0
Sξ0B

nj
ξ0

(C−1
ξ0

)>
)

˙̀
ξ0(Ynj)

∥∥∥∥
.

∥∥∥∥ ∑
j∈Hn

a2
n

˙̀
ξ0(Ynj)

∥∥∥∥+
d∑
i=1

∥∥∥∥ ∑
j∈Hn

a2
ngβi(ξ0)(x̃nj) ˙̀

ξ0(Ynj)

∥∥∥∥. (7.29)

Next we prove that both of the expressions in (7.29) converge uni-
formly in probability to zero. For arbitrary, but �xed ξ ∈ FH

Markov's inequality yields

P (n)

ξ

{∥∥∥∥ ∑
j∈Hn

a2
n

˙̀
ξ0(Ynj)

∥∥∥∥ > ε

2

}
≤ 4

ε2 E

∥∥∥∥ ∑
j∈Hn

a2
n

˙̀
ξ0(Ynj)

∥∥∥∥2

, (7.30)

and

P (n)

ξ

{ d∑
i=1

∥∥∥∥ ∑
j∈Hn

a2
ngβi(ξ0)(x̃nj) ˙̀

ξ0(Ynj)

∥∥∥∥ > ε

2

}

≤
d∑
i=1

P (n)

ξ

{∥∥∥∥ ∑
j∈Hn

a2
ngβi(ξ0)(x̃nj) ˙̀

ξ0(Ynj)

∥∥∥∥ > ε

2d

}

≤
d∑
i=1

4d2

ε2 E

∥∥∥∥ ∑
j∈Hn

a2
ngβi(ξ0)(x̃nj) ˙̀

ξ0(Ynj)

∥∥∥∥2

. (7.31)

The expectation in the above displays is to be built with respect to
the product measure P (n)

ξ . In order to prove that the expressions
from (7.29) converge uniformly in probability to zero, it is su�cient
to prove that the expectations in (7.30) and (7.31) converge to zero
uniformly as n→∞. We can also write these expectations as

E

∥∥∥∥ ∑
j∈Hn

a2
nwnj

˙̀
ξ0(Ynj)

∥∥∥∥2

,

where either wnj = gβi(x̃nj) for all n, j, or wnj ≡ 1 for all n, j.
Moreover, we set

w := sup
{

1 + βi(ξ0) : ξ0 ∈ Θ′, i = 1, . . . , d
}
<∞,

which yields wnj ≤ w for all n, j and for either choice of wnj.
Note that this inequality does not depend on the choice of the
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point ξ0 and thus not on the choice of ξ ∈ FH either. Further-
more, we observe that for arbitrary stochastically independent, Rd-
valued random variables X1, . . . , Xm with �nite second moments
(in vector notation written as Xj = (Xj,1, . . . , Xj,d)

>) the follow-
ing (in)equalities hold:

E

∥∥∥∥ m∑
j=1

Xj

∥∥∥∥2

=
d∑

k=1

E

( m∑
j=1

Xj,k

)2

=
d∑

k=1

{
Var

m∑
j=1

Xj,k +

(
E

m∑
j=1

Xj,k

)2
}

=
d∑

k=1

{
m∑
j=1

VarXj,k +

( m∑
j=1

EXj,k

)2
}

≤
d∑

k=1

{
m∑
j=1

EX2
j,k +

( m∑
j=1

EXj,k

)2
}
. (7.32)

Together with the above de�nition of w (7.32) yields

E

∥∥∥∥ ∑
j∈Hn

a2
nwnj

˙̀
ξ0(Ynj)

∥∥∥∥2

≤
d∑

k=1

{∑
j∈Hn

a4
nw

2
nj

∫
˙̀2
ξ0,k

dPξ(xnj)

+

(∑
j∈Hn

a2
nwnj

∫
˙̀
ξ0,k dPξ(xnj)

)2
}

≤
d∑

k=1

{
kna

4
nw

2 sup
j∈Hn

∫
˙̀2
ξ0,k

dPξ(xnj)

+

(
kna

2
nw sup

j∈Hn

∫
˙̀
ξ0,k dPξ(xnj)

)2
}
. (7.33)

In the above inequalities we further used that #Hn(ξ0) ≤ kn (for
each ξ0). Moreover, fromHn ⊆ Kn it follows that |xnj−x0| ≤ K/bn
for all indices j ∈ Hn. According to the smoothness assumptions
from Section 3.2, the maps (θ, τ) 7→

∫
˙̀l
θ,k dPτ (for l = 1, 2) are

continuously partially di�erentiable on Θ and thus�by virtue of
the mean value theorem�Lipschitz continuous on the compact and
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convex set Θ′. Since ξ(x0) = ξ0 ∈ Θ′ and ξ(xnj) ∈ Θ′ (which
follows from the de�nition of Θ′) this implies for the case l = 1 and
all k = 1, . . . , d that

sup
j∈Hn

∣∣∣∣ ∫ ˙̀
ξ0,k dPξ(xnj)

∣∣∣∣ = sup
j∈Hn

∣∣∣∣ ∫ ˙̀
ξ0,k dPξ(xnj) −

∫
˙̀
ξ0,k dPξ0︸ ︷︷ ︸

=0

∣∣∣∣
. sup

j∈Hn
‖ξ(xnj)− ξ0‖

= sup
j∈Hn
‖ξ(xnj)− ξ(x0)‖.

As a consequence of the above considerations we have supj∈Hn |xnj−
x0| ≤ K/bn, and in combination with the growth condition in (3.6)
and the de�nition of an in (3.14) it follows that the last expression
is of the order O(an).

As a further consequence of the di�erentiability of the maps
(θ, τ) 7→

∫
˙̀l
θ,k dPτ we can conclude for the case l = 2 that∫

˙̀2
θ,k dPτ is bounded for all θ, τ ∈ Θ′, and thus

sup
j∈Hn

∫
˙̀2
ξ0,k

dPξ(xnj) . 1

for all k = 1, . . . , d. In addition, one can conclude from the smooth-
ness assumptions in Section 3.2 that the upper bounds just derived
do not depend on the choice of ξ and ξ0 = ξ(x0), respectively. Con-
sequently, if instead of a single function ξ we consider the whole
class FH, we get

sup
ξ∈FH

sup
j∈Hn

∣∣∣∣ ∫ ˙̀
ξ0,k dPξ(xnj)

∣∣∣∣ . sup
ξ∈FH

sup
j∈Hn
‖ξ(xnj)− ξ(x0)‖ . an,

sup
ξ∈FH

sup
j∈Hn

∫
˙̀2
ξ0,k

dPξ(xnj) < ∞. (7.34)

According to (4.8) we have a2
n ' 2K/kn, and thus in particular

kna
m
n = o(1), for m > 2. From the above calculations we conclude
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that

sup
ξ∈FH

∫ ∥∥∥∥ ∑
j∈Hn

a2
nwnj

˙̀
ξ0(Ynj)

∥∥∥∥2

dP (n)

ξ

(7.33)
≤

d∑
k=1

{
kna

4
nw

2 sup
ξ∈FH

sup
j∈Hn

∫
˙̀2
ξ0,k

dPξ(xnj)

+

(
kna

2
nw sup

ξ∈FH

sup
j∈Hn

∫
˙̀
ξ0,k dPξ(xnj)

)2
}

(7.34)
. kna

4
n + (kna

3
n)

2 = o(1). (7.35)

Of course, the �.� symbol in (7.29) can be replaced by �≤� by
multiplying the right hand side of that inequality with some positive
constant, say N . Let now some arbitrary ε > 0 be given. Putting
together the above results, we have shown that

sup
ξ∈FH

P (n)

ξ

{
sup

‖z−ξ0‖≤anC

∥∥∥∥ ∑
j∈Hn

an
(
C−1
z SzB

nj
z (C−1

z )>

−C−1
ξ0
Sξ0B

nj
ξ0

(C−1
ξ0

)>
)

˙̀
ξ0(Ynj)

∥∥∥∥ > ε

}
(7.29)
≤ sup

ξ∈FH

P (n)

ξ

{
N

∥∥∥∥ ∑
j∈Hn

a2
n

˙̀
ξ0(Ynj)

∥∥∥∥
+N

d∑
i=1

∥∥∥∥ ∑
j∈Hn

a2
ngβi(ξ0)(x̃nj) ˙̀

ξ0(Ynj)

∥∥∥∥ > ε

}
≤ sup

ξ∈FH

P (n)

ξ

{∥∥∥∥ ∑
j∈Hn

a2
n

˙̀
ξ0(Ynj)

∥∥∥∥ > ε

N2

}

+ sup
ξ∈FH

P (n)

ξ

{ d∑
i=1

∥∥∥∥ ∑
j∈Hn

a2
ngβi(ξ0)(x̃nj) ˙̀

ξ0(Ynj)

∥∥∥∥ > ε

N2

}
(7.30)
(7.31)

. sup
ξ∈FH

∫ ∥∥∥∥ ∑
j∈Hn

a2
n

˙̀
ξ0(Ynj)

∥∥∥∥2

dP (n)

ξ

+
d∑
i=1

sup
ξ∈FH

∫ ∥∥∥∥ ∑
j∈Hn

a2
ngβi(ξ0)(x̃nj) ˙̀

ξ0(Ynj)

∥∥∥∥2

dP (n)

ξ

(7.35)→ 0.
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To sum up, we have shown that

sup
ξ∈FH

P (n)

ξ

{
sup

‖z−ξ0‖≤anC

∥∥∥∥ ∑
j∈Hn

an
(
C−1
z SzB

nj
z (C−1

z )>

−C−1
ξ0
Sξ0B

nj
ξ0

(C−1
ξ0

)>
)

˙̀
ξ0(Ynj)

∥∥∥∥ > ε

}
→ 0

(7.36)

for all ε > 0. In other words, the �rst of the two expressions
in (7.20) converges uniformly in probability to zero. In the next
step we show that the same holds true for the second expression in
(7.20).

Assessment of the second expression in (7.20). With similar, but
much more simple arguments it can be shown that the second ex-
pression on the right hand side of (7.20) converges uniformly in
probability to zero, too. To this end, we �rst note that the follow-
ing inequalities hold:

sup
‖z−ξ0‖≤anC

∥∥∥∥∑
j∈Mn

an

(
C−1
z SzB

nj
z (C−1

z )>− C−1
ξ0
Sξ0B

nj
ξ0

(C−1
ξ0
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)
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ξ0(Ynj)

∥∥∥∥
≤ sup

z

∥∥∥∥ ∑
j∈Mn

anC−1
z SzB

nj
z (C−1

z )> ˙̀
ξ0(Ynj)

∥∥∥∥
+

∥∥∥∥ ∑
j∈Mn

anC−1
ξ0
Sξ0B

nj
ξ0

(C−1
z )> ˙̀

ξ0(Ynj)

∥∥∥∥
≤ 2 sup

z

∥∥∥∥ ∑
j∈Mn

anC−1
z SzB

nj
z (C−1

z )> ˙̀
ξ0(Ynj)

∥∥∥∥
≤ 2

∑
j∈Mn

an sup
z

∥∥∥C−1
z SzB

nj
z (C−1

z )> ˙̀
ξ0(Ynj)

∥∥∥
(7.13)
≤ 2

∑
j∈Mn

an sup
z

(
|||C−1

z Sz||| |||Bnj
z ||| |||(C−1

z )>|||
)
‖ ˙̀

ξ0(Ynj)‖

≤ 2 sup
z

(
|||C−1

z Sz||| |||(C−1
z )>|||

) ∑
j∈Mn

an sup
z
|||Bnj

z ||| ‖ ˙̀
ξ0(Ynj)‖

.
∑
j∈Mn

an sup
z
|||Bnj

z ||| ‖ ˙̀
ξ0(Ynj)‖. (7.37)
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Note that in the last step we exploited the usual continuity argu-
ment, according to which

sup
z

(
|||C−1

z Sz||| |||(C−1
z )>|||

)
can be bounded by a constant that does not depend on the param-
eter ξ0 = ξ(x0).

Next we investigate the expressions |||Bnj
z |||. By the notions on

matrix norms from Section 7.2.1 we know that all norms on Rd×d

are equivalent. In particular, |||A||| . ‖A‖F (the Frobenius norm)
for every matrix A. Hence,

|||Bnj
z ||| . ‖Bnj

z ‖F
(7.4)
= ‖(gβ1(z)(x̃nj), . . . , gβd(z)(x̃nj))

>‖
. ‖(gβ1(z)(x̃nj), . . . , gβd(z)(x̃nj))

>‖1

=
d∑
i=1

|gβi(z)(x̃nj)|,

where we used that ‖ ·‖ and ‖ ·‖1 are equivalent norms. Due to the
de�nition of the index set Mn we have β

min
n < |x̃nj|ρ ≤ βmax

n for all
j ∈Mn, and thus

sup
‖z−ξ0‖≤anC

∣∣gβi(z)(x̃nj)∣∣
≤ sup

{
(βi − |x̃nj|ρ)+ : βi ∈ (βmin

n (ξ0), β
max
n (ξ0)]

}
≤ βmax

n (ξ0)− βmin
n (ξ0)

for all j ∈ Mn. By virtue of (7.17) this last expression can be
bounded by a term of the order O(an), which does not depend on
the parameter ξ0 = ξ(x0). From these calculations it follows

sup
‖z−ξ0‖≤anC

|||Bnj
z ||| .

d∑
i=1

sup
z
|gβi(z)(x̃nj)|

. βmax
n (ξ0)− βmin

n (ξ0) (7.38)

for all j ∈ Mn. We now combine the above results. Multiplying
the right hand side of (7.37) with a suitable constant, say N > 0,
we may of course replace there �.� with �≤�. Applying Markov's



7.2. Proofs 141

inequality, we conclude that for all ε > 0

sup
ξ∈FH

P (n)

ξ

{
sup

‖z−ξ0‖≤anC

∥∥∥∥ ∑
j∈Mn

an
(
C−1
z SzB

nj
z (C−1

z )>

−C−1
ξ0
Sξ0B

nj
ξ0

(C−1
ξ0

)>
)

˙̀
ξ0(Ynj)

∥∥∥∥ > ε

}
(7.37)
≤ sup

ξ∈FH

P (n)

ξ

{ ∑
j∈Mn

an sup
‖z−ξ0‖≤anC

|||Bnj
z ||| ‖ ˙̀

ξ0(Ynj)‖ >
ε

N

}
. sup

ξ∈FH

∫ ( ∑
j∈Mn

an sup
‖z−ξ0‖≤anC

|||Bnj
z ||| ‖ ˙̀

ξ0(Ynj)‖
)
dP (n)

ξ

(7.38)
. an sup

ξ∈FH

((
βmax
n (ξ0)− βmin

n (ξ0)
) ∑
j∈Mn

∫
‖ ˙̀

ξ0‖ dPξ(xnj)
)

≤ an sup
ξ∈FH

(
#Mn(ξ0)

(
βmax
n (ξ0)− βmin

n (ξ0)
)

sup
j∈Mn

∫
‖ ˙̀

ξ0‖ dPξ(xnj)
)

≤ an sup
ξ0∈Θ∗

(
βmax
n (ξ0)− βmin

n (ξ0)
)

sup
ξ0∈Θ∗

#Mn(ξ0)

sup
ξ∈FH

sup
j∈Mn

∫
‖ ˙̀

ξ0‖ dPξ(xnj). (7.39)

By virtue of (7.17) we have

sup
ξ0∈Θ∗

(
βmax
n (ξ0)− βmin

n (ξ0)
)
→ 0,

and (7.18) in combination with (3.15) implies

an sup
ξ0∈Θ∗

#Mn(ξ0) .
a2
nn

bn
= 1.

Moreover, with the same arguments that lead to (7.34) we conclude
that

sup
ξ∈FH

sup
j∈Mn

∫
‖ ˙̀

ξ0‖ dPξ(xnj) <∞.

Altogether, these considerations show that the expression in (7.39)
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converges to zero, and thus

sup
ξ∈FH

P (n)

ξ

{
sup

‖z−ξ0‖≤anC

∥∥∥∥ ∑
j∈Mn

an
(
C−1
z SzB

nj
z (C−1

z )>

−C−1
ξ0
Sξ0B

nj
ξ0

(C−1
ξ0

)>
)

˙̀
ξ0(Ynj)

∥∥∥∥ > ε

}
→ 0,

(7.40)

i.e. we have proved that the second expression in (7.20) converges
uniformly in probability to zero, too.

Completion of the proof. To sum up, a combination of (7.20),
(7.36) and (7.40) yields

sup
ξ∈FH

P (n)

ξ

{
sup

‖ξ0−z‖≤anC
‖R1(ξ0, z)‖ > ε

}
≤ sup

ξ∈FH

P (n)

ξ

{
sup

‖z−ξ0‖≤anC

∥∥∥∥ ∑
j∈Hn

an
(
C−1
z SzB

nj
z (C−1

z )>

−C−1
ξ0
Sξ0B

nj
ξ0

(C−1
ξ0

)>
)

˙̀
ξ0(Ynj)

∥∥∥∥ > ε

2

}
+ sup

ξ∈FH

P (n)

ξ

{
sup

‖z−ξ0‖≤anC

∥∥∥∥ ∑
j∈Mn

an
(
C−1
z SzB

nj
z (C−1

z )>

−C−1
ξ0
Sξ0B

nj
ξ0

(C−1
ξ0

)>
)

˙̀
ξ0(Ynj)

∥∥∥∥ > ε

2

}
→ 0,

and thus (7.15) holds. With the preliminary considerations from
Section 7.2.1 this proves the assertion of Lemma 7.2. �

7.2.3 Proof of Lemma 7.4

In order to prove the lemma, we show that (7.14) holds for s = 3,
i.e. for every �xed C > 0 and ε > 0, and with ξ0 = ξ(x0)

sup
ξ∈FH

P (n)

ξ

{
sup

‖z−ξ0‖≤anC
‖R3(ξ0, z)‖ > ε

}
→ 0. (7.41)

According to the de�nition in (7.9) (with ξ∗n replaced by z) we have

R3(ξ0, z) =

(
1+

n∑
j=1

a2
n

(
C−1
z SzB

nj
z (C−1

z )>
)

῭
ξ0(Ynj)

)
1

an
(z − ξ0).
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Since Bnj
z = 0 for j /∈ Kn, it is of course su�cient to build the sum

with respect to the index set Kn. The multiplicative inequality for
the operator norm yields

sup
‖z−ξ0‖≤anC

‖R3(ξ0, z)‖

(7.13)
≤ sup

z

∣∣∣∣∣∣∣∣∣∣∣∣1+
∑
j∈Kn

a2
n

(
C−1
z SzB

nj
z (C−1

z )>
)

῭
ξ0(Ynj)

∣∣∣∣∣∣∣∣∣∣∣∣ sup
z

1

an
‖z − ξ0‖

≤ sup
z

∣∣∣∣∣∣∣∣∣∣∣∣1+
∑
j∈Kn

a2
n

(
C−1
z SzB

nj
z (C−1

z )>
)

῭
ξ0(Ynj)

∣∣∣∣∣∣∣∣∣∣∣∣ C. (7.42)

In order to shorten notation, we set

T njz := C−1
z SzB

nj
z (C−1

z )>, (7.43)

likewise we de�ne T njξ0 . With this notation and an application of
the triangle inequality, we get an upper bound for the supremum
in (7.42) by

sup
‖z−ξ0‖≤anC

∣∣∣∣∣∣∣∣∣∣∣∣1+
∑
j∈Kn

a2
n

(
C−1
z SzB

nj
z (C−1

z )>
)

῭
ξ0(Ynj)

∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣∣1+
∑
j∈Kn

a2
nT

nj
z

῭
ξ0(Ynj)

∣∣∣∣∣∣∣∣∣∣∣∣
≤
∣∣∣∣∣∣∣∣∣∣∣∣1−∑

j∈Kn

a2
nT

nj
ξ0
Iξ0
∣∣∣∣∣∣∣∣∣∣∣∣+ sup

z

∣∣∣∣∣∣∣∣∣∣∣∣ ∑
j∈Kn

a2
nT

nj
ξ0
Iξ0 −

∑
j∈Kn

a2
nT

nj
z Iξ0

∣∣∣∣∣∣∣∣∣∣∣∣
+ sup

z

∣∣∣∣∣∣∣∣∣∣∣∣ ∑
j∈Kn

a2
nT

nj
z Iξ0 +

∑
j∈Kn

a2
nT

nj
z

῭
ξ0(Ynj)

∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣∣1−∑
j∈Kn

a2
nT

nj
ξ0
Iξ0
∣∣∣∣∣∣∣∣∣∣∣∣+ sup

z

∣∣∣∣∣∣∣∣∣∣∣∣ ∑
j∈Kn

a2
n

(
T njξ0 − T

nj
z

)
Iξ0
∣∣∣∣∣∣∣∣∣∣∣∣

+ sup
z

∣∣∣∣∣∣∣∣∣∣∣∣ ∑
j∈Kn

a2
nT

nj
z

(
Iξ0 + ῭

ξ0(Ynj)
) ∣∣∣∣∣∣∣∣∣∣∣∣ (7.44)

Note that only the third expression has a stochastic component,
whereas the �rst and the second one are purely deterministic. We
will show that each of these three expressions converges uniformly
(in probability) to zero, for ξ ranging over FH.
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Assessment of the �rst expression in (7.44). In order to prove that∣∣∣∣∣∣∣∣∣∣∣∣1−∑
j∈Kn

a2
nT

nj
ξ0
Iξ0
∣∣∣∣∣∣∣∣∣∣∣∣→ 0, (7.45)

it is su�cient to show that these matrices converge component-wise
(see the remarks in Section 7.2.1). Since Iξ0 = C>ξ0Cξ0, we have∑

j∈Kn

a2
nT

nj
ξ0
Iξ0 =

∑
j∈Kn

a2
nC−1

ξ0
Sξ0B

nj
ξ0

(C−1
ξ0

)>Iξ0

=
∑
j∈Kn

a2
nC−1

ξ0
Sξ0B

nj
ξ0
Cξ0

= C−1
ξ0

( ∑
j∈Kn

a2
nSξ0B

nj
ξ0

)
Cξ0.

The matrix in parentheses is diagonal, and because of (7.4) the ith
entry on the main diagonal is given by∑

j∈Kn

Si(ξ0)B
nj
ξ0

(7.4)
= Si(ξ0)

∑
j∈Kn

a2
ngβi(ξ0)(x̃nj)

→ Si(ξ0)

∫
gβi(ξ0)(s) ds

(6.12)
= 1,

where the stated convergence follows with the same arguments that
were used in the calculations from the proof of Proposition 4.3.
Consequently, ∑

j∈Kn

a2
nT

nj
ξ0
Iξ0 → C−1

ξ0
1 Cξ0 = 1,

which implies (7.45). This convergence is even uniform for ξ0 ∈ Θ∗,
i.e.

sup
ξ0∈Θ∗

∣∣∣∣∣∣∣∣∣∣∣∣1−∑
j∈Kn

a2
nT

nj
ξ0
Iξ0
∣∣∣∣∣∣∣∣∣∣∣∣→ 0. (7.46)

For a proof, let us again take a look at the maps βi(·): According
to Lemma 6.6 these are continuous and thus {βi(γ) : γ ∈ Θ′} is a
compact interval, say [a, b]. (Note that by de�nition of the constant
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K in Section 3.5.2 we have βi(γ) ≤ Kρ for all γ ∈ Θ′, and hence
b ≤ Kρ.) Let us now consider the sequence of maps

fn : [a, b]→ R, ζ 7→
∑
j∈Kn

a2
ngζ(x̃nj). (7.47)

Each fn is continuous, strictly increasing and uniformly bounded.
A universal upper bound N such that fn(ζ) ≤ N for all ζ and all n
is for example given by N := supn fn(b). Note that this N is �nite,
because fn(b) ≤ kna

2
nb = O(1) by (4.8). For �xed ε > 0 let now

ι := ε/L, where

L := sup
n
a2
nkn <∞,

again by (4.8). For all points ζ1, ζ2 ∈ [a, b] satisfying |ζ1 − ζ2| < ι
we then have

|fn(ζ1)− fn(ζ2)| =

∣∣∣∣ ∑
j∈Kn

a2
n(gζ1(x̃nj)− gζ2(x̃nj))

∣∣∣∣
≤ a2

nkn‖gζ1 − gζ2‖u
≤ L|ζ1 − ζ2| < ε

for all n ∈ N. Hence, we have shown that the sequence fn is equi-
continuous, and thus converges in C([a, b],R), which is a conse-
quence of the Arzelà-Ascoli theorem (cf. Heuser, 2000, Satz 106.2).
Consequently, fn(ζ)→

∫
gζ(s) ds uniformly in ζ, and therefore

n∑
j=1

a2
nB

nj
ξ0

(7.4)
(7.47)
= diag

(
fn(β1(ξ0)), . . . , fn(βd(ξ0))

)
→
∫
gβ(ξ0)(s) ds

uniformly on Θ′ (and thus in particular on Θ∗ ⊆ Θ′). From the
Lipschitz properties of the maps γ 7→ Cγ and γ 7→ S(γ) (see Propo-
sitions 7.6 and 7.7) we further conclude that∑

j∈Kn

a2
nC−1

ξ0
Sξ0B

nj
ξ0
Cξ0 → 1,

uniformly on Θ∗, and thus (7.46) holds.
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Assessment of the second expression in (7.44). Obviously,

sup
ξ0∈Θ∗

sup
‖z−ξ0‖≤anC

∣∣∣∣∣∣∣∣∣∣∣∣ ∑
j∈Kn

a2
n

(
T njξ0 − T

nj
z

)
Iξ0
∣∣∣∣∣∣∣∣∣∣∣∣

≤ sup
ξ0∈Θ∗

∣∣∣∣∣∣∣∣∣∣∣∣ ∑
j∈Kn

a2
nT

nj
ξ0
Iξ0 − 1

∣∣∣∣∣∣∣∣∣∣∣∣
+ sup

ξ0∈Θ∗
sup

‖z−ξ0‖≤anC

∣∣∣∣∣∣∣∣∣∣∣∣1−∑
j∈Kn

a2
nT

nj
z Iξ0

∣∣∣∣∣∣∣∣∣∣∣∣
≤ sup

ξ0∈Θ∗

∣∣∣∣∣∣∣∣∣∣∣∣ ∑
j∈Kn

a2
nT

nj
ξ0
Iξ0 − 1

∣∣∣∣∣∣∣∣∣∣∣∣
+ sup

ξ0∈Θ∗
sup

‖z−ξ0‖≤anC

∣∣∣∣∣∣∣∣∣∣∣∣1−∑
j∈Kn

a2
nT

nj
z Iz

∣∣∣∣∣∣∣∣∣∣∣∣
+ sup

ξ0∈Θ∗
sup

‖z−ξ0‖≤anC

∣∣∣∣∣∣∣∣∣∣∣∣ ∑
j∈Kn

a2
nT

nj
z Iz −

∑
j∈Kn

a2
nT

nj
z Iξ0

∣∣∣∣∣∣∣∣∣∣∣∣. (7.48)

As was just shown in the proof of (7.46), the �rst of the three
suprema in the preceding equation converges to zero. Moreover,
for a given ξ0 ∈ Θ∗ all points z that satisfy ‖z − ξ0‖ ≤ anC lie
in Θ′, provided that n is su�ciently large. We conclude from the
proof of (7.46) that for large n

sup
ξ0∈Θ∗

sup
‖z−ξ0‖≤anC

∣∣∣∣∣∣∣∣∣∣∣∣1−∑
j∈Kn

a2
nT

nj
z Iz

∣∣∣∣∣∣∣∣∣∣∣∣
≤ sup

ξ0∈Θ′

∣∣∣∣∣∣∣∣∣∣∣∣1−∑
j∈Kn

a2
nT

nj
ξ0
Iξ0
∣∣∣∣∣∣∣∣∣∣∣∣ → 0.

It remains to investigate the third expression from (7.48). For this
we have

sup
ξ0∈Θ∗

sup
‖z−ξ0‖≤anC

∣∣∣∣∣∣∣∣∣∣∣∣ ∑
j∈Kn

a2
nT

nj
z Iz −

∑
j∈Kn

a2
nT

nj
z Iξ0

∣∣∣∣∣∣∣∣∣∣∣∣
= sup

ξ0∈Θ∗
sup

‖z−ξ0‖≤anC

∣∣∣∣∣∣∣∣∣∣∣∣ ∑
j∈Kn

a2
nT

nj
z (Iz − Iξ0)

∣∣∣∣∣∣∣∣∣∣∣∣
(7.13)
≤ sup

ξ0∈Θ∗
sup

‖z−ξ0‖≤anC

( ∑
j∈Kn

a2
n|||T njz ||| |||Iz − Iξ0|||

)
. . .



7.2. Proofs 147

≤ sup
ξ0∈Θ∗

sup
‖z−ξ0‖≤anC

(∑
j∈Kn

a2
n|||T njz |||

)
sup
ξ0∈Θ∗

sup
‖z−ξ0‖≤anC

|||Iz − Iξ0|||.

The de�nition of T njz in (7.43) and the fact that all the components
on the right hand side of (7.43) are bounded implies that supz |||T njz |||
is bounded by some constant, which does not depend on n, j and
ξ0. Hence, the �rst of the suprema in the preceding display is of the
order O(1). With Lipschitz arguments, that in similar form have
been used in the above proof of Lemma 7.2, one further argues that
the second of these suprema is of the order O(an). Hence,

sup
ξ0∈Θ∗

sup
‖z−ξ0‖≤anC

∣∣∣∣∣∣∣∣∣∣∣∣ ∑
j∈Kn

a2
nT

nj
z Iz −

∑
j∈Kn

a2
nT

nj
z Iξ0

∣∣∣∣∣∣∣∣∣∣∣∣ → 0.

To sum up, we have shown that all three suprema in (7.48) converge
to zero, and thus

sup
ξ0∈Θ∗

sup
‖z−ξ0‖≤anC

∣∣∣∣∣∣∣∣∣∣∣∣ ∑
j∈Kn

a2
n

(
T njξ0 − T

nj
z

)
Iξ0
∣∣∣∣∣∣∣∣∣∣∣∣→ 0, (7.49)

i.e. the second expression in (7.44) converges to zero.

Assessment of the third expression in (7.44). It remains to prove
that the third summand in (7.44) converges uniformly in probability
to zero. The triangle inequality in combination with (7.13) yields∣∣∣∣∣∣∣∣∣∣∣∣ ∑

j∈Kn

a2
nT

nj
z

(
Iξ0 + ῭

ξ0(Ynj)
) ∣∣∣∣∣∣∣∣∣∣∣∣

≤
∣∣∣∣∣∣∣∣∣∣∣∣ ∑
j∈Kn

a2
n

(
T njz − T

nj
ξ0

)(
Iξ0 + ῭

ξ0(Ynj)
) ∣∣∣∣∣∣∣∣∣∣∣∣

+

∣∣∣∣∣∣∣∣∣∣∣∣ ∑
j∈Kn

a2
nT

nj
ξ0

(
Iξ0 + ῭

ξ0(Ynj)
) ∣∣∣∣∣∣∣∣∣∣∣∣

≤
∑
j∈Kn

a2
n|||T njz − T

nj
ξ0
||| |||Iξ0 + ῭

ξ0(Ynj)|||

+

∣∣∣∣∣∣∣∣∣∣∣∣ ∑
j∈Kn

a2
nT

nj
ξ0

(
Iξ0 + ῭

ξ0(Ynj)
) ∣∣∣∣∣∣∣∣∣∣∣∣. (7.50)
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In order to examine the �rst of these two expressions we �rst note
that

|||T njz − T
nj
ξ0
||| (7.43)

= |||C−1
z SzB

nj
z (C−1

z )> − C−1
ξ0
Sξ0B

nj
ξ0

(C−1
ξ0

)>|||
(7.21)
≤

∣∣∣∣∣∣∣∣∣ (C−1
z Sz − C−1

ξ0
Sξ0

)
Bnj
z (C−1

z )>
∣∣∣∣∣∣∣∣∣

+
∣∣∣∣∣∣∣∣∣C−1

ξ0
Sξ0

(
Bnj
z (C−1

z )> −Bnj
ξ0

(C−1
ξ0

)>
) ∣∣∣∣∣∣∣∣∣

(7.13)
≤ |||C−1

z Sz − C−1
ξ0
Sξ0||| |||Bnj

z (C−1
z )>|||

+|||C−1
ξ0
Sξ0||| |||Bnj

z (C−1
z )> −Bnj

ξ0
(C−1

ξ0
)>|||.

From (7.22) we know that

sup
‖ξ0−z‖≤anC

|||C−1
z Sz − C−1

ξ0
Sξ0||| . an,

which even holds uniformly in ξ0. From the de�nition of the ma-
trices Bnj

· in (7.4) one further concludes (again, with a Lipschitz
argument and Proposition 7.7) that

sup
‖ξ0−z‖≤anC

|||Bnj
z (C−1

z )> −Bnj
ξ0

(C−1
ξ0

)>||| . an,

which holds for all j, and uniformly in ξ0, too. Furthermore,
|||Bnj

z (C−1
z )>||| and |||C−1

ξ0
Sξ0||| are uniformly bounded, because the en-

tries of these matrices are all continuous on Θ (see the results from
Section 7.2.1). To sum up, we conclude that there is a constant D
such that

sup
ξ0∈Θ∗

sup
‖z−ξ0‖≤anC

|||T njz − T
nj
ξ0
||| ≤ Dan

for all j ∈ Kn. In combination with (7.50) this yields

sup
‖z−ξ0‖≤anC

∣∣∣∣∣∣∣∣∣∣∣∣ ∑
j∈Kn

a2
nT

nj
z

(
Iξ0 + ῭

ξ0(Ynj)
) ∣∣∣∣∣∣∣∣∣∣∣∣

≤
∑
j∈Kn

a2
n(Dan)|||Iξ0+῭

ξ0(Ynj)|||+
∣∣∣∣∣∣∣∣∣∣∣∣ ∑
j∈Kn

a2
nT

nj
ξ0

(
Iξ0 + ῭

ξ0(Ynj)
) ∣∣∣∣∣∣∣∣∣∣∣∣,
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and thus, for every ε > 0,

P (n)

ξ

{
sup

‖z−ξ0‖≤anC

∣∣∣∣∣∣∣∣∣∣∣∣ ∑
j∈Kn

a2
nT

nj
z

(
Iξ0 + ῭

ξ0(Ynj)
) ∣∣∣∣∣∣∣∣∣∣∣∣ > ε

}
≤ P (n)

ξ

{ ∑
j∈Kn

Da3
n|||Iξ0 + ῭

ξ0(Ynj)|||

+

∣∣∣∣∣∣∣∣∣∣∣∣ ∑
j∈Kn

a2
nT

nj
ξ0

(
Iξ0 + ῭

ξ0(Ynj)
) ∣∣∣∣∣∣∣∣∣∣∣∣ > ε

}
≤ P (n)

ξ

{ ∑
j∈Kn

Da3
n|||Iξ0 + ῭

ξ0(Ynj)||| >
ε

2

}
+ P (n)

ξ

{∣∣∣∣∣∣∣∣∣∣∣∣ ∑
j∈Kn

a2
nT

nj
ξ0

(
Iξ0 + ῭

ξ0(Ynj)
) ∣∣∣∣∣∣∣∣∣∣∣∣ > ε

2

}
. (7.51)

We show that both probabilities in (7.51) converge to zero. An
application of Markov's inequality yields

P (n)

ξ

{ ∑
j∈Kn

Da3
n|||Iξ0 + ῭

ξ0(Ynj)||| >
ε

2

}
≤ 2

ε
E
∑
j∈Kn

Da3
n|||Iξ0 + ῭

ξ0(Ynj)|||

. kna
3
n sup
j∈Kn

(
|||Iξ0|||+ E |||῭ξ0(Ynj)|||

)
= kna

3
n sup
j∈Kn

(
|||Iξ0|||+

∫
|||῭ξ0||| dPξ(xnj)

)
.

Here and in the following the expectation is understood as expec-
tation with respect to the product measure P (n)

ξ . Since any two

norms on Rd×d are equivalent we have |||A||| . ‖A‖F for every ma-
trix A ∈ Rd×d. Hence, the de�nition of the Frobenius norm and
Hölder's inequality yield∫

|||῭ξ0||| dPξ(xnj) .
∫
‖῭ξ0‖F dPξ(xnj)

.

(∫
‖῭ξ0‖2

F dPξ(xnj)

)1/2

.

( d∑
r,s=1

∫
(῭
ξ0,rs)

2 dPξ(xnj)

)1/2

.
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Recall that in Section 3.2 the maps

(θ, τ) 7→
∫

(῭
θ,rs)

k dPτ , k ∈ {0, 1, 2}, (7.52)

were presumed continuously partially di�erentiable on Θ×Θ. As a
consequence of the above arguments both |||Iξ0||| and
supj

∫
|||῭ξ0||| dPξ(xnj) are bounded, even uniformly in ξ0, and thus

sup
ξ∈FH

sup
j∈Kn

(
|||Iξ0|||+

∫
|||῭ξ0||| dPξ(xnj)

)
= O(1). (7.53)

Since kna
2
n = O(1) (see (4.8)) this implies

kna
3
n sup
ξ∈FH

sup
j∈Kn

(
|||Iξ0|||+

∫
|||῭ξ0||| dPξ(xnj)

)
→ 0,

and therefore

sup
ξ∈FH

P (n)

ξ

{ ∑
j∈Kn

Da3
n|||Iξ0 + ῭

ξ0(Ynj)||| >
ε

2

}
→ 0. (7.54)

It remains to show that the second probability in (7.51) converges
to zero: Markov's inequality yields

P (n)

ξ

{∣∣∣∣∣∣∣∣∣∣∣∣ ∑
j∈Kn

a2
nT

nj
ξ0

(
Iξ0 + ῭

ξ0(Ynj)
) ∣∣∣∣∣∣∣∣∣∣∣∣ > ε

2

}

≤ 4

ε2 E

∣∣∣∣∣∣∣∣∣∣∣∣ ∑
j∈Kn

a2
nT

nj
ξ0

(
Iξ0 + ῭

ξ0(Ynj)
) ∣∣∣∣∣∣∣∣∣∣∣∣2

. E

∥∥∥∥ ∑
j∈Kn

a2
nT

nj
ξ0

(
Iξ0 + ῭

ξ0(Ynj)
)∥∥∥∥2

F
. (7.55)

Again, in the last step we exploited that |||A||| . ‖A‖F for every ma-
trix A ∈ Rd×d, because any two norms on this space are equivalent.
For the following calculations, we set

Vnj := T njξ0 (Iξ0 + ῭
ξ0(Ynj)), (7.56)

and we write the rs-entries of these matrices as Vnj(r, s). As we
observed in Section 7.2.1, the Frobenius norm ‖·‖F can be identi�ed
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with the Euclidean norm on Rd2

. Therefore,

E

∥∥∥∥ ∑
j∈Kn

a2
nT

nj
ξ0

(
Iξ0 + ῭

ξ0(Ynj)
)∥∥∥∥2

F
= E

∥∥∥∥ ∑
j∈Kn

a2
nVnj

∥∥∥∥2

F

(7.32)
≤

d∑
r,s=1

[ ∑
j∈Kn

a4
n EVnj(r, s)

2 +

( ∑
j∈Kn

a2
n EVnj(r, s)

)2
]

=
d∑

r,s=1

[ ∑
j∈Kn

a4
n

∫
Vnj(r, s)

2 dPξ(xnj)

+

( ∑
j∈Kn

a2
n

∫
Vnj(r, s) dPξ(xnj)

)2
]
. (7.57)

We investigate the expectations in (7.57) and show that these con-
verge to zero. For the �rst of the two expectations this proof is
rather simple. Obviously,

Vnj(r, s)
2 ≤ ‖Vnj‖2

F

. |||Vnj|||2
(7.56)
= |||T njξ0 (Iξ0 + ῭

ξ0(Ynj))|||2

(7.13)
≤ |||T njξ0 |||

2 (|||Iξ0|||+ |||῭ξ0(Ynj))|||)2

≤ |||T njξ0 |||
2 2
(
|||Iξ0|||2 + |||῭ξ0(Ynj))|||2

)
. (7.58)

Note that

sup
ξ0∈Θ∗

sup
j∈Kn

|||T njξ0 |||
2 <∞, (7.59)

which follows from the de�nition of T njξ0 in (7.43) and the fact that
all of the components involved in this de�nition are bounded. In
addition, we conclude with the arguments leading to (7.53) that
also

sup
ξ∈FH

sup
j∈Kn

(
|||Iξ0|||2 +

∫
|||῭ξ0|||2 dPξ(xnj)

)
= O(1).
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Moreover, we have a4
nkn → 0. These results yield

sup
ξ∈FH

{ ∑
j∈Kn

a4
n

∫
Vnj(r, s)

2 dPξ(xnj)

}
(7.58)
. sup

ξ∈FH

{ ∑
j∈Kn

a4
n|||T

nj
ξ0
|||2
(
|||Iξ0|||2 +

∫
|||῭ξ0|||2 dPξ(xnj)

)}
(7.59)
. a4

nkn sup
ξ∈FH

sup
j∈Kn

(
|||Iξ0|||2 +

∫
|||῭ξ0|||2 dPξ(xnj)

)
→ 0. (7.60)

It remains to prove that also the second expectation in (7.57) con-
verges to zero. From the de�nition of the matrices Vnj it is clear
that every Vnj(r, s) is a linear combination of the form

Vnj(r, s) =
d∑
q=1

T njξ0 (r, q)
(
Iξ0,qs + ῭

ξ0,qs(Ynj)
)
, (7.61)

where Iξ0,qs and ῭
ξ0,qs denote the qs-entries of the matrices Iξ0 and

῭
ξ0, respectively, and T njξ0 (r, q) is the rq-entry of the matrix T njξ0 .
Furthermore, one concludes with (7.59) that

sup
ξ0∈Θ∗

sup
j∈Kn

|T njξ0 (q, r)| <∞, (7.62)

and therefore∣∣∣∣ ∫ Vnj(r, s) dPξ(xnj)

∣∣∣∣
(7.61)
=

∣∣∣∣ ∫ d∑
q=1

T njξ0 (r, q)
(
Iξ0,qs + ῭

ξ0,qs(Ynj)
)
dPξ(xnj)

∣∣∣∣
≤

d∑
q=1

|T njξ0 (r, q)|
∣∣∣∣Iξ0,qs +

∫
῭
ξ0,qs(Ynj) dPξ(xnj)

∣∣∣∣
(3.4)
=

d∑
q=1

|T njξ0 (r, q)|
∣∣∣∣− ∫ ῭

ξ0,qs(Ynj) dPξ0 +

∫
῭
ξ0,qs(Ynj) dPξ(xnj)

∣∣∣∣
(7.62)
.

d∑
q=1

∣∣∣∣− ∫ ῭
ξ0,qs(Ynj) dPξ0 +

∫
῭
ξ0,qs(Ynj) dPξ(xnj)

∣∣∣∣.
Due to the growth conditions of the functions ξ we have ‖ξ(xnj)−
ξ0‖ . an for all j ∈ Kn and all ξ. Moreover, the continuous
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partial di�erentiability of the maps in (7.52) implies that these are
Lipschitz continuous on the compactum Θ′ ×Θ′. Combining these
two arguments, it follows that

sup
ξ∈FH

sup
j∈Kn

∣∣∣∣ ∫ Vnj(r, s) dPξ(xnj)

∣∣∣∣
. sup

ξ∈FH

sup
j∈Kn

d∑
q=1

∣∣∣∣− ∫ ῭
ξ0,qs(Ynj) dPξ0 +

∫
῭
ξ0,qs(Ynj) dPξ(xnj)

∣∣∣∣
. sup

ξ∈FH

sup
j∈Kn

‖ξ(xnj)− ξ0‖

= O(an).

From this calculation, in combination with the property a2
nkn =

O(1), it follows that

sup
ξ∈FH

( ∑
j∈Kn

a2
n

∫
Vnj(r, s) dPξ(xnj)

)2

. sup
ξ∈FH

(
sup
j∈Kn

a2
nkn

∣∣∣∣ ∫ Vnj(r, s) dPξ(xnj)

∣∣∣∣)2

= (a2
nkn)

2 sup
ξ∈FH

sup
j∈Kn

∣∣∣∣ ∫ Vnj(r, s) dPξ(xnj)

∣∣∣∣2 → 0. (7.63)

Putting together the above results yields

sup
ξ∈FH

P (n)

ξ

{∣∣∣∣∣∣∣∣∣∣∣∣ ∑
j∈Kn

a2
nT

nj
ξ0

(
Iξ0 + ῭

ξ0(Ynj)
) ∣∣∣∣∣∣∣∣∣∣∣∣ > ε

2

}
(7.55)
. sup

ξ∈FH

E

∥∥∥∥ ∑
j∈Kn

a2
nT

nj
ξ0

(
Iξ0 + ῭

ξ0(Ynj)
)∥∥∥∥2

F

(7.57)
.

d∑
r,s=1

sup
ξ∈FH

∑
j∈Kn

a4
n

∫
Vnj(r, s)

2 dPξ(xnj)

+ sup
ξ∈FH

( ∑
j∈Kn

a2
n

∫
Vnj(r, s) dPξ(xnj)

)2

.

According to (7.60) and (7.63) the last expression tends to zero,
and therefore

sup
ξ∈FH

P (n)

ξ

{∣∣∣∣∣∣∣∣∣∣∣∣ ∑
j∈Kn

a2
nT

nj
ξ0

(
Iξ0 + ῭

ξ0(Ynj)
) ∣∣∣∣∣∣∣∣∣∣∣∣ > ε

2

}
→ 0.
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In combination with (7.51) and (7.54) this implies

sup
ξ∈FH

P (n)

ξ

{
sup

‖z−ξ0‖≤anC

∣∣∣∣∣∣∣∣∣∣∣∣ ∑
j∈Kn

a2
nT

nj
z

(
Iξ0 + ῭

ξ0(Ynj)
) ∣∣∣∣∣∣∣∣∣∣∣∣ > ε

}
→ 0,

(7.64)
and thus the third expression in (7.44) converges uniformly in prob-
ability to zero.

Completion of the proof. To sum up, we have shown that for all
C > 0 and ε > 0

sup
ξ∈FH

P (n)

ξ

{
sup

‖z−ξ0‖≤anC
‖R3(ξ0, z)‖ > ε

}
(7.42)
≤ sup

ξ∈FH

{
sup
z

∣∣∣∣∣∣∣∣∣∣∣∣1+
∑
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a2
n

(
C−1
z SzB

nj
z (C−1

z )>
)

῭
ξ0(Ynj)

∣∣∣∣∣∣∣∣∣∣∣∣ > ε

C

}
(7.44)
≤ sup

ξ∈FH

P (n)

ξ

{∣∣∣∣∣∣∣∣∣∣∣∣1−∑
j∈Kn

a2
nT

nj
ξ0
Iξ0
∣∣∣∣∣∣∣∣∣∣∣∣ > ε

C3

}
+ sup

ξ∈FH

P (n)

ξ

{
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z
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j∈Kn

a2
n

(
T njξ0 − T
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z

)
Iξ0
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C3

}
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P (n)

ξ

{
sup
z
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nT

nj
z

(
Iξ0 + ῭

ξ0(Ynj)
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}
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ξ0∈Θ∗
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j∈Kn

a2
nT

nj
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Iξ0
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(
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)
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∣∣∣∣∣∣∣∣∣∣∣∣
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ξ∈FH

P (n)

ξ

{
sup
z

∣∣∣∣∣∣∣∣∣∣∣∣ ∑
j∈Kn

a2
nT

nj
z

(
Iξ0 + ῭

ξ0(Ynj)
) ∣∣∣∣∣∣∣∣∣∣∣∣ > ε

C3

}
,

where the last step follows with Markov's inequality. By virtue of
(7.46), (7.49) and (7.64), respectively, the expressions from the last
inequality all tend to zero. Consequently,

sup
ξ∈FH

P (n)

ξ

{
sup

‖z−ξ0‖≤anC
‖R3(ξ0, z)‖ > ε

}
→ 0,

i.e. (7.41) holds. This completes the proof of Lemma 7.4. �
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7.2.4 Proof of Lemma 7.3

With the usual argumentation it su�ces for the proof of Lemma 7.3
to verify that

sup
ξ∈FH

P (n)

ξ

{
sup

‖z−ξ0‖≤anC
‖R2(ξ0, z)‖ > ε

}
→ 0 (7.65)

for all ε > 0 and C > 0. From the de�nition of R2 in (7.8) we get

R2(ξ0, z) =
n∑
j=1

an
(
C−1
z SzB

nj
z (C−1

z )>
)
r(ξ0, z, Ynj).

Of course, it su�ces to build the sum only with respect to the
indices j ∈ Kn, because otherwise Bnj

z = 0. Using the variables
T njz from the proof of Lemma 7.4 we get

sup
‖z−ξ0‖≤anC

‖R2(ξ0, z)‖

= sup
z

∥∥∥∥ ∑
j∈Kn

an
(
C−1
z SzB

nj
z (C−1

z )>
)
r(ξ0, z, Ynj)

∥∥∥∥
(7.43)
= sup

z

∥∥∥∥ ∑
j∈Kn

anT
nj
z r(ξ0, z, Ynj)

∥∥∥∥
(7.13)
≤ sup

z

∑
j∈Kn

an|||T njz ||| ‖r(ξ0, z, Ynj)‖

(7.59)
. sup

z

∑
j∈Kn

an‖r(ξ0, z, Ynj)‖. (7.66)

Note that the last inequality does not depend on the value ξ0. Let
us next consider the remainder terms r(ξ0, z, Ynj) in greater detail.
These result from the Taylor expansion of the score function in
(3.2) and depend on the third partial derivatives of the log-densities
log pθ (partial derivative means here with respect to the parameter).
The latter are�by the smoothness assumptions from Section 3.2�
continuous for all parameters θ ∈ Θ, and therefore in particular
bounded on the compactum Θ′. According to Heuser (1990), p. 285,
therefore

‖r(ξ0, z, y)‖ . max
k=1,...,d

d∑
r,s=1

∣∣∣∣ ∂2

∂θr∂θs
˙̀
ξ0,k(y)

∣∣∣∣ ‖z − ξ0‖2

. J(y)‖z − ξ0‖2,
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where J is the dominating function from (3.3). Plugging this into
(7.66) yields

sup
‖z−ξ0‖≤anC

‖R2(ξ0, z)‖ . sup
z

∑
j∈Kn

an‖r(ξ0, z, Ynj)‖

.
∑
j∈Kn

a3
nJ(Ynj).

This can of course also be written as

sup
‖z−ξ0‖≤anC

‖R2(ξ0, z)‖ ≤ N
∑
j∈Kn

a3
nJ(Ynj), (7.67)

with some suitable constant N > 0 (which does not depend on ξ0).
The above arguments and an additional application of Markov's
inequality yield

sup
ξ∈FH

P (n)

ξ

{
sup

‖z−ξ0‖≤anC
‖R2(ξ0, z)‖ > ε

}
(7.67)
≤ sup

ξ∈FH

P (n)

ξ

{ ∑
j∈Kn

a3
nJ(Ynj) >

ε

N

}
≤ sup

ξ∈FH

N

ε

∫ ∣∣∣∣ ∑
j∈Kn

a3
nJ(Ynj)

∣∣∣∣ dP (n)

ξ

= sup
ξ∈FH

N

ε

∑
j∈Kn

a3
n

∫
J(Ynj) dPξ(xnj)

. a3
nkn.

In the last step we exploited that, by assumption, Eθ J is uniformly
bounded on Θ (see Section 3.2). Since kna

2
n = O(1) and an = o(1)

(see (4.8) and (3.14), respectively) the last expression tends to zero.
This proves (7.65), and thus the assertion of Lemma 7.3. �



CHAPTER 8

Applying the theory

In this Chapter we discuss some aspects of an application of the
theoretical results presented in the preceding chapters. One of
the most important models (maybe the most important model)
to which our theory applies is clearly the classical nonparametric
regression model. This is discussed in Section 8.1. In Section 8.2
possible extensions of these results to more general models are ex-
plored. In Section 8.3 we discuss in detail exponential families and
prove that these always meet the regularity conditions presented in
Sections 3.1 and 3.2.

8.1 The nonparametric regression model

In this section we show that the theory provided in the preceding
chapters is in some sense tailor-made to derive asymptotic minimax
risk bounds in a nonparametric regression model.

Let independent observations (xn1, Yn1), . . . , (xnn, Ynn) be given.
The xnj are here interpreted as time points and the (real) vari-
ables Ynj describe a certain process which evolves over time. In
the classic nonparametric regression setup it is assumed that these
observations obey a model of the form

Ynj = ξ(xnj) + εnj,

where the unknown regression function ξ is assumed to be a smooth
function, and the εnj are interpreted as noise. More precisely, for
each n we assume that εn1, . . . , εnn build a sequence of i.i.d. random
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variables with mean zero and �nite variance. A very popular ap-
proach to estimate the value of the regression function at some point
x0 is to use kernel estimators like the Nadaraya-Watson estimator.
These estimate ξ(x0) as a weighted average over the observations
Ynj, where the observations for which the corresponding xnj lie close
to x0 are usually assigned larger weights than that which are further
distant in time. There is a vast, ever-growing literature on nonpara-
metric regression, see for example Fan and Gijbels (1996), Györ�
et al. (2002), Härdle (1990) or Loader (1999)�just to mention a
few. Rohde (2004) and Reiÿ (2008) show that the nonparametric
regression model is asymptotically equivalent to a Gaussian white
noise model (cf. also the references given in Section 1.3).

Assume that the distribution of εnj has Lebesgue density p = p0.
For θ ∈ R we set

pθ(y) := p(y − θ), y ∈ R,

and we de�ne

Pθ := pθ dλ.

We consider the resulting family P := {Pθ : θ ∈ Θ}, where Θ is an
open interval in R with compact closure. Let us assume that the
(unknown) regression function ξ belongs to a function space F =
F (x0,Θ

∗, u) of the form (3.6), where Θ∗ ⊆ Θ is an open interval,
and the function u is according to u : R → [0,∞), s 7→ |s|ρ. If,
in addition, the time points are given by xnj = (j − 1)/(n − 1),
as in Section 3.3 (which may always be achieved through a re-
scaling), and x0 ∈ (0, 1), we regain our model from Section 1.1. The
measurable space (Y ,B, µ) from that section is in this case equal to
(R,B, λ). If the distributions Pθ �t the needs of Sections 3.1 and
3.2, and if we are able to prove that a preliminary estimator exists
(as in Section 3.4), the theory from the preceding chapters applies,
which yields upper and lower asymptotic minimax risk bounds for
the estimation of ξ(x0).

Checking the regularity conditions. First we formulate con-
ditions on the density p which guarantee that the resulting location
family P = {Pθ : θ ∈ Θ} satis�es the regularity conditions. As-
sume that p is strictly positive and λ-a.e. three times continuously
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di�erentiable (with derivative p′). If the density further satis�es

∫
p′(x)2

p(x)
dλ(x) =

∫ (
p′(x)

p(x)

)2

dP (x) <∞,

then the location family P is di�erentiable in quadratic mean on
R, and thus on Θ, too. The score function is given by

˙̀
θ(y) = −p

′(y − θ)
p(y − θ)

λ-a.s.

and therefore satis�es (3.1) (see e.g. Witting, 1985, p. 181). To
conclude that P is even continuously di�erentiable in quadratic
mean, we observe that for �xed θ0 ∈ Θ and a sequence θn → θ0 we
have ˙̀

θn
√
pθn → ˙̀

θ0
√
pθ0 λ-a.s. Since we are considering an open

interval Θ with compact closure, it is in most cases possible to �nd
a square-integrable function H such that | ˙̀θ(y)

√
pθ(y)| ≤ H(y) for

all y and all θ. In that case the dominated convergence theorem
implies

lim
n→∞
‖ ˙̀

θn

√
pθn − ˙̀

θ0

√
pθ0‖2

λ,2 = lim
n→∞

∫ (
˙̀
θn

√
pθn − ˙̀

θ0

√
pθ0

)2
dλ

=

∫
lim
n→∞

(
˙̀
θn

√
pθn − ˙̀

θ0

√
pθ0

)2
dλ

= 0,

and thus the continuous L2-di�erentiability. Note that the Fisher
information in location families is constant and thus in particular
continuous. The remaining conditions from Section 3.2, i.e. the
di�erentiability assumptions for the moments of the score function
can often be proved directly. We do this exemplarily for the case
of a Gaussian location model.

The Gaussian location model. Let p = ϕ denote the pdf of a stan-
dard normal distribution, i.e. p(y) = 1/

√
2π exp(−y2/2). We �rst
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compute the derivatives of the (log-)densities. These are given by

pθ(y) =
1√
2π

exp

{
− (y − θ)2

2

}
,

∇θpθ(y) = (y − θ)pθ(y),

log pθ(y) = log
1√
2π
− (y − θ)2

2
,

˙̀
θ(y) = y − θ,

῭
θ(y) = −1.

It is clear that the third derivative of the log-density is equal to zero,
and therefore a function J exists which satis�es the condition from
(3.3). Condition (3.4) also follows directly, because −

∫
῭
θ dPθ =∫

1 dPθ = 1 and
∫

˙̀2
θ dPθ =

∫
(y − θ)2 dPθ = 1 (note that Y ∼ Pθ

has variance equal to 1). Evidently, the remaining assumptions
from Section 3.2 imposing smoothness conditions for the moments
of the score functions are also ful�lled. It remains to prove (3.5).
With the above expression we calculate

∇τ
∫

˙̀
θpτ dλ = ∇τ

∫
(y − θ)pτ dλ(y)

= ∇τ

(∫
ypτ(y) dλ(y)− θ

∫
pτ(y) dλ(y)

)
= ∇τ (τ − θ)
= 1,

and∫
˙̀
θ∇τpτ dλ =

∫
(y − θ)(y − τ)pτ(y) dλ(y)

=
∫
y2pτ(y) dλ(y)− (θ + τ)

∫
ypτ(y) dλ(y) + θτ

∫
pτ dλ

= 1 + τ 2 − (θ + τ)τ + θτ

= 1.

Altogether, these calculations yield ∇τ
∫

˙̀
θpτ dλ =

∫
˙̀
θ∇τpτ dλ,

and thus (3.5). To sum up, we have shown, that the Gaussian
location model �ts all the conditions from Sections 3.1 and 3.2.
Likewise, the regularity conditions for large classes of other distri-
butions can be veri�ed.

The existence of a preliminary estimator. For regression
models of the above type, Stone (1980) gives an a�rmative an-
swer to the question of the existence of a preliminary estimator.
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The following presentation re�ects the main ideas and concepts of
Stone's article.

Stone discusses optimal rates of convergence in the above regres-
sion setting. Assume that T = T (ξ) is a real valued functional, and
T̂n is a sequence of estimators based on a sample of size n. Since we
want to estimate the parameter value ξ(x0), we will in the following
always assume that T (ξ) = ξ(x0). In order to quantify and to com-
pare the speed at which sequences of estimators do converge Stone
de�nes the following concepts (cf. Stone, 1980, p. 1348): A positive
constant r is called an upper bound to the rate of convergence if for
every sequence of estimators T̂n and every C > 0

lim inf
n→∞

sup
ξ

P (n)

ξ

{
|T̂n − T (ξ)| > Cn−r

}
> 0,

and if in addition

lim
C→0

lim inf
n→∞

sup
ξ

P (n)

ξ

{
|T̂n − T (ξ)| > Cn−r

}
= 1.

Moreover, r is called an achievable rate of convergence if a speci�c
sequence of estimators T̂n exists, for which

lim
C→∞

lim sup
n→∞

sup
ξ

P (n)

ξ

{
|T̂n − T (ξ)| > Cn−r

}
= 0.

r is called the optimal rate of convergence if it is both achievable
and an upper bound to the rate of convergence.

Stone (1980) provides results on the optimal rate of convergence
in the nonparametric regression model. In his paper he postulates
that certain smoothness conditions hold for the parameter functions
(more precisely, these are Lipschitz and Hölder conditions on the
parameter functions and their derivatives). As a special case this
includes models with parameter functions ξ ranging over a function
spaces of the type F (see (3.6), Section 3.3), i.e. for functions that
satisfy a Hölder condition with coe�cient ρ. For such models Stone
shows that�provided that the densities pθ satisfy some regularity
conditions�the optimal rate of convergence is given by

r =
ρ

2ρ+ 1
.

This means that there is a sequence of estimators T̂n =: ξ∗n for ξ(x0)
such that

lim
C→∞

lim sup
n→∞

sup
ξ∈F

P (n)

ξ

{
|ξ∗n − ξ(x0)| > Cn−ρ/(2ρ+1)} = 0. (8.1)
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By the de�nition from (3.14) (here we presume A = 1), we have

an = n−ρ/(2ρ+1) = n−r.

From (8.1) we conclude that for every ι > 0 there is a constant
C = Cι for which

lim sup
n→∞

sup
ξ∈F

P (n)

ξ

{
|ξ∗n − ξ(x0)| > Cn−ρ/(2ρ+1)} < ι,

and therefore

lim sup
n→∞

sup
ξ∈F

P (n)

ξ

{
|ξ∗n − ξ(x0)| > Can

}
= lim sup

n→∞
sup
ξ∈F

P (n)

ξ

{
1

an
|ξ∗n − ξ(x0)| > C

}
< ι.

Hence the assumption of a (1/an)-consistent preliminary estimator
in the sense of Section 3.4 is ful�lled in the nonparametric regression
model.

Note that the assumptions Stone imposes on the densities pθ are
mainly conditions concerning interchangeability of certain di�er-
entiation and integration procedures. In general, these conditions
are already included within our conditions from Sections 3.1 and
3.2. In particular, Stone's assumptions hold for the Gaussian loca-
tion model, which was discussed above (cf. Stone, 1980, for more
details).

Conclusion. The results of this thesis on asymptotic upper and
lower minimax risk bounds hold for certain nonparametric regres-
sion models�in particular they hold for the nonparametric regres-
sion model with Gaussian noise.

8.2 Extensions to other models

For the nonparametric regression model discussed in the previous
section, we could verify that all the conditions from Chapter 3 hold.
In particular, we saw that the existence of a (1/an)-consistent pre-
liminary estimator, as postulated in Section 3.4, is guaranteed.

However, the results in Stone (1980) also hold for other
regression-type models�i.e. for models as described in Section
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1.1�in which the parameter function ξ does not necessarily de-
scribe a location parameter. For the estimation of the parameter
function one may use so-called local likelihood estimators, as dis-
cussed by Aerts and Claeskens (1997). As concerns the rate of
convergence, Stone shows that also for this more general class of
models an optimal rate of convergence

r =
ρ

2ρ+ 1

can be established, provided that the parameter functions ξ satisfy
a Hölder condition with coe�cient ρ > 0, and that the densities
pθ satisfy certain regularity conditions. The latter are in general
covered by our assumptions from Sections 3.1 and 3.2. As exam-
ples for models which satisfy these conditions Stone presents the
following distribution families P = {Pθ : θ ∈ Θ} (see Stone, 1980,
Examples 2�5):

Exponential distributions. The density of an exponential distribu-
tion with parameter θ > 0 is given by

pθ(y) =
1

θ
exp{−y/θ}, y ≥ 0.

The parameter space under consideration is assumed to be a rela-
tively compact interval Θ ⊆ (0,∞).

Poisson distributions. For θ > 0 and Y := N ∪ {0}

pθ(y) =
θye−θ

y!
, y ∈ Y

de�nes the probability function of a Poisson distribution. The pa-
rameter space Θ is assumed to be a relatively compact subset of
(0,∞).

Geometric distributions. The probability function of the geometric
distribution with parameter θ > 0 is de�ned by

pθ(y) =

(
1

1 + θ

)(
θ

1 + θ

)y
, y ∈ Y ,

with Y as in the preceding example. The parameter space Θ is
assumed to be a relatively compact subset of (0,∞).
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Bernoulli distributions. For θ ∈ (0, 1)

pθ(y) = θy(1− θ)1−y, y ∈ {0, 1}
de�nes the probability function of the Bernoulli distribution with
parameter θ. The parameter space Θ is assumed to be a relatively
compact subset of (0, 1).

Conclusion. In all models in which the distributions are given
by either of the above families P = {Pθ : θ ∈ Θ} the results from
Stone (1980)�in combination with the arguments from the preced-
ing section�guarantee the existence of a preliminary estimator ξ∗n
for ξ(x0) that converges with the optimal rate, and thus satis�es
the needs of Section 3.4.

For the above distribution families {Pθ : θ ∈ Θ} it remains of
course to prove that�besides the conditions from Stone (1980)�
also the regularity assumptions from Sections 3.1 and 3.2 hold. Ob-
serve that all the above distribution families are one-dimensional
exponential families (see the table in Lehmann and Casella, 1998,
p. 25). We will prove in the next section that exponential families
in most cases satisfy the conditions from Sections 3.1 and 3.2. Con-
sequently, our results on asymptotic upper and lower minimax risk
bounds do also hold for these speci�c models.

8.3 Exponential families

We show that exponential families P = {Pθ : θ ∈ Θ} usually satisfy
the regularity conditions from Sections 3.1 and 3.2.

De�nition and general properties. In the following, let P =
{Pθ : θ ∈ Θ} (Θ ⊆ Rd open) be a dominated family of probability
measures with some dominating, σ-�nite measure µ and densities
pθ = dPθ/dµ. The underlying measurable space is denoted (Y ,B).
P is called a d-dimensional exponential family in ζ and T if the den-
sities have a�not necessarily unique�representation of the form

pθ(y) = c(θ)h(y) exp{〈ζ(θ), T (y)〉} µ-a.e., (8.2)

with measurable functions

ζ, T : (Y ,B)→ (Rd,Bd),

h : (Y ,B)→ (R,B), h ≥ 0.
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The function T = (T1, . . . , Td)
> is also called the generating statis-

tic of the exponential family. Passing over from the dominating
measure µ to the also dominating measure ν = h dµ, we can�
and will in the following�assume without loss of generality that
h ≡ 1. For the sake of simplicity, we will further restrict ourselves
to the special case ζ(θ) = θ and therefore for the rest of this section
presume that the densities under consideration are of the speci�c
canonical form

pθ(y) = c(θ) exp{〈θ, T (y)〉} µ-a.e.1) (8.3)

Checking the regularity conditions. Exponential families in
the canonical representation are di�erentiable in quadratic mean.
The score function satis�es

˙̀
θ(y) = ∇θ log c(θ) + T (y)

= T (y)− Eθ T, (8.4)

and thus in particular (3.1). Continuous di�erentiability in
quadratic mean can be established with the same ideas as proposed
in Section 8.1. Moreover, we have the relations

Eθ T = −∇θ log c(θ),

Iθ = Covθ T = −∇2
θ log c(θ).

(8.5)

(Cf. van der Vaart, 1998, pp. 38 and 95 f. for proofs of these state-
ments.) According to Satz 1.153 and 1.164 in Witting (1985) Iθ is
positive de�nite for all θ ∈ Θ if and only if this is the case for a sin-
gle point θ∗ ∈ Θ. This is equivalent to the components T1, . . . , Td of
T being P-a�nely independent, which means that the implication

d∑
j=1

bjTj(y) = b0 Pθ-a.s. for all θ ⇒ b0 = b1 = . . . = bd = 0

1)Although we discuss only exponential families in the canonical representation, most of
the following statements also hold for general exponential families with densities according
to (8.2). In most relevant cases, the map ζ in (8.2) is one-to-one and su�ciently smooth. The
properties of an exponential family in ζ and T can then be deduced with a parameter trans-
formation from that of the exponential family in canonical representation, see e.g. Witting
(1985), p. 154., and van der Vaart (1998), Example 7.7.
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holds true. Furthermore, Satz 1.164 in Witting (1985) states that
the generating statistic T possesses moments of arbitrary order and
the maps θ 7→ Eθ T

k1
1 . . . T kdd and θ 7→ c(θ) are in�nitely often

di�erentiable. Using the representations of the score function in
(8.4) one concludes that the functions

(θ, τ) 7→
∫

( ˙̀
θ,i)

k1( ˙̀
θ,j)

k2 dPτ , k1, k2 = 0, 1, 2, 3, . . .

and

(θ, τ) 7→
∫

(῭
θ,rs)

k dPτ , k = 0, 1, 2, 3, . . .

are in�nitely often partially di�erentiable on Θ×Θ. In the follow-
ing we may assume that all of the above functions are also bounded.
(This can always be achieved by replacing Θ with a suitable rela-
tively compact subset.)

Evidently, the (log-)densities of an exponential family possess
partial derivatives (with respect to the parameter) of up to third
order, outside an appropriate setN ⊆ Y with µ(N) = 0. Moreover,
it becomes clear from the expression for the score-function from
(8.4) that the second and third order partial derivatives of the log-
likelihood function do not depend on y. Consequently, there is a
function J which satis�es (3.3), and for which Eθ J is uniformly
bounded on Θ. The boundedness follows from the property that
the map θ 7→ Eθ T is in�nitely often partially di�erentiable on Θ.
Di�erentiation of (8.4) with respect to θ further yields

−
∫

῭
θ dPθ = −

∫
∇2
θ log c(θ) dPθ

(8.5)
= Iθ,

and thus (3.4). Finally, we prove (3.5). To this end, we �rst observe
that

∇τ

∫
˙̀
θpτ dµ

(8.4)
= ∇τ

(∫
Tpτ dµ−

∫
(Eθ T )pτ dµ

)
= ∇τ(Eτ T − Eθ T )

= ∇τ Eτ T
(8.5)
= Covτ T.

On the other hand, di�erentiation of (8.3) yields

∇τpτ(y) =
(
∇τc(τ)

)
exp{〈τ, T (y)〉}+ c(τ)T (y) exp{〈τ, T (y)〉}

=
(
∇τ log c(τ)

)
pτ(y) + T (y)pτ(y),
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and therefore∫
˙̀
θ(∇τpτ)

> dµ =

∫
˙̀
θ

(
∇τ log c(τ)

)>
pτ dµ+

∫
˙̀
θT
>pτ dµ

(8.4)
=

(∫
(T − Eθ T ) dPτ

)(
∇τ log c(τ)

)>
+

∫
(T − Eθ T )T> dPτ

(8.5)
= (Eτ T − Eθ T )(−Eτ T )> +

∫
TT> dPτ

−(Eθ T )(Eτ T )>

= Eτ(TT
>)− (Eτ T )(Eτ T )>

= Covτ T.

These calculations show that (3.5) holds.

Conclusion. To sum up, we have shown that the regularity con-
ditions from Sections 3.1 and 3.2 are in general satis�ed if P is given
by an exponential family. Together with the examples from the pre-
ceding Section and the results from Stone (1980) this opens diverse
opportunities to apply the theoretical results from this thesis.





Summary

To better understand the time-dependent development of certain
phenomena�e.g. in economy, meteorology or science�the statisti-
cian has to �t a suitable model to a given series of observed data
points. This always comes with the task of estimating certain model
parameters on the basis of the observed data. Naturally, the ques-
tion of the quality of the used estimation procedures arises. This
problem was tackled in the thesis. A rather abstract stochastic
model was considered, in which the distributions of the independent
observations were assumed to be given by a parametric distribution
family, while the distribution parameter was supposed to be driven
by an unknown, smooth function. As an important special case
this approach covers the nonparametric regression model. Within
this model the minimax risk with respect to a zero-one loss function
was investigated. In simple terms, this means that an estimator is
judged by the probability with which the estimate takes a value out-
side of a speci�c neighbourhood of the true value of the parameter
to estimate. The scope of this thesis was to derive asymptotic min-
imax risk bounds under rather general conditions. The basic idea
for the examinations was to use a localisation procedure, which
is a common technique in asymptotic statistics. This means that
�rst a localised model was considered in which certain estimators
were shown to be asymptotically normally distributed. Both up-
per and lower bounds for the asymptotic minimax risk within this
local model could be established. In a second step these bounds
could be transferred to the original model, too. Furthermore, it
could be shown that the general nonparametric regression model
and also some other models satisfy the regularity conditions that
were imposed to derive the asymptotic minimax risk bounds.
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Zusammenfassung

In den Wirtschafts- und Naturwissenschaften tritt häu�g die Frage
auf, wie man bestimmte sich zeitlich entwickelnde Prozesse geeignet
beschreiben kann. Aufgabe der Statistik ist es, für solche Prozesse
passende Modelle zu entwickeln, um mit diesen die beobachteten
Daten beschreiben und erklären zu können. Damit einher geht
die Aufgabe, eine bestimmte Anzahl von Parametern innerhalb
eines solchen Modells auf Grundlage der vorliegenden Daten zu
schätzen. Es stellt sich die Frage nach der Güte der dazu verwen-
deten Schätzverfahren. Diese Frage wurde im Rahmen der Disserta-
tion behandelt. Grundlage für die Untersuchungen war ein abstrak-
tes stochastisches Modell, bei dem die als unabhängig angenomme-
nen Beobachtungen durch eine parametrische Verteilungsfamilie
modelliert werden. Von dem Verteilungsparameter wird angenom-
men, dass dieser durch eine unbekannte, hinreichend glatte Funk-
tion gesteuert wird. Ein wichtiger Spezialfall dieses Modells ist
das klassische nichtparametrische Regressionsmodell. In dem be-
trachteten Modell wurde das Minimax-Risiko unter Verwendung
einer 0-1-Verlustfunktion untersucht. Einfach ausgedrückt bedeutet
dies, dass ein Schätzer für den unbekannten Verteilungsparameter
danach beurteilt wird, wie groÿ die Wahrscheinlichkeit ist, dass
er einen Wert in einer Umgebung des wahren Parameterwertes
annimmt. Ziel der Arbeit war es, unter möglichst allgemeinen
Bedingungen asymptotische obere und untere Schranken für das
Minimax-Risiko herzuleiten. Eine grundlegende Idee der Unter-
suchungen hierzu bestand darin, eine Lokalisierung des Modells
vorzunehmen, und das Minimax-Risiko zunächst in den resultieren-
den lokalen Modellen zu untersuchen. In diesen konnte die asymp-
totische Normalität gewisser Schätzer nachgewiesen und damit
obere und untere Schranken für das Minimax-Risiko hergeleitet wer-
den. Durch die Konstruktion von Schätzern mit einer hinreichend
guten Konvergenzrate konnten diese Schranken in einem zweiten
Schritt auf das ursprüngliche Modell übertragen werden. Es wur-
den zudem Beispiele für Modelle gebracht, auf die die Theorie dieser
Arbeit anwendbar ist.
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