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Abstract

We propose the relaxation algorithm as a simple and powerful method for simulat-

ing the transition process in growth models. This method has a number of important

advantages: First, it can easily deal with a wide range of dynamic systems includ-

ing stiff differential equations and systems giving rise to a continuum of stationary

equilibria. Second, the application of the procedure is fairly user friendly. The only

input required is the dynamic system. Third, the variant of the relaxation algorithm

we propose exploits the infinite time horizon, which usually underlies optimal control

problems in economics, in a natural manner. Fourth, the algorithm can solve prean-

nounced or anticipated parameter changes in an easy and intuitive way, which makes

it very useful for policy analysis, e.g. in a dynamic General Equilibrium context. As

an illustrative application, we compute the transition process of the Jones (1995) and

the Lucas (1988) models. In addition, we solve the Ramsey-Cass-Koopmans model

for a shock consisting of anticipated parameter changes. Finally, we construct a Gen-

eral Equilibrium model with heterogenous households to demonstrate the potential

of the relaxation algorithm. The model is calibrated to Jordanian data and employed

to solve different scenarios of trade liberalization between Jordan and the European

Union. This model exhibits many of the attributes that makes the application of

usual procedures highly inefficient or even impossible.
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1 Introduction

1 Introduction

Infinite horizon continuous-time optimization problems arise frequently in dynamic

macroeconomic theory. The dynamic system representing the first order conditions of

optimality is then interpreted to describe the evolution of the economy under study.

Many studies have confined their analysis to the long run balanced growth rate or

the balanced growth path. In this way, additional theoretical insights about the

transition process and possible counteracting effects during the transition phase of

the economy are neglected. Therefore, a comprehensive analysis of the model under

study requires an investigation of transitional dynamics. However, in many cases

it is difficult or even impossible to derive qualitative effects of the transition path

analytically, which makes a numerical computation of the transition path necessary.

Moreover, if a sufficiently exact quantification of transitional effects is needed, e.g. for

a pareto ranking of policy measures, a numerical computation of the transition path

is inevitable. For example, in the field of dynamic Computable General Equilibrium

modeling, it is very often so that the only possible analysis consists of numerical

solutions of transition paths.

This dissertation contributes to the literature on dynamic macroeconomic theory

by proposing the relaxation algorithm as a powerful method to determine the tran-

sition process in growth models numerically. We show that the procedure is able to

solve continuous-time infinite horizon optimization models, for which the numerical

solution is difficult or even impossible, if standard solution algorithms are applied.

For applying the relaxation algorithm we exploit that the model’s dynamics can be

represented by a system of differential equations potentially augmented by algebraic

equations. The presence of initial conditions and final boundary conditions turn

the numerical problem into a two-point boundary value problem. In the case of

infinite-horizon models the latter conditions consists of the requirement for solution
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1 Introduction

trajectories to converge towards an interior point or curve. Relaxation algorithms

are known to be well-suited for this kind of numerical problem.

The principle of relaxation is to construct a large set of non-linear equations,

which solution represents the solution trajectory. Equations representing the slope

of the trajectory are obtained by discretization of the differential equations on a mesh

of points in time. The set of equations is augmented by initial and final boundary

equations. Potential algebraic equations are appended for every mesh point. This set

of non-linear equation is solved, employing a Gauß-Newton procedure, which exploits

the sparsity of the equations. The algorithms aims at solving for the transition path

simultaneously and can, therefore, meet initial and final boundary conditions easily.

The relaxation procedure and similar finite-difference procedures have already been

employed in various fields of economics. Prominent examples comprise the solution

of two point boundary value difference equations (e.g. Laffargue, 1990; Juillard et al.,

1998), differential-difference equations (e.g. Boucekkine et al., 1997) as well as partial

differential equations (e.g. Candler, 1999). However, to the best of our knowledge, the

relaxation algorithm has not been exploited yet systematically to solve deterministic

continuous-time two point boundary value problems in growth theory. Nonetheless,

there are a few applications in the economics literature. For instance, Oulton (1993)

and Robertson (1999) employ the relaxation routine provided by Press et al. (1989)

to solve a continuous-time deterministic growth model.

Other solution algorithms to solve continuous-time infinite horizon optimization

models comprise backward integration (Brunner and Strulik, 2002), the finite-diffe-

rence method as proposed by Candler (1999), time elimination (Mulligan and Sala-

i-Martin, 1991), projection methods (e.g. Judd, 1992; Judd, 1998, Chapter 11), and

the method of Mercenier and Michel (1994 and 2001). The merits and shortcomings

of these methods are diverse, however, many of them have problems to solve models

2



1 Introduction

exhibiting a multi-dimension stable manifold. Some procedures have to be modified

if the dimension of the state space increases, or computational requirements increase

drastically, which could permit the numerical solution of higher dimensional models.

More precisely, the method of Candler is generic with respect to the dimension

of the state space, however, computational costs grow exponentially as the number

of state variables increases. The method of backward integration is not generic

for models exhibiting higher-dimensional stable manifolds. If the model exhibits

two state variables, a backward shooting algorithm can be applied. However, the

problem of stiff differential equations might occur, which could make the solution of

higher dimensional models difficult or even impossible. The same criticism applies

for the method of time elimination, since its generalization to multi-dimensional

stable manifolds is conceptually equal to the backward integration procedure. The

method of Mercenier and Michel is generic with respect to the number of state

variables. Moreover, computational costs grow acceptably if the model dimension

increases. The only disadvantage of the method is that it uses first order difference

schemes and, therefore, it might need a large amount of mesh points to yield accurate

solutions. Projection methods are also generic with respect to the model dimension.

However, computational requirements grow exponential if the dimension of the model

increases. This “curse of dimensionality” can be attenuated by selecting a special

basis, but, still, computational costs grow considerably.

The advantage of the relaxation algorithm is that it treats higher dimensional

systems in a generic way. This means, no conceptual changes have to be made with

respect to the algorithm if the dimension of the model increases. This holds for an

increase in the dimension of control (or jump) variables and for an increase in the

dimension of state (or predetermined) variables. Moreover, a great emphasis has

been made to design the application of the relaxation algorithm as user-friendly as

3



1 Introduction

possible.

We show the relaxation algorithm also to be able to handle properties of dynamic

systems that arise for prominent growth models. The first property is that of stiff

differential equations, i.e. a considerably difference in the real part of the stable

eigenvalues. This characteristic arises, for example, in the Jones (1995a) model. We

simulate this model numerically, and show that the analysis of transitional dynam-

ics can bring about additional theoretical insights concerning the model’s dynamic

properties.

The second property arising in prominent growth models is that of a center man-

ifold of stationary equilibria, i.e. long run equilibria form a curve. Nonetheless,

transitional dynamics are unique, and initial values of the state variables determine

to which particular steady state level the economy converges. This characteristic

arises in the prominent Lucas (1988) model. It is surprising that to the best of

our knowledge no numerical analysis of the model’s original representation as de-

scribed in Lucas (1988) exists, although this is the secondary most cited paper on

the economists’ platform IDEAS.1 Moreover, theoretical analysis of the dynamic sys-

tem as presented in the seminal paper is rare (e.g. Caballe and Santos, 1993, confine

to a parameter restriction).

The third property arising in growth models is that of a preannounced or an-

ticipated shock. We derive the well-known continuity principle of adjoint variables

for preannounced or anticipated changes in parameters for continuous-time, infinite

horizon, perfect foresight optimization models. The resulting multi-point boundary

value problem can be solved numerically by employing the relaxation algorithm. By

ensuring that the state variables and the adjoint variables are continuous, poten-

tial jumps in the control variables are calculated automatically. We solve a Ramsey

1See http://ideas.repec.org/top/top.item.simple.html, evaluated at Nov. 7, 2007.
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1 Introduction

model extended by an elementary Government sector numerically as an example.

Finally, we demonstrate the potential of the relaxation algorithm by solving a

highly dimensional Computable General Equilibrium (CGE) model numerically. The

model exhibits a six-dimensional stable manifold, a five-dimensional center manifold

of stationary equilibria, and a schedule of preannounced shocks. Therefore, the

model exhibits many of the attributes that make the application of usual procedures

highly inefficient or even impossible. We introduce heterogenous households into an

otherwise standard neoclassical dynamic CGE model. We calibrate the model to

Jordanian data represented by a Social Accounting Matrix (SAM) of 2002 and a

household survey. The model is employed to investigate the economic implications

of trade liberalization on welfare and income distribution of heterogenous households

induced by the Association Agreement of 2002 between Jordan and the European

Union.

The thesis is organized as follows. In Section 2, we provide the formal mathemat-

ical framework for the theoretical analysis of the dynamics of the models presented

in this thesis. Moreover, the case of stiff differential equations is presented. In

Section 3, we describe the relaxation algorithm in detail and compare it to compet-

ing solution algorithms. Moreover, we present a theoretical and numerical analysis

of transitional dynamics for the Jones (1995a) model and the Lucas (1988) model.

In Section 4, we analyze the theoretical treatment of anticipated or preannounced

shocks in continuous-time, perfect foresight optimization models. Moreover we dis-

cuss how to solve models numerically, which exhibit an anticipated shock. In Section

5, we construct a large Computable General Equilibrium model with heterogenous

households. We analyze the model’s dynamic behavior theoretically and numerically.

5



2 Mathematical Preliminaries

2 Mathematical Preliminaries

2.1 Introduction

In this Section, we want to set the formal, mathematical framework for the analysis

of the economic models presented in this thesis. Since transitional dynamics of these

models is represented by a dynamic system, we focus on the analysis of transitional

dynamics and long-run behavior of dynamic systems. First, we analyze a dynamic

system that exhibits an isolated, hyperbolic fixed point. Transitional dynamics are

described by the Hartman-Grobman theorem, which states that the local behavior

of the system equals its linearization. Note, that the conclusions only apply for

the neighborhood of a fixed point. At some distance, the non-linear behavior may

dominate the linear behavior. Then, we analyze transitional dynamics around a

curve of stationary equilibria. The Lucas (1988) model, for example, exhibits this

characteristic. In the proximate Section, we analyze transitional dynamics around

a hyperbolic fixed point on a two-dimensional stable manifold. We focus on the

case of two real eigenvalues which differ considerably, because the Jones (1995a)

model exhibits this characteristic. Moreover, we describe the phenomenon of stiff

differential equations, referring to a two-dimensional stable manifold. Again, the

Jones (1995a) model exhibits this characteristic, and this exposure is intended to

enhance the understanding of problems that could arise for the numerical solution

of the model.

2.2 Qualitative long-run behavior of dynamic systems

We start by defining a flow, which is defined by a system of differential equations.2

2The definitions of this Subsection originate from Tu (1994) if not indicated otherwise. If corollaries
or theorems are not the authors own contribution this is indicated as well.
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2 Mathematical Preliminaries

Definition 1 (Flow) Given the system of n nonlinear ordinary differential equations

ẋ = f(x) f : M ⊂ R
n → R

n (1)

with f being sufficiently smooth. Then f is a vector field which generates a flow

φt : M → R
n where φt(x) ≡ φ(x, t), defined for all x ǫM and t ǫ (a, b) satisfying

dφ(x, t)t=s

dt
= f [φ(x, s)] (2)

for all x ǫM and s ǫ (a, b).

An orbit of the flow is a set in R
n that the flow passes. Referring to the system of

differential equations, an orbit is the maximum trajectory that results from a specific

initial point, whereas the trajectory is extended in both directions of time.

Definition 2 (Orbit) Given x ǫM the orbit of x, γ(x) is defined as

γ(x) := {φt(x) : t ǫ[tmin, tmax]}

where [tmin, tmax] is the maximum time interval that φ is defined for. The forward

orbit of x is defined as

γ+(x) := {φt(x) : t ǫ[tmin, tmax]}

and the reverse orbit as

γ−(x) := {φt(x) : t ǫ[tmin, tmax]}.

An invariant set is a set in R
n that the flow stays in forever. It could refer to an

arbitrary shaped region that the flow does not leave. However, in the context of the

following theorems it should better be understood as an orbit defined for tmax = ∞.

7



2 Mathematical Preliminaries

Definition 3 (Invariant Set) The non-empty set V ⊂ M is said to be invariant, if

φt(x) is defined for all t > 0 and

φt(V ) ⊆ V ∀t ≥ 0

We do not want to address existence and uniqueness of solutions, but instead focus

on the long-run behavior of the system and the topology implied by the flow. At

first, we focus on the system’s behavior around a single fixed point.

Definition 4 (Fixed Point) Given the system of n nonlinear ordinary differential

equations

ẋ = f(x) f : M ⊂ R
n → R

n (3)

a point x∗ at which f(x∗) = 0 is called a stationary point or fixed point.

Usually, in the literature further assumptions about the fixed point are made. At

first, we assume the fixed point to be isolated, i.e. no further stationary points are

‘nearby’. A more precise definition is the following.

Definition 5 (Simple Fixed Point) A fixed point is said to be simple if its linearized

system Dxf |x∗ · x has no zero eigenvalues. i.e. if

det(Dxf |x∗) 6= 0.

Linearization theorems like the Hartman-Grobman theorem, however, need an

even stronger assumption. From a linear system of differential equations it is well-

known that the magnitude of the real parts of the eigenvalue indicates the speed of

convergence towards the fixed point. If the real part is zero, but the complex part

is nonzero, the linear system would exhibit periodic closed orbits around the fixed

8



2 Mathematical Preliminaries

point.3 The solutions would neither converge to the fixed point nor diverge from the

fixed point. However, this result cannot be generalized to non-linear systems. In

the literature, the case of a zero eigenvalue is often excluded from the analysis of

qualitative long-run behavior of non-linear systems.

Definition 6 (Hyperbolic Fixed Point) A fixed point is said to be hyperbolic if its

linearized system Dxf |x∗ · x has no eigenvalues with zero real part.

Next, we want to draw the connection between a dynamics system and the cor-

responding flow. Since the connection can be made easily, we switch between both

concepts whenever it seems convenient.

Corollary 7 Consider the n-dimensional dynamic system ẋ = f(x) and the corre-

sponding flow φt. The Jacobian matrixes are denoted by Df and Dφt, respectively.

Then for a fixed point x∗

Dφt(x∗) = exp(Df(x∗) · t) (4)

holds. Furthermore, if λ1, . . . , λk, k ≤ n are eigenvalues of Df with corresponding

eigenvectors x1, . . . , xk, then exp(λ1t), . . . , exp(λkt), k ≤ n are eigenvalues of Dφt

with corresponding eigenvectors x1, . . . , xk.

Proof. The solution can be verified by linearization and differentiating the equation

with respect to time (e.g. Königsberger, 1997, pp.152). If λ is an eigenvalue of Df

with corresponding eigenvector x, then Df · x = λx holds. Multiplying equation (4)

with x it follows that

Dφtx = exp(Dft)x

=

(

I + Dft +
1

2!
(Df)2t2 +

1

3!
(Df)3t3 . . .

)

x

3See, for example, Barro and Sala-i-Martin (2004), p. 588.
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2 Mathematical Preliminaries

= x + λtx +
1

2!
λ2t2x +

1

3!
λ3t3x + . . .

= exp(λt)x

Therefore, exp(λt) is an eigenvalue of Dφt(x) with eigenvector x.

The previous definition focusses on the eigenvalues of the linearized system f . The

linearization of the corresponding flow φt provides the same information.

We want to investigate the dynamic behavior of the system around a simple,

hyperbolic fixed point. The theorem of Hartman and Grobman is the standard

theorem providing information about the topology.4

Theorem 8 (Linearization Theorem of Hartman and Grobman, Tu (1994))

Let the nonlinear dynamic system

ẋ = f(x) (5)

have a simple hyperbolic fixed point x∗. Let the Jacobian matrix Dxf evaluated at x∗

have nu eigenvalues with positive real part and ns eigenvalues with negative real part

with the corresponding eigenspaces Nu and N s, respectively (Nu ⊕ N s = R
n). Then

the following claims hold

1. In the neighborhood U of x∗ ǫ R
n of this equilibrium, the phase portraits of the

original system and its linearization

ẋ = Dxf |x∗ · x (6)

are equivalent.

2. The corresponding flow φt is topologically equivalent to the linearization Dφt|x∗.

4The Hartman-Grobman theorem appears in several versions in Tu (1994), e.g. pages 135, 145,
146, 157 and 188. We collect the main conclusions in one theorem.

10



2 Mathematical Preliminaries

3. There exists locally smooth manifolds W u(x∗) and W s(x∗), called a local un-

stable manifold and a local stable manifold, respectively, tangent to the linear

spaces Nu and N s, respectively.

4. W s(x∗) is characterized by ||φ(y)−φ(x∗)|| → 0 exponentially as t → ∞ for any

y ǫW s(x∗), and W u(x∗) is characterized by ||φ(y) − φ(x∗)|| → 0 exponentially

as t → −∞ for any y ǫW u(x∗).

The main statement of the theorem is that in the neighborhood of a simple, hy-

perbolic fixed point the system behaves the same way as the linearized system.

Therefore, it is possible to infer from the eigenvalues on the qualitative behavior

and the speed of convergence. Moreover, it is possible to infer from the eigenvectors

on the direction of convergence. The phase space can be divided into a stable and

unstable manifold.

A trajectory which starts on the stable manifold converges towards the steady

state. Therefore, by defining ns equations transversal to the stable manifold a unique

trajectory is defined, if convergence towards the fixed point is required.

Until now, we have assumed the fixed point to be hyperbolic, since the theorem

can only be applied to hyperbolic fixed points. A more general statement about

the neighborhood of a fixed point that is potentially non-hyperbolic is the Center

Manifold Theorem.

Theorem 9 (Center Manifold Theorem, Tu (1994))

Let the nonlinear dynamic system

ẋ = f(x) (7)

be a Cr vector field with a fixed point x∗ set at the origin for simplicity. Let the

Jacobian matrix Dxf evaluated at x∗ have nu eigenvalues with positive real part and

11
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ns eigenvalues with negative real part and nc eigenvalues with zero real part. We

denote the corresponding eigenspaces Nu, N s and N c, respectively. Then there exists

Cr stable, unstable manifolds W s, W u and a Cr−1 central manifold W c tangent to

N s, Nu and N c at x∗ and invariant for the flow of f .

N S N C

N U

W S

W U

W C

Figure 1: Fixed point with stable, unstable and center manifold

The theorem states that, besides the stable and unstable manifold, there exists a

center manifold, associated to the eigenvalues with zero real part and tangent to the

corresponding eigenvectors (see Figure 1). Whenever the Jacobian matrix evaluated

at a fixed point exhibits a zero eigenvalue, the corresponding eigenspace is tangent

to the center manifold.
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However, the Hartman-Grobman theorem cannot be applied to conclude about the

dynamic behavior on the center manifold in general. The reason is that the linearized

system cannot give sufficient information about dynamics on a center manifold. In

direction of an eigenvalue with non-zero real part, the linearization provides informa-

tion about the local behavior of the system, because near the fixed point the linear

part will dominate the nonlinear components. However, this conclusion cannot be

drawn for systems exhibiting an eigenvalue of zero real part, since the linear behavior

would indicate no movement. Therefore, any nonlinear behavior would dominate the

linear behavior.

This can be seen clearly by considering the following differential equation

ẋ = x2 . (8)

The fixed point is the origin, x∗ = 0. The Jacobian matrix evaluated at the fixed

point yields

2x|x∗=0 = 0 .

Therefore, the neighborhood of the fixed point consists of a center manifold. No

stable or unstable manifold is present. While the linearized system exhibits no

movement, the nonlinear system exhibits qualitatively different behavior, depending

on which side of the origin is examined. For x < 0 it follows that ẋ > 0 and, hence, x

is converging towards the origin. For x > 0 it follows that ẋ > 0 and x is diverging.

We do not want to investigate the dynamics on a center manifold in general, but

instead focus on a special case. For some growth models the phenomenon of a center

manifold of stationary equilibria occurs.5

5The most prominent model is the Lucas (1988) model. In the seminal paper of Lucas and the
analysis of Caballe and Santos (1993) the dynamic system exhibits a center manifold.
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Corollary 10 A nc-dimensional manifold of stationary equilibria is a center mani-

fold. The Jacobian matrix evaluated at the center manifold exhibits at least nc zero

eigenvalues.

Proof. A manifold of stationary equilibria is a center manifold, because the solution

of the problem

ẋ = 0 ⇔ f(x) = 0

is locally not unique, i.e. the system of nonlinear equations f(x) is singular. There-

fore, on the manifold f(x) = 0 the tangent bundle tangent to the manifold f(x) = 0

is in the null space of the Jacobian matrix Df(x).

In this special case, the additional information is available that there is no move-

ment on the center manifold. A simple, linear differential equation exhibiting the

same property is ẋ = 0. As a next step we want to focus on the dynamic properties

of higher dimensional, nonlinear systems in the neighborhood of a center manifold

of stationary equilibria. To answer that question we can apply the Fundamental

theorem of normally hyperbolic invariant manifolds. The standard textbook stating

the theorem is Hirsch, Pugh and Shub (1977). However, since the presentation of

the theorem is very abstract, we refer to a more concrete statement of the theorem

in Li et al. (2003).6 Before we state the theorem we have to extend the definition of

a hyperbolic set from a single point to a manifold.

Definition 11 (r-normally hyperbolic invariant manifold, Hirsch et al. (1977), Li

et al. (2003)) An invariant manifold V ⊂ M is called r-normally hyperbolic (1 ≤
r ≤ ∞) with respect to a flow φt, if

1. φt is Cr

6Li et al. (2003) apply the theorem to an economic model that exhibits similar mathematical
properties, but which is not related to economic growth.
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2. TV M , the tangent bundle of M restricted on V , splits into 3 continuous sub-

bundles Nu, TV , and N s such that

TV M = Nu ⊕ TV ⊕ N s (9)

Thereby, TV is tangent to the invariant manifold V .

3. There exists a vector norm || · || such that for every xǫR and 0 ≤ k ≤ r

||Dφt|Nu
x
||inf > ||Dφt|TxV ||ksup (10)

||Dφt|Ns
x
||sup < ||Dφt|TxV ||kinf . (11)

Thereby, given a matrix A, ||A||inf and ||A||sup are defined as

||A||inf := inf
||x||=1

{||Ax||} (12)

||A||sup := sup
||x||=1

{||Ax||} (13)

Roughly speaking, a hyperbolic invariant manifold is a manifold where the flow

stays in forever and where the dynamics outside the manifold are ‘faster’ than on the

manifold itself, where the ‘speed’ refers to the movement transversal to the manifold.

Conditions (10) and (11) can be interpreted as Nu
x is expanding faster than the

movement on TxV , and N s
x is contracting faster than the movement on TxV . A

center manifold of stationary equilibria exhibits no movement and is, therefore, a

hyperbolic manifold.

Since we want to state a theorem analogous to the Hartman-Grobman theorem

that connects the eigenvalues to the dimension of stable and unstable manifold,

we want to identify Nu
x and N s

x as eigenspaces. To avoid laborious notations we

focus on the case in which the Jacobian matrix is diagonalizable in C. That is, the

eigenvalues may potentially be complex, but the algebraic and geometric dimension

of the eigenspace of each eigenvalue is the same. In this case, the whole space C
n can

15
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be divided into n eigenspaces.7 Moreover, we assume the center manifold to exhibit

the same dimension as the number of zero eigenvalues, i.e. the center manifold and

the manifold f(x) = 0 coincide.

Corollary 12 Consider a n-dimensional dynamic system ẋ = f(x) and the corre-

sponding flow φt. Let the state space exhibit a manifold of stationary equilibria of

dimension nc and the Jacobian matrix Df evaluated on this manifold exhibits exactly

nc eigenvalues with zero real part. Moreover, let the Jacobian matrix be diagonaliz-

able in C. Then, the manifold of stationary equilibria is a ∞-normally hyperbolic

manifold.

Proof. With Corollary (7) and Corollary (10) we can conclude that exactly nc

of the flow’s eigenvalues are of value 1. We assume, that nu are of absolute value

greater than 1 and ns are of absolute value smaller than 1. First, we construct a

basis y1, . . . , yn for R
n. Since we assumed the matrix to be diagonalizable in C,

the space C
n can be divided into n invariant subspaces, each represented by an

eigenvector. Each subspace associated with a real eigenvalue will be represented by

a real eigenvector. Therefore, if l ≤ n real eigenvalues are present, we found already l

basis elements for R
n, since a basis of real vectors for a subspace C

l is also a basis for

R
l. In the case of complex eigenvalues they will appear in complex conjugate pairs

λ, λ̄. If y is an eigenvector of λ, then ȳ is an eigenvector of λ̄, because Ay = λy and

Ā = A. Since y = ℜ(y) + iℑ(y)8, for every pair λ, λ̄ the pair ℜ(y), ℑ(y) represents

a basis of the corresponding subspace in C
n. Note, that for that complex pair

Dφ · ℜ(y) = ℜ(λ)ℜ(y) −ℑ(λ)ℑ(y)

Dφ · ℑ(y) = ℑ(λ)ℜ(y) −ℜ(λ)ℑ(y) (14)

7According to the fundamental theorem of algebra n eigenvalues exists in C, counted by their
multiplicity.

8ℜ(·) and ℑ(·) denote the real and imaginary part of a complex element, respectively.
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holds. With these additional vectors, we constructed a basis for C
n only consisting

of real vectors. Therefore, this will also represent a basis for R
n.

For proofing equations (10) and (11), we change coordinates and employ the eu-

clidian norm with respect to the basis y1, . . . , yn that we constructed

||x|| :=

{

√

α2
1 + . . . + α2

n, x = α1y1 + . . . + αnyn, αiǫR

}

Note, that ||Dφt|TxV ||ksup = Dφt|TxV ||kinf = 1 for any k ≥ 0, because TxV is spanned

by eigenvectors with an eigenvalue of 1. This means that every x ǫ TxV is mapped

on itself by Dφt. In detail

||Dφt|TxV ||ksup = sup
||x||=1

{

√

α2
1 + . . . + α2

n, x = α1y1 + . . . + αnyn

}

= 1

||Dφt|TxV ||kinf = inf
||x||=1

{

√

α2
1 + . . . + α2

n, x = α1y1 + . . . + αnyn

}

= 1

W.l.o.g. we focus on the linear space Nu spanned by the eigenvectors corresponding to

the nu eigenvalues. We have to show that ||Dφt|Nu
x
||inf > 1. Let λu,1, . . . , λu,k denote

the eigenvalues of Nu and let yu,1, . . . , yu,k denote the real basis of the corresponding

subspace. Note, that any xǫNu can be decomposed as x = α1yu,1 + . . . + αkyu,k.

Then, if all eigenvalues would be real,

||Dφt|Nu
x
||inf = inf

||x||=1,xǫNu
x

{||Dφt · x||}

= inf
||x||=1

{

||Dφt|x · x||, x = α1yu,1 + . . . + αkyu,k

}

= inf
||x||=1

{||α1λu,1yu,1 + . . . + αkλu,kyu,k||}

= inf
||x||=1

{√

α2
1λ

2
u,1 + . . . + α2

kλ
2
u,k

}

However, the norm of the vector is always greater than 1, since

√

α2
1λ

2
u,1 + . . . + α2

kλ
2
u,k >

√

α2
1 + . . . + α2

k = 1
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The inequality follows because λ2
u,i > 1, ∀i. If e.g. the first two eigenvalues are

complex, the calculation has to modified. We continue to denote the basis by

yu,1, yu,2, . . . , yu,k, but keep in mind that yu,1 and yu,2 are real and imaginary part of

the eigenvector of λu,1ǫC. Moreover, λu,1 = λ̄u,2 and |λu,1| = |λu,2| > 1. The matrix

norm now calculates with equation (14) according to

||Dφt|Nu
x
||inf = inf

||x||=1,xǫNu
x

{||Dφt · x||}

= inf
||x||=1

{

||Dφt|x · x||, x = α1yu,1 + . . . + αkyu,k

}

= inf
||x||=1

{

||α1ℜ(λu,1)yu,1 − α1ℑ(λu,1)yu,1 + α2ℑ(λu,1)yu,1

−α2ℜ(λu,1)yu,1 + . . . + αkλu,kyu,k||
}

= inf
||x||=1

{√

α2
1|λu,1|2 + α2

2|λu,1|2 + . . . + α2
kλ

2
u,k

}

Again, it follows that

√

α2
1|λu,1|2 + α2

2|λu,1|2 + . . . + α2
kλ

2
u,k >

√

α2
1 + . . . + α2

k = 1

Therefore, ||Dφt|Nu
x
||inf > 1 = ||Dφt|TxV ||ksup for any k ≥ 0. The argument for

||Dφt|Ns
x
||sup < ||Dφt|TxV ||kinf is analogous.

Now, we can apply the fundamental theorem of normally hyperbolic invariant

manifolds. The theorem states conclusions about both, the dynamic behavior in the

neighborhood of a single point of the manifold, and the dynamic behavior in the

neighborhood of the manifold as a whole.

Theorem 13 (Fundamental theorem of normally hyperbolic invariant manifolds, Li

et al. (2003))

Let φt : M → M be a Cr flow of a C∞ manifold M with r ≥ 1 leaving the C1

submanifold V ⊂ M invariant, where V is assumed to be compact. Assume that

φt is r-normally hyperbolic at V respective to the tangent bundle splitting TV M =
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Nu ⊕ TV ⊕ N s, where Dφt exponentially expands and contracts the vectors in Nu

and N s, respectively. Then

1. Existence: There exists locally φt-invariant submanifolds W u(φt) and W s(φt),

called a local unstable manifold and a local stable manifold at V , respectively,

tangent at V to Nu ⊕ TV , and TV ⊕ N s, respectively.

2. Uniqueness: Any locally invariant set near V lies in W u ∪ W s.

3. Characterization: W s consists of all points whose forward φt-orbits never strays

far from V , and W u of all points whose reverse φt-orbits never stray far from

V .

4. Smoothness: W u, W s and V are class Cr.

5. Foliation: W u and W s are invariantly fibered by Cr submanifolds W uu
x , W ss

x ,

x ǫ V , tangent at x to Nu
x and N s

x, respectively. W uu and W ss are invariant in

the sense that φt(W ss
x ) ⊂ W ss

φt(x) for t < 0 and φt(W uu
x ) ⊂ W uu

φt(x) for t > 0. W ss
x

is characterized by ||φ(y)−φ(x)|| → 0 exponentially as t → ∞ for any y ǫW ss
x ,

and W uu
x is characterized by ||φ(y) − φ(x)|| → 0 exponentially as t → −∞ for

any y ǫW uu
x .

6. Continuity: The leaves of foliation W uu and W ss are continuous on parameter

x ǫ V in C1-topology.

7. Permanence: If φ̃t is another Cr flow on M and is Cr close to φt (i.e., close

in Cr-norm). Then φ̃t is r-normally hyperbolic at some unique submanifold

Ṽ , which is Cr close to V . The invariant manifolds W u(φ̃t), W s(φ̃t), and the

leaves W uu
x (φ̃t), W ss

x (φ̃t), are Cr close to those of φt.
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8. Linearization: Near V , φt is topologically conjugate (i.e. C0 conjugate) to

Dφt|Nu⊕Ns, the restriction of the Jacobian of the flow to the subspace Nu⊕N s.

It has to be verified that the assumptions of the theorem are fulfilled. We already

proved that a center manifold of stationary equilibria is a ∞-normally hyperbolic

invariant manifold. The theorem further demands the manifold to be compact.9 If

we restrict the phase space to a cuboid, compact area I ⊂ R
n, the truncated center

manifold is also compact. Since the theorem only holds for a neighborhood U of

the center manifold, we can now apply the theorem to U ∩ I. The area beyond the

cuboid is not of economic interest.

The results of theorem (13) demand a detailed mathematical and economic in-

terpretation. First, we exploit statement (1) of the theorem. It states that there

exists a local stable and unstable manifold tangent to corresponding linear spaces.

Since we consider the case of a center manifold of stationary equilibria, the linear

space can readily be identified. The space TV is spanned by the eigenvectors of

eigenvalue zero, N s is spanned by the eigenvectors with eigenvalues of negative real

part, and Nu is spanned by the eigenvectors with eigenvalues of positive real part,

referred to the dynamic system respectively.10 Therefore, the stable and unstable

manifold of the center manifold are of dimension nc + ns and nc + nu, respectively.

Analogously to the Hartman-Grobman theorem a locally unique trajectory can be

identified by giving nc + ns initial conditions, i.e. a (nc + ns)-dimensional system

of equations transversal to the stable manifold. Different to the Hartman-Grobman

theorem the stable manifold now refers not to a single fixed point but to the whole

center manifold. This means that from theorem (13.1) it can only be concluded that

9Li et al. (2003) state alternative requirements the manifold could fulfill. To prove that these
requirements are fulfilled is beyond the scope of this thesis, wherefore we simplify matters by
constructing a compact manifold.

10Note that according to Corollary (7) the corresponding eigenvalues of the flow are of absolute
value smaller or greater than one, respectively.
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the trajectory is converging towards the center manifold of stationary points, but

not to which of the stationary points in particular.

Further information about transitional dynamics can be drawn from conclusion

(5) from theorem (13). This conclusion provides information about dynamics in the

neighborhood of one fixed point. For each fixed point x of the center manifold there

exists a stable submanifold W ss
x and an unstable submanifold W uu

x called fibers,

which are of dimension ns and nu, respectively. Each fiber is tangent to the subspace

spanned by the corresponding eigenvectors. That is, the unstable and stable fibers

are tangent to the eigenvectors associated to eigenvalues with a positive and negative

real part. According to conclusion (6), the fibers are continuous in x, that is, the

fibers of point x̂ close to x will be close to the fibers of point x. The foliation is

illustrated in Figure 2. It is an example of a two-dimensional system with a one-

dimensional center manifold of stationary equilibria. All solutions converge towards

the center manifold. Therefore, the stable manifold is two-dimensional, whereas each

fiber is one-dimensional. The center manifold of stationary points is represented by a

solid line. Trajectories converging towards the center manifold are dashed, and each

initial point is indicated by a cross. It can be recognized that each fiber represented

by a trajectory converges to a different point on the center manifold.

We want to emphasize that theorem (13) includes theorem (8), if it is applied to a

single, hyperbolic fixed point. Moreover, conclusions from theorem (8) applied to one

single point of a center manifold of stationary points match conclusions of theorem

(13), although it is not possible to apply theorem (8) formally. The reason is that

theorem (8) applies a linearization. Since the center manifold consists of stationary

points there is no movement on the center manifold and, therefore, the non-linear

system and its linearization are topologically equivalent. However, note that theorem

(13) provides additional conclusions about the center manifold as a whole.
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Figure 2: Center manifold of stationary points and converging trajectories

We can already conduct an economic interpretation, suitable for a macroeconomic

infinite horizon optimization model. Often, the dynamic system is interpreted to

describe the evolution of an economy under study. Each trajectory, then, repre-

sents an economy that differs at the beginning of the time horizon only in the initial

conditions with respect to the other economies. These initial conditions often com-

prise the stock of physical capital, human capital or knowledge, that each economy

possesses. Then, each economy converges to a different long-run equilibrium (i.e. sta-

tionary point), depending on the initial conditions. This dynamic behavior is very

different to a system, which possesses an isolated fixed point. In the latter case, all

economies would converge towards the same long-run equilibrium, no matter what

their particular initial condition consists of.
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2.3 Topology of two-dimensional stable manifolds

Since the method presented in this dissertation aims at solving models with multi-

dimensional stable manifolds numerically, we want to illustrate potential dynamic

patterns that could emerge in these type of models. However, the outline is not a

complete discussion of the topology. Instead, we focus on the special case of a two-

dimensional stable manifold with (distinct) real associated eigenvalues. This is most

relevant for economics since many economic models with multi-dimensional stable

manifolds exhibit this characteristic, e.g. the Jones (1995a) model that we analyze

in this thesis.11

We consider a dynamic system exhibiting a hyperbolic fixed point. We focus

this exposition on the stable manifold of the fixed point, since the solution of the

underlying optimization problem usually requires convergence towards an interior

steady state.12 As a concise example we consider the two dimensional system

ẋ1 = λ1x1

ẋ2 = λ2x2 (15)

with the eigenvalues λ1, λ2 < 0. The system possesses a fixed point at the origin.

This example is simple, however, it will prove to be instructive. First of all, the

system matrix is diagonal and, therefore, equivalent to every diagonalizable 2 × 2

Matrix A. Hence, the system’s behavior is equivalent to any two-dimensional system

ẋ = Ax with A being diagonalizable in R. Moreover the Hartman-Grobman theorem

states that the behavior of any non-linear dynamic system in the neighborhood of a

11One prominent counter-example is the Lucas (1988) model, which is also analyzed in this thesis.
For a special set of parameters, the models’s stable manifold exhibits a pair of conjugate complex
eigenvalues.

12We did not state the an optimization problem so far, but will do so in the following Section.
However, at this point it is important that the dynamic system originates from an intertemporal
optimization problem, and, therefore, optimal solutions usually are required to reach an interior
steady state as t → ∞.
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hyperbolic fixed point is equivalent to its linearized system. Therefore, the system’s

behavior is equivalent to any two-dimensional dynamic system ẋ = f(x), which

Jacobian matrix Df is diagonalizable in R at a hyperbolic fixed point y∗. In the

light of these conclusions, we think that the study of system (15) is quite instructive.

The analytical solution of system (15) is straightforward and reads

x1(t) = x1(0)eλ1t (16)

x2(t) = x2(0)eλ2t (17)

Since λ1, λ2 < 0, solutions converge towards the origin independent of the initial

value (x1(0), x2(0)).

The stable manifold can be divided into two submanifolds associated with the

eigenvalues λ1 and λ2. In this case, the manifolds coincide with the sets (R, 0) and

(0, R), respectively, which represent the axes x1 and x2. Although solutions on both

manifolds converge towards the fixed point, the speed differs according to equation

(16) and equation (17), respectively. If λ1 and λ2 differ in magnitude, solutions

will first converge towards the submanifold associated with the smaller eigenvalue,

in absolute terms, because the other component is decreasing faster. This can be

seen in Figure 3 (i) and (ii). In both Figures, system (15) is simulated with initial

conditions on the unit circle, employing a fourth order Runge-Kutta procedure. In

Figure (i), λ1 and λ2 differ by the factor 2. Solutions slightly bent towards the x2

axis, the stable submanifold associated with the smaller eigenvalue λ2, in absolute

terms. In Figure (ii), λ1 and λ2 differ by the factor 20. In this case, solutions bent

heavily towards the manifold represented by the x2 axis.

The reason to focus on the dynamic behavior on two-dimensional stable manifolds

is because qualitatively different behavior could possibly occur, compared to systems

exhibiting a one-dimensional stable manifold. On a one-dimensional stable manifold,

transitional dynamics are bound to be monotonic. That means, all variable mono-
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Figure 3: Phase diagram of system (15) with λ1

λ2
= 2 and λ1

λ2
= 20

tonically increase or decrease along their time paths towards the fixed point.13 On a

two-dimensional stable manifold, however, the variables may overshoot. By that we

denote the phenomenon that variables first decrease and then increase in time along

their transition path, or vice versa.

If the ratio of stable eigenvalues is one, trajectories in Figure 3 would be linearly

connecting the initial point and the fixed point. Therefore, overshooting cannot

occur, no matter which starting point is chosen. We argue that if the ratio of stable

eigenvalues differs considerably, e.g. as shown in Figure 3 (ii), overshooting is quite

likely to occur, depending on the initial conditions. This cannot be recognized from

Figure 3 right away, because the axes and the submanifolds coincide. Therefore,

we rotate the axes by 45◦ by transforming the system matrix equivalently with the

13Following the principles of dynamic system, the adjustment path could exhibit non-monotonic
behavior that stems from non-linearities. However, the dynamic system results from an opti-
mization problem. Therefore, trajectories projected into the state space cannot intersect and
non-monotonic behavior of the state variable is not optimal, if the system is autonomous. How-
ever, control variables could exhibit non-monotonic adjustment.
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rotating matrix

R =

(

cos(π/4) sin(π/4)
− sin(π/4) cos(π/4)

)

In Figure 4 (i) almost every trajectory exhibits an overshooting behavior with re-

spect to time, either in coordinate x1 or in coordinate x2. This can be seen by the

fact that almost every trajectory exhibits an extremum. The only exceptions are

trajectories that follow the 45◦ angle bisector. These exactly take the shape of the

two submanifolds. In Figure 4 (ii) we display the graph of a specific adjustment path

of x1 with respect to time. The overshooting behavior can be recognized.
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Figure 4: Rotated phase diagram of system (15) with λ1

λ2
= 20 and one selected

trajectory in time

From the analytical solution (16) and (17) we know that the convergence of the

solution can be divided into two components represented by the eigenvalues λ1 and

λ2. Both components decay with different speed. Therefore, the solution converges

towards the submanifold represented by the smaller eigenvalue in absolute terms first,

because the component represented by this eigenvalue decays slower. In a second

phase, the solution converges along the one-dimensional submanifold towards the
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fixed point.14 This division of convergence into two phases is more pronounced, the

higher the ratio of the stable eigenvalues is.

The examples above illustrates that overshooting behavior is more likely the higher

the ratio of stable eigenvalues is. Overshooting behavior does not arise, if the tran-

sition takes places along one of the submanifolds, or if the submanifolds coincide

with the axes. This illustration serves as a exposition about the possible pattern of

transitional dynamics that can be inferred from the eigenvalues at the fixed point.

Eventually, non-linearities could further enrich transitional dynamics.

2.4 Stiff differential equations

In this Section, we want to focus on the numerical part of multi-dimensional tran-

sitional dynamics. If the state space is multi-dimensional, a trajectory representing

a transition path has to be computed that lies on a multi-dimensional stable mani-

fold. We will exploit the insights on topology of the previous Section to describe the

phenomenon of stiff differential equations. A general description of stiff differential

equations can be found in Press et al. (1989, pp. 734) or Ascher and Petzold (1998,

pp. 49 and pp. 214), however, we modify the illustration according to the problems

that will be described later in this thesis.15

Consider system (15) with positive, real eigenvalues λ1 and λ2. Then, the origin

is unstable. The case of stiff differential equations occurs, if the solutions on the

submanifolds are of very different scale. More precisely, the transition speed on

the submanifolds, represented by the corresponding eigenvalues, differs a lot. For

14Strictly speaking, the solution is, of course, only very close to the submanifold, because solutions
cannot intersect.

15We also slightly deviate from the definition of stiff differential equations usually given in text-
books, because a description of stability regions of initial value problems would be beyond the
scope of this thesis.
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illustration, we assume the eigenvalues to take the values

λ1 = 1

λ2 = 0.1

and, hence, the numerical solution is

x1(t) = x1(0)et (18)

x2(t) = x2(0)e0.1·t (19)

Now consider the two-point boundary value problem of system (15) together with

the boundary conditions

√

(x1(0))2 + (x2(0))2 < 10−6 (20)

x1(T ) = x2(T ) = 1 (21)

with an unknown time T . Graphically, this is the problem of finding a trajectory

that starts on or in a circle around the origin of radius 10−6 and ends at a specific

point in the phase space, here (1, 1).16

The problem exhibits one degree of freedom to make it analytically tractable.

If either T is fixed (sufficiently high) or the initial conditions (20) are forced with

equality the solution to the problem is unique. From the final boundary conditions

we get

x1(0)eT = 1

x2(0)
(

eT
)0.1

= 1

which yields

x1(0) = x2(0)10 (22)

16The adept reader may notice the similarity to the backward integration procedure as introduced
by Brunner and Strulik (2002). Indeed, we want to show problems that arise employing this
procedure for multi-dimensional stable manifolds.
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We set x2(0) = 10−7 and, therefore, a value of x1(0) = 10−70 would fulfill both

boundary conditions (20) and (21). For T we calculate T = 70.

The numerical problem now lies in the fact that both initial conditions are of very

different scale. Note that the coordinates x1 and x2 also represent the eigenspaces.

Therefore, this example can be generalized to the conclusion that the initial condition

for meeting an arbitrary point has to be such that the eigenvector with the smaller

eigenvalue has to add considerably less to the initial condition than the eigenvector

with the greater eigenvalue. Roughly speaking, the ratio of both eigenvalues can be

interpreted as the elasticity of the norm of both eigenvectors.17 When the initial

conditions are stored in the computer memory this can only be done with machine

precision (see Press et al., 1989, pp. 28). Most machines have a machine precision of

ǫ̂ ≈ 10−15. Therefore, the absolute error for storing x2(0) in this example is ǫ ≈ 10−22.

If, however, some of this error spills over to the other eigenvector, x1(0) may depart

from its correct value in the order of ǫ. In this simple example this cannot happen,

because the eigenvectors coincide with the coordinates. In a more general case it

is only possible to store the vector x1(0) with precision ǫ. However, ǫ ≫ x1(0),

and therefore, the final boundary condition (21) cannot be met. Moreover, even if

the initial condition for both eigenvectors were correct, errors would spill over to

each other eigenvalue during the integration process. Therefore, the error along the

eigenvector associated to the bigger eigenvalue would be very high. We can conclude

in which direction the final boundary condition (21) will be missed. Since the correct

starting value (x1(0), x2(0)) is biased towards x1(0), the solution will remain close to

the associated submanifold of λ1.

As a numerical experiment we simulate system (15) with rotated axes by 45◦

with different but positive values for λ1 and λ2. Again, the rotation is conducted

17This holds in this simple example, since x1(0)
λ1

λ2 = x2(0).
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for numerical reasons. Otherwise, the submanifolds coincide with the axes and,

therefore, the different scale of both solution components would not cause a numerical

problem. We choose initial values equally distributed on a circle of radius 10−6

around the fixed point. Figure 5 (i) shows the trajectories for a simulation exercise

with a ratio of eigenvalues equal to 1.1. It can be recognized that the trajectories

are attracted by one submanifold. Unlike in Figure 4 (i), solutions are now attracted

by the submanifold associated with the larger, in absolute terms, eigenvalue λ1. In

Figure 5 (ii) the ratio of eigenvalues is 10. Now, every trajectory is attracted by the

λ1-submanifold such that they are indistinguishable. While simulations for Figure 5

(i) and (ii) were conducted with a moderate number of trajectories and, therefore,

a rough division of the circle, the same phenomenon maintains with a finer division

of initial values on the circle. For a run of 4000 trajectories only one trajectory was

distinguishable from the λ1-submanifold. Moreover, for simulation exercises we took

special measures for solving the system of stiff differential equations by employing

the ODE15s.m MatLab procedure. This is a medium order procedure specialized in

solving stiff differential equations. We constrain the local error to 10−13, close to the

machine epsilon of 2.2 · 10−16.

This illustration shows that it might be difficult or even impossible to meet any

pre-specified point in the phase space as final boundary condition. This problem is

more pronounced the higher the ratio of the eigenvalues is. In other words, if starting

values close to the submanifold associated with the smaller eigenvalue are chosen,

small changes of the initial values cause large changes in the resulting trajectories.

The problem of hitting a pre-specified point in the phase space is ill-conditioned.

The mathematical literature suggest measures to lessen these problems. If special

difference schemes, mostly implicit schemes, were chosen for integration, and if a

high precision is demanded from the integration procedure, the problem of stiff dif-
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Figure 5: Phase diagram of system (15) with λ1

λ2
= 1.1 and λ1

λ2
= 10

ferential equations can be overcome to some extend. However, the problem remains

ill-conditioned and, therefore, it is still impossible to solve very stiff systems accu-

rately.
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3 Multi-Dimensional Transitional Dynamics: A Simple

Numerical Procedure

This Section is based on the paper of Trimborn, Koch and Steger (2007). All con-

tributions of this Section are the author’s own if not indicated otherwise.

3.1 Introduction

For applying the relaxation algorithm to solve infinite-horizon, continuous time op-

timization models we follow Pontryagin’s maximum principle. First order conditions

of the optimization problem comprise a set of differential equations augmented by

algebraic equations that have to hold at all points of time. Initial and final boundary

conditions turn the mathematical problem into a two-point boundary value problem.

Then, a trajectory of the differential equations has to be found, which satisfies the

algebraic constraints as well as initial and final boundary conditions. Relaxation

algorithms solve for the solution trajectory simultaneously, and neglect the direction

implied by time. This is in contrast to various shooting algorithms, which start at

one boundary and integrate with respect to time. For these procedures, an iteration

has to be applied, until the other boundary condition is satisfied.

The implementation of the relaxation algorithm follows Press et al. (1989). At

first, we fix a mesh of points in time. The differential equations are discretized along

this mesh grid. These difference equation represent a set of non-linear equations

carrying information about the slope of the solution trajectory. The set of equations

is augmented by the algebraic equations, which have to hold at all points of time,

and equations representing initial and final boundary conditions. The solution to

this square set of non-linear equations, then, represents the solution trajectory at

the mesh of points. In principle, it can be solved by any standard routine suitable

for non-linear equations. However, the number of equations may be very large,
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because it increases with the number of mesh points. Note that the Jacobian matrix

of the equations inherits a sparsity pattern, which is due to the time structure of the

problem. Therefore, we apply a specialized Gauß-Newton procedure, which exploits

the sparsity of the Jacobian matrix and allows to solve models employing a high

number of mesh points.

We programmed the algorithm in Matlab. A detailed description of this work can

be found in the appendix, together with the code for the main parts of the algorithm.

Moreover, the code generating the simulation results presented in this thesis can be

found on the accompanied CD. We want to emphasize that great effort has been made

to construct the code and its application as user-friendly as possible. A researcher,

who intends to simulate a particular model can use the code as a “black-box”, since

he does not need to know how the algorithm works. The only information that has

to be provided is the dynamic system together with parameter values and a guess of

the steady state of the model.

The state-of-the-art of the relaxation algorithm in the literature is described in

Press et al. (1989).18 They construct the algorithm for a finite time horizon and em-

ploy the midpoint rule for discretization of the differential equations. Koch (2003)

suggests to employ the relaxation algorithm for infinite-horizon problems. He sug-

gests to transform time from the interval [0,∞) to [0, 1) to solve the system for the

full horizon. This idea is borrowed for this thesis, however, the allocation of the

time mesh given by Koch’s transformation is fixed. Therefore, the algorithm does

not converge for Koch’s time transformation, wherefore we introduced the parame-

ter ν to allow for a more flexible allocation of the mesh. Moreover, we provide the

theoretical background for this transformation. Since relaxation methods were only

employed for finite horizon problems the mathematics literature does not discuss how

18Ascher and Petzold (1998) do not allow for algebraic equations and describe the Gauss-Newton
procedure only vaguely.
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final boundary conditions can be formulated for infinite horizon problems. Koch also

does not discuss this issue. Therefore, contributions to this topic are the author’s

own. Furthermore, we are the first to exploit symmetry in the Jacobian matrix,

which enhances the speed of the algorithm considerably. Finally, great emphasis has

been made to adapt the algorithm to the requirements of economic researchers. For

example, the algorithm allows to simulate the impact of specific economic shocks,

i.e. transition from one steady state to another steady state.

In Section 3.2 we describe the relaxation algorithm in detail. In Section 3.3, we

compare it to alternative solution algorithms. In Section 3.4, we present the Jones

(1995a) model and the Lucas (1988) model as two illustrative examples, and in

Section 3.5 we summarize.

3.2 The relaxation procedure

3.2.1 Statement of the mathematical problem

Economic dynamic optimization problems frequently lead to a system of differential

equations potentially augmented by algebraic equations:

ẋ = f(t, x, y) (23)

0 = g(t, x, y) (24)

with x ǫ R
nd , y ǫ R

na , f : (R×R
nd ×R

na) → R
nd and g : (R×R

nd ×R
na) → R

na . We

define the total dimension of the problem as n := nd + na. The algebraic equations

and, hence, y are not required to appear in the problem. Then, na = 0 and nd = n

would hold. Usually, the system has to be solved over an infinite horizon with

boundary conditions

hi(x(0), y(0)) = 0 (25)

lim
t→∞

hf (x(t), y(t)) = 0 (26)
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whereby hi : R
n → R

ni defines ni initial boundary conditions and hf : R
n → R

nf

defines nf final boundary conditions such that ni + nf = nd.

The system (23) and (24) together with (25) and (26) is labeled two-point bound-

ary value problem, since a system of differential equations has to be solved subject to

boundary conditions at the beginning and the end of the time horizon. The specific

characteristics of the problem at hand are that equation (23) has to be solved for

an infinite time horizon and that the solution is bound to a manifold defined by

(24). In case of an infinite time horizon we require the final boundary conditions to

enforce convergence towards a manifold of dimension nf or less. In many economic

applications the desired solution is known to converge towards a single point. We do

not treat this case explicitly but classify it under equation (26). Often the algebraic

equations are differentiated with respect to time such that the resulting system of

differential equations is square. However, we do not require this. We merely assume

that the system (23) and (24) is of differential index one, that is, a one-time dif-

ferentiation of (24) with respect to time would yield a square system of differential

equations.19

3.2.2 Description of the relaxation procedure

Finite difference procedures like the relaxation procedure are used in various fields

of numerical mathematics, e.g. the solution of partial differential equations, initial

value problems, boundary value problems and delayed differential equations. While

the first variant for solving initial value problems goes back to Leonard Euler, Runge

and Kutta generalized finite difference procedures for one-step solution algorithms

of initial value problems (see Runge, 1895, and Kutta, 1901). Solution of bound-

19For more on the differential index of differential algebraic equations see Ascher and Petzold
(1998), pp. 231. Differential algebraic equations of higher differential index exhibit far more
complex characteristics and are, hence, more complicated to solve numerically.
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ary value problems with finite difference procedures go back to Collatz (1951), Fox

(1957), and Keller (1968). Here, we employ the relaxation algorithm, a particular

type of finite difference procedure, to solve boundary value problems (see e.g. Press

et al., 1989, pp. 645, or Ascher and Petzold, 1998, pp. 193).

The general idea of Relaxation is to solve for the whole transition path simultane-

ously. The differential equations are approximated by finite difference equations on a

mesh of points in time. This set of equations, augmented by equations representing

initial and final boundary conditions, is a set of non-linear equations. Thereby, the

variable values at the mesh points represent the unknowns. Then, this set of non-

linear equation is solved for, not taking into account the time-structure the system

took on from the difference equations. For solving a set of non-linear equations, a

rough initial guess of the true solution is needed that is updated in a sequence of

iterations. This initial guess ‘relaxes’ towards the true solution in every iteration

along the path as a whole.

Figure 6 illustrates the adjustment of an initial guess towards the saddle path

in the Ramsey-Cass-Koopmans model. The initial guess starts with a fixed initial

value of the state variable k and an arbitrary initial value of the control variable c.

It consists of 30 mesh points lined up equidistantly between the starting point and

the known steady state of the model.

We divide the outline of the algorithm into three parts. In the first part, we re-

formulate the problem consisting of equations (23), (24), (25), and (26) to match

the requirements of the relaxation algorithm. By transformation of the independent

time variable we can solve the infinite horizon problem conveniently. In the second

part, we define a mesh of points in time and discretize the differential equations. In

the third part, we solve the resulting set of non-linear equations, taking into account

its special sparsity structure.
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Figure 6: Relaxation in the Ramsey-Cass-Koopmans model

The mathematical problem

We rescale the time range R
+ by introducing a new time parameter τ running

from 0 to 1

τ =
νt

1 + νt
(27)

where ν > 0 is a fixed parameter.20 It will be needed as a degree of freedom to change

the allocation of the time mesh.21 Note that (27) is a strictly monotonic relation for

20Prof. Koch suggested an earlier version of the time transformation function, for which it was not
possible to change the allocation of the mesh.

21The higher the value of ν, the denser the mesh is allocated at the origin of the time interval.
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t ≥ 0 and, therefore, we can transform it into t = τ
ν(1−τ)

. We express equations (23)

and (24) with respect to τ according to

dx

dτ
=

f
(

τ
ν(1−τ)

, x, y
)

ν(1 − τ)2
=: ξ(τ, x, y) (28)

0 = g

(

τ

ν(1 − τ)
, x, y

)

=: φ(τ, x, y) (29)

with boundary conditions (25) and (26) with respect to τ

hi(x(0), y(0)) = 0 (30)

hf (x(1), y(1)) = 0 (31)

According to the original problem, the final boundary condition (31) has to be

nf < nd dimensional. Admittedly, for many economic applications it is known that

x and y approach a stationary point as t → ∞. In this case there are two possibil-

ities for reformulation. One could construct (31) by setting all the time derivatives

to zero, e.g. ẋ2
1 + . . .+ ẋ2

n = 0, or one could omit some of the available information by

demanding only some variables to be stationary in the long-run. Theoretically, the

latter may involve the search of well defined final boundary conditions by trial and er-

ror. In practise, however, boundary conditions always worked for every combination

of variables. We will discuss this below employing the Ramsey model as a concise

example. To sum up, we have nd differential equations, na algebraic equations, ni

initial conditions and nf final conditions such that

ni + nf + na = nd + na = n.

The functional form of time transformation includes some arbitrariness, since there

are many possibilities to map the interval [0,∞) to [0, 1) with a strictly monotonic

relation. However, we have to choose a transformation such that the differential

equations (28) is well defined. Consider a fixed point (x∗, y∗) such that f(∞, x∗, y∗) =
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0. It is not possible to evaluate ξ(1, x∗, y∗) because dt
dτ
|τ=1 = ∞ will hold for every

time transformation. We at least demand a trajectory (x, y) converging to (x∗, y∗)

to fulfill

lim
τ→1,

ξ(τ, x(τ), y(τ)) = 0 .

or, stated differently, f(t, x, y) should converge faster to zero than
(

dt
dτ

)−1
. The

time transformation at hand fulfills this condition. To see this, remember that the

Hartman Grobman theorem and the Fundamental theorem of hyperbolic invariant

manifolds state that (x, y)t converge towards a fixed point exponentially.22 However,

this is faster than convergence of the term
(

dt
dτ

)−1
= ν(1 − τ)2, since the latter con-

verges only quadratically towards zero.

Discretization of the system

We define a mesh of M points in transformed time τ by T = {τ1, . . . , τM}. The

mesh points τi are placed equidistantly on the interval [0, 1]. To unify notation, we

subsume the variables x and y to z. Therefore, we define z = {z1, . . . zM} as a vector

associated to the time mesh T such that zi represents (x, y)t evaluated at time τi.

We use the midpoint of each interval (τi, τi+1) to discretize the differential equation

according to

xi+1 − xi

τi+1 − τi

= ξ

(

τi + τi+1

2
,
zi + zi+1

2

)

i = 1, . . . ,M − 1 (32)

Considering one interspace, i.e. one index i, we can construct an nd dimensional

error function H from equation (32), H(T × R
n)2 → R

nd :

H(τi, zi, τi+1, zi+1) = xi+1 − xi − (τi+1 − τi)ξ

(

τi + τi+1

2
,
zi + zi+1

2

)

(33)

22For this consideration, we assume the system to be autonomous ‘in the long-run’, which means
that after some t̃ it is no longer directly time dependent.
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This adds up to (M − 1) · nd equations. We define ni initial conditions via (30)

and nf final conditions via (31), and force the algebraic equations to be fulfilled at

every mesh point τi. Therefore, the latter add M · na equations. Altogether given

a mesh TǫRM this defines a system of n · M equations in n · M unknowns, since

z = (z1, . . . , zM)t ǫ R
n·M .

For convenience, we list the equations according to the unknown vector zi consid-

ering the time structure. We start with the initial conditions, which only depend on

z1. We continue with the difference equation involving z1 and z2 together with the

algebraic equations for z1. After proceeding through the whole mesh of points the

final boundary conditions, which depend only on zM , close the list together with the

algebraic equation for zM . We rename the equations according to

E0(z1) := hi(z1)

Ek(zi, zi+1) :=

(

g(zi)
H(yi, yi+1)

)

i = 1, . . . ,M − 1

EM(zM) :=

(

g(zM)
hf (zM)

)

Together, this yields the set of non-linear equations

E(z) ≡















E0(z)
...

Ei(z)
...

EM(z)















=























(

hi(z1)
)

...
(

g(zi)
H(zi, zi+1)

)

...
(

g(zM)
hf (zM)

)























(34)

For discretizing the differential equations we choose the midpoint rule, which is a

second order discretization scheme (see e.g. Press et al., 1989, p. 710). This means

that given the true solution z̃, equation (32) can be obtained by a Taylor expansion

of z̃, if the summands containing the first and second derivative of z are included,
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but higher order derivatives are truncated. It is apparent that the more summands

of Taylor’s expansion are considered, i.e. the higher the order of the rule, the smaller

is the truncation error, and the better is the approximation. In general, using a k-th

order method will reduce the computational error by order k if the step size of the

mesh is decreased. This means that there is a constant c such that the computational

error ǫ follows

|ǫ| < c(τi+1 − τi)
k . (35)

We provide evidence using a computational exercise that the midpoint rule is indeed

of second order in the next Subsection.

For selecting a difference scheme there seems to be numerous possibilities, since

at first glance every scheme suitable for an initial value procedure could also yield

a discretization according to (32). If a higher order discretization, e.g. a fourth

order Runge-Kutta procedure, would be chosen, truncation errors would be lower

and, therefore, the global error would reduce faster according to equation (35) if

the mesh points are placed more densely. However, the difference scheme has to

fulfill a number of additional requirements. First of all, the rule has to be symmet-

ric. This is intuitive, since the relaxation procedure is symmetric with respect to

the direction of time and, therefore, any direction implied by the difference scheme

would be arbitrary. Moreover, this choice has a theoretical foundation originating

from stability considerations. A detailed description of stability in the context of

numerical solutions of differential equations is beyond the scope of this thesis and

can be found in Ascher and Petzold (1998). Roughly speaking, a difference scheme

is called stable, if it yields a qualitatively correct representation of the solution, even

for a moderate number of mesh points. From initial value problems it is known

that systems with a negative eigenvalue should be solved with implicit, backward

schemes, whereas system with a positive eigenvalue should be solved with an ex-
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plicit, forward scheme.23 For systems exhibiting positive and negative eigenvalues

symmetric schemes are known to guarantee stability. Many economic models exhibit

exactly this characteristic, since the resulting saddle-point structure is desirable from

the perspective of dynamic optimization. Therefore, we have to rely to a symmetric

difference scheme.24

The second requirement for a difference scheme is that it does not evaluate the

function ξ (as defined in equation (28)) for τ = 1, since ξ is not defined at this point.

Because of symmetry, then, we cannot evaluate ξ at any mesh point, but only in

the interspace of each interval. The midpoint rule is one of the only discretization

schemes that fulfills both requirements. To sum up, the midpoint rule is a dicretiza-

tion scheme suitable for constructing a general purpose algorithm for the problem

(28)–(31).

Solution of the system of non-linear equations

In principle, equation (34) could be solved by any algorithm suitable for solving

systems of non-linear equations. The problem is that system (34) can be quite big,

because it grows not only with the dimension of model variables nd and na, but

also with the number of mesh points M . For example, considering a small scale

model with nd = 3 and na = 0, for a mesh of M = 1000 points system (34) exhibits

3000 equations. Solving this number of equations would be very time-consuming and

permit the solution of higher-dimensional models. However, relaxation algorithms

exploit the time structure of system (34). Since each block of equations Ei depends

only on neighboring unknowns zi and zi+1, a Gauß-Newton procedure can utilize

23For the Euler method, for example, the implicit (backward) scheme turns into the explicit (for-
ward) scheme and vice versa if time is reversed.

24It is known from initial value problems that the midpoint rule exhibits desirable stability prop-
erties beyond this description, i.e. 0-stability, A-stability and AN-stability.
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the sparsity of the equations. Note, that we still solve the system (34) of equations

simultaneously, but exploit the sparsity to economize on computational requirements.

A Gauß-Newton procedure requires an initial guess z0 of the solution.25 The initial

guess is upgraded by linearizing system (34) at z0 and finding the root of this linear

equation, which then represents the updated solution. The updated solution is origin

of another Newton step, until the the change of the solution ∆z is sufficiently small.

Denoting the Jacobian matrix of E(z) by DzE we solve in each iteration k

DzE(zk) · ∆zk = −E(zk) (36)

for ∆zk and change z according to

zk+1 := zk + ∆zk (37)

Due to the ordering of subsystems E equation (36) is of following form:


















S0,R

S1,L S1,R 0
S2,L S2,R

. . .

0 SM−1,L SM−1,R

SM,L

























∆zk
1

...
∆zk

M






=







−E0(z
k)

...
−EM(zk)






(38)

with Jacobian matrices Si,L and Si,R defined by

Si,L =
∂Ei(z)

∂zi

, and Si,R =
∂Ei(z)

∂zi+1

i = 0, . . . ,M (39)

Note from equation (33) that the partial derivatives of H with respect to zi and zi+1

differs only in their derivatives of xi+1 and xi, respectively, and this is plus or minus

the identity matrix of dimension nd. Therefore, Si,R can be computed from Si,L by

substraction of 2 · Ind
for i = 1, . . . ,M − 1. The upper left matrix S0,R has ni rows

and the lower right matrix SM,L only na + nf rows, whereas all other matrices Si,L

25The superscript indicates the iteration number.
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and Si,R , respectively, are n × n. Hence, the system is not overdetermined. The

solution ∆z can be computed by a specialized Gaussian algorithm. This algorithm

starts in the upper left corner of the matrix and works downward block by block

to the lower right corner. The result is a system in upper triangular form with a

sequence of n×ni non-zero blocks above the diagonal. Finally the vector ∆z can be

computed from bottom to top.

We transform the first (n + ni + na, 2 ·n)-dimensional part of the Jacobian matrix

into a (n+ni +na, n+ni +na)-Identity matrix and a (n+ni +na, n−ni−na) matrix

only with elementary transformation of rows. The same operations are conducted

with the corresponding part of vector E. For transforming the rows the algorithm

includes a column pivot search. The (n−ni, n)-block at the lower right is going to be

the upper left part of the (n+ni +na, 2 ·n)-matrix that is manipulated next. Figure

7 shows an example with ni = nf = 2, na = 1, nd = 4, and, hence, n = 5. Possible

non-zero entries in the sparse matrix are indicated by x. The left hand side shows

the original Jacobian matrix before the elimination. The right hand side shows the

Jacobian matrix after the first Gaussian elimination of the upper 8×10 block matrix.

The upper right 5 × 5 matrix of this block is saved in memory. Although this block

exhibits a sparsity structure, we do not exploit it further. The lower right 3× 5 part

of the matrix will be the upper left part of the matrix assigned for the next Gaussian

step.

Step by step the matrix is transformed into the following shape


















I A1

I A2 0
I A3

. . .

0 I AM−1

I



















with (n, n) identity matrices I and (n, n) matrices Ak, k = 1, . . . ,M−1. The matrices
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Figure 7: Jacobian matrix before manipulation and after the first Gaussian step

Ak are stored and the solution vector ∆z can be computed from bottom to top. The

last n arguments of ∆z equal E. For each block we have to solve

(

I Ai

)

(

∆zi

∆zi+1

)

= E i = M − 1, . . . , 1

with n dimensional vectors ∆zi, ∆zi+1 and E . Since ∆zi+1 is known, ∆zi can be

computed by

∆zi = E − Ai∆zi+1 i = M − 1, . . . , 1.

We iterate according to equation (36) until the euclidian norm of the change ∆z is

small

|∆z|
n · M < ǫ.
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To sum up, we can solve equation (36) by exploiting the sparsity of the Jacobian

matrix for storage and computational requirements. Both increase only linearly as

the number of mesh points M increase, thus, allowing to solve systems using a high

number of mesh points. Moreover, since each block increases with the model’s dimen-

sion n, computational requirements for a higher dimensional model grow according

to o(n3). The reason is that Gaussian elimination is known to be of order o(n3) for

a n dimensional matrix (see Deuflhard and Hohmann, 1993, p.7).

It is worth noting that the relaxation algorithm is able to solve systems exhibit-

ing multi-dimensional stable manifolds and center manifolds of stationary equilibria

conveniently. For solving systems exhibiting one or both of these characteristics

no conceptual changes for the algorithm have to be made. The first characteristic

entails no difficulties, because state and control variables are handled conceptually

equally by the relaxation algorithm. An increase in the dimension of the control or

state space merely causes the corresponding block-matrices to increase accordingly.

Moreover, the relaxation algorithm can solve systems exhibiting a center manifold

of stationary equilibria conveniently, because the knowledge of the stationary equi-

librium that the economy reaches is not need to be known in advance. While many

competing algorithms need this information, the relaxation algorithm determines the

stationary equilibrium that is actually reached through iteration.

3.2.3 Implementation of the algorithm

To illustrate, we describe the steps which must be taken when implementing the

relaxation algorithm using the Ramsey-Cass-Koopmans model (Ramsey, 1928; Cass,

1965; Koopmans, 1965) as an example. It is important to notice, however, that

this description serves as an illustration only. The researcher who intends to solve

a specific model numerically using the program (provided as a supplement to this

thesis) need not follow these steps.

46



3 Multi-Dimensional Transitional Dynamics

It is well known that this simple growth model exhibits saddle-point stability and

hence the determination of the solution is all but trivial.26 The model gives rise to a

system of two differential equations for consumption c and capital per effective labor

k (Barro and Sala-i-Martin, 2004, Chapter 2):

ċ =
c

θ

(

αkα−1 − (δ + ρ + xθ)
)

(40)

k̇ = kα − c − (n + x + δ)k, (41)

where α denotes the elasticity of capital in production, n the population growth rate,

δ the depreciation rate, x the exogenous growth rate of technology, ρ the parameter

for time preference and θ the inverse of the intertemporal elasticity of substitution,

respectively. The steady state is k∗ =
(

α
δ+ρ+xθ

) 1

1−α

and c∗ = (k∗)α − (n + x + δ)k∗

and is saddle point stable.

As a first step, one must choose a time mesh, i.e. a set of points in time at which

the solution should be calculated. We select the time mesh to be uniform in the

transformed time scale (as explained in Section 3.2.2).

Second, the two differential equations have to be transformed into two non-linear

equations which describe the slope between two neighboring mesh points. These

equations have to be satisfied between every two mesh points. For M mesh points

this leads to 2 · (M − 1) nonlinear equations.

Third, two boundary conditions have to be chosen to complete the set of equa-

tions to 2 · M . In this example the relaxation algorithm needs one initial boundary

condition and one terminal boundary condition. We set the initial value of the state

variable (capital) equal to 10% of its steady state value. For the terminal boundary

condition there are several possibilities to formulate an equation. It would be possi-

ble to choose each of the two equations (40) or (41) and set the RHS equal to zero.

26Nonetheless, the model is comparably simple in that the stable manifold is one dimensional. We
will turn to a model with a multi-dimensional stable manifold below.
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Here the steady state values for consumption and capital can be computed analyt-

ically and, therefore, we can set consumption equal to its steady state value as the

terminal boundary condition. It should be noted that only one terminal condition is

needed. Thus the algorithm does not make use of the knowledge of the steady state

value of capital. It is reached automatically. However, different choices for terminal

boundary conditions do not have any noticeable impact on the performance of the

algorithm for this model.

At last, an initial guess for the solution has to be made. For instance, we can

choose c and k to be constant at their steady state values (ct, kt) ≡ (c∗, k∗).27 The

Newton procedure always converged quickly, indicating a high degree of robustness

with respect to the initial guess.

3.2.4 Evaluation of the procedure and error estimation

For the special parametrization θ = δ+ρ

α(δ+n+x)−x
the representative consumer chooses

a constant saving rate s = 1
θ

and hence the solution can be expressed analytically

(Barro and Sala-i-Martin, 2004, pp. 106-110).28 This allows us to compare the com-

puted results with the analytical solution, which has a precision close to the machine

epsilon. The relative error is computed for every mesh point. Table 1 shows the

maximum relative error of consumption and capital per effective labor for different

numbers of mesh points. In addition, the quadratic mean error of combined c and k

provides information about the distribution of the error.29 Table 1 reveals that mul-

tiplying the number of mesh points by x reduces the maximum error of each solution

vector by the factor 1
x2 , which indicates the order 2 of the difference procedure. Even

27This is in contrast to Figure 6 where the initial guess is an upward sloping line.

28The analytical solution is k(t) =
[

1
(δ+n+x)θ +

(

k1−α
0 − 1

(δ+n+x)θ

)

e−(1−α)(δ+n+x)t
]

1

1−α

and c(t) =

(1 − 1
θ
)k(t)α.

29It is defined as ε = 1
NM

√

∑N
i=1 ε2

ci
+

∑N
i=1 ε2

ki
with εci

and εki
denoting the relative error of k

and c at mesh point i, respectively.
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with a moderate number of mesh points and therefore a short computation time,

a sufficiently high degree of accuracy can be achieved. Moreover, the accuracy can

be improved to a very high degree by increasing the number of mesh points.30 The

Table 1: Accuracy of the relaxation algorithm for the Ramsey-Cass-Koopmans model

number of mesh points max error c max error k mean error

10 < 1.3 · 10−2 < 3.4 · 10−2 < 3.0 · 10−3

100 < 1.1 · 10−4 < 8.6 · 10−5 < 2.7 · 10−6

1,000 < 1.1 · 10−6 < 8.5 · 10−7 < 8.2 · 10−9

10,000 < 1.1 · 10−8 < 8.5 · 10−9 < 2.6 · 10−11

100,000 < 1.1 · 10−10 < 8.5 · 10−11 < 8.2 · 10−14

treatment of higher dimensional systems with multi-dimensional stable manifolds

is largely analogous to the example described above. This is the reason why the

algorithm performs similarly well for more complicated models.

For models with an unknown solution an estimate for the error is desirable. Solvers

of initial value problems usually control local errors by implying a higher order

difference scheme. This is lost for the relaxation algorithm, however, we can control

the global error instead. The idea is to exploit information about the order of the

difference scheme.31 If we obtain a second solution, but with a finer mesh grid,

the global error reduces according to equation (35). More precisely, we run the

Relaxation algorithm with two different mesh grids, whereas the second mesh grid

possesses additional meshpoints at the interspaces of the first mesh grid. We denote

the solution obtained by the thin mesh by {ẑi}M
i=1, the solution obtained by the dense

mesh by {z̃n}2M−1
i=1 , and the correct, usually unknown solution by z(τ). The global

30It should be mentioned that the allocation of the mesh was chosen exogenously. The accuracy
of the algorithm could be improved with a self allocating time mesh as proposed by Press et
al. (1989, Chapter 16.5). They suggest to automate the allocation of mesh points so that more
mesh points are placed to regions in which the variables are changing rapidly.

31This is also known under the term extrapolation, see Ascher and Petzold (1998, pp. 207).
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error of the solution obtained by the thinner mesh behaves according to

ǫi = z(τi) − ẑi = ch2 + o(h4) i = 1, . . . ,M (42)

where h is the step size, i.e. h = 1
M

, and c is an unknown constant that does not

depend on h, but may vary slowly in t.32 Comparing the solution z̃ with the correct

solution at the same mesh points yields a global error that is one quarter smaller

ǫi = z(τi) − z̃i =
1

4
ch2 + o(h4) i = 1, . . . , 2M − 1 (43)

whereas h still indicates the bigger step size 1
M

. Then, the sum 4z̃−ẑ
3

is of order four,

since

ǫi = z(τi) −
4z̃2i−1 − ẑi

3

= z(τi) −
4 · z(τi) − ch2 − 4o(h4) − z(τi) + ch2 + o(h4)

3

= 0 + o(h4) i = 1, . . . ,M

This solution of higher precision can be used to estimate the global error of ẑ by

ǫi = z(τi) − ẑi ≈
4

3
(z̃2i−1 − ẑi) i = 1, . . . ,M (44)

and the global error of z̃ by

ǫ2i−1 = z(τi) − z̃2i−1 ≈
1

3
(z̃2i−1 − ẑi) i = 1, . . . ,M (45)

at every second mesh point. Equations (44) and (45) justify a very intuitive estima-

tion of the global error. If we want to know if a simulation result yields a sufficiently

accurate representation of the solution, we have to run a second simulation with a

different mesh size M . If both solutions do not differ significantly, the global error

of both solutions is small.

32Note that third order terms o(h3) are canceled by the midpoint rule (see Ascher and Petzold,
1998, p. 208). However, this is not essential for the estimation to work.
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We employ the error estimation procedure to compare the estimated errors with

the exact errors for the Ramsey-Cass-Koopmans model. Figure 8 shows the exact

error (crosses) and the estimated error (circles) estimated by equation (44) and

transformed into relative errors for capital (i) and consumption (ii). Simulations

were run with a mesh M = 30. The maximum estimated relative error is smaller

than 1.0 · 10−3 for capital and 1.4 · 10−3 for consumption, respectively. For c and

k the estimated error is almost indistinguishable from the analytically calculated

error. Therefore, we employ equation (44) to estimate the maximum error for the

simulations of the Jones (1995a) and Lucas (1988) model.
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Figure 8: Exact and estimated error for the RCK model

3.3 Comparison to other procedures

The relaxation procedure and similar finite-difference procedures have already been

employed in various fields of economics. Prominent examples comprise the solution

of two point boundary value difference equations (e.g. Laffargue, 1990; Juillard et

al., 1998), differential-difference equations (e.g. Boucekkine et al., 1997) as well as

partial differential equations (e.g. Candler, 1999). However, to the best of our
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knowledge, the relaxation algorithm has not been exploited yet systematically to

solve deterministic continuous-time two point boundary value problems in growth

theory. Nonetheless, there are a few applications in the economics literature. For

instance, Oulton (1993) and Robertson (1999) employ the relaxation routine provided

by Press et al. (1989) to solve a continuous-time deterministic growth model.

In this Section we provide a systematic comparison between the Relaxation algo-

rithm and competing methods. As a criterion, we choose how each method performs

for solving higher-dimensional models numerically. However, we do not exemplify

the comparison by solving one model with all methods described. The reason for this

is that we do not consider this to be informative. If we would solve a simple model

(e.g. the Ramsey model) with the competing methods, computational costs would

be negligible, since today’s computers are fast enough to solve this kind of models

in less than a second. Moreover, computational time of the simple model can not

be used as an estimator for computational time of more sophisticated models. The

reason is that computational costs grow with different rates for each method as the

model dimension increases. Therefore, we consider a comparison of the growth rates

as more meaningful. If we would try to solve a more sophisticated model (e.g. the

Jones model) with competing methods, we would probably not be able to solve the

model with every competing method. We could be blamed not to have tried hard

enough, or to have programmed some of the methods in an inefficient way. Therefore,

for an algorithm competition usually experts for each method are asked to compete.

Then, incentives would ensure a fair comparison, as demonstrated in the seminal

paper of Taylor and Uhlig (1990). This kind of comparison is beyond the scope of

this thesis.

We compare the relaxation procedure to the most popular alternative solution

methods employed in deterministic growth theory. These comprise backward inte-
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gration (Brunner and Strulik, 2002), the finite-difference method as proposed by Can-

dler (1999), time elimination (Mulligan and Sala-i-Martin, 1991), projection methods

(e.g. Judd, 1992; Judd, 1998, Chapter 11), and the method of Mercenier and Michel

(1994 and 2001). Most of the procedures and their comparative advantages are

described in Judd (1998) and Brunner and Strulik (2002).

The numerical methods are designed to solve a continuous-time, perfect-foresight,

infinite horizon, optimal control problem

max
u

∫ ∞

t0

f(x, u)e−ρtdt (46)

s.t. ẋ = g(x, u), x(0) = x0,

whereas x denotes a nx dimensional state variable and u a nu dimensional control

variable. The functions f and g are sufficiently smooth. We assume that x and u

are continuously differentiable functions of time. For an illustrative comparison of

the procedures we will, for some procedures, show how the Ramsey-Cass-Koopmans

model (Ramsey, 1928; Cass, 1965; Koopmans, 1965) can be solved numerically. Ac-

cording to this model, an infinitely-lived household solves

max
c

∫ ∞

0

e−ρtu(c)dt (47)

subject to

k̇ = f(k) − c k(0) given, (48)

where u(c) is the utility function, f(k) denotes a neoclassical production function in

per capita terms and ρ is the household’s discount rate (see Barro and Sala-i-Martin,

2004, Chapter 2).

The basic problem (46) can be transformed into different numerical problems. The

first possibility is to discretize the integral and the differential equation of problem

(46), and solve the discrete optimization problem by standard optimization routines.
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This approach is chosen by Mercenier and Michel (1994 and 2001). The second

possibility is to apply Pontryagins (1962) maximum principle and to solve the first

order conditions represented by the differential equations, algebraic equations, and

boundary conditions numerically. Mulligan and Sala-i- Martin (1991), Judd (1992

and 1998), and Brunner and Stulik (2002) choose different approaches to solve the

system of first order conditions. The third approach is to apply Bellman’s (1957)

principle of dynamic programming. Candler (1999) follows this approach and solves

for the value function numerically.

3.3.1 The method of Candler

Finite-difference methods as described by Candler (1999) employ an algorithm sim-

ilar to the relaxation procedure to solve partial differential equations. Candler ex-

emplifies the method by solving a stochastic version of the Ramsey model. An

infinitely-lived household solves

max
c

E

∫ ∞

0

e−ρtu(c)dt (49)

subject to

dk = (f(k) − c)dt + σ(k)dz (50)

where the denotation of parameters is the same as in problem (47) and (48). Addi-

tional to the illustration of the model above is the stochastic term σ(k)dz. It denotes

the effect of the stochastic Wiener process dz on investment.

The stochastic problem can be solved by employing Bellman’s (1957) principle.

We define the value function V (t, k) as the expected value of future utility at date t,

given that the representative household possesses the capital stock k at t and given

that the household chooses an optimal strategy:

V (t, k) = max
c

E

∫ ∞

t

e−ρ(s−t)u(c)ds . (51)
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Bellmans principle states that an optimal solution for the time horizon [t,∞) is also

optimal for each subinterval [t, t+∆t) and [t+∆t,∞). Employing this rule, one can

derive the general dynamic programming equation for the value function33

− Vt(t, k) + ρV (t, k) = max
c

{

u(c) + (f(k) − c)Vk(t, k) +
1

2
σ(k)2Vkk(t, k)

}

(52)

where Vi denotes the partial derivative of V with respect to i. We assume the

functional forms to equal u(c) = c1−θ

θ
, θ > 0, f(k) = kα−δk, and σ(k) = σ ·k. Using

the first order condition u′(c) = Vk and changing the sign of Vt we obtain34

Vt(t, k) + ρV (t, k) =
θ

1 − θ
Vk(t, k)

1−θ
θ + Vk(t, k)(kα − δk) + 1/2σ2k2Vkk(t, k) . (53)

This is a partial differential equation, because the partial derivative of the unknown

value function V with respect to t and k, and the second partial derivative with

respect to k is included. Since V is time-independent, it could easily be transformed

into an ordinary differential equation by substituting Vt ≡ 0. This procedure, how-

ever, would not be generalizable to cases with more than one state variable. If

another state variable would be present in the model, equation (53) would contain

partial derivatives with respect to that variable. In this case, assuming Vt ≡ 0

would not transform equation (53) into an ordinary differential equation. To keep

the procedure general, Candler suggests to solve the partial differential equation (53)

directly.

Numerical solutions of partial differential equations is a wide and complex field.

We only want to give a general description of the procedure proposed by Candler.

Numerical problems of partial differential equations can be divided into boundary

33A detailed derivation of the standard equation can be found in Kamien and Schwartz (1981),
pp. 238.

34The change of the sign of Vt is equivalent to a reversal of time. Candler notes that this is to
turn final boundary conditions for t = tfinal into initial conditions, if the problem were time
dependent. In this example (and related examples), the transformation is of no relevance, since
Vt ≡ 0 for the correct solution.
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value problems and initial value problems (see Press et al., 1989, pp. 827). In both

cases the solution is a function, defined on a mesh of independent variables. The so-

lution of boundary value problems is a ‘static’ function of the independent variables,

satisfying conditions on the boundaries of the region of interest. Therefore, it is

usually solved simultaneously for the whole mesh. By contrast, the solution of initial

value problems can be seen as a function that describes how the solution propagates

as one independent variable proceeds. In this case, the independent variable often

can be interpreted as time. The problem is usually solved for the initial point of

time and then integrated in time.

Equation (53) states how the value function is connected along k and t. More

precisely, the equation states how V changes if the initial capital stock k changes

or if time t changes. For the numerical solution of equation (53) it is essential that

Vt ≡ 0, which is an information that is not included in the equation. Therefore, the

equation can be seen as an initial value problem. In a first step, an initial guess for

V at t = 0 is made. This guess, of course, satisfies the partial differential equation

only with Vt 6= 0, because, loosely speaking, the residuals are caught by Vt. Then,

the equation is integrated in time until Vt ≡ 0.

For example, given the mesh of (t, k), the partial derivative of Vk can be approxi-

mated by the formula

Vk(t, k) =
V (t, k + ∆k) − V (t, k)

∆k
+ o(∆k)

which indicates that the approximation is of order one, o(∆k). It is constructed

by applying Taylor’s rule and truncating terms of lower order. Analogously, the

derivatives Vt and Vkk can be approximated by

Vt(t, k) =
V (t + ∆t, k) − V (t, k)

∆t
+ o(∆t)
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and

Vkk(t, k) =
V (t, k + ∆k) − 2V (t, k) + V (t, k − ∆k)

(∆k)2
+ o((∆k)2)

Inserting the approximations in equation (53) yields

V (t + ∆t, k) − V (t, k)

∆t
+ ρV (t, k) =

θ

1 − θ

(

V (t, k + ∆k) − V (t, k)

∆k

)
1−θ

θ

+
V (t, k + ∆k) − V (t, k)

∆k
(kα − δk)

+1/2σ2k2V (t, k + ∆k) − 2V (t, k) + V (t, k − ∆k)

(∆k)2
+ o(∆t) + o(∆k) (54)

Now, equation (54) can be solved explicitly for V (t + ∆t, k) given a solution V (t, k)

at t.

Since equation (54) is a relation for the interspace between mesh points, proper

conditions must be provided for the boundary of the mesh. Candler suggests to use

boundary conditions for k = 0 and k = kmax. The first boundary condition would

cause problems, because Vk(t, 0) = ∞, however, due to a more special difference

scheme Candler proposes, it is not necessary to evaluate Vk for k = 0. For the

second boundary condition Candler suggests to extend kmax until Vk(t, kmax) = 0 is

a good approximation.

The algorithm for finding the solution can be sketched as follows:

• Define a mesh of points on (t, k)

• Choose an initial guess for V . (Candler chooses V (k) =
√

k)

• Use (54) to compute V (t + ∆t, k) − V (t, k), for all ki

• Compute an error norm ǫ := ||V (t + ∆t, k) − V (t, k)||

• Update the solution V (t+∆t, k) until ǫ is sufficiently small, i.e. V is no longer

changing with respect to time
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Candler proposes several measures to enhance the stability and the speed of the

method. We want to focus the critique on the generalization of the method to more

than one state variable and the associated increase in computational requirement.

Consider a mesh of (m × n), i.e. t ǫ (t1, . . . , tm) and k ǫ (k1, . . . , kn). For each time

step, equation (54) has to be evaluated for every pair (ki, ki + 1), i < n. Given that

the algorithm converges after m time steps, a system of n equations has to be solved

m times.35

Now consider a problem with two state variables. The resulting mesh will be of

dimension m × n × n. For each time step, 2 · n · n difference equations have to be

evaluated, since every interior mesh point has now four neighboring points instead

of two. While there exists methods to leave out some of the difference equations,

the computational demand will be at least n times higher compared to a problem

with only one state variable.36 This exponential increase in computational expense

is known as the ‘curse of dimensionality’. It makes the numerical solution of higher

dimensional models difficult if not impossible.

3.3.2 Backward integration

Backward integration as suggested by Brunner and Strulik (2002) is a method to

solve the first order conditions of Pontryagin’s maximum principle represented by a

system of ordinary differential equations numerically.

Consider a continuous-time, perfect-foresight, infinite-horizon, optimal control

problem as described by (46). Necessary conditions for an optimal solution are

employing Pontryagins Maximum principle (see Pontryagin et al., 1962) with the

35Equation (54) refers only to the interspaces. Together with the boundary conditions, a square
system of equations results.

36 Press et al. (1989, p. 700) also report that computational requirements increase by a factor
of at least 100 if one switches from a one-dimensional problem with 100 grid points to a two-
dimensional problem with 100 × 100 grid points.
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current-value Hamiltonian H = f + λT g

∂f

∂u
+ λT ∂g

∂u
= 0 (55)

ẋ = g(x, u) (56)

∂f

∂x
+ λT ∂g

∂x
= ρλ − λ̇ (57)

together with the initial conditions x(0) = x0 and transversality condition

lim
t→∞

λ(t)x(t) = 0 . (58)

We assume that the costate variable λ can be eliminated from the system to obtain

a square system of differential equations

u̇ = F1(u, x)

ẋ = F2(u, x) (59)

that is saddlepoint stable in the neighborhood of a hyperbolic, interior steady state

(u∗, x∗). The system (59) exhibits nx state variables or (more generally) nx initial

conditions. We assume the transversality conditions (58) to ensure convergence to

the interior steady state. For the transition path towards the steady state to be

unique, the system has to exhibit a nx-dimensional stable manifold.

The initial values (x(0), u(0)) of the solution are only known for the state vari-

able x. The initial value of the control variable is determined but unknown and

often impossible to compute for non-linear problems. If the system (59) would be

integrated with respect to time with the correct initial state but an incorrect initial

control variable, the solution would diverge from the stable manifold exponentially.

Therefore, small deviations in the initial value of u cause large differences in (x, u)

over time, and the correct steady state (x∗, u∗) would be missed by far. The prob-

lem of forward integration, also named as multiple-shooting, is recognized as highly
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ill-conditioned.37 Backward integration exploits this instability by reverting time. If

the flow of the system is reversed, trajectories converge instead of diverge towards

the solution manifold exponentially. Since the steady state is known for state and

control variables, the solution manifold can be computed easily by starting near the

steady state an integrating backward in time.

For reversing the flow we make use of the fact that system (59) is autonomous.

Defining t̃ := −t and applying the chain rule yields

du

dt̃
=

du

dt

dt

dt̃
= −F1(u, x)

dx

dt̃
=

dx

dt

dt

dt̃
= −F2(u, x) . (60)

Since system (60) exhibits the same shape as system (59), only multiplied by −1, time

transformation exactly reverses the flow. Therefore, the stable manifold becomes an

unstable manifold, and the unstable manifold becomes a stable manifold of the fixed

point (x∗, u∗). We are interested in computing the stable manifold of (59) to which

we will refer to as the solution manifold. The initial boundary condition x(0) = x0

of problem (46) will be relabeled as x(t̂) = x0. If the system (60) is integrated with

respect to time t̃ with an initial value close to the steady state, the numerical solution

converges towards the solution manifold exponentially. Therefore, errors caused by

the fact that the initial point is not exactly on but only close to the solution manifold,

decay exponentially. To minimize the errors, the deviation from the steady state can

be determined in direction of the corresponding eigenvector of the solution manifold,

which is tangent to the manifold. The outline of the backward integration algorithm

for systems exhibiting a one-dimensional solution manifold is as follows

• Choose an initial value (x(0), u(0)) close to the steady state (x∗, u∗) by deviat-

37Multiple Shooting was introduced into the economic literature by Lipton et al. (1982). However,
Ascher et al. (1988) consider it to be ill-conditioned for saddlepoint problems.
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ing along the corresponding eigenvector v:

(x(0), u(0)) = (x∗, u∗) + ǫv

• Integrate system (60) numerically, until the solution trajectory hits the bound-

ary condition x(t̂) = x0.

• Re-transform time and the corresponding solution vector.

Note, that the numerical integration of system (60) can be conducted with any

standard routine implemented in mathematical program packages.

To exemplify the algorithm on a simple, one-dimensional example, we describe how

to solve the Ramsey-model with the backward integration procedure. The first order

conditions of problem (47) and (48), employing the production function f(k) = kα

and the utility function u(c) = c1−θ

1−θ
, are

ċ = c
αkα−1 − ρ

θ

k̇ = kα − c .

The steady state can be calculated analytically as (k∗, c∗) =

(

(

α
ρ

) 1

1−α

,
(

α
ρ

) α
1−α

)

,

and the time-transformed system reads

ċ = −c
αkα−1 − ρ

θ

k̇ = −(kα − c) .

For choosing the starting values of backward integration we can avail the fact that the

shape of the phase diagram is known. The one-dimensional stable manifold passes

the steady state from south-west to north-east. Along the adjustment path, capital

and consumption increase or decrease monotonically, respectively. We fix the initial

value of capital k0 to 10% of its steady state value and, therefore, want to calculate

61



3 Multi-Dimensional Transitional Dynamics

the south-west part of the stable manifold. In this case, we can deviate from the

steady state by reducing (c∗, k∗) by a small ǫ in both components. The backward

looking trajectory can be computed easily by employing a fourth order Runge-Kutta

ODE solver. We integrate with respect to time until k(t̃) = k0. The ODE solver

delivers a list (t̃, c, k) that has to be rearranged to re-transform time.

The method of backward integration may run into two different problems. The first

one refers to an increase in the dimension of the state space. Then, the backward

looking trajectory has to fulfill more than one boundary condition. In this case,

Brunner and Strulik (2002) suggest to generate starting values on an orbit around

the steady state. To pass through a pre-specified point (determined by the specific

shock under study), it is necessary to iterate until the trajectory hits this point.

However, if the real parts of the stable eigenvalues differ substantially, the problem

of stiff differential equations occurs as described in Section 2.3. For small deviations

in the starting values the resulting trajectories depart strongly from each other. For

large differences between the stable eigenvalues, it is impossible to meet the pre-

specified point, because the backward directed trajectories will be attracted by the

submanifold, which is associated with the eigenvalue with the largest, in absolute

terms, real part. The resulting trajectories, hence, cannot represent a specified shock

and potentially have no economic meaning.

The second problem of the method refers to economic models, which do not exhibit

an isolated steady state but a continuum of steady states represented by a hyperbolic

center manifold of stationary equilibria as described in Section 2.1. In this case, the

specific steady state to which the economy converges depends on the initial bound-

ary conditions.38 The backward integration procedure as described above, however,

requires the knowledge of the final steady state as an initial condition for backward

38For instance, in the Lucas (1988) model presented below the actual steady state to which the
economy converges depends on the initial level of human and physical capital h0 and k0.
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integration. If one particular steady state is chosen for backward integration, only

one initial condition can be satisfied. To find a trajectory, which fulfills all initial

conditions, an iteration process has to be applied. This procedure typically could

give rise to problems of convergence.

3.3.3 The method of Mercenier and Michel

Mercenier and Michel (1994 and 2001) propose to transform the continuous time,

infinite horizon problem (46) into a finite horizon maximization problem in discrete

time. This transformation requires the choice of an exogenous final time tN and

an exogenous mesh grid T = {t0, . . . , tN}. We denote the time steps as ∆n :=

tn+1 − tn, n = 0, . . . , N − 1. Then, the transformed problem is

max
N−1
∑

n=0

αn∆nf(x(tn), u(tn)) + βNF (x(tN)) (61)

s.t. x(tn+1) − x(tn) = ∆ng(x(tn), u(tn)), n = 0, . . . , N − 1,

x(t0) = x0

where αn denotes discount factors that remain to be determined and may depend

on the chosen mesh T . The function F and the associated discount factor βN are

responsible for a proper treatment of the post terminal phase [tN ,∞), and remain

to be chosen, as well. The advantage of solving problem (61) instead of the original

problem (46) is that it can be solved straightforward with a standard optimization

routine.39 The discretetized problem can be seen as a problem of maximizing a

function subject to static constraints.

Mercenier and Michel (1994 and 2001) show that the discount factors αn, βN and

the function F cannot be chosen arbitrarily to make the solution of optimization

39Mercenier and Michel (1994) annotate, that problem (61) could also originate from the trans-
formation of another discrete time model. For example, it might be favorable to transform a
discrete time model with respect to the time mesh to economize on computational requirements.
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problem (61) a good approximation of the solution of optimization problem (46).

They introduce the property of steady state invariance and steady state growth in-

variance, respectively. The idea is that the transformed problem (61) should exhibit

the same stationary solution as the original optimization problem (46), if the model

exhibits exogenous growth. Analogously, if the model exhibits endogenous growth,

the transformed problem (61) should exhibit the same long-run growth rate as prob-

lem (46). Mercenier and Michel state necessary and sufficient conditions for both

properties, which significantly enhances numerical accuracy given a certain number

of mesh points.

Considering the case of steady state invariance it can be proven that the discount

factors αn have to fulfill the recurrence relation

αn+1 =
αn

1 + ρ∆n+1

, n > 0 (62)

with α0 given. Moreover, the function F should be chosen according to

F (x) =
1

ρ
f(x∗, u∗) (63)

with the stationary solution (x∗, u∗)t of problem (46).40 In this case (46) and (61)

possess the same stationary solution.

Mercenier and Michel (2001) generalize this result for a class of endogenous growth

models by extending equation (62). Then the balanced growth rate of problem

(46) is the same as for the transformed problem. Again, the property of steady

growth invariance yields a considerable improvement in the numerical accuracy of

the discrete time model. Moreover, Alemdar et al. (2006) show that the overall

optimization performance can be improved substantially if an optimal allocation of

the time mesh is chosen for the transition.

40Mercenier and Michel (1994) derive a more general condition for F that is necessary for steady
state invariance, however, they present this functional form as very intuitive.
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The approach of Mercenier and Michel is very user-friendly, since the discretized

model can be solved by any standard routine implemented in mathematical program-

ming packages. Therefore, it is to some extent difficult to compare its performance to

other algorithms, since the method relies partly on the performance of an exchange-

able subroutine. As an advantage of the method, it has to be mentioned that this

method is suitable for higher dimensional models. The discrete optimization model

(61) could exhibit any number of state or control variables, since an increase in the

number of variables does not cause any conceptual differences. Moreover, usually

computational costs grow of order three for optimization routines if the number of

variables increase. Therefore, computational costs grow only moderately with the

model’s dimension.

However, the transformation of the optimization problem has also its drawbacks,

besides the fact that the researcher has to conduct laborious transformations by

converting the maximization problem. First, the choice of a terminal time is to some

extent arbitrary. In the worst case, the user has to find a terminal time by trial end

error, since the time span in which the solution has almost approached its steady state

is usually not known in advance. Also, the treatment of a post terminal stationary

phase causes additional effort. Second, the method of Mercenier and Michel does

not leave room for selecting different discretization rules, also of higher order. The

discretization rule of the method is a first order rule, which means that the error

only decreases linearly with an increase of the number of mesh points.41 Therefore,

it might be difficult to decrease the maximum error below some predetermined value

when the model is high-dimensional. Moreover, computational costs grow of order

three if the number of mesh-points is increased, whereas the respective increase in

computational costs for the relaxation algorithm grow only quadratically.

41The discretization of the differential equations is a forward Euler discretization scheme.
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3.3.4 Projection methods

Projection methods, introduced in Judd (1992) and Judd (1998, Chapter 11), cover

a wide range of algorithms.42 Therefore, they can be applied to a large number

of numerical problems. We first state the general approach how to apply projection

methods and how it is implemented numerically. In a second step, we describe how to

solve the standard neoclassical model as an example. The method can solve problems,

for which a function f has to be computed. Since this function is potentially multi-

dimensional, a wide range of problems is covered. For example, f could represent

the Bellman-equation or policy function of an intertemporal optimization problem.

Consider an operator N that maps the function space B1 into another function

space B2:

N : B1 → B2

Then, the problem is to find a function f ǫB1 that is a zero of the operator:

N (f) = 0

For numerical computations a computable approximation N̂ of N has to be chosen.43

Moreover, bases Φj = {φj
i}∞i=1 and inner products, < ·, · >j, for Bj, j = 1, 2 have to

be chosen. In numerical terms the problem is now to find ai ǫ R, 1 ≤ i ≤ n, such

that the function

f̂ :=
n

∑

i=1

aiφ
1
i

with n large enough satisfies

N̂ (f̂)
.
= 0

42A rich literature describes several variants of projection methods, see e.g. Taylor and Uhlig (1990)
and the papers cited therein, McGratton (1996) or McGrattan (1999). An example for a recent
application is Judd (2002).

43In the example below, N̂ = N . E.g., the difference between N̂ and N could be that N̂ maps
C∞ functions while N maps C1 functions.
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Coefficients ai are found through iteration. An initial guess of a = (ai)
n
i=1 has to be

made and the residual of N̂ (f̂), measured by the inner product, is improved in every

iteration.

The generality of this description clarifies that projection methods cover a wide

range of algorithms, since for each step different approaches can be used to implement

the algorithm. Therefore, we want to address common implementations.

The bases Φj should be chosen such that they are simple to compute and each ele-

ment ‘differs a lot’ from the other elements. The latter requirement means that given

the basis elements i = 1, . . . n the (n + 1)st element adds a lot of new information.

Therefore, often an orthogonal basis with respect to the inner product is chosen.

One example of a basis together with an inner product that are used frequently are

Chebyshev Polynomials. The are defined over [−1, 1] by

Tn(x) = cos(n arccos(x)) n ≥ 0

and generated by the three-term recursion

T0(x) = 1

T1(x) = x

Tn(x) = 2xTn−1(x) − Tn−2(x), ∀n ≥ 2 .

Chebyshev Polynomials are orthogonal with respect to the inner product

< f(x), g(x) >:=

∫ 1

−1

f(x)g(x)
√

(1 − x2)
dx . (64)

Besides the orthogonality, Chebyshev Polynomials have the advantage to be easy to

compute and they exhibit the same scale on [−1, 1].44 Although they are considered

to be very efficient, other bases could be used such as basis which have only small

44Of course, they can be transformed to any interval of interest.
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support. E.g. sometimes tent function are used, which take the shape of a tent

on some subinterval and are zero elsewhere. If the basis elements are zero almost

everywhere, the method is classified as a finite-element technique, otherwise it is

called spectral method.

There are also several possibilities to measure how much the residual

R(x; a) := N̂ (f̂)(x)

deviates from zero and how the initial guess of a should be improved. One possibility

is to minimize the sum of squared residuals

min
a

< R(x; a), R(x; a) >2 .

To achieve this, a standard minimization algorithm can be employed. Another pos-

sibility is to choose n projections p1, . . . , pn ǫB2 and solve

Pi(a) ≡< R(x; a), pi(x) >= 0, i = 1, . . . , n.

The latter approach has the advantage that projections Pi could be defined such

that the minimization of residuals emphasizes certain aspects. For example, the

average error in an Euler equation could be minimized. The sum of squared residuals

approach would not put special emphasis on that error and could, therefore, yield

poor approximations of the Euler equation. Depending on the chosen projections, the

method is classified as a Galerkin method, method of moments, subdomain method,

or collocation method. Galerkin methods use the first n elements of the basis Φ for

projection.45 For the method of moments the first n monomials xi−1, i = 1, . . . , n are

chosen for projection. On the other hand, subdomain methods minimize the residual

on a collection of subdomains that cover the whole region of interest. Therefore, the

projections are chosen as IDi
, i = 1, . . . , n with the indicator functions IDi

of the

45This requires the same basis and inner products for B1 and B2.
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subinterval Di. At last, collocation methods choose a to solve R(xi, a) = 0 at n

different points. Formally, this corresponds to choosing n Dirac delta functions for

projections, i.e. the projection δ(x − x1), . . . , δ(x − xn), i = 1, . . . , n.

It is necessary to mention the advantages of collocation methods, for they are

widely used and known to be very efficient.46 Given the number of projections

n, collocation methods have less computational requirement, since the residuum

R(x; a) only has to be evaluated at n points instead of integrated n times. One

would suspect that collocation methods yield poor approximations of f , because

the residuum is only controlled at certain points and not in between those points.

However, if the points xi are chosen such that they exploit the characteristics of

the basis, it is guaranteed that convergence occurs very quickly. For example, if

Chebyshev polynomials are used, the projection points should be placed at the zeros

of the Chebyshev polynomials, defined as xi = cos
(

2i−1
2n

π
)

, i = 1, . . . , n on the

interval [−1, 1]. The Chebyshev interpolation theorem states that interpolating at

these points is optimal and that f̂ converges to f quickly as n → ∞.

For implementing the continuous-time version of the Ramsey model (problem (47)

and (48)) we solve for the policy function c(k).47 To derive a useable operator that

maps the policy function we employ Pontryagin’s maximum principle and derive

the first order conditions with utility function u(c) = c1−θ

1−θ
and production func-

tion f(k) = kα. After eliminating the adjoint variable, we derive two differential

equations, the Keynes-Ramsey rule and the capital accumulation equation

ċ = c
αkα−1 − ρ

θ

k̇ = kα − c .

46For example, the standard routine implemented in MatLab to solve two-point boundary value
problems is a collocation method.

47Judd (1992) solves for the policy function in a stochastic, discrete-time version of the Ramsey
model. Since we focus on the numerical solution of deterministic, continuous-time models, we
deviate from the original illustration.
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We can derive the policy function c′(k) by dividing both equations

c′(k) =
dc/dt

dk/dt
=

cαkα−1−ρ

θ

kα − c
k̇ 6= 0 . (65)

By rearranging we get the following differential equation for c′(k)

c′(k)(kα − c) −
(

c
kα−1 − ρ

θ

)

= 0 . (66)

The task is now to find a policy function c(k) that is the zero of operator N̂ rep-

resented by equation (66). As an example, we further specify the bases and the

projections that could be used for solving the problem. The domain of approxima-

tion will be an interval [kmin, kmax] that includes the steady state. For a suitable

basis we choose Chebyshev polynomials transformed to the interval [kmin, kmax] by

the linear transformation k → 2 k−kmin

kmax−kmin
− 1. The inner product is defined by

< f(k), g(k) > :=

∫ 1

−1

f(k)g(k)

w(k)
dk, (67)

w(k) :=

√

√

√

√

(

1 −
(

2
k − kmin

kmax − kmin

− 1

)2
)

and the projections are the Dirac delta functions evaluated at

xi = 2

(

cos
(

2i−1
2n

π
))

− kmin

kmax − kmin

− 1, i = 1, . . . , n (68)

To summerize, we search a = (ai)
n
i=1 such that the function

ĉ(k; a) =
n

∑

i=1

aiφi(k)

with transformed Chebyshev polynomials φi satisfies equation (66) evaluated at

points (68). These are n non-linear equations which could be solved using a Newton

algorithm or any proper standard routine.
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The method may run into two different problems. The first one refers to the

derivation of the policy function. Projection methods are often employed to approx-

imate the policy function, because the dimensionality of the problem is smaller. In

the simple example of the Ramsey-model, the first order conditions derived from

Pontryagrin’s maximum principle are two differential equations on the time inter-

val [0,∞). The derivation of the policy function allows to reduce the system to a

one dimensional differential equation with respect to k on an interval [kmin, kmax].

Therefore, the problem was reduced with respect to the dimension and the interval

of integration. However, if policy function approximation are used, the policy func-

tion may not be defined at interior points. From equation (65) it becomes apparent

that the policy function is not defined for k̇ = 0. At the steady state the additional

information that ċ = 0 and c′(k) 6= ∞ is available. Therefore, equation (66) could

still be evaluated. However, if the stable manifold is multi-dimensional, trajectories

in the state space may exhibit extremal values. In this case, the slope of the policy

function may be infinity as it is illustrated in Section 2.2. Then, it is not possible to

evaluate equation (66).

The second detriment of projection methods also refers to the solution of higher di-

mensional models. To represent a higher-dimensional function a multi-dimensional

basis has to be constructed. Employing Tensor methods, multi-dimensional basis

functions can be constructed from a simple one-dimensional basis. For example, for

constructing a two-dimensional basis from the one-dimensional basis (φi(x))∞i=1 the

set of pairwise products (φi(x)φj(x))∞i,j=1 represents the Tensor product basis. The

number of basis elements will be n basis elements for the one-dimensional case, n2

basis elements for the two-dimensional basis and so forth. Therefore, the number

of basis elements will increase exponentially as the dimension increases, and compu-

tational costs will also grow exponentially. To avoid this “curse of dimensionality”,
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a special complete polynomial basis is chosen but still the computation costs grow

polynomially.48

3.3.5 Time elimination

The method of time elimination introduced by Mulligan and Sala-i-Martin (1991,

1993) is a method, similar to backward integration, to turn the two-point-boundary

value problem of first order conditions into an initial value problem. Different to

backward integration, the system of differential equations is manipulated such that

it is independent of time. Therefore, the solution method aims at solving for the

policy function. We demonstrate the method on the simple example of optimization

problem (47) and (48) first, and then discuss the generalization to higher dimensional

systems.

The first order conditions of problem (47) and (48), employing the production

function f(k) = kα and the utility function u(c) = c1−θ

1−θ
, are

ċ = c
αkα−1 − ρ

θ

k̇ = kα − c . (69)

The transversality condition ensures convergence towards the interior steady state,

represented by

(k∗, c∗) =

(

(

α

ρ

) 1

1−α

,

(

α

ρ

) α
1−α

)

. (70)

For applying the method of time elimination we derive the policy function c′(k) as

c′(k) =
ċ

k̇
=

cαkα−1−ρ

θ

kα − c
(71)

48That means an denoting the number of state variables by n the procedure is of order o(cn) with
some constant c.
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for k̇ 6= 0. For deriving the boundary condition for this differential equation in k, we

exploit the fact that the economy converges towards the steady state (70). Boundary

condition is, therefore, c(k∗) = c∗. The numerical problem now turns from a two-

point boundary value problem into a problem with boundary conditions for the final

boundary c(k∗) = c∗. To transform the problem into an initial value problem that

can be solved with standard numerical routines easily we transform it via k̃ := k∗−k.

The transformed equation reads

c′(k) = − cα(k∗−k)α−1−ρ

θ

(k∗ − k)α − c
. (72)

For numerical calculation of the policy function we have to integrate equation (72) on

the interval [k∗, k0], employing a standard ODE solver for initial value problems.49

However, one problem remains to be solved. We have exchanged the asymptotic

transversality condition for a boundary condition that can be satisfied for a final

value of k, namely k∗. However, equation (72) cannot be evaluated for k∗, since

k̇∗ = 0. c′(k∗) can be calculated using L’Hopital’s rule or linearization of system

(69) at the steady state. In the second case, the eigenvector of the stable eigenvalue

displays the slope of the policy function at the steady state. The ratio of both

components of the eigenvector in the (c, k) space can be interpreted as the first

derivative c′(k∗). We apply L’Hopital’s rule and find the slope of the policy function

at the steady state to equal

c′(k∗) =
1

2

(

ρ +

√

ρ2 +
4

θ
c∗α(1 − α)(k∗)α−2

)

(73)

Finally, we should mention that the time paths of c and k can easily be calculated by

inserting the numerical solution of c(k) into system (69) and integrating with respect

to time. As initial conditions (c, k) = (c(k0), k0) must be chosen.

49For example, we could use a fourth order Runge-Kutta procedure with step-size control.
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The generalization of the method to models, which exhibit more than one control

variable, is straightforward. Instead of deriving a one-dimensional policy function,

the policy function p will be mapped into nc dimensions, if we consider the case of

nc control variables, p : R → R
nc . Therefore, system (71) will be an nc dimensional

system of ordinary differential equations. The crucial point is that integration still

takes place with respect to one variable, the only state variable.

For systems exhibiting more than one state variable, it is in general not possible

to represent the policy function through a system of ordinary differential equations

analogous to system (71). If time were eliminated, the system would contain deriva-

tives with respect to the different state variables. Therefore, we would have to solve

a partial differential equation, whose numerical solution is far more complicated. In-

stead, Mulligan and Sala-i-Martin suggest to shoot backward, employing the original,

time-dependent system of ordinary differential equations. However, this is conceptu-

ally equal to backward integration as suggested by Brunner and Strulik (2002), and,

therefore, the same criticism applies.

3.3.6 Concluding comparison

The exceptional attribute of the relaxation algorithm is that it can solve systems

exhibiting a multi-dimensional stable manifold and a center manifold of stationary

equilibria conveniently. We want to summarize the merits and disadvantages of each

method. Since every method can solve simple models like the Ramsey model in less

than a second, we concentrate on how the methods perform for models exhibiting

a multi-dimensional stable manifold. More precisely, a crucial point of comparison

is how the methods’ computational demand increases if the dimension of the state

space increases. Though, it is not possible to prove that for a method it is impossible

to solve a certain kind of model. For the comparison we will not consider that for

some methods the model has to be transformed or that other forms of human capital
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is needed as an input.50

The essential disadvantage of the method of Candler is the treatment of higher-

dimensional models. The method provides a generic treatment of higher-dimensional

stable manifolds, and is, therefore, able to simulate these kind of models. However,

computational requirements grow exponentially as the number of state variables

increases. Therefore, the method loses its merits for models exhibiting a multi-

dimensional stable manifold. The method of backward integration does not allow for

a generic treatment of higher-dimensional models. If the model exhibits two state

variables, a backward shooting algorithm can be applied. However, the problem

of stiff differential equations might occur. Hence, the numerical solution of higher-

dimensional models might be difficult or even impossible. The method of Mercenier

and Michel is generic with respect to the number of state variables. Moreover, com-

putational costs grow only of order three if the model dimension increases. The

only disadvantage of the method is that it uses first order difference schemes and,

therefore, it might need a large amount of mesh points to yield accurate solutions.

Projection methods are also generic with respect to the model dimension. How-

ever, computational requirements grow exponentially if the dimension of the model

increases. This “curse of dimensionality” can be attenuated by selecting a special

basis, but, still, computational costs grow polynomially. The method of time elim-

ination cannot be generalized easily to more than one state variable. In fact, the

generalization is conceptually equal to the backward integration procedure, wherefore

the same criticism applies.

50In the following we will refer to models exhibiting a multi-dimensional stable manifold as higher-
dimensional models.
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3.4 Two illustrative applications

The relaxation procedure is employed to investigate the transition process of two

prominent growth models. As a first example, we consider the Jones (1995a) model.

For usual calibrations this model gives rise to a system of stiff differential equations.

The four-dimensional transition towards the unique steady state appears to be non-

monotonic. The second example, the Lucas (1988) model, implies a saddle-point

stable center manifold. The different points on this curve reflect level effects of

transition towards long-run growth. It should be noticed that the transition process

of these popular growth models has hardly been investigated in detail so far, which

is probably due to the conceptual problems mentioned above.

3.4.1 The Jones (1995a) model

The presentation of the Jones (1995a) model basically follows Eicher and Turnovsky

(1999) who have formulated the social planner’s solution of the general non-scale

R&D-based growth model. For a detailed derivation of the decentralized solution

see Steger (2005). As in Jones (1995a), the focus here is on the market solution. The

final-output technology is given by

Y = αF (φL)σL

∫ A

0

x(i)1−σLdi (74)

where Y denotes final output, φ the share of labor allocated to final-output pro-

duction, x(i) the amount of differentiated capital goods of type i, A the number of

differentiated capital goods, αF a constant overall productivity parameter and σL the

elasticity of labor in final-output production. Each intermediate good xi is produced

by firm i, which owns a patent on producing this good exclusively. Final output pro-

ducing firms maximize profits, which yields that wages equal the marginal product

w = σL
Y
φL

and the price of one intermediate is equal to pi = (1 − σL)(φL)σLx−σL

i .
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Noting the general symmetry among x(i) and using the definition of aggregate capital

K := Ax, the final-output technology can be written as

Y = αF (AφL)σLK1−σL (75)

Intermediate firms produce one unit of intermediate from one unit of foregone con-

sumption. Therefore, profit maximization of intermediate firms yield

p = pi =
r

1 − σL

, (76)

π = πi = σL(1 − σL)
Y

A
. (77)

Patents for new intermediate goods are produced according to the R&D technology

Ȧ = J = αJAηA [(1 − φ)L]ηL (78)

with ηL := ηp
L +ηe

L, ηp
L = 1, −1 < ηe

L < 0, ηA < 1 where αJ denotes a constant overall

productivity parameter, ηA the elasticity of technology in R&D and ηL the elasticity

of labor in R&D. For the market solution we distinguish between the elasticity of

labor observed by private firms, ηp
L, and a negative external effect of labor in research,

ηe
L, caused by the ‘stepping on toe’ effect introduced by Jones (1995a). The former

elasticity equals one because of perfect competition in the research sector. Different

to Romer (1990), we assume ηA < 1, which reflects the fact that spill-overs known

as the ‘standing on shoulders’ effect do not fulfill the knife-edge condition to be

linear. Workers are allowed to enter the R&D sector freely, wherefore they are paid

according their marginal product

w = VaαJAηA [(1 − φ)L]ηL−1 (79)

with the value of one blueprint Va. A no arbitrage condition forces the discounted

stream of profits to equal the patent’s value

Va(t) =

∫ ∞

t

π(τ)e−
R τ

t
r(s)dsdτ (80)
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Differentiating with respect to time yields

V̇a = rVa − π (81)

Finally, households maximize intertemporal utility according to

max
c

∫ ∞

0

(C/L)1−θ

1 − θ
e−ρtdt (82)

subject to

K̇ = rK + wL − VaȦ + Aπ − C (83)

with consumption C and the relative risk aversion equal to 1
θ
. First order condition

of the consumer’s maximization problem is

Ċ =
C

θ
(r − ρ − n) + nC (84)

We transform the variables into stationary ones by expressing the system in scale

adjusted variables, which are defined by y := Y/LβK , k := K/LβK , c := C/LβK ,

a := A/LβA , j := J/LβA and va := v/L with βK = 1−ηA+ηL

1−ηA
, βA = ηL

1−ηA
. The

dynamic system which governs the evolution of the economy under study, can be

summarized as follows:

k̇ = y − c − δk − βKnk (85)

ȧ = j − βAna (86)

ċ =
c

θ
[r − δ − ρ − (1 − γ)n] − βKnc (87)

v̇a = va[r − n] − π (88)

σLy

φ
= va

ηp
Lj

1 − φ
(89)

where y = αF (aφ)σLk1−σL , j = αJaηA(1 − φ)ηL , r = (1−σL)2y

k
, π = σL(1−σL)y

a
. The

(unique) stationary solution of this dynamic system corresponds to the (unique)

BGP of the economy expressed in original variables.
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Equations (85) and (86) are the equations of motion of (scale-adjusted) capital and

technology, (87) is the Keynes-Ramsey rule of optimal consumption c, (88) shows

capital market equilibrium with va denoting the (scale-adjusted) price of blueprints

and (89) determines the privately efficient allocation of labor across final-output

production and R&D.51

To determine the set of feasible parameter values is particulary difficult for this

model. To our knowledge, it is not possible to calculate the steady state, nor the

eigenvalues or eigenvectors of the linearized system at the steady state analytically.

Arnold (2006) investigates the model by employing the parameter restriction ηe
L = 0.

For the steady state to be unique he finds necessary and sufficient conditions equal

to

θ − 1

1 − ηA

n + ρ > 0 . (90)

Moreover, Arnold proves that for this parameter restriction adjustment dynamics

are locally unique. Since ηA < 1 holds in any case and θ ≥ 1 is empirically more

plausible we will consider restriction (90) for the simulations.

The objective is to solve the four-dimensional system of differential equations (85)

- (88), taking into account the static equation (89), which must hold at all points

in time. Since the steady state can be determined numerically only, the algorithm

computes the steady state of the system first by applying a standard algorithm for

solving non-linear equations. The choice of k(0) = k0 and a(0) = a0 as initial

boundary conditions is obvious since k and a are the state variables. Again, there

is some freedom when it comes to the determination of boundary conditions. We

have set the RHS of equations (87) and (88) equal to zero. However, if we choose

different final boundary conditions the performance of the algorithm is not affected.

51 The presence of the static efficiency condition (eq. (89)) is due to the fact that labor does neither
enter final output nor R&D linearly. Hence, it is in general not possible to solve for the optimal
amount of labor explicitly.
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Moreover, we choose once more, as an initial guess, all variables to be constant at

their steady state values. This always leads to quick convergence, indicating that

the procedure is relatively robust with respect to the initial guess. We control the

relative error of the solution to be below 10−4 at every mesh point by employing the

error estimation equation (44). This is already the case for a mesh size of M = 100.

We want to demonstrate that the dynamic system (85) - (89) represents a system

of stiff differential equations. The algebraic equation (89) does not contribute to

the dynamics. Therefore, we project dynamics on the four-dimensional manifold

defined by (89). For the adjustment path to be unique the system must exhibit a

two-dimensional stable manifold. Employing the Hartman-Grobman theorem for the

unique, hyperbolic steady state, the linearized system has to exhibit two eigenvalues

with negative and two with positive real part. Moreover, for the system to be stiff,

the eigenvalues associated to the stable manifold have to differ significantly. Since the

steady state and the linearized system can only be calculated numerically, we employ

numerical experiments to verify this result. We first consider a benchmark economy,

which calibration agrees with those generally invoked in the economic literature (see

Prescott, 1986, Lucas, 1988, Jones, 1995b, Ortingueiry and Santos, 1997, and Eicher

and Turnovsky, 2001). The set of parameters used for the benchmark economy is:

σL = σA = 0.6, σK = 0.4, δ = 0.05, n = 0.015, ηA = 0.6, ηL = 0.5, ηp
L = 1, ρ = 0.04,

θ = 1.5, and αJ = αF = 1. In this case, the ratio of the stable eigenvalues amounts

to 11.9. We deviate each of the parameters by 20% and calculate the ratio of the

stable eigenvalues again. The results are shown in Table 2. Note that a deviation

in σL causes also a deviation in σA and σK , since σA = σL and σA = 1 − σK .52 It

can be seen from Table 2 that the ratio of the stable eigenvalues differs substantially

52We adopt this setting from Jones (1995a). Eicher and Turnovsky (1999 and 2001) allow for a
more general parametrization of the production function. However, assuming σL 6= 1−σK would
need the final production sector to exhibit an external effect for maintaining the assumption of
perfect competition for this sector.
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for a broad range of parameter values, i.e. the ratio amounts to more than 10 for

most of the chosen parameter sets. This has two important implications. First,

from an economic perspective, overshooting behavior is very likely to occur when

transitional dynamics resulting from a specific shock is investigated as described in

Section 2.2. Second from a numerical perspective, this model is difficult to solve

numerically as described in Section 2.3, since it exhibits the characteristics of stiff

differential equations. For example, for the backward shooting algorithm it would

be very difficult or even impossible to meet given initial conditions.

Table 2: Sensitivity analysis for the Jones model

parameter direction of change ratio of stable eigenvalues

σA +20% 18.7
σA −20% 7.9
ηA +20% 14.0
ηA −20% 10.7
ηL +20% 10.3
ηL −20% 14.5
δ +20% 12.8
δ −20% 11.0
ρ +20% 12.1
ρ −20% 11.7
θ +20% 11.4
θ −20% 12.6
n +20% 10.9
n −20% 13.2

Before investigating a specific shock, we want to illustrate the dynamics on the two-

dimensional stable manifold of the model. We select initial values for 28 trajectories

on a circle around the steady state. Simulation results projected into the (k, a)-

plane can be seen in Figure 9. The initial value of each trajectory is indicated by a

cross, while the steady state is indicated by a circle. Transitional behavior proceeds
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similar to Figure 4 in Section 2.2. Accordingly, convergence can be divided into two

phases for most trajectories. In the first phase, trajectories converge towards the

submanifold associated with the eigenvalue of smaller magnitude, in absolute terms.

In the second phase, trajectories move along this submanifold. As can be seen from

Figure 9, convergence in the first phase mainly takes place along the k coordinate,

while in the second phase, k and a increase or decrease jointly.
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Figure 9: Phase diagram of the Jones (1995a) model

This result entails an economic interpretation. Note first that in the Jones model,

both a and k serve as an asset, which an individual household can save in. While cap-

ital yields future payments in the form of interest, patents yield future payments in

the form of monopoly rents. Now consider an economy that possesses its steady state

value of patents a, but deviates from its steady state value of capital k. Transitional
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dynamics for this economy will roughly equal that of a Ramsey economy. Capital

will be accumulated or deaccumulated until the steady state value is reached, but the

(scale-adjusted) number of patents a will roughly remain on its steady state value

during transition. Therefore, transitional dynamics are almost monotonic. This can

be seen by considering trajectories in Figure 9 that start horizontally from the steady

state. By contrast, an economy that possesses its steady state capital stock but devi-

ates for its number of patents from the steady state value will exhibit an overshooting

pattern for its stock of capital. This is shown in Figure 10. In this simulation, a

shock is investigated, which consists in a reduction of the stock of patents only. In

a first phase the economy accumulates capital until the ratio k
a

roughly equals its

steady state value. In this phase, both types of assets are interchanged in the sense

that the accumulation of capital is accompanied by a deaccumulation of patents.53

In the second phase, the economy deaccumulates both assets until the steady state

is reached. This can be seen in Figure 10 (ii) and (iii). Figure 10 (iv) displays the

phase diagram of the (k, a)-plane and Figure 10 (i) shows that consumption follows

the overshooting pattern of capital.

To summarize, adjustment dynamics can be divided into two stages. In the first

stage it is dominated by accumulation (or deaccumulation) of capital, whereas in

the second stage, accumulation (or deaccumulation) of patents or knowledge drives

economic development. This is perfectly in line with the literature on economic

growth, which assigns the accumulation of knowledge to be the source of long-run

growth, whereas the accumulation of capital is responsible for growth in the medium

run. (see e.g. Funke and Strulik, 2000a, for a model, which explicitly distinguishes

between different phases of economic development).

Finally, we present simulation results originating from a change in the model’s

53In a growing economy, the scale adjusted number of patents a can be deaccumulated by, for
instance, keeping A constant.
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Figure 10: Transition of the Jones (1995a) model

parameters. The transition process considered below results from a combination of

two simultaneous shocks. Specifically, it is assumed that the overall productivity

parameter in the production function for final output αF increases from 1.0 to 1.3,

while the overall productivity parameter in the production function for new ideas

αJ decreases from 1.0 to 0.9. Figure 11 gives a summary of the adjustment process.

The plots (i) to (iii) show the time path of the jump variables c, φ, va, plots (iv)

and (v) display the time path of the state variables k and a, while plot (vi) gives the

projection of the adjustment trajectory into the (k, a)-plane. For plot (iv) the initial

value of the trajectory is indicated by a cross, and the final value by a circle.
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Figure 11: Summary of the transition of the Jones (1995a) model

3.4.2 The Lucas (1988) model

As a second example we want to simulate the Lucas (1988) model, which is also

discussed in Mulligan and Sala-i-Martin (1993), Caballe and Santos (1993), and

Benhabib and Perli (1994). The analysis of the model by these authors differs in one

technical aspect, namely how stationary variables are constructed for analyzing the

dynamic system. While Mulligan and Sala-i-Martin (1993) and Benhabib and Perli

(1994) construct stationary variables by creating ratios of endogenous variables that

exhibit the same balanced growth rate, Lucas (1988) and Caballe and Santos (1993)

85



3 Multi-Dimensional Transitional Dynamics

apply scale-adjustment. The latter method consists of slowing down the motion

of variables according to their respective balanced growth rates. Scale-adjustment

possesses the advantage that the time paths of variables are obtained right away

and, for example, utility integrals can easily be computed. Moreover, by employing

scale adjustment an important characteristic of the model becomes apparent. The

long-run equilibria in the scale adjusted system are not represented by an isolated

fixed point, but form a center manifold of stationary equilibria. Therefore, following

Section 2.1 theorem 13, the specific steady state to which the economy converges

depends on the initial conditions, i.e. the initial endowment of physical and human

capital.

Final output is produced from physical capital k and human capital h. The share

u of human capital is used for final output production

y = Akα(uh)1−αhγ (91)

with the elasticity α of physical capital in output production, the overall productivity

parameter A, and the external effect γ of human capital in final output production.

Due to human capital spill over effects there are increasing returns to scale in the

production sector. The remainder 1 − u of human capital is employed to increase

human capital according to

ḣ = δ(1 − u)h (92)

with overall productivity parameter of human capital accumulation δ. A represen-

tative household maximizes intertemporal utility of consumption c

max
c

∫ ∞

0

c1−θ

1 − θ
e−ρtdt (93)

with constant elasticity of intertemporal substitution σ−1 and discount rate ρ. The

first order conditions for optimal solutions in terms of a system of differential equa-
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tions read (see Benhabib and Perli, 1994, for the derivation)

k̇ = Akαh1−α+γu1−α − c (94)

ḣ = δ(1 − u)h (95)

ċ = σ−1c(αAkα−1h1−α+γu1−α − ρ) (96)

u̇ = u

(

(γ − α)δ

α
(1 − u) +

δ

α
− c

k

)

. (97)

Balanced growth requires u, c/k as well as kα−1h1−α+γ to be constant. The latter

requirement in turn demands (1 − α) k̇
k

= (1 − α + γ) ḣ
h
.

In this simple case the common balanced growth rate µ of k and c can be computed

by solving the system under balanced growth assumptions:

µ =
1 − α + γ

(1 − α + γ)σ − γ
(δ − ρ)

Growth is balanced if the four variables of the system satisfy three equations:

1 − u =
1 − α

(1 − α + γ)σ − γ
(1 − ρ/δ) (98)

c/k = ((γ − α)ψµ + δ)/α (99)

kα−1h1−α+γ =
σµ + ρ

αA
uα−1 (100)

where ψ := (1 − α)/(1 − α + γ). We construct a stationary system by employing

scale-adjustment. The transformed variables are

ke−µ t , he−ψµ t , ce−µ t and u.

To avoid extra notation we continue to use the old designations of variables. The

new, adjusted growth rates are reduced by the constants of adjustment, µ and ψµ,

respectively. The growth rate of u remains unchanged. Therefore, the transformed
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system reads

k̇ = Akαh1−α+γu1−α − c − µk (101)

ḣ = δ(1 − u)h − ψµh (102)

ċ = σ−1c(αAkα−1h1−α+γu1−α − ρ) − µc (103)

u̇ = u

(

(γ − α)δ

α
(1 − u) +

δ

α
− c

k

)

. (104)

Due to scale adjustment, balanced growth solutions represented by equations (98),

(99) and (100) now turn into stationary points of system (101) - (104).54 Therefore,

according to corollary 10, the system exhibits a one dimensional center manifold

of stationary equilibria. The model exhibits two state variables, k and h. Hence,

according to theorem 13 adjustment dynamics are locally unique, if the Jacobian

matrix of system (101) - (104) evaluated at the center manifold of stationary equi-

libria exhibits one zero eigenvalue, one eigenvalue with negative real part, and two

eigenvalues with positive real part.

The set of valid parameter values has been investigated by Benhabib and Perli

(1994). They define the subsets

Θ1 =

{

(A,α, γ, δ, ρ, σ) > 0
∣

∣

∣ 0 < ρ < δ ∧ σ > 1 +
ρ(α − 1)

δ(1 − α + γ)

}

(105)

Θ2 =
{

(A,α, γ, δ, ρ, σ) > 0
∣

∣

∣
δ < ρ <

δ(1 − α + γ)

α − 1
∧

σ < 1 +
ρ(α − 1)

δ(1 − α + γ)

}

. (106)

For parameter sets originating from Θ1 the balanced growth path and trajecto-

ries converging towards the balanced growth path are unique. For parameter sets

originating from Θ2 the balanced growth path is unique, but for local transitional

dynamics two different cases occur. Θ2 can further be divided into ΘA
2 and ΘB

2 . If

54It is straightforward to verify that the right hand sides of system (101) - (104) are linearly
dependent, and that equations (98), (99) and (100) are the only solution.
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parameters from ΘB
2 are chosen, the balanced growth path is unstable.55 For pa-

rameters from ΘA
2 the case of indeterminacy occurs, i.e. given initial endowments

of physical and human capital, there are infinitely many trajectories converging to-

wards the balanced growth path.56 57 The distinction between ΘA
2 and ΘB

2 is rather

complicated to state analytically, which is why we refer to the appendix of Benhabib

and Perli (1994) for this issue. For both sets of parameters Θ1 and Θ2, stationary

equilibria exhibit an interior share u, i.e. 0 < u < 1, and trajectories converging to-

wards this equilibrium satisfy the transversality conditions. Note that the fact that

u is interior also implies that the denominator of equation (98) is not zero. We select

the benchmark set of parameters A = 1, α = 0.3, δ = 0.1, γ = 0.3, σ = 1.5 and

ρ = 0.05 that lies in Θ1 and, hence, guaranties determinate adjustment dynamics.

The parameters are chosen according to Prescott (1986), Lucas (1988), Benhabib

and Perli (1994), and Ortingueira and Santos (1997).

Numerical computation employing the relaxation algorithm requires the solution of

the system of differential equations (101) - (104) with two initial conditions and two

final conditions. The initial conditions are given by the initial values of state variables

k(0) = k0, h(0) = h0. Final conditions should ensure convergence towards the center

manifold given by equations (98), (99) and (100). However, the relaxation algorithm

can only incorporate two final boundary conditions.58 Therefore, we incorporate

stationary conditions for the state variables, implicitly defined by k̇(∞) = 0 and

55The Jacobian matrix numerically evaluated at the center manifold of system (101) - (104) exhibits
a zero eigenvalue and three eigenvalues with positive real part.

56This means that the Jacobian matrix numerically evaluated at the center manifold of system (101)
- (104) exhibits a zero eigenvalue, one eigenvalue with positive real part, and two eigenvalues
with negative real part.

57We did not calculate the eigenvalues analytically, but computed them numerically employing a
representative parametrization from Θ1, ΘA

2 , and ΘB
2 , respectively.

58Of course, equations (98), (99) and (100) could be incorporated together by constructing an
equation which is the norm of equations (98), (99) and (100). This was not necessary for
solving this model numerically.
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ḣ(∞) = 0. We estimate the global error of simulation results employing equation

(44). We restrict the global error below 10−4, which was fulfilled with a mesh of

M = 100.

To demonstrate adjustment dynamics towards the center manifold of stationary

equilibria we simulate transitional dynamics of several economies with different initial

endowments of physical and human capital. We select initial values for 20 trajectories

on a circle around one point of the center manifold. Simulation results projected into

the (k, h)-plane can be seen in Figure 12.59 Trajectories originating from unbalanced

initial conditions are indicated by dashed lines, while the center manifold is indicated

by a solid line. The initial value of each trajectory is indicated by a cross, while the

original stationary point on the center manifold is indicated by a circle.

Transitional dynamics can be interpreted in the context of theorem 13 of Section

2.1. Numerical evaluation of the Jacobian matrix at the center manifold confirms

that the matrix possesses a zero eigenvalue, one negative (real) eigenvalue and two

positive (real) eigenvalues. Therefore, the stable manifold of the center manifold is

two-dimensional, and transitional dynamics are determinate. The stable manifold

can be divided into one-dimensional fibres. Each fibre is associated with one par-

ticular stationary point on the center manifold in the sense that all points of each

fibre converge towards the same stationary point on the center manifold. Therefore,

economies converge towards different points on the center manifold, depending on

their initial endowments of physical and human capital, unless they belong to the

same fiber.

For economic interpretation note first that transitional dynamics differ with re-

spect to the accumulation of physical capital and human capital. We exemplify this

59Notice that Figure 12 is very similar to Figure 1 in the seminal paper of Lucas (1988). The
difference is that Lucas constructed transitional dynamics due to what he conjectured it to
be. However, Figure 12 in this thesis is due to numerical simulations. Moreover, transitional
dynamics correspond to the theoretical results presented in Section 2.1.
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Figure 12: Center manifold of stationary points and trajectories starting on a circle

by considering two different economic shocks. In Figure 13 we show simulation re-

sults of two economies, which initial endowments of physical and human capital are

reduced with respect to a benchmark economy that is in balanced growth. While

the economy represented by solid trajectories exhibits one third less of human cap-

ital than the benchmark economy as initial endowment, the economy represented

by dashed trajectories exhibit one third less of physical capital than the benchmark

economy as initial endowment. This can be seen in Figure 13 (iv) that shows the

(k, h)-phase diagram of transitional dynamics. The benchmark economy is indicated

by a circle, while initial points of both unbalanced economies are indicated by crosses.

Figure 13 (i), (ii), and (iii) display the time paths of physical capital, human capital

and consumption, respectively. Steady state levels for the benchmark economy are
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indicated by dotted lines.
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Figure 13: Comparison of two different economies

It can be recognized, that the economies do not belong to the same fibre and,

hence, converge towards different long-run equilibria. The economy, whose initial

endowment of human capital is reduced (solid line), converges towards a lower sta-

tionary equilibrium than the economy, whose initial endowment of physical capital

is reduced (dashed line). This reflects the fact that human capital is the engine of

growth in the Lucas model, and that human capital serves as the only input for hu-
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man capital accumulation. Therefore, reducing the stock of human capital hampers

economic growth considerably, and a catch-up towards the benchmark economy is

relatively small. During the transition process, human capital is accumulated and

physical capital is deaccumulated. By contrast, reducing the stock of physical capital

hampers economic growth considerably less. During the transition process capital

is accumulated and human capital is deaccumulated. The long-run equilibrium that

the economy approaches possesses a considerably higher level of (scale-adjusted) con-

sumption than the economy represented by solid trajectories. Though, both levels

of consumption are still lower than that of the benchmark economy.

First it must be noted that the properties of the center manifold of stationary

equilibria cause dependence of long-run equilibria from initial conditions. This is,

therefore, not an implication of the special parametrization, but a general attribute of

the Lucas (1988) model, also emphasized by Caballe and Santos (1993). The model

contributes a pessimistic view to the debate of convergence discussed by Baumol

(1986), DeLong (1988), Barro (1991), Barro and Sala-i-Martin (1992), Sala-i-Martin

(1997), and Sala-i-Martin et al. (2004) among others, because it does not give rise

to absolute β-convergence for economies exhibiting identical parameters. Rather,

it implies that the particular steady state an economy reaches is higher, the higher

the initial level of human capital. The same influence holds for the initial stock

of physical capital, but this connection is much smaller in magnitude as discussed

earlier. A positive influence of human capital on growth is frequently found in

empirical studies (e.g. Barro, 1991, and Sala-i-Martin et al., 2004), whereas the

stock of human capital is estimated by school enrolment rates at the base year of the

regression.

Moreover, the model implies club convergence. Countries of the same fibre con-

verge towards the same steady state, but might exhibit very different initial endow-
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ments of physical and human capital. Therefore, countries of the same fibre (or

fibres close by) form a convergence club. E.g. Quah (1996 and 1997), Jones (1997),

Pritchet (1997), and Sala-i-Martin (2006) found club-convergence empirically. How-

ever, the model does not imply convergence towards only two different steady states

as labeled as the emergence of “twin-peaks”, and empirically found by Quah (1996

and 1997), and Jones (1997). According to the model’s dynamics, each economy con-

verges towards its own steady state with probability 1, if the distribution of initial

endowments is random. A more comprehensive analysis of the convergence pattern

implied by this kind of model would include the possibility of human capital spill-over

effects between different countries as suggested by Lucas (1993), and is, therefore,

beyond the scope of this thesis.

We want to emphasize that the numerical solution of the scale-adjusted system

instead of the numerical solution of the reduced system (as in Benhabib and Perli,

1994) has a major advantage. Time paths of variables are obtained right away.

Therefore, different economies can easily be compared with respect to initial values

of consumption or their long-run equilibria. Moreover, utility integrals can be com-

puted right away. In Figure 14, we compare two economies, which differ in their

initial endowments of physical and human capital. Figure 14, (i) displays the (k, h)-

phase diagram of unscaled variables, Figure 14, (ii) displays the (k, h)-phase diagram

of scaled variables, and Figure 14, (iii) displays the time paths of consumption. The

special characteristic of transitional dynamics for this example is that one economy

(dashed line) starts with a higher initial value of consumption than the comparison

economy (solid line). However, eventually, consumption of the economy represented

by a dashed line is overtaken by consumption of the comparison economy, and con-

verges towards a steady state represented by lower values of consumption and output.

Since it is not straightforward to decide, which economy enjoys a higher value of the
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sum of discounted utility, we compute utility integrals. The value of the utility

integrals amount to -4.81 for the solid path and -9.22 for the dashed one.
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Figure 14: Summary of the transition of the Lucas (1988) model

Finally, we want to present simulation results with a set of parameters originating

from ΘA
2 , implying an indeterminate adjustment path with given initial endowments

of physical and human capital. The set of parameters we choose is σ = 0.15, ρ =

0.0505, β = 0.65, γ = 0.1, δ = 0.05, and A = 1. Employing this set of parameters

yields a zero eigenvalue, a positive eigenvalue, and a pair of complex eigenvalues

with negative real part for the Jacobian matrix evaluated at the center manifold.

According to theorem 13 of Section 2.1 unique adjustment dynamics require three
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3 Multi-Dimensional Transitional Dynamics

initial conditions. Therefore, given initial endowments of physical and human capital

households have one degree of freedom to choose the initial value of consumption c(0)

and the initial share of human capital for final output production u(0), such that the

resulting trajectory converges towards the center manifold.

For numerical computation employing the relaxation algorithm trajectories have

to be unique. Otherwise, the Jacobian matrix of equation (36) is singular. Therefore

we add an additional initial condition for u,

u(0) = u∗ (107)

with the unique steady state value of u, u∗, for each trajectory we compute. Sim-

ulation of system (101) - (104) with the relaxation algorithm, however, yield slow

convergence or no convergence of the iteration process. Obviously, the combination

of the center manifold together with oscillating behavior renders difficulties, or the

initial condition (107) is not transversal to the set of solution trajectories.60 There-

fore, we transform the center manifold of stationary equilibria of system (101) - (104)

into a saddle-point following Benhabib and Perli (1994). We intoduce x := kh
1−α+γ

α−1

and q := c
k
. The transformed system reads

ẋ = Axαu1−α − δ(1 − α + γ)

1 − α
(1 − u)x − qx (108)

u̇ = u

(

(γ − α)δ

α
(1 − u) +

δ

α
− q

)

(109)

q̇ = q2 + A
(α

σ
− 1

)

xα−1u1−αq − ρ

σ
q (110)

Now, equations (98), (99) and (100) define a unique saddle-point of system (108) -

(110).

Figure 15 displays six different trajectories converging towards the steady state in

the (u, x, q)-phase diagram. For initial conditions, we fix the value of u according to

60We tried different initial conditions, but were not successful in finding one which yields fast
convergence.
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equation (107), and the initial value of x to six different values lower than its steady

state value. For final boundary conditions we fix the value of x to its steady state

value. Convergence proceeded quickly, and the relative global error was controlled

to remain smaller than 10−4. Simulation results coincide with that of Brunner and

Strulik (2002), although they applied the backward integration method for numerical

calculation.
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Figure 15: Phase diagram of the Lucas model with indeterminate adjustment paths
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3.5 Summary

We propose the relaxation algorithm as a powerful and efficient procedure to inves-

tigate the transition process of infinite-horizon continuous-time optimization models

numerically. The procedure has the advantages that it can easily simulate transi-

tional dynamics of multi-dimensional models. In contrast to many other procedures

it is generic with respect to the model dimension, in particular with respect to the

dimension of the state space. Moreover, computational costs increase only moder-

ately with the model dimension. We demonstrated the potential of the algorithm

by simulating the transition process of the Jones (1995a) and Lucas (1988) model

numerically. Both models’ dynamic systems exhibit characteristics, which make the

application of standard procedures difficult. Moreover, we show that additional the-

oretical insights can be obtained by numeric simulation, which, for these examples,

cannot be derived analytically. Although we demonstrate the algorithm’s poten-

tial by simulating infinite-horizon growth models, the application of the method is

neither restricted to growth models nor to infinite horizon problems.
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4 Anticipated Shocks in Continuous-time Optimization Models

4 Anticipated Shocks in Continuous-time

Optimization Models: Theoretical Investigation and

Numerical Solution

This Section is based on the working paper of Trimborn (2007).

4.1 Introduction

Dynamic macroeconomic theory very often assumes the agents in the model to ex-

perience perfect foresight. For example, a representative, infinite horizon consumer

maximizes discounted utility subject to his or her budget constraint. Then, it is as-

sumed that at the point of time when the maximization takes place, the maximizing

agent is aware of the whole set of information. More precisely, the agent knows the

future time path of variables that are exogenous to him. Then, following Bellman’s

principle, the decisions are time-consistent, that is, at a later point of time the same

solution is optimal if the set of information did not change.

Changes in the underlying parameters, e.g. tax rates or preference parameters are

frequently analyzed by assuming a sudden, immediate shock. More precisely, at a

specific point of time, say t0, new parameter values are applied and the optimizing

agent experiences this information at exactly the same point of time. Then, he or

she can optimize over the remaining time horizon. Since the point of time of the

shock and the point of time of the information propagation coincide, i.e. the shock

is not preannounced or anticipated, control variables can jump at t0. State variables

cannot jump at t0 by construction.61

This simplifying assumption is very useful to analyze e.g. policy measures in a

stylized way, however, in some cases it may be oversimplifying. The reason is that

61For the analysis of anticipated shocks with jumps in the state variables see Vind (1967) and
Auernheimer and Lozada (1990).
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usually the time of the parameter changes and the information propagation to the

agent do not coincide. For example, policy measures are usually announced some

time before they take place. Therefore, the stylized analysis of unexpected shocks

cannot take account for anticipatory actions conducted by the agents. In addition,

the shock might comprise a schedule of policy measures, which do not enter into

force simultaneously.

It is straightforward to state necessary conditions in the context of optimal control,

which have to hold at points of anticipated shocks. This is the familiar requirement

of continuity for adjoint variables, also known as the first Weierstraß-Erdmann corner

condition. However, they do not imply that control variables are continuous. Since

control variables are only required to be piecewise continuous, they can potentially

jump twice, first at the point of the announcement and secondly at the point where

the parameter change actually takes place. Requirement of continuity for adjoint

variables determines the height of the jump under weak regularity assumptions.

In a second step, we describe how numerical computation can be conducted effi-

ciently. We propose the relaxation algorithm as described in Section 2 to simulate

continuous-time, infinite horizon optimization models with expected shocks. The al-

gorithm allows to solve expected shocks without any a priori information about the

behavior of the model at the time of the parameter change. Only the dynamic sys-

tem has to be provided together with the underlying parameters and their changes

along time. Moreover, the size of the jump in the control variables is calculated

automatically. This is illustrated by employing the Ramsey-Cass-Koopmans model

as a concise example.

The analysis of preannounced policy measures in the context of perfect foresight

optimizing agents has a long tradition. The continuity of adjoint variables (or market

prices like asset prices) has already been exploited in many cases (e.g. Wilson, 1979,
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Judd, 1985, Howitt and Sinn, 1989, Turnovsky, 1996, Ch. 11). All the more, it is

surprising that many standard textbooks of dynamic optimization in economics do

not cover how to treat anticipated policy changes in the context of optimal control.62

Moreover, to our knowledge no formal analysis of this problem has been made in the

economic literature. Vind (1967) and Auernheimer and Lozada (1990) analyze how

to treat jumps in the state variable theoretically, which is a related problem.

On the other hand, no attempt has been made so far to construct algorithms

which can solve these kind of problems in a generic way. Buiter (1984) describes

how to solve the linearized problem numerically. Perhaps this explains, why, to our

knowledge, there exists hardly any numerical solutions to models with anticipated

policy changes in the literature (see e.g. Funke and Strulik, 2000a and 2000b, for

simulation results with a technically equivalent problem).

In Section 4.2, we investigate the treatment of expected shocks in the context of

optimal control theoretically. In Section 4.3, we describe the numerical implemen-

tation of expected shocks. In Section 4.4, we present the Ramsey-Cass-Koopmans

model as a concise example. In Section 4.5 we conclude.

4.2 Theoretical investigation of expected shocks

Consider an agent who solves a finite horizon or infinite-horizon, perfect-foresight,

continuous-time, optimal control problem

max
u

∫ T

t0

f(t, x, u)dt (111)

s.t. ẋ = g(t, x, u), x(0) = x0

62Kamien and Schwartz (1991) and Intriligator (1971) state necessary conditions for corners for
problems of calculus of variation, but not for problems of optimal control. Seierstad and Syd-
sæter (1987) state conditions for both problems, but without proof. Chiang (1992) does not
cover this subject. As we will show, these conditions even have to be modified for the problem
at hand.
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whereas x denotes a nx dimensional state variable and u a nu dimensional control

variable. The functions f and g are, for the time being, assumed to be continuously

differentiable functions in all three arguments. We assume that x is a continuous

function of time, i.e. x cannot jump. On the other hand, u is only assumed to

be a piecewise continuous function of time, i.e. u can exhibit interior jumps. The

determinate terminal time T can also equal infinity.

To start with, we want to state necessary conditions for corners in x and jumps in

u. These are based on the Weierstraß-Erdman corner conditions, though these con-

ditions are stated for problems of the calculus of variation.63 However, it is straight-

forward to extend these conditions to problems of optimal control (see Bryson and

Ho, 1975, pp. 125, for a statement of the conditions without proof). We transform

problem (111) into a problem of the calculus of variation. We introduce the piece-

wise continuous, time-dependent adjoint variable λ : R → R
nx , and include the

differential equation in the integral according to

max
x,u,λ

∫ T

t0

f(t, x, u) + λt(ẋ − g(t, x, u))dt (112)

s.t. x(0) = x0 .

Since u and λ are assumed to be only piecewise continuous, we cannot apply first

order conditions of the calculus of variation. Therefore, we introduce continuous and

piecewise differentiable functions U and Λ according to

U(t) :=

∫ t

t0

u(s)ds U(t0) = 0 (113)

Λ(t) :=

∫ t

t0

λ(s)ds Λ(t0) = 0 (114)

and the problem can be written as

max
x,U,Λ

∫ T

t0

f(t, x, U̇) + Λ̇t(ẋ − g(t, x, U̇))dt (115)

63Corners of a function are points, where the function is continuous, but not differentiable, whereas
jumps are points, where the function is not continuous, either.

102



4 Anticipated Shocks in Continuous-time Optimization Models

s.t. x(0) = x0, Λ(0) = 0, U(0) = 0

To simplify notation we introduce φ(t, x, U, Λ, ẋ, U̇ , λ̇) := f(t, x, U̇)+Λ̇t(ẋ−g(t, x, U̇)),

y := (x, U, Λ)t, and y0 := (x0, 0, 0)t. Then, the problem can be written as

max
y

∫ T

t0

φ(t, y, ẏ)dt (116)

s.t. y(0) = y0, .

First order conditions of optimal control of problem (111) could be calculated by

applying the principles of calculus of variation to problem (116), and retransforming

the first order conditions in notation. E.g. applying the Euler-Lagrange equations

to problem (116) yields the familiar first order conditions Hu = 0, Hλ = ẋ, and

Hx = −λ̇ with the Hamiltonian function H ≡ f +λtg. However, we want to focus on

conditions that must be satisfied, if y exhibits a corner, i.e. x exhibits a corner and

u and λ exhibit jumps. Therefore, we state the theorem of the Weierstraß-Erdmann

corner conditions according to Kamien and Schwartz (1991, pp. 79), Bryson and Ho

(1975, pp. 125) and Intriligator (1971, pp. 312) and give a proof that is based on the

exposition in Kamien and Schwartz (1991, pp. 53-82). A complete and more formal

proof can be found in Bryson and Ho (1975, pp. 87 and pp. 101).

Theorem 14 (Weierstraß-Erdmann corner conditions for calculus of variation)

Consider a problem of calculus of variation according to (116), with continuous and

piecewise differentiable function y. If the optimal solution y∗ exhibits a corner at time

t̃, the following conditions must hold in addition to the usual first order conditions

of optimality

φẏ|t̃− = φẏ|t̃+ (117)

(φ − (ẏ)tφẏ)|t̃− = (φ − (ẏ)tφẏ)|t̃+ (118)

We refer to (117) as the first Weierstraß-Erdmann corner condition, and to (118)

as the second Weierstraß-Erdmann corner condition.
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Proof. We define

I(y, t̃) :=

∫ t̃

t0

φ(t, y, ẏ)dt +

∫ T

t̃

φ(t, y, ẏ)dt (119)

and

J(ε) := I(y∗ + εv, t̃ + ε · δt) (120)

with the optimal solution y∗, ε ǫ R, and the time-dependent deviation v of the optimal

path. We require v to be differentiable, but since y∗ may exhibit a corner at t̃, we

allow for corners of v at t̃. In addition, we vary the point of time, at which the corner

occurs by ε · δt. Note that we have to distinguish between y∗(t + ε · δt) + v(t + ε · δt)
as a variation with respect to the interval [t0, t̃], or as a variation with respect to the

interval [t̃, T ], because y∗ may exhibit a corner at t̃. Therefore we indicate the first

by t−, and the second by t+. Differentiation J with respect to ε and inserting ε = 0

yields

δI(y∗; v) = J ′(0) (121)

=

∫ t̃

t0

((φy)
tv + (φẏ)

tv̇)dt + φ(t̃−, y∗(t̃−), ẏ∗(t̃−))δt (122)

+

∫ T

t̃

((φy)
tv + (φẏ)

tv̇)dt − φ(t̃+, y∗(t̃+), ẏ∗(t̃+))δt (123)

with the Gâteaux-differential or first variation δI.64 We transform the second sum-

mand from each integral with partial integration, which yields

δI(y∗; v) = ((φẏ)
tv)

∣

∣

∣

t̃

t0

+

∫ t̃

t0

(

(

φy −
d

dt
φẏ

)t

v

)

dt

+((φẏ)
tv)

∣

∣

∣

T

t̃
+

∫ T

t̃

(

(

φy −
d

dt
φẏ

)t

v

)

dt

+φ(t̃−, y∗(t̃−), ẏ∗(t̃−))δt − φ(t̃+, y∗(t̃+), ẏ∗(t̃+))δt (124)

64To keep the notation clear we omit arguments of φ wherever it does not cause confusion.
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Extracting and rearranging yields

δI(y∗; v) =

∫ t̃

t0

(

(

φy −
d

dt
φẏ

)t

v

)

dt +

∫ T

t̃

(

(

φy −
d

dt
φẏ

)t

v

)

dt

+φẏ(T, y∗(T ), y∗(T ))tv(T ) − φẏ(t0, y
∗(t0), y

∗(t0))
tv(t0)

+φẏ(t̃
−, y∗(t̃−), y∗(t̃−))tv(t̃−) − φẏ(t̃

+, y∗(t̃+), y∗(t̃+))tv(t̃+)

+φ(t̃−, y∗(t̃−), ẏ∗(t̃−))δt − φ(t̃+, y∗(t̃+), ẏ∗(t̃+))δt (125)

It has to be considered that the function y ≡ y∗ + v changes at t̃ if v changes or if

t̃ changes. Therefore, we approximate the variation δy(t̃) by linearization according

to

δy(t̃) ≈ y(t̃) − y∗(t̃) + ẏ∗(t̃) · δt = v(t̃) + ẏ∗(t̃) · δt

We substitute for v(t̃) in equation (125) and get by rearranging terms

δI(y∗; v) =

∫ t̃

t0

(

(

φy −
d

dt
φẏ

)t

v

)

dt +

∫ T

t̃

(

(

φy −
d

dt
φẏ

)t

v

)

dt

+φẏ(T, y∗(T ), y∗(T ))v(T ) − φẏ(t0, y
∗(t0), y

∗(t0))v(t0)

+φẏ(t̃
−, y∗(t̃−), y∗(t̃−))tδy − φẏ(t̃

+, y∗(t̃+), y∗(t̃+))tδy

+[φ(t̃−, y∗(t̃−), ẏ∗(t̃−)) − ẏ∗(t̃)tφẏ(t̃
−, y∗(t̃−), y∗(t̃−))]δt

−[φ(t̃+, y∗(t̃+), ẏ∗(t̃+)) − ẏ∗(t̃)tφẏ(t̃
+, y∗(t̃+), y∗(t̃+))]δt (126)

For an optimal solution y∗, δI = 0 must hold. In a first stage, we allow for functions

v with v(t0) = 0, δt = 0 and v ≡ 0 on [t̃, T ]. Then, equation (126) reduces to

δI(y∗; v) =

∫ t̃

t0

(

(

φy −
d

dt
φẏ

)t

v

)

dt (127)

Since δI = 0 has to hold for every possible deviation v, we get as a necessary condition

for optimal solutions the Euler-Lagrange equation

φy −
d

dt
φẏ = 0 (128)
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for the interval [t0, t̃). Analogously, the Euler-Lagrange equation has to hold at

(t̃, T ]. Moreover, by allowing for functions v that satisfy v(t̃) = 0 and restricting

δt̃ = 0, proper boundary conditions for t0 and T can be derived. We focus on t̃ and,

therefore, assume that equation (126) has reduced according to the considerations

above to

0 = φẏ(t̃
−, y∗(t̃−), y∗(t̃−))tδy − φẏ(t̃

+, y∗(t̃+), y∗(t̃+))tδy

+[φ(t̃−, y∗(t̃−), ẏ∗(t̃−)) − ẏ∗(t̃)tφẏ(t̃
−, y∗(t̃−), y∗(t̃−))]δt

−[φ(t̃+, y∗(t̃+), ẏ∗(t̃+)) − ẏ∗(t̃)tφẏ(t̃
+, y∗(t̃+), y∗(t̃+))]δt . (129)

Allowing only for variations satisfying δt = 0 in a first stage yields equation (117),

and allowing only for variations satisfying δy = 0 in a second stage yields equation

(118).

The corner conditions can be extended to any finite number of corners. However,

solutions with an infinite number of corners are not admissible. The next step is to

retransform equations (117) and (118) into notation of optimal control. This yields

the following theorem

Theorem 15 (Weierstraß-Erdmann corner conditions for problems of Optimal Con-

trol)

Consider a problem of Optimal Control according to (111), with continuous and

piecewise differentiable function x, and piecewise continuous functions λ and u. We

define the associated Hamilton function as H ≡ f + λtg. If the optimal solution x

exhibits a corner at time t̃, and/or the optimal solution u exhibits a jump at time t̃

the following conditions must hold in addition to the usual first order conditions of

optimality

λ(t)|t̃− = λ(t)|t̃+ (130)

H(t)|t̃− = H(t)|t̃+ (131)
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We refer to (130) as the first Weierstraß-Erdmann corner condition of optimal con-

trol, and to (131) as the second Weierstraß-Erdmann corner condition of optimal

control.

Proof. We apply theorem (14) to the problem of optimal control. Evaluating the

first Weierstraß-Erdmann corner condition for x, U , and Λ, respectively, yields

λ|t̃− = λ|t̃+ (132)

Hu|t̃− = Hu|t̃+ (133)

(ẋ − g(t, x, u))|t̃− = (ẋ − g(t, x, u))|t̃+ (134)

The first equation already represents the first Weierstraß-Erdmann corner condition

of optimal control. The second and third equation do not yield additional informa-

tion, since Hu = 0 and ẋ = g(t, x, u) are already first order conditions. Evaluating

the second Weierstraß-Erdmann corner condition yields, omitting the arguments

[f + λt(ẋ − g) − (ẋtλ + ut(fu − λtgu) + λtẋ − λtg)]
∣

∣

∣

t̃−

= [f + λt(ẋ − g) − (ẋtλ + ut(fu − λtgu) + λtẋ − λtg)]
∣

∣

∣

t̃+

and exploiting that Hu = 0, yields the second Weierstraß-Erdmann corner condition

of optimal control.

Consider a continuous change in a parameter or a variable exogenous to the agent.

In problem (111) these parameters and variables are caught by the time arguments

of f and g. That means a change in a parameter or exogenous variable along time

causes a change of f and g along time. Due to perfect foresight the agent is aware

of this time dependence.65 Then, an anticipated shock in terms of a jump in a

parameter after t0 yields discontinuities in f and g.

65However, the agent is not aware that potentially his decisions influence variables exogenous to
him.
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For the analysis of an expected shock we follow Bryson and Ho (1975, pp. 101).

First of all, the set of differential equations switches at, for the time being, an

unspecified point of time t̃,

ẋ = g(1)(t, x, u) t < t̃

ẋ = g(2)(t, x, u) t ≥ t̃ .

In addition, f changes its functional form at t̃ from f (1) to f (2). We fix the point of

time where the jump in the parameter occurs with an interior boundary condition:

ψ[t̃] = t̃ − tjump = 0

Now, the transformed optimization problem is

max
u,t̃

[ ∫ t̃

t0

f (1)(t, x, u)dt +

∫ T

t̃

f (2)(t, x, u)dt

]

(135)

s.t. ẋ = g(1)(t, x, u) t < t̃ (136)

ẋ = g(2)(t, x, u) t ≥ t̃

x(0) = x0 (137)

t̃ − tjump = 0 (138)

with tjump denoting the (numerical) time value where the jump occurs. Note, that

now t̃ has become part of the optimization problem. First order conditions specifying

the behavior of x and u are stated in the following theorem

Theorem 16 (corner conditions for problems of optimal control with anticipated

parameter changes)

Consider problem (135) - (138). We define the associated Hamiltonian function

piecewise for the intervals [0, t̃) and [t̃, T ] as H ≡ f + λT g. First order conditions

108



4 Anticipated Shocks in Continuous-time Optimization Models

for an optimal solution are

Hu = 0 (139)

Hλ = ẋ (140)

Hx = −λ̇ (141)

and initial boundary condition (137) and final boundary condition λ(T ) = 0 for TǫR,

or

lim
t→∞

λ(t)x(t) = 0 (142)

for T = ∞.66 Since g and f are defined piecewise before and after t̃, these conditions

have to be applied piecewise. Moreover, at t̃ the following conditions have to hold

λ(t̃−) = λ(t̃+) (143)

H(t̃−) = H(t̃+) − ν (144)

whereas ν is a constant Lagrangian multiplier associated with the interior boundary

condition.

Proof. Again, we transform the problem of optimal control into a problem of the

calculus of variation. We append the internal boundary condition with a constant

multiplier ν. Then, the transformed problem reads

max
y

∫ T

t0

φ(t, y, ẏ) + ν(t̃ − tjump)dt (145)

s.t. y(0) = y0,

The proof is now analogous to the proof of theorem (14). We define

I(y, t̃) :=

∫ t̃

t0

φ(t, y, ẏ) + ν1(t̃ − tjump)dt +

∫ T

t̃

φ(t, y, ẏ) + ν2(t̃ − tjump)dt (146)

66There is disagreement if this equation is indeed a necessary condition (see e.g. Chiang, 1992).
We do not want to adress this point.
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and

J(ε) := I(y∗ + εv, t̃ + ε · δt) (147)

with the optimal solution y∗, εǫR, and the time-dependent deviation v of the opti-

mal path. For differentiating J with respect to ǫ we have to consider the internal

boundary condition. Therefore, we get

δI(y∗; v) = J ′(0)

=

∫ t̃

t0

((φy)
tv + (φẏ)

tv̇)dt + φ(t̃−, y∗(t̃−), ẏ∗(t̃−))δt

+

∫ T

t̃

((φy)
tv + (φẏ)

tv̇)dt − φ(t̃+, y∗(t̃+), ẏ∗(t̃+))δt

+ ν1δt + ν2δt

Following the proof, equation (126) has to be extended according to

δI(y∗; v) =

∫ t̃

t0

(

(

φy −
d

dt
φẏ

)t

v

)

dt +

∫ T

t̃

(

(

φy −
d

dt
φẏ

)t

v

)

dt

+φẏ(T, y∗(T ), y∗(T ))v(T ) − φẏ(t0, y
∗(t0), y

∗(t0))v(t0)

+φẏ(t̃
−, y∗(t̃−), y∗(t̃−))tδy − φẏ(t̃

+, y∗(t̃+), y∗(t̃+))tδy

+[φ(t̃−, y∗(t̃−), ẏ∗(t̃−)) − ẏ∗(t̃)tφẏ(t̃
−, y∗(t̃−), y∗(t̃−))]δt

−[φ(t̃+, y∗(t̃+), ẏ∗(t̃+)) − ẏ∗(t̃)tφẏ(t̃
+, y∗(t̃+), y∗(t̃+))]δt

+ν1δt + ν2δt (148)

After exploiting the Euler-Lagrange equations and proper boundary conditions for

t0 and T we get

φẏ|t̃− = φẏ|t̃+ (149)

by setting δt = 0. These equations yield the first Weierstraß-Erdmann corner condi-

tion of optimal control. Different to the previous proof we get the equation

0 = +[φ(t̃−, y∗(t̃−), ẏ∗(t̃−)) − ẏ∗(t̃)tφẏ(t̃
−, y∗(t̃−), y∗(t̃−))]δt
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−[φ(t̃+, y∗(t̃+), ẏ∗(t̃+)) − ẏ∗(t̃)tφẏ(t̃
+, y∗(t̃+), y∗(t̃+))]δt

+ν1δt + ν2δt (150)

by seting δy = 0. Now, optimal solutions have to fulfill

(φ − (ẏ)tφẏ)|t̃− = (φ − (ẏ)tφẏ)|t̃+ + ν

with ν := ν1 + ν2. Therefore, the second Weierstraß-Erdmann corner condition does

not hold. Since we derived the continuity of the Hamilton function of optimal control

from this condition, the second Weierstraß-Erdmann corner condition of optimal

control now turns into

H(t)|t̃− = H(t)|t̃+ + ν

Theorem (16) can be derived from the general interior boundary condition as

described in Bryson and Ho (1975, pp. 101).67 To summarize, theorem (16) states

that λ is continuous, whereas H jumps at the particular point of time when the

jump in the parameter takes place. Therefore, the first Weierstraß-Erdmann corner

condition of optimal control holds, whereas the second does not. The reason is

that the Weierstraß-Erdmann corner condition are stated for possible corners at an

unknown point of time t̃. We, however, assumed the anticipated parameter change to

take place at a predetermined point of time. Reducing the degrees of freedom for the

solution by one, renders ones condition unnecessary. Note that the first Weierstraß-

Erdmann corner condition is nx dimensional, while the second is one dimensional.

Equation (144) is the only equation where the shadow price ν appears. It equals

the jump in the Hamiltonian at time t̃. Therefore, the set of equations and variables

can be solved without equation (144), after which (144) trivially determines ν.

67Bryson and Ho (1975) explicitly address discontinuities in g but not in f . However, their proof
also allows for discontinuities in f .
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The problem at hand comprises 2 ·nx differential equations and nu algebraic equa-

tions, together with nx initial conditions and nx transversality conditions as well as

2 ·nx interior boundary conditions. The 2 ·nx interior boundary conditions comprise

the requirement of continuity for nx state and nx adjoint variables. Note that the

local dynamic behavior of the system can implicitly be described by 2 ·nx differential

equations in coordinates (λ, x) if Hu exhibits no singularity with respect to u.68 For

the system (111) to possess a unique solution it has to exhibit a nx dimensional stable

manifold around the stationary equilibrium or the stationary equilibria.69 Applying

Bellman’s principle, we know that at time t̃ the solution has to be on this stable

manifold. This results in a well defined two point boundary value problem for the

time interval [t0, t̃] and for the time interval [t̃,∞). For both intervals, the 2 · nx

differential equations together with nu algebraic equations have to hold. The nx

initial boundary conditions for the first two point boundary value problem are (137)

and the nx final boundary conditions are represented by the requirement to be on

the nx dimensional stable manifold at t̃. For the second two point boundary value

problem nx initial boundary conditions are the requirement to start on the stable

manifold, whereas nx final boundary conditions are represented by the transversality

conditions (142). Since initial and final boundary conditions of both problems are

linked, this is labeled as a three point boundary value problem in the mathematic

literature.

Statements about necessary or sufficient conditions for existence and uniqueness

of solutions of two-point-boundary value problems are in no case as advanced as the

theory of initial value problems (see Ascher and Petzold, 1998, Ch. III, 6). If the

68This follows from the implicit function theorem. We assume the differential algebraic system
to be of differential index one. Higher order differential algebraic systems exhibit a far more
complex behavior (e.g. Ascher and Petzold, 1998, Ch. IV, 9). If ∂Hu

∂u
exhibits full rank, the

system is of index one.
69Some economic models exhibit a center manifold of stationary equilibria (e.g. Lucas, 1988), as

previously described in this thesis.
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linearized system exhibits a unique solution it is at least possible to conclude that the

original system exhibits a unique solution locally. However, it is beyond the scope of

this dissertation to prove uniqueness of the linearized system. Necessary conditions

for the existence of a unique solution comprise the dimension of the boundary con-

ditions to add up to the dimension of the dynamic system. This is fulfilled here for

both intervals, [t0, t̃] and [t̃,∞).

If a finite sequence of expected shocks is given, the same arguments as above can

be applied. The resulting problem can be decomposed in a sequence of two point

boundary value problems, each of which exhibits nx initial and nx final boundary

conditions. Then the problem turns into a multi point boundary value problem.

4.3 Numerical implementation

There exists a rich economic literature how to solve infinite horizon maximization

problems numerically (see Section 3.3 of this thesis, Judd, 1998, or Brunner and Stru-

lik, 2002, for a survey). Many approaches employ the first order conditions derived

by Pontryagin’s maximum principle for finding the solution, together with the initial

conditions and transversality conditions (e.g. Judd, 1992, Brunner and Strulik, 2002,

Mulligan and Sala-i-Martin, 1991 or Section 3 of this thesis).70 Then, the approach

comprises the solution of a two point boundary value problem (e.g. Judd, 1992, and

Section 3 of this thesis), or the problem is transformed into a (stable) initial value

problem (e.g. Brunner and Strulik, 2002 and Mulligan and Sala-i-Martin, 1991).

However, the simulation of anticipated shocks transforms the two point boundary

value problem into a multi point boundary value problem. Therefore, it is not

straightforward to employ the existing solution algorithms. In the former case, the

algorithms at hand cannot incorporate arbitrary internal boundary conditions with-

70Exceptions are e.g. Mercenier and Michel (1994 and 2001), and Candler (1999).
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out undergoing fundamental modifications. In the latter case, it is no longer possible

to transform the problem into a single stable initial value problem.

In the mathematic literature it is suggested to reformulate the multi point bound-

ary value problem into a two point boundary value problem to make it accessible for

standard algorithms (see Ascher et al., 1985, and Ascher and Russell, 1981). How-

ever, we suggest to solve the multi point boundary value problem directly, which

is straightforward if the relaxation algorithm as proposed in this thesis is applied.

The advantage is that this proceeding is easy and intuitive. The disadvantage is

merely that the efficiency in terms of calculation requirement of the algorithm re-

duces slightly.

The special property of the multi point boundary value problem at hand is that

the internal boundary conditions are fulfilled, if the variables λ and x are forced

to be continuous along the solution whereas no restrictions regarding u are made.

The relaxation algorithm perfectly exploits this fact, since the algorithm exactly de-

mands this property from differential and algebraic variables.71 More precisely, the

principle of relaxation is to replace the differential equations by approximate finite

difference equations on a mesh of points in time. The residuum of the algebraic

equations is minimized at every mesh point separately. Therefore, the relaxation

algorithm treats differential and algebraic variables conceptually different. Whereas

no connection along time is made for algebraic variables, differential variables are

connected along time through the difference equations. Therefore, algebraic vari-

ables can exhibit jumps, whereas differential variables have to be continuous but

potentially can exhibit corners. In case the solution indeed exhibits corners along

the time path of the differential variables, the employed discretization rule decreases

71We refer to differential variables as variables for which differential equations are present (i.e. λ

and x) whereas the time derivative of algebraic variables does not appear in the set of equations
(i.e. u).
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from second to first order. This means that by increasing the number of mesh points

by factor x the global error reduces by x, while in case the solution does not exhibit

corners the global error reduces by x2.

In the economic literature, very often the set of algebraic equations is differenti-

ated with respect to time and the adjoint variables λ are eliminated (see e.g. the

analysis of the Lucas (1988) model by Caballe and Santos (1993) or Benhabib and

Perli (1994)). In many cases, this eases economic interpretation, as well as numerical

computation. Many algorithms cannot solve differential algebraic systems, and by

eliminating adjoint variables the dimensionality of the problem is reduced. How-

ever, this procedure is not advisable here, since differential equations for the control

variables can only be applied piecewise. Since jumps can occur at internal points it

would then be necessary to specify the height of each jump. This is, however, not

possible without information about the adjoint variables. Therefore we suggest to

simulate system (139), (140), and (141) together with the boundary conditions and

ensure that x and λ are continuous.

So far, we assumed the differential algebraic system to be scaled, i.e. the variables

approach constant (finite) values in the long-run. This may not be the case, for

example if the model at hand is an endogenous growth model. For numerical com-

putation the variables have to be scaled such that they approach constants in the

long-run. If ratios are created it has to be ensured that the time path of the differ-

ential variables remains continuous. That is, only combinations of different x and

λ can be chosen for creating artificial differential variables. By contrast, arbitrary

ratios can be created as algebraic variables. We recommend the scale adjustment as

proposed by Lucas (1988), since continuous variables conserve their properties after

scaling.

To summarize, the relaxation algorithm can solve infinite horizon problems ex-
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hibiting anticipated shocks conveniently, since it solves the multi point boundary

value problem directly. This is done by implementing the continuous variables as

differential variables and the possible jumping variables as algebraic ones. The only

input the user has to provide are the time dependent parameter values.72

4.4 A simple example

4.4.1 Description of the Model

To illustrate the numerical solution of infinite-time optimization models with ex-

pected shocks, we employ the Ramsey-Cass-Koopmans model (Ramsey, 1928; Cass,

1965; Koopmans, 1965) as an example. For reasons of clarity, we keep the model

as simple as possible. We omit technological progress and assume the population to

grow with constant rate n. We follow Barro and Sala-i-Martin (2004, Chapter 3)

and introduce proportional taxes on wage income, τw, private asset income, τr, and

consumption, τc. Thus, the representative household’s maximization problem is

max
c

∫ ∞

0

c1−σ − 1

1 − σ
e(n−ρ)tdt (151)

s.t. k̇ = (1 − τw)w + (1 − τr)rk − (1 + τc)c − nk, k(0) = k0

whereas c denotes consumption per capita, k the capital stock per capita, w the wage

rate, r the interest rate, σ the inverse of intertemporal elasticity of substitution, and

ρ the discount factor, respectively.

The government is assumed to run a balanced budget. Therefore, government

revenues equal total outlays. However, we assume that government spending ap-

pears nowhere else in the economy.73 Firms produce according to a Cobb-Douglas

72Using the supplemented software this can be done by stating an if -clause.
73Alternatively, it could be assumed that government spending increases consumer utility, whereas

household exhibit an additively separable utility function, or government revenues are spend on
transfers to households. Since both alternative assumptions do not contribute anything to the
topic discussed in this Section we chose the simplest assumption.
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production function

Y = KαL1−α

whereas Y denotes the output, K the capital stock, L the amount of labor employed

in production, and α the elasticity of capital in final-output production, respectively.

Since perfect competition in factor markets is assumed, firms pay the factors ac-

cording to their marginal product,

r = αkα−1 − δ

w = (1 − α)kα .

Turning back to the representative household optimization problem we now consider

an anticipated change in the tax rates at time t̃ > t0. This means that at t̃ the

consumer’s budget constraint changes its functional form and potentially exhibits a

jump on the right hand side,

k̇ =

{

(1 − τw,1)w + (1 − τr,1)rk − (1 + τc,1)c − nk t < t̃
(1 − τw,2)w + (1 − τr,2)rk − (1 + τc,2)c − nk t ≥ t̃ .

For simplicity, we do not distinguish between τi,1 and τi,2 below, but denote the tax

rates with a time index to indicate that different values have to be applied before

and after t̃. Then, the Hamiltonian is74

H =
c1−σ − 1

1 − σ
+ λ((1 − τw,t)w + (1 − τr,t)rk − (1 + τc,t)c − nk) . (152)

Necessary conditions for an optimal solution are

c−σ = λ(1 + τc,t) (153)

λ̇ = (ρ − n)λ − λ((1 − τr,t)r − n) (154)

k̇ = (1 − τw,t)w + (1 − τr,t)rk − (1 + τc,t)c − nk (155)

74In contrast to the general derivation above we use the current-value Hamiltonian here, since then
the shadow price λ is already a stationary variable. This does not affect conclusions about
continuity, since H and λ only differ by the factor e(n−ρ)t.
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together with

λ(t̃−) = λ(t̃+) (156)

H(t̃−) = H(t̃+) − ν . (157)

From the firm’s sector we additionally obtain two algebraic equations for the factor

prices, which we can substitute into the capital accumulation equation. Note, that

for the derivation of the familiar Euler-Equation ċ
c

= (1−τr,t)r−ρ

σ
the time derivative

of c must be taken. However, c is not necessarily differentiable at time t̃. Therefore,

the Euler equation can only be applied piecewise.

For numerical computation of expected shocks we exploit the information that k

and λ have to be continuous. Therefore, we implement them in the form of differ-

ential equations whereas we introduce c as an algebraic variable. To summarize, the

differential algebraic system is

k̇ = (1 − τw,t)(1 − α)kα + (1 − τr,t)(αkα − δk) − (1 + τc,t)c − nk (158)

λ̇ = λ(ρ − (1 − τr,t)r) (159)

c−σ = λ(1 + τc,t) . (160)

4.4.2 Simulation of expected shocks

Equation (160) displays that consumption will exhibit an interior jump if and only

if the consumption tax τc evolves discontinuously, since λ must be continuous at an

expected shock. As an example, we will focus on an expected increase of τc from 10%

to 20% at time t̃ = 20. We assume the economy to be in steady state prior to the

shock with a tax rate τc = 10%. At time zero the household experience that at time

t̃ the consumption tax will increase. Therefore, it will re-optimize its consumption

plan such that consumption potentially jumps immediately as well as at time t̃. We

conduct three simulations with the inverse of intertemporal elasticity of substitution,
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σ, equal to 1
2
, 1, and 2, respectively.75 For the simulation no a priori information

about the time path of the variables or the shape of the flow was given. We choose,

as an initial guess, all variables to be constant at their steady state values. This

always leads to quick convergence.

Note, that the steady state value of k is not affected by a change in τc while the

steady state value of c is reduced by 1+τc

1+τc+∆τc
. If the tax on consumption increases,

households consume less in the long-run while spending the same amount for con-

sumption.76 Therefore, it is straightforward to analyze an unexpected, immediate

shock at t0. In this case, consumption would jump to its lower, new steady state

value at t0 without any dynamics in capital. This analysis holds for any feasible set

of parameters.

For the case of an anticipated shock we can reason that consumption jumps down

at the preannounced time of the tax increase, t̃. It is not optimal for the households

to smooth consumption such that this jump vanishes, which again can be seen from

equation (160).

If σ is high, i.e. σ = 2, consumers have a strong preference for smoothing con-

sumption over time. Figure 16, (i), (ii), and (iii) display the time path of λ, c,

and k, respectively, referring to this simulation. Variables are normalized to unity

at the new steady state, whereas green crosses designate old steady state values.

Households try to soften the drop in consumption at t̃. They do so by abandoning

consumption in the period between t0 and t̃. Figure 16, (ii) shows that consumption

drops down immediately at t0 and is decreasing in the subsequent period until t̃.

Then, it jumps down again and is approaching the new steady state from above.

Households increase savings until t̃, and dissave after t̃, which can be seen in Figure

75The remaining parameters and tax rates are set to α = .3, δ = .03, ρ = .02, n = .01, τw = .4,
and τk = .3, respectively.

76Households spend c(1 + τc) for consuming the amount c.
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16, (iii). Figure 16, (iv) shows the (c, k)-phase diagram. The economy starts initially

at the green cross and moves along the blue line to the new steady state indicated

by the red cross. Dotted lines designate jumps, whereas solid lines designate contin-

uous dynamics along time. Note that λ is continuously differentiable whereas k is

continuous but experiences a corner at t̃ (Figure 16, (i) and (iii)).
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Figure 16: Anticipated increase in τc with σ = 2

Conversely, if σ is low, i.e. σ = 0.5, households do not put much emphasis on

consumption smoothing. They are willing to accept sharp kinks in consumption

if this on the other hand yields initially higher consumption. Figure 17, (i), (ii),

and (iii) display the time path of λ, c, and k, respectively, referring to the sec-
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ond simulation. Again, variables are normalized to unity at the new steady state,

whereas green crosses designate old steady state values. In Figure 17, (ii) it can be

seen that consumption jumps up at t0 and increases in the subsequent period until

t̃. Then, consumption jumps down and is approaching the new steady state from

below. Households, therefore, exploit the fact that for the same amount spent for

consumption they receive a higher consumption before t̃ than after. They do so by

dissaving before t̃ (Figure 17, (iii)) and regain their former level of assets by saving

after t̃. Figure 17, (iv) shows the (c, k)-phase diagram. The economy starts initially

at the green cross and moves along the blue line to the new steady state indicated

by the red cross. Again, dotted lines designate jumps, whereas solid lines designate

continuous dynamics along time. As in the first simulation, λ is continuously dif-

ferentiable whereas k is continuous but experiences a corner at t̃ (Figure 17, (i) and

(iii)).

For σ = 1, which implies a logarithmic utility function, a third pattern emerges.

Then, consumption does not jump at t0 and remains in its old steady state value.

At t̃ consumption jumps down by 1+τc

1+τc+∆τc
and the economy is immediately in its

new steady state.77 The model’s behavior is as if households would experience an

unexpected shock, since the above mentioned counteracting effects cancel each other.

4.4.3 Verification of simulation results

For deriving the error estimation equation (44), we assumed the time path of variables

to be at least three times continuously differentiable. However, this assumption does

not hold for the simulations at hand, wherefor we cannot estimate the error by

equation (44). For verifying the simulation results, we exploit that for a smooth

variation of parameter values theorem (16) does not have to be applied. Therefore,

77We do not show simulation results for this parameter setting since all variables are constant,
despite from very small numerical errors.
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Figure 17: Anticipated increase in τc with σ = .5

if τc is a three times differentiable function of time, c, λ and k are also at least three

times continuously differentiable with respect to time. Hence, we can estimate the

error by error estimation equation (44). The idea is to choose a sufficiently smooth

parameterized time path for τc on an interval [tmin, tmax] with tmin < t̃ < tmax.

Then, changing the parameter such that it approaches infinity should make the

time path of τc converge towards the discontinuous step function assumed in the

previous paragraph. Selecting a sequence of parameters converging towards infinity

should result in a sequence of simulation results converging towards simulation results

presented in the previous Section. The crucial point is that we can control the error
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for each simulation of this sequence, unless τc follows indeed a step function.

Since t̃ = 20, we select an interval of [10, 30], and τc to equal

τc(t; ζ) =















0.1 t ≤ 10

0.15 + 0.05 · tanh

(

ζ
t−20

10

1−( t−20

10 )
2

)

10 < t < 30

0.2 t ≥ 30

(161)

Clearly, τc(t; ζ) converges towards the step function as ζ → ∞. The tangens hyper-

bolicus ensures that the time path of τc is infinitely smooth on [0,∞). Figure 18

displays the time path of τc for ζ ǫ {1.6, 2.5, 4, 10, 30, 100,∞}.
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Figure 18: Time path of τc for ζ ǫ {1.6, 2.5, 4, 10, 30, 100,∞}

We repeat simulation exercises with ζ ǫ {1.6, 2.5, 4, 10, 30, 100,∞} and σ = .5, and

control the global relative error to be below 10−5 for ζ 6= ∞. Results of the (k, c, )-

phase diagram are displayed in Figure 19. Solid lines represent simulation results for

ζ 6= ∞, and the dotted line represents simulation results for ζ = ∞. Crosses indicate

starting points of trajectories and circles the final steady state. It can be recognized

that solutions in the phase diagram converge to simulation results presented in the
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previous section as ζ → ∞. However, there is one qualitative difference between

paths for ζ 6= ∞ and ζ = ∞. Paths of the former parametrization of τc do not

exhibit jumps at t̃, whereas the path for ζ = ∞ exhibit a jump in c at t̃. The speed

of c at t̃ is the higher, the higher ζ is and approaches infinity as ζ → ∞. We conclude

that trajectories approach that of ζ = ∞, wherefore we assume simulation results of

the previous Section to be valid.
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Figure 19: Phase-diagram of the RCK-model with different time paths of τc

4.5 Summary

We derived the well-known continuity principle for adjoint variables for preannounced

or anticipated changes in parameters for a broad class of infinite-horizon, perfect

foresight, optimization models. For easy and intuitive numerical computation of the

resulting multi point boundary value problem we suggested to simulate the resulting
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differential algebraic system representing the first order conditions. By ensuring that

the state variable x and the adjoint variable λ are continuous, potential jumps in

the control variable u are calculated automatically. This can easily be conducted

employing the relaxation algorithm as proposed in this thesis. This algorithm treats

differential and algebraic variables conceptually different such that the requirements

for simulating the multi point boundary value problem at hand are automatically

met.

The proposed algorithm was employed to solve a Ramsey model extended by an

elementary Government sector. Simulations of a preannounced increase in the con-

sumption tax showed a qualitative different pattern depending on the intertemporal

elasticity of substitution.

Potential applications of this method emerge throughout in economic fields where

the reaction on preannounced policy measures is of special interest in the context of

perfect foresight optimizing agents.
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5 Trade Liberalization and Income Distribution: A

CGE Model for Jordan

This Section is based on the working paper of Feraboli and Trimborn (2006). All

contributions of this Section are the author’s own if not indicated otherwise.

5.1 Introduction

In this Section of the thesis we want to demonstrate the potential of the relaxation

algorithm by simulating a large Computable General Equilibrium model. On the

computational level, the model exhibits many of the difficulties described in this

thesis. First, it exhibits six state variables and, therefore, a six-dimensional stable

manifold. Second, the steady state is not unique, but long-run equilibria form a five-

dimensional center manifold of stationary equilibria. Third, transitional dynamics

are not result of a single, unanticipated shock, but due to a schedule of preannounced

policy measures. Therefore, time paths of variables may exhibit interior corners or

jumps.

The model at hand builds on previous work done by Feraboli et al. (2003), who

implement a dynamic CGE model calibrated to the Jordanian economy. The model

is characterized by the assumption of one representative consumer as used by Ram-

sey, Cass and Koopmans (see Ramsey, 1928, Cass, 1965 and Koopmans, 1965). We

augment their dynamic CGE model by introducing heterogeneous households. The

aim of this extension is to study the distribution of income and wealth in the con-

text of a large CGE model. In detail, we disaggregate households into six different

groups ranked by their disposable income. Within each group a representative con-

sumer maximizes the sum of discounted utility according to his or her own budget

constraint. Household groups’ individual tax rate, wage rate, initial endowment of

assets, transfers from government and abroad, as well as preferences concerning the
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consumption basket are calibrated by data from a household survey undertaken in

Jordan. Moreover, different households’ time preferences are also calibrated from

survey data.

In the context of General Equilibrium modelling several studies have been con-

ducted to assess aspects of income distribution and poverty (see Reimer, 2002, and

Winters et al., 2004, for a survey). We build on the strand of the literature, which em-

beds the disaggregated household groups within the CGE model (e.g. Bourguignon

et al., 1992, Gibson, 2002).78 This approach guarantees that the model is internally

consistent, i.e. behavioral changes at the household level can transmit back into the

macroeconomic solution. Moreover, these models exhibit additional channels, which

can potentially influence income distribution, e.g. inflation, human capital accumu-

lation, or labor market distortions. We extend the existing studies by relaxing the

assumption of an exogenous saving rate. To our knowledge, this study is the first

approach analyzing income distribution in a dynamic General Equilibrium frame-

work with utility maximizing agents as used by Ramsey, Cass and Koopmans (see

Ramsey, 1928, Cass, 1965 and Koopmans, 1965). This fact, perhaps, illustrates that

the relaxation algorithm extends the range of numerically tractable models.

On the other hand, theoretical contributions analyze the effects of implementing

heterogeneous consumers into a neoclassical framework (see e.g. Chatterjee, 1994 or

Caselli and Ventura, 2000). By imposing restrictions on the utility maximizing agents

it is guaranteed that the sum of all households behave as if it were a single household.

This is of analytical convenience, since it is possible to analyze a model with one

representative consumer in a first step and calculate the effects on heterogenous

households in a second step. However, the restrictions on the utility maximizing

agents imposed by this strand of the literature are not fulfilled in our model and

78Other studies of this strand are e.g. Löfgren (1999), Decaluwé et al. (1999), Cogneau and Robil-
liard (2000), Cockburn (2001), and Harrison et al. (2002).
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would be neglected by the available survey data. Therefore, in our approach the

behavior of disaggregated variables influences aggregate variables. This is described

in detail in Section 5.3.

The model is implemented by means of the mathematical software Gauss, and

calibrated to the Jordan Social Accounting Matrix of 2002. As a simulation exercise,

we simulate the process of trade liberalization, which the Jordanian economy under-

goes since 2002. The concrete institutional framework is reported in Feraboli and

Trimborn (2006), and Feraboli (2007). Our simulation results indicate changes in

per-capita level of welfare in Jordan between -0.03% and 0.19%, providing evidence

that trade liberalization has indeed a different impact across heterogeneous house-

holds. Remarkably, the behavior of aggregate variables is qualitatively consistent

with previous work done by Feraboli et al. (2003).79

In Section 5.2, we explain the model briefly, in Section 5.3, we describe dynamic

properties of the model, in Section 5.4, we present the calibration process and explain

the numerical solution method, in Section 5.5, we briefly analyze and discuss the

simulations, and in Section 5.6 we draw the main conclusions.

5.2 The Model

We model a dynamic small open economy, building on the model of Feraboli et

al. (2003). For each of six different household groups, a representative consumer

maximizes discounted intertemporal utility subject to a budget constraint. In the

domestic economy there are nine production sectors, eight of which are producing

goods and one produces services. Aggregate private consumption, government con-

sumption, and aggregate investment are Cobb-Douglas composites of nine different

sectoral outputs, which, in turn, are Armington (1969) composites of domestically

79Previous work by Hosoe (2001) on Jordan’s trade liberalization implements a static model with
one representative household. Simulation results suggest average welfare gains of 0.44%.
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produced and imported goods. Firms produce nine different commodities using a

Leontief production technology between sectoral goods and a value-added factor,

which is a CES composite of capital and different kinds of labor. Total output can

be sold domestically or exported according to a CET specification. The Government

raises taxes and collects import tariffs. Government revenues are spent for a fixed

amount of government consumption as well as for transfers to households.

The domestic economy accepts the world price as given in international markets.

Perfect competition and full employment are assumed in all sectors. Production

factors are perfectly mobile across sectors.

In the following, we focus on the main mathematical equations. The remainder of

the equations used in the model is relegated to the appendix.

Households

The problem of each representative infinitely-lived household, i, is to maximize

discounted intertemporal utility

∫ ∞

0

log (Ci)e
−ρitdt i = 1, . . . , 6 (162)

subject to

K̇i =
Y Di − PCCi

PI

− δKi (163)

Ki (0) = Ki,0

where Ci, Y Di, Ki are consumption, disposable income, and capital of household

i, respectively. Each representative household discounts future utility with discount

rate ρi, which is specific to each household group. We discuss this modeling choice

in the subsequent Section.
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Disposable income of each household group is given by

Y Di = (1 − τi)(wiLi + rKi + GTi + FTi) (164)

whereby wi, Li, Ki, GTi and FTi denote the individual wage rate, labor endowment,

and capital endowment of household i, as well as government and foreign transfers

to household i, respectively. The interest rate r is identical for each household since

capital is a homogenous good. Each household pays a different income tax τi de-

pending on its household group.

Firms

Sectoral output in the domestic economy is determined by a two-stage production

process, which exhibits at the top tier a Leontief (or fixed-proportions) specification

between intermediate input and value-added output. Each representative firm pro-

ducing commodity j generates total output according to the following production

technology

Qj = min

{

V Aj

aV A,j

,
q1,j

a1,j

, . . . ,
q9,j

a9,j

}

j = 1, . . . , 9 (165)

where Qj and V Aj are sectoral output and value-added output, respectively. qk,j is

intermediate input produced by sector k and used in the production of activity j.

Leontief coefficients are denoted by ak,j, and productivity of value added in producing

commodity j is 1/aV A,j.

At the second tier, intermediate input qi,j is a Cobb-Douglas composite of domestic

and foreign intermediate consumption goods.

Value-added production is determined by a technology characterized by a constant

elasticity of substitution between the primary inputs, capital (KDj) and six different
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types of labor LDi,j, pertaining to each household group i

V Aj = Aj

[

6
∑

i=1

αi,jLD

σj−1

σj

i,j +

(

1 −
6

∑

i=1

αi,j

)

KD

σj−1

σj

j

]

σj
σj−1

αi,j > 0, 0 <
6

∑

j=1

αi,j < 1, σj > 0, σj 6= 1

(166)

where Aj is the time-invariant technological parameter, αi,j is the share of labor of

household i, and σj denotes the constant elasticity of substitution between primary

inputs. At the value-added production stage, firms minimize production costs sub-

ject to the above technology constraint.

Government

The government consumes an exogenous amount of goods, raises taxes and tariffs,

and provides transfers to consumers. We assume the government to run a balanced

budget. Government consumption is determined by a CES Armington specification

between domestically-produced goods and imports. Government revenue is gener-

ated from the Value-Added Tax, that applies with different rates to domestic and

imported goods (V ATD and V ATM), the income tax (TY ) and import duties (TM),

which apply with different rates to the EU and the rest of the world, and exogenous

and fixed foreign grants, (FRG). The expenditure is given by an aggregate transfer

to households (TR) and an aggregate fixed consumption of goods and services (Ḡ).

The government budget is, therefore, given by

V ATD + V ATM + TY + TM + FRG = TR + Ḡ. (167)

Market clearing

The equilibrium in the factors markets requires for each type of labor, aggregate

endowment of labor to be equal to aggregate labor demand and aggregate capital
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stock to be equal to aggregate demand for capital

Li =
9

∑

j=1

LDi,j i = 1, . . . , 6 (168)

6
∑

i=1

Ki =
9

∑

j=1

KSj (169)

where Li and Ki are, respectively, labor and capital supplied by household i.

The equilibrium condition on the domestic goods markets is

Xj =
9

∑

k=1

qk,j + Cj + Ij + Gj j = 1, . . . , 9 (170)

where Ij and Gj are investment demand and government consumption, respectively.

The equilibrium in the balance of payments is given by

9
∑

j=1

PWMjMj =
9

∑

j=1

PWEjEj +
6

∑

i=1

FTi + FGR (171)

where Mj and Ej are, respectively, imports and exports of sector j, PWMj and

PWEj are the exogenous world prices of, respectively, imports and exports of sector

j, and FGR are foreign grants donated to the Jordanian government.

5.3 Discussion of the model’s dynamic properties

In a first step we discuss the way we extended the model of Feraboli et al. (2003)

by different household groups, and which alternative modeling choices would be

available. As we will argue, the way we introduce the household groups determines

in a crucial way the model’s dynamic behavior. In a second step, we discuss the

model’s long-run dynamic behavior with a special emphasis on the evolution of the

distribution of wealth.

It is important to focus on the taxation of capital income for different household

groups. In many countries the average tax paid on capital income is increasing with
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the total amount of capital income. This holds also for Jordan, where a distinction

between capital and labor income is not made, and marginal income taxation is

increasing in total income. If we assume that the income tax τi does not depend on

total income (see equation (164)),80 the Euler equation for household group i can be

derived as

Ċi

Ci

=
(1 − τi)r

P I
− ρi − δ (172)

with the price index of aggregate investment, P I . Since capital is assumed to be

homogenous, the interest rate r, and the rate of depreciation δ, is the same for all

household groups. Therefore, assuming ρi = ρ for all i would cause the growth rate of

consumption to be higher for household groups facing a lower tax burden τi, and vice

versa. The reason is that low income households face higher incentives for saving,

since their net return on savings is higher. This, on the other hand, would cause the

household, which faces the lowest tax rate, to own all the assets in the long-run. By

assumption, the distribution of wealth would become extreme, even if distributional

policy measures in the form of transfers are undertaken.81

Since this outcome is at odds with the assumption of a tax rate independent of

income, a possible cure of this problem would be to assume an income-dependent tax

rate τi(Yi). Then, net return on savings would be higher than average for households

with an income below average, while net return on savings would be lower than

average for households with an income above average. Then, by assumption, the

distribution of wealth would become more equal in the long-run.

By contrast, we did not want to impose any long-run distribution of wealth by

assumption. The only possibility, then, is to assume that long-run growth rates

of consumption are equal for every household group. This holds if ρi is calibrated

80Strictly speaking, this requires the nominal income of household groups to be constant.
81Becker (1980) and Becker and Tsyganov (2002) confirm this results in a similar setting.
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according to

ρi =
(1 − τi)r

∗

(P I)∗
− δ (173)

with r∗ and (P I)∗ representing the steady state values of the interest rate and the

price index of aggregate investment, respectively. Note that we assume τi to be

independent of the development of individual income. It will become clear that this

assumption is justifiable under this setting. Moreover, simulation results for the

specific policy measures analyzed in this Section confirm that the relative income

position of households does not change. Nonetheless, this assumption would not be

feasible any more, if huge distributional policy measures would be undertaken.

The assumption of equal long-run growth rates of consumption has strong impli-

cations for the dynamic behavior. To start with, the steady state can no longer be

unique. The reason is that the standard model with one representative consumer

has to fulfill

(1 − τ)r∗

(P I)∗
− ρ − δ = 0 (174)

at the steady state. This condition determines a unique ratio of r∗

(P I)∗
at the steady

state for given parameter values. If the model is extended to six household groups,

the equation becomes six dimensional according to

(1 − τi)r
∗

(P I)∗
− ρi − δ = 0 i = 1, . . . , 6 . (175)

However, all the six equations determine the same ratio r∗

(P I)∗
at the steady state. The

real interest rate is considered to be given if (175) is solved for the individual discount

rates. Since the number of variables, which refer to the household groups (i.e. Ci,

Ki) has increased sixfold, there is not enough information to determine the steady

state uniquely. The system of equations has five degrees of freedom. Therefore,

according to corollary 10 of Section 2.1 there exists a five-dimensional center manifold
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of stationary equilibria. This result is verified by numerical computation of the

Jacobian matrix at the steady state. Since the matrix exhibits five zero eigenvalues,

the model exhibits a five-dimensional center manifold. Nonetheless, according to

theorem 13 of Section 2.1 adjustment dynamics are unique in a neighborhood of

the center manifold.82 Note that formally theorem 13 does only hold from a time

t̃ onwards, for which no further parameter changes occur. The reason is that the

theorem can only be applied to autonomous systems. Therefore, the theorem cannot

be applied to investigate the dynamics during anticipated parameter changes, but

only for the time period after these changes. Hence, no connection between the

distribution of initial wealth and the distribution of steady state wealth can be made.

Chatterjee (1994) as well as Caselli and Ventura (2000) investigate in a neoclassical

framework under which conditions the sum of all households behave as if it were a

single household. They state restrictions for the utility function of heterogeneous

households to hold. This is of analytical convenience, since then it is possible to

analyze a model with one representative consumer in a first step and calculate the

effects on heterogenous households in a second step. However, these restrictions on

the utility functions are not fulfilled in the model at hand since individual households’

discount rates differ.

5.4 Calibration procedure and numerical solution technique

We calibrate the model to match the Jordanian economy of 2002 as a simulation

exercise to demonstrate the potential of the relaxation algorithm on the one hand,

and the explanatory potential of the model on the other hand. As a concrete policy

example we select the process of trade liberalization, which the Jordanian economy

undergoes since 2002. The concrete institutional framework is reported in Feraboli

82The Jacobian matrix numerically evaluated at the center manifold exhibits one eigenvalue with
negative real part.
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and Trimborn (2006), and Feraboli (2007). For simulation exercises we reduce the

tariff rates according to Table 3, which corresponds to the actual tariff reduction

that Jordan has agreed on due to the EU-Jordan Association Agreement signed in

1997.

Table 3: Tariff reduction schedule of the AA

Year Agric. Mining Food Text. Paper Chemic. Miner. Other

Pre-AA 17.0% 9.4% 29.2% 14.1% 13.2% 2.8% 12.2% 12.2%
2002 17.0% 5.6% 29.2% 8.5% 7.9% 1.7% 7.3% 7.3%
2003 17.0% 5.0% 29.2% 7.5% 7.0% 1.5% 6.5% 6.5%
2004 17.0% 4.4% 29.2% 6.6% 6.2% 1.3% 5.7% 5.7%
2005 17.0% 3.8% 29.2% 5.7% 5.3% 1.1% 4.9% 4.9%
2006 15.3% 2.8% 26.3% 4.2% 4.0% 0.8% 3.7% 3.7%
2007 13.6% 2.5% 23.4% 3.8% 3.5% 0.8% 3.3% 3.3%
2008 11.9% 2.2% 20.4% 3.3% 3.1% 0.7% 2.9% 2.9%
2009 10.2% 1.9% 17.5% 2.8% 2.6% 0.6% 2.4% 2.4%
2010 8.5% 1.6% 14.6% 2.4% 2.2% 0.5% 2.0% 2.0%
2011 8.5% 1.3% 14.6% 1.9% 1.8% 0.4% 1.6% 1.6%
2012 8.5% 0.9% 14.6% 1.4% 1.3% 0.3% 1.2% 1.2%
2013 8.5% 0.6% 14.6% 0.9% 0.9% 0.2% 0.8% 0.8%
2014 8.5% 0.0% 14.6% 0.0% 0.0% 0.0% 0.0% 0.0%

The calibration procedure is based on the Social Accounting Matrix (SAM) for

Jordan constructed for the year 2002.83 The model’s parameters are calibrated such

that the SAM represents a solution of the model where all variables are stationary

except asset accumulation of individual households. The reason for this is that the

fractions of savings and assets are not the same across households, and, therefore,

the assumption of a stationary individual capital accumulation would violate the

SAM. This can easily be seen by considering individual household group’s capital

accumulation equation (163). To be stationary, this equation is required to satisfy

Y Di − PCCi

P I
= δ i = 1, . . . , 6 (176)

83The SAM was constructed by Feraboli and Kolev. We thank the latter for very helpful research
assistance.
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Given the prices PC and P I , δ can be calibrated such that it satisfies equation (176)

for one household. However, data for Y Di and Ci does not allow to satisfy equation

(163) for six households because of missing degrees of freedom. Therefore, simulating

the model without any parameter changes does not result in a stationary solution.

However, running the simulation without a parameter shock yields transitional dy-

namics of small magnitude. This indicates that a stationary solution is very close to

the initial state of the economy.

Household survey data allows disaggregation into six different groups of house-

holds. Each group differs with respect to labor income, capital income, transfers

from government and from abroad, income-tax payments, and savings, as well as

total consumption and the composition of total consumption. Within the calibra-

tion process, these differences result in varying exogenous variables for each group

of households as well as diverse parameters. We rank heterogeneous households by

their income in 2002, i.e. household group one earns the lowest income and household

group six the highest.84 This brings about an almost monotonous ranking in labor

income, capital income and, reversely, transfers received. Also, the share of capital

income (transfers) on total income is almost monotonously increasing (decreasing)

while the share of labor income on total income is hump-shaped (see Figure 20).

Elasticities of substitution are obtained from the existing literature (see Devarajan

et al., 1999, Devarajan and Go, 1998, and Lucke, 2001). The domestic interest rate

is set to 10%. Once these parameters have been fixed, the remaining parameters are

calibrated from the SAM.

The model is programmed in Gauss and solved with the relaxation procedure as

proposed in this thesis. Since the model exhibits a continuum of stationary equi-

libria, we explicitly utilize the fact that this numerical procedure does not require

84For convenience we will denote household group one the poorest and household group six the
richest household.
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Figure 20: Income composition of households

information regarding an achieved stationary equilibrium in advance. The particular

stationary equilibrium is determined within the iteration process. In addition, the

relaxation procedure can simulate transitional dynamics on multi-dimensional stable

manifolds. This means that an increase in the dimension of the model, especially in

the state space, does not cause any conceptual problems. Moreover, households ex-

perience a preannounced schedule of changes in tariffs. Therefore, the model exhibits

anticipated changes in parameters as investigated in Section 4.

5.5 Simulations

As a simulation exercise, we simulate a gradual reduction of tariff rates due to table

(3). Since the data available for the calibration procedure represents the Jordan

economy of the year 2002, this is our benchmark year. In our simulation, tariff rates

are gradually reduced in the subsequent years. We assume the government budget
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to be balanced. The endogenous variable to achieve this is total transfers to house-

holds. Precisely, this means that total transfers from the government, granted to

households, are endogenous, whereas the share each household receives is fixed. This

assumption guarantees that the reduction of distortionary tariffs is not accompanied

by distortionary side-effects as additional taxation. Since poor household groups

rely heavily on transfer income, the cut in transfers implies an effect on income

distribution according to the discussion in Section 5.3. Since the impact of tariff

reduction may be different for household groups income, consumption, and welfare,

we report simulation results for all of them. In a second scenario we investigate how

an additional ten-percent increase in all VAT rates affects the economy.

Our simulation results indicate an increase in aggregate capital, output, disposable

income, and consumption in the long-run. Therefore, simulation results are in line

with previous findings by Feraboli et al. (2003). We find an increase in welfare

for most household groups, and welfare gains of the poor households are slightly

higher than gains of the rich households. However, trade liberalization is not pareto

improving since some households (group five) are even worse off. Figure 21 represents

welfare changes of both scenarios. The blue line summarizes the impact on welfare

for each household group and its absolute size in the baseline scenario, whereas the

green line refers to the second scenario.

Since welfare gains are roughly higher for poor households, one may expect in-

equality to decrease. However, the opposite is the case. We measure inequality with

the Gini index of income (see Gini, 1912), which increases immediately with trade

liberalization and over time, which is measured in years (see Figure 22, (i)).85 The

reason for this can be seen in Figure 22 (ii), which indicates that the initial response

of income to trade liberalization is positive for household groups 3, 4, 5, and 6 and

85An alternative measure of inequality, Theils entropy of income (see Theil, 1967), yields qualita-
tively the same result.
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Figure 21: Welfare effects of both simulations

negative for household groups 1 and 2. In addition, income increases more drasti-

cally over time, the richer the household group is.86 That means, the gap in income

increases over time, as well. The reason for this is that households rely differently

on various kinds of income. First, transfers are cut immediately when trade liberal-

ization starts and are even decreasing in the subsequent years because the tax base

and, therefore, government revenue increase sluggishly. This affects poor households

relatively severely. Secondly, since the aggregate capital stock grows, wage income

increases over time. Poor households benefit more from this because they rely heavily

on labor income. Due to the fact that a large part of their income is labor income,

86Whereas time is continuous, the import tariff reduction takes place at specific points in time.
Therefore, government transfers to households drop sharply at the beginning of each year and re-
cover smoothly during the remainder of the year. Hence, the income flow follows a discontinuous
path.

140



5 Trade Liberalization and Income Distribution

poor households can offset the negative effect of reduced transfers after some pe-

riods. Finally, households own different amounts of capital. Higher incentives for

investments condense in a higher interest rate. Therefore, capital income for the

four richest groups of households is increasing instantaneously and over time, due to

capital accumulation. This capital accumulation can be seen in Figure 22 (iii). Poor

households use their already tiny amount of assets to smooth consumption, since

they have to overcome temporary losses in income (see Figure 22 (iv)). Therefore,

poor households even deaccumulate capital, and this deaccumulation is insignificant

for the economy as a whole.
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Figure 22: Effects of AA on heterogeneous households (baseline simulation)

In the second scenario we assume the government to undertake the additional fiscal
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measure of a 10% increase of all VAT rates to overcome losses in revenues.87 This

10% increase has two effects on the economy. Since this allows the government to

limit the cut in transfers, we expect poor households to benefit more in relation to

rich households from this additional fiscal measure.

Simulation results indicate that the effect of trade liberalization dominates the rise

in VAT rates. Aggregate variables behave qualitatively the same. However, welfare

gains are reduced for every group of households, and for one household group (group

four), the welfare gain turns into a loss. This is illustrated in Figure 21 where

the green line indicates welfare changes of the second scenario. Although transfers

remain even higher than in the benchmark year, every households’ welfare is lower

compared to the previous simulation. The reason is that the rise in the VAT rates has

a negative impact on investment and, therefore, reduces the aggregate accumulation

of capital compared to the baseline scenario. This determines steady-state values

for private consumption and capital which are below the steady-state levels in the

previous simulation.

5.6 Summary

We constructed a large CGE model incorporating heterogenous household groups to

demonstrate the potential of the relaxation algorithm. More precisely, the model

exhibits a six-dimensional stable manifold, a five-dimensional center manifold of

stationary equilibria, and a preannounced schedule of shocks. Therefore, the model

exhibits many of the characteristics, which complicate the numerical analysis of

transitional dynamics. The presence of a center manifold of stationary equilibria is

due to the fact that we assumed growth rates of consumption to be equal for different

household groups in the long-run.

87However, total government transfers to households remain the endogenous variable to balance
the government’s budget.
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The model was calibrated to the Jordanian economy of the year 2002 as an com-

putational exercise. Moreover, household specific data was calibrated according to

a Jordanian household survey. As a baseline simulation the trade liberalization be-

tween Jordan and the EU was simulated. We found that welfare effects were different

across household groups, but predominantly positive. In addition, we found effects

to be contrarian concerning welfare and income distribution. While on the one hand

welfare gains are slightly higher for low income households, on the other hand the

gap in income will increase, especially in the long-run.

To our knowledge, this is the first large CGE model, which addresses the issue

of wealth and income distribution. Perhaps this is due to the numerical difficulties,

which can be overcome by employing the relaxation algorithm as the numerical

solution method. Therefore, we hope that this analysis paves the way for future

analysis in this field.
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6 Conclusion

We proposed the relaxation algorithm as a simple and powerful method for simulat-

ing the transition process in growth models. This method has a number of important

advantages: First, the application of the procedure is fairly user friendly. Second, it

is generic for a wide range of dynamic systems including stiff differential equations

and systems giving rise to a continuum of stationary equilibria. Third, the vari-

ant of the relaxation algorithm we propose exploits the infinite time horizon, which

usually underlies optimal control problems in economics, in a natural manner. And

fourth, the algorithm can solve preannounced or anticipated parameter changes in

an easy and intuitive way. As an illustrative application, we computed the tran-

sition process of the Jones (1995a) and the Lucas (1988) models. In addition, we

solved the Ramsey-Cass-Koopmans model, extended by a simple government sector.

Preannounced or anticipated changes in the consumption tax induced qualitatively

different results, depending on the intertemporal elasticity of substitution. Lastly, we

constructed a General Equilibrium model with heterogenous households to demon-

strate the potential of the relaxation algorithm. The model was calibrated to Jorda-

nian data and employed to solve different scenarios of trade liberalization between

Jordan and the European Union. This model exhibits a six-dimensional stable man-

ifold, a five-dimensional center manifold of stationary equilibria, and a schedule of

preannounced policy measures. These characteristics make the application of usual

procedures highly inefficient or even impossible.

Future research could go in different directions. On the computational level, the

relaxation algorithm could possibly be extended to solve stochastic continuous-time

models. Another extension is that of Trimborn (2006), which allows for solving

growth models, for which the balanced growth rates cannot be calculated analyti-

cally. On the economics level, availableness of a more powerful tool for investigating
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transitional dynamics could allow for richer dynamic models. For example, growth

models often suffer from the fact that the steady state and transitional dynamics

towards it cannot be analyzed analytically. This especially holds for models, which

have several sources of dynamics, e.g. different engines of growth. Analyzing tran-

sitional dynamics by numerical simulation offers a way to extend the dynamics of

existing models, without loosing track of the model’s dynamic behavior. On the

other hand, many applied Computable General Equilibrium models suffer from the

fact that numerical solution of high-dimensional dynamic models is difficult or even

impossible, if the model exhibits a saddlepoint with a multi-dimensional stable man-

ifold or a center manifold of stationary equilibria. This is perhaps why many models

in this area do not contain perfect-foresight optimizing households. We showed that

these models are numerically tractable, if the relaxation algorithm is employed.
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7 Appendix

7.1 Appendix on Section 3

In Section 7.1.1, we describe how the relaxation algorithm is implemented in Matlab.

Special emphasis is given on the description of how to modify the files if a researcher

wishes to simulate a specific model. In Section 7.1.2, 7.1.3, 7.1.4, and 7.1.5, respec-

tively, we print the code of the most important files of the relaxation algorithm,

main.m, initrelax.m, relax.m, and rrefmod.m. The actual algorithm can be found

in Section 7.1.4 and 7.1.5, in which the code of the files relax.m and rrefmod.m is

printed.

7.1.1 Implementation of the Relaxation Algorithm

We want to describe in more detail how the algorithm is implemented in MatLab,

and which steps a researcher has to perform to simulate a model numerically. At this

point, we want to emphasize the user-friendlyness of the algorithm. It is possible

to simulate the transition process of a wide range of infinite horizon optimization

models without the knowledge how the algorithm works. The MatLab files can be

used as a “black box”. The researcher who intends to simulate a specific model only

has to provide the dynamic system and the set of underlying parameters.

Installation

There are two different types of files, the system files and the user files. The

system files are general to every model and should be copied into a separate folder,

which has to be assigned as a MatLab search path (menu File → Set Path). These

files should not be modified. The user files carry the information due to a particular

model and should be copied into a model-related folder, which has to be assigned as
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the MatLab Current Directory.

Structure of the Code

The aim of the structure of the code is not only to make standard applications

comfortable, but also to allow for advanced applications, e.g. multiple simulations

of the same model with different initial conditions or parameter values. Therefore,

in this section the structure of the code and the usage of the two most important

functions initrelax.m and relax.m will be described in more detail. Note, that for

convenience some files are double among the user files and the system files. The

reason is that files in the current directory have priority when Matlab is executing

them. Therefore it is possible to place empty files in the system folder to keep the

number of files in the user directory small and concise.

The central file of the code is the file main.m, which calls the different scripts and

functions in the following order:

globalpar initializes the global parameters
parini loads the values of the parameters
relaxsetting loads the settings for the relaxation procedure
initrelax converts the settings into a form suitable for relax.m
relax executes the Relaxation algorithm
varex disentangles the variables and stores them in the memory

The actual relaxation algorithm and the code to prepare the model for the re-

laxation algorithm are exported to functions and are not integrated into main.m as

a script. The reason for this is that as a script they would be able to manipulate

any variables in the memory. If they are implemented as functions their interactions

with model specific variables in the memory is kept as small as possible. Detailed

information about the functions initrelax.m and relax.m can be listed by calling help

initrelax and help relax at the MatLab command window. They are used according
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to

[guess, start, errorcode] = initrelax(@funcODE, @funcSTAT, n,

n1, n3, nu, y, M, statev, t)

[t, x] = relax(@funcODE, @funcSTAT, @funcINI, @funcfinal, n,

n1, n3, nu, y, M, start, Endcond, maxit, tol, damp, dampfac)

Output from initrelax.m are the variables guess, start, and errorcode. The first two

are again input arguments for relax.m, the last is a code indicating error = 0 for

the case of no error and error > 0 for different errors that the code detected in the

model set-up. Output of relax.m is a row vector t and a matrix x. Each column of x

is the list of the variable values at the point of time of the corresponding entry of t.

The file varex.m disentangles the variables, such that each variable is a row vector

with corresponding time vector t.

Input for both functions are different parameters, which will be described in more

detail below. Further, input arguments for both functions are different function

handles, which pass the information about a specific function name. These functions

have the following shape:
function input arguments output arguments

@funcODE time, vector of vector of RHS of ODE (dim n)
variables (dim N)

@funcSTAT time, vector of vector of residuals of
variables (dim N) static equations (dim n3)

@funcINI time, vector of vector of residuals of initial
variables (dim N) boundary conditions (dim n1)

@funcfinal time, vector of vector of residuals of final boun-
variables (dim N) dary conditions (dim n − n1)

These functions are among the system files with the above names but may well be

replaced by more user specific files.
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Preparation of the model

First of all, the dynamic system under study must be transformed into stationary

variables, i.e. in variables that approach a finite constant asymptotically as time goes

to infinity. It is assumed that now the model consists of n ordinary differential equa-

tions, n1(≤ n) initial conditions and (optional) n3 static equations that have to be

satisfied at all times. Notice that you do not have to modify these equations. They

are plugged into the algorithm as they are written in continuous time. Only the static

equations (if present in the model) must be rewritten as a residual (g(y) = 0).88 You

should go through the following steps carefully.

Simulation of a model

The model dependent files are the following:

globalpar.m
varex.m
parini.m
relaxsetting.m
ODE.m

with the optional files

StatEq.m
shock.m
initbound.m
finalbound.m

Go through the following steps carefully.89

• File globalpar.m

List all the names of the parameters with the command global.

88In some algorithms it is necessary to differentiate the static equations with respect to time. This
is not necessary for the application of the relaxation procedure.

89Note, that you cannot name any variable or parameter with x.
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• File varex.m

List all the variables like in the original with an increasing index. You have to

bring the variables in a special ordering. First write down all the state variables

then all the control (or adjoint) variables and finally all variables, for which

the static equations should hold. If you have an auxiliary variable that does

not appear in the static equations you have to place it at the very end.

• File parini.m

Assign all parameter values which are valid at the new steady state.

• relaxsetting.m

– Specify the dimensions:
n1 number of initial boundary conditions

(equals the number of state variables, for instance,
n1=1 in the case of the RCK model)

n number of differential equations
n3 number of static equations to be solved simultaniously
M number of mesh points

– normal specifies, which variables you want to normalize to 1 at the steady

state. The vector [1 3 6] for example will normalize variables 1, 3 and

6. If you do not want to normalize any variable return an empty vector

[ ].

– You have to provide a rough guess for the steady state. Here the same

ordering for the variables should be maintained as for the file varex.m.

– You can induce a transition process by reducing one of the state variables

compared to its new steady state value. E.g. statev(1) = .5 halves the

value of the first state variable. If you do not enter anything, the initial

values of the state variables will be calculated due to a shock in parameter

values as specified in shock.m. If you assign statev = 0, you can specify

initial conditions in the file initbound.m (see below).
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– Change the last section of the file only if problems occur.

Endcond: Specifies the final conditions. The vector [1 3 6] for example

will set the RHS of differential equations 1, 3 and 6 to zero. Default setting

is to use the differential equations of the control (or adjoint) variables. You

should mind the dimensions when changing this. If you set Endcond = 0

you can enter the final boundary conditions in the file finalbound.m (see

below).

tol: This declares the tolerance for the Newton procedure.

maxit: Maximum number of iterations

nu: This denotes the parameter for time transformation. Higher values

allocate the mesh more towards the beginning of time, while lower values

increase the density around the steady state. A good value for nu depends

crucially on the speed of convergence towards the steady state. It should

be chosen such that it minimizes the maximum change of the variables

between the mesh points. For models with a half-life of about 50 − 80

time units, a value of nu = 0.04 is advisable.

damp: You can dampen the Newton procedure by the dampening factor

damp. It will be multiplied with the factor dampfac in every iteration

until it equals 1. A value of 1 does not damp, values between 0 and 1

increase the convergence radius of the Newton procedure but also lead to

slower convergence and therefore more iterations.

• File ODE.m

List the right-hand-sides of your differential equations here. Assign them in

vector form to funcODE as in the original. You should mind the ordering,

since the first differential equation should belong to the first variable and so

on. In the non-autonomous case time is denoted as t.
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The following files are optional. If they are needed, create them in the model-

related current directory.

• File StatEq.m

List the residuals of your static equations here. Assign them in vector form to

funcSTAT as in the original. Time is again denoted as t.

• File shock.m

In this file you can specify a specific shock in the parameter values. Assign

(e.g. in an if loop) the old steady state values to the time t = −1 and the new

steady state values to all other t. It is also possible to investigate continuous

parameter changes or interior (expected) jumps in the parameters.

• File initbound.m

If you want to employ variable initial boundary conditions, enter them here

and set statev = 0 in the file relaxsetting.m. Assign the residuals to the vector

funcINI. Mind that you need n1 equations.

• File finalbound.m

If you want to employ final boundary conditions different to the RHS of the

differential equations, enter them here and set Endcond = 0 in the file relaxset-

ting.m. Assign the residuals to the vector funcfinal. Mind that you need n−n1

equations.

After running the code by entering main, the variables are stored in the memory

with their assigned names. For plotting the results you should consider the time

vector t. You can view the results quickly by calling plotrelax(t,x,n1), whereas t and

x are output from relax.m. For further information call help plotrelax. Eigenvalues

and eigenvectors of the linearized system at the steady state can be evaluated by

calling eigDASg.m. This routine can also handle differential algebraic systems.
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7.1.2 Code for main.m

% Version 3.0

% RELAXATION algorithm to solve infinite-horizon continuous time models.

%

% For further information contact Timo Trimborn, University of Hamburg

% or visit http://www.rrz.uni-hamburg.de/IWK/trimborn/relaxate.htm

clear all

disp([’Initialize Relaxation algorithm’]);disp([’ ’]);

tic

% Initialization of global parameter

globalpar

% Loading the parameter values

parini

% Loading the settings for the Relaxation algorithm, i.e. dimensions,

% boundary conditions etc.

relaxsetting

% Converting settings into a form suitable for relax.m

[guess, start, errorcode]=initrelax(@funcODE, @funcSTAT, n, n1, n3,

nu, y, M, statev);

% Execution of relaxation algorithm if no error

% occurred during initilization

if errorcode==0

[t, x]=relax(@funcODE, @funcSTAT, @funcINI, @funcfinal, n, n1, ...

n3, nu, guess, M, start, Endcond, maxit, tol, damp2, dampfac);

%Normalization of specified variables

for i=1:M

x(normal,i)=x(normal,i)./x(normal,end);

end;

% Extracting of variables and storing them

varex

end

%Calculation time

time=toc; timesec=mod(time,60); timemin=floor(time/60);

disp([’Calculation time: ’,num2str(time),’ seconds

(’,num2str(timemin),’ min ’,num2str(timesec),’ sec)’]);

7.1.3 Code for initrelax.m

function [guess, start, errorcode] = initrelax(funcODE, funcSTAT, n,
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n1, n3, nu, y, M, statev, t)

% Version 3.0

% Copyright by Trimborn, Koch, Steger

%

% COMMAND:

% [guess, start, errorcode] = initrelax(@funcODE, @funcSTAT, n,

% n1, n3, nu, y, M, statev, t)

%

% INPUT ARGUMENTS:

% funcODE: function which returns the right hand side of the

% differential equations whereas time and vector of variales are inputs

% funcSTAT: function which returns the residual of the static equations

% whereas time and vector of variables are inputs

% n: number of differential equations

% n1: number of initial boundary conditions

% n3: (optional, default value is 0) number of static equations

% nu: (optional, default value is 0.1) parameter for time transformation

% y: (optional, default value is vector 1) initial guess. If no time

% dependent guess is made,

% this should be a column vector, representing a guess for the steady

% state values of the variables (dimension N). If a time dependent

% guess is made, this should be a matrix maching to t, such that

% each column i is a guess for the variables at time t(i)

% M: (optional, default value is 50) number of mesh points

% statev: (optional, default value is 0) if statev=0, external file

% will be used for initial boundary conditions. if

% statev=ones(N,1), the initial steady state will be determined

% via shock.m. if this is a vector of positiv numbers, the state

% variables will be multiplied by the correspondent entry

% t: (optional) if a time vector is supplied, y should match for a

% time dependent guess (see above)

%

% OUTPUT ARGUMENTS:

% guess: initial guess, suitable for relax.m

% start: vector which indicates treatment of initial boundary conditions

% errorcode: 0 no error

% 1 not enough input arguments

% 2 funcODE or funcSTAT return non real values or vectors in

% wrong dimension

% 3 fsolve does not converge

%

% For further information contact Timo Trimborn, University

% of Hamburg

% or visit http://www.rrz.uni-hamburg.de/IWK/trimborn/relaxate.htm

N=n+n3; errorcode=0;

if nargin < 10, %if vector t is supplied together with a

preciseguess=0; %matrix y, a precise, time dependent guess
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else %will be constructed

preciseguess=1;

end

if nargin < 9,

statev=0;

start=0;

stateshock=0;

elseif statev’*statev==0;

start=0;

stateshock=0;

elseif sum((statev-1).^2)~=0

stateshock=1;

start=1;

else

stateshock=0;

start=1;

end

if nargin < 8, M=50; end if nargin < 7, y=ones(N,1); end if nargin <

6, nu=0.1; end if nargin < 5, n3=0; end if nargin < 4, errorcode=1;

end

%determination of guess for steady state values

if preciseguess==0

finalguess=y;

else

finalguess=y(:,M);

end

ode=feval(funcODE,inf,finalguess); if n3>0

stat=feval(funcSTAT,inf,finalguess);

res=[ode;stat]’*[ode;stat];

else

res=ode’*ode;

stat=[];

end

%Test, if funcODE and funcSTAT return real values

if ~(res<inf) | ~isreal(res)

disp(’ERROR: funcODE or funcSTAT return non real entries!’);

errorcode=2;

end

%Test, if funcODE and funcSTAT return vectors of right dimension

[test1 test2]=size(ode); [test3 test4]=size(stat); if

~((test1==n)&(test2==1)&(test3==n3)&(test4==1)) & n3>0

disp(’ERROR: funcODE or funcSTAT returns vector in wrong dimension!’);
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errorcode=2;

elseif ~((test1==n)&(test2==1))

disp(’ERROR: funcODE returns vectors in wrong dimension!’);

errorcode=2;

end

if (sqrt(res) < 10^(-10)) & errorcode==0

disp(’Guess for steady state is sufficiently good.’);

disp(’ ’);

if (stateshock==0) & (start==1)

disp([’Calculation of initial steady state values...’]);

[start,fval,exitflag]=fsolve(@attach,finalguess,optimset(’Display’...

,’off’,’MaxFunEvals’,1000000,’MaxIter’,100000),-1,funcODE,funcSTAT);

if exitflag>0

y=real(y);

disp([’Convergence achieved.’]);

disp([’ ’]);

else

disp([’No convergence for initial steady state values!’]);

errorcode=3;

end

elseif stateshock==1 & start==1

start=finalguess.*statev;

end

elseif errorcode==0

if ~(preciseguess==1 & start==0)

disp([’Calculation of final steady state values...’]);

[finalguess,fval,exitflag]=fsolve(@attach,finalguess,optimset(...

’Display’,’off’,’MaxFunEvals’,1000000,’MaxIter’,100000),inf,...

funcODE,funcSTAT);

if exitflag>0

y=real(y);

disp([’Convergence achieved.’]);

disp([’ ’]);

else

disp([’No convergence for final steady state values!’]);

errorcode=3;

end

if (stateshock==0) & (start==1) & (errorcode==0)

disp([’Calculation of initial steady state values...’]);

[start,fval,exitflag]=fsolve(@attach,finalguess,optimset(...

’Display’,’off’,’MaxFunEvals’,1000000,’MaxIter’,100000)...

,-1,funcODE,funcSTAT);

if exitflag>0

y=real(y);

disp([’Convergence achieved.’]);

disp([’ ’]);

else
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disp([’No convergence for initial steady state values!’]);

errorcode=3;

end

elseif stateshock==1 & start==1

start=finalguess.*statev;

end

end

end

guess=ones(M*N,1); if (preciseguess==0) & (errorcode==0)

for i=1:M

for ii=1:N

guess((i-1)*N+ii)=finalguess(ii);

end;

end;

elseif errorcode==0

tt=zeros(1,M);

tau=[0:1/(M-1):1];

for i=1:M

if tau(i)~=1

tt(i)=tau(i)/nu/(1-tau(i));

else

tt(i)=inf;

end;

end;

y=releval(tt,t,y);

for i=1:M

guess((i-1)*N+1:i*N)=y(:,i);

end

end

function attach=attach(x,t,funcODE,funcSTAT);

attach=[feval(funcODE,t,x);feval(funcSTAT,t,x)];

7.1.4 Code for relax.m

function [t, x] = relax(funcODE, funcSTAT, funcINI, funcfinal,...

n,n1, n3, nu, y, M, start, Endcond, maxit, tol, damp, dampfac)

% Version 3.0

% RELAXATION algorithm to solve infinite-horizon continuous time models.

%

% Copyright by Trimborn, Koch, Steger

%

% For further information contact Timo Trimborn, University of Hamburg

% or visit http://www.rrz.uni-hamburg.de/IWK/trimborn/relaxate.htm

%

% COMMAND:

% [t, x] = relax(@funcODE, @funcSTAT, @funcINI, @funcfinal, n, n1, n3, nu,
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% y, M, start, Endcond, maxit, tol, damp, dampfac)

%

% INPUT ARGUMENTS

% funcODE: function which returns the right hand side of the

% differential equations whereas time and vector of variales are inputs

% funcSTAT: function which returns the residual of the static equations

% whereas time and vector of variables are inputs

% funcINI: function which returns the residual of the initial

% boundary conditions (In case you want to determine them

% otherwise, nevertheless input @funcINI)

% funcfinal: function which returns the residual of the final

% boundary conditions (In case you want to determine

% them otherwise, nevertheless input @funcfinal)

% n: total number of differential equations

% n1: number of initial boundary conditions

% n3: (optional, default value is 0) number of static equations

% nu: (optional, default value is 0.1) parameter for time transformation

% y: (optional, default value is vector 1) vector of dimension M*Nx1,

% guess of the time path of the variables. the first N

% variables are the guess at time 0 and so on whereas the time

% vector is determined through M and nu

% M: (optional, default value is 50) number of mesh points

% start: (optional, default is start=0) vector with the values of the

% state variables at time 0. If input is start=0, external file

% funcINI will be used to determine the initial boundary conditions

% Endcond: (optional, default is Endcond=0) vector with determines,

% which differential equations will be used for constructing the

% final boundary conditions. If input is Endcond=0, external file

% funcfinal will be used to determine the final boundary conditions

% maxit: (optional, default is maxit=50) maximum number of iterations

% tol: (optional, default is tol=10^-9) tolerance for Newton-procedure

% damp: (optional, default is damp=1) Dampening factor of the Newton

% procedure. The dampening factor will be multiplied by the factor

% dampfac in every iteration until it equals 1. Therefore damp=1

% means no dampening.

% dampfac: (optional, default is dampfac=2)

%

% OUTPUT ARGUMENTS:

% t: time vector

% x: solution vector of variables through time: column i are

% the values at time t(i)

%***********************************************************************

%-----------------------------------------------------------------------

N=n+n3; %calculation of total dimension

if nargin < 16, dampfac=2; end %default values

if nargin < 15, damp=1; end if nargin < 14, tol=10^-9; end if nargin

< 13, maxit=50; end if nargin < 12, Endcond=0; end if nargin < 11,
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start=0; end if nargin < 10, M=50; end if nargin < 9, y=ones(N*M,1);

end if nargin < 8, nu=0.1; end if nargin < 7, n3=0; end

%The convergence criteria will be (deltay’.*deltay) normalized by the

%final steady state vector, therefore for components which are zero

%an increment has to be added to the final vector

crit=(y(end-N+1:end).*y(end-N+1:end)<eps*10)*10^-5;

crit=y(end-N+1:end)+crit;

%reset number of iterations

it=0;

%This vector contains the residuals from the nonlinear equations

E=zeros(N*M,1);

%This is a storing vector for the numerical calculation of the jacobian

fac=[];fac2=[];fac3=[];

%Later on, in this vector the sections of the jacobian matrix will be

%stored

Jac=zeros(N*(M-1),N); KonvKrit=tol+1;

%start of iteration+++++++++++++++++++++++++++++++++++++++++++++++

while KonvKrit>tol & it<maxit

if it==0; disp([’Start of main loop:’]); end;

it=it+1;

%Input of initial conditions and first static equation in E

if start==0

E(1:n1)=feval(funcINI,0,y(1:N));

else

E(1:n1)=y(1:n1)-start(1:n1);

end

if n3>0

E(n1+1:n1+n3)=feval(funcSTAT,0,y(1:N));

%creation of the first part of the jacobian due to the initial

%conditions and the first static equation

[Jacstat,fac2]=numjac(funcSTAT,0,y(1:N),feval(funcSTAT,0,...

y(1:N)),sqrt(eps)*ones(N,1),fac2,0);

else

Jacstat=[];

end

if start==0

[Jacini,fac3]=numjac(funcINI,0,y(1:N),feval(funcINI,0,y(1:N)),...

sqrt(eps)*ones(N,1),fac3,0);

Jacini=Jacini(1:n1,:);

else

Jacini=[eye(n1) zeros(n1,N-n1)];

end

Jacsml=[Jacini ; Jacstat];

for i=1:M-1

%numerical evaluation of H, SL and SR

%First, function H is evaluated

E(n1+n3+(i-1)*N+1:n1+n3+i*N)=feval(@funcH,i/(M-1),...
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y(i*N+1:i*N+N),y((i-1)*N+1:(i-1)*N+N),(i-1)/(M-1),n,N,nu,...

funcODE,funcSTAT);

%Jacobian block SR is calculated

[SRnum,fac]=numjac(@funcH,i/(M-1),y(i*N+1:i*N+N),feval(...

@funcH,i/(M-1),y(i*N+1:i*N+N),y((i-1)*N+1:(i-1)*N+N),...

(i-1)/(M-1),n,N,nu,funcODE,funcSTAT),...

sqrt(eps)*ones(N,1),fac,0,[],[],y((i-1)*N+1:(i-1)*N+N),...

(i-1)/(M-1),n,N,nu,funcODE,funcSTAT);

%Jacobian block SL can be computed out of SR

SLnum=SRnum-2*eye(size(SRnum));

SLnum(N-n3+1:N,:)=0;

%The block which has to be modified is composed

Jactmp=[Jacsml zeros(size(Jacsml)); SLnum SRnum];

%Transformation of actual part of the jacobian

[Jactmp E((i-1)*N+1:i*N+n1+n3)]=feval(@rrefmod,Jactmp , ...

E((i-1)*N+1:i*N+n1+n3));

%relevant areas are stored

Jac((i-1)*N+1:i*N,:)=Jactmp(1:N , N+1:2*N);

%One part is stored for the next passage of the loop

Jacsml=Jactmp(N+1:N+n1+n3,N+1:2*N);

end

%input of final boundary conditions in E

End=feval(funcODE,inf,y(N*M-N+1:N*M));

if n>n1 & Endcond~=0

E(N*M-n+n1+1:N*M)=End(Endcond);

elseif n>n1

E(N*M-n+n1+1:N*M)=feval(funcfinal,inf,y(N*M-N+1:N*M));

end

%Calculation of part of the jacobian due to final boundary conditions

if Endcond~=0 | n==n1

[Jacend,fac3]=numjac(funcODE,inf,y(N*(M-1)+1:N*M),...

feval(funcODE,inf,y(N*(M-1)+1:N*M)),sqrt(eps)*ones(N,1)...

,fac3,0);

else

[Jacend,fac3]=numjac(funcfinal,inf,y(N*(M-1)+1:N*M),...

feval(funcfinal,inf,y(N*(M-1)+1:N*M)),sqrt(eps)*ones(N,1)...

,fac3,0);

end

%Transforming final part of the jacobian

if n>n1 & Endcond~=0

Jactmp=[Jacsml ; Jacend(Endcond,:)];

elseif n>n1

Jactmp=[Jacsml ; Jacend];

else

Jactmp=Jacsml;
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end

[Jactmp E(N*(M-1)+1:N*M)]=feval(@rrefmod,Jactmp , E(N*(M-1)+1:N*M));

%Calculation of correction vector and correction of last block

deltay=E(N*M-N+1:N*M);

y(N*M-N+1:N*M) = y(N*M-N+1:N*M) - damp*deltay;

%Calculation of convergence criteria

KonvKrit=sqrt((deltay./(crit))’*(deltay./(crit)));

%Calculation of correction vector and correction of all other blocks

for i=M-1:-1:1

deltay=E((i-1)*N+1:i*N)-Jac((i-1)*N+1:i*N,:)*deltay;

y((i-1)*N+1:i*N) = y((i-1)*N+1:i*N) - damp*deltay;

%convergence criteria

KonvKrit=KonvKrit+sqrt((deltay./(crit))’*(deltay./(crit)));

end

%Calculation of convergence criteria

KonvKrit=KonvKrit/(M*N);

if damp<1

disp([’Iteration number: ’,num2str(it),...

’ convergence criteria: ’,num2str(KonvKrit),...

’ dampening factor: ’,num2str(damp)]);

else

disp([’Iteration number: ’,num2str(it),...

’ convergence criteria: ’,num2str(KonvKrit)]);

end

damp=min(dampfac*damp,1);

y=real(y);

end;

%Test of convergence

if KonvKrit > tol | not(isfinite(KonvKrit))

disp([’No convergence!’]);

elseif KonvKrit~=0

disp([’Convergence achieved.’]);disp([’ ’]);

end

%End of iteration++++++++++++++++++++++++++++++++++++++++++++++++++++

%Storing of variables in x and creation of actual time t

x=zeros(N,M); t=zeros(1,M); tau=[0:1/(M-1):1]; for i=1:M

x(:,i)=y((i-1)*N+1:i*N);

if tau(i)~=1

t(i)=tau(i)/nu/(1-tau(i));

else

t(i)=inf;

end;

end;

%***********************************************************************

%-----------------------------------------------------------------------
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function funcH = funcH(taua,ya,yb,taub,n,N,nu,funcODE,funcSTAT)

%ya: variables at knot k+1, yb: variables at knot k

%taua: time at k+1, taub: time at k

%The residuals of the differential equations and the static equations

%are composed to one vector. The differential equation is tranformed

%into a difference equation (midpoint rule)

time=((taua+taub)/2); if taua<1

funcH=[ya(1:n)-yb(1:n)-(taua-taub)*feval(funcODE,time/(nu*(1-time)),...

(ya+yb)/2)*1/nu/(1-time)^2; ...

feval(funcSTAT,taua/(nu*(1-taua)),ya);];

else

funcH=[ya(1:n)-yb(1:n)-(taua-taub)*feval(funcODE,time/(nu*(1-time)),...

(ya+yb)/2)*1/nu/(1-time)^2; ...

feval(funcSTAT,inf,ya);];

end

7.1.5 Code for rrefmod.m

function [A,b] = rrefmod(A,b)

% RREFMOD Reduced row echelon form.

% form: [B , x] = RREFMOD(A,b)

% The modified algorithm transforms the rows of the full rank

% (m x n) matrix A (m<=n) such that B has the following shape:

% B = IR with Identity matrix I and a (m x n-m) matrix R. In addition

% the algorithm performs the same operations with the vector b. Output

% is the transformed matrix B and corresponding vector x. For

% transforming the rows the algorithm includes a column pivot search.

%

% See RREF.

[m,n] = size(A); q=length(b); if q~=m

disp(’Warning: Wrong dimension of vector!’);

end

% Compute the default tolerance if none was provided.

tol = max(m,n)*eps*norm(A,’inf’);

% Loop over the entire matrix.

i = 1; j = 1; while (i <= m) & (j <= n)

% Find value and index of largest element in the remainder of column j.

[p,k] = max(abs(A(i:m,j))); k = k+i-1;

if (p <= tol)

% The column is negligible, zero it out.

A(i:m,j) = zeros(m-i+1,1);

j = j + 1;

else
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% Swap i-th and k-th rows.

A([i k],j:n) = A([k i],j:n);

b([i k])=b([k i]);

% Divide the pivot row by the pivot element.

b(i)=b(i)/A(i,j);

A(i,j:n) = A(i,j:n)/A(i,j);

% Subtract multiples of the pivot row from all the other rows.

for k = [1:i-1 i+1:m]

b(k)=b(k)-A(k,j)*b(i);

A(k,j:n) = A(k,j:n) - A(k,j)*A(i,j:n);

end

i = i + 1;

j = j + 1;

end

end
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7.2 Appendix on Section 5

A. List of equations

(Note: The time index has been dropped for simplicity.)

Euler equation

Ċi

Ci

=
(1 − τi) r

P I
− ρi − δ, i = 1, 2, .., 6

Composite private consumption

Ci = Ωi

9
∏

j=1

c
θi,j

i,j , Ωi > 0, 0 < θi,j < 1

PC
i Ci =

9
∑

j=1

pcjci,j

ch,i

ch,j

=
θh,ipcj

θh,jpci

, i, j = 1, 2, .., 9 and h = 1, 2, , .., 6

Consumption prices

PC
i =

1

Ωi

9
∏

j=1

(

pcj

θi,j

)θij

Private consumption demand functions

ci,j = θi,j

PC
i Ci

pcj

The same consumption demand function applies to government consumption G

and investment I.

Labor demand functions
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Li,j = (Aj)
(σj−1) V Aj

(

αi,jP
V A
j

wi

)σj

Capital demand

Kj = (Aj)
(σj−1) V Aj









(

1 −
6

∑

i=1

αi,j

)

P V A
j

r









σj

Value-added price

P V A
j =

1

Aj

[

6
∑

i=1

(wi)
(1−σj) (αi,j)

σj + r(1−σj)

(

1 −
6

∑

i=1

αij

)σj
]

1

1−σj

CES Armington function

Xi = Φi

[

εi (Mi)
γi−1

γi + (1 − εi) (Di)
γi−1

γi

]

γi
γi−1

Φi > 0, 0 < εi < 1, γi > 0, γi 6= 1, i = 1, 2, ..., 9

PX
i Xi = PM

i Mi +
(

1 + vatDi
)

PD
i Di

Di

Mi

=

[

(1 − εi) PM
i

εi (1 + vatDi ) PD
i

]γi

Import demand function

Mi = (Φi)
(γi−1) Xi

(

εiP
X
i

PM
i

)γi

Domestic good demand function

Di = (Φi)
(γi−1) Xi

[

(1 − εi) PX
i

(1 + vatDi ) PD
i

]γi

Composite CES Armington price

PX
i =

1

Φi

{

(

PM
i

)(1−γi)
(εi)

γi +
[(

1 + vatDi
)

PD
i

](1−γi)
(1 − εi)

γi

} 1

1−γi

Cobb-Douglas total imports
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Mi = ΦM
i

(

MEU
i

)εEU
i

(

MRW
i

)εRW
i

ΦM
i > 0, 0 < εEU

i , εRW
i < 1, εEU

i + εRW
i = 1, i = 1, 2, .., 9

PM
i Mi = PMEU

i MEU
i + PMRW

i MRW
i

MEU
i

MRW
i

=
εEU

i PMRW
i

εRW
i PMEU

i

Regional import demand functions

M j
i = εj

i

PM
i Mi

PM j
i

, i = 1, 2, .., 9, j = EU,RW

Import composite price

PM
i =

1

ΦM
i

(

PMEU
i

εEU
i

)εEU
i

(

PMRW
i

εRW
i

)εRW
i

Import prices

PM j
i = PWMi

(

1 + tmj
i

) (

1 + vatMi
)

, j = EU,RW

CET function

Qi = χi

[

λi (Ei)
1+Ψi
Ψi + (1 − λi) (Di)

1+Ψi
Ψi

]

Ψi
1+Ψi

χi > 0, 0 < λi < 1, Ψi > 0, i = 1, 2, ..., 9

PQ
i Qi = PE

i Ei + PD
i Di

Di

Ei

=

[

λiP
D
i

(1 − λi) PE
i

]Ψi

Export supply function
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Ei =
Qi

(χi)
(1+Ψi)

(

PQ
i

)Ψi

(

PE
i

λi

)Ψi

Domestic good supply function

Di =
Qi

(χi)
(1+Ψi)

(

PQ
i

)Ψi

(

PD
i

1 − λi

)Ψi

Composite output price

PQ
i =

1

χi

[

(

PE
i

)(1+Ψi)

(λi)
Ψi

+

(

PD
i

)(1+Ψi)

(1 − λi)
Ψi

]
1

1+Ψi

CET composite exports

Ei = χE
i

[

λEU
i

(

EEU
i

)

1+Ψ
E
i

ΨE
i + λRW

i

(

ERW
i

)

1+Ψ
E
i

ΨE
i

]

Ψ
E
i

1+ΨE
i

χE
i > 0, 0 < λEU

i , λRW
i < 1, λEU

i + λRW
i = 1, > 0, i = 1, 2, , .., 9

PE
i Ei = PEEU

i EEU
i + PERW

i ERW
i

EEU
i

ERW
i

=

(

λRW
i PEEU

i

λEU
i PERW

i

)ΨE
i

Export supply functions

Ej
i =

Ei

(PE
i )

ΨE
i (χE

i )(
1+ΨE

i )

(

PE
i

λj
i

)ΨE

Export composite price

PE
i =

1

χE
i

[

(

PE
i

)1+ΨE
i

(χE
i )

ΨE
i

+

(

PD
i

)1+ΨE
i

(χD
i )

ΨE
i

]

1

1+ΨE
i
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Export prices

PEj
i = PWEi, j = EU,RW

VAT on domestic goods

V ATD =
9

∑

i=1

vatDi PD
i Di

VAT on imports

V ATM =
9

∑

i=1

∑

j=EU,RW

vatMi
(

1 + tmj
i

)

PWMiM
j
i

Import duties

TM =
9

∑

i=1

∑

j=EU,RW

tmj
iPWMiM

j
i

Income tax

TY =
6

∑

i=1

τi(wiLi + rKi + GTi + FTi)

Government transfer to households

TR =
6

∑

i=1

GTi
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B. Glossary

Ci: total consumption of household i
PC

i : consumption price (index) of household i
τi: income tax rate applying to household i
ρi: household i’s discount rate
Ωi: shift parameter in the Cobb-Douglas consumption function

of household i
ci,j: household i’s consumption of good j
pcj: price of consumption good j
θi,j: share parameter in the Cobb-Douglas function of

household i for good j
I: aggregate investment
P I : price index of aggregate investment
G: aggregate government consumption
PG: price index of aggregate government consumption
δ: deprecation rate of capital
Li,j: sector j’s demand for labor of type i
Kj: sector j’s demand for capital
Aj: shift parameter of the value-added production function in sector j
σj: elasticity of substitution between primary inputs in sector j
αi,j: share parameter of labor of type i used in sector j
V Aj: sector j’s value-added production
P V A

j : sector j’s value-added price
wi: nominal wage rate of labor of type i
r: nominal return to capital
Xi: domestic absorption of sector i
Mi: total imports of sector i
Di: domestic production of sector i
Φi: shift parameter in the CES Armington function of sector i
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εi: imports share parameter in the CES Armington
function of sector i

γi: sector i’s elasticity of substitution between imports
and domestically-produced output

PX
i : composite price of domestic absorption of sector i

PM
i : import price of sector i

PD
i : price of sector i’s domestically-produced good

vatDi : VAT rate on sector i’s domestically-produced good

M j
i : imports of sector i from region j

ΦM
i : shift parameter in the imports CES function of sector i

εj
i : region j’s share parameter in the imports

CES function of sector i

tmj
i : import tax rate applying to sector i’s imports from region j

vatMi : VAT rate on sector i’s imported goods
PWMi: sector i’s world price of imports
Qi: total output of sector i

PQ
i : composite output price of sector i

Ei: total exports of sector i
PE

i : export price of sector i
χi: shift parameter in the CET function of sector i
λi: export share parameter of sector i
Ψi: elasticity of transformation between exports and

domestically-sold output of sector i

Ej
i : exports of sector i to region j

χE
i : shift parameter in the CET exports function of sector i

λj
i : share parameter of exports to region j in sector i

ΨE
i : elasticity of transformation between exports to different

regions of sector i

PEj
i : price of exports to region j of sector i

PWEi: world price of exports of sector i
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