
Reflective Steps: A Collaborative Learning Oriented Approach to
Software Development and Process Improvement

Dissertationsschrift zur Erlangung des Grades eines
Doktors der Naturwissenschaften

am Department Informatik
an der Fakultät für Mathematik, Informatik und Naturwissenschaften

der Universität Hamburg

Vorgelegt von
Tesfaye Biru

aus Addis Abeba, Äthiopien

Okobter 2008

Betreut von:
Prof. Dr. Christaine Floyd, Universität Hamburg

 ii

Gutachter/innen:

Professor Dr. Christiane Floyd (Universität Hamburg)
Professor Dr. Ingrid Schirmer (Universität Hamburg)
Professor Dr. Gustav Pomberger (Johannes Kepler Universität, Linz)

Tag der Disputation: 17 Oktober, 2008

 iii

Dedicated to

My postgraduate students and fellow software practitioners

 iv

ACKNOWLEDGMENT

“ If I have seen further, it is by standing on the shoulders of others” (Sir Isaac Newton)

As with any piece of research undertaking, in the course of conducting this piece of

intellectual research, I have been assisted (in one form or another) by many people. I

would like to deeply thank those without whom this study would not have matured.

This research gave me a unique and challenging opportunity, as well as the privilege, to

meet and work with giants and paradigm pioneers in the field of software engineering. In

this connection, first and foremost, I would like to thank Professor Dr. Christiane Floyd

for challenging me to start a PhD research and providing me with required guidance for

successful completion. I would like to gratefully acknowledge the stimulating, insightful

and resourceful discussions and conversations we had in the course of this work both

during my stays in Hamburg and her visits in Addis. Particularly, her insight on

scholarship and methodical introspection, as well as her instinct for kindness, charity and

love had been very inspirational and supportive through and beyond the duration of the

research. Likewise, I am deeply thankful to my reviewers, Professor Dr. Ingrid Schirmer

and Professor Dr. Gustav Pomberger for accepting and critically reviewing my thesis on

top of their busy academic schedules. I am also extremely grateful for their clarifying

criticisms, encouragement and comforting treatment during and after the defense.

My special thanks to Professor Wolfgang Menzel for accepting to be the Head of the PhD

Committee and to all at the University of Hamburg who made arrangements for the

defense to take place in the form of Video conferencing.

I would like to thank the Ministry of Capacity Building at Addis Ababa for financing my

visits to Hamburg. I am extremely grateful to the Management of Addis Ababa

University, and Civil Service College of Ethiopia, for understanding the difficult situation

I was in and facilitating special arrangement to enable me to defend my work through

video conferencing.

 v

My debt to my wife, professional colleague and partner Dr. Rahel Bekele is beyond

measure. Thank you Rahel for spending considerable time reading, commenting and

editing the manuscript. Thank you for standing by me, giving me love, encouragement,

and bearing patiently with me and the family throughout the challenging and difficult

times. Thank you for making difficult things easy every step of the way, for being there

for me and my responsibilities, no matter what. I just cannot thank you enough.

My software development experience has been rewarding because of the caliber of

people with whom I have been fortunate enough to work with. In this connection, I owe

my gratitude to all my former excellent postgraduate students (now professional

colleagues) and to Ato Solomon Yewondwossen and Ato Mebrahtu H/Mariam.

To Dr. Hailu Ayele, Professor Nigussie Tebeje, Professor Mogessie Ashenafi, Professor

Eshetu Wencheko, Dr. Tetemke Mehari, Professor Sebsibie Demissew and Ato

Mulushewa Mulat, whose friendships and advice, I have come to value most. Thank you

for your ever comforting, intimate and encouraging support.

To Aida Bahta, Martha Yifiru, Berhanu Beyene and Solomon Teferra thank you for your

hospitality and kindness during my extended stay in Hamburg.

My beloved children Tibebu, Elshadai, Tehut and Bezawit, thank you for your love, for

understanding my absence from home during repeated trips abroad, lost weekends, and

odd working hours.

To Tsehay Gashaw and Tigist Gebru, thank you for your motivation, encouragement and

love when it was most required.

I am forever indebted to my mother Geremush Bogale for instilling an ethic of hard work,

courage, endurance and educational achievement in me, and also for her enduring love.

Tesfaye Biru

October, 2008

 vi

ABSTRACT

This research attempted to explore the possibility of using context sensitive methodical

approaches to address the software development challenges in Ethiopia. Based on

extensive case studies and surveys supported by reflections on the researcher’s years of

practical experience in both teaching and practicing software development, the situation

in Ethiopia including the challenges faced by practitioners were documented. According

to the findings, the software development situation is mostly dominated by failure cases

characterized by: unrealized benefits, unsatisfied users, substantial budget and time

overruns far beyond expected, frustrated developers, etc.

Among the main causes identified for the failures is the oversize gap between demand

and supply. On the demand side, most outsourced projects: are very large (by local

standards); involve the development of multiple applications systems for specific

organizations; involve business process redesign as a front-end process to the software

development; and operate in unstable organizational environments. On the supply side,

most of the software development firms: are inexperienced and small; follow ad hoc

processes and methods; lack competence in project management and soft-skills; and are

affected by very high staff turnovers. There are inadequate educational and training

support infrastructure and absence of home-grown or contextualized methods, as well as

absence of national standards or guidelines.

In this research, methodical approaches that address contextual issues on both demand

and supply sides are considered to tackle the gap. On the demand side, strategies around

project design that involve scoping, prioritizing, outsourcing and the like were

considered. On the supply side, competence development measures, at both

organizational level (software process improvement) and individual level (learning and

training mechanisms), were considered. Most importantly, institutionalization of

collaborative approaches between developers and users, based on transformational

participation principles, and feedback-based reflective learning, were considered.

 vii

The effort resulted in the development of a comprehensive methodical approach known

as Reflective Steps. The approach evolved from the process of tailoring the STEPS model

and complementary aspects of contemporary methods and processes based on the

contextual issues identified. In the process, home-grown collaborative techniques and

proven practices in the areas of business process redesign for software development and

project management were incorporated.

As proposed, Reflective Steps provides an explicit treatment of software development

activities which are considered important to the local setting but either missing or

implicitly treated in popular methods and processes. An integrated development cycle

that combines project design, application production, and application embedment and use

aspects is proposed. Reflective Steps promotes the process of discovering suitable

processes and methods for a project in the course of developing the software itself. As

such, it uses a contextualized approach as a starter and proceeds with a step-by-step

improvisation process through collaborative reflective learning based project experience.

For this purpose, a multi-level collaborative reflective learning model is introduced by

tailoring organizational learning and communication models. Combination of single-loop

learning and double-loop learning based on reflections on process, progress, product and

context are proposed. Each learning cycle involved action-reflection-improvement. A

Reflective Steps workshop technique is also developed as a learning platform.

Although the approach for the most part evolved from years of experience in teaching

and practice, attempts were also made as part of this research to further experiment with

aspects of Reflective Steps in real-life project environments. Encouraging results were

obtained in the field experiments conducted both in software development project and in

teaching at postgraduate studies. In particular, the experiment in the teaching area showed

promising results and optimism on how Reflective Steps could be used to better educate

students with practical skills through the integration of real-life problem scenarios into

software engineering curriculum. Taken together, with further work, it is expected that

Reflective Steps will gradually achieve wider acceptance and contribute to increased use

of methodical approaches that would in turn contribute to the improvement in the

productivity of project teams and quality of products in the local setting.

 viii

ZUSAMMENFASSUNG

Diese Forschungsarbeit stellt einen Versuch dar, kontextsensitive methodische Ansätze

zu nutzen, um den Herausforderungen der Softwareentwicklung in Äthiopien zu

begegnen. Auf der Grundlage von Langzeit-Fallstudien und Umfragen, untermauert

durch Reflexion über die langjährigen praktischen Erfahrungen des Forschers in Lehre

und Praxis der Softwareentwicklung, wird die Situation in Äthiopien und die

Herausforderungen für die Praktiker dokumentiert. Die Untersuchung macht deutlich,

dass die Lage der Softwareentwicklung vorwiegend durch das Scheitern von Projekten

dominiert wird. Kennzeichnend sind: nicht eingetretene Vorteile, unzufriedene Benutzer,

substantielles Überschreiten von Budget und Zeit weit über alle Erwartungen, frustrierte

Entwickler etc.

Als einer der wichtigsten Gründe für das Scheitern wurde die übergroße Lücke zwischen

Nachfrage und Angebot identifiziert. Auf der Nachfrageseite sind die meisten in Auftrag

gegebenen Projekte sehr groß (für lokale Verhältnisse). Sie beinhalten die Mehrfach-

Entwicklung von Anwendungssystemen, die auf spezielle Organisationen zugeschnitten

sind, und die Neugestaltung von Geschäftsprozessen im Vorfeld der

Softwareentwicklung. Die Systeme werden in einem instabilen Organisationsumfeld

betrieben. Auf der Angebotsseite sind die meisten Softwarefirmen unerfahren und klein;

sie befolgen Ad-Hoc-Prozesse und -Methoden, haben wenig Kompetenz im Management

und in Soft-Skills, und leiden unter einer hohen Personalfluktuationsrate. Die

Ausbildungs- und Trainingsinfrastruktur zu ihrer Unterstützung ist inadäquat, selbst

entwickelte oder kontextualisierte Methoden fehlen ebenso wie nationale Standards und

Richtlinien.

Um die Lücke zu überwinden, werden in dieser Arbeit methodische Ansätze behandelt,

die Kontextfragen auf der Nachfrage- und der Angebotsseite adressieren. Auf der

Nachfrageseite geht es um Strategien im Umfeld des Projekt-Design: um das Abgrenzen

von Projekten, das Setzen von Prioritäten, die Vergabe von Aufträgen und ähnliches. Auf

der Angebotsseite werden Maßnahmen zur Kompetenzentwicklung auf der

Organisationsebene (Software Process Improvement) und der individuellen Ebene (Lern-

 ix

und Trainingsansätze) behandelt. Vor allem wird der Institutionalisierung von Ansätzen

zur Zusammenarbeit von EntwicklerInnen und NutzerInnen auf der Grundlage von

transformationsorientierten partizipativen Prinzipien und reflektivem Lernen in

Rückkopplungszyklen eine hohe Bedeutung zugemessen.

Ergebnis der Forschung ist die Entwicklung eines umfassenden Methodenansatzes unter

dem Namen Reflective Steps. Dieser Ansatz hat seinen Ursprung im STEPS-Modell, das

angepasst und um komplementäre Aspekte von aktuellen Methoden und Prozessen auf

der Grundlage der identifizierten kontextuellen Anliegen angereichert wurde. In diesem

Prozess wurden selbst entwickelte Techniken der Zusammenarbeit und bewährte

Praktiken des Geschäftsprozessentwurfs für Softwareentwicklung und

Projektmanagement einbezogen.

Reflective Steps bietet eine explizite Behandlung von Aktivitäten der

Softwareentwicklung, die im lokalen Kontext bedeutsam erscheinen, aber in verbreiteten

Methoden und Prozessen entweder fehlen oder nur implizit behandelt werden. Ein

integrierter Entwicklungszyklus wird vorgeschlagen, der Projekt-Design, die

Entwicklung und Einbettung von Anwendungen sowie Aspekte der Nutzung umfasst.

Reflective Steps unterstützt den Prozess, geeignete Vorgehensweisen und Methoden für

ein Projekt im Verlauf der Softwareentwicklung selbst herauszufinden. Als

Ausgangpunkt dafür verwendet es einen kontextualisierten Ansatz und setzt sich fort in

kollaborativem, reflektivem Lernen auf der Basis von Projekterfahrungen. Zu diesem

Zweck werden Ansätze zum Verständnis von Lernen und Kommunikation in

Organisationen angepasst, um ein Modell für kollaboratives, reflektives Lernen auf

mehreren Ebenen einzuführen. Vorgeschlagen wird die Kombination von Lernen in

einfachen und doppelten Rückkopplungsschleifen auf der Grundlage von Reflexion über

Prozess, Fortschritt, Produkt und Kontext. Jeder Lernzyklus beinhaltet Aktion-Reflexion-

Verbesserung. Als Forum für kollaboratives Lernen wird eine Reflective Steps

Workshop-Technik vorgestellt.

Obwohl sich der Ansatz in großen Teilen auf langjährige Erfahrung in Lehre und Praxis

gründet, wurden im Rahmen dieser Forschung auch weitere Experimente mit Aspekten

 x

von Reflective Steps durchgeführt. In der experimentellen Anwendung bei

Softwareentwicklungsprojekten und der postgraduierten Lehre wurden ermutigende

Ergebnisse erzielt. Insbesondere führten die Experimente im Lehrbereich zu viel

versprechenden Ergebnissen und zu optimistischen Einschätzungen darüber, wie

Reflective Steps genutzt werden könnte, um echte Problem-Szenarien ins Software

Engineering einzubeziehen und Studierende praxisgerechter auszubilden.

Insgesamt ist zu erwarten, dass Reflective Steps nach entsprechender Weiterentwicklung

allmählich eine breitere Akzeptanz gewinnen und zur vermehrten Anwendung von

Methoden beitragen wird, welche die Verbesserung der Produktivität von Projektteams

und die Qualität der Produkte im lokalen Kontext erhöhen.

 xi

TABLE OF CONTENTS
 Page

ACKNOWLEDGMENT ... iv
ABSTRACT.. vi
ZUSAMMENFASSUNG ... viii
LIST OF TABLES ... xiv
LIST OF FIGURES .. xv
ACRONYMS .. xvi

1. Setting the Scene ... 1

1.1 Software Development Approaches .. 2
1.2 Software Development Situation in Ethiopia ... 12

1.2.1 The Context .. 12
1.2.2 Software Development Practice... 16

1.3 Research Questions and Approach ... 18
1.3.1 The Research Questions .. 18
1.3.2 The Research Approach ... 21

1.4 Summary of Findings, Results and Contributions 24
1.5 Organization of the Report .. 27

2. Software Practice in Ethiopia: Case Stories... 28

2.1 The Researcher.. 29
2.2 Stories of Selected Software Development Cases ... 31

2.2.1 The Case of Organization A... 33
2.2.2 The Case of Organization B ... 44
2.2.3 The Case of Organization C... 51

2.3 Chapter Closing .. 63

3. Software Practices and Emerging Demands in Ethiopia: a Survey...................... 65

3.1 Survey Instrument and Participants for the Assessment of Practices 65
3.1.1 Questionnaire Design.. 65
3.1.2 Data Collection .. 67

3.2 Discussion of Survey Results.. 69
3.2.1 Profiles of Respondents .. 70
3.2.2 Types of Development Projects and Organizational Environment.... 71
3.2.3 Use of Methods .. 72
3.2.4 Other Performance Inhibiting Factors ... 75

3.3 Emerging Demands... 84
3.3.1 The eGovernment Initiative ... 85
3.3.2 Undersupplied Tendering Process and Inadequate Project
Organization .. 87
3.3.3 Integration of Software Development with Organizational Reform.. 90
3.3.4 Organizational Embedding and Sustainability 93

3.4 Chapter Closing .. 95

 xii

4. Further Discussion on the Context and Approaches Explored 96
4.1 Characterization of the Context .. 96
4.2 Solution Framework: Critical Issues to be Tackled 99
4.3 Basic Considerations in Addressing Individual Competencies 103

4.3.1 Awareness of the Paradigm Shift in Software Development
Approaches .. 103
4.3.2 Application Domain Knowledge .. 104
4.3.3 Social Skills and Knowledge Interests .. 106
4.3.4 Methods Adapted Toward Reality .. 109

4.4 A Collaborative Approach to Business Process Redesign......................... 113
4.4.1 Why Business Process Redesign .. 113
4.4.2 First Attempt at AAU ... 116
4.4.3 Second Attempt at Organization C ... 120

5. Reflective Steps: the Proposed Approach... 133

5.1 The Premise ... 134
5.1.1 The Thesis .. 134
5.1.2 Theoretical Perspectives ... 137
5.1.3 The Base Model – STEPS... 146

5.2 Reflective Steps: Overview... 150
5.3 Project Design.. 153

5.3.1 Setting Project Requirments .. 154
5.3.2 Setting Priorities and Portfolio Management..................................... 157
5.3.3 Partner Selection & Contract Negotiaiton ... 159
5.3.4 Collaborative Development Team ... 166

5.4 Application Production .. 171
5.4.1 Technical Planning.. 173
5.4.2 Increment Production... 177

5.5 Application Use ... 184
5.6 Post-mortem Assessment.. 189

6. Reflective Steps for Process Improvement ... 194

6.1 Project-based Process Improvement... 194
6.2 Learning in Work Contexts ... 200
6.3 Learning and Process Improvement in Reflective Steps........................... 204

6.3.1 Collaborative Reflective Learning... 205
6.3.2 Reflection Cycles and Levels of Learning... 208
6.3.3 Reflection Topics at Various Levels .. 212
6.3.4 Reflective Steps Workshops ... 216

7. Experiences on On-going Projects with Reflective Steps 224

7.1 Recent Experiences in Teaching System Development 224
7.1.1 Background and Motivation .. 224
7.1.2 The Project in Brief .. 227

7.2 Ongoing Experience at Organization B .. 236

 xiii

8. Conclusion ... 247

8.1 Industry (Global) Context .. 248
8.2 National Context ... 249
8.3 Solution Design Considerations ... 251
8.4 Results So Far.. 253
8.5 Overall Observation.. 255
8.6 Future Work.. 257

REFERENCES.. 259

APPENDICES... 274

Appendix – 1: Survey Questionnaires... 274
Appendix 1A: Questionnaire for Software Development Professionals 274
Appendix 1B: Questionnaire for Software Companies 285

Appendix – 2: Sample Source Programs .. 293
Appendix – 3: Insurance design specifications on paper and Email exchanges . 301
Appendix - 4: Project Management Tools used for teaching and projects 306

Appendix 4A: Communications Plan ... 306
Appendix 4B: Change Control Form.. 307
Appendix 4C: Risk Management Plan.. 308
Appendix 4D: Issue Management Log ... 309
Appendix 4E: Meeting/Workshop Evaluation Form .. 310

 xiv

LIST OF TABLES

 Page

Table 1: Profiles of respondents by Field of study 70

Table 2: Profiles of respondents by Year of Experience 70

Table 3: Modeling Techniques and programming languages used by Companies 72

Table 4a: Professionals view on reasons for delays in project execution 76

Table 4b: Companies’ view on reasons for delays in project execution 76

Table 5: Factors that negatively affected performance 77

Table 6: Focus of professional Training Programs 79

Table 7: Summary of contextual features and corresponding strategies proposed 252

 xv

LIST OF FIGURES

Page

Figure 1: AN Construction Activity List 124

Figure 2: AN Construction Process Mapping 125

Figure 3: The STEPS model for software development 147

Figure 4: Reflective Steps: Context Process Diagram 151

Figure 5: Reflective Steps – Project Design 154

Figure 6: A spiral model of the software acquisition process 160

Figure 7: Reflective Steps - Application Production 172

Figure 8: Reflective Steps - Application Use 187

Figure 9: Reflective Steps – Overview of the Integrated Model 190

Figure 10: Reflective Steps – Overview of Project Design 191

Figure 11: Bateson’s view of Learning Phenomenon 203

Figure 12: Reflective Steps: Multi-Level Collaborative Learning Cycle 208

Figure 13: Multi-Level Collaborative Reflection Topics 212

 xvi

ACRONYMS

AAU Addis Ababa University
AC Abstract Conceptualization
AE Active Experimentation
CCB Customer Care and Billing
CE Concrete Experience
CIBAS Complete Insurance Business Application Software
CMM Capability Maturity Model
DLL Double Loop Learning
EICTDA Ethiopian ICT Development Agency
ESTC Ethiopian Science and Technology Commission
ETC Ethiopian Telecommunication Corporation
ETHICS Effective Technical and Human Implementation of Computer Systems
IBAS Integrated Business Application Software
IFMS Integrated Financial Management System
JAD Joint Application Development
NCC National Computer Center
NGPM Next Generation Process Model
PMBOK Project Management Body of Knowledge
RO Reflective Observation
RPG Report Program Generator
RSD Reflective System Development
RUP Rational Unified Process
SLL Single Loop Learning
SSM Soft Systems Methodology
STEPS Software Technology for Evolutionary Participative System Development
TIN Tax Identification Number
TOR Terms of Reference
UCC United Computer Consultants
UNIC United Insurance Company

CHAPTER ONE

1. Setting the Scene

The overall purpose of this research is to explore the possibility of developing suitable

approaches to address the software development challenges in Ethiopia by tailoring

publicly available methods and process models.

In today’s dynamic and competitive business environment, software has become a critical

organizational resource and economic commodity. On the other hand, the development of

large software systems has become a rather complex business which is encumbered by

many problems (Pomberger, 2006). Given such complexity, although not considered as a

panacea for all related problems, there is a general acknowledgement that the use of some

kind of methods to guide the process of development would help in tackling aspects of

these problems. To this end, we see now many methods and process models that are

developed by the software engineering community and made publicly available for use.

These methods range from those traditional prescriptive/rigid and technically oriented

approaches (often criticised for not being sensitive to project contexts and the human

dimension) to the more recent people-oriented and participatory approaches proclaimed

to address the perceived as well as acknowledged deficiencies of the traditional ones.

Most of the publicly available software methods and process models have originated

from, and are being intensively used in the contexts of, developed countries (Korpela,

2001; Korpela, 1998). As such, they may not be effective if applied quite literally to local

situations. Needless to say, the differences between the environmental/contextual as well

as project situations in these countries and that of Ethiopia are too obvious. There are

differences in application requirements, jobs and work environments, attitudes and

behaviours in the workplaces, organizational structures, etc.

On the other hand, system development methods and process models that have either

originated from, or been customized for use in, the local environment are generally

lacking. What is more, the extent to which the publicly available approaches (developed

and used elsewhere) lend themselves to adjustability to fit into the local contexts has not

 2

been adequately explored. In fact, very little is generally known about the local software

development situation.

Within the foregoing as a framework, this chapter attempts to set the scene for this work.

It starts by reviewing related literature on software development approaches. This is

followed by summarizing the software development situation in Ethiopia. With these as

background, the research questions and the research approach followed to address the

research questions are introduced. This is followed by the presentation of the summary of

findings and results from the research endeavor. The last section describes the

organization of the research report.

1.1 Software Development Approaches

The evolution of the work on the design of systems development approaches1 over the

years has concurrently proceeded in two dimensions: process models and methods.

According to tradition (Boehm, 1988), while the process model dimension concerns itself

with naming, describing and sequencing of activities involved in a typical software

development project, the methods dimension deals with the techniques of performing the

activities identified in the process models. In published literature, while the former is

often discussed under such themes as phased/linear and/or cyclic/iterative, descriptive

and/or prescriptive, etc., the latter is discussed under such software modeling and

specification themes as formal approaches, structured and object-oriented approaches.

What is more, it is not uncommon to find these two dimensions mixed with each other as

exemplified by: Pomberger’s Prototyping (as an activity and a technique) (Pomberger

and Blaschek, 1996 as cited in Pomberger, 2006), Boehm’s WinWin Spiral (Boehm,

1998) which introduced methods within the original process model, and object-oriented

analysis and design approaches. In general terms, there is abundant literature published

on these issues over the years. Many research investigations and numerous software

1 To avoid unnecessary confusion, throughout this work the terms ‘approach’ and ‘method’, when used in
the context of ‘software approach’ and ‘software method’ respectively, are used interchangeably to refer to
both methods and processes combined – in other words, to refer to any collection of models, techniques and
tools which help to make software development more systematic. The use of the term “methodology” is
deliberately avoided unless otherwise felt necessary (when it is used, it connotes the “study of method”).
The term ‘methodologist’ is however used to refer to workers on methods and process models.

 3

engineering guidebooks compare and contrast these issues. Readable accounts can be

found, for instance in (Austin and Paulish, 1994; Mcdermid, 1993; Green and DiCaterion,

1998; Boehm, 1988; Pomberger, 2006; Wieringa 1998; Loy, 1990; Scacchi, 2002;

Abrahamsson, 2002).

On the methods front, closer examination of published literature (Austin and Paulish,

1994; Curtis, 1992:83) reveals that much of the earlier work was focused heavily on

standardizing format and specifying aspects of software development. Serious attempts

were made to address technical problems of creating standard languages (textual,

graphical or mathematical) and technical artifacts that permit the use of unambiguous

representation and specification of processes that can be rigorously, and perhaps

automatically, verified. These are exemplified by the various formal languages, CASE

tools, UML, reusable software components, etc.

As formalizations were developed to an extent, new challenges from the one-sided focus

on formalization-related methods discourse emerged.

“Despite some progress in the development of more powerful tools and

mathematically based specification techniques, the results have often been less

promising than expected. Still, the quality of software is only revealed to its full

extent once it is in use. Software projects fail to live up to the expectations of

developers and managers or of the domain experts who ultimately have to use the

product” (Keil-Slawik, 1992: 168).

“A software development process can not be fully formalized because it is a

social process: human/task/technology systems are developed by people for

people, and that demands high social competence and team work, which can not

be fully formalized” (Pomberger, 2006).

As a result, a new set of demands emerged: more involvement of stakeholders in the

development process to enhance quality and increase level of use, flexibility in handling

changing requirements, better speed in the delivery of products, and the inclusion of

measures to determine risks and effectiveness, among others. In this context,

 4

organizational and communication problems became critical. Problems related to the

human aspect of making appropriate use of process representations, to make them helpful

tools rather than bureaucratic obstacles, required more attention.

In this connection Floyd (1992:25) wrote,

 “software developers get little guidance for understanding the use-situation,

where people are carrying out their work with the help of the computer. … An

adequate consideration of the embedding of computer programs in the human

world does indeed require us to go scientifically beyond the formal and

mathematical methods provided for in traditional computer science, and to open

ourselves to approaches from the humanities.”

For this purpose, Floyd argued, by starting with the already developed approaches

elsewhere for understanding human learning and communication, individual and

cooperative work, and the interrelationship between technology and organizations, the

software engineering community must face the task of tailoring suitable approaches to the

needs of the software engineering discipline.

As Rauterberg and Strohm (1992) noted, one of the principal problems of traditional

software development lies in the fact that those technical people who have been primarily

involved in software development to date have not been willing to recognize that

software development is, in most cases, mainly a question of task, job and/or

organizational planning. To address this problem effectively, “we must start learning to

plan jointly technology, organization and the application of human qualification. ..

Technology should be viewed as one way of providing the opportunity to organize our

living and working environments in a manner which is better suited to human needs.”

(Rauterberg and Strohm, 1992:128).

According to Bjerknes et al. (1990), any system development project itself is an

organization. It is a collective undertaking that involves many persons and groups

requiring cooperation, timeliness and management. To be successful, such projects

(particularly the large ones) have to create and maintain temporary organizational

 5

networks linking users to system developers, decision makers to workers, and consultants

to clients. Therefore, in dealing with such applications, both technical and organizational

competences are key factors.

For these reasons, the human and social roles in software development, an area that was

not explored enough by the software engineering community traditionally, started to form

one of the central topics in software engineering. Today, organizational issues and such

social aspects as cooperative, participative, learning-oriented and adaptive working

techniques are among the most explored in the field of software engineering to meet the

challenge from the industry and users (Floyd, 1987; Mathiassen and Nielsen, 1989;

Floyd, 1992; Boehm and Bose, 1994; Pomberger, 2006; Cockburn, 2006;).

Likewise on the process model front, efforts to bring control and discipline to what had

previously been a rather unstructured and chaotic process, resulted in the introduction of

systematic approaches. Guided by traditional engineering practices, the earlier versions of

systematic approaches introduced structured, linear time-delineated stage models and

defined milestones in software development process that included: problem/requirements

analysis, conception, specification and planning, programming, test and implementation,

and operation and maintenance (Pomberger, 2006; Rauterberg and Strohm, 1992).

Approaches based on such a setup are commonly called ‘traditional’. Alternative

labeling conventions used in the literature include product-oriented (Floyd, 1987) or

phase-oriented (Pomberger, 2006) or plan-driven or document-driven (Boehm, 1988). As

the names suggest, a common feature for the traditional approach is its emphasis on

defining the phases, scope, schedule, and costs of the project upfront including, for

instance, an early fixing stage and extensive documentation of the end product

requirements, and thereafter executing on the specifications in an efficient manner.

Development stages are performed sequentially, with reviews at the end of each stage

ensuring that all necessary work has been completed to that point. Here, the system

developer mostly is a technological expert enacting the story of modernism; and attempts

are made to address the problem with the developers own ‘mental construct’ or

interpretive scheme - user participation is minimal. One popular example of such

traditional process model is the Waterfall Model.

 6

While these traditional approaches proved to be successful responses to the early

problems that had plagued software development, they are generally viewed critically and

their validity in today’s dynamic environment is questioned, because they have the

following major drawbacks (Floyd, 1987; Pomberger, 2006; Cockburn, 2006):

• The phases and activities are primarily oriented to software engineering aspects

rather than the requirements of the application domain.

• The purely sequential approach proves impossible to adhere to and difficult to

plan reasonably.

• Requirements can be defined only partially in advance and change constantly.

• Pure documents produced at each milestone do not provide reliable intermediate

results as they lack sufficient meaning.

• The one-sided emphasis on formalization at the expense of communication,

learning and evolution ignores the participants’ learning potential and fails to

facilitate cooperation between developers and users during development.

• There is no systematic feedback about design from the participants.

• These approaches are prescriptive and rigid as they emphasise laying down

standardized working procedures to be followed without reference to the specific

project situation at hand (do not provide for the flexibility required in practice).

• These approaches fail to take into account the quest for quality (in the sense of

end-use) and neglect any sort of foundation for human-oriented system design.

• These approaches assume that problems to be addressed by software development

are well defined and objective, and the development and use take place in a static

environment.

• Production of software cannot be separated from use and maintenance.

These serious limitations of the traditional approaches have led to proposals of alternative

approaches that try to address both acknowledged and perceived drawbacks of the

traditional approaches. In most of the contemporary approaches, the software

development process is generally understood to be evolutionary, typically involving

iterative cycles of: design and prototyping, implementation, evaluation and revision for

 7

the purpose of delivering the required software incrementally. The approaches are more

flexible rather than predictive, they emphasise participative communication & learning

process, use context (workplace and application orientation), visioning and organizational

embedding. Important examples include Floyd’s Software Technology for Evolutionary

Participative System Development (STEPS) (Floyd, 1989), Boehm’s Spiral Model

(Boehm, 1988), the Rational Unified Process (Kruchten, 2000), the Agile method

(Cockburn, 2006; Beck, 2004), and Mathiassen’s Reflective System Development

(Mathiassen, 2002).

The introduction of these approaches is being discussed in the literature as a shift from

product-oriented to process-oriented (Floyd, 1987), from phase-oriented to practice-

oriented (Pomberger, 2006), from plan-driven or document-driven or heavy-weight to

agility or lightweight (Boehm, 2002; Pomberger, 2006; Cockburn, 2006), and from hard

to soft (Mathiassen, 2002, Checkland and Scholes, 1999). Boehm’s Spiral model is often

discussed in the literature as a risk-driven process model. While these viewpoints are

discussed in more detail in Chapter Four and Chapter Five of this report, in so far as they

concern the current research work, the following paragraphs summarize aspects of these

viewpoints as a background to the discussions in subsequent sections and chapters.

In particular, the shift from product-oriented or phase-oriented to process-oriented or

practice-oriented emphasizes the following, as clearly indicated in the STEPS, Reflective

System Development (RSD) and Prototyping approaches (Floyd, 1989; Pomberger, 2006;

Mathiassen, 2002).

 8

• a move away from the traditional approach where software developers focused on

specifying requirements based on descriptions produced from given perspectives

and constructing a system that meet such pre-specified requirements, to a situation

where they focus more on the processes of cooperation between developers and

users to collaboratively interpret a given business situation, invent actions to

improve it and by so doing gradually and jointly discover and develop the

required software;

• a move away from the understanding of the software development process as an

orderly process of planning, analysis, design, construction, to a process that

involves: change process, project management, quality assurance, software

process improvement, etc.

The heavy-weight and light-weight distinction describes the degree of formalization of

the processes and the number of associated (intermediate) results or (intermediate)

products. Thus heavy-weight process models are phase-oriented models like the

Waterfall Model, while light-weight process models, also called agile process models, are

flexible, weakly formalized, iterative process models like eXtreme Programming

(Pomberger, 2006). The discussion on heavyweight and lightweight in the literature is

also presented in terms of comparing the features and capabilities of agile methods and

plan2-driven methods. According to Cockburn (2006), Beck (2004), Agile methods stress

early and continuous delivery of valuable software over analysis and design (although

these activities are not discouraged), active and continuous (face-to-face) communication

between developers and customers, and welcome changing requirements. Agile methods

derive much of their agility by relying on the tacit knowledge embodied in the team,

rather than writing the knowledge down in plans. Comparing Agile and plan-driven

methods, Boehm (Boehm, 2002: 64), wrote,

“[in agile methods there is also the risk that the team will make irrecoverable

architectural mistakes because of unrecognized shortfalls in its tacit knowledge.

… [plan-driven methods] accept a risk that rapid change will make the plans

2 The “plan” includes documented process procedures that involve tasks and milestone plans, and product
development strategies that involve requirements, designs, and architectural plans.

 9

obsolete or very expensive to keep up to date”. On balancing agility and

discipline, Boehm states, “although each approach [agile or plan-driven] has a

home ground of project characteristics within which it performs very well, and

much better than the other, outside each approach’s home ground, a combined

approach is feasible and preferable”.

With respect to the hard and soft, these perspectives of system development approaches

draw much on systems thinking and systems approach (Checkland and Scholes, 1999;

Mathiassen, 2002). In particular, the hard systems approach emphasises clear, exact and

true representations of the world. For hard systems thinkers, a system is typically a

functional system, a machine with a determinate function, ordered and stable. The

systems are out there, we see them (and we believe what we see), build them, change

them, and improve them, by engineering. The system is analysed in terms of the

functional roles played by its elements and their properties. The soft systems approach

pursues the idea that there are always several, equally plausible perspectives of the world.

The systems that we see in the world are based on our assumptions about the world and

the experience of it. Such perspectives of the system will change if our perception of

them changes, if we develop a new way of looking at them, if we experience and learn

new things. The method of the soft systems approach is interpretation. One is

encouraged, by this method, to consider different perspectives; the claim is that to learn

about the world one needs to understand, express and debate on a variety of radically

different perspectives.

Still, as a further extension of the soft systems approach, Mathiassen (1998) tried to

introduce the dialectical systems approach. The dialectical systems approach is based on

the idea that the world is always changing and that we cannot understand it unless we

understand what change is and why it takes place. The claim of the dialectical approach is

that we must think in terms of contradictions in order to understand, explain, and make

possible changes. This is done through making contradictions explicit, negotiating

perspectives, and learning about possible changes through intervention and action.

Among the examples of approaches developed on the basis of such systems thinking are:

the RSD of Mathiassen (Mathiassen, 2002), the Soft Systems Methodology (SSM) of

 10

Checkland and Scholes (Checkland and Scholes, 1999). Another approach that

emphasizes the human aspect in system development is the Effective Technical and

Human Implementation of Computer Systems (ETHICS) of Mumford (1983).

From the point of view of process models and methods discussed in the preceding

paragraphs, one may see that the hard systems thinking forms the basis for the more

technically oriented traditional approaches, while the soft systems thinking resonates

strongly with the more recent developments in the software engineering. In this

connection, it is worth noting that, as compared to the more technical design-oriented

approaches employed in software development, methods in this category take a socio-

technical viewpoint in broader and organization-wide issues involved in the development

of an information system3 as an organizational subsystem. Underlying the systems

thinking and its application to system development is the assumption that introduction of

software systems into an organization is a multidimensional and intentional social and

organizational change process, as the process usually results in changing the technical

platform, information content and use pattern of the systems. For the purpose of this

study, it is assumed that application software constitute essential components of every

information system within an organization, and any reference to information system

development is confined to development efforts that comprise application software as a

significant part of the process.

On the whole, while the foregoing discussion on software development approaches has

been brief on purpose, it was an attempt to outline how, over the years, the evolution of

software approaches have developed in line with the needs of the industry and users.

Finally, it would be amiss if we conclude this section without emphasizing the holes in

the theoretical and conceptual foundation of the field of software engineering that have

yet to be addressed.

3 In some literature, software engineering differs from the field of information systems (IS) predominantly
in the sense that the IS community takes into account the social and organizational aspects. This is partly
because software engineering traditionally focused on practical means of developing software. However, as
described in the foregoing, with the new challenge from the industry and users, the focus in software
engineering is also changing. To this end, for the purpose of the work under reference, such a distinction
between SE and SI has not been felt necessary.

 11

Despite decades of work on software development approaches and widespread utilization

of both traditional and recently developed approaches partly outlined above, there is no

agreement yet among workers on the importance of traditional models and the value of

recent models from either scientific or practice-oriented viewpoints (Pomberger, 2006).

With respect to theoretical foundation and conceptual foundation, the literature indicates

that the field of system development is still introduced and characterized as a field in an

early stage of development, plagued by indeterminate/inappropriate theoretical

grounding, conceptual in-exactitude and methodological disagreements (Boahane, 1999;

Hart and Gregor, 2004). Workers in the field still continue to advocate or criticize

existing approaches or to invent new approaches based on different philosophical views,

perspectives on theories, modes of inquiry and methodical paradigms (often biased

towards own background research or practical experience). Still unified/integrated and

coherent techniques to effectively guide practice are lacking. In both professional practice

and research, it is not uncommon to encounter diverse perceptions and disagreements on

basic concepts and techniques. There are still so many open questions, so much more

conflicting ideas and so many different methods, etc. For instance, in terms of scope,

while some of the approaches cover the whole development process, others cover only

part of the process such as requirements definition or engineering; there are issues of

design for, with and by users; there are issues related to balancing plan/discipline and

adaptivity/flexibility; there are issues related to the social quality of software and building

of theory shared by a community; issues related to measurement matrix, etc.

To that end, the software engineering community more than ever is concerned with and

engaged both in the improvements in existing methods and the development of new and

better methods. In this connection, one emerging process-related research activity worth

noting is the work in the area of software process improvement. Generally, this line of

work is concerned with exploring ways and means of improving processes in practice for

the purpose of increasing product quality or development team productivity, or reducing

development time. As a result, there are now a number of available process improvement

methods for use (see for example, Austin and Paulish, 1994). The most commonly

 12

encountered process improvement methods of interest to this research are briefly

discussed in Chapter Six of this report.

1.2 Software Development Situation in Ethiopia

This section tries to summarize the software development situation in Ethiopia which is

elaborated in more detail in chapters two and three of this report following the survey and

case studies conducted for the purpose of this research.

1.2.1 The Context

It is apparent that sub-Saharan African countries are for long the poorest and

technologically the least developed. Needless to say, they live under severe political and

practical constraints, as compared even to most developing countries. The increased

availability of Internet technology is, however, creating a new hope, for developing

countries in general and sub-Saharan Africa in particular, to fight poverty and to catch up

in terms of bridging the digital divide/gap between rich and poor countries. That they

need to do much more and much faster to seize this opportunity to develop their countries

is being strongly expressed (World Development Report, 1998/99).

In this connection, among the major problems cited frequently in published literature

(Korpela, 2001; Mursu, 2000; World Development Report, 1998/99) and own

observation (resulting from the researcher’s participation in several large IT project

implementations) for slow pace of development in this direction are: infrastructural

deficiencies and wrong choice of technologies; shortage of financial resources

particularly foreign exchange (and thus dependence on donors and vendors) to invest and

support IT projects; lack of skilled personnel both in quantity and quality (further

aggravated by high turnover, brain drain and extremely under resourced work

environment); lack of planning and inability to manage change; over-politicized and

bureaucratic decision-making process; lack of system development houses that specialize

in application software development and lack of appropriate IT policy and strategy

guidelines at both national and institutional levels.

 13

However, as of recent there are some indications that some of these problems are being

seriously addressed. The appreciation and recognition of the role of ICT in development

among policy makers and executives in the government are increasing. Discussions are

underway at various levels to design appropriate policies that help tackle the problems.

Coming back to the specific context of Ethiopia, particularly in the infrastructure front,

although the introduction of telecommunication dates back to 1894, computers were

introduced around 1961 (Tefferi, 1994). Initially accounting machines were introduced.

These were replaced by full-fledged electronic data processing machines starting from

1965. Among the major suppliers of the time were: IBM (with its models 1421/814

followed by system 360/20), NCR (with its models 399, 499 followed by system 8200),

Burroughs (with its models 1500 followed by system B80), and Hewlett-Packard (HP

3000) which came into the local market relatively late in the 1980. Among the earliest

user organization were: Ethiopian Airlines (1961), Ethiopian Electric Light and Power

Authority (1962), Economic Commission for Africa (1963), Central Statistics Office

(1964), Ministry of Finance (1968), Ethio-Djibouti Railways (1969). Modes and means

of programming ranged from using wiring panel to Report Program Generators. The

COBOL language was introduced in the late 1970s and was widely used since the early

1980s.

Through 1970s and 1980s, various public and private organizations, including banks,

higher learning institutions, industries in the transport and communications sector,

international organizations, introduced minicomputers in their operations. University

level education in the field started in the early 1980s at Addis Ababa University with the

Department of Mathematics at the Faculty of Science and Department of Electrical

Engineering at the Faculty of Technology. The situation dramatically changed with the

emergence of microcomputer based systems and the establishment of the National

Computer Center (NCC4) at the Ethiopian Science and Technology Commission. NCC,

staffed with waves of highly educated (mostly at postgraduate level in Europe) young

computer scientists, was one of the institutions that played a major role in shaping the

local software industry during the 1980s and 1990s. There were attempts then to

4 NCC was later reorganized under the Ethiopian ICT Development Agency, EICTDA.

 14

introduce national guidelines on programming and systems development work as well as

competency certification for professionals and institutions involved in the business of

software development. For further historical perspectives on the introduction of

computers to Ethiopia, see for example Tefferi (1994) and Sirak (1988).

Over the past few years, very encouraging developments were observed in the IT sector.

Cognizant of the role of IT as both enabler and catalyst in national development, growth

and competitiveness, serious measures were being taken to build capacity in the areas of

ICT infrastructure, human resource, content and application. In particular, concrete

actions were underway in the following areas.

• A national Government Agency, EICTDA, was established to spearhead ICT

capacity building activities through the development of appropriate policies,

strategies and programs to promote ICT development and utilization in the

country.

• A national ICT policy was drafted together with a five-year national ICT for

development action plan (2006-2010).

• Substantial investment was (and is still being) made to improve access and to

upgrade telecom infrastructure. In this connection, a nation-wide fiber highway

network deployment with broadband multimedia and Internet capability, rural

connectivity program to provide better access to information and services to the

rural community, and aggressive expansion of the fixed and mobile networks to

cover all parts of the country equitably, are but some important initiatives worth

citing.

• On top of the telecom networks, a number of enterprise networks with national

coverage were also deployed with high speed. The nation-wide multimedia

network to connect all government offices up to the district levels (WoredaNet),

the broadband network that interconnects all high schools in the country

(SchoolNet), the broadband network interconnecting all institutions of higher

learning in the country (EthERNet), the broadband network interconnecting

agricultural research centers in the country (AgriNet), and the network that

 15

interconnects customs and tax administration offices in the country (RevenueNet)

are among the flagship national projects in this direction.

• A national civil service reform program that aims at overhauling the public sector

(particularly to increase efficiency, transparency and accountability of

government operations) was initiated in almost all public service centers. This

program involves business process redesign and introduction of result oriented

performance management systems in the public service sector.

• To support the civil service program, and as part of the eGovernment initiative,

application software development projects are also initiated in the various

ministries.

• Related studies are also underway to facilitate the rapid development of the

private ICT sector, development of e-commerce, establishment of IT Park and

development of appropriate laws and legal frameworks to support ICT-enabled

industry.

Based on the researcher’s experience and observations made following discussions with

key stakeholders in the sector, in addition to further upgrading and expanding, what

remains to be a serious challenge on the infrastructure front is the maintenance of the

infrastructure already deployed and provision of relevant and quality services in a

sustained manner.

In light of the rapid increase in demand, fueled by the large scale national projects in the

government and public sectors as well as the huge demands resulting from the IT-

oriented reform initiatives in the service industry (such as telecom, airlines, banks,

insurance companies, etc.), and the increase in presence of foreign business firms in

response to the investment opportunities extended, currently the demands and pressures

for better and improved software development and support services at the local level are

increasing. Furthermore, the national ICT capacity building initiatives envision

transforming the country into a preferred outsourcing destination in the software sector.

On the other hand, despite such increase in investment and encouraging developments,

there is very limited capacity to meet the demands and realize the investment and vision.

This investment-benefit gap, which is slowing down the pace of development of the

 16

sector in the short run and which may lead to failure in realizing the desired socio-

economic returns from the investments in the long run, has been recognized and decisions

are being made to tackle this problem with high priority. In this effort, the software

element was identified among the prime mover and determining factors to unlock the

problems encountered in the areas of content and application. Under the circumstances,

the realization of the national vision to be a preferred outsourcing destination in the

software sector cannot be achieved unless concrete actions are taken to increase

productivity and improve quality.

1.2.2 Software Development Practice

According to the assessments made for the purpose of this study (see Chapter Two and

Chapter Three) and other studies made to assess the success and failure rates of software

development projects locally as well as the capabilities of local software development

firms (Rahel, 2004), the software environment in Ethiopia has a long way to go to reach

the minimum maturity level expected to meet the demands from users and the industry.

According to the findings, the software development situation so far is mostly dominated

by expected improvements in business efficiency and value as a result of the software

introduction that never materialized; substantial budget and time overruns far beyond

expected; delivery of unfriendly and poor and thus unused quality software products;

difficulty on the part of the users to effectively utilize the newly deployed software

systems because of inadequate training; incomplete documentation and lack of timely and

affordable maintenance support, and hence problem of sustainability, etc. What is

obvious for all concerned parties (software vendors, professional practitioners, sponsors,

etc.) is that under the existing circumstances, to carry out a software development project

is not only difficult but failure-prone and damaging. For instance, there are cases where

some software development projects which were donor driven and which depended

heavily on external consultants for their development ended up in litigation resulting in

both financial loss and damaging relationship between the client and the software

company; others perpetuate the image of an ugly and antagonistic relationship between

the stakeholders (even with the possibility of ending up in litigation); still others result in

an intolerable delay and quality problem. (See Chapter Two for related details).

 17

Furthermore, most of the projects are very large, designed with the ambition to address

long standing organization-wide and nation-wide process and service efficiency

problems. Accordingly, wherever they are considered, the software implementation

strategies adopted seem to follow an “all or nothing” approach to system development

and delivery rather than a set of step-by-step incremental improvements where

functionality is improved over time. Attempts to realize this approach by trying to

implement off-the-shelf solutions from elsewhere resulted in large design-reality gaps

due mostly to: differences in work practices and styles, resistance to change, skill

deficiencies, and lack of project management competence.

Where local developments are considered, the existing situation with regard to the use of

methods may be summarized as follows (for details refer to chapters two and three of this

report). So far, the local software development practice is dominated by the use of ad-

hoc in-house guidelines that involve cyclical requirements gathering and

programming/coding techniques. The use of industry standard or publicly available

methods and process models, and the use of disciplined approach to manage the software

projects are very low. Among the reasons frequently cited by practitioners in this

connection are: technical skill deficiency due mainly to lack of appropriate and practical

training on the methods; inappropriateness or weak-fitness of the methods to local

problems and environment; absence and/or unavailability of related tools and guidelines.

Software processes for both management and engineering activities are not documented,

standardized and integrated into organizational work practices of software companies.

This notwithstanding, the local environment represents a significant push factor. There is

still a huge unmet and increasing demand for software development services in various

sectors of the economy and public services. Despite this and the alarming failure rates

mentioned above, compared to the encouraging initiatives in the network infrastructure

development and human resource development aspects of the national ICT capacity

building programmes, there are no major national or institutional level initiatives worth

citing in the area of software development capacity building. Although not commensurate

with the huge demands and ambitious projects, an effort is currently underway at

EICTDA to develop generic and adaptable guidelines for software acquisition

 18

particularly in public enterprises. What is more, as of recent, the need for appropriate and

better methods of software production, management and use has been well recognized by

all parties concerned and almost everybody is on the lookout for such methods.

1.3 Research Questions and Approach

1.3.1 The Research Questions

Any method will only be appropriate5 to a certain situation if it is effective and useful to

its users, if it coherently addresses the questions of how to organize and conduct an

inquiry so that interventions into the problem situations reduce the uncertainties inherent

in the problem situation and furthermore enable its users to leverage their experiences.

On the other hand, it is not possible to universally prescribe all details (written into

processes and procedures) that will deal with the variability of the many influential

factors prevalent in any particular development environment (Henry, 1981). Hence it may

not be appropriate to expect processes and techniques applicable to all situations, to be

defined by methods and process models.

In this connection, there is also consensus among workers that any of the publicly

available methods are not design recipes to be applied blindly or literally (Cockburn,

2006; Jayaratna, 1994; Mathiassen, 1998; Floyd, 1987). Problem situations in which the

designers’ works and ways of studying or interpreting the problems vary significantly,

and the success or otherwise of the method may be highly contingent. A method may

have worked in one situation, but that should not be good enough reason to assume that it

will also work in the next. This also applies for different projects conducted within the

same organizational context as articulated by Floyd.

5 According to Korpela (1995), appropriateness is not a pre-determined attribute of a given piece of
technology, but depends on usage, affordability, availability, sustainability and needs being satisfactorily
met. Pellegrini (1980) maintains that technology should be considered appropriate when its introduction
into a community creates a self-reinforcing process internal to the same community, which supports the
growth of the local activities and the development of indigenous capabilities as decided by the community
itself. As such, for any form of technology to be appropriately developed in a specific situation, the
technology is better acquired and adapted rather than simply transferred as is. For our purpose, the
interpretation of the term ‘technology’ is not limited to the design of physical things and artifacts, but also
the design of practices and possibilities to be realized through artifacts. It also encompasses the design of
new practices (Flores, 1988).

 19

“Despite all similarities, each software project is definitely different from its

predecessors. So for a method to be successful, you cannot simply apply it, you

have to work it out in your project”

To qualify in this sense, suitable methods may be selected and appropriately developed to

serve in the specific situation at hand.

In the effort to develop appropriate methods for the local environment, while appreciating

the differences in the contextual environment and project situations mentioned above, it

is also important to note that organizational problems and concerns, regardless of their

differences, rarely stand alone and are totally unique. In other words, as much as there are

differences, there are many common features, characteristics and tasks that are shared

among organizations and projects regardless of their geographical locations

(environmental differences). There are also a lot more experiences to be shared and best

practices to be adopted with respect to the design and use of development methods. To

this end, rather than re-inventing a totally new method from scratch for use in a certain

situation (not meant to discourage invention though), an often preferred strategy is to

consider selection and then adaptation of complementary aspects of existing methods that

are likely to be effective in addressing local project situation. As Gregor and Jones (2003)

argued, “Information Systems (IS) as a discipline is concerned with action - the design,

construction and use of software and systems involving people, technology, organizations

and societies. In the action of building information systems it is preferable not to

approach every new development problem afresh.”

Selection of a suitable approach for adaptation involves the process of identifying an

existing approach (or putting together complementary aspects) from the wide assortment

of available approaches – to decide on which methods and processes are suitable for a

certain project. This is considered as a very important step in the project design that may

make the difference between success and failure. As stated by Kettunen and Laanti

(2005:587), “an appropriate process model helps coping with the challenges, and

prevents many potential project problems. On the other hand, an unsuitable process

choice causes additional problems”. In this connection, workers (for instance, Kettunen

 20

and Laanti, 2005; Boehm and Turner, 2003; Cockburn, 2006) provide comparative

process model selection frameworks for selection from publicly known software process

models which project managers can use as a systematic guide for (re)choosing the

project’s process model. In the local context, there is an urgent need for approaches

which presuppose thorough familiarity with local setting and realities including the

extraordinary non-standardized work practices in user organizations. The approaches

selected must provide for a more rapid system delivery by leveraging emerging

developments and best practices in both technological and methodical approaches to

maximize late comer’s advantages.

Once the selection is made by one means or another, there is a need for a process of

adaptation of the selected process to the project situation/context and continuously

throughout the development process. In particular, such a process concerns itself with

providing decision mechanisms on which aspects of the processes and methods selected

be introduced, adjusted or dropped, at which point within the process evolution of a

certain project. Such decision mechanisms, among others, should also leverage on

continuous basis user/practitioner experiences with the use of the methods and processes

in the project. Unlike the selection mechanism, there is generally lack of guideline in this

area. In this connection, it is also relevant to note that, even in the area of selection, the

guidelines provided are not only anecdotal and sketchy, but also suffer from the context-

related limitations discussed earlier. So far, not much has been done in terms of

identifying and documenting such contextual factors that characterize and directly affect

local software development practices.

From the foregoing, we may observe that the task of appropriately developing methods

and processes for local use by tailoring suitable methods and processes developed

elsewhere is a challenge for the local software engineering community. This research

was, therefore, initiated to explore the possibilities of adapting/adjusting complementary

aspects of some of the publicly available software development methods and processes

with the dual purpose of enriching the approaches and developing an appropriate

methodical framework which is capable of improving the software development situation

in Ethiopia. Additional motivation for the research includes the author’s interest: to know

 21

more about how software process models and methods are selected, adapted and used in

practice; and to order and use the author’s years of experience in teaching and

professional practice in the area of system development for tailoring existing software

development approaches to enhance their usability in the specific project settings.

For this purpose, of the multiple questions related to this subject, those identified for

investigation in this research work include:

� What does the current software development situation in Ethiopia look like?

� What are the specific software development challenges faced by practitioners in

the local setting?

� What are the critical success factors for improving the software development

situation (and project success rates) in Ethiopia, and how could these be

addressed?

� What are the contextual (national, organizational, technical, etc.) factors that must

be addressed by existing software development methods and process models to

increase their effective usability?

� What are the limitations of existing software development methods and process

models in general and in terms of their applicability to the local setting in

particular?

� How can one incorporate valuable lessons learned from years of practical

experience (in both teaching and professional practice), as well as the inputs

obtained from the efforts to answer the above questions, in enriching and

localizing existing models and methods to increase usability of methods, to

increase productivity of teams and quality of products?

1.3.2 The Research Approach

Gaining a better understanding of the research questions outlined above, and developing

grounded insight on and answers to the questions, required an empirical investigation

involving both qualitative and quantitative research methods. While more elaborate

descriptions of specific research methods employed are presented in subsequent chapters,

 22

the following paragraphs provide a brief and general introduction of the methods

employed.

In the quantitative category, in order to assess the current software development situation

in Ethiopia, an extensive questionnaire based survey was conducted among local software

firms, IT Departments of large organizations that were involved in software development,

as well as practitioners (software engineers and project managers) working in these

institutions.

Software development is an applied discipline and inherently practical. Therefore,

quantitative data from the surveys alone may not provide the in-depth understanding and

contextual information essential for revealing how software development projects are

practiced in reality. For this reason, in addition to the interviews and discussions

conducted to support the questionnaire survey, such practice-related research approaches

as case study and action research were also employed to gain more insight. Furthermore,

an extensive reflection on the author’s years of practical experience both in teaching and

professional practice in software development was made. In this connection, in due

consideration of the large number and variety of software development projects the

author was actively involved in, a selection was made for consideration in this work (see

Chapter three for details). The primary sources for information on these project

experiences were personal dairies and statements, official communications, reflections

with co-workers and the program source codes for these projects.

In this connection, the following is worth noting. The action research and

reflection aspects of the qualitative methods employed in this research followed

for the most part the contentions and research practices of Mathiassen (1998) and

Heiskanen (1995). As a practitioner who worked very extensively in a number of

software development projects for an extended period of time locally, as detailed

in Chapter Two, the author can maintain the position of an ethnographer, an

action researcher and a software engineering historian in the local setting. This

has enabled the author to leverage this position for the purpose of this work.

 23

The surveys, case studies and action research were supported by very extensive reviews

of both theoretical and empirical research literature (as can be seen from the References

attached at the end of this report), paying particular attention to evolutionary,

participative and iterative process models that are based on participatory design

principles, and focusing on strengths, limitations as well as challenges.

In addition, attempts were also made to consult available documents and reports

pertaining to teaching/learning experiences in the system development area, national

policies and programs as well as flagship projects on ICT.

The information obtained from the various sources was organized and analyzed in order

to:

• document how software development is actually practiced in Ethiopia,

• characterize the type of software development projects and their context,

• identify the productivity inhibiting factors affecting practitioners in the local

setting,

• examine the extent of use of methods as well as the difficulties experienced in

their use,

• arrive at what the author argues are the critical success factors in the project

setting, and

• establish the need for a context sensitive software development approach to

address these critical success factors.

Using this as input and closer examination of the project home grounds as well as

suitability to local projects of more recent and innovative methods, an attempt is made to

propose a methodical approach that the author claims would help in addressing the

critical success factors identified. In particular, the approach proposed is developed by

integrating knowledge obtained from practice with the adaptation of complementary

aspects of existing methods that were considered suitable to the local setting. Practical

experiences from trying aspects of the approach proposed on real-life projects are also

reported.

 24

The approach to the solution design could also be said to follow the phases commonly

employed in engineering research life cycle but iteratively. Namely,

• Information phase: to collect & characterize information about the current

practices, experiences or problems;

• Proposition phase: the initial construction, i.e. modules, theories or prototypes,

can be subjected to practitioner and user opinions to provide early feedback;

• Analytical phase: to refine research questions, provide some of the empirical

feedback and support the interpretation of the empirical data;

• Technology transfer phase: to package their contribution into a form that is more

easily deployed by users; and

• Orientation and exposure.

With regard to testing the applicability of the proposed approach, two lines of exercises

were followed. On the one hand, a graduate level teaching supported by real-life project-

based practicum (where the author actively participated as an instructor and guide in

software engineering, system development and software project management courses)

was used as a vehicle for testing some of the ideas and software development approaches

that were proposed.

On the other hand, the approach is being used to address practical problems being

experienced in the case of the third phase software acquisition project in Organization B.

In this project, the researcher is actively working as an action researcher in his capacity as

an external expert fully charged with the project design and development supervision. As

an action researcher, the author established and worked with requirements engineering

group and users to document and develop interpretations of requirements and overall

project management.�

1.4 Summary of Findings, Results and Contributions

From the experiences so far, inconsistencies have been observed between what outdated

traditional methods, legacy technologies and architectures can provide, and the

requirements of the ambitious broad-based and transformational development plans under

 25

implementation in Ethiopia. These are reflected not only in the delay of project

deployment but also in incurring higher overall implementation and operational costs as

well as increasing vulnerability to obsolescence and architectural breakdown. According

to the findings, unsatisfied users, overwhelming costs, frustrated developers, etc. are still

common characterizations of software development projects in Ethiopia.

The general findings also indicate that the use of popular (publicly available) methods

and models is weak. Where there are attempts in some corners to use aspects of the

popular methods, except in some cases, their use is very limited to the fulfillment of

administrative contractual obligations that are still dominated by traditional methods and

old practices. Also, a considerable percentage of guidelines used in the course of the

development are ad-hoc in-house conventions, mostly not properly documented in

written form.

On the other hand, in due consideration of the increasing complexity of the software

development projects and alarming rate of project failures currently being experienced in

the local settings, although not considered as a panacea for all related problems, there is a

general acknowledgement and consensus among both software practitioners and experts

in the field that the use of some kind of method to guide the process of development

would significantly contribute to improve the existing situation.

The results of this research, in general, are consistent with and confirm the importance of

feedback based learning and communication in realizing collaborative development

practices. Among the main outcomes of this research and its contributions are the

following.

• The local software development situation was documented/characterized, together

with critical success factors.

• A project context model was introduced to reorganize the software development

life cycle based on major perspectives and undertakings that underlie the

principles of participatory design and evolutionary software production. In

particular, a complete system development cycle that combines project design,

production design and use design aspects is proposed.

 26

• A multi-level collaborative reflective learning model was introduced by tailoring

organizational learning and communication models for use in the field of software

development projects and continuous process improvement.

• The original STEPS model was further developed to address more software

development activities – while the original approach limited itself to providing

more of an insight into the software development approach, the revised model

which is introduced as ‘Reflective Steps’ is being developed towards a more

comprehensive method and process model. The revised model provided

operational level guidelines for activities that were identified in the original model

but without detailed treatment. In addition, the revised model included and

provided similar details for activities that were either missing or implicitly treated

in the original model.

• The approach proposed introduces reflection (particularly, collaborative

reflection) at the beginning, in between and at the end of each process step

(cycle), starting from project design to production design and to use design, for

deliberating on how a particular method is being used and improved in practice.

In addition to its contribution in addressing local problems, this research and the results

may also be considered as a methodical contribution to the on-going work on

participatory and cooperative design approaches to software development and process

improvement. Reflective Steps techniques, particularly the reflective workshops and the

supporting learning and communication infrastructure, can be easily used or incorporated

in other methods and process models.

The work also raises a number of issues related to capturing and communicating design

discussions and decisions. These issues would help to identify and design further research

on design communication. Even though more practical experiment is required to

concretize, operationalize and enrich the proposed approach, the experience with the

method in both teaching and professional practice indicates promising results and

optimism that the approach proposed will gradually achieve wider acceptance and

significantly improve the usability of methodical approaches that would in turn contribute

to the improvement in the productivity of project teams and quality of products.

 27

To achieve this, however, the proposed method needs to be practically tested in a

controlled environment. This may be done with the application of appropriate

measurement instruments to assess to what extent the methods help in realizing expected

benefits. Among the benefits are lower costs, timely implementation, rise in quality,

lower defect rates, flexibility to change, and the ability to leverage new technical or

business information. Enriched with lessons learned from such real-life project exercises,

the effort will also be a timely response for countries such as Ethiopia which are now

constantly on the lookout for better ways of developing and managing software projects

in line with local needs and priorities.

1.5 Organization of the Report

This thesis is organized into eight chapters. The next two chapters document the software

development practices in Ethiopia based on review of selected case studies and a

comprehensive survey conducted for this purpose. Chapter Four provides further analysis

and discussion on the software development situation in Ethiopia with special emphasis

on the identification of contextual factors to be addressed in improving the situation. An

experiment conducted in real-life project environment to realize collaborative practices in

the local setting is also presented. Based on the findings about the existing situation, and

by drawing on complementary aspects of existing approaches and years of practical

experiences, Chapter Five introduces the proposed methodical approach for software

development and process improvement in the project setting. It also provides theoretical

foundations and underpinnings for the proposed approach. In Chapter Six, more details

on the application of the proposed approach for software process improvement are

presented. Chapter Seven reports on recent experiences from attempts made to apply

aspects of the proposed approach in ongoing real-life projects. The conclusions drawn

from this research and recommendations for future work are summarized in Chapter

Eight. References consulted, survey questionnaire, interview guidelines as well as the

various sample source materials cited in the report are attached as annexes at the end of

the report.

CHAPTER TWO

2. Software Practice in Ethiopia: Case Stories

Software development is an applied discipline and inherently practical. Accordingly, both

quantitative and qualitative data generated from real-life project case studies and stories

are believed to provide the in-depth understanding and contextual information essential

for revealing how software development projects are practiced in reality. While

quantitative data from surveys conducted for this purpose are presented in the next

chapter, selected case stories from the author’s engagements over the years are provided

in this chapter for more insight into the software development situation.

The stories documented in this chapter were particularly meant to help us make good and

real sense out of the software development situation prevailing in the local setting. The

author strongly believes that such local project stories, when properly documented and

shared, may serve as instruments for design and learning in software engineering in the

local context. They help us to try out the earlier experiences so we can expand our

understanding of the possibilities that are open to us. They help in creating a shared

understanding and meaning with others who want to join in the dance of learning and

discovering methods and processes that help in the design, development and use software

within the local setting. Unfortunately, however, this is not commonly practiced so far.

For that matter, even the experiences of the author reported in here were not documented

elsewhere in a shareable format. What is more, currently there are a number of

application software acquisition or development projects being run by various

government agencies almost in parallel and in an uncoordinated manner. Those involved

in the implementation of similar projects do not have regular forums where they can

share and exchange information and experiences with each other (not even in academic

circles). There are no mechanisms whereby such common working documents as

system/software design and related specifications, bid specifications and contracts are

compared and shared. Project implementation and management works and experiences

are rarely published and shared. Lessons (both success and failure) learned in one project

(what works, what does not work, what factors contribute more to the success or failure,

 29

etc.) are not formally discussed, documented and shared. On the other hand also, the

turnover of people involved in the projects is very high thereby extending the learning

curve.

This chapter starts by providing a brief information on the experience of the researcher as

a background to the cases described in the following sections. This is followed by a

description of selected case studies and stories based on practical experience of the

researcher as a further source of information in the effort to understand the existing

situation. While discussions on factors related to the success or failure of the cases as

well as the approach followed in the actual conduct of these cases are presented in this

chapter, more elaborate presentations and discussions on distinct methodical approaches

employed (to address some of the issues that were not easy for handling by literally

applying the methods suggested in the literature) are given in Chapters four and five.

2.1 The Researcher

The academic experiences of the author include: teaching and research at the School of

Information Studies for Africa, SISA (currently renamed as Department of Information

Science), Addis Ababa University, Ethiopia (since 1990), and at the Department of IT in

the College of Telecommunications and Information Technology (since 2005). Among

the courses taught as part of these engagements are the following postgraduate level

courses: Information Systems Analysis & Design, Software Engineering, Modern

Information Storage & Retrieval, Database Systems, and Software Project Management.

Courses taught at undergraduate level include: Fundamentals of Programming (first using

the FORTRAN, then Pascal and then C languages) and Database Systems. The researcher

has an extensive experience stretching over the same period in advising graduate

students, particularly in supervising and guiding more than 40 master’s level theses in the

field of computer science and information systems. The researcher also personally played

a leading role in the design of the Information Systems curriculum at the Faculty of

Informatics at AAU and the design of the Information Science and Computer Science

curricula at the School of Information Science & Technology (SIST) at AAU, and the IT

curriculum at the College of Telecommunication and Information Technology.

 30

With regard to professional practice in system and software development, the researcher

has been actively working in the area since 1983 in various capacities ranging from a

programmer to business process redesigner, software project manager and expert advisor.

The programming experience initially involved writing programs to support scientific

applications required by researchers and engineering consultants (in the areas of data

analysis, simulation and design verification). This required the mastery of the FORTRAN

and C programming languages, and mathematical algorithms. Later experiences involved

engagement in projects that aimed at developing software for business applications. This

required upgrading technical skills in business-oriented programming languages such as

COBOL and operating system utilities (with regard to file management, searching and

sorting algorithms, etc.). With more exposure to business application development,

however, the criticality of such non-technical aspects as knowledge of the business

application domain and the importance of working collaboratively with key

representatives of users and domain experts were increasingly recognized as part of the

software techniques and methods.

Partly because of formal training on methods (as part of the postgraduate studies in

Europe), and the advancements in the technology (resulting in the availability of better

tools and utilities), and partly because of the need to meet the challenges posed by the

huge increase in the number, size and complexity of the application software projects in

which the researcher actively participated, as of 1987 attention on the technical front

shifted to the use of structured approaches as a means of improving productivity and

quality of modeling and programming. The researcher used his university positions to

introduce courses in structured methods in the course curriculum. Similarly, the

consulting positions were used to introduce these as standard practices in the industry in

place of proprietary approaches introduced by computer suppliers. Within the structured

methods, more emphasis was given to Data Flow Diagrams (DFD) and Hierarchical Input

Process Output (HIPO) charts for process modeling and documentation, Entity-

Relationship Diagrams (ERD) for database design, decision tables and pseudo-codes for

logic documentation. In parallel to the structured methods, the development and

packaging of commonly recurring routines into sharable/reusable forms were widely

 31

explored. After a decade of such domination of structured approaches in the local setting,

Object-Oriented approaches were gradually introduced as of 1995 in both teaching and

practice. While these approaches were used in parallel for some time depending mostly

on the skills and preferences of practitioners, over the last couple of years, the dominance

of object-oriented approaches is being witnessed.

However, struck by the high failure rates of software development projects in the local

setting (including those where the researcher was involved in) on the one hand, and the

recognition from experience that the technical approaches alone would not help to

improve the situation, on the other, attention was shifted to explore possibilities of

developing appropriate methods that would complement and support the efforts on the

technical front in terms of improving project success rates. Particularly, as part of the

teaching and research efforts, attempts were made to incorporate aspects of project

management, user participation, learning and collaboration techniques into methods in

the context of real-life project settings. This research in a way is an offshoot of the effort

in this direction.

2.2 Stories of Selected Software Development Cases

As shown above, the number of projects that the author was involved in first-hand is

high. There is no space here to discuss experiences or share stories on most of these

projects. This may not even be necessary. To this end, for the purpose under

consideration, the author has limited himself to sharing selected stories of three

representative cases that were believed to characterize the local software development

situation.

In particular, three cases (of Organization A, Organization B, and Organization C) were

selected for analysis and discussion. For ethical reasons, the company identities and

ownerships of the cases reported are deliberately kept anonymous. Organization A was

in the software development service industry. It was a privately-owned small company

located in Addis Ababa. It was one of the very few leading local companies in the area of

software development between 1991 and 1999. The company custom developed various

 32

application softwares for a number of clients in both the government and private sectors.

Some of the software projects were reviewed for the purpose of this research.

Organization B was in the financial service (insurance) industry. It was a privately-

owned share company with branches within and outside of Addis Ababa. It had hundreds

of employees. It served thousands of customers in all classes of business (life and non-

life insurance). Two projects were investigated from this organization. While one of the

projects took place between 1997 and 2000, the other project started in 2006 and was an

ongoing one at the time of writing this report. The projects aim at automating all the non-

life insurance business processes. Organization C was in the public utility service

industry. It was a state-owned public enterprise with branch offices all over the country.

It had thousands of employees. It served millions of customers in four major service

areas. The project took place between 2003 and 2006. It aimed at automating the billing

and customer care processes.

The selection of these cases has to do partly with the availability of some sort of recorded

material in the form of technical reports or documented research (basically theses by

students and technical reports) and partly due to the active involvement of the researcher

in these cases. Needless to say, the cases also have good materials related to the issues

and questions being explored in this research work. Additional sources of information for

the cases reported are personal diaries and statements, official communication and

reflective recollections of the author.

Throughout the cases, the purpose of exploration was to find out to what extent such

global factors as changing requirements, user participation, technological developments,

project management and the like did affect the performances of the projects and the

quality of the products developed. In addition, in the process of analyzing the cases,

attempts were made to emphasize software development experiences that distinguished

local practices. The following subsections present the essential extracts from these cases.

For better documentation of the learning process involved, the cases were presented in

chronological order, starting from the earliest to the latest.

 33

2.2.1 The Case of Organization A

Organization A was conceived and established in 1990 by a group of Ethiopian nationals

highly trained in Europe and the US in software and systems sciences, with a view to

respond to the fueling demands for software services locally. The company was first

established as a consulting company in software system development but then shifted into

a software development company by 1993 because of market demands. The author was

among the founding members and active participants in the functions of Organization A.

In this subsection, an attempt is made to briefly describe aspects of project experiences at

Organization A that involved the development and customization of Integrated Business

Application Software (IBAS), a package developed and marketed by Organization A.

Important observations: the need to continuously scout out commonality among

application modules and develop shared routines/components; the importance of

subspecialty and division of labour among the development team (a ‘back-office’

like subteam taking care of the development of required utilities and reusable

components based on the requirements of the ‘front-office’ subteam, and a ‘front-

office’ like subteam responsible for developing the operational application

software based on the requirements from users and using the components and

utilities provided by the ‘back-office’ subteam); the need to continuously scout

technology to increase productivity and improve quality.

A brief background on IBAS was felt in order before the main stories.

In the software development engagements Organization A had with a number of small-

scale private companies, two things were observed from early on. On the one hand, most

of the requests from users revolved around automating the following business functions:

Payroll, Stores Management, Job Order Management, and Accounting. Requests for

Personnel Administration and Fixed Asset Management came relatively later in the

process. On the other hand, regardless of the clients for whom the software developed

and the type of application developed, at the technical level the emergence of recurring

patterns and routines was observed. Accordingly, instead of copying and editing these

 34

routines from one application to the other or from one project to the other, the developers

decided to generalize and develop the routines in shareable formats. Some of the common

functional routines identified were: file/data management, transaction processing, report

generation, and general utilities to help users secure their installation. On the other hand,

because of the high level of interface and data sharing between the above business

applications, the developers decided to put them under one loosely coupled but integrated

application package and in a manner where the individual application subsystems can

also be marketed independently, hence the emergence of IBAS as a product. In the first

release of IBAS, packaged among others, were the following applications: Payroll

(IBASpay), Personnel (IBASpers), General Ledger (IBASgl), Production Control

(IBASprod), Stock Control (IBASstock), Invoicing/Sales (IBASinvoice), Purchasing

(IBASpurch), and Fixed Asset (IBASasset). For this reason, although the design, purpose,

and function of the applications were comprehensive, each application can be customized

to accommodate the unique needs of a particular business firm. This was evident from its

successful customization and implementation of IBAS at a number of organizations

locally.

With the introduction of IBAS, the technical development group assumed two roles: one

of building tools and utilities for IBAS in the functional routines stated above, and that of

configuring and developing the business application by making use of the utilities and

tools. While most of the former was done at the premises of Organization A, the latter

was done at the client site working jointly with users. Moreover, with regard to methods,

building on the lessons learned from the success stories in earlier projects (through the

experiences shared by the individuals involved in the projects), structured approaches for

modeling and programming applications, and collaborative development of the business

applications with users at the users’ site were employed. Prototyping (particularly,

operational prototyping) was employed throughout the projects. In this connection, it is

worth noting that the decision to use such prototyping evolved from or was guided by

practice (discovered as more practical and appropriate in the process of engagement with

the projects) rather than by design based on the recommendations of specific methods.

 35

The database structures, user interface and searching routines for the purpose of building

the shareable routines of IBAS were mostly implemented using the C and Assembly

languages. The first release of the system was developed to run in the DOS operating

system environment as the Windows platform was then not mature and reliable enough.

For this reason, to meet the application requirements (particularly to implement better

user friendly graphics interfaces), the developers had to use assembly routines to develop

a special windows toolkit working directly from BIOS and the graphic adapters.

Similarly, drawing lessons from our experience in the mainframe environment and to

have ‘vendor independent’ tools, programmes were developed to implement relational

database features by working directly from flat files and using popular file and data

structure and search algorithms (which are published in textbooks and technical

publications). According to those who participated in the process, these experiences were

very challenging but interesting. For historical reasons, sample source programs from

these attempts are attached as exhibit in Appendix 2 of this report.

Looking back, the development technologies and environments accessible to the

developers locally then had little to offer in terms of meeting the fast growing demands of

applications and users. Under the circumstances, therefore, the developers had no choice

but to struggle with locally available resources to address the demands as indicated

above. However, the situation dramatically changed after a while when relatively easy to

use and industry standard programming tools and environments became widely

accessible with the popularity of the Windows platform and related application interfaces

as well as database technologies and related development tools. Although those who were

already involved directly in the development of our original routines and knew the details

of the routines by heart found it hard to break the ties, migration to the newer platforms

was inevitable, mainly because of pressures from colleagues who found the new tools

more robust and friendly. The migration was also unavoidable because of the interest to

adopt industry standards which were important to integrate existing products into the user

environment (that is, to provide interoperability of our products with other applications

running on these platforms that were being introduced to the client environment).

Accordingly, organization A decided to migrate to the Windows platform, use C++ and

 36

work on the microcomputer-based database platforms available at the user sites (MySQL,

FoxPRo, dBase were among those popular in the local market, while Oracle was just

emerging).

Selected Case Stories

Important observations from the success stories: those projects that were

successful in terms of delivering usable software systems were typically those

where the people responsible, particularly the heads of the departments that own

the business processes, worked actively with the developers on a daily basis.

Another important observation was the critical role of early versions of

operational prototypes particularly in terms of facilitating collaborative work.

Users did not value or take seriously use-and-throw prototypes.

The plan to implement projects in stages (system study and development) was

counter productive. Documentation from the front-end system study did not help

more than securing a go-ahead with the development decision from project

sponsors. The design documentations may have served in deciding on the system

architecture and familiarising software engineers with the application domain,

but the development team had to re-do this aspect altogether with users as part of

the detailed work required to develop the programs. Accordingly, users

considered the time spent on interviews and discussion during the system design

process as wasted. They preferred the use of operational prototyping as vehicles

of requirement definition and design specifications. This, according to the users,

gave them the feeling that the software developed was for them as they

contributed to the design by identifying and incorporating issues from their day-

to-day real-life experience at work.

Taken together, where the users believed that the use of the technology would

help them bring improvements in their operation and business performance, they

expressed interest and commitment to work with technical people, to provide

feedback promptly, to collaboratively develop and implement the required system.

 37

In the process, they gradually developed appreciation of technical issues

including the potentials as well as the limitation of the technology. Users

contributed a lot in design of: user interfaces, reporting styles and formats, audit

trials; and in sequencing of modules (priority setting).

The interest and commitment on the part of software engineers to learn and build

their knowledge of the application domain was another success factor.

Important observations from the failure stories are the critical role of

‘organizational communication’ and ‘boundary management’, and limitations or

lack of competence on the part of the development team in these areas.

Throughout the projects, because of good working relationships and

understanding with user counterparts (particularly project sponsors), the

development team took the user support for granted, soon to find out that this was

only the case as long as the initiators of the project from the users’ side were

active and had the required authority until the end of the project. No attempt was

made to create necessary awareness among other members of the user

organization on the project details and to solicit their support for the project. In

most of the cases, communications from the development team were restricted to

the user counterparts assigned to work on the project. For the most part, the

development team was more concerned with technical issues and confined to

manage things within the project team. No attempt was made to address issues in

the project environment. In effect, very few people knew about the projects. In

almost all of these cases, the local situation was that the project existed as long as

the initiators existed; where the initiators left before the completion of the project,

the project ceased to exist.

What is more, the causes for some of the failed cases related to lack of proper

definition of scope and priorities. Attempts were made to address whatever the

users expressed in one go, without properly scoping and prioritizing with

provisions for learning from one application to the other. As indicated above, the

separation of system design from the development and the related rigid contract

 38

based on strict procurement and budgetary constraints had also contributed to

the failure.

Among the examples of projects that were considered successful from the business

engagements made through organization A were: a cost accounting application software

development project for a printing press, the customization of IBAS to a metal and wood

furniture manufacturing enterprise, a staff loan and credit management system (a sort of

mini-bank multi-currency application system) development project for an organization in

the United Nations system, and an insurance accounting system for Organization B. In

each of these cases, the mode of collaborative work arrangement that evolved in the

process consisted of a development subteam composed of two software engineers

working with one domain expert from the user organization (a somewhat extended

version of what is now referred to as pair programming in the agile movement). In most

of the cases, the author took the role of one of the software engineers.

In all these cases, the developers were given desks at the user site and more or less

developed the application system on the users’ site using operational prototypes. The

developers spent the normal working hours with the users every other day and used the

days in between to work with the back office technical team to prepare necessary utilities

to implement the functional requirements and/or non-functional features as agreed with

the business process owners. The new features or modifications incorporated into the

operational prototype were then tested with the users the next day. To expedite the

process, it was agreed to use common test cases from real-life business transactions,

where user counterparts manually workout details of the test cases and software engineers

implemented related routines in the prototypes to facilitate cross-checking process

understandings. For instance, where calculations on interest rates, discounts, taxes, etc.

are involved, users take samples and prepare a worksheet where the details of the

required computations are worked out manually with the intermediate results clearly

written at each step; where requirements relate to reports, users prepare sample formatted

reports with inputs and outputs clearly worked out manually on paper, etc. As indicated,

to support this mode of development, operational prototypes were used. And to facilitate

cross-checking during the joint sessions with users, the prototypes included required

 39

tracings to display intermediate results. In this way, the software engineers and business

process owners jointly walked through the revised version and confirmed the

implementation after making required modifications, omissions and inclusions. Where

incorporation of additional modules or modification of existing ones required more

technical work, developers took some days off to work with the back-office team and

come back to users to test the revised versions.

In other words, there were two development sites and teams, one was at the premises of

Organization A developing required utilities and tools, the other at the user site

developing the business application (user interfaces, business logic, storage and retrieval

of data, etc.) with users. In addition to expediting the process and creating mutual

understanding between software engineers and the domain experts, this arrangement of

work helped both parties to build knowledge about each others’ domain and business

processes. In the process, users were not only able to easily articulate additional

requirements based on practical knowledge of what is possible and what is not, but were

also able to contribute to the design of artefacts required to increase the quality of the

systems and in some of the cases to help in the modification of certain features and

functionalities (mostly in the area of generation of user-defined reports, and routine

maintenance activities) using utilities provided for these purposes.

Among the examples of projects that were not successful from the business engagements

made through organization A were: a project initiated to design organization-wide

document management and office business automation for one of the ministries of the

Federal Government of Ethiopia, a hotel management software for one of the national

hotel chains, and the customization of IBAS to an electronic retail and distribution

enterprise. While the first two organizations were state owned, the third one was privately

owned. Due to the requirements from the user organizations, which had more to do with

management control related to procurements processing, in the first two cases the

projects were planned for implementation at two stages. The first stage work involved

studying the existing system and redesigning the business processes to help overcome the

limitations of the existing system. The second stage concerned the construction of the

software required to support the redesigned processes. In both of the cases, while the

 40

system design works were successfully completed, the software development aspects

were unsuccessful. For one thing, in both cases, it was not possible to immediately

embark on the software development activity as the approval of same took months. This

was partly the case, since the external advisors employed by the client organizations to

supervise project activities took more time to give their feedback. By the time the go

ahead decision was reached, some of the technical people involved in the study were

assigned to other projects or left the organization. Accordingly, more or less a new

development team was assigned to work on the development project. As expected, the

new team required sometime to study the design documents and familiarize itself with the

application environment.

In the mean time, similar changes also took place on the client side. In the first case (at

the ministry), the development work became a protracted exercise particularly when the

user champions that initiated the project and that were keen to overhaul the processes

were transferred to other units within the organization and away from the head office

where the project was stationed. There was also major organization-wide restructuring

and reshuffle of staff which made it difficult not only to keep the momentum of the

project progress but also getting timely feedback from users. Because of additional

workloads on the replacement staff and lack of required support from the in-house IT

departments (who in fact did not demonstrate enthusiasm from the outset for the software

development initiatives with such outsourcing arrangement), and the interest to cut down

related expenses (charged by the developers because of the schedule extension), the

development project was cancelled after going through a couple of test iterations.

With regard to the second case (at the hotel), there was not much change that took place

in the client organization. After spending some time to study the design documents, the

development team was able to come up with an initial prototype for review with users.

However, it was not possible to get hold of domain experts to comment on and enrich the

prototype. Among the reasons given were, that they had much operational work to attend

to and under the circumstances could not afford the time to work on the software; that

they had already communicated their requirements during the system study and thus did

not have any additional requirements; and above all they doubted the realization of the

 41

automation plan because of the delays experienced to procure the required hardware

because of the failure of the hardware vendor to come out successfully from the

assessments by the external expert group. According to users, particularly the last factor

was good enough reason to authorize the transfer and use of the annual budget allocated

to the project (before it expires) to some other lines that already used allocated budget

effectively and were asking for more. On top of this, the rumour that the General Manger

of the hotel, who initiated and supported the automation project, was to be transferred to

another enterprise also contributed to lack of enthusiasm among users. As a result, after

six months of delay, the client management decided to postpone the automation project

for some other time.

Still closer examination of the two cases revealed that these projects were larger in size

and complexity as compared to those in the success stories described above. Each project

involved a number of full-fledged packages in two broad categories: business functions

(such as human resource, payroll, accounts, asset, etc.) and professional services. There

were a number of functional departments involved in the process. Each project had

branch offices scattered all over to be considered in the requirements analysis. Unlike the

privately owned client organizations, these government owned client organizations had

strict and rigid procurement and budgetary constraints to operate under. In this

connection, lack of appropriate project management methodology to address issues

related to project scoping, prioritizing applications to be developed and coordinated

among parties involved in the project had also partly contributed to the failures. The

developers had no relevant experience in these areas to help users. They also did not at all

consider it appropriate to take part or responsibility in these areas as part of their main

activities (these were totally left for users to handle).

The third case in this category, the project with the retail enterprise, was initiated by the

Accounts Manger of the enterprise, who came to Organization A based on the

recommendations of other clients who had successful engagements with Organization A.

As such the automation project for this enterprise was jointly developed and a contract

was signed after negotiation. The development project basically involved customization

of IBAS to the client environment. After going through a number of iterations of

 42

customization based on the specific requirements of the client, the first operational

version was installed for trial at the Head Office. At this point, a new request came to

develop a Video Rental System (VRS) with high priority as this newly introduced

business met with difficulties with the manual means (particularly, the number of

customers and transactions increased at alarming speed). The VRS was successfully

developed within three months partly because users were desperate for such a system.

The deployment and use of an initial version not only helped increase efficiency but also

boosted company image among end users who were very impressed with the speed of

processing and level of detailed information provided to users on the spot at checkout.

When returning back to the IBAS customization, after four months, the developers were

required to almost go through the entire customization all over again. This was partly the

case because most of the user counterparts that worked with the developers had already

left the company or transferred to other units and their replacements were in fact new

college graduates who were keen but not very well familiar with the business processes

and the versions of the software deployed earlier. What is more, there were also groups

among the users with vested interests in the status quo - that favoured working with an

existing application software that was to be replaced by this project. The four-month

absence gave this group an opportunity to reinstate the old system on grounds that the

new system was not yet tested and ready for them to close accounts and produce reports

for management. This resulted in a serious negotiation between Organization A and the

client organization as the effort to put the project back on track required additional time

and cost. In between this, the key negotiator and project initiator (the account manager)

got seriously ill. The negotiation was interrupted as the client organization insisted that

finalization of the negotiation to reinstate the project be pending his recovery as he was

the one behind the project from the very beginning and who was assigned to act on behalf

of management on matters related to the project. Unfortunately, the account manager

never made it back – he passed away. This, in effect, also resulted first in the

postponement and then cancellation of the development project.

With regard to methods, organization A adopted the use of such structured

techniques such as data flow diagrams for process documentation, entity-

 43

relationship diagrams for database, decision tables and pseudo-code for logic

description. For information gathering, interviews with selected user

representatives and documentation reviews were used. In practice, however, the

data flow diagrams and entity-relationship diagrams only served the purpose of

orienting the development team with the application domain and designing initial

versions of the system architecture. In some of the cases, where there were

contractual requirements, it also helped in the preparation of system reports for

management consumption as an evidence of progress. The decision tables and

pseudo-code helped the technical people (software developers) to get more insight

into the details of the business domain (in other words, for the purpose of training

the technical people) to enable them produce an initial version of the prototype.

What is relevant to note in this connection is the fact that, throughout the various

projects, although the initial understanding was to work out the business

requirements as detailed as possible first and then develop an operational (or

close to operational) version of the software for testing, this had never been the

case.

 The developers learned the hard way that this was only possible by working

jointly with users from the very beginning using prototypes. The actual processes

can only be discovered from transaction stories and test cases completely worked

out with users. Particularly, the work out examples which are done by users

manually and by developers through software components in the prototype and

the step-by-step walkthrough supported by tracing were very useful instruments.

While this approach served the development very well, the difficulty experienced

in this connection related to the documentation of the design processes and the

results, particularly the intermediate results and alternative design options

considered before finally agreeing on the implemented version. According to the

practice at organization A, while comments in the source code were used for the

final prototype versions, version controls were used to capture intermediate

design options. With regard to more elaborate design options, the details were

captured manually by simply jotting down notes on the worksheets often in

 44

unstructured formats - mostly influenced by the styles and handwritings of the

particular experts. (see Appendix 3 for samples). As the size of the routines

increased, easy reference to and retrieval from both the electronic and manual

records became more difficult. This problem persists to date.

2.2.2 The Case of Organization B

There were three projects with organization B. The first project related to custom-

developing an insurance accounting software. The second project related to custom-

developing comprehensive insurance application software based on the results obtained

in the first project. The third project related to the customization of off-the-shelf

insurance software. The third project is still an on-going one at the time of writing this

report. It is also one of the projects where the newly proposed approach is being tested.

Thus discussions related to the third project are presented in Chapter Seven. The first

project is similar to those discussed in Organization A above. The discussion in this

subsection, therefore, relates to the second project.

 The main observations drawn from this story are the advantages and

disadvantages of engaging and depending on highly qualified and experienced

developers and domain experts; dangers of accommodating changing user

requirements continuously throughout the project; and the risk of technology

adoption without proper assessment of consequences. Obviously, engaging highly

qualified and experienced experts in the development of software may have many

advantages. Those that stand out in this case relate to: faster development of

quality modules, flexibility in accommodating requirements, better understanding

among and within the development groups, and most of all detailed

documentation of the business process redesign which served purposes beyond

the development of the application. For instance, the documentation produced as

part of this process has been in use for long for practicum in teaching software

development. On the other hand, the feasibility of conducting full-fledged

business redesign work as part of the software development activity; the

possibility of a domain expert turning into a software designer or developer; the

 45

possibility of a software expert gradually assuming the role of a domain expert

were important observation that may be extracted out of the project experience

with organization B.

On the down side: the scale of change was enormous and the emphasis on

precision and perfection was high, the excitement to exploit new developments in

the technology and the enthusiasm to come up with an international standard and

best in class application package were all high, to the extent that none of the

versions developed as part of this project made it to real-life operational

environment. The development took the shape of a research work done to satisfy

the high expectations of the developers and domain experts rather than delivering

a product to support the business processes of the client. The other major

drawback was extreme confidence and dependence on few individuals, which

resulted in putting the project in danger when some of the key experts left the

project for reasons beyond their control.

As indicated above, this project was initiated due to the successful completion and use of

the first project that concerned the development of an insurance accounting software.

This second project was relatively large in size and complexity. The plan was to develop

a software application package that caters for all classes of businesses (life and non-life)

and to automate every aspect of the business process ranging from proposal processing,

premium calculation, policy issuance, policy maintenance, claims processing,

coinsurance and reinsurance management, to accounts management.

The second project drew lessons from the first project particularly in terms of the work

involved in programming and related technical feasibility. The domain expert assigned to

work on the project, in consultation with his professional colleagues in the insurance

business and the management of Organization B, took the initiative to re-design the

business processes as part of the effort to develop full-fledged industry-standard

insurance application software. This task required the study of similar processes in the

other local companies and best practices elsewhere in the industry. It also involved

 46

exploring the possibilities of benefiting from new developments in the technology to

implement better functionality and interfacing.

In this project, the domain expert was not only acting as the business process expert, but

was also given mandate to interface with the development team on behalf of the users and

also played the role of project leader. As a highly qualified and experienced person in the

industry and a person keen to see the development of home-grown quality software of

international standard, the expert devoted himself fulltime on the software development

project. The author had the role of a chief technical designer and counterpart to the

domain expert from the software side. Together we worked for almost two and half years

on the project. Based on his experience in the first project and extensive almost day-to-

day meeting with the author (and with the software team to give feedback on the

prototype), the domain expert became fully conversant with software design methods. In

fact, through the process, the role of the domain expert shifted to a developer and

decision maker on software design options. To incorporate best industry practices, the

development team was assisted by another team from outside Ethiopia which was led by

a highly qualified and experienced insurance business man, very active at the time in the

African Insurance Association. This external team not only contributed to the design of

international standard software because of international exposure and the rich experiences

of its members in the industry, but also developed an interest in the marketing of the

product at a regional level in Africa.

Working with such arrangements, impressive results were obtained at the end of the first

eight months, particularly in terms of documenting the redesigned business processes on

the one hand and building the knowledge of software experts in the insurance business

area on the other. As part of this process, insurance processes in the various classes of

business and functional units were documented in detail together with the decisions on

the design options. The knowledge base was captured for the most part on paper in

simple natural language text and diagrams/charts for anybody to read and understand.

(Samples of such records are attached as exhibit in Appendix 3). By then, a revised

version of the existing insurance accounting software was released after correcting bugs

in the first release and addressing some additional requirements from the operation group

 47

at Organization B. In parallel, migration from the DOS environment to Windows, from a

PC-based to Server-based platforms and from C to C++ routines were also planned.

The preparation for this migration, particularly familiarizing oneself with the new

technical development environment was not an easy ride. The technical people, while

studying the insurance business domain on the one hand, were also extensively engaged

in training themselves with the use and application of the new programming tools and

techniques. The growing size of the source code in the C version (which was close to one

million steps for the applications implemented and the various library routines) and the

incompatibility between the old and the new platform made the migration more

complicated. Most low level routines had to be completely redone using the features of

the new platform. Business transaction processing related routines had to be carefully

transferred and tested. At times, with the increased enthusiasm and resulting pressure

from the sponsors, the task became very frustrating. To reinforce and expedite the

process, another technical team was organized that involved more talented and skilled

C++ programmers. Members of the new development team were not only former students

of this researcher, but had worked with the researcher on other earlier software

development projects. Although their mastery of the new platform and programming

skills were very good, it took more time to familiarize them with the insurance domain

and to bring them up to speed in the project. Nevertheless, with the reinforcement,

towards the end of the first year, we were able to demonstrate early versions of the

prototype for some of the modules in the new platform.

The impressive documentation of the redesigned process and the demonstration of an

early version of the prototype, of course with better features and capabilities of the new

development platforms, increased hope and expectation on the side of our business

partners. What is more, through contacts made by the external group, the project attracted

more regional/African attention. With this development came request for another major

revision of requirements. Among the major requirements was the need to revise the

system architecture in such a way that the general insurance business processes common

among insurance companies be pulled together as the core component of the base system

with adequate provision for customization to each company preferences. This regional

 48

interest in the project culminated into an agreement to upgrade the system to meet the

revised requirements. In particular, this agreement is to upgrade the features and

capabilities of the software to a full-fledged off-the-shelf package ready for deployment

in small to medium insurance companies all over Africa. According to plan, organization

B agreed to serve as a test bed and the regional association to finance the development of

the software. To this end, the redesigned process and the prototype under development

had to be revisited all over again.

To cut the long story short, the migration and upgrading project went well up until the

sudden departure (away from the country) of the domain expert (for reasons beyond his

control) towards the end of the second year. By then, the current researcher was preparing

to go abroad (to USA) on a sabbatical leave after making necessary arrangements to

transfer core responsibilities to another senior software engineer. Per the arrangements,

the researcher would continue to work on the project through the Internet.

After the departure of the domain expert, the work arrangements for the insurance

software development had to change. Before the departure of the domain expert, the

developers and domain expert were in day-to-day and face-to-face contact, sometimes

sitting together in front of a development workstation to test routines and make on-the-

spot corrections and modifications. Any business concept that the developers wanted

clarification on were explained with practical examples from the real-life experience right

on the spot using worksheet as a tool by drawing on similar experiences from

Organization A. Access to required documents and business specialists were readily

available on site. Developers were also motivated and encouraged from the challenges

posed by the domain expert, prompt feedback on any request, the assistance in the testing

of converted modules and visits by prospective buyers of the software from the local and

African insurance company representatives (who often expressed eagerness and support

to use a product designed by ‘Africans’ for ‘Africans’). This situation changed after the

domain expert and project manager left. Although attempts were made to maintain

communication and follow up support from remote, it was not easy and convenient.

 49

Based on a series of consultative meetings held among the concerned parties (the

development team, the external group, the management of Organization B), a decision

was made for this researcher to take over the project coordination and liaising with other

domain experts from Organization B. The researcher was not new to the industry as he

had an opportunity to work for the Ethiopian Insurance Corporation (the state-owned and

largest insurance company in Ethiopia) as the Head of the EDP Department (as it was

called then, now changed to IT Department) and also worked very closely with domain

experts for a couple of years as a software engineer. In this capacity, working from USA,

the researcher tried to support the technical team through email and telephone. The

emails, exchanged between the researcher and the development team, were very

extensive and technical. Although the documentation produced after the redesign were

detailed enough to explain most of the issues raised by the developers, the developers on

the local side required additional explanations from the researcher basically for two

reasons. Firstly, they could not afford the time (off the development work) to read the

documentation. Secondly, in the course of implementing the design they usually came up

with alternative designs that they felt were better but wanted assurance on whether these

would capture/support the original design considerations. As such, the emails involved

answers to various queries from the developers, additional clarifications on the design

specifications prepared by the domain expert, additional requirements, and mostly design

options for the realization of software modules which were not straight forward to

implement or for which the developers have invented better ways than originally

proposed. Together with the detailed and very well articulated stories and design

specifications prepared by the domain expert, copies of these extensive email texts and

attachments served to this date as a reference to the application area in both teaching and

practice. Sample copies of the design specifications prepared by the domain experts and

the email exchanges are attached in Appendix 3. It was not possible to attach the

complete copy because it is a big volume on its own.

After a year of work in this manner, the project took yet another shift in the development

direction. By then the project enjoyed high marketing. But it was difficult to get the first

version to the market. In the mean time, after making an assessment of the progress on

 50

the one hand and the market demands and time to market on the other, the sponsors

decided to make another major revision at technical level. In particular, a decision was

made to develop a full-fledged web-based version using Java. To expedite the process, to

support the local development team, and to better market the product, a decision was also

made to establish an off-shore software development company with a merger

arrangement with a development team from the Middle East already working on a similar

project. The development work continued along this line for some time. However, the

author was unenthusiastic about the terms and conditions of such deal, particularly the

commercialization strategy that in a way demanded complete detachment from a

university environment and hence the research exercise on development methods with

students. According to the information from colleagues that have joined the effort, the

development project continued by involving more software engineers and insurance

experts from both Ethiopia and the Middle East. Still the efforts of the project team to

release an operational version to the market per plan met with difficulties.

After waiting for sometime, however, the management of Organization B decided to no

more wait - as it could not afford to continuously wait amidst the growing competitive

environment and increased business volume and pressure from partners and stakeholders.

Accordingly, it discontinued its relationship with the project and decided to look for

another means to meet its demands. This time around, Organization B opted for exploring

an alternative strategy to acquire the required software – in particular to procure a

commercially available software package. Because of the reputation established already

during the earlier attempts, the familiarity of the case history and technical support

provided during the difficult times to maintain the previously developed software, the

management of Organization B called upon the author to advise and help in the

realization of the new strategy. Such is the beginning of the third software project at

Organization B. This time, in consultation with and upon the approval of the manager,

the author tried to handle the assignment by applying the newly proposed approach in this

research. The experience from this effort is reported in Chapter Seven of this report. The

lesson learnt from this case study have already been summarized at the beginning of this

subsection.

 51

2.2.3 The Case of Organization C

There are two stories, worth sharing from Organization C. The first relates to sharing the

experience from a project initiated for the acquisition, customization and implementation

of an off-the-shelf software (where the author first took the role of the project sponsor,

then as troubleshooter, and then took the role of an investigator (together with his

graduate students) after leaving Organization C. The second case relates to sharing the

experience from a business process re-design project that was initiated as part of a

corporate reform program and as a front-end for the automation plan that involved

application software development. This subsection deals with the first case. The second

case is presented in Chapter Four in due consideration of the contribution this experience

made to the methodical approach proposed in this research work.

The main observations drawn from this case are: the importance of a

participatory approach in the sense of Dahms & Faust-Ramos (2002) – and the

drawbacks of instrumental participation in software development; the importance

of organizational competence among project team members as a critical success

factor in software development; the serious negative consequences of lack of

organizational communication on project related matters. What is more, the fact

that large-scale introduction of software systems in organizations result: in

changes that commonly lead to new ways of working and shifts in social

relationships in the workplace, in altering the ownership of and patterns of access

to information, in affecting established protocols of decision-making and the

exercise of influence by individuals and groups; and as such the need to introduce

large-scale systems step by step and accompanied/guided by appropriate change

management and organizational embedding techniques.

This project was one of the main organization-wide reform projects initiated to enhance

service efficiency and revenue maximization. It particularly aimed at replacing the

legacy customer service application software. The system to be replaced was a

centralized system, developed in-house using an RPG (Report Program Generator)

language. The system used to run on an IBM AS/400 midrange computer platform. When

 52

the existing system failed even to handle the billing service properly for technical and

other reasons (Ahmed, 2006; Getahun, 2006), and when it failed to cope up with the

increase in size and type of business as well as customer service quality expectations, a

decision was made to replace it with a modern and robust system that addresses not only

the deficiencies of the existing system but also takes advantage of the advancements in

the technology and best practices in the utility industry.

To that end, a technical requirements specification document was prepared for the

procurement of an integrated and convergent solution (both hardware and software) that

was flexible and scaleable enough to support the existing and forthcoming services

provided by the utility company. According to the bid document prepared based on the

requirement specification, the project was expected to cover a range of activities,

including: examining and studying the nature of the existing system, analysis of future

requirements, the supply of both hardware and software solution to meet the

requirements, installation, testing as well as commissioning of the systems, data

conversion and post implementation support. The tender was floated as an open,

international competitive tender. The first two tendering processes were not successful:

the first because of inflated offers well beyond the allocated budget and the second

because of absence of eligible vendors to meet the overly specialized revised tender

requirements. Accordingly, the tender was revised again and floated for the third time.

About fifteen suppliers responded to this third tender. Four bidders came out successfully

from the first level screening based on the preliminary evaluation criteria published in the

tender document. The offers of these vendors were further subjected to technical and

commercial evaluation, in accordance with the evaluation process published in the tender

document. As a result, a company that claimed to be a global provider of the required

solution, won the tender and went into agreement after a thorough negotiation on both

technical and commercial issues.

Per the contract terms, the supplier conducted a site study process together with key

representatives of Organization C which resulted in a detailed statement of work. Based

on the statement of work, an appropriate project organization was jointly developed that

required both parties to assign senior personnel each to act as project manager on behalf

 53

of its respective organization. Other elements of the project structure were also staffed

accordingly.

The project was originally planned for implementation within nine months. But in actual

fact, it took well over eighteen months to operationalize some aspects of the software

(Ahmed, 2006; Getahun, 2006). In addition to the delay, obviously there were

considerable cost overruns. Serious difficulties were also experienced in implementing

certain modules. Users had serious complaints on the software features and capabilities.

Taken together, both the implementation and use of the software were very problematic.

Benefits expected at the outset were not realized to a satisfactory level. In effect, the

project became a very controversial issue throughout Organization C and its clients. In

the following paragraphs, an attempt is made to highlight some of the problems

encountered in the implementation and use of this software with a view of drawing

findings relevant to address the questions raised in this research. Further details of the

project, including detailed analysis of the problems encountered and possible causes of

these problems are documented in Ahmed (2006) and Getahun (2006). The studies cited

were conducted as part of a master’s thesis under the supervision of the author of this

report. Beyond citing some of the findings from previous studies, an attempt is made

below to further analyze selected issues in more depth than ventured by the other studies.

One major conclusion to be drawn from the information gathered as part of the above

cited studies conducted by the students, is that users did not feel consulted about their

work needs in the course of the software development work. From the researcher’s

knowledge, such complaints were made even when participation by those functional units

responsible for the business application supposedly happened, as explained above in the

project organization. Closer analysis indicated that this user feelings may have come

from the fact that key user representatives (those that were responsible for the functions

and who did actually participate during the design) did not make it to the implementation

stage. According to the inquiry made to clarify this, it was found out that most of the

earlier representatives that participated in the process were either removed from their

positions (as part of the management reform program that was underway at about the

same time when the software was being developed) or had already left the organization

 54

for better opportunities elsewhere. In this connection, it is also relevant to note the

following reality being currently experienced in most organizations (including

Organization C) that are undergoing reform in Ethiopia. Newcomers that assumed offices

through the management reform programs were less inclined (or did not feel comfortable

right away) to take up and pursue project initiated by their predecessors. The usual

practice or tendency was to revisit every initiative and where possible to discard the

ongoing project and initiate own versions of the project. The project under consideration

was not an exception. Other viewpoints on user participation are provided below.

When we look at the background of the project initiation, as described earlier, there was

not only a legitimate reason but also an imperative need to replace the old system. The

old system was developed in-house but could not any more cope with the increasing

expansion of existing services and the introduction of new services. Review of

management meeting minutes and consultation on the subject indicates that the

maintenance costs were also high; the technical support was almost nonexistent; there

were lots of complaints from both customers and operators on the delay and errors in the

bill processing; etc. In short, there was an incontestable need for replacement. What is

more, as indicated earlier, repeated attempts were made to attract internationally

reputable and best in class companies for the supply and customization of a commercially

available system but all in vain. It was only in the third round of such tender that it was

possible to get a supplier who came out successfully from the bid analysis process. The

tendering and contract negotiation process took quite a long time. What is more, the

customization time proposed was also long, due mainly to the size and complexity of the

required system. During this period, while maintaining the legacy system to handle the

very essential aspects of the billing process, an in-house group of young software

engineers were assigned to later develop software system that took care of (rather

rescued) some aspects of the required system. Members of this development group and

key representatives of the service units were in fact the ones later assigned to work as

counterparts to the external developers in the project.

In view of the foregoing, perhaps another factor for the users’ feeling of not being

consulted that could possibly be inferred from this project setting, emanates from the

 55

closer relationships that developed between the external developers and the local

counterparts that represented users over the course of the project period. Due to closeness

to the external developers and detachment from the users, users must have felt that the

staff assigned to work as counterparts to the external staff no more represented their

interests as they spent too much time with the developers and did not engage users as

they used to do, particularly as compared to the experiences during the course of

developing the in-house system mentioned above. Through time, it was observed that

user project managers and in-house IT experts that worked as counterparts to the external

group developed some sort of arrogance to the extent of acting as barriers in the

establishment and maintenance of direct communication between the developers and the

ultimate end-users. Towards the end, for instance, there were unequivocal manifestations

from the in-house experts working as counterparts to the developers that direct user

involvement would not add any more so far as the requirements were concerned. This

was made on the grounds that the counterparts themselves have better knowledge of the

requirements because of their long involvements in both the previous (in-house) and

current projects and long years of service experience with the workings of the

organization. The experts also resented any move and intervention by external or

independent consultants to clarify such misunderstandings or to make them change their

mind on the importance of active participation by users for the better of the project.

The other possible observation that may also be drawn from the data collected on the

project experience relates to the difficulties experienced by users in the effective use and

operation of the features and capabilities of the newly developed system, particularly

those features and functionalities that were nonexistent in the legacy system. The new

software deployed included new features and capabilities that were included to support

newly introduced businesses and best service practices in the industry. This difficulty in

the use eventually resulted in serious complaints and resistance to own the system which

in some of the cases culminated into demanding the reinstatement of the old system as an

interim solution up until users familiarize themselves with the features and functionalities

of the new systems and feel comfortable with its operation and use. Most of this can

rightly be attributed to the lack of proper and timely design and implementation, and of

 56

awareness and training programs for the newly introduced systems. Although training

was provided, according to users, it was inadequate both in content and intensity and it

came relatively late after cutover. It was observed that when appropriate training was

given to users as corrective measures, the number of enthusiastic users increased

dramatically. This notwithstanding, of course, some of the resistance was also to be

expected when introducing a system of this scale in an organization that did not see any

major change in its existence for long. Allowances should have also been made for users

as different categories of users differ in their ability to learn and adapt to new systems.

All these use design related issues should not have been ignored and should have

deserved explicit treatment during the planning and implementation.

Perhaps at the root of the causes for the problems around the project is failure to

anticipate (reasonably predict) the effects of the introduction of such a comprehensive

and core (to the business) system on the organization structure, the jobs and roles of the

workers directly affected by the system. The project placed much emphasis on the

technical aspects of the system. Both the management and the developers (in-house

experts included) failed to recognize that the users who were to be directly affected by

the system might not see systems in such a benign way as they did themselves. In reality,

what was later discovered/learned the hard way was that most of the users, particularly

the majority of the labour force, perceived the introduction of the system as instruments

of management repression. Some considered the new system would in the end deskill

their jobs. In this connection, it is relevant to note that the software was being introduced

at the time when many corporate wide organizational change initiatives were underway

including the overhauling of the infrastructure at breath-taking speeds and reengineering

of the business processes, as well as a result-based employee performance management

system (all of which were not taken positively by the labour force).

One must not also ignore the fact that the impacts of introducing a system of this scale in

a huge organization as Organization C in one go are widespread and yet often subtle. For

example, as is common in most developing countries (Dada, 2006; Heeks, 2003, 2002),

the type of easy access to information provided by the newly introduced systems was not

welcome to the bureaucracy. With the introduction of the system, it was possible to know

 57

on the spot where there are ideal resources to be made available for customers; it was

possible to track the performances of sales people on a daily basis; it was possible to

follow up fault conditions and the performances of the maintenance crew; it was possible

to log customer complaints online for immediate review of same by both customers and

supervisors; it was possible to provide not only one-stop shopping service to customers

but also ‘no-stop’ shopping service where able customers (with internet access) would

handle their business dealings with Organization C directly from their workstation; etc.

In a bureaucracy typically characterized by a limited degree of openness and trust, limited

delegation of authority, more interference with work activities, etc., the introduction of

such system was no wonder perceived as a threat with a potential to erode the power

base of those who have formerly had control over its flow. From this perspective, the

introduction of the system became more of a political intervention that required an

appropriate change management program as part of the system implementation plan, well

beyond the technical-oriented project management that was in place.

As indicated earlier, it is also relevant to note that in the project period (counting from the

time management decided that the existing system be replaced), 2002 to 2006,

Organization C had gone through two major structural changes. With the organizational

reform plan demanded by the owner, a third restructuring was underway at the time of

reviewing the case being reported. This trend is expected to continue as the organization

preparing itself for the upcoming competitive environment both at national and regional

(African) level. Accompanying such restructuring was also the series of management

reforms that resulted in the continuous reshuffling of managers and key personalities. In

the process of such management reform, those who initiated the reform projects in

general and the software project in particular left or were removed from their positions

before the completion of their respective projects. As such, developing systems under

such conditions was often difficult and at times problematic unless appropriate

approaches were devised and continuously adapted to the changing environment usually

based on experience and precedents.

The process model adopted for the project was more or less waterfall. Following the

signing of agreements, the representatives of both companies met to work out the scope

 58

of the work in consultation with the concerned functional units. Required information for

customization was basically collected using forms specially designed for this purpose.

The forms together with the information collected were then forwarded to vendors. Using

this information the vendors tried to customize the base modules of the software. The

customization work took place (away from the user site) in the development site outside

of Ethiopia. This was followed by further modification and testing of the customized

version at the client site working with user counterparts. In parallel with the modification

and testing, installation of modules and data conversion processes were initiated. This

was followed by user training and commissioning.

Throughout, the understanding on the vendor side was for in-house business processes to

be changed to fit into the software requirements as the software was expected to

introduce best practices to service delivery. On the other hand, users preferred to stick to

their in-house practices and as such expected the software to be customized to support

these practices. In fact, at the time the software was being introduced, users were already

in the process of revising their business processes as part of the corporate-wide reform

program. As such, users did not see the need for (at least not prepared to make) the sort of

further changes demanded to operationalize the new software, particularly when this was

brought to their attention at the end as part of the operator training.

Analysis of the situation reveals two conflicting issues. On the one hand, the use context

was considered important and thus the software should cater for the specific requirements

of the users. On the other hand, in line with the reform initiatives, particularly the need to

transform the service provision by introducing best practices, if the features being

introduced by the software were better, the existing processes should be redesigned to fit

the software requirements. All these details, it was discovered, were not looked into

adequately at the time of customization. That is, the decision whether or not the

application software system to be customized should fit into the existing business

processes and work practices was not at all addressed. Moreover, whether or not the

business processes and work practices should change to fit the customized software

which was expected to introduce best practices was not addressed in timely manner.

Despite their claim of international exposure and rich experience in the customization and

 59

support of the software to many environments, the vendors seemed to have failed to see

the software within the operational and use context where the customization could not be

made in isolation from the context.

User participation in the project, touched upon earlier from another angle, was minimal.

Users did not get the chance to directly participate in the customization – this was done

indirectly through supply of their requirements on the forms provided and indirect

consultation through the project counterparts. Users saw the software developed for the

first time during the training conducted to enable them to operate and use the system.

Most of the people who directly participated in the customization process were technical

project counterparts from the IT support unit of Organization C. Although these people

had a good deal of operational knowledge in the business activities, mainly due to their

involvement in similar earlier automation projects, there were a number of customization

issues that were not considered important by the counterparts but really mattered for end

users. For instance, users complained about the level of details to be captured on screen

forms while registering a customer in the new system. This according to them was not

only in a marked contrast to the previous practice in terms of time required to enter the

details, but also included unnecessary details, some of which could easily be handled

during back office processing at a later stage. The lengthy registration process also

resulted in lots of complaints from customers.

In general, the developers used traditional methods that gave users essentially a passive

role, limited to serving as informants. There was no meaningful direct interaction and

participation by users beyond filling out forms and attending project review meetings

which were mostly dominated by complaints from the suppliers that deadlines for

sending documents were not met. There was no direct engagement with the front office

staff who were to use the system in their dealings with customers.

There was too much rigidity on both sides with regard to following contractual terms

quite literally even where there was a need for flexibility (there were discussions right

from the date of completing the scope of work on the incorporation of additional

requirements discovered in the process and settlement of claims for compensation

 60

resulting from the additional requirements). There was lack of coordination and

information sharing among the application software vendors and platform providers

(there was continuous unsettled argument between the main software supplier and

another subcontractor to support a software module). The functionality as well as

maturity of certain modules was not tested at all (some core modules were to be newly

developed for this project). The situation was further aggravated with serious conflicts

that cropped up between the in-house technical team (who often tried to show authority)

and the technical team from the supplier side (who often tried to show technical

arrogance). In meetings called to resolve such conflicts, each group focused on

emphasizing its own individual contribution and achievement instead of the joint

contribution and achievement. The local team often complained that the software supplier

counterparts delegated or referred to them tedious and awkward parts of the work while

keeping preferred ones to themselves, during the customization. The team from the

software supplier side complained about the mistrust from the local counterparts and

continuous watch over to monitor their activities.

Looking back, the earlier approach followed to resolve the problem was also

inappropriate or not targeted to addressing the real cause of the problem. Initially all

attempts to resolve the problems were directed towards bringing together vendors and

their project counterparts, discussing ways and means of correcting errors made in the

execution of projects and mobilizing additional resources to meeting deadlines and

delivery of milestone products. The discussions were often dominated by pointing

fingers, externalizing shortcoming, putting others to blame. When such repeated efforts

did not bring any difference in reality at all, the overall implementation approach was

questioned. But this was discovered late. That was the time when use of alternative

methods was explored. The approach presented below was one of the efforts in this new

direction.

Using lessons learned from the application of the business process redesign approach

developed by the author for use in related projects (discussed in detail in Chapter Four),

the author took the initiative to remedy the project implementation at one of the branch

offices of Organization C. The selected branch office was one of the largest in terms of

 61

customer base and business transaction. In particular, the researcher initiated a Friday

afternoon workshop session with operatives to address problems related to reform

implementation in general and the software implementation in particular. The workshops

were conducted in the manner described in Chapter Six of this report. The author tried to

explain the purpose of the workshops and demonstrated how to facilitate same in the first

two consecutive sessions. As of the third workshop, users took over the facilitation and

the author took the role of a participant. As required, the author intervened to coach the

facilitators and guide the sessions, particularly reminding participants from time to time

of the purpose of the workshop and the need for open and constructive argumentation.

The author made it a point also to intervene whenever dominance by some participants or

expression of authority by supervisor participants or insecurity from subordinates, etc.

were observed. Gradually but progressively, the participation and enthusiasm of the

community increased. A number of issues were raised, discussed and resolved in these

sessions.

Each workshop session was designed to focus on issues related to a specific process

agreed upon by the participants. At each workshop session, a facilitator and a scribe were

elected by the participants to moderate and record the session deliberations respectively.

At the end of each session, the facilitator, the scribe and the owner of the process

discussed sat down together to analyze the outcomes of the workshop session. The results

of the analysis were summarized in three main categories: issues raised and positions

taken, plan of action to implement decisions, made and outstanding issues for

consideration in setting agenda items for the next workshop session. Such a summary was

circulated to participants (including the branch management) immediately within two

days of the workshop session. Together with the summary of the proceedings, a reminder

of the next workshop session that also requested participants to prepare themselves on the

outstanding issues was circulated. Further details of workshop procedures applied

(together with some modifications made during subsequent use of the procedures at the

third project at Organization B with software professionals) are presented in Chapter Six

of this report.

 62

At higher levels, the branch management and the project office were required to actively

and promptly address issues referred to them from the workshops. Actions taken and

issues addressed were directly reported in the workshops, and this encouraged

participants very much. This way, it was possible to take a number of actions that

addressed most of the problems. A training program was also conducted based on the

needs identified in these workshops. Some of the user complaints were resolved by

making simple working arrangements. For instance, one of their complaints related to the

longer time customers had to wait to get the attention of the front-office sales staff (who

were the interfaces for the clients of Organization C). As the system was an integrated

one, it enabled a front-office sales staff to serve customers of more than one service

types. Usually, for instance, service requests, say for one of their services, were simpler

and faster to process, as compared to another service type. So where customers of the two

service types came together to the same sales person and the customer for the service

type that takes longer approached the sales person first, the customer for the other

(simpler) service had to wait until the sales person was done with the first customer.

Some customers seriously complained about such waiting. In the discussions, it was

learned that this did not require a software solution - a simple administrative arrangement

was made to resolve this issue. Different desks were assigned for different services.

The workshop findings and the training sessions did not only help users to better

understand the features and capabilities of the newly installed software and their use, but

it also helped the developers to get feedback directly from the users, which helped them

better understand the complaints and promptly address them to the satisfaction of the

users. According to both developers and users, the developers and the project would have

benefited a lot if such sessions had been instituted in the customization and

implementation of the project from the outset. This could have avoided most of the

problems around the software functionality. By the end of the second month, the news

about the progress made at this branch circulated around all branches of Organization C

and corrective actions taken at the branch where the approach was implemented helped

resolve most of the bugs in the installed version. According to an assessment made

afterwards, the exercise at the branch office did help to sustain the operation and support

 63

of the software. It also gave an opportunity for champions on the system to emerge from

both the IT unit and customer service unit. There were an increasing number of people

from both the technical and user sides that were determined to fix problems promptly and

disseminate required information on the product features and capabilities as well as the

project status and progress. This did help to avoid all kinds of misinformation and

confusion around the software.

2.3 Chapter Closing

In this chapter, an attempt was made to describe the software development situation by

sharing stories from selected cases that the author was actively involved with. The

challenges faced as well as the success and failure factors were summarized as

observations and lessons learned at the beginning of each case.

As indicated, on the technical front, within a span of two decades, we saw a shift from the

use of programming language and operating systems features to the use of structured

approaches and then object-oriented approaches in both teaching and professional

practice. For the successful development of a usable system, in addition to the technical

aspects, it was possible to witness the importance of: closer cooperation among key user

representatives (domain experts), software engineers and end users, allotting time (by

software engineers) to learn about and build knowledge on the application domain, and

the use of operational prototypes. Among the factors that contributed to the difficulties

experienced in the successful implementation of the project were: attempting to deploy

large scale projects in one go; conducting systems design (business process redesign, to

be more specific) and the related software development separately; introducing

uncontrolled and incessant changes in requirements throughout the projects and reactive

development in which developers continuously change directions; introducing new

technology without proper and careful evaluation of the implications on the project; and

overdependence on few specialists.

 64

To obtain further information on the existing software development situation in general

and to assess the situation with regard to methods use and related challenges faced by

practitioners in the local setting in particular, a comprehensive survey was conducted as

part of this research. The design, administration and findings of the survey are the

subjects of the next chapter.

CHAPTER THREE

3. Software Practices and Emerging Demands in Ethiopia: a Survey

In the previous chapter, an attempt was made to provide a picture of the existing software

development practices in the local setting by presenting selected case stories and related

qualitative analysis. To get a more complete and up-to-date picture of the situation,

further investigations were made to assess the situation through survey questionnaires

and interviews conducted with the main actors in the field. While the work related to the

development of a survey instrument and the findings from the survey conducted are

reported in this chapter, further work done based on the findings is reported in subsequent

chapters.

3.1 Survey Instrument and Participants for the Assessment of Practices

3.1.1 Questionnaire Design

Based on the analysis made on the case studies reported in the previous chapter and

reviews of related works and the literature, a list of possible issues that were considered

important for assessing the existing situation was first prepared. In the process of

compiling the issues, consultations were also made to similar previous local attempts,

including those by Rahel (2004), Ahmed (2006) and Getahun (2006). In these studies

which were conducted in partial fulfillment of a Master’s degree at Addis Ababa

University (AAU) and College of Telecommunications and Information Technology

(CTIT), attempts were made to develop discussion and survey instruments to collect

information on issues related to software project failure in the local setting. Rahel

particularly adopted the Capability Maturity Model (CMM) questionnaire

recommendations, while the other two adopted qualitative methods commonly cited in

the literature. Although these attempts might have served their purpose, they were not

found to be thorough and fit for the sort of assessment under consideration in this

research. Besides, the use of CMM questionnaire as is was considered a misfit to the

local realities.

 66

The issues compiled through the above process were further developed and enriched in

the series of discussions held with colleagues and post-graduate students in the system

development courses offered initially at AAU and then both at AAU and CTIT. These

issues were then reworded as survey questions. The survey questions prepared were tried

out by students in their coursework projects. As part of the discussion that followed the

coursework assessment, the survey questions were further revised and focused. In

particular, among the range of topics considered, issues related to the practical use,

usability and appropriateness (affordability, availability, sustainability, etc.) of popular

(‘industry standard’) software development methods/approaches, in the local settings

were given more emphasis for immediate investigation. As part of the revision, and based

on the feedback from the students and practitioners that took part in the coursework

projects, the questions were revised by including texts that provided additional

explanations and guidelines.

Based on the revised list of survey questions, three types of questionnaires were prepared

for the purpose of this research: one for software companies (about 20 questions), one for

the IT Departments in large organizations (about 16 questions) and one for software

development professionals (about 35 questions). Samples of the questionnaires used are

attached as Appendix 1 of this report.

The questionnaire for the companies was designed to obtain information on the company

in respect of: company profile, customer profile, means of getting new customers,

partnership arrangements, professional staff turnover, software development and project

management processes, and guidelines being practiced, change management practice,

project success rates and critical factors that need to be addressed to improve productivity

and quality. Almost the same questionnaire was used for IT Departments with some

adjustments required to make certain questions applicable to these organizations.

The questionnaire for professionals was designed to obtain information from the

professionals in respect of: their formal education and training, qualification and software

development experiences; means of upgrading software development skills, ongoing

training and level of support provided by the employer in this connection; project

 67

workload and reporting mechanism; the extent of using software process models and

methods and factors that affect the use; performance level and factors that impact

performance; means and frequency of sharing information, experience and learning with

colleagues (project staff); understanding the role of users, as well as purpose and mode of

communication with users; the extent to which methods are factors for productivity, and

the availability of guidelines, training and related support; challenging aspects of the

development work; issues that need urgent intervention to improve usability of methods,

productivity and quality of work; and important skills required for software development

in the local settings.

In addition to the testing done as part of development process, the questionnaires were

also further pilot tested with instructors and the new batch of graduate students (in the

following semester) at Addis Ababa University as well as with some selected software

practitioners in the industry. This was to check for appropriateness and clarity before

actual use. Comments and input from the piloting were incorporated into the instruments

before they were actually used.

3.1.2 Data Collection

Due to the lack of readily available empirical data on the software industry population in

the country, selection of participants was guided by a list compiled for a previous study

by Rahel (2004) and lists compiled by post-graduate students as part of a coursework to

assess the extent of method use in software development by local software firms. A sort

of purposive sampling technique was used in selecting participants from the lists. That is,

attempts were made to ensure the inclusion of most of the IT Departments within large

organizations that practiced in-house development of softwares. All private firms that

were actively involved in the development and customization of medium to large

software systems and projects were included. Those software companies whose major

business was not software development or customization were excluded. In the selection

of individual participants within these institutions, the researcher was guided mainly by

references from the heads of the institutions. Here as well, care was taken not to exclude

 68

software engineers or project managers who had valuable experience on large projects

that involved multiple stakeholders.

A total of 9 software firms, 20 IT Departments and 89 professionals were included in the

survey. Applicable questionnaires were sent to all (hand delivered as all of the

respondents were in Addis Ababa6) and to expedite the process, arrangements were made

to physically collect the completed questionnaires. Each questionnaire was accompanied

by an explanatory covering letter that stated the purpose of conducting the survey, and

how the findings will be used. An overall response rate of 88%, 90% and 91% was

obtained from software companies, IT Department and software development

practitioners, respectively.

The interviews and discussions conducted for collecting data for this study included

structured one-to-one interviews with selected software engineers, managers of IT

Departments in selected organizations and software development companies. In

particular, selected individuals from those that had already participated in the

questionnaire survey were given more chance in the interviews to qualify their responses

through providing explanations or examples.

As training and educational programs play very critical role in preparing and qualifying

professionals, interviews were also conducted with senior instructors. With regard to the

selection of instructors, only those specifically involved in teaching and advising students

in the area of systems and software development (teaching such courses as systems

analysis and design, software engineering, programming, database design, software

project management, etc.) at AAU and CTIT were considered. In addition, group

6 This is because at the time of the survey, Addis Ababa was the home of most of the
software companies and corporate IT Departments, in fact the home of most of the
technology related modern economic activities and services, as well as higher learning
and professional education facilities in the country. Up until the federal structure was
introduced after the downfall of the military government, most major business services
operated from their bases in Addis Ababa with satellite offices in the regions. This was
also mostly the case with computer related service businesses in general and software in
particular. However, the opening of more professional schools and higher learning
institutions in the regions, as well as the administrative and budget decentralization
currently underway, the situation is likely to change in the foreseeable future.

 69

discussions were also held with postgraduate students taking software engineering,

system development and project management courses at AAU and CTIT; work group

sessions were also held with the project staff at Organization B and with the project team

under formation to engage in the development of eGovernment applications at the

Ethiopian ICT Development Agency.

Interviews with the professionals were conducted either at their premises or a convenient

place jointly arranged by the researcher and interviewees. As may be expected, the

questions in the questionnaire were quantitative in nature, while those in the interviews

were open-ended qualitative questions. All of the interviews were conducted by the

researcher. Each interview session lasted on the average for one hour. The interviews and

discussions were conducted in the Amharic or English languages depending on the

preferences of the respondents. The interview and discussion notes which were jotted

down during the sessions were then reviewed and translated (where appropriate) by the

researcher for use in this study.

3.2 Discussion of Survey Results

In order to assess the extent to which the use of methods influenced existing practices and

to study the conditions that will enable methods to enhance production of better quality

products faster, respondents were asked to provide information on a number of issues

including the following (for details, refer to the sample questionnaires attached as the end

of this report):

• on the state of method use in the respondents’ communities (including the

attitudes of practitioners towards using popular methods or those adopted/adapted

in-house);

• on the respondents’ views regarding operational methods and guidelines in local

firms;

• on the factors that had an impact on the system development process, success or

failure of the system development projects;

 70

• on the extent to which practitioners are well-equipped to use methods; on the

most urgent interventions required to improve performance; and so on.

The findings from the survey as well as the individual and group discussions are

presented in the remainder of this Chapter. In order to render meaningful discussion in

this and subsequent chapters around the research questions, they are presented by

describing the views of respondents followed by related interpretations made by the

researcher, each organized along common themes, categories and perspectives

formulated grounded on the data collected.

3.2.1 Profiles of Respondents

Of the professionals who participated in the survey, about 84% hold a bachelor’s degree

and about 11% a master’s degree. Table 1 & Table 2 present summaries of field of study

and years of experience of the professionals who participated in the survey.

Field of Study % of respondents
Computer Science 40%
Information Systems 22%
Software Engineering 11%
Management Information systems 7%
Computer Engineering 6%
Other fields of study 14%

Table 1: Profiles of respondents by field of study

Year of Experience % of respondents
Above 5 years 25%
Between 2 and 5 38%
Less than two years 37%

Table 2: Profiles of respondents by Year of Experience

As can be seen, most of the practitioners surveyed technically qualified but seem to be

less experienced (the majority with less than five years of experience).

 71

3.2.2 Types of Development Projects and Organizational Environment

The local software industry activity seems to be dominated for the moment by projects

that support local needs and requirements in government and public service

organizations. That is, the software development activities are dominated by outsourced

projects that deal with custom-building of application software for specific client

organizations. Projects targeting the development of generic software packages for

commercial purposes are very minimal (if not totally absent). In some of the cases where

there are similarities in functionality, the software written for one client organization is

modified to create another version for the other client at source code level. Even where

customization of commercially available packages is involved, according to the

respondents, the work involved is so huge that they consider the effort as full-scale

development. Among the factors that make the customization work huge are the

peculiarities of the local realities, particularly the enormous amount of modifications

required to accommodate the workarounds introduced in the business processes to handle

exceptional and non-standard cases (these partly result from the lack of continuous

improvement of the business processes).

As gathered from responses of software companies, there is a predominance of software

development projects (about 50%) from the government sector. The maintenance of full-

fledged IT departments within public organizations as well as the prevalence of software

development projects that are managed by these departments further strengthens this

observation (i.e., the huge demands in the government sector). On the other hand, most of

the existing business processes in the government institutions are reported to be

extremely backward and outdated. For that matter, by policy directives, currently all

government and public service institutions are required to undergo major service reform

that includes the reengineering of their business processes with the ultimate goal of

institutionalizing best practices in their respective area of business. According to the

discussions with practitioners and the researcher’s own experience, most of the reform

initiatives involve major restructuring of the organizations, management reform and

overhauling of the processes. What is more, according to respondents from software

companies, with the presence of full-fledged IT Departments in large organizations that

 72

intend to establish the required capacity for developing software in-house, the decision to

use own resources to develop required software, or to outsource the development or

purchase commercially available package has not been straightforward. Such is the

environment within which the software projects are being carried out (more will be said

on the effect of the reform initiative on the software processes later in this chapter).

3.2.3 Use of Methods

Modeling Tools, Process Models and Programming Languages

The following is a summary table presenting the modeling and programming techniques,

development tools and process models used by the respondents.

Modeling
Techniques

Modeling Tools Process Models Programming
Languages

Object
oriented

43% UML 42% Code and fix 19% Visual Basic 63%

Structured 26% Rational Rose 23% Water fall 13% C-sharp 30%
 Requirement

analysis and
coding 49%

 Database Lang. 30%

 Java 10%
Table 3: Modeling Techniques and programming languages used by companies

As can be observed from the above table, most of the respondents used object-oriented

analysis and design techniques as compared to structured methods. It can also be

observed that most used UML as modeling tool. When it comes to development

languages, Visual Basic seemed to be very popular, followed by C-Sharp and database

languages. As observed from the survey, the use of Java is just emerging.

According to the survey results, most of the companies were observed not to use any

‘standard’ method in the actual conduct of the software development projects. A

commonly employed approach involved the use of cyclical requirements gathering and

then programming practices, with a strong tendency to rely on in-house-developed

practices rather than industry standard guidelines. The iterative processes practiced do not

involve such practices commonly suggested in the industry as risk assessment and

 73

reflection, and the production of the software through increments. About 49% of the

respondents indicated that they use some sort of iterative cycles involving requirement

analysis, programming and testing solutions. This is in marked contrast with the 13%

who have indicated they use the classic sequential life cycle mode (waterfall), and the

19% who said they simple follow a sort of code-and-fix method.

 Respondents from IT Departments and software companies were also asked to comment

on the extent of institutionalization of methods in their organization. By

institutionalization of methods in these firms was meant the extent to which the use of

industry standard or in-house developed methods have been accepted, integrated in

organizational routines and practically followed in executing project activities. More

specifically, this relates to the availability of guidelines in accessible format on such

aspects as: contract negotiation and approval of project resources, documentation,

progress tracking and management, change control, training and experience sharing, etc.

About 67% of the IT Department and 29% of the software companies indicated that there

were no formally documented policy and procedures to guide these processes. On the

other hand, in response to items 32 and 33 on the questionnaire for professionals, about

49% of the professionals identified absence of guidelines on method use as critical

limiting factors to carry out their tasks effectively, and about 57% indicated adoption of

guidelines and standards as an area that needs urgent intervention.

Project Management

From the survey conducted and discussions held with practitioners, employment of a

disciplined project management approach does not seem to be widely practiced. This is

evident from the responses given to items 32, 33 and 34 on the questionnaire filled by

professionals. While the majority of the respondents (professionals, software firms and IT

departments) considered the use of methods as crucial for system development, they also

believed that there is generally a lack of skill in the effective use of available methods

and more so in the area of soft skills (where some have even reported the total absence or

lack of awareness in this area). With regard to the importance of methods and disciplined

approach, about 71% of the software companies and 67% of the IT Departments

 74

identified the use of standard methods as most important to produce quality software on

time. On the other hand, however, in responding to item 20 on the questionnaire for

companies, almost 86% of the software companies identified the introduction and

practice of disciplined software development project management as one of the most

important factors to deliver quality products on time and within budget. From the part of

professionals, most (53% of the professionals) indicated the introduction of disciplined

project management as an area that needs urgent intervention.

Training

According to the respondents, a number of factors might have contributed to the absence

of effective use of popular methods or customized versions of these methods. Among the

factors are: lack of training (as indicated by 19% of the professionals), the limited scope

for applicability of the methods which are appropriate for "well defined" projects and

problems (as indicated by 20% of the professionals).

In particular, the training requirements were expressed in many ways by the

professionals: 46% indicated lack of training as the critical limiting factor to carry out

their tasks effectively, 65% indicated skill upgrading as an area that needed urgent

intervention; while about 57% of the software companies and about 89% of the IT

Departments identified skill upgrading training as a critical requirements to produce

quality products on time.

One obvious way in which to address the perceived shortcomings in software processes

and methods is through training and education. Respondents were therefore asked related

questions, particularly to comment on the quality and relevance of education and training

provided by institutions of higher learning that supply graduates for the software

companies and IT Departments. The results indicated a fairly poor impression of abilities

of universities to produce the kind of competencies that software firms require of their

graduates.

As observed during interview sessions, most senior practitioners and employers in the

industry believed that the teaching approaches adopted in higher learning institutions,

 75

particularly the use of textbook case studies and/or simulated project exercises for

practicum in teaching system development methods bear little resemblance to the

problems encountered in real-life projects. Lack of real-life project and industry

experience on the part of the instructors was also mentioned as an attributing factor to

this. In similar discussions with instructors and selected students, the discussants

expressed their views that the exercises encountered in the classrooms provide sound

introduction to the methods by way of describing them and demonstrating their

application in so far as developing specific skills in system design and/or programming

are concerned. They also expressed that the classroom cases have limitations in terms of

addressing the complexities of real world systems and that real-life cases would

positively contribute to address the shortfalls in the effective use of methods in practice.

However, while appreciating the benefit from incorporating a real life based project in the

courses particularly to develop such vital soft skills as interpersonal communication and

teamwork, the academicians questioned the organizational feasibility and sustainability of

such arrangements in real-life. There were also some who explained the complaints from

the employers in terms of lack of clarity or confusion in making the distinction between

training and education – these academicians believed that such practice related skills are

more appropriately addressed through special training programs designed and organized

by the industry rather than through formal educational programs in higher learning

institutions.

3.2.4 Other Performance Inhibiting Factors

Both professional and company respondents agree on the delays often experienced in

project execution. When asked about the reasons for such delays (item 19 on the

questionnaire for professionals), they indicated that, changing requirements and difficulty

in getting users to clearly articulate their requirements as most influential factors. Among

the other causes indicated by professionals were lack of properly defined roles and

responsibilities and high workload. The following table summarizes the responses of

professionals with regard to the main reasons for delays in software development

projects.

 76

Reasons for Delay % of professionals
Changing requirements 54%
Difficulty of users to clearly articulate their requirements 48%
Lack of properly defined roles and responsibilities 25%
Work overload 24%

Table 4a: Professionals view on reasons for delays in project execution

From the responses of software companies (item 17 for questionnaires for software

companies), poor planning because of unclear or incomplete requirements; high project

staff turnover and lack of cooperation from users were identified as the main causes for

project delay. The following table presents a summary of the responses.

Reasons for Delay % of Software
Companies

Poor planning because of unclear or incomplete
requirements

50%

High project staff turnover 40%
Lack of cooperation from users 43%

Table 4b: Companies’ view on reasons for delays in project execution

However, although as shown above 43% of the software companies attribute the lack of

cooperation from users as one of the main causes of project delay, only 22% of the IT

Departments confirmed this. This is to be expected as the latter group (the IT unit)

belongs to the same organization as users and thus has a better position, access and

working relationship to improve cooperation from users. While the software companies

did not at all point out ‘lack of proper progress monitoring and control’ as one of the

major causes, 44% of the IT units indicated this as one of the main causes for the delays

experienced.

In relation to the critical factors that negatively impacted their performance, absence of

guidelines and methods and lack of proper leadership and management were indicated as

the main ones by most of the professionals. Lack of training and properly defined roles

and responsibilities were also among the factors indicated equally critical by the

professionals. The following is a summary of the responses in this connection.

 77

Factors that negatively affected performance % of Software
Companies

Absence of guidelines and methods 49%
Lack of proper leadership and management 47%
Lack of training 46%
Lack of properly defined roles and responsibilities 43%

Table 5: Factors that negatively affected performance

What follows is a further discussion on some of the above performance inhibiting factors,

particularly: work overloads & lack of properly defined responsibilities, deficiency in

organization and documentation skills, lack of user cooperation, communication problem

and changing requirements.

Work Overloads & Lack of Properly Defined Responsibilities

It was observed from the responses that software professionals were increasingly

unhappy with the way their work was structured and the workplace pressures they faced.

According to the respondents, they worked harder, spent more time at work, but saw little

or incommensurate results. The survey results showed that the development team

members were overloaded: about 51% indicated that they were assigned to 3 or more

projects at a time, while 16% indicated that they were assigned to 2 projects at a time,

and 30% indicated that they were assigned to only on 1 project (refer to Item 4 of the

questionnaire for professionals). This situation was further aggravated by the very high

turnover of project staff. According to the survey results, over the last five years as from

the time of the survey, about 49% of project staff left IT Departments. Out of those who

left, 71% left without completing project assignments. In about the same time, 30% of the

professionals left from the software companies, mostly without completing their project

assignments.

According to the respondents, most of the project work is organized in teams, and team

members were drawn mainly from the developer side and mostly composed of technical

people. It was found out that, across all project staff there was lack of organizational

competence resulting in extreme shortage of candidates to assume project management

 78

responsibilities. This was also among the factors for the commonly observed

phenomenon where an individual is assigned to manage multiple projects. In about 43%

of the cases, the software unit heads in the software companies acted as project managers

on top of their responsibilities in the technical team.

In relation to roles and responsibilities, about 43% of the professionals indicated lack of

properly defined roles and responsibilities as one of the critical factors that negatively

impacted their performance. It was observed during interview sessions that users also

shared this concern.

In response to a report by an expert who was called upon to facilitate discussion to

resolve a conflict between the in-house IT experts and the consulting team, a project

sponsor (a senior executive in the client organization) witnessed the situation as follows.

“… I fully agree on the points enumerated as prime causes for the problems

encountered so far in the progress of the project. Probably one additional point is

the lack of clear and neat definition of roles, tasks and assignments in the first

place to the best understanding of both parties probably because the situation in

the early stages of the project did not call for such exercise. …. Once again a

point leading to misunderstanding is the lack of clear definition of the role of the

consulting team, i.e., a decision making vs. a consulting role. I feel the order is

that the Consultants provide their professional advice and recommendations and

the owner decides what he likes”.

Deficiency in Organizational and Documentation Skills

From the discussion conducted and the researcher’s own experience of working with

some of the project teams, most of the professionals seemed to have good technical skills

particularly when it comes to programming. What is striking is the dearth of basic

knowledge and skill in organization and communication even among those that are said

to have more experience and to exhibit better skills in documentation. To this end,

questions were also asked about the challenging aspects of their work. The results

presented quite a mixed picture but there was some justification in drawing a conclusion

 79

that more technical tasks like programming were taken as relatively less problematic. In

general above 50% of professional respondents indicated that more managerial and

organizational tasks such as project planning, requirements gathering, coordination and

communication, are relatively more challenging.

Discussions were also initiated to find out the skills and attitudes of the practitioners

towards documentation. From the discussions held, it was possible to observe that senior

practitioners that joined the software development process from other fields and those

with prior management orientation emphasized the observance of discipline and use of

extensive documentation. On the other hand, the new graduates were classified by

employers (software companies or IT departments) in two categories. In one category are

those that are not only inclined to and are good in hard core programming (particularly

with visual basic, c-sharp and java) and not only disinclined but incapable of writing

reports and/or documentation (particularly those graduates of computer science). In the

other category are those that have better skills in documenting user requirements and

general design as well as application development using database languages but they are

less skilled in hard core programming (most of the graduates from information systems

programs).

In general, what is perhaps encouraging in this connection is the increasing recognition

among practitioners of the importance of human and organizational skills and their

implications in software development. This is gradually getting foothold among both

users and developers as of recent. This appreciation, however, did not yet manifest itself

in the skill development requirements and training programs. Despite the deficiency in

the non-technical skills, the focus of professional training programs provided were still

predominantly in technical areas as summarized in the following table.

Professional Training Programs % of Focus
Programming 60%
Database System 40%
Maintenance and Trouble shooting 5%
System Development 3%
Project Management 1%

Table 6: Focus of professional Training Programs

 80

Lack of User Cooperation

According to the survey results, 70% of professionals expect the contribution and

involvement of users in the requirements gathering stage, about 25% expect in the

implementation stage. In response to item 33 of the questionnaire for professionals, it was

found out that 53% identified the need to establish mutual understanding with users as an

area that needs urgent intervention. Moreover, 86% of the software companies and 100%

of the IT Departments identified the involvement of user representatives in the

development team as the most important requirement to produce a quality product on

time.

On the other hand, about 43% of the software companies indicated the lack of

cooperation from users as one of the main causes for their poor performance. When the

issue of lack of cooperation from users was probed in conversation with project

managers, software engineers and educators, the lack of a common language to represent

and communicate users’ thoughts was usually the first factor mentioned as being the

cause. However, many also indicated that the problem was deeper than this and had to do

more with motivation and trust in project goals and objectives. Professionals believed

that most users communicate well, once they clearly understand and are convinced of the

objectives of the project, or once they get recognition for or are provided with some

incentives to compensate for the extra effort that they put in the project, or once they

know that the software has something to offer to simplify their working life (adds value

to their work and career). Some software practitioners who were interviewed made

frequent references to differences in work cultures, noting that when dealing directly with

users, it was necessary to establish a relationship over time, with repeated personal

interaction, in order to create the kind of mutual understanding and cooperation required

to effectively and efficiently carry out their project activities.

Communication Problem

Probing further into the communication practices among the development team members

and between the development team and users, what has come out strongly is the practice

 81

of sharing project related information, experience and learning through informal meetings

and discussions. As can be seen from the responses of professionals to items 20, 21, 26

and 27 on the questionnaire for software professionals, 82% of the communication within

the development team was made through informal means (with only 23% through regular

meetings) and 70% of the communication between the development team and users was

made through informal means (with only 28% through regular meetings).

In this connection, it is relevant to note that attempts made to find published materials in

the form of project journals/logs or meeting records that were used in the communication

were unsuccessful. It was learnt that documenting design deliberations, issue resolutions

etc. for the purpose of learning and communication was not commonly practiced among

the professionals. On project related matters, team members were not routinely and

formally informed of the status of a project; were not reminded of approaching scheduled

milestones; were not provided with feedback on how well the project is doing in the eyes

of colleagues and stakeholders; were not informed about outstanding issues to be jointly

addressed, etc. Even where it was indicated that there were regular meetings and reports,

discussions with selected professionals revealed that such meetings were held to respond

to certain ad-hoc inquiries from management, and the information compiled in such

meetings are supplied up the management chain. This omission of bi-directional and

horizontal information exchange and communication, coupled with the lack of

participation in the planning (see below) of the project has no doubt discouraged

ownership of the process by the team and being part of a solution. Most of the members

of the development team became aware of the project relatively late (after the signing of

contracts). As observed from the response to item 10 on the questionnaire for

professionals, about 24% of the project staff expressed that they were not involved in the

planning of any of the projects they were working on. Without such early exposure,

involvement, information provision and formal coordination and follow up mechanisms

(formal project meetings, formal client meetings, based on formal documentation, etc.), it

may be difficult to keep team members stay focused on and committed to project goals

and objectives. As can be seen from the responses of professionals to items 31 and 32 of

the questionnaire, over 50% of the respondents identified coordination with the team and

 82

communication with users as challenging, with 38% identifying the lack of proper

communication and collaboration as critical limiting factor to carry out their tasks

effectively.

Still closer analysis of the situation indicates that most projects do not seem to have a

clearly defined and communicated plan, where progress is quantifiable and regularly

monitored and controlled. Metrics that provide the information necessary to assess

project progress were not properly established and used. The process of feedback was

unavailable. There were no clearly defined and communicated processes that cover the

various activities of the development project. This information vacuum severely limited

the abilities of the project staff to control and mitigate the risks associated with a project.

Obviously, in the absence of a disciplined approach, a defined process documentation and

management, project success solely relied on the skills, talent and efforts of individual

members of the project team. This coupled with the high turn over of skilled personnel

(who were in a very short supply in the market) did put most projects in a very vulnerable

position.

Changing Requirements

With regard to indicating the scale of change in requirements over the course of the

project period (in particular, in terms of the degree of variation between the requirements

as stated in the original tender document or assignment brief and the actual

implementation), 57% of the software companies indicated the existence of a major

variation. About 43% of the respondents attributed this variation to the inability of users

to clearly articulate the requirements upfront and 28% to the changes that took place in

the organization since the commencement of the project (refer to item 18 on the

questionnaire for software companies). When asked to comment on the impact of the

changing requirements in an interview that followed the questionnaire survey, some

members of the software companies stated that software products developed and

delivered based on the initial requirements specified by the users, had to be extensively

revised over and over again during use. Professional respondents described the often

difficult time they had experienced in convincing and motivating users to actively and

 83

seriously involve themselves in the development process as early as possible. Most

comments pertained to the difficulty to motivate users or their representatives to actively

participate in earlier phases of the project. Interestingly enough, user involvement during

the use phase is reported to be very high. In this connection, one senior developer stated

during an interview:

“I have 10+ years of software development experience and involvement in more

than five major projects. In those projects where we claim success, we have

developed a completely new version of the software once we started work with

the users as part of the testing phase of our originally delivered version

(supposedly designed per the requirements forwarded as part of the contract).

What I have learnt from experience is unless you develop and deliver a working

version of the product to the users and condition them to use by some form of

arrangement (be it by management decision to test and accept the system

developed by the software group or otherwise), it is not possible to get users take

the system seriously and get valuable feedback and the actual/real (rather than the

stated) requirements. In my experience, users (at least those that I have worked

with) tend to cooperate and articulate their requirements when they know that the

deployment and use of the system is for real (as most projects rarely make it to

that level for one reason or another). It is only at this stage that they become

interested to proactively work in real partnership with the development team

towards the success of the project”.

This observation was put across to others and they were asked to reflect on this

observation and indicate whether they agree or disagree to it. Surprisingly, looking back

on their past experience, most professionals shared and confirmed the observation. They

stated that, in most of the projects that were made operational, the actual development

took place at the users’ site under the guise of testing the initial version delivered per the

contract terms. They stressed the fact that much of their effort went into the redesign of

the software rather than the often talked about concern at this stage - fixing bugs.

According to the professionals, the redesign was necessary due mostly to the failure of

the delivered system to meet users’ expectations (resulting from the misunderstanding of

 84

workplace realities and workarounds by developers, and attempts to base the design on

requirements stated in reports prepared for this purpose and incorporation of features and

capabilities borrowed from other similar systems). The redesign was necessary partly due

to changes in the organizational processes resulting from the reform initiative which more

or less has become commonplace in all government and public organizations.

Furthermore, some professionals have also reported how users or their key

representatives valued the close working relationship during this phase – in their

language, this gave users the feeling that ‘the professionals are there to help them out’.

According to the professionals, it was this feeling of ‘being there’ for users that for the

most part motivated them and provided the developers with a unique opportunity to

establish the necessary rapport with the users, and learn more about the application

domain from the users. This in turn helped to create effective communication and mutual

understanding required for the successful completion of their project. Such degree of

closeness, physically, organizationally and culturally, between collaborating parties was

said to facilitate more frequent and often intensive interactions that were necessary for

the successful development and use of the newly introduced system.

3.3 Emerging Demands

In the discussions that were held with selected practitioners as a follow up to the

questionnaire survey, software development projects related to eGovernment applications

were frequently cited as one of the representatives of upcoming/emerging challenging

projects in the local context. Most of the projects were being outsourced at the time of

conducting this research. Accordingly, an attempt was made to look into such projects to

the extent of further addressing the research questions under investigation in this

research. The following is a brief account on the eGovernment cases reviewed as part of

this effort.

 85

3.3.1 The eGovernment Initiative

According to the discussions with representatives of EICTDA (the national coordinating

body for the program), the main objective of the eGovernment program is to provide IT-

based support systems that improve both efficiency and information management within

the various ministries and public agencies of the federal and regional governments. In

particular, the program aims at introducing integrated information systems within the

various government ministries and agencies to:

• improve the internal efficiency of the ministries/agencies in running day-to-day

operations;

• improve access to essential information including inter-ministry/agency access to

essential working information;

• enhance the transparency of interactions between the ministries/agencies; etc.

The program is also designed in a manner that can support the civil service reform

programs already underway in these institutions for the purpose of overhauling the

processes, structures and human resources.

As part of the eGovernment program, a number of large software development projects

were being tendered out. For instance, one big project launched at the Ministry of

Finance and Economic Development (MoFED) was the Integrated Financial

Management System (IFMS). According to the project manager, this project is expected

to provide functionality to enable all government entities (ministries, agencies, regions,

etc.) undertake budgeting, accounting and financial management. The implementation

strategy adopted was a turnkey implementation by a single supplier selected based on an

international competitive bidding. As part of this engagement, the selected supplier takes

the responsibility for the delivery of all the components of the IFMS including delivery of

the application software, project management and training, hardware components, and

provision of support after the completion of the implementation. The full implementation

of the project was planned in three stages. According to the project manager, “IFMS

implementation would be viewed as an institutional and change management system that

 86

would be used as a tool to realize the business process reengineering activities of the

country and to improve the skills of Government staff”.

The project at MoFED is but an example. There are similar other eGovernment systems

planned for execution by each government ministry. Looking closely at the

specifications, while most of the business application requirements, for instance, in the

general-business applications category have common functionality, there are also

variations: in their local/regional language interface requirements (due to variations in

working languages per region); in the size of population to be served and related

transactions; in the application of local government laws and regulations (variations in

applicable taxes for instance); etc.

Most of the eGovernment applications are to be installed and run in branch offices and/or

organizational units that are geographically scattered across the country. Applications

that run across multiple agencies have features and functionalities that may be organized

as shared services across the agencies. Most of the eGovernment application programs

are required to share common network infrastructure7, as well as reference databases,

rules and regulations applicable to the various sectors of health, education, etc.

Implementation of the various applications may require massive conversion and

migration of both applications and contents/data. Almost all the eGovernment

applications require business process reengineering and reform as part of the system

development activity (more specifically, as a front-end process to the software

development). Such requirements were explicitly stated in the tender documents as in the

case of IFMS above.

According to practitioners, most of the eGovernment software development projects

which are basically large and complex may be difficult to realize given the environmental

conditions within the government organizations, particularly the level of readiness

because of extremely backward and bureaucratic processes and pessimistic attitudes of

7 There was a newly deployed network infrastructure that was made up of high capacity broadband network
capable of supporting full-fledged multimedia voice, data and internet applications and services up to
Woreda (district) level and narrowband network capable of supporting voice and narrowband data and
Internet applications and services to Kebele (residential area) level, and nation wide.

 87

users towards change in general and automation in particular. Other related studies

(Heeks, 2003) also indicated that although such programs can make a valuable

contribution to development, at present, the majority of such projects fail either totally or

partially. The oversize gaps between project design and on-the-ground reality was cited

as one of the main causes of failure.

While there is no space here to make an extended review of the eGovernment related

software development projects, two aspects that commonly feature in most of these

projects (and shared by other similar projects in the local setting) are worth noting to

serve as a background to the strategies explored in subsequent chapters for tackling the

local situation. Particularly, the undersupplied tendering process and inadequate project

organization; and the lack of actual integration between the business process reform

activity of the service reform project, network infrastructure building project and

software application development project. Each of these is briefly discussed below.

3.3.2 Undersupplied Tendering Process and Inadequate Project Organization

Looking closely at the history of local software development experiences, we observe

that a common practice in the past was for organizations to have their software systems

developed in-house by own IT staff. Since recent times, however, the tendency in most

organizations has been to outsource their system development projects to external entities

based on a competitive bidding process. In the outsourcing processes, the tender

document, among others, is a basic planning document that is expected to at least specify

the project’s goals, scope, solution required, time constraint, etc. The information in the

tender document is expected at the very least to enable potential bidders to prepare

responsive proposals. It is also customary to include information on the criteria to be used

for analysing proposals from vendors to select the most responsive one. Where there are

existing standards and environmental factors to be considered in the course of preparing

proposals, such details are also explicitly stated in the tender document. Usually the

tender document and the bid analysis report will be used to prepare a detailed project

contract that guides the development and successful implementation of the software.

 88

According to the findings following the survey, discussions and the researcher’s own

experience, most of the tender documents floated in our case were very brief and do not

seem to include enough information to prepare responsive proposals, even for such large

projects as those in the eGovernment program. Most of the project details seemed to be

left open for bidders’ interpretations. For instance, it was not uncommon to find bid

documents that demanded vendors to perform business process redesign and then develop

the required software, leaving decision related to costing and scheduling of the software

development project entirely to vendors’ considered opinions. Such lack of clarity gave

way to all kinds of misinformation and misunderstanding between the parties (users,

consultants, implementers) throughout the life time of the project. According to some

bidders that were involved in the survey, misunderstanding of the requirements coupled

with the strong desire on the part of bidders to win the tender often led them to extremely

underestimate the complexity of the projects and to submit low-priced offers. Where the

requirements were generic and brief, vendors felt that the most deciding factor in the

analysis of vendor proposals particularly to differentiate one from the other would be

financial rather than technical, leading to the submission of low-priced offers by vendors

to win the tenders. As expected, such strategies mostly worked for the vendors in terms

of getting the contract awarded.

In related discussions, there were complaints from clients/users that vendors usually

include CVs of high-caliber and experienced individuals in their proposal just for the

purpose of winning the bids and often bring in less-qualified and inexperienced people

for the actual conduct of the project. This was partly because they could not afford to

employ the experienced ones with the low price with which they won the tender. While

partly sharing this view, vendors provided another reason for such eventuality. They

attributed this to the overly extended tendering process which mostly went beyond the

scheduled availability/commitment of the professionals identified for engagement in their

original proposal. According to the survey results, almost all of the software houses

(86%) complained about the very lengthy tendering process which often went beyond the

validity of offers made by vendors.

 89

On the other hand, any system development project itself is an organization. It is a

collective undertaking that involves many persons and groups requiring cooperation,

timeliness and management. To be successful, such projects (particularly the large ones)

have to create and maintain temporary organizational networks linking users to system

developers, decision makers to workers, and consultants to clients. Therefore, in handling

such projects, both technical and organizational competences are key factors. All this

notwithstanding, such organizational factors were often ignored or not adequately

addressed in both tender documents and vendor proposals for one reason or another.

According to the facts on the ground, compromising quality or aborting projects due to

considerable cost and time overruns, inability to engage the services of qualified

professionals for the entire duration of the projects due mainly to insufficient funds, and

lack of organizational competence to manage the project in a disciplined manner were all

commonplace in the local setting. These were also evident from the cases discussed in

Chapter Two of this report. In addition to these cases, a number of others were cited in

the discussions that were held with the practitioners. The cases ranged from those

projects that were implemented without producing results that match the original

intentions (the case of a student support system in a multi-campus and multi-faculty

institution of higher learning) to those that miserably failed on all cost, time and

quality/performance counts (the case of a national public body).

One interesting case cited related to the case of an insurance company. This was a

company with a fairly large business operation, but different from Organization B

discussed in Chapter Two. The company experienced a number of failures in its

automation efforts over the last couple of years. The first related to the acquisition of

application software to be supplied by a foreign software company. To that effect, an

agreement was signed between the companies. Based on the agreement, the supplier

worked for several months with the users to define the specific requirements as well as

the related features and capabilities of the required software package. Prototypes (more

specifically, throwaway prototypes) were used as a vehicle for this purpose. Eventually,

after working in this manner for almost a year, a decision was made to freeze the

requirements and proceed to the customization of the software package based on the

 90

requirements defined thus far. In parallel, per the advice of the supplier based on the

requirements of the software under customization, preparations were made in terms of

revising work procedures and converting data from the in-house system to the new

system under development. After joint decisions were made on a cut-off date to fully

migrate to the new systems after working for almost eighteen months, the supplier was

unable to deliver an operational version of the software due mainly to the inability to

retain (or replace) key professionals of the development team that left the project. At last,

this resulted in the cancellation of the project. This was followed by another project

initiative to purchase and customize a commercially available and proven product. As a

result, another (probably more expensive pricewise) software was purchased after a

lengthy procurement process that went on for years. The installation and customization

took another couple of years. Worse still, it was learnt that, due to difficulties

experienced in the use and maintenance of the system (mostly to do with high

maintenance and upgrade cost demanded by the foreign supplier), a decision was made to

discontinue using the software. As a result another procurement process (for the third

time) was initiated. At the time of writing this report, the third project was under

implementation.

Taken together, while it may be difficult to totally avoid cost overrun, time slippage and

unsatisfied demands, particularly with large projects, adequate emphasis and care on the

tendering process and project organization could have no doubt helped to keep the critical

success factors within bounds. The survey results as well as discussions and reviews at

various levels showed deficiency in the tendering process and organizational factors to be

among the exceedingly prevalent causes for the failures, particularly in the case of

projects that involved outsourcing to foreign companies.

3.3.3 Integration of Software Development with Organizational Reform

Business activities at all levels are information-intensive, so much so that information has

become a key organizational resource that is central to all business processes and

functions. The information system that manages such information within an organization

is increasingly being recognized as the nervous system of the business. As such, all

 91

organizational-level business process reform initiatives such as the ones underway locally

in the eGovernment programs, no doubt directly affect the underlying information

system. Accordingly, to deliver reform objectives in full, reform initiatives within these

organizations often consider reengineering of the underlying information system (both

infrastructure and applications) very seriously right from the outset. There is increasing

awareness and understanding that where process reform, infrastructure building and

software development efforts were undertaken in isolation (independently), the projects

usually end up in failure when it comes to delivering reform objectives in full.

In the case of the eGovernment program under reference, for instance, the network

infrastructure planned to support the systems was already deployed. According to the

findings of the survey and the discussions conducted at various levels, business process

reform initiatives and software development efforts within the same organization and

relating to the same application were being conducted more or less incoherently. The

following are some examples from the cases cited during the discussions.

• The first case is related to an application software development project in a public

service organization. As part of the implementation of a software project, an

attempt was made to redesign the business process to be supported by the

software. That is, the business process had to be redesigned in accordance with

the requirements of the software package which was considered to include best

practices from the industry. For this purpose, a business process expert with a

good practical knowledge of the application domain had to join the software

development team to interface and work with both users and the development

team. According to the project staff, although the project required extra effort and

tough decisions that at times required the intervention of the most senior

executives, the business process redesign and the software deployment were

completed and the system was made operational. In parallel with the software

deployment, however, there was a reform project going on within the

organization. In line with the national guideline, the reform program involved

strategic planning, business process reengineering and the introduction of result-

oriented performance management, planned for execution in that order. By the

 92

time the software was made operational, the business process reengineering work

was in execution. This reengineering process challenged the business process

newly redesigned as part of the software deployment. At the time of the survey

for this research, serious discussions were underway within the organization as to

how to proceed in reengineering the business process with the users divided in

two groups. One group insisted that the business process be overhauled again as

part of the business reform. While the other group strongly argued that the

business process redesign was already done and redoing it would add no value but

result in service disruption and incurring unjustified expenses for software

revision. The issue which was referred to the top management of the organization

was not resolved up until the writing of this report.

• The second case cited related to a project that aimed at automation student

activities in one higher learning institutions. Like the case described above, the

software development effort was not integrated with the business process reform

activities. The reform involved, among others, the restructuring of the Registrar’s

Office that gave the various academic units more autonomy in handling student

cases and the maintenance of academic records as well as the introduction of cost-

sharing scheme whereby students are given loan to pay fees for later repayment

(after graduation). The software development which took place at about the same

time did not provide for these new requirements (as this did not feature in the

original requirements specifications). This happened to be the point of serious

dissatisfaction and dispute between the client and the software house on the one

hand and the central Registrar’s Office and the various academic offices on the

other. As a result, the software although installed was not fully functional. The

management of the institution demanded a complete assessment of the situation

with recommendation on a way forward (even if it meant replacing the already

deployed system altogether).

• The case of Organization C discussed earlier in Chapter Two is also another

example. In this case, to some extent an attempt was made to redesign the

business process prior to the acquisition of the software (and the redesigned

process was used in the process of acquiring the software). However, the business

 93

process redesign, it was later discovered during the customization process, did not

fully consider best industry practices. The business process redesign did not also

properly consider the integration of processes across product lines.

As part of this research, attempts were made to take up these issues with concerned

bodies for the eGovernment applications. In the process, it was possible to learn that

based on a series of assessments made at various levels on this particular issue, a decision

was made to take corrective measures for forthcoming projects. As a result, newly floated

tender documents were observed to indicate the need to do business process redesign

prior to the development of the software required. Yet, the level of details provided was

inadequate; requirements related to actual integration with the software design process

were not addressed; special requirements to assess vender competence in this connection

were missing.

Still to deliver reform objectives in full and in a sustained manner, in parallel with the

effort to integrate business process reform, network infrastructure deployment and

application software design activities, we need to seriously consider the human aspect. In

other words, over emphasis on technology or technology-focused reform initiatives and

process reforms that ignore the skills, information needs and communication preferences

of users and relevant stakeholders are bound to fail.

As with the case of Organization C discussed in Chapter Two of this report, the

implementation of large scale IT projects and the introduction of modern information

systems in organizations often involve and imply changes in the user organization,

sometimes resulting in turbulence and instability. To avoid negative implications and

maximize benefit from such projects, it is important that the development and

implementation processes be accompanied with appropriate training and change

management efforts (Kimaro and Nhampossa, 2005).

3.3.4 Organizational Embedding and Sustainability

Smooth and successful development and deployment of the software systems are

necessary, but not sufficient, conditions to realize benefits from the reform programs.

 94

Sustainability in the sense of the organizational ability to effectively use and maintain

systems once developed and deployed, is another important factor that deserves attention.

In operational terms this relates to issues of embedding the system into the organization.

This could be checked in terms of assessing to what extent the system developed is

effectively used and appropriate to the organization and its users. It could be checked if

the system developed is flexible enough to be adapted to the changing needs of the users

and the organization as a whole over time. Whether or not there is adequate local capacity

and resource to translate changing needs to system design and development efforts could

also be checked (Kimaro and Nhampossa, 2005).

In short, over and above changes at the technical and infrastructure levels, the

introduction of the new system into the organization particularly requires the cultivation

and institutionalization of a new kind of culture and ways of doing things that are

associated with the newly introduced system. The introduction may include revisions in

work activities, roles and responsibilities, structures, ways of gathering, processing,

reporting and using information, etc., in the existing organizational routines. Successful

use and maintenance of the newly introduced system then requires that these be

understood/observed and adjustments made by all actors continuously.

All this notwithstanding, in the existing realities of software development practices in

most of the cases examined, the sustainability aspects were not properly addressed – one

could even argue, based on the facts on the ground, that these aspects were largely

ignored. There was a tendency among the people involved in the software development

that this aspect particularly the use and organizational embedding related issues and

requirements thereof are subjects of organizational change management. This is the case

even when, as indicated earlier, the developers themselves experience major involvement

in this phase of the project to ensure acceptance of the system developed.

 95

3.4 Chapter Closing

In the previous chapter, an attempt was made to describe the software development

situation by documenting challenges faced by practitioners, as well as project success and

failure factors, based on selected real-life project cases. This chapter tried to describe the

software development situation based on the opinions surveyed using questionnaires and

discussions with the various actors in the field. In particular, the opinions of software

developers (practitioners and organizations) were collected and analyzed with special

emphasis on the following: levels of qualifications and experience of developers (in both

technical and soft skills); the availability, accessibility, attitude towards and extent of use

of software methods and processes, together with reasons for same; main performance

inhibiting factors and related challenges; characteristics and requirements of emerging

software projects; and the interventions required at various levels to improve the existing

situation and in the preparation for the upcoming challenges.

Further analysis of the situation, particularly to identify the main factors that need to be

addressed by software development methods to improve the existing situation are

subjects of the next chapter.

CHAPTER FOUR

4. Further Discussion on the Context and Approaches Explored

In the preceding chapters, detailed discussions and findings were presented on the

software development situation in Ethiopia including the challenges faced by

practitioners. In this chapter an attempt is made to first summarize the salient features of

the existing situation from the survey conducted and the cases analyzed. This is followed

by the identification of contextual factors that must be addressed by software

development approaches to improve the software development situation (and project

success rates).

4.1 Characterization of the Context

No software development process exists in isolation. It derives its meaning from context

or it is influenced by the context. Context for our purpose is understood in terms of the

environment within which software development projects operate. More specifically, it

refers to the types and characteristics of the projects, the profile and skill levels of

professionals, the profiles and attitudes of client organizations and users, the profiles and

capacities of software development organizations, the level of maturity of the industry

and the technological environment, etc.

The following account attempts to summarize the context within which software

development projects currently operate in the local setting, based on the experiences and

findings reported in previous chapters. The features outlined as characterizing the

context, the author argues, have an influence on any software development effort in this

environment and as such must be taken into account in all project design and execution

activities. In this connection, it is also relevant to note the fact that the context as

described may not be considered unvarying over time. It may be repeatable but may

never be the same – it will change continuously as a result of the actions/dynamics from

within or outside the design and execution of each project. Context is a pattern that exists

and moves through time (Bateson, 2000). What is more, change in the context in turn will

influence the strategies and actions to be considered in the design and execution of

 97

projects. For instance, more project experiences and learning thereof may contribute to

improvements in skill levels of practitioners and competence levels of software

organizations. As such, context and project actions exist in a co-influencing relationship

with one another. For this reason, in a typical project setting, the context needs to be

updated continuously by reflecting the effect of project outcomes and experiences. With

this understanding, we now proceed to outline the prevailing context at the time of

conducting this research. Needless to say, this context is bound to change in the course of

time as argued above.

According to the findings of this study, one may characterize the prevailing context as

follows based on the findings and experiences documented in the preceding chapters.

The demand: project types

• Most of the projects are outsourced custom-developed applications targeted to

address the requirements of specific organizations, at least during the initial

development stages. Such application development projects are different from

those initiated by software firms for commercial purposes that target the needs of

more than one organization as clients.

• Most of the current/emerging projects are very large (by local standards)

involving the development of multiple applications packaged together for use by

multiple agencies geographically scattered nationwide.

• Most of the projects required business process redesign for each of the

applications involved as part of the software development process. Where

organizational reform programs were initiated, these were done separately from

the software development process.

The supply: capacity of software firms

The software development environment within the software firms is generally immature.

 98

• Most of the private software development firms are small in size and new/young.

In most of the cases, they were established, owned and are being run by a group

of software professionals.

• The software development processes followed are ad hoc (or chaotic). There are

no standards or guidelines defined for processes and methods.

• Due to the absence of historical data, project cost and schedule estimates made are

often unrealistic (underestimated) or poorly defined.

• Feedback mechanisms on project progress and processes, and a disciplined

approach to project management are not regularly practiced. Information and

experience sharing forums are non-existent.

The staff situation within these companies is very testing.

• There is generally a scarcity of experienced professionals.

• There is very high staff turnover.

• There is soft-skill (communication, organizational competence, teamwork, etc.)

deficiency among professionals to meet the challenges of the real-life problem

environments.

• Most projects are extremely under-resourced. Roles and responsibilities are not

clearly defined and communicated. Project staff are overloaded.

User organizations

• Most user organizations are undergoing service reform that involves business

process redesign, restructuring, management change, resulting in continuously

changing requirements.

• Most user organizations are deploying state-of-the-art technology (hardware)

infrastructure.

• There is susceptibility of user organizations to disturbance/turbulence and there is

absence of slack resources and plans to manage such disturbance.

• There is very high staff and management turnover.

 99

• In most of the cases, user participation is passive/instrumental and motivation is

low (users participate in projects as informants rather than as peers in design).

However, there is an increasing recognition among users and software

practitioners about the importance of working together collaboratively throughout

the various stages of the development process.

• For implemented projects, there are embedments and sustainability related

problems.

Support at national level

• There is lack of appropriate educational and training support infrastructure.

• There is absence of home-grown or contextualized methods, as well as absence of

national standards or guidelines.

Approaches explored and proposed in subsequent sections and chapters attempt to

address aspects of these contextual factors, particularly those aspects that were

considered appropriate for handling within the space of this work.

4.2 Solution Framework: Critical Issues to be Tackled

A commonly accepted practice in dealing with the sort of situation at hand is to select and

tackle key aspects that will positively impact on the other aspects, thereby resulting in

overall improvement of the situation. Adopting this strategy, based on the nature and

complexity of the issues involved; in due consideration of the space and time constraints

for this research; taking into account the objectives of the research as outlined in Chapter

One, in the current work it was decided to focus on the aspect that explores the potentials

of methodical approaches to address aspects of the oversize gaps between demand and

supply. In due consideration of related discussions in previous chapters, the author argues

that efforts to increase the sensitivity of software methods and processes to contextual

issues that revolve around devising strategies to bridge the demand-supply gap may bring

substantial improvement in the software development situation in Ethiopia.

 100

As indicated, most of the projects are very large (by local standards) involving the

development of multiple applications packaged together for use by multiple agencies

from geographically scattered locations. Most of the projects have the ambition to change

the host organizations by introducing best business practices. The projects also operate in

unstable organizational environments. All these factors have exposed the projects to

greater risks of failure.

The situation is further aggravated by the lack of capacity on the supply side. That is, the

huge and complex software development project demands are in a very marked contrast

to the limited and often premature supply capacity of software development organizations

operating in the local market. Most of the private software development firms are

inexperienced. In most of these organizations, the projects solely rely on few skillful,

experienced, and committed professionals. The staff turnover in these organizations is

also very high. On the other hand, despite efforts made, foreign software development

firms with better capacity do not seem to be attracted to operate in the local environment,

for one reason or another (partly to do with economy of scale and local support).

In connection with addressing the supply-demand gap, under the local experience so far,

the most commonly proposed advice and strategy, particularly from international

consultants, is to scale down expectations and to follow a somewhat ‘piecemeal’

approach to the introduction of the technology. Such recommendations, according to

decision makers and concerned parties, seemed to be very much influenced by the

traditional mindset and orientation that promote the thinking that developing countries

need to deemphasize investment in the use of technology and instead call attention to the

use of other means to address the pressing needs in the area of basic necessity.

Proponents of such recommendations were often taken to have the tendency that

developing countries talk about the technology and its use often under the influence of

NGOs. They were understood to undermine the serious commitment and preparedness as

well as genuine needs expressed in some of the countries about the critical role of the

technology in the fight against poverty and in the effort to catch up with the rest and

maximize benefits from globalization.

 101

The author fully concurs with the viability of project scoping and a step-by-step approach

for effective and economical utilization of scarce resources if not with the simple formula

of scaling down. On the other hand, it would be amiss for the researcher to disapprove of

the ‘wishfulness’ and ‘naivety’ connotation implicitly assumed on the part of the project

sponsors by some international consultants. This, it is felt, is discouraging at best and

derogatory at worst and as such may be counterproductive. From the first-hand

experience of working with government-sponsored ICT projects in Ethiopia for instance,

the author may take the liberty to acknowledge the level of commitment and

determination already expressed in practical/concrete terms by decision makers to realize

the ambitious eGovernment programs.

In this connection, it is also relevant to note that the ‘scale-down’ proposal was not

favourably accepted by users in the experience so far (they did not buy into it at all).

Despite repeated recommendations made along the ‘scale-down’ approach, and early

failures of some of the initiatives in terms of fully realizing the benefits planned at the

outset, users and sponsors have continued to invest more. That is, users do not seem to be

discouraged by the initial setbacks and settle for the scale-down strategy on the grounds

that such a strategy would not enable them to exploit the potentials of the technology

faster to meet the urgent development challenges that they are facing in the other

development sectors. In the words of users and sponsors, simply accepting the scale-

down solution was tantamount to ‘cutting a foot to fit a given smaller size shoe’.

Learning from practical project experiences and taking into account the developments in

the environment, sponsors and users have demonstrated willingness and flexibility to

factor-in lessons learnt in the process of revising plans from one year to the other. At the

same time, they continued challenging professionals in the area to come up with better

matching strategies to meet the demands.

It is not mainly the purpose of this work to continue such argumentation further beyond

emphasizing or establishing the need for understanding this situation in the effort of

exploring alternative system development strategies for use in the local setting. There is

no point in pursuing the scale-down effort if users are not willing to yield being fully

aware of the consequences. In the local realities, we have also seen how overly stretched

 102

project time horizons (resulting by default rather than by design) or simply changing

suppliers did not help address the situation at all. To this end, the approach adopted in

this research is that of tackling the issues from both the demand and the supply sides

concurrently. Based on the results obtained from real-life project experiences in the local

setting and proven methods elsewhere in the industry, the following specific directions

were considered. On the demand side, strategies related to: scoping and prioritizing,

rather than simply scaling-down, the ambitions of the projects; using

appropriate/contextualized project management and risk mitigation techniques; adopting

integrated and collaborative approaches; outsourcing the projects in order to improve the

current reality of available competencies in-house; may need to be considered. The

project design process must also be based on a consensus view of all main stakeholders.

It must be continuously monitored and reconfigured based on progress and changing

context. Continuous communication with users and major actors on all aspects of the

project (its benefits, consequences and progress) is also essential.

On the supply side, competence development measures at both organizational and

individual levels need to be considered. Appropriate strategies are to be devised to

establish software processes to improve current realities of organizational competencies.

Appropriate learning and training mechanisms are to be devised to improve current

reality of individual competencies. For this purpose, strategies that promote

contextualized approaches, and that exploit iterative, incremental and collaborative

approaches supported by prototyping are to be considered. Most importantly,

institutionalization of collaborative approaches between developers and users, based on

transformational participation principles need to be addressed. Provisions in the project

design to address the skill, time and motivational requirements of realizing collaborative

approaches may also have to be made.

Most of the issues and concerns outlined above from both sides are not totally new to

software approaches. In fact, there are publicly available methods and processes that

cover most of the issues and concerns adequately but for some other context. To this end,

for issues and concerns that are already adequately covered elsewhere, the strategy

adopted is one of contextualizing them to the local environment. For issues and concerns

 103

that are not already covered adequately elsewhere, approaches explored in the course of

this research and previous works are introduced.

In order to render the discussion meaningful, the following order of presentation is felt in

order. First, background information to be considered in addressing current realities of

individual competences among practitioners in the local environment, is presented in the

next section. This is followed by a discussion of a case study on the experimentation

conducted to explore the feasibility of integrated and collaborative approaches to

business process redesign for software development in a real-life project environment.

This is presented in Section 4.4. An integrated methodical approach developed for

software development and process improvement by contextualizing publicly available

methods toward the local realities is presented in Chapter Five. A software process

improvement approach based on feedback and collaborative learning to address the

current realities of organizational competences among software firms in the local

environment is the subject of Chapter Six. Chapter Seven presents additional experience

from efforts under way in experimenting with aspects of the approach proposed in this

research in two field works: teaching software development in institutions of higher

learning, and application software development in Organization B.

4.3 Basic Considerations in Addressing Individual Competencies

4.3.1 Awareness of the Paradigm Shift in Software Development Approaches

The need to shift emphasis from the traditional strong, formal and orthodox approach to

systems development to the most recent approaches that adapt toward reality have

already been established (Floyd, 1987; Hirschheim and Klein, 1994). The local cases

reported earlier also bear some witness to this.

In earlier times of system development, managers were often responsible for providing

the system objectives. The systems designer, being an expert in technology, tools and

methods of system design, and project management, constructed the system that is said to

meet the objectives. Users operate or interact with the system to achieve organizational

objectives. In these early approaches, there is an implicit assumption that the ends are

 104

agreed. But in reality, ends are controversial and the subject of considerable disagreement

and debate. With the perceptions that the pre-specified ends meet the needs of certain

system stakeholders at the expense of others, resistance grows and project failure follows.

The project with Organization C reported in Chapter Two of this report is one case that

bore witness for this in the local context.

In efforts that attempt to address the shortcomings of the earlier approaches, that

knowledge about human means and ends is not easily obtained since it is well recognized

that reality is exceedingly complex and elusive. The understanding is that there is no

single reality, only different perceptions about it (Checkland and Scholes, 1999; Dahlbom

and Mathiassen, 1993). Reality is socially constructed and the product of continual social

interaction (Pressman, 2003). A better approach is, therefore, to work from within the

users’ perspective and help users to find their preferred views through continuous

engagement and interaction. Through interaction, objectives emerge and become

legitimized through continuous modification. In this process, any system that meets with

the approval of the affected parties is legitimate.

Recent approaches to systems development advocate mechanisms that facilitate learning

by all who are concerned and affected, more than mechanisms based on objective and

rigorous methods and tools. Such a paradigm shift not only implies a switch in the role of

the developer from one of system expert to facilitator and a communicator who helps to

stimulate reflection, cooperation, and experiential learning, but also build knowledge in

selected areas of interest. The following paragraphs elaborate on knowledge areas of

interest (identified in more recent approaches) that lead to successful software

development projects.

4.3.2 Application Domain Knowledge

Needless to say, in any software development, mastery of technical knowledge in

software engineering is a pre-requisite. There is now substantial evidence both in the

literature (Curtis, 1988) and the local situation reported in the preceding chapters that, in

addition to the technical aspect, mastery of application domain knowledge on the part of

 105

software engineers is also critical for successful software development. To achieve this,

there has to be readiness on the part of software developers to learn about the application

domain from their project counterparts in the course of the project design and execution.

Traditionally system analysts studied the application system with the purpose of

documenting the processes and modeling the revision in the process; the studies were

particularly to facilitate: communication with programmers, documentation for future

reference, meeting contractual obligation - end-of-phase deliverables, etc. From years of

experience in practice, such documents have served best when it comes to meeting

administrative aspect contractual obligations and supporting decisions related to selecting

general design options. However detailed such reports may be, programmers and users

often repeat the process during the actual development of the required software. What is

relevant to note in this connection is that, to study a system with the purpose of

describing it for others, and to study a system with the purpose of building our knowledge

about the domain and then actively and equally participate in its co-construction

(business process redesign) collaboratively with domain experts and user counterparts are

different. At least, in the latter case one demonstrates the position of a learner rather than

that of an expert (which seems to be often the case in the former). The latter requires

making additional effort to study the domains that underlie the business process and the

interpretation of information obtained rather than simply quoting users or holding them

accountable for whatever understanding developers make of the system.

The reception from the user’s side also differs depending on which of these positions

developers take in the course of the collaboration. In the former case, developers are

taken as more of business people whose main interest is business transaction, or fault

finders or people that may hold users responsible for whatever they say about the system

whenever something goes wrong about the system developed. In the later case, the

tendency is to treat developers as co-workers who are there to assist, as people who

respect, appreciate and value what users do, and as people who are there to jointly take

responsibility in the change they are about to introduce as a result of the redesign. For

this and other reasons, users are more interested and motivated to collaborate in the latter

setting than in the former. As indicated in earlier chapters, in the cases where the latter

 106

(learning orientation) featured, users were found to be less conservative, more open for

communication and criticism and learning about their domain and software design.

In view of the foregoing, appropriate learning methods that help software engineers build

deep knowledge of the application domain within constraints under which the software

development project operates are as important.

4.3.3 Social Skills and Knowledge Interests

To cope with the complexity of today’s system development environments, acquiring

technical knowledge about engineering and knowledge about an application domain

alone are not enough. Any software development process is social as much as it is

technical. To start with, the technical software production or construction process has to

be managed to be successful. The product developed must be embedded in an

organizational environment for effective use. Accordingly, there are lots of people

(software engineers, project leaders, domain experts, process experts, user

representatives, manager in both client and software organizations, etc.) that work

together in the project design, production, embedding and use of the software. These

people often work in teams. A team relies on the collective skills of its members because

of the scope of the effort, the inherent complexity of the effort, and the number of tasks

needed to develop modern software that normally exceeds the ability of any one

developer (Sawyer and Guinan, 1998). Team members can feed each other information,

stimulate each other in further inquiries, and collectively increase each other’s knowledge

about both the software and the application domain. For this reason, the social aspect of

the software development process, how the teams collaborate and work together in the

course of developing and implementing the software, competence in the area of project

design and management, and change management, are all as important as the technical

aspects.

 In similar realms of collaborative work that involves human action and communication,

workers (Pressman 2003; Taylor, 2004) identified the concepts of work, mutual

understanding, and emancipation as the three fundamental domains around which society

 107

and other forms of social organization are arranged. Explaining that systems development

is governed by three knowledge interests premised on these domains, Hirschheim and

Klein (1994) wrote:

• The technical knowledge interest directs the developer to be sensitive to issues

associated with effective and efficient management of the system project.

• The interest in mutual understanding directs the developer to apply the principles

of hermeneutics, which examine the rules of language use and other practices by

which we improve comprehensibility and mutual understanding, remove

misunderstandings, and disagreement or other obstacles to human

communication.

• The knowledge interest in emancipation directs the developer to structure systems

development to reflect the principles of rational discourse.

Equipped with such knowledge, developers act as emancipators in an attempt to draw

together, in open discussion, the various stakeholders involved in system development

work. According to Hirschheim and Klein (1994: 1208), to succeed in such

communicative action, developers need to take note of the following typical obstacles to

human communication throughout systems development:

• Authority and illegitimate power – these create anxieties and cause people to

distort or withhold information in order to protect themselves.

• Peer opinion pressure (“group think”) - it creates tunnel vision for the sake of

loyalty, reducing the validity of judgments by suppressing possible validity

checks through criticism.

• Time, space, and resource limitations – these prevent universal access to

knowledge even though in principle it is available. This includes the common

situation that knowledgeable people remain silent due to lack of motivation to

participate because of work overload or the socially created need to withhold

important information unless it is to one’s advantage to engage in a debate.

• Social differentiation - differences in the level of education, specialization and

personal values and beliefs increase the risk of misunderstanding.

 108

• The bias and limitation of language use – these distort perceptions and lead to

narrow problem definitions through jargon and cognitive anchoring.

In a related work, Diwan et al. (2002) identified three skills necessary for successful

group work:

(i) an appreciation for interdependence and the ability to recognize when a task

is dependent on the efforts and accomplishments of others;

(ii) the ability to consider and argue for or against different viewpoints in a

constructive manner (negotiation); and

(iii) familiarity with structured, systematic decision-making procedures (group

problem solving).

Other workers (Tan, 1994) emphasized effective communication skills as success factors.

Securing effective collaboration and cooperation with users from the early on requires

consistent and effective communication of goals and objectives as well as roles and

benefits, at both organizational and project levels. According to Tan, such effective

communication between users and developers may be achieved through establishing

rapport, shifting perspectives and effective management of communication transactions.

Effective communication often leads to mutual understanding (Tan, 1994), mutual

respect, closeness and shared purposes. Where such mutual understanding is absent or not

intentionally introduced early in the project design process, at best collaborations seemed

to struggle or suffer throughout the development, installation and use. At worst, as

evidenced for instance in the case of Organization C reported in Chapter Two, this may

lead to conflicts that cause resentment and hostility with the potential risk of aborting the

project and ending up in litigation (which may not do any good for all parties involved).

In view of this and related discussions and experiences reported elsewhere in this report,

we believe or strongly argue for effective communication as one of the critical factors

both in motivating users to actively participate in the development process and in

achieving a successful software project in the local context. Accordingly, this must be

intentionally and skillfully considered in the project design phase and continuously

maintained through out the project period. From the author’s experience in the local

 109

setting, establishing rapport with users helps the most in this connection. This may

require getting closer to the user and spending some time with the users at their premises

– to create the feeling of ‘being there for’ and ‘being there with’ the users.

During the discussions held as part of this study, both developers and users who were

actively involved in the testing and finalization of installed systems, reported that they

have practically witnessed that the number of enthusiastic users increased (in some of the

cases dramatically) once they were able to establish person-to-person (peer level)

relationship bypassing the formal business relationship that the project contract dictates.

According to individual participants, most formal contracts signed between suppliers and

clients basically lacked jointly developed components that address effective

communication during project execution. Although considered valid administratively, the

contracts were often criticized by people in the lower ranks of the project for introducing

unnecessary biases and complication (defensiveness, control-orientation, etc.) into the

communication between users and developers.

4.3.4 Methods Adapted Toward Reality

Among the mechanisms incorporated in contemporary software methods and processes to

address the various challenges and related uncertainties in real-life software development

are: iterative, prototyping and collaborative approaches. Each of these is briefly explained

in the following paragraphs.

In order to mitigate the risk of getting the requirements wrong at the beginning,

developers and users collaboratively iterate around the requirements. The iterative

software development process is better described by the argument (tending gardens

metaphor) forwarded by Hunt and Thomas (1999), that software is more like gardening

than it is like construction. As explained by Hunt and Thomas, software is

“… more organic than concrete. You plant many things in a garden according to

an initial plan and conditions. Some thrive; others are destined to end up as

compost. You may move planting relative to each other to take advantage of the

interplay of light and shadow, wind and rain. Overgrown plants get split or

 110

pruned, and colours that clash may get moved to more aesthetically pleasing

locations. You pull weeds, and you fertilize plantings that are in need of some

extra help. You constantly monitor the health of the garden, and make

adjustments (to the soil, the plants, the layout) as needed.”

The iterative development process is usually supported by a prototyping mechanism.

Prototyping facilitates focused discussion and agreement with stakeholders in terms of

clarifying requirements. A step at a time (incrementally) in the development process, the

prototype evolves into a fully operational system. According to Hall and Fernandez-

Ramil (2007), prototype development offers:

• interaction with people and their problems;

• a reduction in uncertainty concerning the usefulness of the software; and

• a short delay between producing code and seeing something working.

A common practice in prototyping and incremental processes, apart from the iteration, is

collaboration - the involvement of users and stakeholders throughout the development

process. In such collaborative approaches, users and their representatives are involved

throughout the design and development process by joining the development team which

adds to the team an essential usage perspective. Various types of user participation are

discussed in literature (Hall and Fernandez-Ramil, 2007), ranging from: consultative

participation where representatives of stakeholders reach agreement, representative

participation where members from all groups involved in the change are able to influence

the nature of the new systems, and consensus participation where everybody associated

with the business processes involved is able to play a part in the design of the new

system. Participation can also be distinguished as transformational participation, where

participation is an end in itself, and instrumental participation, where participation is a

means to an end (Dahms and Faust-Ramos, 2002).

Beyond ensuring that the functionalities of the system to be created and introduced are

socially appropriate user participation is also important to realize user-centered designs

that ensure the usability of the system at the level of interaction between the computer

 111

and its user (Hall and Fernandez-Ramil, 2007). For this reason, while contemporary

methods for information system development generally accept that users should be

involved in some way (Jepsen et al., 1998), the form of the involvement differs

considerably. Mostly, users are viewed as relatively passive sources of information, and

the involvement is regarded as "functional," in the sense that their participation should

yield better system requirements and increased acceptance by users (Clement and Van

den Besselaar, 1993). For instance, this was partly the problem at Organization C

discussed in Chapter Two – the participation was more ‘passive’ and ‘functional’ rather

than transformational. Although users were said to involve in the project design and

implementation, scratching beneath the surface, the project was not fully participative.

There was no meaningful user participation in all phases of the design process. The

participations were more for external than for internal consumption – apparently, the

participations were limited to membership in a committee and attendance of meetings,

rather than influencing the process and outcomes of participation in the software

development and its implementation. It was also the case that even the user

representatives and members of the committee already had heavy existing workloads and

did not have enough time to invest in the project or were not productive in the process as

a result of workload in their work places. Access to relevant information was restricted to

technical project staff and management only. The skills, experiences, creativity as well as

knowledge of domain experts were not utilized in the customization processes.

According to Dahms and Faust-Ramos (2002:281), true user participation changes the

design and development process into an evolutionary process of mutual learning and co-

operation between designers and users about technical possibilities and useful

development of these possibilities. They identified three reasons for involving future uses

in the system development process:

• It may improve the knowledge upon which the system is built and therefore make

it fit better to the given context;

• It may enable the users to develop realistic expectations of the system and may

reduce their resistance to change;

 112

• It may increase the local democracy by giving future users the right to participate

in decisions that are likely to affect them.

According to Robey and Farrow (1982), among the benefits of user participation are:

• more accurate assessment of user information requirements,

• prevention of costly system features that are unacceptable to users,

• greater user acceptance and support of the system,

• improved user understanding of the system, and

• granting of democratic rights to organization members.

The benefits from such participative and collaborative approaches are obvious. Such

benefits are even too evident in the local case, particularly with custom-developed

business application software. Custom development involves people and activities at both

software developer and client organizations. It requires and involves more interaction,

convincing and consensus building within the client organization, much more than

learning about application domain knowledge, requirements and design preferences to

develop the product. The main issue and concern is rather how to implement or realize

such participative and collaborative approaches in software development projects.

In summary, as indicated in the forgoing, to cope with the complexity of today’s system

development environments, acquiring technical knowledge on engineering and

application domain alone are not enough. In fact, most of the problems of software

development, as documented in the preceding chapters of this report, are rooted in the

non-technical aspects of the software development process. As such, systems developers

have to be ready to address knowledge interests in the non-technical areas discussed

above (i.e., effective communication, experiential learning and cooperation. Concepts,

techniques and tools that address such non-technical aspects need to be incorporated in

software methods and approaches. As indicated, the more traditional approaches have

totally neglected this dimension. The most recent approaches recognize and advocate the

importance of work in this dimension. However, still approaches that provide techniques

 113

and tools to effectively address these issues (both in practice and teaching) are yet to be

developed.

In this research, attempts were made to explore ways and means of realizing collaborative

approaches in the process of software development. An aspect of an extensive experiment

done in this direction over the last four years, particularly in connection to business

process redesign for software development, is presented in the next section. Related

aspects under investigation (by drawing lessons from this experiment) and proposed for

consideration in the methodical approach proposed in this research, are presented in

subsequent chapters of this report.

4.4 A Collaborative Approach to Business Process Redesign

Although business process redesign is not an activity often explicitly specified as part of

the mainstream software development activity, it featured manifestly and consistently in

the local situation. Hence efforts were made to explore the possibility of customizing

methods suggested for business process reengineering and systems analysis/design for the

purpose of applying same to the redesigning of processes for software development.

Before reporting on the efforts made in this direction, an attempt is first made to establish

the need for it.

4.4.1 Why Business Process Redesign

All organizations do work, undertaking coherent sequences of activities in order to

achieve the objectives of the organization. The sequences of activities that constitute the

work are usually referred to as business processes (Hall and Fernandez-Ramil, 2007).

Business application software is developed with the intention of supporting these

business processes. Such is the association and interdependence between business

processes and application software. Accordingly, any change in one will have an

implication on the other.

Nowadays, it is customary for any modern organization to redesign its business processes

to devise new ways and means of doing business or providing services or to stay

 114

competitive, or to improve productivity and quality, or to satisfy customers, or to cut

down costs, etc. Such redesign activity may be carried out as part of an organizational

reform initiative or through the implementation of software systems that introduce best

practices. Where the software development project comes after the reform or as part of it,

the redesigned business process forms the foundation for software design. On the other

hand, where the introduction of software is used as an instrument for the business

redesign, one of two options may be considered. If the software is to be custom-

developed, the business process redesign may be performed as a front-end process to

software development. However, if the acquisition strategy considered is to purchase

industry standard off-the-shelf software, the process redesign may come at the end, as

part of the organizational embedding of the software. It seems, therefore, one way or the

other, business process redesign is unavoidable either as a front-end process or as part of

the smooth implementation and use of the software for organizational purposes.

According to Jones (1997), redesign of business processes must be conceived as the

essential first phase of any substantial development effort.

 “Not every process must be redesigned radically, as in reengineering, but every

process touched by automation or new work requirements must be considered fair

game for redesign …. Failing to take a strategic business perspective and missing

the rare opportunity to create a better process will diminish competitiveness and

growth” (Jones, 1997:225).

As such, the first area of concern in any opportunity for new system development is to

review the underlying process that the business relies upon. This is very essential

particularly in the local situation where the software development projects are considered

to be part of a larger organization-wide reform movement that aims at introducing a

whole new way of doing business that transforms a control-orientated service process to

customer-orientated support process.

Taken together, the type of business processes involved in most of the organizations in

Ethiopia are a mix of standardized and well-structured routine processes (such general

 115

business applications as general accounting, payroll, stock control, etc.) and unstructured

decision processes (such as granting permits, deciding on discounts, assessing claims,

etc.). While the former represent processes where mass-production of a type to process

many cases at once are possible, most of the latter involve processes in which individual

cases are dealt with in more or less direct contact with stakeholders. In the latter cases, at

times, the officials or operatives in charge of the processes may need to involve

additional actors - asking a colleague for help or organizing a meeting to jointly decide

on how the transaction should be handled. The outcome of such consultation may alter

the sequence of work processes. It may also need the invention of workarounds to handle

specific cases.

Accordingly, in the effort to develop software based on existing business process where

there are more workarounds than the properly documented and publicly available

business processes, one has no choice but to rely heavily on the existing workforce who

often (for one reason or the other) are disinclined (or at best undecided) to change

existing practices or introduce best practices that demand transformation of existing

practices.

The situation is further complicated when one deals with applications whose processes

cut across multiple organizations as typified by most of the eGovernment projects. In the

design and implementation of software solutions for such cases, adequate consideration

must also be given to the often non-trivial characteristics and requirements of inter-

organizational service processes. Take, for instance, the case of customs, banking and

transport agencies involved in the processing of a certain import transaction (a transaction

that involves organizations in more than one sector); or the case of a clinic, a hospital

involved in processing a certain patient record (a transaction that involves different

organizations within the same sector); or the case of a ‘sub-city’ and a ‘municipality

office’ involved in processing a certain building permit processing. In the course of

processing such cases, various documents have to be exchanged, some of which are

delivered by the subject while others are sent by messengers, mail or fax or other means.

There are information integration (centered on facilitating information flow) and process

integration (centered on interrelating steps and stages of process performance) issues

 116

across technical and/or organizational borders (between different agencies and within the

same agency at local, regional and federal levels) to be considered as factors that

influence the ICT solution design and implementation (Klischewski, 2004). That is,

appropriate standardizations, interoperability, flexibility and customer orientation need to

be considered in the design of software solutions for such applications. Per the

requirements of the reform initiated in the public service organizations, the processes

need to be: transparent to the parties involved, customer-centred and result-oriented. To

support this, the underlying information systems (database, software, hardware, etc.) need

to be able to communicate with each other. The exchange of the information (information

items and data elements) needs to be standardized to provide flexibility in process

execution. All these cannot be addressed without a serious business process redesign

undertaking.

What is more, in the local setting, most of the tenders floated for software systems

development require business process redesign as one major activity to be carried out, in

fact before the actual development of the corresponding software. For this reason, this

activity becomes one of the major requirements to be explicitly addressed by software

processes and methods to be used in the local setting.

Many methods may exist in order to deal with business process redesign issues, ranging

from the most radical system overhauling to continuous incremental improvements. What

follows is a generic approach that evolved out of the experiments carried out with real-

life projects first at Addis Ababa University AAU and then at Organization C of the cases

reported in Chapter Two, over the last four years.

4.4.2 First Attempt at AAU

The method applied in this experiment mainly originated from the works of the author in

teaching and practicing systems analysis and design at AAU and the cases reported in

Chapter Two respectively. Additional motivation for the collaborative approach

incorporated came from the author’s active participation in the self-assessment and peer-

 117

review exercises of the comprehensive university-wide program review project at (AAU)

during 1997-1998.

The work took place in 2001 at Addis Ababa University (AAU) when the author was

given the responsibility to lead a project that aimed at redesigning of the various business

processes of AAU as part of the preparation for full scale automation. Before the year

2001, a number of automation projects were initiated by AAU with a view to improve

service provision and support. Among the major areas covered in these initiatives were:

library service management, student record management, and integrated financial and

administrative support. Unfortunately, most of the initiatives experienced difficulty in

terms of meeting expectations. The projects for the most part simply automated existing

activities – merely changed the manual operations to computer-based operations. The

information was the same, the process was the same, etc. According to the top

management of AAU, this however was not sufficient and did not help in overcoming the

limitations of the manual systems. After an assessment of the situation, the AAU

management decided to commission a new project in 2001 to develop an integrated

business application software system based on best practices in the sector. The project

involved business process redesign as a front-end activity.

In preparation for the work, a critical assessment of the previous experiences both at

AAU and projects in which the author was involved elsewhere were made. Based on the

lessons drawn from these experiences and in due consideration of the scope of the work

and the variety of business areas, a collaborative approach was considered appropriate.

The environment at AAU at that time was also supportive to such a system of work.

Accordingly, collaborative teams composed of members from the academia, operatives

and senior students were established in respect of each application area. For instance, in

the case of the finance application area, a group was formed composed of staff members

from the Accounting Department of the Faculty of Business and Economics at AAU, the

Finance Department under the Business and Development Vice President, and the

Faculty of Informatics. Wherever possible, particularly in case of operatives, the unit

heads were selected to join the team. Members from the academic and operational units

were to seriously involve themselves in the re-design of the accounting functions and

 118

processes (by bringing together knowledge and experience from both the work area and

from the academic field and best practices elsewhere). The contribution from the

members of the Faculty of Informatics, according to the original plan, was mainly limited

to the design of software to support the redesigned business process. As required, these

members were to be supported by senior students from the Faculty who are to join the

team later at the time of programming. Similar arrangements were made for other areas

of business for the teams to work in parallel. The other business application areas

included were: procurement, human resource management, library management, registrar

(student record management), and facilities engineering and maintenance.

To coordinate the activities across the groups, a steering committee was established. The

steering committee was composed of group coordinators and representatives from the

central management. It was chaired by one of the former presidents of AAU in due

consideration of his familiarity with the system and problems. The researcher participated

in the project in two roles: as a sponsor (in his capacity as a member of the AAU

management) and as a project leader where he actively but informally participated in the

technical matters related to process analysis and design.

Actual project activities were carried out by individuals and pairs of individuals through

interviews and document reviews. While the operatives were charged with the task of

reviewing existing practices within their respective domains, their faculty counterparts

were responsible to bring in best practices from their previous exposure, experiences and

the literature at large. Each group had a weekly meeting where it exchanged information,

discussed design options and reviewed the progress based on reports from individual and

pair assignments. Based on the individual and group level discussions and reviews, each

group tried to document in detail the existing process together with its limitations and a

proposal for its improvement, in its respective area of assignment.

Soon after each project took off, certain problems were reported. The motivation of the

team members from the operation side was low. In the discussions conducted to

investigate the situation, the people from operations complained of workloads in the

normal (non-project) routine jobs. Further probing into the situation also revealed that

 119

they had complaints on what they called ‘double standards’ in the treatment of team

members when it comes to recognizing their contributions. In particular, per the

arrangements made at the beginning, time spent on the project by members from the

academic side was compensated. This was not the case for the operations. The

assumption was that for the people from the operations group, this work was part of their

regular duties, while for the others it was not and therefore needed to be compensated.

To expedite the project progress, corrective measures were taken in terms of establishing

incentives to the people from the operation. In addition, instead of relieving them fully

from their normal routines and responsibilities, an understanding was reached on how

much time from office hours they should spend on the project. The same was

communicated to all concerned including their respective supervisors. This intervention

helped for the project to run smoothly afterwards.

Each group reported its work both orally and in writing to the steering committee on a

weekly basis. Regular reviews and discussions were held at the steering committee level

on monthly basis. As required the steering committee also met weekly or fortnightly. The

steering committee also served as a critic for all group works. For this purpose, in

addition to circulating relevant documents ahead of time to the members of the steering

committee, each group made presentations at the meeting about its findings and project

progress. This was followed by a series of questions and challenges by other members.

Each meeting was concluded with suggestions to enrich the work and discussion on

updating plans based on the outcomes of the discussions. Problems encountered during

the course of the work were reported together with the efforts made to tackle them. All

outstanding problem referred to the steering committee were discussed and resolved.

Problems that were not resolved at the steering committee level were referred to

management and the chair person of the steering committee usually took up the matter

with the management. Accordingly, based on the reports circulated and presentations

made, detailed deliberations were made to streamline the processes, resolve conflicting

proposals across processes, and address problems encountered during the project process.

 120

To learn about the domain and best practices, team members used mainly

interviews, face-to-face discussions, and review of practices elsewhere. The group

used for the most part free-format based natural language text, work-flow

diagrams, such project management tools as network charts (PERT) for process

activity charting and sequencing and the usual meeting protocols. Extensive

informal consultations were made among experts in the various units.

The group submitted its report within six months. According to the project evaluation by

the group itself and the AAU management, the project success was rated high at least for

the process documentation part. As a result a go ahead decision was obtained from the

AAU management to proceed with the development of the required system and software

to implement the recommendations. Unfortunately, the author had to leave AAU at this

stage. Based on the information obtained through colleagues, the project continued as

part of the reform program of AAU but not with the same speed and momentum as

before.

4.4.3 Second Attempt at Organization C

The author was charged with a similar project at Organization C (of the case reported in

Chapter Two) in 2003 but at a much larger scale. The assignment brief was to completely

overhaul Organization C through IT. The engagement at Organization C was huge and

extensive. It went on for more than two years. It involved multiple stakeholders ranging

from the labour force to the board of management and supervising authorities (including

Ministers). The work reported below concerns an aspect of the undertaking that relates to

business process redesign as part of the software development project for administrative

and customer support services.

From the outset, a decision was made to build on the experience at AAU. As part of the

initiation process, an assessment was done first to draw lessons from the AAU

experience. The assessment was made through a series of reflection sessions with

selected members of the AAU project (particularly with those members identified for

engagement at Organization C as external experts in their respective professional

 121

domains). The assessment focused on identifying areas that needed further adjustment in

the approach employed for the work. Among the major points that came out from the

exercise were the following shortcomings in the earlier effort.

• The process redesign at AAU was mostly confined within functional units. For

this reason, the levels of integration between processes within the different

functional units were not explicitly and adequately addressed. For instance, with

regard to financial management, differences in viewpoints between the finance

unit and the human resources on matters related to the payroll process; differences

in viewpoints between donors and in-house experts on addressing donor

requirements related to the processing of donor supplied funds; issues related to

reconciliation of bank statements with in-house records; etc., that were

encountered in the process of consultations made for the work were not

exhaustively addressed and worked out between the units. Such issues that cut-

across functional units were included in the redesigned system in their original

form.

The separation of the business process redesign activity from the actual software

design process, particularly the arrangements made for members of the IT

(software) group to join the business redesign team at a later stage in the process

was inappropriate. Not only did this contribute to the delay in the taking-up of the

project but it deprived the software experts of the opportunity to learn about the

business process both existing and proposed. (Originally, the decision for the IT

group to join the team at a later stage was made mainly for the purpose of

avoiding tendency of IT experts to jump to devising technical solutions for all

types of problems.)

• The level of participation from the operations side was limited to experts assigned

to the team and those consulted in the process. The viewpoints and experiences of

the people directly involved in the day-to-day process were not adequately

considered. Workarounds encountered in the day-to-day operation were not

adequately dealt with and were left for consideration during the actual software

 122

developments. What is more, even the experts who were on the redesign team

from the operation side took the assignment as an individual engagement and

contribution. As such, they did not make any effort to try out or introduce aspects

of the design (what they have learnt in the process) in their respective operational

areas. There was a lack of ownership and follow-up.

Based on these observations, reflective workshops were held directly with workers in

selected units (for instance, customer services from front office, and procurement from

the back office). The discussions focused on interactive processes in which participants

are engaged in a process of identifying key issues. These were made based on stories told

by participants to expose such problems as: complaints filed by customers on services;

duplication of activities and functions; waste or abuse of resources; delays in decisions

and their consequences; corrupt practices; abuse of authorities; etc. This was followed by

analysis of the stories told and the issues exposed. This was necessary in order to filter

out and structure relevant issues that were considered critical to understand more about

the situation at hand and to integrate insights into the project design and for the purpose

of customizing the earlier approach used.

Among further adjustments introduced to the earlier method based on the feedback and

analysis made, were the following.

• To introduce three working groups to carry out the activity: operations group,

critique panel and IT group (see below for details).

• To involve users as much as possible in the process to benefit from their

experiences.

• To use workshops as the main vehicle of requirements definition instead of

interviews and one-to-one discussion sessions.

• To align the project with corporate reform programs.

• To use awareness creation workshops throughout to continuously inform

stakeholders and the community on the purpose and intent of the undertaking, on

roles and responsibilities, on the progress of the project, etc.

 123

• To devise and use simple documentation and communication tools drawing on

project management and Joint Application Development (JAD) techniques and

tools.

Per plan, each individual worker in the business areas addressed was required to

document his or her routine activities – activities that are performed in the course of

discharging their duties and responsibilities. For this purpose, in addition to the

discussions in a series of workshops on the purpose and goal of the reform and the

benefits thereof, the workers were given orientation on the techniques and tools to be

used for the documentation. To create awareness among the critical mass, the corporate

wide forums created to support the national reform programs8 coordinated by the

Ministry of Capacity Building were used.

The operatives, the people already working in the functional areas, were then guided to

document their existing functions by simply listing the tasks carried out in respect of each

process using a simple format adapted from project management techniques. Each task

was listed in terms of: a task number used as a reference and identification, a brief

activity description (not more than one statement), duration (time required to perform the

activity in terms of minutes), responsible unit, dependency (by identifying predecessors

for the task described in terms of task numbers). The business process mapping was then

generated from this documentation, using project management tools (network chart). In

the process, external consultants that specialized in the business area of Organization C

were employed to provide additional technical assistance to the in-house group. Figure 1

and Figure 2 below show examples of an Activity List and a Process Mapping

respectively.

8 As part of the national transformation program, a series of discussions were held to introduce the various
national strategies in general and the reform programs in the areas of strategic planning process, business
process reengineering and result-based employee performance evaluation in particular. Every employee is
expected to attend.

 124

Activity # Activity Description Time Responsible

unit

Dependant

1 Project proposal 3.7d AND

2 W.O 10d CPBD 1

3 Asphalt permission 18d AND/Munic 2

4 Material request 4d AND/LD 2

5 Budget transfer 10d CFD 2

6 Transport arrangement 10d LD 2

7 Transport material 20d AND 3,4,5,6

8 Assign/Dispatch team 2d AND 3,4,5,6

9 Trenching 15d AND 7,8

10 PVC laying & back filing 4d AND 9

11 Manhole/Pit const 52.75d AND 7,8

12 CC foundation 21.5d AND 7,8

13 Duct PC installation 7d AND 10,11

14 Direct buried PC inst. 10d AND 9

15 Sec under gr. cab inst 33d AND 9

16 Over head cab inst 21d AND 7,8

17 Jointing 84d AND 13,14,15,16

18 Testing/Handover 30d AND/TBS 17

19 Return 2d AND 18

20 Closing W.O 3d AND 19

Figure 1: AN Construction Activity List

 125

Figure 2: AN Construction Process Mapping

The documentation of the process for the most part was based on what was actually being

done in reality instead of referring to what aught to be as stated in the procedure manuals.

This gave an opportunity to capture the various workarounds introduced to handle special

transactions that the existing procedure manual failed to address or failed to provide

guidance for. What is important to note here is, the departure from the traditional

approach where the analyst talks to the users on what and how they do their work and

then document same for use in the subsequent activity of software design. Instead, the

people doing the job (users) themselves were made to document the processes with a

little guidance. This, as can be noted, is also a further step from the approach employed in

the second round development project of both Organization B and the AAU project.

In actual practice, the list of tasks was developed as follows. First, each individual person

was made to document what s/he did using the format but without bothering to complete

15 AND

Sec Un C In

33d

5 CFD

Budget Tra

10d

14 AND

Dir B P.C In

10d

1 AND *

Proj Prop

3.7d

2 CPBD *

W.O

10d

3AND/Min
*

Aspalt Per

18d

4 AND/LD

Mat. req

4d

9 AND

Trenching

15d

 7AND *

Trans Mat

20d

8AND

Team
As/Disp

2.5d

11 AND *

Manhol

52.75d

19 AND *

Return

2d

6 LD

Transp Arre

10d

18 AND *

Testing/HO

30d

10 AND

PVC Lay

4d

12 AND

CC found

21.5d

A

A End

17 AND *

Jointing

84d

16 AND

OH Ca In

21d

13 AND *

Duc P.C In

7d

20 AND *

Closing
W.O
3d

 126

the details. Then those working in the same section came together to review and

synchronize their lists; similarly sections worked together to review and synchronize the

lists; and so up the hierarchy. As the size of the group coming together grew, to have a

manageable size and to render meaningful discussion and review, lower level work units

were represented by a group delegated for that purpose. From this we formed what we

earlier referred to as ‘Operation Group’. As required, the operation group had taken two

or three days away from the office to discuss and finalize the documentation and

discussion. The system so documented by the operatives themselves (the Operation

Group) was called the ‘As-Is’ system. The Operation Group was then tasked to develop,

in consultation with the employees involved in the process and the stakeholders, and

based on series of envisioning exercises, a proposal for revising the same business

processes. This proposal was called the ‘Should-Be’ system.

What is worth noting in connection to the process documentation is that initial

attempts were still confined to activities performed within the functional units. It

was through a serious of joint reviews and deliberations that these were extended

across functional units, to include all those involved from the start of the activity

to its end. This was another major lesson learned. Particularly, initially the

different functional units involved were not aware of the implications of their task

on others and only cared to address their part without bothering to what extent this

may or may not have contributed to the overall accomplishment of the main

process. Users, particularly those that participated in the workshops where these

issues were demonstrated and discussed, were taken by surprise when they came

to know the cumulative effects of their activities. In particular they were surprised

to learn the huge amount of control-oriented activities and paper work involved,

complications in communication (back and forth routing of papers) and related

duplications of efforts (tasks common across the offices), processes that generate

work and outputs that no one truly needed any longer, and preparation and

distribution of unnecessary paper copies, unfriendly forms and formats, etc. and

the huge amount of time spent in the process. This became the source of

appreciation and inspiration that led them to actively and continuously participate

 127

in the efforts. Earlier workshops among various functional units that used to be

dominated by pointing fingers, externalizing shortcomings, putting others to

blame, etc. changed after this observation to forms for conducting lively and

constructive discussions and experience sharing.

The As-Is system and the revisions proposed by the operatives were then subjected to

review in a Critique Panel.

Rationale for the Critique Panel: it was believed that depending more on users for

the ‘Should-Be’ will limit the chance of introducing innovative solutions. As

much as it was important to understand the problems that users currently faced

and their expressed requirements for improvements, attempts should also be made

to anticipate future needs, and invent a system to both help users solve their

problems and provide for the anticipated future needs. For this purpose, we

introduced the concept of Critique Panel – which involves engaging stakeholders

outside the Operation Group in the vision creation process9. Members of the panel

were composed of individuals outside the operation group (see below for more).

This was also in a contrast with the notion of use context or nature of agile

methods that heavily depend upon the ‘customer’ to create a vision of the

software under development. This may work under circumstances where

customers are skilled and up-to-date with best practices in their area of work and

profession. This, unfortunately, is not the case in most developing countries in

general and Ethiopia in particular. Under the circumstances, therefore, depending

on those staff members/operatives currently involved in the operation may not

bring the required level of improvement or can only bring very limited

improvement. It may also be considered as placing a large and sometimes

unrealistic burden and expectation on the users who have not had any chance of

upgrading their skill for some time. In this connection, it is relevant to note that,

in the local setting, we are talking about workers that have been practicing the

9 This panel concept may be considered as a substitution for the instructor or coach in the original proposal
of Schoen’s reflection in action (discussed in the next chapter).

 128

same routines for years, and who did not bother or take initiatives, for one reason

or another (lack of capacity, lack of authority, lack of concern, lack of motivation

and incentive, etc.), to fix system problems. When process related problems occur

during operation, the tendency is to refer the matters to others or temporarily

mend them or invent workarounds to manage incidences on a case by case basis.

In the existing situation, particularly in government and public service

organizations, most employees are not motivated enough to venture into doing

their job in an efficient manner, let alone envisioning the future process. To make

matters worse, there are often negative forces operating with vested interest but

under the guise of concern/control.

Accordingly, for each Operation Group a corresponding Critique Panel was organized

and commissioned. The panel was composed of critics from various units from within

and outside the organization but with a good deal of knowledge on the domain of

discourse (the business process under reference) and preferably with some prior exposure

to best practices in the industry. The overall purpose was for the Operation Group to

present and defend their proposal in front of the panel, and for the panelists to challenge

the operatives through constructive criticism based on customer needs, expectations and

current industry/best practices. Beyond questioning, they also provided ‘why not this

way?’ type of proposals for consideration by the Operation Group. The end game was for

the group to critically examine the existing ways of doing things and suggest

modifications, and brainstorm on alternative options. Through joint discussion and

negotiation, both groups had to agree on the ways in which work should be redesigned

and done in the future (that is, revise the earlier version of the ‘Should-Be’ system). As

such the panellists are used for passive feedback and critic. They are used as a source of

insight and detached reflection, unbiased, uninvolved perceptions, and to bring the ‘voice

of stakeholders’ into the redesign process. For this to yield better results, based on

repeated trials during the piloting, a discussion modus operandi was agreed upon, which

stated among others to: involve all members of the group, foster creativity, and respect all

ideas. As required, in some of the cases, representatives of customers were also invited to

open meetings to express their expectations and to comment on the process redesign plan

 129

under consideration. The experience from such exercise indicated the importance/benefits

of including visionary customers in the Critique Panel.

Then the third group, the IT Group that mainly was composed of software engineers, was

given the chance to check the extent to which the suggested changes have taken

advantage of the new opportunities provided by the technology. The focus here is one of

fitting technology into the ‘Should-Be’ system to support the newly designed business

processes and work practices. As a matter of principle and strategy, it was agreed not to

miss out on the new opportunities provided by new technology in the design process. For

instance, with regard to the project under consideration, in line with the overall plan to

introduce customer-oriented one-stop shopping services, the group was expected to

explore possibilities of using the Internet, the web or hand-held wireless accessories to

extend the one-stop shopping to no-stop shopping model. In particular, this referred to a

fully electronic environment so that customers with necessary resources would access the

services from wherever they are without necessarily physically approaching the service

provision stations.

Finally, a team composed of representatives from each of the three groups was organized

to sift, analyze and combine the various ideas discussed and proposed at the various

levels and stages to yield one or more possible solutions for consideration by

management. As required, simple prototypes were developed to demonstrate aspects of

the solutions proposed (for instance, the human resource business process redesign was

one such case). To do this task effectively and within short period of time, sometimes

arrangements were made for the team to go away from the office (fully equipped with

necessary resources) for a couple of days. This was made on the belief that the team

would function better in an environment away from everyday pressures. With such

arrangements, participants focused better on the process and reflected on the discussions

and suggestions made at all levels. Upon return, the results were presented to senior

management and members of the Operation, Critique Panel and IT groups in a series of

de-briefing sessions. The management then decided on one option and took necessary

steps for the implementation together with the concerned units.

 130

In the case of Organization C, partly influenced by the organization-wide movement to

overhaul business processes, some of the recommendations required questioning the

policy premises and mandates. Where this was the case, another round of discussions and

reflections were made with policy re-design in mind. There is no space here to report on

the details at this level, nor is this necessary also for reasons of confidentiality.

Nevertheless, discussions at this level necessitated the involvement of other stakeholders

within and outside of the organization, including the board of management, the

supervisory authority and other public and private agencies. Most of the policy level

revisions were taken up at the board of management level. For this purpose, the

management, the labour union leaders, and other concerned parties met on weekly basis

to discuss the issues, brainstorm on options and come up with recommendations.

Interestingly, what is relevant to note in this connection is that this level consideration

provided an opportunity to experience the double-loop learning discussed in Chapter Six.

In the discussions at this level, both the approach used in redesigning business processes

and the recommendations in some of the cases (particularly in areas that affected large

members of the labour force such as maintenance and collection services) were seriously

challenged and questioned. Serious arguments were raised on the extent to which the

proposals for the ‘Should-Be’ system would address problems identified with the existing

system. Critiques were forwarded on the overemphasis on technical and infrastructural

issues and less emphasis on the human dimension. Decisions were made to revisit the

recommendations in the light of work culture, attitudes and competence of the workforce.

Emphasizing the implications on methods, the deliberations at this level partly helped to

refine the approach used for the business process redesign. In particular, three more

dimensions were incorporated in the business redesign approach:

• To include labour union representatives in the various working groups;

• To introduce a support infrastructure to address organizational communication

issues related to the activities of business process redesign, particularly to inform

the community about the redesign activities, solicit suggestion and comments on

related issues and required changes that are expected in the work culture, skill

sets and corporate values in the new environment; and

 131

• To increase emphasis during redesign on integration of functions around

processes and human resource development issues.

Subsequent workshop sessions focused on resolving the issues identified at various levels

and discussing implementation related issues.

In parallel, the in-house software group continued the development of the prototypes that

captured the revised business plans. The prototypes were further revised in close

consultation with and involvement of the Operation Group and converted into mature

systems at least in some of the cases (human resource and finance subsystems). A

decision was then made to operationalize the systems developed by making related

revisions in the work processes and providing additional training for users. At about this

stage, the author discontinued day-to-day engagement with the project due to some other

assignment.

During the final stages, people actively involved in the process redesign were able to

reflect on the overall impact of the approach. On the whole, the results obtained from the

experiences were considered encouraging. The collaborations of actors through the three

groups did provide suitable environment and platform for learning and collaboration.

Lessons learned from further analysis of the experiences were used to further refine the

method and integrate it into prototyping-based software development. An attempt is

being made to explore the application of such an approach in the project at Organization

B and an upcoming e-government software development project at AAU. An aspect of

this has also been incorporated in the approach proposed in Chapter Five.

As a process documentation technique, in addition to Activity List and Process Mapping

presented above, one could also use Cooperation Picture of Wetzel (2001) to describe the

different set of tasks and activities from the workplace perspectives. Cooperation Picture

relates to representing the work objects and information to be exchanged between all

participating parties or ‘actors’. Further still, storyboarding techniques suggested in CD

could also be used to capture details of specific tasks in the processes (work practices).

 132

The next two chapters will introduce a methodical approach considered appropriate for

the local setting. The approaches proposed are customized versions of popular methods in

the industry. The customization mainly involved incorporation of valuable lessons

learned from years of practical experiences (in both teaching and professional practice),

and modifications of aspects of the original methods based on the inputs from the

findings reported in the preceding chapters.

CHAPTER FIVE

5. Reflective Steps: the Proposed Approach

“No life is as simple a progression as an academic vita outlines .. We go on, and on,

and on, arriving and departing from new stations, and neither the journey nor we

ourselves are quite the same. Each age and station develops a different answer to the

questions of who we are and where we are headed” …What Really matters

(Kleinman)

As discussed and justified in the preceding chapters, in order to improve the software

development situation in Ethiopia, better use of methodical approaches to software

development needs to be explored. In particular, the selection, contextualization,

continuous adaptation and use of appropriate (to the situation) methods and processes for

software development are believed to be critical factors in the effort to bridge the

oversize demand-supply gaps observed.

The approach reported in this chapter is one attempt in this direction. Drawing on the

works of renowned methodologists, industry best practices, and own experience on the

one hand, and the findings and requirements reported in the preceding chapters on the

other, an attempt is made to develop a flexible and context sensitive approach. The

approach developed, ‘Reflective Steps", is for the most part an enhanced version of the

STEPS approach originally developed by Floyd and her co-workers (Floyd et al., 1989).

However, it also draws on: the Reflective System Development method proposed by

Mathiassen (2000), Boehm’s Spiral model as modified by Pomberger (2006), and the

agile method developed by Cockburn (2006). Reflective Steps is an iterative,

collaborative and learning-oriented software development and process improvement

method, particularly suited to such immature software engineering environments (such as

the one in Ethiopia). It is also a distilled version of years of experience – a pattern that the

researcher has observed to work well over the years of professional practice and

experimentation.

 134

In the remainder of this chapter, first the premises on which the proposed approach is

based are explained. This is followed by a general description of the Reflective Steps

approach. Remainder sections of the chapter are devoted to providing detailed

descriptions of the proposed approach.

5.1 The Premise

In this section, first the thesis for Reflective Steps is explained. The explanation also

includes how the thesis is mapped to the proposal. Next theoretical perspectives and

related works that served as additional sources of inspiration in the course of developing

the Reflective Steps approach are briefly presented. The last part of the section presents

the original STEPS model which served as a reference model for Reflective Steps.

5.1.1 The Thesis

The Reflective Steps approach is premised on the following thesis. For clarity, the thesis

is paraphrased in a number of paragraphs.

A software development work is a highly collaborative activity carried out by groups of

people in various roles (software engineers, application domain and process experts, user

representative etc.). It involves interleaved processes (of project management, software

production and embedment into an organization) that are carried out within given

productivity and quality constraints. It operates in a continuously changing contextual

situation10 (people, technology, business processes, perceptions, etc. factors that influence

the software development process are all subject to change during the projec).

Under such circumstances, predetermined methods and practices do not help in achieving

the desired productivity and quality constraints in a specific development situation.

Instead, the process (or the journey to the destination) needs to be carried out step by step

10 This is in contrast to the traditional thinking among the software community where the understanding of
change is dominated by ‘change in requirement’ which mostly referred to change in the business process.
From the experiences reported we have seen how change in management, change in technology, change in
the perception of actors, etc. affect software development.

 135

incrementally, each step resulting in delivering a portion of the product as a proof of user

requirement and design concept through iterative cycles.

In the move forward through such steps, as much as the prevailing context at the

beginning has already determined the development strategy considered for the step taken,

actions taken during the steps also affect the context – the context changes. The

experiences resulting from the actions taken provide opportunities to better understand

the application domain, the development process, capabilities and related tradeoffs. These

in turn give more chances to revisit plans and development strategies for the next steps

forward.

Accordingly, for software productivity and quality to be improved in subsequent steps,

process and progress experiences as well as feedback on the product delivered at the end

of each step should be used in refining and adjusting strategies, balancing and integrating

contextual constraints as well as targets. To make sense of (learn from) such experiences

and feedback, collaborators in the process need to collectively reflect before, during and

after each step and at various levels (individual, group, project and organization levels).

As such, the software development situation calls for taking ‘reflective steps’ on a regular

basis to incrementally develop and deliver the product required. In the process, specific

processes and methods suitable and usable to the specific settings are discovered by

continuous adaptation of the methods and process in use based on project experiences in

earlier steps. As such, project groups and organizations can use iterative/regular

‘reflective steps’ as a learning, communication and negotiation mechanism to be used in

software design, software project management, and software process improvement. Such

‘reflective steps’ can also be used for software competence building by using experiences

strongly grounded in the actual software development project. Such is the essence of

experience-based learning at each step to continuously improve the process of

development to deliver the product required. With this approach, not only an aspect of a

product is quickly and continuously delivered to users, feedback on the process and

performance is quickly and continuously provided to developers to adjust strategies and

improve performance.

 136

Mapping the Thesis to the Proposal

Given a software project, the overall strategy adopted to increase the usability of methods

and processes in the effort to develop usable software is one that involves:

• finding an appropriate approach for the context,

• devising a mechanism to continuously adjust the approach to fit the changing

context, and

• building the knowledge of professionals on the approach, its adjustment and use.

According to the strategy adopted for this research, finding an appropriate approach for

the context involves:

• understanding of the context,

• selecting a suitable approach from those publicly available and widely used

approaches in the industry, and

• tailoring it to fit the context.

Based on the knowledge about the software development situation in the local setting as

well as the potentials and limitations of existing approaches, and years of experience in

using and experimenting with methods, as established in previous chapters, an attempt is

made here to:

• introduce a suitable method for the local setting by adopting and tailoring one (or

combination) popular method(s) in the industry;

• provide a mechanism through which the approach is continuously adjusted and

improved by the practitioners themselves to serve their purposes in the course of

developing a usable software. The involvement of practitioners in the process in

turn provides an opportunity for them to build their knowledge by learning from

experience; and

• introduce a learning mechanism by adopting and tailoring popular experience-

based learning models.

 137

To provide an opportunity where the experience gained in the project is used to better

meet the quality and productivity requirements of the project, the software development

is planned for execution at incremental steps. To benefit from such experience at each

step, we must learn from the experience. For this purpose, reflection is proposed as a

mechanism of learning from experience. This is the justification against which

‘Reflective Steps’, an approach that combines step by step project execution and a

reflective learning mechanism to benefit from experience in the project to improve

performance and quality is proposed.

To demonstrate the foregoing, an attempt is made to revise the STEPS process model as

follows:

• to include and explicitly address important software development activities that

strongly feature in a typical project but do not seem to be adequately addressed in

existing process models, and

• to support a step by step approach for software development and software process

improvement; where software engineers and users work together; where each step

follows a design-critique-reflection (experience-based learning) iterative cycle:

o to produce a software increment

o to ensure usability of the increment

o to adjust the project plan

o to improve the software process

These and related aspects of the proposed approach are further discussed in sections

beyond providing a brief background on theoretical perspectives and the original STEPS

model.

5.1.2 Theoretical Perspectives

What follows will provide further background and justification to support the proposed

thesis and approach in terms of briefly reviewing theoretical considerations and

philosophical underpinnings published in related literature. To render meaningful

discussion within the space limits of this chapter, only aspects related to reflective

 138

practice and participatory design in the context of software development are briefly

reviewed. Additional review on reflective learning is provided in Chapter Six.

(i) Software Development as a Reflective Professional Practice

Software development practice is a particular instance of reflection-in-action.

Review of related literature (Schön, 1983; Mathiassen 2002) reveals the possibility of

applying two different perspectives to professional practice in general and software

development in particular: technical rationality and reflection-in-action.

From the technical rationality point of view, professional practice is seen as instrumental

problem solving. In this context, the practitioner starts with given objectives and chooses

optimal means to realize them. In doing so, the professional practitioner uses scientific

knowledge to perform specific tasks and to select methods and techniques that apply to

different types of situations within his/her practice. According to this view, professional

practice situations can be categorized scientifically, the knowledge applied is a result of

scientific work, and professional practice is seen as different from related scientific

works. That is, professional practice applies scientifically-based theories and techniques

whereas scientific work develops these theories and techniques.

In contrast, the reflection-in-action perspective assumes that the different situations of

professional practice are unique, complex, uncertain and even discordant. Here the

practitioner must be aware of the uniqueness of the situation and behave accordingly. In

addition, it is often only possible to see or comprehend small fragments of the situation

because situations are typically dynamic, consisting of complex networks of problems

and conflicts. According to this view, knowledge and action are intrinsically related. The

practitioner’s knowledge is in his/her actions and cannot be fully described. Professional

practitioners do research in the situations they find themselves in, reflecting while they

act, and developing new insight as part of their daily practice.

 139

Most of the conventional literature supports that technical rationalism (and the methods

on which they are based) is a more realistic or useful view for software development.

What is needed from the technical rationality point of view, is a suitable set of general

methods and techniques for the systems, combined with methods for the analysis of

situations and selecting of appropriate methods and techniques (Davis, 1982). These

methods or the processes thereof do not provide concrete guidance and actionable items

where problems are encountered following existing (defined or improved) processes

during a development project. For instance, when a project manager identifies a schedule

overrun that threatens timely project delivery, or a certain artifact design fails to work,

methods hardly give any specific recommendations or guidance to get the project back

into schedule.

There are also strong counter-arguments that the use of methods and formalization alone

cannot always help in reality (Mathiassen, 2002; Bjerknes et al., 1990). These workers

suggest the importance of experiences of the practitioners and their reflection on the

situation at hand as well as the adaptation of a combination of formal and informal

approaches. From the reflection-in-action point of view technical rationality alone (or

methods thereof) is far from sufficient.

In general, the ways methods are used in practice differ from the ways

methodologist describe them for use. Methods may be understood as guidelines

for practice and expressions of espoused theories on systems development;

methods-in-use may be understood as those parts of system development practice

in which practitioners apply methods to practical problems; methods may be

understood as non-canonical practices which are not (or cannot be) explicated or

codified as the others (Mathiassen, 2002; Bjerknes et al., 1990).

Accordingly, system developers must know more than mastering a repertoire of general

methods and tools. They must know how to cope with the specific environment in which

they work. They must open their minds and engage in reflections and dialogues, with

themselves and the environment, to generate the necessary insights into the situation at

 140

hand. In this sense, software development practice can be seen as a particular instance of

reflection-in-action.

Creativity and Social Discourse are requisites for software design

Design (the process) is essentially a social practice, and design (the product) is a social

construction often carried out in a collaborative work environment (Mamykina 2002,

Floyd 1987). Because of the abstract nature of software, we can learn and communicate

about it in personal discourse with experts (program designers, users), by defining

documents and by trial and use. Social discourse among stakeholders is crucial in

software design. In the collaborative software design settings, where pluralistic and

meaningful social discourse among stakeholders is supported, the development of mutual

understanding, common language and an ability to communicate and exchange design

ideas are essential in the design process.

Individual creativity is essential for software development and as such needs to be

nurtured and encouraged. Such individual efforts ought to be enriched and augmented

through interpersonal interaction, debating best solutions, and reflection on both the

content and process of the design to arrive at an agreed solution for general adoption. As

such, design involves co-construction of knowledge, commonly upheld by collaborative

sessions. A typical collaborative session may involve presentation of a discussion object11

followed by a critique and reflection session (design-critique-reflection). The presentation

sessions provide an opportunity to share and clarify ideas, understanding and design

artifacts. While one group presents its work, others question, constructively criticize the

work presented with the view to test and enrich it. In the process, convergence and

mutual intelligibility of perspectives can be attained through ongoing discussions,

reflections and negotiations among stakeholders. From this perspective, design could be

considered as inherently a collaborative reflective activity/process.

Under the existing circumstances, software design projects may fairly be categorized as

ill-structured and wicked projects in the sense of Rittel and Webber (1984) and Budgen

11 In the area of software development, the objects of discussion could be: service contracts, project plans,
design artifacts, process and methods, feedback on software use, etc.

 141

(1999), as they have become projects that deal with problems that can't be resolved with

traditional analytical approaches. As Budgen wrote, in a wicked problem, a solution’s

different aspects are so extensively interconnected that in adopting a particular solution to

any one part of a problem, the resulting interactions with the problem itself might make

the task of solving it even more intractable. Although this original concept arose in the

context of social planning, many characteristics of a wicked problem (such as the lack of

a stopping rule and the absence of true or false solutions) are readily recognizable facets

of software development. On this basis, Budgen asked, how do we stop pretending that

designing software is largely a matter of following a set of well-defined activities, and

recognizing it as a creative process that requires us to find ways to develop the design

skills needed to build the software systems of the future?

The consensus, nowadays, is that software professionals need to be able to learn from

reflection as the problems they face are often unstructured and novel, with multiple

possible solutions.

In this connection Schön’s theory of design is worth noting Schön (1983). According to

him, designers work in alternating cycles of action and reflection. The designer acts to

shape the design situation by creating or modifying design representations (such as

papers, mockups, or computational artifacts), and the situation ‘‘talks back’’ to the

designer, revealing unanticipated consequences of the design actions. In order to

understand the situation’s back-talk, the designer reflects on the actions and

consequences, and plans the next course of action. Such action results in modification of

the design representation, and the action-reflection cycle continues. This action-reflection

model illustrates the design activity of a single designer, and the reflection takes place in

the head of the designer.

Reflective thinking is requisite for professional competence building

At another level, in a professional work environment such as software development that

often results in introducing change in the organization, the challenge of making sense of

daily work procedures, interpersonal interactions, and issues of power can be assisted by

 142

attention to reflective processes specifically designed for these purposes. In a related

professional practice (the nursing profession), for instance, Taylor (2006) emphasized the

usefulness of reflective practices as a means of facing and unraveling the conundrums of

practice and learning from the insights gained. Taylor suggested three processes of

reflection to assist nurses in building competence in their daily work.

• Technical reflection: a reflective practice associated with task-related competence

building that relates to testing the validity of existing work procedures, techniques

and practices with the view to replace them with better ones. This relates to

reviewing the situation (including analysis of issues and assumptions) based on

information obtained from the process.

• Practical reflection: concerned more with human interaction or communicative

patterns that are set up by nurses and the people with whom they interact.

Mediated through language, and based on incidents at work, reflection involves

experiencing (retelling a practice story so that you experience it again in as much

detail as possible), interpreting (clarifying and explaining the meaning of a

communicative action situation), learning (creating new insights and integrating

them into your existing awareness and knowledge).

• Emancipatory reflection: involves interpretation of roles and social obligations in

the context of politics and seeks to provide emancipation from oppressive forces

that limit people’s rational control of their lives and practices.

According to Taylor (2006),

“humans are the only life form who can reflect on their experience. …Whatever

has been known or can be known is a source of reflection. A view of reflection at

these proportions makes it too large and complex to be almost unimaginable and

unmanageable; thus effective reflection requires focus with practical and

systematic processes.”

Taken together, reflection is considered to be an important part of the learning process

that targets professional competence building and there are many theories about what

 143

reflection is and why it is so important especially for learning from experience,

developing the skills of professional practice and for the development of skills which are

said to enhance learning. To this end, in addition to the foregoing account, more

theoretical aspects about reflection, particularly about its application and use in

experience or work based learning are presented in Chapter Six as part of the learning

model incorporated in Reflective Steps.

(ii) Participatory Design

Joint Application Development (JAD), originally invented by IBM around 1977, is a

group-based design process. Its general purpose is to bring together developers and users

to jointly define an application. In practice, the JAD is a structured and facilitated

meeting used for group input, discussion, and reaching consensus around requirements,

plans and decisions. In a JAD sessions, a group of stakeholders is authorized to make

plans and decisions, guided by a facilitator, and supported by people in specific relevant

roles.

JAD is probably the best known class of application software design workshops in

widespread use. But it is not suitable for all development situations. In this connection,

Jones (1997: 24) wrote: “JAD is probably least effective when major organizational or

team-building work is required of the project/stakeholder team. Merely gathering a group

of loosely related systems consultants or developers with the target users does not

guarantee a productive session. Trained and experienced facilitators are essential to

producing worthwhile results, and a formal JAD should not be attempted if facilitation is

not available. Also, if a creative process or a breakthrough product is required of the

team, a JAD approach is typically too highly structured to lead to innovation of new

designs. Finally, although JAD is consensus oriented, it is not designed to be democratic.

JAD goals and scope are typically predefined in advance of sessions, and alternative

methods are not readily available to practitioners.”

Participatory Design (PD) is a design discipline that has its origins in Scandinavia in the

1960s. It is based on the principle of including users fully in the design process. Contrary

 144

to JAD, here users fully involve in all development activities (beyond simple attendance

design workshops) including the sharing of responsibility with the developers for the

quality and performance of the system developed. The type of participation is more of

transformational in the sense of Dahms & Faust-Ramos (2002). One of the tenets of PD is

that system workers should be given better tools instead of having their work

mechanized. In this approach, users’ perception about the technology in their work is as

significant as the technical requirements for the technology.

After comparing JAD and PD, Carmel (1993) reported on the provision of mutual

reciprocal learning in PD projects, wherein the designer team and users learn from each

other about system design and work practices. In true participation, users and system

experts share the responsibility for the quality of the design proposal and the

implemented system. Thus both system experts and users get new roles in the system

development process. The system experts cannot make final design decisions on their

own (Bjerkness, 1993). PD also provides opportunity for design by doing, wherein users

have direct hands-on experience in the design works. The use of low-tech design objects

that are familiar to all will help in bringing the users directly into the design process.

When the system is implemented in an incremental way, users can see progress that

encourages them to increase their participation. After all, the most important part of the

project is when a system is made usable, and that is the time the users do most of the

work.

Another important software development process derived from PD is the Contextual

Design (CD) developed by Holtzblatt and Beyer (1993). This is a design methodology for

engaging users’ participation in the design of their systems and tasks by fully involving

their work experience. By interviewing users in the context of their work environment,

and treating them as the experts in the work processes to be designed, a contextual view

of the system is developed in CD. In this approach, as compared to other traditional

requirements gathering approaches, much of the control for information collection is

placed in the hands of user (Jones, 1997). Contextual inquiry is typically conducted as a

set of processes adapted to the environment. As such the user context is the basic model

for contextual design in the way that JAD is a model for the business context.

 145

The Reflective Steps approach proposed in this research draws on these approaches, but

with more emphasis on transformational type of participation as suggested by Dahms &

Faust-Ramos (2002). In particular, the type of participation proposed is collaborative,

instead of passive participation) which is rather similar to that of the Team Design

Approach of Jones (1997). It is based on the process of mutual learning experience

between users and software engineers as reported in Section 4.4 of this report. The user is

put on equal plane with the system designers; responsibility for the product is shared; and

this is made clear from the outset. In this role, in addition to providing information and

feedback, users agree to provide access to their work, access to their insights and rich

operational experience (as in the Operation Group). The software engineers bring their

technical design expertise to the project. As Bjerkness (1993: 39) wrote, “the users must

learn about technology from the system experts in order to understand what computer

technology can do for them, and the system experts have to learn about the application

domain from the users in order to build a flexible and efficient system that fits the users’

needs.” According to Jones (1997), such an approach is useful for any major

organizational change where systems and processes are redesigned, and the users’ jobs or

work processes will be affected. As much as users are given the responsibility to redesign

their work processes, attempts are made to introduce best practices through the

envisioning activities supported by software specialists and external experts (as in the

Critique Panel).

 146

5.1.3 The Base Model – STEPS

The main approach selected for adaptation in this research is the STPES approach to

software development with users, proposed by Floyd and co-workers in 1989 (Floyd et

al., 1989; Floyd, 1993). STEPS is a methodological framework that promotes

evolutionary software development methods with emphasis on participative

communication & learning process, usage-orientation, organizational embedding and

versioning. Because of its emphasis on framework, it does not directly provide specific

techniques and tools for its activities. Instead, the use of applicable techniques from other

methods is recommended. As of recent, however, methods both at social and technical

levels are being developed based on the concepts and principles of the STEPS approach.

One such attempt by Wetzel (2001), for instance, relates to the development of Anchor

(Anticipation of Change in Organizations) which advocates the use of anticipation of

change as a design rational. Anchor provides user-oriented representation techniques,

together with the definition of application kernels & system stages. It also allows

switching between the workplace or workgroup, interdepartmental and business

perspectives in the course of the system design work. Extending further the STEPS

concepts and principles of organizational embedding, evolutionary software development

and use context, the Tools & Material (T&M) approach (Züllighoven, 2003), attempts to

incorporate/consider technologies and tools used in the real world work environment into

object-oriented approaches to application software development. In the T&M approach,

application-orientation and usage-orientation aspects are more emphasised in operational

terms.

Figure 3 below depicts the structure of the original STEPS model.

 147

Legend:

Application

Production

System
specification

Project initiation

Project conclusion

System
version

Revision initiation

Developers‘
task

Users‘
task

Joint
task

Use

System
design

Document
Succession

of cycles

. . .

Maintenance

Software
Construction

Embedment
preparation

The STEPS
model for
software
develop-
ment
(C. Floyd, M. Reisin,
G. Schmidt 1989)

Figure 3: The STEPS model for software development

According to Wetzel (2001), the emphasis and aims of the STEPS model and its

extensions lie:

• in evolutionary software development based on a cyclical process model;

• in support of participative communication and learning process for developers and

users alike;

• in the emphasis on the use context, which results in an interlacing of system

design and organizational development;

• in a task oriented requirements analysis, oriented to the tasks of organizations

instead of system functions; and

• in the support perspectives, which is expressed in the leitmotif of software

workplaces for qualified human activity and the user as the expert.

 148

STEPS advocates collaboration in design as a means to improve quality. Quality in the

STEPS philosophy is often associated with processes of using the software developed. In

this connection, Floyd (1987) wrote:

“to determine the quality of computer use in organizations, we need to consider

issues concerned with qualification, motivation, training, work organization and

traditions of use, together with the features of the product [software] itself”.

STEPS assumes that processes of computer use are highly creative to the extent of

developing work practices that enabled users to work around known software

shortcomings.

“To bridge the gap between the functions of the data processing systems and their

actual work-tasks, user communities developed practices that can be described as

‘fitting’ system functions to actual needs, ‘enhancing’ system functions by mutual

practices by manual practices, ‘working around’ inadequate system functions in

order to achieve human work-goals”(Floyd 1987: 249).

Floyd (1993) further explained that,

“Crucial for judging the quality of computer-based systems from the users’ point

of view, is an evaluation of the quality of their work when using the software.

This gives rise to our view of software development, which is not restricted to the

product software, but also takes into account the social processes and relations in

the context of which it is produced and used”

Among the quality assurance techniques suggested for consideration to cope with the

quality gaps experienced by users and designers, were: reviewing design in teams,

establishing roles in development teams, prototyping, and role-sharing between users and

developers. According to Floyd (1987), “in order to make these techniques fruitful,

designers must ensure that software systems and underlying design decisions can be

modified as user needs become better understood. They are then able to enter into

processes of communication with users, which step by step, help to tune data processing

 149

systems to actual user needs”. Here seems to lie, according to the author, the origins of

the ‘people-orientation’ movement, the likes of those that are widely promoted and

advocated by such newly emerging software development methods as Agile. Arguably,

the ‘people’ in the Agile methods refers to the technical people involved in the

development. Under such reference, the author is hesitant to acknowledge whether the

issues raised in the ‘people’ dimension in the Agile process fully accommodate user

collaborators in the real sense. The contention here is it should! User representatives in

Agile methods, however, are still perceived as task specialists or support to the main

development team (for more on this see also Section 5.3.4 of the report).

In addition to the forgoing, perhaps most of the reasons behind choosing STEPS as a base

model for the current work are captured in the following concluding remark by Floyd

(1987), [emphasis added]:

“giving priority to the process-oriented view [which is the emphasis in the current

research] would imply dealing with conflicts and contradictions which are

abstracted from the product-oriented [which is the traditional technically-oriented

mechanistic approach] view. It would require us to change our attitudes towards

those who will use our products; to think of them as partners in spite of

conflicting interests; to learn to give and take criticism in a supportive and

constructive manner; to learn to work in technology keeping in mind human

values and changing human needs. It would mean going beyond the mechanistic

world-view embodied in the product-oriented perspective.”

In fact, the title of the publication by Floyd (1993) says it all: “STEPS to software

development with users” [emphasis added]. The following are additional quotations

from this seminal publication presented as further support for the choice to use STEPS as

a base model.

“While software developers are directly concerned with programming, they

contribute indirectly to profound changes in the work life of the users of their

programs”

 150

“Users, on the other hand, are faced with a revision of their work processes. This

involves re-organization of work, the acquisition of new skills in using computer

programs, and far-reaching changes in competence”

“In keeping with this, we consider software development a learning process for

both developers and users”

“On the one hand, requirements evolve because of general changes in society, the

economy, technology, law, etc. On the other hand, changes in work organization,

users qualifications etc. which are not least an effect of the software system itself,

give rise to new and changing requirements”

“[STEPS] refers to a class of possible development strategies allowing the choice

of a situation-specific strategy as needed in the project at hand rather than

depicting one ideal development strategy to be copied as closely as possible in all

projects”

As can be seen in the descriptions and explanations provided in subsequent sections and

chapters, most of the concepts and principles that underlie these statements are the keys

in addressing most of the problems being experienced in the existing situation. These

issues are also considered critical in augmenting the application and performance of

existing methods and processes to address the problems identified. Taken together, the

STEPS insight: its cyclic, evolutionary and small implementation steps concepts, its

emphasis on communication and learning-based design process, its recognition of the

importance of the usage and organizational embedding process, are all in line with the

essence of the Reflective Steps thesis described above.

5.2 Reflective Steps: Overview

As briefly explained in the preceding sections, the original STEPS model proposes

development cycles consisting of (i) project or revision initiation, (ii) production, (iii)

 151

releasing a system version and (iv) application of the version. To address the contextual

issues and concerns discussed in the previous chapters, the original STEPS model is

revised by,

• introducing additional enhancements to accommodate project design related front-

end activities to the software production process;

• explicitly addressing software development and delivery in increments;

• introducing reflective learning for continuous product and process improvements;

• introducing a form of collaborative development team building and work practice.

In this effort, the original model is recast into an integrated model depicted by the context

diagram shown in Figure 4. This is further exploded into the process models depicted by

the diagrams shown in Figure 5, Figure 7 and Figure 8. The corresponding Learning

Models proposed are presented in Chapter Six.

This section explains the context diagram to provide an overview of the approach

proposed. Subsequent sections address further details of the proposed approach by

providing similar explanations for the process models generated from the overall model.

�
��
���
��
��
	

�
��

�
��
��
��
��
��
�	
��

�
��
��
�������

�	�

Figure 4: Reflective Steps - Context Diagram

 152

The model shown in Figure 4 seeks to explicitly integrate the main aspects of any large

project that specifically aims at custom building a software system for a given

organization. As can be seen, it identifies three major sub-processes of the integrated

software development process. Namely: Project Design process, Application Production

process and Application Use process. In this connection, it is relevant to note the

following. In Reflective Steps, each project is assumed to involve the development of

more than one business application software (this is how the existing situation is

characterized in Chapter Four of this report). In other words, a project with more than one

business application is delivered incrementally application by application. The integration

of the applications is maintained through the design of appropriate interfaces and

architectures. As such a small project with one application is treated as a special case of

this understanding.

Project Design defines the project, continuously tracks its progress and makes necessary

adjustments in the project environment and constraints. In the process, it identifies and

recommends business applications for development by the Application Production,

receives performance related feedback from the Application Production process to

reprioritize and revise the scope of outstanding applications. It receives new requirements

for inclusion in the project from the Application Use process. The main actors in the

Project Design process are management and planning experts.

Application Production focuses on the design and construction of the required application

software (by working jointly with users) and within constraints defined by Project

Design. It provides usable software to the Application Use process incrementally. It

provides feedback to Project Design based on postmortems at the end of each application

implementation. The main actors in the Application Production process design are

software engineers, domain experts and key user representatives.

Application Use ensures that software versions delivered by Application Production are

smoothly deployed and put to use in a sustainable manner. While it provides feedback in

the form of modification requirements on the software versions delivered to Application

Production, it identifies new requirements for consideration by Project Design. The main

 153

actors in use design are users, change agents and software engineers.

Although we have artificially reinforced their separateness in order to render meaningful

discussion, these components are cyclical and interwoven processes involving at times

overlapping activities. These issues are explained in the detailed descriptions provided in

the following sections.

5.3 Project Design

As the Project Design process is one of the major enhancements to the original STEPS,

an attempt is made here to provide an elaborate account on this process. The detailed

activities involved in this process are depicted in the diagram shown in Figure 5 below.

As can be seen, a spiral diagram is used to depict the activities. This is different from the

STEPS diagramming convention adopted for Reflective Steps as can be seen subsequent

sections of the remainder of this chapter. The spiral diagram is preferred for this

component to accommodate as many of the activities as possible within one diagram and

more importantly to clearly show the iterative reviews and reflections involved in the

process. A version of this figure with the STEPS diagramming convention is found in

Section 5.4. The main activities of this process are explained in the paragraphs that

follow.

 154

Figure 5: Reflective Steps - Project Design

As shown, among the main activities in the Project Design process are: project

requirements setting, priority setting and scoping, partner selection and contract

negotiation, and project portfolio management. Aspects of these activities are discussed

below with more emphasis to those activities which are critical to the local situation but

not explicitly and adequately treated in other process models.

5.3.1 Setting Project Requirments

The starting point of software development projects is often a request from the various

business units. Such requests, after going through some sort of management approval

process, are usually articulated in an assignment brief from management to the planning

 155

or IT support units. The usual practice in the local context is then to prepare terms of

reference (TOR) and engage software houses for the job. The consequences of such

practice have been discussed and documented in Chapter Two and Chapter Three.

As established in the review of local cases, the assignment brief from the

management is a necessary but by no means a sufficient condition to guarantee

successful initiation and then deployment of the software projects in

organizations. Particularly, in the local context, such authorization would only

indicate the interest and intentions of the sponsor and lasts as long as the manager

or the sponsor is in that position. Where managers or sponsors leave the

organization or lose authority (which is often the case in today’s Ethiopian

reality), often the projects are discontinued. There seems to be a tendency to

associate the project with the initiators. The design of the software project

benefits more if such perceptions are brought to surface and explicitly addressed

early enough in the project design. In practice, where this was done, better

ownerships of the projects as well as partnership were observed – it was possible

to create buy-in.

 In short, an assignment brief essentially could be considered as the management’s

viewpoint or intervention into an organization. In every large project initiation, as

evidenced in previous chapters, it is likely that participants and users have different

viewpoints regarding the purpose or mission of the project. And usually this is the source

of most of the misunderstandings and complaints that gradually grow into serious

resistance and conflict at a later stage. As such, every large scale software project with

the potential to bring about change in the user organization would benefit if it starts with

an exercise that aims at some form of organizational understanding and learning. As part

of this process, the roles, norms and values inherent in the organization need to be

examined, and the disposition of power explored. An overall sense of the forces at work

around the project need to be created. To carry out this activity, a small planning team

may be constituted from experts in the planning unit, IT unit and concerned business

units.

 156

Such an exercise should be performed through conducting interviews and planned

discussions with selected elements of the stakeholder community. Informal

surveys of opinions and consultations at the grass roots level can also help. In the

process, special attention needs to be paid to involve the middle managers who

are going to be in direct contact with project activities. These groups often play

the role of a gate-keeper to the flow of information up and down within the

organization. Their involvement and buying into the project objectives and

activities would facilitate smooth project operation.

In a similar undertaking with the business process redesign experiment conducted

in Organization C, as reported in Chapter Four, we created forums where we

elicited stories and critiques from users helped a lot. The stories, mostly expressed

in the form of complaints, history and fate of similar past experiences, what

worked and did not work in the past, etc. served as good starting points. For better

and formal methods, see Boehm (1994, 1998).

The results from such an exercise are to be articulated and presented back to management

and sponsors for more insight, discussion, feedback, reflection and debate, by hosting

workshops. As required such discussions and reflections supported by further inquiries

may be extended for several days.

Such analysis done properly usually result in a thorough and insightful evaluation of the

organization’s readiness for the planned project. It helps to sense early in the project the

various viewpoints as well as potential barriers that are likely to block the successful

initiation. It will also help to get project ideas gradually diffuse within the organization.

The findings from such exercise have to be used in the project design phase, particularly

to incorporate strategies that would help address the potential problems sensed, to

mobilize support for the project, etc. The overall purpose is to get the various perceptions

around the project shared, discussed and negotiated to lead to an agreed upon

(consensually decided) reconstruction of the project perception and assignment brief.

 157

As part of the reconstruction of the project brief, a shared vision and basic scope of the

project, potential applications to be considered in the project, project constraints, risks

and priorities may be identified for review and enrichment in a series of reflection

workshops. The project ideas so discussed are developed into the definition of the project

and development of a term of reference for its execution. Assignment of a project

management body - composed of management, user representatives, internal IT experts,

external advisor (consultant), to formally establish the project based on the deliberations

so far - may be required. Such a body may also serve as a steering committee, once the

project development team is established to take care of the day to day project execution

and management.

5.3.2 Setting Priorities and Portfolio Management

A software development project may involve the development of one or more application

software. Where this is the case, the business applications may be prioritized based on

contextual constraints (organizational, financial, technical, etc.). This process may

involve serious negotiation among stakeholders. To support this process, there is a need

to develop and agree on a set of criteria for valuing application projects in order to

prioritize them. Decisions based on these criteria are likely to be more acceptable to most

elements of the organization if the criteria are developed with the input or review of as

many stakeholders as possible from within the various sub-units of the organization. So

typically, broad and organization-wide discussions of the criteria are to be held before

they are finalized. While valuable techniques that help in this connection may be found in

general project planning and management methods, one such method specifically tailored

to software projects and worth exploring is the Theory W proposed by Boehm (1989).

With the introduction of the WinWin Spiral Model (Boehm, 1998), which extends

the original model by adding activities from Theory W to the front of each cycle,

the model provides risk-driven and negotiation-driven approaches to the

management of software development projects with emphasis to activities in the

project design sub-process. Stakeholders also come together at the end of each

application cycle, to review performance and plan the next cycle. Based on the

 158

WinWin Spiral Model, further attempts are also being made to extend this model

to address the critical needs of all stakeholders including those in the software use

category through the development of Next Generation Process Model (NGPM)

and support system (Boehm, 1994). See also Section 5.3.3 for further extension of

Boehm’s original spiral model adjusted to accommodate make-or-buy decisions.

To facilitate iterative reflection, it is suggested that a project portfolio be maintained to

keep track of the negotiation details (the options explored, the factors considered in

deciding the scope and priorities, etc.), the progress and performance of each application

project. This requires, among others, to define each project in terms of such details as

project name, objective and scope, start date, estimated duration, estimated cost, strategic

value and priority, and so on for entry into the portfolio12. As shown in the context

overview diagram (Figure 4), the portfolio is updated based on continuous feedback and

post-application evaluation from the production cycle (see below). To maintain such

information, an additional entry for ‘performance’ should be included.

According to Reflective Steps, the project portfolio has to be reevaluated by the

management team on a regular basis through collective reflection sessions to determine

which projects are meeting their goals, which may need more resources and support, or

which may need redefinition of scope and priorities, which ones should be cancelled,

what sort of contract revision is required, and related analysis and decision. Since the

circumstances of each project and the business environment can change rapidly, a

quarterly review is suggested at this level.

In this connection, it is important to emphasize the need to avoid information

overload at management level (for that matter at every level). In particular, the

details of each project should be kept at the project team level, administered by

the individual project managers (for this purpose, the maintenance of a project

journal is suggested as detailed in sections beyond). Only key information should

be rolled up and presented at each level within the organization as appropriate. At

the top level, what is usually required is to provide a summary of performance,

12 A simple database may be designed to maintain the portfolio electronically.

 159

progress report, a measurement of estimates against actuals and costs. In addition,

as required, the steering committee may initiate a special project evaluation

process at any time to learn and know more about the status of projects.

5.3.3 Partner Selection & Contract Negotiaiton

Activities discussed under this category include: the make-or-buy decision and related

processes, contract details and planning.

(i) Make-or-Buy

An organization may acquire a software product in any one or combinations of the

following: in-house development, outsourced custom-development, or customization of

commercially available software. Based on the analysis in the previous chapters, the basic

assumption here is that most software development projects are outsourced. To come to

such a decision, however, usually a buy or make analysis is performed (more specifically,

outsourced or in-house development, to emphasize that what we buy is more of a service

even in the case of customizing a commercially available software). According to

Pomberger (2006), based on years of practical (real-life) project experience, even where

there is in-house capacity for the development, better still is to let the in-house

IT/Software unit compete on par with external software houses and if selected work on

business terms as far as the project goes.

Pomberger (2006) revised the Spiral Model to address weaknesses and omissions in the

original model in connection with some of the issues identified above. In particular,

enhancements were made on the model to recognize and provide mechanisms of

addressing the make-or-buy decision (extending the use of prototyping as a

methodological instrument in the make-or-buy decision) and accommodating

technological developments since the development of the original model. The revised

model is depicted in Figure 6 below.

 160

.

Figure 6: A Spiral Model of the software acquisition process
(As modified by Pomberger, 2006)

In connection with software acquisition options, the revision proposed the following.

Every software product acquisition should be made through competitive bidding (this

also equally applies for in-house development). Two or three finalists (bidders) that have

come out successfully from the evaluation process should be invited to a prototyping

contest – to develop a prototype for one of the core processes that the new software

product will support within constrained environment. The fees for the prototype contest

 161

are to be covered by the client. According to the revised model, experience from the

prototyping will also be used for better project definition during the contract negotiations.

While fully concurring with Pomberger (2006) on the enhancements suggested for

software acquisition, the author intends to propose the following further adjustments in

order to increase the chance of successful implementation of the revisions suggested.

• Before the official release of the invitation to bid, having a consultative workshop

with potential suppliers on the planned project may not only help to create a

shared understanding around the plan, but also help to benefit from vendor inputs

on related experiences and technological advances. The outcomes of such

workshop may contribute to the viability of the bid document.

• To smoothly handle the situation in case the in-house group wins the tender on

competitive terms, further details may need to be worked out in the areas of

contract administration and enforcement, handling conflicts that may arise

between employment and contractual terms and conditions of engagement, etc.

Unless the group belongs to some sort of subsidiary company with properly

defined terms of engagement, such issues and related roles and responsibilities

need to be explicitly worked out as part of the contract negotiation process.

• With regard to documentation, the proposal in the revised model is to ‘largely

avoiding written requirements definitions’ and using prototyping instead. In due

consideration of the experience reported in previous chapters, a more realistic and

appropriate option (at least in the local setting) would be to use prototyping as a

major vehicle but support same by prototype-driven written documentation

(instead of totally avoiding written documents).

• The author needs to emphasize the importance of the proposal in the revised

model to engage an external consultant to serve as ‘a project coordinator,

arbitrator and conflict manager, with unrestricted decision-making powers’.

However, there is also the need for organizational mechanisms to realize the

authority and institutionalize the decisions of the external expert. For instance,

this may be implemented in the form of membership of the external consultant in

a steering committee, heading a formally established project office or project

 162

management body, etc. Such an arrangement provides an opportunity to promote

more stakeholder consultation and to benefit from collective wisdom to arrive at

decisions. It also minimizes unnecessary accountability-related problems on the

part of the external expert particularly in cases where the project mobilizes lots of

resources and there are many actors that have a stake in the project or that may be

affected by the decisions taken. It will also lessen over-dependence on or

indispensability of the external expert. Definitely such support structure and

arrangements are essentially necessary in the local setting drawing on the

experiences reported in previous chapters. As Beck (2004: 76) put it, “the

principle of alignment and authority and responsibility suggests that it is a bad

idea to give one person the power to make decisions that others have to follow

without having to personally live with the consequences”.

(ii) The Contract

The make-or-buy activity involves among others the preparation of tender documents

based on the details compiled that far on the project, including further elaboration of

scope and requirements, followed by analysis of vendor offers to the tender, and then

selection of a vendor or vendors.

Once selection of a vendor is made, the next activity is to negotiate the actual contract.

Such negotiations are usually conducted based on the originally issued terms of reference

(as published in the tender document), the vendor offers, the results of prototyping

contest, recommendations of the tender evaluation group and new or changed

requirements that resulted from developments in the business environment and

organization since the publication of the original tender. This is required for various

reasons. Often the time given to vendors to prepare the bids is short and inadequate. The

requirements published in the bid documents and clarifications provided afterwards are

generic by nature. These and related issues may have forced vendors to make

assumptions about requirements that might have resulted in the under-estimation of costs

and schedules. As reported in Chapter Three, vendors have also the tendency to offer

cheaper rates for winning the bid, assuming that cost is the most important determining

 163

factor in the bid analysis. Taken together, such bid proposals are often driven towards

winning rather than accurately portraying the size and complexity of the system and the

effort required to build it. Accordingly, requirements, terms and conditions as well as

proposals have to be readjusted towards reality during negotiation.

The actors involved in the negotiation process should include: user representatives,

vendor representatives, project sponsor representatives, a consultant, etc.

As part of this negotiation process, it is also important to revisit the boundaries of

the project scope based on the findings of the bidding exercise. Scoping is the

process of defining boundaries for a project or system. It is an activity to be

carried out jointly and collaboratively by users and the development team. As

Jones (1997:180) stated, “boundaries are set by [users] to ensure that the work

they support is not overextended or overbuilt, and boundaries are set by

development management to ensure that a product is delivered within cost and

schedule constraints”. At the same time, it is also important to note that such

boundary setting consists of many scope tradeoffs and negotiations (Boehm,

1994), and the boundaries set, redefined, and reset continually until a baseline

scope is agreed upon.

Other issues that may be addressed during negotiation include: project

organization and governance structure, schedule, deliverables, etc. Discussions on

roles and responsibilities are particularly important in collaborative development

environments. Some of these issues are discussed together with collaborative

team development in the next subsection.

Although both users and vendors often believe that the negotiation and

differences thereof are up to the signing of the contract agreement, in reality this

is a continuous and iterative process. Changes are inevitable due to the unfolding

learning process during the project lifetime – initially defined project priorities,

scopes, contract terms and conditions, etc. evolve through iterations as problems

are encountered and new possibilities are revealed. For this reason, it is not

 164

advisable to freeze contracts until the requirements and the design efforts are

better understood. On the other hand, it is not affordable to leave them

unnecessarily open indefinitely (as this has implications on resource management

and utilization).

The outcome of successful negotiation exercise is a flexible contract and contract

management process that provides for handling changes in a controlled manner, instead

of the traditional and rigid contracts. Such flexibility of the contracts may also be realized

through an iterative negotiation between the production team and the planning team or

management, based on the feedback for project experience.

A flexible contract should, among others,

• provide for flexible planning;

• provide for a layered project governance structure with appropriate interfaces;

• create the necessary infrastructural support for effective communication,

coordination and knowledge sharing; and

• provide the necessary environment to create collaborative development teams

composed of users and vendors.

In addition to the rights and obligations of the participating parties, in a collaborative

development environment, a contract should specify the amount of time the users

can/shall spend on the project per week (Bjerknes, 1993). Otherwise, the users will give

priority to their routine work tasks, making it difficult for them to do project tasks

between meetings.

As part of the project governance structure, including a steering group (an upgraded form

of the planning group discussed earlier) in which conflicts can be discussed is usually

recommended. This is different from a project management group established at the

technical level to take care of the day-to-day running of project activities. Sometimes the

tension experienced by the different groups can lead to frustration and conflicts. In such

cases, it is important to have a contract and a forum where the problems can be discussed.

Having a steering committee for this and other purposes may contribute to make up for

 165

incompetence in project management (Bjerknes, 1993). Such arrangements give users

and project sponsors the opportunity to seriously engage themselves in the provision of

feedback, evaluation as well as steering of the project.

(iii) Overall Plan

From experiences so far, plans at every level are a must in the local reality. Without

going into details to explain, taking note of the local realities reported in Chapter Two

and Chapter Three, the author takes the position that: no plan means no project! As

Boehm and Ross (1989) put it, we have to “Plan the flight and fly the plan; and, identify

and manage risks”.

Under the local circumstances, one can not underestimate the benefits that can be

obtained from the planning process. Obviously plans are useful for such managerial

activities as resource allocation, monitoring and control. However, more importantly in

the context of software development, the process of planning (when it is done step by

step, through active participation of all actors and supported by reflection) provides a

unique opportunity to develop knowledge of developers in the application domain, the

software process, and human interaction and communication. It is an important

instrument to create a shared vision and understanding of project objectives, roles and

responsibilities among the members of the technical team.

On the other hand, one should also take note of the fact that it is not possible to plan

everything ahead, and that many activities are ‘situated’ with the actions that need to be

taken contingent on factors which could not have been anticipated. According to Lucy

Suchman’s plans and situated actions, cited in Hall and Fernandez-Ramil (2007), every

detail of work cannot be planned and made explicit, and in some circumstances at least

people must draw upon their tacit knowledge to respond to situations as they arise.

As with methods in general, starter plans need to be developed and continuously adjusted

throughout the project lifetime based on experience and learning resulting from its

implementation. That is, one is in a better position to plan as one moves forward and gets

feedback on the actual performance based on previous plans. Both the development and

 166

adjustment of plans should be done with the participation of stakeholders, and

continuously throughout the project life time. Reflection becomes an important

instrument to provide for such planning exercises.

As part of the plan, in addition to roles and responsibilities, reporting mechanisms

between the various bodies of the project governance structure as well as the project

stakeholders need to be formally established and practiced. Formal mechanisms for

information exchange need to be clearly established, including the definition of forms

and formats (report, template, etc.), frequency (how often, weekly, monthly, quarterly,

etc.) and mode of exchange (hardcopy, softcopy, database, web, etc. via mail, meetings,

etc.). Time and place for regular reflective workshops and meetings need to be

established as well.

5.3.4 Collaborative Development Team

Another important aspect within the Process Design activity relates to the issue of

institutionalizing collaborative approaches. As indicated in previous chapters, the most

commonly observed mode of user participation in software development projects is ad

hoc and assistant. In such arrangements, user representatives are called in to participate in

the requirements definition and testing phases of the project. Often they join the project

for a brief time and leave after providing the required information in respect of these

activities. Even where seemingly permanent assignments are reported, the user

representatives assigned are often seconded part-time to work on the project while still

keeping their substantive posts with their employing organizations. In other words, their

engagement and participation is not full-time. With such arrangements, motivation is low

(Wetzel, 2001) and there is generally reluctance to participate actively and fully.

Emphasizing the need for collective participation in this connection, Wetzel (2001)

wrote, “whoever is involved in IS development (in-house staff, consultants or vendors)

has certainly to face and nurture collective participation and a great deal of negotiation

within the whole process.” Particularly where there is a network of interdependence in

the work area, “the anticipation (foresight) of organizational change caused by the

 167

realization of new design ideas and alternatives needs to be assessed, evaluated and

improved during the design process by those whose work will be affected by the system’s

future use. It is crucial not to overlook interdependencies and the parties involved.” As

Erickson (1996) explained, design is not just about making things. Design is a social,

collaborative activity. Gone are the days when one person conceived, developed,

produced, and sold a designed object to others.

Software design is a complex phenomenon which involves an iterative process of

requirements understanding, visualizing design to meet requirements, testing them,

revising the design, testing, etc. An important part of the iterative process is collaborative

work among designers and between designers and users. Designers can not simply study

users’ needs prior to the design phase and then forget users until it is time to test the

system. Translating user needs during the process of design involves a great deal of

interpretation, which can lead designers in directions which are not in the users’ best

interests. In other words, users need to be involved in the design process and design

decisions for the design to move in the right direction.

For these reasons, in the process of system development for organizations, the support

and engagement of users and each organizational unit are essential at every stage in the

development and implementation. At the project design level, user involvement is a

prerequisite for political decisions concerning the prioritizing of requirements,

outsourcing decisions and the allocation of resources. At the production design level, user

involvement is essential for decisions concerning design. At the use design level, user

involvement is important to avoid resistance to change and for effective utilization of the

system.

In view of the foregoing, the existing arrangement of development team composition,

organization and work arrangement in software development projects needs to be

revisited. The importance of collaborative development by fully and completely

involving key user representatives throughout the project period were repeatedly

emphasized by workers in the field (Floyd 1987; Mathiassen, 2002; Cockburn, 2006).

However, actual strategies to realize same seem to be not fully developed yet. For

 168

instance, Floyd is among the earliest workers who strongly argued for such collaborative

software design to the extent of demanding a paradigm shift in software engineering to

accommodate this. Even though she raised important issues with strong supporting

arguments, infrastructural support and mechanisms on how to operationalize the

recommendations in practical terms were not explicitly explored. Mathiassen admittedly

limited such collaborations to technical professionals in his reflective system

development approach (while stating at the same time the need for extending same to

include users). Even in the Agile processes (Cockburn, 2006), where the issue of

collaboration seems to be widely talked about with practical efforts, there is still a

distinction between the type of decisions made by the key user representatives. User

representatives are said to be on site to “make business decisions quicker”. Still the

responsibility of design decisions mainly lies with the development team. In this

connection, it is also relevant to note that even the arrangement where user

representatives are temporarily collocated with technical team members mostly in the

premises of the software house (i.e., isolated and away from users) for the duration of the

project does not work (the experience with Organization C reported in Chapter Two is a

case in point). There is a tendency among users that with such arrangement the user

representatives become more and more part of the engineering (software) organization

and less useful as users surrogates. Overtime, they become more empathic to the

engineer’s challenge and less connected to their previous work.

The contention here, therefore, is for fulltime and full membership assignment of selected

users in the development team. This proposal demands users and technical experts to

work together collaboratively: to understand a given business situation; to invent actions

to improve the situation; to jointly and gradually discover and develop the software

solution to support the business situation. To operationalize this, it is necessary to make

provision in the contract for the creation of collaborative development teams composed

of: technical members with knowledge of software development (software engineers,

method experts, etc.), members with knowledge of the application domain (key user

 169

representatives, business process experts13, etc.), and members with knowledge of project

or change management (external expert). In such a set up, users are given the opportunity

to fully and actively engage in the redesign of business processes and discussion and

exploration of design options, over and above the usual passive participation. What is

more, as recommended by Pomberger (2006), an external expert may be put in charge of

the project for better performance, but with the amendments suggested by this researcher

in Section 5.3.3 with regard to the role and mode of operation.

To make such a collaborative development strategy successful, however, it is important

that from the very beginning:

• such arrangement is jointly negotiated and agreed upon in the contract;

• individual as well as group roles, responsibilities and compensations (incentives)

are clearly defined;

• consensus is reached on project objectives and plans among collaborators; and

• a spirit of mutual support and teamwork is created.

These and related teamwork principles, concepts and techniques should be properly

developed and nurtured, for the mixed professional grouping to create a special bond

among the project team - esprit de corps. Building and maintaining esprit de corps takes a

strong commitment and continuous effort by all parties involved and mostly by the

project management.

Another important issue worth considering in connection to the productivity of such a

collaborative team is motivation, particularly ways and means of improving the existing

low motivation. The issue of people’s motivation at work has been studied by many. In

this connection, the classic/seminal studies which are widely cited in the literature and

summarized by Hall and Fernandez-Ramil (2007:34), include:

• McGregor, in his Theory X and Theory Y, where he reasoned that motivation is

deeply rooted in human biology and psychology;

13 In selecting candidates at sub-team level, one is strongly advised to inlcude those users that actually do
the tasks that the software is to support.

 170

• Herzberg, in his motivation-hygiene theory, where he reasoned that seeking

personal growth from work is the most motivating factor which in turn depends

on the circumstances under which people work (work conditions, salary,

interpersonal relationships, etc.);

• Maslow, in his hierarchy of needs, starting with the basic needs (such as the

physiological needs of sleep and rest, food and drink, shelter, and air; safety from

harm in a stable and secure environment, in that order) as foundations for the

higher growth-related needs (including love and belonging, self-respect and

respect of others, knowledge and aesthetics, and self-fulfillment, in that order);

• Hofstede, in his study of attitudes and values of people within an organization

located worldwide, where he identified four cultural dimensions (power distance,

individualism-collectivism, masculinity-femininity, uncertainty avoidance) that

introduce great diversity across cultures when considering a more global view of

motivation.

Beck (2004: 24) also talked about meeting such needs as basic safety, accomplishment,

belonging, growth, intimacy, etc. for good developers.

As motivations vary between nations, organizations and generations, one needs to take

these studies as starting points or guidelines to look into the issues further in the local

context and from the view point of balancing the needs of the individual with that of the

team.

In general, however, regardless of context the need for personal development and social

contact is among the important sources of motivation. Accordingly, providing a

stimulating social environment within which project teams can learn and grow through

exposure to appropriate technology and best practices, and interaction with

knowledgeable colleagues can all contribute to the motivation of team members.

According to Hall and Fernandez-Ramil (2007:34), “people work because they enjoy it,

requiring an adequate financial compensation to meet their ‘hygienic’ needs, but after

that it is other, non-financial, factors that create motivation”. …“people are motivated by

 171

opportunities for self-development and social interaction and contribution to their

organization and society”.

To conclude this section, taken together, it may be difficult in reality to totally

avoid cost overrun, time slippage and unsatisfied demands, particularly with large

projects. However, emphasis on good project design (that addresses the issues

discussed above) and the application of appropriate project planning and

management continuously throughout the project will no doubt help in keeping

the critical success factors within bounds.

In the local situation, in particular, lack of competence in project design and

management happened to be one of the exceedingly prevalent causes for the

failures. To this end, the introduction of project planning and management as one

of the major activities in the software process, and the introduction of related

techniques and tools in software methods, are a must in addressing software

development in the local setting. With regard to techniques and tools, the

possibility of adapting such industry standard methods as PMI’s Project

Management Body of Knowledge (PMBOK) and Prince-2 to software

development projects is worth exploring. Practical experiences in this direction,

both in teaching and work practices, indicate encouraging results. Samples of

such customized project management tools used in course projects at AAU and

CTIT and in real-life projects such as the third phase project of Organization B

reported in Chapter Seven, are attached in Appendix 4 of this report.

5.4 Application Production

As introduced earlier, the Application Production process deals with the design and

construction of the application software identified by the Project Design process. The

detailed activities involved in this process are depicted in the diagram shown in Figure 7

below.

 172

 Peer critique

Figure 7: Reflective Steps - Application Production

 173

Most of the activities in this process are dealt with at length in the original papers of the

STEPS model (Floyd 1989, Floyd 1993) and in published software process literature

(Boehm, 1988; Pomberger 2006; Cockburn, 2006). For this reason, the following

discussion is deliberately limited to highlighting those activities and features salient to

Reflective Steps. The business process redesign activity has already been dealt with at

length in Chapter Four of this report.

5.4.1 Technical Planning

As shown in Figure 7, the application software production cycle actually starts with a

planning activity. In a collaborative development environment, it is important that the

team be very familiar with the software process to be followed in the development, to

understand the business application area and generic features of the product required, and

to be able to open and maintain a dialogue with team members and users. In collaborative

development environment of Reflective Steps, planning involves these activities in the

manner explained in the following paragraphs.

Although the basic assumption in almost all projects is that the team members assigned to

develop the software already have the required knowledge on the application area for

which the software is to be developed, in practice this is rarely the case. Software

developers spend a considerable amount of time learning about the application area from

key user representatives and domain experts. Within the traditional process model, this is

usually done under the guise of requirements engineering or system analysis. In a way, in

the process software engineers learn about the work practices and future needs by

working with users like an apprentice through observation and asking questions.

Similarly, realizing participatory design through a collaborative team arrangement

requires the user representatives that join the technical staff to be trained in basic

software design concepts and procedures to the extent of enabling them to communicate

effectively with the technical team in project matters. They need to be trained to

appreciate the tradeoffs between requested functions, the capabilities of existing

 174

technology, the delivery schedule, and the cost. Terms and concepts need to be clarified

to avoid misinterpretations at various levels that may lead to conflicts.

In short, success requires domain experts educating software experts about the

application domain, and software experts educating domain experts about the software

development process. Successful software development presupposes a thorough

familiarity with the business of the local setting including the extraordinary non-

standardized work practices, familiarity with new and emerging technologies and

development tools, etc. As clearly demonstrated in Chapter Four, business process

redesign activity provides a unique opportunity for building knowledge on the existing

business practices. It is relevant to note that in the proposed redesign technique, it is users

in Operation Group that lead the technical people through the process.

In addition, as part of the planning activity, more specific activities need to be introduced

to familiarize members of the development team on the software approaches and

technologies to be employed in the actual conduct of the software development work.

The approach proposed for the project needs to be compared to the experiences of the

project members and adjusted based on their feedback. In due consideration of the

importance of such an activity, it ought to be separately accounted for in terms of effort,

time and cost as part of the project estimates. For smooth and successful implementation,

both the user organization and the software development service vendor should be willing

and prepared to cover the cost of such activity. Needless to say, this would pay back by

increasing the productivity of the collaborative team (Curtis et al., 1988).

As part of this planning activity, consideration needs to be given to exploit technological

developments as specified by Pomberger (2006). Standard ideas in software design (well-

proven experiences or best practices that deal with specific, recurring problems in the

design and implementation of a software system) are usually passed on as tacit

knowledge from experts to less experienced ones. As of recent, such experiences are

being passed on (made accessible to others) explicitly in the form of patterns and reusable

components. It is, therefore, important to learn about such design ideas and artifacts, as

well as how to adapt or use them in the project during the planning exercise.

 175

With regard to software methods and processes, selection and tailoring of starter methods

should be done as part of the planning activities. Where there are existing institutional

standards or formally documented methods or guidelines, these may form the starter

methods. Where this is not the case, depending on the skills and exposure of

professionals involved, one may choose to start by simply adopting suitable methods

from the publicly available ones. Where all this is not feasible, the following approach

proposed by Cockburn (2006), may be considered.

Cockburn (2006: 149) defined methods as: “your ‘methodology’ is everything

you regularly do to get your software out. It includes who you hire, what you hire

them for, how they work together, what they produce, and how they share. It is

the combined job description, procedures, and conventions of everyone on your

team”. In short, “a methodology is the conventions that your group agrees to”.

Whether properly documented or not, according to Cockburn , a method can serve

several uses, including introducing new people to the process (how work is done

in the project), delineating responsibilities, meeting the requirements of (giving

confidence to) sponsors & demonstrating visible progress.

With this understanding, according to Cockburn (2006: 215), one may choose to start by

simply writing the work conventions (based on the experiences of project staff and the

company) as a list of sentences and then cluster these into topics. Among the possible

topics to be included may be the following:

• Definition of common terminologies: for instance, people need to be able to

understand what is meant by: project, iteration, increment, design, process model,

method, technique, tool, etc.

• Description of documentations required as work products and their respective

formats: project management plan (format and content); report content, format

and frequency; modeling language, etc.

• Communication plan.

 176

The assumption here is, although not articulated and documented, often practitioners and

companies use some sort of in-house rules and procedures to keep track of progress and

project staff performance, and mechanisms to coordinate activities within the

development team and between the development team and user counterparts. All these

and related input could be used in the process of drafting a method for starters. The

document so drafted can then be enriched in a series of brainstorming and reflection

workshops to produce the zero draft. Such a draft guideline is then continuously revised

and enriched based on project experience as indicated in the next section.

Additionally, planning at this stage includes the definition of project sub-teams, tools and

resources, risk assessment and controlling issues, etc. It is important that such plans are

jointly developed by all concerned. Still review of the plan by the plan critic panel that

may be composed of project stakeholders (sponsors, consultants, user representatives,

etc.) may help.

Still, as part of the planning activity, high level design of the application system has to be

developed. The architectural foundation of the application consisting of the increments

that make up the application software and related work breakdown structure should also

be drafted. As part of the architectural planning, each application software needs to be

organized in manageable components (called increments in our case). Such an

architecture is also expected to depict the relationships between the increments and

include a starter sequence based for instance on business value, significance, etc. With

regard to sequencing, a good strategy is to get started with the core business increment

and proceed with those increments that expand functionality. During production, each

increment may be further decomposed into modules or components. Assignment of

corresponding sub-teams that deal with the development of the various modules and

components (see below) required for each increment needs to be done as part of the

planning well. From experience, as reported in Chapter Three, a sub-team composed of

two software engineers and one business process expert has given good results.

Taken together, as with the other activities of the Reflective Steps approach, details of the

planning activity need to be worked out with the full participation of members of the

 177

development team and based upon the knowledge obtained about the business application

and technology platform to be used. What is more, as clearly shown on the diagram in

Figure 7, this needs to be regularly reviewed and updated based on knowledge gained

from project experience. To reiterate, it is not the plans that are important but what is

obtained in the planning process.

5.4.2 Increment Production

In Reflective Steps, the development of each application software involves the delivery

of a number of increments. In other words, development of an application is to be carried

out in steps, where each step ends in the production of an increment, and its

integration/packaging into an operational version. After increment packaging, there will

be a period of reflection set aside to: assess progress, process and context; to explore their

implications and write up lessons learnt, etc. From this angle, an increment is a piece of

operational software that is ready for packaging with the increments already (previously)

delivered to users. As such increment production concerns the actual production of a

software component that supports a coherent task of the business application. The

reflection, on the other hand, is a collaborative communication and learning mechanism

that provides for better understanding of requirements, design options and applicable

methods, based on the feedback from concrete experience and experimentation. Among

the possible outcomes of such reflection exercises are revisions of plans and processes to

enhance the quality and timeliness of subsequent software increments. Such incremental

mode of development is being considered as a critical success factor in developing

software (Cockburn 2006).

Typically, each increment development starts with updating the development plan. As

part of this process, to introduce better management and flexibility, each increment may

further be decomposed into modules, and each module into components. It is, therefore,

important that the increment architecture (which is an element in the application

architecture) be worked out first to facilitate smooth and flexible increment development.

Any of the available object-oriented design techniques may serve this purpose best. In a

related work, attempts are being made to explore the application of the ‘function-

 178

mechanism’ framework, proposed elsewhere (Miyake, 1986) to study how people try to

understand complex things, to supplement the object-oriented techniques in decomposing

increments into modules and components.

In general, the design process at each level involves multiple cycles of design-critique-

reflection based on prototypes and reflection workshops. Typically in each cycle, one

group presents the design, while the other asks questions to understand the design and

design choices, followed by a joint session where the group as a whole engages in

resolving the issues raised during the discussions (see Section 6.3.4 on RS Workshops).

The domain of discourse in each cycle involves: understanding requirements (both actual

and potential), visualizing design options, collective design critique and feedback

(reflection-in-action), programming and testing designs. In particular, supported by

continuous communication and learning, the following design activities are carried out

for each increment until consensus is reached on an acceptable product:

• requirements understanding and scoping: identifying the components and

boundaries of the application to be developed, understanding the existing and

planned processes and requirements;

• envisioning14: visualization of the newly required system (that meets both current

and future requirements); and

• realization (designing a system to meet the requirements): this may involve the

use of scenarios and use cases, prototypes, etc. to surface issues, explore

alternatives, test assumptions, etc. and the construction of the actual software

based on the understanding reached.

In the cyclic process of design-critique-reflection, the outcome from a cycle leads to

refinement and adaptation in each of the domain of discourse in the subsequent cycle.

In RS, the workshops on technical design issues are to be supported by the use of

prototypes. Needs less to say, prototyping is a firmly established technique in software

14 The term envision is usually used in the sense of setting a shared goal (as strategic planning) in
organizations. In the context of system development, a vision appears as an initiating idea that defines new
direction, create a new thing, or bring about a new way of doing business (Jones, 1997).

 179

engineering, particularly when it comes to testing design concepts and clarifying

requirements understanding. During design it can be used to develop screens, dialogs,

transaction process and updates, report and inquiry formats; and it can be used for feature

enhancements during integration and use. Here the use of operational prototypes and joint

programming and testing with users (in particular, two software engineers working with a

domain expert) are both critical and recommended as a vehicle for successful

development. Such operational prototypes also provide: an efficient means of capturing

and communicating requirements, a facility to demystify technical issues and artifacts in

the discussion with users, a better means of engaging users to codesign the software and

ensuring its acceptance etc. In the process, such operational prototypes are continuously

enhanced until eventually they become the final software product.

An increment may require several iterations before it reaches an acceptable level, where

each iteration brings more adaptation and refinement to meet user expectations and

preferences. Once the increment comes out of the process successfully, and meets the

minimum requirements as specified in the test results, the increment is said to be ready

for deployment. At this point, an executable version of the increment, together with

guidelines to package the increment with already released versions is delivered. In case

there are previous increments released and in operation, the last week of the increment is

better used for preparing the increment for delivery together with necessary interfaces

and related requirements to integrate/package the increment with earlier ones. For this

purpose, the increment is passed over to the packaging group who will put this together

with other earlier increments into an updated working version. Such integration also

helps to ensure integrity across all increments that have already been packaged into the

working version. Errors detected in the integration are corrected as part of this process.

As required, refactoring of some of the previously delivered modules may also be done.

The deliverable from such packaging exercise is a revised version of the already installed

operational software. Based on the redesigned business process and the revised version,

guidelines necessary for work practice revisions are also updated.

As explained in Chapter Four, a critique panel (representatives of experts in the business

process, technologists, service receivers, etc.) is used to critique the process design

 180

proposals from the operation group during business process re-design. Similarly, in the

process of integration, a use panel which is composed of the operation group (and some

more actual users - those that directly operate the software in the course of discharging

their duties and responsibilities) may be used to give feedback on the newly integrated

version of the software before it goes live. Such a panel should be given some time to go

through the newly integrated version. This is followed by a reflective workshop to

discuss and review the product based on the feedback from the use panel. The production

team will then revise the product based on the resolution of the workshop.

An increment cycle ends with an assessment workshop (reflection-on-action) on the

increment that aims at improving the software process and the product in subsequent

increment cycles. Reflection in general constitutes the ability to uncover and make

explicit to oneself what one has planned, observed, or achieved in practice (Raelin,

1997). In addition to flushing out what is working well in the process, product, schedule,

organization, etc., it involves brainstorming fixes for the problem identified. With respect

to each increment, reflections take place at two stages: within the increment and at the

end of the increment. As discussed earlier, the reflection within the increment is more of

a group-level reflection-in-action (between the group that came up with a design to get

immediate feedback and others that serve as a critique panel, similar to the reflection

between a tutor and a student). It aims at experimenting with the new ideas right from the

increment. According to Raelin (1997), reflection within the increment could also help in

bringing about the inherent tacit knowledge of experience to surface and reconstruction

of meaning. The reflection at the end is a more critical reflection at project team level to

learn from the concrete experience of developing the increment (reflection-on-action),

and revise or refine plans and the way of work for subsequent increments (reflection-for-

action). Such reflection will give an opportunity to evaluate what was already done and

the way it was done based on the feedback from real-life experience. Accordingly, in

such reflection sessions mistakes must not be hidden but need to be exposed and learnt

from (Beck, 2004:29). Lessons learned are used to streamline workflow and change

things that did not work properly, invent new ways of working, reorganize team structure,

reallocate resources, get more training, revise increment architecture, etc. as required. In

 181

short, this provides an opportunity to revise plans and improve development processes to

be used in subsequent increment developments. It also provides an opportunity for

resolving risks and critical process and design decisions early rather than late.

For the last increment of the application package, the assessment is done as part of the

application software postmortem assessment workshop. The reflection at this last stage

tries to address higher level project issues more critically. Based on real-time project

experience, it tries to particularly look into problems that have occurred within the work

setting to perform within quality, cost and schedule goals. It may also be used to question

the competence of the development team setup, the priority and scope of projects and

applications, the business processes in place, etc. and take related corrective actions.

Reflection at this level is reported to the management or alternatively could be jointly

made with management at Project Design level. The operation of putting in place

measures to address weaknesses in processes which have been identified as sources of

defects or risks to quality, cost or schedule performance will also be jointly agreed upon.

While it is left up to each group to organize technical or informal meetings every day or

every other day such as those recommended in agile methods (Cockburn, 2006), there

should be regular weekly meetings to collectively review progress/status, critique design

options and reflect on process and work habits (for more on this see Section 6.3.4

beyond).

In terms of schedule, although this may vary based on the size and complexity of the

application systems, an increment is better planned for delivery in a fixed period of time.

Such time boxing is necessary not to let the iterations go on for ever. In this connection, it

is relevant to note that unnecessarily shorter periods make it difficult to get enough

feedback to produce a usable product. In the experience so far, a period not more than six

weeks seems to be reasonably adequate to deliver a piece of software increment. In case

the size of an increment is large and involves many modules, among the strategies to be

considered to keep the time constraint within bounds is to deploy more resources so that

different groups work on different modules in parallel or introduce overlapped

development.

 182

The reflection scheme proposed here seems to be somewhat similar to those mid- and

post-increment reflection workshops suggested by Cockburn (2006). One difference lies

in the timing of reflection within increments. While Cockburn suggests daily [informal]

reflection, and one mid-increment reflection, the suggestion here is to have: design

reflections routinely on a weekly basis, assessment-like reflections at the end of each

increment delivery and at the end of each application delivery. Another difference lies in

the levels at which the reflections are made. The suggestion in Reflective Steps is to do

the reflection within an increment at work group level, and the post-increment reflection

at project level. No distinction seems to be made in Cockburn’s suggestion. Yet another

difference is, Cockburn suggests a somewhat oral and informal mode of reflection

supported by flipcharts. The suggestion here is to introduce more critical reflection

supported by formal documentation during and following the reflection sessions in the

form of reflection journals. For this purpose, the provision of the necessary support

infrastructure to ensure the documentation, circulation and implementation of the lessons

learned from the reflection is suggested in Reflective Steps. See next chapter for more on

the details of the reflection modes and the support structure suggested, as well as the

advantages of maintaining a reflection journal.

Before concluding this subsection, in view of the controversies around the subject, the

following note on the need for reflection on written documentation requirements at

various stages of the production cycle is felt in order.

As much as too much emphasis on strict adherence to defined documentation is

discouraged, the author feels its omission altogether is counterproductive. In a project

environment highly characterized by high turnover of project staff and where there is lack

of historical data and organizational memory, the importance of written documentation,

over and above the comments in source code, cannot be overemphasized.

Written documentation is important and useful for a number of reasons. It is an important

instrument to create a common and shared experience particularly where the community

consists of inexperienced members and members with varied professional background. It

helps new members to relatively quickly familiarize themselves with the way things are

 183

done in the project. It also helps to track and coordinate work among the various parties

involved in the project. Written documentation is very important not only to successfully

complete and deliver the software at hand but also for subsequent projects that relate to

maintenance and upgrading of the software. Successfully completed projects that do not

have written documentation are bound to run into problems at the time of maintenance

and upgrading particularly in cases where the people involved in the development are no

more with the projects. This is the situation that features most in the local environment as

reported in Chapter Two and Chapter Three.

On the importance of documentation, even agile approaches (or Agilists), who initially

are frequently cited in their insistence to discourage documentation and formality, stated

“Ideally, documentation activities are deferred as long as possible and then made

as small as possible. Excessive documentation done too early delays the delivery

of the software. If, however, too little documentation is done too late, the person

who knows something needed for the next project has already vanished.”

(Cockburn 2006:219)

And by way of recommendation, Cockburn (2006:221) wrote:

“Bear in mind that there will be other people coming after this design team,

people who will, indeed, need more design documentation”

On the other hand, written documentation and modeling are also criticized for being time

consuming and bureaucratic and less readable by designers. With some methods, a lot of

time is spent on producing too much documentation, particularly from design modeling

and requirement engineering phases to the extent of risking the successful completion of

the project. Based on his discussions with successful project teams, Cockburn (2006:36)

reported on what the teams told him about the limitation of modeling in software

development:

“the interesting part of what we want to express doesn’t get captured in those

models. The interesting part is what we say to each other while drawing on the

 184

board [while modeling] …. We don’t have time to create fancy or complete

models. Often, we don’t have time to create models at all”

As such, religiously following documentation on model building methods and spending a

great deal of effort on developing fancy documentation and models, may significantly

affect the delivery of the software. The purpose of the software project is to deliver

usable software, not constructing models and documents. In this sense, the documentation

and models are means to an end (the software product) and not ends by themselves.

Accordingly, it only makes sense to construct models and documents to the extent that

they provide sufficient information to the recipients so that the recipient is enabled or

positioned to take the next move (proceed with subsequent steps) of software

construction.

In Reflective Steps, the decisions related to how much, where and when to model and

document are determined more through the collaborative reflection session held at the

various stages of the project. We strongly advocate, however, the maintenance of

reflective journal in the manner defined in RS Workshop (see Section 6.3.4 beyond) as a

documentation that really adds value for both the software development and process

improvement projects.

5.5 Application Use

The need to consider users’ views in the course of designing a usable software system

was repeatedly emphasized by various workers.

“The reason people design difficult things is their lack of empathy with the users.

A good designer has to take the user’s point of view, consider what information

the typical user must have to work properly, easily and efficiently. The best way

to do this is to observe and interact with the typical users, testing out the designs

on them – and being willing to change them when users find themselves confused.

Alas, most designers concentrate on cost, or aesthetics, or technical details.”

(Norman,1993).

 185

According to Norman (1993), a good writer and a good designer have to share certain

characteristics. To be successful, they need to understand the needs and abilities of their

audience, and they must consider just how their product will be used. Their designs must

be tested, tried out, and then revised. As writers are tested by editors and readers, designs

need to be tested by colleagues and users. Things that are unintelligible or even

dangerous to the average user are likely to seem perfectly reasonable to the designer.

Thus, feedback about the state of a system is essential in normal social intercourse.

In RS, in addition to the design, construction and testing of the software during increment

production, the development continues to the use phase. As documented in the cases

reported in Chapter Two and the experiences of practitioners reported in Chapter Three,

users and developers immerse themselves in the actual software design when they

perform their real-life tasks with the version of the software installed for actual use. Once

the installed versions are up and running, the development proceeds with adding to and

changing/adjusting the software to better support (and fit in) the real work practices based

on the mistakes and problems uncovered by both developers and users while in use. In

short, the use process enables users to provide timely feedback based on actual use,

enables developers to fix problems and track change requests.

Usage addresses the process of handling these and related issues of designing a system

for its context of use, by working closely and collaboratively with users. A good account

of the surrogate activities and related issues of the Application Use are well documented

in the writings of Floyd et al. (1989).

Mitchell Kapor (quoted in Jones, 1997), expressed:

“the lack of usability of software and the poor design of programs are the secret

shame of the industry. Given a choice, no one would want it to be this way. What

is to be done? Computing professionals themselves should take responsibility for

creating a positive user experience. Perhaps the most important conceptual move

to be taken is to recognize the critical role of design, as a counterpart to

programming, in the creation of computer artifacts …”

 186

In this connection, it is relevant to reiterate the warning expressed earlier with regard to

overdependence on users. This, however, need not be confused with the spirit and

assumptions underlying the use design. As warned earlier, developers need to be cautious

of certain design traps that may negatively affect product quality. The tendency by

developers to design and build whatever the users say, even if they are sure that the ideas

are silly, is counterproductive. Sometimes it may be appropriate to opt for a design

solution that challenges the users’ habits but better supports their requirement. In working

with users, it is also relevant to note that sometimes users are either not quite sure of what

they want or may continuously put forward unsettling and conflicting requirements.

Likewise, the development team may also exploit the opportunity for an excuse of

escaping the pressure and challenge from the situation by shifting the burden over to the

users.

Beyond facilitating the design of a usable system through active user participation and

collaboration, Application Use ensures that software versions delivered to users are

smoothly deployed and used. The detailed activities involved in this process are depicted

in the diagram shown in Figure 8 below. A more elaborate account on most of these

activities may be found in Floyd et al. (1989) and Floyd (1993).

 187

� ���������

�

����
��	

���	��	�	��

���	���

���������	�

�
�

����	�	�

�� �
���

��������	

!	
��������	

"#
���� ��
��	
$�%����	��

�������	�

�����������	������
�

�������������	�

Figure 8: Reflective Steps - Application Use

The introduction of the system, if it is large or sensitive, may create turbulence in the

client organization. To address this, the process needs to be accompanied by appropriate

change management efforts at organizational level. At project level, such change

management related issues as training and work process redesign need to be considered

as part of the Application Use. In other words, for the organization to benefit from the

software developed, just installing and enabling the software alone is not enough. The

people who will use the software need to be enabled as well. This includes end users of

 188

the software, as well as technical experts, who are responsible for the use and

maintenance of the system, respectively. With the successful implementation of the

newly installed software programs fully integrated with business process redesign there

will come a series of changes. The way the business is conducted including the role of

individuals in the process will change. Accordingly, the skills required by the operatives

will change. For this reason, it is important that we foresee some of these inevitable series

of changes and devise appropriate training programs at various levels: managers,

operatives and technical support. For the purpose of facilitating such training programs

and also for smooth implementation of the redesigned processes, related operation

procedures and manuals need to be updated based on the features and capabilities of the

software developed and related embedment guidelines.

In this connection, it is also relevant to note that full integration of the system in the

organization will be gradual since it is difficult to change the way people are used to

doing things at once. While the business rules and procedures may be changed overnight,

the norms usually change only gradually and through the interaction of people at all

levels in the organization. To this end, targeted awareness and training programs must be

continuously conducted. Such training programs should also provide forums where the

people involved can discuss and negotiate the various issues related to the changes, and

make these changes part and parcel of their daily activities. Such forums are important to

fully integrate the redesigned business process and related software into everyday work

routines.

Similarly, appropriate maintenance and support strategies need to be in place to promptly

address concerns and requirements resulting from the use of the software and related

discussions and negotiations. Software systems introduced into an organization (those

that are used by the people as integral parts of their daily activities – used not because

they are told to do so but because they find them useful) inhabit within and are used

inside the environment while at the same time affecting the environment. Once such

systems are introduced, the systems are likely to co-evolve with the organization

resulting in the need for maintenance, upgrading and development next versions of the

systems.

 189

A need for change is identified when users experience difficulty using the software to

process certain transactions or retrieve certain information to support decisions, etc. If

such difficulty comes from lack of training or misunderstanding, it may be overcome

through the provision of appropriate training, guidance and support. If, however, it comes

from software deficiency and if such deficiency is minor, the software technical support

is called upon to get it fixed. On the other hand, when addressing the deficiency requires

more time and possibly redesign of the software, a request is filed for a revised version of

the software. In the mean time, manual methods such as the introduction of work-

arounds, recording the required information with personal notes and records outside the

system may be used. In this connection, it is also relevant to note that with more user

involvement in the development process and the opportunity to witness the capabilities of

the system from experience with the installed increments, users often tend to ask for more

features and capabilities which may result in new requirements. Where such requirements

are not minor, they need to be jointly negotiated before incorporation. As required, they

may also be escalated to the management for decision where resource questions are

involved. These and related factors are addressed in Reflective Steps by the various

activities incorporated within Application Use and related communication between

Application Use and the other components as clearly indicated in the diagram shown in

Figure 8.

5.6 Post-mortem Assessment

An integrated version of Reflective Steps that synthesizes the various components

discussed above, is presented in the diagram shown in Figure 9 below. For consistency, a

version of the Project Design component (previously depicted in Figure 5) is

reconstructed in Figure 10 using the diagramming conventions of STEPS.

 190

����������	��
�
����������	�

���������	

���
������
��	

&�
�	�

�	���

$�%����	��

�������	�

����������	

"#
����

 ��
��	

�����������	�

���������	�

����

���������	�

��
�'�������

� �������	

(�

�	
�(���	��

Figure 9: Reflective Steps – Overview of the Integrated Model

 191

����	���
�������	��	��

��	������	���������	

��������)�	���	��

����	�

���
�������������	��

�����������	

&�
�	�

�����
��	��

���������	�

(�

�	
�����	���

��������
������
�'

������

&���������	�

���		�	���	����	�����	�

����������	

���
���������

Figure 10: Reflective Steps – Overview of Project Design

As can be seen in the integrated version, the last activity after the development and

delivery of an application within a project is a post-mortem evaluation. A post-mortem

evaluation is an activity which is part of the current project but one that aims at forming

the basis for the next version. Particularly, in the type of software development under

reference here (i.e., custom development of an application software for an organization),

the development does not end on delivering the software. Among the project close-out

activities is a post-mortem evaluation of the project. This will serve to provide an

advantageous position for what Cockburn (2006) referred to as the second major goal.

 192

The first goal relates to delivering the software. The second goal relates either to altering

or replacing the system or creating a neighbouring system (in our case this equally

applies to the next application development project).

The usual question in this connection is when to do this post-mortem. Two commonly

considered and practiced options are: to do this at the various intermediate stages of the

project along with other intermediate work products, or to do it at the very end of the

project. Neither of the options is optimal on the grounds that the former introduces

considerable extra work and cost (to the extent of jeopardizing the timely delivery of the

software), while the latter would run the risk of under-documentation or no

documentation at all. Some workers (Cockburn, 2006) have attempted to provide a sort of

guideline or advice on finding the balance between these two options.

In Reflective Steps, we propose an alternative way of finding a balance between the two

options. In particular, the approach proposed relates to doing it at two stages. First, the

capturing of relevant data for the post-mortem is to be made routinely by embedding this

agenda in the routine project review/feedback and reflection activities. Where as the

analysis and summarization aspect of the post-mortem is done once at the end of each

application delivery.

The post-mortem report is compiled in the form of lessons learned for consideration and

use as part of the project portfolio management at Project Design level and as part of the

planning activity at the Application Production level. For these purposes, as part of the

post-mortem, a guideline or implementation plan may also be prepared for use in revising

the software process and plans on the basis of the results from the project together with

suggestions on its institutionalization in the organization. Such plan may include detailed

description of the revisions requested on the product, the revised process model, activities

and their sequencing, roles and responsibilities of the main actors to be involved, the

main steps needed to make the institutionalization process complete, time schedule, costs,

and an organization for creating an infrastructure for supporting the whole process.

 193

This concludes the introduction of Reflective Steps and its application and use for

software development. The next chapter will focus more on the application and use of

Reflective Steps for software process improvement to be carried out within, as part of a

software development project.

CHAPTER SIX

6. Reflective Steps for Process Improvement

In Chapter Five, we presented how the proposed model could be used to support software

development. In this chapter, we elaborate more on how the proposed approach may be

used for software process improvement in the context of a typical software development

project. First, justification for a project-based approach to software process improvement

is presented based on review of related literature. This is followed by a discussion on

learning in work contexts based on related literature review. With these two sections as a

background, the third section presents the proposed approach for learning and process

improvement in Reflective Steps. In other words, we will show how the learning within

and between iterations at increment, application and project levels can be methodically

used to improve the development process itself.

6.1 Project-based Process Improvement

Software process improvement, taken literally, implies the existence of a process to be

improved. The findings reported in Chapter Three have indicated that most software

development companies in Ethiopia did not have anything (at least for the moment) that

can be recognized as software process. Yet in order to meet the existing and upcoming

customer expectations, to be productive and stay competitive, the companies expressed

strong desire to address this issue without further loss of time.

On the one hand, in the absence of processes, it seems that it only makes sense to first

talk about the process of process development rather than process improvement. This

notwithstanding, developing a process for the first time by itself can be considered as an

improvement – in the sense of the transition from not having a process to having one. In

reality, processes in small and new companies emerge from experiences of working on

projects. Initially the processes exist in the heads of the professionals that have come

together to create or work for the company. Such processes which are stored in the form

of skill or tacit knowledge get the chance to be actually expressed when working on

 195

projects. The strategy adopted here is, therefore, to exploit the opportunity provided by a

project to capture such knowledge for use in the same and subsequent projects. In this

way, the projects can support the process of process development, thereby improving the

situation from having no process to having a starter process. Once defined, the starter

process could be continuously adjusted and refined based on the experiences gained

during its use. At the end of a project, experiences obtained from the use and adjustment

of the processes during the project period are further analyzed to update the starter

process for consideration in subsequent projects. Such is how processes are to be

established and improved in practice particularly in environments where documented

processes are missing.

Commonly suggested techniques (Pourkomeylian, 2002) in the industry with regard to

process improvement (SEI’s CMM, ISO/IEC standard 9000:2000, Experience Factory

Approach, GCM, etc.) are not only suited for grown up software engineering

environments but are also expensive and heavy on process. The relative merits and

deficiencies these software process improvement paradigms and their relative

applicability to various organizational cultures are discussed elsewhere (Zucconi, 1995).

The assumption by the popular process assessment and improvement methods that there

is capacity to do this kind of work regardless of the size of the company and the situation

they operate under and the culture local to the companies has been criticized (Nielsen &

Pries-Heje, 2002). What cannot be disputed is that most software companies in

developing countries, particularly those that operate in immature software engineering

environments, do not have technical capacity or deep pockets that can afford the above

improvement methods commonly recommended by the industry. Under the

circumstances, therefore, there is a pressing need to come up with software improvement

methods which are appropriate for these environments.

One of the strategies being put forward for developing software process improvement

involves engaging independent process improvement specialists or experts to do an

assessment of the existing situation and suggest improvement recommendations. Such

strategies even go to the extent of suggesting the introduction of a full-fledged unit within

the organization for this purpose, and in certain cases as a major requirement for the

 196

process improvement work to be successful. The extent to which such approach of

engaging people that are not actively and directly involved in the software development

work, or that have somehow been detached from the day-to-day routine of software

development, would succeed in bringing about actual change in the process in a sustained

manner is yet to be proved. What is more, so far, there does not seem to be adequate

empirical evidence to substantiate this claim, while historical experience in similar but

related undertakings indicates otherwise.

This strategy seems to be identical to the approach taken in traditional

Organization and Methods departments that tried to do similar things in the area

of business process and work method improvements. The case of engaging

systems analysts to go between users and software developers for the purpose of

preparing design and test specifications on behalf of the main actors is also

another example. In today’s realty, such lines of work do not seem to have places,

at least in their traditional forms. Instead of organizational units fully charged

with such responsibilities, the activities are taken over by the main actors working

jointly with consultants or external experts.

As with software development, where full participation of users is encouraged in the

development of usable software, by far the approach that would be more effective is to

make necessary arrangement for the users of the software development processes (i.e.,

developers) themselves have more say in the process design or improvement (Arent,

2000). That is, the process should be participative – based on the premise that the

knowledge and resources necessary to improve the situation are distributed among a

group of individuals involved in the process. The active involvement of the main actors

themselves is likely to ensure that both the process design and improvement are grounded

in the needs of the professional practitioners in the project. What is more, the

practitioners who have participated in the process feel that the process and the

improvement proposed are based on (driven by) their needs. By involving practitioners in

identifying and improving their own problems, the improvements become situated in the

proper context or practices (that is, in their daily activities). This will make it far more

likely that the practitioners will be committed to change their practice. Needless to say, it

 197

is such feelings and commitment that create a sense of ownership of the process and

better results by the practitioners involved in the project work. As required, however,

external software process experts may be included to provide further support and

guidance.

 In this connection, Dahlbom and Mathiassen (1993: 55) wrote:

“ …to improve the way work is organized in a system development group, we

cannot rely only on the abstract system that is expressed in the standard project

model used by the group. For one thing, we should compare this system to the

beliefs and attitudes of the project members and learn from the differences

between the ideal world of the project model and the experiences and ideals of the

projects. But more importantly, we should formulate alternative systems,

expressing the perspectives of the involved actors on issues such as project

organization, communication and cooperation, programming, testing, contractual

arrangements, and project management. We should develop project models based

on such systems, and compare them with the actors’ views on present and future

practices.”

Taken together, both methods related to project management and software process need

to be evaluated based on feedback from the application of same in real-life projects,

instead of an independent study conducted for this purpose by specialists not directly

engaged in software development project. They need to be updated/improved (based on

experimentation in a real-life project environment) on a regular bases. The process

improvement process can in this way benefit from project experience. What is more,

process improvement is not a one-shot effort. It is an evolutionary, iterative improvement

initiative involving continuous learning. Accordingly, a project-based bottom-up

approach, strongly grounded in experience-based learning, to process improvement

provides the opportunity to revisit and improve the process with each new project,

thereby providing a continuous process improvement mechanism.

 198

In this way, each software development project provides a unique opportunity for

accumulating experience, knowledge and related learning which in turn is valuable for

improving both the performance of projects and improvement of processes. In the local

situation in particular, and in the case where there are no documented software processes,

it is argued that better results may be obtained in terms of improving the process if such

initiative is linked (integrated) to project management activities of a software

development project. To this end, the recommendation is to embed process improvement

as part of every software development project. For the purpose of facilitating this, in large

projects, a process expert role may be introduced during project design.

To avoid unnecessary workload on the project manager, in large projects a new

role may be defined within the project management group for keeping track of

process improvement related discussions, reflections and resolutions.

The process related reflections made at the various stages of the development process,

and the learning thereof, could be used to support the improvement work. The lessons

learned from the reflections are used to discover new areas for improvement, to

implement incremental improvements to the project’s practices, to monitor improvement

progress and to provide feedback to project design. The process improvement aspect of

the approach proposed inhere is more concerned with identifying the need for process

change and trigger improvement initiatives during the process as a feedback. The same

experience is recorded in the project journal for later consideration in process

establishment (for those without a process already) or process enhancement (where there

already is one), whatever the case may be.

As already explained in Section 5.4.2, the improvement process may start with the

project-specific process elements (starter process) defined at the beginning of the plan.

Included in such a plan could also be a generic guideline on how to continuously improve

such a starter methodology in parallel with other project activities. During project

execution, such a guideline may be followed to continuously assess through tracking and

reflection (with the full and active participation of the project staff) the extent to which

the process being followed is contributing to the achievement of project outcome. A

 199

continuous learning process should follow based on reflections on the work done so far

and achievement of goals – particularly on the extent to which the process has

contributed to productivity, quality and adherence to schedule.

Based on lessons drawn from the assessment results, in addition to other corrective

measures such as: training on the use and application of the process, emphasizing or

deemphasizing the extent of use of the processes, may be taken. In addition, the processes

may need to be continuously adjusted in a manner that better contributes to the project

outcome. It is also important to document and share the adjustments made, together with

discussions that have led to the adjustments, the options considered, etc.

The approach discussed above is similar to the dynamic method tailoring commonly

practiced in agile systems.

“dynamic process tailoring, especially during and within the ongoing software

development projects, has been highly valued in the principles of agile software

development. The agile principle of regular team reflections of software

developers in order to become more effective relates directly to the continuous

and dynamic project-specific tailoring activity, whereby the organizational base

process is iteratively tailored throughout the project by the software development

team”(Salo, 2006: 46).

The principles of agile software development focus on iterative adaptation and

improvement of the activities of individual software development teams to increase

effectiveness. In this study, an attempt is made to extend such iterative adaptation and

improvement at team level to project and organization levels. In particular, an

experience-based learning approach strongly grounded on collaborative learning is

introduced as key process to support multi-level process improvement. The extended

process iteratively provides improvement aspects for immediate use in the same project.

It also supports the evolvement of the organizational level improvements in the long run

through a double-loop learning (see below).

 200

6.2 Learning in Work Contexts

In a typical work environment, individuals and organizations learn from a process of

feedback and information exchange through internal dialogue. As opposed to the practice

in academic settings, where learning begins with knowledge and is then put into action, in

work-based learning action or experience comes first and learning follows. In this mode,

learning takes place where practitioners work in groups, discuss problems, and exploit the

opportunity to learn from their own and others' experience. In such environments, for

instance, whenever practitioners are faced with unexpected requirements in practice, they

tend to reflect in action, consult colleagues and devise workarounds to handle the

situation. Practitioners readily learn to accept and to discharge their real-life

responsibilities by contrived exchanges with others (peers, users, collaborators, etc.)

during the prosecution of real-life activities. They learn both to give and to accept from

others the criticisms, advices and support needful to develop their own position, all in the

course of identifying and treating their own personal tasks. Working in this way,

practitioners can find practical solutions and learn collaboratively by combining real

situations with theoretical knowledge.

(i) Communication and Learning as Key Instruments

The above learning practice is more or less commonplace in real-life software

development work. Software development projects bring together collaborators with

various backgrounds, skill sets, organizational culture and experience levels (software

engineers and process experts from within the user organization and the software

development house, key user representatives and domain experts, managers, consultants,

etc.). This brings a rich tapestry of backgrounds, valuable knowledge and experience,

organizational contexts, roles and aspirations into the project environment. As much as

the situation provides opportunities for information exchange, experience sharing and

learning, it may also introduce communication problems leading to significant

disagreement among members of the project team. In the effort to maximize benefits

from the opportunities provided and minimize the problems to be encountered, the role of

communication and learning instruments were repeatedly emphasized (Floyd et al., 1989;

 201

Mathiassen and Nielsen, 1990; Pomberger, 2007). As of recent, such emerging methods

as agile, on the basis of the understanding that software development is a game of

invention and communication (Cockburn, 2006), have started to emphasize the

communication aspect more, together with suggestions for applicable modes of

communication. However, not much seems to be done about the learning aspect,

particularly in terms of providing practical techniques.

The availability and use of learning and communication instruments becomes more

critical in the local environment, where there are younger talented but less experienced

engineers, and where there is high staff turn over resulting in (the continuous drafting of)

new member at various stages of the project. In an attempt to address this gap, Reflective

Steps incorporates a learning model that has its basis on established theories and practices

in the area of work-based learning.

As discussed in Chapter Five, in the software development practice we are more

interested in such types of learning elements as peer-feedback-based action learning that

encourages cycles of design-critique-reflection iteratively. accordingly, the learning

incorporated is conceptualized as a cyclic process that involves in each cycle,

• taking action based on prior experience and a plan enriched by critique,

• critically reflecting on the outcomes of the action,

• drawing lessons from the reflection,

• taking action based on the learning, etc.

(ii) Theoretical Perspectives

Reflection is already established to be an important part of the learning process and there

are many theories about what reflection is and why it is so important especially for

learning from experience, developing the skills of professional practice and for the

development of meta-cognitive skills which are said to enhance learning.

 202

According to Dewey (1933) and Moon(2000), we don't learn from experience; we

learn from reflecting on experience. Learning “involves creating new insights and

integrating them into your existing awareness and knowledge” (Taylor, 2004:78)

We reflect in order to learn something, or we learn as a result of reflecting.

Reflection plays a mediating role by transforming meaningful experiences into

learning (Vygotsky, 1978; Kolb, 1984)

The type of learning under reference has its roots in the following learning theories:

• deutero-learning or learning to learn by Bateson (2000) that outlines moving from

habitual response to learning from context and stepping outside;

• organisational learning by Argyris & Schön (1978) that deals with the

development of a theory of action learning; and

• experience-based learning cycle by Kolb (1984) that addresses learning as a cycle

of experience, reflection, generalization, and testing.

According to Sørensen (1999) and Raelin (2001), for Bateson, the key to understanding

the learning process were the phenomena of change, context, and the recognition of

‘context of contexts’. For Bateson, learning denotes change of some kind. Considering

motion as the simplest and most familiar form of change (described in terms of “position

or zero motion”, “constant velocity”, “accelerate velocity”, “acceleration”, “rate of

change of acceleration”, and so on), Bateson delineates a set of five classes of learning

labeled Learning 0 through 4. As depicted in Figure 11 below, Learning 4 encompasses

Learning 3, while Learning 3 encompasses Learning 2, Learning 2 encompasses Learning

1, and Learning 1 encompasses Learning 0.

 203

Figure 11: Bateson’s view of the Learning Phenomenon
(adopted from Sørensen, 1999)

 According to Bateson(1979), there is a developmental hierarchy to learning, each level is

based on the level before it. Bateson operates in his learning model (Figure 11) with

learning as transcendence of levels of reflection taking place on the basis of related layers

of context (meta-communication). In Learning 0 + 1, there is a direct relationship

between the learner/subject (S) and the object which has to be learned (O). At this stage

of learning, there is no reflection taking place – a response is simply accepted. The first

level learning occurs when alternatives are reflected upon in order to decide the correct

choice. Learning at Level 2 is characterized by a reflection that leads to a corrective

change in the set of alternatives from which the choice is made. At this level there is a

systematic reflection on how to solve a problem, and the learner is conscious about the

fact that he/she is learning. In this second-order learning, we learn about contexts

sufficiently to challenge the standard meanings underlying our habitual responses. Thus,

using second-order learning, we find ourselves capable of transferring our learning from

one context to the other. At Learning Level 3 there is a relationship of reflections, in

relation to reflection in learning. At this level the learner has a reflective attitude to how

he/she him/her-self approaches learning. This level of learning usually happens outside

concrete contexts. Level 4 is difficult to handle in reality (Sørensen, 1999; Raelin 2001).

 204

Kolb (1984) postulated that learning occurs in a cycle in which learners engage in and

then observe and reflect on experiences, assimilate reflections in a theory, and then

deduce implications for future action from that theory. Kolb’s activity-reflection learning

model is expressed in a learning cycle which starts with an initial experience and activity

(Concrete Experience, CE). Based on reflection and observation (Observation and

Reflection, OR) made on the initial experience and activity, a concept is formed

(Abstraction and Conceptualization, AC) which can then lead to experimentation and

new experience (Active Experimentation, AE). OR is most closely allied to 'negotiation

of meaning' or 'initial understanding'.�

In this connection, of particular interest to the work under consideration here is the

mapping of reflection in professional practice in the sense of Schön (1983) to Kolb’s

learning model. Schön’s concepts of reflection-in-action can be seen to be included

within CE expressing the reflection which expresses our use of tacit knowledge.

Reflection-on-action can occur in both the OR stage, where it may range from just the

noticing of the significance of an experience, to naming the problems or questions that

arise out of the experience, and in AC where usable concepts or hypotheses are

generated. Reflection-for-action (when someone reflects to plan what they intend to do to

confirm an understanding) occurs in the AE stage of Kolb's cycle where the implications

of concepts are tested, and in AC stage in the formation of hypotheses (Brown and

McCartney, 1998).

To avoid repetition and to render smooth flow, aspects of the organizational learning

models developed by Argyris & Schön are dealt with as part of the presentation on the

proposed learning approach below.

6.3 Learning and Process Improvement in Reflective Steps

In this section, we present a collaborative reflective learning model proposed (as part of

the Reflective Steps approach) for software process improvement based primarily on the

first two learning levels of Bateson’s comprehensive learning and the communication

model discussed above. These levels of learning also correspond to aspects of the

 205

technical reflection (testing the validity of the methods and processes of use) and

practical reflection (identifying and learning patterns from practice stories retold) types

identified by Taylor (2004). To address the emancipatory reflection proposed by Taylor,

one may consider introducing a third level that involves analysis of power relations,

moral and ethics in the process of methods and process development. However, treatment

of the third level may require is beyond the scope of the current work.

In practical terms, what is proposed is a multi-level reflection cycle (depicted below in

Figure 12 and Figure 13) as a support infrastructure for continuous learning and

communication, and the use of reflective workshops and reflective journals as a

supplement to conventional methods of workshops and documentation. To render smooth

flow in the presentation, the section starts with a brief discussion on collaborative

reflective learning. This will be followed by presentations of the levels of reflections

proposed together with the topics of reflection dealt with at each level. The section

concludes by presenting the RS workshop proposed for practical use.

In this connection, it is also relevant to note the following. Although the use and

application of the model in the context of software process improvement is more

emphasized in our discussions, we believe that the model developed is equally

applicable to project plan improvement and software use improvement as well.

6.3.1 Collaborative Reflective Learning

As discussed earlier in Section 5.1.2 and 6.2, reflection is a key to professional

preparation and development. Most of the examples cited in the literature in this

connection, however, tend to largely relegate notions of reflective practice to the realm of

individual learning. This predominantly relates to reflections that focus on the decisions

that professionals make minute by minute in their practice (particularly, reflection-in-

action). Such processes are also mostly limited to personal level. Even when a novice

professional may be interacting with an expert mentor, the emphasis is on the reflection

that each does and the influence of that reflection on each one’s individual practice. The

 206

type of arrangement that we are dealing with here, however, is more collaborative –

supporting the social discourse among developers during software design.

Collaborative reflection as used inhere extends beyond the realm of individual learning in

isolation. It occurs when two or more individuals, through a process of inquiry, work

together to improve their own professional practices and programs in which they are

jointly involved. In a typical software development project environment, the most

effective way to encourage such reflection is to give a group of the project staff say a

design artifact or a common process experience and ask them to work on same iteratively

through a design-critique-reflection cycle. Collaborative reflection is more than simple

discussion of a common idea. It is a prolonged joint work on the continual process of

improving one’s practice and the commitment to help others improve theirs (Osguthorpe,

1999). Criticism in the form of work product critiques is an important instrument

commonly employed to realize group discussions and influence group decision making.

In the case of product design, for instance,

social interaction during team work can influence individual perspectives and

participative joint group decisions on the various aspects of the system. In this

process, both critical reflection and negotiation are important instruments to

clarify misunderstandings, to enrich design artifacts, to resolve conflicts,

collectively innovate and agree upon design options and courses of actions.

Individual perspectives on requirements, design issues and methods brought into

the project sessions by participants are continuously discussed, collaboratively

constructed and co-constructed. This group interaction process helps for the

requirements, design and related methods-in-use to dynamically evolve during the

process.

The process starts with some sort of requirements, plan, design, etc. (the initial

version). It then works from there by adjusting, altering, including new elements

based on peer feedback and experience with the earlier version.

 207

Collaborative reflection is most effective when participants:

• are invited to pose their own questions;

• differ in their professional roles and responsibilities;

• embrace the norms of reciprocity inherent in collaborative work;

• view collaborative work as one of their basic professional responsibilities; and

• take risks associated with their own practice, and extend the results of their

reflections beyond the original group.

Among the benefits of collaborative reflection is that it is a kind of process not only for

the individual aspect but also for the social aspect of learner-learner interaction. It

provides a kind of learning process through which members in the community interact

with each other. It is influenced by members' social participation and interaction. The

activity to compare their own thinking with those of other learners would lead learners to

be more articulate themselves so that learning does not naturally occur without reflective

thinking.

The collaborative reflection approach proposed in Reflective Steps attempts to create an

enabling platform that extends the conventional reflective practice at the individual level

to a group level thereby supporting project and organizational levels of learning. The

approach facilitates discussions and debates at first group and project levels and then at

organization level. For this purpose, required repository and communication channels are

created to capture and share the perceptions, debates and resolutions around project

performance, design, and application of processes and methods.

In the case of design level collaborative reflection, for instance, the design

representations are presented to stakeholders or collaborators for joint reflection. As

expected, initial versions of the design are often incomplete. Through a means of

critiquing, which reminds designers of other points of view (Avison et al., 2001),

collaborators identify portions of the requirements that have not yet been understood

and/or portions of the design that need refinements. In this manner, the reflections are

made explicit through and after the critique session. In the process, shared

 208

understandings, contexts and the resulting design are accrued incrementally. Through

such cyclic processes of design-critic-reflection, designers both evolve a representation of

their design and gradually construct and accumulate criticism as articulated knowledge.

This shared understanding helps the designers co-evolve individual understanding of a

problem and a solution, and increase the knowledge about the design domain (and this

learning).

6.3.2 Reflection Cycles and Levels of Learning

In summary, in Reflective Steps, we propose two levels of learning for process

improvement (as depicted in Figure 12). Following the naming conventions in published

literature, these learning levels are referred to as Single-Loop Learning (SLL) and

Double-Loop Learning (DLL). While SLL is employed to improve practice incrementally

by introducing corrective measures within the given processes and goals, DLL is

employed to improve practice radically by questioning premises based on feedback and

by improving given processes and goals.

Figure 12: Reflective Steps: Multi-Level Collaborative Learning Cycle

 209

The base model for the reflection cycles at each level is adopted from Kolb’s learning

cycle (Kolb, 1984). As discussed earlier in Section 6.2, in the Kolb’s model learning

occurs in a cycle of Concrete Experience (CE), Observation and Reflection (OR),

Abstraction and Conceptualization (AC) and Active Experimentation (AE). To serve the

purpose of collaborative reflective learning discussed above, we have modified Kolb’s

learning cycle that involves CE-OR-AC-AE into an iterative cycle of Action-Reflection-

Improvement model. This modification also takes into account the mapping of Schön’s

concept of reflection-in-action to the Kolb’s learning cycle discussed earlier. While the

Action in the revised model may be seen to include aspects of CE and AE action,

Reflection and Improvement of the revised model substitute OR and AC respectively.

The reflection process proposed may be typified as a continuous cycle of planning

(reflection-for-action), execution (action that involves reflection-in-action) and feedback

based assessment (reflection-on-action). For instance, with a software process as an

object of reflection, the cycle involves,

• establishment of a process,

• application of the process for the increment,

• reflection on the process used for its effectiveness in achieving desired results

(identification and selection of key activities), and

• application of improvements or adjustments of the process for the next increment.

The cycle is repeated iteratively. In the case of design, each cycle begins with a reflective

comprehension of the situation that demands the action of the practitioner (requirements

understanding). The actions taken produce design artifacts and testing of the artifacts

(back-talk in the sense of Schön). The results of the actions may be different from the

planned ones. Back-talk leads to reflection, which, in turn, becomes a predecessor of new

actions.

In a collaborative reflection session, a typical reflection exercise on an issue is based on

the interplay between the identification of an issue to be addressed (posing questions),

 210

critical discussion on the issue, and then proposing an action strategy to address the

issues.

According to Bateson (Turner et al., 2006; Sørensen, 1999; Raelin 2001), the Level 0

learning, “not learning”, in an organization becomes evident when individuals are

isolated, fail to receive feedback on their actions and fail to receive and/or process new

information. Within the existing local setting, individuals were observed to operate

mostly at the level of “not learning”, as identified by: the lack of feedback and project

control mechanisms; the featuring of a ‘them and us’ relationship (disconnection)

between project staff and management, between project staff and users, between software

developer and client organizations. It is only in some of the cases that we observed

feedback mechanisms used to monitor project progress.

The SLL is more to take a corrective action to ensure adherence to procedures, in the

sense that the information obtained as feedback is used to correct errors in an attempt to

bring about the expected performance levels. For instance, during project review, by

comparing intended and actual performance, the variance is analyzed. The results of the

analysis (often based on determining cause and effect) are used to take corrective action

to address the variance. The reflection at this stage may involve auditing the existing

competencies and skills to assess their adequacy to perform project tasks within the given

constraints. As a result, such corrective measures as providing training on how to use

tools, on how to apply guidelines, or exchanging roles, or putting additional resource, etc.

may be considered.

Where such corrective actions make no significant difference (do not help improve the

situation any more) in terms of reducing the variance between the intended and actual

performance, questioning and changing the procedures and processes may be considered.

In a changing context of software development, the plan or targets set by the plan as well

as the conditions within which they were set cannot be assumed to be not changing.

Under the circumstances, therefore, either a forward looking anticipation strategy or a

DLL system must be employed to succeed.

 211

DLL offers a higher level learning opportunity that allows for the adjustment of the input

variables to the process as well as the adjustment of plans that are used to dictate the

performance standards. It also incorporates the SLL. It is initiated when corrective

actions taken at the SLL level do not really help in realizing intentions or when intentions

need revisiting because of changing circumstances. The ability to respond to change and

alter performance standards, process strategies, redesign of products, etc. encourages

adaptability and improves the chance of sustainability. The DLL system enables the

project to become more adaptable and to do so more rapidly. This adaptation means that

the project is capable of learning and continuous improvement in a search for better

performance and goal achievement. DLL also provides an opportunity for long-term

learning. In contrast, the SLL system only focuses on short-term adjustments during the

duration of the project that are likely to increase the chances of meeting the objectives of

the current project.

In their work with system developers, Mathiassen & Purao (2002) emphasized that

double-loop reflection, which questions assumptions and values aligned to the project,

creates knowledge that is ‘highly local, specific to the context’. That is, instead of simply

trying to build capacity that would upgrade the skills of practitioners in applying the

techniques and methods suggested for systems work, one may need to go beyond. One

needs to question whether or not the assumptions and theoretical underpinnings that

underlie these techniques and methods are suitable to or take into account the specific

project settings. This was, in fact, partly the motivation for this study.

Furthermore, lessons learned from the DLL system must be accumulated and used to

improve or even challenge the process at company level and related premises. DLL is in a

way a reflection that encourages standing back and questioning the presuppositions

attending to the problem. By so doing, it enables to change the theory-in-use to improve

performance as a result of an enquiry into the situation and questioning the norms and

values by which the action is judged. DLL goes beyond the cause and effect determinism

of SLL that aims at getting better at executing the plan, to questioning the premises of the

plan and the values used to judge action outcomes. As such, it involves reflection on the

method selection, the adaptation process itself and on redesigning of the product.

 212

The idea of double-loop learning lies at the heart of much of recent thinking on both

individual and organisational learning. Such DLL is typified by the learning cycle

proposed by Argyris and Schön (1996). It raises the challenge of nurturing individuals

who can deal with uncertain and changing environments; develop abilities to question,

challenge, and change assumptions and behaviours.

6.3.3 Reflection Topics at Various Levels

In Reflective Steps, collaborative reflections are held at various levels and on various

topics. The diagram in Figure 13 below tries to synthesize these various levels with

emphasis on the topics of reflections.

Figure 13: Multi-Level Collaborative Reflection Topics

As shown, the model tries to provide for the reflections depicted in the integrated RS

model discussed earlier. In particular, it involves reflections within the design and

development of an increment, reflections at the end of an increment development,

reflections at the end of an application development and reflections at the end of the

project. The reflection topics at various levels may address reflection on product (the

software delivered), on process (method of work), on project progress (status of

activities), and on context (business environment, technology options, contract

administration, etc.). First, reflection on the product is about the extent to which the

product meets user expectation in actual use. This type of reflection tries to address issues

 213

such as the following. What did the users and sponsors think about the product? What

should be improved, added, and removed? What are the priority directions for product

evolution? etc. The reflection on progress relates to the reflection on project progress

issues such as the following. How does actual performance compare to the plan? Are we

ahead or behind schedule, and why? What are the corrective measures that need to be

taken to enhance performance? This may lead to revision of plans in terms of scope

change, mobilization of more resources, etc. The reflection on process examines the

activities, sequence of activities and techniques used for software development.

Looked at from a different angle, the topic of reflection may also vary with the main

processes of Reflective Steps identified in Figure 4. For instance, at Project Design level,

the reflection is characterized by organizational change matters and business matters. It

is held among project sponsors, business experts, software companies and external

consultants. At the Application Production level, the subject of reflection is more

technical in nature. It has mostly to do with requirement understanding, sort out design

issues and options, programming options and use of methods. At the Application Use

level, the reflection subjects relate to embedding of the software developed in the

organization, training of users on the operation and utilization of the newly developed

system, and generating of new requirements for the next round.

As such, reflections at the various levels are done by different, but overlapping,

categories of users. For instance, at Application Production level, while the reflection is

done mainly among development team members, other stakeholders particularly users

may join them in matters related to product quality. Likewise, at Project Design level,

representatives of the Application and Increment Production and Use levels do take part

in the reflection on matters relating to project priority setting and scoping, contract

negotiation, etc. In this connection, it is relevant to note the fact that often

communication related problems feature when mixing these levels, and as such this needs

to be carefully handled during such overlaps.

At application level, the project teams may pause to check if the course is right for the

project, and to reflect on their experiences in order to conduct short-term improvement

 214

actions. The reflections and related learning at this level are as such limited to SLL. On

the other hand, reflections at project level (including those that are made at the end of an

application development and use) are more critical and mainly serve the purpose of DLL.

By suggesting such multi-level and integrated approach where learning is cascaded

bottom-up with well defined links, we offer a perspective on software process

improvement and software development practice improvement that exploits project

experience in a complementary manner to other popular top-down approaches.

In Reflective Steps, each product release (be it an increment or an application) is a mini-

project. As such lessons learned from each mini-project is shared up the ladder. To

operationalize this, as shown in the model proposed, the outcomes of the reflection on the

various topics (product, progress, process and context) are gathered, interpreted,

consolidated and rolled from bottom up (from increment to application to project levels).

Such consolidation reveals key issues from the reflections at the lower level for the

purpose of creating a shared understanding, guidance and facilitation of decision making

at the higher level. Likewise, the outcome of the reflection at higher level (which is done

based on the feedback obtained from the lower level) is shared down the ladder in the

form of guidance, prioritization, scoping, resource reallocation, etc.

Learning Repository

It is important to note that learning does not simply occur all at once, it is built up from

the step-by-step reflections made on the actions and reinforcement being taken

throughout the process. Better understanding of the requirements, the feasibility of

design, the suitability of the software increments, the need for process improvement, the

need to re-prioritize applications and/or redefine project scope, etc. that result from the

reflections represent the lessons learnt (the learning products). What has been learned

from the reflection needs to be implemented as an improvement or change either in the

product, process, progress or premises. Otherwise, it is difficult to say that learning has

occurred. Both the learning product (lessons learned) and the learning process (process of

reflection, reinforcement and the implementation of the outcome) need to be stored to

 215

facilitate use and application in the current project (by project staff). The storage and

maintenance of the learning product and the learning process also help others that will be

involved with the system maintenance and upgrade at a later stage. As required, the

process-related lessons captured will also serve in the effort to improve processes at

organizational level for use in subsequent projects. That is, the stored materials will serve

as input in the process of establishing or revising the methods-in-use for the organization.

To support the foregoing, storage of learning products (lessons learned) in terms of

‘memories of individuals’ or in some flip charts and maps may not be enough. For this

reason, Reflective Steps suggests the creation of a common repository and

communication channel to capture and share the perceptions, debates and resolutions

around project performance, design and use processes and methods. In particular, the use

of a reflective project journal15 as an experience repository tool is suggested. Such a

reflective journal is to be regularly updated by the project management using journal

summaries written at the end of each collaborative reflection session. The importance and

relevance of such experience repositories were already established by such popular

approaches as the Factory Experience approach (Basili and Caldiera, 1994).

With such repositories and consistent practices of reflective activities entailed at the

various levels, the project team and the management can develop an integrated view of

project progress, the product developed and its use, as well as the processes and methods

employed in the development and use of the software. What is more, such a repository

can be used in the establishment (in case there is none) and/or improvement (in case there

is one) of processes for consideration in subsequent projects. Such a repository also

facilitates the sharing of experience across projects that are active at any one time within

the organization. The sharing may also be extended between organizations (as the case

may be) to provide cross-project or cross-organization feedback to further facilitate

learning between projects and organizations.

15 As indicated, the maintenance of reflection journals enables the acquisition, storage and retrieval of
project experiences and memories, thereby providing directions to the development and improvement of
the process. Journals come in many types ranging from log books (recording tasks and performances) and
personal diaries (recording thoughts, intentions, desires and activities) to learning journals. This study
concentrates on learning journals that are also used as tools to develop reflection skills.

 216

6.3.4 Reflective Steps Workshops

Among the main problems frequently encountered in the course of developing soft skills

by both practitioners and students were the lack of skills in conducting system

development workshops and managing meetings. Over the years, attempts were made to

use customized versions of JAD techniques for conducting software development

workshops. However, difficulties were reported by students and practitioners involved in

the process. Among the complaints reported were the following: the procedures are

expensive; at times they are relatively heavy on processes; they are more helpful for

requirements elicitation and not for iterative design activities. For this reason, in order to

provide operational support to some of the features of Reflective Steps, the development

of workshop techniques and meeting protocols for use with Reflective Steps was

initiated. As usual, the proposal was still an evolving one based on real-life experience in

both software development and management practices. What follows is a brief

description of the status of this work at the time of this writing.

As discussed earlier, collaborative reflection is realized in the form of facilitated dialogue

among team members in a workshop setting. It is a form of face-to-face session to openly

talk about and critically assess the way of working by coming together and where this

helps participants achieve their objectives. Where there are things that were done better,

the sessions are held to discuss and share the factors that have contributed to such

strength and how to maintain them in the subsequent course of action. Where there were

weaknesses, the sessions are held to investigate the root causes of the weaknesses and

discuss ways of resolving them. The focus in general is not to discuss problems but rather

to explore ways of improvement. In the remainder of this subsection, the various aspects

of the proposed workshop are presented.

(i) Facilitation

To render a purposeful and meaningful workshop and manage transactions for the

purpose of facilitating effective communication in the sense of Tan (1994), for each

workshop, people with such specific roles as a facilitator, a scribe and a process expert

 217

are to be assigned as organizers of the reflection workshops. The project leader is the

most eligible candidate for facilitation. The scribe is a software engineer assigned by the

project staff or project leader to record the proceeding of the meeting/workshop focusing

on the substantive issues covered by the session. This may include: issues discussed,

decisions made and action items identified. It is relevant to note in this connection that a

scribe is not there to play a secretarial/clerical role but that of an active participant with

this specific role. The role of the scribe may also be shared or circulated/rotated among

the team members (through rotation).

(ii) Process Steps

A three step process is suggested for conducting collaborative reflection workshop:

initiation, conducting and wrapping up.

First, as part of the initiation a list of reflection issues on the topic of reflection together

with necessary support material are prepared and circulated. Such a list is better

circulated at least one day earlier to give participants time to think about and reflect on

them or prepare their comments individually. Members should be encouraged to carefully

review the documents circulated before coming to the meeting. In fact, it is preferable if

they come to the meeting with their comments recorded on a simple free-format feedback

sheet. Such forms may be used to record comments on unclear points, contradictory

points, serious cases, point of views, experiences to be shared (like retelling stories if any,

for instance), etc. on each of the reflection issues. As required, specific formats preferred

may also be designed for this purpose, as an alternative to the free format feedback sheet.

Where this is the case, it is recommended that the form be circulated together with the

agenda.

Next, as part of the conducting step, the meeting is held to discuss and collaboratively

reflect on the issues. The feedback sheets may serve as support materials in the

discussion sessions. The discussions of the meeting have to be recorded. In addition, it is

also useful to collect the feedback sheets from the individual members. For more on

meeting and deliberation techniques, see the discussion under ‘(iii) Conducting Session’

 218

beyond. The use of ‘feedback sheet’ is an effective means particularly in view of the

limited time to be allocated to the workshop. It also gives a chance to all participants to

communicate their points of view. It also allows the quieter, more technical people to

develop their comments on the issues. In most meetings, such people are often

interrupted and dominated by the more outgoing, vocal types. On the other hand, earlier

reminders also give participants time to create more thoughtful responses on the issues

circulated.

During the course of the discussions and deliberations, each member can update the

feedback sheet entries by including additional information learned in the meeting (in the

form of clarifications, questions, etc.) against each of the issues. The free format also

enables participants to record complex issues or problems related to the issues of

reflection (analysis of the problems, description of solutions, etc.) in text and/or

figurative forms. In this way, the free format serves as a draft reflection journal at

individual level. Similar techniques have been effectively used in the course experiments

conducted as part of this research, particularly in the case of the business process

redesign work reported in Chapter Four and the requirements definition in the case

reported in Chapter Seven.

Finally, in the wrap-up step, based on the feedback sheets and the discussion record as

input, the reflection outcomes are summarized by a team composed of the facilitator, the

process expert and the scribe in the form of "lessons learned". This is a sort of brief

reflective journal writing to systematically flesh out and document the discussion

outcomes by key issues and topics. While we do not insist on a specific format to be

followed, journal entries under the following headings are suggested.

• Strengths: things that were performed well and factors that have contributed to

that and ways of maintaining them.

• Weakness: what went wrong or did not go well and the causes for same.

• New things to be focused upon.

• Major problems to be addressed, things to be improved and ways of addressing

them (reinforcements or corrective measures to be taken).

 219

• Action plan for the measures (including assignment of responsibilities).

It is important that the entries under these headlines are brief and to the point (preferably,

the summary report from one meeting better be accommodated on a page). Otherwise, the

chance of it being read is low as most members may not afford the extra time required to

read a lengthy document. However, any form of presentation material and documentation

used during the collaborative reflection (charts, drafts, the feedback sheets with the

comments from the discussions, etc.) can be annotated and attached to this one-page

summary journal, for reference as required. All these, together with the summary

reflection journals to be prepared at project level based on periodic reports and project

postmortems should be filed in the project experience repository (project journal).

The summary report then needs to be circulated to all members and other interested

parties before the next reflection meeting/workshop for both sharing of information and

checking the correctness of the summary. From our experience, creating a means of

communication between meetings is particularly challenging. So is the means of ensuring

the timely use and application of lessons learned from the reflections. From what we have

seen, creation of an electronic distribution list and a project server together with extensive

use of email might help for the communication.

(iii) Conducting Sessions

Usually it helps to open each meeting with a period of reconnecting and chatting, often

on topics not related to the project, mostly social issues. This is very important in

lubricating or easing the tension usually imposed by formal meeting procedures. Some of

the conversations at this level might also relate to sharing experiences and information

which directly contribute to the issues to be discussed in the formal agenda. From

experience, allotting about 10 minutes of time here may be enough (see beyond for more

comments on managing meeting time).

The reconnection and chatting during the first few minutes should be followed by an

introductory session on the agenda items (which are already sent out to members ahead of

time). The first agenda item should relate to briefing on the developments that took place

 220

since the previous meeting. This is an open session where members recall the discussions

they had in the previous workshops and brief each other on the developments since. The

briefing and information exchange at this stage should be deliberately kept informal and

unstructured. The whole purpose is to reconnect to the issues addressed in the last

meeting and recall some of the noteworthy issues or important lessons learnt or decisions

made, and to report (give feedback) on the effect of the lessons learned on the actual

project operation. The briefing session should also be used to share any valuable

information (for instance, telling stories where someone came across or noticed some

good or bad experience or new information) worth sharing with others. For this purpose

the reflective journal from previous meetings, already distributed to members by this

time, may be used as a reference. Such sessions also provide a context to follow up

lessons learned and difficulties experienced in implementing resolutions of previous

meetings.

In every meeting, once the briefings and information updates are dealt with, the critical

reflection sessions on the main agenda items follow. The topics that make up the main

agenda items are usually issues selected by the facilitators (in close consultation with

participants) for reflection from any or combination of the reflection topics related to the

project and production processes: progress, process, product and context. Such issues

may also crop up during any of the reflection sessions. It is recommended that the scribe

maintain an issue log to keep track of and line up discussion issues.

The reflection session on the main agenda items is a sort of purposeful dialogue that is

designed to extend the understanding of the domain knowledge, software development

process and method concepts, or design issues within the group. Individuals may share

their views based on the information recorded on the feedback forms. In some of the

cases reported elsewhere in this report (Chapter Seven), a simple and free-format

‘presentation-and-critique’ dialogue session followed by a prompt and stimulated

reflection session were used. In this case, individuals and subgroups each take turns to

share their views in the form of presentation or critique. When one group presents, the

others may ask clarifying questions or forward critiques, etc. The groups may then switch

 221

roles, reversing the presentation and questioning sessions. This approach worked well

both in the case studies and course offerings at CTIT and AAU.

According to experience, to render a purposeful and focused reflection, use of

prompts/questions to stimulate conversations into a collaborative reflection is

recommended. In particular, probing the meeting to questions such as the ones

described in Section 7.1 may help.

Before closing the workshop session, the last item on the agenda is discussed. This

usually is a recap session – it relates to summarizing the outcomes of reflection sessions

(key issues), and to articulating and agreeing on the corrective actions that have emerged

from the discussions, as well as assignments of specific responsibilities.

On the whole, in connection to allotting time to each agenda item, it is important

to emphasise the concept of time boxing. The overall meeting is better kept within

a two-hour limit to have effective sessions, and from experience the best time of

the day is between 4:00pm and 6:00pm. Having said this, however, there may be

exceptional cases that may require more meeting time. In such cases, instead of

extending the collaborative discussion sessions for the whole group, better still is

to task a special working group to deliberate in detail on the issues in separate

sessions and bring back the outcomes for sharing and reflection at the whole

group level.

In addition to time boxing, an issue that also needs to be regularly checked is the

proportion of time spent on irrelevant factors and important factors. On the

practical side, it is also important to note that giving and receiving feedback can

be time-consuming, so one needs to be realistic about what can be achieved.

Among the major challenges in conducting the meetings is also the need to

balance on regular bases, the informal communication that contributes to the

shared experiences that are the very foundation of the project community, with

that of the formal and purposeful dialogue and communication that extends the

understanding of the concepts around which the meetings are organized.

 222

The role of facilitators to address these (aforementioned) aspects is vital. The use of

feedback forms stated above is introduced to partly address these issues.

(iv) Writing Reflective Journals

As repeatedly indicated, reflection is an important tool for learning from experience. We

reflect in order to learn something, or we learn as a result of reflecting. According to

Moon (2000), we learn not only from the ‘in the head’ reflection but from the process of

representing the reflection itself in some form. As the saying goes, “you don’t know what

you know till you have written it down”. Here comes the importance of reflective writing

for reflection. To this end, in Reflective Steps the use of reflection journals is considered

for fostering and supporting communication and learning in a collaborative development

environment.

Although other similar studies Jepsen et al. (1998) have used diaries to support

the system development management, the work here extended this approach in a

number of ways. First, instead of diaries, the use of reflective journals is

considered. Second, the process of writing the reflective journals itself is an

activity in the Reflective Steps process that promotes structured reflection at

individual, group, project and organizational levels. Third, the application area

has also been extended to include software process improvement in addition to

software development project management. The approach suggested inhere also

tries to make use of such common group communication infrastructure (meeting)

for this purpose.

Another related mechanism is the use of logs. On a project log you might write

down the times and days when you performed a project activity. A log is simply a

record of events. The journal as suggested inhere is designed to help members

organize their reflections on the project and the production process, to document

members' work and experience for self-evaluation during and at the end of the

project, to provide a place for members to write questions and comments for the

project team to discuss.

 223

(v) Periodic Review

In addition to the weekly reflection sessions, periodic (for instance, monthly at project

management level and quarterly at steering committee level) attempts must be made to

further digest the findings of the reflective exercises. In this connection, it is also relevant

to note that depending on the size and complexity of the project, where there are large

size subteams, additional facilitation teams may be assigned at the subteam levels. Where

this is the case, facilitators, scribes and process experts from each group should come

together every month for the project level reflection. Likewise, the project level

facilitator, the scribe and the process expert have to participate in the quarterly meeting at

the steering committee level.

At the end of the project, the reflective journals are collected into a project journal which

will serve as an experience repository and for common reference. For this purpose, as

part of the post-mortem, a reflective project journal should be prepared consisting of

careful descriptions and evaluations of what happened and what should or could have

happened. Such a journal serves as a source of input for the project portfolio management

at Project Design level. An additional utility may also be developed to facilitate an

efficient storage and retrieval system, particularly to enable efficient tracing of individual

design issues and decisions.

CHAPTER SEVEN

7. Experiences on On-going Projects with Reflective Steps

In this chapter, we report on additional and ongoing research activities (field work) with

Reflective Steps and experiences thereof. In particular, we report on:

• experience in teaching software development using Reflective Steps insights; and

• experience from the ongoing project at Organization B (the third phase project

that aims at the procurement of an off-the-shelf complete insurance application

software and its customization per the requirements of Organization B).

7.1 Recent Experiences in Teaching System Development

7.1.1 Background and Motivation

One way to address the competence building for software development professionals is

through work-based training (through reflective learning at various levels in the project

work) as pointed out in the preceding chapters. Another way is through academic

learning – through the various courses offered by higher learning institutions as part of

the academic programs that prepare graduates to join the software engineering profession.

According to the findings from the survey and the researcher’s years of experience in

teaching system and software development courses in local institutions of higher

learning, the existing programs are strong in technical aspects and weak in social aspects.

As documented in Chapter Three, both instructors and students lack real-life project

experience. Thus, an attempt was made as part of the current research to explore to what

extent Reflective Steps concepts can help to improve this situation.

As elsewhere, in earlier times we only used textbook examples and cases (in books

mostly published in the West) to integrate practicum (course project or case work

attached to the lectures) in teaching programming and systems. Such cases were

particularly used to apply the classroom concepts. Applying such techniques, we noticed

from early on that we only taught our students the steps of the ‘dances’ as published in

the text books without contextualizing them (to both the audience and the dancing

 225

stages). With such approaches, not only were we unable to teach them how to dance, but

we never created an opportunity for the students to try out the steps (experience dancing

in the real sense). For that matter, most tutors themselves never had the chance to dance

in a real-life setting. Under the circumstances, therefore, it was unfair to expect the

students to perform the dance as they join the professional practice (the real dancing

stage). This is how the author tries to explain the earlier complaints (obtained during the

survey) from the companies on the practical skill deficiencies of graduates.

With more exposure to local cases, though not in an institutionalized form (in a manner

that guarantees sustainability), attempts were made to first cite local cases and then to use

them in the practicum. The motivation to explore the integration of real-life and active

projects in course practicum, as reported in here, partly came from the experience at the

School of Information Science and Technology (SIST) at AAU (reported in Chapter

Three). At SIST such arrangements were tried out successfully (at least initially) in the

form of incorporating industry projects as a course in the academic program. However,

the motivation and interest to take this approach as a research partly came from the

inspiration by the works of Greenbaum and Mathiassen (1991), Drohan et al. (2006) and

Hadin et al. (2007).

“In our profession, we seem to saddle our students with so much talk of theory

and especially methods, that they become confused when they actually have to

apply them. While we compensate for the students' lack of systems experience,

with the old “stand-by”, the case study approach, we often fall short of being able

to actually integrate theory, method and experience”. (Quoted by Greenbaum and

Mathiassen (1991: 524), from a letter to the authors by a colleague).

“The process of teaching is, after all, a lot like the process of systems

development. We never really know what the end result is going to be like and

how it is going to be used! We can certainly not expect students to become

competent systems developers through a series of step-by-step instructions, any

more than we can do reasonable systems development in this way. Teaching, as

we know intuitively, is helping students make their own decisions. And it is this

 226

process—the process of exploring and testing—that can give students a focus on

experience and the context of experience that they are missing.” Greenbaum and

Mathiassen (1991: 526)

“If students are encouraged to set their own problems, and be aware of their

experiences as they do so, then they are, hopefully, taking steps toward managing

both the learning process and the systems development process, as well.”

Greenbaum and Mathiassen (1991: 524)

Our work also draws on a metaphor of ‘steps and dancing’, (adapted from Turner, et. al.

(2006) and customized to the specific situation under reference in here). In Turner et al., a

metaphor of ‘steps’ and ‘dance’ was used,

“to critique individual learning experiences in organizations, to explore the role

people play in inhibiting learning in organization and to explore theories of

individual learning as “theories in use”. The “steps” imply a fixed form which

constrains the individual within the confines of the job role, while the “dance”

relates to fluidity and flexibility which enables individuals to express movement

and therefore learning.” (Turner, 2006: 398).

In the research being undertaken by the author,

the ‘steps’ and ‘dance’ metaphor is used to critique the training of software

development courses in the classroom environment disconnected from reality and

to promote teaching methods that combine classroom lecture and lab exercise

with a practicum in real-life project context. The ‘steps’ imply the teaching of

software development techniques as a series of fixed and prescriptive steps

involving requirements, functional specifications, code, testing, mostly supported

by examples and exercises provided in textbook and simulated classroom

projects. The ‘dance’ on the other hand relates to the actual practice

(performance) in real-life situation to learn more about the steps and application

by adjusting the steps flexibly and inventing possible actions based on feedback

and intensive interaction with the events and contexts.

 227

7.1.2 The Project in Brief

As indicated in the introduction above, this is a brief report on action research in the form

of field work conducted to test the applicability of Reflective Steps in the teaching of

system development courses. The work consisted of three graduate level teaching

experiences supported by real-life project-based practicum, where the author actively

participated as an instructor and guide in software engineering, system development and

software project management courses. These courses were conducted over a period of

three consecutive academic semesters and with different batches in different departments:

Software Engineering at the Department of IT (CTIT) during the second (spring)

semester of the 2005/6 academic year, Software Project Management at the Department

of Computer Science (AAU) during the first (fall) semester of the 2006/2007 academic

year, and Information System Development at the Department of Information Science

(AAU) during the second (spring) semester of the 2006/2007 academic year. Participants

in the study were post-graduate students. The work-based teaching/learning method

involved extensive reflection sessions, where the researcher played the role of a coach.

Although there were developments from the first teaching semester to the second and

then to the third, to economize on space, the cumulative experience is summarized in the

remainder of this section. The detailed story, including the experiences of both students

and instructors that participated in the work, is being separately compiled for experience

sharing and reporting purposes.

(i) Project Design

The skill development followed the basic tenets of Reflective Steps: taking incremental

steps to the destination and through reflection at each step adjusting the strategies adapted

to get to the destination. In this case, the destination relates to building software

development skills required in real-life project environments. In clarifying concept and

building skills on adopting and customization of methods, we went step-by-step. In

between the steps, the class as a whole, instructor(s) included, reflected on the learning

 228

experience. Throughout (from adjusting course outline development to the assessment),

active participation of students was encouraged.

Over and above short-lived assignments aimed at teaching specific skills, the course

design included course-long projects for the practicum with real-life client and work

environments.

Contrary to earlier experience, where the course-long group project cases were designed

by the instructor(s), in this case students were given the opportunity to actively involve in

the process of designing the course project and formation of project groups. Each group

was also guided to make the necessary working arrangements with the client that hosted

the real-life project and amongst team members. Admittedly, this was not initially

welcome by some students and clients (because of the seemingly conflicting perspectives

and concerns discussed below), but gradually through reflection and review, these were

resolved. In this connection, as applicable arrangements were made for previous year

(older batch) students to share their project experiences in special sessions arranged for

this purpose as part of the regular classroom lectures (they were invited as guest

lecturers). This helped a lot in terms of story sharing and encouragements for the new

batch particularly in terms of comprehending what could be achieved in the course

project.

In the first lecture session, we discussed and agreed with the students on the approach to

be followed in the actual conduct of the course. This was done at two stages. In the first

stage, the course outline developed for the semester by the instructor(s), based on the

course descriptions and objectives as defined in the curriculum, together with the

proposed teaching method, were presented to the students for comments and discussions.

After this was done in the first session, students were asked to study and discuss the

proposal amongst themselves until the next session where the proposal would be enriched

and considered as a starter course conducting process for the semester. In the meantime,

students were also asked to come up with ideas on candidate project cases from real-life

projects for consideration in the actual conduct of the course. Tutors also brought real-life

 229

project cases selected with prior arrangement with respective clients and this was done

mostly through professional contacts (not through institutional arrangements).

After making consultations with both students and client representatives, joint

discussions were held in the second sessions (a third session was also held where

necessary) to finalize the selection of projects and the assignments of groups.

Students were advised to use methods and processes published in textbooks as a

guideline to get the process started16, and then to reflect in action17 to continuously adapt

the software processes and methods for the different situations in the software projects.

As part of the group semester project, in the course of developing the work product

required, students were asked to:

• investigate the methodologies and techniques available to them and the

appropriateness of these methods to the particular situation they were going to

work on;

• reflect on their experiences on a weekly basis – articulate the experiences that

they went through in the class and in the project;

• share their reflections among the group members – to enable/allow them examine

the way others in the team perceive the same experiences;

• reflect on issues related to the use of methods, non-canonical practices,

interactions with users/tutors; etc.

Students were asked to prepare and submit, together with technical reports and the

various system development work products, a reflection journal written based on the

reflections made at various stages of the work. The reflection journal was allocated a

weight of 10% in the final grading.

16 The RUP as a starter method and Object Oriented Programming in C++ or Java, depending of the choices
made by the students, were used in the courses.
17 When students collectively engage in exploratory reflection and critique, they are in effect reflecting in
action.

 230

(ii) Project execution

Throughout, with regard to course projects, the instructor’s role was limited to guiding

the students to find their way out of the problems by their own. Classroom lectures were

used to introduce available theories, methods and tools. Actual skill development took

place in the projects where the classroom concepts were applied and tried out.

At the start of the semester, as the course outline was discussed, reflection was introduced

as one of the teaching and learning methods. At this point, the meaning of reflection, the

stages of the learning model were explained to the students and discussions were initiated

to help students understand the concepts better. Even at this early stage, an about six-

minute timeout session was allotted from each session to the students to share their

understanding of the concept by talking to the person sitting next to them or in ad hoc

groups created on the spot. This session was concluded with a joint reflection with the

instructor on the concept and techniques suggested for reflection.

At the beginning of each class, once in the middle and at the end of the class, students

were given timeout sessions to reflect on the concepts discussed and jot down notes that

would serve as inputs to their reflective writing at a later stage. (The total class time was

90 minutes, hence the reflection time accounted for about 20% of the class time.)

Students were advised to keep these notes and complete their reflective journals later in

the day when they have more time. What they have jotted down while in class could be

considered as a recording of their initial reflection-in-action, while what they write

afterwards based on this initial version could be considered as a revised version of their

reflection-in-action and an initial version of their reflection-on-action. In between classes,

students were also encouraged to use this revised version and the course outline as a

resource to reflect-for-action, by way of preparing themselves for the next class. This was

continued for the first couple of weeks until students demonstrated a reasonable skill in

reflection. In this connection, it is relevant to note that the students learned about

reflection more by practicing it in their group reflection exercises. After that, we only

scheduled timeout sessions for brief reflection within a classroom lecture session on as

required basis.

 231

Specifically, students were required to reflect both on the content (what they have learnt)

and on the process of learning (how they have learned). As a result of the reflection on

content, students were required to summarize what they have learned and compare it with

the expectations they had jotted earlier. In addition, they were also asked to write a report

for themselves on what they had really learned – any change in the understanding of

concepts, techniques, and tools, etc. With regard to the process, they were asked to

document whether the arrangement for teaching and learning was helping them to

achieve the course objectives.

Reflections made in the classroom (in between lectures) were guided with prompts like

the ones listed below. In fact, at the beginning of the course, students were given a

working draft list of reflection prompts to adapt and use them in their respective settings.

Students were particularly encouraged to update the list based on their experiences. In a

related undertaking, work is already underway to develop such list of reflection prompts

into a standard guideline to be used across courses.

• How did the task progress?

• What new skills/qualities/abilities did the students develop?

• What worked really well? What was the successful achievement this week?

• What went wrong and why?

• What were the major problems encountered? How did students try to address

them?

• What needs improvement for better achievement?

At certain intervals, particularly at milestones in their coursework, students were required

to make collective reflection at two levels: at their own team level and at the class level.

The collective reflection at these levels could more or less be considered as ‘reflection on

reflection’ as in the double-loop learning, but limited to the process of teaching and

learning. For the collaborative reflection at the class level, students exchanged their team

level reflection journals with the rest of the team. A thirty-minute reflection session was

assigned to jointly reflect on the work of a student group at this level. At the end of the

joint reflection session, each team/group was also encouraged and required to publish its

 232

reflection journal on the course server which was accessible to members only (for the

first two courses, students created their own shareable resource using preferred

groupware tools, while in the third course, the Moodle learning platform was used as a

common platform for all). A copy of such a journal was also submitted together with the

deliverables for review and assessment by tutors (mostly the instructors, but in some of

the cases by practitioners from the client organization who participated in the project).

Free formats were used for writing the reflection journals.

In addition to the monthly presentations made by each group in the classes, at the end of

the semester students were required to demonstrate the work products developed in the

course of the project. This was followed by full presentation of the process and the

outcome in front of the class and invited guests. In the discussions that followed, students

defended their work by addressing questions from the audience.

The actual conduct of the course was concluded by an assessment workshop between the

tutors and the students. This was basically a forum for the students to evaluate the course

and the tutors. The outcome of such discussions was to be considered in the assessment

of the students’ work and in the planning and offering of the course for the next batch.

(iii) Discussions

Analysis of the initial results of student work in all three courses showed that reflection

has helped students to learn more, know more and appreciate more the use and

application of various techniques in software development and project management.

Among the key factors, according to students and staff involved in the exercises, in

improving the quality of student reflection was the “time to reflect”, reinforcement of the

reflection through collective reflection and reflective writing as well as mentoring.

Over time, signs of gradually building a culture of reflection among the student groups

have also been observed. Throughout, particularly as compared to previous classes and

cohorts, we were able to observe noticeable improvements in the students’ understanding

of concepts, methods and techniques of system development. This was in particular

glaringly evident in such soft skills as team work and project management. These were

 233

confirmed by the comments (both oral and written) from students (as indicated earlier,

these details are being compiled separately).

Closer analysis of the situation revealed that most of the challenging issues revolved

around addressing conflicting viewpoints of stakeholders and actors around the project.

In particular, issues related to mixing and striking a balance between the following

concerns were challenging.

• Student concerns: obtaining a good grade for the work.

• Client concerns: the project must be undertaken professionally.

• Instructor concerns: the use of appropriate methods taught in the course,

balancing the technical and social aspects, contribute to the achievement of the

project objective (both at the course level and at the product level).

Students also complained (rather expressed concern) about the time taken to write

reflective journals on weekly bases. After the first month this had to change to monthly

basis.

Due to the size of the class and frequency of reviews, tutors mostly gave feedback orally

(without a supporting written document). Students also expressed the concern that the

notes taken during the oral feedback session did not capture the points as a whole and in

some of the cases they overlooked or missed vital points and essential aspects. Some

reported that they had run the risk of being unable to retrieve or recall certain points. On

the other hand, students very much valued and benefited from the feedback they got from

their peers and from senior practitioners in the client environment.

Students also mostly complained about the problem of management and coordination, as

well as the lack of active participation by some team members, and the difficulty to

resolve conflicts whenever such problems arose within the team. Most students preferred

to withdraw from the group or split or join another group. With more discussion and

reflection on group work and increased awareness on the various stages of group

development (forming, storming, norming, performing, and adjourning), these problems

 234

were partly resolved in the process in most of the cases. In some of the cases we had to

reorganize the groups to resolve the problem.

Surprisingly, students had no problem with talking in meetings as well as in the classes,

but lacked skills in conducting and facilitating workshops and meetings. What is more,

students were also observed to use email and mobile phones for more communication in

addition to face-to-face meetings.

(iv) Concluding Remarks

While the use of textbook examples and cases is still helpful in terms of building specific

technical skills of students, these are not sufficient in terms of preparing the graduates for

work in the local settings. It is realized that creating a situation for students to participate

in real-life projects provides an opportunity where they apply acquired skills and

knowledge towards the satisfactory resolution of the particular problem situation. It

provides an opportunity where they develop an enhanced understanding of the particular

skills and knowledge set, which soon becomes a typical solution that is applied in similar

situations of concern in their working lives.

To facilitate increased learning from experience and to develop increased knowledge in

problem solving, a reflective approach to learning is useful. The contention is through a

step by step action-reflection-improvement approach premised on real-life project

practicum, valuable lessons can be obtained on system development methods and

approaches. In particular, the Reflective Steps approach demonstrated its potential in

terms of supporting teaching methods that aim at developing skills required to address

real-life system development problems. These include skills related to interpersonal

communication, conflict identification and resolution, teamwork, and exposure to current

technological tools and techniques. Both the group discussions and reflective journals

prepared on the basis of the discussions served as better channels and medium of

communication among the group members. The iterative group level reflections on both

the content learned and the learning process had positive effects. The complaint on time

notwithstanding, the advantage of reflective journals in providing an enduring record and

 235

reference point was widely acclaimed by students. That it can be viewed and reviewed

for both project work and exams was identified as a great advantage.

Our experience as part of this study also demonstrated the ability and willingness of

students to iteratively improve their perception and project work practices around these

and similar issues.

However, for better results, both staff and students need to develop better awareness of

the step by step reflection process and how these may be employed to develop better

skills in both teaching and learning system development. The effort so far was limited to

single loop learning since the situation did not allow to question the premises. For

instance, the curriculum together with the course descriptions, mode of teaching and

assessment, the duration, etc., the project from the client side and the working

arrangement initially agreed upon were not questioned at all as part of the reflection

exercise. They were taken as given. Furthermore, it is also relevant to note that the

exercise so far was limited to graduate level. Almost all students at this level had prior

exposure to software development and as such had some appreciation of the problems

discussed that made them quickly buy into the importance of the approach. This may not

be the case with undergraduate students who do not have such exposure as they come

directly from high school. Accordingly, a different mechanism may need to be devised

for this category.

Taken together, further work is still required to explore innovative ways and means of

realizing this mode of teaching in the local setting. Based on such encouraging results,

the plan in the future is to introduce more structure into the reflective learning system so

as to ensure that the techniques are effectively used for mastering both soft and technical

skills. In particular, the development of a flexible framework and of mechanisms to

systematize the guidance provided by the tutors, the introduction of a better support

structure, the development of training materials and tools, as well as the mode of

assessment, etc. will be explored.

 236

Once enriched and tested as such, sharing this experience with others in order to further

develop it and integrate it in the curriculum of higher learning institutions needs to be

explored. In parallel, how to make institutional level arrangements between university

departments and the industry or public services to support such real-life project based

teaching needs to be worked out as well.

7.2 Ongoing Experience at Organization B

As we tried to establish in the preceding chapters, the Reflective Steps approach evolved

out of extensive experience in system development teaching and practice. Among the

projects that contributed to the evolvement of the approach were the first two software

development projects at Organization B (refer to Chapter Two for more). As the

application of the method and the work on its improvement is an ongoing process, an

attempt is made here to briefly report on one such effort. The purpose here is basically to

update what was already reported in preceding chapters in connection with the

application of aspects of the Reflective Steps approach in a real-life project at

Organization B.

(i) Project Design

Guided by the Reflective Steps approach the following activities were carried out with

regard to the project under reference. In this connection, it is also relevant to note that

what is presented below builds on the case reported earlier in Chapter Two in respect of

Organization B.

When the management of Organization B decided to wait no longer for the software

under development in the second round project documented in Chapter Two, it was also

decided to commission another fresh software project to address its unmet needs. The

researcher was approached by the management of Organization B to help in this renewed

initiative. In response, a series of assessment type discussions were held between the

researcher and the top-management of Organization B basically to reflect on the past

experiences and draw lessons to help design the new project. The discussions and the

outcomes from the series of meetings were captured in a draft prepared by the author.

 237

The draft was then reviewed by the management and consensus was reached particularly

on the scope and mode of software acquisition. Due to the repeated failure of previous

attempts to acquire the required software through a custom-building strategy, the

management questioned the feasibility of such option and decided to change it (in a sort

of double-loop learning). As a result, an acquisition option that involved the purchasing

of an off-the-shelf software and customization of same to the needs and requirements of

the organization was considered instead. In addition to other decisions made based on the

lessons learned, the researcher was also mandated to further develop the project and

advise Organization B on the best way to achieve its desired objective through the

implementation of the revised strategy in the shortest possible time. An agreement was

also made to regularly meet and review progress of the project design activity.

The author started to work on the project design through iterative and evolutionary steps.

In particular, consultations were first made with users in the various departments,

including those that were involved in the previous attempts. At the time of such

consultation, the in-house IT manager had already left the organization, so the

discussions were limited to end-users, middle management and professional colleagues.

The draft document prepared earlier was then updated using the information obtained

during the consultation exercise. Knowledge of the previous projects did help much in

this exercise.

The updated version of the draft was then presented to management for review. As part of

the updated draft, a proposal was put forward to engage an impartial consultant team to

work with the researcher in the implementation of the project. In this setup, the proposal

was for the researcher to assume the role of an external expert closely working with the

consultant team and the management of Organization B. This was fully endorsed by the

management. In the discussion that followed the endorsement, an attempt was made to

jointly explore the composition of such an impartial consultant team. It was agreed that

Organization B would benefit if such a consultant team was composed of practitioners

and academicians or university researchers in the field of software development.

 238

Accordingly, the researcher formed a consultant team composed of:

• six scientists (with experience in teaching and consulting in the areas of software

development), two PhD holders, two PhD students, two master’s holders,

• three senior postgraduate students,

• three domain experts from Organization B,

• two in-house IT experts (to be employed), and

• the researcher.

In the formation process, each member was independently briefed about the project and

was asked if he/she was interested and willing to work on such a project. The researcher

then brought together those interested and willing, and formally shared with them the

previous project stories and experiences, as well as the expectations of the client from the

new project. This was followed by another session, where the researcher further

elaborated on ongoing activities by way of reviewing the existing situation and

management priorities.

The newly established team was then introduced to the management of Organization B.

The preparation (orientation) helped the team to converse well with the management on

the planned project. While the team got an opportunity to see the interest and

commitment of the management on the one hand, the management felt more comfortable

when they saw the familiarity (within such short period time) of the newly established

team with the project on the other. After some discussion on the way forward, it was

decided that the team develop its own terms of reference for the engagement in close

consultation with the management. After a series of planning type reflection sessions

with selected members of the management, the group formulated a better picture of the

situation and what was expected of the consultant team. As a first step, the team

developed an inception report based on the previous draft and findings of the planning

type reflection sessions. This was reviewed and enriched by the management of

Organization B and key representatives of the major business units to be considered in

the first round software development. Once this was done, the team then developed the

first version of the project proposal in two consecutive workshops. As part of this

 239

proposal, the team decided to adopt the Rational Unified Process (RUP) as a starter

approach. This was in fact partly the reason for developing the inception report

mentioned above. The team also decided that the elaboration phase be done by the team

before publishing the invitation to bid to select the partner for the supply and

customization of the required insurance software. Based on these decisions, the team

finalized its terms of reference and presented it to the management of Organization B.

The proposal was openly discussed and endorsed after making the required

modifications. An official agreement was then signed between Organization B and the

team to that effect.

Based on the inception report and the terms of reference approved, the team of

consultants developed a starter but comprehensive project management plan that defined

among others: the project scope, objectives, timetable, work products, work breakdown

structure, organization and staffing, etc. An aspect of this plan that is worth noting here

relates to the inclusion of the mode of work and communication, together with roles and

responsibilities of the team and project governance structure. The project structure

included a Steering Committee, that was chaired by the Director General of Organization

B, and included senior managers from operation departments, the external expert (the

researcher), the project manager and the in-house IT expert (by this time the post of the

IT Manager was filled up by direct employment). Reporting to the Steering Committee

and directly responsible for the management of the project was a Project Management

Group.

Among the roles established at project level were: a Project Leader, a Process Expert, a

Communication/Documentation Expert, a Process Owner, Domain Experts, User/Sponsor

Representatives and Software Specialists. The Process Expert played the role of a project

management process controller who was there to ensure whether the project was carried

out in accordance with the methods and procedures agreed upon jointly by the group. The

Project Leader played the role of a person who facilitated discussions, reflections and

coordination activities among the various sub-teams and between the team and the client.

The Communication Expert played the role of a person who ensured that information

about the project was shared and timely communicated, deliberations of the reflection

 240

workshops were captured and made accessible to members of the project group and other

stakeholders. The Project Leader, the Process Expert and the Communication Expert

worked together in analyzing and synthesizing the deliberations and outcomes of the

reflection workshops conducted at various stages during the actual conduct of the project.

In addition, in between reflection workshop sessions, this group met with the external

advisor and user representatives to clarify misunderstandings and conflicts that arose

during the project work, to update management on the status and progress of the project,

etc.

(ii) Business Process Documentation

As part of the elaboration phase, the team worked for about twelve weeks to learn about

the application domain and in the process document the business process using use cases

and related object-oriented tools per the recommendations of RUP. UML and Rational

Rose tools were heavily used for documentation. The researcher worked actively in his

capacity as an external expert fully charged with the project design and development

supervision. As an action researcher, the researcher established and worked with the

consultant group and users to document/develop interpretations of business processes and

requirements, in addition to providing overall project leadership (by citing and sharing

previous experiences as required). The documentation of the business process redesign

prepared in the second project reported previously was also made accessible to the team.

Required additional information was collected through observation and from a series of

focused group discussions that took place on fortnightly basis in the presence of the

project team and users and the monthly meetings of the steering committee.

Three types of workshops were regularly conducted to support the work in the

elaboration phase. One series was concerned with building the skills of the consulting

team in both technical and social aspects of methods and processes employed. In these

workshops, which were conducted on weekly basis, team members shared experiences

among themselves on the concepts, techniques and tools of software methods and

processes in general and those related to RUP in particular. For these purposes, practical

cases from the project (that is, work products developed as part of the project) were used

 241

as objects of discussion and reflection. Individual and group assignments were given to

prepare and share experiences on selected topics of relevance to the project work. Such

group assignment topics included: use and application of certain tools and techniques,

comparison of methods, further investigation of problems encountered during the work,

etc. As part of the assignment, a member or a group conducted some research (in the

form of literature review, experimentation with certain tools, etc.) and made presentations

to the group based on the findings. Other members questioned and criticized aspects of

the presentation in order to learn about the topic of presentation. These workshops helped

members of the consulting team to have a shared understanding and enhanced skills on

the use and application of methods and processes in general and RUP in particular.

The other series of workshops concerned understanding the insurance application in

general and the business process at Organization B in particular. Likewise, in these

workshops (which were conducted on fortnightly basis), presentations followed by group

discussions were used as vehicles of understanding and knowledge building. These

workshops were attended by employees selected from the various departments in the

Head Office and Branch Offices. Initially, the presentations were primarily prepared and

made by members of the consulting team (the IT Group). In later sessions, however, user

counterparts working as domain experts (the Operation Group) were made to prepare and

present cases at the workshops. This did not only help to demonstrate ownership among

the domain experts, but also resulted in building confidence among the audience (the user

community in particular). The attendance, enthusiasm and active participation of

employees were observed to be much better in those workshops where the domain

experts made the presentations. Valuable comments, particularly in the areas of

workarounds introduced in practice and special processes introduced to attract more

customers, were made to enrich knowledge on the application domain and special

services provided.

The third series of workshops related to progress review. These workshops were

conducted on a monthly basis at the Project Management level and on a quarterly basis at

the Steering Committee level. These workshops particularly compared intended plans

with actual performance, and invited discussions on the variances. Special attention was

 242

paid to analyze causes for both weaknesses and strengths of project performance. Based

on the causes established, corrective measures were devised. As required, issues that

were not addressable at the Project Management level were brought to the attention of the

Steering Committee (this was done based on the issue escalation scheme developed as

part of the project plan). Per plan, the reports from the reviews were circulated to all

members of the project staff. Copies of the reports were also submitted to the Steering

Committee members.

While there were a number of problems encountered (see below), most of them were

resolved at the project team level, of course in close consultations with the management

of Organization B. Among the factors that negatively affected project performance and

were reported to the Steering Committee were the delay in filling the in-house IT

Manager position and the work overload on user counterparts. Both problems were

resolved through the intervention made by the Director General. The user counterparts

were generally very motivated. They worked very actively with the consulting team most

of the time. Due to the workload in their regular assignments (operational

responsibilities), however, they had to miss out in some of the critical sessions. This

created information gaps that at times slowed down work progress somehow. After

deliberations at the Steering Committee level on the matter, a decision was made to

relieve/excuse them of their regular duties as long as they were needed for the project

work.

Working intensively in this manner, the team was able to complete the elaboration phase

one month after the original plan. The delay, however, was not received by surprise by

stakeholders as they were being informed through the regular monthly progress reviews.

As a work product, a comprehensive and a detailed business process documentation was

produced using both use cases and object-oriented modeling tools. The outcome of the

elaboration phase was also presented to the management.

 243

(iii) Conflict Resolution

Once the business process was documented, the next major activity according to the

adjusted software acquisition process was to prepare a bid document and invite potential

suppliers. In the discussions held to map out the way forward, major differences featured

in the approach to be followed. In particular, the in-house IT manager insisted that the

appropriate process model to be followed should be somewhat like the traditional

waterfall. The reasons given as justification related to exercising better management

control over the procurement process. The manager claimed to base his suggestions on

prior exposure (the IT manager used to work for another company before joining

Organization B – the manager was also a former student of the researcher). The

consulting team, on the other hand, although open for change, did not see the point of

switching to the waterfall type process at this stage. Citing the unfavorable experience of

the previously failed cases, which followed a similar process, the consulting team insisted

that more iterative and incremental approaches based on prototyping be considered for

implementation.

The IT manager also recommended to the management that the role of the consultant

team be redefined. The recommendation in particular was to separate the activities of the

in-house IT unit and the consulting team, where the latter would be checked by the

former as to its performance in accordance with revised terms of reference. A series of

recommendations was also forwarded, based for the most part on traditional approaches

of project control. In addition, requests were made to include more general business

applications (such as human resource and fixed asset) in the priority list. Another

interesting development (for the researcher) was the insistence of the IT manager to

discourage direct user participation in the workshops and in the development activities.

Citing his years of experience in the industry and previous involvement in similar

software acquisition processes, the IT manager claimed that he was better equipped (than

the users) with most of the information required for the process of acquisition. Even

where there was a need for additional information, his office should be able to work it out

with the user units through formal administrative channels. To cut the story short, the IT

manager was insisting on the use and application of traditional approaches.

 244

Although attempts were made at the beginning to facilitate discussions between the

consulting team and the in-house IT Manager to resolve the disagreements, this did not

succeed. Gradually the disagreements grew into a serious conflict. At this stage, instead

of confronting, members of the consulting team opted to withdraw. For one thing,

according to them, they were unable to cope with the swift changes being proposed in the

strategy without consultation and discussion and thus unable to understand the positions

taken by the IT manager. Under the circumstances, they considered him not trustworthy

to work with. On the other hand, as long as the IT manager felt he knew what he was

doing and was able to convince management about it, the consultant team did not see the

need for external consultants. Furthermore, working with the new arrangement did not

interest them at all as researchers and students of software engineering.

The conflict had serious impact on the progress of the project. Considerable delays were

reported in the various review meetings. At this point, the researcher had to intervene. An

extraordinary Steering Committee was called to preside over the matter. After a series of

deliberation, the steering committee asked the researcher to make investigation into the

case and come up with recommendations to resolve the matter without further loss of

time. At the same time the Steering Committee, particularly the Director General,

strongly acknowledged and expressed the contribution of the consultant team and that

there should be no confusion around the continuation of the engagement. It was also

agreed that the delay in the project schedule could be tolerated until the conflict at hand is

resolved.

Accordingly, an assessment of the case was made by the researcher at two stages. First,

attempts were made to determine the main causes of the problems encountered in the

progress of the project. Based on the findings, the next step was to outline corrective

measures to be taken in order to expedite the successful implementation of the project.

The researcher, after making a series of discussions with both groups independently and

jointly, prepared a report on the findings and the way forward. The report was also

reviewed by the consultant team and the IT manager before its submission to the steering

committee. Where disagreements were expressed, they were noted in the same report.

 245

Among the major issues identified during the assessment process as prime causes of the

problems encountered were:

• Lack of shared understanding of project scope, process model, roles and

schedules;

• Lack of effective project leadership;

• Absence of an appropriate change control process;

• Absence of effective communication;

• Lack of openness and honesty about what one does and does not know; and

• Lack of integrity necessary to admit mistakes.

According to assessments made by the researcher, most of the recommendations made by

the in-house IT manager were based not so much on the needs of the project but on what

the IT manager knew and experienced. On the other hand, the consulting team

completely relegated all kinds of communication with Organization B to the IT manager.

For instance, the management was not aware of the disagreements until late, and only

knew the IT manager’s version of the story. As indicated, instead of engaging and

confronting, the consultant team opted to withdraw, failing to shoulder the responsibility

entrusted to it by the management, ignorant of its shortcomings in organizational

competence, etc. It was easily walked over by the more bureaucratically subtle and

outspoken IT manager to the extent of putting the project at risk.

On the part of the IT manager, in addition to the remarks made above, after coming so

late in the project, the sort of changes proposed without proper consultation and the

inflexibility demonstrated, may well be considered inappropriate. What is more, being

suspicious of the consulting team whose members were diligent in the pursuit of the

project goals before his arrival, and the need to watch over their shoulder to constantly

monitor their activities, may also be considered out of place.

The researcher was also to blame on grounds of the conflict of interests. Although the

disagreement was noticed relatively early, the researcher let it surface because of the

interest to study it. Although disagreements and conflicts were expected between users

 246

and developers, these were not particularly expected to manifest at this scale between

external consultants and internal technical personnel. So it was an interesting case to look

into. And the investigation18 gave an opportunity for this. However, the researcher is to

blame because of the interest to research into the case at the expense of the project

(putting the project at risk). With full confidence from the management of Organization B

and the respect from the professionals (as all members of the consultant team as well as

the IT manager were former students of the researcher) the researcher should have

intervened earlier than this.

The report prepared by the researcher was discussed at the steering committee level and

corrective measures were taken based on the recommendation. As a result, revisions were

made on the project plan including adjustment of approaches, roles and responsibilities.

The consulting team and the IT manager were still working together and the project

continued slowly but progressively. The invitation to bid was released, bid documents

were analyzed and a supplier was selected. At the time of writing this report, contracts

were being negotiated with the supplier and in this process an aspect of Reflective Steps

was being considered for application. In particular, the proposal with regard to formally

establishing a collaborative development team was presented for consideration by the

project management team.

18 The data collected and the analysis still continued and the full and detailed account will be published and
shared in due course of time.

CHAPTER EIGHT

8. Conclusion

As part of the researcher’s effort over the years (supported by his postgraduate students)

to ameliorate the software development situation locally, a research project was initiated

in parallel with teaching system development methods. The research reported here is part

of this effort. It related to tailoring complementary aspects of suitable software

development approaches (methods and processes) with the dual purpose of: enriching the

approaches themselves, and developing a context-sensitive methodical approach that

would contribute to the improvement of the software development situation in Ethiopia.

The underlying assumption in this research undertaking was that contextualization (to the

national context) and then customization (to a project context) of complementary aspects

of popular and widely used approaches would enhance the usability and application of

methods and processes in the software development effort. This in turn would improve

the local software situation and success rates of projects by contributing to the effort to

bridge the oversize supply-demand gaps.

Based on extensive review of related literature, years of experience in teaching and

practicing software development, and background work done for the purpose of this

research, the following strategy was developed and followed to come up with a context

sensitive approach.

• Overall assessment of the software development situation in Ethiopia for the

purpose of documenting the situation and the identification of factors that

characterize the national context in so far as determining suitability or

customization of software methods and processes is concerned.

• Closer examination of publicly available and widely used software methods and

process models for the purpose of understanding concerns and issues currently

being addressed by the frontiers in the industry and identification of those to be

considered for contextualization to the local settings.

 248

• Contextualization of selected methods and processes to the national level through

modification and incorporation of locally developed techniques and proven

practices.

• Customization of the contextualized methods and processes for use in a specific

project setting.

• Providing mechanisms through which software processes are established and

continuously improved in software companies.

• Building skills and competencies of both practicing software engineers and

students studying software engineering in higher learning institutions.

Projects operate within various levels of, often nested, contexts. For our purpose these

levels were classified into three: global/industry context, national context, and project

context as described below.

8.1 Industry (Global) Context

It has already been recognized among the software engineering community that the

software development process can not be fully formalized because it is a process that

demands: high social competence and team work, understanding of the use-situation and

consideration of organizational embedding. Accordingly, the scientific research interests

of the community have gone beyond the formal and mathematical methods provided for

in traditional computer science. In particular, in order to address the social aspects of

software development, the focus has shifted to exploring the tailoring of approaches

developed elsewhere for understanding organizational and human learning and

communication, individual and cooperative work. Historically, the efforts to systematize

software development approaches brought about the shift from unstructured and chaotic

processes to the traditional plan-driven (product-oriented or phase-oriented) structured,

linear time-delineated stage models and defined milestones. As of recent, efforts of the

software engineering community (to address the limitations of traditional methods

particularly in terms of addressing the social aspects) shifted to exploring approaches

which are more flexible, iterative, incremental and collaborative.

 249

However, there are still so many open questions and issues to be addressed around

methods and processes for software development. Accordingly, work in the area has

continued with focus on improvements in existing methods as well as the development of

new and better methods.

8.2 National Context

Although encouraging developments were observed in the network infrastructure

development component of ICT at the national level, the situation in application and

content development in general and software development in particular is not

satisfactory. There is very limited capacity in the software area compared to the huge

demand that resulted from the effort to realize investment in the infrastructure on the one

hand and efforts to introduce best practices in business operations on the other. Most of

the software development projects being outsourced are very large with organization-

wide and nation-wide implementation scope. Most of the projects concerned custom-

building of business applications for specific organizations. What is more, according to

the survey results, about 50% of these projects are from the government sector. On the

other hand, the software companies are small, staffed with formally trained (with 85%

with university degrees in computer science and related fields) but less experienced

(about 75% with less than 5 years of experience) personnel.

This demand-supply gap resulted in a situation that was dominated by high project failure

rates. The project success situation could be characterized by,

• Unrealized improvements in business efficiency and value as a result of the

software introduction;

• substantial budget and time overruns far beyond expected;

• delivery of unfriendly, and poor quality and thus unused software products;

• difficulty on the part of the users to effectively utilize the newly deployed

software systems because of inadequate training;

• incomplete documentation and lack of timely and affordable maintenance support,

and hence problem of sustainability, etc.

 250

With regard to method use, the local software development practice is dominated by the

use of ad-hoc in-house guidelines that involve cyclical requirement gathering and

programming/coding techniques. The use of disciplined project management and

software methods and process is very low.

The situation is partly attributable to technical skill deficiency due mainly to lack

of appropriate orientation in the field of software engineering in general and lack

of relevant training on methods and processes in particular. There are also

limitations in the publicly available processes and methods to fully address local

realities. What is more, efforts to tailor these methods to address local realities are

non-existent. Moreover, there is the absence of formally documented work

practices and related procedures and guidelines within software development

companies that demand use and application of methods and processes.

According to the survey results: about 49% of the professionals identified absence of

guidelines on method use as critical limiting factors to carry out their tasks effectively;

about 57% indicated adoption of guidelines and standards as an area that needed urgent

intervention; 65% indicated skill upgrading as an area that needed urgent intervention.

More over about 71% of the software companies identified the use of standard methods

and disciplined project management as most important to produce quality software on

time.

In relation to other performance inhabiting factors, the survey results indicated: change in

requirements, poor planning and staff turn over, lack of properly defined roles and

responsibilities, to account for 54%, 50%, 40%, and 43%, respectively. Communication

was almost informal both within the development team (82%) and between the

development team and users (70%). About 50% of the respondents identified

coordination with the team and communication with users as challenging tasks.

From reflections made on years of software development experiences in the local setting,

the most critical success/failure factors in custom-built application software included the

following: joint development of the software with domain experts and business process

 251

owners; project scoping; organizational communication and coordination to share

experiences and build better understanding on projects; overdependence on few highly

motivated and capable user counterparts; knowledge of software engineers on the

application domain; conscious and controlled management of changes taking place in

user organizations and technological platforms.

8.3 Solution Design Considerations

The following table summarizes the findings with regard to the features of the national

context (factors to be considered in the design of methodical approaches) together with

methodical strategies devised to tackle these factors.

 252

Context level Factor Strategy proposed
Industry/global Changing requirements

Use context
Organizational embedding

Methods & processes:
• Iterative
• Incremental
• Participatory
• Communication and Learning

Project type:
• Large projects with

national level deployment
• Custom-built business

applications
• Part of organizational

reform

Method and process contextualization:
• Project scoping and step-by-step

delivery
• Institutionalized collaborative (user +

supplier) development team
• Integrated business process redesign

and software design approach
Workforce:

• Soft skill deficiency
among practitioners

• Scarcity of qualified and
experienced professionals

• High staff turnover

• Work-based reflective learning for

practitioners
• Integrating real-life projects in course

delivery for students of higher learning
institutions to develop both technical
and soft skills

National

Passive user participation and low
motivation

Communication & coordination

Sustainability problem

Immature software engineering
environment: lack of historical data
and project stories, absence of
experience sharing platforms and
forums, small and young software
companies, absence of national
guidelines/standards on software
methods and processes

• Institutionalized collaborative
arrangements with incentives

• Use design, organizational
communication and embedding

• Awareness creation on the need for
national capacity building programs

Project Vary from project to project
No/zero learning
Absence of methods and process
guidelines at organizational level
Inadequate domain knowledge

Project-based step-by-step and continuous
software process improvement based on
collaborative reflective learning

Table 7: Summary of contextual features and corresponding strategies proposed

The factors that were considered as features of the national context were those issues that

were commonly recurring in almost all projects.

 253

In general, approaches that:

• presuppose a thorough familiarity with work place realities including the

extraordinary non-standardized work practices,

• promote collaborative and participative practices,

• provide flexibility in both project planning and software design, and

• try to benefit from new and emerging technologies and best development

practices,

were the ones considered suitable for customization.

8.4 Results So Far

Putting together the strategies outlined above, an attempt was made to develop a

methodical approach to software development which is responsive to the local context.

The approach was developed by contextualizing the STEPS model originally developed

by Floyd et al. (1989). Contextualization of STEPS to the national context resulted in a

methodical approach known as Reflective Steps.

Reflective Steps integrates three main software processes: project design (consisting of

one or more application software development efforts), application production

(concerned with the incremental design and development of an application software), and

application use (concerned with the organizational embedding, sustainability and

software maintenance). The cycles at project design level include incremental delivery of

a project, application by application, where each cycle involves the review of project

scope, priority, contract, etc. as developed applications are delivered. The cycles at

application production level include incremental delivery of an application, increment by

increment, where each cycle involves the revision of processes, plans and products upon

delivering an increment. The cycle at application use level includes embedding

operational versions of the increments delivered, version by version. Each cycle involves

installation of an operational version of the software increments developed, related

revision of work procedures, training, troubleshooting of software errors and

 254

determination of revision requests on delivering an integrated version of increments

developed up to that point.

The contextualized process model emphasises the explicit treatment of such important

activities to the local situation as consensus building, make-or-buy decision, project

portfolio management, business process redesign, among others. It involves the

incorporation of techniques developed by the author and proven practices in the area of

software project design and management methods (through selection and customization

of techniques and tools from such general project management standards as PMBOK and

Prince-2). It also incorporates a home-grown innovative and collaborative approach in the

area of business process redesign for software development.

For project level customization, continuous project-based process improvement through

collaborative reflection learning based on project experience is proposed. To this end,

drawing from organizational and individual learning theories, a multilevel learning

model, consisting of single-loop learning and double-loop learning, was developed. Each

learning cycle involves action-reflection-improvement (or reflection-in-action, reflection-

on-action and reflection-for-action), where the reflection in case of design, for instance,

involves design-critique-reflection. While the single-loop is concerned with taking

corrective measures at the tactical level without the need to revisit premises (goals,

processes, etc.), double-loop learning is concerned with taking corrective measures at

strategic level which involves questioning and revisiting the premises and basic

assumptions, and redesign of processes. In addition to process improvement, the learning

model developed is also suggested for use for managing changes to be introduced in the

product and in the project management.

From the experience of applying Reflective Steps in real-life project environments, a

Reflective Steps Workshop technique was developed to guide practice.

To address skill deficiencies of practitioners and students, collaborative reflective

learning based on project experiences is proposed. To facilitate this, in the case of

students, integration of real-life projects in the course delivery is suggested.

 255

Encouraging results were obtained in the field experiments conducted in real-life problem

situation, both in software development practice and in teaching at postgraduate studies.

Based on performance levels demonstrated, there is enough evidence to conclude that the

proposed method has the potential to improve teaching and practicing software

development in the local setting.

8.5 Overall Observation

Software development is a collaborative work where the product is developed by a jelled

development team composed of:

• technical members with knowledge of software development (software engineers,

method experts, etc.),

• members with knowledge of the application domain (key user representatives,

business process experts, etc.), and

• members with knowledge of project or change management (external experts).

To develop a usable system, there should be meaningful user participation in all phases of

the development process, where the users work together with designers to build systems

that fit their needs.

If software productivity and quality are to be improved, there is a need to devise ways

and means of facilitating continuous sharing and integration of domain knowledge,

software process knowledge, project progress knowledge, knowledge in mutual

understanding, amongst the project staff and concerned stakeholders. In the process,

practitioners must learn habits for inquiry, communication and problem solving through

collaborative reflection. At the same time they should develop technical knowledge of the

software engineering discipline.

No software development project exists in isolation; it operates within some context. The

context within which a project operates may be repeatable but may never be totally the

same. The features of the context are factors in the method selection, tailoring and use. It

 256

is not possible to talk about suitable approaches independent of context and experience-

based learning.

Project stories help us make sense out of our experience. Stories about past and present

projects, properly documented, are instruments for design and learning. Such stories help

in creating a shared understanding and meaning with others who want to join in the dance

of discovering how to design, develop and use software within a given context.

The step by step approach to software development enables the development team to

demonstrate results earlier and faster. It also provides an opportunity to continuously

refine plan, process, and design for the next increment.

Suitable processes and methods for a project are developed in the course of developing

the software itself by using a contextualized approach as a starter and then customizing

the contextualized approach in a step-by-step improvisation process through collaborative

reflective learning based on project experience.

Process improvement and product development exist in a co-creative relationship with

one another. The process affects the quality of the product; and the product developed is

used to evaluate the contribution of the process, resulting in the improvisation of the

process itself to help develop better quality products in subsequent steps.

Beyond the lecture-based methods that use textbook cases and simulations, greater focus

needs to be given to integrate real-life problem scenarios into the curriculum in order to

help students establish connections between the discipline and the world beyond the

classroom. In the process, students get an opportunity to build better skills in

organizational competence, communication, collaboration, team-working abilities, and

creative problem-solving.

 257

8.6 Future Work

With specific reference to the research questions outlined at the outset and the

achievements reported, the following generic recommendations are made for

consideration in the times ahead.

• With regard to further developing the proposed approach, more practical

experimentation and testing are required to concretize, operationalize and enrich

the proposed approach. Continuous assessments need to be done on the extent to

which the use of this approach practically improves the existing software

development situation, particularly in realizing such operational benefits as lower

costs, timely implementation, rise in quality, lower defect rates, flexibility to

change, and the ability to leverage new technical or business information. Further

work in the direction of project portfolio analysis for large project is critical.

• The situation assessment instrument developed for the purpose of this study needs

to be further developed in the form of standard instruments and guidelines that

may be adopted at national level for the purpose of assessing the capabilities of

local software firms, with a view to improve their competencies. Efforts in this

direction may be integrated with the contextualization of CMMI or related

techniques and tools to local settings.

• Further work on the cultural dimension of collaborative approaches, including

motivational factors in the local context, is required for successful application and

use of Reflective Steps.

• At the technical level, mechanisms to extend pair programming principles

commonly practiced in agile methods to those used in the case studies reported

(i.e., to support the work of two software engineers and one domain expert);

mechanisms to integrate the role of a facilitator, scribe and process expert in

project team establishment; and the tailoring of the ‘function-mechanism’

framework proposed for other applications by Miyake (1986) to supplement the

object oriented techniques of decomposition are all worth exploring.

• Efforts to integrate real-life projects into the teaching of software development

will no doubt help in addressing the skill deficiencies of students of higher

 258

learning institutions, as well as preparing them to work place realities. Successful

implementation of this in a sustained manner would, however, require further

work in the areas of reorientation in the perception and practice of software

development and software engineering, systematizing and institutionalizing the

effort so far through formal revisions of software engineering curriculum content

and content delivery (how the content is taught).

In addition, at the national level, awareness creation programs on the software

development situation, platforms for sharing of project stories (information, experiences

and learning), national guidelines and standards for software methods and processes, and

related capacity building programs need to be developed and facilitated to support the

smooth implementation and successful utilization of methodical approaches developed in

this and related works.

REFERENCES
Abrahamsson, P., Salo, O., Ronkainen, J., and Warsta, J. 2002. Agile software

development methods: review and analysis. On-line. Available from Internet,

http://virtual.vtt.fi/inf/pdf/publications/2002/P478.pdf., accessed 19 October 2007.

Ahmed K. 2006. An assessment of user participation practice on customer care and

billing project of ETC with special reference to participatory design methodology. M.

Sc. Thesis. College of Telecommunications and Information Technology. Addis Ababa.

Arent, J., Iversen, J. H, Andersen, C.V, and Bang, S. 2000. Project assessments:

supporting commitment, participation, and learning in Software Process Improvement.

Proceedings of the 33rd Annual Hawaii International Conference on System Sciences.

Hawaii. 4-7.

 Argyris, C. 1994. On organizational learning. Malden: Blackwell Publishers.

Argyris, C. and Schön, D.A. 1996. Organizational learning II: theory, method and

practice. Massachusetts: Addison-Wesley.

Argyris, C. and Schön, D.A. 1978. Organizational learning: a theory of action

perspective. Massachusetts: Addison-Wesley.

Austin, R. and Paulish, D. 1994. A survey of commonly applied methods for software

process improvement. Technical Report. CMU/SEI-93-TR-027. US Department of

Commerce: Springfield.

Avison, D. and Fitzgerald, G. 1995. Information systems development methodologies,

techniques and tools. London: McGraw-Hill.

Avison, D. Fitzgerald G., and Powell, P. 2001. Reflections on information systems

practice, education and research: 10 years of the information systems journal.

Information Systems Journal. 11 (1): 3-22.

Bale, L.S. 2007. Gregory Bateson’s theory of mind: practical application to pedagogy.

On-line. Available from Internet, http://www.narberthpa.com/Bale/lsbale dop/learn.htm,

accessed 19 October 2007.

Baker, M.J. 1999. Argumentation and constructive interaction. In. Foundations of

Argumentative Text Processing. J. Andriessen and P. Coier (eds.). Amsterdam:

University of Amsterdam Press.

 260

Barnden, A. and Darke, P. 2000. A comparison of SSM with an organisational learning

model. In: Proceedings of the International Conference on Systems Thinking in

Management (ICSTM2000), 89-94. G. Altmann (ed.).Australia :Geelong.

Barrett, L. and Lehtonen,K. 2004. Managing a product development team: part ii –

growing the team. On-line. Available from Internet, http://www.dau.mil/

pubs/dam/05_06_2004/bar-mj04.pdf, accessed 8 October 2007.

Basili, V. R. and Caldiera, G. 1994. Experience Factory. In: Encyclopedia of Software

Engineering. (ed.). Marciniak, J. J. 469-476. John Wiley & Sons, Inc.

Baskerville, R.L. 1999. Investigating information systems with action research.

Association for Information Systems, Atlanta 2(3).

Bateson, G. 2000. Steps to ecology of mind: collected essays in anthropology,

psychiatry, evolution, and epistemology. Chicago: University of Chicago Press.

Bateson, G. 1979. Mind and nature: a Necessary unity, Bantam Books. Advances in

Systems Theory, Complexity, and the Human Sciences. Hampton Press.

Beck, K. 2004. eXtreme Programming Explained: Embrace Change. 2nd Ed. England:

Addison-Wesley.

Birk, A. and Pfahl, D. 2002. A systems perspective on software process improvement.

Lecture Notes in Computer Science. 2559:4-18. Heidelberg: Springer Berlin.

Bjerknes, G. 1993. Some PD advice. ACM. 36(6): 39.

Bjerknes, G.1992. Dialectical reflection in information systems development.

Scandinavian Journal of Information Systems. 3: 55-77.

Bjerknes, G. Dahlbom, B., and Al, L.E. (eds.). 1990. Organizational Competence in

system Development. Lund: Student-litteratur.

Boahane, M. 1999. Information system development methodologies: are you being

served? In: the Proceeding of 10th Australian Conference on Information Systems.

Wellington.

Boehm, B. W. 2002. Get ready for agile methods, with care. Computer. 35(1): 64-69.

IEEE Computer Society Press: Los Alamitos.

Boehm, B. W. 1989. Theory W Software project management principles and examples.

IEEE Transactions on Software Engineering. 15(7): 902-916. Piscataway: IEEE Press.

 261

Boehm, B. W. 1988. A spiral model of software development and enhancement. IEEE

21(5): 61-72.

Boehm, B. and Turner, R. 2003. Using risk to balance agile and plan-driven methods.

Computers. 36(6): 57-66. Los Alamitos: IEEE Computer Society Press.

Boehm, B. W., Egyed, A., Kwan, J., Port, D., and Shah, A. 1998. Using the WinWin

spiral model: a case study. Los Alamitos: IEEE Computer Society Press.

Boehm, B. W. and Bose, P. 1994. A collaborative spiral software process model based

on theory. In: Proceedings of the 3rd International Conference on Software Process.

Reston, USA.

Boehm, B. W., Bose, P., Horowitz, E., and Lee, M. 1994. Software Requirements As

Negotiated Win Conditions. Proceedings of the First International conference on

Software Process. IEEE.

Boland, R. J. 1978. The process and product of system design. Management science.

24(9): 887-898.

Bond, C. and Kirkham, S. 1999. Contrasting the application of soft systems

methodology and reflective practices to the development of organizational knowledge

and learning: a review of two cases in the UK national health services. Proceedings of the

1999 ACM SIGCPR conference on Computer personnel research. 242-252. New Orleans.

Bostrom, R. P. and Heinen, J. S. 1977. MIS problems and failures: a socio-technical

perspective. part I: The Causes. University of Minnesota: Management Information

Systems Research Center.

Boud, D. 2001. Using journal writing to enhance reflective practice. In: English,

Promoting Journal Writing in Adult Education. New Directions in Adult and Continuing

Education. 90: 9-18. Gillen, M. A. (ed.). San Francisco: Jossey-Bass.

Boud, D. Keogh, R. and Walker, D. 1994. Introduction-what is reflection in learning?.

In: Reflection: turning experience into learning. 7-17. D Boud, R. Keogh and D. Walker.

(eds.). New York: Nichols Publishing Company.

Boud, D., Keogh, R., and Walker, D. (eds.). 1985. Reflection: turning experience into

learning. London: Kogan Page.

Budgen, D. 1999. Software Design Methods: Life Belt or Leg Iron? IEEE

Software.16(5): 133-135. IEEE.

 262

Burgess, Y. K. C. and Conklin, J. 1990. Report on a development project use of an

issue-based information system. In: Proceedings of CSCW'90. 105-118. New York:

ACM..

Caelen, J. and Jambon, F. 2006. A Platform for the Participatory Design. An

International Symposium. France.

Carmel, E., Whitaker, R.D., and George, J.F. 1993. PD and joint application design: a

transatlantic comparison. Communication of the ACM. 36(4): 40-48.

Caroll, J. M. 1995. Scenario-based design: Envisioning work and technology in system

development. New York: John Wiley and Sons.

Checkland, P. and Scholes, J. 1999. Soft systems methodology in action. New York:

John Wiley and Sons.

Christel, M. G. and Kang, K. C. 1992. Issues in Requirements Elicitation. On-line.

Available from Internet, http://stinet.dtic.mil/oai/oai?verb=getRecord& metadataPrefix=

html&identifier=ADA258932, accessed 21 October, 2007.

Clement, A. and Van den Besselaar, P. 1993. A retrospective look at PD projects. New

York: Communication of the ACM, ACM Press.

Cockburn, A. 2006. Agile software development: the cooperative game. 2nd Edition.

The Agile Software Development Series.

Constantine, L L. 2002. Process agility and software usability: toward lightweight

usage-centered design. Available from Internet, http://www.uml.org.cn/jiaohu

/pdf/agiledesign.pdf, accessed 12 August, 2007.

Constantine, L. L. 1989. OO and S methods: towards integration. American

Programmer. 2 (7/8).

Curtis, B., Krasner, H., and lscoe, N. 1988. A field study of the software design process

for large systems. Communication of the ACM. 31(11): 1268 – 1287.

Curtis, B., Kellner, M.I. and Over, J. 1992. Process modeling. Communications of the

ACM. 35(9): 75-90.

Dada, D. 2006. The Failure of E-Government in Developing Countries: a Literature

Review. EJISDC. 26(7):1-10.

 263

Dahms, M. and Faust-Ramos, E. 2002. Development from Within: Community

Development, Gender and ICTs. In: Feminist Challenges in the Information Age, Leske +

Budrich, Opladen. 267-286. C. Floyd, G. Kelkar, S. Klein-Franke, C. Kramarae, and C.

Limpangog (eds). International Women’s University.

Dalcher, D. and Drevin, L. 2003. Learning from information system failure by using

narrative and anti-narrative methods. South African Institute for Computer Science and

Information Technologies.

Danielsen, T., Pankoke-Babatz, U., Prinz, W., Patel, A., Pays, P., Smaaland, K., and

Speth, R. 1986. The amigo project – advanced group communication model for

computer-based communications environment. Proceedings of the 1986 ACM conference

on Computer-supported cooperative work. 115-142. New York: ACM Press.

Debrabander, B. and Edstrom, A. 1977. Successful information system development

projects. Management science. 24(2).

Dewey, J. 1933. How We Think: A restatement of the relation of reflective thinking to

the educative Process. Lexington, Massachusetts, D C Heath.

Diwan, A., Waite, W. M., and Jackson M.H. 2002. An Infrastructure for Teaching

Skills for Group Decision Making and Problem Solving in Programming Projects. New

York: ACM Press.

Dohlbom, B. and Mathiassen, L. 1993. Computers in context: the philosophy and

practice of system design. Blackwell Publishing Limited.

Drohan, S., Stapleton, L., and Stack, A. 2006. Problem solving skills in information

systems development curricula. Online. Available from Internet,

http://www.aishe.org/events/2005-2006/conf2006/proceedings/paper-02.doc. accessed 21

September, 2007

Enayati, J. 2002. The research: effective communication and decision-making in diverse

groups. A Chapter in Hemmati, Minu. Multi-Stakeholder Processes for Governance and

Sustainability - Beyond Deadlock and Conflict. London: Earthscan.

Faraj, S and Sproull, L. 2000. Coordinating expertise in software development teams.

management science. 46(12):1554-1568.

 264

Figueroa, M. E., Kincaid D. L., Rani, M., and Lewis, G. 2002. Communication for

social change: an integrated model for measuring the process and its outcomes. The

Rockefeller Foundation.

Fleck, R. 2003. Supporting reflection and learning with new technology. In: Human

Centred Technology Workshop 2003. 50-52. University of Sussex at Brighton.

Flores, F., Graves, M., Hartfield, B., and Winograd, T. 1988. Computer systems and

design of organizational interaction. ACM Transactions on Information Systems.

6(2):153-172.

Fitzgerald, B. 1996. Formalized systems development methodologies: a critical

perspective. Information Systems Journal. 6(1): 3-23.

Fitzgerald, B., Russo, N. L., and O'Kane, T. (2003), "Software development method

tailoring at Motorola", Communications of the ACM. 46(4): 65-70.

Flood, R. and Romm, N. 1996. Diversity Management: Triple Loop Learning. John

Wiley & Sons Ltd.

Floyd, C. 2005. Being critical in, on or around computing? Communication of the ACM.

207-211. ACM Press.

Floyd, C. 1992. Human Questions in Computer Science. In: Software Development and

Reality Construction. 15-27. C. Floyd, H. Züllighoven, R. Budde and R. Keil-Slawik.

(eds.). Springer-Verlag.

Floyd, C. 1992. Software development as reality construction. In: Software Development

and Reality Construction. 86-100. C. Floyd, H. Züllighoven, R. Budde and R. Keil-

Slawik. (eds.). Springer-Verlag.

Floyd, C., Reisin, F.-M., and Schmidt, G. 1989. STEPS to software development with

users. In ESEC’89: 2nd European Software Engineering Conference, Lecture Notes in

Computer Science. 387: 48-64. Ghezzi, C. and McDermid, J.A. (eds.). Berlin: Springer-

Verlag.

Floyd, C. 1987. Outline of a paradigm change in software engineering. In Computers and

Democracy - a Scandinavian Challenge.191-210.

Floyd, C. 1986. A comparative evaluation of system development methods, In

proceeding of the IFIP WG 8.1 Working Conference on Comparative Review of

Information Systems. 19-54. Amsterdam: North-Holland Publishing Co.

 265

Gasston, J. and Halloran, P. 1999. Continuous software process improvement requires

organizational learning: an Australian case study. Software Quality Journal. 8(1): 37-51.

Getahun G. 2006. Adapting requirements elicitation methodology framework by

drawing lessons from customer care and billing project at ETC. M. Sc. Thesis. College

of Telecommunications and Information Technology, Addis Ababa.

Goguen, J. 1992. The Dry and the wet. In Proceedings of IFIP Working Group 8.1

Conference.1-17.

Green, T. R. G., Payne, S. J., and Van der Veer, G. C. (eds.). 1983. Psychology of

computer use. London: Academic Press.

Green, D. and DiCaterion, A. 1998. Survey of system development process models,

CTG.MFA – 003: Penn State.

Greenbaum, J and Mathiassen, L.1990. Zen and the art of teaching systems

development. In Computers and Society, ACM, 20(1): 26-30.

Gregor, S and Jones, D. 2003. The formulation of design theories for information

systems. In Constructing the infrastructure for the knowledge economy: Methods and

tools, theory and practice. 83-93 Henry Linger, W. Gregory Wojtkowski, and Joze

Zupancic (eds.). New York: Kluwer Academic.

Hall, P. and Fernandez-Ramil, J. 2007. Managing the software enterprise: software

engineering and information systems in context. (1st ed.). Int. Cengage Bussness Press.

Halloran, P. 1999. Organizational learning from the perspective of a software process

assessment & improvement program. Washington: IEEE Computer Society.

Hansen, B., Rose, J., and Tjørnehøj, G. 2004. Prescription, description, reflection:

the shape of the software process improvement field. UK Association of Information

Systems Conference. Glasgow.

Hart, D.N. and Gregor, S. D. (eds.). 2004. Information systems foundations:

constructing and criticizing. Canberra:ANU Press

Hazzan, O. and Dubinsky, Y. 2005. Social Perspective of Software Development

Methods: The Case of the Prisoner Dilemma and Extreme Programming. On-line.

Available from Internet, http://edu.technion.ac.il/ Courses/cs_methods/ eXtreme

Programming/XP_Papers/XP2005Hazzan&Dubinsky_Social_Theories&XP.pdf.

accessed 11 July, 2007.

 266

Heeks, R. 2003. Most eGovernment-for-Development Projects Fail: How Can Risks be

Reduced? Institute for Development Policy and Management. University of Manchester.

Heeks, R. 2002. Failure, success and improvisation of information systems projects in

developing countries. Institute for Development Policy and Management, University of

Manchester.

Heeks R. 1999. The Tyranny of participation in information systems: learning from

development projects. Working paper no. 4 in Development Informatics series.

University of Manchester.

Heiskanen, A. 1995. Reflecting over a practice: framing issues for scholar

understanding. Journal of Information Technology & People. 8(4): 3-18.

Henry, C. L. 1981. Implementation: The key to successful information systems. New

York: Columbia University Press.

Hirschheim, R. and Klein, H. K. 1994. Realizing emancipatory principles in

information systems development: the case for ethics. Society for Information

Management and the Management Information Systems Research Center, Minneapolis.

18(1): 83-109.

Holtzblatt, K. and Beyer, H. R. 1993. Making customer-centered design work for

teams. ACM. 6(10): 92-103.

Hunt, A. and Thomas, D. 1999. The Pragmatic Programmer: From Journeyman to

Master. Addison-Wesley.

Jayaratna, N. 1994. Understanding and evaluating methodologies, NIMSAD: A systemic

Framework. Maidenhead. McGraw-Hill.

Jepsen, L. O., Mathiassen, L., and Nielsen, P. A. 1998. Back to thinking mode –

diaries as a medium for effective management of information systems development. In

Behaviour and Information Technology. 8(3): 207-217.

Jepsen, L. O., Mathiassen, L., and Nielsen, P. A. 1998. Using diaries. A chapter in

Reflective systems development. Mathiassen, L. (ed.) Vol 1& 2.

Jones, P. H. 1997. Handbook of team design: a practitioner’s guide to team system

development. McGraw-Hill.

 267

Kakabadse, N. K. and Kakabadse, A. 2003. Developing reflexive practitioners through

collaborative inquiry: a case study of the UK civil service. International Review of

Administrative Sciences. 69 (3): 365-383.

Keil-Slawik, R., 1992. Artifacts in Software Design, In Software Development and

Reality Construction. 168-188. C. Floyd, H. Züllighoven, R. Budde and R. Keil-Slawik.

(eds.). Springer-Verlag.

Kettunen, P. and Laanti, M. 2005. How to steer embedded software project: tactics for

selecting the software process model. Information & Software Technology 47(9):587-

608.

Kimaro, H. C. and Nhampossa, J. L. 2005. Analyzing the problem of unsustainable

Health Information Systems in less-developed economies: Case studies from Tanzania

and Mozambique. Information Technology for Development. 11(3):273-298.

Klischewski, R. 2004. Information Integration or Process Integration? How to Achieve

Interoperability in Administration, In Proceedings of EGOV (ed.). Traunmüller, R.

Springer, LNCS # 3183, Berlin. 57-65.

Kolb, D.A.1984. Experiential learning: experience as the source of learning and

development. New Jersey: Prentice Hall Inc.

Korpela, M., Soriyan, H.A., and Olufokunbi, K.C. 2001. Activity analysis as a

method for information systems development. Scandinavian Journal of Information

Systems. 12(1-2): 191-210.

Korpela M., Soriyan, H.A., Olufokunbi, K.C., and Mursu, A. 1998. Blueprint for an

African system development methodology: an action research project in the health sector.

In Implementation and evaluation of information systems in developing countries.

Vienna: IFIP.

Krabbel, A., Wetzel, I., and Züllighoven, H. 1997. On the inevitability intertwining of

analysis and design: developing systems for complex cooperations. In proceedings of

DIS'97 Designing Interactive Systems: Processes, Practices, Methods and Techniques.

205-213. G. Van der Veer, A. Henderson, S. Coles. (eds.). Amsterdam, The Netherlands.

 268

Krabbel, A., Wetzel, I., and Ratuski, S. 1996. Participation of heterogeneous user

groups: providing an integrated hospital information system, In PDC'96 Proceedings of

the Participatory Design Conference. 241-250. J. Blomberg, F. Kensing, E. Dykstra-

Erickson (eds.) Cambridge, Massachusetts, USA. 241-250.

Kruchten, P. 2000. The Rational Unified Process. An Introduction. England: Addison-

Wesley.

Kunda, D. and Brooks, L. 2007. Component-based software engineering for developing

countries: promises and possibilities. On-line. Available from Internet,http://www-

users.cs.york.ac.uk/~kimble/research/DC-paper.pdf. accessed 20 October, 2007.

Law, E. 2007 Reflective design practices in human computer interaction and software

engineering. On-line. Available from Internet,

http://www.ics.uci.edu/~redmiles/chiworkshop/papers/Law.pdf, accessed 21 September

2007.

Levina, N. 2005. Collaborating on multi-party information systems development

projects: a collective reflection-in-action view. Information Systems Research. 16

(2): 109-130.

Livingstone, D. and Lynch, K. 2000. Group project work and student-centered active

learning: two different experiences. Carfax Publishing, Taylor & Frances Inc.

Loy, P. H. 1990. A comparison of object-oriented and structured development methods.

ACM. 15(1): 44-48.

Lubelczyk, J. and Parra, A. 2000. Managing the Software Development Process, On-

line. Available from Internet, http://www.adass.org/adass/proceedings /adass99/O5-01/,

accessed 20 Sept. 2007.

Lynch, M. 2005. The Design of journals used for reflection. Master’s Thesis, Elton

Mayo School of Management. University of South Australia: Faculty of Business and

Management.

Mamykina, L., Candy, L., and Edmonds, E. 2002. ''Collaborative Creativity'' ,

Communications of the ACM. Special Section on Creativity and Interface. 45(10): 96-99.

Mathiassen, L. (ed.) 1998. Reflective systems development. Vol 1& 2.

Mathiassen, L. and Purao, S. 2002. Educating reflective systems developers,

Information Systems Journal. 12: 81-102.

 269

Mathiassen, L. and Nielsen, P. A. 1990. Surfacing organization competence. Soft

systems and hard contradictions. In. Organization Competence in system Development.

191-210. G. Bjerknes, B. Dahlbom, and L.E. Al. (eds). Lund:.Student-litteratur,

Mathiassen, L. and Nielsen, P. A. 1989. Soft systems and hard contradictions

approaching the reality of information systems. Journal of Applied Systems

Analysis.16:75-88.

McDermid, J. 1993. Software engineer’s reference book. CRC Press.

Mitev, N. 2000. Toward social constructivist understanding of is success and failure:

introducing a new computerized reservation system. Association for Information Systems.

Atlanta.

Mittelmann, A. 2000: Measuring soft facts in software development. in proceedings of

IDIMT-2000 8th interdisciplinary information management talks. 267-277. Hofer, S.;

Beneder, M. (eds.). Schriftenreihe Informatik, Band 3, Universitätsverlag Rudolf

Trauner, Linz.

Miyake, N. 1986. Constructive Interaction and the Iterative Process of Understanding.

Cognitive Science. 10(2): 151-177.

Moon, F. A. 2000. Reflection in learning and professional development: theory and

practice. Routledge Falmer.

Mumford, E. 1983. Designing human systems: the ETHICS method. Manchester: United

Kingdom.

Mursu, A., Soriyan, H.A., Olufokunbi, K.C., and Korpela, M. 2000. Information

system development in developing countries: theoretical analysis of special requirements

in Nigeria and Africa. Proceeding of the 33rd Hawaii International Conference on

Systems Sciences. 185. R.H. Sprague RH Jr. (ed.). Los Alamitos, CA: IEEE Computer

Society.

Nakakoji, K. and Fischer, G. 1995. Intertwining knowledge delivery and elicitation: a

process model for human-computer collaboration in design. Knowl.-Based Syst. 8(2-3):

94-104.

Naur P. 1983. Program development studies based on diaries. Green, T., Payne, S., &

van der Veer, G. Psychology of Computer Use. 159--170. Academic Press.

Naur, P. 1972. An experiment in program development. BIT.12: 347–365.

 270

Norman, D. A. 1993. Turn Signals are the Facial Expressions of Automobiles.

Cambridge: Basic Books.

Orlikowski, W.J. and Baroudi, J.J. 1991. Studying information technology in

organizations: research approaches and assumptions. Information Systems Research. 2

(1): 1-28.

Olle, T. W., Sol, H.G., and Verrijn-Stuart, Alex A. (eds.). 1986. Information Systems

Design Methodologies: Improving the Practice. Proceedings of the IFIP WG 8.1 Working

Conference on Comparative Review of Information Systems Design Methodologies:

Improving the Practice, Noordwijkerhout, The Netherlands, 5-7. (CRIS '86). North-

Holland.

Olle, T. W. Sol, H.G., MacDonald, I.G. 1988. Information systems methodologies: a

framework for understanding. England:Addison-Wesley.

Osguthorpe, R. T. 1999. The role of collaborative reflection in developing a culture of

inquiry in a school-university partnership: a U.S. perspective. On-line. Available from

Internet, http://www.eric.ed.gov/ERICDocs/ data/ericdocs2sql/ content_ storage

_01/0000019b /80/16/52/96.pdf, accessed 22 October, 2007.

Pfleeger, S.L. 1998. Software Engineering: Theory and Practice. New Jersey: Prentice-

Hall.

Polanyi, M. 1967. The Tacit Dimension. New York: Doubleday and Co.

Pomberger, G. 2007, Software engineering education – adjusting our sails. Power point

presentation. International conference on the Opening of Doctoral Program in IT. Adds

Ababa University. Addis Ababa, Ethiopia.

Pomberger, G. 2006. Boehm's Spiral Model Revisited. In Wirtschaftsinformatik –

Schluessel zum Unternehmenserfolg. ed. K. Fink, C. Ploder. Deutscher

Universitaetsverlag, Wiesbaden.

Pomberger, G. and Blaschek, G. 1996. Object-Orientation and Prototyping in Software

Engineering; New Jersey: Prentice Hall.

Pourkomeylian, P. 2002. Software Practice Improvement. Doctoral Dissertation.

Department of Informatics, Göteborg University. Sweden: ��teborg.

Pressman, R.S. 2003. Software engineering: a practitioner’s approach. London:

McGraw-Hill.

 271

Raelin, J. A. 2001. Public reflection as the basis of learning. Management Learning,

32(1):11-30.

Raelin, J. A. 1997. A Model of work-based learning, Organization Science. 8(6): 563-

578.

Rahel K. 2004. Software development assessment in Ethiopia. Masters Thesis.

Department of Computer Science, Addis Ababa University.

Ramesh, B. and Dhar,V. 1992. Supporting systems development by capturing

deliberations during requirements engineering, 18(6). Piscataway: IEEE Press.

Rauterberg, M. and Strohm, O. 1992. Work organization and software development.

Annual Review of Automatic Programming. 16 (2):121-128.

Rees, D. 2007. Integrating the “Hard” and “Soft” Sides of Systems Thinking – A Case

Study in New Zealand Local Government. On-line. Available from Internet,

http://ftp.informatik.rwth-aachen.de/Publications/CEUR-WS/Vol-

72/084%20Rees%20HardSoft.pdf. accessed , 19 October 2007.

Riehle, D. 2000. A comparison of the value systems of adaptive software development

and extreme programming: how methodologies may learn from each other. On-line.

Available from Internet, http://www.riehle.org/computer-science/research/2000/xp-

2000.pdf, accessed 19 October, 2007.

Rittel, H.J. and Webber, M. M. 1984. “Planning Problems Are Wicked Problems,” In

Developments in Design Methodology. Ed. N. Cross. 135–144. New York: John Wiley &

Sons.

Robey, D. and Farrow, D. 1982. User involvement in information system development:

a conflict model and empirical test. Management Science. 28(1): 73-85.

Rönkkö, Kari. 2005. Making methods work in software engineering: method deployment

- as a social achievement. PhD Dissertation. Blekinge Institute of Technology.

Salo, O. 2006. Enabling Software Process Improvement in Agile Software Development

Teams and Organizations. Faculty of Science, University of Oulu.

Sawyer, S. and Guinan, P. J. 1998. Software development: processes and performance,

IBM Systems Journal, 37(4): 552-569.

Scacchi, W. 2002. Process Modles in Software Engineering. CiteSeer, IST.

 272

Schön, D. 1987. Educating the Reflective Practitioner: Toward a New Design for

Teaching and Learning in the Professions. San Francisco, CA: Jossey-Bass.

Schön, D. 1983. Reflective practitioner: How professionals think in action.1st ed.

Cambridge: Basic Books.

Shaw, M. 1990. Prospects for an engineering discipline of software. IEEE Software.

7(6): 15 – 24.

Siau, K. and Rossi, M. 1998. Evaluation of Information Modeling Methods – a Review,

HICSS (5): 314-322

Sirak G.Y. 1988. Survey of the Development of Computer Use in Ethiopia. Addis

Ababa. Ethiopia

Sommerville, I. 1996. Software Engineering. 5th ed. England: Addison-Wesley.

Sørensen, E. K. 1999. Intellectual amplification through reflection and didactic change

in distributed collaborative learning. International Society of Learning Science. (71).

Tan, M. 1994. Establishing mutual understanding in systems design: an empirical study.

Journal of Management Information Systems. 10(4):159 – 182.

Taylor, B. 2004. Technical, practical and emancipatory reflection for practising

holistically. Journal of Holistic Nursing 22(1): 73-84.

Taylor, B. and Nurs, J. H. 2004. Technical, Practical, and Emancipatory Reflection for

Practicing Holistically. Journal of Holistic Nursing. 22(1): 73-84.

Taylor, C. 2006. Narrating significant experience: reflective accounts and the production of

(self) knowledge. British Journal of Social Work. 36(2):189-206.

Teferi K. 1994, Information Technology in Ethiopia. In Information Technology in

Selected Countries. Drew, E.P. and Foster, F.G. (eds.). The United Nations University,

Tokyo, Japan

Turner, J., Mavin, S., and Minocha, S. 2006. We will teach you the steps but you will

never learn to dance. The Learning Organization: an international journal. 13 (4): 398-

412.

Takeuchi, H. and Nonaka, I. 1986. The new product development game. Harvard

Business review.

Thomas, M. and McGarry, F. 1994. Top-down vs. Bottom-up Process Improvement.

Software IEEE. 11(4): 12-13.

 273

Thomas, E. 1996. Design as Story Telling. Interactions. The Guide to Computing

Literature. 3(4): 30-35.

Vygotsky, L.S. 1978. Mind in Society: the development of higher psychological

processes. Cambridge Ma: Harvard University Press

Wieringa, R. 1998. A survey of structured and object-oriented software specification

methods and techniques. ACM Press. 30(4):459-527.

Winogard, T. ed. 1996. Bringing design to software. England: Addison-Wesley.

Waema, T. M. 1996. Implementation of Information Technology projects and economic

development: issues, problems and strategies. In Global information technology and

socio-economic development. (ed.). Odedra-Straub. New Hampshire: Ivy League. 106-

115.

Wetzel, I. 2001. Information System Development with Anticipation of Change

Focusing on Professional Bureaucracies. Proceeding of Huwai’s International

Conference on Systems Sciences, HICCS-34. Maui.

World Bank, World Development Report. On-line. Available from Internet,

http://www.wrldbnk.org/wrd/wrd98/index.htm, (1998/99), accessed 12 August, 2007.

Züllighoven, H. 2003. Object-Oriented Construction Handbook: Developing

Application-Oriented Software with the Tools & Materials Approach. 1st edition.

Morgan Kaufmann.

Zucconi L. 1995. Software Process Improvement Paradigms for IT Industry: Why the

Bottom-Up Approach Fits Best. Proceedings of the 1995 Asia Pacific Software

Engineering Conference (APSEC '95): IEEE, CSIRO Division of information

Technology.

APPENDICES

Appendix – 1: Survey Questionnaires

Appendix 1A: Questionnaire for Software Development Professionals

Dear Madam/Sir

A research is currently being undertaken to understand, support and improve the software
development practice/situation in Ethiopia.

The overall purposes of the research are,

• to better understand the existing software development practices locally,
• to learn about and critically assess the practical use, usability and appropriateness

(affordability, availability, sustainability, etc.) of popular (‘industry standard’)
methodologies, in the local settings, and

• to use the findings to propose and test (in real-life projects) context sensitive and
usable innovative methodical approaches that would help in improving the
software development situation in our country.

To help in this effort, the enclosed questionnaire is being circulated to organizations and
professionals that are actively involved in the development of software locally. This
survey questionnaire is just one of the instruments being used to provide insight and will
soon be followed by interviews and workshops with major actors and analysis/diagnosis
of selected real-life projects.

As one of the major actors in this area, you are kindly requested to participate in this
survey. All you need to do for this moment is complete this questionnaire, which should
not take you more than 30 minutes. Your responses will be kept confidential.

It would be greatly appreciated if you could complete the questionnaire by 23rd May
2007.

Should you have any questions or concerns in completing the questionnaire, please call
0911211327 or email to tesfayeb@ethionet.et

Thank you in advance for your time and effort in completing this survey questionnaire.

Sincerely,

 Tesfaye Biru

 275

I. Formal training and software development experiences

1. What is your highest education level?

 1. High school

 2. Two-year College

 3. Four-year College

 4. Master’s Degree

 5. Doctorate/PhD Degree

2. If you have a degree, what is your field of study?

 1. Computer Science

 2. Information Systems/Science

 3. Computer Engineering

 4. Management Information Systems

 5. Other, please specify

3. What is your year of experience in systems and software development

1. Less than two years 2. Between 2 and 5 years

3. More than five years

4. In how many projects have you involved so far?

1. One project 2. Two projects

3. Three projects 4. More than three projects

5. How do you upgrade your skills in software development techniques and tools?

 5.1 Formal training in higher education

 5.2 Short term qualification training

 5.3 Attending conferences and workshops

 276

5.4 Personal effort (through reading books, tutorials, etc.)

 5.5 Other, please specify, ________________________

6. List the training you have taken so far other than your formal education (use additional
pages if necessary)

 Type/area of training Duration Place of training
6.1
6.2
6.3
6.4
6.5

7. How do you find the training provided to carry out your job?

1. Adequate

2. Inadequate

8. Does your company/institute pay for conferences and training

 8.1 For Scientific conferences

8.2 For Computer/trade conferences

 8.3 For Computer software/hardware vendor training on/off-site

 8.4 For Short term professional training

 8.5 The Company does not pay, I pay

II. Software development Projects

9. Please list the software projects you are involved in so far

Project Duration No. Project name Specific role (eg.
Programmer, analyst,
designer, project
manager, etc.

Start
date

Finish
date

9.1

9.2
9.3
9.4

 277

10. For the projects you are involved in, have you participated in the planning stages?

1. In most of them

2. In some of them

3. In none of them

11. How do you report project progress?

 11.1 Submit regular reports per plan
.

11.2 Weekly briefings

11.3 Do not report

11.4 Other, please specify

12. Which of the following software processes do you usually follow in the projects?

12.1. Simple code and-fix

 12.2 Waterfall

 12.3 Incremental and iterative

12.4 Unified process

12.5 Non-standard (eg. simple in house guideline)

12.6 Other, please specify

13. Which of the following software methodologies do you usually use in the projects?

13.1. Structured systems analysis and design

13.2 Object oriented analysis and design

13.3 Select and combine several methods as required

13.4 Non-standard (eg. simple in house guideline)

 13.5 Other, please specify:

 278

14. Which of the following software development tools do you usually use?
 14.1 UML

14.2 Rational Rose

14.3 CASE

14.4 Microsoft project management

 14.5 Other, please specify

15. Which one of the following is your primary development language in the projects?

15.1 Java

 15.2 C-Sharp

15.3 Visual Basic

15.4 Database development tools

 15.5 Other, please specify

16. If you are not using standard methods, techniques and tools, the reason is

16.1 Lack of training

16.2 The company does not require

16.3 Tools are not available

16.4 It is time consuming (require more effort to learn and apply)

16.5 Not suitable – involve unnecessary steps/details and lack

essential elements for local settings

16.6 Other, please specify

17. What tools do you usually use to document and track project performance/schedule?

17.1 Gannt charts

17.2 PERT

17.3 Review meetings

 279

18. Do you finish your specific project assignments on time?

18.1 Always

18.2 Most of the time

18.3 Some times

18.4 Not at all

19. If you do not mostly finish your project assignments on time, what are the reasons?

19.1 Difficulty in getting users to express their needs timely/clearly

19.2 Difficulty in capturing workarounds (work practices created

by users to handle exceptional cases but not properly
documented)

19.3 Frequently changing requirements

19.4 Lack of required diversity in skills within the project team

19.5 Unrealistic original schedule or limited resource allocation

19.6 High staff turnover

19.7 High work overload

19.8 Conflicts/uncertainties that result in group communication
breakdown

19.9 Lack of properly defined roles and responsibilities

19.10 Inadequate communication and interaction with users

19.11 Low motivation among user professionals to participate

19.12 Weak managerial/organizational support

 280

III. Communication with Users

20. How do you share information, experiences and learning with users?

 20.1 Regular Meeting

 20.2 Workshops

20.3 Planned discussions

20.4 Informal meetings and discussions

20.5 Other, pleas specify, __________________________

21. How often do you meet and work with users?

1. On daily basis 2. On weekly basis

3. On fortnightly basis 4. On monthly basis

5. Whenever necessary 6. Other, please specify

22. Where do you think users contribute more?

 22.1 Requirement gathering stage

 22.2 Design stage

 22.3 Implementation stage

 22.4 Through out the development process

 22.5 Other, please specify,

23. How do you handle conflicts with users whenever they arise?

23.1 Confront and resolve

23.2 Withdraw from engagement

 23.3 Report to management

 23.4 Wait for some time until conflict subsides

 23.5 Other, please specify

 281

24. At which location do you find yourself to be more productive?

1. Working at the users’ location

2. Working at your own location (away from the user’s location)

25. If you are productive at the users’ location, what do you think are the reasons?

25.1 Better interaction and collaboration with users

25.2 Better access to tools and facilities

 25.3 Less interruption by other activities (more focused)

 25.4 Other, please specify,

IV. Communication within the Development Team

26. How often do you meet with your group members?

1. On a daily basis 2. On a weekly basis

3. On a fortnightly basis 4. On a monthly basis

5. Whenever necessary 6. Other, please specify

27. How do you share information, experiences and learning with group members?

 27.1 Regular Meeting

 27.2 Workshops

27.3 Planned discussions

27.4 Informal meetings and discussions

27.5 Use of modern technology (groupware, email, etc.)

27.6 Other, please specify, _________________________

28. During team meetings, members

 28.1 Express thoughts and opinions clearly and freely
 28.2 Are shy and reserved

 282

28.3 Are influenced by groupthink (avoid critical thinking,
promote consensus thinking, etc.)

28.4 Other, please specify

V. General

29. Which of the following guidelines are available and in use at your workplace?

 29.1 Planning guideline

 29.2 Change management guidelines

29.3 Requirement documentation guidelines

29.4 Design documentation guideline

29.5 Coding guideline

29.6 No guideline

30. If you have guidelines, how do you insure proper use?

 30.1 Technical walkthrough

 30.2 Peer review (rotate specs among peers for comment/review)

30.3 Management review

30.4 User feedback

30.5 Other, please specify,

31. From your experience, which aspects of software development are challenging?
 Very challenging Challenging Not challenging
31.1 Planning
31.2 Requirement gathering
31.3 Analysis and design
31.4 Coordination with the team
31.5 Communication with users
31.6 Use of tools
31.7 Coding
31.8 Other, please specify

 283

32. Which of the following do you think are the most critical limiting factors to carry out
your task effectively and efficiently?

 32.1 Absence of guidelines on methodology use

 32.2 Lack of proper training

32.3 Lack of proper communication and collaboration

32.4 Lack of proper leadership and management

32.5 inappropriate personal relations and emotions

32.6 Lack of documentation skill

32.7 Lack of properly defined roles and responsibilities

32.8 Low level of trust between developers and users

32.9 Difficulty to cope up with the fast pace of technology change

32.10 Low motivation among user professionals to participate

32.11 Other, please specify, _____________________

33. In your opinion, which of the following areas need urgent intervention to
improve the situation?

 33.1 Adoption of guidelines and standards

 33.2 Discipline approach towards project management

33.3 Skill upgrading / training

33.4 Provision of software tools

33.5 Establishment of mutual understanding with users

 33.6 Other, please specify

34. In your opinion, what should be done to increase the usability of standard

methodologies?
 34.1 Provide tailored training on specific methodologies

 34.2 Customize methodologies to local settings and requirements

 284

34.3 Developing frameworks and guidelines to select and adapt

methodologies to specific project settings

34.4 Develop and enforce national and organizational standards

and guidelines for software processes and methods

34.5 Increase the availability and accessibility of tools

34.6 Create forums/platforms to exchange information, experience

and learning among practitioners, trainers and researchers

34.7 Other, please specify, ________________

35. From your experience, what skills are important for software development?

 Very important Important Less Important
35.1 Knowledge of the application domain
(the business area)

35.2 Knowledge of development techniques
and tools

35.3 Business process improvement /
reengineering skills

35.4 Project management skills
35.5 Analysis and design skills
35.6 Programming skills
35.7 Communication and negotiation skills
35.8 Relationship building skills
35.9 Other, please specify

THE END, THANK YOU!

 285

Appendix 1B: Questionnaire for Software Companies19
Dear Madam/Sir
A research is currently being undertaken to understand, support and improve the software
development practice/situation in Ethiopia.
The overall purposes of the research are,

• to better understand the existing software development practices locally,
• to learn about and critically assess the practical use, usability and appropriateness

(affordability, availability, sustainability, etc.) of popular (‘industry standard’)
methodologies, in the local settings, and

• to use the findings to propose and test (in real-life projects) context sensitive and
usable innovative methodical approaches that would help in improving the
software development situation in our country.

To help in this effort, the enclosed questionnaire is being circulated to organizations and
professionals that are actively involved in the development of software locally. This
survey questionnaire is just one of the instruments being used to provide insight and will
soon be followed by interviews and workshops with major actors and analysis/diagnosis
of selected real-life projects.
As one of the major actors in this area, you are kindly requested to participate in this
survey. All you need to do for this moment is complete this questionnaire, which should
not take you more than 30 minutes. Your responses will be kept confidential.
It would be greatly appreciated if you could complete the questionnaire by 23rd May
2007.
Should you have any questions or concerns in completing the questionnaire, please call
0911211327 or email to tesfayeb@ethionet.et

Thank you in advance for your time and effort in completing this survey questionnaire.
Sincerely,

 Tesfaye Biru

19 A slightly modified version of this questionnaire is distributed to IT Departments of Government
Organizations

 286

I. Company Information

 1. Name of the company:
 2. Date of Establishment:
 3. Address:

 4. Number of people in the software development group

Sex No. of Staff
1 Male

4.1 By Sex

2 Female
Type of employment No. of Staff

1 Full time

4.2 By type of
employment

2 Part time
Educational level No. of Staff

1 High School
2 Diploma (two-year college)
3 B.Sc/BA
4 MSc./MA

4.3 By
Educational
Level

5 PhD
Year

No. of staff

1. 2006 and after
2. 2003-2005
3. 2000-2002

4.4 By Year of
Graduation

4. 1999 and before
Age No. of staff
1. 17-23

2. 24-30
3. 31-38

4.5 By age

4. > 38
Job category No. of Staff
4.6a Programmers
4.6b System Analysts
4.6c Project managers

4.6 By job
category

4.6d General services and administrative
support

 287

5. Number of PROFESSIONAL staff that left your company over the last five years

Year

Number of staff
who left with out
completing project
assignments

Number of staff who
left after completion
of project
assignments

Job categories most of the
professionals who left (eg.
Programmers, analysts,
project managers)

6. List area of specialization (type of application softwares your company specialize in):

7 Number of customers

Category (please tick as appropriate) Sector No.

Government NGO Private
7.1 Education
7.2 Health
7.3 Financial
7.4 Civil Service
7.5 Transport
7.6 Publishing industry
7.7 Factory
7.8 Other, please specify

8. Do you have partnership arrangement with other companies?

 8.1 Yes, with foreign software development companies

8.2 Yes, with local software companies

8.3 Yes, Other, please specify

8.4 No partnership arrangement

9. Means of getting new customer:

 9.1 Through participation in competitive tendering process

9.2 Through personal contact

 288

10. If your response to question number 9 is through tendering process, what is your
opinion about the tendering process?

10.1 Tender documents provide adequate information on user
requirements to prepare responsive proposals.

10.2 Tender documents usually demand use of standard
methodologies and processes

10.3 Tender processing usually takes very long time (beyond the
validity dates of the proposals)

10.4 Tender documents usually provide enough time for preparing
proposals

10.5 Tender documents specify realistic project duration

10.5 Tender documents clearly specify general contract terms and
conditions

10.6 Tender documents contain flexible contract terms and
conditions

10.7 Other, please specify:

11. For which of the following activities do you have formally documented policy and
procedure?

11.1 Project initiation, planning, monitoring and control

11.2 Requirement gathering

11.3 Analysis and design

11.4 Coding

11.5 Testing and handover

11.6 Maintenance and support

11.7 No formally documented policy and procedure

 289

12. If you have formally documented policies and procedures, please indicate whether
you have proper guidelines and training for their use

12.1 Appropriate guidelines for use are available and accessible

12.2 Guidelines are updated regularly

12.3 Training on use of guidelines are provided regularly

12.4 Orientation is provided for project personnel upon assignment

12.5 There are no guidelines for use

13. Do you prepare project management plan for your software development projects?

1. Always

2. Not always, only when requested by the users/client

3. No separate project management plan (We simply use the scope
of work in the contract)

14. In relation to assignment of project management responsibility?

 14.1 A project manager is assigned for each project

14.2 Software unit manager plays the role of the project manager

15. What are the deliverables usually expected of projects (in addition to the software)?

 15.1 Inception report

 15.2 Project management plan

 15.3 Requirement analysis document

 15.4 Design document

 15.5 Test plans and results

 15.6 Project progress report

 15.7 Operation and training manual

 15.8 Other, please specify

 290

16. How do you handle changes in projects

16.1 There is a standard format to initiate, discuss and approve change

16.2. The change process is communicated to all stakeholders timely

16.3 Only management participates in the decision process related to
change

16.4 Both management and users participate in the decision process
related to change

16.5 The development team also participates in the decision process

 16.6 On the basis of approved changes, the project plan and contract are

formally revised and properly documented

 16.7 Additional resources required are provided immediately

17. In relation projects already completed (please fill in the following table for upto five
most current projects)

Project name Planned Actual Major Reasons for delay

(please tick the reasons that
apply – see the description at
the bottom part of the page)

 Start Finish Start Finish

Major reasons for project delay

A. Poor planning because of unclear / incomplete requirements
B. Poor planning because of lack of project management skill

A B C D

E
F G H

A B C D

E F G H

A B C D

E
F G H

 291

C. Lack of proper progress monitoring and control
D. High project staff turnover
E. Lack of use of appropriate software development methodology
F. Inadequate budget to finance additional work due to changes in

user requirements
G. Lack of cooperation from users
H. Problems within the development team

18. For completed projects, how do you compare the alterations/changes in the

requirement specified in the original tender document and actual implementation?

 18.1 Almost the same

 18.2 Similar but with minor variation

 18.3 Major variation

 18.4 Totally different

19. If your response to question 18 is “major variation” or “totally different”, what do

you think are the major reasons?

 19.1 Inability of the user to adequately articulate requirements at
the beginning

 19.2 Lack of requirement engineering skills of developers

 19.3 Inadequate planning during the tendering

 19.4 Changes in the organization since the commencement of the

project

 19.4 Other, please specify:

 292

20. Please indicate the relative importance of the following factors in terms of helping
you deliver quality product on time and within budget

 Very
important

important Not
important

20.1 Introduce and follow standard / formal
methods for software development

20.2 Introduce and follow disciplined software
development project management

20.3 Introduce skill upgrading programs for
software staff in technical areas.

20.4 Introduce skill upgrading programs for
software staff in organization and management

20.5 Partner with experienced foreign software
development company

20.6 Work closely with higher learning institutions
to improve the profiles of graduates

20.7 Increase the use of software development
technologies and tools

20.8 Properly define and institutionalize the
software development process

20.9 Involve user representatives in the
development team

20.10

 293

 Appendix – 2: Sample Source Programs

/*************************************
* windio.c - Low level input output routines
************************************/
#include <c:\qc25\include\stdio.h>
#include <c:\qc25\include\dos.h>
#include <c:\qc25\include\string.h>
#include "windows.h"

static void initcur(void);

static int cursorstart = -1, cursorend = -1;

void cursoroff()
{
 union REGS regs;
 initcur();
 regs.h.ah = 1;
 regs.x.cx = 0x2000;
 int86(0x10, ®s, ®s);
}
void cursoron()
{
 union REGS regs;

 initcur();
 regs.h.ah = 1;
 regs.h.ch = cursorstart;
 regs.h.cl = cursorend;
 int86(0x10, ®s, ®s);
}
void setcurpos(row, col)
int row;
int col;
{
 union REGS regs;

 regs.h.ah = 2;
 regs.h.bh = 0;
 regs.h.dh = --row;
 regs.h.dl = --col;
 int86(0x10, ®s, ®s);
}

void setcursor(cstart, cend)

 294

int cstart;
int cend;
{
 cursorstart = cstart;
 cursorend = cend;
 cursoron();
}
void getcurpos(row, col, cstart, cend)
int *row;
int *col;
int *cstart;
int *cend;
{
 union REGS regs;
 regs.h.ah = 3;
 regs.h.bh = 0;
 int86(0x10, ®s, ®s);
 *row = ++regs.h.dh;
 *col = ++regs.h.dl;
 *cstart = regs.h.ch;
 *cend = regs.h.cl;
}

void fillone(row, col, chr, att)
int row;
int col;
int chr;
int att;
{
 union REGS regs;
 setcurpos(row, col);
 regs.h.ah = 9;
 regs.h.al = chr;
 regs.h.bh = 0;
 regs.h.bl = att;
 regs.x.cx = 1;
 int86(0x10, ®s, ®s);
}
void printone(row, col, chr)
int row;
int col;
int chr;
{
 union REGS regs;

 setcurpos(row, col);

 295

 regs.h.ah = 10;
 regs.h.al = chr;
 regs.h.bh = 0;
 regs.x.cx = 1;
 int86(0x10, ®s, ®s);
}
void setone(row, col, att)
int row;
int col;
int att;
{
 union REGS regs;
 setcurpos(row, col);
 regs.h.ah = 8;
 regs.h.bh = 0;
 int86(0x10, ®s, ®s);
 regs.h.ah = 9;
 regs.h.bl = att;
 regs.x.cx = 1;
 int86(0x10, ®s, ®s);
}
void printcenter(row, col, string)
int row;
int col;
char *string;
{
 printstring(row, col-(strlen(string) >> 1), string);
}
static void initcur()
{
 union REGS regs;
 if (cursorstart == -1 && cursorend == -1) {
 regs.h.ah = 3;
 regs.h.bh = 0;
 int86(0x10, ®s, ®s);
 cursorstart = regs.h.ch;
 cursorend = regs.h.cl;
 }
}

 296

/********************************
* window.c - Dynamic window routines
**********************************/
#include <c:\qc25\include\stdio.h>
#include <c:\qc25\include\stdlib.h>
#include <c:\qc25\include\stdarg.h>
#include <c:\qc25\include\malloc.h>
#include "windows.h"
static void reset_initial_video(void);
void draw_window(row1, col1, row2, col2, watt, bflg, ...)
int row1, col1;
int row2, col2;
int watt;
int bflg;
{
 int batt;
 va_list arg_marker;
 va_start(arg_marker, bflg);
 clearscreen(row1, col1, row2, col2, watt);
 if (bflg != _NO_BORDER) {
 batt = va_arg(arg_marker, int);
 drawbox(row1, col1, row2, col2, bflg, batt);
 }
}
void draw_window(int, int, int, int, int, int, ...);
WINDOW *open_window(row1, col1, row2, col2, draw, ...)
int row1, col1;
int row2, col2;
int draw;
{
 int watt, bflg, batt;
 va_list arg_marker;
 WINDOW *window;
 va_start(arg_marker, draw);
 window = malloc(sizeof(WINDOW));
 if (window == NULL) {
 display_error("Not enough memory to open window");
 return(window);
 }
 window->row1 = row1;
 window->col1 = col1;
 window->row2 = row2;
 window->col2 = col2;
 window->videoarray = malloc((col2 - col1 + 1) * 2 * (row2 - row1 + 1));
 if (window->videoarray == NULL) {
 free(window);

 297

 display_error("Not enough memory to open window");
 return(window);
 }
 savescreen(row1, col1, row2, col2, window->videoarray);
 if (draw) {
 watt = va_arg(arg_marker, int);
 bflg = va_arg(arg_marker, int);
 if (bflg == _NO_BORDER)
 draw_window(row1, col1, row2, col2, watt, _NO_BORDER);
 else {
 batt = va_arg(arg_marker, int);
 draw_window(row1, col1, row2, col2, watt, bflg, batt);
 }
 }
 return(window);
}
WINDOW *open_window(int, int, int, int, int, ...);
WINDOW *close_window(window)
WINDOW *window;
{
 if (window != NULL) {
 restorescreen(window->row1, window->col1, window->row2,
 window->col2, window->videoarray);
 free(window->videoarray);
 free(window);
 }
 return(NULL);
}
#ifdef MICROSOFTC
#define DEFMEMMOVE
#endif
#ifdef DEFMEMMOVE
 static char *memmove(dst, src, n)
 char *dst;
 char *src;
 unsigned int n;
 {
 char *beg = src;
 if (src + n > dst) {
 src +=n;
 dst +=n;
 while (n--)
 *--dst = *--src;
 }
 else
 while (n--)

 298

 *dst++ = *src++;
 return(beg);
 }
#endif
void scroll_window(window, num, dir, att)
WINDOW *window;
int num;
int dir;
int att;
{
 int i, row1, col1, row2, col2, rows, cols;
 char *videoarray;
 switch (dir) {
 case _UP:
 case _DOWN:
 case _LEFT:
 case _RIGHT:
 row1 = window->row1 + 1;
 col1 = window->col1 + 1;
 row2 = window->row2 - 1;
 col2 = window->col2 - 1;
 break;
 case _UPA:
 case _DOWNA:
 case _LEFTA:
 case _RIGHTA:
 row1 = window->row1;
 col1 = window->col1;
 row2 = window->row2;
 col2 = window->col2;
 }
 cols = (col2 - col1 + 1) * 2;
 rows = row2 - row1 + 1;
 if ((videoarray = malloc(cols * rows)) == NULL) {
 display_error("Not enough memory to allocate scroll buffer");
 return(window);
 }
 savescreen(row1, col1, row2, col2, videoarray);
 switch (dir) {
 case _UP:
 case _UPA:
 for (i = row1 + num; i < row2 + 1; i++)
 memmove(videoarray + (i - num - row1) * cols,
 videoarray + (i - row1) * cols, cols);
 break;
 case _DOWN:

 299

 case _DOWNA:
 for (i = row2; i >= row1 + num; i--)
 memmove(videoarray + (i - row1) * cols,
 videoarray + (i - num - row1) * cols, cols);
 break;
 case _LEFT:
 case _LEFTA:
 for (i = row1; i <= row2; i++)
 memmove(videoarray + (i - row1) * cols,
 videoarray + (i - row1) * cols + num * 2,
 cols - num * 2);
 break;
 default:
 for (i = row1; i <= row2; i++)
 memmove(videoarray + (i - row1) * cols + num * 2,
 videoarray + (i - row1) * cols, cols - num * 2);
 }
 restorescreen(row1, col1, row2, col2, videoarray);
 if (att) {
 switch (dir) {
 case _UP:
 case _UPA:
 clearscreen(row2 - num + 1, col1, row2, col2, att);
 break;
 case _DOWN:
 case _DOWNA:
 clearscreen(row1, col1, row1 + num -1, col2, att);
 break;
 case _LEFT:
 case _LEFTA:
 clearscreen(row1, col2 - num + 1, row2, col2, att);
 break;
 default:
 clearscreen(row1, col1, row2, col1 + num - 1, att);
 }
 }
 free(videoarray);
}
void vertical_bar(window, current, total, att)
WINDOW *window;
int current;
int total;
int att;
{
 int marker;
 if (total == 0) {

 300

 current = 0;
 total = 1;
 }
 fillone(window->row1 + 1, window->col2, 24, att);
 fillscreen(window->row1 + 2, window->col2, window->row2 - 1,
 window->col2, 177, att);
 fillone(window->row2 - 1, window->col2, 25, att);
 marker = (int)((long)(window->row2 - window->row1 - 4)
 * current / total + window->row1 + 2);
 fillone(marker, window->col2, 176, att);
}
void horizontal_bar(window, current, total, att)
WINDOW *window;
int current;
int total;
int att;
{
 int marker;
 if (total == 0) {
 current = 0;
 total = 1;
 }
 fillone(window->row2, window->col1 + 1, 27, att);
 fillscreen(window->row2, window->col1 + 2, window->row2,
 window->col2 - 2, 177, att);
 fillone(window->row2, window->col2 - 1, 26, att);
 marker = (int)((long)(window->col2 - window->col1 - 4)
 * current / total + window->col1 + 2);
 fillone(window->row2, marker, 176, att);
}
static WINDOW *window;
static int srow, scol, sstart, send;
void save_initial_video()
{
 settext80();
 getcurpos(&srow, &scol, &sstart, &send);
 cursoroff();
 window = open_window(1, 1, 25, 80, _DRAW, 7, _NO_BORDER);
 atexit(reset_initial_video);
}
static void reset_initial_video()
{
 close_window(window);
 setcurpos(srow, scol);
 setcursor(sstart, send);
}

 301

Appendix – 3: Insurance design specifications on paper and Email exchanges

 302

Appendix 3 ... cont’d

 303

Appendix 3 ... cont’d

 304

Appendix 3 ... cont’d

 305

Appendix 3 ... cont’d

 306

Appendix - 4: Project Management Tools used for teaching and projects

Appendix 4A: Communications Plan

Communications Plan
Senior Management

Communication
(Meeting, Report, etc.)

Frequency / Dates Originator Distribution/
Information
Flow

Comments

Functional Management
Communication
(Meeting, Report, etc.)

Frequency / Dates Originator Distribution/In
formation
Flow

Comments

Project Team
Communication
(Meeting, Report, etc.)

Frequency / Dates Originator Distribution/In
formation
Flow

Comments

 307

Appendix 4B: Change Control Form

Project Change Control Form
Project Name:

Project Number:

Project Manager:

Change Request:

Description (background):

Impact Assessment

Impact on Service/Quality

Impact on Schedule:

Impact on Cost:

Immediate Action Required?
(Include communication/
notification of change
requirements):

Authorization

Requested by: Name:

 Signature:

Date
Requested:

Approved by: Name:

 Signature:

Date Approved:

 308

Appendix 4C: Risk Management Plan

Risk Management Plan

Risk Event Probability

of Risk
Consequence of Risk Recommended

Action
Description
of Action

 Low,
Moderate,
High

Low, Moderate, High Accept, Avoid,
Transfer, Reduce

1.

2.

3.

4.

5.

 309

Appendix 4D: Issue Management Log

Issue Management Log

Prepared by:

Issue
Numbe
r

Issue Description

Date
Identified

Assigned To

Date
Resolution
Required

Resolutio
n

Date
Resolved

 310

 Appendix 4E: Meeting/Workshop Evaluation Form

Meeting/Workshop Evaluation Form Date:

1. Purpose of the Meeting 1 2 3 4 5
Totally unclear as to the purpose
of the objective

 The purpose or objective of the meeting
was well defined

2. Decided what we wanted to
achieve

1 2 3 4 5

By the end of the meeting, we still
had no idea of what we wanted to
achieve.

 We decided what we wanted to achieve by
the end of the meeting.

3. Meeting Preparation 1 2 3 4 5
We were totally unprepared for
this meeting

 We were sufficiently prepared for this
meeting

4. Meeting Effectiveness 1 2 3 4 5
Disconnected information and
Tangent discussions.

 Crisp & focused presentation &
discussion. Good flow of information.

5. Team Participation 1 2 3 4 5
Little team participation in
discussions.

 Team participated actively in the meeting.

6. Ground Rules 1 2 3 4 5
We violated many of our ground
rules during the meeting.

 It was evident that we were living by our
ground rules.

7. Meeting Process 1 2 3 4 5
Meeting started/finished late
and/or incomplete attendance.

 Meeting started & finished on time with
consistent attendance.

8. Time Allocation 1 2 3 4 5
Agenda item continually ran over
allotted times.

 Agenda items addressed per the allotted
times.

9. Meeting Usefulness 1 2 3 4 5
A complete waste of time. The meeting was an effective use of my

time.

10. Team Building 1 2 3 4 5
The meeting was a chore. We had fun.

 311

Ich erkläre hiermit an Eides statt, dass ich diese Arbeit selbst verfasst
und keine anderen als die angegebenen Hilfsmittel verwendet habe.

Hamburg, im Oktober 2008

Tesfaye Biru

