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To my mother

Die Quanten sind doch eine ho�nungslose Schweinerei.

Max Born to Albert Einstein





Abstract

The simple bilayer model of the platinum-water-vacuum interface can explain most experimental

results, but fails on details. Our work suggests that cooperative e�ects are very important for the

�ne-structure of the interface. The platinum-water (chapter 6) and the hydrogen bond (chapter 3)

have been found to be very much alike. Intermolecular electron transfer as observed in the water

trimer has a strong in
uence of the interface structure and can move the water molecules out of

their ideal positions (chapter 8).

Our new water-water interaction potential (chapter 4) has been used to explore the potential

energy surfaces of the water trimer (chapter 4) and hexamer (chapter 8). The results on the hexamer

suggest that a seamless transition between the platinum surface and the ice crystal is not possible.

Structures similar to the QLL (Quasi Liquid Layer) have been observed, which can explain the

low vertical dipole moment of surface water, while cooperative forces can be used to explain the

second desorption peak (165 K) in TDS (Thermal Desorption Spectroscopy) experiments.

The weak bond between water and platinum is controlled by two opposing forces: the Coulomb

repulsion between the 6s electrons of the platinum cluster and the oxygen atom and the bonding

interaction between a platinum 5d orbital and the free electron pair of the water molecule. A high

6s population, which repells the water molecule, creates at the same time a strong bond among

the platinum atoms. It is therefore impossible to create a surface model with strong intermetallic

bonds and a strong platinum-water bond at the same time.

The quality of the surface model depends strongly on the 6s population and so on the electronic

state of the metal cluster. The analysis of the platinum-water bond would have been impossible

without a modi�cation of the H�uckel theory (chapter 5), which was used to select suitable can-

didates as surface models and to understand the electronic structure of the platinum cluster and

electron movements during the formation of the platinum-water bond.

The intermetallic bond in the platinum cluster is dominated by the 6s orbitals and the 5d

orbitals have to be considered in full detail only at active surface atoms. This assumption was

�nally proofed by the development of a new 1 valence electron ECP (E�ective Core Potential) for

bulk and passive surface atoms (chapter 7), which can be used to reduce the computational costs

for the analysis of larger platinum clusters.



Zusammenfassung

Ein einfaches Doppelschicht-Modell f�ur das Grenzsystem Platin-Wasser kann die meisten experi-

mentellen Ergebnisse erkl�aren, versagt aber bei der Interpretation von Details. In dieser Arbeit

werden wir nachweisen, da� cooperative E�ekte sehr wichtig f�ur die Feinstruktur der Grenzschicht

sind. Die Platin-Wasser Bindung und die Wassersto�br�uckenbindung sind einander sehr �ahnlich

(Kapitel 6) und intermolekularer Ladungstransfer, wie er auch im Wassertrimer beobachtet wird,

kann einzelne Wassermolek�ule aus ihrer idealen Position bringen (Kapitel 8).

Unser neues Wasser-Wasser-Wechselwirkungspotential (Kapitel 4) wurde benutzt, um die Ener-

giehyper
�ache des Wassertrimers (Kapitel 4) und des Wasserhexamers (Kapitel 8) zu untersuchen.

Die Ergebnisse f�ur das Hexamer lassen vermuten, das ein nahtloser �Ubergang zwischen der Platin-

ober
�ache und einem Eiskristall wie bisher angenommen nicht m�oglich ist. Strukturen, �ahnlich

einer zweidimensionalen Schicht 
�ussigen Wassers auf Eis (engl. QLL, Quasi Liquid Layer), wur-

den an der Grenze zwischen Metall und Eis beobachtet. Solch ein Strukturmodell erkl�art den

kleinen Anteil des Dipolmoments eines Wassermolek�uls in der Grenzschicht senkrecht zur Metallo-

ber
�ache, w�ahrend die oben erw�ahnten cooperativen Kr�afte erstmals eine Deutung f�ur den zweiten

Desorptionspeak (165 K) in TDS Experimenten (Thermal Desorption Spectroscopy) bieten.

Die schwache Bindung zwischen Platin und Wasser kann mit zwei einander widersprechenden

Kr�aften erkl�art werden: Die Coulomb-Absto�ung zwischen den 6s Elektronen des Platins und dem

negativ geladenem Sauersto� im Wassermolek�ul ist die erste Kraft und die zweite bindende folgt

aus dem �Uberlappen eines freien Elektronenpaars des Wassermolek�uls mit einem Platin 5d Orbital.

Eine hohe 6s Besetzungsdichte, die das Wassermolek�ul abst�o�t, ezeugt aber gleichzeitig eine starke

Platin-Platin Bindung. Es gibt entweder eine starke Platin-Platin Bindung im Metallcluster oder

eine starke Metall-Wasser Bindung, aber nie beides gleichzeitig.

Die 6s Elektronendichte erwies sich als Schl�ussel zu einem realit�atsnahen Ober
�achenmodell.

Eine Modi�kation der H�uckel-Theorie (Kapitel 5) half uns, die elektronische Struktur des Platin-

clusters und die Bewegung der Elektronen w�ahrend der Wasseradsorption zu verstehen. So war es

uns m�oglich, gezielt nach geeigneten Kandidaten f�ur die Ober
�achenmodellen zu suchen.

Die Metall-Metall Bindung im Platincluster wird von den 6s Orbitalen dominiert, w�ahrend die

5d Orbitale nur wichtig sind f�ur die Bindung des Wassermolek�uls an ein aktives Ober
�achena-

tom. Diese Annahme f�uhrte zu der Entwicklung eines funktionierenden 1 Valenzelektronen ECP

(E�ective Core Potential), da� in Zukunft die Untersuchung gro�er Ober
�achenmodelle erm�ogli-

chen wird.
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Chapter 1

Introduction

1.1 General Introduction

Water is probably one of the most common and best analysed chemical substances on this planet.

The oceans, which cover 70.8% of the planet's surface, store 97.3% of all water (1.385�109 km3).

Platinum on the other hand is very rare (0.01 ppm [1]). This work so focuses on the interaction

between the common and the noble.

Platinum is a very important catalysist. The �rst reaction studied in detail, which served

for the de�nition of a catalysis, was the hydrogen combustion (2 H2 + O2 ! 2 H2O) [2{5]. A

stoichometric mixture of hydrogen and oxygen does not react until a small dose of platinum powder

is added. Then, the mixture reacts vividly and an explosion can be observed. The platinum dust

lowered the barrier of activation e�ectively for the reaction to start.

Today, one of the most important applications of platinum is the puri�cation of exhaust fumes

from motor vehicles [6]. Platimum catalysis the oxidation of carbon monoxid and hydrocarbons to

carbon dioxide, but more important is the reduction of nitrogen oxides.

2 CO + 2 NO �! N2 + 2 CO2

Water is next to carbon dioxide the most important product of the combustion and large

amounts of water are also at the surface of the platinum catalysist.

CxH2x+2 +
3x + 1

2
O2 �! x CO2 + (x + 1) H2O

These water molecules compete with the other oxides in the exhaust fumes for active surface sites

on the catalyst and have so a major impact on the quality of the cleaning process. Electrochemical

experiments showed, that the rate of the O2 reduction and H2 ionisation reaction on platinum

electrodes depends stongly on the orientation of the water molecules [7].

Regarding the economical and environmental importance of the platinum-water interaction it

is not surprising, that the work on this topic started early and �rst results have been published by

General Motors [8].

Theoretical work as published within this thesis will help us to understand the interaction be-

tween platinum and water better, which will hopefully end in the development of better catalysists

in the future. Computational chemistry can help so to �ght air polution in the long term.
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1.1.1 Properties of Water

Bernal and Fowler showed, that the structure of an individual water molecule does not change

much with the phase of the substance [9]. The free water molecule has C2v symmetry and the

structure of the molecule can be explained well with the VSEPR model (Valence Shell Electron

Pair Repulsion) [10{12]. The oxygen atom (sp3 hybridisation) has a tetrahedral environment: Two

sp3 hybrid orbitals form the bonds to the hydrogen atoms (rOH) while the remaining two hybrid

orbitals from the lone electron pairs. The lone electron pairs, needing slightly more space than the

chemical bonds, force the hydrogen atoms closer to eachother and the bond angle ! is therefore

smaller than that found in an ideal tetrahedreon (109.47Æ).

Water is a chemical substance with extraor-
property value ref.

M 18:0151 g/mol [1]

rOH 0:9572 �A [16]

! 104:52 deg [16]

� 1:85 D [17]

IX 2:9376 10�40g�1cm�2 [16]

IY 1:0220 10�40g�1cm�2 [16]

IZ 1:9187 10�40g�1cm�2 [16]

� 1:45 �A3 [15]

EION 11:53 eV [15]

EAFF 1:07 eV [15]

�EHO�H 498 kcal/mol [15]

�EO�H 427:5 kcal/mol [15]

TF 0:0 ÆC [1]

TB 100:0 ÆC [1]

Table 1.1: Properties of water.

dinary physical properties (table 1.1). The boil-

ing (TB) and the freezing point (TF) are much

higher than the values for the other hydrogen

chalcogenids (eg H2S: -85.6 ÆC and -60.3 ÆC).

The high transition temperatures are caused by

strong hydrogen bonds among the water mole-

cules [13]. Di�erent electronegativities for oxy-

gen (3.5) and hydrogen (2.1) cause polar oxygen-

hydrogen bonds and so create a large dipole

moment (�). Coulomb forces can be used for

a �rst attemp to explain the strong hydrogen

bond between a positively charged hydrogen

atom and a lone electron pair on the oxygen, but

quantum chemistry provides far better methods

(chapter 3, page 45).

The covalent hydrogen bonds [14] can form

a rigid, tetrahedral network and so the basis of

ice. This network keeps the water molecules further apart than in the liquid phase, where thermic

motions allow the water molecules to collide and form so distorted micro cluster. The density of

the low pressure ice phases Ih and Ic (table 1.2) is therefore smaller than the density of the liquid

(� = 0.99978 g cm-3 at the triple point [15]). The structure of these two ice phases can be explained

well with a set of rules originally developed by Bernal, Fowler and Pauling (BFP rules or ice

rules) [9, 13]:

� The water molecule in ice resembles the water molecule in the gas phase.

� Each water molecule is oriented so that its two hydrogen atoms are directed approximately

toward two of the four oxygen atoms which surround it tetrahedrally, forming hydrogen

bonds.

� Only one hydrogen atom is positioned between each neighbouring oxygen-oxygen pair.

� Under ordinary conditions the interaction of non-adjacent molecules is not such as to stabilize

appreciably any one of the many con�gurations satisfying the preceding conditions with

reference to the others.
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The hexagonal ice Ih is the 'normal' ice. Figure 1.1 shows the structure of the ice crystal.

Only the oxygens of the water molecules are drawn and di�erent grey shades in �gure 1.1 mark

di�ernt layers of water molecules in the crystal. The structure of ice Ih can be visilized by the

condensation of water hexamers. These water hexamer are rings in the chair conformation. One

hexamer is marked light grey as an example in the centre of the �gure.

Pauling suggested 1935, that next to the hexag-

Figure 1.1: Structure of ice 1h. [18]

onal ice phase (ice Ih) with another ice phase with a

cubic crystal system (ice Ic) should be possible [13].

Ice Ic can created by the condensation of water va-

pors between �120Æ C and �140Æ C [1]. Table 1.2

shows a compilation of the strctural characteristics of

both low pressure ice phases.

In both ice phases Ic and Ih are the positions of the

hydrogens disordered. The hydrogen is attached to

either water molecule sharing a hydrogen bond. The

bonds among the water molecules oscilate therefore

between hydrogen bonding and covalency, depending

on the distance of the hydrogen from the oxygen atom1. If the ice crystal is cooled to very low

temperatures, the movement of the hydrogens freezes and the hydrogens stay in random positions.

ice phase Ih Ic

crystal system hexagonal cubic

space group P63/mmc Fd3m

cell dimensionsa [pm] a=450 c=732 a=635

molecules per unit cell 4 8

nearest neighbours 4 4

distance to the next neighbour [pm] 275 275

O�O�O angle [deg] 109.3, 109.6 109.6

hydrogen position disordered disordered

Densitya [g cm-3] 0.93 0.94

a 110 K, athmospheric pressure

Table 1.2: Properties of ice. [18]

Proton ordered ice phases are possible and still subject of current research [19, 20]. A complete

ordering of protons can be used to align the dipole moments of the water molecules parallel to

eachother (ferroelectricity) [1, 21]. Ferroelectric ice phases show a spontaneous polarisation and

strong electric �elds can be observed between opposite sides of the ice crystal.

One of the many ways to obtain ferroelectric ice is the epitaxial growth on Pt(111) [20, 22]. The

platinum surface is belived to order the protons in the �rst layer of water. Careful condensation of

1Proton transfer similar to the Grotthus mechanism [23, 24] is impossible in ice between 30 to 190

K [25]. The potential, in which the proton moves, is not periodic, since the proton structure in ice is

disordered, and long distance proton tunneling for the Grotthus mechanism demands a perodic potential.

Proton transfer in ice is the movement of a D defect (two hydrogen atoms are on one oxygen-oxygen bond)

in the crystal.
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additional water layers should then continue to grow with orientated hydrogens until a metastable,

ferroelectric bulk ice phase has been reached. Witek and Buch showed, that only the �rst bilayer

gowths with orientated hydrogens and that the protons in the second layer are not orientated to

minimize the electrostatic energy [26] and break so the standard rules for hydrogen bonds [27].

1.1.2 Properties of Platinum

Three countries cover 98% of the worlds demand for platinum metals (South Africa 45%, former

UdSSR 45%, Canada 8%). Only the Merensky-Mine in South Africa (South Africa covers 65% of

the worlds platinum demand.) is exploited for platinum solely, in every other case is the platinum

re�ned from impurities of other ores [1].

Platinum is a silver white, ductile metal with a cu-
property value

number 78

isotopes 6

mass 195.08 g/mol

con�guration [Xe] 4f145d96s1

electronegativity 2.2

dPt�Pt 2.77 �A

TF 1769 ÆC

TB 4170 ÆC

EION 9.0 eV

Table 1.3: Properties of platinum [1].

bic closed structure and can be dissolved easily in aqua

regia and slowly in hydrochloric acid in the presence

of air.

PtCl2�4 + 2e ! Pt + 4 Cl� E0 = 0:75 V

PtCl2�6 + 2e ! PtCl2�4 + 2 Cl� E0 = 0:77 V

Platinum dissolves also readily in fused alkali oxides

and specially in alkali peroxides. It is also attacked by


uorine and chlorine at red heat and reacts also with

elemetal P, Si, Pb, As, Sb, S and Se under reducing

conditions.

Pt(0) compounds are well known and the synthesis

of many cluster compounds with direct platinum-platinum bonds starts from Pt(PPh3)4 [28]. Huge

amounts of molecular hydrogen can be solved in platinum and the metal activates the hydrogen-

hydrogen bond, which explains its catalytic activity in hydrogenation reactions.

Platinum is chemically much more reactive than commonly asumed: More than 70 oxidation-

reduction reactions are catalyzed by platinum and it is now possible to predict catalytic activities

from the thermochemical properties of the reacting couples [29].

1.1.3 Literature Survey

The platinum-water interface has been examined with various experimental techniques ranging from

UHV (Ultra High Vacuum) to electrochemical experiments. Both experiments di�er principally

in the number of water molecules. But, it is possible to vary the electric �eld at the surface

systematically in electrochemical experiments and not in UHV experiments. The electric �eld at

the surface is varied in UHV experiments by the coadsorption of polar or ionic species, which

makes the �ne tuning of the �eld strength diÆcult. On the other hand, UHV experiments give

informations on the microscospic scale, whereas electrochemical experiments give integral values for

the double layer [30]. Various structure models have been proposed for the electrochemical bilayer

to explain the value of the di�erential capacity as a function of the excess charge, but the number

of experimental parameters adjusted to reproduce experimental data quaestions the validity of the

model [24, 30{33].

Weaver et al. exploited the similarity of both experimental methods for the analysis of the

platinum-carbon monoxide interface and tried to model the electrochemical interface by UHV

4



1. Ebene

2. Ebene

Bilayer - Zelle

Platin - Zelle

Figure 1.2: Ideal bilayer structure.

means ("UHV electrochemical modeling") [34, 35]. They showed, that both methods complete

eachother very well.

Early UHV experiments [36, 37] on the adsorption of water on platinum(111) reported a

p(
p

3�p3) R30Æ surface structure of adsorbed water molecules and suggested the formation of

ice ordered in domains of 30 � 40 �A in lenght.

A water bilayer structure [38, 39] (�gure 1.2) has been proposed as the basis of the growth of

ice on hexagonal metal latices. The ice phase on platinum is believed to have the same hexagonal

symmetry as the surface and the water hexamer marked in �gure 1.1 forms the basis of the bilayer

structure [40]. The structure of this water bilayers is generally explained in terms of an extension

to surfaces [39] of the Bernal-Fowler-Pauling rules (ice rules) [9, 13]. Speci�cally [39], each

water molecule is assumed bound by at least two bonds (which may be hydrogen bonds to other

water molecules or oxygen lone pair bonds to the surface) while maintaining a tetrahedral bonding

con�guration. The water is assumed bound to the surface via one lone pair orbital on the oxygen

and all free lone pair orbitals on oxygen stay nearly perpendicular to the surface. In an ideal in�nite

bilayer, all water molecules have their dipole moments pointing away from the surface ("
ip up"),

whereas in a �nite cluster, water molecules whose dipole moments point toward the surface ("
ip

down") may occur at the edge of the cluster [39, 41, 42]. Experimental results [43] suggest that

the edges of ice-like clusters on Pt(111) are constructed from 
ip up molecules together with water

molecules with one OH bond parallel to the metal surface, in contrast to the 
op down geometry

predicted at the edges by the BFP rules. Such a water species has been observed on Pt(100)

[44] and experimental evidence suggests that such a species may also exist on Pt(111) [45, 46].

It has not been possible to rule out such a structure by application of ultraviolet photoelectron

spectroscopy (UPS) to Pt[6(111)�(100)] [37].

Doering and Madey [39] concluded using the surface extended ice rule set, that the small-

est stable water cluster on a hexagonal metal surface should be the water nonamer. Such an

(H2O)9 cluster has been observed on Ru(0001) as part of p(6
p

3� 6
p

3) R0Æ superstructure [39, 47],

whereas experimental results suggest, that the smallest cluster possible on platinum(111) is a three-

dimensional water trimer [45].

In the initial stages of growth, a water molecule has two possible adsorption sites: attached

either directly above a platinum on the surface or to a water molecule already bound to the surface

[46, 48]. The coexistence of both species (i.e. a water molecule directly bound to the surface and a

water molecule attached to another water molecule) is commonly explained in terms of the energy

of isolated bonds, although the importance of cooperative forces has been suggested previously

[42, 45, 49]. The strength of the platinum-water bond corresponds to that of two to three hydrogen

bonds, so either type of bonding is possible.
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TDS spectra (Thermal Desorption Spectroscopy) [38, 43, 46, 48, 50{56] of water from the

platinum(111) surface allow us to distinguish di�erent water species, but the discussion remains

controversial. The most recent data from Ogasawara et al. [56] shows three prominent peaks at

155 K, 165 K and 200 K. The �rst peak (at 155 K) was assigned to ice sublimation, the second (at

165 K) to water in the second adsorption layer and the third (at 200 K) to water directly bound

to the surface. While the �rst two peaks have been positively identi�ed, the origin of the third

remains a matter of discussion [53, 54]. The formation of the second peak at 165 K can be observed

at coverages as low as 0.13 to 0.27 monolayer (ML), where 1 ML refers to one ideal bilayer [39].

These TDS results are consistent with other experimental results [43, 45, 46, 48, 57, 58], which also

support the formation of water clusters at low surface coverage.

The second peak2 (165 K) is the multilayer peak in the TDS
surface ltm T

[�A] [K]

Ni(111) +0:19 170

Cu(111) +0:08 150

Rh(111) �0:16 190

Ru(0001) �0:19 212 - 220

Re(0001) �0:28 180

Pt(111) �0:30 170

Ag(111) �0:50 150

Table 1.4: Multilayer Peaks data

from refs. [38, 47]

spectrum. A water molecule from the top should therefore be

in a chemical environment similar to an ice Ih crystal. Di�er-

ences in the desorption temperature have to be therefore the

result of the lattice distortion of the ice crystal, because this

molecule has no direct contact with the metal underneath. A

measure for this distortion is the lattice-mismatch (ltm) (ta-

ble 1.4). A negative value indicates the contraction of the

ice lattice and a positive its expansion. The highest desorp-

tion temperature should therefore be found for the metal with

the smallest value for the lattice-mismatch (copper), but was

found for ruthenium. This shift of the maximum peak position

and the higher bonding energy compared with ice sublimation

suggest, that the simple bilayer model from Doering and Madey may need further re�nement

[42, 59].

The theoretical work published on the metal-water interface can be seperated into two main

groups: The �rst group focuses on electrochemical aspects of the subject. Molecular mechanics

(MC) and molecular dynamics (MD) calculations are used to model the platinum-electrolyte inter-

face. The second approach concentrates more the UHV aspects. Quantum chemical calculations

on various level of theory examine the interaction of one water molecule with a metal cluster

[54, 60{72].

Both quantum chemistry and experiment agree that the water molecule is only slightly disturbed

upon adsorption on Pt(111) [41, 45, 46, 48, 58, 73{75] and dissociation has so far only been observed

experimentally on pre-covered surfaces [76{79], which allows us to use rigid water geometries within

the computational simulations.

First quantum chemical results have been publihed by Holloway and Bennemann using the

EHT (Extended H�uckel Theorie) for the calculation (1980, [64]). They used a Pt5 pyramid to

model the surface and reported a bonding energy of 0.5 eV with the water molecule in an on-top

position with a platinum-oxygen distance of 2.3 �A. These calculations served as the basis for the

development for classical platinum-water interaction potential used for MD calculations.

Eight years later Estiu et al. [65] reported a new set of EHT calculations with a di�ernt set of

H�uckel parameters and larger metal clusters (Pt18, Pt19 and Pt25). The platinum-water distance

2The precise value of the desorption temperature depends slightly on the experimental conditions (heat-

ing rate, coverage), which explains the di�erence of 5K between Ogasawara [56] and Hoffman [47].
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was �xed at 1.7 �A as a result of earlier calculations (bonding energy = 0.94 eV [60]). They reported

bonding energies of 0.42 eV for the Pt(111) surface and 0.57 eV for Pt(100). In both cases was the

water molecule in an on-top position with its molecular plane perpendicular to the surface.

M�uller et al. used the Kohn-Sham sheme with a local density approximation [70] to perform

cluster calculations (Pt10�H2O) on the adsorption of water on Pt(111) [54, 63, 68]. This group

reported a bonding energy of 0.53 eV with a platinum-oxygen distance of 2.5 �A. M�uller pro-

posed also a quantum chemical model for the platinum-water bond [68] basing on his work on the

aluminium-water interaction [70], which was later used by Ribarsky et al. for the copper-water

bond [71]: The 3a1 and the 1b1 orbitals, which do not contribute much to the bonds within the

water molecule, interact with �lled platinum 5d orbitals. The low lying LUMO interacts then with

both �lled orbitals resulting from the platinum-water overlap and lowers so the total energy. The

occupation of the former empty LUMO leads to an charge transfer from the water molecule to the

metal cluster. This interaction model is the quantum chemical equivalent to the electrostatic polar-

isation and the authors therefore call the LUMO a polarisation function. They give the following

equation for the polarisation energy �E

�E =
hPOL j V̂ jL i2
�POL � �L

(1.1)

jPOL i is the LUMO, which acts as a polarisation function, and jL i the free electron pair of the

water molecule. Two principal features of the platinum-water bond follow from equation 1.1, which

are not mentioned in reference 68:

1. The binding energy of the water molecule depends on its orientation relative to jPOL i, since

�E is proportional to the square of the overlap between the platinum 5d orbitals and the

free electron pair of the water molecule hPOL j V̂ jL i.

2. �E is inversely proportional to the energy di�erence between both orbitals. The larger the

cluster becomes, the smaller becomes the HOMO-LUMO gap and so the energy di�erence

between jPOL i and L , because �L is independent of the cluster size.

The importance of polarisation for the platinum-water bond suggests, that cooperative forces

are important for the structure and energy of the platinum-water interface. The signi�cance of

hydrogen bonding and polarisation e�ects has been discussed previously [45, 56, 64, 68, 71, 75],

but, to our knowledge, has not been studied in great detail. Kutnetsov et al. published 1989

CNDO/2 (Complete Neglect of Di�erential Overlap) for water clusters bonded to 1b (Cu, Ag,

Au) and 2b group (Zn, Cd, Hg) elements [67].

Modern quantum chemical calculations on the platinum-water interface suggest that the molec-

ular plane of the water molecule lies parallel to the surface [54, 63, 68]. These results agree with

workfunction measurements [45, 52, 58, 73] on water-covered platinum surfaces, which show that

that a contribution of about 0.2 D of the water dipole moment (free water molecule 1.84 D) is

normal to surface [58], but contradict the ice rules for surfaces, which explain very well other UHV

data like the LEED (Low Energy Electron Di�raction) results. The orientation of the hydrogens

in water molecule with a direct bond to the metal surface underneath should therefore be regarded

as unsetteled.

The number of atoms and molecules in the electrochemical interface inhibits the application of

quantum chemical methods and other have to be used. Monte Carlo simulations (MC) [80{83] and

molecular dynamics (MD) have been used for theese calculations.
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A. A. Gardner and J. P. Valleau [82, 83] used a simple interaction pontential basing on

mirror images for the simulation of the metal-water interaction. They assumed an ideal, highly

polarizable metal surface. The image charges had therefore the same size as the charges on the

water molecules (TIPS2 potential for bulk water), but were di�erent in sign. These calcualtions for

an uncharged metal wall resulted in erroneous water orienations close to the wall. The �rst layer

water molecules bonded with one hydrogen atom to the metal surface while the other pointed into

the bulk water. Despite this principle problem these calculations indicate that polarisation and

many body e�ects within the metal have a signi�cant in
uence on the structure of the metal-water

interface, while Kohlmeyer et al. [84] published molecular dynamics calculations showing that

the inclusion of polarisation into the water-water interaction potential has only little in
uence on

the results of the siumulation. MC calculations with a more elaborate set of potential energy

functions [80, 81] reproduce correctly the orientation of the �rst layer water molecules close to an

uncharged copper wall.

MD calculations [84{102] form the second group of computational methods applied to the

electrochemical metal-water interface. The potential energy functions used for the metal-water

interaction can be subdivided into two groups: First, potentials exploiting electrochemical e�ects

such as mirror charges and second, potentials trying to mimic chemisorption data from quantum

chemical calculations.

Hautman et al. [91] published MD calculations for uncharged metal walls using the �rst group

of metal-water potentials with a peculiar result: Although the �rst peak of the hydrogen density

lies 0.2 �A closer to the metal surface than the �rst peak of the oxygen density (ref. 91 �g. 2) the

dipole moments of the water molecules point preferentially away from the surface (ref. 91 �g. 3).

The authors explain this e�ect with the larger charge (factor �2) on the oxygen atoms than on

the hydrogen atoms resulting in an overall negative charge at the metal surface.

Zhu and Robinson [92] reported MD calculations of water between two solid, insulating walls.

The interaction between the wall and the water molecules is described with a gas-crystal potential

excluding mirror charges. They conclude form their calculations that the water molecules close

to the surface orientate the hydrogen atoms towards the solid and not into the bulk water. In

a second paper Zhu and Philpott [93] showed, that the orientation of the water molecules to-

wards the surface depends strongly on the chosen potential energy functions now including mirror

charges. They compare two potential energy functions for a variety of metal surfaces di�ering in

an anisotropic Lennard-Jones energy term (Van) acting on the hydrogens. The potential energy

functions containing Van result in water molecules bonding to a Pt(100) surface via one hydrogen

atom similar to the bonding geometries reported by Gardner et al. [82, 83] whereas the potential

energy function without Van produces no platinum-hydrogen bonds.

The second class of MD calculations uses individual potential energy functions for the hydrogen

atoms and the oxygen atom to calculate the metal-water binding energy. The parameters of

these fuctions have been chosen by Heinzinger and Spohr [94{96] to reproduce Extended-H�uckel

results [64] and experimental data. Later, these potential energy functions have been extended by

Berkowitz et al. about a surface term, which includes the symmetry of the metal surface [97, 98].

Spohrs [94{96, 99{101] results for the uncharged platinum-water interface may be summarized

as follows:

� The oxygen and the hydrogen atom density show strong oszilations close to the surface, but

approach bulk values for the center of the model.
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� The oxygen atom density shows at least two strong peaks indicating two de�ned layers of

water molecules close to the surface. These two peaks suggest the existence of water layers

similar to the bilayer structure observed for water in UHV experiments.

� The water moelcules, which cause the �rst peak in th oxygen atom density pro�le (directly

attached to the surface), stay at their position during the MD run, whereas molecules from

the second peak are less tight bound and move freely within the layer [102].

� At low coverages of water (�) the water molecules in the �rst layer are orientated in a tilted

position with their dipole moment pointing away from the surface (# = 75Æ, # is the angle

between the surface normal and the dipole moment). Both hydrogen atoms of the water

molecule are at the same distance from the surface [95]. Such an orientation of the water

molecules is expected for a bonding bonding mechanism via a lone electron pair, which is

surprising, since the platinum-water potential favours an adsorption geometry with the water

molecules dipole moment perpendicular to the surface3. A strong hydrogen bonding network

is assumed to stabilize this geometry. The same principle geometry e�ects have been observed

by Spohr [100, 101] also for Hg(111).

As � increases from 0.2 to 0.8 move the hydrogen atoms closer ot the surface until �nally the

molecular plane of the water molecule is parallel to the surface.

The electrochemical results suggest, that hydrogen bonding within the interface is essential for

a valid description of the platinum-water interface. The transition between both electrochemistry

and UHV experiments is done by the reduction of the water molecules used for the simulation.

Instead of bulk water come now small water clusters into focus. Liu et al. [103] pointed out, that

water-water interaction potentials, which reproduce well the properties of bulk water tend to fail

on small water clusters.

The water dimer is probably the best analysed water cluster of all. It was not only the �rst

water cluster subject of ab initio calculations [104] but is also commonly used as benchmark test

for new calculations. It is therefore possible to �nd reference values in the literature for the water

dimer on every possible level of theory [105{131]. The global minimum has a linear geometry with

CS symmetry with the nonbonding hydrogens on opposite sites of the oxygen-oxygen bond. The

optimized oxygen-oxygen distance is about 3 �A and the bonding energy about 5 kcal/mol.

Sch�utz et al. suggested a namening system for the non-bonding hydrogens in the cyclic water

trimer, which fully describes the geometry of the cluster [132]: The nonbonding hydrogen can be

either above (up, "u"), parallel to (planar, "p") or under (down, "d") the oxygen plane, while

the bonding hydrogens rest in the oxygen plane. If the oxygen plane bisects the water molecule,

the geometry is marked with an "b". The global minimum of the potential energy surface of the

water trimer has a cyclic geometry. Early calculations on the water trimer suggest, that the fuuug
water trimer is less stable than the ideal linear structure [133], but already the fpppg trimer is

more stable than the linear one. The linear trimer again transforms smoothly into a cyclic fuudg
geometry, which marks the global minimum [128, 131, 132, 134{150]. The geometry of the water

3This orientation re
ects the results of the H�uckel calculations used for the creation of the potential

energy functions. The H�uckel calculations for Pt5�H2O favour the same geometry and the observed

equilibrium geometry may be the result of the missing interactions between surface atoms and the hydrogens

of the water molecule [64].
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trimer is very 
exible and tunneling facilitates rapid changes between the 96 isoenergetic isomers

(2n � n!� 2, where n is the number of water molecules in the cluster) [103, 150{156].

18 stationary points have been found on the potential energy surface of the water trimer [142,

145]. The fpppg trimer has a slightly smaller bonding energy than the fuudg (�E < 0.5 kcal/mol)

[132] and is a stationary point with a Hessian index of 3. Most of the published results focuses

on the fuudg trimer and only few articles concentrate on the fpppg [132, 140, 142, 144, 157{159],

despite the fact, that the fpppg and the fudpg trimer are possible intermediates in the movement

of the hydrogens [132].

The computational analysis of water cluster gained more interest recently, because these mi-

crocrystals can be used to investigate phase transitions [160]. But, the transition from small water

cluster to larger is not straight forward and the water hexamer seperates the water clusters into

two domains.

Two principles control the structure of water clusters: First, the number of hydrogen bonds

in the cluster should be as high as possible for a maximum energy gain. And second, repulsive

interactions between nonbonding hydrogens and geometrical strains within the water rings should

be as low as possible at the same time. Small water cluster (H2O)n with n 5 5 are therefore

commonly assumed to be cyclic planar [103, 128, 133, 161{170], while large clusters with n = 7

have three dimensional structures [160, 170{178]. The water hexamer marks the border between

both regions and is the smallest water cluster with a three dimensional equilibrium structure.

Several geometries with similar energies (�E < 1 kcal/mol) have been found for the water hexamer

[128, 148, 149, 179{182]. The multitude of energetically similar isomers makes the water hexamer

a new benchmark system for methods, which are going to be applied to larger clusters.

Although the cyclic water hexamer forms the basis of the ice structure [18, 183, 184] and has

been observed as a structural element in liquid water [185], has the most stable water hexamer in

the gas pase a cage structure [186, 187]. The energy di�erence between the cyclic and the cage

hexamer is small and it has not been possible to observe the free hexamer experementaly until

recently [187].

Quantum chemical calculations [128, 148, 149, 179{182, 188] on the cyclic water hexamer agree

reasonably well on the geometry of the cluster, but disagree heavily on the total energy of the

cluster. The most stable ring has a "chair"conformation (S6 symmetry) with straight hydrogen

bonds and the oxygen-oxygen distance between direct neighbours varies between 2.708 �A and

2.855 �A. The main properties of the cluster's geometry can be reproduced with simple methods,

whereas reliable energy calculations require sophisticated ones. Published values for the bonding

energy of the cyclic water hexamer vary between �37.99 kcal/mol and �56.00 kcal/mol (with one

exception: �66.66 kcal/mol [181]) depending on the level of computation.

1.2 This work

Two computer experiments are used commonly for the simulation of the platinum-water interface:

First, quantum chemical calculations with a single water molecule and second, molecular dynamics

simulations with various potential energy functions. Between theese two extremes is this work

placed: A computational analysis of water clusters attached to a platinum surface.

Figure 1.3 shows, how the calculation of water clusters on a platinum surface (Ptn�(H2O)m

in the center of the sketch) is embeded in its scienti�c environment. As mentioned in section 1.1

molecular dynamics simulation of the electrochemical interface give physically reasonable results
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Figure 1.3: Scienti�c environment of this work.

[101]. The potential energy function used for these calculations base on extended H�uckel calcula-

tions using a Pt5�H2O pyramid with the water molecule at the top as surface model (Pt(100)).

Such a cluster has no other surface atoms than the one bonding the water molecule and the repre-

sentation of the interactions between the water molecule and the non-bonding surface atoms seems

to be poor for the equilibrium geometry. Another problem arises from the water-water interaction

potential used for the simulation. Most of the used potentials have been optimized to reproduce

properties of bulk water. Many-body forces are important for bulk water, where an individual

water molecule is evenly surrounded by other water molecules and the water molcule can therefore

be thought captured in a homogenous matrix. Simple, pair wise additive interaction potentials

can simulate a great share of these forces by their parametrisation and good bulk values can so

be easily computed. In a small cluster is a water molecule not evenly surrounded by its peers and

'bulk potentials' fail therefore to reproduce the properties of small water cluster.

This work started with a quantum chemical revision of the water dimer and trimer to obtain a

set of basis data for small water cluster. A selection of clasical water-water interaction potentials,

used by other groups for molecular dynamics simulations, was unable to reproduce the quantum

chemical results.

Quantum chemical calculations on large water clusters are computationally expensive and a

classical water-water interaction potential would allow us to �nd good starting geometries for the

quantum chemical analysis. Therefore, we created a new water-water interaction potential, which

inludes partially cooperative forces by its parametrisation.

Next, we started a quantum chemical investigation of small platinum clusters (LanL2DZ ECP,
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18 valence electrons [189]). The platinum-platinum bond strength depends strongly on the elec-

tronic state of the cluster, as the bond between the metal atoms is formed mainly via the 6s orbitals,

who interact with the partially �lled 5d band.

The quantum chemical investigation of the platinum-water bond showed, that this bond depends

also on the 6s population in the metal cluster, but in the other direction: A strong platinum-

platinum bond and a strong platinum-water bond exclude eachother. The construction of a working

surface model proofed therefore to be much more complicated than expected. Polaristion e�ects

caused by the electric dipole �eld of the water molecule can lead to a sudden redistribution of the

6s electrons and change so the electronic structure of the cluster as well as the total energy.

At this point we started the development of our own 1-valence electron ECP for platinum. The

aim was not so much the reduction of the computational costs but to minimize the number of

electronic states close to the ground state. As the density of electronic states becomes smaller,

sudden changes of the electronic structure of the cluster become less likely and the scanning of the

potential energy surface easier.

Both, the 1- and the 18 valence electron ECP calculations, would have been much more diÆcult

without the application of the H�uckel theory to the platinum 6s orbitals. H�uckel theory allowed us

to identify suitable electronic states for the surface model and to understand the electron movements

within the cluster.

The platinum-water bond was found to be similar to the hydrogen bond in water clusters

and cooperative e�ects are therefore likely to be found in the interaction between water and the

platinum surface. Inspired by Ogasawara we used Pt3�(H2O)3 as model for the adsorption of

water on Pt(111) [42, 56]. These calculations showed that cooperative e�ects, similar to the e�ects

observed in the water trimer, have a strong in
uence on the geometry and the energy of the water

cluster.

Cooperative forces in the platinum-water bond can turn a water molecule out of its ideal

orientation. Doering and Madey suggested a water bilayer similar to the structure of ice Ih to

grow on the metal surface [39]. In this model every water molecule is tetrahedraly surrounded

by bonding partners and the hydrogens of the water molecules directly attached to platinum

point away from the surface. Our quantum chemical calcualtions on the other hand showed, that

the energy to move the hydrogens up or down is very small and the prefered angle between the

molecular plane of the water molecule and the platinum-oxygen bond depends strongly on the

chosen method for the computation. We used therefore our own clasical water-water interaction

potential to analyse the preferd geometry of a water hexamer under surface conditions.

The following list sumarizes the individual chapters of this work and their contents.

Chapter 1 contains the literature survey as well as an introduction to this work.

Chapter 2 compiles brief summaries of the methods used for this work. Theories, who are

not described in standard quantum chemistry text books, are described in greater

detail than procedures and formulae, which are part of those text books.

Chapter 3 focuses on the quantum chemistry of small water clusters. The water dimer served

as benchmark test for the computational method (DZP basis set, MP3, full BSSE

correction), which was later used for the analysis of cooperative forces in the water

trimer.
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Chapter 4 describes the development of a new water-water interaction potential from cuts

through the potential energy surface of the water dimer and selected points from

the trimer surface (chapter 3) and �rst applications of the new potential.

Chapter 5 demonstrates the application of the H�uckel theory to the analysis of small platinum

clusters. The results of these calculations are later used in the chapters 6 and 7.

Chapter 6 is a compilation of the quantum chemical calculations for Ptn and Ptn�H2O (n =

1, 2, 3, 5, 9) using the LanL2DZ ECP (18 velence electrons) from Hay and Wadt

[189]. This chapter examines the correlation of the platinum-water bond strength

and the electronic state of the metal cluster.

Chapter 7 summarizes the development of a new 1 valence electron ECP for platinum and

its application for the analysis of Pt5�H2O.

Chapter 8 combines all results obtained so far and focusses on water clusters on the platinum

surface. The �rst section of Chapter 8 combines the results from chapter 3 and

6 for the analysis of cooperative e�ects in Pt3�(H2O)3 while the second section

uses the results from the chapters 4, 6 and 7 to investigate the water hexamer on

a virtual metal surface.

Chapter 9 is the summary of summaries and suggests further proceedings.

Chapter 10 lists the literature references and programs used for this work

Chapter 11 Appendix

Attention: The atomic energy unit Hartree is abbreviated with 'H'

within the whole text mainly to sqeeze it into small table columns.
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Chapter 2

Theory

This chapter summarizes the theory of the methods used for this work. Theories, who are not

described in standard quantum chemistry text books, are described in greater detail. Procedures

and formulae, which are part of those standard text books are only brie
y paraphrased.

The longest part of this chapter is a description of the e�ective core potentials. They are of

vital importance for all calculations with heavy metal atoms. Although many papers have been

published on this subject, no paper, explains a given potential in detail. The authors generally cite

each other and considerable work has to be done to unravel the citations.

2.1 Hartree-Fock Calculations

The Hartree-Fock theory is broadly discussed in the literature [17, 190{192]. Therefore, this report

only contains a short summary.

The time independent nonrelativistic Hamiltonian operator Ĥmol of a molecule can be written

as the sum of di�erent interactions in the molecule:

Ĥmol = T̂e + T̂N + V̂NN + V̂Ne + V̂ee = Ĥe + ĤN

Ĥe = T̂e + V̂Ne + V̂ee � Ĥ
ĤN = T̂N + V̂NN

(2.1)

For ease of reading the 'e' in Ĥe will be further omited.

T̂ is the operator of the kinetic energy of the electrons and of the nuclei while V̂ describes

the interactions between the nuclei (V̂NN), between the electrons (V̂ee) and between nuclei and

electrons (V̂Ne). The Born-Oppenheimer separation [192, 193] allows the separation of the motion

of the electrons from the motion of nuclei, because the light electrons in a molecule move much

faster than the heavy nuclei. This procedure leads to an equation which only describes the motion

of the electrons and asumes the nuclei at �xed positions ~R.

Ĥ	(~R; ~r) = E(~R) 	(~R; ~r) (2.2)

While the wavefunction 	 depends on the positions of the electrons ~r at speci�ed nuclear positions

~R the electronic energy E depends only on the position of the nuclei as a parameter.
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For a given molecule consisting of n electrons and N nuclei with the charge Z� Ĥ has the

following form (in atomic units, neglecting relativistic e�ets):

Ĥ = �
nX
i=1

1

2
r2
i �

nX
i=1

NX
�=1

Z�

ri�
+

n�1X
i=1

nX
j=i+1

1

rij
(2.3)

The last sum in equation 2.3 describes the electron-electron interaction and prohibits an analytic

solution of equation 2.3. In a �rst attempt to solve equation 2.3 the electron-electron interaction

may be neglected (model of independent electrons, equation 2.4). Ĥ may then be written as the

sum (Ĥ) of n one electron operators ĥi which allows us the separation of (2.3) in n one-electron

equations (2.4). The solution for 	 in this case is the product of one electron wavefunctions 'i.

ĥi = �1

2
r2
i �

NX
�=1

Z�

ri�
) ĥi'i(~R; ~r) = ei(~R) 'i(~R; ~r)

Ĥ =

nX
i=1

ĥi 	(~R; ~r) =

nY
i=1

'i(~R; ~ri) E(~R) =

nX
i=1

ei(~R)

(2.4)

This solution does not consider the Pauli-Principle, the interexchangeability of electrons and the

spin. Those disadvantages could be overcome if not the direct product of the 'is is used as a solution

for 	 but a Slater determinant (antisymmetrized product) built of the 'is after normalisation.

	(~R; ~r) =
1p
n!

����������

'1(~r1)� '1(~r1)� : : : 'n
2
(~r1)�

'1(~r2)� '1(~r2)� : : : 'n
2
(~r2)�

...
...

. . .
...

'1( ~rn)� '1( ~rn)� : : : 'n
2
( ~rn)�

����������
=

1p
n!

����������

�1(~r1) �2(~r1) : : : �n(~r1)

�1(~r2) �2(~r2) : : : �n(~r2)
...

...
. . .

...

�1( ~rn) �2( ~rn) : : : �n( ~rn)

����������
(2.5)

�i are the spin orbitals built by the multiplication of 'i with the appropriate spin eigenfunction

(� or �). The Slater determinant (2.5) and the full electronic Hamiltonian operator (2.3) allow us

to calculate the expectation value for the electronic energy E.

E =
h	j Ĥ j	i
h	j	i (2.6)

Assuming the �is form a set of orthonormal functions yields the following expression for the energy:

E =

nX
i=1

hii +
1

2

nX
i=1

nX
j=1

(Jij �Kij) hii =

*
�i

������1

2
r2
i �

NX
�=1

Z�

ri�

������i
+

Jij =

�
�i(~r)�j(~r

0)

���� 1

j~r � ~r 0j

�����i(~r)�j(~r 0)
�

Kij =

�
�i(~r)�j(~r

0)

���� 1

j~r � ~r 0j

�����i(~r 0)�j(~r)
� (2.7)

hii is the one electron integral similar to the one in equation (2.4). Jij is the coulomb integral and

describes the interaction between the electron densities 'i(~r)
�'i(~r) and 'j(~r)

�'j(~r). The exchange

integral Kij cannot be explained in classical terms1. Since the spin eigenfunctions are orthogonal,

the exchange interaction is only non zero between electrons of the same spin.

1If instead of the Slater determinant (2.5) the direct product of the 'is (2.4) is used to calculate the

energy expectation value, the expression for the energy (2.7) does not contain the exchange integrals. The

exchange integral is a truly quantum mechanical e�ect.
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A better approximate wavefunction for 	 can be found by minimizing2 E(	) by varying � with

the constraint that the �s stay orthogonal h�ij�ji = Æij [17, 192, 194a].

F (	) = E(	)�
nX
i=1

nX
j=1

�ij h�ij�ji @F

@�i
= 0 (2.8)

The solution of (2.8) leads to n Hartree-Fock equations. The orbital energies �i derive from the

Lagrangian multiplicators �ij in (2.8). 8>>>>>:ĥ+

nX
j=1

(Ĵj � K̂j)

9>>>>>;�(r) = F̂ �(r) = � �(r)

Ĵj �(r) =

Z
��j (r0)�j(r

0)

jr � r0j d� 0 �(r) K̂j�(r) =

Z
��j (r

0)�j(r)

jr � r0j d� 0 �(r0)

(2.9)

Equation (2.9) can be solved by iteration. A �rst guess for 	 allows us to calculate the Fock

Operator F̂ thus to determine the electrical �eld in which the i-th electron is moving. This enables

the calculation of an improved 	. This 	 will be used again as the starting point for a new cycle.

The cycles of repetition will be stopped, if the change in the electrical �eld drops below a preset

limit.

The sum of the energy of all occupied orbitals does not yield the energy of the system (2.7).

nX
i=1

�i =

nX
i=1

hii +

nX
i=1

nX
j=1

(Jij �Kij) (2.10)

While the expectation value for energy contains (2.7) the electron-electron interaction once in

comparison with the model of independent electrons (2.4), this expression contains the electron-

electron interaction twice. Koopman's theorem [192] allows us to interpret the orbital energies �i

as the negative of the ionisation energy.

The symmetry of the Fock operator depends on the symmetry of the �rst guess for 	, because

	 is used to construct the operator. Therefore, the Hartree Fock wavefunction 	HF does not nec-

essarily have the full symmetry of the molecule. 	HF is antisymmetric towards electron exchange,

but 	HF is not necessarily an eigenfunction of the total spin operator Ŝ2 or the operator of the

total spin's orientation ŜZ. The introduction of additional symmetry restrictions into equation 2.9

and, if necessary, the construction of linear combinations of 	s for di�erent con�gurations assures

the right symmetry for 	SHF, the result of this procedure. The �nal energy will be slightly higher

for 	SHF than for 	HF, obtained without any further constrains. The solution for 	 has either the

right symmetry or the lowest energy.

In closed shell molecules all orbitals are doubly occupied. This allows us to use only the spatial

part of the �is to solve equation 2.9. After the calculation the obtained orbitals are �lled with

two electrons. While this RHF (restricted Hartree Fock) calculations usually yields good results

for closed shell molecules, problems arise together with the calculations for open shell molecules

or excited states. During those UHF (unrestricted HF) calculations equation 2.9 divides into

2The de�nition of such a deviation is:

@F [�i(x
0)]

@�j(x)
=

lim

�! 0

F [�i(x
0) + �ÆijÆ(x

0 � x)]� F [�i(x
0)]

�
and

@�i(x
0)

@�j(x)
= Æ(x0 � x)Æij
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two subsets of equations for each spin state. The exchange operators in the Fock operators are

di�erent for both sets, since exchange interactions exists only between electrons with the same spin.

This leads to di�erent spatial wavefunctions for spin up and spin down, the so called exchange

polarisation.

For an average molecule with low symmetry the calculation of 	 is far too expensive and nearly

impossible. Roothaan and Hall suggested independently 1951 [192] to construct the one electron

wavefunctions �i as a linear combination of M di�erent basis functions 
k (LCAO method, linear

combination of atomic orbitals).

�i =

MX
k=1

cik 
k (2.11)

The LCAO approach simpli�es the calculation of (2.8). Instead of the complicated functional

di�erentiation the easer di�erentiation to a constant cik can be done.

The more basis functions are used for the linear combination, the better the description of �i

and the lower the electronic energy. The total energy of a molecule obtained by an in�nite number

of wavefunctions is called the Hartee-Fock limit.

E =

nX
j=1

MX
i;j=1

c�ik cjk hij +
1

2

nX
k=1

nX
l=1

MX
i;j=1

MX
p;q=1

c�ik cjk c
�
pl cql

8:Vijpq � Viqpj

9;
hij = h
i(r)j ĥi(r) j
j(r)i Vijpq =

�

i(r) 
j(r

0)

���� 1

jr � r0j

���� 
p(r) 
q(r0)
� (2.12)

The expression for the energy (2.12) is not a functional of �i anymore but a function of cik.

The di�erentiation of (2.12) with respect to c yields a set of M independent nonlinear algebraic

expressions that can be solved to get coeÆcients. The general procedure of this method is the

same as for the Hartree Fock method. A �rst guess for the coeÆcients cik the electric �eld of the

molecule can be calculated. This leads to an improved set of coeÆcients that will become the

starting point for another cycle.

Modern quantum chemical programs no longer use a single function for a certain atomic orbital.

They usually use a sum of gaussian functions with di�erent exponents.


k =

GX
�

g�e
���r

2

�i =

MX
k=1

cik

GX
�

g�e
���r

2

=

M;GX
k;�

aik�e
���r

2

(2.13)

Now are the new constants aik� optimized. This procedure allows the atomic orbitals to vary during

the calculation. This extra 
exibility enables the introduction of polarisation into the calculation

of molecular orbitals, if cartesian gaussians (section 2.4, page 23) are used.

Sometimes the basis of the Hartree-Fock calculation 
k of a supermoelcule is formed by the

monomers molecular orbitals. Those calculations simplify the analysis of the chemical bond be-

tween the monomers. On the other hand is such a basis more rigid then the other and the interaction

energies inferior.

The occupied orbitals give usually a good description of the molecule's electronic structure.

The virtual orbitals on the other hand cannot be explained physically. This can be shown by

rearranging the Fock equations 2.9. The electrons move in an e�ective potential Ve� .

Ve� =

occX
j

Ĵj � K̂j =

Z

(r0jr0)
jr � r0j dr

0 �
Z

(rjr0) P̂V (r ! r0)

jr � r0j dr0

P̂V (r ! r0)�(r) = �(r0) (2.14)
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(rjr0) is the �rst order density matrix3 and the operator P̂V exchanges the variables r and r0 of

the function �. The potential energy of an electron �i can be calculated straight forward.Z
��i (r)Veff �i(r) dr =

ZZ
��i (r) 
(r0jr0)�i(r)

jr � r0j dr dr0 �
ZZ

��i (r) 
(rjr0)�i(r0)
jr � r0j dr dr0 (2.15)

Equation (2.15) can be interpreted as the coulomb interaction of the charge distribution ��i �i with

a model charge distribution �(r0).

�(r) = 
(r0jr0)� ��i (r) 
(rjr0)�i(r0)
��i (r)�i(r)

(2.16)

To obtain (2.16) the exchange part of equation (2.15) has to be reduced to higher terms with

��i �i. The model charge distribution �(r0) depends on the orbital �i. The number of electrons

Ne =
R
�(r) dr described by �(r) therefore depends also on the chosen orbital �i. The trace of the

density matrix
R

(rjr) dr equals the total number of electrons N. The second term of (2.16) has to

compensate one electron to avoid self interaction.

Ne =

Z
�(r0)dr0 = N � 1 i � N

Ne =

Z
�(r0)dr0 = N � 0 = N i > N

(2.17)

The exchange charge density is zero for virtual orbitals (i > N), since all virtual orbitals are

orthonormal to the occupied orbitals used for the construction of the Fock operator. For an

occupied orbital (i � N) the integral contains a non vanishing part ��i �i and the number of electrons

described by �(r) is physically correct N-1.

Virtual orbitals are therefore not suitable to describe excited states correctly. For the correct

description of an excited state several virtual orbitals are usually necessary.

2.2 M�ller-Plesset Perturbation Theory

The Hartree Fock method does not take the correlated movement of the electrons into full account.

The energy di�erence between the 'exact', which takes the full account of the electron correlation,

and the Hartree Fock Energy is called the correlation error [195]. Since the exact value of the corre-

lation error is usually not known, the correlation energy as the di�erence between the Hartree Fock

energy and the energy obtained by any post Hartee Fock procedure is reported in the literature.

The electrons can avoid each other more easily, if the possibility to occupy unoccupied orbitals

for short 'time' is permitted [195]. This is achieved by mixing excited states with the ground state.

The additional energy gain is called correlation energy. One of the most common methods is the

M�ller Plesset procedure.

The M�ller-Plesset Theory (MP) [196] is often also called Many Body Perturbation Theory

(MBPT) [190, 191]. An additional �gure denotes the level of perturbation. The second name

describes much better the underlying theory.

3The �rst order density matrix 
(rjr0) of an N electron wavefunction 	 is de�ned as follows:


(rjr0) = N

Z Z
� � �

Z
	(r; r2; r3; : : : ; rN )	

�(r0; r2; r3; : : : ; rN)dr2dr3 : : : drN
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The principal idea is based on the Hartree-Fock-Approximation. If the assumptions of the

Hartree-Fock theory are right, the di�erence between the Hartree-Fock-wavefunction and the eigen-

function of the original Hamiltonian Ĥ (2.3) should be small. This allows the use of the Rayleigh-

Schr�odinger method [190, 192, 193] to improve the wavefunctions and energies. The unperturbed

Hamiltonian is taken to be the sum Ĝ of the Fock operators F̂ (2.9) and the perturbation operator

V̂ the di�erence between the original Hamiltonian Ĥ and Ĝ (2.18).

Ĥ = Ĝ+ (Ĥ � Ĝ) = Ĝ+ V̂ ! Ĥ 	� = E� 	� (2.18)

	� = 	(0)
� + 	(1)

� + 	(2)
� + : : : E� = E(0)

� +E(1)
� +E(2)

� + : : : (2.18 a)

	
(0)
� and E

(0)
� are the solutions for the energy-state E� of the unperturbed system (2.7). In-

troducing the expansions (2.18 a) into expression (2.18) and collecting terms of equal order in the

usual way [193] yields the following set of equations:

Ĝ	(0)
� = E(0)

� 	(0)
� 0. order (2.19)

(Ĝ� E(0)
� ) 	(1)

� = (E(1)
� � V̂ ) 	(0)

� 1. order (2.19 a)

(Ĝ� E(0)
� ) 	(2)

� = E(2)
� 	(0)

� + (E(1)
� � V̂ ) 	(1)

� 2. order (2.19 b)

(Ĝ� E(0)
� ) 	(3)

� = E(3)
� 	(0)

� +E(2)
� 	(1)

� + (E(1)
� � V̂ ) 	(2)

� 3. order (2.19 c)

Equation (2.19) is already solved during the Hartree-Fock calculation. It can be easily separated

into the set of one-electron-equations (2.9). To solve the rest (2.19 a - 2.19 c) the functions 	
(1)
� ,

	
(2)
� and 	

(3)
� are developed in terms of the complete set of functions 	

(0)
�� .

	(1)
� =

X
� 6=�

a(1)�� 	(0)
�� 	(2)

� =
X
� 6=�

a(2)�� 	(0)
�� 	(3)

� =
X
� 6=�

a(3)�� 	(0)
�� (2.20)

The introduction of (2.20) into (2.19) allows a stepwise solution of (2.19)4. The procedure starts

with the calculation of the �rst order perturbation:

E(1)
� =

D
	(0)
�

��� V̂ ���	(0)
�

E
a(1)�� =

D
	
(0)
��

��� V̂ ���	(0)
�

E
E
(0)
� �E

(0)
� for �6=�

(2.21)

M�ller and Plesset showed that E
(1)
� equals zero. The Hartree-Fock energy is therefore correct

to the �rst order of perturbation. On the other hand a
(1)
�� allows us to �gure out the non vanishing

second order energy correction:

E(2)
� =

X
� 6=�

D
	
(0)
�

���V̂ ���	(0)
��

ED
	
(0)
��

���V̂ ���	(0)
�

E
E
(0)
� �E

(0)
�

=
X
� 6=�

a(1)��

D
	(0)
�

���V̂ ���	(0)
��

E

a(2)�� =
1

E
(0)
� �E

(0)
�

0
@X
i6=�

a
(1)
�i

D
	(0)
��

���V̂ ���	(0)
�i

E
� a(1)��E

(1)
�

1
A
for �6=�

(2.22)

The second order energy correction yields on average already 90% of the total correlation energy

[195] and 	
(0)
� makes usually more than 95% of the total wavefunction.

4
M�ller and Plesset emphazise, that their description of the development of the perturbation method

for molecules is strictly only valid for electronic systems without any degeneracies (E
(0)
� 6= E

(0)
� for � 6= �)

[196]. The problem of degeneracy can be overcome by other derivations of the perturbation theory, which

are described elsewhere in the literature [192].
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According to the Brillounin theorem [192, 197] the integral h	(0)
� jV̂j	(0)

�� i vanishes for singly

excited 	
(0)
�� . It also vanishes for more than doubly excited wavefunctions. The in
uence of the

second order perturbation is therefore controlled by double excitation (ij ! ab). This can be used

to simplify (2.22) and (2.21) [190].

a(1)�� = � (ijkab)
�i + �j � �a � �b

E(2)
� =

1

4

occX
i

occX
j

virtX
a

virtX
b

(ijkab)(abkij)
�i + �j � �a � �b

(ijkab) =

�
�i(1)�j(2)

���� 1

r12

�����a(1)�b(2)

�
�
�
�i(1 )�j(2)

���� 1

r12

�����a(2)�b(1)

� (2.23)

�i, �j, �a and �b are one-electron functions, which satisfy (2.9) and the �'s are the corresponding

orbital energies. i and j denote occupied orbitals while a and b designate virtual orbitals.

Although the calculation of the third order perturbation is logically straightforward, numerical

e�orts set a limit in practice; especially the calculation of the wavefunction (2.24). Since (2.24)

contains the same type of integrals than (2.23), the third order of perturbation is also controlled by

double excitation. This shows the equivalence of a MP3 and SD-CI (Single and Double excitations

Con�guration Interaction) calculation.

E(3)
� =

X
� 6=�

a(2)��

D
	(0)
�

���V̂ ���	(0)
��

E
=
X
� 6=�

1

E
(0)
� �E

(0)
��

0
@X
i6=�

a
(1)
�i

D
	(0)
�

���V̂ ���	(0)
��

E
� a(1)��E

(1)
�

1
A

a(3)�� =
1

E
(0)
� �E

(0)
��

0
@X
i6=�

a
(2)
�i

D
	(0)
��

���V̂ ���	(0)
�i

E
� a

(1)
�i E

(2)
� � a

(2)
�i E

(1)
�

1
A
for �6=�

(2.24)

The dominant computational step in MP2 scales as nN4, in MP3 as n2N4 and in MP4 as n3N4

[123]. Here is n the number of occupied molecular orbitals and N the number of basis functions.

This increase in the computational e�orts is the reason for limitations of the con�guration space

in MP4 calculations [124, 198].

One big advantage of MP calculations is the correct dissociation behaviour of supermolecules.

A supermolecule AB dissociates into two fragments A and B. At an in�nite distance between the

fragments, the integral (ijkab) equals zero, if the functions � are located on di�erent fragments. To

the sum E
(2)
� contribute at an in�nite di�erence only terms, on which all four orbitals are located

on the same fragment. In this case E
(2)
� is the same as the sum of the MP2 energies for two isolated

molecules A and B.

A similar argument holds also for the Hartree Fock energy. If distance between A and B gets

bigger, the interaction Ĥ1 between both molecules becomes neglible. This allows us to separate

the hamiltonian into two hamiltonians for A and B. In this case the total energy equals the sum

of the individual molecular energies.

ĤAB = ĤA + ĤB + Ĥ1
lim

rAB !1ĤAB = Ĥ1 = ĤA + ĤB E1 = EA +EB (2.25)

Bartlett has proved that MP calculations are not only size consistent but also size extensive

[195, 198].
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2.3 Con�guration Interaction and Multicon�guration SCF

Theory

Another way to incorporate electron correlation into the calculation is via con�guration interaction

(CI) calculations. Unlike the M�ller Plesset calculations con�guration interaction calculations are

not based on perturbation theory. This allows the use of con�guration interaction calculations,

when the in
uence of the electron correlation on the wavefunction is large. Electron correlation

is particularly important for platinum compounds. For clusters with nearly degenerate states this

type of calculation is especially important.

The exact wavefunction for an N-electron system 	 can be written in an expansion of antisym-

metrized products of one electron functions.

	(1; 2; 3; : : : ; N) =
X
k

dk�k(1; 2; 3; : : : ; N) (2.26)

�k is called a con�guration or a con�guration state function and is a Slater determinant (please

refer to equation 2.5) or a sum of Slater determinants to describe an electronic state. The expansion

coeÆcients dk can be calculated with the linear variation method [115, 199], which leads to the

secular determinant.

detfH�ESg = 0 Hst =
D

�s

���Ĥ����t

E
Sst =



�s

���t

�
= Æst (2.27)

The con�gurations will be orthonormal if the molecular orbitals used for their construction are

orthonormal. The con�gurations are formed by promoting one or more electrons into an un�lled

"virtual"orbital. The con�gurations obtained by the promotion of one electron are called singly

excited con�gurations. The terminology is extended to the excitation of more electrons: double,

triple, quadruple and higher. Usually those excitations are abbreviated by a capital letter: S, D,

T and Q. The number of con�gurations increases rapidly with the number of spin orbitals. The

highest possible number of con�gurations T regardless of the constraints due to spin und spatial

symmetry is given by [197]:

T =

�
M

N

�
=

M !

N !(M �N)!
(2.28)

M is the number of spin orbitals and N the number of electrons. The number of con�gurations

increases rapidly with the number of spin orbitals. To limit the computational e�ort without

reducing the basis is usually the manifold of excitations truncated. According to the Brillouin

theorem [192, 197] singly excited states do not mix with the Hartree Fock ground state. But,

singly excited states still mix with higher excited states. Therefore, the contribution of the singly

excited states to �nal wavefunction is small. The dominant part of the correlation wavefunction

next to the ground state is formed by double excitations. Saxe et al. examined the in
uence of

the manifold of excitation on the energy of a water molecule (double zeta basis set) [200]. Their

results are summarized in table 2.1. 94.7% of the total correlation energy is already covered by

single and double excitations. The addition of triple excitations only gains little in the correlation

energy but multiplies the computational e�ort by nearly a factor of 10.

The lowest root E0 of (2.27) is the ground state. The higher roots EN describe excited states

of the molecule. As shown in section 2.1 (page 15) several virtual orbitals are necessary to form

a single excited state. The orbitals used to construct the excited state can be extracted from the
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SCF D-CI SD-CI SDT-CI SDTQ-CI full CI

con�g. 1 342 361 3203 17678 256473

�E [H] 76.009838 76.149178 76.150015 76.151156 76.157603 76.157866

�ECORR [H] 0.0 0.139340 0.140177 0.141318 0.147765 0.148048

Table 2.1: In
uence of the excitation on the correlation energy of water. [200]

con�gurations used to build the wavefunction (2.26). The excited states that can be formed by

this procedure have the same multiplicity and symmetry as the ground state. Otherwise would the

matrix elements h�sjĤj�ti vanish. The excitation energy �EN equals EN � E0.

During multicon�guration self consistent �eld calculations (MCSCF) not only the con�guration

coeÆcients dk (2.26) but also the atomic orbital coeÆcients aik� (2.13) are optimized. This is done

iteratively in two steps. First, the con�guration interaction problem (2.26) is solved. Second, the

atomic orbital coeÆcients aik� are optimized. Those cycles are repeated until the convergency

criterion is reached. During those calculations two di�erent states are allowed to mix. This

might be necessary for a continuous description of the dissociation of a molecular complex. The

computational e�orts are tremendous. To keep the e�orts at a reasonable limit, the con�guration

space has to be as small as possible.

During complete active space calculations (CASSCF) the orbitals are separated into three dif-

ferent groups. The �rst group contains low lying double occupied orbitals, and from those no

excitation is allowed. The second class contains the virtual orbitals, which are never populated.

The third group, the active space, contains occupied and virtual orbitals, which are used to con-

struct the di�erent states for the con�guration interaction. Modern quantum chemistry codes

today can handle more than 105 states during CASSCF calculations. Due to the limited con-

�guration space CASSCF calculations cannot usually cover the complete electron correlation. A

systematic improvement can be achieved by a combination of CASSCF and M�ller Plesset calcula-

tions CASMP2. This method allows the combination of multi reference calculations and electron

correlation and therefore o�ers a powerful tool for the theoretical analysis of dissociation processes.

The quality of CASSCF and MCSCF calculations depends strongly on the orbitals chosen for

the active space. If the orbitals necessary for the correct description of the important states are

not included, the calculations cannot describe the process. In this work SD-CI calculations are

used to get information of states close to the ground state and are therefore likely to mix.

2.4 Basis Sets and Basis Set Superposition Error

The quantum chemistry program GAMESS UK uses cartesian gaussian orbitals (2.29) for the

calculations [133, 190, 201, 202].

gs = NS e
��r2 NS =

�
2�

�

� 3

4

gx = NP x e
��r2 gy = NP y e

��r2 gz = NP z e
��r2 NP =

�
128�5

�3

� 1

4

(2.29)

gxx = ND x
2 e��r

2

gyy = ND y
2 e��r

2

gzz = ND z
2 e��r

2

ND =

�
2048�7

�3

� 1

4
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gxy = ND xy e
��r2 gxz = ND xz e

��r2 gyz = ND yz e
��r2 ND =

�
2048�7

�3

� 1

4

(2.29)

The function gxx, gyy and gzz are used to construct the dzz and the dxx�yy orbitals. This

procedure yields also an additional Gauss orbital with s-symmetry grr (2.30).

g3zz�rr =
1

2
(2gzz � gxx � gyy) gxx�yy =

r
3

4
(gxx � gyy)

grr =
1p
5

(gxx + gyy + gzz) =
NSp

5
r2e��r

2

(2.30)

During the construction of the molecular orbitals this pseudo-s-orbital (grr) may be used as

an additional s orbital, if the exponential coeÆcients of the s-orbitals are not well chosen and

the s-orbitals have a lack of electron density where this pseudo-s-orbital electron density has its

maximum. This may cause 'overcompleteness' if two orbitals overlap.

The maximum dmax of the radial electron density of the pseudo-s-orbital Prr can be found the

following way:

Prr = r2g2rr = N2
Dr

6e�2�r
2

�
@Prr

@r

�
r=dmax

= 0 (2.31)

dmax =

r
3

2�
Prr"(dmax) = � 87

�2
e�3

Analogous to this the maximum smax of the radial electron density of a s-orbital Ps can be �gured

out the same way:

Ps = r2g2s = N2
Sr

2e�2�r
2

�
@Ps

@r

�
r=smax

= 0 (2.32)

smax =
1p
2�

Ps"(smax) = �2e�1

The total energy of a wavefunction depends on the number of functions in the basis set. The

more functions used the lower is the total energy. This is a serious problem for the quantum

mechanical description of reactions, in which the number of molecules changes.

A good example of this is any dimerisation. The dimer contains twice as many orbitals as a

single monomer. Therefore, its basis is much more 
exible. This additional 
exibility leads to a

further decrease of the dimer's energy. This additional decrease is called the basis set superposition

error (BSSE). The BSSE is still subject of research and discussion in the scienti�c community and

regularly discussed at the Computational Chemistry Mailing List [203].

Boys and Bernardi introduced the counterpoise method (CP) to handle this problem 1970

[204]. After the calculation of the dimers energy the energies of the monomers are recalculated

using ghost orbitals to simulate the presence of the other monomer. This increase of the basis yields

a further decrease in the monomers' energy. This energy change can be regarded as the BSSE.

Figure 2.1 shows the in
uence of the BSSE on the complete interaction energy. If the monomers

basis is complete, no further increase in the number of orbitals by the other monomer can induce a

further decrease in energy and the BSSE equals zero. This allows the conclusion that an increase

in the number of orbitals in the basis set should give a smaller BSSE.

The CP method was believed to overestimate the BSSE slightly. To correct this Daudey

et al. suggest using only the virtual orbitals of the other monomer (VCP method) [205]. To

emphasize the di�erence between these two methods, the CP method of Boys and Bernadi is
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Figure 2.1: In
uence of the BSSE on the interaction energy.

often abbreviated as FCP (full counterpoise). Both methods have been compared in the literature

[105, 106, 206, 207]. The use of those methods (FCP or VCP) seemed to depend on the interaction

energy of the monomers. The overestimation of the BSSE by the FCP method seemed to be

a lesser problem than the underestimate of the VCP method regarding water-water interactions

[105, 106]. For very weak interactions it is vice versa [207]. Nowadays, it is generally believed that

the FCP method is the theoretically correct method [208a]. A simpli�ed argument starts with a

Heitler-London approach towards the supermolecule. The wavefunction of the complex AB is the

antisymmetrized product of the monomers' wavefunctions, Â	A
0 	B

0 .

EHL
AB =

D
Â	A

0 	B
0

���Ĥ��� Â	A
0 	B

0

E
D
Â	A

0 	B
0

�� Â	A
0 	B

0

E (2.33)

The antisymmetrization operator Â causes exchange interaction between the two fragments. This

exchange interaction between occupied orbitals again causes a short repulsion of the fragments

[17a, 194c].

�EHL = EHL
AB �EA �EB (2.34)

For the calculation of the Heitler-London interaction energy �EHL the choice of the basis for the

calculation of the free monomers energies EA and EB is important. The VCP method would not

permit the occupied orbitals of fragment A to mix with occupied orbitals of B. The overlap controls

the exchange interaction and therefore the short range repulsion. The VCP method would give a

wrong estimate of the BSSE. This reasoning proves only that the FCP method give better estimates

of the BSSE than the VCP method, but does not show that the FCP method describes the BSSE

correctly. The later argument can be found in Van Duijneveldt's text [208a] and cited literature

therein.

The assumption that the total BSSE can be extrapolated only from ghost orbital calculation

of the electron donor has been proven inaccurate. Since the BSSE is large in comparison with

the small interaction energy of two water molecules, even changes of a tenth of a kcal/mol should

be considered to get a better description of the interaction energy. The interaction energy on the

other hand is not a good measure of the absolute size of the BSSE, since the BSSE is a result of the

inadequate description of the monomers. The decision whether the BSSE is small or large should

therefore be made in comparison with the monomer energy.
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As important as the selections of the orbitals used for the calculation of the BSSE is the selection

of the fragments, from which the complex is built [208a]. There is only one chemically sensible way

to build a dimer from a monomer, but there are four equivalent ways to construct a trimer (�gure

2.2).

A + B + C ABC
AB + C

BC + A

AC + B

Figure 2.2: Formation of a trimer.

The �rst three paths are chemically more sensible, because the addition of a third party to

an existing dimer is generally more likely than the formation of a trimer in a single step [187].

The calculation of the BSSE during the formation of the �rst dimer can be done with the FCP

method without any problems. The dimer is then taken as a monomer for the next step and the

BSSE is then calculated again. The last way shown in �gure 2.2 is the formation of the trimer

in a single step. To calculate the BSSE of A the basis functions of the B and C were added to

the basis of A. The same basis is used to calculate the BSSE of the reminding monomers B and

C. All four ways would yield a di�erent BSSE and therefore di�erent interaction energies for the

formation of a trimer. This �nding is in contradiction to the laws of thermodynamics. The energy

of a compound should be independent of the way of formation. To achieve consistency the full

basis of ABC should be used to calculate the monomers' energies regardless of the chosen way.

The BSSE not only in
uences the dimerisation energy but also bond lengths and angles, because

it changes the curvature of the energy hypersurface. Since most quantum chemical programs do

not take the BSSE into account for geometry optimizations, the energy hypersurface has to be

probed manually by single point calculations. Those points are then used to �nd the minimum of

the BSSE corrected energy surface. This procedure allows us to estimate the BSSE for geometry

changes.

2.5 The Morokuma Energy Decomposition Scheme

The supermolecular approach usually does not allow the decomposition of the total interaction

energy into physically important energy terms. This disadvantage [209] can be overcome by the

Morokuma's energy decomposition scheme [127, 129, 210, 211]. This part of the thesis follows

the very clear explanation from Kitaura and Morokuma [212].

The Hamiltonian of a van der Waals complex AB can be written in the following way:

Ĥ = ĤA + ĤB + ĤAB (2.35)

ĤA and ĤB are the Hamiltonians for the isolated molecules and ĤAB is the interaction term. The

total energy of the unperturbed state is the sum of the Hartree Fock (HF) ground state energies.

E0 =
D
A0
��� ĤA

���A0
E

+
D
B0
��� ĤB

���B0
E

(2.36)

A0 and B0 are the HF wavefunctions of the molecules A and B. The HF wavefunctions  i of the
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dimer AB are built from the monomers' molecular orbitals.

 i =
X
k

Cik �
A
k +

X
�

Ci� �
B
� (2.37)

The subscripts k, l, m are employed for the HF molecular orbitals of the isolated molecules A,

while �, � and 
 are used for B, and i and j for the complex. The redundant superscripts A and

B emphasize the molecular origin of the orbitals. On this basis the Hartree Fock equation for the

dimer can be written in the following manner5:

(F� �S)C = 0 (2.38)

F is the Fock matrix, S the overlap matrix, C the coeÆcient matrix and � the diagonal matrix of

orbital energies.

The total interaction energy (positive for attraction) is6:

��E =

occX
i

C+
i (F+H)Ci �E0 (2.39)

H is the kinetic energy and nuclear attraction part of F. To describe molecular interactions the

total energy (F� �S) is split into two terms.

(F� �S) = (F0 � �1) +� (2.40)

F0 is the Hartree Fock matrix of the unperturbed system (in�nite separation) and 1 the unit

matrix, while � contains the molecular interaction. The matrix elements are de�ned as follows:

F 0
kl = �kÆkl F 0

�� = ��Æ�� F 0
k� = 0 (2.41)

F0 is build only from the monomers' orbital energies, which are calculated in the �rst step. The

molecular interaction matrix � contains the following elements:

�jk =


kjV B jl�+

*
k

�����
occX
i

(2Ji �Ki)

����� l
+
�
*
k

�����
occX
m

(2J0m �K0
m)

����� l
+
Ækl

��� =


�jV A j��+

*
�

�����
occX
i

(2Ji �Ki)

����� �
+
�
*
�

�����
occX



(2J0
 �K0

)

����� �
+
Æ�� (2.42)

�k� = ��Sk� + hk j T̂ + V A + V B j �i+

*
k

�����
occX
i

(2Ji �Ki)

����� �
+

5Starting point is the equation, which describes the energy of the i-th molecular orbital (compare with

(2.8))

D
 
��� F̂
��� E = � with  =

X
�

C� ��

Minimizing � by varying C� with non orthogonal wavefunctions �� yields the following equation for C�:

X
�

C�(F�� � �S��) = 0 F�� =
D
��

��� F̂
�����

E
S�� =



��
�� ���

Doing this for all Cs and rearranging the equations into matrix form yields (2.38)
6This follows directly from (2.9) and (2.10) for closed shell molecules.
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Figure 2.3: Interaction and mixing of the monomer's orbitals.

VA and VB are the nuclear attraction potentials of A and B and T̂ is the kinetic energy operator.

J0m and K0
m are the coulomb and exchange operators for the orbital �Am of the isolated molecule

A. J0
 and K0

 are similar operators for �B
 . The molecular interaction term also includes the o�

diagonal elements Sk� of S.

This approach allows us to distinguish between four di�erent types of interactions (please refer

to �gure 2.3):

1. Electrostatic: The classical electrostatic interaction operates between the occupied molecular

orbitals without mixing them.

2. Polarisation: The polarisation causes the mixing of the occupied and the vacant orbitals of

each molecules due to the presence of the other.

3. Exchange: The interaction between both molecules leads to an exchange of electrons between

the molecules and an extension of the delocalisation.

4. Charge transfer: The interaction causes a mixing of occupied orbitals of one molecule with

vacant molecules of the other and vice versa. This mixing allows a charge transfer from one

molecule to the other.

Those four basic principles allow us to subdivide the molecular interaction matrix � into dif-

ferent regions:

A, occ A, vac B, occ B, vac

A, occ ESX PLX EX' CT

A, vac PLX ESX CT EX'

B, occ EX' CT ESX PLX

B, vac CT EX' PLX ESX

The blocks ESX contain parts of the exchange and the electrostatic interaction energy as a com-

parison with equation (2.42)7 proves. The PLX areas contain the polarisation and part of the

7The �rst term hk jVB j li represents the electrostatic interaction with the nuclei of the other molecule.

The second half describes how the coulomb and the exchange interaction with all electrons, and therefore

with the electrons of the other molecule, a�ect the orbitals of A.
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exchange energy, while the CT and EX' �elds describe only charge transfer and exchange inter-

actions.

Setting all blocks of � to zero apart from one type (�X) enables the formulation of a model

Hartree Fock equation with only one dominant interaction. These model Hartree Fock equations

allow us to determine individual interaction energies.

0 = (FX � �SX) � (F0 � �1+�X)CX EX =

occX
i

CX+
i (FX +HX)CX

i (2.43)

HX is the one electron operator, which is included in FX. The interaction energy EX due to the

interaction X is therefore:

�EX = EX �E0 (2.44)

The �rst interaction energy to calculate is EESX (diagonal blocks). By de�nition electrostatic

interactions do not change the monomers' molecular orbitals (CESX = 1). Neglecting intermolecular

exchange terms allows also to �gure out the pure electrostatic interaction energy EES.

The remaining values are calculated together with EESX (i.g. EESX + ECT), since the ESX-

blocks are the diagonal blocks and a calculation without them is meaningless. The reminding

blocks are set to zero and equation (2.43) solved. The resulting wavefunctions are of the following

structure.

�ESX+CT
i =

occX
k

Cik�
A
k +

vacX
�

Ci��
B
� or �ESX+CT

j =

occX
�

C�k�
B
� +

vacX
l

Cjl�
A
l (2.45)

The charge transfer energy itself can be easily determined.

�ECT = EESX+CT �EESX (2.46)

This procedure allows the calculation of the following energies:

EES electrostatic interaction energy

EPL polarisation energy

EEX exchange energy

ECT charge transfer energy

EEXPL exchange polarisation energy

EMI coupling term = �E � (EES + EPL + EEX + ECT + EEXPL)

EMIX = EMI + EEXPL (GAMESS US does not calculate the individual terms but only the

sum [213])

Since the procedure by Kitaura and Morokuma uses the monomers' molecular orbitals for

the calculation rather than the individual atomic orbitals the complete interaction energy �E

should be smaller than the interaction energy of an ordinary supermolecular SCF calculation. This

is caused by the reduced 
exibility of the basis.
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2.6 Pseudopotentials

The chemical nature of an element is governed by its outer electrons. This rule is most beautifully

displayed in the periodic system of elements, where elements with the same number of valence

electrons are joined into groups of similar chemical reactivity. The inner core electrons do not

participate in the chemical bonds. Since the amount of computational work increases rapidly with

the number of electrons, it might be economically sensible to replace those core electrons by an

additional potential, which keeps the valence electrons away from the nucleus and provides the

correct energetic and angular behaviour.

The electrons "get faster"as the charge of the nucleus increases and the relativistic corrections

of the quantum chemical results have to be made. Relativistic in
uences of the core electrons onto

valence electrons and vice versa has to be simulated by the core potential (RECP, Relativistic

E�ective Core Potentials). The incorporation of the relativistic e�ects into the core potentials is

brie
y described in the second part of this chapter. The �rst and more detailed part explains the

development of non relativistic core potentials (NRECP). For the better understanding of the ECP

from Hay and Wadt [189, 214, 215] used in this work brief notes on the historical development

are also made in both parts.

2.6.1 Non Relativistic Core Potentials

The development of modern pseudopotentials started with the basic paper by Phillips and Klein-

man [216]. Weeks and Rice [217, 218] generalized their approach. This generalized Phillips-

Kleinman-potential (VGPK) is the basis of the ECP from Hay and Wadt [189, 214, 215] and

they refer to the paper of Kahn, Baybutt and Truhlar [219] as a principal description of the

underlying theory.

The next section summarizes the development of the VGPK for a single valence electron. The

energy expectation value E of this valence electron's wave function �V is the minimum of the

functional (2.47a) under the constraints of normalisation (2.47b) and orthogonality (2.47c) with

the core functions �C.

(a)
D
�V

��� Ĥ ����V E (b)


�V
�� �V � = 1 (c)



�V
�� �C� = 0 (2.47)

The core part of any function could be obtained with the idempotent, hermitian projection

operator P̂.

P̂ =
X
C

j�C ih�C j P̂ 2 = P̂ P̂�C = �C (1� P̂ )�C = 0 (2.48)

The valence function �V could be obtained from any function � with the help of the projection

operator P̂.

(1� P̂ )� = �V = �V P̂ � = �C =
X
C

aC �C aC =


�C
�� �� (2.49)

P̂ takes every bit of � in the core region out of �. Hence �V and �C cannot overlap and therefore

the integral 2.47c vanishes. Equation 2.49 allows us to rewrite (2.47a) and (2.47b).D
(1� P̂ )�

��� Ĥ ��� (1� P̂ )�
E D

(1� P̂ )�
��� (1� P̂ )�

E
= 1 (2.50)
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Arbitrary variation of �� with � as a Lagrange multiplier leads to:D
Æ�
��� (1� P̂ ) Ĥ (1� P̂ )

����E� �
D
Æ�
��� (1� P̂ )

����E = 0 (2.51)

Since Æ�� is arbitrary follows from this equation:

[(1� P̂ ) Ĥ (1� P̂ )� �(1� P̂ )]� = 0 (2.52)

The rearrangement of (2.52) leads directly to the expression of generalized Phillips-Kleinman-

Potential VGPK [218].

Ĥ �� ĤP̂ �� P̂ Ĥ �+ P̂ ĤP̂ �� � �+ �P̂ � = 0 (2.53)

(Ĥ + P̂ ĤP̂ � ĤP̂ � P̂ Ĥ + �P̂ )� = � �

(Ĥ + V GPK)� = � �

V GPK = P̂ ĤP̂ � ĤP̂ � P̂ Ĥ + �P̂

In the next step the Lagrange multiplier � (2.51) is set equal to the energy eigenvalue E of

the valence function (2.47a). By construction E is then the extreme value of (2.50) subject to the

constraints (2.47b) and (2.47c). The test function � may now have an arbitrary core part. This

can be proved by a rearrangement of the �rst equation of (2.53) and combination with (2.49).

[(1� P̂ ) (Ĥ �E) (1� P̂ )]� = 0

(1� P̂ ) (Ĥ �E)�V = 0 (2.54)

(E �E)�V = 0 q.e.d.

A similar argument applies to the core part of the test function �C.

(Ĥ + V GPK)�C = (Ĥ + P̂ ĤP̂ � ĤP̂ � P̂ Ĥ +EP̂ )�C

= Ĥ �C + P̂ ĤP̂ �C � ĤP̂ �C � P̂ Ĥ �C +EP̂ �C jP̂ �C = �C (2.55)

= E �C

E is therefore the lowest possible eigenvalue of (2.47a). Also, every core function is degenerate with

the eigenvalue E in this approach.

VGPK is a nonlocal potential. Further simpli�cation could be obtained by the localisation of

VGPK. This is described in the paper of Kahn, Baybutt and Truhlar [219]. In the case of a

single electron circling round a closed shell core Ĥ equals the Fock operator F̂.

(F̂ + V GPK)� = E � F̂ = ĥ+
X
C

(2ĴC � K̂C)

[ĥ+
X
C

(2ĴC � K̂C) + V GPK ]� = E � (2.56)

(ĥ+ Ucore)� = E � Ucore =
X
C

(2ĴC � K̂C) + V GPK

c counts the number of doubly occupied orbitals8. If the e�ective potential Ucore is used in an

analytical form, the potential in which the valence electron moves is local and the integrals are

easy to compute.

8This form of the Fock operator (2.56) di�ers from (2.9) by the way of counting. In the form of (2.9) are

all electrons counted, in (2.56) only the double occupied orbitals are counted. While the coulomb integral

has a non-vanishing value among all electrons vanishes the exchange integral for electrons with di�erent

spins.
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The orbital �V and the eigenvalue E are solutions of the exact hamiltonian Ĥ and are used

numerically during the following calculations. The next step in the evaluation of an ECP is to �x

the pseudo orbital �l. At this point of the calculation it is no longer possible to neglect the angular

momentum of the valence electron. The construction is done in such a way that �l is smooth and

nodeless in the core region and similar to the original valence orbital �Vl in the valence region.

Such a nodeless wave function has the lowest energy eigenvalue applied to the pseudo potential

hamiltonian [219]. Originally the pseudo orbital is formed by a linear combination of �V and the

core orbitals �C.

�nl =
X
C

bCl �Cnl + �V nl (2.57)

The arbitrary coeÆcients bC are chosen in such a way, the � has the right form under certain

constraints. Hay and Wadt used this form [220] until Christiansen et al. [199] proved, that

this form causes too strong bonds and too short bond lengths. Christiansen et al. suggested

constructing �l from two parts. Hay and Wadt followed their suggestion for the ECP used in this

work. The �rst part is a polynomial pnl (2.58) and the second part is the original orbital �Vl. At

a point rC close to the outermost maximum the polynomial turns into �Vl.

pnl(r) = rb (an0 + an1 r + an2 r
2 + an3 r

3 + an4 r
4) (2.58)

l is the quantum number of the angular momentum of the electron. In the non relativistic case b

= l + 3. The remaining �ve coeÆcients ani are determined in such a way, that

1. pnl(r) and its �rst three derivatives match �Vl and its �rst three derivatives at rC.

2. �nl remains normalized.

The precise criteria to which the coeÆcients of the pseudo orbitals are optimized di�er from

paper to paper. The contribution of the original HF orbitals to the pseudo orbitals of the type

(2.57) is about 80% to 95%9. It may be higher for pseudo orbitals of the second type (2.58). A

change of the criteria did not much alter the pseudo orbitals. Only the swapping between the two

forms (2.57) and (2.58) makes a signi�cant di�erence.

After the determination of the pseudo orbitals in a numerical form starts the extraction of

Ucore.

(a) Ucore
l (r) = Enl � ĥ �nl

�nl
l < L (b) U core

l (r) = Enl � ĥ �V nl

�V nl
l � L (2.59)

L is de�ned as lmax + 1, where lmax is the maximum angular quantum number of the core electrons.

Hay and Wadt [214] use for their pseudo potentials a combination of (2.59a) and (2.59b).

Ucore
l (r) = Enl � l(l + 1)

2r2
+
Z

r
+

�nl"

2�V nl
� V̂nl �nl

�V nl
= Enl � l(l + 1)

2r2
+
Z

r
+

�nl"

2�V nl
(2.60)

V̂val contains the electron electron interaction of the valence electrons. Since the theory described

here considers only one valence electron, this term may be omitted. The rest follows from the

de�nition of ĥ.

ĥ = �1

2
r2 � Z

r
+
l(l+ 1)

2r2
(2.61)

9Figures calculated from table I in the basic paper of Kahn et al. [219]
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The last term of (2.61) is the centrifugal energy, which may be regarded as a result of the separation

of the radial and the angular part of the atomic wavefunction. The combination of (2.59a) and

(2.59b) is done in the fourth term of (2.60), where the second derivative of the pseudo orbital is

divided by the original valence orbital.

For wavefunctions with l < L the pseudo orbitals have to be used to ensure the right nodal

behaviour in the core region. Electrons with l � L have automatically the right behaviour and the

original HF orbitals �V are used for the construction of Ucore.

The ECP strongly depends on the angular momentum of the electrons while l < L. For l � L

the di�erence between di�erent Ucore
l is negligible [219, 221].

(a) Ucore
l+1 (r) 6�= Ucore

l (r) l < L (b) U core
l (r) �= U core

L (r) l > L (2.62)

For l < L contains Ucore
l the coulomb and the exchange potentials and VGPK. For l > L Ucore

l

does not contain VGPK as the orthogonality of those angular states to the core states is ensured

automatically by their spatial parts. The spatial dependencies of the coulomb and exchange part

are small and can be ignored.

The di�erent forms of Ucore
l can be uni�ed by using angular momentum projection operators.

Ucore =

1X
l=0

lX
m=�l

Ucore
l (r) jlmihlmj (2.63)

The combination of (2.62) and (2.63) with the standard closure property
PP jlmihlmj = 1 leads

�nally to the form of Ucore.

Ucore(r) = Ucore
L (r) +

L�1X
l=0

lX
m=�l

jmli[Ucore
l (r)� Ucore

L (r)]hlmj (2.64)

The �rst term Ucore
L provides a basic potential in which all valence electrons move. It contains

the coulomb and exchange potentials, which are rather angular independent. This is expressed in

(2.62b). The second term provides the repulsive term VGPK which is strongly angular dependent.

The coulomb and exchange parts with small angular dependence cancel each other out.

The last step is an analytic expression for the pseudo orbitals and potentials. The ECP is �tted

with a set of gaussian functions.

r2[Ucore
l (r) � Ucore

L (r)] =
X
k

dk r
nk exp[��r2] l = 0; 1; : : : ; L� 1 (2.65)

r2
�
Ucore
L (r) � NC

r

�
=
X
k

dk r
nk exp[��r2] l = L

NC is the number of core electrons. At an in�nite distance from the nucleus the spatial arrangement

of the core electrons is irrelevant. The valence electron moves in a repulsive �eld caused by the

coulomb interaction between the valence electron and all core electrons gathered together at the

nucleus.

(Ucore
l (r))r!1 =

NC

r
(2.66)

Gaussian functions are useful, because nearly all quantum chemical codes today use gaussian

orbitals and therefore have the facilities to handle gaussian functions.

The choice of L is interesting. Some authors do not choose the value suggested by the theory [eg

221]. They argue that in a molecular environment usually only s-, p- and d- electrons are involved
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in a chemical bond. Therefore, it is not necessary to include f-type repulsive functions in the ECP.

The potentials used in this work [189, 214, 215] use the full range. For platinum L equals four

(g-type) and therefore f electrons are handled correctly.

The ECP would force any basis set into orbitals of the right shape. So in theory any basis set

could be used in theory. But this would be a waste, since those basis sets are expected to reproduce

the correct nodal behaviour of the HF wavefunctions in the core region. To keep the computational

e�orts at a minimum, the pseudo orbitals � are also �tted to gaussian functions and published

with the ECP. The basis set used for this work uses the original exponents [189, 214, 215] but has

a double zeta quality [222] by rearranging the functions into new groups.

2.6.2 Relativistic Quantum Mechanics and Core Potentials

As the charge of the nucleus increases, the electrons move faster. For heavy atoms like platinum

relativistic corrections of the quantum mechanical results have to be made. The basis of relativistic

quantum mechanics is given by the Dirac equation. While most textbooks discuss only the results

of this approach [192, 194] very few books [197, 223, 224] discuss the equation itself. This section

of the thesis summarizes the chapter of Christoffersen's book [197] to show the origin of the

di�erent e�ects.

The force acting on a particle with the mass m, moving with the velocity v can be described

with Newton's laws of motion.

F =
d

dt
p =

d

dt
(mv) (2.67)

The mass is allowed to vary with its velocity according to the relativistic mass correction, where

m0 denotes the particle's rest mass.

m =
m0p

1� (v=c)2
(2.68)

While the particle moves in an electromagnetic �eld, two forces are acting on the particle. First,

the coulomb interaction with the electric �eld q�E and second the Lorentz force (q/c)(v � B).

d

dt

(
m0 vp

1� (v=c)2

)
= F = q E +

�q
c

�
(v �B) (2.69)

E is the strength of the electric �eld and B is the density of the magnetic 
ux. Rearrangement

converts equation (2.69) into its �nal form for the construction of the Dirac equation.

E = �r�� 1

c

@A

@t
B = r�A

d

dt

(
m0 vp

1� (v=c)2
+
�q
c

�
A

)
= �qr�+

�q
c

�
(v � rA)

(2.70)

The Hamiltonian is built from equation 2.70 via the Lagrangian function L including interparticle

interactions V.

pi =
@L

@q.i
=

Z
Fi dt H =

X
pi q

.
i � L

H =

r
c2
h
p̂�

�q
c

�
A
i2

+m2
0 c

4 + q �+ V

(2.71)
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The Hamiltonian (2.71) is diÆcult to use due to the square root. The factorisation of the Hamil-

tonian into a product of two four-component vectors forms the basis of the actual Dirac equation.

For a hydrogen atom A equals zero and the potential in which the electron moves is given by

�e2=r. The tedious rearrangement of the corresponding Dirac equation is omitted here for the

sake of brevity and the results of the calculation are taken from Schwabl's book [194].

From the solution of the Dirac equation for the hydrogen atom three correction terms for the

single electron follow directly:

1. The relativistic energy momentum correlation (square-root of (2.71)) introduces a correction

to the electron's kinetic energy.

E =
q
c2 p̂2 +m2

0 c
4 = m0 c

2 +
p̂2

2m0

� 1

8

(p̂2)2

m3
0 c

2
+ : : : (2.72)

The �rst term of the expansion is the energy mass relation, the second the non relativistic

kinetic energy and the third the relativistic correction to the kinetic energy. The Hamiltonian

of the hydrogen atom would be:

Ĥ0 =
p̂2

2m0

� e20
r

Ĥ1 = �1

8

(p̂2)2

m3
0 c

2
Ĥ = Ĥ0 + Ĥ1 (2.73)

. The rest energy m0 c2 is constant and can be separated from the energy expression.

2. The electron orbiting around the proton can be regarded as the source of a magnetic �eld B

= �(v� E)=c. This �eld interacts with the electron's spin S. The interaction is called the

spin orbit coupling.

�e
m0 c

Ŝ � B̂ =
e

m0 c2
Ŝ � (v̂ �E) =

e

m0 c2
Ŝ �
�
p̂

m0

�E

�
=

�e
m2
0 c

2
Ŝ � (p̂�r�) (2.74)

=
1

m2
0 c

2
Ŝ �
�
p̂� ~r

r

dV (r)

dr

�
=

1

m2
0 c

2
Ŝ � L̂ 1

r

dV (r)

dr

After the introduction of the magnetogyric ratio for an electron ge = 1
2
, equation 2.74 and the

solution of the Dirac equation become equivalent. The correct expression for the hydrogen

atom would be:

Ĥ2 =
1

2m2
0 c

2
Ŝ � L̂ 1

r

d

dr
V (r) =

1

2m2
0 c

2
Ŝ � L̂ Ze2

r3
(2.75)

The expectation value <H2> of the spin orbit coupling has the following value:

D
Ĥ2

E
n; j=l� 1

2
; l

=
m0 c

2(Z�)4

4n3 l (l + 1
2
) (l + 1)

�
l

�l� 1

�
(2.76)

� is the �ne structure constant. Since l appears in the denominator of (2.76), spin orbit

coupling is only possible for electrons with l � 1.

3. The last term H3 from the Dirac equation of the hydrogen atom is the Darwin term.

Ĥ3 =
~
2

8m2
0 c

2
r2V =

� ~2 e2

2m2
0 c

2
Æ(r) (2.77)

A physical interpretation of the Darwin term is found few text books. They all take H3 as

a result of the Dirac equation for the hydrogen atom. According to Schwabl [194b] the

position of a localized electron is uncertain Ær = ~

mc
, which looks like a combination of the
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Heisenberg uncertainty relation and Einstein mass energy equivalent. Due to this uncertainty

feels the electron an average �eld from the nucleus.

hV (r + Ær)i = V (r) +
1

6
(Ær)2r2V (r) (2.78)

The second term of the right-hand side of equation 2.78 has the same form as H3 (2.77). The

Darwin term is purely relativistic.

Due to the delta function in the far right term of (2.77) the Darwin term is only relevant

for s-electrons. Since only the wavefunctions of s electrons have a non vanishing value at the

nucleus. The expectation value of H3 has the following value:

D
Ĥ3

E
n; j; l

=
m0 c

2 (Z�)4

2n3
Æl;0 (2.79)

The value is formally identical with the expectation value of H2 (2.76) with j = 1
2

and l = 0.

All three relativistic corrections are about the same size and (Z � �)2 times (1:9 � 104 for hydro-

gen) smaller than the coulomb interaction. The relativistic e�ects are small in comparison with

other quantum e�ects and a perturbation approach for relativistic e�ects is appropriate.

The next relativistic correction10 is the Lamb shift. The Lamb shift is caused by the quantisation

of the electromagnetic �eld and has the same structure as the Darwin term, but again is � log (1=�)

times smaller (about 64 for hydrogen). The hyper�ne structure is caused by the interaction of the

electrons with the spin of the nucleus. The hyper�ne interaction is even smaller.

The development of relativistic pseudopotentials [189, 214, 215] starts with introduction of

the mass-energy (Ĥ1) and the Darwin operator (Ĥ3) into the nonrelativistic Hartree-Fock atomic

equation [221].

 
�1

2

d2

dr2
+
l(l+ 1)

2r2
+ V̂nl � �2

2

h
�nl � V̂ lo

nl

i2
�

�2

4
Æl;0

�
1 +

�2

2

h
�nl � V̂ lo

nl

i��1 @V lo
nl

@dr

�
d
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� 1

r

�!
Pnl = �nl Pnl +

X
n0l

�nl;n0l Pnl (2.80)

Vnl = �Z
r

+ VHF
nl is the potential, in which the electron moves and Vlo

nl its localized version. To

obtain radial wavefunctions, which are independent of a j quantum number, the spin orbit term

has been omitted by Kahn et al. [221]. Although the spin-orbit coupling term H2 has been

omitted, the relativistic Hartree Fock approach (HFR) describes correctly the enlargement of the

d and f orbitals and the shrinking of the s and p orbitals. The in
uence onto orbitals with l

6= 0 is only indirect, since the Darwin operator works only with s orbitals. Table 2.2 shows the

expectation values for hr2i for the uranium and the corresponding values of pure Hartree-Fock (HF)

and Dirac-Hartree-Fock (HFD) calculations.

Table 2.2 demonstrates how well the approach given by equation 2.80 reproduces the j-averaged

results of the Dirac-Hartree-Fock calculation (av. HFD). The data also justify the use of the Darwin

operator instead of the spin orbit coupling operator, since the changes of the 7s orbital are by far

the greatest in the table. Non relativistic wavefunctions based on equation 2.80 can be described

by three component vectors, while relativistic wavefunctions from Dirac-Hartree-Fock calculations

need four component vectors.

10Please refer to [192, 194, 224] for details.
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5f� 5f+ 6d� 6d+ 7s 6p� 6p+

HF 1.94 9.63 28.8 4.11

HFR 2.57 12.4 21.5 3.73

HFD 2.53 2.67 11.1 13.7 21.8 3.13 4.08

av. HFD 2.61 12.7 | 3.76

Table 2.2: Expectation value of hr2i in bohr for di�erent uranium orbitals [221]

The relativistic pesudopotentials by Hay and Wadt [189, 214, 215] are based on HFR cal-

culations (equation 2.80). The determination of relativistic pseudopotentials is the same as the

calculation of the nonrelativistic potentials once the pseudo orbitals �nl are known. The di�erence

between both orbitals is the exponent b of the orbital's core part (2.58). For orbitals with l 6= 0,

b = � + 2.

�+ 1 =

r
l(l+ 1) +

1

4
(l + Æl;0)2 + (�Z)2 (2.81)

For s orbitals a 6th degree polynomial is used instead of the �fth degree polynomial and b is set

equal to � + 3. Since the pseudo orbitals and potentials are based on HFR calculations the mass-

energy and the Darwin term are incorporated into any calculation which uses those potentials.

If spin orbit coupling is important for the calculation, spin orbit coupling has to be introduced

later into the calculation as a perturbation. The coupling constants might be taken from HFD

calculations or spectroscopic data.

Ermler et al. [225] used a j-averaged pseudopotential basing on a Dirac-Hartree-Fock calcula-

tion of xenon for the quantum chemical analysis of Xe2 and Xe+2 . Wadt et al. [226] did an analysis

of the same molecules using their approach based on equation 2.80. Both groups obtained nearly

the same results for interaction energies and bondlengths. This result is hardly surprising, since

calculations at an atomic level (table 2.2) showed how well the nonrelativistic approach reproduces

the values of j-averaged HFD calculations. The simpli�cation does not cause any additional errors

during molecular calculations. The di�erence between the theoretical and the experimental values

is caused by two e�ects.

1. Comparison with all electron calculations showed the ECP calculations to predict too short

bond distances and too high bonding energies. Those di�erences are caused by the poor

description of the inner core part of the pseudo orbitals �nl [199].

2. Additional spin orbit calculations improve the overall performance of the ECP calculations.

The improvements of the results are too small to overcome the error due to the incorrect

form of the pseudo orbitals. The small di�erences between calculations with relativistic and

nonrelativistic ECP suggest, that for xenon compounds relativistic e�ects are negligible and

the main relativistic e�ect is the spin orbit coupling.

Similar investigations of AuH, AuCl, HgH and HgCl were done by Hay et al. [227]. For heavy

metal atoms relativistic e�ects of the core electrons are important. The calculations show that the

correct relative energies of di�erent atomic states are impossible to determine without relativistic

corrections. The calculations show that further improvement could be achieved by correlation

calculations. Additional spin orbit calculations improve the performance and good reproduction of
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the experimental value is possible. Without spin orbit coupling, calculations with relativistic ECP

give good j averaged results.

The use of relativistic ECPs by Hay and Wadt [189, 214, 215] in combination with correlation

calculations should form a good basis for the calculation of platinum clusters as surface models,

because the largest error caused by the poor description of the pseudo orbitals core part has been

corrected. The analysis of the gold and mercury compounds also showed that even a qualitative

analysis of heavy metal compounds would be impossible without the use of relativistic core poten-

tials. Spin orbit coupling could only be achieved by perturbation of the �nal results. The coupling

constants are usually taken from spectroscopic experiments.

2.7 Interactions between di�erent electronic states

The problems of intersections and intersystem crossings are widely covered by basic quantum

mechanics text books. This section follows the reasoning of Landau and Lifshitz [228] and

Gilbert and Baggot [229].

2.7.1 Intersection of Potential Energy Curves

E1(r) and E2(r) describe the total energy of an adduct as a function of the distance r between the

components of the binary complex. To decide whether an intersection can occur, it is convenient

to start the examination at a point r0, where E1 and E2 are very close but not similar. E1 and

E2 are eigenvalues of 	1 and 	2 with the hamiltonian Ĥ0 at r = r0. The new hamiltonian after a

small movement of Ær towards the possible intersection has the following form:

Ĥ = Ĥ0 + V̂ V̂ = Ær
@Ĥ0

@r
(2.82)

The energies at this new point can be regarded as eigenvalues of the new hamiltonian (2.82).

The according wavefunction 	T is built from the eigenfunctions 	1 and 	2 of the unperturbed

hamiltonian Ĥ0.

	T = c1	1 + c2	2

(Ĥ0 + V̂ )	T = E	T and Ĥ0	1 = E1	1 and Ĥ0	2 = E2	2 (2.83)

c1(E1 + V̂ �E)	1 + c2(E2 + V̂ �E)	2 = 0

The multiplication of this equation on the left by 	�
1 and 	�

2, integration and rearrangement

directly lead to the secular determinant and an expression for E.�����E1 + V11 �E V12

V21 E2 + V22 � E

����� = 0 (2.84)

E =
1

2
(E1 +E2 + V11 + V22)�

r
1

4
(E1 �E2 + V11 � V22)2 + jV12j2

If the energy values of the two terms become equal at the point r0 + Ær (the two curves intersect)

both values of E have to be the same. This happens as the square root term in equation (2.84)

vanishes.

E1 �E2 + V11 � V22 = 0 V12 = 0 (2.85)
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V12 = h	1jV̂j	2i vanishes as 	1 and 	2 have di�erent symmetries. V̂ is always totally symmetric,

since no symmetry operation can alter the energy of the perturbation. This integral only has a

non vanishing value, if the function to be integrated transforms totally symmetrically. This is only

possible, if both wavefunctions 	 have the same symmetry. Once V12 has vanished, the term on

the left side of (2.85) can be set equal to zero by a suitable choice of Ær. Therefore, two terms can

only cross if they have di�erent symmetries including the spin.

2.7.2 Photoexcitation and Intersystem Crossings

Photoexcitation can alter the electronic state of a molecule. A photoexcitation is possible, if the

transition moment is not equal to zero. The transition moment is one result of the time dependent

perturbation theory of the transition.

The interaction of light with a molecule's dipole moment can be described as a perturbation

of the molecule. Since the vector of the electric �eld of the light changes with the time, the

perturbation analysis has to be time dependend. Ĥ0 is the time independent hamiltonian of the

molecule and 	0
1 and 	0

2 are stationary eigen functions of Ĥ0.

i~
d

dt
	 = Ĥ0 	 Ĥ0 	0

1 = E1 	0
1 	1 = 	0

1 e
�(i=~)E1t (2.86)

Ĥ0 	0
2 = E2 	0

2 	2 = 	0
2 e

�(i=~)E2t

The interaction with the light is described with the perturbation operator ĤS and the wave-

function 	T is a linear combination of 	0
1 and 	0

2.

i~
d

dt
	T = (Ĥ0 + ĤS) 	T 	T = c1 	0

1 + c2 	0
2 (2.87)
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Multiplication with 	 from the left side and integration lead to two expressions for the constants

c.

dc1

dt
=

1

i~

h
c1

D
	1

���ĤS
���	1

E
+ c2

D
	1

���ĤS
���	2

Ei
(2.88)

dc2

dt
=

1

i~

h
c1

D
	2

���ĤS
���	1

E
+ c2

D
	2

���ĤS
���	2

Ei
(2.88a)

At the beginning (t = 0) is 	T equal to 	1, since nothing has happened and therefore c1 = 1 and

c2 = 0. Shortly after the start of perturbation c1 remains close to one and c2 is still so small, that

c2 can be neglected safely. This line of reasoning leads to the following expression for c2 (2.88a).

dc2

dt
=

1

i~

D
	2

��� ĤS
���	1

E
(2.89)

At the end of transition c2 equals one and c1 equals zero. Therefore, c2 has to change its value

during the transition and dc
dt

can not be zero. The time derivative does not vanish, if the integral

does not vanish.D
	2

��� ĤS
���	1

E
=
D

	0
2 e

�(i=~)E2t
��� ĤS

���	0
1 e

�(i=~)E1t
E
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E
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The problem of the vanishing integral can be reduced to a integral HS
21, which contains only

stationary wavefunctions 	0 and the molecule's dipole moment �. HS
21 is called the transition

moment and allows a quick decision whether a transition is possible or not.

The components of � transform like a translation along the axis of the coordinate system.

Only if the product 	0
2 � � �	0

1 transforms totally symmetrically, has the transition moment a non

vanishing value.

The wavefunctions in the transition moment HS
21 may be separated into their spatial  0i and

their spin parts �i:



	0
2 j� j	0

1

�
=


 02 j� j 01

� 

�2
�� �1� =



 02 j� j 01

�
Æij i; j = �; � (2.91)

The transition moment vanishes as the ground and the excited state have di�erent spins. Photoex-

citation does not allow a change of the molecule's multiplicity.

A change of a molecule's multiplicity is still possible. Intersystem crossing is usually observed

after photoexcitations of organic molecules with substituents, which contain heavy atoms. The

molecule relaxes in a non radiative way from the �rst excited singlet state into the lowest lying

triplet state.

Only the total angular momentum has to be conserved. The multiplicity of a wavefunction may

change, if the angular momentum of the spatial part changes simultaneously. A coupling between

the spin and the electron's angular momentum may be achieved with the relativistic spin-orbit-

coupling operator11 ĤSO. The spin-orbit interaction can be introduced into the calculation as a

perturbation of the non-relativistic part. During the calculation a mixing term < 3	 j ĤSO j 1	 >

� HSO
31 arises, which is the direct equivalent of the transition moment. Since ĤSO transforms as

a rotation, a conclusion whether HSO
31 vanishes or not can be reached quickly with the help of a

character table.

The possibility of an intersystem crossing is usually rather small. As ĤSO behaves as Z4 [229]

a change of the molecule's multiplicity is likely for a platinum compound.

2.8 Dipole-Dipole Interaction and Polarisation

The theory of electric polarisation is well understood [23, 230]. Since it includes a large part of the

nonadditive contributions to the water-water interaction potential, it is important to understand

its background beginning with the dipole moment.

A set of point charges qi is scattered around the origin. The calculation of the electrostatic

potential ' at a point ~r is straight forward.

' =
1

4��0

X
i

qi

r � ri
=

1

4��0

X
i

qip
(x� xi)2 + (y � yi)2 + (z � zi)2

(2.92)

11The �rst part of the multi electron spin-orbit coupling operator [192] describes the interaction between

the electron's angular momentum and its spin. The second part represents the same interaction between

one electron and the remaining electrons.

Ĥ
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X
k
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2mk c ~

�
rkV

ek
� p̂k

�
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X
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X
6=l

gk �k el

ml c ~

1

r3kl
((~rk � ~rl)� p̂l) � ŝk �k =

�e0 ~

2me c

ge = 2.0023 is the gyromagnetic factor of an electron.
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As long ri is small in comparison with r the potential ' can be described by a Taylor series '(r� ri)

= '(r) - ri � (d'=dr).

' =
1

4��0

(X
i

qi

r
+

1

r3

"
x
X
i

qi xi + y
X
i

qi yi + z
X
i

qi zi

#)
(2.93)

=
1

4��0

�
q

r
+

1

r3
(~r � ~�)

�
~� =

X
i

qi~ri q =
X
i

qi

q is the total charge of the cluster and � its dipole moment. Further expansion of (2.93) yields

higher multipole moments. Only if the cluster carries no net charge (q = 0) is the dipole moment

independent of the chosen coordinate system. All higher multipole moments depend on the chosen

frame.

The electrostatic potential '� and the strength of this �eld E� can be derived directly from

(2.93).

'� =
1

4��0

(~�~r)

r3
E� = �r'� =

�1

4��0

1

r3

�
~�� 3

(~� � ~r)~r
r2

�
(2.94)

The energy �i of a point charge qi in an electric �eld ' by other point charges qj and dipoles

�k is:

�i = qi' =
qi

4��0

NX
j=1

qj

rij
+

qi

4��0

MX
k=1

(~�k � ~rik)

r3ik
(2.95)

and the energy �i of a dipole �i in an electric �eld depends on the �eld's strength E.

�i = �i ~E =
�i

4��0

NX
j=1

qj

r2ij
+

1

4��0

MX
k=1

�
(~�i � ~�k)

r3ik
� 3

(~�i � ~rik)(~�k � ~rik)

r5ik

�
(2.96)

Equations (2.95) and (2.96) allow us to determine the interaction energy V between two molecules

(r12 = �r21) with charges q1, q2 and dipole-moments �1 and �2.

V (~r) =
1

4��0

�
q1q2

r2
+ q1

(~�2 � ~r)
r3

� q2
(~�1 � ~r)
r3

+
1

r3

�
(~�1 � ~�2)� 3

(~�1 � ~r)(~�2 � ~r)
r2

��
(2.97)

V(H2O)2(~r) =
1

4��0

1

r3

�
(~�1 � ~�2)� 3

(~�1 � ~r)(~�2 � ~r)
r2

�

Since the water molecule does not carry any charge, the water-water interaction consists only of

dipole-dipole and higher multipole interactions.

Since the dipole moment of a neutral molecule is independent of the chosen origin of the

coordinate system, the dipole moment may be placed anywhere in the molecule. As long as the

initial boundary condition (r � ri) is ful�lled and the distance between the two molecules is much

bigger then a single molecule, is the precise position unimportant. As the distance gets shorter the

total interaction energy depends on the position of dipole moment. Figure 2.4 demonstrates this

e�ect. To calculate the �gures for the plot two AB molecules are placed in an antiparallel position

with separation d. The molecules are assumed to be 1 �A long (r) and each centre carries a charge

(q) of 1 e. The dipole moment � of the molecule is 1 �Ae = 4.8 D [17b].

VA = 2K

�
q2p

d2 + r2
� q2

d

�
VB = �K �2

d3
VC = K

2�2 r2 � �2 d2

(d2 + r2)
5

2

K =
1

4��0
(2.98)
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Figure 2.4: Dipole-dipole interaction.

VA is the interaction between both molecules calculated by the summation of the coulomb inter-

action between the individual charges. VB and VC are calculated with the help of (2.97). For

the calculation of VB the dipole moment was placed at the molecule's centre and for VC onto the

negative charge. VB is good description of the exact coulomb interaction (VA), while VC is only

suitable for long distances (d � 5r).

The position of the dipole moment on the negative charge seems to be a good guess, since the

dipole moment points from the negative charge to the positive charge. On the other hand it is

physically impossible to explain the minimum at d = 2r of VC with the point charge model. The

positioning of the dipole moment at the centre of the molecule is closer to the initial idea, where

the individual charges are clustered around the origin. Therefore, the Taylor series is merely a

projection of the electrostatic characteristics into the centre of the molecule. This demonstrates

that although the size of the dipole moment is independent of the chosen coordinate system, the

interaction energy of two dipoles depends strongly on the position of the dipole moment in the

molecule.

The interaction energy of the two AB molecules in a linear head to tail orientation (VD) is

twice as large as in an antiparallel position (VB).

VD = �K 2�2

d3
(2.99)

In such an orientation two opposite charges can get very close to each other. The exploding coulomb

energy overpowers everything else. A prototype of such an AB molecule is hydrogen 
uoride. The

dimer has a bent head tail orientation. The experimental FFH angle is 116Æ and theory predicts an

angle between 110Æ and 120Æ [208b]. The general description of the relatively simple HF hydrogen

bond by dipole moments describes only the basic orientation. For a better description the chemical

bond has to be considered either by quantum chemical calculations or by the introduction of higher

multipole terms. The hydrogen cyanide dimer is linear with a head tail orientation [208b, 231].

The orientation of the free electron pairs controls the details of the hydrogen bond while the dipole

dipole interaction only allows a rough estimate.

The electric �eld induces an additional dipole moment. The net dipole-moment of a molecule

in an electric �eld is the sum of its static dipole-moment � and the induced dipole-moment p.

~�net = ~�+ ~p = ~�+ �0 ~E ~p = �0 ~E (2.100)

�0 is the polarisation (�0 = (4��0) 1.45 �A3 for water) [15]. For the ease of reading the polarized
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volume � = �0=(4��0) is used for the following equations12.

An induced dipole moment causes an electric �eld, which induces other dipole-moments. There-

fore all induced dipole moments are coupled together. The polarisation between two charged

molecules can be described by the following set of equations:

~p1 = ��1q2~r
r3

� �1

r3

�
~�2 � 3(~�2 � ~r)~r

r2

�
� �1

r3

�
~p2 � 3(~p2 � ~r)~r

r2

�
(2.101)

~p2 = +
�2q1~r

r3
� �2

r3

�
~�1 � 3(~�1 � ~r)~r

r2

�
� �2

r3

�
~p1 � 3(~p1 � ~r)~r

r2

�
(2.101a)

B�ottcher [230] published the most elegant solution for this problem. In the �rst step ~p2 in

equation 2.101 is replaced by equation 2.101a. Then (2.101) is used to �gure out (~p1 �~r). This

result is used to replace (~p1 �~r) in the result of the �rst step. Tedious rearrangement leads to the

following equation for ~p1:

~p1 = ��1
r3

�
q2

A4

~r +
1

A1

~�2 � A2

A1A4

3(~�2~r)~r

r2
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�
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r2

�
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��2q2
A1

~r +
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~�2 +
1
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�
(2.102)

An � 1� n�1�2

r6

In an analogous fashion ~p2 can be determined. This allows the calculation of an improved value

for V(r) and therefore to get an estimate for the nonadditive interactions.

Two models for water are widely used:

1. The water molecule is a homogeneous particle with no charge and a dipole-moment.

~p1 = ��1
r3

�
1

A1

~�2 � A2

A1A4

3(~�2 � ~r)~r
r2

�
+
�1�2

r6

�
1

A1

�1 +
1

A1A4

3(~�1 � ~r)~r
r2

�
(2.103)

2. The water molecule consists of independent charges and only the oxygen is polarizable. No

atom has a dipole-moment on its own. Now a calculation with a single charge is not possible.

The charges in (2.96) have to be replaced by the sum of all charges in the system.

~Si =
X
i6=j

(~rijqj)

r3ij
(2.104)

~p1 =
�

A1

�
�~S1 � �

r3

�
�~S2 +

3�

r5A4

(~S1~r)~r +
3A2

r2A4

(~S2~r)~r

��

12For a quantum chemical description of polarisation of molecular orbitals and the calculation of the

polarizability please refer to ref. 232, while ref. 233 describes the quantum chemical approach towards

multipole interactions.
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Chapter 3

Quantum Chemistry of small

Water Clusters

Water is one of the best analysed substances. The work started with an investigation of a single

water molecule, since experimental values are readily available from the literature. The water

dimer allows us to test the method's reliability and to obtain information about the water water

interactions. The water trimer �nally gives additional insight into non additive e�ects and the

formation of small water clusters. Calculations on larger clusters (up to the hexamer) [180] and ice

[130] show, that higher cooperative e�ects than three body forces are not important for the water

water interaction.

The clustering of water molecules on metal surfaces is commonly observed [38]. Understanding

the mechanism is important for the description of the water metal interface. Additional data on

the undisturbed water cluster are therefore necessary to recognise the in
uence of the metal onto

water cluster. Quantum chemical calculations on solvation of ions show that the ordering in
uence

of the ions also controls the water water interaction in the solvation shell. To recognize similar

e�ects at the platinum water interface additional data on the undisturbed water water interactions

are also necessary.

3.1 The Water Molecule

The work started with a broad test of di�erent basis sets and methods to calculate the properties

of water. Section 11.3 (page 319) of the appendix displays a selection of those experiments.

Most papers on the water dimer start with a short reexamination of water to test the chosen

method [110, 113, 115, 118]. Table 3.2 displays the �nal results for water in comparison with

various values taken from the literature. The most useful basis sets to predict the properties

of water seems to be the DZP and the TZVP base in combination with MP2 / MP3 calculations

(h2o 18 and h2o 9). A combination of a small basis set with a high correlation level obtains usually

results of the same high quality as a combination of a large basis set with a low level of correlation.

Table 3.1 shows the d��erence between the experimental values and the best GAMESS UK results.

At �rst sight h2o 9 seems to yield the best results, since the geometry is slightly better than

that of h2o 18. On the other hand, the electronic properties of h2o 18 are much better. The

quantum chemical dipole moment �QC (equation 3.1a) is a sensitve measure of wavefunction quality.
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experiment h2o 9 h2o 18 h2o 18

basis set | TZVP DZP 6-311++G**

method | MP2 MP3 MP2

! [deg] 104:5 104:84 104:89 104:05

rOH [�A] 0:9572 0:9576 0:9590 0:9588

� [D] 1:85 2:2354 2:1512 1:8988

qbO [e] �0:66a �0:58 �0:65 �0:57

qbH [e] +0:33a +0:29 +0:325 +0:29

a point charge model b Mulliken population analysis

Table 3.1: Optimized water geometries.

Although the dipole moment of h2o 18 is higher than experiment it is still better than h2o 9. As

a further test the charges of the bonded atoms were calculated. The quantum mechanical charges

are calculated by Mulliken population analysis [190] of the MP2/MP3 density matrices. The

experimental charges were calculated from the experimental dipole moment � assuming a �xed

geometry (rOH = 0.9572 �A, ! = 104.52Æ) and a simple point charge model (�PC, equation 3.1b).

(a) �QC = e h	j r j	i (b) �PC = q0 rOH cos
�!

2

�
(3.1)

Together with a conversion factor of 1 D = 3.336�10-30 C m and an experimental dipole moment

� = 1.85 D [17] equation (3.1) yields an oxygen charge of 0.66 e. The charges calculated for h2o 18

(DZP MP3) are much better than those calculated for h2o 9 (TZVP-MP2).

The best values for geometry and electronic properties were found with 6-311++G** MP2

calculations. Sadly those calculations are too costly to be used for bigger clusters. The reproduction

of the experimental dipole moment is excellent. The charges found by quantum chemistry are

smaller than expected. Two things should be considered when discussing charges:

1. Localized charges at the atoms are not the best model of a water molecule. Basic chemical

theory expects a tetrahedral oxygen atom with two nonbonding electron pairs. Molecular

orbital theory describes the same e�ect with a nonbonding (3a1) and another bonding orbital

(1b1). In both cases electron density is moved away from the oxygen nucleus and the hydrogen

atoms. This movement increases the distance between negative and positive charges. The

same dipole moment could be achieved with smaller charges than the point charge model

predicts. The point charge model therefore predicts only an upper limit for the charges.

The molecule's geometry is an experimental well-established fact. Any model, which is based

on something else has to make considerably more assumptions about the electron distribution.

The point charge model is therefore a sound basis for the exploration of the dipole moment.

2. The charge of an atom in a molecule is not a physical observable and cannot be calculated

directly from the molecule's wavefunction. Assumptions of the distribution of the electrons

between the atoms have to be made. The quantum chemically calculated charges therefore

depend on the model used for their computation and are diÆcult to compare.

The problems with the quantum chemical calculation of charges are shown by a comparison of the

Hartree Fock (HF) charges with MP2 charges. Using the 6-311++G** basis set the dipole moment
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1a1 2a1 1b2 3a1 1b1

Figure 3.1: Sketch of the molecular orbitals of water.

changes form 1.9677 D (HF) to 1.8998 D (MP2) and the oxygen charge from �0.62 e (HF) to

�0.57 e (MP2). The changes of the geometry and the charges would suggest a rise of about 2.11%

of the dipole moment. Actually is the dipole moment 3.57% larger. The charges and the dipole

moment are not well correlated and the charges therefore do not form a good basis for comparison.

Consequently the quantum chemical dipole moment �QC was chosen as the main criterion.

According to general expectation the wavefunction's quality should increase with the number

of basis functions. The row 'functions' of table 3.2 displays the numer of basis functions for each

calculation. As the number of basis functions increases from 26 to 32 on changing the basis from

DZP to TZVP an improvement of the wavefunction's quality should be expected, but the opposite

was found.

An error of GAMESS UK is very unlikely, since the calculations reproduce very well the results

of Kim for DZP-MP2 computations (table 3.2, [118]). In the next step the eigenvectors for each

calculation were checked carefully. The main di�erence can be observed for the polarising d-type

orbitals on oxygen. In DZP calculations those orbitals contribute mainly to the 3a1 orbital of water

(�gure 3.1). In TZVP calculations they contribute signi�cantly to the 1a1 and the 2a1 orbitals.

This indicates, that the TZVP basis set might not be well balanced. To check this, equation

2.31 and 2.32 (section 2.4, page 23) were used to add an additional s-type function to the TZVP

basis set. The radial maximum of the electron density of this function was at the same place as

the maximum of the d-orbitals. This basis set was used for full geometry optimizations at MP2

and MP3 levels (h2o 46 and h2o 47). The geometry and the electronic properties did not change

during the MP2 calculation while those values improved on a MP3 level. On the electronic level

the relative contributions to the 3a1 orbital increased while the relative contributions to the 1a1

and the 2a1 orbitals decreased. At the same time the contributions of the original s-type orbitals

to the the 1a1 and 2a1 orbitals decreased slightly while their contribution to the 3a1 increased.

This increasing s character of the 3a1 orbital might be the reason for the shrinking of the bonding

angle in the water molecule.

The introduction of the additional s orbital did not change the geometry at MP2 level, but

lowered the energy about 0.0003 H (0.188 kcal/mol). The Hartree Fock energy changed only

slightly (0.0001 H) but the MP2 energy is about 0.0003 H lower. The extra orbital increases the


exibility of the basis set and therefore lowers the Hartree Fock energy. The jump in the MP2

energy is causes by the enlargement of the correlation space.

The TZVP basis set seems to be not well balanced and therfore yields poorer results than the

smaller DZP basis set. Dunning, Jr [234] made similar conclusions in his work on Gaussian basis

sets in correlated molecular calculations. He suggests that a DZ basis set for �rst row elements

should at least contain one d-type function as polarisation function. A TZ basis set should contain

at least two d-functions and one f-function. They are necessary to give a reliable description of the

lone electron pairs. The DZP and the TZVP basis sets of GAMESS UK only contain one d-function

as polaristion function. The DZP basis is therfore much closer to the suggested optimum than the
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B2 / �3 [cm-1] A1 / �1 [cm-1] A1 / �2 [cm-1]

!harm di�a !harm di�a !harm di�a hdi�if
exp.c 3942 | 3832 | 1648 | |

exp. N2
bc 3913 | 3808 | 1649 | |

Kim - RHFc 4290 +348 4165 +333 1753 +105 262

Kim - MP2c 4056 +114 3906 + 74 1663 + 15 68

Kim - MP4c 4038 + 96 3903 + 71 1675 + 27 65

RHFd 4290 +348 4166 +334 1753 +105 262

MP2d 4052 +110 3905 + 73 1664 + 16 66

MP3e 4037 + 45 3875 + 53 1611 - 37 61

a experimental value - calculated value b isolated in a nitrogen matrix c [118] d calculated

with Gaussian 94 - analytic frequencies e calculated with GAMESS UK - numeric frequencies
f mean of the absolut values

Table 3.3: Harmonic vibrational frequencies of water calculated with a DZP basis set.

TZVP basis.

The optimized geometries were the starting point for the calculation of the vibrational frequen-

cies.

The analytic MP2 frequency calculations have the
S0 CV

[cal/mol/K] [cal/mol/K]

RHFa 44.955 5.992

MP2a 45.095 6.003

MP3b 45.071 6.012

exp.c 45.104 6.039

a Gaussian 94 - analytic
b GAMMESS UK - numeric
c [15] CV = (CP � R)

Table 3.4: Thermodynamic properties

of water.

same reliability as the expensive MP4 calculations of

Kim. The calculation of the frequencies at higher cor-

relation level than MP2 has to be done numerically. It

is therefore diÆcult to gain additional accuracy by in-

creasing the correlation level from MP2 to MP3. The

quality of the frequencies depends strongly on the qual-

ity of the optimized geometry [190, 235, 236] and the

chosen method. Sadly Kim does not give any informa-

tion about these topics. The frequencies are therefore

diÆcult to compare, although the data suggest that the

frequencies at the HF and MP2 level published by Kim

were calculated analytically. The importance of corre-

lation calculations is evident from tables 3.3 and 3.4. The quality of the frequency calculation

greatly improves with the introduction of electron correlation. Also the entropy S0 improves with

introduction of electron correlation. The results of the MP2 calculation are in reasonable agree-

ment with the experimental values. Again the numerical value is poorer than the analytical one.

Analytical MP2 frequencies form a sound basis for the thermochemical analysis of water clusters.

At a reasonable price the frequencies are of similar quality and the MP2 entropy is even better

than the MP3 value. The MP3 frequencies are not shifted in the same direction. A shift in the

same direction is desirable, since it facilitates the comparison of di�erent results. The value of heat

capacity is not a well chosen indication, since gaseous water is not an ideal gas and CP � CV = R

is therefore not strictly true. The zero point vibrational energy of 13.757 kcal/mol found with the

MP2 calculation is therefore the most reliable value.

Table 3.5 displays the e�ect of the basis set's size on the Hartree Fock energy during pure RHF
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calculations. The biggest in
uence on the total energy is the addition of polarisation functions to

the DZ basis. This indicates that polarisation functions are more important than the actual size of

the basis set. The basis set closest to Hartree Fock limit (6-311++G**, 83 functions), the only one

which yielded excellent geometrical and electronic properties simultaneously (table 3.2, h2o 28), is

already so large, that it was impossible to perform any correlation calculations on the dimer with

HP 710 and HP 730 workstations at Newcastle.

Table 3.6 shows the ground state coeÆcient c0 for var-
basis set ERHF [H] num

DZ �76.0110 14

DZP �76.0469 26

TZVP �76.0560 32

6-311++G** �76.0604 83

HF limita �76.0675 infty

a [113]

Table 3.5: RHF results for water.

ious correlation calculations. In all cases c0 equals 0.974

to three signi�cant �gures. The small �gure indicates the

importance of correlation calculations for water. The close

similarity of c0 for DZP MP2 and the DZP CI calculations

prove that single and double excitations signi�cantly con-

tribute to the ground state. This justi�es the use of MP

calculations instead of CI calculations for correlation ef-

fects.

basis set DZP DZP TZVP 6-311++G**

method MP2 CI MP2 MP2

c0 0.974381 0.974129 0.974202 0.974129

Table 3.6: Ground state coeÆcients from di�erent correlation calculations.

3.2 Water Dimer

The water dimer and the hydrogen bond are still matters of interest [125], as the water dimer is

also a good starting point to analyse proton transfer reactions [237, 238].

According to the literature [125] the
H2

H6H5

H2

H6

H5

O
4

O1

H3

α
βdOO

Figure 3.2: Geometry of the water dimer.

con�guration shown in �gure 3.2 is the

most stable con�guration of the dimer.

The relative positions of the monomers

A (O1, H2, H3) and B (O4, H5, H6) can

be described by the three variables dOO,

� and �. dOO is the distance between

the oxygen atoms, � the bending angle

of the hydrogen bond and � the angle

between the molecular plane of monomer B and the extension of dOO. The dihedral angles

H2O1O4H5 and H2O1O4H6 were always kept equal to conserve CS symmetry.

3.2.1 Single Point Calculations

Table 3.7 displays a short compilation of previous results from the literature. The oxygen-oxygen

distance tends to be too short and the basis set error corrected energies too small. Only the bending
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ref. basis method dOO � � �E �Eb
BSSE

[�A] [deg] [deg] [kcal/mol] [kcal/mol]

[118]a experiment 2:967� 0:03 1� 10 57� 10 �5:44� 0:7

[118]a experiment 2:98� 0:01 1� 6 58� 6 �5:50� 0:5

[118] DZP RHF 2:9851 1:6 45:5 �5:03 �4:73

[118] DZP MP2 2:9009 3:1 54:6 �6:36 �5:03

[118] DZP MP4 2:9161 3:1 44:3 �6:17 �4:80

[113] ccp VDZ MP4 2:911 4:5 56:8 �7:10 �3:73

[113] aug ccp VDZ MP4 2:911 4:5 56:8 �5:20 �4:27

[113] aug ccp VQZ MP2 2:911 4:5 56:8 �5:05 �4:81

[112] DZP' MP2 3:04 4:7 55:99 �4:35

[131] 6-31G* SCF 2:971 5:18 62:42 �5:62

[107] STO SCF 2:73 0:735 58:0 �6:09

[119] HF 3:00 0 30 �4:6

[124] ba1 MP2 2:970 0 60 �6:21 �4:25

[124] ba1 MP3 2:970 0 60 �6:21 �4:20

[121] DZP SCF 3:01 �7:2 �4:55

[121] DZP CI 2:98 �7:2 �5:63

[110] ba2 HF 2:980 0 58 �3:612 �3:609

[110] ba2 MP2 2:980 0 58 �4:781 �4:529

[110] ba2 MP3 2:980 0 58 �4:728 �4:533

[115] [531j21] RHF 3:00 0 40 �4:72

[130] ba3 RHF 2:98 2:448 52:26 �7:18

ba1 : (11,7/6) ! [4,3/2] + s,p a Energies and geometries from di�erent references.

ba2 : 7s8p6d1f / 4s2p1d b BSSE corrected interaction energies

ba3 : (6111/311/2)(31/2) c [239]

Table 3.7: Results for the water dimer from previous works.

angle seems to be close to the experimental value. � is usually close to the experimental value,

but varies strongly between di�erent calculations.

Figure 3.3 displays the variables op-

H5

H6

X

L4 < 546
)

H2

H3 O
4

O1

L1

L2 L3

W1

W2

90° W3

X

H5 H6

D1

Figure 3.3: Variables of the dimer.

timized for the dimer. Table 3.8 sum-

marizes the main results of single point

calculations for the water dimer.

One main feature of the hydrogen

bond is the bend of the bond itself (W3

6= 90Æ). Although the importance of this

bend for the hydrogen bond is obvious

from theoretical and experimental results, the underlying physics are still a matter of discussion.

This work started with an examination of the dimer with a linear hydrogen bond. The other

variables of the dimer were optimized at di�erent level of theory.

For weak interactions the basis set superposition errors are very important. To get an estimate

about this error the counterpoise method of Boys and Bernardi [204] with the full basis set of

the second monomer was used. Since the BSSE alters the energy, it also changes the equilibrium
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geometry. To check the BSSE's in
uence on the monomer geometry and energy, the combined

basis sets were used for a full geometry optimisation of the monomers, while the relative positions

of the water molecules were �xed. Table 3.10 shows a compilation of the results for the DZP-MP2

calculation. The energy di�erences between the calculations with �xed and 
exible geometries

were very small, usually between 50 and 200 nH. Such a small energy di�erence is negligible in

comparison with an overall interaction energy about 10 mH and an average BSSE about 1 to 2

mH. However, the method has to be used to calculate the in
uence of the BSSE on the monomers'

geometries in the dimer during the analysis of dimer's geometry.

The main quest of quantum mechanical calculations with small basis sets for weak hydrogen

bonds is the bond length [125]. Table 3.7 shows how the bond length varies with the chosen

method of calculation. The length of the oxygen-oxygen distance is therefore a good measure

of the quality of a calculation. The best values were obtained by RHF-MP3 calculations with

a DZP basis (dim 10, table 3.8). The angles � and � are still in the experimental range. The

BSSE corrected interaction energy of 4.9 kcal/mol for this conformer is at the lower limit of the

experimental value but still of a reasonable size. Extended calculations [208e] suggest, that 4.9

kcal/mol is the correct value for the interaction energy. This limit is reached with increasing basis

set size. While BSSE uncorrected calculations approach this value from higher interaction energies

BSSE corrected calculations approach this limit from the other side.

In the next step the angle W3 was allowed to change during the optimisation. Again the

DZP-MP3 calculation gave the best results. The energy di�erence between the bent and the

straight conformation is very small, only 0.014 mH (0.009 kcal/mol), although � changes about

2.5Æ. This result heralds a major problem: The potential surface of the water dimer is so 
at that

the geometry optimisation algorithm might stop too early, since the energy becomes approximately

constant. To check the geometry the potential energy surface around the optimized geometry was

sampled manually. Since all calculations were done with a full BSSE correction, the sampling

allows us also to calculate the BSSE of the dimer's geometry (section 3.2.4, page 70).

The in
uence of the bend seems to negligible, because all changes are of the order of 2%. The

bond length to the bonding hydrogen atom in monomer A (L2) slightly increases while simultane-

ously the hydrogen bond itself (L3) decreases. In summary H3 of monomer A moved away from

O1 slightly towards O4 and therefore underlines the importance of bending for proton transfer re-

actions [237, 238]. The in
uence of the bending is much stronger in the hydrogen donor (monomer

A) than in the hydrogen acceptor (monomer B). The geometry of B hardly changes. This bending

also shows how sensitive the dipole moment reacts towards changes in the wavefunction. It changes

by about 3% while the charges and the electron transfer do not change at all.

Since all observed changes are very small, the reliability of those changes was checked with the

extended BSSE correction for dim 16. The results of this test are displayed in table 3.10.

Table 3.10 shows, that all changes are larger than the BSSE. The increase �dOHb and the

decrease �dOHn indicate the tightening of the bond to the non bonding hydrogen and the loosening

of the bonding hydrogen atom. The charge transfer from B to A is displayed in the increasing bond

angle of B. According to the VSEPR model [12] the loss of electrons from the free electron pairs

of B reduces the repulsion between them and therefore increases the bond angle towards the value

of a tetrahedron (109.47Æ). The increasing polarisation of the dimer can be deduced from two

independent features:
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All interaction energies in kcal/mol, if not mentioned di�erently

a �xed, straight hydrogen bond

b free, bended hydrogen bond

c �xed water geometry, 
exible hydrogen bond

d calculated from given changes

e no values found, assumed to be close the monomer's values

f [118], �rst set, since the bigger error margin included the second set

g in
uence of the BSSE onto the monomers

h charge transfer

i full monomer geometry optimisation in the presence of ghost orbitals

Table 3.9: Remarks to table 3.8

free ADIM Aa
BSSE BDIM Ba

DIM

^HOH [deg] 104:89 105:02 104:92 105:35 104:92

�^HOH [deg] +0:13 +0:03 +0:46 +0:03

dOHn [�A] 0:9590 0:9584 0:9591 0:9600 0:9592

�dOHn [�A] �0:0006 +0:0001 +0:0010 +0:0002

dOHb [�A] 0:9640 0:9589

�dOHb [�A] +0:0050 �0:0001

qO [e] �0:65 �0:69 �0:65 �0:67 �0:64

�qO [e] �0:04 0 �0:02 +0:01

qHn [e] +0:325 +0:32 +0:32 +0:34 +0:325

�qHn [e] �0:005 �0:005 +0:015 0:0

qHb [e] +0:36 +0:33

�qHb [e] +0:035 +0:005

The indices n and b refer to bonding and non bonding hydrogen atoms.
a Geometry optimisation with a full set of ghost orbitals.

Table 3.10: In
uence of the BSSE onto the monomer's geometry.
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1. Electrical charges are transferred from H3 to H2 and O1 as indicated by �q of monomer

A. This might be interpreted as a sign of a possible heteropolar cleavage of the O1H3-bond

(autoprotolysis).

2. The polarisation of H3 induces an electron transfer from H4 and H5 to O4. Because of the

smaller polarisibility of hydrogen in comparison with oxygen the charge transfer on B is much

smaller than on A.

A much better insight into the physics of the hydrogen bond is o�ered by the analysis of the

molecular orbitals and the eigenvectors of the system. Figure 3.4 displays the composition of the

bonding orbitals.

Only two orbitals, apart of the oxygen 1s
1a’ 2a’

3a’ 4a’

5a’

6a’ 7a’

8a’

1a"

2a"

Figure 3.4: Composition of the dimer's MOs.

orbitals, do not contribute to the molecular or-

bitals of the water dimer. The donor's 1b1 and

the acceptor's 1b2 orbital transform according

to a" in the environment of the water dimer.

They are too far away from each other to over-

lap and therefore do not contribute to the hy-

drogen bond. The hydrogen bond is formed

by the overlapping of inner orbitals. The posi-

tively polarised hydrogen atom H3 next to O4

of monomer B leads to a general lowering of

the orbital energies. At the same time the

close neighbourhood of a lone electron pair of

monomer B increases the orbital energies of

monomer A (For example the two 2a1 orbitals

in �gure 3.11.). This movement of the orbitals

facilitates the combination of the donor's 1b2

orbital with the acceptor's 3a1 and the overlap-

ping of the 3a1 orbital of the donor with the 3a1 orbital of the acceptor. Those interactions cause

the hydrogen bond. This movement also explains the surprising position of the energy levels of the

molecular orbitals. For both interactions the energy of the bonding combination is higher than the

energies of the contributing orbitals. The energy of the antibonding combination of the orbitals is

lower than the energy of the highest contributing orbital. Figure 3.5 shows a simpli�cation of this

movement and the resulting orbitals.

electrostatic
interaction

E

1b2

3a1

donor acceptor

electrostatic
interaction

Figure 3.5: In
uence of the electrostatic interactions on the orbital energies.

55



-0.005

-0.005

O1
H2

H3

O4

0.005

0.005

0.05

0.05

0.1

0.1

0.25

-0.005

-0.005 -0.05

-0.05

-0.1

-0.1

-0.25

Figure 3.6: MO 5a' of the water dimer.
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Figure 3.7: MO 6a' of the water dimer.
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Figure 3.8: MO 7a' of the water dimer.
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Figure 3.9: MO 8a' of the water dimer.
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Figure 3.10: Electron density in the

symmetry plane.
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Figure 3.11: Formation of the water dimer.
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The bonding orbitals cut along the symmetry plane are displayed in the �gures 3.6 to 3.9. Fig-

ure 3.10 shows the electron density in the plane of symmetry. The precise movement of the di�erent

orbitals during the formation of the dimer is shown in �gure 3.11. The analysis of the molecu-

lar orbitals can be summarised as follows: The formation of hydrogen bonds is not only

controlled by electrostatic interactions. The mutual polarisation of the molecules in

each others electric �eld leads to a rearrangement and overlapping of inner molecular

orbitals of the monomers.

Chakravorty et al. [110] arrived with a similar calculation to the same conclusions. The 1b2

and the 3a1 orbitals of the donor can be easily identi�ed in the �gures 3.6, 3.8 and 3.9. The strong

distortion of the 1b2 orbital in �gure 3.7 makes an identi�cation diÆcult. Figures 3.6 and 3.7 show

the p-component in the symmetry plane of the acceptor's 3a1 orbital. Figures 3.8 and 3.9 show a

crossection of the free nonbonding p orbital. This interpretation of the �gures correlates well with

the analysis of the eigenvectors.

An alternative, but inferior, interpretation at an atomic level would be a two-electrons-two-

centres (2e2c) bond [29]. Orbital 5a' may be regarded as the bonding interaction of two oxygen 2p-

orbitals with a hydrogen 1s. The nonbonding and the antibonding combinations are not populated.

In this model the overlap of the hydrogen donor's 3a1 with the acceptors 1b1 orbital would be

neglected. The orbitals 6a', 7a' and 8a' would be regarded as representations of the monomers

orbitals. This model could be improved by assuming a four-electron-two-centre (4e2c) bond. Such

a bond would be formed between the OH bond of the donor and the lone electron pair of the

acceptor. In this model the orbital 6a' would be the nonbonding overlap of the OH bond and

the free electron pair. Both models are not satisfactory, since at least two molecular orbitals are

unexplainable. On the other hand such a model explains the directionality of the free electron

pairs. The MO explanation cannot form anything like a free electron pair, since the monomer's

1b1 and 3a1 orbitals cannot mix due to their symmetry. The only hint directly given by MO theory

for a free electron pair is the small distortion of the electron density (�gure 3.10) towards the lower

left corner of the plot. Young et al. [240] showed that the electron density is actually not a

sensitive quantity to observe lone pairs. The distortion of the electron density by the lone pair is

usually small. A better tool for the detection of lone pairs is the molecular electrostatic potential

(MEP), which will be used later.

Figure 3.10 also shows how electron density is moved away from the monomers into the dimer's

centre to form the hydrogen bond.

The geometry of the bond dimers seems to be reliable. It is not only close to the experimental

values but also a good reproduction of calculations reported in the literature [118]. Although the

absolute values between Kim et al. and GAMESS UK di�er slightly, the changes of the monomers'

values due to the formation of the hydrogen bond are a good match as shown in table 3.10.

Sadly Kim does not mention how they calculated the charges. This missing information inhibits

a careful examination of the di�erence between both calculations. The changes in the individual

charges calculated with GAMESS UK are smaller than the changes published by Kim (Gaussian

90). At the same time the charge transfer calculated with GAMESS UK is bigger than Kim's value.

Contrary to Kim's work our calculations favour charge transfer to polarisation. The di�erence

between the calculations is also re
ected by the dipole moment.

All the other parameters except �W1 �t nicely. The absolute energy calculated with GAMESS

UK is a little lower than the one reported in the literature. This is likely to be the result of the

additional two carthesian d-orbitals of the GAMESS basis set.
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[118] GAMESS UK

E [H] �152:51982 �152:52432

�E [kcal/mol] �6:36 �6:36

�EBSSE [kcal/mol] �5:03 �5:1

dOO [�A] 2:9009 2:9121

� [deg] 3:1 2:3

� [deg] 54:8 49:12

�L3 [�A] +0:0065 +0:0066

�L2 [�A] �0:0010 �0:0008

�L4 [�A] +0:0014 +0:0014

�W1 [deg] +0:10 �0:18

�^456 [deg] +0:28 +0:21

�qO1 [e] �0:071 �0:038

�qH3 [e] +0:53 +0:22

�qH2 [e] 0 �0:012

�qO4 [e] �0:043 �0:006

�qH5=6 [e] +0:030 +0:17

�q [e] 0:017 0:029

� [D] 3:092 3:188

Table 3.11: Comparisson with [118].

The third part of the single point calculations involved the calculations with a �xed, experi-

mental geometry for the monomers. Table 3.8 displays the results for the DZP-MP2 (dim 29) and

for the DZP-MP3 (dim 30) calculations.The values of dOO, � and � are close to the experimental

values. The di�erence between the geometry obtained by calculations with a 
exible and a �xed

water molecule are smaller than the experimental uncertainties. The angle between the molecu-

lar plane of B and the oxygen-oxygen axis is even closer to the experimental value. The BSSE

corrected interaction energy di�ers only 0.07 kcal/mol (1.4 % of the value with a 
exible water

geometry). These results justify the calculation of the water interaction energy with a �xed water

geometry. The advantages of a faster and easier computation outweigh the disadvantage of the

slightly higher interaction energy.

All calculations displayed in table 3.8 have a similar BSSE corrected interaction energy close

to 4.9 kcal/mol and are therefore close to the true theoretical value [208e]. This shows clearly the

bene�ts of the counterpoise method of Boys and Bernardi for calculations with small basis sets.

This value is low in comparison with experiment, but good in comparison with other calculations.

At a correlated level calculations even with larger basis sets tend to a BSSE corrected interaction

energy about 4.8 to 5.0 kcal/mol. Reliable results with an interaction above 5.0 kcal/mol are rarely

reported [125].

The bent dimer calculations were repeated at a TZVP-MP2 level to check the results discussed

earlier (section 3.1) regarding the poor balance of the TZVP basis set. For the water monomer

the combination of the TZVP basis with RHF-MP2 calculation proved to yield good results. The

results for the dimer are much worse than those from DZP-MP3 calculations. The oxygen-oxygen
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experimenta [118]b DZP-RHFc DZP-MP2c DZP-MP3d

�3 a"acc 3881 4039 (+158) 4279 (+398) 4034 (+153) 4068 (+187)

�3 a' don 3899 4021 (+122) 4263 (+364) 4017 (+118) 4051 (+152)

�1 a' acc 3797 3897 (+100) 4160 (+363) 3896 (+ 99) 3956 (+156)

�1 a' don 3718 3826 (+108) 4116 (+398) 3825 (+107) 3909 (+191)

�2 a' don 1669 1700 (+ 31) 1783 (+114) 1701 (+ 30) 1721 (+ 52)

�2 a' acc 1653 1665 (+ 12) 1757 (+104) 1667 (+ 14) 1692 (+ 39)

op bending 679 614 668 697

ip bending 396 352 397 380

OO stretch 194 170 193 188

ip bending 167 145 164 164

op bending 156 144 151 156

torsion 142 134 141 141

a values from [118] assignment from [239] b DZP - MP2 calculation
c analytic frequencies d numeric frequencies

in brackets () the deviation from the experimantal value

Table 3.12: Calculated haronic frequencies of the water dimer [cm-1].

distance is far too small, the hydrogen bond still straight, or bent slightly negative1 and the tilt

of B's molecular plane (�) too small. The BSSE of the TZVP-MP2 calculation is 2.13984 mH and

for the DZP MP2 2.03691 mH. More important than the actual size is the ratio between the BSSE

and the monomer energies. This ratio for TZVP MP2 calculations is 1.40�10-5 and for DZP-MP2

is 1.33�10-5. The BSSE has a stronger impact on the monomers in TZVP-MP2 calculations than

in DZP-MP2 calculations. The BSSE of 1.34 kcal/mol of the TZVP-MP2 interaction energy is

the largest of the series. This again is a result of the inbalance of the basis set. The s-function of

hydrogen has its radial maximum at 2.2216 a.u. and the �fth s-function of oxygen at 1.3981 a.u..

The distance between H3 and O4 is 3.6227 a.u. (1.9197 �A). Along this bond both functions have

their maximum at nearly the same place. This results in a strong contribution of the corresponding

ghost orbital during the BSSE calculations and therefore in a large value of BSSE. The attempt

to minimize simultaneously the oxygen-oxygen repulsion leads to a straight hydrogen bond.

experiment [118]a DZP-RHFb DZP-MP2b DZP-MP3c

��3 [cm-1] - 14 - 17 - 11 - 18 - 31

��3 [cm-1] - 32 - 35 - 27 - 35 - 14

��1 [cm-1] - 11 - 9 - 7 - 9 - 81

��1 [cm-1] - 90 - 80 - 50 - 80 - 34

��2 [cm-1] + 20 + 37 + 30 + 35 - 110

��2 [cm-1] + 4 + 2 + 4 + 3 - 81

a DZP-MP2 b analytical frequencies c numerical frequencies

Table 3.13: Frequency shifts caused by the dimerisation of water.

1The calculation was repeated with a di�erent start geometry to be sure.
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Although there is considerable literature on the infrared spectroscopy of water [139] the har-

monic frequencies have proved to be diÆcult to �nd [118]. The analytic Gaussian 94 calculations

reproduce the frequencies published by Kim et al. (table 3.12), but the absolute values in com-

parison with experiment are not so good. The similarity of the empirical scaling factors de�ned

by Honneger et al. [131] for water (1.023364) and the dimer (1.025363) suggest a high reliability

for DZP-MP2 frequency calculations. The experimental frequency shifts due to the hydrogen bond

as shown in table 3.13 are well reperoduced. The high frequencies from Hartree Fock calculations

suggest a hard force �eld. Frequency shifts from HF calculations are therefore too small. The shifts

are so small, that an error of a few wavenumbers leads to a large scaling factor. Scaling factors are

therefore not useful for the analysis of frequency shifts in water polymers. The numerical DZP-

MP3 calculation cannot describe the absolute frequencies and frequency shifts, and are unsuitable

for the thermochemical analysis of the dimerisation.

The zero point vibrational energy found with the DZP-MP2 calculation is 29.814 kcal/mol. The

zero point vibrational energy correction for the formation of the bond is therefore 2.299 kcal/mol.

The standard entropy of the complex is 69.278 cal/mol/K. The formation of a dimer is entropically

disfavoured by 20.912 cal/mol/K. A reasonable value is 21 cal/mol/K, since a simpli�ed estimate

by the equation of Sackur and Tetrode predicts an entropy decrease about 15 cal/mol/K. The

data suggest that the dimerisation of water is primarily energetically driven.

3.2.2 Potential Curve with a Flexible Geometry

This section only covers the quantum chemical aspects of the interaction potentials. Any �ts or

comparisons of those curves with previously published potentials will be discussed later in section

4.2 (page 88).

The graphs of this section are based on geometry optimisations to include relaxation e�ects. The

distance L3 in �gure 3.3 (page 51) was set to a �xed value. This procedure allows a simultaneous

description of the water water interaction and the autoprotolysis of water - the main relaxation

pathway. The values of L3 spanned a range from 10 �A (essentially in�nite separation) to 0.95 �A

(roughly rOH in water). The smallest physically sensible oxygen-oxygen distance reached by this

way is about 2.2 �A. This distance is close to the oygen-oxygen distance in a linear ion contact pair.

All other variables were allowed to vary during the optimization. The chosen level of computation

was a RHF-MP3 calculation with a DZP basis set.

Figure 3.12 shows the interaction energy as a function of dOO and �gure 3.13 an enlargement

of the area around the equilibrium. The BSSE corrected potential curve has its minimum at a

di�erent value of dOO than the uncorrected curve. The BSSE corrected minimum is at the point

dOO = 2.9625 �A with �E = �5.0 kcal/mol. The enlargement of the oxygen oxygen distance is

directly caused by the BSSE correction. Since the in
uence of the second monomer's orbitals is

eliminated from the curve, the orbitals of the hydrogen atom H3 can no longer compensate for any

de�ciencies of the oxygen basis set. The unphysical overlap of orbitals caused by the BSSE pulls

the monomers closer to each other.

These BSSE corrected values are much closer to the experimental ones and can compete with

the results from sophisticated calculations with extended basis sets. This result also emphasises

the importance of BSSE correction. To search for the minimum with ordinary algorithms and then

do a single point BSSE correction at the resultant optimum is not suÆcient. The whole surface

has to be scanned near the minimum at a BSSE corrected level [241] (Please refer for details to
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Figure 3.12: Interaction energy and BSSE.
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Figure 3.13: Minima in �gure 3.12.
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Figure 3.14: Energy composition, not BSSE

corrected.
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Figure 3.15: Changing of rOH with dOO.
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dimerisation.
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Figure 3.17: Correlation energy vs. dOO.
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subsection 3.2.4, page 70).

The composition of the total interaction energy (�gure 3.14) shows an interesting feature. The

minimum of the correlation energy is at a much smaller oxygen-oxygen distance. Table 3.13 shows

how this distance varies with the level of correlation without BSSE correction for di�erent basis

sets.

The oxygen-oxygen distance shrinks if the level of calcu-
dOO [�A]

basis DZ DZP TZVP

RHF 2:836 2:9834 2:9624

MP2 2:834 2:9138 2:8836

MP3 2:855 2:9355 2:8948

Table 3.14: Correlation level and

dOO, � = 0Æ

lation changes from RHF to MP2 and increases again with

the change from MP2 to MP3. The initial shrinking is not

surprising because correlation calculations allow the elec-

trons to avoid each other. This improved description of the

electron motion produces a smaller distance between both

monomers, since the electrons can now use the wide exten-

sive orbitals to avoid each other. More interesting is the

second rise of dOO.

Figure 3.17 shows the composition of the MP3 correlation energy as a function of dOO. As

in table 3.14 all values are calculated without BSSE correction. The MP3 part of the correlation

energy increases steadily as dOO gets smaller. The opposing e�ect enlarges the equilibrium dis-

tance again. If correlation e�ects are considered for the water water interaction calculations, the

correlation level has to be as high as possible to get a good equilibrium distance.

As the oxygen-oxygen distance gets smaller, L2, the donor's OH bond (�gure 3.3, page 51)

increases. This indicates a proton transfer and so an autoprotolysis proces. Meanwhile L1, the

OH bond in the future hydroxide ion decreases. This shrinkage is in contradiction to chemical

expectation, since the the bond lenght of an free hydroxide ion is calculated as 0.9696 �A (table

3.15). The sudden drop of L1 at dOO = 2.529 �A is currently regarded as an artefact of the

calculation caused by an extra loop of the geometry optimizer. The whole gap is only 0.0004 �A; a

distance well below physical signi�cance.

At small distances the formation of a con-

0.9764 Å

0.9764 Å

112.1°

1.2186 Å

116.2°

0.9696 Å

Figure 3.18: Geometry of a possible ion pair.

tact ion pair is possible. Such a pair is ener-

getically unstable, since in the vacuum no sol-

vent can stabilize the charges. Any attempt

to optimize the geometry of such a pair with-

out additional constraints ended with a perfect

reproduction of the water dimer optimisation.

The best possible pair, which looks like a wa-

ter dimer (dOO = 2.9103 �A, � = 3.40Æ, � =

47.56Æ) with the proton moved along the hydrogen bond, is shown in �gure 3.18. The optimized

structure was generated is several steps:

1. Optimisation of hydroxide ion's geometry at DZP / RHF-MP3 level (table 3.16).

2. Optimisation of the hydronium ion's structure under a C3V symmetry constraint at DZP /

RHF-MP3 level (table 3.16).

3. The �xed structures of steps 1 and 2 were assembled to form a pair with CS symmetry as

shown in �gure 3.18. The monomers' structures were �xed. Only the pair distance and

the two bonding angles were allowed to vary during the optimisation. The result of this
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L1 L2 L3 ^H2O1H3 qH3 �q qO1 + qaH2

[�A] [�A] [�A] [deg] [e] [e] [e]

dimer 0:9569 1:25 1:0 116:15 +0:358 0:310 �0:673

ion pair 0:9696 1:22 0:9764 116:12 +0:363 0:328 �0:686

linear pair 0:9696 1:21 0:9764 180:0 +0:378 0:356 �0:735

a hydroxide ion

Table 3.15: Comparison of di�erent ion pairs and dimer at L3 = 1.0 �A.

calculation is displayed above. Any optimisation with an increased number of degrees of

freedom led to a structure similar to the equilibrium structure of the water dimer.

Table 3.15 contains a short compilation of those results for the dimer with L3 = 1.0 �A. This

point is closest to the optimized ion pair. The pair's bond lengths di�er from the dimer's. This is

hardly surprising, since L1 and L3 were �xed to the monomer's values. Remarkably good is the

agreement of the L2 values. The calculations on the dimer also showed that the distance between

both fragments is hardly a�ected by the monomer's geometry. The calculation about the ion pair

allows us to estimate the charge transfer and the charge of the hydroxide ion after the proton

transfer. The electronic values of both calculations are similar.

Table 3.15 contains also the data of a linear ion
OH� H3O

+

symmetry C1V C3v

charge [e] �1 +1

rOH [�A] 0:9696 0:9765

\HOH [deg] 112:131

qO [e] �1:14 �0:40

qH [e] +0:14 +0:47

� [D] 1:5379 1:6344

ERHF [H] �75:3723 �76:3289

ECORR [H] �0:2141 0:2179

ETOT [H] �75:5864 �76:5468

Table 3.16: Results for H3O
+ and OH�

pair (dOO = 2.2053 �A, � = 0Æ, � = 47,56Æ), because

a linear approach of the hydroxide ion was assumed to

be more likely for an ionic interaction based purely on

electrostatic forces. The increased charge of the hydrox-

ide ion is in good agreement with this assumption, but

the charge of the moved proton is still smaller than the

charge of a proton in a free hydronium ion (table 3.16).

Figure 3.16 suggests a possible explanation. During the

proton transfer the proton's charge rises and falls again,

as the proton is built into the hydronium ion and gets

bound to the free electron pair of the hydrogen acceptor.

To check this theory, the hydrogen atom of a linear

hydrogen bond (dim 10, table 3.8) was moved along the

bond. The remaining variables of the dimer geometry were kept at their optimized values. Figure

3.19 shows that the energy increases steadily during the motion. No second minimum in the region

of the hydronium ion can be observed. Such a second minimum is unlikely for the water dimer

in the gas phase rather than in a polar solvent. The solvent stabilizes the ion pair and therefore

facilitates the formation of the pair. The electrochemically observable tunneling of protons in water

can be explained by such a mechanism. In the gas phase the ion pair cannot be stabilized by the

environment. The lowest energy electronic state of the dimer is therefore uncharged. The second

minimum for proton transfer in gas phase reactions is often an artifact of the calculation. The only

clue of the second oxygen atom is the steep rise at the right edge of the plot. Figure 3.20 displays

the charge on the moving proton during the transfer. The mark "hydronium ion" was set at the

point, where all three OH bonds of the ion are of equal length. The mark "water molecule" is set

at the equilibrium bond length of the water dimer. The charge of the protons increases steadily
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Figure 3.19: Energy during the proton trans-

fer.
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Figure 3.20: Proton charge during proton

transfer.
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Figure 3.21: Chargre transfer �q during pro-

ton transfer.

until the second water molecule captures the proton. At the same distance the slope of the energy

rise decreases (�gure 3.19).

It is diÆcult to de�ne the subunits between which the charge is moved during the proton

transfer. To be compatible with the previous part of this work the water moelcules were de�ned

as the units, although this de�nition loses its credibility at the right end of �gure 3.21. Figure

3.21 shows that the in
uence of the proton position on the charge transfer may be neglected in

physically sensible regions (close to the equilibrium geometry).

3.2.3 Potential Curve with a Fixed Geometry

A comparison of the DZP MP3 calculations (table 3.8, 53) with a 
exible (dim 16) and a �xed

(dim 30) monomer geometry shows that the in
uence of monomer relaxation is very small. This

part of the work tests the utility of such a simpli�cation for the analysis of the energy hypersurface

on a larger scale.

Figure 3.22 and 3.23 show the interaction energy as a function of the oxygen-oxygen distance

dOO. Figure 3.23 is a close up of �gure 3.22 to demonstrate the e�ect of the BSSE. Again the

BSSE correction increases the oxygen-oxygen distance and moves the dimer structure closer to the

experimental.
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Figure 3.22: Interaction energy with rigid ge-

ometries.
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Figure 3.23: Details from �gure 3.22.
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Figure 3.24: Comparison of the charge transfer.

Figure 3.25 shows a superposition of the interaction potential curves with a rigid and a 
exible

water geometry. The curves are nearly indistinguishable. Only a close up (�gure 3.26) shows the

di�erence.

The interaction energy is slightly smaller and the oxygen-oxygen distance also slightly enlarged.

However, the di�erences are so small that they may be safely neglected.

This result allows us to use the �xed experimental water geometry to scan the potential surface.

The biggest disadvantage of such a simpli�cation can be seen in �gure 3.24. The charge transfer

of the rigid dimer agrees nicely with that from calculations with a 
exible water geometry at large

distances. At small distances the charge transfer is much smaller. As shown in section 3.2.2 the

charge transfer is coupled with proton transfer. It is impossible to describe such a reaction with

rigid water molecules. Charge transfer is one of the main forces of the dimerisation (please refer

to section 3.3, page 72).

The inability of calculations with rigid monomer geometries to describe the charge transfer

correctly is therefore the reason for the increasing di�erence between the two models at small

distances.

The in
uence of the angles �, � (�gure 3.2, page 50) and W3 (�gure 3.3, page 51) on the energy

of the dimer with equilibrium structure was also analysed. The angles were changed systematically,

while the remaining variables were �xed at the previously optimized values. Results for � and �

of this analysis are shown in the �gures 3.27 and 3.28. The minimum for � is shifted about 1.25Æ
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Figure 3.25: Di�erence between a 
exible and a rigid monomer geometry.
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Figure 3.26: Details from �gure 3.25.
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Figure 3.27: Bending of �.
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Figure 3.28: Bending of �.

from the value found by the geometry optimisation. This failure of the optimisation algorithm

may be explained with the corresponding force constants. To calculate the force constants, the

vertex and two neighbouring points of the quantum mechanical curves were taken to �nd the

corresponding parabola. The second derivative of the parabola was taken as the force constant.

The force constants for the geometry controlling angles W32 and beta are:

W3 : 3.8�10-6 H/deg2 = 2.4 cal/deg2 not BSSE corrected

� : 1.7�10-6 H/deg2 = 1.1 cal/deg2 not BSSE corrected

The force constants are close to zero like the values of the hessian in the GAMESS UK printout

(only to six decimal places). The energy di�erence between the optimized geometry and the

minimum of �gure 3.28 is 0.001 kcal/mol. Following the optimisation in the print out proved, that

the algorithm stopped too early, since the force to change � vanished.

The in
uence of the BSSE on the geometry of the water dimer is large. � is changed by 10Æ by

the BSSE. Table 3.17 displays the minima of the BSSE corrected curve. All variables are changed.

The BSSE corrected curves allow the calculation of the BSSE corrected dimer geometry with a

rigid water monomers (section 3.2.4, page 70).

curve dOO � � �E �EBSSE

[�A] [deg] [deg] [kcal/mol] [kcal/mol]

geo optimisation 2:9354 3:28 54:57 �5:949 �4:838

dOO(Potential) 3:0049 3:31 54:57 �5:896 �4:880

W1 2:9304 5:72 54:57 �5:927 �4:844

W2 2:9354 3:28 44:57 �5:840 �4:875

W3 2:9354 5:78 54:57 �5:927 �4:851

Table 3.17: In
uence of the BSSE on the variables of the water dimer with a �xed water geometry.

2A combination of L3 andW3 (�gure 3.3) is much better for a geometry optimisation than a combination

of dOO and �. � might become zero or negativ during the optimisation. In such a case the algorithm would

stop, since a transformation between internal (z-matrix) and cartesian coordinates is not possible anymore.

The curve is displayed in the appendix (section 11.6, page 326).
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To get a good description of the potential surface an examination of the repulsive force is also

necessary. To do so the con�gurations shown in �gure 3.29 were analysed. Both conformers have

D2h symmetry.

H
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H

HH

H

O
H

O O O

a HH a OO

Figure 3.29: Repulsion between water molecules.

The only variable of the system is the distance between the pair of oxygen atoms. The geom-

etry of the water molecules is �xed at the experimental value. Figure 3.30 and 3.31 display the

results. The importance of repulsive terms for a good description of the energy hypersurface will

be discussed in detail in chapter 4 (page 85).
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Figure 3.30: Oxygen-oxygen repulsion aOO.
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Figure 3.31: Hydrogen-Hydrogen repulsion

aHH.

The potential energy curve of the oxygen-oxygen repulsion shows no additional features. Ac-

cording to chemical expectation the interaction potential becomes more repulsive as the oxygen

atoms get closer to each other. The curve of the hydrogen-hydrogen repulsion has a shallow local

minimum at 3.5 �Awithout a BSSE correction. Figure 3.32 displays a close up of the minimum
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Figure 3.32: Local minimum of H-H repulsion.
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Figure 3.33: Arti�cial BSSE minimum of aHH.
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and �gure 3.33 a plot of its molecular geometry. The BSSE corrected curve (�gure 3.32) does

not have this minimum. The BSSE is caused by a non physical overlap of oxygen and hydrogen

orbitals from di�erent molecules. In the minimum geometry all four hydrogen atoms are in ideal

positions for such an overlap. In the minimum's regions the BSSE increases faster than the short

range exchange repulsion and causes the local minimum.This proves again the importance of BSSE

correction for calculations on the water-water interaction.

Those extended interaction curves, especially for �, � and W3, will help to develop a simple

analytical description of the water-water interaction potential (chapter 4, page 85). This potential

can be used to �nd the other extrema of the surface [131].

3.2.4 Calculation of the BSSE corrected geometry of the water dimer

A �rst guess for a harmonic interaction potential close to the minimum (d0, �0, �0) would be:

VTEST (d; �; �) = K0 +D2(d� d0)
2 +A2(�� �0)

2 +B2(� � �0)
2 (3.2)

The constants A2, �0, B2, �0 are taken directly from the BSSE corrected interaction energy curve of

the corresponding angles (�gure 3.27, 3.28). Only the vertex and the two neighbouring points were

used for the calculation. Afterwards, the values of A2(� � �0)
2 and B2(� � �0)

2 were subtracted

from the BSSE corrected potential energy curve (�gure 3.26), since � and � were allowed to change

during the optimisation. This procedure allowed the calculation of K0, D2 and d0.

VTEST (d; �; �)

kcal=mol
= �4:9296 + 9:6194

�
d

�A
� 2:9991

�2

+ 2:56 � 10�3
�
�

deg
� 5:624

�2
+ 3:8 � 10�4

�
�

deg
� 44:894

�2
(3.3)

The minimum of the function is: VTEST (2:9991�A; 5:624Æ; 44:894Æ) = �4:9296 kcal/mol. A quan-

tum mechanical calculation (DZP basis set, RHF-MP3, full counterpoise BSSE correction) gave

for the same geometry an interaction energy of �4.8903 kcal/mol. Although all values agree well

with experiment (2.967 � 0.03 �A, 1 � 10Æ, 57 � 10Æ), a di�erence of 0.0393 kcal/mol between the

prediction and the actual quantum chemical interaction energy is disappointing.

To achieve further improvement the potential energy surface around the minimum of equation

3.3 was sampled with a �ne mesh (144 points). To get an estimate of the coupling between the

variables, for 60 points two variables were changed simultaneously.

VTEST (d; �; �) = x1 d+ x2 d
2 + x3 d

3 + a1 �+ a2 �
2 + a3 �

3 + b1 � + b2 �
2 + b3 �

3 +

k1 d�+ k2 d � + k3 �� +K0

(3.4)

VPOL was �tted with the help of a linear least squares algorithm [242] to the 144 quantum chemical

points (root mean square (rms) = 0.00126913 kcal/mol). Next a simple search algorithm sampled

VPOL over the quantum chemical geometries to �nd the starting point for a local minimum search.

From this point the program followed the gradient of VPOL to �nd the local minimum. The

minimum was reached when the value of the gradient was smaller than 1�10-9. The minimum

geometry and energy E0 allow us transcribe VPOL into a more chemical form VCH.

VCH (d; �; �) = X2(d� d0)
2 +X3(d� d0)

3 +A2(�� �0)
2 +A3(� � �0)

3 +

B2(� � �0)
2 +B3(� � �0)

3

K1(d� d0)(� � �0) +K2(d� d0)(� � �0) +K3(�� �0)(� � �0) +K0

(3.5)
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The coeÆcients Xn to Kn are the results of a rapid transformation.

K0 = E0 (3.6)

K1 = k1 K2 = k2 K3 = k3 (3.6 a)

X3 = x3 A3 = a3 B3 = b3 (3.6 b)

X2 = x2 + 3X3d0 A2 = a2 + 3A3�0 B2 = b2 + 3B3�0 (3.6 c)

To check the transformation the following expressions were used.

x1
?
= x0(3D3x0 � 2D2)�K1�0 �K2�0

a1
?
= �0(3A3�0 � 2A2)�K1x0 �K3�0

b1
?
= �0(3B3�0 � 2B2)�K2x0 �K3�0

(3.7)

To increase the reliability of any prediction an upper energy limit of �4.75 kcal/mol was used.

The rms of the reminding 136 points was 0.000953. Table 3.18 shows a compilation of the minima

associated with the di�erent steps.

points rms d0 �0 �0 E

[kcal/mol] [�A] [deg] [deg] [kcal/mol]

VTEST 9 0:0 2:9991 5:62 44:89 �4:9296

VCH 145 0:001269 2:9926 2:46 44:57 �4:9147

VCH 136 0:000953 2:9926 2:44 44:53 �4:9145

Table 3.18: Minimum geometry and energy at the di�erent steps.

Table 3.18 shows how well the simple esti- 1

2

3

4

0.
95

72
 Å

0.9572 Å

0.9572 Å

104.52°

104.52°

116.41°

<) 1234 = 118.49°

Figure 3.34: BSSE corrected minimum geometry.

mate VTEST actually describes the in
uence of

the BSSE on the dimer's geometry, but the reli-

ability increases with e�ort. A quantum chemi-

cal check of the �nal minimum geometry gave a

interaction energy of �4.91496 kcal/mol. The

di�erence between the calculations is 0.00042

kcal/mol and therefore neglible. The BSSE has

a value of 0.95 kcal/mol and is the smallest

found during this work. A geometry optimization with a full BSSE correction is therefore a mini-

mization of the BSSE at the same time. Figure 3.34 displays the BSSE corrected geometry of the

water dimer.

Table 3.19 displays the parameter of VCH of the last step. The anharmonicity X3 of the oxygen-

oxygen distance is at �rst sight larger than the harmonic part X2. By de�nition �d is much smaller

than one. The actual anharmonic correction is therefore much smaller than the harmonic value.

The anharmonicities in the angle are negligible (B3 < A3 � 6�10-6 kcal/mol/deg3). The high quality

of the prediction for the angles � and � of the test function VTEST is now understandable. The

predictions for the distance d are poorer due to the strong anharmonicity and the coupling of �

and d (K1). K1 indicates that � becomes bigger as the hydrogen bond gets shorter. The hydrogen

atom H3 and the oxygen atom O4 seem to avoid each other at short distances. The underlying

physics of this phenomenon is discussed in section 3.3. The coupling of � and d is straight forward.
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As the bond length increases, increases in � help to turn the extensive 1b1 water orbital into the

right direction. The coupling of � and � is negligible.

The force constant for � (1.1 cal/mol/deg2) with-
X3 �15:087 kcal/mol/�A3

A3 0:0000060 kcal/mol/deg3

B3 0:0000056 kcal/mol/deg3

X2 9:94145 kcal/mol/�A2

A2 0:0022851 kcal/mol/deg2

B2 0:0003302 kcal/mol/deg2

K1 0:0352951 kcal/mol/�A/deg

K2 �0:0085391 kcal/mol/�A/deg

K3 �0:0010564 kcal/mol/deg2

d0 2:99261 �A

�0 2:43594 deg

�0 44:534 deg

K0 �4:91454 kcal/mol

Table 3.19: Final parameter for VCH

out BSSE correction (section 3.2.2, page 61) is about

three times larger than the BSSE corrected value B2.

This di�erence cannot be caused by the method of

computation, since the corresponding values of VCH

and VTEST agree well and the same simple three-point-

parabola approach was used in both cases. The large

BSSE in the frequencies is disturbing at �rst glance,

since the basis set does not change during the calcu-

lation. Nonetheless this is commonly observed [208a].

The pointwise BSSE correction changes the curvature

of the energy surface. This change alters the force con-

statnts. A correction of the BSSE in frequency calcu-

lations is tedious and diÆcult. Frequency calculations

therefore should be done with large basis sets with a

small BSSE.

3.3 Energy Decomposition

The analysis of the Hartree-Fock energy according to Morokuma (section 2.5, page 26) helps

us to understand the underlying physics of the water dimerisation and so the formation of water

clusters. The answers to this question will help to develop an analytical water-water interaction

potential.

The importance of dOO and � for the hydrogen bond can be explained with the VSEPR model

[12]. While dOO governs the orbital overlap and therefore the strength of the bond, � controls the

orientation of the free electron pair. The bend of the hydrogen bond � is not explained by the

VSEPR model and the small value for � only with diÆculty.

Variation of dOO Variation of � Variation of �

dOO [�A] 3:0049 3:0548 2:9354 2:9354 2:9354 2:9354

� [deg] 3:32 3:32 0:28 4:28 3:32 3:32

� [deg] 54:57 54:57 54:57 54:57 49:43 54:57

ES �7:75 �7:13 �8:77 �8:72 �8:704 �8:744

EX 4:28 3:52 5:71 5:58 5:533 5:622

CT �1:19 �1:06 �1:43 �1:41 �1:375 �1:417

PL �0:54 �0:48 �0:64 �0:64 �0:649 �0:637

HO 0:07 0:06 0:08 0:10 0:110 0:099

�E �5:11 �5:08 �5:04 �5:08 �5:085 �5:076

Table 3.20: Energy composition near the minimum in kcal/mol.
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The analysis started with an examination of the dimerisation curve for rigid water geometries

(�g. 3.22) using the Morokuma algorithm analysis for the Hartree Fock interaction energy.

The minimum of the curve is therefore moved to a larger oxygen-oxygen distance (3.0049 �A,

table 3.14, page 63). This movement is in good agreement with the results from table 3.14 and

�gure 3.17, since the inclusion of the correlation calculations into the geometry optimization allows

the oxygen-oxygen distance to shrink. Table 3.20 displays the energy composition close to the

minimum. The same abbreviations as in section 2.5 (page 26) are used for the di�erent energy

terms (ES: eletrostatic, EX: exchange repulsion, CT: charge transfer, PL: polarisation, HO: high

order coupling).

An analysis of table 3.20 shows that the dimerisation is controlled by the electrostatic interaction

and the exchange repulsion. Charge transfer and polarisation play only a minor role while the

high order coupling terms can be safely neglected. The 
atness of the energy surface close to the

minimum is due to a cancellation of the main three components: electrostatic interaction, exchange

repulsion and charge transfer (�EES + �EEX + �ECT = +0.01 kcal/mol). The energy gain in

the last 0.05 �A is caused by the polarisation term (�ECT = �0.06 kcal/mol).

Table 3.20 also provides a reasonable explanation for the bending of the hydrogen bond. The

energy gain (0.04 kcal/mol) of the bend is caused by the reduction of the exchange repulsion (�EEX

= �0.13 kcal/mol). Simultaneously, there are reductions in the electrostatic interaction and the

charge transfer (�EES + ECT = +0.07 kcal/mol). As shown in section 3.2.1 / �gure 3.11 (page

57) is the hydrogen bond formed by an interaction of occupied orbitals. The exchange repulsion is

also caused by the interaction of occupied orbitals (section 2.5 / �gure 2.3, page 28). The bend of

the hydrogen bond � may be regarded as the solution of the dilemma to form a bond of occupied

orbitals and to minimize the exchange repulsion at the same time. The con
ict is also re
ected by

the coupling constant K1 between dOO and � (section 3.2.4). An enlargement of the oxygen-oxygen

distance decreases the exchange repulsion and therefore allows � to decrease. At larger distances

between the monomers linear hydrogen bonds are formed.

An ad hoc model of the water molecule would be a tetrahedron. A water dimer built from such

tetrahedra would be linear (� = 0Æ) and � would be 54.73Æ. The minimum of the Morokuma curve

is between 49.57Æ and 50.57Æ. Both points (49.57Æ and 50.57Æ) are not distinguished by GAMESS

US because the energy di�erences are too small. Such a minimum shift has been observed previously

in section 3.2.3 and is caused by the optimisation algorithm and its control parameter. While the

VSEPR model would explain the shift by a stronger repulsion between free electron pairs than

bonds, table 3.20 gives the quantum chemical answer. The energy gain (0.009 kcal/mol) caused by

the decrease of � is caused by the reduction of the exchange repulsion (�EEX = �0.089 kcal/mol).

The weakening of the electrostatic interaction and charge transfer cannot compensate for this

energy gain (�EES + �ECT = 0.082 kcal/mol). The reduction of the exchange repulsion explains

the coupling between dOO and � in greater detail. The enlargement of the oxygen-oxygen distance

decreases the exchange repulsion. This reduction allows an increase of �. Together with this

rotation the hydrogen acceptor's 1b1 orbital moves closer to the hydrogen atom. Such a movement

reinforces the electrostatic interaction between both molecules and the charge transfer. The 1b1

orbital is more extensive than the 3a1 orbital and this reduces the reduction of the exchange

repulsion. A change of � decreases the exchange repulsion about 0.052 kcal/mol/deg while the

same movement of � decreases the exchange repulsion only about 0.018 kcal/mol/deg. The greater

extension of the 1b1 orbital explains, why B2 and K2 are much smaller than A2 and K1.

At the minimum geometry (3.0049 �A) the ratios for the individual interaction energies are

73



as follows: ES : EX : CT : PL : HO = 1 : 0.55 : 0.15 : 0.07 : 0.01. It is therefore more

important to �nd a good description of the electrostatic interaction (ES) and the

exchange repulsion (EX) for a classical model than to introduce a polarisation term.

The charge transfer (CT) plays only a minor, but still important, role and cannot be described

adequately by a rigid water molecule model as shown in subsection 3.2.2 and 3.2.3.

All Morokuma calculations were done with GAMESS US. The basis set generated by the input

line "$BASIS GBASIS=DZV NPFUNC=1 NDFUNC=1 $END" is the same as the GAMESS UK DZP basis

set.

3.4 Water Trimer

Calculations on water trimers at an RHF/MP3 level with a DZP basis need considerable compu-

tational resources. Therefore, only four di�erent geometries with rigid monomers were examined.

1
2

3

4

5

6

7

8

9

Figure 3.35: Geometry of trimer I.
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Figure 3.36: Geometry of trimer II.
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Figure 3.37: Geometry of trimer III.
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Figure 3.38: Geometry of trimer IV.

Figures 3.35 to 3.38 display pictures of the examined trimers. The three variables are the same

as in the water dimer. dOO is the distance between the two oxygen atom of a hydrogen bond, � is

the bend of the hydrogen bond and � the angle between the acceptor's symmetry plane and dOO.

For details please refer to table 3.21.
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There is only one principal way to construct a cyclic trimer
d dOO � �

I 1-4 2-1-4 |

4-7 5-4-7 |

7-1 8-7-1 |

II 1-4 2-1-4 1-4-(5,6)

1-7 3-1-7 1-7-(8,9)

III 1-4 5-4-1 4-1-(2,3)

1-7 8-7-1 7-1-(2,3)

IV 1-4 2-1-4 1-4-(5,6)

4-7 5-4-7 4-7-(8,9)

(x,y) sum of the corresponding

OH vectors

Table 3.21: De�nition of the trimer

geometries.

(�gure 3.35) but three di�erent linear combinations, which

can be distinguished by the function of the central water

monomer. In trimer II as shown in �gure 3.36 the central

water molecule donates both hydrogen atoms to the hydro-

gen bond. Trimer III (�gure 3.37) is built vice versa. In both

cases the central water molecule accepts the hydrogen atom

from the other water molecules. Finally, the central water

molecule acts in trimer IV (�gure 3.38) as an acceptor as

well as a hydrogen donor. Experimental data only exist for

trimers I and IV. All experiments on the free trimer suggest,

that the most stable water trimer is cyclic with C1 symmetry.

A twisted head-tail chain like trimer IV is commonly observed

on metal surfaces (e.g. Pt(111)) [38].

All calculations (GAMESS UK) were done with a rigid

monomer geometry. Only the geometries of trimer I and II

were fully optimized. The geometries of the trimers III and IV were constructed from ideal hy-

drogen bonds with a BSSE corrected oxygen-oxygen distance (table 3.18). Table 3.22 lists the

geometries and energy compositions of the four trimers.

trimer I trimer II trimer III+ trimer IV+

method DZP-MP3 DZP-MP3 DZP-MP3 DZP-MP3

d [�A] 2:8014 2:9761 3:0049 3:0049

� [deg] 23:54 9:70 3:31 3:31

� [deg] not de�ned 70:745 54:57 54:57

dipole moment [D] 0:0 0:4830 1:2963SCF 3:7546SCF

EELEC [H] �312:0214 �301:3425 �302:4546 �301:9393

ENUC [H] 83:8604 73:1893 74:3017 73:7817

ERHF [H] �228:1610 �228:1532 �228:1529 �228:1575

EMP2 [H] �0:6372 �0:6357 �0:6354 �0:6355

EMP3 [H] �0:0178 �0:0182 �0:0183 �0:0182

ETOT [H] �228:8161 �228:8071 �228:8066 �228:8111

�E�TOT [kcal/mol] �16:213 �10:578 �10:286 �13:112

SCF calculated from the SCF matrix + geometry not optimised
* not BSSE corrected

Table 3.22: Geometrical details of the trimers.

The three possible orientations (�gure 3.39) of the hydrogen atoms (both hydrogens inside,

both hydrogens outside, one inside and the other outside) of the terminal water molecules of

trimer III were checked with a rapid RHF-MP2 calculation (GAMESS US). The geometry with

both hydrogens inside had the lowest total energy of �228.75199 H. The geometry with both

hydrogens outside the inner area yields an energy of �228.74796 H while the geometry with one

hydrogen inside and the other outside gave a total energy of �228.7511 H. These results show that

the Coulomb repulsion between the nonbonding hydrogen atoms of a single hydrogen bond is more

important than the repulsion between the hydrogen atoms at separated water molecules.
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Figure 3.39: Three possible conformers of trimer III with their MP2 energies in Hartree.

In the literature (eg [157]) the conformation with both hydrogen atoms inside the molecular

centre is commonly used. It is therefore diÆcult to relate to previously published results.

The water trimer (still subject of the current research) has been examined both experimentaly

[139, 141, 150, 154, 243, 244] and theoretically [107, 108, 119, 131{133, 140, 142, 145, 147, 157, 159,

245, 208d (review on nonadditivity)]. The theoretical papers provide a wide range of results and

depend heavily on the used technique. The experimental results can be summarized as follows:

The most stable water trimer is cyclic with C1 symmetry. The three oxygen atoms form nearly

an equilateral triangle (2.97 �A, 2.97 �A and 2.94 �A). The hydrogen atoms of the hydrogen bond are

slightly tilted out of the oxygen plane. Two of the remaining three hydrogen atoms are above and

the third hydrogen atom is below this plane. The eight di�erent conformers (including only the

non binding hydrogens) interchange rapidly by quantum tunneling. All clusters larger than the

dimer have a small or vanishing dipole moment.

The theoretical analysis of this minimum is very diÆcult. The low symmetry and the 
atness

of the potential energy surface make quantum chemical calculations costly, since it is no longer

possible to reduce the number of integrals by symmetry operations and the geometry optimisation

algorithmen converges only slowly. Also the 
at potential energy surface has 96 isoenergetic min-

ima [132] around the minimum. Despite those problems the work published in the literature focuses

on the global minimum. Table 3.23 displays a short compilation of results for related geometries.

trimer I trimer II

this work [140] [142] this work [145]

basis set DZP ESPB DZP DZP 6-311+G(2d,2p)

method MP3 MP2 CCSD MP3 MP4SDQ

d [�A] 2:801 2:80 2:799 2:9761 2:9496

� [deg] 23:54 25:0 23:28 9:70 6:2

� [deg] not de�ned not de�ned not de�ned 70:745 69:0

ETOT [H] �228:8161 �228:7757 �228:8071 �228:8257

�E�tot [kcal/mol] �13:789a �13:659 �15:695 �8:281a �5:3

a BSSE corrected

Table 3.23: Previously published results for the water trimer.
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trimer I trimer II trimer III* trimer IV*

�EABC �16:213 �10:578 �10:286 �13:112

�EABC (BSSE) �13:789 �8:281 �8:242 �11:071

BSSE 2:424 2:297 2:044 2:041

�EBC �4:802 +0:724 +1:112 �5:899

�EBC (BSSE) �3:644 +0:724 +1:163 �4:882

�EAC �4:802 �5:859 �5:899 �0:613

�EAC (BSSE) �3:644 �4:724 �4:882 �0:586

�EAB �4:802 �5:859 �5:899 �5:899

�EAB (BSSE) �3:644 �4:724 �4:882 �4:882

�EPair �14:406 �10:994 �10:686 �12:411

�EPair (BSSE) �10:923 �8:724 �8:602 �10:351

�ENPA �1:807 +0:416 +0:400 �0:701

�ENPA (BSSE) �2:866 +0:443 +0:360 �0:720

nonadd. BSSE �1:050 +0:027 �0:040 �0:019

�EH�BOND �5:404 �5:289 �5:143 �6:556

�EH�BOND (BSSE) �4:596 �4:140 �4:121 �5:535

�EMONO �5:404 �3:578 �3:429 �4:371

�EMONO (BSSE) �4:569 �2:760 �2:747 �3:690

(BSSE) : BSSE corrected NPA : not pair wise additive

H-BOND : per hydrogen bond MONO : per monomer

* : geometry not optimized A = 1,2,3 B = 4,5,6 C = 7,8,9

Table 3.24: Analysis of the interaction energy.

Table 3.24 displays the analysis of the trimerisation energy. For the calculation of the BSSE

ghost orbitals were placed at the position of the two water molecules (section 2.4, 23 - trimerisation

in a single step, [145]). The BSSE is roughly the same for all trimers regardless of the number

of bonds. The BSSE has a strong nonadditive component (BSSETRIM � PBSSEDIM). Trimer I

with the strongest nonadditive forces (�ENPA) has also the largest nonadditive contributions to

the BSSE.

At the �rst glance at table 3.24 trimer I is the most stable trimer, because it is made of three

binding hydrogen bonds while the other three trimers contain only two binding bonds. Trimer I

has the highest interaction per monomer, but the weakest hydrogen bond in pair interactions. The

hydrogen bond in the cyclic trimer is heavily distorted (� = 23.54Æ). Since � is the bond breaking

angle, the energy gain has to be small. The energy gain per hydrogen bond (�EH�BOND = �EABC

� n, where n is the number of bonds) is not a reasonable quantity to explain the strong interactions

in trimer I, since it also contains the non pairwise interactions (�4.802 kcal/mol versus �5.404

kcal/mol). The weakness of a single hydrogen bond is not only compensated by the number of

bonds but also by very strong cooperative e�ects (�ENPA). The BSSE corrected value for �ENPA is

calculated with the BSSE corrected pair interaction energies and the corrected trimerization energy

�EABC. The BSSE of �ENPA is therefore by construction the nonadditive part of the BSSE. The

only other trimer with a negative value for �ENPA is trimer IV, which is build out of optimised

dimers (CS) and has the highest binding energy per hydrogen bond. This is not only caused by

the dimers' geometries. The interaction between the monomers A and C is attractive, while the
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similar interaction in the trimers II and III is repulsive. Trimer IV is also the only linear trimer

with binding cooperative e�ects. According to M�o's [145] quantum chemical calcaltions changes

trimer IV without a barrier of activation into the global minimum (C1). Our own calculations with

a classical pairwise additive potential (please refer to section 4.3.2, page 109) gave the same result:

trimer IV transforms without a barrier of activation into the global minimum. The cyclisation

is in good agreement with the experimental �ndings for the dipole moment of the water cluster.

Cyclic oligomers have naturally a small or vanishing dipole moment. The correlation of the dipole

moment with the cluster's stability is observable in table 3.22. The trimers II and III, which cannot

transform easily into a cyclic version have dipole moments and a smaller interaction energy. The

increase of � and � in trimer II results in a more arrangement position of the dipole moments and

in smaller overall dipole moment.

The correlation between cooperative e�ects and charges has been examined previously [107,

145]. With increasing cluster size (H2O)n (n = 1, 2, 3) the average charge on the oxygen atom

increases from 0.65 (n=1) via 0.68 (n=2) to a value in the range from �0.68 to �0.76 e for the

di�erent trimers. This general increase is caused by polarisation. The di�erences of the stabilisation

energy of the four trimers may be explained with a simple acid-base model on the basis of the atom

charges. Atomic charges are a much better tool to determine the relative acidities than classic

proton aÆnity or acidity calculations. The protonation of the dimer (rigid monomer geometry, CS

symmetry) of O4 (�gure 3.2, ^(H+O4O1H2) = 0Æ) for example leads directly to the dissociation

of the water dimer. Protonated water molecules are ions and the mechanism of the water water

interaction changes from covalency to electrostatic interaction. Protonated dimers are only stable

if the oxygen of the second water molecule points directly to a hydrogen atom of the protonated

species.

The most likely place for a nuclophilic attack would be the hydrogen atoms H5 and H6 (qH =

0.34 e) and the most likely place for an electrophilic attack would be O1 (qO = �0.69 e) (�gure

3.2 and tables 3.8, 3.10). The corresponding attacks at these places lead directly to the formation

of trimer IV. The less favourable attacks at H2 and O4 would lead to the formation of the trimers

II and III. The formation of trimer IV is therefore not only favoured by energy (Coulomb energy

for the formation of the transition state and total energy of the �nal trimer) and by the number

of places for a succesful attack. Since trimer IV transforms immediately into the cyclic trimer the

observation of an open chain water trimer is very unlikely.

E [H] �E [eV] �E�EXP [eV]

H2O �76.04639400 0.00 0.00

H2O
� �75.84941915 5.36 1.07

H2O
+ �75.64330432 10.97 11.53

Table 3.25: Electron aÆnity and ionisation energy of water.

Further insight into the bonding mechanism of a water trimer than a pure analysis of acidity

[eg. 145] allows a detailed comparison of the charges on the oxygen atom and the total charge on

the monomers. Table 3.25 displays the Hartree-Fock results for the electron aÆnity and the �rst

ionisation energy of single water molecule with rigid geometry. The energy for the cation is much

better than the energy of the anion, since in the anion the antibonding 3a1 orbital is populated and

major changes of geometry are therefore likely. The most stable molecule is the uncharged water

molecule. Since a water dimer/trimer cannot be built without charge transfer, the most stable
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water cluster should therefore be built from water molecules, which give and receive electrons

simultaneously. This happens with cyclic polymers and trimer IV. The central water molecule of

trimer IV is simultaneously hydrogen donor and acceptor. The net charge change of �0.001 e due

to the trimerisation is small and slightly negative, since the water molecule bonds electrons better

than it gives them away. The charge on O4 is �0.724 e, while the charge on the electron donor O7 is

�0.695 e and on the electron acceptor O1 is �0.716 e. The charges on the oxygen atoms also show

that not only charge transfer but also polarisation controls the charge distribution in the trimers.

If charge transfer was the only cause for the charge distribution in the trimer, the charge on the

central oxygen O4 in trimer IV should be closer to the free water value of �0.69 e and smaller

than the charge of the pure electron acceptor O1 �0.716 e. This disagreement can be explained

by polarisation. The electrical �eld of the other water molecules polarises the oxygen of the water

molecule and so causes an additional electron shift. Investigation of the water trimer with SAPT

calculations (Symmetry Adapted Perturbation Theory) show, that close to equilibrium structure

the cooperative forces are dominated by polarisation.

The di�erence between the abilities to give and to receive electrons is re
ected by the charge on

the central water molecules in the trimers II and III. In trimer III both water molecules pull electron

density away from the centre molecule. The total charge of the centre molecule is +0.028 e and the

charge of the central oxygen O1 is �0.709 e. The charge on the other oxygen atoms O4 and O7 is

�0.706 e. Although the two water molecules pull electrons away from O1, O1 is more negative than

O4 or O7. Since the water molecule and therefore oxygen receives more electrons than it donates,

electron density is moved from the hydrogens H2 and H3 to O4 in order to compensate the electron

drag. The second reason is polarisation. The hydrogens H8 and H5 pull electron density along the

direction of the dipole moment and therefore enhance the dipole moment. An increase of the dipole

moment enhances the charge separation as long the geometry is �xed (equation 3.1). In trimer II

the oxygen atoms O4 and O7 donate electron density to O1. The charge on O1 is �0.722 e while

the charge on the oxygen atoms O4 and O7 is �0.655 e, even lower than the charge on oxygen in

the free water molecule. Table 3.26 summarizes the correlation of charge transfer and stability.

trimer electron transfer to central oxygen qH2O [e] qO4 [e] E* [kcal/mol]

IV donate - receive �0.001 �0.724 �13.112

II receive - receive �0.043 �0.722 �10.578

III donate - donate +0.028 �0.709 �10.286

* not BSSE corrected

Table 3.26: Correlation of charge transfer and stability.

Since the charges are not BSSE corrected the uncorrected interaction energies are displayed in

table 3.26. The table exampli�es an extremly simpli�ed model of coopeative e�ects in water trimers

and therefore for water cluster growth: The next water molecule is attached to an existing

water cluster in such a way that the target water molecule in the cluster donates and

receives electrons simultaneously. The net change of charge at the attacked water

molecule is thereby kept to a minimum.

The hydrogen bonds in the trimers are formed by an overlap of the occupied orbitals similar

to the bond in the water dimer. Figure 3.40 displays the 3a' orbital from trimer I. The bond is

formed by a bonding overlap of the 1b2 orbitals of the monomers. An analysis of the moleculear

orbitals of the global minimum shows (please refer to section 4.3.2 (page 109) for details on the
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Figure 3.40: 3a' orbital of trimer I.

6H2O �! 3(H2O)2 �E = �13:98kcal=mol

6H2O �! 2(H2O)3 �E = �16:48kcal=mol

3(H2O)2 �! 2(H2O)3 �E = �2:50kcal=mol

Figure 3.41: Formation of trimer III from dimers.

global minimum structure), that the corresponding orbital has the same shape. The distortion of

the molecule reduces the Coulomb repulsion of the two cis hydrogens by increasing the dihedral

angle. The molecules get closer to each other and the overlap increases. Meanwhile the orbital

energy decreases and the trimer stabilizes. The distortion of the water trimer not only reduces the

Coulomb repulsion but also increases the overlap of the 1b2 orbitals. Therefore, any model which

is used to explain the distortion of the trimer has to take orbital e�ects as well as cooperative

forces into account as showed by SAPT calculations [159].

The energy di�erence between trimers II and III at a BSSE corrected level is very small (0.039

kcal/mol) and may be neglected. Since the geometry of trimer III was not optimized, the geometries

are diÆcult to compare. The optimization of trimer III lowers the energy even further. Energy

and geometry optimisations at DZP/MP3 level proved to be tedious with the available computers.

The geometry optimisations were done with a classical pairwise interaction potential (chapter 4,

page 85). Further re�nement was done at MP2 level. Those results are discussed in section 4.3.2

(page 109).

Figure 3.41 displays the formation of trimer III from a set of dimers. All trimers are energetically

favoured in comparison with the dimer. This is also displayed by the mean binding energy per

monomer (table 3.22 / �EH�BOND). All values are lower than that for the dimer (�2.44 kcal/mol).

In contrast to trimer I, the cooperative forces (�ENPA) for trimer II are repulsive. The repulsion

leads to a lengthening of the oxygen-oxygen bond in trimer II, despite the stronger hydrogen bond

(3.644 kcal/mol versus 4.724 kcal/mol).

The cooperative forces change from attraction to repulsion between the di�erent trimers. Most

classical water water interaction potentials describe three body forces with polarisation terms.

Since the energy gain from polarisation should always be negative, a second force of equal strength

or stronger has to contribute to the cooperative e�ects. The nature of the cooperative forces can

be analysed with SAPT [208c]. Tachikawa et al. [159] and Cha lasi�nski et al. [157] examined

the cyclic planar trimer (trimer I). Both papers show that the trimer's geometry is controlled by

the two centre forces. The three body forces have a shallow minimum at the equilibrium geometry

and are strongly repulsive at other regions of the potential energy surface. The attractive part

of the three body forces is the polarisation interaction while the repulsive part is governed by

three body exchange repulsion and second order exchange induction [159]. A good water-water
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interaction potential should therefore �nd a suitable expression for the changing three body forces

to reproduce the balance of the three body forces.

The sign and value of the energy gain from cooperative forces not only change with the

molecule's geometry but also with the basis set and method used for the calculation. There-

fore, it is diÆcult to compare the results of this work with other values published in the literature.

According to M�o [145] only the cyclic trimer has a negative value for �ENPA, while Lentz [133]

concluded that the cyclic trimers are not favoured in comparison with the linear trimers. Xanth-

eas [147] and Van Duijneveldt [140] found three-body terms (2.3 kcal/mol / 2.0 kcal/mol) for

the cyclic trimer (C1 symmetry), that agree with the value found in this work. Del Bene and

Pople [107, 108] investigated the linear trimers in greater detail. Their �ndings agree qualitatively

with the results from this work.

trimer I trimer II trimer III trimer IV

[107] +1:87 +0:957 �2:055

[108] �2:94a +1:87b +2:05b �2:06b

this workc �2:866 +0:443 +0:360 �0:720

a 4-31G Basis b STO-4F Basis c BSSE corrected

Table 3.27: �ENPA in kcal/mol

Sadly it was not possible to analyse the global minimum of the water trimer potential energy

surface at DZP/MP3 level. The calculation of four selected points at di�erent levels of geometry

optimisation showed that the cyclic trimer is favoured. Such a trimer cannot be part of a three-

dimensional ice like lattice. This will be important, if the structure of the di�erent water layers on

a metal surface is examined. The stabilisation of linear trimers has to be caused by the interaction

with the platinum and/or lattice e�ects. The calculations showed also, that all trimers are ener-

getically more favourable than dimers. In two cases (trimers II and III) the cooperative forces are

repulsive and therefore reduce the interaction energy. This change of sign gives a reasonable clue

that at least one force other than polarisation controls the cooperative e�ects. It is also reported

in the literature that a classical polarisation model yields only up to 60% of the cooperative forces

in a trimer [209]. SAPT [159] calculations show, that the other dominat repulsive cooperative

forces are three body exchange repulsion and second order exchange induction. The repulsive

cooperative forces are important for the development of a classical interaction potential. If only

polarisation (always bonding) is taken into account, trimers are stabilized, which should decay by

the nonadditive interactions.

3.5 Summary of the Quantum Mechanical Calculations

1. GAMESS UK o�ers a selection of internal basis sets. The DZP basis set was the most useful

set for calculations. The basis set is small enough to keep the computational cost low but at

the same time 
exible enough to yield good geometries and energies. The bigger TZVP basis

set is not well balanced. The TZVP basis set of GAMESS UK not 
exible enough, since

it does not contain the necessary polarisation functions. The BSSE of the results obtained

with the TZVP basis set is much bigger than the BSSE of the DZP results. Ghost orbital

calculations with the TZVP basis showed that s-electron density is moved from the bonding
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hydrogen atom (H3) to s-orbitals of the accepting oxygen atom (O4). The pseudo-s d-orbital

of the TZVP basis set helps the oxygen's s-orbitals during the calculation. The TZVP basis

set loses its 
exibility. The DZP basis set has a s-orbital with a maximum at the same place

as the pseudo-s d-orbital. The d-orbitals are much less used to describe s-orbitals.

2. The MP3-method includes correlation e�ects into the calculations. The optimized geometries

and energies for the water dimer agree very well with other published experimental and

theoretical results. Scheiner claims in his review [125] that the MP and coupled cluster (CC)

methods are the best ones to analyse the interaction, because both are size consistent. Both

methods CC and MP3 gave nearly the same results for planar water trimer (C3h symmetry).

MP2 includes already most of the correlation e�ects. MP3 only contributes small but subtle

changes. More important changes are reached at MP4 level according to the literature, but

those calculations are too costly. Since the MP3 calculations reproduce reasonably well the

CC results, a further increase of the perturbation level seems not to be necessary and is,

considering the increasing size of the system, unwise.

3. The correction of the interaction energy with the method of Boys and Bernardi yields very

good energies close to experiment. The geometry of the water dimer with �xed monomer

geometries was optimized with a full CP correction. Those values (�E =�4.914 kcal/mol) are

not only closer to the experimental values but also to the theoretical limit of �4.9 kcal/mol.

4. Numerical frequencies and frequency shifts at MP3 level are of the same quality as those of the

costly MP4 method. Analytical MP2 frequencies are very reliable and allow thermochemical

predictions such as the zero point energy. Further improvement might be achieved by scaling.

5. The hydrogen bond is not only formed by electrostatic forces but also by the rearrangement

and interaction of inner orbitals of the water molecules. Energy decomposition according

to Morokuma shows that the dimer is formed by electrostatic interaction and exchange

repulsion. The bend of the hydrogen bond leads to a relaxation of the exchange repulsion.

The energy gain by this relaxation is larger than the price paid by electrostatic interaction.

The formation of the hydrogen bond is accompanied by a small but important charge transfer.

Within a chosen method of computation the binding energy is proportional to the charge

transfer. Test calculations showed that the correlation between charge and proton transfer

is small at equilibrium geometry. Calculations with �xed water geometries therefore give

reliable results for the charge transfer during hydrogen bond formation.

6. The error obtained by �xing the water geometry at the experimental value is small and

negligible compared with the interaction energy. This allows us to scan vast areas of the

potential surface in a reasonable amount of time. A BSSE correction of the energy during

this scan is necessary to distinguish between real minima and BSSE induced minima.

The potential energy surface around the dimers minimum (CS symmetry) is very 
at. The

energy decomposition showed that changes in the electrostatic interaction and the exchange

repulsion energy cancel each other in this region. The surface is even 
atter around the

trimer's minimum.

7. Calculations for four di�erent water trimers at MP3 level suggest that cooperative e�ects are

important for the formation of small water clusters. The cooperative forces change their sign
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for the di�erent trimers. This indicates that at least another antibonding three body force

is involved.

Stable hydrogen bonds cause charge transfer. Calculations of the electron aÆnity and the

ionization potential show that the most stable water molecule is uncharged. Stable trimers

therefore are built from water molecules which donate and receive electrons at the same time.

The most stable water cluster is cyclic. Such a cluster cannot be part of a three-dimensional

ice-like lattice. The formation of linear water clusters on metal surfaces is therefore caused

by the direct interaction of the water molecules with the surface.
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Chapter 4

Classical Water-Water Interaction

Potentials

A quantum chemical simulation of an extended metal surface with several water molecules is unre-

alistic at the chosen level of computation. The dynamics of large systems can be easily simulated

with a molecular dynamics code. Such a program utilizes the interaction potentials between the

di�erent molecules in analytical form. Various water-water interaction potentials have been used

for the simulation of liquid water or ice [246{253]. Those potentials di�er in their computational

complexity. A suitable potential should be simple and easy to calculate and also describe the

quantum chemical results well.

Such a potential also simpli�es the examination of the water trimer's potential energy sur-

face. The structure of the trimers is optimized using the classical potential in the �rst step. The

preoptimized geometry is then used for a quantum chemical geometry optimisation. This proce-

dure reduces the computational e�orts and helps us to distinguish between quantum chemical and

electrostatic forces in the trimerisation.

Successful descriptions of the metal-electrolyte interface use simple water-water interaction

potentials [95{98], so the comparison started with these simple potentials.

4.1 Classi�cation of the Di�erent Potentials

Various potentials have been published and used in simulations (see section 1.1.3, page 4). They

are most easily distinguished by the number of points necessary to describe the monomer. Figure

4.1 displays the four basic water geometries. Geometry I with �ve points (BNS [126], ST2 [126])

is a tetrahedron with two negative charges representing the free electron pairs. The monomer

geometries of the two potentials di�er only by the distance between the charges and the oxygen

atom. Close related to geometry I is Rowlinson's geometry (II) (Row [126]). The negative

charges are perpendicular to the molecular plane like the B1 molecular orbital (�gure 3.1, page

48). Geometry III (BF [9, 116], TIPS2 [116, 117], TIP4P [116, 249, 250]) using four points for

the description of the monomer is the oldest found during the literature search [9]. The negative

charge is moved on the bisector of the bond angle ! to simulate the polarisation of the oxygen

atom by the hydrogens. The whole monomer keeps its C2v symmetry. Since the distance between

the charges is smaller for geometry I and II than for geometry III, the charges have to be higher to
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get a dipole moment of a similar size. Geometry IV using only three points (SPC [116], SPC/E

[97, 98, 109, 254, 255], TIPS [248, 256], TIP3P [116], CFMS [257], NCC [258, 259]) is closest

to the experimental geometry with no additional assumptions. Geometry IV is the only geometry

with the negative charge placed at the oxygen atom. The geometries of type IV monomers found

in the literature vary between the experimental values and a simpli�ed tetrahedron. The geometry

of water in potentials with 
exible bonds is usually of type IV.

H

H

O

q

q

H

H

O

H

H

O

q
H

H

O

q

q

I                                    II                               III                           IV

Figure 4.1: Geometries of water monomers for di�erent interaction potentials.

Only the CFMS and the NCC potential use extended functions to describe the interaction

between the molecules. The interaction energy of the other, simpler models consists of two parts

with small modi�cations between the di�erent potential:

1. Coulomb interaction VCC : The interaction of charges on di�erent sites � and � dominate the

total interaction energy.

VCC =
1

4��0

X
�6=�

q�q�

r��
(4.1)

The BNS (RL = 2.0379 �A, RU = 3.1877 �A) and the ST2 (RL = 2.0160 �A, RU = 3.1287 �A)

models use additional damping functions1 S(r) for the Coulomb energy.

S(rOO) = 0 (0 � rOO � RL)

=
(rOO �RL)2(3RU �RL � 2rOO)

(RU �RL)3
(RL � rOO � RU ) (4.2)

= 1 (RU � rOO)

2. The interaction between the oxygen atoms is described by a Lennard-Jones (12-6) potential

VVdW.

VVdW =
A

r12OO
� B

r6OO
(4.3)

The extended potentials (CFMS / NCC) does not contain any Lennard Jones terms. The

e�ect of the Lennard Jones interactions is modelled by a set of extended functions, which combine

the Coulomb interaction and the van der Waals energy. Those potentials also contain additional

polarization terms.

Stillinger's CFMS model [257] builds water from protons and oxide ions. So the water

geometry is 
exible. His monomer has a OH bond length re of 0.9584 �A, a bond angle !e of

1Such a damping function should not be confused with the spline function used to smooth out the

interaction potential at the cut o� radius in MD simulations [85].
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104.45Æ and a dipole moment �e of 1.855 D. The whole model is parametrised to reproduce those

and other experimental values like IR frequencies.

The Coulomb and van der Waals ineraction energie are combined to form extended pair in-

teraction functions �OO, �OH. The �rst terms2 of equation 4.4 and 4.5 (energies in kcal/mol and

distances in �A) represent the Coulomb interaction. �HH is the pure Coulomb potential (equation

4.1), since both particles do not have any electrons.

�OO(r) =
1329

r
+

24

1 + exp[2:5(r � 2:90)]
+

90

1 + exp[8(r � 2:45)]
+ exp[�6(r � 2:70)] (4.4)

�OH (r) =
332:2

r
(10 exp[�3:699r]� 2) +

��184:7(r� re) + 124:0(r� re)
2
�

� exp[�8(r � re)
2] (4.5)

The fourth term �P contains the polarisation energy with some interesting variations. Instead

of the electrical �eld ~E (section 2.8, page 40) a damping function ([1 - K(r)]) is used to calculate

its replacement ~G:

~Gi = �
X
i6=j

(~rijqi)

r3ij
[1�K(rij)]�

X
l6=i

�
1� 3(~ril~ril)

r2il

�
~�[1�K(ril)]

r3il
(4.6)

This damping function leads to a slightly di�erent expression for the induced dipole moment

~p1 in the dimer compared with equation 2.102 (page 43):

~p1 =
�

A1

�
�~S1 � D�

r3

�
�~S2 +

3D

r5
(~S1~r)~r +

3A2

A4r2
(~S2~r)~r

��

D � 1�K(r) An = 1� n�2

r6
~Si =

X
i6=j

~rijqj

r3ij

(4.7)

To check the results the modi�ed system of equations (2.102) was solved by replacing the vectors

by their components and solving the new 6*6 system of equations. This method has the advantage

that it is simpler to scale the system up to handle more molecules than with the analytic approach.

A second damping function [1 - L(r)] is used during the calculation of the polarisation energy

�P

�P =
1

2

X
i;j
i6=j

(~�j~rij)qi
r 3ij

[1� L(rij)] (4.8)

Equation 4.8 (distances in �A) does not take the interaction between the induced dipole moments

into account.

1�K(r) =
r3

r3 � 1:856(r� re)2 exp[�8(r � re)] + 16:95 exp[�2:703r]

L(r) =
�
1 + 3:170r + 5:024r2 � 18:00r3 + 23:92r4

�
exp[�3:170r]

(4.9)

Without those additional damping functions the polarisation would dominate all the other inter-

actions. The model would predict unphysical values. A strong electric �eld from a close neighbour

2All �gures rounded to 4 signi�cant digits [257].
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could reverse the direction of the monomer's dipole moment for example.

�H2O = 2 e re cos(0:5 !e)

�
1� �

r3e
[1�K(re)]

�
(4.10)

For r3e = � (re = 1.1305 �A) the dipole moment would vanish without any damping. This damping

yields good results, but is diÆcult to justify.

Table 4.1 summarizes the parameters of the di�erent potentials and the equilibrium structure

of the water dimer we calculated with those potentials with the exception of the NCC potential.

All bonds of the simple models are too short and the dimerisation energies too high. The pair

interaction of two water molecules therefore is over emphasized. All those potentials were optimized

to describe liquid water. None of those e�ective potentials contains any non additive terms like the

polarisation energy. To compensate for this extra energy, the pair interaction has to be increased

during the generation of the potential parameters. Although the ST2 potential has the longest

oxygen oxygen distance (2.85 �A) the interaction energy is too high (6.84 kcal/mol). The best

interaction energy is found with Rowlinson's potential, while the oxygen oxygen distance (2.69

�A) is poor. The extended potentials, which contain polarisation terms, yield better energies and

distances (CFMS: 2.95 �A, 5.402 kcal/mol, with �xed, optimized water geometry). Results obtained

with the experimental water geometry (0.9572 �A, 104.52Æ) do not di�er signi�cantly from those

with the optimized water geometry (section 11.8, page 329). The CFMS model allows the water

molecule to relax (2.896 �A, 6.95 kcal/mol). The relaxation energy (1.95 kcal/mol) is too large in

comparison with the quantum chemical (DZP/MP3, BSSE corrected) value of 0.07 kcal/mol. The

best values for the angle � (about 47Æ) yield potentials with a type III geometry for the dimer.

All of them are close to the experimental value. The best value (2.9Æ) for � is found by the ST2

model.

4.2 Comparison with the Quantum Mechanical Potential

Curves

A display of the quantum chemical and the classical curves can be found in the appendix (section

11.8, page 329). In this section only graphs are displayed, which are necessary to understand the

argument. For the less important graphs references to the appendix are given.

The BNS- and the ST2 models show local minima in the repulsive curves (both aHH and aOO)

like the BSSE uncorrected repulsion curves aHH (�gures 3.29, 3.32, 11.3c, 11.4c). Figures 4.2 to

4.5 display details of the local minimum of the BNS aOO curve.

The fraction of the Coulomb energy in the total energy approaches zero as the oxygen-oxygen

distance gets shorter. The Lennard Jones interaction in this region is only very small. The

addition of both energies creates the local minimum. The Coulomb energy is pulled down to zero

by a damping function as displayed in �gure 4.3. Figure 4.4 shows the change of the Coulomb

energy. The damping is necessary to avoid a negative Coulomb energy for small distances. Figure

4.5 shows how the attractive OH interactions overpower the repulsive forces of the OO and HH

interactions. The minimum is caused by too strong attractive forces at small distances.

The correction of the BSSE weakens the attractive forces between the two water molecules as

shown in chapter 3. The counterpoise correction of the BSSE keeps the molecules apart, because

it is no longer possible to improve the wavefunction of one monomer with the other monomer's
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Figure 4.2: Local minimum of the BNS-aOO

curve.
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Figure 4.5: Composition of the Coulomb en-

ergy.

functions. In the quantum chemical as well as in the classical case the local minimum is caused by

too strong attractive interactions at small distances.

All classical dimerisation curves (�gures 11.3a - 11.12a, section 11.8) with the exception of the

CFMS model (�gure 11.13a, 11.13e) have their minimum at too small oxygen-oxygen distances and

the interaction between the water molecules is too high (please refer also to table 4.1). The correct

description of the minimum of the CFMS curves is not achieved by weaker attractive forces. They

are actually stronger. The improvement is achieved by a better description of the repulsive forces.

For simple models the repulsive curves are always steep, but they are of short range. This is caused

by the r�12 term of the Lennard-Jones interaction energy. The minimum of the Lennard Jones

curves is between 2.8 �A and 3.2 �A (table 4.1). The equilibrium geometry of the dimers is therefore

dominated by attractive Coulomb interaction. The CFMS model by Stillinger uses exponential

terms for the description of the repulsive terms. Those extensive functions produce the right form

for the repulsive curves aHH and aOO, but the repulsion starts too early (�gures 11.13b, 11.13c,

11.13.f, 11.14a). The correct description of the water dimer with the CFMS model is achieved with

strong repulsive terms, which keep the monomers apart.

The aOO curve of the ST2 model (�gure 11.4b) has a less distinct local minum and is so
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better than the BNS curve (�gure 11.3b) although both models use nearly the same geometry for

the monomers. The coeÆcient A of the Lennard Jones potential is bigger and the distance rOQ

between the charges and the oxygen atom are smaller. This leads to a higher contribution of the

Lennard-Jones energy. A damping function is no longer necessary and the local minimum nearly

vanishes. The model of Rowlinson has a even larger value for A. Simultaneously the charges

move backwards (geometry II, �gure 4.1). This leads to a much steeper curve for aHH and the local

minimum vanishes (�gure 11.5b), since the negative charges get closer to each other and Coulomb

repulsion contributes stronger to the total repulsion energy. The aOO curves for the three and

four point models hardly di�er, since the short range repulsion is controlled by the Lennard Jones

term and not by the Coulomb interaction. The movement of the charge is therefore less important

for repulsion energy. An increase in the distance rOQ between the charges is also compensated by

greater charges of the four point models, which explains the similarity of the curves.

Another clue to the role of the Lennard-Jones energy for the interaction is given by the aHH

curves. Since the distance between the oxygen atoms and the charges is now much bigger (�gure

3.29, page 69 for geometries), the hydrogen-hydrogen repulsion gains more importance in com-

parison with the Lennard Jones interaction energy. Since the electron density at the hydrogens

in a water molecule is low, the interaction between two hydrogen atoms has to be dominated by

Coulomb repulsion. Because the total repulsion energy is controlled by the hydrogen-hydrogen

Coulomb repulsion, the classical aHH curves are generally much closer to quantum mechanical

curves than the aOO.

The in
uence of � (�gure 3.2) on the total energy is very strong for the models based on

tetrahedra (�gures 11.3d, 11.4d). For both models (BNS, ST2) � is very close to the tetrahedral

value of 54.7Æ. This is due to the interaction between the charges q of the free electron pairs

and the bonding hydrogen atom. The closer the negative charge is to the monomer's hydrogen

atoms, the 
atter is the curve (BNS > ST2 � Rowlinson). The 
attest curves are produced by

3-point models. Here the oxygen charge does not move and the change of the interaction energy is

caused only by the orientation of the hydrogen atoms. The curves of the 4-point models are better

than the 3-point models, as they reproduce better the asymmetry of the BSSE corrected curves.

They also have the best values for � in the equilibrium structure, because they are closest to the

experimental value of 47 � 10Æ.

The CFMS model's curve E(�) is the steepest of all. This overestimate of � on the interaction

energy is caused by the Coulomb part of the model. Figure 4.6 displays a comparison of the

pure Coulomb interaction energy between an oxide anion O2� and a proton H+ and the potential

energy curve proposed by Stillinger. Stillinger's interaction energy is slightly lower than the

pure Coulomb potential for large distances rOH. The Coulomb interaction in Stillinger's model

is much stronger compared with the other models. The highest charge on oxygen occurs with

the TIPS2 model (1.07 e), which is still much smaller than 2.0 e of Stillinger's model. The

dependence of � on the interaction energy seem to be directly correlated with the Coulomb energy

part of the model. The more important the Coulomb part gets the more energy is needed to distort

the equilibrium geometry.

Figure 4.6 shows how well the Coulomb and repulsive terms (equation 4.5) work together in

Stillinger's model. At small distances the attractive Coulomb regime is gently changed into a

repulsive potential. Any additional repulsive functions are therefore not necessary.

The polarisation energy of the water dimer as a function of � calculated with the CFMS

model is shown in �gure 4.7. In contradiction to the quantum chemical results (table 11.19) the
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Figure 4.7: Polarisation energy of the CFMS

model.

polarisation energy has a maximum rather than a minimum at the equilibrium structure. The

polarisation energy in the CFMS model widens the parabola and describes the quantum chemical

values better. The energy curve of the CFMS for the variation of W3 (�) (�gure 11.14c) is still the

steepest curve of all. As before in the case of � the importance of the bond angles is overestimated

by the Coulomb energy.

The E(�) curves calculated with the tetrahedral models (BNS, ST2) are steep, but �t much

better to the quantum mechanical curve. The best description of the curve is given by Rowlinson.

The curves of models with geometry III (TIPS2, Bernal and Fowler, TIP4P) are steeper than

the quantum mechanical curves, but �t better to the BSSE uncorrected curve. The three-site mod-

els (SPC, SPC/E, TIPS, TIP3P) are also close to the quantum mechanical curve, but exaggerate

the curve's anharmonicity. In a three-site model the hydrogen atom H2 is much closer to the centre

of negative charge of the other molecule than in a four-site model. The increased Coulomb energy

also raises the steepness of the curve.

The comparison of the di�erent potentials with the quantum chemical curves might be sum-

marized as follows:

1. No potential describes all curves in a satisfactory manner.

2. Polarisation seems to be important for the equilibrium structure and adequate �tting to the

quantum chemical curves. Both models containing polarisation terms (CFMS and NCC) also

contain extended functions. At this stage it is diÆcult to judge from the classical potential

energy calculations whether this good agreement is achieved by the polarisation terms or by

the extended interaction functions. The inclusion of polarisation terms is dangerous at low

distances and could lead without any damping to poor values for the bond length and the

bonding energy of the dimer.

3. The best description of the angles � and � is given by four-site models (geometry III). A value

of 0Æ for � is still in the experimental range and all values for � are close to the experimental

one. The TIPS2 potential o�ers the best description of the quantum chemical results. The

oxygen oxygen distance (2.79 �A) is in comparison with the other simple potentials the second

longest and the dimerisation energy (6.20 kcal/mol) reasonable. Figures 4.8 - 4.12 compare

the TIPS2 curves with the quantum chemical ones.
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4. The repulsion between the molecules at small distances is controlled by the Lennard-Jones

forces and not by the Coulomb energy. To get a good shape of the curve the r�12 term

should be replaced by an exponential term (CFMS). At the same time the charges should be

so small, that they cannot overpower the repulsion term to avoid local minima or damping

functions.

4.3 A new model

As shown in section 4.2 no simple water-water interaction pontential describes the water dimer in

a satisfactory manner. This section describes the development of a new potential for small water

clusters and its application towards the water trimer.

4.3.1 An improved model

The comparison of the quantum chemical results for the water dimer with those from previously

published potentials (section 4.2) showed that none of the potentials is actually able to reproduce

the ab initio results. There are two principal ways to get a better potential:

1. The simplest way is to �t an existing potential to the quantum chemical results and �nd a

new set of parameters.

2. A new potential may be developed by modifying an existing one. The study of the quantum

chemical results showed that the water water interaction is dominated by electrostatic and

exchange repulsive forces. A �rst try must therefore be a variation of the noncoulomb oxygen-

oxygen interaction term.

Nearly all models contain a parameter which describes the displacement of the centre of charge

from the oxygen atom. This movement may be regarded as the polarisation of the oxygen atom by

the two hydrogen atoms. Simultaneously this parameter allows us to control the dipole moment

of the molecule. There are no ways either experimental or theoretical to get correct values for the

partial charges of the atoms in a molecule. The dipole moment is therefore the best property to

compare di�erent levels of theory.

A quality function Q is necessary to judge the quality of a �t despite the chosen way. This

function was build from di�erent parts:

1. The variances of the quantum mechanical calculated curves (section 3.2.3 - All curves were

constructed from the BSSE uncorrected minimum geometry dOO = 2.9354 �A, � = 3.28Æ, �

= 54.57Æ)

(a) the dimerisation curve (�gure 3.22)

The dimerisation curve o�ers the best description of the attractive forces.

(b) the repulsive curves aOO and aHH (�gure 3.30 and 3.31)

The repulsive curves are necessary for the �ne tuning of the repulsive forces in the model.

The comparison of the quantum chemical curves with the already published potentials

showed that the repulsive forces are important to generate the correct oxygen oxygen

equilibrium distance.
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(c) the bending of the three angles (�gure 3.3) �, �, W3 (�gures 3.27, 3.28, 11.2)

The inclusion of the those three terms helps us to reproduce the force constants and the

shape of the potential energy surface.

2. The variance of the binding energies for the trimers (�gures 3.35 - 3.38)

Cooperative e�ects are important for the energy and structure of small water clusters. There

are two possible methods to incorporate them into a potential:

(a) Cooperative e�ects are described by explicit terms in the potential, as the polarisation

energy in the CFMS potential.

(b) The parameters of a pairwise potential are �tted to the values of water trimers so that the

new potential enables a reasonable description of small water clusters without explicit

use of cooperative e�ects.

The later of the two methods was used in this work and cooperative e�ects are therefore

hidden in the parameters of a pairwise interaction potential.

3. The variance of the minimum energy of the dOO curve3 (table 3.17; dOO = 3.0049 �A, � =

3.31Æ, � = 54.57Æ, �E = -4.880 kcal/mol) and the energy calculated with the new potential

(labelled as minerg)

4. The square sum of the �rst deviations (mingeo) of the inner coordinates (d, �, �) of the

BSSE corrected energy dimer.

mingeo =

�
@�E

@dOO

�2
3:0049�A

+

�
@�E

@�

�2
3:31Æ

+

�
@�E

@�

�2
54:57Æ

(4.11)

First test showed that the reproduction of the minimum has always been poor although the

reproduction of the corresponding energy values has been good. Equation 4.11 has been used

to pinpoint the global minimum (mingeo = 0). If the new potential has a local minimum at

the given geometry, mingeo should vanish.

The dipole moment was not used for the construction of the quality function, because the

e�ective dipole moment of water in water cluster is unknown. It was used as indicator to check, if

the �t is physically reasonable. Table 4.2, which summarizes �t results of the �tting, shows that

the dipole moment did not change much between the di�erent potentials.

The most severe problems during the �t were caused by the cooperative e�ects which contribute

strongly to the total interaction energy of the water trimers. An ideal pairwise interaction potential

should create an error in the trimerisation energy of 3 kcal/mol, since it cannot describe the

cooperative e�ects (section 3.4). A potential which describes the trimers perfectly gives very poor

values for all dimers. A compromise had to be found between both forms. Another problem arises

from the change of the sign of �ENPA (cooperative e�ects). Interaction potentials which describe

the trimers with repulsive cooperative e�ects well, usually gave extremely poor values for trimers

with attractive cooperative e�ects and vice versa. A suitable potential has to reproduce the correct

order of the trimerisation energies in the �rst place and the absolute values only in the second place.

3The BSSE correction of the equilibrium geometry was done later in one of the unavoidable slack

periods.
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All parts of the quality function di�er in their size. If the simple sum is optimized, the biggest

contribution to the total error controls the development of the optimisation. To avoid this and to

minimize all sums equally, the individual terms were weighted. Those weights also allowed a �ne

tuning of the �nal results to get a better description of the trimers.

First tests in section 4.2 showed that it is nearly impossible to describe strong repulsive dimers

(aOO and aHH) with the chosen set of potentials. The better their description is, the worse are

the results for the attractive dimers (dimerisation curve, W1, W2, W3). To ensure a physical

reasonable result, the upper limit for repulsive interactions was set at approximately 7 kcal/mol.

This energy is about 1.5 times of the optimal interaction energy.

The �t of a new model to the existing quantum mechanical values was done in two steps. The

�rst step of the procedure was done with a Simulated Annealing algorithm [242, 260{268]. This

algorithm can free itself out of local minima. Results obtained with such a program were usually

close to the global minimum. On the other hand the algorithm does not necessarily reaches the

global minimum. The theory only demands that it stops close to it. To ensure that the true global

minimum was found, a second calculation was done with a simplex algorithm [242, 269]. The �rst

point of the initial simplex was the result of the 'Simulated Annealing'-step. The other points were

constructed from this point by adding 10.0 to each parameter. Both methods were chosen, since

they do not require the calculation of any derivatives.

The search for a new model started with a reparametrisation of the TIPS2

H

O

H

Md

a

Figure 4.13:

potential [116], because it does not contain a damping function and �tted fairly

well to the quantum mechanical curves (section 4.2). The monomer's geometry is

the experimentally found geometry (rOH = 0.9572 �A, ! = 104.52Æ). This makes

a comparison between the classical potential and the quantum chemical potential

easier. The centre of charge M in this model (d = 0.15 �A) is at the same place as

the centre of the valence electrons.

6d = 2(a� d) ) d =
1

4
a =

1

4
rOH cos

�!
2

�
= 0:146 �A (4.12)

The comparison of the quantum chemical values with the results from previously published

potentials showed that the oxygen-oxygen repulsion is the most important parameter for improve-

ment. The shallow minima of the Lennard-Jones functions (table 4.1) are already close to the

optimized oxygen-oxygen distance. The �rst set of test potentials had therefore the same structure

as the TIPS2 potential but di�ered in their repulsive terms for the oxygen-oxygen interaction.

A : a � r�12 � b � r�6 The original TIPS2 form

B : a � exp(�r � b)� c � r�6

C : a � exp(�r � b)

D : a � r�b

E : a � exp[�(r � c) � b]

F : like E, but the parameter d for the dislocation of the centre of charge from the oxygen atom

was also �tted

All potentials contain another parameter q, which is the negative charge at the centre of charge.

Table 4.2 displays the optimized parameters for those potentials. The values for the potentials A
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pot. A pot. B pot. C pot. D pot. E pot. F

q [e] 1.0324 1.1153 1.1721 1.0354 1.0730 1.0271

a 593003.7 2072103 130121.9 549239.9 2072110 2072284

b 48.7600 -907.510 3.6205 12.0829 4.7154 5.0074

c 4.9903 -0.0801 0.069752

d 0.15 0.15 0.15 0.15 0.15 0.13173

minergA 0.0733 0.0302 0.0070 0.0174 0.0449 0.0345

dipole [D] 2.1614 2.3347 2.4537 2.1676 2.2463 2.2402

dimer.A 0.5179 0.5748 0.0105 1.4302 0.5119 0.3873

aOO
A 1.6542 5.2712 9.8509 1.1416 2.1744 1.9334

aHH
A 2.0625 0.7036 0.0983 2.3267 1.1498 1.0582

W1A 0.0326 0.0462 0.1651 0.0601 0.2231 0.2134

W2A 0.0172 0.0214 0.0085 0.0597 0.2700 0.2349

W3A 0.0083 0.1351 0.2522 0.0723 0.1880 0.1809

trimer IA 5.6736 8.1416 25.300 2.0653 1.8954 1.5931

trimer IIA 0.0051 0.0016 0.0006 0.1358 0.9164 0.7308

trimer IIIA 0.0406 0.0710 0.0186 0.0036 0.4475 0.3655

trimer IVA 1.7053 1.1725 0.5512 1.0704 0.0883 0.1591

totalC 12.2352 16.1395 36.2559 8.3657 8.3775 7.2439

trimer IB -11.4074 -10.9362 -8.7599 -12.3523 -12.4125 -12.5264

trimer IIB -8.3524 -8.3218 -8.3053 -8.6498 -9.2384 -9.1357

trimer IIIB -8.0407 -7.9760 -8.1060 -8.3020 -8.9112 -8.8466

trimer IVB -9.7658 -9.9889 -10.3295 -10.0372 -10.7745 -10.6724

A variance [kcal2/mol2] B absolute value [kcal/mol] C dimer counted twice

Table 4.2: Potentials A - F.

pot. A pot. B pot. C pot. D pot. E pot. F

dOO [�A] 2:8298 2:8480 3:0053 2:8058 2:8514 2:8496

� [deg] 0:48 0:33 �0:90 0:68 0:30 �0:57

� [deg] 44:15 43:22 36:54 45:45 43:05 38:37

��E [kcal/mol] 4:9614 5:0138 4:9076 5:1047 5:4161 5:4224

dOO [�A] 3:0878 3:1583 3:2957 3:0705 3:0865 3:0559

� [deg] 127:74 127:74 127:74 127:74 127:74 127:74

� [deg] 180:0 180:0 180:0 180:0 180:0 180:0

��E [kcal/mol] 2:8871 2:7788 3:0949 2:9255 3:2360 3:3573

Table 4.3: Optimized geometries of both minima on the dimer's potential energy surface

(�gure 4.21).
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to F are given in such a way, that if r is given in �Angstr�om, the �nal result will be in kcal/mol. For

the calculation of the Coulomb energy the �nal result has to be multiplied with 332.17752 kcal/mol

��A/e2 to get the energy in kcal/mol if the distance between both charges is given in �Angstr�om and

charges as multiple of the elementary unit e.

The best results (quality function, shape of the curves, description of the trimers, opt. dimer

geometry) of this �rst set of test potentials were obtained with potential E. The errors (standard

deviation �) are listed in table 4.4. Figure 4.15 to 4.19 display the quantum mechanical curves and

the curves calculated with potential E.

The search began with a �t to values found only for dimers, including all repulsive dimers (�E

> 7 kcal/mol). The �rst potential to be tested was the original TIPS2 potential (potential A).

The results were disappointing. The next try was the replacement of the repulsive term in the

Lennard-Jones term of the potential (potential B). The results were better. All results found in

di�erent optimisation approaches (di�erent weights in the total error) gave only small values for

the parameter c. This validates the conclusions already drawn from table 4.1 that the attractive

the van der Waals potential is of minor importance for the description of the potential energy

surface. In the next series of experiments the attractive term was therefore omitted (potential C).

This potential gave the best results so far. Potential D was tried to check if the repulsive part of

the Lennard-Jones potential can be further improved with a single, optimized repulsive function.

Finally potential E was used to test, if a extension (in comparison with potential C) of the oxygen-

oxygen interaction potential can describe the quantum mechanical results better. Potential F was

tested to see, if any changes in the movement of the centre of charge d leads to a better potential.

The small improvement of the variances and the negative value for � in the optimal dimer (table

4.3) were regarded as unimportant for leaving a well-known geometry.

The variances of aOO and aHH have been very large at (up to several
interaction �

kcal/mol

attractive 0.535

repulsive 1.273

trimer 0.825

Table 4.4: Errors for po-

tential E

hundreds kcal2/mol2) this state of the search. Those �ndings lead to

the previously mentioned introduction of the weights in the calculation

of the error. Those weights helped to realize that a simple potential

either describes the repulsive curves well or describes the attractive

curves well. The �ndings obtained with a weighted error function

lead to the step wise �xing of an upper limit for allowed points. An

upper limit of 7 kcal/mol allowed us to �nd potentials which describe

the attractive and the repulsive curves equally well. At this state of

the search the trimers were introduced into the error function. The potential C, which has been

the best so far, gave the worst results for trimers. The results of those �ts are listed in table 4.2

and table 4.3 displays the associated minima. The analysis of those new potentials showed that the

correct sequence of the trimer energies depends mainly on the repulsive oxygen oxygen interaction.

The distance where the repulsion comes into play is more important than the shape of the curve.

Figure 4.20 displays the repulsive functions of the potentials A, C and E. The shape of all three

curves is very similar. The repulsive function of potential C starts to rise �rst. The longer range

of this repulsion prevents the three water monomers from getting closer to each other during the

formation of the ring and causes the extremely small trimerisation energy of 8.8 kcal/mol. The

binding energies of the other trimers (II, III and IV) with longer oxygen-oxygen distances are well

reproduced, but the absolute values are always smaller in comparison with the other potentials.

Potential C also has the biggest variance for aOO.
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dOO � � �E

[�A] [deg] [deg] [kcal/mol]

1 min. 2:8514 0:30 43:05 �5:4161

2 min. 2:8514 255:18 316:95 �5:4161

3 min. 2:8514 127:74 180:00 �2:7088

4 tran. 2:8514 307:74 0:00 �2:7088

5 tran. 2:8514 75:48 155:01 �2:4888

6 tran. 2:8514 180:00 204:99 �2:4888

Table 4.5: Stationary points in �gure 4.21.

Figures 4.15 to 4.19 show the quantum mechanically calculated curves in comparison with

potential E. The curves aOO and aHH (�gure 4.16, 4.17) do not show any local minima. The

repulsive term is strong enough to overpower the Coulomb forces, when the two monomers get

close to each other. No additional damping is necessary. The minimum of the dimerisation curve

(�gure 4.15) is closer to the origin and the well is deeper than the well of the quantum mechanically

calculated curve. The shape of the curves for � and � (�gures 4.18, 4.19) is well reproduced by

the potential E. Like the dimerisation curve the interaction energy calculated with potential E

is bigger than the quantum mechanical calculated energy, but the oxygen-oxygen distance is well

reproduced.

Figures 4.21 and 4.22 display the potential energy surface of the water dimer. The oxygen-

oxygen distance is set to 2.8514 �A for all con�gurations. Figure 4.21 shows the bonding region of

the surface while �gure 4.22 is a contour plot of the antibonding region. In the bonding region three

minima and three transition states were found. Table 4.5 and �gure 4.14 show the six stationary

points in the bonding region. The geometry of the minima 1 and 3 were optimized. The results

are displayed in table 4.3.

Minimum 1 Minimum 3 Transitionstate 5

Maximum 1 Saddlepoint 4 / aHHMaximum 2 / aOO

Figure 4.14: Sketches of selected dimer geometries.

Minimum 1 and 2 (�gure 4.21) have virtually the same geometry and can be transformed into

each other by a re
ection. The mirror plane is perpendicular to the plane of symmetry of the dimer

and contains both oxygen atoms. Minimum 3 can be transformed into transition state 4 by an

improper rotation. The axis of rotation is the dimer's oxygen-oxygen bond and the mirror plane

between both oxygen atoms. This shows an interesting feature of the chosen set of coordinates.
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Figure 4.15: Dimerisation curve - Pot. E.
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Figure 4.16: OO repulsion - Pot. E.
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Figure 4.17: HH repulsion - Pot. E.
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Figure 4.18: Variation of � - Pot. E.
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Figure 4.19: Variation of � - Pot E.

2,5 3,0 3,5 4,0 4,5 5,0

0

2

4

6

8

10

12

14

16

pot. A

pot. C

pot. E

V
R

E
P

[k
ca

l/m
ol

]

r  [Å]

Figure 4.20: Di�erent repulsion functions.
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Figure 4.24: Energy pro�le, path 4-1, Pot. E.
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Figure 4.26: Energy composition, point 5,

Pot. E.

Although both points have identical geometries geometry 1 marks a minimum and the other point

a transition state.

Both points 3 and 4 have the same geometry but they di�er in their possibilities to relax (�gures

4.23 and 4.24). A movement, which would correspond to the relaxation of transitionstate 4 into

geometry 1 or 2, is a movement perpendicular to the potential energy surface at point 3. The

chosen set of variables does not allow such a movement at point 3. If the set of inner variables

would be totally free of any symmetry restrictions, both points would be equal.

Points 1 and 3 di�er through the chosen set of internal coordinates, but this argument does not

explain the origin of the transition states 5 and 6 (�gure 4.21). Since the oxygen-oxygen distance

is �xed at 2.8514 �A for the generation of �gure 4.21, the origin of the maximum in �gure 4.23

cannot be explained with the repulsive forces between two oxygen atoms. The maximum is caused

only by the Coulomb interaction. Figure 4.25 displays the composition of the interaction energy

along the path 1-5-34. The vertical line marks the transition state 5. None of the three curves

shows any special features at this point. The transition state is not coupled to a minimum or a

maximum of a single energy component. Further insight into the problem is o�ered by a careful

analysis of its geometry. A �rst guess would be at � = 75.48Æ (one OH bond of the donor lies

4� was optimized at each point (�, �, �E) with dOO = 2.8514 �A to �nd the reaction path.
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1 2 3 4

� [deg] 15:37 0:0 238:77 255:48 127:74 307:74

� [deg] 200:07 180:0 158:47 180:0 0:0 180:0

�E [kcal/mol] 6:5331 6:2648 6:5331 6:2648 6:6488 5:5393

Table 4.6: Characteristic points of �gure 4.22, dOO = 2.8514 �A.

on the oxygen-oxygen line) and � = 180Æ (�gure 4.14), if the interaction between both molecules

depends only on Coulomb forces with the charges placed on the individual atoms. Both hydrogen

atoms of the second monomer would try to get as close as possible to the oxygen atom to gain as

much energy as possible. Figure 4.26 shows how the energy composition changes as �0 changes

from 150Æ to 180Æ. The curve for the total energy has a shallow minimum at 155Æ- the transition

state. Moving further towards 180Æ leads to a rise of the total interaction energy ETOT, while the

Coulomb interaction energy containing only the hydrogen atoms VHH + VMH decreases steadily

as expected. Simultaneously the Coulomb energy between both centres of charge VMM increases.

The rapid increase of the repulsion between the two centres of charge accounts for the geometry of

the transition state. This increase is caused by the displacement of the centre of charge from the

oxygen in the monomers. During the turn the centres get closer to each other. The geometry of the

transition state 5 is therefore a compromise between the attractive forces of the hydrogen-negative

charge interaction and the repulsion between both centres of charge.

The same argument holds also for the maxima 1 and 2 in �gure 4.22. The distance between

both centres of charge has to be as small as possible while distance between the hydrogens and the

centres of charge has to be as big as possible. Table 4.6 lists characteristic points of �gure 4.22.

Usually it is diÆcult to �nd transition states and to optimize their geometry. As shown above

potential E and the chosen set of internal coordinates allow us to optimize minimum 3 and to get

so the optimized geometry of transition state 4. Table 4.5 displays the optimized geometries of

the minima and their energies. During the transition from minimum 1 to minimum 2 increases

the oxygen-oxygen distance up to 3.0865 �A. The activation energy of this transition is lowered

from 2.71 kcal/mol down to 2.18 kcal/mol. According to potential E should the dimer change its

geometry rapidly at room temperature between geometry 1 and geometry 2.

Although potential E reproduces well the shape of the quantum chemical curves are the bonding

energies in poor agreement with quantum chemistry. Popkie and Kistenmacher [119, 120]

published a simple potential with extended interaction functions without any polarisation terms,

which they used for the analysis of larger water cluster. They use a type III monomer geometry

with a longer distance d between the centre of charge M and the oxygen atom (0.427 a.u. / 0.226

�A). Their point charge model is build from di�erent parts.

VOO = a1e
�b1r VHM =

�q2
2r

VHH =
q2

4r
+ a2e

�b2r (4.13)

VMM =
q2

r
VOH = a3e

�b3r q = qO = 2qH

This is an extension of potential C by adding repulsive terms to the oxygen-hydrogen and to the

hydrogen-hydrogen interaction. The authors obtained the parameters for this potential by �tting

it to 216 energy values from HF dimer calculations. While potential C gave the best values for

the dimers but only poor for the trimer, the potential published by Kistenmacher and Popkie

predicts the cyclic water trimer as the most stable trimer with a trimerisation energy of 12.3
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dOO [�A] � [deg] � [deg] �E [kcal/mol]

1 min. 2:9834 8:55 56:60 �4:9029

2 min. 2:9834 246:93 303:40 �4:9029

3 min. 2:9834 127:74 180:00 �3:3097

3* min. 2:9902 127:74 180:00 �3:3099

4 tran. 2:9834 307:74 0:00 �3:3097

4* tran. 2:9902 307:74 0:00 �3:3099

5 tran. 2:9834 90:79 159:42 �3:2548

6 tran. 2:9834 164:89 200:58 �3:2548

1 max. 2:9834 0:76 182:28 13:861

2 max. 2:9834 254:72 177:72 13:861

3 max. 2:9834 127:74 0:00 4:5090

4 sad. 2:9834 307:74 180:00 5:0637

The asterix marks points with an optimized oxygen-oxygen distance.

Table 4.8: Characteristic points of potential N (refer to �gure 4.32 and 4.33 for details).

kcal/mol [119], which is close to the quantum chemical value.

First tests to re�t this potential with a �xed oxygen charge
interaction � [kcal/mol]

attractive 0.118

repulsive 0.260

trimer 0.412

Table 4.7: Errors for potential N

distance of 0.15 �A gave only poor results. The reparametrisa-

tion of the oxygen charge distance d gave very good results.

The standard deviations of this new potential N are listed in

table 4.7. They are smaller than values given in the literature

with an upper interaction limit of 5 kcal/mol.

Figure 4.27 to 4.31 display the quantum mechanical curves

and the corresponding curves calculated with potential N.

The third minimum of N potential is diÆcult to see. Figure 4.34 display an enlargement of the

region, where the minimum should be found. Figure 4.35 shows how the energy changes along the

reaction path. The transition state nearly vanishes, although the distance between the charge and

oxygen is larger (d = 0.24 �A). Figure 4.36 shows the energy composition5 along the path. The

curves have smaller amplitudes than those in 4.25. The larger oxygen-oxygen distance in potential

N reduces the Coulomb interaction. The change of the energy composition during the bending of

� is shown in �gure 4.37. The reduction of � is again caused by the repulsive interaction between

the centres of charge. As both oxygen atoms are at �xed positions during the calculation, the

oxygen oxygen repulsion is a constant for all points. The amplitude of change for VMM + VOO is

smaller than for potential E, because the distance between the charges is larger. The slope of VHH

+ VHM is also smaller, since the extra repulsive function in VHH compensates partially for VOH.

The extended system of repulsive functions damps the Coulomb interaction and smooths therefore

the potential energy surface.

5The paramter b1 is so high, that oxygen-oxygen repulsion becomes notable only for very small values

of the oxygen-oxgen distance dOO. The good reproduction of the aOO curve (�gure 4.28) suggests, that

the oxygen-oxygen interaction is dominated by the Coulomb repulsion in equilibrium structures and that

well chosen paramters for the hydrogen-oxygen interaction are more important than the oxygen-oxygen

repulsion.
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Figure 4.27: Dimerisation curve - Pot. N.
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Figure 4.28: OO repulsion - Pot. N.
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Figure 4.29: HH repulsion - Pot. N.
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Figure 4.30: Variation of � - Pot. N.
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The repulsive oxygen hydrogen interaction also prevents the Coulomb regime at small oxygen-

oxygen distances. This behaviour is displayed in the good �ts for aOO and aHH. Both curves do

not show any local minima.

This extreme 
atness of the potential energy surface is also re
ected by the reduced activation

energy for a change in the dimers geometry along the path 1-4-2 (�gure 4.32). The activation energy

of 1.57 kcal/mol calculated with potential N is about 0.5 kcal/mol lower than that calculated with

potential E. The activation energy is signi�cantly higher than the double of the standard deviation

for attractive interactions (0.118 kcal/mol, table 4.7) and should be therefore regarded as a real

property of the system, while an energy di�erence of 0.055 kcal/mol between the points 3 and 5

remains questionable.

The energies of the points 1 and 4* were calculated quantum mechanically (DZP / MP3).

The geometry of point 1 yielded a BSSE corrected interaction energy of 4.857 kcal/mol (BSSE

= 0.9949 kcal/mol). This value is in good agreement with that predicted by potential N. The

di�erence between both points is 0.046 kcal/mol (0.94 % of the energy). The geometry of point 3*

(and therefore also point 4*) gave a BSSE corrected interaction energy of 3.256 kcal/mol (BSSE

= 0.899 kcal/mol). The di�erence between the predicted and calculated values is 0.054 kcal/mol

(1.63 % of the energy). The predictions are much closer to the minimum geometry and become

poorer as the interaction becomes less favourable. The energy di�erence between both points is

1.59 kcal/mol and exactly reproduces the 1.57 kcal/mol predicted by potential N. The di�erence

between both values (0.02 kcal/mol) is much smaller as the estimate from the error propagation

laws basing on the individual errors E (0.071 kcal/mol, 4.45 % of the activation energy). This

result shows how di�erent errors cancel.

�ETOT =
qX

�E2
i =

p
0:0462 + 0:0542kcal=mol = 0:071kcal=mol (4.14)

Figures 4.31 and 4.30 show the potential energy (quantum mechanics and potential N) as a

function of the distortion of the dimer angles. Although the positions of the minima di�er slightly,

potential N reproduces very well the curvature of the quantum mechanical curves. The curvature

of the potential energy surface in combination with the cancellation of errors explains the high

quality of predictions by potential N.

The study of reaction pathways on the potential energy surface (like the one shown in �gure

4.32) is not an easy task, as the oxygen-oxygen distance changes during the turn of the angles.

Figure 4.38 and 4.39 show the reaction paths as low energy combinations of � and � for potential

E and N. The curve for potential E is more bent than that for potential N, as potential energy

surface calculated with potential E has steeper slopes than that of potential N. If the oxygen-

oxygen distance is allowed to relax during the calculation, transition states 5 and 6 might vanish.

Transition state 5 observed with potential N seems to be an artefact caused by the movement of

charge from the oxygen atom. The energy di�erence of 0.055 kcal/mol between the point 3* and

5 is already much smaller than the standard deviation of potential N for bonding conformations.

The global minimum of the potential energy surface of potential N has larger angles than the

BSSE corrected geometry calculated with GAMESS UK (table 4.12). The increase in � does

not matter, since both values are still in the experimental range of 1Æ � 10Æ [118]. The value

for � with potential N is more than 12Æ higher than the quantum chemical, BSSE corrected

value of 44.53 but reprodues well the BSSE uncorrected value of 54.57 . A value of 56.6Æ for �

is perfectly reproduces the experimental value of 57Æ � 10Æ. The too large value for the angle

� is caused by the high wheight of the dimersiation curve's minimum during the �t (equation
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q a1 b1 a2 b2 a3 b3 rM

e kcal/mol �A-1 kcal/mol �A-1 kcal/mol �A-1 �A

1.398323 357205.3 4829.585 653.7789 3.189600 3457.857 3.54541 0.238291

Table 4.9: Parameter for potential N.

term variance

[kcal2/mol2]

minerg 0.000007

dimer 0.0103

aOO 0.1050

aHH 0.0355

W1 0.0218

W2 0.0034

w3 0.0265

trimer I 0.2708

trimer II 0.2787

trimer III 0.0000007

trimer IV 0.3638

Table 4.10: Variances of potential N.

term absolut value

dipole 2:3343 D

trimer I �13:269 kcal/mol

trimer II �8:809 kcal/mol

trimer III �8:243 kcal/mol

trimer IV �10:468 kcal/mol

Table 4.11: Absolut values for potential N.

Gam. UK Pot. N

dOO [�A] 2:9926 2:9834

� [deg] 2:44 8:55

� [deg] 44:53 56:60

�E [kcal/mol] �4:914 �4:903

Table 4.12: Global minima for dimers.

4.11). The weights of dimerisation curve, W1 and W3 inhibited also a better reproduction of �,

because those curves were created with a BSSE uncorrected value for � = 54.47Æ. The energy

agreement between both calculations is excellent and at the lower range of the experimental value

of 5.44 � 0.7 kcal/mol. Although potential N does not reproduce the quantum chemical

values perfectly, potential N o�ers a rapid way to explore the water dimer's potential

energy surface, because all values are within the experimental range. The tiny energy

di�erences between the quantum chemistry and potential N can be neglected safely for

further calculations.

4.3.2 Application of potential N on water trimers

The main problem with potentials based on pair interactions are cooperative e�ects (See section

3.4, page 74 and subsection 4.3.1). Tables 4.10 and 4.11 show that potential N reproduces the

energies as well as the relative energy di�erences among the four trimers. Since the geometries of

the water trimers were �xed during the calculation, it is diÆcult to tell whether this agreement is

fortuitous or a property of potential N. To check this question the geometries of the trimers were

optimized with a simplex algorithm [242]. Table 4.13 summarizes the results.

The relative energies do not change. Potential N simulates the cooperative e�ects well, even

when the geometries are allowed to relax. The geometry of trimer I was quantum mechanically

optimized. The geometry found with potential N is very close to it. The energy gain during the

optimization is caused by an increasement in the oxygen-oxygen distance. Although potential N

does not contain any explicit polarisation terms, which enforce a shortening of the oxygen-oxygen
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dOO � � E

[�A] [deg] [deg] [kcal/mol]

trimer I start 2:8014 23:54 �13:268

end 2:9135 24:18 �13:685

di�erence +0:1121 +0:64 �0:416

trimer II start 2:9907 9:66 70:74 �8:814

end 2:9427 18:71 77:55 �9:028

di�erence �0:0480 +9:05 +7:01 �0:219

trimer III start 3:0049 3:31 54:57 �8:242

end 2:9437 19:90 83:43 �8:814

di�erence �0:0612 +16:59 +28:86 �0:571

MP2 geo. 2:9437 8:57 70:51

trimer IV start 3:0049 3:31 54:57 �10:468

end 2:9697 5:79 50:20 �10:547

di�erence �0:0352 +2:48 �4:37 �0:079

MP2 geo. 2:8440 2:26 54:58

Table 4.13: Optimisation of trimers I to IV using potential N.

distance, the oxygen-oxygen distance (2.9135 �A) is much smaller than that in the free water dimer

(2.9834 �A).

The geometry of trimer II was also quantum mechanically optimized. The oxygen-oxygen

distance is larger than the distance in an optimized dimer due to the antibonding cooperative

forces (2.98 �A vs 2.93 �A, DZP/MP3 no BSSE correction). The geometry optimisation of trimer

II in the new force �eld reduces the oxygen-oxygen distance until the bond is shorter than in the

free dimer. The energy of trimer III was not quantum mechanically optimized. The geometries

found for a dimer within the optimized trimers II and III are very close to each other. The increase

of � during the optimisation of trimer III reduces the repulsion between the water molecules at

the end of the chain. The di�erence in the total energies of trimer II and III is mainly caused

by the interaction between those monomers at the ends of chain. The energy di�erence between

trimer II and III is 0.214 kcal/mol while the di�erence between the two nonbonding monomers A

and C is 0.139 kcal/mol. In both cases this interaction is repulsive (+0.652 kcal/mol for trimer II

versus +0.791 kcal/mol for trimer III). The optimisation of the trimers II and III is governed by

the reduction of the repulsive forces. The energy gain caused by the rearrangement of the bonding

dimers (EDIMER) in trimer II is neglible. In trimer III the reduction of the repulsive forces leads

also to slightly weaker dimer bonds (�EDIMER = +0.061 kcal/mol/bond) (table 4.14).

Trimer IV is built of two nearly ideal hydrogen bonds. Extra energy is gained from the interac-

tion of the monomers A and C (-0.764 kcal/mol). The same interaction compensates in trimer I the

energy loss by the stressed dimer bonds. The small energy gain during the geometry optimisation

is caused by the rearangement of the dimer bonds (table 4.14). Similar to the quantum chemical

results (sections 3.4) potential N describes trimer IV as possible intermediate during the formation

of a cyclic water trimer. Any distortion, which brings the monomers A and C closer together will

enhance the formation of trimer I and its distorted conformations.

The angle in the hydrogen bond � of the trimers II and III increases about 10Æ during the optimi-

sation. The geometries of the trimers III and IV were optimized quantum chemically (DZP/MP2)
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EDIMER EAB + EBC EAC ETOT �ETOT �EAC

[kcal/mol] [kcal/mol] [kcal/mol] [kcal/mol] [kcal/mol] [kcal/mol]

trimer II S �4:835 �9:670 +0:856 �8:814

F �4:840 �9:680 +0:652 �9:028 �0:219 �0:204

trimer III S �4:864 �9:727 +1:485 �8:242

F �4:802 �9:605 +0:791 �8:814 �0:571 �0:694

trimer IV S �4:864 �9:729 �0:739 �10:468

F �4:891 �9:783 �0:764 �10:547 �0:079 �0:025

S: start, F: �nish

Table 4.14: Compostion of the trimerisation energy composition during the optimisation.

to check the importance of the angle for the trimer structure. The results of those calculations are

also listed in table 4.13. In trimer III has � a value of 8.57Æ. The results from quantum chemistry

and potential N agree well in trimers with bonding cooperative forces (trimer I and IV), but di�er

strongly in trimers with repulse cooperative forces. Since the oxygen-oxygen distance is always

shortened, � has to be increased in calculations with potential N to compensate for the energy

in case of repulsive cooperative forces. In trimer IV central dimer bonds are stronger than those

in the trimers II and III (table 4.14) despite of the longer oxygen-oxygen distance. The angle of

the hydrogen bond in trimer IV is smaller and closer to the optimum (8.5Æ in the free dimer).

Potential N averages the cooperative forces for all trimers (dOO), but the bonding forces dominate

in potential N.

Potential N was used for the exploration of the po-
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4 H
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H 8
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Figure 4.40: Geometry of the cyclic

trimers.

tential energy surface of the cyclic water trimer. Figure

4.40 displays the general geometry of all trimers. Ta-

ble 4.15 shows results of geometry optimisations under

various constraints. All distances are labelled d, all an-

gles � and all dihedral angles � with one exception. � is

the dihedral angle between the two hydrogens pointing

upwards.

Trimer I is the planar trimer with C3h symmetry. For

the construction6 of trimer A was H4 kept in the oxygen

plane and H was turned upwards. The other hydrogens

were generated from this orientation by a C3 rotation.

Finally the sign of H's z-component was changed, so that

H9 points downwards. In the next step the out of plane

hydrogen were allowed to relax (trimer B). The relaxation increases �. This is the most important

relaxation pathway combined with the largest energy gain (0.914 kcal/mol). Then the bonding

hydrogens were twisted out of the oxygen plane symmetrically (trimer C) and �nally allowed to

relax without any constraints (trimer D). The relaxation of the bonding hydrogen atoms gained

0.068 kcal/mol in total. In the last step the trimer was allowed to relax without any constraints

at all. The distortion of the oxygen triangle is very small and the energy gain of 0.001 kcal/mol

6See section 11.9.2 for the conversion of pure rotational coordinates into cartesian.

111



trimer I A B C D E QM / MP2

d12 2:9135 2:9205 2:9080 2:9090 2:9077 2:9077 2:7925

d23 2:9135 2:9205 2:9080 2:9090 2:9077 2:9004 2:8092

�123 60:0 60:0 60:0 60:0 60:0 60:2 60:0

�413 24:2 22:8 23:1 23:1 24:4 24:3 19:1

�521 24:2 22:8 23:1 23:1 22:5 22:6 20:6

�632 24:2 22:8 23:1 23:1 22:6 22:6 18:9

�4132 180:0 180:0 180:0 175:0 �172:2 �172:0 �174:3

�5213 180:0 180:0 180:0 175:0 174:4 174:4 �177:2

�6321 180:0 180:0 180:0 �175:0 175:6 175:3 173:1

�713 128:7 111:1 120:5 119:0 119:1 118:9 112:6

�821 128:7 111:1 120:5 119:0 114:5 114:6 116:9

�932 128:7 111:1 120:5 119:0 123:6 123:6 114:0

�7132 180:0 102:8 129:6 �129:6 130:2 129:6 117:3

�8213 180:0 �102:8 �129:6 �129:6 �118:1 �118:1 �120:5

�9321 180:0 102:8 129:6 129:6 140:0 140:5 �123:7

� 0:0 0:0 25:7 27:8 23:5 22:7 23:4

��E 13:685 13:052 13:966 13:986 14:034 14:035

d in �A; �, � and � in degrees; �E in kcal/mol

Table 4.15: Z-matrices for cyclic water trimers.

negligible. The distortion of the global minimum is therefore dominated by the reduction of the

repulsive interaction of the elicptic nonbonding hydrogen atoms.

A comparison with a quantum chemically optimized trimer (DZP/MP2) shows the excellent

agreement for � and good agreement of the other parameter. Potential N allows therefore a reliable

description of cyclic water trimers. The distortion of the cyclic water trimer minimizes the repulsion

between the non bonding hydrogens. In trimer I ist the distance between the nonbonding hydrogen

atoms larger and the total energy therefore lower. Trimer I is shallow local minimum on the

potential energy surface of the cyclic water trimer. Only a very small activation is necessary to

initialize the transformation into the global minimum.

Figure 4.42 shows the formation of the cyclic water trimer (global minimum) from the linear

trimer IV. The geometry of the trimer was allowed to relax at every step of the ring closure. The

reaction pathway is smooth and without activation. Figure 4.41 shows the formation of cyclic

trimer starting with free water molecules. The water dimer is readily formed. In the next step

adds another water molecule to one end of the dimer and a chain is built. Next the linear trimer

relaxes and form the cyclic one without any further activation. The formation of a cyclic water

trimer from free monomers or from the dimer in a single step seems to entropically disfavoured.

Figure 4.43 shows the global minimum. Experiments suggest that the water trimer rapidly

changes its conformation by tunneling. A possible reaction coordinate is the simultanous movement

of two hydrogen atoms. The transition state is reached when the hygrogen atoms are in the plane

of the three oxygen atoms. This conformation is shown in �gure 4.45. The energy of this possible

transition state is 0.256 kcal/mol above the global minimum. Tunneling between the di�erent

conformations seems to be likely, considering a total zero point vibrational energy of 13.8 kcal/mol

for the free water molecule (section 3.1, page 45).
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6 H2O 3 (H2O)2 2 (H2O)3 linear 2 (H2O)3 cyclic

14.709 6.227 5.602                   -∆E in kcal/mol

Figure 4.41: Formation of a cyclic trimer.
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Figure 4.42: Ringclosure of (H2O)3. Figure 4.43: Global minimum of (H2O)3.

Figure 4.44: Transition state.
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Figure 4.45: Potential energy function.
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The nonbonding hydrogen atoms are about 0.7 �A away from the oxygen plane and the tunneling

distance is therefore about 1.4 �A long. The potential energy function should have its maximum at

the transition state. Figure 4.45 displays a �rst guess for the function. The fourth order polynomial

was chosen to have two minima at the equilibrium geometries at to have its maximum in the oxygen

plane (r = 0.7 �A) [270].

V (x) = k(x4 � 4ax3 + 4a2x2) k = 1:066
kcal

mol �A4
a = 0:7 �A (4.15)

The probability P (E) that a single hydrogen atom tunnels through the barrier can be calculated

according to Schwabl [194d]:

P (E) = exp

�
�2

Z 2a

0

1

~

p
2mH(V (x) �E)dx

�
(4.16)

The lowest boundary value (E ! 0) for the tunneling probability can be calculated analytically.

1

~

p
2mH

Z 2a

0

p
V (x) =

4

3~

p
2kmHa

3 = 2:15 (4.17)

If all hydrogen atoms move independently in the water trimer, the total probality PTOT (E) of

the tunneling between two conformation can be calculated as follows:

PTOT (E) = P1(E) � P2(E) = P 2 PTOT (E ! 0) = e�2�2�2:15 = 0:0002 (4.18)

A barrier of 0.256 kcal/mol is therefore small enough to be passed by tunneling. The tunneling

probability will increase with the thermal excitation of the proton.

4.4 Summary of the Calculation with a Classical Potential

1. None of the previously used potentials describes the quantum chemical values well. The quan-

tum mechanical results on the other hand agree very well with the published experimental

values.

2. The BNS and ST2 potentials have local minima in the aOO and aHH curves. Those minima

can be explained by the fact, that the attractive Coulomb forces overpower the repulsive

forces. This behaviour might be overcome by a damping function. Such a function is useful

to obtain good values, but is diÆcult to justify.

3. The TIPS 2 model was chosen as start point for the search of a new potential, because the

TIPS 2 model yielded the best values.

4. The comparison of simple interaction potentials showed that the place where the oxygen-

oxygen repulsion starts to act is more important than the gradient of the curve or its precise

algebraic form.

5. The reparametrisation of an existing point charge model by Kistenmacher and Popkie

gave a useful potential. This new potential (potential N) describes dimers and trimers well.

The standard deviations of the quantum mechanically calculated curves are better than that

published with the potential. It also simulates cooperative e�ects well. This potential will

be used in further calculations.
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6. All potentials showed a third minimum caused by the displacement of the centre of charge

from the oxygen atom. Potential N's potential energy surface is so 
at which makes it nearly

impossible to �nd this minimum. This behaviour of potential N seems to be more realistic

than the distinct third minimum observed with potential E.

7. The dislocation of the centre of charge from the oxygen atom causes a shift in the maximum

of the potential energy surfaces.

8. The cyclic trimer is built from the linear trimer without any further activation. This suggests

that the formation of a water trimer starts with the dimer. Next, another water molecule is

added to the one of the dimer's ends and the linear trimer is formed. Later this linear trimer

relaxes to the cyclic one.

9. The di�erent cyclic conformers might interchange rapidly by tunneling. Calculation with

potential N gave an rougth estimate for the activation energy (0.256 kcal/mol) and a zero

point tunneling probability of 0.02%.

10. The distortion of the cyclic trimer is mainly caused through reduction of the repulsive forces

between the non bonding hydrogen atoms on the same side of the trimer.
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Chapter 5

H�uckel calculations for the

Analysis of Ptn

The H�uckel calculations are tightly connected to the quantum chemical calculations in chapter 6

(page 145) and 7 (page 203) and have been used for both the analysis of the quantum chemical

results and as starting point for new calculations. All quantum chemical calculations in chapters

6 and 7 showed, that the stability of the cluster is controlled by the population of the platinum 6s

orbitals. A large 6s population on the other hand repells the water molecule. The 6s population

in a successfull surface model is high enough to stabilize the platinum cluster and meanwhile small

enough to create a strong metal-water bond. As the 6s population is crucial for the quality of a

surface model, a method to detect suitable electronic states with the correct 6s population is helpful

for the quantum chemical calculations in chapter 6. The H�uckel calculations in this chapter are

used to identify useful candidates as surface models. The interaction between 5d and 6s electrons

in this model is regarded only as a distortion of the 6s band. Such a gross simpli�cation cannot

describe all details, but can help us to identify the relevant orbitals for this mechanism.

Extended H�uckel calculations [191, 236, 271{281] have been applied previously to metal surfaces

[64, 282{287]. The success of this the method and the simplicity of the original H�uckel theory

tempted us to try H�uckel theory on the platinum 6s orbitals.

H�uckel calculations have been used in this chapter to analyze the electronic structure of the

metal clusters. Section 5.1 demonstrates the application of this method, which is is well established

for the analysis of organic, aromatic molecules, to the analysis of platinum 6s orbitals. The remain-

der of this section concentrates on the application of the new H�uckel theory and its quanti�cation

to relate the H�uckel results with the HF/MP2 results of chapter 6.

It is shown, that very simple calculations at the lowest level of theory can help us to understand

the results from modern, sophisticated methods. These calculations, which can be done literally on

the back of an envelope, hold the key to the understanding of the 18 valence electron calculations.

5.1 Theory of the H�uckel-approximation for the platinum

6s electrons

The Hamiltonian (equation 5.1) of a platinum cluster built from M atoms (atomic number Z =

78 for platinum) describes energy and motion of N = M � Z electrons in the Born-Oppenheimer
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approximation.

Ĥ =

NX
i

�r2
i �

MX
�

NX
i

Z

r�i
+

N�1X
i=1

NX
j=i+1

1

rij
(5.1)

=

MX
i

�r2
i +

MX
i

MX
�

V ECP
� (r) +

1

2

MX
i;i6=j

1

rij
(5.1 a)

In the ground state of the platinum atom (3D, [Xe] 4f14 5d9 6s1) the 6s electron moves in the core

potential VECP
� of the inner Z�1 electrons. The assumption of a perfect, spherically symmetric

core potential allows us to simplify equation 5.1 and the Hamiltonian contains now the sum of

all core potentials and the pair interactions between the M 6s electrons (equation 5.1a). If one

assumes further that M�1 electrons form a potential G(r) in which the Mth electron moves, it is

possible to separate equation 5.1a into M one-electron equations.

Ĥ =

MX
i

�r2
i +

MX
i

V ECP(r) +

MX
i

Gi(r) =

MX
i

ĥi with Gi(r) =

M�1X
j 6=i

1

rij
(5.2)

ĥi is the e�ective one-electron operator and is speci�ed in the H�uckel approximation via assumptions

for the one-electron integrals. The H�uckel operator may be regarded as a not fully speci�ed one

electron operator, which is constructed from the separation of core and valence electrons.

H�uckel molecular orbitals (HMO) for the platinum cluster are linear combinations of orthogonal

atomic 6s functions �i (LCAO method).

	 � 	HMO =

MX
i

ci �i h�ij�ji = Æij (5.3)

The coeÆcients ci of the HMO are speci�ed in a variational calculation. The central element of

this calculation is the secular equation.

(h� �S) c = D c = 0 (5.4)

h contains the matrix elements with the hamiltonian ĥi, � is the eigen vector and S the overlap

matrix. Consistent solutions for equation 5.4 arise, when the determinant of the secular matrix D

vanishes.

jDj =

����������

H11 � �S11 H12 � �S12 � � � H1M � �S1M

H21 � �S21 H22 � �S22 � � � H2M � �S2M
...

...
. . .

...

HM1 � �SM1 HM2 � �SM2 � � � HMM � �SMM

����������
= 0 with

Sij = Æij and Hij =

8>>><
>>>:
� for i = j

� if i and j are neighbours

0 for every other case

(5.5)

� is the valence ionisation potential, describing the in
uence of the molecular environment on the

atomic ionisation energy. The precise value of � depends strongly on the charge of the molecule and

its shape. The second integral � is the resonance integral. Its value is proportional to the orbital

overlap and describes the strength of the bond between two neighbouring atoms. Both integrals �
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and � have negative values. Since Hij is only de�ned for neighbouring atoms, the secular matrix

D is a representation of the molecule's connectivity.

The total electronic energy Eelec of the cluster is the sum of the orbital eigenvalues �i multiplied

with the occupation number bi (0, 1 or 2):

Eelec =

MX
i

bi �i (5.6)

	� 	 is proportional to the electron density and by appliying the orthogonality approximation

(Sij = Æij) to h	HMOj	HMOi the charges on the individual atoms can be connected to the orbital

coeÆcients c�i.

1 =


	HMO
i j	HMO

i

�
=

MX
�

c2�i (5.7)

Since the orbitals do not overlap the charge of the �th atom in the ith orbital proportional to the

orbital coeÆcients c2�i. The total charge on the �th atom is therefore

q� =

MX
i

bi c
2
�i

MX
�

q� =

MX
�

MX
i

bi c
2
�i = M (5.8)

The atomic charge1 of the �th atom is Q� = Z� � q� in units of the elemantary charge and can be

calculated with equation 5.8.

From Sij = Æij follows a zero electron density at the centre of the bond and charges calculated

with equation 5.8 should be too high. The absence of any electrons in the centre of the bond causes

also the wrong spatial distribution of the orbitals, but the symmetry of the orbitals is correct and

agrees with other methods [273].

Equation 5.8 allows us to rewrite equation 5.6 for the total electronic energy.

Eelec =

MX
i

bi �i =

MX
�

q� �� + 2
X
�;�<�

p�� ��� p�� =

MX
i

bi c�i c�i

= M�+ 2 �

�X
�<�

p��

(5.9)

The elements of the bond order matrix p�� give a measure how strong the interaction between

two atoms � and � contributes to the total energy and o�ers so a measure for the individual bond

strength.

5.2 H�uckel calculations for Pt3

The smallest cluster we analysed with the H�uckel metod was the Pt3 triangle. Figure 5.1 shows

the two platinum trimers. The cluster is so small, that the H�uckel calculation is straight forward.

First, we discuss the equilateral triangle (^123 = 60Æ):

1References [288{291] focus on the calcualtion of atomic charges and the spatial distribution of electrons

within the molecule.
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1

2 3

1

2 3

Figure 5.1 Pt3 cluster.

�i �+ 2 � �� � �� �

c1 0:5773 0:8165 0:0

c2 0:5773 �0:4082 0:7071

c3 0:5773 �0:4082 �0:7071

Table 5.1 HMOs for the equilateral triangle.

�������
�� � � �

� �� � �

� � �� �

������� = (�� �)3 � 3 �2 (�� �) + 2 �3 = 0

�1 = �+ 2 �

�2 = �� �

�3 = �� �

(5.10)

Table 5.1 summarizes the H�uckel molecular orbitals for the equilateral platinum triangle. The

degenerate orbitals are antibonding (� - �). To avoid an asymmetric population of the degenerate

orbitals, every orbital should be singly occupied (cluster built from three 3D platinum atoms) in

the ground state, resulting in a quartet wave function. The average 6s population is close to one

in such a cluster and therefore too high for a strong metal-water bond, since EHT calcualtions by

Bigot and Minot [285] showed, that the 6s population of an surface atom is smaller than one

(� 0.8).

The combination of a 1S with two 3D platinum atoms [292] results in an average 6s population of
2
3
, which suggest a strong metal-water bond. The resulting 6s wavefunction has the same properties

as the H�uckel MOs for Pt+3 : a21 e0 e0, singlet. The easiest way to construct such a wavefunction

is to start with three 1S atoms. In the next step two electrons from the most antibonding totally

symmetric 5d orbital are moved into the totally symmetric 6s orbital. Choosing this way conserves

the symmetry of the electronic wavefunction and creates at the same time a 6s population of two.

The transformation of the equilateral triangle into an right-angled triangle (Pt(100) surface

model) reduces the symmetry from D3h to C2v. During this transformation the distance between

the platinums 2 and 3 is enlarged by a factor of
p

2. The atoms are not directly connected to each

other and the overlap integral � becomes zero according to the pure H�uckel theory. Equation 6.3

shows the secular determinat and the eigenvalues.�������
�� � � �

� �� � 0

� 0 �� �

������� = (�� �) [(�� �)2 � 2 �] = 0

�1 = �

�2 = ��p2�

�3 = �+
p

2�

(5.11)

Table 5.2 shows the coeÆcients of the HMO of the right-angled triangle. Changing the symme-

try from D3h to C2v lifts the degeneracy of the top orbitals (e e ! a1 b1). The energy of a1 orbitals

increases, while the energy of the b1 orbital decreases. The electronic state with a maximum 6s

population (three 3D platinum atoms) would be a doublet function: a21 b11 a01, but again is the 6s

population too high. An electronic state function with a with a suitable 6s population (two 6s

electrons) be a singlet function (a21 b01 a01).
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Figure 5.2 Pt3 H�uckel orbital energies.

�i �+
p

2 � � ��p2 �

c1 0:7071 0:0 0:7071

c2 0:5 0:7071 �0:5

c3 0:5 �0:7071 �0:5

Table 5.2 HMOs for the right-angled triangle.

H�uckel theory demands �23 to be zero, since both atoms are no longer direct neighbours. The

6s orbitals are wide spreading and it's therefore unrealistic to assume, that an increase of the bond

length about 40% removes all interactions between those two atoms. To account for this interaction

we introduced the scaling factor � for the overlap integral �23 = �32 = � � �. � = 1 accounts for the

full interaction between both atoms, while � = 0 describes the case with no interaction between

both atoms. Equation 5.12 shows the secular determinant of this problem and the corresponding

eigenvalues.

�������
�� � � �

� �� � � � �
� � � � �� �

������� = 0

�1 = �� � � �

�2 = �+

 
1

2
�+

r
2 +

1

4
�2

!
�

�3 = �+

 
1

2
��

r
2 +

1

4
�2

!
�

(5.12)

Figure 5.2 summarizes the transformation (equation 5.12) of the platinum triangle. �2(�) and

�2(�) are approximately linear functions for 0 � � � 1. The energy of the bonding a1 orbital

increases steadily while the energy of the b1 orbital decreases. For any point � > 0 the b1 orbital

is anti-bonding.

The H�uckel calculations for Pt3 suggest, that a suitable Pt3 surface model should be built from

two 3D and one 1S platinum. The average 6s population ( 2
3
) should create both a strong metal-

water bond and strong intermetallic bonds within the platinum cluster. Both triangles should

threrefore be described with singlet wave function, in which the totally symmetric 6s orbital is

doubly occupied.

5.3 Analysis of the Pt5 pyramid

The platinum pyramid is the central cluster for the 1-electron theory. Pt5�H2O nearly reached

the limits of the HF/MP2 method (18 valence electrons, section 6.4) and the H�uckel calculations

allow us to understand the electronic structure of the platinum cluster. Pt5 is also the best point

to start with 1-electron ECPs on the bulk atoms, because it is the �rst cluster, which allows a

systematic separation of bulk- (white), passive (grey) and active surface atoms (black). Bulk and

passive surface atoms do not interact directly with the water molecule and a 1-electron ECP should

be suÆcient, since the metal-metal bond is dominated by the 6s orbitals. Active surface atoms

need ECPs and basis sets, which contain 5d electrons to form the bond between platinum and

water. This interface between di�erent ECPs is of central importance for the theory. After the
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calculation of the 6s HMO (subsection 5.3.1) we focus on this interface and examine the in
uence

of di�erent H�uckel parameters for the two groups of platinum atoms (subsection 5.3.2). The third

subsection (5.3.3) contains the analysis of the 6s-5d interaction in the metal cluster, while the last

one (5.3.4) concentrates on the rotational barrier.

5.3.1 H�uckel calcualtions fot Pt5

The calculation of the eigenvalues for Pt3 was straight for-

σD2

σV2

1

2 3

45

σV1

σD1

Figure 5.3: Pt5 pyramid, top view.

ward, because the simple third order characteristic polyno-

mials were easy to solve. Five 6s functions demand a 5 � 5

secular determinant and a �fth order characteristic polyno-

mial, which cannot easily be solved directly. Symmetry can

be used to simplify the problem.

Figure 5.3 shows the top view of the Pt5 pyramid with

the mirror planes. The secular determinant of the problem

is simpli�ed in two steps:

1. The secular determinant is divided by � �rst and then

the following replacement is used, which yields the

H�uckel matrix.

�x =
�� �

�
! � = �+ x � (5.13)

2. The secular determinant is then block factorized using the �v2 symmetry plane according to

the procedure published by Heilbronner and Bock [273, 274]. This would be the same

as using SALC AOs (symmetry adapted linear combination of atomic orbitals) according to

Cotton [293b].

Equation 5.14 summarizes the simpli�cation of the secular problem.

������������

�� � � � � �

� �� � � 0 �

� � �� � � 0

� 0 � �� � �

� � 0 � �� �

������������
=

������������

1� x 1
p

2 0 0

1 1� x
p

2 0 0p
2

p
2 �x 0 0

0 0 0 �1� x 1

0 0 0 1 �1� x

������������
= 0 (5.14)

The blocks can be handled separately:������1� x 1

1 �1� x

����� = x (x + 2) = 0 ) x1 = 0

x2 = �2�������
1� x 1

p
2

1 1� x
p

2p
2

p
2 �x

������� = �x (x2 � 2x� 4) = 0 )
x3 = 0

x4 = 1 +
p

5

x5 = 1�p5

(5.15)

A knowledge of the eigenvalues allows us to calculate the HMO coeÆcients. Table 5.3 displays

the coeÆcients of the normalized orbitals. Due to the degeneracy of the orbitals only the clusters

Pt+5 and Pt�5 should have a pyramidal structure. The geometry of a neutral cluster should relax

and lift the degeneration of the e-orbitals, since the wavefunction with one hole in the degenerate
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nr �i c1 c2 c3 c4 c5 sym

5 �� 2 � 0:0 �0:5 0:5 �0:5 0:5 b2

4 �+ (1�p5) � �0:85065 0:26287 0:26287 0:26287 0:26287 a1

3 � 0:0 0:70711 0:0 �0:70711 0:0 e

2 � 0:0 0:0 0:70711 0:0 �0:70711 e

1 �+ (1 +
p

5) � 0:52573 0:42532 0:42532 0:42532 0:42532 a1

Table 5.3: H�uckel orbitals for Pt5.

orbitals breaks the symmetry of the molecule (Jahn Teller distortion [294{296]). The following

analysis therefore concentrates on Pt+5 (a21 e e).

Table 5.4 summarizes the population analysis (orthogonal atomic orbitals, equation 5.3) of the

H�uckel calculation for Pt+5 . The negative charge accumulates at the bottom of the cluster, which

creates a positive charge at the top. Table 5.3 shows that any extra charge in the cluster will

assemble in the cluster's basal plane, since orbitals 2, 3 and 4, which do not contain the atomic

orbital of the central platinum atom, will be occupied �rst. Thus a pyramidal geometry creates an

6s electron sink in the basal plane.

Water interacts with platinum through the platinum's d-orbitals.
qi Qi

1 0:55279 0:44721

2 0:86181 0:13819

3 0:86181 0:13819

4 0:86181 0:13819

5 0:86181 0:13819P
4:00003 0:99997

Table 5.4: Population

analysis PT+
5 .

The atom at the top of the pyramid has therefore to be replaced

by an 18 or 10 valence electron platinum atom. Those 5d electrons

can interact with the 6s electrons provided they have the correct

symmetry. To a �rst approximation this interaction is neglected. The

di�erent electronic states of the central platinum atom only change

the number of 6s electrons contributed by the central atom. The
1S state (5d10) does not contribute any electrons while the 3D state

(5d9 6s1) contributes one electron. A combination of a 1S platinum

atom (18 valence electrons, at the top) with four 3D atoms (1 valence

electron, in the basal plane) yields four 6s electrons, which �ll the

molecular 6s orbitals without breaking the molecular symmetry. The average 6s occupancy is then

0.8 and close to value proposed by Bigot and Minot [285]. The charge on the top of the cluster

would be �0.55 e and the charge on a base atom would be +0.14 e. The dipole moment of this

cluster could be used to simulate the surface electron spill, which creates a negative charge in front

of the metal surface and repels the water molecule.

5.3.2 The interface between di�erent ECPs

The interface between di�erent ECPs (top atom with d-orbitals vs. 1 electron basal atoms) has

a strong in
uence on the cluster's electronic structure. Two calculations were done to quantify

this in
uence. First, we assumed that two values (� and 
) for the binding energy integrals H��

exists. The connections between the basal atoms are described by 
 while bonds between the basal

plane and the top retain the value of �. Equation 5.16 shows the new secular determinant and the

corresponding eigenvalues.
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For 
 = � equation 5.16 reproduces the results for an ideal pyramid from equation 5.14. The other

extreme (
 = 0) is the result of a H�uckel calculation for a cross. Equation 5.16 describes also the

transformation of the platinum pyramid into a swiss cross, since the reduction of the bond energy

integral 
 has the same e�ect as the elongation of the platinum-platinum bond in the basal plane.

In an ideal cross the three orbitals 2, 3 and 5 have the same energy (�2;3;5 = �). The energy of the

b2 orbital (� - 2 
) now changes its relative position with the second a1 orbital. Meanwhile, the

bonding energy of the totally symmetric bonding orbital decreases from �+ 3:2 � to �+ 2 �. In

an ideal cross the molecular orbitals are constructed only from the atoms in basal plane (threefold

degenerate). It is therefore likely, that the neutral Pt5 cluster has the shape of a swiss cross (second

order Jahn Teller e�ect [218]). Figure 5.4 summarizes this calculation.

Mixing di�erent ECPs for the platinum atoms also means mixing orbitals with di�erent ionisa-

tion energies which cause di�erent values for the valence ionisation energy H��. Æ is the ionisation

energy of the top platinum atom and equation 5.17 summarizes the calculation of the energy

eigenvalues.

������������

Æ � � � � � �

� �� � � 0 �

� � �� � � 0

� 0 � �� � �

� � 0 � �� �

������������
= 0 (5.17)
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�5 = �� 2 �

�4 =
1

2

�
�+ 2 � + Æ �

p
�2 + 4 � � + 20 �2 � 2 � Æ � 4 � Æ + Æ2

�
�3 = �

�2 = �

�1 =
1

2

�
�+ 2 � + Æ +

p
�2 + 4 � � + 20 �2 � 2 � Æ � 4 � Æ + Æ2

�
(5.17 a)

For Æ = � equation 5.17 reproduces the results of equation 5.14. Only orbitals 1 and 4 change

with the ionisation energy of the top atom. With an increase in ionisation energy, the orbital

energy of the bonding a1-orbital decreases. A small increase in the ionisationation energy of the

top platinum stabilises the cluster (Pt+5 ). Figure 5.5 shows the movement of the orbitals as Æ

changes from �� to � at a �xed value for � (� = 0).

There are two ways to lower the energy of the bonding a1 orbital: First, by increasing the

interaction between the basal atoms compared with the interaction between the basal plane and

the top atom, and second, to increase the ionisation energy of the top atom. Although both

methods lower the energy of the 1a1 orbital, they act di�erently on the charge distribution in the

cluster. This can be seen by a comparison of the coeÆcient of the top atom's 6s orbital in the 1a1

orbital.

c1 = 1:0 c2 = c3 = c4 = c5 =
1

4 �

�

 +

p
4 �2 + 
2

�
(5.18)

Equation 5.18 shows the coeÆcients of the 1a1 orbital as a function of 
 for the �rst method. With

increasing values for the coeÆcients of the basal atoms become more important relative to those

for the top atom (c1). Therefore, electron density moves from the top to the base of the pyramid.

A di�erent electron 
ow is observed in the second case (equation 5.19).

c1 = 1:0

c2 = c3 = c4 = c5 =
1

8 �

�
2 � + �� Æ +

p
�2 + 4 � � + 20 �2 � 2 � Æ � 4 � Æ + Æ2

� (5.19)

With increasing values of Æ the basal atoms become less dominant. The electron 
ow is reversed

and charge accumulates at the top of the pyramid.

The calculations show, that the combination of di�erent ECPs causes problems at the interface.

In the Pt5 pyramid the in
uence of the top atom on the electronic structure is small. The ionisation

energy and the binding energy may vary without changing the ground state of the cluster.

5.3.3 5d-6s interaction in Pt5

Charge transfer in the cluster is very important for the utility of a platinum cluster as surface model.

Figure 5.6 illustrates the connection between H�uckel calculations and those of the Hartree-Fock

cluster.

Sketch A shows the HMO charge distribution in the Pt+5 cluster. The average 6s population

per platinum is 0.8, which creates an average charge of +0.2 e per platinum. HMO calculations

predict a charge of +0.447 e at the top. 6s electron density has to 
ow from the top to the bottom

of the pyramid to create such a charge distribution (black arrows).

In sketch B the top platinum is replaced by an 18 electron platinum in the 1S state. This

replacement keeps the total 6s population at 4.0, but sets the formal charge of the platinum
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nucleus at the top equal to zero, because the tenth 5d electron compensates the positive charge

at the nucleus. 6s electron density now 
ows to the top of cluster and creates a negative charge

(�0.553 e). The top platinum acts now as a 6s electron sink and the resulting dipole moment can

be used to simulate the electron spill.

The last sketch, C, shows the result of a real HF+0.447 e

+0.138 e+0.138 e

A

-0.553 e

+0.138 e+0.138 e

B

-0.2 e

+0.05 e+0.05 e

C

Figure 5.6: 5d-6s interaction in Pt5

calculation. The platinum at the top is described by

the 18 valence electrons ECP of Hay and Wadt and

the four bulk atoms by an experimental 1-electron

ECP (subsection 7.3.1, page 230). This calculation

produced a reduced charge at the top (�0.2 e), which

cannot be explained with solely by the 6s orbitals.

This charge distribution may be explained by a strong

interaction between the 5d-orbitals at the top with

6sp orbitals at the base of the cluster. Two prin-

cipal interaction pathways exist: The �rst pathway

has been observed primarily for orbitals with a strong

6p contribution, while second is preferred by orbitals

with a strong 6s contribution.

The �rst one is very direct with a small 5d-6sp

overlap. The 6sp molecular orbitals have such a low

energy, that they lie in or below the 5d band. These

orbitals are �lled with electrons instead of the 5d or-

bitals, which results in a net charge transfer from the

top to the base. This electron 
ow is usually accom-

panied by a change of electronic state and may cause

severe problems during the scanning of the potential energy surface. The second pathway is based

on a strong 5d-6s overlap. If the energy of those 6s molecular orbitals is lower or equal to the 5d

orbitals from the top atom, both systems mix provided symmetry permits. This mixing induces a

strong electron 
ow from the top to the bottom. In ill suited cases this 
ow is so strong that the top

platinum becomes positively charged. The bond between water and the cluster is now controlled

by strong Coulomb interactions and no longer by orbital interaction. In these cases the binding

energy is far too strong and the potential energy curve of the complex has the wrong shape.

The strength of the 5d-6s interaction depends on the symmetry and energy of the 6sp orbitals.

In a system with only one type of platinum atom the strength of this interaction depends only

on the quality of the basis set and/or the ECP. Problems arise if di�erent types of platinum are

used. In such clusters the strength of the 5d-6s interaction is controlled by the interface between the

platinums (subsection 5.3.2). The valence ionisation energy � determines the centre of the 6s band,

while the bond energy integral � is controlled by the shape of the atomic orbitals (section 5.7). A

di�erence in these H�uckel parameters does not change the electronic state of the cluster (subsection

5.3.2), but can distort the electron distribution in the cluster severely via the 5d-6s inteaction.

5.3.4 The rotational barrier in Pt5�H2O

Figure 5.7 shows the interaction between the water 1b1 orbital and one of the nonbonding (e)

platinum orbitals of the platinum pyramid. The grey lines mark the water molecule's mirror
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Figure 5.7: Mirror planes.
Figure 5.8: Mixing of the nonbonding 6s orbitals.
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planes. This interaction between the two functions lifts the degeneracy of the nonbonding 6s

orbitals (singlet splitting) and a singlet becomes possible.

Figures 5.9 and 5.10 show the total energy of Pt5�H2O during the rotation. The four bulk

platinums were described with an experimental 1-electron ECP (section 7.2) and the top platinum

with the 18 electrons potential by Hay and Wadt. The singlet state (�gure 5.9) is less favourable

than the triplet state and the total energy makes a sudden jump (�E = 2.34 kcal/mol) at �2 =

30Æ. The rotation of the water molecule on the platinum pyramid in the triplet state (�gure 5.10)

is smooth and without any energy jumps. The explanation for the energy jump is the interaction

between the water molecule and the nonbonding 6s orbitals (�gure 5.7). The �0v mirror plane of

the water molecule turns with the nodal plane of the nonbonding 6s orbitals. This is not possible

in the singlet state, because the two nonbonding 6s orbitals cannot mix. In the triplet state this

mixing is possible and the water molecule can turn easily. The activation energy for the rotation

vanishes (�E = 0.006 kcal/mol).

Figure 5.8 shows the mixing of the 6s orbitals as the mirror plane rotates. The energy jump

in the singlet state in �gure 5.9 can be avoided by CASSCF(2,2) (Complete Active Space SCF,

section 2.3, page 22) calculations, in which the active space contains both nonbonding 6s orbitals.

Following the rotation the population of each active orbital is equal to one as observed in the triplet

2� describes the rotation of the water molecule around the platinum-oxygen bond. Figure 6.60 on page

186 shows the geometry of the Pt5�H2O cluster.
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state. A smooth rotation is not possible without mixing those orbitals.

The strength of the singlet splitting depends on the strength of the interaction between the

nonbonding 6s orbitals and the water molecule. The interaction of the water molecule with the

top platinum is governed by the 5d orbitals. A large singlet splitting demands a low energy for the

nonbonding 6s orbitals. A low energy eigenvalue for these two orbitals may be created in 2 ways,

either a strong 5d-6s interaction or a high valence ionisation energy � on the basal platinums. The

ability of the water molecule to rotate depends again on the interface between the di�erent ECPs.

5.3.5 Summary on Pt5

The H�uckel calculations on the Pt5 pyramid showed that even the simplest calculations can help

us to understand the results of more elaborate methods. They predict correctly the multiplicity of

the ground state and allow us to determine the optimal number of 6s electrons in a cluster. The

knowledge of the multiplicity and the degeneracy of the HOMO is helpful for the construction of

working surface models (sections 6.4 (page 186) and 7.3.7 (page 244)) and can help us to understand

energy jumps from one potential surface to another of the potential energy surface.

They also predict correctly charges and electron distributions, even for clusters with di�erent

ECPs. This interface between the ECPs is very important for the simulation of the water-platinum

interface with larger model clusters. The di�erence between the ECPs can be described by two sets

of H�uckel parameters. H�uckel calculations are so simple, that all properties of the ECP-interface

can be expressed by analytical formulae. Di�erent ECPs at the top and at the basal plane do

not change the electronic state of the cluster and have only a small direct in
uence on the charge

distribution. But this di�erence in the ECPs has a strong in
uence on the 5d-6s interaction. Via

this pathway usage of di�erent ECPs can distort the electronic structure signi�cantly (subsection

7.3.5 page 240).

5.4 H�uckel Calculations for Pt9 Cluster

The next suitable cluster as surface model is the Pt9 cluster,

1

2 3

4

5

6

7

8

9

Figure 5.11: Pt9 cluster, top view.

which is also the largest cluster managable with a 18 elec-

trons ECP at all platinums. Figure 5.11 shows a top view

of the cluster. The grey (passive) and black (active) circles

mark surface atoms while the white ones represent atoms in

the second layer.

The secular determinant for this cluster is big (9 � 9)

and therefore diÆcult to handle. The mathematical problem

can be reduced by using SALC's as basis set for the calcu-

lation. This was done in three steps. In the �rst step the

atoms of the cluster were divided into three groups. Each

group contains all symmetric unique atoms, which inter-

change their places during the application of any symmetry

operator. The �rst group contains just one atom; atom number 5 in the centre. The second group

contains the surrounding atoms 6, 7, 8 and 9. The third �nally contains the atoms at the bottom

(1,2,3 and 4). In the next step SALCs were constructed from the orbitals in each group. In the last

step were the orbitals regrouped according to their symmetry. Section 11.11 (page 354) describes
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	1 	2 	3 	4 	5 	6 	7 	8 	9

sym a1 e e b2 a1 e e a1 b2

x 2 +
p

8
p

2
p

2 0 2�p8 �p2 �p2 �2 �2

c1 :35355 :5 0 0 �:35355 :5 0 0 :5

c2 :35355 0 :5 0 �:35355 0 :5 0 �:5
c3 :35355 �:5 0 0 �:35355 �:5 0 0 :5

c4 :35355 0 �:5 0 �:35355 0 �:5 0 �:5
c5 :5 0 0 0 :5 0 0 :70711 0

c6 :25 :35355 :35355 :5 :25 �:35355 �:35355 �:35355 0

c7 :25 :35355 �:35355 �:5 :25 �:35355 :35355 �:35355 0

c8 :25 �:35355 �:35355 :5 :25 :35355 :35355 �:35355 0

c9 :25 �:35355 :35355 �:5 :25 :35355 �:35355 �:35355 0

noccj 2 2 2 2 0 0 0 0 0

Table 5.5: CoeÆcients of the molecular orbitals in Pt9.

group 1 2 3

5d10 �0:5 �0:125 0:25

5d9 6s1 0:25 �0:187 0:125

5d8 6s2 1:0 �0:25 0

Table 5.6: Charges on the Pt9 cluster.

num e� grp. 1 grp. 2 grp. 3

2 0:5 0:125 0:25

4a 0:5 0:375 0:5

6 0:5 0:625 0:75

8 0:5 1:125 0:75

8b 1 0:75 1

a high spin b 	4 and 	5 swaped

Table 5.7: 6s population in the Pt9 cluster.

the details of the calculation.

Table 5.5 lists the results of the H�uckel calculations after renumbering according to their energy.

The combination of a single 1S platinum atom (18 valence electrons) in the centre of the cluster

with 8 3D atoms (1-valence electron) yields a stable cluster. The occupation of the orbitals is

also shown in table 5.5. Charge calculations showed that the clusters surface (groups 1 + 2) is

negatively charged (table 5.6). The combination of a 1G platinum (5d8 6s2) with 8 one electron

platinum atoms reverses the charge on the central platinum atom. The extra charge 
ows from the

surface to the bottom of the cluster and alters so to the bonding possibilities for a water molecule.

The same electron 
ow is observed, if the cluster is constructed solely from 3D platinum atoms,

despite di�erent multiplicities. Only the combination of a 1S with eight 3D platinums guarantees

a suitable 6s population and a negative charge of the active platinum3.

Intra molecular charge transfer is important for real clusters with 6p orbitals. The 6p orbitals

mix with the 6s band and this mechanism lowers the energy of the orbitals. These new hybrid

orbitals combine with 5d orbitals from the central platinum correct symmetry provided (subsection

5.3.3). Electron 
ow is one of the major problems with the development of a single electron ECP

and is very diÆcult to handle, as each cluster has its own electron structure. H�uckel calcualtions

3A negative charge at the metal surface enhances the bond between platinum and hydrogen atoms and

can create unphysical orientations of the water molecule.
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help us to detect the important orbitals and to understand the individual mechanisms.

The Pt9 cluster is beyond the capacity of the MP2 method and even the HF results are diÆcult

to read. A comparison of the H�uckel results and the HF results (section 6.5, page 192) can be used

to understand the properties of the 18 valence electrons calculations.

HF calculations with a simple 1 electron ECP showed, that the molecular orbitals 	4 and 	5

change their position on the energy scale and 	5 becomes populated instead of orbital 	4. These

changes indicate a principle limitation of the H�uckel method for the platinum 6s orbitals and will

be discussed in subsection 5.7.

Table 5.7 lists the 6s population of the platinums. The inversion of the orbitals 	4 and 	5 has

a strong in
uence on the charge distribution in the cluster. The active surface platinum becomes

more negatively charged (assuming a 1S or 3D platinum in the centre), while the remaining surface

atoms (group 2) are positively charged (+0.25, assuming a 3D platinum). The four platinums at

the bottom of the cluster do not carry any charge. This charge distribution is closer to the one

observed in Pt9�H2O, but the total 6s population is lower in the 18 electron ECP calculation (HF:

3.37, MP2: 7.57, table 6.23 dPtO = 12.2 �A). The 6s population at the central platinum is 0.42 and

the average 6s population is 0.30 on the passive surface atoms and 0.44 on the bulk atoms on the

HF level. This charge distribution agrees well with the H�uckel results (table 5.7) for a total 6s

population of 4. H�uckel calculations demand a multiplicity of 3 to create such a charge distribution,

but the HF results were extracted from a singulet wavefunction. The degenerate orbitals 	2 and

	3 are populated via a strong 5d-6s interaction. The agreement in the charge distribution between

both methods is smaller on the MP2 level. The passive surface atoms are stronger populated than

the active (active 0.55, passive 1.18, bulk 0.71). This charge distribution is closer to the results

of the H�uckel calculation than to the results of the simpli�ed HF calculation (	4 and 	5 changed

their position).

The charge distribution is vice versa. On MP2 level is the active surface atom negatively

charged (�1.38 e) and the passive surface atoms carry a positive charge (+0.23 e). This charge

distribution is closer to the simpli�ed HF result (active �1 e, passive +0.25 e) than to the pure

H�uckel results (active �0:5 e, passive �0:12 e). The HF results for Pt9 (active �0.58 e, passive

+0.09 e table 6.23) show the same principle structure than the H�uckel results, but di�er in the

absolute values (active �0:5 e, passive +0.62 e).

The di�erence between the H�uckel results and the MP2 values regarding 6s population and

charge distribution questions the validity of the MP2 approach towards Pt9�H2O, while the HF

results in section 6.5 agree qualitatively and seem so to be more reliable. The principle problem

with large clusters is the 5d-6s interaction, which becomes more important as the cluster grows.

The interaction with the water molecule on the other hand is controlled by the 6s population and

all calculations of this sections show, that the in
uence of the 5d-6s interaction on the 6s population

can be strong (a 6s population of 3.4 with a singlet function). But, the electron distribution of a

given 6s population can be described well with H�uckel calculations.

5.5 Two Slabs Pt17 Cluster

Figure 5.12 displays a top view of the Pt17 cluster. It is the extension of the Pt9 cluster shown in

�gure 5.11 and the �rst without an MP2 counter part. The top layer atoms at the cluster's edge

rest now on four second layer atoms. Every surface atom has so a complete basis to rest on. A

systematic enlargement of the surface model allows us to analyse the role of the central platinum.
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	0 	1 	2 	3 	4 	5 	6 	7 2�c2i

sym a1 e e b1 a1 b2 e e

x 5:4982 3: 3: 2: :7153 0: 0: 0:

�0 :3347 :2582 :2582 :0 :0687 �:2887 :2887 :2887 1:0000

�1 :3347 :2582 �:2582 :0 :0687 :2887 :2887 �:2887 1:0000

�2 :3347 �:2582 �:2582 :0 :0687 �:2887 �:2887 �:2887 1:0000

�3 :3347 �:2582 :2582 :0 :0687 :2887 �:2887 :2887 1:0000

�4 :1289 :3227 :0645 :2887 �:3050 �:2887 �:2887 :2887 1:1022

�5 :1289 :3227 �:0645 :2887 �:3050 :2887 �:2887 �:2887 1:1022

�6 :1289 :0645 �:3227 �:2887 �:3050 :2887 :2887 :2887 1:1022

�7 :1289 �:0645 �:3227 �:2887 �:3050 �:2887 �:2887 :2887 1:1022

�8 :1289 �:3227 �:0645 :2887 �:3050 �:2887 :2887 �:2887 1:1022

�9 :1289 �:3227 :0645 :2887 �:3050 :2887 :2887 :2887 1:1022

�10 :1289 �:0645 :3227 �:2887 �:3050 :2887 �:2887 �:2887 1:1022

�11 :1289 :0645 :3227 �:2887 �:3050 �:2887 :2887 �:2887 1:1022

�12 :2454 :3873 :0 :2887 :0181 :0 :0 :0 0:5876

�13 :2454 :0 �:3873 �:2887 :0181 :0 :0 :0 0:5876

�14 :2454 �:3873 :0 :2887 :0181 :0 :0 :0 0:5876

�15 :2454 :0 :3873 �:2887 :0181 :0 :0 :0 0:5876

�16 :4220 :0 :0 :0 :4855 :0 :0 :0 0:8274

Table 5.8: Occupied orbitals of the Pt17 cluster and population analysis.

As before for the Pt9 cluster SALCs (The groups of symmetrically equivalent orbitlas are: I:

�0 to �3; II: �4 to �11; III: �12 to �15; IV: �16) were used for the H�uckel calculations and section

11.12 (page 355) describes the procedure while table 5.8 summarizes the results. The symmetry of

the H�uckel orbitals can be easiyly speci�ed by the number of nodal planes: The totally symmetric

functions (a1) have no nodal plane while orbitals with a2 symmetry have up to four nodel planes.

Table 5.9 shows the charge distribution calcu-
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Figure 5.12: Pt17 cluster, top view.

lated for the Pt17 cluster constructed with a 5d10

platinum atom in the centre. The negative charges

concentrate at bottom at the cluster, while the

surface atoms are positively charged excepting the

central atom, which carries a negative charge sim-

ilar to the charge distribution in Pt9 with a low

6s population.

Table 5.10 shows the charge of the central 5d10

platinum atom from pure 6s H�uckel calcualtions

in di�erents model clusters. A negative charge is

reasonable, since the empty 6s orbital is �lled with

electrons from the neighbours. It is interesting

to note, that the negative charge increases slower

than the average 6s population (Pt5: 0.800, Pt9:

0.889, Pt17: 0.941). Despite the increase of the average 6s population the charge on the central

platinum atom decreases changing from Pt5 to Pt9. The amount of negative charge on the central
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group Q [e]

I 0.00

II -0.10

III 0.41

IV -0.83

Table 5.9: Charges on the Pt17 cluster.

cluster Qcent [e] 6s pop

Pt5 -0.553 0.800

Pt9 -0.500 0.889

Pt17 -0.827 0.941

Table 5.10: Qcent on di�ernt metal cluster.

atom is proportional to the number of occupied orbitals, which are built with the 6s orbital of this

atom. As the number of atoms increases, the number of totally symmetric SALCS becomes slowly

bigger. Meanwhile increases the number of the other orbitals dramatically and the probability of

the occupation of a totally symmetric orbital does not increase signi�cantly. We assume therefore

that the negative charge on the central atom decreases not much lower then �0.85 e while the

average 6s population approaches 1.0. The reminding 6s orbitals act as an electron sink, even if

the totally symmetric LUMO is occupied in Pt17 (5d9 6s1: qcent = +0.02 e)4 . A similar charge

transfer has been observed in the Pt9 cluster build only from 3D platinums (qcent = +0.25 e). A

negative charge on the central platinum is only possible, if the central platinum has 5d10 electron

structure and the empty orbital becomes populated by the neighbours. Any other structure causes

a positive charge and so a too strong Pt�H2O interaction.

As the number of 6s orbitals increases an interaction between the 6s orbitals and the 5d orbital

becomes more likely, because more symmetrically suitable orbitals are in the energy range of the 5d

orbitals. This overlap increases the electron drain from the central orbital and inverses the charge

distribution.

The prediction of the ground state's multiplicity and the charge distribution becomes more

complicated as the cluster grows. The energy of the nonbonding 3a1 orbital (	8 LUMO) is sys-

tematically lower in HF- than in H�uckel calculations as simple pure 6s test calculations showed.

The HF energy of 	8 is lower than the energies of 	7 and 	6 and the electronic ground state has

therefore a multiplicity of 3. With increasing cluster size become the bonding interactions with the

second next neighbour within an atomic orbital group more important. H�uckel calculations do not

take this interaction into account and the calculation of the orbital energies becomes less reliable.

5.6 The Second Next Neighbour

The 6s orbitals are wide spreading and interactions with the second next neighbour are likely. The

classic H�uckel theory only accounts for the interaction with the next neighbour (�) but not with

the second next. To get an estimate of the in
uence of this neglect several calculations were done,

were done with the following assumptions:

Sij = Æij h'ijĤ j'ii = � h'ijĤ j'i+1i = � h'ijĤ j'i+2i = 
 � � (5.20)

4The coeÆcient of '16 in the LUMO is 0.39247. Since '16 and �16 are by de�nition equal, is

the coeÆcient of �16 in the LUMO also 0.39247. In a cluster build from 17 5d9 6s1 platinum atoms

(a21 e
2 e2 b22 a

2
1 b

2
2 e

2 e2 a11) is therefore the total population of the 6s orbital at the central platinum atom

0.9814 and the charge 0.02 e.
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Figure 5.13: Surface model cluster.
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Figure 5.14: E�ect of the second next neighbour (
 = 0.2).
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The �rst set of test clusters were two-dimensional surface models built from 1, 2 and 3 squares

(Pt4, Pt9, Pt16) and the second set was constructed from crosses (Pt5, Pt13). Figure 5.13 shows

the model cluster.

The second next neighbours are connected by the diagonals of the squares, which facilitates

counting. Closed cluster (Pt4, Pt9, Pt16) contain more direct bonds between next neighbours then

bonds with the second next neighbour (Pt4 2:1, Pt9 1.5:1, Pt16 1.3:1). The number of second next

neighbours actually decreases with cluster size and should �nally reach a ratio of 1:1. Open clusters

contain as many direct bonds as bonds with the second next neighbour (Pt5 4:4, Pt13 16:16) and

have so a optimal geometry. Open clusters are therefore good examples for the in
uence of the

second next neighbours.

Figure 5.14 and equation 5.21 show the in
uence of the interaction with the second next neigh-

bours (
 = 0.2). The interaction lifts the degeneracy of the HOMO's (marked in grey). The

average energy di�erence between the formerly degenerated orbitals is about 2 
, which makes in

the example 20% of a single Pt-Pt bond (�EPt2 = 2 �). An energy di�erence of this size would

certainly lead to a change of the electronic state. Those new states with smaller multiplicity have

a lower energy (� 0.5 �) than before. If the number of unpaired electrons is kept constant and

the electrons stay in their original orbitals, the energy gain by the interaction with the second

next neighbour is zero for closed structures and negligible small for open structures (Pt4: 0 �,

Pt9: 0 �, Pt16: 0 � / Pt5: 0.02 �, Pt13: 0.08 �). The energy gain for open structures (Pt5:

2 � (4 �2 + 
2)0:5 � 4 �) is small but increases with cluster size and 
.

Pt4 Pt9 Pt16

x01 = �2 + 
 x01 = �
p

8 + 2
 x01 =
1

2
[�2 + 3
 + (
 � 2)

p
5]

x02 = x03 = �
 x02 = x03 = �
p

2 x02 = x03 = 2
 �
p

5

x04 = 2 + 
 x04 = x05 = �2
 x04 =
1

2
[2 + 3
 � (
 + 2)

p
5]

x06 = 0 x05 = x06 = �1� 


x07 = x08 =
p

2 x07 = x08 =
1

2
(�3
 �

p
5
) (5.21)

x09 =
p

8 + 2
 x09 = x10 =
1

2
(�3
 +

p
5
)

x11 = x12 = 1� 


x13 =
1

2
[�2 + 3
 � (
 � 2)

p
5]

x14 = x15 = 
 +
p

5

x16 =
1

2
[2 + 3
 + (
 + 2)

p
5]

The interaction with the second next neighbour stabilizes the LOMOs (lowest occupied orbitals)

of the open cluster more then it destabilizes the SOMOs (singly occupied molecular orbital)(�gure

5.14, equation 5.165), because the outermost atoms, which are connected to the cluster only by

one bond become more involved into the electronic structure of the cluster. This small advantage

5A Pt5 pyramid with weak interactions in the basal plane has the same H�uckel determinat as a Pt5

cross with strong interactions between second next neighbours.
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results in the energy gain by the introduction of the interaction. Closed structures do not contain

any isolated atoms, which bene�t more then averagely from the interaction with the second next

neighbour. The energy gain of the LOMOs is therefore completely compensated by the splitting of

the SOMOs (equation 5.21). This splitting increases with increasing values of 
 and may change

the relative energetic order of the orbitals. The larger the cluster becomes, the more likely is such

a change. Figure 5.14 shows the correlation diagram of Pt16. Even such a small interaction as 


= 0.2 can change now the relative order of the orbitals.

These simple calculations also show that interactions with the second next neighbour alone

cannot explain the movement of the nonbonding a1-orbitals observed in HF calculations. The

energy of the nonbonding orbitals increases and does not drop with the strength of the long range

interaction. Other phenomena, which have been neglected so far are the reason for this energy

change.

The calculations in this subsection also suggest that the error due to the interaction with the

second next neighbour should be small and therefore negligible for small clusters, since the in
uence

of this interaction increases with cluster size. The reliability of those simpli�ed H�uckel calculation

decreases rapidly, if degenerate HOMOs are unevenly populated. The interaction with the second

next neighbour lifts the degeneracy of those orbitals and the Hueckel calculation cannot be used

anymore to predict the wavefunctions multiplicity. The calculation also showed, that a closed

structure should be preferred rather then an open, since the in
uence of the second neighbour

interactions should not change the total energy of the cluster.

5.7 Quantitative Analysis of the HMO Calculations

Table 5.11 summarizes the results (degeneracy and orbital energies) for all platinum clusters calcu-

lated with the H�uckel approximation. It was said before, that the splitting of the 6s band is crucial

for the quality of the HF calculations. Even approximate values would be helpful to validate the

HMO results.

two slabs surface models closed 2D surface models open 2D models

Pt5 Pt9 Pt17 Pt4 Pt9 Pt16 Pt5 Pt13

2 � 0.000 1 � 0.000 3 � 0.000 2 � 0.0 3 � 0.000 4 � 0.000 3 � 0.0 5 � 0.000

1 � 3.236 2 � 1.414 1 � 0.715 1 � 2.0 2 � 1.414 2 � 1.000 1 � 2.0 1 � 1.000

1 � 4.828 2 � 3.000 1 � 2.828 2 � 1.236 2 � 1.732

1 � 5.498 1 � 3.236 1 � 3.000

Table 5.11: Orbital energies and degeneracies of the HMO calcualtions.

The comparison of the H�uckel calculations with Hartree Fock calculations was done in two

steps. First, estimates of the H�uckel parameter were obtained from Pt2-calculations. In the second

step those parameters were tested on the Pt5-calculations and re�ned. Those calculations also

allowed us to estimate the in
uence of the di�erent H�uckel approximations on the �nal result.

5.7.1 Results for the Platinum Dimer

The orbital energies depend on the values of the integrals � and �. It is therefore most important

to get reliable numbers. In the �rst step the numbers were taken from the literature. Holloway
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and Bennemann [64] optimized the values for � and � to match experimental results and results

from other calculations (CNDO). The o� diagonal elements (resonance integral �) were calculated

with the Cussach's formula [271, 272].

� = H12 =
1

2
(2� jS12j) S12 (H11 +H22) = (2� jS12j) S12 � (5.22)

The overlap integrals were calculated from Slater orbitals [191, 297{300]. The Slater exponents �

were given in their paper.

�6s = N r3:2 e��r
r

1

4 �
and

S12 = N2

Z
(j~r1jj~r2 � ~Rj)3:2 exp(�� j~r1 + ~r2 � ~Rj) dV

(5.23)

The overlap integral was calculated numerically with a Mathematica script [301]. This script

was tested before with an 1s orbital and Roothan's formula [300]. This calculation yields �6s =

�6.6 eV and �6s = �9.8 eV (R = 2.1 �A). The value given in Holloways's paper for �5d is �10.61

eV. Every 6s-HMO with an energy lower than 0.12 � has therefore an energy lower or equal to the

5d electrons. This is actually every bonding orbital6.

Benneman and Holloway used in their article parameters, which were optimized to reproduce

properties of the platinum dimer in Extended H�uckel calculations (EHT). For the development of

a new ECP it would be most helpful, if the H�uckel calculations not only reproduce the symmetry

and the number of nodal planes of the Hartree Fock calculations but also give a rough estimate of

the orbital energies.

There are two possible methods for the extraction of useful parameters from Hartree-Fock

calculations:

1. The values of � and � are extracted directly from the orbital energies of the platinum dimer.

a) � =
�+ + ��

2
b) � = �+ � � = �� �� (5.24)

�+ and �� are the orbital energies of bonding and the antibonding orbital combinations. A

comparison of the results for Pt2 and Pt+2 allows us to get an estimate of the electron-electron

repulsion energy.

2. The value of � is calculated with one of the many formulae, which extrapolates the value of

the resonance integral from the valence ionisation energies. Two expressions are frequently

used: a) the formula by Wolfsberg and Helmholtz [277] (equation 5.25a) and b) the

Cussach's formula [271, 272] (equation 5.25b).

a) H�� =
1

2
K(H�� +H��)S�� a) H�� =

1

2
(2� jS�� j)S��(H�� +H��) (5.25)

This method requires only the extraction of � from the HF calculation (equation 5.26),

because the value of the resonance integral is determined by the chosen basis set. The

6EHT calculations ((�� �)2 � (� � �S)2 = 0) with the same parameters (�=�0.36014 H, � =�0.24395

H, S = 0.432 a.u., R = 2.1 �A = 3.9684 a0) gave the following orbital energies �+ = �0.426 H (+0.27 �) and

�� = �0.202 H (�0.65 �). The EHT uses the following approximation Etot = Eelec and the binding energy

�E of the platinum dimer (only with 6s orbitals!) is with 82.6 kcal/mol far too high (MP2 benchmark

calculation: 60 kcal/mol, table 6.10 page 161).
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dicussion in the literature suggests, that it might be necessary to �nd a empirical correction

of the resonance integral to improve the results.

� = �+ � � (5.26)

The valence ionisation energy is calculated from the bonding orbital since the antibonding

orbital does not contribute to the total energy E, as bi equals zero (equation 5.6).

While both methods should result in parameters of similar quality o�ers the second method a

direct link to the extended H�uckel theory (EHT). Such an extension allows us the direct comparison

with results published previously in the literature.

The key element of the second method is the overlap integral S. The precise values of this

integral were extracted from Gaussian 94 calculations. To keep this process as simple as possible,

the basis set was restricted to a single zeta 6s function. The spherically symmetric part of the ECP

(Ucore
L , equation 2.65 on page 33) was set equal to zero.

The standard G94 output �le does not contain the overlap integrals, but two ways exists to

extract the overlap integral from the �le.

1. The coeÆcients of the bonding orbital allow the calculation of the overlap integral S.

	 =
1p

2 + 2S
(�1 + �2) = c1�1 + c2�2 ) S =

1

2 c2
� 1 (5.27)

2. The second possibility o�ers the combination of the Mulliken population matrix B, population

number bi and the density matrix ci. This method can be applied to larger molecules.

	 = c1�1 + c2�2

bi = bih	j	i = bi(c
2
1 + 2c1c2S + c22) = A+ 2B + C ) S =

B

bi c1 c2
(5.28)

Both methods yielded the same values for S. The results of these calculations are summarized in

�gure 5.157. A least squares �t of the curve with MicroCal Origin allows us to use the following

approximation for further calculations.

S12 = h�1j�2i � 1:00256 exp

��2(R+ 0:16538)2

4:236282

�
+ 7:5 � 10�4 (5.29)

The valence ionisation energy � was calculated from the orbital energy �+ of the bonding orbital

and Cussach's formula for the resonace integral � (equation 5.25b).

�+ = �+ � = �+ (2� jSj)S� ) � =
�+

1 + S (2� jSj) (5.30)

Table 5.12 summarizes the results for the H�uckel parameters obtained with both methods in

the chemically important range 2.0 �A � R � 3.0 �A. While the resonance integral � varies strongly

with bond lenghth is the in
uence of the geometry on the valence ionisation energy small. Even

more important than the geometry is the electronic state of the molecule. The valence ionisation

energy of the Pt+2 is nearly twice as big as for Pt02. The value of the resonance integral shows the

7Figure 5.15 demonstrates also that any interactions across a distance larger than the distance to the

second next neighbour can be neglected in a �rst approach to platinum clusters.
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Figure 5.16: EHT results for Pt02.

equation 5.25b and equation 5.30 equation 5.24a and equation 5.24b

Pt+2 Pt02 Pt+2 Pt02

r [�A] �� [H] �� [H] �� [H] �� [H] �� [H] �� [H] �� [H] �� [H]

2.0 0:31510 0:26420 0:16680 0:13986 0:37875 0:20056 0:12177 0:18487

2.5 0:31737 0:22320 0:16559 0:11650 0:38254 0:15804 0:13547 0:14661

3.0 0:32387 0:17735 0:15131 0:10642 0:37521 0:12601 0:13914 0:11858

�x [H] 0:3187 0:2216 0:1612 0:1209 0:3788 0:1615 0:1321 0:1500

�n [H] 0:0037 0:0355 0:0070 0:0140 0:0030 0:0305 0:0075 0:0272

Table 5.12: H�uckel parameters from ECP-FH calculations on Pt02 and Pt+2 .

same behaviour. The value of � for Pt+2 is about 10% bigger then for Pt02, if the parameters are

calculated with equations 5.24a and 5.24b. This small di�erence allows us to work with an average

value of � = �0.1558 H (�n = 0.0295 H). It is more diÆcult to make a reasonable selection of �,

because � is nearly three times bigger for Pt+2 then for Pt02. It should be noted, that the value of

� extracted from the Pt02 calculations is smaller then the ionisation energy of the free atom. The

average values is �� = �0.25548 H, but the standard deviation is far too big for �� to be reasonable

for large set of calculations (�n = 0.12348 H). Although diÆcult to explain by theoretical means

it might be useful to work with two sets of parameters depending on the charge of the cluster to

account for the reduced electron-electron repulsion.

The lowest 5d ionisation energy is 0.42084 H for a 1S platinum and 0.36552 H for a 3D platinum

(Hay & Wadt ECP, UHF [189]). The H�uckel parameters obtained so far (� = �0.25548 H, � =

�0.1558 H) suggest the any 6s MO with an energy lower then 1.1 � (1S) respectively 0.71 � (3D)

can interact with an 5d orbital, as �5d depends on the electronic state of the platinum atom.

The second method (equations 5.25b and 5.30) seems not to be appropriate to extract use-

ful H�uckel parameters form ECP-HF calculations. The individual values for � vary for de�ned

electronic state as much as values calculated with method 1, but they di�er strongly for di�erent

states (factor 1.833). For large values of R as � approaches zero � has to compensate for the

nuclear repulsion and becomes unreliable. The dependency of � on the electronic state is smaller

for method 2 (factor 1.997) then for method 1 (factor 2.867), but still very big. It seems not to

be reasonable to extract just one parameter (�) from ECP-HF calculations and to construct the

other from this single value.
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Pt4+5 Pt3+5 Pt+5 Pt05

multiplicity 2 1 3 4

�b2 [H] �0:49046 �0:29118 +0:02166 +0:19262

�a1 [H] �0:76070 �0:53775 �0:18360 �0:19391 "
�e / �e [H] �0:86772 �0:65065 �0:47368 "" �0:29661 ""
�a1 [H] �1:31806 " �1:06724 "# �0:72178 "# �0:54233 "#
ETOT [H] +1:054216 �0:012697 �1:136859 �1:325930

QBASIS [e] 0:837 0:653 0:161 0:060

QTOP [e] 0:653 0:388 0:355 �0:239

ROPT [�A] dissociation dissociation 2:7452 2:7714

ETOT
OPT [H] | | �1:250322 �1:453977

The small arrows indicate electron occupation.

Table 5.13: Results from ECP-HF calculations.

Figure 5.16 displays the results from EHT calculations (equation 5.31) for the platinum dimer

Pt2. The total energy ETOT was calculated with EHT approximation ETOT = Eelec. To simplify

the computation we used equation 5.29 to estimate the value of the overlap integral S.����� �� � � � S�

� � S� �� �

����� = (1� S2) �2 + 2 (S � � �) �+ (�2 � �2) = 0 (5.31)

The optimized bond length (2.65 �A, bulk Pt: 2.77 �A) does not change much with the value of the

valence ionsiation energy �. The variation of � only allows us to �t the EHT bonding energy to

ECP-HF results. If an optimized bond length is required, another method for the calculation of �

has to be chosen, since the value of the overlap integral is fully determined by the chosen basis set.

The EH theory is not able to describe the variation of the bond lenght with the molecule's charge,

because the H�uckel parameters � and � do not depend on the occupation of the orbitals.

5.7.2 Results for Platinum Pentamer (Pyramid)

Table 5.13 summarizes the ECP-HF (subsection 7.3.1, page 230) results for the Pt5 pyramide (R =

2.1 �A). Geometry oprimisations were possible only for Pt+5 and Pt05. Clusters with higher charges

dissociated.

The H�uckel calculations (subsection 5.3) predicted correctly the multiplicity of the ground

state (quartet). Test calculations for 2Pt05 did not converge or gave unrealistic charge distributions

contradicting symmetry restrictions (The four basis atoms had di�erent charges.).

The orbital energies demand more consideration. While the charge of the cluster decreases,

increases the energy of the degenerate orbitals. According to the pure H�uckel theory should their

energy be equal to the ionisation energy �. Using the H�uckel parameters extracted from the ECP-

HF calculations of the platinum dimer (� = �0.24458 H, � = �0.1558 H) yielded the following

orbital energies:

�a1 = �0.760 H �e = �0.245 H �a1 = +0.063 H �b2 = +0.567 H

The �e energy from the simple H�uckel calculation agrees fairly well with the result for Pt05, but

fails for all other clusters. This movement of orbital energy as a function of the 6s population

is important for the prediction of the groundstate's multiplicity. In a large cluster (for example
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Pt17) those orbitals may belong to di�erent symmetry species. If the energy of the nonbonding

orbitals is small enough, they might interact with the 5d orbitals from the central platinum atom

symmetry provided. This interaction lifts the orbitals degeneracy and can change the groundstate's

multiplicty.

To understand the physical basis of the movement of the energy of the nonbonding orbitals

calculations on di�erent levels of simpli�cation were done. For these calculations � was chosen to

be �0.2937 H (ionisation energy of a free 3D platinum atom) and the o�-diagonal elements were

calculated with Cussach's formula (equation 5.25b). The overlap integral Sij was calculated with

equation 5.29. The bond length R1 of the cluster was set to the experimental bulk value of 2.77

�A. R2 is the length of the diagonal across the pyramid's base square. Equation 5.32 summarizes

the integrals used for the calculations.

� = �029375 H

R1 = 2:77 �A S1 = 0:38452 S2 = 0:15719 (5.32)

R2 = 3:91737 �A �1 = �0:18247 H �2 = �0:08509 H

The �rst step of series was the pure H�uckel calculation as shown in greater detail in section 5.3.������������

�� � �1 �1 �1 �1

�1 �� � �1 0 �1

�1 �1 �� � �1 0

�1 0 �1 �� � �1

�1 �1 0 �1 �� �

������������
= 0

�5 = +0:07120 H

�4 = �0:06820 H

�3 = �0:29375 H

�2 = �0:29375 H

�1 = �0:88425 H

(5.33)

The energy of the 1a1 orbital is too low and the nonbonding orbitals have the energy �. Next

we take the interaction with the second next neighbour into account (section 5.6). The arrows

indicate the change in the orbital energy relative to the pure H�uckel calculation (equation 5.33).������������

�� � �1 �1 �1 �1

�1 �� � �1 �2 �1

�1 �1 �� � �1 �2

�1 �2 �1 �� � �1

�1 �1 �2 �1 �� �

������������
= 0

�5 = �0:01389 H #
�4 = �0:09003 H #
�3 = �0:20866 H "
�2 = �0:20866 H "
�1 = �0:94751 H #

(5.34)

All orbital energies are negative, even the antibonding b2 orbital (�0.014 H). With the exception

of the nonbonding orbitals energy increases the ionisation energy of the orbitals. The rise of the

nonbonding orbital energies contradicts the results from the ECP-HF calculation.

The overlap integral S1 (equation 5.32) is large and the movement of the nonbonding orbitals

may be explained by the overlap of di�erent 6s orbitals. This assumption was tested next (equation

5.35). Both a1 and the b2 orbitals are destabilized, while the nonbonding orbitals are not a�ected.

Meanwhile, decreases the energy of the second a1 orbital. The orbital energies agree generally

much better with ECP-HF results.������������

�� � �1 � S1� �1 � S1� �1 � S1� �1 � S1�

�1 � S1� �� � �1 � S1� 0 �1 � S1�

�1 � S1� �1 � S1� �� � �1 � S1� 0

�1 � S1� 0 �1 � S1� �� � �1 � S1�

�1 � S1� �1 � S1� 0 �1 � S1� �� �

������������
= 0

�5 = +0:30828 H "
�4 = �0:12998 H #
�3 = �0:29375 H �
�2 = �0:29375 H �
�1 = �0:39399 H "

(5.35)
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Finally, we did a full EHT calculation on the pyramid (equation 5.36).

������������

�� � �1 � S1� �1 � S1� �1 � S1� �1 � S1�

�1 � S1� �� � �1 � S1� �2 � S2� �1 � S1�

�1 � S1� �1 � S1� �� � �1 � S1� �2 � S2�

�1 � S1� �2 � S2� �1 � S1� �� � �1 � S1�

�1 � S1� �1 � S1� �2 � S2� �1 � S1� �� �

������������
= 0

�5 = �0:03579 H #
�4 = �0:15921 H #
�3 = �0:24758 H "
�2 = �0:24758 H "
�1 = �0:40140 H "

(5.36)

The results of the full EHT calculation agree well with ECP-HF calculations despite the model's

simplicity. The nonbonding orbitals (�0.248 H) still have a higher energy then � and the energy of

the 1a1 orbital agrees well with the ECP-HF result. The rise of the energy of the degenerate orbitals

is smaller than expected from equation 5.34. The interaction among the second next neighbours

cause a steep in the orbital energies (equation 5.35), while pure orbital overlap has no in
uence.

The inclusion of orbital overlap into the calculation partly compensates for the energy rise caused

by the interaction with the second next neighbour. The same argument holds for the energy of the

1a1 orbital. The orbital overlap overpowers the e�ect of the second next neighbour. The energy

of the of the 2a1 orbital (�0.036 H) is lowered by both interactions and is now in good agreement

with the ECP-HF results (�0.194 H). Only the inclusion of both interactions, orbital overlap and

interaction with the second next neighbour, into the calculations allows us a reliable description

of all orbital energies and to explain the movement of the nonbonding a1 orbitals. This model

is still not able to explain the energy drop of the nonbonding orbitals observed in the ECP-HF

calculations.

The results from equation 5.33 to 5.36 can be summarized as follows:

1. Pure H�uckel calculations describe orbital symmetries and their energies relative to each other

correctly. They also allow us to predict the groundstate's multiplicity correctly. The absolute

energies agree only qualitatively with the ECP-HF results and the prediction of a 5d-6s

interaction from these calculations is diÆcult.

2. The interaction with the second next neighbour stabilizes the cluster and can lift degeneracies.

The inclusion of this interaction gives faulty values for the energy shift of the nonbonding

orbitals.

3. The inclusion of orbital overlap in the pure H�uckel calculation destabilizes most orbitals. The

bonding orbital energies are now in the correct energy range. A comparison of the results

from equation 5.34 and 5.35 shows, that orbital overlap is more important for the quality

then the interaction with the second next neighbour.

4. Only the inclusion of orbital overlap and second next neighbour interaction (EHT) gives

reliable results for both orbital energy and energy shift of the nonbonding orbitals, because

the orbital overlap damps the in
uence of the second neighbour interaction. Only these

calculations allow a trustworthy prediction of the 5d-6s interaction.

5. The orbital energies correlate directly with charge of the cluster and not with the wavefunc-

tions multiplicity. The set of H�uckel parameters extracted from Pt02 should therefore be more

reliable for calculations on neutral clusters.
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5.8 Summary and Conclusions from the 6s H�uckel calcula-

tions

1. The assumption of a perfect 77-electrons ECP for the platinum 6s electron allows us to

investigate the in
uence of the 6s band on the stability of the metal cluster independently

from 5d the other electrons. The H�uckel molecular orbitals have the correct symmetry and

the H�uckel calculation predicts correctly the energetic order of the molecular orbitals in small

platinum clusters.

2. The H�uckel calculations predict correctly the multiplicity of the electronic groundstate and

allow us so to construct a working surface model with a 18 valence electrons ECP at the

central platinum atom.

The 6s population of the surface model is of special interest, as EHT calculations showed

that the 6s electron density at the surface of the cluster is lower than in the bulk [285]. A

similar electron distribution has been observed in nickel clusters [302], which suggests that

the reduction of the s electron density at the surface is a general property of transition metal

clusters of this group having a strong in
uence on the adsorption process.

3. The H�uckel calculations for Pt3 suggest, that a suitable Pt3 surface model should be built

from two 3D and one 1S platinum. Both triangles should threrefore be described with singlet

wave function, in which the totally symmetric 6s orbital is doubly occupied.

4. (a) The Pt5 pyramid should be built from a 1S platinum atom at the top and 4 3D atoms

at the basis. The electronic groundstate would have a triplet wave function. Such

construction creates a negative charge at the top, which simulate the electron spill

correctly. The charge distribution and the orbital energies vary only slightly on any

di�erences in the valence ionisation energies or resonance energies caused by the mixture

of two di�erent ECPs. The combination of �ve 3D atoms would result in a quartet

function. In such a cluster would be average 6s population too high and the cluster

would not be suitable simulate a surface correctly.

(b) The triplet 6s wavefunction (4 3D and 1 1S) allows the rotation of the water molecule,

whereas the singlet wave function does not allow the rotation.

(c) The H�uckel calculations give a �rst estimate on the in
uence of the mixing of di�erent

ECPs in one platinum cluster. Small di�erences in � and � do not change the electronic

structure of the Pt5 pyramid.

5. The Pt9 surface model should be build from a 1S platinum in the centre and 8 3D atoms.

Such a structure would carry a negative charge at the central platinum atom and would have

a singlet wavefunction in the groundstate. Since open shell calculations are handled by UHF

calculations should the computational e�ort for 3Pt5 and 1Pt9 of similar size.

6. A Pt17 structure should also have a singlet groundstate with a negative charge in the centre.

The average 6s population is 0.914 and the water molecule should bond less tight since the

6s platinum electrons and the oxygen atom from the water molecule repel each other. The

nonbonding orbitals of the cluster belong to di�erent symmetry species. The degeneracy

of those orbitals may be broken by the interaction with the second next neighbour. This
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procedure might lead to a change of the groundstate's multiplicity. A Pt17 cluster as surface

model is therefore not suitable as a surface model.

7. Two pathways for inner cluster charge transfer have been identi�ed:

(a) The partly �lled 6s molecular orbitals have orbital energies lower or equal to the 5d

orbitals energies. The 6s orbitals are �lled instead of the 5d functions resulting in a

charge transfer from the top to the base.

(b) 6s molecular orbitals have their energy in the range of the 5d orbitals. The 5d orbitals

overlap with those orbitals providing correct symmetry. This overlap leads to an electron


ow away from the central atom. The strength of this 
ow depends on the di�erence in

the orbital energies.

Both pathways become more important as 6p orbitals are included into the calculation,

because they are empty and facilitate so the charge transfer.

8. The calculations on the pyramidal Pt5 system predicted correctly the charge distribution in

the cluster. The interaction between water and the metal structure depends heavily on the

charge of the central atom. The H�uckel calculations allow us therefore to select a surface

model, which simulates the electron spill o� the metal surface correctly. The comparison

with the ECP-HF calculations for Pt showed, that the orthogonality approximation Sij = Æij

yields too high charges and too large dipole moments.

9. The interaction with the second next neighbour lifts the degeneracy of the nonbonding orbitals

in large clusters. Closed structures will not be a�ected strongly by this interaction, while the

total energy of open structures changes strongly with this interaction. The calculation showed

also that with increasing cluster size the interaction with the other neighbours becomes more

important. A suitable surface model should therefore be small and have closed structure

to keep the error caused by the second next neighbour interaction at a minimum. The

comparison with the ECP-HF calculations on Pt5 showed, that the simple H�uckel model

cannot predict correctly the energy shift of the nonbonding orbitals.

10. H�uckel parameters extracted from ECP-HF calculations give reasonable number for the or-

bitals energies, but the precession is too poor to allow precise predictions on the interaction

with other orbitals. They show, that any 6s molecular orbital with an energy less then 0.71 �

gets into the energy range of the platinum 5d orbitals.

11. Numerically reliable predictions are possible EHT calculations. The valence ionisation energy

is the same as the ionisation energy of the free atom. The o�-diagonal element of the H�uckel

matrix can be calculated with Cussach's formula and the value of the overlap integral can be

calculated correctly with a simple gaussian function. Those EHT calculations gave reasonable

orbitals energies.

143



144



Chapter 6

Platinum atom calculations

involving 18 Valence Electrons

This section summarizes the results obtained with the 18 valence electrons ECP from Hay and

Wadt [189, 214, 215] for the interaction of a platinum cluster with a single water molecule. Hay

and Wadt recommend the usage of this ECP for calculations on molecules with direct metal-metal

bonds. Despite their recommendation1 the 10 valence electron ECP has been used for calculations

on platinum clusters [189, 303]. The �rst section of this chapter includes a comparison of both

e�ective core potentials.

Each part of this section concentrates on a speci�c platinum cluster. The �rst subsection

analyses the cluster itself while the second focuses on the platinum water interaction. In addition

to the bonding energy we analyse the energy required to reorientate the hydrogen atoms of the

water molecule. This energy is important for the structure of the water bilayer, which forms the

basis of the platinum-water interface. The last section compares of platinum clusters of di�erent

sizes.

To understand the importance of the platinum 6s orbital for chemical bonding forward refer-

ence to the one electron ECP calculations in chapter 7 may to be necessary. In some sections,

especially those on Pt5 and Pt9, references on H�uckel calculations are made (chapter 5, page 117).

A comparison of the results for both clusters Pt5 (section 6.4) and Pt9 (section 6.5) shows the

mechanism, which controls the orientation of the water molecule's bonding plane.

The �nal section contains a brief summary of EHT calculations (YaEHMOP [304]). This

package contains all parameters necessary for those calculations. During the ab initio calculations

numerous quantum chemical diÆculties occured, which have not been mentioned previously in the

literature [64, 65, 303]. Extended H�uckel calculations were therefore done to check, whether these

diÆculties are caused solely by problems with the higher level theory or can be observed even at

very low levels of theory.

1
Hess [305] also recomends generally the exclusion of the 5s and 5p subshell from the e�ective core.
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6.1 One platinum atom

The examination of the water platinum interaction begins with the smallest possible platinum

cluster - a single platinum atom. Despite its small size, such a system already exhibits most

features of the problem.

Two pseudopotentials from Hay and Wadt for platinum (Z=78) are frequently used in the

literature [189, 214, 215]. The �rst, abbreviated as LanL12, uses the 5d, 6s, 6p orbitals as valence

space while the second, abbreviated as LanL2, uses the 5s, 5p, 5d, 6s, 6p orbitals. The �rst potential

(LanL1) replaces 68 core electrons and the second (LanL2) 60 electrons. Table 6.1 summarizes the

ECPs used in this section:

core elec. valence elec. valence space basis set

LanL1MB 68 10 5d 6s 6p single zeta

LanL1DZ 68 10 5d 6s 6p double zeta

LanL2MB 60 18 5s 5p 5d 6s 6p single zeta

LanL2DZ 60 18 5s 5p 5d 6s 6p double zeta

Table 6.1: ECPs used in chapter 6

A single platinum atom described with the LanL1 potential contains 10 electrons, as does a

single water molecule. A water trimer at the MP3 level of calculation already reaches the limits

of the available computing resources as shown in section 3.4 (page 74) Two possibilities exist to

reduce the size of a single job:

1. a reduction of the correlation level (MP2) or no correlation at all (HF).

2. the usage of a pseudopontial with the fewer electrons like the LanL1 potential despite the

recomendation of Hay and Wadt.

The next two sections concentrate on those questions. All calculations involved a double zeta

basis set provided with the quantum chemical program [222] in order to to have basis sets of similar

quality both on the platinum cluster and on the water molecules.

6.1.1 The electronic states of platinum

First experiments with di�erent programs on di�erent machines yielded inconsistent results. Table

6.2 lists some results for a single platinum atom with di�erent programs using LanL1 and a double

zeta quality basis set.

Obviously GAMESS US is not suitable for the problem as the energies for 3D state di�er very

much from the value published by Hay and Wadt. More disturbing is the fact, that the energy

of the 3D state calculated with GAMESS US is higher than the energy of the 1S state, which

contradicts experiment.

The energy eigenvalues for the 1S state are nearly the same for all programs while the values for

the 3D state di�er considerably. This behaviour suggests that the main problem is not the pseudo

potential, but the method used for the calculation of open shell wavefunctions. The energies

calculated with Gaussian 94 and a basis set limited to 5 d- and 7 f-type orbitals are close to the

2To avoid a new abbreviation we use here the keyword used by Gaussian 94 to specify a speci�c ECP.
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1S (5d10 6s0) 3D (5d9 6s1)

RHF ROHF UHF

GAMESS UK -26.19995 | -26.23896

GAMESS US -26.19995 -26.11322 -26.11809

Gaussian 94 / 5d 7f -26.19995 -26.23815 -26.23821

Gaussian 94 / 6d 10f -26.19995 -26.23889 -26.21367

Lit [214] | -26.23774

Table 6.2: Energies in Hartree from di�erent quantum chemistry codes for platinum with the LanL1

ECP

value published by Hay and Wadt. The UHF wavefunction calculated with a 6d/10f basis set

(cartesian orbitals) again does not match the literature value, while the ROHF value does. The

UHF result from GAMESS UK (also cartesian orbitals) again matches the literature value. Sadly

GAMESS UK does not allow ROHF calculations for atoms with high multiplicities. This limit

prohibited an investigation of the in
uence of pseudo orbitals on open shell calculations.

According to table 6.2 Gaussian 94 with 5d/7f basis provides the best choice to tackle the

problem. The energies of the 3D state lie lower than the literature value, because Hay and Wadt

used a single zeta quality basis set and Gaussian 94 a double zeta quality.

Figure 6.1 displays the energies of some electronic states compared with the ground state,

calculated with the LanL1 and the LanL2 potential. The triplet states have been calculated

independently with the UHF method (solid lines) and the ROHF method (dashed lines). The 3D

state was found in both cases to be the ground state. Since the ground state energies do not di�er

much (table 6.2) only the 3F state (5d8 6s2, high spin) moves on the energy scale. The di�erence

in the excitation energies (3D ! 3F) between UHF and ROHF calculations is bigger for the LanL2

ECP than for LanL1 one and changes the relative order of the di�erent states.

Figure 6.1 shows two principal features of the ECP's published by Hay and Wadt:

1. The 1S and the 3F states change their relative positions on the energy scale on the introduction

of correlation e�ects (LanL1 ECP). Hay and Wadt [189] pointed out in their original work,

that the LanL1 potential is particularly ill-suited for correlation calculations.

2. The ROHF calculations reproduce correctly the relative order of the di�erent states, while

the UHF calculation exchanges the 1S and the 3F states.

The experimental (3D ! 1S) excitation energy is well reproduced by the LanL2-MP2 calcula-

tions. As shown later the strength of the platinum-platinum bond increases with the occupation

of the 6s orbital, while simultaneously the water-platinum interaction becomes weaker. The cor-

rect reproduction of the 3D ! 1S excitation energy is therefore necessary for a reliable prediction

of relative water-platinum interaction energies from quantum chemical calculations for di�erent

electronic states.

Another series of problems arises from the small 3D ! 3F excitation energies (LanL2-MP2).

Since both states are energetically close to each other, the HF-calculations can converge to either of

these states during a scan of the potential energy surface and so cause unphysical behaviour. This

problem becomes more important with the growth of the metal cluster as the number of electronic

states increases rapidly and the di�erent electronic states become more densely packed. The 1S !
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Figure 6.1: Electronic states of a platinum atom exp. values [306a]

1G (5d8 6s2, low spin) activation energy is larger than the triplet activation energy and a scan of

the potential energy surface should therefore be easier in the singlet than in the triplet state.

Hay and Wadt reported for the LanL1 potential [214], that the 3F state has a lower excitation

energy than the 1S state both for relativistic ECP calculations (RECP) and for relativistic Hartree

Fock calculations (RRHF). It is therefore not possible to reproduce the correct order of exciations

energies with the HW potentials. Topiol and Basch [307] showed, that the relative order of

the energies of electronic states depends strongly of the quality of the ECP's relativistic part and

that the important part is the 3D ! 1S excitation energy, which is negative for non-relativistic

calculations. Other papers [308, 309] also showed that J-averaged calculations at either Hartree-

Fock or ECP level reproduce the wrong ordering of electronic states (3D < 3F < 1S). In regard to

this problem LanL2-UMP2 calculations should perform correctly despite the wrong order of states

compared with ROMP2 calculations, since the excitation energies are well reproduced.

6.1.2 Platinum and a single water molecule

Table 6.3 summarizes the results of the geometry optimization of a single platinum atom (LanL2DZ)

interacting with a rigid water molecule.

The 1A' wavefunction could be regarded as the combination of a 1S platinum atom and a 1A1

water molecule while the 3A' could be obtained by the combination of a 3D platinum atom with a

ground state water molecule. Interesting is the comparison of the Hartree Fock calculations of the

triplet states. The results of the ROHF and the UHF calculations are nearly equal. The stationary

point found by the optimisation algorithm in both cases is a true minimum, as a check of the second

derivatives showed. The association curves calculated with a set of single point calculations showed

di�erent behaviour. The UHF curve has its minimum at the same position as the optimised result,
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pt h2o 01 pt h2o 01t pt h2o 01u pt h2o 02 pt h2o 02u

method RHF ROHF UHF RHF-MP2 UHF-MP2

state 1A' 3A' 3A' 1A' 3A'

r [�A] 2:1829 2:7140 2:6948 2:0986 2:4952


 [deg] 125:66 134:16 133:93 116:43 123:20

qPt [e] �0:097 �0:050 �0:052 �0:162 �0:103

qO [e] �0:675 �0:672 �0:671 �0:602 �0:612

qH [e] +0:386 +0:361 +0:362 +0:382 +0:358

�q [e] �0:097 �0:050 �0:052 �0:162 �0:103

� [D] 2:8850 3:6731 3:7302 2:9224 3:8221

�ES [kcal/mol] �7:606 �29:022 �29:315 �22:561 �21:312

�ET [kcal/mol] +18:702 �2:714 �2:782 �9:136 �7:904

- E [H] 194:242865 194:276994 194:277461 194:539696 194:537707

spin densityPt 0:0 1:9932 1:9913 0:0 1:9726

�ES: 1Pt + H2O ! Pt�H2O �ET: 3Pt + H2O ! Pt�H2O �q: charge transfer

Table 6.3: platinum water adduct - equilibrium geometries
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while the ROHF-curve on the other hand does not show a minimum at all. An analysis of the

results showed that this and other convergence problems are caused by a problem with ROMP2

calculations within Gaussian 94. Better results were obtained from UHF wavefunctions.

The energy di�erence between the two curves in �gure 6.2 and 6.3 is the same as the di�erence

between the platinum 3D and 1S states. As the MP2 level favours the 1S in comparison with

the 3D state (�gure 6.3) the curves become closer together as the correlation level increases from

HF to MP2. The correlation calculation allows the electrons to avoid each other and the distance

between the platinum atom and the water molecule dOPtbecomes shorter and so the binding energy

increases. The driving force is the platinum atom. Figure 6.4 displays the total energy of the

platinum 1S and the 3D state on the approach of of a negative charge of �0.6 e. The value of

�0.6 e is roughly the charge on the oxygen atom in a water molecule (table 3.1, page 46). For

small values of d the smaller platinum atom becomes more favourable, as the 6s orbitals are more

extended than those of the 5d. The crossing point3 of those two curves (2.0787 �A, �118.641723 H)

corresponds closely to that of the two association curves (r = 2.2954 �A, 
 = 119.811Æ, �194.535248

H). The crossing of the curves in �gure 6.3 can therefore be explained by a polarisation of the

metal atom as the water molecule approaches the platinum atom [12, 310].

Figure 6.5 displays the formation of the Pt�H2O adduct

H

X
Y

Z

H
Pt O

Figure 6.6: Pt�H2O geometry.

and �gure 6.6 the complex in the chosen system of coordinates.

On the left side of �gure 6.5 are the orbitals of platinum (3D)

and on the right side are the orbitals of a water molecule (1A1).

In the centre of the �gure are the orbitals of platinum (1S) with

a nearby negative charge, which breaks the sperical symmetry,

and the orbitals of the adduct.

With a negative charge at a distance of 6 �A the platinum

d-orbitals split according to a �rst estimate with ligand �eld theory [293a]. The dx2�y2 and the

dxy orbitals have the lowest energy, the dxz and the dyz orbital are in the middle of the energy

scale and the dz2 has the highest energy. As the negative charge gets closer to the atom, a hybrid

orbital between the 6s-, 6pz- and the 5dz2 orbital is formed. This orbital ( 1) is still dominated

by 5dz2 . The energies of those orbitals are displayed in �gure 6.5.

A �rst molecular orbital attempt to describe the interaction between water and platinum would

be the interaction of the 5dz2 orbital with one of the water molecule's free electron pairs. According

to the VSEPR model [10{12, 311], the free electron pairs of the water molecule could be obtained

by a linear combination of the 1b1 ( 2) and the 3a1 ( 3) orbitals of the water molecule. Such a

combination of those two orbitals is possible, because both orbitals transform according to a' in the

adduct. The combination  EP1 =  2 +  3 forms an orbital which describes the �rst free electron

pair and points directly to the platinum atom, whereas the second combination  EP2 =  2 -  3

represents the second free electron pair, which points away from the platinum atom.

Such a simple model would result in three molecular orbitals. The �rst MO 	1 =  1 +  EP1 =

c1  1 + c2  2 + c3  3 describes the bonding interaction between water and the metal; the second

orbital 	2 =  1 �  EP1 = c1  1 � c2  2 � c3  3 is the antibonding combination and the third

3The crossing points were found with a small C program using the intersection algorithm [242] and

Gaussian 94 as a subroutine called with the system-function. The corresponding input �les were written

by the program before the function call.
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orbital 	3 =  EP2 = c2  2 � c3  3 is the nonbonding free electron pair. Figures 6.7 to 6.9 display

the three central orbitals of the water-platinum bond. Only the second orbital, the antibonding

combination of the platinum 5dz2 orbital with free electron pair, can be found in �gure 6.9. The

remaining two orbitals 	1 and 	3 cannot be found among the Hartree-Fock orbitals.

Orbital 6a' shown in �gure 6.7 is the bonding combination of  1 and  3 whereas orbital 7a'

(�gure 6.8) is the combination of  1 and  2. The orbitals  2 and  3 of the water molecule do not

mix. Hence, a bonding interaction between the platinum 5dz2 orbital and a free electron pair from

the water molecule cannot be found among the Hartree-Fock orbitals. Instead the 3a1 and 1b1

orbitals on water interact directly with the metal.

Figures 6.7 and 6.8 show, that  1 is slightly tilted from the z-axis to enhance the overlap of the

water and platinum orbitals. This tilt is caused by a small admixture of the 5dxz orbital to  1.

The small contribution turns the 6sp�5dz2 hybrid orbital into the right direction for a maximum

overlap. The contribution of the 5dxz controls the bonding angle 
 between the PtO bond and the

plane of the water molecule. The remains of the 5dxz orbitals form the 8a' orbital of the adduct.

This mechanism also braks the degeneracy of the dxz and the dyz orbitals (3a").

The platinum 6s orbital has the same symmetry as 	2. Both transform according to a' in

the adduct and interaction is likely. A similar interaction has already been observed for the free

platinum atom and the platinum atom near a negative charge. The orbitals 10a' and 11a' are

created in this way. They di�er mainly through the 6s contribution to 	1. Orbital 10a' resembles
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a 5dz2 orbital while 11a' resembles the 6s orbital. While the orbitals 6a' and 7a' are located at

the water molecule the orbitals 10a' and 11a' are located at the platinum atom. An analysis of

the spin density of the 3A' state, in which the orbitals 10a' and 11a' are singly occupied, indicates,

that both electrons are located at the platinum atom.

The bond between platinum and water formed via the interaction of two doubly occupied

orbitals is similar to the hydrogen bond in the water dimer, but the charge transfer is up to 10

times stronger in Pt�H2O (table 3.8 (page 53) for properties of the water dimer). The charge

transfer is supported by the partial occupation of the formerly unoccupied 6s orbital with the

extra charge from the water molecule. This movement of electrons from an occupied orbital into

an empty one is an example of polarisation (subsection 2.5, �gure 2.3, page 28). The strength of

the bond between platinum and water is therefore controlled by the polarisation of the platinum

atom by the water molecule.

A suitable description for the Pt�H2O complex would therefore be an inner orbital complex

[1a, 28a]. The interaction with the water molecule causes the promotion of an inner 5d electron

into an outer 6s orbital. The free 5d orbital is then used for the construction of the bond between

the platinum atom and the free electron pair from the water molecule. In VB terms this interaction

has to be described more as a covalent bond than an ionic one.

At the �rst view the 3A' state should be more stable than the 1A' state, since it is built

from ground state components and the platinum atom already has a 5d vacancy. But the 11a'

orbital is strongly antibonding and the occupation of this orbital weakens the platinum-water

bond. Figure 6.10 shows the electron densities of the 1A' and the 3A' state at the crossing point

of the association curves. Solid lines mark the total electron density of 0.001 a.u., while the grey

shaded area highlights the di�erence between both states. The antibonding character of the 11a'

orbitals can be deduced from the shape of these curves. Electron density is moved away from

the centre of the platinum atom to the outer regions of the atom. This electron shift increases as

the electrostatic repulsion between the platinum and the negatively charged oxygen atom. At the

crossing point electron movement costs no energy and so facilitates a change of electronic state.

The antibonding character of orbital 11a' can also be deduced from the Mulliken population

analysis [288{291]. In the 1A' state, with an optimized geometry, the overlap population (MOP)

between platinum and oxygen has a value of 0.036 while the MOP between platinum and hydrogen

is �0.013. The interaction between platinum and hydrogen is antibonding despite the opposite

charges. The excitation (UHF calculation) of a single electron at this geometry reduces both

the interactions between platinum and oxygen (MOPPtO = �0.033) and platinum and hydrogen

(MOPPtH = �0.010). After relaxation (elongation of the platinum-oxygen bond, widening of

the bond angle 
, table 6.4) the interaction between oxygen and platinum is weakly bonding

(MOPPtO = 0.005), whereas the interaction between hydrogen and platinum (MOPPtH = �0.003)

is weakly antibonding. The elongation of the platinum-oxygen bond reduces the repulsion between

the platinum 6s electrons and the valence electrons of oxygen. Simultaneously the bond angle 


increases and so enhances the overlap of the 5dz2 orbital and the 3a1 orbital.

The character of the 6s orbital can be described as double-edged. It is necessary to accept the

extra charge from the water molecule during the formation of the bond, so acting as a polarisation

function. If the 6s orbital is too strongly occupied, the extension of the electron space (�gure

6.10) repels the water molecule and the bond becomes weaker. A similar correlation between the

occupation of the 6s orbital and the binding energy has been observed in Pt�CO [312].

The water molecule has the possibility to waggle. Table 6.4 compiles the geometries and energies
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w1t 0 w1t 0d w1s 0 w1t 180 w1s 180

method UHF-MP2 UHF-MP2 RHF-MP2 UHF-MP2 RHF-MP2

state 3B1
3A1

1A1
3A1

1A1

r [�A] 3:6093 3:5934 3:1523 2:4952 2:0954


 [deg] 0:0 0:0 0:0 180:0 180:0

qPt [e] �0:023 �0:020 �0:046 �0:075 �0:111

qO [e] �0:653 �0:656 �0:636 �0:639 �0:652

qH [e] +0:338 +0:338 +0:341 +0:357 +0:382

�q [e] �0:023 �0:020 �0:046 �0:075 �0:111

� [D] 2:3463 2:3911 2:0889 4:4830 3:6750

�ET [kcal/mol] �1:060 �1:613 +11:082 �6:871 �5:519

�E [H] 194:526799 194:527682 194:507450 194:536060 194:533906

spin densityPt 2:0000 1:9986 0:0 1:9803 0:0

Table 6.4: Platinum water adduct - extrema of a systematic change of 
.

0 50 100 150 200

-194,54

-194,52

-194,50

-194,48

-194,46

γ [deg]

E
D

IM
[H

]

1
A1

3
A1

Figure 6.11: Water waggle movement.

of the extrema of such movement and �gure 6.11 shows the energy of the complex as a function

of 
. The platinum oxygen distances r were kept to their equilibrium values (3A : 2.6948 �A, 1A :

2.4952 �A).

The curves have exactly the shape one expects for the interaction of platinum and water via

a free electron pair, but both curves intersect. A comparison of table 6.2 and 6.11 shows, that at

the turning points (0Æ, 180Æ) the triplet states are more favourable than the singlet states. Even

with an optimized platinum oxygen distance the di�erence is very large. For 
 = 0Æ the singlet

state with an interaction energy of +11.1 kcal/mol is extremely unfavourable, while the triplet

state (3A1) with �1.61 kcal/mol is still bonding. The singlet state is actually favoured only in a

small area (r � 2.3 �A, 80Æ � 
 � 145Æ, grey shaded in �gure 6.11). It is a typical problem with

such a calculation, namely that the relative energies of the electronic states change as the geometry

changes. Gavezzotti et al. observed a similar behaviour of Ptn�CO cluster [303].

6.1.3 The In
uence of the Pseudo Potential

Table 6.5 shows the results for Pt�H2O obtained with di�erent ECPs. The importance of the

platinum 5d orbitals for the metal-water bond is obvious from a comparison of the results for a

preliminary 1-electron ECP (subsection 7.3.1, page 230) with results obtained with the LanLx-
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LanL1 LanL2 1 e� ECP(a)

RHF MP2 RHF MP2 UHF

r [�A] 2:4574 2:2686 2:1829 2:0986 3:8498


 [deg] 124:43 108:19 125:66 116:43 180:0

qPt [e] �0:069 �0:165 �0:097 �0:162 �0:010

qO [e] �0:660 �0:578 �0:675 �0:602 �0:678

qH [e] +0:365 +0:375 +0:386 +0:382 +0:344

�q [e] 0:069 0:165 0:097 0:162 0:010

� [D] 2:8150 2:6533 2:8850 2:9224 2:7302

�E
(b)
S [kcal/mol] �4:935 �16:358 �7:606 �22:561 |

�E
(c)
T [kcal/mol] +19:500 �6:494 +18:702 �9:136 �0:395

(a) Please refer to subsection 7.3.1 (page 230) for details.
(b) 1Pt + H2O ! 1Pt�H2O

(c) 3Pt + H2O ! 1Pt�H2O

Table 6.5: Comparison of di�erent ECPs.

potentials. During the optimisation the hydrogen atoms turn away from the platinum atom, so

that the interaction between water and platinum occur solely via the 3a1-orbital. The equilibrium

distance rPtO (3.85 �A) is far too long to speak of a chemical bond and the interaction energy of

0.4 kcal/mol is only a small fraction of the value observed with the other ECPs.

All LanL1 bond lengths are longer than those calculated with the LanL2 potential and the

binding energies calculated with LanL1 potential are always smaller than the energies calculated

with the LanL2 potential. The same reasoning shows, that the repulsion (�ET) at Hartree-Fock

level is larger for the LanL1 potential than for LanL2. Rohlfing et al. [306] observed a similar

e�ect for the interaction between platinum and a hydrogen atom. At Hartree-Fock level the charge

transfer calculated with the LanL1 potential (0.069 e) is smaller than that calculated with the

LanL2 potential (0.097 e). At MP2 level the charge transfer for both potentials is of similar size

(0.16 e). As shown in subsection 6.1.2 correlation calculations are very important for the correct

description of the platinum-water interaction. In both cases LanL1 and LanL2 the PtO bond

shrinks in calculations at MP2 level. The in
uence of correlation on the LanL2 bond is smaller

(�3.9%) than for the LanL1 bond ( �7.7%). This result agrees with the conclusions drawn from the

contributions of the correlation energy to the total binding energies at MP2 level (LanL1: 69.7%,

LanL2: 66.2%), although the absolute value of the correlation energy for LanL2 calculations (14.9

kcal/mol) is larger than that for LanL1 (11.4 kcal/mol). The MP2 results for the LanL2 potential

should be more reliable as the correlation space is larger and the 5s and 5p orbitals include parts

of the core-valence correlation. Despite the larger correlation space, the coeÆcient of the Hartree-

Fock function remains 0.9738. This value is close to coeÆcients found at Hartree-Fock level for the

water dimer (section 3.1, table 3.6, page 50). The MP2 method should therefore include most of

the correlation e�ects in the platinum-water bond.

The in
uence of electron correlation is larger on the 1S state than on the 3D state, since the

electrons are more closely packed. The total energy of 1Pt and H2O moves further on the energy

scale than that of 3Pt and H2O. This larger movement in energy of 1Pt and H2O compensates

partly for the correlation energy of the adduct (LanL2: �Ecorr
S = 14.95 kcal/mol < 27.84 kcal/mol

= �Ecorr
T ). Since correlation calculations behave di�erently on reactants and products, the intro-

duction of correlation methods has a pronounced e�ect on the potential energy surface.
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uncorrected corrected

r [�A] 2.0986 2.1360


 [deg] 116.43 119.90

�ES [kcal/mol] 22.561 16.855

Table 6.6: BSSE in 1Pt�H2O at MP2 level.

r0 2:13597 �A


0 119:902 deg

E0 �16:8546 kcal/mol

D2 90:0426 kcal/mol/�A2

D3 �158:790 kcal/mol/�A3

A2 0:00253 kcal/mol/deg2

A3 �0:00002 kcal/mol/deg3

K1 0:116338 kcal/mol/�A/deg

Table 6.7: Parameters for VBSSE

6.1.4 E�ect of the BSSE on the platinum-water interaction

The same method as for the calculation for the BSSE on the water dimer (subsection 3.2.4, page

70) was used to estimate the e�ect of BSSE on the water-platinum interaction. The platinum

atom was described with the LanL2 ECP and a double zeta basis set (G94 keyword: LanL2DZ).

The double zeta basis set was chosen to have two basis sets of similar quality, so as to minimize

that part of BSSE caused by di�erent sizes of basis.

Table 6.6 summarizes the results from the last step of the BSSE corrected geometry optimisation

(60 points, energy maximum �16.0 kcal/mol). Using the BSSE corrected geometry (table 6.6) in

a quantum chemical calculation at MP2 level with a FCP BSSE correction according to Boys and

Bernardi yielded an interaction energy of �16.855 kcal/mol. The precise di�erence between force

�eld prediction and quantum chemical calculation is about 0.0001 kcal/mol.

During the geometry optimisation the BSSE decreased from an initial value of 5.877 kcal/mol

down to 5.522 kcal/mol (25% of the interaction energy). The BSSE is therefore in the range of

the binding energy in a water dimer and about �ve times larger than that observed in the water

dimer.

VBSSE(r; 
) = E0 +D2 (r � r0)
2 +A2 (
 � 
0)

2 +K1 (r � r0) (
 � 
0) +

D3 (r � r0)
3 +A3 (
 � 
0)

3 (6.1)

Table 6.7 displays the parameters of the potential VBSSE(r; 
). These are only valid in a small

range 2.10 �A �r � 2.24 �A and 106.43Æ � 
 � 126.43Æ. Due to this small area of de�nition the

anharmonic part of the bond length force �eld is always smaller than the harmonic part. The

�gures show that the bond length is much more important for the energy than the bond

angle, which has only a small in
uence on the bond energy.

Since the coupling constant K1 has a positive value (0.11 kcal/mol/�A/deg), an extension of the

bond length produces a reduction in bond angle to keep the binding energy as low as possible. This

rotation can be explained by the molecular orbital mechanism outlined in subsection 6.1.2. As the

bond length increases the water 3a1 orbital turns towards the platinum atom. The nonbonding

lobe of the 3a1 orbital stretches slightly further than the lobes of the nonbonding oxygen p-orbital.

This movement stabilizes the 6a' orbital of the adduct. In the other case, the reduction in bond

length, the 7a' orbital becomes more stable and compensates for the compression of the molecule.

A similar BSSE e�ect was observed in quantum chemical calculations on the 3A' state of the

adduct. The e�ect of BSSE on the uncorrected geometry is 3.861 kcal/mol, which yields 49% of

the binding energy. Regardless of the electronic state the BSSE is always large and complicates
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LanL2DZ LanL1MB 1 e� ECP(a)

PtH PtH+ PtH PtH+ PtH PtH+

r [�A] 1:5483 1:4753 1:6284 1:5178 1:4822 1:9252

qPt [e] 0:085 0:063 �0:091 0:690 �0:063 0:163

qH [e] �0:085 0:037 0:091 0:309 0:063 0:837

dipole [D] 2:4459 0:9093 2:3983 0:1316 3:0307 �0:0627

Pop 5d 9:096 8:839 9:130 9:055 0:0 0:0

�Pop5d 0.257 0.075 0.0

�EION [H] 0.3092 0.3086 0.3419

�EBOND [H] 0:0685 0:2575 0:0454 0:2350 0:0560 0:2123

(a) Please refer to section 7.3.1, page 230 for details.

Table 6.8: Properties of 2�+ PtH for di�erent ECPs

E

6s

5d

1s
σ1

σ2

σ3

6s + 1s

6s - 1s

Figure 6.12 �-MOs of PtH.

orbital PtH PtH+

5d 9.096 8.839

6s 0.771 0.182

1s 1.069 0.938

Table 6.9 Mulliken Population from

LanL2DZ calculations.

any scanning of the potential energy surface.

6.1.5 The Platinum-Hydrogen interaction

PtH was one of the �rst molecules for relativistic quantum chemical calculations on platinum

[12, 306, 308, 309, 313{320]. Table 6.8 compiles some results for PtH for the 2�+ state (4 Æ, 4 �

and 3 � electrons).

The preliminary results obtained with the 1-electron ECP (subsection 7.3.1, page 230 for details)

indicate that the 5d orbitals are less dominant in bonding and the bond between platinum and

hydrogen is controlled by the interaction of the s-orbitals.

Figure 6.12 shows a simpli�ed sketch of the �-MOs in PtH. The electronic structure can

be rationalized by the combination of a 3D platinum atom with a 2S hydrogen atom. Despite

the conclusions drawn from table 6.8 the 5dz2-orbital contributes signi�cantly to the �1 and �2

orbitals. The construction of the orbitals can be explained in two steps. First, the platinum 6s and

the hydrogen 1s orbital form two pairs of orbitals. The contribution of the platinum 6p orbitals to

the bond is negligible. This movement of the electrons facilitates the interaction of the bonding s

orbital with the 5dz2-orbital. This procedure creates two new orbitals �1 and �2, which form the

central part of the chemical bond. The remaining platinum 5d electrons do not contribute to the

bond and form two � and two Æ orbitals.

The 5d-orbitals cause the shrinking of the platinum hydrogen bond during the ionisation of the

molecule. The Mulliken population analysis (table 6.9) shows, that the charge comes mostly from
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the platinum 6s-orbital. A more detailed analysis shows further, that the largest change in the

population is observed in the outer regions of the platinum 5d-orbitals. This movement reduces

the electron-electron repulsion between the cores and simultaneously stabilizes the �1 orbital. This

purely relativistic e�ect has been observed previously by others [306, 309, 315] and cannot be

reproduced by a simple 1-electron potential. The removal of an electron from the �-MO weakens

the bond and extends the seperation between the atoms. This problem will be discussed in greater

detail in subsection 7.3.4 (page 239).

As observed previously in the interaction between platinum and water bonds calculated with

the LanL1 potential are longer and weaker, and this seems to be a principal feature of ECPs. The

LanL2 HF calculations reproduce more accurately the experimental bond length of 1.54 �A [321].

The inclusion of correlation has a signi�cant in
uence on the bond length and tightens the bond.

The e�ect is more pronounced on the charge distribution in the molecule. LanL2 calculations on the
2�+ state give always a Pt+H� for MB od DZ bases, whereas LanL1 calculations produce Pt�H+.

The charge distribution calculated with the LanL2 potential agrees well with experimental change

in the workfunction [322, 323] for low coverages as well as the gasphase dipole moment [321].

As for water platinum interactions correlation e�ects are important for the platinum hydrogen

bond. MP2 calculations with the LanL2DZ potential yielded a bond length of 1.494 �A while MP2

calculations with LanL1MB ECP resulted in a bond length of 1.565 �A. Both results fail to reproduce

the experimental value to roughly the same extent. On the next level (MP3) the LanL2DZ bond

length becomes longer (1.4993 �A) while the LanL1MB bond length does not change. At this level,

the 1 electron calculation, a bond length of 1.485 �A reproduces perfectly well the LanL2 result.

The calculations on PtH show, that even the simplest molecules are better described with the

LanL2 potential than with LanL1 ECP one. As long as the computing facilities are available is the

18 valence electron ECP is the one of choice.

6.1.6 Summary of the results for single platinum atom

Although a single platinum atom is the smallest platinum cluster possible, it demonstrates most of

the main features in the adsorbate-platinum interaction and allows a detailed analysis of the binding

mechanism. Due to the large number of electrons in a platinum atom, ECPs are commonly used

for the description of the atom. The potentials of Hay and Wadt are provided with the software

and so o�er a good starting point for further investigations. The potentials by Hay and Wadt

di�er in the number of electrons used in the calculations. The LanL2 potential includes the 5s and

5p electrons and so allows a better description of correlation e�ects. The LanL1 potential, which

does not include these electrons, allows us a good, low cost description of the adsorbate-platinum

interaction. Bonds calculated with the LanL1 potential tend to be longer and weaker than LanL2

bonds, but show the same characteristics. Whenever possible the LanL2 potential should therefore

be the ECP of choice.

The bond between water and platinum is formed by the interaction of 3a1 and the 1b1 orbitals

of water molecule with platinum 5d orbitals. The platinum 6s orbital has a double function. First

it facilitates the interaction by accepting electron density, which was formerly in the 5d region.

This electron movement allows the formation of an inner orbital complex. Since the 6s orbital is

more widely spreading than 5d orbitals, the electron density is moved from the platinum core to

its outer regions and therefore closer to the oxygen atom. The Coulomb repulsion between the

platinum 6s-electron density and the oxygen atom weakens the bond between them. This can
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be observed from the di�erent binding energies for water for to 1S and 3D platinum. The bond

between the 3D platinum atom (with the occupied 6s orbital) and water is weaker than the bond

between 1S platinum (empty 6s orbital) and water. The excitation of a single electron by the

electronic �eld of the bond partner is called polarisation and depends strongly on the orientation

of both partners relative to each other. The Pt�H2O cluster with a 1S platinum is actually only

stable in a small region around the optimized geometry. A reliable scan of the potential energy

surface should therefore consider various electronic states.

Calculations on PtH show the strong in
uence of the 5d electrons on the bonds formed purely

by interaction of s-orbitals. This strong in
uence has a relativistic origin. Relativistic e�ects

expand the 5d-orbitals and contract simultaneously the 6s-orbital. The electrons get closer to each

other and interaction between both groups becomes more likely. This result emphazises the use of

relativistic potentials, as already demonstrated for the free atom.

Counterpoise calculations on Pt�H2O (1A' state) showed the strong BSSE e�ect on the plati-

num-water interaction due to the combination of basis sets of di�erent quality. The e�ect of BSSE

on the bond length is about 2% while that on the bond energy is up to 25%. Those simple

calculations should therefore provide good geometries but poor energies.

6.2 Platinum Dimer

The investigation of the interaction between the platinum dimer and a water molecule provides the

next stage in generating a working surface model. The calculations o�er answers to the following

questions:

� How do platinum atoms interact with each other?

� How does this interaction control the interaction between water and the platinum cluster?

� A dimer allows the simulation of di�erent adsorption sites. Which mechanism controls the

adsorption site?

The questions cannot be answered ia a straightforward manner. The di�erent sites have di�erent

symmetries and a smooth change from one to the other is not always possible. The �rst part of

this section concentrates on the direct interaction between the platinum atoms to provide a model

of the cluster itself, while the second part focuses on the interaction of the cluster with a water

molecule.

6.2.1 The electronic structure of the platinum dimer

The stability of the platinum dimer depends strongly on its electronic structure. Table 6.10 lists

the results for di�erent platinum dimers. The di�erent electronic states can be associated with the

electronic states of the free platinum atoms from which the dimer was built. The platinum dimers

in table 6.10 are therefore classi�ed according to the electronic states of the atoms, from which the

dimer was built.

The �rst block of table 6.10 contains the results for the platinum dimer with a bulk bond

length [36] of 2.77 �A (MP2 calculations). With increasing population of the 6s-orbitals (pop 6s)

the platinum dimer becomes more stable. The 6s band in the metal clusters forms the metallic

bond between the atoms and not the 5s-orbitals.
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Figure 6.13: Orbitals of Pt2.
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Figure 6.14: �6s orbital (LUMO) in the 1S�1S
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Figure 6.15: �6s orbital (HOMO) in the
3D�3D dimer.

Figure 6.13 shows a simpli�ed diagram of the valence orbitals in the platinum dimer. In a

platinum dimer built from two 1S platinum atoms no electron should populate the �6s orbital, but

the opposite was found (pop 6s = 0.279). As in the Pt�H2O bond, the 5dz2 and the 6s orbital

mix to form the bond and the �6s-orbital becomes populated. The 3D�3D dimer was constructed

from the 1S�1S dimer by exciting both electrons from the ��5d orbital into the �6s orbital. The

�5d and the �6s orbitals get closer to each other in energy and can interact. In the 1S�1S dimer

the �6s orbital is built purely from 6s orbitals (94%) whereas the 6s contribution to the �6s orbital

in the 3D�3D dimer is reduced to 70%. The 5dz2-orbitals contribute signi�cantly to the shape of

the molecular orbitals but little to the metal-metal binding energy. Figures 6.14 and 6.15 illustrate

this e�ect (contour lines at 0.0, 0.015, 0.03, 0.045, 0.06). Figure 6.14 displays the �6s-orbital in the
1S�1S dimer. The molecular orbital has the dominant shape of a �-orbital formed from s-functions,

whereas the the �6s orbital in the 3D�3D orbital (�gure 6.15) shows features of a �-bond formed

from d-functions.

With increasing values of the 6s-population, the platinum dimer becomes more stable. These

results agree well with the literature [285, 314, 318, 324{326]. The dominance of the 6s orbitals for

metallic binding in platinum allows us to use e�ective one-electron pseudopotentials for the metal

cluster [318, 327{331], as will be discussed in chapter 7 (page 203).

The �rst part of table 6.10 shows the importance of electron correlation on the dissociation

energy. The dissociation energy of the dimer (�E(DISS)) increases about 13.2 kcal/mol (1S�1S)

/ 17.7 kcal/mol (1S�3D) between HF and MP2. Inclusion of electron correlation also changes the
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construction 1S + 1S 1S + 3D 3D + 3D

symmetry 1�gg
3�gu

1�gg

method HF/MP2 single point, dPtPt = 2.77 �A

pop 6s 0:27858 1:60974 1:96434

pop 5d 19:5789 18:2424 17:9599

�POP 0:14252 0:14786 0:0758

E(HF) [H] �236:369911 �236:463285 �236:339891

E(MP2) [H] �236:550939 �236:623935 �236:658279

�E(3D) [kcal/mol] +10:851 �34:954 �56:506

�E(Diss) [kcal/mol] �15:964 �48:362 �56:506

method HF/MP2 geometry optimized

rOPT(MP2) [�A] 2:7592 2:5939 2:3579

E(MP2) [H] �236:550950 �236:628461 �236:663187

�EOPT(3D) [kcal/mol] +10:844 �37:795 �59:585

�EOPT(Diss) [kcal/mol] �15:971 �51:102 �59:585

pop 6s 0:282288 1:50612 1:94306

pop 5d 19:57304 18:32954 17:91898

�POP 0:14408 0:1643 0:13796

method HF geometry optimized

rOPT(HF) [�A] 3:0807 2:6638 2:5379

E(HF) [H] �236:373307 �236:464682 �236:380714

�E(3D) [kcal/mol] +50:383 �6:956 �45:734

�E(Diss) [kcal/mol] �2:683 �33:489 �45:734

pop 6s 0:0326 1:64226 1:92472

pop 5d 19:91274 18:21044 17:92516

�POP 0:05466 0:1473 0:15012

experiment [332, 333] : r = 2.34 �A, �E = 85 kcal/mol, 1� ground state

�E(3D) Dissociation energy relative to two 3D platinums

�EOPT(Diss) Dissociation energy to the named electronic states (see construction)

�POP = 20 � pop 6s � pop 5d

Table 6.10: Properties of the platinum dimer.
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Figure 6.17: Dissociation of the 1S�3D dimer.

relative order of the total dimer energies. At HF level the 1S�3D dimer is more stable than the
3D�3D dimer while at the MP2 level the 3D�3D dimer is the most stable one. The importance of

electron correlation is also re
ected in the optimized bond length, when the equilibrium distance

is reduced by roughly 10% in the case of the 1S�1S dimer.

E�ects of electron correlation are most powerful in the 1S�1S dimer. MP2 calculations yielded

an increase in the 6s population from 0.065 at HF level to 0.279 at MP2 level (rPtPt = 2.77 �A).

This additional population increases the bond strength and shortens therefore the bond length

during geometry optimisation. The mixing of the �5d and the �6s orbitals moves electron density

from a bonding 5d orbital into another bonding orbital, which leaves the 5d band slightly anti-

bonding since no electron density is removed from the ��5d orbital. During electron correlation

calculations electron density is moved from the anti-bonding 5d orbitals into the �6s orbital, which

increases the binding energy dramatically. The coeÆcient of the root con�guratuin (c0 = 0.95) in

the M�ller-Plesset perturbation calculation is smaller than that for the water molecule (c0 = 0.97).

A high value of c0 is an indicator of the validity of the perturbational approach. The in
uence of

electron correlation is not small compared with the HF-function regarding the platinum dimer and

the perturbational approach becomes less valid. More advanced methods like CI should be chosen,

but are very costly for the large clusters necessary to describe the platinum surface.

At this level a di�erence between Extended H�uckel and Hartree-Fock calculations becomes

apparent. Bigot and Minot [285] describe this electron movement as excitation. According to

the HF/MP2 calculation a doubly occupied �6s orbital forms the basis of the metal-metal bond

in platinum. UPS spectra also provide evidence of a strong occupation of the 6s orbitals (0.42

s-electrons/per atom) [334a, 335]. SO ETH calculations a priori seem to be unable to describe the

relativistic interaction between the 5d and the 6s band completely.

Table 6.10 provides evidence of the small contribution of the 6p orbitals to the metallic bond.

The valence electron population not used in the 5d and 6s orbitals (�POP) has an average value of

0.15. This value hardly changes with the level of the computational procedure or the population of

the 6s orbitals. The bond between the platinum atoms is built exclusively from 5d and 6s orbitals,

while the 6p orbitals are less important.

The dissociation energies shown in table 6.10 were calculated from single point calculations and

not from complete dissociation curves, because the wavefunctions change their multiplicity and/or

symmetry during the dissociation. The 1S�1S dimer was simple to calculate (�gure 6.16), since
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Figure 6.18: Di�erent geometries for Pt2�H2O.

both symmetry and multiplicity were conserved during the dissociation.

The 1S�3D dimer was more diÆcult to compute because the symmetry changes from D1h

to C1v. At large distances both platinum atoms have di�erent electronic structures while the

electronic structures are equivalent at equilibrium distance. To calculate the dissociation curve the

symmetry of the initial dimer was reduced arti�cially4 to C1v but this method lowered the total

energy of the dimer (�gure 6.17).

The dissociation of the 3D�3D was impossible to calculate, because the multiplicity of the

wavefunctions changes from 1 to 5 during the dissociation. This is a standard problem in platinum

clusters and becomes more pronounced as the number of platinum atoms increases. During the

�nal simulation of the metal surface the cluster's geometry does not change and the electronic state

of the cluster as a function of the metal bond distance becomes unimportant. The work on this

problem therefore ends here.

6.2.2 Platinum Dimer and Water

Figure 6.18 compiles the di�erent geometries for the Pt2�H2O system, which were examined in

this work. The �rst geometries A and B simulated bridging sites, whereas the geometries C to E

describe on-top sites. Finally, geometry G describes the edge of a Pt5 pyramid and geometry F is

the extreme form of an on-top coordination without any physical background.

6.2.2.1 In
uence of the geometry

Table 6.11 lists the results for the interaction of the 1S�1S dimer with water. The column dOPT

contains the optimized distance between the water molecule and the metal surface (6.18 displays

4The manipulation of the symmetry started with the PtAu molecule. In the next step the charge of

the gold atom was reduced by one (Gaussian 94 key word massage) and �nally the platinum ECP and the

basis set were de�ned manually in the input �le for the gold atom.
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geo dOPT [�A] �q [e] (ETOT

+ 312) [H]

B 1.9072 0.132 -0.813502

A 1.7055 0.174 -0.832082

D 2.0574 0.189 -0.849604

E 2.0541 0.190 -0.857023

F 2.1120 0.155 -0.859522

C 2.0483 0.213 -0.862900

G 2.1142 0.175 -0.865975

Table 6.11: 1S�1S dimer and water.

geo dOPT [�A] �q [e] (ETOT

+ 312) [H]

B 2.7190 0.054 -0.836039

A 2.5190 0.084 -0.883404

C no minimum ! converts into C

E SCF does not converge

C 2.4191 0.143 -0.898288

F 2.2613 0.135 -0.902415

G 2.2734 0.138 -0.903141

Table 6.12: 3D�1S dimer and water.

the de�nition of d for each geometry). At the �rst glance the water molecule seems to be strongly

bound in the geometries A and B, because the water molecules are close to surface. These water

molecules penetrate the space between platinum atoms. The actual bond length between the

platinum atoms and the oxygen atom is much longer than in the other geometries (B: 2.375 �A, A:

2.197 �A).

The lower total energy of geometry A versus geometry B demonstrates the dominance of the

water molecule's free electron pairs for the chemical bond between water and the metal. The

importance of the second neighbour on the surface for the chemical bond is re
ected in the sequence

of energies for the geometries C ! E ! D. The interaction between the neighbour platinum atom

and the water molecule is interpreted by the Mulliken overlap population (MOP). The overlap

population increases with total energy (C: 0.025 E: 0.016, D: �0.002).

Table 6.12 shows the results for the low energy Pt2 triplet state interacting with water. The

SCF calculation did not converge on geometry E and the minimum in the energy curve for geometry

D vanished. During the optimisation of geometry D the water molecule 
ipped and geometry D

turned into geometry C. The only molecule from the on-top series remaining is therefore molecule

C and so is the most stable.

The geometries C and F exchange their relative energy positions and the two end-on geometries

(F and G) become the energetically most stable. Despite their relative stability the charge transfer

is the smallest for end-on geometries and it is therefore impossible to use charge transfer as a global

measure of stability over the whole conformational space, because both bond length and charge

transfer do not change systematically with total energy. On the other hand, charge transfer and

bond energy correlate well with the total energy for a �xed Pt-Pt-O angle (geometries A and B,

geometries C, D and E). The exception from this rule (geometries F and G) may indicate a change

in the mode of bonding (details in subsection 6.2.2.4).

6.2.2.2 The water metal interaction in Pt2�H2O

The results obtained for di�erent geometries can be explained by di�erernt bonding mechanisms and

this section focuses on the molecular orbital mechanism of the metal-water bond in the geometries

A, C and G.

As for the water dimer or Pt�H2O, the chemical bond between water and the platinum dimer is

not formed from free electron pairs but from individual interactions of the 3a1 and the 1b1 orbitals

with platinum d-orbitals. The C2v symmetry of geometry A conserves the symmetry species of
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Figure 6.20: Geometry A: Bonding orbital b2

symmetry.

these orbitals during bonding. Appropriate partners for the 3a1 orbital are therefore the �5d, �5d

and the Æ5d orbitals. The 1b1 orbital changes its symmetry character and transforms in Pt2�H2O

according to b2. This change is caused by the inversion of the order of the mirror planes by the

heavy atoms. The water molecule can interact with the PtPt antibonding orbitals such as ��5d, ��5d
and the Æ�5d, which also transform according to b2 in geometry A. Figures 6.19 and 6.20 show these

orbitals, which are dominated by the original water molecular orbitals.

The metal part of the bonding molecular orbitals in geometry A is clearly dominated by the

platinum �-orbitals. The analysis of the eigenvectors showed that the contribution of the �6s

orbitals is considerable. The �6s orbital transforms according to a1 and can mix with �5d, �5d and

Æ5d orbitals. This mixing results in a 6s population of 1.02, which is much higher than for the free

dimer (0.28, table 5.9). The 6s population suggests a 3D�1S dimer, which is inconsistent with

the multiplicity of the molecule. A direct correlation between the 6s population and the electronic

states of the individual platinum atoms in the dimer is no longer possible. As shown in section

6.1.2 the bonding of an individual water molecule to the platinum atom is always associated with

a small electron transfer from 5d into 6s to enhance bonding (6s population in 1Pt�H2O: dPtO =

2.11�A ! 0.679, dPtO = 10 �A ! 0.003). This e�ect is much stronger in the platinum dimer. The

adsorption of water not only reduces the symmetry of the molecule from D1h to C2v, but further

5d orbitals of an allowed symmetry species are in a suitable energy range for 5d 6s overlap.

Figures 6.22 and 6.23 show the bonding orbitals in geometry

Figure 6.21: Zero �5d-3a1 over-

lap.

C. The structure of the molecular orbitals is more complex than

before. It is impossible to construct a �-PtO bond from a �5d or

��5d as for geometry A, because the symmetry of the 5d-orbital

causes a zero overlap (�gure 6.21). The � and Æ orbitals possess

suitable symmetry for bonding. Figures 6.22 and 6.23 show

that the chemical bond is constructed from the �5d orbital.

The orientation of the metal orbital is controlled by a small

contribution from the �5d orbitals. The linear combination of

�5d and ��5d ('1 = 0.707�[�5d + ��5d]) results in a single platinum 5d orbital, which is used to

orientate the metal orbitals. The other metal orbitals are similar linear combinations, and the

metal part of the bonding orbital accumulates at the bonding platinum atom (left-right asymmetry

in the PtPt bond). The 6s contribution to the metal-metal bond is much higher than in geometry
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Figure 6.23: Geometry C: Bonding orbital
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Figure 6.24: Geometry G: Bonding orbital
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Figure 6.25: Geometry G: Bonding orbital

(water 1b1).

A (6s population A: 1.02, C: 1.39) and the total energy is therefore lower.

In Cs symmetry, which is lower than the C2v symmetry of geometry A, more orbitals transform

according to a' so both �61 orbitals have more opportunity to interact with the 5d orbitals, thereby

accounting for the high 6s population and the low total energy.

Geometry G has also Cs symmetry. The 6s population is even higher (1.80) than for geometry C

but the water-dimer bond is slightly stronger (37.7 kcal/mol vs. 36.0 kcal/mol). This contradiction

can be explained by a gain in energy due to stronger metal-metal bond (details subsection 6.2.2.4)

on the expense of the platinum-water bond. This bond in geometry G (2.11 �A) is 3% longer than

that in geometry C (2.05 �A). Figures 6.24 and 6.25 show the bonding orbitals in geometry G. The

�5d orbital contributes more strongly to the platinum-water bond as one lobe of �5d points directly

towards the water molecule. The enhanced orbital overlap partially compensates for the longer

bond. The symmetry and the shape of the available metal orbitals thus control the site

of adsorption.

During the interaction between the water molecule and the platinum dimer the 6s orbitals

become more populated. This extra population has two origins. Firstly, the newly formed complex

has lower symmetry than the free dimer. This reduced symmetry allows the 6s orbitals to mix

with additional 5d orbitals, which now have the correct symmetry. Secondly, the occupation of

the 6s orbitals creates a hole in the 5d band, which forms the basis for the chemical bond to the

water molecule. Meanwhile, the 6s electrons have more space to �ll because Pt2 is much larger
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than a single atom. This extra space is used to reduce the repulsion between the 6s electrons and

oxygen electrons and so facilitates the formation of a strong water metal bond (Pt�H2O : �22.6

kcal/mol, Pt2�H2O : �37.7 kcal/mol (geometry C)).

The mechanism is illustrated in �gure 6.26. As the water molecule approaches the platinum

cluster electron density 
ows from the water molecule to platinum dimer. At the target platinum

negative charge is unstable due to the electrostatic repulsion between the 6s electrons and the

oxygen. This charge therefore 
ows directly to the end platinum atom. Such an extended charge


ow is characteristic of cooperative intramolecular forces. The second platinum, which acts as a

charge acceptor, indirectly strengthens the bond between water and the model cluster.

Table 6.13 summarizes the charges on the platinum
geo qPt1 [e] qPt2 [e] �q [e]

A -0.087 -0.087 0.174

B -0.066 -0.066 0.132

C -0.302 0.089 0.213

D -0.248 0.059 0.184

E -0.283 0.093 0.190

F -0.160 0.005 0.155

G -0.111 0.064 0.175

Table 6.13: Charges and charge

transfer in Pt2�H2O.

atoms and the total charge 
ow. The water molecule bonds

directly to Pt2. The negative charge accumulates at the

free end of the cluster, while the bonding platinum atom

carries only a small charge. A natural orbital analysis of

geometry C gave the same picture. The platinum-platinum

bond becomes weaker in favour of the water-platinum bond,

as the strong polarisation of the cluster reduces the cova-

lent/metallic bond strength.

No single orbital is predestined to form the basis of the

metal-water bond. For each geometry other orbitals are in-

volved in the chemical bond. The possibility for the water

molecule to adsorb to the dimer depends on the existence of an orbital with correct symmetry in

a certain energy range. The bond strength correlates to the 6s population necessary to form those

orbitals.

6.2.2.3 In
uence of the electronic state of the platinum dimer

To determine accurate values for the platinum-water interaction, complete dissociation curves were

calculated at selected geometries. These calculations proved to be demanding and not all possible

states and geometries have examined. Figures 6.27 to 6.29 show the curves and table 6.14 compiles

the results. Both open and closed shell wavefunctions were used for the comparison.

Table 6.14 shows clearly that with increasing 6s population the cluster becomes more stable

(ETOT). This result agrees with those obtained in section 6.2.1. Simultaneously the platinum-

water bond becomes weaker (�E and dOPT). The binding energy of a water molecule in the

on-top position (geometry C) in the triplet state is close to the experimental value of 12 to 15

kcal/mol [38], while the interaction with the singulet dimer is too strong. This result is in good

agreement with those for the Pt�H2O system. A high occupation of the 6s orbitals increases the
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geoa case 2S + 1 6s Pop daOPT (ETOT �E

in Pt2 [�A] + 312) [H] [kcal/mol]

A I 1 1:02112 1:7055 �0:832082 �25:195

A II 1 1:98086 3:0866 �0:900399 �0:736

A IIIb 1 2:43924 2:56c �0:810391 �3:071

A IV 3 2:08094 2:5196 �0:883404 �2:371

A Vb 3 1:87622 2:199 �0:816101 |

G I 1 1:79583 2:1142 �0:865975 �37:719

G II 3 2:12678 2:2734 �0:903142 �14:680

C I 1 1:39309 2:0483 �0:862900 �36:048

C II 3 2:06033 2:4191 �0:898287 �11:672

a �gure 6.19 b no complete curve
c not optimized, value extracted from the curve fragment

Table 6.14: The platinum-water bond as a function of the 6s population

cluster's stability but weakens the water metal bond due to repulsion between the extended 6s

electrons and the oxygen atom. This can be observed for the singlet wave functions (geometry A,

cases I and II) as well for triplet wave functions (geometry A, case IV and V). Geometry A (case

III) should not be used for direct comparison because the density matrix breaks the molecule's

symmetry whereas the electron density of the other molecules with geometry A show the correct

symmetry.

The weakening of the metal-water bond is not dominated by the multiplicity of wave functions

multiplicity as shown by direct comparison of the results for geometry A. As soon as the 6s popu-

lation approaches 2.0, the cluster becomes more stable and the water-metal bond becomes weaker

regardless of multiplicity. This e�ect is less pronounced for the triplet case.

It was not possible to construct singlet wave functions with higher 6s populations for geometries

G and C than those listed in table 6.14. The �6s orbital (a' symmetry) can overlap with many

other orbitals, so that the SCF calculation converged to the ground state every time we tried to

construct a wavefunction with a di�erent 6s population. Only geometry A allowed the construction

of a singlet wave function with a high 6s population. The binding energy of the water molecule is

exceptional small. This result again rules a pure spin-e�ect in water bonding out and the bonding

energy of the water molecule is even smaller than in the triplet state. The existence of the second

singlet species is again caused by symmetry mixing and orbital density. Few orbitals can overlap

with �6s and a mixture of those energetically well separated orbitals during the SCF calculation is

unlikely. The HOMO of this new cluster is very similar to that of the 3D�3D dimer, whereas the

other two clusters (geometry G and C) have highly deformed �-bonds.

In all three cases the LUMO is built from the remaining parts of the �6s orbital. In a triplet

wavefunction the 6s orbitals are fully occupied; however the �6s orbital is distributed between two

other molecular orbitals. The singlet and the �rst triplet states are well separated. No curve

crossing has been observed as for Pt�H2O. On the other hand, more electronic states exist with

the same multiplicity and similar total energies. The computation of the complete potential energy

surface is therefore more complicated than for Pt�H2O.

The occupation of the 6s orbitals and hence the electronic state of the cluster can be manipu-

lated via the oxygen-platinum distance. Figure 6.30 displays the strongest bonding singlet states

168



Singlet 6s-PopOPT = 1.02

Singlet 6s-PopOPT = 1.98
-312.90

-312.88

-312.86

-312.84

-312.82

-312.80

-312.78

2 3 4 5 6 7 8 9 10

Triplett 6s-PopOPT = 2.08

E T
O

T
[H

]

dSurface-Oxygen [Å]

Figure 6.27: Dissociation of geometry A.

-312.90

-312.88

-312.86

-312.84

-312.82

-312.8

-312.78

2 3 4 5 6 7 8 9 10

Singlet

Triplett

dPtO [Å]

E
T

O
T

[H
]

Figure 6.28: Dissociation of geometry C.

-312.90

-312.88

-312.86

-312.84

-312.82

-312.80

2 3 4 5 6 7 8 9 10

Singlet

Triplett

E
T

O
T

[H
]

dPtO [Å]

Figure 6.29: Dissociation of geometry G.

G
eo

m
et

ry
 G

 c
as

e 
I

-312.87

-312.86

-312.85

-312.84

-312.83

-312.82

-312.81

-312.8

-312.79

-312.78

2 3 4 5 6 7 8 9 10

Geometry A case I

Geometry A case III

G
eo

m
et

ry
 C

 c
as

e 
I

dPTO [Å]

E
T

O
T

[H
]

2,45 2,50 2,55 2,60 2,65 2,70
-312,8105

-312,8104

-312,8103

-312,8102

-312,8101

-312,8100

case I and III

case III

close up of the grey area

case I

Pt
0

Pt
0

Pt
+0.2

Pt
-0.2

Figure 6.30: Di�erent dissociation curves.

169



(geometries A, C, G case I) and a portion of the curve for geometry A case III. The starting points

for geometry A (curves I, II, and III) were generated from single point calculations with di�erent

platinum-oxygen separations. The di�erent electronic states generated in this way were stabilized

by shifting the virtual orbitals. This method worked only partially in case III. At short separations

the repulsion of the 6s electrons by the oxygen atoms becomes smaller and therefore they spread

more widely. The system has two possibile ways to relax: It either 
ips the electronic state of plat-

inum dimer, turning case AIII turns into case AI, or can follow the potential curve. This 
ipping

is shown in the inset in �gure 6.30. All three curves converge to the same dissociation-point, where

the 6s population in the platinum dimer is 1.430. Comparing those cases a bridging position for

the water molecule is less likely than case AI suggests.

The Pt2�H2O cluster at dPtO = 10 �A di�ers not only in the 6s population but also within the

charge distribution in the cluster. Geometry A case I dissociates correctly into a water molecule

and a platinum dimer with uncharged atoms, while the in other cases (CI, GI, AIII) it dissociates

into a dimer with charged platinum atoms (jqPtj = 0.2 e)5.

At a distance of 8 �A from the surface the orientation of the water molecule relative to the dimer

should be negligible. A small distortion of the plane of the water molecule by 1 degree reduces the

symmetry from C2v to Cs. In case AI the total energy drops dramatically and case AI converts

into case AIII. Meanwhile, the charges on the platinum atoms increase to j0.2 ej. Such a large

increase cannot be explained physically with such a small distortion of the molecular geometry.

On the other hand, the conversion of geometry C (case CI) into geometry A (case III) hardly

changes the charge distribution and the total energy and no jump can be observed despite the

break of symmetry. The jump from case AI to case AIII / case CI can be explained by the mixing

of the 25th (a1 symmetry, platinum �5d + water 3a1) and 23rd orbital (b2 symmetry, HOMO,

��5d) molecular orbitals. The reverse step, the disentangling of the orbitals while changing from

Cs to C2v symmetry is not possible. The mixed orbitals do not a provide suitable description of

the Pt2�H2O system due to the physically incorrect charges on the platinum atoms and the jump

between geometries A and C/G (case I) is not physically reasonable either. The explanation of this

behaviour is the mixing of two di�erent electronic states with similar energies (near-degeneracy

e�ects [336a]). A more appropriate theoretical approach is a multirefence calculation. First test

CAS SCF(2,2)-calculations (complete active space SCF (section 2.3, page 22)) containing the

HOMO and second next orbital to the LUMO of the Hartree-Fock calculation yielded good results.

No energy shift can be observed between the geometries A and C and the charge on the platinum

atoms in geometry C become reasonable small (jqPtj = 0.000041 e). The 6s population is close

to its maximum value (1.828), which reduces the binding of the water molecule. The inclusion of

further orbitals into the correlation space allows a reasonable description of the chemical bond.

First test calculations showed6 that the next important excitation contains occupied molecular

orbitals containing the water 3a1 orbital and virtual orbitals built from the water 1b2 orbital. Such

an electronic excitation reduces the electron density in the congested centre of the molecule. A

complete multireference analysis of the Pt2�H2O system is beyond the scope of this work.

5Charged platinum atoms are impossible for geometry A (C2v symmetry). Gaussian 94 complains about

an unsymmetric density matrix, but all calculations converge quickly.
6The important orbitals for the active space were found with a small program, which tested all double

exciations individually. Only the energetically most signi�cant were chosen for the active space.
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Figure 6.31: Rotation around the PtO bond.
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Figure 6.32: Wagging of the water molecule.

6.2.2.4 Movement of water on the surface

As shown in the previous section the electronic state of the platinum dimer depends on the oxygen-

platinum distance. This section considers of the connection between di�erent geometries corre-

sponding to the same (or similar) oxygen-platinum distances.

Figures 6.31 and 6.32 show that all clusters with Cs symmetry can be easily interconverted.

Figure 6.31 shows the total energy as function of the rotation around the PtO bond. The geometries

C, E and D are joined by a straight line. The second curve shows the same plot for geometry G.

Geometry G is only energetically more stable than the other clusters in a small conformational

region. Figure 6.32 shows the total energy as a function of the angle of the water molecular

plane and the PtO bond. The curve starting from geometry G represents the global minimum

in only a small section of the conformational space. The geometries C and D are separated by

a small maximum. With increasing 6s population (changing from singlet state to the triplet)

the water-platinum bond becomes weaker. The relative height of the maximum is reduced and

the interconversion of geometries C and D becomes more likely. This explains the conversion of

geometry D into geometry C during the optimisation of the triplet state of geometry D (subsection

6.2.2.1).

Figures 6.34 and 6.35 show the conversion of geometry A (case

Pt                                  Pt 2

O

H            H

d

a

γ

d’

Figure 6.33: Pt2-Geo-

metry A to D.

I) into geometry D, starting from geometry A. The distance from

the surface (PtPt bond) seems to be shorter in geometry A despite

the smaller binding energy. Figure 6.34 shows that the e�ective PtO

distance is longer due to the molecule's geometry. The e�ective PtO

distance and the binding energy agree well with those values obtained

in the previous sections. Figure 6.35 shows the total energy of the

cluster as the water molecule moves from geometry A into geometry

D. Figure 6.36 shows the variation of the angle between the surface-

oxygen bond d (see �gure 6.19 for the de�nition of d) and the water

molecular plane 
 as a function of the distance from the centre. The

water molecule moves smoothly into its �nal position as the water

molecule approaches its destination.

Figures 6.37 and 6.38 show the results of the same calculation starting from geometry C. The

distance from the surface �rst shrinks and then increases, while the PtO bond increases continuously
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(�gure 6.37). Unlike the previous cases geometry C does not change into geometry A, but into

geometry H, where the oxygen atom rests directly above the centre of the PtPt bond while the

hydrogen atoms are tilted downwards and point towards the neighbouring platinum atom. The

second plot in �gure 6.36 displays the tilt angle of the water molecular plane during this movement.

The geometry still has Cs symmetry and the platinums carry opposite charge. The electronic

structure and the symmetry of geometry C have been conserved during the calculation. During

this movement the water molecule passes through a shallow minimum (0.8 kcal/mol relative to

geometry C, �gure 6.38).

The next series of calculations describes the movement of the water molecule in geometries A

and H. During these calculations we changed the angle between the bond between the surface and

the water molecular plane 
, while the bond length d was allowed to relax at a constant a = 0

(�gure 6.33). The results of these calculations are summarized in �gures 6.39 and 6.40. Figure

6.39 shows the optimized distance to the surface during the rotation. The bond distance changes

smoothly the rotational angle. Only the slope of the curve at small values of rotational angle is

suspicious. Symmetry demands that the bond length should change smoothly over the 0 degree

point and the curve should not have a cusp. The same is observed for the energy (�gure 6.40). At

zero degrees the cluster has again C2v symmetry, but the platinum atoms are charged di�erently

(j�qPtj = 0.172 e). The inset in �gure 6.40 shows the local energy maximum, which makes a direct

transformation from geometry A into geometry C impossible, because a small activation energy

has to be overcome and the software follows the path of lowest energy.

Finally, the transformation from geometry C into geometry F via geometry G was analyzed.

Figures 6.42 shows the length of the platinum-oxygen bond and the population of the 6s orbitals.

The shortest equilibrium length was observed for geometry C (90Æ). At this point the total 6s

population has its highest value. As geometry C changes into geometry G this bond becomes

longer and simultaneously increases the total 6s population. The enlarged distance to the oxygen

atom reduces the repulsion between the 6s electrons and the oxygen and results a higher population

of the 6s band. At the bottom of �gure 6.41 the 6s populations of the individual platinum atoms

are displayed. For Pt-Pt-O angles above 140Æ the total 6s population remains constant, while the

6s population of the individual platinum atoms changes continuously. This movement of the 6s

electron density demonstrates the possibility of intermetallic charge transfer in cooperative forces.

173



0.6

0.8

1

1.2

1.4

1.6

1.8

2

90 100 110 120 130 140 150 160 170 180

bond length

total 6s population

6s population on Pt1

6s population on Pt2

6s
 p

op
ul

at
io

n

Pt-Pt-O angle  [deg]

2.12

2.11

2.10

2.09

2.08

2.07

2.06

2.05

2.04

P
t-

O
 b

on
d 

le
ng

th
 [Å

]

Figure 6.41: Geometry C to F, 6s population.

-0.867

-0.866

-0.865

-0.864

-0.863

-0.862

-0.861

-0.860

-0.859

(E
T

O
T

+
 3

12
) 

 [H
]

Pt-Pt-O angle [deg]
90      100      110      120      130      140     150      160      170      180

ch
ar

ge
 tr

an
sf

er
 [e

]

0.22

0.21

0.20

0.19

0.18

0.17

0.16

0.15

energy

charge transfer

Figure 6.42: Geometry C to F, total energy.

The total energy (�gure 6.42) of the cluster does not follow the 6s population, but has a distinct

minimum close to geometry G (135Æ). Figure 6.42 also displays the charge transfer from the water

molecule to the platinum dimer. The charge transfer decreases steadily during the motion and

exhibits no other features. The global minimum of the total energy at 140Æ is close to geometry G.

At this peak the total 6s population reached its maximum while the charge transfer is still high.

Table 6.15 shows the Mulliken overlap population

 geo MOP PtPt MOP PtO

90Æ C 0.120739 0.072887

135Æ G 0.303253 0.059046

140Æ | 0.311012 0.054689

180Æ F 0.256784 0.040784

Table 6.15: Mulliken overlap population

in Pt2�H2O.

of selected bonds in the Pt2�H2O system during the

transformation of geometry C into geometry F. The

platinum-platinum bond becomes stronger, while the

platinum-oxygen bond simultaneously becomes wea-

ker.

This interplay of 6s-electron density and charge

transfer within the platinum-water bond explains why

the water molecule bonds strongly to the platinum

dimer with small charge transfer in geometry G. It is not a change in binding mechanism, but

a change in the 6s-population, which compensates for the weak bond (see subsection 6.2.2.1). The

6s population changes again as the bond between the water molecule and the dimer breaks. In

geometry C the 6s population increases by 0.037. This increase re
ects the reduced repulsion be-

tween the 6s electrons and oxygen. This small di�erence indicates that most of the extra charge

from the water molecule has to be stored in the 5d-band. Geometry G is more complicated: the 6s

population decreases by 0.365 during the dissociation. This extra 6s population in the Pt2�H2O

comples can be explained by the higher contribution of the 6s orbitals to the bonds between the

water molecule and the platinum to compensate for the longer bond, as the 6s orbitals are more

widely spreading than the 5d.

Figure 6.43 shows the connections between di�erent geometries and electronic states. Double

headed arrows indicate two way connections, while single headed arrows indicate one way con-

nections. It is possible to go from a totally covalent platinum dimer without water (end of the

dissociation curve for geometry A, case I, �gure 5.30) to a partially ionic bonded dimer (end of

the dissociation curves for the geometries G and C, �gure 5.30), but not the other way round.

For a given geometry (e.g. geometry A) two dissociation pathways exist to di�erent end points,

which cannot be transformed into each other. More advanced calculations like CAS-SCF would be

required for a more physical description of the water platinum interaction.
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6.2.3 Summary of the results for the platinum dimer

The platinum-platinum bond is dominated by the 6s orbitals. The strength of the metallic bond

and therefore the total energy of the cluster increases with the occupation of the 6s orbitals (table

6.10). Electron correlation is essential for the correct description of this bond. The coeÆcient of

the ground state (c0) in the M�ller-Plesset calculation is 0.95 and smaller then the value for water

(0.97). At �rst sight, the in
uence of electron correlation seems to be small enough to proceed with

this method. The existence of energetically close electronic states makes the application of more

advanced methods necessary. First CASSCF calculations yielded a wave function with a very small

contributions from the ground state (c0 = 0.8). This result indicates that the in
uence is not small

and the M�ller-Plesset approach to electron correlation is inappropriate. MC-SCF calculations, on

the other hand, are costly and not simple (Root 
ipping has been observed with Pt2 [336b]). In

this work we therefore continue to use M�ller-Plesset calculations despite the known problems, to

get an initial idea of the role of correlation e�ects.

The following conclusions could be drawn from the Pt2�H2O calculations neglecting the ad-

vanced correlation problem:

1. As shown previously for Pt1�H2O the interaction between water and the metal decreases

with increasing 6s population (table 6.14). The principal problem, strong metallic bonds

versus strong water metal interactions, remains unsolved. Since the intermetallic bonds

contribute more strongly to the total energy than the water-metal bond, excited metal states

are necessary for the correct description of the bond.

2. The interaction of the water molecule with the platinum dimer reduces the overall symmetry

of the problem. Metal orbitals, which were previously well separated by symmetry, can now

interact. This additional overlap results in an increase of the 6s population, which weakens

the water-metal bond. Even very small distortions of the initial geometry (e.g. 0.01Æ in bond

angles) can break the symmetry7. This break causes an increase in the 6s population, which

results in unphysical jumps between potential energy surfaces. Those jumps can be avoided

with costly MC-SCF calculations.

3. A smooth transition between electronic states generated with the method described above

are possible (Figures 6.43), but not always in both directions. It is diÆcult to construct a

smooth potential energy surface covering the whole of conformation space.

4. The valence orbitals of the water molecule bond to any orbital with correct symmetry and

energy. During the formation of the bond the molecular orbitals of the free dimer mix to form

7Even at a distance of 100 �A the water molecule is symmetrically present. A simple HF calculation

does not converge to the 1S�1S dimer as observed for the free dimer, but not to the 3D�3D dimer.
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the basis of the water-metal interaction. This mixing is caused by two independent factors:

(a) The presence of the water molecule reduces the symmetry (see above).

(b) The water molecule polarizes the platinum cluster and creates a hole in the 5d band

for the formation of the bond. The occupation of the formerly empty platinum orbitals

with electrons is the quantum chemical equivalent of polarisation (�gure 2.3, page 28).

The interplay of polarisation and 6s population is illustrated for geometry A: The 6s popu-

lation of the free dimer should be as low as possible for a strong bond to form between the

dimer and water. The higher the 6s population, the weaker the adsorption becomes (table

6.14) due to strong repulsion between the 6s electrons and the oxygen. The free dimer created

by the dissociation of case AI (�gure 6.30) has a total 6s population of 0.279. During the

formation of the bond between the dimer and the water molecule electron density (0.174 e)

moves from the water molecule into the 5d-band of the dimer. Electron density must there-

fore move into the 6s orbitals. The observed 6s population (1.021) is twice as large, as this

estimate predicts (0.279 + 0.174 = 0.453). The extra 0.568 electrons stabilize the cluster by

symmetry-allowed orbital mixing in both the metal-metal and metal-oxygen bond. A higher

occupation of the 6s orbitals is not possible, since symmetry forbids the corresponding orbital

interactions. The exact position of the water molecule mirrors the delicate balance between

electrostatic repulsion, 6s population in terms of metal cluster stability and polarisation.

5. The electrons in the 6s orbitals are very mobile and can move freely in the cluster (�gures

6.26 and 6.41). This 
exibility o�ers the possibility of far reaching charge transfer and so for

cooperative forces in the water-platinum interaction.

6. A comparison of the di�erent geometries shows, that

(a) the bridging positions for the water molecule are energetically unfavourable.

(b) the interaction of the hydrogen atoms with the surface platinum atoms contributes

signi�cantly to the total interaction energy.

(c) the symmetry and shape of the available metal orbitals control the site of adsorbtion.

(d) the second layer (geometries F and G) is also important for the binding of the water

molecule.

An ideal surface model should therefore be build from at least two slabs of platinum and

at the surface there should be a suÆcient numner of platinum atoms to interact with the

hydrogens (section 6.5 (page 192) on Pt9).

6.3 The platinum trimer

The smallest physically realistic Pt3-cluster is the equilateral triangle. This cluster represents a

small section of the Pt(111) surface and so can opperate as a surface model. A second cluster, a

triangle with a 90Æ angle, poorly describes the Pt(100) surface, and so this section focuses on the

equilateral triangle.
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Figure 6.44: H�uckel results for equilateral Pt3.

6.3.1 Electronic structure of the equilateral Pt3-cluster

H�uckel calculations can be used to predict correctly the multiplicity of the ground state (section

5.2, page 119). This method was developed originally for clusters using a single valence electron

ECP for the bulk atoms. Despite this restrictions this approach can be apllied to clusters in this

section under certain conditions.

First we assume that all 10 valence electrons (5d/6s) populate the 5d band completely. Electrons

are then moved from the highest antibonding 5d-orbitals into the 6s band, as many electrons being

moved as necessary to �ll all bonding 6s orbitals. Problems occur if the electrons are removed from

degenerate 5d-orbitals. When the 5d electrons have to be rearranged to avoid asymmetric electron

densities in the metal cluster. This problem is less signi�cant, as long as the number of electrons

moved is small. Usually one or two electrons may be moved, because the highest 5d orbital is

nondegenerate.

Figure 6.44 shows the results of the 6s-H�uckel calculations for the case of the equilateral triangle.

H�uckel calculations in section 5.2 (page 119) predict for the most stable equilateral platinum triangle

the 6s band occupied with two electrons and the wavefunction has a multiplicity of 1. Such a trimer

can be build from two 3D and one 1S platinum atoms [337]. This electron con�guration produces

an average 6s population of 0.66 per platinum.

Three electron con�gurations were studied in greater detail:

A No extra electrons remain in the 6s band. This calculation should be close the combination of

three 1S platinums.

B A UMP2-calculation in which one 5d electron remains in the 6s band. Such a calculation tries

to model the combination of two 1S and one 3D platinum atoms.

C The starting function involves the promotion two electrons into the 6s band, to simulate the

combination of two 3D and one 1S platinum atoms as predicted by the H�uckel calculations.

As predicted by the H�uckel calculations case C represents the most stable electron con�guration

at the Hartree-Fock as well as at the electron correlation level (table 6.16). The introduction of

electron correlation does not change the relative order of the electronic states as observed previously

for Pt2. It was not possible to compute successfully any other electronic state with a higher 6s

population.

Table 6.17 shows the MP2 6s population in all three cases. The total populations of the 6s

orbitals in cases A and B are much higher then expected (predicted as 0 for case and 1 for case
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case (�ETOT

� 354) H

A HF 0.552021

B HF 0.624394

C HF 0.625982

A MP2 0.860970

B MP2 0.979235

C MP2 1.053677

Table 6.16: HF and MP2 en-

ergies for Pt3.

case 6s pop

A 0.79350

B 1.98513

C 2.31798

Table 6.17: MP2 6s popula-

tion in Pt3.

orbitals A C

2 - 35 0.00185 0.00048

2 - 39 0.00226 0.00148

3 - 35 0.00284 0.00023

3 - 39 0.00351 0.00246

sum 0.01046 0.00465

6s orbitals: 2, 3

5d orbitals: 35, 39

Table 6.18: Overlap popula-

tion in Pt3.

B), while the 6s population in case C is close to the expected value of 2.0. The introduction of

electron correlation enables the occupation of the 6s orbitals to stabilize the cluster (core-valence

correlation). The MP2 calculation compensates partially for the static electron correlation caused

by the nearly degenerate electronic states. As the occupation of the 6s orbitals increases, this

relaxation pathway becomes less important and the additional 6s population decreases (case A:

0.79, case C: 0.32). Table 6.18 accounts for this mechanism in cases A and C. These states have

been chosen because both wave functions have the same multiplicity. The atomic orbitals 2 and

3 form the 6s orbital on the �rst platinum and the atomic orbitals 35 and 39 represent the 5dz2-

orbital on the neighbouring platinum atoms (double zeta basis set). As the 6s population increases

from case A to case C the Mulliken overlap population between the individual atomic functions

decreases as well as the total overlap population between both orbitals, indicating the reduced

importance of this relaxation pathway.

The mixing of the 5d and 6s orbitals is the �rst of the two major relaxation pathways for

platinum clusters (subsection 5.3.3, page 125). With the second pathway 6s- or 6p orbitals are

populated instead of 5d orbitals (section 6.3.2.3).

6.3.2 The interaction of water with Pt3-cluster

The equilateral triangle o�ers two di�erent adsorption sites: the hollow site coordination over the

centre of the triangle and the on-top position above a platinum atom. The �rst part of this section

focuses on the hollow site, the second on the on-top coordination with all possible geometries, and

the third is a brief summary of the results for the case of the right-angled triangle.

6.3.2.1 Water bound to the hollow site on the cluster

Figure 6.45 displays the model for the hollow-site adsorption of water on platinum(111) (geometry

I). The molecular plane of the water molecule is also the �v mirror plane of the platinum cluster

and the two oxygen-hydrogen bonds point upwards, yielding Cs symmetry for the cluster. In the

�rst set of calculations, the rotational angle ! was kept constant at 30Æ, while � was allowed to

vary. Optimisation (table 6.19) of the distance between the metal surface and oxygen on the water

molecule yielded a bond length of 1.8827 �A at RMP2 level, whith the hydrogens pointing straight

(� = 180Æ).

The HF and MP2 energies di�er markedly as shown in �gure 6.46. The HF potential energy

curve has no minimum, but displays a sharp edge close to 2.5 �A. On the other hand the MP2
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potential energy curve has a shallow local minimum of �2.4 kcal/mol compared with the maximum

at 1.88 �A. After passing through the maximum the energy of the cluster drops dramatically by

about 15.6 kcal/mol and equilibrates at a surface-oxygen distance around 5 �A.

To understand the di�erence between the curves, the 6s populations at HF and MP2 level

were analyzed. Figure 6.47 displays the energy and the 6s population calculated from the HF

wavefunction. Starting at the expected minimum at 2.0 �A (The HF minimum is always slightly

further from the metal surface than the MP2 minimum.) the 6s population increases steadily as

repulsion of the oxygen atom diminishes. At about 2.5 �A the 6s population increases rapidly and

the jump occurs in the energy curve, where the electron con�guration of the metal cluster changes.

At short distances the cluster with the lowest 6s population is more stable then that with two 6s

electrons, since the repulsion between electrons and the oxygen is minimized. When the oxygen is

further from the surface, the 6s electrons move from the 5d band into the 6s band and so stabilize

the metal cluster. At this points the slope of the energy curve changes, since another electronic

state on the metal interacts with the water molecule. Figure 6.47 shows the transformation of the
1S1S1S platinum cluster (The initial 6s population 1.105 is caused by the water metal interaction.)

into the 3D3D1S cluster through changing the distance between the water molecule and the cluster

and provides an excellent example for the polarisation of the metal cluster by the water molecule.

Similar e�ects have been observed by Dai et al. for Pt3�H and Pt3�H2 [338, 339].

Figure 6.48 shows the same transition at MP2 level. The 6s population increases dramatically

(A value of 8.45 is still possible for the 6s population as a double zeta basis set was used on

platinum. Two orbitals per platinum allow a maximum 6s population of 12, which is not physically

reasonable.) during the fall in total energy. At longer distances the 6s population stabilizes at a

value of 1.84, which is close to the 6s population of 2 expected for the 3D3D1S platinum trimer. This

unphysically high value for the 6s population is caused by the incorrect mixing of the two platinum

states during the MP2 calculation. Figure 6.49 shows the MP2 energy and the coeÆcient c0 of

the ground state in the development of the wavefunction. As the distance between the platinum

trimer and the water molecule increases c0 also increases. This increase in the ground state wave

function is possibly due to a reduction in importance of the dynamic correlation coupling the

bonding and antibonding water-metal orbitals (section 6.2.2.3). At even longer distances the static

electron correlation in the metal cluster becomes more important and c0 drops dramatically to an

extremely small value of 0.88, which is far beyond the de�nition of a small perturbation in the MP2

method. Figures 6.48 and 6.49 demonstrate the breakdown of the M�ller-Plesset perturbational

approach to the water-platinum cluster interaction.

Figure 6.50 shows the rotation of the water molecule lying above the hollow site around the PtO

bond (RMP2 level), which reduces the symmetry from CS to C1. The curve is smooth indicating

no changes in the electronic state, but the total energy of the cluster is much lower than observed

for the Pt3�H2O cluster with Cs symmetry (�CS
C1

E = 57 mH = 35.8 kcal/mol). The mechanism

of this jump (�CS
C1

E) is the same as observed before for Pt2�H2O: The rotation decreases the

total symmetry of the cluster facilitating the population of the 6s orbitals and stabilizing the metal

cluster (symmetric 6s population: 1.1646, asymmetric 6s population: 1.5172). The orientation of

the water molecule itself has little e�ect on total energy (43.7 �H, 0.027 kcal/mol). The broken

symmetry also produces a shift of the extrema in �gure 6.50 of about 3 degrees, as showed by the

marker. At the expected extrema (0Æ, 30Æ, 60Æ, 90Æ) Gaussian 94 identi�es the broken symmetry

of the density matrix. Calculations with the correct symmetry yielded higher total energies for the

cluster.
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Figure 6.45: The hollow site of Pt(111).
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Figure 6.46: Dissociation energies HF/MP2.
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Figure 6.48: MP2 energy and MP2 6s popula-
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eÆcient.
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Figure 6.50: Rotation of the hollow site water.
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Figure 6.51: Geom-

etry IV.

dPtO

ω

γ

α is the angle between 
the PTO bond and the 
H2O molecular plane

Figure 6.52: Geometry II.

dPtO

ω

Figure 6.53: Geometry III.

6.3.2.2 Water bound on top

All variables of the cluster shown in �gure 6.45 were optimized simultaneously. The result of this

optimisation (geometry IV) is shown in �gure 6.51. In the course of the optimisation the Pt-Pt-

Pt angle increasesfrom 60Æ to 72Æ and the water molecule (rOH = 0.9881 �A, ^HOH = 105.36Æ)

moves from the hollow position to an unphysical on-top position. This result leads us to the closer

examination of the two clusters shown in the �gures 6.52 and 6.53. Geometry II is a fragment of

an on-top water molecule bound to the Pt(111) surface. Three parameters have been examined in

detail: Stretching and dissociation of the PtO bond (dPtO), rotation of the water molecule around

the PtO bond (!), and the waggling of the water molecule (
). 
 is the angle between the PtO

bond and the centre of the platinum trimer (�gure 6.52). The examination of the E(
) curve

demonstrated the existence of a second local minimum (geometry III) shown in �gure 6.53. This

structure can be seen as a face of a platinum tetrahedron with a water molecule in on-top position.

Figure 6.54 displays the dissociation of the PtO bond. The potential energy curve is smooth,

but the binding energy of the water molecule is too high (�EDISS = 42.644 kcal/mol), indicating

low 6s occupancy for an on-top coordination (table 6.19). Figure 6.55 shows the total energy of the

cluster as a function of rotational angle !. The energy minimum at 0Æ, coinciding with geometry

II, is another example for the importance of hydrogen-platinum interactions in the water metal

system (�EROT = 17.882 kcal/mol). This interaction is also apparent from the strong Mulliken

overlap population (bonding Pt: �0.036, next neighbour: 0.028, second next neighbour: 0.006)

between the hydrogens and the surface atoms, at which they are pointing.

Figure 6.56 shows the cluster energy and PtO bond length (dPtO) as the angle between the

PtO bond and the metal surface (
) increases (�, tha angle between H2O plane and the PtO bond,

�xed at 106.36Æ). As the water molecule is moved around the cluster the bond length increases

and reaches a plateau at 2.21 �A. The local minimum at 150Æ proofs the existence of a second stable

Pt3�H2O structure (geometry III). A single point calculation with a slightly distorted geometry

gave a cluster (geometry IIIa) with a lower energy then expected (table 6.19) from �gure 6.56. A

similar e�ect has been observed previously for Pt2�H2O.

The movement of the water molecule allows a higher 6s population (geometry II: 2.03, geometry

III: 2.28) and stabilizes the cluster (�III
II E(MP2) = 0.35 kcal/mol (table 6.19)). At this point the CS

symmetry stabilizes the 5d-6s separation and inhibits further 6s population. As for the Pt2�H2O
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Figure 6.54: Dissociation of geometry II.
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Figure 6.57: Rotation of H2O in geometry III.

geometry I geometry II geometry III geometry IIIa geometry IV

site hollow on-top on-top on-top on-top

� [deg] 60:00 60:00 60:00 60:00 72:63

dPtO [�A] 2:4702 1:9848 2:1430 2:1430 2:2314

! [deg] 90:0 0:0 0:0 0:001 0:0


 [deg] 90:0 90:0 144:74 144:74 177:67

� [deg] 180:0 106:38 119:68 119:68 118:51

(ERHF + 430) [H] �0:598111 �0:659990 �0:647864 �0:667820 �0:653290

(EMP2 + 430) [H] �0:133059 �0:217826 �0:218377 �0:277631 �0:262339

6s population 1:1646 2:0303 2:2853 3:0541 2:2498

�: angle between the H2O plane and the PTO bond

�: Pt-Pt-Pt angle at the H2O bonding platinum

Table 6.19: Optimized structures for Pt3�H2O.
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α is the angle between 
the PtO bond and the 
H2O molecular plane
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Figure 6.58: Pt3�H2O geometry V.
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Figure 6.59: H�uckel orbital energies.

system (section 6.2.2.2, page 164) electron density 
ows into the 6s band, away from the PtO bond

and towards the ends of the metal cluster while the total 6s population increases. This movement

reduces the repulsion between the 6s electrons and the oxygen and stabilizes the bond between

platinum and water.

A single point calculation with C1 symmetry (! = 0.001Æ) gives a lower total energy, because

the reduced symmetry allows further population of the 6s orbitals (geometry III: 2.28, geometry

IIIa: 3.05). Figure 6.57 shows the rotation of the water molecule. The curve for geometry III has

a local minimum at 70Æ in contrast to the rotation of the water molecule in geometry II (�gure

6.55). This minimum is caused by an extended charge transfer (minimum: 0.134 e, geometry IIIa:

0.123 e), which counteracts the small decrease of the 6s population (minimum: 3.046, geometry

IIIa: 3.054). The decrease of the 6s population destabilizes the cluster, whereas charge transfer

form the water molecule to the Pt3 part stabilizes the cluster. Similar behaviour has been observed

in Pt2�H2O (section 6.2.2.4, page 171). The local minimum in �gure 6.57 is another example of

the competition between charge transfer and 6s population for the strength of the platinum water

bond. During the rotation the total charge on the platinum atom increases and simultaneously

the charge distribution becomes more homogeneous. At the local minimum one hydrogen points

directly at the platinum below indicating a strong Coulomb interaction between surface platinum

atoms and the hydrogens in the water molecule.

6.3.2.3 Pt3 surface model for the Pt(100) surface

A platinum triangle with a right angle is a poorer model for the Pt(100) surface than the equilateral

triangle for the Pt(111) surface. Since quantum chemical results do not di�er much between those

two cluster geometries, this section presents a brief summary of the results.

As the distance between platinums Pt2 and Pt3 (�gure 6.58) increases the interaction between

the atoms decreases. H�uckel calculations (section 5.2, page 119) predict, that the degeneracy of the

antibonding orbitals is lifted. While one orbital transforms into a nonbonding orbital the second

becomes more antibonding. Meanwhile, the bonding orbital becomes less strongly bonding, as

the interaction between both platinums declines (�gure 6.59). Equation 6.2 describes the H�uckel

orbital energies (�) as a function of the scaling factor � (0 � � � 1; � = 0 ! no interaction, � =
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1 ! full interaction) for the resonance integral involving platinums Pt2 and Pt3.

�i = �+ xi �

x1 = �� x2 =
1

2
�+

r
2 +

1

4
�2 x3 =

1

2
��

r
2 +

1

4
�2 (6.2)

Figure 6.59 shows a plot of the corresponding orbital energies. The left side of the plot displays

the equilateral con�guration (� = 1), the right side the H�uckel equivalent of a linear molecule or a

right-angled triangle (� = 0). The true right-angled triangle lies somewhere between these limits.

Since H�uckel calculations predict a singlet ground state for the surface model, the calculations

concentrated on the singlet wave functions. The optimisation (geometry V) of the cluster shown

in �gure 6.58 yielded a total MP2 energy of �431.181 H (table 6.20). The dissociation curve of

the water molecule is smooth, yielding a water-metal binding energy of 34.51 kcal/mol. This high

value for the binding energy is consistent with the low 6s occupancy of 1.75. The right angle in

the platinum cluster enables a stronger interaction of the surface platinums with hydrogens (MOP

0.032), but the rotational energy EROT (14.1 kcal/mol) is about 4 kcal/mol lower than in geometry

II. This di�erence can be explained by shorter PtH distances in geometry V (3.5333 �A) with a

correspondigly stronger interaction (MOP 0.004) compared with a distance of 3.7127 �A and an

overlap population of 0.003 in geometry II.

As in calculations on the equilateral structure 
 was varied systematically between 90Æ and

180Æ with a �xed value of 1.9896 �A for the PtO bond. The resultant curve is similar to that for

geometry II (not shown in section 6.3.2.2), although the energy di�erence between 90Æ and 180Æ is

much smaller for geometry V (7.9 mH compared with 13.3 mH). Both curves have a shallow local

minimum (geometry II: 135Æ, geometry V: 145Æ), which suggest the existence of a second stable

geometry for cluster V similar to geometry III, but with a higher value for 
.

The optimisation of geometry V was repeated for the triplet state (geometry Va). The total

MP2 energy (-431.760 H) of the cluster Va is lower then for geometry V, which is consistent with

the increased 6s population of 3.03. No changes of electronic state were observed in the dissociation

of the water molecule. The low value of water-metal interaction energy (14.038 kcal/mol), which

agrees well with the experimental bonding energy, is a consequence of the high 6s population and

consistent with the long PtO bond length of 2.409 �A.

The 6s populations of the clusters V and Va suggest a second pathway for the 5d-6s interaction,

to be discussed in greater detail in the subsections 6.4.2.1 and 5.3.3 (page 125). The totally

symmetric 6s orbital (a1) has such a low energy, that a population of this orbital is energetically

more favourable than the occupation of an antibonding 5d orbital. Without any arti�cial electron

redistribution, as was necessary in Pt�H2O and Pt2�H2O, the HF-calculation converges to the

optimal 6s population. In the triplet case the a1 orbital is still doubly occupied and the b1 orbital

is singly occupied. The other singly occupied orbital is an antibonding 5d orbital. In the course of

the HF calculation b1 mixes with 5d and it is not possible to identify the b1 orbital as a separate

orbital. This mixing lowers the energy of the b1 orbital and it becomes more bonding. In contrast

to �gure 6.59 a 6s population is possible, which remains bonding. The energy of nonbonding 6s

orbitals is only poorly described by H�uckel calculations. Orbitals found slightly antibonding in

H�uckel calculations were found to be slightly bonding in Hartree-Fock. The b1 orbital may lie

closer to the 5d band, as the H�uckel calculations suggest. Section 5.3.3 (page 125) discussed this

problem in greater detail.

The H�uckel calculations predict, that the equilateral geometry should be more stable then the
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geometry V geometry Va

dPtO [�A] 1:9896 2:4087

� [deg] 107:94 102:47

6s pop. 1:75363 3:03265

(EMP2 + 431) [H] �0:180674928 �0:218744777

(EHF + 431) [H] �0:651190500 �0:759573398

! = 0Æ, 
 = � = 90Æ

Table 6.20: Geometries for the right-angled Pt3-triangle.

right-angled geometry for similar 6s populations, because the 6s electrons dominate the stability

of the metal cluster. This prediction was veri�ed by MP2 calculations. Geometry V (EMP2 =

�431.181 H) has a 6s population of 1.753 while the 6s population in geometry II (EMP2 = �431.218

H) is only slightly higher 2.03. An increase in 6s population (without change in electronic state) of

about 0.3 should give an extra energy of 0.5 mH (energy di�erence between geometry II and III)

and not 36 mH as observed between geometry II and V. Geometries Va and IIIa have similar 6s

populations (Va: 3.033, IIIa: 3.054) but the energy between the clusters di�ers about 58 mH. The

right-angled geometry is always energetically higher then the equilateral triangle.

6.3.3 Summary of the results for Pt3

1. The H�uckel (chapter 5, page 117) scheme can be used with some restrictions for 18 electrons

ECP calculations. Problems occur only with the nonbonding orbitals.

2. Two relaxation pathways for the 5d-6s interaction have been identi�ed:

(a) 5d and 6s orbitals mix to form hybrid orbitals, provided they have correct symmetry.

(b) If the 6s orbital energies are low enough, these 6s orbitals are populated in preference

to the 5d orbitals.

Both pathways increase the 6s population and can obscure the H�uckel predictions. The

exact mechanism and the correlation between H�uckel and HF calculations was discussed in

subsection 5.3.3, page 125.

3. The equilateral triangle with water in the hollow position demonstrates the correlation of the

platinum-oxygen distance and the 6s population. As the water molecule moves away from

the surface electron density 
ows from the 5d band into the 6s orbitals. This electron 
ow is

so large, that the movement of the water molecule causes a change in the electronic state of

the metal cluster.

4. The equilateral triangle with water in the hollow position provides a good example of the

breakdown of the MP2 method in respect of the water-platinum interactions. The dynamical

correlation can be included very well, but the static electron correlation is beyond the scope

of this method.

In small clusters the di�erent electronic states are well separated in energy and electron cor-

relation is dominated by dynamical e�ects. In these cases the MP2 method works reasonably

well. The energy di�erence between the electronic states becomes smaller, as the cluster size
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increases. This picture is controlled by static electron correlation and the MP2 approach

breaks down.

5. The results obtained for Pt�H2O and Pt2�H2O have been con�rmed in those for Pt3�H2O:

(a) The 6s population stabilises the cluster, but weakens the water-metal interaction. The

higher the 6s population, the lower the total energy of the cluster, and the water-

platinum bond becomes weaker.

(b) Electron density 
ows into the 6s-band away from the water-platinum bond to the edges

of the cluster. This electron 
ow forms the basis of cooperative forces in the water-metal

interaction.

(c) The reduction of the cluster's symmetry facilitates the occupation of the 6s orbitals.

Some movement of the water molecule break the original symmetry and can cause

unphysical jumps between potential energy surfaces. CAS-SCF calculations can help

to minimize the size of the jumps, but the important orbitals are more diÆcult to �nd

than in Pt2�H2O. The energy jump becomes smaller as the active space increases, but

the computational costs rise. A detailed analysis of this problem is beyond the limits of

the thesis and will be subject of further research.

(d) The interaction between the hydrogen atoms on the water molecule and the platinums

below is weak, but has a signi�cant in
uence on the orientation of the water molecule.

This agreement with the results found so far shows, that these phenomena are not dependent

on cluster size but underlie the water-metal interaction.

6.4 The Pt5-pyramid

Several geometries are possible for a Pt5 cluster. This section

2.77 Å

2.77 Å

dPtO

γ

ε

Figure 6.60: Geometry of the

Pt5�H2O cluster.

focuses only on the tetragonal pyramid (�gure 6.60) with a

platinum-platinum distance of 2.77 �A. The pyramid was chosen

for several reasons:

1. The �rst successful quantum chemical calculations on

platinum-water interactions were performed with such a

cluster [64].

2. The calculations on Pt2�H2O (section 6.2.2) and

Pt3�H2O (section 6.3.2) showed that the most stable

clusters are either the vertices or faces of a pyramid.

3. Three-dimensional surface models are closer to reality

than two-dimensional models (section 6.6), because the

width of the 5d band lies closer to the experimental value.

With increasing cluster size, the problems with di�erent electronic states are magni�ed. Even

the smallest change in 
 (the angle between the platinum-oxygen bond and the molecular plane

of the water molecule) and � (the rotational angle around the platinum-water bond) induced large

changes in total energy. A total of 46 calculations was done to analyse these energy jumps: A

smooth description of the potential energy surface was only possible when the symmetry instruction

in Gaussian 94 was turned o� (keyword: NoSYMM) with an initial-guess function chosen from a totally
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asymmetric cluster. CISD (con�guration interaction single and double excitations) calculations

showed, that the symmetry module of G94 generated wavefunctions which did not describe the

ground state, but always another state. A set of CAS-SCF calculations including orbitals close to

the HOMO-LUMO gap showed that no simple solution to this problem was available.

6.4.1 Electronic structure of the Pt5-pyramid

Figure 6.61 shows the results of the H�uckel calculations

α + (1 - 5)β

α - 2β

α + (1 +  5)β

α

Figure 6.61: H�uckel results for Pt5.

(section 5.3.1, page 122). Either two or four 6s elec-

trons could form stable metal clusters. Previous results

suggest that the highest 6s population should create the

most stable metal cluster. The troublesome Pt5 clus-

ter mentioned above have a 6s population higher then

2, but the clusters were unsuitable as models for thesur-

face, since a distortion of � about 20Æ (rotation around

the platinum-oxygen bond) caused a second unphysical

energy jump. This problem is caused by the degenerate

nonbonding 6s molecular orbitals. The binding of the

water molecule to the metal cluster lifts this degeneracy and the singlet wave function becomes

more favourable than the triplet function. For a smooth rotation around the platinum-water bond

the orbitals mix, as their nodal planes rotate with the water molecule to ensure a smooth transition

(subsection 5.3.4, page 126 for details). A 6s population of 2 instead of 4 eliminates this problem

and simpli�es the description of the energy surface.

This simpli�cation should have only a small in
uence on the strength of the platinum-water

bond. The cluster can be separated into two layers: the platinum atom in the top layer, which

contributes directly to the water-metal bond and the four atoms at the second layer, which do

not contribute signi�cantly to the bond. The strongest in
uence on the platinum-water bond

strength has the 6s population at the top of the pyramid. The 6s orbital of the top platinum does

not participate in the nonbonding orbitals, as shown in �gure 6.61. Electrons in the nonbonding

orbitals should therefore stabilize the cluster but should have little in
uence on the metal-water

bond. H�uckel calculations predict a 6s population of 0.553 at the top of the pyramid in both cases

and the repulsion between the platinum at the top and the oxygen should therefore be the same.

A platinum cluster with a total 6s population of 2 should therefore serve as an ideal model,

since the total energy of the metal cluster is not important for the interface model.

6.4.2 The interaction of the Pt5-pyramid with water

All systematic attempts to create a cluster similar to that predicted by the H�uckel results failed.

The quantum chemical calculations started with the hydrogens pointing straight upwards (
 =

180Æ), because the high symmetry of the cluster (C2v) reduced the runtime of the Gaussian 94

jobs. Any small distortion of the angles 
 and � (�
 = �� = 0.001Æ) caused unphysical energy

jumps as observed previously for Pt3�H2O and Pt2�H2O. These jumps are caused by an abrupt

change in the symmetry of the cluster. A small distortion in 
 reduces the symmetry to CS and

a distortion in � reduces the symmetry to C1. The distortion of � is more critical than that of 
.

The reverse approach, starting from an asymmetric cluster, produced an asymmetric wavefunction

on the symmetric cluster after the removal of the distortion.
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The occupation of the 6s orbitals and hence the electronic state of the cluster depends critically

on the distance between the platinum cluster and the water molecule. All test calculations (in-

cluding all distortions) were repeated for di�erent platinum-oxygen bond lengths. Finally a cluster

was found that could be distorted (�
, ��) without any energy jumps, but retains a symmetric

wavefunction.

Table 6.21 summarizes the results for the optimized
dPtO [�A] 2:2973


 [deg] 141:77

� [deg] 45:0

6s pop total 2:976

6s pop top 0:734

qTOP [e] �0:2035

�q [e] 0:1261

ETOT [H] �668:101599

�EDISS [kcal/mol] 17:229

Table 6.21: Optimized Pt5�H2O

cluster.

Pt5�H2O cluster. The dissociation energy of 17.229

kcal/mol is close to the experimental value, which agrees

well with a 6s population of 0.734 at the top of the pyra-

mid. This value is close to the value of 0.7 to 0.8 sug-

gested in the literature for surface platinum atoms [285].

The platinum atom at the top carries a negative charge of

�0.203 e. This negative charge is caused by the 6s popu-

lation within the cluster (subsection 5.3.1, page 122), but

serves as a model for the electron spill at the surface, which

weakens the water-metal bond.

In the free platinum cluster (dPtO = 12.2973 �A, section

6.4.2 for details) the total 6s population has a value of

2.958 and the 6s population on the top platinum is 0.714. During formation of the water-platinum

bond the total 6s population increases by about 0.018. The change of the 6s population on the top

platinum is +0.020. The formation of the bond leads to a smallincrease in 6s population at the top,

while the bulk atoms at the foot of the pyramid do not change signi�cantly. The charge transfer

from the water molecule to the metal cluster is 0.1261 e. This charge accumulates at the top of

the platinum pyramid (qTOP = �0.2035 e in Pt5�H2O, qTOP = �0.0874 e in the free pyramid,

�qTOP = �0.1161 e). Only 7.9% of the total charge transfer 
ows into the base of the pyramid.

The charge on the top platinum increases about 0.1161 e, but the 6s population increases only by

about 0.02 e. Hence most of the charge 
ows into the 5d orbitals of the top platinum. The binding

mechanism is the same as observed before: The water molecule binds locally to a platinum. With

this bond formation electron density 
ows into the bonding platinum's 5d orbitals. This 
ow is

again connected to a small increase in the 6s population. The 6s electron density stays on the top

platinum, because intramolecular charge transfer is not supported by the water hydrogens. In the

Pt2�H2O and Pt3�H2O clusters with large intramolecular charge transfer the negative charge on

the surface platinums is stabilised by Coulomb interactions with the positive hydrogens above the

surface. In the Pt5�H2O cluster the distance between the bulk platinums at the bottom and the

hydrogens at the top is too long to support this mechanism. The hydrogens point upwards and

the cluster's geometry is close to the bilayer structure suggested by the ice rules for water bilayers

(
 � 125Æ, sections 1.1.3 (page 4) and 8.2 (page 265)).

Figures 6.62 (including the water 3a1 orbital) and 6.63 (including the water 1b1 orbital) show

the bonding orbitals of the platinum-oxygen bond. This bond is localised between the top platinum

and the oxygen, because the coeÆcients of the other atomic orbitals contributing to this molecular

orbital are smaller than a tenth of the values for the bonding platinum. The platinum atoms on

the base of the pyramids are 1.4 �A below and above from the cluster's mirror plane shown in the

�gures. The observed contribution of the basal atoms to the electron density in the mirror plane

is therefore naturally low.
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Figure 6.62: Bonding orbital in Pt5�H2O

(H2O 3a1).
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Figure 6.63: Bonding orbital in Pt5�H2O

(H2O 1b1).

6.4.2.1 Dissociation

Figure 6.64 shows the total energy of the Pt5�
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Figure 6.64: Dissociation Pt5�H2O.

H2O pyramid as a function of the platinum-oxygen

distance dPtO for various values of 
. The curve

for the optimised geometry (
 = 141.8Æ) is is very

similar to that for 
 = 150Æ.

The range for dPtO (2 �A � dPtO � 3 �A) is much

smaller than before, since all quantum chemical

calculations on Pt5 clusters showed that distance-

related energy jumps are seen �rst in this inter-

val. Table 6.22 lists the important parameters for

the minima of the dissociation curves. The total

6s population varies only little lying between 2.96

and 2.98 for all points. The same is observed for the 6s population of the top platinum atom: All

values lie in a small interval between 0.72 and 0.74. These values for the 6s population agree well

with those found for the free platinum pentamer. In the free platinum cluster (dPtO = 12.2973

�A) the total 6s population has a value of 2.958 and the 6s population on the top platinum is

0.714. Since energy discontinuities are generally assiciated with large chanhes in 6s population, a

relatively constant 6s population suggests such discontinuities are unlikely.

With increasing values of 
 the charge on the top platinum becomes smaller. The charge

decrease is proportional to the charge transfer between the platinum cluster and the water molecule.

This change is caused by the relative importance of the water 3a1 and 1b1 orbitals for the platinum-

water bond. For large values of 
 the bond is dominated by the 3a1 orbital. The widely spreading

3a1 orbital is partially bonding and charge transfer along this orbital is unfavourable. For small

values of 
 (around 90Æ) the platinum-water bond is dominated by the 1b1 orbital, which is strictly

non-bonding and tighter. Charge transfer is therefore easier from the non-bonding 1b1 orbital

(Compare with subsection 6.1.4, where the platinum-water bond is not obscured by additinal

platinum-hydrogen interactions).

The 6s population increases slightly with increasing values of 
 and so shows an opposite e�ect

to the charge transfer. This increase of the 6s population can be explained via the di�erent water

orbitals. The platinum-water orbital containing the 3a1 water orbital has a higher 6s contribution
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 d�PtO (ETOT + �EADS 6s pop 6s pop qTOP �q

[deg] [�A] 668 H) [H] [kcal/mol] total top [e] [e]

90 2:35 �0:095912 13:661 2:964 0:720 �0:303 0:1814

120 2:30 �0:100896 16:788 2:974 0:729 �0:239 0:1515

142** 2:30** �0:101599 17:229 2:976 0:734 �0:203 0:1261

150 2:30 �0:101526 17:183 2:977 0:735 �0:193 0:1180

180 2:30 �0:101146 16:945 2:978 0:738 �0:178 0:1041

* not optimized ** optimised cluster

Table 6.22: Local minima in the Pt5 H2O dissociation.
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Figure 6.65: Rotation of H2O around the PtO

bond in Pt5�H2O.
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Figure 6.66: Wagging of H2O in Pt5�H2O.

than the 1b1 orbital. With the increasing dominance of the 3a1 orbital the 6s population increases

despite charge transfer and orientation of the water molecule.

6.4.2.2 Rotation

Figure 6.65 shows the total energy of the Pt5�H2O as a function of the rotational angle �. The

optimized structure (
 = 142Æ, � = 45Æ) is at the minimum of the smooth curve. No energy jumps

are observed during the rotation, reducing the cluster symmetry from CS to C1.

Bonding to the water molecule lifts the degeneracy of the non-bonding 6s orbitals. In the

singlet state of the 1S + 4 � 3D platinum pentamer one of these orbitals is double occupied, while

the other remains empty. During the rotation of the water molecule the nodal planes of the non-

bonding platinum 6s orbitals move with the water molecule (sections 5.3.4, page 126 for details).

This is not possible with unsymmetrical occupied 6s orbitals. Figure 6.65 shows a graph with no

jump about 20Æ, which indicates the absence of this problem of the unsymmetrical 6s population.

Figure 6.65 proofs so, that the platinum cluster used for this set of calculations is build from 3 1S

platinums and 2 3D atoms despite the high 6s population of 2.96. This high 6s population is caused

by relaxation pathways, which were be discussed in section 5.3.3 (page 125) in greater detail.

The rotational barrier is negligible small (0.03 kcal/mol) and the water molecule can rotate

freely around the platinum-water bond. This rotation is so easy, because the bulk platinums at the

bottom do not interact with the hydrogens (overlap population 0.0002). The rotational barriers

observed in Pt2 and Pt3 are mainly caused by the platinum hydrogen interaction.
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6.4.2.3 Wagging

Figure 6.66 shows the total energy of the Pt5�H2O cluster as a function of the angle 
 between

the plane of the water molecule and the PtO bond. The bond length in all calculations was kept

at 2.25 �A, the optimized bond length for 
 = 180Æ.

The energy required to move the hydrogens upwards (
 > 141.77Æ) is very small (0.26 kcal/mol,

detail plot in �gure 6.66), while the energy for the reverse movement (
 < 141.77 ) is diÆcult (35.29

kcal/mol). This exceeds the strongest binding energy found in this system (�17.3 kcal/mol). The

bond between platinum and hydrogen is much weaker than that between platinum and oxygen.

The platinum-oxygen bond should therefore be much longer than 2.254 �A as used in the calculation.

The relaxation of the bond length during the rotation lowers the barrier, but was too costly to

compute.

The low orientational energy of the hydrogens is important for the structure of the water bilayer

on the platinum(111) surface. The in
uence of the metal surface on the orientation of the water

molecules is very small and the hydrogens will be orientated according to the growing ice lattice.

6.4.3 Summary of the results for the platinum pyramid

1. Without the H�uckel calculations it would have been impossible to �nd a suitable Pt5�H2O

cluster as a working surface model. The chosen 6s population allowed us to construct a

potential energy surface without any energy discontinuities due to changes in the symmetry

of the cluster.

2. The 6s population on the top platinum atom (0.714) agrees with the values predicted by

Bigot and Minot (0.7 - 0.8) [285] for surface atoms, but is about 34% higher than the

H�uckel value (0.533). This error is acceptable in view of the simplicity of the H�uckel model

(section 5.3, page 121).

3. The platinum pyramid has a small dipole moment, which can be used as a model for the

electron spill at the surface. This dipole moment points into the wrong direction, if the

cluster is used to model another adsorption site as done in the literature [64]. The platinum

pyramid is only suitable as a model for the on-top position of the water molecule.

4. The negative charge of the top platinum and the high 6s population of 0.7 on this atom

guarantee the correct binding energy (17.23 kcal/mol), since as both properties, 6s population

and charge on the top platinum, dominate the Coulomb repulsion between oxygen and the

metal.

5. The binding mechanism between platinum and water is the same as that before for the other

Ptn�H2O clusters. The 3a1 and 1b1 orbitals of the water interact with platinum 5d orbitals.

This interaction leads to a small increase in 6s population, but here the intramolecular charge

transfer of the 6s electrons is not possible. The bulk platinum atoms in the bottom layer, the

possible destination of 6s electron 
ow, are too far from the hydrogens of the water molecule

to stabilize the additional 6s electron density through Coulomb interaction.

6. All calculated dissociation curves were smooth and without any discontinuities involving

di�erent electronic states. The 6s population did not change during the dissociation, which

indicates the energy di�erences to the other states is larger than the polarisation energy of

the metal cluster by the water molecule.
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7. The rotational energy of the water molecule is negligibly small (0.03 kcal/mol) and the total

energy curve of the cluster does not show any discontinuities at 20Æ. This suggests, that the

metal cluster can be described as the result of the combination of 3 1S and 2 3D platinums

despite the high 6s population of 2.9. The high 6s population can be explained by two

relaxation pathways, which were discussed in section 5.3.3.

8. The orientation of the hydrogens (
) can be changed easily (0.26 kcal/mol) as long as the

hydrogens point away from the surface. Both the small orientational energy and the rotational

energy suggest that the precise structure of the water bilayer is controlled by the ice structure

and not by the platinum. The platinum-water interactions do not allow the hydrogens to

point directly to the metal surface (
 � 90Æ).

9. The chosen Pt5�H2O pyramid is a suitable model for a revised classical water-platinum

interaction potential, but the lack of further surface atoms in the top layer results in too

small energy barriers for the orientation of the individual water molecules. Attempts to

compute extended surface models with such a model would therefore give poor results, as

the interface structure would be dominated by the water-water interaction potential.

6.5 The Pt9-cluster

The Pt9�H2O cluster is the largest of the se-

3

γ = 93.73°
dPtO = 2.1662 Å
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Figure 6.67: Optimized Pt9�H2O.

ries of calculations. Due to its size and the long

runtimes of the computer jobs (optimisation: 9d

17h), calculations were restricted to single point

calculations (approx. 24h runtime). Figure 6.67

shows the optimized structure. The dissociation

energy was computed by setting dPtO to 12.1662 �A

and using the wavefunction of the optimised clus-

ter as guess function. This procedure works well

at Hartree-Fock level as the total 6s population

does not change much (Pt9�H2O: 3.666, free Pt9:

3.374), but fails at MP2 level (Pt9�H2O: 6.187,

free Pt9: 7.571). The breakdown of the MP2 ap-

proximation is already evident from the optimized

cluster, as the coeÆcient of the groundstate wave

function c0 is as low as 0.67.

Even at Hartree Fock level the bonding mechanism is not easy to extract from the two points.

The binding energy is low (�E = 2.724 kcal/mol) despite a low 6s population on platinum 5

(0.446). Strong Coulomb interactions (qPt�5 = �0.956 e, qPt�6 = +0.066 e) weaken the platinum-

oxygen bond. The charge distribution at the platinum surface (atoms 6, 7, 8, 9) re
ects the

mirror image charges caused by the water molecule at the platinum surface, but here the charge

is not associated with 6s electron density as observed previously. Platinums 6 and 9 are more

negative than platinums 7 and 8 (mirror charges, positive hydrogens lie above them), but the 6s

populations at these atoms are lower (Pt-6: 0.295, Pt-7: 0.458). At platinum atoms 6 and 9,

which Coulomb interact with the hydrogen atom of the water molecule, the 5d electron population

is high, suggesting that the platinums were originally 1S states, whereas platinums 7 and 8 were
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Figure 6.68: Bonding orbital in Pt9�H2O

(H2O 3a1).
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Figure 6.69: Bonding orbital in Pt9�H2O

(H2O 1b1).

in 3D state. The polarisation of the surface can be inferred from the charge di�erence between

platinum atoms 6 and 7. The binding of the water molecule increases the di�erence by about 0.06

e. Meanwhile the di�erence in 6s populations changes by 0.2214. A large change the 6s population

causes a small change in the charge distribution. This suggests, that the 6s electron 
ow is directly

associated with a change in 5d electron density, suggesting a circular electron current. A detailed

analysis of this mechanism in Pt9�H2O incorporating all valence electrons is beyond the scope of

this work, and is subject of further research.

Charge transfer from the water molecule to the platinum cluster is 0.208 and during the for-

mation of the platinum-water bond the charge on platinum 5 increases by 0.375 e, nearly twice as

much as the charge transfer. Meanwhile, the 6s population on platinum 5 increases by only 0.022,

inferring that the addititional charge has to be in the 5d band. This part of the interaction is the

same as observed previously for the smaller clusters: The free electron pair of the water molecule

overlaps with a platinum 5d orbital (�gures 6.68 and 6.69), which leads to a small rise of the 6s

population. This new bond is again localised between the atoms, but the circular 5d-6s electron


ow obscures the mechanism.

With increasing size of the platinum cluster the MP2 method becomes less valid for the calcu-

lations of the platinum-water interface. This trend is visible in the coeÆcient of the ground state

c0 in the MP2-wavefunction:

Ptn 1 2 3 5 9

c0 0.97 0.95 0.88 0.78 0.68

Table 6.24: Ground state coeÆcient c0 versus cluster size.

With increasing cluster size the di�erent electronic states become energetically less distinguish-

able and static electron correlation becomes more important. The Pt9�H2O is certainly beyond

the limitations of the method.

The MP2 binding energy of the water molecule is much higher than that of the HF calcualtion.

This increase is not caused by a stronger platinum-oxygen bond as the Mulliken overlap popula-

tion is nearly the same at HF and MP2 levels (MP2: 0.101, HF: 0.106), but by an increase in

the platinum-hydrogen interaction (MP2: 0.017, HF: 0.008). At MP2 level the 6s population at

platinum 5 is lower than at HF level (MP2: 0.261, HF: 0.446) and the Coulomb repulsion between
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Pt9�H2O / dPtO = 2.1662 �A Pt9�H2O / dPtO = 12.1662 �A

RHF MP2 RHF MP2

6s pop Pt5 0:4465 0:2615 0:4240 0:3257

6s pop Pt6 0:2951 0:8322 0:3207 1:2316

6s pop Pt7 0:4581 1:1746 0:2789 1:1322

6s pop Pt8 0:4581 1:1746 0:2789 1:1322

6s pop Pt9 0:2951 0:8322 0:3207 1:2316

qPt5 [e] �0:9564 �0:6733 �0:5810 �1:3843

qPt6 [e] 0:0664 0:1055 0:1040 0:2340

qPt7 [e] 0:1590 0:1568 0:0717 0:2308

qPt8 [e] 0:1590 0:1568 0:0717 0:2308

qPt9 [e] 0:0664 0:1055 0:1040 0:2340

6s pop total 3:6661 6:1869 3:3737 7:5715

6s pop surface 1:9530 4:2750 1:6232 5:0534

qsurface [e] �0:5057 �0:1486 �0:2297 �0:4547

MOP PtO 0:1061 0:1006 0:0 0:0

MOP PtH 0:0085 0:0166 0:0 0:0

�qCT [e] 0:2078 0:2733 0:0 0:0

�E [kcal/mol] 2:724 53:47 | |

Table 6.23: Electronic properties of the Pt9�H2O cluster.

oxygen and platinum is much smaller. However, the calculation of the true binding energy is

more diÆcult. At HF level the total 6s population does not change much during the dissociation

process (opt: 3.666, free: 3.374), whereas the total 6s population changes dramatically at MP2

level (opt: 6.187, free: 7.571), suggesting a di�erent binding mechanism: The interaction with

the water molecule forces the 6s electrons into the metal core in a similar way similar to that

observed for Pt3�H2O with the water molecule at the hollow site. But the interaction of water

at the hollow site with the platinum triangle provided the �rst evidence for the breakdown of the

M�ller-Plesset approximation for the platinum-water interface. The charge distribution and the

individual 6s populations of the surface atoms on the other hand show the same pattern as the HF

values indicating the same or a similar mechanism. The derived binding energy of 53.47 kcal/mol

therefore has to be treated with caution.

The structure of the water bilayer on the platinum surface can be inferred by the BFP rules

(subsection 1.1.3, page 4) and the orientational energy of the hydrogen atoms is important for

the realisation of this structure. To compute the rotational energy 
 equal to 179.9Æ and not to

180Æ and dPtO kept constant. This method avoids complications with symmetry, because 
 = 180Æ

increases the symmetry to C2v. The orientational energy is high at MP2 level (12.473 kcal/mol)

re
ecting a strong platinum-hydrogen interaction, but small at HF level (0.499 kcal/mol). This

is larger than the values for Pt2�H2O clusters (geometries C and D, �E = 8.343 kcal/mol) with

singlet wavefunctions. For the triplet states of the Pt2�H2O cluster, the energy barrier is reduced

and the second minimum vanishes (�gure 6.32, page 171 and table 6.12, page 164). The high

orientational energy for Pt9�H2O is suspect, as the validity of the electronic state of the platinum

cluster was not checked and the MP2 calculations were used beyond their allowed range. The true

value is likely to be smaller close to that of Pt5�H2O considering the HF results for Pt9�H2O.
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cluster geometry sym rPT energy 5d band** ��� �ETOT/atom

[�A] gap** [H] [H] [D] [H]

Pt 3D single atom 0.3312 0.06183 118.284142

Pt 1S single atom 0.3333 0.0 118.262749

I linear D1h 2.7592 0.2479 0.10029 0.0 118.275475

II equilat. triangle D3h 2.7722 0.1997 0.14967 0.0 118.286990

III rhombus D2h 2.5875 0.2132 0.24687 0.0 118.330218

IV tetrahedron TD 2.8383 0.1818 0.16066 0.0 118.293919

V trapezium C2v 2.6145 0.2553 0.23439 0.1245 118.358075

VI tetrah. + rhomb. CS 2.6438 0.2232 0.27539 3.2038 118.364361

VII pyramid C4v 2.6449 0.1800 0.18268 1.9581 118.339041

VIII square D4h 2.6753 0.1551 0.17764 0.0 118.294075

IX double cone D2h 2.6069 0.1816 0.28528 0.0 118.319533

X swiss cross D4h 2.5187 0.2021 0.25700 0.0 118.309895

* MP2 value ** HF value

Table 6.25: Small Ptn Cluster, singulet wavefunction, MP2 optimized structure.

6.6 The electronic structure of the metal cluster as a func-

tion of its size

Table 6.25 and �gure 6.70 summarize the results for a selection of optimized platinum clusters.

The optimisation was done at MP2 level, while the electronic properties refer to HF values. These

calculations were performed to determine the optimal cluster to be used as surface model (Gaussian

94 default settings).

A suitable surface model has to ful�ll certain conditions:

1. dPtPt = 2.77 �A [28, 36, 37, 65]

2. 5d band width � 6.5 eV = 0.24 H [48, 49, 334b]

3. a small or vanishing energy gap between HOMO and LUMO to simulate the metal character

4. ��(HOMO) � 5.65 eV - 5.7 eV to simulate the work function correctly [15]

The total energy per platinum of the clusters increases gradually with the cluster size: Pt1 !
�118.2735 H, Pt2 ! �118.2755 H, Pt3 ! �118.2870 H, Pt4 ! �118.3061 H, Pt5 ! �118.3382

H (average values). But, the total energy of the cluster does not provide a good criterion for the

validity of the cluster as surface model, because the total energy depends strongly on the electronic

state (6s population) and the geometry of the cluster (Pt4: rhombus ! �118.330 H, tetrahedron

! �118.294 H).

The third criterion is impossible to ful�ll for these clusters due to the limited size. The clusters

are therefore models for semiconductors in the best case. The smallest energy gap was found for

the platinum square, but the 5d band width is too small for a suitable surface model. According

to the 5d band width, suitable models are the clusters III, VI, VII, IX and X.

From these clusters the platinum pyramid has the smallest band gap of 0.18 H. The optimised

platinum-platinum distance (2.64 �A) of the pyramid is closest to the required 2.77 �A. The pyramid
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Figure 6.72: Charge on Pt5 in Pt5�H2O for

di�erent values of dPtPt (EHT).

therefore provides the most suitable surface model. The symmetry of the pyramid creates two

subsets of atoms in the cluster: the platinum at the top and the four basal platinums. These two

groups of atoms carry di�erent charges. The negative end of the corresponding dipole (1.96 D8)

is located at the top (qTOP = -0.0299 e). This dipole moment (similar to the experimental dipole

moment of the water molecule 1.85 D) can be used to simulate the electron spill at the metal

surface. The simulation works only for one side of the cluster: The base of the pyramid is a poor

model for the surface, since the dipole moment points into the wrong direction.

The calculations on Pt2�H2O and Pt3�H2O already suggest the use of a three dimensional

surface model. The calculations on small platinums clusters reinforce this assumption: The best

model appears to be the platinum pyramid.

6.7 EHT calculations on the Ptn�H2O system

The platinum-water interface has been analysed using Extended H�uckel (EHT) calculations [64,

101]. None of the problems mentioned previously, like polarisation or the di�erent electronic states,

were not identi�ed by these authors.

The EHT package YaEHMOP [304, 311] contains all parameters for the simulation of the

water-platinum interface. The main di�erence from the calculations of Holloway et al. [64] is

the platinum basis set. YaEHMOP uses two Slater functions for the platinum 5d orbital, while

Holloway et al. used only one.

Figures 6.72 and 6.73 summarize the results for two Pt5�H2O clusters (
 = 135Æ). Both

clusters di�er in the platinum-platinum distance in the pyramid. The �rst uses the bulk value of

2.77 �A and the second the optimised9 platinum-platinum bond length of 2.217 �A. The curve (�gure

8The experimental dipole moment of water in 1.85 D. According to equaition 2.99 (page 42) the maxi-

mum Pt5�H2O interaction energy is 6.68 to 3.85 kcal/mol, if both dipole moments are assumed to lie at

the centres of the molecules (d = 2.5 to 3 �A, 1 e�A = 4.8 D, 1 e2/�A = 332.17752 kcal/mol). Dipole-dipole

interactions account for roughly one third of the total interaction energy.
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Figure 6.75: EHT results for Pt9�H2O.

6.71) calculated with the bulk value is smooth and has no kinks in the analysed area (1.0 � dPtO

� 10.0 �A). The maximum binding energy of 11.281 kcal/mol at dPtO = 1.9 �A agrees well with

experiment. The same set of calculations for the optimized platinum-platinum distance produced

a totally di�erent shape of curve. The water molecule is repelled by the surface and the interaction

energy changes suddenly.

Figure 6.72 shows the charge on the top platinum during the formation of the bond. The curve

for the bulk value is again smooth over the range considered while the curve for the optimized

platinum cluster produces a sudden jump, indicating a change in the electronic structure of the

cluster induced by the water molecule.

The 6s orbitals interact with the 5d band of the core, creating three rather

A

B

C

Figure 6.73:

than two totally symmetric 6s orbitals with various contributions of 5d orbitals

(�gure 6.73): The �rst totally symmetric orbital (A) lies deep in the 5d band

and does not change its position during the formation of the bond. The second

orbital (B) is the LUMO of the cluster. As the water molecule approaches

the pyramid the energy of the LUMO lowers until �nally the LUMO and the

HOMO change their relative positions and hence the population. This change

in population causes the sudden jump in the energy and the charge on the top

platinum. The �nal totally symmetric orbital (C) has such a high energy that

its relative position has no in
uence on the charge distribution.

Figure 6.74 shows the binding energy of the water to various platinum clus-

ters. The curves have same shape and the position of the minima does vary

much for di�erent clusters. Figure 6.75 displays the same set of calculations

for Pt9�H2O with di�erent values for 
, the angle between the water molecular plane and the

platinum-oxygen bond. As the hydrogens get closer to the surface the activation energy of the

adsorption process increases. An energy jump is diÆcult to identify in the plot, but between 2.5

�A and 2.4 �A the charge on platinum 5 in the centre of the surface changes abruptly from �0.3 e

to +0.5 e. This abrupt jump re
ects a change in the electronic structure of the cluster.

The EHT calculations show clearly that polarisation e�ects and the presence of nearby electronic

states still cause problems at low level theory. Even at this low level it is impossible to construct

a working surface model with medium sized platinum clusters (eg Pt9). It might be worth testing

9The optimisation was done with the program's walsh-option and a very �ne grid.
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this method with very large clusters, where the di�erent electronic states lie so close to each other

that smooth transitions are possible.

6.8 Summary of the calculations with a 18 valence electrons

platinum atom

Two ECPs are commonly used for the simulation of the platinum surface: LanL1 and LanL2.

Despite the recommendation of Hay and Wadt [189] the LanL1 ECP has been used in clusters

with strong metal-metal interactions.

Our calculations showed, that the platinum-water bond is a�ected only slightly using these two

potentials. Bonds computed with the LanL1 potential tend to be longer and weaker, but show

the same characteristics than those predicted by the LanL2 ECP. The LanL1 potential appears

to be a good low cost-alternative to the more expensive LanL2 ECP. Calculations with larger

clusters showed, that with increasing cluster size intermetallic charge transfer in the platinum

cluster becomes more important. For medium sized clusters the LanL2 ECP provides a more

accurate description of the intermetallic charge transfer than the LanL1 potential.

The intermetallic bond is dominated by the 6s orbitals. The total energy of the metal cluster

decreases with the population of the 6s potential. With increasing cluster size the 5d and the 6s

bands become larger while the 5d-6s interaction becomes stronger. This interaction results in a

multitude of electronic states which have similar energies. The small energy di�erences make static

electron correlation more important and near degeneracy e�ects complicate the quantum chemical

calculations. A simple approach to electron correlation such as MP2 becomes less appropriate and

more elaborate methods are necessary. The computational costs rise dramatically with the number

of electrons and it is therefore impossible to increase the level of theory with increasing cluster size.

The bond between platinum and water is formed via platinum 5d orbitals in all Ptn�H2O

clusters and the plots of the bonding orbitals are in good agreement. A very model for this

interaction would be an inner orbital complex: 5d electrons are promoted into the 6s band and

the resulting hole in the 5d band is �lled with electrons from the lone electron pair on the water

molecule. The results from the quantum chemical calculations are more detailed and complex,

but do not contradict this simple model. The 3a1 and 1b1 orbitals of the water molecule interact

separately with the occupied 5d orbitals in the metal cluster. For the formation of the bond

between platinum and water the symmetry of the available orbitals is important and controls the

adsorption site: Both water orbitals have to �nd suitable partners to reproduce a strong bond.

All quantum chemical calculations so far predict an on-top coordination of the water molecule in

agreement with experimental data in the literature.

The interaction between platinum and water is similar to the hydrogen bond observed in the

water dimer and the adsorption of water on platinum base on the interaction of fully occupied

orbitals. During the formation of this bond the 5d-6s interaction in the cluster changes leading

to a small increase of 6s population, which is much smaller than two as predicted by the simple

model. The increase in 6s population is the origin of the second problem in the description of

the platinum-water interface: The 6s orbitals are more widely spreading than the 5d orbitals and

electron transfer from a 5d orbital into the 6s band provides a transfer of electron density from

the platinum core to the edges of the cluster. Such an electron transfer increases the Coulomb

repulsion between the platinum atom and the oxygen valence electrons and weakens the platinum-
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water bond. This Coulomb repulsion can be used to understand the prefered on-top adsorption of

water on Pt(111). At those sites is the electron density lower than at bridging or hollow sites and

so Coulomb repulsion between the metal and oxygen minimal.

The dilemma of the quantum chemical description of the platinum-water interface can be sum-

marized as follows: Depending on the 6s population either the platinum cluster or the

platinum-water bond is energetically favoured. A stable metal cluster with a strong

platinum-water bond is unlikely.

The proximity of the water molecule has two e�ects on the platinum cluster: polarisation of

the metal cluster and a symmetry e�ect. The dipole moment of the water molecule interacts

mainly with 6s electrons of the platinum cluster. Coulomb repulsion forces the 6s electrons into

the 5d band of the metal cluster as the water molecule approaches the surface. This electron

rearrangement is suÆciently strong, that the electronic state of the metal cluster can change. Such

a change is not smooth, but can cause sudden jumps in the interaction energy surface. A scan of

the potential energy surface demands therefore sophisticated techniques to force convergency to

selected electronic states. On the other hand, it is possible to control the electron distribution in

the cluster by the platinum-oxygen distance.

The presence of the water molecule reduces the overall symmetry of the problem and facilitates

the 5d-6s interaction despite the length of the platinum-oxygen bond. A small change in bond

angle ! (�! = 0.001Æ) reduces the point group to C1, which enables a complete mixing of the 5d

and 6s orbitals and thus increases the 6s population. This small change in bond angle causes a drop

in total energy and makes a complete scan of the potential energy surface even more complicated

than before. A sudden jump in interaction energy does not always indicate such a symmetry e�ect.

It is also possible that this transition happens without any obvious signs. Such hidden transitions

can be found by a careful analysis of the eigenvectors or by a reverse scan of this portion of the

potential energy surface, because those symmetry induced changes of the electronic state work only

in one direction from a symmetric wavefunction to an unsymmetric (�gure 6.43, page 175).

The symmetry problem can be avoided by switching o� the symmetry module in Gaussian 94.

Results from those calculations have three disadvantages:

1. The lack of any symmetry during the calculation creates a huge 6s population and a stable

metal cluster, but the platinum-oxygen bond is very weak.

2. The interpretation of charge transfer and the eigenvectors is diÆcult, because the alignment

between the geometry of the cluster and the symmetry of the electronic structure is broken.

Unphysical charge distributions in the metal cluster have been observed.

3. The runtime of the Gaussian 94 jobs becomes much longer, if symmetry is not used to reduce

the number of integrals during the calculation.

The bond between water and platinum is dominated by a strong platinum-oxygen interaction,

but the other surface atoms contribute weakly to the adsorption energy. The hydrogens interact

weakly with the platinums below and contribute signi�cantly to the geometry of the Ptn�H2O

cluster. Simple calculations on PtH showed that the platinum-hydrogen bond is formed primarily

by s-orbitals. Relativistic e�ects initiate the mixing of the �-orbitals with the 5d electrons, but

geometry and energy of the platinum-hydrogen interaction can be well simulated by a relativistic

one-electron ECP. Therefore, the strength of the platinum-hydrogen interaction depends on the 6s

population, which is itself in
uenced by the water molecule on the surface. As the water molecule
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bonds to the surface the 6s population simultaneously increases. 6s electron density can 
ow to

another surface atom and interact with the hydrogen above. Strong cooperative forces have a

signi�cant e�ect on the geometry and energy of water adsorption.

The identi�cation of the electronic ground state and the analysis of the wavefunction become

more complicated as the cluster size increases. H�uckel calculations on the 6s orbitals (chapter

5, page 117) can help to identify the groundstate, to understand the electronic structure and to

analyse features of the potential energy surface. The combination of H�uckel and HF calculations

allowed us to construct a working Pt5�H2O surface model. A pyramid was chosen for the metal

cluster for two reasons: Firstly, the results for Pt2�H2O and Pt3�H2O showed that a suitable

surface model should contain at least two layers of platinum atoms. Secondly, MP2 calculations

on a variety of small platinum clusters showed that two-layer clusters are preferable for surface

models, because their properties resemble experimental bulk values.

The average 6s population (0.714) in Pt5�H2O is close to that predicted Bigot and Minot

(0.7 - 0.8) [285] for surface atoms and the Pt5�H2O cluster should give optimal results (�EBOND =

17.23 kcal/mol), but the absence of platinum atoms below the hydrogens suggest the orientational

energy (�EROT = 0.03 kcal/mol, �EWAG = 0.26 kcal/mol) is too small. Pt5 gives also �rst

evidence of the advanced interaction between 5d and 6s electrons. The 6s orbitals can interact

with 5d orbitals provided they have correct symmetry. This interaction causes an increase in the

6s population and can change the charge distribution in the cluster. This mechanism was discussed

in great detail in subsection 5.3.3, page 125.

Pt9�H2O shows another type of 5d-6s interaction. The 6s electron 
ow connected with the

interaction with the water molecule and the platinum cluster is coupled with the rearrangement of

the 5d electrons. The charge distribution on the surface atoms resembles the inverse mirror image

of the charge distribution in the water molecule, in agreement with the simple theory of surface

interactions. This charge distribution cannot be explained by the movement of the 6s electrons

alone. The 5d electrons also move during the bond formation and the correlation between such

electron rearrangements suggest a circular mechanism. This electron circulation occurs simultane-

ously with the change of the 6s population caused by the formation of the bond between platinum

and oxygen. The superposition of both electron rearrangements makes it diÆcult to understand

the electronic structure of the Pt9�H2O cluster.

The Pt9�H2O cluster is the �rst cluster certainly beyond the limits of the MP2 method. The

binding energy of the water molecule is too high (SCF: 2.724 kcal/mol, MP2: 53.47 kcal/mol),

but such a di�erence can be caused by a change of the 6s population during the dissociation. The

same is also observed for the orientational energy of the hydrogens (SCF: 0.499 kcal/mol, MP2:

12.473 kcal/mol). The interaction between the nonbonding surface atoms and the hydrogens seems

to be arti�cially enhanced in the MP2 method and it is likely, that the reorientation of the water

molecule is facile despite the presence of the surface atoms. These results for Pt5�H2O and

Pt9�H2O suggest that the structure of the bilayer is primarily controlled by the water-water

interactions in the ice phase.

EHT calculations on Pt9�H2O and Pt5�H2O showed that the problems caused by the 5d-6s

interaction and near degeneracy e�ects exist also at low levels of theory and the results from those

calculations have to be treated with caution.
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Chapter 7

Calculations with 1-Valence

Electron per Platinum

The previous chapter focused on quantum chemical calculations with 18 valence electrons. The

limitation of the chosen computational method (LanL2DZ, MP2) are reached at the Pt9�H2O

cluster and it was not possible to develop a good model for the water-platinum interactions within

this cluster. Medium sized clusters similar to Pt9�H2O are necessary for the analysis of the water-

platinum interface, because these clusters can be used to examine the interaction between water

and passive surface atoms. Three methods exist to calculate large clusters:

1. DFT calculations are computationaly less demanding and may allow us the calculation of

large clusters.

2. As the number of electrons decreases the computational costs decrease also. The concurrent

results for H�uckel (chapter 5) and LanL2DZ (chapter 6) calculations suggests, that the it

might be possible to describe the bulk and passive surface atoms with 1-valence electron

ECP [340, 341].

3. Low level calculations are computationally less demanding than those at MP2 level, but

extended H�uckel calculation in section 6.7 (page 197) showed that energy discontinuities

persist even at low levels of theory.

The quantum chemical calculations in chapter 6 (page 145) showed, that the stability of the

cluster is controlled by the population of 6s orbitals and so it should be possible to use the second

method, which has two further advantages:

1. As the number of electrons decreases the number of electronic states decreases also. Such a

reduction in the density of electronic states reduces the importance of static correlation and

it might be possible to cover most of the correlation e�ects by MP2 calculations.

2. The number of electrons is so small, that the coputational cost will be minimal.

The second method was chosen to proceed despite one major problem: The interaction between

5d and 6s electrons in this model is regarded only as a distortion of the 6s band. The chosen

simpli�cation cannot describe the circular 5d-6s electron rearrangements observed in Pt9�H2O
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(section 6.5, page 192) in great detail, but still can help to identify the relevant orbitals for this

mechanism.

The 6s H�uckel approach towards platinum clusters assumes a perfect 1-valence electron ECP

(page 5.1, page 117). In section 7.1 we extract from the 18 valence electrons Hay and Wadt ECP

[189] the properties of the 6s electron on the Hartree-Fock level. The 18 electrons ECP has been

chosen instead of the nodeless 10 electrons ECP to compare the results directly with chapter 6.

This procedure allows us to take relativistic e�ects partially into account. A relativistic all electron

calculation would have been the better basis, but is beyond the scope of this work. Completening

the construction of nodeless wavefunctions we give a table with other electronic properties of the

platinum atom and the platinum dimer as basis for the development of a working 1-electron ECP

for the bulk atoms.

The last two sections describe the analysis and the development of a new 1-valence electron

ECP. The 6d orbitals and the underlying potential function are in the focus of interest. A set

of analytical equations was found, which showed that a new 1-valence electron ECP cannot be

developed from the LanL2 ECP alone (section 7.2). The combination of the 6s H�uckel theory with

the new 1-electron ECP was then applied to the Pt5�H2O problem (section 7.3).

7.1 Numerical properties for the new 1-electron ECP

The good correlation of H�uckel and Hartree-Fock results suggests the development of an individual

1-electron ECP for the simulation of the platinum-water interface. Zurita et al. used previously

such a potential for the calculation of PtH [318] and other problems [327, 328]. The main problem in

comparison to copper [329{331, 342{346] or nickel [347{349] is the open 5d shell for the simulation

of the 3D groundstate [305]. The hole in the 5d shell can interact with its enviroment and several

extra forces have to be considered [329, 350]:

1. core-core repulsion: The point charge at the platinum core of the 1 electron ECP does not

stretch far enough to represent the core-core repulsion correctly. Zurita et al. [318] used an

exponential function to simulate the repulsion.

�Ecore-core = A e�� r A = 22:8279 a.u.

� = 4:6803 (a.u.)�1 ! �0:5 = 0:148 a.u.
(7.1)

Hay and Wadt [189] observed the break down of the core-core repulsion only for ionic

compounds as CaO or KF. Since the bonds in the metal cluster and between platinum

and water are covalent, this error should be small. For the simulation of the platinum-

water interface we also neglect any rearrangements of the metal surface caused by the water

molecule, because a reconstruction of the surface has only been observed for high potentials in

electrochemical experiments [7, 351]. The core-core repulsion contributes so a small, constant

term to all energies in the platinum cluster, which cancels out during the calculation of energy

di�erences. The oxygen-platinum repulsion is dominated by the interaction between the

LanL2 ECP in the centre of the cluster and the oxygen atom. The other surface platinums

account only little to this energy due to the longer distance to the second next surface atom

and the exponential decay of �Ecore�core. The 18 valence electron ECP calculations showed

that the hydrogen atoms in the water molecule can get close to the surface (aprox. 2.2 �A,

subsection 6.5 page 192), but the electron density of the highly charged hydrogen does not

stretch far and the interaction between both cores is likely to be small.
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2. core-valence correlation: Figure 6.1 (page 148) in subsection 6.1.1 shows the important

contribution of electron correlation to the correct description of the platinum atom. The

strong correlation interaction between the 5d and 6s orbitals cannot to be accounted for with

an 1-valence electron ECP.

The core-valence correlation problem has been observed by Hay and Wadt too [189]. They

published that with decreasing size of the valence space becomes the correlation energy

unrealistic large and that as many valence electrons as possible should be used for reliable

calculations of the correlation energy.

3. core polarisation: In a free platinum stom the 5d hole can be assumed to be distributed

evenly around the 5d core, but this hole concentrates in a chemical environment at one

place. The hole in the 5d orbitals is extremely mobile and can be in
uenced easily by the

environment of the platinum atom. Zurita et al. describe the core polarisation and the

core-valence correlation through an e�ective core-polarisation potential (CPP) proposed by

M�uller [318, 350], which includes core-valence correlation.

The polarisability �� of the 5d subshell in equation 7.2 Zurita assumed to be 11.37 a30. f�

is the electric �eld at the core � produced by all electrons and the other cores.

V̂CPP =
�1

2

X
�

�� f� f� (7.2)

The core-core repulsion cancels largely in the simulation of the platinum-water interface and

can be therefore neglected in a �rst approach. More diÆcult are the core-valence correlation and

the core polarisation. The 18 electrons ECP calculation showed, that the 5d-6s interaction becomes

more important as the cluster grows. For medium sized clusters such as Pt9 or Pt17 it might be

possible to describe the surface reasonably well focussing only on the 6s electrons. The core-valence

correlation is nearly impossible to simulate with a simple 1-electron ECP, but the e�ect should be

small for platinum clusters with �lled 6s orbitals (subsection 6.3.1, page 177). Electron correlation

e�ects are caused by electron pair interactions and the correlation energy is approximately constant

as long no bond breaks [352]. The water molecule interacts with active surface atom, which has a

large valence space and the metal cluster is rigid for all calculations.

7.1.1 Numerical Results for the 6s orbital

The 6s orbital was the �rst orbital, which was transformed into a nodeless form. Subsection 7.1.1

was divided into separate parts to describe every step of the transformation, while 7.1.2 and 7.1.3

are only compilations of the results for the remaining orbitals.

7.1.1.1 The 6s Wavefunction

Gaussian 94 uses a sum of gaussian functions for the description of the radial function and spherical

harmonic functions for the angular part. The radial part is fully characterized by a list of coeÆcients

ki and exponents �i.

R(r) /
MX
i=1

ki e
��ir

2

	(r; �; ') = Y (�; ')
X
i

ki

Ni

e��ir
2

= Y (�; ')
X
i

di e
��ir

2

di =
ki

ni

(7.3)
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Figure 7.1: 6s orbital, LanL2 ECP, cut along

the x axis.
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Figure 7.2: 6s orbital, 5d96s1, di�erent ECPs,

cut along the x axis.

Ni is the normalisation constant of the individual gaussian function and NT the normalisation

constant of the orbital. The individual normalisation constants Ni include the angular part.

s-orbital:

N2
i =

Z 1

0

Z �

0

Z 2�

0

�
e��i r

2
�2

r2 sin � dr d� d' =

�
�

2�i

� 3

2

(7.4)

dz2-orbital:

N2
i =

Z 1

0

Z �

0

Z 2�

0

�
(3 cos2 � � 1) r2 e��i r

2
�2

r2 sin � dr d� d' =
16

15

s
�3

(2�i)7
(7.5)

Equations 7.4 and 7.5 work well for non contracted wavefunctions (M = 1). For contracted wave-

functions (M � 2) the overlap between gaussians with di�erent �i contributes also to the norm.

The total norm NT for contracted wavefunctions was calculated according to equation 7.6.

N2
ST =

X
i;j

di dj

�
�

�i + �j

� 3

2

N2
DT = 3

X
i;j

di dj

s
�3

(�i + �j)7
(7.6)

NT was equal to 1.0 for all orbitals. The constants ki for contracted wavefunctions are given in

such a way, that they already include the normalisation of the o�-diaogonal elements (i 6= j).

The calculations were checked by a direct comparison of equation 7.3 and a Gaussian 94 cube

calculation1. Equation 7.3 reproduces exactly the G94 values in the cube �le for a cut along

the x-direction (LanL2DZ ECP by Hay and Wadt) and forms so a valid basis for the following

calcualtions.

Figure 7.1 displays the platinum 6s orbital for di�erent states calculated with LanL2DZ ECP

by Hay and Wadt. The curves for an open d-shell (5d9) are very similar and di�erent form the

one for the closed shell (5d10). Only the closed shell wavefunction is spherically symmetric. The

oval shape of the open shell functions is caused by an exchange interaction of the singly occupied

5dz2 and 6s orbital2. This behaviour is shown by the intersection points of the nodal plane and

the xz axis. For the spherical symmetric closed shell function is this point x0 = z0 = 1.75 a.u.. For

the elipsoid open shell function is this point at x0 = 1.35 a.u. and z0 = 1.1 a.u..

1All functions have been tested this way.
2Free atoms are always spherically symmetryic and deviations from this ideal form are artefacts caused

by the method of computation [353, 354].
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In �gure 7.2 we compare the 6s orbitals for di�erent ECPs. The LanL2 and the LanL1 potential

have their maximum roughly at the same place, but di�er close to the nucleus. The valence space

of the LanL1 ECP contains only the 5d- and 6sp electrons and the 6s wavefunction should therefore

be nodeless. This extra node at approximately 0.9 bohr is caused by the 5d-6s interaction and

cannot be observed in a cut along the z-axis. Only 1-valence electron ECP calculations produced

sperically symmetric 6s orbitals for the 3D state.

7.1.1.2 Radial 6s Density

The platinum 6s-orbital contains an additional 5dz2 contribution, which reduces its symmetry.

Using equations 7.3 to 7.5 	(r; �; ') can be written in the following way:

	(r; �; ') =

7X
i=1

ai e
��ir

2

+ r2 (3 cos2 � � 1)

11X
i=8

ai e
��ir

2

ai = c� di (7.7)

c� is the expansion coeÆcient of a basis function �� in an orbital 	 =
P

c� ��. The radial electron

density is calculated as follows:

�(r) =

Z �

0

Z 2�

0

	2(r; �; ') r2 sin � dr d� d'

= 4� r2

 
7X
i=0

ai e
��ir

2

!2

+
16

5
� r6

 
11X
i=8

ai e
��ir

2

!2 (7.8)
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Figure 7.3: Radial 6s electron density for dif-

ferent ECP.

do not mix, since the angular parts of the wave-

functions are orthogonal. While the in
uence

of the d-orbitals onto the shape of the 6s orbital

is big, the radial electron density is dominated

by the s orbitals (99.48%).

Figure 7.1.1.2 shows a comparison of the 6s

radial density for di�erent ECPs. The max-

imum of the 1-electron potential (subsection

7.3.1) lies further out, but is slightly smaller

and broader. The 6s electron is so much more

loosely bound. This result is also re
ected in

the smaller ionization energy (18 electrons :

0.296 H, 1 electron : 0.283 H.)

Physics is not described by a wavefunction but by the radial electron density. This approach

towards a new 1-valence electron potential therefore starts with radial electron density function

and not with the wavefunction itself. For the analysis of the radial electron density the �rst two

derivatives have been calculated numerically3.

f 0(x) =
f(x+ h)� f(x� h)

2 h
f 00(x) =

f(x+ 2h) + f(x� 2h)� 2f(x)

4 h2
h� 1 (7.9)

3The derivatives and the roots have been calculated numerically. The point of in
exion has been found

with the intersection algorithm. The integrals have been calculated numerically with the trapezium method

(In�nity was reached at 500 a.u..), which proofed to be suÆcient.
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Figure 7.4: Replacement polynominals for di�erent transition points (r0).

7.1.1.3 Simpli�cation of the Radial 6s Electron Density Function

The radial electron density of the 6s orbital is unsuitable as a model function due to the small �rst

peak. A suitable density function (�simp(r)) for a 1-valence electron potential should have only one

maximum and decrease steadily towards zero for r = 0. To achieve this the �rst part of the density

function is replaced by a 8th order polynomial (p(r)).

The polynomial replacement p(r) of the radial electron density function �(r) at the �rst peak

has to ful�ll several conditions. Tests with a lower number of restrictions failed.

1 p(r0) = �(r0) = f For a smooth transition between p(r) and �(r)

2 p0(r0) = �0(r0) = g For a smooth transition between p(r) and �(r)

3 p00(r0) = �00(r0) = gg For a smooth transition between p(r) and �(r)

4 p(r = 0) = 0 Correct behaviour at r=0

5 p0(r = 0) = 0 Correct behaviour at r=0

6
R

p(r) dr =
R
�(r) dr = A To keep the number of electrons constant

7 p(r) = p(�r) Found emperically as �(r) / r2 � f2(r)
8 No maximum between 0 and r0 Simpli�cation of �(r)

Several functions have been tested. The most successful function was an eighth order polyno-

mial.

p(r) = c1 r
8 + c2 r

6 + c3 r
4 + c4 r

2 (7.10)

The other important parameter of the calculation is the point r0 where the polynomial p(r0) changes

into the density function �(r0) (�gure 7.4). The coeÆcients c1 to c4 can be calculated with the

following equation.

0
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Figure 7.5: New 6s wavefunction, �nal version.
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nal version.
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(7.12)

The solutions for the coeÆcients ci were calculated analytically to keep the program simple.

As r0 increases, the �rst maximum becomes smaller and �nally vanishes. For r0 = 2.0 a.u. p(r)

becomes negative and therefore unsuitable. The search started at r0 = 1.5674 a.u., the point of

in
exion of the density function, which proved far too small. The development of p(r) is shown in

�gure 7.4. The �nal value r0 = 1.916 a.u. was found during an optimization under the additional

constrain, that the �nal wave function should have an absolute value close to 6.6�10�3 a.u. at the

origin like the original 6s function.

7.1.1.4 The quest for the new 6s Wavefunction

In �rst tests we extracted the new wavefunction directly from the simpli�ed radial electron density

�simp(r) (equation 7.13a). For these calculations an array of 201 points between 0 and 10.0 a.u.

was used.

a) �simp(r) =

8<
:p(r) r < r0

�(r) r � r0
b) �FIT(r) = 4� r2

 
8X
i=1

ai e
��ir

2

!2

= 4� r2 	FIT(r) (7.13)

The Levenberg-Marquardt-Algorithm [242] has been used to �t a new, pure s, radial density

function �FIT(r) to �simp(r) (equation 7.3b). The search for a new wavefunction started from the

original wavefunction by Hay and Wadt (8 gaussians). Although good results have been obtained

for the density function, only poor results have been found for the corresponding wavefunction

	FIT. This bad behaviour is caused by the r2 term. As r becomes smaller, the exact value for

	FIT becomes unimportant, because r2 becomes very small and 	FIT hardly contributes to the

error function �2 =
P

(�simp(ri)� �(ri))
2.
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The next series of experiments used a simpli�ed target wavefunction 	simp constructed from

�simp (equation 7.13a) for the �t procedure.

	simp(r) =

8><
>:

1

2 r

r
�simp(r)

�
r > 0

8:6 � 10�3 r = 0

(7.14)

The value for r = 0 was extrapolated from the values at 0.05 and 0.10 a.u.. This manipulation

provided excellent results both for 	(r) and �(r). In the next step the number of functions was

reduced stepwise from eight to �ve. Such a simpli�ed function will increase later the speed of the

quantum chemical calculations. All �ts gave the same small value for �2 = 0.0000053. The best

value for four gaussians was about a thousand-times worse than the value for �ve functions. The

lowest number of functions to describe 	simp is therefore �ve. After the �tting 	simp had to be

normalized, since the norm (1.0004) was slightly bigger than 1.

Figures 7.5 and 7.6 show the wavefunction and the radial electron density in comparison with

the 18 electron function by Hay and Wadt. Table 7.1 displays the data for 	simp in a suitable

Gaussian 94 input format.

The �fth function is the same as in the original function by Hay and Wadt and was not allowed

to change during the �t, because a previous analysis showed, that this function dominates the 6s

orbital and has no in
uence on the function at small distances r.

The new function 	FIT has no nodal plane and re-
i �i [a.u.] ki [a.u.]

1 1:4832274932 0:7830538861

2 1:7464593543 �0:4961301298

3 0:7565909320 �0:6700116072

4 0:2490175212 0:4479071977

5 0:058 0:84346

Table 7.1: 	simp in Gaussian 94 input

format.

sembles, despite its spherical symmetry, the 10 electron

function (not shown in �gure 7.5). The new wavefunction

was fed into Gaussian 94 and the cube �le con�rmed the

data given in table 7.1. The Gaussian 94 wavefunction

has the same values as prediction by the �t program at

every point of the cube �le.

7.1.2 Numerical Results for the Pt 6p Orbital

The 6pz orbital was used to development the new radial wavefunction for the p-orbitals.

PPz = r cos � e��r
2

N2
P =

1

2

s
�3

(2�)5
(7.15)

R(r) =
X
i

ki e
��ir

2

di =
ki

Ni

(7.15 a)

PCz = r cos �
X
i

di e
��ir

2

N2
C =

1

2

X
ij

di dj

s
�3

(�i + �j)5
(7.15 b)

Equation 7.15 shows the wavefunction of a primitive pz orbital with only one gaussian, equation

7.15a the expansion for a more complex radial wavefunction and equation 7.15b �nally the used

wavefunction and its norm. As observed previously for the 6s orbital NC equals 1.0 for the LanL2DZ

potential, if the primitive functions have been normalized (equation 7.15) prior to the synthesis of

the complex function.

210



n �i ai ki

1 0:87944 �0:16288 �0:13413

2 0:72491 0:40691 0:42664

3 0:58257 �0:27824 �0:38340

4 0:10622 0:04229 0:48912

5 0:03014 0:01169 0:65264

ai are the coeÆcients used for the calculation (equation 7.16)

and ki are the �nal coee�cients used as Gaussian 94 input.

Table 7.2: Results for the new 6p wavefunction.

Equation 7.15b was checked with Gaussian 94 as before the 6s orbital. Equation 7.15b repro-

duces the results from Gaussian 94 cube �le to the last digit.

The radial electron density �(r) has been calculated as follows:

�(r) =

Z �

0

Z 2�

0

	2(r) r2 sin � d� d' =
3

4
� r4

 X
i

�i e
��i r

2

!2

(7.16)

Figure 7.7 displays the radial electron density and the corresponding 6p orbital calculated with

18 electrons ECP. In the next step a polynomial has been used to replace the density function for

small r and to eliminate the �rst peak (subsection 7.1.1.3 for details.). From the target density

function �T was the target radial function RT extracted.

RT (r) =

8><
>:

1

2 r2

r
3 �T (r)

�
r > 0

0:020 r = 0

(7.17)

The target radial function RT(r) has been used to �nd a new radial function. Figure 7.8 shows

the RT(r) and the best �st �nally used. Both curves match perfectly and �gure 7.9 demonstrates

the good agreement of the radial densities. The most cost e�ective results has been found with

5 gaussian functions (table 7.2). Figure 7.10 �nally displays the new wavefunction 	FIT and the

original Hay and Wadt function.

7.1.3 Numerical Results for the Pt 6d orbital

The new ECP represents the 5d9 core of the platinum atom. The 3D state calculated with Gaussian

94 and the 18 valence electron potential from Hay and Wadt creates the hole in the 5dz2 orbital. It

was not possible to promote the 6s electron into the 6dz2 orbital, because all calcualtions converged

into the 3D ground state. Convergency was achieved by promoting the 6s electron into the 6dxz

orbital. The 6dxz orbital was therefore used for the following calculations.

DPxz = r2 sin � cos � cos' e��r
2

N2
P =

1

4

s
�3

(2�)7
(7.18)

R(r) =
X
i

ki e
��ir

2

di =
ki

Ni

(7.18 a)

DCxz = r2 sin � cos � cos'
X
i

di e
��ir

2

N2
C =

1

4

X
ij

di dj

s
�3

(�i + �j)7
(7.18 b)
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Figure 7.7: 6p radial density function

(LanL2).
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Equation 7.18 shows the wavefunction of a primitive dxy orbital with only one gaussian, equation

(7.18a) the expansion for a more complex radial wavefunction and equation 7.18b �nally the used

wavefunction and its norm. As observed before for the 6s orbital, NC is equal to one, if the primitive

functions have been normalized prior to the synthesis of the complex function.

The Gaussian 94 cube calculation was done along the XZ axis ( 1
2

p
2 / 0 / 1

2

p
2). The agreement

between the G94 results and the equation 7.18b is slightly worse than before, but still very good.

This small error is caused by a misalignment of the unitvector due to the truncation of the numbers

to 6 digits, but does not increase in�nitely with r. The agreement at r = 10 a.u. is perfect.

The radial electron density �(r) has been calculated as follows:

�(r) =

Z �

0

Z 2�

0

	(r)2 r2 sin � d� d' =
4�

15
r6
�
ai e

��ir
2
�2

(7.19)

Figure 7.11 displays the radial electron density and the corresponding 6d orbital calculated

with 18 electrons ECP. In the next step a polynomial replaced the density function for small r

to eliminate the �rst peak (subsection 7.1.1.3 for details). From the target density function �T

(equation 7.19) was the target radial function RT extracted.
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RT (r) =

8>>>><
>>>>:

1

2 r3

r
15 �T (r)

�
r � 0:10

1:1RT (0:10) r = 0:05

1:03RT (0:05) r = 0

(7.20)

The values for r = 0.05 and r = 0.0 have been chosen to achieve better convergence. The

in
uence of this change onto the radial electron density is neglible, but the numerical bene�ts are

great. Figure 7.12 shows the pure radial functions from di�erent origins: RT(r), from a single

gaussian and the original function from the quantum chemical calculation.

� =
3

2

1

r2max
= 0:119596 (7.21)

The exponent � of the gaussian in �gure 7.14 has been chosen, that the new wavefunction and

the old have their maxima at the same radial position rmax.

In contrast to the calculatins for the 6s and 6p orbital it was not possible to �nd a new radial

function with the same number of gaussians or less. The �rst usable results were obtained with 4

gaussians (one more than Hay and Wadt). Figure 7.13 shows the results of this attempt. The

radial electron density functions agree well for small values of r but diverge for larger values. RT(r)

has its maximum values close to r = 0. Any di�erences between RT and the new function RFIT

for small r therefore dominate the error function. The Levenberg-Marquardt algorithm tries

to minimize this contribution. On the other hand, huge di�erences in the radial electron density

function are caused by the small di�erences between RT and RFIT for large values of r muliplied

by r6, since �(r) sclaes with r6 (equation 7.19).

Further achievment may be obtained be increasing the number of gaussians. Regarding the

nearly vanishing importance of the 6d orbital for the platinum platinum interaction in bulk metal

(dominated by 6spn hybrid orbitals) it seems not be worthwhile to follow this line.

Nearly the same quality was achievde by using a single gaussian. The exponent was chosen in

such a way, that the target radial density function and the new one have the maxima at the same

place (equation 7.21). The wave function and the resulting electron density function are shown in

the �gures 7.14 and 7.15.

The LanL2DZ 6d orbital is dominated by the gaussian with the smallest exponent (� = 0.1370).

This gaussian forms a basis function on its own in the LanL2DZ basis and represents a 5d orbital.

This basis set was formed originally from the original Hay and Wadt basis by splitting the 5d

function into two parts. The function is therefore more suitable to describe the long range part

of a 5d function than to describe a 6d orbital. This limitation of the basis set explains also the

large �rst large peak in the radial electron density, which complicates the construction of the new

wavefunction. It seems to be more favourable to determine the 6d orbital by molecular properties

of platinum compounds during the development of the new ECP.

7.1.4 Summary and compilation of all 1 electron properties

In subsection 7.1 we analysed the properties of the platinum valence electron (n=6). The calcu-

lations resulted in a set of new expressions for the radial part of the orbitals (tables 7.1, 7.2 and

equation 7.21). The new functions are nodeless and agree very well with the original functions in

the valence region. The 6d orbital has a strong 5d contribution and a positive eigenvalue, which
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Figure 7.11: 6dxz radial electron density.
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Figure 7.12: Di�erent 6dxz radial functions.
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Figure 7.15: 6dxz density functions.
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questions the quality of 6d orbital. These nodeless orbitals can form the basis of a new 1-valence

electron ECP to represent the bulk atoms in the metal cluster, while the orbital energies can be

taken directly form calculations with the Hay and Wadt ECP (LanL2DZ 6s: �0.29574 H, 6p:

�0.13581 H, 6d: +0.2384 H) to achieve a seamless transition between active and passive surface

and bulk atoms.

These values alone proofed not to be suÆcient for the development of an experimental 1-valence

electron ECP. Additionally we calculated the electron aÆnity from the Hay and Wadt LanL2 ECP

(+0.051 H). The new 1-electron ECP has also to reproduce the properties of the 3D�3D platinum

dimer (subsection 6.2.1, page 159). The bond length has to be approximately 2.3579 �A and the

bonding energy close to 0.08 H.

Here is a list of desired properties for a new 1-valence electron ECP:

1. The energy of the 6s orbital should be �0.2957 H and its shape should be similar to the plot

shown in �gure 7.5, if the orbital is allowed to change during the creation of the new ECP.

2. The energy of the 6p orbital should be �0.1358 H and its shape should be similar to the plot

shown in �gure 7.10.

3. The 6d orbital can be described with a single gaussian (� = 0.1196 a.u., �gure 7.14). The

energy of this orbital should be close to +0.2384 H.

4. The bonding energy of the optimized platinum dimer should be 0.08 H.

5. The bond length in the optimized platinum dimer should 2.3579 �A.

6. The electron aÆnity of platinum atom should be 0.0512 H.

7. The ECP has to vanish for large distances r from the nucleus: UECP(r !1) = 0

The last point describes a property of the ECP and not of an electron. It was included into the

list for completeness sake. The list contains now all parameters used for the development of the

new ECP.

7.2 Principle questions about a 1 electron ECP

In section 7.1 we developed a set of suitable properties for a 1-valence electron ECP. The �rst

approach to a new ECP was very naive. We used Gaussian 94 as black box and used the 'Simulated

Annealing' algorithm to �nd a new set of ECP parameters. All these experiments were very

successful in their own way. The new ECP was able always to reproduce all target properties

despite one. To make things really unpleasant, it was always another property than in the previous

experiment.

During these calculations we developed a Pt9�H2O surface model (same geometry as in �gure

6.67, page 192), which gave very useful results: The optimised bond length was 2.3383 �A and

the water molecule was nearly parallel to the metal surface 
 = 107.6Æ. The bonding energy

(15.14 kcal/mol) was very close to the experimental value and the energies to reorientate the water

molecule agreed well with values obtained in chapter V. 3.3 kcal/mol were necessary to move the

hydrogens upwards (
 = 107.6Æ ! 
 = 180Æ) is reasonable small and the rotational energy barrier

of 0.028 kcal/mol negligible. The chosen ECP gave very good values for Pt9�H2O but only poor for

Pt5�H2O. Polarisation e�ects caused a sharp bent of the dissociation curve at a platinum-oxygen
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distance of 2.5 to 3.2 �A. The polarisation e�ects were caused by badly chosen parameter in Ucore
P

(equation 2.65), which moved the 6p electron density too close to the nucleus. For small values

of dPtO the platinum cluster is polarized by the water molecule and 6p orbitals become populated

instead of 6s orbitals (subsection 5.3.3, page 125).

The strong in
uence of the ECP parameter nourished the suspicion, that anything is possible

regardless of physical reality with a suitable set of ECP parameters. We decided therefore to

commence with a principal analysis of the ECP to understand all parameters of the calculation in

detail.

7.2.1 Is it possible to use the method from Hay and Wadt?

The central formula (equation 2.59a, page 32) for the development of a new 1-electron ECP is:

Ucore
l (r) = Enl � ĥ �nl

�nl
= Enl � l (l + 1)

2 r2
+
Z

r
+

�00nl
2�nl

(7.22)

If r approaches in�nity should Ucore
l vanish for physical reasons. This leads to the following equation

for the ECP:

lim

r !1
l (l + 1)

2 r2
= 0

lim

r !1
Z

r
= 0

Ucore
l (r !1) = Enl +

�00nl
2�nl

= Enl +
1

2�nl

@2

@r2
�nl (7.23)

For large values of r the gaussian with the smallest exponent will dominate equation 7.23.

�nl = e��r
2

�00nl = (4�2 r2 � 2�) e��r
2

Ucore
l (r !1) = Enl + (2�2 r2 � �) (7.24)

It is therefore impossible to create a new potential with the method described by Hay and Wadt

from a gaussian type wave function, because Ucore
l approaches in�nity for large values of r. A

gaussian type function shows the wrong behaviour for large r. A Slater type function (e��r) is

closer to the true radial function and the kinetic energy term approaches �2 as r gets in�nite.

7.2.2 Which conditions has a gaussian type wavefunction to ful�ll?

Table 7.3 shows the eigenvalues for the 6s, 6p and 6d orbital calculated with
orb. �i [H]

6s �0.29574

6p �0.13581

6d +0.23842

Table 7.3: LanL2

eigenvalues.

the 18 valence electron ECP from Hay and Wadt. The development of a

new 1-valence electron ECP from this potential started with the analysis

of the d orbitals, since the original potential is not provided with a basis

set for f orbitals. The pure theory of core potentials demands, that the

development of a new potential should at least start with L=3 and not

with the d-orbital (L=2) [189]. Those simpli�cations can be justi�ed with

two arguments: First, quantum chemical calculations on small platinum

clusters showed, that the intermetallic bond is formed purely from 6sp orbitals and 6d orbitals are

not involved. A restriction of L=2 is therefore a restriction of the ECP to the active orbitals in

intermetallic bonds. Second, a similar simpli�cation has been used successfully before on uranium

[221], where Kahn et al. selected L=3 and not L=4 as requested by theory. Setting L=2 restricts

therefore the general usage of the new potential to a small class of problems, but should be possible

in principle.
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Which conditions next to the reproduction of the correct eigenvalues should the ECP ful�ll ?

1. The wavefunctions � should ful�ll the energy minimization criterion

<� j Ĥ j�>
<� j�> = minimal (7.25)

2. The ECP should create the correct shape of the original function � and the energy eigenvalue,

if � is split into the generating gaussians.

3. The ECP should vanish for large values of r and not reach too far.

4. If the ECP is used for the calculation of Pt2 (6s2) the binding energy and the interatomic

distance should be reproduced correctly from the Hay and Wadt calculation (5d186s2, sub-

section 6.2.1, page 159).

7.2.3 Is a positive eigenvalue for the 6d orbital physically reasonable?

A positive energy eigenvalue implies, that the nucleus repels
�NEW cNEW �6d [H]

n.n. n.n 0.23842

0.13 11.4531 0.10444

0.10 2.23576 0.06945

0.05 1.09476 -0.00817

0.02 0.99382 -0.04957

0.01 0.99714 -0.05034

0.009 0.99773 -0.04946

0.008 0.99828 -0.04831

0.001 1.0 -0.02342

0.0001 1.0 -0.00816

0.00001 0.0 0.23842

Table 7.4: 6d orbital with a aug-

mented basis set.

the electron. This is physically unreasonable. The 6d electron

should be bonded weakly at a long distance from the nucleus,

but should be bonded. It is therefore reasonable to assume

that the 6d eigenvalue should be small and negative.

To check this assumption a fourth gaussian was added to

the Hay and Wadt basis set. Now the calculation of the

6d orbital was repeated with the augmented basis set and

the exponent of the new gaussian steadily decreased (table

7.4). As the exponent becomes smaller the new gaussian be-

comes more important for the wavefunction. At the optimum

(�NEW = 0.0139, �6d = 0.05187 H) are the other coeÆcients

negligible (c1 = 0.05, c2 = 0.06). Passing this minimum the

coeÆcients for the original functions approach zero and the

coeÆcient of the new gaussian one, but the energy increases

again. As the electron density moves away from the nucleus

the binding energy becomes zero. Finally, the exponent is

too small and the function vanishes from the 6d orbital.

The optimum is close to the values expected for a hypothetical 1d electron at the hydrogen

nucleus (subsection 7.2.4). This result suggests, that the ECP from Hay and Wadt in its given

form is unable to describe the 6d electrons correctly. The short range of the ECP prevents a correct

modulation of the wavefunction far away from the nucleus and the Coulomb regime takes over.

This result for the 6d electrons allows us to choose between two forms for the new ECP:

1. The ECP tries to reproduce the positive eigenvalue for the 6d electrons to be consistent

within the potentials regardless of physics.

2. The ECP tries to reproduce some new, physical reasonable properties of the 6d electrons.

This method raises the question of the origin of those new properties.

First, we tried to �nd a new 1-valence electron ECP, which guarantees a smooth transition

between two symmetrically di�erent platinum atoms.
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7.2.4 How does Gaussian 94 calculate the energy of the orbitals?

Previous work showed (subsection 7.1.3) that the 6d orbital can be represented with a single

gaussian. The �rst task was therefore to �nd an analytic expression for the orbital energy as a

function of the orbital exponent �. To simplify this �rst attempt, the ECP was set equal to zero.

This simpli�cation reduces the task to a hydrogen like problem. The very �rst job was therefore

to �nd an analytic expression for a single gaussian s, p and d function at a hydrogen nucleus.

At the beginning the hamiltonian was split into the kinetic and the coulomb energy and expec-

tation values for both fragments were calculated separately.

Ĥ = �1

2
r2 � 1

r
= T̂ + Ĉ

E =
<� j Ĥ j�>
<� j�> =

<� j T̂ j�>
N2

+
<� j Ĉ j�>

N2
= T + C N2 =<� j�> (7.26)

The calculations for the individual orbitals may be summarized as follows:

s

� = e��r
2

N2 =
1

2

r
�3

2�3
E = T + C =

3

2
�� 2

r
2�

�
(7.27)

pz

� = r cos � e��r
2

N2 =
1

2

s
�3

(2�)5
E = T + C =

5

2
�� 4

3

r
2�

�
(7.28)

dz2

� = r2 (3 cos2 � � 1) e��r
2

N2 =
3

8

r
�3

2�7
E = T + C =

7

2
�� 16

15

r
2�

�
(7.29)

The validity of the equations 7.27 to 7.29 was checked by a direct comparison with results from

Gaussian 94. The equations reproduced the energy eigenvalues for single gaussian wave functions

to the last digit. Figure 7.16 shows the results of this test for a d-type function.

In the next step the functions were tested in ECP calculations with all factors di set to zero. The

same results were obtained as before for the hydrogen atom. The equation 7.27 to 7.29 represent

correctly the energy of a single electron in an in�nite weak core potential. All energy functions
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E(�) have a minimum, which marks the best single gaussian wavefunction for an orbital. This

minimum of equation 7.29 was found analytically:

dE

d�
=

7

2
� 16

15�

r
2

� �
= 0 �min =

1024

2 � 11025�
= 0:0148 (7.30)

7.2.5 Under which conditions is global minimum with a positive eigen-

value possible?

The kinetic energy term 7
2
� vanishes as the electron density moves away from the nucleus (� !

0). The same argument holds for the Coulomb energy as it scales with
p
�. To make the minimum

global the ECP has to generate a positive energy eigenvalue as � approaches nought. In the best

case (E(�) � E(�� Æ), Æ > 0) this condition implies that the potential V(r) converges to a positive

nonzero value as r becomes in�nite. In the other case (E(�) < E(�� Æ), Æ > 0) V(r) itself becomes

in�nite as r becomes in�nite. This condition leads to constant growth of E(�) as � approaches

nought. The second condition was tested with a simple parabola V(r) = 
 � r2 and an s-orbital.

V (r) = 
 r2
<�S jV (r) j�S>

<�S j�S> =
3 


4�
Etot
S (�) =

3

2
�� 2

r
2�

�
+

3 


4�
(7.31)

Equation 7.32 allows us to choose a suitable 
 to place the minimum at each � > 8
9 �

. For � < 8
9 �

turns the minimum into a maximum.

dEtot
S

d�
=

3

2
�
r

2

� �
� 


3

4�2
= 0 
 =

4�2

3

 
3

2
�
r

2

� �

!
(7.32)

These results suggest (�gure 7.17) that it is possible to �nd a potential, which creates a positive

energy eigenvalue and this value is the same time the global minimum. It is only possible to bind

an electron with a positive energy eigenvalue, if the V(r) has a positive, non vanishing value as r

approaches in�nity, other wise would the global minimum be at � = 0 (equation 7.27). Such a

potential is physically unreasonable and the search in this direction stopped right here.

7.2.6 How does Gaussian calculate the ECP?

The ECP input for G94 has the same form as published by Hay and Wadt [222].

r2 [Ucore
l (r) � Ucore

L (r)] =
X
k

dk r
nk exp(��k r2) l = 0; 1; : : : ; L� 1 (2.65)

r2
�
Ucore
L (r) � NC

r

�
=
X
k

dk r
nk exp(��k r2) l = L (2.65 a)

L is the maximum angular quantum number. Equation 2.65a leads to the following expression for

Ucore
L :

Ucore
L (r) =

NC

r
+
X
k

dk r
nk�2 exp(��k r2)

=
NC

r
+ V (r) V (r) =

X
k

dk r
nk�2 exp(��k r2)

(7.33)

219



The introduction of equation 7.33 into the system's hamiltonian leads to the following equation for

the hamiltonian of a 1-electron platinum atom (NC = 77):

ĤECP = �1

2
r2 � 78

r
+ Ucore

L (r) = �1

2
r2 � 1

r
+ V (r) = ĤH + V (r)

EECP =
< � j ĤECP j�
< � j� > = EH +

< � jV (r) j�
< � j� > = EH + �V

(7.34)

The total energy of the system is therefore the hydrogen energy (equations 7.27 to 7.29) plus the

expectation value �V of V(r). Equation 7.35 compiles all formula used for d-type gaussians, which

form the basis of all following calculations. Equation 7.34 and equation 7.35 (for n=0 to n=4) have

been tested with G94 for a d-type gaussian.

input VD(r) �VD

0
1

r2
e��r

2 16

5

s
2�7

(2�+ �)5

1
1

r
e��r

2 128

15

s
2�7

� (2�+ �)6

2 e��r
2

8

s
2�7

(2�+ �)7

3 r e��r
2 384

15

s
2�7

� (2�+ �)8

4 r2 e��r
2

28

s
2�7

(2�+ �)9

n odd rn�2 e��r
2 64 k!

15

s
2�7

� (2�+ �)2(k+1)
k =

n+ 3

2

n even rn�2 e��r
2 64

15

K

2k

s
2�7

(2�+ �)2k+1
k =

n+ 4

2

K = 1 � 3 � � � � � (2 k � 1)

(7.35)

The ECP calculations for the d-orbital are straight forward as L was chosen to be 2. Calculations

for the 6s and 6p orbital are slightly more complicated due to the de�nition of Ucore
l (equation 2.65).

ĤS
ECP = �1

2
r2 � 1

r
+ VD(r) +

X
k

dk r
nk�2 exp(��k r2) = Ĥ + VS(r)

VS(r) = VD(r) +
X
k

dk r
nk�2 exp(��k r2) = VD(r) + V INP

S

(7.36)

There are two possibilities to circumvent this complication for atomic test calculations:

1. All coeÆcients in the s-p input section are set equal to zero and the Ucore
l is solely de�ned

by the d-part of the input.

2. The d-coeÆcients are set zero and the VS(r) is solely de�ned by the input in the s-section.

The later of the two possibilities was chosen for the test calculations. As before for the d-orbitals

the results calculated with equation 7.37 for an s-orbital agree to the last digit with results found

with Gaussian 94.

VS(r) = e��r
2 �VS = 3

s
2�3

(2�+ �)5
(7.37)
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7.2.7 What happens if the ECP vanishes as r becomes in�nite?

By the multiplication of the polynomial (equation 7.31) with a gaussian VS(r) vanishes as r becomes

in�nite. V(r) has therefore a maximum.

V (r) = rn e��r
2

�
dV

dr

�
r=rmax

= 0 rmax =

r
n

2�
V (rmax) =

�
n

2�

�n
2

e�n=2 (7.38)

n = 2 �! rmax =
1p
�

V (rmax) =
1

e �

Equation 7.38 enables us to transform V(r) into VT(r), which allows us to compare di�erent

ECPs more easily.

VT (r; Vmax; �) =
Vmax

V (rmax)
r2 e��r

2

= Vmax � e r
2 e��r

2

(7.39)

Equation 7.39 allows us to preset the maximum value of the ECP. The energy of a s-electron

moving in an ECP described by equation 7.39 is given below.

E(�) =
3

2
�� 2

r
2�

�
+ 3Vmax � e

s
2�3

(2�+ �)5
(7.40)

Figure 7.20 shows the composition of the total energy (equation 7.40). �VS vanishes with in-

creasing values of � as �VS scales with ��1 for large values of �. Since the slope of the Coulomb

energy is smaller than the slope of the kinetic energy term for large � is the right side of �gure

7.20 dominated by the kinetic energy term. Both the kinetic energy term and the Coulomb energy

vanish as � becomes zero. The left-hand side of �gure 7.20 is therefore dominated by �VS. The

balance between �VS and the kinetic energy creates the environment for a local minimum. As the

maximum of �VS moves to the right side (increasing values of �) into the reign of the kinetic energy

the local minimum should vanish. Figure 7.18 shows the total energy for di�erent values of �.

As the maximum of VS gets closer to the nucleus the local minimum becomes shallower until it

vanishes �nally. At the same time �VS at the left side becomes less dominant, the Coulomb regime

controls the shape of the curve and the global minimum becomes deeper. In contrast to �gure 7.18

shows �gure 7.19 the in
uence of VMAX on the total energy. The position of the maximum hardly

moves whereas the position of the minimum moves nearly linearly with increasing values of VMAX.
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Unlike �gure 7.18 the local minimum won't vanish, because there will be always a point at large

values of � where the kinetic energy becomes stronger than �VS.

7.2.8 Which form has an ECP with a local minimum and a positive

eigenvalue for d-electrons?

To construct an ECP which ful�lls all conditions a function of the type rn � exp[��r2] was added

to the hydrogen Hamiltonian. Following the discussion of n = 6, a general description is given.

VD(r) = d r6 e��r
2 �VD = 693 d

s
2�7

(2�+ �)13
(7.41)

The ECP function rn � exp[��r2] was multiplied by a factor d and �VD added to the hydrogen energy

EH in order reproduce the given energy eigenvalue ET of 0.23 H for the 6d orbital.

�E = ET �EH = ET � 7

2
�+

16

15

r
2�

�
(7.42)

= d �VD = 693 d

s
2�7

(2�+ �)13
! d =

�E

693

r
(2�+ �)13

2�7
(7.42 a)

The condition for a minimum is the vanishing �rst derivative of the total energy.

dE

d�
=

7

2
� 8

15

r
2

� �
+ 693 d

s
2�5

(2�+ �)13

�
7

2
� 13

�

2�+ �

�
= 0 (7.43)

The introduction of the second half of equation 7.42a into equation 7.43 gave the following equation,

which can be solved analytically.

dE

d�
=

7

2
� 8

15

r
2

� �
+

�E

�

�
7

2
� 13

�

2�+ �

�
= 0 (7.44)

� = �

 
7

26
� �

13 �E

 
8

15

r
2

� �
� 7

2

!!�1
� 2� (7.44 a)

A stationary point (�, ET) in the E(�) curve can be created with an ECP VD(d; �) (equation

7.41). The central parameter is �E, which controlls both parameters d and � of the ECP. Figure
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7.21 shows the total energy as a function of � calculated with the solutions of the equations 7.44a

and 7.42a. At � = 0.12 is a local minimum with an energy eigenvalue of 0.23 H. The close up

in the upper left corner shows the global minimum at � � 2:5 � 10�4. VD(r) has its maximum at

13.8 bohr. VD(r) spreads widely, but still vanishes as r becomes in�nite. Regarding an interatomic

distance of 5.23 bohr (2.77 �A) in bulk platinum this ECP would reach its maximum at the second

next neighbour, which is physically unreasonable.

The maximum of the standard ECP function depends on the exponent n and � in the gaussian

function (equation 7.38). The only free variable to move this maximum is n, because � is determined

by the conditions ET and �MIN. The next step was therefore the development of set equations,

which allow the calculation of � and d for any given exponent n.

For odd exponents n:

�VD(�) =
64 k!

15

s
2�7

� (2�+ �)2(k+1)
k =

n+ 3

2
(7.45)

ET (�) = EH(�) + d �VD(�) (7.45 a)

d =
ET (�) �EH(�)

�VD
=

�E
�VD

=
15 �E

64 k!

s
� (2�+ �)2(k+1)

2�7
(7.45 b)

d �VD
d�

=
�VD
�

�
7

2
� 2 (k + 1)

�

2�+ �

�
(7.45 c)
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For even exponents n:

�VD(�) =
64

15

K

2k

s
2�7

(2�+ �)2k+1
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n+ 4

2
; K = 1 � 3 � 5 � � � � (2k � 1) (7.46)
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By the introduction of de�nition of k into equations 7.45f and 7.46f both equations become

equal. This equation (7.47) together with the equations 7.45b and 7.46b allow us to create a local
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= �0:13746 + n 0:02035 (� = 0:1196; ET = 0:23842 (equation 7.21))

The results of these calculations are listed in table 7.5 for � = 0.1196 and ET = 0.23842. n is the

exponent in the Gaussian input section, where as V(r = 10:0), rMAX and V(rMAX) are properties

of the e�ective potential according to the equations 7.33 and 7.38. As n increases from 6 to 7

changes � its sign and the global minimum becomes local. This is shown in �gure 7.22. The plot

shows ET(�) for n = 6, 7 and 8. With increasing values for n moves the maximum of the energy

curve closer to the nucleus and bevomes smaller. The linear dependency of �OPT on n facilitates

the calculation of the limes of rMAX.

The combination of equation 7.47 with equation 7.38 leads to an equation, which allows us to

describe the development of the maximum of the e�ective potential with a simple formula and to

get a good estimate of the limes.

rmax(n) =

r
n� 2

�0:27492 + n 0:0407

lim

n!1 rmax = 4:95682 (7.48)

This result agrees well with 4.98 bohr calculated with equation 7.46f for n = 550. With in-

creasing values for n the maximum of the e�ective function VD(r) moves closer to the maximum

of the radial electron density, while the preexponetial factor dOPT decreases exponentially. With

increasing values of n becomes dOPT exponentially smaller. This devellopment can be described

with the following expression: ln(dOPT) � �1.60669 � n � 1.08572. Each time n is increased by 1

dOPT decreases approximately by a factor of 3.

The value of � depends on the energy di�erence �E between the hydrogen energy and the

target energy (equations 7.42 and 7.47). For �E0 � equals nought. If �E is larger than �E0 �

becomes positive and the ECP vanishes as r becomes in�nite. Figure 7.23 shows �E0 as a function

of n. The equation used for the plot follows directly from equation 7.47.

� = 0 ) �E0 =
2�

n� 2

 
7

2
� 8

15

r
2

� �

!
(7.49)
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n �OPT dOPT V(r=10.0) rMAX V(rMAX)

0 �0:137463 1.4075E�01 1.3133E+03 | |

1 �0:117115 5.1563E�02 6.2891E+02 | |

2 �0:096768 1.8597E�02 2.9649E+02 | |

3 �0:07642 6.6319E�03 1.3821E+02 | |

4 �0:056073 2.3449E�03 6.3877E+01 | |

5 �0:035725 8.2362E�04 2.9326E+01 | |

6 �0:015378 2.8774E�04 1.3392E+01 | |

7 0:00497 1.0008E�04 6.0888E+00 22:429 46:631

8 0:025317 3.4683E�05 2.7581E+00 10:886 2:8732

9 0:045664 1.1982E�05 1.2455E+00 8:7548 1:4263

10 0:066012 4.1282E�06 5.6092E�01 7:7843 1:0194

11 0:086359 1.4190E�06 2.5203E�01 7:2186 0:83895

12 0:106707 4.8680E�07 1.1301E�01 6:8452 0:7409

13 0:127054 1.6669E�07 5.0584E�02 6:5794 0:68131

14 0:147402 5.6988E�08 2.2605E�02 6:38 0:64255

15 0:167749 1.9455E�08 1.0087E�02 6:2248 0:61625

16 0:188097 6.6330E�09 4.4955E�03 6:1004 0:59795

20 0:269487 8.8673E�11 1.7544E�04 5:779 0:56557

50 0:87991 5.9993E�25 3.6650E�15 5:2226 0:651

100 1:89728 1.0352E�48 4.1403E�33 5:082 0:84277

Table 7.5: Local minum created with various exponets n (calculated with equations 7.45 and 7.46).

With decreasing values of n �E0 becomes larger. Small values for n are therefore only possible

for large values of �E. Figure 7.24 shows how � changes with increasing values for �E for various

n. All curves converge to di�erent values for �, but the maximum o� the e�ective function is for

all curves at the same place (6.39 bohr).

lim

�E !1 � = �

�
2

7
(n+ 5)� 2

�
= �max rmax =

r
n� 2

2�max
=

r
7

4�
(7.50)

With increasing values for �E it becomes possible to construct a local minimum with a small

exponent, but the maximum of the ECP cannot get closer to the nucleus than 3.9 bohr. This

maximum is close to the next neighbour in bulk platinum (dPtPt = 5.23 bohr).

The possibility to construct a working ECP from equation 7.47 is restricted by two points:

1. The smallest possible value for d in the Gaussian 94 input section.

2. The highest value for n, which is tolerated by the Gaussian 94 ECP module

The smallest possible value for d allowed by Gaussian 94 is 1�10�8, which would allow us to go as

high as n = 15 (table 7.5) as exponent in the input section. Tests with n = 6 and n = 5 showed,

that ECPs with high exponents are numerically challenging for Gaussian 94 and the calculations

do not converge. It is therefore impossible to realize an ECP with a local minimum and

a positive energy eigenvalue with single ECP function in Gaussian 94.
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Figure 7.24: � as a function of �E for various n (� = 0.1141).

7.2.9 Is it possible to create a local minimum with two or more func-

tions?

Whether a potential vanishes at in�nite values for r or becomes in�nite itself depends on �E

(equation 7.47, 7.49 and �gure 7.24). With increasing values for �E it becomes more likely,

that small values for n still form a �nite and therefore physical reasonable potential. The idea is

therefore to add a second function to the potential to decrease the total energy. Equation 7.35

list the expectation values for di�erent potentials. The expectation value of potentials with n � 3

vanishes as � becomes in�nite.

lim

�!1
�VD / ��

n�2
2 = 0 for n � 3 (7.51)

The choice of n � 3 guarantees that the kinetic energy dominates the total energy for large

values of � and that no extra function is necessary to keep the minimum at the correct place.

The repulsive function to create the minimum was chosen to have n = 4, as previous calculations

showed that Gaussian 94 still calculates correctly this ECP.

ET (�) =
7

2
� � 16

15

r
2�

�
� dA

384

15

s
2�7

� (2�+ �A)8
+ dR 28

s
2�7

(2�+ �R)9
(7.52)

The index 'A' identi�es the parameter of the attractive energy and 'R' the repulsive part. The

hydrogen energy EH in equation 7.42 has to be replaced by a basic energy EB, which includes the

attractive third order energy.

�E = ET � EB = ET � EH � dA �V 3
D (7.53)

= ET � 7

2
� +

16

15

r
2�

�
+ dA

384

15

s
2�7

� (2�+ �A)8
(7.53 a)

= dR �V 4
D = dR 28

s
2�7

(2�+ �R)9
! dR =

�E

28

r
(2�+ �R)9

2�7
(7.53 b)

In the next step equation 7.52 is di�erentiated, set equal to nought and �R calculated after dR

has been replaced by equation 7.53b. The only di�erence to equation 7.47 is the new term in the
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centre, which contains the �rst derivative of �V3
D.
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�R depends on three parameters. If we assume to facilitate the discussion, that the minimum

of �V3
D is at the same place (� = �MIN = 0.1196) as the minimum of the total energy, vanishes the

�rst central term from equation 7.54a. In this case equations 7.54 and 7.47 become equal and the

value of �R is solely determined by �E.

d �V 3
D
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184
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s
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�
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� 8�
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�

�
7

2
� 8�

2�+ �A

�
= 0 (7.55)

�A =
2

7
� = 0:0342 (7.55 a)

Introducing equation 7.53 into equation 7.54a and setting ET = 0.23842, � = 0.1196 leads to

the following equations:

�E = 0:11415 + 2:16385 dA

�R =
270� �E

105�E � 16�

r
2

��
+ 105 dA

� 2� =
0:068343 (dA � 0:072688)

0:088593 + dA
(7.56)

Figure 7.25 shows the dependency of �R on dA. �R changes its sign at dA = 0.0727 and then

approaches its possible maximum of 0.0683 (equation 7.50). The maximum of the repulsive function

can therfore not get any closer than 3.404 bohr, which is closer than the next neighbour in bulk

platinum. The transition from a minimum into a maximum via a saddlepoint has been satisfyingly

checked with Gaussian 94 for dA = 0.2871 (minimum), 0.64 (saddle point) and 0.8 (maximum).

This change restricts the dA to the following range: 0.073 � dA � 0.64 and the maximum of the

repulsive function varies between in�nity and 4.33 bohr. The attractive ECP function moves this

maximum to higher values of dA. The ECP itself is shown in �gure 7.26. For comparisson is the

radius given in multiples of the bulk platinum-platinum distance. With increasing values of dA

emerges a second minimum in the region of the second neighbour (8 to 9 bohr). dA = 0.2871

creates the last potential with a all-positive tail at large values of r.
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dA �R rMAX

a.u. a.u. a.u

0:2871 0:039 5:06

0:64 0:0532 4:33

0:8 0:0559 4:23

Table 7.6 Results for dA.

tail =

Z 1

4

V (r)2 dr =

Z 1

4

�
�dA r e��Ar

2

+ dR r2 e��Rr
2
�2

dr (7.57)

As shown in �gure 7.26 changes the amplitude of V(r) with dA. A good measure for this oscilation is

the function tail4 (equation 7.47). The lower limit was chosen to be 4 bohr, as the ECPs published

in the literature vanish in this region. 'Tail' has its minimum at dA = 0.64 and marks so the

saddlepoint.

The combination of equation 7.56 with equation 7.53 leads to expression for dR as a function

of dA.

dR = 0:21176

�
0:052753 + dA

0:088593 + dA

� 9

2

� (0:11415 + 2:16385 dA)

� 0:02417 + 0:45822 dA for large values of dA

(7.58)

dR grows nearly linearly with increasing values for dA. The attractive function can increase �E

above �E0 and therefore enables the usage of smaller exponents; it also increases dR and fascilitates

so the calculation.

The best function found so far (�gure 7.26) has still its maximum at the next neighbour (The

repulsive forces have their maximum at 5.06 bohr!). The next step is therfore to analyse, if changes

in �A allow us to bring the maximum closer to the nucleus.

So far only dA was varried to analyze the in
uence of the second function onto the maximum

of the repulsive function. Now, �A is varied for constant values of dA. The �rst derivative of �V3
D

does not vanish in equation 7.47 and the simpli�cation shown in equation 7.56 cannot be used any

more.
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The results of such calcualtions are shown in �gure 7.27. For the calculation the values of

dA have been chosen to be consistent with plot 7.25 (table 7.6). For dA = 0.8, which has been

a maximum so far, exist a small region (0.30 � �A � 0.42) which allows the construction of a

4The integral was calculated numerically with the trapezium method. In�nity was reached at a distance

of 30 bohr from the nucleus.
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minimum at � = 0.1196. The transition at the saddlepoint is marked with a bullet point in

�gure 7.27. At the saddlepoint equals �R 0.04 bohr�2 and the repulsive function has therefore its

maximum at 4.77 bohr. The ECP has its maximum further away from the nucleus at 4.93 bohr.

Although the variation of �A allows us to construct functions with high values of �R the maximum

of the ECP does not get any closer to the nucleus. The curve for dA = 0.64 indicates 3 saddlepoints

in the energy curve. The �rst is at same place as the one shown in �gure 7.25 while the second

is found for �A = 0.24. The third is at �A = 0.084 and marks the end of the central minimum

region. For all three points is the maximum of the ECP function at 4.8 bohr. Finally, the curve

for dA = 0.2871 allows us to construct a local energy minimum in the pysically reasonable region

(0 < �A � 0.25).

The set of points (�A, dA) which allows us the construction of a physically reasonable potential

is limitted by two borders:

1. At one border turns �R negative and the ECP becomes therefore in�nite.

2. At the second border turns the local minimum into a maximum. The transition is marked

by a saddlepoint in the E(�) curve.

While the �rst border is simply the root of equation 7.54a, requires the second border more con-

sideration. A saddlepoint exits at points where the �rst and the second derivative of the energy

function vanish. The same simpli�cations used for the calcualtion of equation 7.47 from the equa-

tions 7.45f and 7.46f work also here.
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� (7.59)

The second derivative of the total energy is therefore:

E00(�) =
4

15

r
2
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�
12�2 � 84��A + 35�2A
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+ dR
�V 4
D
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�
32�2 � 112��R + 35�2R

4 (2�+ �R)2

�
(7.60)

The determination of the saddlepoints is possible with equation 7.60. Equations 7.53 and 7.54a

link the pairs (�A, dA) and (�R, dR) which reduces the number of variables in equation 7.60 and

facilitaes the calculation of the roots. The result of this search is shown in �gure 7.285. The set of

pairs (�A, dA) which allow us the calculation of physically reasonable ECPs is gray shaded.

The curves shown in �gure 7.27 are vertical cuts through the plane shown in �gure 7.28. The

bulge in the lower part of the right border explains the scattering of the saddlepoints in �gure 7.27.

The curve for dA 0.8 cuts the right border once, the curve for dA = 0.64 thrice and �nally the

curve for dA = 0.2871 never cuts the right border.

Figure 7.28 allows us also to �nd the ECP function, which has its maximum closest to the

nucleus. As shown already in �gure 7.27 moves the maximum of the ECP closer to the nucleus

with increasing values of �R. In �gure 7.28 is this area were the isoexponent curve for �R = 0.08

cuts the right border. The centre of this area is roughly at dA = 0.571 and �A = 0.093. The

5Section 11.13 (page 357) gives detail on the construction of �gure 7.28.
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Figure 7.28: �R as a function of dA and �A.

corresponding values for �R and dR are 0.079 and 0.168. The maximum of the repulsive function is

closer to the nucleus than before (3.56 bohr), but the maximum of the composite ECP function is

still at 4.84 bohr. It seems to be impossible for the e�ective ECP to have a maximum closer to the

nucleus than 4.8 bohr. If the maximum gets any closer, the local minimum turns into a maximum.

Equation 7.54a shows, how the form of the ECP depends on dA and �A. The form of the

ECP is solely determined by the energy di�erence �E and the �rst derivative of the attractive

part of the potential. Since �A and dA are allowed to take any value between zero and in�nity is

any value possible for �E and the �rst derivative. For this reason is the graph shown in �gure

7.28 is representative for all possible attractive functions, since all possible values for �E and the

�rst derivative are covered. It is therefore impossible to create an ECP for a local minimum (�

= 0.1196, ET = 0.23482 H) with a maximum closer to the nucleus than 4.8 bohr. This value is

close to the distance to the next neighbour in bulk platinum metal. It is physically unreasonable,

that the ECP has its maximum at the next neighbour. It is therefore impossible to create

a physical reasonable ECP for a local minimum with positive energy eigenvalue with

any number of attractive functions.

7.3 How describe the 6d electron?

It is impossible to create an ECP, which reproduces all results of the Hay and Wadt LanL2DZ

potential, as shown in subsection 7.2.9. In this section we analyze the ECP from Zurita et al.

[318] to �nd a suitable expression for Ucore
L (equation 2.65, page 33 and subsection 7.2.2), which

helps us to analyze the platinum 6s valence space independently of the 5d orbitals.

7.3.1 What problems are connected with the ECP by Zurita et al.?

Two problems are connected with the 1 electron ECP published by Zurita et al. [318]:

1. To get physically reasonable results Zurita et al. extended the Hamiltonian of the system.

So they incorporated additional terms for the core polarisation, core-valence correlation and

core-core repulsion e�ects (section 7.1, page 204).

2. The ECP is given in a totally di�erent form than the one used for the Gaussian input section.

Ucore(r) =
�1

r
+
X
i

Wl P̂l Wl = e��lr
2
X
i

Ci;l r
ni;l P̂l =

lX
m=�l

jl m >< lmj (7.61)
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l �i Ci;l ni;l

0 0:637336 8:356863 0

�3:288355 2

1 0:405865 3:399651 0

�0:781761 2

2 0:263744 0:132669 2

3 0:75 �14:733284 2

2:944590 4

Table 7.7: Parameters of Zuritas's ECP.

test 1 Hay and Wadt

6s �0.28284 H �0.29574 H

6p �0.12917 H �0.13581 H

6d �0.05401 H +0.23842 H

Table 7.8: Einergy eigenvalues form test 1.

Before the ECP can be used with Gaussian 94 any potential given in the form according to

equation 7.61 has to be transformed into the form published by Hay and Wadt prior to its

application in Gaussian 94.

Table 7.7 lists the parameter of Zurita's ECP. The �rst test of this potential was done in a

straight-forward manner. Zurita et al. did not use a reference function in their potential like

Hay and Wadt (equation 2.65). Equation 7.61 contains therefore all information to create the

ECP for a given angular quantum number Ucore
l . The transformation of the potential was done

in two steps. First, we sat the coeÆcients Ci;l for l = 3 (f-orbital) equal to nought. This change

ensured, that Gaussian 94 creates the ECP only from the input given in the section for l < 3 in

the job-�le. This section contains now all parameters for the complete potential. In the second

step all exponents ni;l for l < 3 were increased by 2 to account for r�2 term in equation 2.65.

The results of this �rst test are shown in table 7.8. The energy eigenvalues for the 6s and 6p

orbital agree within 5%, whereas the orbital energies for the 6d orbital are totally di�erent. The

ionisation energy found with simpli�ed potential agrees well with energies found with Hay and

Wadt potential with the augmented basis set (table 7.4, �6d = �0.0503 H) and with the pure

Coulomb interaction (hydrogen nucleus) according to equation 7.30 (�gure 7.16, �6d = �0.0517

H). According to this calculation the 6d electron moves in a weak Coulomb �eld far away from

the nucleus. The geometry optimisation of the platinum dimer did not work due to a malfunction

in the calculation of the energy derivatives. The optimisation was done stepwise (�gure 7.33).

The platinum-platinum distance was found to be 2.1 �A (89% of the LanL2DZ value) and the

dimerisation energy was 37.56 kcal/mol (63 % of the LanL2DZ value6). To check whether this

faulty bond lenght is caused by the gross simpli�cation in the �rst test, the another test calculation

included the f-term. Increasing the coeÆcient n2;3 from 4 to 6 for the input yields an exponent

Gaussian cannot handle anymore. The �rst task was therefore to �t the given potential with new

set function with exponents smaller or equal to 3. This function was subtracted from the functions

given for l < 3 and the results were �tted again with new set of gaussian functions. The results of

this transformation are shown below (test 2).

6The dissociation energy of the 3D�3D dimer is 59.58 kcal/mol and those of the 1S�1S dimer 15.97

kcal/mol (table 6.10, page 161). An increase of the binding energy by 43.61 kcal/mol can be attributed to

the occupation of the �6s orbital. If we take this energy increase as the bining energy of two 6s orbitals,

calculation 1 covers 86% of the binding energy.
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Figure 7.29: Fit for the new f term (test 2).
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Figure 7.31: Fit for the new p-f term (test 2).
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Figure 7.33: Dimerisation energy from test 1 and test 3.

orbital energy

6s -0.27021 H

6p -0.11895 H

6d -0.05435 H

Table 7.9: Results from test 2.

orbital energy

6s -0.27717 H

6p -0.12908 H

6d -0.05401 H

Table 7.10: Results from test 3.
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Figure 7.35: Fit for the new p-d term (test 3).
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Figure 7.36: Ucore
L in the 3 di�erent tests.

Table 7.9 lists the orbital energies from the second test. They agree within 8% with the orbital

energies obtained in the �rst test. The agreement with the energy eigenvalues from the Hay and

Wadt potential is poorer with 12%, but still reasonable regarding the quality of the �ts. The

optimisation of the platinum dimer went totally astray. The optimisation algorithm did not work

and the dimerisation energy for the �rst step was 131 H and far too high.

The third test was done with the d-function as the base function Ucore
L . This time the d-function

was subtracted from the functions given in the paper by Zurita et al. and the reminder was �tted

with a new set of gaussian polynomials. The �ts and the corresponding functions are shown in

�gures 7.34 and 7.35. Table 7.10 lists the results for the orbital energies and they agree well with

the results from tests 1. The dimerisation energy at a optimised platinum-platinum distance of

2.1 �A is smaller than for test 1 (EDIM = 31.15 kcal/mol), but much better than �t test 2. Figure

7.33 shows the dimerisation energies as a function of the Pt-Pt distance. The �gure shows also the

potential energy curve of a second electronic state found in the third test. The dimerisation energy

leaves rapidly the physically reasonable region and the geometry optimisation was therefore not

completed.

The contradicting results for the platinum dimer from test 1/3 and test 2 can be explained with

the di�erent forms of the pseudopotentials (�gure 7.36).

Ucore(r) = Ucore
L (r) +

L�1X
l=0

m=�lX
m=�l

j lm> [Ucore
l (r)� U core

L (r)] <lm j (2.64)
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The pseudopotential in the form de�ned by Hay and Wadt (equation 2.64) contains the spherically

symmetric term Ucore
L , which works on all electrons despite their angular quantum number. The

pseudopotential by Zurita et al. (equation 7.61) does not contain such a term. For a single atom

the precise form of this function does not matter, since all functions Ucore
l have the correct form.

The right form of the functions Ucore
l ensures the correct ionisation energies. In a polyatomic

compound the energy is not only determined by the electrostatic �eld from the mother nucleus but

also by the �elds of the neighbouring nuclei. The term Ucore
L on the �rst nucleus has no restrictions

in the angular quantum number and has so a strong in
uence on all electrons at the second

platinum atom. Whereas the bra-vector of equation 2.64 forms with the wavefunction j l0m0> on

the neighbour atom the overlap integral S = < lm j l0m0>. For any distance R > 0 between the two

atoms equals j S j a value smaller than 1. The electron feels therefore the full strength of Ucore
L but

only a fraction of Ucore
l . In the second test Ucore

l contains the repulsive part of the ECP and the

electrons feel therefore a too strong attraction by the neighbour atom's nucleus. The too strong

attraction is visible in the big di�erence in the electron-nuclei energies (dPtPt = 2.77 �A) in the

di�erent tests. Test 1 yields an interaction of �1.2888 H while test 2 gave an energy of �132.5 H.

The other energies (nucleus-nucleus, kinetic energy of the electrons) are of similar size. Ucore
L can

therefore be used to manipulate the atom-atom interaction and it might be possible to partially

simulate the the core-core repulsion by keeping the platinum atoms at the correct distance from

eachother.

7.3.2 What's next?

At this point two conclusions can be drawn from the calculations done so far.

1. It is impossible to transform the ECP from Zurita et al. with a well de�ned 6d-orbital in

a straight forward manner. Problems are caused by the spherically symmetric part of the

potential, which is not part of the method used by Zurita. This part of the potential has

to be developed from the scratch for a new ECP.

2. The calculation in section 7.2 showed, that it is impossible to create an ECP, which reproduces

the results of the values for the 6d electron obtained with the potential from Hay and Wadt.

The other orbitals (6s and 6p) are easier to handle. This 6d-problem is caused by the positive

eigenvalue of 6d-function, which is most likely an artefact of the LanL2DZ potential.

The next step is the combination of the results for the LanL2 potential (6s and 6p) with the

ECP for the 6d function by Zurita. The combination reduces the number of problems to one -

the spherically symmetric part. This allows us also to minimize the number of gaussians for each

ECP function.

The �rst step of this new approach was the development of an ECP for the 6s and 6p electrons,

which reproduces the properties of the LanL2DZ calculations with a minimum of functions. Figure

7.37 summarizes the results for the 6s function. The agreement between the ideal function (straight

line) and the new function (dotted line) is poor, but only two gaussians were necessary to create

the curve. Although the electron density is closer to the nucleus with the new ECP is the energy

eigenvalue higher (2 mH). H�uckel calculations (section 5.3.2, page 123) on the Pt5 pyramid showed,

that small di�erences in the valence ionisation energy � have a small in
uence on the electronic

structure of the pyramid (�gure 5.5, page 124). If we take beta to be �0.1558 H (subsection 5.7.1,

page 135) an energy di�erence of 2 mH correspondends to 0.012 � and is therefore neglible.
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Figure 7.39: 6d orbitals.

The �nal �tting in a long series of fruitless attempts was done with a program basing on

the simulated annealing algorithm and for the quantum mechanical calculations Gaussian 94 was

called as a subroutine. To give the Hartree-Fock calculation more freedom we split the contracted

6s orbital from section 7.1.1 into single gaussians. The qualityfunction Q was then created from

two parts: �rst, the square of di�erences between the calculated wavefunction and the ideal one

and second, the squared di�erences in the energy eigenvalues ��2, since it proofed to be futile to

use the coeÆcients in the wavefunction to judge the function's quality.

Q = 100
X
i

[	FIT(ri) � 	ORG(ri)]
2 + 10 ���2 (7.62)

The data for the comparison of the wavefunctions were created with the Gaussian 94 'cube

command' with a step size of 0.1 bohr along the z-axis (15 bohr to cover the outer regions).

The same procedure was used for the calculation of the 6p-orbital. Figure 7.38 summarises the

results. The quality of the �t is poorer than before, but again only two gaussians were necessary

for the ECP. The electron density is closer to the nucleus and the energy eigenvalue is 6 mH higher

than the value calculated with Zurita's potential. It is interesting to note, that the attractive

parts for both ECPs (6s and 6p) have similar exponents (6s: 0.40 a.u., 6p: 0.44 a.u.). This result

supports the idea of Hay and Wadt, that all electrons move in an attractive spherically symmetric

�eld created by the core. The precise ECPs for di�erent values of the angular quantum number

are then smaller derivations of this general potential.
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Figure 7.39 shows the 6d-orbital. The wavefunction by Zurita et al. can be replaced by a

single gaussian (� = 0.0223 a.u.) to keep the calculation as simple as possible. Both functions

have their maximum at the same place. For all calculations we used Zurita's ECP as published

before. The energy di�erence �� between the original system and the simpli�ed 6d system is 6.7

mH and similar to values found before. As shown in �gure 7.39 is the spatial extension of the

single gaussian smaller than for the original function. The in
uence of those new 6d electrons onto

the neighbours is therefore smaller.

The new ECP used for the rest of the calculations is a combination of two older ECPs. The

calculations on the LanL2DZ potential for the 6s and 6p orbital were combined with a simpli�ed

form of Zurita 6d-orbital and ECP, because it is impossible to create a proper 6d ECP from

the LanL2DZ potential as shown before. This new potential contains one unknown variable -

the spherically symmetric part. This new potential allows us to work with smaller exponents for

the polynomial of the ECP and to develop a potential, which is suitable for the G94 geometry

optimiser.

7.3.3 How does Ucore

L
controll the dimer's properties?

A geometry optimisation of the platinum dimer with thePt 0

Pt-ECP 3 77

f potential

1

$fnag $fbag -$fdag
s-f potential

3
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Figure 7.40: G94 input.

new ECP and no sperically symmetric part yielded a bond

length of 2.13 �A and a total dimer energy of �0.6247 H.

No problems occured during the calculation with Gaussian

94. The dimerisation energy is 23.4 kcal/mol. The bond

length has the same value as before for the test 1 and 3,

while the interaction energy is only about 2
3

of the values

obtained before and half the Hay and Wadt dimerisation

energy (subsection 6.2.1, page 159).

The energy and bond length of the platinum dimer are

controlled by Ucore
L (subsection 7.3.1). If we choose Ucore

L to

reproduce these two values it might be possible to account

for the core-core repulsion (subsection 7.1) with the new 1-

valence electron ECP. To test the in
uence of Ucore
L on the

dimerisation energy, we substracted Ucore
L from Ucore

l (�g-

ures 7.37 and 7.38) in the input section of the G94 input �le

(example on the left, na: exponent of the polynomial, ba:

exponent of the gaussian, da: coeÆcient of the gaussian).

This procedure guarantees, that Ucore
l does not change its

form, whatever form Ucore
L has (equation 6.85). The prop-

erties of the dimer are now solely determined by Ucore
L .

First optimisation test were done with pure powers of rn

(n = 0, �1, �2). These functions can be created easily by choosing the gaussian exponent (ba

in the input �le) to be zero. With increasingly smaller values of d increase both the bond length

and the interaction energy. A suitable selection of � should allows us to stretch the bond and to

increase simultaneously the strength of the bond, which contradicts chemical experience, where a

long bond is a sign for a small interaction energy. With decreasing values for n becomes this e�ect

smaller, which agrees well with the increasingly more localized character of the function.
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Figure 7.42: Order 2: ETOT for an optimized

bond length of 2.3578 �A.

With increasing values of � (�gure 7.41, higher values for � not shown) the e�ect becomes

smaller until �nally the bond length decreases with an increasing interaction energy and the prop-

erties of the dimer are normal again. The exploitable region for the manipulation of the dimer is

limited by two points:

1. The dimer dissociates, if � is too small and therefore the minimum of Ucore
L too far away from

the nucleus.

2. If � is too big and the minimum of Ucore
L therefore too close to the nucleus, the Ucore

L function

has no in
uence on the dimer's properties.

It should be therefore possible to construct an attractive function for a given exponent n, which

guarantees the reproduction of the dimer's properties. This idea was tested in the next set of

calculations. The single gaussian for the 6d orbital was now replaced by the contracted wave

function for the 6d-orbital from the �rst set of claculations with Zurita's potential to increase the

accuracy of the long range behaviour (table in �gure 7.42).

Figure 7.42 shows the results of such claculations. The values for dOPT have been chosen7 to

give an optimized PtPt bond length of 2.3578 �A, which is the value found with the Hay and Wadt

potential with a 5d186s2 electron con�guration (subsection 6.2.1, page 159). The energy of the

dimer (EDIM) becomes increasingly more negative as � increases and the minimum of Ucore
L gets

closer to the nucleus. Figure 7.42 suggests, that at least one couple of (�, dOPT) should exist,

which allows the reproduction of the correct properties of the platinum dimer.

Figure 7.43 shows, how the bond length changes with increasing values of dA. The closer the

minimum gets to the nucleus the smaller becomes the in
uence of the attractive function on the

dimer's properties. As � becomes larger than 0.06 it becomes impossible to construct an optimized

dimer with a bond length of 2.3579 �A, because the attractive function vanishes too fast. Although

it is not possible to reproduce the correct bond length, the reproduction of the bonding energy

is still possible (�gure 7.44). A value of 0.06 a.u. for �A seems not to be suitable for further

calculations, because such a potential spreads very far (half width = 3.4 bohr).

7A small C++ program was written to �nd an optimized value dOPT which forces the geometry opti-

misation module of Gaussian 94 to converge on a platinum-platinum bond length of 2.3578 �A.
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The original ECP form from Hay and Wadt (equation 2.64) suggests that the spherically

symmetric part Ucore
L represents the main structure of the core potential. As indicated in the

�gures 7.37 and 7.38 the attractive part of Ucore
L should have the form dA � r � exp[��Ar2] with 0.4

� �A � 0.44 (grey shaded area in �gure 7.45). Such a function is of third order in the G94 input

section and so close to the limits of the program's numerical capacities. The geometry optimisation

module does not work any more due to a malfunction in the calculation of the energy derivatives.

The bond length was therefore optimised by a hand-made code basing on the Newton optimisation

algorithm and dOPT optimized to yield so a bond length of 2.3575 �A. The results are shown in

�gure 7.45.

Although it is possible to reproduce the bond length of the LanL2DZ dimer (2.3575 �A) over a

wide range, it was not possible to reproduce the dimersation energy (requires EDIM = �0.6675 H)

with the �rst set of computations. The calculations with zero order function (�gure 7.43) showed,

that in certain range for dA two solutions are possible. In the next step we therefore calculated

the optimised bond length for de�ned values of �A as a function of dA (�gure 7.46).

The optimised dimer energy and the bond length do not change steadily with increasing values

for dA and �xed values for �A (�gure 7.46). During the calculation of every curve a point was

reached, where the optimisation started to oscillate wildly. Figure 7.47 shows, how the properties
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of the optimized dimer change with the starting point of the optimisation. An explanation for

this behaviour is shown in �gure 7.48. The increase of dA causes a second minimum with a longer

bond length while the �rst minimum becomes more shallow until it �nally vanishes (dA = 2.00

a.u.). Within this development a region exists with two independent minima separated by a small

maximum. In this region the optimisation algorithm can converge to any of these minima and

oscillation is likely.

This observation leads to another requirement for an useful ECP: The ECP has not only to

reproduce certain points of a given potential energy surface, but also has to reproduce the main

features of the surface itself such as the number of stationary points.

7.3.4 How strong is the in
uence of Ucore

L
on the PtH bond?

The in
uence of Ucore
L on the Pt-Pt bond in the platinum dimer is very strong, because both atoms

use Ucore
L . In this subsection we focus on the in
uence of Ucore

L on bonds with only one ECP atom:

PtH.

Figures 7.49 and 7.50 show the bond length and the total energy of PtH as a function of Ucore
L

(third order G94 input, attractive Ucore
L < 0). With increasing strength of Ucore

L the bond becomes

shorter and stronger. This behaviour becomes more prominent as �A moves into a chemical range

(0.44 � �A � 0.44). The end points of the curves in �gure 7.49 and 7.50 are marked by the point,
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dA 0.13 0.01 0.0

6s 0:6065 0:582 0:5809

6p 1:1227 0:3969 0:3726

6d 0:1120 �0:0472 �0:0413

optimized PtPt distance, � = 0.42,

triplet state (a21 e e), 3rd order

Table 7.11 Mulliken population at

the top in Pt+5 .

where the hydrogen atom drops into the platinum. Figure 7.51 shows this development for �A =

0.46. All graphs in this subsection show, that Ucore
L is important for the bond between an ECP

atom and an all-electron atom and the construction of a working ECP has therefore to focus also

on the interaction between the ECP atom and 'normal' atoms.

The core-core repulsion (equation 7.1, page 204) is a repulsive function preventing two atoms

to collide during a geometry optimisation. Figure 7.51 demonstrates, that it is possible to prevent

such a collision with a well chosen function for Ucore
L (dA < 0.60) and therefore to simulate the

core-core repulsion with Ucore
L .

7.3.5 How does Ucore

L
change the electronic structure of Pt5?

Ucore
L has a strong in
uence on the bond between two atoms (subsections 7.3.3 and 7.3.4). During

these calculations the ionisation energies of the 6spd orbitals did not change due to the construction

of the G94 input �le (subsection 7.3.3). The valence ionisation energy � in the pure H�uckel theory

is proportional to the ionisation energy of the orbital and this parameter did not change during the

last calculations on Pt2 and PTH. During these calculations changed the length and the energy of

the bond. These two parameters depend on the bond energy integral �. It is therefore likely to

assume, that the in
uence of Ucore
L in the binding energy of the cluster can be described with the

bond energy integral �.

According to pure H�uckel theory the energy of the bonding orbitals in Pt+5 change with the value

of �, but the charge distribution does not8. In this section we therefore analyse the in
uence of

Ucore
L on the electronic structure of Pt+5 . Figures 7.52 and 7.53 show the results of these calculations.

For these speci�c calculations we used a third order function in the input �le. The ECP exponent

�A was chosen to be 0.42. As observed before for the platinum dimer, both the bond length and the

total energy decrease with increasing values for dA (�gure 7.52) until the cluster �nally collapses

(not shown) long before the dimer values are reached (�gure 7.45). Figure 7.53 shows the charge

at the top of the platinum pyramid and the dipole moment of the cluster. In contrast to pure

8All H�uckel energy eigenvalues have the same structure: � + ki � �, ki is a constant value. The

replacement of �i in the secular determinant jDj during the calcualtion of the coeÆcients (ci) eliminates �

from the diagonal element and every element of jDj has then the form k0ij � �, k
0

ij is another constant. It is

now possible to take � out of the matrix: jDj = � � jk0j. The HMO coeÆcients (equation 5.4, page 118)

are therefore independent of � and so is the charge distribution. Dc = � k0 c = 0
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Figure 7.52: Bond length and ETOT in Pt+5 .
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�A dA rOPT ETOT �(a1) �(e) �(e)

a.u. a.u. [�A] [H] [H] [H] [H]

0:01 0:403607 3:9044 �2:929759 �0:86225 �0:81099 �0:81099

0:015 0:518808 3:6136 �2:808681 �0:85265 �0:78326 �0:78326

0:02 0:664460 3:0321 �2:765852 �0:89179 �0:84875 �0:84875

0:025 0:849058 2:8793 �2:832524 �0:91736 �0:88854 �0:88854

0:03 1:083997 2:7358 �2:964312 �0:95609 �0:95228 �0:95228

0:035 1:385072 2:5759 �3:169891 �1:01049 �1:05104 �1:05104

0:04 1:775204 2:2637 �3:484548 �1:08847 �1:26340 �1:26340

Table 7.12: Pt+5 properties calculated with a second order ECP function (triplett wave function).

H�uckel theory these values change dramatically with increasing strength of Ucore
L . The electrons

accumulate at the pyramid's top (table 7.11) until �nally the dipole moment changes its direction.

Ucore
L does not only control � but changes the ability of the core to attract electrons. The top

platinum forms four bonds while a basal atoms are bonded thrice. It is therefore more easy for the

top platinum to attract electrons then for a basal atom. These extra electrons stay mostly in the

6p and 6d orbitals (table 5.26). The 6s electrons obey the H�uckel predictions while the 6p and 6d

orbitals become more populated. This extra population indicates a major change in the metallic

bonds and Ucore
L can be used to manipulate the electronic structure of the cluster signi�cantly.

This has been observed with a set of second order ECP functions (table 7.12). The values for �A

and dA have been taken from the corresponding dimer optimisations (table shown in �gure 7.42).

During these calculations change the 1a1 and the two 1e orbitals their relative energy order and

the singlet cluster becomes more stable (not shown in table 7.12).

7.3.6 What happens if two di�erent ECPs interact with each other?

A water molecule interacts with the platinum surface via the platinum 5d orbitals. It is therefore

necessary to construct the surface with two di�erent ECPs. The �rst ECP (1-valence electron) for

bulk and passive surface atoms and the second for the active site (10 or 18 valence electrons). The

analysis of this interface in the platinum pyramid was done in two steps: �rst, we sat Ucore
L equal

to nought and used di�erent ECPs at the top and in the second step we changed Ucore
L with a �xed
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LanL1MB LanL1DZ LanL2MB LanL2DZ

q5 [e] �0:176 0:458 �0:090 0:413

q1 [e] 0:044 �0:114 0:022 �0:103

q2 [e] 0:044 �0:114 0:022 �0:103

� [D] 0:3464 �0:630 �0:1886 �0:6041

6s pop. Pt(5) 0:4769 0:09992 0:36828 0:13683

6s pop. Pt(1) 0:9006 0:93725 0:89082 0:92686

6s pop. Pt(2) 0:9006 0:93725 0:89082 0:92686

MOP Pt(1)-Pt(2) 0:069 0:1601 0:082 0:1576

MOP Pt(1)-Pt(5) 0:1546 0:0189 0:1438 0:019

�(e) [H] �0:24179 �0:23596 �0:23779 �0:23494

�(a01) (6s) [H] �0:39312 �0:39356 �0:39193 �0:39338

�(a001) (5d) [H] �0:36398 �0:36432 �0:36228 �0:36338

Table 7.13: Pt5 pyramide with di�erent ECP at the top.

ECP at the top.

Table 7.13 compiles the results for the �rst step. For all calculations the platinum-platinum

bond length was set to the bulk value of 2.77 �A and a triplet wave function to simulate the

combination of 4 3D platinums with 1 1S platinum.

The calculations with the LanL2DZ potential on all platinum atoms (chapter 6, page 145)

showed, that a 6s population di�erent form zero is necessary to describe the bond between water

and platinum correctly. The top of the platinum pyramid (subsection 6.4.2, page 187) is negatively

charged (�0.2 e) and the 6s population at the top platinum (0.734) is close to the value for a 3D

platinum interacting with water (1.010). The H�uckel calculations on Pt5 showed, that in an ideal

pyramid the charge at the pyramid's top should be close to �0.55 e caused by a 6s population

about 0.44 (subsection 5.3.1, page 122). This value is seldom reached due to the 5d-6s interaction

as shown in subsection 5.3.3 (page 125).

Only the simple basis sets (MB) create a negative charge at the top, while the double zeta

basis sets (DZ) cause a positive charge. The charge distribution depends stronger on the quality

of basis sets then on the chosen ECPs (LanL1: 10 e� , LanL2: 18 e�) and the BSSE seems to

be important for the metal-metal interaction at this theory level. The analysis of the Mulliken

overlap population (MOP) demonstrates, that double zeta basis sets favour the bonds in the basis

of the pyramid while the simple basis sets favour the bonds between the basis and the top. This

di�erence in the metallic bonds explains the di�erence in the inner cluster charge distribution.

Both clusters with a simple basis set di�er signi�cantly in the charge at the pyramid's top

(LanL1MB: �0.176 e, LanL2MB: �0.090 e). This di�erence cannot be explained with the 6s

population alone. For both clusters the 6s population is close to the value predicted by pure H�uckel

theory. The 6s population is 0.1086 electrons higher in the LanL1MB cluster than in the LanL2MB

cluster. The di�erence in the 6s poulation by 0.1086 should be visible in a charge di�erence of

the same amount, but a smaller di�erence of 0.086 e can be observed. This discrepancy can be

explained with the 5d-6s interaction in the clusters. The 5d population in the LanL1MB cluster

is 9.4055 while the LanL2MB cluster has a 5d population of 9.4296. These numbers indicate, that

the 5d-6s interaction in the LanL1MB clusters is stronger than in the LanL2MB clusters leading to

an extra charge 
ow of 0.0241 electrons from top to the base in the LanL1MB cluster. The extra 6s
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ECP orb. 6s basis 6s top 5dz2 top � [H]

LanL2MB
a01 0:27838 0:14131 0:48018 �0:39193

a001 �0:16517 �0:10936 0:86576 �0:36228

LanL1MB
a01 0:23717 0:19200 0:64613 �0:39312

a001 �0:22202 �0:16556 0:75035 �0:36398

Table 7.14: Orbital coeÆcients in Pt5.

electron 
ow of 0.1086 electrons in the LanL1MB cluster to the top has therefore to be corrected by

the 0.0241 electrons leaving the top platinum via the 5d orbitals. This correction results in a net

di�erence of 0.0845 electrons in the innermolecular charge transfer between the LanL1MB and the

LanL2MB cluster, which agrees very well with the charge di�erence of 0.086 electrons at the top

platinums. Table 7.13 is so a perfect con�rmation of the 5d-6s interaction mechanism developed

from H�uckel calculations in subsection 5.3.3 (page 125). Figure 5.6 (page 126) shows both electron


ows in the cluster.

The dipole moments of both clusters (LanL1MB and LanL2MB) re
ect this mechanism. In the

LanL1MB clusters the dipole moment points from the bottom of the pyramid to its top. Two topics

can be used to explain this orientation: First; 3.60 6s electrons at the bottom of the pyramid face

only 0.48 electrons at the top. Second; the 5d-6s interaction moves additional 5d electron density

from the top to the base. The dipole moment has therefore to point upwards. The 5d-6s interaction

is smaller in the LanL2MB cluster than in the LanL1MB (table 7.14) and charge transfer from tho

top base of the pyramid is therefore smaller. The electrons accumulate at the top and the dipole

moment changes its direction.

Two totally symmetric orbitals can be observed in the MB-clusters: the a01 orbital and the a001

orbital. They are the products of the 5d-6s interaction. Table 7.14 lists the coeÆcients of these

two orbitals. The a01 orbital is the bonding combination of the 6s-a1 orbital and the 5dz2 platinum

orbital. This MO is dominated by the 6s orbitals, while the antibonding combination (a001) is

dominated by the 5dz2 orbital. The advanced 5d-6s interaction deduced from the 5d population

is re
ected in the coeÆcients for the 5dz2 orbital. In the LanL1MB cluster is the 5dz2 coeÆcient

in the a01 orbital much stronger than in the LanL2MB case. Table 7.14 is so a good example for

the second pathway for the 5d-6s interaction proposed in subsection 5.3.3 (page 125). The �rst

pathway, with small 5s-6s overlap has been observed for calculations with badly chosen parameters
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Figure 7.56: Dipole moment the LanL1MB cluster.

for the 6p orbital, but examples are not given for the sake of brevity. In all calculations in this

subsection the 6p orbitals interact only weakly with the nonbonding e-orbitals and direct charge

transfer is not observed.

So far Ucore
L has been set equal to zero for all calculations. In the next step we changed Ucore

L

systematically to test the in
uence of Ucore
L on the surface model. Ucore

L was modelled with a third

order function and �A was chosen to be 0.42. Figure 7.54 displays the total energy of the cluster a

function of dA. With increasing values of dA the total energy of the cluster becomes more negative.

The same behaviour was observed before for Pt+5 (�gure 7.52), but the development of the charge

distribution in the cluster is di�erent (�gure 7.55 and 7.53). Now the charge at the top becomes

more negative at the beginning of the curve but later the charge decreases and at the top becomes

�nally positively charged. During this electron movement loses the wavefunction its symmetry and

the platinums one and two at the base carry now di�erent charges.

The decrease of the total energy agrees well with the H�uckel predictions (subsection 5.3.2,

page 123). In contradiction to H�uckel theory (equation 5.16, page 124) the nonbonding orbitals

also decrease their energy and not only the totally symmetric. The charge 
ow within the cluster

observed for values of dA � 0.14 a.u. agrees well with predictions from the H�uckel theory (equation

5.18, page 125). H�uckel theory predicts, that with increasing bond strength between platinum

atoms at the pyramid's bottom electron density 
ows from the top into the basal plane. With

increasing values of dA the negative charge at the top becomes smaller. The analysis of the

eigenvectors showed, that with increasing values of dA the contribution of the 6p orbitals becomes

larger. This increase can be used to explain the discontinuities of the dipole moment of the cluster

shown in �gure 7.56.

7.3.7 Is the LanL1MB cluster a suitable surface model?

All calculations in the section 7.3.3 to 7.3.6 showed, that Ucore
L has a strong in
uence on the

properties of the metal cluster and via the 6s population also a strong in
uence on the platinum-

water bond. The safest bet on Ucore
L would be Ucore

L = 0 for the following reasons:

1. According to Hay and Wadt Ucore
L describes the general shape of the ECP for l � lmax and

modi�es so the characteristics of the Coulomb term (equation 2.65). Setting Ucore
L equal to

zero is therefore equivalent to the assumption, that the core for the new ECP is similar to a

bare hydrogen nucleus.
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2. If Ucore
L represents the general shape of the ECP, it is likely to assume, that Ucore

L has a similar

shape than the pure functions for Ucore
S and Ucore

P . Both functions have an attractive third

order part with an exponent �A between 0.40 and 0.44 and repulsive second order function

(subsection 7.3.2). A third order function for Ucore
P is close to the numerical limits of Gaussian

94 and these jobs are diÆcult to handle. Setting Ucore
L equal to zero spares us all numerical

problems.

3. For Ucore
L = 0 we observed a potential energy surface for the platinum dimer with one min-

imum (subsection 7.3.3) and the platin-hydrogen bond length in PtH was in a chemically

reasonable range (subsection 7.3.4). Setting Ucore
L equal to nought simulates the core-core

repulsion reasonably well for PtH and creates the correct number of stationary points on the

Pt2 potential energy surface.

4. Reliable parameters for Ucore
L are diÆcult to extract from the original paper by Hay and

Wadt. Useful target properties to be reproduced by the new ECP are therefore properties

of small platinum clusters (subsections 7.3.3 and 7.3.5). The calculations on these small

clusters (Pt2 and Pt5) showed, that no simple set of parameters for Ucore
L exists, which works

as well on Pt2 as on Pt5. Only Ucore
L = 0 resulted in reliable values for both clusters.

5. Ucore
L has a very strong in
uence on the electronic structure of the nucleus and any potential,

which cannot justify the chosen parameters for Ucore
L in a strict manner remains therefore

questionable. From the ethical point of view it is therefore better to stay with the simple

hydrogen nucleus than to change to set of phoney parameters for Ucore
L .

For these reasons we continue the analysis of the water-platinum interface with a bulk ECP

according to subsection 7.3.2 with Ucore
L equal to zero and the LanL1MB ECP for the active site.

The water molecule will be described with the DZP basis set, which was used before, because

test calculations on Pt�H2O using the LanL1MB basis set yielded in incorrect geometries, as the

water-platinum bond was formed via the hydrogens.

The �rst set of calculations was very promising. Figure 7.57 shows the dissociation curves of

Pt5�H2O with di�erent orientations of the molecular plane of the water molecule relative to the
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surface9. On HF level the two hydrogens point upwards and the bonding energy of the water

molecule is 9.492 kcal/mol. All curves �nally converge to the same point. The energy to move the

water molecule from the horizontal position into a vertical is 3.88 kcal/mol. The value of dPtO was

not optimized but taken directly from the curve. The true value is therefore likely to be a little

larger. 3.88 kcal/mol is a much larger value than 0.26 kcal/mol found with LanL2DZ potential

(subsection 6.4.2.3, page 191), but still reasonable regarding other values found in chapter 6.

The symmetry problem still exist if 1-valence ECPs are placed on the bulk atoms. Figure 7.58

shows the dissociation curves 
 = 180Æ. The curve derived from the symmetric wavefunction has a

slightly higher energy than the unsymmetrical curve. It is interesting to note, that both curves end

at the same point. The symmetric curve is the same as the curve we calculated for 
 = 173Æ. At

this point also stopped the geometry optimisation. This symmetry error is small compared with the

energy discontinuities observed before for Pt2�H2O, but the rotational problem of unsymmetrical

curves still exists (subsections 5.3.4, page 126 and 6.4.2.2, page 190). Figure 6.75 shows the total

energy of the cluster as a function of the rotational angle �. The curve has the correct shape in

the centre (� = 0Æ), but fails at the turning points (� = �45Æ). Figure 7.60 displays the same

movement for the symmetric case. The curve is smooth at the turning points (� = 0Æ, 45Æ) and

the energy di�erence is much smaller (unsymmetric: 200 �H, symmetric: 6 �H). It was impossible

to model the rotation correctly with an unsymmetrical wavefunction.

The dissociation of the symmetric wavefunctions, which form the basis of the plot shown in

�gure 7.60, is interesting. The minimum is shifted away from the surface (dPtO = 2.60 �A) and

consequently is the bond much weaker (approx. 6.4 kcal/mol, bond length not optimised). 2.6

�A is very large value for the platinum-water bond and the hydrogens interact only weakly with

the metal atoms. The energy necessary to change 
 from 135Æ to 180Æ is very small, nearly non

existent (0.04 kcal/mol). This value is closer to that observed in pure LanL2DZ calculations (0.26

kal/mol).

In the next step we took the checkpoint �les from the calculations with symmetric wavefunctions

to start with MP2 calculations (�gures 7.61 and 7.62). Despite the known disadvantages of this

method, we hoped to get so a �rst estimate of the in
uence of correlation e�ects on this surface

model. At MP2 level the water molecule moves closer to the surface (dPtO = 2.4192 �A, 
 =

9For the ease of reading all variables are the same as in subsection 6.4.2 (page 187)
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135.18Æ) and becomes more strongly bonded (15.25 kcal/mol). This is a perfect reproduction of

the experimental value. The neighbourhood to the metal cluster increases the metal-hydrogen

interaction and moves the hydrogens closer to the surface. This movement increases the energy to

reorientate the water molecule. The energy to lift the water molecule up (
 = 135Æ ! 
 = 180Æ,

dPtO optimized for both angles) is 0.41 kcal/mol and so 10 times bigger than on HF level.

Figure 7.61 shows the rotation of the water molecule. The rotation is smooth and the curve has

the correct shape. dPtO has not the optimised value but the HF value of 2.6 �A. At this distance is

the energy change caused by the rotational small (0.015 kcal/mol) and negligible.

All calculations in this subsection showed, that it is possible to construct a working surface

model with an 1-valence electron ECP for the bulk atoms. The results obtained with this model

agree very well with 18 valence electrons calculations and experimental results. One major problem

during the calculation potential energy surfaces cannot be avoided: the break-down of symmetry

as the water molecule changes its position. It is still vital to check, if the chosen wavefunction can

used to describe all movements without sudden symmetry induced energy discontinuities. These

checks are still boring and tedious, but can be done much faster now. A complete scan of the

Pt5�H2O potential energy surface is straight forward is a matter of further research.

7.4 Conlusions from the analysis of the 1 valence electron

ECP

1. In section 7.1 we extracted a set of target properties for a new 1-valence electron ECP from the

LanL2DZ ECP. These values form the basis for the calculations in sections 7.2 and 7.3. The

results for the 6s and 6p orbital are physically reasonable, while the positive energy eigenvalue

for the 6d orbital is physically unreasonable. A positive energy eigenvalue for the 6d electron

is physically not reasonable, since a positive energy eigenvalue implies dissociation.

2. A simple and naive approach towards a new ECP, which tries to reproduce all results from

atomic calculations, failed. The problems were caused by the 6d orbital, which has a positive

energy eigenvalue. An ECP, which reproduces the positive 6d energy eigenvalue, is therefore

physically useless, but guarantees at least a smooth transition between both ECPs, since

calculations in subsection 7.3.6 showed, that the electronic properties of the platinum cluster

depend critically on the interface between di�erent ECPs.
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3. A positive energy eigenvalue �6d without dissociation demands a local or global minimum in

the �6d(�) curve. � is the gaussian exponent of the wavefunction and controls the distance

of the electron density maximum from the nucleus. All calculations in the subsections 7.2.3

to 7.2.9 showed, that such a minimum and so a smooth transition between the ECPs is

impossible to create with any number ECP functions.

4. Zurita et al. used a 1 valence electron successfully to model platinum clusters [318]. Both

ECPs, Zurita and Hay and Wadt, use di�erent forms for the ECP functions. This di�erence

makes it impossible to use Zurita's ECP directly within the Gaussian 94 program suite. The

most challenging problem is Ucore
L , which has a strong in
uence of polyatomic calculations.

5. In the next step we combined a simple representation of the 6s and 6p orbitals, which agree

with the simpli�ed functions of the subsections 7.1.1 and 7.1.2, with Zurita's 6d orbital and

ECP. This combination reduced the number of indeterminate parameters to one: Ucore
L . The

following calculations were used to analyse the in
uence of Ucore
L on polyatomic calculations.

6. Ucore
L has a dramatic in
uence on the platinum dimer. The calculation showed, that it is

possible to tune the dimer's properties with Ucore
L . It was possible to reproduce the properties

of the LanL2DZ dimer with a second order function in the G94 input �le. This ECP stretches

too far to be physically reasonable. The third order function allows us to reproduce the

optimised bond length of the LanL2DZ dimer, but fails to reproduce the binding energy.

Ucore
L has a tremendous in
uence on the dimer's total energy as function of the interatomic

distance r. The original curve (Ucore
L = 0) has a single, global minimum. With the increasing

strength of Ucore
L develops a second minimum. Geometry optimisations oscillate between

these two minima and small changes of Ucore
L have a very strong in
uence on the dimer. For

very strong attractive functions dominates the second minimum and becomes global. This

minimum moves to longer bond lengths until �nally the dimer dissociates and the calculation

becomes physically unreasonable.

7. A totally di�erent behaviour has been observed for PtH. With increasing strength of Ucore
L

the bond becomes shorter until �nally both atoms collide. Ucore
L changes the potential energy

curve of PtH from a single minimum curve into a function with now minimum in a chemically

reasonable region.

8. Ucore
L does not only change the strength of a chemical bond, but also changes the electron

density within the cluster. Calculations on Pt+5 showed, that Ucore
L also changes the orien-

tation of the dipole moment. It is not possible to reproduce the properties of the LanL2DZ

dimer and the LanL2DZ platinum pyramid with the same set of parameters for Ucore
L .

9. Suitable surface models contain at least one bonding platinum atom while the majority of

the atoms are 1-valence electron ECPs to simulate bulk and passive surface atoms. In these

clusters di�erent ECPs get into contact and each ECP has its own set of parameters for Ucore
L .

The calculations in subsection 7.3.6 showed, that the interface between both ECPs has a very

strong in
uence on the electron distribution in the platinum cluster. The LanL1MB potential

from Hay and Wadt gave the best results and we continued the work with this ECP. Since

Ucore
L of the bulk atoms is part of the controlling interface Ucore

L can be used to manipulate

the charge distribution in the cluster. The results of these calculations agree reasonably well

(dipole moment) with the prediction from H�uckel calculations.
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All calculations so far showed, that it is possible to create nearly any wanted electronic

property of the metal cluster with a suitable set of parameters for Ucore
L . To avoid any future

problems we set Ucore
L equal to zero for all calculations in the last part of this chapter. This

approximation is equal to a bare hydrogen nucleus at the core. We neglect so the spatial

extension of the core, which we do not know. This procdure seems to be philosophically

much better than working with unproved assumptions.

10. In large clusters interact the hydrogen atoms of the water molecule with passive surface atoms.

The new 1-valence electron ECP (Ucore
L = 0) describes the platinum-hydrogen interaction

reasonably well (�gures 7.49 and 7.50 in comparison with table 6.8, page 157), and successful

calculations on larger clusters should therefore be possible.

11. The electronic structure of the Pt5 pyramid with a LanL1MB platinum at the top shows a

strong 5d6s interaction as precisely predicted by the H�uckel calculations. This interaction

changes the charge at the top platinum, since electron density 
ows away from the platinum

via the 5d orbitals.

Calculations on Pt9�H2O with the LanL2DZ potential indicated (section 6.5, page 192),

that an extended 5d electron 
ow within the cluster is possible. This 
ow is beyond the

possibilities of a simple 1-valence electron ECP. Since this 5d electron 
ow increases with

cluster size is the credibility of the 1-valence electron ECP approach towards the adsorption

of water on platinum limited by the cluster size. The extend of this limitation will be subject

of future research.

12. The Pt5 pyramid with a LanL1MB platinum at the top serves as good surface model. The

pyramid carries a small negative charge at the top (�0.18 e), which repels the oxygen. The

6s population (0.48) is close to the H�uckel prediction (0.44). Both, the negative charge at

the top and the 6s population, repel the oxygen atom, while the 5d electron charge 
ow from

the top atom to base creates a hole, which can be �lled with electrons from the oxygen lone

pair.

This Pt5�H2O cluster with a LanL1MB ECP at the top allowed us to compute a working

potential energy surface for the water-platinum interaction. The simplicity and speed of these

calculations justify the chosen approximations, but the symmetry of the wavefunction is still

the biggest problem. As the symmetry changes during the movement of the water molecule,

the electron distribution also can change. A careful construction of the wavefunction allows

us to describe all movements of the water molecule.

The bond between the water molecule and the platinum atom is too weak on Hartree-Fock

level. With the introduction of electron correlation on MP2 level the bond becomes stronger.

The cluster is now a physically reasonable model of the surface (�EBOND = 15.25 kcal/mol).

The molecule can rotate freely (�EROT = 0.015 kcal/mol) at a distance of 2.6 �A, and nothing

indicates a major rotational barrier for smaller distances. The water molecule is slightly tilted

(
 = 135Æ) and the energy to lift the molecule up is also small (�EUP = 0.41 kcal/mol). Such

a small energy re
ects the weak interaction of the hydrogens with the surface. Calculations

on Pt9�H2O will help to analyse the importance of the hydrogen-platinum interaction on

the orientation of the water molecule.

13. The succesful calculations on Pt5�H2O showed, that the new 1-valence electron ECP can
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be used on bulk and passive surface atoms, but the number of assumptions made, suggests

that the applictaion of this ECP should be restricted to small surface modells with the

experimentaly observed PtPt bond length of 2.77 �A.

14. The platinum-water interface is diÆcult to model and the analysis of the Hartree-Fock results

was only possible with the results from the H�uckel calculation and the 1-valence elctron ECP.

The H�uckel calculations are the link between the calculations with 18 valence electrons and

calculations with the 1-valence electron ECP. Without any of the three parts (18 valence

electron calculations, H�uckel calculations, 1-valence electron ECP calculations) it would have

been impossible to analyse the platinum-water interface.
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Chapter 8

Water Clusters on the Platinum

Surface

The �rst two chapters 3 and 4 focused on water clusters while the next two chapters 6 and 7

analysed the interaction of a single water molecule with the platinum surface. Now we concentrate

on the interaction between extended water clusters and the metal surface. In this chapter we use

the results of these initial four chapters and together with additional calculations we focus on a

more realistic description of the platinum-water interface.

The �rst section (8.1) investigates the bond between small water clusters and simple platinum

clusters: Ptn�(H2O)m with 1 5 n 5 3 and 2 5 m 5 3. Cooperative forces have a strong in
uence

of the structure of the water cluster. These e�ects can be used to explain experimental TDS

data, which have been a matter of discussion so far. We published these new results already in

"Langmuir"[42] to comment directly to the publication by Ogasawara et al., who collected the

experimental data [56]. Section 8.1 is therefore a reprint of the manuscript.

In the second section (8.2) we use the new water-water interaction potential of chapter 4 to

investigate the structure and the energy of the water hexamer on a virtual metal surface. The metal

surface is purely described by geometrical constraints on the water cluster's geometry. All results,

which have been checked quantum chemically, indicate that the molecular plane of the water

molecule can be orientated parallel to the metal surface and the growth of ice is still possible.

These new results can used to settle the dispute on the orientation of the water molecule and will

be published as soon as possible [59].

Chapter 8 is compilation of two complete manuscripts submitted for publiclation, both con-

taining a introductory subsection. Repetions regarding chapter 1 are therefore unavoidable and

the subsections 8.1.1 and 8.2.1 may be skipped, but the author did not want to destroy the logical

unity of the essays.
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8.1 In
uence of Cooperative E�ects on the Formation of

Water Trimers on Pt(111)

Abstract

Calculations on small platinum-water clusters demonstrate the importance of cooperative e�ects

on the formation of a water bilayer structure on the platinum(111) surface. If the orientation of

the bridging water molecule is allowed to relax during the simulation of this bilayer, one hydrogen

bond is broken in favour of the other. The desorption energy of water from the relaxed model

cluster is found to be in better agreement with published thermal desorption spectra (TDS) data

than desorption energies arising from an ideal ice-like bilayer structure.

8.1.1 Introduction

Early work [36, 37] on the adsorption of water on the platinum(111) surface reported a (
p

3�p3)

R30Æ surface structure of adsorbed water molecules and suggested the formation of ice ordered in

domains of 30 to 40 in length.

A water bilayer structure [38, 39] has been proposed as the basis of the growth of ice on

hexagonal platinum lattices. In the initial stages of growth, a water molecule has two possible

adsorption sites: attached either directly above a platinum on the surface or to a water molecule

already bound to the surface [46, 48]. The smallest water cluster deduced from UHV experiments

is a three dimensional water trimer [45].

Thermal desorption spectra [38, 43, 46, 48, 50{54, 56] of water from the platinum(111) surface

remain controversial. The most recent data from Ogasawara et al. [56] shows three prominent

peaks at 155 K, 165 K and 200 K. The �rst peak (at 155 K) was assigned to ice sublimation, the

second (at 165 K) to water in the second adsorption layer and the third (at 200 K) to water directly

bound to the surface. While the �rst two peaks have been positively identi�ed, the origin of the

third remains a matter of discussion [53, 54]. The formation of the second peak at 165 K can be

observed at coverages as low as 0.13 to 0.27 monolayer (ML), where 1 ML refers to an ideal bilayer

[39]. These TDS results are consistent with other experimental results [43, 45, 46, 48, 57, 58],

which also support the formation of water clusters at low surface coverage.

The coexistence of both species (i.e. a water molecule directly bound to the surface and a

water molecule attached to another water molecule) is commonly explained in terms of the energy

of isolated bonds, although the importance of cooperative forces has been suggested previously

[45, 49]. The strength of the platinum-water bond corresponds to that of two to three hydrogen

bonds, so either type of bonding is possible. The structure of water cluster at metal surfaces is

generally explained in terms of an extension to surfaces [39] of the Bernal-Fowler-Pauling (BFP)

rules [9, 13]. Speci�cally [39], each water molecule is assumed bound by at least two bonds (which

may be hydrogen bonds to other water molecules, or oxygen lone pair bonds to the surface) while

maintaining a tetrahedral bonding con�guration. The water is assumed bound to the surface via

one lone pair orbital on the oxygen, all free lone pair orbitals on oxygen lying nearly perpendicular to

the surface. In an ideal in�nite bilayer, all water molecules have their dipole moments pointing away

from the surface ("
ip up"), whereas, in a �nite cluster, water molecules whose dipole moments

point towards the surface ("
op down") may occur at the edges of the cluster [39, 41]. Experimental

results [43] suggest that the edges of ice-like clusters on Pt(111) are constructed from 
ip up
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Platinum

1st Water layer

2nd Water layer

Figure 8.1: Fragment of the Pt(111) surface with water bilayer.

molecules together with water molecules with one OH bond parallel to the metal surface, in contrast

to the 
op down geometry predicted at the edges by the BFP rules. Such a water species has been

observed on Pt(100) [44] and experimental evidence suggests that such a species may also exist on

Pt(111) [45, 46]. It has not been possible to rule out such a structure by application of ultraviolet

photoelectron spectroscopy (UPS) to Pt [6(111)�(100)] [37].

The metal-water interface has been examined previously by quantum chemical calculations

[54, 60{72] and work on the platinum-water interface [54, 63{65, 68] suggests that the molecular

plane of the water lies parallel to the surface [54, 63, 68]. These results agree with workfunction

measurements [45, 52, 58, 73] on water-covered platinum surfaces, which show that that a contribu-

tion of about 0.2 D of the water dipole moment (single molecule 1.84 D) is normal to surface [58].

Theory and experiment agree that the water molecule is only slightly disturbed upon adsorption

on Pt(111) [41, 45, 46, 48, 58, 73{75] and dissociation has so far only been observed experimentally

on pre-covered surfaces [76{79].

The signi�cance of hydrogen bonding and polarisation e�ects has been discussed previously

[45, 56, 64, 75], but, to our knowledge, has not been studied in great detail. This work provides a

theoretical analysis of the e�ects of cooperative water-metal interactions on the orientation of the

water molecules in the second layer.

8.1.2 Computational Procedure

All calculations were carried out using Gaussian 94. The platinum atoms were described by the

e�ective (18 valence electron) core potential of Hay and Wadt [189] using a double-zeta basis set1.

The double-zeta plus polarization (DZP) basis sets of Dunning [355] were used to describe hydrogen

and oxygen. Open shell species were treated by the unrestricted Hartree Fock (UHF) approach

and charges determined according to the Mulliken scheme. Electron correlation was incorporated

at the M�ller-Plesset (MP2) level.

The structure of all platinum clusters corresponds to the top layer of the platinum(111) surface

(�gure 8.1) with a platinum-platinum distance of 2.77 �A. This value, which corresponds to the

experimental platinum-platinum distance, has been used in previous quantum mechanical calcula-

tions [65]. In the case of Pt3, the cluster corresponds to an isosceles triangle. For calculations on

a Pt2 model cluster, the central platinum atom in Pt3 was replaced by a dummy atom in order to

represent a dumbbell with a platinum-platinum distance of 4.7978 �A.

1LanL2DZ, table 6.1, page 146
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Pt(1S) Pt(3D)

r(PtO) [�A] 2:0986 2:4952


a [deg] 116:43 123:2

qPt [e] �0:162 �0:103

E[Pt(1S)] + E[H2O] � E[Pt�H2O] [kJ mol-1] 94:440 89:212

E[Pt(3D)] + E[H2O] � E[Pt�H2O] [kJ mol-1] 38:243 33:086

a 
 is the angle between the symmetry plane of the water molecule and the Pt�O bond.

Table 8.1: Selected results for Pt�H2O.

The OH bond of the water molecule was constrained at the experimental value of 0.9572 �A and

the HOH angle at 104.52Æ [16]. During geometry optimisations the water molecule was not allowed

to relax, since previous experimental and theoretical results had suggested that the monomer

geometry was only slightly disturbed upon adsorption. The initial water clusters were constructed

as ideal tetrahedra in accordance with the BFP rules, as was the platinum-water bond. The angle

between the molecular plane of the water molecule and that containing the platinum-water bond

was constrained at 125.29Æ assuming that the lone pair electrons point towards the edge of a

tetrahedron. The �rst layer of water molecules was placed on top of the terminal platinum atoms

at the base of the triangle, while the second layer of water molecules was placed on top of the

central platinum atom.

During geometry optimisation, only the platinum-oxygen bonds were allowed to relax, while

the remainder of the cluster was constrained in position. During these optimisation calculations

the ideal geometry of the cluster was broken, and since the bond angles were not allowed to relax,

the hydrogen bond became bent.

Deviations from this standard procedure are identi�ed in the text.

8.1.3 Results and Discussion

The analysis of polarisation e�ects in small water clusters attached to a platinum surface com-

menced with the smallest possible clusters, Pt�H2O and Pt�(H2O)2. The interaction energy of

water and a platinum atom (Table 8.1) depends strongly on the electronic state of the platinum.

The energy of Pt(1S) H2O lies 94.4 kJ/mol below that of Pt(1S) and free water, and 38.2 kJ/mol

below that of Pt(3D) and free water, whereas the energy of Pt(3D)�H2O lies 33.1 kJ/mol lower

than that of Pt(3D) and free water. Comparison of Pt(3D) (with electron con�guration 5d96s)

with Pt(1S) (with electron con�guration 5d10) shows that occupation of a 6s rather than a 5d

orbital will result in movement of electron density away from the nucleus, increasing the Coulomb

repulsion between platinum and oxygen and thereby weakening the bond.

Table 8.2 shows the results for the hydrogen bond in Pt�(H2O)2. The geometries B and C

di�er from that of A (�gure 8.2) in the role of the second water molecule. In geometries B and

C the second molecule acts as an electron donor whereas in geometry A it acts as an electron

acceptor. The arrows in �gure 8.2 show the direction of charge transfer during the formation of

the cluster.

In geometry A the terminal water molecule acts as an electron acceptor. As in the formation of

a hydrogen bond, bond formation between platinum and water is accompanied by charge transfer
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A                                                  B                              C

O

H

Pt

Figure 8.2: Platinum and a water dimer - principal geometries.

state A C B

rOO [�A] 1S-Pt 3:1190 2:7429 2:7009
3D-Pt 3:0504 2:8248 2:7876

rPtO [�A] 1S-Pt 2:1021 2:0758 2:0706
3D-Pt 2:4427 2:4354 2:4208

EHBOND [kJ mol�1] 1S-Pt 8:096 38:850 49:558
3D-Pt 11:880 32:659 40:232

qPt [e] 1S-Pt �0:129 �0:177 �0:185
3D-Pt �0:104 �0:123 �0:129

qH2O�CENT [e] 1S-Pt 0:134 0:128 0:136
3D-Pt 0:114 0:083 0:089

qH2O�TERM [e] 1S-Pt �0:0004 0:049 0:050
3D-Pt �0:010 0:040 0:041

Table 8.2: Results for Pt�(H2O)2.

from the water molecule to the platinum atom. Both bonding partners pull electron density away

from the central water molecule. The charges on the fragments therefore become lower than on

the free molecules (qPt = 0.129 e vs. 0.162 e in Pt�H2O) and the hydrogen bond becomes weaker

(free (H2O)2 : rOO = 1.95 �A, EHBOND = �26.1 kJ/mol).

Di�erent behaviour is observed when the second water molecule acts as an electron donor (�gure

8.2, cases B and C). The dissociation energy of the hydrogen bond between the water molecules

in Pt�(H2O)2 is much higher than that of the free water dimer. Charges on the terminal water

molecules are also higher than for the free water dimer (0.028 e) and the dissociation energy of

the hydrogen bond increases with the charge on the platinum atom. The strength of the hydrogen

bond is related to the intramolecular charge transfer.

Charge transfer from the terminal water molecule to the platinum atom maintains a low charge

on the central water molecule and simultaneously strengthens the hydrogen bond between the

water molecules and the bond between platinum and the central water molecule. If the terminal

water molecule acts as an electron acceptor, charge accumulates on the central water molecule

and the platinum-water bond is weakened by the reduced ability of the central water molecule to

transfer electron density to the platinum atom via its free electron pair.

The role of intramolecular charge transfer can be observed by a comparison of the results for

geometries B and C, where, in both cases, the second water molecule acts as an electron donor.

Geometry C forms part of an ideal in�nite water bilayer structure as proposed by Thiel and
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Figure 8.3: Cluster I: Pt2�(H2O)3 cut from an ideal in�nite bilayer structure.

Madey [38], while geometry B is constructed from an ideal water dimer. These geometries do

not di�er in the extent of charge transfer from the hydrogen acceptor to the hydrogen donor

(�qAD) associated with the hydrogen bond (free water dimer from cluster B with �xed optimized

geometry: EHBOND = �22.6 kJ/mol, �qAD = 0.035 e; free water dimer from cluster C with

�xed optimized geometry: EHBOND = �18.3 kJ/mol, �qAD = 0.034 e) and the terminal water

molecules are equally charged. The di�erence in hydrogen bond energies for these platinum clusters

(�EHBOND = �10.7 kJ/mol) is more than twice that expected from the free dimers (�EHBOND =

�4.4 kJ/mol). The reduced steric and Coulomb repulsions in the ideal dimer structure permits a

shorter oxygen-oxygen distance, thereby enhancing orbital overlap. The improved orbital overlap

stabilizes the charge on the central water molecule. The ideal dimer geometry facilitates the charge

transfer between platinum and water and enhances cooperativity, yielding a stronger bond.

Table 8.2 shows the results for platinum-water clusters for both 3D and 1S platinum. The

geometries of B and C are consistently longer in the case of Pt(3D). In complexes based on 3D

platinum, the platinum water interaction energy is weaker and cooperative e�ects smaller (ECOOP

for geometry B: �22.2 kJ/mol for the 1A state and �11.3 kJ/mol for the 3A state). The electron

pull from the platinum atom is reduced and the charges on the water molecules therefore decrease.

In agreement with this reduction in charge transfer, the hydrogen bond weakened. In the case

of geometry A, the hydrogen bond is stronger, since the electron pull of the platinum atom is

weaker. The charge on the platinum atom is reduced and charge transfer along the hydrogen bond

is improved. The strength of the hydrogen bond is directly related to the negative charge on the

platinum atom.

Similar cooperative e�ects are well known in water trimers [107, 145]. In the most stable trimers,

the net charge on the water molecules is small and as many molecules as possible act simultaneously

as electron donor and electron acceptor. The platinum atom is a strong electron acceptor and a

strong hydrogen bond is formed only if the second water molecule acts as an electron donor.

These results suggest that cooperativity is important in the formation of small water clusters on

metal surfaces. As the metal cluster size is increased so as to simulate the surface, the electronic

state of the metal cluster becomes more signi�cant. In this early stage of our work we chose

to construct the platinum cluster purely from 1S platinum atoms. The results for Pt�H2O and

Pt�(H2O)2 suggest that this approach will include clusters with the strongest platinum-water

interactions.

More closely related to the real bilayer structure is the Pt2�(H2O)3 cluster (cluster I in �gure

8.3), which forms a segment of an ideal, in�nite bilayer structure. Both platinum-water bonds are
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Figure 8.4: Cluster II: Pt3�(H2O)3 as part of an ideal in�nite bilayer structure.

of equal length, since previous results for Pt�(H2O)2 showed (Table 8.2) that the bond lengths

di�er only slightly with the geometry of the hydrogen bond. The bridging water molecule is slightly

more strongly bound (ECENT = 47.3 kJ/mol) in the water cluster than in the corresponding free

water trimer (ECENT = 44.2 kJ/mol). The bridging water molecule acts simultaneously as electron

donor and electron acceptor. Since the molecule is more strongly bound than the free water dimer

void of any platinum, the hydrogen bond enforcing cooperative forces on the C�D�E side will

dominate the weaker forces on the C�B�A side. Charges on the left C�B�A side of the molecule

are similar to those in the free Pt�(H2O)2 cluster, while the charges on the C�D�E side di�er

markedly from the free case. Although the charge transfer from the right is assisted by an additional

0.003 e from the left, the charge on platinum E is smaller than in the free cluster. This is caused

by the extension of the hydrogen bond C�D (2.92 �A vs. 2.74 �A in Pt�(H2O)2 cluster C). The

B�C hydrogen bond is shorter than the optimized bond length (3.12 �A in Pt�(H2O)2 cluster A)

by the same amount.

Cluster II (Figure 8.4) forms part of an ideal bilayer structure. It di�ers from cluster I in

that the central platinum atom lies directly below the central water molecule. This central water

molecule is more weakly bound (ECENT = 31.1 kJ/mol) than in cluster I or in the free trimer

and the charges on the water molecules are larger than in cluster I. The C�D hydrogen bond is

much weaker than in cluster I but still stronger than in the free water dimer, because the hydrogen

bond is further extended. (Mulliken overlap populations (MOP) OCHD cluster II : 0.027, cluster

I : 0.033, free water dimer : 0.010). The B�C hydrogen bond is slightly stronger (MOP OBHC

cluster II : 0.006, cluster I : 0.005), because the bond length approaches the optimal hydrogen

bond length for an electron accepting water molecule. The weak bond may be attributed to the

Coulomb repulsion between the negative charge on platinum F and the oxygen electrons on the

central water molecule, as shown previously for Pt�H2O.

The Coulomb interaction is the driving force for the relaxation of the central water molecule

(cluster III, Figure 8.5). The hydrogen bond involving the weakest cooperative forces is broken

(MOP OBHC cluster III : 0.008, cluster II : 0.006) in favour of a strong Coulomb interaction

between the hydrogen of water molecule C with platinum F (MOP HCPtF cluster III : 0.051,

cluster II : 0.003) and a stronger C�D hydrogen bond (MOP OCHD cluster III : 0.044, cluster

II : 0.027). Breaking the B�C hydrogen bond releases electron density from water molecule B,

which is transferred via platinum A directly to the central platinum atom F. The charge on water

molecule B is increased and platinum A becomes positively charged. Although the charges on water
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Figure 8.5: Cluster III: Pt3�(H2O)3 with a relaxed central water molecule.
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Figure 8.6: Cluster IV: Pt2�(H2O)3 central water molecule in the same position as in cluster III.

molecules C and D decrease during this relaxation process, the total charge transfer from the right

(C�D�E) side of the cluster is increased (cluster II : 0.274 e, cluster III : 0.291 e). The central

water molecule now lies closer in geometry to that of the optimal dimer, but in an unfavourable

trimer position. The binding energy of the central water molecule in the corresponding free water

trimer is 28.3 kJ/mol, about two-thirds of the corresponding energy for the free water trimer in

cluster II.

Figure 8.6 (cluster IV) shows the results of a single point calculation for cluster III in the

absence of the central platinum atom. The B�C hydrogen bond is broken (MOP OBHC cluster

IV : �0.003, cluster I : 0.005), the charge distribution in the A�B fragment is nearly the same

as that in the free Pt�H2O cluster, and the charge distribution is close to that of Pt�(H2O)2,

case C. The former hydrogen bond OBHC is broken and HC now bonds weakly to platinum A

(MOP HCPtA cluster IV : 0.004, cluster I : �0.004) via an overlap involving Pt(6s) and H(1s). In

summary, the charges on the A�B side shows that 0.002 e must have been transferred from the

C�D�E side. Since the water molecule D and the platinum atom are too far apart, the most likely

donor water molecule is C. The platinum-platinum interaction is not a�ected by the geometry of

the water cluster (MOP PtAPtE case IV: 0.028, case I: 0.029). Again, an unfavourable water trimer

is stabilized by the presence of the platinum cluster below.

The total relaxation of the central water molecule in cluster IV yields a structure containing a

strongly bound water molecule (cluster IVa, ECENT = 71.9 kJ/mol). The central water molecule

is bound via two hydrogen bonds to the water molecules B and D and via the free hydrogen atom

to the platinum cluster. The distance between OC and the platinum surface is only 2.26 �A while

the distance between platinum and the linking water molecules B and D is 2.9 �A. The absence

of platinum F allows the bridging water molecule to lie closer to the platinum atoms A and E,
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Figure 8.7: Cluster V and cluster VI: 
op down structures.

forming the third bond.

Figure 8.7 shows the result (cluster V) of a geometry optimisation (platinum-oxygen distances

and tilt of the bridging water molecule's molecular plane) of a water trimer on platinum with 
op

down geometry. The 
op down arrangement for a bridging water molecule has been postulated

at the fringes of the ice domains or in small water clusters [39]. According to the BFP rules, an

electron lone pair of a second layer water molecule lies perpendicular to the surface, so the geometry

optimisation commenced with such a structure (cluster VI).

The binding energy (41.2 kJ/mol) of the central water molecule in cluster V is higher than that

for ideal coordination (as shown in Figure 8.3) but much smaller than that of a water molecule in a

relaxed position (cluster III). During the optimisation, the BFP rules were violated. At the begin-

ning (cluster VI) of the optimisation the central water molecule acts as a double electron acceptor

and therefore weakens the platinum-oxygen bonds (MOP PtAOB : 0.036). The unfavourable hy-

drogen bonds HBOC and HDOC (MOP HBOC : �0.019) break during the optimisation procedure

(MOP HBOC : �0.003) and the hydrogen atoms HC bind directly to the central platinum atom

(MOP PtFHC : 0.009). During the rotation of the bridging water molecules the platinum-oxygen

bond increases and the hydrogen atoms turn towards platinum F. This reorganisation brings the

central water molecule into a position in which it is unable to to pull electrons from its neighbours.

As the electron pull diminishes, the bonds between the linking water molecules B and D with

platinum atoms A and E become stronger (MOP PtAOB cluster VI : 0.036, cluster V : 0.045). As

before the system tries to relax by breaking an unfavourable hydrogen bond in the water cluster

and establishing a direct interaction between a second layer hydrogen and platinum atoms on the

surface.

Special care must be taken with the analysis of the charges. Contrary to expectation and the

results for Pt�(H2O)2 (Figure 8.2, geometry A) the bridging water molecule is positively charged

(cluster V : +0.011 e, cluster VI : +0.080 e). The initial geometry for the optimisation (cluster

VI) re
ects the highest charge on the central water molecule so the analysis was carried out at

this geometry. Initially, the geometry of the bridging water molecule is close to that found for

an indivial water molecule with its molecular plane parallel to the metal surface. The platinum-

oxygen bond is elongated as one expects from the orientation of hydrogen atoms. In this position

charge 
ow from the water molecule to the surface is possible. To answer the question of how

much charge 
ows from the central water molecule to the platinum cluster the calculations were

repeated in the absence of the central platinum atom F (cluster VIa), when no charge was found

on the central water molecule. The platinum atoms bind the electrons so strongly to the linking
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Figure 8.8: Cluster VII: 
ip-up structure, double electron donor.

water molecules B and D that no net charge 
ow is possible, as is shown by comparison with the

corresponding free water trimer (qH2Ocent = �0.048 e). The binding of the electrons to the linking

water molecules B and D weakens the binding energy of the bridging water molecule in cluster VIa

(25 kJ/mol) in comparison with that of the free water trimer (43.3 kJ/mol). Since water molecule

C is positively charged in clusters V and VI and no charge was found on the central water molecule

in cluster VIa, it is reasonable to assume that no charge has been transferred from the bridging

water molecules to compensate for the electron withdrawal. The binding energy of the central

water molecule reinforces this assumption. Removal of the central platinum atom F from cluster

VI increases the binding energy of the bridging water molecule (ECENT) from �5.3 kJ/mol to

25.0 kJ/mol. The electron attraction between water C and platinum F produced a charge on water

C and so created a repulsion between the positively charged water molecules B, C and D. With

the removal of platinum F this repulsion vanishes and weak hydrogen bonds are formed between

the water molecules.

Figure 8.8 shows the results of a geometry optimisation where the central water molecule acts as

a double electron donor. During the �rst optimisation (cluster VII) the positions of the hydrogen

atoms were �xed (One OCHC bond was maintained normal to platinum surface.) to avoid a direct

platinum-hydrogen bond. In this geometry, two weak hydrogen bonds are formed between the

water molecules (MOP HCOB : 0.018). The sum of the populations of these bonds (0.037) is

slightly higher than in the other clusters. The number of electrons available for hydrogen bonding

between the water molecules seems to be constant at about 0.036 (table 8.3). The platinum-water

bond is also strong (MOP PtAOB : 0.045). The charge on the water molecule C (0.41 e) is nearly

twice that on the bridging water molecule in cluster III (0.022 e) and the charges on the water

molecules B and D (0.162 e) are the same as those on the �rst layer water molecule D (0.163 e)

in cluster III, which is the bridging molecule in the C�D�E bond which displays cooperative

characteristics. Therefore one might assume that two strong cooperative bonds are formed and the

binding energy of the bridging water molecule should therefore be high, but the opposite was found.

Despite possessing two strong bonds, the binding energy of the central water molecule (ECENT =

59.9 kJ/mol) remains smaller than in cluster III. This contradiction can be explained by a lower

charge transfer within this platinum cluster than in cluster III. The total charge on the bridging

platinum atoms A and E (0.120 e) is smaller than that in cluster III (0.140 e); a similar result

applies to the central platinum atom F (cluster VII : �0.486 e, cluster III : �0.514 e). The large

distance (3.06 �A) between platinum F and the bonding hydrogen atom HC destabilises the charge
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E                           F                           A

D                                                                      B

+0.106                                                                +0.106

-0.532

C           -0.011
+0.166                                             +0.166

Figure 8.9: Cluster VIII: relaxed 
ip-up geometry.

accumulation on the central platinum atom and the interaction between both atoms is consequently

reduced (MOP PtFHC cluster VI : 0.011, cluster III : 0.051).

If the hydrogen atoms of the bridging water molecule C are allowed to relax without breaking

the CS symmetry (cluster VIII, Figure 8.9) HC moves closer to PtF (2.16 AA). The hydrogen bonds

between the water molecules are reinforced (MOP HBOC : 0.035) and a very strong bond between

hydrogen HC and platinum PtF is formed (MOP PtFHC : 0.082). Since this water molecule is the

most strongly bound in the whole set of clusters (98.1 kJ/mol), it is of interest to analyse its charge

distribution. Bridging water molecules B and D have similar charges (0.166 e), while the charge on

the bridging platinum atoms A and E (0.106 e) is close to that found in the presence of cooperative

forces (cluster III, C-D-E triple bond). The charge on the central platinum is the highest in the

series which suggests a strong platinum-water interaction. Surprisingly, the bridging water molecule

is negatively charged, with electron 
ow from the central platinum atom to the water molecule.

Charge transfer from the bridging water molecules B and D is unlikely, since the electron 
ow in

a hydrogen bond between water molecules is along the lone pair on the oxygen and electrons are

usually accepted via hydrogen atoms. In this PtFHC bond the platinum d-orbitals contribute more

strongly to the platinum water bond, and these electrons account for the strong hydrogen bond

despite its unfavourable geometry: The hydrogen atoms of the bridging water molecules B and D

point towards the negative charge on the central water molecule, which permits a strong Coulomb

interaction and compensates for the small orbital overlap. The bridging water molecule is therefore

triply bound - by two strong hydrogen bonds and one strong platinum-hydrogen bond.

The interaction between the water molecules in the second layer and the platinum surface occurs

via highly charged surface atoms. The charge accumulation on these atoms is likely to be dependent

upon cluster size. In a real extended metal surface, the electrons associated with the binding of

the �rst layer of water molecules may move into the bulk or spread evenly across the surface. With

such small clusters, it is virtually impossible to describe such electron rearrangements. Since the

strength of the surface interactions with the second layer is proportional to the charge on platinum

F, it is reasonable to assume that such interactions still exist on an extended metal surface but

are reduced in magnitude. The platinum surface will still appear as a strong electron acceptor

to �rst layer of water molecules. Hydrogen bonding to second layer molecules will therefore be

strongly asymmetric depending upon whether the second layer molecule acts as electron donor or

electron acceptor. It is reasonable to assume that the co-operative forces described here could be

found on an extended surface, but would be reduced in size. The results for Pt�(H2O)2 provide

clear evidence for the dependency of the cooperative forces on the electronic state of the platinum

atoms. The electron con�guration of the ground state is also strongly dependent upon cluster size.

Extended H�uckel calculations on platinum clusters have shown [285] that, with increasing cluster
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size, the 6s population on surface atoms converges to a population 0.1 - 0.2 lower than those in

the layers below. Our results suggest that a 6s population of 0.8 would be appropriate for surface

atoms. These results support our assumption that cooperativity on an extended surface will be

reduced but will not fall to zero, as cooperativity is still observed in the Pt�(H2O)2 cluster with

a 3D platinum atom (with 6s population equal to 1).

8.1.4 Conclusions

The most recent TDS spectrum [56] of water on the Pt(111) surface shows three prominent peaks

at 155 K, 165 K and 200 K. The �rst peak is the multilayer peak and commonly assigned to ice sub-

limation [38, 48] (40 kJ/mol) which is close to the sublimation energy of pure ice [48] (50 kJ/mol).

Additional infrared re
ection absorption energy spectroscopy (IRAS) data by Ogasawara [56]

showed that the third peak should be assigned to water directly attached to the surface and the

second to indirectly bound water, forming the second layer of the bilayer. We used the Redhead

equation [356, 357] and an ice sublimation energy of 44.4 kJ/mol, assuming zero-order desorption

kinetics [48] and a pre-exponential factor [358] of 1015 s�1, to estimate the binding energy of the

other two water species from the TDS spectrum [56]. These calculations suggest that the binding

energy of water directly bound to the surface is 58 kJ/mol. The binding energy of water in the

second adsorption layer was calculated to be 47 kcal/mol. A suitable representation of the second

layer in our model should therefore yield binding energies higher than the ice sublimation energy

and lower then the direct interaction energy.

To estimate the ice sublimation energy within the model, we calculated the energy of formation

of a linear water trimer constructed from ideal water dimers, since the ice sublimation energy is close

to that of two hydrogen bonds [38, 359]. The energy of formation of the trimer from three water

molecules was calculated as 59.4 kJ/mol and the binding energy of the central water molecule as

56.4 kJ/mol. For consistency, a successful candidate for the second layer structure should therefore

yield a binding energy higher than 56 kJ/mol. An upper limit was found with a test calculation

for Pt3�H2O in which the water molecule was attached to platinum A. The binding energy of this

water molecule was found to be high, at 116.9 kJ/mol, caused by a low occupancy of the platinum

6s orbitals. A more reliable result would appear to be a binding energy of 63.4 kJ/mol for a single

water molecule for Pt9�H2O, representing water on the Pt(100) surface.

Cluster II is not a suitable candidate, although its geometry agrees with the BFP rules, since

its binding energy is only 31.1 kJ/mol. The BFP rules require a 
op down structure for a water

molecule at the edge of a �nite bilayer structure. The binding energy of cluster III (75.5 kJ/mol) is

suÆciently high for the cluster to constitute a possible model for the second layer, but the cluster

violates the BFP rules since it is only bound to the surface via a single hydrogen bond. The

interaction between the positive charge on the hydrogen and the electron concentration at a metal

surface is not included in the BFP rule set. A 
op down geometry with a double electron receiving

water molecule has not proved to be a useful model for second layer water molecules, since the

binding energy of the central water molecule was found to be smaller than 56 kJ/mol. On the other

hand, the binding energy of the central water molecule in cluster VII ("
ip up") is suÆciently high

to be suitable as a candidate. During geometry optimisation, the binding energy of the central

water molecule increases and the geometry changes from 
ip up to 
op down. A 
op down water

molecule in a small water cluster would therefore have a geometry similar to that shown in Figure

8.9 rather than the BFP consistent geometry shown in Figure 8.7.
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The binding of water to a metal surface via its hydrogen atoms has previously been observed for

Pt(100) [44] and the observation of free hydroxyl groups suggests cleavage of the water molecule.

Ibach and Lehwald [44] propose the presence of water molecules as part of a larger water cluster,

which binds directly to the surface via a single hydrogen atom. The observed rearrangements of

water clusters during geometry optimisation leads to the same conclusion. The charge transfer from

the platinum to the water molecule as observed for cluster VIII provides a possible explanation for

a dissociation pathway similar to that for the dissociation of water on Pt(111) surfaces previously

covered with potassium [63, 68, 73].

The binding energies of the bridging water molecules are higher than the binding energy of

a single water molecule (63.4 kJ/mol) with the notable exception of the 
ip up geometry. The

increase in binding energy is caused by a strong interaction of the second layer water molecule with

the platinum surface below. The charge concentration on the central platinum atom F is likely to

be a consequence of the limited cluster size. We are now calculating with larger clusters similar

to that shown in �gure 8.1. The binding energy (ECENT = 61.9 kJ/mol) of the second layer water

molecule in such a Pt4�(H2O)4 cluster is higher than the ice sublimation energy but smaller than

the binding energy of an isolated water molecule. This central water molecule is triply hydrogen

bonded to the �rst adsorbate layer, but the binding energy of the central water molecule is lower

than that expected for three individual hydrogen bonds (about 75 kJ/mol) due to the repulsive

platinum-water interaction. To study the in
uence of platinum F on the binding energy of the

central water molecule, the calculation was repeated in the absence of the central platinum F,

when a binding energy of 83.2 kJ/mol was found, demonstrating once again the repulsive in
uence

of the central platinum atom and the importance of cooperativity for the water bilayer structure.

This interaction between the platinum surface and second layer water molecules might stabilize

distorted water cluster as suggested by Wagner and Moylan [43].

Our results suggest that the formation of the water bilayer structure on the Pt(111) surface

is not determined solely by direct bonds. Polarisation e�ects and the interaction of the hydrogen

atoms in water with the platinum surface contribute signi�cantly to the binding energy of water

molecules in the second adsorbate layer. Those additional forces allow the formation of small

water clusters on the platinum surface, whose structures violate the BFP rule set. The strength of

these cooperative forces depends on the size and the electronic structure of the platinum cluster.

Preliminary results on larger platinum clusters indicate that the interaction between platinum and

water in the second layer remains important.
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8.2 (H2O)6 on a Virtual Metal Surface: Testing the Ice Rules

Abstract

The water hexamer has been studied with a classical water-water interaction potential and quantum

chemically at both RHF and MP2 levels. The in
uence of a virtual metal surface on (H2O)6 has

been modeled through geometry constaints on the cluster. Additional data on (H2O)2 and (H2O)3

are presented to assist the interpretation of the results obtained for the hexamer.

These calculations suggest that water molecules in the �rst layer with their hydrogens pointing

away from the surface ('
ip up') only occur for a small range of values of surface lattice constant.

In all other cases the dipole moment of the water molecules is found to lie nearly parallel to the

metal surface.

8.2.1 Introduction

The problem of the orientation of hydrogen atoms in the �rst layer of water molecules arose during

our studies of the water-platinum-vacuum system. Experiment suggests that the hydrogen atoms

in the �rst layer of water on the metal point either slightly upwards as expected for water bonded

to metal via the oxygen lone pair [38] or lie parallel to the metal surface [58, 360]. Theoretical

calculations on the other hand, cannot unambiguously determine the orientation of the hydrogen

atoms, since the orientation of the water molecule depends strongly on cluster size and the chosen

method of calculation.

Since we are interested in the platinum-water-vacuum system the following discussion concen-

trates on the water-platinum interaction. An extensive review of water-metal interactions has been

given by Thiel and Madey [38].

Early work [36, 37] on the adsorption of water on Pt(111) reported a (
p

3�p3) R30Æ surface

structure of adsorbed water molecules and suggested the formation of ice ordered in domains of 30

� 40 �A in length.

A water bilayer structure [38, 39] has been proposed as the basis of the growth of ice on

hexagonal metal latices. The structure of this water bilayer is generally explained in terms of an

extension to surfaces [39] of the Bernal-Fowler-Pauling rules (ice rules) [9, 13]. Speci�cally

[39], each water molecule is bound by at least two bonds (which may be hydrogen bonds to

other water molecules or oxygen lone pair bonds to the surface) while maintaining a tetrahedral

con�guration. Each water molecule in the lower layer is bound to the surface via a lone pair orbital

on the oxygen and all free lone pair orbitals on oxygen remain nearly perpendicular to the surface.

In an ideal in�nite bilayer, all water molecules have their dipole moments pointing away from the

surface ("
ip up"), whereas in a �nite cluster, water molecules whose dipole moments point toward

the surface ("
ip down") may occur at the edge of the cluster [39, 41, 42]. Doering and Madey

[39], using the surface extended ice rule set, concluded that the smallest stable water cluster on a

hexagonal metal surface should be the water nonamer. Such an (H2O)9 cluster has been observed

on Ru(0001) within an (6
p

3� 6
p

3) R0Æ superstructure [39, 47], whereas experimental results

suggest, that the smallest cluster possible on platinum(111) is a three-dimensional water trimer

[45].

The metal-water interface has been examined previously by quantum chemical calculations

[54, 60{72] and work on the platinum-water interface [54, 63{65, 68] suggests that the molecular

plane of the water lies parallel to the surface [54, 63, 68]. These results agree with workfunction
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measurements [45, 52, 58, 73] on water-covered platinum surfaces, which show that a contribution

of about 0.2 D of the water dipole moment (single molecule 1.84 D) lies normal to surface [58].

Theory and experiment agree that the water molecule is only slightly distorted upon adsorption on

Pt(111) [41, 45, 46, 48, 58, 73{75] and dissociation has so far only been observed experimentally

on pre-covered surfaces [76{79].

The ice rules [9, 13] have been postulated for the structure of ice and the surface extension

[39] assumes a seamless transition between water directly attached to the surface and crystalline

ice. Experiment and theory suggest, on the other hand, that the surface of an ice crystal has

a di�erent structure than that of the bulk. Snow
akes have have been reported to be covered

by a Quasi Liquid Layer (QLL), with a higher density than ice [361, 362]. Molecular dynamics

simulation [363] of an ice crystal suggests the existence of molten ice on the crystall surface below

the freezing point of water and scanning tunneling microscopy (STM) [54] provides evidence for

three solid and one liquid ice phase on platinum(111). Morgenstern et al. concluded from their

STM experiments, that the fourth, liquid 2-D water phase on Pt(111) has a higher density than

the solid 2D ice phases as observed in three dimensional water and ice. Dosch et al. [361] suggest

that the formation of a quasi liquid layer can be induced by a surface-induced distortion of the

hydrogen bonding network and LEED experiments of ultrathin water �lms on Pt(111) suggest a

disordered ice layer [360].

The link between water adsorption on metal surfaces at low coverages and extended ice layers

is formed via water clusters on a metal surface and in vacuum. The water dimer is the most widely

analysed water cluster, not only the �rst water cluster to be treated by ab initio calculations

[104] but is also commonly used as benchmark test for new calculations, and includes nearly every

possible level of theory [105{131]. The global minimum corresponds to a linear geometry with

CS symmetry in which the nonbonding hydrogen atoms lie on opposite sites of the oxygen-oxygen

bond. The optimized oxygen-oxygen distance is around 2.97 �A and the binding energy is around

4.8 kcal/mol (A review of the water dimer is provided in [125]).

Sch�utz et al. suggested a scheme for referring to the non-bonding hydrogen atoms in the cyclic

water trimer, which fully describes the geometry of the cluster [132]: The nonbonding hydrogen

can be either above (up, "u"), parallel to (planar, "p") or under (down, "d") the plane of oxygen

atoms, while the bonding hydrogens lie in the plane of the oxygen atoms. When this plane bisects

a water molecule, the geometry is marked with a "b". The global minimum of the potential energy

surface of the water trimer corresponds to a ring structure. Early calculations suggested that the

fuuug water trimer is less stable and the fpppg trimer is more stable than the ideal linear structure

[133]. The linear trimer transforms smoothly into a fuudg ring structure, which de�nes the global

minimum [128, 131, 132, 139{150]. The geometry of the water trimer is 
exible and tunneling

facilitates rapid changes among the 96 isoenergetic isomers (2n � n!� 2, where n is the number of

water molecules in the cluster) [103, 150{154, 156].

The potential energy surface of the water trimer [142, 145] is found to display 18 station-

ary points. The fpppg trimer has a slightly smaller binding energy than the fuudg trimer

(�
fpppg
fuudgETRIM < 0.5 kcal/mol) [132] and is a stationary point with a Hessian index of 3. Most calcu-

lations refer to the fuudg trimer and only a few treat the fpppg trimer [132, 140, 142, 144, 157{159],

despite the fact that fpppg and fudpg trimers form possible intermediates in the rearrangement

of the hydrogens [132].

The computational analysis of water clusters has gained interest recently, because such micro-

crystals can be used to investigate phase transitions [160]. However, the transition from small to
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large water clusters is not straightforward and the water hexamer separates two types of clusters.

The structure of water clusters is characterised by the number of hydrogen bondsbeing a max-

imum and repulsive interactions between nonbonding hydrogens and geometrical strains within

the water rings being simultaneously a minimum. Small water clusters ((H2O)n with n 5 5) are

therefore commonly assumed to be cyclic and planar [103, 128, 133, 161{167], while larger clusters

with n = 7 have three-dimensional structures [160, 171{178]. The water hexamer delineates these

regimes and is the smallest water cluster with a three-dimensional equilibrium structure. Several

stable geometries with similar energies (�HEXE < 1 kcal/mol) have been found for the water hex-

amer [128, 148, 149, 179{182]. The multitude of energetically similar isomers makes the water

hexamer a new benchmark system for those methods to be applied to larger clusters.

Although the cyclic water hexamer forms the basis of the ice structure [183] and has been

observed as a structural element in liquid water [185], the most stable water hexamer in the gas

phase has a cage structure [186, 187]. The energy di�erence between the cyclic hexamer and the

cage hexamer is small and the free hexamer has been observed experimentally only recently [187].

Quantum calculations [128, 148, 149, 179{182, 188] on the cyclic water hexamer are in rea-

sonable agreement regarding geometry, but disagree on energy. The most stable ring has a

"chair"conformation (S6 symmetry) with linear hydrogen bonds and an oxygen-oxygen distance

between nearest neighbours which varies between 2.708 �A and 2.855 �A. The geometrical features

of the cluster can be reproduced by simple treatments, whereas reliable energy calculations require

more sophisticated treatments. With one exception (66.66 kcal/mol [181]) published values for

the binding energy of the cyclic water hexamer vary between 37.99 kcal/mol and 56.00 kcal/mol

depending on the level of computation [128, 148, 149, 179, 180, 182, 188].

Structural elements of the water dimer and trimer can be observed within the water hexamer.

Since a description of the water hexamer is diÆcult without referring to these structures, we

summarize here our results for (H2O)2 (section 8.2.3) and (H2O)3 (section 8.2.4). Section 8.2.5,

which concentrates on the water hexamer, has been subdivided into �ve subsection: Subsection

8.2.5.1 describes the geometry of the water hexamer and gives additional information about the

model used for our calculations, complementing section 8.2.2 which summarizes the computational

methods applied in general to all water clusters. Subsection 8.2.5.2 describes the free hexamer and

subsection 8.2.5.3 considers geometrical constraints imposed on the water hexamer to simulate a

virtual metal surface. This procedure allows us to analyze the metal-water interface independently

of the nature of the metal. In subsection 8.2.5.4 the surface constant of the virtual surface is varied

systematically, allowing us to correlate the orientaion of the hydrogen atoms close to the surface

with the geometry of the interface. Subsection 8.2.6 considers the water hexamer as part an ice

bilayer and relates our results to experiment. Section 8.2.7 provides an summary.

8.2.2 Computational Procedure

The classical analysis of water clusters is based on a water-water interaction potential similar to

that of Kistenmacher and Popkie [119, 120]. The water molecule has a rigid geometry based on

experimental data, with an OH bond length of 0.9572 �A and an HOH bond angle of 104.52Æ, while

the centre of negative charge M (-1.40 e) lies 0.24 �A along the symetry axis towards the hydrogens

[16].

In addition to the Coulomb forces the repulsive forces between the atoms are taken into account.

Equation 8.1 summarizes (in atomic units) the potentials beween the di�erent centres on the water
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parameter value

rOH (�A) 0:9572

\HOH (deg) 104:52

rOM (�A) 0:2382

q (e) �1:398323

a1 (kcal/mol) 653:7789

a2 (kcal/mol) 3457:857

b1 (�A�1) 3:189600

b2 (�A�1) 3:545410

f (kcal �A mol�1 e�2) 332:17752

Table 8.4: Water-Water interaction parameters.

molecules, where M denotes to the centre of negative charge. The positive charges are located at

the positions of the hydrogen atoms.

VHH =
f q2

4 r
+ a1 e

�b1r VOH = a2 e
�b2r VHM =

�f q2
2 r

VMM =
f q2

r
(8.1)

The original parameters of Kistenmacher and Popkie were optimized to reproduce the re-

sults of a set of quantum chemical calculations (GAMESS UK, DZP basis set [355], MP3, full

BSSE counterpoise correction of Boys and Bernadi [204]) for 120 dimers and 4 trimers. During

parameter optimisation a higher weight was placed on the trimers so as to partially include coop-

erative e�ects into the new force �eld. These new parameters (Table 8.4) are used entirely in this

work2.

The quantum chemical calculations were performed with the same �xed geometry as the classical

calculations. For this set of calculations we used Gaussian 94 with the DZP basis set3 at HF and

MP2 levels, without BSSE correction.

8.2.3 Water Dimer

Figure 8.10 displays the most stable water dimer and Table 8.5 lists its geometrical parameters cal-

culated at various levels of theory. With the introduction of electron correlation the oxygen-oxygen

distance decreases (�MP2
HF rOO = �0.0805 �A) and the hydrogen bond becomes stronger (�MP2

HF EDIM

= �1.151 kcal/mol). As the level of correlation increases from MP2 to MP3 the length of the hy-

drogen bond increases (�MP3
MP2rOO = +0.0238 �A) and the binding energy is reduced (�MP3

MP2EDIM =

+0.333 kcal/mol). The MP2 approach appears to overestimate electron correlation whereas MP3

appears to compensate this e�ect [125]. The �nal correction was a full BSSE correction to the bind-

ing energy and the geometry. The BSSE in the geometry was eliminated manually. A �ne mesh

2During the optimisation of the force �eld parameters, the contribution of the oxygen-oxygen repulsion

to the binding energy of the clusters close to equilibrium geometries was found to be neglible, while a

strong oxygen-hydrogen repulsion was necessary to avoid physically unrealistic structures. Therefore, our

classical potential does not contain an oxygen-oxygen repulsion term. Currently we are considering the

importance of the oxygen-oxygen repulsion for water cluster geometries far from equilibrium.
3GAMES UK uses six cartesian d-functions whereas Gaussian 94 uses the �ve d-functions (l=2). The

di�erence between these basis sets was found to be neglible.
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Figure 8.10: Water dimer.

rOO � � �EDIM

[�A] [deg] [deg] [kcal/mol]

Pot 2.9834 8.55 123.40 4.903

MP3B 2.9926 2.44 135.47 4.914

MP3 2.9354 3.28 125.43 5.949

MP2 2.9116 3.79 124.06 6.282

RHF 2.9921 1.99 132.03 5.131

experiment* 2:98� 0:04 0� 10 120� 10 5:4� 0:7

B BSSE corrected *references [118, 239, 364]

Table 8.5: Calculated properties of the water dimer.

of points was calculated with a BSSE corrected energy around the MP3 optimal geometry and

the minimum of this energy surface was computed numerically. The BSSE correction produces

an extended oxygen-oxygen distance (�BSSE
MP3 rOO = +0.0572 �A) and reduces the binding energy

(�BSSE
MP3 EDIM = +1.035 kcal/mol). Due to the BSSE correction the oxygen-oxygen distance is now

longer than that for the HF case and the binding energy is even lower. A value of �5 kcal/mol for

EDIM appears reasonable, since our calculations with other basis sets and a full BSSE correction

also yielded binding energies of about �5 kcal/mol at all levels of theory. Also, large scale calcula-

tions on the water dimer by Klopper et al. reported BSSE-corrected interaction energies below

�5 kcal/mol [144].

The BSSE-corrected values agree well with experiment and previous quantum chemical calcula-

tions (rOO = 2.73 �A - 3.04 �A, �=�7.2Æ- 5.1Æ, � = 150Æ- 120Æ, �EDIM = 3.6 kcal/mol - 7.2 kcal/mol,

�EDIM = 3.7 kcal/mol - 5.0 kcal/mol BSSE corrected) [105{108, 110, 112{115, 118{125, 127, 128,

130, 131]. The BSSE-corrected MP3 data were used to create a classical water-water interaction

potential dedicated to the analysis of small water clusters at equilibrium geometry, since calcula-

tions with previously published classical interaction potentials yielded similar geometries but high

binding energies (5.7 kcal/mol to 7.2 kcal/mol) [109, 116, 117, 126]. The dimer calculated with

our classical potential reproduces the quantum chemical values (MP3, BSSE corrected) reasonably

well: rOO is shorter than in the quantum chemical case (�Pot
MP3rOO = �0.0092 �A) whereas the

binding energy is well reproduced (�Pot
MP3EDIM = �0.011 kcal/mol). Only the bending angle of the

new hydrogen bond (� = 8.55Æ) is larger than the calculated quantum chemical value, following the

inclusion of the trimers into the optimisation of the force �eld paramters, but is still in reasonable

agreement with experiment.
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Figure 8.11: C3h Water trimer.

8.2.4 Water Trimer

Figure 8.11 shows the planar water trimer with C3h symmetry and Table 8.6 displays the geomet-

rical parameters calculated at variouslevels of theory. A BSSE correction to the geometry of the

trimer at MP3 level was not carried out due to to the computational e�ort required.

The predicted oxygen-oxygen distance rOO is shorter than that in the dimer at all levels of

theory. Even the calculation with the classical potential shows a shortening of the bond by 2.4%,

which is close to that found at Hartree Fock level (2.9%). A similar e�ect has been observed in

other trimers with varous geometries.

An analysis of the results shows that the shortening of the bonds is due to strong cooperative

e�ects in the water cluster. In the planar fpppg trimer these interactions account for 21% of

the total (BSSE corrected) energy. The classical potential does not contain terms which take

cooperative e�ects directly into account, but the bonds are still shorter than in the free dimer.

This reduction is caused through interaction with the second nearest neighbour in the cluster.

These energies are generally more binding than in the quantum chemical calculations. Repulsive

interactions with the second nearest neighbour were reduced by 78% in the classical calculation,

while attractive interactions were increased by 26%. Interactions between nearest neighbours are

similar in both the quantum and classical calculations. For a �xed hydrogen bond geometry these

energies di�er by about 0.9%. The second nearest neighbour interactions in the classical model

tend to reproduce attractive many body forces reasonably well, but give poorer results for repulsive

forces.

The angle � of the hydrogen bond was found to be similar at all levels of theory (about

23Æ), suggesting that stable water clusters are possible with severely distorted hydrogen bonds.

A positive value for the coupling constant between rOO and � (classical potential:
�
@2ETRIM
@� @dOO

�
=

0.44 kcal mol-1 deg-1 �A-1) indicates that as rOO increases, � tends to zero and the bonding hydrogen

atom lies on the line joining the two oxygen atoms.

The classical energy of formation for the trimer (ETRIM) appears to be rather small compared

with the MP3 result, but the BSSE correction to the MP3 energy (�13.789 kcal/mol) shows that

the classical calculation matches the binding energy for the planar water trimer reasonably well.
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rOO � �ETRIM

[�A] [deg] [kcal/mol]

Pot 2.9135 24.18 13.685

MP3 2.8014 23.54 16.213B

MP2 2.7782 23.55 17.020

RHF 2.8830 23.27 13.916

B BSSE corrected 13.789 kcal/mol

Table 8.6: Calculated properties of the planar fpppg water trimer.

The value of ETRIM (�13.685 kcal/mol) for the fpppg trimer is close to that found for the global

minimum (�14.035 kcal/mol) using the classical potential. The global minimum has C1 symmetry

and a fuudg geometry. The two hydrogen atoms which point upwards move out of plane (dihedral

angle HOOH = 23Æ), reducing their repulsion.

Our quantum results for the fpppg water trimer are in reasonable agreement with previ-

ously published values (rOO = 2.80 �A to 2.88 �A, � = 20Æ to 25Æ, �ETRIM = 13.0 kcal/mol and

16.7 kcal/mol) [132, 140, 142, 144, 157{159, references 157{159 being optimized with a �xed value

for rOO]. Xantheas [147] and van Duijneveldt [140] reported three-body terms of about

2.3 kcal/mol and 2.0 kcal/mol for the global minimum structure (C1 symetry) of the water trimer,

while Del Bene [108] found a value of 2.94 kcal/mol for the planar trimer, which is in better

agreement with our �ndings (2.87 kcal/mol).

Cooperative e�ects are important for the structure of the water trimer at the quantum level.

The analysis of our classical calculations showed that the reduction in repulsive forces between

non-bonding hydrogen atoms and the interaction between second nearest neighbours are critical

to the geometry of the trimer when calculated with a classical potential.

8.2.5 Water Hexamer

8.2.5.1 The Model

The structure of the metal-water interface is dominated both by the interaction between the surface

atoms and the water molecules in the �rst layer and by the interactions among the water molecules

within the ice cluster. To distinguish between these two e�ects, the surface was replaced by a

mesh of auxiliary geometrical points, and the water cluster was maintained close to the ideal

bilayer geometry proposed by Doering and Madey [39]. In e�ect, we asume a Lewis acid-

base bond between the oxygen lone pair and the surface atom as starting point for the geometry

optimisation. No other electronic e�ects of the surface are taken into account by the model. Use

of the water hexamer as a model for the bilayer structure allows us to study the in
uence of

geometrical constraints on the bilayer structure as water adsorbs on to the surface independently

of the nature of the surface.

Figure 8.12a shows the water hexamer bound to a virtual metal surface together with its

geometrical parameters. A hexagonal mesh of seven auxiliary geometrical points (d1 is the unit

length of the mesh.) was placed below the cluster to model the metal surface. The water hexamer

is assumed to have the same structure as a six-membered water ring in the ideal, in�nite bilayer

structure. Each water molecule rests on top of a virtual metal atom / auxiliary point. The water
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Figure 8.12: Water Hexamer on the virtual Surface (d1 = 2.8�A).

molecules in the �rst layer (base plane) lie at �xed distance (d0 = 1 �A) from the virtual surface

while the distance d2 between the virtual surface and a second layer water molecule (top plane) is

allowed to vary during the calculations. The di�erence, h = d2 - d0, is a measure of the height of

the oxygen ring.

Both hydrogen atoms of a water molecule in the base plane lie the same distance from the

surface, one hydrogen being used to form the hydrogen bond to the top plane. The angle w1

between the bond to the virtual surface and the molecular plane of the water molecule is allowed

to vary during geometry optimisation so as to compensate for di�erent heights (d2) of the ring or

to break the metal-oxygen bond via the lone electron pair if necessary.

The water molecules in the base plane are also allowed to rotate around their bond to the

virtual metal surface (w2). This rotation is required to describe the interaction between second

nearest neighbours, since it allows the water molecules to form new hydrogen bonds.

One hydrogen-oxygen bond in the top plane water of molecules is initially chosen perpendicular

to the virtual metal surface (see Section 8.2.5.3) while the second is used for the hydrogen bond to

the base plane. This arrangement, following from the surface ice rules, simulates the interaction

to the next water layer in an extended ice cluster. A water molecule in the top layer is allowed to

rotate around the bond to the virtual surface (w3) and has two degress of freedom, as does a water

molecule in the base plane. The angles w1 to w3 are de�ned with respect to the symmetry axis of

the water molecule and an auxilary point, which lies between the hydrogen atoms (Figure 8.12a).

Figure 8.12b shows a topview of the water hexamer. The oxygen-oxygen bonds lie on top of

the metal-metal bonds. This hexagon (dotted line in �gure 8.12b) designates the ideal orientation

of a hydrogen bond. As the angles w2 and w3 are allowed to vary during geometry optimization

the bonding hydrogen atom can deviate from this ideal direction. For values of w2 > �52Æ or w3

> �60Æ the bonding hydrogen atoms lie within the hexagon. Rotations around the surface-oxygen

bond, which result in one of these values, are described as 'inwards'.

Since the hexagonal symmetry of the surface is not allowed to change during the calculations,

each surface is de�ned by the lattice unit d1. The geometrical constraints caused by di�erent metal
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Figure 8.13: Water dimers in the surface-constrained hexamer. The arrows indicate the direction

of motion as w1 decreases, w2 increases and w3 increases.

surfaces are simulated by variation of d1.

8.2.5.2 The free water hexamer

Geometry optimization of the free water hexamer, shown in �gure 8.14, yields a structure com-

prising six nearly ideal hydrogen bonds (EDIM = �4.774 kcal/mol): the oxygen-oxygen distance

(2.9539 �A) is smaller than in the dimer (2.9834 �A) but larger than in the trimer (2.9135 �A); the

hydrogen atoms are located on the oxygen-oxygen line (� = 0.57Æ); the angle � of 148.89Æ between

the molecular plane of the hydrogen acceptor and the oxygen-oxygen bond is larger than in the

dimer (�gure 8.10, table 8.5) and the bond itself is slightly twisted, with 
 = 11.42Æ (ideal value 


= 0Æ).

The strong bonds between nearest neighbours (
P

E1st
DIM = �28.644 kcal/mol) account for 81%

of the total energy (�35.397 kcal/mol) and the interactions between second nearest neighbours

account for an additional 14%. Both the geometry and the energy of formation appear to be

determined by these forces.

The quantum chemical geometry optimization of the free water hexamer resulted in a similar

structure: The hydrogen bonds were also linear (� = 0.57Æ) but, as expected, shorter (2.73 �A), in

agreement with that reported by Tsai and Jordan (2.725 �A) [182] and Xantheas (2.714 �A) [149].

The binding energy of �53.88 kcal/mol reproduces that found by Mhin et al. �53.94 kcal/mol

(MP2/DZP HF optimized geometry) [180] and is close to that of Kim et al. (�56:00 kcal/mol

(MP2/DZP)) [179].

This agreement shows that the results obtained with the clasical potential for the water hexamer

are reasonable, although producing systematically an extended oxygen-oxygen separation.

8.2.5.3 The constrained hexamer

In calculations of the water hexamer on a virtual surface (Pt(111), d1 = 2.77�A), the hydrogen

bonds of the hexamer lie directly above the metal-metal bonds of the virtual surface. Figure 8.12

shows the result of the geometry optimisation. The binding energy of the hexamer decreased
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Figure 8.14: Free water hexamer.

by 2.754 kcal/mol. The interactions between nearest and second nearest neighbours account for

95.2% of the total energy (�32.643 kcal/mol). The analysis of the binding energy with the classical

potential showed that the energies of the direct hydrogen bonds (top!base and base!top, �gure

8.13) di�er by 0.337 kcal/mol and are generally weaker (�free
surf:E

1st
DIM = 0.464 kcal/mol) as the

symmetry changes from S6 to C3. The weakening of these direct hydrogen bonds can be accounted

for by an increase in repulsion between the hydrogen atoms. This increase is partially compensated

by an increase in interaction between second nearest neighbours of 2%, accounting for the relief of

stress necessary to compensate for mechanical distorsions induced by the surface.

The water hexamer under surface conditions was nearly planar (h = 0.7377 �A); the base hydro-

gen atoms were slightly tilted towards the surface (w1 = 89.17Æ) while the oxygen-oxygen distance

was reduced (2.8665 �A) from that observed in the free hexamer. To check whether this result was

an artefact of the chosen input geometry the calculations were repeated with fewer geometrical

constraints.

Geometrical constraints for the water cluster were lifted except that the hydrogen atoms of the

base water molecule remained at the same height from the surface and the oxygen atoms were

placed at the corners of the virtual metal hexagon (d1 = 2.77 �A). Geometry optimization then

lowered the total energy by about 0.362 kcal/mol, but the water cluster retained its basic shape.

The base hydrogens moved slightly upwards (�w1 = 4.32Æ) as the ring became higher (�h =

0.078 �A). The non-bonding hydrogen atoms of the top water molecules moved slightly away from

the vertical axis (7.03Æ measured between the vertical and the OH bond of the top hydrogen), still

allowing for the formation of an ice cluster, while both types of bonding hydrogen atoms (base!top

and top!base hydrogen bonds) moved out of the metal hexagon (w2 = �52.3Æ, w3 = �65.17Æ).

The movement of the non-bonding hydrogens in the top layer is in agreement with the surface

ice rules, which require these hydrogens to lie nearly perpendicular to the metal surface. The non-

bonding top hydrogens point slightly into the hexagon and form the basis for the epitaxial growth

of further ice layers. With each additional water layer the ring contracts until �nally the bulk

value for ice Ih is reached (d1 = 2.6 �A). This would imply that, with increasing water coverage,

a single water molecule should become more strongly bound to the water cluster already on the

surface. Ogasawara et al. [56] observed a high-temperature shift of the ice peak on Pt(111)

with increasing water coverage in their TDS (Temperature Controlled Desorption Spectroscopy)

experiment. They suggested this shift to be due to zero-order desorption kinetics and to further

stabilisation of water in the ice overlayer. This stabilisation may be correlated with the orientation

of the non bonding hydrogens at the top of the water hexamer observed here.

Brudermann et al. [365] concluded from their He atom scattering from large water clusters
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Figure 8.15: Energy of Formation EHEX of the water hexamer under surface constraints.

that the water molecules becomes more strongly bound with increasing cluster size. Supported by

theoretical calculations, they argue that the strain in the hydrogen bond network in small clusters

reduces the O-O-O bending force constant. Our calculations suggest that a similar e�ect should

apply to water clusters on Pt(111) where the strain in the hydrogen bond network is induced by

the surface and becomes smaller as the cluster grows in size.

To con�rm the physical relevance of such data the calculations of the second step above were

repeated at MP2 level. The energy necessary to constrain the free water hexamer at the surface

was similar (MP2: 4.3 kcal/mol, Pot: 2.7 kcal/mol) and in both sets of calculations the hydrogens

of the base water molecules pointed towards the virtual surface (w1 MP2: 83.5Æ, Pot: 89.2Æ). In

addition, the oxygen-oxygen bond lengths agreed reasonably well (MP2: 2.78 �A, Pot: 2.87 �A).

8.2.5.4 Variation of the surface lattice constant

Our results suggest that the water molecules in the �rst layer on Pt(111) can lie parallel to the

surface and that the growth of ice crystals remains possible. To analyze the in
uence of the surface

lattice constant d1, the calculation was repeated for various values of d1. For d1 = 2.77 �A (Pt(111))

the orientation of the non-bonding top hydrogen atoms has a minor e�ect on total energy (1% of

the total energy �33.005 kcal/mol). In the following calculations these hydrogens were constrained

to lie vertically for convenience, but the water molecules were still allowed to rotate around the

bond to the virtual metal surface.

Figure 8.15 shows the energy of formation EHEX at various levels of theory as a function of the

surface lattice constant d1. The curves are very similar, each displaying two minima. The second,

global, minimum represents a distorted water hexamer (Table 8.7, SCF optimum in �gure 8.12),

while the �rst shallow minimum represents two loosely bound water trimers which will dissociate

as d1 is reduced.

Both the binding energy of the hexamer and the oxygen-oxygen distance rOO behave similarly

to the water trimer: With increasing level of theory, the global minimum moves to smaller values

of d1 and corresponds to higher binding energies. As d1 is reduced, the oxygen-oxygen bond length

becomes shorter, because the height of the ring (h) changes slightly (�h = 0.05 �A).

The oxygen-oxygen distance decreases with increasing cluster size in the quantum calculations

(at MP2 level: �hex
trimrOO = -0.052 �A) whereas it increases in the classical calculations (�hex

trimrOO
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d1 d2 rOO w1 w2 w3 �EHEX ��ETOP
**

[�A] [�A] [�A] [deg] [deg] [deg] [kcal/mol] [kcal/mol]

Pot 2:90 1:44 2:93 80:72 �52:44 �63:24 33:66 10:862

SCF 2:80 1:39 2:83 86:12 �51:97 �64:51 40:59 14:558***

MP2 2:70 1:44 2:74 90:78 �52:19 �64:15 49:67 18:199***

ideal* 2:6 1:9 2:76 125 �52 �60 10:56

* approximate values for ice Ih *** calculated at the global optimum
** binding energy of a top plane water molecule

Table 8.7: Global minima of the potential energy curves for the constrained water hexamer (�gure

8.15).

= +0.017 �A) as the number of water molecules is increased from 3 to 6. Quantum calculations

take cooperative forces directly into account, whereas classical calculations simulate these forces

via strong interactions between second nearest neighbours (see section 8.2.4). Such a mechanism

cannot compensate fully for the cooperative e�ects. The oxygen-oxygen distance in the classical

hexamer is therefore shorter than in the dimer but longer than in the trimer.

With increasing level of theory the global minimum of the potential energy curve moves into

the range predicted by Thiel and Madey for the existence of bilayer structures (2.48 �A (Ni) <

d1 < 2.89 �A (Ag), grey shaded in �gure 8.15) [38, 366], indicating the formation of ice-like water

clusters on metal surfaces in agreement with the surface ice rules (see 8.2.5.1). Figure 8.15 also

suggests that the range of suitable surfaces may be larger than expected.

The formation of water trimers within the hexamer for small values of d1 can be seen in

Figure 8.16, which shows selected pair interaction energies calculated with the classical potential.

The strength of the hydrogen bond between nearest neighbours (E1st
DIM) decreases as d1 decreases,

while the strength of the interaction between second nearest neighbours (E2nd
DIM) increases. These

interactions form the basis for the formation of water trimers, since, as d1 becomes smaller, the

hexamer breaks into two trimers. This cleavage eliminates the repulsive forces between the base

plane and the top layer and the total energy of the cluster is controlled by the repulsive forces

within the newly formed water trimers.

We note that interactions between second nearest neighbours in the base plane are as strong as

those between nearest neighbours. These interactions between second nearest neighbours in
uence

the geometry of the cluster even at large values of d1. For d1 = 1.7 �A the total interaction energy

between second nearest neighbours (E2nd
DIM) in the base plane is 13.56 kcal/mol, a value close to the

binding energy of the free fpppg water trimer (13.68 kcal/mol). In the top plane the interactions

between second nearest neighbours are small and do not extend as far as in the base plane.

The strengh of the hydrogen bond between nearest neighbours does not depend signi�cantly

on orientation; a top or a base plane water molecule may donate a hydrogen atom to the bond.

Both curves in Figure 8.16 have similar shapes over the given interval for d1. At large values of

d1 the top!base hydrogen bond is slightly more favourable than the base!top hydrogen bond,

because the former is closer to the optimal hydrogen bond of the free water dimer. In the physically

important region (2.5 �A 5 d1 5 3.0 �A) the base!top hydrogen bond is stronger than the top-

base hydrogen bond. In this range, the basal hydrogen atoms move upwards and strengthen the

hydrogen bonds.
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Figure 8.17: Height (h) of ring as function of

surface lattice constant d1.

The maximum in the total energy (Figure 8.15) can be accounted for via Figure 8.16. The

interactions between nearest neighbours become antibonding more readily than those between

second nearest neighbours become bonding, causing a maximum in total energy. The dissociation

of the water hexamer is controlled by interactions between nearest and second nearest neighbours.

Figure 8.16 shows, that both the top!base and base!top hydrogen bonds have the same

strength despite their di�erent geometries (Figure 8.13). Signi�cant di�erences can be observed

only for interactions between second nearest neighbours. In the base plane (E2nd
MIN =�4.52 kcal/mol)

these interactions are much stronger than in the top plane (E2nd
MIN = �2.87 kcal/mol). This di�er-

ence has a strong in
uence on the geometry, because the second nearest neighbour interactions in

the base plane contribute signi�cantly to the total energy whereas contributions in the top layer

are negligible over a wide range of values for d1.

Figure 8.17 displays the height of the water ring (h = d2 � d0) as a function of d1. Again all

three curves display similar features. As d1 is reduced the height remains close to zero until around

2.7 �A to 3 �A when it increases linearly with d1. A further change, not shown in �gure 8.17, can

be observed for d1 < 1.5 �A, when the hexamer breaks in two trimers as h tends to in�nity.

Within the range of validity of the surface ice rules the height of the ring decreases to zero.

It is therefore probable that the water hexamer lies 
at on heavy metal surfaces and ideal ice-like

structures (h > 0) can be expected only for values of d1 smaller than 2.6 �A (e.g. Fe, Co, Ni, Cu

[366]).

As the water ring tends to planarity, the hydrogen atoms on water in the base plane move closer

to the surface. Figure 8.18 shows w1 varies with d1. Again all three curves show similar behaviour.

For values of d1 & 2.7 �A the hydrogen atoms in the basal water molecules point towards the surface

until w1 reaches a constant at 75Æ. This motion stablizes the base!top hydrogen bond (Figure

8.13a), since the geometry of the base!top water dimer approaches the ideal dimer geometry with

CS symmetry (to be compared with the basal plane of the free water hexamer, Figure 8.14). At

a value of 75Æ two opposing e�ects compensate : the hydrogen atoms of the water molecules in

the base plane move as far down as possible to reduce repulsion among the nonbonding hydrogen

atoms without signi�cantly distorting the base!top hydrogen bond, since the bonding hydrogen

atom moves out of its ideal position as w1 decreases.

Values of w1 smaller than 90Æ are unlikely to be observed in practice, since the water molecule

binds to most metal surfaces via a lone pair and an orientation of the water molecule with the
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Figure 8.19: Angle w2 as a function of surface

lattice constant d1.

hydrogens pointing downwards would require cleavage of the metal-oxygen bond.

For d1 < 2.7 �A, w1 increases until it reaches a maximum. In this region the changes of w1

and d2 are coupled. As the width of the ring increases the basal hydrogen atoms move upwards to

maintain a strong base!top hydrogen bond. With increasing levels of theory, the maximum value

of w1 increases, but fails to reach the value of 125.26Æ for ideal tetrahedra, the closest being at

MP2 level (113.74Æ), when, at d1 = 2.3 �A, (rOO) reaches its minimum of 2.64 �A. This is smaller

than the value of 2.76 �A found for the ideal ice structure. The structure closest to the ideal ice

structure can be observed only outside the range proposed by Thiel and Madey.

As d1 is further reduced w1 again decreases, when the hexamer splits into two trimers. The

optimal structure for a trimer in the base plane of the water hexamer is nearly planar (d1 = 1.8 �A,

rOO = 3.05 �A, � = 25.29Æ, w1 = 93.70Æ) and the hydrogen atoms in the basal water molecules

move downwards to bind to second nearest neighbours.

The splitting of the hexamer into two trimers can also be inferred from Figure 8.19 which

displays w2 as a function of d1. For w2 > �52Æ the bonding hydrogen atoms of the basal water

molecules rotate into the water hexagon and point towards the second nearest neighbour.

For both small and large values of d1 quantum and classical results for w2 agree except in the

central region (�Pot
MP2w2 � 5Æ). Figure 8.16 shows that for d1 � 2.3 �A the interaction between

nearest and second nearest neighbours in the base plane are similar in magnitude. At d1 = 3 �A

the interactions between second nearest neighbours contribute 7.2% of the total energy and this

contribution increases rapidly as d1 decreases. Since the interaction between the second nearest

neighbours in the base plane increases with w2, the bonding hydrogen atoms of the base molecules

turn into the hexagon. This slightly weakens the base!top hydrogen bonds, which are still similar

in magnitude to the top!base bonds in this region. The classical potential, which is based on

pairwise interactions, cannot compensate for the distortion of the dimer through cooperative e�ects.

To balance the individual bonds in the hexamer the rotation of the base water molecules ceases

when d1 = 2.35 �A and the bonding hydrogens turn back to reinforce the top!base hydrogen bonds

until the interactions between second nearest neighbours dominate the total energy. Figure 8.16

shows how the top!base hydrogen bonds become more favourable than the base!top bonds in

this region.

Quantum calculations include cooperative e�ects and these e�ects are likely to compensate

for the distortion of hydrogen bonds between nearest neighbours. Arti�cially high interactions
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between second nearest neighbours as observed in classical calculations are therefore not necessary

to compensate for the distortion. The bonding hydrogen atoms of the base water molecules can

move out of the hexagon to form strong top!base dimer bonds and only for small values of d1 do

the hydrogens move back into the hexagon to form trimers.

The �rst maximum (classical potential d1 = 1.8�A) in Figure 8.19 suggests the formation of a

planar water trimer (classical potential: rOO = 3.05 �A, � = 25.29Æ) in the base plane. Both the rOO

and � are close to the free fpppg water trimer values (rOO = 2.91 �A, � = 24.18Æ). The hydrogen

bonds in the free C3h water trimer are bent and the formation of such a trimer on a metal surface

is likely for small values of d1. At d1 = 1.75 �A the binding energy curve (Figure 8.15) displays a

local minimum, suggesting the formation of a 
at trimer in the base plane, in agreement with the

maximum in �gure 8.19.

Calculations on the free water trimer showed that with increasing values of rOO, � becomes

smaller and the bonding hydrogen atoms turn back onto the oxygen-oxygen line. Such an e�ect

is not observed in the water hexamer. As d1 increses, the bonding hydrogen atoms move away

from the oxygen triangle in the base plane to form hydrogen bonds between nearest neighbours

and w2 becomes more negative. The rotation of the bonding hydrogens in the base plane does

not cease at �52Æ, when they move out of the water hexagon to minimize repulsions within the

top!base bond (�gure 8.13b), while the base!top hydrogen bond becomes stronger as the bonding

hydrogen atoms move into the oxygen-oxygen line (�gure 8.13a). As d1 increases, the repulsive

forces decrease and the bonding hydrogen atoms in the basal water molecules turn back towards

the oxygen-oxygen line. At the minimum of the total energy (d1 � 2.8 �A), w2 � 52Æ at all levels

of theory.

For w1 < 90Æ (d1 > 2.7 �A), w2 must be smaller than �52.26Æ. Such a rotation moves the

bonding hydrogen of a basal water molecule back towards the oxygen-oxygen line between direct

neighbours and enhances the strength of the base!top hydrogen bond. This motion accounts for

the shallow local minima around 3 �A.

For d1 > 3 �A the hydrogen bonds between nearest neighbours rapidly weaken, while interactions

between second next neighbours change slowly (Figure 8.16). For d1 = 4.4 �A (the �nal point

chosen) the interactions between second nearest neighbours in the base plane still account for 5.3%

of the total energy. The bonding hydrogen atoms of the basal water molecules turn back into

the water hexagon to reinforce the bonding interactions between second nearest neighbours in the

base plane. Classical calculations at d1 = 4.4 �A showed that forcing the bonding hydrogen atoms

back on to the oxygen-oxygen line (w2 = �52.54Æ, taken from the global minimum structure) has

only a small e�ect on the total binding energy (�52:45Æ

50:61ÆEHEX = +0.011 kcal/mol). The average

binding energy between nearest neighbours increases by only 0.002 kcal/mol but the binding energy

between second nearest neighbours in the base plane decreases by 0.007 kcal/mol.

Figure 8.20 shows w3 as a function of d1. Once again all three curves are in reasonable agree-

ment. The location of the �rst maximum suggests the formation of a water trimer in the top plane.

The bonding hydrogen atoms turn into the water hexagon to form hydrogen bonds to second near-

est neighbours. As d1 increases, the bonding hydrogen atoms move out of the hexagon and for d1

� 2.2 �A w3 reaches its theoretical optimum of �60Æ, when the bonding hydrogen atoms lie directly

above the oxygen-oxygen lines and point towards the centre oxygen atoms of the base molecule.

As d1 increases further the bonding hydrogen atom moves outside the hexagon. An analysis of the

classical curve shows that this motion strengthens both base!top and top!base hydrogen bonds

by reducing the hydrogen-hydrogen repulsion. At the minimum of the classical curve (d1 = 2.5 �A,
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Figure 8.20: Angle w3 as a function of surface lattice constant d1.

w3 = �66.2Æ) the rotation of w3 back towards the oxygen-oxygen line reduces the total energy

by about 0.45 kcal/mol. The increase in binding energy of 30.64 kcal/mol within the cluster is

counteracted by an increase in the repulsive energy of 31.09 kcal/mol. Only the interactions be-

tween second nearest (and further) neighbours bene�t from this rotation, while the hydrogen bonds

between nearest neighbours weaken due to repulsions between the hydrogens. A similar distortion

has been observed at the global minimum of the water trimer, where the repulsions between non-

bonding hydrogens on the same side of the oxygen triangle force the non-bonding hydrogen atoms

out of the plane.

As d1 increases further, the hydrogen atoms move back inside the hexagon until the direct hy-

drogen bonds become strongest at d1 = 3 �A (Figure 8.16), when w3 decreases again, strengthening

the hydrogen bonds between nearest neighbours.

8.2.6 Discussion

In all calculations, moving from the classical potential to MP2 via RHF shortened the bond length

and tightened the bond. The changes in the quantum calculations are a result of the inclusion of

electron correlation, while the results of the clasical potential depend heavily on the parametrization

of the potential, which was parametrized using the BSSE corrected MP3 results, extends the

hydrogen bond and reduces the binding energy. To detect di�erences between classical and quantum

calculations, we analyzed the sequence (H2O)2 ! (H2O)3 ! (H2O)6 instead of the sequence

classical potential ! RHF ! MP2.

With increasing cluster size the quantum calculations produce shorter oxygen-oxygen distances

in the free water cluster (MP2: 2.91 �A, 2.78 �A, 2.73 �A). Xantheas [128, 149] reported an expo-

nential decrease of rOO with cluster size, but showed also that the parameters of the exponential

function depend on the method of calculation. The value of rOO calculated with the classical

potential showed little change with cluster size (2.98 �A, 2.91 �A, 2.95 �A). Tsai and Jordan [182]

observed similar behaviour in TIP4P calculations on water hexamers, with bond lengths ranging

between 2.72 �A and 2.76 �A. These values are close to those calculated for the water dimer (2.75 �A)

[116, 249, 250]. The reported binding energy of the cyclic hexamer (�44:4 kcal/mol) disagrees

with our result of �35:4 kcal/mol. This di�erence may be explained through di�erent strengths

for an individual hydrogen bond (TIP4P: �6:24 kcal/mol, our potential: �4:90 kcal/mol). Taking

a scaling factor FTIPS
Pot (E) = (ETIPS4

DIM )=(EPot
DIM) = 1.27 for an individual hydrogen bond into account

280



yields a binding energy of �45:1 kcal/mol, in reasonable agreement with the published value.

Results based on the classical potential depend critically on the parametrization of the in-

teraction potential. Using table 8.5 calculated scaling factors for the bond length (FMP2
Pot (rOO)

= 0.97) and the binding energy (FMP2
Pot (E) = 1.28) provide an indication of cooperative e�ects

within the cyclic hexamer at MP2 level, leading to an oxygen-oxygen bond length of 2.86 �A and

a binding energy of �45:3 kcal/mol. These results suggest that many body-body e�ects account

for �8:6 kcal/mol (16% of the total binding energy)4. Pedulla et al. [188] reported a value of

�13:48 kcal/mol (32%) for the 3-, 4-, 5- and 6-body forces in the cyclic water hexamer, which is

similar in size but twice as large as its contribution to the total energy. For the cage and prism

structures many body forces account for 22% of the total binding energy (�9:5 kcal/mol). These

results can be accounted for by the higher number of hydrogen bonds in the three-dimensional

clusters (cage: 8, prism: 9).

The calculations on the water hexamer agree reasonably well for all levels of theory, allowing

us to rule out further systematic errors. Energy di�erences between di�erent con�gurations and

the geometry of the cluster itself appear to be well de�ned.

As can be seen from Table 8.7, which contains data for the water hexamer as part of ice Ih, our

calculations fail to reproduce the value of the surface lattice constant d1 of ice. Although d1 does

decline at incresing levels of theory, the limiting value of 2.6 �A is never reached. Since d1 is large,

the corresponding values of d2 and w1 are small in order to create strong direct hydrogen bonds

with optimal oxygen-oxygen separations.

In an extended ice crystal, w1 is controlled by the water layer below the hexamer. This basic

hydrogen bond raises the hydrogens of the base molecules, thereby increasing the height of the

ring. Our model does not contain such directional forces and the water hexamer becomes more

compressed than in bulk ice Ih. The oxygen-oxygen distance calculated at the MP2 level (2.74 �A)

is close to that found in ice (2.76 �A). To maintain this value, an upward motion of the basal

hydrogens would result in smaller values for d1. The inability of our model to reproduce d1 seems

to be more a product of the �nite spatial extent of the ice micro-crystal than of the chosen method

of computation.

Our quantum calculations on the platinum-water interface showed that the reorientational en-

ergy �UPE of the hydrogens to be very small (�UPE < 0.5 kcal/mol). A model with no directional

forces would appear to be more realistic as a �rst approximation than one with strong directional

forces as in ice.

Our calculations indicate that the formation of planar hexamers on hexagonal metal surfaces is

feasible for a wide range of surface lattice constants and, by implication, of metals. As the value of

surface lattice constant d1 approaches to 2.7 �A the ring becomes planar (h � 0, Figure 8.17) and

the nonbonding hydrogens in the top layer were forced to point upwards. A planar water hexamer

in the �rst bilayer does not prohibit the growth of ice clusters on any surface.

As h decreases, the basal hydrogens move closer to the surface. For d1 � 2.7�A, w1 equals 90Æ

and tends to 75Æ as d1 increases. Values of w1 smaller than 90Æ are unlikely to be observed in

practice, as the water-metal bond is generally formed through the lone pair of the water molecule

[38, 70].

4RHF calculations of multi-center forces within the constrained hexamer showed that cooperative forces

account for 20% of EHEX at the global minimum (d1 = 2.80 �A).

281



The energy required to reorientate the water molecule in the interval 90Æ 5 w1 5 180Æ is small

(�UPE = 0.26 kcal/mol for Pt5 �H2O), while it is energetically unfavourable to bring w1 < 90Æ,

when �DOWNE = 35.29 kcal/mol. This energy re
ects the breaking of the platinum-oxygen bond,

which does not form part of our surface model. A more elaborate surface model to account for

�EDOWN should yield a value of 90Æ for w1 for d1 around 2.6 �A, since the energy gain within the

water hexamer caused by the downwards motion of the hydrogens is compensated by the energy

necessary to distort the surface-water bond.

The possibilty of the water molecules pointing downwards depends on �EDOWN and therefore

on the chosen model of computation. Spohr [100, 101] published Molecular Dynamics Simulations

on the Pt(100)- and Hg(111)-water interface. According to his simulations the moleculear planes

of the water molecules in the �rst layer lie parallel to the metal surface, which agrees well with our

results. In the Hg(111)-water interface system the oxygen-hydrogen bonds are pointing downwards

to the metal surface. Our calculations suggest that for values of d1 � 2.7 �A the dipole moment

vector of the water molecule should point downwards to the surface. The mercury-mercury distance

is about 3.0 �A and the orientation of the hydrogen atoms agrees well with our results. The Molecular

Dynamics simulations con�rm so our assumptions, that the structure of the water-metal interface

is controlled by the surface lattice constant d1.

The large value for �DOWNE suggests w1 = 90Æ, whereas the value of w1 for a single water

molecule depends on the choice of metal cluster and the method of calculation (Pt: 93.7Æ 5 w1 5

180Æ, 90Æ [54], 180Æ [64], 90Æ (coadsorbed with K) [63], 180Æ [65], 90Æ [68], 180Æ [60]; Ni: 155Æ [72],

180Æ [62]; Cu: 120Æ [71]; Ru: 180Æ [66], Al: 125Æ [70]). The energy to move the hydrogens upwards

�UPE is usually small with the exception of Pt10 (�UPE < 0.5 kcal/mol, Pt10: � 4 kcal/mol

[63, 68], Ni: 0.9 kcal/mol [72], 1.5 - 0.07 kcal/mol [62], Al: 2.3 kcal/mol [70]).

Two di�erent mechanisms are possible for the formation of extended water clusters on metal

surfaces with large values for d1:

1. The molecular plane of the water molecule lies parallel to the metal surface even at low

surface coverage (e.g. Pt). The planar water hexamer can grow unhindered.

2. A single water molecule adsorbs with w1 > 90Æ (e.g. Ru [66], Ni [72]). The structure of

the hexamer is now determined by the energy required to distort the surface-water bond

(��UPE) and the energy gained by the downwards motion of the hydrogen in the basal

plane. The small values for �UPE and the large energies for conformational changes within

the water cluster reported here suggest that the water hexamer will dominate the structure

of the interface and force the hydrogens down towards the surface.

Both cases generate a 
at water hexamer on the surface and seems likely ion a hexagonal metal

surface irrespective of the values of w1 found in geometry optimisations of small clusters.

Our results suggest that the direct formation of a metal-ice interface can be observed for metals

with strong metal-water bonds resulting in large values for �UPE, which force the base water

molecules into a suitable orientation, or for small surface lattice constants.

The in
uence of the surface lattice constant d1 on the binding energy of the water molecule can

be seen in a plot [38, 47] of the lattice mismatch ltm (distance between second nearest neighbours,

ltm = �d1 � p3) versus the highest desorption temperature of water from metal surfaces (multilayer

peak). From table 8.8, the highest desorption temperature is found for Ru(0001) (ltm = �0.19 �A,

d1 = 2.71 �A) lying between 212 K and 220 K [47]. If ice is assumed to grow epitaxially on a metal
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surface d1 ltm T EMP2
HEX

*

[�A] [�A] [K] [kcal/mol]

Ni(111) 2:49 +0:19 170 �46:525

Cu(111) 2:56 +0:08 150 �48:128

Rh(111) 2:69 �0:16 190 �49:530

Ru(0001) 2:71 �0:19 212 - 220 �49:662

Re(0001) 2:76 �0:28 180 �49:562

Pt(111) 2:77 �0:30 170 �49:484

Ag(111) 2:89 �0:50 150 �47:721

* extrapolated from the MP2 potential energy

curve (�gure 8.15)

Table 8.8: Multilayer Peaks data from refs. [38, 47, 366]

surface, the highest desorption temperature for the multilayer peak should be found for copper (d1

= 2,56 �A, ltm = +0.08 �A), which is closest to the bulk ice surface lattice value (d1 = 2.6 �A). The

experimental multi layer desorption temperature on Cu(111) is exceptionally low (150 K). Table

8.8 shows that EMP2
HEX correlates with desorption reasonably well for all values of surface lattice

constant, suggesting that the real bilayer structure lies closer to the constrained hexamer reported

here than to bulk ice Ih.

We �nd that the water hexamer remains planar (h � 0) at d1 = 2.7 �A, in agreement with

experiment [360] and suggests that the orientational forces of ruthenium on the water molecule are

smaller than those of the stretched water ring. This experimental value for h [360] suggests that

our simple model seems to reproduce both, the energy and the structure of the water bilayer.

The binding energy of a single water molecule to metal surfaces (e.g. Pt, Rh, Re, Ni, Ru [38])

is similar to the ice sublimation energy (� 14 kcal/mol) [38, 42, 56], which corresponds to two to

three hydrogen bonds (table 8.5). A total binding energy of approximately 42 kcal/mol for three

water-metal bonds can compensate for any hexamer conformation calculated here (Figure 8.15),

but the experimentally observed range is much smaller.

In the intial stage of growth, a water molecule has two possible adsorption sites: one attached

directly above a platinum, another to a water molecule already bound to the surface [46, 48].

The coexistence of both species is commonly explained in terms of the energy of isolated bonds,

although the importance of cooperative forces has been suggested [42, 45, 49]. The strenghth of

the platinum-water bond corresponds to that of two to three hydrogen bonds, so either type of

bonding should be possible.

The analysis of the classical binding energy showed that the strongest bond between a top

water molecule and the remaining water pentamer (�ETOP) can be observed close to the global

maximum of the total energy (d1 = 2.95 �A, �ETOP =�10.862 kcal/mol). This value is smaller than

the energy of water bound directly to the surface and two dimensional growth of the water layer

on metals should be more favourable than the formation of three dimensional islands. Quantum

chemical calculations on Pt3�(H2O)3 [42] have shown on the other hand, that cooperative e�ects

play an important role in the formation of small water clusters on platinum(111) and the binding

energy of a top water molecule should therefore be higher than that calculated with the classical

potential.
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The importance of cooperative e�ects and electron correlation can be inferred from the binding

energies of a top water molecule (�ETOP) at the global minima of the RHF (14.558 kcal/mol) and

MP2 (18.199 kcal/mol) potential energy curves. Whereas the classical potential does not support

the formation of three dimensional clusters, the formation of such clusters is predicted by the

quantum calculations.

The binding energy �ETOP decreases rapidly as the lattice constant d1 varies. The formation

of three-dimensional water clusters as observed for Pt(111) [56] is therefore limited to a small range

around the global minimum. Outside this region, two-dimensional growth will dominate and water

molecules in the second layer will be observed only at higher surface coverage.

The existence of the planar water hexamer suggests that the structure of the metal-water

interface is not continuous as suggested by the surface ice rules, but has its own structure. This

structure is closer to ice Ih and therefore closer to the QLL than to the two-dimensional ice

structures reported by Koga et al. [367, 368] and Odelius et al. [369], which have similar

oxygen-framework (rOO = 2.73 � 0.02 �A, h � 0 [367]) but di�er in the orientation of the hydrogen

bonds.

8.2.7 Final Conclusions

The interface phase has its origin in the ending of the ice crystal. Quantum chemical calculations

suggest that a single water molecule is bound more strongly to the metal surface (� 15 kcal/mol)

than to the ice cluster, but the platinum-water bond has a small in
uence on the orientation of the

base water molecules (�EUP � 0.5 kcal/mol). The absence of these orientating forces allows the

hydrogens of the water molecules directly attached to the metal to move freely. This free motion

of the hydrogens makes the interfacial region similar to the ice-vacuum interface. The value of the

lattice constant d1 seems to control the properties of the interfacial phase. As d1 increases the

water hexamer becomes 
atter and the molecular plane of the base water molecules lies parallel

to the metal surface. We therefore asume the formation of an interfacial layer as the basis for ice

growth on metals other than platinum with weak orientating forces and large interatomic distances.
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Chapter 9

Final Conclusions and Further

Proceedings

The computational analysis of the platinum-water-vacuum interface started with an investigation

of small water cluster as benchmark test. Our results obtained with MP3/DZP calculations for

(H2O)n and n 5 3 agree well with values (theoretical and experimental) previously published

by other groups. Further improvement was achieved by a BSSE correction according to the full

counter poise method by Boys and Bernardi of the bonding energy and the dimers geometry.

These results agree even better with the experimental values.

The most stable water dimer has CS symmetry, a oxygen-oxygen distance of 2.9926 �A, the

hydrogen bond is slightly bent (� = 2.4Æ) and the hydrogen acceptor moved out of his ideal tetra-

hedral geometry (� = 44.5Æ). The dimerisation energy calculated for this dimer is �4.914 kcal/mol,

which is close to the experimental value of �5.44 � 0.7 kcal/mol. High level quantum chemical

calculations on the other hand suggest an interaction energy about �5.0 kcal/mol and it is com-

monly believed, that the true value for the strength of the hydrogen bond has to found at the lower

part of the experimental range.

The experimental oxygen-oxygen distance is 2.97 � 0.03 �A. Since the oxygen-oxygen distance

dominates the interaction energy, this work, like others before, concentrates on its correct repro-

duction. The experimental uncertainty for the angles is 10Æ (� = 1Æ, � = 57Æ). Although an

increase of � will break the hydrogen bond, is the hydrogen bond bent to minimize exchange re-

pulsion between the two monomers. Both angles � and � have only a small in
uence on the total

interaction energy and the potential energy surface of the water dimer is therefore extremely 
at

around the global minimum.

The quantum chemical calculations showed, that the relaxation of the monomers geometries

has only a small in
uence on the cluster formation. The energy di�erence between calculations

with a rigid water molecules (experimental values: rOH = 0.9572 �A, ^HOH = 104.52Æ) and 
exible

monomers can be neglected safely. This simpli�cation allows us to scan vast areas of the (H2O)2

potential surface and to continue with larger clusters.

Due to computational restrictions when we were doing the MP3/DZP calculations it was im-

possible to calculate the energy of the cyclic fuudg trimer, which is the global minimum of the

(H2O)3 potential energy surface. The most stable water trimer analyzed on the MP3/DZP level

was the cyclic fpppg trimer (C3h symmetry) with a bonding energy of 13.8 kcal/mol, while the
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linear trimers were all higher in energy. Two of them, with a double hydrogen donor or acceptor,

are energetically disfavoured as the cooperative e�ects are antibonding.

The analysis of the interaction between to water molecules showed, that the hydrogen bond is

not formed by an overlap of frontier orbitals, but by a rearrangement of the inner orbitals and charge

transfer is therefore small. The electric �eld of the second monomer induces a small energy shift

of the �rst monomer's orbitals, which greatly enhances orbital overlap. Such a mechanism is part

of the quantum chemical representation of polarisation, but an energy decomposition according to

Morokuma showed, that the interaction is still dominated by electrostatic and exchange repulsive

forces and polarisation plays only a minor role.

The possibilities of the quantum mechanical calculations are limited by three points despite

their general utility:

1. The computational costs are so high that it is nearly impossible to do calculations at MP3/DZP

level on the water trimer or bigger cluster with the available computational equipment.

2. The in
uence of the hydrogen atoms on the total energy is so small, that the geometry

optimisation algorithm has problems to �nd the minimum and it takes more steps to optimize

a given geometry.

3. With increasing cluster size the number of local minima becomes also larger, which increases

the numerical e�orts necessary to locate the global one.

Classical water-water potentials are easier to compute than the quantum chemical and o�er so

a possibility to extended the analysis of water clusters beyond the given limits. The comparison of

cuts through the (H2O)2 potential energy surface curves calculated both quantum chemically and

with classical potential energy functions showed, that none of the widely used potentials �ts to the

quantum mechanical results. Most of them also yield poor values for dimerisation energy and the

dimer's equilibrium structure and even worse values for the water trimers.

The development of a new improved model started from the well-studied TIPS2 model by

Jorgensen. Since the energy decomposition according to Morokuma showed that the interaction

between the monomers is controlled by electrostatic and exchange repulsive forces, the search for a

better potential started with modi�cations of the van der Waals forces between two oxygen atoms

and not with the inclusion of many-body energy terms. Most useful was an exponential function

for the oxygen-oxygen interaction (potential E).

VOO(r) = A � e�b(r�c) (9.1)

Further improvement was achievement by the introduction of a set of repulsive functions for the

di�erent types of interactions, namely VOO, VHH and VOH. The standard deviations of the curves

calculated with newly �tted potential were better than the ones originally published. The �tting of

this potential (originally suggested by Kistenmacher and Popkie) to the quantum mechanical

calculated values yielded a potential, which describes the quantum mechanical curves very good

(potential N) and gives also good values for the water trimers. The global minimum (dOO = 2.98 �A,

� = 8.5Æ, � = 56.6Æ, �E = �4.883 kcal/mol) for the water dimer of this potential agrees very well

with experimental found values, despite the large value for � caused by the inclusion of the trimers

into the optimisation of the potentials parameters.

A detailed analysis of the parameters of potential N showed, that the repulsive forces between

the oxygen-oxygen atoms are very strong, but do not reach far. The contribution of VOO to the
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total energy was equal to nought for all geometries. The analysis showed also, that VOH is the most

important function for the correct reproduction of the quantum chemical geometries and energies.

This e�ect can be explained with chosen dimer geometries for the optimisation of the parameters.

All geometries have been close to the equilibrium structure and mechanical stress on the hydrogen

bond was more important than the oxygen-oxygen repulsion. The application of potential N is

therefore limited to small water clusters close to their equilibrium structure.

Both potentials E and N have a third, shallow minimum in the potential energy surface of the

water dimer with CS symmetry. This minimum is caused by the dislocation of the center of charge

from the oxygen atom. The set of repulsive functions in combination with the longer oxygen-oxygen

distance in the water dimer bu�ers the e�ect. The well depth of this minimum is shallower for

potential N than for potential E. Quantum chemical test calculations of selected points from this

surface showed, that potential N allows the correct prediction of energy di�erences and geometries

for the water dimer.

Potential N as a simple point charge model cannot describe any cooperative e�ects by de�nition.

The �tting of the potential's parameters to the quantum mechanical values gave a potential, which

describes both the dimers and the trimers well. Potential N has to simulate therefore attractive

cooperative forces. The analysis of the water trimer and hexamer showed, that this is done with

repulsive forces between non-bonding hydrogens and weak, but far reaching, interactions between

second next neighbours. Despite the problems with many-body forces in potential N, potential

N is suited for the simulation of large water clusters, as the investigation on the water hexamer

showed.

We used potential N, which correctly predicts the fuudg geometry for the global minimum, to

simulate the ring closure of the water trimer starting form the linear trimer. The calculated energy

barriers are small enough to allow a transition between stable conformers by tunneling.

Next we started the quantum chemical investigation of the platinum-water bond at a series of

Ptn�H2O clusters with n = 1, 2, 3, 5, and 9 on the MP2/DZP level. The platinum atoms in

chapter 6 were described with HW18 ECP using a DZ basis set, while the water molecule was

described as before with a DZP basis set.

First calculations on Pt�H2O showed, that the strength of the Pt-O bond depends on the

electronic state of the platinum atom. Water is more strongly bonded to a 1S platinum than to

a 3D atom, despite a higher electronic energy of the 1S platimum. The dependency of the bond

strength on the electronic state is one of the major problems in the computational analysis of the

interface. With increasing cluster size becomes the number of electronic states with energies similar

to the ground state rapidly larger and each electronic state creates a di�erent bonding energy.

Figure 9.1 shows a simpli�ed model of the platinum water interaction. The free electron pair

of the water molecule, a linear combination of the water 3a1 and 1b1 orbitals, overlaps with a

platinum 5d orbital. A strong bond between the metal and the water molecule is accompanied

with charge transfer from the water molecule to the metal and a hole in the 5d band is therefore

necessary to put up the electron density from the water molecule. The formation of a hole for the

water electrons forces electrons from the 5d band into the 6s orbitals. An equivalent description

of the bond can be given using the quantum chemical de�nition of polarisation (�gure 2.3, page

28). The water molecule polarizes the metal cluster and causes so an occupation of the 6s orbitals.

These new orbitals are than used for the formation of the bond resulting in a netto 6s density

increasement during the formation of the platinum-water bond.

A second mechanism controls the 6s population: The 6s orbitals are wider spreading than the 5d

287



5d band

at
tr

ac
tio

n

H
δ-

6s band

free electron

pair

Hole

re
pu

ls
io

n

O
2δ-

st
ro

ng

w
ea

k

active passive

surface atoms

Figure 9.1: Model for the platinum-water interaction.

orbitals and the population of the 6s band increases the Coulomb repulsion between the platinum

cluster and the water molecule. This repulsion forces electron density back into the cluster into

the 5d orbitals.

The second mechanism forcing the electrons back into the cluster dominates the platinum-water

bond for small values of the platinum-oxygen bond length. As the 6s electron density is forced

back into the 5d orbitals by the water molecule, the hole in the 5d band cannot be large enough

to put up two electrons from the free electron pair of the water molecule. The bond between

water and a platimum surface is therefore not like the bond observed in inorganic complex ions,

which can be described with the valence bond theory, but is more like the bond between water

molecules, which bases on the interaction between fully occupied orbitals: The 3a1 and the 1b1

of the water molecule interact individually with occupied platinum 5d orbitals and the selection

of the 5d orbitals used for the bond is entirely controlled by symmetry. The 6s orbitals of the

metal cluster contribute only little to the bond. This small contribution is the origin of charge

transfer form the 5d band into the 6s orbitals during the formation of the platinum-water bond.

Polarization and cooperative e�ects similar to the e�ects observed in small water clusters have

been observed also for the platinum-water bond.

The dominant role of the Coulomb repulsion for the selection of the electronic state of the

platinum cluster has been demonstrated with a single platinum and a negative test charge of

�0.6 e (charge on the oxygen atom in free water). As the charge gets closer to the platinum

becomes the 1S platinum more stable the 3D atom. It is possible, that polarisation e�ects caused

by the dipole moment of the water molecule can change the electronic state of the metal cluster.

The intermetallic bond among the platinums is formed via the 6s orbitals and a strong platinum-

platinum bond demands therefore a high 6s population. Two each other opposing forces control

so the 6s electron density. A stable metal cluster demands a high 6s population, but a high

6s population weakens the platinum-water bond. A very low 6s population on the other hand

causes very strong platinum-water bonds, but weak platinum clusters. Such a platinum-water

bond, caused by a very low 6s population, can be much stronger than the experimental observed

bonds. The key element for a successful simulation of the platinum-water interface is the correct
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6s population in the metal cluster and the 6s population again is controlled by electrostatic �eld

of the water molecule and so a function of the platinum-water distance.

Bigot and Minot concluded form their Extended H�uckel calculations, that a 6s population

between 0.7 and 0.8 per platinum should be observed for surface atoms forming so a natural hole

in the 5d band for the lone electron pair of the water molecule. This observed value is smaller than

a value of 1.0 suggested for a cluster made purely from 3D platinums. Our own calculations on

Pt5�H2O gave good results for the platinum-water bond strength (�EBOND = �17.23 kcal/mol)

at a 6s population of 0.714. These results suggest, that two possibilities for a working surface model

exist: Either a large platinum cluster, which naturally creates the correct surface 6s population,

or a small cluster with the correct 6s population in an excited state.

A platinum-platinum bond is much stronger than a platinum-water bond and a change of the

6s population causes so large changes of the total energy of the platinum-water cluster. A scan of

the potential energy surface of a Ptn�H2O cluster is therefore diÆcult:

� A surface model, which reproduces correctly the binding energy, has necessarily a smaller

6s population than the most stable platinum cluster and is therefore an excited state of the

Ptn�H2O cluster.

� Small changes the in orientation of the water molecule can cause sudden changes of the total

energy for two reasons.

{ As the water molecule changes its position relative to the cluster changes also the electric

�eld at the cluster and this change can force a new electronic state on the cluster. The

strength ~E� of an electric dipole �eld scales with r�3 and as the water molecule moves

away from the platinum cluster the repulsive Coulomb forces become rapidly weaker

and the electron density spills out o� the cluster's core. This electron spill causes then

a change of the cluster's electronic state.

{ A change in the position of the water molecule also can be a change of the symmetry

in the Ptn�H2O cluster and orbitals, which have been separated well by symmetry can

mix now. This mixing again can cause a sudden change of the cluster's electronic state.

This mechanism can be observed in rotations around the platinum-oxygen bond, where

changes about 0.001Æ can cause energy jumps about 2.4 kcal/mol and more.

The cluster size is very important for the quality of the surface model for three reasons and

demands special consideration:

1. The hydrogen atoms of the water molecules interact with the surface via the platinum 6s

orbitals. This interaction can be modeled suÆciently with a 1 valence electron ECP on

the platinum, which covers only the the 6spd valence space. Larger platinum clusters are

therefore likely to give higher values for the orientational energies of the water molecule.

2. Calculations on Pt2�H2O showed, that the 6s electron density 
ows away from the platinum-

oxygen bond and cumulates at the atoms without a platinum-oxygen bond. The negative

charge at these atoms interact with the positively charged hydrogens of the water molecule

and increase so the energy necessary to reorientate the water molecule.

3. First results for Pt9�H2O showed, that the 6s electron 
ow is linked with a movement of the

5d electrons in larger clusters.
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Complete surface model therefore need at least two slabs of platinum with a surface large

enough to interact with the hydrogens. With increasing cluster size increases the number of nearly

degenerated electronic states of the metal cluster and sudden energy discontinuities during the

scanning of the potential energy surface more likely. To avoid these jumps more elaborate methods

such as MCSCF are necessary for the calculation. The numerical e�orts rise therefore in two

ways: First, the cluster itself becomes bigger and second, more elaborate methods are needed for

a suitable description of the platinum-water bond.

The calculations in chapter 6 showed, that the platinum-platinum bond is controlled by the 6s

electrons. For the identi�cation of the orbitals necessary for the construction of suitable electronic

states of the metal cluster H�uckel calculations proofed to be most helpful. The assumption of a

perfect 1-valence electron ECP allows us to use the original H�uckel theory on the platinum 6s

orbitals and to calculate principal properties of the platinum clusters such as the multiplicity of

the electronic ground state and the charge distribution in the cluster.

H�uckel calculations give correct results for the symmetry and the relative energies of the 6s

orbitals, which was used for the analysis of small platinum clusters (Pt3). The indenti�cation

and construction of suitable electronic states and geometries for the platinum cluster was more

complicated:

1. The active surface atom, which forms the bond to the water molecule, should have a 5d106s0

con�guration (1S), since the HF calculations easily home into this state and the low 6s

population guarantees also a strong platinum-water bond.

2. The remaining platinums, passive surface and bulk atoms, may have a higher 6s population.
3D platinums with a 6s population of 1 are suitable candidates, because they create strong

platinum-platinum bonds with a low total energies.

3. After the H�uckel calculation on a given geometry the bonding 6s orbitals are �lled with elec-

trons until a symmetric 6s population is reached. The H�uckel calculations on Pt5 suggested

so a stable cluster with four 6s electrons. Such an electron con�guration is possible with the

combination of four 3D platinums and one 1S resulting in a triplet state for the metal cluster.

4. The 6s charge distribution was calculated using the approximation of orthogonal orbitals to

test the active surface atom. This atom should carry a small negative charge, since previous

calculations showed, that a neutral or positive charge on the active surface atom results in

too strong platinum-water bonds.

If the calculation of the 6s charge distribution failed to give a negative charge at the active

site, the calculation was repeated with another electronic state.

5. The H�uckel MO were then used to identify the relevant orbitals in the LanL2 calculations

and to construct a surface model with a suitable 6s population. Two methods were used for

the construction of the 6s population:

(a) The informations of the symmetry and the relative energies of the 6s orbitals from the

H�uckel calculation were used to pick up the correct suitable orbitals from an initial HF

run on the Ptn�H2O job and to swap orbital populations.

(b) As the 6s population is a function of the platinum-oxygen distance we repeated the

calculations from the last step for several values of the bond length. As the water
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molecule reached a certain distance from the metal cluster a sudden change in the 6s

population was observed in some cases. The calculation with the correct 6s population

was picked up and their eigenvectors used as initial guess for all following calculations.

The charge distribution in the metal cluster is very important for the surface model and H�uckel

calculations give valuable insight into the movement of the electrons. As mentioned above, the

charge on the active surface atom is very important the surface model. H�uckel calculation on Pt5,

Pt9 and Pt17 showed, that the active surface atoms acts as an 6s electron sink. 6s electron density

is transfered so from the base of the cluster to the active site and creates so the Coulomb repulsion

necessary for the correct description of the platinum-water bond. A second electron 
ow from the

top back to the base counter balances the 6s electron 
ow. This second 
ow is caused by a strong

6s5d interaction and two main pathways have been identi�ed:

1. Partially �lled 6sp molecular orbitals have orbital energies lower or equal to the 5d orbitals

and these orbitals are populated instead of the 5d orbitals causing so a charge transfer from

the 5d orbitals into the 6s band.

2. 6sp molecular orbitals have their energies in the range of the 5d orbitals. The 5d orbitals can

overlap with these 6s orbitals correct symmetry provided. This overlap leads to an electron


ow away from the central atom and the charge transfer depends so on the energy di�erence

of the overlaping orbitals.

The H�uckel calculations are the logical �rst step towards an 1-valence electron ECP for the

passive surface and the bulk atoms. The transformation of Zurita's ECP potential was not

possible due to the special form of ECPs in Gaussian 94. Gaussian 94 demands the ECP in a form

originally proposed by Kahn, Baybutt and Truhlar. These ECPs contain a term Ucore
L , which

describes the principal shape of the ECP, and the other potential functions for the orbitals with

angular quantum numbers l 5 L are created from Ucore
L . Zurita's ECP does not contain Ucore

L but

individual potential functions for every value of l.

The potential �nally used for this work is a combination of both methods: By setting Ucore
L

= 0 we assume, that the 5d electrons together with the other core electrons form a hydrogen like

nucleus with no spatial extension. From the LanL2DZ ECP by Hay and Wadt we extracted new

radial functions for the 6s and 6p electrons in a hydrogen like environment and created an ECP to

reproduce correctly the shape of the radial functions and the orbital energies. Finally, we copied

the 6d ECP from Zurita into the new ECP. The application of this new ECP is strictly limited

to bulk and passive surface atoms in small platinum clusters.

A working surface model needs an active site with 5d orbitals for the bond to the water molecule.

We were able to track these problems down to principal features of the used ECPs and to analyse

their origin again with a H�uckel model. It was possible to link the relative values of the valence

ionistation energy � with Ucore
l and the values of the bond strength integrals � with Ucore

L . The

H�uckel calculations showed, that the observed problems in the interface region between the bulk

and the active surface atoms are mainly caused by di�erent properties of Ucore
L at neighbouring

pltinums.

First calculation on Pt+5 and Pt5 showed, that the properties of the metal cluster depend

strongly on the ECP chosen for the active site. The best results were obtained with LanL1MB

potential. The 6s population (0.48) at the top is close to the value predicted by H�uckel calculations

(0.44) and the electron 
ow observed in the cluster is the same seen in the H�uckel calculations: 6s
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electron density 
ows to the top cumulating to a negative charge for the repulsion of the oxygen

atom, while the 5d6s interaction creates a hole in the 5d orbitals at the top for the free electron

pair of the water molecule.

The cluster with the new ECP was tested as a surface model. Table 9.1 shows a comparison

of both MP2 calculation with di�erent ECPs for the bulk atoms. Changing to a simple model

increases the bond length about 5% and reduces the binding energy about 13%. The new value

for the bonding energy (15.25 kcal/mol) is a very good reproduction of the experimental value,

which is commonly assumed to be close to 15 kcal/mol1. Both calculations suggest, that the energy

to reorientate (EUP and EROT the water molecule is negligible small. The water molecule seems

to rotate freely on the surface. These small energy values also indicate, that the orientational

energy, specially EUP is not controlled by the platinum-oxygen bond, but the interactions between

the hydrogens and passive surface atoms. Both clusters are too small to take these additional

forces into account and it is therefore likely, that with increasing cluster-size (Pt9) become the

orientational energies also larger.

Table 9.1 shows, that the 6s population is
bulk ECP 18 e� 1 e�

ECP at the top LanL2DZ LanL1MB

dPtO �A 2:2973 2:4192


 deg 141:77 135:18

�EBOND kcal/mol 17:23 15:25

�EUP kcal/mol 0:26 0:41

�EROT kcal/mol 0:03 0:015*

qTOP e �0:203 �0:159

6sPop 0:734 0:534

time** min 66:0 3:0

* dPtO = 2.6 �A
** CPU time of a single point calculation

Table 9.1: Ptn�H2O with di�erent ECPs.

in the cluster with the new 1 valence elec-

tron ECP smaller than the cluster with the

LanL2MB ECP at the all platinums. Despite

the lower 6s population at the top the platinum-

oxygen bond is smaller in the cluster with the

new ECP. This exception from the rule can be

explained with the di�erent ECPs at the ac-

tive site. The di�erent ECPs cause di�erent

bonds between the metal atoms and the water

molecule.

So far only one water molecule was attached

to the metal cluster, but our quantum chemi-

cal results on (H2O)n in chapter 3 showed the

dominant role of cooperative forces in the for-

mation of water clusters. The analysis of the platinum-water bond in chapter 6 demonstrated the

similarities between the water-water bond and the platinum-water bond, as both bonds are formed

by the interaction of fully occupied orbitals and similar e�ects are therefore likely.

In chapter 8 we focus on large water clusters on metal surfaces to examine these e�ects. The

calculations on Pt3�(H2O)3 showed, that far reaching cooperative forces control the structure

of water on Pt(111) surfaces. The classical bilayer model from Doering and Madey assumes a

seamless transition between the metal and the ice crystal. This plausible model demands hydrogens

in the very �rst water bilayer to point away from the surface ("
ip up") and distorsions of this

ideal structure are only possible at the edge of the water cluster.

Our calculations on Pt�(H2O)2 and Pt3�(H2O)3 showed, that these distorsions are essential for

the geometry of small water clusters on platinum surfaces. The bonding energy of such misaligned

a water molecule in the second layer is therefore increased by two e�ects:

1. Initial calculations on Pt�(H2O)2 proofed the existence of strong cooperative forces. The

bond between platinum and water is accompanied by a charge transfer from the water

1Our own rough estimate from the TDS spectrum published a Ogasawra is 13.7 kcal/mol
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molecule to the metal. The second water hydrogen bonding to the �rst can either pull

electrons away from the �rst or support the �rst with additional hydrogens. This is the same

mechanism observed before in water trimers, which were stabilized by water molecules which

accept and donate electrons simultaneously.

2. Our calculations on Pt3�(H2O)3 showed, that water molecules with their dipole moment

pointig towards the surface are possible at very low water coverages. Electron density 
ows

from the bridging water molecules in the second part of the bilayer via the direct bonding

water molecules into the metal cluster. This extra charge cumulates underneath the hydro-

gens of the bridging water molecule at a passive surface atom. Strong Coulomb interactions

between the passive surface atom and the hydrogens of the bridging water molecule can turn

the bridging water molecule out of its ideal position.

The bonding energy of a second layer water molecule is stronger than the bonding energy of a

water molecule in a surface-ice cluster, but still weaker than the bonding energy of water directly

attached to the surface. Cooperative e�ects as suggested above can explain so the origin of the

three peaks observed in TDS experiments.

The second simulation of the large water clusters looked at the cyclic water hexamer on a virtual

metal surface. Our calculations agree well on all levels of theory (classical water-water interaction

potential from chapter 4, HF and MP2), that the water molecule direct attached to the virtual

surface has its molecular plane parallel to the Pt(111) surface. During these calculations were the

non-bonding hydrogens of the second layer water molecules forced to stay perpendicular to the

virtual metal surface. The formation of ice-like water clusters on metal surfaces is therefore still

possible with the molecular planes of the �rst layer molecules parallel to the surface.

The systematic variation of the surface lattice constant showed, that the orientation of the

molecular plane of the water molecule depends very much on the size of the surface lattice constant

d1. In the physically important region 2.5 �A 5 d1 5 3.0 �A becomes the water hexamer 
ater with

increasing values of d1 until the height of the ring levels close to zero for values of d1 larger than

2.7 �A. Ideal, ice-like clusters are therefore only possible for small surface lattice constants.

Theoretical calculations and experimental results disagree on the orientation of the water

molecule on platinum. Any value for 
, the angle between the platinum-oxygen bond and the

molecular plane of the water molecule, between 90Æ and 180Æ is possible. Our results from the

chapters 6 and 7 indicate, that the orientational energies of the water molecule are very small and

regardless of the orientation of a single water molecule the water hexamer will orientate the water

molecules in the very �rst layer parallel to the surface.

It is a win-win scenario: Either the water molecule is already parallel to the surface, as extended

calculations by M�uller suggest, or the water ring of the ice structure will orientate the water

molecule parallel to the surface. The water molecule lies always 
at on the surface and this

orientation does not prohibit the epitaxial growth of more ice layers.

The work on the platinum-water interface does not stop with the end of this thesis and several

questions arize from this work, which will be subject of future research subjects.

� The analysis of the water-water interaction potential showed, that the oxygen-oxygen re-

pulsion function VOO(r) is unimportant for the chosen set of dimer geometries. The set of

quantum chemical dimer and trimer calculations, which forms the basis for the development

of the potential functions, will be enlarged to investigate the role of VOO(r) in equilibrium

geometries.
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� The size of the platinum clusters used as surface models will be extended to get a better

estimate of the in
uence of the platinum-hydrogen interaction on the adsorption geometry

and to analyze the charge transfer in the cluster.

� The water cluster on the virtual metal surface will be extended to ensure, that the parallel

water molecules in the �rst layer are not an artefact of the limited cluster size.

� The research on the cyclic water hexamer showed, the strong cooperative forces can be

expected in the water hexamer as part of a water bilayer on a metal surface. In the next step

we are going to analyze these forces as a function of the surface lattice constant d1.

� If possible, we would like to embed quantum chemical calculations on cooperative e�ects in

the water hexamer into a force �eld to simulate the metal surface. These calculations will

hopefully give a �rst estimate on the in
uence of the metal cluster on the many-body forces

in the water cluster.
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Chapter 11

Appendix

11.1 Abbriviations

6-311++G** Pople basis set1, wich uses a primitive STO-6G basis for the core orbitals

and a triple-zeta-basis for the valence space (3, 1, 1 gaussian function used).

The '**' indicates polarisation functions on the heavy and hydrogen atoms,

while the '++' indicates di�use functions on the heavy and hydrogen atoms.

aug augmented

aug ccp VDZ augmented correlation consistend Valence polarisation Double Zeta

aug ccp VQZ augmented correlation consistend Valence polarisation Quadruple Zeta

BF water-water interaction potential by Bernal and Fowler

BFP Bernal Fowler Pauling ice rules

BNS water-water interaction potential by Ben-Naim and Stillinger

BSSE Basis Set Superposition Error

cc correlation consistend

ccp correlation consistend polarisation

CASSCF Complete Active Space Self Consistent Field calculation

CASMP2 Complete Active Space self consistent �eld M�ller Plesset 2 calculation

CFMS Central Force Model for water-water interaction by Stillinger and David

CI Con�guration Interaction

CISD Gaussian 94 keyword for Con�gurartion Interaction calculations with Single

and Double excitations

CNDO Complete Neglect of Di�erential Overlap

1split valence basis sets, which use the same radial functions for s- and p-orbitals [235]
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CP Counter Poise method

CT Charge Transfer

D Debye

DZ Double Zeta basis set

DZP Double Zeta + Polarisation basis set

ECP E�ective Core Potential

EHT Extended H�uckel Theory

ES ElectroStatic

EX Exchange repulsion

FCP Full Counter Poise method

G94 Gaussian 94

H Hartree

HF Hartree Fock

HFD Dirac Hartree Fock

HFR Relativistic Hartree Fock

HMO H�uckel Molecular Orbital

HO High Order coupling

HOMO Highest Occupied Molecular Orbital

LanL1DZ 10 valence electrons ECP from Hay and Wadt, double zeta basis

LanL1MB 10 valence electrons ECP from Hay and Wadt, primitive basis

LanL2DZ 18 valence electrons ECP from Hay and Wadt, double zeta basis

LanL2MB 18 valence electrons ECP from Hay and Wadt, primitive basis

LCAO Linear Combination of Atomic Orbitals

LEED Low Energy Electron Di�raction

LUMO Lowest Unoccupied Molecular Orbital

MBPT Many Body Perturbation Theory

MC Monte Carlo

MCSCF Multi Con�guration Self Consistent Field calculation

MD Molecular Dynamics

ML Mono Layer
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MO Molecular Orbital

MPx M�ller Plesset calculation of the order x=2, 3, 4

NCC water-water interaction potential by Niesar, Corongiu and Clementi

NRECP Non Relativistic E�ective Core Potential

PL Polarisation

potential N water-water interaction potential developed within this work

QLL quasi liquid layer

rms root mean square

RECP Relativistic E�ective Core Potential

RHF Restricted Hartree Fock

RMPx Restricted Hartree Fock calculation followed by M�ller Plesset calculation of

the order x

ROHF Restricted Open Shell Hartree Fock

ROMP2 Restricted Open Shell Hartree Fock calculation followed by a second order

M�ller Plesset calculation

ROW water-water interaction potential by Rowlinson

SALC Symmetry Adapted Linear Combination

SAPT Symmetry Adapted Perturbation Theory

SCF Self Consistent Field calculation

SD-CI Con�guration Interaction calculation with Single and Double excitations

SO Spin Orbit

SOMO Single Occupied Molecular Orbital

SPC Simple Point Charge model for the water-water interaction

SPC/E Extended Simple Point Charge model for the water-water interaction

STO Slater Type Orbital

STO-nG Slater Type Orbital described with n gaussian functions

ST2 revised water-water interaction potential by Stillinger and Rahman

TIPnP Transferable Intermolecular Potential for water, n indicates the level of

parametrisation

TIPSn Transferable Intermolecular Potential functionS for water, n indicates the

level of revision
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TDS Thermal Desorption Spectroscopy

TZVP Triple Zeta Valence Polarisation basis set

UHF Unrestricted Hartree Fock

UMP2 UHF calculation followed by a MP2 calculation

UHV Ultra High Vacuum

VCP Virtual Counter Poise method

VSEPR Valence Shell Electron Pair Rrepulsion

11.2 Basis set and ECPS used with in this work

All data were directly taken from the GAMESS UK printouts. The DZP basis set for water in the

Gaussian 94 calculations was manually de�ned in the G94-input �le.

atom type exponent coeÆcient

H s 19:2384 0:032828

2:89872 0:231204

0:653472 0:817226

s 0:163064 1:0

p 1:0 1:0

O s 7816:54 0:002031

1175:82 0:015436

273:188 0:073771

81:1696 0:247606

27:1836 0:611832

3:4136 0:241205

s 9:8322 1:0

s 0:9398 1:0

s 0:2846 1:0

p 35:1832 0:01958

7:904 0:124189

2:3051 0:394727

0:7171 0:627375

p 0:2137 1:0

d 0:85 1:23849

Table 11.1: DZP basis set for H2O.

atom type exponent coeÆcient

H s 33:64 0:025374

5:058 0:189684

1:147 0:852933

s 0:3211 1:0

s 0:1013 1:0

p 1:0 1:0

O s 18050:0 0:000757

2660:0 0:006066

585:7 0:032782

160:9 0:132609

51:16 0:396839

17:9 0:542572

s 17:9 0:262490

6:639 0:769828

s 2:077 1:0

s 0:7736 1:0

s 0:2558 1:0

p 49:83 0:016358

11:49 0:106453

3:6090 0:349302

1:321 0:657183

p 1:0 1:0

p 0:1651 1:0

d 1:28 1:0

Table 11.2: TZVP basis set for H2O.
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type exponent coeÆcient

S :2547D+01 �:1473918D+01

:1614D+01 :1911572D+01

:5167D+00 :3922319D+00

S :2547D+01 :1438817D+01

:1614D+01 �:2091182D+01

:5167D+00 �:1092132D+01

:2651D+00 :1342660D+01

S :5800D�01 :1000000D+01

P :2911D+01 �:5247438D+00

:1836D+01 :9671884D+00

:5982D+00 :5438632D+00

P :6048D+00 �:1061438D+00

:9960D�01 :1038310D+01

P :2900D�01 :1000000D+01

D :1243D+01 :5598150D+00

:4271D+00 :5511090D+00

D :1370D+00 :1000000D+01

Table 11.3: LanL2DZ Pt basis set.

type exponent coeÆcient

S :3755D+00 �:11780900D+01

:2651D+00 :12683001D+01

:5800D�01 :78955790D+00

P :6048D+00 �:44732700D�01

:9960D�01 :43758020D+00

:2900D�01 :67304240D+00

D :1243D+01 :50381630D+00

:4271D+00 :49790020D+00

:1370D+00 :19761290D+00

Table 11.4: LanL1MB Pt basis set.

l n � c l n � c

G 1 728:9394056 �0:1619268 D-G 0 249:5650763 2:9343678

2 320:6567800 �1320:2873852 1 126:6678585 59:3306571

2 52:8680174 �298:3178135 2 63:1430586 452:4445194

2 12:0280128 �87:5837065 2 17:9059470 210:4769479

2 3:5238913 �8:1493274 2 4:2239373 58:6254112

S-G 0 409:4437358 2:7334218 F-G 0 121:8158799 3:9534253

1 274:5419231 59:7024329 1 60:8757030 53:8555182

2 127:5658570 891:4589550 2 31:4767147 247:4305133

2 32:9036631 368:4467656 2 9:8811751 127:8187976

2 5:0593880 238:0263090 2 2:7319874 15:3772046

2 4:1506556 �107:0556454

P-G 0 466:1728892 1:8878568

1 120:7888259 76:0138629

2 36:4118791 343:5511116

2 5:6985408 119:4911786

Table 11.5: LanL2DZ Pt ECP.
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l n � c l n � c

G 0 415:2990463 �0:1619268 D-G 0 92:3112664 2:9343678

1 117:9901046 �44:1056601 1 39:3772891 52:8691101

2 41:2716533 �225:8208289 2 14:6918292 170:6411111

2 11:8572771 �99:3462061 2 3:0234056 99:8353949

2 3:5452121 �20:9272244 2 2:5666981 �54:3170702

2 1:2031453 �2:7509383 2 0:4019102 �0:2872878

S-G 0 118:3123634 2:7334218 F-G 0 1:6524570 3:9534253

1 40:2269849 76:8788294 1 23:2155161 44:9889323

2 13:6420645 208:3220582 2 6:7336889 85:3111945

2 3:9884442 60:0312229 2 1:4985371 28:7619037

2 0:9246716 25:9812187 2 0:3567339 6:8855706

2 0:7260083 �8:6418215 2 0:2699638 �2:6742821

P-G 0 111:7931938 1:8878568

1 36:4526949 57:1033025

2 11:9271531 150:6780890

2 3:2553879 37:2985110

2 0:7783811 12:3081605

Table 11.6: LanL1MB Pt ECP.

type exponent coeÆcient

S 0:148323D+01 0:22934D+00

0:174646D+01 �0:90460D�01

0:756591D+00 �0:52713D+00

0:249017D+00 0:50171D+00

0:580000D�01 0:79308D+00

P 0:582569D+00 0:22546D+00

0:879439D+00 0:23282D+00

0:724914D+00 �0:50879D+00

0:301446D�01 0:68090D+00

0:106229D+00 0:42878D+00

D 0:574860D�01 0:42750D�01

0:317090D�01 0:21724D+00

0:139180D�01 0:55726D+00

0:613100D�02 0:31975D+00

Table 11.7: New basis set for Pt.

l n � c

F 3 0:4200000 0:00000000

S-F 2 1:5630487 12:72241997

3 0:4053396 �0:78658492

P-F 2 0:7830368 9:14667910

3 0:4365853 �1:41522900

D-F 4 0:2637440 0:13266900

Table 11.8: New ECP for Pt.
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11.3 Selected Water Monomer Data

�le h2o 1.out h2o 13.out h2o 16.out h2o 3.out h2o 14.out

method RHF RHF RHF RHF RMP2

basis set STO-3G DZ DZP TZVP DZ

^HOH [Æ] 100:05 112:61 106:71 107:12 110:68

dOH [�A] 0:9895 0:9509 0:9440 0:9407 0:9782

dipol. [D] 1:7088 2:5340 2:1869 2:2477 2:5167

qH [e] +0:165 +0:40 +0:34 +0:305 +0:38

qO [e] �0:33 �0:80 �0:68 �0:61 �0:76

EELEC [H] �83:8712 �85:2490 �85:3657 �85:4060 �84:9938

ENUC [H] +8:9053 +9:2380 +9:3188 +9:3500 +8:9842

ERHF [H] �74:9659 �76:0110 �76:0469 �76:0560 �76:0095

EMP2 [H] �0:1397

ETOTAL [H] �74:9659 �76:0110 �76:0469 �76:0560 �76:1492

�le h2o 17.out h2o 9.out h2o 15.out h2o 18.out h2o 12.out

method RMP2 RMP2 RMP3 RMP3 RMP3

basis set DZP TZVP DZ DZP TZVP

^HOH [Æ] 104:71 104:84 110:79 104:89 105:21

dOH [�A] 0:9621 0:9576 0:9747 0:9590 0:9532

dipol. [D] 2:1653 2:2354 2:5041 2:1512 2:2085

qO [e] �0:66 �0:58 �0:75 �0:65 �0:57

qH [e] +0:33 +0:29 +0:375 +0:325 +0:285

EELEC [H] �85:1935 �85:2457 �85:0263 �85:2228 �85:2872

ENUC [H] +9:1474 +9:1904 +9:0165 +9:1765 +9:2316

ERHF [H] �76:0461 �76:0553 �76:0099 �76:0463 �76:0556

EMP2 [H] �0:2110 �0:2356 �0:1394 �0:2107 �0:2353

EMP3 [H] �0:0013 �0:0063 �0:0036

ETOTAL [H] �76:2571 �76:2910 �76:1506 �76:2634 �76:2945

Table 11.9: GAMESS UK results for the water monomer.

�le experiment Kim di�erence h2o 27 h2o 28

method RMP2 RHF RMP2

basis set DZPb 6-311++G** 3-311++G**

^HOH [Æ] 104:5 104:7 0:01 106:21 104:05

dOH [�A] 0:957 0:963 �0:0009 0:9407 0:9588

dipol. [D] 1:85 2:161 0:0043 1:9677 1:8988

qO [e] �0:66a �0:65c �0:01 �0:62 �0:57
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�le experiment Kim di�erence h2o 27 h2o 28

qH [e] +0:33a +0:32c +0:01 +0:31 +0:29

EELEC [H] �85:4126 �85:2399

ENUC [H] +9:3522 +9:1802

ERHF [H] �76:0604 �76:0596

EMP2 [H] �0:3054

ETOTAL [H] �76:4802 �76:25484 �0:00859 �76:0604 �76:3650

di�erence di�erence between GAMESS UK results and Kim's.

Kim Kim et al., J. Chem. Phys. 97 (1992) 6648

a Charges calculated from the eperimental dipolmoment

(model of pointcharges)

b Kim does not use a kartesian basis set. So he has one basis

function less than GAMESS UK.

c Kim did not mention the method of calculation.

Table 11.10: GAMESS UK results for water in comparrison with

other works.

11.4 Results from Single Point Calculations for the Water

Dimer

�le dim 2 dim 3 dim 4 dim 5 dim 6

method RHF RHF RHF RHF RMP2

basis set STO-3G DZ DZP TZVP DZ

L1 [�A] 0:9880 0:9497 0:9432 0:9398 0:9762

L2 [�A] 0:9895 0:9587 0:9484 0:9453 0:9868

L3 [�A] 1:7517 1:8773 2:0350 2:0170 1:8473

L4 [�A] 0:9870 0:9512 0:9447 0:9412 0:9777

W1 [deg] 100:39 112:84 106:49 106:92 111:22

W2 [deg] 110:98 120:76 115:41 119:27 120:69

D1 [deg] 124:33 104:19 117:20 112:40 106:60

^546 [deg] 100:89 112:84 106:9 107:50 110:98

dOO [�A] 2:7412 2:8360 2:9834 2:9624 2:8340

� [deg] 0:00 0:00 0:00 0:00 0:00

� [deg] 55:79 22:39 43:9 34:21 25:71

qO1 [e] �0:38 �0:86 �0:71 �0:64 �0:81

qH2 [e] +0:14 +0:38 +0:33 +0:30 +0:36

qH3 [e] +0:20 +0:47 +0:37 +0:34 +0:43

qO4 [e] �0:33 �0:84 �0:69 �0:64 �0:79

qH5=6 [e] +0:19 +0:43 +0:35 +0:33 +0:40

charge trans. [e] 0:045 0:010 0:015 0:007 0:025

dipole [D] 2:8328 4:4168 3:3515 3:6466 4:4462
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�le dim 2 dim 3 dim 4 dim 5 dim 6

EELEC [H] �187:2964 �187:1143 �188:5014 �188:6663 �188:6477

ENUC [H] +37:3552 +37:0801 +36:3997 +36:5460 +36:6163

ERHF [H] �149:9412 �152:0342 �152:1018 �152:1203 �152:0313

EMP2 [H] �0:2808

ETOTAL [H] �149:9412 �152:0342 �152:1018 �152:1203 �152:3121

�le dim 7 dim 8 dim 9 dim 10 dim 11

method RMP2 RMP2 RMP3 RMP3 RMP3

basis set DZP TZVP DZ DZP TZVP

L1 [�A] 0:9613 0:9565 0:9730 0:9584 0:9527

L2 [�A] 0:9686 0:9638 0:9812 0:9638 0:9584

L3 [�A] 1:9452 1:9197 1:8738 1:9717 1:9364

L4 [�A] 0:9635 0:9583 0:9741 0:9601 0:9541

W1 [deg] 104:38 104:87 111:23 104:89 105:23

W2 [deg] 111:66 118:56 120:92 114:07 119:12

W3 [deg] 90:00 90:00 90:00 90:00 90:00

D1 [deg] 121:42 115:00 105:94 119:43 114:11

^546 [deg] 104:95 105:51 111:15 105:34 105:76

dOO [�A] 2:9138 2:8836 2:8550 2:9355 2:8948

� [deg] 0:00 0:00 0:00 0:00 0:00

� [deg] 52:71 37:82 24:63 47:73 37:26

qO1 [e] �0:70 �0:61 �0:80 �0:69 �0:61

qH2 [e] +0:32 +0:28 +0:35 +0:32 +0:28

qH3 [e] +0:35 +0:32 +0:43 +0:36 +0:32

qO4 [e] �0:66 �0:61 �0:78 �0:67 �0:61

qH5=6 [e] +0:35 +0:31 +0:40 +0:34 +0:31

charge trans. [e] 0:028 0:014 0:020 0:021 0:011

dipole [D] 3:2353 3:6552 4:4072 3:3082 3:6427

EELEC [H] �188:6435 �188:8640 �188:5752 �188:5366 �188:8626

ENUC [H] +36:5336 +36:7452 +36:5431 +36:4360 +36:7433

ERHF [H] �152:1000 �152:1187 �152:0321 �152:1006 �152:1193

EMP2 [H] �0:4243 �0:4732 �0:2799 �0:4236 �0:4725

EMP3 [H] �0:0021 �0:0122 �0:0067

ETOTAL [H] �152:5243 �152:5919 �152:3141 �152:5364 �152:5985

Table 11.11: Dimer with a straight hydrogen bond (W3 = 90Æ).
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�le dim 16 dim 19 dim 17 dim 22 dim 21

method RMP3 RMP2 RHF RHF RHF

basis set DZP TZVP 6-311++G** DZP TZVP

L1 [�A] 0:9584 0:9564 0:9400 0:9432 0:9398

L2 [�A] 0:9640 0:9637 0:9447 0:9485 0:9452

L3 [�A] 1:9685 1:9194 2:1012 2:0345 2:0179

L4 [�A] 0:9600 0:9582 0:9414 0:9447 0:9412

W1 [deg] 105:02 104:96 106:27 106:53 106:88

W2 [deg] 114:00 118:68 113:88 112:88 119:69

W3 [deg] 93:85 89:90 94:53 94:66 89:02

D1 [deg] 119:48 114:84 118:87 119:26 111:8

^546 [deg] 105:36 105:53 106:40 106:98 107:53

dOO [�A] 2:9311 2:8832 3:0439 2:9809 2:9631

� [deg] 2:59 0:07 3:12 3:18 0:67

� [deg] 49:13 37:49 48:88 50:67 32:77

qO1 [e] �0:69 �0:61 �0:65 �0:71 �0:64

qH2 [e] +0:32 +0:28 +0:30 +0:33 +0:30

qH3 [e] +0:36 +0:32 +0:38 +0:37 +0:34

qO4 [e] �0:67 �0:61 �0:71 �0:69 �0:64

qH5=6 [e] +0:34 +0:32 +0:34 +0:35 +0:33

charge trans. [e] 0:021 0:015 0:028 0:016 0:006

dipole [D] 3:1879 3:6634 2:8246 3:0538 3:7031

EELEC [H] �188:5545 �188:8657 �188:2380 �188:5305 �188:6608

ENUC [H] +36:4518 +36:7470 +36:1120 +36:4287 +36:5405

ERHF [H] �152:1006 �152:1187 �152:1270 �152:1018 �152:1203

EMP2 [H] �0:4236 �0:4732

EMP3 [H] �0:0122

ETOTAL [H] �152:5364 �152:5919 �152:1270 �152:1018 �152:1203

Table 11.12: Dimers with a bended hydrogen bond.

�le dim 28 dim 29 dim 30 dim 31 dim 32

method RHF RMP2 RMP3 RHF RMP2

basis set DZP DZP DZP TZVP TZVP

rOH [�A] 0:9572 0:9572 0:9572 0:9572 0:9572

^HOH [deg] 104:52 104:52 104:52 104:52 104:52

dOO [�A] 2:9684 2:9116 2:9354 2:9706 2:8844

W3 [deg] 92:95 95:64 94:87 88:04 89:40

L2(O4H3) [�A] 2:0301 1:9575 1:9805 2:0137 1:9273

� [deg] 2:01 3:79 3:28 1:32 �0:40

� [deg] 47:8 55:94 54:57 35:96 38:04

qO1 [e] �0:71 �0:69 �0:69 �0:63 �0:61
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�le dim 28 dim 29 dim 30 dim 31 dim 32

qH2 [e] +0:33 +0:32 +0:32 +0:30 +0:28

qH3 [e] +0:37 +0:35 +0:35 +0:34 +0:32

qO4 [e] �0:69 �0:66 �0:66 �0:64 �0:61

qH5=6 [e] +0:36 +0:35 +0:34 +0:33 +0:31

charge trans. [e] 0:016 0:028 0:022 0:007 0:014

dipole [D] 3:2571 2:9265 3:0018 3:7883 3:6670

EELEC [H] �188:2742 �188:7865 �188:6169 �188:3447 �188:8928

ENUC [H] 36:1733 36:6857 36:5160 36:2257 36:7739

ERHF [H] �152:1010 �152:1008 �152:1009 �152:1190 �152:1188

EMP2 [H] �0:4233 �0:4232 �0:4730

EMP3 [H] �0:0122

ETOTAL [H] �152:1010 �152:5241 �152:5363 �152:1190 �152:5918

Table 11.13: Dimer with a �xed water geometry (rOH = 0.9572 �A,

^HOH = 104.52Æ).

11.5 In
uence of the BSSE on the Monomer's Geometry

�le h2o 18 h2o 30 h2o 33 h2o 31

method experiment RMP3 RMP3 RMP3 RMP3

basis DZP DZP DZP DZP

geometry optimized rigid optimized rigid

kink no no yes

type monomer monomer donor donor donor

matrixb MP3 SCF MP3 SCF

^HOH [deg] 104:5 104:89 104:89 104:92 104:89

dOHn [�A] 0:957 0:9590 0:9590 0:9591 0:9590

dOHb [�A] 0:957 0:9590 0:9590 0:9588 0:9590

dipole [D] 1:85 2:1512 2:2282 2:1436 2:2282

qO [e] �0:66a �0:649 �0:678 �0:648 �0:678

qHn [e] +0:33a +0:325 +0:338 +0:323 +0:338

qHb [e] +0:33a +0:325 +0:343 +0:328 +0:342

EELEC [H] �85:2228 �85:2230 �85:2234 �85:2230

ENUC [H] 9:1765 9:1765 9:1769 9:1765

ERHF [H] �76:0463 �76:0465 �76:0465 �76:0465

EMP2 [H] �0:2107 �0:2110 �0:2110 �0:2110
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�le h2o 18 h2o 30 h2o 33 h2o 31

EMP3 [H] �0:0063 �0:0063 �0:0063 �0:0063

ETOTAL [H] �76:2634 �76:2639 �76:2639 �76:2638

a calculated from the experimetal dipolmoment
b density, on which the calculation of the dipolmoment bases

Table 11.14: In
uence of the BSSE on the monomer's geometry

(I).

�le h2o 34 h2o 36 h2o 39 h2o 37 h2o 40

method RMP3 RMP3 RMP3 RMP3 RMP3

basis DZP DZP DZP DZP DZP

geometry optimized rigid optimized rigid optimized

kink yes no no yes yes

type donor acceptor acceptor acceptor acceptor

matrixb MP3 SCF MP3 SCF MP3

^HOH [deg] 104:92 104:89 104:92 104:89 104:92

dOHn [�A] 0:9591 0:9590 0:9592 0:9590 0:9592

dOHb [�A] 0:9589 0:9590 0:9592 0:9590 0:9592

dipole [D] 2:1453 2:2462 2:1729 2:2460 2:1727

qO [e] �0:6481 �0:674 �0:641 �0:674 �0:641

qHn [e] +0:323 +0:340 +0:325 +0:340 +0:325

qHb [e] +0:327 +0:340 +0:325 +0:340 +0:325

EELEC [H] �85:2233 �85:2233 �85:2216 �85:2233 �85:2216

ENUC [H] 9:1768 9:1765 9:1748 9:1765 9:1748

ERHF [H] �76:0465 �76:0468 �76:0468 �76:0468 �76:0468

EMP2 [H] �0:2110 �0:2117 �0:2117 �0:2117 �0:2117

EMP3 [H] �0:0063 �0:0062 �0:0063 �0:0062 �0:0062

ETOTAL [H] �76:2638 �76:2647 �76:2647 �76:2648 �76:2648

b density, on which the calculation of the dipolmoment bases

Table 11.15: In
uence of the BSSE on the monomer's geometry (II).

�le h2o 9 h2o 32 h2o 35 h2o 38 h2o 41

method RMP2 RMP2 RMP2 RMP2 RMP2

basis TZVP TZVP TZVP TZVP TZVP

geometry optimized rigid optimized rigid optimized

kink no no no no

type monomer donor donor acceptor acceptor

matrixb MP2 SCF MP2 SCF MP2

^HOH [deg] 104:84 104:84 104:93 104:84 104:91
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�le h2o 9 h2o 32 h2o 35 h2o 38 h2o 41

dOHn [�A] 0:9576 0:9576 0:9576 0:9576 0:9577

dOHb [�A] 0:9576 0:9576 0:9573 0:9576 0:9577

dipole [D] 2:2354 2:2913 2:2181 2:2688 2:2044

qO [e] �0:584 �0:600 �0:573 �0:618 �0:589

qHn [e] +0:292 +0:299 +0:292 +0:307 +0:295

qHb [e] +0:292 +0:304 +0:286 +0:307 +0:295

EELEC [H] �85:2457 �85:2460 �85:2475 �85:2462 �85:2455

ENUC [H] 9:1904 9:1904 9:1919 9:1904 9:1896

ERHF [H] �76:0553 �76:0556 �76:0556 �76:0558 �76:0558

EMP2 [H] �0:2356 �0:2360 �0:2360 �0:2366 �0:2366

ETOTAL [H] �76:2910 �76:2916 �76:2916 �76:2924 �76:2925

b density, on which the calculation of the dipolmoment bases

Table 11.16: In
uence of the BSSE on the monomer's geometry

(III).

�le h2o 17 h2o 42 h2o 43 h2o 44 h2o 45

method RMP2 RMP2 RMP2 RMP2 RMP2

basis DZP DZP DZP DZP DZP

geometry optimized rigid optimized rigid optimized

kink yes yes yes yes

Typ monomer donor donor acceptor acceptor

matrixb MP2 SCF MP2 SCF MP2

^HOH [deg] 104:71 104:71 104:71 104:71 104:71

dOHn [�A] 0:9621 0:9621 0:9621 0:9621 0:9621

dOHb [�A] 0:9621 0:9621 0:9621 0:9621 0:9621

dipole [D] 2:1653 2:2576 2:1576 2:1919 2:1933

qO [e] �0:66 �0:679 �0:657 �0:673 �0:645

qHn [e] +0:33 +0:338 +0:328 +0:340 +0:329

qHb [e] +0:33 +0:342 +0:332 +0:340 +0:329

EELEC [H] �85:1935 �85:1937 �85:1937 �85:1940 �85:1940

ENUC [H] 9:1474 9:1474 9:1474 9:1474 9:1474

ERHF [H] �76:0461 �76:0463 �76:0463 �76:0467 �76:0467

EMP2 [H] �0:2110 �0:2113 �0:2113 �0:2120 �0:2120

ETOTAL [H] �76:2571 �76:2576 �76:2576 �76:2586 �76:2586

b density, on which the calculation of the dipolmoment bases

Table 11.17: In
uence of the BSSE on the monomer's geometry

(IV).
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11.6 Changing W3 and Bending the Hydrogen Bond

W3 was used for the geometry optimisations of the water dimer to avoid problems with the Z-

matrix de�nition (linear bonds, de�nition of angles). W3 is a badly chosen variable for analytic

purposes, since the oxygen-oxygen distance dOO and bond angle � of the hydrogen bond (�gure

11.1) change simultaneously.

H5

H6

X
H2

H3 O
4

O1

W390°

X

H5 H6

Figure 11.1: Variables of the water dimer.
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Figure 11.2: Bending of W3.

11.7 Energies of the Morokuma Energy Decompostion for

the Water Dimer

The following abbriviations are going to be used:

ES : electrostatic energy PL : polarisation energy

EX : exchange repulsion energy HO : high order coupling energy

CT : charge transfer energy �E : total ineraction energy

dOO [�A] ES EX CT PL HO �E

2:2570 �35:40 70:01 �23:33 �10:89 14:82 15:21

2:3569 �28:30 48:79 �14:00 �6:05 6:93 7:37

2:4567 �22:72 33:92 �8:56 �3:57 3:17 2:23
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dOO [�A] ES EX CT PL HO �E

2:5564 �18:36 23:51 �5:40 �2:25 1:43 �1:06

2:6560 �14:93 16:24 �3:54 �1:51 0:65 �3:09

2:7054 �13:53 13:53 �2:94 �1:26 0:44 �3:76

2:7552 �12:26 11:21 �2:46 �1:07 0:31 �4:27

2:8049 �11:15 9:32 �2:09 �0:91 0:21 �4:62

2:8549 �10:13 7:69 �1:79 �0:79 0:15 �4:87

2:9049 �9:24 6:33 �1:54 �0:69 0:12 �5:02

2:9354 �8:74 5:62 �1:42 �0:64 0:10 �5:08

2:9549 �8:45 5:21 �1:35 �0:61 0:09 �5:10

3:0049 �7:75 4:28 �1:19 �0:54 0:07 �5:11

3:0548 �7:13 3:52 �1:06 �0:48 0:06 �5:08

3:1048 �6:57 2:89 �0:95 �0:43 0:05 �5:01

3:1548 �6:08 2:37 �0:86 �0:38 0:05 �4:91

3:2048 �5:64 1:94 �0:78 �0:34 0:04 �4:79

3:2569 �5:24 1:60 �0:73 �0:30 0:03 �4:64

3:3569 �4:57 1:07 �0:62 �0:25 0:03 �4:34

3:4569 �4:02 0:71 �0:54 �0:20 0:02 �4:03

3:5569 �3:57 0:47 �0:47 �0:17 0:02 �3:71

3:7571 �2:88 0:20 �0:35 �0:12 0:01 �3:14

3:9571 �2:37 0:09 �0:28 �0:08 0:00 �2:64

4:2071 �1:89 0:03 �0:20 �0:05 0:00 �2:12

4:4546 �1:53 0:01 �0:14 �0:03 0:00 �1:69

4:7046 �1:26 0:00 �0:08 �0:02 0:00 �1:36

4:9548 �1:05 0:00 �0:04 �0:02 0:00 �1:11

5:2044 �0:89 0:00 �0:02 �0:01 0:00 �0:92

5:4544 �0:76 0:00 �0:01 �0:01 0:00 �0:77

5:7044 �0:65 0:00 0:00 �0:01 0:00 �0:66

5:9543 �0:56 0:00 0:00 0:00 0:00 �0:57

6:4543 �0:43 0:00 0:00 0:00 0:00 �0:43

6:9543 �0:34 0:00 0:00 0:00 0:00 �0:34

7:4542 �0:27 0:00 0:00 0:00 0:00 �0:27

7:9542 �0:22 0:00 0:00 0:00 0:00 �0:22

8:9542 �0:15 0:00 0:00 0:00 0:00 �0:15

9:9541 �0:11 0:00 0:00 0:00 0:00 �0:11

10:9541 �0:08 0:00 0:00 0:00 0:00 �0:08

Table 11.18: Morokuma energy decomposition (dOO) - all ener-

gies in kcal/mol.
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(� + 52:26Æ) ES EX CT PL HO �E

40:54 �13:056 8:785 �2:085 �0:883 0:029 �7:210

41:54 �13:192 8:861 �2:114 �0:900 0:035 �7:310

42:54 �13:320 8:929 �2:142 �0:915 0:042 �7:406

43:54 �13:438 8:989 �2:167 �0:930 0:050 �7:496

44:54 �13:545 9:039 �2:190 �0:943 0:058 �7:582

45:54 �13:642 9:081 �2:210 �0:956 0:066 �7:661

46:54 �13:727 9:114 �2:228 �0:968 0:074 �7:735

47:54 �13:801 9:136 �2:243 �0:978 0:083 �7:803

48:54 �13:863 9:149 �2:256 �0:988 0:092 �7:864

49:54 �13:912 9:152 �2:265 �0:996 0:102 �7:919

50:54 �13:948 9:145 �2:271 �1:002 0:111 �7:966

51:54 �13:972 9:128 �2:275 �1:008 0:121 �8:006

52:54 �13:982 9:101 �2:275 �1:012 0:130 �8:038

53:54 �13:979 9:064 �2:272 �1:015 0:140 �8:063

54:54 �13:963 9:016 �2:267 �1:016 0:149 �8:080

55:54 �13:933 8:960 �2:258 �1:016 0:158 �8:090

56:54 �13:890 8:893 �2:246 �1:015 0:167 �8:091

57:54 �13:834 8:817 �2:231 �1:012 0:175 �8:085

58:54 �13:765 8:733 �2:214 �1:008 0:183 �8:071

59:54 �13:683 8:639 �2:193 �1:003 0:191 �8:049

60:54 �13:588 8:538 �2:170 �0:996 0:198 �8:019

61:54 �13:481 8:428 �2:144 �0:989 0:204 �7:982

62:54 �13:362 8:311 �2:116 �0:980 0:210 �7:937

63:54 �13:231 8:187 �2:086 �0:969 0:215 �7:884

64:54 �13:089 8:056 �2:054 �0:958 0:220 �7:825

65:54 �12:936 7:920 �2:020 �0:946 0:224 �7:758

66:54 �12:773 7:778 �1:983 �0:933 0:227 �7:685

67:54 �12:600 7:631 �1:946 �0:919 0:229 �7:604

68:54 �12:418 7:479 �1:907 �0:904 0:231 �7:518

69:54 �12:227 7:324 �1:866 �0:888 0:232 �7:425

70:54 �12:027 7:165 �1:825 �0:872 0:233 �7:326

Table 11.19: Morokuma energy decomposition (�) - all energies

in 10�3 Hartree.

(180Æ � �) ES EX CT PL HO �E

110:43 �13:810 9:356 �2:463 �0:950 0:107 �7:760

111:43 �13:836 9:332 �2:449 �0:955 0:110 �7:798

112:43 �13:859 9:307 �2:435 �0:960 0:113 �7:834

113:43 �13:879 9:282 �2:421 �0:965 0:117 �7:867

114:43 �13:897 9:256 �2:408 �0:970 0:120 �7:898
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(180Æ � �) ES EX CT PL HO �E

115:43 �13:912 9:231 �2:394 �0:975 0:123 �7:926

116:43 �13:924 9:205 �2:380 �0:979 0:127 �7:952

117:43 �13:934 9:179 �2:367 �0:984 0:130 �7:976

118:43 �13:942 9:152 �2:353 �0:988 0:134 �7:997

119:43 �13:947 9:126 �2:339 �0:992 0:137 �8:016

120:43 �13:950 9:099 �2:326 �0:997 0:140 �8:034

121:43 �13:951 9:071 �2:312 �1:001 0:144 �8:049

122:43 �13:950 9:044 �2:298 �1:005 0:148 �8:062

123:43 �13:947 9:016 �2:285 �1:009 0:151 �8:073

124:43 �13:941 8:988 �2:271 �1:013 0:155 �8:082

125:43 �13:934 8:960 �2:258 �1:016 0:158 �8:090

126:43 �13:925 8:932 �2:245 �1:020 0:162 �8:096

127:43 �13:914 8:904 �2:231 �1:024 0:165 �8:100

128:43 �13:901 8:875 �2:218 �1:027 0:169 �8:102

129:43 �13:887 8:847 �2:205 �1:030 0:172 �8:103

130:43 �13:871 8:818 �2:192 �1:034 0:175 �8:103

131:43 �13:854 8:790 �2:179 �1:037 0:179 �8:101

132:43 �13:835 8:761 �2:166 �1:040 0:182 �8:098

133:43 �13:815 8:732 �2:153 �1:043 0:185 �8:094

134:43 �13:794 8:703 �2:141 �1:046 0:189 �8:088

135:43 �13:771 8:675 �2:128 �1:049 0:192 �8:081

136:43 �13:748 8:646 �2:116 �1:051 0:195 �8:074

137:43 �13:723 8:618 �2:104 �1:054 0:198 �8:065

138:43 �13:698 8:590 �2:092 �1:056 0:201 �8:055

139:43 �13:671 8:562 �2:080 �1:059 0:204 �8:044

140:43 �13:644 8:534 �2:068 �1:061 0:207 �8:032

Table 11.20: Morokuma energy decomposition (�) - all energies

in 10�3 Hartree.

11.8 Di�erent water-water interaction potentials from the

literature

This section contains the plots of di�erent classical water-water interaction potentials from the lit-

erature in comparison with the quantum chemical (DZP, MP3, �xed monomer geometry) calculated

curves.
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Figure 11.3: Test of the BNS water-water interaction potential.
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Figure 11.4: Test of the ST2 water-water interaction potential.
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Figure 11.5: Test of the Rowlinson water-water interaction potential.
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Figure 11.6: Test of the Dernal and Fowler water-water interaction potential.

333



2 4 6 8 10 12
-8

-6

-4

-2

0

2

4

6

8

not corrected
BSSE corrected

TIPS2

∆E
 [k

ca
l/m

ol
]

dOO [Å]

(a) Dimerisation

2 4 6 8 10
-5

0

5

10

15

20

25

30

35

not corrected

BSSE corrected

TIPS2

∆E
 [k

ca
l/m

ol
]

dOO [Å]

(b) OO repulsion

2 4 6 8 10

0

20

40

60

not corrected

BSSE corrected

TIPS2

∆E
 [k

ca
l/m

ol
]

dOO [Å]

(c) HH repulsion

-30 -20 -10 0 10 20 30

-6,0

-5,5

-5,0

-4,5

-4,0

not corrected

BSSE corrected

TIPS2

∆W2 [deg]

∆E
  [

kc
al

/m
ol

]

(d) Variation of �

-30 -20 -10 0 10 20 30
-6,5

-6,0

-5,5

-5,0

-4,5

-4,0

-3,5

-3,0

not corrected

BSSE corrected

TIPS2

∆W3 [deg]

∆E
  [

kc
al

/m
ol

]

(e) Variation of �

Figure 11.7: Test of the TIPS2 water-water interaction potential.
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Figure 11.8: Test of the TIP4P water-water interaction potential.
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Figure 11.9: Test of the SPC water-water interaction potential.
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Figure 11.10: Test of the SPC/E water-water interaction potential.
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Figure 11.11: Test of the TIPS water-water interaction potential.
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Figure 11.12: Test of the TIP3P water-water interaction potential.
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Figure 11.13: Test of the CFMS water-water interaction potential (I).
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Figure 11.14: Test of the CFMS water-water interaction potential (II).

The equilibrium structure of water in the CMFS model ((opt.) rOH = 0.99584 �A, ^HOH =

104.45Æ) di�ers from the one, which is usually regarded as the experimental structure ((exp.) rOH

= 0.5721 �A, ^HOH = 104.42Æ). Figure 11.13(d) displays the di�erence between both geometries

for the dimerisation curve.

11.9 Geometry optimisation of water clusters within poten-

tial N

The optimisation of small water clusters within potential N has been subject of research work

done by students of the university Hamburg under the supervision of T. Lankau. Details of the

calculations are given in their reports [370].
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11.9.1 Direct conversion

First [370a], we calculated the cartesian coordinates of the water molecules directly form from dOO,

� and � (section 3.4, page 74 �gures 3.35 to 3.38 and table 3.21). rOH and ! describe the water

molecule.

11.9.1.1 Trimer I

Water molecule 1:

O1 =

0
B@
�dOO

2

0

0

1
CA

H1;1 =

0
B@
�dOO

2
+ rOH cos(60Æ + �)

rOH sin(60Æ + �)

0

1
CA

H1;2 =

0
B@
�dOO

2
+ rOH cos(60Æ + �+ !)

rOH sin(60Æ + �+ !)

0

1
CA

(11.1)

Water molecule 2:

O2 =

0
B@

0
dOO
2

p
3

0

1
CA

H2;1 =

0
B@

rOH sin(30Æ + �)
dOO
2

p
3� rOH cos(30Æ + �)

0

1
CA

H2;2 =

0
B@

rOH sin(30Æ + �+ !)
dOO
2

p
3� rOH cos(30Æ + �+ !)

0

1
CA

(11.2)

Water molecule 3:

O3 =

0
B@

dOO
2

0

0

1
CA

H3;1 =

0
B@

dOO
2
� rOH cos(�)

�rOH sin(�)

0

1
CA

H3;2 =

0
B@

dOO
2
� rOH cos(� + !)

rOH sin(�+ !)

0

1
CA

(11.3)
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11.9.1.2 Trimer II

Water molecule 1:

O1 =

0
B@

0

0

0

1
CA
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2
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1
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(11.4)

Water molecule 2:
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2
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(11.5)

Water molecule 3:
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(11.6)
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11.9.1.3 Trimer III

Water molecule 1:

O1 =

0
B@
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0

1
CA
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(11.7)

Water molecule 2:
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1
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Water molecule 3:
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11.9.1.4 Trimer IV

Water molecule 1:
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(11.10)

Water molecule 2:
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Water molecule 3:
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1
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Equations 11.1 to 11.12 have been used to optimize the geometry of the water trimers. For the

optimisation we used a simplex algorithm [242].

11.9.2 Conversion of rotational into cartesian coordinates

The description of the ringclosure in the water trimer and the calculation of the tunneling prob-

ability (subsection 4.3.2, page 109) requested a change of the molecular symmetry during the

calculation and it was not possible to use equations 11.1 to 11.12.
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Position and orientation of an water molecule were described by 6 coordinates [370b]: The �rst

three coordinates (xO, yO, zO) are the cartesian coordinates of the oxygen atom while the last

three (�, ', �) describe the rotation of the water molecule.

The calculation for the nine cartesian coordinates from the six rotational (xO, yO, zO, �, ', �)

coordinates was done in several steps:

1. Figure 11.15(a) shows the standard orienation of the water molecule. The cartesian coordi-

nates of the water molecule in this oriantation are:

O =

0
B@

0

0

0

1
CA H1 =

0
B@
rOH cos(!

2
)

rOH sin(!
2

)

0

1
CA H2 =

0
B@
rOH cos(!

2
)

�rOH sin(!
2

)

0

1
CA (11.13)

The vectors ~A and ~B describe the position of the hydrogen atoms relative to the oxygen

atom. ~A is placed on the C2 axis of the molecule and ~B pointing to the hydogen atom stay

perpendicular on ~A.

~A =

0
B@
rOH cos(!

2
)

0

0

1
CA ~B =

0
B@

0

rOH sin(!
2

)

0

1
CA (11.14)

2. Figure 11.15(b) shows the orientation of ~A as a function of � and '. The new value of ~A is:

~A =

0
B@
j ~Aj sin(�) cos(')

j ~Aj sin(�) sin(')

j ~Aj cos(')

1
CA j ~Aj = rOH cos(!

2
) (11.15)

To calculate the cartesian coordinates of the hydrogen atoms a new value for ~B has to be

found. The hydrogen atoms did not rotate around ~A so far and the ~B is therefore still parallel

to the XY-plane (BZ = 0). Now, we demand ~B to be orthogonal to ~A:

AXBX +AY BY +AZBZ = AXBX +AY BY = j ~Ajj ~Bj cos(90Æ) = 0 (11.16)

Since ~B is parallel to the XY-plane, we can replace BY by:

BY =

q
j ~Bj2 �B2

X j ~Bj = rOH sin(!
2

) (11.17)
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The solution of 11.16 is so:

BX = �
vuuuut

j ~Bj2�
AX

AY

�2
+ 1

(11.18)

Two special cases have to be considered.

AX = 0 ! ~B =

0
B@
j ~Bj
0

0

1
CA AY = 0 ! ~B =

0
B@

0

j ~Bj
0

1
CA (11.19)

From equation 11.18 and BY = �
q
j~Bj2 � B2

X follows that two pairs of vectors (~B,-~B) and

(~B0,-~B0) are possible, but only one pair is orthogonal to ~A. This pair is used for the following

calculation of the cartesian coordinates of the hydrogen atoms.

~H1 = ~A+ ~B ~H2 = ~A� ~B (11.20)

3. Next, we consider the rotation of the hydrogen atoms around vector ~A. If two compononts

of ~A are equal to zero, ~A lies on one of the axis of the coordinates system and the rotation

around ~A is equal to a rotation around one of the main axises (R̂X, R̂Y and R̂Z).

R̂X =

0
B@

1 0 0

0 cos!X sin!X

0 � sin!X cos!X

1
CA R̂Y =

0
B@

cos!X 0 sin!X

0 1 0

� sin!X 0 cos!X

1
CA

R̂Z =

0
B@

cos!X sin!X 0

� sin!X cos!X 0

0 0 1

1
CA

(11.21)

For every other case the rotation of the water molecule is done in three steps.

(a) ~A is normalized2 and the values for !X and !Y are calculated, which rotate ~A on the

z-axis.

R̂X R̂Y
~A =

0
B@

1 0 0

0 cos!X sin!X

0 � sin!X cos!X

1
CA
0
B@

cos!X 0 sin!X

0 1 0

� sin!X 0 cos!X

1
CA ~A =

0
B@

0

0

1

1
CA (11.22)

The operators R̂X and R̂Y can be combined to one operator R̂XY, which simpli�es the

calculation:

R̂XY = R̂XR̂Y =

0
B@

a2 0 b2

�b1b2 a1 a2b1

�a1b2 �b1 a1a2

1
CA

a1 = cos!X

a2 = cos!Y

b1 = sin!X

b2 = sin!Y

(11.23)

2The normalisation can be spared, if insted of equation 11.22 the following equation is solved:

R̂X R̂Y
~A =

0
B@

0

0

j ~Aj

1
CA
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The combination of (11.22) and (11.23) allow us to calculate !X and !Y .

0
B@

a2 0 b2

�b1b2 a1 a2b1

�a1b2 �b1 a1a2

1
CA
0
B@
AX

AY

AZ

1
CA =

0
B@

0

0

1

1
CA (11.24)

The �rst line of equation 11.24 can be used to calculate !Y

!Y = arctan

��AX
AZ

�
AY = 0 ! !Y = 0Æ

AZ = 0 ! !Y = �90Æ
(11.25)

Next we calculate !X form the second line of equation 11.24.

!X = arctan

� �AY
�b2AX + a2AZ

�
= arctan

� �AY
�AX sin!Y +AZ cos!Y

�
(11.26)

(b) !X and !Y are used to turn the water molecule so that ~A lies on the z-axis. By setting

!Z equal to � it is now possible to describe the rotation around ~A with R̂Z.

(c) Finally, �!X and �!Y are used to move ~A back into its original position and the

hydrogen atom into their new.

4. In the last step we use the vector (xO; yO; zO) to move the water molecule into its �nal

position. Water clusters, containing the C3 symmetry element were constructed using a Ĉ3

operator similar to R̂Z.

11.9.3 Optimisation of (H2O)6

The optimisation of the water hexamers in section 8.2 (page 265) was done di�erently. We adapted

[370c] the int2cart.c section of the Babel program by P. Walters and M. T. Stahl. This

part of the code was written by P. Walters, who used code from MOPAC 5. The optimisation was

done with a modi�ed Newton-Rapson algorithm [370d]. This new program was �nally used for the

analysis of 
at water hexamers on a virtual metal surface [370e].

11.10 The C++ Gaussian 94 interface

The interface between G94 and our own C++ programs is made from three parts. The �rst part

are three short ASCII �les (blocka to blockc), from wich the Gaussian 94 input �le is made:

1. blocka

1 #!/sbin/csh

2

3 set jobname='geo'

4 cd /home4/fc/fc6a022/PYR_02

5 rm -f core

6

The �rst �le contains the begining of the input �le with general commands.

348



2. blockb

1 set ba='0.420'

2 set da='0.099'

3 set na='3'

4 set dis='2.770000'

blockb contains the data for the variables, which are changed as the C++ program is exe-

cuted. The C++ program writes blockb everytime G94 is called.

3. blockc

1

2 g94 << END > ${jobname}.out

3

4 %Mem=10000000

5 # GFInput

6 # UHF GEN Pseudo=Read

7 # SCF=(QC, TightLinEq, Tight)

8 # Pop=Full

9

10 Eigenschaften von Pt5, Polarisation?

11

12 0 3

13 Pt

14 Pt 1 a

15 Pt 2 a 1 90.0

16 Pt 3 a 2 90.0 1 0.0

17 Pt 1 a 2 60.0 4 60.0 +1

18 Variables:

19 a = ${dis}

20

21 1 2 3 4 0

22 S 5 1.00

23 1.4832274932 0.22934

24 1.7464593543 -0.09046

25 0.7565909320 -0.52713

26 0.2490175212 0.50171

27 0.0580000000 0.79308

28 P 5 1.00

29 0.5825687895 0.22546

30 0.8794390610 0.23282

31 0.7249140278 -0.50879

32 0.0301445770 0.68090

33 0.1062290255 0.42878

34 D 4 1.00
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35 0.057486 0.04275

36 0.031709 0.21724

37 0.013918 0.55726

38 0.006131 0.31975

39 ****

40 5 0

41 LANL2MB

42 ****

43

44 1 2 3 4 0

45 PT-ECP 3 77

46 f potential

47 1

48 ${na} ${ba} -${da}

49 s-f potential

50 3

51 2 1.56304868 12.72241997

52 3 0.40533958 -0.78658492

53 ${na} ${ba} ${da}

54 p-f potential

55 3

56 2 0.78303679 9.1466791

57 3 0.43658528 -1.4152290

58 ${na} ${ba} ${da}

59 d-f

60 2

61 4 0.263744 0.132669

62 ${na} ${ba} ${da}

63 5 0

64 LANL2MB

65

66 END

67

68 echo ${da} > ${jobname}.erg

69 echo ${dis} >> ${jobname}.erg

70 if (! -r core) then

71 grep "SCF Done" ${jobname}.out | tail -n1 | cut -f1 -da |

72 cut -f2 -d= >> ${jobname}.erg

73 endif

74 if (-r core) then

75 echo "10.00" >> ${jobname}.erg

76 endif

77 grep "5 Pt" ${jobname}.out | tail -4 | head -1 |

78 cut -f2 -dt >> ${jobname}.erg

79 grep "1 Pt" ${jobname}.out | tail -4 | head -1 |
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80 cut -f2 -dt >> ${jobname}.erg

81 grep "2 Pt" ${jobname}.out | tail -4 | head -1 |

82 cut -f2 -dt >> ${jobname}.erg

83 grep " Z=" ${jobname}.out | cut -f4 -d= | cut -f1 -dT >>

84 ${jobname}.erg

85 grep "Alpha occ" ${jobname}.out | tail -1 | cut -c40-50 >>

86 ${jobname}.erg

87 rm -f core

88

89 cp geo.out ${da}.out

90 clearipc

91 exit

The third block (blockc) contains the rest of the G94 input �le (line 1 to 66) and a small

shell script, which extracts the important data from G94 output �le (lines 68 to 87) and

writes these data into the $fjobnameg.erg �le.

The second part of the C++/G94 interface is the $fjobnameg.erg �le, which contains the re-

sults of the quantum chemical calculation. The C++ program reads the processed data in the

$fjobnameg.erg �le and the quantum chemical data can be used by the program.

1 0.099

2 2.770000

3 -119.621452442

4 -1.580820

5 0.532278

6 0.258132

7 0.5212

8 -0.29436

The last part of the interface is the C++ code, which calls G94 and forms the link between quantum

chemistry and the C++ code.

1 const double ba = 0.42;

2 const int na = 3;

3

4 long double func(double ba, double da, int na, double x) {

5 ofstream datei1;

6 ifstream datei2;

7 char name[80], befehl[80];

8 long double h1;

9

10 datei1.setf(ios::showpoint);

11 datei1.setf(ios::fixed);

12 datei1.precision(3);

13 strcpy(name, PFAD);

14 strcat(name, "geob.blk");
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15 datei1.open(name);

16 datei1 << "set ba='" << ba << "'" << endl;

17 datei1 << "set da='" << da << "'" << endl;

18 datei1 << "set na='" << na << "'" << endl;

19 datei1.precision(6);

20 datei1 << "set dis='" << x << "'" << endl;

21 datei1.close();

22 strcpy (befehl, "cd ");

23 strcat (befehl, PFAD);

24 strcat (befehl, "; cat geoa.blk geob.blk geoc.blk > geo.in");

25 system (befehl);

26 strcpy (befehl, "chmod a+x ");

27 strcat (befehl, PFAD);

28 strcat (befehl, "geo.in");

29 system (befehl);

30 strcpy (befehl, PFAD);

31 strcat (befehl, "geo.in");

32 system (befehl);

33 strcpy(name, PFAD);

34 strcat(name, "geo.erg");

35 datei2.open(name);

36 datei2 >> h1; // da

37 datei2 >> h1; // r

38 datei2 >> h1; // Energie

39 datei2.close();

40 return(h1);}

Lines 15 to 21 create the blockb �le, which contains data for the variables and lines 22 to 32 are

used to create an G94 input �le from the �les blocka to blockc. In line 32 the system command

is used to call G94 and to execute the input �le. Finally, lines 33 to 39 are used to evaluate the

$fjobnameg.erg �le and to import the quantum chemical results into the C++ programm.

The next listing is not part of the interface, but gives an example for the application of the

function func of the interface for the geometry optimisation of a Pt5 pyramid.

1 double geo(double ba, double da, int na, double &start, double min, double max) {

2 const int maxanz = 20;

3 const double delta_min = 1E-5;

4 const double max_step = 0.1;

5 const double h = 0.0001;

6 long double fx, fxph, fxmh, G, H;

7 long double x1, x2;

8 int notbremse;

9

10 cout.precision(6);

11 cout.setf(ios::showpoint);

12 cout.setf(ios::fixed);
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13 cout << "Start" << endl;

14 x1 = start;

15 fx = func(ba, da, na, x1);

16 cout.precision(6);

17 cout << " Laenge : " << x1 << endl;

18 cout.precision(12);

19 cout << " Energie : " << fx << endl << endl;

20 notbremse = 1;

21 do{

22 cout << "Schritt " << notbremse << " von " << maxanz << endl;

23 cout << " Berechne Energie 1" << endl;

24 fxph = func(ba, da, na, x1+h);

25 cout << " Berechne Energie 2" << endl;

26 fxmh = func(ba, da, na, x1-h);

27 G = (fxph - fxmh)/2.0/h;

28 H = (fxph + fxmh - 2.0*fx)/h/h;

29 cout.precision(6);

30 cout << " G : " << G << endl;

31 cout << " H : " << H << endl;

32 if (H > 0.0)

33 x2 = -G/H;

34 else x2 = -10.0*G;

35 if (fabs(x2) > max_step)

36 x2 *= max_step/fabs(x2);

37 if (fabs(H) < 0.001)

38 x2 = -10.0*G;

39 cout << " Schrittgroesse : " << x2 << endl;

40 x1 += x2;

41 fx = func(ba, da, na, x1);

42 cout.precision(6);

43 cout << " neue Laenge : " << x1 << endl;

44 cout.precision(12);

45 cout << " neue Energie : " << fx << endl << endl;

46 if (x1 > max) {

47 cout << " Ueberschreiten der Obergrenze !" << endl;

48 start = x1;

49 return(fx);}

50 if (x1 < min) {

51 cout << " Unterschreiten der Untergrenze !" << endl;

52 start = x1;

53 return(fx);}

54 notbremse ++;

55 }while (!((fabs(x2) <= delta_min) || (notbremse > maxanz)));

56 start = x1;

57 return(fx);}
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1st grp SALC
D
'ijĤj'i

E
symmetry symbol 2nd grp

1 �5 � a1 '2 A

2 1
2
(�6 + �7 + �8 + �9) � a1 '3 A

2 1
2
(�6 � �7 � �8 + �9) � e '5 B

2 1
2
(�6 + �7 � �8 � �9) � e '7 B

2 1
2
(�6 � �7 + �8 � �9) � b2 '9 C

3 1
2
(�1 + �2 + �3 + �4) �+ 2 � a1 '1 A

3 1
2
(�1 + �2 � �3 � �4) � e '4 B

3 1
2
(�1 � �2 � �3 + �4) � e '6 B

3 1
2
(�1 � �2 + �3 � �4) �� 2 � b2 '8 C

Table 11.21: Basis set for the Pt9 H�uckel calculation.

11.11 H�uckel calculations for Pt9

The secular determinant for this cluster is big (9 � 9) and

1

2 3

4

5

6

7

8

9

Figure 11.15: Pt9 cluster, top view.

therefore diÆcult to handle. The mathematical problem can

be reduced by using SALC's as basis set for the calculation.

This was done in three steps. In the �rst step were the atoms

of the cluster divided into three groups. Each group contains

all symmetric unique atoms, which interchange their places

during the application of any symmetry operator. The �rst

group contains just one atom; atom number 5 in the centre.

The second group contains the surrounding atoms 6, 7, 8

and 9. The third �nally contains the atoms at the bottom

(1,2,3 and 4). In the next step SALCs were constructed

from the orbitals in each group. In the last step were the

orbitals regrouped according to their symmetry.

Since orbitals of di�erent symmetry do not mix, the usage of the orbitals '1 to '9 simpli�es

the formation of the blocked secular determinant. The three blocks can be handled separately

as before for the Pt5 pyramid. The secular determinant3 (equation 11.27) was then simpli�ed as

before.����������������������

�+ 2� � � 2� 2�

2� �� � 2�

2� 2� �� �

�� � � 0 ��
� �� � �� 0

0 �� �� � ��
�� 0 �� �� �

�� 2� � � 0

0 �� �

����������������������

= 0 (11.27)

3The secular determinat was calculated with a small C++ program.
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Group A:

�������
�x+ 2 2 2

2 �x 2

2 2 �x

������� = x3 + 2 x2 � 12 x+ 8 = 0

x1 = �2 ) �1 = �� 2 �

x2 = 2�p8 ) �2 = �+ (2�p8) �

x3 = 2 +
p

8 ) �2 = �+ (2 +
p

8) �

(11.28)

Group B:����������

�x 1 0 �1

1 �x �1 0

0 �1 �x �1

�1 0 �1 �x

����������
= (x2 � 2)2 = 0

x4 =
p

2 ) �4 = �+
p

2 �

x5 =
p

2 ) �5 = �+
p

2 �

x6 = �p2 ) �6 = ��p2 �

x7 = �p2 ) �7 = ��p2 �

(11.29)

Group C: ������� 2 � � � 0

0 �� �

����� = 0
�8 = �� 2 �

�9 = �
(11.30)

Although symmetrically allowed do the orbitals of group C not mix. The calculation of the

coeÆcients is therefore very easy.

	8 = '8 =
1

2
(�1 � �2 + �3 � �4) 	9 = '9 =

1

2
(�6 � �7 + �8 � �9) (11.31)

For the other groups the usage of the blocks simpli�es the calculation of the coeÆcients:

Group A:

	1 =
1p
2

('2 � '3) 	2 =
1

2
(�
p

2 '1 + '2 + '3) 	3 =
1

2
(
p

2 '1 + '2 + '3) (11.32)

Group B:

	4 =
1

2
('1 + '3 �

p
2 '4) 	5 =

1

2
('1 � '3 +

p
2 '4) (11.33)

	6 =
1

2
('1 + '3 +

p
2 '4) 	7 =

1

2
('1 � '3 �

p
2 '4)

The wavefunction 	1 to 	9 will be used for the discussion of the Pt9 cluster (table 5.5 page

129).

11.12 H�uckel calculations for Pt17

As before for the calculation of the Pt9 cluster symmetry adapted linear combinations (SALCS)

[293b] were constructed from symmetrically equivalent 6s orbitals (I: �0, �1,�2, �3; II: �4, �5,

�6, �7, �8, �9, �10, �11; III: �12, �13, �14, �15; IV: �16). These orbitals have been regrouped

for the calculation of the energy eigenvalues. The results of this transformation are shown in

table 11.22. Symmetry divides the basis set into 4 groups (A-D) and allows the calculation of the

energy eigenvalues with small matrices. The di�erent symmetries can be easily distinguished by

the number of nodal planes in the orbital. The totally symmetric functions have no nodal plane,

while the others have up to four planes (a2).
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Figure 11.16: Pt17 cluster, top view.

Group A, totally symmetric, no nodal plane (a1):����������

�x+ 2
p

2 2 2p
2 �x+ 1

p
2 0

2
p

2 �x 2

2 0 2 �x

����������
= x4 � 3x3 � 14x2 + 8 = 0

x01 = �2:3467

x02 = �0:8668

x03 = 0:7153

x04 = 5:4982

(11.34)

Group B, two nodal planes (b1 and b2):����������

�x� 2 1 �1 0

1 �x 1 1

�1 1 �x 1

0 1 1 �x

����������
= x4 + 2x3 � 5x2 � 6x = 0

x05 = �3

x06 = �1

x07 = 0

x08 = 2

(11.35)

Group D, four nodal planes (a2):

j � x� 1j = 0 x16 = �1 (11.36)

Group C, one nodel plane (e):

��������������������

�x 0 1
2

a � 1
2

b 1 1

0 �x �a 1
2

b 1
2

�1 1
1
2

�a �x+ c 0 0 c a � 1
2

a 1
2

0 �x+ c c 0 1
2

a

� 1
2

b 0 c �x� c 0 �b 1
2

b 1
2

c 0 0 �x� c 1
2

b

1 �1 a 1
2

�b 1
2

�x 0

1 1 � 1
2

a 1
2

b 0 �x

��������������������

= 0 with

a =
1

2
(1 +

p
2)

b =
1

2
(1�p2)

c =
1

2

p
2

0 = x8 � 14x6 � 12x5 + 49x4 + 84x3 + 36x2 )

x08 = x09 = �2

x10 = x11 = �1

x12 = x13 = 0

x14 = x15 = 3

(11.37)
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1st grp SALC
D
'ijĤ j'i

E
sym symbol 2nd grp

I 1
2

(�0 + �1 + �2 + �3) �+ 2 � a1 '0 A

I 1
2

(�0 + �1 � �2 � �3) � e '1 C

I 1
2

(�0 � �1 � �2 + �3) � e '2 C

I 1
2

(�0 � �1 + �2 � �3) �� 2 � b2 '3 B

II 1p
8

(�4 + �5 + �6 + �7 + �8 + �9 + �10 + �11) �+ � a1 '4 A

II 1p
8

(�5 +
p

2 �6 + �7 � �9 �
p

2 �10 � �11) �+ 1
2

p
2 � e '5 C

II 1p
8

(
p

2 �4 + �5 � �7 �
p

2 �8 � �9 + �11) �+ 1
2

p
2 � e '6 C

II 1
2

(�4 � �6 + �8 � �10) � b2 '7 B

II 1
2

(�5 � �7 + �9 � �11) � b2 '8 B

II 1p
8

(�5 �
p

2 �6 + �7 � �9 +
p

2 �10 � �11) �� 1
2

p
2 � e '9 C

II 1p
8

(
p

2 �4 � �5 + �7 �
p

2 �8 + �9 � �11) �� 1
2

p
2 � e '10 C

II 1p
8

(�4 � �5 + �6 � �7 + �8 � �9 + �10 � �11) �� � a2 '11 D

III 1
2

(�12 + �13 + �14 + �15) � a1 '12 A

III 1
2

(�12 + �13 � �14 � �15) � e '13 C

III 1
2

(�12 � �13 � �14 + �15) � e '14 C

III 1
2

(�12 � �13 + �14 � �15) � b2 '15 B

IV �16 � a1 '16 A

Table 11.22: Basis set for the Pt17 H�uckel calculation.

11.13 Construction of �gure 7.28

The construction of �gure 7.28 was done in three steps. In the �rst step we calculated �R as a

function of �A and dA.

1 #include <fstream.h>

2 #include <iostream.h>

3 #include <math.h>

4 #include <stdlib.h>

5

6 const double pi = 3.141592654;

7

8 long double T(double a) {

9 return(3.5*a);}

10

11 long double C(double a) {

12 return(-16.0/15.0*sqrt(2.0*a/pi));}

13

14 long double E3(double a, double d, double b) {

15 return(d*384.0/15.0*sqrt(2.0*pow(a,7)/pi/pow(2.0*a+b,8)));}

16

17 long double E4(double a, double d, double b) {

18 return(d*28.0*sqrt(2.0*pow(a,7)/pow(2.0*a+b,9)));}

19
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20 long double beta(int n, double a, double da, double ba, double dE) {

21 long double help;

22 help = E3(a,da,ba)/a;

23 help *= 3.5-8.0*a/(2.0*a+ba);

24 help += 8.0/15.0*sqrt(2.0/pi/a);

25 help -= 3.5;

26 help *= -a/dE;

27 help += 3.5;

28 help = 1.0/help;

29 help *= a;

30 help *= n+5;

31 help -= 2.0*a;

32 return(help);}

33

34 void main(void) {

35 long double da, ba, dE, dr, br;

36 const double da_max = 2.0;

37 const double ba_max = 0.5;

38 const double Et = 0.23842;

39 const double a = 0.1196;

40 int anz = 200;

41 ofstream datei;

42 datei.open("br_area.dat");

43 for (da=0.0; da<=da_max; da+=(da_max-0.0)/anz){

44 for (ba=0.0; ba<=ba_max; ba +=(ba_max-0.0)/anz){

45 dE = Et - T(a) - C(a) - E3(a,-da,ba);

46 br = beta(4,a,da,ba,dE);

47 cout << da << " " << ba << endl;

48 datei << da << " " << ba << " " << br << endl;}

49 datei << endl;}

50 datei.close();

51 return;}

Table 11.23 shows the correlation between the functions in the program and the equations in

section 7.2 (page 215). These functions are used in line 45 to calculate �E, which is used for the

calculation of �R in line 46. Finally, in line 48 the values of dA (da), �A (ba) and �R (br) are

written into the �le br area.dat, which is used for the plot.

br area.dat is used to generate the 3D contour plot (�R(dA; �A)) with gnuplot. The input

�le is listed below and the plot generated with this �le is stored and used later for the �nal graph.

In the next step the same grid as before is used for the calculation of the second derivative of

the total energy E(�) for � = 0.23842 a.u..

1 set view 0,0,1

2 set parametric

3 set contour base

4 set cntrparam levels discrete 0.0, 0.02, 0.04, 0.06, 0.08, 0.1, 0.12, 0.14
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function variable code line equation page

T T(�) 8 7.29 218

C C(�) 11 7.29 218

E3 �V3
D 14 7.35 220

E4 �V4
D 17 7.35 220

beta �R 20 7.54 227

Table 11.23: Functions used for the calculation of �R.

5 set nosurface

6 splot 'br_area.dat' using 1:2:3 with lines

7 pause -1 "Hit return to continue"

1 #include <iostream.h>

2 #include <fstream.h>

3 #include <math.h>

4 #include <stdlib.h>

5

6 const double pi = 3.141592654;

7

8 long double T(double a) {

9 return(3.5*a);}

10

11 long double C(double a) {

12 return(-16.0/15.0*sqrt(2.0*a/pi));}

13

14 long double E3(double a, double d, double b) {

15 return(d*384.0/15.0*sqrt(2.0*pow(a,7)/pi/pow(2.0*a+b,8)));}

16

17 long double E4(double a, double d, double b) {

18 return(d*28.0*sqrt(2.0*pow(a,7)/pow(2.0*a+b,9)));}

19

20 long double beta(int n, double a, double da, double ba, double dE) {

21 long double help;

22 help = E3(a,da,ba)/a;

23 help *= 3.5-8.0*a/(2.0*a+ba);

24 help += 8.0/15.0*sqrt(2.0/pi/a);

25 help -= 3.5;

26 help *= -a/dE;

27 help += 3.5;

28 help = 1.0/help;

29 help *= a;

30 help *= n+5;

31 help -= 2.0*a;

32 return(help);}
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33

34 long double E2(double a, double da, double ba, double dr, double br) {

35 long double h1, h2, h3;

36 h1 = 4.0/15.0*sqrt(2.0/pi/pow(a,3));

37 h2 = 12.0*a*a - 84.0*a*ba + 35.0*ba*ba;

38 h2 /= 4.0*(2.0*a+ba)*(2.0*a+ba);

39 h2 *= E3(a,-da,ba)/a/a;

40 h3 = 32.0*a*a - 112.0*a*br + 35.0*br*br;

41 h3 /= 4.0*(2.0*a+br)*(2.0*a+br);

42 h3 *= E4(a,dr,br)/a/a;

43 return(h1+h2+h3);}

44

45 void main(void) {

46 const double a = 0.1196;

47 const double Et = 0.23842;

48 const double da_max = 2.0;

49 const double ba_max = 0.5;

50

51 long double ba, da, dE, br, dr, E2a;

52 int anz=200;

53 ofstream datei;

54

55 datei.open("abl_area.dat");

56 for (da=0.0; da<=da_max; da+=(da_max-0.0)/anz){

57 for (ba=0.0; ba<=ba_max; ba +=(ba_max-0.0)/anz){

58 dE = Et - T(a) - C(a) - E3(a,-da,ba);

59 br = beta(4,a,da,ba,dE);

60 dr = dE/E4(a,1.0,br);

61 E2a = E2(a,da,ba,dr,br);

62 cout << da << " " << ba << endl;

63 datei << da << " " << ba << " " << E2a << endl;}

64 datei << endl;}

65 datei.close();

66 return;}

Table 11.24 compiles the transformation of the equations in section 7.2 (page 215) into the

C++ program. For every point (dA; �A) the energy di�erence �E is calculated (line 58). �R and

dR are calculated in the lines 59 (br) and 60 (dr). In line 61 the the second derivative of the total

energy is �nally calculated. The result of this calculation is written into the abl area.dat �le,

which is used for the plot.

The contour plot is done for only one value. E2a = 0 marks a saddle point and so the transition

form a minimum to a maximum. The result of the gnuplot-run was stored. Finally both plots are

combined with a graphics program and the plot shown in �gure 7.28 created.

1 set view 0,0,1

2 set parametric
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function variable code line equation page

T T(�) 8 7.29 218

C C(�) 11 7.29 218

E3 �V3
D 14 7.35 220

E4 �V4
D 17 7.35 220

beta �R 20 7.54 227

E2 @2E=@�2 34 7.60 229

dr dR 60 7.53b 226

Table 11.24: Functions used for the calculation of E00(�).

3 set contour base

4 set cntrparam levels discrete 0

5 set nosurface

6 splot 'abl_area.dat' using 1:2:3 with lines

7 pause -1 "Hit return to continue"
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