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To my mother

Die Quanten sind doch eine hoffnungslose Schweinerei.
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Abstract

The simple bilayer model of the platinum-water-vacuum interface can explain most experimental
results, but fails on details. Our work suggests that cooperative effects are very important for the
fine-structure of the interface. The platinum-water (chapter 6) and the hydrogen bond (chapter 3)
have been found to be very much alike. Intermolecular electron transfer as observed in the water
trimer has a strong influence of the interface structure and can move the water molecules out of
their ideal positions (chapter 8).

Our new water-water interaction potential (chapter 4) has been used to explore the potential
energy surfaces of the water trimer (chapter 4) and hexamer (chapter 8). The results on the hexamer
suggest that a seamless transition between the platinum surface and the ice crystal is not possible.
Structures similar to the QLL (Quasi Liquid Layer) have been observed, which can explain the
low vertical dipole moment of surface water, while cooperative forces can be used to explain the
second desorption peak (165 K) in TDS (Thermal Desorption Spectroscopy) experiments.

The weak bond between water and platinum is controlled by two opposing forces: the Coulomb
repulsion between the 6s electrons of the platinum cluster and the oxygen atom and the bonding
interaction between a platinum 5d orbital and the free electron pair of the water molecule. A high
6s population, which repells the water molecule, creates at the same time a strong bond among
the platinum atoms. It is therefore impossible to create a surface model with strong intermetallic
bonds and a strong platinum-water bond at the same time.

The quality of the surface model depends strongly on the 6s population and so on the electronic
state of the metal cluster. The analysis of the platinum-water bond would have been impossible
without a modification of the Hiickel theory (chapter 5), which was used to select suitable can-
didates as surface models and to understand the electronic structure of the platinum cluster and
electron movements during the formation of the platinum-water bond.

The intermetallic bond in the platinum cluster is dominated by the 6s orbitals and the 5d
orbitals have to be considered in full detail only at active surface atoms. This assumption was
finally proofed by the development of a new 1 valence electron ECP (Effective Core Potential) for
bulk and passive surface atoms (chapter 7), which can be used to reduce the computational costs

for the analysis of larger platinum clusters.



Zusammenfassung

Ein einfaches Doppelschicht-Modell fiir das Grenzsystem Platin-Wasser kann die meisten experi-
mentellen Ergebnisse erkliren, versagt aber bei der Interpretation von Details. In dieser Arbeit
werden wir nachweisen, dafl cooperative Effekte sehr wichtig fiir die Feinstruktur der Grenzschicht
sind. Die Platin-Wasser Bindung und die Wasserstoffbriickenbindung sind einander sehr dhnlich
(Kapitel 6) und intermolekularer Ladungstransfer, wie er auch im Wassertrimer beobachtet wird,
kann einzelne Wassermolekiile aus ihrer idealen Position bringen (Kapitel 8).

Uunser neues Wasser-Wasser-Wechselwirkungspotential (Kapitel 4) wurde benutzt, um die Ener-
giehyperfliche des Wassertrimers (Kapitel 4) und des Wasserhexamers (Kapitel 8) zu untersuchen.
Die Ergebnisse fiir das Hexamer lassen vermuten, das ein nahtloser Ubergang zwischen der Platin-
oberfliche und einem Eiskristall wie bisher angenommen nicht moglich ist. Strukturen, dhnlich
einer zweidimensionalen Schicht fliissigen Wassers auf Eis (engl. QLL, Quasi Liquid Layer), wur-
den an der Grenze zwischen Metall und Eis beobachtet. Solch ein Strukturmodell erklirt den
kleinen Anteil des Dipolmoments eines Wassermolekiils in der Grenzschicht senkrecht zur Metallo-
berfliche, wihrend die oben erwdhnten cooperativen Kréfte erstmals eine Deutung fiir den zweiten
Desorptionspeak (165 K) in TDS Experimenten (Thermal Desorption Spectroscopy) bieten.

Die schwache Bindung zwischen Platin und Wasser kann mit zwei einander widersprechenden
Kriften erklirt werden: Die Coulomb-AbstoBung zwischen den 6s Elektronen des Platins und dem
negativ geladenem Sauerstoff im Wassermolekiil ist die erste Kraft und die zweite bindende folgt
aus dem Uberlappen eines freien Elektronenpaars des Wassermolekiils mit einem Platin 5d Orbital.
Eine hohe 6s Besetzungsdichte, die das Wassermolekiil abstoft, ezeugt aber gleichzeitig eine starke
Platin-Platin Bindung. Es gibt entweder eine starke Platin-Platin Bindung im Metallcluster oder
eine starke Metall-Wasser Bindung, aber nie beides gleichzeitig.

Die 6s Elektronendichte erwies sich als Schliissel zu einem realititsnahen Oberflichenmodell.
Eine Modifikation der Hiickel-Theorie (Kapitel 5) half uns, die elektronische Struktur des Platin-
clusters und die Bewegung der Elektronen wihrend der Wasseradsorption zu verstehen. So war es
uns moglich, gezielt nach geeigneten Kandidaten fiir die Oberflichenmodellen zu suchen.

Die Metall-Metall Bindung im Platincluster wird von den 6s Orbitalen dominiert, wihrend die
5d Orbitale nur wichtig sind fiir die Bindung des Wassermolekiils an ein aktives Oberflichena-
tom. Diese Annahme fiihrte zu der Entwicklung eines funktionierenden 1 Valenzelektronen ECP
(Effective Core Potential), dafl in Zukunft die Untersuchung grofier Oberflichenmodelle ermégli-

chen wird.



Contents

1 Introduction
1.1  General Introduction . . . . . . .. oL
1.1.1 Properties of Water . . . . . . . . . ..
1.1.2 Properties of Platinum . . . . . .. ... ... ... .. ... . ... ....
1.1.3  Literature Survey . . . . . . . . ..o e
1.2 Thiswork . . . . . . . . e

2 Theory
2.1  Hartree-Fock Calculations . . . . . . .. ... ... . ..
2.2 Mpgller-Plesset Perturbation Theory . . . . .. .. ... ... ... .. ... ....
2.3 Configuration Interaction and Multiconfiguration SCF Theory . . . . ... .. ..
2.4  Basis Sets and Basis Set Superposition Error . . . . . . . ... 0oL oL
2.5  The Morokuma Energy Decomposition Scheme . . . . .. .. ... .. ... ...
2.6  Pseudopotentials . . . . . .. ...
2.6.1 Non Relativistic Core Potentials . . . . . . ... .. .. ... ........
2.6.2 Relativistic Quantum Mechanics and Core Potentials . . . . . .. .. ...
2.7  Interactions between different electronic states . . . . . ... ... ... oL
2.7.1 Intersection of Potential Energy Curves . . . . . .. .. .. ... ... ...
2.7.2 Photoexcitation and Intersystem Crossings . . . . . . . ... .. ... ...

2.8 Dipole-Dipole Interaction and Polarisation . . . . . .. .. ... .. ... .....

3 Quantum Chemistry of small Water Clusters
3.1 The Water Molecule. . . . . . . . . . . . . .. e
3.2 Water Dimer . . . . . . . . ..
3.2.1 Single Point Calculations . . . . . . . .. . ... ... oo
3.2.2 Potential Curve with a Flexible Geometry . . . .. .. .. ... ... ...
3.2.3 Potential Curve with a Fixed Geometry . . . . .. .. ... ... ... ..
3.2.4 Calculation of the BSSE corrected geometry of the water dimer . . . . . .
3.3 Energy Decomposition . . . . . . . . ... Lo
3.4 Water Trimer . . . . . . . . . e

3.5 Summary of the Quantum Mechanical Calculations . . . . .. ... ... ... ..

4 Classical Water-Water Interaction Potentials
4.1 Classification of the Different Potentials . . . . . . .. . ... ... ... .....

4.2  Comparison with the Quantum Mechanical Potential Curves . . . . . . .. .. ..

=R N = e

10

15
15
19
22
23
26
30
30
34
38
38
39
40

45
45
30
30
61
65
70
72
74
81



4.3 Anewmodel. . . . .. 94
4.3.1 Animproved model . . . . . ... 94

4.3.2 Application of potential N on water trimers . . . . . . . ... ... .... 109

4.4  Summary of the Calculation with a Classical Potential . . . . .. ... ... ... 114
Hiickel calculations for the Analysis of Pt, 117
5.1  Theory of the Hiickel-approximation for the platinum 6s electrons . . . . . . . .. 117
5.2  Hiickel calculations for Ptg . . . . . . . . . . . .. ... 119
5.3 Analysis of the Pty pyramid . . . . . .. ... o o 121
5.3.1 Hiickel calcualtions fot Pt5 . . . . . . . . . .. ... o L. 122

5.3.2 The interface between different ECPs . . . . . .. ... .. ... .. .... 123

5.3.3 5d-6s interactionin Pts . . . . . . .. ... . o o 125

5.3.4 The rotational barrier in Pts—H>O . . . . . .. . .. .. ... ... .. .. 126

5.3.5 Summaryon Pts . . . . ... 128

5.4  Hiickel Calculations for Pty Cluster . . . . . . . . .. ... ... ... ....... 128
5.5 Two Slabs Pt17 Cluster . . . . . . . . . . . . . . . . 130
5.6  The Second Next Neighbour . . . ... ... ... ... ... . ... . ....... 132
5.7  Quantitative Analysis of the HMO Calculations . . . . . . .. .. ... .. .... 135
5.7.1 Results for the Platinum Dimer . . . . . .. ... ... ... .. ...... 135

5.7.2  Results for Platinum Pentamer (Pyramid) . . ... ... ... ... .... 139

5.8  Summary and Conclusions from the 6s Hiickel calculations . . . . . .. .. .. .. 142
Platinum atom calculations involving 18 Valence Electrons 145
6.1  One platinum atom . . . . . . . . . ... 146
6.1.1 The electronic states of platinum . . . . . . ... ... ... ... 146

6.1.2 Platinum and a single water molecule . . . . . . . ... ... 000, 148

6.1.3 The Influence of the Pseudo Potential . . . . . . . ... ... ... ..... 154

6.1.4 Effect of the BSSE on the platinum-water interaction . . . . . . .. .. .. 156

6.1.5 The Platinum-Hydrogen interaction . . . . . . . . ... ... . ... .... 157

6.1.6 Summary of the results for single platinum atom . . . ... ... ... .. 158

6.2 Platinum Dimer . . . . . . . . . .. 159
6.2.1 The electronic structure of the platinum dimer . . . . . .. .. ... . ... 159

6.2.2 Platinum Dimer and Water . . .. .. .. ... ... ... ... .. ..., 163
6.2.2.1 Influence of the geometry . . . . .. .. ... ... . ... ... 163

6.2.2.2 The water metal interaction in Pto—H-O . . . .. .. ... ... 164

6.2.2.3 Influence of the electronic state of the platinum dimer . . . . .. 167

6.2.2.4 Movement of water on the surface . .. ... ... ... ... .. 171

6.2.3 Summary of the results for the platinum dimer . . . . ... ... ... .. 175

6.3  The platinum trimer . . . . . . ... ..o 176
6.3.1 Electronic structure of the equilateral Ptg-cluster . . . . ... ... .. .. 177

6.3.2 The interaction of water with Pt3-cluster . . . . . . . . . ... ... .... 178
6.3.2.1 Water bound to the hollow site on the cluster . . . . . .. .. .. 178

6.3.2.2 Waterboundontop . ... ... ... . ... ... ... ..., 181

6.3.2.3  Pt3 surface model for the Pt(100) surface . . .. ... ... ... 183

6.3.3 Summary of the results for Ptg . . . ... ... ... o oL 185

ii



6.4  The Pts-pyramid . . . . . . . . . .. .
6.4.1 Electronic structure of the Pts-pyramid . . . . . .. .. ... .. ... ...

6.4.2 The interaction of the Pts-pyramid with water . . . . . . . . ... ... ..
6.4.2.1 Dissociation . . . . . .. ..o

6.4.2.2 Rotation . . . . . . . . . ...

6.423 Wagging . . . . . . . . L

6.4.3 Summary of the results for the platinum pyramid . . . ... ... .. ...

6.5 The Ptg-cluster . . . . . . . . . . . . . e
6.6  The electronic structure of the metal cluster as a function of its size . . . . . . . .
6.7 EHT calculations on the Pt,—HsO system . . . . . ... ... ... ........

6.8 Summary of the calculations with a 18 valence electrons platinum atom . . . . . .

Calculations with 1-Valence Electron per Platinum
7.1  Numerical properties for the new 1-electron ECP . . . .. .. ... .. ... ...
7.1.1 Numerical Results for the 6s orbital . . . . . . . .. .. ... ... .. ...
7.1.1.1 The 6s Wavefunction . . . . . . . ... ... ... ... ... ...
7.1.1.2 Radial 6s Density . . . . . . . .. ... ...
7.1.1.3  Simplification of the Radial 6s Electron Density Function
7.1.1.4 The quest for the new 6s Wavefunction . .. ... ... .. ...
7.1.2 Numerical Results for the Pt 6p Orbital . . . . .. .. ... ... .. ...
7.1.3 Numerical Results for the Pt 6d orbital . . . . . . ... ... .. .. ...,
7.1.4 Summary and compilation of all 1 electron properties . . . . . . ... ...
7.2  Principle questions about a 1 electron ECP . . . . . . . .. ... ... .......
7.2.1 Is it possible to use the method from HAY and WADT? . . . . .. .. ...
7.2.2  Which conditions has a gaussian type wavefunction to fulfill? . . . .. ..
7.2.3 Is a positive eigenvalue for the 6d orbital physically reasonable? . . . . . .
7.2.4 How does Gaussian 94 calculate the energy of the orbitals? . . . . . . . ..
7.2.5 Under which conditions is global minimum possible? . . . . ... ... ..
7.2.6 How does Gaussian calculate the ECP? . . . . . .. ... ... ... ....
7.2.7  What happens if the ECP vanishes as r becomes infinite? . . .. ... ..
7.2.8 Which form has an ECP with a local energy minimum for d-electrons? . .
7.2.9 Is it possible to create a local minimum with two or more functions?
7.3  How describe the 6d electron? . . . . .. . .. ... L L
7.3.1 What problems are connected with the ECP by Zurita et al.?7 . . . . . ..
7.3.2 What’s next? . . . . . . ...
7.3.3 How does Uf°™ controll the dimer’s properties? . . . . ... ... ... ..
7.3.4 How strong is the influence of Uf**® on the PtH bond? . .. .. .. .. ..
7.3.5 How does Uf°*® change the electronic structure of Pts? . . . . ... .. ..
7.3.6 What happens if two different ECPs interact with each other? . . . . . . .
7.3.7 Is the LanL1MB cluster a suitable surface model? . . . . . . ... ... ..

7.4  Conlusions from the analysis of the 1 valence electron ECP . . . . . ... ... ..

iii



8 Water Clusters on the Platinum Surface

8.1

8.2

Formation of (H20)3 on Pt(111) . . . . . . . ... . o o
8.1.1 Introduction . . . . . . . . . . . e e e e
8.1.2 Computational Procedure . . . . . . ... ... ...
8.1.3 Results and Discussion . . . . . . . . . .. ... oo
8.1.4 Conclusions . . . . . . . . . . . e e
(H20)g on a Virtual Metal Surface . . . .. ... ... ... .. ... ... ....
8.2.1 Introduction . . . . . . . . . . . e e e e
8.2.2 Computational Procedure . . . . .. ... . .. .. ... ... .. .. ...
8.2.3 Water Dimer. . . . . . . . . . e e e e
8.2.4 Water Trimer . . . . . . . . . . e e e e
8.2.5 Water Hexamer . . . . . . . . . . .. . . ...

8.2.5.1 TheModel . . ... ... . . ... .. e

8.2.5.2 The free water hexamer . . . . . .. ... ... ... .......

8.2.5.3 The constrained hexamer . . . . ... ... ... .. .......

8.2.5.4 Variation of the surface lattice constant . . . . . .. ... .. ..
8.2.6 Discussion . . . . . . . . . e e e e e

8.2.7 Final Conclusions . . . . . . . . . . . . e e

9 Final Conclusions and Further Proceedings

10 Bibliography

10.1
10.2

Cited literature . . . . . . . . . . . . e

Programs used for this work . . . . . .. .. ... L o

11 Appendix

11.1
11.2
11.3
114
11.5
11.6
11.7
11.8
11.9

11.10
11.11
11.12
11.13

Abbriviations . . . . ... L
Basis set and ECPS used with in thiswork . . . . . ... ... ... . ... ...,
Selected Water Monomer Data . . . . . . . . ... ... ..
Results from Single Point Calculations for the Water Dimer . . . . . ... .. ..
Influence of the BSSE on the Monomer’s Geometry . . . .. .. ... ... ....
Changing W3 and Bending the Hydrogen Bond . . . . . ... ... ... .....
Energies of the MOROKUMA Energy Decompostion for the Water Dimer . . . . .
Different water-water interaction potentials from the literature . . . . . . . . . ..
Geometry optimisation of water clusters within potential N.. . . . . . . .. .. ..
11.9.1 Direct conversion . . . . . . . . . . ... Lo

11.9.1.1 Trimer I . . . . . . o o o

11.9.1.2 Trimer IT . . . . . . . . .o o

11.9.1.3 Trimer ITT . . . . . . . . . o o oo

11.9.1.4 Trimer IV . . . . . . oo o
11.9.2 Conversion of rotational into cartesian coordinates . . . . ... .. .. ..
11.9.3 Optimisation of (H2O)s . . . . . . . o . . . oo oo o
The C++ Gaussian 94 interface . . . . . . . . . . . ... ... ...
Hiickel calculations for Ptg . . . . . . . . . . . . . o
Hiickel calculations for Pty7 . . . . . . . . . . . ...

Construction of figure 7.28 . . . . . . . . ...

iv

251
252
252
253
254
262
265
265
267
268
270
271
271
273
273
275
280
284

285

295
295
311



List of Figures

1.1
1.2
1.3

2.1
2.2
2.3
24

3.1
3.2
3.3
34
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14
3.15
3.16
3.17
3.18
3.19
3.20
3.21
3.22
3.23
3.24
3.25
3.26
3.27

Structure of ice 1Th. . . . . . . . . . L

Ideal bilayer structure. . . . . . . . . . . e e e e e

Scientific environment of this work. . . . . . . .. ..o oL oo 11
Influence of the BSSE on the interaction energy. . . . . . . . . .. ... .. ... ... 25
Formation of a trimer. . . . . . . . . ... L 26
Interaction and mixing of the monomer’s orbitals. . . . . . . . .. ... ... ... .. 28
Dipole-dipole interaction. . . . . . . . . . . ... 42
Sketch of the molecular orbitals of water. . . . . . . . ... . ... ... .. ... 48
Geometry of the water dimer. . . . . . . . .. ... oL 50
Variables of the dimer. . . . . . . . . . . ... 51
Composition of the water dimer’s MOs. . . . . .. . . .. ... L o 55
Influence of the electrostatic interactions on the orbital energies. . . . . . . .. .. .. 95
MO 5a’ of the water dimer. . . . . . . . . ... L 56
MO 6a’ of the water dimer. . . . . . . . .. ... L 56
MO 7a’ of the water dimer. . . . . . . . ... ... 56
MO 8a’ of the water dimer. . . . . . .. ... ... 56
Electron density in the symmetry plane. . . . . . .. ... ... .. oL, 56
Formation of the water dimer. . . . . . . . . . . . .. ... 57
Interaction energy and BSSE. . . . . . . .. ... o 62
Minima in figure 3.12. . . . . . . .. 62
Energy composition, not BSSE corrected. . . . . . . .. ... oo L. 62
Changing of rog with doo- - - - - -« .« . o . o L 62
Changing of charges during dimerisation. . . . . . . . . . . ... ... ... .. .... 62
Correlation energy vs. doo. - « « v v v v v e e e e e 62
Geometry of a possible ion pair. . . . . . ..o oL 63
Energy during the proton transfer. . . . . . . .. .. ... L. 65
Proton charge during proton transfer. . . . . . . . . . . ... oL 65
Chargre transfer Aq during proton transfer. . . . . . ... ... ... ... ... ... 65
Interaction energy with rigid geometries. . . . . ... ... ... oo 66
Details from figure 3.22. . . . . . . ... 66
Comparison of the charge transfer. . . . . .. .. .. ... .. . L. 66
Difference between a flexible and a rigid monomer geometry. . . . . . . .. .. .. .. 67
Details from figure 3.25. . . . . . . . ... 67
Bending of co. . . . . . . 68



3.28
3.29
3.30
3.31
3.32
3.33
3.34
3.35
3.36
3.37
3.38
3.39
3.40
341

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

4.10
4.11
4.12
4.13
4.14
4.15
4.16
4.17
4.18
4.19
4.20
4.21
4.22
4.23
4.24
4.25
4.26
4.27
4.28
4.29
4.30

Bending of 8. . . . . .o
Repulsion between water molecules. . . . . . . . ... ... ... . ..
Oxygen-oxygen repulsion ap0. - « « - « « v v o e e
Hydrogen-Hydrogen repulsion agm. - - - - -« « o o o o 0 v v i i e
Local minimum of H-H repulsion. . . . . . . . . ... ... .. ... ... .......
Artificial BSSE minimum of agmg. . - . . . . . . ..
BSSE corrected minimum geometry. . . . . ... ... L oo
Geometry of trimer I. . . . . .. oL
Geometry of trimer TI. . . . . . . . .. L
Geometry of trimer TTL. . . . . . . . . . L
Geometry of trimer ITV. . . . . . . . L
Three possible conformers of trimer IIT with their MP2 energies in Hartree. . . . . .
3a’ orbital of trimer I. . . . . . ..

Formation of trimer III from dimers. . . . . . . . . . . . . . . . . . ... . .. ....

Geometries of water monomers for different interaction potentials. . . . . . . . . . ..
Local minimum of the BNS-appo curve. . . . . . . . . .. .. .. ... .. ... ...
Damping function for the Coulomb interaction. . . . .. .. ... ... ... .....
Influence of the damping. . . . . . . . . . .. L
Composition of the Coulomb energy. . . . . . . . . . ... .. .
OH interaction energies in OH™. . . . . . . . . ... . ... . .
Polarisation energy of the CFMS model. . . . . . . . . ... .. ... ... ......
Dimerisation curve - TIPS2. . . . . . . . . . .. ..o
OO repulsion - TIPS2. . . . . . . . . . .
HH repulsion - TIPS2. . . . . . . . . . . . .
Variation of B - TIPS2. . . . . . . . . . . . .
Variation of o - TIPS2. . . . . . . . . . . . .
H>0 geometry for the classical potential . . . . . . .. ... ... ... ... ...
Sketches of selected dimer geometries. . . . . . . .. ... oL
Dimerisation curve - Pot. E. . . . . . . ... oo
OO repulsion - Pot. E. . . . . . ..
HH repulsion - Pot. E. . . . . . . . . e
Variation of 8- Pot. E.. . . . . . . .
Variation of a - Pot E. . . . . . . . ..o
Different repulsion functions. . . . . . . . . . ..o Lo
Potential energy surface potential E for o and 3; doo = 2.8514 A / minima. . . . . .
Potential energy surface potential E for o and 3; doo = 2.8514 A / maxima.

Energy profile, path 1-5-3, Pot. E. . . . . . . . . ... o

Energy profile, path 4-1, Pot. E.. . . . . . . . . ... oo
Energy composition, path 1-5-3, Pot. E. . . . . ... ... ... ... ... ...
Energy composition, point 5, Pot. E. . . . . ... ... oo o oo
Dimerisation curve - Pot. N. . . . . . . . ... o
OO repulsion - Pot. N. . . . .. o o e
HH repulsion - Pot. N. . . . . . . e e e e
Variation of - Pot. N. . . . 0. .

vi

69
69

100
100

102

105



4.31
4.32
4.33
4.34
4.35
4.36
4.37
4.38
4.39
4.40
4.41
4.42
4.43
4.44
4.45

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9
5.10
5.11
5.12
5.13
5.14
5.15
5.16

6.1
6.2
6.3
6.4
6.6
6.5
6.7
6.8
6.9
6.10
6.11
6.12

Variation of a - Pot N. . . . . . . . . oL
Potential energy surface of potential N for o and 3; doo = 2.9834 A / minima.
Potential energy surface of potential N for a and 3; doo = 2.9834 A / maxima. . . .

Details of minimum 3, Pot. N. . . . . . . . . ... L
Energy profile path 1-5-3, Pot. N. . . . . . . . . . .. ...
Energy composition path 1-5-3, Pot. N. . . . .. .. ... ... oo
Energy composition point 5, Pot. N. . . . . . . ... oo o oo
Reaction path 1-5-3, Pot. E. . . . . . . . . . . ..
Reaction path 1-5-3, Pot. N. . . . . . . . . . . .. .
Geometry of the cyclic trimers. . . . . . . . . ... L
Formation of a cyclic trimer. . . . . . . . . . . . . . e
Ringclosure of (HaO)z. . . . . o o o oo o
Global minimum of (H2O)s. . . . . . . . ... .
Transition state. . . . . . . . . L e e e
Potential energy function. . . . . . . ... L L
Pts cluster. . . . . o e e e e
Pts Hiickel orbital energies. . . . . . . . . . . . . .
Pty pyramid, top view. . . . . . ... L
Variation of the bond integral H,, =8.. . . . . ... ... ... . o0 L.
Variation of a of the top atom. . . . . . . . . ...
5d-6s interaction in Pty . . . . . . . . . e e
Mirror planes in Pts —HO. . . . . . . . ..o
Mixing of the nonbonding 6s orbitals. . . . . . .. .. .. ... ... ... ... .. ..
Rotation in Pts —H2O / singlet state. . . . . . . . . . .. ... ...
Rotation in Pt5; —H»O / triplet state. . . . . . .. .. ... ... ... L.
Ptg cluster, top view. . . . . . . . L e e e e e
Pty7 cluster, top view. . . . . . . . L L
Surface model cluster. . . . . . . ..
Effect of the second next neighbour (y =0.2). . . .. .. ... ... .. ... .....
S, calculated with G94 and the best fit. . . . . . ... ... ... ... ... ...
EHT results for Pt9. . . . . . . . . .
Electronic states of a platinum atom . . . . . . . .. ... ...
HF results for Pt—H>O. . . . . . . . . . . . .
HF results for Pt—HoO. . . . . . . . . . e
Platinum states close to negative charge. . . . . . . . ... .. ... .
Pt—H>0 geometry. . . . . . . . ..
Formation of Pt—HsO. . . . . . . . . . . e
6a’ orbital of Pt—H>O. . . . . . . . ...
7a’ orbital of Pt—HoO. . . . . . . . . e
10a’ orbital of Pt—HoO. . . . . . . . .
Movement of the total electron density. . . . . . . . . . .. . ... ... ... ...,
Water waggle movement. . . . . . . . ... e
o-MOs of PtH. . . . . . . e

vii

113
113

150



6.13
6.14
6.15
6.16
6.17
6.18
6.19
6.20
6.21
6.22
6.23
6.24
6.25
6.26
6.27
6.28
6.29
6.30
6.31
6.32
6.33
6.34
6.35
6.36
6.37
6.38
6.39
6.40
6.41
6.42
6.43
6.44
6.45
6.46
6.47
6.48
6.49
6.50
6.51
6.52
6.53
6.54
6.55
6.56
6.57

Orbitals of Pto. . . . . . . . o e e e e 160

06s orbital (LUMO) in the !S—!'Sdimer. . . . . ... ... ... ... .. ....... 160
o6s orbital (HOMO) in the >D—3D dimer. . . . . .. ... ... ... .. ....... 160
Dissociation of the 1S—1S dimer. . . .. .. ... .. ... .. .. ... . ... ..., 162
Dissociation of the 1S—2D dimer. . . . . .. ... ... ... ... ........... 162
Different geometries for Pto—HoO. . . . . . . . .. L 163
Geometry A: Bonding orbital a; symmetry. . . . .. ... oL 165
Geometry A: Bonding orbital by symmetry. . . . . ... oo 165
Zero msq-3aq overlap. . . .. .. L L e e e e 165
Geometry C: Bonding orbital (water 3a;). . . . . .. .. ... ... ... ... 166
Geometry C: Bonding orbital (water 1by). . . . . .. . ... ..o 166
Geometry G: Bonding orbital (water 3a;). . . . . .. . ... ... 166
Geometry G: Bonding orbital (water 1by). . . . . .. ... ..o 166
Electron movement in Pto—H>O. . . . . . . .. .. ... 167
Dissociation of geometry A. . . . . . . ... 169
Dissociation of geometry C. . . . . . . . .. L 169
Dissociation of geometry G. . . . . . . . ... 169
Different dissociation curves. . . . . . . . .. ... L 169
Rotation around the PtO bond. . . . . . .. . . .. .. oo o 171
Wagging of the water molecule. . . . . . ... . ... ... ... ... . L. 171
Pta-Geometry A to D. . . . . . oL 171
Shift along the PtPt bond, start geometry A, distance. . . . . . . .. .. .. ... .. 172
Shift along the PtPt bond, start geometry A, energy. . . . . . . . ... .. ... ... 172
Shift along the PtPt bond, start geometry A, wagging. . . . . . . ... . ... .... 172
Shift along the PtPt bond, start geometry C, length. . . . . ... ... ... .. ... 172
Shift along the PtPt bond, start geometry C, energy. . . . . . .. .. .. ... .. .. 172
Wagging of the H,O in geometry A, bond length. . . . . .. ... ... .. ... ... 173
Wagging of the HyO in geometry A, total energy. . . . . . . . .. . ... ... .... 173
Geometry C to F, 6s population. . . . . . ... ... . L o 174
Geometry C to F, total energy. . . . . . . . . . ... L 174
Connection between different geometries and states. . . . . . ... ... ... ... .. 175
Hiickel results for equilateral Ptg. . . . . . . . . .. . . oo 177
The hollow site of Pt(111). . . . . . . . . . o 180
Dissociation energies HF/MP2. . . . . . . ... ... .. ... o 180
RHF energy and HF 6s population. . . . . . . . . ... ... ... ... ....... 180
MP2 energy and MP2 6s population. . . . . .. ... ... ... ... ... 180
MP2 energy and ground state coefficient. . . . . . . . ... oo oL 180
Rotation of the hollow site water. . . . . .. .. ... ... ... ... . ... ... 180
Geometry IV. . . . L e 181
Geometry IL. . . . . L L oL 181
Geometry ITI. . . . . . . o 0 e 181
Dissociation of geometry II. . . . . . . . .. .. L 182
Rotation of HyO in geometry II. . . . . . . . . . . ... o o 182
Movement of the water molecule. . . . . . . . . ... ... o o 182
Rotation of HyO in geometry III. . . . . . . . . . ... . 182

viii



6.58
6.59
6.60
6.61
6.62
6.63
6.64
6.65
6.66
6.67
6.68
6.69
6.70
6.71
6.72
6.74
6.75
6.73

7.1
7.2
7.3
74
7.5
7.6
7.7
7.8
7.9
7.10
7.11
7.12
7.13
7.14
7.15
7.16
7.17
7.18
7.19
7.20
7.21
7.22
7.23
7.24
7.25
7.26

Pts—Ho0 geometry V. . . . . . L e 183

Hiickel orbital energies. . . . . . . . . . . .. L 183
Geometry of Pt —HoO. . . . . . .. 186
Hiickel results for Pts. . . . . . . . . . . . e 187
Bonding orbital in Pts—HoO (HaO 3aq). . . . . . . . . .. o 189
Bonding orbital in Pts—HoO (HaO 1bq). . . . . o o o o o000 189
Dissociation Pts —H2O. . . . . . . . . . e 189
Rotation of H>O around the PtO bond in Pts;—H>O. . . . . . . . ... ... ... .. 190
Wagging of H,O in Pt —HO. . . . . . . ... .. . 190
Optimized Ptg—HoO. . . . . . . . . e e 192
Bonding orbital in Ptg—HoO (HoO 3ay). . . . . . . . oo o oo 193
Bonding orbital in Ptg—HoO (HoO 1by). . . . . o o o oo oo 193
Band structure of small platinum cluster. . . . . . . .. .. ... .. oL, 196
Pts —H5O binding energy (EHT). . . . . . . . .. ... . . ... 197
Charge on Pt5 in Pt5—H,O for different values of dpypy (EHT). . . . . . . . . .. .. 197
EHT results fot Pt,—H20 (n = 1,2,5). . . . . . ... .. . 198
EHT results for Ptg—H2O. . . . . . . . . .. .. o 198
Totally symmetric EHMOs in Pts;—H-O . . . . . .. ... ... ... ... ..., 198
6s orbital, LanL.2 ECP, cut along the x axis. . . . . . ... ... ... ........ 206
6s orbital, 5d?6s!, different ECPs, cut along the x axis. . . . . .. .. ......... 206
Radial 6s electron density for different ECP. . . . . . . .. .. ... ... ... ... . 207
Replacement polynominals for different transition points (rg). . . . . . . . . . .. .. 208
New 6s wavefunction, final version. . . . . . . .. .. .. ... ... .. ........ 209
New 6s radial electron density, final version. . . . . . ... ... ... ... ... .. 209
6p radial density function (LanL2). . . . . . . ... ... ... . oL 212
6p target radial function and best fit. . . . . . . ... ..o oL 212
Original LanL2 6p radial density and the new one. . . . . . ... ... ... ..... 212
New and original radial 6p wavefunction. . . . . . .. .. . ... ... ... ... ... 212
6dy, radial electron density. . . . . . . . .. L e e e e 214
Different 6dy, radial functions. . . . . . . . . . . . .. e 214
Radial 6dy, electron density (4 gaussians). . . . . . . . ... ... ... ... 214
6dy, wavefunction cut along the XZ axis. . . . . . . . . .. ... o 214
6dy, density functions. . . . . . . ... Lo 214
Test of equation 7.29 with Gaussian 94.. . . . . . . . . . . .. ... ... ... ..., 218
Global minimum with a positive energy eigenvalue. . . . . . . .. ... ... ... .. 218
Plot of equation 7.39, Vinax = 1.0. . . . . . . . L L 221
Plot of equation 7.39, 8 = 0.1. . . . . . . . . . . L 221
Individual energy contributions; equation 7.39, 8 = 0.1, Vipax = 2.5. . . . . . . . .. 222
ECP with local minimum; Er = 0.23, a = 0.12, § = 0.016,d = 2.53-1075. . . . .. 222
Local minimum forn =6, 7and 8. . . . . . . ... .. L o o 224
Minimum energy difference for a finite potential. . . . . . .. .. ... ... ... .. 224
Basafunction of AE. . . . . .. 226
BrVEISUS dA. « v v o e e e e e e e e e e e e e e e e 227
The ECP as a function of r. . . . . . . . . ..o 227

ix



7.27
7.28
7.29
7.30
7.31
7.32
7.33
7.34
7.35
7.36
7.37
7.38
7.39
7.40
741
7.42
7.43
7.44
7.45
7.46
7.47
7.48
7.49
7.50
7.51
7.52
7.53
7.54
7.55
7.56
7.57
7.58
7.59
7.60
7.61
7.62

8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8

Variation of 8 at constant valuesof da. . . . . . . . ... . ... ... ... ..... 228

Br as a function of dy and Sa. . . . . . . .. e 230
Fit for the new f term (test 2).. . . . . . . ... . . . 232
Fit for the new s-f term (test 2). . . . . . . ... . .. .. 232
Fit for the new p-f term (test 2). . . . . . ... . .. ... 232
Fit for the new d-f term (test 2). . . . . . ... . .. .. .. 232
Dimerisation energy from test 1and test 3.. . . . . . . ... ... L. 232
Fit for the new s-d term (test 3). . . . . . .. . . .. ... 233
Fit for the new p-d term (test 3). . . . . . ... ... ... .. 233
Ug°™ in the 3 different tests. . . . . . . . ... .. o o oo 233
6s orbital. . . . . .. 235
6p orbital. . . . . . . e 235
6d orbitals. . . . . . . L e 235
Gaussian 94 input. . . . . ... e e e e 236
20 test for USP™ (8 = 0.02). . . o o v v v e e 237
Order 2: Eror for an optimized bond length of 2.3578 Ao 237
Influence of da on the bond length for fixed values of Sa.. . . . . . . . . .. ... .. 238
Influence of dp on the dimer’s energy for fixed valuesof Ba. . . . . . . . ... .. .. 238
Order 3: Optimized bond length is 2.3578 A.. . . . . . . . . ... ... . ... .... 238
Influence of da on the optimized bond length . . . . . ... ... ... ... ... .. 238
Two energy discontinuities observed for § = 0.42 au.. . .. ... ... . ... .... 239
Influence of Uf°™® on the potential energy surface (5 =042).. . . .. ... ... ... 239
PtH bond length. . . . . . . . . . 239
Total energy Eror of PtH. . . . . . . . o oo o 239
Collaps of PtH (Ba = 0.46). . . . . . . . .. 240
Bond length and Etot in Pt;. .............................. 241
Charge on the top platinum and dipole moment in Pt. . . .. ... ... ... ... 241
Eror of the LanLL1IMB cluster. . . . . . . . . . . . . . .. . . . ... .. .. ..., 243
Charges on the LanLIMB cluster. . . . . . ... ... ... ... ... ... 243
Dipole moment the LanLIMB cluster. . . . . . .. ... .. ... .. ... ...... 244
Dissociation curves. . . . . . . ... e e e 245
Influence of the symmetry. . . . . . . . . .. L L 245
Rotational barriere - unsymmetric case. . . . . . . . . .. .. oo 246
Rotational barriere - symmetric case. . . . . . . . . ... L oo 246
Rotational barriere at MP2 level. . . . . . . . . ... ... ... Lo 247
Dissociation at MP2 level. . . . . . . . . . . .. L 247
Fragment of the Pt(111) surface with water bilayer. . . . . . ... .. .. ... .... 253
Platinum and a water dimer - principal geometries. . . . . . . . . . ... ... .. .. 255
Cluster I: Pto—(H20)3 . . . . o o 256
Cluster IT: Pts—(H2O0)s . . . . . o o e 257
Cluster ITI: Pts—(HaO)s . . . . . o o o o e e 258
Cluster IV: Pto—(HoO)s . . . . . o o o e 258
Cluster V and cluster VI . . . . . . . . . o e 259
Cluster VII . . . o o e e e 260



8.9

8.10
8.11
8.12
8.13
8.14
8.15
8.16
8.17
8.18
8.19
8.20

9.1

11.1
11.2
11.3
114
11.5
11.6
11.7
11.8
11.9
11.10
11.11
11.12
11.13
11.14
11.15
11.16

Cluster VIII . . . . . . . e e e 261

Water dimer. . . . . . . . . 269
Csan Water trimer. . . . . . . . . . . . e e e e e 270
Water Hexamer on the virtual Surface (d1 = 2.8A). . . . ... ... ... ... .. .. 272
Water dimers in the surface-constrained hexamer. . . . . . .. .. ... .. ... ... 273
Free water hexamer. . . . . . . . . . . . L 274
Energy of Formation Eggx of the water hexamer under surface constraints. . . . . . 275
Pair interaction energies Epyy in the water hexamer (classical potential). . . . . . . . 277
Height (h) of ring as function of surface lattice constant d1. . . . ... ... ... .. 277
Angle wl as a function of surface lattice constant d1. . . . . . .. ... .. ... ... 278
Angle w2 as a function of surface lattice constant d1. . . . . . .. .. ... ... ... 278
Angle w3 as a function of surface lattice constant d1. . . . . . .. ... .. ... ... 280
Model for the platinum-water interaction. . . . . . . . . . .. ... ... ... .... 288
Variables of the water dimer. . . . . . . . . .. ... 326
Bending of W3. . . . © . L 326
Test of the BNS water-water interaction potential. . . . . .. .. ... ... ... .. 330
Test of the ST2 water-water interaction potential. . . . . . .. .. ... ... .. ... 331
Test of the ROWLINSON water-water interaction potential. . . . . . . . . ... .. .. 332
Test of the DERNAL and FOWLER water-water interaction potential. . . . . . . . .. 333
Test of the TIPS2 water-water interaction potential. . . . .. .. .. ... ... ... 334
Test of the TIP4P water-water interaction potential. . . . . . . . ... ... .. ... 335
Test of the SPC water-water interaction potential. . . . . . . . . . . . ... ... ... 336
Test of the SPC/E water-water interaction potential. . . . . . .. ... ... .. ... 337
Test of the TIPS water-water interaction potential. . . . . .. .. .. ... ... ... 338
Test of the TIP3P water-water interaction potential. . . . . . . . ... ... .. ... 339
Test of the CFMS water-water interaction potential (I).. . . . .. ... ... ... .. 340
Test of the CFMS water-water interaction potential (IT). . . . .. ... ... ... .. 341
Pty cluster, top view. . . . . . . . L. 354
Pty7 cluster, top view. . . . . . . L. L 356

xi



xii



List of Tables

1.1
1.2
1.3
1.4

2.1
2.2

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14
3.15
3.16
3.17
3.18
3.19
3.20
3.21
3.22
3.23
3.24
3.25
3.26
3.27

Properties of water. . . . . . . . . . . .. 2
Properties of ice. . . . . . . . L L L 3
Properties of platinum. . . . . . . . . . . . . e 4
Multilayer Peaks . . . . . . . .. 6
Influence of the excitation on the correlation energy of water. . . .. ... ... ... 23
Expectation value of (r?) in bohr for different uranium orbitals. . . . . .. ... ... 37
Optimized water geometries. . . . . . . . . . . ... 46
Compilation of the main results for water. . . . . . . ... . ... .. .. ... ... . 47
Harmonic vibrational frequencies of water calculated with a DZP basis set. . . . . . . 49
Thermodynamic properties of water. . . . . . . . . . ... ... ... ... ..., 49
RHF results for water. . . . . . . . . . . . e 50
Ground state coefficients from different correlation calculations. . . . . .. . . .. .. 50
Results for the water dimer from previous works. . . . . . . ... ... ... ... .. 51
Optimized geometries for the water dimer. . . . . . . ... ... ... ... .. .... 53
Remarks to table 3.8 . . . . . . . . 54
Influence of the BSSE onto the monomer’s geometry. . . . . . .. ... .. ... ... 54
Comparisson with the literature. . . . . . . . . .. .. . o o 59
Calculated haronic frequencies of the water dimer [em™]. . . . .. ... .. ... ... 60
Frequency shifts caused by the dimerisation of water. . . . . . . . ... .. ... ... 60
Correlation level and dpo, @« = 0° . . . . . . . . . . . Lo 63
Comparison of different ion pairs and dimer at L3 =1.0 A. . . ... ... ... ... 64
Results for H;0T and OH™ . . . . . . . . . e 64
Influence of the BSSE on the variables of the water dimer. . . . . . . ... ... ... 68
Minimum geometry and energy at the different steps. . . . . . . . ... ... ... 71
Final parameter for Vag . . . . . o o o 0 o e e e 72
Energy composition near the minimum in kcal/mol. . . . . .. .. ... .o L. 72
Definition of the trimer geometries. . . . . . . . . . . ... ... o o 75
Geometrical details of the trimers. . . . . . . . ... oL oL oo 75
Previously published results for the water trimer. . . . . . . ... ... .. ... ... 76
Analysis of the interaction energy. . . . . . . . ... . oL o 7
Electron affinity and ionisation energy of water. . . . . . . .. .. ... ... ... .. 78
Correlation of charge transfer and stability. . . . . . . . ... ... ... ... ..... 79
AENpa in kecal/mol . . . . .o 81

xiii



4.1
4.2
4.3
4.4
4.5
4.6
4.8
4.7
4.9
4.10
4.11
4.12
4.13
4.14
4.15

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9
5.10
5.11
5.12
5.13

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12
6.13
6.14
6.15

Comparison of various potentials from the literature. . . . . . .. ... ... ... .. 89

Potentials A - F. . . . _ . 97
Optimized geometries of both minima on the dimer’s potential energy surface. . . . . 97
Errors for potential E . . . . . . . .. 98
Stationary points in figure 4.21. . . . . . ... oL oo L 99
Characteristic points of figure 4.22, doo = 2.8514 A. . . . . ... ... . ... .... 103
Characteristic points of potential N (refer to figure 4.32 and 4.33 for details). .. .. 104
Errors for potential N . . . . . . . . oL 104
Parameter for potential N. . . . . . . . ... Lo 109
Variances of potential N. . . . . . . . .. ..o o 109
Absolut values for potential N. . . . . . . .. .. oL 109
Global minima for dimers. . . . . . . . . ... ..o 109
Optimisation of trimers I to IV using potential N. . . . . . . ... .. ... ... ... 110
Compostion of the trimerisation energy composition during the optimisation. . . . . 111
Z-matrices for cyclic water trimers. . . . . . . .. .. ... e 112
HMOs for the equilateral triangle. . . . . . . .. ... .. ... 120
HMOs for the right-angled triangle. . . . . . . . ... ... .. ... .. . L. 121
Hiickel orbitals for Pt5. . . . . . . . . . . . . 123
Population analysis PT;‘. ................................. 123
Coefficients of the molecular orbitals in Ptg. . . . . . .. ... ... ... ....... 129
Charges on the Ptg cluster. . . . . . . . .. ... .. . . . 129
6s population in the Ptg cluster. . . . . . . . . . . .. .. ... . ... .. ... 129
Occupied orbitals of the Pt17 cluster and population analysis. . . . . . ... ... .. 131
Charges on the Pty7 cluster. . . . . . . . . .. . 132
Qcent On differnt metal cluster. . . . . . . . . ... L o 132
Orbital energies and degeneracies of the HMO calcualtions. . . . . ... ... .. .. 135
Hiickel parameters from ECP-FH calculations on Pt and Pt3. . ... ... ... .. 138
Results from ECP-HF calculations. . . . . . . . ... ... . . ... ... 139
ECPsusedin chapter 6 . . . . . . . . . . . . e 146
Energies from different quantum chemistry codes for platinum. . .. .. ... .. .. 147
platinum water adduct - equilibrium geometries . . . . . .. ... .. oL 149
Platinum water adduct - extrema of a systematic changeof v. . . . ... ... .. .. 154
Comparison of different ECPs. . . . . . . . . . . ... .. o 155
BSSE in 'Pt—H,O at MP2level. . . . . . . o o o i e 156
Parameters for VBSSE - -« -« - o o o e e e e 156
Properties of 2XT PtH for different ECPs . . . . .. ... ... ... ......... 157
Mulliken Population from Lanl.2DZ calculations. . . . . .. ... ... . ... .... 157
Properties of the platinum dimer. . . . . . . . . .. ... 0o oL 161
IS—1S dimer and water. . . . . . . ... e e 164
3D—!S dimer and water. . . . . . ... ... 164
Charges and charge transfer in Pt,—H,O. . . . ... ... ... ... ... .. ... 167
The platinum-water bond as a function of the 6s population . . . .. .. ... .. .. 168
Mulliken overlap population in Pto—HO. . . . . . . ... . oo o 174

xiv



6.16
6.17
6.18
6.19
6.20
6.21
6.22
6.24
6.23
6.25

7.1
7.2
7.3
74
7.5
7.6
7.7
7.8
7.9
7.10
7.11
7.12
7.13
7.14

8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8

9.1

11.1
11.2
11.3
114
11.5
11.6
11.7
11.8
11.9

HF and MP2 energies for Ptg. . . . . . . . . . .
MP2 6s population in Ptg. . . . . . . . . . L
Overlap population in Ptg. . . . . . . . .. .o
Optimized structures for Pts—H>O. . . . . . . .. . ... ... ... .. ... ... ..
Geometries for the right-angled Pts-triangle. . . . . . . . . . ... .. ... ... ...
Optimized Pts —HO cluster. . . . . . . . . . . . . . .. . o
Local minima in the Pt5 H20 dissociation. . . . . . . . . . .. ... .. ... .....
Ground state coefficient ¢ versus cluster size. . . . . . . . . ... ... ... .. ...
Electronic properties of the Ptg—H>O cluster. . . . . . . . .. ... ... ... ....

Small Pt, Cluster, singulet wavefunction, MP2 optimized structure. . . . . . . . . ..

Yaimp in Gaussian 94 input format. . . . ... ... o000 oL
Results for the new 6p wavefunction. . . . . . ... ... ... ... ... ...
LanL2 eigenvalues. . . . . . . . . . . e
6d orbital with a augmented basis set. . . . . . . .. ... oL
Local minum created with various exponetsn. . . . . . . . . .. ... ... ... ...
Results forda.. . . . . . . . o e
Parameters of ZURITAS's ECP. . . . . . . . . . . ..
Einergy eigenvalues form test 1. . . . . . . . . ... L oL o o
Results from test 2. . . . . . . . . L L
Results from test 3. . . . . . . . . . L
Mulliken population at the top in Pt;‘. ..........................
Pt5+ properties calculated with a second order ECP function.. . . . . . ... .. ...
Pts pyramide with different ECP at the top. . . . . . . .. ... ... ... .. ....
Orbital coefficients in Pts. . . . . . . . . . . . . e

Selected results for Pt—H>O. . . . . . . . . ... .
Results for Pt—(HaO)a. . . . . . o o
Selected Values for larger platinum-water clusters . . . . . . ... ... .. ... ...
Water-Water interaction parameters. . . . . . . . . . . .. ...
Calculated properties of the water dimer. . . . . . . . .. ... ... ... .......
Calculated properties of the planar {ppp} water trimer. . . . .. ... ... .. ...
Global minima of the potential energy curves for the constrained water hexamer.

Multilayer Peaks. . . . . . . . ..

Pt,—H>0 with different ECPs. . . . . . . . . .. . . . ... ... ...

DZP basis set for HoO. . . . . . . . . . . e
TZVP basis set for HoO. . . . . . . . . . e
LanL2DZ Pt basis set. . . . . . .« o e e e e
LanL1MB Pt basis set. . . . . . .« . 0 e e e e e
LanL2DZ Pt ECP. . . . . . . . e e
LanLIMB Pt ECP. . . . . . . . e e
New basis set for Pt. . . . . . . . . . . . . e
New ECP for Pt. . . . . . . . . e
GAMESS UK results for the water monomer. . . . ... ... ... ..........

XV

178

193
194
195

210
211

231

240

243



11.10
11.11
11.12
11.13
11.14
11.15
11.16
11.17
11.18
11.19
11.20
11.21
11.22
11.23
11.24

GAMESS UK results for water in comparrison with other works. . . . ... ... .. 320

Dimer with a straight hydrogen bond (W3 =90°). . .. .. ... ... ........ 321
Dimers with a bended hydrogen bond. . . . . . ... ... ... o L. 322
Dimer with a fixed water geometry (rop = 0.9572 A, <mon = 104.52°). . . . . . .. 323
Influence of the BSSE on the monomer’s geometry (I). . . . . ... ... ... ... .. 324
Influence of the BSSE on the monomer’s geometry (II). . . . . . . ... ... ... .. 324
Influence of the BSSE on the monomer’s geometry (IIT). . . . . . ... ... ... .. 325
Influence of the BSSE on the monomer’s geometry (IV). . . ... .. ... ... ... 325
MOROKUMA energy decomposition (doo) - all energies in kcal/mol. . . . . .. .. .. 327
MOROKUMA energy decomposition () - all energies in 1072 Hartree. . . . . . . . . . 328
MOROKUMA energy decomposition (3) - all energies in 1073 Hartree. . . . . . .. . . 329
Basis set for the Pty Hiickel calculation. . . . . . . . .. ... ... ... ....... 354
Basis set for the Pty Hiickel calculation. . . . . . . . .. ... ... ... ....... 357
Functions used for the calculation of Bg. . . . . . . . . . .. ... L. 359
Functions used for the calculation of E"(a). . . . . . .. ... ... 361

xvi



Chapter 1

Introduction

1.1 General Introduction

Water is probably one of the most common and best analysed chemical substances on this planet.
The oceans, which cover 70.8% of the planet’s surface, store 97.3% of all water (1.385-10° km?).
Platinum on the other hand is very rare (0.01 ppm [1]). This work so focuses on the interaction
between the common and the noble.

Platinum is a very important catalysist. The first reaction studied in detail, which served
for the definition of a catalysis, was the hydrogen combustion (2 Hx + Oy — 2 Hy0) [2-5]. A
stoichometric mixture of hydrogen and oxygen does not react until a small dose of platinum powder
is added. Then, the mixture reacts vividly and an explosion can be observed. The platinum dust
lowered the barrier of activation effectively for the reaction to start.

Today, one of the most important applications of platinum is the purification of exhaust fumes
from motor vehicles [6]. Platimum catalysis the oxidation of carbon monoxid and hydrocarbons to
carbon dioxide, but more important is the reduction of nitrogen oxides.

2CO + 2NO — Ny + 2C0,

Water is next to carbon dioxide the most important product of the combustion and large

amounts of water are also at the surface of the platinum catalysist.

3x+1

CXH2x+2 + 2

02 — XCOQ + (X+1) HQO

These water molecules compete with the other oxides in the exhaust fumes for active surface sites
on the catalyst and have so a major impact on the quality of the cleaning process. Electrochemical
experiments showed, that the rate of the Oy reduction and H, ionisation reaction on platinum
electrodes depends stongly on the orientation of the water molecules [7].

Regarding the economical and environmental importance of the platinum-water interaction it
is not surprising, that the work on this topic started early and first results have been published by
GENERAL MOTORS [8].

Theoretical work as published within this thesis will help us to understand the interaction be-
tween platinum and water better, which will hopefully end in the development of better catalysists

in the future. Computational chemistry can help so to fight air polution in the long term.



1.1.1 Properties of Water

BERNAL and FOWLER showed, that the structure of an individual water molecule does not change
much with the phase of the substance [9]. The free water molecule has Cs, symmetry and the
structure of the molecule can be explained well with the VSEPR model (Valence Shell Electron
Pair Repulsion) [10-12]. The oxygen atom (sp® hybridisation) has a tetrahedral environment: Two
sp? hybrid orbitals form the bonds to the hydrogen atoms (rog) while the remaining two hybrid
orbitals from the lone electron pairs. The lone electron pairs, needing slightly more space than the
chemical bonds, force the hydrogen atoms closer to eachother and the bond angle w is therefore
smaller than that found in an ideal tetrahedreon (109.47°).

Water is a chemical substance with extraor-

property value ref. dinary physical properties (table 1.1). The boil-
M 18.0151  g/mol N ing (Tp) and the freezing point (TF) are much
ron 0.0572 A [16] higher than the values for the other hydrogen
v 104.52 deg [16] chalcogenids (eg H2S: -85.6 °C and -60.3 °C).
H 1.85 D [17] The high transition temperatures are caused by
Ix 2.9376  10~g"'em™*  [16] strong hydrogen bonds among the water mole-
Iy 10220 10™g™em™  [16] cules [13]. Different electronegativities for oxy-
Iz 1.9187 107%™ em™  [16] gen (3.5) and hydrogen (2.1) cause polar oxygen-
@ 145 A? [15] hydrogen bonds and so create a large dipole
Erox 11.53 eV [15] moment (u). Coulomb forces can be used for
Earr 1L.o7 eV [15] a first attemp to explain the strong hydrogen
ABpo-n 498 keal/mol [15] bond between a positively charged hydrogen
AEo-u 427.5 keal /mol [15] atom and a lone electron pair on the oxygen, but
Tr 0.0 °C [1] quantum chemistry provides far better methods
T 100.0 °C [1]

(chapter 3, page 45).

Table 1.1: Properties of water, The covalent hydrogen bonds [14] can form

a rigid, tetrahedral network and so the basis of
ice. This network keeps the water molecules further apart than in the liquid phase, where thermic
motions allow the water molecules to collide and form so distorted micro cluster. The density of
the low pressure ice phases Th and Ic (table 1.2) is therefore smaller than the density of the liquid
(p = 0.99978 g cm™ at the triple point [15]). The structure of these two ice phases can be explained
well with a set of rules originally developed by BERNAL, FOWLER and PAULING (BFP rules or ice

rules) [9, 13]:
e The water molecule in ice resembles the water molecule in the gas phase.

e Each water molecule is oriented so that its two hydrogen atoms are directed approximately
toward two of the four oxygen atoms which surround it tetrahedrally, forming hydrogen
bonds.

e Only one hydrogen atom is positioned between each neighbouring oxygen-oxygen pair.

e Under ordinary conditions the interaction of non-adjacent molecules is not such as to stabilize
appreciably any one of the many configurations satisfying the preceding conditions with

reference to the others.



The hexagonal ice Ih is the 'normal’ ice. Figure 1.1 shows the structure of the ice crystal.
Only the oxygens of the water molecules are drawn and different grey shades in figure 1.1 mark
differnt layers of water molecules in the crystal. The structure of ice Th can be visilized by the
condensation of water hexamers. These water hexamer are rings in the chair conformation. One
hexamer is marked light grey as an example in the centre of the figure.

PAULING suggested 1935, that next to the hexag-

onal ice phase (ice Th) with another ice phase with a
cubic crystal system (ice Ic) should be possible [13].
Ice Ic can created by the condensation of water va-
pors between —120° C and —140° C [1]. Table 1.2
shows a compilation of the strctural characteristics of
both low pressure ice phases.

In both ice phases Ic and Ih are the positions of the

hydrogens disordered. The hydrogen is attached to

either water molecule sharing a hydrogen bond. The

bonds among the water molecules oscilate therefore

Figure 1.1: Structure of ice 1h. [18]

between hydrogen bonding and covalency, depending

1

on the distance of the hydrogen from the oxygen atom"'. If the ice crystal is cooled to very low

temperatures, the movement of the hydrogens freezes and the hydrogens stay in random positions.

ice phase Th Ic

crystal system hexagonal cubic
space group P63/mmc Fd3m

cell dimensions® [pm] a=450 c¢=732 a=635
molecules per unit cell 4 8

nearest, neighbours 4 4

distance to the next neighbour [pm] 275 275
0-0-0 angle [deg] 109.3, 109.6 109.6
hydrogen position disordered disordered
Density® [g cm™] 0.93 0.94

2110 K, athmospheric pressure

Table 1.2: Properties of ice. [18]

Proton ordered ice phases are possible and still subject of current research [19, 20]. A complete
ordering of protons can be used to align the dipole moments of the water molecules parallel to
eachother (ferroelectricity) [1, 21]. Ferroelectric ice phases show a spontaneous polarisation and
strong electric fields can be observed between opposite sides of the ice crystal.

One of the many ways to obtain ferroelectric ice is the epitaxial growth on Pt(111) [20, 22]. The

platinum surface is belived to order the protons in the first layer of water. Careful condensation of

'Proton transfer similar to the GROTTHUS mechanism [23, 24] is impossible in ice between 30 to 190
K [25]. The potential, in which the proton moves, is not periodic, since the proton structure in ice is
disordered, and long distance proton tunneling for the GROTTHUS mechanism demands a perodic potential.
Proton transfer in ice is the movement of a D defect (two hydrogen atoms are on one oxygen-oxygen bond)

in the crystal.



additional water layers should then continue to grow with orientated hydrogens until a metastable,
ferroelectric bulk ice phase has been reached. WITEK and BUCH showed, that only the first bilayer
gowths with orientated hydrogens and that the protons in the second layer are not orientated to
minimize the electrostatic energy [26] and break so the standard rules for hydrogen bonds [27].

1.1.2 Properties of Platinum

Three countries cover 98% of the worlds demand for platinum metals (South Africa 45%, former
UdSSR. 45%, Canada 8%). Only the Merensky-Mine in South Africa (South Africa covers 65% of
the worlds platinum demand.) is exploited for platinum solely, in every other case is the platinum

refined from impurities of other ores [1].

Platinum is a silver white, ductile metal with a cu-

property value bic closed structure and can be dissolved easily in aqua
number 78 . . . -
regia and slowly in hydrochloric acid in the presence
isotopes 6 .
of air.
mass 195.08 g/mol
configuration [Xe] 4f145d96s! PtCli™ + 2¢ — Pt + 4C1° E* =075V
electronegativity 2.2 PtCI2~ 4+ 2 — PtCl3 + 2Cl- E°=0.77V
dpe—py 2.77 A : : - o
T 1769 °C Platinum dissolves also readily in fused alkali oxides
TF 4170 °C and specially in alkali peroxides. It is also attacked by
B fluorine and chlorine at red heat and reacts also with
Eron 9.0 eV

elemetal P, Si, Pb, As, Sh, S and Se under reducing

Table 1.3: Properties of platinum [1]. conditions.

Pt(0) compounds are well known and the synthesis
of many cluster compounds with direct platinum-platinum bonds starts from Pt(PPhgs), [28]. Huge
amounts of molecular hydrogen can be solved in platinum and the metal activates the hydrogen-
hydrogen bond, which explains its catalytic activity in hydrogenation reactions.

Platinum is chemically much more reactive than commonly asumed: More than 70 oxidation-
reduction reactions are catalyzed by platinum and it is now possible to predict catalytic activities

from the thermochemical properties of the reacting couples [29].

1.1.3 Literature Survey

The platinum-water interface has been examined with various experimental techniques ranging from
UHV (Ultra High Vacuum) to electrochemical experiments. Both experiments differ principally
in the number of water molecules. But, it is possible to vary the electric field at the surface
systematically in electrochemical experiments and not in UHV experiments. The electric field at
the surface is varied in UHV experiments by the coadsorption of polar or ionic species, which
makes the fine tuning of the field strength difficult. On the other hand, UHV experiments give
informations on the microscospic scale, whereas electrochemical experiments give integral values for
the double layer [30]. Various structure models have been proposed for the electrochemical bilayer
to explain the value of the differential capacity as a function of the excess charge, but the number
of experimental parameters adjusted to reproduce experimental data quaestions the validity of the
model [24, 30-33].

WEAVER et al. exploited the similarity of both experimental methods for the analysis of the

platinum-carbon monoxide interface and tried to model the electrochemical interface by UHV
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Figure 1.2: Ideal bilayer structure.

means ("UHV electrochemical modeling”) [34, 35]. They showed, that both methods complete
eachother very well.

Early UHV experiments [36, 37] on the adsorption of water on platinum(111) reported a
p(v/3 x v/3) R30° surface structure of adsorbed water molecules and suggested the formation of
ice ordered in domains of 30 — 40 A in lenght.

A water bilayer structure [38, 39] (figure 1.2) has been proposed as the basis of the growth of
ice on hexagonal metal latices. The ice phase on platinum is believed to have the same hexagonal
symmetry as the surface and the water hexamer marked in figure 1.1 forms the basis of the bilayer
structure [40]. The structure of this water bilayers is generally explained in terms of an extension
to surfaces [39] of the BERNAL-FOWLER-PAULING rules (ice rules) [9, 13]. Specifically [39], each
water molecule is assumed bound by at least two bonds (which may be hydrogen bonds to other
water molecules or oxygen lone pair bonds to the surface) while maintaining a tetrahedral bonding
configuration. The water is assumed bound to the surface via one lone pair orbital on the oxygen
and all free lone pair orbitals on oxygen stay nearly perpendicular to the surface. In an ideal infinite
bilayer, all water molecules have their dipole moments pointing away from the surface (*flip up”),
whereas in a finite cluster, water molecules whose dipole moments point toward the surface (”flip
down”) may occur at the edge of the cluster [39, 41, 42]. Experimental results [43] suggest that
the edges of ice-like clusters on Pt(111) are constructed from flip up molecules together with water
molecules with one OH bond parallel to the metal surface, in contrast to the flop down geometry
predicted at the edges by the BFP rules. Such a water species has been observed on Pt(100)
[44] and experimental evidence suggests that such a species may also exist on Pt(111) [45, 46].
It has not been possible to rule out such a structure by application of ultraviolet photoelectron
spectroscopy (UPS) to Pt[6(111)x(100)] [37].

DOERING and MADEY [39] concluded using the surface extended ice rule set, that the small-
est stable water cluster on a hexagonal metal surface should be the water nonamer. Such an
(H50)g cluster has been observed on Ru(0001) as part of p(6v/3 x 61/3) R0° superstructure [39, 47],
whereas experimental results suggest, that the smallest cluster possible on platinum(111) is a three-
dimensional water trimer [45].

In the initial stages of growth, a water molecule has two possible adsorption sites: attached
either directly above a platinum on the surface or to a water molecule already bound to the surface
[46, 48]. The coexistence of both species (i.e. a water molecule directly bound to the surface and a
water molecule attached to another water molecule) is commonly explained in terms of the energy
of isolated bonds, although the importance of cooperative forces has been suggested previously
[42, 45, 49]. The strength of the platinum-water bond corresponds to that of two to three hydrogen
bonds, so either type of bonding is possible.



TDS spectra (Thermal Desorption Spectroscopy) [38, 43, 46, 48, 50-56] of water from the
platinum(111) surface allow us to distinguish different water species, but the discussion remains
controversial. The most recent data from OGASAWARA et al. [56] shows three prominent peaks at
155 K, 165 K and 200 K. The first peak (at 155 K) was assigned to ice sublimation, the second (at
165 K) to water in the second adsorption layer and the third (at 200 K) to water directly bound
to the surface. While the first two peaks have been positively identified, the origin of the third
remains a matter of discussion [53, 54]. The formation of the second peak at 165 K can be observed
at coverages as low as 0.13 to 0.27 monolayer (ML), where 1 ML refers to one ideal bilayer [39].
These TDS results are consistent with other experimental results [43, 45, 46, 48, 57, 58], which also
support the formation of water clusters at low surface coverage.

The second peak? (165 K) is the multilayer peak in the TDS
spectrum. A water molecule from the top should therefore be

surface Itm T
Al K
Ni(111) +0.19 170
Cu(111)  40.08 150
) -0.16 190
Ru(0001) —0.19 212- 220
Re(0001) —0.28 180
Pt(111) —0.30 170
Ag(111) —0.50 150

in a chemical environment similar to an ice Ih crystal. Differ-

ences in the desorption temperature have to be therefore the
result of the lattice distortion of the ice crystal, because this
molecule has no direct contact with the metal underneath. A
measure for this distortion is the lattice-mismatch (ltm) (ta-
ble 1.4). A negative value indicates the contraction of the

ice lattice and a positive its expansion. The highest desorp-

tion temperature should therefore be found for the metal with

the smallest value for the lattice-mismatch (copper), but was .
Table 1.4: Multilayer Peaks data

found for ruthenium. This shift of the maximum peak position
from refs. [38, 47]

and the higher bonding energy compared with ice sublimation
suggest, that the simple bilayer model from DOERING and MADEY may need further refinement
[42, 59].

The theoretical work published on the metal-water interface can be seperated into two main
groups: The first group focuses on electrochemical aspects of the subject. Molecular mechanics
(MC) and molecular dynamics (MD) calculations are used to model the platinum-electrolyte inter-
face. The second approach concentrates more the UHV aspects. Quantum chemical calculations
on various level of theory examine the interaction of one water molecule with a metal cluster
[54, 60-72].

Both quantum chemistry and experiment agree that the water molecule is only slightly disturbed
upon adsorption on Pt(111) [41, 45, 46, 48, 58, 73-75] and dissociation has so far only been observed
experimentally on pre-covered surfaces [76—79], which allows us to use rigid water geometries within
the computational simulations.

First quantum chemical results have been publihed by HOLLOWAY and BENNEMANN using the
EHT (Extended Hiickel Theorie) for the calculation (1980, [64]). They used a Pts pyramid to
model the surface and reported a bonding energy of 0.5 eV with the water molecule in an on-top
position with a platinum-oxygen distance of 2.3 A. These calculations served as the basis for the
development for classical platinum-water interaction potential used for MD calculations.

Eight years later ESTIU et al. [65] reported a new set of EHT calculations with a differnt set of
Hiickel parameters and larger metal clusters (Ptig, Pt1g and Ptas). The platinum-water distance

2The precise value of the desorption temperature depends slightly on the experimental conditions (heat-
ing rate, coverage), which explains the difference of 5K between OGASAWARA [56] and HOFFMAN [47].



was fixed at 1.7 A as a result of earlier calculations (bonding energy = 0.94 eV [60]). They reported
bonding energies of 0.42 eV for the Pt(111) surface and 0.57 eV for Pt(100). In both cases was the
water molecule in an on-top position with its molecular plane perpendicular to the surface.
MULLER et al. used the KOHN-SHAM sheme with a local density approximation [70] to perform
cluster calculations (Pt10—H20) on the adsorption of water on Pt(111) [54, 63, 68]. This group
reported a bonding energy of 0.53 eV with a platinum-oxygen distance of 2.5 A. MULLER pro-
posed also a quantum chemical model for the platinum-water bond [68] basing on his work on the
aluminium-water interaction [70], which was later used by RIBARSKY et al. for the copper-water
bond [71]: The 3a; and the 1by orbitals, which do not contribute much to the bonds within the
water molecule, interact with filled platinum 5d orbitals. The low lying LUMO interacts then with
both filled orbitals resulting from the platinum-water overlap and lowers so the total energy. The
occupation of the former empty LUMO leads to an charge transfer from the water molecule to the
metal cluster. This interaction model is the quantum chemical equivalent to the electrostatic polar-
isation and the authors therefore call the LUMO a polarisation function. They give the following

equation for the polarisation energy AE

(POL|V|L)?

€EPOL — €L

AE = (1.1)

| POL) is the LUMO, which acts as a polarisation function, and | L'} the free electron pair of the
water molecule. Two principal features of the platinum-water bond follow from equation 1.1, which

are not mentioned in reference 68:

1. The binding energy of the water molecule depends on its orientation relative to | POL ), since
AFE is proportional to the square of the overlap between the platinum 5d orbitals and the
free electron pair of the water molecule ( POL |V | L).

2. AF is inversely proportional to the energy difference between both orbitals. The larger the
cluster becomes, the smaller becomes the HOMO-LUMO gap and so the energy difference

between | POL) and L, because €r, is independent of the cluster size.

The importance of polarisation for the platinum-water bond suggests, that cooperative forces
are important for the structure and energy of the platinum-water interface. The significance of
hydrogen bonding and polarisation effects has been discussed previously [45, 56, 64, 68, 71, 75],
but, to our knowledge, has not been studied in great detail. KUTNETSOV et al. published 1989
CNDO/2 (Complete Neglect of Differential Overlap) for water clusters bonded to 1b (Cu, Ag,
Au) and 2b group (Zn, Cd, Hg) elements [67].

Modern quantum chemical calculations on the platinum-water interface suggest that the molec-
ular plane of the water molecule lies parallel to the surface [54, 63, 68]. These results agree with
workfunction measurements [45, 52, 58, 73] on water-covered platinum surfaces, which show that
that a contribution of about 0.2 D of the water dipole moment (free water molecule 1.84 D) is
normal to surface [58], but contradict the ice rules for surfaces, which explain very well other UHV
data like the LEED (Low Energy Electron Diffraction) results. The orientation of the hydrogens
in water molecule with a direct bond to the metal surface underneath should therefore be regarded
as unsetteled.

The number of atoms and molecules in the electrochemical interface inhibits the application of
quantum chemical methods and other have to be used. Monte Carlo simulations (MC) [80-83] and

molecular dynamics (MD) have been used for theese calculations.



A. A. GARDNER and J. P. VALLEAU [82, 83] used a simple interaction pontential basing on
mirror images for the simulation of the metal-water interaction. They assumed an ideal, highly
polarizable metal surface. The image charges had therefore the same size as the charges on the
water molecules (TIPS2 potential for bulk water), but were different in sign. These calcualtions for
an uncharged metal wall resulted in erroneous water orienations close to the wall. The first layer
water molecules bonded with one hydrogen atom to the metal surface while the other pointed into
the bulk water. Despite this principle problem these calculations indicate that polarisation and
many body effects within the metal have a significant influence on the structure of the metal-water
interface, while KOHLMEYER et al. [84] published molecular dynamics calculations showing that
the inclusion of polarisation into the water-water interaction potential has only little influence on
the results of the siumulation. MC calculations with a more elaborate set of potential energy
functions [80, 81] reproduce correctly the orientation of the first layer water molecules close to an
uncharged copper wall.

MD calculations [84-102] form the second group of computational methods applied to the
electrochemical metal-water interface. The potential energy functions used for the metal-water
interaction can be subdivided into two groups: First, potentials exploiting electrochemical effects
such as mirror charges and second, potentials trying to mimic chemisorption data from quantum
chemical calculations.

HAUTMAN et al. [91] published MD calculations for uncharged metal walls using the first group
of metal-water potentials with a peculiar result: Although the first peak of the hydrogen density
lies 0.2 A closer to the metal surface than the first peak of the oxygen density (ref. 91 fig. 2) the
dipole moments of the water molecules point preferentially away from the surface (ref. 91 fig. 3).
The authors explain this effect with the larger charge (factor —2) on the oxygen atoms than on
the hydrogen atoms resulting in an overall negative charge at the metal surface.

ZHU and ROBINSON [92] reported MD calculations of water between two solid, insulating walls.
The interaction between the wall and the water molecules is described with a gas-crystal potential
excluding mirror charges. They conclude form their calculations that the water molecules close
to the surface orientate the hydrogen atoms towards the solid and not into the bulk water. In
a second paper ZHU and PHILPOTT [93] showed, that the orientation of the water molecules to-
wards the surface depends strongly on the chosen potential energy functions now including mirror
charges. They compare two potential energy functions for a variety of metal surfaces differing in
an anisotropic Lennard-Jones energy term (V,,) acting on the hydrogens. The potential energy
functions containing V,, result in water molecules bonding to a Pt(100) surface via one hydrogen
atom similar to the bonding geometries reported by GARDNER et al. [82, 83] whereas the potential
energy function without V,, produces no platinum-hydrogen bonds.

The second class of MD calculations uses individual potential energy functions for the hydrogen
atoms and the oxygen atom to calculate the metal-water binding energy. The parameters of
these fuctions have been chosen by HEINZINGER and SPOHR [94-96] to reproduce Extended-Hiickel
results [64] and experimental data. Later, these potential energy functions have been extended by
BERKOWITZ et al. about a surface term, which includes the symmetry of the metal surface [97, 98].

SPOHRs [94-96, 99-101] results for the uncharged platinum-water interface may be summarized
as follows:

e The oxygen and the hydrogen atom density show strong oszilations close to the surface, but

approach bulk values for the center of the model.



e The oxygen atom density shows at least two strong peaks indicating two defined layers of
water molecules close to the surface. These two peaks suggest the existence of water layers

similar to the bilayer structure observed for water in UHV experiments.

e The water moelcules, which cause the first peak in th oxygen atom density profile (directly
attached to the surface), stay at their position during the MD run, whereas molecules from

the second peak are less tight bound and move freely within the layer [102].

e At low coverages of water () the water molecules in the first layer are orientated in a tilted
position with their dipole moment pointing away from the surface (¢ = 75°, ¥ is the angle
between the surface normal and the dipole moment). Both hydrogen atoms of the water
molecule are at the same distance from the surface [95]. Such an orientation of the water
molecules is expected for a bonding bonding mechanism via a lone electron pair, which is
surprising, since the platinum-water potential favours an adsorption geometry with the water
molecules dipole moment perpendicular to the surface®. A strong hydrogen bonding network
is assumed to stabilize this geometry. The same principle geometry effects have been observed
by SPOHR [100, 101] also for Hg(111).

As 0 increases from 0.2 to 0.8 move the hydrogen atoms closer ot the surface until finally the
molecular plane of the water molecule is parallel to the surface.

The electrochemical results suggest, that hydrogen bonding within the interface is essential for
a valid description of the platinum-water interface. The transition between both electrochemistry
and UHV experiments is done by the reduction of the water molecules used for the simulation.
Instead of bulk water come now small water clusters into focus. L1U et al. [103] pointed out, that
water-water interaction potentials, which reproduce well the properties of bulk water tend to fail
on small water clusters.

The water dimer is probably the best analysed water cluster of all. It was not only the first
water cluster subject of ab initio calculations [104] but is also commonly used as benchmark test
for new calculations. It is therefore possible to find reference values in the literature for the water
dimer on every possible level of theory [105-131]. The global minimum has a linear geometry with
Cs symmetry with the nonbonding hydrogens on opposite sites of the oxygen-oxygen bond. The
optimized oxygen-oxygen distance is about 3 A and the bonding energy about 5 kcal/mol.

ScHUTZ et al. suggested a namening system for the non-bonding hydrogens in the cyclic water
trimer, which fully describes the geometry of the cluster [132]: The nonbonding hydrogen can be
either above (up, ”u”), parallel to (planar, ”p”) or under (down, ”d”) the oxygen plane, while
the bonding hydrogens rest in the oxygen plane. If the oxygen plane bisects the water molecule,
the geometry is marked with an ”b”. The global minimum of the potential energy surface of the
water trimer has a cyclic geometry. Early calculations on the water trimer suggest, that the {uuu}
water trimer is less stable than the ideal linear structure [133], but already the {ppp} trimer is
more stable than the linear one. The linear trimer again transforms smoothly into a cyclic {uud}

geometry, which marks the global minimum [128, 131, 132, 134-150]. The geometry of the water

3This orientation reflects the results of the Hiickel calculations used for the creation of the potential
energy functions. The Hiickel calculations for Pts; —H>O favour the same geometry and the observed
equilibrium geometry may be the result of the missing interactions between surface atoms and the hydrogens

of the water molecule [64].



trimer is very flexible and tunneling facilitates rapid changes between the 96 isoenergetic isomers
(2" x n! x 2, where n is the number of water molecules in the cluster) [103, 150-156].

18 stationary points have been found on the potential energy surface of the water trimer [142,
145]. The {ppp} trimer has a slightly smaller bonding energy than the {uud} (AE < 0.5 kcal/mol)
[132] and is a stationary point with a Hessian index of 3. Most of the published results focuses
on the {uud} trimer and only few articles concentrate on the {ppp} [132, 140, 142, 144, 157-159],
despite the fact, that the {ppp} and the {udp} trimer are possible intermediates in the movement
of the hydrogens [132].

The computational analysis of water cluster gained more interest recently, because these mi-
crocrystals can be used to investigate phase transitions [160]. But, the transition from small water
cluster to larger is not straight forward and the water hexamer seperates the water clusters into
two domains.

Two principles control the structure of water clusters: First, the number of hydrogen bonds
in the cluster should be as high as possible for a maximum energy gain. And second, repulsive
interactions between nonbonding hydrogens and geometrical strains within the water rings should
be as low as possible at the same time. Small water cluster (H,0), with n < 5 are therefore
commonly assumed to be cyclic planar [103, 128, 133, 161-170], while large clusters with n = 7
have three dimensional structures [160, 170-178]. The water hexamer marks the border between
both regions and is the smallest water cluster with a three dimensional equilibrium structure.
Several geometries with similar energies (AE < 1 kcal/mol) have been found for the water hexamer
[128, 148, 149, 179-182]. The multitude of energetically similar isomers makes the water hexamer
a new benchmark system for methods, which are going to be applied to larger clusters.

Although the cyclic water hexamer forms the basis of the ice structure [18, 183, 184] and has
been observed as a structural element in liquid water [185], has the most stable water hexamer in
the gas pase a cage structure [186, 187]. The energy difference between the cyclic and the cage
hexamer is small and it has not been possible to observe the free hexamer experementaly until
recently [187].

Quantum chemical calculations [128, 148, 149, 179-182, 188] on the cyclic water hexamer agree
reasonably well on the geometry of the cluster, but disagree heavily on the total energy of the
cluster. The most stable ring has a ”chair” conformation (Sg symmetry) with straight hydrogen
bonds and the oxygen-oxygen distance between direct neighbours varies between 2.708 A and
2.855 A. The main properties of the cluster’s geometry can be reproduced with simple methods,
whereas reliable energy calculations require sophisticated ones. Published values for the bonding
energy of the cyclic water hexamer vary between —37.99 kcal/mol and —56.00 kcal/mol (with one

exception: —66.66 kcal/mol [181]) depending on the level of computation.

1.2 This work

Two computer experiments are used commonly for the simulation of the platinum-water interface:
First, quantum chemical calculations with a single water molecule and second, molecular dynamics
simulations with various potential energy functions. Between theese two extremes is this work
placed: A computational analysis of water clusters attached to a platinum surface.

Figure 1.3 shows, how the calculation of water clusters on a platinum surface (Pt,—(H20)n
in the center of the sketch) is embeded in its scientific environment. As mentioned in section 1.1

molecular dynamics simulation of the electrochemical interface give physically reasonable results
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Figure 1.3: Scientific environment of this work.

[101]. The potential energy function used for these calculations base on extended Hiickel calcula-
tions using a Pt; —H,O pyramid with the water molecule at the top as surface model (Pt(100)).
Such a cluster has no other surface atoms than the one bonding the water molecule and the repre-
sentation of the interactions between the water molecule and the non-bonding surface atoms seems
to be poor for the equilibrium geometry. Another problem arises from the water-water interaction
potential used for the simulation. Most of the used potentials have been optimized to reproduce
properties of bulk water. Many-body forces are important for bulk water, where an individual
water molecule is evenly surrounded by other water molecules and the water molcule can therefore
be thought captured in a homogenous matrix. Simple, pair wise additive interaction potentials
can simulate a great share of these forces by their parametrisation and good bulk values can so
be easily computed. In a small cluster is a water molecule not evenly surrounded by its peers and
'bulk potentials’ fail therefore to reproduce the properties of small water cluster.

This work started with a quantum chemical revision of the water dimer and trimer to obtain a
set of basis data for small water cluster. A selection of clasical water-water interaction potentials,
used by other groups for molecular dynamics simulations, was unable to reproduce the quantum
chemical results.

Quantum chemical calculations on large water clusters are computationally expensive and a
classical water-water interaction potential would allow us to find good starting geometries for the
quantum chemical analysis. Therefore, we created a new water-water interaction potential, which
inludes partially cooperative forces by its parametrisation.

Next, we started a quantum chemical investigation of small platinum clusters (LanL.2DZ ECP,
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18 valence electrons [189]). The platinum-platinum bond strength depends strongly on the elec-
tronic state of the cluster, as the bond between the metal atoms is formed mainly via the 6s orbitals,
who interact with the partially filled 5d band.

The quantum chemical investigation of the platinum-water bond showed, that this bond depends
also on the 6s population in the metal cluster, but in the other direction: A strong platinum-
platinum bond and a strong platinum-water bond exclude eachother. The construction of a working
surface model proofed therefore to be much more complicated than expected. Polaristion effects
caused by the electric dipole field of the water molecule can lead to a sudden redistribution of the
6s electrons and change so the electronic structure of the cluster as well as the total energy.

At this point we started the development of our own 1-valence electron ECP for platinum. The
aim was not so much the reduction of the computational costs but to minimize the number of
electronic states close to the ground state. As the density of electronic states becomes smaller,
sudden changes of the electronic structure of the cluster become less likely and the scanning of the
potential energy surface easier.

Both, the 1- and the 18 valence electron ECP calculations, would have been much more difficult
without the application of the Hiickel theory to the platinum 6s orbitals. Hiickel theory allowed us
to identify suitable electronic states for the surface model and to understand the electron movements
within the cluster.

The platinum-water bond was found to be similar to the hydrogen bond in water clusters
and cooperative effects are therefore likely to be found in the interaction between water and the
platinum surface. Inspired by OGASAWARA we used Pts—(H20)3 as model for the adsorption of
water on Pt(111) [42, 56]. These calculations showed that cooperative effects, similar to the effects
observed in the water trimer, have a strong influence on the geometry and the energy of the water
cluster.

Cooperative forces in the platinum-water bond can turn a water molecule out of its ideal
orientation. DOERING and MADEY suggested a water bilayer similar to the structure of ice Th to
grow on the metal surface [39]. In this model every water molecule is tetrahedraly surrounded
by bonding partners and the hydrogens of the water molecules directly attached to platinum
point away from the surface. Our quantum chemical calcualtions on the other hand showed, that
the energy to move the hydrogens up or down is very small and the prefered angle between the
molecular plane of the water molecule and the platinum-oxygen bond depends strongly on the
chosen method for the computation. We used therefore our own clasical water-water interaction
potential to analyse the preferd geometry of a water hexamer under surface conditions.

The following list sumarizes the individual chapters of this work and their contents.

Chapter 1  contains the literature survey as well as an introduction to this work.

Chapter 2 compiles brief summaries of the methods used for this work. Theories, who are
not described in standard quantum chemistry text books, are described in greater

detail than procedures and formulae, which are part of those text books.

Chapter 3  focuses on the quantum chemistry of small water clusters. The water dimer served
as benchmark test for the computational method (DZP basis set, MP3, full BSSE
correction), which was later used for the analysis of cooperative forces in the water

trimer.
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Chapter 4

Chapter 5

Chapter 6

Chapter 7

Chapter 8

Chapter 9
Chapter 10

Chapter 11

describes the development of a new water-water interaction potential from cuts
through the potential energy surface of the water dimer and selected points from

the trimer surface (chapter 3) and first applications of the new potential.

demonstrates the application of the Hiickel theory to the analysis of small platinum

clusters. The results of these calculations are later used in the chapters 6 and 7.

is a compilation of the quantum chemical calculations for Pt,, and Pt, —H0O (n =
1,2,3,5,9) using the LanL.2DZ ECP (18 velence electrons) from HAY and WADT
[189]. This chapter examines the correlation of the platinum-water bond strength

and the electronic state of the metal cluster.

summarizes the development of a new 1 valence electron ECP for platinum and

its application for the analysis of Pt; —H-O.

combines all results obtained so far and focusses on water clusters on the platinum
surface. The first section of Chapter 8 combines the results from chapter 3 and
6 for the analysis of cooperative effects in Ptz —(H20)3 while the second section
uses the results from the chapters 4, 6 and 7 to investigate the water hexamer on

a virtual metal surface.
is the summary of summaries and suggests further proceedings.
lists the literature references and programs used for this work

Appendix

Attention: The atomic energy unit Hartree is abbreviated with "H’
within the whole text mainly to sqeeze it into small table columns.
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Chapter 2

Theory

This chapter summarizes the theory of the methods used for this work. Theories, who are not
described in standard quantum chemistry text books, are described in greater detail. Procedures
and formulae, which are part of those standard text books are only briefly paraphrased.

The longest part of this chapter is a description of the effective core potentials. They are of
vital importance for all calculations with heavy metal atoms. Although many papers have been
published on this subject, no paper, explains a given potential in detail. The authors generally cite
each other and considerable work has to be done to unravel the citations.

2.1 Hartree-Fock Calculations

The Hartree-Fock theory is broadly discussed in the literature [17, 190-192]. Therefore, this report

only contains a short summary.

The time independent nonrelativistic Hamiltonian operator ﬁmol of a molecule can be written
as the sum of different interactions in the molecule:

A

Hmol:T€+TN+VNN+VN€+‘>;8:‘E\[8+]?[N
ﬁe :Te"‘VNe"“?ee Er}:l (21)
ﬁN:TN+VNN

For ease of reading the ’e’ in H, will be further omited.

T is the operator of the kinetic energy of the electrons and of the nuclei while V describes
the interactions between the nuclei (Vyy), between the electrons (Vee) and between nuclei and
electrons (VNe). The Born-Oppenheimer separation [192, 193] allows the separation of the motion
of the electrons from the motion of nuclei, because the light electrons in a molecule move much
faster than the heavy nuclei. This procedure leads to an equation which only describes the motion

of the electrons and asumes the nuclei at fixed positions R.
#HI(R,7) = E(R) ¥(R,7) (2.2)

While the wavefunction ¥ depends on the positions of the electrons T at specified nuclear positions

R the electronic energy E depends only on the position of the nuclei as a parameter.
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For a given molecule consisting of n electrons and N nuclei with the charge Z, #H has the

following form (in atomic units, neglecting relativistic effets):

n
- 1
H=-2 gV ZZ ZZ— (2:3)
i=1 zlalla lel—‘rll

The last sum in equation 2.3 describes the electron-electron interaction and prohibits an analytic
solution of equation 2.3. In a first attempt to solve equation 2.3 the electron-electron interaction
may be neglected (model of independent electrons, equation 2.4). A may then be written as the
sum (H) of n one electron operators h; which allows us the separation of (2.3) in n one-electron
equations (2.4). The solution for ¥ in this case is the product of one electron wavefunctions ;.

N
R 1 Zo . i s N
h; = —§V? — Z — = hipi(R,7) =ei(R) p;(R,7)
. a=1 Tia . N (24)
H=Y"h @& =[[e:®R 7 ER) = )
i=1 i=1 i=1

This solution does not consider the Pauli-Principle, the interexchangeability of electrons and the
spin. Those disadvantages could be overcome if not the direct product of the ;s is used as a solution
for ¥ but a Slater determinant (antisymmetrized product) built of the ;s after normalisation.

pi(fM)a ei(m)B ... p=(F)B xi (i) x2(r7) Xn(71)

. 1 |pr(m3)a pi(i2)B ... 2 (r3)B 1 () xa(r3) Xn(r2)
YR =T0 ' S verl | @

pi(r)a o) ... pa()B xi1(m)  xa2(rn) oo xa(R)

Xi are the spin orbitals built by the multiplication of ¢; with the appropriate spin eigenfunction
(a or B). The Slater determinant (2.5) and the full electronic Hamiltonian operator (2.3) allow us
to calculate the expectation value for the electronic energy E.

(V| #|w)

P= "o

(2.6)

Assuming the x;s form a set of orthonormal functions yields the following expression for the energy:

1< 1 Yz
E= thz+222 ij — z] hii = <Xi _iv?_Zfa Xi>
i=1 j=1 a=1""% (27)

7 = ()

W) Ky = (o)

()

|7 =] [ =]
hi; is the one electron integral similar to the one in equation (2.4). Jjj is the coulomb integral and
describes the interaction between the electron densities ;(F)*pi(F) and ¢;(F)*p;(F). The exchange
integral Kj; cannot be explained in classical terms'. Since the spin eigenfunctions are orthogonal,

the exchange interaction is only non zero between electrons of the same spin.

'If instead of the Slater determinant (2.5) the direct product of the wis (2.4) is used to calculate the
energy expectation value, the expression for the energy (2.7) does not contain the exchange integrals. The

exchange integral is a truly quantum mechanical effect.
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A better approximate wavefunction for ¥ can be found by minimizing? E(¥) by varying y with
the constraint that the xs stay orthogonal (xi|x;) = d; [17, 192, 194al.

Fo) = B@) - 33 65 (ulx) %F ~0 (2.8)

i=1 j=1
The solution of (2.8) leads to n Hartree-Fock equations. The orbital energies ¢ derive from the

Lagrangian multiplicators € in (2.8).

(2.9)

. X; (') x; (r') . X; () x4 (r)

Bt = [AEPER ee) R) = [ ae )

r—r!| |r —r!|

Equation (2.9) can be solved by iteration. A first guess for ¥ allows us to calculate the Fock
Operator F thus to determine the electrical field in which the i-th electron is moving. This enables
the calculation of an improved ¥. This ¥ will be used again as the starting point for a new cycle.
The cycles of repetition will be stopped, if the change in the electrical field drops below a preset
limit.

The sum of the energy of all occupied orbitals does not yield the energy of the system (2.7).

n n n n
ZQ’ = Zhii+ZZ(Jij - Kij) (2.10)
i=1 i=1 i=1 j=1
While the expectation value for energy contains (2.7) the electron-electron interaction once in
comparison with the model of independent electrons (2.4), this expression contains the electron-
electron interaction twice. KOOPMAN’s theorem [192] allows us to interpret the orbital energies ¢
as the negative of the ionisation energy.

The symmetry of the Fock operator depends on the symmetry of the first guess for ¥, because
¥ is used to construct the operator. Therefore, the Hartree Fock wavefunction ¥HF does not nec-

essarily have the full symmetry of the molecule. ¥HF

is antisymmetric towards electron exchange,
but ¥HF is not necessarily an eigenfunction of the total spin operator §2 or the operator of the
total spin’s orientation Sz. The introduction of additional symmetry restrictions into equation 2.9
and, if necessary, the construction of linear combinations of ¥s for different configurations assures
the right symmetry for SHF  the result of this procedure. The final energy will be slightly higher
for USHF than for ¥HY | obtained without any further constrains. The solution for ¥ has either the
right symmetry or the lowest energy.

In closed shell molecules all orbitals are doubly occupied. This allows us to use only the spatial
part of the x;s to solve equation 2.9. After the calculation the obtained orbitals are filled with
two electrons. While this RHF (restricted Hartree Fock) calculations usually yields good results
for closed shell molecules, problems arise together with the calculations for open shell molecules

or excited states. During those UHF (unrestricted HF) calculations equation 2.9 divides into

2The definition of such a deviation is:

OF[xi(z")] _ lim Flxi(a') +€di;o(z’ — )] — Fxi(z")]
Ox; () €0 € Ox; ()
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two subsets of equations for each spin state. The exchange operators in the Fock operators are
different for both sets, since exchange interactions exists only between electrons with the same spin.
This leads to different spatial wavefunctions for spin up and spin down, the so called exchange
polarisation.

For an average molecule with low symmetry the calculation of ¥ is far too expensive and nearly
impossible. ROOTHAAN and HALL suggested independently 1951 [192] to construct the one electron
wavefunctions y; as a linear combination of M different basis functions 7 (LCAO method, linear

combination of atomic orbitals).

M
vi=S e (2.11)
k=1

The LCAO approach simplifies the calculation of (2.8). Instead of the complicated functional
differentiation the easer differentiation to a constant c; can be done.

The more basis functions are used for the linear combination, the better the description of x;
and the lower the electronic energy. The total energy of a molecule obtained by an infinite number
of wavefunctions is called the Hartee-Fock limit.

n M 1 n n M M
B=Y Y cenhs+ 211 Y 3 cheneiea (Vim Vi)
j=114,j=1 k=1 1=1 i,j=1 p,q=1 (2.12)

hij _ <'71(T)| iL,(”') |’7j (7-)) Viqu = <’7i(7') Vi (T‘,) |7“ — 7"I|

W W)

The expression for the energy (2.12) is not a functional of y; anymore but a function of ci.
The differentiation of (2.12) with respect to c¢ yields a set of M independent nonlinear algebraic
expressions that can be solved to get coefficients. The general procedure of this method is the
same as for the Hartree Fock method. A first guess for the coefficients c;, the electric field of the
molecule can be calculated. This leads to an improved set of coefficients that will become the
starting point for another cycle.

Modern quantum chemical programs no longer use a single function for a certain atomic orbital.

They usually use a sum of gaussian functions with different exponents.

G M G M,G
_ 2 _ 2 _ 2
Vi = E gye avr Xi = Zcik E gye A — Z Qify € e’ (213)
v k=1 v k,v

Now are the new constants a;i, optimized. This procedure allows the atomic orbitals to vary during
the calculation. This extra flexibility enables the introduction of polarisation into the calculation
of molecular orbitals, if cartesian gaussians (section 2.4, page 23) are used.

Sometimes the basis of the Hartree-Fock calculation 7, of a supermoelcule is formed by the
monomers molecular orbitals. Those calculations simplify the analysis of the chemical bond be-
tween the monomers. On the other hand is such a basis more rigid then the other and the interaction
energies inferior.

The occupied orbitals give usually a good description of the molecule’s electronic structure.
The virtual orbitals on the other hand cannot be explained physically. This can be shown by
rearranging the Fock equations 2.9. The electrons move in an effective potential Veg.

oce

— 7 2 (') ., ~(r|r") pv(r =) .,
Veff_Xj:Jj_Kj_ |7“—7“'|dr_ Ir —r'] ar

Py(r =) x(r) =x(") (2.14)
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~(r|r') is the first order density matrix® and the operator Py exchanges the variables r and r’ of

the function x. The potential energy of an electron x; can be calculated straight forward.

* Xz I,,,. Xl Xz r XZ
/xi() erf Xi(r dr—// |T_|r,| dr dr' — // |T_|r,| ") g @y (2.15)

Equation (2.15) can be interpreted as the coulomb interaction of the charge distribution xy; with

a model charge distribution p(r').

iy _ XA Xl

To obtain (2.16) the exchange part of equation (2.15) has to be reduced to higher terms with

XFxi- The model charge distribution p(r') depends on the orbital x;. The number of electrons
Ne = [p(r) dr described by p(r) therefore depends also on the chosen orbital x;. The trace of the
density matrix [+y(r|r) dr equals the total number of electrons N. The second term of (2.16) has to

compensate one electron to avoid self interaction.

N, / NYdr'=N-1 i<N
(2.17)
N, / Yar' =N-0=N i>N

The exchange charge density is zero for virtual orbitals (i > N), since all virtual orbitals are
orthonormal to the occupied orbitals used for the construction of the Fock operator. For an
occupied orbital (i < N) the integral contains a non vanishing part xx; and the number of electrons
described by p(r) is physically correct N-1.

Virtual orbitals are therefore not suitable to describe excited states correctly. For the correct
description of an excited state several virtual orbitals are usually necessary.

2.2 Mgller-Plesset Perturbation Theory

The Hartree Fock method does not take the correlated movement of the electrons into full account.
The energy difference between the ’exact’, which takes the full account of the electron correlation,
and the Hartree Fock Energy is called the correlation error [195]. Since the exact value of the corre-
lation error is usually not known, the correlation energy as the difference between the Hartree Fock
energy and the energy obtained by any post Hartee Fock procedure is reported in the literature.

The electrons can avoid each other more easily, if the possibility to occupy unoccupied orbitals
for short ’time’ is permitted [195]. This is achieved by mixing excited states with the ground state.
The additional energy gain is called correlation energy. One of the most common methods is the
Mgller Plesset procedure.

The Mgller-Plesset Theory (MP) [196] is often also called Many Body Perturbation Theory
(MBPT) [190, 191]. An additional figure denotes the level of perturbation. The second name
describes much better the underlying theory.

3The first order density matrix v(r|r) of an N electron wavefunction ¥ is defined as follows:

(r|r') :N//---/‘I/(T,TQ,T3,...,T'N)‘I/*(T’,T'Q,T'e,,...,T'N)dT'zdrg...dTN
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The principal idea is based on the Hartree-Fock-Approximation. If the assumptions of the
Hartree-Fock theory are right, the difference between the Hartree-Fock-wavefunction and the eigen-
function of the original Hamiltonian # (2.3) should be small. This allows the use of the Rayleigh-
Schrédinger method [190, 192, 193] to improve the wavefunctions and energies. The unperturbed
Hamiltonian is taken to be the sum G of the Fock operators F (2.9) and the perturbation operator
V the difference between the original Hamiltonian 7 and G (2.18).

H=G+H-G)=G+V =  HY,=E,9, (2.18)
T, =00 + o)+ 9@ E,=EQ +EV +E® + ... (2.18 a)

\I!,(?) and E,(P) are the solutions for the energy-state E, of the unperturbed system (2.7). In-
troducing the expansions (2.18 a) into expression (2.18) and collecting terms of equal order in the

usual way [193] yields the following set of equations:

Gol? =EQ g 0. order (2.19)
(G = EM ) = (B -V) ) 1. order (2.190)
(G-EM) D =ED ¥ +(EY -V)sP 2. order (2.19b)
G-EM) P =E® v + EP ) + (B - V) ¥ 3. order (2.19¢)

Equation (2.19) is already solved during the Hartree-Fock calculation. It can be easily separated
into the set of one-electron-equations (2.9). To solve the rest (2.19a - 2.19¢) the functions \I’,(,l),

\I!,(f) and \I!,(?) are developed in terms of the complete set of functions W&O,) .
W= el e =Ya0el  ep=S el e
vER vER vER

The introduction of (2.20) into (2.19) allows a stepwise solution of (2.19)%. The procedure starts

with the calculation of the first order perturbation:

(0) (0)
v\ v|w
W — (g0 | 7] gO <1>_<"—"‘>
El _<\IJM ‘V‘\If”> W= (2.21)
v for p#v

M@LLER and PLESSET showed that E,(}) equals zero. The Hartree-Fock energy is therefore correct
to the first order of perturbation. On the other hand a&l,,) allows us to figure out the non vanishing

second order energy correction:

(0 ‘V‘ (0 (gl0) V‘
EP =73 < E£P>>_<E5° 4 = > (v 7] egn)
vEH S (2.22)
aji) = E(o) E(o) Z ay <\IJ£°,) “7‘ ‘I’;(?i)> —ap) BV

for p#v

The second order energy correction yields on average already 90% of the total correlation energy

[195] and \IIELO) makes usually more than 95% of the total wavefunction.

*M@LLER and PLESSET emphazise, that their description of the development of the perturbation method
for molecules is strictly only valid for electronic systems without any degeneracies (EELO) # EY for u#v)
[196]. The problem of degeneracy can be overcome by other derivations of the perturbation theory, which

are described elsewhere in the literature [192].
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According to the Brillounin theorem [192, 197] the integral (\IJLO)|\7|\II,(,03) vanishes for singly
excited \IJLO,). It also vanishes for more than doubly excited wavefunctions. The influence of the
second order perturbation is therefore controlled by double excitation (ij — ab). This can be used
to simplify (2.22) and (2.21) [190].

o) = ___idllab) ZZZZ (ijllab) (abllij)
Guv el-l-ej—ea—eb “ 1 €+ € — € —€p

%‘xa(l) Xb(2)> — <Xi(1)Xj(2)

(2.23)
(ijllab) = <xi<1> ()

E‘xa@) (D)

Xi> Xj> Xa and xp are one-electron functions, which satisfy (2.9) and the €’s are the corresponding

orbital energies. i and j denote occupied orbitals while a and b designate virtual orbitals.

Although the calculation of the third order perturbation is logically straightforward, numerical
efforts set a limit in practice; especially the calculation of the wavefunction (2.24). Since (2.24)
contains the same type of integrals than (2.23), the third order of perturbation is also controlled by
double excitation. This shows the equivalence of a MP3 and SD-CI (Single and Double excitations
Configuration Interaction) calculation.

® =3 a2 <\I;(0)

1 1
| ) — afy 2

9 Eara (g

vER vER iF#p
(2.24)
(3) — O |7 g@\ _ Q) @) _(2) (1)
a¥ E(O) (e <\If V‘\Ifw.> oV E® — o) B
!“’ iFp

for p#v

The dominant computational step in MP2 scales as nN*, in MP3 as n?N* and in MP4 as n®N*
[123]. Here is n the number of occupied molecular orbitals and N the number of basis functions.
This increase in the computational efforts is the reason for limitations of the configuration space
in MP4 calculations [124, 198].

One big advantage of MP calculations is the correct dissociation behaviour of supermolecules.
A supermolecule AB dissociates into two fragments A and B. At an infinite distance between the
fragments, the integral (ij||ab) equals zero, if the functions x are located on different fragments. To
the sum E,(f) contribute at an infinite difference only terms, on which all four orbitals are located

(2)

on the same fragment. In this case E;’ is the same as the sum of the MP2 energies for two isolated

molecules A and B.

A similar argument holds also for the Hartree Fock energy. If distance between A and B gets
bigger, the interaction H., between both molecules becomes neglible. This allows us to separate
the hamiltonian into two hamiltonians for A and B. In this case the total energy equals the sum

of the individual molecular energies.

. . . . lim N . I I
Huyp=Hs+ Hp+ Ho Hap=Hy =Hj+ Hp Ew=FEs+Ep (2.25)
rAB — OO

BARTLETT has proved that MP calculations are not only size consistent but also size extensive
[195, 198].
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2.3 Configuration Interaction and Multiconfiguration SCF
Theory

Another way to incorporate electron correlation into the calculation is via configuration interaction
(CI) calculations. Unlike the Mgller Plesset calculations configuration interaction calculations are
not based on perturbation theory. This allows the use of configuration interaction calculations,
when the influence of the electron correlation on the wavefunction is large. Electron correlation
is particularly important for platinum compounds. For clusters with nearly degenerate states this
type of calculation is especially important.

The exact wavefunction for an N-electron system ¥ can be written in an expansion of antisym-

metrized products of one electron functions.
U(1,2,3,...,N) =Y di®(1,2,3,...,N) (2.26)
k

@, is called a configuration or a configuration state function and is a Slater determinant (please
refer to equation 2.5) or a sum of Slater determinants to describe an electronic state. The expansion
coefficients dix can be calculated with the linear variation method [115, 199], which leads to the

secular determinant.

det{H—ES} =0 H, = <<1>s

H®:)  Su=(0,]2:) = da (2.27)

The configurations will be orthonormal if the molecular orbitals used for their construction are
orthonormal. The configurations are formed by promoting one or more electrons into an unfilled
”virtual”orbital. The configurations obtained by the promotion of one electron are called singly
excited configurations. The terminology is extended to the excitation of more electrons: double,
triple, quadruple and higher. Usually those excitations are abbreviated by a capital letter: S, D,
T and Q. The number of configurations increases rapidly with the number of spin orbitals. The
highest possible number of configurations T regardless of the constraints due to spin und spatial

symmetry is given by [197]:

r=() = ¥or—wy (229)

M is the number of spin orbitals and N the number of electrons. The number of configurations
increases rapidly with the number of spin orbitals. To limit the computational effort without
reducing the basis is usually the manifold of excitations truncated. According to the Brillouin
theorem [192, 197] singly excited states do not mix with the Hartree Fock ground state. But,
singly excited states still mix with higher excited states. Therefore, the contribution of the singly
excited states to final wavefunction is small. The dominant part of the correlation wavefunction
next to the ground state is formed by double excitations. SAXE et al. examined the influence of
the manifold of excitation on the energy of a water molecule (double zeta basis set) [200]. Their
results are summarized in table 2.1. 94.7% of the total correlation energy is already covered by
single and double excitations. The addition of triple excitations only gains little in the correlation
energy but multiplies the computational effort by nearly a factor of 10.

The lowest root Eq of (2.27) is the ground state. The higher roots Ex describe excited states
of the molecule. As shown in section 2.1 (page 15) several virtual orbitals are necessary to form

a single excited state. The orbitals used to construct the excited state can be extracted from the
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SCF D-CI SD-CI SDT-CI  SDTQ-CI full CI

config. 1 342 361 3203 17678 256473
—-E [H] 76.009838 76.149178 76.150015 76.151156 76.157603 76.157866
—Ecorr [H] 0.0 0.139340  0.140177  0.141318  0.147765  0.148048

Table 2.1: Influence of the excitation on the correlation energy of water. [200]

configurations used to build the wavefunction (2.26). The excited states that can be formed by
this procedure have the same multiplicity and symmetry as the ground state. Otherwise would the
matrix elements (®;|H|®,) vanish. The excitation energy AEx equals Ex — Eo.

During multiconfiguration self consistent field calculations (MCSCF) not only the configuration
coefficients dy (2.26) but also the atomic orbital coefficients aix, (2.13) are optimized. This is done
iteratively in two steps. First, the configuration interaction problem (2.26) is solved. Second, the
atomic orbital coefficients aj, are optimized. Those cycles are repeated until the convergency
criterion is reached. During those calculations two different states are allowed to mix. This
might be necessary for a continuous description of the dissociation of a molecular complex. The
computational efforts are tremendous. To keep the efforts at a reasonable limit, the configuration
space has to be as small as possible.

During complete active space calculations (CASSCF) the orbitals are separated into three dif-
ferent groups. The first group contains low lying double occupied orbitals, and from those no
excitation is allowed. The second class contains the virtual orbitals, which are never populated.
The third group, the active space, contains occupied and virtual orbitals, which are used to con-
struct the different states for the configuration interaction. Modern quantum chemistry codes
today can handle more than 10° states during CASSCF calculations. Due to the limited con-
figuration space CASSCF calculations cannot usually cover the complete electron correlation. A
systematic improvement can be achieved by a combination of CASSCF and Mgller Plesset calcula-
tions CASMP2. This method allows the combination of multi reference calculations and electron
correlation and therefore offers a powerful tool for the theoretical analysis of dissociation processes.

The quality of CASSCF and MCSCF calculations depends strongly on the orbitals chosen for
the active space. If the orbitals necessary for the correct description of the important states are
not included, the calculations cannot describe the process. In this work SD-CI calculations are

used to get information of states close to the ground state and are therefore likely to mix.

2.4 Basis Sets and Basis Set Superposition Error

The quantum chemistry program GAMESS UK uses cartesian gaussian orbitals (2.29) for the
calculations [133, 190, 201, 202].

3
20\ 1
gs = Nge o Ng = <_a>
T
12802 *
g = Npze o gy = Npye o g: =Npze " Np = ( w?fl ) (2.29)
—ar? Cor? ar? 204807 *
ng:NDZ‘2€ gyy:NDy2e gzz:NDz2e ND:< 3 )
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1
2048a7 *
9oy = Np vy e_arz 9z = Npxz e—ar2 9y = Npyz e_(WZ Np = ( - > (2.29)

3

The function gyx, gyy and g,, are used to construct the d,, and the dyx_yy orbitals. This

procedure yields also an additional Gauss orbital with s-symmetry g, (2.30).

93zz—rr =

3
(2922 — Gzx — gyy) ez —yy = \/;(gzz - gyy)

DN | =

2.30
Grr = ——(aa + Gyy + 9:2) = NS p2ear® >
V5 V5

During the construction of the molecular orbitals this pseudo-s-orbital (g.) may be used as

an additional s orbital, if the exponential coefficients of the s-orbitals are not well chosen and

the s-orbitals have a lack of electron density where this pseudo-s-orbital electron density has its
maximum. This may cause ’overcompleteness’ if two orbitals overlap.

The maximum d,ay of the radial electron density of the pseudo-s-orbital P, can be found the

following way:

P,
Prr = 72972"7" = N12)T'6€_2ar2 <8 rr) =0 (231)
or )—aq. ..
3 87 _
dmaz = % p.,” (dmax) = _;e 3

Analogous to this the maximum sy, of the radial electron density of a s-orbital Py can be figured
out the same way:

Ps
P, =1r2g2 = N2p2e2r <88r > =0 (2.32)

T=8mazx

1
Smazr = ——
V2«

The total energy of a wavefunction depends on the number of functions in the basis set. The

P.” (Smaz) = —2e~ 1

more functions used the lower is the total energy. This is a serious problem for the quantum
mechanical description of reactions, in which the number of molecules changes.

A good example of this is any dimerisation. The dimer contains twice as many orbitals as a
single monomer. Therefore, its basis is much more flexible. This additional flexibility leads to a
further decrease of the dimer’s energy. This additional decrease is called the basis set superposition
error (BSSE). The BSSE is still subject of research and discussion in the scientific community and
regularly discussed at the Computational Chemistry Mailing List [203].

Bovs and BERNARDI introduced the counterpoise method (CP) to handle this problem 1970
[204]. After the calculation of the dimers energy the energies of the monomers are recalculated
using ghost orbitals to simulate the presence of the other monomer. This increase of the basis yields
a further decrease in the monomers’ energy. This energy change can be regarded as the BSSE.
Figure 2.1 shows the influence of the BSSE on the complete interaction energy. If the monomers
basis is complete, no further increase in the number of orbitals by the other monomer can induce a
further decrease in energy and the BSSE equals zero. This allows the conclusion that an increase
in the number of orbitals in the basis set should give a smaller BSSE.

The CP method was believed to overestimate the BSSE slightly. To correct this DAUDEY
et al. suggest using only the virtual orbitals of the other monomer (VCP method) [205]. To
emphasize the difference between these two methods, the CP method of Boys and BERNADI is
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BSSE

BSSE corrected interaction interaction BSSE corrected
interaction energy without energy without interaction
energy correction correction energy
BSSE
2 monomers dimer 2 monomers dimer
Attraction Repulsion

Figure 2.1: Influence of the BSSE on the interaction energy.

often abbreviated as FCP (full counterpoise). Both methods have been compared in the literature
[105, 106, 206, 207]. The use of those methods (FCP or VCP) seemed to depend on the interaction
energy of the monomers. The overestimation of the BSSE by the FCP method seemed to be
a lesser problem than the underestimate of the VCP method regarding water-water interactions
[105, 106]. For very weak interactions it is vice versa [207]. Nowadays, it is generally believed that
the FCP method is the theoretically correct method [208a]. A simplified argument starts with a
Heitler-London approach towards the supermolecule. The wavefunction of the complex AB is the

antisymmetrized product of the monomers’ wavefunctions, A\IJ(‘)‘\IJOB.

<A\If54\11(’)3 ‘H‘ A\pg‘wg>

L= (2.33)

<Ax1154\1:{)3 | Awg‘quf>
The antisymmetrization operator A causes exchange interaction between the two fragments. This

exchange interaction between occupied orbitals again causes a short repulsion of the fragments
[17a, 194c].

AEpr, =EYL —E, - Ep (2.34)

For the calculation of the Heitler-London interaction energy AEHL the choice of the basis for the
calculation of the free monomers energies Ex and Eg is important. The VCP method would not
permit the occupied orbitals of fragment A to mix with occupied orbitals of B. The overlap controls
the exchange interaction and therefore the short range repulsion. The VCP method would give a
wrong estimate of the BSSE. This reasoning proves only that the FCP method give better estimates
of the BSSE than the VCP method, but does not show that the FCP method describes the BSSE
correctly. The later argument can be found in VAN DUIINEVELDT’s text [208a] and cited literature
therein.

The assumption that the total BSSE can be extrapolated only from ghost orbital calculation
of the electron donor has been proven inaccurate. Since the BSSE is large in comparison with
the small interaction energy of two water molecules, even changes of a tenth of a kcal/mol should
be considered to get a better description of the interaction energy. The interaction energy on the
other hand is not a good measure of the absolute size of the BSSE, since the BSSE is a result of the
inadequate description of the monomers. The decision whether the BSSE is small or large should

therefore be made in comparison with the monomer energy.

25



As important as the selections of the orbitals used for the calculation of the BSSE is the selection
of the fragments, from which the complex is built [208a]. There is only one chemically sensible way

to build a dimer from a monomer, but there are four equivalent ways to construct a trimer (figure
2.2).

BC + A

AC+B
A+B+C ABC
AB +C

Figure 2.2: Formation of a trimer.

The first three paths are chemically more sensible, because the addition of a third party to
an existing dimer is generally more likely than the formation of a trimer in a single step [187].
The calculation of the BSSE during the formation of the first dimer can be done with the FCP
method without any problems. The dimer is then taken as a monomer for the next step and the
BSSE is then calculated again. The last way shown in figure 2.2 is the formation of the trimer
in a single step. To calculate the BSSE of A the basis functions of the B and C were added to
the basis of A. The same basis is used to calculate the BSSE of the reminding monomers B and
C. All four ways would yield a different BSSE and therefore different interaction energies for the
formation of a trimer. This finding is in contradiction to the laws of thermodynamics. The energy
of a compound should be independent of the way of formation. To achieve consistency the full
basis of ABC should be used to calculate the monomers’ energies regardless of the chosen way.

The BSSE not only influences the dimerisation energy but also bond lengths and angles, because
it changes the curvature of the energy hypersurface. Since most quantum chemical programs do
not take the BSSE into account for geometry optimizations, the energy hypersurface has to be
probed manually by single point calculations. Those points are then used to find the minimum of
the BSSE corrected energy surface. This procedure allows us to estimate the BSSE for geometry

changes.

2.5 The Morokuma Energy Decomposition Scheme

The supermolecular approach usually does not allow the decomposition of the total interaction
energy into physically important energy terms. This disadvantage [209] can be overcome by the
MOROKUMA’s energy decomposition scheme [127, 129, 210, 211]. This part of the thesis follows
the very clear explanation from KITAURA and MOROKUMA [212].

The Hamiltonian of a van der Waals complex AB can be written in the following way:
H:ﬁA+ﬁB+ﬁA3 (2.35)

I:IA and ﬂB are the Hamiltonians for the isolated molecules and I:IAB is the interaction term. The

total energy of the unperturbed state is the sum of the Hartree Fock (HF) ground state energies.
B = (4° ‘fIA ‘ A%)+(B° ‘ A ‘B°> (2.36)

A% and B are the HF wavefunctions of the molecules A and B. The HF wavefunctions v; of the
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dimer AB are built from the monomers’ molecular orbitals.
bi=Y Cidi + > Cindf (2.37)
k u

The subscripts k, 1, m are employed for the HF molecular orbitals of the isolated molecules A,
while u, v and 7 are used for B, and i and j for the complex. The redundant superscripts A and
B emphasize the molecular origin of the orbitals. On this basis the Hartree Fock equation for the

dimer can be written in the following manner®:

(F—€S)C =0 (2.38)

F is the Fock matrix, S the overlap matrix, C the coefficient matrix and € the diagonal matrix of

orbital energies.

The total interaction energy (positive for attraction) is®:

occ

~AE =Y Cf(F+H)C;-E° (2.39)

H is the kinetic energy and nuclear attraction part of F. To describe molecular interactions the
total energy (F — €S) is split into two terms.

(F-€S)=(F'—€l)+X (2.40)

FO is the Hartree Fock matrix of the unperturbed system (infinite separation) and 1 the unit
matrix, while ¥ contains the molecular interaction. The matrix elements are defined as follows:
Y = €6 R, = €u0u F,=0 (2.41)

w

FY is build only from the monomers’ orbital energies, which are calculated in the first step. The

l> Ort

,,> S (2.42)

molecular interaction matrix 3 contains the following elements:
z> . <k
occ

> (21— Ky)

i

oce

> (2 - Ki)

(2

oce

> @I, - Kp)

m

S = (k| VE) + <k

occ

> (21— Ky)

(3

occ

S - K9

®Starting point is the equation, which describes the energy of the i-th molecular orbital (compare with

(2.8)

E,u,u = </’L|VA|V> + <:u

iy = —€Spy + (k| T+VA+VE |1/>+<k

<¢‘ﬁ‘w> —ep with =Y Cada
Minimizing e by varying C, with non orthogonal wavefunctions ¢, yields the following equation for Cq:

> Cs(Fap —€Sap) =0 Fog = <¢a
5

13“‘¢ﬂ> Sap = (¢a | $5)

Doing this for all Cs and rearranging the equations into matrix form yields (2.38)
®This follows directly from (2.9) and (2.10) for closed shell molecules.
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7] vacant orbitals

polarisation charge transfer polarisation

occupied orbitals
exchange

molecule A molecule B

Figure 2.3: Interaction and mixing of the monomer’s orbitals.

VA and VB are the nuclear attraction potentials of A and B and T is the kinetic energy operator.
JO and K9 are the coulomb and exchange operators for the orbital ¢2 of the isolated molecule
A. pr and Kg are similar operators for ngE. The molecular interaction term also includes the off
diagonal elements Sy, of S.

This approach allows us to distinguish between four different types of interactions (please refer
to figure 2.3):

1. Electrostatic: The classical electrostatic interaction operates between the occupied molecular

orbitals without mixing them.

2. Polarisation: The polarisation causes the mixing of the occupied and the vacant orbitals of

each molecules due to the presence of the other.

3. Exchange: The interaction between both molecules leads to an exchange of electrons between

the molecules and an extension of the delocalisation.

4. Charge transfer: The interaction causes a mixing of occupied orbitals of one molecule with
vacant molecules of the other and vice versa. This mixing allows a charge transfer from one

molecule to the other.

Those four basic principles allow us to subdivide the molecular interaction matrix ¥ into dif-

ferent regions:

A, occ A,vac B,occ B,vac
A, occ | ESX PLX EX’ CT
A vac | PLX ESX cT EX’
B, occ | EX’ CT ESX PLX
B, vac CT EX’ PLX ESX

The blocks ESX contain parts of the exchange and the electrostatic interaction energy as a com-

parison with equation (2.42)" proves. The PLX areas contain the polarisation and part of the

"The first term (k| V® |1) represents the electrostatic interaction with the nuclei of the other molecule.
The second half describes how the coulomb and the exchange interaction with all electrons, and therefore

with the electrons of the other molecule, affect the orbitals of A.
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exchange energy, while the CT and EX fields describe only charge transfer and exchange inter-
actions.

Setting all blocks of X to zero apart from one type (EX) enables the formulation of a model
Hartree Fock equation with only one dominant interaction. These model Hartree Fock equations

allow us to determine individual interaction energies.

0=FY-es¥)=(F'—er1+2%)C*  EY¥ =) ¢ (F¥ +HY)C) (2.43)

(3

HX is the one electron operator, which is included in FX. The interaction energy Ex due to the
interaction X is therefore:

—Ex =EX - E° (2.44)

EESX (

The first interaction energy to calculate is diagonal blocks). By definition electrostatic

interactions do not change the monomers’ molecular orbitals (CFSX = 1). Neglecting intermolecular
exchange terms allows also to figure out the pure electrostatic interaction energy Egg.

The remaining values are calculated together with EFSX (i.g. EFSX 4+ ECT), since the ESX-
blocks are the diagonal blocks and a calculation without them is meaningless. The reminding
blocks are set to zero and equation (2.43) solved. The resulting wavefunctions are of the following

structure.

oce vac ocec vac

PPN =N "Cirgit + > Cigl  or ¢PFXTT =N"Clioll + > Cudf* (2.45)
k v I l

The charge transfer energy itself can be easily determined.
—Eeqp = EFSX+CT _ pBESX (2.46)

This procedure allows the calculation of the following energies:

Egs electrostatic interaction energy

Epy, polarisation energy

Erx exchange energy

Ecr charge transfer energy

Epxpr exchange polarisation energy

Eng coupling term = AE — (EES + Ep1, + Egx + EcT + EEXPL)

Evix = Emi + Egxpr, (GAMESS US does not calculate the individual terms but only the
sum [213])

Since the procedure by KITAURA and MOROKUMA uses the monomers’ molecular orbitals for
the calculation rather than the individual atomic orbitals the complete interaction energy AE
should be smaller than the interaction energy of an ordinary supermolecular SCF calculation. This
is caused by the reduced flexibility of the basis.
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2.6 Pseudopotentials

The chemical nature of an element is governed by its outer electrons. This rule is most, beautifully
displayed in the periodic system of elements, where elements with the same number of valence
electrons are joined into groups of similar chemical reactivity. The inner core electrons do not
participate in the chemical bonds. Since the amount of computational work increases rapidly with
the number of electrons, it might be economically sensible to replace those core electrons by an
additional potential, which keeps the valence electrons away from the nucleus and provides the
correct energetic and angular behaviour.

The electrons ”get faster”as the charge of the nucleus increases and the relativistic corrections
of the quantum chemical results have to be made. Relativistic influences of the core electrons onto
valence electrons and vice versa has to be simulated by the core potential (RECP, Relativistic
Effective Core Potentials). The incorporation of the relativistic effects into the core potentials is
briefly described in the second part of this chapter. The first and more detailed part explains the
development of non relativistic core potentials (NRECP). For the better understanding of the ECP
from HAY and WADT [189, 214, 215] used in this work brief notes on the historical development
are also made in both parts.

2.6.1 Non Relativistic Core Potentials

The development of modern pseudopotentials started with the basic paper by PHILLIPS and KLEIN-
MAN [216]. WEEKS and RICE [217, 218] generalized their approach. This generalized Phillips-
Kleinman-potential (VEPK) is the basis of the ECP from HAY and WADT [189, 214, 215] and
they refer to the paper of KAHN, BAYBUTT and TRUHLAR [219] as a principal description of the
underlying theory.

The next section summarizes the development of the VEFPX for a single valence electron. The
energy expectation value E of this valence electron’s wave function ¢v is the minimum of the
functional (2.47a) under the constraints of normalisation (2.47b) and orthogonality (2.47c) with

the core functions ¢¢.

(a) <¢7V ‘ H ‘ ¢’V> () (ov |ov)=1 (c) (dv|dc)=0 (2.47)

The core part of any function could be obtained with the idempotent, hermitian projection

operator P.
P =Y "|¢c)(ocl P?=p Poc = e (1= P)pe =0 (2.48)
c

The valence function ¢y could be obtained from any function x with the help of the projection

operator P.

(1-P)x=xv=0v Px=xc=Y acéc  ac={bc|x) (2.49)
c

P takes every bit of x in the core region out of y. Hence ¢y and ¢¢ cannot overlap and therefore
the integral 2.47c vanishes. Equation 2.49 allows us to rewrite (2.47a) and (2.47b).

(1= P)x|H| (- P)x) (1=P)x |1 =Px)y=1 (2.50)
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Arbitrary variation of x* with € as a Lagrange multiplier leads to:
<5X‘(1_15)f1(1_15)‘X>_e<5x‘(1_ﬁ)‘x>:o (2.51)

Since dx* is arbitrary follows from this equation:

A~ A A~ A

[(l1-P)H(1-P)—€e(l=P)]x=0 (2.52)
The rearrangement of (2.52) leads directly to the expression of generalized Phillips-Kleinman-
Potential VEPK [218].
Hxy—-HPy—PHyx+PHPx—ex+ePx=0 (2.53)
(H+PHP —HP — PH +eP)y =€x
(H+VEPF) x = ex
VEPK — PHP — HP — PH + €P
In the next step the Lagrange multiplier e (2.51) is set equal to the energy eigenvalue E of
the valence function (2.47a). By construction E is then the extreme value of (2.50) subject to the
constraints (2.47b) and (2.47c). The test function x may now have an arbitrary core part. This
can be proved by a rearrangement of the first equation of (2.53) and combination with (2.49).
(1=P)(H-E)(1-P)x=0
(1—P)(H—-E)¢y =0 (2.54)
(E—E)¢y =0 qe.d.
A similar argument applies to the core part of the test function yc.
(H +VEPKYye = (H + PHP — HP — PH + EP) x¢
=Hxc+PHPxc — HP xo — PHxc + EP xc |Pxc=xc (2.55)
=Exc

E is therefore the lowest possible eigenvalue of (2.47a). Also, every core function is degenerate with

the eigenvalue E in this approach.
VGPK i5 a nonlocal potential. Further simplification could be obtained by the localisation of
VGPK ' This is described in the paper of KAHN, BAYBUTT and TRUHLAR [219]. In the case of a

single electron circling round a closed shell core H equals the Fock operator F.

(F+VePKYyy =Ey F=h+Y (2Jc - Kc)
C
[+ (2Jc — Ko) + V¥ x = Ex (2.56)
C
(}Al + Ucore) y=Ex reere — Z(2jc _ KC) + VGPK
C

¢ counts the number of doubly occupied orbitals®. If the effective potential U™ is used in an
analytical form, the potential in which the valence electron moves is local and the integrals are

easy to compute.

8This form of the Fock operator (2.56) differs from (2.9) by the way of counting. In the form of (2.9) are
all electrons counted, in (2.56) only the double occupied orbitals are counted. While the coulomb integral
has a non-vanishing value among all electrons vanishes the exchange integral for electrons with different

spins.
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The orbital ¢y and the eigenvalue E are solutions of the exact hamiltonian H and are used
numerically during the following calculations. The next step in the evaluation of an ECP is to fix
the pseudo orbital x1. At this point of the calculation it is no longer possible to neglect the angular
momentum of the valence electron. The construction is done in such a way that x; is smooth and
nodeless in the core region and similar to the original valence orbital ¢v, in the valence region.
Such a nodeless wave function has the lowest energy eigenvalue applied to the pseudo potential
hamiltonian [219]. Originally the pseudo orbital is formed by a linear combination of ¢v and the

core orbitals ¢¢.

Xni = D ber o + Sy (2.57)
c

The arbitrary coefficients bc are chosen in such a way, the x has the right form under certain
constraints. HAY and WADT used this form [220] until CHRISTIANSEN et al. [199] proved, that
this form causes too strong bonds and too short bond lengths. CHRISTIANSEN et al. suggested
constructing x from two parts. HAY and WADT followed their suggestion for the ECP used in this
work. The first part is a polynomial p,; (2.58) and the second part is the original orbital ¢v;. At

a point r¢ close to the outermost maximum the polynomial turns into ¢vi.
Prt(r) = 10 (ano + an1 7+ apa 12 + a3 7> + apg r?) (2.58)

1 is the quantum number of the angular momentum of the electron. In the non relativistic case b
=1+ 3. The remaining five coefficients an; are determined in such a way, that

1. pni(r) and its first three derivatives match ¢y and its first three derivatives at rc.
2. Xnl remains normalized.

The precise criteria to which the coefficients of the pseudo orbitals are optimized differ from
paper to paper. The contribution of the original HF orbitals to the pseudo orbitals of the type
(2.57) is about 80% to 95%°. It may be higher for pseudo orbitals of the second type (2.58). A
change of the criteria did not much alter the pseudo orbitals. Only the swapping between the two
forms (2.57) and (2.58) makes a significant difference.

After the determination of the pseudo orbitals in a numerical form starts the extraction of
eore

B Xn héva
Xol o, (b) UEe(r) = By — 10Vt

a Ucore(r) = B,y —
(@) Ti™(r) LT X OVl

I>L  (2.59)

L is defined as ljyax + 1, where L,y is the maximum angular quantum number of the core electrons.
Hay and WADT [214] use for their pseudo potentials a combination of (2.59a) and (2.59b).

I(1+1) Z Xnl Vil Xt -E I(l+1) A + Xnl

272 T 20va v 22 T 2¢vu

Ueore(r) = Enl _ 2.60
l

A

Vyal contains the electron electron interaction of the valence electrons. Since the theory described
here considers only one valence electron, this term may be omitted. The rest follows from the
definition of h.

ﬁ:—lv2—g+l(l+1)
2 r

53 (2.61)

Figures calculated from table I in the basic paper of KAHN et al. [219]
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The last term of (2.61) is the centrifugal energy, which may be regarded as a result of the separation
of the radial and the angular part of the atomic wavefunction. The combination of (2.59a) and
(2.59b) is done in the fourth term of (2.60), where the second derivative of the pseudo orbital is
divided by the original valence orbital.

For wavefunctions with I < L the pseudo orbitals have to be used to ensure the right nodal
behaviour in the core region. Electrons with 1 > L have automatically the right behaviour and the
original HF orbitals ¢y are used for the construction of Uc°re.

The ECP strongly depends on the angular momentum of the electrons while 1 < L. For 1 > L
the difference between different Uf°™ is negligible [219, 221].

(@) U(r)2U07°(r) I<L (b) Ureme(ry =0 (r) 1>1L (2.62)

For | < L contains Uf°™ the coulomb and the exchange potentials and VEPK. For 1 > L Ufere
does not contain VEFK a5 the orthogonality of those angular states to the core states is ensured
automatically by their spatial parts. The spatial dependencies of the coulomb and exchange part
are small and can be ignored.

The different forms of Uf°™ can be unified by using angular momentum projection operators.

00 l
Ueere =" U (r) [Im)(Im| (2.63)
=0 m=—1
The combination of (2.62) and (2.63) with the standard closure property > > |lm)(Im| = 1 leads
finally to the form of U®°r®.

L—1 1
Uere(r) = U™ (r) + 3 Y ImD[UFe(r) = U (r)(Im] (2.64)
1=0 m=—I
The first term Uf°"® provides a basic potential in which all valence electrons move. It contains
the coulomb and exchange potentials, which are rather angular independent. This is expressed in
(2.62b). The second term provides the repulsive term V&K which is strongly angular dependent.
The coulomb and exchange parts with small angular dependence cancel each other out.
The last step is an analytic expression for the pseudo orbitals and potentials. The ECP is fitted
with a set of gaussian functions.

PUf(r) = U (r)] = Y dir™ exp[-(r’]  1=0,1,...,L—1 (2.65)
k

N¢

2 core
r [UL (r) "

] = de ™ exp[—(r? =L

k
N¢ is the number of core electrons. At an infinite distance from the nucleus the spatial arrangement,
of the core electrons is irrelevant. The valence electron moves in a repulsive field caused by the
coulomb interaction between the valence electron and all core electrons gathered together at the

nucleus.

U (1), = 2 (2.66)

00
r

Gaussian functions are useful, because nearly all quantum chemical codes today use gaussian
orbitals and therefore have the facilities to handle gaussian functions.
The choice of L is interesting. Some authors do not choose the value suggested by the theory [eg

221]. They argue that in a molecular environment usually only s-, p- and d- electrons are involved
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in a chemical bond. Therefore, it is not necessary to include f-type repulsive functions in the ECP.
The potentials used in this work [189, 214, 215] use the full range. For platinum L equals four
(g-type) and therefore f electrons are handled correctly.

The ECP would force any basis set into orbitals of the right shape. So in theory any basis set
could be used in theory. But this would be a waste, since those basis sets are expected to reproduce
the correct nodal behaviour of the HF wavefunctions in the core region. To keep the computational
efforts at a minimum, the pseudo orbitals x are also fitted to gaussian functions and published
with the ECP. The basis set used for this work uses the original exponents [189, 214, 215] but has

a double zeta quality [222] by rearranging the functions into new groups.

2.6.2 Relativistic Quantum Mechanics and Core Potentials

As the charge of the nucleus increases, the electrons move faster. For heavy atoms like platinum
relativistic corrections of the quantum mechanical results have to be made. The basis of relativistic
quantum mechanics is given by the Dirac equation. While most textbooks discuss only the results
of this approach [192, 194] very few books [197, 223, 224] discuss the equation itself. This section
of the thesis summarizes the chapter of CHRISTOFFERSEN’s book [197] to show the origin of the
different effects.

The force acting on a particle with the mass m, moving with the velocity v can be described

with Newton’s laws of motion.

d d
F = 7P = E(mv) (2.67)

The mass is allowed to vary with its velocity according to the relativistic mass correction, where
mgo denotes the particle’s rest mass.

m=—— (2.68)

V1= (v/c)?

While the particle moves in an electromagnetic field, two forces are acting on the particle. First,
the coulomb interaction with the electric field q-E and second the Lorentz force (q/c)(v x B).

d mo v o q
E{m}—F—qE—l—(z) (v x B) (2.69)

E is the strength of the electric field and B is the density of the magnetic flux. Rearrangement

converts equation (2.69) into its final form for the construction of the Dirac equation.

E=-V —1% B=VxA
c Ot

%{%Jr (%)A} = —qVé+ (%) (v- VA)

The Hamiltonian is built from equation 2.70 via the Lagrangian function L including interparticle

(2.70)

interactions V.

oL
i=—— = [ Fat H=Y piqg-L
Pi= 0 / > pig

H=\/c? [ﬁ— (E)A]2+mgc4+q¢+V

(2.71)
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The Hamiltonian (2.71) is difficult to use due to the square root. The factorisation of the Hamil-
tonian into a product of two four-component vectors forms the basis of the actual Dirac equation.
For a hydrogen atom A equals zero and the potential in which the electron moves is given by
—e?/r. The tedious rearrangement of the corresponding Dirac equation is omitted here for the
sake of brevity and the results of the calculation are taken from SCHWABL’s book [194].

From the solution of the Dirac equation for the hydrogen atom three correction terms for the

single electron follow directly:

1. The relativistic energy momentum correlation (square-root of (2.71)) introduces a correction

to the electron’s kinetic energy.

- 52 1 (52)2
E:\/c2p2+m%c4:mgc2+2p—m_§r(:g)c2+... (2.72)

The first term of the expansion is the energy mass relation, the second the non relativistic

kinetic energy and the third the relativistic correction to the kinetic energy. The Hamiltonian
of the hydrogen atom would be:
P e ; 1 (p°)?

Hy=-—--=2 H =--— H=Hy+H 2.73
°T2my r ! 8 mgc 0ot M (2.73)

. The rest energy mgc? is constant and can be separated from the energy expression.

2. The electron orbiting around the proton can be regarded as the source of a magnetic field B
= —(v x E)/c. This field interacts with the electron’s spin S. The interaction is called the
spin orbit coupling.

—e A =~ e A . e 4 p —e A .
-B = . E) = | —%xFE)=——=5"- 2.74
mocS mOC2S (0 x E) mocQS <m0>< ) m%c25 (px Vo) (2.74)
1 4 (. 7dV(r) 1 4 2 1dV(r)
= : - = B
m2 025 <p>< r o dr > m3 c? S rodr

After the introduction of the magnetogyric ratio for an electron g = %, equation 2.74 and the
solution of the Dirac equation become equivalent. The correct expression for the hydrogen

atom would be:

- 1

1
H,

2
V(r) = §.1%%

S-L =
2mi c? r3

_ 2.75
2mi c2 (2.75)

The expectation value <Hs > of the spin orbit coupling has the following value:

2 4
2 mo c*(Za) l
H = 2.
< 2>n,j:l:{:%,l Andl(+1)(1+1) (—l—l) (2.76)

a is the fine structure constant. Since | appears in the denominator of (2.76), spin orbit

coupling is only possible for electrons with 1 > 1.

3. The last term H3 from the Dirac equation of the hydrogen atom is the Darwin term.

. n? 7w h? e?
Hs; = =" 2.
278 m3 c? v 2m3 c? (r) (2.77)

A physical interpretation of the Darwin term is found few text books. They all take Hs as
a result of the Dirac equation for the hydrogen atom. According to SCHWABL [194b] the

position of a localized electron is uncertain dr = %, which looks like a combination of the
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Heisenberg uncertainty relation and Einstein mass energy equivalent. Due to this uncertainty

feels the electron an average field from the nucleus.

1
(V(r+4or)=V(r)+ 8 (67)2 V2V (r) (2.78)
The second term of the right-hand side of equation 2.78 has the same form as Hg (2.77). The

Darwin term is purely relativistic.

Due to the delta function in the far right term of (2.77) the Darwin term is only relevant
for s-electrons. Since only the wavefunctions of s electrons have a non vanishing value at the
nucleus. The expectation value of H3 has the following value:

2 4
- _myc® (Za)
(i), -, o

The value is formally identical with the expectation value of Hy (2.76) with j = L and 1 = 0.

All three relativistic corrections are about the same size and (Z - «)? times (1.9 - 10* for hydro-
gen) smaller than the coulomb interaction. The relativistic effects are small in comparison with
other quantum effects and a perturbation approach for relativistic effects is appropriate.

The next relativistic correction!® is the Lamb shift. The Lamb shift is caused by the quantisation
of the electromagnetic field and has the same structure as the Darwin term, but again is alog (1/a)
times smaller (about 64 for hydrogen). The hyperfine structure is caused by the interaction of the
electrons with the spin of the nucleus. The hyperfine interaction is even smaller.

The development of relativistic pseudopotentials [189, 214, 215] starts with introduction of
the mass-energy (Hy) and the Darwin operator (Hs) into the nonrelativistic Hartree-Fock atomic

equation [221].

2 dr? 2r2

N 2
+ Vi — |:€nl — Vrilo] —

<1d2 (+1) - 2
* 2

2 2 -1 lo

o {1 +5 [ens = V7] } % (dii - %))Pm = ent P + ; entt Put - (2.80)
Var = —Z + VHF is the potential, in which the electron moves and V19 its localized version. To
obtain radial wavefunctions, which are independent of a j quantum number, the spin orbit term
has been omitted by KAHN et al. [221]. Although the spin-orbit coupling term H, has been
omitted, the relativistic Hartree Fock approach (HFR) describes correctly the enlargement of the
d and f orbitals and the shrinking of the s and p orbitals. The influence onto orbitals with 1
# 0 is only indirect, since the Darwin operator works only with s orbitals. Table 2.2 shows the
expectation values for (r?) for the uranium and the corresponding values of pure Hartree-Fock (HF)
and Dirac-Hartree-Fock (HFD) calculations.

Table 2.2 demonstrates how well the approach given by equation 2.80 reproduces the j-averaged
results of the Dirac-Hartree-Fock calculation (av. HFD). The data also justify the use of the Darwin
operator instead of the spin orbit coupling operator, since the changes of the 7s orbital are by far
the greatest in the table. Non relativistic wavefunctions based on equation 2.80 can be described
by three component vectors, while relativistic wavefunctions from Dirac-Hartree-Fock calculations

need four component vectors.

10Please refer to [192, 194, 224] for details.
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5f_ 5f+ 6d_ 6d+ 7s 6p_ 6p+

HF 1.94 9.63 28.8 4.11
HFR 2.57 12.4 21.5 3.73
HFD 253 267 11.1 13.7 21.8 3.13 4.08
av. HFD 2.61 12.7 — 3.76

Table 2.2: Expectation value of (r?) in bohr for different uranium orbitals [221]

The relativistic pesudopotentials by HAY and WADT [189, 214, 215] are based on HFR cal-
culations (equation 2.80). The determination of relativistic pseudopotentials is the same as the
calculation of the nonrelativistic potentials once the pseudo orbitals xy,; are known. The difference
between both orbitals is the exponent b of the orbital’s core part (2.58). For orbitals with 1 # 0,
b=X+2.

A+1= \/l(l +1)+ i(l +01,0)% + (aZ)? (2.81)

For s orbitals a 6th degree polynomial is used instead of the fifth degree polynomial and b is set
equal to A + 3. Since the pseudo orbitals and potentials are based on HFR calculations the mass-
energy and the Darwin term are incorporated into any calculation which uses those potentials.
If spin orbit coupling is important for the calculation, spin orbit coupling has to be introduced
later into the calculation as a perturbation. The coupling constants might be taken from HFD
calculations or spectroscopic data.

ERMLER et al. [225] used a j-averaged pseudopotential basing on a Dirac-Hartree-Fock calcula-
tion of xenon for the quantum chemical analysis of Xe, and Xe; WAaDT et al. [226] did an analysis
of the same molecules using their approach based on equation 2.80. Both groups obtained nearly
the same results for interaction energies and bondlengths. This result is hardly surprising, since
calculations at an atomic level (table 2.2) showed how well the nonrelativistic approach reproduces
the values of j-averaged HFD calculations. The simplification does not cause any additional errors
during molecular calculations. The difference between the theoretical and the experimental values
is caused by two effects.

1. Comparison with all electron calculations showed the ECP calculations to predict too short
bond distances and too high bonding energies. Those differences are caused by the poor

description of the inner core part of the pseudo orbitals x, [199].

2. Additional spin orbit calculations improve the overall performance of the ECP calculations.
The improvements of the results are too small to overcome the error due to the incorrect
form of the pseudo orbitals. The small differences between calculations with relativistic and
nonrelativistic ECP suggest, that for xenon compounds relativistic effects are negligible and

the main relativistic effect is the spin orbit coupling.

Similar investigations of AuH, AuCl, HgH and HgCl were done by HAY et al. [227]. For heavy
metal atoms relativistic effects of the core electrons are important. The calculations show that the
correct relative energies of different atomic states are impossible to determine without relativistic
corrections. The calculations show that further improvement could be achieved by correlation

calculations. Additional spin orbit calculations improve the performance and good reproduction of
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the experimental value is possible. Without spin orbit coupling, calculations with relativistic ECP
give good j averaged results.

The use of relativistic ECPs by HAY and WADT [189, 214, 215] in combination with correlation
calculations should form a good basis for the calculation of platinum clusters as surface models,
because the largest error caused by the poor description of the pseudo orbitals core part has been
corrected. The analysis of the gold and mercury compounds also showed that even a qualitative
analysis of heavy metal compounds would be impossible without the use of relativistic core poten-
tials. Spin orbit coupling could only be achieved by perturbation of the final results. The coupling

constants are usually taken from spectroscopic experiments.

2.7 Interactions between different electronic states

The problems of intersections and intersystem crossings are widely covered by basic quantum
mechanics text books. This section follows the reasoning of LANDAU and LIFsHITZ [228] and
GILBERT and Baccor [229].

2.7.1 Intersection of Potential Energy Curves

E;(r) and Ex(r) describe the total energy of an adduct as a function of the distance r between the
components of the binary complex. To decide whether an intersection can occur, it is convenient
to start the examination at a point rg, where E; and Es are very close but not similar. E; and
E, are eigenvalues of ¥; and ¥y with the hamiltonian ﬂo at r = rg. The new hamiltonian after a

small movement of dr towards the possible intersection has the following form:

o N OH
H=H,+V V= 57«8—: (2.82)

The energies at this new point can be regarded as eigenvalues of the new hamiltonian (2.82).
The according wavefunction ¥ is built from the eigenfunctions ¥; and U5 of the unperturbed

hamiltonian ﬁo.

\I’T = 01\1’1 + 02\1’2
(Hy +V)¥r = E¥r and Ho¥, =B ¥, and Hy¥, = E,¥, (2.83)
Cl(El + ‘7 — E)\I’l + CQ(EQ + ‘7 — E)\I’Q =0

The multiplication of this equation on the left by ¥} and ¥j, integration and rearrangement

directly lead to the secular determinant and an expression for E.

E,+Vi, — FE Via

=0 (2.84)
Vau Ey +Vy — E

1 1
E =g (B + By + Vi + Vi) & \/Z<E1 — By + Viy — Vap)? + |Vi2|?

If the energy values of the two terms become equal at the point rg + dr (the two curves intersect)
both values of E have to be the same. This happens as the square root term in equation (2.84)

vanishes.

Ei—Ey+ Vi1 = V52 =0 Vig =0 (2.85)
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Via = (\111|V|\112) vanishes as ¥, and ¥, have different symmetries. Vs always totally symmetric,
since no symmetry operation can alter the energy of the perturbation. This integral only has a
non vanishing value, if the function to be integrated transforms totally symmetrically. This is only
possible, if both wavefunctions ¥ have the same symmetry. Once Vi, has vanished, the term on
the left side of (2.85) can be set equal to zero by a suitable choice of dr. Therefore, two terms can

only cross if they have different symmetries including the spin.

2.7.2 Photoexcitation and Intersystem Crossings

Photoexcitation can alter the electronic state of a molecule. A photoexcitation is possible, if the
transition moment is not equal to zero. The transition moment is one result of the time dependent
perturbation theory of the transition.

The interaction of light with a molecule’s dipole moment can be described as a perturbation
of the molecule. Since the vector of the electric field of the light changes with the time, the
perturbation analysis has to be time dependend. Hp is the time independent hamiltonian of the

molecule and ¥9 and ¥J are stationary eigen functions of Hy.

d . . .
ih = ¥ = Hy ¥ 9 = E, 1° T, =0 e (/B (2.86)

Hy 99 = B, ¥§ Ty = P e (/WP

The interaction with the light is described with the perturbation operator HS and the wave-

function ¥y is a linear combination of ¥9 and ¥9.
1 3

d N N
’Lhd— Upr = (H() + HS) Ur Ur =¢ \I’(l) + C2 \I’g (287)
dcy d . d¥, d¥ I . N N
ih <‘I’1 dt + \I’Q dctQ> + ih <01 dt + o dt2> = ClHO\I’l + CQHO\I’Q + ClHS‘Ifl + CQHS\I’Q

dcy d . .
m(wl — 0 ;f>=c1HS\IJ1+c2HS\IJ2

Multiplication with ¥ from the left side and integration lead to two expressions for the constants

C.
b o 3 ]00) () =
AT TSRS e

At the beginning (t = 0) is ¥ equal to ¥y, since nothing has happened and therefore ¢; = 1 and
c2 = 0. Shortly after the start of perturbation c¢; remains close to one and cs is still so small, that

ce can be neglected safely. This line of reasoning leads to the following expression for cs (2.88a).

dCz ‘TS
dt ih < 2 ! ( )
At the end of transition cs equals one and c; equals zero. Therefore, ¢y has to change its value

de

4t can not be zero. The time derivative does not vanish, if the integral

during the transition and

does not vanish.
<\p2 ‘gs ‘ \111> - <\pge—(i/h)E2t S ‘ \Iy(l)e—(i/h)Elt> = e~ (i/W)(Ba= B0t <\p(2) ‘gs ‘ \pg>

HS = —E = —p Ey cos(2mwt) (2.90)

<\Ifg ‘ HS ‘ \I!(l)> = —Ey cos(2mvt) (03| | V) = —Ey cos(2mvt) Hy,
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The problem of the vanishing integral can be reduced to a integral H,, which contains only
stationary wavefunctions ¥° and the molecule’s dipole moment p. HS, is called the transition
moment and allows a quick decision whether a transition is possible or not.

The components of p transform like a translation along the axis of the coordinate system.
Only if the product ¥9 - u - ¥9 transforms totally symmetrically, has the transition moment a non
vanishing value.

The wavefunctions in the transition moment H5, may be separated into their spatial ¥? and

their spin parts x;:

(U3 || 97) = (o lul o) (xe | xa) = (WS [l 9?)dsy 45 =a,B (2.91)

The transition moment vanishes as the ground and the excited state have different spins. Photoex-
citation does not allow a change of the molecule’s multiplicity.

A change of a molecule’s multiplicity is still possible. Intersystem crossing is usually observed
after photoexcitations of organic molecules with substituents, which contain heavy atoms. The
molecule relaxes in a non radiative way from the first excited singlet state into the lowest lying
triplet state.

Only the total angular momentum has to be conserved. The multiplicity of a wavefunction may
change, if the angular momentum of the spatial part changes simultaneously. A coupling between
the spin and the electron’s angular momentum may be achieved with the relativistic spin-orbit-
coupling operator'! HSC. The spin-orbit interaction can be introduced into the calculation as a
perturbation of the non-relativistic part. During the calculation a mixing term < 3 | HSO |10 >
= Hg? arises, which is the direct equivalent of the transition moment. Since HSO transforms as
a rotation, a conclusion whether H3 vanishes or not can be reached quickly with the help of a
character table.

The possibility of an intersystem crossing is usually rather small. As HSO behaves as Z* [229]

a change of the molecule’s multiplicity is likely for a platinum compound.

2.8 Dipole-Dipole Interaction and Polarisation

The theory of electric polarisation is well understood [23, 230]. Since it includes a large part of the
nonadditive contributions to the water-water interaction potential, it is important to understand
its background beginning with the dipole moment.

A set of point charges q; is scattered around the origin. The calculation of the electrostatic

potential ¢ at a point T is straight forward.

q qi
471'60 Z r—r; 47T€() Z N{CED (2.92)

(y—vi)? + (2 — 2)?

" The first part of the multi electron spin-orbit coupling operator [192] describes the interaction between
the electron’s angular momentum and its spin. The second part represents the same interaction between
one electron and the remaining electrons.

ViV 1., o PN —eoh
Z gk Bk < k ka) Sk+zzykﬁkezT (Fo—7) xp1) -85 B = —20
k

2myich er mich 1y, 2mec

ge = 2.0023 is the gyromagnetic factor of an electron.
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As long 1; is small in comparison with r the potential ¢ can be described by a Taylor series ¢(r — 1;)
= (1) - 1i - (dp/dr).

1 qi
:4W€0{;7+— w;Qimi‘i‘y;‘Ziyi‘i—Z;‘ZiZ’i]} (2.93)
- 0 L Yt 0=Ya
dmeg |7 13 ,u K i il i i

q is the total charge of the cluster and p its dipole moment. Further expansion of (2.93) yields

higher multipole moments. Ouly if the cluster carries no net charge (q = 0) is the dipole moment
independent of the chosen coordinate system. All higher multipole moments depend on the chosen
frame.

The electrostatic potential ¢, and the strength of this field E, can be derived directly from
(2.93).

w =

1 (ir) -1 10, (@)
E,= -V, = —|i-3 2.94
dreg 13 ’ Pu 4mey 3 H ) (2.94)
The energy ¢ of a point charge q; in an electric field ¢ by other point charges g; and dipoles
M is:
N

M oL
€ = qip = 0 4, 4 Z(uk i) (2.95)

4meq 4 < Tij 4meg
= —

and the energy ¢; of a dipole y; in an electric field depends on the field’s strength E.

qj U (G i) o G- ) (i - k)
E= —L : e : 2.96
— 471'60 Z 471'60 Z; ( 3 e ( )
Equations (2.95) and (2.96) allow us to determine the interaction energy V between two molecules
(r12 = —ro1) with charges q;, qo and dipole-moments p; and us.
4192 (i - T) (i1 77) - o (i - 7) (fiz - 7)
= —= -3 2.97
V0 = o (22 40 B0 - B0 ) " (2.97)
110 . (fir - 7) (fis - 7)
- ) _3
Vim0 (1) = pree s | /) L

Since the water molecule does not carry any charge, the water-water interaction consists only of
dipole-dipole and higher multipole interactions.

Since the dipole moment of a neutral molecule is independent of the chosen origin of the
coordinate system, the dipole moment may be placed anywhere in the molecule. As long as the
initial boundary condition (r > r;) is fulfilled and the distance between the two molecules is much
bigger then a single molecule, is the precise position unimportant. As the distance gets shorter the
total interaction energy depends on the position of dipole moment. Figure 2.4 demonstrates this
effect. To calculate the figures for the plot two AB molecules are placed in an antiparallel position
with separation d. The molecules are assumed to be 1 A long (r) and each centre carries a charge
(q) of 1 e. The dipole moment p of the molecule is 1 Ae = 4.8 D [17b].

2 2 2
q q 2p7r® — i d?
=K |t - L g g —F° g= 2.
Y [\/d2+r2 d } v & e (42 +12)3 4meo (2.98)
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Figure 2.4: Dipole-dipole interaction.

Va is the interaction between both molecules calculated by the summation of the coulomb inter-
action between the individual charges. Vp and V¢ are calculated with the help of (2.97). For
the calculation of Vg the dipole moment was placed at the molecule’s centre and for Vo onto the
negative charge. Vg is good description of the exact coulomb interaction (Va), while V¢ is only
suitable for long distances (d > 5r).

The position of the dipole moment on the negative charge seems to be a good guess, since the
dipole moment points from the negative charge to the positive charge. On the other hand it is
physically impossible to explain the minimum at d = 2r of V¢ with the point charge model. The
positioning of the dipole moment at the centre of the molecule is closer to the initial idea, where
the individual charges are clustered around the origin. Therefore, the Taylor series is merely a
projection of the electrostatic characteristics into the centre of the molecule. This demonstrates
that although the size of the dipole moment is independent of the chosen coordinate system, the
interaction energy of two dipoles depends strongly on the position of the dipole moment in the
molecule.

The interaction energy of the two AB molecules in a linear head to tail orientation (Vp) is
twice as large as in an antiparallel position (Vg).

242

Vo =K

(2.99)

In such an orientation two opposite charges can get very close to each other. The exploding coulomb
energy overpowers everything else. A prototype of such an AB molecule is hydrogen fluoride. The
dimer has a bent head tail orientation. The experimental FFH angle is 116° and theory predicts an
angle between 110° and 120° [208b]. The general description of the relatively simple HF hydrogen
bond by dipole moments describes only the basic orientation. For a better description the chemical
bond has to be considered either by quantum chemical calculations or by the introduction of higher
multipole terms. The hydrogen cyanide dimer is linear with a head tail orientation [208b, 231].
The orientation of the free electron pairs controls the details of the hydrogen bond while the dipole
dipole interaction only allows a rough estimate.

The electric field induces an additional dipole moment. The net dipole-moment of a molecule
in an electric field is the sum of its static dipole-moment p and the induced dipole-moment p.

finet =fi+P=ji+a'E p=dE (2.100)

o' is the polarisation (o = (4mep) 1.45 A® for water) [15]. For the ease of reading the polarized
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volume a = o'/ (4mep) is used for the following equations'2.

An induced dipole moment causes an electric field, which induces other dipole-moments. There-
fore all induced dipole moments are coupled together. The polarisation between two charged
molecules can be described by the following set of equations:

L 051QQF (5] N 3(ﬁ2 . 77)77 aq N 3(52 ’F)F
p=-—3 —T?(N?—T TE\PRT T (2.101)
L OégqlT_" (65} N 3(ﬁ1 - T_")T_" Qo N 3(]51 . 7_")7_"
P2 =+—3 —T—3<N1—T e\ T E (2.101a)

BOTTCHER [230] published the most elegant solution for this problem. In the first step Py in
equation 2.101 is replaced by equation 2.101a. Then (2.101) is used to figure out (Py - T). This
result is used to replace (P; - T) in the result of the first step. Tedious rearrangement leads to the

following equation for py:

L, ar @, 1 Ay 3(fleP)7]  aion [2q1, 1 L 3(far)r
pr= 7“3 |:A4T + Al H2 A1A4 7'2 7'6 A1 r Al # + A1A4 7'2
. ay [—q, 1 | Ay (AT aron [-2¢2, 1 1L 3(fi2r)7
__ofzq 1o 2+ 2.102
P2 r3 {Az; T+A1'u1 A1Ay 12 r6 Ay T+A1M2+A1A4 r2 (2.102)
A,=1- 0%
r

In an analogous fashion Py can be determined. This allows the calculation of an improved value
for V(r) and therefore to get an estimate for the nonadditive interactions.

Two models for water are widely used:

1. The water molecule is a homogeneous particle with no charge and a dipole-moment.

1 N A2 3(ﬁ2 77)77:| + 102 |: 1 1 3(ﬁ1 T_")F

a1 +
7'6 A1 Ml A1 A4 7“2

pr= 7"_3 |:A_1'u2 B A1A4 7'2

—

(2.103)

2. The water molecule consists of independent charges and only the oxygen is polarizable. No
atom has a dipole-moment on its own. Now a calculation with a single charge is not possible.
The charges in (2.96) have to be replaced by the sum of all charges in the system.

Si=> (Tii45) (2.104)

i#i
L, o« — «@ - 3a = ., 3BAy = .
1 = A_1 |:—Sl — 7‘_3 <—SQ + 7‘5A4 (Slf’)r + T‘2A4 (SQ'F‘)T)}

2For a quantum chemical description of polarisation of molecular orbitals and the calculation of the
polarizability please refer to ref. 232, while ref. 233 describes the quantum chemical approach towards

multipole interactions.
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Chapter 3

Quantum Chemistry of small
Water Clusters

Water is one of the best analysed substances. The work started with an investigation of a single
water molecule, since experimental values are readily available from the literature. The water
dimer allows us to test the method’s reliability and to obtain information about the water water
interactions. The water trimer finally gives additional insight into non additive effects and the
formation of small water clusters. Calculations on larger clusters (up to the hexamer) [180] and ice
[130] show, that higher cooperative effects than three body forces are not important for the water
water interaction.

The clustering of water molecules on metal surfaces is commonly observed [38]. Understanding
the mechanism is important for the description of the water metal interface. Additional data on
the undisturbed water cluster are therefore necessary to recognise the influence of the metal onto
water cluster. Quantum chemical calculations on solvation of ions show that the ordering influence
of the ions also controls the water water interaction in the solvation shell. To recognize similar
effects at the platinum water interface additional data on the undisturbed water water interactions

are also necessary.

3.1 The Water Molecule

The work started with a broad test of different basis sets and methods to calculate the properties
of water. Section 11.3 (page 319) of the appendix displays a selection of those experiments.

Most papers on the water dimer start with a short reexamination of water to test the chosen
method [110, 113, 115, 118]. Table 3.2 displays the final results for water in comparison with
various values taken from the literature. The most useful basis sets to predict the properties
of water seems to be the DZP and the TZVP base in combination with MP2 / MP3 calculations
(h20.18 and h20.9). A combination of a small basis set with a high correlation level obtains usually
results of the same high quality as a combination of a large basis set with a low level of correlation.
Table 3.1 shows the dfifference between the experimental values and the best GAMESS UK results.

At first sight h20_9 seems to yield the best results, since the geometry is slightly better than
that of h20_18. On the other hand, the electronic properties of h20_18 are much better. The

quantum chemical dipole moment pqc (equation 3.1a) is a sensitve measure of wavefunction quality.
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experiment h20.9 h20_18 h20_18

basis set — TZVP DZP  6-311++G"™
method — MP2 MP3 MP2

w [deg] 104.5 104.84 104.89 104.05
roH [A] 0.9572 0.9576 0.9590 0.9588
I [D] 1.85 2.2354 2.1512 1.8988
ad [e] —0.66° —0.58 —0.65 —0.57
ab [e] +0.33¢ +0.29 +0.325 +0.29

& point charge model b Mulliken population analysis

Table 3.1: Optimized water geometries.

Although the dipole moment of h20_18 is higher than experiment it is still better than h20.9. As
a further test the charges of the bonded atoms were calculated. The quantum mechanical charges
are calculated by Mulliken population analysis [190] of the MP2/MP3 density matrices. The
experimental charges were calculated from the experimental dipole moment p assuming a fixed

geometry (ropg = 0.9572 A, w = 104.52°) and a simple point charge model (ppc, equation 3.1b).

(a) poc =e(¥|r|¥) (b)  wpc = qoron cos (g) (3.1)

Together with a conversion factor of 1 D = 3.336-103° Cm and an experimental dipole moment
= 1.85 D [17] equation (3.1) yields an oxygen charge of 0.66 e. The charges calculated for h20_18
(DZP MP3) are much better than those calculated for h209 (TZVP-MP2).

The best values for geometry and electronic properties were found with 6-3114++G"* MP2
calculations. Sadly those calculations are too costly to be used for bigger clusters. The reproduction
of the experimental dipole moment is excellent. The charges found by quantum chemistry are

smaller than expected. Two things should be considered when discussing charges:

1. Localized charges at the atoms are not the best model of a water molecule. Basic chemical
theory expects a tetrahedral oxygen atom with two nonbonding electron pairs. Molecular
orbital theory describes the same effect with a nonbonding (3a,) and another bonding orbital
(1by). In both cases electron density is moved away from the oxygen nucleus and the hydrogen
atoms. This movement increases the distance between negative and positive charges. The
same dipole moment could be achieved with smaller charges than the point charge model

predicts. The point charge model therefore predicts only an upper limit for the charges.

The molecule’s geometry is an experimental well-established fact. Any model, which is based
on something else has to make considerably more assumptions about the electron distribution.

The point charge model is therefore a sound basis for the exploration of the dipole moment.

2. The charge of an atom in a molecule is not a physical observable and cannot be calculated
directly from the molecule’s wavefunction. Assumptions of the distribution of the electrons
between the atoms have to be made. The quantum chemically calculated charges therefore

depend on the model used for their computation and are difficult to compare.

The problems with the quantum chemical calculation of charges are shown by a comparison of the
Hartree Fock (HF) charges with MP2 charges. Using the 6-311++G"" basis set, the dipole moment
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la, 2a, 1b, 3a, 1b,

Figure 3.1: Sketch of the molecular orbitals of water.

changes form 1.9677 D (HF) to 1.8998 D (MP2) and the oxygen charge from —0.62 e (HF) to
—0.57 e (MP2). The changes of the geometry and the charges would suggest a rise of about 2.11%
of the dipole moment. Actually is the dipole moment 3.57% larger. The charges and the dipole
moment are not well correlated and the charges therefore do not form a good basis for comparison.
Consequently the quantum chemical dipole moment pqgc was chosen as the main criterion.

According to general expectation the wavefunction’s quality should increase with the number
of basis functions. The row ’functions’ of table 3.2 displays the numer of basis functions for each
calculation. As the number of basis functions increases from 26 to 32 on changing the basis from
DZP to TZVP an improvement of the wavefunction’s quality should be expected, but the opposite
was found.

An error of GAMESS UK is very unlikely, since the calculations reproduce very well the results
of KM for DZP-MP2 computations (table 3.2, [118]). In the next step the eigenvectors for each
calculation were checked carefully. The main difference can be observed for the polarising d-type
orbitals on oxygen. In DZP calculations those orbitals contribute mainly to the 3a; orbital of water
(figure 3.1). In TZVP calculations they contribute significantly to the la; and the 2a; orbitals.
This indicates, that the TZVP basis set might not be well balanced. To check this, equation
2.31 and 2.32 (section 2.4, page 23) were used to add an additional s-type function to the TZVP
basis set. The radial maximum of the electron density of this function was at the same place as
the maximum of the d-orbitals. This basis set was used for full geometry optimizations at MP2
and MP3 levels (h20.46 and h20.47). The geometry and the electronic properties did not change
during the MP2 calculation while those values improved on a MP3 level. On the electronic level
the relative contributions to the 3a; orbital increased while the relative contributions to the la;
and the 2a; orbitals decreased. At the same time the contributions of the original s-type orbitals
to the the 1a; and 2a; orbitals decreased slightly while their contribution to the 3a; increased.
This increasing s character of the 3a; orbital might be the reason for the shrinking of the bonding
angle in the water molecule.

The introduction of the additional s orbital did not change the geometry at MP2 level, but
lowered the energy about 0.0003 H (0.188 kcal/mol). The Hartree Fock energy changed only
slightly (0.0001 H) but the MP2 energy is about 0.0003 H lower. The extra orbital increases the
flexibility of the basis set and therefore lowers the Hartree Fock energy. The jump in the MP2
energy is causes by the enlargement of the correlation space.

The TZVP basis set seems to be not well balanced and therfore yields poorer results than the
smaller DZP basis set. DUNNING, JR [234] made similar conclusions in his work on Gaussian basis
sets in correlated molecular calculations. He suggests that a DZ basis set for first row elements
should at least contain one d-type function as polarisation function. A TZ basis set should contain
at least two d-functions and one f-function. They are necessary to give a reliable description of the
lone electron pairs. The DZP and the TZVP basis sets of GAMESS UK only contain one d-function

as polaristion function. The DZP basis is therfore much closer to the suggested optimum than the
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By / v3 [em™] Ay /v [em™] Ay /vy [em]

Wharm diff* Wharm diff* Wharm diff* (diff)f
exp.© 3942 — 3832 — 1648 — —
exp. NpP° 3913 — 3808 — 1649 — —
Kim - RHF® 4290 +348 4165 +333 1753 +105 262
Kim - MP2¢ 4056 +114 3906 + 74 1663 + 15 68
Kim - MP4¢ 4038 + 96 3903 + 71 1675 + 27 65
RHF! 4290 +348 4166 +334 1753 +105 262
MP2d 4052 +110 3905 + 73 1664 + 16 66
MP3¢ 4037 + 45 3875 + 53 1611 - 37 61

2 experimental value - calculated value P isolated in a nitrogen matrix ¢ [118] 9 calculated
with Gaussian 94 - analytic frequencies © calculated with GAMESS UK - numeric frequencies

f mean of the absolut values

Table 3.3: Harmonic vibrational frequencies of water calculated with a DZP basis set.

TZVP basis.

The optimized geometries were the starting point for the calculation of the vibrational frequen-
cies.

The analytic MP2 frequency calculations have the 50 c
same reliability as the expensive MP4 calculations of v
KiMm. The calculation of the frequencies at higher cor- [cal/mol /K] _ [cal/mol/K]
relation level than MP2 has to be done numerically. It RHF® 44.955 5-992
is therefore difficult to gain additional accuracy by in- Mp2* 45.095 6.003
creasing the correlation level from MP2 to MP3. The MP3® 45.071 6.012

exp.© 45.104 6.039

quality of the frequencies depends strongly on the qual-
ity of the optimized geometry [190, 235, 236] and the  ° Gaussian 94 - analytic
chosen method. Sadly Kim does not give any informa- » GAMMESS UK - numeric
tion about these topics. The frequencies are therefore ¢[15] Cv =(Cp —R)
difficult to compare, although the data suggest that the

frequencies at the HF and MP2 level published by Kim

were calculated analytically. The importance of corre-

Table 3.4: Thermodynamic properties

of water.

lation calculations is evident from tables 3.3 and 3.4. The quality of the frequency calculation
greatly improves with the introduction of electron correlation. Also the entropy S° improves with
introduction of electron correlation. The results of the MP2 calculation are in reasonable agree-
ment with the experimental values. Again the numerical value is poorer than the analytical one.
Analytical MP2 frequencies form a sound basis for the thermochemical analysis of water clusters.
At a reasonable price the frequencies are of similar quality and the MP2 entropy is even better
than the MP3 value. The MP3 frequencies are not shifted in the same direction. A shift in the
same direction is desirable, since it facilitates the comparison of different results. The value of heat
capacity is not a well chosen indication, since gaseous water is not an ideal gas and Cp — Cy = R
is therefore not strictly true. The zero point vibrational energy of 13.757 kcal/mol found with the
MP2 calculation is therefore the most reliable value.

Table 3.5 displays the effect of the basis set’s size on the Hartree Fock energy during pure RHF
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calculations. The biggest influence on the total energy is the addition of polarisation functions to
the DZ basis. This indicates that polarisation functions are more important than the actual size of
the basis set. The basis set closest to Hartree Fock limit (6-311++G"", 83 functions), the only one
which yielded excellent geometrical and electronic properties simultaneously (table 3.2, h20_28), is
already so large, that it was impossible to perform any correlation calculations on the dimer with

HP 710 and HP 730 workstations at Newcastle.

Table 3.6 shows the ground state coefficient cq for var-

ious correlation calculations. In all cases ¢y equals 0.974 basis set Erpp [H] num
to three significant figures. The small figure indicates the DZ —76.0110 14
importance of correlation calculations for water. The close DZp —76.0469 26
similarity of ¢y for DZP MP2 and the DZP CI calculations TZvP » —76.0560 32
prove that single and double excitations significantly con- 6-311++G —76.0604 83
tribute to the ground state. This justifies the use of MP HE limit® —76.0675 _ infty
calculations instead of CI calculations for correlation ef- * [113]

fects.
Table 3.5: RHF results for water.

basis set DZP DZP TZVP  6-311++G™
method MP2 CI MP2 MP2
Co 0.974381 0.974129 0.974202  0.974129

Table 3.6: Ground state coefficients from different correlation calculations.

3.2 Water Dimer

The water dimer and the hydrogen bond are still matters of interest [125], as the water dimer is
also a good starting point to analyse proton transfer reactions [237, 238].

H, According to the literature [125] the

\ configuration shown in figure 3.2 is the

B most stable configuration of the dimer.

The relative positions of the monomers
A (01, Hg, H3) and B (04, H5, Hﬁ) can
be described by the three variables dpo,

a and . dpo is the distance between
Figure 3.2: Geometry of the water dimer. the oxygen atoms, a the bending angle
of the hydrogen bond and f the angle
between the molecular plane of monomer B and the extension of dpo. The dihedral angles

H>0,04H5 and H,O104Hg were always kept equal to conserve Cg symmetry.

3.2.1 Single Point Calculations

Table 3.7 displays a short compilation of previous results from the literature. The oxygen-oxygen

distance tends to be too short and the basis set error corrected energies too small. Only the bending
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ref. basis method doo a 6 AE AEBer

[A] [deg] [deg] [kcal/mol]  [kcal/mol]
[118)* experiment 2.967+0.03 1+10 57+10 -5.44+0.7
[118)* experiment  2.98 +0.01 1+6 58+6 —5.50+0.5
[118] DzZP RHF 2.9851 1.6 45.5 -5.03 —4.73
[118] DZP MP2 2.9009 3.1 54.6 —6.36 -5.03
[118] DZPp MP4 2.9161 3.1 44.3 —6.17 —4.80
[113] ccp VDZ MP4 2911 4.5 56.8 —7.10 -3.73
[113] aug ccp VDZ MP4 2911 4.5 56.8 —5.20 —4.27
[113] aug ccp VQZ MP2 2911 4.5 56.8 -5.05 —4.81
[112] DZP’ MP2 3.04 4.7 55.99 —4.35
[131] 6-31G* SCF 2971 518 6242 —5.62
[107] STO SCF 2.73 0.735  58.0 —6.09
[119] HF 3.00 0 30 —4.6
[124] bal MP2 2.970 0 60 —6.21 —4.25
[124] bal MP3 2.970 0 60 —6.21 —4.20
[121] DZP SCF 301 7.2 —4.55
[121] DzZp CI 2.98 -7.2 —5.63
[110] ba2 HF 2.980 0 58 —-3.612 —3.609
[110] ba2 MP2 2.980 0 58 —4.781 —4.529
[110] ba2 MP3 2.980 0 58 —4.728 —4.533
[115] [531)21] RHF 3.00 0 40 —4.72
[130] ba3 RHF 2.98 2.448  52.26 —7.18
bal: (11,7/6) — [4,3/2] + s,p 2 Energies and geometries from different references.
ba2 : 7s8p6d1f / 4s2pld b BSSE corrected interaction energies
ba3 : (6111/311/2)(31/2) ¢ [239)]

Table 3.7: Results for the water dimer from previous works.

angle seems to be close to the experimental value. ( is usually close to the experimental value,

but varies strongly between different calculations.

Figure 3.3 displays the variables op- X
timized for the dimer. Table 3.8 sum- ne X
marizes the main results of single point L\wi 9ges|<ws b1
calculations for the water dimer. O Hs i W£4>\H

One main feature of the hydrogen L& "0;,6 ° Hs He
bond is the bend of the bond itself (W3 s

# 90°). Although the importance of this . . .
. . Figure 3.3: Variables of the dimer.

bend for the hydrogen bond is obvious
from theoretical and experimental results, the underlying physics are still a matter of discussion.
This work started with an examination of the dimer with a linear hydrogen bond. The other
variables of the dimer were optimized at different level of theory.

For weak interactions the basis set superposition errors are very important. To get an estimate
about this error the counterpoise method of BOys and BERNARDI [204] with the full basis set of

the second monomer was used. Since the BSSE alters the energy, it also changes the equilibrium
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geometry. To check the BSSE’s influence on the monomer geometry and energy, the combined
basis sets were used for a full geometry optimisation of the monomers, while the relative positions
of the water molecules were fixed. Table 3.10 shows a compilation of the results for the DZP-MP2
calculation. The energy differences between the calculations with fixed and flexible geometries
were very small, usually between 50 and 200 nH. Such a small energy difference is negligible in
comparison with an overall interaction energy about 10 mH and an average BSSE about 1 to 2
mH. However, the method has to be used to calculate the influence of the BSSE on the monomers’

geometries in the dimer during the analysis of dimer’s geometry.

The main quest of quantum mechanical calculations with small basis sets for weak hydrogen
bonds is the bond length [125]. Table 3.7 shows how the bond length varies with the chosen
method of calculation. The length of the oxygen-oxygen distance is therefore a good measure
of the quality of a calculation. The best values were obtained by RHF-MP3 calculations with
a DZP basis (dim_10, table 3.8). The angles a and § are still in the experimental range. The
BSSE corrected interaction energy of 4.9 kcal/mol for this conformer is at the lower limit of the
experimental value but still of a reasonable size. Extended calculations [208e] suggest, that 4.9
kcal/mol is the correct value for the interaction energy. This limit is reached with increasing basis
set size. While BSSE uncorrected calculations approach this value from higher interaction energies

BSSE corrected calculations approach this limit from the other side.

In the next step the angle W3 was allowed to change during the optimisation. Again the
DZP-MP3 calculation gave the best results. The energy difference between the bent and the
straight conformation is very small, only 0.014 mH (0.009 kcal/mol), although « changes about
2.5°. This result heralds a major problem: The potential surface of the water dimer is so flat that
the geometry optimisation algorithm might stop too early, since the energy becomes approximately
constant. To check the geometry the potential energy surface around the optimized geometry was
sampled manually. Since all calculations were done with a full BSSE correction, the sampling

allows us also to calculate the BSSE of the dimer’s geometry (section 3.2.4, page 70).

The influence of the bend seems to negligible, because all changes are of the order of 2%. The
bond length to the bonding hydrogen atom in monomer A (L2) slightly increases while simultane-
ously the hydrogen bond itself (L3) decreases. In summary H3 of monomer A moved away from
O1 slightly towards O4 and therefore underlines the importance of bending for proton transfer re-
actions [237, 238]. The influence of the bending is much stronger in the hydrogen donor (monomer
A) than in the hydrogen acceptor (monomer B). The geometry of B hardly changes. This bending
also shows how sensitive the dipole moment reacts towards changes in the wavefunction. It changes
by about 3% while the charges and the electron transfer do not change at all.

Since all observed changes are very small, the reliability of those changes was checked with the
extended BSSE correction for dim_16. The results of this test are displayed in table 3.10.

Table 3.10 shows, that all changes are larger than the BSSE. The increase Adpgp and the
decrease Adomn indicate the tightening of the bond to the non bonding hydrogen and the loosening
of the bonding hydrogen atom. The charge transfer from B to A is displayed in the increasing bond
angle of B. According to the VSEPR model [12] the loss of electrons from the free electron pairs
of B reduces the repulsion between them and therefore increases the bond angle towards the value
of a tetrahedron (109.47°). The increasing polarisation of the dimer can be deduced from two

independent features:
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All interaction energies in kcal/mol, if not mentioned differently

a fixed, straight hydrogen bond
b free, bended hydrogen bond
¢ fixed water geometry, flexible hydrogen bond
d calculated from given changes
e no values found, assumed to be close the monomer’s values
f [118], first set, since the bigger error margin included the second set
g influence of the BSSE onto the monomers
h  charge transfer
i full monomer geometry optimisation in the presence of ghost orbitals

Table 3.9: Remarks to table 3.8

free Apim Aaop Bpim B
<HOH [deg] 104.89 105.02 104.92 105.35 104.92
Adpon  [deg] +0.13 +0.03 +0.46 +0.03
domn [A] 0.9590 0.9584 0.9591 0.9600 0.9592
Adomn [A] —0.0006 40.0001  +0.0010  +0.0002
domb [A] 0.9640  0.9589
Adonp [A] 4+0.0050  —0.0001
do [e] —0.65 —0.69 —0.65 —0.67 —0.64
Aqo [e] —0.04 0 —0.02 +0.01
dHn e] +0.325 +0.32 +0.32 +0.34 +0.325
Adqun [e] —0.005 —0.005 +0.015 0.0
dmb [e] +0.36 +0.33
Adqm [e] +0.035 +0.005

The indices n and b refer to bonding and non bonding hydrogen atoms.

a Geometry optimisation with a full set of ghost orbitals.

Table 3.10: Influence of the BSSE onto the monomer’s geometry.
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1. Electrical charges are transferred from Hz to Hy and O; as indicated by Aq of monomer

A. This might be interpreted as a sign of a possible heteropolar cleavage of the O;Hz-bond

(autoprotolysis).

2. The polarisation of Hz induces an electron transfer from Hy and Hy to O4. Because of the

smaller polarisibility of hydrogen in comparison with oxygen the charge transfer on B is much

smaller than on A.

A much better insight into the physics of the hydrogen bond is offered by the analysis of the

molecular orbitals and the eigenvectors of the system. Figure 3.4 displays the composition of the

bonding orbitals.

Only two orbitals, apart of the oxygen 1s
orbitals, do not contribute to the molecular or-
bitals of the water dimer. The donor’s 1b; and
the acceptor’s 1by orbital transform according
to a” in the environment of the water dimer.
They are too far away from each other to over-
lap and therefore do not contribute to the hy-
drogen bond. The hydrogen bond is formed
by the overlapping of inner orbitals. The posi-
tively polarised hydrogen atom H3 next to O4
of monomer B leads to a general lowering of
At the same time the

close neighbourhood of a lone electron pair of

the orbital energies.

monomer B increases the orbital energies of
monomer A (For example the two 2a; orbitals
in figure 3.11.). This movement of the orbitals
facilitates the combination of the donor’s 1bs
orbital with the acceptor’s 3a; and the overlap-

Figure 3.4: Composition of the dimer’s MOs.

ping of the 3a; orbital of the donor with the 3a; orbital of the acceptor. Those interactions cause

the hydrogen bond. This movement also explains the surprising position of the energy levels of the

molecular orbitals. For both interactions the energy of the bonding combination is higher than the

energies of the contributing orbitals. The energy of the antibonding combination of the orbitals is

lower than the energy of the highest contributing orbital. Figure 3.5 shows a simplification of this

movement and the resulting orbitals.

A
E

. electrostatic
_-°  interaction
1lb2 .-

donor

electrostatic .
interaction .-

acceptor

Figure 3.5: Influence of the electrostatic interactions on the orbital energies.
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Figure 3.8: MO 7a’ of the water dimer. Figure 3.9: MO 8a’ of the water dimer.

Figure 3.10: Electron density in the
symmetry plane.
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The bonding orbitals cut along the symmetry plane are displayed in the figures 3.6 to 3.9. Fig-
ure 3.10 shows the electron density in the plane of symmetry. The precise movement of the different
orbitals during the formation of the dimer is shown in figure 3.11. The analysis of the molecu-
lar orbitals can be summarised as follows: The formation of hydrogen bonds is not only
controlled by electrostatic interactions. The mutual polarisation of the molecules in
each others electric field leads to a rearrangement and overlapping of inner molecular
orbitals of the monomers.

CHAKRAVORTY et al. [110] arrived with a similar calculation to the same conclusions. The 1b,
and the 3a; orbitals of the donor can be easily identified in the figures 3.6, 3.8 and 3.9. The strong
distortion of the 1bs orbital in figure 3.7 makes an identification difficult. Figures 3.6 and 3.7 show
the p-component in the symmetry plane of the acceptor’s 3a; orbital. Figures 3.8 and 3.9 show a
crossection of the free nonbonding p orbital. This interpretation of the figures correlates well with
the analysis of the eigenvectors.

An alternative, but inferior, interpretation at an atomic level would be a two-electrons-two-
centres (2e2c) bond [29]. Orbital 5a’ may be regarded as the bonding interaction of two oxygen 2p-
orbitals with a hydrogen 1s. The nonbonding and the antibonding combinations are not populated.
In this model the overlap of the hydrogen donor’s 3a; with the acceptors 1b; orbital would be
neglected. The orbitals 6a’, 7a’ and 8a’ would be regarded as representations of the monomers
orbitals. This model could be improved by assuming a four-electron-two-centre (4e2c) bond. Such
a bond would be formed between the OH bond of the donor and the lone electron pair of the
acceptor. In this model the orbital 6a’ would be the nonbonding overlap of the OH bond and
the free electron pair. Both models are not satisfactory, since at least two molecular orbitals are
unexplainable. On the other hand such a model explains the directionality of the free electron
pairs. The MO explanation cannot form anything like a free electron pair, since the monomer’s
1b; and 3a4 orbitals cannot mix due to their symmetry. The only hint directly given by MO theory
for a free electron pair is the small distortion of the electron density (figure 3.10) towards the lower
left corner of the plot. YOUNG et al. [240] showed that the electron density is actually not a
sensitive quantity to observe lone pairs. The distortion of the electron density by the lone pair is
usually small. A better tool for the detection of lone pairs is the molecular electrostatic potential
(MEP), which will be used later.

Figure 3.10 also shows how electron density is moved away from the monomers into the dimer’s
centre to form the hydrogen bond.

The geometry of the bond dimers seems to be reliable. It is not only close to the experimental
values but also a good reproduction of calculations reported in the literature [118]. Although the
absolute values between Kim et al. and GAMESS UK differ slightly, the changes of the monomers’
values due to the formation of the hydrogen bond are a good match as shown in table 3.10.

Sadly KiM does not mention how they calculated the charges. This missing information inhibits
a careful examination of the difference between both calculations. The changes in the individual
charges calculated with GAMESS UK are smaller than the changes published by Kim (Gaussian
90). At the same time the charge transfer calculated with GAMESS UK is bigger than KiM’s value.
Contrary to KiMm’s work our calculations favour charge transfer to polarisation. The difference
between the calculations is also reflected by the dipole moment.

All the other parameters except AW1 fit nicely. The absolute energy calculated with GAMESS
UK is a little lower than the one reported in the literature. This is likely to be the result of the
additional two carthesian d-orbitals of the GAMESS basis set.
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[118] GAMESS UK

E [H] —152.51982  —152.52432
AE [kcal/mol] —6.36 —6.36
AEpssg  [kcal/mol] —5.03 -5.1
doo [A] 2.9009 2.9121
a [deg] 3.1 2.3

g [deg] 54.8 49.12
AL3 [A] +0.0065 +0.0066
AL2 [A] —0.0010 —0.0008
AL4 [A] +0.0014 +0.0014
AW1 [deg]  +0.10 -0.18
Ayss [deg] +0.28 +0.21
Adqor [e] —0.071 —0.038
Adqurs [e]  +0.53 +0.22
Adme [e] 0 —0.012
Aqos [e] —0.043 —0.006
Adgrs /6 [e]  +0.030 +0.17
Aq [e] 0.017 0.029
m D] 3.092 3.188

Table 3.11: Comparisson with [118].

The third part of the single point calculations involved the calculations with a fixed, experi-
mental geometry for the monomers. Table 3.8 displays the results for the DZP-MP2 (dim_29) and
for the DZP-MP3 (dim_30) calculations.The values of doo, o and 8 are close to the experimental
values. The difference between the geometry obtained by calculations with a flexible and a fixed
water molecule are smaller than the experimental uncertainties. The angle between the molecu-
lar plane of B and the oxygen-oxygen axis is even closer to the experimental value. The BSSE
corrected interaction energy differs only 0.07 kcal/mol (1.4 % of the value with a flexible water
geometry). These results justify the calculation of the water interaction energy with a fixed water
geometry. The advantages of a faster and easier computation outweigh the disadvantage of the

slightly higher interaction energy.

All calculations displayed in table 3.8 have a similar BSSE corrected interaction energy close
to 4.9 kcal/mol and are therefore close to the true theoretical value [208¢]. This shows clearly the
benefits of the counterpoise method of Bovys and BERNARDI for calculations with small basis sets.
This value is low in comparison with experiment, but good in comparison with other calculations.
At a correlated level calculations even with larger basis sets tend to a BSSE corrected interaction
energy about 4.8 to 5.0 kcal/mol. Reliable results with an interaction above 5.0 kcal/mol are rarely
reported [125].

The bent dimer calculations were repeated at a TZVP-MP2 level to check the results discussed
earlier (section 3.1) regarding the poor balance of the TZVP basis set. For the water monomer
the combination of the TZVP basis with RHF-MP2 calculation proved to yield good results. The

results for the dimer are much worse than those from DZP-MP3 calculations. The oxygen-oxygen
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experiment? [118]P DZP-RHF® DZP-MP2¢ DZP-MP3d

v3 a’acc 3881 4039 (+158) 4279 (+398) 4034 (+153) 4068 (+187)
vs3 a’ don 3899 4021 (+122) 4263 (+364) 4017 (4+118) 4051 (+152)
vy a’ acc 3797 3897 (+100) 4160 (+363) 3896 (+ 99) 3956 (+156)
vy &’ don 3718 3826 (+108) 4116 (+398) 3825 (+107) 3909 (+191)
vy &’ don 1669 1700  (+ 31) 1783 (+114) 1701 (4 30) 1721 (+ 52)
vy &’ acc 1653 1665 (+ 12) 1757 (4+104) 1667 (+ 14) 1692 (+ 39)
op bending 679 614 668 697

ip bending 396 352 397 380

OO stretch 194 170 193 188

ip bending 167 145 164 164

op bending 156 144 151 156

torsion 142 134 141 141

2 values from [118] assignment from [239] b DZP - MP2 calculation

d

¢ analytic frequencies numeric frequencies

in brackets () the deviation from the experimantal value

Table 3.12: Calculated haronic frequencies of the water dimer [cm™].

distance is far too small, the hydrogen bond still straight, or bent slightly negative' and the tilt
of B’s molecular plane (3) too small. The BSSE of the TZVP-MP2 calculation is 2.13984 mH and
for the DZP MP2 2.03691 mH. More important than the actual size is the ratio between the BSSE
and the monomer energies. This ratio for TZVP MP2 calculations is 1.40-10> and for DZP-MP2
is 1.33-10>. The BSSE has a stronger impact on the monomers in TZVP-MP2 calculations than
in DZP-MP2 calculations. The BSSE of 1.34 kcal/mol of the TZVP-MP2 interaction energy is
the largest of the series. This again is a result of the inbalance of the basis set. The s-function of
hydrogen has its radial maximum at 2.2216 a.u. and the fifth s-function of oxygen at 1.3981 a.u..
The distance between H3 and 04 is 3.6227 a.u. (1.9197 A). Along this bond both functions have
their maximum at nearly the same place. This results in a strong contribution of the corresponding
ghost orbital during the BSSE calculations and therefore in a large value of BSSE. The attempt

to minimize simultaneously the oxygen-oxygen repulsion leads to a straight hydrogen bond.

experiment [118]* DZP-RHF® DZP-MP2® DZP-MP3°

Avs  [em -14 - 17 - 11 - 18 - 31
Avs  [em™] - 32 - 35 - 27 - 35 - 14
Avy  [em) -11 -9 -7 -9 - 81
Av;  [em?] - 90 - 80 - 50 - 80 - 34
Avy  [em + 20 + 37 + 30 + 35 - 110
Avy  [em™] + 4 +2 +4 +3 - 81
& DZP-MP2 b analytical frequencies ¢ numerical frequencies

Table 3.13: Frequency shifts caused by the dimerisation of water.

!The calculation was repeated with a different start geometry to be sure.
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Although there is considerable literature on the infrared spectroscopy of water [139] the har-
monic frequencies have proved to be difficult to find [118]. The analytic Gaussian 94 calculations
reproduce the frequencies published by Kim et al. (table 3.12), but the absolute values in com-
parison with experiment are not so good. The similarity of the empirical scaling factors defined
by HONNEGER et al. [131] for water (1.023364) and the dimer (1.025363) suggest a high reliability
for DZP-MP2 frequency calculations. The experimental frequency shifts due to the hydrogen bond
as shown in table 3.13 are well reperoduced. The high frequencies from Hartree Fock calculations
suggest a hard force field. Frequency shifts from HF calculations are therefore too small. The shifts
are so small, that an error of a few wavenumbers leads to a large scaling factor. Scaling factors are
therefore not useful for the analysis of frequency shifts in water polymers. The numerical DZP-
MP3 calculation cannot describe the absolute frequencies and frequency shifts, and are unsuitable
for the thermochemical analysis of the dimerisation.

The zero point vibrational energy found with the DZP-MP2 calculation is 29.814 kcal/mol. The
zero point vibrational energy correction for the formation of the bond is therefore 2.299 kcal/mol.
The standard entropy of the complex is 69.278 cal/mol/K. The formation of a dimer is entropically
disfavoured by 20.912 cal/mol/K. A reasonable value is 21 cal/mol/K, since a simplified estimate
by the equation of SACKUR and TETRODE predicts an entropy decrease about 15 cal/mol/K. The
data suggest that the dimerisation of water is primarily energetically driven.

3.2.2 Potential Curve with a Flexible Geometry

This section only covers the quantum chemical aspects of the interaction potentials. Any fits or
comparisons of those curves with previously published potentials will be discussed later in section
4.2 (page 88).

The graphs of this section are based on geometry optimisations to include relaxation effects. The
distance L3 in figure 3.3 (page 51) was set to a fixed value. This procedure allows a simultaneous
description of the water water interaction and the autoprotolysis of water - the main relaxation
pathway. The values of L3 spanned a range from 10 A (essentially infinite separation) to 0.95 A
(roughly roy in water). The smallest physically sensible oxygen-oxygen distance reached by this
way is about 2.2 A. This distance is close to the oygen-oxygen distance in a linear ion contact pair.
All other variables were allowed to vary during the optimization. The chosen level of computation
was a RHF-MP3 calculation with a DZP basis set.

Figure 3.12 shows the interaction energy as a function of doo and figure 3.13 an enlargement
of the area around the equilibrium. The BSSE corrected potential curve has its minimum at a
different value of dpo than the uncorrected curve. The BSSE corrected minimum is at the point
doo = 2.9625 A with AE = —5.0 kcal/mol. The enlargement of the oxygen oxygen distance is
directly caused by the BSSE correction. Since the influence of the second monomer’s orbitals is
eliminated from the curve, the orbitals of the hydrogen atom H3 can no longer compensate for any
deficiencies of the oxygen basis set. The unphysical overlap of orbitals caused by the BSSE pulls
the monomers closer to each other.

These BSSE corrected values are much closer to the experimental ones and can compete with
the results from sophisticated calculations with extended basis sets. This result also emphasises
the importance of BSSE correction. To search for the minimum with ordinary algorithms and then
do a single point BSSE correction at the resultant optimum is not sufficient. The whole surface

has to be scanned near the minimum at a BSSE corrected level [241] (Please refer for details to
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subsection 3.2.4, page 70).

The composition of the total interaction energy (figure 3.14) shows an interesting feature. The
minimum of the correlation energy is at a much smaller oxygen-oxygen distance. Table 3.13 shows
how this distance varies with the level of correlation without BSSE correction for different basis

sets.

The oxygen-oxygen distance shrinks if the level of calcu-

doo [A]
basis D7 D7ZP TZVP
RHF 2.836 2.9834 2.9624
MP2 2834 29138 2.8836
MP3  2.855 29355 2.8048

lation changes from RHF to MP2 and increases again with
the change from MP2 to MP3. The initial shrinking is not
surprising because correlation calculations allow the elec-

trons to avoid each other. This improved description of the

electron motion produces a smaller distance between both

monomers, since the electrons can now use the wide exten- .
Table 3.14: Correlation level and

sive orbitals to avoid each other. More interesting is the
doo, a =0°

second rise of dpo.

Figure 3.17 shows the composition of the MP3 correlation energy as a function of dpo. As
in table 3.14 all values are calculated without BSSE correction. The MP3 part of the correlation
energy increases steadily as doo gets smaller. The opposing effect enlarges the equilibrium dis-
tance again. If correlation effects are considered for the water water interaction calculations, the
correlation level has to be as high as possible to get a good equilibrium distance.

As the oxygen-oxygen distance gets smaller, L2, the donor’s OH bond (figure 3.3, page 51)
increases. This indicates a proton transfer and so an autoprotolysis proces. Meanwhile L1, the
OH bond in the future hydroxide ion decreases. This shrinkage is in contradiction to chemical
expectation, since the the bond lenght of an free hydroxide ion is calculated as 0.9696 A (table
3.15). The sudden drop of L1 at doo = 2.529 A is currently regarded as an artefact of the
calculation caused by an extra loop of the geometry optimizer. The whole gap is only 0.0004 A;a
distance well below physical significance.

At small distances the formation of a con-
tact ion pair is possible. Such a pair is ener-

getically unstable, since in the vacuum no sol-

vent can stabilize the charges. Any attempt
to optimize the geometry of such a pair with-

out additional constraints ended with a perfect

1.2186 A K‘ 0.9764 A
112.1°

Figure 3.18: Geometry of a possible ion pair.

reproduction of the water dimer optimisation.
The best possible pair, which looks like a wa-
ter dimer (doo = 2.9103 A a=340° 8 =
47.56°) with the proton moved along the hydrogen bond, is shown in figure 3.18. The optimized
structure was generated is several steps:

1. Optimisation of hydroxide ion’s geometry at DZP / RHF-MP3 level (table 3.16).

2. Optimisation of the hydronium ion’s structure under a Csy symmetry constraint at DZP /
RHF-MP3 level (table 3.16).

3. The fixed structures of steps 1 and 2 were assembled to form a pair with Cg symmetry as
shown in figure 3.18. The monomers’ structures were fixed. Only the pair distance and

the two bonding angles were allowed to vary during the optimisation. The result of this
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L1 L2 L3  <H,O,H; au3 Aq  qo1 + dfp

[A] [A] [A] [deg] [e] [e] [e]
dimer 09569 125 1.0 11615  +0.358  0.310 —0.673
ion pair  0.9696 1.22  0.9764 11612  +0.363  0.328 —0.686
linear pair  0.9696 1.21  0.9764  180.0 +0.378  0.356 ~0.735

& hydroxide ion

Table 3.15: Comparison of different ion pairs and dimer at L3 = 1.0 A.

calculation is displayed above. Any optimisation with an increased number of degrees of

freedom led to a structure similar to the equilibrium structure of the water dimer.

Table 3.15 contains a short compilation of those results for the dimer with L3 = 1.0 A. This
point is closest to the optimized ion pair. The pair’s bond lengths differ from the dimer’s. This is
hardly surprising, since L1 and L3 were fixed to the monomer’s values. Remarkably good is the
agreement of the L2 values. The calculations on the dimer also showed that the distance between
both fragments is hardly affected by the monomer’s geometry. The calculation about the ion pair
allows us to estimate the charge transfer and the charge of the hydroxide ion after the proton
transfer. The electronic values of both calculations are similar.

Table 3.15 contains also the data of a linear ion

OH™ H;07 pair (doo = 2.2053 A, a = 0°, 8 = 47,56°), because
symmetry Coov Cav a linear approach of the hydroxide ion was assumed to
charge [e] -1 +1 be more likely for an ionic interaction based purely on
TOH [A] 0.9696 0.9765 electrostatic forces. The increased charge of the hydrox-
£HOH [deg] 112.131 ide ion is in good agreement with this assumption, but
do [e] —114 —0.40 the charge of the moved proton is still smaller than the
an [e] +0.14 +047 charge of a proton in a free hydronium ion (table 3.16).
p [D] 1.5379 1.6344 Figure 3.16 suggests a possible explanation. During the
Expr [H] —75.3723  —76.3289 proton transfer the proton’s charge rises and falls again,
Ecorr [H] —0.2141 0-2179 as the proton is built into the hydronium ion and gets
Eror [H] —75.5864 —76.5468

bound to the free electron pair of the hydrogen acceptor.

_ N B To check this theory, the hydrogen atom of a linear
Table 3.16: Results for H;O™ and OH hydrogen bond (dim-10, table 3.8) was moved along the
bond. The remaining variables of the dimer geometry were kept at their optimized values. Figure
3.19 shows that the energy increases steadily during the motion. No second minimum in the region
of the hydronium ion can be observed. Such a second minimum is unlikely for the water dimer
in the gas phase rather than in a polar solvent. The solvent stabilizes the ion pair and therefore
facilitates the formation of the pair. The electrochemically observable tunneling of protons in water
can be explained by such a mechanism. In the gas phase the ion pair cannot be stabilized by the
environment. The lowest energy electronic state of the dimer is therefore uncharged. The second
minimum for proton transfer in gas phase reactions is often an artifact of the calculation. The only
clue of the second oxygen atom is the steep rise at the right edge of the plot. Figure 3.20 displays
the charge on the moving proton during the transfer. The mark ”hydronium ion” was set at the
point, where all three OH bonds of the ion are of equal length. The mark ”water molecule” is set

at the equilibrium bond length of the water dimer. The charge of the protons increases steadily
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ton transfer.

until the second water molecule captures the proton. At the same distance the slope of the energy
rise decreases (figure 3.19).

It is difficult to define the subunits between which the charge is moved during the proton
transfer. To be compatible with the previous part of this work the water moelcules were defined
as the units, although this definition loses its credibility at the right end of figure 3.21. Figure
3.21 shows that the influence of the proton position on the charge transfer may be neglected in

physically sensible regions (close to the equilibrium geometry).

3.2.3 Potential Curve with a Fixed Geometry

A comparison of the DZP MP3 calculations (table 3.8, 53) with a flexible (dim_16) and a fixed
(dim_30) monomer geometry shows that the influence of monomer relaxation is very small. This
part of the work tests the utility of such a simplification for the analysis of the energy hypersurface
on a larger scale.

Figure 3.22 and 3.23 show the interaction energy as a function of the oxygen-oxygen distance
doo. Figure 3.23 is a close up of figure 3.22 to demonstrate the effect of the BSSE. Again the
BSSE correction increases the oxygen-oxygen distance and moves the dimer structure closer to the

experimental.
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Figure 3.24: Comparison of the charge transfer.

Figure 3.25 shows a superposition of the interaction potential curves with a rigid and a flexible
water geometry. The curves are nearly indistinguishable. Only a close up (figure 3.26) shows the
difference.

The interaction energy is slightly smaller and the oxygen-oxygen distance also slightly enlarged.
However, the differences are so small that they may be safely neglected.

This result allows us to use the fixed experimental water geometry to scan the potential surface.
The biggest disadvantage of such a simplification can be seen in figure 3.24. The charge transfer
of the rigid dimer agrees nicely with that from calculations with a flexible water geometry at large
distances. At small distances the charge transfer is much smaller. As shown in section 3.2.2 the
charge transfer is coupled with proton transfer. It is impossible to describe such a reaction with
rigid water molecules. Charge transfer is one of the main forces of the dimerisation (please refer
to section 3.3, page 72).

The inability of calculations with rigid monomer geometries to describe the charge transfer
correctly is therefore the reason for the increasing difference between the two models at small
distances.

The influence of the angles a, 3 (figure 3.2, page 50) and W3 (figure 3.3, page 51) on the energy
of the dimer with equilibrium structure was also analysed. The angles were changed systematically,
while the remaining variables were fixed at the previously optimized values. Results for a and 8
of this analysis are shown in the figures 3.27 and 3.28. The minimum for § is shifted about 1.25°
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from the value found by the geometry optimisation. This failure of the optimisation algorithm
may be explained with the corresponding force constants. To calculate the force constants, the
vertex and two neighbouring points of the quantum mechanical curves were taken to find the
corresponding parabola. The second derivative of the parabola was taken as the force constant.
The force constants for the geometry controlling angles W32 and beta are:

W3 : 3.8-10% H/deg? = 2.4 cal/deg? not BSSE corrected

B : 1.7-10°% H/deg? = 1.1 cal/deg? not BSSE corrected

The force constants are close to zero like the values of the hessian in the GAMESS UK printout
(only to six decimal places). The energy difference between the optimized geometry and the
minimum of figure 3.28 is 0.001 kcal/mol. Following the optimisation in the print out proved, that
the algorithm stopped too early, since the force to change 8 vanished.

The influence of the BSSE on the geometry of the water dimer is large. 3 is changed by 10° by
the BSSE. Table 3.17 displays the minima of the BSSE corrected curve. All variables are changed.
The BSSE corrected curves allow the calculation of the BSSE corrected dimer geometry with a

rigid water monomers (section 3.2.4, page 70).

curve doo « B AE AEgssg
[A] [deg] [deg]  [kcal/mol] [kcal/mol]
geo optimisation 2.9354 3.28 54.57 —5.949 —4.838
doo (Potential) 3.0049 3.31 54.57 —5.896 —4.880
W1 2.9304 5.72 54.57 —5.927 —4.844
W2 2.9354 3.28 44.57 —5.840 —4.875
W3 2.9354 5.78 54.57 —5.927 —4.851

Table 3.17: Influence of the BSSE on the variables of the water dimer with a fixed water geometry.

A combination of L3 and W3 (figure 3.3) is much better for a geometry optimisation than a combination
of doo and a. a might become zero or negativ during the optimisation. In such a case the algorithm would
stop, since a transformation between internal (z-matrix) and cartesian coordinates is not possible anymore.

The curve is displayed in the appendix (section 11.6, page 326).
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To get a good description of the potential surface an examination of the repulsive force is also

necessary. To do so the configurations shown in figure 3.29 were analysed. Both conformers have

Dy symmetry.

\\\\ H
N

-0
H Ny

a00

Figure 3.29: Repulsion between water molecules.

The only variable of the system is the distance between the pair of oxygen atoms. The geom-

etry of the water molecules is fixed at the experimental value. Figure 3.30 and 3.31 display the

results. The importance of repulsive terms for a good description of the energy hypersurface will

be discussed in detail in chapter 4 (page 85).
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Figure 3.30: Oxygen-oxygen repulsion apo.
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The potential energy curve of the oxygen-oxygen repulsion shows no additional features. Ac-

cording to chemical expectation the interaction potential becomes more repulsive as the oxygen

atoms get closer to each other. The curve of the hydrogen-hydrogen repulsion has a shallow local

minimum at 3.5 Awithout a BSSE correction. Figure 3.32 displays a close up of the minimum
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Figure 3.32: Local minimum of H-H repulsion.

30108 A

35A

25625 A

Figure 3.33: Artificial BSSE minimum of ayy.



and figure 3.33 a plot of its molecular geometry. The BSSE corrected curve (figure 3.32) does
not have this minimum. The BSSE is caused by a non physical overlap of oxygen and hydrogen
orbitals from different molecules. In the minimum geometry all four hydrogen atoms are in ideal
positions for such an overlap. In the minimum’s regions the BSSE increases faster than the short
range exchange repulsion and causes the local minimum.This proves again the importance of BSSE
correction for calculations on the water-water interaction.

Those extended interaction curves, especially for a, 8 and W3, will help to develop a simple
analytical description of the water-water interaction potential (chapter 4, page 85). This potential

can be used to find the other extrema of the surface [131].

3.2.4 Calculation of the BSSE corrected geometry of the water dimer

A first guess for a harmonic interaction potential close to the minimum (dg, ag, So) would be:
VTEST(d, a, ﬂ) = K() + DQ(d — d0)2 + A2 (a — Oéo)2 + B2(ﬂ - ﬂo)Q (32)

The constants Az, ag, Ba, o are taken directly from the BSSE corrected interaction energy curve of
the corresponding angles (figure 3.27, 3.28). Only the vertex and the two neighbouring points were
used for the calculation. Afterwards, the values of As(a — ag)? and By (3 — 0)? were subtracted
from the BSSE corrected potential energy curve (figure 3.26), since @ and 3 were allowed to change

during the optimisation. This procedure allowed the calculation of Kg, D2 and dy.

Vresr(d, a, )

d 2
= —4.92 6194 { ~ —2.9991
koal /o 9296 + 9.619 ( 999 )

A
o 2 ﬂ 2
+2.56-107° [ — —5.624) +3.8-107*( — —44.894 (3.3)
deg deg

The minimum of the function is: Vrpsr(2.9991A, 5.624°, 44.894°) = —4.9296 kcal/mol. A quan-
tum mechanical calculation (DZP basis set, RHF-MP3, full counterpoise BSSE correction) gave
for the same geometry an interaction energy of —4.8903 kcal/mol. Although all values agree well
with experiment (2.967 4+ 0.03 A, 1 & 10°, 57 + 10°), a difference of 0.0393 kcal /mol between the
prediction and the actual quantum chemical interaction energy is disappointing.

To achieve further improvement the potential energy surface around the minimum of equation
3.3 was sampled with a fine mesh (144 points). To get an estimate of the coupling between the

variables, for 60 points two variables were changed simultaneously.
Vrgst(d, a, B) = x1d+aod® + 23d®> + a1 a4+ asa® +asa® + by B+ by B2 + b3 B° +
klda+k2dﬁ+k3aﬁ+K0

(3.4)

Vpor was fitted with the help of a linear least squares algorithm [242] to the 144 quantum chemical
points (root mean square (rms) = 0.00126913 kcal/mol). Next a simple search algorithm sampled
Vpor over the quantum chemical geometries to find the starting point for a local minimum search.
From this point the program followed the gradient of Vpor, to find the local minimum. The
minimum was reached when the value of the gradient was smaller than 1-10°. The minimum

geometry and energy Eq allow us transcribe Vpor, into a more chemical form Vcg.
Ver(d, a, B) = Xa(d — do)? + X3(d — dp)® + As(a — ap)? + Az(a — ap)® +
Bs(B = Bo)* + B3(8 — Bo)? (3.5)
Ki(d — do)(a — ap) + Ka(d — do)(B — Bo) + Ks(a — a0) (B — Bo) + Ko
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The coefficients X, to K,, are the results of a rapid transformation.

Ky = Ey (3.6)
K=k Ky = ks K3 = ks (3.6 )
X3 =123 As = a3 B; = b3 (3.6 D)
Xo =125 +3X3dy As =as +3A3090 By =0by+ 3B3f (3.6 ¢)

To check the transformation the following expressions were used.

21 = 20(3D3m0 — 2Ds) — K1 — K0
ay L ap(3Aszan —24:) — Ko — K300 (3.7)
b1 = Bo(3Bsfo — 2Bs) — Kazo — Kzag

To increase the reliability of any prediction an upper energy limit of —4.75 kcal/mol was used.

The rms of the reminding 136 points was 0.000953. Table 3.18 shows a compilation of the minima
associated with the different steps.

points rms do Qp Bo E
[kcal /mol] [A] [deg] [deg] [kcal/mol]
VresT 9 00 29991 5.62 44.89 —4.9296
Ven 145  0.001269 2.9926 2.46 44.57 —4.9147
Veu 136 0.000953 2.9926 2.44 44.53 —4.9145

Table 3.18: Minimum geometry and energy at the different steps.

Table 3.18 shows how well the simple esti- 1
1234 = 118.49°

mate Vrgst actually describes the influence of <
the BSSE on the dimer’s geometry, but the reli- iy
o

3
ability increases with effort. A quantum chemi- -
cal check of the final minimum geometry gave a 0.9572 A 116.41 352
interaction energy of —4.91496 kcal/mol. The 2 10«,59

difference between the calculations is 0.00042
keal /mol and therefore neglible. The BSSE has Figure 3.34: BSSE corrected minimum geometry.
a value of 0.95 kcal/mol and is the smallest

found during this work. A geometry optimization with a full BSSE correction is therefore a mini-
mization of the BSSE at the same time. Figure 3.34 displays the BSSE corrected geometry of the
water dimer.

Table 3.19 displays the parameter of Vg of the last step. The anharmonicity X3 of the oxygen-
oxygen distance is at first sight larger than the harmonic part X5. By definition Ad is much smaller
than one. The actual anharmonic correction is therefore much smaller than the harmonic value.
The anharmonicities in the angle are negligible (B3 < Az < 6:10° kcal/mol/deg?®). The high quality
of the prediction for the angles a and f of the test function Vrgst is now understandable. The
predictions for the distance d are poorer due to the strong anharmonicity and the coupling of «
and d (K;). K; indicates that « becomes bigger as the hydrogen bond gets shorter. The hydrogen
atom Hj and the oxygen atom O4 seem to avoid each other at short distances. The underlying

physics of this phenomenon is discussed in section 3.3. The coupling of 8 and d is straight forward.
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As the bond length increases, increases in 8 help to turn the extensive 1b; water orbital into the
right direction. The coupling of o and 3 is negligible.

The force constant for 3 (1.1 cal/mol/deg?) with-
out BSSE correction (section 3.2.2, page 61) is about

X3 —15.087 kcal/mol/A3

A; 0.0000060  kcal/mol/deg?
Bs 0.0000056  kcal/mol/deg?
Xs 9.94145  kcal/mol/A?

A, 0.0022851  kcal/mol/deg?
B, 0.0003302  kcal/mol/deg?
K, 0.0352951  kecal/mol/A /deg
K,  —0.0085391 kecal/mol/A/deg
K;  —0.0010564 kcal/mol/deg?
do 299261 A

ao 243594  deg

Bo 44.534 deg

Ko —4.91454 kcal /mol

three times larger than the BSSE corrected value Bs.
This difference cannot be caused by the method of
computation, since the corresponding values of Vg
and Vrggt agree well and the same simple three-point-
parabola approach was used in both cases. The large
BSSE in the frequencies is disturbing at first glance,
since the basis set does not change during the calcu-
lation. Nonetheless this is commonly observed [208a].
The pointwise BSSE correction changes the curvature
of the energy surface. This change alters the force con-
statnts. A correction of the BSSE in frequency calcu-

lations is tedious and difficult. Frequency calculations

therefore should be done with large basis sets with a

Table 3.19: Final parameter for Vcoy
small BSSE.

3.3 Energy Decomposition

The analysis of the Hartree-Fock energy according to MOROKUMA (section 2.5, page 26) helps
us to understand the underlying physics of the water dimerisation and so the formation of water
clusters. The answers to this question will help to develop an analytical water-water interaction
potential.

The importance of dpoo and f for the hydrogen bond can be explained with the VSEPR model
[12]. While dpo governs the orbital overlap and therefore the strength of the bond, 5 controls the
orientation of the free electron pair. The bend of the hydrogen bond «a is not explained by the
VSEPR model and the small value for £ only with difficulty.

Variation of dpo Variation of « Variation of 3
doo [A] 3.0049 3.0548 2.9354 2.9354 2.9354 2.9354
a [deg] 3.32 3.32 0.28 4.28 3.32 3.32
B [deg] 54.57 54.57 54.57 54.57 49.43 54.57
ES —7.75 —7.13 —8.77 —8.72 —8.704  —8.744
EX 4.28 3.52 5.71 5.58 5.533 5.622
cT -1.19 —1.06 —-1.43 —1.41 —-1.375  —1.417
PL —0.54 —0.48 —0.64 —0.64 —-0.649 —0.637
HO 0.07 0.06 0.08 0.10 0.110 0.099
AE -5.11 -5.08 —5.04 —5.08 —5.085  —5.076

Table 3.20: Energy composition near the minimum in kcal/mol.
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The analysis started with an examination of the dimerisation curve for rigid water geometries
(fig. 3.22) using the MOROKUMA algorithm analysis for the Hartree Fock interaction energy.
The minimum of the curve is therefore moved to a larger oxygen-oxygen distance (3.0049 A,
table 3.14, page 63). This movement is in good agreement with the results from table 3.14 and
figure 3.17, since the inclusion of the correlation calculations into the geometry optimization allows
the oxygen-oxygen distance to shrink. Table 3.20 displays the energy composition close to the
minimum. The same abbreviations as in section 2.5 (page 26) are used for the different energy
terms (ES: eletrostatic, EX: exchange repulsion, CT: charge transfer, PL: polarisation, HO: high
order coupling).

An analysis of table 3.20 shows that the dimerisation is controlled by the electrostatic interaction
and the exchange repulsion. Charge transfer and polarisation play only a minor role while the
high order coupling terms can be safely neglected. The flatness of the energy surface close to the
minimum is due to a cancellation of the main three components: electrostatic interaction, exchange
repulsion and charge transfer (AEgs + AEgx + AEcr = 40.01 kcal/mol). The energy gain in
the last 0.05 A is caused by the polarisation term (AEct = —0.06 kcal/mol).

Table 3.20 also provides a reasonable explanation for the bending of the hydrogen bond. The
energy gain (0.04 kcal/mol) of the bend is caused by the reduction of the exchange repulsion (AEgx
= —0.13 kcal/mol). Simultaneously, there are reductions in the electrostatic interaction and the
charge transfer (AEgs + Ect = +0.07 kcal/mol). As shown in section 3.2.1 / figure 3.11 (page
57) is the hydrogen bond formed by an interaction of occupied orbitals. The exchange repulsion is
also caused by the interaction of occupied orbitals (section 2.5 / figure 2.3, page 28). The bend of
the hydrogen bond a may be regarded as the solution of the dilemma to form a bond of occupied
orbitals and to minimize the exchange repulsion at the same time. The conflict is also reflected by
the coupling constant K; between doo and « (section 3.2.4). An enlargement of the oxygen-oxygen
distance decreases the exchange repulsion and therefore allows a to decrease. At larger distances
between the monomers linear hydrogen bonds are formed.

An ad hoc model of the water molecule would be a tetrahedron. A water dimer built from such
tetrahedra would be linear (o = 0°) and 8 would be 54.73°. The minimum of the MOROKUMA curve
is between 49.57° and 50.57°. Both points (49.57° and 50.57°) are not distinguished by GAMESS
US because the energy differences are too small. Such a minimum shift has been observed previously
in section 3.2.3 and is caused by the optimisation algorithm and its control parameter. While the
VSEPR model would explain the shift by a stronger repulsion between free electron pairs than
bonds, table 3.20 gives the quantum chemical answer. The energy gain (0.009 kcal/mol) caused by
the decrease of § is caused by the reduction of the exchange repulsion (AEgx = —0.089 kcal/mol).
The weakening of the electrostatic interaction and charge transfer cannot compensate for this
energy gain (AEgs + AEct = 0.082 kcal/mol). The reduction of the exchange repulsion explains
the coupling between dpo and f in greater detail. The enlargement of the oxygen-oxygen distance
decreases the exchange repulsion. This reduction allows an increase of 3. Together with this
rotation the hydrogen acceptor’s 1b; orbital moves closer to the hydrogen atom. Such a movement
reinforces the electrostatic interaction between both molecules and the charge transfer. The 1by
orbital is more extensive than the 3a; orbital and this reduces the reduction of the exchange
repulsion. A change of a decreases the exchange repulsion about 0.052 kcal/mol/deg while the
same movement of 5 decreases the exchange repulsion only about 0.018 kcal/mol/deg. The greater
extension of the 1by orbital explains, why By and Ky are much smaller than A, and Kj.

At the minimum geometry (3.0049 A) the ratios for the individual interaction energies are
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as follows: ES : EX : CT : PL : HO =1 : 0.55: 0.15: 0.07 : 0.01. It is therefore more
important to find a good description of the electrostatic interaction (ES) and the
exchange repulsion (EX) for a classical model than to introduce a polarisation term.
The charge transfer (CT) plays only a minor, but still important, role and cannot be described
adequately by a rigid water molecule model as shown in subsection 3.2.2 and 3.2.3.

All MOROKUMA calculations were done with GAMESS US. The basis set generated by the input
line ”$BASIS GBASIS=DZV NPFUNC=1 NDFUNC=1 $END” is the same as the GAMESS UK DZP basis

set.

3.4 Water Trimer

Calculations on water trimers at an RHF/MP3 level with a DZP basis need considerable compu-

tational resources. Therefore, only four different geometries with rigid monomers were examined.

3
’
s 1 2
/ \
\
\
0 C :l@ \
Figure 3.35: Geometry of trimer I. Figure 3.36: Geometry of trimer II.
9
7 3
8 1
9
8 7
Figure 3.37: Geometry of trimer III. Figure 3.38: Geometry of trimer IV.

Figures 3.35 to 3.38 display pictures of the examined trimers. The three variables are the same
as in the water dimer. dpo is the distance between the two oxygen atom of a hydrogen bond, « is
the bend of the hydrogen bond and § the angle between the acceptor’s symmetry plane and dpo.
For details please refer to table 3.21.
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There is only one principal way to construct a cyclic trimer

d_ doo @ B (figure 3.35) but three different linear combinations, which
-4 2-1-4 - can be distinguished by the function of the central water
AT AT - monomer. In trimer II as shown in figure 3.36 the central
7-1  8-7-1 —

water molecule donates both hydrogen atoms to the hydro-
gen bond. Trimer IIT (figure 3.37) is built vice versa. In both
cases the central water molecule accepts the hydrogen atom

I 14 214 1-4-(5,6)
-7 317 1-7-(8,9)

I 14 541 41-(23) from the other water molecules. Finally, the central water
-7 871 T-1-(2,3)

IV 14 214 14(56)
AT 54T AT(89)

molecule acts in trimer IV (figure 3.38) as an acceptor as

well as a hydrogen donor. Experimental data only exist for

trimers T and IV. All experiments on the free trimer suggest,

(x,y) sum of the corresponding that the most stable water trimer is cyclic with C; symmetry.
OH vectors A twisted head-tail chain like trimer IV is commonly observed
on metal surfaces (e.g. Pt(111)) [38].

All calculations (GAMESS UK) were done with a rigid

monomer geometry. Only the geometries of trimer I and II

Table 3.21: Definition of the trimer

geometries.

were fully optimized. The geometries of the trimers IIT and IV were constructed from ideal hy-
drogen bonds with a BSSE corrected oxygen-oxygen distance (table 3.18). Table 3.22 lists the

geometries and energy compositions of the four trimers.

trimer 1 trimer II  trimer III*  trimer IV*
method DZpP-MP3 DZP-MP3 DZP-MP3 DZP-MP3
d [A] 2.8014 2.9761 3.0049 3.0049
o [deg] 23.54 9.70 3.31 3.31
B [deg] not defined 70.745 54.57 54.57
dipole moment [D] 0.0 0.4830 1.29635CF  3.75465CF
EpLec [H] —312.0214 —-301.3425 —-302.4546 —301.9393
Exuvc [H] 83.8604 73.1893 74.3017 73.7817
Ernr [H] —228.1610 —228.1532 —228.1529 —228.1575
Emp2 [H] —0.6372 —0.6357 —0.6354 —0.6355
Emps [H] —0.0178 —0.0182 —0.0183 —0.0182
Eror [H] —228.8161 —228.8071 —228.8066 —228.8111
AEYqr [keal/mol] —16.213 —10.578 —10.286 —13.112

SCF calculated from the SCF matrix ~* geometry not optimised
" not BSSE corrected

Table 3.22: Geometrical details of the trimers.

The three possible orientations (figure 3.39) of the hydrogen atoms (both hydrogens inside,
both hydrogens outside, one inside and the other outside) of the terminal water molecules of
trimer IIT were checked with a rapid RHF-MP2 calculation (GAMESS US). The geometry with
both hydrogens inside had the lowest total energy of —228.75199 H. The geometry with both
hydrogens outside the inner area yields an energy of —228.74796 H while the geometry with one
hydrogen inside and the other outside gave a total energy of —228.7511 H. These results show that
the Coulomb repulsion between the nonbonding hydrogen atoms of a single hydrogen bond is more

important than the repulsion between the hydrogen atoms at separated water molecules.
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Figure 3.39: Three possible conformers of trimer IIT with their MP2 energies in Hartree.

In the literature (eg [157]) the conformation with both hydrogen atoms inside the molecular

centre is commonly used. It is therefore difficult to relate to previously published results.

The water trimer (still subject of the current research) has been examined both experimentaly
[139, 141, 150, 154, 243, 244] and theoretically [107, 108, 119, 131-133, 140, 142, 145, 147, 157, 159,
245, 208d (review on nonadditivity)]. The theoretical papers provide a wide range of results and

depend heavily on the used technique. The experimental results can be summarized as follows:

The most stable water trimer is cyclic with C; symmetry. The three oxygen atoms form nearly
an equilateral triangle (2.97 A, 2.97 A and 2.94 A) The hydrogen atoms of the hydrogen bond are
slightly tilted out of the oxygen plane. Two of the remaining three hydrogen atoms are above and
the third hydrogen atom is below this plane. The eight different conformers (including only the
non binding hydrogens) interchange rapidly by quantum tunneling. All clusters larger than the

dimer have a small or vanishing dipole moment.

The theoretical analysis of this minimum is very difficult. The low symmetry and the flatness
of the potential energy surface make quantum chemical calculations costly, since it is no longer
possible to reduce the number of integrals by symmetry operations and the geometry optimisation
algorithmen converges only slowly. Also the flat potential energy surface has 96 isoenergetic min-
ima [132] around the minimum. Despite those problems the work published in the literature focuses

on the global minimum. Table 3.23 displays a short compilation of results for related geometries.

trimer I trimer II
this work [140] [142] this work [145]
basis set DzZp ESPB DZPp DZPp 6-311+G(2d,2p)
method MP3 MP2 CCSD MP3 MP4SDQ
d [A] 2.801 2.80 2.799 2.9761 2.9496
a [deg] 23.54 25.0 23.28 9.70 6.2
B [deg] not defined not defined not defined 70.745 69.0
Eror [H] —228.8161 —228.7757 —228.8071 —228.8257
AEY,, [kcal/mol] —13.7892 —13.659 —15.695 —8.2812 -5.3

& BSSE corrected

Table 3.23: Previously published results for the water trimer.
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trimer I trimer IT  trimer IIT"  trimer IV"

AEApc ~16.213  —10.578  —10.286  —13.112
AEapc (BSSE) —13.789  —8.281 —8.242  —11.071
BSSE 2.424 2.297 2.044 2.041
AEpc 4802  +0.724 +1.112 —5.899
AEpc (BSSE)  —3.644  +0.724 +1.163 —4.882
AEac 4802  —5.859 —5.899 —0.613
AEac (BSSE)  —3.644  —4.724 —4.882 —0.586
AExp —4802  —5.859 —5.899 —5.899
AEap (BSSE)  —3.644  —4.724 —4.882 —4.882
AEpair —14.406 —10.994  —10.686  —12.411
AEpair (BSSE) —10.923  —8.724 -8.602  —10.351
AExpa ~1.807  +0.416 +0.400 —0.701
AExpa (BSSE)  —2.866  +0.443 +0.360 —0.720
nonadd. BSSE ~1.050  +0.027 —0.040 ~0.019
AEH_BoND 5404  —5.289 —5.143 —6.556
AEn_ponnp (BSSE)  —4.596  —4.140 —4.121 ~5.535
AEmono 5404  —3.578 —3.429 —4.371
AEyono  (BSSE)  —4.569  —2.760 —2.747 —3.690

(BSSE) : BSSE corrected NPA : not pair wise additive
H-BOND : per hydrogen bond MONO : per monomer
* . geometry not optimized A=123B=4,56C=17.8)9

Table 3.24: Analysis of the interaction energy.

Table 3.24 displays the analysis of the trimerisation energy. For the calculation of the BSSE
ghost orbitals were placed at the position of the two water molecules (section 2.4, 23 - trimerisation
in a single step, [145]). The BSSE is roughly the same for all trimers regardless of the number
of bonds. The BSSE has a strong nonadditive component (BSSEtgriv — Y BSSEpiv). Trimer I
with the strongest nonadditive forces (AEnpa) has also the largest nonadditive contributions to
the BSSE.

At the first glance at table 3.24 trimer I is the most stable trimer, because it is made of three
binding hydrogen bonds while the other three trimers contain only two binding bonds. Trimer I
has the highest interaction per monomer, but the weakest hydrogen bond in pair interactions. The
hydrogen bond in the cyclic trimer is heavily distorted (o = 23.54°). Since « is the bond breaking
angle, the energy gain has to be small. The energy gain per hydrogen bond (AEg_gonp = AEasc
<+ n, where n is the number of bonds) is not a reasonable quantity to explain the strong interactions
in trimer I, since it also contains the non pairwise interactions (—4.802 kcal/mol versus —5.404
kcal/mol). The weakness of a single hydrogen bond is not only compensated by the number of
bonds but also by very strong cooperative effects (AExpa ). The BSSE corrected value for AExpa is
calculated with the BSSE corrected pair interaction energies and the corrected trimerization energy
AEaAgc. The BSSE of AEnpa is therefore by construction the nonadditive part of the BSSE. The
only other trimer with a negative value for AENpa is trimer IV, which is build out of optimised
dimers (Cs) and has the highest binding energy per hydrogen bond. This is not only caused by

the dimers’ geometries. The interaction between the monomers A and C is attractive, while the
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similar interaction in the trimers IT and IIT is repulsive. Trimer IV is also the only linear trimer
with binding cooperative effects. According to Md’s [145] quantum chemical calcaltions changes
trimer IV without a barrier of activation into the global minimum (C;). Our own calculations with
a classical pairwise additive potential (please refer to section 4.3.2, page 109) gave the same result:
trimer IV transforms without a barrier of activation into the global minimum. The cyclisation
is in good agreement with the experimental findings for the dipole moment of the water cluster.
Cyclic oligomers have naturally a small or vanishing dipole moment. The correlation of the dipole
moment with the cluster’s stability is observable in table 3.22. The trimers IT and III, which cannot
transform easily into a cyclic version have dipole moments and a smaller interaction energy. The
increase of a and 3 in trimer II results in a more arrangement position of the dipole moments and
in smaller overall dipole moment.

The correlation between cooperative effects and charges has been examined previously [107,
145]. With increasing cluster size (H20), (n = 1, 2, 3) the average charge on the oxygen atom
increases from 0.65 (n=1) via 0.68 (n=2) to a value in the range from —0.68 to —0.76 e for the
different trimers. This general increase is caused by polarisation. The differences of the stabilisation
energy of the four trimers may be explained with a simple acid-base model on the basis of the atom
charges. Atomic charges are a much better tool to determine the relative acidities than classic
proton affinity or acidity calculations. The protonation of the dimer (rigid monomer geometry, Cg
symmetry) of Oy (figure 3.2, <(H*0,0{Hy) = 0°) for example leads directly to the dissociation
of the water dimer. Protonated water molecules are ions and the mechanism of the water water
interaction changes from covalency to electrostatic interaction. Protonated dimers are only stable
if the oxygen of the second water molecule points directly to a hydrogen atom of the protonated
species.

The most likely place for a nuclophilic attack would be the hydrogen atoms H; and Hg (qu =
0.34 e) and the most likely place for an electrophilic attack would be O1 (qo = —0.69 e) (figure
3.2 and tables 3.8, 3.10). The corresponding attacks at these places lead directly to the formation
of trimer IV. The less favourable attacks at Hy and O4 would lead to the formation of the trimers
IT and III. The formation of trimer IV is therefore not only favoured by energy (Coulomb energy
for the formation of the transition state and total energy of the final trimer) and by the number
of places for a succesful attack. Since trimer IV transforms immediately into the cyclic trimer the

observation of an open chain water trimer is very unlikely.

E [H] AE[eV] AELyp [eV]
H,0  —76.04639400  0.00 0.00
H,0~  —75.84941915  5.36 1.07
H,0t  —75.64330432  10.97 11.53

Table 3.25: Electron affinity and ionisation energy of water.

Further insight into the bonding mechanism of a water trimer than a pure analysis of acidity
[eg. 145] allows a detailed comparison of the charges on the oxygen atom and the total charge on
the monomers. Table 3.25 displays the Hartree-Fock results for the electron affinity and the first
ionisation energy of single water molecule with rigid geometry. The energy for the cation is much
better than the energy of the anion, since in the anion the antibonding 3a; orbital is populated and
major changes of geometry are therefore likely. The most stable molecule is the uncharged water

molecule. Since a water dimer/trimer cannot be built without charge transfer, the most stable
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water cluster should therefore be built from water molecules, which give and receive electrons
simultaneously. This happens with cyclic polymers and trimer IV. The central water molecule of
trimer IV is simultaneously hydrogen donor and acceptor. The net charge change of —0.001 e due
to the trimerisation is small and slightly negative, since the water molecule bonds electrons better
than it gives them away. The charge on O4 is —0.724 e, while the charge on the electron donor Or is
—0.695 e and on the electron acceptor O; is —0.716 e. The charges on the oxygen atoms also show
that not only charge transfer but also polarisation controls the charge distribution in the trimers.
If charge transfer was the only cause for the charge distribution in the trimer, the charge on the
central oxygen Oy in trimer IV should be closer to the free water value of —0.69 e and smaller
than the charge of the pure electron acceptor O; —0.716 e. This disagreement can be explained
by polarisation. The electrical field of the other water molecules polarises the oxygen of the water
molecule and so causes an additional electron shift. Investigation of the water trimer with SAPT
calculations (Symmetry Adapted Perturbation Theory) show, that close to equilibrium structure
the cooperative forces are dominated by polarisation.

The difference between the abilities to give and to receive electrons is reflected by the charge on
the central water molecules in the trimers IT and III. In trimer III both water molecules pull electron
density away from the centre molecule. The total charge of the centre molecule is +0.028 e and the
charge of the central oxygen O; is —0.709 e. The charge on the other oxygen atoms O4 and O7 is
—0.706 e. Although the two water molecules pull electrons away from Oy, O; is more negative than
04 or O7. Since the water molecule and therefore oxygen receives more electrons than it donates,
electron density is moved from the hydrogens Hy and Hz to O4 in order to compensate the electron
drag. The second reason is polarisation. The hydrogens Hg and Hy pull electron density along the
direction of the dipole moment and therefore enhance the dipole moment. An increase of the dipole
moment enhances the charge separation as long the geometry is fixed (equation 3.1). In trimer II
the oxygen atoms O4 and O donate electron density to O;. The charge on Oy is —0.722 e while
the charge on the oxygen atoms O4 and O7 is —0.655 e, even lower than the charge on oxygen in

the free water molecule. Table 3.26 summarizes the correlation of charge transfer and stability.

trimer  electron transfer to central oxygen qma20 [¢] qoa [e] E" [kcal/mol]

v donate - receive —-0.001 -0.724 —13.112
II receive - receive —0.043 —0.722 —10.578
111 donate - donate 4+0.028 —0.709 —10.286

* not BSSE corrected

Table 3.26: Correlation of charge transfer and stability.

Since the charges are not BSSE corrected the uncorrected interaction energies are displayed in
table 3.26. The table examplifies an extremly simplified model of coopeative effects in water trimers
and therefore for water cluster growth: The next water molecule is attached to an existing
water cluster in such a way that the target water molecule in the cluster donates and
recetves electrons simultaneously. The net change of charge at the attacked water
molecule is thereby kept to a minimum.

The hydrogen bonds in the trimers are formed by an overlap of the occupied orbitals similar
to the bond in the water dimer. Figure 3.40 displays the 3a’ orbital from trimer I. The bond is
formed by a bonding overlap of the 1by orbitals of the monomers. An analysis of the moleculear

orbitals of the global minimum shows (please refer to section 4.3.2 (page 109) for details on the
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6H,O — 3(H20), AE = —13.98kcal/mol

6H,O — 2(H20)3 AE = —16.48kcal /mol
3(H20)y — 2(H50)3 AE = —2.50kcal /mol
Figure 3.40: 3a’ orbital of trimer I. Figure 3.41: Formation of trimer III from dimers.

global minimum structure), that the corresponding orbital has the same shape. The distortion of
the molecule reduces the Coulomb repulsion of the two cis hydrogens by increasing the dihedral
angle. The molecules get closer to each other and the overlap increases. Meanwhile the orbital
energy decreases and the trimer stabilizes. The distortion of the water trimer not only reduces the
Coulomb repulsion but also increases the overlap of the 1b, orbitals. Therefore, any model which
is used to explain the distortion of the trimer has to take orbital effects as well as cooperative

forces into account as showed by SAPT calculations [159].

The energy difference between trimers IT and III at a BSSE corrected level is very small (0.039
kcal /mol) and may be neglected. Since the geometry of trimer ITI was not optimized, the geometries
are difficult to compare. The optimization of trimer IIT lowers the energy even further. Energy
and geometry optimisations at DZP/MP3 level proved to be tedious with the available computers.
The geometry optimisations were done with a classical pairwise interaction potential (chapter 4,
page 85). Further refinement was done at MP2 level. Those results are discussed in section 4.3.2
(page 109).

Figure 3.41 displays the formation of trimer III from a set of dimers. All trimers are energetically
favoured in comparison with the dimer. This is also displayed by the mean binding energy per
monomer (table 3.22 / AEg_ponp). All values are lower than that for the dimer (—2.44 kcal /mol).
In contrast to trimer I, the cooperative forces (AExpa) for trimer IT are repulsive. The repulsion
leads to a lengthening of the oxygen-oxygen bond in trimer II, despite the stronger hydrogen bond
(3.644 kcal/mol versus 4.724 kcal/mol).

The cooperative forces change from attraction to repulsion between the different trimers. Most
classical water water interaction potentials describe three body forces with polarisation terms.
Since the energy gain from polarisation should always be negative, a second force of equal strength
or stronger has to contribute to the cooperative effects. The nature of the cooperative forces can
be analysed with SAPT [208c]. TACHIKAWA et al. [159] and CHALASINSKI et al. [157] examined
the cyclic planar trimer (trimer I). Both papers show that the trimer’s geometry is controlled by
the two centre forces. The three body forces have a shallow minimum at the equilibrium geometry
and are strongly repulsive at other regions of the potential energy surface. The attractive part
of the three body forces is the polarisation interaction while the repulsive part is governed by

three body exchange repulsion and second order exchange induction [159]. A good water-water
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interaction potential should therefore find a suitable expression for the changing three body forces
to reproduce the balance of the three body forces.

The sign and value of the energy gain from cooperative forces not only change with the
molecule’s geometry but also with the basis set and method used for the calculation. There-
fore, it is difficult to compare the results of this work with other values published in the literature.
According to M6 [145] only the cyclic trimer has a negative value for AExpa, while LENTZ [133]
concluded that the cyclic trimers are not favoured in comparison with the linear trimers. XANTH-
EAS [147] and VAN DUDNEVELDT [140] found three-body terms (2.3 kcal/mol / 2.0 kcal/mol) for
the cyclic trimer (C; symmetry), that agree with the value found in this work. DEL BENE and
PoprLE [107, 108] investigated the linear trimers in greater detail. Their findings agree qualitatively
with the results from this work.

trimer I  trimer II  trimer III  trimer IV

[107] +1.87 +0.957  —2.055
[108] —2.94*  4+1.87°  +4205°  —2.06"
this work® —2.866  +0.443  +0.360  —0.720

a 431G Basis P STO-4F Basis ¢ BSSE corrected

Table 3.27: AEnpa in kcal/mol

Sadly it was not possible to analyse the global minimum of the water trimer potential energy
surface at DZP/MP3 level. The calculation of four selected points at different levels of geometry
optimisation showed that the cyclic trimer is favoured. Such a trimer cannot be part of a three-
dimensional ice like lattice. This will be important, if the structure of the different water layers on
a metal surface is examined. The stabilisation of linear trimers has to be caused by the interaction
with the platinum and/or lattice effects. The calculations showed also, that all trimers are ener-
getically more favourable than dimers. In two cases (trimers IT and III) the cooperative forces are
repulsive and therefore reduce the interaction energy. This change of sign gives a reasonable clue
that at least one force other than polarisation controls the cooperative effects. It is also reported
in the literature that a classical polarisation model yields only up to 60% of the cooperative forces
in a trimer [209]. SAPT [159] calculations show, that the other dominat repulsive cooperative
forces are three body exchange repulsion and second order exchange induction. The repulsive
cooperative forces are important for the development of a classical interaction potential. If only
polarisation (always bonding) is taken into account, trimers are stabilized, which should decay by
the nonadditive interactions.

3.5 Summary of the Quantum Mechanical Calculations

1. GAMESS UK offers a selection of internal basis sets. The DZP basis set was the most useful
set for calculations. The basis set is small enough to keep the computational cost low but at
the same time flexible enough to yield good geometries and energies. The bigger TZVP basis
set is not well balanced. The TZVP basis set of GAMESS UK not flexible enough, since
it does not contain the necessary polarisation functions. The BSSE of the results obtained
with the TZVP basis set is much bigger than the BSSE of the DZP results. Ghost orbital

calculations with the TZVP basis showed that s-electron density is moved from the bonding
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hydrogen atom (Hs) to s-orbitals of the accepting oxygen atom (O4). The pseudo-s d-orbital
of the TZVP basis set helps the oxygen’s s-orbitals during the calculation. The TZVP basis
set loses its flexibility. The DZP basis set has a s-orbital with a maximum at the same place
as the pseudo-s d-orbital. The d-orbitals are much less used to describe s-orbitals.

. The MP3-method includes correlation effects into the calculations. The optimized geometries
and energies for the water dimer agree very well with other published experimental and
theoretical results. SCHEINER claims in his review [125] that the MP and coupled cluster (CC)
methods are the best ones to analyse the interaction, because both are size consistent. Both
methods CC and MP3 gave nearly the same results for planar water trimer (Cs,, symmetry).

MP2 includes already most of the correlation effects. MP3 only contributes small but subtle
changes. More important changes are reached at MP4 level according to the literature, but
those calculations are too costly. Since the MP3 calculations reproduce reasonably well the
CC results, a further increase of the perturbation level seems not to be necessary and is,

considering the increasing size of the system, unwise.

. The correction of the interaction energy with the method of Boys and BERNARDI yields very
good energies close to experiment. The geometry of the water dimer with fixed monomer
geometries was optimized with a full CP correction. Those values (AE = —4.914 kcal/mol) are

not only closer to the experimental values but also to the theoretical limit of —4.9 kcal/mol.

. Numerical frequencies and frequency shifts at MP3 level are of the same quality as those of the
costly MP4 method. Analytical MP2 frequencies are very reliable and allow thermochemical

predictions such as the zero point energy. Further improvement might be achieved by scaling.

. The hydrogen bond is not only formed by electrostatic forces but also by the rearrangement
and interaction of inner orbitals of the water molecules. Energy decomposition according
to MOROKUMA shows that the dimer is formed by electrostatic interaction and exchange
repulsion. The bend of the hydrogen bond leads to a relaxation of the exchange repulsion.
The energy gain by this relaxation is larger than the price paid by electrostatic interaction.
The formation of the hydrogen bond is accompanied by a small but important charge transfer.
Within a chosen method of computation the binding energy is proportional to the charge
transfer. Test calculations showed that the correlation between charge and proton transfer
is small at equilibrium geometry. Calculations with fixed water geometries therefore give
reliable results for the charge transfer during hydrogen bond formation.

. The error obtained by fixing the water geometry at the experimental value is small and
negligible compared with the interaction energy. This allows us to scan vast areas of the
potential surface in a reasonable amount of time. A BSSE correction of the energy during

this scan is necessary to distinguish between real minima and BSSE induced minima.

The potential energy surface around the dimers minimum (Cg symmetry) is very flat. The
energy decomposition showed that changes in the electrostatic interaction and the exchange
repulsion energy cancel each other in this region. The surface is even flatter around the

trimer’s minimum.

. Calculations for four different water trimers at MP3 level suggest that cooperative effects are

important for the formation of small water clusters. The cooperative forces change their sign
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for the different trimers. This indicates that at least another antibonding three body force

is involved.

Stable hydrogen bonds cause charge transfer. Calculations of the electron affinity and the
ionization potential show that the most stable water molecule is uncharged. Stable trimers
therefore are built from water molecules which donate and receive electrons at the same time.

The most stable water cluster is cyclic. Such a cluster cannot be part of a three-dimensional
ice-like lattice. The formation of linear water clusters on metal surfaces is therefore caused

by the direct interaction of the water molecules with the surface.
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Chapter 4

Classical Water-Water Interaction

Potentials

A quantum chemical simulation of an extended metal surface with several water molecules is unre-
alistic at the chosen level of computation. The dynamics of large systems can be easily simulated
with a molecular dynamics code. Such a program utilizes the interaction potentials between the
different molecules in analytical form. Various water-water interaction potentials have been used
for the simulation of liquid water or ice [246-253]. Those potentials differ in their computational
complexity. A suitable potential should be simple and easy to calculate and also describe the
quantum chemical results well.

Such a potential also simplifies the examination of the water trimer’s potential energy sur-
face. The structure of the trimers is optimized using the classical potential in the first step. The
preoptimized geometry is then used for a quantum chemical geometry optimisation. This proce-
dure reduces the computational efforts and helps us to distinguish between quantum chemical and
electrostatic forces in the trimerisation.

Successful descriptions of the metal-electrolyte interface use simple water-water interaction

potentials [95-98], so the comparison started with these simple potentials.

4.1 Classification of the Different Potentials

Various potentials have been published and used in simulations (see section 1.1.3, page 4). They
are most easily distinguished by the number of points necessary to describe the monomer. Figure
4.1 displays the four basic water geometries. Geometry I with five points (BNS [126], ST2 [126])
is a tetrahedron with two negative charges representing the free electron pairs. The monomer
geometries of the two potentials differ only by the distance between the charges and the oxygen
atom. Close related to geometry I is ROWLINSON’s geometry (II) (Row [126]). The negative
charges are perpendicular to the molecular plane like the By molecular orbital (figure 3.1, page
48). Geometry III (BF [9, 116], TIPS2 [116, 117], TIP4P [116, 249, 250]) using four points for
the description of the monomer is the oldest found during the literature search [9]. The negative
charge is moved on the bisector of the bond angle w to simulate the polarisation of the oxygen
atom by the hydrogens. The whole monomer keeps its Co, symmetry. Since the distance between

the charges is smaller for geometry I and II than for geometry III, the charges have to be higher to
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get a dipole moment of a similar size. Geometry IV using only three points (SPC [116], SPC/E
[97, 98, 109, 254, 255], TIPS [248, 256], TIP3P [116], CFMS [257], NCC [258, 259]) is closest
to the experimental geometry with no additional assumptions. Geometry IV is the only geometry
with the negative charge placed at the oxygen atom. The geometries of type IV monomers found
in the literature vary between the experimental values and a simplified tetrahedron. The geometry

of water in potentials with flexible bonds is usually of type IV.

q
q\ o H ‘ o H aw =
" 0L 0Z—q ol
q ™~ H L\ H ™~ H ™~ H
| I I IV

Figure 4.1: Geometries of water monomers for different interaction potentials.

Only the CFMS and the NCC potential use extended functions to describe the interaction
between the molecules. The interaction energy of the other, simpler models consists of two parts

with small modifications between the different potential:

1. Coulomb interaction Voc: The interaction of charges on different sites ¢ and v dominate the

total interaction energy.

(4.1)

The BNS (Ry, = 2.0379 A, Ry = 3.1877 A) and the ST2 (R, = 2.0160 A, Ry = 3.1287 A)

models use additional damping functions! S(r) for the Coulomb energy.

S(roo) =0 (0<roo <Rp)

— R )2 — R, —
= o0 RL()RS)]EURL)?L 2r00) (R <roo < Ry) (4.2)

=1 (Ru < ro0)

2. The interaction between the oxygen atoms is described by a Lennard-Jones (12-6) potential
Vvaw.

B (4.3)

Waw = 5
oo

ﬂ
S| -

The extended potentials (CFMS / NCC) does not contain any Lennard Jones terms. The
effect of the Lennard Jones interactions is modelled by a set of extended functions, which combine
the Coulomb interaction and the van der Waals energy. Those potentials also contain additional
polarization terms.

STILLINGER’s CFMS model [257] builds water from protons and oxide ions. So the water
geometry is flexible. His monomer has a OH bond length r, of 0.9584 A, a bond angle w, of

!Such a damping function should not be confused with the spline function used to smooth out the

interaction potential at the cut off radius in MD simulations [85].
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104.45° and a dipole moment pe of 1.855 D. The whole model is parametrised to reproduce those
and other experimental values like IR, frequencies.

The Coulomb and van der Waals ineraction energie are combined to form extended pair in-
teraction functions ¢oo, ¢on. The first terms? of equation 4.4 and 4.5 (energies in kcal/mol and
distances in A) represent the Coulomb interaction. ¢yy is the pure Coulomb potential (equation

4.1), since both particles do not have any electrons.

1329 24 90

doo(r) = ——=+7 + exp[2.5(r — 2.90)] 1T exp[8(r — 2.45)]

+ exp[—6(r — 2.70)] (4.4)

dom(r) = g (10 exp[—3.699r] — 2) + (—184.7(r — r,) + 124.0(r — r¢)?)

exp[—8(r —r.)?] (4.5)

The fourth term ¢p contains the polarisation energy with some interesting variations. Instead
of the electrical field E (section 2.8, page 40) a damping function ([1 - K(r)]) is used to calculate
its replacement G:

- i Qi (7t i[1 — K(r;
Gi= -3 B — Ky - Y (1 - 204 ) A=l (4.0)

3 3
re. e e
i#j ij 1#i il il

This damping function leads to a slightly different expression for the induced dipole moment,

p1 in the dimer compared with equation 2.102 (page 43):

. . D < 3D .. 34y o
A= [ (8 R )]

A1 A47‘2
_ A = e & _ N il (4.
D=1-K(r) n_l_r—ﬁ Sz—zr—3
izj Y

To check the results the modified system of equations (2.102) was solved by replacing the vectors
by their components and solving the new 6*6 system of equations. This method has the advantage
that it is simpler to scale the system up to handle more molecules than with the analytic approach.

A second damping function [1 - L(r)] is used during the calculation of the polarisation energy

¢p

op =3 3 BTG ) (1.9)
i ij
i#j

Equation 4.8 (distances in A) does not take the interaction between the induced dipole moments
into account.
3

1-K(r) = -
3 — 1.856(r — 1. )2 exp[—8(r — 7. )] + 16.95 exp[—2.703r]

(4.9)
L(r) = (1 + 3.170r + 5.024r” — 18.00r* + 23.92r*) exp[—3.170r]

Without those additional damping functions the polarisation would dominate all the other inter-

actions. The model would predict unphysical values. A strong electric field from a close neighbour

2All figures rounded to 4 significant digits [257].
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could reverse the direction of the monomer’s dipole moment for example.
10 = 2 € 1o c08(0.5 w) {1 - K(re)]} (4.10)
r&

For 12 = a (re = 1.1305 A) the dipole moment would vanish without any damping. This damping
yields good results, but is difficult to justify.

Table 4.1 summarizes the parameters of the different potentials and the equilibrium structure
of the water dimer we calculated with those potentials with the exception of the NCC potential.
All bonds of the simple models are too short and the dimerisation energies too high. The pair
interaction of two water molecules therefore is over emphasized. All those potentials were optimized
to describe liquid water. None of those effective potentials contains any non additive terms like the
polarisation energy. To compensate for this extra energy, the pair interaction has to be increased
during the generation of the potential parameters. Although the ST2 potential has the longest
oxygen oxygen distance (2.85 A) the interaction energy is too high (6.84 kcal/mol). The best
interaction energy is found with ROWLINSON’s potential, while the oxygen oxygen distance (2.69
A) is poor. The extended potentials, which contain polarisation terms, yield better energies and
distances (CFMS: 2.95 A, 5.402 kcal/mol, with fixed, optimized water geometry). Results obtained
with the experimental water geometry (0.9572 A, 104.52°) do not differ significantly from those
with the optimized water geometry (section 11.8, page 329). The CFMS model allows the water
molecule to relax (2.896 A, 6.95 kcal/mol). The relaxation energy (1.95 kcal/mol) is too large in
comparison with the quantum chemical (DZP/MP3, BSSE corrected) value of 0.07 kcal/mol. The
best values for the angle 8 (about 47°) yield potentials with a type III geometry for the dimer.
All of them are close to the experimental value. The best value (2.9°) for « is found by the ST2

model.

4.2 Comparison with the Quantum Mechanical Potential

Curves

A display of the quantum chemical and the classical curves can be found in the appendix (section
11.8, page 329). In this section only graphs are displayed, which are necessary to understand the
argument. For the less important graphs references to the appendix are given.

The BNS- and the ST2 models show local minima in the repulsive curves (both agy and apo)
like the BSSE uncorrected repulsion curves app (figures 3.29, 3.32, 11.3c, 11.4c). Figures 4.2 to
4.5 display details of the local minimum of the BNS apo curve.

The fraction of the Coulomb energy in the total energy approaches zero as the oxygen-oxygen
distance gets shorter. The Lennard Jones interaction in this region is only very small. The
addition of both energies creates the local minimum. The Coulomb energy is pulled down to zero
by a damping function as displayed in figure 4.3. Figure 4.4 shows the change of the Coulomb
energy. The damping is necessary to avoid a negative Coulomb energy for small distances. Figure
4.5 shows how the attractive OH interactions overpower the repulsive forces of the OO and HH
interactions. The minimum is caused by too strong attractive forces at small distances.

The correction of the BSSE weakens the attractive forces between the two water molecules as
shown in chapter 3. The counterpoise correction of the BSSE keeps the molecules apart, because

it is no longer possible to improve the wavefunction of one monomer with the other monomer’s
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functions. In the quantum chemical as well as in the classical case the local minimum is caused by

too strong attractive interactions at small distances.

All classical dimerisation curves (figures 11.3a - 11.12a, section 11.8) with the exception of the
CFMS model (figure 11.13a, 11.13e) have their minimum at too small oxygen-oxygen distances and
the interaction between the water molecules is too high (please refer also to table 4.1). The correct
description of the minimum of the CFMS curves is not achieved by weaker attractive forces. They
are actually stronger. The improvement is achieved by a better description of the repulsive forces.
For simple models the repulsive curves are always steep, but they are of short range. This is caused
by the r='2 term of the Lennard-Jones interaction energy. The minimum of the Lennard Jones
curves is between 2.8 A and 3.2 A (table 4.1). The equilibrium geometry of the dimers is therefore
dominated by attractive Coulomb interaction. The CFMS model by STILLINGER uses exponential
terms for the description of the repulsive terms. Those extensive functions produce the right form
for the repulsive curves agy and apo, but the repulsion starts too early (figures 11.13b, 11.13c,
11.13.f, 11.14a). The correct description of the water dimer with the CFMS model is achieved with
strong repulsive terms, which keep the monomers apart.

The apo curve of the ST2 model (figure 11.4b) has a less distinct local minum and is so
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better than the BNS curve (figure 11.3b) although both models use nearly the same geometry for
the monomers. The coefficient A of the Lennard Jones potential is bigger and the distance roq
between the charges and the oxygen atom are smaller. This leads to a higher contribution of the
Lennard-Jones energy. A damping function is no longer necessary and the local minimum nearly
vanishes. The model of ROWLINSON has a even larger value for A. Simultaneously the charges
move backwards (geometry II, figure 4.1). This leads to a much steeper curve for agy and the local
minimum vanishes (figure 11.5b), since the negative charges get closer to each other and Coulomb
repulsion contributes stronger to the total repulsion energy. The app curves for the three and
four point models hardly differ, since the short range repulsion is controlled by the Lennard Jones
term and not by the Coulomb interaction. The movement of the charge is therefore less important
for repulsion energy. An increase in the distance roq between the charges is also compensated by
greater charges of the four point models, which explains the similarity of the curves.

Another clue to the role of the Lennard-Jones energy for the interaction is given by the apy
curves. Since the distance between the oxygen atoms and the charges is now much bigger (figure
3.29, page 69 for geometries), the hydrogen-hydrogen repulsion gains more importance in com-
parison with the Lennard Jones interaction energy. Since the electron density at the hydrogens
in a water molecule is low, the interaction between two hydrogen atoms has to be dominated by
Coulomb repulsion. Because the total repulsion energy is controlled by the hydrogen-hydrogen
Coulomb repulsion, the classical agy curves are generally much closer to quantum mechanical
curves than the ago.

The influence of 8 (figure 3.2) on the total energy is very strong for the models based on
tetrahedra (figures 11.3d, 11.4d). For both models (BNS, ST2) 3 is very close to the tetrahedral
value of 54.7°. This is due to the interaction between the charges q of the free electron pairs
and the bonding hydrogen atom. The closer the negative charge is to the monomer’s hydrogen
atoms, the flatter is the curve (BNS > ST2 > ROWLINSON). The flattest curves are produced by
3-point models. Here the oxygen charge does not move and the change of the interaction energy is
caused only by the orientation of the hydrogen atoms. The curves of the 4-point models are better
than the 3-point models, as they reproduce better the asymmetry of the BSSE corrected curves.
They also have the best values for 8 in the equilibrium structure, because they are closest to the
experimental value of 47 + 10°.

The CFMS model’s curve E(f) is the steepest of all. This overestimate of 5 on the interaction
energy is caused by the Coulomb part of the model. Figure 4.6 displays a comparison of the
pure Coulomb interaction energy between an oxide anion O?>~ and a proton H* and the potential
energy curve proposed by STILLINGER. STILLINGER’s interaction energy is slightly lower than the
pure Coulomb potential for large distances rog. The Coulomb interaction in STILLINGER’s model
is much stronger compared with the other models. The highest charge on oxygen occurs with
the TIPS2 model (1.07 e), which is still much smaller than 2.0 e of STILLINGER’s model. The
dependence of 8 on the interaction energy seem to be directly correlated with the Coulomb energy
part of the model. The more important the Coulomb part gets the more energy is needed to distort
the equilibrium geometry.

Figure 4.6 shows how well the Coulomb and repulsive terms (equation 4.5) work together in
STILLINGER’s model. At small distances the attractive Coulomb regime is gently changed into a
repulsive potential. Any additional repulsive functions are therefore not necessary.

The polarisation energy of the water dimer as a function of a calculated with the CFMS

model is shown in figure 4.7. In contradiction to the quantum chemical results (table 11.19) the
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Figure 4.6: OH interaction energies in OH™. Figure 4.7: Polarisation energy of the CFMS
model.

polarisation energy has a maximum rather than a minimum at the equilibrium structure. The
polarisation energy in the CFMS model widens the parabola and describes the quantum chemical
values better. The energy curve of the CFMS for the variation of W3 () (figure 11.14c) is still the
steepest curve of all. As before in the case of 5 the importance of the bond angles is overestimated
by the Coulomb energy.

The E(a) curves calculated with the tetrahedral models (BNS, ST2) are steep, but fit much
better to the quantum mechanical curve. The best description of the curve is given by ROWLINSON.
The curves of models with geometry IIT (TIPS2, BERNAL and FOWLER, TIP4P) are steeper than
the quantum mechanical curves, but fit better to the BSSE uncorrected curve. The three-site mod-
els (SPC, SPC/E, TIPS, TIP3P) are also close to the quantum mechanical curve, but exaggerate
the curve’s anharmonicity. In a three-site model the hydrogen atom H2 is much closer to the centre
of negative charge of the other molecule than in a four-site model. The increased Coulomb energy
also raises the steepness of the curve.

The comparison of the different potentials with the quantum chemical curves might be sum-
marized as follows:

1. No potential describes all curves in a satisfactory manner.

2. Polarisation seems to be important for the equilibrium structure and adequate fitting to the
quantum chemical curves. Both models containing polarisation terms (CFMS and NCC) also
contain extended functions. At this stage it is difficult to judge from the classical potential
energy calculations whether this good agreement is achieved by the polarisation terms or by
the extended interaction functions. The inclusion of polarisation terms is dangerous at low
distances and could lead without any damping to poor values for the bond length and the
bonding energy of the dimer.

3. The best description of the angles « and (3 is given by four-site models (geometry III). A value
of 0° for « is still in the experimental range and all values for 8 are close to the experimental
one. The TIPS2 potential offers the best description of the quantum chemical results. The
oxygen oxygen distance (2.79 A) is in comparison with the other simple potentials the second
longest and the dimerisation energy (6.20 kcal/mol) reasonable. Figures 4.8 - 4.12 compare

the TIPS2 curves with the quantum chemical ones.
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4. The repulsion between the molecules at small distances is controlled by the Lennard-Jones
forces and not by the Coulomb energy. To get a good shape of the curve the r—'? term
should be replaced by an exponential term (CFMS). At the same time the charges should be
so small, that they cannot overpower the repulsion term to avoid local minima or damping

functions.

4.3 A new model

As shown in section 4.2 no simple water-water interaction pontential describes the water dimer in
a satisfactory manner. This section describes the development of a new potential for small water

clusters and its application towards the water trimer.

4.3.1 An improved model

The comparison of the quantum chemical results for the water dimer with those from previously
published potentials (section 4.2) showed that none of the potentials is actually able to reproduce

the ab initio results. There are two principal ways to get a better potential:

1. The simplest way is to fit an existing potential to the quantum chemical results and find a

new set of parameters.

2. A new potential may be developed by modifying an existing one. The study of the quantum
chemical results showed that the water water interaction is dominated by electrostatic and
exchange repulsive forces. A first try must therefore be a variation of the noncoulomb oxygen-

oxygen interaction term.

Nearly all models contain a parameter which describes the displacement of the centre of charge
from the oxygen atom. This movement may be regarded as the polarisation of the oxygen atom by
the two hydrogen atoms. Simultaneously this parameter allows us to control the dipole moment
of the molecule. There are no ways either experimental or theoretical to get correct values for the
partial charges of the atoms in a molecule. The dipole moment is therefore the best property to
compare different levels of theory.

A quality function Q is necessary to judge the quality of a fit despite the chosen way. This

function was build from different parts:

1. The variances of the quantum mechanical calculated curves (section 3.2.3 - All curves were
constructed from the BSSE uncorrected minimum geometry doo = 2.9354 A, a = 3.28°, 3
= 54.57°)

(a) the dimerisation curve (figure 3.22)

The dimerisation curve offers the best description of the attractive forces.

(b) the repulsive curves apo and app (figure 3.30 and 3.31)
The repulsive curves are necessary for the fine tuning of the repulsive forces in the model.
The comparison of the quantum chemical curves with the already published potentials
showed that the repulsive forces are important to generate the correct oxygen oxygen

equilibrium distance.
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(c) the bending of the three angles (figure 3.3) a, 5, W3 (figures 3.27, 3.28, 11.2)
The inclusion of the those three terms helps us to reproduce the force constants and the

shape of the potential energy surface.

2. The variance of the binding energies for the trimers (figures 3.35 - 3.38)
Cooperative effects are important for the energy and structure of small water clusters. There

are two possible methods to incorporate them into a potential:
(a) Cooperative effects are described by explicit terms in the potential, as the polarisation
energy in the CFMS potential.

(b) The parameters of a pairwise potential are fitted to the values of water trimers so that the
new potential enables a reasonable description of small water clusters without explicit
use of cooperative effects.

The later of the two methods was used in this work and cooperative effects are therefore

hidden in the parameters of a pairwise interaction potential.

3. The variance of the minimum energy of the doo curve? (table 3.17; doo = 3.0049 A a=
3.31°, § = 54.57°, AE = -4.880 kcal/mol) and the energy calculated with the new potential
(labelled as minerg)

4. The square sum of the first deviations (mingeo) of the inner coordinates (d, a, () of the

BSSE corrected energy dimer.

. <8AE>2 N <8AE>2 N <8AE>2 (.11)
mingeo = — — }
9doo / 3 00404 O /3310 B ) 54570

First test showed that the reproduction of the minimum has always been poor although the

reproduction of the corresponding energy values has been good. Equation 4.11 has been used
to pinpoint the global minimum (mingeo = 0). If the new potential has a local minimum at

the given geometry, mingeo should vanish.

The dipole moment was not used for the construction of the quality function, because the
effective dipole moment of water in water cluster is unknown. It was used as indicator to check, if
the fit is physically reasonable. Table 4.2, which summarizes fit results of the fitting, shows that
the dipole moment did not change much between the different potentials.

The most severe problems during the fit were caused by the cooperative effects which contribute
strongly to the total interaction energy of the water trimers. An ideal pairwise interaction potential
should create an error in the trimerisation energy of 3 kcal/mol, since it cannot describe the
cooperative effects (section 3.4). A potential which describes the trimers perfectly gives very poor
values for all dimers. A compromise had to be found between both forms. Another problem arises
from the change of the sign of AExpa (cooperative effects). Interaction potentials which describe
the trimers with repulsive cooperative effects well, usually gave extremely poor values for trimers
with attractive cooperative effects and vice versa. A suitable potential has to reproduce the correct

order of the trimerisation energies in the first place and the absolute values only in the second place.

3The BSSE correction of the equilibrium geometry was done later in one of the unavoidable slack

periods.
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All parts of the quality function differ in their size. If the simple sum is optimized, the biggest
contribution to the total error controls the development of the optimisation. To avoid this and to
minimize all sums equally, the individual terms were weighted. Those weights also allowed a fine
tuning of the final results to get a better description of the trimers.

First tests in section 4.2 showed that it is nearly impossible to describe strong repulsive dimers
(apo and agy) with the chosen set of potentials. The better their description is, the worse are
the results for the attractive dimers (dimerisation curve, W1, W2, W3). To ensure a physical
reasonable result, the upper limit for repulsive interactions was set at approximately 7 kcal/mol.
This energy is about 1.5 times of the optimal interaction energy.

The fit of a new model to the existing quantum mechanical values was done in two steps. The
first step of the procedure was done with a Simulated Annealing algorithm [242, 260-268]. This
algorithm can free itself out of local minima. Results obtained with such a program were usually
close to the global minimum. On the other hand the algorithm does not necessarily reaches the
global minimum. The theory only demands that it stops close to it. To ensure that the true global
minimum was found, a second calculation was done with a simplex algorithm [242, 269]. The first
point of the initial simplex was the result of the ’Simulated Annealing’-step. The other points were
constructed from this point by adding 10.0 to each parameter. Both methods were chosen, since
they do not require the calculation of any derivatives.

The search for a new model started with a reparametrisation of the TIPS2

/ H potential [116], because it does not contain a damping function and fitted fairly
0 d M well to the quantum mechanical curves (section 4.2). The monomer’s geometry is
\ the experimentally found geometry (rop = 0.9572 A, w = 104.52°). This makes
H a comparison between the classical potential and the quantum chemical potential
«a easier. The centre of charge M in this model (d = 0.15 A) is at the same place as
the centre of the valence electrons.

Figure 4.13: 1 1 w

6d=2(a—d) =  d= a= roncos (5) =0.146 A (4.12)

The comparison of the quantum chemical values with the results from previously published
potentials showed that the oxygen-oxygen repulsion is the most important parameter for improve-
ment. The shallow minima of the Lennard-Jones functions (table 4.1) are already close to the
optimized oxygen-oxygen distance. The first set of test potentials had therefore the same structure

as the TIPS2 potential but differed in their repulsive terms for the oxygen-oxygen interaction.

A:ag-r12-p.r 6 The original TIPS2 form
B:a-exp(—r-b)—c-r=¢

C: a-exp(—r-b)

D:a-r°

E: a-exp[—(r—c)-?

F : like E, but the parameter d for the dislocation of the centre of charge from the oxygen atom

was also fitted

All potentials contain another parameter g, which is the negative charge at the centre of charge.
Table 4.2 displays the optimized parameters for those potentials. The values for the potentials A
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pot. A pot. B pot. C pot. D pot. E pot. F

q [e] 1.0324 1.1153 1.1721 1.0354 1.0730 1.0271
a 593003.7 2072103 130121.9 549239.9 2072110 2072284
b 48.7600 -907.510  3.6205 12.0829 4.7154 5.0074
c 4.9903 -0.0801  0.069752
d 0.15 0.15 0.15 0.15 0.15 0.13173
minerg” 0.0733 0.0302 0.0070 0.0174 0.0449 0.0345
dipole [D] 2.1614 2.3347 2.4537 2.1676 2.2463 2.2402
dimer.A 0.5179 0.5748 0.0105 1.4302 0.5119 0.3873
aoo? 1.6542 5.2712 9.8509 1.1416 2.1744 1.9334
apE” 2.0625 0.7036 0.0983 2.3267 1.1498 1.0582
wia 0.0326 0.0462 0.1651 0.0601 0.2231 0.2134
w24 0.0172 0.0214 0.0085 0.0597 0.2700 0.2349
w3A 0.0083 0.1351 0.2522 0.0723 0.1880 0.1809

trimer TA 5.6736 8.1416 25.300 2.0653 1.8954 1.5931
trimer IT4 0.0051 0.0016 0.0006 0.1358 0.9164 0.7308
trimer ITTA  0.0406 0.0710 0.0186 0.0036 0.4475 0.3655
trimer TVA 1.7053 1.1725 0.5512 1.0704 0.0883 0.1591
total® 12.2352  16.1395  36.2559 8.3657 8.3775 7.2439
trimer 1B -11.4074 -10.9362 -8.7599  -12.3523 -12.4125 -12.5264
trimer ITB -8.3524  -8.3218  -8.3053 -8.6498  -9.2384 -9.1357
trimer I -8.0407  -7.9760  -8.1060 -8.3020  -8.9112 -8.8466
trimer IVE  -9.7658  -9.9889  -10.3295 -10.0372 -10.7745 -10.6724
A

variance [kcal’/mol?] B absolute value [kcal/mol] ¢ dimer counted twice

Table 4.2: Potentials A - F.

pot. A pot. B pot. C pot. D pot. E pot. F

doo [A] 2.8298  2.8480  3.0053  2.8058  2.8514  2.8496
a [deg] 0.48 033  —0.90 0.68 030  —0.57
B [deg] 44.15 43.22 36.54 45.45 43.05 38.37
—AFE [keal/mol]  4.9614 50138  4.9076 51047 54161 54224
doo [4] 3.0878  3.1583  3.2957  3.0705  3.0865  3.0559
a [deg] 127.74 12774 12774 12774 12774 127.74
B [deg] 180.0 180.0 180.0 180.0 180.0 180.0

—AE [kcal/mol] 2.8871 2.7788 3.0949 2.9255 3.2360 3.3573

Table 4.3: Optimized geometries of both minima on the dimer’s potential energy surface
(figure 4.21).
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to F are given in such a way, that if r is given in Angstrém, the final result will be in kcal /mol. For
the calculation of the Coulomb energy the final result has to be multiplied with 332.17752 kcal /mol
-A/e? to get the energy in kcal/mol if the distance between both charges is given in Angstrém and

charges as multiple of the elementary unit e.

The best results (quality function, shape of the curves, description of the trimers, opt. dimer
geometry) of this first set of test potentials were obtained with potential E. The errors (standard
deviation o) are listed in table 4.4. Figure 4.15 to 4.19 display the quantum mechanical curves and

the curves calculated with potential E.

The search began with a fit to values found only for dimers, including all repulsive dimers (AE
> 7 kcal/mol). The first potential to be tested was the original TIPS2 potential (potential A).
The results were disappointing. The next try was the replacement of the repulsive term in the
Lennard-Jones term of the potential (potential B). The results were better. All results found in
different optimisation approaches (different weights in the total error) gave only small values for
the parameter c. This validates the conclusions already drawn from table 4.1 that the attractive
the van der Waals potential is of minor importance for the description of the potential energy
surface. In the next series of experiments the attractive term was therefore omitted (potential C).
This potential gave the best results so far. Potential D was tried to check if the repulsive part of
the Lennard-Jones potential can be further improved with a single, optimized repulsive function.
Finally potential E was used to test, if a extension (in comparison with potential C) of the oxygen-
oxygen interaction potential can describe the quantum mechanical results better. Potential F was
tested to see, if any changes in the movement of the centre of charge d leads to a better potential.
The small improvement of the variances and the negative value for « in the optimal dimer (table

4.3) were regarded as unimportant for leaving a well-known geometry.

The variances of apo and app have been very large at (up to several

interaction o

hundreds kcal? /mol?) this state of the search. Those findings lead to
kcal/mol

the previously mentioned introduction of the weights in the calculation
attractive 0.535

repulsive 1.273
trimer 0.825

of the error. Those weights helped to realize that a simple potential
either describes the repulsive curves well or describes the attractive

curves well. The findings obtained with a weighted error function

lead to the step wise fixing of an upper limit for allowed points. An
Table 4.4: Errors for po-

. upper limit of 7 kcal/mol allowed us to find potentials which describe
tential E

the attractive and the repulsive curves equally well. At this state of
the search the trimers were introduced into the error function. The potential C, which has been
the best so far, gave the worst results for trimers. The results of those fits are listed in table 4.2
and table 4.3 displays the associated minima. The analysis of those new potentials showed that the
correct sequence of the trimer energies depends mainly on the repulsive oxygen oxygen interaction.
The distance where the repulsion comes into play is more important than the shape of the curve.
Figure 4.20 displays the repulsive functions of the potentials A, C and E. The shape of all three
curves is very similar. The repulsive function of potential C starts to rise first. The longer range
of this repulsion prevents the three water monomers from getting closer to each other during the
formation of the ring and causes the extremely small trimerisation energy of 8.8 kcal/mol. The
binding energies of the other trimers (II, IIT and IV) with longer oxygen-oxygen distances are well
reproduced, but the absolute values are always smaller in comparison with the other potentials.

Potential C also has the biggest variance for apo.
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doo e B AE

[A] [deg] [deg] [kcal /mol]
1 min. 2.8514 0.30 43.05 —5.4161
2 min. 2.8514 255.18 316.95 —5.4161
3 min. 28514 127.74 180.00 —2.7088
4 tran. 2.8514 307.74 0.00 —2.7088
5 tran. 2.8514 7548 155.01 —2.4888
6 tran. 2.8514 180.00 204.99 —2.4888

Table 4.5: Stationary points in figure 4.21.

Figures 4.15 to 4.19 show the quantum mechanically calculated curves in comparison with
potential E. The curves apo and agy (figure 4.16, 4.17) do not show any local minima. The
repulsive term is strong enough to overpower the Coulomb forces, when the two monomers get
close to each other. No additional damping is necessary. The minimum of the dimerisation curve
(figure 4.15) is closer to the origin and the well is deeper than the well of the quantum mechanically
calculated curve. The shape of the curves for a and § (figures 4.18, 4.19) is well reproduced by
the potential E. Like the dimerisation curve the interaction energy calculated with potential E
is bigger than the quantum mechanical calculated energy, but the oxygen-oxygen distance is well
reproduced.

Figures 4.21 and 4.22 display the potential energy surface of the water dimer. The oxygen-
oxygen distance is set to 2.8514 A for all configurations. Figure 4.21 shows the bonding region of
the surface while figure 4.22 is a contour plot of the antibonding region. In the bonding region three
minima and three transition states were found. Table 4.5 and figure 4.14 show the six stationary
points in the bonding region. The geometry of the minima 1 and 3 were optimized. The results

are displayed in table 4.3.

EER

Minimum 1 Minimum 3 Transitionstate 5
Maximum 1 Maximum 2 / agq Saddlepoint 4 / a

Figure 4.14: Sketches of selected dimer geometries.

Minimum 1 and 2 (figure 4.21) have virtually the same geometry and can be transformed into
each other by a reflection. The mirror plane is perpendicular to the plane of symmetry of the dimer
and contains both oxygen atoms. Minimum 3 can be transformed into transition state 4 by an
improper rotation. The axis of rotation is the dimer’s oxygen-oxygen bond and the mirror plane

between both oxygen atoms. This shows an interesting feature of the chosen set of coordinates.
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Although both points have identical geometries geometry 1 marks a minimum and the other point
a transition state.

Both points 3 and 4 have the same geometry but they differ in their possibilities to relax (figures
4.23 and 4.24). A movement, which would correspond to the relaxation of transitionstate 4 into
geometry 1 or 2, is a movement perpendicular to the potential energy surface at point 3. The
chosen set of variables does not allow such a movement at point 3. If the set of inner variables
would be totally free of any symmetry restrictions, both points would be equal.

Points 1 and 3 differ through the chosen set of internal coordinates, but this argument does not
explain the origin of the transition states 5 and 6 (figure 4.21). Since the oxygen-oxygen distance
is fixed at 2.8514 A for the generation of figure 4.21, the origin of the maximum in figure 4.23
cannot be explained with the repulsive forces between two oxygen atoms. The maximum is caused
only by the Coulomb interaction. Figure 4.25 displays the composition of the interaction energy
along the path 1-5-3*. The vertical line marks the transition state 5. None of the three curves
shows any special features at this point. The transition state is not coupled to a minimum or a
maximum of a single energy component. Further insight into the problem is offered by a careful

analysis of its geometry. A first guess would be at @ = 75.48° (one OH bond of the donor lies

8 was optimized at each point (o, 8, AE) with doo = 2.8514 A to find the reaction path.
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1 2 3 4
o} [deg]  15.37 0.0 238.77 255.48 127.74 307.74
B [deg] 200.07 180.0 158.47 180.0 0.0 180.0
AE [kcal/mol] 6.5331 6.2648 6.5331 6.2648 6.6488 5.5393

Table 4.6: Characteristic points of figure 4.22, doo = 2.8514 A.

on the oxygen-oxygen line) and § = 180° (figure 4.14), if the interaction between both molecules
depends only on Coulomb forces with the charges placed on the individual atoms. Both hydrogen
atoms of the second monomer would try to get as close as possible to the oxygen atom to gain as
much energy as possible. Figure 4.26 shows how the energy composition changes as Jp changes
from 150° to 180°. The curve for the total energy has a shallow minimum at 155°- the transition
state. Moving further towards 180° leads to a rise of the total interaction energy Etor, while the
Coulomb interaction energy containing only the hydrogen atoms Vgy + Vup decreases steadily
as expected. Simultaneously the Coulomb energy between both centres of charge Vv increases.
The rapid increase of the repulsion between the two centres of charge accounts for the geometry of
the transition state. This increase is caused by the displacement of the centre of charge from the
oxygen in the monomers. During the turn the centres get closer to each other. The geometry of the
transition state 5 is therefore a compromise between the attractive forces of the hydrogen-negative
charge interaction and the repulsion between both centres of charge.

The same argument holds also for the maxima 1 and 2 in figure 4.22. The distance between
both centres of charge has to be as small as possible while distance between the hydrogens and the
centres of charge has to be as big as possible. Table 4.6 lists characteristic points of figure 4.22.

Usually it is difficult to find transition states and to optimize their geometry. As shown above
potential E and the chosen set of internal coordinates allow us to optimize minimum 3 and to get
so the optimized geometry of transition state 4. Table 4.5 displays the optimized geometries of
the minima and their energies. During the transition from minimum 1 to minimum 2 increases
the oxygen-oxygen distance up to 3.0865 A. The activation energy of this transition is lowered
from 2.71 kcal/mol down to 2.18 kcal/mol. According to potential E should the dimer change its
geometry rapidly at room temperature between geometry 1 and geometry 2.

Although potential E reproduces well the shape of the quantum chemical curves are the bonding
energies in poor agreement with quantum chemistry. POPKIE and KISTENMACHER [119, 120]
published a simple potential with extended interaction functions without any polarisation terms,
which they used for the analysis of larger water cluster. They use a type III monomer geometry
with a longer distance d between the centre of charge M and the oxygen atom (0.427 a.u. / 0.226
A) Their point charge model is build from different parts.

e 2
VOO = ale_b”" VHM = —q VHH = q— + a26_b2’" (413)
2r 4r

e
Vum = - Vor = age™"" q=qo = 2qn

This is an extension of potential C by adding repulsive terms to the oxygen-hydrogen and to the
hydrogen-hydrogen interaction. The authors obtained the parameters for this potential by fitting
it to 216 energy values from HF dimer calculations. While potential C gave the best values for
the dimers but only poor for the trimer, the potential published by KISTENMACHER and POPKIE

predicts the cyclic water trimer as the most stable trimer with a trimerisation energy of 12.3
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doo [A] a [deg] f [deg] AE [keal /mol]

1 min. 2.9834 8.55 56.60 —4.9029
2 min. 2.9834  246.93 303.40 —4.9029
3 min. 2.9834 127.74 180.00 —3.3097
3" min. 2.9902 127.74 180.00 —3.3099
4 tran. 2.9834  307.74 0.00 —3.3097
4" tran. 2.9902 307.74 0.00 —3.3099
5 tran. 2.9834 90.79 159.42 —3.2548
6 tran. 2.9834 164.89 200.58 —3.2548
1 max. 2.9834 0.76 182.28 13.861

2 max. 29834  254.72 177.72 13.861

3 max. 2.9834 127.74 0.00 4.5090
4 sad. 29834  307.74 180.00 5.0637

The asterix marks points with an optimized oxygen-oxygen distance.

Table 4.8: Characteristic points of potential N (refer to figure 4.32 and 4.33 for details).

kcal/mol [119], which is close to the quantum chemical value.

First tests to refit this potential with a fixed oxygen charge

distance of 0.15 A gave only poor results. The reparametrisa- 1nteract.1on o [keal/mol]

tion of the oxygen charge distance d gave very good results. attract‘lve 0.118

The standard deviations of this new potential N are listed in repulsive 0-260
trimer 0.412

table 4.7. They are smaller than values given in the literature

with an upper interaction limit of 5 kcal/mol. .
. Table 4.7: Errors for potential N

Figure 4.27 to 4.31 display the quantum mechanical curves
and the corresponding curves calculated with potential N.

The third minimum of N potential is difficult to see. Figure 4.34 display an enlargement of the
region, where the minimum should be found. Figure 4.35 shows how the energy changes along the
reaction path. The transition state nearly vanishes, although the distance between the charge and
oxygen is larger (d = 0.24 A). Figure 4.36 shows the energy composition® along the path. The
curves have smaller amplitudes than those in 4.25. The larger oxygen-oxygen distance in potential
N reduces the Coulomb interaction. The change of the energy composition during the bending of
B is shown in figure 4.37. The reduction of 3 is again caused by the repulsive interaction between
the centres of charge. As both oxygen atoms are at fixed positions during the calculation, the
oxygen oxygen repulsion is a constant for all points. The amplitude of change for Vyy + Voo is
smaller than for potential E, because the distance between the charges is larger. The slope of Vyy
+ Vmu is also smaller, since the extra repulsive function in Vygy compensates partially for Voy.
The extended system of repulsive functions damps the Coulomb interaction and smooths therefore

the potential energy surface.

®The paramter b; is so high, that oxygen-oxygen repulsion becomes notable only for very small values
of the oxygen-oxgen distance doo. The good reproduction of the apo curve (figure 4.28) suggests, that
the oxygen-oxygen interaction is dominated by the Coulomb repulsion in equilibrium structures and that
well chosen paramters for the hydrogen-oxygen interaction are more important than the oxygen-oxygen

repulsion.
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The repulsive oxygen hydrogen interaction also prevents the Coulomb regime at small oxygen-
oxygen distances. This behaviour is displayed in the good fits for apo and agg. Both curves do
not show any local minima.

This extreme flatness of the potential energy surface is also reflected by the reduced activation
energy for a change in the dimers geometry along the path 1-4-2 (figure 4.32). The activation energy
of 1.57 kcal/mol calculated with potential N is about 0.5 kcal/mol lower than that calculated with
potential E. The activation energy is significantly higher than the double of the standard deviation
for attractive interactions (0.118 kcal/mol, table 4.7) and should be therefore regarded as a real
property of the system, while an energy difference of 0.055 kcal/mol between the points 3 and 5
remains questionable.

The energies of the points 1 and 4" were calculated quantum mechanically (DZP / MP3).
The geometry of point 1 yielded a BSSE corrected interaction energy of 4.857 kcal/mol (BSSE
= 0.9949 kcal/mol). This value is in good agreement with that predicted by potential N. The
difference between both points is 0.046 kcal/mol (0.94 % of the energy). The geometry of point 3"
(and therefore also point 4") gave a BSSE corrected interaction energy of 3.256 kcal/mol (BSSE
= 0.899 kcal/mol). The difference between the predicted and calculated values is 0.054 kcal/mol
(1.63 % of the energy). The predictions are much closer to the minimum geometry and become
poorer as the interaction becomes less favourable. The energy difference between both points is
1.59 kcal/mol and exactly reproduces the 1.57 kcal/mol predicted by potential N. The difference
between both values (0.02 kcal/mol) is much smaller as the estimate from the error propagation
laws basing on the individual errors E (0.071 kcal/mol, 4.45 % of the activation energy). This
result shows how different errors cancel.

ABror =1/ AE? = \/0.046 + 0.0542kcal /mol = 0.071kcal /mol (4.14)

Figures 4.31 and 4.30 show the potential energy (quantum mechanics and potential N) as a
function of the distortion of the dimer angles. Although the positions of the minima differ slightly,
potential N reproduces very well the curvature of the quantum mechanical curves. The curvature
of the potential energy surface in combination with the cancellation of errors explains the high
quality of predictions by potential N.

The study of reaction pathways on the potential energy surface (like the one shown in figure
4.32) is not an easy task, as the oxygen-oxygen distance changes during the turn of the angles.
Figure 4.38 and 4.39 show the reaction paths as low energy combinations of a and 3 for potential
E and N. The curve for potential E is more bent than that for potential N, as potential energy
surface calculated with potential E has steeper slopes than that of potential N. If the oxygen-
oxygen distance is allowed to relax during the calculation, transition states 5 and 6 might vanish.
Transition state 5 observed with potential N seems to be an artefact caused by the movement of
charge from the oxygen atom. The energy difference of 0.055 kcal/mol between the point 3" and
5 is already much smaller than the standard deviation of potential N for bonding conformations.

The global minimum of the potential energy surface of potential N has larger angles than the
BSSE corrected geometry calculated with GAMESS UK (table 4.12). The increase in « does
not matter, since both values are still in the experimental range of 1° £+ 10° [118]. The value
for § with potential N is more than 12° higher than the quantum chemical, BSSE corrected
value of 44.53 but reprodues well the BSSE uncorrected value of 54.57 . A value of 56.6° for
is perfectly reproduces the experimental value of 57° £ 10°. The too large value for the angle

B is caused by the high wheight of the dimersiation curve’s minimum during the fit (equation
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q al b1 a2 bs as bs M
e kcal /mol At kcal /mol At kcal /mol At A
1.398323 357205.3 4829.585 653.7789 3.189600 3457.857 3.54541 0.238291

Table 4.9: Parameter for potential N.

term variance term absolut value

[kcal? /mol?] dipole 2.3343 D
minerg 0.000007 trimer I —13.269 kcal/mol
dimer 0.0103 trimer II —8.809  kcal/mol
200 0.1050 trimer IIT~ —8.243  kcal/mol
aHH 0.0355 trimer IV —10.468  kcal/mol
Wi 0.0218 Table 4.11: Absolut values for potential N.
W2 0.0034
w3 0.0265

. Gam. UK Pot. N
trimer I 0.2708

trimer TI  0.2787 doo d[A] ;-2226 22234
trimer IIT  0.0000007 a [deg] 44-53 56-60
trimer TV 0.3638 s [deg] : :

AE  [kcal/mol] —4.914 —4.903

Table 4.10: Variances of potential N.
Table 4.12: Global minima for dimers.

4.11). The weights of dimerisation curve, W1 and W3 inhibited also a better reproduction of 3,
because those curves were created with a BSSE uncorrected value for f = 54.47°. The energy
agreement between both calculations is excellent and at the lower range of the experimental value
of 5.44 £ 0.7 kcal/mol. Although potential N does not reproduce the quantum chemical
values perfectly, potential N offers a rapid way to explore the water dimer’s potential
energy surface, because all values are within the experimental range. The tiny energy
differences between the quantum chemistry and potential N can be neglected safely for
Sfurther calculations.

4.3.2 Application of potential N on water trimers

The main problem with potentials based on pair interactions are cooperative effects (See section
3.4, page 74 and subsection 4.3.1). Tables 4.10 and 4.11 show that potential N reproduces the
energies as well as the relative energy differences among the four trimers. Since the geometries of
the water trimers were fixed during the calculation, it is difficult to tell whether this agreement is
fortuitous or a property of potential N. To check this question the geometries of the trimers were
optimized with a simplex algorithm [242]. Table 4.13 summarizes the results.

The relative energies do not change. Potential N simulates the cooperative effects well, even
when the geometries are allowed to relax. The geometry of trimer I was quantum mechanically
optimized. The geometry found with potential N is very close to it. The energy gain during the
optimization is caused by an increasement in the oxygen-oxygen distance. Although potential N

does not contain any explicit polarisation terms, which enforce a shortening of the oxygen-oxygen
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doo a B E

[A] [deg] [deg] [kcal /mol]
trimer I start 2.8014 23.54 —13.268
end 2.9135 24.18 —13.685
difference +0.1121  +0.64 —0.416
trimer IT  start 2.9907 9.66 70.74 —8.814
end 2.9427 18.71 77.55 —9.028
difference  —0.0480 +9.05 +7.01 —0.219
trimer IIT  start 3.0049 3.31 54.57 —8.242
end 2.9437 19.90 83.43 —8.814
difference —0.0612 +16.59 +28.86 —-0.571
MP2 geo. 2.9437 8.57 70.51
trimer IV start 3.0049 3.31 54.57 —10.468
end 2.9697 5.79 50.20 —10.547
difference  —0.0352 +2.48 —4.37 —-0.079
MP2 geo. 2.8440 2.26 54.58

Table 4.13: Optimisation of trimers I to IV using potential N.

distance, the oxygen-oxygen distance (2.9135 A) is much smaller than that in the free water dimer
(2.9834 A).

The geometry of trimer II was also quantum mechanically optimized. The oxygen-oxygen
distance is larger than the distance in an optimized dimer due to the antibonding cooperative
forces (2.98 A vs 2.93 A, DZP/MP3 no BSSE correction). The geometry optimisation of trimer
IT in the new force field reduces the oxygen-oxygen distance until the bond is shorter than in the
free dimer. The energy of trimer III was not quantum mechanically optimized. The geometries
found for a dimer within the optimized trimers IT and III are very close to each other. The increase
of B during the optimisation of trimer III reduces the repulsion between the water molecules at
the end of the chain. The difference in the total energies of trimer IT and IIT is mainly caused
by the interaction between those monomers at the ends of chain. The energy difference between
trimer IT and IIT is 0.214 kcal/mol while the difference between the two nonbonding monomers A
and C is 0.139 kcal/mol. In both cases this interaction is repulsive (4+0.652 kcal/mol for trimer II
versus +0.791 kcal/mol for trimer III). The optimisation of the trimers IT and IIT is governed by
the reduction of the repulsive forces. The energy gain caused by the rearrangement of the bonding
dimers (Epiver) in trimer IT is neglible. In trimer III the reduction of the repulsive forces leads
also to slightly weaker dimer bonds (AEpiver = +0.061 kcal/mol/bond) (table 4.14).

Trimer IV is built of two nearly ideal hydrogen bonds. Extra energy is gained from the interac-
tion of the monomers A and C (-0.764 kcal/mol). The same interaction compensates in trimer I the
energy loss by the stressed dimer bonds. The small energy gain during the geometry optimisation
is caused by the rearangement of the dimer bonds (table 4.14). Similar to the quantum chemical
results (sections 3.4) potential N describes trimer IV as possible intermediate during the formation
of a cyclic water trimer. Any distortion, which brings the monomers A and C closer together will
enhance the formation of trimer I and its distorted conformations.

The angle in the hydrogen bond « of the trimers IT and III increases about 10° during the optimi-
sation. The geometries of the trimers III and IV were optimized quantum chemically (DZP/MP2)
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Epmver  Eas + Esc Exac Eror AETror AEac
[kcal/mol]  [kcal/mol]  [kcal/mol] [kcal/mol] [kcal/mol] [kcal/mol]

trimer I S —4.835 -9.670 +0.856 —8.814

F —4.840 —9.680 +0.652 —9.028 —0.219 —0.204
trimer III S —4.864 —9.727 +1.485 —8.242

F —4.802 —9.605 +0.791 —8.814 —-0.571 —0.694
trimer IV S —4.864 —9.729 —0.739 —10.468

F —4.891 —9.783 —0.764 —10.547 —0.079 —0.025

S: start, F: finish

Table 4.14: Compostion of the trimerisation energy composition during the optimisation.

to check the importance of the angle for the trimer structure. The results of those calculations are
also listed in table 4.13. In trimer III has a a value of 8.57°. The results from quantum chemistry
and potential N agree well in trimers with bonding cooperative forces (trimer I and IV), but differ
strongly in trimers with repulse cooperative forces. Since the oxygen-oxygen distance is always
shortened, a has to be increased in calculations with potential N to compensate for the energy
in case of repulsive cooperative forces. In trimer IV central dimer bonds are stronger than those
in the trimers IT and IIT (table 4.14) despite of the longer oxygen-oxygen distance. The angle of
the hydrogen bond in trimer IV is smaller and closer to the optimum (8.5° in the free dimer).
Potential N averages the cooperative forces for all trimers (doo ), but the bonding forces dominate
in potential N.
Potential N was used for the exploration of the po- H7
tential energy surface of the cyclic water trimer. Figure
4.40 displays the general geometry of all trimers. Ta-

O
ble 4.15 shows results of geometry optimisations under / 1
various constraints. All distances are labelled d, all an- 4H
gles o and all dihedral angles 8 with one exception. € is H5
T H6

the dihedral angle between the two hydrogens pointing
upwards. 3 2

O
H8
Trimer I is the planar trimer with Cg, symmetry. For /

the construction® of trimer A was H4 kept in the oxygen Ho
plane and H was turned upwards. The other hydrogens

were generated from this orientation by a Cs rotation. Figure 4.40: Geometry of the cyclic
Finally the sign of H’s z-component was changed, so that  trimers.

H9 points downwards. In the next step the out of plane

hydrogen were allowed to relax (trimer B). The relaxation increases e. This is the most important
relaxation pathway combined with the largest energy gain (0.914 kcal/mol). Then the bonding
hydrogens were twisted out of the oxygen plane symmetrically (trimer C) and finally allowed to
relax without any constraints (trimer D). The relaxation of the bonding hydrogen atoms gained
0.068 kcal/mol in total. In the last step the trimer was allowed to relax without any constraints
at all. The distortion of the oxygen triangle is very small and the energy gain of 0.001 kcal/mol

6See section 11.9.2 for the conversion of pure rotational coordinates into cartesian.
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trimer I A B C D E QM / MP2

dis 2.9135 2.9205 2.9080 2.9090 2.9077 2.9077 2.7925

das 2.9135 2.9205 2.9080 2.9090 2.9077 2.9004 2.8092
123 60.0 60.0 60.0 60.0 60.0 60.2 60.0
413 24.2 22.8 23.1 23.1 24.4 24.3 19.1
@521 24.2 22.8 23.1 23.1 22.5 22.6 20.6
632 24.2 22.8 23.1 23.1 22.6 22.6 18.9
Baz2 180.0 180.0 180.0 175.0 —172.2 —172.0 —174.3
Bsa13 180.0 180.0 180.0 175.0 174.4 174.4 —177.2
Bez21  180.0 180.0 180.0 —175.0 175.6 175.3 173.1
ars 1287 111.1 120.5 119.0 119.1 118.9 112.6
agop  128.7 111.1 120.5 119.0 114.5 114.6 116.9
Qgza  128.7 111.1 120.5 119.0 123.6 123.6 114.0
Briz2 180.0 102.8 129.6 —129.6 130.2 129.6 117.3
Bs213 180.0 —102.8 —129.6 —129.6 —118.1 —118.1 —120.5
Bozar  180.0 102.8 129.6 129.6 140.0 140.5 —123.7
€ 0.0 0.0 25.7 27.8 23.5 22.7 23.4

—AE 13.685 13.052 13.966 13.986 14.034 14.035
din A; , § and € in degrees; AE in kcal/mol

Table 4.15: Z-matrices for cyclic water trimers.

negligible. The distortion of the global minimum is therefore dominated by the reduction of the
repulsive interaction of the elicptic nonbonding hydrogen atoms.

A comparison with a quantum chemically optimized trimer (DZP/MP2) shows the excellent
agreement for € and good agreement of the other parameter. Potential N allows therefore a reliable
description of cyclic water trimers. The distortion of the cyclic water trimer minimizes the repulsion
between the non bonding hydrogens. In trimer I ist the distance between the nonbonding hydrogen
atoms larger and the total energy therefore lower. Trimer I is shallow local minimum on the
potential energy surface of the cyclic water trimer. Only a very small activation is necessary to
initialize the transformation into the global minimum.

Figure 4.42 shows the formation of the cyclic water trimer (global minimum) from the linear
trimer IV. The geometry of the trimer was allowed to relax at every step of the ring closure. The
reaction pathway is smooth and without activation. Figure 4.41 shows the formation of cyclic
trimer starting with free water molecules. The water dimer is readily formed. In the next step
adds another water molecule to one end of the dimer and a chain is built. Next the linear trimer
relaxes and form the cyclic one without any further activation. The formation of a cyclic water
trimer from free monomers or from the dimer in a single step seems to entropically disfavoured.

Figure 4.43 shows the global minimum. Experiments suggest that the water trimer rapidly
changes its conformation by tunneling. A possible reaction coordinate is the simultanous movement
of two hydrogen atoms. The transition state is reached when the hygrogen atoms are in the plane
of the three oxygen atoms. This conformation is shown in figure 4.45. The energy of this possible
transition state is 0.256 kcal/mol above the global minimum. Tunneling between the different
conformations seems to be likely, considering a total zero point vibrational energy of 13.8 kcal/mol

for the free water molecule (section 3.1, page 45).
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Figure 4.41: Formation of a cyclic trimer.
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Figure 4.44: Transition state. Figure 4.45: Potential energy function.
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The nonbonding hydrogen atoms are about 0.7 A away from the oxygen plane and the tunneling
distance is therefore about 1.4 A long. The potential energy function should have its maximum at
the transition state. Figure 4.45 displays a first guess for the function. The fourth order polynomial
was chosen to have two minima at the equilibrium geometries at to have its maximum in the oxygen
plane (r = 0.7 A) [270].

kecal

mol A4

The probability P(E) that a single hydrogen atom tunnels through the barrier can be calculated
according to SCHWABL [194d]:

P(E) = exp {_z | ” %\/mdx} (4.16)

V() = k(z* — 4az’ + 4a’2?) k = 1.066 a=07A (4.15)

The lowest boundary value (E — 0) for the tunneling probability can be calculated analytically.

1 Za 4
ﬁ\/QmH/ VV(x) = %\/kaHai* =215 (4.17)
0

If all hydrogen atoms move independently in the water trimer, the total probality Pror(E) of

the tunneling between two conformation can be calculated as follows:
Pror(E) = Pi(E) - Py(E) = P? Pro7(E — 0) = e 22215 = (.0002 (4.18)

A barrier of 0.256 kcal/mol is therefore small enough to be passed by tunneling. The tunneling

probability will increase with the thermal excitation of the proton.

4.4 Summary of the Calculation with a Classical Potential

1. None of the previously used potentials describes the quantum chemical values well. The quan-
tum mechanical results on the other hand agree very well with the published experimental

values.

2. The BNS and ST2 potentials have local minima in the apo and agyg curves. Those minima
can be explained by the fact, that the attractive Coulomb forces overpower the repulsive
forces. This behaviour might be overcome by a damping function. Such a function is useful
to obtain good values, but is difficult to justify.

3. The TIPS 2 model was chosen as start point for the search of a new potential, because the
TIPS 2 model yielded the best values.

4. The comparison of simple interaction potentials showed that the place where the oxygen-
oxygen repulsion starts to act is more important than the gradient of the curve or its precise

algebraic form.

5. The reparametrisation of an existing point charge model by KISTENMACHER and POPKIE
gave a useful potential. This new potential (potential N) describes dimers and trimers well.
The standard deviations of the quantum mechanically calculated curves are better than that
published with the potential. It also simulates cooperative effects well. This potential will

be used in further calculations.
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10.

All potentials showed a third minimum caused by the displacement of the centre of charge
from the oxygen atom. Potential N’s potential energy surface is so flat which makes it nearly
impossible to find this minimum. This behaviour of potential N seems to be more realistic
than the distinct third minimum observed with potential E.

The dislocation of the centre of charge from the oxygen atom causes a shift in the maximum

of the potential energy surfaces.

The cyclic trimer is built from the linear trimer without any further activation. This suggests
that the formation of a water trimer starts with the dimer. Next, another water molecule is
added to the one of the dimer’s ends and the linear trimer is formed. Later this linear trimer

relaxes to the cyclic one.

The different, cyclic conformers might interchange rapidly by tunneling. Calculation with
potential N gave an rougth estimate for the activation energy (0.256 kcal/mol) and a zero
point tunneling probability of 0.02%.

The distortion of the cyclic trimer is mainly caused through reduction of the repulsive forces

between the non bonding hydrogen atoms on the same side of the trimer.
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Chapter 5

Huckel calculations for the
Analysis of Pty

The Hiickel calculations are tightly connected to the quantum chemical calculations in chapter 6
(page 145) and 7 (page 203) and have been used for both the analysis of the quantum chemical
results and as starting point for new calculations. All quantum chemical calculations in chapters
6 and 7 showed, that the stability of the cluster is controlled by the population of the platinum 6s
orbitals. A large 6s population on the other hand repells the water molecule. The 6s population
in a successfull surface model is high enough to stabilize the platinum cluster and meanwhile small
enough to create a strong metal-water bond. As the 6s population is crucial for the quality of a
surface model, a method to detect suitable electronic states with the correct 6s population is helpful
for the quantum chemical calculations in chapter 6. The Hiickel calculations in this chapter are
used to identify useful candidates as surface models. The interaction between 5d and 6s electrons
in this model is regarded only as a distortion of the 6s band. Such a gross simplification cannot
describe all details, but can help us to identify the relevant orbitals for this mechanism.

Extended Hiickel calculations [191, 236, 271-281] have been applied previously to metal surfaces
[64, 282-287]. The success of this the method and the simplicity of the original Hiickel theory
tempted us to try Hiickel theory on the platinum 6s orbitals.

Hiickel calculations have been used in this chapter to analyze the electronic structure of the
metal clusters. Section 5.1 demonstrates the application of this method, which is is well established
for the analysis of organic, aromatic molecules, to the analysis of platinum 6s orbitals. The remain-
der of this section concentrates on the application of the new Hiickel theory and its quantification
to relate the Hiickel results with the HF /MP2 results of chapter 6.

It is shown, that very simple calculations at the lowest level of theory can help us to understand
the results from modern, sophisticated methods. These calculations, which can be done literally on
the back of an envelope, hold the key to the understanding of the 18 valence electron calculations.

5.1 Theory of the Hiickel-approximation for the platinum

6s electrons

The Hamiltonian (equation 5.1) of a platinum cluster built from M atoms (atomic number Z =

78 for platinum) describes energy and motion of N = M - Z electrons in the Born-Oppenheimer
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approximation.

-1

R N M N A N N 1
ZEDIEED D HTD I D (51)
i I i

1)

i=1 j=i+1

_ 2 ECP

_Z—VZA—ZZV” (M) +35 T (5.1a)
i 7 1 1,i#]

In the ground state of the platinum atom (*D, [Xe] 4f'4 5d° 6s!) the 6s electron moves in the core

potential VECP

of the inner Z—1 electrons. The assumption of a perfect, spherically symmetric
core potential allows us to simplify equation 5.1 and the Hamiltonian contains now the sum of
all core potentials and the pair interactions between the M 6s electrons (equation 5.1a). If one
assumes further that M—1 electrons form a potential G(r) in which the M'" electron moves, it is

possible to separate equation 5.1a into M one-electron equations.

N M M M M1y
H= Z—V% +ZVECP(7~) +ZGi(r) = Zh with  Gi() =Y — (5.2)

"
izl Y

h; is the effective one-electron operator and is specified in the Hiickel approximation via assumptions
for the one-electron integrals. The Hiickel operator may be regarded as a not fully specified one
electron operator, which is constructed from the separation of core and valence electrons.

Hiickel molecular orbitals (HMO) for the platinum cluster are linear combinations of orthogonal
atomic 6s functions x; (LCAO method).

M
U=0"MO =N "y (Xilxj) = 0s (5.3)

The coefficients ¢; of the HMO are specified in a variational calculation. The central element of

this calculation is the secular equation.
(h—€S)c=Dc=0 (5.4)

h contains the matrix elements with the hamiltonian ﬁi, € is the eigen vector and S the overlap
matrix. Consistent solutions for equation 5.4 arise, when the determinant of the secular matrix D

vanishes.
Hip — €S Hiy —€Si2 -+ Hipy—€Sip
Hy — €Sy Hap — €Sz -+ Hoy —€Sam )
|D| = . ) . ) =0 with
Hyi —eSvn Hyz —€Sue -+ Hym — €Sum

.
a fori=j

Sij = 0ij and H;j = B if i and j are neighbours  (5.5)

\ 0 for every other case

« is the valence ionisation potential, describing the influence of the molecular environment on the
atomic ionisation energy. The precise value of o depends strongly on the charge of the molecule and
its shape. The second integral  is the resonance integral. Its value is proportional to the orbital

overlap and describes the strength of the bond between two neighbouring atoms. Both integrals «
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and 8 have negative values. Since Hj; is only defined for neighbouring atoms, the secular matrix
D is a representation of the molecule’s connectivity.
The total electronic energy E€'®¢ of the cluster is the sum of the orbital eigenvalues ¢; multiplied

with the occupation number b; (0, 1 or 2):

M
B =" b€ (5.6)

U* ¥ is proportional to the electron density and by appliying the orthogonality approximation
(Sij = &) to (PHMO|PHMOY the charges on the individual atoms can be connected to the orbital

coeflicients c,;.

M
1= (PMOIEINO) =% e, (5.7)
I

Since the orbitals do not overlap the charge of the u* atom in the i*" orbital proportional to the
orbital coefficients cii. The total charge on the p'" atom is therefore

M M M M
G =Y bic Yogu=Y > bic,=M (5.8)
i 1w Wi
The atomic charge! of the u'" atom is Q, = Z,, — g, in units of the elemantary charge and can be
calculated with equation 5.8.

From S;; = d;; follows a zero electron density at the centre of the bond and charges calculated
with equation 5.8 should be too high. The absence of any electrons in the centre of the bond causes
also the wrong spatial distribution of the orbitals, but the symmetry of the orbitals is correct and
agrees with other methods [273].

Equation 5.8 allows us to rewrite equation 5.6 for the total electronic energy.

M M M
Eelee = Z b €; = Z Qu oy + 2 Z Puv B,uu Puv = Z b Cui Cui
? 12 wp<v 1 (5‘9)

w
=Ma+2p Z Duv
pn<v
The elements of the bond order matrix p,, give a measure how strong the interaction between
two atoms p and v contributes to the total energy and offers so a measure for the individual bond
strength.

5.2 Hiuckel calculations for Ptj

The smallest cluster we analysed with the Hiickel metod was the Pts triangle. Figure 5.1 shows
the two platinum trimers. The cluster is so small, that the Hiickel calculation is straight forward.

First, we discuss the equilateral triangle (<t;23 = 60°):

'References [288-291] focus on the calcualtion of atomic charges and the spatial distribution of electrons

within the molecule.
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& a+2p a—pf a—pf
ci 05773 0.8165 0.0

ca  0.5773 —0.4082 0.7071
cs  0.5773 —0.4082 —0.7071

Table 5.1 HMOs for the equilateral triangle.

Figure 5.1 Pt3 cluster.

a—€ 153 153 eE=a+2p
B a—€¢ B |=(@—€? =32 (a—€)+28°=0 e&=a-—0 (5.10)
g B a—e e =a—f3

Table 5.1 summarizes the Hiickel molecular orbitals for the equilateral platinum triangle. The
degenerate orbitals are antibonding (a - ). To avoid an asymmetric population of the degenerate
orbitals, every orbital should be singly occupied (cluster built from three *D platinum atoms) in
the ground state, resulting in a quartet wave function. The average 6s population is close to one
in such a cluster and therefore too high for a strong metal-water bond, since EHT calcualtions by
BicoT and MINOT [285] showed, that the 6s population of an surface atom is smaller than one
(=~ 0.8).

The combination of a 1S with two *D platinum atoms [292] results in an average 6s population of
%, which suggest a strong metal-water bond. The resulting 6s wavefunction has the same properties
as the Hiickel MOs for Pt3: a? e® e, singlet. The easiest way to construct such a wavefunction
is to start with three 'S atoms. In the next step two electrons from the most antibonding totally
symmetric 5d orbital are moved into the totally symmetric 6s orbital. Choosing this way conserves
the symmetry of the electronic wavefunction and creates at the same time a 6s population of two.

The transformation of the equilateral triangle into an right-angled triangle (Pt(100) surface
model) reduces the symmetry from Dgj, to Csy. During this transformation the distance between
the platinums 2 and 3 is enlarged by a factor of v/2. The atoms are not directly connected to each
other and the overlap integral 8 becomes zero according to the pure Hiickel theory. Equation 6.3
shows the secular determinat and the eigenvalues.

a—€ 153 I} €1 =
B a—€ 0 |=(a—¢€[(a—e)?—-28]=0 €2 =a—23 (5.11)
B8 0 a—€ €5 =a+ V28

Table 5.2 shows the coefficients of the HMO of the right-angled triangle. Changing the symme-
try from Dgy, to Cay lifts the degeneracy of the top orbitals (e e — a1 by). The energy of a; orbitals
increases, while the energy of the b; orbital decreases. The electronic state with a maximum 6s
population (three 3D platinum atoms) would be a doublet function: a? bi a?, but again is the 6s
population too high. An electronic state function with a with a suitable 6s population (two 6s

electrons) be a singlet, function (a2 b? af).
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X A (al)
A =--"""
T~ 6 a+vV2p a a—V2p
0 ~~ b a 07071 00 0.7071
ca 0.5 0.7071 —-0.5

14 l T cg 05 -0.7071  —-0.5

l T -7 @)
2] Table 5.2 HMOs for the right-angled triangle.

A=1 A=0

Figure 5.2 Pt3 Hiickel orbital energies.

Hiickel theory demands 23 to be zero, since both atoms are no longer direct neighbours. The
6s orbitals are wide spreading and it’s therefore unrealistic to assume, that an increase of the bond
length about 40% removes all interactions between those two atoms. To account for this interaction
we introduced the scaling factor A for the overlap integral B23 = 832 = A - 8. A = 1 accounts for the
full interaction between both atoms, while A = 0 describes the case with no interaction between
both atoms. Equation 5.12 shows the secular determinant of this problem and the corresponding

eigenvalues.

eE=a—\-f

— 1 1
a—e f B e=at | A+/2+-22)8
B a—e X-B]=0 2 4 (5.12)
- — [
ﬂ ﬂ (67 € €3 = a + %A_ 2+3A2 /8

Figure 5.2 summarizes the transformation (equation 5.12) of the platinum triangle. e>(\) and
€2(A\) are approximately linear functions for 0 < A < 1. The energy of the bonding a; orbital
increases steadily while the energy of the b; orbital decreases. For any point A > 0 the b; orbital
is anti-bonding.

The Hiickel calculations for Pts suggest, that a suitable Pt surface model should be built from
two 3D and one 'S platinum. The average 6s population (%) should create both a strong metal-
water bond and strong intermetallic bonds within the platinum cluster. Both triangles should
threrefore be described with singlet wave function, in which the totally symmetric 6s orbital is
doubly occupied.

5.3 Analysis of the Pt; pyramid

The platinum pyramid is the central cluster for the 1-electron theory. Pt; —H>O nearly reached
the limits of the HF /MP2 method (18 valence electrons, section 6.4) and the Hiickel calculations
allow us to understand the electronic structure of the platinum cluster. Pts is also the best point
to start with 1-electron ECPs on the bulk atoms, because it is the first cluster, which allows a
systematic separation of bulk- (white), passive (grey) and active surface atoms (black). Bulk and
passive surface atoms do not interact directly with the water molecule and a 1-electron ECP should
be sufficient, since the metal-metal bond is dominated by the 6s orbitals. Active surface atoms
need ECPs and basis sets, which contain 5d electrons to form the bond between platinum and

water. This interface between different ECPs is of central importance for the theory. After the
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calculation of the 6s HMO (subsection 5.3.1) we focus on this interface and examine the influence

of different Hiickel parameters for the two groups of platinum atoms (subsection 5.3.2). The third

subsection (5.3.3) contains the analysis of the 6s-5d interaction in the metal cluster, while the last

one (5.3.4) concentrates on the rotational barrier.

5.3.1 Huckel calcualtions fot Pt5

The calculation of the eigenvalues for Pt3 was straight for-
ward, because the simple third order characteristic polyno-
mials were easy to solve. Five 6s functions demand a 5 x 5
secular determinant and a fifth order characteristic polyno-
mial, which cannot easily be solved directly. Symmetry can
be used to simplify the problem.

Figure 5.3 shows the top view of the Pt; pyramid with
the mirror planes. The secular determinant of the problem
is simplified in two steps:

1. The secular determinant is divided by 8 first and then
the following replacement is used, which yields the
Hiickel matrix.

a—e€

B

—x = - e=a+zf

(5.13)

5

Figure 5.3: Pt; pyramid, top view.

2. The secular determinant is then block factorized using the o2 symmetry plane according to
the procedure published by HEILBRONNER and BOCK [273, 274]. This would be the same

as using SALC AOs (symmetry adapted linear combination of atomic orbitals) according to

CoTTON [293b].

Equation 5.14 summarizes the simplification of the secular problem.

a—¢€ B 153 153 153 11—z 1
B a—e€ 153 0 153 1 11—z
B Boa—e 0 [=|v2 V2
B 0 8 a—€ 8 0 0
B B 0 B a—c¢ 0 0
The blocks can be handled separately:
—-1—-x 1
= 2 =
‘ ) . ‘ z(x+2)
-z 1 V2

1 l—z V2|=-2(@*-22-4)=0
V2 V2

—T

V2

V2
0
0

0 0

0 0

0 0 =0 (5.14)
o 1

1 —1—x

r1 =0

Lo = —2

5 =0 (5.15)

rs=14+5

375:1—\/5

A knowledge of the eigenvalues allows us to calculate the HMO coefficients. Table 5.3 displays

the coeflicients of the normalized orbitals. Due to the degeneracy of the orbitals only the clusters

Pt and Pt; should have a pyramidal structure. The geometry of a neutral cluster should relax

and lift the degeneration of the e-orbitals, since the wavefunction with one hole in the degenerate
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nr €; C1 Co C3 Cq Cs sym

5 a—28 0.0 —0.5 0.5 —0.5 0.5 by
4 a+(1—-v5)B —085065  0.26287 0.26287  0.26287  0.26287 a
3 a 0.0 0.70711 0.0 —0.70711 0.0 e
2 a 0.0 0.0 0.70711 0.0 —0.70711 e
1 a+(1+V5)B 052573 042532 042532 042532 042532 &

Table 5.3: Hiickel orbitals for Pt5.

orbitals breaks the symmetry of the molecule (Jahn Teller distortion [294-296]). The following

analysis therefore concentrates on Ptd (a? e e).

Table 5.4 summarizes the population analysis (orthogonal atomic orbitals, equation 5.3) of the
Hiickel calculation for PtF. The negative charge accumulates at the bottom of the cluster, which
creates a positive charge at the top. Table 5.3 shows that any extra charge in the cluster will
assemble in the cluster’s basal plane, since orbitals 2, 3 and 4, which do not contain the atomic
orbital of the central platinum atom, will be occupied first. Thus a pyramidal geometry creates an

6s electron sink in the basal plane.

Water interacts with platinum through the platinum’s d-orbitals.

i Qi

The atom at the top of the pyramid has therefore to be replaced
0.55279 0.44721

0.86181 0.13819
0.86181 0.13819
0.86181 0.13819
0.86181 0.13819
> 4.00003 0.99997

by an 18 or 10 valence electron platinum atom. Those 5d electrons
can interact with the 6s electrons provided they have the correct

symmetry. To a first approximation this interaction is neglected. The

T W N =

different electronic states of the central platinum atom only change
the number of 6s electrons contributed by the central atom. The

1S state (5d'°) does not contribute any electrons while the D state

) (5d° 6s!) contributes one electron. A combination of a 'S platinum
Table 5.4: Population

. n atom (18 valence electrons, at the top) with four *D atoms (1 valence
analysis PT} .

electron, in the basal plane) yields four 6s electrons, which fill the
molecular 6s orbitals without breaking the molecular symmetry. The average 6s occupancy is then
0.8 and close to value proposed by BicoT and MINOT [285]. The charge on the top of the cluster
would be —0.55 e and the charge on a base atom would be +0.14 e. The dipole moment of this
cluster could be used to simulate the surface electron spill, which creates a negative charge in front
of the metal surface and repels the water molecule.

5.3.2 The interface between different ECPs

The interface between different ECPs (top atom with d-orbitals vs. 1 electron basal atoms) has
a strong influence on the cluster’s electronic structure. Two calculations were done to quantify
this influence. First, we assumed that two values (3 and +) for the binding energy integrals H,,,
exists. The connections between the basal atoms are described by « while bonds between the basal
plane and the top retain the value of 3. Equation 5.16 shows the new secular determinant and the

corresponding eigenvalues.
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H,, =p8.
a-e B B B B 5 =a—27
Boa-e v 0 gl €@ =a+y— 45+
B vy oa—€e vy 0 |=0 €3 =« (5.16)
B 0 Yy a—€ v €& =«
B gl 0 v a—e €L =a+7y+ /457 + 7

For v = 8 equation 5.16 reproduces the results for an ideal pyramid from equation 5.14. The other
extreme (y = 0) is the result of a Hiickel calculation for a cross. Equation 5.16 describes also the
transformation of the platinum pyramid into a swiss cross, since the reduction of the bond energy
integral v has the same effect as the elongation of the platinum-platinum bond in the basal plane.
In an ideal cross the three orbitals 2, 3 and 5 have the same energy (e2,35 = ). The energy of the
bs orbital (a - 2 ) now changes its relative position with the second a; orbital. Meanwhile, the
bonding energy of the totally symmetric bonding orbital decreases from a4+ 3.2 5 to a+2 5. In
an ideal cross the molecular orbitals are constructed only from the atoms in basal plane (threefold
degenerate). It is therefore likely, that the neutral Pt cluster has the shape of a swiss cross (second

order Jahn Teller effect [218]). Figure 5.4 summarizes this calculation.

Mixing different ECPs for the platinum atoms also means mixing orbitals with different ionisa-
tion energies which cause different values for the valence ionisation energy H,,,. d is the ionisation
energy of the top platinum atom and equation 5.17 summarizes the calculation of the energy

eigenvalues.

b—€e B B B B
B a—-€e B 0 B
B B a—¢ B 0 |=0 (5.17)
B 0 B a—-e B
B8 B 0 8 a—€
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65:a—2ﬂ
64:1 (a+26+5—\/a2+4a5+20ﬁ2—2a5_455+52)

2
€3 =« (5.17 a)
€2 =
61:% (a+2ﬁ+5+\/a2+4a6+2062—2a6—466+62)

For 6 = « equation 5.17 reproduces the results of equation 5.14. Only orbitals 1 and 4 change
with the ionisation energy of the top atom. With an increase in ionisation energy, the orbital
energy of the bonding aj-orbital decreases. A small increase in the ionisationation energy of the
top platinum stabilises the cluster (Ptd). Figure 5.5 shows the movement of the orbitals as §
changes from —f to 8 at a fixed value for a (a = 0).

There are two ways to lower the energy of the bonding a; orbital: First, by increasing the
interaction between the basal atoms compared with the interaction between the basal plane and
the top atom, and second, to increase the ionisation energy of the top atom. Although both
methods lower the energy of the la; orbital, they act differently on the charge distribution in the
cluster. This can be seen by a comparison of the coefficient of the top atom’s 6s orbital in the 1a;

orbital.
1
01:1.0 02203:C4ZC5ZM(’Y+\/4ﬂ2+’72) (518)

Equation 5.18 shows the coefficients of the 1a; orbital as a function of « for the first method. With
increasing values for the coefficients of the basal atoms become more important relative to those
for the top atom (c1). Therefore, electron density moves from the top to the base of the pyramid.
A different electron flow is observed in the second case (equation 5.19).

01:1.0
1
_SB

With increasing values of § the basal atoms become less dominant. The electron flow is reversed

(5.19)

Cy = C3 = C4 = Cj

(26+a—6+\/a2+4a6+2062—2a6—466+62)

and charge accumulates at the top of the pyramid.
The calculations show, that the combination of different ECPs causes problems at the interface.
In the Pt5 pyramid the influence of the top atom on the electronic structure is small. The ionisation

energy and the binding energy may vary without changing the ground state of the cluster.

5.3.3 5d-6s interaction in Pt;

Charge transfer in the cluster is very important for the utility of a platinum cluster as surface model.
Figure 5.6 illustrates the connection between Hiickel calculations and those of the Hartree-Fock
cluster.

Sketch A shows the HMO charge distribution in the Pt;r cluster. The average 6s population
per platinum is 0.8, which creates an average charge of +0.2 e per platinum. HMO calculations
predict a charge of +0.447 e at the top. 6s electron density has to flow from the top to the bottom
of the pyramid to create such a charge distribution (black arrows).

In sketch B the top platinum is replaced by an 18 electron platinum in the 'S state. This

replacement keeps the total 6s population at 4.0, but sets the formal charge of the platinum
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nucleus at the top equal to zero, because the tenth 5d electron compensates the positive charge
at the nucleus. 6s electron density now flows to the top of cluster and creates a negative charge
(—0.553 e). The top platinum acts now as a 6s electron sink and the resulting dipole moment can
be used to simulate the electron spill.

A +0.447 e The last sketch, C, shows the result of a real HF

/ the four bulk atoms by an experimental 1-electron
+0.138 e +0.138 e ECP (subsection 7.3.1, page 230). This calculation

produced a reduced charge at the top (—0.2 e), which

calculation. The platinum at the top is described by
the 18 valence electrons ECP of HAY and WADT and

N

o

B -0.553 e cannot be explained with solely by the 6s orbitals.
This charge distribution may be explained by a strong
interaction between the 5d-orbitals at the top with

6sp orbitals at the base of the cluster. Two prin-

%

+0.138e +0.138e cipal interaction pathways exist: The first pathway
has been observed primarily for orbitals with a strong
C 02e 6p contribution, while second is preferred by orbitals
with a strong 6s contribution.
y ‘ % The first one is very direct with a small 5d-6sp
overlap. The 6sp molecular orbitals have such a low
+0.05e +0.05e

energy, that they lie in or below the 5d band. These
orbitals are filled with electrons instead of the 5d or-
Figure 5.6: 5d-6s interaction in Pts bitals, which results in a net charge transfer from the
top to the base. This electron flow is usually accom-
panied by a change of electronic state and may cause
severe problems during the scanning of the potential energy surface. The second pathway is based
on a strong 5d-6s overlap. If the energy of those 6s molecular orbitals is lower or equal to the 5d
orbitals from the top atom, both systems mix provided symmetry permits. This mixing induces a
strong electron flow from the top to the bottom. In ill suited cases this flow is so strong that the top
platinum becomes positively charged. The bond between water and the cluster is now controlled
by strong Coulomb interactions and no longer by orbital interaction. In these cases the binding
energy is far too strong and the potential energy curve of the complex has the wrong shape.
The strength of the 5d-6s interaction depends on the symmetry and energy of the 6sp orbitals.
In a system with only one type of platinum atom the strength of this interaction depends only
on the quality of the basis set and/or the ECP. Problems arise if different types of platinum are
used. In such clusters the strength of the 5d-6s interaction is controlled by the interface between the
platinums (subsection 5.3.2). The valence ionisation energy « determines the centre of the 6s band,
while the bond energy integral § is controlled by the shape of the atomic orbitals (section 5.7). A
difference in these Hiickel parameters does not change the electronic state of the cluster (subsection

5.3.2), but can distort the electron distribution in the cluster severely via the 5d-6s inteaction.

5.3.4 The rotational barrier in Pt; —H,0O

Figure 5.7 shows the interaction between the water 1b; orbital and one of the nonbonding (e)

platinum orbitals of the platinum pyramid. The grey lines mark the water molecule’s mirror
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Figure 5.9: Rotation in Pt; —Hy0O / singlet Figure 5.10: Rotation in Pt; —H2O / triplet
state. state.

planes. This interaction between the two functions lifts the degeneracy of the nonbonding 6s
orbitals (singlet splitting) and a singlet becomes possible.

Figures 5.9 and 5.10 show the total energy of Pt; —H>O during the rotation. The four bulk
platinums were described with an experimental 1-electron ECP (section 7.2) and the top platinum
with the 18 electrons potential by HAY and WADT. The singlet state (figure 5.9) is less favourable
than the triplet state and the total energy makes a sudden jump (AE = 2.34 kcal/mol) at > =
30°. The rotation of the water molecule on the platinum pyramid in the triplet state (figure 5.10)
is smooth and without any energy jumps. The explanation for the energy jump is the interaction
between the water molecule and the nonbonding 6s orbitals (figure 5.7). The ¢! mirror plane of
the water molecule turns with the nodal plane of the nonbonding 6s orbitals. This is not possible
in the singlet state, because the two nonbonding 6s orbitals cannot mix. In the triplet state this
mixing is possible and the water molecule can turn easily. The activation energy for the rotation
vanishes (AE = 0.006 kcal/mol).

Figure 5.8 shows the mixing of the 6s orbitals as the mirror plane rotates. The energy jump
in the singlet state in figure 5.9 can be avoided by CASSCF(2,2) (Complete Active Space SCF,
section 2.3, page 22) calculations, in which the active space contains both nonbonding 6s orbitals.

Following the rotation the population of each active orbital is equal to one as observed in the triplet

2¢ describes the rotation of the water molecule around the platinum-oxygen bond. Figure 6.60 on page
186 shows the geometry of the Pts —H»>O cluster.
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state. A smooth rotation is not possible without mixing those orbitals.

The strength of the singlet splitting depends on the strength of the interaction between the
nonbonding 6s orbitals and the water molecule. The interaction of the water molecule with the
top platinum is governed by the 5d orbitals. A large singlet splitting demands a low energy for the
nonbonding 6s orbitals. A low energy eigenvalue for these two orbitals may be created in 2 ways,
either a strong 5d-6s interaction or a high valence ionisation energy a on the basal platinums. The

ability of the water molecule to rotate depends again on the interface between the different ECPs.

5.3.5 Summary on Ptj

The Hiickel calculations on the Pt; pyramid showed that even the simplest calculations can help
us to understand the results of more elaborate methods. They predict correctly the multiplicity of
the ground state and allow us to determine the optimal number of 6s electrons in a cluster. The
knowledge of the multiplicity and the degeneracy of the HOMO is helpful for the construction of
working surface models (sections 6.4 (page 186) and 7.3.7 (page 244)) and can help us to understand
energy jumps from one potential surface to another of the potential energy surface.

They also predict correctly charges and electron distributions, even for clusters with different
ECPs. This interface between the ECPs is very important for the simulation of the water-platinum
interface with larger model clusters. The difference between the ECPs can be described by two sets
of Hiickel parameters. Hiickel calculations are so simple, that all properties of the ECP-interface
can be expressed by analytical formulae. Different ECPs at the top and at the basal plane do
not change the electronic state of the cluster and have only a small direct influence on the charge
distribution. But this difference in the ECPs has a strong influence on the 5d-6s interaction. Via
this pathway usage of different ECPs can distort the electronic structure significantly (subsection
7.3.5 page 240).

5.4 Huckel Calculations for Pty Cluster

The next suitable cluster as surface model is the Ptg cluster,
which is also the largest cluster managable with a 18 elec-
trons ECP at all platinums. Figure 5.11 shows a top view
of the cluster. The grey (passive) and black (active) circles

mark surface atoms while the white ones represent atoms in

the second layer.
The secular determinant for this cluster is big (9 x 9)

and therefore difficult to handle. The mathematical problem

can be reduced by using SALC’s as basis set for the calcu-

lation. This was done in three steps. In the first step the

atoms of the cluster were divided into three groups. Each
Figure 5.11: Pty cluster, top view.  group contains all symmetric unique atoms, which inter-

change their places during the application of any symmetry
operator. The first group contains just one atom; atom number 5 in the centre. The second group
contains the surrounding atoms 6, 7, 8 and 9. The third finally contains the atoms at the bottom
(1,2,3 and 4). In the next step SALCs were constructed from the orbitals in each group. In the last
step were the orbitals regrouped according to their symmetry. Section 11.11 (page 354) describes

128



T, 0, 0, v, T, U T, Ty o,

sym al e e bs ar e e ar bs
x  2+V8 V2 V2 0 2-v8 V2 -2 -2 -2
1 35355 .5 0 0 —.35355 .5 0 0 D
Ca 35355 0 5 0 —.35355 0 5 0 -.5
Cc3 35355 —.5 0 0 —.35355 —.5 0 0 5
Cyq 35355 0 -.5 0 —.35355 0 -5 0 -.5
Cs 5 0 0 0 5 0 0 70711 0
Ce .25 35355  .35355 .5 .25 —.35355 —.35355 —.35355 0
cr .25 35355 —.35355 —.5 .25 —.35355  .35355 —.35355 0
cs .25 —.35355 —.35355 .5 .25 35355  .35355 —.35355 0
Cy .25 —.35355 .35355 —.5 .25 .35355 —.35355 —.35355 0
nfe 2 2 2 2 0 0 0 0 0

J

Table 5.5: Coefficients of the molecular orbitals in Ptg.

num e~ grp. 1 grp. 2 grp. 3

2 0.5 0.125 0.25
group 1 2 3
m 42 0.5 0375 0.5
5d -0.5 —-0.125 0.25
9 a1 0.5 0.625  0.75
5d” 6s 0.25 —0.187 0.125
8 a0 8 0.5 1.125  0.75
5d° 6s 1.0 —-0.25 0 b
8 1 0.75 1
Table 5.6: Charges on the Pty cluster. 2 high spin P ¥, and ¥y swaped

Table 5.7: 6s population in the Ptg cluster.

the details of the calculation.

Table 5.5 lists the results of the Hiickel calculations after renumbering according to their energy.
The combination of a single 'S platinum atom (18 valence electrons) in the centre of the cluster
with 8 ®D atoms (1-valence electron) yields a stable cluster. The occupation of the orbitals is
also shown in table 5.5. Charge calculations showed that the clusters surface (groups 1 + 2) is
negatively charged (table 5.6). The combination of a 'G platinum (5d® 6s?) with 8 one electron
platinum atoms reverses the charge on the central platinum atom. The extra charge flows from the
surface to the bottom of the cluster and alters so to the bonding possibilities for a water molecule.
The same electron flow is observed, if the cluster is constructed solely from 2D platinum atoms,
despite different multiplicities. Only the combination of a 'S with eight 3D platinums guarantees
a suitable 6s population and a negative charge of the active platinum?.

Intra molecular charge transfer is important for real clusters with 6p orbitals. The 6p orbitals
mix with the 6s band and this mechanism lowers the energy of the orbitals. These new hybrid
orbitals combine with 5d orbitals from the central platinum correct symmetry provided (subsection
5.3.3). Electron flow is one of the major problems with the development of a single electron ECP

and is very difficult to handle, as each cluster has its own electron structure. Hiickel calcualtions

%A negative charge at the metal surface enhances the bond between platinum and hydrogen atoms and

can create unphysical orientations of the water molecule.
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help us to detect the important orbitals and to understand the individual mechanisms.

The Ptg cluster is beyond the capacity of the MP2 method and even the HF results are difficult
to read. A comparison of the Hiickel results and the HF results (section 6.5, page 192) can be used

to understand the properties of the 18 valence electrons calculations.

HF calculations with a simple 1 electron ECP showed, that the molecular orbitals ¥4 and ¥
change their position on the energy scale and ¥5 becomes populated instead of orbital ¥4. These
changes indicate a principle limitation of the Hiickel method for the platinum 6s orbitals and will
be discussed in subsection 5.7.

Table 5.7 lists the 6s population of the platinums. The inversion of the orbitals ¥4 and ¥y has
a strong influence on the charge distribution in the cluster. The active surface platinum becomes
more negatively charged (assuming a 'S or D platinum in the centre), while the remaining surface
atoms (group 2) are positively charged (+0.25, assuming a D platinum). The four platinums at
the bottom of the cluster do not carry any charge. This charge distribution is closer to the one
observed in Pty —H2O, but the total 6s population is lower in the 18 electron ECP calculation (HF:
3.37, MP2: 7.57, table 6.23 dpio = 12.2 A). The 6s population at the central platinum is 0.42 and
the average 6s population is 0.30 on the passive surface atoms and 0.44 on the bulk atoms on the
HF level. This charge distribution agrees well with the Hiickel results (table 5.7) for a total 6s
population of 4. Hiickel calculations demand a multiplicity of 3 to create such a charge distribution,
but the HF results were extracted from a singulet wavefunction. The degenerate orbitals ¥ and
W3 are populated via a strong 5d-6s interaction. The agreement in the charge distribution between
both methods is smaller on the MP2 level. The passive surface atoms are stronger populated than
the active (active 0.55, passive 1.18, bulk 0.71). This charge distribution is closer to the results
of the Hiickel calculation than to the results of the simplified HF calculation (¥4 and ¥5 changed
their position).

The charge distribution is vice versa. On MP2 level is the active surface atom negatively
charged (—1.38 e) and the passive surface atoms carry a positive charge (+0.23 e). This charge
distribution is closer to the simplified HF result (active —1 e, passive +0.25 e) than to the pure
Hiickel results (active —0.5 e, passive —0.12 €). The HF results for Pty (active —0.58 e, passive
+0.09 e table 6.23) show the same principle structure than the Hiickel results, but differ in the

absolute values (active —0.5 e, passive +0.62 e).

The difference between the Hiickel results and the MP2 values regarding 6s population and
charge distribution questions the validity of the MP2 approach towards Ptg—H,O, while the HF
results in section 6.5 agree qualitatively and seem so to be more reliable. The principle problem
with large clusters is the 5d-6s interaction, which becomes more important as the cluster grows.
The interaction with the water molecule on the other hand is controlled by the 6s population and
all calculations of this sections show, that the influence of the 5d-6s interaction on the 6s population
can be strong (a 6s population of 3.4 with a singlet function). But, the electron distribution of a
given 6s population can be described well with Hiickel calculations.

5.5 Two Slabs Pt;; Cluster

Figure 5.12 displays a top view of the Pt;7 cluster. It is the extension of the Ptg cluster shown in
figure 5.11 and the first without an MP2 counter part. The top layer atoms at the cluster’s edge
rest now on four second layer atoms. Every surface atom has so a complete basis to rest on. A

systematic enlargement of the surface model allows us to analyse the role of the central platinum.
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LU 0y U, U, U, Uy T v, 2%¢?
sym al e e b1 ar bs e e
X 5.4982 3. 3. 2. 7153 0. 0. 0.
X0 .3347 .2582 .2582 .0687 —.2887 .2887 .2887  1.0000
X1 .3347 2582 —.2582 .0687 .2887 2887  —.2887 1.0000
X2 3347  —.2582 —.2582 .0687 —.2887 —.2887 —.2887 1.0000
X3 3347 —.2582 .2582 .0687 2887 —.2887 .2887  1.0000
X4 1289 3227 .0645 2887 —.3050 —.2887 —.2887 2887 1.1022
X5 1289 3227 —.0645 2887  —.3050 2887 —.2887 —.2887 1.1022
X6 1289 0645 —.3227 —.2887 —.3050 .2887 .2887 2887 1.1022
X7 1289  —.0645 —.3227 —.2887 —.3050 —.2887 —.2887 2887 1.1022
X8 1289 —.3227  —.0645 2887 —.3050 —.2887 2887 —.2887 1.1022
Xo 1289 —.3227 .0645 2887  —.3050 .2887 .2887 2887 1.1022
X10 1289  —.0645 3227 —.2887 —.3050 2887 —.2887 —.2887 1.1022
X11 .1289 .0645 3227  —.2887 —.3050 —.2887 2887 —.2887 1.1022

X12 2454 3873 .0 2887 0181 .0 .0 .0 0.5876
X13 2454 .0 —.3873 —.2887 0181 0 .0 0 0.5876
X14 2454 —.3873 .0 2887 0181 .0 .0 0 0.5876
X15 .2454 .0 3873 —.2887 0181 .0 .0 0 0.5876
X16 4220 .0 .0 .0 4855 0 .0 0 0.8274

Table 5.8: Occupied orbitals of the Pt17 cluster and population analysis.

As before for the Pty cluster SALCs (The groups of symmetrically equivalent orbitlas are: I:
Xo t0 x3; IT: x4 to x11; ITL: 12 to x15; IV: x16) were used for the Hiickel calculations and section
11.12 (page 355) describes the procedure while table 5.8 summarizes the results. The symmetry of
the Hiickel orbitals can be easiyly specified by the number of nodal planes: The totally symmetric
functions (a1) have no nodal plane while orbitals with as symmetry have up to four nodel planes.

Table 5.9 shows the charge distribution calcu- 6 7
lated for the Pty cluster constructed with a 5d'°
platinum atom in the centre. The negative charges

concentrate at bottom at the cluster, while the

\\»—\
/ro

surface atoms are positively charged excepting the

central atom, which carries a negative charge sim- 6

ilar to the charge distribution in Pty with a low

6s population.

Table 5.10 shows the charge of the central 5d'° 4 o - °
platinum atom from pure 6s Hiickel calcualtions
in differents model clusters. A negative charge is
reasonable, since the empty 6s orbital is filled with
electrons from the neighbours. It is interesting 1 10

to note, that the negative charge increases slower P 19: P | )
than the average 6s population (Pts: 0.800, Ptg: igure 5.12: Pty cluster, top view.
0.889, Pty7: 0.941). Despite the increase of the average 6s population the charge on the central

platinum atom decreases changing from Pt5 to Ptg. The amount of negative charge on the central
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0 e
grup—Q[] cluster  Qcent [€] 6s pop

I 0.00
Pts -0.553 0.800

IT -0.10
Pty -0.500 0.889

IT1 0.41
Pty7 -0.827 0.941

v -0.83

Table 5.10: Qcent on differnt metal cluster.
Table 5.9: Charges on the Pty7 cluster.

atom is proportional to the number of occupied orbitals, which are built with the 6s orbital of this
atom. As the number of atoms increases, the number of totally symmetric SALCS becomes slowly
bigger. Meanwhile increases the number of the other orbitals dramatically and the probability of
the occupation of a totally symmetric orbital does not increase significantly. We assume therefore
that the negative charge on the central atom decreases not much lower then —0.85 e while the
average 6s population approaches 1.0. The reminding 6s orbitals act as an electron sink, even if
the totally symmetric LUMO is occupied in Pty7 (5d9 6s': qeent = +0.02 e)4 . A similar charge
transfer has been observed in the Pty cluster build only from ®D platinums (qeeny = +0.25 €). A
negative charge on the central platinum is only possible, if the central platinum has 5d'° electron
structure and the empty orbital becomes populated by the neighbours. Any other structure causes
a positive charge and so a too strong Pt—H>O interaction.

As the number of 6s orbitals increases an interaction between the 6s orbitals and the 5d orbital
becomes more likely, because more symmetrically suitable orbitals are in the energy range of the 5d
orbitals. This overlap increases the electron drain from the central orbital and inverses the charge
distribution.

The prediction of the ground state’s multiplicity and the charge distribution becomes more
complicated as the cluster grows. The energy of the nonbonding 3a; orbital (g LUMO) is sys-
tematically lower in HF- than in Hiickel calculations as simple pure 6s test calculations showed.
The HF energy of ¥y is lower than the energies of ¥7 and ¥4 and the electronic ground state has
therefore a multiplicity of 3. With increasing cluster size become the bonding interactions with the
second next neighbour within an atomic orbital group more important. Hiickel calculations do not

take this interaction into account and the calculation of the orbital energies becomes less reliable.

5.6 The Second Next Neighbour

The 6s orbitals are wide spreading and interactions with the second next neighbour are likely. The
classic Hiickel theory only accounts for the interaction with the next neighbour (8) but not with
the second next. To get an estimate of the influence of this neglect several calculations were done,

were done with the following assumptions:

Sij =0  (eilHlp)=a  (pilH|pin1) =B  (pilH|pis2) =78 (5.20)

“The coefficient of @16 in the LUMO is 0.39247. Since @16 and 16 are by definition equal, is
the coefficient of x16 in the LUMO also 0.39247. In a cluster build from 17 5d° 6s' platinum atoms
(a? e e b2 a? b3 e e al) is therefore the total population of the 6s orbital at the central platinum atom
0.9814 and the charge 0.02 e.
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Figure 5.13: Surface model cluster.

Small numbers indicate
degenerated levels.
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Figure 5.14: Effect of the second next neighbour (y = 0.2).
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The first set of test clusters were two-dimensional surface models built from 1, 2 and 3 squares
(Pt4, Ptg, Pt1) and the second set was constructed from crosses (Pts, Pt13). Figure 5.13 shows
the model cluster.

The second next neighbours are connected by the diagonals of the squares, which facilitates
counting. Closed cluster (Pt4, Ptg, Pt16) contain more direct bonds between next neighbours then
bonds with the second next neighbour (Pt4 2:1, Ptg 1.5:1, Pty 1.3:1). The number of second next
neighbours actually decreases with cluster size and should finally reach a ratio of 1:1. Open clusters
contain as many direct bonds as bonds with the second next neighbour (Pt5 4:4, Pty3 16:16) and
have so a optimal geometry. Open clusters are therefore good examples for the influence of the
second next neighbours.

Figure 5.14 and equation 5.21 show the influence of the interaction with the second next neigh-
bours (v = 0.2). The interaction lifts the degeneracy of the HOMO’s (marked in grey). The
average energy difference between the formerly degenerated orbitals is about 2 «y, which makes in
the example 20% of a single Pt-Pt bond (AEpi2 = 2 8). An energy difference of this size would
certainly lead to a change of the electronic state. Those new states with smaller multiplicity have
a lower energy (= 0.5 ) than before. If the number of unpaired electrons is kept constant and
the electrons stay in their original orbitals, the energy gain by the interaction with the second
next neighbour is zero for closed structures and negligible small for open structures (Pts: 0 3,
Ptg: 0 8, Ptig: 0 8 / Pts: 0.02 3, Pty3: 0.08 3). The energy gain for open structures (Pts:
2- (4 8% +~2)%5 — 4 B3) is small but increases with cluster size and .

Pty Pty Ptyg
Tor = —2+7 Tor = —V8 + 2y 33012%[—24‘37‘*‘(’7_2)‘/5]
Loz = oz = — Tog = 2oz = —V/2 oo = To3 = 27 — V5
Tos =2+  Tos = Tos = —27 $04=%[2+37_(7+2)\/5]
Zog =0 Tos = Tog = —1 — 7y
Tor = Tog = V2 Tor = Tog = %(—37 - \/57) (5.21)

1
Tog =V8+2y  mog =10 = 5(—37 +/57)

T =x12=1—7
1
T13 = 5[—24‘37— (7—2)\/5]

Ty =z15=7+V5

T = %[24‘3’)/4‘ (')/-{-2)\/5]

The interaction with the second next neighbour stabilizes the LOMOs (lowest occupied orbitals)
of the open cluster more then it destabilizes the SOMOs (singly occupied molecular orbital)(figure
5.14, equation 5.16%), because the outermost atoms, which are connected to the cluster only by

one bond become more involved into the electronic structure of the cluster. This small advantage

®A Pts pyramid with weak interactions in the basal plane has the same Hiickel determinat as a Pts

cross with strong interactions between second next neighbours.
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results in the energy gain by the introduction of the interaction. Closed structures do not contain
any isolated atoms, which benefit more then averagely from the interaction with the second next
neighbour. The energy gain of the LOMOs is therefore completely compensated by the splitting of
the SOMOs (equation 5.21). This splitting increases with increasing values of v and may change
the relative energetic order of the orbitals. The larger the cluster becomes, the more likely is such
a change. Figure 5.14 shows the correlation diagram of Pti6. Even such a small interaction as vy
= 0.2 can change now the relative order of the orbitals.

These simple calculations also show that interactions with the second next neighbour alone
cannot explain the movement of the nonbonding a-orbitals observed in HF calculations. The
energy of the nonbonding orbitals increases and does not drop with the strength of the long range
interaction. Other phenomena, which have been neglected so far are the reason for this energy
change.

The calculations in this subsection also suggest that the error due to the interaction with the
second next neighbour should be small and therefore negligible for small clusters, since the influence
of this interaction increases with cluster size. The reliability of those simplified Hiickel calculation
decreases rapidly, if degenerate HOMOs are unevenly populated. The interaction with the second
next neighbour lifts the degeneracy of those orbitals and the Hueckel calculation cannot be used
anymore to predict the wavefunctions multiplicity. The calculation also showed, that a closed
structure should be preferred rather then an open, since the influence of the second neighbour

interactions should not change the total energy of the cluster.

5.7 Quantitative Analysis of the HMO Calculations

Table 5.11 summarizes the results (degeneracy and orbital energies) for all platinum clusters calcu-
lated with the Hiickel approximation. It was said before, that the splitting of the 6s band is crucial
for the quality of the HF calculations. Even approximate values would be helpful to validate the
HMO results.

two slabs surface models closed 2D surface models open 2D models

Pty Pty Pty Pty Pty Ptyg Pty Pty3
2 x 0.000 1 x0.000 3x0.000 2x00 3x0.000 4x0.000 3x0.0 5x 0.000
1x3236 2x1414 1x0.715 1x20 2x1414 2x1.000 1x20 1 x 1.000
1 x 4.828 2 x 3.000 1 x 2828 2 x 1.236 2 x 1.732
1 x 5.498 1 x 3.236 1 x 3.000

Table 5.11: Orbital energies and degeneracies of the HMO calcualtions.

The comparison of the Hiickel calculations with Hartree Fock calculations was done in two
steps. First, estimates of the Hiickel parameter were obtained from Pts-calculations. In the second
step those parameters were tested on the Pts-calculations and refined. Those calculations also
allowed us to estimate the influence of the different Hiickel approximations on the final result.

5.7.1 Results for the Platinum Dimer

The orbital energies depend on the values of the integrals a and S. It is therefore most important
to get reliable numbers. In the first step the numbers were taken from the literature. HOLLOWAY

135



and BENNEMANN [64] optimized the values for @ and § to match experimental results and results
from other calculations (CNDO). The off diagonal elements (resonance integral 3) were calculated
with the CussAacH’s formula [271, 272].

1
B =Hy = 3 (2 = |S12]) Si2 (Hi1 + Haz) = (2 — |S12]) Si2 « (5.22)

The overlap integrals were calculated from Slater orbitals [191, 297-300]. The Slater exponents (
were given in their paper.

1
Xos = N 132 e [ — and

4w (5.23)
iy = N2 /(|r_i||r_§ — B2 exp(—C |7 + 7% — B]) dV

The overlap integral was calculated numerically with a Mathematica script [301]. This script
was tested before with an 1s orbital and ROOTHAN’s formula [300]. This calculation yields fgs =
—6.6 eV and ags = —9.8eV (R = 2.1 A) The value given in HOLLOWAYS’s paper for asq is —10.61
eV. Every 6s-HMO with an energy lower than 0.12 S has therefore an energy lower or equal to the
5d electrons. This is actually every bonding orbital®.

BENNEMAN and HOLLOWAY used in their article parameters, which were optimized to reproduce
properties of the platinum dimer in Extended Hiickel calculations (EHT). For the development of
a new ECP it would be most helpful, if the Hiickel calculations not only reproduce the symmetry
and the number of nodal planes of the Hartree Fock calculations but also give a rough estimate of
the orbital energies.

There are two possible methods for the extraction of useful parameters from Hartree-Fock

calculations:

1. The values of @ and § are extracted directly from the orbital energies of the platinum dimer.

a) a:% b) /8:€+—Of:a_€7 (524)

e+ and e_ are the orbital energies of bonding and the antibonding orbital combinations. A
comparison of the results for Pty and Pt] allows us to get an estimate of the electron-electron
repulsion energy.

2. The value of 8 is calculated with one of the many formulae, which extrapolates the value of
the resonance integral from the valence ionisation energies. Two expressions are frequently
used: a) the formula by WOLFSBERG and HELMHOLTZ [277] (equation 5.25a) and b) the
CussacH’s formula [271, 272] (equation 5.25b).

1 1
a) Hu = SK(Huu + Huw)Spw a) Huy =52~ |Su)Suw (Hup + Huw) - (5.25)

This method requires only the extraction of a from the HF calculation (equation 5.26),
because the value of the resonance integral is determined by the chosen basis set. The

SEHT calculations ((a — €)? — (8 — €S)? = 0) with the same parameters (o = —0.36014 H, 8 = —0.24395
H,S=0432au, R=21A =3.9684 ay) gave the following orbital energies 4 = —0.426 H (+0.27 8) and
e- = —0.202 H (—0.65 3). The EHT uses the following approximation E°® = E®'*® and the binding energy
AE of the platinum dimer (only with 6s orbitals!) is with 82.6 kcal/mol far too high (MP2 benchmark
calculation: 60 kcal/mol, table 6.10 page 161).
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dicussion in the literature suggests, that it might be necessary to find a empirical correction

of the resonance integral to improve the results.
o = €4 — ﬂ (526)

The valence ionisation energy is calculated from the bonding orbital since the antibonding
orbital does not contribute to the total energy E, as b; equals zero (equation 5.6).

While both methods should result in parameters of similar quality offers the second method a
direct link to the extended Hiickel theory (EHT). Such an extension allows us the direct comparison
with results published previously in the literature.

The key element of the second method is the overlap integral S. The precise values of this
integral were extracted from Gaussian 94 calculations. To keep this process as simple as possible,
the basis set was restricted to a single zeta 6s function. The spherically symmetric part of the ECP
(Ugere, equation 2.65 on page 33) was set equal to zero.

The standard G94 output file does not contain the overlap integrals, but two ways exists to

extract the overlap integral from the file.

1. The coefficients of the bonding orbital allow the calculation of the overlap integral S.

1 1
m()ﬂ + XQ) =c1X1 + Ccax2 = S = ﬁ -1 (5.27)
2. The second possibility offers the combination of the Mulliken population matrix B, population

number b; and the density matrix ¢;. This method can be applied to larger molecules.

U =cix1 + c2xz
B

bi:bi<\I’|\I’>:bi(C%-FQClCQS-{—Cg):A+2B+C = S:b P
i €1 €2

(5.28)

Both methods yielded the same values for S. The results of these calculations are summarized in
figure 5.157. A least squares fit of the curve with MicroCal Origin allows us to use the following

approximation for further calculations.

—2(R + 0.16538)?

S12 = (x1|x2) ~ 1.00256 exp 1936282

+7.5-1071 (5.29)

The valence ionisation energy a was calculated from the orbital energy e, of the bonding orbital

and CussacH’s formula for the resonace integral 5 (equation 5.25b).
€4

e =a+fB=a+(2-19])Sa = oO=——""-— 5.30

Table 5.12 summarizes the results for the Hiickel parameters obtained with both methods in

the chemically important range 2.0 A < R < 3.0 A. While the resonance integral 3 varies strongly

with bond lenghth is the influence of the geometry on the valence ionisation energy small. Even

more important than the geometry is the electronic state of the molecule. The valence ionisation

energy of the Pt is nearly twice as big as for Pt3. The value of the resonance integral shows the

"Figure 5.15 demonstrates also that any interactions across a distance larger than the distance to the

second next neighbour can be neglected in a first approach to platinum clusters.
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Figure 5.15: S, calculated with G94 and the Figure 5.16: EHT results for Pt9.
best fit.
equation 5.25b and equation 5.30 equation 5.24a and equation 5.24b
+ 0 + 0
Pt, Pt, Pt Pt;

r A] —a] -pMH -a[] -fMH -o[M -MH -aH -5H
2.0 0.31510 0.26420 0.16680 0.13986 0.37875 0.20056 0.12177 0.18487
2.5 0.31737 0.22320 0.16559 0.11650 0.38254 0.15804 0.13547 0.14661
3.0 0.32387 0.17735 0.15131 0.10642 0.37521 0.12601 0.13914 0.11858
X [H] 0.3187 0.2216 0.1612 0.1209 0.3788  0.1615 0.1321  0.1500
on [H 0.0037  0.0355 0.0070  0.0140  0.0030 0.0305  0.0075  0.0272

Table 5.12: Hiickel parameters from ECP-FH calculations on Pt3 and Pty .

same behaviour. The value of 3 for Pt] is about 10% bigger then for Pt3, if the parameters are
calculated with equations 5.24a and 5.24b. This small difference allows us to work with an average
value of 8 = —0.1558 H (o, = 0.0295 H). It is more difficult to make a reasonable selection of a,
because « is nearly three times bigger for Pt] then for Pt3. It should be noted, that the value of
a extracted from the Pt calculations is smaller then the ionisation energy of the free atom. The
average values is @ = —0.25548 H, but the standard deviation is far too big for & to be reasonable
for large set of calculations (o, = 0.12348 H). Although difficult to explain by theoretical means
it might be useful to work with two sets of parameters depending on the charge of the cluster to
account for the reduced electron-electron repulsion.

The lowest 5d ionisation energy is 0.42084 H for a 'S platinum and 0.36552 H for a 3D platinum
(HAy & WapT ECP, UHF [189]). The Hiickel parameters obtained so far (a« = —0.25548 H, 8 =
—0.1558 H) suggest the any 6s MO with an energy lower then 1.1 3 (*S) respectively 0.71 3 (3D)
can interact with an 5d orbital, as e5q depends on the electronic state of the platinum atom.

The second method (equations 5.25b and 5.30) seems not to be appropriate to extract use-
ful Hiickel parameters form ECP-HF calculations. The individual values for 8 vary for defined
electronic state as much as values calculated with method 1, but they differ strongly for different
states (factor 1.833). For large values of R as § approaches zero « has to compensate for the
nuclear repulsion and becomes unreliable. The dependency of a on the electronic state is smaller
for method 2 (factor 1.997) then for method 1 (factor 2.867), but still very big. It seems not to
be reasonable to extract just one parameter (a) from ECP-HF calculations and to construct the

other from this single value.
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Pti" Pt Pt P2
multiplicity 2 1 3 4
e,  [H  —0.49046 —0.29118 +0.02166 +0.19262
€a, [H] —0.76070 —0.53775 —0.18360 —0.19391 0
/€ [H  —0.86772 —0.65065 047368 1 —0.29661 1t
€a, [M] -1.31806 + —1.06724 ) —0.72178 +L —0.54233 4|
ETOT  [H] +1.054216 —0.012697 —1.136859 —1.325930
Qpasis  [e] 0.837 0.653 0.161 0.060
Qror [e] 0653 0.388 0.355 ~0.239
Ropr [A] dissociation dissociation 2.7452 2.7714
EZSE  [H] — — —1.250322 —1.453977

The small arrows indicate electron occupation.

Table 5.13: Results from ECP-HF calculations.

Figure 5.16 displays the results from EHT calculations (equation 5.31) for the platinum dimer

ETOT

Pt,. The total energy was calculated with EHT approximation ETOT = E¢¢. To simplify

the computation we used equation 5.29 to estimate the value of the overlap integral S.

B — Se

a — €

a —€

4_g =(1-5)e+2(SB-—a)e+ (> =p%) =0
— DE

(5.31)

The optimized bond length (2.65 A, bulk Pt: 2.77 A) does not change much with the value of the
valence ionsiation energy a. The variation of a only allows us to fit the EHT bonding energy to
ECP-HF results. If an optimized bond length is required, another method for the calculation of 3
has to be chosen, since the value of the overlap integral is fully determined by the chosen basis set.
The EH theory is not able to describe the variation of the bond lenght with the molecule’s charge,

because the Hiickel parameters a and 8 do not depend on the occupation of the orbitals.

5.7.2 Results for Platinum Pentamer (Pyramid)

Table 5.13 summarizes the ECP-HF (subsection 7.3.1, page 230) results for the Pt; pyramide (R =
2.1 A). Geometry oprimisations were possible only for PtgL and Pt?. Clusters with higher charges
dissociated.

The Hiickel calculations (subsection 5.3) predicted correctly the multiplicity of the ground
state (quartet). Test calculations for 2Pt did not converge or gave unrealistic charge distributions
contradicting symmetry restrictions (The four basis atoms had different charges.).

The orbital energies demand more consideration. While the charge of the cluster decreases,
increases the energy of the degenerate orbitals. According to the pure Hiickel theory should their
energy be equal to the ionisation energy a. Using the Hiickel parameters extracted from the ECP-
HF calculations of the platinum dimer (« = —0.24458 H, 8 = —0.1558 H) yielded the following
orbital energies:

€, = —0.760 H €e = —0.245H €, = +0.063 H €h, = +0.567 H

The €. energy from the simple Hiickel calculation agrees fairly well with the result for Pt2, but
fails for all other clusters. This movement of orbital energy as a function of the 6s population

is important for the prediction of the groundstate’s multiplicity. In a large cluster (for example
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Pt;7) those orbitals may belong to different symmetry species. If the energy of the nonbonding
orbitals is small enough, they might interact with the 5d orbitals from the central platinum atom
symmetry provided. This interaction lifts the orbitals degeneracy and can change the groundstate’s
multiplicty.

To understand the physical basis of the movement of the energy of the nonbonding orbitals
calculations on different levels of simplification were done. For these calculations o was chosen to
be —0.2937 H (ionisation energy of a free 3D platinum atom) and the off-diagonal elements were
calculated with CussacH’s formula (equation 5.25b). The overlap integral Sij was calculated with
equation 5.29. The bond length R; of the cluster was set to the experimental bulk value of 2.77
A. R, is the length of the diagonal across the pyramid’s base square. Equation 5.32 summarizes
the integrals used for the calculations.

a = —029375 H
Ry =277 A S) = 0.38452 Sy = 0.15719 (5.32)
R, =3.91737 A B = —0.18247 H By = —0.08509 H

The first step of series was the pure Hiickel calculation as shown in greater detail in section 5.3.

a—¢ B B1 B1 B €5 = +0.07120 H
B a—-e B 0 B €4 = —0.06820 H
B B a—e B 0 [=0 €3 = —0.29375 H (5.33)
B 0 i a—e B €s = —0.29375 H
B B 0 B a—c¢ €1 = —0.88425 H

The energy of the 1a; orbital is too low and the nonbonding orbitals have the energy a. Next
we take the interaction with the second next neighbour into account (section 5.6). The arrows

indicate the change in the orbital energy relative to the pure Hiickel calculation (equation 5.33).

a—e B B B B €5 = —0.01389 H |
B a—-e B B2 B e, = —0.09003 H |
B B a—€e B B2 |=0 €3 = —0.20866 H 1 (5.34)
B B B a—e B € = —0.20866 H 1
B B B B a—e e =—-094751 H |

All orbital energies are negative, even the antibonding bs orbital (—0.014 H). With the exception
of the nonbonding orbitals energy increases the ionisation energy of the orbitals. The rise of the
nonbonding orbital energies contradicts the results from the ECP-HF calculation.

The overlap integral S; (equation 5.32) is large and the movement of the nonbonding orbitals
may be explained by the overlap of different 6s orbitals. This assumption was tested next (equation
5.35). Both a; and the by orbitals are destabilized, while the nonbonding orbitals are not affected.
Meanwhile, decreases the energy of the second a; orbital. The orbital energies agree generally
much better with ECP-HF results.

a—€ [B1—S€ p1—5Se [Bi1—S€e pi—Sie €5 =+0.30828 H 1
b1 — Ste a—€ B1 — Si€ 0 b1 — Ste €, = —0.12998 H |
B1— Sie 1 —Sie a—€ By —Sie 0 =0 e3 =—0.29375 H — (5.35)
B1 — Sie 0 f1—Sie a—e p1—Sie € =—0.29375 H -
B — Sie By — Sie 0 B — Sie a—€ e, =—0.39399 H 1
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Finally, we did a full EHT calculation on the pyramid (equation 5.36).

a—€e B —Se B1—Sie Bi—Sie Bi—Sie €5 =—0.03579 H |
B1—S1e a—e 1 —S1e Pa—Sze [1 — Sie €, =—0.15921 H |
B —Sie B —Sie a—€ B —Se Pz— S =0 €3 = —0.24758 H 1 (5.36)
b1 — S1e Bs —Sze By — Sie a—€ B1 — Sie €2 = —0.24758 H ¢
B1— Si1e (1 — S1e [y — Sze 1 — Sie a—€ €1 = —0.40140 H 1

The results of the full EHT calculation agree well with ECP-HF calculations despite the model’s
simplicity. The nonbonding orbitals (—0.248 H) still have a higher energy then « and the energy of
the 1la; orbital agrees well with the ECP-HF result. The rise of the energy of the degenerate orbitals
is smaller than expected from equation 5.34. The interaction among the second next neighbours
cause a steep in the orbital energies (equation 5.35), while pure orbital overlap has no influence.
The inclusion of orbital overlap into the calculation partly compensates for the energy rise caused
by the interaction with the second next neighbour. The same argument holds for the energy of the
la; orbital. The orbital overlap overpowers the effect of the second next neighbour. The energy
of the of the 2a; orbital (—0.036 H) is lowered by both interactions and is now in good agreement
with the ECP-HF results (—0.194 H). Only the inclusion of both interactions, orbital overlap and
interaction with the second next neighbour, into the calculations allows us a reliable description
of all orbital energies and to explain the movement of the nonbonding a; orbitals. This model
is still not able to explain the energy drop of the nonbonding orbitals observed in the ECP-HF
calculations.

The results from equation 5.33 to 5.36 can be summarized as follows:

1. Pure Hiickel calculations describe orbital symmetries and their energies relative to each other
correctly. They also allow us to predict the groundstate’s multiplicity correctly. The absolute
energies agree only qualitatively with the ECP-HF results and the prediction of a 5d-6s
interaction from these calculations is difficult.

2. The interaction with the second next neighbour stabilizes the cluster and can lift degeneracies.
The inclusion of this interaction gives faulty values for the energy shift of the nonbonding

orbitals.

3. The inclusion of orbital overlap in the pure Hiickel calculation destabilizes most orbitals. The
bonding orbital energies are now in the correct energy range. A comparison of the results
from equation 5.34 and 5.35 shows, that orbital overlap is more important for the quality
then the interaction with the second next neighbour.

4. Only the inclusion of orbital overlap and second next neighbour interaction (EHT) gives
reliable results for both orbital energy and energy shift of the nonbonding orbitals, because
the orbital overlap damps the influence of the second neighbour interaction. Only these

calculations allow a trustworthy prediction of the 5d-6s interaction.
5. The orbital energies correlate directly with charge of the cluster and not with the wavefunc-

tions multiplicity. The set of Hiickel parameters extracted from PtJ should therefore be more

reliable for calculations on neutral clusters.
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5.8 Summary and Conclusions from the 6s Hiickel calcula-

1.

4.

5.

tions

The assumption of a perfect 77-electrons ECP for the platinum 6s electron allows us to
investigate the influence of the 6s band on the stability of the metal cluster independently
from 5d the other electrons. The Hiickel molecular orbitals have the correct symmetry and
the Hiickel calculation predicts correctly the energetic order of the molecular orbitals in small

platinum clusters.

. The Hiickel calculations predict correctly the multiplicity of the electronic groundstate and

allow us so to construct a working surface model with a 18 valence electrons ECP at the

central platinum atom.

The 6s population of the surface model is of special interest, as EHT calculations showed
that the 6s electron density at the surface of the cluster is lower than in the bulk [285]. A
similar electron distribution has been observed in nickel clusters [302], which suggests that
the reduction of the s electron density at the surface is a general property of transition metal

clusters of this group having a strong influence on the adsorption process.

. The Hiickel calculations for Pt3 suggest, that a suitable Pt3 surface model should be built

from two D and one 'S platinum. Both triangles should threrefore be described with singlet

wave function, in which the totally symmetric 6s orbital is doubly occupied.

(a) The Pts pyramid should be built from a 'S platinum atom at the top and 4 *D atoms
at the basis. The electronic groundstate would have a triplet wave function. Such
construction creates a negative charge at the top, which simulate the electron spill
correctly. The charge distribution and the orbital energies vary only slightly on any
differences in the valence ionisation energies or resonance energies caused by the mixture
of two different ECPs. The combination of five D atoms would result in a quartet
function. In such a cluster would be average 6s population too high and the cluster

would not be suitable simulate a surface correctly.

(b) The triplet 6s wavefunction (4 D and 1 'S) allows the rotation of the water molecule,
whereas the singlet wave function does not allow the rotation.

(¢) The Hiickel calculations give a first estimate on the influence of the mixing of different
ECPs in one platinum cluster. Small differences in a and 8 do not change the electronic

structure of the Pts pyramid.

The Pty surface model should be build from a 'S platinum in the centre and 8 3D atoms.
Such a structure would carry a negative charge at the central platinum atom and would have
a singlet wavefunction in the groundstate. Since open shell calculations are handled by UHF

calculations should the computational effort for >Pts and 'Ptg of similar size.

. A Pty7 structure should also have a singlet groundstate with a negative charge in the centre.

The average 6s population is 0.914 and the water molecule should bond less tight since the
6s platinum electrons and the oxygen atom from the water molecule repel each other. The
nonbonding orbitals of the cluster belong to different symmetry species. The degeneracy

of those orbitals may be broken by the interaction with the second next neighbour. This
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7.

10.

11.

procedure might lead to a change of the groundstate’s multiplicity. A Pty7 cluster as surface

model is therefore not suitable as a surface model.
Two pathways for inner cluster charge transfer have been identified:

(a) The partly filled 6s molecular orbitals have orbital energies lower or equal to the 5d
orbitals energies. The 6s orbitals are filled instead of the 5d functions resulting in a

charge transfer from the top to the base.

(b) 6s molecular orbitals have their energy in the range of the 5d orbitals. The 5d orbitals
overlap with those orbitals providing correct symmetry. This overlap leads to an electron
flow away from the central atom. The strength of this flow depends on the difference in

the orbital energies.

Both pathways become more important as 6p orbitals are included into the calculation,

because they are empty and facilitate so the charge transfer.

The calculations on the pyramidal Pts system predicted correctly the charge distribution in
the cluster. The interaction between water and the metal structure depends heavily on the
charge of the central atom. The Hiickel calculations allow us therefore to select a surface
model, which simulates the electron spill off the metal surface correctly. The comparison
with the ECP-HF calculations for Pt showed, that the orthogonality approximation Si; = dj;

yields too high charges and too large dipole moments.

The interaction with the second next neighbour lifts the degeneracy of the nonbonding orbitals
in large clusters. Closed structures will not be affected strongly by this interaction, while the
total energy of open structures changes strongly with this interaction. The calculation showed
also that with increasing cluster size the interaction with the other neighbours becomes more
important. A suitable surface model should therefore be small and have closed structure
to keep the error caused by the second next neighbour interaction at a minimum. The
comparison with the ECP-HF calculations on Pts showed, that the simple Hiickel model

cannot, predict correctly the energy shift of the nonbonding orbitals.

Hiickel parameters extracted from ECP-HF calculations give reasonable number for the or-
bitals energies, but the precession is too poor to allow precise predictions on the interaction
with other orbitals. They show, that any 6s molecular orbital with an energy less then 0.71 8

gets into the energy range of the platinum 5d orbitals.

Numerically reliable predictions are possible EHT calculations. The valence ionisation energy
is the same as the ionisation energy of the free atom. The off-diagonal element of the Hiickel
matrix can be calculated with CussacH’s formula and the value of the overlap integral can be
calculated correctly with a simple gaussian function. Those EHT calculations gave reasonable

orbitals energies.
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Chapter 6

Platinum atom calculations

involving 18 Valence Electrons

This section summarizes the results obtained with the 18 valence electrons ECP from HAY and
WADT [189, 214, 215] for the interaction of a platinum cluster with a single water molecule. HAY
and WADT recommend the usage of this ECP for calculations on molecules with direct metal-metal
bonds. Despite their recommendation® the 10 valence electron ECP has been used for calculations
on platinum clusters [189, 303]. The first section of this chapter includes a comparison of both

effective core potentials.

Each part of this section concentrates on a specific platinum cluster. The first subsection
analyses the cluster itself while the second focuses on the platinum water interaction. In addition
to the bonding energy we analyse the energy required to reorientate the hydrogen atoms of the
water molecule. This energy is important for the structure of the water bilayer, which forms the
basis of the platinum-water interface. The last section compares of platinum clusters of different

sizes.

To understand the importance of the platinum 6s orbital for chemical bonding forward refer-
ence to the one electron ECP calculations in chapter 7 may to be necessary. In some sections,
especially those on Pt; and Ptg, references on Hiickel calculations are made (chapter 5, page 117).
A comparison of the results for both clusters Pts (section 6.4) and Pto (section 6.5) shows the

mechanism, which controls the orientation of the water molecule’s bonding plane.

The final section contains a brief summary of EHT calculations (YaEHMOP [304]). This
package contains all parameters necessary for those calculations. During the ab initio calculations
numerous quantum chemical difficulties occured, which have not been mentioned previously in the
literature [64, 65, 303]. Extended Hiickel calculations were therefore done to check, whether these
difficulties are caused solely by problems with the higher level theory or can be observed even at

very low levels of theory.

'Hess [305] also recomends generally the exclusion of the 5s and 5p subshell from the effective core.
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6.1 One platinum atom

The examination of the water platinum interaction begins with the smallest possible platinum
cluster - a single platinum atom. Despite its small size, such a system already exhibits most
features of the problem.

Two pseudopotentials from HAY and WADT for platinum (Z=78) are frequently used in the
literature [189, 214, 215]. The first, abbreviated as LanL1?, uses the 5d, 6s, 6p orbitals as valence
space while the second, abbreviated as LanL2, uses the 5s, 5p, 5d, 6s, 6p orbitals. The first potential
(LanL1) replaces 68 core electrons and the second (LanL2) 60 electrons. Table 6.1 summarizes the
ECPs used in this section:

core elec. valence elec.  valence space basis set
LanLIMB 68 10 5d 6s 6p single zeta
LanL.1DZ 68 10 5d 6s 6p double zeta
LanL.2MB 60 18 5s 5p 5d 6s 6p  single zeta
LanL.2DZ 60 18 5s 5p 5d 6s 6p double zeta

Table 6.1: ECPs used in chapter 6

A single platinum atom described with the LanL1 potential contains 10 electrons, as does a
single water molecule. A water trimer at the MP3 level of calculation already reaches the limits
of the available computing resources as shown in section 3.4 (page 74) Two possibilities exist to

reduce the size of a single job:
1. a reduction of the correlation level (MP2) or no correlation at all (HF).

2. the usage of a pseudopontial with the fewer electrons like the LanL1 potential despite the
recomendation of HAY and WADT.

The next two sections concentrate on those questions. All calculations involved a double zeta
basis set provided with the quantum chemical program [222] in order to to have basis sets of similar

quality both on the platinum cluster and on the water molecules.

6.1.1 The electronic states of platinum

First experiments with different programs on different machines yielded inconsistent results. Table
6.2 lists some results for a single platinum atom with different programs using LanL1 and a double
zeta quality basis set.

Obviously GAMESS US is not suitable for the problem as the energies for 3D state differ very
much from the value published by HAY and WADT. More disturbing is the fact, that the energy
of the 3D state calculated with GAMESS US is higher than the energy of the 'S state, which
contradicts experiment.

The energy eigenvalues for the 'S state are nearly the same for all programs while the values for
the ®D state differ considerably. This behaviour suggests that the main problem is not the pseudo
potential, but the method used for the calculation of open shell wavefunctions. The energies

calculated with Gaussian 94 and a basis set limited to 5 d- and 7 f-type orbitals are close to the

2To avoid a new abbreviation we use here the keyword used by Gaussian 94 to specify a specific ECP.
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1S (5d10 6s°) 3D (5d9 6s1)

RHF ROHF UHF
GAMESS UK -26.19995 — -26.23896
GAMESS US -26.19995  -26.11322 -26.11809
Gaussian 94 / 5d 7f  -26.19995  -26.23815 -26.23821
Gaussian 94 / 64 10f ~ -26.19995  -26.23889 -26.21367
Lit [214] — -26.23774

Table 6.2: Energies in Hartree from different quantum chemistry codes for platinum with the LanL1
ECP

value published by Hay and WADT. The UHF wavefunction calculated with a 6d/10f basis set
(cartesian orbitals) again does not match the literature value, while the ROHF value does. The
UHF result from GAMESS UK (also cartesian orbitals) again matches the literature value. Sadly
GAMESS UK does not allow ROHF calculations for atoms with high multiplicities. This limit
prohibited an investigation of the influence of pseudo orbitals on open shell calculations.

According to table 6.2 Gaussian 94 with 5d/7f basis provides the best choice to tackle the
problem. The energies of the 3D state lie lower than the literature value, because HAY and WADT
used a single zeta quality basis set and Gaussian 94 a double zeta quality.

Figure 6.1 displays the energies of some electronic states compared with the ground state,
calculated with the LanLl and the LanL2 potential. The triplet states have been calculated
independently with the UHF method (solid lines) and the ROHF method (dashed lines). The 3D
state was found in both cases to be the ground state. Since the ground state energies do not differ
much (table 6.2) only the 3F state (5d® 6s?, high spin) moves on the energy scale. The difference
in the excitation energies (°D — 3F) between UHF and ROHF calculations is bigger for the LanL2
ECP than for LanL1 one and changes the relative order of the different states.

Figure 6.1 shows two principal features of the ECP’s published by HAY and WADT:

1. The 'S and the 3F states change their relative positions on the energy scale on the introduction
of correlation effects (LanL1 ECP). HAY and WADT [189] pointed out in their original work,
that the LanL1 potential is particularly ill-suited for correlation calculations.

2. The ROHF calculations reproduce correctly the relative order of the different states, while
the UHF calculation exchanges the 'S and the 3F states.

The experimental (D — 1S) excitation energy is well reproduced by the LanL2-MP2 calcula-
tions. As shown later the strength of the platinum-platinum bond increases with the occupation
of the 6s orbital, while simultaneously the water-platinum interaction becomes weaker. The cor-
rect reproduction of the D — 'S excitation energy is therefore necessary for a reliable prediction
of relative water-platinum interaction energies from quantum chemical calculations for different
electronic states.

Another series of problems arises from the small 3D — 3F excitation energies (LanL.2-MP2).
Since both states are energetically close to each other, the HF-calculations can converge to either of
these states during a scan of the potential energy surface and so cause unphysical behaviour. This
problem becomes more important with the growth of the metal cluster as the number of electronic

states increases rapidly and the different electronic states become more densely packed. The 'S —
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RHF MP 2 RHF MP 2 experiment
Hay and Wadt, 18 electrons Hay and Wadt, 10 electrons
Figure 6.1: Electronic states of a platinum atom exp. values [306a]

LG (5d® 652, low spin) activation energy is larger than the triplet activation energy and a scan of
the potential energy surface should therefore be easier in the singlet than in the triplet state.
HAY and WADT reported for the LanL1 potential [214], that the ®F state has a lower excitation
energy than the 'S state both for relativistic ECP calculations (RECP) and for relativistic Hartree
Fock calculations (RRHF). It is therefore not possible to reproduce the correct order of exciations
energies with the HW potentials. TopioL and BAscH [307] showed, that the relative order of
the energies of electronic states depends strongly of the quality of the ECP’s relativistic part and
that the important part is the D — 'S excitation energy, which is negative for non-relativistic
calculations. Other papers [308, 309] also showed that J-averaged calculations at either Hartree-
Fock or ECP level reproduce the wrong ordering of electronic states (°D < 3F < 1S). In regard to
this problem LanL2-UMP2 calculations should perform correctly despite the wrong order of states

compared with ROMP2 calculations, since the excitation energies are well reproduced.

6.1.2 Platinum and a single water molecule

Table 6.3 summarizes the results of the geometry optimization of a single platinum atom (LanL.2DZ)
interacting with a rigid water molecule.

The ' A’ wavefunction could be regarded as the combination of a 'S platinum atom and a A
water molecule while the A’ could be obtained by the combination of a >D platinum atom with a
ground state water molecule. Interesting is the comparison of the Hartree Fock calculations of the
triplet states. The results of the ROHF and the UHF calculations are nearly equal. The stationary
point found by the optimisation algorithm in both cases is a true minimum, as a check of the second
derivatives showed. The association curves calculated with a set of single point calculations showed

different behaviour. The UHF curve has its minimum at the same position as the optimised result,
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EDIM [H]

pt-h20.01 pt-h20.01t  pt_h20_01u pt-h20.02 pt-h20_02u

method RHF ROHF UHF RHF-MP2 UHF-MP2
state TA? 3A° A’ 1A 3N’

r [A] 2.1829 2.7140 2.6948 2.0986 2.4952
0 [deg] 125.66 134.16 133.93 116.43 123.20

qpt [e] —0.097 —0.050 —0.052 —0.162 —0.103
qdo [e] —0.675 —0.672 —0.671 —0.602 —0.612
qo [e] +0.386 +0.361 +0.362 +0.382 +0.358
Aq [e] —0.097 —0.050 —0.052 —0.162 —0.103

I [D] 2.8850 3.6731 3.7302 2.9224 3.8221
AEg [kcal/mol] —7.606 —29.022 —29.315 —22.561 —21.312
AEr [keal/mol] +18.702 _2.714 _2.782 9.136 7,904
-E [H] 194.242865 194.276994 194.277461 194.539696  194.537707
spin densitypy 0.0 1.9932 1.9913 0.0 1.9726

AEs: 'Pt + H,O — Pt—H,O AE7: 3Pt + H,O — Pt—H,0  Aq: charge transfer

Table 6.3: platinum water adduct - equilibrium geometries
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Figure 6.2: HF results for Pt—H-0. Figure 6.3: HF results for Pt—H>O.
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Figure 6.4: Platinum states close to negative

charge.
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while the ROHF-curve on the other hand does not show a minimum at all. An analysis of the
results showed that this and other convergence problems are caused by a problem with ROMP2

calculations within Gaussian 94. Better results were obtained from UHF wavefunctions.

The energy difference between the two curves in figure 6.2 and 6.3 is the same as the difference
between the platinum 3D and 'S states. As the MP2 level favours the 'S in comparison with
the 2D state (figure 6.3) the curves become closer together as the correlation level increases from
HF to MP2. The correlation calculation allows the electrons to avoid each other and the distance
between the platinum atom and the water molecule dopybecomes shorter and so the binding energy
increases. The driving force is the platinum atom. Figure 6.4 displays the total energy of the
platinum 'S and the D state on the approach of of a negative charge of —0.6 e. The value of
—0.6 e is roughly the charge on the oxygen atom in a water molecule (table 3.1, page 46). For
small values of d the smaller platinum atom becomes more favourable, as the 6s orbitals are more
extended than those of the 5d. The crossing point® of those two curves (2.0787 A, —118.641723 H)
corresponds closely to that of the two association curves (r = 2.2954 A, v = 119.811°, —194.535248
H). The crossing of the curves in figure 6.3 can therefore be explained by a polarisation of the
metal atom as the water molecule approaches the platinum atom [12, 310].

Figure 6.5 displays the formation of the Pt—H,O adduct
and figure 6.6 the complex in the chosen system of coordinates.
On the left side of figure 6.5 are the orbitals of platinum (D)
and on the right side are the orbitals of a water molecule (*A;).

In the centre of the figure are the orbitals of platinum ('S) with

a nearby negative charge, which breaks the sperical symmetry,

d the orbitals of the adduct.
Figure 6.6: Pt—H,O geometry. an ¢ orbitals of the adduc

With a negative charge at a distance of 6 A the platinum
d-orbitals split according to a first estimate with ligand field theory [293a]. The d,2_,2 and the
dxy orbitals have the lowest energy, the dy, and the dy, orbital are in the middle of the energy

-y

scale and the d,2 has the highest energy. As the negative charge gets closer to the atom, a hybrid
orbital between the 6s-, 6p,- and the 5d,2 orbital is formed. This orbital (¢1) is still dominated
by 5d,2. The energies of those orbitals are displayed in figure 6.5.

A first molecular orbital attempt to describe the interaction between water and platinum would
be the interaction of the 5d,2 orbital with one of the water molecule’s free electron pairs. According
to the VSEPR model [10-12, 311], the free electron pairs of the water molecule could be obtained
by a linear combination of the 1by (¢2) and the 3a; (¢3) orbitals of the water molecule. Such a
combination of those two orbitals is possible, because both orbitals transform according to a’ in the
adduct. The combination ¥gp; = 12 + 13 forms an orbital which describes the first free electron
pair and points directly to the platinum atom, whereas the second combination Ygps = 12 - 93
represents the second free electron pair, which points away from the platinum atom.

Such a simple model would result in three molecular orbitals. The first MO ¥y = ¢ + ¢gp; =
c1 Y1 + ¢ Yo + c3 Y3 describes the bonding interaction between water and the metal; the second
orbital ¥y = ¢y — YEp1 = ¢1 Y1 — Cy Yy — c3 3 is the antibonding combination and the third

3The crossing points were found with a small C program using the intersection algorithm [242] and
Gaussian 94 as a subroutine called with the system-function. The corresponding input files were written

by the program before the function call.
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Figure 6.5: Formation of Pt—H>O.
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orbital ¥3 = ¢gps = Co 12 — c3 Y3 is the nonbonding free electron pair. Figures 6.7 to 6.9 display
the three central orbitals of the water-platinum bond. Only the second orbital, the antibonding
combination of the platinum 5d,2 orbital with free electron pair, can be found in figure 6.9. The
remaining two orbitals ¥; and ¥3 cannot be found among the Hartree-Fock orbitals.

Orbital 6a’ shown in figure 6.7 is the bonding combination of ; and w3 whereas orbital 7a’
(figure 6.8) is the combination of ¢; and 5. The orbitals 12 and 3 of the water molecule do not
mix. Hence, a bonding interaction between the platinum 5d,2 orbital and a free electron pair from
the water molecule cannot be found among the Hartree-Fock orbitals. Instead the 3a; and 1b,
orbitals on water interact directly with the metal.

Figures 6.7 and 6.8 show, that 1 is slightly tilted from the z-axis to enhance the overlap of the
water and platinum orbitals. This tilt is caused by a small admixture of the 5dy, orbital to ;.
The small contribution turns the 6sp—5d,2 hybrid orbital into the right direction for a maximum
overlap. The contribution of the 5dy, controls the bonding angle v between the PtO bond and the
plane of the water molecule. The remains of the 5dy, orbitals form the 8a’ orbital of the adduct.
This mechanism also braks the degeneracy of the dy, and the dy, orbitals (3a”).

The platinum 6s orbital has the same symmetry as ¥,. Both transform according to a’ in
the adduct and interaction is likely. A similar interaction has already been observed for the free
platinum atom and the platinum atom near a negative charge. The orbitals 10a’ and 11a’ are
created in this way. They differ mainly through the 6s contribution to ¥;. Orbital 10a’ resembles
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a 5d,2 orbital while 11a’ resembles the 6s orbital. While the orbitals 6a’ and 7a’ are located at
the water molecule the orbitals 10a’ and 11a’ are located at the platinum atom. An analysis of
the spin density of the A’ state, in which the orbitals 10a’ and 11a’ are singly occupied, indicates,
that both electrons are located at the platinum atom.

The bond between platinum and water formed via the interaction of two doubly occupied
orbitals is similar to the hydrogen bond in the water dimer, but the charge transfer is up to 10
times stronger in Pt—H,O (table 3.8 (page 53) for properties of the water dimer). The charge
transfer is supported by the partial occupation of the formerly unoccupied 6s orbital with the
extra charge from the water molecule. This movement of electrons from an occupied orbital into
an empty one is an example of polarisation (subsection 2.5, figure 2.3, page 28). The strength of
the bond between platinum and water is therefore controlled by the polarisation of the platinum
atom by the water molecule.

A suitable description for the Pt—H>O complex would therefore be an inner orbital complex
[la, 28a]. The interaction with the water molecule causes the promotion of an inner 5d electron
into an outer 6s orbital. The free 5d orbital is then used for the construction of the bond between
the platinum atom and the free electron pair from the water molecule. In VB terms this interaction
has to be described more as a covalent bond than an ionic one.

At the first view the 3A’ state should be more stable than the 'A’ state, since it is built
from ground state components and the platinum atom already has a 5d vacancy. But the 11a’
orbital is strongly antibonding and the occupation of this orbital weakens the platinum-water
bond. Figure 6.10 shows the electron densities of the A’ and the *A’ state at the crossing point
of the association curves. Solid lines mark the total electron density of 0.001 a.u., while the grey
shaded area highlights the difference between both states. The antibonding character of the 11a’
orbitals can be deduced from the shape of these curves. Electron density is moved away from
the centre of the platinum atom to the outer regions of the atom. This electron shift increases as
the electrostatic repulsion between the platinum and the negatively charged oxygen atom. At the
crossing point electron movement costs no energy and so facilitates a change of electronic state.

The antibonding character of orbital 11a’ can also be deduced from the Mulliken population
analysis [288-291]. In the 'A’ state, with an optimized geometry, the overlap population (MOP)
between platinum and oxygen has a value of 0.036 while the MOP between platinum and hydrogen
is —0.013. The interaction between platinum and hydrogen is antibonding despite the opposite
charges. The excitation (UHF calculation) of a single electron at this geometry reduces both
the interactions between platinum and oxygen (MOPpio = —0.033) and platinum and hydrogen
(MOPpyg = —0.010). After relaxation (elongation of the platinum-oxygen bond, widening of
the bond angle v, table 6.4) the interaction between oxygen and platinum is weakly bonding
(MOPpio = 0.005), whereas the interaction between hydrogen and platinum (MOPpiy = —0.003)
is weakly antibonding. The elongation of the platinum-oxygen bond reduces the repulsion between
the platinum 6s electrons and the valence electrons of oxygen. Simultaneously the bond angle ~
increases and so enhances the overlap of the 5d,2 orbital and the 3a; orbital.

The character of the 6s orbital can be described as double-edged. It is necessary to accept the
extra charge from the water molecule during the formation of the bond, so acting as a polarisation
function. If the 6s orbital is too strongly occupied, the extension of the electron space (figure
6.10) repels the water molecule and the bond becomes weaker. A similar correlation between the
occupation of the 6s orbital and the binding energy has been observed in Pt—CO [312].

The water molecule has the possibility to waggle. Table 6.4 compiles the geometries and energies
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wlt 0 wlt_0d wls 0 wlt_180 wls_180

method UHF-MP2 UHF-MP2 RHF-MP2 UHF-MP2 RHF-MP2
state 3B, 3A, LA, 3A, LA,

r [A] 3.6093 3.5934 3.1523 2.4952 2.0954
5y [deg] 0.0 0.0 0.0 180.0 180.0

qps [e] —0.023 —0.020 —0.046 —0.075 —0.111
do [e] —0.653 —0.656 —0.636 —0.639 —0.652
qH [e] +0.338 +0.338 +0.341 +0.357 +0.382
Aq [e] —0.023 —0.020 —0.046 —0.075 -0.111

I [D] 2.3463 2.3911 2.0889 4.4830 3.6750
AEqr [kcal/mol] —1.060 —-1.613 +11.082 —6.871 —5.519
—-E [H] 194.526799 194.527682  194.507450 194.536060 194.533906
spin densitypy, 2.0000 1.9986 0.0 1.9803 0.0

Table 6.4: Platinum water adduct - extrema of a systematic change of ~.
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Figure 6.11: Water waggle movement.

of the extrema of such movement and figure 6.11 shows the energy of the complex as a function
of . The platinum oxygen distances r were kept to their equilibrium values (*A : 2.6948 A, 'A :
2.4952 A).

The curves have exactly the shape one expects for the interaction of platinum and water via
a free electron pair, but both curves intersect. A comparison of table 6.2 and 6.11 shows, that at
the turning points (0°, 180°) the triplet states are more favourable than the singlet states. Even
with an optimized platinum oxygen distance the difference is very large. For v = 0° the singlet
state with an interaction energy of +11.1 kcal/mol is extremely unfavourable, while the triplet
state (*A;) with —1.61 kcal/mol is still bonding. The singlet state is actually favoured only in a
small area (r < 2.3 A, 80° < v < 145°, grey shaded in figure 6.11). It is a typical problem with
such a calculation, namely that the relative energies of the electronic states change as the geometry
changes. GAVEZZOTTI et al. observed a similar behaviour of Pt, —CO cluster [303].

6.1.3 The Influence of the Pseudo Potential

Table 6.5 shows the results for Pt —H5O obtained with different ECPs. The importance of the
platinum 5d orbitals for the metal-water bond is obvious from a comparison of the results for a
preliminary 1-electron ECP (subsection 7.3.1, page 230) with results obtained with the LanLx-
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LanL1 LanL2 1 e~ ECP®

RHF MP2 RHF MP2 UHF
r [A] 24574 22686 21820  2.0986 3.8498
5 [deg] 12443 10819  125.66  116.43 180.0
qpr (] —0069 —0.165  —0.097  —0.162 —0.010
40 (] —0.660 —0578  —0.675  —0.602 —0.678
qu (] +0.365  +0.375  +0.386  +0.382 +0.344
Aq ] 0.069 0.165 0.097 0.162 0.010
1 D] 28150 26533 28850 29224 2.7302
AE( [keal/mol]  —4.935 —16.358  —7.606  —22.561 —
AE( [kecal/mol] +19.500  —6.494  +18.702  —9.136 —0.395

(2) Please refer to subsection 7.3.1 (page 230) for details.
(®) 1Pt + H,0 — 'Pt—H,0 (9) 3Pt 4+ H,O — 'Pt—H,0

Table 6.5: Comparison of different ECPs.

potentials. During the optimisation the hydrogen atoms turn away from the platinum atom, so
that the interaction between water and platinum occur solely via the 3a;-orbital. The equilibrium
distance rpio (3.85 A) is far too long to speak of a chemical bond and the interaction energy of
0.4 kcal/mol is only a small fraction of the value observed with the other ECPs.

All LanL1 bond lengths are longer than those calculated with the LanL2 potential and the
binding energies calculated with LanL.1 potential are always smaller than the energies calculated
with the LanL2 potential. The same reasoning shows, that the repulsion (AEr) at Hartree-Fock
level is larger for the LanL1 potential than for LanL2. ROHLFING et al. [306] observed a similar
effect for the interaction between platinum and a hydrogen atom. At Hartree-Fock level the charge
transfer calculated with the LanL1 potential (0.069 e) is smaller than that calculated with the
LanL2 potential (0.097 e). At MP2 level the charge transfer for both potentials is of similar size
(0.16 e). As shown in subsection 6.1.2 correlation calculations are very important for the correct
description of the platinum-water interaction. In both cases LanL1 and LanL2 the PtO bond
shrinks in calculations at MP2 level. The influence of correlation on the LanL2 bond is smaller
(—3.9%) than for the LanL1 bond ( —7.7%). This result agrees with the conclusions drawn from the
contributions of the correlation energy to the total binding energies at MP2 level (LanL1: 69.7%,
LanL2: 66.2%), although the absolute value of the correlation energy for LanL2 calculations (14.9
kcal/mol) is larger than that for LanL1 (11.4 kcal/mol). The MP2 results for the LanL2 potential
should be more reliable as the correlation space is larger and the 5s and 5p orbitals include parts
of the core-valence correlation. Despite the larger correlation space, the coefficient of the Hartree-
Fock function remains 0.9738. This value is close to coefficients found at Hartree-Fock level for the
water dimer (section 3.1, table 3.6, page 50). The MP2 method should therefore include most of
the correlation effects in the platinum-water bond.

The influence of electron correlation is larger on the 'S state than on the 3D state, since the
electrons are more closely packed. The total energy of 'Pt and HyO moves further on the energy
scale than that of 3Pt and H,O. This larger movement in energy of 'Pt and H,O compensates
partly for the correlation energy of the adduct (LanL2: AEE™ = 14.95 kcal/mol < 27.84 kcal/mol
= AE$"™). Since correlation calculations behave differently on reactants and products, the intro-

duction of correlation methods has a pronounced effect on the potential energy surface.
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ro 2.13597 A
Yo 119.902 deg

uncorrected corrected Eo —16.8546  kcal/mol
r [A] 2.0986 2.1360 D, 90.0426  kcal/mol/A?
v [deg] 116.43 119.90 D; —158.790 kcal /mol /A3
AEg [kcal/mol] 22.561 16.855 A, 0.00253  kcal/mol/deg?
As —0.00002  kcal/mol/deg?
Table 6.6: BSSE in 'Pt—H>0 at MP2 level. K, 0.116338 keal/mol/A /deg

Table 6.7: Parameters for Vgssg

6.1.4 Effect of the BSSE on the platinum-water interaction

The same method as for the calculation for the BSSE on the water dimer (subsection 3.2.4, page
70) was used to estimate the effect of BSSE on the water-platinum interaction. The platinum
atom was described with the LanL2 ECP and a double zeta basis set (G94 keyword: LanL2DZ).
The double zeta basis set was chosen to have two basis sets of similar quality, so as to minimize
that part of BSSE caused by different sizes of basis.

Table 6.6 summarizes the results from the last step of the BSSE corrected geometry optimisation
(60 points, energy maximum —16.0 kcal/mol). Using the BSSE corrected geometry (table 6.6) in
a quantum chemical calculation at MP2 level with a FCP BSSE correction according to Boys and
BERNARDI yielded an interaction energy of —16.855 kcal/mol. The precise difference between force
field prediction and quantum chemical calculation is about 0.0001 kcal/mol.

During the geometry optimisation the BSSE decreased from an initial value of 5.877 kcal/mol
down to 5.522 kcal/mol (25% of the interaction energy). The BSSE is therefore in the range of
the binding energy in a water dimer and about five times larger than that observed in the water

dimer.

Vasse(r,7) = Eo + Dy (r —r9)” + Ay (Y —70)> + K1 (r —1o) (v —70) +
D3 (r—m9)® + A3 (v —v0)* (6.1)

Table 6.7 displays the parameters of the potential Vpgsg(r,7y). These are only valid in a small
range 2.10 A <r < 2.24 A and 106.43° < v < 126.43°. Due to this small area of definition the
anharmonic part of the bond length force field is always smaller than the harmonic part. The
figures show that the bond length is much more important for the energy than the bond
angle, which has only a small influence on the bond energy.

Since the coupling constant K; has a positive value (0.11 kcal/mol/A /deg), an extension of the
bond length produces a reduction in bond angle to keep the binding energy as low as possible. This
rotation can be explained by the molecular orbital mechanism outlined in subsection 6.1.2. As the
bond length increases the water 3a; orbital turns towards the platinum atom. The nonbonding
lobe of the 3a; orbital stretches slightly further than the lobes of the nonbonding oxygen p-orbital.
This movement stabilizes the 6a’ orbital of the adduct. In the other case, the reduction in bond
length, the 7a’ orbital becomes more stable and compensates for the compression of the molecule.

A similar BSSE effect was observed in quantum chemical calculations on the 2A’ state of the
adduct. The effect of BSSE on the uncorrected geometry is 3.861 kcal/mol, which yields 49% of
the binding energy. Regardless of the electronic state the BSSE is always large and complicates
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LanL2DZ LanL1MB 1 e~ ECP®
PtH PtHt PtH PtH* PtH PtHt

r [A] 15483 14753 16284 15178 14822  1.9252
Pt ] 008 0063 —0.091 0.690 —0.063  0.163
qm (] —0.085 0037 0091 0309 0063  0.837
dipole [D] 24459 0.9093  2.3983 0.1316  3.0307 —0.0627
Pop 5d 9.096 8839  9.130 9.055 0.0 0.0
APop5d 0.257 0.075 0.0

AEjox  [H] 0.3092 0.3086 0.3419

AEponp [H] 0.0685 0.2575 0.0454 0.2350 0.0560 0.2123

(@) Please refer to section 7.3.1, page 230 for details.

Table 6.8: Properties of 2%+ PtH for different ECPs

6s - 1s (o OO
orbital PtH PtHTt
_6s 5d 9.096 8.839
5d o, 6s 0.771 0.182
— . @c)oe
bs+1s,-- 1s 1.069 0.938
1s -
% OC@OO Table 6.9 Mulliken Population from

LanL2DZ calculations.
Figure 6.12 0-MOs of PtH.

any scanning of the potential energy surface.

6.1.5 The Platinum-Hydrogen interaction

PtH was one of the first molecules for relativistic quantum chemical calculations on platinum
[12, 306, 308, 309, 313-320]. Table 6.8 compiles some results for PtH for the 23+ state (4 §, 4 7
and 3 o electrons).

The preliminary results obtained with the 1-electron ECP (subsection 7.3.1, page 230 for details)
indicate that the 5d orbitals are less dominant in bonding and the bond between platinum and
hydrogen is controlled by the interaction of the s-orbitals.

Figure 6.12 shows a simplified sketch of the 0-MOs in PtH. The electronic structure can
be rationalized by the combination of a *D platinum atom with a 2S hydrogen atom. Despite
the conclusions drawn from table 6.8 the 5d,2-orbital contributes significantly to the o; and o5
orbitals. The construction of the orbitals can be explained in two steps. First, the platinum 6s and
the hydrogen 1s orbital form two pairs of orbitals. The contribution of the platinum 6p orbitals to
the bond is negligible. This movement of the electrons facilitates the interaction of the bonding s
orbital with the 5d,2-orbital. This procedure creates two new orbitals o; and o3, which form the
central part of the chemical bond. The remaining platinum 5d electrons do not contribute to the
bond and form two 7 and two & orbitals.

The 5d-orbitals cause the shrinking of the platinum hydrogen bond during the ionisation of the

molecule. The Mulliken population analysis (table 6.9) shows, that the charge comes mostly from
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the platinum 6s-orbital. A more detailed analysis shows further, that the largest change in the
population is observed in the outer regions of the platinum 5d-orbitals. This movement reduces
the electron-electron repulsion between the cores and simultaneously stabilizes the o1 orbital. This
purely relativistic effect has been observed previously by others [306, 309, 315] and cannot be
reproduced by a simple 1-electron potential. The removal of an electron from the o-MO weakens
the bond and extends the seperation between the atoms. This problem will be discussed in greater
detail in subsection 7.3.4 (page 239).

As observed previously in the interaction between platinum and water bonds calculated with
the LanL1 potential are longer and weaker, and this seems to be a principal feature of ECPs. The
LanL2 HF calculations reproduce more accurately the experimental bond length of 1.54 A [321].
The inclusion of correlation has a significant influence on the bond length and tightens the bond.
The effect is more pronounced on the charge distribution in the molecule. LanL2 calculations on the
2%+ state give always a PtTH~ for MB od DZ bases, whereas LanL1 calculations produce Pt—H™.
The charge distribution calculated with the LanL2 potential agrees well with experimental change
in the workfunction [322, 323] for low coverages as well as the gasphase dipole moment [321].

As for water platinum interactions correlation effects are important for the platinum hydrogen
bond. MP2 calculations with the LanL2DZ potential yielded a bond length of 1.494 A while MP2
calculations with LanL1MB ECP resulted in a bond length of 1.565 A. Both results fail to reproduce
the experimental value to roughly the same extent. On the next level (MP3) the LanL2DZ bond
length becomes longer (1.4993 A) while the LanL1MB bond length does not change. At this level,
the 1 electron calculation, a bond length of 1.485 A reproduces perfectly well the LanL2 result.

The calculations on PtH show, that even the simplest molecules are better described with the
LanL2 potential than with LanL.1 ECP one. As long as the computing facilities are available is the

18 valence electron ECP is the one of choice.

6.1.6 Summary of the results for single platinum atom

Although a single platinum atom is the smallest platinum cluster possible, it demonstrates most of
the main features in the adsorbate-platinum interaction and allows a detailed analysis of the binding
mechanism. Due to the large number of electrons in a platinum atom, ECPs are commonly used
for the description of the atom. The potentials of HAY and WADT are provided with the software
and so offer a good starting point for further investigations. The potentials by HAY and WADT
differ in the number of electrons used in the calculations. The LanL2 potential includes the 5s and
5p electrons and so allows a better description of correlation effects. The LanL1 potential, which
does not include these electrons, allows us a good, low cost description of the adsorbate-platinum
interaction. Bonds calculated with the LanL1 potential tend to be longer and weaker than Lanl.2
bonds, but show the same characteristics. Whenever possible the LanL2 potential should therefore
be the ECP of choice.

The bond between water and platinum is formed by the interaction of 3a; and the 1b; orbitals
of water molecule with platinum 5d orbitals. The platinum 6s orbital has a double function. First
it facilitates the interaction by accepting electron density, which was formerly in the 5d region.
This electron movement allows the formation of an inner orbital complex. Since the 6s orbital is
more widely spreading than 5d orbitals, the electron density is moved from the platinum core to
its outer regions and therefore closer to the oxygen atom. The Coulomb repulsion between the

platinum 6s-electron density and the oxygen atom weakens the bond between them. This can
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be observed from the different binding energies for water for to 'S and *D platinum. The bond
between the 3D platinum atom (with the occupied 6s orbital) and water is weaker than the bond
between 'S platinum (empty 6s orbital) and water. The excitation of a single electron by the
electronic field of the bond partner is called polarisation and depends strongly on the orientation
of both partners relative to each other. The Pt—H,O cluster with a 'S platinum is actually only
stable in a small region around the optimized geometry. A reliable scan of the potential energy
surface should therefore consider various electronic states.

Calculations on PtH show the strong influence of the 5d electrons on the bonds formed purely
by interaction of s-orbitals. This strong influence has a relativistic origin. Relativistic effects
expand the 5d-orbitals and contract simultaneously the 6s-orbital. The electrons get closer to each
other and interaction between both groups becomes more likely. This result emphazises the use of
relativistic potentials, as already demonstrated for the free atom.

Counterpoise calculations on Pt —H,O (YA’ state) showed the strong BSSE effect on the plati-
num-water interaction due to the combination of basis sets of different quality. The effect of BSSE
on the bond length is about 2% while that on the bond energy is up to 25%. Those simple

calculations should therefore provide good geometries but poor energies.

6.2 Platinum Dimer

The investigation of the interaction between the platinum dimer and a water molecule provides the
next stage in generating a working surface model. The calculations offer answers to the following

questions:
e How do platinum atoms interact with each other?
e How does this interaction control the interaction between water and the platinum cluster?

e A dimer allows the simulation of different adsorption sites. Which mechanism controls the

adsorption site?

The questions cannot be answered ia a straightforward manner. The different sites have different
symmetries and a smooth change from one to the other is not always possible. The first part of
this section concentrates on the direct interaction between the platinum atoms to provide a model
of the cluster itself, while the second part focuses on the interaction of the cluster with a water

molecule.

6.2.1 The electronic structure of the platinum dimer

The stability of the platinum dimer depends strongly on its electronic structure. Table 6.10 lists
the results for different platinum dimers. The different electronic states can be associated with the
electronic states of the free platinum atoms from which the dimer was built. The platinum dimers
in table 6.10 are therefore classified according to the electronic states of the atoms, from which the
dimer was built.

The first block of table 6.10 contains the results for the platinum dimer with a bulk bond
length [36] of 2.77 A (MP2 calculations). With increasing population of the 6s-orbitals (pop 6s)
the platinum dimer becomes more stable. The 6s band in the metal clusters forms the metallic

bond between the atoms and not the 5s-orbitals.
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Figure 6.13 shows a simplified diagram of the valence orbitals in the platinum dimer. In a
platinum dimer built from two 'S platinum atoms no electron should populate the ogs orbital, but
the opposite was found (pop 6s = 0.279). As in the Pt—H>0 bond, the 5d,2 and the 6s orbital
mix to form the bond and the gg-orbital becomes populated. The 3D —3D dimer was constructed
from the 'S—'S dimer by exciting both electrons from the oZ, orbital into the ogs orbital. The
osq and the ogs orbitals get closer to each other in energy and can interact. In the 'S—'S dimer
the ogs orbital is built purely from 6s orbitals (94%) whereas the 6s contribution to the ogs orbital
in the 3D —2D dimer is reduced to 70%. The 5d,2-orbitals contribute significantly to the shape of
the molecular orbitals but little to the metal-metal binding energy. Figures 6.14 and 6.15 illustrate
this effect (contour lines at 0.0, 0.015, 0.03, 0.045, 0.06). Figure 6.14 displays the ogs-orbital in the
1§18 dimer. The molecular orbital has the dominant shape of a o-orbital formed from s-functions,
whereas the the ogs orbital in the 3D —3D orbital (figure 6.15) shows features of a o-bond formed
from d-functions.

With increasing values of the 6s-population, the platinum dimer becomes more stable. These
results agree well with the literature [285, 314, 318, 324-326]. The dominance of the 6s orbitals for
metallic binding in platinum allows us to use effective one-electron pseudopotentials for the metal
cluster [318, 327-331], as will be discussed in chapter 7 (page 203).

The first part of table 6.10 shows the importance of electron correlation on the dissociation
energy. The dissociation energy of the dimer (AE(DISS)) increases about 13.2 kcal/mol (1S—18S)
/ 17.7 keal/mol (*S—2D) between HF and MP2. Inclusion of electron correlation also changes the
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construction I+ 18 1S 4+ 3D 3D + 3D

symmetry 1 g 3%gu 1 g
method HF/MP2 single point, dpgpy = 2.77 A

pop 6s 0.27858 1.60974 1.96434
pop 5d 19.5789 18.2424 17.9599
Apop 0.14252 0.14786 0.0758
E(HF) [H] —236.369911 —236.463285 —236.339891
E(MP2) [H] —236.550939 —236.623935 —236.658279
AE(*D) [kcal /mol] +10.851 —34.954 —56.506
AE(Diss) [keal /mol] —~15.964 —48.362 —56.506
method HF/MP2 geometry optimized
ropt(MP2) [A] 2.7592 2.5939 2.3579
E(MP2) [H] —236.550950 —236.628461 —236.663187
AEopt (*D) [kcal /mol] +10.844 —37.795 —59.585
AEopt(Diss) [keal /mol] —~15.971 —51.102 —59.585
pop 6s 0.282288 1.50612 1.94306
pop 5d 19.57304 18.32954 17.91898
Apop 0.14408 0.1643 0.13796
method HF geometry optimized

ropr(HF) [A] 3.0807 2.6638 2.5379
E(HF) [H] —236.373307 —236.464682 —236.380714
AE(*D) [kcal /mol] +50.383 —6.956 —45.734
AE(Diss) [kcal/mol] —2.683 —33.489 —45.734
pop 6s 0.0326 1.64226 1.92472
pop 5d 19.91274 18.21044 17.92516
Apop 0.05466 0.1473 0.15012

experiment [332, 333] : = 2.34 A, AE = 85 kcal/mol, 'Y ground state
AE(®D) Dissociation energy relative to two 3D platinums

AEopr(Diss) Dissociation energy to the named electronic states (see construction)
Apop = 20 — pop 6s — pop 5d

Table 6.10: Properties of the platinum dimer.
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Figure 6.16: Dissociation of the !S—1!S dimer. Figure 6.17: Dissociation of the !S—3D dimer.

relative order of the total dimer energies. At HF level the 1S—3D dimer is more stable than the
3D —3D dimer while at the MP2 level the 3D —3D dimer is the most stable one. The importance of
electron correlation is also reflected in the optimized bond length, when the equilibrium distance
is reduced by roughly 10% in the case of the 'S—'S dimer.

Effects of electron correlation are most powerful in the 'S—'S dimer. MP2 calculations yielded
an increase in the 6s population from 0.065 at HF level to 0.279 at MP2 level (rpipy = 2.77 A)
This additional population increases the bond strength and shortens therefore the bond length
during geometry optimisation. The mixing of the o5q and the ogs orbitals moves electron density
from a bonding 5d orbital into another bonding orbital, which leaves the 5d band slightly anti-
bonding since no electron density is removed from the o}, orbital. During electron correlation
calculations electron density is moved from the anti-bonding 5d orbitals into the ogs orbital, which
increases the binding energy dramatically. The coefficient of the root configuratuin (cp = 0.95) in
the Mgller-Plesset perturbation calculation is smaller than that for the water molecule (co = 0.97).
A high value of cg is an indicator of the validity of the perturbational approach. The influence of
electron correlation is not small compared with the HF-function regarding the platinum dimer and
the perturbational approach becomes less valid. More advanced methods like CI should be chosen,

but are very costly for the large clusters necessary to describe the platinum surface.

At this level a difference between Extended Hiickel and Hartree-Fock calculations becomes
apparent. BIGOT and MINOT [285] describe this electron movement as excitation. According to
the HF/MP2 calculation a doubly occupied ogs orbital forms the basis of the metal-metal bond
in platinum. UPS spectra also provide evidence of a strong occupation of the 6s orbitals (0.42
s-electrons/per atom) [334a, 335]. SO ETH calculations a priori seem to be unable to describe the

relativistic interaction between the 5d and the 6s band completely.

Table 6.10 provides evidence of the small contribution of the 6p orbitals to the metallic bond.
The valence electron population not used in the 5d and 6s orbitals (Apop) has an average value of
0.15. This value hardly changes with the level of the computational procedure or the population of
the 6s orbitals. The bond between the platinum atoms is built exclusively from 5d and 6s orbitals,
while the 6p orbitals are less important.

The dissociation energies shown in table 6.10 were calculated from single point calculations and
not from complete dissociation curves, because the wavefunctions change their multiplicity and/or

symmetry during the dissociation. The 'S—'S dimer was simple to calculate (figure 6.16), since
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Figure 6.18: Different geometries for Pto —H>O.

both symmetry and multiplicity were conserved during the dissociation.

The 'S—2D dimer was more difficult to compute because the symmetry changes from Doy,
to Coov. At large distances both platinum atoms have different electronic structures while the
electronic structures are equivalent at equilibrium distance. To calculate the dissociation curve the
symmetry of the initial dimer was reduced artificially* to Coo, but this method lowered the total
energy of the dimer (figure 6.17).

The dissociation of the 3D —3D was impossible to calculate, because the multiplicity of the
wavefunctions changes from 1 to 5 during the dissociation. This is a standard problem in platinum
clusters and becomes more pronounced as the number of platinum atoms increases. During the
final simulation of the metal surface the cluster’s geometry does not change and the electronic state
of the cluster as a function of the metal bond distance becomes unimportant. The work on this

problem therefore ends here.

6.2.2 Platinum Dimer and Water

Figure 6.18 compiles the different geometries for the Pty —HsO system, which were examined in
this work. The first geometries A and B simulated bridging sites, whereas the geometries C to E
describe on-top sites. Finally, geometry G describes the edge of a Pt; pyramid and geometry F is

the extreme form of an on-top coordination without any physical background.

6.2.2.1 Influence of the geometry

Table 6.11 lists the results for the interaction of the 'S—1'S dimer with water. The column dopt
contains the optimized distance between the water molecule and the metal surface (6.18 displays

*The manipulation of the symmetry started with the PtAu molecule. In the next step the charge of
the gold atom was reduced by one (Gaussian 94 key word massage) and finally the platinum ECP and the

basis set were defined manually in the input file for the gold atom.
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geo dopr [A] Aqle] (Etor geo dopr [A] Aqle] (Etor
+ 312) [H] + 312) [H]

B 1.9072 0.132 -0.813502 B 2.7190 0.054 -0.836039
A 1.7055 0.174  -0.832082 A 2.5190 0.084 -0.883404
D 2.0574 0.189  -0.849604 C  no minimum — converts into C
E 2.0541 0.190  -0.857023 E SCF does not converge

F 2.1120 0.155 -0.859522 C 2.4191 0.143 -0.898288
C 2.0483 0.213 -0.862900 F 2.2613 0.135 -0.902415
G 2.1142 0.175 -0.865975 G 2.2734 0.138 -0.903141
Table 6.11: 1S—1S dimer and water. Table 6.12: 3D —1S dimer and water.

the definition of d for each geometry). At the first glance the water molecule seems to be strongly
bound in the geometries A and B, because the water molecules are close to surface. These water
molecules penetrate the space between platinum atoms. The actual bond length between the
platinum atoms and the oxygen atom is much longer than in the other geometries (B: 2.375 A, A:
2.197 A).

The lower total energy of geometry A versus geometry B demonstrates the dominance of the
water molecule’s free electron pairs for the chemical bond between water and the metal. The
importance of the second neighbour on the surface for the chemical bond is reflected in the sequence
of energies for the geometries C - E — D. The interaction between the neighbour platinum atom
and the water molecule is interpreted by the Mulliken overlap population (MOP). The overlap
population increases with total energy (C: 0.025 E: 0.016, D: —0.002).

Table 6.12 shows the results for the low energy Pto triplet state interacting with water. The
SCF calculation did not converge on geometry E and the minimum in the energy curve for geometry
D vanished. During the optimisation of geometry D the water molecule flipped and geometry D
turned into geometry C. The only molecule from the on-top series remaining is therefore molecule
C and so is the most stable.

The geometries C and F exchange their relative energy positions and the two end-on geometries
(F and G) become the energetically most stable. Despite their relative stability the charge transfer
is the smallest for end-on geometries and it is therefore impossible to use charge transfer as a global
measure of stability over the whole conformational space, because both bond length and charge
transfer do not change systematically with total energy. On the other hand, charge transfer and
bond energy correlate well with the total energy for a fixed Pt-Pt-O angle (geometries A and B,
geometries C, D and E). The exception from this rule (geometries F and G) may indicate a change

in the mode of bonding (details in subsection 6.2.2.4).

6.2.2.2 The water metal interaction in Pt, —H>0

The results obtained for different geometries can be explained by differernt bonding mechanisms and
this section focuses on the molecular orbital mechanism of the metal-water bond in the geometries
A C and G.

As for the water dimer or Pt —H5O, the chemical bond between water and the platinum dimer is
not formed from free electron pairs but from individual interactions of the 3a; and the 1b; orbitals

with platinum d-orbitals. The Cs, symmetry of geometry A conserves the symmetry species of
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symmetry. symmetry.

these orbitals during bonding. Appropriate partners for the 3a; orbital are therefore the o5q, 75q
and the d5q orbitals. The 1b; orbital changes its symmetry character and transforms in Pty —HyO
according to bs. This change is caused by the inversion of the order of the mirror planes by the
heavy atoms. The water molecule can interact with the PtPt antibonding orbitals such as o, 754
and the §%,, which also transform according to by in geometry A. Figures 6.19 and 6.20 show these
orbitals, which are dominated by the original water molecular orbitals.

The metal part of the bonding molecular orbitals in geometry A is clearly dominated by the
platinum 7-orbitals. The analysis of the eigenvectors showed that the contribution of the ogs
orbitals is considerable. The ogs orbital transforms according to a; and can mix with 054, 159 and
d5q orbitals. This mixing results in a 6s population of 1.02, which is much higher than for the free
dimer (0.28, table 5.9). The 6s population suggests a 3D—1S dimer, which is inconsistent with
the multiplicity of the molecule. A direct correlation between the 6s population and the electronic
states of the individual platinum atoms in the dimer is no longer possible. As shown in section
6.1.2 the bonding of an individual water molecule to the platinum atom is always associated with
a small electron transfer from 5d into 6s to enhance bonding (6s population in 'Pt—H,0: dpio =
2.11A — 0.679, dpto = 10 A — 0.003). This effect is much stronger in the platinum dimer. The
adsorption of water not only reduces the symmetry of the molecule from Do, to Cay, but further

5d orbitals of an allowed symmetry species are in a suitable energy range for 5d 6s overlap.

Figures 6.22 and 6.23 show the bonding orbitals in geometry
C. The structure of the molecular orbitals is more complex than
before. It is impossible to construct a o-PtO bond from a 75q or
w24 as for geometry A, because the symmetry of the 5d-orbital
causes a zero overlap (figure 6.21). The o and § orbitals possess
suitable symmetry for bonding. Figures 6.22 and 6.23 show
that the chemical bond is constructed from the osq orbital.

Figure 6.21: Zero msq-3a; over-
The orientation of the metal orbital is controlled by a small lap.
contribution from the m5q orbitals. The linear combination of

msa and w3y (@1 = 0.707-[msq + w¢4]) results in a single platinum 5d orbital, which is used to
orientate the metal orbitals. The other metal orbitals are similar linear combinations, and the
metal part of the bonding orbital accumulates at the bonding platinum atom (left-right asymmetry

in the PtPt bond). The 6s contribution to the metal-metal bond is much higher than in geometry
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A (6s population A: 1.02, C: 1.39) and the total energy is therefore lower.

In C; symmetry, which is lower than the Cs, symmetry of geometry A, more orbitals transform
according to a’ so both g4 orbitals have more opportunity to interact with the 5d orbitals, thereby
accounting for the high 6s population and the low total energy.

Geometry G has also Cg symmetry. The 6s population is even higher (1.80) than for geometry C
but the water-dimer bond is slightly stronger (37.7 kcal/mol vs. 36.0 kcal/mol). This contradiction
can be explained by a gain in energy due to stronger metal-metal bond (details subsection 6.2.2.4)
on the expense of the platinum-water bond. This bond in geometry G (2.11 A) is 3% longer than
that in geometry C (2.05 A). Figures 6.24 and 6.25 show the bonding orbitals in geometry G. The
msq orbital contributes more strongly to the platinum-water bond as one lobe of w54 points directly
towards the water molecule. The enhanced orbital overlap partially compensates for the longer
bond. The symmetry and the shape of the available metal orbitals thus control the site
of adsorption.

During the interaction between the water molecule and the platinum dimer the 6s orbitals
become more populated. This extra population has two origins. Firstly, the newly formed complex
has lower symmetry than the free dimer. This reduced symmetry allows the 6s orbitals to mix
with additional 5d orbitals, which now have the correct symmetry. Secondly, the occupation of
the 6s orbitals creates a hole in the 5d band, which forms the basis for the chemical bond to the

water molecule. Meanwhile, the 6s electrons have more space to fill because Pty is much larger
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Figure 6.26: Electron movement in Pty —H5O.

than a single atom. This extra space is used to reduce the repulsion between the 6s electrons and
oxygen electrons and so facilitates the formation of a strong water metal bond (Pt—HO : —22.6
kcal/mol, Pto —H20O : —37.7 kcal/mol (geometry C)).

The mechanism is illustrated in figure 6.26. As the water molecule approaches the platinum
cluster electron density flows from the water molecule to platinum dimer. At the target platinum
negative charge is unstable due to the electrostatic repulsion between the 6s electrons and the
oxygen. This charge therefore flows directly to the end platinum atom. Such an extended charge
flow is characteristic of cooperative intramolecular forces. The second platinum, which acts as a

charge acceptor, indirectly strengthens the bond between water and the model cluster.

Table 6.13 summarizes the charges on the platinum
geo  dprei [e] apex [(]  Aq [e]

-0.087  -0.087 0.174
-0.066  -0.066  0.132
-0.302 0.089 0.213
-0.248 0.059 0.184
-0.283 0.093 0.190
-0.160 0.005 0.155
-0.111 0.064  0.175

atoms and the total charge flow. The water molecule bonds
directly to Pt2. The negative charge accumulates at the
free end of the cluster, while the bonding platinum atom
carries only a small charge. A natural orbital analysis of
geometry C gave the same picture. The platinum-platinum
bond becomes weaker in favour of the water-platinum bond,

as the strong polarisation of the cluster reduces the cova-

Q"M &E0aw =

lent /metallic bond strength.

No single orbital is predestined to form the basis of the Table 6.13: Charges and charge

metal-water bond. For each geometry other orbitals are in- .
transfer in Pty —H5O.

volved in the chemical bond. The possibility for the water
molecule to adsorb to the dimer depends on the existence of an orbital with correct symmetry in
a certain energy range. The bond strength correlates to the 6s population necessary to form those

orbitals.

6.2.2.3 Influence of the electronic state of the platinum dimer

To determine accurate values for the platinum-water interaction, complete dissociation curves were
calculated at selected geometries. These calculations proved to be demanding and not all possible
states and geometries have examined. Figures 6.27 to 6.29 show the curves and table 6.14 compiles
the results. Both open and closed shell wavefunctions were used for the comparison.

Table 6.14 shows clearly that with increasing 6s population the cluster becomes more stable
(Etror). This result agrees with those obtained in section 6.2.1. Simultaneously the platinum-
water bond becomes weaker (AE and dopr). The binding energy of a water molecule in the
on-top position (geometry C) in the triplet state is close to the experimental value of 12 to 15
kcal/mol [38], while the interaction with the singulet dimer is too strong. This result is in good
agreement with those for the Pt —H,0O system. A high occupation of the 6s orbitals increases the

167



geo® case 25+ 1 6sPop dipy (Etor AE
in Pty [A]  +312) [H] [kcal/mol]

A I 1 1.02112 1.7055 —0.832082 —25.195
A II 1 1.98086 3.0866 —0.900399 —0.736
A b 1 2.43924  2.56° —0.810391 -3.071
A v 3 2.08094 2.5196 —0.883404 —2.371
A Vb 3 1.87622 2.199  —0.816101 —

G I 1 1.79583 2.1142 —0.865975 —37.719
G II 3 2.12678 2.2734 —0.903142 —14.680
C I 1 1.39309 2.0483 —0.862900 —36.048
C II 3 2.06033 2.4191 —0.898287 —11.672

2 figure 6.19 b no complete curve

¢ not, optimized, value extracted from the curve fragment

Table 6.14: The platinum-water bond as a function of the 6s population

cluster’s stability but weakens the water metal bond due to repulsion between the extended 6s
electrons and the oxygen atom. This can be observed for the singlet wave functions (geometry A,
cases I and IT) as well for triplet wave functions (geometry A, case IV and V). Geometry A (case
III) should not be used for direct comparison because the density matrix breaks the molecule’s
symmetry whereas the electron density of the other molecules with geometry A show the correct
symmetry.

The weakening of the metal-water bond is not dominated by the multiplicity of wave functions
multiplicity as shown by direct comparison of the results for geometry A. As soon as the 6s popu-
lation approaches 2.0, the cluster becomes more stable and the water-metal bond becomes weaker
regardless of multiplicity. This effect is less pronounced for the triplet case.

It was not possible to construct singlet wave functions with higher 6s populations for geometries
G and C than those listed in table 6.14. The ogs orbital (a’ symmetry) can overlap with many
other orbitals, so that the SCF calculation converged to the ground state every time we tried to
construct a wavefunction with a different 6s population. Only geometry A allowed the construction
of a singlet wave function with a high 6s population. The binding energy of the water molecule is
exceptional small. This result again rules a pure spin-effect in water bonding out and the bonding
energy of the water molecule is even smaller than in the triplet state. The existence of the second
singlet species is again caused by symmetry mixing and orbital density. Few orbitals can overlap
with o5 and a mixture of those energetically well separated orbitals during the SCF calculation is
unlikely. The HOMO of this new cluster is very similar to that of the *D—2D dimer, whereas the
other two clusters (geometry G and C) have highly deformed o-bonds.

In all three cases the LUMO is built from the remaining parts of the ogs orbital. In a triplet
wavefunction the 6s orbitals are fully occupied; however the ogs orbital is distributed between two
other molecular orbitals. The singlet and the first triplet states are well separated. No curve
crossing has been observed as for Pt —H,0O. On the other hand, more electronic states exist with
the same multiplicity and similar total energies. The computation of the complete potential energy
surface is therefore more complicated than for Pt —H5O.

The occupation of the 6s orbitals and hence the electronic state of the cluster can be manipu-

lated via the oxygen-platinum distance. Figure 6.30 displays the strongest bonding singlet states
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(geometries A, C, G case I) and a portion of the curve for geometry A case III. The starting points
for geometry A (curves I, II, and III) were generated from single point calculations with different
platinum-oxygen separations. The different electronic states generated in this way were stabilized
by shifting the virtual orbitals. This method worked only partially in case ITI. At short separations
the repulsion of the 6s electrons by the oxygen atoms becomes smaller and therefore they spread
more widely. The system has two possibile ways to relax: It either flips the electronic state of plat-
inum dimer, turning case AIII turns into case AI, or can follow the potential curve. This flipping
is shown in the inset in figure 6.30. All three curves converge to the same dissociation-point, where
the 6s population in the platinum dimer is 1.430. Comparing those cases a bridging position for

the water molecule is less likely than case AI suggests.

The Pty —H5O cluster at dpio = 10 A differs not only in the 6s population but also within the
charge distribution in the cluster. Geometry A case I dissociates correctly into a water molecule
and a platinum dimer with uncharged atoms, while the in other cases (CI, GI, AIII) it dissociates
into a dimer with charged platinum atoms (|qp¢| = 0.2 e)®.

At a distance of 8 A from the surface the orientation of the water molecule relative to the dimer
should be negligible. A small distortion of the plane of the water molecule by 1 degree reduces the
symmetry from Cs, to Cs. In case Al the total energy drops dramatically and case AI converts
into case AIIL. Meanwhile, the charges on the platinum atoms increase to |0.2 e|. Such a large
increase cannot be explained physically with such a small distortion of the molecular geometry.
On the other hand, the conversion of geometry C (case CI) into geometry A (case III) hardly
changes the charge distribution and the total energy and no jump can be observed despite the
break of symmetry. The jump from case Al to case AIII / case CI can be explained by the mixing
of the 25" (a; symmetry, platinum 754 + water 3a;) and 23 orbital (by symmetry, HOMO,
o%,) molecular orbitals. The reverse step, the disentangling of the orbitals while changing from
Cs to Cyy symmetry is not possible. The mixed orbitals do not a provide suitable description of
the Pto —H2O system due to the physically incorrect charges on the platinum atoms and the jump
between geometries A and C/G (case I) is not physically reasonable either. The explanation of this
behaviour is the mixing of two different electronic states with similar energies (near-degeneracy
effects [336a]). A more appropriate theoretical approach is a multirefence calculation. First test
CAS SCF(2,2)-calculations (complete active space SCF (section 2.3, page 22)) containing the
HOMO and second next orbital to the LUMO of the Hartree-Fock calculation yielded good results.
No energy shift can be observed between the geometries A and C and the charge on the platinum
atoms in geometry C become reasonable small (Jgpt] = 0.000041 e). The 6s population is close
to its maximum value (1.828), which reduces the binding of the water molecule. The inclusion of
further orbitals into the correlation space allows a reasonable description of the chemical bond.
First test calculations showed® that the next important excitation contains occupied molecular
orbitals containing the water 3a; orbital and virtual orbitals built from the water 1by orbital. Such
an electronic excitation reduces the electron density in the congested centre of the molecule. A
complete multireference analysis of the Pto —H,O system is beyond the scope of this work.

®Charged platinum atoms are impossible for geometry A (Cs, symmetry). Gaussian 94 complains about

an unsymmetric density matrix, but all calculations converge quickly.
6The important orbitals for the active space were found with a small program, which tested all double

exciations individually. Only the energetically most significant were chosen for the active space.
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Figure 6.31: Rotation around the PtO bond. Figure 6.32: Wagging of the water molecule.

6.2.2.4 Movement of water on the surface

As shown in the previous section the electronic state of the platinum dimer depends on the oxygen-
platinum distance. This section considers of the connection between different geometries corre-
sponding to the same (or similar) oxygen-platinum distances.

Figures 6.31 and 6.32 show that all clusters with Cs symmetry can be easily interconverted.
Figure 6.31 shows the total energy as function of the rotation around the PtO bond. The geometries
C, E and D are joined by a straight line. The second curve shows the same plot for geometry G.
Geometry G is only energetically more stable than the other clusters in a small conformational
region. Figure 6.32 shows the total energy as a function of the angle of the water molecular
plane and the PtO bond. The curve starting from geometry G represents the global minimum
in only a small section of the conformational space. The geometries C and D are separated by
a small maximum. With increasing 6s population (changing from singlet state to the triplet)
the water-platinum bond becomes weaker. The relative height of the maximum is reduced and
the interconversion of geometries C and D becomes more likely. This explains the conversion of
geometry D into geometry C during the optimisation of the triplet state of geometry D (subsection
6.2.2.1).

Figures 6.34 and 6.35 show the conversion of geometry A (case
I) into geometry D, starting from geometry A. The distance from H H
the surface (PtPt bond) seems to be shorter in geometry A despite ‘/
the smaller binding energy. Figure 6.34 shows that the effective PtO
distance is longer due to the molecule’s geometry. The effective PtO / N
distance and the binding energy agree well with those values obtained g

in the previous sections. Figure 6.35 shows the total energy of the . .

cluster as the water molecule moves from geometry A into geometry Pt '\:’tz
D. Figure 6.36 shows the variation of the angle between the surface-

oxygen bond d (see figure 6.19 for the definition of d) and the water
Figure 6.33:  Pt2-Geo-

molecular plane v as a function of the distance from the centre. The
metry A to D.

water molecule moves smoothly into its final position as the water
molecule approaches its destination.
Figures 6.37 and 6.38 show the results of the same calculation starting from geometry C. The

distance from the surface first shrinks and then increases, while the PtO bond increases continuously
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(figure 6.37). Unlike the previous cases geometry C does not change into geometry A, but into
geometry H, where the oxygen atom rests directly above the centre of the PtPt bond while the
hydrogen atoms are tilted downwards and point towards the neighbouring platinum atom. The
second plot in figure 6.36 displays the tilt angle of the water molecular plane during this movement.
The geometry still has Cg symmetry and the platinums carry opposite charge. The electronic
structure and the symmetry of geometry C have been conserved during the calculation. During
this movement the water molecule passes through a shallow minimum (0.8 kcal/mol relative to

geometry C, figure 6.38).

The next series of calculations describes the movement of the water molecule in geometries A
and H. During these calculations we changed the angle between the bond between the surface and
the water molecular plane ~y, while the bond length d was allowed to relax at a constant a = 0
(figure 6.33). The results of these calculations are summarized in figures 6.39 and 6.40. Figure
6.39 shows the optimized distance to the surface during the rotation. The bond distance changes
smoothly the rotational angle. Only the slope of the curve at small values of rotational angle is
suspicious. Symmetry demands that the bond length should change smoothly over the 0 degree
point and the curve should not have a cusp. The same is observed for the energy (figure 6.40). At
zero degrees the cluster has again Co, symmetry, but the platinum atoms are charged differently
(|gps| = 0.172 e). The inset in figure 6.40 shows the local energy maximum, which makes a direct
transformation from geometry A into geometry C impossible, because a small activation energy

has to be overcome and the software follows the path of lowest energy.

Finally, the transformation from geometry C into geometry F via geometry G was analyzed.
Figures 6.42 shows the length of the platinum-oxygen bond and the population of the 6s orbitals.
The shortest equilibrium length was observed for geometry C (90°). At this point the total 6s
population has its highest value. As geometry C changes into geometry G this bond becomes
longer and simultaneously increases the total 6s population. The enlarged distance to the oxygen
atom reduces the repulsion between the 6s electrons and the oxygen and results a higher population
of the 6s band. At the bottom of figure 6.41 the 6s populations of the individual platinum atoms
are displayed. For Pt-Pt-O angles above 140° the total 6s population remains constant, while the
6s population of the individual platinum atoms changes continuously. This movement of the 6s

electron density demonstrates the possibility of intermetallic charge transfer in cooperative forces.
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The total energy (figure 6.42) of the cluster does not follow the 6s population, but has a distinct
minimum close to geometry G (135°). Figure 6.42 also displays the charge transfer from the water
molecule to the platinum dimer. The charge transfer decreases steadily during the motion and
exhibits no other features. The global minimum of the total energy at 140° is close to geometry G.

At this peak the total 6s population reached its maximum while the charge transfer is still high.

Table 6.15 shows the Mulliken overlap population

v geo MOP PtPt MOP PtO of selected bonds in the Pto —H5O system during the

90° C 0.120739 0.072887
135° G 0.303253 0.059046
140°  — 0.311012 0.054689
180° F 0.256784 0.040784

transformation of geometry C into geometry F. The
platinum-platinum bond becomes stronger, while the
platinum-oxygen bond simultaneously becomes wea-
ker.

Table 6.15: Mulliken overlap population This interplay of 6s-electron density and charge

in Pty—H,0. transfer within the platinum-water bond explains why

the water molecule bonds strongly to the platinum
dimer with small charge transfer in geometry G. It is not a change in binding mechanism, but
a change in the 6s-population, which compensates for the weak bond (see subsection 6.2.2.1). The
6s population changes again as the bond between the water molecule and the dimer breaks. In
geometry C the 6s population increases by 0.037. This increase reflects the reduced repulsion be-
tween the 6s electrons and oxygen. This small difference indicates that most of the extra charge
from the water molecule has to be stored in the 5d-band. Geometry G is more complicated: the 6s
population decreases by 0.365 during the dissociation. This extra 6s population in the Pto —H>O
comples can be explained by the higher contribution of the 6s orbitals to the bonds between the
water molecule and the platinum to compensate for the longer bond, as the 6s orbitals are more

widely spreading than the 5d.

Figure 6.43 shows the connections between different geometries and electronic states. Double
headed arrows indicate two way connections, while single headed arrows indicate one way con-
nections. It is possible to go from a totally covalent platinum dimer without water (end of the
dissociation curve for geometry A, case I, figure 5.30) to a partially ionic bonded dimer (end of
the dissociation curves for the geometries G and C, figure 5.30), but not the other way round.
For a given geometry (e.g. geometry A) two dissociation pathways exist to different end points,
which cannot be transformed into each other. More advanced calculations like CAS-SCF would be

required for a more physical description of the water platinum interaction.
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6.2.3 Summary of the results for the platinum dimer

The platinum-platinum bond is dominated by the 6s orbitals. The strength of the metallic bond
and therefore the total energy of the cluster increases with the occupation of the 6s orbitals (table
6.10). Electron correlation is essential for the correct description of this bond. The coefficient of
the ground state (cg) in the Mpller-Plesset calculation is 0.95 and smaller then the value for water
(0.97). At first sight, the influence of electron correlation seems to be small enough to proceed with
this method. The existence of energetically close electronic states makes the application of more
advanced methods necessary. First CASSCF calculations yielded a wave function with a very small
contributions from the ground state (co = 0.8). This result indicates that the influence is not small
and the Mgller-Plesset approach to electron correlation is inappropriate. MC-SCF calculations, on
the other hand, are costly and not simple (Root flipping has been observed with Pty [336b]). In
this work we therefore continue to use Mgller-Plesset calculations despite the known problems, to
get an initial idea of the role of correlation effects.

The following conclusions could be drawn from the Pt; —H,O calculations neglecting the ad-

vanced correlation problem:

1. As shown previously for Pt; —H>O the interaction between water and the metal decreases
with increasing 6s population (table 6.14). The principal problem, strong metallic bonds
versus strong water metal interactions, remains unsolved. Since the intermetallic bonds
contribute more strongly to the total energy than the water-metal bond, excited metal states
are necessary for the correct description of the bond.

2. The interaction of the water molecule with the platinum dimer reduces the overall symmetry
of the problem. Metal orbitals, which were previously well separated by symmetry, can now
interact. This additional overlap results in an increase of the 6s population, which weakens
the water-metal bond. Even very small distortions of the initial geometry (e.g. 0.01° in bond
angles) can break the symmetry”. This break causes an increase in the 6s population, which
results in unphysical jumps between potential energy surfaces. Those jumps can be avoided
with costly MC-SCF calculations.

3. A smooth transition between electronic states generated with the method described above
are possible (Figures 6.43), but not always in both directions. It is difficult to construct a

smooth potential energy surface covering the whole of conformation space.

4. The valence orbitals of the water molecule bond to any orbital with correct symmetry and

energy. During the formation of the bond the molecular orbitals of the free dimer mix to form

"Even at a distance of 100 A the water molecule is symmetrically present. A simple HF calculation

does not converge to the 'S—'S dimer as observed for the free dimer, but not to the *D—>D dimer.
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the basis of the water-metal interaction. This mixing is caused by two independent factors:

(a) The presence of the water molecule reduces the symmetry (see above).

(b) The water molecule polarizes the platinum cluster and creates a hole in the 5d band
for the formation of the bond. The occupation of the formerly empty platinum orbitals

with electrons is the quantum chemical equivalent of polarisation (figure 2.3, page 28).

The interplay of polarisation and 6s population is illustrated for geometry A: The 6s popu-
lation of the free dimer should be as low as possible for a strong bond to form between the
dimer and water. The higher the 6s population, the weaker the adsorption becomes (table
6.14) due to strong repulsion between the 6s electrons and the oxygen. The free dimer created
by the dissociation of case Al (figure 6.30) has a total 6s population of 0.279. During the
formation of the bond between the dimer and the water molecule electron density (0.174 e)
moves from the water molecule into the 5d-band of the dimer. Electron density must there-
fore move into the 6s orbitals. The observed 6s population (1.021) is twice as large, as this
estimate predicts (0.279 4+ 0.174 = 0.453). The extra 0.568 electrons stabilize the cluster by
symmetry-allowed orbital mixing in both the metal-metal and metal-oxygen bond. A higher
occupation of the 6s orbitals is not possible, since symmetry forbids the corresponding orbital
interactions. The exact position of the water molecule mirrors the delicate balance between

electrostatic repulsion, 6s population in terms of metal cluster stability and polarisation.

5. The electrons in the 6s orbitals are very mobile and can move freely in the cluster (figures
6.26 and 6.41). This flexibility offers the possibility of far reaching charge transfer and so for

cooperative forces in the water-platinum interaction.
6. A comparison of the different geometries shows, that

(a) the bridging positions for the water molecule are energetically unfavourable.

(b) the interaction of the hydrogen atoms with the surface platinum atoms contributes

significantly to the total interaction energy.
(¢) the symmetry and shape of the available metal orbitals control the site of adsorbtion.
(d) the second layer (geometries F and G) is also important for the binding of the water

molecule.

An ideal surface model should therefore be build from at least two slabs of platinum and
at the surface there should be a sufficient numner of platinum atoms to interact with the

hydrogens (section 6.5 (page 192) on Ptg).

6.3 The platinum trimer

The smallest physically realistic Pts-cluster is the equilateral triangle. This cluster represents a
small section of the Pt(111) surface and so can opperate as a surface model. A second cluster, a
triangle with a 90° angle, poorly describes the Pt(100) surface, and so this section focuses on the

equilateral triangle.
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Figure 6.44: Hiickel results for equilateral Pts.

6.3.1 Electronic structure of the equilateral Pt;-cluster

Hiickel calculations can be used to predict correctly the multiplicity of the ground state (section
5.2, page 119). This method was developed originally for clusters using a single valence electron
ECP for the bulk atoms. Despite this restrictions this approach can be apllied to clusters in this
section under certain conditions.

First we assume that all 10 valence electrons (5d/6s) populate the 5d band completely. Electrons
are then moved from the highest antibonding 5d-orbitals into the 6s band, as many electrons being
moved as necessary to fill all bonding 6s orbitals. Problems occur if the electrons are removed from
degenerate 5d-orbitals. When the 5d electrons have to be rearranged to avoid asymmetric electron
densities in the metal cluster. This problem is less significant, as long as the number of electrons
moved is small. Usually one or two electrons may be moved, because the highest 5d orbital is
nondegenerate.

Figure 6.44 shows the results of the 6s-Hiickel calculations for the case of the equilateral triangle.
Hiickel calculations in section 5.2 (page 119) predict for the most stable equilateral platinum triangle
the 6s band occupied with two electrons and the wavefunction has a multiplicity of 1. Such a trimer
can be build from two *D and one 'S platinum atoms [337]. This electron configuration produces
an average 6s population of 0.66 per platinum.

Three electron configurations were studied in greater detail:

A No extra electrons remain in the 6s band. This calculation should be close the combination of

three 'S platinums.

B A UMP2-calculation in which one 5d electron remains in the 6s band. Such a calculation tries

to model the combination of two 'S and one 3D platinum atoms.

C The starting function involves the promotion two electrons into the 6s band, to simulate the

combination of two ®D and one 'S platinum atoms as predicted by the Hiickel calculations.

As predicted by the Hiickel calculations case C represents the most stable electron configuration
at the Hartree-Fock as well as at the electron correlation level (table 6.16). The introduction of
electron correlation does not change the relative order of the electronic states as observed previously
for Pto. It was not possible to compute successfully any other electronic state with a higher 6s
population.

Table 6.17 shows the MP2 6s population in all three cases. The total populations of the 6s

orbitals in cases A and B are much higher then expected (predicted as 0 for case and 1 for case
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case (=Etor case  6s pop orbitals A C

— 354) H A 0.79350 2-35  0.00185 0.00048
A HF  0.552021 B 1.98513 2-39  0.00226 0.00148
B HF  0.624394 ¢ 2.31798 3-35  0.00284 0.00023
C HF  0.625982 3-39  0.00351 0.00246
A MP2  0.860970 sum  0.01046 0.00465
B MP2  0.979235 6s orbitals: 2, 3
C MP2 1.053677 5d orbitals: 35, 39

Table 6.16: HF and MP2 en- Table 6.17: MP2 6s popula- Table 6.18: Overlap popula-

ergies for Pts. tion in Pts. tion in Pts.

B), while the 6s population in case C is close to the expected value of 2.0. The introduction of
electron correlation enables the occupation of the 6s orbitals to stabilize the cluster (core-valence
correlation). The MP2 calculation compensates partially for the static electron correlation caused
by the nearly degenerate electronic states. As the occupation of the 6s orbitals increases, this
relaxation pathway becomes less important and the additional 6s population decreases (case A:
0.79, case C: 0.32). Table 6.18 accounts for this mechanism in cases A and C. These states have
been chosen because both wave functions have the same multiplicity. The atomic orbitals 2 and
3 form the 6s orbital on the first platinum and the atomic orbitals 35 and 39 represent the 5d,2-
orbital on the neighbouring platinum atoms (double zeta basis set). As the 6s population increases
from case A to case C the Mulliken overlap population between the individual atomic functions
decreases as well as the total overlap population between both orbitals, indicating the reduced
importance of this relaxation pathway.

The mixing of the 5d and 6s orbitals is the first of the two major relaxation pathways for
platinum clusters (subsection 5.3.3, page 125). With the second pathway 6s- or 6p orbitals are
populated instead of 5d orbitals (section 6.3.2.3).

6.3.2 The interaction of water with Pt3-cluster

The equilateral triangle offers two different adsorption sites: the hollow site coordination over the
centre of the triangle and the on-top position above a platinum atom. The first part of this section
focuses on the hollow site, the second on the on-top coordination with all possible geometries, and
the third is a brief summary of the results for the case of the right-angled triangle.

6.3.2.1 Water bound to the hollow site on the cluster

Figure 6.45 displays the model for the hollow-site adsorption of water on platinum(111) (geometry
I). The molecular plane of the water molecule is also the o mirror plane of the platinum cluster
and the two oxygen-hydrogen bonds point upwards, yielding Cs symmetry for the cluster. In the
first set of calculations, the rotational angle w was kept constant at 30°, while a was allowed to
vary. Optimisation (table 6.19) of the distance between the metal surface and oxygen on the water
molecule yielded a bond length of 1.8827 A at RMP2 level, whith the hydrogens pointing straight
(o = 180°).

The HF and MP2 energies differ markedly as shown in figure 6.46. The HF potential energy
curve has no minimum, but displays a sharp edge close to 2.5 A. On the other hand the MP2
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potential energy curve has a shallow local minimum of —2.4 kcal/mol compared with the maximum
at 1.88 A. After passing through the maximum the energy of the cluster drops dramatically by
about 15.6 kcal/mol and equilibrates at a surface-oxygen distance around 5 A

To understand the difference between the curves, the 6s populations at HF and MP2 level
were analyzed. Figure 6.47 displays the energy and the 6s population calculated from the HF
wavefunction. Starting at the expected minimum at 2.0 A (The HF minimum is always slightly
further from the metal surface than the MP2 minimum.) the 6s population increases steadily as
repulsion of the oxygen atom diminishes. At about 2.5 A the 6s population increases rapidly and
the jump occurs in the energy curve, where the electron configuration of the metal cluster changes.
At short distances the cluster with the lowest 6s population is more stable then that with two 6s
electrons, since the repulsion between electrons and the oxygen is minimized. When the oxygen is
further from the surface, the 6s electrons move from the 5d band into the 6s band and so stabilize
the metal cluster. At this points the slope of the energy curve changes, since another electronic
state on the metal interacts with the water molecule. Figure 6.47 shows the transformation of the
1S1S!S platinum cluster (The initial 6s population 1.105 is caused by the water metal interaction.)
into the ®D?D!'S cluster through changing the distance between the water molecule and the cluster
and provides an excellent example for the polarisation of the metal cluster by the water molecule.
Similar effects have been observed by DAl et al. for Pt —H and Pt;—H, [338, 339].

Figure 6.48 shows the same transition at MP2 level. The 6s population increases dramatically
(A value of 8.45 is still possible for the 6s population as a double zeta basis set was used on
platinum. Two orbitals per platinum allow a maximum 6s population of 12, which is not physically
reasonable.) during the fall in total energy. At longer distances the 6s population stabilizes at a
value of 1.84, which is close to the 6s population of 2 expected for the 3D3D!S platinum trimer. This
unphysically high value for the 6s population is caused by the incorrect mixing of the two platinum
states during the MP2 calculation. Figure 6.49 shows the MP2 energy and the coefficient ¢ of
the ground state in the development of the wavefunction. As the distance between the platinum
trimer and the water molecule increases cy also increases. This increase in the ground state wave
function is possibly due to a reduction in importance of the dynamic correlation coupling the
bonding and antibonding water-metal orbitals (section 6.2.2.3). At even longer distances the static
electron correlation in the metal cluster becomes more important and cg drops dramatically to an
extremely small value of 0.88, which is far beyond the definition of a small perturbation in the MP2
method. Figures 6.48 and 6.49 demonstrate the breakdown of the Mgller-Plesset perturbational
approach to the water-platinum cluster interaction.

Figure 6.50 shows the rotation of the water molecule lying above the hollow site around the PtO
bond (RMP2 level), which reduces the symmetry from Cg to C;. The curve is smooth indicating
no changes in the electronic state, but the total energy of the cluster is much lower than observed
for the Pt3—H,O cluster with C; symmetry (Ang = 57 mH = 35.8 kcal/mol). The mechanism
of this jump (Agf E) is the same as observed before for Pt,—H2O: The rotation decreases the
total symmetry of the cluster facilitating the population of the 6s orbitals and stabilizing the metal
cluster (symmetric 6s population: 1.1646, asymmetric 6s population: 1.5172). The orientation of
the water molecule itself has little effect on total energy (43.7 pH, 0.027 kcal/mol). The broken
symmetry also produces a shift of the extrema in figure 6.50 of about 3 degrees, as showed by the
marker. At the expected extrema (0°, 30°, 60°, 90°) Gaussian 94 identifies the broken symmetry
of the density matrix. Calculations with the correct symmetry yielded higher total energies for the

cluster.
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Figure 6.45: The hollow site of Pt(111).
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H,O molecular plane

I dPtO

Figure 6.51: Geom- Figure 6.52: Geometry II. Figure 6.53: Geometry III.
etry IV.

6.3.2.2 Water bound on top

All variables of the cluster shown in figure 6.45 were optimized simultaneously. The result of this
optimisation (geometry IV) is shown in figure 6.51. In the course of the optimisation the Pt-Pt-
Pt angle increasesfrom 60° to 72° and the water molecule (rog = 0.9881 A, <pon = 105.36°)
moves from the hollow position to an unphysical on-top position. This result leads us to the closer
examination of the two clusters shown in the figures 6.52 and 6.53. Geometry II is a fragment of
an on-top water molecule bound to the Pt(111) surface. Three parameters have been examined in
detail: Stretching and dissociation of the PtO bond (dpio), rotation of the water molecule around
the PtO bond (w), and the waggling of the water molecule (). 7 is the angle between the PtO
bond and the centre of the platinum trimer (figure 6.52). The examination of the E(y) curve
demonstrated the existence of a second local minimum (geometry III) shown in figure 6.53. This
structure can be seen as a face of a platinum tetrahedron with a water molecule in on-top position.

Figure 6.54 displays the dissociation of the PtO bond. The potential energy curve is smooth,
but the binding energy of the water molecule is too high (AEpiss = 42.644 kcal/mol), indicating
low 6s occupancy for an on-top coordination (table 6.19). Figure 6.55 shows the total energy of the
cluster as a function of rotational angle w. The energy minimum at 0°, coinciding with geometry
IT, is another example for the importance of hydrogen-platinum interactions in the water metal
system (AEgror = 17.882 kcal/mol). This interaction is also apparent from the strong Mulliken
overlap population (bonding Pt: —0.036, next neighbour: 0.028, second next neighbour: 0.006)
between the hydrogens and the surface atoms, at which they are pointing.

Figure 6.56 shows the cluster energy and PtO bond length (dpyo) as the angle between the
PtO bond and the metal surface (y) increases (a, tha angle between H,O plane and the PtO bond,
fixed at 106.36°). As the water molecule is moved around the cluster the bond length increases
and reaches a plateau at 2.21 A. The local minimum at 150° proofs the existence of a second stable
Pt3 —H>O structure (geometry IIT). A single point calculation with a slightly distorted geometry
gave a cluster (geometry IIIa) with a lower energy then expected (table 6.19) from figure 6.56. A
similar effect has been observed previously for Pto —H5O.

The movement of the water molecule allows a higher 6s population (geometry II: 2.03, geometry
I1I: 2.28) and stabilizes the cluster (AITE(MP2) = 0.35 kcal/mol (table 6.19)). At this point the Cs
symmetry stabilizes the 5d-6s separation and inhibits further 6s population. As for the Pty —HyO
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geometry I  geometry II  geometry III  geometry IIla  geometry IV
site hollow on-top on-top on-top on-top
B [deg]  60.00 60.00 60.00 60.00 72.63
dpto [A] 2.4702 1.9848 2.1430 2.1430 2.2314
w [deg]  90.0 0.0 0.0 0.001 0.0
y [deg]  90.0 90.0 144.74 144.74 177.67
o' [deg] 180.0 106.38 119.68 119.68 118.51
(Ergr + 430) [H] —0.598111  —0.659990 —0.647864 —0.667820 —0.653290
(Emp2 + 430) [H] —0.133059  —0.217826 —0.218377 —0.277631 —0.262339
6s population 1.1646 2.0303 2.2853 3.0541 2.2498

a: angle between the H,O plane and the PTO bond

B: Pt-Pt-Pt angle at the H,O bonding platinum

Table 6.19: Optimized structures for Pt3 —H>O.
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Figure 6.58: Pt3—H,0 geometry V. Figure 6.59: Hiickel orbital energies.

system (section 6.2.2.2, page 164) electron density flows into the 6s band, away from the PtO bond
and towards the ends of the metal cluster while the total 6s population increases. This movement,
reduces the repulsion between the 6s electrons and the oxygen and stabilizes the bond between
platinum and water.

A single point calculation with C; symmetry (w = 0.001°) gives a lower total energy, because
the reduced symmetry allows further population of the 6s orbitals (geometry III: 2.28  geometry
ITa: 3.05). Figure 6.57 shows the rotation of the water molecule. The curve for geometry III has
a local minimum at 70° in contrast to the rotation of the water molecule in geometry II (figure
6.55). This minimum is caused by an extended charge transfer (minimum: 0.134 e, geometry Illa:
0.123 e), which counteracts the small decrease of the 6s population (minimum: 3.046, geometry
IlTa: 3.054). The decrease of the 6s population destabilizes the cluster, whereas charge transfer
form the water molecule to the Ptg part stabilizes the cluster. Similar behaviour has been observed
in Pto—H>0 (section 6.2.2.4, page 171). The local minimum in figure 6.57 is another example of
the competition between charge transfer and 6s population for the strength of the platinum water
bond. During the rotation the total charge on the platinum atom increases and simultaneously
the charge distribution becomes more homogeneous. At the local minimum one hydrogen points
directly at the platinum below indicating a strong Coulomb interaction between surface platinum
atoms and the hydrogens in the water molecule.

6.3.2.3 Pt3 surface model for the Pt(100) surface

A platinum triangle with a right angle is a poorer model for the Pt(100) surface than the equilateral
triangle for the Pt(111) surface. Since quantum chemical results do not differ much between those
two cluster geometries, this section presents a brief summary of the results.

As the distance between platinums Pt2 and Pt3 (figure 6.58) increases the interaction between
the atoms decreases. Hiickel calculations (section 5.2, page 119) predict, that the degeneracy of the
antibonding orbitals is lifted. While one orbital transforms into a nonbonding orbital the second
becomes more antibonding. Meanwhile, the bonding orbital becomes less strongly bonding, as
the interaction between both platinums declines (figure 6.59). Equation 6.2 describes the Hiickel

orbital energies (€) as a function of the scaling factor A (0 < A < 1; A = 0 — no interaction, A =
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1 — full interaction) for the resonance integral involving platinums Pt2 and Pt3.

g =a+z; [

1 / 1 1 / 1
1‘1:—A $2:§>\+ 2-1-1)\2 1‘3:§A— 2+ZA2 (62)

Figure 6.59 shows a plot of the corresponding orbital energies. The left side of the plot displays
the equilateral configuration (A = 1), the right side the Hiickel equivalent of a linear molecule or a
right-angled triangle (A = 0). The true right-angled triangle lies somewhere between these limits.
Since Hiickel calculations predict a singlet ground state for the surface model, the calculations
concentrated on the singlet wave functions. The optimisation (geometry V) of the cluster shown
in figure 6.58 yielded a total MP2 energy of —431.181 H (table 6.20). The dissociation curve of
the water molecule is smooth, yielding a water-metal binding energy of 34.51 kcal/mol. This high
value for the binding energy is consistent with the low 6s occupancy of 1.75. The right angle in
the platinum cluster enables a stronger interaction of the surface platinums with hydrogens (MOP
0.032), but the rotational energy Egor (14.1 kcal/mol) is about 4 kcal/mol lower than in geometry
II. This difference can be explained by shorter PtH distances in geometry V (3.5333 A) with a
correspondigly stronger interaction (MOP 0.004) compared with a distance of 3.7127 A and an
overlap population of 0.003 in geometry II.

As in calculations on the equilateral structure v was varied systematically between 90° and
180° with a fixed value of 1.9896 A for the PtO bond. The resultant curve is similar to that for
geometry IT (not shown in section 6.3.2.2), although the energy difference between 90° and 180° is
much smaller for geometry V (7.9 mH compared with 13.3 mH). Both curves have a shallow local
minimum (geometry II: 135°, geometry V: 145°), which suggest the existence of a second stable
geometry for cluster V similar to geometry III, but with a higher value for ~.

The optimisation of geometry V was repeated for the triplet state (geometry Va). The total
MP2 energy (-431.760 H) of the cluster Va is lower then for geometry V, which is consistent with
the increased 6s population of 3.03. No changes of electronic state were observed in the dissociation
of the water molecule. The low value of water-metal interaction energy (14.038 kcal/mol), which
agrees well with the experimental bonding energy, is a consequence of the high 6s population and
consistent with the long PtO bond length of 2.409 A.

The 6s populations of the clusters V and Va suggest a second pathway for the 5d-6s interaction,
to be discussed in greater detail in the subsections 6.4.2.1 and 5.3.3 (page 125). The totally
symmetric 6s orbital (a;) has such a low energy, that a population of this orbital is energetically
more favourable than the occupation of an antibonding 5d orbital. Without any artificial electron
redistribution, as was necessary in Pt—H>0O and Pty —H-0O, the HF-calculation converges to the
optimal 6s population. In the triplet case the a; orbital is still doubly occupied and the by orbital
is singly occupied. The other singly occupied orbital is an antibonding 5d orbital. In the course of
the HF calculation b; mixes with 5d and it is not possible to identify the by orbital as a separate
orbital. This mixing lowers the energy of the by orbital and it becomes more bonding. In contrast
to figure 6.59 a 6s population is possible, which remains bonding. The energy of nonbonding 6s
orbitals is only poorly described by Hiickel calculations. Orbitals found slightly antibonding in
Hiickel calculations were found to be slightly bonding in Hartree-Fock. The b; orbital may lie
closer to the 5d band, as the Hiickel calculations suggest. Section 5.3.3 (page 125) discussed this
problem in greater detail.

The Hiickel calculations predict, that the equilateral geometry should be more stable then the
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geometry V geometry Va

dpto [A] 1.9896 2.4087

a [deg] 107.94 102.47

6s pop. 1.75363 3.03265
(Emp2 + 431) [H]  —0.180674928  —0.218744777
(Enr + 431) [H]  —0.651190500 —0.759573398

w=0°v=p=90°

Table 6.20: Geometries for the right-angled Pts-triangle.

right-angled geometry for similar 6s populations, because the 6s electrons dominate the stability
of the metal cluster. This prediction was verified by MP2 calculations. Geometry V (Eyp2 =
—431.181 H) has a 6s population of 1.753 while the 6s population in geometry I (Eypo = —431.218
H) is only slightly higher 2.03. An increase in 6s population (without change in electronic state) of
about 0.3 should give an extra energy of 0.5 mH (energy difference between geometry IT and III)
and not 36 mH as observed between geometry II and V. Geometries Va and IITa have similar 6s
populations (Va: 3.033, IIla: 3.054) but the energy between the clusters differs about 58 mH. The
right-angled geometry is always energetically higher then the equilateral triangle.

6.3.3 Summary of the results for Pt;

1. The Hiickel (chapter 5, page 117) scheme can be used with some restrictions for 18 electrons

ECP calculations. Problems occur only with the nonbonding orbitals.
2. Two relaxation pathways for the 5d-6s interaction have been identified:

(a) 5d and 6s orbitals mix to form hybrid orbitals, provided they have correct symmetry.

(b) If the 6s orbital energies are low enough, these 6s orbitals are populated in preference
to the 5d orbitals.

Both pathways increase the 6s population and can obscure the Hiickel predictions. The
exact mechanism and the correlation between Hiickel and HF calculations was discussed in

subsection 5.3.3, page 125.

3. The equilateral triangle with water in the hollow position demonstrates the correlation of the
platinum-oxygen distance and the 6s population. As the water molecule moves away from
the surface electron density flows from the 5d band into the 6s orbitals. This electron flow is
so large, that the movement of the water molecule causes a change in the electronic state of

the metal cluster.

4. The equilateral triangle with water in the hollow position provides a good example of the
breakdown of the MP2 method in respect of the water-platinum interactions. The dynamical
correlation can be included very well, but the static electron correlation is beyond the scope
of this method.

In small clusters the different electronic states are well separated in energy and electron cor-
relation is dominated by dynamical effects. In these cases the MP2 method works reasonably

well. The energy difference between the electronic states becomes smaller, as the cluster size
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increases. This picture is controlled by static electron correlation and the MP2 approach

breaks down.
5. The results obtained for Pt —H,O and Pto —H>O have been confirmed in those for Pt3 —H>O:

(a) The 6s population stabilises the cluster, but weakens the water-metal interaction. The
higher the 6s population, the lower the total energy of the cluster, and the water-

platinum bond becomes weaker.

(b) Electron density flows into the 6s-band away from the water-platinum bond to the edges
of the cluster. This electron flow forms the basis of cooperative forces in the water-metal

interaction.

(¢) The reduction of the cluster’s symmetry facilitates the occupation of the 6s orbitals.
Some movement of the water molecule break the original symmetry and can cause
unphysical jumps between potential energy surfaces. CAS-SCF calculations can help
to minimize the size of the jumps, but the important orbitals are more difficult to find
than in Pto —H2O. The energy jump becomes smaller as the active space increases, but
the computational costs rise. A detailed analysis of this problem is beyond the limits of

the thesis and will be subject of further research.

(d) The interaction between the hydrogen atoms on the water molecule and the platinums

below is weak, but has a significant influence on the orientation of the water molecule.

This agreement with the results found so far shows, that these phenomena are not dependent

on cluster size but underlie the water-metal interaction.

6.4 The Pts-pyramid

Several geometries are possible for a Pts cluster. This section
focuses only on the tetragonal pyramid (figure 6.60) with a
platinum-platinum distance of 2.77 A. The pyramid was chosen
for several reasons:
1. The first successful quantum chemical calculations on
platinum-water interactions were performed with such a
cluster [64].

2. The calculations on Pts—H>0O (section 6.2.2) and
Pt; —H,0O (section 6.3.2) showed that the most stable

clusters are either the vertices or faces of a pyramid.

Figure 6.60: Geometry of the
Pts —H>O cluster.

3. Three-dimensional surface models are closer to reality
than two-dimensional models (section 6.6), because the

width of the 5d band lies closer to the experimental value.

With increasing cluster size, the problems with different electronic states are magnified. Even
the smallest change in v (the angle between the platinum-oxygen bond and the molecular plane
of the water molecule) and € (the rotational angle around the platinum-water bond) induced large
changes in total energy. A total of 46 calculations was done to analyse these energy jumps: A
smooth description of the potential energy surface was only possible when the symmetry instruction

in Gaussian 94 was turned off (keyword: NoSYMM) with an initial-guess function chosen from a totally
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asymmetric cluster. CISD (configuration interaction single and double excitations) calculations
showed, that the symmetry module of G94 generated wavefunctions which did not describe the
ground state, but always another state. A set of CAS-SCF calculations including orbitals close to
the HOMO-LUMO gap showed that no simple solution to this problem was available.

6.4.1 Electronic structure of the Pts-pyramid

Figure 6.61 shows the results of the Hiickel calculations
(section 5.3.1, page 122). Either two or four 6s elec- m _ a-2p
trons could form stable metal clusters. Previous results
suggest that the highest 6s population should create the gég — o+ (1-5)B
most stable metal cluster. The troublesome Pts clus-

ter mentioned above have a 6s population higher then D) ﬁ)_ —
2, but the clusters were unsuitable as models for thesur-

face, since a distortion of € about 20° (rotation around IEI v o+ (1+[5B
the platinum-oxygen bond) caused a second unphysical

energy jump. This problem is caused by the degenerate

nonbonding 6s molecular orbitals. The binding of the Figure 6.61: Hiickel results for Pts.
water molecule to the metal cluster lifts this degeneracy and the singlet wave function becomes
more favourable than the triplet function. For a smooth rotation around the platinum-water bond
the orbitals mix, as their nodal planes rotate with the water molecule to ensure a smooth transition
(subsection 5.3.4, page 126 for details). A 6s population of 2 instead of 4 eliminates this problem
and simplifies the description of the energy surface.

This simplification should have only a small influence on the strength of the platinum-water
bond. The cluster can be separated into two layers: the platinum atom in the top layer, which
contributes directly to the water-metal bond and the four atoms at the second layer, which do
not contribute significantly to the bond. The strongest influence on the platinum-water bond
strength has the 6s population at the top of the pyramid. The 6s orbital of the top platinum does
not participate in the nonbonding orbitals, as shown in figure 6.61. Electrons in the nonbonding
orbitals should therefore stabilize the cluster but should have little influence on the metal-water
bond. Hiickel calculations predict a 6s population of 0.553 at the top of the pyramid in both cases
and the repulsion between the platinum at the top and the oxygen should therefore be the same.

A platinum cluster with a total 6s population of 2 should therefore serve as an ideal model,

since the total energy of the metal cluster is not important for the interface model.

6.4.2 The interaction of the Pts;-pyramid with water

All systematic attempts to create a cluster similar to that predicted by the Hiickel results failed.
The quantum chemical calculations started with the hydrogens pointing straight upwards (v =
180°), because the high symmetry of the cluster (Cay) reduced the runtime of the Gaussian 94
jobs. Any small distortion of the angles v and € (Ay = Ae = 0.001°) caused unphysical energy
jumps as observed previously for Pt —HyO and Pts —H3O. These jumps are caused by an abrupt
change in the symmetry of the cluster. A small distortion in = reduces the symmetry to Cg and
a distortion in € reduces the symmetry to C;. The distortion of € is more critical than that of ~.
The reverse approach, starting from an asymmetric cluster, produced an asymmetric wavefunction

on the symmetric cluster after the removal of the distortion.
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The occupation of the 6s orbitals and hence the electronic state of the cluster depends critically
on the distance between the platinum cluster and the water molecule. All test calculations (in-
cluding all distortions) were repeated for different platinum-oxygen bond lengths. Finally a cluster
was found that could be distorted (Avy, Ae) without any energy jumps, but retains a symmetric

wavefunction.
Table 6.21 summarizes the results for the optimized

dpio [A] 2.2973 .

Pts; —H2O cluster. The dissociation energy of 17.229
v [deg] 14177 kcal/mol is close to the experimental value, which agrees
¢ [deg] 450 well with a 6s population of 0.734 at the top of the pyra-
Gs pop fotal 2.976 mid. This value is close to the value of 0.7 to 0.8 sug-
6s pop top 0.734 gested in the literature for surface platinum atoms [285].
drop [e] —0.2035 The platinum atom at the top carries a negative charge of
Aq [e] 0.1261 —0.203 e. This negative charge is caused by the 6s popu-
Eror [H]  —668.101599 lation within the cluster (subsection 5.3.1, page 122), but
AEpiss [kcal/mol] 17.229

serves as a model for the electron spill at the surface, which

o weakens the water-metal bond.
Table 6.21: Optimized Pt;—H>O

cluster. In the free platinum cluster (dpgo = 12.2973 A, section

6.4.2 for details) the total 6s population has a value of
2.958 and the 6s population on the top platinum is 0.714. During formation of the water-platinum
bond the total 6s population increases by about 0.018. The change of the 6s population on the top
platinum is +0.020. The formation of the bond leads to a smallincrease in 6s population at the top,
while the bulk atoms at the foot of the pyramid do not change significantly. The charge transfer
from the water molecule to the metal cluster is 0.1261 e. This charge accumulates at the top of
the platinum pyramid (qrop = —0.2035 e in Pt5—H>0, qrop = —0.0874 e in the free pyramid,
Aqrop = —0.1161 e). Only 7.9% of the total charge transfer flows into the base of the pyramid.
The charge on the top platinum increases about 0.1161 e, but the 6s population increases only by
about 0.02 e. Hence most of the charge flows into the 5d orbitals of the top platinum. The binding
mechanism is the same as observed before: The water molecule binds locally to a platinum. With
this bond formation electron density flows into the bonding platinum’s 5d orbitals. This flow is
again connected to a small increase in the 6s population. The 6s electron density stays on the top
platinum, because intramolecular charge transfer is not supported by the water hydrogens. In the
Pty —H>0 and Pt3—H,O clusters with large intramolecular charge transfer the negative charge on
the surface platinums is stabilised by Coulomb interactions with the positive hydrogens above the
surface. In the Pt5 —HO cluster the distance between the bulk platinums at the bottom and the
hydrogens at the top is too long to support this mechanism. The hydrogens point upwards and
the cluster’s geometry is close to the bilayer structure suggested by the ice rules for water bilayers
(v = 125°, sections 1.1.3 (page 4) and 8.2 (page 265)).

Figures 6.62 (including the water 3a; orbital) and 6.63 (including the water 1b; orbital) show
the bonding orbitals of the platinum-oxygen bond. This bond is localised between the top platinum
and the oxygen, because the coefficients of the other atomic orbitals contributing to this molecular
orbital are smaller than a tenth of the values for the bonding platinum. The platinum atoms on
the base of the pyramids are 1.4 A below and above from the cluster’s mirror plane shown in the
figures. The observed contribution of the basal atoms to the electron density in the mirror plane

is therefore naturally low.
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Figure 6.62: Bonding orbital in Pt; —H,O Figure 6.63: Bonding orbital in Pt; —H,O
(HQO 331). (HQO lbl)
6.4.2.1 Dissociation
Figure 6.64 shows the total energy of the Pts— 0.075
H>O pyramid as a function of the platinum-oxygen 0,080
distance dpyo for various values of v. The curve I
for the optimised geometry (v = 141.8°) is is very g -0.085
similar to that for v = 150°. ,EI\ -0.090 oo
The range for dpio (2 A <dpio <3 A) is much % 0085l \120°
smaller than before, since all quantum chemical 180°
calculations on Pty clusters showed that distance- -0.100 <
related energy jumps are seen first in this inter- .0.105 150°
2 2.2 2.4 2.6 2.8 3

val. Table 6.22 lists the important parameters for

deo [A]

the minima of the dissociation curves. The total
6s population varies only little lying between 2.96 Figure 6.64: Dissociation Pt; —H>0.

and 2.98 for all points. The same is observed for the 6s population of the top platinum atom: All
values lie in a small interval between 0.72 and 0.74. These values for the 6s population agree well
with those found for the free platinum pentamer. In the free platinum cluster (dpyo = 12.2973
A) the total 6s population has a value of 2.958 and the 6s population on the top platinum is
0.714. Since energy discontinuities are generally assiciated with large chanhes in 6s population, a

relatively constant 6s population suggests such discontinuities are unlikely.

With increasing values of « the charge on the top platinum becomes smaller. The charge
decrease is proportional to the charge transfer between the platinum cluster and the water molecule.
This change is caused by the relative importance of the water 3a; and 1b; orbitals for the platinum-
water bond. For large values of v the bond is dominated by the 3a; orbital. The widely spreading
3a; orbital is partially bonding and charge transfer along this orbital is unfavourable. For small
values of v (around 90°) the platinum-water bond is dominated by the 1b; orbital, which is strictly
non-bonding and tighter. Charge transfer is therefore easier from the non-bonding 1b; orbital
(Compare with subsection 6.1.4, where the platinum-water bond is not obscured by additinal

platinum-hydrogen interactions).

The 6s population increases slightly with increasing values of v and so shows an opposite effect
to the charge transfer. This increase of the 6s population can be explained via the different water

orbitals. The platinum-water orbital containing the 3a; water orbital has a higher 6s contribution
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¥ dpio  (Etor + AEaps 6spop 6spop grop Aq

[deg] [A] 668 H) [H] [kcal/mol]  total top [e] [e]
90 2.35 —0.095912 13.661 2.964 0.720 -0.303 0.1814
120 2.30 —0.100896 16.788 2.974 0.729 —0.239 0.1515
142" 2.30™ —0.101599  17.229 2.976  0.734 —0.203 0.1261
150 2.30 —0.101526 17.183 2977  0.735 —-0.193 0.1180
180 2.30 —0.101146 16.945 2.978 0.738 —0.178 0.1041
* not optimized ** optimised cluster

Table 6.22: Local minima in the Pt5 H20 dissociation.
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Figure 6.65: Rotation of H>O around the PtO Figure 6.66: Wagging o