Identifizierung und funktionelle Charakterisierung von Fettsäure-Δ3(*E*)-Desaturasen aus *Fusarium graminearum* Schwabe und *Magnaporthe grisea* (T. T. Hebert) M. E. Barr und einer Fettsäure-β-Hydroxylase aus *Cytophaga hutchinsonii* Winogradsky

> Dissertation zur Erlangung des Grades eines Doktors der Naturwissenschaften (Dr. rer. nat.)

> > Dem Department Biologie der Universität Hamburg vorgelegt von

> > Dipl.-Biol. Simone Zäuner aus Groß-Gerau

> > > Hamburg, 2009

Genehmigt vom Department Biologie der Fakultät für Mathematik, Informatik und Naturwissenschaften an der Universität Hamburg auf Antrag von Priv.-Doz. Dr. D. WARNECKE Weiterer Gutachter der Dissertation: Herr Professor Dr. E. HEINZ Tag der Disputation: 18. Dezember 2008

Hamburg, den 28. November 2008

Wg

Professor Dr. Jörg Ganzhorn Leiter des Departments Biologie

"Lassen Sie sich [...] nicht entmutigen! Auch die anderen rackern sich erfolglos ab; es ist normal, dass sich erstmal kein Ergebnis blicken lässt. Halten Sie durch! - Oder lernen Sie gleich einen vernünftigen Beruf" (Hubert Rehm)

Die Berufe, bei denen Sie bereits am ersten Tag das Ergebnis Ihrer Arbeit erblicken, sind ab dem zweiten Tag stinklangweilig (Dirk Warnecke)

ZU	SAMM	ENFASSUNG
AB	KÜRZI	JNGEN 10
1	EINLE	ITUNG 13
	1.1	Sphingolipide sind Membranlipide mit vielfältigen Funktionen15
	1.2	Membrangebundene Desaturasen bilden eine Enzym-Superfamilie23
	1.3	Δ3-desaturierte Fettsäuren sind Bestandteile verschiedener Lipide26
	1.4	Glycosphingolipide interagieren mit antimykotischen Peptiden28
	1.5	Ziele dieser Arbeit
2	VORA	RBEITEN - BIOINFORMATIK 30
	2.1	Bioinformatische Identifizierung geeigneter Kandidatensequenzen30
	2.2	In dieser Arbeit verwendete Organismen35
3	ERGE	BNISSE – MOLEKULARBIOLOGISCHE CHARAKTERISIERUNG 38
	3.1	<i>Fusarium graminearum</i> synthetisiert $\Delta 3(E)$ -desaturiertes GlcCer
	3.2	Molekularbiologisch e Analyse der Kandidaten für die ∆3(<i>E</i>)-Desaturase41
	3.3	CHU_2059 aus <i>Cytophaga</i> codiert für eine Acylamid-β-Hydroxylase49
	3.4	Die $\Delta 3(E)$ -Doppelbindung beeinflusst die Wirkung der Defensine54
4	DISKU	JSSION 58
	4.1	Die Δ3-Desaturase-Familie besitzt hochkonservierte Sequenzbereiche58
	4.2	Bemerkungen zur Aktivität der Δ3(<i>E</i>)-Desaturase aus <i>Fusarium</i>
	4.3	Die β -Hydroxylase aus <i>Cytophaga hutchinsonii</i> ist eine Besonderheit61
	4.4	\triangle 3(<i>E</i>)-desaturiertes GIcCer ist ein Angriffspunkt für Defensine62
5	AUSB	LICK 65
6	MATE	RIAL UND METHODEN 68
	6.1	Chemikalien und Verbrauchsmaterialien (Kits)68
	6.2	Geräte69
	6.3	Verwendete Organismen und Stämme70
	6.4	Vektoren70
	6.5	Molekularbiologische Methoden71
	6.6	Arbeiten mit <i>E. coli</i> 85
	6.7	Arbeiten mit <i>Pichia pastoris</i> 88

	6.8	Arbeiten mit Fusarium graminearum	91
	6.9	Arbeiten mit Cytophaga hutchinsonii	95
	6.10	Lipidanalytik	96
LITE	RATU	IRANGABEN	100
ANH	ANG.		110
LEB	ENSL	AUF	129
PUB	LIKA	FIONSLISTE	130
DAN	KSAG	BUNG	131
EIDE	SSTA	ATTLICHE ERKLARUNG	132

Abbildungsverzeichnis

Abbildung 1.1 Klassifizierung von Lipiden nach ihrem Grundbaustein	. 13
Abbildung 1.2 Schematische Darstellung eines lipid raft [verändert nach (6) und (7)]	. 14
Abbildung 1.3 Glycosylceramid-Strukturen von Pilzen, Pflanzen und Säugern	. 16
Abbildung 1.4 Schematische Darstellung der Glycosylceramid-Biosynthese	. 17
Abbildung 1.5 Überblick über die Rolle von Sphingolipiden	. 19
Abbildung 1.6 Struktur verschiedener Sulfosphingolipide	. 22
Abbildung 1.7 Membrantopologie einer membrangebundenen Desaturase	. 23
Abbildung 1.8 Postulierter Reaktionsmechanismus der pflanzlichen Stearoyl-ACP- $\Delta 9(Z)$ -Desaturas	e25
Abbildung 1.9 Strukturformeln von Molekülen, die $\Delta 3(E)$ -desaturierte Fettsäuren enthalten	. 27
Abbildung 1.10 Strukturvergleich der Defensine AgAFP und RsAFP1	. 28
Abbildung 2.1 Phylogenetischer Baum mit Desaturase-ähnlichen Sequenzen	. 32
Abbildung 2.2 Cladogramm von Vertretern der putativen Δ 3-Desaturase Familie	. 34
Abbildung 2.3 Alignment der Kandidatensequenzen $\Delta 3$ Fg, $\Delta 3$ Mg, $\Delta 3$ Af und $\Delta 3$ Nc	. 35
Abbildung 3.1 Quantifizierung der aus F. graminearum isolierten Fettsäuren	. 39
Abbildung 3.2 GLC-Analyse von TMS-FAMEs aus GlcCer von F. graminearum WT	. 40
Abbildung 3.3 Anteil der im GlcCer enthaltenen ungesättigten Fettsäuren im Vergleich zu 18:3	. 41
Abbildung 3.4 GLC-Analyse von TMS-FAMEs isoliert aus GlcCer von $\Delta 3$ FgKO	. 43
Abbildung 3.5 Quantifizierung der aus $\Delta 3$ FgKO isolierten Fettsäuren	. 44
Abbildung 3.6 GLC-Analyse der TMS-FAMEs aus GlcCer von Pp Δ 3Fg und Pp Δ 3Mg	. 45
Abbildung 3.7 DC-Auftrennung der Lipidextrakte verschiedener P. pastoris-Stämme	. 47
Abbildung 3.8 DC-Auftrennung der Glycolipide isoliert aus PpαOHSpau	. 49
Abbildung 3.9 DC-Analyse von Lipidextrakten aus Cytophaga hutchinsonii	. 50
Abbildung 3.10 DC-Analyse der Lipidextrakte von Pichia-Stämmen, die die βOHCyhu exprimieren	. 51
Abbildung 3.11 GlcCer aus Pp Δ scs7, welche die β OHCyhu exprimiert, enthält β -Hydroxyfettsäuren	. 52
Abbildung 3.12 Die Expression der β OHCyhu in <i>P. pastoris</i> führt zu β -hydroxylierte Fettsäuren	. 53
Abbildung 3.13CFU der verschiedenen Pichia-Stämmein Anwesenheit von RsAFP2	. 55
Abbildung 3.14 Wachstum von Fusarium in Anwesenheit verschiedener AgAFP-Konzentrationen	. 56
Abbildung 3.15 Wachstum von Pichia in Anwesenheit verschiedener AgAFP-Konzentrationen	. 56
Abbildung 3.16 Wachstum der <i>Pichia</i> -Stämme WT, PpΔ3Fg und PpΔgcs mit AgAFP	. 57
Abbildung 6.1 Schematische Darstellung der homologen Rekombination	. 81
Abbildung 6.2 Schematischer Aufbau eines Southern-Blots	. 83

Tabellenverzeichnis

Tabelle 1.1 Aufbau der drei Histidinboxen membrangebundener Desaturase-ähnlicher Sequenzen	24
Tabelle 2.1 Gen- und Protein-Identifikationsnummern putativer Δ 3-Desaturasen (10.11.08)	33
Tabelle 3.1 Reaktion verschiedener F. graminearum- und P. pastoris-Stämme auf Defensine	57
Tabelle 4.1 Reaktion von Pichia- und Fusarium-Stämmen auf RsAFP2	63
Tabelle 6.1 In dieser Arbeit hergestellte Konstrukte zur induzierbaren Expression in Pichia	79
Tabelle 6.2 Expressionskonstrukte, die eine Nourseothricin-Resistenz vermitteln	81
Tabelle 6.3 Enzyme, mit denen die gDNA für die Southernblot-Analyse geschnitten wurde	82

Zusammenfassung

 $\Delta 3(E)$ -ungesättigte Fettsäuren sind charakteristische Bestandteile der Glucosylceramide (GlcCer) von Euascomyceten. Zu dieser basalen Gruppe hyphaler Pilzen gehören auch viele human- und phytopathogene Arten. In dieser Arbeit konnte für den Getreide-pathogenen Pilz *Fusarium graminearum* gezeigt werden, dass der relative Anteil $\Delta 3(E)$ -ungesättigter Fettsäuren im GlcCer bei niedrigen Temperaturen am höchsten ist und bei Temperaturen über 28°C stark abnimmt. Die generelle Funktion der Doppelbindung ist jedoch noch unbekannt.

Die Gene bzw. Proteine, die für die Einführung der Doppelbindung verantwortlich sind, waren nicht bekannt und wurden erst in dieser Arbeit beschrieben und funktionell charakterisiert: Durch Adaptation des von Ternes et al. (J. Biol. Chem., 2002) entwickelten bioinformatischen Ansatzes wurde eine neue Protein-Familie identifiziert, die alle charakteristischen Merkmale membrangebundener Desaturasen aufweist. Zudem erfüllt sie alle anderen notwendigen Bedingungen einer Kandidatenfamilie von $\Delta 3(E)$ -Desaturasen. Diese Sequenzen wurden funktionell als Sphingolipid- $\Delta 3(E)$ -Desaturasen identifiziert. Dies geschah zunächst durch Erzeugung einer Gendeletionsmutante von Fusarium graminearum, deren GlcCer keine $\Delta 3$ -Doppelbindung mehr enthält. Um nachzuweisen, dass die identifizierte Sequenz tatsächlich für die Desaturase codiert, wurden die Sequenzen aus Fusarium graminearum und Magnaporthe grisea heterolog in der Hefe Pichia pastoris exprimiert. P. pastoris synthetisiert GlcCer, dessen Struktur mit Ausnahme der fehlenden $\Delta 3(E)$ -Doppelbindung identisch zu dem aus F. graminearum ist, weshalb die Hefe als geeignetes Expressionssystem erachtet wurde. Aus *P. pastoris*-Zellen, welche die putativen $\Delta 3(E)$ -Desaturasegene aus F. graminearum und M. grisea exprimierten, konnte GlcCer isoliert werden, das eine trans-Doppelbindung am C3 der Fettsäure enthält. Die Struktur des GlcCer (Position und Konfiguration der Doppelbindung) wurde mit ESI-FT-ICR-MS und NMR-Spektroskopie bestätigt.

Es ist bekannt, dass GlcCer als Angriffspunkt für verschiedene pflanzliche Defensine (kleine basische Peptide) dient, die das Wachstum von Pilzen hemmen. Der genaue Interaktionsmechanismus ist jedoch nicht bekannt. In dieser Arbeit konnte gezeigt werden, dass auch die Modifikationen am Ceramid-Grundgerüst ($\Rightarrow \Delta 3(E)$ -Doppelbindung) einen Einfluss auf die wachstumshemmende Aktivität der Defensine RsAFP2 (aus *Raphanus sativus*) und AgAFP (aus *Aspergillus giganteus*) haben: Die Mutante von *F. graminearum*, deren $\Delta 3$ -Desaturase deletiert wurde, wird resistent gegen beide Defensine. Hingegen sind Zellen von *P. pastoris*, welche die $\Delta 3(E)$ -Desaturase aus *F. graminearum* exprimieren, stärker sensitiv als Zellen des Wildtyps.

Neben den Sequenzen aus Euascomyceten enthielt die Desaturase-Familie auch Sequenzen aus Bakterien (*Cytophaga hutchinsonii, Plesiocystis pacifica*) und Grünalgen (*Chlamydomonas reinhardtii, Ostreococcus tauri* und *O. lucimarinus*). Das Kandidatengen aus *Cytophaga hutchinsonii* codiert für eine β -Hydroxylase, die im Bakterium selbst wohl Sulfosphingolipide hydroxyliert, in *Pichia* aber neben GlcCer auch Phosphoglycerolipide als Substrate akzeptiert.

In dieser Arbeit wurde die erste $\Delta 3(E)$ -Desaturase kloniert. Die hergestellten Deletions- und Expressionsmutanten ermöglichen zukünftige Untersuchungen zu biologischen Funktionen $\Delta 3(E)$ -desaturierter Fettsäuren. Besonders zu erwähnen sind hier eine mögliche Signalfunktion $\Delta 3(E)$ -desaturierter Sphingolipide in *F. graminearum* (Grad der Desaturierung ist abhängig von der Wachstumstemperatur), ein Einfluss auf die Pathogenität des Pilzes und ihre Bedeutung für die Interaktion mit Defensinen.

<u>Abkürzungen</u>

А	Adenin
A ₂₆₀ , A ₂₈₀ , A ₃₂₀	Absorption bei 260, 280 und 320 nm
Abs.	absolut
Ac	Acetat (Salz der Essigsäure)
Amp ^R	Ampicillin-Resistenz
ANS	Anilinnaphthalinsulfonsäure
AS	Aminosäure
ATP	Adenosintriphosphat
bo	Basenpaare
BSA	bovine serum albumine (Rinderserum-Albumin)
BSTEA	N O-bis/trimethylsilyl)trifluoracetamid
C	Cytosin
	komplementäre DNA
cis	auf aleicher Seite zur Bezugsebene
CoA	Coonzym A
CTAR	Cetultrimethylammoniumbromid (– Hexadecyltrimethylammoniumbromid)
	Distbulpurooschonot
	Directly if carponial
	Dimethylouffauid
DMSO	
	<u>desoxyribo nucleic acid (Desoxyribonukieinsaure)</u>
	Desoxyribonukieosidtriphosphat (Mix aus dATP, dCTP, dGTP und dTTP)
dsDNA	doppelstrangige DNA
EDIA	Ethylendiamintetraessigsaure
ER	Endoplasmatisches Reticulum
EtOH	Ethanol
FA	fatty acid (Fettsäure)
FAMEs	fatty acid methylesters (Fettsäuremethylester)
FID	Flammenionisationsdetektor
G	Guanin
g	Gramm; Erdbeschleunigung
GalCer	Galactosylceramid
GCS	Gen der Glucosylceramidsynthase
GIPC	Glycosylinositolphosphorylceramid
Glc	Glucose
GlcCer	Glucosylceramid
GPI	Glycosylphosphatidylinositol
HAc	Essigsäure
His	Histidin
IPTG	Isopropyl-B-D-thiogalactosid
Kan ^Ř	Kanamycin-Resistenz
kh	Kilohasennaare
konz	konzentriert
LCB	Long chain hase (langkettige Sphingohase)
MCS	multiple cloning site (Multiple Klonierungsstelle)
MeOH	Methanol
MIC	minimal inhibitory concentration (Minimale Hemmkonzentration)
MIDC	Mannasylipositelphosphoryleoramid
	Mannosylinoskolphosphorylcerannu Mannosyl (Inasitalahaspharyl), Caramid
MC	Macconspektrometrie
Mut ⁺	massonsperitoniene mathemal utilization plue
IVIUL MutS	methanol utilization sonsitivo
	Nuclear Magnetic Desenance Spectroscenty
	Anticche Dichte bei 600 pm
	Open reading frame (Offener Leserehmen)
	Prienovoniororom
PCR	Polymerase chain reaction (Polymerase Kettenreaktion)

Petrolether
Polyethylenglykol (mittlere Kettenlänge von X Molekülen)
Phosphatidylglycerol
Negativer log10 der Wasserstoffionenkonzentration
(lat. potentia hydrogenii)
Promoter
retention factor (Retentionsfaktor)
<u>ribo nucleic acid</u> (Ribonukleinsäure)
revolutions per minute (Umdrehungen pro Minute)
Raumtemperatur; Reverse Transkriptase
Natriumdodecylsulfat
Steriles destilliertes Wasser
Sterylglucosid
Serin-Palmitoyl-Transferase
Streptomycinresistenz
Thymin
Tetracyclinresistenz
Trimethylsilyl-
Trimethylsilylether
auf verschiedenen Seiten der Bezugsebene
N-[Tris(hydroxymethyl)methyl]glycin
Tris-(hydroxymethyl)-aminomethan
Transkriptionsterminator
Uracil
über Nacht
Ultraviolettes Licht
very long chain fatty acid (sehr langkettige Fettsäure)
Volumen pro Volumen
Masse (engl. weight) pro Volumen
Wildtyp
5-Bromo-4-Chloro-3-indolyl-β-D-galactosid
Zeocin-Resistenz

Trivialnamen und Abkürzungen der Fettsäuren und Sphingobasen

Die Nomenklatur der Sphingobasen und Fettsäuren erfolgt in Anlehnung an die Empfehlungen der *IUPAC IUB Joint Commission on Biochemical Nomenclature* (JCBN) von 1997 (1).

C₁₆- und C₁₈-Fettsäuren (mit 0-3 Doppelbindungen) wurden mit ihren Trivialnamen (z.B. Palmitinsäure statt Hexadecansäure und Stearinsäure statt Octadecansäure) bezeichnet. Die verwendeten Bezeichnungen der 2-Hydroxyfettsäuren leiten sich jedoch von der Kettenlänge und nicht vom Trivialnamen ab (also 2-Hydroxyoctadecansäure, nicht 2-Hydroystearinsäure). Außerdem wurden Kurzformen verwendet: Die Zahl vor dem Doppelpunkt steht für die Kettenlänge, die zweite Zahl gibt die Anzahl der Doppelbindungen an. Die nachstehende Tabelle zeigt eine Zusammenfassung der verwendeten Bezeichnungen.

Bezeichnung der Fettsäure	Trivialame	Kurzform	Anzahl und Position der Doppelbindung(en)
Hexadecansäure	Pamitinsäure	16:0	0
Octadecansäure	Stearinsäure	18:0	0
(9Z)-Octadec-9-ensäure	Ölsäure	18:1	1 : 9 <i>Z</i>
(9Z,12Z)-Octadeca-9,12-diensäure	Linolsäure	18:2	2 : 9 <i>Z</i> , 12 <i>Z</i>
(9Z,12Z,15Z)-Octadeca-9,12,15-triensäure	Linolensäure	18:3	3 : 9 <i>Z</i> , 12 <i>Z</i> , 15 <i>Z</i>
2-Hydroxyhexadecansäure		16:0(2-OH)	0
(3E)-2-Hydroxyhexadec-3-ensäure		16:1(2-OH)	1 : 3 <i>E</i>
2-Hydroxyoctadecansäure		18:0(2-OH)	0
(3E)-2-Hydoxyoctadec-3-ensäure		18:1(2-OH)	1 : 3 <i>E</i>

Die einfachste Sphingobase - (2*S*,3*R*)-2-Aminooctadecan-1,3-diol - wird als Sphinganin bezeichnet. Die Bezeichnungen für alle anderen Sphingobasen leiten sich von Sphinganin ab. Abkürzungen werden wie für die Fettsäuren beschrieben gebildet, wobei ein vorangestelltes "d" oder "t" für die Anzahl der Hydroxygruppen (zwei oder drei) steht.

Abkürzungen für Gene und Genprodukte

Soweit möglich wurden Gene und Genprodukte in Anlehnung an die Vorschläge des *genetic nomenclature guide*" (Stewart, 1995) bezeichnet.

Beispiel: Gene: Großbuchstaben, kursiv (Beispiel: GCS)
Genprodukte: nur der erste Buchstabe groß (Beispiel: Gcs)
mutiertes Gen: klein und kursiv (Beispiel: gcs)
knockout: ∆gcs

Proteinen aus *Saccharomyces cerevisiae* wird der Konvention entsprechend ein "p" angehängt (z.B. Scs7p).

Die Regioselektivität von Desaturasen wurde durch ein vorangestelltes "∆" gekennzeichnet.

Beispiel: Sphingolipid- $\Delta 4(E)$ -Desaturase (Desaturase, die eine *trans*-Doppelbindung zwischen C4 und C5 der Sphingobase einfügt)

Ein-Buchstabencode der Aminosäuren

А	Alanin	G	Glycin	Р	Prolin
R	Arginin	н	Histidin	S	Serin
Ν	Asparagin	Ι	Isoleucin	Т	Threonin
D	Asparaginsäure	L	Leucin	W	Tryptophan
С	Cystein	К	Lysin	Y	Tyrosin
Q	Glutamin	Μ	Methionin	V	Valin
Е	Glutaminsäure	F	Phenylalanin		

1 Einleitung

Der Grundbaustein eines lebenden Organismus ist die Zelle. Die Plasmamembran bildet eine semipermeable Barriere, die das Cytoplasma von der äußeren Umgebung abgrenzt. Durch in die Membran eingebettete Transportproteine und Kanäle kann ein selektiver Stoffaustausch zwischen Zellinnerem und Umgebung stattfinden. Bestimmte Moleküle (Proteine, aber auch z.B. Kohlenhydrate und Lipide), die mit der Plasmamembran assoziiert sind, leiten über Signaltransduktionskaskaden Signale aus der Umwelt oder von benachbarten Zellen und Organismen weiter, was schließlich im Inneren der Zelle zu einer bestimmten biochemischen Reaktion führt. Eine weitere wichtige Funktion biologischer Membranen ist die Generierung und Aufrechterhaltung eines Membranpotentials. Dieses entsteht durch eine Ionen-Ungleichverteilung zwischen beiden Seiten einer Membran und ist für die Signalverarbeitung (Aktionspotentiale in tierischen und pflanzlichen Zellen) und weitere lebensnotwendige Prozesse (z.B. ATP-Synthese) wichtig.

Lipide, die Grundbausteine biologischer Membranen, können in zwei große Gruppen eingeteilt werden: Solche, die aus einem Isoprenoid-Grundkörper hervorgegangen sind (z.B. Sterole) und Lipide aus Fettsäurederivaten (Glycerolipide und Sphingolipide) (Abbildung 1.1).

Abbildung 1.1 Klassifizierung von Lipiden nach ihrem Grundbaustein (Fettsäure oder Isoprenoid). Beispiele für die einzelnen Klassen sind kursiv gedruckt und rot markiert [verändert nach (2)].

Lipide erfüllen in der Zelle vielfältige Funktionen. Zunächst einmal grenzen Lipiddoppelschichten einzelne Zellen und Organellen gegeneinander ab. Hauptbestandteile dieser Permeabilitätsbarrieren sind Phosphoglycerolipide (mit Ausnahme von plastidären Membranen). Das bisher gültige Membranmodell – *fluid mosaic model* – von Singer und Nicholson (3), wonach die eingelagerten Proteine in einer homogenen Lipiddoppelschicht frei beweglich sind, wurde in den letzten Jahren von einem erweiterten Modell abgelöst: Die Proteindichte in einer Membran ist höher als ursprünglich angenommen. Sie lagern sich zu Proteinkomplexen zusammen, die dadurch relativ unbeweglich werden. Zudem sind die Lipide weder gleichmäßig über die gesamte Membran verteilt noch frei beweglich. Man geht von einer lateralen und transversalen Trennung der Lipidspezies aus, die zur Bildung von Membranmikrodomänen (so genannten *lipid rafts*) führen. Hauptbestandteile der *lipid rafts* bilden Sphingolipide und Sterole, während Phosphoglycerolipide mehr oder weniger ausgegrenzt sind (4, 5). Die Ungleichverteilung der Lipide in beiden Membranhälften beginnt bereits damit, dass die Lipide nur auf einer Membranseite synthetisiert werden. Bei der Aufrechterhaltung der Asymmetrie spielen permanente Transportprozesse eine entscheidende Rolle. Für die laterale Trennung sind vermutlich vor allem die biophysikalischen Eigenschaften der einzelnen Lipidkomponenten von Bedeutung.

Abbildung 1.2 Schematische Darstellung eines lipid raft [verändert nach (6) und (7)]

Man geht davon aus, dass sich die Lipide ständig in die *rafts* bewegen und diese auch wieder verlassen (8, 9). Die Mikrodomänen sind nur schwer nachweisbar: Durch den Einsatz von Fluoreszenzfarbstoffen, die bevorzugt mit einer bestimmten Lipidklasse assoziieren, können die Domänen spektroskopisch sichtbar gemacht werden. Dabei ist jedoch zu beachten, dass die Fluoreszenzfarbstoffe selbst auch die physikalischen Eigenschaften der (künstlichen) Membran verändern, was zu Artefakten führen kann. Sterol-Sphingolipid-Domänen sind im Gegensatz zu Phosphoglycerolipid-Domänen in nichtionischen Detergenzien wie z.B. Triton X-100 bei niedrigen Temperaturen unlöslich. Dieses unterschiedliche Löslichkeitsverhalten ermöglicht die Trennung der beiden Membrandomänen. Bestimmte Proteine und Enzymaktivitäten sind nur in der Sterol-Sphingolipid-Fraktion nachweisbar, was für die Existenz der *lipid rafts* spricht (10, 11). Es kann aber auch bei dieser Nachweismethode nicht ausgeschlossen werden, dass die Membrandomänen erst durch die Behandlung mit dem Detergenz entstanden sind. Typische mit den *rafts* assoziierte Proteine sind über Glycosylphosphatidylinositol (GPI) oder Glycosylinositolphosphorylceramid (GIPC) fest in der Membran verankert. *Lipid rafts* (bzw. ihre Bestandteile) spielen z.B. eine Rolle bei der Aktivierung von T-Zellen, der Entstehung einiger Immunkrankheiten, bei der Pathogenabwehr und der Endozytose (12, 13). Sterolreiche Domänen sind in den Zellspitzen und an Orten, an denen die Zellteilung stattfindet, angereichert, was auf eine Bedeutung für Wachstums- und Differenzierungsprozesse hinweist (14-16).

1.1 Sphingolipide sind Membranlipide mit vielfältigen Funktionen

Struktur und Synthese von Glycosphingolipiden

Glycosphingolipide sind glycosylierte Ceramide. Diese strukturell heterogenen Gruppe von Membranlipiden kommt die in allen Eukaryoten und einigen Prokaryoten vor und ist vor allem in der Plasmamembran angereichert (10, 17-19). Das Ceramid-Grundgerüst besteht aus einem langkettigen 2-Aminoalkohol, der so genannten Sphingobase (langkettige Base, LCB), und einer Fettsäure, die über eine Amidbindung mit der Sphingobase verknüpft ist. Die Sphingobase hat in den meisten Organismen 18 C-Atome, Kettenlängen von C₁₆-C₂₆ kommen jedoch auch vor. Bei komplexeren Sphingolipiden ist die primäre Alkoholgruppe der Sphingobase mit einer polaren Kopfgruppe verknüpft.

Nach ihrer Kopfgruppe teilt man Sphingolipide in zwei Klassen ein: Ceramide, die über ein Inositolphosphat mit weiteren Zuckerresten (z.B. Glucose, Mannose) verbunden sind, werden als Glycosylinositolphosphorylceramide (GIPC) bezeichnet und liegen frei in der Membran vor oder sind kovalent mit Proteinen verknüpft (GIPC-Anker). Zur zweiten Gruppe gehören Monohexosylceramide (Cerebroside), in welchen die Sphingobase direkt mit einem Molekül Glucose oder Galactose verbunden ist. GIPCs existieren nur in Pflanzen und Pilzen während Galactosylceramid (GalCer) auf Säuger und Pilze beschränkt ist. Daher ist Glucosylceramid (GlcCer) das einzige Sphingolipid, das in alle Eukaryoten vorkommt.

Das Ceramid-Grundgerüst zeigt jedoch in allen drei Organismenreichen charakteristische Modifikationen [Abbildung 1.3; (20, 21)]. Ceramid besteht in Pilzen üblicherweise aus der Sphingobase (4*E*,8*E*)-9-Methyl-sphinga-4,8-dienin, die mit einer α -hydroxylierten gesättigten oder $\Delta 3(E)$ -ungesättigten Fettsäure (C₁₆-C₁₈) verknüpft ist (22). $\Delta 3(E)$ -ungesättigte Fettsäuren kommen dabei nur in Euascomyceten, einer basalen Gruppe der Euascomyceten vor (21). Das Ceramid der pilzlichen GIPCs (ohne Abbildung) besteht hingegen aus 4-Hydroxysphinganin und einer sehr langkettigen α -hydroxylierten Fettsäure (C₂₂-C₂₆). Pflanzliches GlcCer zeigt eine größere Variabilität: Neben einer Hydroxylgruppe am C4 können auch Doppelbindungen (Δ 4-*trans*, Δ 8-*cis/trans*) in unterschiedlichen Kombinationen auftreten. Die α -Hydroxyfettsäuren variieren in ihrer Länge; sehr langkettige Fettsäuren können zusätzlich *n*9-desaturiert sein (17, 23, 24). Die für Säuger charakteristische Sphingobase (*E*)-Sphing-4-enin spielt in Pflanzen und Pilzen eine untergeordnete Rolle. Sie ist dort mit einer Fettsäure variabler Kettenlänge verknüpft, die α -hydroxyliert sein kann.

Abbildung 1.3 Glycosylceramid-Strukturen von Pilzen, Pflanzen und Säugern (21). Glucosyl- und Galactosylceramide von Pilzen (oben) sind relativ einheitlich aufgebaut. Sie bestehen in der Regel aus der Sphingobase (4E,8E)-9Methylsphinga-4,8-dienin, die mit einer α -hydroxylierten C₁₆- oder C₁₈-Fett-säure verknüpft ist. In Euascomyceten kann die Fettsäure $\Delta 3(E)$ -desaturiert sein. Pflanzen zeigen ein breites Spektrum hinsichtlich ihres Ceramid-Grundgerüsts: Neben einer Hydroxylierung oder Desaturierung am C4 der Sphingobase kann diese am C8 *cis*- oder *trans*-desaturiert sein. Da die Modifikationen in verschiedenen Kombinationen auftreten können, ergeben sich daraus insgesamt sieben verschiedene Strukturen der Sphingobase. Diese ist mit einer (meist α -hydroxylierten) Fettsäure verbunden, die verschieden lang (C₁₆-C₂₆) und zudem *n*9-desaturiert sein kann. Die für Säuger charakteristische Sphingobase (*E*)-Sphing-4-enin ist in Pilzen und Pflanzen selten. In Säugern sind sie mit hydroxylierten oder nicht-hydroxylierten Fettsäuren verbunden (C₁₆-C₂₄, in der menschlichen Haut bis C₃₄). Kopfgruppen sind entweder Glucose (Glc; R1 = OH, R2 = H) oder Galactose (Gal; R1 = H, R2 = OH).

Die Sphingolipid-Synthese verläuft in allen Organismen zunächst ähnlich. Organismus- und gewebsspezifische Unterschiede zeigen sich erst bei der Herstellung komplexer Sphingolipide (25). Der Ablauf der Glycosylceramid-Synthese ist in Abbildung 1.4 dargestellt. Der erste Schritt in der Synthese der Sphingobase besteht aus der Kondensation eines Moleküls Palmitoyl-CoA mit der Aminosäure Serin, katalysiert durch das Enzym Serin-Palmitoyl-

transferase (SPT). Dies stellt zugleich die Schlüsselstelle im gesamten Sphingolipidstoffwechsel dar (26).

Abbildung 1.4 Schematische Darstellung der Glycosylceramid-Biosynthese in Pflanzen, Tieren und Pilzen (21). Die erste Zahlenangabe bezieht sich immer auf die Fettsäure, die zweite auf die zugehörige Sphingobase.

Das entstandene 3-Ketosphinganin wird zu Sphinganin, der einfachsten Sphingobase reduziert, die schließlich von der Ceramid-Synthase N-acyliert wird. Zusätzliche funktionelle Gruppen (Doppelbindungen, Hydroxylgruppen, Methylverzweigungen) werden vermutlich erst auf Ebene des Ceramids eingeführt.

Enzyme, die zur Modifikation des Ceramid-Grundgerüstes benötigt werden (Glycosyltransferasen, $\Delta 4$ - und $\Delta 8$ -Desaturase, LCB-C4-Hydroxylase, Acylamid- α -Hydroxylase, C9-

Einleitung

Methyltransferase), sind in Pflanzen und Pilzen (mit Ausnahme der Acylamid- $\Delta 3(E)$ -Desaturase) bereits identifiziert, kloniert und charakterisiert worden (27-34). Durch die Analyse verschiedener Deletionsmutanten der Hefe *Pichia pastoris* konnte eine Reihenfolge der Modifikationen an der LCB festgelegt werden (7):

 Δ 4-Desaturierung $\Rightarrow \Delta$ 8-Desaturierung \Rightarrow C9-Methylierung

Es gibt Hinweise darauf, dass in Pilzen zwei voneinander getrennte Sphingolipidpools existieren. Wie bereits in Abbildung 1.4 dargestellt enthalten die Inositol-haltigen Sphingolipide ausschließlich Hydroxysphinganin (t18:0), das mit einer sehr langkettigen Fettsäure (C_{22} - C_{26}) verknüpft ist. In den Cerebrosiden findet sich hingegen vor allem 9-Methylsphinga-4,8-dienin (d18:2-C9m). Je nach Organismus kommen auch Sphing-4-enin (d18:1) und Sphinga-4,8dienin (d18:2) sowie C₁₆- oder C₁₈-Fettsäuren vor, jedoch nie 4-Hydroxysphinganin (t18:0). Die Überexpression der Glucosylceramidsynthase führt zur Synthese ungewöhnlicher Cerebrosid-Spezies (mit t18:0 und VLCFA), jedoch nicht zu einer "Durchmischung", die Kombinationen von d18:2-C9m mit VLCFA oder t18:0 mit Hydroxyoctadecansäure ergibt (letzteres wurde allerdings von S. Albrecht in einem *Pichia*-Stamm, in dem die LCB- $\Delta 4(E)$ -Desaturase ausgeschaltet und die GCS überexprimiert wurde, nachgewiesen) (28). Viele Ascomyceten besitzen zwei verschiedene Ceramid-Synthasen, Lag1 und Bar1 (35). Der Verlust von Bar1 in Pichia pastoris führt zum Verlust der Cerebroside, hat jedoch keinen Einfluss auf die Synthese der IPCs (nicht publiziert, persönliche Information von Tobias Wobbe). Eine knockout-Mutante von Lag1 existiert bisher nicht. Beide Sphingolipidpools scheinen also schon frühzeitig durch unterschiedliche Präferenzen der beiden Ceramid-Synthasen getrennt zu werden. Möglicherweise spielt auch eine räumliche Trennung der beiden Pools eine Rolle.

Überraschenderweise führt auch der Verlust der LCB- $\Delta 4(E)$ -Desaturase oder der Acylamid- α -Hydroxylase zum Ausfall der GlcCer-Biosynthese in *Pichia* (7). Dies kann ebenfalls eine Folge zweier frühzeitig getrennter Sphingolipidpools sein, aber auch mit "Transportproblemen" der Hydroxy-Fettsäuren oder $\Delta 4$ -desaturierter Sphingobasen zum Ort der Ceramidsynthese bzw. $\Delta 8$ -Desaturase zusammenhängen.

Die Lokalisierung der Enzyme, die am Sphingolipidaufbau beteiligt sind, wurde vor allem in tierischen Zellen untersucht. Die Synthese beginnt im ER, das fertige Ceramid wird zum Golgiapparat transportiert, wo die polare Kopfgruppe angehängt wird. Über sekretorische Vesikel werden die IPCs und die Cerebroside anschließend zur Plasmamembran transportiert (36).

Auch der pflanzliche Sphingolipid-Biosyntheseweg ist inzwischen weitgehend bekannt (20, 37-39), im Gegensatz zu tierischen Zellen ist die Glucosylceramidsynthase jedoch vermutlich im ER lokalisiert (40).

Funktion von Sphingolipiden

Es ist bekannt, dass Sphingolipide neben ihrer Funktion als Strukturkomponenten biologischer Membranen auch wichtig für die Zell-Zell-Erkennung sind. Sie spielen zudem eine Rolle in Signaltransduktionsprozessen und in der Regulation des Zellzyklus. Nachfolgend sind die wichtigsten Funktionen in Säugern, Pflanzen und Pilzen aufgelistet.

Funktionen in Säugern

Sphingolipide spielen vielfältige Rollen in Signalprozessen. So sind Ceramid, Ceramid-1-Phosphat (Cer1P), Sphingosin und Sphingosin-1-Phosphat (S1P) mit zum Teil antagonistischer Wirkung in Zellproliferation, Zelldifferenzierung und Apoptose involviert (41). Sphingosin, das erste Sphingolipid dessen bioaktive Wirkung erkannt wurde, beeinflusst Proteinkinasen (42). Zusammen mit verwandten Sphingobasen spielt Sphingosin eine Rolle in der Regulation des Aktin-Zytoskeletts, der Endozytose und der Induktion der Apoptose (Abbildung 1.5).

Abbildung 1.5 Überblick über die Rolle von Sphingolipiden [verändert nach (41)]. Das Schema zeigt den möglichen Einfluss der Lipide Ceramid, Sphingosin und Sphingosin-1-Phosphat (S1P) auf zellbiologische Prozesse. Ceramid kann durch den Abbau komplexer Sphingolipide (z.B. Sphingomyelin, IPCs) entstehen, oder mit Hilfe der Enzyme Serin-Palmitoyl-Transferase (SPT) und Ceramid-Synthase neu synthetisiert werden. Beide Prozesse können durch z.B. Stressfaktoren induziert werden. Ceramidasen (CDasen) und Sphingosin-Kinasen (SKs) sind für die Bildung von Sphingosin und S1P zuständig. Letztere interagieren ihrerseits mit weiteren Kinasen, Phophatasen oder G-Proteingekoppelten Rezeptoren (S1P-Rezeptoren), die für die Wirkung der Induktoren auf die Zelle(n) verantwortlich sind. Die Zahlen in Klammern stehen für die relativen Mengenverhältnisse der Sphingolipide in Säugerzellen. CAPP - Ceramid-aktivierte Ser-Thr Phosphatase; Cathepsin D – Protease, involviert in intrazellulären Proteinabbau und Pathogenese (Brustkrebs, Alzheimer); PKC - Proteinkinase C; PKH – Proteinkinase aus Hefe, PKB-homologes Enzym; YPK – Proteinkinase der Hefe.

Ceramide sind wichtige Signalüberträger in der Stressantwort [z.B. bei Hitzestress (43)], einschließlich der Regulation des programmierten Zelltods und der Seneszenz (44, 45), wäh-

Einleitung

rend S1P eine entscheidende Rolle für die Überlebensrate und die Zell-Migration spielt. Während jedoch Ceramid und Sphingosin die Einleitung des programmierten Zelltodes fördern, wird dies durch S1P verhindert (Abbildung 1.5). Weitere bioaktive Sphingolipide sind Cer1P (das im vesikulären Transport beteiligt ist), GlcCer und Dihydroceramid. Sprong et al. (46) zeigten mit entsprechenden Mutanten, dass GlcCer in melanisierten Säugerzellen notwendig für den Transport der Melanin-Synthese-Enzyme vom Golgi zu den Melanosomen ist. Durch exogene Gabe von GlcCer konnte dieser Defekt wieder komplementiert werden (46, 47), der genaue Mechanismus (einschließlich einer Beteiligung von *lipid rafts*) ist jedoch noch nicht bekannt. Die Signalfunktion von Sphingolipiden macht eine strikte Regulation des Stoffwechsels notwendig. Beispielsweise ist in GCS-defizienten Zellen die Ceramidmenge nur geringfügig erhöht. Gleichzeitig stellt der Sphingolipid-Metabolismus einen Angriffspunkt für Pathogene dar (48, 49). Außerdem spielen Sphingolipide bei der Ausprägung von Krankheiten wie Diabetes (50, 51), verschiedenen Arten von Krebs (52, 53), Alzheimer (54) sowie kardiovaskulärer Krankheiten (55) und neurologischer Syndrome (56) eine Rolle.

Funktionen von Sphingolipiden in Pflanzen

Über die Funktion von Sphingolipiden in Pflanzen ist bisher wenig bekannt, eine Beteiligung an ähnlichen Prozessen wie in Säugern ist jedoch wahrscheinlich (39, 57). Die RNAivermittelte Reduktion der *LCB*2 (Untereinheit der SPT) ist in *Arabidopsis* letal für die Samenentwicklung (58). Dies zeigt, dass Sphingolipide auch in Pflanzen essentiell für Entwicklungsprozesse und Zell-Zell-Interaktionen sind. Auch Signalfunktionen von Ceramid und S1P im Rahmen der Stressantwort (59) und deren Rolle für die Induktion des programmierten Zelltods (60) wurden nachgewiesen.

Kältesensitive Pflanzen enthalten mehr GlcCer als kältetolerante, und auch die Zusammensetzung der Sphingolipid-Spezies variiert (38). So ist der relative Anteil C4-hydroxylierter, Δ 8desaturierter Sphingolipide in kältetoleranten Pflanzen höher als in kältesensitiven. Weiterhin wurde postuliert, dass Austrocknungsresistenz und Stomataschluss in *Arabidopsis* S1Pabhängig sind (61). Die Notwendigkeit von S1P für beide eben genannte Prozesse konnte durch Analyse verschiedener Sphingolipid- Δ 4-Desaturase-Mutanten inzwischen widerlegt werden (62). Jedoch spielt die Δ 8-Desaturierung der Sphingobase eine Rolle für die Aluminium-Resistenz von Hefe und Pflanzen (63, 64). Die Δ 8-Desaturase der Aluminiumtoleranten Asteraceae *Stylosanthes hamata* zeigt im Gegensatz zu Aluminium-sensitiven Pflanzen eine Präferenz, die Doppelbindung am C8 der Sphingobase in *cis*-Konfiguration einzufügen. Ersetzt man die *Arabidopsis*-eigene Δ 8-Desaturase mit *trans*-Präferenz durch das Peptid aus *Stylosanthes* oder exprimiert das Gen in *Saccharomyces*, erhöht sich dadurch die Toleranz gegenüber Aluminium (64). Sphingolipide sind möglicherweise auch direkt an dem Transport bestimmter Proteine beteiligt. In einer Sterol-freien Arabidopsis-

Einleitung

Mutante ist der Transport des Kanalproteins PIN1 unterbrochen (65). PIN1 ist verantwortlich für den polaren Transport des Phytohormons Auxin in der Wurzel. Die Fusion der PIN1tragenden Vesikel mit der Plasmamembran ist ebenfalls in der so genannten *pasticcino3*-Mutante von Arabidopsis gestört (66), die als Folge des unterbrochenen Auxin-Transportes Wachstumsdefizite aufweist. Genetischer Hintergrund ist eine Punktmutation im Gen, das für die AcetylCoA-Carboxylase codiert. Dadurch können die Zellen kein Malonyl-CoA und somit keine sehr langkettigen Fettsäuren in den Sphingolipiden synthetisieren (nicht publiziert, vorgestellt während der ISPL 2008 in Bordeaux von D. Molino und J.-D. Faure, INRA Versailles,)

Funktionen in Pilzen

Die Funktion von Sphingolipiden in Pilzen wurde vor allem durch Analyse verschiedener Mutanten der Hefe Saccharomyces cerevisiae untersucht (67-69). Beispielsweise wird die Ceramid-Synthase während Hitzestress-Einwirkungen herunterreguliert und infolgedessen sinkt die Menge an komplexen Sphingolipiden in Saccharomyces (einer Hefe ohne GlcCer). Als Reaktion auf Hitzestress werden zudem verstärkt freie LCBs gebildet, die am Anfang einer Signaltransduktionskaskade stehen, die zu verstärkter Endozytose und Veränderungen am Actin-Zytoskelett führt sowie generell in die Stressantwort involviert sind. Durch Inhibierung der IPC-Synthase (70) und der GCS in Aspergillus nidulans (71) konnte gezeigt werden, dass Sphingolipide auch in Pilzen essentiell für polares Zellwachstum sind. Glucosylceramide sind außerdem Pathogenitätsfaktoren verschiedener filamentöser Pilze. Die Pathogenität des phytopathogenen Pilzes Ustilago maydis und die des humanpathogenen Cryptococcus neoformans ist in GCS-knockout-Mutanten reduziert (72, 73). Im Gegensatz zu Säugerzellen sind Teliosporen von Ustilago maydis auch bei ausgeschalteter GCS zur Melanin-Synthese befähigt (72). Eine reduzierte Pathogenität wurde ebenfalls für die IPC1-knockout-Mutante von C. neoformans nachgewiesen (74). Das Ausschalten der GCS in Fusarium graminearum führt ebenfalls zu einer reduzierten Pathogenität, jedoch nicht in allen potentiellen Wirtsorganismen (75). Auf die Interaktion von GlcCer mit verschiedenen Defensinen wird in 1.4 noch näher eingegangen.

Sulfosphingolipide

Sulfosphingolipide (SSL) sind charakteristische Bestandteile der äußeren Membran der Sphingobacteriales, einer Familie gram-negativer Bakterien, die zur "Cytophaga-/Flexibacter-Gruppe" gehört (76). Im Unterschied zu Cerebrosiden besitzen SSL anstelle einer Hexose eine Sulfonsäuregruppe (Abbildung 1.6).

21

Sulfobacin A

Sulfonolipid aus Salinibacter ruber

Abbildung 1.6 Struktur verschiedener Sulfosphingolipide. Sulfobacin A zeigt die typische Struktur eines Sulfonolipids aus *Cytophaga*. Die Sphingobase Capnin (2-Amino-3-hydroxy-15-methyl-hexadecan-1-sulfonsäure) ist über die Aminogruppe mit 3-Hydroxy-15-methyl-hexadecansäure verbunden. Das dargestellte Sulfonolipid aus *Salinibacter ruber* (2-Carboxy-2-amino-3-O(3-hydroxy-13-methyltetradecanoyl)-4-hydroxy-18-methylnonadec-5-en-1-sulfonsäure) repräsentiert etwa 10 % der Gesamtlipide des Bakteriums (77).

Über die Synthese der Sulfosphingolipide ist wenig bekannt. Man geht aber davon aus, dass der ersten Schritt der Basensynthese aus einer Kondensationsreaktion eines Acyl-CoA mit der Aminosäure Homocysteat besteht (78, 79).

Die Fettsäuren der SSL sind häufig am C2 und/oder am C3 hydroxyliert [*R*-Konfiguration; (80, 81)] oder tragen Keto-Gruppen. Zudem tragen sowohl die Fettsäure als auch die Sphingobase meist eine endständige Methylverzweigung (82-84). Die Base Capnin (2-Amino-3-hydroxy-15-methyl-hexadecan-1-sulfonsäure) kommt in den erwähnten Organismen sowohl N-acyliert als auch in der freien Form vor. Weitere Modifikationen (z.B. eine Doppelbindung am C4) sind selten (85).

Neben den erwähnten SSL beschrieben Corcelli et al. ein strukturell mit den Capnoiden verwandtes Lipid aus dem halophilen Bakterium *Salinibacter ruber* (77). In diesem Fall ist die Fettsäure über die Hydroxylgruppe am C3 mit der capnoiden Base verestert.

Über die Funktion dieser SSL ist wenig bekannt. Es konnte jedoch gezeigt werden, dass SSL-defiziente chemische Mutanten von *Flavobacterium johnsoniae* (früher *Cytophaga johnsonae*) ihre Fähigkeit zur gleitenden Fortbewegung über Oberflächen verlieren (86). Diese Art der Fortbewegung ohne Flagellen ist ebenfalls charakteristisch für Bakterien der Cytophaga-Flexibacter-Gruppe. Inzwischen sind einige der Proteine, die für die Fortbewegung benötigt werden, molekular charakterisiert. Es handelt sich um Proteine der äußeren Bakterienmembran, die möglicherweise für ihre richtige Integration oder korrekte Faltung SSL benötigen (87-89). Bisher wurde keines der Gene, die am SSL-Aufbau beteiligt sind, funktionell identifiziert.

1.2 <u>Membrangebundene Desaturasen und Hydroxylasen bilden eine eigene</u> <u>Enzym-Superfamilie</u>

Mit Ausnahme der Methylgruppe am C9-Atom der LCB werden alle funktionellen Gruppen am Ceramid-Gerüst von Enzymen eingefügt, die zur Superfamilie der membrangebundenen Desaturasen bzw. Hydroxylasen gehören.

Es gibt verschiedene nicht miteinander verwandte Typen von Desaturasen: Neben den bereits erwähnten membran-gebundenen Desaturasen sind auch lösliche Acyl-ACP-Desaturasen und Cytochrom-P450-Enzyme bekannt. Die löslichen Acyl-ACP-Desaturasen kommen nur in Pflanzen vor und sind im Stroma der Plastiden lokalisiert (90, 91). Sie desaturieren *Acyl Carrier Protein*- (ACP-) gebundene Acylreste und stellen den einzigen Desaturase-Typus dar, dessen Kristallstruktur bereits bekannt ist (92). Die Koordinierung der beiden Eisenatome im aktiven Zentrum erfolgt durch Aspartat-, Glutamat- und Histidin-Seitenketten, die zu zwei charakteristischen Sequenzmotiven D/EXXH angeordnet sind (90, 93).

Abbildung 1.7 Membrantopologie einer membrangebundenen Desaturasen. Die Enzyme sind vermutlich in der ER-Membran lokalisiert und enthalten vier Transmembrandomänen. Die Position der Histidinboxen ist mit 1, 2 und 3 gekennzeichnet.

Die meisten Desaturasen und Hydroxylasen sind membrangebundene Enzyme. Charakteristische Sequenzmotive für diese Enzym-Superfamilie sind die drei Histidinboxen $HX_{3-4}H$, $HX_{2-3}HH$ und $(H/Q)X_{2-3}HH$ (94). Üblicherweise befinden sich vor der ersten Histidinbox sowie zwischen der zweiten und dritten Box hydrophobe Bereiche, die vermutlich jeweils zwei Transmembranhelices entsprechen [(95), Abbildung 1.7]. Die Enzym-Superfamilie lässt sich aufgrund des Abstands zwischen der ersten und zweiten Histidinbox in zwei große Gruppen einteilen: Zur Gruppe mit kurzem Abstand (7-18 Aminosäuren) gehören zum Beispiel die Acylamid- α -Hydroxylasen und die Sphingolipid-LCB-C4-Hydroxylasen, während die Sphingolipid- $\Delta 4(E)$ -Desaturasen und - $\Delta 8$ -Desaturasen zur Gruppe mit langem Abstand (25-35 Aminosäuren) gehören [(33, 91) vergleiche auch Abbildung 2.1]. Die Histidinboxen sind nicht direkt an der Desaturierung beteiligt, sie bilden jedoch wahrscheinlich das Zwei-Eisen-Zentrum im aktiven Zentrum des Enzyms (94, 96). In Tabelle 1.1 sind exemplarisch die Aminosäuresequenzen der Histidinboxen pilzlicher Desaturasen dargestellt. Tabelle 1.1 Aufbau der drei Histidinboxen membrangebundener Desaturase-ähnlicher Sequenzen aus *Saccharomyces cerevisiae* (Sc) und *Pichia pastoris* (Pp), ergänzt durch die homologen Proteinsequenzen aus *Fusarium graminearum* (Fg). Die Daten wurden der Abbildung 3B aus Dunn et al, 1998 (95) entnommen und durch die Sequenzen der Sphingolipid-LCB-Desaturasen sowie der entsprechenden homologen Sequenzen aus *Fusarium* ergänzt.

Desaturase	Box 1	Abstand zwischen	Box 2	Box 3
		Box 1 und Box 2		
Scs7p (Sc)	HRFLFH	18 AS	HGCHH	HLEHH
Scs7p (Fg)	HRFLFH	18 AS	HGIHH	HLAHH
Sur2p (Sc)	HRLMH	9 AS	HSVHH	HDIHH
Sur2p (Fg)	HRLMH	9 AS	HSRHH	HDIHH
Erg25p (Sc)	HRLFH	8 AS	НКДНН	HDLHH
Erg25p (Fg)	HRALH	8 AS	НКМНН	HDLHH
Erg3p (Sc)	HRWLH	8 AS	НКРНН	HTVHH
Erg3p (Fg)	HRWLH	8 AS	HKLHH	HSLHH
∆9 (Sc)	HRLWSH	31 AS	HRIHH	HNFHH
∆9 (Fg)	HRMWSH	31 AS	HRVHH	HNFHH
∆ 12 (Sc)	HDCGH	31 AS	HDHHH	HIPHH
∆ 12 (Fg)	HRKHH	28 AS	HELAH	HVLHH
∆15 (Sc)	HDCGH	31 AS	HRTHH	HVIHH
∆15 (Fg)	HECGH	31 AS	HHRHH	HVIHH
∆ 4-LCB (Pp)	HELSH	32 AS	HQLHH	HNEHH
∆ 4-LCB (Fg)	HEISH	32 AS	HLTHH	HNEHH
∆8-LCB (Pp)	HISITH	27 AS	HNVHH	QAIHH
∆8-LCB (Fg)	HMGITH	27 AS	HNVHH	QVIHH

Scs7p - Acylamid- α -Hydroxylase, Sur2p - Sphingolipid-LCB-C4-Hydroxylase, Erg25p - Sterol-C4-Methyloxidase, Erg3p - C5-Sterol-Desaturase, $\Delta 9$ - Fettsäure- $\Delta 9(Z)$ -Desaturase, $\Delta 12$ - Fettsäure- $\Delta 12(Z)$ -Desaturase, $\Delta 15$ - Fettsäure- $\Delta 15(Z)$ -Desaturase, $\Delta 4$ -LCB - Sphingolipid- $\Delta 4(E)$ -LCB-Desaturase, $\Delta 8$ -LCB - Sphingolipid- $\Delta 8(E)$ -LCB-Desaturase, AS - Aminosäure

Membrangebundene Desaturasen akzeptieren verschiedene Lipide als Substrate, darunter Acyl-CoAs, freie Sphingobasen, Glycerolipide, Sphingolipide und Sterole und sind in Eukaryoten in der Regel im ER lokalisiert, bei Pflanzen auch in Plastiden. Einige Desaturasen sind am C- oder N-Terminus mit ihrem Elektronendonator, einem Cytochrom b_5 , fusioniert (96, 97). Zu den C-terminalen Fusionsproteinen gehören die Δ 9-Desaturasen der Pilze, während "*front end*"-Fettsäure-Desaturasen (Δ 6, Δ 5, Δ 4), Sphingolipid- Δ 8-Desaturasen und die pilzlichen Acylamid- α -Hydroxylasen die Cytochrom b_5 -Domäne am N-Terminus tragen (91). Der Reaktionsmechanismus der membrangebundenen Desaturasen verläuft vermutlich ähnlich wie bei Acyl-ACP-Desaturasen (Abbildung 1.8).

Abbildung 1.8 Postulierter Reaktionsmechanismus der pflanzlichen Stearoyl-ACP- $\Delta 9(Z)$ -Desaturase [verändert nach (98)]. Die Reaktion verläuft in membrangebundenen Desaturasen und Hydroxylasen ähnlich. Die Koordinierung des Zwei-Eisen-Zentrums erfolgt in Acyl-ACP-Desaturasen mit Hilfe von Aspartat-, Glutamat- und Histidin-Seitenketten, in membrangebundenen Desaturasen durch die drei Histidinboxen. Acyl-ACP-Desaturasen (sowie alle anderen plastidären Desaturasen einschließlich der Enzyme aus Blaualgen) verwenden Ferredoxin als Elektronenlieferant, während in membrangebundenen Desaturasen diese Funktion durch Cytochrom b_5 (frei oder mit dem Enzym fusioniert) ausgeübt wird.

Das Zwei-Eisen-Zentrum wechselt zwischen vier verschiedenen Zuständen. Im reaktionsbereiten Zustand haben beide Eisenatome den Oxidationszustand +IV und sind durch zwei Sauerstoffatome (Oxidationsstufe -II) verbunden. Während der Desaturierung werden zwei Wasserstoffatome von zwei benachbarten C-Atomen (Position je nach Regioselektivität des Enzyms) *syn*-eliminiert und an jeweils eines der beiden Sauerstoffatome des Zwei-Eisen-Zentrums gebunden. Durch die Abgabe eines Wassermoleküls geht das Zwei-Eisen-Zentrum in den Ruhezustand über (Oxidationsstufe der Eisenatome +III). Bei einer Hydroxylierung wird eines der beiden Sauerstoffatome des Zwei-Eisen-Zentrums kovalent an ein C-Atom gebunden, daher entsteht kein Wassermolekül. Desaturierung und Hydroxylierung werden also über denselben Reaktionsmechanismus initiiert, aber auch Epoxidierungen und Acetylenierungen werden von Enzymen dieser Familie katalysiert (99, 100).

Die Reaktivierung des Zwei-Eisen-Zentrums erfolgt in zwei Schritten. Zunächst werden die beiden Eisenatome durch die Übertragung von zwei Elektronen auf die Oxidationsstufe +II reduziert. Die gleichzeitige Aufnahme zweier Protonen führt zur Abspaltung eines weiteren Wassermoleküls, womit nun kein Sauerstoff im Zwei-Eisen-Zentrum mehr gebunden ist. Die Elektronen werden bei den im ER lokalisierten Desaturasen über die NAD(P)H:Cytochrom b_5 -Oxidoreduktase und Cytochrom b_5 auf die Desaturase übertragen, während der Elektronentransport bei den plastidären Enzymen (einschließlich aller Acyl-ACP-Desaturasen) und den Enzymen aus Blaualgen über die Ferredoxin:NAD(P)H-Oxidoreduktase verläuft (90, 91, 101). Im zweiten Schritt nimmt das Zwei-Eisen-Zentrum ein Molekül Sauerstoff auf und geht dabei wieder in den aktiven Zustand mit den Oxidationsstufen +IV (Eisen) und -II (Sauerstoff) über.

Beim dritten Desaturase-/Hydroxylase-Typ handelt es sich um lösliche Cytochrom-P450-Enzyme, die vor allem in Bakterien vorkommen. Die am besten charakterisierte Cytochrom-P450-Hydroxylase fügt eine $\alpha(S)$ -Hydroxylgruppe in die Fettsäure des (Glucosyl-)Ceramids des Bakteriums *Sphingomonas paucimobilis* ein und benötigt H₂O₂ für ihre Aktivität (102-104).

1.3 <u>Δ3-desaturierte Fettsäuren sind charakteristische Bestandteile</u> <u>verschiedener Lipide</u>

Wie bereits im Abschnitt über pilzliche Sphingolipide beschrieben, kann die amidgebundene Fettsäure eine Doppelbindung am C3 aufweisen. Diese findet man jedoch nur in Euascomyceten, einer relativ ursprünglichen Gruppe von Ascomyceten, zu der auch pathogene Arten gehören (21). Der relative Anteil $\Delta 3(E)$ -ungesättigter Fettsäuren variiert dabei in Abhängigkeit vom Organismus: In den beiden dimorphen Pilzen *Histoplasma capsulatum* und *Paracoccidioides brasiliensis* ist der Anteil $\Delta 3$ -ungesättigter Fettsäuren im GlcCer des Myzels höher als im GlcCer des Hefestadiums. Im GalCer von *Aspergillus fumigatus* (ein monomorpher Pilz ohne Hefestadium) wurde ein höherer Anteil $\Delta 3(E)$ -ungesättigter Fettsäuren gefunden als im GlcCer, und in *Sporothrix schenckii* kommt die $\Delta 3(E)$ -Doppelbindung nur im GalCer vor (105-107). Diese Daten lassen vermuten, dass die $\Delta 3$ -Doppelbindung wichtig für den Übergang vom Hefe- in das Myzelstadium (bzw. umgekehrt) ist. Allerdings hängt es vom Organismus ab, ob der Anteil an $\Delta 3$ -desaturierten Fettsäuren im Hefestadium oder im Myzel höher ist. In Sulfosphingolipiden wurde eine Δ 3-Doppelbindung bislang nur in *Porphyromonas gingivalis* (dem Erreger der Parodontitis) nachgewiesen (108). Häufig findet man in der C3-Position jedoch Hydroxylgruppen. C3-hydroxylierte Fettsäuren sind bisher in vielen Bakterien der Cytophaga-Flexibacter-Gruppe nachgewiesen worden (77, 80, 82-84, 109, 110), aber auch in der einzelligen Kieselalge *Nitzschia alba* (85). Die Sulfosphingolipide des opportunistisch pathogenen *Flavobacterium johnsoniae* besitzen unterschiedliche funktio-nelle Gruppen, abhängig von seiner Umgebung (111): In Flüssigkultur angezogen sind die SSL ausschließlich am C2 der Fettsäure hydroxyliert. Beim Wachstum auf Festmedium produziert das Bakterium zusätzlich auch C3-hydroxylierte sowie 2,3-dihydroxylierte SSL. Da *Flavobacterium johnsoniae* wie alle Sphingobacteriales die Fähigkeit besitzt, über Oberflächen zu gleiten, besteht die Möglichkeit, dass eine Hydroxylgruppe am C3 hierfür von Nutzen sein könnte.

Caleic acid isoliert aus TAG von Pflanzensamen

Abbildung 1.9 Strukturformeln von Molekülen, die $\Delta 3(E)$ -desaturierte Fettsäuren enthalten. Glycosylceramid aus Euascomyceten zeigt eine charakteristische Struktur: Die langkettige Base ist mit einer α -hydroxylierten C₁₆- oder C₁₈- $\Delta 3(E)$ -ungesättigten Fettsäure verknüpft. Die *sn*-2-Position im Phosphatidylglycerol (PG) aus Chloroplasten höherer Pflanzen ist meist mit (*E*)-Hexadec-3-ensäure besetzt. *Caleic acid* – (3*E*,9*Z*,12*Z*)-Octadeca-3,9,12-triensäure – ist eine der häufigsten Fettsäuren im Triacylglycerol (TAG) aus den Samen der Pflanzen *Calea urticaefolia* und *Stenachaenum macrocephalum*.

3(E)-Doppelbindungen existieren auch in anderen Lipiden. Phosphatidylglycerol (PG) aus photosynthetisch aktiven Plastiden tragen in der *sn*-2-Position meist (3*E*)-Hexadec-3-ensäure (Abbildung 1.9). Der Genlokus, der für die putative Desaturase codiert, wurde *FAD*4 genannt, die zugrunde liegende Sequenz ist derzeit noch nicht bekannt (112). Es existiert jedoch eine chemische induzierte Mutante von *Arabidopsis thaliana* [N205, (113)], deren einziger (offensichtlicher) Phänotyp darin besteht, dass das plastidäre PG frei von Δ 3-Doppelbindungen ist. Diese Mutante wurde inzwischen auf Sequenzebene analysiert, um *fad*4 zu identifizieren. Erstaunlicherweise handelt es sich weder um eine "klassische" Histidinbox-Desaturase noch um ein P450-Enzym (unveröffentlichte Daten; persönliche Information von C. Benning, East Lansing, MI, USA). Die physiologische Rolle von $\Delta 3(E)$ -desaturiertem PG ist nicht bekannt, es gibt jedoch Hinweise darauf, dass das Lipid für die Ausbildung der Lichtsammelkomplexe im Chloroplast von *Chlamydomonas reinhardtii* wichtig ist (114, 115). $\Delta 3(E)$ -Doppelbindungen findet man auch in gewöhnlichen mehrfach ungesättigten Fettsäuren im Triacylglycerol (TAG) der Samen einiger höherer Pflanzen. Ein Beispiel ist *Caleic acid*, (3*E*,9*Z*,12*Z*)-Octadeca-3,9,12-triensäure (Abbildung 1.9), einer der häufigsten Fettsäuren im TAG der Samen von *Stenachaenum macrocephalum* und *Calea urticaefolia* (116-118).

1.4 <u>Glycosphingolipide interagieren mit antimykotischen Peptiden</u>

Es ist bekannt, dass Sphingolipide als Zielmolekül für pflanzliche Defensine wirkt. Dabei handelt es sich um antimykotische Peptide (AFP), die an die Plasmamembran binden und dort die Bildung einer Pore induzieren, wodurch das Pilzwachstum gehemmt wird (119, 120). Gendeletionsmutanten von *Saccharomyces cerevisiae*, *Candida albicans* und *Pichia pastoris*, die kein GlcCer bzw. (Mannosyl-)Inositol-haltigen Sphingolipide mehr synthetisieren können, werden resistent gegenüber Defensinen DmAMP aus Dahlie (*Dahlia merckii*) und RsAFP2 aus Rettich (*Raphanus sativus*) (121-124). Die Interaktionsmechanismen und der Mechanismus der Porenbildung sind noch nicht geklärt. Bei einem anderen antimykotischen Peptid aus *Aspergillus giganteus* (AgAFP) vermutet man ebenfalls eine Interaktion mit GlcCer (125). Sensitiv gegen AgAFP sind allerdings nur solche Organismen, die eine $\Delta 3(E)$ -Doppelbindung im Glycosylceramid tragen. Ob die $\Delta 3(E)$ -Desaturierung tatsächlich für die Bindung des AFPs an die Plasmamembran eine Rolle spielt, sollte im vorliegenden Projekt geklärt werden.

Abbildung 1.10 Strukturvergleich der Defensine aus Aspergillus giganteus (AgAFP) und Raphanus sativus (RsAFP1). Obwohl die Peptidsequenz von AgAFP acht Cysteine enthält, bilden diese keine Disulfidbrücken aus. RsAFP1 und RsAFP2 unterscheiden sich in lediglich zwei Aminosäuren, allerdings wurde die dreidimensionale Struktur von RsAFP2 noch nicht berechnet. Die letztgenannten Peptidsequenzen enthalten ebenfalls acht Cysteine, die untereinander vier Disulfidbrücken ausbilden. Spiralen und Pfeile symbolisieren α -Helices und β -Faltblattstrukturen.

Sphingolipide sind vermutlich der erste Angriffspunkt für die genannten Defensine, ihre Wirkung wird jedoch auch durch andere Faktoren beeinflusst. So ist die Interaktion von RsAFP2 und anderen Defensinen mit der Hefe *Candida albicans* abhängig von reaktiven Sauerstoffarten (126-128). Auch die Synthese der Defensine wird durch Stressfaktoren verändert. Die Genexpression von AgAFP wird z.B. bei alkalischem pH-Wert hochreguliert (129-131).

Defensine stellen aufgrund ihrer spezifischen Wirkungsweise einen Ansatzpunkt für die Entwicklung neuer Antibiotika dar. Die spezifischen Bindestellen von DmAMP wurden mit diesem Ziel bereits charakterisiert (132, 133). Im Fall von RsAFP2 und AgAFP ist die Bedeutung der einzelnen strukturellen Modifikationen des GlcCer, die für die Interaktion wichtig sind, jedoch noch nicht bekannt. Die $\Delta 3(E)$ -Doppelbindung könnte wichtige Funktion bei der Bindung des Defensins and das GlcCer haben.

1.5 Ziele dieser Arbeit

Mit einer umfangreichen Datenbankrecherche sollte nach geeigneten Kandidatensequenzen für die $\Delta 3(E)$ -Desaturase aus Euascomyceten gesucht und diese kloniert und funktionell charakterisiert werden. Die entsprechenden Deletions- und Expressionsmutanten könnten Rückschlüsse auf eine Rolle in der Wirt-Pathogen-Beziehung zulassen und möglicherweise langfristig dazu beitragen, die Interaktion von GlcCer mit den Defensinen RsAFP2 und AgAFP besser zu verstehen.

Im Vorfeld wurden von Frau Dr. Petra Sperling bereits geeignete Kandidatengene identifiziert, deren Funktionen in dieser Arbeit geklärt werden sollten.

Der Fokus der biochemisch-molekularbiologischen Charakterisierung lag insbesondere auf dem phytopathogenen Pilz *Fusarium graminearum*: Es sollte zunächst untersucht werden, unter welchen Bedingungen der Pilz $\Delta 3(E)$ -desaturiertes Glucosylceramid bildet. Die Charakterisierung der Kandidatengene sollte zum einen durch Herstellung einer Deletionsmutante in *F. graminearum* und zum anderen durch heterologe Expression in der Hefe *Pichia pastoris* erfolgen.

Die entsprechenden Mutanten ermöglichen anschließende Untersuchungen bezüglich der Interaktion mit den antimykotischen Peptiden aus Rettich (RsAFP2) und Aspergillus giganteus (AgAFP).

2 Vorarbeiten - Bioinformatik

2.1 <u>Bioinformatische Identifizierung und Charakterisierung geeigneter</u> <u>Kandidatensequenzen</u>

Bereits vor Beginn dieser Arbeit wurden von Frau Dr. Petra Sperling geeignete Kandidatensequenzen identifiziert, die für Sphingolipid-∆3-Desaturasen codieren könnten. Die daraus resultierende Sammlung putativer membrangebundener Desaturasen wurde von mir ab Juni 2005 mit den Daten aus anderen sequenzierten Organismen erweitert. Die Datenbanksuche nach geeigneten Kandidatensequenzen erfolgte prinzipiell wie von Ternes et al. (33) beschrieben:

Alle Desaturasen und Hydroxylasen, die am Aufbau des pilzlichen Ceramid-Gerüsts beteiligt sind, gehören zu einer großen Familie membrangebundener Enzyme, deren Gemeinsamkeit der Besitz von drei Histidinboxen (Sequenzmotiv HXXHH) ist. Daher wurde vermutet, dass das gesuchte Enzym ebenfalls zu dieser Superfamilie gehört. Da die Acylamid-a-Hydroxylase (Scs7) eine zu der $\Delta 3(E)$ -Desaturase ähnliche Regioselektivität aufweist, wurden die entsprechenden Proteinsequenzen für Scs7p aus S. cerevisiae (27) und P. pastoris (7) zunächst als Basis für eine Datenbankrecherche genutzt. Zur Identifizierung geeigneter Kandidatengene wurde ein von Ternes et al. (33) entwickeltes bioinformatische Verfahren verwendet: Zunächst wurden mehrere Psi-Blast-Suchläufe (134) mit den Proteinsequenzen der Scs7p aus S. cerevisiae und P. pastoris sowie allen anderen bereits bekannten Desaturase-ähnlichen Sequenzen aus Candida albicans und Arabidopsis (als Vergleich) und der A11-Fettsäure-Desaturase aus der Alge *Thalassiosira pseudonana* (135) durchgeführt. Da nicht klar war, ob die gesuchte Sequenz eine Cytochrom b₅-Domäne enthält, wurden die Sequenzen (z.B. der α-Hydroxylase aus *P. pastoris* oder der Δ11-Fettsäure-Desaturase aus T. pseudonana) sowohl mit als auch ohne Cytochrom b_5 -Domäne für die Datenbanksuche verwendet. Für die Recherche wurde die Suche auf vollständig sequenzierte Genome beschränkt. Zum Zeitpunkt der ersten Suchläufe waren aus der Gruppe der Pezizomyceten (= Euascomyceten) lediglich fünf Genome vollständig sequenziert: Aspergillus fumigatus, Aspergillus nidulans, Fusarium graminearum, Magnaporthe grisea und Neurospora crassa. Zudem wurde in den Genomen von Arabidopsis thaliana, den Hefen Saccharomyces cerevisiae und Candida albicans sowie in den Basidiomyceten Cryptococcus neoformans und Ustilago maydis gesucht. Die erhaltenen Sequenzen wurden auf das Vorhandensein der drei Histidinboxen überprüft und in einer eigenen Datenbank gesammelt. Die Analyse der Sequenzen und die Erstellung eines phylogenetischen Baumes erfolgte mit Hilfe des Programms ClustalX2 (136) und konnte mit dem Programm TreeView (137) grafisch dargestellt werden (Die weitere Bearbeitung der Stammbäume erfolgte mit dem Programm Corel Draw Version 11). Dabei sortieren Desaturasen mit gleicher Regioselektivität in einen gemeinsamen Ast und bilden eine eigene Subfamilie. Aufgrund bereits bekannter Daten konnte den meisten Subfamilien eine biochemische Funktion zugeordnet werden. Geeignete Kandidatensequenzen für Δ 3-Desaturasen sollten die folgenden Kriterien erfüllen:

- Innerhalb der Subfamilie soll keiner Sequenz bereits experimentell eine biochemische Funktion zugeordnet worden sein.
- Sie soll in allen Euascomyceten vorkommen (also z.B. in *Fusarium* und *Magnaporthe*).
- Sie darf nicht in Hefen, anderen Pilzen oder Tieren vorkommen, da dort keine Δ3desaturierten Sphingolipide nachgewiesen wurden.
- Sie kommt vermutlich nicht in Pflanzen vor, was jedoch aufgrund der im PG auftretenden Δ3-Doppelbindung nicht ausgeschlossen werden konnte.

Mit diesem Verfahren konnte genau eine Gruppe von Sequenzen identifiziert werden, die alle notwendigen Kriterien erfüllte (Abbildung 2.1).

Abbildung 2.1 Phylogenetischer Baum mit Desaturase-ähnlichen Seguenzen aus Fusarium graminearum, Magnaporthe grisea, Candida albicans, Saccharomyces cerevisiae und Arabidopsis thaliana. Die Kandidaten-Sequenzen für die Δ3-Desaturase sind rot markiert und Sphingolipid-modifizierende Proteine grau hinterlegt. Proteinsequenzen mit Cytochrom b_5 -Domänen sind durch gestrichelte (C-terminal) und gepunktete (N-terminal) Linien gekennzeichnet. Membrangebundene Desaturasen und Hydroxylase können in zwei Gruppen eingeteilt werden (gelber bzw. hellblauer Hintergrund), die sich im Abstand zwischen der ersten und zweiten Histidinbox unterscheiden. Dieser ist mit 25-34 Aminosäuren in den gelb unterlegten Sequenzen größer als in den blau unterlegten putativen Polypeptide (7-18 Aminosäuren). Die kleinen Abbildungen links illustrieren dies. Die Abstände zwischen erster und zweiter Histidinbox sind dunkelblau bzw. dunkelgelb markiert. Die GenBank® Protein Accession-Nummern lauten wie folgt: 1) XP_383758, 2) XP 368852, 3) NP_013999, 4) XP_717303, 5) XP_385340, 6) XP_361446, 7) NM_129030, 8) NM_11820, 9) NP_192948, 10) NP_013157, 11) XP_713612, 12) XP_382678, 13) XP_363987, 14) XP_722703, 15) NP_011574, 16) XP_713456, 17) XP_360827, 18) XP_390006, 19) XP_369331, 20) NP_567670, 21) NP_850133, 22) NP_563789, 23) NP_010583, 24) XP_715359, 25) XP_382698, 26) XP_369735, 27) AAF43928, 28) AAG52550, 29) NP_194824, 30) NP_850139, 31) XP_722258, 32) XP_714324, 33) XP 385960, 34) XP 365283, 35) XP 388066, 36) XP 362963, 37) NP 180559, 38) NP 187727, 39) NP_196177, 40) XP_719958, 41) XP_390021, 42) XP_361026, 43) NP_182144, 44) AAD00895, 47) XP 390550, 45) NP 192402, 46) XP 722116, 48) XP 001404401, 49) XP 714854, 50) NP 011460, 51) XP 717653, 52) XP 386360, 53) XP 363864, 54) NP 565721, 55) BAC43716, 56) NP 172098.

Zunächst enthielt die Subfamilie lediglich Sequenzen aus *A. fumigatus* (Acc.-Nr. XP_748510), *A. nidulans* (XP_662689 und XP_658567), *F. graminearum* (XP_383758), *M. grisea* (XP_368852) und *N. crassa* (XP_958382). Die Kandidatenpolypeptide wurden (von mir) in pBlast- und tBlastn-Suchläufen eingesetzt, um die Datenbank mit Sequenzen aus weiteren Organismen zu ergänzen (Tabelle 2.1). In die Datenbank wurden jedoch nur vollständige Sequenzen aufgenommen. Die entsprechenden Sequenzen aus *Botryotinia*

fuckeliana und *Chaetomium globosum* sind z.B. offenbar falsch annotiert wurden, da jeweils ein Abschnitt fehlt, der die erste oder dritte Histidinbox beinhaltet.

Neben den pilzlichen Sequenzen wurden auch Homologe in anderen Organismen gefunden. Dabei handelt es sich um Sequenzen aus den Grünalgen *Chlamydomonas reinhardtii*, *Ostreococcus tauri* und *O. lucimarinus*, den Bakterien *Cytophaga hutchinsonii* (Sphingobacteriales) und *Plesiocystis pacifica* (Myxococcales) sowie dem Ciliaten *Tetrahymena thermophila*. Da in *Cytophaga* die Existenz β -hydroxylierter Fettsäuren bekannt ist (80), stellen die eben genannten Sequenzen auch interessante Kandidatengene für β -Hydroxylasen dar.

Tabelle 2.1 Gen- und Protein-Identifikationsnummern putativer Δ 3-Desaturasen (Stand 10.11.08)

Spezies	Gene ID	Accession Nummer
Ajellomyces capsulatus NAm1	HCAG_01067	XP_001544021
Aspergillus clavatus NRRL 1	ACLA_062570 (1)	XP_001273718 (1)
	ACLA_093790 (2)	XP_001273106 (2)
Aspergillus fumigatus Af293	Afu3g01900	XP_748510
Aspergillus nidulans FGSC A4	AN5085.2 (1)	XP_662689 (1)
	AN0963.2 (2)	XP_658567 (2)
Aspergillus niger CBS 513.88	An01g09800	XP_001389400
Aspergillus oryzae RIB40	AO090020000686	XP_001824962
Aspergillus terreus NIH2624	ATEG_04780	XP_001213958
Coccidioides immitis RS	CIMG_06512	XP_001242616
Fusarium graminearum PH-1	Fg05382	XP_383758
Magnaporthe grisea 70-15	MGG_00392	XP_368852
Neosartorya fischeri NRRL 181	NFIA_002980 (1)	XP_001258842 (1)
	NFIA_032620 (2)	XP_001265594 (2)
Neurospora crassa OR74A	NCU09858	XP_958382
Penicillium chrysogenum Wisconsin 54-1255	Pc12g06940	CAP80321
Penicillium maneffei ATCC 18224	PMAA_014370	DS995906
Podospora anserina DSM 980	PODANSg1150	XP_001904133
Pyrenophora tritici-repentis Pt-1C-BFP	PTRG_07031	XP_001937363
Sclerotinia sclerotiorum 1980	SS1G_05242	XP_001593814
Stagnosporum nodorum SN15	SNOG_01060	XP_001791719
nicht-pilzliche homologe Sequenzen		
Chlamydomonas reinhardtii	CHLREDRAFT_170374	XP_001691564
Cytophaga hutchinsonii ATCC 33406	CHU_2059	YP_678664
Ostreococcus lucimarinus CCE9901	OSTLU_26849	XP_001420814
Ostreococcus tauri	Ot12g01900	CAL57280
Plesiocystis pacifica SIR-1	PPSIR1_16465	ZP_01907368
Tetrahymena thermophila SB210	TTHERM_00129290	XP_001016398

Die Verwandtschaft zwischen den einzelnen Sequenzen ist in Abbildung 2.2 dargestellt.

Abbildung 2.2 Cladogramm von Vertretern der putativen Δ3-Desaturase-Familie, Scs7p aus Saccharomyces diente als "outgroup". Acc.-Nr. siehe Tabelle 2.1

Die putativen Δ 3-Desaturasen aus Pilzen weisen die typische Struktur membrangebundener Desaturasen mit drei hochkonservierten Histidinboxen auf. Die Sequenzen der neu identifizierten Subfamilie haben mit 33 Aminosäuren einen langen Abstand zwischen den ersten beiden Histidinboxen und enthalten keine Cytochrom b_5 -Domäne. Abbildung 2.3 zeigt ein Alignment einiger Proteinsequenzen der Kandidatenfamilie. Die Sequenzen sind vor allem im Bereich der Histidinboxen sehr stark konserviert und zeigen eine höhere Ähnlichkeit zueinander als z.B. die α -Hydroxylasen. Mit Hilfe des Onlineprogramms TMHMM (138) wurden die Sequenzen in Hinblick auf ihre zu erwartende Topologie untersucht. Die Lage der vier erwarteten Transmembrandomänen ist ebenfalls in Abbildung 2.3 eingezeichnet.

Abbildung 2.3 Alignment der Kandidatensequenzen aus *F. graminearum* (Δ 3Fg), *M. grisea* (Δ 3Mg), *A. fumigatus* (Δ 3Af) und *N. crassa* (Δ 3Nc). Das Alignment wurde mit Hilfe des Programms ClustalX2 erzeugt und mit Genedoc bearbeitet. Die drei Histidinboxen sowie die (ungefähre) Position der vier Transmembrandomänen sind gekennzeichnet.

Generell ist die Subfamilie im Stammbaum von allen anderen Desaturasen getrennt. Die Sequenzen sind alle zwischen 400 und 500 Aminosäuren lang und enthalten auf DNA-Ebene 1-2 Introns, eines jedoch in jedem Fall zwischen der zweiten und dritten Histidinbox.

2.2 In dieser Arbeit verwendete Organismen

Im Folgenden sollen die in dieser Arbeit verwendeten Organismen kurz vorgestellt werden. Der Fokus der gesamten Arbeit lag dabei auf dem phytopathogenen Euascomyceten *Fusarium graminearum*, dessen Genom zu Beginn dieser Arbeit bereits vollständig sequenziert war. Der Organismus selbst wurde freundlicherweise von der Arbeitsgruppe von Herrn Prof. Dr. W. Schäfer, Biozentrum Klein Flottbek) zur Verfügung gestellt.

Außerdem wurde mit dem Bakterium *Cytophaga hutchinsonii* gearbeitet, da das Genom des Bakteriums eine Sequenz enthielt, die der Sequenz der putativen $\Delta 3(E)$ -Desaturase aus *F. graminearum* sehr ähnlich war.

2.2.1 Die Euascomyceten Fusarium graminearum und Magnaporthe grisea

Fusarium graminearum

Der phytopathogene Pilz *Fusarium graminearum* (Teleomorph *Gibberella zeae*) ist ein weltweit vorkommender Getreideschädling. Die Ausbildung von Ährenfusariosen (auch als Ährenbleiche oder *Fusarium head blight disease* bezeichnet) an Weizen, Gerste und Mais führt zu hohen Ertrags- und Qualitätseinbußen: Es werden nicht nur kleinere und leichtere Körner ausgebildet, sie sind zudem stark mit Toxinen (Trichothecenen) belastet. *F. graminearum* wächst als Myzel (acht Nuklei pro Zelle) und verfügt nicht über ein Hefestadium. Die asexuelle Vermehrung erfolgt über Konidiosporen.

Magnaporthe grisea

Magnaporthe grisea (Anamorph *Pyricularia grisea*) ist ein hoch-pathogener Euascomycet, der vor allem Reispflanzen infiziert (Auslöser der "Reisbleiche" auch *rice blast* genannt) und jährlich für Ernteausfälle bei Reis zwischen 10 und 30 % sorgt. Der Pilz infiziert aber auch andere Getreidearten und ist wie *F. graminearum* weltweit verbreitet. *M. grisea* dient als Modellorganismus zum Studium phytopathogener Pilze.

Die Infektion der Wirtspflanze erfolgt durch Ausbildung eines stark melanisierten Appressoriums, das einen hohen Turgordruck aufbauen kann um das Eindringen eines Keimschlauchs in die Epidermis zu ermöglichen. GlcCer-defiziente Melanom-Zellen der Maus sind nicht mehr zur Melanin-Biosynthese befähigt. Gleiches gilt für eine Mutante des Basidiomyceten *Cryptococcus neoformans*, dessen Inositolphosphorylceramid-Synthase (*IPC*1) deletiert ist (74). Möglicherweise wären *M. grisea*-Stämme, die Defekte in der Sphingolipid-Biosynthese zeigen (bzw. kein Melanin synthetisieren könnten), in ihrer Pathogenität reduziert.

2.2.2 Die Bakterien Cytophaga hutchinsonii und Sphingomonas paucimobilis

Cytophaga hutchinsonii

Bei *Cytophaga hutchinsonii* handelt es sich um ein gram-negatives, aerobes Stäbchenbakterium aus der Klasse der Sphingobacteria, das gewöhnlich im Boden vorkommt, aber auch aquatisch leben kann. *C. hutchinsonii* besitzt die Fähigkeit zum Cellulose-Abbau und kann sich – wie alle Sphingobacteriales – durch Gleiten fortbewegen (*"gliding motility"*). Wie diese Art der Fortbewegung genau funktioniert, ist nicht bekannt: Flagellen oder Cilien sind nicht beteiligt. Jedoch kennt man inzwischen einige der beteiligten Proteine (88), und auch die Fähigkeit zur Synthese von SSL wird als wichtig erachtet (86). Die *gliding motility* ermöglicht *C. hutchinsonii* die Kolonialisierung des unlöslichen Substrates (Cellulose).

Neben den apathogenen C. hutchinsonii und Salinibacter ruber (halophil) gehören auch (opportunistisch) pathogene Arten wie Flavobacterium johnsoniae und Porphyromonas
gingivalis (Parodontitis) zu den Sphingobacteriales. Die Genome aller genannten Organismen sind vollständig sequenziert.

Sphingomonas paucimobilis

Sphingomonas paucimobilis (früherer Name: *Pseudomonas paucimobilis*) gehört zur Klasse der α -Proteobacteria. Es handelt sich um ein gram-negatives, heterotrophes Bakterium (gekrümmte Stäbchen), das strikt aerob lebt und ein Auslöser nosokomialer Infektionen sein kann. Sphingomonaden synthetisieren Glycosphingolipide anstelle der für gram-negative Bakterien typischen Lipopolysaccharide. Die Sphingolipid- α -Hydroxylase aus *S. paucimobilis* wurde bereits *in vitro* charakterisiert (102-104).

2.2.3 Pichia pastoris als Modellsystem zur heterologen Expression

Als Modellorganismus zur Analyse eukaryotische Stoffwechselvorgänge dient häufig die Bäckerhefe Saccharomyces cerevisiae. Da diese jedoch kein Glucosylceramid besitzt, die $\Delta 3(E)$ -Doppelbindung in Euascomyceten jedoch auf dieses Lipid beschränkt ist, erscheint diese Hefe als heterologes Expressionssystem in diesem Fall nicht geeignet. Hefen wie Pichia pastoris und Candida albicans besitzen hingegen die gesamte Enzymausstattung, die zur GlcCer-Synthese benötigt wird. Jedoch fehlt ihnen die Δ 3-Doppelbindung der Fettsäure. Da von Pichia pastoris bereits verschiedene gentechnologisch erzeugte Mutanten existieren, die Veränderungen im Sphingolipidstoffwechsel aufweisen (7, 34), ist diese Hefe ein geeignetes Expressionssystem für putative Sphingolipid- $\Delta 3(E)$ -Desaturasen. Auch Untersuchungen zur Interaktion von P. pastoris bzw. deren Glucosylceramid mit dem Defensin RsAFP2 wurden bereits durchgeführt (7, 124). Im Gegensatz zu Saccharomyces werden Expressionskonstrukte in Pichia stabil ins Genom integriert und liegen nicht als extrachromosomale Plasmide vor.

3 Ergebnisse – Molekularbiologische Charakterisierung

3.1 *Fusarium graminearum* synthetisiert Δ3(*E*)-desaturiertes GlcCer

In allen bisher hinsichtlich ihrer Lipidzusammensetzung analysierten Euascomyceten wurden Δ 3-desaturierte Sphingolipide gefunden. Toledo et al. (107) zeigten, dass die Δ 3-Desaturierung in Pilzen möglicherweise eine wichtige Rolle für die Entwicklung der Pilze spielt, da der Gehalt an Δ3-ungesättigten Fettsäuren zwischen GlcCer und GalCer sowie zwischen Myzelund Hefestadium variiert (105-107). F. graminearum besitzt kein Hefestadium; GalCer wurde bisher auch nicht nachgewiesen (75, 139). Ramamorthy et al. zeigten, dass F. graminearum Stamm PH-1 $\Delta 3(E)$ -ungesättigtes GlcCer enthält (75). Zunächst musste geklärt werden, ob dies auch auf den Stamm 8/1 (140), der im Rahmen dieser Arbeit verwendet werden sollte, zutraf. Hierzu wurden Lipide aus Zellen von F. graminearum Stamm 8/1 (kultiviert in CM-Medium) extrahiert, dünnschichtchromatographisch aufgetrennt und das enthaltene GlcCer isoliert. Ein Teil des gereinigten GlcCer wurde mit Essigsäureanhydrid peracetyliert. Sowohl das native Lipid als auch das peracetylierte Derivat wurden mit ESI-FT-ICR-MS analysiert (Abbildung G.1 a im Anhang). Bei der Analyse des nativen GlcCer im positiven Modus zeigte das Hauptsignal eine molekulare Masse von 753.5785 Da, die ziemlich genau der kalkulierten Masse für $C_{43}H_{79}O_9N$ (753.5755 Da) entspricht. Dies lässt auf GlcCer schließen, das die Sphingobase d18:2-C9m und eine einfach ungesättigte C₁₈-Fettsäure enthält. Eine der erwarteten Substanz entsprechende molekulare Masse wurde auch bei der Analyse von peracetyliertem GlcCer detektiert (ohne Abbildung). Die Position und Konfiguration der Doppelbindung wurde mittels ¹H-NMR- und ¹³C-NMR-Spektroskopie als "delta-3-trans" bestimmt (Tabellen G.1 und G.2 im Anhang). Der F. graminearum-Stamm 8/1 war also für die folgenden Untersuchungen geeignet.

Viele Organismen (und auch Pilze) reagieren auf sinkende Temperaturen mit einer Erhöhung des relativen Gehalts an (mehrfach-)ungesättigten Fettsäuren (141). Es sollte überprüft werden, ob der Gehalt an Δ3-ungesättigten Fettsäuren ebenfalls temperaturabhängig ist. Hierzu wurden je 100 ml Komplett-Minimalmedium (CM) mit ca. 10.000 Konidien des Stamms 8/1 beimpft und für jeweils 3 und 7 Tage bei unterschiedlichen Temperaturen inkubiert (18°C, 28°C und 30°C bei 180 rpm). Anschließend wurden die Lipide mit Chloroform/Methanol aus den Zellen extrahiert und daraus Methylester (FAMEs) hergestellt. Die Hydroxyfettsäuren des GlcCer lassen sich aufgrund ihrer Polarität als FAMEs nicht gaschromatographisch analysieren; die Hydroxylgruppen mussten daher durch Anfügung einer Trimethylsilylgruppe (TMS-) maskiert werden. Diese Derivatisierung hatte keinen Einfluss auf nicht-hydroxylierte Fettsäuren. Die Analyse der TMS-FAMEs erfolgte mittels

Gaschromatographie (GLC). Abbildung 3.1 zeigt die Zusammensetzung der Fettsäuren des Gesamtextrakts.

Fettsäurezusammensetzung von Fusarium

Abbildung 3.1 Die Lipidextrakte isoliert aus *F. graminearum*-Kulturen die bei 28°C oder 30°C gewachsen waren, zeigten keine signifikanten Änderungen in ihrer Fettsäurezusammensetzung. Jedoch ist der Gehalt an Linolensäure (18:3) im Myzel, das bei 18°C angezogen wurde, erhöht. Die aus den Gesamtlipidextrakten hergestellten Fettsäuremethylester (TMS-FAMEs) wurden gaschromatographisch analysiert und die 6 häufigsten Fettsäuren quantifiziert (Daten aus je 3 unabhängigen Experimenten). 16:0 – Palmitinsäure, 16:1 – Hexadecensäure, 18:0 – Stearinsäure, 18:1 – Ölsäure, 18:2 – Linolsäure, 18:3 – Linolensäure.

Die Lipidextrakte bestehen größtenteils aus Phosphoglycerolipiden, daher wurden vor allem C_{16} - und C_{18} -Fettsäuren (mit 0-3 Doppelbindungen) erwartet. Es konnten keine signifikanten Unterschiede in der Fettsäurezusammensetzung von Kulturen, die bei 28°C bzw. 30°C gewachsen waren, festgestellt werden. Auffällig war im Vergleich hierzu jedoch der hohe Anteil an Linolensäure (18:3) bei 18°C. Die Beobachtungen decken sich mit den Ergebnissen einer früheren Studie hinsichtlich der temperaturabhängigen Fettsäurezusammensetzung in verschiedenen Pilzen (141).

Zur Kontrolle wurden außerdem FAMEs aus gereinigtem Phosphatidylcholin (PC), dem quantitativ häufigsten Phosphoglycerolipid von *Fusarium*, analysiert. Es konnten keine Unterschiede zwischen PC und Gesamtlipidextrakt hinsichtlich der Fettsäurezusammensetzung detektiert werden (Daten nicht gezeigt).

Der Anteil des GlcCer an der Gesamtlipidmenge ist sehr gering, weshalb die für GlcCer typischen Hydroxyfettsäuren in der Gesamtfettsäureanalyse nicht detektiert werden konnten. Aus diesem Grund wurde GlcCer gereinigt und die Zusammensetzung der enthaltenen Fettsäuren als TMS-FAMEs mittels GLC analysiert (Abbildung 3.2). Dabei wurde festgestellt, dass das GlcCer von *F. graminearum* fast ausschließlich α-hydroxylierte C₁₈-Fettsäuren enthielt, die bei einer Wachstumstemperatur von 18°C vollständig einfach ungesättigt waren.

Abbildung 3.2 GLC-Analyse von TMS-FAMEs hergestellt aus GlcCer von *F. graminearum*-Myzel, das sieben Tage lang bei verschiedenen Temperaturen kultiviert wurde. Der Gehalt an Δ3-ungesättigten Fettsäuren ist bei niedrigen Temperaturen (18°C) am höchsten und sinkt bei einer Wachstumstemperatur von 30°C auf etwa 30 % ab.

Bei 28°C liegt der Gehalt an 2-Hydroxyoctadecensäure zwischen 70 und 80 %, bei höheren Temperaturen (30°C) sinkt er jedoch auf etwa 30 % ab. Hingegen wurden keine Unterschiede bei gleicher Temperatur, aber verschieden langer Inkubationszeit (3 oder 7 Tage) beobachtet (ohne Abbildung).

Die Abnahme der relativen Menge ∆3-ungesättigter Fettsäuren im GlcCer mit steigender Temperatur (18-30°C) ist in Abbildung 3.3 quantitativ dargestellt.

Abbildung 3.3 Die relative Menge von (Δ 3-)desaturierten Fettsäuren im GlcCer nimmt zwischen 27°C und 30°C stark ab. Quantifizierung der im GlcCer von *F. graminearum* enthaltenen Δ 3(*E*)ungesättigten Fettsäuren im Vergleich zur relativen Häufigkeit von Linolensäure in Phosphoglycerolipiden. *F. graminearum* wurde bei insgesamt fünf verschiedenen Temperaturen kultiviert (18°C, 27°C, 28°C, 29°C und 30°C). Die aus dem GlcCer bzw. dem Gesamtlipidextrakt hergestellten FAMEs gaschromatographisch analysiert und quantifiziert. Die Daten stellen die Mittelwerte aus zwei unabhängigen Experimenten dar (Für GlcCer gilt 18:0(2-OH) + 18:1(2-OH) = 100%).

Unterschiedliche Wachstumstemperaturen führten nicht zu Veränderungen des Anteils von GlcCer an den Gesamtlipiden (Abbildung G.1 im Anhang).

3.2 <u>Molekularbiologische Analyse der Kandidaten für die $\triangle 3(E)$ -Desaturase</u> aus *Fusarium* und *Magnaporthe*

Die Funktion der in Kapitel 2 identifizierten Sequenzen sollte im nächsten Schritt durch Herstellung von Deletionsmutanten in *F. graminearum* sowie durch heterologe Expression der Kandidatengene in *Pichia pastoris* untersucht werden. Die Analyse der KO-Mutante ermöglicht eine Aussage darüber, ob das Kandidatengen wichtig für die Synthese $\Delta 3(E)$ -desaturierter Fettsäuren ist. Ob die identifizierte Sequenz aus *F. graminearum* tatsächlich für die Desaturase codiert, kann durch heterologe Expression in *P. pastoris* nachgewiesen werden, da die Hefe GlcCer synthetisiert, dessen Ceramid-Grundgerüst mit Ausnahme der fehlenden $\Delta 3(E)$ -Doppelbindung identisch mit dem des GlcCer von *F. graminearum* ist.

3.2.1 Klonierung des Kandidatengens aus Fusarium

Zunächst wurde genomische DNA (gDNA) aus *F. graminearum* 8/1 isoliert und der komplette offene Leserahmen (ATG bis Stopp, inklusive der beiden Introns) mit PCR amplifiziert, in den Vektor pGEM-T[®] kloniert und sequenziert. Im Vergleich zur publizierten Sequenz Fg05382 (XP_383758) des Stammes PH-1 enthielt die Sequenz aus 8/1 sieben abweichende Basen, die zu drei Unterschieden in der abgeleiteten Aminosäuresequenz führten. Außerdem wurde auch RNA aus *F. graminearum* 8/1 isoliert, in cDNA umgeschrieben und der ORF der

putativen Δ3-Desaturase mit PCR amplifiziert. Das PCR-Produkt wurde ebenfalls in pGEM-T[®] kloniert und sequenziert. Abgesehen von den Introns waren die Sequenzen der gDNA und der cDNA identisch und zeigten dieselben Abweichungen zu XP_383758 des sequenzierten Stammes PH-1. Dies deutet auf Polymorphismen zwischen PH-1 und 8/1 hin. Ein Alignment der DNA- und der Aminosäuresequenzen beider Stämme ist in Anhang C dargestellt. Die beiden Sequenzen aus *F. graminearum* 8/1 können in GenBank[®] unter den Accession-Nummern FJ176922 (gDNA) und FJ176923 (cDNA) abgerufen werden.

3.2.2 In einer Δ 3KO-Mutante von *Fusarium* konnten keine Δ 3(*E*)-ungesättigten Fettsäuren nachgewiesen werden

Für *F. graminearum* wurde ein Deletionskonstrukt für das putative $\Delta 3(E)$ -Desaturase-Gen hergestellt. Dazu wurden 5'- und 3'-flankierende Bereiche des ORF mit PCR amplifiziert. Eine Hygromycin-Resistenzkassette wurde in die Bg/II-Schnittstelle zwischen den flankierenden Bereichen kloniert. Protoplasten von F. graminearum wurden mit der linearisierten KO-Kassette transformiert. Drei unabhängige, positive Klone wurden mittels PCR und Southern-Blot auf die richtige Integration des Konstruktes überprüft. Eine der Mutanten wurde bei drei verschiedenen Temperaturen kultiviert (18°C, 28°C, 30°C) und die Lipidzusammensetzung analysiert. Auf der Dünnschichtchromatographie-Platte waren keine Unterschiede zwischen dem Wildtyp und der $\Delta 3(E)$ -Desaturase-Deletionsmutante ($\Delta 3$ FgKO) in einer der Lipidbanden zu erkennen (Abbildung F.2 im Anhang). Das GlcCer wurde dünnschichtchromatographisch gereinigt und seine Fettsäurezusammensetzung mittels GLC untersucht. In allen drei Klonen konnte keine $\Delta 3(E)$ -Doppelbindung nachgewiesen werden (Abbildung 3.4). Die Daten wurden mit GLC/MS bestätigt. Die ESI-MS-Analyse des nativen GlcCer (Abbildung J.1 b) zeigte im positiven Modus ein Signal bei einer molekularen Masse von 755.5917 Da. Dies entspricht ziemlich genau der für C₄₃H₈₁O₉N (755.5911 Da) kalkulierten Masse und deutet auf GlcCer mit d18:2-C9m und der gesättigten Fettsäure 18:0(2-OH) hin. Wie bereits für GlcCer des Wildtyps beschrieben, wurde ein Teil des aus dem Lipidextrakt von Δ3FgKO isolierten GlcCer peracetyliert und ebenfalls mit ESI-MS analysiert. Die ermittelte molekulare Masse stimmte mit der errechneten überein und bestätigt das Ergebnis der Analyse der nativen Substanz (Daten nicht gezeigt).

Abbildung 3.4 Die *F. graminearum*-KO-Mutante des putativen Δ3(*E*)-Desaturase-Gens enthält keine ungesättigten Fettsäuren im GlcCer. GLC-Analyse von TMS-FAMEs isoliert aus GlcCer von Δ3FgKO. Unabhängig von den Kultivierungstemperaturen (18°C, 28°C) wurden keine desaturierten Fettsäuren im GlcCer nachgewiesen.

Analog zum Wildtyp wurde auch die Fettsäurezusammensetzung des Gesamtlipidextrakts mittels Gaschromatographie analysiert und quantifiziert. ∆3FgKO zeigte bei allen drei Temperaturen (18°C, 28°C und 30°C) keinen signifikanten Unterschied im Vergleich zum Wildtyp (Abbildung 3.5).

Fettsäurezusammensetzung von Fg∆3KO

Abbildung 3.5 Die Fettsäurezusammensetzung von ∆3FgKO unterscheidet sich wie erwartet nicht von *F. graminearum* WT. Die aus den Gesamtlipidextrakten hergestellten TMS-FAMEs wurden gaschromatographisch analysiert und die 6 häufigsten Fettsäuren quantifiziert (Daten aus je 3 unabhängigen Experimenten). 16:0 – Palmitinsäure, 16:1 – Hexadecensäure, 18:0 – Stearinsäure, 18:1 – Ölsäure, 18:2 – Linolsäure, 18:3 – Linolensäure.

Dieses Ergebnis bestätigt, dass das Kandidatengen für die Synthese $\Delta 3(E)$ -desaturierter Sphingolipide essentiell ist. Um nachzuweisen, dass es sich dabei tatsächlich um die Desaturase handelt, wurde der ORF heterolog in der Hefe *Pichia pastoris* exprimiert.

3.2.3 Die heterologe Expression der Kandidatengene aus *Fusarium* und *Magnaporthe* in *Pichia pastoris* führt zur Bildung von $\Delta 3(E)$ ungesättigten Fettsäuren im GlcCer

Da das Ceramid-Grundgerüst von *Pichia* bis auf die fehlende $\Delta 3(E)$ -Desaturierung die gleichen Modifikationen wie in *Fusarium* aufweist, erschien dieses Expressionssystem besonders geeignet.

Die kompletten CDS der Kandidatengene aus *Fusarium* (Gen Bank No. FJ176923 entspricht dem Gen Fg05382 = Δ 3Fg) und *Magnaporthe* (MGG_00392 = Δ 3Mg) wurden in den *Pichia*-Expressionsvektor pPIC3.5 kloniert und die linearisierten Konstrukte zur Transformation von *Pichia pastoris* verwendet. Die Transformanten (Pp Δ 3Fg und Pp Δ 3Mg) wurden üN in Minimal-Glycerol-Medium (MGY) angezogen, die Expression der Kandidatensequenzen unter Kontrolle des *AOX1*-Promoters durch Zugabe von Methanol induziert und die Lipide mit Chloroform/Methanol extrahiert (Abbildung F.3 im Anhang). In beiden Fällen führte die Induktion der Genexpression zur Synthese ungesättigter Hydroxyfettsäuren im GlcCer von *Pichia* (Abbildung 3.6).

Abbildung 3.6 Die heterologe Expression der Kandidatengene aus *Fusarium* und *Magnaporthe* in *Pichia pastoris* führte zur Bildung von $\Delta 3(E)$ -ungesättigten Fettsäuren im GlcCer. GLC-Analyse der TMS-FAMEs aus GlcCer von *Pichia pastoris*-Zellen, die die $\Delta 3(E)$ -Desaturase aus *Fusarium* oder *Magnaporthe* exprimieren.

Die Anteile an $\Delta 3(E)$ -ungesättigten Fettsäuren waren jedoch verschieden: In *Pichia*-Klonen, die $\Delta 3$ Fg exprimieren, wurde ein hoher Anteil 2-Hydroxyoctadecen-Säure [18:1(2-OH)] gefunden (50-100 % bezogen auf die Gesamtmenge an "2-Hydroxy-C₁₈-Fettsäuren"). Außerdem wurden Spuren von 16:1(2-OH) und 17:1(2-OH) nachgewiesen. Die Expression von $\Delta 3$ Mg führte nur zur Synthese von weniger als 5 % 18:1(2-OH); 16:1(2-OH) und 17:1(2-OH) wurden nicht detektiert. Offensichtlich gilt aber für beide Kandidaten, dass 18:1(2-OH) das bevorzugte Substrat ist. Die beschriebenen Fettsäureanalysen wurden ebenfalls mit *Pichia*-Zellen durchgeführt, die $\Delta 3$ Fg und $\Delta 3$ Mg konstitutiv (unter Kontrolle des *GAPDH*-Promoters) exprimieren (Daten nicht gezeigt). Die Ergebnisse decken sich mit den für die induzierbare Expression vorgestellten Daten.

Um die Identität der Fettsäuren zu überprüfen, wurde GlcCer aus *P. pastoris* WT und Pp∆3Fg isoliert und mit ESI-FT-ICR-MS analysiert. Bei intaktem GlcCer aus *P. pastoris* WT

wurden die gleichen molekularen Massen wie im GlcCer von $\Delta 3$ FgKO gefunden. (Abbildung G.1 c im Anhang). GlcCer, das aus Pp $\Delta 3$ Fg isoliert wurde, zeigte in der Analyse hingegen ein Signal mit derselben molekularen Masse wie das GlcCer aus *F. graminearum* WT (Abbildung G.1 d im Anhang). Dies deutet auf GlcCer hin, das eine einfach ungesättigte C₁₈-Fettsäure enthält. Neben diesem Hauptsignal wurden im GlcCer beider *Pichia*-Stämme weitere "Massensignale" gefunden, die auf Variationen in der Sphingobase (d18:1 und t20:0) bzw. der Fettsäure (C₁₆ und C₁₈, gesättigt oder einfach ungesättigt) schließen lassen. Diese Daten wurden durch die ESI-FT-ICR-MS-Analyse der peracetylierten Derivate bestätigt (ohne Abbildung).

Um nachzuweisen, dass es sich bei der entstandenen Doppelbindung tatsächlich um eine $\Delta 3(E)$ -Doppelbindung handelt, wurde eine große Menge ($\approx 500 \ \mu g$) Glucosylceramid aus Pp $\Delta 3$ Fg isoliert und sowohl als native Substanz als auch als peracetyliertes Derivat mit NMR-Spektroskopie untersucht (Tabellen G.1 und G.2 im Anhang). Das ¹H NMR-Spektrum zeigte eine für eine Doppelbindung charakteristische chemische Verschiebung am H-3' und H-4' (also an der Fettsäure). Die starke Kopplung ($J_{3,4}$ = 15,3 Hz für das native und $J_{3,4}$ = 14,3 Hz für das peracetylierte GlcCer) wies auf eine *trans*-Konfiguration der Doppelbindung hin. Im Falle einer *cis*-Doppelbindung wäre eine etwas niedrigere Kopplung im Bereich von 6-12 Hz erwartet worden. Diese Daten werden einerseits durch die für die chemische Verschiebung der nachfolgenden Protonen ermittelten Werte unterstützt (Tabelle G.1) und zudem durch die entsprechenden ¹³C-Kopplungskonstanten im HMQC-Spektrum für C-3' und C-4' bestätigt (Tabelle G.2). Die ermittelten Werte decken sich mit bekannten Literaturdaten für das native (75, 105) und das peracetylierte $\Delta 3(E)$ -GlcCer (139, 142, 143) aus Euascomyceten.

Pp∆3Fg wurde sowohl bei 28°C als auch 30°C angezogen. Es wurden jedoch keine Unterschiede hinsichtlich der Menge von gebildeter 18:1(2-OH) gefunden. Dies zeigt, dass die Aktivität der Desaturase nicht direkt von der Wachstumstemperatur abhängt.

Diese Versuche beweisen, dass die Kandidatengene Fg05382 aus *F. graminearum* und MGG_00392 aus *M. grisea* für N-Acyl- $\Delta 3(E)$ -Desaturasen kodieren.

3.2.4 Δ 3Fg desaturiert vor allem $\alpha(R)$ -Hydroxystearinsäure

Als nächstes sollte geklärt werden, ob die $\Delta 3(E)$ -Desaturase aus *Fusarium* α -hydroxylierte Substrate benötigt. Die Expression in der α -Hydroxylase-defizienten *Pichia*-Mutante (Pp Δ scs7) war jedoch nicht sinnvoll, da dieser Stamm kein GlcCer mehr synthetisiert (7). Aus diesem Grund wurde der folgende Ansatz gewählt: In der Sterylglucosid-freien *Pichia*-Mutante JC308 Δ ugt51B1 (144) wurde die humane Glucosylceramidsynthase (GCSHs, kloniert in pPIC3.5) überexprimiert. Die starke Genexpression führt zur Synthese ungewöhnlicher GlcCer-Spezies, die neben den α -hydroxylierten C₁₆- und C₁₈-Fettsäuren auch nichthydroxylierte FS und sehr langkettige FS (C₂₂-C₂₆) enthalten. Ebenso ist der Basenanteil nicht auf (4E,8E)-9-Methylsphinga-4,8-dienin beschränkt, sondern enthält auch 4-Hydroxy-Sphinganin (28). Dieser Pichia-Stamm (JC308AugtGCSHs) wurde als Expressionssystem für Δ 3Fg genutzt und mit dem AvrII-linearisierten Plasmid p Δ 3Fg-GAPZ transformiert. Da der Stamm JC308 eine höhere natürliche Toleranz gegenüber Zeocin als der bisher verwendete GS115 besaß, wurde die Zeocin-Konzentration auf 500 µg/ml erhöht, um die Selektion positiver Klone zu gewährleisten. Zur Lipidanalyse wurden die Transformanten zunächst in 100 ml YPD angezogen. Die Hälfte der Kultur wurde geerntet und deren Lipide direkt extrahiert. Die restlichen 50 ml wurden ebenfalls geerntet, die Zellen in Minimal-Methanol-Medium resuspendiert und üN weiter bei 28°C inkubiert um die Expression der humanen Gcs zu induzieren. Die Lipide wurden wie gewohnt mit Chloroform/Methanol extrahiert. Da die Expression der humanen GCS unter Kontrolle des AOX1-Promoters steht, wurde erwartet, dass nur in Extrakten aus Methanol-induzierten Zellen die zusätzlichen GlcCer-Spezies auftauchen. Die $\Delta 3(E)$ -Desaturase aus Fusarium steht hingegen unter Kontrolle des GAPDH-Promoters und sollte daher auch aktiv sein, wenn die Zellen in YPD angezogen wurden. Nach der dünnschichtchromatographischen Analyse zeigten sich nach der Methanol-Induktion in den Extrakten aus 4 unabhängigen Klonen mehrere Glycolipid-Banden (Abbildung 3.7), die den verschiedenen GlcCer-Spezies entsprechen (genaue Zuordnung siehe Leipelt et al, 2001).

:Cer gt51		induziert			nicht-induziert						
Go	ŷn⊽	K,	A,	B _i	C _i	D _i	К	А	В	С	D
			-			38=	-			-	-

<i>P. pastoris</i> JC308 Δ ugt51+GCSHs+ Δ 3F	Р.	
--	----	--

Abbildung 3.7 Dünnschichtchromatographie der Lipidextrakte von *P. pastoris* Stamm JC308 Δ ugt51B1, der die humane Gcs und zusätzlich Δ 3Fg exprimiert. Die Expression der humanen Gcs führt zur Synthese verschiedener GlcCer-Spezies und somit zu mehreren Glycolipidbanden in den Spuren K_i-D_i. Im Vergleich hierzu enthielten die Extrakte von nicht-induzierten Hefezellen nur eine GlcCer-Bande (Spuren K-D; Zellen ausschließlich in YPD angezogen). Zeichenerklärung: GlcCer – Glucosylceramid-Standard, Δ ugt51 – JC308 Δ ugt51B1, K – Δ ugt51B1 + GCSHs.

Alle GlcCer-Banden wurden zusammen abgekratzt und die Fettsäuren analysiert. Der Anteil von 18:1(2-OH) in Extrakten aus nicht-induzierten Zellen lag mit 30-50 % der gesamten C₁₈-Hydroxyfettsäuren niedriger als für den Stamm GS115 beschrieben (Kapitel 3.2.3). Durch die Expression der GCS wurde dieser Anteil noch weiter reduziert. In nicht-hydroxylierten Fettsäuren und sehr langkettigen Hydroxyfettsäuren wurde keine Desaturierung gefunden. Dies ist zum einen ein Indiz für eine Kettenlängenspezifität des Enzyms (C₁₈ bevorzugt) und deutet zum anderen darauf hin, dass die α -Hydroxylgruppe essentiell für die Desaturierung ist (ohne Abbildung).

Die Bestimmung der *R*,*S*-Konfiguration der α -Hydroxylgruppe wurde von Herrn Hermann Moll (Forschungszentrum Borstel) durchgeführt: Die Doppelbindung der FAMEs aus GlcCer von Pp Δ 3Fg wurde zunächst hydriert und die Hydroxylgruppe O-methyliert. Danach wurden die Proben mit Thionylchlorid versetzt und die Methoxy-Fettsäurechloride schließlich zu L-Phenylethylamid-Derivaten konvertiert. Gaschromatographisch lassen sich nun die Diastereomere L,L- und D,L-Derivate anhand der Retentionszeiten unterscheiden (145). Die Konfiguration der α -Hydroxylgruppe wurde mit "L" (entspricht "*R*") bestimmt.

Weiterhin sollte nun versucht werden, die $\alpha(R)$ -Hydroxylgruppe im GlcCer von *P. pastoris* durch eine $\alpha(S)$ -Hydroxylgruppe zu ersetzen, um zu untersuchen, ob die $\Delta 3$ Fg auch $\alpha(S)$ -hydroxylierte Fettsäuren desaturieren kann. Die α -Hydroxylase aus dem Bakterium Sphingomonas paucimobilis synthetisiert $\alpha(S)$ -hydroxylierte Fettsäuren. Bei dem entsprechenden Enzym handelt es sich um ein lösliches Cytochrom P450-Protein, also nicht um eine membrangebundene Desaturase/Hydroxylase (102, 103). Der ORF, der für diese Hydroxylase codiert, wurde mit PCR amplifiziert und in pGAPZ/B kloniert (⇔ pαOHSpau-GAPN). Als Kontrolle wurde die *Pichia*-eigene $\alpha(R)$ -Hydroxylase SCS7 ebenfalls in pGAPZ/B kloniert (⇒ pSCS7Pp-GAPN). Da die Pichia-Selektionsmarker Zeo^R bzw. HIS4 nicht zur Verfügung standen (SCS7 wurde mit Zeo^R ausgeschaltet, *HIS4* wurde für die Expression der mussten beide Vektoren zusätzlich mit einer ∆3Fg benötigt), Nourseothricin-Resistenzkassette versehen werden. Die Konstrukte wurden linearisiert und zur Transformation eines *Pichia*-Stamms verwendet, dessen $\alpha(R)$ -Hydroxylase-Gen deletiert ist (Pp Δ scs7) (7). Die Transformanten (PpSCS7Pp und PpαOHSpau) wurden anschließend mit dem Konstrukt p∆3Fg-PIC transformiert, das die Expression von ∆3Fg erlaubt. Zur Lipidanalyse wurden die *Pichia*-Mutante in YPD angezogen und die Expression der Δ 3-Desaturase durch Methanol induziert. Als problematisch stellte sich die Expression der α -Hydroxylase aus Sphingomonas heraus: Die Transformanten stellten etwa zwei Wochen nach der Transformation ihr Wachstum ein. Offenbar ist das konstitutiv vorhandene, lösliche Protein für die Hefezellen toxisch. Daher wurde der ORF in den Vektor pPIC3.5 (mit induzierbarem AOX1-Promoter) kloniert und das Konstrukt ebenfalls mit einer Nourseothricin-Resistenzkassette versehen.

Wie bereits erwähnt, synthetisiert die α -Hydroxylase-defiziente *Pichia*-Mutante kein GlcCer. Die konstitutive Expression der *Pichia*-eigenen *SCS7* konnte dies komplementieren.

GlcCer	1	2	3	4	5	6	SG
-							

Abbildung 3.8 Dünnschichtchromatographische Auftrennung der Glycolipide isoliert aus *P. pastoris*-Stämmen, die die $\Delta 3Fg$ und SCS7Pp oder $\alpha OHSpau$ exprimieren. Die α -Hydroxylase-defiziente *Pichia*-Mutante kann wieder GlcCer synthetisieren, wenn sie ihre eigene SCS7 oder die $\alpha OHSpau$ exprimiert. 1 – Pp Δ scs7; 2 – Pp Δ scs7, der die $\Delta 3Fg$ exprimiert; 3 – Pp Δ scs7, der die $\alpha OHSpau$ exprimiert; 4 – Pp Δ scs7, der die $\alpha OHSpau$ und die $\Delta 3Fg$ exprimiert; 5 – Pp Δ scs7, der die SCS7Pp exprimiert; 6 – Pp Δ scs7, der die SCS7Pp und die $\Delta 3Fg$ exprimiert

In einer Mutante, die zusätzlich die \triangle 3Fg exprimiert, konnte - wie erwartet - 18:1(2-OH) nachgewiesen werde.

Auch die induzierte Expression des α -Hydroxylase-Gens aus *Sphingomonas* führte zur Synthese von GlcCer, die Menge war allerdings in beiden Fällen sehr gering. Die GLC-Analyse der Fettsäurezusammensetzung des GlcCer zeigte jedoch die Anwesenheit von Hydroxyfettsäuren an (ohne Abbildung). Da die GlcCer-Menge sehr gering war, konnte die *R*,*S*-Konfiguration der Hydroxylgruppe nicht bestimmt werden.

Die gleichzeitige Expression der $\alpha(S)$ -Hydroxylase und der $\Delta 3$ Fg führte ebenfalls zur Synthese einer geringen Menge GlcCer. Die gaschromatographische Analyse zeigte ein Signal (Signalstärke sehr niedrig) mit der gleichen Retentionszeit wie 18:0(2-OH). Ob jedoch außerdem 18:1(2-OH) gebildet wurde, konnte nicht beantwortet werden.

Es gibt demnach Hinweise darauf, dass die Desaturase $\alpha(R)$ -hydroxylierte Substrate benötigt. Für einen Beweis wäre zumindest eine massenspektroskopische Analyse des GlcCer nötig, das aus Pp α OHSpau und PpSCS7, welche die Δ 3Fg exprimieren, zu isolieren wäre. Diese Analyse konnte jedoch im Rahmen dieser Arbeit nicht mehr durchgeführt werden.

3.3 <u>CHU_2059 aus Cytophaga codiert für eine Acylamid-β-Hydroxylase</u>

3.3.1 Die Lipidzusammensetzung von *Cytophaga hutchinsonii* hängt vom Kulturmedium ab

Cytophaga hutchinsonii wächst *in vitro* sehr langsam. Die Bakterien wurden daher immer mindestens zwei Wochen lang inkubiert. Da die Wirkung des zugesetzten Antibiotikums Nystatin (hemmt Pilzwachstum) nach einigen Tagen nicht mehr gewährleistet war, wurden die Zellen einer Flüssigkultur alle 3-4 Tage geerntet und in frischem Medium resuspendiert. Eine dünnschichtchromatographische Analyse der Lipide aus *Cytophaga*, angezogen in CYC-Flüssigmedium bzw. auf CYC-Agarplatten, ist in Abbildung 3.9 dargestellt.

Abbildung 3.9 Dünnschichtchromatographie von Lipidextrakten aus Cytophaga hutchinsonii, angezogen auf Fest- und Flüssigmedium (Laufmittel Chloroform/Methanol/Eisessig/Wasser 85:15:10:3,5). Zur Detektion der Lipide wurden die Platten mit Phosphatidreagenz (linke Platte) bzw. 50 % H₂SO₄ besprüht. Das Bakterium wurde in CYC-Medium angezogen. Man erkennt deutliche Unterschiede im Lipidmuster zwischen beiden Extrakten, die aus Zellen hergestellt wurden, die in Flüssigkultur oder auf Festmedium wuchsen: In den Extrakten aus Zellen, die auf CYC-Agarplatten gewachsen sind, fehlt neben dem unbekannten Phospholipid (uPL) auch Phosphatidylglycerol (PG). Die Menge von Phosphatidylcholin (PC) ist ebenfalls stark reduziert. Hingegen steigt der relative Anteil von Sulfosphingolipiden (SSL).

Abbanat et al. (111) zeigten, dass die Modifikationen am Sulfosphingolipidgerüst von Flavobacterium johnsoniae je nach verwendetem Kulturmedium variieren. So synthetisiert das Bakterium in Flüssigkultur ausschließlich Acylamid-2-hydroxyfettsäuren, bei Wachstum auf Agarplatten jedoch auch 3-Hydroxy- und 2,3-Dihydroxyfettsäuren. Um die Sulfosphingolipide des nah verwandten Cytophaga hutchinsonii untersuchen zu können, wurde der Organismus in verschiedenen Medien (fest/flüssig) angezogen und ein Gesamtlipidextrakt hergestellt. Die dünnschichtchromatographische Auftrennung der Lipide zeigte, dass das Bakterium bei Wachstum auf Festmedium deutlich weniger PG und PC als bei Wachstum in Flüssigkultur synthetisiert. Hingegen steigt der relative Anteil eines unbekannten Lipids, das nach Besprühen mit Phosphatidreagenz gelb gefärbt ist (zwischen PE und PG). Auch der relative Anteil der Sulfosphingolipide ist bei Wachstum auf Festmedium höher. Ob jedoch zusätzliche SSL-Banden (mit aufgrund der abweichenden Position der Hydroxylgruppe geringeren R_f-Werten) auftraten, konnte nicht geklärt werden. Die Lipidextrakte wurden verseift, um die Phosphoglycerolipide zu entfernen. SSL sind alkalistabil und konnten auf diese Weise gereinigt werden. Die in den Sulfosphingolipiden enthaltenen Fettsäuren wurden in TMS-FAMEs umgewandelt und mittels GLC analysiert. Da die SSL jedoch häufig endständige Methylverzweigungen und ungradzahlige Kettenlängen enthalten (meist C₁₅ und

C₁₇), war eine Zuordnung der Signale nicht möglich. Das Ergebnis einer massenspektroskopischen Analyse der Proben lag zum Abschluss dieser Arbeit leider noch nicht vor.

3.3.2 Die Expression von CHU_2059 in *Pichia pastoris* führte zur Synthese von hydroxylierten Lipiden

Im Genom des Bakteriums *Cytophaga hutchinsonii* wurde eine Gensequenz gefunden, die starke Ähnlichkeit zu den $\Delta 3(E)$ -Desaturasen aus Pilzen zeigte. Da in *C. hutchinsonii* zwar bislang keine $\Delta 3$ -Doppelbindungen nachgewiesen wurden, jedoch die Fettsäuren der Sulfosphingolipide am C3-hydroxyliert sein können, wurde vermutet, dass die identifizierte Sequenz für eine β -Hydroxylase codiert. Um diese Annahme zu überprüfen, wurde der ORF der putativen Acylamid- β -Hydroxylase (Gene-ID: CHU_2059, abgekürzt β OHCyhu) mit PCR amplifiziert, in pGEM-T[®] kloniert und sequenziert. Die DNA-Sequenz stimmte mit der Sequenz aus der Datenbank überein. Das sequenzierte Konstrukte wurden in pPIC3.5 kloniert und zur Transformation von Pp Δ scs7 und *P. pastoris* WT verwendet. Die Transformation wurden üN in MGY angezogen, die Expression der Kandidatensequenz unter Kontrolle des *AOX*1-Promoters durch Zugabe von Methanol induziert und die Lipide mit Chloroform/Methanol extrahiert (Abbildung 3.10).

Abbildung 3.10 Dünnschichtchromatographische Analyse der Gesamtlipidextrakte aus Pp WT (GS115) und Pp Δ scs7, welche die β OHCyhu aus *Cytophaga hutchinsonii* exprimieren. Die Expression von β OHCyhu führte im WT nicht zur Synthese von 2,3-Dihydroxyfettsäuren im GlcCer; in diesem Falle wäre eine zusätzliche Glycolipidbande mit niedrigerem *R*_rWert erwartet worden (Spuren 2 und 3). Pp Δ scs7 (Spur 5) synthetisiert kein GlcCer. Dies konnte durch Expression von β OHCyhu (Spur 4) jedoch komplementiert werden. Std – GlcCer; 1 – *P. pastoris* WT; 2 und 3 – *P. pastoris* WT der die β OHCyhu exprimiert (zwei unabhängige Klone); 4 – Pp Δ scs7, der die β OHCyhu exprimiert; 5 – Pp Δ scs7; Laufmittel – Chloroform/Methanol 85:15

Pp∆scs7 synthetisiert kein GlcCer. Dies konnte durch Expression des putativen Hydroxylasegens aus *C. hutchinsonii* komplementiert werden, die gebildete GlcCer-Menge war jedoch sehr gering (Abbildung 3.10). Die Expression von βOHCyhu führte offenbar nicht zur Synthese von 2,3-dihydroxylierten Fettsäuren. Die Einführung einer zweiten Hydroxylgruppe in die Fettsäure des GlcCer hätte zu einem aufgrund der höheren Polarität kleineren *R*_r-Wert führen müssen. Eine zweite GlcCer-Bande mit geringerem *R*_r-Wert konnte jedoch nicht detektiert werden.

Das GlcCer aus Pp WT, der die βOHCyhu exprimiert, wurde gereinigt, die Fettsäuren in TMS-FAMEs umgewandelt und mittels GLC/MS untersucht. Leider liegen die Retentionszeiten der TMS-FAMEs von 18:0(2-OH) und 18:0(3-OH) so dicht beieinander, dass die GLC-Analyse eines Gemischs aus beiden Fettsäuren (βOHCyhu-Exprimierer) nur ein Signal erzeugte (ohne Abbildung). Die Position der Hydroxylgruppe (C2 oder C3) konnte jedoch massenspektrometrisch bestimmt werden, da sich während der Fragmentierung der Substanzen charakteristische Spaltprodukte bildeten.

Aus PpΔscs7, der die β OHCyhu exprimierte, wurde GlcCer isoliert und die darin enthaltenen Fettsäuren in TMS-FAMEs umgewandelt. Die GLC-Analyse zeigte die ausschließliche Anwesenheit β -hydroxylierter Fettsäuren an (Abbildung 3.11). α - und β -hydroxylierte C₁₈-Fettsäuren ließen sich mit der verwendeten Säule ("Select FAME[®]") nicht an der Basislinie trennen. Die Identität der Fettsäuren konnte jedoch durch Vergleich mit Standards und durch GLC/MS bestimmt werden. Die Menge von gebildetem GlcCer war allerdings zu gering, um die *R*,*S*-Konfiguration der β -Hydroxylgruppen zu bestimmen.

Abbildung 3.11 GIcCer aus Pp Δ scs7, die die β OHCyhu exprimiert, enthält ausschließlich β -hydroxylierte Fettsäuren. TMS-FAMEs aus Pp WT (als Kontrolle) und einer Pp Δ scs7-Mutante, welche die β OHCyhu exprimiert, wurden mittels GLC untersucht. Die Expression der β OHCyhu führte zur Synthese von β -Hydroxyfettsäuren, deren Retentionszeit von α -Hydroxyfettsäuren abweicht.

C. hutchinsonii synthetisiert kein GlcCer, sondern Sulfosphingolipide. Diese weisen auch am Ceramid-Grundgerüst vom GlcCer abweichende Modifikationen auf. Die polare Kopfgruppe der SSL wird wahrscheinlich bereits während der Synthese der Base eingefügt (78, 79). Geht man davon aus, dass "Ceramid" sowohl für die pilzlichen $\Delta 3(E)$ -Desaturasen als auch

die β-Hydroxylase aus *Cytophaga* als Substrat dient, liegt die Vermutung nahe, dass letztere – zumindest bei heterologer Expression in *Pichia* – auch Phosphoglycerolipide als Substrate akzeptiert. Um diese Annahme zu überprüfen, wurden aus dem Lipidextrakt der *Pichia*-Mutante, die die βOHCyhu exprimiert, auch die quantitativ bedeutendsten Phospholipide Phosphatidylcholin (PC) und Phosphatidylethanolamin (PE), die Neutrallipide Triacylglycerol (TAG) und Sterylester (SE) sowie freie Fettsäuren (FFA) gereinigt und zu TMS-FAMEs derivatisiert. Mit Hilfe von GLC und GLC/MS konnten 3-Hydroxyfettsäuren in beiden Phospholipiden sowie in den freien Fettsäuren detektiert werden. Neben 18:0(3-OH) und 16:0(3-OH) wurde die Hydroxygruppe auch in Ölsäure und Linolsäure nachgewiesen (Daten mit GLC/MS bestätigt). Abbildung 3.12 stellt exemplarisch die relative Häufigkeit der im Phosphatidylethanolamin nachgewiesenen Fettsäuren dar. Die Zusammensetzung der Fettsäuren von PC, TAG, SE und FFA ist in Anhang H dargestellt.

Abbildung 3.12 Die Expression der β OHCyhu in *P. pastoris* führt zur Synthese β -hydroxylierter Fettsäuren, die im Phosphytidylethanolamin nachgewiesen werden konnten. TMS-FAMEs hergestellt aus Wildtyp-Zellen von *P. pastoris*, welche die β OHCyhu exprimieren (Pp β OHCyhu). Aus Platzgründen wurden die 3-Hydroxyfettsäuren nicht mit z.B. 16:0(3-OH), sondern mit 16h:0 abgekürzt.

Die Sequenz aus *C. hutchinsonii*, die homolog zu den in dieser Arbeit identifizierten $\Delta(E)$ -Desaturasen aus Euascomyceten ist, stellt die erste molekular beschriebene β -Hydroxylase dar. Neben GlcCer (bzw. vermutlich Ceramid) akzeptieren die Hydroxylasen auch Phosphoglycerolipide als Substrate. Aus zeitlichen Gründen konnte nicht mehr analysiert werden, ob sich die Hydroxyfettsäuren bevorzugt in *sn*-1- oder *sn*-2-Position befinden (Eine *sn*-2-Präferenz gilt jedoch als wahrscheinlich, da die stereochemische Position der Fettsäure des GlcCer der *sn*-2-Position in de Phosphoglycerolipiden entspricht).

3.4 <u>Die Δ3(*E*)-Doppelbindung beeinflusst die wachstumshemmende Wirkung</u> der Defensine RsAFP2 und AgAFP auf Pilze

In Kooperation mit den Arbeitsgruppen von Karin Thevissen (Katholieke Universiteit Leuven, Belgien) und Vera Meyer (ehem. TU Berlin, jetzt Leiden University, Niederlande) wurden Versuche zur Wachstumshemmung verschiedener *Fusarium*- und *Pichia*-Stämme durchgeführt. Dabei wurden die *Pichia*-Stämme GS115 (WT) und Pp Δ 3Fg sowie die *Fusarium*-Stämme 8/1 (WT) und Δ 3FgKO verwendet. Die in Abbildung 3.14 und Abbildung 3.15 gezeigten Experimente wurden von Frau Dr. Vera Meyer mit den von mir hergestellten Mutanten durchgeführt, die Versuche mit den zugehörigen Abbildungen 3.13 und 3.16 habe ich selbst durchgeführt. Frau Dr. Karin Thevissen bestimmte die Minimale Hemmkonzentration von RsAFP2 auf die von mir erzeugten *Fusarium*- und *Pichia*-Mutanten.

Es war bereits bekannt, dass das Wachstum von Hefepilzen, die GlcCer enthalten, durch RsAFP2 gehemmt wird. *Saccharomyces cerevisiae*, die kein GlcCer synthetisiert, und die GCS-KO Mutante von *Pichia pastoris* sind hingegen resistent (124). Versuche mit weiteren *Pichia*-Mutanten zeigten, dass die wachstumshemmende Wirkung des Defensins von Modifikationen am Ceramid-Gerüst beeinflusst wird. Vor allem die Δ 8-Desaturierung der Sphingobase scheint eine Rolle zu spielen, da die *Pichia*-Mutante, deren Δ 8-Desaturase deletiert wurde, verglichen mit dem Wildtyp etwas resistenter gegen RsAFP2 war (7).

Es sollte nun überprüft werden, ob auch die Anwesenheit einer $\Delta 3(E)$ -Doppelbindung einen Einfluss auf die Reaktion des Pilzes auf RsAFP2 hat. In einem ersten Ansatz wurde versucht, die mindestens benötigte RsAFP2-Konzentration zu ermitteln, bei der das Wachstum der Zellen zu 100 % gehemmt war (MIC). Für Fusarium WT ergab sich ein Wert von 2,5 μg/ml RsAFP2 und für Δ3FgKO von 10 μg/ml (Daten nicht gezeigt, die Experimente wurden von Frau Dr. Karin Thevissen durchgeführt). Die knockout Mutante ist also etwa 4-mal resistenter als der Wildtyp. Im Umkehrschluss wurde nun erwartet, dass Pp∆3Fg sensitiver als der WT von *Pichia pastoris* ist. Die genaue Bestimmung der MIC für Pp Δ 3Fg (MIC_{WT} = 50 µg/ml) misslang jedoch. Aus diesem Grund wurde von mir ein zweiter (sensitiverer) Ansatz gewählt: Exponentiell wachsende Kulturen von P. pastoris WT und Pp∆3Fg in YPD wurden auf 20.000 Zellen pro ml verdünnt. Je 50 µl der Zellsuspensionen wurden mit RsAFP2 versetzt (Endkonzentration 100 µg/ml) und für 24 h bei 28°C inkubiert. Am nächsten Tag wurden die Zellen auf YPD ausplattiert, weitere 24 h inkubiert und die gebildeten Kolonien gezählt. Daraus ergab sich eine Wachstumshemmung von 82 % für Pp WT und 99,92 % für Pp Δ 3Fg. Die *Pichia*-Mutante, welche die Δ 3(*E*)-Desaturase aus F. graminearum exprimiert, ist also sensitiver in Bezug auf RsAFP2 als der Wildtyp. Die Ergebnisse des letztgenannten Experiments sind in Abbildung 3.13 zusammengefasst.

Abbildung 3.13 Anzahl der gebildeten Kolonien (CFU) der verschiedenen *Pichia*-Stämme, die für 24 h mit und ohne 100 µg/ml RsAFP2 inkubiert wurden. Wildtyp-Zellen wuchsen mit RsAFP2 deutlich schlechter als ohne Defensin (CFU mit RsAFP2 18 % im Vergleich zur Kontrolle). Die Synthese Δ 3-ungesättigter Fettsäuren führte zu einer weitern Verminderung des Wachstums (CFU mit RsAFP2 0,02 % im Vergleich zur Kontrolle).

Das Defensin aus *Aspergillus giganteus* (AgAFP) bindet möglicherweise ebenfalls an pilzliches GlcCer und führt dort zur Wachstumshemmung (125). In diesem Fall sind Euascomyceten (also Pilze mit $\Delta 3(E)$ -desaturiertem GlcCer) sensitiver als andere Pilze ohne $\Delta 3(E)$ -Doppelbindung. Im Labor von Vera Meyer wurden analog zu Wachstumstests mit den *Fusarium*-Stämmen WT und $\Delta 3FgKO$ sowie dem Wildtyp von *P. pastoris* und Pp $\Delta 3Fg$ durchgeführt. Die in Abbildung 3.14 gezeigten Daten stammen aus insgesamt 4 unabhängigen Versuchsreihen. Während *F. graminearum* WT bereits bei AgAFP-Konzentrationen von 2 µg/ml sein Wachstum einstellte, wuchs $\Delta 3FgKO$ auch noch bei 8 µg/ml (wenn auch etwas langsamer als ohne AgAFP).

AgAFP-Sensitivität von F. graminearum

Abbildung 3.14 Wachstum von *Fusarium* in Anwesenheit verschiedener AgAFP-Konzentrationen. Das Wachstum des Wildtyps war bereits bei einer Konzentration von 2 μ g/ml stark gehemmt, während die Δ 3-Deletionsmutante auch bei 8 μ g/ml noch wuchs (durchgeführt von Frau Dr. Vera Meyer).

Auch für AgAFP war die Bestimmung der MIC der *Pichia*-Zellen schwierig, zumal WT und PpΔ3Fg in den in Berlin durchgeführten Versuchsreihen unterschiedlich schnell wuchsen. Dennoch zeigte PpΔ3Fg eine leicht erhöhte Sensitivität im Vergleich zum Wildtyp.

Abbildung 3.15 Wachstum von Pichia in Anwesenheit verschiedener AgAFP-Konzentrationen. A) AgAFP-Konzentration in Bezug auf die OD₆₀₀. Auch ohne Defensin wuchs Pp Δ 3Fg etwas langsamer als der WT, daher wird in B) das relative Wachstum bei den verschiedenen Konzentrationen im Vergleich zur Kontrolle dargestellt. Bei Konzentrationen von 100 µg/ml und 200 µg/ml zeigte Pp Δ 3Fg eine leichte Sensitivität im Vergleich zum WT, dieser war jedoch nicht signifikant (durchgeführt von Frau Dr. Vera Meyer).

Analog zur Inkubation mit RsAFP2 wurde die CFU nach einer Inkubation mit 100 μ g/ml AgAFP für 24 h bestimmt. Zur Kontrolle, ob GlcCer als solches für die Reaktion auf das Defensin eine Rolle spielt, wurde außerdem die *GCS*-Deletionsmutante von *P. pastoris* [PpΔgcs; (28)] verwendet. Das Wachstum der letztgenannten Mutante war durch die Anwesenheit von 100 μ g/ml AgAFP nicht beeinträchtigt (Abbildung 3.16). Im Vergleich zur

Kontrolle war das Wachstum des Wildtyps zu 50 % gehemmt, während die CFU von Pp Δ 3Fg in Anwesenheit von AgAFP bei \approx 33 % des Kontrollwertes lag (Abbildung 3.16). Die Δ 3Fg-Expressionsmutante ist also etwas sensitiver als der Wildtyp. Die dargestellten Ergebnisse zeigen, dass die wachstumshemmende Wirkung des Defensins auf die Hefe auch von Anwesenheit einer Δ 3(*E*)-Doppelbindung am Ceramid-Gerüst beeinflusst wird.

Abbildung 3.16 Wachstum der *Pichia*-Stämme GS115 (WT), Pp Δ 3Fg und Pp Δ gcs (Kontrolle), die für 24 h mit und ohne 100 µg/ml AgAFP inkubiert wurden. Das Wachstum des Wildtyps war bei der eingesetzten AgAFP-Konzentration auf etwa 55 % des Kontrollwertes vermindert, während die zusätzliche Δ 3(*E*)-Doppelbindung in Pp Δ 3Fg zu einer erhöhten AgAFP-Sensitivität und einer Wachstumsverminderung auf 33 % führte. Die ebenfalls getestete Gcs-defiziente *Pichia*-Mutante (Pp Δ gcs) war in ihrem Wachstum durch 100 µg/ml AgAFP nicht beeinträchtigt. Die Daten stammen aus drei unabhängigen Experimenten, die von mir in Hamburg durchgeführt worden sind.

Alle in diesem Kapitel dargestellten Ergebnisse sind in Tabelle 3.1 zusammengefasst. Dass GlcCer eine wichtige Rolle in der Interaktion mit RsAFP2 und AgAFP spielt, zeigt sich daran, dass Pp Δ gcs verglichen mit dem Wildtyp resistent gegen beide Defensine war. Zusätzlich wird die wachstumshemmende Aktivität der Defensine auch durch die $\Delta 3(E)$ -Doppelbindung am GlcCer beeinflusst: $\Delta 3$ FgKO wurde im Vergleich zu *F. graminearum* WT resistenter und die *Pichia*-Mutante, welche die $\Delta 3$ Fg exprimiert, entsprechend sensitiver.

Tabelle 3.1 Reaktion der verschiedenen *F. graminearum-* und *P. pastoris*-Stämme auf die Inkubation mit den Defensinen RsAFP2 und AgAFP.

F. graminearum	Reaktion auf	Reaktion auf	GlcCer	Δ3(<i>E</i>)-Desaturase
	RsAFP2	AgAFP	vorhanden	vorhanden
Wildtyp	sensitiv	sensitiv	ja	ја
Δ3FgKO	resistent	resistent	ja	nein
P. pastoris				
Wildtyp	sensitiv	sensitiv	ja	nein
Pp∆3Fg	stärker sensitiv	stärker sensitiv	ja	ја
Pp∆gcs	resistent	resistent	nein	nein

4 Diskussion

Mit einer Datenbanksuche unter Zuhilfenahme bekannter Desaturase-Sequenzen wurde eine neue Proteinsubfamilie identifiziert, deren Mitglieder ausschließlich in Euascomyceten vorkommen. Die Vermutung, dass diese Sequenzen für 2-Hydroxy-N-acyl- $\Delta 3(E)$ -Desaturasen codieren, konnte zum einen durch Herstellung einer Deletionsmutante von *Fusarium graminearum* und zum anderen durch Expression der Kandidatengene aus *F. graminearum* und *Magnaporthe grisea* in der Hefe *Pichia pastoris* bestätigt werden.

Es handelt sich somit um die erste klonierte $\Delta 3$ -spezifische Desaturase. Im Folgenden soll zunächst die Genfamilie selbst und anschließend die unterschiedlichen Enzymaktivitäten in den verschiedenen Organismengruppen betrachtet werden.

4.1 <u>Die Mitglieder der Δ3-Desaturase-Familie besitzen hochkonservierte</u> <u>Sequenzbereiche</u>

Die identifizierten ∆3-Desaturase-Sequenzen bilden eine phylogenetisch von allen anderen bekannten Desaturasen vollständig getrennte Subfamilie und zeigen keine enge Verwandtschaft zu einer anderen Desaturase-Familie.

Die Mitglieder der Enzymsubfamilie stammen alle aus Euascomyceten, einer ursprünglichen Gruppe der Ascomyceten. In höheren Pflanzen wurden keine homologen Sequenzen identifiziert, obwohl dies aufgrund der $\Delta 3(E)$ -Doppelbindung im PG der Plastiden und in Fettsäuren von TAG denkbar gewesen wäre.

Ursprünglich war erwartet worden, dass Acylamid-α-Hydroxylasen die größte Ähnlichkeit zu da die beiden Enzymsubfamilien eine Δ 3-Desaturasen zeigen, sehr ähnliche Dies Regioselsktivität aufweisen. konnte jedoch nicht bestätigt werden. Beide Enzymsubfamilien gehören sogar zu verschiedenen Gruppen: Die α -Hydroxylasen gehören zu den Desaturasen mit einem kurzen Abstand (18 Aminosäuren) zwischen erster und zweiter Histidinbox, die identifizierten Δ 3-Desaturasen haben jedoch einen größeren Abstand von 33 Aminosäuren (Abbildung 2.1).

Generell sind große Abschnitte der $\Delta 3(E)$ -Desaturasesequenzen hochkonserviert (vgl. Abbildung 2.3). Im Gegensatz zu anderen Desaturasen sind die Sequenzen der Histidinboxen und angrenzender Bereiche in Euascomyceten fast identisch. Die Sequenzen aller $\Delta 3$ -Desaturasen aus Euascomyceten zeigen untereinander jedoch lediglich eine Identität von 50 % (Ähnlichkeit 72 %); ein Wert, der auch für andere Desaturasefamilien (z.B. $\Delta 4(E)$ -LCB-Desaturasen) innerhalb der Euascomyceten erreicht wird.

Bei der einzigen weiteren bisher bekannten Desaturasefamilie, deren Mitglieder ausschließlich eine *trans*-Stereospezifität zeigen, handelt es sich um die $\Delta 4(E)$ -LCB-Desaturasen. $\Delta 8$ -LCB-Desaturasen sind in Pflanzen bifunktional (*cis* und *trans*), in Pilzen

ebenfalls ausschließlich *trans*-stereospezifisch. Anhand der Aminosäuresequenz einer membrangebundenen Desaturase (besonders im Bereich der Histidinboxen) kann man zwar die wahrscheinliche Regioselektivität der einzelnen Enzyme bestimmen, über deren *cistrans*-Stereospezifität lässt sich jedoch keine Aussage treffen. Gleiches gilt im Wesentlichen für die Unterscheidung Desaturase/Hydroxylase im Fall der hier identifizierten Subfamilie mit Δ3-Regioselektivität. Ob eine Desaturase eine *cis- oder trans*-Regioselektivität zeigt, erschließt sich ausschließlich über die Lage des Substrats im aktiven Zentrum.

4.2 <u>Bemerkungen zur Aktivität der Δ3(E)-Desaturase aus Fusarium</u>

Die biologische Funktion $\Delta 3(E)$ -desaturierter Fettsäuren in pilzlichen Sphingolipiden und plastidärem PG sind nicht bekannt. Die Fettsäurezusammensetzung des plastidären PG wird zwar für die Kälteakklimatisierung von Pflanzen (146, 147) und den Elektronentransport im Photosystem II (148) als wichtig erachtet, die $\Delta 3(E)$ -Doppelbindung ist jedoch nicht von entscheidender Bedeutung (113).

In dieser Arbeit sollte analysiert werden, ob ein Zusammenhang zwischen der Wachstumstemperatur und dem Gehalt von $\Delta 3(E)$ -ungesättigten Fettsäuren im GlcCer von Fusarium graminearum besteht. Und tatsächlich enthielten Zellen, die bei 30°C angezogen wurden, einen viel geringeren Gehalt von $\Delta 3(E)$ -ungesättigten Fettsäuren als solche, die bei 28°C wuchsen. Diese Änderung der Wachstumstemperatur hatte jedoch nur einen geringen Einfluss auf die Zusammensetzung der Gesamtfettsäuren, weil GlcCer hier im Vergleich zu Phosphoglycerolipiden eine untergeordnete Rolle spielt. Die $\Delta 3(E)$ -Doppelbindung hat vermutlich keinen oder nur einen sehr geringen Einfluss auf die Membranfluidität, wie es für Z-Doppelbindungen in Phosphoglycerolipiden beschrieben wurde (149). Eine trans-Doppelbindung, noch dazu sehr dicht am polaren "Kopfende" der Fettsäure, verändert die physikalischen Eigenschaften des Lipids nur sehr geringfügig. Die radikale Änderung des Gehalts von $\Delta 3(E)$ -ungesättigten Fettsäuren muss also in anderen Zusammenhängen eine Rolle spielen. Der Unterschied zwischen 28°C und 30°C kann nicht auf eine temperaturbedingte Änderung der Desaturaseaktivität (oder eine verminderte Stabilität des Enzyms bei 30°C) zurückzuführen sein, weil die Expression der ∆3Fg in *Pichia* bei beiden Temperaturen zur Bildung gleicher Mengen $\Delta 3(E)$ -desaturierter Fettsäuren führte.

Wahrscheinlich ist die $\Delta 3(E)$ -Desaturase durch einen anderen Mechanismus reguliert als andere Desaturasen. Eine Wachstumstemperatur von 30°C stellt für *F. graminearum* noch keinen Hitzeschock dar. Der Pilz ist in seiner natürlichen Umgebung auch höheren Temperaturen ausgesetzt; außerdem ist das Wachstum *in vitro* bei 30°C keineswegs beeinträchtigt. Die $\Delta 3(E)$ -Doppelbindung könnte in *F. graminearum* vielmehr in Signalprozesse involviert sein, die wiederum von der Wachstumstemperatur abhängen.

Diskussion

Die Frage, was denn tatsächlich das Substrat für die Δ 3-Desaturase darstellt (z.B. freie Fettsäure, Acyl-CoA, Ceramid oder GlcCer) lässt sich schwer beantworten. Es gibt aber Indizien, die zumindest gegen GlcCer sprechen: GlcCer isoliert aus *Pichia*-Zellen des Stammes JC308 Δ ugt51B1, die die humane GCS (induzierbar) und Δ 3Fg (konstitutiv) exprimierten, enthielten beim Wachstum auf Glucose (das heißt, dass die GCS inaktiv war und die Δ 3Fg aktiv) ein Verhältnis 18:1(2-OH)/18:0(2-OH) von 0,3-0,5. Dieses Verhältnis sank auf 0,1 ab, wenn die *Pichia*-Zellen auf Methanol angezogen wurden und die Expression beider Gene induziert war (Daten nicht gezeigt). Diese Veränderung könnte dadurch erklärt werden, dass die von der Gcs umgesetzten Ceramide in Form von GlcCer der Δ 3(*E*)-Desaturase nicht mehr als Substrate zur Verfügung stehen. Hingegen kann die Gcs auch Δ 3-desaturiertes Ceramid noch glucosylieren. Es kommt also möglicherweise zu einer Konkurrenzreaktion.

Ob auch sehr langkettige Fettsäuren (VLCFA) als Substrat für die ∆3-Desaturase in Frage kommen, kann nicht beantwortet werden. Weder in den IPCs aus Fusarium WT und Pp∆3Fg sowie den Pichia-Zellen, die die humane GCS und die Δ 3Fg exprimierten, konnten Doppelbindungen in den sehr langkettigen Hydroxyfettsäuren nachgewiesen werden. Dies ist ein Indiz, jedoch kein Beweis. Geht man von Ceramid als Substrat der $\Delta 3(E)$ -Desaturase aus, könnte die Enzymreaktion auch von anderen Strukturmerkmalen des Ceramid-Grundgerüsts beeinflusst werden. Wie bereits in Abschnitt 1.1 erwähnt, enthalten Pilze vermutlich zwei voneinander getrennte Sphingolipid-Pools. Während in den Ceramiden des GlcCer-Pools die charakteristische Base (4E,8E)-9-Methylsphinga-4,8-dienin mit einer C₁₆oder C₁₈-Fettsäure verbunden ist, finden sich VLCFA nur in den Ceramiden, die später den Glycosylinositolphosphorylceramid-Pool bilden. Dort sind sie ausschließlich mit der Base 4-Hydroxysphinganin verknüpft (28, 72). Diese zusätzliche Hydroxylgruppe könnte verhindern, dass die $\Delta 3(E)$ -Desaturase das Ceramid mit den VLCFA binden kann. Die Überexpression der GCS führte zwar zur Synthese ungewöhnlicher GlcCer-Spezies, die auch VLCFA enthielten, die grundsätzliche Trennung der Sphingolipidpools wurde jedoch nicht aufgehoben, so dass (4E,8E)-9-Methylsphinga-4,8-dienin immer mit C₁₆- oder C₁₈-Fettsäuren (hydroxyliert oder nicht-hydroxyliert) assoziiert ist, VLCFA jedoch mit Hydroxysphinganin verknüpft sind.

Ob die *R*,*S*-Konfiguration der Hydroxylgruppe für die Aktivität der $\Delta 3(E)$ -Desaturase von Bedeutung ist, konnte nicht beantwortet werden, da die Expression der $\alpha(S)$ -Hydroxylase aus *Sphingomonas paucimobilis* in *P. pastoris* nur zu einer sehr geringen GlcCer-Anteil führte. Möglicherweise könnte man die GlcCer-Ausbeute in den betreffenden *Pichia*-Zellen erhöhen, wenn man den Codon-Gebrauch des Gens, das für die $\alpha(S)$ -Hydroxylase codiert,

60

für die Expression in *Pichia* optimiert. Andererseits wurde die Aktivität der $\alpha(S)$ -Hydroxylase aus *Sphingomonas* bisher nur *in vitro* nachgewiesen.

4.3 <u>Die β-Hydroxylase aus Cytophaga hutchinsonii ist eine Besonderheit</u> <u>innerhalb der Gruppe der Sphingobacteriales</u>

Bei CHU_2059 aus *Cytophaga hutchinsonii* handelt es sich um die erste klonierte β-Hydroxylase, die zur Familie membrangebundener Desaturasen gehört.

Sulfosphingolipide, die β -hydroxylierte Fettsäuren enthalten, sind aus zahlreichen Organismen aus der Cytophaga-/Flexibacter-Gruppe bekannt. Aber obwohl *Flavobacterium johnsoniae, Porphyromonas gingivalis* und *Salinibacter ruber* vollständig sequenziert sind, wurde in keinem Genom der genannten Organismen eine zur β -Hydroxylase aus *Cytophaga hutchinsonii* homologe Sequenz gefunden. Möglicherweise nutzen diese Bakterien Cytochrom-P450-Enzyme um β -hydroxylierte Fettsäuren herzustellen.

Cytophaga hutchinsonii könnte das membrangebundene Enzym durch horizontalen Gentransfer von einem Pilz erhalten haben. Viele Euascomyceten sind mesophile Organismen, die den gleichen Lebensraum wie *Cytophaga* (Boden) beanspruchen. Eine weitere Analyse wäre jedoch notwendig um diese Aussage zu stützen.

Die Expression des Hydroxylasegens in Pp Δ scs7 führte zu Bildung von β -hydroxyliertem GlcCer. Die gebildete GlcCer-Menge war jedoch zu gering um eine Aussage über die *R*,*S*-Konfiguration der Hydroxylgruppe treffen zu können. Trotz umfangreicher Fettsäureanalysen verschiedener Sphingobacteriales wurde dies auch in den Bakterien selbst noch nicht bestimmt. Es kann zudem nicht ausgeschlossen werden, dass die Hydroxylgruppen in *Cytophaga hutchinsonii* eine andere Konfiguration aufweisen als die Hydroxylgruppen anderer Sphingobacteriales, da die Hydroxylgruppen offenbar durch ein strukturell völlig anderes Enzym eingeführt wurden (vgl. Scs7p und α -Hydroxylase aus *Sphingomonas*).

Beide Enzyme fügen Hydroxylgruppen nicht nur in Fettsäuren im GlcCer, sondern auch in Phosphoglycerolipide ein. Eine Ursache ist vermutlich, dass *Cytophaga* selbst kein GlcCer sondern Sulfosphingolipide synthetisiert, deren polare Kopfgruppe bereits bei der Synthese der Sphingobase angehängt wird. Als Substrat für die Hydroxylasen kommen in *Pichia pastoris* neben einer freien Fettsäure (oder Acyl-CoA) auch Diacylglycerol und Ceramid sowie Phosphoglycerolipide und GlcCer infrage. Da kein radioaktiver Assay zur Verfügung stand, konnte die Frage nach den tatsächlichen Substraten in *Pichia pastoris* nicht beantwortet werden. Und auch in *C. hutchinsonii* selbst ist es wahrscheinlich, dass β-hydroxylierte Fettsäuren nicht nur in den Sulfosphingolipiden, sondern auch in den Phosphoglycerolipide vorkommen, obwohl dies explizit nicht überprüft wurde. Der relative

Anteil von β -Hydroxyfettsäuren von ganzen Zellen im Vergleich zum Anteil der Sulfosphingolipide lässt diesen Rückschluss zu (80, 83).

Ein Blast-Suchlauf im Genom von *C. hutchinsonii* ergab, dass das Bakterium wahrscheinlich kein Cytochrom b_5 enthält. Der wahrscheinlichste Elektronendonator für die Acylamid- β -Hydroxylase ist somit Ferredoxin, was wiederum in *P. pastoris* fehlt. Es ist daher eigentlich überraschend, dass die heterologe Expression der Hydroxylase in *P. pastoris* zu größeren Mengen β -hydroxylierter Fettsäuren geführt hat. Möglicherweise wäre *E. coli* als Expressionssystem sogar besser geeignet, da das Bakterium den Elektronendonator Ferredoxin synthetisiert.

4.4 <u>∆3(E)-desaturiertes GlcCer ist ein Angriffspunkt für Defensine</u>

Es ist bekannt, dass GlcCer als Angriffspunkt für verschiedene pflanzliche Defensine dient, die das Wachstum von Pilzen hemmen (124). Da Pflanzen von RsAFP2 aus Rettich nicht beeinträchtigt werden, lag die Vermutung nahe, dass die Struktur des Ceramid-Grundgerüsts für die Interaktion mit RsAFP2 wichtig ist. Pilzliches GlcCer unterscheidet sich vom GlcCer aus anderen Organismen durch die C9-Methylgruppe und die in Euascomyceten vorhandene $\Delta 3(E)$ -Doppelbindung. Die Analyse verschiedener *Pichia*-Mutanten zeigte, dass die C9-Methylverzweigung nur einen geringen Einfluss auf die Interaktion mit RsAFP2 hat: Die Defensinkonzentration, die nötig war um das Wachstum der Deletionsmutante vollständig zu hemmen, verdoppelte sich im Vergleich zum WT nur, während sie in GlcCer-freien *P. pastoris*-Stämmen mindestens 10 x so hoch war (7, 124).

Dass eine zusätzliche $\Delta 3(E)$ -Doppelbindung die Interaktion mit RsAFP2 verstärkt, war überraschend, da eine *trans*-Doppelbindung die Topologie des Moleküls kaum verändert (im Gegensatz zu *cis*-Doppelbindungen, die eine Art "Knick" in die Kohlenwasserstoffkette einfügen). Analog hierzu ist die $\Delta 3(E)$ -Deletionsmutante von *Fusarium* acht Mal resistenter als der Wildtyp, was die Bedeutung der Doppelbindung für die Interaktion mit RsAFP2 unterstreicht. Das Defensin ermöglicht den Rettichkeimlingen eine sehr effiziente Abwehr phytopathogener Euascomyceten. Tabelle 4.1 zeigt eine Zusammenfassung der Interaktion verschiedener *Pichia*- und *Fusarium*-Stämme mit RsAFP2.

Tabelle 4.1 Reaktion unterschiedlicher *Pichia*- und *Fusarium*-Stämme auf die Behandlung mit RsAFP2. Stämme, die kein GlcCer synthetisieren können, sind resistent gegen das Defensin. Die Deletion der C9-Methyltransferase führt zu geringen Änderungen der Sensitivität, während die Deletion der Δ 8-Desaturase (die auch den Verlust de C9-Methylierung zur Folge hat) zu einer leichten Erhöhung der Resistenz gegen RsAFP2 führt. Die Einführung einer zusätzlichen Doppelbindung am C3 der Fettsäure führt zu einer Hypersensitivität verglichen mit dem Wildtyp, während die Δ 3-Deletionsmutante von *F. graminearum* resistenter wird. Die Zahlen in Klammern geben den Faktor an, um den sich die Reaktion auf RsAFP2 verändert (immer bezogen auf den WT). Im Fall des Stamms Pp Δ 3Fg konnte keine minimale Hemmkonzentration ermittelt und somit auch keine relative Sensitivität im Vergleich zum WT ermittelt werden.

P. pastoris-Stamm	Reaktion auf RsAFP2	GlcCer vorhanden	Quelle
WT (GS115)	sensitiv	ja	(124)
∆gcs KO	resistent (10 x)	nein	(124)
α-Hydroxylase KO	resistent (10 x)	nein	(7)
∆4-Desaturase KO	resistent (10 x)	nein	(7)
∆8-Desaturase KO	weniger sensitiv (4 x)	ја	(7)
C9-Methyltransferase KO	weniger sensitiv (2 x)	ja	(7)
Pp∆3Fg	stärker sensitiv	ja	diese Arbeit
F. graminearum-Stamm			
WT	sensitiv	ja	diese Arbeit
∆3FgKO	resistent (4-8 x)	ja	diese Arbeit

Tendenziell sind Euascomyceten stärker sensitiv gegen das Defensin aus Aspergillus giganteus – AgAFP – als andere Pilze (125). Dass die *F. graminearum*-Mutante, deren Δ 3-Desaturase deletiert wurde, im Vergleich zum Wildtyp resistenter ist, entsprach also den Erwartungen. Doch auch innerhalb der Euascomyceten gibt es resistente Pilze. Dies zeigt, dass die Struktur des Ceramid-Grundgerüsts und somit auch die Δ 3(*E*)-Doppelbindung nicht der einzige Grund für die AgAFP-Sensitivität sein kann, zumal der Produzent (*Aspergillus giganteus*) selbst zu den Euascomyceten gehört und vermutlich eine Δ 3(*E*)-Desaturase besitzt. Die Genomsequenz von *A. giganteus* ist nicht öffentlich zugänglich, und eine Lipidanalyse des Pilzes liegt nicht vor. Eventuell synthetisiert *A. giganteus* Δ 3(*E*)-desaturiertes GlcCer nur unter Wachstumsbedingungen, bei denen er kein AgAFP produziert. Diese Frage konnte im Rahmen dieser Arbeit jedoch nicht beantwortet werden.

Es gibt zwei Faktoren, die für die Resistenz gegen RsAFP2 und AgAFP von Bedeutung sind (bzw. sein können). Einerseits spielt natürlich das Lipid selbst eine Rolle, da GlcCer offenbar an der Bindung der Defensine an der pilzlichen Plasmamembran beteiligt ist [vgl. ELISA-Tests in (7, 124)]. Dies erklärt jedoch nicht, warum Pflanzen nicht auf RsAFP2 reagieren. Schließlich hat deren Ceramid die gleiche Struktur wie das der *Pichia*-Deletionsmutante der C9-Methyltransferase. Zudem reagiert *Aspergillus giganteus* nicht auf das von ihm synthetisierte AgAFP, obwohl er selbst zu den Euascomyceten gehört und daher $\Delta 3(E)$ -desaturiertes GlcCer bildet. Die zweite Schlüsselstelle in der Interaktion von GlcCer mit

Defensinen ist die vermutete nachgeschaltete Signaltransduktionskette, die durch die Bindung des Defensins an die Plasmamembran ausgelöst wird und zur Bildung von Poren und damit zum Zelltod führt. Vermutlich ist dieser Mechanismus in resistenten Organismen unterbrochen, was zur Folge hat, dass das Defensin zwar bindet, die Signalreaktion aber nicht ausgelöst wird. Um diese Hypothese zu überprüfen, müssten die in dieser und in anderen Arbeiten hergestellten Mutanten von *Pichia pastoris* (7, 34) und *Fusarium graminearum* (75) bzw. deren GlcCer weiter analysiert werden. ELISA-Tests könnten z.B. einen ersten Überblick über die Bindungsstärke der Defensine an die verschiedenen GlcCer-Spezies geben, und mit Hilfe des Fluoreszenzfarbstoffes SYTOX Green [bzw. dessen Aufnahme (125)] könnte man das Ausmaß der durch die Defensin-Interaktion ausgelösten Membranpermeabilisierung untersuchen.

5 Ausblick

Im Rahmen der vorliegenden Arbeit gelang die Identifizierung und molekulare Charakterisierung der ersten Desaturase mit $\Delta 3(E)$ -Regioselektivität. Dies bildet die Grundlage für die Untersuchung der biologischen Funktion des Enzyms bzw. der Lipide mit $\Delta 3(E)$ -Doppelbindung. Nachfolgend ist eine Auswahl nahe liegender Versuche dargestellt.

Fusarium graminearum – Wie ist die $\Delta 3(E)$ -Desaturase reguliert?

Der relative Anteil $\Delta 3(E)$ -desaturierter Fettsäuren im GlcCer von *Fusarium graminearum* ist temperaturabhängig und die Biosynthese offenbar anders reguliert als die Biosynthese anderer ungesättigter Fettsäuren. *P. pastoris*-Zellen, die die $\Delta 3$ Fg exprimierten, zeigten im Gegensatz zu *F. graminearum*-Kulturen, keinen Unterschied in den Anteilen von $\Delta 3$ -desaturierten Fettsäuren bei der Anzucht bei 28°C und 30°C. Daraus lässt sich schließen, dass die Abnahme $\Delta 3$ -desaturierter Fettsäuren bei 30°C in *F. graminearum* nicht auf eine temperaturbedingte Abnahme der Enzymaktivität zurückzuführen ist. Stattdessen ist möglicherweise die in der Membran vorhandene Enzymmenge bei 30°C deutlich niedriger als bei 28°C, wobei dies sowohl auf Transkriptions- als auch auf Translationsebene reguliert sein könnte. Alternativ könnte die Regulation der Enzymaktivität auch posttranslational z.B. durch Phosphory-lierung stattfinden.

Es wäre also interessant, die bei den verschiedenen Temperaturen gebildeten Transkriptmengen mittels Real-Time-PCR zu quantifizieren und zu vergleichen. Eine nähere Analyse des nativen Promoters (z.B. durch GFP-Fusionskonstrukte) erscheint ebenfalls lohnenswert. Andererseits könnten auch postranslationale Modifikationen der Desaturase – z.B. Phosphorylierungen wie im Falle der FAD2 (150) – für den bei 30°C verminderten Anteil Δ 3-ungesättigter Fettsäuren in *F. graminearum* sein, was ebenfalls zu untersuchen wäre.

Eine Infektion von Weizen- oder Maispflanzen mit Fg Δ 3KO im Vergleich zum Wildtyp und zur gcs-Deletionsmutante steht ebenfalls noch aus. Ramamoorthy et al. (75) stellten zwar keinen signifikanten Unterschied in der Pathogenität zwischen Wildtyp und Fg Δ gcs fest, die Virulenz von Fg Δ gcs war jedoch deutlich herabgesetzt. In der zitierten Arbeit findet sich zudem kein Hinweis auf die verwendeten Kulturbedingungen.

Handelt es sich bei FAD4 in Grünalgen um eine membrangebundene Desaturase?

In den Genomen der Grünalgen Chlamydomonas reinhardtii und Ostreococcus tauri wurden Sequenzen gefunden, die homolog zu den pilzlichen $\Delta 3(E)$ -Desaturasen sind. Da Grünalgen kein GlcCer enthalten, müssen die putativen Proteine also eine andere Reaktion als in Pilzen katalysieren. Über die Existenz (und Zusammensetzung) von GIPCs ist nichts bekannt. Beide Algen enthalten jedoch Sequenzen, die homolog zu Serin-Palmitoyltransferasen und Ceramidsynthasen sind, was auf die Existenz von Sphingolipiden schließen lässt. Die putative Desaturase könnte einerseits eine Δ 3-Doppelbindung oder eine β -Hydroxylgruppe in Ceramide einführen, andererseits aber auch eine $\Delta 3(E)$ -Doppelbindung in plastidäres PG einfügen. PG, das in Position sn-2 eine $\Delta 3(E)$ -desaturierte Hexadecensäure enthält, wurde bisher in den Plastiden der höheren Pflanzen, aber auch in Grünalgen nachgewiesen (148, 151). Die zugehörige Desaturase (FAD4) ist jedoch noch nicht charakterisiert worden. Aktuelle Untersuchungen (Laborgruppen Benning und Last, East Lansing, MI, USA; unveröffentlicht) zeigen, dass es sich bei FAD4 in Arabidopsis thaliana wahrscheinlich weder um eine membrangebundene Desaturase noch um ein P450-Enzym, sondern um einen völlig neuen Desaturase-Typ handelt. Auch Chlamydomonas reinhardtii besitzt ein entsprechendes homologes Gen. Außerdem könnten Grünalgen eine zweite Desaturase mit klassischen Histidinboxen besitzen, die eine $\Delta 3(E)$ -Doppelbindung in plastidäres PG einführt. Grünalgen stellen einen evolutionären Seitenarm dar, der einen gemeinsamen Vorläufer mit höheren Pflanzen hat. Es könnte sein, dass die membrangebundene Desaturase (deren Sequenz in dieser Arbeit identifiziert wurde) ein evolutionär altes Enzym ist, das bereits im gemeinsamen Vorläufer von Grünalgen und Gefäßpflanzen vorhanden war. Während der Entwicklung von Moosen und höheren Pflanzen ging die Sequenz möglicherweise verloren, blieb jedoch in Grünalgen erhalten. Alternativ könnten die Grünalgen auch durch horizontalen Gentransfer an ein ursprünglich aus Pilzen stammendes Gen gelangt sein.

Eine Analyse der Sequenzen aus *C. reinhardtii* und *O. tauri* mit verschiedenen Vorhersageprogrammen auf http://www.expasy.org zeigte, dass sie ein putatives N-terminales Chloroplasten-Lokalisierungssignal enthalten. Dies würde für eine Desaturierung des PG sprechen. Um beide Möglichkeiten zu überprüfen sollen die Sequenzen daher in einer chemischen Mutante von *Arabidopsis thaliana* exprimiert werden, die kein $\Delta 3(E)$ -desaturiertes PG mehr herstellen kann (113). *Pichia pastoris* stellt in diesem Fall kein geeignetes Expressionssystem dar, da Hefen (abgesehen von fehlenden Plastiden) sehr wenig PG synthetisieren und nicht den wahrscheinlich benötigten Elektronendonator Ferredoxin bereitstellen.

Das Bakterium Plesiocystis pacifica besitzt eine Gensequenz mit Ähnlichkeit zur $\Delta 3Fg$ Eine Sequenz, die hohe Ähnlichkeit zu den $\Delta 3$ -Desaturasen zeigt, wurde im Bakterium Plesiocystis pacifica gefunden. Das Bakterium wurde 2003 zum ersten Mal identifiziert (152).

In einer Lipidanalyse wurden größere Mengen Arachidonsäure nachgewiesen, jedoch enthält *Plesiocystis* weder GlcCer noch hydroxylierte Fettsäuren. Eine Datenbanksuche ergab, dass das Genom kein SPT-Homolog enthält, das Bakterium also offenbar keine Sphingolipide herstellen kann. Es ist denkbar, dass die putative Δ 3-Desaturase ebenfalls eine Doppelbindung in Phosphoglycerolipide einfügt. Interessanterweise sind Myxococcales wie die (nicht-verwandten) Sphingobacteriales in der Lage, sich ohne Flagellen über Oberflächen zu bewegen, weshalb es interessant sein könnte, auch diese Sequenz näher zu betrachten und die Lipidzusammensetzung von *Plesiocystis pacifica* detailliert zu analysieren.

6 Material und Methoden

6.1 Chemikalien und Verbrauchsmaterialien (Kits)

Allgemeine Chemikalien

Salze, Säuren und Lösungsmittel	Carl Roth, Merck
Nährmedien (Bacto-Trypton, Yeast Nitrogen Base, Agar etc.)	Duchefa
Aminosäuren und DNA-Oligoprimer	Sigma Aldrich
Fettsäuren und div. Lipide (Standards)	Sigma Aldrich
Fettsäuremethylester (2OH-18:0 und 3OH-18:0)	Matreya (Biotrend)
ANS, α-Naphthol, Phosphatidreagenz	Merck

Antibiotika

Ampicillin, Kanamycin, Streptomycin, Nystatin, Gentamycin	Applichem, Carl Roth
Hygromycin	Duchefa, Carl Roth
Zeocin	Invitrogen, Duchefa

Polymerasen

Go <i>Taq</i> -Flexi DNA-Polymerase
Herculase II® Fusion DNA-Polymerase
<i>Taq</i> -Polymerase
Pwo-Polymerase

Sonstige Enzyme

Glucanex und Driselase Ligasen, Antarktische Phosphatase, Klenow, etc. Restriktionsenzyme

Kits

NucleoBond Xtra Midi Plus Nucleospin Extract II PCR-Purification Kit Promega Stratagene DNA Cloning Service peqlab

Sigma-Aldrich NEB NEB

Macherey Nagel Macherey Nagel Qiagen

6.2 Geräte

Brutschränke Elektroporator Elektroporationsküvetten Gaschromatographie-Zubehör Gaschromatograph "CP3900" Autosampler "CP8410" Polare Säule "Select® FAME" Geldokumentationsgerät Gelkammer "Horizon 11-14" Glasgeräte **Kieselgel 60-Platten** Kieselgel-Säulen "Strata SI-2" Magnetrührer "IKAMAG" Mikroliterspritzen pH-Meter "761-Calimatic" Photometer "20 Genesys[™]" Rotationsverdampfer "Rotavapor RE 120" Schüttelinkubatoren "Multitron" Sterilbank "DLF/BSS4" Sterilfilter Stickstoffgenerator Thermoblock Thermocycler Trio-Thermoblock-TB1 und T-Gradient UV-Photometer "GeneQuant II" Vortex "Paramix" Wasserstoffgenerator Zentrifugen

Binder, Heraeus Eppendorf peqlab Varian Biometra BRL **VWR VWR** Phenomenex Janke und Kunkel Hamilton Knick Spectronic Büchi Infors Clean Air Millipore **Domnick Hunter** Eppendorf und Biometra **Biometra** Pharmacia Biotech Julabo Labortechnik **Domnick Hunter** Eppendorf, Heraeus

6.3 Verwendete Organismen und Stämme

Organismus	Stamm	Genotyp	Referenz
Cytophaga hutchinsonii	ATCC 33406	wt	DSMZ Braunschweig
Escherichia coli	XL1-Blue tet ^R	Δ (mcrA) 183, Δ (mcrCB- hsdSMR-mrr) 173, endA1, supE44, thi-1, recA1, gyrA96, relA1, lac[F'proAB, laclqZ Δ M15, Tn10 (tet ^r)]	Stratagene
Escherichia coli	XL1-Blue kan ^R	Δ (mcrA) 183, Δ (mcrCB- hsdSMR-mrr) 173, endA1, supE44, thi-1, recA1, gyrA96, relA1, lac[F'proAB, laclqZ Δ M15, Tn10 (kan ^r)]	DNA Cloning Service (Hamburg)
Fusarium graminearum	8/1	wt	AG Prof. Dr. W. Schäfer (MPPG, Uni Hamburg)
Magnaporthe grisea	Guy11	wt	nur RNA (Prof. Dr. N. J. Talbot, University of Exeter, GB)
Pichia pastoris	GS115	his4	Invitrogen
Pichia pastoris	Pp∆scs7	his4 scs7::Zeo ^R	S. Albrecht (Dissertation Uni Hamburg, 2005)
Pichia pastoris	Pp∆4DesKO	his4 ∆4Des∷Zeo ^R	S. Albrecht (Dissertation Uni Hamburg, 2005)
Pichia pastoris	JC308∆ugt51B1	ade1 arg4 his4 ura3 ugt51B1::URA3	I. Hillig (144)

6.4 <u>Vektoren</u>

pBLADE	(Amp ^R / <i>ADE</i> 1)	James Cregg (153)
pBLARG	(Amp ^R / <i>ARG</i> 4)	James Cregg (153)
pBluescript-KSII ⁻	(Amp ^R)	Stratagene
pGAP-N	(Zeo ^R /ClonNat ^R)	diese Arbeit (aus pGAPZ/B)
pGAPZ/B	(Zeo ^R)	Invitrogen
pGAPZ/C	(Zeo ^R)	Invitrogen
pGEM [®] -T	(Amp ^R)	Promega
pPIC3.5	(Amp ^R / <i>HIS4</i>)	Invitrogen
pPIC-N	(Amp ^R / <i>HIS4</i> /ClonNat ^R)	diese Arbeit (aus pPIC3.5)
pSLNat	(Amp ^R /ClonNat ^R)	Christoph Basse (MPI Marburg)

6.5 Molekularbiologische Methoden

6.5.1 Polymerase Kettenreaktion (PCR)

Die PCR ermöglicht eine schnelle Vervielfältigung eines definierten DNA-Bereichs mit Hilfe von Oligonukleotidprimern und einer hitzestabilen DNA-Polymerase. In Kombination mit dem Enzym *Reverse Transkriptase*, welches RNA in cDNA "rückübersetzt", ist auch die Amplifikation von RNA-Fragmenten möglich

Im ersten Schritt wird die doppelsträngige DNA durch Hitzedenaturierung in die beiden Einzelstränge zerlegt. Anschließend wird die Probe soweit abgekühlt, dass die Primer binden können. Zuletzt wird der Doppelstrang durch die DNA-Polymerase wieder vervollständigt.

Auswahlkriterien für die Primer

Bei der Wahl der Oligoprimer wurden nach Möglichkeit folgende Kriterien beachtet:

- Länge (des bindenden Abschnitts): 18-30 bp (ergibt sich aus Schmelztemperatur)
- GC-reiche Sequenz am 3'-Ende (ca. 2-4 Nukleotide)
- möglichst keine Hairpin-Strukturen/Dimere innerhalb des Primers bzw. des Primerpaares
- möglichst geringe intramolekulare Wechselwirkungen

Die beiden letztgenannten Kriterien wurden mit Hilfe des Programms "Clone Manager" sowie des Online-Programms "Oligo-calculator" (Sigma-Aldrich) überprüft.

Um die amplifizierten Konstrukte möglichst gerichtet klonieren zu können, wurden die Primer i.d.R. am 5'-Ende um einige Basen erweitert, die als Erkennungssequenz für Restriktionsenzyme dienen konnten.

Bei Expressionskonstrukten für *Pichia* und *Saccharomyces* musste außerdem auf das Vorhandensein einer Kozak-Sequenz [(154), ein A-Nukleotid in der dritten Position vor dem Startcodon ATG; z.B. 5'-ACC <u>ATG</u> G] geachtet werden, da diese für eine effektive Initialisierung der Translation in eukaryotischen Organismen benötigt wird.

Die Schmelztemperatur (T_M) eines Primers sollte möglichst 55°C bis maximal 70°C betragen und bei einem Primerpaar um höchstens 4°C differenzieren. Sie kann mit Hilfe der folgenden Formel grob abgeschätzt werden:

T_{M} [°C] = 4 x (G + C) + 2 x (A + T) + 4

(Dabei stehen G, C, A und T für die jeweiligen Basen im bindenden Teil des Primers).

Durchführung der PCR

Zur Überprüfung der Expressionskonstrukte wurde die jeweilige Plasmid-DNA (psDNA) mit einer *Taq*-Polymerase (New England Biolabs) isoliert. Für die Herstellung der Expressionsund Deletionskonstrukte erfolgte die Amplifikation der Fragmente mit Hilfe einer *Pwo*-Polymerase (peqlab) bzw. der Herculase[®]II-Fusion (Stratagene), da diese beiden eine 3'-Exonukleaseaktivität und Proofreading-Funktion besitzen. Die Synthesegeschwindigkeit der *Pwo*-Polymerase ist im Vergleich zur *Taq*-Polymerase deutlich geringer, die Genauigkeit ist jedoch mehr als eine Zehnerpotenz höher. Das Enzym Herculase II wurde vor allem zur Herstellung größerer Expressionskonstrukte (>1,5 kb) verwendet, die Synthesegeschwindigkeit ist mit ≈ 10 sec/kb noch höher als die der *Taq*-Polymerase.

Standardansatz PCR:

X µl Probe (X = 1 ng psDNA, 2 µl eines cDNA-Ansatzes oder ≈ 50 ng gDNA)

- 1 μl *antisense-Primer* (50 pmol/μl)
- 1 µl sense-Primer (50 pmol/µl)
- 1 µl dNTP-Mix (10 mM je Nukleotid)
- 5 µl 10 x Puffer (enthält 25 mM MgCl₂ oder MgSO₄)
- 0,25 µl Taq-Polymerase (5 Units/µl) oder
 - 1,5 µl Pwo-Polymerase (1 Unit/µl) oder
 - 0,5 µl Herculase II (2 U/µl)

auf 50 µl mit sterilem destilliertem H2O (SDW) auffüllen

Da in der Regel ein Thermocycler ohne Heizdeckel verwendet wurde, mussten die Proben mit einem Tropfen Mineralöl als Verdunstungsschutz überschichtet werden.

Th	ermoprogramm:			
	Initiale Denaturierung	95°C	2 min	
	Denaturierung	95°C	20 sec 🛶	
	Annealing (5-10°C unter T_M)	55 - 65°C	20 sec	29 x
	Elongation	72°C	1-3 min —	
	Finale Elongation (Auffüllen abgebrochener Fragmente)	72°C	7 min	

Als Faustregel für die Elongation gelten 30-60 sec pro 1000 bp für die *Taq*-Polymerase, 10-30 sec/kb für Herculase[®]II-Fusion und 90 sec/kb für die *Pwo*-Polymerase.
Kolonie-PCR

Um bakterielle und Hefe-DNA zu amplifizieren (z.B. zu Kontrollzwecken nach erfolgter Transformation), war eine Isolierung genomischer DNA nicht nötig: Mit Hilfe eines Zahnstochers wurde etwas Koloniematerial in 50 µl TE-Puffer suspendiert und die Probe 50-60 Sekunden in der Mikrowelle erhitzt. Pro Reaktion wurde 1 µl als Matrize eingesetzt.

Der Reaktionsansatz enthielt zudem Dimethylsulfoxid (DMSO), das DNA-Sekundärstrukturen (der gDNA) aufbricht und somit die PCR erleichtert. Zudem wurde die für Kolonie-PCR besonders effektive Go*Taq*-Flexi-DNA-Polymerase (Promega) verwendet. Der Puffer enthält mit Bromphenolblau und Orange-G bereits zwei Farbstoffe; der Reaktionsansatz konnte nach erfolgter PCR direkt auf das Agarosegel aufgetragen werden (kein Ladepuffer nötig).

Ansatz Kolonie-PCR:

31	µI SDW
1	μl <i>antisense Primer</i> (50 pmol/μl)
1	μl <i>sense Primer</i> (50 pmol/μl)
1	µl dNTP-Mix (10 mM je Nukleotid)
10	$\mu I \ 5 \ x \ Green \ Go \ Taq - Flexi - Puffer \ (ohne \ MgCl_2)$
5	μl MgCl ₂ (25 mM)
1	µI DMSO
0	,2 μl Go <i>Taq</i> -Polymerase (5 Units/μl)
1	µl Hefesuspension (s.o.)

Das Thermoprogramm wurde wie folgt verändert:

Denaturierung 94°C 30 sec	
Annealing (10-15°C unter T_M) 50 - 60°C 30 sec 3	85 x
Elongation 72°C 1-3 min	
Finale Elongation72°C7 min	

RT-PCR (cDNA-Synthese)

Zu Beginn der Arbeit lag für die Herstellung der Expressionskonstrukte bereits isolierte Gesamt-RNA aus *Fusarium graminearum* und *Magnaporthe grisea* vor.

Da bei der PCR nur DNA vervielfältigt werden kann, muss die zu untersuchende RNA zunächst in cDNA (*complementary DNA* oder *copy DNA*) umgeschrieben werden. Dabei bedient man sich des Enzyms *Reverse Transkriptase*.

Die Reaktion wurde mit dem "Cloned AMV First-Strand cDNA Synthesis Kit" der Firma Invitrogen durchgeführt. Es ermöglicht eine cDNA-Synthese ausgehend von 10 pg bis 5 µg Gesamt-RNA. Revers transkribiert wurde die gesamte mRNA (nicht nur die für die eigentliche PCR benötigten Fragmente). Um dies zu erreichen wurde ein Oligo-dT-Primer benutzt. Dieser besteht aus einer Folge von 20 Desoxythymidin-Nukleotiden, die an den Poly-A-Schwanz der eukaryotischen mRNA binden.

Durchführung (alle aufgeführten Komponenten sind Bestandteil des Kits):

2 μl dNTP-Mix (10 mM je dNTP)

1 μl Oligo(dT)₂₀ (50 ng/μl)

X µI Gesamt-RNA (10 pg-5 µg)

Diethylpyrocarbonat-behandeltes SDW ad 12 $\mu l;$ 5 min bei 65°C hitzedenaturiert, danach auf Eis

anschließend wurde ein Master-Mix aus

4 µl 5 x cDNA Synthese Puffer

1 µl 0,1 M DTT

1 µI RNaseOUT[™] (RNase Inhibitor; 40 U/µI)

1 µI DEPC-behandeltes SDW

1 µl Cloned AMV Reverse Transkriptase (15 U/µl)

hinzugefügt. Reaktion: 60 min bei 45°C (danach Hitzeinaktivierung: 5 min bei 85°C).

6.5.2 Agarosegel-Elektrophorese

Die mittels PCR amplifizierten DNA-Fragmente (RNA musste zunächst mit Hilfe des Enzyms *Reverse Transkriptase* in DNA umgeschrieben werden) wurden elektrophoretisch über ein Agarosegel nach ihrer Größe getrennt. Durch Vergleich mit einem geeigneten Standard konnte die Größe der Fragmente bestimmt werden.

Lösungen nach Sambrook und Russell, 2001:

<u>5 x TBE-Puffer (Stammlösung):</u>	Ladepuffer (6 x):
54 g Tris	30 % (v/v) Glycerol
27,5 g Borsäure	1 % (w/v) Bromphenolblau
40 ml 0,5 M EDTA pH 8,0	1 % (w/v) Xylencyanol
SDW ad 1 I	100 µl 5 x TBE-Puffer
	SDW ad 1 ml
	Lagerung bei -20°C

Probenvorbereitung:

Jede Probe wurde vor dem Auftragen mit 1/6 Vol Auftragspuffer gemischt. Da der "Green *GoTaq-*Puffer" bereits Auftragspuffer enthielt, konnten diese Proben direkt auf das Gel geladen werden.

Agarosekonzentration:

Bei DNA-Auftrennung (psDNA, PCR-Produkte)	1,0 % Agarose
Bei Auftrennung von genomischer DNA (für Southern-Blots)	0,8 % Agarose

Als Puffer für das Agarosegel und als Laufpuffer wurde 1 x TBE verwendet. Die angelegte Spannung variierte in Abhängigkeit von der Nukleinsäure:

Testgele (30 ml Fassungsvermögen)	80 V
Testgele (100 ml Fassungsvermögen)	100-120 V
Präparative Gele	80-90 V
Gele für Southern Blots	120-140 V

Unmittelbar vor dem Gießen des Gels wurde Ethidiumbromid (10 mg/ml, Endkonzentration 0,005 %) zum Ansatz hinzugefügt. Ethidiumbromid interkaliert mit Nukleinsäuren und macht so deren Position im Gel unter UV-Licht sichtbar. Das resultierende Bandenmuster wurde fotografisch dokumentiert. Da Southern-Blot-Gele generell in einer Ethidiumbromid-Lösung nachgefärbt werden mussten, wurde diesen Gelen kein Farbstoff zugesetzt.

6.5.3 Methoden zur DNA-Klonierung

Anfügen eines 3'-A-Überhangs

Taq-Polymerasen hängen ein Adenin-Nukleotid am 3'-Ende von etwa 90 % aller PCRamplifizierten Fragmente an. Dieser Überhang wird bei der Ligation mit dem Zwischenklonierungsvektor pGEM-T (der selbst komplementäre 5'-T-Enden besitzt) benötigt. Durch die Exonukleaseaktivität der Proofreading-Polymerase (*Pwo-* und Herculase[®]II-) fehlen diese Überhänge. Um die Ligation der Expressionskonstrukte in pGEM-T dennoch zu ermöglichen, mussten diese nach der eigentlichen PCR (und nach der Gelreinigung) angefügt werden:

16 µl gereinigter PCR-Ansatz

1 µl dNTP-Mix (bzw. 10 mM dATP)

2 µl 10 x ThermoPol-Puffer (NEB)

1 µl Taq-Polymerase (NEB)

20 µl Gesamtvolumen

Der Ansatz wurde für 30 min bei 72°C inkubiert. Eine Reinigung war nicht erforderlich, der Ansatz konnte direkt in die Ligation eingesetzt werden.

Ligation

Die Ligation von PCR-Produkten (mit 3'-A-Überhang) in pGEM-T (5'-T-Überhang) erfolgte mit der T4-DNA-Ligase von Promega (liegt dem pGEM-T-Kit bei) nach folgendem Schema:

5 μl 2 x Rapid-Ligation-Puffer 1 μl T4-DNA-Ligase 0,5 μl pGEM-T-Vektor (50 ng) 2-3 μl PCR-Produkt mit A-Überhängen SDW ad 10 μl

Die Reaktion fand üN im Kühlschrank oder 2 Stunden bei 22°C (RT) statt. 2 µl des Ansatzes wurden anschließend für die Transformation von *E. coli* eingesetzt.

Restringierte DNA-Fragmente wurden mit Hilfe der T4-DNA-Ligase (NEB) in den entsprechenden Expressionsvektor bzw. das entsprechende Konstrukt kloniert:

μl 10 x T4-DNA-Ligase-Puffer
 μl geschnittener Vektor
 μl gereinigtes Insert
 SDW ad 10 μl

Die Reaktion fand wahlweise üN bei 16°C oder 2 Stunden bei 22°C statt.

Restriktion

Restriktionsendonukleasen des Typs II erkennen spezifische palindrome DNA-Sequenzen von meist 6-8 bp und spalten diese. Dabei produzieren sie je nach Enzym entweder *sticky ends* ("klebrige Enden"; 5'- oder 3'-Überhänge) oder *blunt ends* ("glatte Enden" ohne Überhang).

Verwendet wurden (wenn nicht anders angegeben) Enzyme der Firma NEB. War der Verdau mit mehreren Enzymen nötig, wurde die DNA bzw. das Plasmid nach Möglichkeit mit beiden Enzymen gleichzeitig inkubiert. In einigen Fällen war ein sequentieller Verdau nötig (z.B. bei verschiedenen optimalen Inkubationstemperaturen der beteiligten Enzyme oder einer Pufferunverträglichkeit). Dabei wurde das erste verwendete Enzym entweder durch Hitze inaktiviert (20 min bei 65°C oder 80°C, abhängig vom Enzym) oder durch Chloroformextraktion entfernt. Musste auch der Puffer gewechselt werden, wurde die DNA mit 3 M NaAc pH 5,2 gefällt.

Die Restriktion eines (leeren) Expressionsvektors erfolgte immer sequentiell, da sich die Enzyme aufgrund ihrer Größe gegenseitig stören, wenn die Schnittstellen zu nah (< 40 bp) beieinander liegen.

Für Testrestriktionen nach einer Plasmidpräparation wurden je 3 µl psDNA mit 1 Unit des entsprechenden Enzyms 60 min inkubiert. Eine Unit ist dabei definiert als die Enzymmenge, die 1 µg DNA in 60 min vollständig schneidet. Präparative Restriktionsansätze wurden in der Regel 2 Stunden (pro Enzym - falls sequentiell) inkubiert. Die eingesetzte Enzymmenge lag dabei ca. 10 % über der Mindestmenge (z.B. 11 Units pro 10 µg DNA).

Herstellung von Blunt-End-Fragmenten

Für die Klonierung einiger Fragmente konnten Vektor und Insert nicht mit dem gleichen Enzym restringiert werden. Sofern eines (oder beide) der Restriktionsenzyme *sticky ends* produzierte, mussten diese nachträglich "gebluntet" werden. Mit Hilfe des Klenow-Fragments (große Untereinheit der DNA-Polymerase I aus *E. coli*) können 3'-Überhänge entfernt bzw. 5'-Überhänge mit dNTPs aufgefüllt werden:

- 10 µl gereinigtes DNA-Fragment (in H₂O, nicht in Tris)
- 1 µl dNTP-Mix (10 mM je dNTP)
- 1 µl Klenow-Fragment (5 U/µl; von NEB)
- 5 µl 10 x Puffer NEB 2
- SDW ad 50 µl

Der Reaktionsansatz wurde 15 min bei 25°C inkubiert. Das Enzym musste durch Ausschütteln mit Phenol/Chloroform entfernt werden, da die Zugabe von EDTA (siehe NEB-Katalog 2006; Produktbeschreibung) die nachfolgende Dephosphorylierung gehemmt hätte.

Dephosphorylierung

Um die Selbstligationsrate (besonders bei *blunt end* Klonierungen) niedrig zu halten, wurden die 5'-Phosphatreste der geschnittenen DNA mit Hilfe des Enzyms *Antarktische Phosphatase* entfernt. Im Gegensatz zur üblicherweise verwendeten CIP (*calf intestinal phosphatase*) ist diese hitzeinaktivierbar, der Ansatz musste also vor der Ligation nicht mehr gereinigt werden.

Der (*blunt end*) geschnittenen Ansatz wurden mit 1/10 Vol 10 x Puffer (Antarctic Phosphatase Puffer; NEB) und 1 μ l Antarktischer Phosphatase (5 U/ μ l) ca. 60 min bei 37°C inkubiert. Das Enzym konnte durch 5 min Inkubation bei 75°C inaktiviert werden.

Reinigung der DNA

Um Proteine (z.B. RNase oder Restriktionsenzyme) aus Nukleinsäurelösungen zu entfernen, musste die DNA mit 1 Vol Chloroform versetzt, geschüttelt und kurz (ca. 10 sec) zentrifugiert werden (13.000 rpm). Proteine sammeln sich in der Interphase, die wässrige Oberphase wurde vorsichtig in ein neues Reaktionsgefäß überführt. Dieser Vorgang wurde mindestens 1 x wiederholt (so lange, bis die Oberphase völlig klar war). Die DNA wurde anschließend präzipitiert.

Alternativ konnte die DNA auch mit Hilfe eines "*PCR purification Kits*" gereinigt werden (nach Angaben des Herstellers, hier Qiagen oder Macherey-Nagel), es war anschließend keine DNA-Präzipitation nötig. Vorteile dieser Methode sind die hohe Reinheit und der geringe Zeitaufwand. Allerdings war die DNA-Ausbeute deutlich niedriger als mit herkömmlichen Methoden. Auf diese Weise wurde psDNA behandelt, die entweder sequenziert oder zur Transformation von *Pichia pastoris* durch Elektroporation verwendet werden sollte.

Nukleinsäure-Präzipitation

Wenn nicht anders angegeben, wurde Nukleinsäure durch Zugabe von 1/10 Vol 3 M NaAc pH 5,2 und 2 Vol Ethanol_{abs} (RNA: 2,5 Vol Ethanol) gefällt. Anschließend wurde die Probe 10 min bei 13.000 rpm sedimentiert. Das Nukleinsäure-Pellet wurde ein Mal mit 500 µl 70 % Ethanol gewaschen und nach dem Trocknen (je nach Größe des Pellets 10-30 min bei 37°C) in 10 mM Tris-HCl pH 8,0 oder in SDW gelöst.

Reinigung von DNA aus Agarosegelen

Zunächst wurde mit einer stabilen mit Glaswolle gestopften blauen Pipettenspitze ein 2 ml Reaktionsgefäß durchstochen. In die Spitze wurde nun das ausgeschnittene Gelstück platziert und das ganze Konstrukt (Reaktionsgefäß mit Spitze; s. Abb. oben) in einem 50 ml Falcon für 5 min bei 4.000 rpm (3.200 g) zentrifugiert. Die Glaswolle hält die Agarose zurück, TBE-Puffer und DNA werden durchgelassen. Die Fällung erfolgte mit 3 M NaAc pH 5,2 und 2 Vol Ethanol (gut geschüttelt, 10 min bei 13.000 rpm zentrifugiert). Danach wurde die DNA 1 x mit 500 µl 70 % Ethanol gewaschen, getrocknet und in 20-30 µl 10 mM Tris-HCl (pH 8,0) oder SDW gelöst.

6.5.4 Herstellung der Expressionskonstrukte

Induzierbare Expression in Pichia pastoris

Um die $\Delta 3(E)$ -Desaturasen (aus *Magnaporthe grisea* und *Fusarium graminearum*) sowie die β -Hydroxylase aus *Cytophaga hutchinsonii* funktionell zu charakterisieren, sollten die Gene (bzw. die codierenden Sequenzen) heterolog in *Pichia pastoris* exprimiert werden. Als Expressionsvektor wurde pPIC3.5 (Invitrogen) benutzt. Die Genexpression steht hier unter der Kontrolle des starken *AOX*1-Promotors, der durch Methanol (bei gleichzeitiger Abwesenheit von Glucose) induziert werden kann.

Die PCR-Amplifikation aller codierenden Sequenzen erfolgte mit Hilfe der *Pwo*-Polymerase oder der Herculase II-Fusion. Meist diente cDNA als Vorlage. Da es sich bei *Cytophaga* um ein Bakterium handelt (seine Gene enthalten keine Introns), konnte die gesuchte Sequenz mittels Kolonie-PCR amplifiziert werden.

Die erhaltenen PCR-Produkte wurden über ein Agarosegel gereinigt, mit einem 3'-Adenosin versehen und in pGEM-T zwischenkloniert. Nach der Transformation von *E. coli* wurde die isolierte psDNA sequenziert (1-2 Klone; normale Sequenzierung bis ca. 700 bp wurden beim DNA-Cloning-Service in Hamburg durchgeführt; für längere Sequenzierungen wurden die Proben zu AGOWA, Berlin, geschickt). Nun erfolgte die Umklonierung in den Vektor pPIC3.5: Die sequenzierten ORFs wurden mit Hilfe der durch die PCR-Primer künstlich eingebrachten Schnittstellen restringiert, über ein Agarosegel gereinigt und mit dem sequentiell aufgeschnittenen Vektor ligiert. Die erhaltenen Plasmide wurden in *E. coli* vermehrt und für die Transformation von *Pichia* linearisiert. Die Linearisierung erfolgte vorzugsweise mit dem Enzym BgIII. Da in einigen Inserts jedoch eine BgIII-Schnittstelle vorhanden war, musste auf andere Enzyme zurückgegriffen werden (siehe unten bzw. Vektorkarten im Anhang). Die für die Klonierung und Linearisierung verwendeten Restriktionsenzyme sind in Tabelle 6.1 dargestellt:

Konstrukt	Übertragene DNA	Kloniert in	Linearisiert mit	Transformierter Pichia-Stamm
∆3Fg	CDS der Acylamid- $\Delta 3(E)$ -	EcoRI und NotI	BgIII	GS115 (Pp WT)
	Desalurase aus rusanum			
∆3Mg	CDS der Acylamid-Δ3(E)-	EcoRI und NotI	BgIII	Pp WT
	Desaturase aus Magnaporthe			
βOHCyhu	CDS der Acylamid-β-	BamHI und	Aatll und Ndel	Pp WT und
-	Hydroxylase aus Cytophaga	EcoRI		Pp∆scs7

Tabelle 6.1 In dieser	Arbeit hergestellte	Konstrukte zur	induzierbaren	Expression in	Pichia
-----------------------	---------------------	----------------	---------------	---------------	--------

Konstitutive Expression in Pichia pastoris

Um die Interaktion von *Pichia pastoris* mit dem Defensin aus *Aspergillus giganteus* (und den Einfluss einer Δ 3-Desaturierung) testen zu können, ist die Anzucht auf Vollmedium unerlässlich. Da durch die zugesetzte Glucose jedoch mit pPIC3.5 keine Expression induziert werden kann, musste die Δ 3-Desaturasen aus *Fusarium* konstitutiv in *Pichia* exprimiert und daher auch in pGAPZ-C kloniert werden (wie für pPIC3.5 beschrieben). Vor der Transformation von *Pichia* wurde das Konstrukt mit AvrII linearisiert. Die Expression steht hier unter Kontrolle des *GAPDH*-Promotors, der konstitutiv sehr stark aktiv ist.

Herstellung der Nourseothricin-Resistenz-vermittelnden Expressionsvektoren

Zur Charakterisierung der Substratspezifität der Δ3-Desaturase aus F. graminearum sollte die endogene $\alpha(R)$ -Hydroxylase (codiert durch SCS7) aus Pichia pastoris durch die $\alpha(S)$ -Hydroxylase aus dem Bakterium Sphingomonas paucimobilis ersetzt werden. Da die benötigte *Pichia*-Mutante PpΔscs7 bereits resistent gegen Zeocin ist (7), erfolgte die Expression der Δ3-Desaturase aus Fusarium im Vektor pPIC3.5. Für die Expression der a-Hydroxylasen (SCS7 aus Pichia zur Kontrolle) stand nun kein Vektor mit geeignetem Selektionsmarker mehr zur Verfügung. Daher wurden beide Seguenzen zunächst in den Vektor pGAPZ-B kloniert (in Xhol/Notl). Die mit Nsil und Pstl aus dem Vektor pSL-Nat geschnittene Nourseothricin-Kassette wurde anschließend in die Nsil-Schnittstelle der beiden pGAPZ-B-Konstrukte gesetzt. Die transformierten E. coli-Zellen wurden auf Zeocin selektioniert, da die Nourseothricin-Kassette keinen prokaryotischen Promoter besitzt. Für die Transformation von P. pastoris wurden die Konstrukte mit AvrII (pSCS7-GAPN) bzw. Pvull (pαOHSpau-GAPN) linearisiert. Zur induzierbaren Expression der α-Hydroxylase aus Sphingomonas wurde der ORF in den Vektor pPIC3.5 kloniert (EcoRI/NotI). Anschließend wurde die mit Hpal und Pmll blunt geschnittene Nourseothricin-Kassette in den BstZ17I paOHSpau-PICN im AOX1-Promoter mit dem Enzym Pmel. Da das Plasmid eine Größe von 10,8 kb hatte, musste die DNA mit NaAc gefällt werden. Für die Reinigung über Silica-Säulen gilt eine Maximalgröße des Plasmids von 10 kb. Eine Zusammenfassung ist in Tabelle 6.2 dargestellt. Analog zu den dargestellten Konstrukten wurden auch die Leervektoren pGAPZ-B und pPIC3.5 mit der Nourseothricin-Kassette versehen und die Pichia-Stämme zur Kontrolle mit diesen Plasmiden transformiert.

Tabelle 6.2 Expressionskonstrukte, die eine Nourseothricin-Resistenz vermitteln. Die ORFs wurden in die entsprechenden *Pichia*-Expressionsvektoren kloniert und anschließend wie im Text beschrieben mit der Resistenzkassette versehen.

Konstrukt	Übertragene DNA	Kloniert in	Linearisiert mit	Transformierter <i>Pichia</i> -Stamm
αOHSpau-GAP	CDS der Acylamid- α(<i>S</i>)-Hydroxylase aus <i>Sphingomonas</i>	Xhol und Notl pGAPZ-B	Pvull	Pp∆scs7 und Pp∆scs7+∆3Fg
αOHSpau-PIC	CDS der Acylamid- α(S)-Hydroxylase aus Sphingomonas	EcoRI und NotI pPIC3.5	Pmel	Pp∆scs7 und Pp∆scs7+∆3Fg
SCS7Pp	CDS der Acylamid- α(<i>R</i>)-Hydroxylase aus <i>Pichia</i>	Xhol und Notl pGAPZ-B	Avrll	Pp∆scs7 und Pp∆scs7+∆3Fg

 $Pp\Delta scs7 - P. pastoris$ WT, in dem die $\alpha(R)$ -Hydroxylase deletiert wurde; $Pp\Delta scs7 + \Delta 3Fg - Pp\Delta scs7$, der die $\Delta 3Fg$ exprimiert

6.5.5 Herstellung der Deletionskonstrukte

Um die putativen $\Delta 3(E)$ -Desaturasen aus *Fusarium* und *Magnaporthe* sowie auszuschalten, wurden jeweils flankierende Bereiche der codierenden Region getrennt amplifiziert und mit einer Resistenzkassette versehen. Die Integration in die Genome erfolgte durch doppelt homologe Rekombination, dargestellt in Abbildung 6.1. Beide Deletionskonstrukte wurden im Rahmen dieser Arbeit hergestellt, aus Zeitgründen konnte das entsprechende Gen jedoch nur in *F. graminearum* ausgeschaltet werden.

Abbildung 6.1 Schematische Darstellung der homologen Rekombination und der daraus resultierenden KO-Mutanten. Sofern die homologen Bereiche eine ausreichende Länge besitzen (500-1000 bp bei *Fusarium*, ≥ 1000 bp für *Magnaporthe*), kann es in vielen Organismen zur Integration des linearen extrachromosomalen Konstruktes kommen. Dabei geht die ursprüngliche DNA an dieser Stelle verloren.

Deletion der Δ3-Desaturase in Fusarium und Magnaporthe

Die homologen Bereiche der Sequenzen aus *Fusarium* und *Magnaporthe* wurden (wie in Anhang D und E detailliert dargestellt) getrennt amplifiziert und nacheinander in pGEM-T kloniert. Die Konstrukte wurden mit BgIII bzw. NotI linearisiert, die Enden mit DNA-Polymerase I (Klenow-Fragment) aufgefüllt und mit einer Hygromycin-Resistenzkassette (Smal linearisiert) ligiert.

6.5.6 Southern-Blot-Analyse

Herstellung der Sonde

Die Sonde wurden mit Hilfe des "PCR DIG Probe Synthesis Kit" (Roche) nach Herstellerangaben synthetisiert. Die verwendeten Primer (Sonde_Fgd3-F und Sonde_Fgd3-R) generierten ein 258 bp großes Fragment, das kurz hinter dem Startcodon bindet. Somit bindet die Sonde sowohl im Wildtyp als auch in Fg∆3DesKO. Abweichend vom Standard PCR-Ansatz wurde ein DIG-markiertes Nukleotidgemisch (DIG-dUTP:dTTP [1:3]) eingesetzt und der Erfolg der Markierung im Agarosegel überprüft (markierte DNA erscheint "größer" als unmarkierte).

Blotting

Je 1-3 μ g gDNA (aus *Fusarium*) wurden mit verschiedenen Restriktionsenzymen verdaut. Diese wurden so gewählt, dass die jeweils erwarteten Fragmente (an die die Sonde binden soll) deutlich voneinander abweichende Größen im Vergleich von WT und Δ 3DesKO zeigten. Die verwendeten Restriktionsenzyme sowie die zu erwartenden Fragmentgrößen sind in Tabelle 6.3 dargestellt.

Tabelle 6.3 Enzyme, mit denen die genomische DNA für die Southernblot-Analyse geschnitte
wurde, und die zu erwarteten Größen des markierten Fragments.

Enzym	erwartete Größe [bp] Fg WT	erwartete Größe [bp] Δ3KO
Hpall	2443	761
Ncil	2442	1311
Sacl	3180	2016
Pvull	4052	4805

Die geschnittene gDNA wurde gereinigt, gefällt und in je 20 µl 10 mM Tris-HCl pH 8,0 gelöst und anschließend in einem 0,8 % Agarosegel getrennt (ca. 140 V, 2 h). Das Gel wurde danach für jeweils 10 min depuriniert, denaturiert und anschließend neutralisiert. Der Aufbau des Southern-Kapillar-Blots erfolgte wie in Abbildung 6.2 dargestellt. Die Nylonmembran (Hybond NX, Amersham) und das Whatman-Papier wurden vorher in 2 x SSC angefeuchtet. Als Transferlösung diente 20 x SSC. Beim Aufbau wurde darauf geachtet, dass keine Luftblasen vorhanden sind. Durch die Kapillarkräfte wurde die DNA aus dem Gel üN auf die Nylonmembran transferiert und anschließend durch UV-Bestrahlung kovalent gebunden.

Abbildung 6.2 Schematischer Aufbau eines Southern-Blots

Hybridisierung

Für die Hybridisierung wurde die Membran zunächst in 2 x SSC angefeuchtet und in Prähybridisierungspuffer für mindestens 6 h bei 68°C inkubiert. Der Puffer wurde danach durch 10 ml Hybridisierungslösung ersetzt und die Membran üN weiter bei 68°C inkubiert (die Hybridisierungslösung bzw. die Sonde) wurde vor jeder Benutzung aufgekocht und auf Eis abgekühlt).

Detektion

Die Membran wurde nun 2 x 5 min mit W1 bei RT gewaschen, gefolgt von zwei Waschschritten à 10 min mit W2 bei 68°C. Die Membran wurde erneut kurz mit W1 gespült und in B2 geblockt (30 min, RT). Nach Inkubation in AK (30 min, RT) wurde die Membran 3 x 20 min mit WP gewaschen. Abschließend wurde die Membran für 5 min mit B3 inkubiert und mit 500 μ I CSPD-Lösung benetzt. Nach weiteren 5 min wurde die Membran in Folie eingeschweißt und die Chemilumineszenz mit dem LAS3000 (Kodak) detektiert (Dauer ca. 4-6 h).

Lösungen für den Southern-Blot

Depurinierungslösung	0,25 N HCI
Denaturierungspuffer	0,5 M NaOH 1,5 M NaCl
Neutralisierungspuffer	0,5 M Tris-HCl pH 7,5 1,5 M NaCl

20 x SSC	175,2 g NaCl
	88,2 g Na-Citrat
	H ₂ O ad 1 I
Prähybridisierungspuffer	5 x SSC
	0,1 % N-Laurylsarcosin
	0,2 % SDS
	2 % Blockingreagens (Roche)
Hybridisierungspuffer	Prähybridisierungspuffer + 3-5 µl DIG-markierte Sonde
W1	2 x SSC
	0,1 % SDS
W2	0,2 x SSC
	0,1 %SDS
5 x B1	58 g Maleinsäure
	44 g NaCl
	H_2O ad 1 I, auf pH 7,5 einstellen
B2	1 x B1 (inkl. Blockingreagens)
AK	B2 + DIG-Antikörper (Roche) 1:10.000 verdünnt
WP	1 x B1
	0,3 % Tween 20
B3	100 mM Tris-HCl pH 9,5
	100 mM NaCl
CSPD	B3 + CSPD-Stammlösung (Roche) 1:100 verdünnt

6.6 Arbeiten mit E. coli

6.6.1 Medien für E. coli

LB-Medium (High Salt) 10 g Bacto-Trypton 5 g Hefeextrakt 10 g NaCl H₂O_{dest} ad 1 l; pH 7.2

Nach dem Autoklavieren wurde eines der folgenden Antibiotika hinzugefügt:

100 µg/ml Ampicillin (sterilfiltriert)

50 µg/ml Kanamycin (sterilfiltriert),

25 µg/ml Tetracyclin (sterilfiltriert) oder

20 µg/ml Streptomycin (sterilfiltriert)

Zur Blau-Weiß-Selektion bei Vektoren mit dem *LacZ*-Gen zusätzlich zu Ampicillin: 0,5 mM IPTG (sterilfiltriert) 80 µg/ml X-Gal in DMF (sterilfiltriert)

Für Platten wurden vor dem Autoklavieren 15 g Agar pro 1 l Medium zugegeben.

Low Salt LB-Medium	10 g Bacto-Trypton	
	5 g Hefeextrakt	
	5 g NaCl	
H ₂ O _{dest} ad 1 I; pH 7,5		
Selektion: 25 µg/m	I Zeocin (sterilfiltriert, Zugabe nach Autoklavieren)	
Für Platten wurden	vor dem Autoklavieren 15 g Agar pro 1 l Medium zugegeben.	
SOB-Medium	10 g Bacto-Trypton	
	5 g Hefeextrakt	

10 mM MgCl₂ (sterilfiltriert, Zugabe nach Autoklavieren)
10 mM MgSO₄ (sterilfiltriert, Zugabe nach Autoklavieren)

10 mM NaCl 2,5 mM KCl

H₂O_{dest} ad 1 l; pH 7,2

85

6.6.2 Herstellung chemisch kompetenter E. coli-Zellen (155)

TB-Puffer:10 mM PIPES pH 6,7 (sterilfiltriert)55 mM MnCl2 (autoklaviert)15 mM CaCl2 (autoklaviert)250 mM KCl (autoklaviert)(immer frisch angesetzt)

2 ml SOB-Medium wurden mit *E. coli*-Zellen angeimpft und üN bei 37°C und 200 rpm inkubiert. Am nächsten Morgen wurde die komplette Vorkultur in 200 ml SOB-Medium überführt und bis zu einer $OD_{600} \approx 0,5$ unter den gleichen Bedingungen wie oben kultiviert. Die Zellen wurden 10 min auf Eis inkubiert und anschließend sedimentiert (400 rpm, 4°C). Das Pellet wurde nun in 80 ml eiskaltem TB-Puffer resuspendiert, 10 min auf Eis inkubiert und wie oben zentrifugiert. Die erneute Resuspendierung erfolgte anschließend in 15 ml eiskaltem TB-Puffer. Nun wurden 1,2 ml (= 7 %) DMSO hinzugefügt, und nach weiteren 10 min Inkubation auf Eis konnte die Zellsuspension in 100 μ l-Portionen aliquotiert und in flüssigem Stickstoff tiefgefroren werden. Die Zellen konnten für mehrere Monate bei -80°C gelagert werden.

6.6.3 Transformation chemisch kompetenter E. coli-Zellen (156)

100 μl chemisch kompetente XL1-blue-Zellen wurden 10 min auf Eis aufgetaut, vorsichtig mit 2 μl Ligationsansatz oder ≈ 20-50 ng psDNA gemischt und 20 min auf Eis inkubiert.

Nach einem Hitzeschock von 60 sec bei 42°C wurden die Zellen in 400 ml LB-Medium regeneriert (60 min bei 37°C im Schüttler). Anschließend wurden die Zellen auf Selektionsmedium ausplattiert und üN bei 37°C inkubiert.

Für "schwierige" Konstrukte (z.B. Drei-Fragment-Ligationen, Konstrukte > 9 kb) wurden "superkompetente *E. coli*-XL 1-blue-Zellen" von H. Schmidt (DNA Cloning Service, Hamburg) verwendet: 50 µl auf Eis aufgetaute kompetente Zellen wurden mit 5 µl Ligationsansatz gemischt und 10 min auf Eis inkubiert. Nun folgten 30 sec. Hitzeschock (42°C) und 30 min Regeneration in 200 µl LB (37°C im Schüttler). Anschließend wurden die Zellen wie oben beschrieben ausplattiert und inkubiert.

6.6.4 Plasmid-Minipräparation

Plasmid-DNA aus *E. coli* wurde nach dem folgenden Protokoll [verändert nach (157)] isoliert. Alle Zentrifugationsschritte erfolgten (falls nicht anders angegeben) bei 13.000 rpm und RT:

BF-Puffer:	Saccharose	8 %
	Triton X-100	0,5 %
	EDTA (pH 8,0)	50 mM
	Tris-HCI (pH 8,0)	10 mM

IS-Mix: Isopropanol 400 μl 5 M NH₄Ac 80 μl (immer frisch angesetzt)

2 ml einer üN-Kultur wurden 20 sec in einem 2 ml Reaktionsgefäß sedimentiert. Die Zellen wurden in 190 µl BF-Puffer und 10 µl Lysozym (20 mg/ml) resuspendiert, 1 min abgekocht und kurz auf Eis abgekühlt. Nach 10 min Zentrifugation konnte das Pellet (enthält Zelltrümmer und genomische DNA) mit einem Zahnstocher entfernt und die psDNA (und RNA) durch Zugabe von 480 µl IS-Mix gefällt werden (30 min bei RT). Nun wurde 10 min zentrifugiert, der Überstand verworfen und die Nukleinsäure mit 500 µl 70 % Ethanol gewaschen (kurz geschwenkt und 3 min zentrifugiert). Nach dem Trocknen (ca. 30 min bei 37°C) konnte die DNA in 100 µl Tris-HCl (10 mM, pH 8,0) gelöst und die RNA durch Zugabe von je 3 µl RNase A (10 mg/ml) verdaut werden (30 min bei 37°C). Anschließend wurden 3 µl aus jedem Ansatz mit einem oder mehreren Restriktionsenzymen testverdaut. Die psDNA konnte direkt weiterverwendet werden, zum Sequenzieren musste sie jedoch noch gereinigt werden.

6.6.5 Plasmid-Midi- und Maxipräparation

Zur Transformation von *Fusarium graminearum* wurden mindestens 30 µg linearisiertes Konstrukt benötigt. Die erforderlichen Präparationen wurden nach einem der folgenden Protokolle durchgeführt:

a)	Maxi-Präparation (156	5):

STE-Puffer:	NaCl	100 mM
	Tris-HCI (pH 8,0)	10 mM
	EDTA (pH 8,0)	1 mM
Lösung 1:	Glucose	50 mM
	Tris-HCI (pH 8,0)	25 mM
	EDTA (pH 8,0)	10 mM
Lösung 2:	NaOH	0,2 N
	SDS	1 %
	(frisch angesetzt)	
Lösung 3:	5 M KAc	60 ml
	Eisessig	11,5 ml
	SDW	28,5 ml

Eine *E. coli*-üN-Kultur (250 ml) wurde in 50 ml Falcons sedimentiert (15 min bei 4.000 rpm) und das Pellet in 50 ml STE-Puffer suspendiert. Nach einem weiteren Zentrifugationsschritt (wie oben) wurde das Pellet in 10 ml Lösung 1 resuspendiert. Sofort danach erfolgte die Zugabe von 20 ml frisch angesetzter Lösung 2. Das Falcon wurde mehrmals vorsichtig invertiert und für 5-10 min bei RT inkubiert, bis die Lösung klar und viskos war. Zum Abstoppen der Lyse wurden 15 ml eiskalte Lösung 3 zugegeben, mehrmals vorsichtig invertiert und weiter 10 min auf Eis inkubiert. Das Bakterienlysat wurde 15 min bei 4°C und 4000 rpm zentrifugiert und durch 4 Lagen Filterpapier in ein neues Falcon filtriert. Das Filtrat konnte nun (auf 2 Falcons verteilt) mit 0,6 Vol (je 24 ml) Isopropanol gefällt werden (10 min bei RT). Die DNA-Präzipitation erfolgte bei 4000 rpm (RT) für 20 min. Das Pellet wurde anschließend mit wenig 70 % Ethanol gespült, getrocknet und in 3 ml 10 mM Tris-HCl pH 8,0 gelöst (DNA-Ausbeute $\approx 1-2 \mu g/\mu$ I).

b) Midipräparationen wurden bei Low-Copy-Plasmiden (alle Expressionsvektoren) mit dem "NucleoBond Xtra Midi Plus Kit" (Macherey Nagel) durchgeführt: Hier wurde nach Angaben des Herstellers verfahren (DNA-Ausbeute meist 0,5-1 µg/µl).

6.7 Arbeiten mit Pichia pastoris

6.7.1 Medien für Pichia pastoris

20 x YNB $\begin{array}{l}
 134 \text{ g Yeast Nitrogen Base (mit (NH_4)_2SO_4, ohne Aminosäuren)} \\
 H_2O_{dest} \text{ ad 1 I; sterilfiltrieren}
\end{array}$

 YPD
 20 g Bacto-Trypton

 10 g Hefeextrakt

 H₂O_{dest} ad 950 ml; autoklavieren

nach dem Abkühlen Zugabe von 50 ml 40 % Glucose und 100 µg/ml Ampicillin

MMD (Minimal-Glucose) 850 ml H₂O autoklavieren

nach dem Abkühlen Zugabe von:

100 ml 20 x YNB (sterilfiltriert)

50 ml 40 % D-Glucose (sterilfiltriert)

2 ml 0,02 % Biotin (sterilfiltriert)

2 ml 10 mg/l Histidin (nur für his-Stämme)

MMM (Minimal-Methanol) 900 ml H₂O autoklavieren

nach dem Abkühlen Zugabe von:

100 ml 20 x YNB (sterilfiltriert)

5 ml Methanol

2 ml 0,02 % Biotin (sterilfiltriert)

2 ml 10 mg/l Histidin (nur für his - Stämme)

Für Platten wurden 20 g granulierter Agar mit dem Wasser autoklaviert. Da sich das Methanol nach ca. 14 Tagen verflüchtigte, wurden die Platten ohne Methanol gegossen und jede Platte etwa 4 Stunden vor der Verwendung mit 200 µl Methanol überschichtet (bei RT einziehen lassen).

MMGy (Minimal-Glycerol) 1,155 g *drop out powder* (Zusammensetzung siehe unten) H₂O ad 830 ml

nach dem Abkühlen (T \leq 60°C) Zugabe von:

100 ml 20 x YNB

50 ml 20 % Glycerol (v/v)

10 ml 2mg/ml Uracil (Endkonzentration 20 mg/l)

6 ml 10mg/ml Leucin (Endkonzentration 60 mg/l)

4 ml 10mg/ml Tryptophan (Endkonzentration 40 mg/l)

2 ml 10mg/ml Histidin (nur für his -Stämme)

2 ml 0,02 % Biotin

Zusammensetzung drop out powder

Adenin (Hemisulfat)	2,5 g
L-Arginin (HCI)	1,2 g
L-Aspartat	6,0 g
L-Glutamat (Na ⁺)	6,0 g
L-Lysin (HCI)	1,8 g
L-Methionin	1,2 g
L-Phenylalanin	3,0 g
L-Serin	22,5 g
L-Threonin	12,0 g
L-Tyrosin	1,8 g
L-Valin	9,0 g

6.7.2 Herstellung elektrokompetenter P. pastoris-Zellen

Einer üN Kultur (100 ml) wurde bei einer OD_{600} von 1,2 bis 1,5 geerntet (3 min, 1500 g, 4°C) und das Pellet in 100 ml eiskaltem SDW suspendiert. Nach einer erneuten Zentrifugation (wie oben) erfolgte die Resuspendierung in 50 ml eiskaltem SDW. Die Zellen wurden erneut zentrifugiert und in 8 ml eiskaltem 1 M Sorbitol resuspendiert. Nach einer letzten Zentrifugation konnten die Zellen in 400 µl eiskaltem 1 M Sorbitol resuspendiert und bis zur Verwendung auf Eis gelagert werden. Da die Transformationsrate der Zellen sehr schnell sinkt, mussten für jede Transformation frische kompetente Zellen hergestellt werden.

6.7.3 Transformation von P. pastoris mittels Elektroporation

Pro Transformation wurden 80 µl elektrokompetente Zellen vorsichtig mit 5-10 µg (max. 20 µl) linearisierter psDNA (in SDW) gemischt und 5 min auf Eis inkubiert. Die Elektroporation erfolgte bei 1500 V für \approx 5 ms (Feldstärke 7500 V/cm). Sofort danach wurde 1 ml 1 M Sorbitol hinzugefügt und die Zellsuspension für 2 Stunden bei 30°C ohne Schütteln aufbewahrt. Die Zellsuspension wurde in 100 µl-Aliquots auf Selektionsmedium ausplattiert und für 2-3 Tage bei 30°C inkubiert (bei Selektion auf Zeocin betrug die Inkubationszeit häufig 1-2 Tage länger, auf Nourseothricin ca. 7-10 Tage).

6.7.4 Methanol-Screening

Bei Transformation mit dem pPIC3.5-Vektorsystem ergeben sich zwei Integrationsmöglichkeiten ins Genom: Zum einen kann das Konstrukt doppelt homolog in den *AOX1*-Lokus integriert haben, was den Verlust der Alkoholoxidase(-Aktivität) zur Folge hat. Andererseits kann auch ein einfach homologes Rekombinationsereignis im (punktmutierten) *his4*-Lokus stattgefunden haben. In diesem Fall wären die Zellen HIS⁺, gleichzeitig aber immer noch in der Lage, mit Methanol als einziger Kohlenstoffquelle gut zu wachsen. Für diese Arbeit mussten Mut⁺-(*methanol utilization plus*) und Mut^S-(*methanol utilization slow*) Transformanten unterschieden werden. Daher wurden pro Transformation 50-100 *Pichia*-Kolonien parallel auf MMM- und MMD-Platten ausgestrichen und für 1-2 Tage bei 30°C inkubiert. Mut^S-Kolonien (also solche, die auf MMM deutlich schlechter wuchsen als auf MMD) wurden vor einer Lipidanalyse zusätzlich mit Kolonie-PCR überprüft. Achtung: Der modifizierte Vektor pPIC-N wurde im *AOX1*-Promoter linearisiert, die Transformanten sollten daher immer Mut⁺ sein.

6.7.5 Induktion der heterologen Genexpression in Pichia pastoris

Genexpression mit Hilfe des pPIC3.5-Systems steht unter Kontrolle des *AOX1*-Promotors, der durch Methanol bei gleichzeitiger Abwesenheit von Glucose induziert wird.

Die Zellen einer 100 ml üN-Kultur (YPD oder MMD; OD₆₀₀≈1-3) wurden sedimentiert (3 min, 1500 g), 1- bis 2-Mal mit MMM gewaschen und in 100 ml MMM resuspendiert. Die Induktion

der Genexpression erfolgte üN (16-24 Stunden) bei 30°C. Anstelle von Glucose konnte auch Glycerol als Kohlenstoffquelle für die Anzucht verwendet werden: Da der *AOX1*-Promotor nicht durch Glycerol gehemmt wird, entfiel der Waschschritt. Die Induktion erfolgte durch Zugabe von 500 µl Methanol pro 100 ml Kulturvolumen (Inkubation wie oben). Ein Nachteil ist allerdings die längere Generationszeit der *Pichia*-Zellen.

6.7.6 Isolierung von RNA aus Pichia [verändert nach (158)]

Etwa 100-300 mg (Frischgewicht) *Pichia*-Zellen (etwa aus 5 ml einer üN-Kultur) wurden in 1 ml Extraktionspuffer aufgenommen, mit ca. 300 mg Glasperlen (Ø 0,45-0,55 mm) versetzt und 3 min gevortext. Die Glasperlen sowie Zellreste wurden durch kurze Zentrifugation (3 min bei 3.200 g) sedimentiert, und der Überstand wurde in einem neuen Eppi einer zweifachen Chloroform-Extraktion unterzogen. Die Fällung erfolgte durch Zugabe von 200 μ l Eisessig und 700 μ l EtOH_{abs}. Das sedimentierte Nukleinsäure-Pellet wurde nun zwei Mal mit je 250 μ l 3 M NaAc pH 5,2 gewaschen. Die noch vorhandene genomische DNA geht bei diesem pH im Gegensatz zur RNA in Lösung und kann auf diese Weise entfernt werden. Die RNA wurde anschließend zwei Mal mit 500 μ l 70 % EtOH gewaschen und nach dem Trocknen in 30 μ l H₂O gelöst (Ausbeute ca. 20-50 μ g RNA).

6.8 Arbeiten mit Fusarium graminearum

6.8.1 Medien für F. graminearum

Regenerationsmedium1 g Hefeextrakt1 g Bacto-Trypton342 g Saccharose16 g AgarH2Odest ad 1 l; autoklavieren

CM-Komplettmedium1 g Bacto-Trypton1 g Hefeextrakt(16 g Agar)H2Odest ad 930 ml; autoklavieren

Nach dem Autoklavieren Zugabe von 50 ml 20 % Glucose, 10 ml Lösung A, 10 ml Lösung B und 1 ml MNS (s. u.)

Selektion: 100 µg/ml Hygromycin B (sterilfiltriert)

SNA [synthetic nutrie	ent poor medium (159)]
	1 g KH ₂ PO ₄
	1 g KNO₃
	0,5 g MgSO ₄ x 7 H ₂ O
	0,5 g KCl
	0,2 g D-Glucose
	0,2 g Saccharose
	22 g Agar
	H ₂ O ad 1 I
Lösung A (100 x)	10 % Ca(NO ₃) ₂ x 4 H ₂ O
Lösung B (100 x)	2 % KH ₂ PO ₄
	2,5 % MgSO ₄ x 7 H ₂ O
	1 % NaCl
	H ₂ O _{dest} ad 100 ml; sterilfiltriert
MNS (1000 x)	60 mg H ₃ BO ₃
	390 mg CuSO ₄ x 5 H ₂ O
	13 mg Kl
	$60 \text{ mg MnSO}_4 \text{ x H}_2\text{O}$
	51 mg (NH ₄) ₆ Mo ₇ O ₂₄ x 4 H ₂ O
	5480 mg ZnSO ₄ x 7 H_2O
	932 mg FeCl ₃ x 6 H_2O
	2 ml Chloroform (zum sterilisieren)
	H ₂ O _{dest} ad 1 I

6.8.2 Protoplastierung von F. graminearum

NaCI-Puffer	NaCl	40,9 g
(700 mM NaCl)	0,5 M NaH ₂ PO4	8,6 ml
	0,5 M Na ₂ HPO4	1,4 ml
	H ₂ O _{dest} ad 1 I; pH 5,4	-5,6
STC-Puffer	Sorbitol	1,2 M
	Tris-HCI	10 mM pH 7,0
	CaCl ₂	50 mM

Für die Vorkultur wurden 30.000 Konidien in 50 ml CM Komplettmedium inkubiert (üN bei 28°C und 150 rpm). Das gewachsene Myzel wurde anschließend mit einem sterilen Ultraturrax-Blender zerkleinert (3 x 10 sec, zwischendurch jeweils für 10 sec auf Eis) und nach Zugabe von 150 ml CM Komplettmedium erneut üN inkubiert (24°C, 150 rpm). Das Myzel musste nun über ein 100 µm Wilson Sieb abfiltriert, 2 x mit SDW gewaschen und auf Filterpapier getrocknet werden. Nun wurden ein bis maximal 1,5 g Myzel in einem sterilen 100 ml Erlenmeyerkolben abgewogen.

Der zur Protoplastierung benötigte Enzymmix musste jedes Mal frisch angesetzt werden: NaCl-Puffer (20 ml) wurde mit 1 g (= 5 %) Driselase und 0,6 g (= 3 %) Glucanex gemischt, 10 min bei 3000 g zentrifugiert und der Überstand sterilfiltriert (Porengröße 22 μ m). Die Protoplastierung erfolgte durch Zugabe des Enzymmix zum abgewogenen Myzel und Inkubation bei 28°C für 2-3 Stunden (75 rpm). Zwischendurch konnte das Fortschreiten der Protoplastierung am Mikroskop beobachtet werden, da sich die zigarrenförmigen Zellen abrundeten.

Die Weiterbehandlung der Protoplasten musste auf Eis erfolgen. War die Protoplastierung abgeschlossen, wurden die Zellen erst durch ein 100 µm- und danach durch ein 40 µm-Wilson-Sieb filtriert. Durch die Filtrierung wurden Myzelreste entfernt. Nach jeder Filtration konnte mit etwas eiskaltem NaCl-Puffer gespült werden, das Endvolumen der Protoplastensuspension nach der zweiten Filtrierung durfte jedoch 20 ml nicht überschreiten. Die Protoplasten wurden nun sedimentiert (10 min, 1000 g) und 2 x mit eiskaltem NaCl-Puffer gewaschen (vorsichtig resuspendiert). Das Pellet konnte schließlich in 1 ml eiskaltem STC-Puffer resuspendiert und üN auf Eis gelagert werden. Frische Protoplasten aggregieren miteinander. Lässt man sie üN stehen, verteilen sie sich gleichmäßig, was sowohl das Auszählen als auch die Transformation erleichtert.

6.8.3 Transformation von *F. graminearum*

PTC-Puffer	PEG 3350	60 %
	Tris-HCI	10 mM pH 7,0
	CaCl ₂	50 mM

1-2 x 10⁷ Protoplasten wurden vorsichtig mit STC-Puffer in 12 ml Schraubdeckel-Röhrchen gemischt (durch Schwenken; Endvolumen = 1 ml) und mit 30 µg linearisiertem KO-Konstrukt für 10 min auf Eis inkubiert. Die Röhrchen wurden währenddessen mehrmals vorsichtig geschwenkt. Nach der Zugabe von 1 ml PTC-Puffer wurden die Protoplasten weitere 15 min auf Eis inkubiert (ebenfalls mehrmals durch Schwenken gemischt). Die transformierten Zellen wurden langsam mit 8 ml eiskalter STC-Puffer versetzt und als 750 µl Aliquots auf insgesamt 12 Regenerations-Platten verteilt. Die Regeneration erfolgte üN bei 28°C. Zur Selektion mussten die Platten am nächsten Tag mit je 10 ml Wasseragar (1,2 % mit 200 µg/ml Hygromycin) überschichtet werden. Anschließend wurden die Platten 7-10 Tage bei 28°C inkubiert.

6.8.4 Selektion positiver Klone

Sobald die ersten Transformanten sichtbar waren, erfolgte das Umsetzen auf CM-Komplettmedium mit Antibiotikum durch Ausschneiden der Kolonie samt Agar. Myzelzellen von *F. graminearum* enthalten i.d.R. 8 Zellkerne. Daher musste über Konidiosporen (die nur noch einen einzigen Nukleus enthalten) vereinzelt werden (Kapitel 6.8.5): Die Transformanten wurden hierzu zunächst auf SNA-Medium zur Sporulation gebracht und die abgeschwemmten Konidien erneut auf Selektionsmedium ausplattiert. Nach 1-2 Tagen wurden die erhaltenen Einzelkolonien auf neuen Selektionsplatten separiert.

Der verwendete *Fusarium graminearum*-Stamm 8/1 (140) ist von Natur aus relativ tolerant gegenüber dem Antibiotikum Hygromycin. Daher wurden die vereinzelten Transformanten in strittigen Fällen immer parallel sowohl mit als auch ohne Hygromycin angezogen. Positive Klone sollten auf Hygromycin-haltigem Medium auf keinen Fall langsamer wachsen als ohne Selektionsdruck.

6.8.5 Induktion der Sporulation

Konidiosporen entstehen unter Stresseinfluss (z.B. Hitze, Trockenheit, Nährstoffmangel etc.). Zur gezielten Induktion wurden SNA-Platten mit Myzel oder Konidien inokuliert und bei 18°C unter langwelligem UV- und Weißlicht inkubiert. Die Konidien konnten nach 7-10 Tagen mit sterilem Wasser abgeschwemmt werden. Ihre Konzentration wurde in einer Neubauer-Zählkammer bestimmt. Alternativ konnten die SNA-Platten auch im Dunkeln aufbewahrt werden. Dann dauerte die Sporulation ca. 2-3 Wochen.

6.8.6 Herstellung von Dauerkulturen

Zur dauerhaften Lagerung wurden Konidien in H₂O aufgenommen, in einer Neubauer Zählkammer ausgezählt und bei -70°C eingefroren. Die Zugabe von Glycerol als Frostschutzmittel war nicht nötig. Bei Bedarf wurden ca. 30.000 Konidien in 50 ml CM-Medium üN bei 28°C angezogen.

Eine kurzfristige Lagerung (bis zu 2 Jahren) war auch auf Platten möglich: Hierfür wurden die Petrischalen während der Kultivierung nicht mit Parafilm abgedichtet. Der sich einstellende Trocknungsprozess bewirkt die Bildung von einigen (wenigen) Konidiosporen. Zur erneuten Anzucht wurde etwas Material ausgeschnitten und in Flüssig- oder Festmedium inkubiert (28°C). Die Anzahl der Konidien ist für eine Anzucht in Vollmedium ausreichend. Vorteil der letztgenannten Methode sind die schnellere Verfügbarkeit neuen Materials und die zeitsparende Handhabung.

6.8.7 Isolierung genomischer DNA aus F. graminearum

Extraktionspuffer 2 % CTAB 100 mM Tris-HCl pH8,0 1,4 M NaCl 20 mM EDTA pH 8,0

Mit einem Skalpell oder Spatel wurde ein ca. 1 cm² großes Myzel-Stück (samt Agar) aus einer Platte ausgeschnitten (alternativ wurden bis zu 400 mg Myzel aus einer Flüssigkultur abgewogen) und in einem 2 ml Reaktionsgefäß in flüssigem Stickstoff tief gefroren. Nun wurden die Proben in 600 µl Extraktionspuffer aufgelöst, mit einem Pistill (im Reaktionsgefäß) zerrieben und für etwa eine Stunde bei 65°C (Heizblock oder Wasserbad) inkubiert. Die Zellreste konnten durch Zentrifugation (10 min, 13.000 rpm, RT) vom nukleinsäurehaltigen Überstand getrennt werden. Der wässrige Überstand wurde in einem 1,5 ml Reaktionsgefäß mit 600 µl Chloroform gut gemischt, weitere 10 min zentrifugiert (wie oben) und die wässrige Phase vorsichtig in ein neues 1,5 ml Reaktionsgefäß überführt. Die Fällung erfolgte durch Zugabe von je 750 µl eiskaltem Isopropanol. Anschließend wurde die DNA sedimentiert (10 min, 13.000 rpm), mit 500 µl 70 % EtOH gewaschen und nach dem Trocknen in 50 µl 10 mM Tris-HCl pH 8,0 resuspendiert. Um die RNA zu entfernen, wurden nun je 3 µl RNase A (10 mg/ml) zugegeben und die Proben bei 37°C für 30 min inkubiert. Anschließend mussten die Proben einer erneuten Chloroformextraktion unterzogen werden (Entfernung der RNase).

Zur Konzentrationsbestimmung wurden je 2 µl auf ein Agarosegel aufgetragen. Intakte genomische DNA sollte als eine einzelne klare Bande zu erkennen sein, die Abschätzung der Konzentration erfolgte durch Vergleiche mit dem Marker.

6.9 Arbeiten mit Cytophaga hutchinsonii

6.9.1 Medium für Cytophaga hutchinsonii

CYC-Medium 3 g Bacto-Trypton 1,36 g CaCl₂ x 2 H₂O 1 g Hefeextrakt <u>16 g Agar (für Platten)</u> H₂O_{dest} ad 950 ml; autoklavieren

Nach dem Abkühlen Zugabe von 50 ml 10 % Cellobiose (sterilfiltriert) und 200 µg/ml Nystatin (in DMF, zur Hemmung von Hefe- und Pilzwachstum)

6.9.2 Anzucht zur Lipidanalyse

Cytophaga hutchinsonii wächst sehr langsam und musste daher sowohl in Flüssig- als auch auf Festmedium mindestens 7 Tage bei 30°C inkubiert werden. Das zum Schutz vor Pilzwachstum zugesetzte Nystatin ist nach ca. 3 Tagen unwirksam, weshalb das Medium alle 3-4 Tage gewechselt werden musste. Hierzu wurden die Zellen 10 min bei 3200 g sedimentiert und in frischem CYC-Medium resuspendiert.

6.10 Lipidanalytik

6.10.1 Extraktion der Gesamtlipide

50-100 ml (induzierte) Zellkultur wurden durch Zentrifugation (5 min, 4000 rpm) geerntet und das Frischgewicht des Sediments bestimmt. Die Zellen wurden in 5-10 ml SDW resuspendiert (Vortex oder blaue Pipettenspitze) und im Falcon 15-20 min abgekocht. Nach der Überführung in mittlere (= 20 ml) Schliffgläschen (Falcons mit 5 ml H_2O nachgespült) mussten die Zellreste erneut sedimentiert werden (5 min, 1000 g). Die erste Lipidextraktion erfolgte durch Zugabe von 10 ml Chloroform/Methanol (C/M) 1:1 für 4-5 Stunden bei 4°C (Schüttler). Der Zellrückstand wurde sedimentiert, der Überstand in ein großes Schliffglas (40 ml Fassungsvermögen) dekantiert der Zellrest erneut üN mit in 9 ml C/M 2:1 nachextrahiert. Der Zellrest wurde 5 min bei 1000 g sedimentiert und der Überstand mit dem ersten Extrakt vereint (abhängig von der Konsistenz der Zellpellets musste der Extrakt evtl. durch eine mit Watte gestopfte Pasteurpipette filtriert werden). Der Lipidextrakt wurde nun mit 5 ml Chloroform und 6 ml 0,45 % NaCl versetzt, um ein Verhältnis Chloroform/Methanol/H₂O von 2:1:0,75 einzustellen. Die Phasentrennung (Chloroform-/wässrige Phase) konnte durch eine kurze Zentrifugation bei 1000 g beschleunigt werden. Die (untere) Chloroformphase wurde durch eine gestopfte Pasteurpipette in ein kleines Schliffglas filtriert, unter Argonstrom zur Trockene eingeengt und der Lipidrückstand in 300-600 µl Chloroform (je nach Lipidmenge) gelöst.

Für eine qualitative Analyse wurden ca. 10 µl Lipidextrakt punktförmig auf eine Kieselgel-Chloroform/Methanol platte aufgetragen und in 85:15 (Glycolipide), Chloroform/Methanol/Wasser 70:30:5 (Cytophaga-Genexpression Pichia) in oder Chloroform/Methanol/Eisessig/Wasser 85:15:10:3,5 (Cytophaga hutchinsonii, Phosphoglycerolipiden) entwickelt. Die Detektion erfolgte durch Besprühen mit α-Naphthol-Schwefelsäure und Veraschen.

6.10.2 Reinigung und Derivatisierung der Lipide

Größere Mengen Lipidextrakt konnten mit Hilfe von Strata SL-1 Säulen in Neutrallipide (freies Sterol, TAG, DAG, Sterolester), Glycolipide (GlcCer, SG) und Phosphoglycerolipide fraktioniert werden. Die Säule wurde zunächst mit ca. 6 ml Chloroform/Petrolether 8:2 äquilibriert, der Lipidextrakt auf die Säule gegeben und die Fraktion der Neutrallipide durch mehrmaliges Spülen mit Chloroform/Petrolether 8:2 gelöst. Die Glycolipide wurden nun mit Aceton/Isopropanol 9:1 ausgewaschen und die verbleibenden Phospholipide schließlich durch Zugabe von Methanol eluiert. Die gesammelten Fraktionen wurden zur Trockene eingeengt und in jeweils einem kleinen Volumen Chloroform oder Chloroform/Methanol 2:1 gelöst.

Alkalische Verseifung von Lipiden

Für die Verseifung wurden 100 µl eines Lipidextraktes (oder eines gereinigtes Lipid, am besten in Methanol gelöst) in 1,5 ml Methanol aufgenommen und mit 30 µl Natrium-Methylat (30 % in Methanol) versetzt. Nun folgten 30 min Inkubation bei RT, anschließend wurden 3 ml Chloroform zugegeben und die Proben gegen 1,2 ml 0,45 % NaCl ausgeschüttelt, unter Argon getrocknet und in einem kleinen Volumen Chloroform wieder gelöst. Die verseiften Lipide wurden präparativ über eine DC-Platte gereinigt (Laufmittel Chloroform/Methanol 85:15). Cerebroside und Sterylglycoside sind alkalistabil, Phosphoglycerolipide werden hingegen hydrolysiert. Die freien Fettsäuren laufen kurz hinter der Lösungsmittelfront.

Peracetylierung von Lipiden (für NMR- und ESI-FT ICR MS-Analyse)

Bei einer Peracetylierung werden alle freien Hydroxylgruppen des GlcCer mit Essigsäureanhydrid verestert. Hierfür musste der Ansatz wasserfrei sei. Das gereinigte GlcCer (für eine NMR-Analyse wurden mindestens 200 µg benötigt, für ein Massenspektrum etwa 20 µg) wurde im Spitzkolben am Rotationsverdampfer getrocknet, in 500 µl Pyridin und 200 µl Essigsäureanhydrid gelöst und üN bei RT im Dunkeln inkubiert. Anschließend wurde Isopropanol (3 ml) hinzugefügt und der Ansatz erneut eingeengt. Um die Pyridinreste zu entfernen wurden, die acetylierten Lipide noch 4-5 x mit 3 ml Isopropanol gewaschen und schließlich in 300 µl Chloroform gelöst. Die Reinigung erfolgte über eine präparative DC in Diethylether. Die acetylierten Lipide wurden abgekratzt, mit Chloroform/Methanol 2:1 aus dem Kieselgel gelöst, in Bördelgläschen abgefüllt und unter Argon getrocknet. Die NMR- und ESI-MS-Analysen wurden von Herrn Prof. Dr. Ulrich Zähringer und Herrn PD Dr. Buko Lindner (beide Forschungszentrum Borstel) durchgeführt.

Reinigung der Cerebroside

Für die präparative DC wurden 200 µl Lipidextrakt (oder die Glycolipidfraktion) 6-8 cm breit auf Kieselgelplatten aufgetragen und in Chloroform/Methanol 85:15 entwickelt. Die Lipidbanden wurden mit ANS (8-Anilinonaphthalinsulfonat) besprüht und unter UV-Licht markiert. Nachdem der markierte Bereich des Kieselgels vollständig in ein Sovirel-Gläschen abgekratzt worden war, erfolgte die Zugabe von 6 ml C/M 2:1 und 1,5 ml 0,45 % NaCl, um die Cerebroside aus dem Kieselgel zu lösen. Nach Einstellung der Phasentrennung (kurze Zentrifugation bei 1000 g) sammelten sich Kieselgelreste an der Phasengrenze). Die CHCl₃-Phase (unten) wurde vorsichtig entnommen und durch eine gestopfte Pasteurpipette in ein neues Sovirel filtriert. Die wässrige Phase wurde erneut mit 4 ml CHCl₃ versetzt, geschüttelt, kurz zentrifugiert und die CHCl₃-Phase mit dem ersten Extrakt vereinigt. Die Cerebroside wurden unter Argon zur Trockene eingedampft.

Die Cerebroside konnten nun in \approx 500 µl CHCl₃ gelöst und bis zur weiteren Verwendung (Analyse der Fettsäure oder der Sphingobase) bei -20°C gelagert werden.

6.10.3 Analyse der Fettsäurezusammensetzung

Herstellung von Fettsäure-Methylestern (FAME-Synthese)

FAME-Reagens: 1 N H₂SO₄ in trockenem Methanol mit 2 % 2,2-Dimethoxypropan Um Fettsäuren analysieren zu können, mussten sie zunächst in ihre Methylester umgewandelt werden. Hierzu wurden gereinigte, getrocknete Lipide oder trockene Zellpellets (für die Analyse der Fettsäuren aus den GIPCs) in Sovirel-Gläschen mit 2 ml FAME-Reagens versetzt und üN (20 h für GlcCer, 60 min für PG) auf 80°C erhitzt. Die Deckel mussten fest verschlossen sein. Nach dem Abkühlen wurde die Probe mit 2 ml H₂O und 3 ml Petrolether (PE) versetzt, geschüttelt und bis zur Phasentrennung zentrifugiert. Die (obere) PE-Phase wurde in ein neues Sovirel überführt und die wässrige Phase mit 3 ml PE nachextrahiert. Da die PE-Phase Säurereste enthält, die die nachfolgende Gaschromatographie (GLC) stören würden, musste 1 x mit 4 ml H₂O gewaschen werden. Die Probe wurde anschließend durch Zugabe von 2-3 Spatelspitzen Na₂SO₄ getrocknet ("Schneekugeleffekt"), in ein neues Sovirel-Gläschen filtriert und unter Argon getrocknet.

TMSE-Derivatisierung

Da *Pichia pastoris* fast ausschließlich hydroxylierte Fettsäuren im Glucosylceramid enthält, mussten die FAMEs zusätzlich trimethylsilyliert werden. Hierzu wurden die getrockneten FAMEs in 100 µl PE gelöst und mit gleichem Volumen BSTFA (Bistrimethylsilyl-trifluor-acetamid mit 1 % Trichlorsilan; von Sigma oder Supelco) versetzt und 60 min bei 70°C inkubiert. Die Proben konnten direkt in GLC-Gläschen abgefüllt und chromatographiert werden.

Stereochemische Analyse der Hydroxyfettsäuren

Die Identifikation der (*R*)- und (*S*)-Stereoisomere der an der C2-Position hydroxylierten, $\Delta 3(E)$ -desaturierten Fettsäuren wurde von Herrn Hermann Moll (Forschungszentrum Borstel) wie in (145) beschrieben mit folgenden Modifikationen durchgeführt: 50-100 µg FAMEs wurden zunächst mit H₂/PtO₂ reduziert (für 2-5 min in Chloroform/Methanol 9:1 bei RT). Die gesättigten Fettsäuren wurden O-methyliert (in DMSO/NaOH/CH₃I) und die Methylester hydrolysiert (2 M NaOH, 2h, 85°C in 200 µl Methanol/Wasser 1:1). Anschließend wurde das Hydrolysat angesäuert, die freien Fettsäuren durch Zugabe von 2 ml Chloroform und 2 ml Wasser extrahiert, die organische Phase getrocknet und 50 µl Thionylchlorid hinzugefügt. Die Methoxy-Fettsäurechloride wurden in Phenylethylamid-Derivate überführt indem (*S*)-1-Phenylethylamin (1,5 µl gelöst in 50 µl Pyridin) hinzugefügt und die Mischung für 10 min bei 85°C inkubiert wurde. Nachdem die Lösungsmittel unter Stickstoffstrom evaporiert worden waren, erfolgte die GLC-MS-Analyse (1 µl).

Fettsäureanalyse mittels GLC

Die Gaschromatographie-Analyse erfolgte auf einer polaren Säule ("Select FAME", 50 m; Varian) mit Hilfe eines FID-Detektors und Helium als Trägergas. Dabei wurde der folgende Temperaturgradient verwendet: 100°C für 1 min, mit 3°C pro min bis auf 200°C und mit einer Heizrate von 10°C/min auf 275°C. Die letzte Temperatur wurde bis zu einer Gesamtlaufzeit von 50 min gehalten.

Fettsäureanalyse mittels GLC/MS

GLC/MS-Analysen wurden freundlicherweise im Forschungszentrum Borstel von Herrn Herrmann Moll auf einem HP 5975 XL *mass selective detector* (Agilent Technologies) mit einer HP-5 MS Silica-Säule (30 m Länge, 0,25 mm Innendurchmesser, 0,25 µm Schichtdicke) und folgendem Temperaturgradient durchgeführt: 150°C für 3 min gehalten und mit einer Heizrate von 5°C/min auf 320°C. Die Massenspektren wurden bei 70 eV detektiert.

Literaturangaben

- Chester MA 1998 IUPAC-IUB Joint Commission on Biochemical Nomenclature (JCBN) – Nomenclature of glycolipids. Recommendations 1997. Eur J Biochem 257:293-298
- 2. Lottspeich F, Engels JW 2006 Bioanalytik, Zweite Auflage
- 3. Singer SJ, Nicolson GL 1972 The fluid mosaic model of the structure of cell membranes. Science 175:720-731
- 4. **Engelman DM** 2005 Membranes are more mosaic than fluid. Nature 438:578-580
- 5. **Simons K, Ikonen E** 1997 Functional rafts in cell membranes. Nature 387:569-572
- 6. **Hirabayashi Y, Osuga S** <u>http://www.glycoforum.gr.jp/science/word/glycolipid/GLD01E.html</u>.
- 7. **Albrecht S** 2005 Funktionsanalyse von Glycosphingolipiden durch gentechnologische Manipulation ihres Metabolismus in Pilzen und Pflanzen. Dissertation, Department Biologie, Universität Hamburg
- 8. **Kusumi A, Sako Y** 1996 Cell surface organization by the membrane skeleton. Curr Opin Cell Biol 8:566-574
- 9. **Morrow MR, Singh D, Lu D, Grant CW** 1995 Glycosphingolipid fatty acid arrangement in phospholipid bilayers: cholesterol effects. Biophys J 68:179-186
- Borner GH, Sherrier DJ, Weimar T, Michaelson LV, Hawkins ND, Macaskill A, Napier JA, Beale MH, Lilley KS, Dupree P 2005 Analysis of detergent-resistant membranes in *Arabidopsis*. Evidence for plasma membrane lipid rafts. Plant Physiol 137:104-116
- Mongrand S, Morel J, Laroche J, Claverol S, Carde JP, Hartmann MA, Bonneu M, Simon-Plas F, Lessire R, Bessoule JJ 2004 Lipid rafts in higher plant cells: purification and characterization of Triton X-100-insoluble microdomains from tobacco plasma membrane. J Biol Chem 279:36277-36286
- 12. **Brown DA, London E** 1998 Functions of lipid rafts in biological membranes. Annu Rev Cell Dev Biol 14:111-136
- Luo C, Wang K, Liu de Q, Li Y, Zhao QS 2008 The functional roles of lipid rafts in T cell activation, immune diseases and HIV infection and prevention. Cell Mol Immunol 5:1-7
- 14. **Alvarez FJ, Douglas LM, Konopka JB** 2007 Sterol-rich plasma membrane domains in fungi. Eukaryot Cell 6:755-763
- 15. **Wachtler V, Balasubramanian MK** 2006 Yeast lipid rafts?--an emerging view. Trends Cell Biol 16:1-4
- 16. Wachtler V, Rajagopalan S, Balasubramanian MK 2003 Sterol-rich plasma membrane domains in the fission yeast *Schizosaccharomyces pombe*. J Cell Sci 116:867-874

- 17. **Bohn M, Heinz E, Lüthje S** 2001 Lipid composition and fluidity of plasma membranes isolated from corn (*Zea mays* L.) roots. Arch Biochem Biophys 387:35-40
- 18. Laloi M, Perret AM, Chatre L, Melser S, Cantrel C, Vaultier MN, Zachowski A, Bathany K, Schmitter JM, Vallet M, Lessire R, Hartmann MA, Moreau P 2007 Insights into the role of specific lipids in the formation and delivery of lipid microdomains to the plasma membrane of plant cells. Plant Physiol 143:461-472
- 19. **Sperling P, Franke S, Lüthje S, Heinz E** 2005 Are glucocerebrosides the predominant sphingolipids in plant plasma membranes? Plant Physiol Biochem 43:1031-1038
- 20. **Sperling P, Heinz E** 2003 Plant sphingolipids: structural diversity, biosynthesis, first genes and functions. Biochim Biophys Acta 1632:1-15
- 21. **Warnecke D, Heinz E** 2003 Recently discovered functions of glucosylceramides in plants and fungi. Cell Mol Life Sci 60:919-941
- 22. **Dickson RC, Lester RL** 1999 Yeast sphingolipids. Biochim Biophys Acta 1426:347-357
- 23. Imai H, Ohnishi M, Hotsubo K, Kojima M, Ito S 1997 Sphingoid base composition of cerebrosides from plant leaves. Biosci Biotechnol Biochem 61:351-353
- 24. **Kawaguchi M, Imai H, Naoe M, Yasui Y, Ohnishi M** 2000 Cerebrosides in grapevine leaves: distinct composition of sphingoid bases among the grapevine species having different tolerances to freezing temperature. Biosci Biotechnol Biochem 64:1271-1273
- 25. **Holthuis JC, Levine TP** 2005 Lipid traffic: floppy drives and a superhighway. Nat Rev Mol Cell Biol 6:209-220
- 26. **Hanada K** 2003 Serine palmitoyltransferase, a key enzyme of sphingolipid metabolism. Biochim Biophys Acta 1632:16-30
- 27. **Haak D, Gable K, Beeler T, Dunn T** 1997 Hydroxylation of *Saccharomyces cerevisiae* ceramides requires Sur2p and Scs7p. J Biol Chem 272:29704-29710
- 28. Leipelt M, Warnecke D, Zähringer U, Ott C, Müller F, Hube B, Heinz E 2001 Glucosylceramide synthases, a gene family responsible for the biosynthesis of glucosphingolipids in animals, plants, and fungi. J Biol Chem 276:33621-33629
- 29. **Mitchell AG, Martin CE** 1997 Fah1p, a *Saccharomyces cerevisiae cytochrome* b5 fusion protein, and its *Arabidopsis thaliana* homolog that lacks the cytochrome b5 domain both function in the alpha-hydroxylation of sphingolipid-associated very long chain fatty acids. J Biol Chem 272:28281-28288
- 30. **Sperling P, Libisch B, Zähringer U, Napier JA, Heinz E** 2001 Functional identification of a delta8-sphingolipid desaturase from *Borago officinalis*. Arch Biochem Biophys 388:293-298
- 31. **Sperling P, Ternes P, Moll H, Franke S, Zähringer U, Heinz E** 2001 Functional characterization of sphingolipid C4-hydroxylase genes from *Arabidopsis thaliana*. FEBS Lett 494:90-94

- 32. **Sperling P, Zähringer U, Heinz E** 1998 A sphingolipid desaturase from higher plants. Identification of a new cytochrome b5 fusion protein. J Biol Chem 273:28590-28596
- 33. **Ternes P, Franke S, Zähringer U, Sperling P, Heinz E** 2002 Identification and characterization of a sphingolipid delta 4-desaturase family. J Biol Chem 277:25512-25518
- 34. **Ternes P, Sperling P, Albrecht S, Franke S, Cregg JM, Warnecke D, Heinz E** 2006 Identification of fungal sphingolipid C9-methyltransferases by phylogenetic profiling. J Biol Chem 281:5582-5592
- 35. Li S, Du L, Yuen G, Harris SD 2008 Distinct Ceramide Synthases Regulate Polarized Growth in the Filamentous Fungus *Aspergillus nidulans*. Mol Biol Cell 17:1218-1227
- 36. **Futerman AH, Riezman H** 2005 The ins and outs of sphingolipid synthesis. Trends Cell Biol 15:312-318
- 37. **Lynch DV** 2000 Enzymes of sphingolipid metabolism in plants. Methods Enzymol 311:130-149
- 38. Lynch DV, Dunn TM 2004 An introduction to plant sphingolipids and a review of recent advances in understanding their metabolism and function. New Phytologist 161:677
- Sperling P, Warnecke D, Heinz E 2004 Plant sphingolipids. In: Lipid Metabolism and Membrane Biogenesis, Daum G (ed) Springer Verlag Berlin Heidelberg, . Topics Curr Genet 6:337-381
- 40. **Kusmakow O** 2005 Versuche zur intrazellulären Lokalisierung der Sterol-Glucosyltransferase und der Glucosylceramid-Synthase in Zellen von *Allium fistulosum* L. Dissertation, Uni Hamburg
- 41. **Hannun YA, Obeid LM** 2008 Principles of bioactive lipid signalling: lessons from sphingolipids. Nat Rev Mol Cell Biol 9:139-150
- 42. Smith ER, Merrill AH, Jr., Obeid LM, Hannun YA 2000 Effects of sphingosine and other sphingolipids on protein kinase C. Methods Enzymol 312:361-373
- 43. **Jenkins GM** 2003 The emerging role for sphingolipids in the eukaryotic heat shock response. Cell Mol Life Sci 60:701-710
- 44. **Obeid LM, Linardic CM, Karolak LA, Hannun YA** 1993 Programmed cell death induced by ceramide. Science 259:1769-1771
- 45. Venable ME, Lee JY, Smyth MJ, Bielawska A, Obeid LM 1995 Role of ceramide in cellular senescence. J Biol Chem 270:30701-30708
- 46. Sprong H, Degroote S, Claessens T, Van Drunen J, Oorschot V, Westerink BH, Hirabayashi Y, Klumperman J, Van der Sluijs P, Van Meer G 2001 Glycosphingolipids are required for sorting melanosomal proteins in the Golgi complex. J Cell Biol 155:369-380
- 47. **van Meer G, Wolthoorn J, Degroote S** 2003 The fate and function of glycosphingolipid glucosylceramide. Philos Trans R Soc Lond B Biol Sci 358:869-873

- 48. **Heung LJ, Kaiser AE, Luberto C, Del Poeta M** 2005 The role and mechanism of diacylglycerol-protein kinase C1 signaling in melanogenesis by *Cryptococcus neoformans*. J Biol Chem 280:28547-28555
- 49. **Rawat SS, Johnson BT, Puri A** 2005 Sphingolipids: modulators of HIV-1 infection and pathogenesis. Biosci Rep 25:329-343
- 50. **Summer SA, Nelson DH** 2005 A role for sphingolipids in producing the common features of type 2 diabetes, metabolic syndrome X, and Cushing's syndrome. Diabetes 54:591-602
- 51. **Unger RH, Orci L** 2002 Lipoapoptosis: its mechanism and its diseases. Biochim Biophys Acta 1585:202-212
- 52. **Modrak DE, Gold DV, Goldenberg DM** 2006 Sphingolipid targets in cancer therapy. Mol Cancer Ther 5:200-208
- 53. **Ogretman B, Hannun YA** 2004 Biologically active sphingolipids in cancer pathogenesis and treatment. Cancer 4:604-616
- 54. **Han X** 2005 Lipid alterations in the earliest clinically recognizable stage of Alzheimer's disease: Implication of the role of lipids in the pathogenesis of Alzheimer's disease. Curr Alzheimer Res 2:65-77
- 55. Park TS, Panek RL, Rekhter MD, Mueller SB, Rosebury WS, Robertson A, Hanselman JC, Kindt E, Homan R, Karathanasis SK 2006 Modulation of lipoprotein metabolism by inhibition of sphingomyelin synthesis in ApoE knockout mice. Atherosklerosis online, nachschlagen
- 56. **Ginzburg L, Kacher Y, Futerman AH** 2004 The pathogenesis of glycosphingolipid storage disorders. Semin Cell Dev Biol 15:417-431
- 57. **Dunn TM, Lynch DV, Michaelson LV, Napier JA** 2004 A post-genomic approach to understanding sphingolipid metabolism in *Arabidopsis thaliana*. Ann Bot (Lond) 93:483-497
- 58. **Dietrich CR, Han G, Chen M, Berg RH, Dunn TM, Cahoon EB** 2008 Loss-offunction mutations and inducible RNAi suppression of *Arabidopsis* LCB2 genes reveal the critical role of sphingolipids in gametophytic and sporophytic cell viability. Plant J 54:284-298
- 59. **Gechev TS, Gadjev IZ, Hille J** 2004 An extensive microarray analysis of AAL-toxininduced cell death in *Arabidopsis thaliana* brings new insights into the complexity of programmed cell death in plants. Cell Mol Life Sci 61:1185-1197
- 60. **Worrall D, Ng CK, Hetherington AM** 2003 Sphingolipids, new players in plant signaling. Trends Plant Sci 8:317-320
- 61. Ng CK, Carr K, McAinsh MR, Powell B, Hetherington AM 2001 Drought-induced guard cell signal transduction involves sphingosine-1-phosphate. Nature 410:596-599
- 62. Michaelson LV, Zäuner S, Markham JE, Haslam R, Desikan R, Mugford S, Albrecht S, Warnecke D, Sperling P, Heinz E, Napier JA 2008 Functional characterisation of a higher plant sphingolipid ∆4-desaturase: defining the role of sphingosine and sphingosine-1-phosphate in *Arabidopsis thaliana*. Plant Physiology DOI:10.1104/pp.108.129411

- 63. da Silva AL, Sperling P, Horst W, Franke S, Ott C, Becker D, Stass A, Lörz H, Heinz E 2006 A possible role of sphingolipids in the aluminium resistance of yeast and maize. J Plant Physiol 163:26-38
- 64. **Ryan PR, Liu Q, Sperling P, Dong B, Franke S, Delhaize E** 2007 A higher plant delta8 sphingolipid desaturase with a preference for (Z)-isomer formation confers aluminum tolerance to yeast and plants. Plant Physiol 144:1968-1977
- 65. Willemsen V, Friml J, Grebe M, van den Toorn A, Palme K, Scheres B 2003 Cell polarity and PIN protein positioning in *Arabidopsis* require STEROL METHYLTRANSFERASE1 function. Plant Cell 15:612-625
- 66. Baud S, Bellec Y, Miquel M, Bellini C, Caboche M, Lepiniec L, Faure JD, Rochat C 2004 gurke and pasticcino3 mutants affected in embryo development are impaired in acetyl-CoA carboxylase. EMBO Rep 5:515-520
- 67. **Cowart LA, Obeid LM** 2007 Yeast sphingolipids: recent developments in understanding biosynthesis, regulation, and function. Biochim Biophys Acta 1771:421-431
- 68. **Dickson RC** 2008 Thematic review series: sphingolipids. New insights into sphingolipid metabolism and function in budding yeast. J Lipid Res 49:909-921
- 69. **Dickson RC, Lester RL** 2002 Sphingolipid functions in *Saccharomyces cerevisiae*. Biochim Biophys Acta 1583:13-25
- 70. **Cheng J, Park TS, Fischl AS, Ye XS** 2001 Cell cycle progression and cell polarity require sphingolipid biosynthesis in *Aspergillus nidulans*. Mol Cell Biol 21:6198-6209
- 71. Levery SB, Momany M, Lindsey R, Toledo MS, Shayman JA, Fuller M, Brooks K, Doong RL, Straus AH, Takahashi HK 2002 Disruption of the glucosylceramide biosynthetic pathway in *Aspergillus nidulans* and *Aspergillus fumigatus* by inhibitors of UDP-Glc:ceramide glucosyltransferase strongly affects spore germination, cell cycle, and hyphal growth. FEBS Lett 525:59-64
- 72. **Hillig I** 2005 Funktionale Charakterisierung der Glucosylceramid-Synthase aus Pflanzen und dem phytopathogenen Pilz *Ustilago maydis*. Dissertation, Department Biologie, Universität Hamburg
- 73. Rittershaus PC, Kechichian TB, Allegood JC, Merrill AH, Jr., Hennig M, Luberto C, Del Poeta M 2006 Glucosylceramide synthase is an essential regulator of pathogenicity of *Cryptococcus neoformans*. J Clin Invest 116:1651-1659
- 74. Luberto C, Toffaletti DL, Wills EA, Tucker SC, Casadevall A, Perfect JR, Hannun YA, Del Poeta M 2001 Roles for inositol-phosphoryl ceramide synthase 1 (IPC1) in pathogenesis of *C. neoformans*. Genes Dev 15:201-212
- 75. Ramamoorthy V, Cahoon EB, Li J, Thokala M, Minto RE, Shah DM 2007 Glucosylceramide synthase is essential for alfalfa defensin-mediated growth inhibition but not for pathogenicity of *Fusarium graminearum*. Mol Microbiol 66:771-786
- 76. Godchaux W, 3rd, Leadbetter ER 1988 Sulfonolipids are localized in the outer membrane of the gliding bacterium Cytophaga johnsonae. Arch Microbiol 150:42-47

- 77. Corcelli A, Lattanzio VM, Mascolo G, Babudri F, Oren A, Kates M 2004 Novel sulfonolipid in the extremely halophilic bacterium *Salinibacter ruber*. Appl Environ Microbiol 70:6678-6685
- 78. Abbanat DR, Godchaux W, 3rd, Polychroniou G, Leadbetter ER 1985 Biosynthesis of a sulfonolipid in gliding bacteria. Biochem Biophys Res Commun 130:873-878
- 79. White RH 1984 Biosynthesis of the sulfonolipid 2-amino-3-hydroxy-15methylhexadecane-1-sulfonic acid in the gliding bacterium *Cytophaga johnsonae*. J Bacteriol 159:42-46
- 80. **Fautz E, Rosenfelder G, Grotjahn L** 1979 Iso-branched 2- and 3-hydroxy fatty acids as characteristic lipid constituents of some gliding bacteria. J Bacteriol 140:852-858
- 81. **Takikawa H, Nozawa D, Kayo A, S. M, Mori K** 1999 Synthsis of sphingosine relatives. Part 22. Synthesis of sulfobacin A, B and flavocristamide A, new sulfonolipids isolated from *Chryseobacterium* sp. J Chem Soc, Perkin Trans 1:2467-2477
- 82. **Godchaux W, 3rd, Leadbetter ER** 1980 *Capnocytophaga* spp. contain sulfonolipids that are novel in procaryotes. J Bacteriol 144:592-602
- 83. **Godchaux W, 3rd, Leadbetter ER** 1983 Unusual sulfonolipids are characteristic of the Cytophaga-Flexibacter group. J Bacteriol 153:1238-1246
- 84. **Godchaux W, 3rd, Leadbetter ER** 1984 Sulfonolipids of gliding bacteria. Structure of the N-acylaminosulfonates. J Biol Chem 259:2982-2990
- 85. Anderson R, Kates M, Volcani BE 1978 Identification of the sulfolipids in the nonphotosynthetic diatom *Nitzschia alba*. Biochim Biophys Acta 528:89-106
- 86. **Abbanat DR, Leadbetter ER, Godchaux W, 3rd, Escher A** 1986 Sulpholipids are molecular determinants of gliding motility. Nature 324:367-369
- 87. **Agarwal S, Hunnicutt DW, McBride MJ** 1997 Cloning and characterization of the *Flavobacterium johnsoniae* (*Cytophaga johnsonae*) gliding motility gene, gldA. Proc Natl Acad Sci U S A 94:12139-12144
- 88. **McBride MJ** 2004 *Cytophaga-Flavobacterium* gliding motility. J Mol Microbiol Biotechnol 7:63-71
- 89. **McBride MJ, Braun TF** 2004 Gldl is a lipoprotein that is required for *Flavobacterium johnsoniae* gliding motility and chitin utilization. J Bacteriol 186:2295-2302
- 90. **Shanklin J, Cahoon EB** 1998 Desaturation and related modifications of fatty acids. Annu Rev Plant Physiol Plant Mol Biol 49:611-641
- 91. **Sperling P, Ternes P, Zank TK, Heinz E** 2003 The evolution of desaturases. Prostaglandins Leukot Essent Fatty Acids 68:73-95
- 92. Lindqvist Y, Huang W, Schneider G, Shanklin J 1996 Crystal structure of ∆9 stearoyl-acyl carrier protein desaturase from castor seed and its relationship to other di-iron proteins. Embo J 15:4081-4092
- 93. **Tocher DR, Leaver MJ, Hodgson PA** 1998 Recent advances in the biochemistry and molecular biology of fatty acyl desaturases,. Prog Lipid Res 37:73-117

- 94. **Shanklin J, Whittle E, Fox BG** 1994 Eight histidine residues are catalytically essential in a membrane-associated iron enzyme, stearoyl-CoA desaturase, and are conserved in alkane hydroxylase and xylene monooxygenase. Biochemistry 33:12787-12794
- 95. **Dunn TM, Haak D, Monaghan E, Beeler TJ** 1998 Synthesis of monohydroxylated inositolphosphorylceramide (IPC-C) in *Saccharomyces cerevisiae* requires Scs7p, a protein with both a cytochrome b5-like domain and a hydroxylase/desaturase domain. Yeast 14:311-321
- 96. **Sperling P, Schmidt H, Heinz E** 1995 A cytochrome-b5-containing fusion protein similar to plant acyl lipid desaturases. Eur J Biochem 232:798-805
- 97. **Sperling P, Heinz E** 2001 Desaturases fused to their electron donor. Eur J Lipid Sci Technol 103:158-180
- 98. **Buchanan BB, Gruissem W, Jones RL** 2002 Biochemistry & Molecular Biology of Plants. Wiley & Sons, 3rd Edition
- 99. Lee M, Lenman M, Banas A, Bafor M, Singh S, Schweitzer M, Nilsson R, Liljenber C, Dahlqvist A, Gummerson PO, Sjodahl S, Green A, Stymne S 1998 Identification of nin-heme diiron proteins that catalyze trple bonds and epoxy group formation. Science 280:915-918
- 100. Sperling P, Lee M, Girke T, Zähringer U, Stymne S, Heinz E 2000 A bifunctional ∆6-fatty acyl acetylenase/desaturase from the moss *Ceratodon purpureus* - A new member of the cytochrome b5 superfamily. Eur J Biochem 267:3801-3811
- 101. **Sperling P, Blume A, Zähringer U, Heinz E** 2000 Further characterization of Delta(8)-sphingolipid desaturases from higher plants. Biochem Soc Trans 28:638-641
- 102. **Matsunaga I, Sumimoto T, Ueda A, Kusunose E, Ichihara K** 2000 Fatty acidspecific, regiospecific, and stereospecific hydroxylation by cytochrome P450 (CYP152B1) from *Sphingomonas paucimobilis*: substrate structure required for alphahydroxylation. Lipids 35:365-371
- 103. **Matsunaga I, Yamada M, Kusunose E, Miki T, Ichihara K** 1998 Further characterization of hydrogen peroxide-dependent fatty acid alpha-hydroxylase from *Sphingomonas paucimobilis*. J Biochem 124:105-110
- 104. **Matsunaga I, Yokotani N, Gotoh O, Kusunose E, Yamada M, Ichihara K** 1997 Molecular cloning and expression of fatty acid alpha-hydroxylase from *Sphingomonas paucimobilis*. J Biol Chem 272:23592-23596
- 105. Toledo MS, Levery SB, Straus AH, Suzuki E, Momany M, Glushka J, Moulton JM, Takahashi HK 1999 Characterization of sphingolipids from mycopathogens: factors correlating with expression of 2-hydroxy fatty acyl (*E*)-Delta 3-unsaturation in cerebrosides of *Paracoccidioides brasiliensis* and *Aspergillus fumigatus*. Biochemistry 38:7294-7306
- 106. **Toledo MS, Levery SB, Straus AH, Takahashi HK** 2000 Dimorphic expression of cerebrosides in the mycopathogen *Sporothrix schenckii*. J Lipid Res 41:797-806
- 107. **Toledo MS, Levery SB, Suzuki E, Straus AH, Takahashi HK** 2001 Characterization of cerebrosides from the thermally dimorphic mycopathogen *Histoplasma capsulatum:* expression of 2-hydroxy fatty N-acyl (*E*)-Delta(3)-unsaturation correlates with the yeast-mycelium phase transition. Glycobiology 11:113-124

- 108. Nichols FC, Riep B, Mun JY, Morton MD, Bojarski MT, Dewhirst FE, Smith MB 2004 Structures and biological activity of phosphorylated dihydroceramides of *Porphyromonas gingivalis*. J Lipid Res 45:2317-2330
- 109. **Mayberry WR** 1980 Hydroxy Fatty Acids in Bacteroides Species: D-(-)-3-Hydroxy-15-Methylhexadecanoate and Its Homologs. J Bacteriol 143:582-587
- 110. **Rosenfelder G, Luderitz O, Westphal O** 1974 Composition of lipopolysaccharides from *Myxococcus fulvus* and other fruiting and non-fruiting myxobacteria. Eur J Biochem 44:411-420
- 111. Abbanat DR, Godchaux W, 3rd, Leadbetter ER 1988 Surface-induced synthesis of new sulfonolipids in the gliding bacterium *Cytophaga johnsonae*. Archives of Microbiology 149:358-364
- 112. **Ohlrogge J, Browse J** 1995 Lipid biosynthesis. Plant Cell 7:957-970
- 113. **Browse J, McCourt P, Somerville CR** 1985 A Mutant of *Arabidopsis* Lacking a Chloroplast-Specific Lipid. Science 227:763-765
- 114. **Dubertret G, Gerard-Hirne C, Tremolieres A** 2002 Importance of trans-Delta(*E*)hexadecenoic acid containing phosphatisylglycerol in the formation of the trimeric light-harvesting complex in *Chlamydomonas*. Plant Physiology and Biochemistry 40:829-836
- 115. **Dubertret G, Mirshahi A, Mirshahi M, Gerard-Hirne C, Tremolieres A** 1994 Evidence from in vivo manipulations of lipid composition in mutants that the delta 3trans-hexadecenoic acid-containing phosphatidylglycerol is involved in the biogenesis of the light-harvesting chlorophyll a/b-protein complex of Chlamydomonas reinhardtii. Eur J Biochem 226:473-482
- 116. **Bagby MO, Siegel WO, Wolff IA** 1965 A new acid from *Calea urticaefolia* seed oil: trans-3,cis-9,cis12-octadecatrienoic acid. Journal of the American Oil Chemists' Society 42:50-53
- 117. Kleiman R, Earle FR, Wolff IA 1966 The trans-3-enoic acids of *Grindelia oxylepis* seed oil. Lipids 1:301-304
- 118. Kleiman R, Spencer GF, Tjarks LW, Earle FR 1971 Oxygenated *Trans*-3-Olefinic Acids in a *Stenachaenium* Seed Oil. Lipids 6:617-622
- 119. **Theis T, Stahl U** 2004 Antifungal proteins: targets, mechanisms and prospective applications. Cell Mol Life Sci 61:437-455
- 120. Thomma BP, Cammue BP, Thevissen K 2002 Plant defensins. Planta 216:193-202
- 121. Thevissen K, Cammue BP, Lemaire K, Winderickx J, Dickson RC, Lester RL, Ferket KK, Van Even F, Parret AH, Broekaert WF 2000 A gene encoding a sphingolipid biosynthesis enzyme determines the sensitivity of *Saccharomyces cerevisiae* to an antifungal plant defensin from dahlia (*Dahlia merckii*). Proc Natl Acad Sci U S A 97:9531-9536
- 122. **Thevissen K, Ferket KK, Francois IE, Cammue BP** 2003 Interactions of antifungal plant defensins with fungal membrane components. Peptides 24:1705-1712

- 123. **Thevissen K, Francois IE, Takemoto JY, Ferket KK, Meert EM, Cammue BP** 2003 DmAMP1, an antifungal plant defensin from dahlia (*Dahlia merckii*), interacts with sphingolipids from *Saccharomyces cerevisiae*. FEMS Microbiol Lett 226:169-173
- 124. Thevissen K, Warnecke DC, Francois IE, Leipelt M, Heinz E, Ott C, Zähringer U, Thomma BP, Ferket KK, Cammue BP 2004 Defensins from insects and plants interact with fungal glucosylceramides. J Biol Chem 279:3900-3905
- 125. **Theis T, Wedde M, Meyer V, Stahl U** 2003 The antifungal protein from *Aspergillus giganteus* causes membrane permeabilization. Antimicrob Agents Chemother 47:588-593
- 126. Aerts AM, Francois IE, Bammens L, Cammue BP, Smets B, Winderickx J, Accardo S, De Vos DE, Thevissen K 2006 Level of M(IP)2C sphingolipid affects plant defensin sensitivity, oxidative stress resistance and chronological life-span in yeast. FEBS Lett 580:1903-1907
- 127. Aerts AM, Francois IE, Cammue BP, Thevissen K 2008 The mode of antifungal action of plant, insect and human defensins. Cell Mol Life Sci 65:2069-2079
- 128. Aerts AM, Francois IE, Meert EM, Li QT, Cammue BP, Thevissen K 2007 The antifungal activity of RsAFP2, a plant defensin from *Raphanus sativus*, involves the induction of reactive oxygen species in *Candida albicans*. J Mol Microbiol Biotechnol 13:243-247
- 129. **Meyer V, Damveld RA, Arentshorst M, Stahl U, van den Hondel CA, Ram AF** 2007 Survival in the presence of antifungals: genome-wide expression profiling of *Aspergillus niger* in response to sublethal concentrations of caspofungin and fenpropimorph. J Biol Chem 282:32935-32948
- 130. **Meyer V, Spielvogel A, Funk L, Tilburn J, Arst HN, Jr., Stahl U** 2005 Alkaline pHinduced up-regulation of the afp gene encoding the antifungal protein (AFP) of *Aspergillus giganteus* is not mediated by the transcription factor PacC: possible involvement of calcineurin. Mol Genet Genomics 274:295-306
- 131. **Meyer V, Stahl U** 2002 New insights in the regulation of the afp gene encoding the antifungal protein of *Aspergillus giganteus*. Curr Genet 42:36-42
- 132. **Thevissen K, Francois IE, Aerts AM, Cammue BP** 2005 Fungal sphingolipids as targets for the development of selective antifungal therapeutics. Curr Drug Targets 6:923-928
- 133. **Thevissen K, Osborn RW, Acland DP, Broekaert WF** 2000 Specific binding sites for an antifungal plant defensin from Dahlia (*Dahlia merckii*) on fungal cells are required for antifungal activity. Mol Plant Microbe Interact 13:54-61
- 134. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ 1997 Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389-3402
- 135. **Tonon T, Harvey D, Qing R, Li Y, Larson TR, Graham IA** 2004 Identification of a fatty acid Delta11-desaturase from the microalga *Thalassiosira pseudonana*. FEBS Lett 563:28-34
- 136. **Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG** 1997 The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876-4882
- 137. **Page RD** 1996 TreeView: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 12:357-358
- 138. **Krogh A, Larsson B, von Heijne G, Sonnhammer EL** 2001 Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 305:567-580
- 139. **Duarte RS, Polycarpo CR, Wait R, Hartmann R, Bergter EB** 1998 Structural characterization of neutral glycosphingolipids from *Fusarium* species. Biochim Biophys Acta 1390:186-196
- 140. **Miedaner T, Reinbrecht C, Schilling AG** 2000 Association among aggressiveness, fungal colonization and mycotoxin production of 26 isolates of *Fusarium graminearum* in winter rye head blight. J Plant Dis Prot 107:124-134
- 141. **Suutari M** 1995 Effect of growth temperature on lipid fatty acids of four fungi (*Aspergillus niger, Neurospora crassa, Penicillium chrysogenum and Trichoiderma reesei*). Arch Microbiol 164:212-216
- 142. Sakaki T, Zähringer U, Warnecke DC, Fahl A, Knogge W, Heinz E 2001 Sterol glycosides and cerebrosides accumulate in *Pichia pastoris, Rhynchosporium secalis* and other fungi under normal conditions or under heat shock and ethanol stress. Yeast 18:679-695
- 143. Villas Boas MHS, Egge H, Pohlentz G, Hartmann R, Bergter EB 1994 Structural determination of N-2'-hydroxyoctadecenoyl-1-O-beta-D-glucopyranosyl-9-methyl-4,8-sphingadiene from species of *Aspergillus*. Chem Phys Lipids 70:11-19
- 144. **Hillig I, Leipelt M, Ott C, Zähringer U, Warnecke D, Heinz E** 2003 Formation of glucosylceramide and sterol glucoside by a UDP-glucose-dependent glucosylceramide synthase from cotton expressed in *Pichia pastoris*. FEBS Lett 553:365-369
- 145. **Wollenweber HW, Rietschel ET** 1990 Analysis of lipopolysaccharide (lipid A) fatty acids. J Microbiol Meth 11:195-211
- 146. **Kenrick JR, Bishop DG** 1986 The Fatty Acid Composition of Phosphatidylglycerol and Sulfoquinovosyldiacylglycerol of Higher Plants in Relation to Chilling Sensitivity. Plant Physiol 81:946-949
- 147. **Murata N** 1983 Molecular Species Composition of Phosphatidylglycerols from Chilling-Sensitive and Chilling-Resistant Plants. Plant Cell Physiol 24:81-86
- 148. **Wada H, Murata N** 2007 The essential role of phosphatidylglycerol in photosynthesis. Photosynth Res 92:205-215
- 149. Barton PG, Gunstone FD 1975 Hydrocarbon chain packing and molecular motion in phospholipid bilayers formed from unsaturated lecithins. Synthesis and properties of sixteen positional isomers of 1,2-dioctadecenoyl-sn-glycero-3-phosphorylcholine. J Biol Chem 250:4470-4476
- 150. **Tang G-Q, Novitzky WP, Griffin HC, Huber SC, Dewey RE** 2005 Oleate desaturase enzymes of soybean: evidence of regulation through differential stability and phosphorylation. Plant J 44:433-446
- 151. **Guschina IA, Harwood JL** 2006 Lipids and lipid metabolism in eukaryotic algae. J Lipid Res 45:160-186

- 152. **Iizuka T, Jojima Y, Fudou R, Hiraishi A, Ahn JW, Yamanaka S** 2003 *Plesiocystis pacifica* gen. nov., sp. nov., a marine myxobacterium that contains dihydrogenated menaquinone, isolated from the Pacific coasts of Japan. Int J Syst Evol Microbiol 53:189-195
- 153. Cereghino JL, Cregg JM 2000 Heterologous protein expression in the methylotrophic yeast *Pichia pastoris*. FEMS Microbiol Rev 24:45-66
- 154. **Kozak M** 1987 At least six nucleotides preceding the AUG initiator codon enhance translation in mammalian cells. J Mol Biol 196:947-950
- 155. **Inoue H, Nojima H, Okayama H** 1990 High efficiency transformation of *Escherichia coli* with plasmids. Gene 96:23-28
- 156. **Sambrook, Russell** 2001 Molecular Cloning: A Laboratory Manual, Third Edition.
- 157. **McLachlan A, Riggs MG** 1986 A simplified screening procedure for large numbers of plasmid minipreparations. Biotechniques 4:310-313
- 158. **Logemann J, Schell J, Willmitzer L** 1987 Improved method for the isolation of RNA from plant tissues. Anal Biochem 163:16-20
- 159. **Nirenberg HI** 1981 A simplified method for identifying *Fusarium* spp. occuring on wheat. Can J Bot 59:1599-1609

<u>Anhang</u>

Karten der Expressionsvektoren

pPIC3.5

pPIC3.5 (7751 bp)

AOX1-Promoter:	1-937 bp
MCS:	938-968 bp
Transkriptionsterminator:	981-1314 bp
HIS4-ORF:	4242-1708 bp
3'-AOX-Fragment:	4598-5354 bp
pBR322-Ursprung:	6436-5764 bp
Ampicillin-Resistenzgen:	7442-6583 bp

pPIC-N (basierend auf pPIC3.5)

AOX1-Promoter:	1-937 bp
MCS:	938-968 bp
Transkriptionsterminator:	981-1314 bp
HIS4-ORF:	4242-1708 bp
3'AOX-Fragment:	4598-5354 bp
ClonNat-Resistenzgen:	5610-7077 bp
pBR322-Ursprung:	8040-7368 bp
Ampicillin-Resistenzgen:	9045-8185 bp

pGAPZ

pGAPZ A, B, C

GAPDH-Promoter Region: 1-483 bp

MCS: 484-563 bp

*die letzte Schnittstelle variiert in den drei Vektoren (A: Apal, B: Xbal, C: SnaBI)

AOX1-Transkriptionsterminator:	630-970 bp
TEF-Promoter Fragment:	917-1381 bp
EM7-Promoter:	1382-1449 bp
Zeocin-Resistenzgen (Sh ble ORF):	1450-1824 bp
CYC1-Transkriptionsterminator:	1825-2142 bp
pUC-Ursprung:	2153-2856 bp

pGAP-N (basierend auf pGAPZ-B)

GAPDH-Promoter Region:	1-483 bp
MCS:	484-563 bp
AOX1-Transkriptionsterminator:	630-970 bp
TEF-Promoter Fragment:	917-1381 bp
EM7-Promoter:	1382-1449 bp
Zeocin-Resistenzgen (Sh ble ORF):	1450-1824 bp
CYC1-Transkriptionsterminator:	1825-2142 bp
pUC-Ursprung:	2153-2856 bp
ClonNat-Resistenzkassette:	2877-4833 bp

Verwendete Oligoprimer

Art	Name	Sequenzen	Bindestelle/Amplifikat	Länge des Amplifikats	Schnitt- stellen
Expression	d3Gz-F	atct gaattc acc ATGGCCGAACACCTCGTC	ORF der Δ3Des aus <i>Fusarium</i>	1345 bp (cDNA)	EcoRI
	d3Gz-R	atct <u>gcggccgc</u> CTACTGCCTCTTAAACTTCTTC	graminearum		Notl
Expression	d3Mg-F	agag gaattc attATGGATGACACCGGTATTGT	ORF der Δ3Des aus Magnaporthe	1471 bp (cDNA)	EcoRI
	d3Mg-R	atct gcggccgc TCACGAAGTAGTCCTAAACTT	grisea		Notl
Expression	3OHCyhu_BamHI-F	agag ggatcc att ATGAAAGTATTTTCGATTATTCAA	ORF der β -Hydroxylase aus Cytophaga	1067 bp	BamHI
	3OHCyhu_EcoRI-R	atct gaattc TCAACGCACAATCTTCTGC	hutchinsonii		EcoRI
Expression	FgGCS-F	agagatt ggatcc ATGTATTCTTTCATAGAGTGCAT	ORF der GCS aus Fusarium	1589 bp (cDNA)	BamHI
	FgGCS-R	atct <u>gcggccgc</u> TCA ATCAACTCGATGCTTGTTA	graminearum		Notl
Expression	aOHP450Spau_EcoRI-F	gaattc acc ATG CCTAAGACACCACAC	ORF der α-Hydroxylase aus	1265 bp	EcoRI
	aOHP450Spau_NotI-R2	gcggccgc CCTAGCCACCTATGTG	Sphingomonas paucimobilis (P450-		Notl
			Enzym)		
Expression	aOHPp_Xhol-F	ctcgag ACC ATGACTTCAAATAGGCCATTAC	ORF der α-Hydroxylase aus Pichia	1169 bp	Xhol
	aOHPp_EcoRI-R	gcggccgc CTAATTTGTCTTTTGATACACATC	pastoris		EcoRI
Expression	eGFP_AvrII-F	cctagg ATGGTGAGCAAGGGCGAGG	ORF des enhanced GFP (eGFP)	732 bp	Avrll
	eGFP_EcoRI-R	gaattc TTACTTGTACAGCTCGTCCATG			EcoRI
Expression	uidA_AvrII-F	cctagg ATGGTCCGTCCTGTAGAAACC	ORF des β-Glucuronidase Gens <i>uid</i> A 1824 bp		Avrll
	uidA_EcoRI-R	gaattc TCATTGTTTGCCTCCCTGCTG			EcoRI

Art	Name	Sequenz(en)	Bindestelle/Amplifikat	Länge des Amplifikats	Schnitt- stellen
Resistenz-	ZeoR_PstI-F	ctgcag ATTTTCTCGGACTCCGCGCATCG	ClonNat-Resistenzkassette mit euProm,	1162 bp	Pstl
kassetten	ZeoR_PstI-R	ctgcag CTGGCCTTTTGCTCACATGTTGG	proProm und TT		Pstl
Resistenz-	ClonNat_Nsil-F	atgcat TCTAGAACTAGTGGATCCAATTG	ClonNat-Resistenzkassette mit euProm	1461 bp	Nsil
kassetten	ClonNat_Nsil-R-kurz	atgcat CATCCTACAGCTTGC	und TT (bis Nsil-Schnittstelle)		Nsil
KO-Konstruktion	d3Fg-5UTR-F	agag <u>ctcgag</u> CCTAAAGCGACCTACACATATGAT	5'-Bereich der put∆3Des aus <i>Fusarium</i>	720 bp	Xhol
	d3Fg-5UTR-R	atct agatct TGTTAATTTGATGTCGCACATGAGA	graminearum		BgIII
KO-Konstruktion	d3Fg-3UTR-F	agag agatct CACGATATCGATTACTTCATGATCA	3'-Bereich der put∆3Des aus <i>Fusarium</i>	968 bp	BgIII
	d3Fg-3UTR-R	agag <u>gcggccgc</u> TCACCATGGCAGTTCAAGCTTAT	graminearum		Notl
KO-Konstruktion	d3Mg-5UTR-F	agag <u>ctcgag</u> AACGAAACGCGCGTAACTATCG	5'-Bereich der put∆3Des aus	1106 bp	Xhol
	d3Mg-5UTR-R	atct gcggccgc TTTCATCAGGGGTCGCGACAC	Magnaporthe grisea		Notl
KO-Konstruktion	d3Mg-3UTR-F	atct gcggccgc CAGGTCCAGCATCACTCTGATT	3'-Bereich der put∆3Des aus	1454 bp	Notl
	d3Mg-3UTR-R	atct gtcgac CATAAATGTGGCATATTCATCCGA	Magnaporthe grisea		Sall
KO-Konstruktion	Cr-LB_Xhol-F	ctcgag TCAGGCCGCCAGATGACC	5'-Bereich der put∆3Des aus	1030 bp	Xhol
	Cr-LB_PstI-R	ctgcag CTCCGGCAGTAAGCGAAC	Chlamydomonas reinhardtii		Pstl
KO-Konstruktion	Cr-RB_PstI-F	ctgcag GGCGCCGTCTTAGAGCTGTG	3'-Bereich der put∆3Des aus	1078 bp	Pstl
	Cr-RB_Xbal-R	tctaga AAGGGCGCGGGGCTTATGG	Chlamydomonas reinhardtii		Xbal

Art	Name	Sequenz(en)	Bindestelle/Amplifikat	Länge des Amplifikats	Schnitt- stellen
Screening	5-AOX	GACTGGTTCCAATTGACAAGC	Promoter bzw. Terminatorbereich der AOX1 aus	AOX1 ca. 2,1 kb (gDNA)	keine
	3-AOX	GCAAATGGCATTCTGACATCC	Pichia pastoris, geeignet zum Sequenzieren in	bei Expressionskonstrukten ca.	
			pPIC3.5 bzw. für Kolonie-PCR (pPIC-Expression)	150 bp mehr als der entspr. ORF	
Screening	Hyg-int-F	CGAGTCCTCCGACAAGAAAG	Interne Primer für die HygR-Kassette	733 bp	keine
	Hyg-int-R	GATGTTGGCGACCTCGTATT			
Screening	β-Tub-F	TGCTGTTCTGGTCGATCTTG	Interne Primer für β-Tubulin aus <i>Fusarium</i>	≈ 800 bp (cDNA)	keine
	β-Tub-R	GACGGAAGTTTGGACGGTG	graminearum	≈ 900 bp (gDNA)	
Screening	ClonNat-int-F	CTTCTCTGCGAGGTGGTTG	interne Primer für die ClonNAT-Kassette	851 bp	keine
	ClonNat-int-R	GCAGGGCATGCTCATGTAG			
Screening	d3Fg-int-F	TGATGCCCTGATTCTCGAAG	Interne Primer für Δ3Des aus Fusarium graminearum	770 bp	keine
	d3Fg-int-R	GAAGCTCAAGCCAGACAAAG			
Screening	5UTR-d3Fg_2	ATGACCAAACGGGTAGACACAG	Testpärchen auf richtige Integration des KO-	1121 bp	keine
	KO-Hyg1	TCATTGTCAGATACGGCAGAG	Konstruktes der Δ 3Fg (5'-Bereich)		
Screening	KO-Hyg2	AGCTTGGTTGACGGCAATTTC	Testpärchen auf richtige Integration des KO-	1358 bp	keine
	3UTR-d3Fg_2	GCTCGTAAAACCGCACAGAT	Konstruktes der Δ 3Fg (3'-Bereich)		
Screening	dXCropt-int-F	GCTACTTTGTGGGTTCTC	Testpärchen auf die Anwesenheit ΔXCr enthaltener	427 bp	keine
	dXCropt-int-R	CCTTAGCAGGTCTCAATC	binärer Vektoren in Agrobacterium tumefaciens		
Screening	dXOtopt-int-F	AGTCTCCTTCTGCTACTG	Testpärchen auf die Anwesenheit ΔXOt enthaltener	448 bp	keine
	dXOtopt-int-R	CCGAAGAAAGGAGCCAAGAATC	binärer Vektoren in Agrobacterium tumefaciens		
Sonde	Sonde_Fgd3-F	CCACCTCATTGATAAGGACACA	bindet in Exon1 der Δ3Des aus Fusarium	258 bp	keine
	Sonde_Fgd3-R	TTGTTAATTTGATGTCGCACATGA	<i>graminearum</i> => für Southern-Blot		

Alignments der A3-Desaturase-Sequenzen der verschiedenen F. graminearum-Stämme

C.I Vergleich der genomischen DNA-Sequenzen aus den *F. graminearum*-Stämmen PH-1 und 8/1, die für die ∆3(*E*)-Desaturase codieren. Das Alignment wurde mit dem Programm "Clone Manager Version 7" erzeugt. Punkte entsprechen identischen Basen. Mutationen, die zu einer Veränderung der Aminosäuresequenz führen, sind rot gekennzeichnet, alle anderen grün. Die beiden Introns sind blau gefärbt.

g∆3-PH-1	${\tt ATGGCCGAACACCTCGTCTTCCACCGCAGCTCACAAAGGCCGATGCCCTGATTCTCGAAGGCTTGCGCCAAGACATCAACGAGTACAAGGCCAACGTCAATGCCAACGTCTCAAGTCAAGATGGCC$	130
g∆3-8/1		130
д∆3-РН-1	AAACCCCAGCTCTACGCCAAAGAGCAGCCAATGGCGAACCTTCCAA AGGTGCGTACAGAACACTGTCTCATCTCA	260
g∆3-8/1		260
д∆3-РН-1	TCTTCAATCCATGAATGACCCCAAGGATGCCCACTTTGAAGAAAGCATAACCAGCACTTGGGACTTTGATCAGATCAAGTTGCCGCTTTTCCTCGAGAAGCTGGTCCTACGGCCCTATGTGCGCATTGCG	390
g∆3-8/1	C	390
д∆3-РН-1	AAATCTATTGTTCGCGTCGACACAGATGTCATCATGCTCACCCATCTTCTCCTCTACTTCTCTACCAGTGCCATCCAGCTCTTTCGCAATTTCTCATGGATCCATGGAATCCTTCACTTCA	520
g∆3-8/1		520
д∆3-РН-1	TCATGCAGTTCACATACATGGGCTCCTACACACTTTTGATGCACCAGCACATCCACATGCGAGGTGTTCTCAACAAGCGTTTCGCTTTATTTGATAGCTTGTTCCCTTACATCACCGATCCGCTCATGGG	650
g∆3-8/1	T	650
д∆3-РН-1	CCATACCTGGAACTCGTACTTTTACCACCACGTCAAGCATCACCACGTCGAAGGCAACGGACCCAACGATCTCTCGTCGACCATCCGATATCAGCGAGACAGCATTCTTCACTTGCTTCACTACATCGGC	780
g∆3-8/1		780
д∆3-РН-1	AAGTTCCTCTTCTTTGTCTGGCTTGAGCTTCCGCTCTACTTTATTCGAAATGGAAAGACCATGACTGGAATGAAGGCTGCCTTCTGGGAGCTGTCCAACTATGCTTTCCTCACCACCATGTTTTGCCTCA	910
g∆3-8/1		910
д∆3-РН-1	ACCGAAATGCTACAATCTGTGTGTTCCTCATGCCATTGGGTCTTATGAGACTGGGCATGATGATGGGTAACTGGGGTCAACACGCCTTTGTGGACGAGCATGAGCCCGACTCCGATTACCGTTCAAGTAT	1040
g∆3-8/1		1040
д∆3-РН-1	${\tt taccgttattgatgttat} {\tt g} {\tt tatgttt} {\tt taagcccctcgccgatttc} {\tt aaccacgatcc} {\tt atgctgactattc} {\tt caacgatgct} {\tt atgctgatgc} {\tt atgctga$	1170
g∆3-8/1	C	1170
д∆3-РН-1	GCCGCCACTGGCGCGACCACCCCGTCCACTTCCAAAAGTCGAAGCACACCTATGCCGAAGAGCACGCTCTGGTTTTCCACGATATCGATTACTTCATGATCACTGTTAGACTGATGAAGGATTACAA	1300
g∆3-8/1		1300
д∆3-РН-1	GACCCTTGCCAAGTGTCTGGTGCCCATCGGTGATCAGATTGGGCTGACCATGGATGAGCGAGC	1430
g∆3-8/1		1430
д∆3-РН-1	TAG 1433	
g∆3-8/1	1433	
1		

C.II Sequenzvergleich der für die $\Delta 3(E)$ -Desaturase aus *F. graminearum* codierenden cDNA-Sequenzen aus den Stämmen PH-1 und 8/1.

Das Alignment wurde mit dem Programm "Clone Manager Version 7" erzeugt. Punkte entsprechen identischen Basen. Mutationen, die zu einer Veränderung der Aminosäuresequenz führen, sind **rot** gekennzeichnet, alle anderen **grün**.

∆3-PH1 CDS	ATGGCCGAACACCTCGTCTTCCACCCGCAGCTCACAAAGGCCGATGCCCTGATTCTCGAAGGCTTGCGCCAAGACATCAACGAGTACAAGCCAACGCCAAGGTCAATGCCAACGTCTAAGTCAAGATGGCC	130
Δ3-8/1_CDS		130
Δ 3-PH1_CDS	AAACCCCAGCTCTACGCCAAAGAGCAGCCAATGGCGAACCTTCCAAAGCCCGCGATGAGGATCTGCTACGCCATCTTCAATCCATGAAGAGAGCCCACTTTGAAGAAAGCATAACCAGCAC	260
$\Delta 3-8/1$ _CDS	C	260
A3-PH1 CDS	TTGGGACTTTGATCAGATCAAGTTGCCGCCTTTTCCTCGAGAAGCTGGTCCTACGGCCCTATGTGCGCATTGCGAAATCTATTGTTCGCGCGTCGACACAGATGTCATCATGCTCACCCCATCTTCTCCTCTCC	390
$\Delta 3-8/1$ CDS		390
Δ 3-PH1_CDS	${\tt TTCTCTACATCTCTACCCAGTGCCATCCAGCTCTTTCGCAATTTCTCATGGATCCATGGAATCCTTCACTTCATCATGCAGTTCACATAGGGCTCCTACACACTTTTGATGCACCAGCACATCCACA$	520
Δ 3-8/1_CDS		520
10 571 656		65.0
$\Delta 3 - PHI_CDS$	TGCGAGGTGTTCTCAACAAGCGTTTCGCTTTATTTGATAGCTTGTTCCCTTACATCACCGATCCGCTCATGGGCCATACCTGGAACTCGTACTTTACCACCACGTCAAGCATCACCACGTCGAAGGCAA	650
A3-8/1_CDS		020
∆3-PH1 CDS	CGGACCCAACGATCTCTCGTCGACCATCCGATATCAGCGAGACAGCATTCTTCACTTGCTTCACTACATCGGCAAGTTCCTCTTTGTCTGGCTTGAGCTTCCGCTCTACTTTATTCGAAATGGAAAG	780
Δ3-8/1_CDS	A	780
Δ3-PH1_CDS	ACCATGACTGGAATGAAGGCTGCCTTCTGGGAGCTGTCCAACTATGCTTTCCTCACCACCATGTTTTGCCTCAACCGAAATGCTACAATCTGTGTGTCTCCTCATGCCATTGGGTCTTATGAGACTGGGCA	910
$\Delta 3-8/1$ _CDS		910
A3-PH1 CDS		1040
$\Delta 3 - 8/1$ CDS	C.	1040
10 0, 1_020		1010
Δ 3-PH1_CDS	TCACCATCTCAACCCTCGCCGCCACTGGCGCGACCACCCCGTCCACTTCCAAAAGTCGAAGCACCACCTATGCCGAAGAGCACGCTCTGGTTTTCCACGATATCGATTACTTCATGATCACTGTTAGACTG	1170
Δ 3-8/1_CDS		1170
10 571 656		1000
A3-PHI_CDS	atgatgaaggattacaagaccuttgccaagtgtctggtgcccatcggtgatcagattgggctgaccatggatgagcgagc	1200
A3-8/1_CDS		1300
1		

C.III Vergleich der \triangle 3(*E*)-Polypeptidsequenzen der *F. graminearum-*Stämme PH-1 und 8/1.

Das Alignment wurde mit dem Programm "Clone Manager Version 7" erzeugt. Punkte entsprechen identischen Aminosäuren. Histidinboxen sind blau markiert und die wahrscheinlichen Positionen der vier Transmembrandomänen durch grüne Linien dargestellt.

 Δ **3-PH-1:** Proteinsequenz des vollständig sequenzierten Stammes PH-1 (Fg05382; Protein-ID XP_383758) Δ **3-Fg8/1:** Proteinsequenz des in dieser Arbeit verwendeten Stammes

Δ3-PH1 Δ3-Fq8/1	MAEHLVFHPQLTKADALILEGLRQDINEYKQPKVNANVSSQDGQTPALRQRAANGEPSKARDEDLLRHLQSMNDPKDAHFEESITSTWDFDQIKLPLFLEKLVLRPYVRIAKSIVRVDTDVIMLTHLLLY K. G.	130 130
Δ3-PH1 Δ3-Fg8/1	FSTSLPSAIQLFRNFSWIHGILHFIMQFTYMGSYTLLM HQHIH MRGVLNKRFALFDSLFPYITDPLMGHTWNSYFY HHVKHHH VEGNGPNDLSSTIRYQRDSILHLLHYIGKFLFFVWLELPLYFIRNGK 	260 260
Δ3-PH1 Δ3-Fg8/1	$\texttt{TMTGMKAAFWELSNYAFLTTMFCLNRNATICVFLMPLGLMRLGMMMGNWGQHAFVDEHEPDSDYRSSITVIDVMSNRQCYNDGY \texttt{HTSHH}LNPRRHWRDHPVHFQKSKHTYAEEHALVFHDIDYFMITVRL$	390 390
Δ3-PH1 Δ3-Fg8/1	MMKDYKTLAKCLVPIGDQIGLTMDERAAMLKRTTRRFTEEEIQKKFKRQ 439	

Herstellung des KO-Konstruktes für die ∆3Fg

1.) Die PCR Fragmente d3Fg5 und d3Fg3 wurden in pGEM-T kloniert, wobei auf die Orientierung des 5'-Fragments geachtet wurde

2.) Das mit **BgIII** und **NotI** geschnittene d3Fg3-Fragment wurde in den ebenfalls mit **BgIII** und **NotI** linearisierten Vektor pFg5 ligiert

1.) Die PCR Fragmente d3Mg5 und d3Mg3 wurde in pGEM-T kloniert, wobei auf die Orientierung des 5'-Fragments geachtet wurde

2.) Beide Konstrukte wurden mit **Sall** und **Notl** geschnitten und das **d3Mg3**-Fragment in den aufgeschnittenen **pMg5**-Vektor ligiert

DC-Auftrennung der Lipidextrakte aus Fusarium und Pichia

GlcCer	18 °C		28 °C		30 °C		SG	
Olcoel	3d	7d	3d	7d	3d	7d	50	
			•					
-	-	-	-	-	-	-		
				-		-		
_			-	.00		-	_	

F. graminearum WT

Abbildung F.1 Die von *F. graminearum* synthetisierte GlcCer-Menge ist trotz unterschiedlicher Wachstumstemperaturen annähernd konstant. Dünnschichtchromatographische Auftrennung der Lipidextrakte aus *F. graminearum* (Ausschnitt der Glycolipid- und Phospholipidfraktion). Der Pilz wurde bei verschiedenen Temperaturen (18°C, 28°C und 30°C) 3 und 7 Tage lang in CM-Medium kultiviert. Die Lipide wurden mit Chloroform/Methanol extrahiert und auf einer Kieselgelplatte in Chloroform/Methanol 85:15 getrennt. Die Detektion erfolgte durch Besprühen mit α -Naphthol-Schwefelsäure und anschließendem Veraschen. Standards: GlcCer – Glucosylceramid; SG – Sterylglucosid

F.	araminearum	∆3KO
	gi air in io air air i	

Abbildung F.2 Dünnschichtchromatographie der Lipidextrakte, gewonnen aus der Deletionsmutante der putativen $\Delta 3$ -Desaturase von *Fusarium graminearum*. Der Pilz wurde analog zum Wildtyp bei 18°C, 28°C und 30°C für 3 bzw. 7 Tage in CM-Medium angezogen. Die Lipide wurden mit Chloroform/Methanol extrahiert und auf einer Kieselgelplatte in Chloroform/Methanol 85:15 getrennt. Die Detektion erfolgte durch Besprühen mit α -Naphthol-Schwefelsäure und anschließendem Veraschen. Standards: GlcCer – Glucosylceramid; SG –Sterylglucosid

P. pastoris

Abbildung F.3 Dünnschichtchromatographische Auftrennung der Lipidextrakte verschiedener Pichia-Stämme: Weder die GlcCer-Menge noch die eines anderen Lipids wurde durch die Expression der Kandidatensequenzen aus Fusarium (Δ3Fg) und Magnaporthe (Δ3Mg) beeinträchtigt. Laufmittel: Chloroform/Methanol 85:15, Detektion mit α-Naphthol-Schwefelsäure und Veraschen.

Strukturanalyse des GlcCer aus Fusarium und Pichia

Tabelle G.1 ¹**H NMR-Spektroskopie des GIcCer.** ¹H (600 MHz, 300K) - Chemische Verschiebungen (*ppm*) und Kopplungskonstanten (Hz) des nativen GIcCer, isoliert aus *F. graminearum* WT, **1**, und Pp Δ 3Fg, **7**, (MeOD-*d*₄), sowie der entsprechenden peracetylierten Derivate (CDCI₃, Trimethylsilan $\delta_{\rm H} = 0,000$ ppm).

2.8					1.7				
2,0	δ (<i>ppm</i>)	J	(Hz)		δ (<i>ppm</i>)	(Hz)			
ß-D-Glucose									
H-1"	4.479	J_{12}	7.9		4.30	7.8			
H-2"	4.957	J_{23}	9.5		3.23	8.5			
H-3"	5.285	J_{3A}	9.6		3.39	9.6			
H-4"	5.077 [§]	J_{45}	9.5		3.31*	8.6			
H-5"	3.693	$J_{5.6a}$	2.4		3.31*	2.4			
H-6a"	4.142	$J_{6a,6b}$	12.3		3.71	12.3			
H-6b"	4.273	$J_{6b,5}$	4.6		3.90	4.6			
(4E.8E)-9-Methylsphinga-4.8-dienin									
H-1a	3.621	$J_{1a,1b}$	10.6	J _{1a.2} 4.6	3.74	10.5	$J_{1a,2}$	4.8	
H-1b	3.939	$J_{1b,2}$	3.9		4.15	5.2			
H-2	4.296	$J_{2,3}$	6.4		4.01	5.2			
H-3	5.309	$J_{3.4}^{-,2}$	7.0		4.17	5.5			
H-4	5.391	$J_{4,5}$	15.3		5.49	15.4			
H-5	5.821				5.75				
H-6	2.05*				2.10				
H-7	2.05*				2.08				
H-8	5.077 [§]				5.18		$J_{7,8}$	7.2	
H-9	-				-				
H-10	1.945				2.01				
H-11	1.359				1.42				
H-1217	1.221.31				1.321.28				
H-18	0.880				0.93				
H-19	1.562				1.63				
(3 <i>E</i>)-2-Hydroxyoctadec-3-ensäure									
H-2'	5.50*	$J_{2,3}$	n.d.		4.46	$J_{2,3}$	5.9		
H-3'	5.50*	$J_{3,4}$	14.3		5.52	$J_{3,4}$	15.3		
H-4'	5.872	$J_{4,5}$	6.8		5.87	$J_{4,5}$	6.6		
H-5'	2.05*				2.06				
H-6'	1.28								
H-7'H-17'	1.28				1.221.28				
H-18	0.880				0.859				

Andere Signale **2** und **8** 6 OAc: 2.173, 2.094, 2.034, 2.025 (2x), 2.0012 *ppm;* 4.149 *ppm,* H-2', $J_{2,3a}$ 4.8 Hz, $J_{2,3b}$ 7.2 Hz [nicht-desaturierte 18:0(2-OH), Integral 25%, nur in *F. graminearum* gefunden], *nicht aufgelöstes Multiplett; [§]überlappende Signale.

Tabelle G.2 ¹³**C NMR-Spektroskopie von GlcCer.** ¹³C – Chemische Verschiebungen (ppm), erhalten durch eine ¹H, ¹³C HMQC-Analyse des GlcCer aus *F. graminearum* WT, 1, und Pp Δ 3Fg, 7, (MeOD-*d*₄, δ_{C} = 34,4 ppm) sowie der entsprechenden peracetylierten Derivate 2 und 8 (CDCl₃, δ_{C} = 77,0 ppm), gemessen bei 300 K.

	2, 8 δ (<i>ppm</i>)	1, 7 δ (<i>ppm</i>)						
ß-D-Glucose			_					
C-1"	100.6	105.6						
C-2"	71.1	75.8						
C-3"	72.6	78.8						
C-4"	68.1	72.3						
C-5"	71.8	78.8						
C-6"	61.8	63.4						
(4 <i>E</i> ,8 <i>E</i>)-9-Methylsphinga-4.8-dienin								
C-1	66.9	70.3						
C-2	50.5	55.4						
C-3	73.2	73.5						
C-4	124.6	131.4						
C-5	136.6	135.1						
C-6	32.4	34.3						
C-7	27.4	29.2						
C-8	122.9	125.6						
C-9	n.d.	n.d.						
C-10	39.5	41.5						
C-11	28.3	31.0						
C-1215(17)	29.229.6	29.230.3						
C-16	31.7							
C-17	23.2							
C-18	14.0	14.11						
C-19	15.9	16.00						
(3 <i>E</i>)-2-Hydro	xyoctadec-3	-ensäure						
C-1'	n.d.	169.41						
C-2'	74.3	74.4						
C-3'	123.0	129.6						
C-4'	137.9	135.4						
C-5'	26.2	29.2						
C-6' C-17'	29.229.6	30.030.1						
C-18'	14.0	15.0						

n.d. nicht ermittelt, da ${}^{1}J_{\rm H,C}$ fehlt

Abbildung G.1 ESI-FT-ICR-MS-Analyse des nativen GlcCer im positiven Modus ("deconvoluted" - das heißt, die Massenzahlen entsprechen den tatsächlichen Massen der Substanzen), isoliert aus *F. graminearum* WT (a), \triangle 3FgKO (b), *P. pastoris* WT (c) und Pp \triangle 3Fg (d). Die molekularen Massen der unterschiedlichen Spezies [M+H] sowie deren Derivate [M+Na] und [M-H₂O] sind in verschiedenen Farben gekennzeichnet (siehe Bildunterschrift). Nähere Erläuterung siehe nächste Seite.

- a) ESI-FT-ICR-MS des nativen GlcCer isoliert aus *F. graminearum* WT. Der Peak mit der molekularen Masse von 753.5785 Da, 1, entspricht GlcCer bestehend aus (4*E*,8*E*)9-Methylsphinga-4,8-dienin (d18:2-9m), verknüpft mit 18:1(2-OH) [∆3(*E*)-ungesättigt].
- b) ESI-FT-ICR-MS des nativen GIcCer isoliert aus ∆3FgKO. Der Peak mit der molekularen Masse von 755.5917 Da, 3, entspricht GIcCer bestehend aus d18:2-9m, verknüpft mit 18:0(2-OH).
- c) ESI-FT-ICR-MS des nativen GIcCer isoliert aus *P. pastoris* WT. Der Peak mit der molekularen Masse von 755.5917 Da, 5, entspricht GIcCer bestehend aus d18:2-9m, verknüpft mit 18:0(2-OH) und entspricht Substanz 3.
- d) ESI-FT-ICR-MS des nativen GlcCer isoliert aus Pp∆3Fg. Der Peak mit der molekularen Masse von 753.5785 Da, 7, entspricht GlcCer bestehend aus d18:2-9m, verknüpft mit 18:1(2-OH) [∆3(*E*)-ungesättigt] und somit Substanz 1.
- Auch (4*E*)Sphing-4-enin und 4-Hydroxy-C20-sphinganin sowie 16:0(2-OH) und 16:1(2-OH konnten nachgewiesen werden.

Abbildung G.2 GlcCer-Strukturen, wie sie mittels ¹H- und ¹³C-NMR-Spektroskopie und ESI-FT-ICR-Massenspektrometrie ermittelt wurden. Natives GlcCer wurde isoliert aus *F. graminearum* WT (1), Δ 3FgKO (3), *P. pastoris* WT (5) und Pp Δ 3Fg (7). Ebenfalls analysiert wurden die peracetylierten Derivate aus *F. graminearum* WT (2), Δ 3FgKO (4), *P. pastoris* WT (6) und Pp Δ 3Fg (8).

Quantifizierung der in verschiedenen Lipiden von *P. pastoris* (Wildtyp und βOHCyhu-Expressionsmutante) enthaltenen Fettsäuren

Fettsäurezusammensetzung verschiedener Lipide, isoliert aus *P. pastoris* Wildtyp (Pp WT) und einer Mutante, die die βOHCyhu exprimiert (PpβOHCyhu). Abgesehen von GlcCer wurden 3-Hydroxyfettsäuren auch in Phosphoglycerolipiden und den in den Zellen vorliegenden freien Fettsäuren nachgewiesen, jedoch nicht in Triacylglycerolen und Sterylestern.

Lebenslauf

Simone Zäuner

geboren am 22.04.1981 in Groß-Gerau, Hessen Staatsangehörigkeit: deutsch ledig, keine Kinder

Schulausbildung 1987-1991 Grundschule Trebur (heutiger Name: Lindenschule) 1991-2000 Immanuel-Kant-Schule, Gymnasium, Rüsselsheim Juni 2000 Abschluss – Abitur 2000-2005 Studium Studium der Biologie an der Technischen Universität Darmstadt Abschlussprüfung in den Hauptfächern Pflanzenphysiologie, Mikrobiologie und Spezielle Botanik September 2004 – April 2005 Diplomarbeit – Charakterisierung Agrobacterium vitisinduzierter Tumoren an Vitis vinifera und Ricinus communis (unter Anleitung von Frau Prof. Dr. Ullrich-Eberius) April 2005 Abschluss - Diplom 2005-2008 Promotionsstudium im Biozentrum Klein Flottbek (Department Biologie der Universität Hamburg) zunächst unter Anleitung von Frau Dr. Petra Sperling († 03.02.2008). Die Betreuung wurde nach Bekanntwerden der Krebserkrankung von Frau Sperling von Herrn PD Dr. Dirk Warnecke übernommen. Lehrerfahrung **Betreuung von Praktika** Darmstadt Wintersemester 01/02, 02/03, 03/04 und 04/05 Baupläne der Organismen – Teil Botanik Sommersemester 02, 03, 04 und 05 Botanische Bestimmungsübungen Sommersemester 03 Zoologische Bestimmungsübungen Hamburg Wintersemester 05/06, 06/07, 07/08 und Sommersemester 06 Molekularbiologie und Biochemie des Lipidmetabolismus von Pflanzen und Pilzen Januar-Februar 2008 Betreuung einer Projektstudie zum Thema: Identifizierung von Lipiden der Grünalge Chlamydomonas reinhardtii (durchgeführt von Alexandra Schwendke)

Publikationsliste

Teile der vorliegenden Arbeit gingen in die folgende Publikation ein:

 S. Zäuner, U. Zähringer, B. Lindner, D. Warnecke und P. Sperling (2008): Identification and functional characterization of the 2-hydroxy fatty N-acyl-Δ3(*E*)desaturase from *Fusarium graminearum*. *Journal of Biological Chemistry*, 283:36734-36742

Weitere Veröffentlichungen in wissenschaftlichen Fachzeitschriften

- <u>S. Zäuner</u>, J.E. Creasap, T.J. Burr und C.I. Ullrich (2006): Inhibition of crown gall induction by *Agrobacterium vitis* strain F2/5 in grapevine and *Ricinus*. *Vitis* 45: 131-139
- L.V. Michaelson, <u>S. Zäuner</u>, J.E. Markham, R. Haslam, R. Desikan, S. Mugford, S. Albrecht, D. Warnecke, P. Sperling, E. Heinz und J.A. Napier (2009): Functional characterisation of a higher plant sphingolipid ∆4-desaturase: defining the role of sphingosine and sphingosine-1-phosphate in *Arabidopsis thaliana*. *Plant Physiology*, 149:487-498

Konferenzbeiträge

- <u>S. Zäuner</u>, P. Sperling, S. Albrecht, I. Hillig, P. Ternes, K. Thevissen, U. Zähringer, D. Warnecke, B.P.A. Cammue und E. Heinz (2006)
 Function of fungal glycosphingolipids in plant/pathogen interactions.
 47th International Conference on the Bioscience of Lipids 2006 in Pécs, Ungarn Posterpräsentation
- <u>S. Zäuner</u>, S. Albrecht, P. Ternes, K. Thevissen, U. Zähringer, B.P.A. Cammue, E. Heinz, D. Warnecke und P. Sperling (2007)
 Fungal glycosphingolipids in plant/pathogen interactions 3rd European Symposium on Plant Lipids in York, Großbritannien – Kurzvortrag
- <u>S. Zäuner</u>, S. Albrecht, P. Ternes, K. Thevissen, V. Meyer, U. Zähringer, E. Heinz, D. Warnecke und P. Sperling (2007)
 Fungal glycosphingolipids in host/pathogen interactions
 48th International Conference on the Bioscience of Lipids 2006 in Turku, Finnland Posterpräsentation (prämiertes Poster)
- <u>S. Zäuner</u>, T. Wobbe, S. Albrecht, P. Ternes, V. Meyer, K. Thevissen, U. Zähringer, E. Heinz, P. Sperling und D. Warnecke
 Fungal glycosphingolipids interact with antifungal peptides
 FEBS workshop on Lipids as mediators of cell signaling 2008, in Spetses, Griechenland – Posterpräsentation
- <u>S. Zäuner</u>, T. Wobbe, V. Meyer, K. Thevissen, U. Zähringer, D. Warnecke und P. Sperling Identification and functional characterisation of novel sphingolipid-Δ3(*E*)desaturases from fungi. 18th International Symposium on Plant Lipids 2008 in Bordeaux, Frankreich – Kurzvortrag

Danksagung

In allererster Linie möchte ich mich bei Frau Dr. Petra Sperling (1960-2008) bedanken, ohne die die vorliegende Arbeit nicht zustande gekommen wäre. Auch nach Bekanntwerden Ihrer Erkrankung hatte Sie immer ein offenes Ohr für meine kleineren und größeren Laborprobleme. Danke Petra, es hat Spaß gemacht für Dich und mit Dir zu arbeiten!

Bedanken möchte ich mich natürlich auch bei Herrn PD. Dr. Dirk Warnecke für die "Adoption" und dafür, dass er trotz Stress und meines ungewohnten Themas immer ein offenes Ohr für mich hatte.

Herrn Prof. Dr. Ernst Heinz danke ich für die Übernahme des Koreferats, das Korrekturlesen diverser Arbeiten, Anträge und Publikationen sowie die Diskussionsbereitschaft und den nicht enden wollenden Strom neuer Versuchsideen.

Für die Durchführung der NMR-Spektroskopie, ESI-FT-ICR-MS- und GLC-MS-Analysen danke ich sehr herzlich Herrn Prof. Dr. Ulrich Zähringer, Herrn PD Dr. Buko Lindner und Herrn Hermann Moll (alle Forschungszentrum Borstel).

Außerdem danke ich Frau Dr. Vera Meyer (Leiden University, Leiden, Niederlande) und Frau Dr. Karin Thevissen (Katholieke Universiteit Leuven, Heverlee, Belgien) für die Durchführung einiger Defensinversuche und der Bereitstellung von AgAFP und RsAFP2.

Natürlich möchte ich mich auch bei allen aktuellen und ehemaligen Mitgliedern der AG Böttger/Warnecke bedanken. Die ungezählten Kaffee-, Keks- und Kuchenschlachten haben so manchen grauen Labortag erheitert. Besonders erwähnen möchte ich an dieser Stelle Wiebke Hellmeyer (merke: Ohne TA läuft gar nichts), Sandra Grille (die mit mir fast zwei Jahre lang ein Büro geteilt hat ⇔ geteilter Frust ist halber Frust), Tobias Wobbe (merke: GC- und HPLC-Anlage sind nicht so einfach zu bedienen) und Dr. Olaf Döring (für die Hilfe bei diversen Computerproblemen).

Mein Dank gilt allen mehr oder weniger "freiwilligen" Korrekturlesern (Mama, Sandra, Tobi) der vorliegenden Dissertation.

Ganz besonders danke ich Regina für den Blick von außen sowie Felix, meiner Familie und allen Freunden für ihre Unterstützung in den letzten 3 ½ Jahren.