
Color Image Processing for Advanced Driver
Assistance Systems

Dissertation
zur Erlangung des Doktorgrades

an der MIN-Fakultät Department Informatik der Universität Hamburg

vorgelegt von

Calin Augustin Rotaru

aus Cluj-Napoca

Hamburg 2008

Genehmigt von der MIN-Fakultät Department Informatik der Universität Hamburg

auf Antrag von

Prof. Dr. Jianwei Zhang, Erstgutachter/Doktorvater

Prof. Dr. Bernd Neumann, Zweitgutachter

Dr. Thorsten Graf, Drittgutachter

Hamburg, den 16. Juli 2008

Prof. Dr. N. Ritter

————————-
Leiter Department Informatik

The cooperation between the Department of Computer Science, University of Hamburg
and Group Research Electronics, Volkswagen AG put the basis for this thesis. It is the
result of my work in the Driver Assistance Electronics Team during the internship funded
by Volkswagen AG. This work was supervised by Prof. Dr. Zhang from the University
of Hamburg, Dr. Thorsten Graf and Dr. Rolf Schmidt from the Group Research, Volk-
swagen AG. I would like first to express my gratitude to them, who knew how to guide,
support and show me how to focus my efforts to make this thesis true.

Furthermore, I am also grateful to all other members of the Group Research Electronics
Team that helped me during these years. I would like to specially thank in alphabetic
order to:

Dr. Alexander Kirchner, Dr. Holger Philipps, Dr. Dirk Stücker and Kristian Weiss
that helped me along with the integration of my work into the Sensorfusion system,

Klaus-Dieter Kowalewicz and his team for the work performed to deploy the system
into the test vehicle,

Dr. Marian-Andrzej Obojski for his constant assistance during the years,
Jean Schipritt for his excellent work that became part of the object detection and

tracking system,
Dr. Will Specks for his kindness and support.

Furthermore, I wish to thank to Andreea Arambasa who have carefully read and cor-
rected this thesis, making it more comprehensible.

And last, but not the least I would like to thank my family and my friends, especially
my wife Florentina. Without their friendship, love and support this work would not be
what it is.

Erklärung

hiermit erkläre ich, dass ich diese Dissertation selbst verfasst habe und keine anderen als
die in der Dissertation angegebenen Hilfsmittel benutzt habe.

Stuttgart, den 13.11.2007

Calin Rotaru

Summary

Nowadays, new safety and comfort systems are emerging on the automotive market.
After the well known ABS, ESP and Automatic Cruise Control, in the last years systems
like PRE-SAFE Brake Assistant have made their appearance in luxury cars. Such safety
systems may hugely benefit from the classification information delivered by video sensors.
Unfortunately few video sensors are present in series and up to date none is using color
vision.

This thesis focuses on a complete color image processing sensor. Lane recognition and
object detection are the main tasks to be accomplished by the sensor. It is integrated
in a sensor fusion environment in use at Group Research, Volkswagen AG together with
radar and lidar sensors. The hardware used is a color camcorder linked to a processing
unit (PC) via firewire. The chosen approach is to create an internal representation of the
environment which is updated between acquired images. Based on this representation the
required 3D output is generated, taking into consideration the camera calibration data.

The first step is to segment the color image (represented in HSI) according to the
task (lane recognition, object detection). Our segmentation uses a new algorithm based
on the projection of the scene points onto the SI plane. This algorithm outperforms
for the typical automotive scenes most of the current state of the art methods (linear
color/histogram thresholding, nearest-neighbour, probabilistical) in terms of accuracy,
speed or both. Next, various relative simple algorithms are applied to create a represen-
tation of the environment related to 2D image coordinates. Worth mentioning is the way
these algorithm are merged. Instead of focusing on single algorithm performance, we use
multiple relatively simple algorithms that complement each other and merge the results
based on the recognition of the particular situation. The detection and following of dis-
tant objects is worth mentioning, due to its performance in the far range (over 100m). Up
to now, there are very few applications able to perform such an accurate detection and
tracking. All of them mainly rely on optics and not on detection algorithms. The con-
version of the results in 3D coordinates also introduces a different approach as compared
to the typical triangulation methods. Instead of using the vertical position in picture, we
are using the width of the car and either assume a default 3D with or compute it relative
to lane width. This assures a significant gain in the stability of the output (no influence
over pitch angle movements).

Summing up, we have tried to approach the subject of image processing in automotive
applications using two new directions. One is real time color image processing, where a
new segmentation method was introduced. The other is a cognitive approach, in which
knowledge over the current situation is used to merge the results of more relatively simple
algorithms. The new methods introduced in this work put a basis for a large development
direction that should contribute to establishing color image processing in the automotive
field.

Zusammenfassung

Heutzutage kommen immer neuere Sicherheits- und Komfortsysteme auf den Auto-
mobilmarkt. Nach den aus den letzten Jahren bekannten Systemen ABS, ESP und au-
tomatischer Geschwindigkeitsregelanlage (Adaptive Cruise Control) erscheinen nun auch
Sicherheitssysteme wie PRE-SAFE in ersten Serienanläufen in der Luxus-Klasse. Solche
Systeme werden in die Zukunft immer häufiger Kameras einbinden, da Video-Systeme in
der Lage sind, sehr schnell und günstig Klassifikations-Informationen zu liefern. Aktuell
gibt es noch sehr wenige auf Video basierte Lösungen in Serie. Keine dieser Lösungen
arbeitet aktuell mit Farbkameras.

Diese Arbeit beschreibt einen kompletten Farbbildverarbeitungssensor mit Hauptan-
wendung in Fahrspur- und Objekt-Erkennung. Der Video-Sensor wird zusammen mit
Radar- und Lidar-Sensor in einer Sensordatenfusionsumgebung in der Konzernforschung
der Volkswagen AG integriert. Die benutzte Kamera, ein Camcorder, ist über Firewire
mit dem Daten-Bearbeitungssystem (PC) verbunden. Der ausgewählte Ansatz erzeugt
eine interne Darstellung der Daten und ein beinhaltet ein Tracking zwischen Bildern. Auf
Basis dieser Darstellung und Kamera-Kalibrierungsdaten wird am Ende der Bearbeitungs-
kette eine Umrechnung der benötigten Ausgaben in 3D Koordinaten durchgeführt.

Zunächst wird entsprechend der Aufgabe (Spur- und Objekterkennung) eine Segmen-
tierung des Farb-Bildes (dargestellt im HSI-Raum) vorgenommen. Unsere Methode
basiert auf einem neuen Konzept, das auf der Projektion der Szenen-Pixel auf die SI Ebene
beruht. Diese Methode liefert bessere Ergebnisse im Vergleich zu den existierenden Meth-
oden (lineare Farb-Segmentierung, Histogramm Thresholding, Nearest-Neighbour, proba-
bilistische Methoden) bezüglich Segmentierungs-Genauigkeit, -Geschwindigkeit oder bei-
dem. Nach der Segmentierung werden mehrere relativ einfache Algorithmen mit dem Ziel,
eine Nachbildung der Szeneninformation in 2-D Bild Koordinaten zu erreichen, angewen-
det. Besonders erwähnenswert ist hier die Fusion der verschiedenen Ergebnisse. Statt den
Focus auf einen Algorithmus zu legen, verwenden wir mehrere Algorithmen, deren Anwen-
dungsgebiete sich ergänzen und fusionieren deren Ausgaben abhängig von der erkannten
Situation. Ebenfalls erwähnenswert ist die besondere Leistung der Algorithmen in Bezug
auf die Erkennung und Nachverfolgung ferner Objekte (ber 100m). Bis jetzt existieren
nur sehr wenige Ansätze, die Fahrzeuge in einer derart groen Entfernung stabil erkennen
können. Diese basieren stets nur auf einer Zoom-Optik. Die Umrechnung der Ergeb-
nisse in 3D Koordinaten erfolgt ebenfalls nach einem neuen Verfahren. Statt die übliche
vertikal-basierte Triangulation zu verwenden, setzen wir eine horizontale Triangulation
ein, die die Breite des Fahrzeuges über die Breite der Fahrspur berechnet. Ist dies nicht
möglich, wird eine predefinierte Breite für jede Fahrzeugklasse zugewiesen. Dieses Vorge-
hen garantiert die Unabhängigkeit von Nickwinkelnderungen und liefert deutlich stabilere
Ergebnisse.

Zusammenfassend haben wir versucht, der Bildverarbeitung für Automotive Anwen-
dungen mit zwei neuen Forschungsanstzen zu begegnen. Der erste Ansatz ist die Echtzeit-
Farbbildverarbeitung auf Basis einer neuen Segmentierungsmethode. Der zweite ist ein

kognitiver Ansatz, in dem Informationen ber die aktuelle Umgebungssituation dazu be-
nutzt werden, um die Ergebnisse einfacherer Algorithmen zusammen zu führen. Die in
dieser Arbeit vorgestellten Verfahren bilden die Grundlage, die Farbbildverarbeitung im
automobilen Umfeld zu etablieren.

7

8

Contents

1 Introduction 13

1.1 Motivation . 13

1.2 Contribution . 14

1.3 Outline . 15

1.3.1 Environment & Applicability of the solution 15

1.3.2 Structure . 15

2 State of Art 17

2.1 Perception and Computer Vision - Short History 17

2.2 Vision in Automotive Applications . 18

2.3 Lane Detection . 20

2.3.1 Segmentation-based Approaches 21

2.3.2 Feature-driven Approaches . 22

2.3.3 Model-driven Approaches . 24

2.4 Object Detection . 27

2.4.1 Image Thresholding . 29

2.4.2 Edge-based methods . 29

2.4.3 Space signature . 30

2.4.4 Background substraction . 31

2.4.5 Inter-frame differencing . 31

2.4.6 Time signature . 32

2.4.7 Feature aggregation and object tracking 32

2.4.8 Optical flow . 33

2.4.9 Motion parallax . 35

2.4.10 Stereo vision . 36

2.4.11 Inverse perspective mapping . 37

2.4.12 3D modelling and forward mapping 37

2.5 Color Vision - Short Overview . 39

2.5.1 Mapping the Spectrum onto Perceptual Color Space 39

2.5.2 Color Spaces used in Computer Vision 40

2.5.3 Active Research in Color Vision for Active Driver Assistance Systems 41

9

Contents

3 Image Segmentation in HSI, Lane and Object Recognition 45
3.1 Generics . 45

3.1.1 Motivation . 45
3.2 Image Segmentation Based on SI Metrics 46

3.2.1 HSI Space Characteristics . 46
3.2.2 Projection of Road Scenes in HSI Space 48
3.2.3 SI Metrics . 54
3.2.4 Effects of HSI Space Irregularities 55
3.2.5 Projections of Typical Traffic Scenes on the SI Plane 57
3.2.6 Adaptive SI Metric Coefficients 61
3.2.7 Use of the H component . 63
3.2.8 Performance in various illumination conditions 63
3.2.9 Comparison with other segmentation algorithms 68

3.3 Top-level View . 73
3.3.1 Thread Layout . 75

3.4 Road & Lane Detection . 78
3.4.1 Knowledge given by the Automotive Environment 78
3.4.2 Road Detection based on Intensity and Saturation 78
3.4.3 Cognitive Lane Marking Detection based on Intensity and Saturation 83
3.4.4 Lane Marking Detection based on SI Metrics 84
3.4.5 Lane Delimiters Detection based on Road Detection Results . . . 87
3.4.6 Yellow Lane Markings . 89
3.4.7 Merging the results - The Lane Interpreter 93

3.5 Object Detection & Tracking . 98
3.5.1 Multiple Models . 98
3.5.2 Object Detection - System Structure 101
3.5.3 Object Detection - Using SI Metrics 101
3.5.4 Object Detection - Using Road Information 103
3.5.5 Object Detection - Lateral Objects 104
3.5.6 Object Detection - Distant/Far Objects 106
3.5.7 Filtering the Candidates . 107
3.5.8 Tracking of Objects - Lateral Objects 108
3.5.9 Tracking of Objects - New Objects 108
3.5.10 Tracking of Regular Objects - up to about 70 meters 111
3.5.11 Tracking of Distant/Far Objects - beyond about 70 meters 114

4 Reconstructing 3D information 119
4.1 Motivation . 119
4.2 Requirements for the Output of a Vision Sensor for Automotive Applications119
4.3 Projections of the 3D space in the image plane 120
4.4 Reconstruction of 3D Information . 121
4.5 Alternative Calibration Methods . 125
4.6 Experimental Results . 125

10

Contents

5 Results 127
5.1 System architecture . 127

5.1.1 Software Environment . 127
5.1.2 Hardware Setup . 130

5.2 Results . 133
5.2.1 Hardware Platform . 133
5.2.2 Samples of the CCVS processing 134
5.2.3 Comparison with other vision systems 138

6 Conclusion & Future Work 145
6.1 Conclusion . 145

6.1.1 Advantages over existing systems (color, monochrome) 145
6.1.2 What’s New . 146

6.2 Future development . 147

7 Notations and Definitions 149

8 Appendix 151
8.1 Short description of included CD . 151
8.2 Tools used to create this document . 152

9 Bibliography 153

List of Figures 163

11

Contents

12

1 Introduction

1.1 Motivation

Nowadays, in the automotive domain, electronics plays a much greater role as before.
With respect to driving safety and comfort, active driver assistance systems (ADAS) are
becoming increasingly important.

One of the first successful applications in active safety was ABS (anti-lock brake sys-
tem), shortly followed by ESP (electronic stability program). Both of them are, in Europe
at least, at the moment series equipment in most new models.

Cruise control is already becoming standard equipment in the Volkswagen Golf seg-
ment. Adaptive Cruise Control (ACC) is already present in vehicles belonging to the
luxury segment (like Volkswagen Phaeton or Audi A8) and slowly making its way into
the middle class (the New Passat for example). ACC already requires more information
than the onboard sensor data, i.e. at least a description of the surrounding environment
that has a sufficiently high level of representation to allow for the identification of obsta-
cles in front of the car along with their position and speed information. At the moment
radar is the sensor of choice for ACC.

Figure 1.1: The Future of the Driver Assistance Systems
.

Other driver assistance systems such as Lane Departure Warning are close to becoming
series products as can be seen in Fig. 1.1 (courtesy of http://www.foresightvehicle.org.uk).
Beside radar or laserscanner information, such advanced systems also require additional
input that can only be provided by vision sensors.

13

Chapter 1

The more complex a driver assistance system, the higher the level of representation
of the information it requires from sensors. Such a high level representation imposes
reliability and safety constraints for the data which can hardly be achieved with a single
sensor. Data from multiple sensors has to be merged and interpreted. Such sensors are
commonly based on laser, radar, vision or ultrasonic waves. The most complex of them,
with regard to the amount of data delivered, is the vision sensor. From the many sensor
configurations available for a vision system the most powerful, but still convenient as
equipment and deployment costs, is the color mono camera. This thesis focuses on a
color mono system built around a consumer electronics camera.

Even if from the hardware point of view the color camera is similar to a gray scale
one, from the algorithmic point of view it has a major disadvantage. Usually, a color
camera based system has to process 2 to 3 times more data as in the case of a greyscale
camera. Therefore until recently, color processing was hardly the subject of online (real
time) processing. Not only the lack of hardware resources able to handle the huge amount
of data but also the more complex algorithms that are applied on color images caused
the processing to be too slow to work online. In the last years advances in the comput-
ing architectures made the real time implementation of many algorithms on color data
possible. Still the research in the domain remained limited to solving the easiest tasks
requiring color information. The great amount of information carried by color data often
remained neglected.

As it was often the case in the computer industry, the automotive domain faces nowa-
days the same dilemma: the hardware costs and availability allow for the use of color
cameras, still the software development does not support it. Research in computer vision
for the automotive domain has focused mostly on greyscale approaches, with few color
specific solutions. This thesis tries to fill in the gap, by describing a color based vision
sensor solution targeting the automobile industry.

1.2 Contribution

This thesis adds to the existing research in the field mainly two new approaches to image
processing for the automotive domain:

- a realtime approach geared towards making use of the color information to overcome
typical difficulties of a greyscale approach. Color information is used to distinguish the
vegetation, to detected and follow cars present on the road and to detect their back-
lights. Indirectly, by using the saturation of the color besides its intensity in almost all
segmentation algorithms, an additional sensitivity and robustness is gained.

- a cognitive approach similar to the human perception. Instead of using 3D models
projected first on the 2D image plane and afterwards tracked, the approach taken starts
with the interpretation of the scene in 2D coordinates or “what could be seen by the
video system”. This is done without any calibration information, but based on some
general assumptions about the environment or “what is expected to be seen by the video
system”. In the end, this interpretation of the scene is converted back to 3D coordinates

14

1.3 Outline

required by the applications performing driver assistance functions. In this process some
minimal calibration data is required.

1.3 Outline

1.3.1 Environment & Applicability of the solution

The environment targeted in this thesis is the automotive environment, with a special
focus on the highway traffic situations. The vision system has to run as a stand alone
sensor, being part of a multi-sensorial driver assistance system (Sensorfusion). Its results
are to be made available on the industry standard vehicle communication bus, the CAN
Bus.

The output of the system has to be used for Automatic Cruise Control on highways in
the future after fusion with other sensors. The fusion is performed by the Sensorfusion
environment. Therefore the output format of the vision sensor is well defined by the input
format for the Sensorfusion.

Minimum requirements for the output are lane and object recognition. Because the
Sensorfusion environment is based on the Extended Kalman Filter, the sensor data should
ideally not be filtered over time, but the result of a single frame measurement.

1.3.2 Structure

In chapter 2 a review of computer vision, color vision and applications in the automo-
tive domain is presented. The review focuses on past solutions for the lane and object
recognition problems addressed in this work.

In chapter 3, after a short introduction, in which the basic requirements are reviewed
together with the specifics of the automotive environment, the algorithms used to solve the
required tasks are described in detail. These algorithms were developed and programmed
during the PhD program. Special attention is paid to the use of color information and to
the novel processing techniques.

The conversion of the obtained results from image coordinates to the 3D coordinates
follows in chapter 4. Minimal camera calibration requirements are derived together with
automatic calibration techniques.

In the beginning of chapter 5, the hardware and software architecture of the system is
presented together with details about the integration in the test vehicle. The connection
with car systems and the Sensorfusion is shortly presented before the results of the color
vision system are compared to other two vision systems that are representative of greyscale
processing (stereo and mono). The comparison not only outlines the strengths of the
color system, but also reveals the limitations due to the mono camera architecture. It
also evaluates the contributions of this work to the already existing research in the field.

The thesis ends with chapter 6, where the conclusions about the advantages resulting
from the use of color and novel processing methods are drawn, together with suggestions
for future development of the system.

15

Chapter 1

16

2 State of Art

2.1 Perception and Computer Vision - Short History

Systematic attempts to understand human vision can be traced back to ancient times.
Euclid (ca. 300 B.C.) wrote about natural perspective. He was well aware of the notion

of motion parallax. Although perspective was known to the ancient Greeks, they were cu-
riously confused by the role of the eyes in vision. Aristotle thought that eyes were devices
emitting rays (similar to laser range finders). This mistaken view was laid to rest by the
work of Arab scientists, such as Alhazen in the 10th century. The mathematical under-
standing of perspective projection (in the context of projection onto planar surfaces) had
its next significant advance in the 15th century in the Italian Renaissance. Brunelleschi,
Alberti, da Vinci and Dürer are the best known pioneers in perspective painting.

The development of various kinds of cameras followed. These were rooms (”camera”
stands in Latin for chamber) where light entered through a small hole in one wall to cast
an image on the opposite wall. Of course, the resulting image was inverted. If such a
device was similar to the human eye, how do we see right side up? This enigma exercised
the greatest minds of the era, including Leonardo da Vinci. It took the work of Kepler
and Descartes to settle the question and find out that the brain is in charge of restoring
of the original image.

The next major advances in the understanding of vision took place in the 19th century
with the work of Helmholz and Wundt (Handbook of Phsiologial Optics). Through the
work of Young, Maxwell and Helmholz, a trichromatic theory of color vision was estab-
lished. Wheatstone’s invention of the stereoscope (1938) brought the idea of stereoscopy
(found also in paintings traced back to the late Renaissance in Italy). Eleven years later,
Sir Brewer described a binocular camera and put the basis of stereoscopic photography. It
will take almost 50 years (1980s) until the correspondence problem was to be completely
solved in computer vision and photogrametry.

The period after the World War II was marked by renewed activity. J.J. Gibson (1950,
1979) pointed out the importance of optical flow and texture gradients in the estimation
of environment variables such as surface slant and tilt. Gibson, Olum and Rosenblatt
(1955) pointed out that the optical flow field contained enough information to determine
the egomotion of the observer relative to the environment. Early concerns about the
stability of structure from motion were jointly addressed in the work of Tomasi and
Kanade (1992). They showed that using multiple frames and the resulting wide baseline,
shape could be recovered quite accurately.

A conceptual innovation introduced in the 1990s was the study of projective structure
from motion. Faugeras (1992) shown that in this setting the camera calibration was not

17

Chapter 2

required. This discovery is related to the introduction of the use of geometrical invariants
in object recognition, as surveyed by Mundy and Zisserman (1992) and the development
of affine structure from motion by Koenderink and Van Doorn (1991). Due to progresses
in computer vision hardware and digital video, motion analysis found new applications
in 1990s.

Major early works in computer vision about inferring shape from texture are due to
Bajscy and Liebermann (1976) and Stevens (1981). Whereas their work targeted planar
surfaces, a comprehensive analysis for curved surfaces is due to Garding (1992) and Malik
and Rosenholz (1997).

Even earlier shape from shading was approached in computer vision. The first studies
can be traced back to Horn (1970). Together with Brooks (1989), he presented an ex-
tensive survey of the main papers in the area. Later shape from shading would drive the
development of raytracing for the computer graphics.

In the area of interfering shape from contour, after the key initial contributions of Huff-
man and Clowes (1971), it was Mackworth (1973) and Sugihara (1984) who completed the
analysis for polyhedral objects. Malik (1987) developed a labelling scheme for piecewise
smooth curved objects.

The seminal work in 3D object recognition was Roberts’ (1963) thesis at MIT. It is
considered to be the first PhD Thesis in computer vision and it introduced several key
ideas like edge detection and model-based matching. Edge detection was later superseded
by the work of Canny (1986). Significant improvements in the efficiency of pose estimation
by alignment (Lowe, Huttenlocher and Ullman in late 1980s) were obtained by Olson
(1994). Another major stand in research on 3D object recognition has been the approach
based on the idea of shapes described in terms of volumetric primitives, with generalized
cylinders introduced by Binford (1971) ,proving particularly popular.

While object recognition largely focused on issues arising from the projection of 3D
objects onto the 2D image plane, there was a parallel tradition in the pattern recognition
community that viewed the problem as one of pattern classification. The motivating
examples lie in domains such as optical character recognition, handwriting recognition
and later face recognition.

In the late 1980s, progresses in the hardware architecture and in the vision hardware
had started to make possible the first applications in the automotive domain.

2.2 Vision in Automotive Applications

According to the eSafety Working Group most of the driver assistance systems currently
in production or under research focus on the following functions: Antilock Braking Sys-
tem (ABS), Adaptive Cruise Control (ACC), Electronic Stability Program (ESP),
Electronic Stability Control for Commercial Vehicles (ESC), Airbag Electronic Con-
trol Unit (ECU), Automatic emergency brake assist (ANB), Lane departure
warning system (LDW), Attention control system, Traffic signs recognition,
Automatic distance control (ADC), Integral handling control, Assisted or au-

18

2.2 Vision in Automotive Applications

tomatic parking, Perceiving vehicle surroundings or Enhanced night vision.
The driver assistance functions in bold may profit from using a camera to sense the en-
vironment. Some of them need an outside looking vision sensor that delivers lane and
object information or validates the results of other sensors. No wonder that the amount
of research that was carried out in the field of driver assistance is extremely large. Almost
any vehicle supplier has its own research team, major component suppliers as well.

As presented in 2.1, computer vision applications have been around for a few decades
already. Still, in the automotive domain, they have only appeared in the last years and
most solutions are far from series production. Despite the increasing market demand, the
large number of application areas and active research the number of solutions that has
been reaching the consumer market has been limited.

This is surprising since the human driving activity relies almost exclusively on visual
perception of the infrastructure and of the surrounding traffic. Still, even now, active
in-car driver assistance systems like ACC/ADR mostly do not include vision sensors.
This is due to cost, performance and reliability issues. Ten years ago video cameras
were not a common commodity. This changed with the boom of mobile phones and
personal organizers. Microprocessor performance increased exponentially in the same
decade. In the last few years the computer industry focuses on creating lower power
solutions. Everyday researchers around the world create new or better algorithms and
solutions for driver assistance functions. All these suggest that it will not be long before
the field of vision applications in the automotive domain will literally skyrocket.

Indeed, few driver assistance systems in series production are already present on the
market, and many others have been announced. Lane departure warning, improved ACC
solutions by using vision and radar sensors, dead-angle surveillance, park assistance are
only a few to name.

The extreme requirements that have to be satisfied in the automotive domain have al-
ways limited the number of solutions. Maybe the most difficult requirements are given by
the realtime online operation and the non-controlled environment with extreme lightning
conditions. Availability and reliability play also a major role in the adoption of a system
by the market.

Still, these challenges have not succeeded in discouraging the research in the field, they
have only stimulated it. In the last years, the research in image processing in the automo-
tive domain (visible spectrum) has greatly increased as it can be seen from the number
of papers that are published annually at two of the most important conferences in the
field (see table 2.2).

2000 2001 2002 2003 2004
IEEE Intelligent Vehicle Symposium 25 (2) n/a 22 (1) 39 (1) 59 (3)
IEEE Intelligent Transportation Systems Con-
ference

7 (1) 13 (1) 20 (1) 18 (8) n/a

Intelligent Transportation Systems World
Congress

n/a n/a n/a 11 (0) 7 (2)

19

Chapter 2

The numbers in brackets are the number of published papers on the subject of color
image processing. This remained constantly low (with a single exception at ITSC 2004).
The reason is that the advantages of color processing were considered insignificant in
comparison with the difficulties that arise from the processing of almost 3 times more data
and using more complicated algorithms. This is slowly changing as technical advances
allow complex algorithms to run in real time.

As standalone sensors for automotive applications, vision systems accomplish mainly
two tasks: estimation of road geometry (including ego vehicle position) and object (ob-
stacle or infrastructure) recognition. Road or lane recognition deals with the estimation
of the lane parameters and the positioning of the ego vehicle in the lane. Object recog-
nition refers to the detection and eventually the identification of various objects on the
road (vehicles, pedestrians, etc.), off the road (poles, trees, etc.) or of the traffic signs,
traffic lights or other infrastructure elements. The survey in the next sections will focus
on lane and obstacle (car) detection since they are the subject of this thesis.

2.3 Lane Detection

The lane detection process in case of driver assistance systems is designed to (i) provide
position and orientation of the ego car within the driving lane (ii) provide details about
the road structure (current lane size is the most common requirement) and (iii) infer
a reference system for locating other vehicles or obstacles in the path of that vehicle.
Although some systems have been designed to work on completely unstructured roads
and terrain, lane detection has generally been reduced to the localization of specific
features, such as lane markings painted on the road surface.

Real-time road segmentation is complicated by the great variability of vehicle and envi-
ronmental conditions. Weather conditions, dirt on the road, shadows, reflections when the
sun is at low angle, and manmade changes (tarmac patches used to repair road segments)
pose many challenges both to the hardware and software of the video sensor. Therefore
robust segmentation is very demanding. Several features of structured roads, such as
color and texture, can be used to distinguish between road and non-road regions in each
individual frame. Furthermore, road tracking can facilitate road segmentation based on
previous information. This process, however, requires knowledge of the vehicle dynamics,
vehicle suspension, performance of the navigation and control systems, etc. Single-frame
analysis has been extensively considered not only in monocular but also in stereo vision
systems. The approaches used in stereo vision often involve independent processing on
the left and right images and projection of the result to the ground plane through the
Helmholtz shear equation, making the assumption of flat road and using piecewise road
geometry models (such as clothoids) [113], [112]. Furthermore, the inverse perspective
mapping can be used to simplify the process of lane as well as object detection [12]. The
inverse perspective mapping essentially re-projects the two images onto a common plane
(the road plane) and provides a single image with common lane structure. A more general
approach is presented in [81] using a generic 3D reconstruction of the vertical edge points

20

2.3 Lane Detection

and grouping the resulted lane delimiters in order to interpolate the clothoid model of
the lane.

In the case of a moving vehicle, the lane recognition process must be repeated continu-
ously on a sequence of frames. In order to accelerate the lane detection process, there is
a need to restrict the computation to a reduced region of interest (ROI). There are two
possible approaches. The first restricts the search on the predicted path of the vehicle by
defining a search region within a trapezoid on the image plane, which is located through
the perspective transform. The second approach defines small search windows located at
the expected position of the lane, separated by short spatial distances. A rough prediction
of the lane position at subsequent video frames can highly accelerate the lane detection
process.

Already existing lane recognition systems can be classified into 3 main classes [105]:
lane/road region detection, feature driven and model driven.

2.3.1 Segmentation-based Approaches

Segmentation-based approaches try to classify the image pixels into at least road and
no-road classes based on particular features. The typical solution involves: (i) feature
extraction, (ii) decorrelation and reduction, (iii) clustering and (iv) segmentation.

According to [101] [104] two features are mainly used in the process. For low resolution
images the intensity is the feature of choice, while for higher resolution pictures texture
can be used as well. In color image processing, the intensity may be replaced by various
combinations between R,G,B values. These are used to highlight the specific spectral
response of the road surface to light.

In [104] for each pixel the (R,G,B) value defines the feature vector. The classification
is performed directly on the (R,G,B) scatter diagram of image . The green band con-
tributes very little in the separation of classes in natural scenes and on the (R,B) plane
classification can be performed through a linear discriminant function, since road pixels
are well separated from the non-road pixels. The classification process in [104] is based on
piece-wise linear discriminant functions, in order to account for varying color conditions
on the road (shading, reflexions, etc). In [101] the road segmentation is performed us-
ing stochastic pattern recognition approaches. One can define many classes representing
road and/or non-road segments. Each class is represented by its mean and variance of the
(R,G,B) values. The normal distribution is used to model the extent of the color classes.

In either RBG or HSI/V spaces the apparent color of an object is not consistent. It
depends on the illuminant color, the reflectivity of the object, viewing geometry and
the sensor type (CMOS, CCD, 3CCD) and its parameters. Thus, color as a feature for
classification requires special treatment and normalization to ensure consistency of the
classification results. Once the road has been localized in an image, the color statistics of
the road and non-road models need to be modified in each class, adapting the process to
changing conditions [15]. The Hue, Saturation, Value (HSV) space may sometimes prove
more effective for the classification [5].

If the resolution of the acquired image permits it, the local texture of the image is the

21

Chapter 2

second feature used for the classification [101] [119] besides color/intensity. The texture
of the road is normally smoother than that of the environment, allowing for region sep-
aration in its feature space. The texture calculation is based on the amplitude of the
gradient operator at each image area. In [101] a normalized gradient measure based on
a high resolution and a low resolution (smoothed) image is used to handle shadow inte-
rior and boundaries. Texture classification can be performed through stochastic pattern
recognition techniques and unsupervised clustering. Since the road surface is poorly tex-
tured and distinct from objects and background, grey level segmentation has a chance of
discriminating the road area from other surfaces. Unsupervised clustering on the basis
of C-means algorithm and the Kohonnen self-organizing maps are employed in [49] on a
3D input feature space. Two of the dimensions of the space are given by the position
information and the third signifies the greylevel of each pixel under consideration. In
order words, the classifier groups together pixels having similar intensities and that are
close positioned in the image.

Normally, the classification step outputs a lot of small regions. Their size, depending
on the sensitivity of the segmentation, may prove too small for a later interpretation.
The classification step must be followed by region merging in order to combine similar
small regions under a single label. Region merging may utilize other information, such
as motion. A map of static regions obtained by simple frame differencing can provide
information about the motion activity of neighbouring patches candidate for merging [49].
Texture classification can also be effectively combined with color classification based on
the confidence of the two classification schemes [101].

2.3.2 Feature-driven Approaches

Feature-driven approaches involve two steps [105] (i) feature detection and (ii) feature
aggregation. To improve the results, some preprocessing of the image may be done, such
as noise suppression or enhancement of the features (for example edges).

More generally the feature detection part aims at extracting discontinuities in the
intensity. There are few approaches based on color [88] since the searched features (lane
markings) are by definition white elements on a dark background, therefore the major
part of their information as image feature will be encoded in the intensity component.
The benefits of color become important when dealing with yellow markings [89] or with
a green background [94] for non structured environment (all terrain vehicles).

Feature aggregation groups and organizes the detected features (edges for example)
into meaningful structures (lane markings) based on short-range or long-range attributes.
Short-range aggregation considers local lane fitting into the edge structure of the image.
A realistic assumption for all regular drive scenarios, in which the movement of the ego
vehicle follows the flow of the lane, is that the position of the lane markings does not
change radically from one image to the next in the sequence. Hence the previous detection
step will give the position of the search regions for the next image. In a more complex
approach [81] the size of the search areas is given from the previous estimations by using
the estimation of the measurement error by means of Kalman filtering. In these regions,

22

2.3 Lane Detection

after the features are detected, they are filtered and clustered. Long-range aggregation
is based on a line intersection model, assuming a smooth road curvature. Thus road
boundaries and lane markings are converging to a point in the image following the chosen
representation of the lane. This point is often called [105] “focus of expansions of the
camera system” (FOE).

[58] focuses on the detection of edges in the image and their organization in meaningful
structures (lane delimiters). The edge extraction is performed using a gradient operator.
The dominant edges are extracted based on the thresholding of the gradient magnitude
and refined through thinning operators. At this stage, the direction of edges at each pixel
can be computed based on the phase of the gradient and the curvature can be estimated
based on neighbourhood relations.

[12] detects lane markings through a linear edge detector. The input image is enhanced
using a morphological operator to improve the vertical edges. For each horizontal line,
the correspondences of edge points to a two-lane road model (three lane delimiters) are
found. The approach identifies the most frequent lane width along the image, through a
histogram analysis. All pairs of edge pixels (along each horizontal line) that fall within
some limits around this width are considered as lane markings. Corresponding pixels
on different scan lines are aggregated together as lines of the road. The Road Markings
Analysis (ROMA) system is based on aggregation of the gradient direction at edge pixels
in real-time [30]. To detect edges that are possible markings or road boundaries, it em-
ploys a contour following algorithm based on the range of acceptable gradient directions.
This range is adapted in real-time to the current state variables of the road model. Most
of the systems claim to be able to cope with discontinuities in the markings, some being
even able to cope with road intersections.

[82] detects brightness discontinuities and retains only long straight lines pointing
towards the FOE. For each edge point, the edge direction and the curvature of the neigh-
bouring line are preserved. A first elimination of edges based on thresholding of the
direction and curvature is done. This keeps only straight lines pointing towards the
specific direction of the FOE. The feature aggregation is performed through correlation
with a synthetic image that encodes the road structure for the specific FOE. The edge
detection can be efficiently performed through morphological operators [11] [6] [117].

[65] operates on search windows located along the estimated position of the lane
markings. For each search window, the edges of the lane marking are determined as the
locations of maximum positive and negative horizontal changes in illumination. These
edge points are aggregated as boundaries of the lane making (paint stripe) based on their
spacing, which should approximate the lane-marking width. The detected lanes at near-
range are extrapolated to far-range via linear least squares fit, to provide an estimated
lane-marking location for placing the subsequent search windows. The location of the road
markings along with the state of the vehicle are used as input to two different Kalman
filters that estimate the near and far-range road geometry ahead of the vehicle [65]. Prior
knowledge of the road geometry imposes strong constraints on the location and orientation
of the lanes.

Alternatively, other features that capture information about the orientation of the

23

Chapter 2

edges, but are less sensitive to extraneous edges, have been proposed. Along these lines,
the LANA algorithm [63] uses frequency-domain features rather than features directly
related to the detected edges. These feature vectors are used along with a deformable-
template model of the lane markers in a Bayesian estimation setting. The deformable
template introduces a priori information, whereas the feature vectors are used to compute
the likelihood probability. The parameters of the deformable template are estimated by
optimizing the resulting maximum aposteriori objective function [63]. Simpler linear
models are used in [5] for road boundaries and lane markings, with their parameters
estimated via a recursive least squares (RLS) filter fit to candidate edge points.

In general, feature driven approaches are highly dependent on the methods used to
extract features and they suffer from noise effects and irrelevant feature structures. In
practice, the strongest edges do not correspond to road edges, so that the detected edges
do not necessarily fit a straight-line or a smoothly varying model. Edges due to shadows,
vehicles or road imperfections can appear quite strong, highly affecting the line tracking
approach. To cope with these problems, the systems rely heavily on restricting the search
regions by using a standard lane width and/or tracking the results.

2.3.3 Model-driven Approaches

Model-driven approaches differ categorically between stereo and mono vision. While
stereo vision can use its 3D reconstruction capability to match a 3D model derived from
the image with the road model, mono vision to start with some assumptions about the
road (like flat road, simpler models with limited curvatures, small pitch angles, etc).

Model-driven approaches match a mathematical model defining the road lane to the
acquired image features. The parameters of the mathematical model are derived and
tracked. Road edges and lane markings are often approximated by circular arcs on a flat-
ground plane. More flexible approaches have been considered in [118] [111] using snakes
and splines to model road segments. In contrast to other deformable line models, [111]
uses a spline-based model that describes the perspective effect of parallel lines, considering
simultaneously both-side borders of the road lane. For small to moderate curvatures,
a circular arc is approximated by a second-order parabola, whose parameters must be
estimated. The estimation can be performed on the image plane [59] or on the ground
plane [111] by empoying first an inverse perspective mapping. Bayesian optimization
procedures are often used for the estimation of these parameters.

Model-based approaches for lane detection have been extensively employed in stereo
vision systems, where the estimation of the 3D structure is possible. Such approaches
assume a parametric model of the lane geometry. A tracking algorithm estimates the
parameters of this model from feature measurements in the left and right images [82].
In [97] the lane tracker predicts where the lane markers should appear in the current
image based on its previous estimates of the lane position. It then extracts possible lane
markers from the left and right images. These feature measurements are passed to a
robust estimation procedure, which recovers the parameters of the lane along with the
orientation and height of the stereo rig with respect to the ground plane. The Helmholtz

24

2.3 Lane Detection

shear equation is used to verify that candidate lane markers actually lie on the ground
plane [97]. The lane markers are modeled as white bars of a particular width against
a darker background. Regions in the image that satisfy this intensity profile can be
identified through a template matching procedure. In this form, due to the perspective
effect, the width of the lane markers in the image changes linearly as a function of the
distance from the camera, or the location of the image row considered. Thus, different
templates are used at different image locations along the length of the road, in both the
left and right images. Once a set of candidate lane markers has been recovered, the lane
tracker applies a robust fitting procedure using the Hough transform, to find the set of
model parameters which best match the observed data [97]. A robust fitting strategy
is absolutely essential in traffic applications, because on real highway traffic scenes the
feature extraction procedure almost always returns a number of extraneous features that
are not part of the lane structure. These extra features can come from a variety of sources
like vehicles on the highway, shadows or cracks in the roadway etc.

Another class of model-driven approaches involves the stochastic modelling of lane
parameters and the use of Bayesian inference to match a road model to the observed
scene. The position and configuration of the road, for instance, can be considered as
variables to be inferred from the observation and the a posteriori probability conditioned
on this observation [118] [36]. This requires the description of the road using small
segments and the derivation of probability distributions for the relative positions of these
segments on regular road scenes (prior distribution on road geometry). Moreover, it
requires the specification of probability distributions for observed segments, obtained
using an edge detector on the observed image, conditioned on the possible positions of
the road segments (a posteriori distribution of segments). Such distributions can be
derived from test data [36].

The 3D model of the road can also be used by modelling the road parameters as
differential equations that relate motion with spatial changes. Such approaches using
state variable estimation (Kalman filtering) are developed in [20] [22]. The road model
consists of skeletal lines pieced together from clothoids (i.e. arcs with constant curvature
change over their run length). The road assumptions define a general highway scene,
where the ground plane is flat, the road boundaries are parallel with constant width, the
horizontal road curvature changes slowly (almost linearly) and the vertical curvature is
insignificant. Assuming slow speed changes, or piecewise constant speed, the temporal
change of curvature is linearly related to the speed of the vehicle. Thus, the curvature
parameters and their association with the ego-motion of the camera can be formulated
into a compact system of differential equations, providing a dynamic model for these
parameters. The location of the road boundaries in the image is determined by three
state variables: the vehicle lateral offset from the lane center, the yaw angle of the vision
system in the road coordinate system and the horizontal road curvature. A Kalman
based filtering algorithm is employed in [74] to estimate the state-variables of the road
and reconstruct the 3D location of the road boundaries.

The previous model assumes no vertical curvature and no vertical deviation of the
camera with respect to the road. These assumptions imply a flat-road geometry model,

25

Chapter 2

which is of limited use in practice. Other rigorous models, such as the hill-and-dale and
the zero-bank models have been considered for road geometry reconstruction [104] [76].
The hill-and-dale model uses a flat-road model for the two roadway points closest to the
vehicle in the image, and forces the road model to move up or down from the flat-road
plane so as to retain a constant road width. The zero-bank assumption models the road as
a space ribbon generated by a central line-spine and horizontal line-segments of constant
width cutting the spine at their midpoint at a normal to the spines 3D direction. Even
more unstructured road geometry is studied in [23], where all local road parameters are
involved in the state-variable estimation process.

Model-driven approaches provide powerful means for the analysis of road edges and
markings. However, the use of a model has certain drawbacks, such as the difficulty in
choosing and maintaining an appropriate model for the road structure, the inefficiency in
matching complex road structures and the high computational complexity.

The Standard Mathematical Model for the Lane
The most common mathematical representation is based on the clothoid model (third

degree equation in the 3D coordinate system). Using a clothoid for both horizontal
and vertical curvature allows an accurate representation of all situations encountered
in highway scenarios [81]. Country roads are pushing the model to its limits, while
intersections require a more complex, piecewise representation (in which for example
every road entering the intersection can be modeled by the clothoid model).

A mono camera vision system is limited to the horizontal curvature since it has limited
reconstruction abilities (the common assumption is that the road is flat, i.e. no vertical
curvature).

In order to describe a lane, the lane width, car position and some other application
specific attributes (like marking type, color and so on) must be added to the mathematical
model for the clothoid in the 3D space (2.1).

X = c1 ∗
Z3

6
+ c0 ∗

Z2

2
+ tan(−α) ∗ Z + X0 (2.1)

In (2.1) the coefficients mean: X0 - position of the ego car in the lane; α - heading angle;
Z - the depth at which the horizontal position is computed; c0 - curvature; c1 - curvature
variation. The equation of the clothoid is presented in (2.1). If the vertical profile is
required then to this horizontal description a second clothoid is added to describe the
behavior of the road in the vertical plane.

Not all coefficients are used in driver assistance systems. Most of the time some the
following parameters are estimated:

- width of the lane
- horizontal curvature and curvature variation
- lateral displacement of the car with respect to the center of the lane (or vice versa)
- angles (yaw -yaw and yaw-rate can also be obtained from car electronics such as ESP-,

maybe pitch)
Lane departure warning systems use either the ”time to line crossing” (TLC) or the

comparison between current angles between the car projection and interpolations of de-

26

2.4 Object Detection

tected lane markings. Both of these values can be computed directly out of the image
coordinates [102], respectively [52].

In case of a lane keeping system the most relevant input is the lateral displacement.
The heading angle and/or the curvature can be used to stabilize the controller loop or to
improve the controller reaction.

The width, lateral displacement and curvature (sometimes also the curvature variation)
are used to associate objects detected with other sensors to a certain traffic lane.

2.4 Object Detection

Object detection can be carried out from a stationary camera (e.g. surveillance camera
installed on the highway infrastructure), from a mobile camera (installed in the vehicle)
or from a mobile aerial camera (satellite, airplane, etc.). Since the research carried out
on these topics is very broad, this state of the art will restrict itself to object detection
using mobile, in-vehicle camera(s). This is the typical setup for the autonomous vehicle
guidance solutions.

Object recognition has been explored by many different research areas in computer
vision. Roughly the relevant objects in the automotive applications can be categorized
into:

- passenger cars and trucks

- bicyclists and motorcyclists

- pedestrians

- lateral road delimiters (fences, poles, other infrastructures)

- road signs and traffic lights

- other on and off-road obstacles

Such solutions require object detection methods with different abstraction levels. The
vision system can facilitate the accurate localization of the vehicle with respect to its
environment, by means of matching observations (acquired images) over time, or matching
a single observation to a road model or even matching a sequence of observations to a
dynamic model.

Two major problems can be identified regarding the efficient recognition of road envi-
ronment, namely the restricted processing time for real-time applications and the limited
amount of information from the environment. For efficient processing the ROI needs to
be limited within each frame and process only relevant features within this ROI instead
of the entire image. Since the scene in traffic applications does not change drastically, the
prediction of the ROI from previously processed frames becomes of paramount impor-
tance. Several efficient methods presented in the following are based on dynamic scene
prediction using motion and road models. The problem of limited amount of information
in each frame stems from the fact that each frame represents a non-invertible projec-
tion of the dynamically changing 3D world onto the camera plane. Since single frames
encode only partial information, which could be easily misinterpreted, the systems for
autonomous vehicle guidance require additional information in the form of a knowledge-

27

Chapter 2

base that models the 3D environment and its changes (self/ego motion or relative motion
of other objects). It is possible from monocular vision to extract certain 3D information
from a single 2D-projection image, using visual cues and a priori knowledge about the
scene. In such systems, obstacle determination is limited to the localization of vehicles
by means of a search for specific patterns, possibly supported by other features such as
shape, symmetry, or the use of a bounding box [4], [100], [32]. Essentially, forward pro-
jection of 3D models and matching with 2D observations is used to derive the structure
and location of obstacles. True 3D modelling, however, is not possible with monocular
vision and single frame analysis.

The availability of only partial information in 2D images necessitates the use of robust
approaches able to infer a complete scene representation from only partial representations.
This problem concerns the matching of a low-abstraction image to a high-abstraction and
complexity object. In other words, one must handle differences between the representa-
tion of the acquired data and the projected representation of the models to be recognized.
A priori knowledge is necessary in order to bridge the gap between these two represen-
tations [33]. A first source of additional information is the temporal evolution of the
observed image, which enables the tracking of features over time. Furthermore, the joint
consideration of a frame sequence provides meaningful constraints of spatial features over
time or vice versa. [79] employs smoothness constraints on the motion vectors, which
are imposed by the gray-scale spatial distribution. Such form of constraints conveys the
realistic assumption that compact objects should preserve smoothly varying displacement
vectors. The initial form of integrated spatial-temporal analysis operates on a so-called
2 1 2D feature space, where 2D features are tracked in time. Additional constraints can
be imposed through the consideration of 3D models for the construction of the environ-
ment (full 3D space reconstruction) and the matching of 2D data (observations) with the
3D representation of these models, or their projection on the camera coordinates (pose
estimation problem). Such model information, by itself, enables the consideration and
matching of relative object poses [96].

With the latest advances in computer architecture and hardware, it becomes possible
to consider even the dynamic modelling of 3D objects. This possibility paved the way
for fully integrated spatial-temporal processing, where two general directions have been
proposed. The first one considers the dynamic matching of low-abstraction (2D image-
level) features between the data and the model. Although it keeps continuous track
of changes in the 3D model using both road and motion modelling (features in a 3
1 2D space), it propagates the current 2D representation of the model in accordance
with the current state of the camera with respect to the road [60]. Thus, it matches
the observations with the expected projection of the world onto the camera system and
propagates the error for correcting the current (model) hypothesis [22]. The second
approach uses a full 4D model, where objects are treated as 3D motion processes in space
and time. Geometric shape descriptors together with generic models for motion form the
basis for this integrated (4D or dynamic vision) analysis [21]. Based on this representation
one can search for features in the 4D-space [21], or can match observations (possibly from
different sensors or information sources) and models at different abstraction levels (or

28

2.4 Object Detection

projections) [33].
Some fundamental issues of object detection are considered and reviewed in this section.

Approaches have been categorized according to the method used to isolate the object from
the background on a single frame or a sequence of frames.

2.4.1 Image Thresholding

Although one of the simplest solutions, thresholding is quite an ineffective technique.
It is based on the notion that vehicles are compact objects having different intensity
values from their background. Thus, by thresholding intensities in small regions we can
separate the vehicle from the background. This approach depends heavily on the threshold
used, which must be selected appropriately for a certain vehicle and its background.
Simple thresholding techniques are also very sensitive with regard to the acquisition
noise. Adaptive thresholding can be used to account for light changes, but cannot avoid
the false detection of shadows or missed detection of parts of the vehicle with similar
intensities as its environment [86].

To aid the thresholding process, binary mathematical morphology can be used to aggre-
gate close pixels into a unified object [7]. Furthermore, gray-scale morphological operators
have been proposed for object detection and identification that are insensitive to lighting
variation [115].

A top/down approach is presented in [109]. This method first generates a hierarchy
of images at different resolutions. The region search begins at the top level (coarse to
fine). Compact objects that differ from their background remain distinguishable in the
lowresolution image, whereas noise and small intensity variations tend to disappear at this
level. Thus, the lowresolution image can immediately direct attention to the pixels that
correspond to such objects in the initial image. The selection of pixels is more complex
than simple thresholding, it may be done as a function of the intensity values of its
adjacent pixels, edge strength, or successive frame differencing for motion analysis [109].

2.4.2 Edge-based methods

The typical traffic scene contains the image of the rear of the preceding vehicles. These
objects are characterized by strong vertical edges and a multitude of both horizontal and
vertical edges in the region of backlights. Edge based methods exploit this property. They
can be applied to single images to detect the edge structure of even still vehicles [91].
Morphological edge-detection schemes have been extensively applied, since they exhibit
superior performance [3] [54] [31].

In traffic scenes, the results of an edge detector generally highlight vehicles as complex
groups of edges, whereas road areas yield relatively low edge content. Thus the presence
of vehicles may be detected by the edge complexity within the road area, which can be
quantified through analysis of the histogram [44].

More complex approaches group the edges together to form boundaries. The used
property is the vertical edges are linked by strong horizontal edges. In order to group the

29

Chapter 2

edges, they have to be defined as a standalone structure (lines usually) and a grouping
strategy must be chosen. Vertical edges are more likely to form dominant line segments
corresponding to the vertical boundaries of the profile of a road obstacle. Moreover, a
dominant line segment of a vehicle must have other line segments in its neighbourhood
that are detected in nearly perpendicular directions. Thus, the detection of vehicles
and/or obstacles can simply consist of finding the rectangles that enclose the dominant
line segments and their neighbours in the image plane [20]. To improve the shape of
object regions [67] [75] employ the Hough transform to extract consistent contour lines
and morphological operations to restore small breaks on the detected contours. Symmetry
provides an additional useful feature for relating these line segments, since vehicle rears
are generally contour and region-symmetric about a vertical central line [64].

Edge-based vehicle detection is often more effective than other background subtrac-
tion or thresholding approaches, since the edge information remains significant even in
variations of ambient lighting [31].

2.4.3 Space signature

In this detection method, the objects to be identified (vehicles) are described by their
characteristics (forms, dimensions, luminosity), which allow identification in their environ-
ment [41] [57]. [57] employs a logistic regression approach using characteristics extracted
from the vehicle signature, in order to detect the vehicle from its background.

Alternatively, the space signatures are defined in [19] by means of the vehicle outlines
projected from a certain number of positions (poses) on the image plane from a certain
geometrical vehicle model. A camera model is employed to project the 3D object model
onto the camera coordinates at each expected position. Then, the linear edge segments on
each observed image are matched to the model by evaluating the presence of attributes of
an outline, for each of the pre-established object positions (poses). In a similar framework,
[95] projects the 3D model at different poses to sparse 2D arrays, essentially encoding
information about the projected edges. These arrays are used for matching with the
image data.

Space signatures can also be identified in an image through correlation or template
matching techniques, using directly the typical gray-scale signature of vehicles [46]. Due
to the inflexible nature of template matching, a specific template must be created for each
type of vehicle to be recognized. This creates a problem, since there are many geometrical
shapes for vehicles contained in the same vehicle-class. Moreover, the template mask
assumes that there is little change in the intensity signature of vehicles. In practice,
however, changes in ambient lighting, shadows, occlusion, and severe light reflection on
the vehicle body panels generate serious variation in the spatial signatures of same-type
vehicles. To overcome such problems, the TRIP II system [19] [108] employs neural
networks for recalling space signatures, and exploits their ability to interpolate among
different known shapes [71].

Despite its inefficiencies, vehicle detection based on sign patterns does not require high
computational effort. Moreover, it enables the system to deal with the tracking process

30

2.4 Object Detection

and keep the vehicle in track by continuously sensing its sign pattern in real time.

2.4.4 Background substraction

This method is based on forming a precise background image and using it for separat-
ing moving objects from their background. The background image is specified either
manually, by taking an image without vehicles, or is detected in real-time by form-
ing a mathematical or exponential average of successive images. The detection is then
achieved by means of subtracting the reference image from the current image. Thresh-
olding is performed in order to obtain presence/absence information of an object in mo-
tion [109] [83] [4].

The background can change significantly with shadows cast by buildings and clouds,
or simply due to changes in lighting conditions. With these changing environmental
conditions, the background frame is required to be updated regularly. There are several
background updating techniques. The most commonly used are averaging and selective
updating. In averaging, the background is built gradually by taking the average of the
previous background with the current frame. If we form a weighted average between the
previous background and the current frame, the background is built through exponential
updating [43]. In selective updating, the background is replaced by the current frame
only at regions with no motion detected; where the difference between the current and
the previous frames is smaller than a threshold [43]. Selective updating can be performed
in a more robust averaging form, where the stationary regions of the background are
replaced by the average of the current frame and the previous background [31].

2.4.5 Inter-frame differencing

This is the most direct method of making immobile objects disappear and preserving
only the traces of objects in motion between two successive frames. The immediate
consequence is that stationary or slow-moving objects are not detected. The inter-frame
difference succeeds in detecting motion when temporal changes are evident.

However, it fails when the moving objects are not sufficiently textured and preserve
uniform regions with the background. To overcome this problem, the inter-frame differ-
ence is described using a statistical framework often employing spatial Markov random
fields [84] [1] [85]. Alternatively, in [84] the inter-frame difference is modeled trough a
two-component mixture density. The two components are zero mean corresponding to
the static (background) and changing (moving object) parts of the image. Inter-frame
differencing provides a crude but simple tool for estimating moving regions. This pro-
cess can be complemented with background frame differencing to improve the estimation
accuracy [56]. The resulting mask of moving regions can be further refined with color
segmentation [25] or accurate motion estimation by means of optical flow estimation and
optimization of the displaced frame difference [49] [56], in order to refine the segmentation
of moving objects.

31

Chapter 2

2.4.6 Time signature

This method encodes the intensity profile of a moving vehicle as a function of time. The
profile is computed at several positions on the road as the average intensity of pixels within
a small window located at each measurement point. The analysis of the time signature
recorded on these points is used to derive the presence or absence of vehicles [42]. The
time signal of light intensity on each point is analyzed by means of a model with pre-
recorded and periodically updated characteristics. Spatial correlation of time signatures
allows further reinforcement of detection. In fact, the joint consideration of spatial and
time signatures provides valuable information for both object detection and tracking.
Through this consideration, the one task can benefit from the results of the other in
terms of reducing the overall computational complexity and increasing the robustness of
analysis [2]. Along these lines, the adaptable time delay neural network developed for the
Urban Traffic Assistant (UTA) system is designed and trained for processing complete
image sequences [114]. The network is applied in the detection of general obstacles during
the course of the UTA vehicle.

2.4.7 Feature aggregation and object tracking

These techniques can operate on the feature space to either identify an object, or track
characteristic points of the object [74]. They are often used in object detection to improve
the robustness and reliability of detection and reduce false detection rates. The aggre-
gation step handles features previously detected, in order to find the vehicles themselves
or the vehicle queues (in case of congestion). The features are aggregated with respect
to the vehicles geometrical characteristics. Therefore, this operation can be interpreted
as a pattern recognition task. Two general approaches have been employed for feature
aggregation, namely motion-based and model-based approaches [84].

Motion-based approaches group together visual motion consistencies over time [84] [66]
[17]. Motion estimation is only performed at distinguishable points, such as corners [66]
[53], or along contours of segmented objects [98], or within segmented regions of similar
texture [5] [56] [2]. Line segments or points can also be tracked in the 3D space by
estimating their 3D displacements via a Kalman filter designed for depth estimation [49]
[84] [66] [17]. Model-based approaches match the representations of objects within the
image sequence to 3D models or their 2D projections from different directions (poses) [17].
Several model-based approaches have been proposed employing simple 2D region models
(mainly rectangles), active contours and polygonal approximations for the contour of the
object, 3D models that can be tracked in time and 4D models for full spatial-temporal
representation of the object [17] [34].

Following the detection of features, the objects are tracked. Two alternative methods
of tracking are employed in [74], namely numeric signature tracking and symbolic track-
ing. In signature tracking, a set of intensity and geometry-based signature features are
extracted for each detected object. These features are correlated in the next frame to
update the location of the objects. Next, the signatures are updated to accommodate

32

2.4 Object Detection

for changes in range, perspective, and occlusion. In general, features for tracking en-
code boundary (edge based) or region (object motion, texture or shape) properties of the
tracked object. Active contours, such as snakes and geodesic contours are often employed
for the description of boundaries and their evolution over the sequence of frames. For
region-based features tracking is based on correspondences among the associated target
regions at different time instances [84] [38].

In symbolic tracking, objects are independently detected in each frame. A symbolic
correspondence is made between the sets of objects detected in a frame pair. A time-
sequenced trajectory of each matched object provides a track of the object [74].

2.4.8 Optical flow

Approaches in this class exploit the fact that the appearance of a rigid object changes
little during motion, whereas the drastic changes occur at regions where the object moves
in and/or out of the background. The optical flow field u(x, t) is computed by mapping
the gray-value g(x− uδt, t− δt) recorded at time t− δt at the image point x− uδt onto
the gray-value g(x, t) recorded at location x at time t: The optical flow field encodes the
temporal displacement of observable gray-scale structures within an image sequence. It
comprises information not only about the relative displacement of pixels, but also about
the spatial structure of the scene. Various approaches have been proposed for the efficient
estimation of optical flow field [79] [45] [29] [61]. In general, they can be characterized as
(i) gradient-based (ii) correlation based (iii) feature-based and (iv) multigrid methods.

Gradient-based techniques focus on matching g(x − uδt) with g(x, t) on a pixel-by-
pixel basis through the temporal gradient of the image sequence. In most cases, the
intensity variations alone do not provide sufficient information to completely determine
both components (magnitude and direction) of the optical flow field u(x, t) [27].

Smoothness constraints facilitate the estimation of optical flow fields even for areas with
constant or linearly distributed intensities [45] [29] [61] [80]. Gradient-based techniques
yield poor results for poor-texture images and in presence of shocks and vibrations [37].
Under such conditions, correlation-based techniques usually derive more accurate results.
Correlation-based techniques search for the maximum shift around each pixel that max-
imizes the correlation of gray-level patterns between two consecutive frames. Such pro-
cedures are quite expensive in terms of computational complexity. Attempts to speed
up the computation at the cost of resolution often imply subsampling of the image and
computation of the motion field at fewer image points [37].

Feature-based approaches consider the organization (clustering) of pixels into crude
object structures in each frame and subsequently compute motion vectors by matching
these structures in the sequence of frames. A robust feature-based method for the es-
timation of optical flow vectors has been developed by Kories and Zimmermann [62].
Each frame is first subjected to a bandpass filter. Blobs representing local maxima and
minima of the greylevel are identified as features. The centroids of the detected blobs are
tracked through subsequent frames, resulting in optical flow vectors. A related technique
is considered in [106], which aims at matching areas of similar intensities in two con-

33

Chapter 2

secutive frames. To reduce the amount of computation, pixels of interest are segmented
prior to matching using background removal, edge detection or inter-frame difference.
The accuracy of these techniques is affected by sensor noise (quantization), algorithmic
disturbances and, more importantly, perspective distortions and occlusion resulting from
typical camera positions. Nevertheless, the methods are suitable for on-line qualitative
monitoring, operating at much faster speeds than human operators and without the prob-
lem of limited attention spans [106].

Multigrid methods are designed for fast estimation of the relevant motion vectors at
low resolution and hierarchical refinement of the motion flow field at higher resolution
levels [26]. The multigrid approach in [109] relies upon the organization of similar pixel-
intensities into objects, similar to the feature based approaches. This approach, however,
identifies object structures at low-resolution levels where it also computes a crude estimate
of the motion field from the low-resolution image sequence. The motion vector field
is refined hierarchically at higher resolution levels. A related approach is used in the
ACTIONS system, where the optical flow vectors are clustered in order to incrementally
create candidate moving-objects in the picture domain [27]. For a still camera, moving
objects are readily identified by thresholding the optical flow field. The detection of
moving objects in image sequences taken from a moving camera becomes much more
difficult due to the camera motion. If a camera is translating through a stationary
environment, then the directions of all optical-flow vectors intersect at one point in the
image plane, the focus of expansion or the epipole [27]. When the car bearing the camera
is moving in a stationary environment along a flat road and the camera axis is parallel
to the ground, the motion field (due to ego-motion) is expected to have almost quadratic
structure [37]. If another moving object becomes visible by the translating camera, the
optical flow field resulting from this additional motion will interfere with the optical flow
field of the ego-motion. This interference can be detected by testing if the calculated
optical-flow vectors have the same direction as the estimated ego-motion model vectors
[27] [37]. The detection of obstacles from a moving camera based on the optical flow field
is generally divided into two steps. The ego-motion is first computed from the analysis
of the optical flow. Then, moving or stationary obstacles are detected by analyzing the
difference between the expected and the real velocity fields [28] [66] [16]. These fields are
re-projected to the 3D road coordinate system using a model of the road (usually flat
straight road) [14] [24].

The estimation of ego-motion can be based on parametric models of the motion field.
For planar motion with no parallax (no significant depth variations), at most eight pa-
rameters can characterize the motion field. These parameters can be estimated by op-
timizing an error measure on two subsequent frames using a gradient-based estimation
approach [56] [47]. The optimization process is often applied on a multiresolution repre-
sentation of the frames, to provide robust performance of the algorithm [47]. When the
scene is piecewise planar, or is composed of a few distinct portions at different depths,
then the ego-motion can be estimated in layers of 2D parametric motion estimation. Each
layer estimates motion at a certain depth due to the camera and removes the associated
portions of the image. Image regions that cannot be aligned in two frames at any depth

34

2.4 Object Detection

are segmented into independently moving objects [47]. For more general motion of the
camera, the ego-motion effect can be decomposed into the planar and the parallax parts.

After compensating for the planar 2D motion, the residual parallax displacements in
two subsequent frames are primarily due to translational motion of the camera. These
displacements due to camera motion form a radial field centred at the epipole. Indepen-
dently moving objects can be recovered by verifying that the displacement at any given
point is directed away from the epipole [48]. The problem of recovering the optical flow
from time varying image sequences is ill-posed and additional constraints must be often
imposed to derive satisfactory solutions. Smoothness constraints stem from the fact that
uniformly moving objects possess slightly changing motion fields. Such constraints have
been used in a joint spatiotemporal domain of analysis [77]. [93] first calculates the optical
flow and after smoothing the displacement vectors in both the temporal and the spatial
domains, it merges regions of relatively uniform optical flow. Finally, it employs a voting
process over time in each spatial location regarding the direction of the displacement
vectors to derive consistent trends in the evolution of the optical flow field and, thus,
define consistently moving objects. In a different form, [70] starts from similarity in the
spatial domain. For each frame, it defines characteristic features (such as corners and
edges) and matches these features on the present and the previous frame to derive a list
of flow vectors. Similar flow vectors are grouped together and compared to the spatial
features, in order to verify not only temporal but also spatial consistency of detected
moving objects. In a similar form, [70] defines patches of similar spatial characteristics in
each frame and uses local voting over the output of a correlation-type motion detector to
detect moving objects. It also uses the inverse perspective mapping to eliminate motion
effects on the ground plane due to the ego-motion of the camera [70].

2.4.9 Motion parallax

When the camera is moving forward towards an object, the objects projection on the 2D
image plane also moves relative to the image coordinate system. If an object extends
vertically from the ground plane, its image moves differently from the immediate back-
ground. Moreover, the motion of points on the same object appears different relative
to the background, depending on the distance from the ground plane. This difference is
called motion parallax [16]. If the environment is constrained, e.g. motion on a planar
road, then differences observed on the motion-vector can be used to derive information
regarding the objects moving within the scene. If we use the displacement field of the
road to displace the object, a clear difference between the predicted and the actual posi-
tion of the object is experienced. In other words, all points in the image that are not on
the ground plane will be erroneously predicted. Thus, the prediction error (above an ac-
ceptable threshold) indicates locations of vertically extended objects in the scene [16]. If
we compensate the ego-motion of the camera, then independently moving (or stationary)
obstacles can be readily detected.

The parallax effect is used in a different form for obstacle detection in [103]. A stereo
rig is positioned vertically, so that one camera is located above the other. Obstacles

35

Chapter 2

located above the ground plane appear identical in the camera images, except from their
different location. On the other hand, figures on the road appear different on the two
cameras. In this configuration, an obstacle generates the same time signature, whereas
road figures generate different time signatures on the two cameras. Thus, progressive
scanning and delaying one of the camera signals make the detection of obstacles possible.
Nevertheless, the system relies on and is highly affected by brightness changes, shadows
and shades on the road structure.

2.4.10 Stereo vision

The detection of stationary or moving objects in traffic applications is a typical strength
of stereo vision systems. The disparity between points in the two stereo images relates
directly to the distance of the actual 3D location from the cameras. For all points lying
on a plane, the disparity on the two stereo images is a linear function of image coordi-
nates (Helmholtz shear equation). This Helmholtz shear relation highly simplifies the
computation of stereo disparity. It may be used to re-map the right image onto the left,
or both images onto the road coordinate system, based on the given model of the road
in front of the vehicle (e.g. flat straight road) [68] [113] [97] [4] [18]. All points on the
ground plane appear with zero disparities, whereas residual disparities indicate objects
lying above the ground plane and can become potential obstacles. A simple threshold
can be used to identify these objects in the difference of the re-mapped images.

Besides the projection of images onto the ground plane, stereo vision can be effectively
used for the reconstruction of the 3D space ahead of the vehicle. This reconstruction
is based on correspondences between points in the left and right images. Once this has
been accomplished, the 3D coordinates of the matched point can be computed via a
reprojection transform. The approach in the Path project [97] considers such a matching
of structural characteristics (vertical edges). Candidate matches in the left and right
images are evaluated by computing the correlation between a window of pixels centred
on each edge [97]. The matching can also be based on stochastic modelling, which can
take under consideration the spatial intra and intercorrelation of the stereo images [72].
The re-projection transform maps the matched points onto the road coordinate system.
For this purpose it is necessary to know the exact relationship among the camera, vehicle
and road coordinate systems. Under the assumption of a flat road, this reprojection
process is quite straightforward (triangulation transform). In the case of general road
conditions, however, the road geometry has to be estimated first in order to derive the
re-projection transform from the camera to road coordinate systems. This estimation
requires the exact knowledge of the state of the vehicle (yaw rate, vehicle speed, steering
angle, etc.), which can be provided by appropriate sensors of the vehicle. Using this
information, the road geometry can be estimated from visual data [65] [21].

36

2.4 Object Detection

2.4.11 Inverse perspective mapping

A promising approach in real-time object detection from video images is to remove the
inherent perspective effect from acquired single or stereo images. The perspective effect
relates differently 3D points on the road (world) coordinate system with 2D pixels on
the image plane, depending on their distance from the camera. This effect associates
different information content to different image pixels. Thus, road markings or objects of
the same size appear smaller in the image as they move away from the camera coordinate
system. The inverse perspective mapping aims at inverting the perspective effect, forcing
homogeneous distribution of information within the image plane.

In order to be able to remove the perspective effect it is essential to know the image
acquisition structure with respect to the road coordinates (camera position, orientation,
etc.) and the road geometry (the flat-road assumption highly simplifies the problem).
The inverse perspective mapping can be applied to stereovision [3], by re-mapping both
right and left images into a common (road) domain. Using this approach, the localization
of the lane and the detection of generic obstacles on the road can be performed without
any 3Dworld reconstruction. The difference of the re-mapped views transforms relatively
square obstacles into two neighbouring triangles corresponding to the vertical boundaries
of the object, which can be easily detected on a polar histogram of the difference image.

2.4.12 3D modelling and forward mapping

The previous approaches reflect attempts to invert the 3D projection for a sequence of
images and reconstruct the actual (world) spatial arrangement and motion of objects. The
class of model-based techniques takes a different approach. It tries to solve the analysis
task by carrying out an iterative synthesis with prediction error feedback using spatial-
temporal world models. Model based approaches employ a parameterized 3D vehicle
model for both its structural (shape) characteristics and its motion [17] [34]. Considering
first a stationery camera, two major problems must be solved, namely the model matching
and the motion estimation. The model matching process aims at finding the best match
between the observed image and the 3D model projected onto the camera plane. This step
is essentially a pose identification process, which derives the 3D position of the vehicle
relative to the camera coordinates, based on 2D projections. The vehicle model often
assumes straight line segments represented by their length and mid point location [60].
The line segments extracted from the image are matched to the model segments projected
on the 2D camera plane. The matching can be based on the optimization of distance
measures between the observation and the model; the Mahalanobis distance is used in [60].
The motion estimation process is based on models that describe the vehicle motion. The
motion parameters of this model are estimated using a time recursive estimation process.
For instance, the maximum a posteriori (MAP) estimator is employed in [60], whereas the
extended Kalman filter is used in [90]. The estimation of motion and shape parameters
can be combined in a more general (overall) state estimation process [90].

In the case of a moving camera, the changing views of objects during self or ego-motion
reveal different aspects of the 3D geometry of objects and their surrounding environment.

37

Chapter 2

It becomes obvious that knowledge about the structure of the environment and the dy-
namics of motion are relevant components in real-time vision. In a computerized system,
generic models of objects from the real world can be stored as three-dimensional structures
carrying visible features at different spatial positions relative to their center of gravity.
From the ego-motion dynamics, the relative position of the moving vehicle and its cam-
era can be inferred. From this knowledge and applying the laws of forward projection
(which is done much more easily than the inverse), the position and orientation of visual
features in the image can be matched to those of the projected model [22] [23] [85]. In
a different form, [22] models the remaining difference image from two consecutive frames
after ego-motion compensation as a Markov random field (MRF) that incorporates the
stochastic model of the hypothesis that a pixel is either static (background) or mobile
(vehicle). The MRF also induces spatial and temporal smoothness constraints. The op-
timization of the energy function of the resulting Gibbs posterior distribution provides
the motion-detection map at every pixel [85].

The dynamic consideration of a world model allows not only the computation of present
vehicle positions, but also the computation of the effects of each component of the rela-
tive state vector on the vehicle position. This information can be maintained and used
for estimating future vehicle positions. The partial derivatives for the parameters of each
object at its current spatial position are collected in the Jacobian matrix as detailed infor-
mation for interpreting the observed image. The ego-motion dynamics can be computed
from the actuators of the moving vehicle. The dynamics of other moving obstacles can
be modeled by stochastic disturbance variables. For simplicity, the motion of obstacles
can be decomposed into translation and rotation over their center of gravity. Having this
information, we can proceed with a prediction of the vehicle and obstacles states for the
next time instant, when new measurements are taken.

If the cycle time of the measurement and control process is small and the state of the
object is well known, the discrepancy between prediction and measurement should be
small. Therefore, a linear approximation to the non-linear equations of the model should
be sufficient for capturing the essential inter-relationships of the estimation process [22].

Moreover, for linear models the recursive state estimation is efficiently performed
through least-square processes. Thus, the spatial state estimation through vision can
be performed through recursive least squares estimation and Kalman filtering schemes,
where the Jacobian matrix reflects the observed image variation. By applying this scheme
to each object in the environment in parallel, an internal representation of the actual envi-
ronment can be maintained in the interpretation process, by prediction error feedback [22].
A Kalman filter can be used to predict the vector of the state estimates based on the
vectors of measurements and control variables. The measurement equation has to be
computed only in the forward direction, from state variables (3D world) to measurement
space (image plane). This approach avoids the ill-posed approximation of the non-unique
inverse projection transform, through the fusion of dynamic models (that describe spatial
motion) with 3D shape models (that describe spatial distribution of visual features). The
forward projection mapping is easily evaluated under the flat-road model [22].

Other road models, including the Hill-and-Dale, Zero-Bank and Modified Zero-Bank

38

2.5 Color Vision - Short Overview

models have been considered along with the inverse and/or forward mapping [76] [23]
[104].

2.5 Color Vision - Short Overview

The study of the perception of color is historically intertwined with the study of the
physical nature of light. The early discoveries in optics were made on the basis of direct
observation, sometimes confounding the effects of perception with the physical nature of
light.

The very pioneers in this research area [8] were Newton with his color wheel (which
resembles a section through the HSI cone), Young with ”On the theory of light and
colors” [116], Brewster with the first theory stating that three properly chosen colors of
light when mixed in careful proportions are all that is necessary to reproduce all color
sensations (i.e. metameric substitution) [9], Helmholtz with ”On the theory of compound
colours” [107], Grassman who invented vector and tensor algebra demonstrating that for
every spectral color there exists some other opponent color in the spectrum which when
mixed with the first color in the correct proportions will produce white light [39] and
finally Maxwell with ”Experiments on colour, as perceived by the eye, with remarks on
colour–blindness” [73].

First Maxwell defined the equations of light acting like a wave and then Einstein suc-
ceeded in showing that light also behaves as a particle, a photon. Each photon carries a
particular packet, or quantum, of energy which is related to the wavelength of the light
in Maxwell equation. These quanta of energy are often considered to be one dimensional
numbers. In fact, it can be shown that a single photon cannot be represented as a one-
dimensional number. The second dimension is commonly thought as a phase angle or as
a polar orientation.

A light source will emit photons with various specific energy quanta depending on the
potential energy changes in the electron configurations in the atomic structure of the light
emitting substance. The resulting light spectrum is usually not uniform, since either the
source or the transport medium usually favour parts of the spectrum while absorbing the
others. The reflecting surface has its own absorption spectrum. Altogether they cause
that the light reaching the eye from a certain surface is composed of a distribution of
photons of various energy quantum values. This distribution is interpreted during the
process of visual perception and it is assigned a single subjective value - a color. Colors
do not exist independently, they a by-product of perception.

2.5.1 Mapping the Spectrum onto Perceptual Color Space

As Maxwell, Helmholz and many others have shown, a variety of spectral distributions of
light can produce perceptions of color that are indistinguishable from one another. The
visual perceptual system is thus mapping a high-dimensional input, the distribution of
energy values of the photons arriving at each point of the retina, onto a low dimensional

39

Chapter 2

output where each point in the visual scene is assigned a single color. Obviously, infor-
mation is being lost in the process, but it seems reasonable to consider that the visual
system tries to preserve as much as possible from the useful information.

The characteristics of the spectrum of light have been closely and carefully studied.
However, when it comes to perception of color and the representation of the color spaces
there are still enough questions left without an answer [8]. Maybe the most important
of them is how many dimensions should the color space have? Until the work of Neitz
and colleagues (1990-1993), it was thought that the human retina has three types of
cones. If the response function for each cone is linearized with respect to each other
and the resultant color is a linear combination of cone outputs and no other information
(like position of the cone) is used, than the resulting space has to have three dimensions.
Recent research suggests that all prerequisites do not hold. The work of Vrhel, Gershon
and Iwan (1994) suggest that at least four principal components are necessary to reduce
and than reproduce complex spectral data from real world with reasonable accuracy. This
result is an indication that the perceptual color space has at least 4 dimensions. In fact,
Vrhel’s analysis notes that substantial accuracy is once again gained when a fifth principal
component is added as a basis vector for these reflectance spectra.

2.5.2 Color Spaces used in Computer Vision

Early color spaces had only two components. They largely ignored blue light because the
added complexity of a 3-component process provided much less of a marginal increase in
fidelity than the jump from monochrome to 2-component color. Some examples are RG
for early Technicolor film and RGK for early color printing.

In computer vision, color spaces are mostly limited to 3 dimensions. Not only because
of performance consideration, but also because of another practical reason. Currently the
overwhelming majority of imaging devices are built around RGB sensors (either using
Bayer patterns or optical 3 CDD systems). Therefore the source image is mostly rep-
resented in the 3 dimensional RGB color space for color acquisition systems. A lot of
research has focused around RGB color space and derivates from it, like ratios between
the three primary colors. Still the RGB space has one major disadvantage as it does not
have a single axis to represent the color. When speaking of color in RGB, one has to take
into account either all three components or some combination of them. This limitation is
solved in other color spaces. One advantage of the RGB space is that since most source
images are represented in it, no further conversion is necessary for the processing.

The CMYK (cyan, magenta, yellow and black) space uses subtractive color mixing
as in the printing process, describing what kind of inks need to be applied so the light
reflected from them produces a given color. It is from the research point of view just a
complementary color space to RBG. All advantages and disadvantages of RGB space are
encountered in the CMYK space as well.

YIQ is used in NTSC television broadcasts for historical reasons. YIQ stores a lumi-
nance value with two chrominance values, corresponding approximately to the amounts
of blue and red in the color. It corresponds closely to the YUV scheme used in PAL

40

2.5 Color Vision - Short Overview

television except that the YIQ color space is rotated with 33 grades with respect to the
YUV color space. The YDbDr scheme used by SECAM television is rotated differently.
All of these three spaces are optimized for the way color is transmitted and displayed in
television and are not largely used in computer vision in this form. However since they
are efficient for the compression of signals, some of their derivatives are used in image
compression algorithms. For example, YPbPr is a scaled version of YUV. It is most
commonly seen in its digital form, YCbCr, used widely in video and image compression
schemes such as MPEG and JPEG.

HSV is often used in publishing and new media by content creators because it is often
more natural to think about a color in terms of hue and saturation than in terms of
additive or subtractive color components. HSV stores a hue value, a saturation value and
an intensity value. HLS is quite similar to HSV, with lightness replacing the intensity
value. Both color spaces eliminate the major problem of RGB by representing the color
on a single axis (Hue). They have their specific disadvantages that derive from the fact
that no physical imaging device is supporting them. This leads to conversion formulas
that have an impact on both the definition of space and the accuracy of values that can
be derived from the source RGB image as shown in [40]. The HSV/HLS representations
suffer from some problems, such as presence of unstable singularities and non-uniform
distributions of their components, as described by [55]. Nevertheless, they can be more
intuitive than the RGB representation, and could reveal image features which are not
clearly visible in this representation. Therefore they have been widely adopted by the
scientific community doing research on color computer vision.

The problems of all color spaces presented until now led to research in the direction of
a color spaces more suitable for image processing [40]. Still their adoption is very limited
and therefore will not be presented here.

2.5.3 Active Research in Color Vision for Active Driver Assistance
Systems

The major research areas in which color vision proved its specific advantages in the auto-
motive domain are (i) detecting and interpreting the specific color manmade structures
present on the road (like yellow markings, road signs, etc.), (ii) shadow detection and
removal, (iii) object detection and (iv) detection and removal of the surrounding back-
ground based on its color.

Detection and interpretation of the specific color manmade structures present on the
road is a very large subject that includes at least traffic sign recognition, information-
shield recognition, yellow marking recognition, controlled environment segmentation, etc.
Mostly all of these methods used two steps: segmentation of the image in some color
space (RGB, HSI and YUV are the most used) and consequently, recognition of the
objects using form and color information. Color segmentation is treated below, along
with the object detection. Since this thesis does not include any of these methods, except
for the yellow lane recognition (and in this case there are very few available references),
these methods will no be presented in detail.

41

Chapter 2

Shadow detection and removal remains a difficult task as long as the scene geome-
try, composition of the materials and the complete characterization of the flux of light
through the scene are not known in detail. In the automotive environment all of these
prerequisites are not met. Therefore distinguishing shadows from changes in material
color or reflectance remains a very challenging task. The first solutions were based on
simple thresholding of the intensity (or brightness) of the local image areas [78] [110].
Later, when color processing was available on a larger scale, it became obvious that the
color information is a crucial key in the shadow recognition algorithms. One of the most
extensive papers on this area is [35]. Both color information and geometry are analysed
as input of the shadow recognition process. The color space used in [35] is the RGB space.
Spectral responses are computed using ratios between R, G und B components. Another
method of detecting shadows using color information, but this time in the HSI/V spaces
is the one used in [94]. The property used, that shadows only modify the I component
of the space, applies to chromatic surfaces, but does not always hold on concrete (gen-
erally speaking monochromatic) surfaces, where all three components of the space suffer
significant modifications.

Object detection in automotive scenes using color is relative new. Segmenting images
based on color information has been around since the first color images were acquired.
Still, bringing a color segmentation algorithm to fulfil the real time requirements of the
automotive industry was a difficult task. The first step in recognizing vehicles moving on
the road surface is to segment the image - in other words to classify each pixel in an image
into one of a discrete number of color classes. The leading approaches to accomplishing
this task include linear color thresholding, nearest neighbour classification, color space
thresholding and probabilistic methods. Linear color thresholding works by partitioning
the color space with linear boundaries (e.g. planes in 3 dimensional spaces). A particular
pixel is then classified according to which partition it lies in. This method is convenient
for learning systems such as neural networks, or multivariate decision trees [10]. A second
approach is to use nearest neighbour classification. Typically several hundred preclassi-
fied exemplars are employed, each having a unique location in the color space and an
associated classification. To classify a new pixel, a list of the K nearest exemplars is
found, then the pixel is classified according to the largest proportion of classifications of
the neighbours [13]. Both linear thresholding and nearest neighbour classification provide
good results in terms of classification accuracy, but do not provide realtime performance
using “off the shelf” hardware. Another approach is to use a set of constant thresholds
defining a color class as a rectangular block in the color space [50]. This approach per-
forms well, but is unable to take advantage of potential dependencies between the color
space dimensions. A derivative of the constant thresholding has been implemented in
hardware by Newton Laboratories. Their product provides color tracking data at real-
time rates, but is significantly more expensive than “pure software approaches” on general
purpose hardware. A final related approach is to store a discretized version of the entire
joint probability distribution [92]. So, for example, to check whether a particular pixel
is a member of the color class, its individual color components are used as indices to a
multidimensional array. When the location is looked up in the array the returned value

42

2.5 Color Vision - Short Overview

indicates probability of membership. This technique enables a modelling of arbitrary
distribution volumes and membership can be checked with reasonable efficiency. The
approach also enables the user to represent unusual membership volumes (e.g. cones or
ellipsoids) and thus capture dependencies between the dimensions of the color space. The
primary drawback to this approach is the high memory cost for speed the entire proba-
bility matrix must be present in RAM-. Once the color image is segmented, the obtained
regions are identified as objects based on their form, position, motion or structure. The
algorithms are similar to the greyscale algorithms that were detailed in 2.4.

Background detection and substraction is used in many driver assistance approaches
mostly under two different forms. The first is to “black-out” the detected background
(render it insignificant by setting the pixels to a neutral value; black or white for example
are commonly used). Consequently, the algorithms process the image normally. The
latter is to used regions of interest in the algorithm definition so that the algorithm does
not process the detected background. Background detection relies normally on multiple
clues like texture, color, position in the image, etc. Since the background detection is not
treated in this work, the existing state of the art methods will not be presented in detail.

43

Chapter 2

44

3 Image Segmentation in HSI, Lane
and Object Recognition

3.1 Generics

3.1.1 Motivation

Color vision was around for more than a few decades. Mostly due to hardware limitations
and sensor costs the applications in the automotive domain remained very limited.

Nowadays both limitations are almost overcome by the development of hardware. The
mobile phone market is driving down the costs for color imaging sensors and optical
devices (most cameras for such mobile device are supporting the VGA standard and
a limited zoom factor) while current embedded systems reached computing powers that
were until shortly hard to imagine except for personal computers (current low-power MIPS
based processors running at 300 MHz - 1Ghz use 0.5 - 3 Watts, e.g. AMD Alchemy/Geode,
Intel XScale or Motorola PowerPC solutions).

In the near future, both hardware and sensor costs limitations will be made redun-
dant and the color vision sensors together with the processing hardware will be largely
available. This will make them a common choice for comfort oriented driver assistance
applications. Even more, the automotive industry in Europe is increasingly faced with
safety regulations. In order to comply with them, the OEMs will need to integrate sen-
sors able to perform classification of objects and to use multisensorial based approaches.
In both these scenarios the color camera will be a better choice than a greyscale one,
provided that the research and development of the processing algorithms will be able to
keep the pace with the market developments.

The current research on color vision for the automotive industry is limited as it can be
seen from the number of papers presented at the major conferences in the last years. This
work tries to fill in the gap by developing a complete, stand alone vision system targeting
automotive applications. Its primary focus is the development of novel methods for traffic
lane detection and object detection (cars, trucks) based on the color information. Due
to the multitude of existing solutions based on greyscale vision, a second focus is the
study of the improvements for already existing methods using the additional information
provided by the saturation and hue components. Besides color vision, another focus for
this work is the cognitive approach taken, instead of the typical mathematical models.
The scene is first interpreted based on existing knowledge about the environment and
only at the very end is the 3D conversion performed. This allows for more flexible and
less demanding requirements regarding the camera calibration and for an easier future

45

Chapter 3

development of the system.

3.2 Image Segmentation Based on SI Metrics

3.2.1 HSI Space Characteristics

The color space chosen is the (H)ue (S)aturation (I)ntensity. The Hue Saturation Value
space is very similar and can be substituted to the HSI without changes in the described
algorithms. The minimal gain due to the improved contrast in the value component is
not noticeable. The computation of the intensity has the advantage of mediating the
noises present in a singular axis in the original RGB space (particularly noticeable in case
of 3CCD systems). The transformation from the source RGB space to the HSI space is
performed with the well known formulas [69]:

I =
R + G + B

3
(3.1)

S = 1− 3

R + G + B
∗min(R, G,B) (3.2)

H = arccos

 1
2
∗ [(R−G) + (R−B)]√

(R−G)2 + (R−B)(G−B)

 (3.3)

if B > G, then H = 2 ∗ π −H.
The conversion process from RGB to HSI is similar to a transformation from rectangular

to polar coordinates. One first places a new axis in the RGB space between (0, 0, 0) and
(1, 1, 1). This axis passes through all the achromatic points (i.e. those with R = G = B),
and is therefore called the achromatic axis. One then chooses a function I(R, G, B) which
calculates the brightness, luminance or lightness of color. The form chosen for I defines the
shape of the iso-brightness surfaces. The iso-brightness surface K contains all the points
with a brightness of Ik, i.e. all the points satisfying the relation I(R,B,G) = Ik. These
iso-brightness surfaces are then projected onto a plane perpendicular to the achromatic
axis and intersecting it at the origin, called the chromatic plane as it contains all the
color information. The hue and saturation or chroma coordinates of each point are then
determined within the plane, where the hue corresponds to the angular coordinate around
the achromatic axis, and the saturation or chroma corresponds to a distance from the
achromatic axis.

To visualise the shape of the resulting space, the points of each iso-brightness surface
K are projected onto a chromatic plane intersecting the achromatic axis at K. The solid
corresponding to a color space is constructed out of the sub-regions of each chromatic
plane containing projected points. The form of this solid depends on the brightness
function [40].

The common representation of the HSI space found in literature is the double cone
representation. Due to the fact that this representation does not cover the complete

46

3.2 Image Segmentation Based on SI Metrics

(a) Theoretical HSI Space (double cone) (b) RGB Color Space

Figure 3.1: Theoretical HSI Space and RGB Spaces

HSI space as obtained from the conversion formulas, it is often extended to a cylindrical
representation.

The sensor of choice in typical automotive applications is an RGB sensor (CCD or
CMOS) with an 8 bit signal for each channel, i.e. the RGB 24 bit format. The HSI
image has to be obtained from the RGB one by applying the conversion formulas. Since
the R, G, B elements are represented on 8 bit, they can take integer values in the range
0 to 255. Therefore the transformation to HSI coordinates will lead to a subset of the
theoretical HSI color space. The form of this subset of the HSI space is relevant in order
to understand its properties.

To plot the form of the HSI space, all 2563 possible (R, G, B) input triplets were
generated and then transformed to HSI using the formulas in (3.1) - (3.3). The three
axes of the space are X = S ∗ cos(H), Y = S ∗ sin(H), Z = I.

In fig. 3.2 is presented the form of the HSI Space projected on the ZY plane (Z axis is
Intensity, Y axis is Saturation * sin(Hue)). As it can be seen, if in the upper part of the
figure the values converge to the I = 255, S = 0 point. In the lower part the values are not
converging to a defined point, but are spread in the theoretical cylindrical space. This

47

Chapter 3

Figure 3.2: HSI Space Obtained from 24 Bit RGB

particularity of the HSI Space could be also formulated ”for the lower intensity region,
the saturation values do not converge to 0, but are exhibiting high values”.

As seen from fig. 3.2, one particularity is that for the upper half of the space (intensity
values higher that 0.5) the saturation will converge respecting the known conical repre-
sentation. For the lower half of the space (intensity values lower than 0.5) this property
does not hold anymore and the saturation takes large values.

Due to the integer input values, the obtained HSI points are sparse for the low intensity
region (as it can be also seen from the lower part of the fig. 3.2). For example the
RGB triplet (0, 1, 1) gives S = 1 (maximum possible value) while the triplet (1, 1, 1)
gives 0 (minimum possible value). Both triplets represent very dark (almost black) image
elements that are practically indistinguishable for the human eye. These extreme changes
in the saturation element are affecting only dark image areas. This is another important
particularity of the HSI values generated from digital RGB images.

There are multiple ways to deal with these issues. One is to accept as default in the
algorithms that if I is below a certain threshold, than the S component is either invalid
or has higher values than expected. This leads to somehow more complicated algorithms,
but their complexity remains manageable. Another solution is to replace the formulas in
the low-intensity cases with predefined values for the saturation. This will not require
any special handling in the algorithms, but the used space even if related to HSI, will
not be identical anymore, therefore the solution cannot be compared to the ones based
on the HSI/HSV representations.

3.2.2 Projection of Road Scenes in HSI Space

In order to be able to perform a segmentation in the HSI space, at least the following
questions must be answered:

(i) Where are located the features to extract in the HSI space?
(ii) Which of the 3 dimensions of the space are most relevant to the segmentation

process?

48

3.2 Image Segmentation Based on SI Metrics

(a) Original (b) Hue

(c) Saturation (enhanced) (d) Intensity

Figure 3.3: Sample Image and its H, S, I components

(iii) What is the function that can be used as weighting function for the image points?

(iv) What is(are) the value(s) of thresholds in the segmentation process?

In order to answer these four questions some characteristics of the typical road scenes
in the HSI space are analyzed. Most of the analysed scenes are highway traffic scenarios.
The reason is that the system was designed for a first application as a sensor in a highway
assistant based on a multi-sensor fusion approach. The analysis is performed on a typical
scene. It is done gradually starting with the intensity information, then saturation, their
combination and finally extended to the whole HSI space. The results are then generalized
and applied to different illumination conditions and different traffic scenes.

The data from fig. 3.3 is analyzed in the next sections. A low contrast image, with re-
spect to color information, was chosen on purpose to show the robustness of the methods.
The saturation values had to be multiplied by 4 (saturated to 255 in case of overflow) for
the sake of readability on printed material.

49

Chapter 3

Projection of the image points on the I axis
(histogram)

-500

0

500

1000

1500

2000

2500

3000

3500

0 15 30 45 60 75 90 105 120 135 150 165 180 195 210 225 240 255

Intensity

N
um

be
r o

f P
oi

nt
s

(a) Intensity

Projection of the image points on the S axis
(histogram)

-2000

0

2000

4000

6000

8000

10000

12000

0 15 30 45 60 75 90 105 120 135 150 165 180 195 210 225 240 255

Saturation

N
um

be
r o

f P
oi

nt
s

(b) Saturation

Figure 3.4: Histograms of the I, S Values of Image Points

Looking at the three components of the color image in fig. 3.3, the following conclusions
can be drawn:

- intensity carries the most information (this comes to no surprise since most of the
infrastructure is monochromatic and the human eye uses form and position besides color
to identify and track objects in its field of view)

- saturation when well defined has small values (the remarks about the artificially
saturated dark pixels from the previous section are confirmed on the saturation image)

- hue data alone is extremely hard to interpret even for a person who has already seen
the original picture (hue alone does not carry enough information, if combined with the
saturation the image would have been recognizable).

Unfortunately this situation is commonly encountered in automotive scenes. This is
also one of the main reasons that make color processing seem not to give any advantage
over the more common encountered greyscale approaches. In the next paragraphs I and
S are analyzed separately and then together to find out how they can be combined to
deliver better information than the intensity alone.

Projecting the Points on the I Axis

One observation has to be made before starting the analysis. The simple arithmetic
mean used to compute I from the original R,G,B values has the tendency to decrease
the contrast of the obtained greyscale figure. This effect is normally noticed as a more
compact histogram. Other algorithms (namely luminance, brightness and value) have
been tried in order to avoid reaching false conclusions. Still, the conclusions remained
the same in all cases. Therefore, the arithmetic mean is used for I in this work.

It can be observed from fig. 3.4(a) that the task of a greyscale algorithm is far from
being an easy one. The regions representing the vehicles in the scene are overlapping

50

3.2 Image Segmentation Based on SI Metrics

with the ones carrying the lane marking information and with those that are belonging
to the road information. There is only one region on the histogram that has a relatively
clear correspondence in the picture. It is situated at the right of the histogram around
the values of 180. It corresponds to the lane markings. Still, the two vehicles having
reflex-silver metallic color (the near Golf 4 and the far VW Transporter Van) have their
interference materialized in the two secondary spikes with intensity values around 160,
respectively 170-175. If a white car was present in the proximity of the camera this
property would loose its validity. This makes it necessary to take into account other
information as well (like picture position of the points) in order to be able to extract some
useful data. If the illumination conditions change –in our case scene illumination even if
reduced it is still diffuse, i.e. almost optimal– or a variation in the camera gain/exposure
is applied the values will change significantly and sometimes even the general form of the
histogram is affected.

Intensity values alone cannot be generally used to make a segmentation of the image
that is able to separate the objects from the road and lane markings even if some informa-
tion is already present. In few particular cases when all objects are significantly brighter
than the road and darker than the markings, the segmentation may give some results,
but generally the bright colored cars will mix with the lane markings while the dark ones
will mix with the road. These cases can be solved using the position in the picture or
some models for the environment, but this is already too complex for the intended low
level segmentation methods.

Projecting the points on the S Axis

The same problems arise with the projection on the S axis as can be seen in fig. 3.4(b).
Moreover, the values of the saturation are all relatively low, so that observations like the
secondary peaks make no sense. One can certainly say that saturation values alone are
so noisy and low that they are almost unusable. Under better lightning conditions they
become much better, still their meaning is harder to interpret than in the case of intensity
values.

Few observations can be made. Since the saturation of any gray-like color is very low,
its hue information is not only useless but also misleading. This can be clearly seen for
the road information that has no well defined hue values, but mainly acquisition noise,
ranging from green to blue. It is interesting to note that for bright regions the saturation
values are not noisy, as it can be seen in fig. 3.2. This is in agreement with the double
cone representation of the HSI space (see [87]).

Before moving to the analysis of the SI plane, the projections of the points on other
lines in the SI plane were investigated. The situation is similar to the S and I axis.
Moreover since they do not have a meaningful geometric interpretation in most cases it
is more difficult to explain the results.

51

Chapter 3

(a) SI Histogram of the Scene (b) 3D View

Figure 3.5: Saturation-Intensity Histogram of the Scene

Figure 3.6: Correspondence between the SI histogram and the original image

Using the SI Plane

Since S and I axis or other lines in the SI plane are not useful to segment the image in
the intended way, the SI plane was being investigated. Fig. 3.5(a) presents the histogram
in the SI plane. The chosen representation maps the brightest color to the highest peak
into the histogram. This is sometimes easier to interpret than viewing the 3D plot from
various angles (e.g. 3.5(b)). The first question was whether it would be possible to
correlate the peaks from the SI histogram with the image objects. Fig. 3.6 shows the
correspondence.

52

3.2 Image Segmentation Based on SI Metrics

The sky and the road generate the two major peaks labelled 2 and 4. The lane markings
are situated in the same position as the sky peak, mostly in the lower region. The vehicles,
road signs, road delimiters and the vegetation generate the rest of the secondary peaks
that can be seen on the histogram (see fig. 3.2.2). This situation is common in all traffic
scenes, due to the fact that the automotive infrastructure (in this case road and lane
markings) is invariant.

Figure 3.7: Example of SI footprint of small chromatic objects

The scene in fig. 3.7 is an example of how a chromatic object generates a distinct peak
in the SI plane. As opposed to fig. 3.6, where the contrast was low and the objects had
very dark surfaces, the truck on the right lane has a relatively large red surface and a
clear contrast. Correspondingly, it generates a distinct peak that can be seen above the
projection of the rest of the figure. Another relevant aspect is that the green vegetation
present on both sides of the highway generates a large footprint in the SI plane, overlapped
with the one of the road.

Figure 3.8: Example of SI footprint of large chromatic objects

In fig. 3.8 the ego vehicle closes on the truck and the footprint of the truck shows up
as a large, distinct peak in the SI plane. Since the truck surface covers the trees on the

53

Chapter 3

right side, the footprint of the vegetation in the SI plane is reduced as compared to fig.
3.7. In 3.2.5 there are more traffic scene analyzed. They have different illuminations,
road surfaces and scene compositions. Still, the basic elements of the SI histogram are
presented, showing that there is possible to segment these images using the SI plane for
the segmentation process.

One may note that the regions on the SI histogram do overlap partially. It is not
possible to always have a distinct SI histogram that can offer a good image segmentation
using no additional information. In controlled environments it may be possible, but the
real world applications may need to use more than a basic image segmentation to obtain
the objects in the image.

3.2.3 SI Metrics

As seen from 3.2.1 the cars, lane markings, road and sky cluster in the SI plane. This
makes it possible to classify the image points, based on their distances in the SI plane
to the class average, into the classes. A function is used to weight the image points
and afterwards using one or more thresholds they can be assigned to some classes like
markings, road and so on.

This subsection presents several weighting functions 1 based on their suitability for
the segmentation of image points. Besides its accurate segmentation the ideal weighting
function should be simple enough to allow a fast computation. This means that, in the
optimal case, only integer arithmetic is used in the computation.

It comes as no surprise that the well-known Euclidian metric can be used in most of the
cases. One point is chosen and the distances for others points are computed with respect
to its SI values (Sp, Ip) using the well-known formula (3.4). Choosing the reference point
is one of the key aspects of the metric. In our case the point can belong neither to the
road (Sr, Ir) nor to the markings (Sm, Im) since they are pretty different from average SI
values. One solution would be to use a combination of them as in (3.5) or to choose a
point that normally belongs to cars (for example the high saturation, average intensity
point that has S = 255, I = 128).

F1 =
√

(S − Sp)2 + (I − Ip)2 (3.4)

F2 = min(F1(Sr, Ir), F1(Sm, Im)) (3.5)

The metric in (3.6) is just a fast variant of the Euclidian metric. Since the values for S
and I range between 0 and 255 the square root can be replaced (the accuracy decreases)
by division with an integer. The value that brings all the possible output in the [0..255]
interval is 2552 ∗ 2/255 = 510. In order to be able to obtain an acceptable resolution
of the metric output, the divider has to be computed dynamically as detailed in section
3.2.6.

1The ”metric” term is used here in a relaxed notation, without giving both points as function parameters.
If the weighting function has the mathematical properties of a metric, then it is called so. If not,
then it will be simply called ”weighting function”.

54

3.2 Image Segmentation Based on SI Metrics

F3 was used in this work since all its operations can be executed in integer arithmetic.
The metric works well in those areas that differ from the road or lane markings. Due
to shadows present under the car, the metric usually succeeds in extracting an almost
horizontal area at the bottom of the cars. The body of the car is not always extracted
due to the way the reference point was chosen and its distant SI values from the tyres.

F3 =
(S − Sp)

2 + (I − Ip)
2

Divider
(3.6)

One weighting function that is particularly efficient for the extraction of lane markings
is (3.7). It performs well when S has very low and I relatively high values; white lane
markings are the image elements that own this property. For the extraction of yellow
lane markings the function can be changed to (3.8) where Sy is the typical saturation
for the yellow markings. It depends on how strong the yellow footprint is in the image
(related to the reflectiveness of the marking), one the direction of the light, on day/night
condition and so on. A few lane marking points were chosen for each frame and their
averaged S,I values were used to test the results of applying the weighting function.

F4 =
(255− I) ∗ S

256
(3.7)

F5 =
abs(Sy − S) ∗ (255− I)

256
(3.8)

Shadows pose relatively small problems unless combined with direct illumination (sun-
rise/sunset in front of the camera). In this case the contrast of the scene decreases
significantly and the color information is hardly usable. All scene pixels tend to have ex-
tremely small S values. Applying a metric that equally weights the S and I components
makes the elimination of shadows only by a simple thresholding impossible. A solution
was found by using a metric that weights S and I differently like in (3.9).

F6 =
W1 ∗ (S − Sp)

2 + W2 ∗ (I − Ip)
2

Divider ∗ (W1 + W2)
, W1 > W2 (3.9)

The metric F6 (3.9) performs much better for the extraction of road/lane marking
information than any of the presented metrics for the case of strong shadows. Still the
problem remains not completely solved. The problem of shadows can be only solved by
using a higher representation of the environment.

3.2.4 Effects of HSI Space Irregularities

Once the weighting functions are defined, it is important to see how they are performing
in case of lower intensity values (both HSI Space particularities presented in 3.2.1 are
related to lower intensity values). The metric F3 is analyzed here, since it was the one
most used in this work. In order to be able to identify the pixels, in F3 one has to choose

55

Chapter 3

(a) Scene 1 (b) Scene 2

Figure 3.9: Overimposed Results using the Weighting Function F3

the reference values for Sp and Ip in such a way that the distance of the processed pixel
to the reference point will be minimal.

In the case of chromatic elements the (S − Sp)
2 member in F3 dictates a big value for

Sp.

In the case of very dark elements the saturation values are usually high. In this case
the (S − Sp)

2 member in F3 also dictates a big values for Sp. In practice, there are very
few pixels in which the three RGB components are having the same values and therefore
the saturation will be 0.

This is a very important result, because it shows that the classification of both relevant
image features can be done with a single weighting function that looks for high saturation
values and low intensity values in the HSI space.

The metric F3 from (3.6) was used extensively in this work. It is very fast, if properly
implemented its computation takes about the same time as a standard traversal of the
image using two standard for loops. An example of applying this metric relative to the
point having S = 255, I = 128 and after plotting all values that are lower than 170 is
shown in fig. 3.9(b). The chosen point bears on purpose no relation to the actual SI values
in the picture and the chosen metric is the fastest one (not the most accurate one). This
proves the robustness of the method. The metric correctly extracts a significant number
of points from all objects and close landscape and extracts practically only isolated points
from the road or lane markings. This behaviour was encountered in the overwhelming
majority of the conducted tests. The real difficulty here is to choose the proper threshold
before making the segmentation. One option is to use the threshold that eliminates both
road and lane markings, i.e. to compute the threshold from the average SI values of
the road. Another possibility is to use the reference point on an already detected tyre;
this will decrease the number of points that belong to the outer environment, but will
increase the number of points that are detected in the lower part of the vehicle. This is

56

3.2 Image Segmentation Based on SI Metrics

the way the metric was applied in object detection algorithms. Composed metrics (best
result of more metrics) even if very promising from a researcher’s point of view, are less
practicable due to their high computation costs. To illustrate this point, the example of
extracting all lane markings (white and yellow) before a classification takes place based
on their hue values is offered.

In this work the metrics F3 and F4 are used. They were chosen due to their simplicity.
The possible parameters of two formulas are (i) one reference point and (ii) one divider. In
order to improve their sensitivity those two parameters can be dynamically computed for
every frame. The threshold can also be adjusted dynamically to counteract the frequent
changes in the illumination that are typical for automotive scenes.

3.2.5 Projections of Typical Traffic Scenes on the SI Plane

(a) Traffic Scene (b) HSI 3D Plot

Figure 3.10: Normal 3 lane highway scene

In what follows the conclusions from the previous subsections will be extended to cover
the typical road scenes in various illumination conditions. The conclusions will lead later
to the selection of the SI metric and will also show the need for the automatic adaptation
of thresholds. Different weather conditions were not extensively presented here since
they mostly affect the contrast of the image and not the image contents itself. Besides,
presenting the whole spectrum of possible illumination and weather conditions exceeds
the editorial space of this work.

The 3D histograms on the right side of the following figures are drawn as 3D heat like
plots where the highest point values on the Z axis are mapped to bright red colors (warm)
and the 0 values are mapped to blue colors (cold). In the saturated images (where the
peak for I = 255 is singular), the histogram is not continuous around the highest peak.

57

Chapter 3

(a) Traffic Scene (b) HSI 3D Plot

Figure 3.11: Low contrast, concrete surface

This results in a harder to see peak (due mostly to the imperfections in the plotting
software), materialized on the histogram as a single vertical line, in most of the cases not
continuous (plotting the line in 3D results in rounding errors that make some of the parts
”invisible” for that particular viewing angle).

The already discussed scene in fig. 3.3 is the first presented. It is the reference to
which the changes in other histograms are compared. The corresponding histogram in
fig. 3.10(b) has as characteristic the very distinct peaks for sky and road and some lower
intensity peaks for the vegetation and the vehicles present on the road. This gives already
a first indication about the limits of the segmentation in SI coordinates: it may be very
hard to distinguish the vehicles from the vegetation.

In the particular case of roads made out of concrete as exemplified in fig. 3.11(b), the
contrast between the road and the sky is low. Due to the brighter concrete surface, in
lower illumination conditions (diffuse illumination) the two peaks for road and sky are
closer on the histogram, but still their position and the general form of the histogram
remains the same. The traffic shield is individualized in the higher saturation peaks,
while the A4 vehicle carrying the two bicycles generates a second peak (having greater
saturation) above the sky peak.

If until now the analysed scenes had an average-to-low contrast, the scene in fig. 3.12(b)
is ”crystal clear”. The result is visible also in the 3D histogram. The two main peaks
are containing less than 800 points each (about 2-3 times less than for fig. 3.11(b)). The
difference is noticeable in the extent of the two peaks, they extend more in the saturation.
Another new element is given by the already noticeable peaks in the region with high
saturation and low intensity. These are due to the large, dark car in the image. Especially
the lower part of the car is generating a lot of artificially high saturated pixels, confirming

58

3.2 Image Segmentation Based on SI Metrics

the theoretical results in fig. 3.2.

The difference between fig. 3.12(b) and fig. 3.12(b) illustrates the need for a dynamic
adaptation of the metric thresholds to the current image quality. Having static thresholds
means that the area around the reference point of the metric containing the relevant points
is static, or, as in this particular case the area of the base of the peak is almost 3 times
bigger.

The scene in fig. 3.13(b) illustrates the opposite situation. The high and direct illumi-
nation is forcing the camera to reduce its contrast. The pixels of the sky cluster almost
exclusively to the highest intensity position, which accounts for more than 5000 pixels in
the image. In comparison, the other peaks seem small, but are still having the already
known distribution with the road pixels clustering around I = 100, the dark vegetation
accounting for the lower intensity elements and the two white cars and lane markings
accounting for the rest of the peaks disposed between I = 100 and I = 240.

This histogram shows the need for a modality to compute the reference points for the
metric dynamically. The road peak remained at about I = 100, but the sky shifted with
more than 100 points to the upper-most intensity position. A reference point for the sky
has to adapt itself to the new conditions in order to compensate the shift with more than
1/3 of the intensity range.

A similar situation occurs in the case when fog is obscuring the details as in fig. 3.14(a).
This case shows how all image pixels covered by the fog tend to cluster in the higher
intensity regions as seen in fig. 3.14(b). The form of the plot remains similar, with a
second peak for the road pixels.

A very clear illustration of the possibility of using color in identifying the pixels that
belong to some homogenously colored objects can be seen in fig. 3.15(b). The traffic

(a) Traffic Scene (b) HSI 3D Plot

Figure 3.12: High contrast scene, close car

59

Chapter 3

(a) Traffic Scene (b) HSI 3D Plot

Figure 3.13: Saturated image

shield generates a clearly distinct peak centred about I = 80, S = 100. The scene in fig.
3.15(b) shows also how the lane marking points group clearly from the sky points (the
two peaks in the higher intensity region).

Summing up, the few examples led to the following conclusions:

(a) Traffic Scene (b) HSI 3D Plot

Figure 3.14: Fog scene

60

3.2 Image Segmentation Based on SI Metrics

(a) Traffic Scene (b) HSI 3D Plot

Figure 3.15: Free highway, with traffic shield

- the pixels cluster in the SI plane in such a way that their classification in road/non-
road classes becomes possible

- the objects that have a homogenous color will generate well individualized peaks on
the SI histogram

- the peaks may be very compact or sparse depending on the illumination conditions
(or the settings of the camera). Therefore using fixed thresholds to separate the SI plane
will probably be of little use in real applications.

- it should be possible to use metrics similar to the Euclidian metric, since the SI space
is a Euclidian one

- in a complete object-identification process, the position of the pixels in the picture as
well as their specific form or properties (symmetry) are to be used in addition to the SI
segmentation and clustering

3.2.6 Adaptive SI Metric Coefficients

The parametrizable elements for the function F3 are:
- the interest point (center of measurement)
- the divider (e.g. for F3 510 brings all output values within the range 0 .. 255 but also

compresses the areas of interest within this range too much)
- the threshold which has to be used to decide if a point belongs to a class or not
The new form of the metric F3 from (3.6) is show in (3.10). The main differences to

(3.6) are:
- the addition of the reference point for the class to the function definition (in order to

obtain consistent results, the reference point was computed once per frame and remained

61

Chapter 3

the same for all pixels of the frame)
- the presence of the divider as a variable quantity (to ensure reproducible results it

will be computed once for each frame).

F3(S, I, Sp, Ip) =
(S − Sp)

2 + (I − Ip)
2

DynamicDivider
. (3.10)

Besides computing the divider dynamically, the threshold can also be determined dy-
namically. The algorithm requires two points (in SI plane). The first point should be
chosen in such a way that it becomes a positive match from the metric (an “insider”),
while the second should be chosen outside the relevant area in the SI plane (an “out-
sider”).

Defining the “insider” and “outsider” points should pose no problem since driver as-
sistance systems based on video identify the road and the lane markings. Therefore the
road detection algorithm delivers a road region that can be used to allow for a selection
of average road S,I values. Selecting an “outsider” would then be the same as specifying
the average road values. Specifying an “insider” has to do with the scope of the detection
algorithm which uses the metric. If a reference point for a lane marking is needed, then
the point should be chosen to belong to a lane marking. The object detection algorithms
will typically specify the point on the tyre of the car (a common image characteristic of
all vehicles).

Having obtained both reference points, the metric is computed in such a way that the
distance between the “insider” and “outsider” values is maximal (255). This is the same
as saying that F3(So, Io, Si, Ii) = 255. Factoring out the divider and replacing the metric
value with 255 in 3.10, it yields the computation formula for the divider (3.11).

Divider(So, Io, Si, Ii) =
(Si − So)

2 + (Ii − Io)
2

255
(3.11)

In (3.11) the symbols mean: Si, Ii saturation and intensity of the “insider” point. So, Io

for the pixel corresponding to the “outsider” (typically average values of the detected road
surface).

The threshold defines the outer boundary of the positive matches. For each point that
is evaluated the result obtained by apply the formula 3.10 to its S, I values is compared
with the threshold. If it is smaller, than the point is a positive match. In order to compute
the threshold, one has be able to obtain the “worst outsider”. In other words one has to
compute 3.12:

Threshold = min({F3(S, I, Sp, Ip)})∀(S, I) ∈ “outsiders′′ (3.12)

The final segmentation step in which the threshold is compared to the current values,
is a separate logical step. It is also possible to use different thresholds in different image
areas. For example one may use a different threshold in brighter areas. In this case the
threshold has to be computed using a subset of “outsiders” belonging to that region.

One may use statistical methods to find out an average for a specific scene type (for
example daylight, normal contrast and brightness). Analyzing several daylight scenes the

62

3.2 Image Segmentation Based on SI Metrics

authors obtained good results by using a threshold placed at 30% of the distance between
the “outsider” (255) and the “insider” (0).

3.2.7 Use of the H component

If the SI plane is enough to make a separation between the main types of objects en-
countered in automotive scenes, what is the use of the H component? The H component
has a very important role. First of all it gives the segmentation of an object into subob-
jects based on color. For a car these sub-objects could be the backlights, tyres, painted
surfaces, glass, and so on. If we look for a specific object, and we know its composition,
then the H component is the key to recognize the object out of other similar areas in
the picture. For example if the system that uses the metrics presented here is a highway
assistant it makes sense to look for the backlights of a car when trying to validate new
objects. The metric gives the raw points and the higher level algorithm can decide fast
whether there is a car in the marked region by looking for the backlights.

There are two crucial aspects. One derives from the fact that there is no color informa-
tion for elements that have a gray footprint in the picture (white and black are included in
the term ”gray”). This implies that the H values do not reflect some physical property of
the scene element, but are rather noises from the acquisition when the saturation is lower
than a certain amount. Lack of a unique color for cars is the second aspect. Thus one
cannot rely on a specific color to make the segmentation, but has to find out at runtime
what one is looking at before making use of the H information.

One useful clue would be the use of position information. If the position information
is ignored the segmentation has no chance to separate two cars of the same color, or
vegetation from cars and so on. The easiest way to exploit this information is to design
the detection algorithm to process the image data in an ordered manner. This could
be from the bottom of the picture up, from left to right or some other paths. The
best solution was obtained using a combination of these search algorithms in which the
expected form of the object was taken into account.

3.2.8 Performance in various illumination conditions

This subsection deals with the results of the segmentation based on SI metrics in various
conditions of scene illumination. Nine different situations are presented, starting with
an image that goes into saturation (strong, diffuse lightning) and ending with an image
that is underexposed (exit of a tunnel). In all examples, next to the original images, the
results of the segmentation are presented as well.

The segmentation uses the function F3 with adaptive coefficients that were computed
as described in 3.2.6.

Before the results are presented, one remark has to be made. Due to performance
reasons, the SI segmentation was implemented only from and up to 8 pixels distance
from the image margins.

63

Chapter 3

Figure 3.16: Bright image, almost saturated

Figure 3.17: Bright image, lateral shadow

As seen in fig. 3.16 and 3.17 in situations with direct or very bright sunlight, the
camera tries to adapt by reducing the color components (going into saturation). In this
case the intensity component can be used to distinguish the objects from the background.
In the extreme situation the road will saturate to white and the objects will appear very
dark. Such situations pose no difficulties to the segmentation algorithm, since the term
(I − Ip)

2 in 3.6 will more than compensate for the smaller differences in the saturation.
In the extreme situation of very dark objects, the saturation will exhibit higher values
than expected (see 3.2.1) and therefore the F3 function will be able to profit from both
factors when comparing object pixels out to the ones belonging to the road surface.

In fig. 3.18 is presented a situation in which large shadows are projected on the road.
There are shadows generated by the left trees and by the distant bridge. The segmentation
algorithm is robust enough to be able to extract the far vehicle out of the background

64

3.2 Image Segmentation Based on SI Metrics

Figure 3.18: Bright image, with shadows

and still to be able to correctly classify the shadows as irrelevant (or belonging to the
road). This is true even for the distant shadow under the bridge, which is for the naked
eye identical to the vehicle bottom.

In all these cases (fig. 3.16 to 3.18) the segmentation in areas of the image that are
containing the footprint of the vegetation is performing worse than normally expected.
This is due to the fact that when going into saturation, the camera is reducing the contrast
of the colors. The reduced contrast is affecting the (S − Sp)

2 term in 3.6. The whole
image is usually brighter. With other words, the term (I − Ip)

2 will also suffer from the
reduced contrast.

Figure 3.19: Normal brightness

In normal situations like the one presented in fig. 3.19, the vegetation is most of the
time extracted as a compact block (trees and darker parts) or not at all (grass at the

65

Chapter 3

left and the right of the road). Some unexpectedly dark areas of the road may generate
singular errors. The vehicles on the road are extracted with well defined contours, the
lower part being accurately segmented out of the road and the shadows surrounding it.

Figure 3.20: Normal brightness with close object

In case of cars painted in silver or white, their resemblance to the lane markings makes
a low level segmentation approach inevitably fail. The SI segmentation focuses (due to
the (I − Ip)

2 term) on the bottom of the vehicle. This area contains the tyres, under
vehicle shadows and sometimes the lower parts of the suspension or exhaust are visible.
These are generating a very dark footprint that makes possible a successful segmentation
as it can be seen in fig. 3.21.

Figure 3.21: Reduced brightness

As the illumination decreases approaching the limits of the normal conditions for the
camera the acquisition noise starts to appear. The SI metric based segmentation is

66

3.2 Image Segmentation Based on SI Metrics

directly affected in this case. The reason is the (S − Sp)
2 term in 3.6. In case of dark

pixels it may or may not exhibit high values, depending one the R,G,B values of the
pixel. E.g. for Sp = 0, Ip = 0 the point (R,G,B) = (0, 3, 0) yields (S−Sp)

2 + (I − Ip)
2 =

2552 +12 = 65026. Suppose that the point has now the values (R,G,B) = (3, 3, 3). Then
F3 = (S−Sp)

2+(I−Ip)
2 = 02+32 = 9. This behaviour is usually triggered by acquisition

noises, where some of the pixels are very dark, some exhibit singular noises in one or two
of the R,G,B components.

In fig. 3.21, this effect is slightly visible on the segmentation of the vegetation the
left side and on the close car on the right side. As the illumination decreases the effect
becomes obvious (for example in fig. 3.22 and 3.23).

Figure 3.22: Low brightness image

Figure 3.23: Low brightness image, truck

The images in fig. 3.22 and 3.23 show the performance of the segmentation in the

67

Chapter 3

case of low illumination. The road surface and the vegetation are dark. They limit the
classification possibilities of the (I − Ip)

2 term. There are acquisition noises that are
affecting the (S − Sp)

2 term. The segmentation algorithm produces significantly more
singular errors that are visible as “wholes” in the normally compact areas that are marked
on the image. Even more, some of the road pixels are so dark, that are able to generate
singular segmentation errors due to the (S − Sp)

2 term in 3.6.
The segmentation algorithm is still able to correctly separate the vehicles from the

background in the presented cases.

Figure 3.24: Underexposed image

The last of the examples presents also an image taken in very low illumination condi-
tions. In this case the SI segmentation is unable to distinguish the vehicle anymore out of
the background. The reason is the underexposed image, which makes both background
and the car in front of the ego vehicle so dark that they have the same footprint in
the image. In this case both terms (saturation and intensity) cannot segment the image
properly. If the saturation of the image would have got usable values (like the case of the
braking lights), then the segmentation could have been successful.

Summing up, the segmentation based on SI metrics works in most illumination con-
ditions (the notable exceptions are night/extremely dark scenes). There are almost no
performance penalties in case of bright scenes. The lower the brightness, the more gran-
ular become the segmentation results. They remain usable even for dark scenes as long
as the objects are distinguishable from the background. Due to the additional satura-
tion term, the segmentation has more success chances compared to algorithms that are
treating image components separately (for example linear color thresholding).

3.2.9 Comparison with other segmentation algorithms

The image segmentation based on SI metrics is not using any position information when
sorting the pixels into classes. Therefore it is directly comparable with the linear color

68

3.2 Image Segmentation Based on SI Metrics

thresholding, nearest-neighbour classification, color space thresholding and probabilistic
methods that do not require the position of the pixels in the image during the segmen-
tation. In what follows, the four methods are shortly described. For a more detailed
reference, please consult 2.5.3 and the references in the text.

Linear color thresholding works by partitioning the color space within linear boundaries
(e.g. planes in 3 dimensional spaces). A particular pixel is then classified according to
which partition it lies in. This method is convenient for learning systems such as neural
networks, or multivariate decision trees [10].

In nearest-neighbour classification preclassified exemplars are employed, each having
a unique location in the color space and an associated classification. To classify a new
pixel, a list of the nearest exemplars is found, then the pixel is classified according to the
largest proportion of classifications of the neighbours [13].

Color space thresholding is an extension of the linear color thresholding in the 3D color
space. Its best results are often obtained when the histogram of the intensity is used to
fill in thresholds used in the process. [50].

Probabilistic methods store a discretized version of the entire joint probability distribu-
tion [92]. To check whether a particular pixel is a member of the color class, its individual
color components are used as indices to a multidimensional array. When the location is
looked up in the array the returned value indicates probability of membership. This
technique enables a modelling of arbitrary distribution volumes and membership can be
checked with reasonable efficiency.

We compare with the first two methods (linear color thresholding and nearest-neighbour).
Color space thresholding is a generalized version of the linear color thresholding. Since
hue information available in typical automotive scenes is not directly related to a certain
class (for more details see 3.2.7), this method will deliver similar results to linear color
thresholding. Using the discretized version of the entire joint probability distribution
makes possible to model the same results that can be obtained with any of the other
methods. For example, if the F3 metric is used for the computation of the probability
distribution, then the method delivers the same results as our segmentation based on
SI metrics. The memory requirements to store the entire lookup table and the com-
puting resources required to update it, make the last method unsuitable for this direct
comparison.

For the linear color thresholding, two classes were defined. One contains at least the
road and the lane markings and the second contains everything else (all relevant objects,
etc.) Of course, it is possible that the bright objects are classified as belonging to the
wrong class, but such problems are common to all methods that rely solely on the color
information. The hue information is not relevant for the road, therefore is ignored for the
classification. In order to improve the results of the classification the boundaries of the
classes were automatically computed using the results of the road and lane detection (for
example the minimum road intensity of the analyzed region; see 3.4.2).

For the nearest-neighbour classification the preclassified exemplars were also automati-
cally updated (road, lane marking, object detection algorithms have provided the required
values). In order to compensate for situations in which no objects were detected (there-

69

Chapter 3

fore no exemplars could be provided for the object class), some predefined (manually
obtained from images in the sequence) values were also used. The distance to the pre-
classified exemplars was computed using the Euclidean metric.

Before the results are presented, one remark has to be made. Due to performance
reasons, the SI segmentation was implemented only from and up to 8 pixels distance from
the image margins. The other two methods were implemented to process the complete
image.

The results from fig. 3.25 to fig. 3.25 are ordered from left to right: original image,
color segmentation based on SI metrics using F3 (marked with yellow), nearest-neighbour
(marked with cyan) and linear color thresholding (marked with magenta).

Figure 3.25: Comparison with other segmentation algorithms - low contrast scene

The scene in fig. 3.25 is a low contrast scene. Few observations can be done without
looking into detail:

- the linear thresholding is wrongly classifying road pixels as relevant object pixels
- the SI metric and nearest-neighbour have similar results. The SI metric classifies less

from the shadow under the closest car as relevant object pixels
- the results of the SI metric are denser in most areas as the one of the nearest-neighbour

algorithm

Figure 3.26: Detail comparison - low contrast scene

If the results are investigated into detail as in fig. 3.26, the following supplementary
observations can be done:

- the SI metric segmentation provides for the automotive use the best selectivity in the
far regions. Sometimes there is a price to pay, for example in this case is the far car on
the right side. It is filtered out by the SI segmentation, while the other two algorithms
extract relevant pixels in that area

- the linear color thresholding incorrectly classifies many dark points near the lane
markings as relevant object points

The comparison in fig. 3.27 shows the behaviour of the algorithms in the case of near
objects and shadows. The following observations hold:

70

3.2 Image Segmentation Based on SI Metrics

Figure 3.27: Comparison with other segmentation algorithms - close scene

- all algorithms are experiencing problem with strong cast shadows
- the linear color segmentation classifies many road and shadowed areas as object

relevant pixels. This can be improved using a more constrictive threshold (the one used
is obtained from the road detection algorithm and is influenced for example by bright
road regions).

Figure 3.28: Comparison with other segmentation algorithms - far objects

In fig. 3.28 is presented the situation in case of far objects. One characteristic of the
far objects is that their shadows are not visible in the picture and therefore they are less
demanding on the segmentation algorithms. The following observations can be done:

- all algorithms work properly, extracting at least the lower part of the cars
- for the far objects, the algorithm based on SI metric works less satisfying than the

other two. In this work its weakness is compensated by a different detection algorithm
for the far objects (see 3.5.6)

Figure 3.29: Comparison with other segmentation algorithms - different objects

The last example is presented in fig. 3.29. This image sequence was taken with another
camera having a single CCD imager as opposed to the other sequences which were acquired

71

Chapter 3

using a 3 CCD camera. There are two observations to be done:
- the nearest-neighbour and the linear color thresholding extract many dark points near

the lane markings as relevant object points. In this example, the lane marking on the
right is practically doubled by a line of wrongly classified points by the two algorithms

- due to the fact that there was no direct illumination of the scene, the linear color
thresholding has less classification errors in the road regions

- the linear color thresholding has difficulties in clearly extracting the motorbike driver
from the background. The other two algorithms are working fine in this case

Summing up the following conclusions can be drawn based on these examples and
others that were investigated for this work, but not presented here:

- the linear color thresholding is not able to correctly separate between object, shadows
and road pixels. It extracts often pixels corresponding to road, shadow and background
as significant pixels. Its weakness is easy to link to the way the color space is divided for
the classification. Sections using planes generates rectangular structures in the SI plane.
Their form is not matching the conical shapes that are characteristic for elements of the
automotive scenes (see 3.2.5).

- nearest-neighbour classification works almost as good as the classification using the SI
metric. Since the nearest-neighbour algorithm computes the distance to the preclassified
exemplars by using the Euclidian metric, it can be sometimes very similar to the SI metric.
If the preclassified exemplars for the irrelevant class are given by the average road, lane
marking and sky values then this method is founded on the same basis as the one based on
the SI metric. Unfortunately the costs of going over the list with preclassified exemplars
for all pixels, make this method significantly slower that the other two.

- the classification employing the SI metric performs in most automotive scenes better
than the other two methods. The weakness that was identified (detection of the far
objects) is related to the fact that in those cases the saturation exhibits small values (due
to the small quantity of reflected light the camera sensitivity is probably limiting the
resolution of the colors) and the intensity is defining the object footprint in the picture.
Since the F3 metric used is weighting both saturation and intensity equally, its sensitivity
is in these cases almost cut in half. In this work this weakness was compensated by
employing another detection algorithm in case of far objects (see 3.5.6). This algorithm
is using the intensity information combined with form information to detect these special
objects in the picture.

72

3.3 Top-level View

3.3 Top-level View

The lane and object detection algorithms are almost completely isolated. The few data
that needs to be exchanged between them is the high level environment information that
is used to help the some of the 3D position reconstruction algorithms for objects. This
makes possible for the future development to separate the two algorithms and let them
run on different hardware devices. The top-level structure was already presented in fig.
5.2. A more detailed diagram of the system is illustrated in fig. 3.30.

Figure 3.30: CCVS Algorithms - Top-level Structure

The execution starts with the conversion of the Red, Blue, Green (RGB) image into
the Hue, Saturation, Intensity (HSI) representation. To be able to keep the realtime
requirements, the conversion is implemented as a lookup table with a 24 bit index (a
total size of 64Mb).

Next, a basic recognition of environmental (illumination) conditions is done (not illus-
trated in fig. 3.30). This is just a basic average of the intensity to get a first feedback
about day/night conditions.

The lane detection is then performed. There are 3 methods for lane detection:

L1. The first one is to use the known structure of the environment to search for
white regions that may be lane markings. Out of them the brightest is chosen and
the intensity values are then used to complete the segmentation. The resulted areas
are grouped using the direction and then interpolated to get the description of the lane

73

Chapter 3

delimiters. This method works very well for uninterrupted markings. Due to the internal
data representation (vertical segments), the method has problems with almost vertical
markings, as can be found during a lane change.

L2. The second one is using SI Metrics inside some regions of interest that are dynam-
ically updated. This method was particularly optimized for interrupted (dotted) lane
markings and handles actively the case of lane changing by predicting where the new
markings will appear and predetecting them.

L3. The last and the simplest method is using the results from the initial road detection
(from method L1) to obtain the left and right delimiters of the lane in which the ego
vehicle is positioned. These are interpolated to obtain the left and right delimiters. Even
if almost trivial, the method has the advantage of being very robust in case of missing
lane markings, when the lane is delimited by grass or other surfaces.

The first method may theoretically deliver up to 8 lane delimiters (in practice, if present,
4 to 5 delimiters are detected), the second up to 3 and the last one a maximum of 2. This
makes the fusion of the results not trivial, given the fact that the methods may also fail
and deliver wrong results. A special fusion of the results is then performed. During this
fusion a minimal conversion to metric 3D coordinates is performed in order to validate
the results.

The object detection starts after that. Since the objects are more complex and harder
to interpret than the lane markings, a multi-model approach is performed. There is an
object detection step in which the objects are detected. There are 4 methods of detecting
objects:

OD1. Object detection based on SI segmentation. This is the most important method
and is based on image segmentation using SI metrics as described before. In the resulting
image, the almost horizontal areas are found and delivered to object tracking. Even if
very accurate, the method produces a lot of false positives, especially at the positions
where vegetation is to be found.

OD2. Object detection based on road information (from method L1). This is the
most basic method. It searches for objects in the ending road regions. It also assumes
a horizontal appearance of the bottom of the vehicle in front of us. It produces false
positives in the patched road regions or when shadows are present in the image.

OD3. Lateral object detection. The system has a special model to compensate for the
lack of form of the vehicles entering the picture. This model uses one region of interest
at the left limit and one at the right limit of the image. It watches the changes in
intensity in these regions. If they differ significantly from the road average values, than it
is supposed that a lateral object is entering/exiting the picture. The regions are created
using the information from lane detection and updated dynamically to not override the
lane markings.

OD4. Far object detection. It is performed on several image rows, positioned dynam-
ically by previously far object tracking. It is a simple, but effective algorithm. It also
delivers false positives. This is not a problem since the tracking is robust enough to reject
the ones that are not to be found in the next frames.

The resulted raw objects are described by position information and several other at-

74

3.3 Top-level View

tributes. They are filtered to eliminate the fake positives (not illustrated in fig. 3.30).
The filtering is performed with SI metrics that eliminate the vegetation and with a posi-
tion/size description that is generated dynamically from the already detected objects.

The filtered objects are given to the object tracking algorithms. The object tracking
is working with different object models to accommodate the large aspect differences for
close and far objects. There are four object models (fresh, normal, lateral and far). The
system is defined in such a way that a model can be easily added without changing the
software structure.

Finally the object and lane data is converted fully into 3D coordinates and prepared to
be outputted on CAN or displayed on the source RGB images. Special attention was paid
to the image copy operations which are extremely expensive since the image contains 32
bits per pixel (to speed up the pixel access on current 32 bit architectures, the 32 bit
format was preferred to the 24 bit one). The results of the processing are outputted on
the CAN bus and on the user screen and the whole cycle is run again. The output is
synchronized using a timestamp generated on CAN by the GPS sensor.

Looking at the number of these algorithms, few observations need to be made. It is
uncommon for so many different algorithms to be implemented for a single purpose (the
best example is the lane detection where 3 algorithms are delivering similar results). The
reason beyond this decision was that often a single algorithm may experience problems
in special situations. Such cases are typically caught with special handlings.

In this work, the feasibility of a fusion concept using more relatively simple algorithms
and merging their results was investigated. Each algorithm for itself is responsible to
cover only parts of the complete situation. By merging them, the coverage of the complete
situation was tested. In the next sections (see 3.4.7 and 3.5.1) it is shown that this solution
often works better than single algorithms and offers a higher possibility of obtaining a
performant system. The investigation of how these algorithms can be merged optimally
opened another research direction that needs to be followed in the future work that will
base on this research topic (see 6.1.2).

3.3.1 Thread Layout

This subsection focuses on the required thread structure that permits the real time per-
formance of the system. The application threads are detailed in fig. 3.31.

In fig. 3.31 each thread is depicted as a blue circular structure with the running order
shown as an arrow. The synchronization points are depicted as red rectangles with ”x”
signs, the position in which one of the threads waits for another is shown as a dotted line
that breaks the circle. The synchronization points correspond in the software to setting
a single semaphore; the wait positions correspond to either ”start - wait - continue”
sequences which are controlled using semaphores or to exclusive sections, depending on
the particular situation.

The DirectX 9 thread runs outside the application software, in the DirectX library. The
thread is built and controlled by the application. It runs a continuous buffered acquisition
and delivers the latest acquired image (at a rate of 25 fps, this give an average delay of 20

75

Chapter 3

Figure 3.31: CCVS-Online Threaded Structure

ms for the acquisition). The acquisition thread, when invoked, only copies this image to
the processing thread, performing simultaneously the required deinterlace and subsample
operations.

The acquisition may also run in an independent (not triggered) mode. In non-triggered
mode it continuously acquires images and only passes the pointer to the latest image
buffer for direct processing. This mode is recommended to be used on very performant
architectures with plenty of cache and preferably multiple processors (using this mode
gave performance improvements only on an Athlon 64 FX-53 processor; 2 MB of cache,
2,4 GHz; on a P4 1,7 GHz 512 KB the performance loss was about 30% due to processor
cache trashing).

The CAN access is performed with two threads. The first is used for reading; it runs
independently triggered by the CAN driver (the main thread only checks for available
data, without controlling the CAN reading thread). The second is used to output the

76

3.3 Top-level View

data. It is triggered by the main thread after its data is prepared in the CAN output
structures. It marks the data structures as locked, returns the control to the processing
thread, writes the data in the background to the CAN driver and releases the lock on the
data structures. Since the CAN output takes considerably less that the processing itself,
the processing will typically have the CAN output data structures unlocked when needed
to write the new data. If this condition is not fulfilled the processing thread will skip the
CAN output (as long as CAN output data structures remain locked). This ensures that
the data written on the CAN is always the latest available, regardless of the CAN output
performance.

The display of the results runs in a specific thread that is the same with the Borland
VCL’s main thread (thread treating the window messages). In order to be able to conform
to the realtime requirements, the output is drawn using OpenGL, therefore it frees the
processor from the drawing operations. The output (display) thread copies the source
RGB image from the processing thread directly into OpenGL memory and uses OpenGL
functions to draw the results. During the copy of the image and the invocation of OpenGL
commands (but not their final output which happens independently in the graphic card
driver), the processing thread has to be paused to avoid overwriting the RGB image in
the next acquisition step. Using multiple buffers to avoid the extra copy is not possible
due to the architecture of the non-triggered acquisition mode which has its own buffer
management.

These application threads were designed in such a way as to avoid processor trashing,
while keeping the operations that can be parallelized into separate threads. This design
allows maximum efficiency, by ensuring that the processing thread is not paused by time
consuming operations like CAN output, display of the source image with the overimposed
results, interaction with the user using the GUI, etc.

This threaded architecture has the disadvantage that debugging is very hard. To
compensate, a linear architecture was used for the debug application. It uses the same
code, but the scheduling is completely rewritten to be single-threaded and linear. This
separation between the two applications allows an optimal debugging and development
environment while not sacrificing performance from the online application.

77

Chapter 3

3.4 Road & Lane Detection

The automotive environment has its particularities, materialized in both the elements
that may appear in a scene and their aspect. These particularities can be used not only
to speed up the processing, but they can be gathered together in order to form a minimal
knowledge base on which the algorithms can be designed or can be dynamically updated.

In other words, the aim is to generate an interpretation of the acquired scene based
on apriori knowledge (linked to the specific environment) and on knowledge generated at
runtime (linked to the specific system input). We call the first type of knowledge ”implicit
assumptions” and the second type ”inferred assumptions”. The next subsection sums up
the knowledge used for the detection of the road and of the lane markings.

3.4.1 Knowledge given by the Automotive Environment

The implicit assumptions are in case of road/lane markings:
a) The road is the first visible area in the lower part of the image starting from an

arbitrary offset (to avoid problems due to the visible car hood at the bottom of the
image). There cannot be an implicit assumption about the presence or absence of lane
markings in the lower part of the image. The algorithm has to cope automatically with
the presence of lane markings in the area when estimating the average values for the road.

b) Lane markings are present on the road and thus, we can detect the lane markings
by scanning the image areas situated near the road regions.

c) Lane markings have a ”smooth” direction. A dashed lane marking part starts in
the same direction that the previous part ended and not randomly in the picture. This
assumption is used when grouping together the detected markings.

d) Lane markings do have special characteristics (bright areas, small inner intensity
variation, limited width, same width for one marking). These are discussed in detail in
the section dedicated to the lane markings detection.

The inferred assumptions are related to the average values of the hue, saturation and
intensity components for the road and lane markings. The algorithms use these values for
the segmentation of the image into road and non-road areas as well as for the extraction
of lane markings. Since these values vary significantly with the illumination of the scene
and the setup of the camera, they are unsuitable as implicit assumptions and must be
recomputed over and over again for each acquired image. No sequence information is
used for the road and lane markings detection, but the information gathered from the
processing of prior images is used to enforce the computed average values. This allows
the filtering of outliers and improves the stability of the computed average values.

3.4.2 Road Detection based on Intensity and Saturation

A sketch of the system structure is illustrated in fig. 3.32. There are four distinct
algorithm steps. The first three of them (road pre-detection, lane marking pre-detection
and finally road detection) are presented in this subsection. The last one, even if using the

78

3.4 Road & Lane Detection

Figure 3.32: Diagram of the system

same underlying methods and data is presented separately in the lane marking detection
section where it belongs semantically.

Road Pre-Detection

Figure 3.33: Road and lane markings sampling areas

The road pre-detection starts by analyzing a small region at the bottom of the picture to
find out the average values of Hue (H), Saturation (S) and Intensity (I) for the visible road

79

Chapter 3

Figure 3.34: Vertical Fill Algorithm

area in the picture (as presented in fig. 3.33). The bright regions are eliminated from
this area (most likely they are lane markings) and the rest of the values are averaged
to produce the thresholds that are used to limit the search of the road. Since the H
component has no meaning for gray objects, only the S and I components are used in
all algorithms dealing with road or white lane markings. Hue is used only when looking
for yellow lane markings or when validating shadows (usually shadows give uniform Hue
values compared to cars which are composed of different surfaces).

The road is then detected using a vertical fill algorithm that extends upwards until it
hits a discontinuity in one of the SI components. The algorithm is presented briefly in
fig. 3.34. It presents the two successful cases in which the algorithm includes the current
pixel in the result. In the first case the algorithm deals with pixel a (second row from
bottom, middle pixel) that has values of S and I close enough to the averages given as
input parameters and includes it directly. In the second case it encounters a discontinuity
in the S or I values for the pixel b (third row from bottom, middle; the darker, red pixel).
Since this discontinuity may be a local noise (e.g. salt and pepper noise) the algorithm
tries to go over it by checking the nearby columns. If at least one of the two values (left,
right) are in the allowed range for S and I and no point of edge is present in that specific
location, the algorithm goes further. If not, the search is aborted and the position of the
discontinuity is returned.

Two issues are addressed by the design of the algorithm. As most of the methods
based on color similarity this particular algorithm has to deal with the problem of local
discontinuities (edges) and global discontinuities (going over a range of pixels that are
slowly changing between two different surfaces). The local discontinuities are solved in
the manner described above. The best results were encountered if the local value was
taken into account for the computation of the average values for the next step of the
algorithm. In order to provide robustness to noises, the new averages are computed as a
weighted average where they have a 5% weight. To solve the global discontinuity problem
the algorithm makes an extra check with the initial averages.

The results of applying the fill algorithm are presented in fig. 3.35).

The detected vertical limits for the road are passed on to the lane pre-detection algo-
rithm. The next section discusses possible failures that may occur when estimating the
average parameters.

80

3.4 Road & Lane Detection

Lane Pre-Detection

The lane pre-detection algorithm receives the vertical limits from the road pre-detection.
It estimates the average I values of the nearby regions that are brighter than the road
surface. These regions are found by using the same sort of vertical fill algorithm but
with those values that caused it to stop in the previous step as input. These areas might
correspond to possible markings or objects on the road. It is likely that lane markings
have the brightest footprint in the picture compared to other objects on the road (cars).
Based on this assumption the algorithm selects the brightest regions out of those and
computes the average SI values for the markings which will be used later in the lane
markings and road detection algorithms. In fig. 3.35 the brightest regions were drawn
using white lines surrounded by black areas, the others with a darker color.

If the road sample contains image information of a near vehicle, the correct road SI
values cannot be reliably computed; i.e. the computed values will have nothing in common
with the actual average SI values for the road surface. The algorithm overcomes these
problems by checking the frame average SI values against the sequence averages. This
guarantees that singular errors are filtered out. In order to avoid the selection of an area
belonging to a car at start-up (when starting the system there are no average values for
the sequence) the singular error filtering condition is relaxed for the first 300 frames.

Road Detection

The input for the algorithm consists of the limits of the road (interrupted by any dis-
continuity, lane markings included) and the average values that were computed in the
previous phases. Additionally, the assumptions mentioned in 3.4.1 are used as additional
clues when the SI averages are not sufficient to limit the search. The algorithm continues
to extend the road limits in the same manner as for the pre-detection phase until they
hit something that cannot be categorized as a lane marking or a shadow. That is, every
time the search is aborted due to a discontinuity, the algorithm checks the SI values of
the point of discontinuity against the averages extracted as characteristic for the lane
marking in the lane pre-detection phase. If the deviation of the values is greater than
a chosen threshold (relative value) the search is stopped. The handling of shadows is
described in the next paragraph. This way all columns belonging to road regions (the
columns may contain lane markings inside) are extracted.

Moreover, there are road regions that are not uniform (they consist of several different
surfaces; either due to reparations or different construction materials). Fortunately, most
of them are similar to shadows in the way they influence the image components. All of
them are darker or brighter areas having a small inner variation and gray-scale aspect.
The algorithm overcomes these difficulties (hard to solve by comparison with the HSI
average values) by adding an extra check for the uniformity of the SI values inside the
area above the discontinuity in the vertically oriented fill algorithm.

Two extra constraints were added in order to avoid the algorithm becoming too greedy
to label regions that do not belong to the street as road when the image contrast is low.
First, the maximum number of discontinuities on a specific image column is limited to 4.

81

Chapter 3

Figure 3.35: A typical road image with the road pre-detection and lane markings detection
results drawn on the picture

This affects negatively the completeness of the detection results when there are a lot of
small shadows on the road, but avoids detection running into vegetation or sky if they
look similar to road. Second, the results of the edge detection are taken into account
when trying to pass over a discontinuity in the SI space by using the nearby columns. If
an edge point is found in the vicinity of an SI discontinuity the search is aborted.

A situation that is not completely solved by this approach is encountered during sun-
rise or sunset. Some areas of the distant road shine into the image, while the close by
areas look darker. If these areas are not large enough they cannot be classified as shad-
ows/patches and they will be missed. During night time the acquisition signal/noise ratio
is smaller and the road pre-detection algorithm terminates too early due to the big num-
ber of discontinuities caused by noises. Usually the road detection algorithm hits the first
lane markings and the lane marking detection will extract the marking (by extending it),
but the results are usually unstable. Both cases require a special handling apart from the
algorithms described here.

The output of this step consists of a number of vertical segments for each column. This
is what is drawn in fig. 3.36 as the road detection result.

Handling Shadows

Another often encountered aspect for all road and lane marking detection algorithms is
related to shadows. Shadows generate extraneous regions which sometimes are hard to
identify and therefore generate a lot of noise in the result set. Color is a largely accepted
solution in this case, see for example [35] or [94].

Sometimes, due to the camera behaviour or to the road spectral response, shadows
cannot be recognized using only intensity information. Hue, saturation and variation of

82

3.4 Road & Lane Detection

Figure 3.36: Lane markings and road detection results; lane markings are grouped (one
color is used per group)

the HSI values inside the area are to be used as well. The weight of the hue component is
minimal because of its non-determination in gray pixels. Some authors state that shadows
only modify the intensity parameter. This is particularly true when the analyzed region
has a well defined color (e.g. green). Since the road does not usually have a true color
(gray can be any color with a sufficiently low saturation) and the imaging sensors have
limited accuracy it results in practice that shadows induce significant changes in all three
HSI values.

Our solution identifies a discontinuity as shadow if
- the region above in the picture has small variations in all HSI values
- after it ended, road specific intensity values were found.
In other words we used the assumption that a shadow was situated on the road and

that it was uniform in intensity. This approach proved to be robust enough to cope with
all common situations on highway and country roads, in all illumination conditions.

3.4.3 Cognitive Lane Marking Detection based on Intensity and
Saturation

The lane detection is carried out in all regions that are situated near the end of the
determined road extents. The lane detection algorithm delivers not only lane segments
as separate pieces, but it tries to group all segments that are associated to an interrupted
lane marking and deliver the whole marking as a single object. Later on, this helps
to overcome tracking problems when the tracked lane marking corresponds to a non
continuous marking.

The algorithm exploits the implicit assumption that the lane markings are “bright
areas imposed/painted on the road surface” and that “they have small inner intensity

83

Chapter 3

variations”. Using the same fill algorithm as for road-pre-detection but with the average
values computed in the lane pre-detection phase as input parameters, it finds all areas
that are close to the previous detected road limits and which do have the expected average
S, I values. This leads to the extraction of a series of separated segments that have a
starting point and a certain length (vertical segments in the picture). If a region that is
close to the road in the picture is not bright enough, it will not be extracted as a part of
a lane marking.

Using the assumption that “lane markings cannot exceed certain widths” the rough
errors of the detection are filtered out. The segments are checked against the left and
right neighbouring segments and if the neighbours have similar lengths, but the original
segment is too short or too long, then its width is adjusted to the average of its neighbours.

Taking into account that “lanes have a relatively constant width” and that “lane mark-
ings are smooth curves” the algorithm improves the form of lane segments and extends
the incompletely determined ones. The form is improved by considering the fact that
the lane marking should be wider at the bottom than in the upper part of the picture
(distant objects are smaller in the picture). The algorithm requires that each segment
is smaller in length than (or equal to) its previous neighbour. Using the same observa-
tion, the algorithm tries to extend a detected segment that has no upper neighbour by
searching within the image column where the neighbour is missing for an area that has
the similar SI value and a smaller or equal length. This particular step helps recovering
most of the segments that are not being detected because the road detection algorithm
stopped before reaching them.

Using the last assumption (“lane markings are smooth curves”) it groups the segments
regarding their position in the picture (obtaining what we call “lane parts”) and computes
for each group a direction in which it tends to point. This direction is represented as a
first degree curve (y = ax + b) and is computed from the list of middle points of each
segment. At this stage the segments are grouped in lane parts based on their position in
the picture. Still if the lane marking is a dashed one the grouping of different parts will not
succeed since they are separated by road regions in the picture. The computed direction
is used to group these parts together by checking if their equations in the image are
similar. This is the final output of the lane detection phase: groups of vertical segments
that are drawn on the output picture.

3.4.4 Lane Marking Detection based on SI Metrics

Generic Algorithm Description

In order to speed up the processing this algorithm works with regions of interest (ROIs).
The regions of interest have a trapezoidal form, being specified by the position and width
of the base segments. Each region of interest (ROI) will produce at most one lane marking
equation at the end of the processing. The size and position of the ROIs are updated
automatically during the processing of the current image data. The algorithm manages
the ROIs at runtime using the knowledge about the structure of the environment.

84

3.4 Road & Lane Detection

The algorithm computes the SI metric values of each image pixel in each ROI. The
formula is derived from 3.6, by computing the divider dynamically in each cycle 3.13 and
reversing the value scale in order to have the smallest distance as the biggest value of the
metric function:

M3 = 255−max

(
(S − Sp)

2 + (I − Ip)
2

Divider
, 255

)
(3.13)

Using a dynamically computed threshold, the metric values in each row (the y coor-
dinate) are converted to binary (above the threshold or not). Out of these values the
middle of the largest segment of 1’s is chosen. This gives the x coordinate of a lane
marking point.

The algorithm extracts a list with points (a list of (x, y) pairs) for each region of
interest. The x,y pairs in the list are to compute a least square approximation of the
equation a ∗ x + b = y. These coefficients are passed to the lane interpreter. There is no
curvature computation in this algorithm. The curvature computation will occur in the
lane interpreter.

Management of the ROIs

(a) Init Phase (b) Regions Updated

Figure 3.37: Regions of Interests for SI Metric Computation

The ROI management algorithm works closely integrated with the lane interpreter.
The lane interpreter has normally at the output 2 equations of the form a ∗ x + b = y.
These equations are used to compute also the y coordinate of the vanishing point of
the scene (the vertical position of their intersection). The equations together with the
vanishing point are given to the ROI management algorithm as placement hints. The
algorithm looks for any active ROI containing the equation. If it does not find any, it
will create a new region. In fig. 3.37(a) such an example is illustrated. The image is the

85

Chapter 3

first in the sequence (i.e. no ROIs before). Using the data from the lane interpreter the
two ROIs are created.

Performing a lane change is a critical moment for all lane detection algorithms. One
problem derives from the fact that the mathematical representation in the form a∗x+b = y
looses its efficiency (a has very large values, in the case when the marking is perfectly
vertical, the equation cannot be used anymore in this form). The other problem is that
the lane detection itself may be limited to extract only two markings. It could in this
case extract randomly the left or right lane delimiters depending on the particular image
data. The ROI management predicts when such a situation will happen (the angle of
one of the equations of the active ROIs (“vertical ROI”) with the vertical axis is smaller
than a typical angle, 10 grad was used in the algorithms). If such a situation is detected,
then for the closest ROI to the “vertical ROI” a mirrored ROI is created (if it does not
already exist). This method is based on the supposition that the two lanes on the left
and right side of the “vertical ROI” have very similar widths. In practice this turns out
to be true in almost all cases (the few exceptions were encountered in construction areas
with lane widths of about 3,5 and 2,5 meters).

A ROI is deleted if it is too short (height smaller than a minimum height constant,
currently 30 pixels). This may happen if the ROI is positioned at one of the picture
margins. Since the ROI limits cannot exceed both the vanishing point and the limits of
the image, the region may be too small and in conclusion will be deleted.

If the ROI has no enough points of the estimation of the equation coefficients in a∗x+
b = y, it will be deleted. This means in practice that fewer than 4 rows in the ROI are
containing the minimum of 3 consecutive points in which the metric 3.13 value is bigger
than the “Threshold”.

If the ROI equation produces an angle bigger as a preset value (60 grads was used)
with the vertical axis, the ROI will be deleted.

In each cycle the existing ROIs are updated. The updated values are:

- position and width. The ROI is positioned in such a way that the following require-
ments are met: (i) the computed a, b equation coefficients apply to the middle of the
two trapezes basis and (ii) at each image row, all points in which the metric returned
a value bigger than the threshold are included in the ROI. Eventually, two corrections
are performed to the width (similar to the most rudimentary tracking): (i) the latest
horizontal displacement is added on the side where the displacement was detected, (ii) a
small constant (4 pixels) is added to the other side of the ROI.

- height. The height of the ROI is set in such a way that at least 8 rows with useful
data (segments corresponding to the bright areas) are extracted. The minimum height
of 30 rows is to be respected, even when all 30 deliver valid data. If the last part (top)
of the ROI does not deliver useful information, the ROI is extended upwards until one of
the following conditions are true: (i) the last 5 rows all contain useful information (ii) the
maximum height of 130 pixels is reached. This behaviour was introduced to deal with
the interrupted lane markings and proved to be extremely efficient.

- threshold and divider for 3.13. Both are discussed together with the metric in 3.4.4.

86

3.4 Road & Lane Detection

Specific implementation of the SI Metric

(a) Original (b) Processed

Figure 3.38: Results of applying the SI Metric to the ROIs

The threshold and the divider are computed with the algorithm described in the dedi-
cated subsection 3.2.6. The computation is straight ahead as in the formula 3.11.

The “bad”, respectively “good” values are computed as averages of the ROI points in
which the metric value is smaller, respectively bigger than the threshold.

The values are initialized as follows: divider = 512, threshold = 230. The reference S,I
values (Sp and Ip in 3.13) are set by default to the values returned by the lane predetection
algorithm.

Fig. 3.38(a) presents a traffic scene with three ROIs. This is typical for a lane change
situation. The green points inside the ROIs are the points exceeding the threshold. One
may see in 3.38(b) the result of applying the metric with the dynamically computed
coefficients. The contrast is improved, there are almost no noises in the processed image.
The situation remains the same in lower contrast scenes or shadows.

The resulted values are then thresholded at each image row in the ROI giving a binary
0,1 list. The longest segment of 1’s in the list is chosen and its middle will be used for
the interpolation of the a, b coefficients in the equation of the marking a ∗ x + b = y. The
complete description is presented in the section 3.4.7 when detailing the merging of the
results of the lane detection algorithms.

3.4.5 Lane Delimiters Detection based on Road Detection Results

Both of the presented methods until now are limited to situations when the lane markings
are present on the road surface. They have also some inertia due to their learning of the
average values or metric coefficients. There are situations when no markings are present
or when the changes occur so quickly that no adaptation is possible (e.g. when driving
in a curve with a small radius with shadows on the road).

87

Chapter 3

In order to be able to cope with such situations a very simple, not necessarily performant
algorithm was required. The purpose was to use its results to speed up the positioning of
the ROIs and the computation of average values for the other algorithms. The solution
chosen was to use the results from the road predetection, that were already available and
to drop all the reasoning about the lane marking properties. The algorithm is therefore
outputting lane delimiters (may be also the transition from road to grass for example).

Interpreting the road predetection results

The road predetection algorithm was presented in 3.4.2. The output of the algorithm is
a list of vertical positions (one for each horizontal position between 8 and the width of
the image - 8) where the road detection was interrupted due to a discontinuity in the I
and S components. In fig. 3.35 the results are graphically illustrated. These points are
the input of the lane delimiters detection algorithm; in what follows they will be referred
to as the source points. In order not to affect other algorithms using the same vector as
input, a local copy is created.

The road predetection algorithm can theoretically return more than 2 markings. When
the optical axis of the camera is close to the middle axis of the vehicle, the most of the
points will belong to the interruptions at the limits of the traffic lane in which the ego
vehicle is driving.

The notion of “boundary” is encountered in the description of the algorithm. A bound-
ary is a set of points out of the “source points”. The algorithm starts by selecting the
point with the lowest vertical position (closest to the bottom of the picture). A new
boundary containing the point is created. For each point in the set, the algorithm tries
to add the point to the new boundary. The point is added if its distance in image co-
ordinates is less than 8 pixels (empirically found). That means that a point placed at 5
pixels distance vertical and 5 horizontal will the most distant that will be added. If the
point is added, then remove it from the “source points”. After processing all points the
algorithm starts over from the beginning by creating a new boundary until no element is
left in the “source points”.

In the last step of the algorithm, the points of each boundary are interpolated to
generate an equation of the form a ∗ x + b = y. These equations are fed into the lane
interpreter. The results are also illustrated in fig. 3.39. In this figure both the ideal
case for the algorithm (the lane marking on the right) and the worst case (the road
patch in the middle) are present. The algorithm itself being very simple, it lacks the
analysis capabilities of the other algorithms. But at the same time, this turns out to
be a tremendous advantage in relatively unstructured environments or in quick changing
scenes. Since the algorithm has no history (it is a “single frame” algorithm) it is used
mostly in the preliminary phase of the other algorithms to provide basic information that
can be used for a quick start-up. The results are only integrated by the lane interpreter
if no reliable results are delivered from the other two algorithms.

88

3.4 Road & Lane Detection

Figure 3.39: Lane Boundary Detection based on Road Predetection Results

3.4.6 Yellow Lane Markings

Construction areas on public roads are a permanent source of traffic problems. The special
marking of these areas, the reduced width of the lanes and mostly the high quantity of
older information (lane markings, traffic signs) without semantics raise problems that are
not present elsewhere.

For a driver assistance system one important aspect is to be able to distinguish between
important and meaningless information in such an area.

Most of European countries use yellow lane makings that are over imposed on the exist-
ing white lane markings in construction areas. Such conditions do not make a gray-level
based approach very useful since both yellow and white colors will convert to relatively
high intensity values. This makes a reliable distinction between them difficult if not
impossible. In such situations, a common approach is to signal to the driver that an
unknown situation was encountered and to suspend the processing waiting for better en-
vironmental conditions. Since this work approaches the problem of yellow markings from
the point of view of color vision, it has the chance to try to solve the problem of yellow
markings as well.

Extending the Knowledge Base for Yellow Markings

During the research related to yellow marking recognition it was quickly found that the
knowledge base used in the process of road and lane recognition has to be extended.

Inconsistent lane markings (white markings that are in the right place may or may not
be replaced by yellow markings), lack of markings (yellow markings may not be applied
at exterior of the road) or incomplete markings are only a few cases which show the
complexity of the driving environment in such construction areas.

89

Chapter 3

Figure 3.40: Histogram of H, S, I components in the detected lane marking areas at day
(left) and night (right). Up: only white markings. Down: both yellow and
white markings

The additional assumptions that became part of the knowledge used to deal with yellow
markings are listed below:

1) A yellow marking is applied between two traffic lanes (the most common situation).
Situations in which yellow markings are on the side of the road and a white marking is
present in the middle cannot be treated without using information about the lane size
(i.e. a calibrated system which is beyond the scope of this paper).

2) The outer white markings (at the left and right sides of the road) can be valid even
if there are yellow markings on the street. If there are yellow markings located close to
them the white markings should be dropped out of the processing.

Color Features of the Yellow Lane Markings

An analysis of the three components (H,S,I) is conducted in order to decide what criteria
can be used to separate the white markings from the yellow ones. In fig. 3.40 two specific
situations are presented. The two histograms on the left column have been obtained
from data taken at daytime before and within construction area. The histograms on the
right column have been obtained from data taken at night. In order to plot all three

90

3.4 Road & Lane Detection

components (H, S, I) on the same histogram, a remapping of the respective domains was
done to the interval 0..255. Each of the components is analyzed below with its specific
advantages and disadvantages:

Hue: In practice the values for the yellow colors associated with the markings depend
on the hardware and software setup. Nevertheless they can be generally distinguishable
from the values associated with the white markings. In the two histograms at the bottom
the presence of a peak for hue components near the beginning of the hue interval can
be observed. In our experiments the value given by the camera was close to orange. In
all cases in which the yellow lanes are not present the hue component for white mostly
consists of noisy values. In the HSI representation white should be represented as having
S = 0 and accordingly, the H component should then be invalid. It is not always possible
to invalidate hue using the saturation information given by the RGB to HSI conversion
because of the inherent acquisition noises (the color camera gives no real greyscale values
- i.e. having S=0 - but some values in which S is small, still not negligible). Such H
values proved to have little influence on the algorithm. The chosen solution was to use
the H values without accounting for the saturation. In the lower histograms in fig. 3.40
the peak that characterizes the yellow markings can be distinguished. Its raw value may
not always be high enough to count alone as a criteria for distinguishing between the
markings, still hue is a valuable piece of information.

Saturation: Comparing the lower histograms with the upper ones it becomes clear that
saturation values that are above some specific threshold (this was empirically found to
be about 10% from the maximum of the saturation) are observed only if there are yellow
markings. The yellow markings give a footprint between 15% and 70% of the maximum
saturation. In some particular cases this criterion is still too weak. When the yellow
markings are shining due to strong sunlight the footprint tends to be close to 15% and
the white areas are somewhere below 10%.

Depending on the light and the camera setup yellow and white markings result in very
close intensity levels in the picture. Taking into account the noise of the acquisition it is
almost impossible to distinguish between the two intensity levels in almost all cases. An
exception can be seen in the lower-left histogram. In this case yellow markings that are
not highly reflective generate a second group of lower intensity values on the histogram.
Since this information is not always accurate the intensity information is not used at all
in this approach.

Detecting the Yellow Markings

The system starts by building the histograms for hue and saturation. It computes the
number of saturation values bigger than 15% of the maximum value. If the number is
significant the yellow flag is set. If the saturation data lies too close to the threshold then
hue is analyzed as well. If no significant percent of values was between dark orange and
yellow, then the algorithm concludes that there are no yellow markings present. If yellow
markings are found, the algorithm runs further and marks the white lanes as not trusted
(based on their hue and saturation average values). At early stages of the development

91

Chapter 3

direct labelling in yellow and white lanes was tried out without the evaluation of the
presence or absence of the yellow markings; it produced very noisy results and even fake
yellow markings when the markings did not have a very good footprint in the picture.
Since singular values are not accurate enough, this approach focused on evaluating values
from all lane markings present in the picture.

If the lane markings detector did not detect enough yellow markings (for example the
markings are not continuous or they are old) the above mentioned algorithm has not
enough data and is not able to perform well. In such cases a more sensitive but still
accurate measure for the presence of yellow markings in the picture is needed. The
function should be able to recognize a yellow lane marking that is not expected to be
long or to have a strong footprint in the picture. Since it is meant to complement the
other method, it was designed to work well especially in cases where the other one fails
(when the major part of detected markings is white). The chosen function is based on
the weighted deviation of the lane marking H and S values from the average values for
all lanes. This function performs very well if the number of segments belonging to yellow
markings is less than 10% of the number of total segments. In these cases the saturation
and hue of the yellow marking are experiencing a significant deviation from the averages.
After an extra check that the lane marking color is close to yellow the algorithm concludes
that the lane marking is yellow and the detection was not accurate enough.

(a) At Day (b) At Night

Figure 3.41: Typical yellow markings in construction areas

One common situation that occurs in construction areas is illustrated in fig. 3.41(b).
The yellow markings are applied on the center and right sides of the road, but no marking
is applied over the old white marking on the left. In such situations ignoring all white
markings found in the picture means eliminating really valuable information. There are
no criteria based on color that enable the distinction between the invalid white markings
and the valid ones. The only clue here is the position with respect to the yellow markings.
Two approaches are presented here.

92

3.4 Road & Lane Detection

The first one uses the results of the road detection algorithm. This algorithm (referred
later to as “Position on road”) returns the image coordinates where the road extends.
Typically, these are the same as the last left or right marking. Accordingly, the first
algorithm relies on computing the offset between these extents and the position on which
the white lane markings that were already marked as invalid by the color separation
algorithm so far. If the result was negative (the lane marking started above the highest
limits of the road) than the lane marking was considered valid. There are also cases in
which such an approach is inefficient. The situation in fig. 3.41(b) is such an example.
The outer right white marking is not valid since its semantics are overridden by the traffic
indicators.

The second algorithm can only be used in situations where at least 2 yellow lane
markings were detected. It works by estimating the average distance between these
markings as a first degree function dx = ay + b, where dx is the relative distance in the
picture (in pixels) and y is the vertical picture position. Using this template distance it
checks the distance to the closest yellow marking for all white markings. The difference
is then compared to 40% of the minimum distance of the yellow markings at that Y
position in the picture. If it is smaller, then the white marking is dropped. If not, it
checks whether the white marking is surrounded by yellow markings. If it is surrounded,
then it is dropped. This approach avoids leaving detected white markings that were in
the middle of the lane (see fig. 3.41(a)) as valid in the output set.

The connection between algorithms is described below. The “yellow/white separation”
algorithm refers to the algorithm for the global analysis of the lane markings; “sense
yellow marking” algorithm is the algorithm used for a deeper analysis of the cases in
which the lane detection delivered minimal results.

The “yellow markings present” flag is obtained from the “yellow/white separation al-
gorithm”. If it is false, the “yellow sense algorithm” is run to enforce the conclusion.
The flag indicating poor detection quality is set by default to false and will only be set
to true if “yellow sense algorithm” ran and concluded that there was at least one yellow
lane marking.

In fig. 3.42 the activity diagram of the system is presented. It works as follows: first
of all, the source lane markings are checked one by one by the “yellow/white separation
algorithm”. The algorithm marks all markings that have low saturation and non-yellow
hue averages as not trusted. The “Position on road algorithm” will then restore the trust
for those lanes that are the lateral limits of the detected road surface. From these lane
markings the ones that are close to the yellow ones will be invalidated by the “Relative
position algorithm”. This is the final data that is handed over to the Lane Interpreter.

3.4.7 Merging the results - The Lane Interpreter

The on going research in the field showed that each single solution is predestined to fail
in some particular situation. The main reasons are the variability of the environment and
the extreme lightning conditions. Accordingly, this thesis focused on providing multiple
solutions for problems like lane marking or object detection. All these solutions have

93

Chapter 3

Figure 3.42: Yellow Marking Detection Algorithm

their shortcomings. To simply mix their results using something like an average would
bring no better results. Therefore, the solution adopted here was to analyse the output of
the methods, even ignoring results that were unexpected and that could not be proved.
At the very end an interpretation of the results in the picture was performed as a vali-
dation step. Because of this re-validation step, this software module was called the “lane
interpreter”. This interpreter goes as far as disabling or enabling certain methods and
providing hints for quicker start-up phase. It acts like a central coordinator of the lane
detection algorithms.

Each of the methods presented until now deliver the results in form of a ∗ x + b = y
equations. These equations carry no curvature information. The curvature information
is obtained by the lane interpreter when projecting the equations back in the image.

In fig. 3.43 is presented the basic structure of the lane interpreter. The first step is to
convert all data to a common representation. The information is then merged and the
result is projected back into the source image. The detection results are corrected and the
curvature information is extracted. Using the information obtained during the correction,
the lane interpreter controls the detection algorithms. For example: if the ego vehicle
is driving on a three lane highway in the middle lane (therefore only dotted markings
delimitating the lane left and right), then the first detection algorithm (cognitive lane
detection) is turned off because its performance is limited by the lower number of points
belonging to the markings.

Merging the lane detection results

The first step consists of expressing all detection results in a common format that may
be later used for the merge. This format includes in the current implementation the
following attributes:

94

3.4 Road & Lane Detection

Figure 3.43: Structure of the Lane Interpreter

- the a,b parameter of the equation a ∗ x + b = y
- the color of the marking (white, yellow, unknown)
- the type of the marking (continuous, interrupted)
- the status of the marking (newly detected, tracked and verified in the picture, tracked

with no picture match, not available)
- the trust of the marking (from 0 to 255, where 0 means not trusted, 255 means

absolute trust)
- the valid flag
- the parameters of the clothoid equation (for future extensions, currently no algorithm

delivers the information in the form of a clothoid)
Certainly, not all algorithms can fill in all these values. Therefore the lane interpreter

has to make informed decisions about which values should be included and which not.
Since the final output required only the definition of the ego lane (that is two markings,
one at the left, one at the right), only two markings are selected for each detection
algorithm. The selection is done by analysing which of the markings is nearer to the
known projection of the ego axis on the image bottom.

The algorithm starts by comparing the results of lane detection based on SI metrics
(L2) with the results of the detection based on road predetection (L3). Because this
particular detection method has no tracking, its results may be the most accurate ones.
If the results match up to an arbitrary deviation, than L3 results are taken as reference.
If not, the reference is chosen from the first valid results from of the L2 and L1 (detection
based on cognitive information about the environment).

Each detection algorithm that does not exceed the arbitrary deviation is then included
in the sum used to average the results. This approach has two advantages:

- the most dynamic algorithm has priority if its results are matching the expected

95

Chapter 3

tracked results from L2.

- since no weighting of the detection results can be performed due to the lack of accu-
rate trust information, the algorithm performance of the algorithms (L2, L1, L3) offers
the chance to be used instead of the trust information. This gives the interpreter the
ability to filter out the singular noises from the remaining algorithms. There is no direct
contribution of the tracking of the previous results to the output. For this reason the
system is extremely dynamic. This was an advantage when the output was used in a
sensor fusion environment based on Kalman filtering.

Comparison of the lane tracker results to single algorithm results

In order to understand the effectiveness of the used approach (to merge results of more
algorithms that have their strengths in distinct situations) we present a statistical com-
parison. The data is gathered from a 2 lane highway scene. The ego vehicle drives most
of the time on the right lane. The analyzed data is obtained out of 5000 frames (about
200 seconds) from the whole sequence.

The results are presented in next table (table 3.4.7). The numbers represent the count
of the left/right valid flag (maximum 5000) that was outputted by each of the algorithms
(each algorithm outputs a valid flag if it has available data for the corresponding lane
delimiter). In parenthesis the percent (compared to the 5000 frames = 100%).

Algorithm Left Delimiter Right Delimiter
lane interpreter 4349 (86.98%) 4986 (99.72%)
lane detection based on road detection 2002 (40.04%) 2641 (52.82%)
lane detection based on SI metrics 1630 (32.60%) 3178 (63.56%)
lane detection based on intensity and sat-
uration

2908 (58.16%) 4392 (87.84%)

The results of the lane interpreter are outputted for more than 86% (left lane delimiter)
and 99% (right lane delimiter) of all frames. The algorithm that has most of the data
to present to the lane interpreter is the cognitive lane detection based on intensity and
saturation. It reaches a percent of about 66% (left lane delimiter), respectively about
87% (right lane delimiter).

Not taking into account the improvement in the quality of the results, the lane inter-
preter is able to improve the result with about 28% (for the left delimiter), respectively
about 11% (for the right delimiter) in the test scene. This proves the effectiveness of the
approach.

Lane curvature and output

After the matching is concluded, there are two equations of the form a ∗x+ b = y. These
equations are projected on the image. Starting at the lowest position (closest to the image
bottom) for each equation an intensity profile in the form of a lane marking is searched.

96

3.4 Road & Lane Detection

This profile is then interpreted to extract a list of points that are positioned in the center
of the profile. The longest list of points is chosen for the computation of the curvature.

These points are used to interpolate the coefficients of a 2D curve of the form a0 ∗ 1
Y 2

ri
+

a1 ∗ 1
Yri

+ a2 ∗ Yri + a3 = Xri. The indices “ri”, show that the position is relative to the
optical center and not to the image coordinate system. These coefficients are then used
to compute the curvature with the help of the formulas 4.10. The complete description
of the 3D reconstruction method is detailed in 4.4. The reconstruction of the other 3D
information (lane width, ego displacement) is also treated in 4.4.

The lane interpreter is the final step in the lane detection algorithms. It merges the
detection results from more detection sources, tries to compensate their shortcomings and
controls the algorithms in order to improve both the running time of the system and the
algorithm performance.

97

Chapter 3

3.5 Object Detection & Tracking

Almost all elements of the road transportation infrastructure that can be used for lane
detection (markings, street) are monochromatic elements. Since the amount of color in-
formation is extremely reduced, the advantages of using it are also limited. This argument
is also confirmed from the fact that lane departure warning systems based on greyscale
image processing methods are already in series development at major automobile com-
panies.

On the other hand, this work was dedicated to color vision. It is trying to answer the
question “What specific advantages can color information bring to the image processing
algorithms in the automotive domain?”. Correspondingly, the focus is oriented to object
detection where the color information provides a definitive advantage.

The second important direction of this work, the cognitive aspect, was partially high-
lighted by the road, lane detection as well as by the lane interpreter algorithms. Using
simple algorithms and trying to combine the results of the algorithms that perform better
in disjunctive conditions to cover the whole application spectrum will be illustrated in all
its extent in the object detection algorithms.

The other cognitive aspect, using the knowledge about the automotive environment
structure and its properties instead of mathematical models, is less relevant for object
detection as for lane detection. The reason for it, is that the objects are harder to define
in detail than the traffic lanes. In order to be able to design the algorithms, a minimal
knowledge about the form and the properties of the vehicles is required. This topic is
presented in detail along with the algorithms using it, but it was considered too small to
have its dedicated section.

The major focus of this work is the detection of objects. By object are understood
passenger cars and trucks, in order to keep the dimension of this thesis in the imposed
timeframe. In order to improve the detection results, the detected objects are tracked
between pictures. They are re-detected in each single frame, therefore the output is
perfectly suited for a sensor fusion tracking using Kalman filtering.

3.5.1 Multiple Models

Motivation

For any common camera setup (focal length of 500 - 2000 pixels) the size of objects that
are present in the picture ranges from almost the width of the picture (in case of a close
car in front of the camera) to a few pixels for distances of 200 - 500 meters. Such different
footprints in the image suggest that a single object model for detection or tracking will
only work in a limited range. Multiple models pose a great challenge to the way they
have to be chosen (i.e. an additional recognition step) and bound together. But they are
able to cover the complete range required by advanced driver assistance systems.

The system presented in this work not only uses multiple methods to cover the complete
visible angle of the camera (up to about 300 meters depending on the sharpness of the
image), but a single model uses multiple algorithms to compensate for weak points of a

98

3.5 Object Detection & Tracking

Figure 3.44: Scene with three different car models (Far, Regular, Lateral)

single method. This structure allows future extensions to the system to be programmed
in a natural way, covering failure cases and leaving other functionalities untouched.

Object classes

The objects are divided into three main models (classes) depending on their position in
the picture:

- lateral object (partially visible, “touching” one margin of the picture).

- “regular” object (fully visible in the picture, not “touching” any margin of the picture,
wider than 24 pixels)

- far object (fully visible in the picture, smaller than 24 pixels)

Each of the main models also has sub-models for passenger cars and trucks.

Fig. (3.44) illustrates the multiple model concept. The red marked object belongs to
the lateral model, the yellow one to the regular model and the green one is tracked using
a far model. The transition between models is transparent for the output, the new model
inherits as much as possible from the old one (position, properties, etc.) and tracks the
object without any interruption in the output.

One may also note that the three models are disjunctive; i.e. one object can only belong
to a single model. This property is not absolutely necessary if the system would finally
perform a union of the results before the output. This study has chosen the simpler
method (just an addition of all results of the different models) because there was no need
to track a class of objects with two different models. Therefore there is a one to one
mapping between object classes and models used for the detection and tracking.

99

Chapter 3

Overview of the Object Detection and Tracking System

In what follows the raw detected objects in picture will be referred as “candidate objects”
(or shortly candidates). Naming detected objects as “candidate” objects is due to the
fact that a newly detected object is treated differently in the tracking algorithms as an
already tracked object that is changing its tracking model.

Objects redetected using search regions from previous results are referred to as tracked
objects or shortly objects. The term “tracked” should not be associated with Kalman
filtering. The main reason why the Kalman filtering was not used in this thesis is that the
sensor fusion system that integrates this work is already using Kalman filtering. Since
the basic assumption in Kalman filtering is that the noises have a Gaussian distribution,
using two Kalman filters would greatly diminish the benefits of the second filter.

Figure 3.45: Object Detection and Tracking

The object detection and tracking subsystem (see Fig. 3.45) uses information from
the road detection, the SI metric segmentation, the lane detection and the source image
to generate candidates expressed as rectangles in image coordinates (position, width,
height). The candidates are delivered to a specific model that tracks them for the rest of
the sequence. No output is generated directly from the candidate detection phase.

After the object tracking block receives the candidates, it performs an association with
the already tracked objects. For the remaining candidates, it instantiates objects from one
of the models (depending on the properties of the candidate). These instances (tracked
objects) will redetect the objects further in the images of the sequence. If during its
lifetime an object changes (drives closer or too far away from the ego vehicle) such that

100

3.5 Object Detection & Tracking

its model becomes inadequate, it notifies the system that it requires a different tracking
model and the system will try to change its model by instantiating the new model and
deleting the old instance. Over the lifecycle of an object its tracking models can be seen
as nodes in a state graph, each node knowing its neighbours and suggesting when a state
change should occur, but the final decision of changing the state (transition between two
models) belongs to the system.

3.5.2 Object Detection - System Structure

The detection of objects is performed based on results from the road detection step and
on the raw HSI image. Fig. 3.46 illustrates the structure of the object detection system.

Figure 3.46: Candidate Detection

The objects that are most relevant to a driver assistance system such as ACC, are the
objects that are present in the same traffic lane as the ego vehicle, in front of the ego
vehicle, hence on a possible collision course with the ego vehicle. Such objects correspond
typically to the regular object model. Therefore the object detection focuses on the
regular object model. It has two detection algorithms, each with its information source.

The fact that the detection of regular object plays a most important role, is not the same
as saying that regular objects are important. If the lateral and distant object detection
algorithms would not miss any object, the regular object detection is not necessary at all.
An object can only arrive in the range assigned to the regular model if it passes through
the other models. But in reality objects may not be detected or it may also be possible
that an object is lost during tracking. In such cases, reliable object detection for the
regular model is of ultimate importance.

3.5.3 Object Detection - Using SI Metrics

The metric chosen for object detection is the one from (3.6). The same process of updating
automatically the coefficients is carried out as for the road and lane marking detection

101

Chapter 3

algorithm. The reference point for the “good” value is chosen as having I = 0 and S =
128. The reason is the one described in 3.2.1; the S values are high due to the model
errors of the HSI representation. The “bad” reference value is given by the average S and
I values from the road pre-detection algorithm.

(a) Source Image (b) SI Metric Results

Figure 3.47: SI Metric Results for Object Detection

The results obtained from applying the metric to the source image are illustrated in
fig. 3.47(b). As clearly visible in fig. 3.47(a), the shadows are generating false positives.
There is no possibility to eliminate them for the object detection, in the HSI color space,
without using higher level information. E.g. the areas inside the shadows have the same
HSI values as the areas situated on the vehicle tyres.

Another important observation regards the region of interest for the metric computa-
tion. As it can be clearly seen in fig. 3.47(b), the metric is only computed up to a certain
vertical position. This avoids computing the metric for about 1/3 of the image points
and generates accordingly about 30%-40% speed-up. The exact vertical position is given
by the lane detection algorithms in form of the vertical position of the intersection of the
two outputted lane delimiters. In order to achieve the required stability, the results are
averaged over 50 cycles (about 2 seconds at 25 fps).

The next step in the algorithm is to extract horizontal areas that posses the property
that above them all metric values of the points are greater than the threshold (or candidate
points as marked on the fig. 3.47(b)) and below them all the points are irrelevant as
candidate points. This is equivalent to the fact that the bottom of the footprint of the
car (tyres, shadow under the vehicle) is “touching” the road surface, since the road average
values were taken as the “bad” reference for the SI metric.

The algorithm implementation is straight ahead. The image rows are parsed one by
one and for each row the existence of a region that contains no positive results of the
metric but the row only contains positives is proved. The results are of course extremely
noisy and include a lot of false positives due to either the lateral vegetation, shadows or

102

3.5 Object Detection & Tracking

road patches.
Parsing the whole ROI of the metric proved to be inappropriate due to real time

constraints. The solution was to limit the results to one match per column. In other
words, the criteria had to be: in a single column there is at most one match. This avoided
searching the rows further if a candidate was already found at that vertical position. The
limitation is not as strict as it may seem. Suppose that no shadows generate false positives
on the road. In this case all visible objects are detected, since the closest object to the
camera is also the lowest positioned in the picture.

(a) Raw Results (b) Filtered Results

Figure 3.48: Object Detection Results using the SI Metric

In the next step, these positives are filtered to eliminate the ones that are clearly false
positives (using their position and size information). The rest of them will be passed to
a specific tracking model, which is parameterized in such a way that it does not promote
them to the status of objects ready for output as long as it cannot verify their form and
basic properties. The final (filtered) results of the object detection are presented in fig.
3.48(b). The objects detected before the filtering are presented in fig. 3.48(a).

As illustrated in fig. 3.48(b) the filtering may also eliminate distant objects. Since the
purpose of this algorithm is not to detect the distant (small) objects, but the near ones,
the filtering is complying with its specifications. Moreover, a 100% accurate detection is
not a requirement for the reliable functioning of the object tracking. The tracking itself
compensates for the objects that were not found during the detection phase.

3.5.4 Object Detection - Using Road Information

The basic idea for the second object detection algorithm remains the same: find horizontal
areas in the road detection results. The horizontal areas would probably correspond to
objects situated at the end of the detected road areas. The implementation is simplified by
the fact that the road detection results are already in the form of an array containing the

103

Chapter 3

vertical positions where the street ends. The algorithm traverses the road detection results
from left to right and looks for horizontal areas (a deviation of 1 pixel is acceptable). If
such an area is found, then it is added to the results.

(a) Raw Results (b) Filtered Results

Figure 3.49: Object Detection Results using the Road Detection Results

The road detection results along with the unfiltered objects are presented in fig. 3.49(a).
In fig. 3.49(b) is presented the result of filtering the detected objects. As it can be
observed, the filtering eliminates all false positives at the road margins. This is done with
a filtering algorithm that computes for a detected object (considered as a rectangle) the
number of points that are found to be positives by the SI metric. This filtering method
is not coupled with the previous algorithm in any way. The filtering is just using the
property of the SI metric to clearly separate the road and the marking points from the
points belonging to objects.

3.5.5 Object Detection - Lateral Objects

The detection of lateral candidates is treated in detail in [99]. The solution presented
in the current article is simpler because the requirements are less strict; to assert the
presence and to find the behaviour of the lateral candidate is enough for the purpose of
this paper. A complete description in image coordinates in the current implementation
is not necessary for the sensor output (since the sensor cannot assert the position of the
invisible back of the car, which is the reference point for the sensor fusion model).

Similar to [99] the lateral candidate detection in this paper uses the property that the
candidate has to “touch” one margin of the picture. The lane detection gives the limits
for the current lane. These limits are used to generate the left and the right lane search
regions. These regions are watched for sudden changes in intensity that may indicate
that an object “enters” the picture. In order to cope with local noise, areas of 8x8 pixels
are averaged and the average values are tested.

104

3.5 Object Detection & Tracking

(a) With Shadows (b) Normal

Figure 3.50: Lateral Object Detection and Tracking Results

Fig. 3.50(b) shows the results of lateral object detection. The two lateral search regions
are marked as green rectangles at the left and at the right of the picture. Their absolute
vertical limits (computed from the results of the lane detection) are marked as small
white horizontal lines above the two regions. Due to the 8x8 averaging, the position and
height of the detection areas for lateral object detection are rounded to multiples of 8.
The detection regions are dynamically updated in each cycle (their vertical position is set
using the results from the lane detection; their size is automatically adjusted to exclude
the lane markings if necessary).

The detected candidate is shown in green using two lines that mark its vertical and
horizontal limits. The vertical limit is determined as the transition from the road to a
darker region, the horizontal area is the opposite transition but in this case the search
direction is horizontal to the middle of the image. In both cases the coordinates are
rounded to a multiple of 8. The finer positioning is done through the lateral object
tracking algorithm.

In fig. 3.50(a) is shown an extreme case in which the shadows greatly influence the
scene. Still, there is no problem in case of such big shadows since the strongest transition
remains the one from the tyres to the shadowed area. The other challenge emerges when
smaller shadows are caused by the sun high in the sky (noon time shadows). But, in
this case, the shadows are also reduced in intensity. Even if their size would be wrongly
detected, during the transition to the normal tracking model the size will be checked
again and, if necessary, corrected.

The lateral candidates are passed directly to the specific lateral tracking algorithms
with no additional filtering step.

105

Chapter 3

3.5.6 Object Detection - Distant/Far Objects

The detection of far candidates is accomplished using a simple edge detector. The al-
gorithm is simplistic; it searches for horizontal edges of an arbitrary width (6-12 pixels
was used). The exact width is not relevant by itself; it may be arbitrary chosen. It is
important that the width in the middle of the range (6+12

2
= 9) is the same as the width

of the far objects that are allowed to change the position of the search rows.

After a successful detection the result is validated before being transmitted further by
checking the form of the candidate (against a template image; by using the same template
matching algorithm as for the tracking). This ensures that big horizontal structures
(shadows, road patches, large traffic shields, etc.) are dropped from the result set.

(a) Search Rows (b) Results

Figure 3.51: Far Object Detection

The search region for the detection of the far candidates would be ideally a single row
(the row in which the far objects have the average width equal to the middle of the
allowed width range). Its position is dynamically defined using information from already
tracked objects. Due to pitch angle variations and the vertical curvature of some streets,
the search region cannot be restricted to a single row. Few close rows are searched; this
ensures that even in case of pitch angle variations or non flat roads the far vehicles remain
in one of the searched rows, therefore generating candidates. To speed up the algorithm
and to avoid generating too many candidates for a single object, the distance between
two rows is about 4 pixels. The layout of the search rows is illustrated in fig. 3.51(a).

In fig. 3.51(b) is presented a typical false positive. Due to the perspective effect, the
side delimiter of the road has a horizontal area of the expected width. This could be
filtered out by the detection algorithm, provided that there are no vertical edges at its
ends. Unfortunately, this is not the case. Both ends have vertical edges; both of them
belonging to the infrastructure. This is a case that cannot be eliminated by the single
frame analysis of the detection algorithms for distant objects. It will be eliminated during

106

3.5 Object Detection & Tracking

the tracking because its form will change (it is composed of objects situated at different
depths that will respect the motion parallax law).

Before delivery, a candidate object is classified as passenger car or truck by means of
the relative height of its vertical edges with respect to its width. Most trucks are built
with the maximum allowed dimensions for such vehicles, i.e. their width is 2,55 m and
their height is 4 m (or very close to those dimensions). The presence of a horizontal edge
that links the two vertical edges (the top of the truck is much better defined as than that
of small cars) counts as an extra valuable information.

The far candidates are passed directly to the specific far tracking algorithms with no
additional filtering step.

3.5.7 Filtering the Candidates

The obtained candidates from the SI metrics or road detection results are filtered to
reduce the large number of false positives as illustrated in Fig. 3.45. The filters are
additive (logic and). In other words, it is enough that an object is filtered by one filter
to be deleted from the result set passed to the tracking algorithms.

The first filter uses a width based criterion. The width of an object should not be
larger on that image row than the recognized lane width or smaller than one fourth of
it (the filter is implemented using pixel measurements, no 3D information is necessary).
For the general reference, in 3D this would mean that the car width should be somewhere
between 90 cm to 360 cm. This range is so generous, that the real objects will not be
affected, but large shadows areas or tiny false positives will be eliminated from the result
set. This filter is active only if the lane recognition is active.

The second filter removes false positives generated by vegetation. The color segmenta-
tion method based on the SI metric labels any pixel that is not similar to road or markings
as a possible “candidate point”. The vegetation is usually dense and thus has a higher
percentage (the threshold used is 90%) of its area covered with candidate points. This
property allows the removal of false positives generated at both sides of the road. A typ-
ical car has always black (e.g. tyres, lower chassis elements) or white/silver regions (e.g.
handles, rear lights, license plate, chrome inserts), as well as glass areas that generate less
coverage as a pure vegetation area.

For highway scenarios a third filter was implemented. It is based on the fact that the
backlights of the cars are red, therefore a minimum of few red points with at least average
saturation should be present on the footprint of the objects in the image. Since the filter
“successfully” removes all objects belonging to the incoming traffic on the country roads,
and newly it has also problems with the backlights using LED technology - which are not
only white but also a beloved design trend at the moment of this thesis - it was disabled
in this form and implemented as an additional hint in the tracking algorithms.

Some examples of filtered objects were shown in fig. 3.48(b) and in fig. 3.49(b). As it
can be seen, the filters are not very strict, but still efficiently remove about 30% - 70%
of the false positives. The rest of the false positives will be removed by the tracking
algorithms themselves.

107

Chapter 3

3.5.8 Tracking of Objects - Lateral Objects

The lateral object tracking algorithm is almost trivial due to the fact that the detection
of lateral candidates is very stable. Only two issues are to be solved by the tracking
algorithm: removing false positives generated by shadows and compensating for misses
due to small detection areas or particularities of the object that do not match the features
used for the detection.

The shadow problem is solved by analyzing the extent of the edge present under the
object. Objects have the property of entering the picture slowly coming from lateral
positions. Shadows come suddenly in the picture and have a greater extent. The footprint
movement is nothing else but the relative speed difference (a shadow has the opposite
ego velocity, while an object is typically much slower).

Practically if an object suddenly enters the picture (it was not yet tracked), it will only
be considered if its width is smaller than 18 pixels (5% of the image width). If not, no
tracked object will be created. When a saved image sequence is started from a position
with a lateral object that is already half present in the picture, it will be ignored. This
problem cannot appear in live tests, except when the system is to be started (or reseted)
in the middle of the driving test. But in this case all system parameters (lane detection,
average SI values for lane and road, lateral regions etc.) have probably not yet converged
to stable values, therefore missing a lateral object is not at all relevant.

The missed detections are compensated for by running the detection algorithm in the
already known lower area of the object. When this test fails, the object is dropped.
Therefore the lateral tracking algorithm does a simple re-detection. This makes the
algorithm extremely dynamic. Since the scope of the system presented in this thesis is
limited only to the assertion of the existence of the lateral objects, tracking them in 3D
coordinates makes no sense (their 3D coordinates remain constant).

3.5.9 Tracking of Objects - New Objects

Once an object was detected by one of the algorithms in 3.5.3 or in 3.5.4 and made it to
the filtering algorithms described in 3.5.7, it is passed to those algorithms that have to
accomplish two major tasks:

- position properly the object using the image information;

- assert the existence probability for the object and if necessary trigger the model
change so that the object can be outputted as soon as possible.

As it can be seen the tasks are not at all different from the tasks of any typical tracking
algorithm. The reason for which these tracking algorithms were not simply implemented
in the regular tracking algorithm, is that the object detection is not very exact, therefore
the limits for the position adjustment are much larger for new objects. The second
reason is that integrating both models would generate a “monster” model that would be
considerably hard to debug.

The object positioning is based on the already known SI segmentation algorithm. The
metric is the one from 3.10. The row situated 6 pixels under the object (empirically

108

3.5 Object Detection & Tracking

determined from measurements so that the shadows and tyres of the detected vehicle
remain typically above this line) is taken as the reference for the “bad” values. I.e. the
S,I values of the pixel for which the SI metric value is the minimum of all pixels on the line
is chosen as the bad point. The “good” SI values are learned from previously successfully
tracked new objects. They start with S = 128 and I = 0. The divider and the threshold
are dynamically evaluated using the algorithm described in 3.11.

(a) Width and Align Algorithm (b) New Objects

Figure 3.52: SI Metric for Object Alignment of the Newly Detected Objects

Fig. 3.52(a) presents the results of running the metric and thresholding the points on
12 rows (but not more than the objectheight

4
) above the given object bottom. A histogram

is build with the number of points on a column that have the metric values above the
threshold. The biggest outer peaks on the histogram are probably corresponding to the
left and right tyre. They are chosen as the left and right delimiters. The lowest row at
these columns for which the metric returns a value at least equal to the threshold is used
for the bottom of the object. The height of the object is set by default to be equal to
80% of the object width (this value was computed from the height of the passenger cars
in the compact class). The fig. 3.52(b) shows the results of the positioning. Two of the
objects were already passed to the regular tracking model.

The width positioning algorithm does fails when (i) the new computed object width
is smaller than 3 pixels or (ii) the two maximum values in the histogram are smaller
than the 1

4
of the theoretical maximum (i.e. the height of the region to which the SI

metric is applied). If the width positioning algorithm fails, then a simpler algorithm is
tried. It only positions the bottom of the object (but no horizontal alignment is done).
The bottom of the object is set as the lowest row in a region with a height of 16 pixels,
centred on the detected lower part of the object containing no metric result bigger than
the threshold.

If the width positioning algorithm is successful, the object is passed to the regular (or
lateral) tracking model. The difference between this tracking model and the detection

109

Chapter 3

method based on the SI metric is that, while the detection method does suppose that
the object is different from the road and accordingly uses the road average values, this
algorithm supposes that the object is detected and uses the tyre values and the area below
the detected object. The two algorithms are similar, but the tracking algorithm is more
limited with respect to the impact that it may have on position and size of the detected
object.

(a) New Object Tracking Model (b) Specific Tracking Model

Figure 3.53: Transition to Specific Tracking Model

It is also important to understand the way the detected object data is fed into the
tracking algorithms. In fig. 3.45 is presented the rare situation when an object cannot
be associated to any already tracked object, therefore will generate a new object with
the model for new objects. In reality this will not happen for objects multiply detected.
The association step is run before all tracking algorithms are run. In the association step
each tracking model gets each detected object and has to answer the question “can this
detected object be associated to one of the objects tracked with this tracking model?”.
If the question is answered affirmatively than the candidate is removed from the list of
detected objects and the corresponding tracked object can use the information carried
by the detected object to update its position and/or trust. Additionally at the end of
each cycle all of the tracked objects are checked to remove duplicates (one single physical
object being tracked with more models).

In fig. 3.53(a) and fig. 3.53(b) are presented the results of running the tracking
algorithms multiple times on the same frame. The objects belonging to the “new object”
model are marked in light violet, to the regular model in yellow, to the far model in green.

In the first run six new objects are detected. One is promoted in the same cycle to the
regular tracking model, the other five still remain in the “new object” tracking model.
The algorithms run 10 times on the same image. The detected objects (candidate list)
remain almost the same. Due to available lane information the right most candidates will
be filtered over its size and disappears from the result set. The other two distant objects

110

3.5 Object Detection & Tracking

switch to regular tracking model and in the same cycle are passed to the distant/far
tracking model. The corresponding candidates are being associated in the association
step and disappear from the result set. The other two (left most new objects in 3.53(a))
will be associated to the left most car and will be deleted from the new object model.
The corresponding candidates are also associated during each cycle and will not generate
any objects in the “new object” tracking model. Summing up, no object will remain in
the “new object” model since all the candidates can be properly associated to already
existing objects in other models.

The objects belonging to the ”new object” model are never outputted on the CAN.
They can only be displayed in the CCVS debug application.

3.5.10 Tracking of Regular Objects - up to about 70 meters

The algorithms of the regular object tracking model use mostly intensity information and
the positioning is done in smaller intervals as in the case of the “new object” tracking
model. Technically, a fine horizontal positioning is performed, followed by a complex and
precise vertical positioning.

The horizontal positioning is based on the fact that a car that is on the road generates
two symmetric transitions (at left, respectively at right) from lighter values (due to road)
to darker values (due to tyre) , respectively vice versa. These two transitions are close
as value and if the search area is small enough they are the maximum transitions in the
region due to the fact that cars usually have a relatively uniform horizontal intensity.

(a) Horizontal (b) Vertical

Figure 3.54: Tracking the positioning for regular objects

The algorithm works by computing the vertical sums in an image band situated around
the current vertical position and choosing one out of the two most significant transitions
in the average intensity for each lateral side of the car. The decision is validated by taking
into account the previous width and position of the car and of its backlights (if detected).

111

Chapter 3

This approach avoids interpreting false transitions due to other objects or lane markings
as lateral limits for the current object.

The horizontal positioning algorithm steps are: (i) choose a region that should be
small enough to avoid noises and big enough to contain a possibly displaced object; (ii)
compute intensity sum on each vertical strip (iii) find maximum transition left/right from
light-to-dark/dark-to-light. If one of the maximum transitions do not confirm the object
width (the width is considered constant and the other detected margin is used to get the
reference point) but the second maximum confirms it, than choose the second maximum
position. This is illustrated in fig. 3.54(a). This helps in stabilizing the results when the
car drives close to the markings. If the transitions are similar and the change in size is
reasonable, then the new left/right peaks give the positions of the transitions.

The vertical positioning is based on the fact that a car on the road generates two
symmetric transitions (left, respectively right) from lighter road values to darker tyres
values when processing the picture from bottom to top. These two transitions have close
values and if the search area is small enough, they are the maximum transitions in the
region.

Two issues are related to this algorithm: (i) it does not work in heavy rain conditions
due to the sprayed water at the contact of the tyres with the ground (ii) it has to be
corrected for shadows, otherwise the position will always get stuck with shadows that
generate stronger contrast with the illuminated road as the tyres with the shadow.

The vertical positioning also takes into account the results of the road detection, the
change in the position of the backlights (if detected) and the image itself. It handles
cases of a car entering/exiting from a strong horizontal shadow, cases of poor visibility
of the contact surface of the tyres (or partial occlusions), cases of false positives due to
lane markings (as in fig. 3.54(b)) and cases of strong breaking in which the car suddenly
approaches the bottom of the picture.

(a) Source Image (b) Road Detection and Objects

Figure 3.55: Handling shadows during the tracking of regular objects

112

3.5 Object Detection & Tracking

The steps of the vertical positioning algorithm are: (i) choose a region that should
be small enough to avoid noises and big enough to contain a possibly displaced object;
(ii) find maximum intensity transitions on the vertical positions for left and right. If the
two transitions are not close enough, but one of them is close (empirically set to cover
a relative speed of about 25 m/s) to the previous car position, then ignore the distant
one and use the close one as result. If the two transitions are very similar in value then
return their average vertical position (rounded up) as the result.

The shadows are handled with two separate algorithms.
The first method interprets the road detection results. The road detection itself (as

presented in 3.4.2) handles the problem of shadows. If the area in the shadow under
the car was detected as road (due to the shadow handling routines), then the vertical
position is the one given by the road detection (in fig. 3.55(b) it can be seen how the
road detection handles the shadows).

(a) Source Image (b) Object Tracking

Figure 3.56: Tracking backlights to assist regular object tracking

The second method is based on the detection of backlights. The problem with the
shadow does only apply to cars having a positive relative velocity (otherwise they will
cover the shadow in the next frame). Therefore detecting backlights is a perfectly suited
solution in this particular case as illustrated in fig. 3.56(a). The detection of backlights
gives, beside other relevant information, the vertical position of the backlights. The
position is tracked between the frames. If the backlights indicate that the new position is
closer to the top of the image as the position obtained by the vertical position algorithm,
the results of the vertical position are dropped. Fig. 3.56(b) depicts this situation. The
car is entering the shadow and even if the vertical positioning will tend to stick with the
shadow margin (because it is stronger and closer to the position of the car in the previous
frame), the backlight tracking accurately tracks the car. In this particular situation the
road detection is working very well and confirms the results of the backlight tracking
algorithm.

113

Chapter 3

A second application of the detection of the backlights is to handle the high dynamic
cases such as strong braking. Typically, the limits of the movement of a vehicle inside
a frame are set to cover a relative speed of about 10 m/s (36 km/h). These limits are
ignored if all three methods (vertical position, backlight tracking and road detection)
return the same results.

The final step in the tracking normal objects is to find out the 3D width of the vehicle
using the ratio of its width to the width of the lane at that position (from the lane tracking
output). These results are filtered over time to provide the distant object tracking with
an accurate estimate of the 3D object width. This information is later used in computing
the distance to objects that are too far to be reconstructed with triangulation methods.

3.5.11 Tracking of Distant/Far Objects - beyond about 70 meters

Particularities of Far Objects

By a far car or object it is understood a car that is no wider than 24 pixels. For the
camera setup used in this article (a horizontal focal length of 996 pixels) this corresponds
to about 70 meters for a vehicle (passenger car) that has a width of 170 cm, respectively
105 meters for a vehicle (truck) that has a width of 255 cm.

One issue encountered in far object detection and tracking is that values for saturation
and color corresponding to cars that are between 10 and 24 pixels wide are very noisy.
Even if more accurate, the intensity information is not always reliable. Besides, the
accuracy of the lateral position of a detected car is limited by the image resolution. The
high dynamic of the pitch angle characteristic to any system mounted in a car poses an
additional challenge. This materializes in sudden vertical movements of the objects in
the image. Even in cases of lane change manoeuvres, due to the frame rate of 25 fps, the
horizontal movement of a car into the picture remains relatively small.

One positive aspect is that all far cars, being very small in the picture, generate a very
similar footprint. This makes the use of template matching algorithms possible. Another
positive aspect is related to the horizontal edge generated in the picture under a car.
The edge is better defined as in the case when the footprint of the car is wider (the edge
consistency can be modified in the latter case by the cast shadow under the car or the
road texture).

Multi-Method Approach for Tracking Far Objects

The input for the tracking methods consists of the position, width and type (car/truck)
of the object.

More methods are used to track an already detected candidate in a sequence of images.
The search intervals for all these methods are fixed. They are empirically estimated
using data from several test sequences. The following methods are independent of the
prior detection, i.e. once detected, a candidate can be tracked without additional hints
from the detection. Four algorithms are used, one of them (positioning based on edge
detection) only as a temporary “rescue” solution when the other three (image correlation,

114

3.5 Object Detection & Tracking

Figure 3.57: Software Diagram for Far Object Tracking

template matching and edge image correlation) do not deliver consistent results. Fig. 3.57
shows the connections between the four algorithms. If the tracking succeeds using the
three main methods, a post validation and exact positioning is performed. In order not
to influence the results of the detection, the regions of interest used are tiny (2 pixels on
each side of the detected position). The four methods are presented in detail in the next
paragraphs.

(a) 8 Pixels (b) 14 Pixels

Figure 3.58: Correlation Areas

Correlation: For the sake of speed, there is no copy of the whole previous frame
for the correlation. Each object saves its region of interest for the future processing. All
possible object points were tested for the stability of the correlation over time. The points
situated on the lateral sides of the object performed the best, in particular at the bottom
of the tyres. The result is not surprising since a relatively small (4x4 pixels) correlation

115

Chapter 3

region is used (see Fig. 3.58). For this size of the region, the differences between street
and tyres compensate the small signal/noise ratio.

The correlation is carried out at the bottom of the left and of the right tyre, at the exte-
rior of the car (see Fig. 3.58). The limits of the search area were experimentally estimated
by finding the biggest movement of several targets into typical sequences. The correlation
function is the absolute difference (abs(Intensityleftimage(x, y)−Intensityrightimage(x, y)).
There was little benefit from using more complex correlation functions (due to the small
correlation area).

If the width of the object suffers no significant change and both correlation values
are good, than the correlation is successful and the result goes to the fine positioning
algorithm. By correlation value is to be understood the similarity between averaged
intensity differences for the left and right areas.

(a) 8 Pixels (b) 14 Pixels

Figure 3.59: Detection Templates and Corresponding Samples

Template matching: The template matching (Fig. 3.59) is performed with a dynam-
ically generated template as long as the width of the object is bigger as 13 pixels. The
smaller templates were manually created, analyzing sequences of images, to fine tune their
form. Each template is stored as a mask. It will be filled in with actual values obtained
from the street detection algorithms and later from the object itself (values obtained in
the previous frame). This ensures an auto adaptation of the template to local properties
of the region in which the object lies and improves the robustness of the method.

Edge Based Correlation: Due to the relative high number of edges belonging to
the object in the search region, one may expect a better result for the correlation if
performed on the image obtained by convoluting with an edge operator. Unfortunately,
due to the small signal/noise ratio, the correlation on the gradient image is no better
than the correlation on the original image. More complicated edge extraction algorithms
were also tested, but the average performance remained below the one of the correlation
on the source image. Still, the edge based correlation cannot be ignored in cases in which
significant image changes occur (e.g. the tracked object enters a shadow). Therefore it is

116

3.5 Object Detection & Tracking

(a) Beginning (b) End

Figure 3.60: Object tracking example

used to stabilize the results from the correlation and template matching.

Raw Edge Positioning: If all three methods fail or generate different results, in
order to keep the object alive for few frames, a horizontal and after that a vertical align
algorithm similar to the one for regular objects is used. The only difference is that the
search regions are smaller.

Besides the used methods, an important aspect is the validation of the correlation or
template matching results. All of the three described methods may generate false results
in cases when foreign structures or shadows are present in their search area. For example,
when an object crosses a lane marking, the position on the marking has no match in the
previous picture. Such cases are eliminated in a post validation step.

Fig. 3.57 shows the algorithm flow. Roughly, the results of the best performing method
(image correlation) are evaluated (with respect to the individual correlation results on left
and right). If the results match the output is generated. If not they are checked against
the results of the template matching and edge image correlation. If a good match between
the results of two out of three methods could be found, the output is generated. In case
that the results of all three methods look different, the ”rescue” positioning solution is
used to eventually carry the object for one or two extra frames. If the correlation for the
next frames fails, the object will be dropped.

Fig. 3.60 shows an example in which the algorithm tracked a Volkswagen Phaeton
car for more than 900 frames. After that, the Phaeton will get closer, switch to regular
model, to lateral model and finally leave the field of view.

The test sequences showed that tracking a car in a highway scenario is successful in
good weather conditions until the car is about 8 pixels wide (with frequent cases in which
a car was tracked until it was 6 pixels wide). In bad weather conditions the algorithm
may become unstable under 12 pixels. For the current camera setup (focal length of 996
pixels on X axis) a width of 8 pixels for a real width of 170 cm (typical passenger car

117

Chapter 3

width) corresponds to about 210 meters, while one of 12 pixels corresponds to about 140
meters.

118

4 Reconstructing 3D information

4.1 Motivation

In almost all driver assistance applications the output of the vision sensor is implicitly
required in 3D coordinates for at least two reasons: (i) data correlation with other sensors
(radar, laserscanner) and (ii) requirements from the controller of car dynamics.

This chapter deals with the reconstruction of 3D lane and object information from the
detection results in the picture.

4.2 Requirements for the Output of a Vision Sensor for
Automotive Applications

The traffic lane is commonly modeled as a clothoid in the 3D space along with a width
and position relative to the car coordinate system [81].

X = c1 ∗
Z3

6
+ c0 ∗

Z2

2
+ tan(−α) ∗ Z + X0 (4.1)

In (4.1) the coefficients mean: X0 - position of the ego car in the lane; α - heading angle;
Z - the depth at which the horizontal position is computed; c0 - curvature; c1 - curvature
variation. The equation of the clothoid is presented in (4.1). If the vertical profile is
required then to this horizontal description a second clothoid is added to describe the
behaviour of the road in the vertical plane.

Not all coefficients are always used by driver assistance systems. Typically only some
of the following parameters are estimated:

- width of the lane
- horizontal curvature and curvature variation
- lateral displacement of the car with respect to the center of the lane (or vice versa)
- angles (yaw -yaw and yaw-rate can also be obtained from car electronics like ESP-,

maybe pitch)
Lane departure warning systems use either the ”time to line crossing” (TLC) or the

comparison between current angles between the car projection and interpolations of de-
tected lane markings. Both of these values can be computed directly out of the image
coordinates [102], respectively [52], therefore are not analyzed in this paper.

In case of a lane keeping system the most relevant input is the lateral displacement.
The heading angle and/or the curvature can be used to stabilize the controller loop or to
improve the controller reaction.

119

Chapter 4

The width, lateral displacement and curvature (sometimes also the curvature variation)
are used to associate objects detected with other sensors to a certain traffic lane.

Objects are represented as cuboids in the 3D space, characterized by their geometry,
position and dynamics. Their position is characterized by a point in the chosen 3D
coordinate system (Lateral: X, Vertical: Y, Depth: Z), their geometry usually simplified
to cuboids dimensions (Width: W, Height: H, Length: L) and their dynamics reduced to
relative speed (S) or acceleration (A) information.

Out of this information the most important are Z, X and S. X and Z allow the ob-
ject/lane association. S allows the prediction of the object movement. Since S and A
cannot be measured directly by a vision sensor (like S in case of radar), they are derived
over time and therefore they do not belong to the subject of this paper.

Summing up, this chapter focuses on how to reconstruct the curvature, width of lane,
lateral position of the ego, X and Z object coordinates. These are the most used param-
eters in automotive applications.

4.3 Projections of the 3D space in the image plane

The pinhole camera model used is presented in detail in [102]. Assuming no radial
distortions, the 3D clothoid equation and the position of a point in the 3D space are
projected through the intrinsic camera calibration matrix into the image plane. This
implies that the world coordinate system is the camera coordinate system. Otherwise,
making the general projection would bring such level of complexity that would make the
equation impossible to solve for practical purposes. Transforming the equation later to
the desired coordinate system makes the whole task not only simpler, but allows for the
free choice of the common coordinate system for all sensors.

In the following equations the symbols used mean: Fx and Fy - focal length expressed
as a measure of the width, respectively height of the pixel; Ox and Oy - horizontal and
vertical coordinate of the projection of the principal point onto the image plane; Xi and
Yi coordinates into the image plane (relative to bottom/left position into the picture);
Xc, Yc and Zc coordinates of a point in the camera coordinate system.

Xi = Ox − Fx ∗
Xc

Zc

, Yi = Oy − Fy ∗
Yc

Zc

(4.2)

Projection of a single point. Projecting a 3D point from the camera coordinate
system (Xc, Yc, Zc) into image coordinates [102] (Xi, Yi) leads to the equations presented
in (4.2). Remarks:

- measuring a width (Xc1−Xc2) at the same Zc will reduce the principal point projection
from the equation as shown in (4.3)

Xi1 −Xi2 = Fx ∗
Xc1 −Xc2

Zc

(4.3)

- one may associate to a row of the image a pixel/meter coefficient that is constant in
world coordinate system, as well, if all points having the same Zc and Yc project on the

120

4.4 Reconstruction of 3D Information

same image row (i.e. changes in camera height, pitch and roll angle remain small)
- projection formulas give no direct way to compute Zc (since Zc is the normalizing

factor)  −Fx 0 Ox

0 −Fy Oy

0 0 1


 a ∗ Z3

c + b ∗ Z2
c + c ∗ Zc + d

Yc

Zc

 (4.4)

Projection of a clothoid. In the flat road assumption, projecting the clothoid onto
the image plane is the same as computing the product in (4.4) and normalizing with the
element in the third row(Zc). −a ∗ Fx ∗ Z2

c − b ∗ Fx ∗ Zc − d∗Fx

Zc
+ Ox − c ∗ Fx

Oy − Yc∗Fy

Zc

1

 (4.5)

The result is presented in (4.5). This vector is in fact [X, Y, 1]T . In order to obtain
an equation in image coordinates, the variable Zc is expressed as a function of Yi and
replaced in the expression for Xi. Yi − Oy is factored out and denoted for the sake of
simplicity with Yri. Similarly Xri denotes Xi −Ox.

−
Y 2

c ∗ a ∗ F 2
y

Y 2
ri

+
Yc ∗ b ∗ Fy

Yri

+
d ∗ Yri

Yc ∗ Fy

− c =
Xri

Fx

(4.6)

Equation (4.6) presents the final expression in which the only extrinsic variable is the
height of the 3D marking points (Yc).

One may suggest that if the curvature is not required then position and lane width
information can be obtained using a simplified description in which only the last 2 terms
are involved. It is more convenient to use a simpler method that can be calibrated directly
to world coordinates. It computes the distance to the lane marking as the lateral distance
to a point of the 3D space (like for the lateral displacement of the objects).

That is, using (4.3) and the assumption that a specific row of the image corresponds
to a road section having Zc and Yc constant, all that it is needed additionally is to have
a reference point and a pixel per meter coefficient associated to this row. The reference
point is taken to be the position of the point having Xc = 0.

4.4 Reconstruction of 3D Information

Ego Lateral Position. As presented in fig. 4.1 the method is directly derived from
(4.3). Assuming that all points of the street having the same Yc and Zc will project on
the same image row (i.e. flat road and negligible dynamic changes in pitch angle and
camera height above the ground), one arbitrary image row is chosen (in the lower part
of the image to benefit from the improved resolution). The image point on this row that
has Xc = 0 (denoted by Xic0) and the factor pixels/meter (denoted with Cppm) are the

121

Chapter 4

Figure 4.1: Estimating the ego lateral position

only two required parameters. If the positive X axis points to the left then one may write
for a certain Xi position on that particular image row (4.7):

Xc =
Xic0 −Xi

Cppm

(4.7)

The prerequisites (flat road, negligible dynamic changes in pitch angle and camera
height) proved to be reasonable for automotive applications. Due to the oscillatory char-
acteristic of the vertical movement of the car, the dynamic changes can also be filtered
out well over time.

If the coordinates are expressed in the world coordinate system the only required mod-
ification is that the two parameters (Cppm and Xxc0) must be calibrated/computed in this
coordinate system as well.

Lane Width. Using the same parameters as in the case of the lateral position of the
ego vehicle, the computation of the lane width is straight forward. The absolute difference
of the two positions of the left and right lane delimiters gives the lane width.

One may also reconstruct the width starting from (4.2). In this case a depth must be
assigned to an arbitrary image row during the calibration process and Fx must be known.
The method is just another form of the prior one.

Object Lateral Position. Two solutions for obtaining the lateral position of an
object are discussed. The first uses the same approach as in the case of the in-lane
position.

The advantage is that the lateral distance does not depend explicitly on the distance.
The disadvantages are:
- the Cppm and Xxc0 factors have to be computed for each image row in which objects

are present
- the dynamic movements of the car may introduce significant reconstruction errors

with the distance.

122

4.4 Reconstruction of 3D Information

Both disadvantages can be compensated if the interpolation of the lane in the image
generates the Cppm coefficient using the information that at a specific row in the image
the width of the current lane is known in both meters (filtered over time) and pixels.
I.e. a virtual lane with no curvature and heading straight ahead is taken and the relative
position of the object point with respect to the lane together with the lane information
is giving the position information.

The second solution is to use the depth information for an object and to compute Xc

from the equation (4.2).
The advantage is that only the Ox and Fx parameters are required.
The disadvantage is the dependency induced between Zc and Xc. All errors of recon-

struction of the Zc parameter will be found in Xc as well.
Depth. Two methods of reconstructing depth information for objects are discussed.

Figure 4.2: Depth estimation using object baseline

In fig. 4.2 is presented the common approach (similar to [51]) that uses for the com-
putation the distance in picture from the base of image to the base of the object. The
pitch angle is exaggerated in order to make the figure readable. The formula is (under
the assumption that the road in front of the camera is flat; everything being expressed
in camera coordinates):

Zc =
YC0 ∗ Fy

yc + Fy ∗ tan(φ)
(4.8)

In (4.8) the not yet described symbols mean: YC0 height of the camera above ground
in camera reference system; φ is the pitch angle; yc is the distance in image on the Y axis
between the principal point and the base of the object.

Unfortunately this approach is sensitive to pitch angle movements and has a very poor
resolution near the focal point of the camera (tan(α) is closed to 0 for small pitch angles
and yc is an integer value with limited resolution around 0). This makes it unsuitable
for example in far object scenarios. In this case the pitch angle movements generate

123

Chapter 4

significant computation errors due to the variation they induce in the object position on
y. Unfortunately in a typical forward looking camera setup the object base for far objects
lies near the optical center position.

Figure 4.3: Depth estimation using object width

In fig. 4.3 is presented a different approach. It is simple and robust, but it has one
major drawback. The width of the object (in meters) is required. This problem can be
addressed in several ways:

- supposing that the current lane has a constant width, one can use the objectwidth
lanewidth

report
and the current lane size to find out the width

- use the width that was obtained with other methods as long as the object was in a
different range (e.g. (4.8))

- assume a constant width (at a higher level use more width classes and choose between
them based on image analysis)

In case of road vehicles (cars, trucks) the last assumption works the best. The width of
a passenger car is supposed to be 170 cm (with a 10% error margin this covers practically
all passenger cars produced in large series), respectively for trucks 255 cm. Of course,
this induces a systematic error if the assumption does not hold, but the results are not
only more stable, they remain in a typical 20% error margin for objects that are wider
than 10 pixels (the error for the width is about 2 pixels). Also there is no dependency on
the pitch angle variation.

Zc =
W3D

wimg

∗ Fx (4.9)

The corresponding depth computation formula is presented in (4.9). The newly intro-
duced symbols mean: W3D 3D width of the object (meters); wimg width of the object in
image coordinates (pixels).

Curvature. In (4.6) making the assumption that the road is flat and that the camera
pitch angle is very small, the position of all road points used to estimate the curvature
may be approximated as the opposite of the camera height above the road. Using this
assumption and the projection equation in (4.6), the method to compute the curvature is
straight forward. One has to interpolate a curve of the form a0∗ 1

Y 2
ri

+a1∗ 1
Yri

+a2∗Yri+a3 =

Xri from a set of points in the image. The values for c0, c1, α and X0 are computed from
a0, ..a3 knowing the intrinsic parameters and the height of the camera above ground 4.10.

124

4.5 Alternative Calibration Methods

c1 = 6 ∗ − a0

Y 2
c ∗ F 2

y ∗ Fx

, c0 = 2 ∗ a1

Yc ∗ Fy ∗ Fx

α0 = arctan(
a3

Fx

)

X0 =
a2 ∗ Fy ∗ Yc

Fx

(4.10)

4.5 Alternative Calibration Methods

Using the ”standard” camera calibration model (intrinsic/extrinsic) and deriving the
coefficients in the above presented equations may prove too difficult in a production
environment due to the need to accurately calibrate each single camera. Even if the
calibration process is automated, it remains time-consuming and inconvenient in series
production. One solution is to use a simpler model derived directly from the equations.
Such a model should be able to be calibrated online in a very simple manner (single image
calibration would be ideal).

In case of the curvature the whole set of intrinsic parameters and the height of the
camera above the ground has to be known. Such an auto calibration process is complex
and beyond the intent of this paper.

In (4.7) the only two parameters are Xic0 and Cppm. The two parameters can be found
using a single image with a marked lane and defined ego position and orientation.

In (4.8), if one denotes u = YC0 ∗ Fy and v = tan(φ) ∗ Fy, the number of coefficients is
reduced to 2, i.e. they can be found having two or more known distance measurements.
This is much simpler than carrying out a complete camera calibration. It can easily
be automated. Moreover, when calibrating for the product of more classic parameters,
singular errors in the parameter computation are not multiplied since the product value
is calibrated as a single item.

In (4.9), the only coefficient is Fx. That means that this coefficient can be computed
from a single measurement with known distances. If W3D is big enough, the measurement
can be carried out at depths comparable with the maximum range. This improves the
results and performs an implicit compensation of the distortions induced by the optics
(which were ignored in the camera model used in this paper due to the level of complexity
they generate).

Of course, all coefficients can be computed with improved precision as the solution of
an over determined system of equations resulting from more measurements.

4.6 Experimental Results

The detection of the lane width in a known scenario using the calibration method proposed
in 4.4 to evaluate the influence of the dynamic changes into extrinsic parameters was

125

Chapter 4

performed. The error remained in a 10% error margin with a maximum deviation in the
case of strong braking of 32 cms for a width of 350 cm.

Figure 4.4: Errors in Depth reconstruction

In fig. 4.4 are presented the obtained distances for an object using the 2 proposed
calibration methods. The measurements were performed on a flat road. The curve marked
”Width” is interpolated from the results of the algorithm based on the car width. The
”Baseline” curve is obtained by interpolating the results of the algorithm that uses the
vertical position of the base of the object in the picture. The results in fig. 4.4 show
clearly that the proposed depth computation method is very stable and outperforms the
standard method for depths greater than 100 meters.

126

5 Results

5.1 System architecture

5.1.1 Software Environment

Development Tools and Software Platform

The targeted software platform is Microsoft Win32. Even if the image processing algo-
rithms have no explicit dependency on WinAPI, the user interface was designed specifi-
cally for Win32.

All programs developed as part of this thesis were written using the BCB 6.0 IDE under
Microsoft Windows XP r©. BCB is a RAD IDE, that encapsulates most of the WinAPI
complexities in a convenient, object oriented library, the VCL. Together with the relative
simple user interface needed for the software system, this allowed for a focused develop-
ment in which most of the time was spent implementing the specific image processing
procedures.

Besides standard Windows user interface components, in order to comply with the real
time requirements, the online application makes use of OpenGL to draw the results on
the screen. Because virtually all OpenGL operations are performed by the GPU, they do
not require processor time, allowing more time to be allocated for the processing task.

The IEEE 1394a based acquisition subsystem uses the exposed DirectX r© 9 interfaces
to get images from the camcorder.

System Architecture

The software system consists of the following applications:

Online Processing Application - CCVS-Online. It works online in the setup
present in the car, processing images from an acquisition module (typically firewire cam-
era) and outputting the results on the CAN bus. It uses an acquisition module from
the ones described below. The graphical user interface is minimal. The application is
multithreaded for maximum performance.

RGB2HSI Conversion Module (DLL). It converts the Red, Green, Blue (RGB)
image representation to the Hue, Saturation, Intensity (HSI) format in realtime using a
lookup table. Contains functions for the generation, saving and loading of the lookup
table as well.

DV (firewire; 1394a) Capture Module (DLL). It captures images in real time
from a standard IEEE 1394a/firewire camera (e.g. a consumer electronics camcorder) and

127

Chapter 5

makes them available for further processing. The underlying functionality is provided by
Microsoft DirectX r© 9.

Bitmap (offline; file based) Capture Module (DLL). It uses saved images to
emulate an online acquisition module. It is used to perform tests on saved scenarios in
order to ensure the reproducibility of test results.

Application Controller (Watchdog). It guarantees that the CCVS-Online stays
running when software bugs generate unhandled exceptions. The controller communicates
with CCVS-Online over TCP/IP and watches its activity. If running on the same machine
it may also start, stop, restart or in extreme cases even kill CCVS-Online.

Offline Processing Application- CCVS-Dev. It is used for the development of
the system. The exact same algorithms are used as for CCVS-Online, from the same set
of source files. The application has a rich user interface, is single threaded to allow the
best debugging conditions and runs only with saved bitmap sequences.

DV Capture. It acquires images from a standard IEEE 1394a camera and saves them
to a specific directory on a hard drive as a bitmap sequence to use later with CCVS-Dev
or the Offline Acquisition Module. The application allows the use of up to 4 separate
temporary hard drives for output and of the whole available memory as buffers. Using
such techniques it supports a maximum sustained frame rate of 25 fps for the standard
PAL resolution of 720 x 576, 32 bit color with common PC hardware.

Documentation. The system has a complex and rich documentation from extended
inline comments in doxygen format, detailed doxygen comments in extra .doxygen files up
to PDF and other graphic rich formats. The documentation covers the complete system,
special attention being paid to the algorithms. Standardized documentation like UML
was preferred.

The most of the source code is contained in CCVS-Online and CCVS-Dev. Both share
the same source files with respect to the algorithms, being different only in the GUI.
The most important features of each of them are detailed in the next two subsections. A
detailed description of their user interface can be found in the appendices, respectively
their included user manuals in PDF format.

CCVS-Dev - Development Application

CCVS-Dev is used only for development purposes. Using the same source files for algo-
rithms as CCVS-Online, it isolates its specific code by means of #ifdef blocks.

The application is single threaded in order to make the debug as simple as possible.
It only works with saved sequences of bitmaps (for example with DV Capture), allowing
step by step playback/reversed playback with detailed output. The results over imposed
on images are actually written onto image data. These images can be saved and later
used alone or in sequence for presentation purposes.

CCVS-Dev has an information-rich user interface as can be seen in Fig. 5.1. It is able
to display from 3 up to 8 complete 360 x 288 images in conjunction with up to 2 large
status memos on a screen resolution of 1280 x 1024. This allows checking each individual
algorithm step with maximum efficiency in repeatable scenarios.

128

5.1 System architecture

Figure 5.1: CCVS-Dev - GUI Interface

CCVS-Online - High-Performance Application

CCVS-Online was developed specially for the in-car usage. Even if it relies on the same
processing code as the CCVS-Dev, its structure is not linear anymore. Additionally
the intended image source is not relying anymore on bitmaps from the hard drive, but
on an acquisition software module with a well defined interface. This module is using
DirectX c©9 interfaces to build and run an acquisition graph for generic firewire cameras
or VCRs.

Due to the general approach for the acquisition, the CCVS-Online application can also
run in off-line modus. Two options are available: (i) a VCR playing a tape recorded
with the camera in the car or (ii) using bitmaps saved for CCVS-Dev with a specially
developed file based acquisition module.

The application structure is presented in Fig. 5.2. The application starts by acquiring
images together with associated CAN data, than carries out the processing that updates
the internal environment representation, collects the output data, converts it to 3D infor-
mation and finally outputs it on the CAN and on the output monitor (in the latter case
over imposed on the source image).

Having a non-linear structure, the application is written in an event driven manner

129

Chapter 5

Figure 5.2: CCVS-Online - Basic Application Structure

in order to exploit optimally the system resources and to properly interfere with the
image acquisition, display and the CAN bus drivers. It consists of multiple threads
that are in charge of specialized tasks such as: responding to CAN events, acquiring
images, outputting results and of course running the necessary image processing routines.
The multitude of threads adds additional complexity to the application, but eliminates
most dead-times due to synchronization with other devices and reallocates most of the
interfacing to the dedicated devices as the graphics card, CAN card, etc. The exact
calling order and thread tasks are detailed in the chapter dedicated to the processing
algorithms.

5.1.2 Hardware Setup

In what follows the setup for the online application will be described in detail. The
hardware required for CCVS-Dev is very simple, consisting of a single computer, therefore
not subject to a detailed description.

System Diagram - CCVS-Online

The processing unit (car computer/laptop running CCVS) has a connection to a color
mono camera over a firewire bus and to other systems (car controller, time generator,
etc.) over CAN-Bus. The output of the system is sent over CAN-Bus or Ethernet to the
driver assistance applications that require it.

The basic layout is described in Fig. 5.3. The camera and the firewire connection are
described in the next section. The car controller delivers a lot of information about the
ego vehicle from the built-in series sensors (like speed, yaw-rate, etc.). Out of this data,
only the current ego speed (if present) is read and used. The time generator information
consists of a unique timestamp used to synchronize all sensors present on the CAN Bus.

130

5.1 System architecture

Figure 5.3: Basic Hardware Diagram

This timestamp is used to align the output of the CCVS results on the time axis of the
sensor fusion system.

Color Vision Subsystem

Figure 5.4: Image Acquisition and Processing - Hardware Options

The CCVS-Online uses a standard firewire interface to acquire images. This enables
a very large spectrum (see Fig. 5.4) of both acquisition devices (industrial cameras,
consumer electronics camcorders or even video walkmans) and target systems (specific car
computers, laptops, standard desktop computers). The most common setup during the
work for this thesis was a Sony PC109E camcorder together with a laptop or a dedicated
car computer when available. The camcorder + laptop option was the most flexible
one and, coupled with the very simple calibration required for the 3D reconstruction
methods, allowed extremely quick and efficient installation of the system in any of the
target vehicles.

131

Chapter 5

In-Car Setup

(a) The test vehicle (b) Vision Sensors

Figure 5.5: In-Car Deployment Of Vision Sensors

The CCVS system was designed as a sensor for the INVENT project. The two test cars
used were both Volkswagen Passat Variant. This subsection refers to the setup present in
WOB VH-21 (see Fig. 5.5(a)). Fig. 5.5(b) shows the three vision sensors present in the
car. The camera used by the CCVS system is the camcorder mounted below the other 3
cameras.

Figure 5.6: Sensors - deployment and range

In Fig. 5.6 is shown the installed sensors along with an approximate coverage of the
space around the car. The sensors are:

- near radars (2 on the left side, 2 on the right side),
- laserscanner (ahead looking)
- far radar (ahead looking)
- greyscale stereo vision (the SCABOR system)

132

5.2 Results

- greyscale mono vision (the AGLAIA system)
- color vision (CCVS).

Figure 5.7: Interconnection Network over CAN

All these sensors were synchronized using a time generator and outputted their data
on the CAN buses present in the car (see Fig. 5.7). Their output was fed into a sensor
data fusion system which interpreted it and generated a higher level, detailed description
of the environment. This description of the environment is used later to assist the driver
and warn him/her of dangerous situations.

5.2 Results

This section is dedicated to the presentation of the most significant results achieved with
the new methods introduced in this thesis. These results constitute the basis for the next
chapter where the conclusions are drawn.

5.2.1 Hardware Platform

The system used for all the tests presented below is an IBM ThinkPad R52. Its hardware
configuration is detailed below:

- Processor (CPU) Intel Pentium M Processor 750, 1.80GHz, 533MHz Front Side Bus
- Memory 512 MB
- Graphics chipset ATI Mobility RADEON x300, 64MB Video RAM
- Integrated Firewire Port (IEEE 1394)
- OS: Windows XP Professional, Service Pack 2

133

Chapter 5

5.2.2 Samples of the CCVS processing

This section presents results of the CCVS processing. The data is presented as outputted
on the screen of the computer running the CCVS system and corresponds to the output
written on CAN.

The focus remains on the object detection since this is the area in which the CCVS
system has shown major improvements above other systems. The presentation here is
not intended to be a complete or exhaustive one. It is meant to give a reader that unable
to work directly with the system the possibility of evaluating at first glance the object
detection in CCVS.

(a) Before the lane change (b) After the lane change

Figure 5.8: Handling of a lane change situation

In fig. 5.8(a) and in fig. 5.8(b) is shown a typical lane change situation. At the bottom
of the image, the lateral displacement is shown. The green bar at the bottom of fig. 5.8(a)
shows that the ego vehicle is driving with a displacement to the right from the middle of
the lane. The size of the bar is given by the number of centimetres in the displacement.
It is directly converted to pixels.

In fig. 5.8(b) is presented the situation just after the lane change. The purple colored
lines surrounding the central lane marking detail the search region for the lane marking.
They signal that the lane marking equation uses a vertical formula x = a ∗ y + b due to
the poor resolution of the normal equation y = a ∗ x + b. The red bar at the bottom of
fig. 5.8(b) shows the lateral displacement of the ego with respect to the middle of the
lane (to the left).

The next figures will focus on object detection and tracking for each of the three
different tracking models (lateral, regular and far).

In fig. 5.9(a) to fig. 5.9(d) is detailed the tracking of a lateral object from the very
beginning until it transitions to the regular tracking model. The observed object is the
silver Volkswagen Golf 4 Variant at the left of the image.

134

5.2 Results

(a) Beginning (b) Before transition

(c) Transition to regular model (d) Tracking in regular model

Figure 5.9: Lateral object tracking and transition to regular object model in CCVS

The object enters the image from left - see fig. 5.9(a) - and stays in the lateral tracking
model as long as it is less than 8 pixels distant from the left margin of the picture - see
fig. 5.9(b) -. Note the robustness of the lateral object detection that is not influenced by
the horizontal discontinuity in the street from fig. 5.9(b).

In fig. 5.9(c) the object has completely entered the picture and its tracking model
switches to the regular tracking model. It will continue to be tracked in this model until
it will be small enough to be handled by the far tracking model.

In fig. 5.10(a) to fig. 5.10(d) is presented the tracking of an object in the regular model.
During the test we intentionally drove so that we covered lane change situations, intensity
changes and curve driving all in the regular model. The position of the ego vehicle was
between 30 to 80 meters behind the target vehicle. The sequence covers about 3 kilometres
(about 1300 frames). The observed object is the dark green Volkswagen Golf 5 in the
same lane as the ego vehicle.

135

Chapter 5

(a) Beginning (b) Tracking

(c) Tracking (d) End of the sequence

Figure 5.10: Regular object tracking in CCVS

The tracking begins in fact in fig. 5.8(a). Fig. 5.10(a) is just a few seconds after that
lane change. The object is tracked without interruption due to the lateral cast shadows
from the lateral vegetation (it was around 11 a.m. and the sun was at the right of camera)
in 5.10(b).

There was another object entering - see fig. 5.10(c) - and exiting the scene (the blue
Volkswagen Passat), but since it did not drive in the right lane, it did not overlap in the
image with the object under observation.

The object is tracked without any problems until it begins to approach the left margin
of the image, switches to the lateral model and then disappears from the image in the
curve ahead. Fig. 5.10(d) is taken just before that.

The sequence selected for the illustration of the far object tracking is about 400 frames
long. It shows a three lane highway (A2) and is taken during low traffic time. The visible
objects are too far to be recognized; therefore they will be distinguished by their position

136

5.2 Results

(a) Frame 1 (b) Object lane change

(c) After overlapping (d) Frame 412

Figure 5.11: Far object tracking in CCVS

and estimated color, not by their type.

The sequence starts with two far objects that were detected and tracked in fig. 5.11(a).
The silver car on the left maintains its lane, while the dark car on the right will perform
a lane change ahead the silver one - see fig. 5.11(b) -. The dark object is accurately
tracked during its lane change manoeuvre. It will be lost as it will overlap in the image
with the silver vehicle - see fig. 5.11(c) -.

At the end of the sequence, another object was detected in the right lane in fig. 5.11(d).
The detection is not perfect (two cars were detected as a single object) due to the very
low resolution of the image in that point. Since the far object tracking model is based
on form and does not analyse other aspects, the two cars will be identified together for a
long time until the ego vehicle will come closer and they will be clearly distinguishable.

The fig. 5.17 sums up all the tracking principles. The sequence analyzed is about
450 frames, taken on the A39 highway, between the German cities Braunschweig and

137

Chapter 5

Wolfsburg, during the rush hour. The lighting is very strong, which reduces the color
definition of the scene due to the camera adaptation. This situation is common in the
automotive domain and raises no problems for the CCVS system.

The first frame (first row, left) presents two objects, both in the regular tracking model.
The next frame (first row, right) shows the transition of the object in the left lane to the
far tracking model and additionally illustrates the lateral tracking model.

Next (second row, left) the Volkswagen Golf 3 has changed to the lateral model. The
next picture (second row, right) shows the transition of the Golf to the far model and
the lost of the previously tracked object in that lane due to a lane change that makes it
invisible (in front of the transporter in the ego lane).

The rest of the example pictures illustrate the quality of the object tracking. The
scenes contain many cars, coming from left (entering the highway) or right (taking over
the ego vehicle). The CCVS system works accurately, detecting and tracking even cars
that are very hard to distinguish due to their partial overlapping with other vehicles.

5.2.3 Comparison with other vision systems

In order to be able to draw some conclusions about the advantages of the presented color
vision system, two other systems were taken as a reference: a stereo greyscale system
running on a dedicated high end machine (P4 3 GHz) and a mono greyscale system
running on a relatively common configuration (PIII 1 GHz). Both systems were available
at Volkswagen Group Research for tests and were integrated and tested in the same
vehicle.

The analyzed sequence is 1800 seconds long. All three systems outputted their infor-
mation on the CAN bus and the comparison was achieved by analysing the CAN log
file.

Figure 5.12: Framerate Comparision

138

5.2 Results

The graphic 5.12 lists the fps times over time for all three systems. The CCVS system
slightly outpaces the stereo system and runs significantly faster than the greyscale mono
system.

(a) Average FPS (b) Standard Deviation

Figure 5.13: Summary of the FPS Values

The summary in fig. 5.13(a) shows that the CCVS system is about 40% faster than
the other two. The stereo system did not deliver lane information at all for 50 seconds
between second 553 and 603. Therefore the average frame rate is just above the frame
rate of the greyscale reference system.

One very interesting result is represented in 5.13(b) where the standard deviation of
the measured frame rates is shown. The CCVS system has clearly the biggest deviation
in the frame rate. One explanation is the absolute average value which is bigger. But
the major source of these variations is the relative complex algorithm control methods
in CCVS. The running time is proportional to the amount of the code that is executed
and in CCVS this varies with the current driving situation and the number of detected
objects.

The results are not very conclusive since the systems run on completely different com-
puting architectures and at different CPU frequencies, but they support the conclusion
that the current approach is able to sustain real time performance as defined by the other
two systems (provided that CCVS runs on processors faster than 1,5 GHz).

The second test compares the results of the lane detection algorithms (car position
in the lane). The reference is the stereo system which without doubt shows the best
accuracy among all systems performing lane detection. It works with 3D models that
include horizontal and vertical curvatures and is able to reconstruct 3D points from the
scene to match to the model. The other two systems, greyscale mono and color mono,
work with simple triangulation methods, which are less precise.

The fig. 5.14 shows the current lane width outputted on the CAN by the three systems.
In order to be able to compare the data, for each system the output during a second was
averaged and this average lane width value was used in our tests. The lane width is
expressed in centimetres.

From fig. 5.14 it is clear that the stereo system is not only more accurate, but the

139

Chapter 5

Figure 5.14: Comparison of the Lane Width Output

stability of its results over time is better. This is absolutely normal because it has the
advantage of a much better way to reconstruct and track 3D information.

The CCVS system is the only system not employing any result tracking methods. Still,
even a simple visual evaluation of the results shows that its output is closer to the reference
stereo system than the output of the reference mono greyscale system. Considering also
the fact that the CCVS system is optimized for the detection of far objects and therefore
works with a larger focal lengths than the reference mono system (in the exemplified
setup about 2 times larger), it is clear that the cognitive approach used to merge the
results of more lane detection methods is delivering the expected results.

Figure 5.15: Deviation of the Lane Width Output

Fig. 5.15 illustrates the percentual deviation of the results from the output of the

140

5.2 Results

reference stereo system. The deviation of the CCVS system is about two times smaller
than the deviation of the other mono system. This confirms the hypothesis that the
methods used in CCVS deliver better results than the method used in the reference
greyscale mono system. If the CCVS system uses tracking as well, then it could probably
match the stereo system.

One observation is necessary regarding the data in fig. 5.15. Both mono systems may
output lane widths twice the size of the real lane width when they detect the outer left
and right markings, but not the one in the middle (for example, a lane change situation).
This is not a problem because the association in the sensor fusion system handles more
lane markings and is able to do the proper association. Therefore both mono systems
were not tuned to eliminate this situation.

A direct comparison of the number of objects outputted by all three systems makes
little or no sense since the reference stereo system also detects side delimiters, traffic
signs, etc. On the contrary, the reference mono system uses a very simplified approach
in which exclusively objects in the driving and neighbour lanes are detected. Therefore
no direct comparison can take place.

Moreover, all three video systems use different lighting compensation methods specific
to the underlying hardware. The reference stereo system has its own compensation al-
gorithms with full control over the camera settings, while the CCVS system relies on
the automatic compensation of the handycam. Comparing the object output in a single
reference scene would also not yield reproducible results.

Figure 5.16: Number of detected objects beyond 100 meters

The graphic in fig. 5.16 shows the number of objects beyond the 100 meter limit
(performance in the far range). In order for an object to be tracked continuously it has
to have the same number of outputs as the numbers of frames in that time period. The
sampling time was of 500 ms, which is for the CCVS system it should be 5-6 outputs
for a single far object that is continuously tracked, for the reference mono or stereo 3-4
outputs. The results in fig. 5.16 show that:

141

Chapter 5

- the reference stereo system had a setup in which the objects beyond 100 meters were
not outputted (for example in order to reduce the number of errors)

- the reference mono system is also unable to track objects in that range, the output
consists mostly of isolated 3D reconstruction errors

- the only system that clearly shows that is able to track objects in the far range is the
color mono system.

142

5.2 Results

Figure 5.17: CCVS Object tracking - Putting it all together

143

Chapter 5

144

6 Conclusion & Future Work

6.1 Conclusion

6.1.1 Advantages over existing systems (color, monochrome)

This thesis presented a whole system as a standalone sensor using minimum of information
from the car controller and the other systems present in the car. This makes the direct
comparison of the results with other video systems as in 5.2.3 possible.

The most relevant results of this thesis are:
- higher frame rate than other systems due to improved software architecture. Separat-

ing the CAN communication, the GUI and the image display from the main processing
thread allowed to drive them at different frame rates and eliminated all dead times. The
CAN output was driven at the same frame rate as the processing, the GUI was updated
on demand, the image display had an arbitrary rate (by default 8 fps).

This boosted the performance of the system. Along with the RGB to HSI conver-
sion based on a lookup table with a 24 bit index it allowed the system to run in real
time on hardware architectures based on processors faster than 1.5 GHz. This is not
necessarily a great achievement, provided that real time greyscale video systems are
encountered starting at few hundred Mhz. Such systems are mostly highly optimized
algorithms implemented partially in assembly to make use of MMX or similar hardware
acceleration techniques. In this software implementation, the much higher complexity of
the approaches restricted the low level optimization possible to implement in the given
timeframe.

- interpretation of the yellow markings in construction areas. Benefiting from the
color information, this work deals actively and exclusively, for the first time in the field,
with the recognizing of the yellow markings and their interpretation in the context (for
example white markings that hold their significance are not eliminated from the result
set). Moreover, the parameters of lane marking detection are adapted to improve the
sensitivity of the detection in order to properly sense the smaller transitions in intensity
characteristic to older and not so reflective yellow markings.

- extended range for object detection. The object detection in this work is a multiple
model approach in which the complete visible spectrum is covered. While suffering from
the common mono-camera weaknesses, the approach was extended to cover the complete
range from 7-10 meters (closest visible object in the used camera setup) up to about 200-
250 meters. This exceeds the capabilities of most vision systems developed for automotive
applications. The extra gain in range is even more spectacular if considering that the
object detection works with half of the standard PAL resolution (360 x 288 pixels).

145

Chapter 6

- simple and modular hardware structure. The system uses firewire and standard
DirectX interfaces. This allows the use of virtually any digital camcorder with a DV
output and of any laptop or computer that has a firewire input. There is no dedicated
grabber, no need for additional video hardware. The requirements for the processor are
average. The only expensive hardware part is the CAN interface to the car controller and
the other driver assistance systems. Because cost is one of the most important issues in
mass production environments, the simple and modular architecture along with the mass
availability of the components is a key point for a driver assistance system.

6.1.2 What’s New

Two new research areas were approached in this work. The first is related to processing
algorithms working in the HSI color space. The other is the cognitive approach taken;
non-mathematical representations (based on image structure and not on mathematical
models) were used until the final step when the 3D information had to be generated for
the output. The classical approach in automotive applications is to use a model that
is extended and optimized until it covers the desired application area with good results.
This is not only hard to do, but it is never possible to cover the complete range of
environmental and illumination conditions with a single method. This work took another
approach; it used several algorithms that have their strengths in different conditions and
combined them to obtain superior results for a wider range of conditions.

Regarding the novel image processing methods this work introduced a method of seg-
menting the color images based on SI metrics. In slightly different forms, this method
has already been mentioned in the existing literature. Still, until now it was not used
in automotive applications. This work analyzed the HSI color space at great length and
detailed the most important features that contribute to the success of this method. It
analysed as well the particularities of the HSI space that generate unexpected effects. It
has show how to compensate for these HSI space model problems, so that the final results
of the color segmentation remain reliable.

Object detection was the area where color segmentation based on SI metrics was used
most. Lane detection algorithms handle mostly greyscale information. Accordingly, the
algorithms are based on monochromatic information. Still, lane detection in construction
areas is hard to imagine without color information. This work presented the detection
and filtering of yellow markings in detail.

Regarding the other new research aspect, the modelling of the environment without a
strict mathematical model using multiple algorithms and merging their results, this work
continues already existing methods in cognitive vision. Unfortunately, the timeframe of
this work did not permit the in depth investigation of approaches based on neuronal
networks or other forms of artificial intelligence. The implementation of the algorithms
in this work is overwhelmingly based on knowledge of the environment and of the algo-
rithms. Therefore most of the decisions regarding the weighting of the results of different
algorithms are hard coded and not dynamically evaluated.

146

6.2 Future development

6.2 Future development

Looking back on the development of this vision system, it becomes obvious that during
the research a lot of other possible promising development directions were ignored due to
the lack of time, hardware and human resources.

The first area in which additional work may contribute to better performance is the
color space used. The HSI space has model errors as shown in 3.2.1. These model
errors could be eradicated by changing the lookup table used for the conversion. This
would require first a very detailed analysis of all typical illumination situations and of the
used algorithms. In lower illumination conditions, this may help providing much better
saturation information.

The second main research direction to be continued should be the dynamical merging
of subalgorithms and their control (enable, disable, change parameters) based on the
recognition of on-going driving scene. This is a highly cognitive approach, very similar to
the human focus on the interesting scene parts using already learnt methods to recognize
objects. This may not only improve performance, but could also improve the quality of
the final results by out-weighting the erroneous results, previous to the gathering of all
partial results in the final output.

The third research direction that could bring real benefits to the system as a whole
is the auto calibration of the system using the alternative calibration formulas from 4.5.
Since by design the system is able to run without any calibration at all, the results could
be interpreted and if they are not plausible, an auto calibration step should be performed.

Last, but not least, future research direction should focus on the integration of the sen-
sor in more driver assistance systems. This is a key point to the success of the developed
system in the long run.

147

Chapter 6

148

7 Notations and Definitions

Notation Meaning Definition and Remarks

BCB Borland C++
Builder c©

C++ Integrated Development Environment from Bor-
land Software Corporation. http://www.borland.com

CAN Controller Area Net-
work

A serial bus device-level network for industrial automa-
tion. Addresses the needs of in-vehicle automotive com-
munications

CCVS Color Camera Vision
System

The software system described in this Thesis.

DirectX DirectX A low-level API that provides user- mode media inter-
faces for games and other high-performance multimedia
applications

GPU Graphics Processing
Unit

A single-chip processor located on the graphics card and
used primarily for computing 3D functions. This in-
cludes things such as lighting effects, object transforma-
tions, and 3D motion

IDE Integrated Develop-
ment Environment

A complete programming environment containing at
least an editor, compiler and linker in case of C++

IEEE1394a FireWire Standard A serial bus developed by Apple Computer and Texas
Instruments (IEEE 1394 or FireWire). The High Per-
formance Serial Bus can connect up to 63 devices in a
tree-like daisy chain configuration, and transmit data at
up to 400 megabits per second.It supports plug-and-play
and peer-to-peer communication

INVENT Intelligenter Verkehr
und nutzergerechte
Technik

n/a Not Available There is no data or information for the position marked
with ”n/a”

OpenGL Open Graphics Li-
brary

The premier environment for developing portable, inter-
active 2D and 3D graphics applications

RAD Rapid Application
Development

A system for quickly building application software.
For example Microsoft Visual Basic c©, Borland C++
Builder c©, etc.

ROI Region of Interest Part of the image that is relevant for the processing al-
gorithms.

149

Chapter 7

VCL Visual Component Li-
brary

Borland Delphi c© and C++ Builder c© come with com-
ponents that are part of a class hierarchy called the
Visual Component Library (VCL). The VCL includes
objects that are visible at runtime–such as edit con-
trols, buttons, and other user-interface elements–as well
as nonvisual controls like datasets and timers.

VCR Videocassete
Recorder

Also known as VTR for videotape recorder

Win32 Microsoft Windows 32
bit Platform

The programming platform that comprises of Windows
9x, Windows Milennium, Windows NT and later. Pro-
grams written for win32 will, with a few exceptions, run
on all these systems

WinAPI Windows Application
Program Interface

the interface (calling conventions) application programs
use for accessing services provided by some lower-level
module (such as the operating system or JVM)

150

8 Appendix

8.1 Short description of included CD

The included CD contains the source code for the programs that are the subject of this
work. Also on the CD is present the source of this document in form of LATEXsource
files. Also on the CD are present the LATEXsource documents and PDFs of the articles
that were published in relation with this PhD Thesis. Last, but not least is included
a sequence of test images that cab be used for the test of the included programs. The
structure is illustrated in 8.1.

Figure 8.1: Directory layout of the included CD

The source code is stored under the CCVS directory. There are two subdirectories
present at that level, called Lib and Projects. Under Lib are to be found all image
processing, CAN interface, image acquisition and mathematical algorithms. These are
shared between the programs that can be found in the Projects directory. The main
programs that are part of the CCVS system were already described in 5.1.1.

The subdirectory Conferences stores the source and the final PDF versions of the
articles that were published during the work that was performed for the PhD program.
Each directory contains an article along with its raw source files. The list with the
published articles is to be found in this directory in the file ArticleIndex.htm.

And last but not least the source files (text, images and data files) that were used to
generate this work are stored in the PhD Thesis subdirectory. Under the sub-subdirectory

151

data are all files that were embedded in the final PDF document, while in raw data are
the files that were used to generate them (e.g. the graphics in the document are to be
found in data, while the excel tables or vectorial graphics used to generate them are in
raw data).

8.2 Tools used to create this document

All names and marks that are mentioned in this work are copyrighted by their authors.
This document was created using the TeX Live freeware distribution of TEXthat can

be found at http://www.tug.org/texlive/.
Image creation implemented frequently the Diagram Designer from
http://logicnet.dk/meesoft/DiagramDesigner/.

152

9 Bibliography

[1] T. Aach and A. Kaup. Bayesian algorithms for adaptive change detection in image
sequences using markov random fields. Signal Processing: Image Communication
7, pages 147–160, 1995.

[2] J. Badenas, J.M. Sanchiz, and F. Pla. Motion-based segmentation and region
tracking in image sequences. Pattern Recognition 34, pages 661–670, 2001.

[3] M. Bertozzi and A. Broggi. Gold: A parallel real-time stereo vision system for
generic obstacle and lane detection. IEEE Transactions on Image Processing, 7,
1998.

[4] M. Bertozzi, A. Broggi, and S. Castelluccio. A real-time oriented system for vehicle
detection. Journal of System Architecture, pages 317–325, 1997.

[5] M. Betke, E. Haritaoglu, and L. S. Davis. Real-time multiple vehicle detection and
tracking from a moving vehicle. Machine Vision and Applications, pages 69–83,
2000.

[6] S. Beucher and M. Bilodeau. Road segmentation and obstacle detection by a fast
watershed transform. Proceedings of IEEE Intelligent Vehicles, page 296301, 1994.

[7] J.M. Blosseville, C. Krafft, F. Lenoir, V. Motyka, and S. Beucher. Titan: new traffic
measurements by image processing. Proceedings of IFAC Transportation systems,
Tianjin, 1994.

[8] Steven M. Boker. The representation of color metrics and mappings in perceptual
color space. -, 1994.

[9] D. Brewster. On a new analysis of solar light. Transactions of the Royal Society of
Edinburgh, 1831.

[10] C. Brodley and P. Utgoff. Multivariate decision trees. Machine Learning, 1995.

[11] A. Broggi. Parallel and local feature extraction: a real-time approach to road
boundary detection. IEEE Transaction on Image Processing 4, 4:217223, 1995.

[12] A. Broggi and S. Berte. Vision-based road detection in automotive systems: a
real-time expectation-driven approach. Journal of Artificial Intelligence Research,
pages 325–348, 1995.

153

Bibliography

[13] T. Brown and J. Koplowitz. The weighted nearest neighbor rule for class dependent
sample sizes. IEEE Transactions on Information Theory, page 617619, 1979.

[14] A.R. Bruss and B.K.P. Horn. Passive navigation. Computer Vision, Graphics, and
Image Processing 21, pages 3–20, 1983.

[15] S.D. Buluswar and B.A. Draper. Color machine vision for autonomous vehicles.
Engineering Applications of Artificial Intelligence, 1998.

[16] S. Carlsson and J.O. Eklundh. Object detection using model-based prediction and
motion parallax. Proceedings of Europe Conference on Computer Vision, Antibes,
pages 297–306, 1990.

[17] B. Coifman, D. Beymer, P. McLauchlan, and J. Malik. A real-time computer vision
system for vehicle tracking and traffic surveillance. Transportation Research Part
C 6, pages 271–288, 1998.

[18] D. Pomerlau D. and T. Jochem. Rapidly adapting machine vision for automated
vehicle steering. IEEE Expert, 11:109–114, 1996.

[19] K.W. Dickinson and C.L. Wan. Road traffic monitoring using the trip ii system,.
IEEE Second International Conference on Road Traffic Monitoring, pages 56–60,
1989.

[20] E.D. Dickmanns. Vehicle guidance by computer vision. Concise Encyclopedia of
Traffic and Transportation Systems, 2004.

[21] E.D. Dickmanns and V. Graefe. Dynamic monocular machine vision. Machine
vision and applications 1, pages 223–240, 1988.

[22] E.D. Dickmanns, B. Mysliwetz, and T. Christians. An integrated spatiotemporal
approach to automatic visual guidance of autonomous vehicles. IEEE Transactions
on Systems, Man, and Cybernetics, 20, 1990.

[23] E.D. Dickmanns and B.D. Mysliwetz. Recursive 3d road and relative ego-state
recognition. IEEE Pattern Analysis and Machine Intelligence, 14:199213, 1992.

[24] L. Dreschler and H.-H. Nagel. Volumetric model and 3d-trajectory of a moving car
derived from monocular tv-frame sequences of a street scene. Computer Vision,
Graphics, and Image Processing 20, pages 199–228, 1982.

[25] M. Dubuisson and A. Jain. Contour extraction of moving objects in complex out-
door scenes. International Journal of Computer Vision 14, pages 83–105, 1995.

[26] W. Enkelmann. Investigations of multigrid algorithms for the estimation of optical
flow fields in image sequences. Computer Vision, Graphics, and Image Processing,
pages 150–177, 1988.

154

Bibliography

[27] W. Enkelmann. Interpretation of traffic scenes by evaluation of optical flow fields
from image sequences. IFAC Control Computers, Communications in Transporta-
tion, 1989.

[28] W. Enkelmann. Obstacle detection by evaluation of optical flow field from image
sequences. Proceedings of European Conference on Computer Vision, Antibes, 1990.

[29] W. Enkelmann, R. Kories, H.-H. Nagel, and G. Zimmermann. An experimental
investigation of estimation approaches for optical flow fields. Motion Understanding:
Robot and Human Vision, pages 189–226, 1987.

[30] W. Enkelmann, G. Struck, and J. Geisler. Roma - a system for modelbased analysis
of road markings. Proceedings of IEEE Intelligent Vehicles, pages 356–360, 1995.

[31] M. Fathy and M.Y. Siyal. An image detection technique based on morphological
edge detection and background differencing for realtime traffic analysis. Pattern
Recognition Letters 16, pages 1321–1330, 1995.

[32] G.L. Foresti, V. Murino, and C. Regazzoni. Vehicle recognition and tracking from
road image sequences. IEEE Transactions on Vehicular Technology 48, pages 301–
317, 1999.

[33] G.L. Foresti, V. Murino, C.S. Regazzoni, and G. Vernazza. A distributed approach
to 3d road scene recognition. IEEE Transactions on Vehicular Technology 43, 1994.

[34] R. Fraile and S.J. Maybank. Building 3d models of vehicles for computer vision.
Visual’99, pages 697–702, 1999.

[35] G. Funka-Lea and R. Bajcsy. Combining color and geometry for the active, visual
recognition of shadow. Fifth International Conference on Computer Vision, 1995.

[36] D. Geman and B. Jedynak. An active testing model for tracking roads in satellite
images. IEEE Pattern Analysis and Machine Intelligence, 18:1–14, 1996.

[37] A. Giachetti, M. Campani, and V. Torre. The use of optical flow for road navigation.
IEEE Transactions on Robotics and Automation 14, 1998.

[38] B. Gloyer, H.K. Aghajan, K.-Y. Siu, and T. Kailath. Video-based monitoring
system using recursive vehicle tracking. Proceedings of IS and T/SPIE Symposium
on Electronic Image: Science and Technology- Image and Video Processing, 1995.

[39] H. Grassmann. On the theory of compound colors. Philosophical Magazine, Serial
4:254–264, 1854.

[40] Allan Hanbury and Jean Serra. A 3d-polar coordinate colour representation suitable
for image analysis. Technical Report, 2002.

155

Bibliography

[41] D.C. Hogg, G.D. Sullivan, K.D. Baker, and D.H. Mott. Recognition of vehicles
in traffic scenes using geometric models. IEEE Proceedings of the International
Conference on Road Traffic Data Collection, London, pages 115–119, 1984.

[42] N. Hoose. Computer image processing in traffic engineering. Taunton Research
Studies Press, UK, 1991.

[43] N. Hoose. Impact: an image analysis tool for motorway analysis and surveillance.
Traffic Engineering Control Journal, pages 140–147, 1992.

[44] N. Hoose. Computer vision as a traffic surveillance tool. Proceedings of IFAC
Transportation systems, Tianjin, 1994.

[45] B.K.P. Horn and B.G. Schunck. Determining optical flow. Artificial Intelligence
17, pages 185–203, 1981.

[46] A.D. Houghton, G.S. Hobson, N.L. Seed, and R.C. Tozer. Automatic vehicle recog-
nition. IEEE Second International Conference on Road Traffic Monitoring, pages
71–78, 1989.

[47] M. Irani and P. Anandan. A unified approach to moving object detection in 2d and
3d scenes. IEEE Transactions on Pattern Analysis and Machine Intelligence 20,
pages 577–589, 1998.

[48] M. Irani, B. Rousso, and S. Peleg. Recovery of egomotion using region alignment.
IEEE Transactions on Pattern Analysis and MachineIntelligence 19, pages 268–272,
1997.

[49] Badenas J., Bober M., and Pla F. Segmenting traffic scenes from grey level and
motion information. Pattern Analysis and Applications, 4:28–38, 2001.

[50] R. Jain, R. Kasturi, and B. Schunck. Recovery of egomotion using region alignment.
Machine Vision, McGrawHill, 1995.

[51] C. Jiangwei, J. Lisheng, G. L. Libibing, and W. Rongben. Study on method of de-
tecting preceding vehicle based on monocular camera. Proceedings of the Intelligent
Vehicles Symposium, 2004.

[52] C.R. Jung and C.R. Kelber. A lane departure warning system based on a linear-
parabolic lane model. Proceedings of the Intelligent Vehicles Symposium, 2004.

[53] Y.-K. Jung and Y.-S. Ho. A feature-based vehicle tracking system in congested
traffic video sequences. PCM 2001, pages 190–197, 2001.

[54] W. Kasprzak. An iconic classification scheme for video-based traffic sensor tasks.
CAIP, page 725732, 2001.

156

Bibliography

[55] John R. Kender. Saturation, hue and normalised color: Calculation, digitization
effects, and use. Technical report, Department of Computer Science, Carnegie-
Mellon University, 2004.

[56] J.B. Kim, H.S. Park, M.H. Park, and H.J. Kim. A real-time region-based motion
segmentation using adaptive thresholding and k-means clustering. AI 2001, pages
213–224, 2001.

[57] P. Klausmann, K. Kroschel, and D. Willersinn. Performance prediction of vehicle
detection algorithms. Pattern Recognition 32, pages 2063–2065, 1999.

[58] K. Kluge and G. Johnson. Statistical characterization of the visual characteristics
of painted lane markings. Proceedings of IEEE Intelligent Vehicles, pages 488–493,
1995.

[59] K. Kluge and S. Lakshmanan. A deformable-template approach to lane detection.
IEEE Proceedings of Intelligent Vehicles, pages 54–59, 1995.

[60] D. Koller, K. Daniilidis, and H. Nagel. Model-based object tracking in monocular
image sequences of road traffic scenes. International Journal Computer Vision 10,
pages 257–281, 1993.

[61] R. Kories, H.-H. Nagel, and G. Zimmermann. Motion detection in image sequences:
an evaluation of feature detectors. Proceedings of International Joint Conference
on Pattern Recognition, Montreal, pages 778–780, 1984.

[62] R. Kories and G. Zimmermann. Workshop on motion: Representation and analysis.
IEEE Computer Society Press, pages 101–106, 1986.

[63] C. Kreucher and S. Lakshmanan. Lana: a lane extraction algorithm that uses
frequency domain features. IEEE Transactions on Robotics and Automation, 15,
1999.

[64] A. Kuehnel. Symmetry based recognition of the vehicle rears. Pattern Recognition
Letters 12, pages 249–258, 1991.

[65] D.J. LeBlanc, G.E. Johnson, P.J.T. Venhovens, G. Gerber, R. DeSonia, R. Ervin,
C.F. Lin, A.G. Ulsoy, and T.E. Pilutti. Capc: A roaddeparture prevention system.
IEEE Control Systems, 1996.

[66] K.W. Lee, S.W. Ryu, S.J. Lee, and K.T. Park. Motion based object tracking with
mobile. Camera Electronics Letters 34, pages 256–258, 1998.

[67] X. Li, Z.-Q. Liu, and K.-M. Leung. Detection of vehicles from traffic scenes using
fuzzy integrals. Pattern Recognition 35, pages 967–980, 2002.

[68] A. Broggi M. Bertozzi. Vision-based vehicle guidance. Computer Vision 30, 1997.

157

Bibliography

[69] Luong Chi Mai. Introduction to computer vision and image processing. Weblink:
http://www.netnam.vn/unescocourse/computervision/computer.htm, 2000.

[70] H.A. Mallot, H.H. Bulthoff, J.J. Little, and S. Bohrer. Inverse perspective mapping
simplifies optical flow computation and obstacle detection. Biological Cybernetics
64, pages 177–185, 1991.

[71] S. Mantri and D. Bullock. Analysis of feedforward-backpropagation neural networks
used in vehicle detection. Transportation Research Part C 3, pages 161–174, 1995.

[72] L. Matthies. Stereo vision for planetary rovers: stochastic modeling to near real-
time implementation. International Journal of Computer Vision 8, pages 71–91,
1992.

[73] J.C. Maxwell. Experiments on colour, as perceived by the eye, with remarks on
colour–blindness. Transactions of the Royal Society of Edinburgh, 21, pages 275–
299, 1857.

[74] P.G. Michalopoulos and D.P. Panda. Derivation of advanced traffic parameters
through video imaging. IFAC Transportation Systems Chania, Greece, 1997.

[75] H. Moon, R. Chellapa, and A. Rosenfeld. Performance analysis of a simple vehicle
detection algorithm. Image and Vision Computing 20, pages 1–13, 2002.

[76] D.G. Morgenthaler, S.J. Hennessy, and D. DeMenthon. Range-video fusion and
comparison of inverse perspective algorithms in static images. IEEE Transactions
on Systems Man and Cybernetics, 20:13011312, 1990.

[77] A. Nagai, Y. Kuno, and Y. Shirai. Detection of moving objects against a changing
background. Systems and Computer in Japan 30, pages 107–116, 1999.

[78] Makota Nagao, Takashi Matsuyama, and Yoshio Ikeda. Region extraction and shape
analysis in aerial images. Computer Graphics and Image Processing, 10:195–223,
1979.

[79] H.-H. Nagel and W. Enkelmann. An investigation of smoothness constrains for the
estimation of displacement vector fields from image sequences. IEEE Transactions
on Pattern Analysis and Machine Intelligence, pages 565–593, 1986.

[80] H.H. Nagel. Constraints for the estimation of displacement vector fields from image
sequences. Proceedings of Intelligent Joint Conference on Artificial Intelligence,
pages 945–951, 1983.

[81] S. Nedevschi, R. Schmidt, Th. Graf, and et al. R. Danescu. 3d lane detection system
based on stereovision. IEEE Conference on Intelligent Transportation Systems,
2004.

158

Bibliography

[82] A.Y. Nooralahiyan and H.R. Kirby. Vehicle classification by acoustic signature.
Mathematical and Computer Modeling, 27:911, 1998.

[83] M. Papageorgiou. Video sensors. Concise Encyclopedia of traffic and transportation
systems, pages 610–615, 1991.

[84] N. Paragios and R. Deriche. Geodesic active contours and level sets for the detec-
tion and tracking of moving objects. IEEE Transactions on Pattern Analysis and
Machine Intelligence 22, pages 266–280, 2000.

[85] N. Paragios and G. Tziritas. Adaptive detection and localization of moving objects
in image sequences. Signal Processing: Image Communication 14, pages 277–296,
1999.

[86] Y. Park. Shape-resolving local thresholding for object detection. Pattern Recogni-
tion Letters 22, pages 883–890, 2001.

[87] R.C.Gonzalez and R.E. Woods. Digital image processing. ISBN 0130946508, 1993.

[88] C. Rotaru, Th. Graf, and J. Zhang. Extracting road features from color images
using a cognitive approach. Proceedings of Intelligent Vehicles Symposium, Parma,
Italy, 2004.

[89] C. Rotaru, Th. Graf, and J. Zhang. Special cases of lane detection in construction
areas. Advanced Microsystems for Automotive Applications, 2005.

[90] J. Schick and E.D. Dickmanns. Simultaneous estimation of 3d shape and motion
of objects by computer vision. Proceedings of IEEE Workshop on Visual Motion,
Princeton, NJ, pages 256–261, 1991.

[91] K. Shimizu and N. Shigehara. Image processing system used cameras for vehicle
surveillance. IEEE Second International Conference on Road Traffic Monitoring,
pages 61–65, 1989.

[92] E. Silk. Human detection and recognition for an hors doeuvres serving robot. Data
structures and network algorithms, 1983.

[93] S.M. Smith and J.M. Brady. A scene segmenter; visual tracking of moving vehicles.
Engineering Applications of Artificial Intelligence 7, pages 191–204, 1994.

[94] A. Soto, M. Saptharishi, A. Trebi Ollennu, J. Dolan, and P. Khosla. Cyber-atvs:
Dynamic and distributed reconnaissance and surveillance using all terrain ugv. Pro-
ceedings of the International Conference on Field and Service Robotics, pages 329–
334, 1999.

[95] G.D. Sullivan, K.D. Baker, A.D. Worrall, C.I. Attwood, and P.M. Remagnino.
Model-based vehicle detection and classification using orthographic approximations.
Image and Vision Computing 15, pages 649–654, 1997.

159

Bibliography

[96] T.N. Tan, G.D. Sullivan, and K.D. Baker. Model-based location and recognition of
road vehicles. International Journal of Computer Vision 27, pages 5–25, 1998.

[97] C.J. Taylor, J. Malik, and J. Weber. A real time approach to stereopsis and lane-
finding. IFAC Transportation Systems Chania, Greece, 1997.

[98] A. Techmer. Real-time motion based vehicle segmentation in traffic lanes. DAGM
2001, pages 202–207, 2001.

[99] T. ten Kate, R. van Leeuwen, B. Driessen, E. Wilmink, and F. Groen. Passing
vehicle detection with a mobile camera. 10th World Congress on ITS, Spain, 2004.

[100] F. Thomanek, E.D. Dickmanns, and D. Dickmanns. Multiple object recognition and
scene interpretation for autonomous road vehicle guidance. Proceedings of IEEE
Intelligent Vehicles, pages 231–236, 1994.

[101] C. Thorpe, M. Hebert, T. Kanade, and S. Shafer. Vision and navigation for the
carnegie-mellon navlab. IEEE Transactions on Pattern Analysis and Machine In-
telligence, 10:362–373, 1988.

[102] E. Trucco and A. Verri. Introductory techniques for 3-d computer vision. ISBN
0-13-261108-2 Prentice Hall International, pages 15–50, 179–180, 1998.

[103] S. Tsugawa. Vision-based vehicles in japan: machine vision systems and driving
control systems. IEEE Transactions on Industrial Electronics 41 (4), pages 398–
405, 1994.

[104] M.A. Turk, D.G. Morgenthaler, K.D. Gremban, and M. Marra. Vits - a vision
system for autonomous land vehicle navigation. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 10, 1998.

[105] Kastrinaki V., Zervakis M., and Kalaitzakis K. A survey of video processing tech-
niques for traffic applications. Image and Vision Computing, 21:359–381, 2003.

[106] S.A. Velastin, J.H. Yin, M.A. Vicencio-Silva, A.C. Davies, R.E. Allsop, and A. Penn.
Image processing for on-line analysis of crowds in public areas. Proceedings of IFAC
Transportation systems, Tianjin, 1994.

[107] H. von Helmholtz. On the theory of compound colours. Philosophical Magazine,
Serial 4:519–535, 1852.

[108] C.L. Wan and K.W. Dickinson. Road traffic monitoring using image processing-a
survey of systems, techniques and applications. IFAC Control Computers, Commu-
nications in Transportation, 1989.

[109] C.L. Wan, K.W. Dickinson, and T.D. Binnie. A cost-effective image sensor system
for transport applications utilising a miniature cmos single chip camera. Proceedings
of IFAC Transportation systems, Tianjins, 1994.

160

Bibliography

[110] Chengye Wang, Liuqing Hunag, and Azriel Rosenfeld. Detecting clouds and cloud
shadows on aerial photograps. Pattern Recognition Letters, 12:55–64, 1991.

[111] Y. Wang, D. Shen, and E.K. Teoh. Lane detection using spline model. Pattern
Recognition Letters, pages 677–689, 1994.

[112] J. Weber, D. Koller, Q.-T. Luong, and J. Malik. An integrated stereobased approach
to automatic vehicle guidance. Proceedings of the Fifth ICCV, pages 12–20, 1995.

[113] J. Weber, D. Koller, Q.-T. Luong, and J. Malik. New results in stereobased auto-
matic vehicle guidance. Proceedings of IEEE Intelligent Vehicles, pages 530–535,
1995.

[114] C. Wohler and J.K. Anlauf. Real-time object recognition on image sequences with
the adaptable time delay neural network algorithm - applications for autonomous
vehicles. Image and Vision Computing 19, pages 593–618, 2001.

[115] Y. Won, J. Nam, and B.-H. Lee. Image pattern recognition in natural environment
using morphological feature extraction. Proceedings of the Joint IAPR International
Workshops on Advances in Pattern Recognition, pages 806–815, 2001.

[116] T. Young. On the theory of light and colors. Philosophical Transactions of the
Royal Society, 91:12–49, 1802.

[117] X. Yu, S. Beucher, and M. Bilodeu. Road tracking, lane segmentation and obstacle
recognition by mathematical morphology. Proceedings of IEEE Intelligent Vehicle,
page 166170, 1992.

[118] A.L. Yuille and J.M. Coughlan. Fundamental limits of bayesian inference: order
parameters and phase transitions for road tracking. IEEE Pattern Analysis and
Machine Intelligence, pages 160–173, 2000.

[119] J. Zhang and H. Nagel. Texture-based segmentation of road images. IEEE Intelli-
gent Vehicles, 1994.

161

Bibliography

162

List of Figures

1.1 The Future of the Driver Assistance Systems 13

3.1 Theoretical HSI Space and RGB Spaces 47
3.2 HSI Space Obtained from 24 Bit RGB 48
3.3 Sample Image and its H, S, I components 49
3.4 Histograms of the I, S Values of Image Points 50
3.5 Saturation-Intensity Histogram of the Scene 52
3.6 Correspondence between the SI histogram and the original image 52
3.7 Example of SI footprint of small chromatic objects 53
3.8 Example of SI footprint of large chromatic objects 53
3.9 Overimposed Results using the Weighting Function F3 56
3.10 Normal 3 lane highway scene . 57
3.11 Low contrast, concrete surface . 58
3.12 High contrast scene, close car . 59
3.13 Saturated image . 60
3.14 Fog scene . 60
3.15 Free highway, with traffic shield . 61
3.16 Bright image, almost saturated . 64
3.17 Bright image, lateral shadow . 64
3.18 Bright image, with shadows . 65
3.19 Normal brightness . 65
3.20 Normal brightness with close object . 66
3.21 Reduced brightness . 66
3.22 Low brightness image . 67
3.23 Low brightness image, truck . 67
3.24 Underexposed image . 68
3.25 Comparison with other segmentation algorithms - low contrast scene . . 70
3.26 Detail comparison - low contrast scene 70
3.27 Comparison with other segmentation algorithms - close scene 71
3.28 Comparison with other segmentation algorithms - far objects 71
3.29 Comparison with other segmentation algorithms - different objects 71
3.30 CCVS Algorithms - Top-level Structure 73
3.31 CCVS-Online - Threaded Structure . 76
3.32 Diagram of the system . 79

163

List of Figures

3.33 Road and lane markings sampling areas 79
3.34 Road and lane markings detection: Vertical Fill Algorithm 80
3.35 Road pre-detection and lane markings detection 82
3.36 Road and lane marking detection . 83
3.37 Regions of Interests for SI Metric Computation 85
3.38 Results of applying the SI Metric to the ROIs 87
3.39 Lane Boundary Detection based on Road Predetection Results 89
3.40 Color Features of the Yellow Markings 90
3.41 Typical yellow markings in construction areas 92
3.42 Yellow Marking Detection Algorithm . 94
3.43 Structure of the Lane Interpreter . 95
3.44 Scene with three different car models (Far, Regular, Lateral) 99
3.45 Object Detection and Tracking . 100
3.46 Candidate Object Detection . 101
3.47 SI Metric Results for Object Detection 102
3.48 Object Detection Results using the SI Metric 103
3.49 Object Detection Results using the Road Detection Results 104
3.50 Lateral Object Detection and Tracking Results 105
3.51 Far Object Detection . 106
3.52 SI Metric for Object Alignment of the Newly Detected Objects 109
3.53 Transition to Specific Tracking Model . 110
3.54 Tracking the positioning for regular objects 111
3.55 Handling shadows during the tracking of regular objects 112
3.56 Tracking backlights to assist regular object tracking 113
3.57 Software Diagram for Far Object Tracking 115
3.58 Correlation Areas . 115
3.59 Detection Templates and Corresponding Samples 116
3.60 Object tracking example . 117

4.1 Estimating the ego lateral position . 122
4.2 Depth estimation using object baseline 123
4.3 Depth estimation using object width . 124
4.4 Errors in Depth reconstruction . 126

5.1 CCVS-Dev - GUI Interface . 129
5.2 CCVS-Online - Basic Application Structure 130
5.3 Basic Hardware Diagram . 131
5.4 Image Acquisition and Processing - Hardware Options 131
5.5 In-Car Deployment Of Vision Sensors . 132
5.6 Sensors - deployment and range . 132
5.7 Interconnection Network over CAN . 133
5.8 Handling of a lane change situation . 134
5.9 Lateral object tracking and transition to regular object model in CCVS . 135
5.10 Regular object tracking in CCVS . 136

164

List of Figures

5.11 Far object tracking in CCVS . 137
5.12 Framerate Comparision . 138
5.13 Summary of the FPS Values . 139
5.14 Comparison of the Lane Width Output 140
5.15 Deviation of the Lane Width Output . 140
5.16 Number of detected objects beyond 100 meters 141
5.17 CCVS Object tracking - Putting it all together 143

8.1 Directory layout of the included CD . 151

165

