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Zusammenfassung

Die Physik ultrakalter Quantengase stellt sich heutzutage als ein hochaktives und vielseit-
iges Forschungsfeld dar. Im Rahmen dieser Dissertation konnten fundamentale Erkennt-
nisse zu unterschiedlichen Phänomenen in Bose-Einstein Kondensaten gewonnen werden,
welche völlig verschiedenen Wechselwirkungsbereichen zuzuordnen sind.
Erstmals wurden Experimente durchgeführt, die als eines der Paradigmen nichtlinear-
er Physik die Dynamik extrem langlebiger dunkler Solitonen zeigen. Solitonen, die sich
als formstabile Wellenpakete auszeichnen, resultieren aus einer Kompensation der Dis-
persion durch eine entgegengerichtet wirkende nichtlineare Wechselwirkung. Oszillatio-
nen von dunklen Solitonen in elongierten Bose-Einstein Kondensaten wurden beobachtet
und eine sehr gute Übereinstimmung mit der theoretisch erwarteten Oszillationsfrequenz
von ω/

√
2 wurde gefunden. Desweiteren konnten im Verlauf dieser Arbeit Experimente

durchgeführt werden, bei denen die Kollisionen unterschiedlich tiefer dunkler Solitonen
untersucht wurden. Es war dadurch möglich die Solitonen über den Kollisionszeitpunkt
hinaus zu verfolgen. Als ein zentrales Ergebnis wurde gezeigt, dass Solitonen sich im Ver-
lauf der Kollision durchdringen ohne einen nennenswerten Einfluss aufeinander auszuüben,
was in Übereinstimmung mit der theoretischen Beschreibung von Solitonen als schwach
wechselwirkende Quasiteilchen steht. Darüber hinaus konnten diese Studien durch Unter-
suchungen an ’gefüllten’ Solitonen abgerundet werden.
Als ein wesentliches Forschungsziel wurde im Verlauf dieser Dissertation ein optisches
Gitter mit einer Dreieckssymmetrie aufgebaut, um die experimnetelle Grundlage für die
Untersuchung stark korrelierter ultrakalter Atome in einer neuartigen Geometrie zu schaf-
fen. Es konnte eine Polarisationsabhängigkeit des periodischen Potentials herausgestellt
werden, welche die Untersuchung neuartiger magnetischer Phasen ermöglichen sollte. Ex-
perimente zum Quantenphasenübergang zwischen Superfluid und Mott-Isolator in drei-
als auch zweidimensionalen Systemen mit Dreieckssymmetrie wurden durchgeführt und
analysiert. Unterschiede als auch Gemeinsamkeiten zu früheren Ergebnissen, die in kubis-
chen Gittern gewonnen wurden, konnten nachgewiesen und auf Unterschiede der entschei-
denden Gitterparameter, wie etwa Tunnelenergie und Wechselwirkung, zurückgeführt wer-
den.
Ein weiterer Teil der vorliegenden Arbeit widmet sich Untersuchungen zur Dynamik
von mehrkomponentigen Spinor Bose-Einstein Kondensaten. In entsptrechend spinun-
abhängigen Fallenpotentialen, wie sie durch optische Dipolfallen realisiert werden können,
lässt sich die Physik Bose-kondensierter Materie auf eine zusätzliche Dynamik der inneren
Freiheitsgrade, in diesem Fall des Spins, erweitern. Die im Rahmen dieser Dissertation
durchgeführten Experimente zur Physik mehrkomponentiger Quantengase konzentrieren
sich auf die kohärente zeitliche Entwicklung des vektoriellen Ordnungsparameters eines
Spinor Kondensates, gemeinhin als Spindynamik bezeichnet. 87Rb Kondensate mit Spin-1
als auch Spin-2 wurden untersucht und als ein zentrales Ergebnis konnte erstmals eine Spin-
dynamikresonanz vermessen werden, welche aus der Konkurrenz zwischen spinabhängiger
Wechselwirkung and quadratischem Zeemaneffekt heraus entsteht.



Abstract

During the last decade the physics of ultracold quantum gases has matured into a highly
active and versatile field of research. Within the framework of this thesis experiments
dedicated to the physics of Bose-Einstein condensates have been performed and diverse
phenomena, which are distinguished by fundamentally different regimes of interaction,
could be investigated.
For the first time the dynamical evolution of long-lived dark solitons has been studied as
a paradigm of non-linear physics. Solitons, characterized as non-spreading wave packets,
are stabilized against dispersion by a suitable non-linear interaction. It has been pos-
sible to observe oscillations of dark solitons in elongated Bose-Einstein condensates and
good agreement with the theoretically predicted oscillation frequency of ω/

√
2 has been

obtained. Moreover experiments have been conducted which address the collision of two
dark solitons distinguished by different depths. This particular feature enabled the identi-
fication of the individual solitons beyond the actual collision process and as a central result
it could be shown, that these peculiar entities interpenetrate without significantly influenc-
ing each other. The theoretical description of solitons as weakly interacting quasi particles
is in good agreement with these findings. Continuative studies on vectorial ”dark-bright”
solitons and their dynamical properties complement the investigations on dark solitons.
A central goal of this dissertation has been the design and implementation of an optical
lattice with an underlying triangular symmetry in order to investigate strongly correlated
ultracold atoms in a novel experimental geometry. Exhibiting an explicit polarization de-
pendence the optical lattice realized here should allow for the creation and analysis of thus
far unexplored magnetic phases. Experiments attending to the quantum phase transition
from a superfluid to a Mott-insulating state in a three- as well as in a two-dimensional
system with triangular symmetry have been performed. Similarities as well as differences
to the findings obtained in cubic lattices have been worked out and could be attributed to
the inherent differences in the crucial lattice parameters such as tunneling energy J and
onsite interaction U .
Devoted to the dynamics of spinor condensates, a third part of this thesis concerns the
physics of multi component quantum gases. Employing suitable spin-independent trapping
potentials the physics of Bose-Einstein condensates may be extended to the investigation
of the static and dynamical properties of internal degrees of freedom, in this case the spin
of the atoms. The measurements presented here concentrate on the coherent dynamical
evolution of the vectorial order parameter of a spinor condensate. 87Rb condensates with
F = 1 and F = 2 have been studied and the existence of a spin dynamics resonance, caused
by the competition between spin-dependent non-linear interaction and quadratic Zeeman
effect was demonstrated for the first time.
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Chapter 1

Introduction

The Nobel prize winning experimental realization of Bose-Einstein condensation in cold
atomic vapors back in 1995 [8, 9] has been the foundation for a whole new field of physics.
Quickly after the first experiments had been conducted the theoretical as well as ex-
perimental interest and progress in understanding Bose-Einstein condensates has been
tremendous.
It was realized that Bose-Einstein condensates provide the experimentalist with a very high
degree of control over all experimental parameters and that they constitute an almost ideal
model system for the investigation of all kinds of non-linear phenomena. Ground breaking
experiments exploiting the properties of the coherent macroscopic wave function, like the
interference of independent BEC, measurements of collective excitations or the first real-
ization of an atom laser have been performed. Prime examples of non-linear phenomena
like the generation of vortices [10] and vortex lattices in rotating condensates or the cre-
ation of dark [11, 12] and bright [13] solitons – non-spreading wave packets – have been
realized in Bose-Einstein condensates.
Today the variety and diversity of experiments involving Bose condensed atoms is huge.
Precision measurements, quantum information, macroscopic entanglement or the interac-
tion of BEC with mesoscopic solid state systems are only few examples.
Two very well recognized fields of research attending to Bose-Einstein condensation are the
investigation of quantum magnetism in multi-component spinor condensates and the real-
ization of condensates inside optical lattices formed by interfering laser beams. Although
the aforementioned experiments rely on the utilization of Bose-Einstein condensates they
can be assigned quite different areas of physics.
In the context of this thesis three different kinds of experiments have been performed. On
the one hand experiments attending to the generation and investigation of various species
of solitons as one of the most intriguing examples of a generic non-linear phenomenon
have been performed. On the other hand the coherent dynamics of multi-component
spinor BEC, combining the benefits of BEC and the exploration of quantum magnetism,
has been studied in detail.
Finally an optical lattice has been set up in a new triangular geometry aiming at the
investigation of magnetic quantum gases inside periodic potentials, that promise such fas-
cinating prospects like geometric frustration or spin-state dependent potentials to create
magnetically ordered states.
This introduction intends to provide the reader with a well-founded survey of the historical
development in all of these three fields as well as to emphasize which contributions have
been made in the framework of this thesis.
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Matterwave solitons

Solitons are characterized as wave packets that do not change their shape and propagate
with a constant velocity in homogeneous systems. In linear systems a wave packet may
be represented by a super position of plane waves that is liable to dispersion tending to
spread the wave packet due to different group velocities. On the contrary in non-linear
media this dispersion may be balanced by a suitable focusing or defocusing non-linear
interaction leading to form stability.
Solitons were first recognized over 150 years ago by J. Scott Russell, a Scottish engineer
trying to determine the most efficient design for canal boats when he observed an unusual
non-spreading water wave in a narrow channel. He traced the wave that he called ”wave
of translation” for several miles along the channel before he lost its track [14].
Some 50 years later in 1895 Korteweg and deVries finally formulated the famous Korteweg-
deVries equation which is capable of describing the physics of water waves in narrow chan-
nels and predicts the existence of solitons. It was not before 1965 when Zabusky and
Kruskal found in numerical simulations that solitary waves do not change their shape or
velocity after collisions: Asymptotically far away from the collision vertex solitons retain
their identity and the interaction during the collision manifests itself only in a phase shift
of the trajectories of the individual solitons [15]. They established the term soliton to
express the generic quasi-particle like properties of these peculiar objects. Three years
later the same authors came up with the inverse scattering method that allowed for an
analytical solution of the Korteweg-deVries and the related non-linear Schrödinger equa-
tion [16].
As a phenomenon inherent to many different non-linear systems in nature solitons are
nowadays recognized in many areas of research such as oceanography and meteorology
[17], molecular biology [18] and astrophysics [19] to name only a few. The most prominent
example of soliton physics is however the field of non-linear optics (see e.g. [20]) where the
physical concept of soliton propagation in optical fibers has matured into an international
standard for telecommunication.
Weakly interacting Bose-Einstein condensates that can be described within the framework
of the Schrödinger equation exhibiting a cubic non-linearity represent an especially well
suited system to investigate solitons. Shortly after the experimental achievement of Bose-
Einstein condensation, first experiments on dark [11, 12, 21] and bright [22, 13, 23] solitons
were accomplished by different groups. Moreover bright band-gap solitons in a repulsive
BEC inside a one-dimensional optical lattice could be established by engineering a suitable
dispersion thus creating an effectively attractive interaction [24, 25]. So-called dark-bright
solitons, vectorial solitons in multi-component condensates where a bright soliton in one
component is stabilized by a dark soliton in the other disregarding the repulsive interac-
tion of the BEC have been realized as well [21].
At the same time a huge amount of theoretical work concerning all kinds of solitons in
Bose-Einstein condensate appeared (see e.g. [26] for bright, [27, 28, 29, 30, 31, 32, 33, 34,
35, 36, 37, 38] for dark and [39] for dark-bright solitons). Dynamical as well as thermo-
dynamical stability of solitons was studied and it was found that quasi-one dimensional
condensates at ultra low temperatures would provide the most promising approach in order
to study the wealth of physical phenomena connected to solitons. An oscillatory behavior
of dark solitons in trapped condensates was predicted be several authors all arriving at a
characteristic oscillation frequency given by ω/

√
2 where ω is the trapping frequency. The

lifetimes of the experimentally generated solitons had however been rather short and none
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of the fascinating quasi-particle like features like oscillation in a trap or recurrence of the
initial shape after a collision could be observed.

In the framework of this thesis very long-lived dark and dark-bright solitons could be
produced, Unsurpassed experimental conditions allow for lifetimes of up to several seconds
for both kinds of solitons. The oscillation of dark and dark-bright solitons in an elongated
optically trapped 87Rb BEC could be observed for the first time and the theoretically
predicted oscillation period was recovered in these experiments. Experiments devoted
to the collision of two dark solitons were performed and no discernible influence of the
solitons on each other was observed: The solitons pass through each other as if they where
transparent. Theoretically predicted shifts in the trajectory of the individual solitons are
too small to be optically resolved in our experiment but are compatible with the zero shift
that we observe.
Chapter 6 of this thesis describes the experimental results as well as a comparison to
theoretical simulations and discusses further aspects of solitons in BEC .1

Magnetism in quantum gases – Spinor Condensates

Spinor condensates are distinguished by an additional internal degree of freedom repre-
sented by the spin of the atoms. The collisional properties among the atoms of a spinor
condensate depend on their relative spin orientation and Hamiltonians similar to those
originating from the exchange interaction known in solid state magnetism result for the
theoretical description of spinor condensates. Suitable spin-independent trapping poten-
tials are necessary to investigate spinor physics in Bose-Einstein condensates that had
become accessible with the first realization of BEC in an optical dipole trap [41]. Shortly
after the first realization of BEC the first experiments on spinor condensate composed out
of 23Na were performed at MIT. Basic properties like the phase diagram of the magnetic
ground state [42] as well as the miscibility of different magnetic substates [43] were inves-
tigated. It was realized that spin conservation and the influence of the quadratic Zeeman
effect play a major role in understanding the physics of spinor Bose-Einstein condensates
Quantum tunneling across artificially created spin domains driven by magnetic gradients
fields was studied [44] and could beautifully be described by a simple quantum mechanical
model.
At the same time ground breaking theoretical work by Ho [45] and Ohmiet. al [46] con-
cerning magnetic ground states and Law et. al [47] with regard to the first theoretical
investigation of coherent spin mixing paved the way for a concise understanding of the
static and dynamical properties of spinor condensates. The mean-field description of spinor
BEC developed in [45, 46] was further established by the impressive agreement between
the MIT experiments and the theoretical predictions for the specific atomic parameters
of 23Na and made it the standard theoretical model for harmonically trapped spinor con-
densates in the upcoming years.
Concurrently a different experimental approach was taken at JILA where quasi-spin 1/2
condensates composed out of two simultaneously magnetically trappable hyperfine states
of 87Rb were analyzed [48]. A whole wealth of phenomena was discovered ranging from

1 Shortly after the experiments presented here had been finished, we learned about experiments per-
formed by the Heidelberg group, who was able to produce long lived dark solitons as well and observed
oscillations of dark solitons and modifications of these oscillations by interactions of two dark solitons and
dimensionality effects [40].
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phase separation [49, 50], Rabi oscillations [51] to spin waves in a non-condensed spinor
gas [52] and spin-dependent interaction between normal and condensed atoms [53, 54].
Furthermore a resonance shifts of a two-photon transition induced by spin-dependent in-
teraction effects [55] and the generation of solitons [21] and vortex lattices [56] could be
shown .
A few years after the first seminal experiments several groups started to devote their work
again to spinor condensates. The focus was mainly on 87Rb where the static and dynamic
properties of F = 1 [57, 58] and F = 2 [59, 57, 60] spinor condensates were investigated.
The ground state phases of F = 2 were identified and the corresponding phase diagram
was first calculated in our group by H. Schmaljohann [59] accompanied by measurements
supporting the anti-ferromagnetic nature of F = 2 . On the contrary F = 1 is found to
interact ferromagnetically.
The investigation of spin mixing dynamics in all of the experiments listed above suffered
from a disadvantageous choice of the initial state leading to a severe limitation of the
observability of coherent dynamics. Starting from any pure mF -state, spin dynamics is
triggered by small residual ”seed”-populations in the other magnetic substates which can-
not be prepared satisfactorily. Moreover for reproducible initial conditions the relative
phases of different mF -substates have to be controlled, which is not possible by prepa-
ration relying on rapid adiabatic passage which has been the case in some of the above
mentioned experiments.
It was only one year later when it was realized in our group that choosing a particular
transversely magnetized state leads to a much more controllable and reproducible coherent
dynamical evolution of a spinor BEC. It turned out that also theoretically this particular
case is analytically soluble and allows for a direct comparison of experiment and theory. In
the framework of this thesis measurements on F = 1 [5] and F = 2 [4] were performed to-
gether with J. Kronjäger and as a striking feature the existence of a resonance phenomenon
driven by a competition between spin dependent interaction and quadratic Zeeman effect
was demonstrated.
Similar results for F = 1 were obtained at the same time at Georgia Tech [61] where more-
over an analogy to the physics of a non-rigid classical pendulum was raised [62] providing
a beautiful figurative picture of the intriguing dynamics of spinor condensates.
In the Berkley group a non-destructive spin-dependent phase contrast method was devel-
oped that allows for an in-situ analysis of the transverse magnetization [63]. Thereupon
spontaneous symmetry breaking in ferromagnetic 87Rb F = 1 spinor condensate was ob-
served in terms of spontaneous formation of spin domains and vortices [64]. As another
striking result this group was able to observe are dipolar effects in the evolution of spin
textures artificially modulated on a 87Rb spinor BEC [65].
An important step towards the long standing goal of a dipolar quantum gas [66] interact-
ing anisotropically as opposed to the usual isotropic contact interaction present in BEC
has been taken by the realization of Bose-Einstein condensation in 52Cr with a magnetic
moment of 6µB [67]. First experiments [68, 69] including the generation of a purely dipolar
interacting gas [70] promise interesting physics to be discovered in this fascinating area of
research. A fundamentally different approach towards dipolar gases is the utilization of
ground state molecules with a large permanent electric dipole moment (see e.g. [66]).
The breakdown of the widely applied single mode approximation, where spin and spa-
tial degrees of freedom are decoupled, manifests itself through the formation of spatially
varying spin structures and is currently investigated experimentally and theoretically with
high effort in several groups [64, 71]. At the Hamburg spinor experiments the formation
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of spin domains in an elongated anti-ferromagnetic F = 2 condensate has been observed
and interpreted as a dynamical instability [71].
The Mainz group performed several interesting experiments on the dynamics of spinor
condensates confined to the individual wells of a deeply Mott-insulating state [72, 73, 74].
The observed coherent dynamics could be explained by interaction driven Rabi oscillations
in a pure two-body picture.

In the context of this PhD thesis several tools to manipulate spinor BEC are discussed
in Chapter 3: magnetic field control, Rabi and Ramsey like experimental techniques em-
ploying rf and microwave fields similar to those known from NMR and optical manipulation
schemes using a Raman laser system. Chapter 4 is devoted to the theoretical basics and
experiments attending to the coherent evolution of spin dynamics in 87Rb F = 1 and
F = 2 condensates. As a central result a spin dynamics resonance in F = 2 has been stud-
ied for the very first time. Spin dynamics of 87Rb in F = 1 in a triangular optical lattice
of various depth has been investigated in the course of this thesis. Since the mean-field
picture valid in large condensates and the two-body picture valid at individual lattice sites
with double occupancy exhibit conceptually different solutions it is interesting to study
the cross over between those two regimes and develop a deeper understanding of how the
characteristic properties of spin changing oscillations are modified when a periodic poten-
tial is applied.
Measurements on spin dynamics in a triangular optical lattice which address this question
are presented at the end of Chapter 5

Optical lattices and strongly correlated systems

Cold atoms in optical lattices have been in the focus of interest in the atomic physics
community for almost 2 decades. While early experiments worked in dissipative lattices
to cool atoms further relying on sub-Doppler colling mechanisms [75, 76] with mean single
site occupation numbers n̄� 1 the advent of Bose-Einstein condensation in 1995 [8, 9, 77]
paved the way to three-dimensional optical lattice systems with occupation numbers n̄ ≥ 1.
The concept of crystals of light was born.
When ultracold gases are loaded in deep optical lattices quantum fluctuations start to
play a dominant role and it is no longer possible to describe the interacting atoms as non-
interacting quasi particles as usually done for Bose-Einstein condensates in the Bogoliubov
approach – an unambiguous sign of entering a strongly correlated regime. It is remarkable
that this is possible utilizing gaseous samples of ultracold atoms, were interactions usually
play an inferior role by definition.
After the identification that atoms in an optical lattice represent an ideal realization of
the Bose-Hubbard model [78, 79] well known in solid state physics the theoretical and
experimental effort in exploring these systems gained an enormous boost. When the first
experimental evidence for the quantum phase transition from a superfluid to a Mott-
insulating state in a 3D optical lattice had been found [80] this interest did even grow
further. Commonly accepted cold atoms in optical lattices are supposed to represent an
ideal play ground to test fundamental solid state theories, e.g. attending to super conduc-
tivity or quantum magnetism (see [81] for a detailed overview). The parameters of the
system like tunneling strength and interatomic interactions can be conveniently controlled
by changing the laser power or additionally employing Feshbach resonances. The trans-
lational symmetry of the lattice can be changed by employing different beam geometries
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and by choosing the laser polarization properly, magnetic lattices can be realized [82]. It is
assumed that by loading atoms in an optical lattice adiabatically an almost perfect crystal
system without any impurities or defects can be created. This very fact has moreover lead
to several promising proposals for quantum computing schemes relying on the existence
of a perfect Mott-insulating state [83].
The dimensionality of the underlying physical systems can be well-controlled making use
of optical lattices. Atoms in two-dimensional [84, 85] as well as quasi one-dimensional
systems [86] up to the point of the Tonks-Girardeau regime [87] have been realized and
investigated. Experiments related to ultracold chemistry have already been conducted and
are continued e.g. the creation of molecules by loading two atoms to an individual lat-
tice site and performing association via a two-photon process [88] or by employing sweeps
across a Feshbach resonance [89]. powerful and very promising detection methods like
noise correlation spectroscopy capable of revealing exotic phases of cold atoms in optical
lattices have been proposed [90, 91, 92, 93] and already applied in experiments on bosonic
[94] and fermionic atoms [95, 96].

Most of the experiments accomplished or proposed in optical lattices rely very much on
the fact that cold atoms in optical lattice provide a perfect experimental environment. To
specify to which degree this assumption is justified it is inevitable to precisely understand
the underlying physics. Despite circumventing a lot of the problems inherently assigned
to solid state systems, new problems like e.g. inhomogeneities in harmonically trapped
systems appear and have to be understood and hopefully controlled to comply with the
high aims listed above.
The underlying thesis contributes to this goal by investigating the properties of cold atoms
in a triangular optical lattice system for the first time. The necessary experimental tools
have been designed and implemented as outlined in Chapter 3 and first measurements
proving that the optical lattice can be well-controlled were performed. So far experiments
on ultracold atoms in periodic potentials had been restricted to simple cubic lattices. In
Chapter 5 of this work experiments on the superfluid to Mott-insulator transition in the
triangular lattice are presented. A full three-dimensional system as well as the investiga-
tion of the quantum phase transition in a reduced two-dimensional regime is concerned.
Very first measurements on spin dynamics in the triangular lattice are presented to moti-
vate further work dedicated to quantum magnetism in this particularly interesting physical
system. Numerous theoretical proposals for ultracold atoms with and without spin degree
of freedom confined in triangular optical lattices anticipate new and fascinating experi-
ments attending to e.g. rich ground state phases like supersolids [97, 98], frustrated states
[99] or exotic stripe ordered phases characterized by various spontaneously broken sym-
metries [100, 101].
The realization of a Mott-insulating phase of atoms with spin degree of freedom in a tri-
angular lattice achieved in this work is a first step towards the understanding of these so
far largely unexplored physical systems.



Chapter 2

Theory of Bose-Einstein
condensation

The theory of Bose-Einstein condensation has been established almost a hundred years
ago by and N. Bose and A. Einstein who generalized the statistics of photons found by
Bose to massive particles. The phenomenon of Bose-Einstein condensation, namely the
macroscopic occupation of one single-particle state, for temperatures Tc � ~ω0 is a purely
statistical effect. In this chapter a brief introduction to the general theoretical concepts
and key findings of thermodynamic properties and the dynamics of the order parameter in
the mean-field approximation will be given. Special topics, like reduced dimensionality or
multi-component dynamics will be treated in detail in the corresponding chapters. Useful
formulas, used throughout this thesis will be quoted here for completeness.

2.1 Thermodynamic properties of trapped BEC

In order to get an idea of how Bose-Einstein condensation appears we will have a look at
the ideal Bose gas. The average occupancy of a single-particle state can be written as

n̄i =
1

expβ(εi − µ)− 1
, (2.1)

where β = 1/(kBT ), µ the chemical potential and εi the energy associated with the single
particle state i. As one starts to increase the number of particles N of the system at a given
temperature T , the normalization condition N =

∑
i n̄i leads a macroscopic occupation of

the lowest state i = 0. This can be understood as a saturation of the thermal distribution.
As N → ∞ the chemical potential µ approaches ε0 indicating an exponential growth of
n̄0.
The criterion for Bose-Einstein condensation can also be recast in terms of phase space
density

λ3
Tn = g3/2(1) = 2.612 (2.2)

indicating that inter particle spacing n−3 and thermal deBroglie wavelength λT need to
be of the same order of magnitude.
In experiments cold atoms are usually trapped in magnetic or optical dipole traps, whose
potential can often be approximated harmonically. The critical temperature of a Bose gas
in a harmonic trap is one of the key results of the thermodynamic approach and can be
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calculated by setting the number of thermal atoms NT =
∑

n̄i, i6=0 = N leading to [102]

kBTc = 0.94 ~ω̄N1/3. (2.3)

Directly related to the critical temperature is the condensate fraction

N0

N
= 1−

(
T

Tc

)3

, (2.4)

where N0 = n̄0. For typical parameters at our experiment the critical temperature varies
between 50 and 300 nK. It has to be emphasized again at this point, that Bose-Einstein
condensation occurs at temperatures kBTc � ~ω̄ and should not be confused with the
much stronger constraint kBTc � ~ω̄ which would lead to a macroscopic occupation of
the lowest single-particle state in a trivial way. Although the above expressions have been
derived assuming a non-interacting system, corrections to the thermodynamic properties
of a BEC due to interactions and finite size stay small, typically amounting to only a few
percent. 1

2.2 Mean-field physics: the Gross-Pitaevskii equation

In harsh contrast to the preceding paragraph interactions play a dominant role in deter-
mining the behavior of the order parameter of the condensate, which can be described
by a mean-field equation for reasonably large particle numbers. The Hamiltonian for a
non-uniform interacting BEC takes the following form

Ĥ =
∫ (

~2

2m
∇Ψ̂†(r)∇Ψ̂(r)

)
dr +

1
2

∫
Ψ̂†(r)Ψ̂†(r′)V (r− r′)Ψ̂(r)Ψ̂(r′) dr dr′ (2.5)

The field operator Ψ̂(r) obeys the Heisenberg equation of motion and commutation relation

i~∂tΨ̂(r, t) = [Ψ̂(r, t), Ĥ] and [Ψ̂(r, t), Ψ̂†(r′, t)] = δ(r− r′) (2.6)

Following the ideas of the Bogoliubov expansion one can replace the field operator for the
lowest state simply by a c number Ψ̂→ ψ0 yielding the famous Gross-Pitaevskii equation
for the order parameter

i~∂tψ0(r, t) =
(
−~2∇2

2m
+ Vext(r, t) + g|ψ0(r, t)|2

)
ψ0(r, t). (2.7)

Here

g =
4π~2a

m
(2.8)

is the interaction parameter for a given s-wave scattering length a, which completely
determines the interaction at sufficiently low temperatures. For stationary solutions the
time-dependence can be separated leading to the widely used form(

−~2∇2

2m
+ Vext(r, t)− µ+ g|ψ0(r, t)|2

)
ψ0(r, t) = 0, (2.9)

1This is only true as long as interactions are not dramatically increased as e.g. in the vicinity of
Feshbach resonances. Working with 87Rb condensates far away from any Feshbach resonance, interactions
are determined by the background s-wave scattering length a. In this case the thermodynamic properties
are well given within the non-interacting model.
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emphasizing that the time evolution of a condensate is governed by the chemical potential
µ which turns out to be a key quantity in the description of BEC. The density of the
condensate is easily found as n(r, t) = |ψ0(r, t)|2.
By equating the kinetic- and interaction energy term an important length scale for the
physics of a condensate the healing length ξ is found2.

ξ =
~√

2mgn
(2.11)

The density of the condensate cannot change over distances that are smaller than ξ without
destroying superfluidity, because Ekin will take values corresponding to velocities beyond
the critical velocity for superfluididty otherwise. If on the other hand Ekin � ~2/(2mξ2)
the kinetic energy can safely be neglected compared to the interaction energy yielding the
important Thomas-Fermi approximation (see next section).
Another useful quantity is the Bogoliubov speed of sound in the condensate describing the
propagation of phonon-like excitations

c =
√
gn

m
, (2.12)

at low momenta. Sound propagation will be of importance for the generation of dark
solitons and is thus described in more detail in Chapter 6.
For inhomogeneous systems ξ as well as c can usually be replaced by their local values ξ(r)
and c(r) respectively (local density approximation (LDA)). Very useful relations between
the three key parameters of a BEC µ, ξ and c are given by

µ = mc2 =
~2

2mξ2
(2.13)

ξ = ~√
2mc

=
~√

2mµ
. (2.14)

2.2.1 The Thomas-Fermi regime

The Thomas-Fermi limit already mentioned above is reached if Na/aho � 1 where aho =√
~/(mωho) is the harmonic oscillator length. In other words, the interaction greatly

dominates the kinetic energy. Without loss of generality we will assume harmonic trapping

Vext(r) =
∑

i=x,y,z

1
2
mω2

i r
2
i (2.15)

for the rest of this section. The GPE can then conveniently be reduced to

nTF(r) =
1
g

(µTF − Vext(r)). (2.16)

2 ξ also indicates the transition from phonon like to particle like excitations according to the Bogoliubov
dispersion law of a condensate

ε(~p) =

s
p2

2m

„
p2

2m
+ 2gn

«
. (2.10)

Equating the two quantities in parentheses leads to the same expression for the healing length.
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The above result shows, that the density of the condensate resembles the inverted trapping
potential to keep the chemical potential constant across the BEC. The chemical potential
is found to be

µTF =
~ωho

2

(
15Na
aho

)2/5

. (2.17)

Note that Equ. 2.17 is one of the most important equations for an experimentalist since it
allows for the evaluation of one of the key measures for trapped BEC by simply plugging
in experimentally accessible numbers. Another helpful expression relating the radii Ri of
the condensate and the chemical potential can be derived from Equ. 2.16 through the fact
that n(Ri) = 0:

µTF =
1
2
mω2

iR
2
i (2.18)

Since the radii and the particle number can be determined independently in an experiment,
the two preceding expressions can be readily used to cross check the value obtained for µ.

2.2.2 Collective excitations

Besides topological excited states like vortices and solitons, which will be treated in great
detail in Chapter 6, sound and low-lying modes of the collective spectrum are the most
widely observed excitations in BEC experiments. Low-lying modes corresponding to ex-
citations with wavelength on the order of the condensate size k−1 ≈ R show up as center-
of-mass- or shape oscillations. Sound propagation on the other hand takes place at higher
wavenumbers ξ � k−1 ≤ R and is associated with the generation and propagation of
phonons in a quantum mechanical sense. Two prominent examples of low lying modes
that have been vastly measured at our experiment are the dipole (DP) mode and the
quadrupole (QP) mode. They will thus be presented here for completeness. The lowest
collective oscillation of the condensate simply corresponds to an oscillation of the center-
of-mass at the trap frequency.

ωDP = ωtrap (2.19)

In fact this oscillation is readily used to determine the trapping frequencies in our ex-
periment. The most prominent example for a higher-order oscillation is the QP mode
proportional to Yl=2,m=0(θ, φ) or breathing mode, where Yl,m(θ, φ) are spherical harmon-
ics. It is characterized by a shape oscillation of the BEC at a frequency

ωDP =

√
5
2
ωtrap. (2.20)

The breathing mode is an artifact that often appears when the BEC is perturbed by any
kind of mode mismatch or effective shear force and is especially pronounced in elongated
condensates. We will come back to this point in Chapter 6.



Chapter 3

Experimental setup and tools for
analysis of Spinor BEC

The measurements presented in this thesis have been performed at the Spinor BEC exper-
imental setup at the University of Hamburg. In the course of this work the experiment,
originally designed and built as described in [7, 103], has been rebuild in a new labora-
tory in the Institut fuer Laser-Physik and significantly upgraded, considering mechanical
and thermal stability, experimental options and analysis tools. The influence of electro-
magnetic interference has been minimized as much as possible. Some of these features
have already been described in great detail in [71] and will only be briefly sketched here.
The present chapter focuses on the basics, design and implementation of optical dipole
traps and optical lattices which have been a significant portion of this PhD thesis. Optical
design considerations as well as the implementation of accurate servo loops controlling
phase, frequency and intensity of the laser light employed for the dipole traps have been
accomplished during this work and will be discussed. Essential tools to manipulate ex-
ternal and internal degrees of freedom of multi component BEC have been significantly
refined in the course of this work and are presented.

3.1 The core of the BEC machine

The experimental apparatus employed throughout this work represents a complete and
very reliable tool for the generation of 87Rb Bose-Einstein condensates with large and
reproducible particle numbers. 87Rb BEC are prepared by first collecting up to 1010

atoms in a 2D-3D double-MOT system. After further cooling in an optical molasses the
atoms are optically pumped to |F,mF 〉 = |1,−1〉 and loaded in a magnetic trap of hybrid
D-cloverleaf type. After compression of the trap to increase the radial steepness the atoms
are cooled by radio-frequency (rf) forced evaporative cooling for 20 s. Residual atoms in
|2,+2〉 are removed by a very-low intensity resonant laser beam during the first of three
linear rf ramps. After an overall cycle time of 40 s we finally end up with almost pure
BEC of several 106 particles in the magnetic trap. For all measurements presented in later
chapters the atoms are transferred to an optical dipole trap. For this purpose we evaporate
to a rf value corresponding to a temperature slightly above the critical temperature for
BEC and superimpose an optical dipole trap with moderate optical power along the axial
direction of the magnetic trap. By applying a magnetic offset field Boff the radial trapping
frequencies are drastically lowered and the atoms condense in the much steeper optical
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dipole potential. Deliberately switching off the magnetic trap and lowering the optical
power of the dipole trap produces BEC of up to 3× 105 atoms in a well defined mF-state
without any discernible thermal fraction. The atoms can subsequently be imaged with
different kinds of CCD cameras from various directions, leading to an overall cycle time
of 50− 60 s.
A much more detailed description of the basic experimental setup can be found in [7, 103].

3.2 A versatile dipole trap setup

Many experiments involving ultracold atoms are performed using magnetic traps (MT)
which are capable of trapping many atoms and allows for efficient and fast evaporative
cooling schemes. However, despite these advantages the investigation of magnetic proper-
ties of ultracold atoms demands for an mF -state independent trapping potential in order
to liberate the spin degree of freedom, which is not provided by MT’s since only low field
seeking states can be trapped in the local magnetic field minimum, thereby freezing the
spin. An optical dipole trap (ODT) on the other hand can fulfill this requirement if the
laser polarization is linear with respect to the quantization axis and/or the detuning with
respect to the atomic resonance is fairly large as we will see soon. An ODT can be easily
implemented by focusing down a laser beam to a Gaussian waist. The size of the waist,
optical power and laser detuning determine the properties of the trap usually given in
terms of trap frequencies in a harmonic approximation. However as will be shown later
very cold BEC require very shallow traps, where the harmonic approximation breaks down
and the gravitational sag starts to play a significant role.

3.2.1 The dipole force

Basic equations

The interaction between light and atoms is the essence of quantum optics. When laser
light is irradiated onto an atom, two distinct physical processes will take place. The
radiation pressure force which results from absorption and spontaneous emission of photons
is essential for laser cooling [104] and represents the imaginary part of the polarizability.
The non dissipative dipole force on the other hand is a result of the interaction of the
dipole moment of the atom induced by the electric field of the laser pind = αE with this
electric field and can be written as

U(r) = −1
2
〈pind ·E(r)〉 = − 1

2ε0c
Re (α)I(r), (3.1)

where brackets 〈...〉 denote time-averaging over fast oscillating terms. U(r) is intrinsically
connected with the real part of the polarizability Re (α). If the detuning ∆ = ωL − ω0,
defined as the difference between the atomic resonance frequency and the laser frequency,
is greater than zero, the induced atomic dipole moment follows the electric field in phase
and the atom will be accelerated towards regions of high intensity. When ∆ < 0 the
induced dipole moment oscillates out of phase with the electric field of the laser and a
repulsion away from the region of highest intensity is the result. Obviously a trap for
cold atoms can be created by employing laser light fields with a suitable inhomogeneous
intensity distribution I(r), as it is given e.g. in the waist of a Gaussian beam. A quantum
mechanical description of a two level atom in the frame work of the dressed atom picture
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[104] results in the analytical expression for the dipole potential

Udip(r) = −3πc2

2ω3
0

·
(

Γ
ω0 − ωL

+
Γ

ω0 + ωL

)
I(r), (3.2)

where Γ denotes the decay rate of the excited state. If the detuning is not too large
|∆| � ω0 the above expression can be simplified in the rotating wave approximation
(RWA) yielding

U(r) =
3πc2

2ω3
0

·
(

Γ
∆

)
I(r). (3.3)

A comparison with the corresponding expression for the photon scattering rate Γsc which
is easily derived in an analogous way

Γsc(r) =
3πc2

2~ω3
0

·
(

Γ
∆

)2

I(r) (3.4)

reveals an important prerequisite for the design of any optical dipole trap: For a purely
conservative, spin independent trap it is best to choose large laser powers and large de-
tunings since the ratio Udip/Γsc ∼ ∆ and therefor grows with increasing detuning which
minimizes heating processes mediated by laser light. Please note that while providing
useful qualitative insight in the physics involved in ODT design, the RWA is explicitly not
valid for detunings on the order of the atomic resonance frequency as in our experiment,
where the beams are derived from a Nd:YAG laser at a wavelength of 1064 nm and the
error involved with the RWA is already larger than 10%. All calculations shown in this
section therefor take into account both terms of Equ. 3.2, while for ease of notation all
equations presented from now on are denoted in the RWA.
The simplification to a two-level system is of course too rough to account for a precise
description of the dipole forces involved with real-world multi-level atoms like the alkali’s,
which are widely used in cold atom experiments. 87Rb is an alkali atom with a nuclear
spin I = 3/2 and has two hyperfine ground states with F = 1 and F = 2 respectively.
To obtain the dipole potential for a given ground state level the sum over all allowed
transitions to excited states has to be formed.

Udip(r) = 3πc2

(∑ |cCG,i|2

ω3
0,i

2Γi∆i

Γ2
i + 4∆2

i

)
I(r) (3.5)

The cCG,i denote the Clebsch-Gordon coefficients involved with each specific transition.
For laser detunings large compared to the excited state hyperfine splitting for the D1-
(∆′HFS = 800 MHz) and the D2-line (∆′′HFS = 500 MHz) respectively, as is the case for all
purposes discussed in this thesis, one can sum over all transitions within a given excited-
state hyper-fine manifold which results in

Udip(r) =
πc2Γ
2ω3

0

(
1− PgFmF

∆D1
+

2 + PgFmF

∆D2

)
I(r). (3.6)

Here ∆D1 and ∆D2 identify the detuning with respect to the center of the D1 and D2
hyperfine manifold respectively, while Γ is the total decay rate of the excited state which
is F ′ as well as m′F independent. P = 0,±1 characterizes the laser polarization π, σ±

respectively which gives a first clear indication that for circular polarization the dipole
potential will obey a spin dependence, which vanishes asymptotically for infinite detuning.
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Note that linear- and unpolarized light does not lead to an mF dependent potential.
If the laser detuning is slightly larger than the fine structure splitting ∆FS = ωD1 − ωD2

the expression for the dipole force can be further simplified yielding

Udip(r) =
3πc2

2ω3
0

Γ
∆

(
1 +

1
3
PgFmF

∆FS

∆

)
I(r). (3.7)

Effective field picture

As already recognized by Cohen-Tannoudji and co-workers [105] the mF dependence of
the dipole force can also be regarded as an imaginary effective magnetic field acting on
the atomic sublevels just like a real magnetic field does. 1 With the help of

Umag
dip (r) = −µ ·Beff(r) (3.8)

= −µBgFmF
F̂
F
·Beff(r) (3.9)

and Equ. 3.5 this effective magnetic field evaluates to

Beff(r) = i(e∗P × eP)
Γπc2

2ω3
0µB

∆HFS

∆2
I(r). (3.10)

Note that the dipole force exerted by sufficiently far detuned circular polarized light is
equivalent to the linear Zeeman effect. For typical experimental conditions inside the
hexagonal optical lattice (see Chapter 5) values of Bmax

eff = 0.5 mG cm2/mW · I are easily
achieved. The corresponding value for the magnetic dipole potential yields ULZ

dip = 2π~ ·
mF · 0.35 kHz/mW · I. Finally the dipole potential can be written as 2.

Udip(r) =
3πc2

2ω3
0

Γ
∆

(
|eP |2 + gFmF

i

3
(e∗P × eP) · F̂

F

∆FS

∆

)
I(r) (3.11)

= U0
dip(r) + ULZ

dip(r). (3.12)

It has to be emphasized, that with the help of optical lattice configurations involving
circular polarization, magnetic potential landscapes with optical wavelength resolution
can be designed.

Fig. 3.1 spotlights the effect of circular polarized light for different mF -states.
Another interesting possibility to mimic the effect of a classical field using laser light occurs
for the case of relatively small detuning Γ� ∆ < ∆′HFS, π0 polarized light and transitions
of the kind |F 〉 → |F ′ = F 〉. Especially the D1-transition |F = 2〉 → |F ′ = 2〉 in 87Rb is
a promising candidate for the realization of an optically induced quadratic Zeeman effect,
since an effective energy shift of

UQZ
dip (r) =

πc2

6ω3
0

Γ
∆D1

4m2
F

(2Î + 1)2
I(r) (3.13)

1 The polarizability inEqu. 3.1 is in general polarization as well as spin-state dependent. This is
conveniently expressed in terms of irreducible tensors leading to the effective field picture [105, 106].

2The assumptions made to derive Equ. 3.11 are valid for all optical dipole potentials employed in the
course of this thesis. The only exception to this statement is the optically induced phase evolution used
throughout the soliton experiments described in Chapter 6. There Equ. 3.5 has to be used without further
approximations.
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Figure 3.1: Maximal difference in the
dipole potential experienced by op-
posed stretched states |F,±Fmax〉 for
σ− -polarized light normalized to the
dipole potential felt by the |F, 0〉
state. The use of σ+ -polarized light
results in a change of sign. Linear po-
larized light generates a dipole poten-
tial that doesn’t exhibit any signifi-
cant mF -dependence for any detun-
ing. Even larger differences are ob-
tained for smaller detunings, yet lim-
iting the lifetime of the atomic sam-
ples through spontaneously scattered
photons. Detunings larger than the
shown range finally lead to a van-
ishing of the spin dependence of the
dipole force, regardless of the polar-
ization.

can be calculated. Comparison to the expression for the usual quadratic Zeeman effect

ULZ =
µ2
BB

2
0

∆HFS

(
1−

4m2
F

(2Î + 1)2

)
(3.14)

leads to an expression for the imaginary magnetic field of

B2
eff =

πc2

6µ2
Bω

3
0

∆HFS

∆D1
Γ I(r). (3.15)

Unlike the usual quadratic Zeeman shift, the sign of UQZ
dip can easily be chosen by detuning

the laser to the red (+) or the blue (-) of the atomic resonance respectively. Typical
values that can be achieved using a moderately detuned laser (∆ ≈ ±100 Mhz) with a
beam waist of 1 cm are of the order of |Beff |2 = 3.3 G2/mW · I corresponding to UQZ

dip =
2π~ · 1 kHz/mW · I.
The overall quadratic Zeeman shift relative to the shift of |2, 0〉 can then be written as

UQZ(r) =
µ2
B

∆HFS
(B2 −B2

eff)

(
4m2

F

(2Î + 1)2

)
(3.16)

Most importantly the detuning to the |F ′ = 2〉 state must be much smaller than that to

the |F ′ = 1〉 state, which limits the range of applicable values to ∆ < ∆′HFS

D1
≈ 800 MHz.

It has already been suggested in [103, 107] and implemented in [108] to compensate or
even invert the quadratic Zeeman effect in coherent spinor dynamics by a suitable laser-
or microwave dipole potential in cold atom experiments.
Further details regarding the dipole force can be deduced from [109, 104, 105, 110].
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3.2.2 Gaussian beams

Basic properties

The starting point for the design of beam shaping optics for the creation of optical dipole
traps is the propagation of Gaussian laser beams through various kinds of optical elements.
Since the atoms will be finally trapped in the waist of such a Gaussian laser beam w0, it
is quite useful to give a short reminder of the involved expressions. More information can
be found in standard optics text books (see e.g. [111]). The intensity distribution of a
Gaussian beam traveling in the z-direction can be written as

I(r) =
2P

πw(z)2
exp−2

(
x2 + y2

w2
x(z)w2

y(z)

)
. (3.17)

P is the optical power of the beam, whereas the wi(z) are the beam waists in direction
i at the axial position z. They are connected to the minimal waist wi,0 through w(z) =
w0

√
1 + (z/zR)2, where the Rayleigh range is given by zR = (πw2

0)/λ and defines the
distance over which w(z) grows by a factor of

√
2.

ABCD matrix optics

The propagation through optical elements like lenses, mirrors, etc. can be described by
the use of ABCD-matrices, known from paraxial ray optics. Here the distance r from the
optical axis and the angle of inclination α of a ray transform according to(

r′

α′

)
=
(
A B
C D

)(
r
α

)
. (3.18)

The most common examples when working with out-of-the-box lenses are the matrices for
a thin lens and propagation in free space:

M̂lens =
(

1 0
−1/f 1

)
, M̂free =

(
1 d
0 1

)
. (3.19)

Any optical system can consequently be written as a (non-commutative) product of ma-
trices

∏
i M̂i of individual optical elements, where the right-most matrix corresponds to

the optical element adjacent to the beam input. The resulting matrix features some very
convenient properties, that can be summarized as follows:

• If the optical elements are arranged such that they fulfill an imaging condition, then
B = 0.

• If B = 0, then simultaneously the magnification can be obtained through D = 1/A =
M .

• If B = 0, the resulting focal length of the optical system is given by C = −1/f .

A thorough analysis reveals that the crucial measure for Gaussian beams is the complex
beam parameter q̃(z) defined as

1
q̃(z)

≡ 1
R(z)

− i λ

πw2
0

. (3.20)
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This complex beam parameter transforms exactly like the radius of curvature R(z) does
in spherical-wave optics:

q̃2 =
Aq̃1 +B

Cq̃1 +D
. (3.21)

Since R(z) can be written as R(z) = z + z2
R/z the entire physics of Gaussian beams can

be characterized by the minimal beam waist w0 and the wavelength λ.
With the help of Equ. 3.21 and Equ. 3.20 a normalized thin lens formula for Gaussian
beams can be derived [112]

b/f = 1 +
g/f − 1

(g/f − 1)2 + (zR/f)2
, (3.22)

where g is the b is the image distance In Gaussian optics an imaging condition is derived
for b = g = f . This is in contrast to geometrical optics, where a similar calculation reveals
b = g = 2f as a special combination of object- and image distances. Moreover for g = f
in geometrical optics, one obtains a perfectly collimated beam, a construct that does not
exist for real Gaussian beams. Maybe the most striking feature of Equ. 3.22 is the fact
that for zR/f ≥ 1 the image distance b depends on the object distance g only very weakly
and is basically equal to f . Basically a rule of thumb can be declared, that the smaller
the waist behind the final lens shall be, the bigger the waist in front of the lens has to be.

Design considerations

Since a TEM00 mode Gaussian laser beam is the highly desired beam shape for the creation
of optical dipole traps or optical lattice beams, some attention has to be paid to the creation
of such a beam. The goal for the design of the XDT beam shaping telescopes was the
creation of a Gaussian waist w0 ≈ 40µm a distance of 400 mm away from the focusing
lens. A very elegant and flexible approach consists in the use of optical single mode (SM)
fibers, which deliver the optical power to any desired destination in the experimental
setup. Another advantage is, that the laser beam emerging from a SM fiber is almost
perfectly Gaussian. carefully designed beam shaping optics may image the Gaussian waist
without losses in beam quality. Special care has to be taken when placing apertures in
the optical path. To avoid any loss in power and undesired interference due to diffraction
the apertures must not be smaller than 4.4 × w0 [113]. Taking this into account and
with the help of Equ. 3.21 beam shaping telescopes for the crossed-beam dipole trap and
the optical lattice beams have been designed using commercially available achromatic
and aspherical lenses (MELLES GRIOT, THORLABS, LINOS). It has proven, that the
crucial condition for superb beam quality is a preferably high numerical aperture (NA)
of the first lens, which in addition necessarily has to be of aspherical type to minimize
aberration 3. Two different concepts concerning the interim collimation of the beam
have been traced throughout this work. They are sketched and explained in Fig. 3.2. The
resulting beam waists have been analyzed along the optical path with a laser beam analysis
device (BEAMview by COHERENT) to further characterize the trapping potential. An
essential quality requirement was a very low |M |2 factor which determines the deviation
of a laser beam from the idealized Gaussian shape. Taking images of the waist along the

3The NA is a measure of the angular acceptance of an optical system. It is widely defined as NA =
n · sin(arctan(D/2f)), where n is the index of refraction, D the open aperture of the optical system and f
the focal length.
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(a) 2-lens collimation scheme realized in the 2D-
lattice telescopes. An aspherical lens (blue) with
f = 4.5 mm placed at a distance of f/2 in front
of the fiber end virtually decreases the NA by
a factor of two. An f = 8 mm achromatic lens
(red) subsequently collimates the beam without
diffraction effects. Additional polarizing optics
(yellow) are used to adjust the polarization, be-
fore a f = 400 mm achromatic lens creates a
spot of size w0 = 125µm

(b) 1-lens plus magnification-telescope scheme
as used for the crossed dipole trap. An as-
pherical lens (blue) with f = 4.5 mm colli-
mates the beam which is expanded by a factor
of ≈ 6 with a telescope (red) consisting of an
f = 8 mm aspherical and an f = 50 mm achro-
matic lens, which is externally adjustable. Fi-
nally an f = 300 mm achromatic lens (green)
focuses the beam down to the desired spot size
of w0 = 40µm. A polarizing beam splitter cube
(yellow) is used to eliminate any residual elliptic
polarization.
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(c) Fits to measured spot sizes to determine w0. Data for the the three 2D lattice telescopes is shown. Equal
waist sizes have been a major design prerequisite. The inset shows beam waists of a typical Gaussian laser
beam measured along the optical axis with a beam profile analyzing camera (COHERENT BEAMview).

Figure 3.2: Different approaches for the generation of small Gaussian waists. Measurements of the
spot size along the optical axis and determined minimal waists are shown.
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Figure 3.3: Plot of the trap frequencies for a shallow crossed-beam optical dipole trap as imple-
mented in our experiment. The influence of gravity is clearly seen for low optical power. The gray
dashed curve shows the expected

√
I dependence of ω. Fig. 3.3b shows the vertical (full black) and

horizontal (gray dashed) trap frequencies. For a specific value of P all trap frequencies become
equal resulting in a spherical potential.

optical path ensured good control of this parameter. Wavefront distortions in the vicinity
of the focus of the beam transform into intensity modulations in the far field (z � zR)
and can therefor by detected and eliminated. The measured spot sizes for the two Since
we expect, that ultracold atoms will occupy the lowest level of a given potential, it is
very useful to write the potential in a harmonic approximation, which yields trapping
frequencies:

ωρ =

√
4Umax

dip

mw2
0

and ωz =

√
2Umax

dip

mz2
R

(3.23)

Umax
dip denotes the dipole potential evaluated at the point of maximum intensity. The

aspect ratio of BEC in a single Gaussian beam trap is given by
√

2πw0/λ and takes very
large values for w0 � λ as usually fulfilled. The expected scaling with optical power
follows the simple law ω ∝

√
P but is explicitly violated for very low trap depth, where

the gravitational sag ∆z = 2g/ω2
z starts to play a dominant role and shifts the zero

of the potential away from the optical axis. This breaks the cylindrical symmetry of the
potential and lowers the effective trap frequencies. The gradient ∂ωz/∂P is especially steep
for very low laser power as can be taken from Fig. 3.3 , which is unfortunately the working
point in the experiments throughout this thesis. It has therefor proven indispensable
to stabilize the intensity of the trap laser to a high degree of accuracy in order to get
reproducible and stable experimental conditions. Fig. 3.3 further illustrates the change in
the trap properties due to gravity and low optical power for a crossed dipole trap. The
trap frequencies decrease faster than the naively expected 1/

√
I-law and furthermore an

inversion of the aspect ratio of the trap takes place. As the main conclusion one has to
bear in mind, that trap frequencies measured at an arbitrary trap depth must not simply
be scaled, when working at different optical power. Instead it has proven inescapable to
determine the trap frequencies at the working point.
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Table 3.1: Comparison of average frequencies of the astigmatic dipole trap, obtained by various
methods. ω̄ is scaled according to Tab. 3.2, ω̄(T ) and ω̄(n) are calculated from measured critical
temperatures and densities, respectively (see text for details).

power experimental data calculated from data scaled
[mW] T/nK N/105 N0/105 n/ cm−3 Tc/nK ω̄(T )/ s−1 ω̄(n)/ s−1 ω̄/ s−1

44 64 5.0 3.8 0.68× 1014 104 2π × 29 2π × 23 2π × 106
107 205 8.3 2.9 1.9× 1014 229 2π × 54 4π × 96 2π × 165

3.2.3 Astigmatic single beam dipole trap

A first dipole trap setup has been implemented at the Hamburg Spinor experiment em-
ploying an astigmatic single beam dipole trap. Three prerequisites have to be met in order
to study spinor physics of 87Rb BEC in |F = 2〉 and |F = 1〉:

1. a trap potential as conservative and spin independent as possible is required.

2. the trap has to be sufficiently strong in the vertical direction to support the atoms
against gravity.

3. the resulting atomic density in the condensate has to be low enough to reduce three-
body losses, especially important for |F = 2〉, to a reasonable level.

The first requirement is met by the use of a far red detuned Nd:YAG laser (Innolight
Mephisto) at a wavelength of 1064 nm and purely linear polarization. At reasonable trap
depths the spontaneous scattering rate evaluates to less than 0.1 s−1. To fulfill the lat-
ter two conditions an astigmatic trap has been designed which has a tight focus in the
vertical direction, while providing a relatively relaxed overall tightness defined through
the geometric average of the trap frequencies ω̄ = 3

√
ωxωyωz. The atomic density is then

defined through ω̄ according to Equ. 2.16. A laser beam emerging from an optical single-
mode fiber (THORLABS) is first collimated to a beam diameter of ≈ 50 mm and then
focused to a small Gaussian beam waist of w0 ≈ 6µm using a spherical achromatic lens
(f = 250 mm). A moderate astigmatism is introduced by placing a cylindrical lens behind
the focusing achromat. Its major effect is a displacement of the horizontal- relative to the
vertical focus position along the optical axis of ∆z ≈ 4 mm. The horizontal beam waist at
the position of the vertical focus has been determined to be wy(z = ∆z) ≈ 400µm. The
resulting optical potential is shown in Fig. 3.4a.

To characterize the potential, trap frequencies have been measured using dipole oscil-
lations (see also Fig. 3.5) as well as parametric heating [114] which is in particular feasible
for tight traps and high trap frequencies as for the astigmatic trap. Trap frequencies
obtained in this way can be cross checked by determination of the critical temperature
via N0/N = 1 − (T/Tc)3 which is then used to calculate the trap frequencies through
kBTc = 0.94~ω̄(T )N1/3. Neither this method nor the comparison to direct measurements
of the average density 〈n〉 through spin changing dynamics related to the trap frequen-
cies according to ω̄(n̄) = ~/(ma2)(14π〈n〉a3)5/6(15N0)−1/3 show an acceptable agreement
with the directly measured frequencies as documented in Tab. 3.1. Since the above ex-
pressions do only weakly depend on the particle number N , which is afflicted with some
experimental errors due to imperfections in the detection process, the major reason for
the disagreement seems to be something else. The already mentioned breakdown of the
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(a) Astigmatic single-beam trap (b) Symmetric single-beam trap

(c) Crossed-beam trap (d) Elongated crossed-beam trap

Figure 3.4: Schematic beam geometries of the astigmatic- and symmetric single-beam, crossed-
beam and elongated crossed-beam optical dipole traps. Shown are the 1/e2 beam diameter (red
wire frame) and the intensity distribution (colored sections).

harmonic approximation for low trap depth, which forms the basis of all of the above
calculations, seems to be a promising candidate to explain the remarkable disagreement.

3.2.4 Single Gaussian beam dipole trap

For measurements in very elongated BEC, e.g. the experiments concerning spin domain
formation presented in Chapter 4 only one of the crossed-beam dipole trap beams can be
employed in order to achieve a very high aspect ratio (see Fig. 3.4b). Axial condensate
extensions of up to 1 mm can be achieved in this way. The axial beam frequency involved
with such a trap is in the sub-Hz regime and cannot be measured by usual excitation of
dipole oscillations. However by determination of the gravitational sag as a function of the
tilt angle of the beam with respect to the horizontal direction the axial trapping frequency
can be measured with very high accuracy [115]. Measurements in a typical trap yield an
axial trapping frequency of ωx = 0.8 Hz and ≈ 100 for the aspect ratio.

3.2.5 Crossed beam dipole trap (XDT)

In the framework of this thesis the Hamburg Spinor experiment has been upgraded with
an optical lattice. The need for an almost isotropic but spin-independent trapping poten-
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(a) Horizontal trapping frequency XDT (b) Vertical trapping frequency XDT

(c) Horizontal trapping frequency EXDT (d) Vertical trapping frequency EXDT

Figure 3.5: Center of mass oscillations of a BEC in two different trap geometries. Shown are
measurements of the vertical and horizontal trap frequencies in a symmetric crossed dipole trap
(XDT) employed for the lattice experiments and in an elongated crossed dipole trap (EXDT) used
in the framework of soliton dynamics. The vertical dotted (dashed) lines mark the lower (upper)
bound of the fit interval.

tial as the starting point for all later experiments could be satisfied with the setup of a
crossed-beam optical dipole trap as depicted in Fig. 3.4c. As an improvement to the single
beam trap ALL trapping frequencies are determined by the transverse confinement of the
beams and can therefor be independently adjusted. By choosing suitable waist sizes of the
two beams almost arbitrary aspect ratios can be achieved. The most symmetric case is of
course realized by taking two beams with equal waist size. Once again the optical power is
delivered by single mode fibers which terminate with beam shaping telescopes as shown in
Fig. 3.2b. In our experiment two Gaussian laser beams with a beam waist of w0 = 40µm
each, intersect at the point of minimal beam waist. In this way a trapping potential with
an aspect ratio of 1 : 1 :

√
2 is created. The potential can even be made more symmetric

due to the following fact: In order to produce and maintain a condensate in an optical
dipole trap at very low temperatures two different methods can be employed. Cooling of
the atomic ensemble by selective parametric excitation [116] removes only atoms in higher
vibrational trap levels and has proven to work well in the astigmatic trap. However a
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Table 3.2: Trapping frequencies and expected power scaling of the optical dipole traps used in
this work. Data for the astigmatic trap is taken from [71]. For the crossed beam traps, compare
Fig. 3.5.

at power ωx ωy ωz
astigmatic P = 48 mW 2π × 16.7 Hz 2π × 118 Hz 2π × 690 Hz
symmetric P = 43 mW 2π × 0.8 Hz 2π × 133 Hz 2π × 86 Hz
XDT Px = Py = 38 mW 2π × 90 Hz 2π × 89 Hz 2π × 127 Hz
EXDT Px = 43 mW, P2D−1 = 8 mW 2π × 5.8 Hz 2π × 133 Hz 2π × 86 Hz

optical power ωx ωy ωz
single beam P ∝

√
P ∝

√
P ∝

√
P

XDT Px, Py ∝
√
Py ∝

√
Px ∝

√
Px + Py

EXDT Px, P2D−1 ∝
√
P2D−1 ∝

√
Px ∝

√
Px

more straight forward approach is to reduce the trap depth to such a low level that all
excited atoms are immediately spilled out of the trap. Moreover this technique provides a
continuous cooling mechanism throughout the whole experimental sequence. As shown in
Fig. 3.3b, very low trap power leads to a convergence of the horizontal and vertical trap-
ping frequencies for a small range of optical power settings. Working in this regime is an
ideal starting point for loading cold atoms in an optical lattice. Fig. 3.5 shows exemplary
measurements of vertical and horizontal dipole oscillations in the crossed dipole trap.
For the sake of reproducibility, stability and experimental ease the two XDT laser beams
are intensity stabilized. Moreover intensity noise at Fourier components of twice the trap-
ping frequencies ωi may lead to heating through parametric excitation. Fortunately the
output of the Nd:YAG laser (INNOLIGHT Mephisto) already features a very high sup-
pression of intensity fluctuations, so that the main task consists in keeping them low along
the optical path of the beams. Rigid design of all opto-mechanical elements, especially
the fiber couplers and a thorough design of the fiber laying guarantees a very low level
of intensity fluctuations [71]. To ensure a reproducible constant power level of the laser,
independent of e.g. the fiber coupling efficiency, a simple servo loop has been set up as de-
scribed below. A small portion of light is picked off the beam with a pellicle beam splitter
in front of the last focusing lens 4. A pure integral servo controller actuating an acousto
optical modulator (AOM) in front of the fiber regulates the beam intensity to within less
than 10−3. This ensures excellent experimental conditions, necessary for reliable creation
of very cold BEC with constant and controllable particle number.

Tab. 3.2 summarizes measured trap frequencies and expected power scaling for all of
the optical traps used for the experiments presented in this work. However, due to the
aforementioned reasons the power scaling has to be treated with great care when trying
to estimate trapping frequencies for different trap depth.

4A pellicle beam splitter is used to eliminate any ghosting.
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3.2.6 Elongated crossed dipole trap (EXDT)

The experiments on solitons in Bose-Einstein condensates presented in Chapter 6 demand
for a very elongated trap geometry in order to reach the regime of quasi one-dimensional
BEC. One of the major goals of these measurements was the observation of soliton os-
cillations in a trapped BEC. The single waist dipole trap fulfills the requirement of very
high aspect ratio but due to the very low axial trapping frequency of ωz ≤ 2π 1 Hz it is
quiet demanding to observe soliton oscillations expected with a frequency Ω = ωz/

√
2. To

independently control the axial trapping frequency we have added one of the beams of the
triangular optical lattice ( see Chapter 5 for more details) traveling in the vertical direc-
tion. The large waist size of w0 = 117µm together with a sensitive intensity controller
allows for a precise adjustment of the axial trapping frequency. The experiments have
been performed at an identical aspect ratio to keep the experimental conditions constant
throughout the different series. The trapping frequencies of this configuration are listed
in Tab. 3.2.

3.3 Detection of Spinor BEC

The usual way to detect Bose-Einstein condensates in current experiments is to image
them with resonant or off-resonant light on a CCD camera. Depending on the specific
experimental demands absorption or phase-contrast imaging can be the best choice to de-
termine the desired parameter as accurate as possible. Absorption imaging is superior in
terms of experimental ease and is distinguished by the highest sensitivity to particle num-
ber. Unfortunately it is a destructive detection method, which makes the non-destructive
phase-contrast imaging the method of choice, when in-situ measurements with high tem-
poral or spatial solution are required. An excellent introduction to both techniques is
given in [117]. The reader is referred there for details. A collection of useful formulas
used to determine particle numbers is given in Appendix C. Other detection methods for
cold atoms like e.g. diffraction-contrast [118] imaging have been considered in proof-of-
principle experiments but have not been made standard practice. In the course of this
work absorption imaging has been employed vastly even though phase-contrast methods
have been occasionally tested. In the following some particularities concerning imaging
of multi component quantum gases as well as a little discussion of image post-processing
techniques are presented. More details concerning specific methods used at our experi-
ment can also be found in [103, 71, 119].
The investigation of static and dynamical properties of spinor BEC demand for addi-
tional information on the internal state or the magnetization respectively. The method
of Stern-Gerlach separation prior to absorption imaging has been vastly employed at our
experiment and will be discussed.

3.3.1 Absorption imaging

The master experimental setup for absorption imaging consists of a fiber coupled illumi-
nating laser beam, expanded to a diameter of several centimeters, a custom-designed 5
(7)-lens detection optics (B. Halle), with a magnification of 2.58 (9.9) and a CCD camera
(SenSys 3200ME) with a pixel size of 6.8µm. The resolving capacity of the detection
optics is on the order of 2µm [120], enabling spatially well resolved studies of spinor BEC
important for experiments on dark solitons and magnetic domain formation as discussed
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later. To obtain an absorption image that is free of interference fringes and/or other ef-
fects of inhomogeneities in the detection beam or dust particles on the surfaces of optical
elements three distinct images are recorded. An absorption image containing the shadow
casted by the atomic cloud, a reference image without any atoms and a dark image with-
out any illumination. The optical column density is then easily calculated according to
Beer’s law

nOD = − ln
(
Iabso − Idark

Iref − Idark

)
. (3.24)

Unfortunately the read-out-time of the camera amounts to 4 s, which leads to an unavoid-
able shift of the interference pattern between two pictures due to mechanical vibrations
of the whole apparatus. As a result a residual fringe pattern is always visible, possibly
obscuring the visibility of spatial details in the atomic density distribution and reducing
the maximal achievable precision in the determination of particle numbers. Possibilities
to minimize the effect of interference fringes are discussed below.
An alternative Slave detection setup is capable of imaging the atomic cloud along the quan-
tization axis and therewith perpendicular to the triangular optical lattice as described in
Section 3.6. A second CCD camera (PCO Pixelfly QE) with a pixel size of 6µm capable
of taking two absorption images within 50µs is used here in conjunction with a 1:1 imag-
ing optics consisting of two commercially available achromatic lenses (Melles Griot). For
technical reasons the minimal distance of the first lens to the glass cell is approximately
40 cm limiting the resolving power considerably to not more than 6µm. However, through-
out this work only absorption images incorporating fairly long times of flight have been
employed, so that the constrain imposed by the reduced resolution was of no consequence.

Fringe reduction

We have measured the temporal correlation of the fringe pattern and found a signifi-
cant decrease already on a millisecond scale [119]. The only way to circumvent image
post-processing is therefor to take the absorption- and reference picture on a time scale
considerably shorter than 1 ms. This technique is indeed used in the Slave detection setup
employing the double-shutter option of the PCO camera. The repetition rate in this mode
is rather high eliminating most of the interference fringes.
In the case that the fringe pattern can be unambiguously traced back to the interference
between two distinct optical elements, the insertion of a quarter wave-plate between those
two elements may significantly decrease the fringe contrast. In our experimental set up
the interference between the glass cell and the surface of the CCD chip has proven to
be the most prominent source of fringes. Still, the quality of the images couldn’t be im-
proved to a satisfying level by eliminating these interferences. Since the above mentioned
restrictions can not always be fulfilled image post-processing as briefly sketched below
may fairly reduce the residual interference pattern. One very fact that is at the heart of
the algorithm used to reduce fringes is the observation that the patterns only move very
little with recurrence of their initial phase after a certain time, depending on whose opto-
mechanical element’s vibration or thermal expansion is responsible for the movement. For
these reasons it is possible to construct a new reference image Ĩref as a linear combination
out of only ≈ 50 images from the same experimental series Ĩref =

∑
n cnIref,n. The first

step is to construct a basis set of orthogonal images from all available images from one
experimental series. Since an CCD image can simply be regarded as a vector in a RNx×Ny

vector space, algebraic methods like the Gram-Schmidt orthonormalization scheme [121]
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(a) Example for the effect of post-processing.
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Figure 3.6: Reduction of interference fringes by post-processing with an NB-element basis. His-
tograms are based on a 200× 200 pixel section from 10 random test images. For these histograms,
the artificial reference image has been subtracted from the test images, instead of dividing the test
images by the artificial reference image.

can be used to build the basis set Bn of pictures that fulfill the orthogonality condition
(Bn, Bm) = δn,m. The final best-fit reference image Ĩref is then constructed under the
additional restriction that the integrated atom number outside the regions that contains
atoms is equal to zero:

Ĩref =
∑
n

(Iabso, Bn)Bn. (3.25)

The particle number restriction is necessary to be able to determine atom numbers by just
summing the column density over the desired regions of the image. Significant errors occur
if this last post-processing step is omitted. Fig. 3.6a shows the impressive improvement
that can be achieved in optical quality of the images and in terms of shot-noise limited
photon counting. Fig. 3.6b has been obtained from a homogeneously illuminated region
of a set of arbitrary test pictures. The expected Poissonian distribution of the counts-
per-pixel is very well approximated already for moderate basis sizes. A very detailed and
exhaustive presentation of the underlying physical and technical aspects of imaging of BEC
can be found in the Diploma thesis of M. Brinkmann [119]. Other interesting aspects of
fringe reduction in absorption imaging like imaging with spatially incoherent light have
been raised at the Hamburg spinor experiment. However they have been presented in a
very illustrative way in Jochen Kronjäger’s PhD thesis [71] and will be omitted here.

Double exposure detection

A particularly useful detection method for |1,mf 〉-|2,mF 〉 has been employed in the frame-
work of the filled solitons experiments. In order to distinguish the two components on a
single image a double-exposure technique has been employed. The atoms are first exposed
to light resonant with |2,mF 〉-states only. After a short wait time of 2 ms the atoms in
|1,mF 〉 are optically pumped to |2,mF 〉 and subsequently imaged with a second resonant
light pulse. The advantage of this method is the possibility to directly compare the particle
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number and axial structure of the two components without any further post-processing.
Some attention has to be paid to the determination of the optical density, since the new
images ˜Iabso and ˜Iref contain more light than desired by Equ. 3.24:

Ĩabso = Iabso + Iref (3.26)
Ĩref = 2 · Iref (3.27)

Assuming that the dark image can be neglected 5 , the correct optical density can be easily
calculated as

nOD = − ln
(
2e−ñOD − 1

)
. (3.28)

3.3.2 Spin-selective detection

When dealing with Spinor BEC one of the most interesting experimental measures is the
distribution of the atomic density among the different mF -states. One technique to dis-
tinguish between the different magnetic states is magnetization dependent phase-contrast
imaging [63, 122] based on the Faraday rotation of light polarization through a magnetized
gas [123]. More details attending to the application of this method can be found in [124].
At our experiment in contrast the method of choice is the separation of mF -states through
the application of a Stern-Gerlach-like magnetic field gradient during time-of-flight. Dif-
ferent mF -states are separated according to the law F = −µBgFmF∇B which allows for
an independent determination of the particle number in different states. Note however,
that the relative phases needed for a complete characterization of the quantum mechanical
state are not determined in this way and remain unknown. Only the diagonal elements can
be specified. In principal tomographic methods imaging the sample in the way described
above from 4F + 1 different directions could be merged to obtain the complete density
matrix [125, 126]. This technical demanding detection setup has not been implemented in
our apparatus however.
In order to have a well defined quantization axis during the Stern-Gerlach separation, a
sufficiently large magnetic offset field has to be applied. Some attention has to be paid to
the switching of this offset field. A rise of the axial offset field Ḃoff,x/|B| slow compared to
the transverse Larmor frequency gFµB/~|B⊥| will lead to adiabatic rotation of the spin. If
, on the other hand the field is switched non-adiabatically, i.e. Ḃoff,x/|B| � gFµB/~|B⊥|
the spin states are projected onto the new quantization axis defined by Boff,x. The rise-
time of the current in the coils generating the offset field is on the order of 0.1 G/µs
leading to non-adiabatic switching for transverse fields |B⊥| � 150 mG, which is usually
well fulfilled in our experiment when all residual magnetic fields are well compensated.
This important fact is extensively used when zeroing the magnetic field, where it is crucial
to correctly interpret Stern-Gerlach pictures in order to compensate residual offset fields
as good as possible (see Section 3.4). When the angle between the magnetic field Bini

before switching the offset field and Boff,x is small, the effect of projection can safely be
neglected. For the interpretation of all measurements on spin dynamics presented in this
work, this is the fundamental precondition, i.e. the measured spin-state distribution is

5The dark count rate for the SenSys CCD camera employed for this detection method is very low.
Together with the very short exposure time, the dark counts per pixel are always in the range of one or
two and can safely be ignored.
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Table 3.3: Characteristics of the compensation coil cube, calculated using Ampère’s law. The
measured value for Bx is 275± 1 mG/A, in good agreement with the calculation. The comparison
may serve as an error estimate for the remaining coefficients.

coil pair quantity coefficient unit
Helmholtz horizontal Bx, By 0.286 G/A
Anti-Helmholtz horizontal ∂Bx/∂x 0.034 G/(A cm)
Helmholtz vertical Bz 0.521 G/A

equal to the spin-state distribution before the Stern-Gerlach separation.

3.4 Controlling magnetic fields

The investigation of magnetic properties like ground state phases and spin mixing dynam-
ics of Spinor BEC demands for a very well controlled magnetic field. The energy scale of
spin dependent interactions in 87Rb corresponds to magnetic fields of the order of several
mG. Moreover state preparation is often achieved by pulse techniques employing mag-
netically sensitive transitions. A clean and reproducible initialization of any experiment
involving multi-component BEC is therefor indispensably connected to a highly stable
finite magnetic offset field B0. To achieve a magnetic field as low/accurate as the above
conditions ask for a thorough compensation of interfering fields from various sources has
to be performed. The earth’s magnetic field makes the largest contribution with values
of typically 0.5 G [127], while technical sources like power supplies, permanent magnets of
ion pumps and residual (weak) magnetization of steel parts of the apparatus contribute
considerably less. The most annoying technically induced stray fields are ac fluctuations
with peak-to-peak amplitudes on the order of 2− 4 mG. Since the experiments take place
inside an ultra-high vacuum chamber, no magnetic sensor can be placed at the position
of the BEC, rendering the determination of the magnetic field with conventional methods
impossible. For this reason we have developed a method of calibrating our magnetic fields,
using the atoms themselves as a magnetic sensor.
The precondition for the procedure described below is a working BEC machine with con-
densates produced in an optical dipole trap and subsequent Stern-Gerlach analysis. In our
experiment various multi purpose coils can be used in an approximate Helmholtz- or anti-
Helmholtz configuration in order to generate homogeneous fields or pure magnetic field
gradients. It has proven sufficient to compensate for the offset field components Bx, By
and Bz and only two components of the magnetic field gradient tensor ∂iBj namely ∂xBx
and ∂zBx. As described earlier in this chapter the atoms reside in the |1,−1〉-state when
loaded from the magnetic trap into the optical dipole trap. For sufficiently large offset
fields B0 only one spin component should be detectable in Stern-Gerlach separation (SGS).
This required initial condition is usually fulfilled, since the preceding optical molasses also
demand for a quite well compensated magnetic field. In a next step B0 is being set to
zero which should lead to an occupation of more or less all spin states after SGS. This
means that the residual magnetic field is mainly transverse, and the maladjustment for
the axial compensation coils current is not too large. Following this check the offset field
is set to a reasonably low value of typically 100 mG or even less depending on the quality
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mF = +1 mF = 0 mF = −1

(a) Elongated geometry

mF = +1 mF = 0 mF = −1

(b) Isotropic geometry

Figure 3.7: Typical structured spinor condensates in the crossed dipole trap at zero offset field,
indicating optimum stray field and gradient compensation. Gradient compensation currents are
those deduced from Fig. 3.8. The pattern as well as the relative population of spin states varies
randomly from shot to shot, probably due to AC stray fields. Since the hold time at zero offset
field is comparatively long, the line trigger is ineffective in this case.

of the initial compensation. The offset field is lowered until the |1, 0〉-state gets weakly
populated after SGS. As described in Section 3.3 the population of other spin states is
a result of the projection of the |1,−1〉-state along the initial B-field direction onto the
experiment’s symmetry axis defined by the Stern-Gerlach field. If the angle between the
initial and the final magnetic field is sufficiently large, populations in other spin states
will be observed. This very fact can be employed to calibrate the transverse components
of the compensation field. Properly reducing the transverse part of the residual field will
make the additional |1, 0〉 component disappear. A successive iteration of these steps is
employed until no further improvement can be observed. Usually a careful application
of this algorithm leads to a minimal offset field of 6 mG corresponding to a current of
not more than 20 mA. At this point the sensitivity to current maladjustment’s in the
transverse direction is on the order of the resolution of the precision current sources which
is 1 mA - less than one mG. In a last step the axial compensation field is adjusted by
again setting B0 to zero while simultaneously changing one of the currents through the
transverse coils by about 20 mA. The resulting field should be purely transverse, leading
to a spin distribution symmetric with respect to mF = 0. If this is not the case, the axial
compensation field is adjusted in order to achieve a distribution as symmetric as possible.
Since the above method does not allow to compensate the axial field as precise as the
transverse fields (sensitivity is about 3 − 5 mA ≈ 2 mG), two additional steps should be
added to improve the overall magnetic field compensation. A good cross check for the
compensation is to set the offset field equal to zero and study the resulting spin state dis-
tribution. A well compensated magnetic field leads to population of all three spin states
which in addition should be spatially structured (see Fig. 3.7).

The latter implies, that the variations of the field across the condensate are on the
same order of magnitude as the residual field itself. Moreover variations of the magnetic
field are not restricted to the spatial domain, but change also with time, so that the pat-
terns observed differ from shot-to-shot. Once the magnetic field has been compensates
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very well, rf-pulses can be used to transfer population between different mF -states (see
Section 3.5). We have determined the parameters and frequencies necessary to perform π-
pulses transferring the atoms from |1,−1〉 to |1,+1〉. Since a π-pulse is a relatively fragile
method to prepare states, its transfer efficiency crucially depends on the chosen frequency.
Once determined the frequency needed for a perfect π-pulse can be checked for different
offset fields, which delivers another tool to check for the quality of the compensation. The
degree of compensation that can be achieved for the axial field in this way amounts to
roughly 2 mG. Finally the lowest achievable offset field that can be safely chosen to work
with has been 10 mG =̂ 30 mA. Better compensations can be achieved for short times, but
it seems that background fields drift in time, so that lower, well-defined offset fields cannot
be established over times long enough to perform thorough measurements. The ac-stray
fields mentioned at the beginning of this section are obviously on the same order of magni-
tude or even larger than the residual dc-fields after the compensation procedure. They can
be avoided as much as possible by keeping line-operated laboratory electronics as far away
from the vacuum chamber as possible. In an attempt to provide even more reproducible
experimental conditions we have implemented a line trigger that synchronizes the whole
experimental sequence to the mains cycle: After we have prepared a BEC in the desired
spin state distribution we wait a short time on the order of the inverse mains frequency
and trigger the beginning of the evolution time of the atomic sample to a zero crossing in
the mains cycle. This really does improve the reproducibility, but unfortunately only on
a time scale as short as approximately 1-2 mains cycles. The main reason for that, is that
the mains frequency is only 50 Hz on average but varies significantly on even short time
scales. We have checked the influence by performing Ramsey experiments without and
with the line trigger and observed significant improvement in terms of smaller deviations
from the desired resonance frequency (see [71] for details).
For even more homogeneous magnetic fields, the next step in the compensation procedure
is to cancel for the variations of the magnetic field across the condensate. The tensor of
the magnetic field gradient ∂Bx,y,z/∂x, y, z cannot be totally canceled with realistic exper-
imental effort. However, under the restriction ∇ ·B = 0 the most limiting components of
the tensor ∂iBj can be tackled and minimized. Many experiments presented in this thesis
deal with condensates which are considerably elongated along the axis of symmetry (the x-
direction), the most important gradient will therefor be along the x-direction. In addition
at a finite offset field Boff = B0 ·ex axial deviations contribute linearly to the absolute value
of the magnetic field, whereas transverse fluctuations enter only quadratically. A pair of
compensation coils is used in anti-Helmholtz configuration to generate a more or less pure
gradient field without the addition of a considerably large offset field. Fig. 3.8 shows the
influence of the ∂xBx compensation in absorption images. A displacement of the |1,±1〉
condensates relative to their thermal clouds can be observed. A current of 0.5± 0.1 mA is
needed for optimum cancellation where the displacement vanishes, indicating a gradient
of ∂xBx ≈ 15 mG/cm. The remaining uncertainty of ∆∂xBx ≈ 3 mG/cm corresponds to a
Zeeman energy difference between adjacent mF -states of 2π · 20 Hz for typical condensate
extensions of 100µm. By using a small pair of off-axis Helmholtz-like coils, ∂zBx has been
compensated for few experiments. However, driving a current through these coils adds an
offset field in the x-direction of several hundred mG, demanding for a new calibration of
the homogeneous compensation field as well. Usually the effort connected to this proce-
dure is not worth the enhancement and is often abandoned. For completeness it should
be mentioned that currents of 1 − 2 A assure an optimum compensation. Fig. 3.8 finally
illustrates how gradient compensation influences the inhomogeneous patterns observed for
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mF = +1 mF = 0 mF = −1

(a) Varying ∂xBx (top to bottom: 1 A . . . 0 A in
steps of 0.2 A) at zero ∂Bx/∂z compensation

mF = +1 mF = 0 mF = −1

(b) Varying ∂zBx (top to bottom: 0 A . . . 3 A in
steps of 1 A) at optimum ∂zBx

Figure 3.8: Selected images of spinor condensates in the crossed dipole trap at zero offset field,
demonstrating gradient compensation. This kind of experiment has been used to find the optimum
compensation currents. In the left column, it can be seen how the mF = ±1 components separate
under the influence of the magnetic field gradient and swap places when it changes sign (from
both “outwards” with respect to mF = 0 at the center to both “inwards”). In the right column,
similar behavior can be seen in the vertical direction depending on the vertical gradient. Optimum
compensation currents deduced from these images are 0.5 A for ∂Bx/∂x (left) and 2 A for ∂Bx/∂z
(right).

almost perfect magnetic field compensation and how these images can be employed to
cancel the desired gradients as good as possible.

3.5 State preparation and analysis

The preparation of well defined initial states is at the heart of every quantum mechanical
experiment. When dealing with multi-component systems the spatial and internal degrees
of freedom can often be prepared separately. Our experimental setup provides a variety
of preparation and analysis tools that will be briefly sketched in this section. For the
preparation of distinct mF -state distributions or spinors rf pulses and sweeps are employed.
On the other hand micro-wave techniques are used to transfer atoms between different
hyperfine states. Spatially resolved phase and state preparation can be achieved by the
usage of a Raman laser system together with a spatial light modulator. Finally a Bragg
laser system is presented enabling us to determine coherence properties and momentum
spectroscopy of BEC.
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Figure 3.9: Rabi-like oscillations in F = 1 , driven by continuously applied rf. The condensate
is initially prepared in F = 1,mF = −1 (top row) and is driven through a superposition of all
three mF -states to a pure mF = +1 state, before the dynamics is reversed. The pictures are taken
at intervals of 10µs. Note that only a small fraction of all possible superpositions of the three
mF -states are situated on the Bloch sphere and therefor appear in the Rabi cycle.

3.5.1 Rf- and microwave pulses and sweeps

Spin rotations

At small magnetic offset fields the quadratic Zeeman splitting is usually negligible com-
pared to the Rabi frequency of the rf coupling (a few kHz). The dynamics of an initially
stretched state is then well described within the classical spin picture (Section 4.1.1). In
the rotating frame, applying rf power induces a rotation around the x-axis at the rate
of the Rabi frequency, while waiting and doing nothing corresponds to a rotation around
the z-axis at the rate of the detuning between radio and Larmor frequency. Arbitrary
points on the Bloch sphere can be addressed by nested rf pulse sequences. Sophisticated
techniques and error resistant sequences have been developed in the context of nuclear
magnetic resonance (NMR) [128].
In practice the correct Larmor frequencies and pulse durations are roughly known from
experience. A first rough estimate for the Larmor frequency can be obtained by using text
book values for the Zeeman splitting of 87Rb . In a next step more precise values for the
Larmor frequency are found by choosing an approximate π-pulse of 80µs and adjusting
the frequency for maximum rotation away from the initial |F,−F 〉-state. A perfect π-pulse
at zero detuning will transfer all atoms to the opposite stretched state |F,+F 〉. The Rabi
frequency is then adjusted by varying the amplitude such that a pulse duration of 40µs
corresponds to a π/2 pulse, i.e. leads to a symmetric distribution of the population over
all mF states. If necessary the procedure is iterated. Using this protocol, the Larmor fre-
quency can be obtained to a precision of about 1 kHz. For improved precision, the π-pulse
is replaced by a Ramsey sequence, with wait times between the two π/2-pulses from 10µs
up to 1 ms. The frequency is then continuously adjusted for maximum population of the
|F,+F 〉-state as before. Care has to be taken not to increase the waiting time by more
than a factor of two in each step, in order to keep the rotation due to detuning always
within ±π. The resulting uncertainty of the Larmor frequency is decreased to 100 Hz in
this way.

The specific advantage of spin rotations is that the relative phases of different mF

components are well defined, which makes it superior to sweeping techniques concerning
the initialization of superposition states. Note that preparation using rf-pulses is nei-
ther limited to stretched states nor to π/2 pulses. E.g., a π/2 pulse applied to a pure
|F = 2,mF = 0〉 state can be used to prepare a superposition of mF = ±2 and mF = 0
only, a state that is characterized by the absence of g1 coupling (Section 4.2.1); other use-
ful examples can be found in [71]. Pulses corresponding to very small population transfer
can be employed to generate small “seed” populations in mF states adjacent to a single
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Figure 3.10: Schematic level diagram of dressed mF states versus detuning ∆ = ωrf − ωL. Left:
The quadratic Zeeman effect lifts the degeneracy of the resonance. Without it, all levels would
intersect at zero detuning. Coupling of adjacent levels (∆mF = ±1) turns level intersections into
avoided crossings. Right: Sweeping the radio frequency, a population prepared in mF = +2
adiabatically follows the dressed state across avoided intersections and ends as a pure mF = −1
population when the sweep is interrupted between resonances. (see also [103])

strongly populated one at a well defined phase.
A π/2-pulse is also employed to prepare the particular superpositions ζπ/2 = (1/2, 1/

√
2, 1/2)

in F = 1 and ζπ/2 = (1/4, 1/2,
√

3/8, 1/2, 1/4) in F = 2 which are the initial states of
choice for the experiments on spin dynamics presented in Chapter 4. Both states are fully
transversely magnetized states, ζπ/2 = ei

π
2
Fy ζ−F where ζ−F = (0, 0, 1) or (0, 0, 0, 0, 1),

respectively.

Rf adiabatic passage

The characteristic regime for spin rotations is that of a negligible quadratic Zeeman effect.
As a result, all transitions between adjacent mF levels are degenerate. At larger offset
field, where the quadratic Zeeman effect is of the order of 100 kHz and thus much larger
than the Rabi frequency of the rf coupling, this degeneracy is lifted. Transitions between
specific mF levels can be selectively addressed by tuning the radio frequency (Fig. 3.10).
Rf sweeps can be used to adiabatically transfer population between specific mF substates,
enabling access to non-stretched states, e.g. |1,−1〉→ |1, 0〉. Superpositions can be pre-
pared as well by sweeping more quickly, violating adiabaticity; however, in this case the
relative phases are not well defined. This technique has been used extensively in early
experiments of our group [7, 103]. The offset field is chosen at 26 G, corresponding to
a linear Zeeman splitting of 18 MHz and transition frequencies between mF components
spaced at 47 kHz due to the quadratic Zeeman effect. Sweeping over 50 kHz in 1 ms is
sufficient to ensure adiabaticity [103].
While the use of quick rf sweeps to generate mixtures is problematic, adiabatic sweeps em-
ployed for the preparation of pure mF -states are an invaluable tool due to their robustness
against small changes in crucial experimental parameters, e.g. magnetic offset field or rf
power. Used to prepare initial states for subsequent rotation by pulses, they also greatly
increase the range of mixtures accessible by the latter technique (see also [71]).
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Figure 3.11: Preparation scheme using mi-
crowave sweeps. Each colored path can be com-
pleted in a single sweep, taking the population
along from one |F,mF 〉 state to the next. In
the example below, we start in |2,−2〉 and fol-
low the solid path to |2,+2〉.

(a) Various superpositions of F = 2 and F = 1, used to calibrate Stern-Gerlach imaging. F = 1 and F = 2
positions differ due to the quadratic Zeeman effect.

(b) Successive preparations using successive microwave sweeps. From top to bottom: |2,−2〉 → |1,−1〉
→ |2, 0〉 → |1,+1〉 → |2,+2〉. The individual sweeps can also be combined into a single one spanning all
transitions.

Figure 3.12: Preparation of F = 2 and F = 1 using microwave sweeps.

Hyperfine changing microwave sweeps F = 1↔ F = 2

By the implementation of a rectangular wave guide suited for microwave (mw) fields in
the range of 5−8 GHz transitions between different hyperfine states |1,mF 〉 ↔ |2,mF ±1〉
can be driven as well. Similar to the rf techniques presented above pulse as well as sweep
schemes may be used. Even at small offset field, mF levels can be selectively addressed by
precisely tuning the microwave frequency since the individual transitions are now separated
by the hyperfine splitting plus or minus multiples of the linear Zeeman energy. Due to
this very fact the atom can be regarded as an effective two-level system, simplifying the
underlying physics. Selection rules and mw polarizations at the position of the atoms
limit possible transitions to ∆mF = ±1. E.g., starting from |1,−1〉 it is thus possible
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Figure 3.13: Rabi oscillations on the two-photon Raman transition in the Λ-system |F = 1,mF =
0〉 ↔ |F = 2,mF = 0〉. The plot shows the relative population of |2, 0〉 versus the duration of the
laser pulse at resonance (Taken from [103]).

to transfer to |2, 0〉 or |2,−2〉 in a single sweep. Fig. 3.12 shows how by continuation of
this sweep, the population can be successively transferred through all available mF values,
alternating between F = 1 and F = 2. The achievable Rabi frequency for the |1,−1〉 ↔
|2,−2〉 transition is approximately Ω0 = 2π× 10 kHz, a fully adiabatic sweep may cover a
range of detunings of 400 kHz in 0.5 ms.

Apart from the possibility of preparing mixtures, the advantage of using microwave
transitions is that switching between F = 1 and F = 2 is possible without changing
anything in the experimental sequence before loading the dipole trap. In particular loading
and evaporating in the magnetic trap is always done in F = 1.

3.5.2 Raman laser system

In the course of this work it has proven necessary to prepare the internal state of Bose-
Einstein condensates spatially selective with high resolution. While one possibility would
be the use of strong magnetic field gradients tuning the atoms in and out of resonance
on a µm scale, we have employed a more elegant and general approach by the use of a
Raman laser system. Atoms can coherently be transferred from one hyperfine state |1〉
to another |2〉 by a two-photon process in a Λ-scheme via a virtual intermediate state |3〉
(see Fig. 3.13). Under the restriction that the detuning ∆e of intermediate and any real
excited state is large enough to avoid any population of the upper state, the intermediate
state can be eliminated adiabatically [129]. The three level system is therefor reduced
to an effective two-level system consisting of the two ground states |1〉 and |2〉. Under
the additional assumption that the two-photon detuning δ = ω1 − ω2 is zero, a simple
expression for the resulting two-photon Rabi frequency can be derived:

ΩR =
Ω1Ω2

2∆e
. (3.29)
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The introduction of a Rabi frequency already anticipates that the whole Rabi picture can
be applied to the physical behavior of coherent two-photon processes. The spontaneous
scattering rate for the excited level reads

Γsc =
γe

4∆2
e

(
Ω̃2

1ρ11 + Ω̃2
2ρ22

ρ11 + ρ22

)
, (3.30)

emphasizing again the need for a preferably large detuning ∆e. Of course, increasing ∆e

demands for more laser power, which will ultimately set the upper experimental limit for
the detuning. γe is the lifetime of the excited state, while the ρii denote the occupation of
the two ground state levels. Note that the Ω̃i’s are modified Rabi frequencies which include
all one-photon allowed excited levels, that do not necessarily contribute to the two-photon
process but unfortunately increase the decoherence, namely Ω̃i ≥ Ωi – a consequence of
the fact that real-world atoms do not represent a perfect Λ-system. Since the width of the
two-photon resonance is only on the order of 1−2 kHz an important effect is the differential
ac-Stark shift, which shifts the resonance frequency away from the bare hyperfine splitting
∆HFS. The main reasons for that are again the different modified Rabi frequencies Ω̃i and
the different detunings due to the cross coupling of laser 1 to |2〉 and vice versa:

∆ac−Stark = U1
dip − U2

dip (3.31)

=
~
4

{(
Ω̃2

1

∆e
+

Ω̃2
2

∆e −∆HFS

)
−

(
Ω̃2

1

∆e + ∆HFS
+

Ω̃2
2

∆e

)}
(3.32)

=
~
4

(
Ω̃2

1 − Ω̃2
2

∆e
+

Ω̃2
2

∆e −∆HFS
− Ω̃2

1

∆e + ∆HFS

)
. (3.33)

For typical experimental conditions as for the filled solitons experiments, ∆ac−Stark usually
stays quite small, on the order of a few kHz. However, to achieve a fully modulated perfect
π-pulse, the resonance frequency has to be adjusted with an accuracy of a few hundred
Hz. It has to be emphasized here, that symmetry considerations lead to a significant
constraint concerning allowed two-photon transitions. If the detuning from the excited
state hyperfine manifold is much larger then the excited state hyperfine splitting ∆′HFS

itself, the detuning to all excited state hyperfine levels |F ′〉 is approximately the same.
In that particular case, which is usually realized in our experiments, the overall Rabi
frequency can be simplified by rewriting the dipole matrix elements by application of the
Wigner-Eckart theorem. It is thus possible to express the Rabi frequency for a specific
transition as Ω = −E0/~ · 〈F,mF |er|F ′,m′F 〉 in terms of the reduced matrix element 6

〈J‖er‖J ′〉 and a separate angular momentum term, which can be calculated by brute
force using the Wigner-Eckart theorem or simply looked up in atomic physics tables as
e.g. found in [109]. For simplicity this factor will be termed Clebsch Gordon coefficient
cCG(...) here, leading to Ω = −E0/~ cCG(F,mF ,P;F ′,m′F ) · 〈J‖er‖J ′〉. The two-photon

6Reduced matrix elements are usually determined through excited state lifetime measurements[109]
following the dependence τ ∼ |〈J‖er‖J ′〉|−2
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Rabi frequency can thus be expressed as

ΩR =
Ω1Ω2

2∆e
. (3.34)

=
E0,1E0,2

2~2∆e

∑
F ′,P
〈1|er|F ′〉〈F ′|er|2〉 (3.35)

=
√
I1I2

cε0~2∆e
|〈J‖er‖J ′〉|2

∑
F ′,P

cCG(|1〉,P;F ′,m′F ) · cCG(|2〉,P;F ′,m′F ). (3.36)

Here the electric field amplitude of the laser beams has been expressed in terms of the
intensity I = cε0E2

0/2. The most important observation from this expression is that
destructive interference between different interaction paths may cancel a two-photon tran-
sition strength, even though the involved one-photon processes are all allowed according
to the usual selection rules. We will come back to this point later, when discussing the
technical prerequisites for the generation of filled solitons.
Fig. 3.13 shows an example of Raman-Rabi oscillations between the to ground state hyper-
fine states |1, 0〉 and |2, 0〉. The two σ+-polarized Raman laser beams have been irradiated
onto the condensate along the quantization axis. The particular experimental geometry
employed for the generation of filled solitons is presented in Chapter 6 in more detail. The
different damping rates for the condensate and the thermal cloud emphasize the impor-
tance of decoherence, since the spatial extension of the thermal cloud is much larger than
that of the condensate, so that inhomogeneities of magnetic fields and/or the Raman laser
beam profiles play a much more important role. Moreover severe constraints concerning
the coherence – in other words: quality of the phase-lock – of the two Raman lasers are
defined by the required coherence time for a specific experiment. Typical Rabi frequencies
that can be realized with our experimental setup range from Ω = 5−10 kHz. A preferably
high Rabi frequency is needed for an instantaneous manipulation of the condensate on a
time scale given by the correlation time τcorr = ~/µ as will be seen later.
The setup for the Raman laser system consists of two phase-locked extended cavity diode
lasers (ECDL) which are actively stabilized to a fixed frequency difference equal to the
hyperfine splitting in 87Rb at around 6.84 GHz. The master laser can be used either free
running, locked to an fm-spectroscopy signal or to a cavity via Pound-Drever-Hall (PDH)
stabilization. The latter method has been vastly employed in our experiments: The cavity
itself is locked to a laser, resonant with the cycling transition of 87Rb by a very simple
but sufficient side-of-fringe locking scheme in transmission. At the same time the Raman
master laser is used as usual in reflection to generate the well-known PDH error signal.
Note that the polarization of the two lasers has to be perpendicular in order to distinguish
the two beams 7. The advantage of this scheme is the possibility to arbitrarily detune the
Raman master by multiples of the free spectral range of the cavity, 4 GHz in this case.
Offset-lock techniques can only safely be employed up to detunings of 10 GHz due to the
availability of suitable electronics. It has proven in our experiments that larger detunings
between 20 and 30 GHz are favorable for coherent population transfer between |F = 1〉 and
|F = 2〉. The two laser beams are superimposed and coupled into the same optical single
mode fiber, which delivers the light to the experiment. Phase-locked AOM’s as well as
mechanical shutters allow to switch the light on and off, quickly and reliable. The optical
power available at the experiment is limited to about 4− 5 mW per beam and limits the

7Since the frequency difference between those two lasers is usually on the order of tens of GHz it is not
possible to separate them by the use of dichroic mirrors or similar optics.
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maximum two-photon Rabi frequency Ω to the values mentioned above.
A very detailed description of the Raman laser system can be found in the PhD thesis
of Dr. Jochen Kronjäger. Concluding, the quality of the phase-lock can be characterized
by the rms-phase error 〈φ2〉 Employing different methods,〈φ2〉 has been determined to be
25◦ (see Section 3.6 for further information). The width of the beat note of the two lasers
has been recorded to be less than 1 Hz before coupling them into an optical fiber 8. That
means, the coherence time of the laser is more than sufficient, at least for the requirements
set by the generation of filled solitons, where pulse times in the 100 − 1000µs range are
employed.

3.5.3 Spatial light modulator

Up to date the application of optical dipole potentials on ensembles of ultracold atoms has
mainly been realized by exposing them globally to laser light. The range of applications
runs from optical dipole traps [110] and lattices [80] to the generation of vortices by stirring
with a laser beam [10]. Other applications, like e.g. phase imprinting methods [11] demand
for the possibility to locally manipulate a BEC. So far this has been mainly achieved by
imaging some rigid, possibly etched, mask onto the atoms or focusing of Gaussian beams
to very small waists. New applications already appear at the horizon: disorder potentials
with sub-micron resolution, double-well systems [130, 131] to the point of potentials that
can be arbitrarily shaped in space and time.
The rapid developments in the field of video projectors and display production have opened
up new possibilities to engineer cold atoms with laser light [132]. The use of spatial light
modulators (SLM), characterized by high efficiency, fast switching times and small pixel
sizes may be the beginning of a new era of versatile manipulation. We have implemented an
experimental setup that enables us to use an SLM together with a very-high-quality optical
imaging system with 1/10-fold magnification. That allows us to generate almost arbitrary
optical potentials with a resolution limited by the resolving capacity of the imaging system
to about 2µm 9. Structures of the size of the healing length of the condensate ξ ≈ 1−2µm
can therefor be created – essential for the generation of topological structures like solitons
and vortices [11, 12, 134]. Single site addressing in tilted optical lattice – one of the holy
grails of quantum information in optical lattices – would also be a very ”hot” application
of SLM’s in cold atom experiments to name only one example. The SLM’s utilized in
our experiment (Fa. HOLOEYE, LC-R 1080) are of liquid crystal on silicon (LCoS)
normally black type and work in reflection as compared to a normal LCD, which works in
transmission: Basically the SLM works like a 8-bit voltage controlled wave plate in front
of a mirror. The active medium is passed twice in this way. Consequently 256 different
phase retardation values for the slow axis can be addressed. In order to achieve amplitude
modulation, polarizing optics has to be placed in front of the SLM as shown in Fig. 3.14.
The pixel size of the SLM amounts to 8.1µm, which is effectively lowered by a factor
of ten through the 1/10-fold magnification of the imaging optics. The display provides
1920×1200 pixel (WUXGA-format), which corresponds to an effective controllable area of
1500× 970µm – large enough to address every position in any conceivable BEC that can

8The resolution of the spectrum analyzer used here (Fa. RHODE & SCHWARZ UPV) is 1 Hz. This
value can therefor be given as an upper bound for the real width of the beat note.

9Obviously the effective pixel size would be smaller than the optical resolution and is consequently
convoluted with the modulation transfer function of the imaging system. A detailed characterization of
the whole optical setup [133] has indeed shown, that the theoretical possible limit for the resolution of
2µm is almost reached in our experiment.
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Figure 3.14: Scheme of the setup to optically imprint arbitrary SLM patterns onto the BEC. The
high-resolution detection optics is also used to image the SLM patterns. Polarization optics is
needed to translate the rotated polarization into intensity modulation

be generated with our machine. The shape of the potential can be changed at will from
shot-to-shot, allowing for measurement series that e.g. spatially scan the condensate with
some potential barrier. The repetition rate of the SLM’s display amounts to 60 Hz and sets
the upper limit for changing the optical potential on-line. Unfortunately this rate is too
low to manipulate a BEC in-situ and dynamically engineer excitations or shift potential
minima. Possibly future SLM’s will overcome these restrictions and pave the way for even
more versatile experiments and unlimited control over Bose-Einstein condensates in the
spatial and temporal domain.
A particularly useful experimental setup used to precisely focus the SLM onto the BEC is
shown and explained in Fig. 3.15. For the generation of structures of the size of the healing
length it is crucial to focus the SLM optics as good as possible. The SLM is mounted on a
three-screw mirror holder with precision screws which allows for an excellent control over
tilt and focusing position. It has shown that a focusing to within less than half a millimeter
is necessary in order to generate deep and reproducible dark solitons. That means that
the focus adjustment has to be on the order of approximately one full revolution of the
mirror holder screws.
More concrete examples and applications will be given in Chapter 6, where the SLM
has been vastly employed together with the Raman laser system to generate dark and
dark-bright solitons.

3.5.4 Bragg laser system

Many features of Bose-Einstein condensates have been discovered and studied in detail
over the last decade. A valuable tool in this context has been the possibility to track the
dispersion of various kinds of excited collective modes, sound velocities and the momen-
tum distribution inside the BEC in general. Bragg spectroscopy provides access to all of
the above mentioned quantities and has been employed in the past to prove many the-
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Figure 3.15: Scheme of the setup used to focus the SLM optics. The optical path lengths between
CCD camera and BEC and SLM and BEC must be equal in order to have an image of the SLM at
the position of the BEC. The primary CCD camera (gray shaded camera) is taken away and the
image of the BEC I at the position of the CCD chip is imaged again by another supplementary
imaging system SIS1 to yield the final image I ′. Now an auxiliary semi transparent edged mask
is placed at the position of the intermediate image I and adjusted until it is focused. Finally the
edged mask and the SLM can be imaged simultaneously employing a secondary CCD camera and
another supplementary imaging system SIS2. The SLM is now adjusted until both edged mask
and SLM are focused,

oretical predictions concerning momentum distribution [135], coherence properties [136]
and superfluid flows [137] to name only a few examples. Future applications include mea-
surements on quasi momentum distributions in optical lattices to unambiguously identify
novel phases or quasi-particles.
In the course of this PhD thesis a Bragg laser system has been set up together with Dipl.
Phys. Thomas Garl. Details concerning theoretical and experimental details can be taken
from his Diploma thesis. Here, only a brief overview is given, in order to basically under-
stand how Bragg spectroscopy works.
Analogously to the well-known Bragg refraction of X-ray radiation on a solid state crystal
lattice, matter waves with a de-Broglie wavelength λdB may be diffracted off a standing
light wave, generated by a laser of wavelength λL according to λL cos θ = nλdB If one of
the laser beams is slightly detuned in frequency by ∆E/h the lattice is moving relative
to the atoms and the diffraction of atoms occurs only for distinct detunings fulfilling the
condition:

~∆ω =
(2~k)2

2m
. (3.37)

Regarding the Bragg diffraction as a two-photon process (see Fig. 3.16) similar to the Ra-
man transitions discussed earlier in this chapter, this relation becomes even more evident:
Assuming two counter propagating beams, the atom virtually absorbs one photon from one
laser beam and is stimulated to emit another photon into the other beam. If the detuning
to the excited state δ is large enough to neglect any upper-state population, this state can
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Figure 3.16: (a) Schematic illustration of a first-order Bragg process in terms of a two-photon
process on the basis of the dispersion of a free particle. Only if the detuning ∆ω between the two
Bragg beams matches the energy corresponding to the transferred momentum ∆p = 2~k, a notable
transfer to |2~k〉 will occur. (b) Principle of a π/2− π/2 interferometer based on Bragg-pulses to
investigate the coherence properties of a BEC.

be adiabatically eliminated and the problem reduces to that of an effective two-level Rabi
system with all its well-known properties. An overall momentum transfer of ∆p = 2~k
occurs in this process. In the case of free particles such a momentum transfer demands
for a change in energy of ∆ω = (2~k)2/(2m) in order to fulfill energy conservation.

When pursuing spectroscopy on trapped systems, the corresponding dispersion ∆E(k)
is probed and can be precisely traced. For atoms moving with an initial velocity v and
Bragg beams enclosing an angle of θ a more general version of Equ. 3.37 can be quoted as

∆E =
(2~k sin(θ/2))2

2m
− 2kv sin(θ/2). (3.38)

More details on transition probabilities and higher-order Bragg diffraction can be found
in [138].
The original experimental setup for the Bragg laser is also well described in [138], while
some newer features have been added and are explained in [139]. An ECDL, which can
be used either free running or stabilized to a reference cavity locked to the 87Rb cycling
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Figure 3.17: Rabi-oscillations between states with momentum 0 and 2~k. Shown are experimental
results together with a fit employing a squared sine. The obtained Rabi frequency Ω ' 2π · 14 kHz
is in reasonable agreement with the theoretically expected one regarding the uncertainty in the
determination of the beam intensities at the position of the condensate..

transition, is coupled into an optical fiber, guided to the experiment and split up into two
optical paths. Every beam passes through one of two phase-locked AOMs. In this manner
the frequency difference between the two beams can easily be adjusted to the Hz-level,
while providing a very high degree of coherence between the two laser fields 10. The beams
are finally expanded to a diameter of 1− 2 mm and irradiated onto the atoms.
As a proof-of-principle experiment, Rabi oscillations between the momentum-states with
|0〉 and |2~kL〉 have been driven successfully over several periods as shown in Fig. 3.17.
Continuative experiments in our group were aiming at the coherence properties of multi-
component condensates. One possibility to measure the spatial coherence of a BEC is to
split it up into two, displace the two parts with respect to each other by a certain distance
and let them finally interfere. If the coherence length lcoh is larger than the displacement
d, then a visible interference contrast will be observed. One elegant possibility to do this is
the use of a π/2 − π/2 interferometer sequence by using two Bragg pulses: After switching
off all trapping potentials and a wait time long enough to convert mean-field- in kinetic
energy the atoms are exposed to a short π/2 Bragg pulse, splitting the condensate wave
function in a superposition of |0〉 and |2~kL〉. After an evolution time te a second π/2
pulse recombines the two condensate parts and enables them to interfere. Since the atoms
travel a distance ∆x = (2~k/m) ·te in between the two pulses the coherence properties can
be investigated continuously by varying te. Fig. 3.16 shows the experimental scheme for a
π/2 − π/2 interferometer, while the results of measurements performed in the astigmatic
single beam dipole trap are presented in Fig. 3.18. After a mean-field energy release time of

10It should be emphasized, that first splitting the two beams and then coupling them into a fiber results
in considerable phase noise, broadening the beat note to 1 − 2 kHz. This should in any case be avoided.
Using the same fiber with crossed polarization also doesn’t show the desired result (see Section 3.6 and
[138]).
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5.5 ms a first Bragg pulse with a duration of 80µs has been applied. We wait for a variable
evolution time te ranging from 0.5 ms to 5.5 ms before we apply the second π/2-pulse. The
atoms are imaged after an overall TOF of tTOF = (33.5 − 2tπ/2 − te) to assure equal
expansion parameters for all evolution times. The finite beam size represents a serious
problem, since the atoms fall down a notable distance under the influence of gravity in
between the two pulses and experience a smaller intensity during the second pulse. As a
result the Rabi frequencies for the two pulses may not be the same and especially change
with increasing te. This can be re-adjusted by increasing the laser intensity but more
homogeneous beams would avoid that problem ab initio.
As can be deduced from the measurements interference fringes appear, whose spacing d
should obey the law 11

d =
h

m∆v
=

h

mα(t)∆x
=

λL

2
1

α(t)te
. (3.39)

Here λL denotes the laser wave length and α(t) = ḃ(t)/b(t) describes the expansion of
the condensate relative to its initial size (taken from [102]). Qualitatively this can be
confirmed regarding the present measurements summarized in Tab. 3.5.4.

te [ms] 2,5 3.0 3,5 4.0 4,5 5.0 5.5
∆x [µm] 29.4 35.3 41.1 47.0 52.9 58.8 64.6
d [µm] 19 19.7 17.6 15.4 13.5 12.7 11.8

Table 3.4: Separation d of the interference fringes in Fig. 3.18 as a function of the evolution time
te between the π

2 -pulses.

Visible interference patterns for separations up to 65µm – approximately the conden-
sate length – could be observed.

In future experiments the Bragg laser setup may be used to investigate the band
structure of the optical lattice or in a slightly different approach to act as an inter-band
Raman laser, transferring atoms coherently from one Bloch band to another. Since the
detunings are on the same order or slightly larger as for spectroscopic use, the two beams
can simply be irradiated from the same direction as for the Raman laser.

3.6 Setup for an optical lattice

The intention of this section is to give an idea of the technical issues connected with
the implementation of an optical lattice, especially a three-beam optical lattice, at a cold
atoms experiment. The physical basis of the generation of periodic potentials with the help
of far detuned laser beams will instead be given in the context of Chapter 5 for reasons
of continuity. Here the laser system used to derive the lattice beams is presented in
detail Furthermore, a technique to eliminate relative phase noise of different laser beams
guided through individual optical single-mode fibers will be presented. A well-proven
experimental scheme to align the lattice beams is introduced, since it turns out to be
non-trivial to achieve a proper adjustment for a triangular lattice. Furthermore methods

11Since the acceleration due to the parabolic mean field potential in a Thomas-Fermi BEC exhibits a
linear dependence on position, the relative velocity of two arbitrary parts of the condensate depends only
on time and their separation, not on the absolute position.
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Figure 3.18: Interference patterns resulting from two sequential Bragg π/2 pulses constituting
an interferometer according to Fig. 3.16. The absorption images show typical fringe patterns as
observed for evolution times 2.5 ms (a), 3.5 ms (b) and 4.5 ms (c). The graph displays the spacing
of the interference fringes determined from absorption images. The data points are plotted along
with the theoretical prediction according to Equ. 3.39. The observed agreement is rather good.

to calibrate the lattice depth are briefly sketched. It will be explained how experiments
attending to the effect of magnetically-tuned mF -state changing Bragg scattering can be
employed to tackle the indistinct problem of polarization adjustment.

.

3.6.1 A Ti:Sapphire laser system

The demands for a laser system used to create an optical lattice at a BEC experiment
include relatively large power, a wavelength that is not too close to the atomic resonance
and a narrow line width to ensure a sufficient coherence length. A laser type that may
fulfill all of the above requirements is a thoroughly built Titanium-Sapphire laser (Ti:Sa)
in the wavelength range of 780−850 nm. In the following the laser will be presented shortly
and it will be shown, how the intensity and frequency-stabilization is implemented.
The laser used for the optical lattice set up is a commercially available Ti:Sa laser (Fa.

TekhnoScan Single-frequency Ring Laser model TIS-SF-07) employing an out-of-plane
ring resonator. Several wavelength selective elements (1 birefringent filter, 1 thin etalon,
1 thick etalon) together with the positive discrimination of one of the two ring-modes
12 allow for a reliable single-mode operation. The maximum available output power has
been determined to be 1.35 W at a wavelength of 830 nm. The laser features an intensity

12This is achieved by rotation of the laser polarization through a Faraday rotator and an out-of-plane
reflection. Only one of the two otherwise degenerate modes is therefor exactly reproduced after one round
trip in the resonator.
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Figure 3.19: Setup of the lasersystem used to generate the optical lattice. A Ti:Saph laser
providing up to 1.3 W at λ = 830 nm is frequency stabilized using a Pound-Drever-Hall lock to
a commercially available cavity. The light is split up into four branches, three for the triangular
lattice and one for the retro-reflected 1D-lattice. After passing through an AOM used for switching
and modulation the laser beams are fiber coupled and guided to the experiment All of them are
intensity stabilized using a pure integral servo controller. The three branches employed for the
triangular lattice are further phase-stabilized to eliminate the phase noise eventually imprinted in
the optical fiber (see Fig. 3.22 for more details.)

stabilization relying on a lock-in technique working at 1 kHz. The unavoidable intensity
modulation at this frequency has to be kept in mind when designing the final intensity
controller, presented later in this section. However, the stability of the dc output power
in the locked state is better than 0.5 %. Freely running the line width of the laser can
be specified to be several MHz. In order to improve this value to below ≈ 100 kHz a
Pound-Drever-Hall frequency-stabilization has been set up in the course of this thesis. A
very small fraction of the light is split off and send through an electro-optical modulator
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running at ≈ 30 MHz. The beam is then coupled into a Fabry-Perot cavity (Fa. Coherent)
and the reflected light is used as the error signal as usual [140]. All fast deviations from the
reference wavelength are controlled by a fast PI-branch of the servo controller actuating a
small and fast piezo-mounted mirror inside the Ti:Sa resonator. The maximum travel of
this piezo corresponds to a frequency stroke of not more than ≈ 15 MHz. Therefor long
term drifts of the laser relative to the external cavity have to be compensated in a different
way: the control signal is integrated with a time constant 13 of 3 s and the resulting voltage
is fed to the piezo controller of the external cavity.
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Figure 3.20: (a) PDH signal obtained in scanning mode. The gradient of the signal ∆Uscan
∆tscan

is
plotted in red.
(b) Error-signal with activated PDH frequency stabilization. The rms value (red line) of the signal
can be taken to estimate the residual line width.

The frequency adjustment range of the external cavity amounts to several GHz - enough
to compensate for all drifts occurring in our lab. The line width can be estimated by taking
the gradient of the PDH signal in units of volts per free spectral range and plugging in
the rms-value of the error signal according to

ΓL ≈
(

∆Uscan

∆tscan
· ∆ttrans

1, 5GHz
· 1

∆Urms

)−1

. (3.40)

ttrans, the time equivalent of on free spectral range of the external cavity has been deter-
mined to be 800 ms for the measurements presented in Fig. 3.20. The maximum of the
gradient is 1.38 V/ms and the rms-voltage can be taken to be 0.045 V. The measured line
width in the locked mode could thereby be decreased to ≈ 33 kHz, a value corresponding
to a coherence length of several kilometers.
The light coming from the Ti:Sa output is split up into four lattice and one auxiliary
beams. As shown in Fig. 3.22 the beams passes an AOM, used to control and switch the
intensity and to cancel fiber induced phase-noise. Finally the beams are coupled into 30 m
long non-polarization-maintaining single mode fibers and guided to the experiment situ-
ated in a neighboring laboratory, where beam shaping telescopes (compare Fig. 3.2a and
[141]) directly aim the laser beams onto the BEC without the use of any further optical

13Building analog electronics with such high integration constants is actually quite demanding. However,
one has to make sure, that for all short-term deviations the laser is locked on the external cavity, and not
the other way around.
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Figure 3.21: Power spectrum of one of the lattice laser beams. The blue curve has been recorded
without activated intensity stabilization. The red curve depicts the power spectrum with intensity
stabilization. The servo controller is capable of suppressing intensity noise at low frequencies
but slightly increases noise beyond frequencies of several kHz, still maintaining a suppression of
better than 10−4. Note the double logarithmic scale. The light shaded curves are the original
signal recorded with a R&S UPV audio analyzer. The full colored curves have been obtained by
averaging over five adjacent bins.

elements. The spot sizes at the position of the atoms have been measured (see Fig. 3.2a)
and read w1D

0 = 90µm for the 1D lattice, whereas the beams creating the 2D three-beam
lattice have waists of w2D

0 = 115µm.

3.6.2 Intensity stabilization

The intensity of the lattice beams is conveniently controlled by a pure integral servo
controller actuating on rf-mixers used as attenuators in front of the AOMs. The bandwidth
(25− 30 kHz) and dc-accuracy (∆I ≤ 50µW) of this control circuit is sufficient to control
the intensity of an individual lattice beam up to its maximum available level. The power
spectrum ∆P 2/P 2 = S(ω) (compare Section 5.4) of one of the laser beams measured on
a fast photo diode (THORLABS PDA155 - Silicon) employing an audio analyzer (R&S
UPV) is shown in Fig. 3.21. The heating rate induced by intensity fluctuations of the
lattice laser is proportional to this power spectrum as can be deduced from Equ. 5.40 .14

A careful analysis of the control circuit and the resulting heating rates has been conducted
in cooperation with S. Schnelle and is documented in detail in his diploma thesis [141].
The heating rate observed for the measured power spectrum can be calculated employing
Equ. 5.40 and yields a maximum value of τheat & 1 s. The corresponding lifetime of the
atoms inside the lattice is thus sufficiently long to perform experiments that may last up
to 1 s.

14A limited bandwidth may drive parametric heating processes in the lattice. However excitation fre-
quencies in the range beyond the measured bandwidth correspond to lattice depth that can not be achieved
with our laser power and are therefor safely neglected (see [141] for detailed discussion).
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Figure 3.22: Stabilization of the optical path length of a single mode fiber. The phase of the
individual laser beams is locked to a reference oscillator (R&S SMG) eliminating any phase jitter
imprinted in the optical fiber. Note that no additional remote-end components are required for
the particular experimental setup developed within this thesis. More details concerning the optical
and rf-components used can be found in the text.

3.6.3 Phase noise elimination

Ideally the transmission of an optical signal through an optical fiber will not change the
spectral properties of the signal. However temperature fluctuations as well as mechanical
vibrations lead to a modulation of the index of refraction n of the fiber core resulting in
a change of the optical path length. This on the other hand imprints phase noise on the
transmitted light broadening the signal spectrum to several kHz even for fibers as short
as a few meters. As will be shown in Chapter 5 fluctuations of the relative phases of the
individual laser beams of a three-beam lattice will lead to a global translation of the lattice
potential which may result in a parametric heating process. To avoid this heating it is
necessary to stabilize the laser beam’s relative phases after their transmission through the
optical single mode fibers.

The setup to measure and eliminate the phase noise is depicted in Fig. 3.22. The
compensation is based on heterodyning probe light that is picked up before the fiber with
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 Figure 3.23: Beat note obtained by heterodyn-
ing two individually phase-locked fiber-coupled
lattice beams. The black line represents the
beat signal of two individual unlocked beams
that have passed through 30 m long single
mode fibers. Phase-locking one of the beams
decreases the width of the signal only slightly
as expected (red). The blue curve shows the
signal of two phase-locked beams. The in-
stantaneous width of the signal decreases to
∆ν . 1 Hz as compared to several kHz without
stabilization.
The residual rms phase-noise is not larger than√
〈φ2〉 = 6.8◦.

light that has passed through the fiber and has been reflected back by the plane end
of the fiber, therefor revealing the phase modulation Φf . A small portion of light with
frequency ν0 is picked up in front of the AOM and directed onto a fast photo detector
(HAMAMATSU G4176). The main beam passes through the AOM shifting the frequency
of the light by νAOM and through the fiber adding a phase noise of Φf . At the plane end of
the APC-PC fiber 4 % of the light gets reflected back and collects another Φf assuming that
the modulation of the index of refraction doesn’t change during a round trip of the light,
which is true for perturbations with frequencies νpert � c/(2nL). Subsequently the light
is again shifted by νAOM by the AOM. This light characterized by ν0 +2νAOM +2Φf is now
also directed onto the photo detector and generates an optical beat at 2νAOM + 2Φf . We
compare the phase of this rf-signal with the reference signal of a local oscillator (LO) at νref

and use the derived error signal to drive a fast servo loop which controls a voltage controlled
oscillator (VCO) feeding the AOM. This optical phase-locked loop (OPPL) ensures that
2Φf +2νAOM = νref . The light transmitted through the fiber will consequently have a rigid
phase and a frequency of ν0 +νref/2. It is important to note that the fiber employed in this
setup has to have one plane end at the remote side and one angled end at the input side in
order to distinguish the light reflected from the front end of the fiber from light reflected
from the remote end which exactly traces the incoming beam. In addition the polarization
of the light at the end of the fiber has to be circular in order to obtain a linear polarization
of the back-reflected beam which is perpendicular to the polarization of the incoming light
(see Fig. 3.22). This can be achieved by the use of fiber polarization controllers [142].
Although the setup may look complicated it requires only one interferometer branch in
front of every fiber and standard rf equipment as an AOM is required anyways for fast
switching and controlling the light intensity. Note in particular that no cumbersome extra
optics is required at the experiment end of the fiber which favors our setup over other
fiber length stabilization schemes especially for the generation of optical lattices where
usually only compact beam shaping telescopes are used to shine the light on the atoms
under almost arbitrary angles.

Moreover loading ultra-cold atoms into an optical lattice requires an adiabatic ramp
up of the intensities of the lattice beams to avoid heating. This additional requirement
complicates the construction of a robust servo loop, since the magnitude of the error
signal used for the OPPL will increase over 2 orders of magnitude during the ramping.
This problem can be bypassed by implementing an automatic gain control for the rf
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signal coming from the photo detector. The power of the rf signal is measured using a
simple home-made diode square-law detector which yields the error signal for an integral
controller. The output of this regulator is fed to a voltage controlled amplifier which keeps
the rf power constant at −10 dBm. This extra servo loop enables the controller to keep
the individual laser beams phase-locked over a wide range of intensities (< 1 mW− 1 W).
The measured beat signal of two individually phase locked laser beams out-of-loop can
be used to determine the quality of the OPPL. Fig. 3.23 shows the beat of two unlocked
laser beams under silent laboratory conditions in black, the heterodyne measurement of
one locked and one unlocked laser beam is depicted in red and the signal of two locked
laser beams in blue respectively. The dramatic decrease of the width of the beat note
as compared to two free running beams from σFWHM ' 2 kHz down to σFWHM ≤ 1 Hz
can be easily seen. 15 In order to address the short-term quality of the phase lock
more quantitatively, the residual phase offset 〈φ2〉 can be related to the fraction η of the
total power contained in the carrier of the spectrum through η = e−〈φ

2〉 [143]. A careful
integration of the beat spectrum over a wide spectral range gives a value of η = 0.986
leading to a phase error of

√
〈φ2〉 = 6.8◦.

3.6.4 Adjusting the lattice

A time consuming task demanding for care and patience is the first adjustment of the
optical lattice, especially the triangular one.

1D retro-reflected lattice

A standing wave lattice can usually be adjusted in a convenient way by first blocking the
retro-reflected beam and imaging the atomic cloud and the laser waist along the axis of
propagation of the lattice beam (compare also Section 5.1.1 for details). Great care has to
be taken when imaging such a small waist with a CCD camera to avoid destruction of the
chip. Even at the smallest laser powers that can be set (limited by the residual leakage
rf-power of the AOM-drivers in OFF-position) proper neutral density filters on the order
of −30 dB should be used to protect the camera from damage. carefully superimposing
waist and atomic cloud will yield a reliable starting point for further fine corrections
16. The final criterion consists in illuminating the atoms in the dipole trap with a very
strong lattice beam and trying to eliminate any dipole excitations of the BEC indicating
a perfect overlap of the BEC center of mass and the zero of the lattice beams potential.
After this first goal is achieved, the retro reflected beam has to be positioned as well.
This is conveniently done by re-coupling the laser beam back to the fiber from which it
emerged. A beam splitter at the remote end of the fiber allows to separate incoming and
outgoing beam and constitutes a very sensitive measure to iteratively superimpose the
two waists by adjusting lens position and mirror mounts. In this way the tilt of the retro-
reflected beam as well as the exact position of the re-focusing lens can be adjusted with
very high precision. The tolerance of the final adjustment amounts to approximately one
to two scale divisions of the high precision differential micrometer screws (Fa. Mitotoyo),
corresponding to an error in the transverse waist position of ±(4−8)µm. The error in the

15 Note that the minimum width of the beat signal is limited by the maximum resolution of the employed
spectrum analyzer R&S FSP of 1 Hz.

16Note that chromatic aberration of the imaging optics at the wavelength of the lattice may possibly
lead to a tiny shift of the observed and real position of the waist. However this deviation is usually very
small.
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axial positions of the two waists can not be estimated very well, since the Rayleigh range
of the beams with a waist of w0 = 90µm is fairly large and therefor even a maladjustment
on the order of 1−2 mm cannot be safely excluded. In the end one should of course always
check whether the interference pattern obtained by releasing cold atoms that have been
loaded in the 1D lattice is as symmetric and strong as possible for a given lattice depth.

2D three-beam lattice

At our experiment it is unfortunately not possible to image the atoms along the directions
of the three lattice beams creating the triangular lattice. The convenient method to align
the beams described above can therefor not be applied in this case. First of all, because of
the large Rayleigh range zR ≈ 5.1 mm, it is sufficient to adjust the axial distance between
the principle plane of the focusing lens and the position of the atoms to be equal to the lens’
focal length within ±1 mm. This is already quite demanding, since the accessibility at the
experiment is limited prohibiting exact measurements of distances and angles. However
the effort spent here will pay off, since a later re-adjustment of the waist position is more
than cumbersome.
The starting point of the transverse calibration is a rather small portion of atoms in a MOT
without pushing beam. An auxiliary fifth fiber connecting the experiment and Ti:Sa lab is
used to couple resonant light in the individual lattice beam fibers using FC-APC FC-PC
fiber connectors. By gradually decreasing the power of the laser and aiming at the atoms
in the MOT, a reasonable starting point for further adjustments can be found. Next one
needs to produce BEC in a crossed optical dipole trap and mark the exact position of the
trap center from both available detection directions. After this is done, the power of the
axial dipole trap is cranked up to a large value to increase the size of the trapped atomic
sample. Then one chooses one of the beams – now with the usual lattice detuning–and
tries to produce a crossed dipole trap generated by the axial dipole trap and one single
lattice beam, hereafter called lattice dipole trap. Since the axial extension of the atom
cloud is fairly large, only the vertical direction should be scanned in rather small steps (not
more than 2 scale divisions of the Mitotoyo screws at a time are recommended). Usually,
at some point one will recover the desired lattice optical dipole trap. Now the horizontal
direction may also be adjusted until the lattice dipole trap is exactly at the same position
as the crossed dipole trap marker set at the beginning of the procedure. The intensities
of the lattice and dipole beams may now be reduced iteratively to obtain a more sensitive
measure for the quality of the adjustment. At the lowest possible power (reducing the
power even more will lead to an effective potential that does not exhibit a local minimum
anymore and is thus not capable of supporting the atoms against gravity) the sensitivity
is again on the order of one scale division of the micrometer screws. This procedure does
not work for the lattice beam pointing along gravity of course. We have established a
different method to obtained an adjustment of equal quality. Bose-Einstein condensates
produced in an extremely shallow crossed optical dipole trap are very susceptible to any
kind of perturbation. If the vertical lattice beam is not perfectly aimed at the minimum of
the potential of the crossed dipole trap, then the atoms will be dragged away horizontally
from the point of maximum force. As a result atoms will start to spill out of the trap,
which can be observed in absorption images. Only a perfect alignment avoids loss of atoms
and can therefor be achieved following this criterion.
Finally, it is a good test for the quality of the alignment to have a look at the position of
the crossed dipole trap with a very strong lattice beam impinging on the atoms in addition.
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Only if the position as compared to the pure crossed dipole trap does not change at all
a good adjustment has been achieved. After the procedure described above has been
accomplished for all three lattice beams, one can try to load atoms in the lattice and
observe the typical interference pattern after time-of-flight. Usually the observed pattern
will already look more or less perfectly symmetric, if the intensities of the beams have been
calibrated properly as well (see Section 5.4). As a last step of the calibration, the atoms are
driven deep in the Mott-insulating regime (compare Chapter 5 for more details). After a
fixed hold-time the lattice depth is reduced to a level corresponding to maximal visibility of
the typical interference peaks. The recovered visibility is an extremely sensitive measure
for the adjustment of the lattice beams. Re-adjusting the mirror mounts of the beam
shaping telescopes by not more than 2 scale divisions will finally yield the best result that
can be obtained within the restriction of the described method. Note that a subsequent
execution of all of the above steps can barely be accomplished on one day. However it is
not always necessary to start from the beginning. It has proven extremely useful to locate
a global reference point for all adjustments that one can think off. We have chosen the
center of mass of the compressed magnetic trap to be this point. Before calibrating the
lattice, it is therefor unavoidable to check, whether the dipole trap is correctly adjusted to
the point of reference. If this is not strictly considered every time the lattice is adjusted
one will end up turning knobs of mirror mounts over and over again, without ever doing
experiments.

Polarization adjustment

The adjustment of the polarization is a major issue in order to obtain a well defined lattice
structure when working with three-beam lattices as in our experiment. Due to the very
compact experimental setup it is not possible to measure and adjust the polarization by
conventional means, e.g. using a polarization measuring device. Instead the influence of
a misaligned polarization on the atoms themselves has to be employed as a very sensitive
measure to properly adjust the lattice. A Zeeman-Bragg resonance described in detail in
Section 5.10 which leads to an unwanted population of other mF -states at low magnetic
fields constitutes such a polarization sensitive physical effect that we vastly use for polar-
ization adjustment. Only if circular components of the lattice polarization are absent, no
transfer to other magnetic states occurs. A wave plate in front of the beam shaping tele-
scopes allows to change the polarization and to eliminate (triangular lattice ) or maximize
(hexagonal lattice) this effect, thereby yielding a well defined polarization orientation.



Chapter 4

Dynamics of Spinor Bose-Einstein
condensates

The physics of single component BEC is based on the assumption that the bosonic parti-
cles, constituting the condensate behave as they had no internal structure influencing the
physical properties of the BEC in any way. Many properties associated with the external
degrees of freedom are well understood to date [102, 144]. Spinor Bose-Einstein conden-
sates are characterized by an additional internal degree of freedom namely the spin. The
order parameter of a spinor condensate consequently takes the form of a vectorial spinor
rather than a scalar as in single component condensates: ψ → ~ζ = (ζ−F , . . . , ζ+F )T . The
number of components of ~ζ is given by 2F+1 in a particular hyperfine manifold. Moreover
spinor condensates are set apart from other multi component systems, like mixtures of dif-
ferent isotopes [145] or quasi-spin-1/2 systems composed out of different hyperfine states
[49, 146], by a symmetry of the order parameter under rotations. Spinor components
transform into one another under a rotation of the coordinate system: The population of
the individual mF -states is not conserved and internal spin mixing dynamics may coher-
ently change the spin-state distribution only constrained by the conservation of the total
spin as we will see.
In the beginning of this chapter the physical basics of single spins will be recalled. The
well-known two-level physics of spin-1/2 systems will be generalized to particles with spin-1
and spin-2 in order to understand the behavior of 87Rb atoms in a combined static mag-
netic and rf dressing field. Concluding it will be depicted how this can be understood in
terms of a classical spin under the influence of an external torque employing the famous
Bloch-sphere picture. Experimental results on Rabi oscillations as well as Ramsey type
experiments are presented together with a comparison to theoretical predictions. Subse-
quently we will turn to interacting spinor condensates and briefly review the mean-field
equations of motion followed by the presentation of an analytical solution describing co-
herent spin mixing dynamics for a particular initial state. Experiments performed with
87Rb atoms in F = 1 and F = 2 will be shown, demonstrating the occurrence of a spin
dynamics resonance as the result of the competition between quadratic Zeeman- and spin
dependent interaction energy for the first time. Finally the formation of spin domains
induced by spin changing dynamics will shortly be introduced.

The results obtained here contributed significantly to the understanding of spinor
condensates in the past couple of years. They have been published in two well-recognized
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papers appearing in peer-reviewed journals. In [5] Rabi and Ramsey like techniques to
manipulate and analyze spinor condensates are presented together with measurements on
coherent spin dynamics in F = 1 condensates. [4] deals with spin dynamics in F = 2 and
highlights the occurrence of a resonance effect owing to the competition between quadratic
Zeeman effect and spin dependent interaction.

4.1 Single atom spin-1 and spin-2 physics

4.1.1 Theory of single spins in a magnetic field

A single atom with electronic angular momentum J and nuclear spin I in an external
magnetic field B0 well in the Zeeman regime is described by the Hamiltonian (see [147])

HHFS = A~I · ~J− (gKµK~I− gJµB~J) · ~B (4.1)

where ~I and ~J are the angular momentum operators of the nuclear and electronic (in-
cluding orbital) spin. µK and µB are the nuclear and Bohr magneton and gK and gJ the
corresponding Landé factors 1.

In the absence of a magnetic field the nuclear spin ~I and the electronic total spin ~J
couple to the total spin ~F = ~I + ~J. The energy levels are simultaneous eigenstates of
I2,J2,F2,Fz with energies EHFS = A

2 ((F (F + 1)− I(I + 1)− J(J + 1)).
This changes in a weak axial magnetic field ~B = B0 ~ez, which lifts the degeneracy

among the mF levels and leads to an energy splitting that is given exactly by the Breit-
Rabi formula for J = 1/2 systems[147]:
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∆Ehfs ≡ ~ωhfs = A(I + 1/2) is the hyperfine splitting of the two states F = I ± 1
2 at zero

magnetic field. Expanding the Breit-Rabi result to second order in B0 yields expressions
for the linear and quadratic Zeeman energy respectively. For 87Rb with I = 3
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where ± refers to the case F = I ± 1
2 , respectively, i.e. F = 1 and F = 2. In the last

step it has been exploited that µK � µB. Having found expressions for the linear and
quadratic Zeeman energy the Hamiltonian Equ. 4.1 can be rewritten in a more instructive
manner:

H ≡ HLZE + HQZE︸ ︷︷ ︸
HZE

+Hrf = −~pFz + ~qF2
z − gFµB b̂ cos(ωt) Fy. (4.6)

1All four quantities are positive with the sign convention chosen here [103]. The Bohr magneton
µB = e~

2mec
≈ h× 1.4 MHz/G and the nuclear magneton µK = e~

2mpc
≈ h× 760 Hz/G determine the order

of magnitude of Zeeman energy shifts. For the electronic ground state of 87Rb , the Landé factor is gJ ≈ 2
and the corresponding nuclear g factor gK ≈ 2.75. Since µK � µB , the nuclear contribution to the Zeeman
effect can be neglected for the purposes of the present work.
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where we have defined for now and the rest of this theses |p| = 1
2
µB
~ B0 and |q| = p2

ωhfs
. It

turns out that for F = 2 (F = 1) both p and q are negative (positive). We have explicitly
split off a term Hrf which accounts for a small perpendicular time-varying magnetic field
as produced by irradiating the atoms with radio frequency. Such a Hamiltonian is well
known from nuclear magnetic resonance (NMR) theory and is usually tackled by first going
to a rotating frame to eliminate the dominating physical effect of Larmor precession. The
unitary operator for such a rotation around the z-axis is given by

T = e−iω0tFz . (4.7)

The transformed Hamiltonian H̃ in the rotating frame is obtained after some algebra
and application of the rotating wave approximation (RWA), neglecting all terms at the
sum frequency (ω+ω0), which is usually justified for physical phenomena close to atomic
resonance.

H̃ = −~(p− ω0)Fz + ~qF2
z −

gFµB b̂

2

(
cos(ω − ω0t)Fy + sin(ω − ω0t)Fx

)
. (4.8)

Choosing ω0 = ω is particularly useful when the driving rf field b̂ 6= 0, since under this
choice the last term in H̃ takes a notably simple form.

In the rotating frame the Hamiltonian H̃ contains no explicit time-dependence, and the
temporal evolution of any spinor ζ can readily be obtained following standard quantum
mechanics:

i~|ζ̇〉 = H̃|ζ〉 ⇔ |ζ(t)〉 = e−i
H̃
~ t |ζ(0)〉. (4.9)

One has to keep in mid that H̃ is a (2F + 1)-dimensional matrix, so that the exponential
has to be calculated numerically using standard linear algebra techniques.
In the easiest conceivable case no rf-field is applied and Hrf is zero. If we neglect the
quadratic Zeeman effect for now, the well known physics of Larmor precession is obtained,
purely driven by the linear Zeeman effect. Recalling that the time evolution of any ob-
servable A ≡ 〈A〉 is governed by the following equation in the Heisenberg picture

〈Ȧ〉 =
i

~
〈[H,A]〉 (4.10)

we can derive a simple set of equations for the components of 〈F〉 using [〈Fx〉, 〈Fy〉] =
εx,y,zi〈Fz〉

Ḟx = +p̃Fy, Ḟy = −p̃Fx and Ḟz = 0. (4.11)

describing a rotation around the z axis with the a frequency given be the detuning
|p̃| = |p − ω0| with respect to the Larmor frequency ωL = |p|. Fz does not exhibit
any time dependence and is a constant of motion. Choosing the frequency of the rf drive
to be equal to the Larmor frequency, all components of 〈F〉 are stationary. This is the
particular reason for switching to the rotating frame: The time evolution takes place at
frequencies |p̃| which usually obey |p̃| � |p|.
By taking a finite quadratic Zeeman effect into account, additional time evolution opera-
tors appear, which are diagonal in the basis of mF states and consequently only involve a
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(a) Rabi sequence (b) Ramsey sequence

Figure 4.1: Experimental rf pulse sequence employed for Rabi oscillations and Ramsey type
experiments.

phase evolution of the spinor

e−iqF
2
z t F=1= e−iqt

1
eiqt

1

 (4.12)

F=2= e−4iqt


1

e3iqt

e4iqt

e3iqt

1

 (4.13)

The expectation values of the different spin components for any initial spin state under
the influence of the quadratic Zeeman effect can readily be calculated using the above
expressions.

In the following some particular configurations of Hrf will be considered and investi-
gated in more detail. The focus will be mainly on special forms of H̃(t) associated with
important experimental sequences that are employed throughout this thesis, namely Rabi
oscillations and Ramsey type experiments.

Rabi Oscillations

Rf- and microwave driven oscillations are invaluable tools for experimental characteriza-
tion and preparation (Section 3.5) and moreover may provide insight into the question of
spin coherence. Fig. 4.2 shows an example of Rabi oscillations in a F = 1 spinor conden-
sate.
Rabi oscillations are a well known phenomena usually familiar to any physicist in the
context of two-level systems [148]. Higher spin systems which may exhibit an additional
quadratic Zeeman effect – that is absent in spin-1/2 systems – show a similar behavior un-
der the influence of an external rf driving field, although characteristic differences remain.
Equ. 4.8 can still be solved analytically as long as we neglect the quadratic Zeeman effect
for now. The time evolution of the individual spin components on resonance is given by

Ḟx = −Ω0Fz Ḟy = 0 Ḟz = +Ω0Fx. (4.14)

The solution to these equations corresponds to a rotation around the y-axis at the Rabi
frequency Ω0 = gFµB b̂

2~ . If we allow for a finite detuning the Hamiltonian can still be
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Figure 4.2: Rabi oscillations in F = 1 including the quadratic Zeeman effect. The plots have been
numerically calculated from RWA solutions of the Schrödinger equation (4.9) with the parameters
p̃ = 0 and q ≈ 0.11Ω0. Note the double scale of the horizontal axis, showing time in units of 2π/q
as well as 2π/Ω0.

written in the form of the generator of a rotation

H̃ = −~Ω~n · ~F where |~n| = 1. (4.15)

around a new axis ~n = p̃
Ω~ez + Ω0

Ω ~ey with a modified Rabi frequency Ω =
√
p̃2 + Ω2

0. In-
troducing a finite quadratic Zeeman effect lifts the degeneracy of the involved transition
energies ω−1→0 and ω0→+1 and introduces a splitting given by q in the simplest case of
F = 1 . As known from classical mechanics the physics of two coupled oscillators is char-
acterized by two frequencies given by the mean (ω−1→0 + ω0→+1)/2 and the difference
(ω−1→0 − ω0→+1)/2 of the individual harmonic frequencies. If the original frequencies
differ only a little, a characteristic beat note at the difference frequency will be observed.
An exact numerical calculation of the involved physics is shown in Fig. 4.2 and confirms
this phenomenological prediction. Starting in |ζ(0)〉 = (0, 0, 1) the populations given
by ρ+1 = |ζ+1|2 and ρ−1 = |ζ−1|2 oscillate π out of phase at the Rabi frequency while
ρ0 = |ζ0|2 oscillates at twice the Rabi frequency. In addition the expectation value of
all spin components vanishes periodically at a frequency given by the quadratic Zeeman
effect. Fz and Fx oscillate π/2 out of phase as expected from a rotation of 〈F〉 around
the y-axis, while Fy barely shows oscillations at twice the Rabi frequency induced by the
quadratic Zeeman effect.

To experimentally investigate Rabi oscillations we start with a BEC in the astigmatic
single waist dipole trap in |1,−1〉 with a large thermal fraction in order to investigate both,
the properties of the condensate as well as the normal fraction. Driving Rabi oscillations
in F = 1 and F = 2 by switching a radio frequency field we observed that the condensed
fraction closely resembles the above mentioned characteristics as depicted in Fig. 4.3. The
time evolution of the thermal cloud on the contrary is strongly effected by damping pro-
cesses. Recall that in order to have experimental conditions as reproducible as possible
we have employed the line trigger described in Chapter 3. The damping of thermal atoms
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Figure 4.3: Rabi oscillations of a BEC with a significant thermal fraction in F = 1. Fits are
calculated using a super-operator [71] formalism and include damping for the thermal component.
Parameter values obtained from a least-squares fit are Rabi frequency Ω0 = 2π × 5.274 Hz and
detuning ∆ = −2π × 194 Hz for the BEC, Ω0 = 2π × 5284 Hz and ∆ = −2π × 168 Hz for the
thermal cloud. While the difference in detuning is insignificant in view of the much larger Rabi
frequency, the difference in Rabi frequency is in fact noticeable over the observation time of 100 ms
(bottom row).

can be understood phenomenologically by regarding the thermal component as a statis-
tical mixture of particles with all different kinds of trajectories and positions, thus being
subject to different local values of the magnetic field leading to a spatial dependence of
the individual detuning 2. For the condensate however coherent Rabi oscillations could be
observed on a time as long as 100 ms. As we will see in the next section, this is in harsh
contrast to coherence times extracted from Ramsey experiments. Finally it has to be em-
phasized, that neither simulations nor experimental results give strong hints on interaction
effects which may alter the behavior expected from the simple single atom picture.

2We have analyzed this in the framework of the super-operator formalism which is presented in the
context of the PhD thesis of Jochen Kronjaeger [71].
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Figure 4.4: Ramsey fringes including quadratic Zeeman effect for F = 1 , calculated numerically
assuming instantaneous π/2-pulses. Fast oscillations given by the detuning ∆ ≡ p̃ are modulated
by the smaller quadratic Zeeman effect q ≈ 0.11∆ leading to a characteristic beat note. Note the
double scale of the horizontal axis, showing time in units of 2π/q as well as 2π/∆.

Ramsey experiments

Ramsey spectroscopy has been performed in a ground breaking experiment in 1950 and
has been widely used ever since in all fields of physics to probe coherence. The general
idea is to prepare a coherent superposition of the particular quantum states involved and
to follow the time evolution relative to a local oscillator. Remixing of the superposition
state leads to spatial or temporal interference patterns in the original quantum states.
The fringe contrast can be taken as a measure for coherence. The specific example of
Ramsey spectroscopy in a S > 1/2 system consists in a initializing π/2-pulse generating
a superposition state ζπ/2 = exp(iπ/2Fy)ζ0

3. A subsequent free evolution governed by
the linear and quadratic Zeeman effect is finally followed by a read-out π/2-pulse leading
to the famous interference pattern in the initial states. For the experiments presented
hereafter it is essential, that the π/2-pulses can be taken to act instantaneously, which
requires, that the pulse time has to be short compared to the timescales imposed through
the detuning and the quadratic Zeeman energy p̃−1 and q−1 respectively. What can be
seen from the simulations in comparison to the Rabi oscillations is, that the role of Fy
and Fz have been exchanged. While Rabi oscillations rotate the spin vector around Fy,
it starts to rotate around Fz during the free evolution of the Ramsey experiment. The
initial π/2-pulse just rotates the stretched spin state 〈Fz〉 = −1 by 90◦ resulting in yet
another stretched state orientated along the x-axis 〈Fx〉 = −1. This state starts to rotate
around the z-axis during free evolution and is rotated again by the read-out pulse. As
a consequence, measuring 〈Fz〉 after the read-out pulse is equivalent to measuring 〈Fx〉
before the read-out pulse.

In certain sense, the physics described above can also be seen in the Bloch picture of
a classical spin ~s under the influence of an external torque ~Ω which is an exact analogon

3 The state ζπ/2 will be of great importance later in this chapter to understand the experiments on
interacting spinor condensates. Particular properties of this state are explained in more detail there.
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(a) Rabi oscillations (resonant rf drive for time t). From left to right: Fz(Ω0t = π/2) = 0, Fz(Ω0t = π) = F ,
Fz(Ω0t = 3π/2) = 0.

(b) Ramsey fringes (two π/2-pulses separated by time T , detuned by ∆ = ω − ω0). Fz(∆ · T = 0) = F ,
Fz(∆ · T = π/2) = 0, Fz(∆ · T = π) = −F .

Figure 4.5: The Bloch sphere: Rabi and Ramsey oscillations in the rotating frame starting in the
initial state Fz = −F , Fx = Fy = 0. Compare to Fig. 4.2 (Rabi) and Fig. 4.4 (Ramsey).

in the case of |s| = 1/2:

~̇s = −~Ω× ~s with ~Ω =

 0
Ω0 cos(ωt)

ω0

 and ~s =

〈σ1〉
〈σ2〉
〈σ3〉

 . (4.16)

Here the σi’s are the well known Pauli matrices, which moreover represent a complete basis
set to describe any possible state in a two level system. As a consequence in a |s| = 1/2
system all physical states correspond to a vector whose tip lives on the surface of the
Bloch sphere. This intuitive and very useful picture can still be maintained in a |s| > 1/2
system as long as the quadratic Zeeman effect is neglected. This has been explained above
as a rotation around an axis given by ~n = p̃

Ω~ez + Ω0
Ω ~ey. However the quadratic Zeeman ef-

fect leads to characteristic beat nodes where the expectation of all three spin components
vanishes. Such a state is obviously not compatible with a stretched state whose vector
lies on the Bloch sphere. In [71] it is mentioned, how a model equivalent to the Bloch
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Figure 4.6: Ramsey experiment in F = 1. Owing to shot-to-shot fluctuations, pronounced Ramsey
fringes cannot be observed. However information can still be extracted from the envelope of all
data points. (see text for more details)

sphere can be established for arbitrary spin. However, such a model incorporates higher
dimensions and lacks the intuitive picture moderated by the Bloch sphere.

The implementation of measurements dedicated to Ramsey spectroscopy is straight-
forward and has been extensively employed at the Hamburg spinor experiment. Fig. 4.6
shows results of a typical Ramsey experiment. The first interesting observation deduced
from the data is the absence of nice and pronounced Ramsey fringes that are expected to
occur in the magnetization as one varies the evolution time. The main reason for this is
that shot-to-shot fluctuations of the Larmor frequency (see Section 3.4) render the trace-
ability of a coherent phase evolution impossible. After a few ms of free evolution time it
is only the envelope of the observed data points that allows to extract information on the
coherence properties of the system. Repeating the experiment over and over again will
produce data points that still fill a certain limited area in the Ramsey graph. Depend-
ing on the detuning, this area will be small (∆ small) or more extended (larger ∆). By
computing the corresponding envelopes of the maxima with respect to the detuning, an
upper limit for the shot-to-shot variation of the underlying detuning can be given. As for
the Rabi oscillations, the damping of the normal component is much stronger than for the
condensate, although more than an order of magnitude faster than in the Rabi experiment.
In principle the damping could be described by Lindblad operators in the framework of the
super-operator formalism [149]. A qualitative reason can be given on the basis of the time
evolution in the two experiments: While the phase evolution in the Ramsey experiment
is linearly affected by fluctuations in the Larmor frequency, the leading term for the time
evolution of Rabi oscillations is given by the Rabi frequency. Since the Larmor frequency
enters only quadratically in the effective Rabi frequency Ω =

√
ω2

0 + ∆2 in terms of the
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detuning ∆, Rabi oscillations are expected to be much less affected by small variations of
the magnetic field as compared to a Ramsey experiment.
A reason for the damping of the condensate dynamics can be guessed by taking the for-
mation of spin domains into account (see next section). The crucial length scale for the
formation of spin patterns is shown to be given by the spin healing length. Similar to
the healing length introduced in Chapter 2 we can introduce a spin healing length deter-
mined by the spin dependent interaction parameter g1: ξS = ~/

√
2mg1n which is on the

order of ξS ≈ 4µm for typical experimental conditions 4. The local spin distribution in
a spinor condensate will not change over distances smaller than ξS The spatial extension
of condensates produced in the astigmatic dipole trap is a few times this spin healing
length along two of three directions. In principle spin pattern formation along the opti-
cal axis of the detection laser could not be observed directly by the employed detection
methods. However it could be very well responsible for a spatial dependence of the phase
evolution due to magnetic field variations which would be averaged through the detection
process, reducing the available fringe contrast considerably 5. As explained in Section 3.4
the residual gradient across the condensate amounts to a relative difference in the Larmor
frequencies of at least 20 Hz which would cause a dephasing by π within 25 ms. Comparing
this to Fig. 4.6 indicates that this assumption may point in the right direction. As outlined
in [71] thermalization effects which lead to a redistribution of atoms between condensate
and thermal cloud also contribute to a damping of coherent dynamics and thus reduce the
fringe amplitude.
The influence of spin dependent interaction on the dynamics in the Rabi experiments is
rather small, which is also confirmed by numerical simulations taking into account the
full spin dependent Hamiltonian. Due to the rapidly overtaking decohering processes in
the Ramsey experiments it is relatively pointless to try and observe spin dynamics by this
experimental approach. The physics of interacting spinor condensates beyond the single
particle physics considered so far is presented in the next section. A particularly useful ini-
tial state for the observation of freely evolving spinor condensates will be introduced, where
any influence of spin dependent interaction immediately shows up as population dynamics.

Nevertheless, the experimental techniques of Rabi oscillations and Ramsey experiments
represent invaluable tools for characterization of spinor systems and the exploration of
technical limitations on the single atom basis. Used for state preparation and magnetic
field compensation as already discussed in Chapter 3 they constitute the technical basis
for all experiments on spin dynamics of interacting spinor condensates presented in the
following.

4.2 Interacting spinor Bose-Einstein condensates

Spinor condensates are distinguished from their scalar counterparts by the introduction of
a vectorial order parameter. Despite this fact they are also well described within mean-
field theory for most of the purposes considered in this work. This section will give a

4 In principle a spin healing length associated with every spin dependent interaction term expressed in
terms of gi can be raised as will become clear in the next section. Since the dominating contributions in
87Rb come from g1 we will stick to the above definition for now.

5 Spin pattern formation has been observed in various trap geometries at our experiment. Even in
spatially tight confined crossed dipole traps, spin domains have been readily observed, justifying the above
assumption as a dephasing mechanism.
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short introduction to the theoretical treatment of spinor condensates. A more detailed
presentation of the underlying theory can be found in [7, 103, 71]. It will be described how
the total spin influences the physics of cold collisions among atoms and how ground states
can be deduced from these scattering properties. The second part of this section is devoted
to experiments with 87Rb spinor BEC in F = 1 and F = 2 starting from a particular initial
state, that exhibits an analytical solution for the otherwise rather complicated problem of
spin mixing dynamics. It will be shown how a spin dynamics resonance develops as a result
of competition between spin dependent mean-field interaction and quadratic Zeeman effect.
Finally the formation of spin patterns in elongated spinor BEC will be briefly presented.

4.2.1 Theoretical description of spinor BEC

The starting point for the following considerations is the mean-field energy functional
introduced in Chapter 2.

Ĥ =
∫ (

~2

2m
∇Ψ̂†(~r)∇Ψ̂(~r)

)
d~r +

1
2

∫
Ψ̂†(~r)Ψ̂†(~r′)Vint(~r − ~r′)Ψ̂(~r)Ψ̂(~r′) d~r d~r′ (4.17)

Since the order parameter of a spinor condensate takes the form of a 2F + 1 component
vector, special attention has to be paid to the interaction term. The total spin of two
colliding indistinguishable particles can take values according to the rules of angular mo-
mentum algebra |F1 − F2| ≤ F1 + F2 ≤ |F1 + F2| together with the constraints on the
symmetry of the total wave function imposed by quantum statistics. For s-wave scattering
at ultra low energies the spin wave function has to be symmetric for bosonic particles to
ensure a symmetric total wave function leading to the constraint Ftot = 0, 2, . . . , 2F for
two identical bosons with spin F . The interaction potential Vint(r−r′) can now be written
as a sum over delta potentials for different total spin channels

Vint(~r − ~r′) = δ(~r − ~r′)4π~2

m

∑
f=0,2,...,2F

afPf , (4.18)

where the Pf represent projection operators on the individual spin channels with
∑

Pf = 1
and the af are spin dependent scattering lengths To get a more intuitive form of the
interaction potential it is useful to rewrite the Pf ’s in terms of products of spin matrices
[46, 45, 150] (see Appendix D). The interaction potential then takes the form

Vint(~r − ~r′) = ~δ(~r − ~r′)(g0 + g1
~F1 · ~F2 +

5
4
g2P0). (4.19)

The gi’s are spin dependent interaction parameters and are determined through

F = 1 : g0 =
4π~
m

a0 + 2a2

3
g1 =

4π~
m

a2 − a0

3
5
4
g2 = 0 (4.20)

F = 2 : g0 =
4π~
m

4a2 + 3a4

7
g1 =

4π~
m

a4 − a2

7
5
4
g2 =

4π~
m

7a0 − 10a2 + 3a4

7
(4.21)
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The term proportional to g2 only appears for spins F ≥ 2. The energy functional for a
spinor condensate finally takes the form

H =
∫
d3~r

F∑
k=−F

[
Ψ∗k(~r)

(
−~2∇2

2m
+ Vext(~r)

)
Ψk(~r)

+
~
2

(
g0n(~r)2 + g1N

2|~F (~r)|2 + g2N
2|S0(~r)|2

)]
, (4.22)

with

n(~r) ≡
∑
i

|Ψi(~r)|2 (4.23)

~F ≡ (Fx, Fy, Fz) and Fα(~r) ≡ 1
N

∑
ij

Ψ∗i (~r)(Fα)ijΨj(~r) (4.24)

S0(~r) ≡ 1
N

(Ψ−2Ψ2 −Ψ−1Ψ1 + Ψ2
0/2). (4.25)

~F and S0 denote the spin and spin-singlet amplitude per particle. The multi compo-
nent GPE is derived as usual as the Euler Lagrange equation of motion of the above
Hamiltonian. By writing the spinor wave function as a product of two functions one de-
scribing the local density and one describing the local spin state Ψk(~r, t) = ψ(~r, t)ζk(~r, t)
the multi component GPE can be decomposed into two independent parts and a term
coupling the spatial and spin degrees of freedom. An approximation usually applied for
spinor condensates, as long as spin domain formation can be neglected is the single mode
approximation (SMA) which assumes, that all spin states can be described by the same
spatial wave function and that no coupling between spin and spatial degrees of freedom
exist: Ψk(~r, t)

SMA= ψ(~r) · ζk(t). As evident from this expression the dynamics is gov-
erned solely by the spin wave function ζk(t). Under the restriction g1,2 � g0 the SMA
represents a reasonable simplification, which allows for the determination of the spatial
part of the wave function by techniques well known from single component condensates
(compare Chapter 2). The average density 〈n〉 6 is the only connecting factor between
spin and spatial GPE. The GPE for the spin part including linear and quadratic Zeeman
effect finally reads

Hspin =
~
2
N〈n〉

(
g1〈~F 〉2 + g2|S0|2

)
+ ~N

(
− p〈Fz〉+ q〈F 2

z 〉
)

(4.26)

with

〈Fz〉 ≡
∑
ij

ζ∗i (Fz)ijζj (4.27)

〈F 2
z 〉 ≡

∑
ijk

ζ∗i (Fz)ik(Fz)kjζj (4.28)

S0 ≡ ζ−2ζ2 − ζ−1ζ1 + ζ2
0/2 (4.29)

6 For the case of a harmonically trapped BEC in the Thomas Fermi limit 〈n〉 = 4
7
n0 where n0 = µ/g0

is the peak density in the center of the trap. This relation has been widely used throughout this thesis for
the determination of the mean density deduced from spin dynamics measurements
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Figure 4.7: Phase diagrams for 87Rb in F = 1 and F = 2 . The q value plotted along the
x-direction corresponds to the magnitude of the quadratic Zeeman energy, while the value of
p plotted along the y-direction is determined by the linear Zeeman energy and the Lagrange
multiplier invoked to account for spin conservation in Equ. 4.26. For the particular initial state
|ζπ/2〉, 〈Fz〉 = 0 and therefor p vanishes. However residual magnetic field gradients can be taken
into account by drawing a vertical line of length ∆p = 2RBEC|∇B| representing the condensate.
(a) For a ferromagnetic F = 1 spinor condensate (g1 < 0) the ground state is either a pure mF -
state (red, green and blue area) or a mixture of all three states (purple area) depending on p and
q. The dashed lines indicate that the transition takes place gradually across the purple region.
Note that any 〈Fz〉 = 0 system corresponds to a point on the q-axis. For k = g1〈n〉/q < 1/2 the
ground state is a pure mF = 0 state.
(b) The anti-ferromagnetic or polar ground state of 87Rb in F = 2 consists of a homogeneous
mixture of |2, 2〉 and |2,−2〉 for 〈Fz〉 = 0.

Note that Hspin conserves the norm of the spinor
∑

k |ζk|2, the z-component of the spin∑
kmk|ζk|2 as well as the energy. The corresponding equations of motion for the individ-

ual spinor components can be found in the Appendix.
The spin healing length ξS = ~/

√
2mg1n already introduced in the last section represents

the natural length scale for possible spatial spin structures and is typically two orders of
magnitude larger than the usual healing length which applies to density variations. By
minimizing the energy of the above Hamiltonian the spin vector ζGS representing the ab-
solute ground state of the system with respect to the different spin depending scattering
lengths can be found [45, 42, 46, 150]. In F = 1 the ground state at zero magnetic field
is obtained easily by inspection of Equ. 4.26. Depending on the sign of g1 the energy is
minimized by either maximizing (negative sign) or minimizing (positive sign) 〈~F 〉, lead-
ing to a ferromagnetic or polar ground state respectively. Since g1 has negative sign for
87Rb in F = 1 it is ferromagnetic with spontaneously broken rotational symmetry. For
finite magnetic fields a quantum phase transition to a phase with unbroken symmetry and
zero magnetization with all atoms in mF = 0 occurs at q = 2|g1| ∗ 〈n〉 [42, 64].
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For quantum gases with F = 2 an additional cyclic phase can be established, character-
ized by finite spin singlet amplitude S0. On the basis of measured values for the s-wave
scattering lengths for F = 2 [74] and measurements regarding ground state properties
performed in our group [59], 87Rb in F = 2 is polar but very close to the cyclic phase
regarding the error bars on the directly measured value for g2. A summary of theoretical
and experimental values of the spin dependent interaction parameter for 87Rb is given in
Tab. D.2 in the Appendix.

However in an experiment the absolute ground state can often not be reached dy-
namically by starting from arbitrary initial states due to spin conservation that has to be
incorporated in Equ. 4.26 in terms of a Lagrange multiplier λ, leading to a new effective
parameter p→ p̃ = p− λ.

4.2.2 Dynamical evolution of a stretched state

The main focus in this work has been on the dynamical evolution of 87Rb spinor conden-
sates in F = 1 and F = 2 . Since the dynamics of the individual spinor components ζk
depends on their relative phases it is crucial to choose states with a well defined initial
phase. In addition it turns out that initial states with a population restricted to a single
mF state do not exhibit any temporal evolution according to Equ. D.3 and Equ. D.4. The
reason for that is that single mF states are eigenstates of the Zeeman- and the spin depen-
dent mean-field Hamiltonian, and are consequently stationary. Early experiments in 23Na
[151, 44, 42, 43] and 87Rb [59, 152, 57, 60] relied on such initial states anyways and where
subject to spin dynamics triggered by imperfect initialization or quantum fluctuations.
Recently spontaneously triggered spin dynamics in the context of spin domain formation
has again attracted attention in the community [65].
For the results presented in this work a different initial state has been chosen in order
to overcome the above restrictions. A coherent superposition of all mF states of a given
hyperfine manifold can be obtained by the application of a rf π

2 -pulse. This technique
has first been applied to quantum gases in the context of quasi spin-1/2 systems [49] and
devolved to the field of spinor BEC in the last years [5, 62]. These fully transversely
magnetized states are explicitly given by

|ζπ/2〉
F=1=

(
1
2

1√
2

1
2

)T
, (4.30)

F=2=
(

1
4

1
2

√
3
8

1
2

1
4

)T
(4.31)

for 87Rb and feature some very convenient properties: The rotated stretched states can
be prepared from the magnetically trapped state using a rf π/2-pulse with very good re-
producibility. As a crucial property they have well defined relative phases. ζπ/2 is closely
related to a classical spin in the well-known Rabi- and Ramsey-experiments and helps to
develop an intuitive picture of spin dynamics. In the limit of vanishing interaction, the
dynamics induced by the Zeeman effect is strictly limited to the phases of the mF compo-
nents, the populations remain constant. Any effect of interactions will become noticeable
as population dynamics. At zero magnetic field the fully transversely magnetized states
are equivalent to the original stretched state. All stretched states are then stationary due
to the symmetry of the interaction Hamiltonian. It is only when a symmetry breaking
due to a finite magnetic field occurs that a dynamical evolution will be triggered.
It is useful to write down the Hamiltonian derived in the previous section in matrix form
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to get a qualitative understanding of how spin dynamics is driven.

H = 2~g1〈n〉

 |ζ0|2 ζ0ζ
∗
−1 0

ζ∗0ζ−1 |ζ+1|2 + |ζ−1|2 ζ∗0ζ+1

0 ζ0ζ
∗
+1 |ζ0|2

+ ~q

1 0 0
0 0 0
0 0 1

 (4.32)

= 2~g1〈n〉

ρ0 0 0
0 1− ρ0 0
0 0 ρ0

+ ~q

1 0 0
0 0 0
0 0 1

 (4.33)

+ 2~g1〈n〉
√
ρ0(1− ρ0)

2

 0 e−i θ/2 0
ei θ/2 0 ei θ/2

0 e−i θ/2 0

 . (4.34)

Note that spin- and energy conservation as well as normalization and global phase invari-
ance reduce the number of independent variables to just two, the population ρ0 of mF = 0
and a relative phase θ ≡ θ+1 + θ−1 − 2θ0[62], where ζm =

√
ρme

iθm . If the interaction is
small the phase dynamics is mainly governed by the quadratic Zeeman effect leading to a
linearly growing relative phase θ which induces an oscillation of the off-diagonal terms at
a frequency ω = q/~. This in turn leads to an oscillation of the populations at twice that
frequency.
If on the other hand the system is interaction dominated both phase and population will
oscillate. A growing mF = 0 population leads to an increasing spin dependent interaction
that will overcome the quadratic Zeeman energy and reverses phase dynamics .7 It is clear
that the ratio of g1〈n〉/q determines at which particular instance this phase reversal will
occur. The absence of population dynamics in the limiting cases of zero magnetic field
and vanishing interaction further suggests that a competition between quadratic Zeeman
energy and spin dependent mean-field interaction is responsible for the phenomenon of
spin dynamics. For F = 1 an analytic solution of the nonlinear SMA equation of motion
Equ. D.3, starting from ζπ/2, exists [5] in terms of Jacobi elliptical functions (JEF) [121].

ζ0(t) =
s√
2

[
(1− k) snk(

qt
2 )

1− k sn2
k(
qt
2 )
−
i cnk(

qt
2 ) dnk(

qt
2 )

1 + k sn2
k(
qt
2 )

]
(4.35a)

ζ±(t) = ∓s e
±ipt

2

[
cnk(

qt
2 ) dnk(

qt
2 )

1− k sn2
k(
qt
2 )
−
i(1 + k) snk(

qt
2 )

1 + k sn2
k(
qt
2 )

]
(4.35b)

where s = exp(−i(g1〈n〉 − q)t/2) is a dynamic global phase. The solution further simplify
to

|ζ0(t)|2 = (1− k sn2
k(qt))/2, (4.36a)

|ζ±1(t)|2 = (1 + k sn2
k(qt))/4, (4.36b)

for the experimentally directly accessible spin state populations The occurrence of the
parameter k = g1〈n〉/q in the analytic solution confirms that amplitude and oscillation
period of spin dynamics are indeed determined by the ratio of interaction to quadratic
Zeeman energy as qualitatively extracted above. Fig. 4.8 illustrates the analytic solution
across a wide range of k and in particular the case k = 1. The most striking feature

7 In the next section it will be shown that the particular initial state ζπ/2 has vanishing spin-dependent
interaction energy.
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Figure 4.8: Resonance in F = 1 spin dynamics starting from the fully transversely magnetized
state according to the analytic solution Equ. 4.36.

of the physics described by these equations is a resonance phenomenon around k ≈ 1
caused by the competition between Zeeman- and interaction-driven phase dynamics and
is therefore present in F = 2 as well. The JEF in Equ. 4.36 can further be simplified by
approximations in two limiting cases:

Zeeman regime (k � 1) In the Zeeman regime, where the quadratic Zeeman effect dom-
inates over spin dependent interaction the JEF can be approximated by ordinary
trigonometric functions snk(x) ≈ sin(x), cnk(x) ≈ cos(x), dnk(x) ≈ 1 yielding

|ζ0(t)|2 ZMR= (1− k sin2(qt))/2, (4.37)

The amplitude of the oscillation is proportional to k, while the period is simply given
by π/q.

Interaction regime (k � 1) Now the appropriate approximations for the JEF read
snk(x) = 1

k sn1/k(kx) resulting in population oscillations

|ζ0(t)|2 IAR= (1− 1/k sin2(g1〈n〉t))/2. (4.38)

Now the amplitude scales as 1/k and the spin dependent interaction determines the
period π/g1〈n〉.

The resonance already mentioned above will occur in the intermediate regime where the
two energies are on the same order of magnitude. Note that the sign of the spin depen-
dent interaction can be conveniently obtained by determination of the initial direction of
spin dynamics as seen from Equ. 4.37. This allows for a straight forward classification of
F = 1 spinor BEC ground states to be either ferro- or antiferromagnetic. Interestingly
the equations of motion for the spinor in F = 1 are mathematically equivalent to those
of a non-rigid pendulum. Consequently the behavior of amplitude and period of spin dy-
namics can be directly compared to this classical analogon [61]: The interaction regime
corresponds to small amplitude harmonic oscillations of the pendulum. As the amplitude
grows, the period gets larger due to non-harmonic contributions to the restoring force.
When the angle of deflection reaches π a non-stable equilibrium position is reached and
the period goes to infinity. Realizing even larger energy input makes the pendulum rotate
around its rotational axis at a smaller and smaller oscillation period.
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Figure 4.9: Population oscillations observed for the condensed fraction (top) demonstrating spin-
dependent interaction in 87Rb F = 1. In contrast the thermal component (bottom) does not
exhibit any oscillatory dynamics. Data points are averaged over several repetitions of the exper-
iment (error bars), theoretical curves (lines) are fits to the data employing the analytic solution
Equ. 4.36.

Spin dynamics of a 87Rb F = 1 spinor condensate

The experimental procedure for the observation of spin dynamics is very similar to the
sequences described in Chapter 3 and the preceding section. After the generation of BEC
with up to 3× 105 particles in the astigmatic dipole trap, the magnetic field is set to the
desired value. We than wait for the line trigger (see Section 3.4) to be synchronized to
the mains frequency and apply a well calibrated π/2-pulse to generate the initial state.
After a variable evolution time we switch off all confining potentials and image the atoms
on a CCD camera after a time-of-flight of 20 ms including Stern-Gerlach separation as
described in Section 3.3. The populations of the individual spin states is determined for
the condensate fraction and the thermal cloud by fitting a bimodal distribution to the
atomic clouds.
The spin dependent interaction term g1〈n〉 ≈ in F = 1 is rather small, so that all measure-
ments on this hyperfine ground state presented in this thesis are well within the Zeeman
regime. Data has been acquired for three different magnetic fields and two different tem-
peratures as shown in Fig. 4.9. A first conclusion that can be drawn from the observed
initial growths of the mF = 0 population is the fact that 87Rb in F = 1 is ferromagnetic
as motivated earlier.
In general the observed data is in excellent agreement with the theoretical predictions from
mean-field theory for the first 10 ms. Amplitude and period follow the expected correla-
tion A , T ∼ 1/B2. It can be seen that thermalization effects take over for evolution times
larger than 25 − 30 ms, where the fitted theory starts to deviate considerably from the
data points. Unfortunately this renders the observation of oscillations in the interaction
regime impossible. Nevertheless by fitting the analytic solution Equ. 4.37 to the data the
interaction can be deduced from the obtained amplitude. By averaging over all available
data series we find values of |g1〈n〉| ≈ 12 s−1 and |g1〈n〉| ≈ 33 s−1 for the cold and hot
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samples respectively. This further illustrates that a direct observation of oscillations in
the cross-over or interaction regime is viewless under these experimental circumstances
and the observed thermalization times. By equating the obtained interaction energies
with the quadratic Zeeman energy, a guess concerning the expected magnetic field for the
resonance can be found to be |g1〈n〉| ≈ 12 s−1 ≡ B = 160 mG for the cold samples and
|g1〈n〉| ≈ 33 s−1 ≡ B = 270 mG for the hot samples. This is well within the reach of our
experimental capabilities, highlighting again, that thermalization and not inaccessible low
magnetic fields inhibit the observation of the spin dynamics resonance.
In Jochen Kronjaeger’s PhD thesis [71] a thorough analysis of the involved decohering
mechanisms and thermalization effects can be found. It can be stated here that it is not
possible so far to unambiguously determine the reason for the strong damping and the
qualitative differences of the results for the hot and cold samples. The two most prominent
experimental observations concerning thermalization effects are however:

Equipartition The population of the thermal clouds of the individual mF -states ρmm
where m = −1, 0, 1 tends to ρmm = 1/3. Since the mean kinetic energy per particle
at T ≈ 100 nK clearly overwhelms the quadratic Zeeman energy, equipartition will
be favored as the maximum entropy state.

Increasing condensate fraction The condensate fraction in mF = 0 increases over
time relative to its initial value while the total mF = 0 population remains fixed.
This can be seen in the context of decoherence driven cooling [53] or Bose-Einstein
condensation at constant temperature [58], where interactions between thermal and
condensed atoms of an initially coherent superposition, induce an evolution towards
thermal equilibrium, accompanied by a redistribution of atoms between thermal
cloud and condensate.

In conclusion the observation of coherent spin dynamics of 87Rb spinor condensates in
F = 1 confirms the validity of the SMA mean-field theory developed above. The results
of this section have been published in [5]. Similar work has been done in the Georgia Tech
group [61], while the Berkley Group developed a non-destructive detection method sensi-
tive to the transverse magnetization at the same time [63]. The understanding of spinor
condensates and their dynamics has experienced a crucial boost by the work presented in
these three publications.

Observation of a spin dynamics resonance in F = 2

The experimental situation for F = 1 spinor condensates described above suffers from a
awkward ratio of thermalization time to oscillation period in the interaction regime, where
consequently coherent oscillations could not be observed. It would be desirable to have
a system with an enhanced spin dependent interaction to reduce the time necessary to
observe the transition to the interaction regime and eventually detect the predicted reso-
nance. The analogous interaction parameter |g1〈n〉| for 87Rb in F = 2 is approximately
an order of magnitude larger than its counterpart in F = 1 . Nevertheless for F = 2 no
exact analytical solution exists even for a fully transverse magnetized state. Moreover an
additional time evolution determined by the spin singlet amplitude S0 has to be taken into
account when studying spin dynamics in F = 2 . It turns out that the choice of 87Rb and
the initial state ζπ/2 is particularly well suited, since it behaves as an effective F = 1 sys-
tem to lowest order as we shall see. The equations of motion for F = 2 are unfortunately
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not integrable and no analytic solution exists. However approximate solutions for very
large and very small quadratic Zeeman effect can be obtained [4] and give useful insight
into the dynamics expected from starting with a fully transversely magnetized state. Deep
in the Zeeman regime these solutions read

|ζ0|2 =
3
8

{
1 +

g1〈n〉
2q

[
2 (1− cos(2qt)) +

1
2

(1− cos(4qt))
]

− g2〈n〉
2q

[
1
4

(1− cos(2qt))− 1
64

(1− cos(8qt))
]} (4.39a)

|ζ1|2 =
1
4

{
1− g1〈n〉

2q

[
3
4

(1− cos(2qt))− 1
12

(1− cos(6qt))
]

+
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2q

[
3
16

(1− cos(2t))− 1
48

(1− cos(6qt))
]} (4.39b)

|ζ2|2 =
1
16

{
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[
3 (1− cos(2qt)) +

3
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(1− cos(4qt)) +
1
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(1− cos(6qt))
]

+
g2〈n〉

2q

[
1
12

(1− cos(6qt))− 3
64

(1− cos(8qt))
]} (4.39c)

It can be seen from these equations, that all terms incorporating g2 have pre-factors
that are almost an order of magnitude smaller than those for g1. Even though g2 ≈ g1 for
87Rb the dynamical evolution of a 87Rb F = 2 spinor condensate will thus be governed
by oscillatory behavior very similar to F = 1 with a fundamental oscillation period π/q
and amplitude proportional to k.
On the contrary in the interaction regime as q → 0 the equations of motion are given by

|ζ0|2 =
3
8

[
1 +

q

2g1〈n〉
(1− cos(4g1〈n〉t))

]
(4.40a)

|ζ1|2 =
1
4

(4.40b)

|ζ2|2 =
1
16

[
1− 3q

2g1〈n〉
(1− cos(4g1〈n〉t))

]
(4.40c)

Approximating the solutions to this order leads to a cancellation of all g2 terms which can
be understood by recalling that S0 = 0 for ζπ/2. Again oscillation period ∼ π/2g1〈n〉 and
amplitude ∼ 1/k are given by expressions similar to the case F = 1 .
Fig. 4.10 shows experimental results for spin oscillations in F = 2 for various magnetic

fields. Similar to F = 1 , k has been simply varied by changing the magnetic field while
keeping the density constant throughout all experimental series 8. It is clearly visible, that
the oscillation amplitude exhibits a maximum at |k| ≈ 1/3. In the Zeeman regime the
amplitude grows like A ∼ 1/q as expected from the mean-field solutions while it decreases
as A ∼ q in the interaction regime. The oscillation period increases as T ∼ π/q as one

8 Furthermore this approach ensures equal external trapping for all data sets, since a variation of the
density in the dipole trap is always correlated with a change in the trapping frequencies and therefor also
the gravitational sag. The harmonic potential is severely distorted for very low trap depths as discussed
in detail in Section 3.2. Thus very shallow traps should be avoided as long as comparison with theoretical
results obtained in harmonic potentials is desired.
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Figure 4.10: (a) Resonance phenomenon in F = 2. Plotted are coherent oscillations for different
values of q/(g1〈n〉), where q ∼ B2 is the quadratic Zeeman energy and g1〈n〉 the first spin-dependent
mean-field energy (processes involving ∆mF = 1). In this figure, g1〈n〉 = 47 s−1 (corresponding
to a density of 1× 1014 cm−3) is used as a reference value, since only the magnetic field has been
varied among the different data sets. The mean density has been obtained from SMA theory fits
similar to those presented for F = 1 .
Amplitude (b) and period (c) have been extracted for qualitative comparison with theoretical
predictions for F = 1 given in Fig. 4.8.

approaches resonance from the high field side. In the interaction regime, the period is
almost constant as expected. Close to resonance all oscillations are severely damped, so
that only one (half) oscillation could be observed for these values of k.
Furthermore a direct observation of the divergence of the oscillation period is inhibited
by this damping. Very small deviations from the resonance value lead to large excursion
of the resulting dynamics, so that for realistic experimental situations the magnetic field
has to be convoluted with an appropriate function taking its finite widths on experimental
time scales into account. This will already significantly diminish the divergent behavior at
resonance. As outlined in detail in [71] another possible mechanism causing the damping
is the formation of spin domains that would of course lead to a breakdown of the single
mode approximation.
In the Zeeman regime however the approximate solutions Equ. 4.39 describe the observed
physics quite well and justify the effective Spin-1 approach. Fitting the mean-field model
to the data shows good agreement for much longer evolution times as compared to mea-
surements performed close to resonance or in the interaction regime.
The experimental results presented above constitute the first evidence for a spin dynamics
resonance in ultracold quantum gases. Distinguished as a non-linear many-body effect it
arises in the mean-field picture and is in contrast to spin dynamics observed for two atoms
residing on individual lattice sites in a deep Mott-insulator [72, 74, 73]. Even though
based on the same underlying physical processes the resonance phenomenon reported by
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the Mainz group is explained by interaction driven Rabi oscillations – linear two-level
physics. A possible cross-over between these two regimes is concerned at the end of the
next chapter, where spin dynamics in optical lattices of different lattice depth has been
investigated.

Formation of spatial spin patterns

All theoretical considerations so far have assumed that spinor Bose-Einstein condensates
are very well described within the framework of the single mode approximation. The
measurements, especially in F = 2 , on the other hand give some indications that spin
domain formation may have occurred, which would mark the breakdown of the SMA. At
the Hamburg spinor experiment various measurements have been performed in F = 2
that clearly show that spin domain formation occurs in elongated condensates as well as
in almost spherical samples trapped in a crossed dipole trap.
Pattern formation in multi-component BEC was observed first by the MIT group in anti-
ferromagnetic 23Na induced by magnetic gradients [52, 54, 50] and is well understood in this
context. Quasi spin-1/2 systems of 87Rb in |1,−1〉 and |2, 1〉 exhibit spatial structure in
terms of state separation [50] and spin waves in the normal component [52] that is explained
by demixing dynamics and condensate-normal component interaction respectively. In
later experiments structure formation has been observed in 87Rb F = 2 [60, 59] and
F = 1 condensates in the interaction regime [64, 61]. While in the latter case spin
domain formation arises naturally as an effect of spontaneous symmetry breaking inherent
to ferromagnetic systems, the latter can be explained by local density arguments, where the
mean-field solutions developed above remain valid in every infinitesimal volume element,
leading to a dephasing of different regions of the condensate. None of the mechanisms
discussed so far is responsible for the structure formation we have observed in F = 2 . As
described in great detail in [71] and [153] the physical mechanism of dynamical instability
leads to the formation of spin structures with domain sizes on the order of 2πξS in very
elongated spinor BEC as employed in our experiments. For large magnetic fields spin waves
with locally conserved 〈Fz〉 occur, while for smaller fields as the influence of the interaction
grows spin waves with locally modulated 〈Fz〉 are observed. For details concerning the
experimental results and methods the reader is referred to Jochen Kronjaeger’s PhD thesis
[71].

4.3 Future perspectives

The versatile physics that can be investigated with spinor Bose-Einstein condensates holds
a large variety of future perspectives. Continuative experiments on structure formation
in ferromagnetic and polar condensates may be performed to deepen the understanding
in this field of science that extends far beyond the physics of Bose-Einstein condensates.
Adding a periodic potential will modify the physics of spinor condensates further. First
measurements presented at the end of Chapter 5 promise a rich and complex interplay
between spin dependent contact interaction, (spin dependent) tunneling and spin depen-
dent optical potentials. The important role of large dipole moments making quantum
gases interact anisotropically has already been recognized and the availability of atomic
condensates with a large magnetic moment as e.g. 52Cr [67] or the rapid development
in the field of heteronuclear ground state molecules [88] will certainly lead to a boost in
the field of magnetism in quantum gases again. New developments towards experiments
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with very small atom numbers promise to achieve such highly non-trivial states as the
spin-singlet state in F = 1 condensates.



Chapter 5

Spinor Bose Einstein condensates
in optical lattices

Since the seminal paper on quantum degenerate atoms in optical lattices by Jaksch et.al
[78] and the first experimental realization of the quantum phase transition from a super-
fluid to a Mott-insulating state in a 3D optical lattice by Greiner and colleagues [80] the
interest in this new field of research literally exploded as discussed in more detail in the
introduction.
The fascinating prospect of investigating strongly correlated systems thus far restricted to
nuclear and solid state physics combined with the ultimate experimental control promised
by ultracold quantum gases has lead to a vast variety of theoretical proposals concerning
this particular physical system. Simulation of solid-sate Hamiltonians in purified systems,
quantum computation and the chance to investigate quantum chemical processes with
an unprecedented degree of control are only few examples of the fascinating possibilities
that open up in this still rapidly expanding field merging somehow atomic and solid state
physics.
The underlying thesis contributes to this goal by investigating cold atoms in a triangular
optical lattice system for the first time. So far restricted to simple cubic lattice, this work
concerns experiments on the superfluid to Mott-insulator transition in this new lattice
system. Very first measurements on spin dynamics in the triangular lattice are presented
to motivate further work dedicated to quantum magnetism in this particular physical sys-
tem.
The contents of the underlying chapter is structured as follows: A major part of this PhD
thesis has been dedicated to the design and setup of a triangular optical lattice and the
realization of experiments within this system. The first part of this chapter will therefor
discuss the generation of periodic potentials with interfering laser beams.
After a short reminder of the text book example of a standing wave, an introduction
to the crystallography of a two-dimensional three-beam lattice, necessary to understand
the formation of the resulting periodic potential of the triangular lattice, will be given.
The physics of non-interacting particles in a periodic potential, analogous to solid state
physics, is discussed next, since it constitutes the basis of all experiments with cold atoms
in optical lattices.
It will be discussed how the lattice depth is calibrated and how the polarization of the
beams can be adjusted by investigating Bragg reflection between adjacent mF -states.
The following part of the underlying chapter motivates and introduces the Bose-Hubbard
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model for bosonic atoms. The crucial parameters of an optical lattice – onsite interaction
U and tunneling energy J – will be introduced and explicitly calculated. Very first ex-
periments investigating the superfluid-Mott-insulator transition in the triangular lattice
arr presented thereafter. In this context the challenge of adiabatic loading of an optical
lattice and the formation of Mott-shells is briefly discussed.
Finally measurements on spin changing dynamics, similar to those in Chapter 4, but inside
an optical lattice of various depth are presented.

5.1 Generation of periodic potentials for ultracold atoms

5.1.1 The standing wave - textbook physics

The most straightforward way to generate a periodic array of potential wells consists
in creating a standing wave by super imposing two laser beams traveling in opposite
directions. This is conveniently done by retro-reflecting a Gaussian laser beam with wave
vector kL as depicted in Fig. 5.1(a). The potential in the vicinity of the minimal waist
(w(z) ≈ w0) can be written as

I1D(r, z) = 4 · U0e
−2r2/w2

0 · cos2(kLz) ' 4 · U0

(
1− 2r2

w2
0

)
· cos2(kLz), (5.1)

where U0 is given through Equ. 3.3 in the simplest case of large detuning. Note that the
potential at the maxima of the standing wave is four times larger than that of a single beam
dipole trap. The strength of the lattice potential is usually specified in the natural units
of the recoil energy associated with the absorption of one lattice photon Er = (~k)2/(2m).
Sticking to the case of large detuning for simplicity (see Equ. 3.3) the potential strength
is given by

V0

Er
=

4U0

Er
= 4 · 3πc2

2ω3
0

Γ
∆
· 2m

~2k2
(5.2)

The periodicity of the generated lattice is described by a reciprocal lattice vector b = 2kL.
The distance between neighboring lattice sites is consequently λL/2.
A concept that will be very useful for lattices generated by more than two beams can
already be derived regarding the example of the 1D lattice. In general the reciprocal
lattice vectors of an optical lattice generated by laser beams with wave vectors kL,i can
be written as [82]

bi = kL,i − kL,j . (5.3)

A closer look at this equation reveals the similarity to a 2-photon Bragg scattering event as
described in Section 3.5.4. In this picture the potential felt by the atoms inside the optical
lattice can be regarded as a redistribution of photons among the different lattice beams
by virtual absorption and stimulated emission processes. In fact, in solid state physics,
constructive interference in X-ray Bragg scattering [154] occurs at incidents fulfilling kout−
kin = G, where G is any reciprocal lattice vector.
Applying this formalism to the 1D lattice directly gives the correct reciprocal lattice vector

b = kL,2 − kL,1 = k − (−k) = 2k. (5.4)
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Figure 5.1: (a) Scheme for the
setup of a retro-reflected 1D
lattice in f -f configuration us-
ing achromatic lenses and a
mirror. It is crucial to achieve
an excellent superposition of
the waists of the two counter
propagating beams to make
the lattice symmetric and min-
imize offsets. Due to the Gaus-
sian shape of the laser beams
an additional harmonic con-
finement growing with the lat-
tice depth is imposed.
(b) BEC cut into quasi-two di-
mensional discs by a 1D opti-
cal lattice.

A rough estimate of the trapping frequency in a single well of a rather deep standing wave
can be obtained by the harmonic approximation leading to

ωlatt = k

√
2V0

m
=

2Er

~

√
V0

Er
. (5.5)

Due to the Gaussian shape of the laser beams creating the lattice, an additional global
confinement is always added to the system, rendering any realistic lattice configuration
inhomogeneous. It is thus favorable to use beams of not too small waist size in order
to minimize the additional confinement. Moreover for given initial conditions (trapping
frequencies of the XDF, temperature, a.s.o.), there will always be one waist size optimizing
adiabaticity of the lattice loading process.
A balance between additional external confinement (≈ ω̄latt) and the repulsive on-site
interaction (≈ U) has to be achieved in order to keep the Thomas-Fermi radius of the BEC
as constant as possible during the lattice ramp-up. If this can be guaranteed the atoms
do not need to redistribute to reach the new equilibrium configuration. These constraints
will be discussed in more quantitatively later in this chapter. However to anticipate the
results, for 87Rb and typical experimental conditions a waist size of 90µm < w0 < 150µm
is a rather good choice. The 1D lattice implemented at our experiment has a minimum
waist of w1D

0 = 90µm, whereas the beams creating the 2D three-beam lattice as described
in the next chapter have waists of w2D

0 = 115µm.
The trapping frequencies characterizing the additional external confinement can be cast
in the harmonic approximation

ωharm =

√
4Er

mw2
0

√
V0

Er
, (5.6)
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where the variation of the potential along the axial direction z has been neglected. To
obtain the overall harmonic trapping frequencies ωtot

harm, one simply has to add the squares
of the individual contributions:

ωtot
harm,i =

√
ωlatt

harm,i
2 + ωXDF

harm,i
2
. (5.7)

A comparison of the two trapping frequencies reveals that ω̄tot
harm � ωlatt indicating that

a three dimensional BEC loaded in a 1D standing wave potential will be cut into several
pancake-shaped quasi-two dimensional BEC for sufficiently large lattice depth.

5.1.2 Three-beam lattices in two dimensions

Up to now the usual way to create two- or three dimensional optical lattices at ultracold
atom experiments has been to simply superimpose three perpendicular standing wave
lattices (see e.g. [80]). To avoid any undesired interference between the individual lattice
branches, they have been detuned with respect to each other by several tens of Mhz.
The resulting lattice potential is square or simple cubic in two and three dimensions
respectively. During this thesis a different approach has been made to obtain a two
dimensional lattice. The interference pattern of three superimposed traveling waves has
been employed resulting in a lattice with hexagonal symmetry. It can be stated in general
that D+1 laser beams are enough to create a periodic potential in D dimensions. Moreover
those lattices share some very convenient generic features that will be summarized in the
following:

Influence of a fluctuating phase First of all a change in the relative phase of the D+1
beams will only result in global shift of the potential. Neither the geometry nor
the polarization of the lattice will be influenced. Nevertheless will it be crucial to
actively stabilize the lattice beams phases with respect to each other, because a
global shaking will lead to undesired heating processes. Note that the experimental
effort is considerable as compared to a combination of standing waves, where only
the coherence length of the laser and the mechanical rigidity of the mirror limit the
stiffness of the relative phases 1.

Atomic basis By changing the polarization of the beams, the basis of the underlying
lattice in terms of the spatial distribution of the individual potential wells can be
changed. The translational symmetries on the other hand remain unchanged and
are solely determined by the beam geometry.

In the following we will consider a lattice created by three beams in a plane enclosing
angles of 120◦ as depicted in Fig. 5.2. The corresponding wave vectors of the laser beams
read in Cartesian coordinates

k1 = kL

(
0, 0, 1

)
(5.8)

k2/3 = kL

(
±
√

3
2 , 0,−

1
2

)
(5.9)

1The electric field of the laser has to vanish at the surface of the retro reflecting mirror, defining a rigid
phase relation between the two beams.
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Following the procedure developed in the preceding section, it is straightforward to write
down the reciprocal lattice vectors

b1/2 = k1 − k2/3 = b

(
∓ 1

2
, 0,
√

3
2

)
(5.10)

where a particular symmetric choice has been made and b = |b1/2| =
√

3kL is the natural
unit of the reciprocal lattice. Through the well known relation between reciprocal and
direct lattice vectors ai · bj = 2π δi,j the unit vectors of the direct lattice ai are easily
found to be

a1/2 = a

(
∓
√

3
2
, 0,

1
2

)
, (5.11)

where a = |a1/2| = 2/3λL is the periodicity of the direct lattice. While the reciprocal
lattice vectors enclose an angle of 60◦ and are symmetric with respect to ey, the direct
unit vectors obey ∠(a1,a2) = 120◦, again symmetric relative to the y-axis. Another useful
quantity is the area of the primitive cell that is given by |a1×a2| =

√
3/4a2 = 2/(3

√
3)λ2

L.

Triangular lattice

So far we did not concern the polarization of the lattice beams at all. Choosing the
polarization linear and perpendicular to the plane (π0) spanned by the lattice beams
results in a potential 2.

V 42D(r) = V0

(
3
4

+
1
2

(cos (b1 · r) + cos (b2 · r + φ12) + cos ((b1 − b2) · r + φ23))
)
. (5.13)

The wells are ordered on a triangular pattern as shown in Fig. 5.2(a). This corresponds
to a mono atomic basis, where only one potential well per primitive cell is available. The
polarization at the minima is purely linear and leads to a spin-independent trapping for
relatively far detuned laser beams. The number of nearest neighbors in the plane amounts
to 6, compared to 4 in a two dimensional square lattice.
A comparison of a single well of the triangular lattice to that of a square lattice at the
same lattice depth Vlatt reveals the much stronger modulation of the triangular lattice
along all directions. The influence of neighboring lattice sites on each other is therefor
significantly reduced. This will become more evident in Section 5.5 where the transition
from a superfluid to a Mott-insulator is investigated.

Hexagonal lattice

If the polarization of the beams is chosen to be in the plane spanned by the lattice beams,
the resulting potential will look as shown in Fig. 5.2b. The potential minima are now
ordered on a hexagonal lattice.
Moreover the polarization at these minima is purely circular and changes sign between

2To be mathematically rigorous the resulting intensity is obtained by adding the fields of the three
beams coherently E2D(r, t) =

P
iEi(r, t) and averaging its squared modulus over time

V 42D(r) ∼ 1

T

Z T

0

|E2D(r, t)|2 dt (5.12)
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a b

Figure 5.2: (a) The potential wells are ordered in a triangular pattern if the polarization is
perpendicular to the lattice plane. The primitive cell contains one atom at a? = 0.
(b) If the polarization is rotated in the plane, the potential wells form a hexagonal pattern. The
polarization at the potential minima is purely circular and alternating between nearest neighbors.
As a result the primitive cell contains an anti-ferromagnetic basis with one σ+-well at a?1 = 1/3 (a1+
2a2) and a σ−-well at a?2 = 1/3 (2a1 + a2).

nearest neighbors. For circular polarized light the dipole force is mF -dependent even
for intermediate detunings and thus the hexagonal lattice forms a spin-dependent anti-
ferromagnetic lattice potential. To get a more quantitative expression for this potential it
is convenient to write down the total electric field in the circular basis
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Figure 5.3: Contour plots of the triangular and the hexagonal lattice potential plotted in Fig. 5.2.
It is obvious that the hexagonal potential is the inverse of the triangular one in a certain sense.
The anti-ferromagnetic basis of the hexagonal lattices is indicated by red (σ+) and green (σ+)
wells. The blue lines mark the direction of the potential cuts presented in Fig. 5.4
.

(e+ = 1/
√

2(ex + iey), e− = 1/
√

2(ex − iey), ez):

E+ =
E0√

2

(
eik1·r + jeik2·r + j2eik3·r

)
(5.14)

E− =
E0√

2

(
eik1·r + j2eik2·r + jeik3·r

)
, (5.15)

where j = exp(i4π/3). The corresponding potential for the two polarizations is thus given
by

V+ =
V0

8
(3 + 2(cos(b1 · r− 2φc)− cos(b2 · r− φc) + cos((b1 − b2) · r− 2φc)) (5.16)

V− =
V0

8
(3 + 2(− cos(b1 · r− φc) + cos(b2 · r− 2φc) + cos((b1 − b2) · r + 2φc)) ,(5.17)

with the characteristic phase φc = π/3.
These two expressions clearly emphasize, that the translational symmetry of the underlying
sub-lattices is exactly the same as for the triangular lattice. The change in polarization
only corresponds to a change of the local basis with respect to the position of the individual
potential wells inside a primitive cell.

By finding the maxima of Equ. 5.16 one can easily show that the primitive cell of the
hexagonal lattice contains an anti-ferromagnetic basis with one σ+-well at a?1 = 1/3 (a1 +
2a2) and a σ−-well at a?2 = 1/3 (2a1 + a2). Disregarding the mF -dependence as justified
for |F, 0〉 the pure intensity modulation given by the sum of the two terms in Equ. 5.16
can be written as

V ±2D(r) = V0

(
3
4
− 1

4
(cos (b1 · r) + cos (b2 · r + φ12) + cos ((b1 − b2) · r + φ23))

)
. (5.18)



82 CHAPTER 5. SPINOR BEC IN OPTICAL LATTICES

−1 −0 5 0 0 5 1
−2 5

−2

−1 5

−1

−0 5

0

y[a]

V
0 

[E
r]

(a) Properties of the triangular and the hexag-
onal lattice. Note that almost full modulation
of the triangular lattice along all directions The
overall lattice depth of the hexagonal lattice is
only half that of the triangular one at the same
laser power. Moreover the depth of an individ-
ual well amounts to only 1/9Vlatt, indicating the
need for large laser power.
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(b) If the laser detuning is not too large, a
multi-level atom will feel a mF -dependent force
in the hexagonal lattice. Shown is the poten-
tial strength exerted on atoms in |F, 0〉 (black),
|F, 1〉 (blue) and |F, 2〉 (red) confined in a σ+-
well. The opposite is true for negative mF -
values and σ−-wells respectively.

Figure 5.4: Cuts through the potential along the diagonal of the primitive cell.

The hexagonal lattice exhibits a pronounced channel structure, with tiny individual lattice
sites whose depth relative to the channels is only 1/9V ±2D. All together the laser power
required to achieve a trapping at a single potential minimum of the hexagonal lattice equal
to one well of the triangular one amounts to V ±0

!= 18 · V 40 . Fig. 5.4 shows a comparison
between the triangular and hexagonal lattice along the diagonal of the primitive cell. In
addition the potential experienced by different magnetic states in the hexagonal lattice
is plotted for a lattice laser wavelength of λL = 830 nm. By choosing larger or smaller
detunings this difference can be decreases or increased according to Equ. 3.7.

If the polarization of the beams is continuously rotated from in-plane to out-of-plane
the total potential created by the three beams will loose its characteristic periodicity and
become a constant offset. This can easily seen by adding Equ. 5.13 and Equ. 5.18 properly
weighted corresponding to the current polarization. It is thus not possible to load atoms
from the triangular lattice into the hexagonal or vice versa. This is further hindered by
the fact that the potential minima of the two lattices do not coincide.

Note that trapping atoms in a 2D lattice results in a regular array of quasi-one dimen-
sional tubes. Perpendicular to the lattice plane only the much weaker harmonic confine-
ment acts on the atoms. Inside a single tube different regimes can be realized reaching
from 1D Thomas-Fermi configurations to the Tonks Girardeau regime [87].
In order to obtain a three-dimensional periodic confinement we combine the three-beam
lattice with a perpendicular standing wave, derived from the same laser but detuned by
160 MHz with respect to the 2D lattice beams to avoid interference of the two different
lattices. The two described resulting experimental geometries are presented in Fig. 5.5
together with a cubic lattice at the same wavelength for comparison.



5.1. GENERATION OF PERIODIC POTENTIALS 83

a b

Figure 5.5: Schematic drawings of the 3D lattice structure for the (a) triangular (black), hexagonal
(red) and (b) cubic lattice for the same laser wavelength (to scale).

Experimental perspectives

As can be seen from Equ. 5.13 a change in the relative phase of the lattice beams corre-
sponds to a global shift in position. This has already been mentioned in the context of the
phase stabilization setup described on Section 3.6.3. In addition to the ability to eliminate
any kind of phase noise it is possible to precisely control the individual phases, enabling
controlled acceleration (linear frequency sweep) and motion (constant frequency offset)
of the lattice. A detuning of 1 Hz corresponds to a velocity of 1 Hz ≡ λ/s ≡ 0.83µm/s.
Velocities on the order of the speed of sound in a BEC cs ≈ 1 − 2 mm/s demand for de-
tunings in the low kHz regime, which can be easily achieved. This feature can be readily
employed to perform transport measurements or probe the critical velocity in the lattice
(see e.g. [155] and references therein).
By sinusoidally modulating the frequency difference between two beam pairs π/2 out of
phase it is even possible to move the lattice on a circular orbit. Unfortunately this is not
equivalent to a rotation of the lattice, which would be a highly desirable experimental
tool.

Harmonic confinement

As already explained for the case of the 1D lattice the application of the three-beam lattice
will also contribute an additional harmonic confinement to the system under investigation.
To obtain the corresponding trapping frequencies we will assume the 2D lattice to be in
the x− z plane and the standing wave along the y-direction.
Starting with the harmonic approximation for the individual beams

V harm
2D (r) =

3∑
i=1

(
1− 2

r⊥, i
2

w2
0

−
r‖, i

2

z2
R

)
, (5.19)
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and taking into account the additional factor of 3 occurring because of constructive in-
terference one can derive the following harmonic trapping frequencies for the triangular
lattice

ωy =
1√
2
ωx,z =

√
9Er

mw2
0

√
V0

Er
. (5.20)

We have neglected the last term in Equ. 5.19. Inclusion of this term will induce a variation
of the trapping frequencies due to the spreading of the beams according to

ωi(x, z) = ωi,0

√
1− 3

2z2
R

(x2 + z2). (5.21)

Since the Rayleigh range in our experiment is zR = 5 mm and the extension of typical BEC
amounts to RBEC = 15− 30µm this variation plays no role in practice. A little bit more
important is the variation of the lattice beams intensity perpendicular to the direction of
propagation. The value of the intensity will drop from the center of the BEC to its edges
by ≈ 5% resulting in an associated decrease of the lattice depth of

√
5%.

The overall trapping frequencies ωtot,i are again found by quadratically adding the ωi’s
of XDF, 1D lattice and three-beam lattice. The harmonic average is then established
through ω̄ =

√∏
i ωtot,i.

It is straightforward to calculate the harmonic trapping frequencies of the lattice since
all necessary parameters are known from lattice calibration measurements and careful
measurements of the beam waists. It is therefor not necessary to determine the ω’s in a
separate measurement.

5.2 Single particle in a periodic potential

It is well known that in a non-interacting many body system the challenge of finding
the many body eigenfunctions and -values can be reduced to a single particle problem.
Diagonalization of the corresponding Hamiltonian yields single-particle eigenstates and -
energies. The many-body wave-function is then constructed as a product of single-particle
states taking into account the proper symmetrization rules according to the particle’s
quantum statistics.
As we will see a peculiar property of the energy spectrum in a periodic system is the
emergence of energy bands separated by an energy gap as one adds more and more particles
to the system. In the following I will briefly summarize how to calculate the band structure
of a particle in a periodic potential which is the essence of understanding any kind of
physics associated with ultracold atoms confined in optical lattices.
The problem of particles confined in a periodic potential is well known in solid state physics
and was originally addressed in terms of electrons moving in a crystal lattice by F. Bloch
[154]. It can directly be mapped onto the problem of atoms in optical lattices. In general
the Hamiltonian for a periodic system reads

Ĥ0 =
p̂2

2m
+ VLatt(r) = − ~

2m
∇2 + VLatt(r) (5.22)

where the periodic lattice potential obeys the relation

VLatt(r) = VLatt(r + T), T =
∑
i

niai, ni εZ (5.23)
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with the basis vectors of the direct lattice ai. According to Bloch’s theorem the eigenstates
can be written as [154]

ψn,q(r) = un,q(r) eiq·r (5.24)

with energy eigenvalues ~ω(n,q).
The Bloch functions un,q fulfill the condition un,q(r) = un,q(r + T) and possess the same
translational symmetry as the lattice. It will turn out that the quasi-momentum q is a
good quantum number of the physical system and will be used to label eigenfunctions and
-values.
Since q is only uniquely determined up to a reciprocal lattice vector K it can be restricted
to the first Brillouin zone −1/2 K ≤ q ≤ +1/2 K. For a given quasi momentum this results
in an infinite number of solutions which are consequently labeled by the band index n.
Note that every lattice site in the direct lattice corresponds to one possible value for the
quasi momentum in the first Brillouin zone. Therefor a lattice consisting of N lattice sites
allows for N physically meaningful values for q. The Hamiltonian can be expressed in
algebraic form by a plane wave expansion ansatz for the Bloch function un,q(r)

un,q(r) =
1√
N

∑
K

c
(n,q)
K e−iK·r (5.25)

and the potential
VLatt(r) =

∑
K

VK eiK·r, (5.26)

where the summation runs over all reciprocal lattice vectors K =
∑

i nibi and N cor-
responds to the number of occupied lattice sites. The coefficients VK are the Fourier
transforms of the potential which greatly simplifies the underlying problem in the case
of a periodic potential. For a one dimensional sinusoidal potential 3 created by a retro-
reflected laser beam as introduced in Section 5.1.1 the coefficients simply read

V0 = −1
2
V0, V±b = −1

4
V0. (5.27)

The solution of this problem is well known and can be found e.g. in [156]. Fig. 5.6 shows
the energy spectrum for different lattice depth and the corresponding Bloch functions for
q = 0 and q = 1/2 ~K respectively.

Our interest is focused on the triangular lattice introduced in Section 5.1.2. In the
following a brief sketch how to solve for the band structure for this particular 2D system
will be given. The triangular lattice is described by a Fourier series with coefficients

V0 = −3
4
V0 V±b1 = V±b2 = V±b1∓b2 = −1

4
V0. (5.28)

Substituting 5.24, 5.25 and 5.26 in equation 5.22 yields the algebraic form{
~2

2m
(q−K)2 − ~ω(n,q)

}
c

(n,q)
K +

∑
K′

VK′−K c
(n,q)
K′ = 0. (5.29)

3Note that the eigenwert problem may also be elegantly addressed in terms of the Mathieu equation
[121] in one dimension. Since we are also interested in the solution of the non-separable 2D configuration
for the triangular lattice we will adept the more straight forward algebraic method known from solid state
physics which is easily extended to higher dimensions.
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Figure 5.6: The energy spectrum of a particle in a periodic potential for different lattice depth.
The emergence of gaps between the different bands for increasing lattice depth is explicit.

For the triangular lattice this can be cast in a normalized dimensionless form using q̃ =
q/|b| = q/

√
3k, K̃ = K/|b| = K/

√
3k, Ẽ(n,q) = (~ω(n,q) + 3/4V0)/Erecoil and Ṽ0 =

V0/Erecoil, where Erecoil is the recoil energy (~k)2/2m. The whole problem can now be
rewritten in units of the recoil energy:{

3(q̃− K̃)2 − Ẽ(n,q̃)
}
c

(n,q̃)

K̃
(5.30)

− 1
4
Ṽ0

∑
K̃

{
δK̃′−K̃,±b1

+ δK̃′−K̃,±b2
+ δK̃′−K̃,±(b1−b2)

}
c

(n,q̃)

K̃′

= 0.

Since every reciprocal lattice vector can be decomposed into a sum of primitive vectors
K̃ = nb̂1 + mb̂2 the former equation can be written in a discretized form omitting the
tilde {

3(q−Knm)2 − E(n,q)
}
c(n,q)
nm (5.31)

− 1
4
V0

∑
n′m′

{δn−n′,0δ|m−m′|,1 + δ|n−n′|,1δm−m′,0

+ δn′−n,m−m′δ|m−m′|,1} c
(n,q̃)
n′m′

= 0.

Finally to obtain the E(n,q) and c
(n,q)
nm for the whole Brillouin zone Equ. 5.31 has to be

solved for every value of q = γb̂1 + δb̂2 with −1/2 ≤ γ, δ < 1/2. The kinetic part of the
Hamiltonian thus takes the form

(q−Knm)2 = (γ − n)2 + (δ −m)2 + (γ − n)(δ −m) (5.32)
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Figure 5.7: Result of a full 2D calculation (Equ. 5.33) of the band structure of the triangular
lattice. The dispersion is plotted along lines connecting points in the first Brillouin zone which
exhibit high symmetry as indicated in the inset.

since b̂1 · b̂2 = 1/2. The resulting equation{
3[(γ − n)2 + (δ −m)2 + (γ − n)(δ −m)]− E(n,γδ)

}
c(n,γδ)
nm (5.33)

− 1
4
V0

∑
n′m′

{δn−n′,0δ|m−m′|,1 + δ|n−n′|,1δm−m′,0

+ δn′−n,m−m′δ|m−m′|,1} c
(n,γδ)
n′m′

= 0

can be easily solved.
The eigen values obtained from the above calculations correspond to the energies of the

individual bands. As an example Fig. 5.7 shows the result of a two dimensional band
structure calculation. The energy is plotted versus quasi momentum along directions of
high symmetry as indicated in the inset
Due to the low temperatures occurring in BEC experiments the population of higher bands
is usually neglected. It turns out, that the physical processes studied in this thesis demand
for an incorporation of the lowest Bloch band only. The eigen vectors that drop out of
Equ. 5.33 are used to construct the Bloch functions according to Equ. 5.24 and Equ. 5.25.
Later in this chapter it will be outlined how the relevant parameters for the Bose-Hubbard
(BH) model can be calculated. The Bloch functions are needed to construct basis wave
functions (so called Wannier states), which allow to write the underlying energy functional
in second quantization leading to the well-known BH Hamiltonian.

5.3 Revealing the momentum distribution

When working with cold atoms in optical lattices, the properties of the reciprocal lat-
tice can be explored in an especially elegant way, If interactions during the expansion
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Figure 5.8: TOF images of atoms released from a triangular optical lattice. In (a) a three-
dimensional view of the lattice is given, together with projections on the individual imaging direc-
tions. The lattice gives rise to interference peaks located at positions r that are associated with the
reciprocal lattice vectors by the relation r = ~btTOF/m. A pure 1D lattice is shown in (b), while
(c) and (d) emphasize what momenta or projections of momenta are involved in typical images of
the triangular 3D lattice. (e) finally shows an image of the first Brillouin zone of the triangular
lattice obtained by adiabatic mapping of the quasi momentum on free momentum space.

process can be neglected, the density distribution after a sudden switch-off of the lat-
tice potential and a reasonably long time-of-flight (tTOF ≥ 15 − 25 ms) directly map to
the quasi-momentum distribution in the lattice, which exhibits the full symmetry of the
reciprocal lattice [157].

The annihilation operator after TOF is related to the annihilation operator in the
lattice by the usual time propagation [94]

â(r, t) =
∑
j

w(r−Rj , t) ei(m/2~t)(r−Rj)
2
â(Rj , t = 0). (5.34)

Note that we have set E = (~k)2/2m justified for free expansion and k = rm/~t to account
for the time of flight. w(r −Rj , t) is the Wannier function originally located at a single
lattice site after time evolution.
If the TOF is chosen considerably long the observed density can be evaluated according
to

〈n(r)〉 = 〈Ψlatt|â†i (r, t)âj(r, t)|Ψlatt〉 =
(m

~t

)3 ∣∣∣w̃ (mr
~t

)∣∣∣2 S (k =
mr
~t

)
(5.35)

where w̃ is the Fourier transform of the Wannier function and the structure factor is given
by

S(k) =
∑
i,j

eik(ri−rj) 〈Ψlatt|â†i âj |Ψlatt〉. (5.36)

Here Ψlatt is the many-body wave function in the lattice. S(k) contains all the information
related to the periodicity of the reciprocal lattice [158, 159]. Since S(k) has the form of
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a two point correlation function, it is evident that long-range phase coherence will be
required to observe sharp peaked features in n(r).
For the simple example of a 1D lattice S(k) can be evaluated to

S
(
k =

mr
~t

)
∝

N∑
i,j=−N

ei
m
~tr(Ri−Rj) =

sin2(πrN/l)
sin2(πr/l)

. (5.37)

We have used that the distance between any two lattice sites is a multiple of the lattice
spacing Ri −Rj = n · a. Furthermore we set a = 2π/b and introduced l = ~tb/m. N is
the number of lattice sites. For a large three dimensional system (N � 1) this constitutes
a sum of peaks with a width w ∝ l/N which will accordingly reduce to a sum of delta
peaks in the large N limit resulting in a density distribution

〈n(r)〉 =
(m

~t

)3 ∣∣∣w̃ (mr
~t

)∣∣∣2∑
G

δ

([
r− ~t

m
G
]
/l

)
. (5.38)

This observation will be a key stone for the interpretation of the experiments on the
superfluid-Mott-insulator transition presented later in this chapter.
For completeness Fig. 5.8(e) shows a picture of the first Brillouin zone of the triangular
lattice. This image has been obtained by first populating the first Brillouin zone homo-
geneously by carefully exciting the atoms. This is necessary since their initial momentum
spread is considerably smaller than the extension of the Brillouin zone. Subsequently the
lattice potential is ramped down to zero in a time tramp = 5 ms in order to adiabatically
map the crystal momentum on free momentum states. This is in contrast to the above
described sudden switch off, since this projects the quasi momentum in the lattice on free
momenta yielding different results.

5.4 Calibration of the lattice depth

An essential prerequisite for experiments is the knowledge of the lattice depth V0, as
introduced in the preceding paragraph.. As already stated earlier the lattice depth is
usually given in units of the recoil energy associated with the absorption of one lattice
photon Er = (~kL)2/2m as V0 = sEr.
Different methods can be employed in order to experimentally determine the gauging
connecting laser intensity and lattice depth. All of them share the idea to calibrate the
lattice by working in a 1D lattice generated by only two of the lattice beams and permuting
over all possible combinations For the triangular lattice presented above, this implies to
work with a total of 3 distinct 1D lattices. Finally the triangular optical potential will
only be as symmetric as possible, if the three measured 1D lattice depths are all equal.
The relative population of the interference peaks can be evaluated as a function of the
lattice depth s and give a rough calibration [160]. We have tested this method [141] and
found the results to be not very reliable.
Another widely used method is the analysis of the diffraction pattern resulting from a very
short flashing of the lattice well in the Kapiztka-Dirac regime [161].
Our calibration method relies on the anharmonic parametric excitation of atoms from the
first to the third band of the underlying 1D lattice instead [114, 162]. This is achieved by
periodically modulating the intensity of the lattice thereby introducing a perturbation to
the trapping potential that can be written as

Hpot(~r, t) = Vlatt(~r)(1 + ε(t)), (5.39)
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where ε(t) describes a small time-dependent perturbation. Assuming a harmonic potential
for simplicity one can calculate the transition rate and find that only transitions between
in ital and final states with equal parity are non-zero. Moreover the one-sided power
spectrum of the perturbation

S(ω) =
2
π

∫ T

0
dτ cos(ωτ)〈ε(t)〉〈ε(t+ τ)〉 (5.40)

at twice the harmonic frequency enters the result for the effective heating rate

〈Ė〉 =
2
π
ω2

0S(2ω0)〈E〉 (5.41)

which shows the exponential character of the heating process.
In an anharmonic potential as in an optical lattice, things get more complicated [162],
but heating will mainly occur at the frequency difference between the lowest and the third
band ω1→3. It is only for very deep lattices that this frequency will approach the value of
twice the harmonic value 2ω1→2. Keeping the amplitude of ε(t) tiny assures a negligible
excitation to all other bands. A comparison of the measured frequency with band structure
calculations allows finally for a precise specification of the lattice depth V0.
Since the setup for the 2D lattice allows for an active manipulation of the relative phase
of two laser beams, another excitation scheme relying on a perturbation

Hpot(~r, t) = Vlatt(~r + ~ε(t)) (5.42)

can be realized, since a change in the relative phase corresponds to a global shift in position
of the lattice wells. It turns out [114] that the perturbation of the position may induce only
parity changing transitions and can therefor by used to probe the energy difference between
the two lowest bands ω1→2 directly. The latter method has only be used occasionally at
our experiment, but it can be conveniently employed to cross check ambiguous results
obtained by parametric excitation.
By choosing an appropriate amplitude for ε(t) the width of the observed transition can be
reduced to a few hundred Hz for resonance frequencies in the range of 30− 50 kHz.

5.5 Bose-Hubbard model and the transition from a super-
fluid to a Mott-insulating state

The physics of BEC with reasonably large particle numbers in external traps is well cap-
tured within the framework of the nonlinear Gross-Pitavskii equation [102]. Derived as
the Euler-Lagrange equation of motion of the many body Hamiltonian in the Bogoliubov
approximation it naturally represents a mean-field equation describing the order parame-
ter as outlined in Chapter 2.
Although many fascinating aspects of physics with ultracold atoms have been predicted
by the GPE it exhibits one major disadvantage in describing strongly correlated systems.
Quantum fluctuations are only concerned as perturbations, which is not the correct treat-
ment for a strongly correlated quantum system where one would expect fluctuations to
even dominate the physics, at least in the vicinity of a possible quantum phase transition.
Therefor cold atoms in optical lattices are well described by the GPE only for small lat-
tice depth where the superfluid phase still plays an important role and fluctuations stay
small. With increasing lattice depth and small occupation numbers per lattice site the
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Figure 5.9: (a)Excitation energy to the second band ω1→2 (red) and to the third band ω1→3

(blue). The bandwidths are indicated by the shaded areas and decrease significantly for larger
lattice depth. That is the reason why working in deep lattices makes calibration more reliable. (b)
Spectra of the three 1D lattices together with fits to the data. The resonance positions coincide
to within 1 − 2%. Note that the low lattice depth in this example considerably broadens the
resonance. (c) Absorption images indicating the heating caused by the lattice depth modulation
below resonance (I) on resonance (II),(III) and above resonance (IV). The measure is the particle
number in a small region centered around q = 0.
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fluctuations grow and non trivial correlations start to build up.
The appropriate choice for the examination of such a system is therefor the Bose-Hubbard
(BH) model [79, 78], which has proven very powerful e.g. in the prediction of a quantum
phase transition from a superfluid to a Mott-insulating state with increasing lattice depth.
In this section the Bose Hubbard Hamiltonian and its constraints and consequences on
the underlying physical system will be introduced. A short paragraph will also treat the
qualitative behavior of atoms in optical lattices at finite temperatures, a topic that is
currently intensively discussed in the community.

5.5.1 The Bose-Hubbard model

To derive the BH Hamiltonian one usually starts with the full Hamiltonian given in second
quantization

Ĥ =
∫

drΨ̂†(r)(Ĥ0 + Vext(r))Ψ̂(r) +
1
2

∫
drdr′Ψ̂†(r′)Ψ̂†(r)W (r′, r)Ψ̂(r)Ψ̂(r′). (5.43)

It is useful to expand the field operators in a localized basis given by the Wannier states
at lattice site ai:

Ψ̂(r) =
∑
i

wn(r−Ri) âi, (5.44)

where âi is the usual annihilation operator and the Wannier states are given by

wn(r−Ri) =
1√
N

∑
q

e−iq·Riψn,q. (5.45)

The resulting Hamiltonian now has the BH form

Ĥ = −J
∑
〈i,j〉

â†i âj +
∑
i

εiâ
†
i âi +

U

2

∑
i

â†i â
†
i âiâi (5.46)

= −J
∑
〈i,j〉

â†i âj +
∑
i

εin̂i +
U

2

∑
i

n̂i(n̂i − 1). (5.47)

Here n̂i is the number operator at site i, εi accounts for the site-dependent local energy
and 〈· · · 〉 denotes summation over nearest neighbors only. The first term representing the
kinetic energy is characterized by the tunneling matrix element J , which is given by

J =
∫

drw1(r−Ri)Ĥ0w1(r−Rj). (5.48)

The third term accounts for the interaction and is proportional to

U = g

∫
dr |w1(r)|4. (5.49)

The tunneling parameter J is directly connected to the single particle dispersion in the
tight-binding approximation as

ε(q) = 2J
∑
{ai}

cos(q · ai), (5.50)
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which is a useful approximation for many purposes. Note that also the bandwidth of the
lowest Band scales with J [78] like

E0(q = bi/2)− E0(q = 0) = 4J. (5.51)

To arrive at Equ. 5.46 several approximations have been made in order to simplify the
problem:

Temperature and interactions Only the lowest Bloch band has been taken into ac-
count. To justify this approximation the excitation energy to the second band has
to be much larger than the temperature or any other energy scale in the system:
Egap � kBT, niU .

Localization The tunneling term considers only nearest neighbor contributions. The
number of nearest neighbors within the Bose-Hubbard approximation is usually given
by z. Moreover it is assumed, that the interaction term is dominated by the on-site
contribution. For these assumptions to be true, the Wannier states have to be
sufficiently localized. This sets some constraints on the minimum lattice depth,
where the BH description remains valid 4.

Interaction potential By writing the interaction as a scalar coupling constant we have
assumed that the potential contains no long-range contributions. This is a very
good approximation for ultracold atoms, where the s-wave scattering length solely
determines the quality of the interaction.

All of the above restrictions are usually met in typical ultracold atom experiments making
it a very accurate implementation of the BH model.
The tunneling parameter J and the on-site interaction U can be tuned in the experiment
by simply changing the lattice depth. U could also be changed by employing a Feshbach
resonance which alters the s-wave scattering lengths a. This is however not done at our
experiment.
Unfortunately the BH Hamiltonian Equ. 5.46 is not exactly soluble, but its most prominent
features, as the quantum phase transition from a superfluid to a Mott-insulating phase
are quite well understood [79].

5.5.2 Ground states and quantum phase transition

To get an idea of how the ground states in the BH model look like it is useful to consider
two extreme limits first:

Vanishing interaction In this case J � U and the many-body system will behave
like a superfluid state as in usual BEC establishing long-range phase coherence and
characterized by a non-vanishing superfluid fraction. In the Wannier basis this means
that every atom will be in a state delocalized over the entire lattice to maximally
lower its energy by J per particle and junction. For N bosons and {Ri} being the
set containing all lattice sites NL it can be written as

|ΨSF〉U/J≈0 =
1√
N !

 1
NL

∑
Ri

â†Ri

N

|0〉. (5.52)

4Note that the much better localization in the triangular lattice compared to a square lattice justifies
the BH model for considerably lower lattice depth.
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For large numbers of occupied lattice sites and particles N,NL � 1 this state be-
comes practically indistinguishable from a coherent state, manifesting the idea of a
state with a well defined macroscopic phase. The number statistics on a single site
given by a coherent state is Poissonian, which means that the standard deviation
at a mean occupation number of n̄ is σ =

√
n̄. To give an example for the simplest

case of n̄ = 1 the probability of finding more than one particle at a site is 0.27.

Large interaction The opposite case U � J leads to totally different ground state. This
can be easily understood by looking at the energy cost associated with having more
than n̄ particles at a given site according to Equ. 5.46. In the model case n̄ = 1 this
energy is simply given by U . Since U � J this is unfavorable and will therefor be
avoided in the state of lowest energy. As a consequence the ground state in the large
interaction limit is given by a product of Fock states at the individual lattice sites.

|ΨMI〉U/J→∞ =

(∏
R

â†R

)N
|0〉. (5.53)

Note that this Mott-insulator (MI) does not exhibit any kind of long-range phase
coherence and is characterized by some unique properties as compared to the super-
fluid (SF) state. Besides the loss of long-range coherence that is associated with a
decrease and vanishing of the condensate fraction [163, 164, 85], a gap in the excita-
tion spectrum of order U opens up [78, 80]. Another peculiar feature is the vanishing
compressibility in the MI phase characterized by ∂n/∂µ = 0 [165].

For any J 6= 0 the Mott-insulating state will be depleted and eventually at J ≈ U the
gain in kinetic energy will become of the same order of magnitude as the cost associated
with double occupancy. As J grows even more, the atoms will finally be delocalized over
the entire lattice and form a superfluid state. This is the qualitative behavior occurring
by crossing the Mott-insulator superfluid phase transition. The crossover occurs from a
state without phase coherence to a state with a well-defined phase.
The zero temperature phase diagram for a homogeneous system is shown in Fig. 5.11 as a
function of J/U . For small values of J/U a series of Mott-insulating lobes is obtained with
integer filling n̄ = 1, 2, . . ., depending on the particular value of the chemical potential µ/U .
As J/U increases the system undergoes a phase transition to the superfluid regime and
the condensate fraction n0/n continuously grows, establishing long-range phase coherence.
More details concerning the critical behavior at the phase transition can be found in [79].
The critical value (U/J)c for the quantum phase transition, defined as the point where
the order parameter ψ ∼ n0/n vanishes, can been obtained employing a self-consistent
mean-field picture [166] as

ηc = (U/zJ)c = 2n̄+ 1 +
√

(2n̄+ 1)2 − 1 (5.54)

where n̄ is again the number of atoms per lattice site and z the number of nearest neigh-
bors. For n̄ = 1 one recovers ηc ≈ 5.8, a result confirmed in [79, 167] and [168]. Large
scale Monte-Carlo simulations have obtained slightly different value of ηc = 29.34/z with
very low uncertainty [169, 170].
A peculiar feature of the homogeneous SF-MI phase transition is the fact, that it oc-
curs only at commensurate filling. This can be understood by assuming an atom number
slightly larger than the number of lattice sites n = 1 + ε. Increasing the lattice depth
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Figure 5.11: (a)Phase Diagram of atoms inside an optical lattice. For low values of J/U the system
is in an incompressible Mott phase with integer filling. As J/U grows the atoms undergo a quantum
phase transition to a superfluid state. It is important to realize, that real-world experiments work
in inhomogeneous systems with fixed µ. This removes the peculiarity of the homogeneous system,
where a phase transition only happens at commensurate fillings (green dashed line). Applying the
local density approximation (red vertical line) therefor leads to a wedding cake-like structure of
alternating Mott- and superfluid shells (b).

means going along the green dashed path from right to left in the phase diagram. Obvi-
ously for all lattice depth there will always be a finite order parameter ψ associated with
atoms that move freely on top of a saturated n̄ = 1 MI, therefor remaining superfluid.
In a realistic experimental system however, the situation changes due to the inhomogeneity
imposed by the additional harmonic confinement. Applying the local density approxima-
tion µ(r)/U = (µ− Vext(r))/U one obtains a series of alternating MI shells surrounded by
SF regions. Following the vertical line in the phase diagram reveals an example of a MI
structure with a central n̄ = 2 core. It has to be emphasized that the sharp quantum phase
transition observed in an homogeneous system with commensurate filling is significantly
smoothed in an inhomogeneous system residing in a trap.
Since µ will continuously decrease from the center to the edge of the sample the corre-
sponding critical (J/U)c will vary accordingly leaving the system in a mixture of various
Mott and superfluid regions.
For negligible tunneling J/U � 1 this predicts the well known ”wedding-cake” like den-
sity profile [78, 171, 165, 172] which has also been confirmed by Monte-Carlo simulations
[169, 159]. The corresponding Mott-shells exhibit radii given by [171, 172]

Rn =

√
2(µ− nU)
mω̄2

(5.55)

for harmonic trapping ω̄ (see also Fig. 5.12). The chemical potential has to determined
self consistently using the normalization condition N =

∑
n (4π)/(3a3)(R3

n+1 −R3
n). The

former equation can be readily used to estimate the maximum number of atoms per lattice
site given particular experimental parameters. This will be of importance later in this
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chapter, when interpreting and understanding experimental data concerning the SF-MI
transition.

5.5.3 The Mott-insulator at finite J

It is quiet instructive to consider the ground state of a system with small but finite J ,
since it will yield important information on the resulting density distribution as observed
in the experiment [108, 158]. Starting with the Fock state of an ideal MI (J = 0) it is
straightforward to write down the new state employing first order perturbation theory
in J/U . Physically this corresponds to the generation of particle-hole excitations in the
system, valid for small enough J .

|MI〉(1) = |MI0〉(0) + J
∑

{|MI1〉(0)}

∑
〈i,j〉

(0)〈MI0|â†i âj |MI1〉(0)

E1 − E0
|MI1〉(0)

= |MI0〉(0) +
J

U

∑
〈i,j〉

â†i âj |MI0〉(0) (5.56)

Here |MIm〉(n) represents the nth-order perturbed state in the presence of m particle-hole
excitations. Following the considerations from Section 5.3 the calculation of the structure
factor S yields

S(k) =
∑
i,j

eik(ri−rj) 〈â†i âj〉|MI〉(1)

=
∑
i,j

niδij +
2
U

∑
〈i,j〉

Jije
ik(ri−rj) (njni + nj)

= n0 +
4
U

∑
d

Jd cos(kd)n0(n0 + 1) (5.57)

It is obvious from the above equation, that also in the MI regime, features in the density
distribution with the periodicity of the reciprocal lattice 2π/d will appear. This can be
explained as follows: the particle-hole pairs depleting the MI-state may delocalize over
a few lattice sites thus introducing a finite short-range coherence. The residual visibility
of density modulations at reciprocal lattice vectors can be attributed to this short-range
coherence [108, 158]. Interestingly this rather simple model accounts for residual visibility
in the MI regime fairly well as observed in several experiments [108, 158, 84]. As we will
see, the results observed in this thesis can also be well described within this model.

5.5.4 Thermodynamics of cold atoms in optical lattices

All considerations made in this chapter so far have assumed zero temperature. In ex-
periments however BEC is always generated at finite temperatures. This section will
briefly outline the consequences on adiabatic loading of cold atoms in optical lattices
and the final phase diagram imposed by non-zero temperatures. Despite being a very
active field of research, especially theoretical effort in the last years is quiet impressive
[171, 173, 174, 175, 176, 177, 172],a conclusive picture has not yet been obtained. Sev-
eral plausible considerations have been raised, which help to qualitatively understand the
changes in finite-T systems. Since it is not possible to easily measure the temperature of
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Figure 5.12: (a)Phase diagram at finite temperature. Starting from the right at large zJ/U >
(zJ/U)c the system is superfluid. Crossing the critical point zJ/U < (zJ/U)c a SF-MI phase
transition occurs similar to the T = 0 case. For zJ/U < T/U (red area) this phase transition is
replaced by a MI-normal phase transition. (b)Mott-shell radii in an inhomogeneous system in the
local density approximation.

cold atoms in optical lattices on a scale comparable to other energy scales in the system
(J , U) it is very useful to investigate the effect of finite T on the observable quantities to
interpret experimental results.
The most important thing to realize is, that experiments always work at constant particle
number N and constant entropy S rather than constant temperature T . By changing the
systems density of states – as is the case by raising a lattice potential – the temperature
will have to change as well in order to keep S constant.
For non-interacting atoms the density of states in the lowest band grows substantially
since it is squeezed around states of very low energy (∆E ≈ 4J) for increasing lattice
depth [173]. The entropy can therefor be kept constant at much lower temperatures for
deep lattices, if the initial temperature has been low enough to populate only the lowest
band. In the tight binding approximation the initial and final temperatures scale as the
inverse of the corresponding effective masses Tf/Ti = m?

i /m
?
f [173], where the effective

mass is obtained from band-structure calculations as m? = (~−2∇2
qεq|q=0) and grows with

increasing lattice depth. If higher bands were populated the opposite effect would occur:
since the band gap is proportional to U , which grows for deeper lattices, the temperature
has to rise as well to keep S constant. Usually the condition of populating only the lowest
band is well fulfilled in experiments (especially our experiment).
At first glance it looks like we have found a promising and powerful cooling mechanism.
Unfortunately interaction change this picture drastically. Since interactions broaden the
ground band significantly, the cooling power of the above mechanism is severely reduced
and eventually reversed for lattice depth corresponding to a MI-state [177, 173]. It turns
out that the above mentioned mechanisms important for homogeneous systems are com-
pletely ruled out under realistic experimental conditions.
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The harmonic trapping in real systems supports the formation of a Mott-shell struc-
ture with superfluid rings in between [171, 172]. These rings are much more susceptible
to excitations than the Mott-shells themselves. When raising the lattice, the involved
adiabatic compression due to the growing harmonic confinement can be identified as the
main heating source in the system [177]. As a consequence of these two observations the
heating will mainly be restricted to the atoms in the superfluid shells leaving the Mott
structure more or less untouched. This is however only true for fairly low temperatures.
It has been found that for temperatures T ? ≥ (0.1− 0.2)U the Mott-shell structure of an
inhomogeneous system completely melts and disappears [171, 176]. Depending on initial
and final conditions the heated superfluid atoms will undergo a phase transition to a nor-
mal gas. The presence of a lattice significantly reduces the critical temperature Tc ≈ zJ
for Bose Einstein condensation as compared to its ”free” value [176, 178] and it is therefor
much more challenging to maintain quantum degeneracy inside a lattice, especially for
lattice depth beyond (J/U)c.
Despite at very low temperatures one would therefor expect to have a MI-normal phase
transition and a normal-SF phase transition for realistic experimental parameters as de-
picted in Fig. 5.12.
Concluding it can be mentioned, that without a precise calculation of the entropy for our
specific experimental parameters, it can not be safely said, whether cooling or heating
occurs in the course of the lattice ramp-up. The initial temperature of our samples is
rather low, on the order of less then 0.45Tc = 0.45 · 150 nK. This has to be compared to
typical values of U/kB and zJ/kB.
Finding strong evidence for the existence of Mott-shells in experiment would set an upper
limit on the temperature in the system of T < T ? = 0.2 ·U/kB ≈ 20 nK, which marks the
melting of the shell structure. This can e.g. be compared to the critical temperature Tc
around the SF-MI phase transition which is on the order of Tc = zJ2D/kB ≈ 10 nK for the
triangular lattice and decreases exponentially for increasing lattice depths.
It is currently heavily discussed, whether the occurrence of interference peaks in the ab-
sorption images can clearly be associated with a large superfluid fraction in the lattice
system and whether its disappearance is a criterion for the SF-MI transition. Recent
studies of a thermal gas slightly above Tc have shown interference patterns to a certain
degree when released from an optical lattice [179, 180]. Moreover these authors found that
only a visibility very close to unity can be taken as a clear signature for superfluididty and
that already small deviations from unity indicate a purely thermal sample.
Contradictory results show strong evidence that especially for strong harmonic confine-
ment as in our experiment the interference patterns obtained for condensed and thermal
atoms are very distinct [164, 157] and can hardly be obscured with each other. Therefor at
least a qualitative correlation between a substantial superfluid fraction and the visibility
of the interference peaks remains.
In addition the robustness of the visibility against slight changes in the procedure of the
determination remains a property of the superfluid regime and is absent for thermal sam-
ples.
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5.6 Experimental observation of the SF-MI transition of
cold atoms in a triangular optical lattice

One of the key properties of cold atoms in optical lattices is the superfluid-Mott insula-
tor transition as extensively discussed above. During this thesis experiments have been
performed investigating this phase transition in a combined 3D triangular-standing wave
lattice as well as in a two-dimensional system, where the perpendicular degree of freedom
has been frozen out using a standing wave at 30 Er thus prohibiting any tunneling in this
direction. The remaining array of quasi 2D condensates has then been probed by impos-
ing a triangular lattice. To start, it will be briefly sketched how atoms are loaded in the
optical lattice adiabatically to minimize any additional heating. Then measurements on
the SF-MI phase transition in 3D and 2D are presented and comprehensively analyzed.

5.6.1 Adiabatic loading of the lattice

When a lattice potential is superimposed on a harmonically trapped BEC, several con-
straints have to be fulfilled in order to adiabatically transfer the atoms from the harmonic
trap to the new ground state in the lattice. It is only when adiabaticity can be guaran-
teed that the considerations of constant entropy make sense. As soon as adiabaticity is
violated the system will be heated and excited states will get populated in any case [173].
Two main issues have to be considered when thinking about the relevant time scales for
adiabatic loading:

Interactions Interactions between particles are necessary to establish equilibrium in the
system. Any change of the underlying potential, aiming to be adiabatic has to be
slow compared to the timescale set by interactions ≈ ~/µ, which amounts to a few
ms for realistic experimental parameters

Tunneling As the lattice gets deeper and deeper the ultimate limit for the particles to
redistribute in the lattice to find their new equilibrium position is set by the tunneling
time ~/J . For lattice depths associated with the quantum critical point this time is
on the order of 10 ms and grows exponentially for deeper lattices.

However the above considerations only suggest a course route since the complex interplay
of changing density of states, interaction effects and finite temperature make it hard to
precisely predict strict constraints for adiabaticity.
In the course of this work several lattice ramp shapes and times have been tested and
analyzed to obtain an optimum loading (see also [181] for similar results). We have loaded
atoms in a deep lattice well within the MI regime using different ramps. After a hold time
of roughly 50 ms we have ramped down the lattice to a value corresponding to maximum
visibility and inspected the recurring interference pattern depending on ramp shape and
-time. Best results have been obtained for ramp times tramp ≈ 150− 200 ms. In particular
the value of the visibility does not depend on the exact value of tramp for such large times.
Times shorter than 50 ms considerably degrade the visibility and lead to severe irreversible
heating.
Among several tested ramp shapes like linear and exponential the best and most insensitive
results have been obtained for a sigmoidal ramp form originally suggested in [182]. This
ramp increases slowly in the beginning, rises fast for intermediate lattice depth where µ
and J are large and finally slows down again for deep lattices where J is decreasing more
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Figure 5.13: Absorption images of atoms released from a triangular optical lattice for various
lattice depth given in units of Er. As the lattice depth is increased the visibility of the interference
peaks corresponding to reciprocal lattice vectors starts to decrease. Due to the inhomogeneity of
the system a smooth transition is observed rather than a sharp jump in the visibility.

and more:
V (t) = Vfinal

1
1 + e−(t2−t2w)/t2s

(5.58)

The characteristic times tw and ts determine the shape of the curve and are on the order
of 50 ~/J .

5.6.2 SF-MI transition in an array of 2D condensates

As a first experiment employing the triangular lattice the transition between a superfluid
and a Mott insulator has been investigated in great detail. Different experimental mea-
sures like the visibility of the interference peaks, the condensate fraction and the width
of the central peak, all sensitive to the coherence of the condensate wave function, have
been studied to obtain a comprehensive understanding of the SF-MI transition in this new
lattice geometry.
Since we have encountered quantitative differences computing the Bose Hubbard param-
eters J and U compared to a square lattice, we expect differences as compared to results
obtained in this geometry [80, 108, 158, 84, 85]. Moreover the number of nearest neighbors
in a triangular lattice is z = 6 as compared to a 2D square lattice where only 4 nearest
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neighbors exist.
The starting point for all experiments described below is a Bose-Einstein condensate in
an almost isotropic optical crossed dipole trap, with a harmonic trapping frequency of
ω̄ = 2π × (90 ± 3) s−1. The particle number in the condensate is 60000 − 70000 without
any discernible thermal fraction. Together with a critical temperature for Bose-Einstein
condensation of Tc = 150 nK this yields an estimate for the upper limit of the temperature
of T . 60 nK.
Since we are especially interested in the physics induced by the triangular lattice we elimi-
nate the influence of the third dimension by creating a stack of quasi two-dimensional disc-
shaped condensates by ramping up a 1D lattice over 150 ms to a final depth of V0 = 30Er.
After this step the tunneling along the perpendicular direction ~/J1D ≈ 0.5 s−1 is negligi-
ble compared to the time needed for the experiment τexp = 0.17 s. The condition for being
two-dimensional kBT, µ� ~ω1D = ~ 2π · 21 kHz = kB · 1µK is also well fulfilled.
The increased effective coupling g̃ ≈ 2.5g0 leads to a slight expansion of the conden-
sate in all directions [102], whereas the considerably enhanced harmonic confinement
ω̃ = 1.2ω̄0 tends to compress the sample. After all we end up with ≈ 40 2D system,
where the occupation of the central disc amounts to N2D ≈ 4000. The chemical potential
is µ = h · 2.7 kHz = 133 nK. The determination of the critical temperature for one of the
individual 2D systems following the findings of [183] gives a value of T 2D

c = 110 nK for the
central disc. As can be taken from Fig. 5.13 we determine a condensate fraction of 0.43
for very shallow lattices yielding a temperature of 80 nK .5

The experimental sequence continues by the smooth ramp-up of the two-dimensional tri-
angular lattice within 150 ms. We hold the atoms for a short time thold = 20 ms and switch
off all confining potential afterwards. The atoms are allowed to expand for a time-of-flight
of 21 ms and are subsequently imaged an a CCD camera.
In Fig. 5.13 a series of absorption images for different final lattice depths V 2D

0 is shown.
Every image has been obtained by thoroughly superimposing and adding up to 30 individ-
ual images obtained from different experimental runs. Images indicating particle numbers
that deviate by more than one standard deviation around the mean particle number of all
individual runs are sorted out to reduce a blurring of the phase transition by interaction
effects owing to different densities. As one can see as the lattice is increased characteristic
peaks develop at positions corresponding to reciprocal lattice vectors exhibiting a striking
interference pattern. When the lattice depth is increased further and further, the peaks
start to smear out and finally for very deep lattices, the pattern has completely disap-
peared and is replaced by a structure less Gaussian. Note that the range over which the
visibility of the peaks decreases is rather large, paying to the inhomogeneity of the system.
Different regions of the condensate probe different regions of the phase diagram (compare
Fig. 5.11), therefor yielding a smooth cross-over instead of a sudden jump of the visibility.

Visibility

To be more quantitative the visibility can be extracted from the absorption images as
indicated in the upper left image in Fig. 5.13. We count the number of atoms corresponding
to the position of reciprocal lattice vectors r = ~t/mbi (blue circles) N+ and the number

5 It should be states here, that the direct determination of the critical temperature in 2D systems in a
recent experiment [183] does not agree with theoretical models of BEC in two dimensions. The authors of
[183] find considerably lower Tc than predicted. We took their findings into account when estimating Tc
for our system.
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Figure 5.14: Visibility of the interference peaks (blue circles) across the phase transition against
U/zJ . Note that the visibility has been renormalized to its maximum value of Vmax = 0.48.
The visibility already starts to drop around a lattice depth of 3.5 − 4 Er. Reproducible kinks
marked by blue arrows may indicate the formation of Mott-shells. The condensate fraction (red
triangles) decreases as the lattice is ramped to deeper values. Pronounced kinks coinciding with
those observed for the visibility are observed. The condensate fraction vanishes more quickly
than the visibility (N0/N = 0 indicated by red arrow). The FWHM of the central peak of the
momentum distribution (yellow stars) is constant for low lattice depth. Around the phase transition
it quickly starts to grow – also exhibiting small but reproducible kinks. The width of the incoherent
background is plotted for completeness (green squares). Constant below the phase transition where
it is a measure for the temperature (indicated by a green arrow), it starts to increase linearly with
respect to U/zJ in the MI regime as expected from Equ. 5.57. Dashed vertical lines indicate the
critical values for the transition to a Mott insulating state with n̄ = 1, 2 and 3 respectively.

of atoms at positions at the edge of the Brillouin zone and vanishing structure factor
r = ~t/2m(bi + bj) (red circles) N−. This is done to account for the non-zero incoherent
background density occurring at higher lattice depths. The visibility is than computed
following [108]

V =
N+ −N−
N+ +N−

. (5.59)

The initial visibility is already noticeably smaller than unity, which can be attributed
to the finite system size (see Section 5.3), the finite bin size over which the visibility is
determined and interaction effects during expansion [157]. In similar experiments in other
groups the same tendency has been observed. In our 2D system moreover, discs that are
close to the outer edges of the condensate may not exceed the critical particle number
for superfluidity and do therefor not contribute significantly to the interference contrast
but blur the overall visibility since they cannot be separated prior to detection. The
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visibility starts to drop around η ≡ U/zJ ≈ 3 − 4 which corresponds a lattice depth of
V0 ≈ 2.5 − 3Er. mean-field calculations [166, 78] for three dimensional systems predict
ηc ≈ 5.8 by monitoring the vanishing of the order parameter The only available work
that has explicitly been performed on a 2D triangular lattice utilizing the strong coupling
approach gives ηc ≈ 4.41 [184]. The authors take the vanishing of the excitation gap as a
signature for the phase transition. Large scale quantum Monte-Carlo simulations (QMC)
for (non-triangular) 2D systems [169] give values as low as ηc = 2.7, albeit these authors
take as a criterion for the phase transition the onset of the formation of a Mott plateau,
while still a large superfluid fraction survives .6

Since we work in a highly inhomogeneous system we expect to observe the formation of
various Mott-shells and therefor no sudden jump in the visibility. Interestingly the QMC
value for the formation of a central Mott region with n̄ = 1 which should at least mark a
starting point for the decrease of the visibility coincides with a reproducible step in our
experimental data within experimental resolution. On the other hand a total vanishing
of the part of the visibility that is attributed to the superfluid fraction (e.g. for not too
large η) is not expected before all Mott-shells have formed, which is the case at fairly large
values of η.
Moreover we observe a whole series of reproducible steps in our visibility curve indicating
the formation of more and more Mott-shells. This behavior has already been observed
and interpreted in [108, 158]. As a guideline for the reader, the mean-field predictions
for vanishing of the order parameter in a homogeneous system with filling n = 1, n = 2
and n = 3 respectively are indicated in Fig. 5.17 as dashed vertical lines. In [165] the
Mott-shell structure has been probed directly by measuring the density using magnetic
tomography and in [185] spatially resolved high precision spectroscopy has been employed
to detect different Mott-shells. Future experiments could include one or the other method
to verify the presence of a wedding-cake-like Mott-shell structure in our system.
Using a simple mean-field model already introduced briefly in Section 5.5.2, an estimate

can be made of how many Mott-shells will exist based on our experimental parameters
and what the maximum occupation per lattice site will be [166, 171]. Assuming that the
atoms will occupy a Mott-shell with the number of particles per lattice site fixed by the
local chemical potential µ(r) = µ− V (r), the overall normalization condition reduces to a
summation over spherical shells with occupation numbers n̄ = 1, . . . , n̄max and inner and
outer radii of Rn̄ and Rn̄−1 respectively, where the innermost radius is given by Rn̄max = 0
and the outermost by R0 =

√
2µ/(mω̄2) as can be seen in Fig. 5.12(b). Minimizing the

energy ∂nE = 0 in such a system puts the constraint n = (µ−V (r))/U +1/2. Since n̄ can
take only integer values in the MI phase this becomes n − 1 < (µ − V (r))/U < n. With
this condition the radii Rn̄ of the individual shells are then given by

Rn̄ =

√
2(µ− nU)
mω̄2

. (5.60)

By explicitly writing down the normalization condition for a harmonic external confine-
ment

χµ ≡
3NVcell

4π

(
mω̄2

2U

)3/2

=
m−1∑
n=0

( µ
U
− n

)3/2
(5.61)

one can determine the number of particles in each shell and the maximum occupation
number n̄max = m. A graphical representation of the left hand and right hand side of

6 The various criteria for the phase transitions are explicitly stated to give the reader an idea of how
different the individual approaches are and that they somehow differ considerably already by definition.
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Figure 5.15: Simple model for the determination of a Mott-shell structure taken from [171]. By
assuming that all atoms will occupy a Mott-shell according to the local value of the chemical
potential µ(r) = µ − V (r), one can calculate the radii of the individual Mott-shells by imposing
the normalization condition

∑
shells nshells = N .

(a) Left hand side of Equ. 5.61
(b) Right hand side of Equ. 5.61 for a typical particle number of N = 7 · 104 and various values
for the strength of the 1D and 2D lattice V1D and V2D respectively.

2D experiment 3D experiment
site occupation n̄ Rn̄−1[10µm] Nn̄[104] Rn̄−1[10µm] Nn̄[104]

1 0.98 1.07 0.90 0.84
2 0.87 1.71 0.80 2.27
3 0.76 2.30 0.68 1.87
4 0.61 2.33 0.53 1.73
5 0.43 1.51 0.31 0.59

Table 5.1: Outer radii Rn̄−1 and corresponding integrated particle numbers Nn̄ of the individual
Mott-shells according to [171]. Data is presented for the MI experiment in 2D (this section) and
in 3D (next section). Refer to the text for details.

Equ. 5.61 is given in Fig. 5.15. Note that the value of χµ only depends on the experimental
parameters in (b), while the results shown in (a) are universal. For the experimental con-
ditions in the 2D experiment presented here, the lattice depths of the 1D and 2D lattice
have been V1D = 30 Er and V max

2D = 10.1 Er respectively. The corresponding maximum
occupation per lattice site is calculated to be n̄max = 5.
Interestingly by starting with a strong initial harmonic confinement, the virtual number
of particles per lattice site decreases rapidly with increasing lattice depth. This counter
intuitive behavior can be understood by taking into account, that the total trapping fre-
quencies depend on the contribution of the lattice only quadratically to lowest order. The
interaction U on the other hand immediately grows when raising a lattice potential. Thus
up to a certain lattice depth, the ratio ω̄2/U –and accordingly n̄max–drops initially but
will finally rise when reaching the regime of very deep lattices. This is a peculiarity owing
to our strong initial harmonic confinement and not a generic feature of lattice systems.
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Tab. 5.1 gives an overview over the estimated radii Rn̄−1 and integrated particle num-
bers per shell Nn̄ for the experimental parameters of the presented measurements. All
the above discussion assumes that the temperature in the system is fairly low T ≤ T ? =
0.2U/kB ≈ 20 nK, so that the Mott-shell structure has not completely washed out [176].
Indeed the fact that we see experimental signatures of Mott-shell formation could be em-
ployed to estimate an upper limit for the temperature of T ≤ T ?. This would indeed mean
that the sample exhibits significant cooling when loaded in the optical lattice (compare
Section 5.5.4).

Condensate fraction

Another useful quantity that can be extracted from the absorption images in Fig. 5.13
is the condensate fraction, by fitting a bimodal distribution to either the central or the
interference peaks [164, 85]. The latter method has the advantage to be less susceptible
to interaction effects during the expansion process and indeed the condensate fraction
measured here is always slightly above the values obtained from the central peak. Conse-
quently all results presented below correspond to parameters extracted from these fits.
After sufficiently long time-of-flight the density distribution consists of sharp interfer-
ence peaks [157] caused by the condensed atoms which are assumed to exhibit the same
parabolic shape as the external harmonic confinement. The other part of the bimodal
density distribution is produced by thermal atoms whose distribution has been modeled
employing a Gaussian. For small lattice depth this seems reasonable in dependence on
a bimodal BEC in a harmonic trap perturbed by a periodic potential. For deep lattices
the envelope of the density distribution is given by the Fourier transform of the Wannier
function |w(q)|2 which is again well approximated by a Gaussian. 7 By fitting the above
function the condensate fraction N0/N as well as a measure of temperature in a shallow
lattice can be extracted from the data.
Fig. 5.16 shows examples of column densities and corresponding fits for the central as well
as for the satellite peaks for various lattice depth. The width of the condensate peak has
been determined and averaged from pictures well in the SF regime. The fitting procedure
for larger lattice depth has then been invoked with this width as a constant parameter to
ensure better and less forged results.
Plotted in Fig. 5.17 the condensate fraction qualitatively follows the course of the visibil-
ity, albeit starting at a lower value of N0/N = 0.43. Especially the number and position
of the kinks in the visibility is exactly reproduced and supports the conclusion that these
kinks can be attributed to the formation of Mott-shells, since this implies a steep decrease
in the superfluid fraction.
A closer look reveals, that besides qualitatively similar, the condensate fraction clearly
vanishes before the visibility has dropped to zero. Neglecting very tiny condensate frac-
tions N0/N < 0.05 which could be artifacts of the fitting procedure, we identify a value of
ηcf ≈ 15. Calculating the critical temperature for Bose Einstein condensation according
to kBTc = zJ(n̄max + 1)/2 [176] yields Tc ≈ 10 nK. This is a rather small value compared
to the initial temperatures in the dipole trap (Tc = 70 nK) and the less reliable value for
the individual 2D configurations (Tc = 80− 90 nK).

7Thermal atoms confined in a sufficiently deep optical lattice in the tight-binding limit should obey a
distribution 〈nq〉 ∼ exp(−εq/kBT ) = exp(2J

P
ai

cos(q · ai)/kBT ). We have tried to fit a corresponding
bimodal distribution to the observed data but could not resolve any cosinusoidal modulation. Thus it was
not possible to extract temperature data in this way.
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Figure 5.16: Bimodal fits to the peak structure of the absorption images. From top to bottom
the lattice depth increases, reaching the critical point in the last row. (a) Fits to column sums of
the shaded area corresponding to the central peak (b) Fits to the column sum of the shaded area
of all 6 satellite peaks
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Figure 5.17: First order perturbation coefficients α = c·4J/U where c is a free parameter connected
to the number of particles per site. The coefficients are obtained from fits to the data shown in
Fig. 5.13 as depicted in the right part of the figure for increasing lattice depths. The red circles
indicate the error obtained for the fits and exhibit a sharp increase starting at a particular value
of 4J/U = 0.035 indicating the break down of the model. The left column is experimental data,
whereas the right column is the theoretical model with the fitted α’s as the only free parameter.

Beyond this point no superfluid fraction survives in the system. This also means that
the inhomogeneous system is now composed of MI and normal gas layers as outlined in
Section 5.5.4. If we take the observed critical temperature for the vanishing of the super-
fluid fraction as a measure for our temperature we are well below the melting temperature
T ? ≈ 20 nK indicating that Mott-shells should still be present.
By the observation that the condensate fractions disappears faster than the visibility, we
are left with the problem to describe the residual visibility without any superfluid frac-
tion. In Section 5.5.3 we have already developed a perturbative model to account for the
residual visibility by short-range coherence induced by particle-hole pairs that distribute
over a few lattice sites.
The model distribution has been fitted to our data for large values of η to be well within
the regime where the perturbation Ansatz is justified. One free parameter α has been
introduced in Equ. 5.57 instead of 4J/U(n̄ + 1)/2 to compare the model to the data.
Fig. 5.17 shows the results. Two key conclusion can be derived from these observations.
First of all the model accounts for the observed visibility surprisingly well as indicated by
the theoretical curve, which has been simply obtained by proper weighting of contributions
of different Mott-shells by imposing a LDA like approach employing Equ. 5.57.
Secondly the error of the individual fits show a sharp increase at a value of the smallness
parameter 4J/U = 0.035. Corresponding to η = 18, this coincides with the appearance of
the condensate fraction and readily explains why a model not taking into account super-
fluid interference fails to describe the interference pattern for lattice depth smaller than
this point.
Experiments performed in systems with only unity occupation have measured the conden-
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sate fraction [85] and the critical velocity for superfluidity [155] which should approach zero
at the phase transition and find agreement with theory. The results of this experiment
confirm, that both visibility and superfluid fraction show a behavior that is compliant
with the assumption that both are inherently connected to each other. Residual visibility
beyond the critical lattice depth for superfluidity could be described by a model taking
into account particle-hole excitations leading to a finite short-range coherence.

Width of the central peak

The FWHM of the central peak in the momentum distribution has also been determined
and plotted in Fig. 5.13 as yellow stars. As expected the width is almost constant in
the regime where a considerable superfluid fraction survives, since the condensate peak
contributes the largest fraction to the overall amplitude of the central peak. It is not
before the condensate fraction has almost dropped to zero when the peak width suddenly
starts to rise quickly to large values.
Remarkably the kinks observed in visibility and condensate fraction are also visible in the
central peak width. It has been predicted [159] and contradicted [169] that the appearance
of superfluid shells should lead to the formation of a fine structure of the central peak
in terms of an additional small peak in the radial momentum distribution. This peak
is expected to show up at momenta q ≈ |bi|/5 [159]. We have carefully checked all
absorption images, but do not see any hint for additional structure at those momenta.
Due to the unavoidable integration along one axis by employing absorption imaging the
effect is additionally diminished and would only show up as a tiny shoulder. This could
not be confirmed.

Energy scale and temperature

The bimodal fits to the absorption images used to determine the condensate fraction
yield some additional information. The width of the incoherent background σth can be
employed to give another estimate for the temperature at rather shallow lattice depth.
In Fig. 5.13 the full width has been plotted as green squares in units of the reciprocal
lattice vector. The width is approximately constant up to the point where the condensate
fraction vanishes and increases linearly beyond that value. Assuming that for very shallow
lattices one can estimate the temperature employing the expressions valid in a harmonic
trap (see Appendix C)

kBT =
m

2

(
ω̄2

1 + ω̄2
i t

2
σ2
i,th

)
. (5.62)

ω̄ is the geometric average of total harmonic trapping frequency and is independent of
the lattice depth to first order for our experimental setup and shallow optical lattices.
From the extracted value σ ≈ 1.9 in units of ~kL/m · tTOF for V0 → 0 a temperature
estimate can be deduced according to T ≈ (~2k2

L/4m)σ2/kB = 290 nK. This is not in
agreement with the temperature estimates raised earlier in this chapter. Possibly due to
the two-dimensional nature of the underlying system a different model has to be employed
to correctly model the expansion of a 2D thermal cloud at a given temperature.
The considerations concerning ultracold 2D systems presented in the beginning of this
chapter already emphasized well known problems and discrepancies between few exper-
iments and theoretical models. Some of the quasi two-dimensional discs might be non-
condensed and obscure the temperature determination even further.
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For lattice depth well in the MI regime the width is dominated by incoherent atoms re-
lated to quantum fluctuations in the MI regime. It should therefor roughly be given by
a convolution of the Fourier transform of the Wannier function |w(q)|2 with the density
expectation 〈nq〉 given by Equ. 5.57. The expected scaling σ ∼ U/zJ can be confirmed
looking at the corresponding part of the graph.

5.6.3 The SF-MI transition in a 3D system

We have also performed measurements attending to the SF-MI transition in a three di-
mensional system. To account for the different lattice parameters along the different di-
mensions of the lattice, we chose a constant factor between the strength of the 2D lattice
and the 1D lattice of V1D = 2.78 · V2D. As indicated in Fig. 5.10b this leads to an almost
constant ratio of one of the corresponding parameters η1D = U/2J1D and η1D = U/6J2D.
Since the η’s depend on the V ’s non-linearly the ratio can not be kept completely con-
stant and varies between 0.8 and 1.8. The correct total Bose Hubbard parameter is than
calculated according to η = U/(2J1D + 6J2D). Taking this into account the measurements
agree qualitatively with the observations already made in the 2D experiment. Again a
reproducible kink structure in the visibility and the width of the central peak is observed
as indicated by arrows in Fig. 5.18. The larger initial condensate fraction is due to the
fact that we work in a 3D system and further leads to a higher initial visibility of V = 0.81
as compared to the 2D measurements. It has to emphasized, that the visibility has been
normalized to this value in Fig. 5.18.
Note that the agreement with the already mentioned mean-field predictions is comparable
in quality with the 2D results. The best and most accurate QMC result for the phase
transition [170] gives ηc = 3.67 for this particular experimental configuration .8 The qual-
itative agreement is evident. Again since an abrupt jump in all relevant parameters is
not expected in inhomogeneous systems a rigorous check of these values can barely be
achieved with a harmonically trapped system, especially at large harmonic confinement,
because of the inherently connected large number of Mott-shells.
Since the long standing goal in the design phase of this experimental setup was the in-
vestigation of spinor condensates in optical lattices of various depth, it is unavoidable to
start with a BEC in an optical dipole trap from the scratch. Trapping frequencies as low
as ω̄ = 2π × 10 Hz as achieved in some experiments starting in magnetic traps are not
realizable using optical dipole traps relying on laser that can be afforded in usual cold
atoms laboratories.
Concluding the superfluid to Mott-insulator transition has been investigated in a two-
dimensional triangular lattice and in a three-dimensional periodic potential generated by
the combination of a triangular lattice and a standing wave perpendicular to that lattice.
A comparison of the results obtained by investigating different experimental parameters
that are theoretically expected to change across the phase transition, allows to draw a
concurrent and conclusive picture of the SF-MI transition in a triangular lattice. The
main difference to the results obtained in the well explored cubic lattice is, that the phase
transition occurs at much smaller values of the lattice depth as low as Vlatt ≈ 3.5 − 4 Er.
This is consistent with the Bose-Hubbard model, since the crucial parameters U , z and J
differ significantly from the corresponding values obtained for cubic lattices.
Reproducible kink-like features in various experimental parameters suggest the existence of

8 Note however that these calculations have not been performed on a triangular lattice. We have scaled
the result by taking into account our number of nearest neighbors z.
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Figure 5.18: Visibility of the interference peaks across the phase transition against U/(2J1D +
6J2D). Note that the visibility has been normalized to its maximum value of V = 0.81. The
visibility starts to drop around a lattice depth of 3.5 − 4 Er Reproducible kinks may indicate
the formation of Mott-shells. The condensate fraction (red triangles) decreases as the lattice is
ramped to deeper values. Pronounced kinks coinciding with those observed for the visibility can
be distinguished. The FWHM of the central peak of the momentum distribution (yellow stars)
is constant for low lattice depth. Around the phase transition it quickly starts to grow – also
exhibiting small but reproducible kinks. The width of the incoherent background is plotted for
completeness (green squares). Constant below the phase transition where it is a measure for the
temperature, it starts to increase linearly with respect to U/zJ in the MI regime as expected from
Equ. 5.57. Dashed vertical lines indicate the critical values for the transition to a Mott insulating
state with n̄ = 1, 2 and 3 respectively.

several Mott-shells which is further supported by the large degree of inhomogeneity present
in our system. The residual visibility of the interference pattern could be explained within
the framework of a pertubative approach based on a slightly modified perfect Mott insu-
lator.
The ability to enter the Mott insulating regime reversibly as demonstrated here consti-
tutes the basis for future experiments attending to e.g. novel ground states, quantum
information protocols or the investigation of quantum magnetism in optical lattices.

5.7 The hexagonal lattice

In the course this work most experiments have been performed in the triangular lattice,
mainly due to the reasons stated in Section 5.1.2 that the laser power at equal laser de-
tuning required to reach quantum criticality is 18 times larger than for the triangular
lattice. With the non-achromatic polarization optics that is used in the experiments at
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Figure 5.19: Comparison of absorption images obtain by releasing ultracold atoms either from a
hexagonal (left) or triangular (right) lattice.

the time of these experiments it is neither possible to deliver these high laser powers nor
is it possible to go to significantly smaller detunings to reduce the required power. Never-
theless attempts have been made to load atoms in the hexagonal lattice and to study the
resulting density distribution after time of flight. Typical results are shown in Fig. 5.19.
The patterns look very similar, what is expected by recalling, that the hexagonal lattice
potential is somehow the ’negative’ of the triangular lattice. In conventional optics it is
well known from Babinet’s principle that the expected interference pattern of two com-
plementary diffracting objects is identical except for the overall forward beam intensity.
Applying the theorem to our particular physical system yields the same interference pat-
tern for both lattices, as long as the atoms are not localized in the tiny individual minima
of the hexagonal lattice. From a quantum optics point of view it can be understood by
keeping in mind that the involved reciprocal lattice vectors are exactly the same. Since
interference peaks appear only at positions corresponding to reciprocal lattice vectors, it
is clear that no principally new interference peaks will appear It is only when the atoms
are well localized in individual minima of the hexagonal lattice, when one expects slight
changes in the interference pattern. This can be seen by looking at the structure factor
known from solid state physics that is expected to differ due to the different basis sets
B4 = {0, 0} and B� = {1/3(2a1 + a2), 1/3(a1 + 2a2)} of the two lattices:

S4 = 1 for all (h, k), (5.63)

S� = 2 cos
(

2π
3

(h− k)
)

(5.64)

= 1 for (h, k) = {1, 0}
= 2 for (h, k) = {1, 1}
= 1 for (h, k) = {1, 1̄}.
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Since the scattering amplitude is proportional to |S|2 it is clearly seen that the relative
amplitude of the second order peaks in the absorption images should be four times stronger
in the hexagonal lattice as compared to the triangular lattice.
By looking at the individual interference peaks in Fig. 5.19 another striking observation
can be made: Two of the six first order peaks are clearly more pronounced than the four
others. We assign this to a residual misalignment of either the beams or their polarization.
If the one of the beam pairs would contain a non-negligible amount of π0 polarization,
the corresponding two diffraction peaks should be explicitly stronger than the others.
This effect dominates any possible detection of enhanced second order scattering and will
definitely have to be suppressed in future experiments in order to clearly identify the
hexagonal lattice.
Finally it should be stated, that the lattice depth associated with the images in Fig. 5.19
corresponds to the maximum available laser power at that time. Obviously no sign of a SF-
MI transition is observed. To enter this regime it will be indispensable to go to larger laser
power or – more realistic – smaller detunings. Since the required potential strength has to
be 18 times larger than for an equivalent triangular lattice, serious problems concerning
additional harmonic confinement and spontaneous scattering have to be expected.

5.8 Observation of noise correlations in a triangular lattice

So far we have analyzed the atoms by absorption imaging and extraction of parameters
related to first order coherence properties. Especially in the MI-state a structure-less
Gaussian density distribution is observed, as the result of an incoherent sum of all sin-
gle particle wave function. Predictions concerning ordering or coherence properties are
therefor not possible by simply analyzing the density nr. To obtain a more complete un-
derstanding of strongly correlated systems like cold atoms in optical lattices it is desirable
to have access to higher order correlation functions. The fact that quantum fluctuations in
many observables, e.g. the visibility or the momentum distribution after release from the
trap contain information about correlations in the initial quantum state, is at the heart
of the noise correlation technique proposed in [90, 91, 92, 93] and realized in bosonic [94]
and fermionic systems [95, 96]. Noise correlation analysis is capable of detecting spatial
ordering, e.g. ferromagnetically ordered states or spin waves to name a few prominent
examples. Since the density distribution after time of flight represents and only represents
the in-trap momentum distribution when interactions do not significantly modify the free
expansion process, it is crucial that these constraints are met for noise correlation mea-
surements. According to the experiment originally performed by Hanburry-Brown and
Twiss [186, 187] the experimentally obtained density-density correlation function

C(d) =
∫
〈n(r + d/2) · n(r− d/2〉d2r∫
〈n(r + d/2)〉〈(r− d/2〉d2r

(5.65)

is characterized by the interference of different detection paths in a multi-detector array.
Note that 〈n(r)〉 denotes the average of the atomic density averaged over many experimen-
tal realizations. In an ideal experiment the joint detection probability for atoms released
from an optical lattice for two detectors separated by d will be sinusoidally modulated
with a periodicity given by l = (~t|b|)/(m). However for this assumption to be true some
experimental constraints will have to be fulfilled to ensure that the dominating source of
noise in the experiment is really the fluctuation in the atom number and not technical or



114 CHAPTER 5. SPINOR BEC IN OPTICAL LATTICES

 

 

−400 −200 0 200 400

−400
−300
−200
−100

0
100
200
300
400 0

0.04

0.08

0.12

 

 

 

 −400
−300
−200
−100

100
200
300
400

0

−5

0

5

10

15

20

a b

c d

−400 −200 0 200 400

−400 −200 0 200 400
0

5

10

15
x 10-4

Figure 5.20: (a) Noise correlations obtained from averaging over 50 individual realizations of the
same MI experiment. Peaks at the positions of reciprocal lattice vectors are visible. (b) The results
of (a) have been filtered to emphasize the peak structure. (c) Corresponding mean density of the
analyzed imaged. (d) Cut through (a) revealing the amplitude of the noise correlation.

photon shot-noise. Above a critical photon number of [90]

p > pc =
e2nOD〈N�〉
εn2
OD

(5.66)

the atom shot-noise will overwhelm the photon noise and it should in principle be possible
to observe correlations. Here nOD is the optical density of the atomic cloud, 〈N�〉 the
average number of particles per pixel and ε the detection efficiency of the CCD camera.
The above expression exhibits a maximum at nOD = 0.5, which gives a good estimate for
the particular choice of particle number and time-of-flight in the experiment.
A rigorous calculation of the second order correlation function g2(r1, r2) of the MI-state
(see e.g. [188]) yields the following expression for the density-density correlation function.

C(d) = 1 +
n̄

N

∑
G

δ

([
r− ~t

m
G
]
/l

)
, (5.67)
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which confirms the above considerations. In the framework of the Diploma thesis of S.
Dörscher a very extensive analysis of noise correlation and the associated computational
tools has been performed at the spinor BEC experiment. Details concerning the exact
determination of the above correlation function employing fast Fourier transformation
can be found in his thesis. In a first proof of principle experiment we have observed noise
correlations in the triangular lattice deep in the MI regime. The density correlations have
been computed using a set of ≈ 50− 70 absorption images. Fig. 5.20 shows the averaged
density together with the noise correlation according to Equ. 5.65. Clearly peaks situated
at the position of reciprocal lattice vectors are visible. In Equ. 5.65(b) the resulting
image has been filtered using an adaptive filter (MATLAB instruction wiener2), which
pronounces the correlation peaks relative to the residual noise.
Future experiments could possibly include the detection of magnetically ordered states in
the triangular and especially the hexagonal lattice. Here noise correlation spectroscopy
represents an especially elegant way to pin down an experimental measure that is hard to
reveal by other detection methods.

5.9 Spin dynamics in a triangular optical lattice

In the framework of this dissertation measurements of spin dynamics in lattices of different
depth and at different magnetic fields have been performed in order to gain insight into
the physics of magnetic systems in periodic potentials. In principle one would expect a
crossover from mean-field regime spin dynamics as described in Chapter 4 to few particle
spin oscillations isolated at individual lattice sites. The latter has been investigated and
presented in three publications by the Mainz group [72, 74, 73]. They mainly focused on the
physics of two particles at a single lattice site and found that coherent oscillations between
two two-particle states ψi = |0, 0〉 ↔ ψf = | − 1, 1〉 occur that can be readily explained
within the framework of a Rabi-like model. For atoms with F = 1 in an optical lattice
the effective Rabi frequency is composed out of a coupling strength Ωif ∝ g1

∫
|w(r)|4 dr

given by the spin-dependent interaction between the two states and a detuning δ = δ0 +
δ(B2). δ is given by a part proportional to the quadratic Zeeman shift δ(B2) and an
offset term determined by the difference in interaction energy of the initial and final state
δ0 ∝ g1/2. The authors of this work started with BEC in a magnetic trap with small
trapping frequencies which was switched off after the deep MI regime had been reached.
Thereby small occupation numbers ni could be achieved but measurements were limited
to the deep MI regime.
The ability of investigating spin dynamics at arbitrary lattice depths is associated with an
overall spin independent trapping potential from the beginning. We have performed such
measurements starting in an almost isotropic crossed optical dipole trap. Spin dynamics
of 87Rb BEC in F = 1 has been observed in the superfluid regime, close to the phase
transition from superfluid to Mott-insulator and deep in the Mott-insulating regime inside
a triangular optical lattice. In addition the magnetic field has been varied as a parameter
to investigate the behavior of oscillation amplitude and period. In the language of mean-
field spinor physics developed in Chapter 4 experiments corresponding to a whole variety of
different k values have been performed. We have checked whether the observed dynamical
behavior for the individual parameter sets can be described in terms of mean-field physics
with a renormalized spin-dependent interaction |g1|〈nnorm〉 or within a few-particle model
or none of them.
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Figure 5.21: Essential part of the experimental cycle for the measurements on spin dynamics in
optical lattices. After a smooth ramp-up the initial state is prepared at a certain magnetic field
employing a rf π/2-pulse of 0.5 ms duration. Subsequently the magnetic field is switched to the
desired final value and the atoms are allowed to evolve for a variable time tevo. After that the lattice
potential is ramped down fast within 5 ms in order to obtain absorption images that are optically
dilute enough to unambiguously determine the particle numbers in the individual mF -states.

5.9.1 Experimental sequence

The experimental procedure for the presented results is as follows. After preparation of
BEC in |1,−1〉 with particle numbers of N ≈ 105 with no discernible thermal fraction, we
load the atoms in a three-dimensional optical lattice consisting of a 2D triangular lattice
and a perpendicular 1D standing wave. The individual lattice depths have been adapted to
yield equal U/zJ for the different spatial directions. After the final lattice depth has been
reached, we let the system relax to equilibrium for 5 ms before we apply a π/2-pulse to
prepare the well-known initial state |ζπ/2〉. At very low magnetic fields technical limitations
of the rf amplifier circuit render the initial state preparation by the aforementioned method
impossible. To circumvent this problem we prepare the initial state at a magnetic field
large enough to guarantee a reliable and reproducible initial configuration. Necessarily the
magnetic field has to be switched to the desired final value, which is done abruptly. We
have checked that the quantization axis is well defined throughout and after the switching
and that no zero crossings of the magnetic offset field are induced, which would shuffle the
populations of the different mF -states in an unpredictable way. We then hold the atoms
for a variable evolution time to allow spin dynamics to take place. In order to have atomic
samples which are not optically thick after time-of-flight, we quickly ramp down the lattice
within 5 ms following the end of the evolution time to obtain atomic clouds that allow for
a reliable and unambiguous atom number determination. Finally all trapping potentials
are switched off and after 21 ms of time-of-flight including Stern-Gerlach separation the
atoms are imaged with resonant light.

5.9.2 Below the phase transition: modified mean-field physics?

The obtained results can be analyzed in two different ways: First it is interesting to see
how amplitude and frequency of spin dynamics at a given magnetic field change when
the atoms are loaded in an optical lattice. Secondly the question whether the observed
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experimental regime XDF superfluid SF-MI crossover MI
n̄norm [1012 cm−3] 1.112 3.025 3.933 6.919

Table 5.2: Average normalized densities n̄norm = n̄/N
2/5
tot in lattices of different depth as employed

for the spin dynamics measurements. nnorm has been obtained in a Thomas-Fermi approximation
of the Bose-Hubbard model assuming Poissonian statistics as justified for a superfluid state (see
text for more details).

dynamics can still be described by the analytical solution

|ζ0(t)|2 = (1− k sn2
k(qt))/2, (5.68a)

|ζ±1(t)|2 = (1 + k sn2
k(qt))/4, (5.68b)

at least as long as a superfluid order parameter exists, can be approached by fitting the
model to the data and check the agreement. In the superfluid regime the addition of a
periodic potential should mainly show up in terms of an increased effective spin-dependent
coupling owing to an increased mean density. The resulting effective k will determine
frequency and amplitude of spin dynamics within this simple model. However different
additional effects e.g. caused by reduced mobility or an increased thermalization rate
might lead to deviations from this behavior and the data is carefully analyzed whether
any indications for those deviations can be found and whether they can be attributed to
a specific physical process.
To estimate atomic densities in the different lattice regimes we have employed a Thomas-
Fermi-like approximation of the Bose-Hubbard model for the superfluid regime and the
regime close to the SF-MI phase transition [156]. By assuming that the system is still well
described by a superfluid order parameter ψ, the solution of the Bose-Hubbard model can
be recast in a simple form, neglecting the kinetic energy term proportional to J (Thomas-
Fermi approximation) which makes the energy diagonal in the basis of individual lattice
sites i:

Ei ' εi|ψ|2 +
U

2
|ψ|4 = εin̄i +

U

2
n̄2
i . (5.69)

The single site chemical potential µ = ∂Ei/∂ni has to be replaced by its LDA value
µi = µ − εi in an inhomogeneous system. If the external potential varies slowly on a
length scale given by the lattice spacing this can be approximated by µ(r) = µ − V (r).
Imposing the normalization condition N =

∫
n(r) dr finally leads to an expression for the

chemical potential

µ =

(
15
16
Vcellm

3/2NUω̄3

√
2π

)2/5

, (5.70)

which allows to determine the density according to n(r) = (µ−V (r))/g0 and the Thomas-
Fermi average density 〈n〉 = 4/7n(0) in analogy to harmonically trapped BEC. The corre-
sponding densities are calculated by taking into account the particular harmonic trapping
frequencies ω̄ and onsite interaction matrix elements U and are summarized in Tab. 5.2.
To arrive at the average density the tabulated value has to be multiplied by N2/5 where
N is the total particle number of the individual experimental run.

Fig. 5.22 shows spin dynamics measurements in a crossed dipole trap (η = 0), in the
superfluid regime (η = 1.45) and in the vicinity of the SF-MI phase transition (η = 8.9)



118 CHAPTER 5. SPINOR BEC IN OPTICAL LATTICES

0 10 20 30 40 50
0.2

0.4

0.6

0.8

time [ms]

0 50 100 150 200

50 100 150 2000

0 50 100 150 200
0.2

0.4

0.6

0.8

1

0 10 20 30 40 50

0 10 20 30 40 50

0 10 20 30 40

0 10 20 30 40 50
time [ms]

10 20 30 40 500

0 10 20 30 40 50

0 10 20 30 40 50

0 10 20 30 40 50
time [ms]

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

XDF Superfluid Phase transition

30 mG

100 mG

270 mG

800 mG

50

Figure 5.22: Spin dynamics of a 87Rb F = 1 spinor condensate in optical lattices of various depth
starting in |ζπ/2〉. The individual graphs show the time evolution of the population in the mF = 0
state ρ0. Data is presented along with fits (solid lines) to determine oscillation amplitude and
period. The dotted vertical lines indicate the time up to which the fits have been performed.
While the left column shows measurements performed in a crossed dipole trap, the column in
the middle displays results obtained in an optical lattice corresponding to the superfluid regime
(η = 1.45). In the right column finally spin dynamics in the vicinity of the SF-MI phase transition
is presented (η = 8.9). The magnetic field increases from top to bottom.
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Figure 5.23: Spin dynamics at various lattice depths: oscillation amplitude and period. The
individual k-values have been calculated employing measured trapping frequencies and particle
numbers (see Tab. 5.2). Amplitude A and period 2π/B have been deduced from fits to the data
according to ρ0 = (1−A sin2(B ·(t+C)))/2. Comparison with the corresponding predictions of the
analytic solution Equ. 5.68 given in Fig. 4.8 reveals qualitative agreement for the measurements
performed at lattice depths below the deep MI regime (see text for more details).

at various magnetic fields. The time evolution of the mF = 0 population has been fitted
with a function ρ0 = (1−A sin2(B · (t+C)))/2 to extract the oscillation amplitude A and
period 2π/B.
We have tried to fit the analytic solution Equ. 5.68 to the data as well but this does not
give convenient results for the measurements performed at 30 and 100 mG for all lattice
depths that have been investigated. A similar phenomenon has already been observed for
spin dynamics in F = 2 presented in Chapter 4. The fits of the analytic solution to the
data assume that the single mode approximation can safely be applied. No effects of spa-
tial structuring are taken into account, since the population of the individual mF -states is
integrated over the whole condensate. In Chapter 4 it was found that for larger magnetic
fields or smaller k the SMA analytic solution fits much better to the data than in the
opposite case. This very fact is also true for the results obtained in the optical lattice at
270 and 800 mG, where Equ. 5.68 gives reasonable results.
A comparison of the k-value extracted from fits of the analytic solution with the k-value

obtained by calculating k = g1〈n〉/q directly, employing the observed total particle num-
bers according to Tab. 5.2, shows reasonable agreement with deviations |kfit−kcalc/kcalc| ≤
0.2 for most of the data sets recorded at magnetic fields of 270 and 800 mG. The measure-
ments at a magnetic field of 100 mG show qualitative agreement regarding the oscillation
period but the amplitude is systematically underestimated by the analytical model. Fi-
nally at 30 mG neither the observed oscillation period nor the amplitude is in accordance
with the SMA mean-field solution.
The individual images of the data series at small k corresponding to 30 and 100 mG show
strong local effects especially at low lattice depths and in the XDF which clearly indicate
the breakdown of the single mode approximation. Note however that the largest spin
dynamics amplitude occurs if the SMA remains valid. Spatially dependent oscillation fre-
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quencies can therefor not account for the larger amplitudes observed in our experiments.
Furthermore for evolution times beyond 50 ms the low magnetic field samples evolve to-
wards spin mixtures with ρ0 < 1/2 that are not governed by the mean-field solution at
all.
Additional unknown effects might be responsible for this evolution, possibly including
thermalization or a component demixing of |1, 1〉 and |1,−1〉 which would inhibit a re-
conversion to |1, 0〉. ρ0 would consequently take very small values after a reasonable
evolution time. Phase separation of |1, 1〉 and |1,−1〉 starts to play a role as soon as
the linear Zeeman energy associated with the residual magnetic field gradient across the
condensate ∆p = 2RBEC|∇B| overwhelms the quadratic Zeeman energy q.
As shown in Section 3.4 the quality of the gradient compensation is usually on the order
of |∇B| ≤ 0.2 mG/mm. For typical spatial extensions of the condensate of RBEC ' 10µm
the maximum difference amounts to ∆p/2π of a few Hz. Comparing this to the quadratic
Zeeman energy at B = 100 mG of q/2π ' 0.7 Hz indicates that component separation
might indeed be the reason for the long term evolution towards states with a very small
ρ0 that is observed for all data series performed at 100 mG and especially at 30 mG.
For deeper lattices the effect is slightly suppressed which might be explained by the reduced
mobility owing to the significantly reduced tunneling times tt = ~/Jtot. The tunneling
time increases from 1.8 ms in the superfluid regime to 6.7 ms close to the phase transition
and finally to 400 ms in the deep MI regime where tunneling is completely negligible.
However clear indications for these mechanisms can not be deduced from the data, al-
though component separation of |1, 1〉 and |1,−1〉 can be observed in some of the ab-
sorption images mainly those recorded in the XDF and the superfluid regime. At larger
magnetic field this effect can not be observed within our optical resolution and sensitivity
concerning particle number determination.

On the other hand thermalization leads to a rapid decohering of the thermal atoms
followed by an equipartition among the individual thermal clouds of different magnetic
states as already described in Section 4.2.1. As a result the atom number in the mF = 0
thermal cloud decreases, which is maintained by condensation of excess atoms. The con-
densate fraction ρ0 consequently grows. Since large effort has been taken to work at very
low temperatures, strong thermalization effects are not expected. The absence of a growth
of ρ0 indicates that thermalization is not responsible for the observed long term evolution
of the low-B samples. Note however that condensate and thermal fraction have only been
determined separately for the XDF measurements while the particle numbers obtained for
the other three regimes are total atom numbers.
Fig. 5.23 shows oscillation amplitudes and periods extracted from the fits to the data as
presented in Fig. 5.22. Excluding the measurements at 30 mG a qualitative agreement
of the course of the oscillation period as compared to the predictions of the mean-field
solution is observed. The similarity of the results at 30 and 100 mG are not explained
within the analytic solution. It could be an indication for an additional physical process
that dominates ”free” spin dynamics at very low B-fields. The currently available data
sets do not allow to further specify any possible processes.

In conclusion the observed spin dynamics of 87Rb in F = 1 in an optical lattice shows
qualitative agreement with the mean-field solution raised in Chapter 4, as long as the
lattice is shallow enough to maintain a significant superfluid fraction. The differences in
the results at different lattice depths can mainly be reduced to an effective spin-dependent
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N = 6 · 104 N = 8 · 104 N = 12 · 104

site occupation n̄ Rn̄−1[10µm] Nn̄[104] Rn̄−1[10µm] Nn̄[104] Rn̄−1[10µm] Nn̄[104]
1 0.94 1.29 1.00 1.39 1.10 1.54
2 0.79 2.09 0.86 2.33 0.97 2.69
3 0.60 2.13 0.70 2.65 0.83 3.32
4 0.32 0.49 0.47 1.62 0.65 3.20
5 - - - - 0.40 1.24

Table 5.3: Integrated particle numbers Nn̄ of the individual Mott-shells according to [171]. Data
is presented for the spin dynamics experiments in the deep MI regime for different total particle
Numbers.

interaction g1〈nnorm〉. Especially at low magnetic fields local effects complicate the analysis
of spin dynamics at all lattice depths and inhibit an accurate quantitative comparison.

5.9.3 Spin dynamics in the MI regime

The character of the observed spin dynamics changes in the deep MI regime. The afore-
mentioned approximations assumed for the measurements below the critical point seem
not plausible anymore if we go to a sample of isolated, localized few-atom systems. The
system consists of Mott-shells with different occupation numbers which will exhibit spin
changing dynamics with a frequency and amplitude that is among others determined by
the particular number of particles per lattice site.
Averaging the density over all Mott-shells to arrive at an effective overall k does not seem
to be a very promising starting point in order to describe the resulting spin dynamics. It
appears much more plausible that the overall population dynamics will be a superposition
of the contributions from different Mott-shells weighted with the relative particle number
in the individual shell.
It remains true that the spin-dependent coupling takes a renormalized form g̃1 = g1 ·∫
|w0(r)|4 dr, where w0(r) denotes the Wannier function for a particular lattice depth.

Even though interaction effects tend to broaden the single site wave function for occu-
pations ni > 1 and thus lower the density as compared to the non-interacting value
〈nNI〉 = ni ·

∫
|w(r)|4 dr, the former expression still constitutes a reasonable approxima-

tion to the exact density. The corrections to the density due to interaction effects are on
the order of ∆n = 1/(1 + 0.01ni) [189]. To obtain the weighting factors we have employed
the zero-tunneling Mott-shell model from [171] already introduced in the context of the
SF-MI transition. Tab. 5.3 lists the atom numbers per Mott-shell for the range of total
particle numbers observed in our experiments.

The measurements are presented in Fig. 5.24 and clearly show conceptional differences
to the results in shallower lattices. Moreover it is evident that coherent oscillations as
observed in [72] cannot be traced for more than half a period or sometimes one complete
period. As recently shown in the group of Prof. D. Pfannkuche [190] the amplitude be-
havior for few-atom spin dynamics at a single lattice site exhibits a resonant phenomenon
similar to the mean-field results for the initial state |ζπ/2〉. This resonance should be de-
termined by kniMI = 1 where kniMI = q/(2ni−1)g̃1 is the critical parameter for spin dynamics
involving ni atoms. Regarding our measurements this behavior can not be confirmed.
We observe almost equal amplitudes of the initial oscillation for all magnetic fields except
at 270 mG where the amplitude is smallest in contrast to the results for shallower lattices.
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Figure 5.24: Experimental results for spin dynamics in the deep MI regime corresponding to
η = 1.3 · 103.

Starting in |ζπ/2〉 the maximum amplitude in the few-atom model is limited to 0.125 for
two atoms on resonance. For higher particle numbers and off-resonant kniMI this value is
further reduced [190]. The initial oscillation amplitude in our experiments clearly exceeds
this value.
The frequency spectrum of spin dynamics in the few-atom model for ni ≥ 3 is character-
ized by a primary oscillation frequency ω ∼ q and a beat note at approximately 2g̃1 for
large magnetic fields. The latter is in harsh contrast to the mean-field predictions. As
a striking result the period of the beat note is the same for all particle numbers ni for
kniMI � 1. Thus it should in principle be possible to observe this beat note in an inhomo-
geneous system regardless of the many different onsite occupation numbers present.
For our experimental parameters a beat note frequency of 2π · 2g̃1 = 2π · 13 Hz would be
expected, which means that the first zero in ρ0 is expected after 40 ms. For the measure-
ments at B = 800 mG the decrease of the oscillation amplitude is on the same order of
magnitude as this value. However, since we are not able to observe a recurrence of the
full or even partial amplitude it can not be argued that this causes the decrease of the
amplitude or if simply thermalization or decoherence lead to the observed decrease.

Concluding it can be stated that non of the models discussed in this section is capable
to describe the observed amplitudes correctly. The quality of the data will have to be
improved significantly in future experiments to compare it to the theoretical prediction
in more detail. Mott-shell resolved detection of spin dynamics would circumvent the
intrinsic inhomogeneity if the system in a certain way and allow for an observation of spin
dynamics for a single occupation ni. The experimental sequence should also be refined and
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the final ramp-down of the lattice should by avoided at least for the MI measurements.
An unpredictable dynamical evolution may take place during that time, obscuring the
dynamics that occurs in the deep lattice.

5.10 A Zeeman-Bragg resonance - polarization effects

The adjustment of the polarization of the three lattice beams creating the triangular lattice
constitutes a serious problem, since measuring devices can not be used at the experiment,
simply because there is not enough room to place them somewhere in the optical path.
On the other hand it is crucial to make sure to have very clean polarizations to avoid any
kind of Zeeman induced optical pumping to other mF -states. This is especially important
when studying phenomena related to spin changing dynamics inside the lattice at very
low magnetic fields.
We have studied this Zeeman-Bragg effect for very low magnetic fields at our experiment.
A significant transfer of atoms - coherent Rabi oscillations on a short time scale could
be observed - occurs only when the energy associated with the the Bragg-like momentum
transfer from two lattice beams matches the energy difference between the two mF -states
given by the linear Zeeman effect.
Furthermore to undergo a mF -state changing Bragg transition angular momentum has to
be transferred to the atom. It is thus only possible, if the polarization of the two beams
is not equal. Another important difference to conventional Bragg scattering is the fact,
that the process is not sensitive to the sign of the momentum transfer, since the energy
needed to fulfill energy conservation is provided by the Zeeman energy and not by the
detuning between the two beams as usual. This detuning is in fact always zero inside the
lattice, which prohibits any real two-photon transitions when the polarization is perfectly
adjusted.
Recalling the angle dependent momentum transfer mediated by a 2-photon Bragg process

∆pφ = 2~kL · sin
(
φ

2

)
, (5.71)

the corresponding free-particle energy transferred by either two beams of the triangular
lattice is easily calculated as Efree = ∆p2

φ/2m = (10.0 ± 0.4) kHz, where a pessimistic
estimate for the accuracy of the angle adjustment of ∆φ = ±2◦ has been made 9. Naturally
the transferred momentum corresponds to a reciprocal lattice vector of the triangular
lattice.
It is straight forward to calculate the Zeeman energy that is freed by making a transition
with ∆mF = +1:

∆EZM = µBgF |Boff |. (5.72)

For a first-order Bragg process we expect therefor a resonance at a magnetic field on the
order of 15 mG. This is in fact a small value that demands for a very precise control of
the magnetic field (compare Section 3.4).
Fig. 5.25 provides a schematic representation of the first and second order Zeeman-Bragg
processes as observed in our experiment. The magnetic field in Fig. 5.25 is chosen to be
resonant with the second order process, where a 4-photon transition with the corresponding
energy transfer 2Efree transfers the atoms from |− 1, p = 0〉 to |+ 1, p = 2∆pφ〉. Note that

9The angles enclosed by the beams can be deduced from the reciprocal lattice vectors determined
through absorption images.
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Figure 5.25: Momentum-energy scheme for first- and second-order Zeeman-Bragg processes. The
linear Zeeman effect provides the energy necessary to fulfill energy and momentum conservation
according to the systems dispersion ω∆p. Exemplary absorption images are displayed showing
atoms in |mF = −1, p = 0〉, |mF = 0,∆pφ〉 and |mF = +1, 2∆pφ〉 (see text for more details).

only two beams of the triangular lattice have been employed for all results presented in
this section. Their polarizations have been chosen to be π for one beam and 1/

√
2(σ+ +

σ−) (linear in the plane spanned by the lattice beams) for the other. The resulting
optical potential does not show any periodic structure in harsh contrast to the usual
lattice geometry. However, if not perfectly aligned the triangular lattice with small in-
plane polarization components exhibits exactly the same mF changing transitions at low
magnetic field. This renders the investigation of spin changing dynamics almost impossible
and even more severely leads to strong heating that destroys any quantum degeneracy.
Note that the process involving ∆mF = 2 from |1,−1〉 to |1,+1〉 which would be expected
for two beams with 1/

√
2(σ+ + σ−) polarization and ∆EZM = 2 · 30 mG is not allowed

for this particular experimental situation, as can be seen by coherently adding up the
transition strength according to Equ. 3.34. We have checked this and did not find any



5.10. A ZEEMAN-BRAGG RESONANCE - POLARIZATION EFFECTS 125

8 9 10 11 120.1

0.3

0.5

0.7

|B|/(µBgF) [Hz] 

m
F=

0 
po

pu
la

tio
n

ω=2π*10.8531s-1

19 20 21 22 230

0.01

0.03

0.05

m
F=

+1
 p

op
ul

at
io

n

ω=2π*20.6837s-1

|B|/(µBgF) [Hz]

Figure 5.26: Measurements of the Zeeman-Bragg resonances for first-order |mF = −1, p = 0〉 →
|mF = 0,∆pφ〉 and second-order processes |mF = −1, p = 0〉 → |mF = 0, 2∆pφ〉. The magnetic
field Boff has been varied and short (Ω0τ < 1) Bragg pulses have been applied to the system.
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Figure 5.27: Magnetic field calibration at very low fields. The rf-amplifier and- antenna usually
employed at our experiment do not work properly anymore at such low frequencies. Instead, the
current through offset field coils has been modulated at the corresponding frequencies.

detectable transfer of population confirming the theoretically expected vanishing of the
two-photon transition
We have measured the transfer to the first- and second-order Bragg states in dependence on
the magnetic field Boff . Bose-Einstein condensates of N ≈ 80000 particles are prepared in
a crossed optical dipole trap with ω̄ = 2π×90 s−1. in |F = 1,mF = −1〉. Subsequently the
atoms are exposed to a Bragg pulse of tBragg = 1 ms duration with a power of P = 90 mW
in each beam at a wavelength of 830 nm. Directly after the pulse all trapping potentials are
switched off and the atoms are imaged after a TOF including Stern-Gerlach separation.
The results of these experiments are shown in Fig. 5.26 and clearly demonstrate the
resonant character of the underlying physics. The energies associated with the observed
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resonances are E1st = h·10.85 kHz and E2nd = h·20.68 kHz. Besides the uncertainty of the
exact angle ∆φ = 2◦=̂0.4 kHz and a possible maximum error in the gauging of the magnetic
field of ∆B = ±1 mG=̂0.7 kHz (see Fig. 5.27) a systematic shift to an energy larger than
the free particle dispersion law, which would correspond to energies of E1st = h ·10.01 kHz
and E2nd = h · 20.02 kHz, is observed.
Since the atoms are in a harmonic trap rather than being free and non-interacting, a first
step towards the explanation of this shift is the inclusion of first-order Bogoliubov theory.
Applying the local density approximation to account for the inhomogeneity of the trapped
system yields the famous dispersion law [102]

ε(~r, ~q) =

√
~2q2

2m

(
~2q2

2m
+ gn(~r)

)
. (5.73)

Moreover two-photon scattering events in cold gases probe the imaginary part of the
response function, which is strongly connected to the dynamic structure factor. A rigorous
calculation [102] finally results in an expression for the shift of the expected resonance peak
relative to the free case for a Thomas-Fermi condensate

∆ωpeak =
2
3
µ

~
. (5.74)

Plugging in our experimental values to obtain µ, we arrive at a shift of ∆ωpeak = 2π ·
(950± 120) s−1. This is in qualitative agreement with the measured deviations from ωfree

which amount to ∆ωexp
peak,1st = 2π · 885 Hz and ∆ωexp

peak,2nd = 2π · 680 Hz. To nail down
this effect measurements for different atomic densities and/or different angles between the
beams could be employed. This is however far beyond the scope of this work, although
the Zeeman-Bragg effect has been observed for the first time in our experiment to our best
knowledge.
So far we did only employ this effect to calibrate the polarization of the three-beam lattice.
Future experiments involving the hexagonal lattice might need to investigate the Zeeman-
Bragg effect or related physical phenomena in much more detail.
Finally Fig. 5.28 shows coherent Rabi oscillations between |mF = −1, p = 0〉 → |mF =
0,∆pφ〉. The observed Rabi frequency Ωexp = 2π · 1.99 kHz is in good agreement with
the theoretical value Ωtheo = 2π · 3.29 kHz obtained by solving Equ. 3.34 explicitly and
taking into account the large uncertainty in the determination of the exact intensity at
the position of the atoms. This is due to the fact that neither the exact waist size w(z) at
the position of the atoms nor the intensity can be appropriated to better than 20− 30%.

5.11 Conclusion and Outlook

In conclusion the physics of ultracold 87Rb atoms in a triangular optical lattice has been
investigated. An appropriate experimental upgrade of the apparatus has been designed
and implemented that allows for the generation of a triangular as well as a spin-dependent
hexagonal lattice. Measurements on the superfluid-Mott insulator transition in a three-
dimensional optical lattice composed out of a triangular lattice and a perpendicular stand-
ing wave have been performed. Moreover this quantum phase transition has been studied
in detail in a quasi two-dimensional system exhibiting a triangular symmetry for the
first time. The additional spatial dimension has been frozen out using a very tight one-
dimensional lattice.
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Figure 5.28: Fraction of atoms in the |mF = 0,∆pφ〉 as a function of time. A nice sinusoidal
oscillation is observed. Exemplary absorption images are presented for comparison. Paying to
the large harmonic confinement, the coherence time is only on the order of few ms. For longer
observation times the atoms are heated and begin to spill out of the trap.

Visibility as well as the condensate fraction and the width of the interference peaks have
been analyzed in detail to develop a concise understanding of the physics in our highly
inhomogeneous system. Proof-of-principle measurements attending to noise-correlation
spectroscopy have been conducted promising further studies of magnetically ordered or
frustrated phases in future experiments.
Spin dynamics of 87Rb in F = 1 in lattices of variable depth has been studied and it
was shown that qualitatively the change of oscillation period and amplitude can still be
explained within a mean-field description with an effective coupling constant. Albeit
additional interesting but unexplained effects appear that require further investigation.
Measurements performed in the Mott insulating regime suffer from the large degree of
inhomogeneity present in our experiments.
Future experiments will aim at a selective detection of sites with a given occupancy thus
hopefully enabling us to consecutively study spin-dynamics of two, three, four, ... atoms.
The investigation of the hexagonal lattice by further improving the optical power of the
lattice laser or reducing the detuning holds fascinating prospects concerning the initializa-
tion of anti-ferromagnetically ordered phases or the suppression of spin dynamics by spin
selective tunneling processes.
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The interplay of magnetic contact interaction and permanent and optically induced dipole-
dipole interaction together with a spin-dependent lattice potential moreover promises a
whole wealth of new and fascinating physical effects.



Chapter 6

Oscillations and interactions of
dark and dark-bright matter-wave
solitons

As described in detail in the introduction, Solitons are distinguished as wave packet like
objects that do not change their shape and propagate with a constant velocity in homoge-
neous systems. A detailed balance between dispersion induced spreading and a focusing
or defocusing mediated by a non-linear interaction stabilizes the soliton as it propagates
through a well suited non-linear medium. Bose-Einstein condensates that can be described
within the framework of the Schrödinger equation exhibiting a cubic non-linearity repre-
sent an especially well suited system to investigate solitons.
In this chapter experiments on dark and dark-bright solitons in elongated Bose-Einstein
condensates are presented. Due to spectacular long life times oscillations as well as colli-
sions of different types of solitons could be observed for the very first time in the framework
of this thesis. After an introductory theoretical derivation of the most important physical
properties of dark and dark-bright solitons it will be explained how solitary excitations
can be generated in a BEC employing a high resolution optical phase imprinting method.
We will then turn to experimental results regarding the oscillation of a dark soliton in a
harmonically trapped elongated BEC, showing good agreement with theoretical predic-
tions. Collisions of two dark solitons will be presented subsequently. Both phenomena
have been observed within this dissertation for the first time, enabled by unsurpassed long
lifetimes of the produced dark solitons as long as several seconds.
The last part of this chapter is devoted to the physics of dark-bright solitons in a multi-
component 87Rb BEC, where the density notch of a dark soliton in |1, 0〉 is filled with
atoms in another hyperfine state |2, 0〉. Interestingly strongly populated dark-bright soli-
tons initially propagate in the direction opposite to unperturbed dark solitons. Moreover
the oscillation period of dark-bright solitons is dramatically extended as compared to dark
solitons as will be shown.

The results presented here have been published in two articles appearing in peer-
reviewed journals. In [3] oscillations of dark and dark-bright solitons in elongated BEC
are discussed, whereas [2] reports on collisions of two dark solitons in a condensate.
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6.1 Theoretical prerequisites for the understanding of soli-
tons

The theoretical prerequisites for understanding the physics of dark- and dark-bright soli-
tons include the cross over from 3D to quasi 1D BEC. It turns out that dark solitons are
only dynamically stable if the excitation of transverse modes of the condensate is strongly
suppressed as will be discussed in more detail during this section. The wave function of
solitary solutions of the single- and multi component one-dimensional GPE will be pre-
sented and the equation of motion of a soliton in an externally trapped BEC is given. It
will be discussed which decay mechanisms tend to decrease the life time of the soliton and
how these mechanisms are avoided in our experiments. Finally the theoretical findings
concerning interaction of solitons will be presented shortly in view of the various collision
experiments that have been conducted within this thesis.

6.1.1 Quasi-1D condensates

If a BEC is confined in a strongly anisotropic trap ω⊥ � ωz the dimensionality of the
system may undergo a transition from three-dimensional to quasi one-dimensional if the
energy associated with transverse trapping is much larger than the chemical potential
γ := ~ω⊥/g0〈n〉 � 1. 1 It is thus useful to derive an effective one-dimensional GPE for
condensates that fulfill the above restriction. The wave function for such a system can be
written as the product of an arbitrary longitudinal function and the ground state wave
function of the harmonic potential in the transverse direction ψ(r) = ψ(z) · φ(r⊥). Sub-
stituting this into Equ. 2.7 the 3D GPE can be reduced to an effectively one-dimensional
equation:

i~
∂

∂t
ψ(z, t) = − ~2

2m
∂2

∂z2
ψ(z, t) + Vext(z, t) + g1D|ψ(z, t)|2ψ(z, t). (6.1)

The one-dimensional coupling constant is given by g1D = 2~ω⊥a = g0/(2πa2
HO), where

aHO is the harmonic oscillator length and a the s-wave scattering length determining
interatomic interaction. The 1D density n1D(z, t) = |ψ(z, t)|2 is connected to its 3D
counterpart by

n1D(z, t) = n(r⊥ = 0, z, t)πa2
HO (6.2)

For tight harmonic trapping the effective density is found by transverse averaging leading
to n̄(z, t) = 1/2n(r⊥ = 0, z, t). 2 Other important properties of the condensate are also
affected by this transverse averaging. The healing length and speed of sound in a quasi
one-dimensional BEC have to be replaced by

ξ̄(z, t) =
√

2ξ(r⊥ = 0, z, t) and c̄s =
1√
2
cs(r⊥ = 0, z, t) (6.3)

respectively, as compared to their corresponding values in a 3D system. This will be
important since healing length and speed of sound are fundamental measures determining

1 Throughout literature various definitions can be found, deciding whether a BEC can be described
within the one-dimensional limit. One of the most established is characterized by the parameter γ′ :=
(ωz/ω⊥)Na/aHO. Only if γ′ � 1 can a BEC be regarded to behave one-dimensional.

2 In the opposite limit of an elongated 3D Thomas-Fermi BEC the (hydro-dynamic) transverse averaging
results in a factor of 1/2 for the mean density as well [191]. This result has been confirmed experimentally
[192]
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the basic properties of solitons.
The density distribution of an axially harmonically trapped condensate in the Thomas-
Fermi limit is simply given by

n1D(z) = n1D, 0 ·max
(

1− z2

R2
z

, 0
)

(6.4)

where n1D, 0 = n(r = 0)πa2
HO = µ/g1D. The Thomas-Fermi radius Rz is given as usual by

Rz =
√

2µ/mω2
z . The mean density is evaluated to 〈n1D〉 = 4/5n1D, 0. In our system the

two different criteria for being one-dimensional introduced above typically take values of
γ ≈ 4 and γ′ ≈ 13. They are both far away from being much smaller than one.
As we will see the solitons generated in our experiments are nevertheless highly stable and
behave almost as if they were strictly one-dimensional.

Dimensionless GPE

Following [27] it is very useful to rewrite the GPE in a dimensionless form as will be-
come clear especially in the case of a multi-component BEC. By introduction of new
dimensionless variables for energy E′ = E/(~ω⊥), length x′ = x/

√
~/(mω⊥) and wave

function ψ′i = ψi
√
gii/(~ω⊥) where gij are intra- and inter-species interaction parameters

the dimensionless form of Equ. 6.1 is given by

i
∂

∂t′
ψ′ =

(
1
2
∂2

∂x′2
+ V ′ + |ψ′|2

)
ψ′ (6.5)

Having found the necessary expressions for quasi one-dimensional condensates we can
now commence and investigate solitary solutions of the corresponding GPE.

6.1.2 Dark solitons in Bose-Einstein condensates

Homogeneous system

The solitary solutions of Equ. 6.1 can be divided into two fundamentally different classes,
depending on the nature of the atomic interaction basically given by the s-wave scattering
length a. For attractive interactions (a < 0) bright solitons are a solution to Equ. 6.1
[13, 22, 23, 26]. Characterized as a non-spreading wave packet they constitute the ground
state of the underlying system and are only stable up to a critical particle number Nc

above which the condensate is liable to an interaction induced collapse [193].
In the course of this thesis solitons in 87Rb Bose-Einstein condensates which interact
repulsively (a > 0) have been investigated. The soliton solutions for repulsive interaction
are called dark solitons and manifest as a depression in the local density of the condensate
accompanied by a certain phase slip that is acquired when passing the nodal plane of
the soliton. As a solution to Equ. 6.1 the wave function of a dark soliton at position q
propagating along z with a velocity q̇ can be written as [194, 195]

ψD(z, t) =
√
n1D, 0

{
i
q̇

c̄s
+

√
1− q̇2

c̄2
s

tanh [κ (z − q(t))]

}
e−ign0t/~. (6.6)

We recall from Chapter 2 that the speed of sound in a quasi-1D condensate is given
by c̄s =

√
n0g/2m and n0 is the peak density of the condensate. The inverse size of
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Figure 6.1: Density (left) and phase (right) distribution of dark solitons for different velocities in
units of the speed of sound. Note that length is given in units of the healing length ξ̄.

the soliton κ is determined by the healing length ξ̄ = ~/mc̄s and the soliton speed q̇
through κ = ξ̄−1 ×

√
1− (q̇/c̄s)2. The phase and density distributions of a dark soliton

are schematically shown in Fig. 6.1. As depicted, the phase only shows significant changes
in the vicinity of the nodal plane of the soliton and is constant elsewhere.

Crossing the nodal plane of the soliton, the wave function accumulates a specific phase
slip between 0 and π depending on the depth and speed of the dark soliton related by
ns/n1D, 0 = 1 − (q̇/c̄s)2 = sin2(∆φ/2) where ns denotes the missing density at the posi-
tion of the soliton and ∆φ = φ(z → −∞, t) − φ(z → ∞, t). A phase jump of ∆φ = π
corresponds to a fully modulated soliton with zero velocity representing the only time in-
dependent soliton solution of the GPE. This particular solution is sometimes called black
soliton as opposed to other dark solitons named gray solitons in this context which are
not fully modulated.
The explicit form of the solution Equ. 6.6 is often found in literature concerning only dark
solitons.

With regard to the experiments on dark-bright solitons it is however very instructive
to state an alternative notation, which can directly be assigned to the solution for dark-
bright solitons [39]. Accordingly the wave function of a dark soliton can also be expressed
as

ψD(z, t) =
√
n1D, 0

{
i sin(α) + cos(α) tanh [κ (z − q(t))]

}
e−ign0t/~. (6.7)

with the supplementary definitions

κ = ξ̄−1 cos(α)

q̇ =
~κ
m

tan(α)

= c̄s sin(α).
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The velocity angle −π/2 ≤ α ≤ π/2 parametrizes the solution Equ. 6.7 and unambiguously
determines depth, width and speed of the soliton. Similar conclusions as those drawn from
Equ. 6.7 remain true for dark-bright solitons, with the modification that another param-
eter, the number of particles in the bright component, enters the expressions for κ and q̇.

Following [20] it is straight forward to calculate the energy of the dark soliton according
to

EDS =
∫ (
− ~2

2m
ψ?D

∂2

∂z2
ψD +

1
2
g0(|ψD|2 − n1D, 0)2

)
dz. (6.8)

The contribution of the homogeneous background without soliton n0 has been subtracted
in order to guarantee convergence of the integral. The result obtained from the above
expression reads

EDS =
4
3
g0n

2
1D, 0ξ̄ cos3(α) =

2
3
MDS (c̄2

s − q̇2), (6.9)

where the mass of the dark soliton is given by MDS = mn1D, 0 2ξ̄ cos(α) and corresponds
to the mass of the atoms that have been pushed aside by the dark soliton. 3 In this sense
a dark soliton can be regarded as a ”hole” similar to the definition of e+ charge carriers
used in solid state physics. Interestingly the energy of the soliton decreases with increasing
velocity and smoothly disappears as q̇ → cs. Because of the above peculiar properties a
negative mass is frequently assigned to dark solitons in literature.

Inhomogeneous systems: Equation of motion

Concluding the preceding section it has to be emphasized again that in a homogeneous
system a soliton propagates at a constant velocity without any change of its amplitude or
width. This situation changes when one studies dark solitons in a Bose-Einstein conden-
sate which is usually externally trapped and thus naturally constitutes an inhomogeneous
system, where the atomic density decreases smoothly from its maximum value n0 to zero
at the edges of the condensate. The dynamics of dark solitons in inhomogeneous BEC
has been vastly investigated theoretically. Analytical [27, 28, 29, 30] as well as numerical
approaches [31, 32] agree with each other concerning the results for dark soliton dynamics
in a trapped BEC. The most striking outcome is that a dark soliton is subject to the
following equation of motion just like a classical particle.

mq̈(t) = −1
2
∂V (z)
∂z

. (6.10)

A beautiful derivation of the equation of motion in the framework of the local density
approximation substituting the speed of sound by its local value c̄s → c̄s(z) in Equ. 6.9
can be found in [29]. The ratio of the negative soliton mass to the likewise negative
TF density potential of the BEC −MDS/ − VTF(z) is precisely twice the ratio of atomic
mass to external potential m/V (z). Therefore the soliton behaves like a classical particle
with mass −2m in a potential −V (z). If V (z) is a harmonic potential, the soliton will
consequently oscillate at a frequency given by Ω = ωz/

√
2. Note that the soliton does

not change its depth while it oscillates in the condensate. The turning points of the
oscillation are hence determined by the condition that the remaining condensate density

3 In literature one often finds the definition EDS = 1
3
M ′DS (c̄2s − q̇2)3/2 where M ′DS = 4mn1D, 0ξ̄. This

is mathematically beautiful since the mass does not depend on the velocity. However M ′DS does not
correspond to the real mass of the soliton.
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vanishes: n1D, 0(Z) = ns. Extracting the turning points thus provides a useful check
for the results obtained for the soliton depth ns and the initial soliton speed q̇(t = 0)
directly obtained from the absorption images as described in more detail later. Since
oscillation frequencies can be determined with very high accuracy the observation of a
soliton oscillation should provide an unambiguous test of the theoretical prediction and
a confirmation of this paradigm of particle-wave dualism: A matter wave composed out
of microscopic particles behaves like a mesoscopic classical particle again. The above
results have been obtained in strictly one dimensional systems at zero temperature. Few
theoretical work addressed configurations where the criterion for being one-dimensional
is not strictly fulfilled [196] and found slight deviations towards higher values for the
expected oscillation frequency.

6.1.3 Dark-bright solitons in multi-component condensates

In multi-component Bose-Einstein condensates the possibility of establishing vectorial soli-
tons exists: A dark soliton in one component of the BEC hereafter denoted by ψd may
be ”filled” with a bright soliton being composed out of atoms in another component ψb.
The bright soliton is trapped in the co-propagating dark soliton and is stable despite of
the defocusing properties of the non-linear medium. In the context of this thesis the two
components are represented by two different hyperfine states of 87Rb namely |1, 0〉 and
|2, 0〉. States which are not liable to the linear Zeeman effect have been chosen to avoid
any disturbance of the preparation process or the dynamics by residual magnetic stray
fields. The dimensionless coupled GPE for this particular system read [39]

iψ̇d = −1
2
ψ′′d +

(
Vd + |ψd|2 + gd|ψb|2 − µ

)
ψd (6.11)

iψ̇b = −1
2
ψ′′b +

(
Vb + |ψb|2 + gb|ψd|2 − µ−∆

)
ψb. (6.12)

where ψd and ψb are the wave function of the dark and bright component respectively, the
Vi being external potentials and µb = µ and µd = µ+ ∆ are the chemical potentials. The
intra-species interaction parameters gii are normalized to unity, whereas the inter-species
interaction parameters gij are very close to unity in the case of 87Rb . The corresponding
soliton solutions can be written as

ψd(z, t) = i
√
n1D sinα+

√
n1D cosα tanh{κ(z − q(t))} (6.13)

ψb(z, t) =

√
N ′bκ

2
eiφ eiΩbt ei zκ tanα sech{κ(z − q(t))}. (6.14)

N ′b is the rescaled number of particles in the bright component. The phase factor in ψb

is relevant only for collisions of two or more dark-bright solitons which are only covered
qualitatively. κ =

√
n1D cos2 α+ (N ′b/4)2 −N ′b/4 is the inverse length of the dark-bright

soliton which is clearly expanded by the Thomas-Fermi-like repulsion of the bright compo-
nent as compared to the unperturbed dark soliton (see Fig. 6.2). Rewriting this expression
in SI units yields

κ ξ̄ =

√
cos2 α+

(
Nb

4n1D ξ̄

)2

− Nb

4n1D ξ̄
. (6.15)
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Figure 6.2: Density distribution of
dark-bright solitons for different fill-
ing factors NB/(n0ξ̄) and cos(α) =
0.25. The density of |1, 0〉 is plotted
in blue whereas the red curves depict
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For the experimental parameters of the dark-bright soliton experiments we obtain κ−1 =
6.7µm from the above expression. The velocity of the dark-bright soliton is given by an
expression formally identical to that of a dark soliton.

q̇ =
~κ
m

tan(α) (6.16)

The frequency shift of the bright relative to the dark soliton is given by

~Ω =
~2κ2

2m
(1− tan2 α)−∆ (6.17)

and is composed out of the excess kinetic energy of the dark soliton Ekin
d = ~2κ2/2m tan2 α,

the binding energy of the bright soliton in the well formed by the dark soliton Epot
b =

−~2κ2/2m and the difference in the two chemical potentials µb − µd = ∆.

Equation of motion for a dark-bright soliton

Following [39] the equation of motion of a dark bright soliton can be derived from the free
energy of the dark-bright soliton and reads

mq̈(t) = −1
2
∂Vd(z)
∂z

− 1
2

1√
1 +

(
4ξ̄n1D,0

Nb

)2

∂(Vd(z)− 2Vb(z))
∂z

, (6.18)

where Vd,b(z) denote the external potential felt by the individual components. If the
particle number in the bright component is large enough Nb � 4ξ̄n1D,0 this equation can
be simplified to

mq̈(t) = −1
4

(
4ξ̄n1D,0

Nb

)2
∂Vd(z)
∂z

+

(
1− 1

2

(
4ξ̄n1D,0

Nb

)2
)
∂(Vb(z)− Vd(z))

∂z
. (6.19)

For the present experiments the difference in the dipole potentials for the individual hy-
perfine states (Vb − Vd)/Vd is exceedingly small so that the second term in Equ. 6.19 can
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safely be neglected for typical values of 4ξ̄n1D,0/Nb.
The resulting equation of motion

mq̈(t) = −1
4

(
4ξ̄n1D,0

Nb

)2
∂Vd(z)
∂z

(6.20)

is solved by an oscillatory behavior of q(t) with a frequency given by

ΩDB =
ωz
2
α(Z)

4ξ̄n1D,0

Nb
. (6.21)

α(Z) is an amplitude dependent factor that can easily be determined numerically for a
particular choice of Vd(z). Note that even for a harmonic trapping potential α depends on
the oscillation amplitude and renders Equ. 6.21 a non-linear equation of motion. It can
be seen that for large particle numbers in the bright component Nb � 4ξ̄n1D,0 the motion
of the dark-bright soliton is drastically slowed down as compared to a dark soliton.

6.1.4 Stability of solitons in Bose-Einstein condensates

The stability of solitons and especially dark solitons in Bose-Einstein condensates strongly
depends on the dimensionality and the temperature of the system. In the past decade the
theoretical effort to explore the stability of dark solitons in BEC has been tremendous
Dimensional [33, 34, 35, 36, 37] as well as thermodynamic [34, 37, 38, 32] stability analysis
has been performed.
Strictly speaking a dark soliton is only stable in pure 1D BEC without any small-scale
fluctuations of the non-linear interaction. However as long as the available energy in the
Bose-Einstein condensate µ = g0n0 is much smaller than the energy associated with trans-
verse trapping ~ω⊥ no transverse modes can be excited and the condensate remains in
its transverse ground state for all times. In this case the BEC can be treated as being
quasi one-dimensional and solitons should be perfectly stable at zero temperature. If the
above restriction is relaxed, the transversely varying density leads to a speed of sound that
depends on the transverse coordinate. As a result the nodal plane of the soliton will start
to bend and eventually decay into vortex-antivortex pairs [37, 36], a process known as
transverse dynamical instability or snake instability which has been observed in [12, 21].
The time-scale for this decay has been found to be on the order of the inverse of the
transverse trapping frequency ω⊥ [37]. These authors report moreover that black solitons
are stable in Bose-Einstein condensates where g0n0/~ω⊥ . 2.5.
In the context of a transversely varying density the condition of being one-dimensional can
be reformulated as the requirement that the soliton length be much larger than the trans-
verse extension of the condensate: the wavelength of transverse excitations destabilizing
the soliton must be larger than the soliton width in order to have a recognizable effect [37].
For tight transverse trapping the transverse extension of the condensate is approximately
given by the harmonic oscillator ground state leading to the expression aHO/2ξ̄ � 1 as the
criterion for dynamical stability. As soon as the above parameter exceeds unity transverse
instabilities arise and lead to a fast decay of the soliton. Note that faster solitons have a
larger width according to Equ. 6.6 and are therefor stable in less restricted geometries as
compared to deep and slow solitons. Especially dark-bright solitons which are broadened
to many healing lengths in the case of large filling should hence be much less susceptible
to transverse instability and exhibit drastically longer lifetimes [39].
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Solitons are collectively excited states of the condensate which means that their energy
is always larger than that of the corresponding ground state condensate without a soliton.
Since solitons do not carry any topological charge they can in principle be transferred to
the ground state by any kind of dissipative processes as opposed to vortices where the
topological charge prohibits dissipation and drastically increases the lifetime. At finite
temperature a soliton can interact with excitations in the thermal cloud [35, 37, 34].
The energy transfer mediated by those scattering events can be regarded as a friction
force that leads to an acceleration of the dark soliton owing to its negative kinetic energy
(see Equ. 6.9). The soliton will ultimately be accelerated until it approaches the speed
of sound, where it disappears. The timescale for this decay to take place does depend
on temperature in a very delicate fashion (τ ∼ T−4 [34]), so that long soliton lifetimes
should be an unambiguous indication for very low temperatures. An alternative picture for
dissipative dynamics of dark solitons in trapped BEC can be drawn invoking the physical
process of sound emission by a soliton [38, 32]. A moving soliton emits sound that will
be reabsorbed when the soliton is trapped in a harmonic potential. This periodic energy
exchange between phonons and soliton is however disturbed when thermal atoms interact
dissipatively with sound modes. The loss of energy leads to an acceleration of the soliton
which will finally disappear.

6.1.5 Collisions of solitons

The collisions of solitons are in the focus of interest since the first numerical simulations
of the Korteweg-deVries equation fifty years ago had shown that solitons emerge from
collisions with one another without any change in shape thus retaining their identities far
away from the collision vertex [15]. The only effect of the interaction being a small shift
in the space-time trajectories of the individual solitons [15, 194]. It has to be emphasized
that the presence of two soliton-like structures within a finite nonlinear system is highly
nontrivial, since in general a superposition of two solutions does not constitute a solution
itself. While the interaction of bright solitons depends on their relative phase and is
attractive for ∆φ = 0 and repulsive for ∆φ = π dark solitons are believed to always repel
each other [197, 198]. This has explicitly been demonstrated experimentally for solitons
in non-linear optical media in the temporal [199] as well as in the spatial domain [200]. It
is only in non-local non-linear media that the interaction can even be tuned to attraction
[197].
Numerical simulations [15, 201] and analytic calculations [202, 203, 204] have shown a
positive shift after the collision. This can be understood qualitatively by the following
considerations: when the solitons approach each other the residual density decreases which
reduces the velocity of the individual solitons and thus leads to a positive shift of the space-
time trajectory which is regarded as mutual repulsion by the authors of [203].
These authors further describe two different regimes for the head-on collision of two dark
solitons.

Gray collisions are realized if the combined amplitude of the two solitons never exceeds
the available density during the collision. The phase gradients of the two solitons,
pointing in opposite directions, simply add up whilst the interaction and far away
from the collision vortex the only measurable effect is a shift in the space-time
trajectories.



138 CHAPTER 6. DYNAMICS OF MATTER-WAVE SOLITONS

Black collisions are distinguished by a vanishing density at some instant of the collision.
The individual density minima ”touch the ground” at some point and do not move
anymore. Simultaneously the phase gradients steepen more and more and flip from
π to −π or vise versa depending on the direction of propagation. After a certain
(short) time the available phase slip is redistributed among the solitons and they
start to move again. Although it looks as if the solitons had never passed through
each other, they retain their identity asymptotically far away from the collision point
and it appears as if they had passed through each other only inducing tiny shifts in
the individual space-time trajectories.

The above findings could also be identified by a detailed investigation of the results of
simulations addressing the head-on collisions of two dark solitons, performed in our group
[201].

6.2 Generation of solitons in a BEC

The engineering of soliton states in elongated Bose-Einstein condensates at the Hamburg
spinor experiment has been achieved employing an optical phase imprinting method that
has already been applied successfully in few former experiments [134, 11, 12]. Other
methods to generate dark solitons in BEC by combined phase and density engineering
which would yield a modified condensate closer to the soliton solution have been proposed
[205, 204], but have not been considered here. The authors of [206] generated dark soli-
tons by sweeping a penetrable barrier through a Bose-Einstein condensate but could not
achieve the generation of single well-controlled solitons. In the MIT group solitons were
produced by merging two BEC on an atom chip [207]. However this method of soliton
generation does not seem feasible to control individual solitons either. Experimental ease
and reproducibility distinguish the phase imprinting method and make it the method of
choice at our experiment.
The generation of dark-bright solitons at our experiment has been achieved using a spa-
tially selective Raman-Rabi oscillation technique developed in our group. At JILA dark-
bright solitons in a spherical trap and their decay has been investigated [21]. Here dark-
bright solitons had been produced by a microwave transfer between two hyperfine states
tuned to resonance by a spatially varying dipole potential generated via a scanned laser
focus.

The experiments attending to solitons presented here rely on a versatile Raman-laser
system used in conjunction with a high resolution SLM set up, both described in Chapter 3.
This section provides an overview how quasi-one dimensional condensates are produced
and what their characteristic parameters are. More importantly the experimental proce-
dures necessary to prepare dark and dark-bright solitons will be presented.

6.2.1 Engineering of super cold elongated BEC

The experiments on dark and dark-bright solitons presented in the following have been
performed in the elongated crossed dipole trap (EXDT) introduced in Section 3.2. Recall-
ing the trapping frequencies ωx,y,z = 2π× (85, 133, 5.9) rad s−1 one obtains an aspect ratio
of approximately 20 .4 The atoms residing in state |1,−1〉 are loaded into the EXDT and

4 In Section 3.2 the symmetry axis of the experiment has been termed ”x-axis” and the direction of
gravity ”z-axis”. In this chapter however the ”z-axis” is the symmetry axis, while the x- and y-direction
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evaporated over 16 s by lowering the optical power of the trap using a bipartite linear ramp.
We reduce the power of the trap as much as possible to achieve the lowest temperatures
in our condensates. We have searched for signatures of phase fluctuations as an indication
of finite temperature effects and have optimized the loading procedure to suppress them
as much as possible. Finally no visible signs of finite temperature were observed in our
experiments. Neither a detectable thermal cloud nor interference effects caused by phase
fluctuations after long time-of-flight could be monitored. Note that the low trap depths
provides a powerful continuous evaporation throughout the whole experimental sequence:
all atoms that gain a certain amount of energy due to any heating processes are immedi-
ately spilled out of the trap. This leads to a small additional atom loss but ensures very
low temperatures. Anyway, the 1/e lifetimes of our condensates exceed 10 s easily, which
is sufficient for all experiments presented here.
Typical atom numbers for the soliton experiments are in the range of 4−7 ·104 resulting in
peak densities on the order of n0 = 5− 6 · 1013 cm−3. The one-dimensional speed of sound
and healing length in those BEC read c̄s ' 1 mm/s and ξ̄ ' 0.8µm respectively. The
chemical potential for typical experimental parameters as given above can be calculated
to be µ = kB · 20 nK.

6.2.2 Generating dark solitons

Since a dark soliton is characterized by a certain phase slip according to Equ. 6.6 it is
obvious to try and generate a dark soliton by imprinting a phase slip across a region of
the BEC that is on the order of the healing length ξ̄. For typical experimental parameters
the healing length takes values of ξ̄ ' 700−800 nm which poses a serious challenge for the
imaging system employed for the phase imprinting process. We use a moderately detuned
laser beam (8 GHz ≤ ∆ ≤ 30 GHz) and image a sharp edge generated with the SLM onto
the BEC using a high resolution optical system. The unmasked part of the condensate
will be subject to a phase evolution caused by the dipole potential of the laser beam (see
Equ. 3.6) according to

ψ(z, t) = ψ(z, 0) e−i/~ Udip(z) tpulse . (6.22)

If the pulse time tpulse is chosen appropriately a phase difference of φ = Udip(z)/~ tpulse ≈ π
is imprinted. To avoid a simultaneous disturbance of the local density, the pulse time has
to be short compared to the correlation time of the condensate τcorr = ξ̄/c̄s = 700µs.
For the experiments presented in this thesis tpulse = 40µs has been chosen. The theoret-
ically expected laser intensity required to generate a phase slip of π during this time is
I ≈ 1 mW/cm2 when employing π-polarized light. We expand the phase imprinting beam
to a diameter of d ≈ 2 cm. The maximum available laser power amounts to 4 − 5 mW
behind the optical fiber which results in an intensity of I = 1− 2 mW/cm2 in qualitative
agreement with the theoretical value.
By employing SLM structures with an arbitrary number of steps a corresponding number

of solitons can be generated. Choosing a more gradually shaped edge results in a shal-
lower and faster soliton as compared to an edge as steep and sharp as possible. As will
be explained in more detail in the corresponding section, the investigation of collisions
of solitons are based on preparation schemes relying on the above mentioned extended
experimental possibilities that are provided by our high resolution SLM system. Moreover
the integrated Rabi frequency of the preparation pulse can be varied to alter the initial

are frozen out due to the tight transverse confinement.
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Figure 6.3: Generation of dark solitons employing the phase imprinting method.
(a) Simple sharp edge generated with a SLM which is imaged onto the BEC.
(b) Simulation of the phase imprinting process. Density (blue) and phase (light blue) of the BEC
are shown 5 ms after the imprinting. The dark soliton propagating to the right and the density
wave propagating in the opposite direction can clearly be identified (taken from [201]).
(c) Absorption image of a BEC 3 ms after phase imprinting.
(d) Column sum of (c) together with a fit to the data points. Soliton and density wave show a
remarkable agreement with the results of the simulations in (b).

phase slip, which also influences the soliton parameters as well as the number of solitons
[204].
The imprinted phase gradient will lead to a certain local velocity field given by vSF =
~/m∂zφ [204] that has been mapped directly using Bragg spectroscopy [137]. As already
mentioned a dark soliton can be regarded as a hole rather than a particle and hence moves
in the direction opposite to the superfluid flow of the condensate. Hence dark solitons
generated by the phase imprinting method using red detuned light will always propagate
towards the non-illuminated part of the condensate. An advantage of the choice of red
detuning is that the identification of the dark soliton is not hindered by any other pos-
sible structures which might be generated by the illumination of the condensate .5 The
velocity field can also be interpreted as a local potential gradient transferring momentum
to the condensate thus assisting the formation of a density minimum. The timescale for
the formation of the dark soliton is given by τDS ≈ τcorr le/ξ̄. The size of the imprinted
edge le plays a dominant role not only for the time needed to form the soliton but also
for the maximum depth that can be achieved by the phase-imprinting method [204]. The
authors of [204] have performed numerical simulations of the 1D GPE which show that it
is not possible to generate a perfect dark soliton employing the phase imprinting method.
A significant portion of the phase gradient (∼ φ/2) will always be carried away by a den-
sity wave – characterized by an increased density – in the direction opposite to the dark

5 A possible origin of such additional structure of the condensate might be phase fluctuations owing to
an inhomogeneous illumination of the condensate. After time-of-flight those phase fluctuations will evolve
into density modulations that could possibly be confused with a dark soliton.
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soliton. This density wave propagates approximately at the speed of sound c̄s. Due to
repulsive interaction and dispersion the density wave will be damped quickly. The dark
soliton on the other hand self-stabilizes and propagates without any further decay in the
ideal case of strict one-dimensionality and zero temperature. Imprinting phase slips larger
than π will eventually lead to slightly deeper solitons and moreover to the emergence of
multiple solitons. All of these results have been confirmed by simulations of the 1D GPE
using the split operator method performed in our group by E.-M. Richter [201].
We have chosen the pulse length to generate dark solitons as slow and therefor deep and
stable as possible. Fig. 6.3(c) shows a BEC 3 ms after the phase imprinting pulse. The
dark soliton is easily recognized as a deep and form stable local minimum in the con-
densate density. The accompanying density wave is also clearly visible shortly after the
preparation. For larger evolution times the density wave is quickly damped and disappears
after approximately 50 ms in typical experiments. The particular phase slip employed for
the dark soliton experiments presented later seems to be larger than π since comparison
to simulations suggest that the soliton depths we measure are not compatible with φ ≤ π.
This suggestion is further supported by the emergence of a second smaller soliton that
propagates ahead of the deep primary soliton because of its larger velocity .6

6.2.3 Filling the notch: creation of dark-bright solitons

The generation of dark-bright solitons is a little bit more tricky than just imprinting a
phase slip across a Bose-Einstein condensate. The crucial ingredient for the generation
of those multi-component structures is the ability to transfer population in between two
different internal states spatially resolved. The Raman-laser system together with the SLM
set up introduced in Chapter 3 represent ideal tools for such a local population transfer.
The experimental protocol we have employed to generate dark-bright solitons relies on the
fact that during a Rabi-oscillation the population (|ψ|2) oscillates at twice the frequency of
the wave function (ψ). In other words, during a full 2π-cycle of population oscillation, the
wave function acquires a phase of π. Mathematically the preparation process is described
by the Hamiltonian

Hprep =
~
2

 1
2

∑
i

Ω2
d, i

∆i
Ω

−Ω 1
2

∑
i

Ω2
b, i

∆i

 (6.23)

The off-diagonal elements lead to a population oscillation between the two involved states
ψd = |1, 0〉 and ψb = |2, 0〉 at the frequency Ω = Ω1Ω2/2∆ (see Section 3.5.2). The effect
of the diagonal elements can be divided into to main effects:

Differential light shift The light shift produced by the involved laser beams is different
for the two involved states. This is due to the different detunings of the two lasers
with respect to the two hyperfine states. Note that the different number of available
excited states as well as the difference in the Clebsch-Gordon coefficients are exactly
canceled due to symmetry reasons [109] and do not lead to a differential light shift.
As a consequence the resonance frequency is shifted away from the bare hyperfine
splitting. As already stated in Chapter 3 this shift is typically on the order of 10 kHz
in our experiments.

6 The phase difference between the two parts of the condensate could have been determined using
matter wave interferometer schemes as introduced in Chapter 3. This has been done by the authors of [12]
who found that phase slips of φ ≈ 1.5π lead to the best results concerning soliton depth and stability.
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Figure 6.4: Basic principle of the generation of dark-bright solitons.
(a) Λ-system for the two-photon Raman transition connecting the two hyperfine ground states
|1, 0〉 and |2, 0〉.
(b) Schematic representation of the population |ψ|2 (full line) and the wave function ψ =

√
n·exp iφ

(dashed line) of the dark component during a Rabi cycle.
(c) The pattern generated on the SLM consists of an edge with an intermediate step corresponding
to half the maximum intensity I0. The width of the intermediate step is typically chosen to be on
the order of 10− 15 px ' 6− 9µm.
(d) Density (full line) and phase distribution (dashed line) after the application of a 2π Rabi-
Raman pulse. The SLM pattern has been convoluted with an Airy-disc corresponding to the
optical resolution. While the population in the fully exposed part of the condensate doesn’t
change effectively a phase-slip of π is acquired in the dark component |1, 0〉. At the position of
the intermediate step an effective π-pulse transferred the population to the upper hyperfine state
|2, 0〉.

Phase evolution Since the number of available excited states for single photon processes
is larger than the corresponding number of excited states involved in the Λ-process
an additional phase evolution owing to the coupling to these states occurs. This is
mainly important for the dark component where the overall phase slip determines
the parameters of the resulting dark soliton. By changing the Rabi frequencies of the
individual Raman beams Ω1 and Ω2 independently but keeping the product

√
Ω1Ω2

constant the phase slip can be varied without changing the number of atoms in the
bright component.

In [208] the temporal evolution of a two component BEC irradiated by two Raman laser
beams in the context of soliton generation is analyzed in detail. Including mean-field inter-
action effects the full Hamiltonian of the two-component BEC is solved. However for our
purposes it is sufficient to understand the single atom Hamiltonian Equ. 6.23 qualitatively
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Figure 6.5: Rotation of the quantization axis. In order to obtain a non-zero Raman coupling
between |1, 0〉 and |2, 0〉 the quantization axis has to be rotated by 90◦ into the direction of the
Raman beams prior to the application of the Raman pulse (See text for more details.).

in order to find suitable values for the relevant experimental parameters.
The Raman coupling of the two specific 87Rb hyperfine ground states |1, 0〉 and |2, 0〉 is
afflicted with some difficulties. π-polarized light cannot be employed owing to the lack of
shared excited states. Light which is linearly polarized perpendicular to the quantization
axis can be decomposed into equal portions of σ+ and σ− polarized light. In this case
the individual paths interfere destructively and no Raman coupling occurs. The same
is true for any combination of the above cases. In order to achieve a non-zero coupling
the quantization axis has to be rotated in the direction of propagation of the two Raman
beams prior to the application of the Raman pulse (see Fig. 6.5). Moreover a quarter wave
plate is inserted in the optical path between the last beam splitter cube and the imaging
optics to obtain pure σ+-polarization. Two non-vanishing contributions to the Raman
transfer remain in this way, |1, 0〉 ↔ |1′, 1〉 ↔ |2, 0〉 and |1, 0〉 ↔ |2′, 1〉 ↔ |2, 0〉, where the
latter is three times stronger. The resulting two-photon Rabi frequencies obtained in this
particular experimental geometry are on the order of 10− 25 kHz. The highest values are
achieved for near optimum adjustment of Raman-laser system, imaging optics and SLM
optics. For all measurements concerning dark-bright solitons presented in this thesis a
2π-Raman-Rabi preparation pulse of 40µs duration has been employed.

The particular method we have employed to generate dark-bright solitons is based on
imaging of a step-like pattern depicted in Fig. 6.4 onto the BEC. We apply a 2π Raman
pulse to one half of the condensate which leaves the population effectively unchanged but
leads to a phase difference of π as compared to the masked part of the condensate. In a
small region around the edge of the mask l ≈ ξ̄ only half the maximum intensity is felt by
the atoms resulting in a transfer of atoms to |2, 0〉. In practice the portion of transferred
atoms can be controlled by employing a step-like pattern rather than a simple edge. The
size of the intermediate step is typically chosen to be on the order of 8 − 10µm. By
varying the width of the step the number of particles transferred to the bright component
can be adjusted. It can be seen from Fig. 6.16 that indeed a dark-bright vector soliton
emerges from this preparation process. Note that the depth of the dark-bright soliton is
given by the parameter α introduced in Section 6.1.3 and is basically not affected by the
number of atoms in the bright component, which modifies only the width and speed of
the vector soliton. The shape and magnitude of the phase slip determine the depth of
the dark-bright soliton just as for a unperturbed dark soliton. However the underlying
preparation method does not allow to vary shape and magnitude of the phase step and
bright component particle number totally independent from each other: The wider the
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step, the shallower the phase gradient which makes the dark soliton shallower and less
visible. The parameters employed for the experiments presented here correspond to the
deepest and most long-lived vector solitons that we were able to produce.

6.3 Oscillations and collisions of dark solitons

Up to date few experiments have produced dark solitons [11, 12, 21] in Bose-Einstein
condensates which were all prone to dimensional as well as thermodynamic instabilities.
While experiments in geometries close to spherical observed a bending of the soliton plane
[12] and eventually the decay into vortex-antivortex pairs [21] experiments in more elon-
gated geometries suffered from too high temperatures [11] and were consequently not able
to conduct more elaborate experiments such as the observation of oscillations or collisions
of dark solitons. In the framework of this thesis dark solitons with unrivaled lifetimes
could be produced in ultracold BEC. We have been able to track the oscillation of a dark
soliton in a trapped BEC for the very first time and moreover studied the collision of two
dark solitons. During the writing of this thesis the Heidelberg group was able to produce
long lived solitons and observed oscillations of dark solitons and modifications of these
oscillations by interactions of two dark solitons and dimensionality effects [40]. Preceding
the section describing the experimental results, two short paragraphs on data analysis
and the dynamics of the envelope of the condensate, crucial to normalize the data, are
presented.

6.3.1 Extraction of soliton parameters from TOF images

The experimental data presented in this chapter has been obtained from time-of-flight
images. After the generation of the solitons and a variable evolution time, the trapping
potentials have been switched off and the atomic cloud was allowed to freely expand for a
time of 11.5 ms. The soliton size ls ≈ ξ̄ ≈ 0.8µm in the trap is beyond optical resolution
and thus a sufficiently long time-of-flight is indispensable to obtain reliable and clear re-
sults for the soliton parameters that are extracted by fitting a model density distribution
to the images as described in the following.
For the detection of dark-bright solitons the double exposure method introduced in Sec-
tion 3.3 has been employed to image both components in one single shot. Recall that the
maximum optical density in the dark-bright images is limited to one half inherent to this
particular detection method, which lowers the quality of the images as compared to single
exposure images used for the dark soliton experiments. However the correlation between
the dark and bright component can be directly determined in this way and allows for an
unambiguous interpretation of the data.

Data fitting

The program used to analyze the soliton images has been created in the framework of
S. Dörschers Diploma thesis [188] and constitutes a powerful tool to quickly obtain all
information desired from the experimental data. To extract the parameters of the solitons
from TOF images we have fitted a two-dimensional model function to the data, composed
out of an envelope function and several modulations to account for solitons, density waves
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Figure 6.6: Exemplary fit to the data for dark soliton experiments.
(a) Column sum of the optical density together with the resulting fit function Equ. 6.24. The
dashed curve is the envelope according to Equ. 6.26.
(b) Absorption image
(c) Two-dimensional plot of Equ. 6.24 fitted to the data in (a).

or other excitations:
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where Kd,b is the number of structures in every component, σ(d,b)
i = ±1, h(d,b)

i , w(d,b)
i and

z
(d,b)
0,i are the sign, amplitude, width and position of the individual dips and peaks. The

envelope of the BEC in the Thomas-Fermi approximation integrated along the line of sight
is given by
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)2
)3/2

. (6.26)

n0 is the central density, yE , zE denote the position of the envelope while the Ri give
the Thomas-Fermi radii along the corresponding direction. Alternatively the fit is allowed
to account for a cut-off in the optical density which enhances the quality of the results
especially for the amplitude of the dark solitons h(d)

i and the central density n0 of the
envelope. However the cut-off value is best determined directly from the absorption images
and than set as a constant to optimize the fitting routine. As an additional computational
option the soliton plane can be allowed to enclose an arbitrary angle with the long axis
of the condensate. However most of the data sets have been fitted with the angle of the
soliton plane fixed and perpendicular to that axis. The dark soliton has been chosen per
hand for the space-time plots as the most prominent density depression among the fitted
structures. Examples of fits in the case of purely dark solitons and dark-bright solitons
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Figure 6.7: Exemplary fit to the data for dark soliton experiments.
(a) Column sum of the optical density of the dark (blue) and bright (red) component together with
the resulting fit function Equ. 6.24 and Equ. 6.25. The dashed curve is the envelope according to
Equ. 6.26.
(b,c) Absorption images of the dark and bright component
(d,e) Two-dimensional plot of Equ. 6.24 and Equ. 6.25 fitted to the data in (b) and (c) respectively.

are given in Fig. 6.6 and Fig. 6.7 respectively. More details concerning data analysis of
the soliton experiments can be found in S. Dörschers Diploma thesis [188].

Envelope of the condensate

By imprinting a phase or transferring population by the aforementioned preparation meth-
ods does not only generate soliton structures but also drives several other excitations of
the condensate. The most prominent examples being small amplitude dipole oscillation of
the whole condensate as well as the breathing mode quadrupole oscillation of the shape of
the condensate (see Fig. 6.8). We have determined the dipole and quadrupole oscillation
parameters to normalize the soliton position the the center of mass of the condensate and
to the width of the envelope z → (z − z0)/2Rz. Checking the frequencies provides a nice
consistency check of the obtained condensate parameters and trapping frequencies. As
found in [27] the motion of the center of mass of the condensate and the propagation of
the soliton should basically decouple and not influence each other. The influence of the
quadrupole oscillation leading to an oscillatory modulation of the density and therefor the
soliton parameters is unclear and has thus far not been considered theoretically to our
knowledge. Normalizing the soliton position to the instantaneous width of the condensate
gives however reasonable results and has thus been performed without a rigid theoretical
justification.
The observed trapping frequencies for the dark and dark-bright experiments read ωz =
2π · (6.8 ± 0.5) s−1 and ωz = 2π · (6.6 ± 0.3) s−1 respectively. This is contradicted by
an independent measurement of the axial trapping frequency for the same experimen-
tal parameters yielding ωz = 2π · (5.86 ± 0.02) s−1. It remains unclear whether this
inconsistency is due to slightly different experimental parameters or if the presence of
a whole variety of excitations leads to a slight modification of the oscillation frequency.
The frequencies of the observed quadrupole oscillations ωd

QP = 2π · (10.8 ± 0.1) s−1 and
ωdb
QP = 2π · (10.4 ± 0.1) s−1 on the other hand are in excellent agreement with the the-
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Figure 6.8: Center of mass (left column) and shape oscillations (right column) of the condensate
as observed for the experiments and dark (first row) and dark-bright solitons (second row).

oretical prediction of ωQP =
√

5/2ωz. Note that the initial direction of propagation of
the whole condensate is towards the attractive potential mediated by the red detuned
phase imprinting laser as expected. The amplitude of the dark-bright dipole oscillation is
approximately twice that of the dark soliton experiments. This is in agreement with the
approximately twice as large integrated Rabi frequency for the preparation process. The
occurrence of shape oscillation does not come as a big surprise since the phase imprint-
ing method imparts momentum to the condensate spatially resolved and therefor locally
disturbs the density distribution.

Particle number

The particle numbers have been determined from fits to the absorption images and give
reasonable agreement with other methods to determine the density or particle number
(e.g. spin dynamics) only for the fits employing a cut-off of the optical density. The
particle numbers determined in this way are plotted in Fig. 6.9 for the experiments on
dark (left) and dark-bright (right) solitons. While for large evolution times the decay of
the dark component is well described by a decreasing exponential, the loss of particles
is significantly higher for a short time after the preparation. This might be a combined
effect of three-body losses which diminish dramatically with decreasing density (see e.g.
[7]) and losses induced by the preparation process.
The decay of the bright component on the other hand is well described by an exponential
decay for all times with a time constant of τ = (1.5 ± 2) s, significantly shorter than the
corresponding lifetime (t ≤ 150 ms) of τ = (2.8±3) s obtained for the dark component. The
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Figure 6.9: Lifetimes of dark and bright component for the soliton experiments.
(a) Dark soliton experiments. The lifetime amounts to τ = (0.45± 0.04) s.
(b) Dark-bright soliton experiments. The dark component (blue) shows increased losses during the
first 250 ms (compare (a)) The average lifetime is calculated as τ = (2.8± 3) s much greater than
for the dark soliton experiments. The lifetime of the bright component (red) is τ = (1.5± 2) s and
seems to be the limiting factor for the lifetime of dark-bright solitons.

lifetime measured for the dark soliton experiments is significantly shorter τ = (0.45±0.04) s
owing to the fact that it has been determined in the regime where the initial strong losses
still play a dominant role. One can calculate the mean density in the bright component
in a simplified model according to 〈n b〉 = 2Nbκ/(πRxRy) = 4.8 · 1013 cm−3, where the
Ri are the Thomas-Fermi radii in the transverse direction fulfilling 1/2mω2

iR
2
i = µ. With

the above lifetime the two-body loss rate is obtained through τ−1 = G · 〈n〉 and reads
G = 1.39 · 10−14 cm3s−1. By comparing this to a two-body loss rate obtained in [7] for
|2, 0〉 G = 10.2·10−14 cm3s−1 we find a value that is eight times smaller. However in [7] spin
selective detection lead to a fast decay of |2, 0〉 due to spin dynamics distributing the upper
hyperfine population among all states |2,mF 〉. In the dark-bright soliton experiments no
spin selective detection has been performed. We thus measure the total F = 2 population
which could be very roughly accounted for by dividing the decay rate from [7] by a factor
of 2F + 1 = 5 resulting in a value that is only slightly but significantly above the decay
rate observed here.

6.3.2 Oscillations

The time evolution of a dark soliton created by the aforementioned phase imprinting
method is shown in Fig. 6.10. Soliton positions have been determined using the above
mentioned data fitting procedure. We were able to detect nearly pure dark solitons after
times as long as 5 s in single experimental realizations, surpassing lifetimes of dark solitons
in any former experimental realization by more than a factor of 200. Fluctuations in the
soliton position due to small preparation errors however prevent the observation of soliton
dynamics for evolution times τevol � 250 ms. The extraordinary long lifetimes facilitate
the first observation of an oscillation of a dark soliton in a trapped BEC. The soliton clearly
propagates axially along the condensate with an initial velocity of q̇ = 0.56 mm/s = 0.56 c̄s
indicating a relative soliton depth of ns = 0.68n0.
The occurrence of a second small soliton can be extracted from the experimental data as
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Figure 6.10: Oscillation of a dark solitons in a BEC. (a) Absorption images showing a dark soliton
propagating in a trapped Bose-Einstein condensate. The evolution time is given in units of the
oscillation period 2π/Ω.
(b) Numerical simulations of the 1D GPE featuring our experimental parameters using the split
operator method (taken from [201]).
(c) Extracted soliton position normalized to the instantaneous width of the condensate (dark blue
circles). A sinusoidal fit to determine the oscillation parameters is shown in addition (full curve).
The light blue dots denote the position of a second tiny soliton that is generated through the phase
imprinting process.
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well as from the simulations as shown in Fig. 6.10. This is expected theoretically from
the method of phase imprinting (see also Section 6.2.2). Due to its larger velocity the
shallower second soliton separates clearly from the primary soliton in the vicinity of the
turning points of the oscillation, because it has a significantly larger oscillation amplitude.
The visibility of the secondary soliton is further enhanced here compared to the bulk of
the BEC because the optical density has dropped to reasonably low values in the wings
of the BEC.
An oscillation frequency of Ω = 2π × (3.8 ± 0.1) Hz has been recorded for the primary
soliton and could be followed for more than one period. Caused by the shallowness of
our dipole trap the atoms experience the full Gaussian potential of the elongated crossed
beam trap introduced in Section 3.2. The Gaussian potential is less steep than harmonic
leading to a larger amplitude-dependent oscillation period for the soliton. A calculation
of the soliton oscillation frequency solving equation Equ. 6.10 for a Gaussian potential
created by a laser beam with a waist of 117µm and taking the observed soliton amplitude
of Zs = 33µm as an initial value yields an oscillation frequency of Ω = 2π × 3.95 Hz.
This is in good agreement with our experimental data. The validity of this model has
been checked further by calculating the frequency for shallower, faster solitons that show
a larger oscillation amplitude. The calculated values agree with the experimental data
for small to intermediate oscillation amplitudes. The oscillation period of large amplitude
oscillations as observed for the secondary solitons mentioned above agree qualitatively
but show significant deviations towards even larger periods. Furthermore, as already
mentioned the observed amplitude allows for a consistency check of the soliton depth. At
the turning point of the soliton motion Zs the constant soliton depth equals the Thomas-
Fermi density nTF(Zs) of the condensate and interrupts the superfluid flow of atoms. At
this point the soliton starts to move in the opposite direction. Given the measured initial
speed of the soliton and the observed density distribution of the condensate Zs can be
calculated to be 36µm and is in very good agreement with the directly measured value.
Note that the depth of the soliton is the only measure that can hardly be determined
directly since the absorption images are partly optically thick which makes it very difficult
to reliably fit the amplitude of the model function to the data.
The density wave that is always created when employing the phase imprinting method
is also clearly identified in Fig. 6.10 and travels in the opposite direction at a velocity
equal to the speed of sound (compare Section 6.2.2). The density waves die out after
approximately 50 ms leaving an almost flat BEC with only one or two soliton excitations.
Calculating the dimensionality parameter γ = n0g/~ω⊥ = 3.7 and comparing this value
to the critical ratio γc given by Muryshev et al. [37] we find the dark soliton to be right on
the edge of the region of dynamical stability from Fig. 6.11. This is confirmed regarding
the observed soliton lifetimes. It might be possible that owing to initial instabilities the
soliton is accelerated until it reaches a velocity corresponding to a parameter regime of
transverse dynamical stability. The velocity of the soliton increases slightly from one zero
crossing to the other. The initial velocity of q̇0 = 0.56 c̄s increases to q̇ = 0.77 c̄s during
the first zero crossing, which indicates that dissipative processes tend to accelerate the
soliton. Note however that the scatter of the data points in the vicinity of the first zero
crossing used to perform a linear fit may lead to an overestimation of the return velocity
in this particular case as can be deduced from Fig. 6.10.
The crucial feature to the observed long lifetimes of dark solitons seems to be the very low
temperature of our samples. The critical temperature for Bose-Einstein condensation for
our experimental parameters is (67±5) nK. Estimating that a thermal fraction of at least
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Figure 6.11: Stability diagram for dark
solitons. Critical parameter ξc obtained
from numerical calculations performed by
Muryshev and coworkers [37]. The param-
eter regime beneath the curve corresponds
to dynamically stable dark solitons. The
gray shaded area represents a typical com-
bination of soliton speed and ξ as found in
the experiments presented here. The finite
width of the shaded area indicates exper-
imental scatter and statistical uncertainty
of the experimentally obtained initial ve-
locity (horizontal width) and atomic den-
sity (vertical width).

10% could have been detected in absorption imaging – which was not the case – an upper
limit for the temperature of T ≤ 0.5Tc = 30 nK can be given which is on the order of the
chemical potential µ. We assume a significantly smaller temperature, since temperatures
of T ≈ 0.2Tc would already have considerably limited the solitons lifetime [32], which has
not been observed in our experiment.

6.3.3 Collisions

As the next step to further investigate the physics of dark solitons in Bose-Einstein conden-
sates we have generated more than one soliton in order to study their collisional properties.
This has been achieved by imaging an appropriate SLM pattern onto the BEC depicted
and explained in Fig. 6.12. Note that the number of solitons created can be varied, as
can their individual depths, initial positions and directions of movement be chosen over a
wide range of parameters by tailoring the nearly arbitrarily shapeable light field potentials
acting on the BEC. In the experiment presented here two solitons with slightly different
depths are generated in such a way that they propagate to opposite sides of the conden-
sate, are reflected there, approach one another and eventually collide in the center of the
trap. This approach is advantageous for various reasons

Identification The observed oscillation frequency when first propagating “independently”
is used to identify the density modulation as dark solitons with characteristic oscil-
lation frequencies Ω = ωz/

√
2

Determination of the amplitude As explained above the residual density of the soli-
tons can only be determined with a large uncertainty. Instead the amplitude of their
oscillation, which directly depends on the depth ns, is used to tag the individual
solitons. The oscillation amplitudes can be measured prior to the first collision.

Signal-to-noise Density waves and other excitations originating from the imperfect im-
printing method will be dampened during the pre-collision time, leaving two well-
characterized dark solitons on an almost uniform background.
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Figure 6.12: Experimental scheme for the investigation of dark soliton collisions. A small stripe-
like region of the condensate is illuminated with far red detuned laser light. In this way the solitons
travel to the outer ends of the condensate first, which allows additional excitation in the condensate
to be damped prior to the collision. The solitons oscillate back and approach each other close to
the center of mass of the condensate eventually colliding with each other.

A time series of the axial optical density of the BEC is shown in Fig. 6.13. As can be
clearly inferred, the two initial solitons propagate to opposite edges of the condensate, are
reflected and then pass through one another. No mutual interaction of the solitons can be
detected and appears that they emerge unscathed from the collision.
Two density waves carrying away the excess phase gradient can be observed as well during
the first 25 ms. The corresponding space-time plot of the extracted soliton positions is used
to determine the oscillation frequencies to be Ω1 = 2π · 3.5 Hz and Ω2 = 2π · 3.8 Hz. The
deviation from the theoretical value Ω = ωz/

√
2 can be explained by the anharmonicity of

the trap as shown above. The relative oscillation amplitudes of Z1 = 0.55 and Z2 = 0.60
correspond to relative depths ns/n0 of the dip of 0.74 and 0.69 prior to the collision for
soliton 1 and 2, respectively. The scatter is due to shot-to-shot fluctuations, e.g. of the
atom number and power of the phase-imprinting laser. Furthermore, the acceleration-
instability due to thermal collisions is also temperature-dependent [32, 34, 37] and may
fluctuate from shot-to-shot as well. The scatter increases with evolution time and, to-
gether with a decrease in contrast, renders a precise and reproducible determination of
the soliton position impossible for evolution times larger than 200 ms. By comparison of
the oscillation amplitudes before and after the collision, it is more likely that the solitons
pass through one another and retain their characteristics. We employed a fit to the data
assuming a “reflection” during collision, but find a much weaker agreement. This strongly
favors a behavior of “passing” through each other instead of being reflected as sometimes
discussed in the context of soliton physics. Recall that the individual identity of solitons
as quasi-particles breaks down if they are very close to one another. The authors of [203]
state that momentum transfer can occur during the collision of two dark solitons. With
this in mind the color coding of Fig. 6.13 is too simple minded, but it emphasizes the fact
that for long times after the collision, the observed states propagate like two solitons that
are unperturbed by one another. The observed lifetimes are about the same as for the
single soliton experiments, which excludes any dominating dissipation mechanism origi-
nating from the interaction of dark solitons via sound emission and re-absorption [38].
Numerical simulations of the 1D-GPE performed by E.-M. Richter [201] show an excellent
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Figure 6.13: Collision of two dark solitons. Analogously to the oscillation of dark solitons positions
are normalized to the condensate extension and center of mass to correct for quadrupole and dipole
oscillations.
(a) Density plot of the condensate. Each column represents the optical density of the elongated
condensate integrated along the transverse direction. The density depressions of the dark solitons
as well as the increased density of the density waves are clearly visible. The evolution time increases
along the positive x-direction. The propagation of the solitons has been tracked every 2.5 ms.
(b) Sinusoidal fits to the extracted soliton positions are shown together with the data points. Note
that the choice of asymmetric starting points of the two solitons results in different depths and
therefore allows for the identification of the solitons as 1 (colored red, deeper, smaller oscillation
amplitude) and 2 (colored blue, shallower, larger oscillation amplitude) (see text for details). The
error bars in both time and position are well within the marks.
(c) Results of numerical simulation of the 1D-GPE [201] adapted to our parameters. Additional
smaller solitons, only faintly visible in (a), can also be observed similar to the oscillation experiment
Fig. 6.10.
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agreement with the experimental data. The simulations take into account the indepen-
dently determined experimental parameters (trapping potential and particle number) and
fully incorporate the phase imprinting method through a time evolution, thus showing all
the generic features of the experiment except for finite temperature effects, like damping.
A possible position shift due to the interaction has been investigated in many theoretical
works and with different methods. Given our experimental parameters, a positive shift of
∆x ≈ 0.015µm (with respect to the unperturbed trajectory of a single soliton) is predicted
analytically [203]. A shift of ∆x = 0.51µm can be retrieved from an alternative analytic
model [202, 204]. Both of these shifts are way smaller than the optical resolution of our
imaging system and cannot be resolved.

In a second series of experiments we have studied the collisional behavior of two dark
solitons of different amplitude traveling in the same direction. The shallower and thus
faster soliton starts ahead of the deeper and slower soliton. Because of its smaller ampli-
tude it exhibits a larger oscillation amplitude and period. After the reflection at the end
of the condensate one expects, that the faster soliton will ”overtake” the slower soliton at
some point. We call this experiment the chase scenario. Like for the head-on collisions
above residual excitation of the condensate are significantly damped prior to the soliton
interaction which ensures a better visibility of the collision process. The observations we
have made in our experiment are quite remarkable: After being reflected at the end of
the condensate the two solitons approach each other, seem to merge and develop into one
very deep and standing soliton. We have observed almost black solitons generated in this
manner with lifetimes as large as 5 s as shown in Fig. 6.15.

The solitons start approximately 20µm apart from each other, the fast advancing soli-
ton with an initial speed of q̇s

0 = 0.7 c̄s and the slower soliton travelling at q̇f
0 = 0.62 c̄s.

These values would correspond to depths of nf
s/n0 = 0.51 and ns

s/n0 = 0.61 respectively.
The associated phase slips across the nodal planes of the solitons read ∆φf = 0.34π and
∆φs = 0.42π for the fast and slow soliton respectively. Adding up the two phase slips
results in ∆φ = 0.75π which would correspond to an almost black soliton with an am-
plitude of ns/n0 = 0.93 and a velocity of only q̇ = 0.27 c̄s. This is something close to
an almost fully modulated soliton that does rarely move at all – just what we observe
in our experiment. However to further support the merging scenario more detailed mea-
surements would be required. Note that theoretical predictions do not include something
like merging of two dark solitons but rather predict an almost unperturbed propagation of
the individual solitons after the interaction just characterized by a certain phase acquired
during the collision.

6.4 Dark-bright solitons in multi-component BEC

After the investigation of the physics of dark solitons in elongated BEC we now turn to the
more exotic entities that are dark-bright solitons. We have created those two-component
solitons using the Raman-Rabi method introduced above. The experimental parameters
for the experiment are the same as for the dark solitons. A time series of the propagation
of such a dark-bright soliton is shown in Fig. 6.16. After a short time of flight of 9 ms the
atoms are first exposed to a light pulse resonant only with |F = 2〉. After another 2 ms the
|F = 1〉 atoms are subsequently imaged. The dynamics of the dark-bright soliton could
be followed for more than 2 s as seen in Fig. 6.16. The correlation in the position of the
dark and bright soliton is remarkable and strongly supports the idea of a joint vectorial
soliton structure. The mask pattern used in the experiment described here resulted in a
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Figure 6.14: Chase scenario for two dark solitons. Two dark solitons are generated that travel
in the same direction at different velocities. After a quarter oscillation period they reverse their
direction of propagation and travel in the opposite direction where the fast soliton will eventually
overtake its slower counterpart.
(a) Intensity profile used to generate two solitons at different velocities. To generate a faster soliton
less phase feed is applied over a larger region.
(b) Schematic representation of the chase scenario of a fast (gray) and a slow (white) soliton.
(c) Density plots of the condensate density similar to Fig. 6.13. While it can not be deduced what
exactly happens during the collision, it is clearly seen that for long evolution times a single very
deep soliton that does hardly move at all is formed. Note that we have observed structures similar
to the last 45 ms of the graph for evolution times up to 5 s!

bright component population NB = 0.11Ntot, where Ntot is the total number of atoms.
The initial velocity of the dark-bright soliton can be obtained from a fit to the first 200 ms
and gives q̇db

0 = 0.14 c̄s which is much smaller than the velocities of any dark solitons that
we have produced and only a small fraction of the speed of sound underlining its solitary
nature. The return velocity after half an oscillation period reads q̇db

0 = 0.17 c̄s and is only
slightly larger indicating the robustness of the dark-bright soliton.
Interestingly the initial direction of propagation of the dark-bright soliton is in the oppo-
site direction as compared to the dark soliton experiments. The reason for that is that
the momentum transfer on the bright atoms in the filling dominates over the momentum
transfer on the residual dark atoms beneath the density dip of the dark soliton. The dark-
bright soliton thus moves in the direction of the physical momentum transfer as opposed to
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Figure 6.15: Examples of extremely longlived dark solitons. The dark solitons shown here have
been observed in the course of measurements attending to the chase scenario (see text). After
the solitons have interacted only one very pronounced soliton remains in the condensate. For
single experimental realizations, lifetimes of up to 5 s could be observed surpassing any former
experiments by more than a factor of 100.

a pure dark soliton which moves in the direction opposite to the superfluid flow of atoms.
We observe an oscillation of the dark-bright soliton with a frequency of Ωdb = 2π×(0.90±
0.02) Hz = 0.24 × Ω, much smaller than the frequency of the corresponding dark soliton.
To our knowledge that is the first measurement of coherent dynamical properties of vec-
torial solitons in Bose-Einstein condensates. Evaluating the expression for the oscillation
frequency according to Equ. 6.21 demands for the determination of the bright particle
number parameter NB/(4n0ξ̄). The one-dimensional density n0 can be calculated by inte-
grating over the transverse degrees of freedom within the 3D Thomas-Fermi limit resulting
in n0 = (15/16)N/Rz. With a particle number of N = 5.2 · 104 and a mean condensate
radius of Rz = 56µm we calculate 4NBRz/(15Nξ̄) = 2.4. Plugging in this value results
in an oscillation period of ΩDB = 2π · 0.94 Hz which is in excellent agreement with the
measured value. Since the oscillation amplitude is solely determined by the depth of the
dark soliton given by the parameter α according to | sin(α)| = Z/Rz = 0.68 we can check
the above value for the bright particle number parameter employing Equ. 6.15 which con-
nects α, q̇ and Nb and yields NB/(4n0ξ̄) = 1.85 in reasonable agreement with the directly
measured value.
The extraordinary long lifetime of the dark-bright solitons τ & 2 s seems to be an im-
pressive confirmation of the theoretical prediction that a larger soliton size drastically
reduces scattering of excitations leading to enhanced stability [39]. Indeed the limiting
factor seems to be the lifetime of the bright component which has been measured to be
τ = (1.5±0.2) s. For times larger than this the soliton has already significantly reduced its
size, which makes it more liable to excitations and decay as explained above. Moreover,
differing fundamentally from the physics of dark solitons, the oscillation period depends
on the number of particles in the bright soliton and is therefor directly affected by errors
in preparation. Hence the scatter of the soliton position for these larger evolution times is
also strongly increased which renders a reliable tracking of the soliton dynamics impossible
beyond times larger than 2− 2.5 s.
Another interesting feature that can be extracted from this measurement is the interac-
tion of a dark soliton and a density wave with the much slower dark-bright soliton. Owing
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Figure 6.16: Oscillation of a dark-bright soliton in a two-component BEC (a) Absorption images
showing a dark soliton in |1, 0〉 (back) and a bright soliton (front) in |2, 0〉 co-propagating in a
trapped two-component Bose-Einstein condensate. The evolution time is given in seconds.
(b) Numerical simulations of the two-component 1D GPE where our preparation process has been
fully implemented (taken from [201]).
(c) Extracted positions of dark (blue circles) and bright (red triangles) soliton normalized to the
instantaneous width of the condensate. Sinusoidal fits to determine the oscillation parameters are
shown in addition (full and dashed curve). The correlation between the two solitons is remarkable
supporting the idea of a dark-bright soliton. The black squares denote the position of a second dark
soliton that is generated through the specific preparation process and interacts with the dark-bright
soliton around t ≈ 100 ms.
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Figure 6.17: Interaction of a dark and a dark-bright soliton. The images show experimental results
(left) and theoretical simulations (right) of the dark component for the first 200 ms of Fig. 6.16. The
images are obtained by summing up the optical density along the transverse direction, resulting in
a ”one-dimensional” density distribution along the horizontal direction. Every row corresponds to
one experimental run at an advancing evolution time. Both images clearly show that a density wave
and a dark soliton are generated in addition to the dark-bright soliton. The different structures pass
through each other without any unambiguous influence on each other as if they were transparent.
Density wave as well as dark soliton have already undergone considerable damping prior to the
interaction, which renders their detection for such long times rather difficult.

to the method of initial state preparation, an extra dark soliton is always generated in
addition to the dark-bright soliton, as is also confirmed by numerical simulations [201].
As shown in Fig. 6.17 the dark soliton propagates in the opposite direction as compared
to the dark-bright one without any discernible filling. The soliton oscillates in the trapped
BEC with almost the same parameters as a dark soliton in an unperturbed experiment.
Velocities of initially q̇0 = (0.5 ± 0.2)c̄s and (q̇1st = (0.8 ± 0.3)c̄s after the first reflection
have been determined. The oscillation amplitude is Z = 0.65Rz corresponding to a depth
of ns/n0 = 0.58 while the oscillation frequency amounts to Ω = 2π · (4.1± 0.2) Hz. After
120 ms it thus approaches the position of the dark-bright soliton which has only moved
very little due to its much smaller oscillation frequency. Picking the most pronounced
density depressions from the individual images and identifying them with a dark soliton it
seems that the dark soliton is reflected off the dark-bright one comparable to a hard-wall
reflection and moves back (compare the first 200 ms in Fig. 6.16). This would be in harsh
contradiction to theoretical work [39] that investigated interaction of dark and dark-bright
solitons and found no indication of reflection.
A detailed investigation of the density plots of the experiment and E.-M. Richter’s nu-
merical simulations of the coupled 1D GPE suggests another scenario: Both an additional
dark soliton as well as a density wave are generated together with the dark-bright soliton.
Since the density wave and the dark-bright soliton propagate into the region of the conden-
sate that has been illuminated and therefor exhibits additional excitations it can hardly
be tracked as long as it is in that part of the condensate (t ≤ 140 ms). The simulations
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show however that the dark soliton and the density wave pass through each other and
through the dark-bright soliton after a time that coincides with the time of the pretended
reflection. Comparing data and simulations it is more likely that the latter scenario takes
place as compared to the reflection picture favored in the first place. For an unambigu-
ous confirmation of the theoretical prediction further measurements would be required to
enhance the resolution and statistics of the images.

6.4.1 Collisions of two dark-bright solitons

Collisions of dark-bright solitons have been studied in the course of this dissertation only
marginally despite the whole wealth of interesting physical effects that are expected to oc-
cur. Theoretical calculations [39] predict that the interaction of dark-bright solitons can
get more complex than the interaction of dark solitons. In particular particle exchange
between the two bright solitons as well as a dependence of the collisional properties on the
relative phases of the involved bright solitons are expected.
Experimentally it has proven rather difficult to prepare two dark-bright solitons and at
the same time not to excite the condensate so much that dissipative processes are still
negligible. We produced two counter propagating dark-bright solitons by imaging a slit
similar to the dark soliton head-on collision experiments onto the condensate and per-
forming the Raman-Rabi preparation technique (compare Fig. 6.12). Density plots of the
dark and bright component obtained from the experiment and the simulations are shown
in Fig. 6.18. Two dark bright solitons are generated and propagate to opposite ends of
the condensate first. It can be deduced from the picture that two dark solitons are also
created which likewise travel to the edges of the condensate. The dark solitons oscillate
back after approximately 120 ms and interestingly they trap a tiny fraction of the bright
component as is seen in the density plot of the bright component and in the simulations.
The dark solitons associated with the main bright solitons can hardly be distinguished at
all for longer evolution times. It seems as if the bright solitons existed without having
their stabilizing dark counterpart. In principle this is not possible in a repulsive BEC and
the associated dark solitons will accordingly be very shallow. However the bright solitons
oscillate in the condensate and collide at a time tcoll ≈ 400 − 500 ms. The quality of the
data is unfortunately not good enough to unambiguously follow the collision and iden-
tify the scattering products for long times after the interaction. Albeit these first results
promise interesting physical effects and motivate further investigation of the collisions of
dark-bright solitons. Above all the prerequisites for these future experiments are even
more stable experimental conditions.

6.5 Outlook

The observations on dark and dark-bright solitons presented in this chapter open up the
way for a whole variety of new experiments attending to those highly interesting collective
excitations. With lifetimes of up to several seconds complex experiments with various
oscillation or collisions seem to be within experimental reach now. Possible future exper-
iments include the interaction of more than two dark solitons or the interaction of a dark
soliton with an arbitrary shapeable potential barrier. As a paradigm of quantum mechan-
ics reflection and transmission through this barrier could be investigated. By trapping
the soliton and the emitted sound waves in potentials of different shape the dissipative
dynamics of solitons could be studied in more detail in order to explore the temperature
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Figure 6.18: Interaction of two dark-bright solitons. The images show experimental results for
the dark (left) and bright (right) component respectively. The images are obtained analogously to
Fig. 6.17.

dependence or the influence of dimensionality in a controlled way. Collisions of dark-bright
solitons with suitably engineered fillings and phases could make important contributions
to the understanding of solitary structures and constitute a serious test for theoretical
models. The dependence of the oscillation frequency on the bright particle number could
be tested to name an example. A next step towards even better experimental conditions
has already been taken by the implementation of an actively stabilized optical table which
ensures that the dipole trap is always perpendicular to gravity and no gravitational sag
effects draw the BEC to either side which introduced a considerable scatter of the experi-
mental results. Finally numerous theoretical proposals have dealt with spinor solitons (see
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e.g. [209]), similar to dark-bright solitons but involving states from the same hyperfine
manifold. Since we have an experimental setup specialized to the investigation of spinor
condensates numerous experiments are conceivable attending to this idea.



Appendix A

87Rb data

The author has decided to provide the reader with all necessary information about 87Rb to
follow or reconstruct the findings presented in this thesis. Most of the values found below
have been taken from the 87Rb line data [109]. The values found here have been employed
for all calculations throughout this thesis that involve any 87Rb data.

Table A.1: Fundamental physical constants (taken from 1998 CODATA [6])

speed of light c 2, 99792458× 108 m s−1 (exact)
Permeability of vacuum µ0 4π × 10−7 N ·A−2 (exact)
Permittivity of vacuum ε0 µ−1

0 c−2 (exact)
8, 854187817 · · · × 10−12 F ·m−1

Planck’s constant h 6.62606876(52)× 10−34 J · s
4.1356627(16)× 10−15 eV · s

Electron charge e 1, 602176462(63)× 10−19 C
Bohr magneton µB 9.27400899(37)× 10−24 J · T−1

h · 1, 399624624(56) MHz ·G−1

Atomic mass unit u 1, 66053873(13)× 10−27 kg
Electron mass me 5, 485799110(12)× 10−4 u

9, 10938188(72)× 10−31 kg
Bohr radius aB 0, 5291772083(19)× 10−10 m
Boltzmann’s constant kB 1, 3806503(24)× 10−23 J ·K−1
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Table A.2: 87Rb physical properties (taken from [7] and references therein)

Atomic number Z 37
Total nucleons Z+N 87
relative
natural abundance η(87Rb) 27, 83(2)%
Nuclear lifetime τn 4.88× 1010years
Atomic mass m 1, 44316060(11)× 10−25 kg
Density at 25◦C ρm 1.53 g · cm−3

Melting point TM 39.31 ◦C
Boiling point TB 688 ◦C
Specific heat capacity cp 0, 363 J · g−1 ·K−1

Molar heat capacity Cp 31, 060 J ·mol−1 ·K−1

Vapor pressure at 25◦C Pv 4.0× 10−7 mbar
Nuclear spin I 3/2
Ionization limit EI 4, 1771270(2) eV
Zeeman shift
of the clock transition ∆ωclock ·B−2 2π · 575, 15 Hz ·G−2

s-wave scattering length F=1 a0 110, 0± 4, 0 aB
a2 107, 0± 4, 0 aB

s-wave scattering length F=2 a0 89, 4± 3.0 aB
a2 94, 5± 3, 0 aB
a4 106, 0± 4, 0 aB

Elastic two-body collisions Γel 32a0n
√
πkBT/m

1, 4× 10−11 n
[cm−3]

( T
[µK])

0,5

Inelastic two-body collisions
F=2,mF=2 Gdip 10−14 cm3 · s−1

Three-body collisions
F=2,mF=2 LBEC3k 1, 8× 10−29 cm6 · s−1

Inelastic two-body collisions
F=1, mF=-1 Gdip < 1, 6× 10−16 cm3 · s−1

Three-body collisions
F=1, mF=-1 LBEC3k 5, 8× 10−30 cm6 · s−1



164 APPENDIX A. 87RB DATA

Table A.3: 87Rb D2(52S1/2 → 52P3/2)
transition optical properties

Frequency ω0 2π · 384, 2279818773(55) THz
Wavelength (Vacuum) λ 780, 246291629(11) nm
Wave Number (Vacuum) kL · (2π)−1 12816, 46591247(18) cm−1

Lifetime τ 26, 24(4) ns
Natural line width
(FWHM) Γ 2π · 6.065(9) MHz
Recoil velocity vr 5, 8845 mm · s−1

Recoil energy ωr 2π · 3, 7709 kHz
Recoil temperature Tr 361, 95 nK
Doppler shift (vatom = vr)= ∆ωd(vatom = vr) 2π · 7, 5418 kHz
Doppler temperature TD 146µK
Saturation intensity Isat
(F = 2→ F = 3) 3, 576(4) mW · cm−2

Saturation intensity Isat
(mF = ±2→ m′F = ±3) 1, 669(2) mW · cm−2

Reduced transition dipole
matrix element 〈J = 1/2‖er‖J ′ = 3/2〉 3.584 · 10−29 C ·m

Table A.4: 87Rb D1(52S1/2 → 52P1/2)
transition optical properties

Frequency ω0 2π · 377, 1074635(4) THz
Wavelength (Vacuum) λ 794, 9788509(8) nm
Wave Number (Vacuum) kL · (2π)−1 12578, 950985(13) cm−1

Lifetime τ 27, 70(4) ns
Natural line width
(FWHM) Γ 2π · 5.746(8) MHz
Recoil velocity vr 5, 7754 mm · s−1

Recoil energy ωr 2π · 3, 6325 kHz
Recoil temperature Tr 348, 66 nK
Doppler shift (vatom = vr) ∆ωd(vatom = vr) 2π · 7, 2649 kHz
Doppler temperature TD 138µK
Reduced transition dipole
matrix element 〈J = 1/2‖er‖J ′ = 1/2〉 2.537 · 10−29 C ·m



Appendix B

Atom-light interaction in the
two-level picture

It is sometimes more convenient to reformulate the expressions derived for the dipole
potential in Section 3.2 in terms of Rabi frequencies familiar from the textbook example
of a two level atom. Starting with the general equation Equ. 3.5

Udip(r) = 3πc2

(∑ |cCG,i|2

ω3
0,i

2Γi∆i

Γ2
i + 4∆2

i

)
I(r) (B.1)

we arrive at the expression (∆i � Γi)

Udip(r) =
~
4

∑
i

Ω2
i

∆i
(B.2)

in terms of the Rabi frequencies of the individual transitions

Ωi(r) =
6πc2Γi
~w3

0, i

· I(r) (B.3)

=
E0

~
〈Ff ,mF, f |er|Fi,mF, i〉 (B.4)

=
√

2I
~2cε0

〈Ji‖er‖Jf 〉
∑
Ff ,P

cCG(Fi,mF, i,P;Ff ,mF, f ). (B.5)

We take advantage of this particular form in Chapter 6 when the preparation of dark-bright
soliton is considered.
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Determination of ensemble
parameters

C.1 Bimodal density distribution of a partly condensed Bose
gas

Atom-photon interaction

The rate at which mono chromatic light is scattered by one atom is given by Γsc = Γ̃sc× I
with

Γ̃sc =
γ

2Isat
1[

1 + 4
(
δ
γ

)2
+
(

Ī
Isat

)] , (C.1)

where Ī is the average intensity along the optical axis and Isat = (~ω3γ)/(12πc2) is the
saturation intensity. The scattering rate of photons incident on the area A with a rate
Rph = I A/(~ω0) can be calculated along the infinitesimal distance ∆y using the expression
Γph = Γ̃scIn(y)A∆y; where n(y) is a three-dimensional density. The attenuation of the
intensity by the atomic sample is therefor given by

d

dy
I(y) = −Γ̃sc ~ω0n(y) I(y) (C.2)

exhibiting the solution

ln IA − ln I0 = −Γ̃sc~ω0

∫
dy n(y) , (C.3)

where IA is the detected intensity. By definition Natoms = A
∫
dy n(y) and using the

expression for the saturation intensity we arrive at the number of atoms per CCD pixel:

Natoms = −Aω
2
0 α

6πc2

(
1 + 4

(
δ

γ

)2

+
Ī

Isat

)
ln
(
NA

NR

)
, (C.4)

α is a factor which depends on the relative orientation of the quantization axis and the
optical axis of the detection. For the most prominent experimental examples α has been
determined using a rate equation in [103] and is only states here without comment.



C.1. BIMODAL DENSITY DISTRIBUTION OF A PARTLY CONDENSED BOSE
GAS 167

perpendicular and linear Detection light that is incident perpendicular to the quan-
tization axis defined by the magnetic field and linearly polarized π⊥ = π0 leads to
α = 0.55.

perpendicular and circular If the light is circular polarized coming from the same
direction σ+⊥ = 1/2σ+ − 1/

√
2π0 + 1/2σ−, α = 0.47.

parallel and linear If the light propagates along the quantization axis and is linear
polarized π‖ = 1/

√
2(σ+ + σ−) the detection coefficient amounts to α = 0.5.

parallel and circular Finally right handed circular polarization with respect to the
quantization axis σ+ drives the cycling transition after a few scattering events and
will lead α ≈ 1 for typical detection parameters (tdet = 40µs, I/Isat = 0.2, Nsc ≈
300).

Bimodal distribution

Absorption images of Bose-Einstein condensates usually contain signatures of the con-
densed and normal fraction. To extract the relevant parameters from the images, a bi-
modal distribution is fitted to the column density which accounts for the Thomas-Fermi
parabolic part of the condensate and a much broader Gaussian like background following
Bose statistics [102, 117]:

nTOFtot (~r) = nth,0g3/2

(
z exp

[
3∑
i=1

(x− xi)2

σ2
i,th

])
+ nc,0 max

(
1−

3∑
i=1

(x− xi)2

σ2
i,c

, 0

)
. (C.5)

z is the fugacity exp (−µ/kBT ) and gj(z) =
∑
zi/ij the Bose function [102]. The most

important ensemble parameters are among position and width of the individual clouds the
total particle number in the condensate and the thermal cloud, the condensate fraction
and the temperature. They are given by the fit parameters of the latter equation through:

Nc =
2π
5
n2D
c,0 σx,c σy,c (C.6)

Nth = g3 (1)πn2D
th,0 σx,th σy,th (C.7)

F =
Nc

Nc +Nth
(C.8)

T =
m

2kB

(
ω2
i

1 + ω2
i t

2
σ2
i,th

)
, i ∈ {x,y} with t : time− of − flight. (C.9)



Appendix D

Supplementary mathematical
material for Spinor condensates

D.1 Representation of Projection operators

One explicit representation of the projection operators Pf in terms of products of spins is
given by

F = 1 : P0 =
1
3

(1− ~F1 · ~F2) P2 =
1
3

(2 + ~F1 · ~F2), (D.1)

F = 2 : P2 =
1
7

(4− ~F1 · ~F2 − 10P0) P4 =
1
7

(3 + ~F1 · ~F2 + 3P0). (D.2)

D.2 Equations of motion for spinor condensates

For completeness the equations of motion [210] for the individual components of the spinor
ζare cited here for reference (also compare [62] (F=1) and [211] (F=2)).

Spin equations of motion for F = 1

i ˙ζ+1 = g1〈n〉 [+Fzζ+1 +A1ζ0] + (−p+ q)ζ+1

iζ̇0 = g1〈n〉 [A∗1ζ+1 +A1ζ−1]

i ˙ζ−1 = g1〈n〉 [−Fzζ−1 +A∗1ζ0] + (+p+ q)ζ−1

F = 1 (D.3)
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Spin equations of motion for F = 2

i ˙ζ+2 =
g1〈n〉

2
[+4Fzζ+2 + 2A2ζ+1] +

g2〈n〉
2

S0ζ
∗
−2 + (−2p+ 4q)ζ+2

i ˙ζ+1 =
g1〈n〉

2

[
+2Fzζ+1 +

√
6A2ζ0 + 2A∗2ζ+2

]
− g2〈n〉

2
S0ζ

∗
−1 + (−p+ q)ζ+1

iζ̇0 =
g1〈n〉

2

[√
6(A2ζ−1 +A∗2ζ+1)

]
+
g2〈n〉

2
S0ζ

∗
0

i ˙ζ−1 =
g1〈n〉

2

[
−2Fzζ−1 +

√
6A∗2ζ0 + 2A2ζ−2

]
− g2〈n〉

2
S0ζ

∗
+1 + (+p+ q)ζ−1

i ˙ζ−2 =
g1〈n〉

2
[−4Fzζ−2 + 2A∗2ζ−1] +

g2〈n〉
2

S0ζ
∗
+2 + (+2p+ 4q)ζ−2



F = 2

(D.4)
For reasons of readability |AF |2 = 〈Fx〉2 + 〈Fy〉2:

A2 = 2(ζ+2ζ
∗
+1 + ζ∗−2ζ−1) +

√
6(ζ+1ζ

∗
0 + ζ∗−1ζ0) (D.5)

A1 = 2(ζ+1ζ
∗
0 + ζ∗−1ζ0) (D.6)

has been introduced.

D.3 Spin dependent scattering lengths and interaction pa-
rameter for 87Rb

Table D.1: Theoretical results for scattering lengths and measured differences[74].

predicted scattering lengths
F = 1 F = 2

a0/aB 101.78± 0.2 87.93± 0.2
a2/aB 100.40± 0.1 91.28± 0.2
a4/aB — 98.98± 0.2

measured differences
F = 1 F = 2

(a2 − a0)/aB −1.07± 0.09 3.51± 0.54
(a4 − a2)/aB — 6.95± 0.35

Table D.2: Calculated and measured coupling parameters, cited from [74]. g2 is hard to determine:
as the authors of [74] note, depending on details of the fitting procedure, even the sign of g2 may
change. g2 ≡ 4c2 when comparing values to [74].

predicted and measured coupling parameters
measured predicted

F = 1 F = 2 F = 1 F = 2
g1/(4πaB~/m) −0.36± 0.04 +0.99± 0.06 −0.46 +1.10
g2/(4πaB~/m) — −2.12± 2.32 — −0.20
g0/(4πaB~/m) — — 100.86 94.58

4πaB~/m = 2π × 7.73× 10−14 Hz cm3
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[115] J. Kronjäger. Accurate tilt control of optical tables and applications, 2008.

[116] N. Poli, R. J. Brecha, G. Roati, and G. Modugno. Cooling atoms in an optical trap
by selective parametric excitation. Phys. Rev. A, 65:021401(R), 2002.

[117] W. Ketterle, D. S. Durfee, and D. M. Stamper-Kurn. Making, probing and under-
standing Bose-Einstein condensates. In M. Inguscio, S. Stringari, and C. E. Wieman,
editors, Proceedings of the International School of Physics - Enrico Fermi, page 67.
IOS Press, 1999.

[118] L. T. Turner, K. F. E. M. Domen, and R. E. Scholten. Diffraction-contrast imaging
of cold atoms. Phys. Rev. A, 72:031403(R), 2005.

[119] Martin Brinkmann. Optimierung der Detektion und Auswertung von 87Rb-Spinor-
Kondensaten. Diplomarbeit, Universität Hamburg, 2005.

[120] Lars Neumann. Hochauflösende Detektion von Bose-Einstein Kondensaten. Diplo-
marbeit, Universität Hamburg, 2006.

[121] I. N. Bronstein, K. A. Semendjajew, G. Musiol, and H. Mühlig. Taschenbuch der
Mathematik. Verlag Harri Deutsch, 3 edition, 1996.



178 BIBLIOGRAPHY

[122] K. Eckert, L. Zawitschowski, A. Sanpera, M. Lewewnstein, and E. S. Polzik.
Quantum Polarization Spectroscopy of Ultracold Spinor Gases. Phys. Rev. Lett.,
98:100404, 2007.

[123] Y. Takahashi, K. Honda, N. Tanaka, K. Toyoda, K. Ishikawa, and T. Yabuzaki.
Quantum nondemolition measurement of spin via the paramagnetic faraday rotation.
Phys. Rev. A, 60(6):4974–4979, Dec 1999.

[124] I. Carusotto and E. J. Mueller. Imaging of spinor gases. J. Phys. B, 37:S115–S125,
2004.

[125] G. Klose, G. Smith, and P. S. Jessen. Measuring the quantum state of a large angular
momentum. Phys. Rev. Lett., 86(21):4721–4724, May 2001.

[126] H. F. Hofmann and S. Takeuchi. Quantum-State tomography for spin-l systems.
Phys. Rev. A, 69:042108, 2004.

[127] Wikipedia. Erdmagnetfeld — wikipedia, die freie enzyklopädie, 2007. [Online; Stand
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loading of a bose-einstein condensate in a 3d optical lattice. arXiv:cond-mat, page
0603590, 2006.

[182] D. Jaksch, V. Venturi, J. I. Cirac, C. J. Williams, and P. Zoller. Creation of a
Molecular Condensate by Dynamically Melting a Mott Insulator. Phys. Rev. Lett.,
89:040202, 2002.

[183] P. Kruger, Z. Hadzibabic, and J. Dalibard. Critical Point of an Interacting Two-
Dimensional Atomic Bose Gas. Phys. Rev. Lett., 99:040402, 2007.

[184] N. Elstner and H. Monien. A numerical exact solution of the Bose-Hubbard model.
arXiv:cond-mat, page 9905367, 1999.



182 BIBLIOGRAPHY

[185] G. K. Campbell, J. Mun, M. Boyd, P. Medley, A. E. Leonhardt, L. G. Marcassa,
D. E. Pritchard, and W. Ketterle. Imaging the Mott Insulator Shells by Using
Atomic Clock Shifts. science, 313:649–652, 2006.

[186] R. Hanburry Brown and Twiss R. Q. Correlation between Photons in two Coherent
Beams of Light. Nature, 177:27–29, 1956.

[187] R. Hanburry Brown and Twiss R. Q. A Test of a New Type of Stellar Interferometer
on Sirius. Nature, 178:1046–1048, 1956.
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und Weggefährten Jochen Kronjäger. So ziemlich alles über gute experimentelle Arbeitsweise
habe ich mir in all den gemeinsamen Jahren von ihm abschauen können. Mit schier un-
endlicher Geduld hat er versucht mir die Geheimnisse der Elektronik näher zu bringen.
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bert sei für das freundschafttliche Klima auch nach Feierabend ausführlich gedankt.
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