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Abstract

The dynamics of magnetic vortices and antivortices in ferromagnetic thin-film elements
is investigated by numerical simulations and analytical calculations. For the numerical
calculations the Landau-Lifshitz-Gilbert equation is solved by the Object Oriented Mi-
cromagnetic Framework (OOMMF). For the analytical calculations a two-dimensional
oscillator model is used. The response of vortices and antivortices to external fields and
spin-polarized currents is studied for increasing amplitudes of the exciting alternating
magnetic fields and currents, which result in vortex motions in the linear, non-linear, and
in the highly non-linear regime of vortex creation.

In the linear regime vortex dynamics is described by a harmonic oscillator model.
Micromagnetic simulations yield the eigenfrequency and the damping of gyration in de-
pendence on the size of the sample. The oscillator model is compared to the simulations.
The elliptical shape of the trajectories and the phase between gyration and alternating
excitation show good accordance. Resonance curves illustrate the dependence of the
semiaxes and the phase on the exciting frequency. The harmonic oscillator model can
be extended to a nonlinear oscillator model. The nonlinear equation of motion is solved
by a Runge-Kutta-method. A comparison of the trajectories from this model with the
trajectories from micromagnetic simulations yields the strength of the nonlinearities in
dependence on the size of the sample. The limit between nonlinear gyration and the
onset of the creation of vortices is estimated by a characteristic velocity of the vortex.
In the highly non-linear regime of core gyration micromagnetic simulations reach their
limits due to the formation of a magnetic singularity, the so-called Bloch point, where
the polarization of the vortex core switches. A general description is used to explain the
occurance of intermediate states at vortex formation.

Finally a possible application of vortices in memory cells is illustrated using the in-
sights from the investigations of the linear and the highly non-linear regime. The write
and the read process in the vortex random access memory (VRAM) or antivortex random
access memory (AVRAM) are implemented by vortex core switching and gyration.
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Zusammenfassung

In dieser Arbeit wird die Bewegung magnetischer Vortices und Antivortices in ferromag-
netischen dünnen Schichten mit Hilfe von numerischen Simulationen und analytischen
Rechnungen untersucht. Das verwendete mikromagnetische Simulationsprogramm Ob-
ject Oriented Micromagnetic Framework (OOMMF) löst die Landau-Lifshitz-Gilbert
Gleichung numerisch. Die analytischen Rechnungen werden mit einem zweidimension-
alen Oszillatormodell durchgeführt. Dabei wird das dynamische Ansprechverhalten von
Vortices und Antivortices auf externe Felder und spinpolarsierte Ströme betrachtet. Eine
Anregung mit steigender Amplitude bewirkt eine Bewegung im linearen, nicht linearen
und hochgradig nichtlinearen Bereich der Vortexentstehung.

Im linearen Bereich wird die Vortexbewegung mit einem harmonischen Oszillator-
modell beschrieben. Mikromagnetische Simulationen ergeben die Eigenfrequenz und die
Dämpfung der Gyration in Abhängigkeit von der Probengröße. Das Oszillatormodell und
die Simulationen werden miteinander verglichen. Die elliptische Form der Trajektorien
und die Phase zwischen Gyration und alternierender Anregung zeigen gute Überein-
stimmung. Resonanzkurven stellen die Abhängigkeit der Halbachsen und der Phase
von der Anregungsfrequenz dar. Das harmonische Oszillatormodell läßt sich auf ein
nichtlineares Oszillatormodell erweitern. Die nichtlineare Bewegungsgleichung wird mit
einem Runge-Kutta Verfahren gelöst. Ein Vergleich der Trajektorien des nichtlinearen
Oszillatormodells mit den Trajektorieren der mikromagnetischen Simulationen ergibt
die Stärke der Nichtlinearitäten in Abhängigkeit von der Probengröße. Die Grenze
zwischen nichtlinearer Gyration und Vortexentstehung wird durch eine charakteristische
Vortexgeschwindigkeit bestimmt. Im hochgradig nichtlinearen Bereich erreicht das
mikromagnetische Modell seine Grenzen aufgrund der Entstehung einer magnetischen
Singularität, des Bloch-Punkts, bei dem die Polarization des Vortexkerns umschaltet. Ein
allgemeiner Formalismus beschreibt die Ursache für die Bildung der Zwischenzustände
beim Vortexschalten.

Abschließend wird eine mögliche Anwendung von Vortices in Speicherzellen präsen-
tiert. Dabei werden die Erkenntnisse über die Vortexdynamik aus den vorherigen
Kapiteln benutzt. Der Schreib- und Leseprozess sind in dem Vortex Random Access
Memory (VRAM) oder dem Antivortex Random Access Memory (AVRAM) über das
Vortexschalten und die Vortexgyration realisiert.
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1 Introduction

Elements like nickel, iron, and cobalt as well as a great variety of alloys exhibit a col-
lective interaction between the electron spins. This phenomenon causes a permanent
magnetic moment leading to ferromagnetism that is of great interest concerning basic
physics and technical applications. Industrial development of novel non-volatile storage
devices like the Magnetoresistive Random Access Memory (MRAM) or the Racetrack
Memory (RM) fuels magnetism on the micro- and nanometer scale.

A significant advance of the fundamental understanding of ferromagnetism was gained
in 1928 by Heisenberg at the beginning of quantum mechanics when he proposed the
exchange energy as the reason for the parallel alignment of electron spins in a ferromag-
net. Since then different models besides the Heisenberg model such as the semiclassical
micromagnetic model have been introduced to describe ferromagnetism in a simplified
and phenomenological but solvable way.

In the past decades different developments allowed to study ferromagnetism in de-
tail. Experimentally, new observation techniques like the magnetic-force microscope
(MFM) or the spin-polarized scanning-tunneling microscope (SP-STM) made it possible
to scrutinize ferromagnetic materials spatially resolved on the nanometer or subnanome-
ter scale. X-ray microscopy based on the X-ray magnetic circular dichroism (XMCD)
allowed to detect the dynamics of the magnetic moments in a ferromagnet with a high
spatial and temporal resolution. Novel ferromagnetic alloys were fabricated to design
ferromagnets with desired properties. For example, alloys with a high permeability like
permalloy, which is considered in this work, strongly react to external fields. Numeri-
cally, the growth of computer power made it possible to simulate statics and dynamics
of ferromagnetic microstructures with a resolution in the nanometer and subnanometer
range by micromagnetic simulations.

Beside external magnetic fields, spin currents traversing ferromagnetic samples in-
teract with their magnetic moments. This spin-torque effect gained high interest in recent
years. While magnetoresistance effects like the giant magnetoresistance (GMR), the
anisotropic magnetoresistance (AMR) or the tunneling magnetoresistance (TMR) have
been technically utilized for decades, a theoretical description of the interaction between
spin currents and the magnetic moments in ferromagnets was first proposed by Berger in
2002 and extended by Zhang and Li in 2004.
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1 Introduction

Magnetic vortices provide a fascinating field of research. These magnetic configurations
possess magnetization cores with a diameter of a few nanometers pointing out-of-plane
with a surrounding in-plane magnetization pattern. They occur in ferromagnetic thin-film
elements. The flux-closured in-plane magnetization of vortices, called Landau pattern,
was already theoretically predicted 1946 by Kittel [1] and experimentally observed 1957
by Coleman [2]. In general, vortices or similar structures are found in many different
systems like in superfluids or Bose-Einstein condensates but also on large length scales
in meteorology as tornados or in astrophysics as accretation discs or spiral galaxies. The
dynamics of magnetic vortices can be studied in a controlable and reproducable way
because the core moves in a confined potential when an external magnetic field or a
spin current is applied. The magnetization of the vortex core is either up or down and is
called polarization. Independent of the polarization, the orientation of the in-plane mag-
netization is either clockwise or anticlockwise. These magnetization orientations have
been proposed to store binary data. Hence beside new fundamental physics, magnetic
vortices and antivortices provide new technical possibilities for the realization of novel
non-volatile storage devices.

In this thesis the dynamics of vortices and their topological counterparts, the antivortices,
is investigated. A novel theoretical description of the core trajectory in the linear and
nonlinear regime of excitation is outlined. The switching process of the orientation
of the core magnetization is described and possible applications of a vortex as vortex
random access memory (VRAM) or of an antivortex as antivortex random access memory
(AVRAM) are presented.
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2 Theoretical background

The Heisenberg model and the micromagnetic model are described in this chapter. The
electron spins are assumed to be classical vectors. The focus of this work is on soft
magnetic materials like permalloy.

2.1 Ferromagnetism

The fundamental object in ferromagnetism is the electron spin. The resulting elementary
magnetic moment m =−γS lies along the same direction as the spin S and is proportional
to it by the gyromagnetic ratio γ . The neglect of the orbital momentum L in the magnetic
moment is a reasonable approximation for most of the transition metals [3]. The electron
spins align parallel to each other due to the exchange interaction [4]. In competition to
that they also orient into those directions, which avoid surface and volume charges of
the magnetic moments to reduce the demagnetization energy. In soft magnets crystalline
anisotropies caused by spin-orbit interaction are negligible and are not discussed in this
thesis. In samples with a size smaller than some ten nanometers the exchange interaction
dominates the interaction by the demagnetization field and a single magnetic domain
[5] of parallel aligned magnetic moments is formed. Above a size of a few hundred
nanometers the larger the ferromagnet the higher is the number of magnetic domains. In
domain walls [6], the boundaries between the domains, the magnetic moments change
their angles smoothly. If an external magnetic field H is applied to a soft magnetic
material, the magnetic moments orient towards the direction of the field and the number
of domains decreases in dependence on the strength of the field, see Figs. 2.1 (a) and 2.1
(b). The resetting of the domains and the domain walls proceeds in discrete Barkhausen
jumps [7].

Ferromagnets can be classified by their response to an external field, the magnetic
susceptibility [8]

χ =
∂MH

∂H
. (2.1)

The magnetization M is the sum over the magnetic moments m times their density and MH

is the component of the magnetization in the direction of the applied field H. The larger
the susceptibility the stronger the field couples to the magnetic moments and the softer
is the ferromagnet. The permeability µr = [1 + MH(χ,H)/H] describes the response of
the magnetic flux density B in a sample to an external field H. Permalloy (Fe20Ni80)
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2 Theoretical background
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Fig. 2.1: (a) Sketch and magnetic-force micrograph [11] of the magnetic domains in a
ferromagnetic rectangle. (b) Orientation of the magnetic moments of the domains into
the direction of an external field H. The parallel aligned magnetic moments generate a
stray field Hs due to the magnetic surface charges. (c) Kerr measurement of a hysteresis
loop of a soft magnetic disk [10]. The sketches show the magnetic configurations.

possesses a permeability of µr = 8000 for a magnetic flux density of B = 2 mT, which
is larger than that of other ferromagnets like iron (µr = 200) or nickel (µr = 100) [9].
Another common way to classify ferromagnets is the hysteresis, as illustrated in Fig. 2.1
(c). An irreversible hysteresis loop MH(H) can be obtained by a cycle of first increasing
an applied field until it is large enough to saturate the ferromagnet, then decreasing it to
zero and increasing it in the opposite direction until the ferromagnet is saturated again.
Different magnetic configurations occur during a hysteresis loop. They depend on the
geometry and on the material. In permalloy squares of a lateral size of a few hundred
nanometers a vortex state occurs in the absence of a field, in the so-called remanence state
[10].

2.1.1 Spontaneous magnetization and Heisenberg model

The parallel alignment of electron spins is due to the exchange interaction [4], which
follows from the Pauli principle and the Coulomb repulsion between electrons. A simple
example are two electrons with the spins s = 1/2, which add to the S = 0 singlet state
or the S = 1 triplet states. The total spin states are 2S + 1 fold degenerate. The fact
of antisymmetric wavefunctions of the electrons leads to different eigenfunctions for the
singlet and triplet states. The exchange integral

Ji j = (ES−ET )/2 =
1

4πε0

∫
ψi(r1)∗ψ j(r2)∗

e2

|r1− r2|
ψi(r2)ψ j(r1)dr1dr2

(2.2)
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2.2 Micromagnetic model

is defined as the difference between the energies of the singlet state Es and the triplet
states ET . According to the Heisenberg Hamiltonian Ĥ = −Ji jSi · S j for the exchange
interaction between two neighboring spins Si and S j the exchange integral for a ferro-
magnet Ji j > 0 as ES > ET . Then a parallel spin configuration is favored [3, 12]. For an
antiferromagnet Ji j < 0 and the spins align antiparallel to each other.

Generalizing the exchange interaction between two electron spins to the exchange
interactions between many spins on a crystal lattice leads to the Heisenberg model
[3, 13]. The Heisenberg Hamiltonian reads

Ĥ =−Ji j ∑
i, j

Si ·S j, (2.3)

where Ji j is the exchange integral between the spins Si and S j. As the exchange interaction
is of short range the indices i, j run over the next neighbors only. Starting with the time
evolution of the spin Si in the Heisenberg picture, evaluating the commutator in a Taylor
expansion, and using the commutation relations of the spin operator yields [14]

dSi

dt
=−1

h̄
Si×

dĤ
dSi

. (2.4)

The term on the right dĤ/dSi = −Ji j ∑ j S j can be considered as an effective field of
neighboring spins around which the spin Si gyrates. The extended Heisenberg model,
which includes the coupling of the magnetic moments to their dipole fields and to an
external field with a magnetic flux density B, reads

Ĥ =−Ji j ∑
i, j

Si ·S j−
d
2 ∑

i, j

3(Si · ei j) · ei j ·S j−Si ·S j

r3
i j

−|m|B ·∑
i

Si. (2.5)

Here d is the strength of the dipole coupling between the spins and ei j is the unit vector
that points into the direction of the distance vector ri j between the spins.

2.2 Micromagnetic model

Micromagnetism describes a ferromagnetic body by a continuous vector field of classi-
cal magnetization vectors M [15, 16]. The magnetization vectors are spatial averages
over the discrete elementary magnetic moments m of the electron spins. The micromag-
netic model is used to describe ferromagnetism semiclassically on length scales of some
ten nanometers to some hundred microns, which would be too complex to be calculated
quantum mechanically. The interaction between the magnetization vectors is modeled by
effective fields, which have their origin in internal forces like the exchange coupling or
the demagnetization coupling and external fields like the Zeeman field.
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2 Theoretical background

2.2.1 Landau-Lifshitz-Gilbert equation

An external field H exerts a torque dS/dt =−γ−1dm/dt on the magnetic moment m if the
direction of the magnetic moment is non-collinear to the field. This leads to a gyroscopic
motion of the magnetic moment around the field according to the equation

dm
dt

=−γm×H. (2.6)

The gyroscopic term

dM
dt

=−γM×Heff (2.7)

of the Landau-Lifshitz-Gilbert equation describes the motion of the magnetization in an
effective field Heff . Gilbert introduced a phenomenological damping which encounters
the gyration for example due to crystal impurities [17, 18]. In the Gilbert form of the
Landau-Lifshitz equation

dM
dt

=−γM×Heff +
α

Ms
M× dM

dt
. (2.8)

the damping term leads to a motion of the magnetization, perpendicular to the velocity of
the magnetization due to the gyroscopic term, into the direction of the effective field. In
this equation the Gilbert damping parameter α determines the strength of the damping. At
equilibrium both terms vanish to get a vanishing torque, which is the case for a collinear
alignment of magnetization and effective field.

2.2.2 Effective fields

The effective field Heff = Hex +Hd +HZeeman in the Landau-Lifshitz-Gilbert equation is
a sum of internal effective fields like the exchange and the demagnetization field as well
as external fields like the Zeeman field. The internal anisotropy field, which describes
the coupling between the magnetization vectors due to lattice symmetries [16], is not
mentioned here because it is generally small in soft magnetic materials and negligible in
permalloy.

The exchange energy between two magnetization vectors can be derived by starting
from the Heisenberg Hamiltonian of two spins Si and S j

Ĥ =−JSi ·S j =−J|Si||S j|cos(φ). (2.9)

When the cosine is expanded into a Taylor series assuming only small angles between
the spins and the zero of the total energy is shifted by the constant term −J|Si||S j| the

12



2.2 Micromagnetic model

exchange energy density reads

Ĥ =
J
a3 |Si||S j|

(φ 2

2
)
≈ J

2M2
s ·a

(∇M)2 =
A

M2
s
(∇M)2. (2.10)

Here a is the lattice constant, φ ≈ |a∇M|/Ms the angle between the spins, Ms the sat-
uration magnetization, and A = J/2a the exchange constant. The exchange energy of a
ferromagnetic body results from a volume integration of Eqn. 2.10

Eex =
A

M2
s

∫
(∇M)2dV. (2.11)

The exchange field Hex follows from the variational derivative of the exchange energy
[14, 16]

Hex =− 1
µ0

δEex

δM
=

2A
µ0M2

s
∇

2M. (2.12)

The demagnetization field can be derived from the Maxwell equations ∇×Hd = 0 and
∇ ·Bd = 0 in a ferromagnetic body [19]. Therefore the magnetic field is a gradient of a
potential Hd =−∇ΦM(r), where

ΦM(r) =
1

4π

∫
M(r′) ·∇′( 1

|r− r′|)dV ′. (2.13)

When a demagnetization tensor

Ni j =
1

4π
∇i∇

′
j(

1
|r− r′|) (2.14)

is introduced [20], the demagnetization field becomes

Hd =−
∫

N(r− r′)M(r′)dV ′ (2.15)

and the demagnetization energy is

Ed =
µ0

2

∫ ∫
M(r)N(r− r′)M(r′)dV ′dV =−µ0

2

∫
Hd ·M(r)dV. (2.16)

With the Zeeman field HZeeman the Zeeman energy reads

EZeeman =−µ0

∫
HZeeman ·MdV. (2.17)
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2 Theoretical background

2.2.3 Spin torque

Itinerant spin-polarized electrons exert a torque on a nonuniform magnetization [21, 22].
This spin-torque can be derived from the exchange interaction

Ĥsd =
|S|J
Ms

s ·M(r, t) (2.18)

between an itinerant electron spin s and the localized electron spin S, where |S| is the
magnitude of the localized spin in the ferromagnet and J is the exchange integral. The
localized spin S =−M(r, t)|S|/Ms is described by the magnetization. The itinerant spins
s satisfy the continuity equation

ds
dt

+∇ · ĵ =− 1
ih

([s, Ĥsd]+ [s, Ĥscat ]), (2.19)

where ĵ is the spin-current operator, [s, Ĥsd] is the torque due to the exchange interaction
and [s, Ĥscat ] represents the torque due to the spin relaxation as a consequence of scattering
at impurities. Some conversions of Eqn. 2.18 and Eqn. 2.19 and approximations yield the
extended Landau-Lifshitz-Gilbert equation [21]

dM
dt

=−γM×Heff +
α

Ms
M× dM

dt
− b j

M2
s

M× (M× (j ·∇)M)

−ξ b j

Ms
M× (j ·∇)M,

(2.20)

where b j = µBP/[eMs(1+ξ 2)] is the coupling constant between the itinerant spins and the
magnetization, µB the Bohr magneton, P the spin polarization of the current, ξ = τex/τs f

the ratio between the exchange relaxation time τex and the spin flip relaxation time τs f ,
and j the electrical current density. The third term in Eqn. 2.20 describes the adiabatic
spin torque, where the electron spin is assumed to be parallel to the magnetization. The
fourth term, the non-adiabatic spin torque, includes deviations from the parallel alignment
between electron spin and magnetization. The focus of this work lies on the spin torques
generated by the nonuniform magnetization, temporal spin torques are not considered
further like in Ref. [21].

2.3 Micromagnetic simulations

Usually the nonlinear Landau-Lifshitz-Gilbert equation can only be solved numerically.
In the numerical calculations the continuous magnetization M(r, t) and the effective fields
H(r, t) are discretized in space ri and time ti by mapping them onto grids of simulation
cells, which represent the ferromagnetic body. In the finite difference method (FDM),
as employed in the Object Oriented Micromagnetic Framework (OOMMF), equidistant
simulation cells with a rectangular shape are used. In the numerical integration of the

14



2.3 Micromagnetic simulations
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Fig. 2.2: (a) Runge-Kutta method of first order, also called Euler method. It extrapolates
by the derivative of the function from the initial point 0 to the next simulation step:
yn+1 = yn + h f (ti,yn). (b) Runge-Kutta method of fourth order. For each time step the
derivative is evaluated four times: at the initial point 0, twice at the trial midpoints 1, 2,
and at the trial endpoint 3. The final function values are shown as filled dots, the function
values that are discarded once their derivatives have been calculated as open dots.

Landau-Lifshitz-Gilbert equation the magnetization evolves in discete time steps ∆t by
the interaction with the effective field.

2.3.1 Numerical time integration of the magnetization

The numerical time integration of the magnetization is partitioned into two parts. Before
each time step ∆t the effective field Heff is calculated and inserted into the discrete
Landau-Lifshitz-Gilbert equation. Then the solution of the Landau-Lifshitz-Gilbert equa-
tion yields the magnetization for the next time step M(ri, ti +∆t).

The Laplace operator of the exchange field in Eqn. 2.12 in the finite difference method is
represented by [23]

Hex =
2A

µ0M2
s (∆r)2 (Mi+1, j,k +Mi−1, j,k +Mi, j+1,k +Mi, j−1,k+

Mi, j,k+1 +Mi, j,k−1−6Mi, j,k).
(2.21)

where i, j,k are the indices of the simulation cells and ∆r denotes the distance between
the simulation cells in the direction of the coordinates. The algorithm for the calculation
of the exchange field has a time complexity of O(n)=n. In OOMMF simulations the
calculation of the exchange field needs less than 10 % of the calculation time. To calculate
the demagnetization field a fast Fourier transformation (FFT) is performed to transform
the convolution in Eqn. 2.15 to a product

Hdi = ∑
j

Ni jM j = Ni j ∗M j = iFFT[FFT(Ni j) ·FFT(M j)]. (2.22)
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2 Theoretical background

This decreases the time complexity from O(n2) to O(nlog(n)) since the multiplication has
a complexity of O(n) and the fast Fourier transformation has a complexity of O(log(n)).
An inverse fast Fourier transformation (iFFT) gives the spatially resolved demagnetiza-
tion field. Despite the acceleration by the fast Fourier transformation the demagnetization
field needs about 80% of the calculation time [24].

The discrete explicit Landau-Lifshitz-Gilbert equation including the spin-torque effect
reads

∆M(ri, ti)
∆ti

=− γ

(1+α2)
M(ri, ti)×Heff(ri, ti)−

αγ

Ms(1+α2)
M(ri, ti)× [M(ri, ti)×Heff(ri, ti)]−

b j

M2
s (1+α2)

(1+αξ )M(ri, ti)× [M(ri, ti)× (j · ∆

∆ri
)M(ri, ti)]−

b j

Ms(1+α2)
(ξ −α)M(ri, ti)× (j · ∆

∆ri
)M(ri, ti).

(2.23)

After the calculation of the effective fields Eqn. 2.23 is integrated [25]. To solve a dif-
ferential equation by a Runge-Kutta method of fourth order [26], a Taylor expansion of
the function y(t) in time is performed until the fourth order as shown in Fig. 2.2 (b). This
expansion is numerically realized by an interpolation

y(ti+1) = y(ti)+
k1

6
+

k2

3
+

k3

3
+

k4

6
+O(h5) (2.24)

with the four evaluating points k1 = h f (ti,y(ti)), k2 = h f (ti + h
2 ,y(ti) + k1

2 ), k3 =
h f (ti + h

2 ,y(ti)+ k2
2 ), and k4 = h f (ti + h,y(ti)+ k3). The step size is h. After each time

step the result y(ti+1) can be compared to the result of a fifth order Runge-Kutta method
to adapt the step size h. Step size control is used to reduce the calculation time by a
maximum step size for a given error limit. In OOMMF the Runge-Kutta method is used
to determine the time dependence of the magnetization M(ri, ti) by the integration of
Eqn. 2.23.

The micromagnetic model is limited. It cannot describe ferromagnetism quantum-
mechanically because it is a semiclassical continuum theory. Due to the spatial average
over the elementary magnetic moments of the magnetization large angles between the
magnetization vectors are forbidden. In micromagnetic simulations the simulation cell
size must be smaller than the exchange length l =

√
2A/µ0M2

s , which for permalloy is
about 6 nm. Only then micromagnetic structures can be resolved properly. The temporal
resolution is restricted by the numerical inaccuracy. The main memory of the employed
computer restricts the number of simulation cells.
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3 Static properties of vortices and
antivortices

Magnetic vortices are magnetic configurations with an in-plane magnetization and an
out-of-plane core of the magnetization [27]. They are formed in soft magnetic thin-film
elements with a lateral size of a few hundred nanometers to some microns when the de-
magnetization energy forces the magnetization to align parallel to the sample’s surface,
which for thin films is the in-plane direction. At the vortex’s center region, where mag-
netization vectors would align antiparallel to each other, the exchange energy leads to an
alignment of the magnetization vectors out-of-plane either up or down and thus forms the
magnetization core. Magnetic vortices possess a rotationally symmetrical in-plane mag-
netization with the vortex core as symmetry axis. They occur for example in permalloy
squares, see Fig. 3.1 (a), or in disks [28]. The in-plane magnetization of a magnetic an-
tivortex has a two-fold symmetry with the antivortex core as symmetry axis. Antivortices
appear for example in infinity-shaped or clover-shaped samples [29]. Such a structure is
shown in Fig. 3.1 (c), (d).
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Fig. 3.1: (a) Simulation and (b) soft x-ray micrograph of a Landau pattern in a permalloy
square [30]. The vortex core is at the center of the structure. (c) Simulation and (d) soft
x-ray micrograph [31] of an antivortex at the center of an infinity-shaped sample. The
colorbars show the y-component of the magnetization.
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3 Static properties of vortices and antivortices
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Fig. 3.2: (a) Vortex (n = 1) and (b) antivortex (n =−1) with chirality c = (φ −β )π

2 = 1
and c-value c = (φ +β )π

2 = 1, respectively. (c) Vortex ground states in a square and (d)
antivortex ground states in an infinity-shaped sample.

3.1 Magnetic configurations

The magnetic configurations of vortices and antivortices are characterized by the winding
number n, the chirality c for vortices or the c-value for antivortices, and the polarization
p as illustrated in Fig. 3.2. To consider the characteristics of vortices and antivortices,
we put their cores at the origin of a cartesian coordinate system and choose the x-axis as
the axis of reference, see Figs. 3.2 (a) and 3.2 (b). The in-plane magnetization can be
described by the relation

φ(β ) = nβ +
cπ

2
, (3.1)

where φ is the angle between the local magnetization and the x-axis and β is the angle
between the position vector, that points to the local magnetization, and the x-axis. The
winding number describes the curling magnetization of vortices (n = 1), as shown in
Fig. 3.2 (c), or the crossing magnetization of antivortices (n = -1), as illustrated in
Fig. 3.2 (d). The chirality c gives the orientation of the in-plane magnetization for
a vortex curling either clockwise (c = -1) or anticlockwise (c = 1) around the core.
In case of antivortices the orientation of the in-plane magnetization varies when the
sample is rotated. Therefore the distinct x-axis is chosen to define an unambiguous
c-value for antivortices [32]. The c-value can assume values between c = -2 and c = 2.
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3.1 Magnetic configurations
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Fig. 3.3: Simulated magnetization configurations of a vortex in (a) a disk, (c) a square,
and (e) of an antivortex in an infinity-shaped sample. (b), (d), and (f) corresponding ef-
fective fields. The colorbars show the strength of the x-component of the magnetization
and the effective field. The arrows denote magnetization vectors. Black and white lines
illustrate the domain walls.

The polarization p describes the magnetization direction of a vortex or antivortex core
pointing up (p = 1) or down (p = -1) out-of-plane, as illustrated in Figs. 3.2 (c) and 3.2 (d).

The whole magnetization of a vortex state can be described by minimizing the to-
tal energy

Etot = Eex +Ed =
∫ {

A
3

∑
i=1

1
M2

s
[∇Mi(r)]2−

µ0

2
Hd ·M(r)

}
dV. (3.2)

The index i runs over the components of the magnetization, A is the exchange constant
and Hd is the demagnetization field. In general the magnetization is given in spherical
coordinates M(Ms,φ ,θ) and the angles φ(r), θ(r) are functions of the position vector r.
In case of a disk it is most convenient to choose cylindrical coordinates ρ,φ ,z. Addition-
ally to these coordinates the out-of-plane component of the magnetization is described
by the out-of-plane angle θ . Then the components of the magnetization M read Mρ = 0,
Mφ = Ms sin(θ) and Mz = Ms cos(θ) [33]. The total energy is given by [34]

Etot = 2πt
∫ R

0

{
A
[(

dθ

dρ

)2

+
sin2

θ

ρ2

]
+K1 sin2

θ

}
ρdρ, (3.3)

where t is the thickness of the sample. The last term K1 sin2
θ approximates the demagne-

tization energy by an energetical penalty for magnetization vectors pointing out-of-plane,
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3 Static properties of vortices and antivortices

where K1 is similar to an anisotropy constant. The Euler-Lagrange equation applied to
Eqn. 3.3 leads to the differential equation

− 1
ρ

d
dρ

(
ρ

dθ

dρ

)
+

sinθ cosθ

ρ2 +
K1

A
sinθ cosθ = 0. (3.4)

The solution of Eqn. 3.4 gives the out-of-plane angle of the magnetization θ , which reads

θ = 2 arctan(ρ/rvc) (3.5)

when the term K1
A sinθ cosθ is neglected [34]. Here rvc is the radius of the vortex core.

For a vortex in a square cartesian coordinates can be chosen for the position vectors. To
include the edges of the square additional energy penalty terms have to be considered.
Usually the resulting differential equation gets nonlinear and can only be solved numeri-
cally.
Micromagnetic simulations yield an exact solution for the magnetization pattern of vor-
tices. Here exact means that no further assumptions are made and numerical inaccuracies
are ignored. In a disk the in-plane magnetization isotropically surrounds the vortex core
as shown in Fig. 3.3 (a). In a square there are four domains and four 90◦ domain walls
as illustrated in Fig. 3.3 (c). The antivortex also contains, in addition to the antivortex
core, four domains and four 90◦ domain walls, which is a result of the crossing in-plane
magnetization, see Fig. 3.3 (e).
The effective fields follow from the magnetic configurations. Micromagnetic simulations
show that for vortices in squares and antivortices in infinity-shaped samples the effective
field in the domain walls points opposite to the direction of the magnetization. This is
a consequence of the relation divHd=− divM between the demagnetization field and the
magnetization. In the domains the effective field points into the same direction as the
magnetization as shown in Fig. 3.3. The strength of the field in the domain walls is about
one magnitude larger than that in the domains. In a disk the effective field always points
into the direction opposite to the magnetization.

3.2 Geometrical and energetical considerations

The formation of vortices depends on the size and shape of the sample because the de-
magnetization energy [16]

Ed = Ms

∫
λ (r)Φd(r)dV +

∫
σ(r)Φd(r)dS (3.6)

depends on the sample’s geometry due to the surface charges σ = n ·M and the volume
charges λ =divM. The potential of the demagnetization field is Φd . The larger the lat-
eral size of a sample, the higher the number of possible surface charges and thus the
stronger the demagnetization energy contribution to the total energy. To minimize the
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3.2 Geometrical and energetical considerations
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Fig. 3.4: Simulated hysteresis of (a) a square (200× 200× 60 nm3), (b) a disk (200×
200× 60 nm3), and (c) an infinity-shaped sample (840× 400× 70 nm3). The field is
applied in the x-direction in steps of µ0∆H = 4 mT. The numbers denote the positions
of the magnetic configurations shown on the hysteresis loop.

number of magnetic charges non-uniform magnetization configurations like vortices are
preferred. The exchange energy tries to avoid a gradient of the magnetization and hence
only depends on the sample geometry when there is a large gradient. Below a critical
length of the sample the exchange energy overcomes the demagnetization energy and a
monodomain is formed [35]. Above the critical radius of a disk the vortex represents the
global energetical minimum. In squares the vortex is an energetical minimum as well.
However, due to the edges, magnetic configurations like flower states or S-states are more
prominent than in a disk, as shown in Figs. 3.4 (a) and 3.4 (b). The magnetic configura-
tions in a sample of a certain geometry can be obtained from its hysteresis as illustrated in
Fig. 3.4. The magnetic configurations at remanence for varying thicknesses and lengths
of a certain sample shape are summarized in a phase diagram [10].

3.2.1 Vortex-core radius and domain-wall width

From the analytical result of the out-of-plane component Mz of the magnetization of a
vortex core in Eqn. 3.5 the relation rvc ∝ t1/3 between the vortex-core radius and the
sample thickness follows [34]. Micromagnetic simulations of the core radius rvc in disks
as well as in squares for different lengths and thicknesses depicted in Fig. 3.5 (b) confirm
this result. The out-of-plane component of the magnetization Mz is fitted by a spline
interpolation and the core radius is defined for magnetization vectors with an out-of-plane
component Ms/e, where Ms is the saturation magnetization and e is Euler’s constant, see
Fig. 3.5 (a).
Micromagnetic simulations in Fig. 3.5 (c) show an increase of the widths of the domain
walls for an increase of the lateral size of the squares. A decrease of the sample thickness
leads to an increase of the domain-wall width. It is much smaller than the one due to
the variation of the lateral size illustrated in Fig. 3.5 (c). The borders of a domain wall
are defined as lines where the deviation of the angles from the magnetization in the wall

21



3 Static properties of vortices and antivortices

differs by more than 22.5◦ from the angles of the magnetization vectors in the adjacent
domains.
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Fig. 3.5: (a) Magnetization component Mz of a vortex core in a 200× 200× 5 nm3

(blue line) and in a 200× 200× 50 nm3 (black line) square. (b) Vortex core radius in
dependence on the thickness t of squares with a fixed lateral size L = 200 nm. Asterisks
represent numerical results, the red line is a fit rvc = 6.69nm2/3(t + 12.31nm)1/3. The
asterisks in the inset denote the radius of the vortex core in dependence on the lateral
sizes for a fixed thickness of t = 10 nm. The red line in the inset is a constant function. (c)
Asterisks denote the domain-wall widths wDW for different lengths for a fixed thickness
t = 20 nm. The red line is a linear fit. In the inset the asterisks illustrate the domain-wall
width in dependence on the thickness for a fixed lateral size of L = 200 nm. The red line
is a guide to the eyes.
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4 Dynamics in the linear and non-linear
regime

External magnetic fields and spin currents couple to the magnetic moments of a vortex
leading to a motion of the vortex core away from its equilibrium position. In addition
to the external forces the displaced vortex core experiences an internal force due to the
demagnetization field of the non-equilibrium magnetization pattern. This force is perpen-
dicular to the velocity of the vortex core and causes a vortex gyration. For increasing
and small amplitudes of excitation the internal force increases linearly. For increasing
and large amplitudes of excitation the internal force increases nonlinearly, which results
in a nonlinear vortex motion and in the highly nonlinear regime in the creation of new
vortices.

4.1 Linear regime of vortex motion

First the gyroscopic vortex motion is described qualitatively by the Landau-Lifshitz-
Gilbert equation. Then a linear equation of motion is derived from the Thiele equation.
The dynamical characteristics of a vortex as a harmonic oscillator are presented and the
response of the vortex to different forms of excitations is shown. Finally the amplitude
variation of the core gyration for simultaneous excitation by a magnetic field and an
electrical current or by a single rotating field or current is outlined.

To study the influence of the demagnetization field on the magnetization vectors that
form the vortex core, the explicit Landau-Lifshitz-Gilbert equation [14]

dM
dt

=− γ

(1+α2)
M×Heff −

γα

Ms(1+α2)
M× (M×Heff) (4.1)

with the effective field Heff = Hex +HD can be considered. In case of a disk the enlarged
magnetic domain of a displaced vortex generates a demagnetization field at the vortex
core which points antiparallel to the orientation of the enlarged domain, see Figs. 4.1 (a)
and 4.1 (b). Then the first term of Eqn. 4.1, the gyration term, yields time derivatives of
the magnetization vectors of the core that point into the disk’s center or into the opposite
direction. A vortex gyration follows with a counterclockwise (clockwise) gyration for
a positive (negative) core polarization. A change of the chirality inherently changes the
orientation of the demagnetization field at the core. Hence the gyration depends only on
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4 Dynamics in the linear and non-linear regime
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Fig. 4.1: Magnetic vortices in permalloy samples. The displaced core performs free
damped gyrations induced by the demagnetization field. One gyration period of a vortex
(c=1, p=1) in (a) and (b) a disk of radius 100 nm and thickness 20 nm with the free
frequency ω f = 4.95 · 109 1/s, (c) and (d) in a square (200× 200× 20 nm3) with the
free frequency ω f = 4.40 ·109 1/s, (e) of an antivortex (c=0, p=1) in an infinity-shaped
sample (840× 400× 50 nm3) with the free frequency ω f = 5.74 · 109 1/s. (a), (c) and
(e) depict the magnetizations, (b) and (d) the effective fields. The color bars illustrate
the normalized y-component of the magnetization and the normalized strength of the
effective field. The black arrows in (b) and (d) denote the direction of the effective field
at the core. The circular black arrows denote the sense of gyration in dependence on the
polarization.

the polarization and not on the chirality. The second term of Eqn. 4.1, the damping term,
causes time derivatives of the magnetization vectors of the vortex core that point perpen-
dicular to the time derivative due to the gyration term. It leads to a motion of the vortex
into the direction of the equilibrium position and thus to a damped gyration.
In case of a square the core gyration is driven by the demagnetization field of the domain
walls in the vicinity of the vortex core. It is much higher than that in the magnetic do-
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4.1 Linear regime of vortex motion

mains as illustrated in Figs. 4.1 (c) and 4.1 (d).
In case of an antivortex the demagnetization field of the domain walls at the antivortex
core results in an opposite sense of gyration in comparison to the vortex gyration, as
shown in Fig. 4.1 (e). This is due to the two-fold symmetry of the in-plane magnetization
of an antivortex. In general, for a vortex and an antivortex, the sense of the core’s gyra-
tion is given by the product of the winding number n due to the symmetry of the in-plane
magnetization and the polarization p due to the orientation of the out-of-plane magneti-
zation. The product np = 1(np =−1) means a positive (negative) mathematical sense of
gyration.
The vortex core can be displaced by an external spin current and an external magnetic
field. This can be described by an additional spin-current and Zeeman field term. When
excited by an alternating current at resonance the core gyrates on a circular orbit in the
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Fig. 4.2: (a) One simulated gyration period of a vortex (c=1, p=1) in the steady state.
The vortex is excited in a square of permalloy (200× 200× 20 nm3) by an alternating
current density of amplitude j ·P = 5 · 1010 A/m2 in x-direction at the free frequency
ω f = 4.4 · 109 1/s. (b) Corresponding spiral trajectory that becomes circular when the
steady state is reached. (c) The black curve illustrates the demagnetization energy in
dependence on the displacement of the excited vortex core. The red line is a parabolic
fit of the demagnetization energy.
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4 Dynamics in the linear and non-linear regime

steady state. Figure 4.2 (a) depicts the magnetization of a square excited by an alternating
current density of amplitude j ·P = 5 · 1010 A/m2 in x-direction. The domain walls are
undistorted and the core performs a spiral trajectory starting from the equilibrium position
in the center of the sample until a steady state with a circular trajectory is reached. This
spiral trajectory is illustrated in Fig. 4.2 (b). The steady state is reached when the forces
due to the external excitation and due to the demagnetization field are in equilibrium.
Since the core gyration is induced by the demagnetization field the demagnetization en-
ergy establishes the potential for the vortex core. Figure 4.2 (c) shows the demagnetization
energy of the excited vortex in dependence on the core displacement. The fit shows that
for small core displacements a parabolic potential can be assumed for the vortex gyration.
Then the vortex gyration can be described by a harmonic oscillator model.

4.1.1 Thiele equation and equation of motion of vortices

The forces acting on a magnetic vortex can be derived starting from the implicit Landau-
Lifshitz-Gilbert equation with the spin-torque terms [21]

dM
dt

=− γM×Heff +
α

Ms
M× dM

dt
− b j

M2
s

M× [M× (j ·∇)M]

− ξ b j

Ms
M× (j ·∇)M.

(4.2)

The absolute values of the magnetization vectors are assumed to be spatially constant and
equal to the saturation magnetization Ms = 8 · 105 A/m of permalloy. Then the deriva-
tives of the squared magnetization d

dr M2 = 2M · d
dr M = 0 and d

dt M2 = 2M · d
dt M = 0

vanish. Hence the derivatives dM/dr and dM/dt point perpendicular to the magnetiza-
tion M. A cross product of Eqn. 4.2 from the left-hand side by the magnetization M and
an evaluation of the resulting equation by employing the identity a× (a×b) =−a2b for
perpendicular vectors a and b result in the effective field

Heff =
M

γM2
s
× dM

dt
+

α

γMs

dM
dt
− b j

γM2
s

M× (j ·∇)M− ξ b j

γMs
(j ·∇)M−hM.

(4.3)

The summands on the right-hand side can be interpreted in terms of equivalent fields [36].
The equivalent field Hm = hM with the proportionality factor h can be neglected, because
it does not interact with the magnetization.
The gyroscopic equivalent field and the dissipative equivalent field read

Hg =− 1
γM2

s
M× dM

dt
(4.4)

and

Hα =− α

γMs

dM
dt

, (4.5)
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4.1 Linear regime of vortex motion

the adiabatic and the nonadiabatic spin-torque equivalent fields [37]

Hadiabatic =
b j

γM2
s

M× (j ·∇)M (4.6)

and

Hnonadiabatic =
b jξ

γMs
(j ·∇)M. (4.7)

The steady-state motion of a vortex core can be described as the motion of a quasiparticle
with the velocity v [36, 38], [P1]

dM
dt

=−
(dr

dt
· d

dr

)
M =−(v ·∇)M. (4.8)

In the following terms with repeated indices are assumed to be summed. The components
of the force density [36]

fi =−µ0Hk∂Mk/∂xi (4.9)

are products between the components of the corresponding equivalent fields Hi and the
spatial derivatives of the magnetization ∂M j/∂xi. They can be used to derive the forces
of vortex dynamics [38], [P1].
Inserting the component of the gyroscopic equivalent field Hg

k = − 1
M2

s γ
εkmnMm

dMn
dt and

the component dMi
dt =−v j

∂Mi
∂x j

into Eqn. 4.9 yields the gyroscopic force density

f g
i =−µ0Hg

k
∂Mk

∂xi
= µ0

1
M2

s γ
εkmnMm

dMn

dt
∂Mk

∂xi

=−µ0
1

M2
s γ

εkmnMk
∂Mm

∂x j

∂Mn

∂xi
v j = Gi jv j.

(4.10)

The gyrotensor Gi j can be expressed by a gyrovector g using the relation gi =−1
2εi jkG jk.

In vector notation the gyroscopic force density reads fg =−g×v. The force density due
to the dissipation is

f α
i =−µ0Hα

k
∂Mk

∂xi
=

αµ0

Msγ

dMk

dt
∂Mk

∂xi
=−αµ0

Msγ

∂Mk

∂x j

∂Mk

∂xi
v j =−αdi jv j. (4.11)

In vector notation fα =−αd ·v. The force densities due to the adiabatic and the nonadia-
batic spin-torques are

f adiabatic = µ0g×b jj (4.12)
and

f nonadiabatic =−µ0ξ b jd · j. (4.13)

The force density of the energy density ρeff of the effective field is [36]

feff = (δρeff/δθ)∇θ +(δρeff/δφ)∇φ . (4.14)

This force density feff = fin + fex can be devided into an internal force density fin compris-
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Fig. 4.3: (a) Scheme of a vortex in a square. The core is displaced into the y-direction if
the component Mx of the magnetization increases. The arrows depict the direction of the
magnetization in the domains, the dashed lines indicate the equilibrium magnetization.
(b) Angle ϕ between the exciting field and the current density.

ing the force density due to the demagnetization energy and an external force density fex

comprising the force density due to the Zeeman field [36].
Integration of all force densities over the volume leads to the total force

F =−G× (v+b jj)−D(αv+ξ b jj), (4.15)

where the total gyroscopic vector is G =
∫

gdV and the total dissipation tensor D =
∫

ddV .
For small core displacements the vortex can be treated as a quasiparticle in an isotropic
parabolic potential

Ed = 1
2mω

2
r r2, (4.16)

see Fig. 4.2 (c). Here m is the effective mass of the quasiparticle, ωr the resonance
frequency, and r the amplitude of gyration.
The energy due to the Zeeman field can be obtained approximating the domains of the
vortex of chirality c in a Landau pattern by saturated triangles of length L and height L/2.
This approximation assumes undistorted domain walls [38], [P1]. If an external field H is
applied in the x-direction, only the x-component of the magnetization

Mx =
cMs

2L

[(
L
2

+ y
)
−
(

L
2
− y
)]

= cMsL−1y (4.17)

increases and the vortex core is displaced in the y-direction, see Fig. 4.3 (a) and Figure 1
in Ref. [38], [P1]. The Zeeman energy reads

EZeeman =−µ0cMsLtH
2

[(
L
2

+ y
)
−
(

L
2
− y
)]

=−µ0cMsLtHy (4.18)

with the thickness t. For the general case of a vortex of an arbitrary chirality or c-value
[39], [P2] and an arbitrary direction of the external field the resulting force due to the
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4.1 Linear regime of vortex motion

Zeeman and the demagnetization field is

F =−∇(EZeeman +ED)

= µ0MsHlt
(

cos(ϕ) −sin(ϕ)
sin(ϕ) cos(ϕ)

)(−ncos
(

πc
2

)

sin
(

πc
2

)
)
−mω

2
r

(
x
y

)
.

(4.19)

The angle ϕ between the x-axis and the Zeeman field is illustrated in Fig. 4.3 (b). A cross
product of Eqn. 4.15 with the total gyrovector G from the left-hand side using the identity
a× (a×b) = −a2b for perpendicular vectors a and b leads to the equation of motion of
vortices as found by Benjamin Krüger [38], [P1]

(
ẋ
ẏ

)
=

G×F−D0αF− (G2
0 +D2

0αξ )b jj+D0G×b jj(ξ −α)
G2

0 +D2
0α2 . (4.20)

The gyrovector is given by G = G0ez with G0 =−2πMsµ0tnp
γ

. The diagonal element of the

dissipation tensor is D0 =−πMsµ0tln(l/a)
γ

.
Inserting Eqn. 4.19 into Eqn. 4.20 leads to the explicit equation of motion of vortices
(n = 1) and antivortices (n = −1) of arbitrary chiralities or c-values excited by a current
in the x-direction and a magnetic field of an arbitrary direction:

(
ẋ
ẏ

)
=
(−Γ − pnω f

npω f −Γ

)(
x
y

)
+



−v j− Γ2

ω2
f +Γ2

ξ−α

α
v j

npω f Γ

ω2
f +Γ2

ξ−α

α
v j




−
ω2

f vH

ω2
f +Γ2

(
cos(ϕ) −sin(ϕ)
sin(ϕ) cos(ϕ)

)(−npsin(πc
2 )+ Γ

ω f
ncos(πc

2 )

−pcos(πc
2 )− Γ

ω f
sin(πc

2 )

)
.

(4.21)

In this equation ω f = −npG0mω2
r

G2
0+D2

0α2 is the free frequency and Γ = −D0αmω2
r

G2
0+D2

0α2 the damping con-

stant, v j = b j j the velocity due to the electrical current, and vH = HLγ/2π the velocity
due to the magnetic-field excitation [38], [P1].
In case of an alternating excitation of the form vext = (Aex + Bey)eiΩt the analytical so-
lution of Eqn. 4.21 can be obtained from the method of variation of constants [38], [P1].
The result is

(
x
y

)
= K1

(
i

np

)
e(−Γt+iω f t) +K2

(−i
np

)
e(−Γt−iω f t)

+ χ

(
A(iΩ+Γ)−Bnpω f

Anpω f +B(iΩ+Γ)

)
eiΩt .

(4.22)

The coefficients K1 and K2 include the initial conditions and χ = 1/[ω2
f +(iΩ+Γ)2] is the

dynamical susceptibility of a harmonic oscillator. The coefficients A and B of the velocity
due to the excitation vex are given by the x- and the y-component of the inhomogeneous
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4 Dynamics in the linear and non-linear regime
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Fig. 4.4: (a) Resonant core gyration of a vortex in a permalloy square (200× 200× 20
nm3). The black circles (blue asterisks) depict simulated results of the semiaxes X0
and Y0 of the core gyration in dependence on the exciting frequency Ω. The dashed
black (solid blue) line denotes analytical results from the harmonic oscillator model.
The red squares represent simulated phases η of the core gyration, the red line is the
phase from the harmonic oscillator model. (b) Amplitude of vortex gyration represented
by the x-component of the magnetization Mx in dependence on the simulation time for
frequencies below (Ω < ωr), at (Ω = ωr), and above (Ω > ωr) the resonance frequency.

part of Eqn. 4.21.
Usually vortex states in permalloy microstructures are weakly damped systems. For ex-
ample for a vortex in a square of dimensions 200× 200× 20 nm3 micromagnetic sim-
ulations yield a ratio of Γ/ω ≈ 0.01. For permalloy the Gilbert damping α and the
nonadiabaticity constant ξ are approximately equal (α ≈ ξ ). Hence Eqn. 4.21 can be
simplified by omitting terms that include the factors Γ

ω
<< 1 and ξ−α

α
<< 1. Using these
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4.1 Linear regime of vortex motion
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Fig. 4.5: Core position of a vortex in dependence on the exciting frequency Ω at the
maximum amplitude of (a) and (b) an alternating current in x-direction, (c) and (d) a
magnetic-field in y-direction. The circles represent the core gyration of a vortex of (a)
and (c) np = 1, (b) and (d) np = −1. The arrow heads in the circles illustrate the sense
of gyration, the lines the position of the core at the resonance frequency. (a) - (d) The
thin half circles illustrate the core positions for frequencies from far below resonance
ωr >> Ω > Γ to far above resonance ω2

r /Γ > Ω >> ωr. In (c) and (d) different colors
of the half circles show the chirality or c-value dependent core position for magnetic-
field excitation. The different colors of the bars in the circles denote the position of the
core at resonance.

approximations and assuming an alternating current j(t) = j cos(Ωt) in x-direction and
an alternating magnetic field H = H cos(Ωt) in y-direction (ϕ = π/2), Eqn. 4.22 yields
the steady-state motion of vortices [38, 32], [P1, P3]

(
x
y

)
=−χ

(
vH sin(πc

2 )ω f + iΩ[vH pcos(πc
2 )+ v j]

[vHncos(πc
2 )+ v jnp]ω f − iΩvHnpsin(πc

2 )

)
eiΩt . (4.23)

For alternating excitations the semiaxes X0 and Y0 and the phase η of gyration depend
on the exciting frequency as shown in Figs. 4.4 (a) and 4.4 (b). The core performs
elliptical trajectories, which at resonance become circular with a maximum amplitude
(r = X0 = Y0), see Fig 4.4 (a). The phase between excitation and gyration η is defined by
the time shift between maximum amplitude of excitation and maximum displacement in
x-direction. For varying frequencies the phase varies by π as illustrated in Fig. 4.4 (a).
Only in case of magnetic-field excitation the phase depends on the chirality or the c-value
[30, 32, 38], [P4, P1, P3]. This is evident in Eqn. 4.23 and illustrated in Fig. 4.5.

For an excitation with a constant current density j or magnetic field H the core is
displaced and performs a damped gyration around a new equilibrium position as shown
in Figs. 4.6 (b) and 4.6 (e). The displacement of a vortex excited by a constant current is

(
x
y

)
=

1
ω2

f +Γ2

( −v jΓ

−v jnpω f

)
(4.24)

as obtained from Eqns. (4.21) and (4.22). Only for field excitation the direction of the
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4 Dynamics in the linear and non-linear regime

core displacement depends on the chirality or the c-value.

For an excitation by a current pulse of density Θ(t1− t2) j or a magnetic field Θ(t1− t2)H
with the step function Θ(t1− t2), the vortex is displaced during the duration of the pulse.
After that it performs a free relaxation around the equilibrium position as illustrated in
Fig. 4.6 (c) and 4.6 (f). The equation of motion can be derived by inserting the velocities
v j = b j jΘ(t2− t1) or vH = Hlγ

2π
HΘ(t2− t1) into Eqn. 4.21. For arbitrary shapes of the

pulse the equation of motion can only be solved numerically. For example the pulses in
Figs. 4.6 (c) and 4.6 (f) are mixtures of a step function and a triangular function.

A spatially rotating magnetic field H = H(eiΩtex ± ieiΩtey) or current j = j(eiΩtex ±
ieiΩtey) can be realized by superimposing two alternating excitations in perpendicular
directions with a phase of ±π/2. The sign of the phase determines the sense of rotation
of the excitation. It rotates clockwise for +π/2 and anticlockwise for −π/2 [40, 41].
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4.1 Linear regime of vortex motion

The motion of a vortex for a rotating current reads

(
x
y

)
= χ

(
v ji(Ω±npω f )
v j(npω f ±Ω)

)
eiΩt , (4.25)

see Eqns. (4.21) and (4.22). For rotating excitations the trajectory always has a circular
shape. This is evident in Eqn. 4.25.

4.1.2 Vortices as harmonic oscillators

To get the values for the free frequency ω f and for the damping constant Γ the vortex core
can be displaced first and then the free relaxation can be fitted to the solution

x(t) = Ae−Γt cos(ω f t) (4.26)

of a damped harmonic oscillator, see Fig. 4.7. The damping Γ and the frequency ω f

determine the resonance frequency ωr =
√

ω2
f +Γ2. Figure 4.7 (b) shows a fit of the x-

component of the magnetization of a vortex in a square.
The potential due to the demagnetization field depends on the geometry of the sample.
Simulations of the gyration in squares of different sizes yield the correlations between
the free frequency ω f , the width L and the thickness t of the square, as illustrated in
Fig. 4.7 (a). The fitted resonance frequency

ωr(L, t) = a1(t +a2)/L · 109 1/s (4.27)

is similar to the analytical resonance frequency in disks [42]. A useful ansatz to fit the
damping constant is

Γ(L) = b1
ln(L/b2)

L · 109 1/s. (4.28)

The constants a1, a2, b1 and b2 are fit parameters.
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4 Dynamics in the linear and non-linear regime

100 200 300 400 500 600 700 800 900 1000 1100 1200
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

length (nm)

ω
r (

1/
s)

 

 

50 nm
40 nm
30 nm
20 nm
10 nm

0

100

200

Γ 
(1

/s
)

(a)

(b)

10          20         30          40          50          60   70          80

simulation time (ns)

M
x

(1
0

5
A

/m
2
) 2

0

-2

10          20           30         40         50          60   70         80

simulation time (ns)

M
x

(1
0

5
A

/m
2
)

2

0

-2

10

2

M
x

(1
0

3
A

/m
2
)

0                   10                    20                  30 40                  50

simulation time (ns)

(c)

(d)

100    200    300    400    500    600    700    800    900    1000   1100    1200

L (nm)

9000

8000

7000

6000

5000

4000

3000

2000

1000

0 0

100

200

ω
f 
(1

/s
)

Г
(1

/s
)

thickness (nm)

Fig. 4.7: (a) Free frequency ω f (black lines and black symbols) and damping constant
Γ (red lines and red symbols) of the vortex gyration in squares of different lengths and
thicknesses. Free gyration (b) in a square (200× 200× 20 nm3), (c) in a disk of radius
r = 100 nm and thickness t = 20 nm and (d) in an infinity-shaped sample (840×400×50
nm3) illustrated by the Mx-component. (b) - (d) The black lines are simulated results,
the red lines are fits with a harmonic oscillator model with the free frequency and the
damping constant as fitting parameters. (d) Note that the equilibrium magnetization
Mx 6= 0 is caused by a slightly asymmetry of the infinity-shaped sample.

34



4.1 Linear regime of vortex motion

Publication 1

Reprinted with permission from B. Krüger, A. Drews, M. Bolte, U. Merkt,
D. Pfannkuche, and G. Meier,

Harmonic oscillator model for current- and field-driven
magnetic vortices,

Phys. Rev. B 76, 224426-1-224426-5, 2007

Copyright (2007) by the American Physical Society

35

http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=PRBMDO000076000022224426000001&idtype=cvips&gifs=yes


4 Dynamics in the linear and non-linear regime

36



4.1 Linear regime of vortex motion

Harmonic oscillator model for current- and field-driven magnetic vortices

Benjamin Krüger,1 André Drews,2 Markus Bolte,2 Ulrich Merkt,2 Daniela Pfannkuche,1 and Guido Meier2
1I. Institut für Theoretische Physik, Universität Hamburg, Jungiusstr. 9, 20355 Hamburg, Germany

2Institut für Angewandte Physik und Zentrum für Mikrostrukturforschung,
Universität Hamburg, Jungiusstr. 11, 20355 Hamburg, Germany

(Dated: October 17, 2007)

In experiments the distinction between spin-torque and Oersted-field driven magnetization dy-
namics is still an open problem. Here, the gyroscopic motion of current- and field-driven magnetic
vortices in small thin-film elements is investigated by analytical calculations and by numerical sim-
ulations. It is found that for small harmonic excitations the vortex core performs an elliptical
rotation around its equilibrium position. The global phase of the rotation and the ratio between
the semi-axes are determined by the frequency and the amplitude of the Oersted field and the spin
torque.

PACS numbers: 75.60.Ch, 72.25.Ba

I. INTRODUCTION

Recently it has been found that a spin-polarized cur-
rent flowing through a magnetic sample interacts with
the magnetization and exerts a torque on the local mag-
netization.1,2 A promising system for the investigation of
the spin-torque effect is a vortex in a micro- or nanostruc-
tured magnetic thin-film element. Vortices are formed
when the in-plane magnetization curls around a center
region. In this few nanometer large center region3, called
the vortex core, the magnetization turns out-of-plane to
minimize the exchange energy.4 It is known that these
vortices precess around their equilibrium position when
excited by magnetic field pulses5,6 and it was shown that
spin-polarized electric currents can cause the same pre-
cession.7–10 The spacial restriction of the vortex core
as well as its periodic motion around its ground state
yield an especially accessible system for space- and time-
resolved measurements with scanning probe and time-
integrative techniques such as soft X-ray microscopy or
X-ray photoemission electron microscopy.5,6,11–13 Mag-
netic vortices also occur in vortex domain walls. The
motion of such walls has recently been investigated inten-
sively.14,15 Understanding the dynamics of confined vor-
tices can give deeper insight in the mechanism of vortex-
wall motion.16 An in-plane Oersted field accompanying
the current flow also influences the motion of the vortex
core. For the interpretation of experimental data it is
crucial to distinguish between the influence of the spin
torque and of the Oersted field.17

In this paper we investigate the current- and field-
driven gyroscopic motion of magnetic vortices in square
thin-film elements of size l and thickness t as shown in
Fig. 1 and present a method to distinguish between spin
torque and Oersted field driven magnetization dynamics.

(a)

l

X

(b)

FIG. 1: (a) Scheme of the magnetization in a square magnetic
thin-film element with a vortex that is deflected to the right.
(b) Magnetization of a vortex in its static ground state. The
height denotes the z-component while the gray scale corre-
sponds to the direction of the in-plane magnetization.

II. ANALYTICAL CALCULATIONS

In the presence of a spin-polarized current the time
evolution of the magnetization is given by the extended
Landau-Lifshitz-Gilbert equation

d ~M

dt
=− γ ~M × ~Heff +

α

Ms

~M × d ~M

dt

− bj

M2
s

~M ×
(

~M × (~j · ~∇) ~M
)

− ξ
bj

Ms

~M × (~j · ~∇) ~M

(1)

with the coupling constant bj = PµB/[eMs(1 + ξ2)] be-
tween the current and the magnetization where P is the
spin polarization, MS the saturation magnetization, and
ξ the degree of non-adiabaticity.18 If the vortex keeps its
static structure, its motion with the velocity ~v can be
described using the Thiele equation.19 This equation was
expanded by Nakatani et al.20 to include the action of a
spin-polarized current flowing in the sample,

~F + ~G× (~v + bj
~j) + D(α~v + ξbj

~j) = 0. (2)

Denoting the out-of-plane angle of the magnetization
with θ and the angle of the in-plane magnetization with
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4 Dynamics in the linear and non-linear regime

2

φ, the force due to the external and the stray field is

~F = −µ0

∫
dV

[
(~∇θ)

∂

∂θ
+ (~∇φ)

∂

∂φ

]
( ~Hsz · ~M). (3)

The gyrovector

~G = −Msµ0

γ

∫
dV sin(θ)(~∇θ × ~∇φ)

= −2πMsµ0tp

γ
~ez = G0~ez,

(4)

indicates the axis of precession and points out-of-plane.
The dissipation tensor is given by

D = −Msµ0

γ

∫
dV (~∇θ~∇θ + sin2(θ)~∇φ~∇φ). (5)

It is diagonal with

Dxx = Dyy = D0 ≈ −
πMsµ0t ln(l/a)

γ
, Dzz = 0. (6)

The constant a is the lower bound of the integration. It
is in the order of magnitude of the radius of the vortex
core.3,16,21,22 A polarization p of +1 (−1) denotes that
the magnetization in the vortex core is parallel (antipar-
allel) to the z-axis. The velocity of the vortex core is in-
plane and hence perpendicular to the gyrovector. Thus
Eq. (2) can be rewritten as

~G× ~F −G2
0(~v + bj

~j) + D0
~G× (α~v + ξbj

~j) = 0. (7)

By calculating ~G×~v from Eq. (7) and inserting the result
in Eq. (2)

(G2
0 + D2

0α
2)~v = ~G× ~F −D0α~F − (G2

0 + D2
0αξ)bj

~j

+ bjD0
~G×~j(ξ − α)

(8)

we can derive the velocity of the vortex core. As for
any square-symmetric confining potential, the stray-field
energy for small deflections can be modeled as a parabolic
potential

Es =
1
2
mω2

r(X2 + Y 2) (9)

with the coordinates X and Y of the vortex core (see
Fig. 1a).

In the following a spacially homogeneous current in x-
direction is investigated. Due to possible inhomogeneities
in real samples the current flow may vary in the out-of-
plane direction. This results in an in-plane Oersted field
which is perpendicular to the direction of the current
flow. In the following this Oersted field is accounted for
by a homogeneous magnetic field in y-direction. Both
driving forces may depend on time. To estimate the Zee-
man energy due to the Oersted field H , the magnetiza-
tion pattern is divided into four triangles (see Fig. 1a).

Assuming that the magnetization is uniform in each of
these triangles the total Zeeman energy is given by

Ez =
µ0MsHltc

2

[(
l

2
+ X

)
−
(

l

2
−X

)]
, (10)

with the chirality c of the vortex. A chirality of +1
(−1) denotes a counterclockwise (clockwise) curling of
the magnetization around the vortex core. We will
see that this simple approximation describes the field-
induced vortex motion sufficiently well. In this case the
force is given by

~F = −~∇(Es+Ez) = −µ0MsHltc~ex−mω2
rX~ex−mω2

rY ~ey.
(11)

Inserting Eq. (11) in Eq. (8) yields the equation of mo-
tion for the vortex. In the absence of current and field
the excited vortex performs an exponentially damped spi-
ral rotation around its equilibrium position with its free
frequency

ω = − pG0mω2
r

G2
0 + D2

0α
2

(12)

and the damping constant

Γ = − D0αmω2
r

G2
0 + D2

0α
2
. (13)

From Eqs. (12) and (13) one easily obtains that

D0α =
ΓpG0

ω
. (14)

For thin-film systems (t/l . 0.1) the resonance frequency
of a vortex is proportional to the inverse lateral dimension
1/l.23 Here, we obtain from Eq. (14) that the damping
constant Γ also has a characteristic length dependence,
Γ ∝ ln(l/a)/l. Substituting D0α using Eq. (14) the equa-
tion of motion of the vortex can be written as
(

Ẋ

Ẏ

)
=
(
−Γ −pω
pω −Γ

)(
X
Y

)

+

(
pωΓ

ω2+Γ2
µ0MsHltc

G0
− bjj − Γ2

ω2+Γ2
ξ−α

α bjj

− ω2

ω2+Γ2
µ0MsHltc

G0
+ pωΓ

ω2+Γ2
ξ−α

α bjj

)
.

(15)

In the following we assume harmonic excitations, i.e., the
magnetic field and the electrical current are of the form
H(t) = H0e

iΩt and j(t) = j0e
iΩt. The magnetic (Oer-

sted) field and the electrical current are in phase. Assum-
ing that the squared Gilbert damping is small (α2 ≪ 1),
the damping constant of the vortex is small compared to
its frequency (Γ2 ≪ ω2). Then Eq. (15) has the solution
(

X
Y

)
= A

(
i
p

)
e−Γt+iωt + B

(
−i
p

)
e−Γt−iωt

− eiΩt

ω2 + (iΩ + Γ)2

×



(
H̃ + Γ

ω
ξ
α j̃
)

ω +
(

Γ
ω H̃ + j̃

)
iΩ

j̃ωp −
(
H̃ + Γ

ω
ξ−α

α j̃
)

iΩp


 ,

(16)
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FIG. 2: (Color Online) Dependence of the free frequency ω
and the damping constant Γ on the length l for various thick-
nesses t of the system. The symbols denote numerical results
while the lines are fits with the analytical results.

with H̃ = γH0lc/(2π) and j̃ = bjj0. The first two terms
with prefactors A and B are exponentially damped and
depend on the starting configuration. Independent of
the source of excitation, i.e., field or current, the sense
of rotation of the vortex is given by its polarization, i.e.,
p = +1 (p = −1) denotes a counterclockwise (clockwise)
rotation of the vortex core. Changing the sign of the chi-
rality has the same effect as turning the magnetic field by
180◦.10 Similar to the motion of magnetic domain walls in
thin nanowires24 the vortex is driven by the current and
the magnetic field as well as by their time derivatives.

At resonance the amplitude of the vortex core displace-
ment in x- and y-direction is the same and the vortex
performs a circular rotation. A vortex which is excited
with a non-resonant frequency has an elliptic trajectory.
The ratio between the semi-axes is given by the ratio be-
tween the frequency of the excitation and the resonance
frequency.25

III. NUMERICAL CALCULATIONS

To test the applicability of the approximations leading
to the analytical result in Eq. (16) we performed mi-
cromagnetic simulations for magnetic thin-film elements
with different lengths, thicknesses, polarizations, and chi-
ralities. The material parameters of permalloy are used,
i.e., an exchange constant of A = 13 · 10−12 J/m and a
saturation magnetization of Ms = 8 · 105 A/m. For the
Gilbert damping we use a value of α = 0.01 which is in
the regime as found by recent experiments.26–28 The de-
gree of non-adiabaticity ξ is chosen to be equal to α.14,29

For the micromagnetic simulations we extended the
implementation of the Landau-Lifshitz-Gilbert equation
in the Object Oriented Micro Magnetic Framework
(OOMMF) by the additional current-dependent terms
of Eq. (1).24,30 The simulation cells are 2 nm in x- and
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FIG. 3: (Color Online) Amplitude of the (a) current-driven
and (b) field-driven vortex oscillation in x-direction (solid red
line, pluses) and y-direction (dashed blue line, crosses) for a
spin-polarized current density of jP = 2.5 · 1010 A/m2 and
a field of H = 250 A/m. The insets show the phases be-
tween the maximum of the applied current or field and the
core displacement in x-direction (solid red line, pluses) and
y-direction (dashed blue line, crosses). The symbols denote
numerical results while the lines are derived from the analyt-
ical expression in Eq. (16).

y-direction which is well below the exchange length of
permalloy. One cell of thickness t was used in z-direction.
As in the analytical model we substitute the Oersted field
by a homogeneous magnetic field.

At first the four ground states with c± 1 and p± 1 are
calculated for each l and t. The ground states are then
excited by a short current pulse. The free frequency ω
and the damping constant Γ are obtained by fitting the
subsequent free oscillation with the first two terms in
Eq. (16). Results are presented in Fig. 2 and exhibit a
good agreement between the analytical model and the
micromagnetic simulations.31

For the driven oscillation we choose a magnetic film
element with length l = 200 nm and thickness t =
20 nm. This system size allows for reasonable com-
puting time. The magnetization is excited with har-
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FIG. 4: (Color Online) Analytically calculated phase between
the maximum current or magnetic field and the x-deflection
of the vortex core for a 200 nm x 200 nm x 20 nm permalloy
square excited with a frequency of Ω = 4.8 GHz (above the
resonance frequency of ω = 4.4 GHz). The inset shows a
section of the sample with the simulated trajectories of the
vortex core excited with i) (solid red line) a spin-polarized
current density with an amplitude of jP = 1.2 · 1011 A/m2

and ii) (dashed blue line) a magnetic field with an amplitude
of H = 1000 A/m. Points denote the position of the vortex
at maximum current (i) and magnetic field (ii), respectively.

monic currents with a spin-polarized current density
jP = 2.5 · 1010 A/m2 in x-direction. The field excitation
was performed with a harmonic field of H = 250 A/m
in y-direction. The amplitudes and the phases of the
oscillation in x- and y-direction of a vortex with posi-
tive polarization and chirality are depicted in Fig. 3. In
the numerical calculations the position of the vortex is
defined by the maximum amplitude of the out-of-plane
magnetization. To determine this maximum, the sim-
ulation cell with maximum out-of-plane magnetization
and its next neighbors are interpolated with a polyno-
mial of second order. In the current-driven oscillation an
excellent accordance between analytical calculations and
numerical simulations is found. In the field-driven case
the amplitudes of the analytical solution are smaller than
the amplitudes obtained from the micromagnetic simula-
tions. These deviations are caused by the differences be-
tween the approximate magnetization depicted in Fig. 1
and the exact state. The phases between the maximum of
the exciting magnetic field and the maximum deflection
in x- and y-direction agree very well. Vortices with other
polarization and chirality (not shown) yield the same ac-

cordance.9

IV. DISCRIMINATION BETWEEN OERSTED
FIELD AND SPIN TORQUE

From Eq. (16) one can see that the current and field
induced forces on the vortex are of the same form. For
experiments it is important to separate the Oersted-field
and the spin-torque driven case. We describe the ratio
between the field and current-induced forces on the vor-
tex by tan ζ = FOe/Fst, i.e., a mixing angle of ζ = 0 and
ζ = ±π/2 denote the fully spin-torque driven and the
fully field-driven case, respectively. There are two pos-
sibilities to determine the ratio of both forces. On the
one hand for non-resonant excitations the trajectory of
the vortex core is elliptical as illustrated in Fig. 4. Ac-
cording to Eq. (16) the direction of the major axis of the
ellipse is determined by ζ. The amplitude of the vortex
motion decreases very fast when the excitation frequency
deviates from resonance, i.e., for experimental observa-
tion very high current densities with frequencies close to
resonance are needed. On the other hand the excitation
mechanisms can be distinguished using the phase of the
vortex deflection.17 As indicated by the dots in Fig. 4 the
position of the vortex at maximum current depends on
ζ, which can be determined from Eq. (16). The latter
method is also applicable with excitations at resonance
frequency.

V. CONCLUSION

In conclusion we derived an analytical expression for
the current- and field-driven trajectory of a vortex in
thin-film elements. The analytical result is compared
to micromagnetic simulations. The accordance between
both approaches is very good. The analytical expression
enables us to determine the ratio between spin torque
and Oersted field driven motion.
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Vortices and antivortices as harmonic oscillators

Benjamin Krüger,1 André Drews,2 Markus Bolte,2 Ulrich Merkt,2 Daniela Pfannkuche,1 and Guido Meier2
1I. Institut für Theoretische Physik, Universität Hamburg, Jungiusstr. 9, 20355 Hamburg, Germany
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It is shown that the current- and field-induced gyration of magnetic vortices and antivortices
follows the analytical model of a two-dimensional harmonic oscillator. Quantities of the harmonic
oscillator, i.e., resonance frequency, damping constant, gyration amplitude, and the phase can be
linked to material parameters and sample dimensions. This description is useful for the investigation
of vortex-switching and vortex-antivortex annihilation processes.

PACS numbers: 75.60.Ch, 72.25.Ba

The study of magnetic singularities such as magnetic
vortices and antivortices is appealing as they have been
suggested as data storage units1. Due to their rotational
symmetry they are also attractive objects for studying
the interaction between the local magnetization and al-
ternating magnetic fields or spin-polarized currents.2–12
Isolated magnetic vortices form in laterally confined fer-
romagnetic thin film elements when it is energetically
favorable for the magnetization to point in-plane and
parallel to the edges. In the center the magnetization
is then forced out-of-plane to avoid large angles between
magnetic moments as this would drastically increase the
exchange energy.13 Antivortices, also called cross Bloch
lines,13 form either in cross-tie walls or when magnetic
thin films are artificially patterned in such a way that
the magnetization of four domains meet radially in one
point.14 In both cases, the region with a strong out-of-
plane magnetization component, called the vortex or an-
tivortex core, is only a few nanometers in diameter.15,16
The direction of the magnetization in the core, called the
core polarization, can only assume two values p = +1 or
p = −1, indicating the direction out of or into the plane,
respectively. The direction of the in-plane magnetization
direction with respect to the polarization is called chi-
rality. Vortices have chiralities c = +1(−1) for counter-
clockwise (clockwise) in-plane curling of the magnetiza-
tion, while antivortex chirality is defined by the angle of
the magnetization to the current- or field-excitation and
can assume values in the interval (−2, 2].17 Thus antivor-
tices also with non-integer chiralities can be stable, e.g.,
in a clover-shaped sample.14,17 Chirality and polarization
unambiguously define the (anti-)vortex configuration.

It has been found that magnetic vortices can be
brought to gyration by magnetic fields2–4 or spin-
polarized currents.5,6,18 Excitation of magnetic vortices
induced by oscillating spin-polarized currents or mag-
netic fields can be described by a harmonic oscillator
model.19 In this paper we show that vortices and an-
tivortices can be analytically described by the same for-
malism by introducing a third quantity, the skyrmion
number q = np/2, where n = +1 and n = −1 is the wind-
ing number of vortices and antivortices, respectively.10,17
We extend the harmonic oscillator model description of

(a) (b)

φ

β

FIG. 1: Scheme of the in-plane magnetization of (a) a vortex
(n = 1) with chirality c = 1 and (b) an antivortex (n = −1)
with chirality c = 0 determined from Eq. (1).

current- and field-induced motion of magnetic vortices to
antivortices.

For magnetic vortices and antivortices the angle of the
in-plane magnetization φ at a given position generally
obeys the relation20,21

φ = nβ + πc/2, (1)

where β is the angular coordinate with respect to the
(anti)vortex core (see Figs. 1 and 2). The winding num-
ber n can assume every integer number except zero while
the chirality c is a real number with −2 < c ≤ 2. Further-
more the core can point in positive or negative z-direction
which is denoted by the polarization p = +1 and p = −1,
respectively. The variables X and Y denote the position
of the vortex relative to its equilibrium position without
applied current or field. In a film of thickness t the Thiele
equation22,23

~F + ~G× (~v + bj
~j) + D(α~v + ξbj

~j) = 0 (2)

yields the velocity ~v of the vortex19

(G2
0 + D2

0α
2)~v = ~G× ~F −D0α~F − (G2

0 + D2
0αξ)bj

~j

+ bjD0
~G×~j(ξ − α).

(3)
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R r

b
β0

β

x

y

FIG. 2: Scheme of a skyrmion core (circle) in a disc with
radius R. The vortex core is displaced from its equilibrium
position (asterisk) by a distance b =

√
X2 + Y 2.

Here

~G = −2πMsµ0tpn

γ
~ez = G0~ez, (4)

is the gyrovector, ~F is the force due to the magnetic fields,
and D is the diagonal dissipation tensor with Dxx =
Dyy = D0, and Dzz = 0. The value of D0 depends on the
geometry of the sample.19,20 bj is the coupling constant
between the current density ~j and the magnetization ~M .
The saturation magnetization, the Gilbert damping, and
the ratio between exchange relaxation time and spin-flip
relaxation time are denoted by Ms, α, and ξ, respectively.
In the rest of this paper we assume a current density that
flows in x-direction and a magnetic field in y-direction.

For small excitation the stray-field energy of the
skyrmion is modeled by a harmonic potential

Es =
1
2
mω2

r(X2 + Y 2). (5)

For the calculation of the Zeeman energy of a skyrmion
in a magnetic field ~H that is applied in y-direction we
start with a skyrmion that is located in a disc with
radius R as shown in Fig. 2. The position of the
skyrmion is given by X = b cos(β0) in x-direction and
Y = b sin(β0) in y-direction. According to Guslienko
et al.21 the magnetization is given by Eq. (1). For the
integration we use cylindrical coordinates with the ori-
gin at the skyrmion core. From Fig. 2 the relation
R2 = b2 + r2 − 2rb cos(180◦ − β + β0) can be obtained
using the law of cosine. Thus the Zeeman energy is given
by

Ez = −µ0MsHt

∫ 2π

0

dβ sin(φ)
∫ r

0

dr′r′

= −µ0MsHt

∫ 2π

0

dβ sin(φ)
r2

2

(6)

with r = −b cos(β − β0) +
√

b2 cos2(β − β0)− b2 + R2.
For small displacements b, i.e., b2 ¿ R2, r2 ≈ R2 −
2Rb cos(β − β0) and the Zeeman energy can be written
as

Ez =µ0MsHbRt

∫ 2π

0

dβ sin
(
nβ +

πc

2

)
cos(β − β0)

=µ0MsHbRt

∫ 2π

0

dβ

×
[
sin (nβ) cos

(πc

2

)
+ cos (nβ) sin

(πc

2

)]

× [cos(β) cos(β0) + sin(β) sin(β0)] .
(7)

Here we neglected the term proportional to R2 which
does not depend on the position of the skyrmion.

Due to the orthogonality of the sin(nx) and cos(nx)
functions the integral is non-zero only if |n| = 1. Thus
in first order only skyrmions with winding numbers n =
±1 move in an external Zeeman field. Therefore, in the
following we focus on the winding numbers n = 1 and n =
−1 which denote a vortex and an antivortex, respectively.
The Zeeman energy is then given by

Ez = µ0MsHRπt
[
sin
(πc

2

)
X + n cos

(πc

2

)
Y
]
. (8)

Accordingly, the Zeeman energy for a skyrmion in a
quadratic sample is19

Ez = µ0MsHLt
[
sin
(πc

2

)
X + n cos

(πc

2

)
Y
]
, (9)

with the length L of the square. Both expressions have
the same form. Thus we can write

Ez = µ0MsHlt
[
sin
(πc

2

)
X + n cos

(πc

2

)
Y
]
, (10)

with the characteristic length l, i.e., l = Rπ for the circu-
lar and l = L for the quadratic sample. The total force
on the vortex is then given by

~F =− ~∇(Es + Ez)

=− µ0MsHlt
[
sin
(πc

2

)
~ex + n cos

(πc

2

)
~ey

]

−mω2
rX~ex −mω2

rY ~ey.

(11)

Inserting this result in Eq. (3) we obtain the equation of
motion of the skyrmion

(
Ẋ

Ẏ

)
=
(
−Γ −npω
npω −Γ

)(
X
Y

)

+

(
−bjj − Γ2

ω2+Γ2
ξ−α

α bjj
npωΓ

ω2+Γ2
ξ−α

α bjj

)

+




npωΓ sin(πc
2 )+ω2n cos(πc

2 )
ω2+Γ2

µ0MsHlt
G0

pωΓ cos(πc
2 )−ω2 sin(πc

2 )
ω2+Γ2

µ0MsHlt
G0


 ,

(12)
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with its free frequency

ω = − npG0mω2
r

G2
0 + D2

0α
2

(13)

and damping constant

Γ = − D0αmω2
r

G2
0 + D2

0α
2
. (14)

In the following we assume harmonic excitations, i.e.,
the magnetic field and the electrical current are of the
form H(t) = H0e

iΩt and j(t) = j0e
iΩt. The magnetic

(Oersted) field and the electrical current are in phase.
For weakly damped systems, i.e., Γ ¿ ω, the solution is
(

X
Y

)
=− eiΩtω

ω2 + (iΩ + Γ)2

(
H̃ sin

(
πc
2

)

H̃n cos
(

πc
2

)
+ j̃np

)

− eiΩtiΩ
ω2 + (iΩ + Γ)2

(
H̃p cos

(
πc
2

)
+ j̃

−H̃np sin
(

πc
2

)
)

,

(15)

with H̃ = γH0l/(2π) and j̃ = bjj0. For a vortex
n = 1 and c = ±1 hold. Therefore, sin(πc/2) = c and
cos(πc/2) = 0. Thus the above result reveals the known
expression for the vortex.19

In conclusion we have shown that the harmonic oscil-
lator model for the current- and field-driven trajectory
of a vortex can be extended to antivortices. An analyti-
cal expression for the current- and field-driven motion of
skyrmions for harmonic excitations is given.
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and G. Schütz, unpublished.
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Time-resolved X-ray microscopy is used to image the influence of alternating high-density currents on
the magnetization dynamics of ferromagnetic vortices. Spin-torque induced vortex gyration is observed in
micrometer-sized permalloy squares. The phases of the gyration in structures with different chirality are com-
pared to an analytical model and micromagnetic simulations, considering both alternating spin-polarized cur-
rents and the current’s Oersted field. In our case the driving force due to spin-transfer torque is about 70% of the
total excitation while the remainder originates from the current’s Oersted field. This finding has implications to
magnetic storage devices using spin-torque driven magnetization switching and domain-wall motion.

PACS numbers: 68.37.Yz, 72.25.Ba , 75.25.+z, 75.40.Mg, 85.75.-d

The discovery that spin-polarized electrons traveling
through ferromagnets apply a torque on the local magnetiza-
tion1 opened up a new field of research in solid state physics
that could potentially result in new magnetic storage media.
It is now understood that the spin-transfer torque acts on in-
homogeneities in the magnetization, e.g., on interfaces be-
tween magnetic layers,2 on domain walls,3,4 i.e., interfaces
between regions of uniform magnetization, or on magnetic
vortices.5–8 Magnetic domain walls, usually vortex walls,9 can
be driven by spin-polarized currents to store information in bit
registers.10

Vortices appear in laterally confined thin films when it is
energetically favorable for the magnetization to point in-plane
and parallel to the edges. In the center the magnetization is
forced out-of-plane to avoid large angles between magnetic
moments that would drastically increase the exchange energy.
The region with a strong out-of-plane magnetization compo-
nent is called the vortex core and is only a few nanometers in
diameter.11,12 The direction of the magnetization in the vortex
core, also called the core polarization p, can only point out-of-
or into-the-plane (p=+1 or p=−1, respectively). Hence ferro-
magnetic thin films containing vortex cores have been sug-
gested as data storage elements. The chirality c = +1(−1)
denotes the counterclockwise (clockwise) in-plane curling di-
rection of the magnetization. It is known that vortices can be
excited to gyrate around their equilibrium position by mag-
netic fields.13,14 Recently it has been shown that field excita-
tion can also switch the core polarization.15–20 Micromagnetic
simulations predict that spin-polarized currents can cause vor-
tices both to gyrate5,7 and to switch their polarization.8,21,22

Both for field- and spin-torque-driven excitation, the direction
of gyration is governed by the vortex polarization according
to the right-hand rule (see Fig. 2 of Ref.14). The phase of
field-driven gyration depends also on the chirality, while spin-
torque driven gyration is independent of the chirality as the
spin-transfer torque is proportional to the spatial derivative of
the magnetization.7 Time- and spatially averaging experimen-

tal techniques indicate that spin-torque-driven vortex gyration
and switching indeed occurs, but conclusive evidence by time-
resolved domain imaging technique that resolves the phase of
gyration is still elusive.

Here we show by time-resolved X-ray microscopy that
magnetic vortices in confined structures can be excited to gy-
ration by high-frequency currents of high density passing di-
rectly through the ferromagnetic element. By observing the
phase of the gyration relative to the excitation, we can dis-
criminate between the current’s spin-torque and its Oersted
field contributions to the vortex motion. Field strengths of
30 µT that are due to the current in the gold contacts and an
inhomogeneous current distribution within the ferromagnetic
element itself are calculated.

We investigated 2 × 2 µm2 large and 20 nm thick permal-
loy (Ni80Fe20) squares in which Landau-domain patterns with
a single vortex are energetically favorable at remanence. Mi-
crostructured permalloy squares were prepared on 200 nm
thin Si3N4 membranes for minimal absorption of the X-rays.
The squares were prepared onto the membranes by electron-
beam lithography, electron-beam evaporation, and lift-off pro-
cessing. To excite the structures with alternating currents, they
were contacted by 40 nm thick gold strip lines with an over-
lap of 150 nm as shown in Fig. 1. Thus the current had to
pass through the ferromagnetic material. Additional permal-
loy squares having the same dimensions were placed com-
pletely underneath the strip lines to compare the phases of
the current-driven gyration to field-driven gyration within the
same experiment.

The magnetization was excited by high density AC-
currents, and the magnetization’s response was imaged by
time-resolved X-ray microscopy. For this the samples
were placed in the scanning transmission X-ray microscope
(STXM) of beam line 11.0.2 at the Advanced Light Source
(ALS) in Berkeley. The monochromatic, circularly polarized
X-ray beam from the undulator beam line was focused onto
the sample with the help of a Fresnel zone plate. The reso-
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FIG. 1: (color online) (a) Scheme of the permalloy square contacted
by two gold wires. The sample is tilted by 60◦ relative to the in-
cident X-ray beam. (b) Optical micrograph of a permalloy square
and its contacts on the Si3N4-membrane. (c) Magnetic contrast of
the relaxed permalloy square with a thickness of 20 nm showing the
x-component of the magnetization as black-to-white contrast.

lution of this X-ray microscope was about 30 nm. The sam-
ple was scanned in the xy-plane with a high resolution scan-
ning stage under interferometric control and the transmitted
intensity was recorded. The photon energy was set at the Ni
L3-absorption edge (852.7 eV), where X-ray circular dichro-
ism (XMCD)23 yields the magnetic contrast. With XMCD,
the transmitted photon intensity is higher when the magnetic
moments and polarization are antiparallel than in the paral-
lel case. In our case, the sample plane was set at an angle of
60◦ with respect to the incident beam (see Fig. 1(a)) so that
the microscope can detect the in-plane magnetization. We can
thus unambiguously determine the chirality of the vortices.

The temporal resolution of the microscope, here about
70 ps, is given by the width of the electron bunches that pro-
duce the X-ray photon flashes. In the standard multi-bunch
operation mode of the synchrotron used here, the flash repeti-
tion rate is 500 MHz. To resolve the individual flashes, a fast
avalanche photo diode was used as a photon detector. With
fast data acquisition electronics, the signals from individual
bunches were recorded.24 At the ALS, one of the 328 electron
bunches has a much larger amplitude. It produces a brighter
flash and is used as a reference marker to align the excita-
tion signal with the data acquisition. The absolute phase re-
lation between the recorded images and the excitation current
is made by sending a short pulse through the detector elec-
tronics. By aligning its arrival to the pulse produced by the
photons of the reference marker an accuracy of approximately
100 ps is achieved. A signal generator was synchronized with
the X-ray flashes of the ALS, and an excitation frequency of
500 MHz/8 = 62.5 MHz was selected since it is close to the
expected resonance frequency of the vortex.25 The alternating
current was sent through the permalloy squares and the mag-
netic response was detected at different phases (see Fig. 2(a)).
Figures 2(b) and 2(c) show the magnetic contrast of two dif-
ferent samples at eight different phases of the excitation.26

The permalloy square (c = +1) in Fig. 2(b) was excited
with a current density amplitude of j = 1.2 · 1011 A/m2. The
vortex performs a counterclockwise gyration, it must there-
fore have a positive polarization (p = +1).14 The amplitude

FIG. 2: (color online) (a) Sampling of the response to an 62.5 MHz
AC-current excitation (jx) at eight different phases in steps of 45◦.
Shown in (b) and (c) are X-ray images of complete Landau-domain
pattern (left) and blow-ups of the center piece at four channels cor-
responding to phases 0◦, 90◦, 180◦, and 270◦ (right). (d) and (e)
show the vortex deflection in x direction (blue) and y direction (red)
depicted in (b) and (c), respectively. The black solid curves represent
the exciting current. Points represent the measured data, lines are
guides to the eye.

of the gyration is 250 ± 20 nm, i.e., the vortex gyrates at a
velocity of 100± 8 m/s. The vortex in Fig. 2(c) was excited
with a lower excitation amplitude of j = 4.7 · 1010 A/m2.
It has a negative chirality (c = −1) and also gyrates coun-
terclockwise, i.e., p = +1. As can be expected, the ampli-
tude of gyration is much smaller. From the analysis of the
vortex position at certain excitation phases and by using dif-
ferential images,27 the relative phase with respect to the ex-
citation can be derived (see Fig. 2(d) and (e)). The phase
difference ∆ϕ = ϕ+1 − ϕ−1 between the gyration of the
vortices with different chiralities is about 45◦. The permal-
loy squares underneath the strip lines were also imaged and
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analyzed in like manner. They showed phase differences of
180◦ for vortices with opposite chirality as shown in Fig. 3.
Because the Au strip line has a 20 times larger cross section
and a 20 times higher conductivity than the permalloy square,
the current flowing through the permalloy squares underneath
the strip line exerts a negligible spin-transfer torque. Numeri-
cal simulations yield a torque that is a factor of 10−3 − 10−4

lower than the torque due to the magnetic field.
To better understand the dependence of the phases on cur-

rent and field excitation, micromagnetic simulations were
conducted. AC-excitations of a small permalloy square with
either spin-polarized currents jx or magnetic fields Hy were
simulated at different frequencies, i.e., below resonance, at
resonance, and above resonance, for all chiralities and po-
larizations. For the simulations the Object Oriented Micro-
magnetic Framework (OOMMF) was extended by additional
spin-torque terms.3,4 A Landau-domain pattern of 200×200×
20 nm3 with a vortex was chosen.28 We assumed a saturation
magnetization of Ms = 8 · 105 A/m, an exchange constant
of A = 1.3 · 10−11 J/m, a Gilbert damping of α = 0.01,
and a ratio ξ = α between spin-flip and spin-relaxation
time.29,30 The amplitude of the spin-polarized current was set
to P · j = 2.5 · 1010A/m, and the amplitude of the magnetic
field was H = 250 A/m2. The size of the simulation cells
was 2 × 2 × 20 nm3. The resonance frequency ωr of the
vortex element was derived by fitting the motion of a vortex
relaxed from an initially excited state to the equation of mo-
tion of a damped harmonic oscillator.7 The simulations show
that the phase with respect to the AC-excitation differs be-
tween spin-transfer-torque- and field-excitation, because the
latter depends on the chirality, in agreement with previous mi-
cromagnetic simulations.5,6

Following the ’rigid model’ for magnetic vortices in thin
films,31,32 the vortex gyration due to alternating fields can be
described by a two-dimensional harmonic oscillator.33 This
model can be generalized to include torques due to spin-
polarized currents.7,34 In this model, the alternating magnetic
field or current forces the vortex to oscillate along the direc-
tion of the field or current. The magnetostatic field created
by the deviation of the vortex from its equilibrium position
drives the oscillator perpendicular to the excitation. For a cur-
rent passing through the permalloy square in x direction (see
Fig. 1), the resulting Oersted field is in y direction. Thus the
solution of the equation of motion of the vortex core in the
oscillator model can be written as7

(
X
Y

)
= eiΩt

ω2+(iΩ+Γ)2

×
(

γl
2π cHy

(
−ω
iΩp

)
− bjjx

(
iΩ
pω

))
.

(1)

Here, Ω is the excitation frequency, ω the gyration fre-
quency of the free vortex, Γ the damping constant of the vor-
tex harmonic oscillator which is proportional to the Gilbert
damping α, and γ = 2.21 · 105 m/As the gyromagnetic ratio
for permalloy. The constant bj = PµB/(eMs) with the satu-
ration magnetization Ms and the spin polarization P describes
the coupling between the electrical current and the magnetiza-
tion.
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FIG. 3: (color online) Phase response of magnetic vortex oscillators
as detected by time-resolved X-ray microscopy normalized to the re-
spective resonance frequency. The red circles and the blue stars rep-
resent the phase responses of two permalloy squares excited purely
by an AC-magnetic field. The black circle and triangle represent the
phases of the current-fluxed samples shown in Fig. 2(b) and (c), re-
spectively.

The model is used to extract the contributions of Oersted
field and spin-torque to the phases observed in the experimen-
tal data. The blue crosses shown in Fig.3 represent the phases
of field-driven vortex-core gyration (c = −1) with respect
to the excitation at different excitation frequencies, while the
dashed blue line is a fit from Eq. 1. The red circles and the
corresponding fit (dotted red line) are from a vortex having
c = +1.35 The good agreement between the experimental
data and the fit shows the validity of the harmonic oscillator
model. The X-ray microscopy data from the current-fluxed
samples is plotted as a black circle and a black triangle, and
the corresponding fit is shown by a solid black line. The er-
ror bars in y direction are derived by error propagation from
the measurements. The error bars in x direction follow from
an uncertainty in the resonance frequency when assuming the
resonance frequencies of the vortices are not the same. By es-
timating the Oersted field due to the current using Eq. 1 and
∆ϕ = 45◦, values of up to 30 µT for a current density of
1.2 · 1011A/m2 are derived. The driving force on the vortex
due to an Oersted field of this magnitude corresponds to about
30% of the total driving force. Micromagnetic simulations us-
ing both spin-torque and field excitation with current and field
values as calculated above yielded 40◦ phase difference be-
tween vortices having c = +1 and c = −1. This is almost the
same phase difference as observed by X-ray microscopy.

Three-dimensional current-path and Oersted-field calcula-
tions were also performed for our sample geometry, taking
an inhomogeneous current density in the gold contacts and in
the permalloy into account. The calculations showed fields of
very similar magnitude (20 µT) as deduced from the exper-
iments. The fields originate from the perpendicular currents
leading from the contacts into the permalloy as well as from
an inhomogeneous current density in the permalloy, because
the current enters and exits the permalloy on the upper side of
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the ferromagnet. For smaller and thicker vortex geometries,
the influence of the current leads and the inhomogeneous cur-
rent density is much larger. For example, permalloy layers
of 1 µm length and 50 nm thickness with 40 nm thick gold
contacts and higher current densities than in our cases lead to
Oersted-field strengths of up to several Millitesla, more than
sufficient for field-induced switching.

The presence of Oersted fields due to an asymmetric setup
can be seen as a general challenge to spin-torque experiments,
but so far have not been taken into account. One must be
careful to rule out field-driven or field-assisted magnetization
dynamics in spin-torque experiments. In our case the observa-
tions of the phase of magnetic vortex gyration were possible
due to its periodic motion in a confined structure. The dynam-
ics of other magnetic objects, e.g., vortex-domain walls, are
more difficult to record, but are also subject to Oersted fields
from spin-polarized currents. As seen from our observations,
one cannot safely assume that the change of a magnetic struc-
ture is due to a traversing spin-polarized current alone.

With time-resolved X-ray microscopy we have observed
magnetic vortex gyration driven by spin-polarized currents

that can be described by a harmonic oscillator model. We
identified the spin torque as the main driving force, however,
we have also recognized a non-negligible contribution of the
current’s Oersted field. In experiments, one needs to resolve
the phase and the sense of gyration to separate the contribution
of the current’s spin-torque to magnetic vortex gyrations from
the current’s Oersted field. These observations are relevant to
technological applications since spin-polarized currents that
switch the polarization of vortices have been suggested for
data storage devices8.
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7 B. Krüger, A. Drews, M. Bolte, U. Merkt, D. Pfannkuche, and

G. Meier, Phys. Rev. B 76, 224426 (2007).
8 K. Yamada, S. Kasai, Y. Nakatani, K. Kobayashi, H. Kohno,

A. Thiaville, and T. Ono, Nature Materials 6, 270 (2007).
9 Y. Nakatani, A. Thiaville, and J. Miltat, J. Magn. Magn. Mater.

290, 750 (2005).
10 S. S. P. Parkin, US Patents 6,834,005, 6,898,132, 6,920,062,

7,031,178, and 7,236,386 (2004-2007).
11 T. Shinjo, T. Okuno, R. Hassdorf, K. Shigeto, and T. Ono, Science

289, 930 (2000).
12 A. Wachowiak, J. Wiebe, M. Bode, O. Pietzsch, M. Morgenstern,

and R. Wiesendanger, Science 298, 577 (2002).
13 B. E. Argyle, E. Terrenzio, and J. C. Slonczewski, Phys. Rev. Lett.

53, 190 (1984).
14 S.-B. Choe, Y. Acremann, A. Scholl, A. Bauer, A. Doran, J. Stöhr,
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4.1.3 Amplitude of core gyration

At simultaneous current and magnetic-field excitations the resulting forces are superim-
posed constructively or destructively depending on their relative orientation and on the
magnetization pattern. Both forces are of equal strengths for a ratio j/H = Lγ/(2πb j)
between current and magnetic field, see Eqn. 4.21. For this ratio the core displacement is
doubled or completely quenched when the forces are directed into the same direction or
into the opposite direction.
For an alternating magnetic field perpendicular to an alternating current, the x-component
of the trajectory of an antivortex at resonance reads

x =
1

2Γ

(
−
[
vH pcos

(
πc
2

)
+ v j

]
+ ivH sin

(
πc
2

))
eiΩt . (4.29)
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where r0 = v j/2Γ is the amplitude of gyration for an excitation with only a current. The
factor vH/v j describes the ratio between the velocities vH due to field and v j due to current
excitation (v j 6= 0). From Eqn 4.30 follows that antivortices with the c-values c = 0
(c = 2) show a maximum amplitude of gyration for the polarizations p = 1 (p = −1)
and a minimum amplitude for the same c-values but for opposite polarizations p = −1
(p = 1).
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Fig. 4.8: Amplitude of the gyration of an antivortex (p = 1) in a clover-shaped permalloy
sample (500× 500× 40 nm3) excited at resonance by an alternating magnetic field (a)
perpendicular to the alternating current and (b) parallel to the alternating current. The
magnetic field has an amplitude of 122 A/m, the current density has an amplitude of
j ·P = 0.7 ·1010 Am−2. The asterisks are simulated results for vH/v j = 1.0. The black
lines are analytical results for different ratios vH/v j as indicated on the lines. The red
circles denote amplitudes of vortices with the chiralities c =−1 and c = 1.
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For parallel alternating magnetic field and current the x-component of the deflection

x =
1

2Γ
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vH psin
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]
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πc
2

))
eiΩt (4.31)

and the amplitude is

r = r0

√
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4
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A maximum amplitude can be observed at chiralities or c-values c = 1 (c = −1) and
polarizations p = 1 (p = −1), a minimum amplitude for the same chiralities or c-values
but for opposite polarizations p = −1 (p = 1). Analytical and simulated results of the
amplitude of antivortex core gyration for fields perpendicular and parallel to the current
are shown in Fig. 4.8 for different ratios vH/v j.

For a rotating magnetic field or a rotating current the forces due to the excitation
and the gyroscopic force point into the same direction or into the opposite direction.
This leads to a maximum enhancement or suppression of the core gyration. The sense of
gyration of the gyroscopic force [43] is given by the product np of winding number and
polarization. An excitation that rotates in the mathematical positive or negative direction
determines the sense of gyration of the external force. At resonance the amplitude of
gyration of a vortex excited by a rotating current reads

r = r0

√
2v2

jΩ
2(1±np), (4.33)

see Eqn. 4.25. Thus for a product np = 1 (np =−1) and a mathematic positive (negative)
sense of rotation of the excitation the amplitude of gyration is enhanced and for a mathe-
matic negative (positive) sense of rotation of the excitation the amplitude is suppressed.
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Current- and field-driven magnetic antivortices
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Antivortices in ferromagnetic thin-film elements are in-plane magnetization configurations with
a core pointing perpendicular to the plane. By using micromagnetic simulations, we find that
magnetic antivortices gyrate on elliptical orbits similar to magnetic vortices when they are excited
by alternating magnetic fields or by spin-polarized currents. The phase between high-frequency
excitation and antivortex gyration is investigated. In case of excitation by spin-polarized currents
the phase is determined by the polarization of the antivortex, while for excitation by magnetic
fields the phase depends on the polarization as well as on the in-plane magnetization. Simultaneous
excitation by a current and a magnetic field can lead to a maximum enhancement or to an entire
suppression of the amplitude of the core gyration, depending on the angle between excitation and
in-plane magnetization. This variation of the amplitude can be used to experimentally distinguish
between spin-torque and Oersted-field driven motion of an antivortex core.

PACS numbers: 75.60.Ch, 72.25.Ba, 76.50.+g

I. INTRODUCTION

Magnetic vortices and antivortices exist in ferromag-
netic thin-film elements, where the interplay of demag-
netization and exchange energy forces the magnetization
out of plane to form a core in the centers.1,2 The orien-
tation of the vortex or antivortex core, denoted as the
polarization p, is highly interesting for technical applica-
tions, e.g. magnetic memory devices, as it can be binary-
coded.3,4 Magnetic vortices have been studied intensively
in the last years. It has been shown that a vortex core is
deflected from its equilibrium position when excited by
magnetic fields or spin-polarized currents.5,6 The deflec-
tion causes a magnetic stray field which in turn exerts
a force on the core.7,8 The resulting gyroscopic motion
can be described by a damped two-dimensional harmonic
oscillator.9

The dynamics of magnetic antivortices has hitherto-
fore not been studied as intensively as magnetic vor-
tex dynamics. Antivortices appear, e.g., in cross-tie do-
main walls and individual antivortices have been found
in clover-shaped samples.3,10,11 As illustrated in Fig. 1,
their in-plane magnetization shows a twofold rotational
symmetry that is different from the continuous rotational
symmetry of a vortex state. Due to their different in-
plane magnetizations, antivortex dynamics differs from
vortex dynamics as is shown in this paper. An under-
standing of the dynamics of both, antivortices and vor-
tices, is crucial for the description of vortex-antivortex
creation and annihilation. These processes have recently
received a lot of attention as they are predominant fea-
tures in the motion of cross-tie walls and in the switching
of vortex cores.3,13–16

Here we investigate the dynamics of antivortex cores, i.e.
sense, phase, and amplitude of gyration, and compare
them to the dynamics of magnetic vortices. We show
that the direction of the in-plane magnetization around

the (anti)vortex core determines the phase between the
exciting alternating magnetic field and the deflection of
the (anti)vortex core. For spin-polarized alternating cur-
rents the direction of the in-plane magnetization has no
effect on the phase. Both micromagnetic simulations and
an analytical model show that simultaneous excitation by
magnetic fields and spin-polarized currents can lead to an
enhancement or to an entire suppression of the antivortex
core displacement.

To classify vortices and antivortices the in-plane mag-
netization can be described by the relation17

φ = nβ + φ0 (1)

between the angular coordinate of the local in-plane mag-
netization φ and the angle β in real space with respect
to the center of the (anti)vortex core, as shown in Fig. 1.
The angles φ and β follow the mathematical sense of
rotation. For a vortex, n = 1, so that the in-plane mag-
netization turns in the same direction as the angle in real
space with a constant difference φ0 between φ and β. For
vortices, the angle φ0 is independent of the choice of the
axis to which β and φ are measured. Thus for vortices
φ0 is an intrinsic quantity which can be expressed by the
chirality c as φ0 = cπ/2. In standard geometries and fer-
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Figure 1: Definition of c = 2/π · (φ − nβ) for vortices and
antivortices by Eq. (1). (a) Magnetic vortex (n = 1) with
c = 1. (b) Antivortex (n = −1) with c = 1. (c) Antivortex
(n = −1) with c = 2.
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Figure 2: Size and shape of (a) the vortex and (b) the an-
tivortex sample.

romagnetic materials stable vortices can only possess the
chiralities c = 1 or c = −1. They can be mapped onto
each other by mirroring the sample. In case of an antivor-
tex n = −1. This means that the in-plane magnetization
turns opposite to the angle in real space. Though for an-
tivortices the angle φ0 is generally not conserved, because
rotations of the sample lead to different values, we define
a quantity c = 2φ0/π for antivortices with respect to a
distinct axis.28 Antivortices exhibit values c in the inter-
val (−2, 2]. A rotation of the antivortex by an anlge of
Θ leads to a change of the c-value of c = 2Θ. This is due
to the two-fold symmetry of the in-plane magnetization
of an antivortex.

II. MICROMAGNETIC SIMULATIONS

To simulate magnetic-field induced antivortex dynam-
ics the OOMMF18 code sped up by higher order Runge-
Kutta algorithms is used. The extended code includes the
spin-torque terms in the Landau-Lifshitz-Gilbert equa-
tion as given by Zhang and Li19,20,

dM

dt
=− γ′M ×

(
Heff +

α

MS
M ×Heff

)

− (1 + αξ)
b′j
M2
s

M × (M × (j · ∇)M)

− (ξ − α)
b′j
Ms

M × (j · ∇)M .

(2)

In this equation γ′ = γ/(1 + α2), where γ is the gy-
romagnetic ratio, α the Gilbert damping, and ξ the ra-
tio between exchange and spin-flip relaxation time. The
coupling between local current j and magnetization M is
represented by b′j = µBP/[eMs(1 + α2)], where P is the
spin polarization. We simulate the excitation of a vortex
in a 200×200×20 nm3 permalloy square and an antivor-
tex in a 500 × 500 × 40 nm3 clover-shaped sample. The
two geometries are shown in Fig. 2. Different thicknesses
of t = 20 nm for the vortex and t = 40 nm for the antivor-
tex sample are chosen in order to obtain similar eigenfre-
quencies for the two geometries. We assume a saturation
magnetization Ms = 8.6 · 105 A/m, an exchange con-
stant A = 1.3 · 10−11 J/m, a Gilbert damping parameter

(c)
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Figure 3: Simulation of one gyration period of (a) an an-
tivortex and (b) a vortex. Both have the topological charge
q = −1/2 and are excited at the resonance frequency (727
MHz for the antivortex and 700 MHz for the vortex) by a cur-
rent of amplitude j · P = 1.5 · 1010 A/m2. The graphs below
the magnetization images show the deflection in x-direction.
(c) Exciting alternating current.

α = 0.01, and a ratio ξ = 0.9α between exchange and
spin-flip relaxation time.21,22 A lateral cell size of 4 nm
is used. Thus the cell size is below the exchange length of
permalloy of lex =

√
2A/µ0M2

s ≈ 5.3 nm. The position
of the core is defined as the position of the maximum
out-of-plane magnetization. To increase the spatial reso-
lution, the magnetization of adjacent cells is matched by
a polynomial of second order.9

III. EXCITATION BY MAGNETIC FIELD AND
SPIN-POLARIZED CURRENT

The eigenfrequencies of vortex and antivortex are de-
termined by exciting the core with a current. The free
relaxation of the magnetization yields the free frequency
ωf and damping Γ of the vortex or antivortex. Be-
cause the damping is small compared to the free fre-
quency (Γ � ωf ), antivortex and vortex are weakly
damped systems. Thus the frequency of the free oscil-
lation ωf and the resonance frequency ωr are approxi-
mately the same. The simulated gyration of an antivor-
tex core [p = 1, see Fig. 3(a)] and a vortex core [p = −1,
see Fig. 3(b)] both driven by an ac current of ampli-
tude j · P = 1.5 · 1010 A/m2 are shown in Fig. 3. They
both possess the same sense of gyration as defined by the
topological charge23–25 q = np/2 = −1/2. It is known
that vortices gyrate counterclockwise with positive and
clockwise with negative polarization.5 Antivortices, on
the other hand, gyrate clockwise with positive and coun-
terclockwise with negative polarization. This is directly
observed in the simulations. For small current or small
magnetic field amplitudes, the simulated displacement of
the antivortex is found to increase linearly with increas-
ing excitation amplitude. This is due to the harmonic po-
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Figure 4: (Color online) Exemplary resonance curves for the
semiaxes of the elliptical trajectories and the phase η of an
antivortex core gyration excited by (a) a current of amplitude
j · P = 1.5 × 1010 A/m2 (c = 2) and (b) a magnetic field of
amplitude H = 300 A/m (c = 0). The symbols are results
from micromagnetic simulations. The open squares illustrate
the semiaxes in x-direction, the open circles the semiaxes in
y-direction. The triangles show the phase η. The asterisks il-
lustrate the ratio between the semiaxes x and y. The solid line
is the x-component and the dashed line is the y-component
of the amplitude of a fitted resonance curve of a harmonic
oscillator. The dotted red line is a fit of the phase η. The
insets show fits of the ratio between the semiaxes x and y as
a function of the frequency.

tential of the domains’ stray field for small displacements
of the antivortex core. Thus there is a linear restoring
force on the antivortex, which has also been found for a
vortex.9

To obtain the resonance curve for the amplitude and
the phase η of the antivortex core, either sinusoidal cur-
rents or magnetic fields of frequencies at, above, and be-
low the resonance frequency ωr are applied. Through-
out this paper, the current is applied in x-direction
while the magnetic field is applied in y-direction. The
resonance curve of a harmonic oscillator26 with a res-
onance frequency ωr/2π = 727 MHz and a damping
Γ/2π = 6.4 MHz matches very well the numerical data,
as shown in Fig. 4 (a,b). In general the antivortex gyrates
on elliptical orbits. The semi-major (semi-minor) axis of
the ellipses at frequencies below resonance changes into

−2 −1 0 1 2

−1 

−0.5

0 

0.5 

 1 

c

η(
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Figure 5: (Color online) Phase η between excitation and dis-
placement for an antivortex core gyration at resonance. The
dotted red line illustrates the phase when the antivortex core
is excited by a spin-polarized current. The asterisks repre-
sent corresponding results from micromagnetic simulations
for positive core polarization (p = 1) and the triangles for
negative polarization (p = −1). For excitation with a mag-
netic field the solid line illustrates the phase for positive core
polarization (p = 1), the dashed black line for negative polar-
ization (p = −1). The numerical results are depicted by open
circles and squares.

the semi-minor (semi-major) axis at frequencies above
resonance. At resonance the trajectories are circular.
This is illustrated in Fig. 4 (a) for a current-driven an-
tivortex with c = 2 and in Fig. 4 (b) for a magnetic-field
driven antivortex with c = 0. For both the semi-major
axes point in y-direction at frequencies below and in x-
direction at frequencies above resonance.
The phase η is defined by the temporal delay between
the maximum of the applied current or field and the
maximum core displacement in x-direction. Like for a
harmonic oscillator the phase η changes by π when the
exciting frequency Ω is increased from values well below
to values well above the resonance frequency ωr. This is
illustrated in Fig. 4 (a) for current and in Fig. 4 (b) for
magnetic-field excitation.

We numerically simulate the dependence of the phase
on the direction of the in-plane magnetization by exciting
at resonance antivortices of all possible integer c-values
and of both polarizations p = −1 and p = 1. For cur-
rent excitation for all c-values the antivortex cores are
deflected into the physical current direction (η = π). For
magnetic field excitation, the phase is found to depend
on the direction of the in-plane magnetization as shown
in Fig. 5. For a constant frequency the phase varies by
2π when c is changed from −2 to 2, i.e. when rotating
the sample by π with respect to the magnetic field. At
resonance the phase changes from 0 to 2π for p = 1 and
from π to −π for p = −1 as illustrated in Fig. 5.

The phase η and its dependence on the direction of
the in-plane magnetization is studied analytically by us-
ing the equation of motion for vortices and antivortices26

assuming low damping (ωr � Γ). The equation for the
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4

deflection

(
x
y

)
= −χ ·

(
vH sin(πc2 )ω +

(
vHp cos(πc2 ) + vj

)
iΩ(

vHn cos(πc2 ) + vjnp
)
ω − vHnp sin(πc2 )iΩ

)
· eiΩt (3)

is derived from the Thiele equation8 for excitation with
magnetic fields and the extension by Thiaville7 for spin-
polarized currents. A harmonic potential due to the de-
magnetizing field is assumed.26 The velocity due to the
adiabatic spin-torque term is vj = bjj0, the velocity due
to the magnetic field vH = γH0l/(2π), and the suscepti-
bility of a harmonic oscillator is χ = 1/[ω2 + (iΩ + Γ)2].
Equation (3) states that a change of the c-value leads to
a rotation of the magnetic force. This in turn causes a
dependence of the phase on the in-plane magnetization.
For example, a change from c = −1 to c = 1 is equivalent
to a rotation of the magnetic force by an angle of π. At
resonance Eqn. (3) yields the deflection

x(c, p, t) =
vH
2Γ

eiΩteiπ( 1+p−pc
2 ). (4)

The maximum excitation is reached for iΩt =
−iπ( 1+p−pc

2 ), so that the phase of the antivortex motion
that is induced by a magnetic field at resonance reads

ηH = −π
(

1 + p− pc
2

)
. (5)

For purely current-driven excitation Eqn. (3) gives

x(c, p, t) = − vj
2Γ
eiΩt. (6)

Hence the phase induced by a current is ηj = π at reso-
nance. This means that for current excitation the phase
is independent of the direction of the in-plane magnetiza-
tion as well as of the polarization. Figure 5 demonstrates
that the analytical results agree well with the simula-
tions.

IV. AMPLITUDE VARIATION OF GYRATION

In the following we simulate antivortices that are ex-
cited simultaneously by a magnetic field and a spin-
polarized current. First the antivortex is excited by a
current in x-direction in the absence of a magnetic field.
Then the amplitude of a magnetic field in y-direction
is tuned until the antivortex core gyration possesses the
same amplitude as under current excitation. In our case
the core is excited by a spin-polarized current of ampli-
tude j · P = 0.7 · 1010 A/m2 that corresponds to a mag-
netic field of amplitude H = 122 A/m. Then the current
and the magnetic field are applied simultaneously. Differ-
ent directions of the in-plane magnetization (see Fig. 6)
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Figure 6: Amplitude of displacement of an antivortex core
with polarization p = 1 at resonance. The antivortex is ex-
cited simultaneously by a magnetic field in y-direction and
a current in x-direction. The symbols denote simulated re-
sults for vH = vj , the lines are fits for different ratios vH/vj

according to Eqn. (7) .

are chosen to investigate the c-dependent variation of the
core amplitude for a positive polarization. The simula-
tion shows a doubling of the amplitude at c = 0 and a
complete suppression at c = 2. Thus a superposition of
the deflection by current and a perpendicular field leads
to an amplitude variation in dependence on the direction
of the in-plane magnetization of the sample. This is due
to the c-dependent phase between antivortex core dis-
placement and magnetic field, see Eqn. (5). The forces
due to current and magnetic field are proportional to
the deflections. If they are parallel or antiparallel, an
enhancement or suppression of the core displacement is
found, respectively. When both deflections have the same
amplitude, the amplitde of gyration can be doubled or
completely quenched, as shown in Fig. IV.
Using the addition theorem one can derive from Eqn. (3)
the c-dependent amplitude variation

r = r0

√(
vH
vj
− p
)2

sin2

(
πc

4

)
+
(
vH
vj

+ p

)2

cos2

(
πc

4

)
.

(7)
of the antivortex core gyration at resonance. This is a
general expression for arbitrary ratios vH/vj between the
antivortex core velocities due to current and to magnetic
field, for both polarizations and all c-values. The ampli-
tude is plotted in Fig. 6.

An inhomogeneous current distribution in the direc-
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Figure 7: Proposed setup with electrical contacts to excite a
single antivortex, here with polarization p = 1. The quantity
c depends on the direction of the exciting ac current. For
current in x- or y-direction the deflection is suppressed or
amplified, respectively.

tion of the film normal generates a non-zero Oersted
field perpendicular to the current.27 For the experimental
proof of a dependence of the amplitude on the direction
of the in-plane magnetization, we propose a setup with
a clover-shaped sample that is illustrated in Fig. 7. A
similar sample was investigated by Shigeto et al.10 with
magnetic-force microscopy. Excitation by a spin current
in x-direction or y-direction through electrical contacts
corresponds to a direction of the in-plane magnetization
for c = 2 and c = 0, respectively. For the polarization
p = 1 we expect a suppressed motion when the current is
applied in x-direction and an enhanced amplitude when
it is applied in y-direction. The variation of the ampli-
tude for c = 0 and c = 2 could be used to determine the
ratio between the forces on the antivortex core due to an

Oersted field and a current.

V. CONCLUSION

In conclusion, we have demonstrated by micro-
magnetic simulations that antivortices excited by
spin-polarized ac currents or magnetic fields gyrate on
elliptical orbits. These orbits can be well described by
the analytical model of a two-dimensional harmonic
oscillator. The sense of gyration of antivortices depends
solely on the topological charge q = np/2. The phase
of the antivortex motion excited by an alternating
magnetic field depends also on the direction of the
in-plane magnetization. Antivortices that are excited
simultaneously by a spin-polarized current and a mag-
netic field show an enhancement or a suppression of the
deflections amplitude in dependence on the direction of
the in-plane magnetization. The effect of the amplitude
variation in dependence on the in-plane magnetization
can be used to experimentally investigate the influence
of Oersted fields in current-induced antivortex dynamics.
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Fig. 4.9: Magnetization patterns during one gyration period of (a) a vortex (c=1, p=1)
in a square excited by an alternating current density of amplitude j ·P = 2 · 1011 A/m2

with a frequency Ω = 4.40 · 109 1/s and (b) a vortex (c=1, p=1) in a disk excited by
an alternating current density of amplitude j ·P = 3 · 1011 A/m2 with a frequency of
Ω = 4.95 · 109 1/s. (c) Square-shaped trajectory of the vortex core in the square. (d)
Circular trajectory in the disk. (e) Demagnetization energy of the vortex in the square.
The red line denotes a parabolic fit, the green line shows a fit of fourth order.

4.2 Nonlinear dynamics of vortices and antivortices

The potential due to the demagnetization field is expanded with respect to the core’s dis-
placement from the equilibrium position up to higher-order terms. Inserting the resulting
force into the Thiele equation gives a nonlinear equation of motion for the vortex gyra-
tion at large core displacements. The nonlinear dynamical characteristics like a gap in the
resonance curve, a shift of the phase and a shift of the eigenfrequency are presented.

4.2.1 Origin of nonlinear vortex gyration

Only for small core displacements when the internal forces are proportional to the deflec-
tion of the core, vortices can be described as harmonic oscillators. For large displacements
the internal forces increase nonlinearly resulting in a nonlinear vortex gyration [44, 45].
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For example in a square the domain walls become distorted and the trajectory warps at
the corners of the square which results in a square-shaped trajectory at the resonance fre-
quency. Starting from the equilibrium position the nonlinear gyration of a vortex in a
square induced by an alternating current reaches a steady state with a square-shaped tra-
jectory, as illustrated in Fig. 4.9 (c). Magnetization patterns during one gyration period
in the steady state are depicted in Fig. 4.9 (a). The closer the core is to the edges of the
sample the smaller is the increase of the displacement of the vortex gyration. In case of
a disk, which is excited at the resonance frequency, the nonlinear core trajectory retains a
circular shape but again the amplitude of gyration is decreased near the edge of the sam-
ple. In Fig. 4.9 (d) the core in a disk that is excited by an alternating current performs a
transient gyration starting from the equilibrium position. Figure 4.9 (b) shows magneti-
zation patterns during one gyration period for large core displacements.
In soft magnetic materials the shape of the potential depends on the geometry of the sam-
ple. Generally, the potential is flat in the corners of the square. This is the reason why for
large displacements the shape of the core trajectory approaches the shape of the sample.
The potential due to the demagnetization energy can be fitted by a polynomial of fourth
order as demonstrated in Fig. 4.9 (e). In the simplest approximation the fourth order terms
describe the potential of the nonlinear core gyration.

4.2.2 Nonlinear equation of motion of vortices

The potential

V (x,y) = V (x0,y0)+
∂ 2

∂x2V |x0,y0

x2

2!
+

∂ 4

∂x4V |x0,y0

x4

4!
+

∂ 4

∂x2∂y2V |x0,y0

x2y2

2!2!

+
∂ 4

∂y4V |x0,y0

y4

4!
+

∂ 6

∂x6V |x0,y0

x6

6!
... .

(4.34)

due to the demagnetization energy can be expanded up to higher orders in a Taylor series.
The term of zero order is an offset and can be set V (x0,y0) = 0. Linear terms are absent
because x0 and y0 are the coordinates of the equilibrium position. All other odd terms
vanish because of the symmetry of the potential. With such terms the equilibrium position
would become unstable for small core displacements, because the potential would possess
a saddlepoint at the equilibrium position. The potential of a vortex in a square

V (x,y) =
mω2

r
2
(
x2 + y2 +a(x2 + y2)2−bx2y2) (4.35)

exhibits the symmetry of the sample. A square exhibits mirror symmetries. The potential
in its corners has tailing edges. The tailing edges are caused by the term proportional to
the product x2y2. In case of a disk this term vanishes because the potential is isotropic due
to the rotational symmetry of the sample and only the term that is proportional to (x2 +y2)

66



4.2 Nonlinear dynamics of vortices and antivortices

remains.
The nonlinear force is

F =−mω
2
r

(
x+4a(x3 + xy2)−2bxy2

y+4a(y3 + x2y)−2bx2y

)
. (4.36)

The nonlinear equation of motion

(
ẋ
ẏ

)
=−npω f

(
y+4ay3 +4ax2y−2bx2y
−x−4ax3−4axy2 +2bxy2

)

−Γ

(
x+4ax3 +4axy2−2bxy2

y+4ay3 +4ax2y−2bx2y

)
+ v j

(4.37)

follows when the nonlinear force is inserted into Eqn. 4.20. This nonlinear equation of
motion can only be solved numerically. This has been done by a Runge-Kutta-method of
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Fig. 4.10: Simulated transient trajectory of a vortex (a) in a 200×200×20 nm3 square
and (b) in a 1000× 1000× 20 nm3 square. The blue lines are the trajectories obtained
by a numerical solution of the analytical equation of motion. The green lines are the
analytical trajectories without nonlinearities. (c) and (d) Dependence of the coefficients
a and b on the sample length L. The red line is a fit b ∝ 1/L2.
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Fig. 4.11: Resonance curves of a vortex in a permalloy square (200× 200× 20 nm3)
excited by an alternating current density of amplitude (a) j · P = 7 · 1011A/m2, (b)
1.2 ·1011m2, (c) j ·P = 1.7 ·1011A/m2, and (d) j ·P = 2.2 ·1011A/m2. (e) Ratio between
the y- and the x-coordinates of the vortex gyration versus the amplitude of gyration at
resonance Ω = Ωr. (f) Resonance frequency determined by Eqn. 4.40 from the phase
π/2 between the force due to the excitation and the displacement of a harmonic oscilla-
tor.

fourth order. Figure 4.10 shows the simulated and the analytical trajectories for a vortex
core in permalloy squares. Both vortices start from the equilibrium position and perform
a transient gyration. The red line shows the simulated results, the blue line the analytical
results with nonlinear terms and the green line the analytical results without nonlinear
terms. The analytical and simulated nonlinear trajectories show good accordance. In the
linear case the displacement of the core is larger compared to the displacement in the
nonlinear case. Thus the harmonic potential is flatter compared to the nonlinear potential
as was already evident in Fig 4.9 (e).
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4.2 Nonlinear dynamics of vortices and antivortices

To reveal a correlation between the sample length and the nonlinear coefficients a and b of
vortices in squares, simulations have been done for different sample sizes. The trajectories
from analytical calculations have been fitted to the simulated trajectories by varying the
nonlinear coefficients. The coefficient a, which is propotional to the term (x2 + y2) in
Eqn. 4.35, causes the decrease of the core displacements near the edges of the squares.
This coefficient increases for decreasing size of the squares, as illustrated in Fig. 4.10 (c).
The coefficient b that leads to the trailing edges of the potential in the corners of the
square can be fitted by the relation b ∝ L−2, see Fig. 4.10 (d). The dependence of the
coefficient b on the domain-wall length LDW = 1√

2
L [see Fig. 4.3 (a)] can be explained

by the distortion of the domain walls. It can be concluded that the smaller the sample the
steeper is the potential and the larger are the nonlinearities experienced by a vortex.

4.2.3 Vortices as nonlinear oscillators

The dynamical characteristics like the semiaxes, the amplitude in resonance, the phase,
and the resonance frequency of the nonlinear gyration strongly differ from the linear case.
The nonlinear resonance curves of the semiaxes become discontinuous. A gap of the
semiaxes occurs near the resonance frequency. Figures 4.11 (a) - (d) depict the resonance
curves of the semiaxis X0 for alternating current excitations between j ·P = 7 ·1010 A/m2

and j ·P = 2.2 · 1011 A/m2. An increase of the excitation also leads to an increase of
the gap. For a vortex that is excited at resonance the ratio of the coordinates y/x at the
time of maximum excitation depends on the amplitude of gyration, as demonstrated in
Fig. 4.11 (e). The ratios y/x are illustrated for amplitudes of alternating current densities
between j ·P = 2 · 1010 A/m2 and j ·P = 2 · 1011 A/m2 which results in amplitudes of
gyration between 10 nm and 60 nm at an exciting frequency of Ω = 4.4 · 109 1/s. The
simulated ratio y/x of nonlinear gyration can be compared to the ratio y/x of the linear
gyration. For the linear case the phase is independent on the amplitude of excitation. The
phase of current-induced vortex gyration in the linear case can be expressed by

η = arctan
(
− y

x

)
+π. (4.38)

From the susceptibility χ of a harmonic oscillator follows

η = arctan
(

Ω2−ω2
r

2ΩΓ

)
+π. (4.39)

The relation

ωr =
√

y
x

2ΩΓ+Ω2 (4.40)

yields the resonance frequency that a harmonic oscillator would have for the simulated
ratio y/x of nonlinear vortex gyration. The resonance frequency is shifted to larger values
for increasing amplitudes of gyration as demonstrated in Fig. 4.11 (f). This blue-shift is
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due to the increase of the potential as already shown in Fig. 4.9 (e). H. Stoll et al. mea-
sured a red shift of the resonance frequency in the nonlinear regime [46]. K. Buchanan
et al. discovered a mode splitting experimentally. Their numerical calculations yield a
blue-shift and a mode splitting depending on the nonlinear parameters [44]. The parame-
ters at mode splitting are larger than can be justified on simulations. It can be concluded
that further investigations on nonlinear vortex gyration have to be done to clarify these
discrepancies.

4.3 Switching of vortex and antivortex cores in the highly
non-linear regime

In the highly nonlinear regime the vortex gyration culminates in the formation of a new
vortex and a new antivortex and finally in a vortex with a core of opposite polarization.
This process is called vortex-core switching [47, 48, 49, 50]. Only in very thin samples
with small lateral sizes a highly excited core can leave the sample before it switches.

4.3.1 Intermediate states at core switching

When the gyroscopic motion of a vortex becomes nonlinear a so called dip particle forms
in the vicinity of the core. Its out-of-plane magnetization points into the direction opposite
to that of the core. The size of the dip particle increases when the velocity of the core
increases. For higher amplitudes of excitation the dip particle splits into an antivortex
and a vortex of opposite polarizations compared to the original vortex. The antivortex
annihilates with the original vortex and a vortex of opposite polarization remains. At
antivortex switching also a vortex-antivortex pair is formed and the vortex annihilates
with the antivortex and an antivortex of opposite polarization remains. Figure 4.12 shows
micromagnetic simulations of the switching process.

4.3.2 Topological considerations

The magnetization field is described by the nonlinear Landau-Lifshitz-Gilbert equation.
As solutions of this equation topological objects like vortices and antivortices occur. They
exhibit a sharp singularity in the center, when projecting the magnetization on the plane.
These objects are characterized by the winding number n which does not change under
symmetry operations like rotations and mirroring of the magnetization pattern. Other
topological characteristics are the polarization p and the skyrmion number [51]

q =
∫

M ·
(

∂

∂x
M× ∂

∂y
M
)

d2r. (4.41)

The skyrmion number q = np
2 [51] of a vortex, which also includes the out-of-plane com-

ponent of the magnetization by the polarization p, can be used to describe the switching
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Fig. 4.12: Switching process of (a) - (e) a vortex in a square and (f) - (i) an antivortex
in an infinity-shaped sample. The sketches show the corresponding intermediate states
vortex core (V), antivortex core (AV), and dip particle (D). Red (blue) colors denote a
positive (negative) z-component of the magnetization. (d) and (i) The wavevectors k
depict the propagation direction of the spin waves at vortex-antivortex annihilation.

process of vortices and antivortices topologically. If the skyrmion number is not con-
served, and thus the topology of the magnetization does not evolve continuously, discon-
tinuities of the magnetization occur. At vortex-core switching this is the formation of
a singularity that is called Bloch point [52]. If a vortex of positive polarization (n = 1,
p = 1, q = 1

2 ) gyrates, a dip particle (n = 0, p =−1, q = 0) can be formed continuously.
A pair of an antivortex (n = −1, p = −1, q = 1

2 ) and a vortex (n = 1, p = −1, q = −1
2 )

decouples continuously from the dip particle. The antivortex annihilates with the original
vortex meaning an abrupt change of the skyrmion number from q = 1 to q = 0. This
change violates the continuous topology of the magnetization field and leads to the for-
mation of a Bloch point that decays into spin-waves. This is sometimes addressed as
exchange explosion [53]. The energy of the spin waves released in the skyrmion decay
including Bloch-point annihilation can be estimated by the skyrmion energy E = 8πAt,
where A is the exchange constant and t is the thickness of the sample [51].

71



Publication 4

0.05 0.1 0.15 0.2
0

50

100

150

200

aspect ratio

r cr
iti

ca
l (

nm
)

Fig. 4.13: (a) Critical amplitude versus the aspect ratio t/L of a square. At the critical
amplitude the dip particle splits into a vortex and an antivortex. The black line is a plot
of Eqn. 4.43. The symbols depict simulated results for thicknesses of t = 20 nm (red
squares), t = 30 nm (blue circles), and t = 40 nm (green triangles).

4.3.3 Critical velocities at switching

The formation of a dip particle can be described micromagnetically. When assuming the
origin of the coordinate system in the vortex core, similar to a Galilei transformation, the
influence of the motion of the vortex core on the adjacent magnetization vectors is given
by the gyration equivalent field in Eqn. 4.4, [54]. The z-component

(Hg)z =
1

M2
s γ

(
M×M

dt

)
z
=

1
M2

s γ

(
M× (v ·∇)M

)
z

(4.42)

of the field leads to an orientation of the magnetization next to the vortex core into the
negative z-direction and thus to the formation of the dip particle [50]. The gyrofield de-
pends on the velocity of the vortex core and on the gradient of the magnetization near
the core. The size and the shape of the dip particle increase when the core velocity in-
creases. At the critical velocity the size of the dip particle is so large, that it is energetical
favorable for the dip particle to decay into a vortex-antivortex pair. The critical velocity
vcritical = (340± 20) m/s has been determined for disks by micromagnetic simulations
[55]. The approximation vcritical = ω f r for a circular core motion at resonance and the re-
lations for disks ω f ≈ 49 ·109(t/L)1/s and squares ω f ≈ 44 ·109(t/L)1/s obtained from
micromagnetic simulations can be used to approximate the amplitude

r = vcritical/ω f = aL
t (4.43)
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Fig. 4.14: (a) Creation time of a Bloch point at vortex-core switching in a permalloy
square of dimensions 153× 153× 9 nm3 in dependence on the cell size. The vortex
is excited by a magnetic field pulse of amplitude 80 mT. The asterisks are simulated
results. The dashed line is a guide to the eyes. (b) Scheme of the magnetization vectors
in the vicinity of the Bloch point. The Bloch point is indicated by the point in the
center. (c) Top view of the scheme in (b) showing the magnetization of vortex-antivortex
annihilation.

of the switching process with the constants a = 7.7 nm for a square and a = 6.9 nm for a
disk. This amplitude is the upper border of the nonlinear vortex gyration.

4.3.4 Limits of the micromagnetic model

The micromagnetic model relies on a continuous theory. It cannot be used to describe
a magnetic discontinuity like a Bloch point. A Bloch point is needed to annihilate a
vortex-antivortex pair of opposite polarizations. Vortex-core switching including the for-
mation of a Bloch point can only be observed by micromagnetic simulations because of
the discretization of the magnetization. Then the Bloch point is located between adjacent
simulation cells. The exchange energy density has the main influence on the formation
and annihilation of the Bloch point because of the short range of the exchange interaction.
The exchange energy density between two adjacent cells in a distance |r2− r1| reads

Eex =
A

M2
s

(M2−M1

|r2− r1|
)2

. (4.44)

If variations of both magnetization vectors M1 and M2 do not scale with the cell size
|r2−r1|, the exchange energy density depends on the cell size. The magnetization vectors
in the vicinity of a Bloch point show strong variations on a short scale, as illustrated in
Fig. 4.14 (b). Thus Bloch-point creation and annihilation depends on the cell size. Fig-
ure 4.13 (a) shows the creation time until a Bloch point is formed at vortex-core switching
for different cell sizes. This dependence demonstrates that the switching can only be de-
scribed in a quantitative way before the annihilation of the vortex-antivortex pair sets in
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and again after the annihilation of the Bloch point. Although a quantitative description of
Bloch-point dynamics by micromagnetic simulations is impossible, the annihilation of a
vortex or an antivortex by the formation of a Bloch point is correct. This is known from
topological considerations. A vortex (n = 1) can only be annihilated by its topological
counterpart, an antivortex (n =−1).
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5 Vortices in storage devices

Concepts to use ferromagnetic vortices in storage devices are presented. The vortex ran-
dom access memory (VRAM) and the antivortex random access memory (AVRAM) work
with a rotating current excitation or an excitation by a simultaneous current and magnetic
field to read and write a bit. Rotating magnetic fields are impractical for dense storage
devices due to their large range.

5.1 Logical states represented in vortices

Magnetization patterns can represent logical states. The magnetization is stable over a
wide range of temperatures until the thermal energy kBT reaches the skyrmion energy
Eskyrmion = 8πAt [51]. Of course, the maximum temperature is the Curie temperature
that is TCurie ≈ 869 K for permalloy [8]. The upper limit of the stability due to parasitic
magnetic fields, for example stray fields of adjacent vortices and Oersted fields, lies in
the range of some Millitesla.

The chirality and the polarization of a vortex have been proposed to represent bits
[56, 57, 58], but the realization of the read and the write processes is still a challenge.
It takes a relatively long time to detect the chirality [59]. Large amplitudes of magnetic
fields are required to change the chirality of a vortex. The polarization could be detected
by the stray field of the vortex core, but this field has only a very small amplitude and it
is superimposed by the fields of the magnetic domains. To switch the core polarization
a constant out-of-plane magnetic field of large amplitude up to half a Tesla has to be
applied to switch the core polarization.

The dynamics of vortex gyration could solve the problem of the read and the write
process. The bits, represented by the chirality or the c-value and the polarization, are
addressed by the vortex gyration. In case of rotating current excitations the amplitude of
gyration depends on the polarization p, see Eqn. (4.25). In case of simultaneous current-
and magnetic-field excitations the amplitude of gyration depends on the chirality c or
the c-value and the polarization p [43], see Eqns. (4.30) and (4.32). In the following the
polarization combined with the chirality or c-value leading to an enlarged (suppressed)
gyration amplitude are interpreted as a logical one (zero). Note that for an unambiguous
interpretation of the amplitude of gyration in case of simultaneous current- and magnetic-
field excitation the field and the current always has to be applied in the same direction for
the read process. In case of rotating excitations the sense of rotation always have to be
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Fig. 5.1: Logical states ζ = 0 and ζ = 1 and the corresponding magnetization patterns
of vortices (V) and antivortices (AV). The color code depicts the component My. The
arrows below the vortex and the antivortex indicate the directions of the applied current
and the applied magnetic field, the arrows on the left hand side show the space directions.

the same.

For rotating excitations the logical state ζ = 0 or ζ = 1 can be defined by

ζ = (np+1)/2, (5.1)

where the current has a mathematical positive sense of rotation. For simultaneous current-
and magnetic-field excitations the logical state is

ζ = (1+ cp)/2, (5.2)

in case of fields parallel to the current, where the chirality c∈{−1,1}. In case of magnetic
fields perpendicular to the current

ζ = (1+ p− cp)/2, (5.3)

where the c-value of the antivortex c ∈ {0,2}. Figure 5.1 illustrates the logical states
ζ = 0 or ζ = 1 for simultaneous current- and magnetic-field excitations.

5.2 Read and write process

The amplitude of gyration could be detected by an inductive loop. This loop could be
realized by a circular nanowire that is positioned asymmetrically on top of the sample.
The asymmetry avoids a compensation of the magnetic flux of the symmetrical magneti-
zation pattern. The magnetic flux density in the wire, that results from the stray field of
the domains of the gyrating vortex, gives a sinusoidal magnetic flux Φ(t) =

∫
loop B(t)d2r

and inductive voltage Uind(t) = − ∂

∂ t Φ(t). Although the amplitude of the magnetic flux
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Φ(t) is small due to the small area of the loop, the inductive voltage lies in the range of
microvolt because of the high temporal variation of the magnetic flux.
Another possible read process can be realized by the integration of the vortex into a mag-
netic tunnel junction. The tunnel junction consists of a ferromagnetic layer with a vortex
at the bottom, an insulator above the vortex and another ferromagnetic layer with a mono
domain above the insulator. A current that is applied into the direction of the film normal
experiences a different resistance in dependence on the amplitude of gyration due to the
tunnel magneto resistance (TMR). This has been demonstrated experimentally by Kasai
et al. [60].
To read the logical state the amplitude of excitation must be small enough to ensure that
the vortex core does not switch. To write a logical ζ = 0 or a logical ζ = 1 the core can
be excited by a rotating current or a simultaneous current and magnetic field of ampli-
tudes that are sufficient to switch the polarization. If the vortex possesses the state ζ = 1
the amplitude of gyration is enlarged until the core switches and the state ζ = 0. Then
the amplitude of gyration is suppressed and the core does not switch back. Hence, the
switching serves as a stable write process. The current must be applied with the opposite
sense of rotation for rotating excitations or it must be applied from the opposite direction
at simultaneous current and magnetic field excitations to recover the state ζ = 1.

5.3 Storage devices

Single storage cells containing vortices can be connected to a storage device. In the
following, storage cells are presented that work with simultaneous current- and magnetic-
field excitations. In a vortex random access memory (VRAM) a magnetic field parallel
to the current for the read process and a magnetic field parallel or antiparallel to the cur-
rent for the write process are required [61], [p5]. Figure 5.2 (a) illustrates two permalloy
squares that are connected to current contacts. The current path splits and passes through
the vortex and through a strip line. The strip line underneath the vortices generates an
Oersted field that points parallel or antiparallel to the current in the permalloy square.
Switches are needed to control which vortex is addressed and in which direction the cur-
rent flows either parallel or antiparallel to the magnetic field. For the read process the
magnetic field always points parallel to the current. In an antivortex random access mem-
ory (AVRAM), as shown in Fig. 5.2 (c), the magnetic field has to point perpendicular to
the current [62], [P6]. This perpendicular field is realized by an Oersted field that is gen-
erated due to the inhomogeneity of the current density in the direction of the film normal.
This gradient can be caused by the contact geometry or by vertical variations of the con-
ductivity in the permalloy film due to the preparation process. The switches control which
storage cells are addressed and if the direction of the current results in a c-value c = 0 or
c = 2. For the read process the current is always applied into the direction illustrated in
Fig. 5.2 (c).
The storage cells consist of a stack of layers. The ferromagnetic layer and the inductive
loop are seperated by an insulating layer as shown in Figs. 5.2 (b) and 5.2 (d). The fer-
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Fig. 5.2: Schemes of connected storage cells containing vortices and antivortices. The
color code depicts the strength of the magnetization component My. The circles and
bars symbolize switches. The lines denote electric lines. The symbols pinit depict the
initial polarizations and the symbols c denote (a) the chiralities or (c) the c-values. The
arrows indicate the directions of the current or the magnetic field. (a) The gray rectangle
underneath the vortices illustrates the strip line. (b) and (d) The left sketches show the
top view and the right sketches the side view of a single storage cell containing (b) a
vortex and (d) an antivortex. In the top view the black rings illustrate inductive loops.
The side view shows (b) a metallic layer of the strip line, (b) above this a layer of silicon
dioxide as insulator, above this layers of permalloy containting (b) the vortex and (d) the
antivortex, above this layers of silicon dioxide as insulator, and at the top, layers of metal
of the inductive loops.

romagnetic layer is connected to electrical contacts. VRAM storage cells additionally
consist of a strip line at the bottom and an insulating layer between the strip line and the
ferromagnetic layer, see Fig. 5.2 (b).
The features of storage cells that operate with rotating current or simultaneous current and
magnetic fields can be compared. For rotating excitations smaller amplitudes are required
to displace the vortex core compared to unidirectional excitations [43]. Rotating excita-
tions are realized by simultaneous currents from perpendicular directions that possess a
phase shift of π/2. This demands a technically challenging phase synchronization. For
fields parallel to the current only an external current has to be applied, but a phase syn-
chronization between the current in the permalloy square and the current in the strip line
is needed. For fields perpendicular to the current no phase synchronization is required but
the generation of the Oersted field in the sample is difficult to control. In comparison with
present nonvolatile storage devices like the flash memory or hard disks the VRAM and
AVRAM have smaller access times and they can be written an infinite number of times.
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Current Controlled Random-Access Memory Based On Magnetic Vortex Handedness
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The theoretical foundation for a non-volatile memory device based on magnetic vortices is presented. We
propose a realization of a Vortex Random-Access Memory (VRAM) containing vortex cells that are controlled
by alternating currents only. The proposed scheme allows to transfer the vortex into an unambiguous binary
state regardless of its initial state within a sub-nanosecond timescale. The vortex handedness defined as the
product of chirality and polarization as a bit representation allows direct mechanisms for reading and writing
the bit information. The VRAM is stable at room-temperature.

PACS numbers: 75.60.Ch, 72.25.Ba, 85.75.-d

The perception that magnetization dynamics is tunable by
spin-polarized currents [1, 2] triggered an intensive investi-
gation of applications within the last years. Compared to a
magnetic field, an electrical current is much more appropri-
ate to control a device since it can be handled with high pre-
cision and can be spatially restricted. Recently, it has been
suggested to employ the polarization of a magnetic vortex
core for data storage [3]. This is motivated by the experi-
mental discovery [4, 5] and numerical investigation [6, 7] of
vortex-core switching in various scenarios. In a ferromagnetic
thin-film element a vortex state with a core of a few nanome-
ters [8] is formed due to the interplay of exchange and demag-
netization energy. The in-plane magnetization curls around
a sharp singularity in the center, where the magnetization is
forced out-of-plane to minimize exchange energy. Despite its
complex structure the magnetic vortex in many ways behaves
as a quasi-particle only characterized by the polarization p,
the chirality c, and the coordinates X and Y of the vortex
core in the sample plane as illustrated in Fig. 1. The vortex
core pointing up (down) denoted by the polarization p = +1
(p = −1) provides a basis for a binary logic. The chiral-
ity characterizes the sense of rotation of the in-plane mag-
netization. For c = +1 (c = −1) the magnetization curls
counter-clockwise (clockwise) around the core. In a ferro-
magnetic square or circular thin-film element with no crys-
talline anisotropy, e.g., made of permalloy, the vortex state
constitutes the energetic ground state which is fourfold degen-
erate due to the combinations of chirality and polarization (cf.
Fig. 1). To change its polarization, the vortex has to overcome
an energy barrier which is of the order of ten electronvolts [9].
Hence, the vortex core is quite stable against thermal fluc-
tuations at room temperature or magnetic stray fields in the
millitesla regime. The benefit of using magnetic vortices in
a memory device is their innate smallness and their generic
existance. Therefore, the vortex is appropriate to serve as a
non-volatile storage device.

We present a memory device based on the magnetic vor-
tex handedness defined as the product cp of chirality and core
polarization. The application of the handedness as a bit rep-
resentation allows bit writing without the knowledge of the

FIG. 1: (Color online) The fourfold degenerate ground state of a
magnetic vortex in a thin-film element with chirality c = ±1 and
core polarization p = ±1. The white arrows illustrate the sense of ro-
tation of the in-plane magnetization. The magnetization in the center
points out of plane. The height indicates the out-of-plane magnetiza-
tion Mz while the colors visualize the x-component of the in-plane
magnetization Mx normalized to the saturation magnetization Ms.

initial magnetization state as well as a direct reading of the
bit information. Consequently, a main advantange is that the
writing process requires no preceding reading operation.

Recently, it has been shown that a vortex confined in a thin-
film element performs elliptical rotations around its equilib-
rium position when excited by an alternating current [4, 10–
15] or magnetic field [10, 11, 16]. We propose that a collinear
arrangement of electrical current density and magnetic field
as depicted in Fig. 2(a) yields a way to employ the magnetic
vortex as a storage device. A possible technical realization of
the VRAM is shown in Fig. 2(b), where the ferromagnetic
cells are aligned on a strip-line. Each storage cell contains a
vortex. The injected current splits up in two parts: one flow-
ing in x-direction through a distinct cell and the other flowing
in y-direction underneath the cell array. While the first part
of the current flows straight through the ferromagnetic mate-
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FIG. 2: (Color online) (a) A single Vortex Random-Access Memory
(VRAM) cell with collinear current and Oersted field. (b) Possible
technical realization of a VRAM. The cells are arranged in a two-
dimensional array, from which one row is depicted. The high-ohmic
permalloy squares constitute the memory cells while the gold strip-
lines supply the read-write current. Open (filled) circles symbolize
open (closed) switches that are used to store information in an indi-
vidual cell. The numbers 0 and 1 denote the switches which have to
be activated to write the according bit in the activated cell. The con-
figuration shown here writes a binary ”zero” into the third cell (red
arrow).

rial of the selected VRAM cell, the second part of the current
passes by the VRAM cells in a strip-line beneath the cells.
The current in x-direction is the writing current which excites
the vortex of a single cell due to the spin-torque effect [14, 17].
The role of the second current is to create an alternating, spa-
tially homogeneous Oersted field in the cell above it, which
results in a precession of the vortices in the cells. Thus, the
scheme proposed in Fig. 2(a) provides a parallel arrangement
of electrical current density and magnetic field. For a current
density ~j = j~ex and a magnetic field ~H = H~ex the equation
of motion for the quasi-particle vortex reads [10]
(

Ẋ

Ẏ

)
=
(
−Γ −pω
pω −Γ

)(
X
Y

)

+

(
−vj − Γ2

ω2+Γ2
ξ−α

α vj
pωΓ

ω2+Γ2
ξ−α

α vj

)
+

vHωc

ω2 + Γ2

(
pω
Γ

)
.

(1)

The free angular frequency ω = −pG0mω2
r/(G2

0 + D2
0α

2)
and the damping constant Γ = −D0αmω2

r/(G2
0 + D2

0α
2)

are defined as in Ref. [10]. The driving velocity due to the
magnetic field H is vH = γHl/(2π) with the edge length l.
The driving velocity of the current is vj = bjj. The coupling
constant between the current and the magnetization is bj =
PµB/[eMs(1 + ξ2)], P is the spin polarization, Ms the sat-
uration magnetization, ξ the degree of non-adiabaticity [17],
and α the phenomenological Gilbert-damping parameter. The
resonance frequency of the vortex due to the demagnetizing
field [10] is ωr and G0, D0 are constants of the gyrovector
and dissipation-tensor [18], respectively. A special feature of

Eq. 1 is that a parallel or antiparallel arrangement of current
density and field leads to either an enhancement or a quench-
ing of the gyration amplitude of vortex motion, in agreement
with results for antivortices [19]. The steady-state solution of
Eq. 1 with harmonic current excitation, for which the mag-
netic field and the electrical current density are of the form
H(t) = H0e

iΩt and j(t) = j0e
iΩt, yields [10]

(
X
Y

)
=

eiΩt

ω2 + (iΩ + Γ)2

×
(

−Γ
ω

ξ
αvjω + (vHcp− vj) iΩ

(vHcp− vj) pω + Γ
ω

(
vHcp + ξ−α

α vj

)
ipΩ

) (2)

under the assumption that the squared Gilbert-damping pa-
rameter is small (α2 � 1) and thus the damping constant is
small compared to the frequency (Γ2 � ω2). At resonance
(Ω = ω) and for weak damping (Γ � ω) the steady-state
vortex motion is a circle with radius

R(vH, vj,Γ, cp) =
√

(<X)2 + (<Y )2 =
|vHcp− vj|

2Γ
, (3)

which depends on the vortex handedness cp. When the driving
velocities of field and current are equal (|vH| = |vj|), Eq. 3
yields a doubling or a quenching of the gyration amplitude
dependent on the handedness.

The key mechanism of the VRAM is to employ that the gy-
ration amplitude behaves oppositely for the cases cp = 1 and
cp = −1 without the need to determine the absolute values
of c or p separately. From the viewpoint of binary logic the
proposed arrangement reduces the fourfold degenerate vortex
ground state to two distinct cp states with two representations
representing the single bit. In the following let us define the
”zero” (”one”) by cp-positive (cp-negative).

Recent numerical investigations of the vortex-core switch-
ing have shown that the switching depends only on the veloc-
ity of the vortex [20, 21] and thus on the radius of gyration.
Furthermore, the critical velocity for switching was found to
be an intrinsic parameter and hence does not depend on spe-
cific properties of the driving force [20]. There exist theories
of Yamada et al. [4] and Guslienko et al. [21] about the criti-
cal velocity for switching. For permalloy Guslienko estimates
vswitch ≈ 320m

s while Yamada et al. found vswitch ≈ 250m
s ,

”regardless of the excitation current density” (cf. Ref. [4]).
According to Guslienko et al. the critical velocity is propor-
tional to the saturation magnetization or the square root of the
exchange constant. Thus for permalloy structures (exchange
constant of A = 13 · 10−12 J

m , lateral sample size of 200
nm and a thickness of 20 nm), the critical current density is
1.3 · 1011 A

m2 for pure current excitation and a critical velocity
of vswitch ≈ 320m

s . This corresponds to a current of ≈ 0.5
mA and an absorbed power of 2.7 µW. Thus, if for |vH| = |vj|
the current amplitude is tuned to more than half of its criti-
cal value, that is defined as the current-amplitude needed for
switching the vortex due to current alone, the vortex ends up
with a distinct handedness: In the case of current parallel to
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field, a quenching of the vortex motion occurs for positive cp
(cf. Eq. 3) and the values of c and p remain the same. For neg-
ative cp, a doubling of the gyration amplitude and therefore a
switching of the vortex occurs since the radius attains the crit-
ical value. While the polarization changes during the switch-
ing process the chirality is conserved. After the switching the
vortex comes to rest being now in the opposite cp state which
immediately leads to cancellation of the driving forces. The
subsequent free damped oscillation results in a quenching of
the vortex rotation. Irrespective of the starting configuration,
the writing process leads to the defined property cp = +1 rep-
resenting the binary value ”zero”. Accordingly to write the
binary ”one” cp = −1, the direction of the spin-torque has to
be inverted. This can be achieved by reversing the direction
of the current flowing in opposite x-direction through the cell
(vj → −vj) as shown in Fig. 2(b). The information is per-
manently stored in the magnetic-vortex configuration cp, even
when the current is switched off.

Instead of using an alternating current it is possible to oper-
ate the VRAM with short current pulses vp

H and vp
j . Numerical

investigations have shown that pulses offer the advantage of
vortex switching that is up to one order of magnitude faster
than switching by alternating currents [7, 22]. If we choose a
collinear arrangement for current and field and consider that
the damping constant is small compared to the frequency of
the free vortex (Γ � ω), Eq. 1 reduces to:

(
Ẋ

Ẏ

)
=
(
−Γ −pω
pω −Γ

)(
X
Y

)
+
(

vp
Hcp− vp

j
0

)
. (4)

The last term is the driving force. Eq. 4 states that the action of
short current and magnetic field pulses compensate or amplify
each other depending on the handedness of the vortex.

In principle, a vortex excitation in a collinear alignment
of current and field could be replaced by a rotating magnetic
field making use of the polarization p instead of the combined
quantity cp [23, 24]. However, a set-up with a rotating field
requires two currents with a phase shift of π

2 (cf. Ref. [24]).
We want to point out that a main advantage of our concept is
to use one current only.

For the reading mechanism it is necessary to determine the
product cp, as the bit information is encoded in the handed-
ness. If current and field are aligned parallel, the binary value
”zero” (”one”) corresponds to a resting (rotating) vortex. In
the absence of current and field precession or cessation of pre-
cession of the vortex holds no information about the actual
memory state of the VRAM cell. Thus a small reading cur-
rent together with the magnetic field in the collinear arrange-
ment is needed to determine the cp-state. For parallel cur-
rent and field reading collimates in the task of distinguishing
a vortex at rest (cp = +1) from a rotating vortex (cp = −1).
The proposed VRAM realization in Fig. 2 consists of a two-
dimensional array of permalloy cells. The rotating vortex cre-
ates a time-varying magnetic flux which can be measured by
placing a pickup coil (induction loops) above the storage cell
or by detecting resistance changes [25, 26]. To read out the
information a lower current density compared to the writing

current density can be used. A current density less than half
of the critical current density has neither an influence on the
polarization nor on the chirality. Thus, the VRAM cell can be
read an infinite number of times without affecting its binary
state.

In conclusion we propose a magnetic Vortex Random-
Access Memory (VRAM). In a collinear current and field
arrangement, we established a one-to-one correspondence of
the vortex handedness to the binary values ”zero” and ”one”.
The VRAM needs not be read or erased preceding the writ-
ing and, in general, allows an infinite number of read and
write operations. This is an advantage compared to existing
memory technologies, such as the FLASH memory, which re-
quires a slow erasing procedure of the present memory state.
The VRAM concept is non-volatile and fulfills the stability
requirements for a memory device, since the vortex state is
stable against temperature and magnetic fields as long as they
remain in the millitesla regime. The VRAM shows a good
scaling behavior, in general no material fatigue, and is fore-
most a fast memory concept.
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We demonstrate by micromagnetic simulations that magnetic antivortices are potential candi-
dates for fast non-volatile data-storage elements. These storage elements are excited simultaneously
by alternating spin-polarized currents and their accompanying Oersted fields. Depending on the
antivortex-core polarization p and the orientation of the in-plane magnetization c around the core,
the superposition of current and field leads to either a suppression of gyration (logical ’zero’) or an
increased gyration amplitude (logical ’one’). Above an excitation treshold the gyration culminates
in the switching of the antivortex core. The switching can be seen as a cp-dependent writing of
binary data, allowing to bring the antivortex into a distinct state. Furthermore a read-out scheme
using an inductive loop situated on top of the element is investigated.

PACS numbers: 75.60.Ch, 72.25.Ba

The dynamics of magnetic vortices has been intensely
studied in recent years as they yield fundamentally in-
teresting and often surprising properties. For exam-
ple, it has been found that magnetic fields1,2 or spin-
polarized electric currents3,4 can cause vortices to gyrate
around their equilibrium position, but can also cause the
small vortex core5,6 to switch its out-of-plane component,
the so-called vortex core polarization.7–10 However, much
less is known about the vortex’ topological counterpart,
the antivortex (AV), even though it commonly occurs in
magnetic thin films, e.g., in cross-tie domain walls.11–13
Micromagnetic simulations14,15 and analytical theory16

have predicted the existence and dynamics of magnetic
antivortices.

Antivortices are formed in ferromagnetic thin-film ele-
ments of lateral dimensions of a few hundred nanometers,
where the magnetization points in-plane and crosses at
the out-of-plane AV core (see Fig. 1). The orientation of
the core can point either up (p = 1) or down (p = −1), in
analogy to the vortex core. The direction of the in-plane
magnetization around the AV core can be characterized
by the c-value.15 In contrast to the vortex, whose chiral-
ity is conserved, the c-value varies continuously between
c = −2 and c = 2 when rotating the AV around the core
axis. Thus the c-value is not a conserved property of the
AV. The c-value c = 2

π (φ+β) is defined by the angle of the
antivortex with respect to the coordinate system, where
φ is the angle of the local magnetization and β is the an-
gle of the position vector.15 In the following the current
is assumed to flow in the x-direction (β = 0). When ex-
citing an AV by alternating magnetic fields or currents of
moderate amplitudes, the core gyrates.15,16 Larger field
amplitudes can even switch the core polarization as has
been shown by micromagnetic simulations.14 For vortices
it has been shown that core switching is due to a gy-
rotropic field at critical core velocities.10 This switching
phenomenon has been suggested to be utilized as a write
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FIG. 1: Simulated magnetization configurations in∞-shaped
elements for (a) positive and (b) negative antivortex core po-
larization. The dotted arrows in (a) depict the directions of
the exciting current at which the c-value of the antivortex is
zero or two. The solid black and white arrows indicate the
direction of the in-plane magnetization. The height denotes
the z-component of the magnetization. The inset illustrates
a plain view of the antivortex with four current contacts.

process for a memory cell.8,17,18 However, the problem
of repeated core switching in systems using only a sin-
gle current or a magnetic field remained unresolved since
for rotating magnetic fields or currents two perpendicular
fields or currents with a phase-shift of π/2 are required.

Here we show that isolated AVs can be used to store
data. AV cores can be switched by a combination of
alternating electrical currents and magnetic fields de-
pending on the combination of the AV’s in-plane and
out-of-plane magnetization. In comparison to other stor-
age concepts using magnetic vortex core switching, the
AV random access memory (AVRAM) with an antivor-
tex shown in Fig. 1 does not require an external strip
line and a phase synchronization between electrical cur-
rent and magnetic field,19 or a phase synchronization
between electrical currents applied simultaneously from
perpendicular directions,8 because the Oersted field is
generated along with the current. The electrode con-
tact geometry and thus the inhomogeneous current den-
sities can be tailored so as to provide the required Oer-
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FIG. 2: (a)-(d) Micromagnetic simulations and (e)-(h)
sketches of the different stages of simultaneous current- and
field induced AV-core switching. (a), (e) A region of inverted
out-of-plane magnetization (dip) is formed. (b), (f) The dip
(D) decays into a new AV and a vortex of polarizations op-
posite to the original AV. (c), (g) The vortex and the original
AV meet and (d), (h) annihilate shortly thereafter by emit-
ting spin waves. The arrows in (h) denote the wave vectors
of the spin waves.

sted field.4 A writing mechanism is presented that does
not require previous reading of the data19 and inher-
ently prevents repeated AV-core switching. A read-out
scheme is presented that detects the AV’s state by mea-
suring the AV’s gyration amplitude in response to low-
amplitude excitation by alternating currents. The sim-
ulations were performed by using the Object Oriented
Micromagnetic Framework (OOMMF)20 extended by the
spin-torque terms introduced by Zhang and Li.21 To sim-
ulate the AV-core switching, an 840× 400 nm2 large and
50 nm thick ∞-shaped element (see Fig. 1) was excited
by a spin-polarized current and its accompanying Oer-
sted field perpendicular to the current. We assumed
a homogeneous in-plane current density of amplitude
P · j = 7.7 · 1011 A/m2 (P · j = 2.8 · 1011 A/m2), where
P is the spin polarization, and a homogeneous in-plane
magnetic field of H = 20 mT/µ0(H = 7.9 mT/µ0) for
the whole sample for the write (read) process.26 The fre-
quency of excitation for current and field was ω/2π = 914
MHz, which is the resonance frequency of an AV in
such an ∞-shaped-element as determined by a fit of the
damped free relaxation.

The resonant excitation causes a growing AV gyra-
tion amplitude and thus AV velocity for the c-value
c = 0 and the polarization p = 1. The gyrofield,10
that points into the direction opposite to the polariza-
tion of the AV core grows and enlarges the halo-shaped
’dip’ as shown in Fig. 2 (a), that normally surrounds the
core isotropically.22 This concentration of opposite out-
of-plane magnetizations moves on an orbit close to the
AV core on the inside of the AV orbit. The ’dip’ splits
into a vortex and an antivortex [see Fig. 2 (b)]. The
new vortex moves towards the original antivortex and
both annihilate by the formation of spin waves as shown
in Fig. 2 (d), (h). A new antivortex of opposite polar-
ization compared to the original antivortex remains.7,14
Figure 3 (a) shows the trajectory of the AV core. Un-
like in vortex switching, where repeated switching events
have been observed due to long and strong field pulses,23
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FIG. 3: Simulated write and read processes of AV cores. Red
solid (blue dotted) lines and red (blue) crosses illustrate a
negative (positive) core polarization p = −1 (p = 1). (a) The
AV core with polarization pinitial is transformed into an AV
with polarization pfinal in dependence on the current direction
described by the c-value. (b) The large square in the center
of the antivortex element marks the area shown in (a), the
small square marks the area of the inductive loop used to
calculate the voltage signals in (c). The current direction for
the read process is denoted by jr, the current direction for
the write process by j0 and by j1. (c) The crosses denote the
voltage induced in a coil 20 nm above the sample’s surface for
c = 0, the fits represent the first harmonic of the antivortex
gyration. The crosses in the inset show the maximum voltage
for different distances between coil and sample, the lines are
guides to the eyes.

we found that antivortices switch only once for simul-
taneous ac current- and field-excitation. Simulated ac
current- and field-excitation of AVs with inverted polar-
ization yielded AV gyration with much lower amplitude.
Antivortex switching did not occur in this configuration.
Instead, the current had to be injected from the direc-
tion with opposite c-value [see Fig. 1 (a)] to switch the
AV back to its original polarization. Figure 3 shows the
trajectories of AVs with negative and positive initial po-
larizations. This unexpected behavior is explained by
the cp-dependent gyration amplitude and the concomi-
tant cp-dependent AV velocity. Different directions of
excitation represent a change of the c-value. The equa-
tion of motion for weakly damped systems at resonance
in a field perpendicular to a current, as it is the case
for Oersted fields accompanying currents traversing the
elements, reads15

(
X
Y

)
= −e

iωt

2Γ

(
1
ip

)(
vj + vHpe

− iπ2 cp
)
. (1)

Here Γ is the damping of the AV system and vj = bjj is
the velocity due to the current excitation with the cur-
rent j and the coupling constant bj between the current
and the magnetization. In a magnetic field H, the AV
velocity is vH = γHl/2π with the characteristic lateral
extension16 l of the AV and the gyromagnetic ratio γ.
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The amplitude of the AV-core gyration

r = r0 ·
√
v2
H

v2
j

+ 2p
vH
vj

cos(
cπ

2
) + 1, (2)

is given in units of the gyration amplitude r0 for cur-
rent excitation alone. The maximum change occurs for
opposite polarizations p at c = 0 or c = 2. Thus the
current is best applied as shown in Fig. 1 (a). According
to Eq. 2 we conclude that the cp-dependent field excita-
tion causes a splitting r0

|vH±vj |
vj

of the gyration ampli-
tude for different polarizations or different directions of
excitation. If the current excitation drives the AV close
to the critical amplitude rcrit when core switching sets
in, the additional velocity due to the Oersted field can
facilitate or impede switching of the AV core. Oersted
fields originating from alternating currents in permalloy
elements were reported to contribute about 30% to the
total force.4 In this case the gyration amplitude of AVs
where current and field support gyration is 2.5 times the
gyration amplitude where the field acts against current
excitation. Thus AV-core switching can serve as a ro-
bust writing mechanism for a data storage element. This
holds true as long as the current density ensures that
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|vH−vj |
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< rcrit < r0
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.
A binary state ζ ∈ {0, 1} can now be defined by the

magnetic configuration of an AV. If the sum of current
and field excitation is sufficient to change the state once,
then the suppressed gyration inhibits that the AV-core
switches back. Note that for writing a bit the appropriate
current direction has to be chosen, while the reading of
the state can be realized always from the same direction.
As illustrated in figure 3 (b) for writing the state ζ = 0
(ζ = 1) the current is applied in the direction as indicated
by j0 (j1). For the read process the current is applied
in the direction indicated by jr, so that low gyration
amplitudes represent a logical ’zero’ and high gyration

amplitudes represent a logical ’one’.

The read-out of the state has to be done with a lower
current density so that the gyration amplitude stays be-
low the critical radius r0
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< rcrit to avoid switching.
The measurement of the gyration amplitudes could be
realized by an inductive loop, which is positioned asym-
metrically above the∞-shaped sample to measure a non-
vanishing change of the magnetic flux Φ. Different gy-
ration amplitudes lead to varying amplitudes in the al-
ternating magnetic flux. The amplitude of the induced
voltage Vind = − d

dtΦ can then be detected to read the
state ζ as illustrated in Fig. 3 (c). The time derivative
of the magnetic flux Φ = µ0

∫
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HzdS is calculated by
the finite difference method. At an enhanced amplitude
of antivortex gyration (ζ = 1) the deviation of the induc-
tive voltage from the sinusoidal line may be caused by
transient spin waves, which decrease with time. Also an-
harmonic contributions to the confining potential might
play a role at enhanced amplitudes. Very recently Kasai
et al. demonstrated an alternative detection technique
based on a magnetic tunnel junction.24

In conclusion micromagnetic simulations and an ana-
lytical model show how magnetic antivortex-core switch-
ing can be utilized in non-volatile storage elements. By a
combination of spin-polarized currents and their accom-
panying Oersted fields, the switching is either favored or
suppressed, depending on the state of the element. The
time dependence of the magnetic flux of the gyrating an-
tivortex can be employed to read out the binary data.
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6 Conclusion and Outlook

The dynamics of magnetic vortices and antivortices has been investigated by micromag-
netic simulations and by an oscillator model. The investigations cover the whole range
of vortex dynamics in soft magnetic permalloy from the linear up to the highly nonlinear
regime of vortex creation and annihilation. In the following the most important results
are summarized.

Excited vortices and antivortices perform a damped gyration. The gyration is caused
by an interaction between the magnetization vectors in the vortex core and the demag-
netization field of the nonequilibrium magnetization pattern. A gyroscopic force and
a dissipative force can be derived from the gyroterm and the dissipation term of the
Landau-Lifshitz-Gilbert equation. These forces act on the vortex core, which can be
treated as a quasiparticle. The restoring force of vortex gyration results from the de-
magnetization fields of the nonequilibrium magnetization pattern. The demagnetization
energy is expanded up to the second order in a Taylor series to describe the harmonic
vortex gyration for small core displacements by a driven harmonic oscillator [P1], [P2],
[P3], [P4]. The trajectories from the model are in good agreement with the trajectories
from micromagnetic simulations. The resonance frequency and the damping of vortices
depend on the thickness and the length of the samples. The sense of gyration is given by
the product of winding number and polarization [P2], [P3]. For alternating excitations
in the steady state the trajectories have an elliptical shape with an amplitude and a ratio
of the semiaxes that depend on the exciting frequency. The amplitude has its maximum
at the resonance frequency. For a rotating excitation the trajectories become circular.
For a pulsed excitation the core is displaced by the pulse and afterwards it performs a
damped gyration. For constant excitations the core gyrates around a new equilibrium
position. The characteristic c-value for an antivortex is introduced in analogy to the
chirality of a vortex to study magnetic-field excitations in detail [P3]. For excitations
with spin-polarized currents the phase of core gyration depends on the polarization and
only for magnetic field excitation additionally on the chirality in case of vortex gyration
or on the c-value in case of antivortex gyration [P1, P3, P4]. Thus a superposition of
magnetic-field and current excitations leads to a variation of the amplitude of gyration in
dependence on the chirality or c-value [P3].

For large core displacements the demagnetization energy becomes quartic. A non-
linear oscillator model is derived by evaluating the demagnetization energy up to the
fourth order. Higher orders are not necessary to consider as confirmed by micromagnetic
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simulations. The larger the amplitude the stronger the shape of the trajectories approaches
the shape of the sample geometry. The resonance frequency exhibits a blue-shift the am-
plitude shows a gap slightly above the resonance frequency.
In the highly nonlinear regime a so-called dip particle is formed next to the vortex core
with an out-of-plane magnetization that points opposite to that of the core. At a critical
velocity the dip particle splits into a vortex and an antivortex. The splitting process is
the limit of nonlinear vortex gyration. In case of vortex core switching the antivortex
annihilates with the original vortex and the new vortex core of opposite polarization
compared to the one of the original core remains. At antivortex core switching the
states possess opposite winding numbers compared to vortex-core switching. During
the switching a Bloch point, a magnetic singularity, is formed. This singularity can be
described quantitatively only by quantum mechanics, because of the strong variations of
adjacent elementary spins in the Bloch point. Generally Bloch-point dynamics can be
considered topologically.

Vortices and antivortices could be used in non-volatile storage devices. The product
of polarization and winding number for rotating excitations or the polarization and the
chirality or c-value for simultaneous magnetic-field and current excitations represent
logical states. The logical state can be read out by the amplitude of gyration [P5], [P6].

During the studies open questions arose. It has already be shown that vortices in
adjacent samples couple via their stray fields. If only one vortex is excited by a current
a second vortex in an adjacent sample gyrates only due to the temporally varying stray
field of the excited vortex. The coupling results in amplitudes of gyration that depend on
the polarizations and chiralities of the vortices. A detailed investigation of the coupling
phenomena has to be done. This is an important step for the description of strongly
correlated vortices in double Landau patterns or of vortices and antivortices in cross-tie
walls. Also the coupling of vortices in multilayers could be investigated.
Another topic for further studies is the origin of nonlinear vortex dynamics. The influence
of the halo formation and the influence of the domain walls on the vortex trajectories
have to be investigated. A complete description of the switching process is still an open
problem. The analytical description of vortex-antivortex pair decoupling from the dip
particle, the gyration of the vortex core and the antivortex core around their center point,
and an analytical Heisenberg description of the Bloch point dynamics have to be done.
Electrical circuits and devices that are necessary to realize VRAMs and AVRAMs
comprising switches could be simulated. These simulations would yield the required
dimensions and numbers of devices in one storage cell.
The dynamics of vortices in ferromagnets with non-vanishing anisotropy energies could
be considered, which are important for technical applications. The anisotropy leads to a
different dependence between the sample’s geometry and the formation and dimensions
of vortices compared to permalloy.
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