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Abstract

We define and investigate Galois and Hopf-Galois extensions of associative S-
algebras, generalizing both the algebraic notions and the notions introduced by
John Rognes for commutative S–algebras in [75]. We provide many examples
such as matrix extensions, Thom spectra and extensions of Morava-K-theory
spectra induced from Lubin-Tate extensions.
We show three applications. First, we show the existence of associative S-
algebras which have as homotopy groups a finite possibly associative Galois
extension of the homotopy groups of a commutative S-algebra. Second, we
show that B defines an element in the Picard group Pic(A[G]) whenever A→ B
is a Galois extension of associative S-algebras with finite abelian Galois group
G. A third application concerns the calculation of the topological Hochschild
homology of a Hopf-Galois extension of commutative S-algebras which we relate
to the topological Hochschild homology of the Hopf-algebra involved.
The appendix contains a Galois correspondence for extensions of associative
rings, generalizing at least two main theorems from literature.
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Introduction and Outline

The fundamental development that makes this work possible stems from the
mid-1990s. In technical terms, this is the construction of symmetric monoidal
model categories of spectra as e.g. in [36]. Here, spectra are to be understood in
the topologists’ sense, i.e. as objects representing generalized cohomology the-
ories like real or complex K-theory, cobordism, ordinary homology and stable
homotopy. Generally speaking, the construction of symmetric monoidal model
categories of spectra gives topologists a means to mimic algebraic theories in
stable homotopy theory. It leads to what is sometimes called “brave new alge-
bra”.

This thesis is about mimicking the algebraic theories of Galois and Hopf-Galois
extensions in the world of spectra. Our framework is broad enough to include
strictly associative, not necessarily commutative ring spectra. More precisely,
we develop and investigate the notions of Galois and Hopf-Galois extensions for
associative S-algebras in the sense of [36].

We are not the first and only ones to consider Galois and Hopf-Galois exten-
sions of spectra. Galois extensions of strictly commutative ring spectra have
been defined and thoroughly investigated by John Rognes [75]. For an exam-
ple, we consider the map KO → KU from the real to the complex cobordism
spectrum given by complexification. Complex conjugation defines an action of
the cyclic group Z/2 on KU . The homotopy fixed point spectrum KUhZ/2 is
equivalent to the spectrum KO. In addition, some unramification condition is
satisfied making the map KO → KU a Z/2-Galois extension of commutative
S-algebras, see [75, Prop. 5.3.1.].
Hopf-Galois extensions are a natural generalization of Galois extensions. Ex-
amples arise by replacing the action of a Galois group by the coaction of a Hopf
algebra. The investigation of Hopf-Galois extensions of commutative S-algebras
has also been started in [75] with an investigation of the complex cobordism
spectrum MU as a Hopf-Galois extension of the sphere spectrum. To dis-
tinguish our work from that of John Rognes, note that this thesis deals with
extensions of associative ring spectra dropping the commutativity assumption
from [75].

A theory of Galois or Hopf-Galois extensions for associative ring spectra is de-
sirable. One reason is that some of the fundamentally important objects of
stable homotopy theory, the Morava-K-theory spectra K(n), are not strictly
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vi INTRODUCTION AND OUTLINE

commutative. Extensions involving these spectra, which play the role of fields
in stable homotopy theory, can not be dealt with in a strictly commutative
context. The associative context of this thesis however includes such examples.
Another situation showing that associative objects in the new framework might
be more important than in algebra is that in stable homotopy theory quotients
of strictly commutative ring spectra need not be strictly commutative. There
has been some interest in associative ring spectra often related with quotient
constructions, see e.g. [4, 5, 39, 61, 81]. One result of this thesis is that many of
these quotient constructions are Hopf-Galois extensions in a weak sense. This
applies the quotient maps Ê(n) → K(n) from a completed Johnson-Wilson
spectrum Ê(n) to the corresponding Morava-K-theory spectrum. Again, these
and other examples can only be dealt with in the framework of an associative
theory.

Developing Galois and Hopf-Galois theory with spectra includes

• defining the corresponding notions in a meaningful way,

• establishing some structural statements,

• providing examples and

• giving applications to show that the developed notions are useful.

We intend the outline below to summarize how we achieve these goals. For the
moment, let us only comment on two properties which a meaningful definition
should comprehend.
First, algebra is embedded in brave new algebra by passage to Eilenberg-
MacLane spectra. The brave new notions should hence be compatible with
the corresponding algebraic notions in the sense that Galois extensions of or-
dinary rings correspond to Galois extensions of Eilenberg-MacLane spectra. In
other words, we want to develop a generalization of the algebraic theory.
Second, the category of S-algebras is a model category, and the notion of Galois
and Hopf-Galois extensions for associative S-algebras should have homotopical
meaning, i.e. the notions should be invariant under passage to weakly equiv-
alent data. In consequence, isomorphisms in the algebraic theory have to be
replaced by weak equivalences in the brave new theory, fixed points have to be
replaced by homotopy fixed points etc. More generally, the brave new theory
gets a model category theoretic flavour. In consequence it is sometimes pretty
different from its algebraic counterpart.1 Kathryn Hess started to investigate
Hopf-Galois extensions in general model categories [44]. Our results fit into this
framework.

Some hope in future research and achievements is connected with the study of
(Hopf-)Galois extensions of structured ring spectra. Possible applications men-
tioned in [75] concern Galois descent and the understanding of the algebraic

1“Brave new world” is of course most visible, horrifying and appealing, when it comes to
techniques and technologies.
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K-theory of the sphere spectrum. Another possible application concerns the
chromatic filtration on S-modules. John Rognes relates it to a chromatic filtra-
tion on MU -modules, which may be easier to understand. These filtrations are
linked by maps with geometric content. More precisely, the linking maps are
(pro-)Galois extensions or Henselian maps. We will contribute to this picture
by showing that also weak Hopf-Galois extensions occur in this context, see the
introduction to chapter 7.
Another direction concerns topological Hochschild homology spectra. We in-
vestigate the topological Hochschild homology of commutative Hopf-Galois ex-
tensions in chapter 10. We expect that the structure of a Hopf-Galois extension
can help to understand topological Hochschild homology also in associative con-
texts. This would allow to investigate spectra like THHE(K) where E = Ê(n)
or En and K = K(n) or Kn. Compare with [4, 5] for calculations and open
questions in this area.

Outline

In the following, we give an overview of the contents of this thesis. Furthermore,
each chapter starts with a slightly more detailed introduction or summary. The
thesis consists of three parts.

The aim of Part I is to define and to investigate the notion of Galois extensions
for associative S-algebras. We start by briefly reviewing the algebraic notion of
Galois extensions for associative rings in chapter 1. The theory to be developed
should apply to maps of associative S-algebras A→ B. In this generality, B is
not necessarily an associative A-algebra since in general no centrality condition
holds. In other words, B is a unital not necessarily central A-algebra or an
A-unca as we say for short. Unfortunately, this situation has not been investi-
gated thoroughly enough for our purposes by other authors, and we take care
to lay foundations in chapters 2 and 3. For instance, we investigate the model
structure of the category of S-algebras under A and show that the smash prod-
ucts of cofibrant uncas and more generally all spectra belonging to the class of
extended cell bimodules represent the derived smash product. This statement
has a well known analog when A is a commutative S-algebra. Our statement
is the key observation in order to prove that our definition of Galois extension
is homotopically meaningful as explained above.
The main chapter of Part I is chapter 4. Here, we define and develop the Galois
theory for associative S-algebras along the lines of [75] where the theory for com-
mutative S-algebras has been established. We provide a number of examples
such as trivial extensions, matrix extensions and extensions of Morava-K-theory
spectra induced from Lubin-Tate extensions. We prove an Eilenberg-MacLane
embedding theorem for Galois extensions of associative rings with surjective
trace. This theorem applies in particular whenever the ground ring is commu-
tative. The topological theory hence generalizes the algebraic notion of Galois
extensions at least when the ground ring is commutative.
We generalize the concept of dualizability to A-bimodules where A is an asso-
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ciative S-algebra and show that if A → B is a Galois extension of associative
S-algebras, then B is dualizable over A and Aop. We characterize Galois ex-
tensions using dualizability and investigate conditions under which Galois ex-
tensions A → B are preserved and detected when inducing up along a map of
S-algebras A→ C so that we obtain the map C → C∧AB. We end the chapter
by investigating the closure property of the spectrum Knr

n = Enrn ∧EnKn, which
occurs as a pro-Galois extension of Kn induced from the pro-Galois extension
En → Enrn .

Part II deals with Hopf-Galois extensions of associative S-algebras. We define
and investigate Hopf-Galois extensions of associative S-algebras in chapter 5,
generalizing the notion of Galois extension from Part I, the corresponding al-
gebraic notion and the corresponding notion for commutative S-algebras intro-
duced in [75]. We investigate under what conditions Hopf-Galois extensions
A→ B are preserved or detected when inducing up along a map of S-algebras
A → C as we did for Galois extensions. We obtain necessary and sufficient
conditions, thereby answering a question posed by John Rognes in the context
of Galois extensions. Many of our results hold for a slightly more general notion
of extension which we call coalgebra extension. We present basic examples for
Hopf-Galois extensions.
In chapter 6, we investigate under which conditions Thom spectra give rise to
Hopf-Galois extensions of associative S-algebras. The prototypical example of
a Hopf-Galois extension of commutative S-algebras is the Thom spectrum MU ,
the complex cobordism spectrum [75]. More generally, let Mf be a Thom spec-
trum associated with a loop map f : X → BGL1S = BF . The main result of
chapter 6 is that S →Mf is a Hopf-Galois extension of associative S-algebras
if and only if Mf is orientable along H Z or equivalently if and only if f lifts
to BSF . This can also be formulated as a completion condition. It follows
from this that most of the classical Thom spectra like MU,MSU and MSO
are Hopf-Galois extensions of the sphere spectrum. Though, note that by vio-
lation of the orientablility condition, S → MO is not a Hopf-Galois extension.
Another example is the Thom spectrum Mξ from [8] which is associated with
a map j : ΩΣCP∞ → BGL1S. The unit S →Mξ is a Hopf-Galois extension of
associative S-algebras and Mξ cannot be a commutative S-algebra because it
is not even homotopy commutative.
As a second class of examples at least in a weak sense, we investigate reg-
ular quotients in chapter 7. Our main result is that regular quotient maps
are weak Hopf-Galois extensions if and only if some completion condition is
satisfied. This condition can be formulated in algebraic terms. Examples of
weak Hopf-Galois extensions arising in this way include the maps MU → H Z,
Ê(n)→ K(n), En → Kn and MU(p) → BP → H Z(p). Moreover, if completion
conditions are satisfied, regular quotient constructions give rise to systems of
weak Hopf-Galois extensions. For example, there is a system of weak Hopf-
Galois extensions

Ê(n) −→ Ê(n)/p −→ Ê(n)/(p, v0) −→ · · ·

· · · −→ Ê(n)/(p, v0, . . . , vn−1) = K(n)
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in which all maps and compositions are weak Hopf-Galois extensions.

Part III consists of three chapters, each including an application. Chapter 8
deals with a realization problem. Let A∗ → B∗ be a finite Galois extension of
graded associative rings, and assume that the ring A∗ is given by the homotopy
groups of a commutative S-algebra A. In this situation we show that there is an
associative A-algebra B such that A→ B is a Galois extension that realizes the
algebraic extension when passing to homotopy groups. In particular, the ring
B∗ can be realized as an associative S-algebra. We use this to show the existence
of associative S-algebras which are cyclic and generalized quaternion extensions
of suitable commutative S-algebras. This can be seen as an associative analog
of the problem of adjoining roots of unity to strictly commutative ring spectra,
compare with [77].
In chapter 9 we prove another structural statement on Galois extensions of
associative S-algebras. The main result is that if A → B is a faithful Galois
extension with finite abelian Galois group G, then the A[G]-bimodule B defines
an element in the Picard group Pic(A[G]). This generalizes results from [10, 75]
to the associative context. More generally, we investigate the case of finite but
not necessarily abelian Galois groups G. We show that B is an invertible
(A[G], FA[G](B,B)op)-bimodule regardless whether G is abelian or not. If G is
abelian, we also show that there is an equivalence FA(B,B)G ' FA(B,B)hG.
In other words, the Sullivan conjecture holds for endomorphism ring spectra of
faithful Galois extensions with finite abelian Galois group.
In chapter 10, we relate the topological Hochschild homology of a Hopf-Galois
extension of commutative S-algebras to the topological Hochschild homology
of the Hopf algebra. We recover the splitting THHS(Mf) ' Mf ∧ BX+ from
[13, 12] in case Mf is a Thom spectrum associated with an infinite loop map
f : X → BGL1S. We show that the splitting more generally holds for Hopf
Galois extensions of commutative S-algebras A → B with respect to a Hopf-
algebra H with homotopy antipode. The splitting then takes the form

THHA(B;M) 'M ∧A BA(A,H,A)

where BA(A,H,A) denotes the bar construction. Motivated by the algebraic
results of [80], we construct a spectral sequence

E2
p,q = Torπ∗(K∧RK)

∗ (K∗, π∗ THHR(A;M)) =⇒ π∗ THHR(B;M)

where A→ B is a Hopf-Galois extension under some commutative S-algebra R
with respect to a Hopf algebra H = A ∧R K.

The appendix contains a Galois correspondence for extensions of associative
rings. Unlike the main parts of the thesis, the appendix is purely algebraic.
The topologically interested reader may have a look at it to get an idea why a
Galois correspondence in the associative context is much more difficult to obtain
than in the commutative context. Optimistically speaking, the appendix might
serve as a blueprint to obtain a Galois correspondence for associative extensions
also in topology.
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Chapter 1

Galois extensions of ordinary
rings

The theory of Galois extensions of fields has a generalization to associative rings
which we will briefly review. This is the natural starting point for the project of
developing an analogous theory for associative S-algebras. The theory for fields
was generalized to extensions of commutative rings by Auslander, Goldman,
Chase, Harrison and Rosenberg [6, 24]. Several authors then studied Galois
extensions of general rings, see e.g. [55, 56, 29, 51, 52, 53, 37, 34] and others.
We review the definition and then present some basic structural statements and
examples.

1.1 Galois extensions of associative rings

As a standing assumption, we assume that all rings have a unit and morphisms
of rings preserve it. Rings may be graded but we will use this generality only in
some examples. Unless explicitly said, rings are not assumed to be commutative.

Definition 1.1 (Galois extensions of rings). Let η : R→ T be an extension of
rings and let G be a finite subgroup of the group of automorphisms of rings of
T . We call R→ T a G-Galois extension if

1. The map η induces an isomorphism R ∼= TG where TG is the fixed ring
of T under the action of the group G, and

2. the canonical map h : T ⊗R T −→ Map(G,T ) sending t1⊗R t2 to the map
that sends g to t1 · g(t2) is surjective.

A proof that this generalizes the well-known notion of Galois extensions of
fields can for example be found in [42]. For conditions equivalent to the con-
ditions 1. and 2. above see [24, 37]. The ring of maps Map(G,T ) is isomor-
phic to HomZ(Z[G], T ) as rings. Also there is an isomorphism of T -modules
Map(G,T ) ∼= T [G] as G is supposed to be finite. Note that unless R and T
are commutative, the morphism h need not be multiplicative. There is a left
G-action on T ⊗R T defined by the action of G on the second T -factor and
a left G-action on Map(G,T ) defined by the right action of G on itself. The

3



4 CHAPTER 1. GALOIS EXTENSIONS OF ORDINARY RINGS

morphism h is always G-equivariant with respect to these actions and it is a
morphism of left T -modules. Hence to check the surjectivity of h, it suffices to
find a finite number of elements xi, yi ∈ T such that

∑
i xiσ(yi) = δe,σ where

σ ∈ G and δe,σ is 0 or 1, the latter if and only if σ = e is the neutral element of
G. We call such a collection of pairs (xi, yi) a Galois system for the extension
R→ T .
We now collect some facts about Galois extensions of associative rings that we
will use later. First recall the following definition:

Definition 1.2 (Separable algebras). Let A → B be a ring homomorphism.
Then B is called A-separable if there are elements xi, yi ∈ B such that

•
∑

i xiyi = 1 and

•
∑

i xxi ⊗A yi =
∑

i xi ⊗A yix ∈ B ⊗A B ∀x ∈ B.

This is equivalent to saying that B is a projective B ⊗A Bop-module [23, IX,
7.7].

Lemma 1.3. Let η : R → T be a Galois extension of rings with finite Galois
group G. Then

(a) The canonical map h : T ⊗R T −→ Map(G,T ) is an isomorphism.

(b) T is separable over R.

(c) T is finitely generated and projective as a left R-module.

(d) T is finitely generated and projective as a right R-module.

(e) If R is commutative then T is faithfully flat as an R-module.

(f) If R is commutative then the trace map tr : T → R sending t to
∑

σ∈G σ(t)
is surjective.

(g) If the trace is surjective, then T is finitely generated and projective as a left
R[G]-module.

Proof: That h is an isomorphism can be proved as in [24], see also [37]. The
statement on separability can be found in [47], also see the statement in [37].
We continue to prove (c) and (d). From the isomorphism h we obtain elements
xi, yi ∈ T (1 ≤ i ≤ |G|) such that

∑
i xi ·σ(yi) = δσ,e. We apply σ−1 and observe

that these elements satisfy
∑

i σ(xi) · yi = δσ,e as well. We use this equality in
order to prove (c). Statement (d) can be shown using the former equality in an
analogous way. We define left R-module maps ψi : T → R by ψi(t) := tr(t · xi).
Hence for every t ∈ T , one can write

t =
∑
σ∈G

σ(t)
∑
i

σ(xi)yi

=
∑
i

∑
σ∈G

σ(t · xi)yi (1.1)

=
∑
i

ψi(t)yi.
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This reveals T as a left R-module direct summand of R|G|, since by (1.1) the
composition

T

L
ψi // R|G|

<−,~y> // T

is the identity.
We continue to prove (e). This is stated in [42, 0.1.9.] for Galois extensions
of commutative rings and follows from [58, 1.10] (see also our proposition 5.2)
when T is associative as every Galois extension can be looked at as a Hopf-
Galois extension, see chapter 5.
For the proof of (f) note that I := tr(T ) is an ideal in R. As

∑
i ψi(1)yi = 1

with the elements and notation from above, we know that I ⊗R T ∼= T . It then
follows that tr(T ) = I = R as T is faithfully flat as left R-module by (c).
We will now show the last point. It follows from (c) that T [G] is projective as a
left R[G]-module. As in [24, p.28] we have an isomorphism of left T [G]-modules
T ⊗R T ∼= T [G] ∼= T ⊗R R[G] where T acts on the first and G on the second
factor. Then choose c ∈ T such that tr(c) = 1 and consider the composite

R⊗R T
η⊗RT // T ⊗R T

tr(−·c)⊗Rid // R⊗R T

which is the identity. It shows that T is an R[G]-direct summand of T ⊗R T
and hence is projective as a left R[G]-module as so is T ⊗R T . 2

1.2 Some examples

There are many examples of Galois extensions of rings. References explicitly
including examples of Galois extensions of rings that are not commutative are
not so easy to find, though. Some examples of Galois extensions of associative
rings can e.g. be found in [37, 50, 83]. We give some general constructions of
Galois extensions of associative rings in this section. Some of these constructions
have analogues in the world of commutative rings (see references) but we did
not find references that explicitly include the associative case.

Example 1.4 (Trivial extensions). See [42] for trivial Galois extensions of
commutative rings. Let R be any ring and G a finite group. Define T :=
Map(G;R) with the left G-action defined by the right G-action on G. Viewing
R as the ring of constant maps from G to R exhibits R as a subring of T and
the G-action on T is such that R ∼= TG. Moreover, the canonical morphism h
is the obvious isomorphism T ⊗R T ∼= T ⊗R HomZ(Z[G];R) ∼= Map(G,T ). The
morphism

R −→ Map(G;R)

is hence a G-Galois extension. Extensions of this form are called trivial Galois
extensions.

Example 1.5 (Matrix extensions). For any ring R let Mn(R) be the ring of
n × n-matrices over R. Assume T is a ring with an action of a group G by
homomorphisms of rings. Let R denote the fixed ring TG. First note that the
action of G on T gives an action of G onMn(T ) defined componentwise. This
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is an action by homomorphisms of rings as so is the action on T . It is clear
that with this actionMn(T )G ∼=Mn(TG) ∼=Mn(R). Moreover it is true that

Mn(R)→Mn(T )

is G-Galois if and only if so is R→ T . To see this, it remains to show that the
canonical morphism

hn : Mn(T )⊗Mn(R)Mn(T ) −→Mn(T )[G]

is an isomorphism if and only if so is h : T ⊗R T → T [G]. Let Ei,j be the
elementary n × n-matrix with 1 in position (i, j) and 0 everywhere else (1 ≤
i, j ≤ n). Note that the source of hn is generated as a T -bimodule by the
elements Ei,1 ⊗Mn(R) E1,j . This follows as

Ei,r ⊗Mn(R) Es,j =
{
Ei,1 ⊗Mn(R) E1,j if r = s

0 if r 6= s.

Multiplication of matrices sends Ei,1 ⊗Mn(R) E1,j to Ei,j . Also note that
Mn(T )[G] ∼=Mn(T [G]). It follows that hn decomposes in n2 copies of the mor-
phism h, each copy defined on one of the direct summands T ·Ei,1⊗Mn(R)E1,j ·T
with image Ei,j · T [G]. Hence hn is surjective if and only if so is h.

Example 1.6 (Adjoining roots of unity). See [42] for adjoining roots of unity
to commutative rings. Let ζn be an n-th primitive root of unity. Then Z[ 1

n ]→
Z[ 1

n , ζn] is a (Z/n)×-Galois extension. Let R be any ring, such that R⊗Z[ 1
n , ζn]

is non-zero. Then R ⊗ Z[ 1
n ] → R ⊗ Z[ 1

n , ζn] is also (Z/n)×-Galois. If elements
(xi, yi) form a Galois system for the extension Z[ 1

n ]→ Z[ 1
n , ζn] then the elements

(1⊗xi, 1⊗ yi) form a Galois system for the extension R⊗Z[ 1
n ]→ R⊗Z[ 1

n , ζn].
In particular there is a (Z/n)×-Galois extension

R −→ R[ζn]

whenever n is invertible in R.

Example 1.7 (Kummer extensions). See e.g. [42] for Kummer extensions of
commutative rings. Let R be a ring and u ∈ R× a central unit in R, i.e. a unit
that is also in the center of R. Define T := R[x]/(xn − u). We will write z for
the coset z + (xn − u) ∈ T and assume that R contains an n-th primitive root
of unity ζn and that n is invertible in R. We can then define an automorphism
of rings σ : T → T of order n by setting σ(x) := ζnx. This defines an action
of the cyclic group Cn = Z/n on T by homomorphisms of rings and TCn = R.
Using that n is invertible in R, one can see that

R→ R[x]/(xn − u)

is a Cn-Galois extension as 1
n·u
∑n−1

i=0 x
n−iτ(xi) = δ1,τ for all τ ∈ Cn (use∑n−1

i=0 ζ
ki
n = 0 ∀1 ≤ k ≤ n− 1). One can allow that R = A∗ is a graded ring. In

this case the construction of Kummer extensions as above works equally well
provided that the degree of the unit u is a multiple of 2n, see [10].



1.2. SOME EXAMPLES 7

Example 1.8 (Skew-polynomial rings of homomorphism type, cyclic algebras).
Let T be a ring and σ : T → T an automorphism of rings of order n. Let
G :=< σ > be the group generated by σ, denote the fixed ring TG by R and let
u be a central unit in R. Define the skew polynomial ring T [x;σ, u] to be the
ring generated as an R-algebra by T and x modulo the relations x · t = σ(t)x
and xn = u.
Now suppose that R → T is G-Galois. The G-action on T can be extended to
T [x;σ, u] by defining σ(f) := xfx−1 for f ∈ T [x;σ, u]. It is easy to check that
T [x, σ, u]G ∼= R[x]/(xn − u). Moreover if R→ T is G-Galois then

R[x]/(xn − u) −→ T [x;σ, u] (1.2)

is also a G-Galois extension: Any Galois system for the extension R → T is
also a Galois system for the extension R[x]/(xn − u)→ T [x, σ, u]. If R → T is
a Z/n-Galois extension of fields, then T [x;σ, u] is called a cyclic algebra after
Dickson, see [32, 66].
In particular this captures all finite dimensional central division algebras over
the p-adic fields Qp and over algebraic number fields. It is a theorem of Hasse
[43] that all finite dimensional skew-fields over the center Qp are cyclic alge-
bras. This is also true for finite dimensional division algebras over an algebraic
number field by a theorem of Albert, Brauer, Hasse and Noether [2, 19].

Example 1.9 (Generalized quaternion algebras). A combination of the exam-
ples 1.7 and 1.8 produces generalized quaternion algebras as follows. We keep
the setting from example 1.8 and assume that R → R[x]/(xn − u) is also a
Galois extension. Denote the Galois group of this extension by H. Assume
furthermore that the action of H can be extended to T [x, σ, u] and that this
H-action commutes with the action of G so that there is an H × G-action on
T [x, σ, u]. E.g. R→ R[x]/(xn−u) might be a Kummer extension as in example
1.7. Then the composite map

R −→ R[x]/(xn − u)→ T [x;σ, u] (1.3)

is in fact a G×H-Galois extension: if (ai, bi) is a Galois system for the extension
R → T and (cj , dj) is a Galois system for the extension R → R[x]/(xn − u)
then (cjai, bidj) is a Galois system for the extension R → T [x;σ, u]. If T =
R[y]/(yn − v) is itself a Kummer extension then (1.3) takes the form

R −→ R[x, y;u, v]/(xn − u, yn − v, xy = ζnyx). (1.4)

If n = 2 then R[x, y;u, v]/(x2 − u, y2 − v, xy = −yx) is called a generalized
quaternion algebra [38].
As a concrete example we consider the Hamiltonian quaternions

H := R[i, j]/(i2 = −1, j2 = −1, ij = −ji).

We set k := ij. The extension R → C ∼= R[i]/(i2 = −1) is Z/2-Galois with
Galois group generated by complex conjugation. A Galois system is given by
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1
2(1 ⊗ 1 − i ⊗ i). The situation for j instead of i is similar. We obtain a
Z/2×Z/2-action on H generated by

cj : H→ H : r0 + r1i+ r2j + r3k 7→ r0 − r1i+ r2j − r3k

ci : H→ H : r0 + r1i+ r2j + r3k 7→ r0 + r1i− r2j − r3k

(conjugation with j resp. i where r0, r1, r2, r3 ∈ R). Obviously HZ/2×Z/2 = R
and 1

4 · (1⊗R 1− i⊗R i− j ⊗R j − k ⊗R k) is a Galois system for the extension
R→ H.

Example 1.10 (Skew-polynomial rings of derivation type, see [50, 55, 49]). Let
R be a ring and δ : R→ R a derivation. We define R[x; δ] to be the associative
ring with elements

∑n
i=0 x

iri and multiplication rx = xr + δ(r) for all r ∈ R.
We assume that there is some b ∈ R such that δp(r) − δ(r) = rb − br and
δ(b) = 0. Then f := xp − x − b is central in the skew-polynomial ring R[x; δ].
We also assume that T has characteristic p. Then there is a Cp = Z/p-action
on T := R[x; δ]/f defined by σ(x) := x + 1 where σ is a generator of Cp. It is
easy to see that TCp = R. The map

R→ R[x; δ]/f

is in fact a Cp-Galois extension, see [50, 55, 49]. A Galois system can be obtained
from the equations

p−1∏
j=1

x+ j

j
− σk

(
x

j

)
=
{

1 if k = 0
0 if 1 ≤ k ≤ p− 1.

1.2.1 Pro-Galois extensions

We briefly mention a slight generalization of the notion of Galois extensions
for pro-finite groups G = limiGi for a projective system of finite groups Gi.
We say that R → T is a pro-Galois extension for the group G if for each i
there is a Gi-Galois extension R → Ti, for every map Gk → Gi there is a
morphism of rings Ti → Tk which is compatible with the group actions and if
T = colimi Ti. For any pro-finite group G the trivial Galois extensions R →
Map(Gi, R) assemble to a profinite Galois extension R → Map(G,R) called a
trivial pro-Galois extension.
The following example of a trivial pro-Galois extension arises from topology.
We fix a prime p. Recall the Morava stabilizer group Sn. It is defined to be
the pro-finite group of automorphisms of the height n Honda formal group law
over the field Fpn . Let

Σ(n) := K(n)∗ ⊗BP∗ BP∗BP ⊗BP∗ K(n)∗ ∼= K(n)∗[t1, t2, . . . ]/(vnt
pn

i − v
pi

n ti)

be the n-th Morava stabilizer algebra. Here K(n) is the n-th Morava K-theory
spectrum defined at the prime p with homotopy groupsK(n)∗ = Fp[v±n ] and BP
is the Brown-Peterson spectrum with homotopy groups BP∗ = Z(p)[v1, v2, . . . ].
Let S(n)∗ be the topological linear dual of S(n) := Σ(n) ⊗K(n)∗ Fp [69, 70].
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By [69, 70] there is an isomorphism of pro-finite Hopf-algebras S(n)∗ ⊗ Fpn ∼=
Fpn [Sn] [70]. Analogously it follows that S(n) ⊗ Fpn ∼= Map(Sn, Fpn). Hence
the map

Fpn −→ S(n)⊗ Fpn

is the trivial pro-Galois extension of Fpn for the Morava stabilizer group Sn.

This thesis is about generalizations of Galois extensions of rings to extensions of
associative S-algebras, certain models for spectra as introduced by [36]. There
is also a notion of pro-Galois extension for these objects. For example we will
meet the Morava stabilizer group Sn again in section 4.6.1 where it occurs as
the pro-finite Galois group of a (non-trivial) pro-Galois extension of the Morava
K-theory spectrum K(n). The term “generalization” is made precise in the
Eilenberg-MacLane embedding theorem 4.5, see also section 5.3.1. There are
possible consequences for the algebraic theory, e.g. equivalent formulations for
the conditions 1. and 2. from definition 1.1 can be obtained from the topological
characterizations from section 4.7.





Chapter 2

Algebras under associative
algebras

Let R be a ring. An R-algebra T is a ring T together with a central morphism
of rings R → T [60]. As evident from chapter 1, we will need to consider
homomorphisms of rings R → T without this centrality condition. E.g., ev-
ery Galois extension of a non-commutative ring R is an instance of this. We
will need to consider the corresponding objects in a category of structured ring
spectra and call them unital not necessarily central algebras, or uncas for short.
We will start our investigation with an arbitrary symmetric monoidal category
(MS ,∧, S) with coequalizers and only later specify to the symmetric monoidal
category of S-modules as introduced in [36]. In this case, the category of uncas
inherits a model structure. Using results of this chapter, we will further inves-
tigate this model structure in chapter 3.

2.1 Unital not necessarily central algebras (uncas)

LetMS = (MS ,∧, S) be a symmetric monoidal category in which coequalizers
exist such as the category of S-modules introduced in [36]. An (associative)
S-algebra is a monoid in MS and a commutative S-algebra is a commutative
monoid in MS . The category of associative (commutative) S-algebras is de-
noted by AS (CS). For an S-algebra A a (left) A-module is an algebra over the
monad A ∧ (−) inMS . The category of A-modules is denoted byMA. If R is
a commutative S-algebra, MR = (MR,∧R, R) is again a symmetric monoidal
category, the product N ∧R M of two R-modules N and M being defined as
the coequalizer

N ∧R ∧M // // N ∧M // N ∧RM

where the parallel arrows are given using the R-module structures of N and
M respectively. If A is an associative S-algebra then so is Ae := A ∧ Aop and
(MAe ,∧A, A) is a (non-symmetric) monoidal category. This is of course the
category of A-bimodules. Recall that if A is a commutative S-algebra then an
A-algebra B is an S-algebra with a central map η : A → B of S-algebras [36,

11
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1.3.]. Here η is said to be central if the diagram

A ∧B
η∧B //

τ

��

B ∧B
µ // B

B ∧A
B∧η // B ∧B

µ // B

commutes where τ is the isomorphism switching A and B and µ is the multi-
plication. An A-algebra in particular is an S-algebra under A. The converse
however is not true in general. For this reason we introduce the following ter-
minology.

Definition 2.1 (A-unca, A-algebra). Let A be an associative S-algebra and B
an S-algebra under A, i.e. an object in the under-category A↓AS of S-algebras
under A. We call B a unital not necessarily central algebra under A or A-unca.
An A-algebra is an S-algebra B with a central map of S-algebras A→ B. We
denote the categories of A-uncas and A-algebras by A↓AS and AA respectively.

The following observation will be important to us.

Proposition 2.2. Let A be an associative S-algebra. The category of A-uncas
is equal to the category of monoids in the monoidal category (MAe ,∧A, A) of
A-bimodules.

Note that both categories are subcategories of the categoryMS and the state-
ment says that these two subcategories coincide. We defer the straightforward
but detailed and hence lengthy proof to section 2.2. We call an A-bimodule M
central if

A ∧M

ν` ##HH
HH

HH
HH

H
τ // M ∧A

νr{{vvv
vv

vv
vv

M

commutes where ν` and νr are the left and right action maps respectively. In
other words a central bimodule is one where the left module structure deter-
mines the right one and vice versa. An A-algebra B is a central bimodule.
So analogously to proposition 2.2 we have the following characterization of A-
algebras.

Corollary 2.3. Let A be an associative S-algebra. An A-algebra is a monoid
in MAe which is central as an A-bimodule.

Note that if A is an associative but not a commutative S-algebra, then A is an
A-unca but not an A-algebra. In particular the category of A-algebras is not
monoidal in this case. We will give some examples after providing proofs of
proposition 2.2 and corollary 2.3.

2.2 Characterizing A-uncas and A-algebras

The next two lemmata provide a proof of proposition 2.2. We first show that
the two categories to be compared have the same objects.
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Lemma 2.4. Let B be an A-unca. Then B is a monoid in the category of
A-bimodules MAe. Conversely, a monoid in MAe is an A-unca.

Proof: Given a map η : A→ B of S-algebras, we obtain a left A-module on B
structure via

A ∧B η∧B−−−→ B ∧B → B (2.1)

using that η : A → B is a map of S-algebras. Similarly we obtain a right
A-module structure and the structures define a bimodule-structure by associa-
tivity of the multiplication of B. We obtain a multiplication B ∧AB → B from
the multiplication B ∧B → B using associativity:

B ∧B ∧B

&&NNNNNNNNNNN

&&NNNNNNNNNNN

B ∧A ∧B

77nnnnnnnnnnnn //// B ∧B

��

// B ∧A B

yyr r r r r r

B

Here the middle row is the coequalizer defining B ∧A B. The product thus
obtained is of course associative again. One can deduce unitality from the
diagram

B
∼= // S ∧B //

��

B ∧B
µ //

��

B

B
∼= // A ∧A B

η∧AB // B ∧A B
µ // B

(2.2)

where the upper composite is the identity by assumption. This proves the first
part of the statement.
Conversely, if B is a monoid in MAe it comes with a map η : A → B and an
associative multiplication µ : B ∧A B → B. We claim that B is an S-algebra
with unit S → A

η−→ B where S → A is the unit of A. Define the multiplication
as the composite B∧B → B∧AB

µ−→ B which we denote again by µ. It is clear,
that this multiplication is associative. Left unitality follows again from diagram
(2.2). Note that now the bottom map of (2.2) is the identity as B is assumed
to be a monoid in MAe . The middle square commutes since η is a morphism
of A-bimodules. Right unitality can be proved in a similar way, showing that
B is an S-algebra. It remains to show that η is a map of S-algebras. In the
diagram

A

η

��

A ∧A A∼=
µoo η∧Aη //

A∧Aη

��

B ∧A B
µ // B

B A ∧A B
η∧AB //

∼=
oo B ∧A B

µ // B

the left square commutes since η is a morphism of bimodules. The right square
commutes as well and by unitality the lower composite map is the identity.
Hence the diagram
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A ∧A
η∧η //

��

B ∧B

��
A ∧A A

η∧Aη //

µ

��

B ∧A B
µ

��
A

η // B

commutes, i.e. η commutes with the multiplications. Clearly it is a map under
S and hence η is a map of S-algebras. 2

Note that from unitality it follows that the unit S → B is central even if A→ B
is not. For morphisms we have the following statement.

Lemma 2.5. Let B and B′ be A-uncas and let us be given a morphism α : B →
B′ of S-modules. The following are equivalent:

(a) The morphism α is a morphism of A-bimodules making the diagram

B ∧A B
α∧Aα//

µ

��

B′ ∧A B′

µ

��
B

α // B′

commute, i.e. α is a morphism of monoids in the category of A-bimodules.

(b) The morphism α is a morphism of S-algebras under A.

(c) The morphism α is a morphism of S-algebras and one of A-bimodules.

Proof of lemma 2.5: It is easy to show that (a) implies (b): We obain a
commuting diagram of S-algebras

B ∧B
α∧Aα //

��

B′ ∧B′

��
B ∧A B

α∧Aα//

µ

��

B′ ∧A B′

µ

��
B

α // B′

and note that the units S → B and S → B′ factor through S → A. In order to
prove (c) using (b) consider the following diagram.

A ∧B id∧α //

��

A ∧B′

��
B ∧B α∧α //

��

B′ ∧B′

��
B

α // B′



2.2. CHARACTERIZING A-UNCAS AND A-ALGEBRAS 15

It shows that α is a morphism of left A-modules. One can show analogously
that it is also a map of right A-modules and bimodules. We finally show that
(c) implies (a): Since α is a map of (A,A)-bimodules, we get a dotted arrow
between coequalizers in the following diagram:

B ∧A ∧B ////

vvmmmmmmmmmm B ∧B //

α∧α
yyrrrrrrrr

µ
��

B ∧A B

��

xxp p p p

B′ ∧A ∧B′ //// B′ ∧B′ //

µ

��

B′ ∧A B′

��

B
α

xxqqqqqqqqqq B

wwooooooooooo

B′ B′

The square on the left side of the cube commutes since α is assumed to be a
map of S-algebras. The right vertical maps exist by the universal property of
coequalizers. We have to show that the right side of the cube commutes, i.e.
that the two maps B ∧A B → B′ are the same. But since the left side of the
cube commutes, both are induced by the same map B ∧ B → B′. Hence, by
the universal property of coequalizers, the right side of the cube commutes as
well. 2

Proof of proposition 2.2: Lemma 2.4 says that the two categories have the
same objects and lemma 2.5 says that the morphism sets coincide as well. 2

Proof of corollary 2.3: It is clear from the proof of lemma 2.4 that the mor-
phism of algebras A→ B is central if and only if B is central as an A-bimodule.
Corollary 2.3 then follows from proposition 2.2. 2

Here is a characterization of central A-bimodules.

Lemma 2.6. 1. A central A-bimodule M is a left A-module, such that

A ∧A ∧M τ∧M //

νl◦(A∧νl) %%LLLLLLLLLL A ∧A ∧M

νl◦(A∧νl)yyrrrrrrrrrr

M

commutes.

2. (Bimodule-)morphisms between central A-modules are just morphisms of
A-modules. Hence the category of central A-bimodules is a full subcategory
of the category MA of A-modules.

Proof:
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Ad 1: Given a central A-bimodule M , consider

A1 ∧A2 ∧M

((QQQQQQQQQQQQQ
τ // A1 ∧M ∧A2

��

// M ∧A2 ∧A1
//

��

A2 ∧A1 ∧M

||zz
zz

zz
zz

zz
zz

zz
zz

zz
zz

A1 ∧M //

((RRRRRRRRRRRRRRR M ∧A1

��
M

The triangles commutes since M is a central A-bimodule. Conversely, a left A-
module M is also a right Aop-module and if the given diagram commutes, it is
also a right A-module. These structures combine to give a bimodule structure.
The second point of the lemma is obvious. 2

Lemma 2.7. Let M and N be central A-bimodules. Then also M ∧A N is a
central A-bimodule. Furthermore there is an isomorphism of A-bimodules

M ∧A N ∼= N ∧AM.

Proof: M ∧A N is obviously an A-bimodule, compare [36, prop.III.3.4]. It
remains to check that M∧AN is central. This follows as there are isomorphisms
(A ∧ M) ∧A N ∼= (M ∧ A) ∧A N ∼= M ∧A (A ∧ N) ∼= M ∧A (N ∧ A) over
M ∧A N . To prove the isomorphism from the statement, note that there is
always an isomorphism M ∧A N ' N ∧Aop M obtained from comparing the
defining coequalizer diagrams, compare [36, lem. III.3.3]. Then it follows from
lemma 2.6.1 that there is an isomorphism N ∧Aop M ∼= N ∧AM . 2

2.3 Some examples

There are some very basic examples for uncas and A-algebras.

(a) Every associative S-algebra A is an A-unca. It is an A-algebra if and only
if it is a commutative S-algebra.

(b) If B is an A-unca and B′ is an A′-unca, then B ∧ B′ is an A- and an A′-
unca. It is also an A∧A′-unca. This follows from proposition 2.2 using the
isomorphism (B ∧ B′) ∧A∧A′ (B ∧ B′) ∼= (B ∧A B) ∧ (B′ ∧A′ B′) (see [36,
III.3.10.]) so that we can define the multiplications factorwise.

However, if B and B′ are A-uncas the smash product B ∧AB′ over A need not
be an A-unca as B′ ∧A B ∼= B ∧Aop B′ is different from B ∧A B′ in general. On
the other hand we have the following positive results:

Lemma 2.8. Let A be an associative S-algebra and let B and C be A-algebras.
Then C ∧A B is also an A-algebra, i.e. it admits an associative multiplication

(C ∧A B) ∧A (C ∧A B)→ C ∧A B

and the map A → C ∧A B is central. With the canonical maps C → C ∧A B
and B → C ∧A B the smash product is also a C- and a B-unca.
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Proof: We define the multiplication factorwise as (C ∧A B) ∧A (C ∧A B) ∼=
C ∧A C ∧A B ∧A B → C ∧A B. Here the isomorphism in the middle is the one
from lemma 2.7. It is clear that the maps from C and B into the smash product
are maps of S-algebras. 2

We will now specialize to structured ring and module spectra. More precisely
let (MS ,∧, S) now be the monoidal category of S-modules as introduced in [36].
In particular S denotes the sphere spectrum. The categories of S-modules and
S-algebras are tensored and cotensored over the category of unbased topological
spaces. Cotensors in the category of S-algebras are created in the category of S-
modules. For an unbased space X and an S-module K the cotensor is denoted
by F (X+,K). Here are some more examples of uncas.

(c) If R→ T is a map of associative rings, then the induced map of Eilenberg-
MacLane spectra HR→ HT gives HT the structure of an HR-unca. The
spectrum HT is an HR-algebra if and only if R→ T is central.

(d) Let K be an associative S-algebra and X → Y a map of spaces. Then
the function spectum F (X+,K) is an F (Y+,K)-unca but in general not an
F (Y+,K)-algebra.

(e) Let R be an even commutative S-algebra, i.e. a commutative S-algebra with
homotopy groups concentrated in even degrees. Let I be a regular sequence
in R∗. One can construct an associative S-algebra R/I that realizes the
homotopy groups of R∗/I, see chapter 7 for details of this construction. Let
I = J1 +J2 be a decomposition of I into regular sequences J1 and J2. Then
R/I = R/J1 ∧R R/J2 and the canonical maps R/Ji → R/I make R/I into
an R/Ji-unca.

2.4 Model structures

Proposition 2.9. Let A be an associative S-algebra and assume that the cat-
egory of associative S-algebras is a model category. Then so is the category of
A-uncas where a map is a weak-equivalence, fibration or cofibration if it is so
as a map in the model category AS of S-algebras. In particular this is the case
when specifying to the category of S-modules from [36].

Proof: This follows as the under-category A↓AS inherits the model structure
from AS with fibrations, cofibrations and weak equivalences as in the proposi-
tion, see [35, 3.10 p.15] 2

We will again specialize to the category of S-modules from [36] for the rest of
this chapter. In this case the category of associative S-algebras AS is a model
category. Hence by the last proposition so is the category of A-uncas A↓AS .
Recall that for a commutative S-algebra A also the category CA of commutative
A-algebras is a model category. Moreover the model structures on CA, AA
and A↓AS are such that weak equivalences and fibrations are created in the
category of spectra or likewise in the category of S-modules. This property is
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special to the categories introduced in [36] and is in general not satisfied, see
[79, Rem. 4.5.].

Lemma 2.10 (Full-subcategory lemma). Let A be an associative S-algebra in
the sense of [36]. Then the inclusion

AA ⊂ A↓AS (2.3)

is an inclusion of a full subcategory. If A is a commutative S-algebra then

CA ⊂ AA (2.4)

is an inclusion of a full subcategory.

Proof: Maps in CA and AA are maps of S-algebras under A, compare also [36,
1.3.]. 2

The following is a formal consequence.

Lemma 2.11. Let A be a commutative S-algebra. If α is a map in AA that is
a cofibration as a map in A↓AS, then α is a cofibration in AA.
If α is a map in CA that is a cofibration as a map in AA, then α is a cofibration
in CA.

Proof: For the first case, note that every acyclic fibration in AA is also an
acyclic fibration in A↓AS . Hence α has the left lifting property (LLP) with re-
spect to every acyclic fibration in AA producing a lift in A↓AS . By lemma 2.10
this lift is automatically in AA. The proof for the second statement is similar. 2



Chapter 3

Model structures for uncas

The definition and examination of Galois extensions in stable homotopy theory
was made possible by the construction of symmetric monoidal model categories
of spectra. For several decades, such categories had been thought impossible
to exist. When the goal was finally achieved in the mid-nineties, it was a real
breakthrough. One of our main references, [36], gives such a construction and
also investigates categories of module- and algebra-spectra. The categories of
S-algebras, S-modules, R-algebras and R-modules constructed in [36] share a
lot of good properties whence we decided to work with them as far as possible.
However, our needs go beyond this volume as we will now explain. In short, we
can say that [36] is written “under a commutative S-algebra”. Many results are
only stated for the category of R-algebras, where R is a commutative S-algebra.
The case of associative S-algebras under an associative S-algebra A, i.e. the
category of objects we called A-uncas before, is not dealt with. However, as the
previous chapter suggests and as will become evident in chapter 4, we need to
consider this more general situation. In this chapter we generalize most of the
statements of [36, chapter VII] to the category of S-algebras under A, where A
is a not necessarily commutative S-algebra.
The aim of this chapter is to show that the smash product of cofibrant algebras
is homotopically meaningful. This is made precise and proved at the end of this
chapter in theorem 3.16. In order to achieve this, we have to gain better con-
trol over the cofibrations in the various categories under consideration. For this
purpose, we establish the model structure on the category of A-uncas along the
lines of [36], even though we already obtained the model structure almost for
free in proposition 2.9. Philosophically the quintessence is that the categories
of uncas share most of the good properties of the various categories introduced
in [36]. This is not surprising, but we have to go through the necessary techni-
calities.

Again a comment on terminology seems appropriate: In this thesis, the term
“cofibration” will always be used in the model category theoretic sense as
is the usual usage in most publications. In [36] these maps were called “q-
cofibrations”. Moreover, “cofibration” in [36] denotes a map which has the
homotopy extension property (HEP), see definition 3.6. We will instead always

19
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keep the term HEP whenever we are talking about maps with the homotopy
extension property.

Let MS = (MS ,∧, S) be the categoriy of S-modules constructed in [36], so
in particular S from now on denotes the sphere spectrum. We will also work
with the categories of S-algebras AS and more generally with R-modules and
R-algebras without further comments.

For the whole chapter, let A be a cofibrant associative S-algebra.

3.1 Basic properties of the category A↓AS
As mentioned at the beginning of the chapter, we want to establish model
structures and hence have to check several properties of the category of S-
algebras under A in order to make the machinery of [36] work. We will do this
in this and the next section. We collect formal properties and the first is the
following.

The category A↓AS is enriched over unbased spaces. (3.1)

This is rather trivial as the category of S-algebras AS is topologically enriched
and the morphism sets in A↓AS are subsets of the morphism sets in AS . For
the other properties to be verified another description of A↓AS is useful.

3.1.1 An operadic description of uncas

A very helpful description of the category A↓AS is via monads. In fact all
the model structures in [36] are obtained as follows: One starts with a model
category C and wants to lift this structure to a category of algebras C[T] over
a monad T : C → C. Assumptions under which this is possible are given in [36]
and [79].

Recall from chapter 2 that an object in A↓AS is just a monoid in MAe

(proposition 2.2). In other words it is an algebra over the monad given by
the free algebra functor TA : MAe → MAe . On objects this functor is given
by TA(M) :=

∨
j≥0M

∧Aj . Another convenient notation for the category of
A-uncas hence is MAe [TA]. Remember that MAe itself has an analogous de-
scription asMAe =MS [FAe ] with the monad FAe :MS →MAe sending M to
A ∧M ∧ A. By [36, II.6.1] there is an equality MS [FAe ][TA] =MS [TA ◦ FAe ]
and this is our category of A-uncas as can be seen by the adjunction

A↓AS(TAM,B) ∼=MAe(M,B).

It is clear that a bimodule map M → B into an algebra B ∈ A↓AS defines a
map TAM → B of uncas. Vice versa, given a map of uncas TAM → B this
provides a bimodule map M → B by lemma 2.5. These mappings are inverse
to each other. Hence TA is left adjoint to the forgetful functor

TA : A↓AS //MAe : Uoo .
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We are therefore interested in the composite monad T := TA ◦ FAe on the
category MS of S-modules. Obviously

T(M) =
∨
j≥0

(A ∧M ∧A)∧Aj ∼= A ∧
∨
j≥0

(M ∧A)∧j ∼= FA ◦ TS ◦ FA(M).

In order to avoid confusion we point out that this is to be read as a composition
of functors not of monads. E.g. TS is not a monad in MS [FA]. This however
will not affect the following.
Recall that a coequalizer

A
e //
f

// B // C

is called reflexive, if there is a map h : B → A such that both e ◦ h and f ◦ h
are the identity maps.

Lemma 3.1. The monad T for which A↓AS = MS [T] preserves reflexive
coequalizers and is continuous, i.e. it also preserves all small limits as a functor
T :MS →MS.

Proof: This follows from T ∼= FA ◦ TS ◦ FA and the corresponding statements
for the operads TS and FA. Note that FA preserves reflexive coequalizers as
A → A → A (all identity maps) is a reflexive coequalizer and by [36, II.7.2]
which says that smashing with this coequalizer preserves coequalizers. One can
also mimic the proof of this statement directly, it is not necessary to work in a
symmetric monoidal category as assumed in the reference. 2

Proposition 2.10 in [36] then says that the forgetful functor A↓AS → AS
creates all indexed limits and that A↓AS has all indexed colimits. See [54] as
a basic reference on indexed limits and colimits. Also cotensors and tensors are
treated as a special case of these in [54, 3.7]. Our next observation hence is the
following:

The category A↓AS is topologically complete and cocomplete, i.e.
it has all indexed limits and colimits. In particular it is tensored
and cotensored.

(3.2)

As usual cotensors are created in MS and also we have a map B ∧ X+ →
B ⊗A↓AS X with properties analogous to those of [36, VII.2.11]. Proposition
VII.2.10 also shows that the forgetful functor A↓AS → MS is continuous.
Composition with the continuous forgetful functorMS → S gives:

The category A↓AS has a continuous forgetful functor to the cat-
egory of spectra S.

(3.3)

3.2 Realization of simplicial S-algebras under A

Having set up the basic formal properties of the category A↓AS we can now
deal with geometric realization which is an important construction for the proof
of the so called cofibration hypothesis.
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First, as there are various forgetful functors from A↓AS to less structured
categories, there are a priori many ways to carry out geometric realization of a
simplicial S-algebra under A.

Lemma 3.2. The geometric realization of C∗, a simplicial S-algebra under A,
may be carried out in any of the categories S, AS, MS, MA or MAe without
changing the result. In particular it can be calculated in the category of spectra
S, i.e.

|C∗|S ∼= |C∗|A↓AS .
Moreover for any simplicial space X∗ and B ∈ A↓AS there is a natural iso-
morphism

B ⊗A↓AS |X∗| ∼= |B ⊗A↓AS X∗|A↓AS
Hence we may just write |C∗| without causing any ambiguity.

Proof: The results are known for S-algebras [36, prop.VII.3.3 and 3.2]. Note
that by functoriality and the fact that the realization of the constant simplicial
S-algebra A is A, we know that realization of C∗ carried out in AS provides in
fact an S-algebra under A. So realization is structure preserving when done in
any of the less structured categories mentioned in the lemma as this is the case
for simplicial S-algebras and modules. Together with the results from the last
section this is all we have to know in order to copy the proofs of [36, prop.VII.3.3
and 3.2]. 2

Next we want to study the tensors B ⊗A↓AS I where I is the unit interval.
Therefore we introduce the following variant of the bar construction in the
category A↓AS .

Definition 3.3. Let B,B′ and B′′ be S-algebras under A and also let us be
given maps of S-algebras f : B → B′ and g : B → B′′. Together with the
identities on B′, B′′ and B these maps induce maps B′tB → B′, BtB′′ → B′′

and B tB → B. We define a simplicial object βA↓AS∗ (B′, B,B′′) by setting

β
A↓AS
n (B′, B,B′′) := B′ tB t · · · tB︸ ︷︷ ︸

n

tB′′

where all coproducts are taken in A↓AS . The face and degeneracy maps are
composed from identities, the unit A→ B and the maps B′tB → B′, BtB′′ →
B′′ and B tB → B already mentioned. Furthermore we define

βA↓AS (B′, B,B′′) := |βA↓AS∗ (B′, B,B′′)|.

We want to compare this with the “double mapping cylinder” defined as

MA↓AS (B′, B,B′′) := B′ tB (B ⊗A↓AS I) tB B
′′.

The collapse map I → {pt} induces a map MA↓AS (B′, B,B′′) → B′ tB B′′

and also βA↓AS (B′, B,B′′) has a map to B′ tB B′′ which can be seen as the

constant simplicial S-algebra βB ↓AS∗ (B′, B,B′′).
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Proposition 3.4. (compare [36, VII.3.7]) There is a natural isomorphism

βA↓AS (B′, B,B′′) ∼= MA↓AS (B′, B,B′′).

This isomorphism is under B′ tB′′ and over B′ tB B′′.

Proof: It suffices to prove the result for B′ = B = B′′. In this case there are
isomorphic simplicial objects βA↓AS∗ (B,B,B) and B ⊗A↓AS I∗ where I∗ is
the standard simplicial 1-simplex which has q+2 simplicies in degree p. Passing
to realizations gives the result. 2

Here is finally the proposition we will refere to in the proof of the cofibration
hypothesis:

Proposition 3.5. For an S-module M and a map TM → B of S-algebras
under A, there is a natural map of S-algebras under A

ψ : MA↓AS (TCM,TM,B)→ TCM tTM B

that is homotopic to an isomorphism.

The proposition in particular implies that there is an isomorphism

MA↓AS (TCM,TM,B)→ TCM tTM B.

Proof: Let CM denote the cone of M defined as the pushout (in MS) of
∗ ←M →M ⊗MS

I. We apply T to the map CM tM (M ⊗MS
I)→ CM that

corresponds to the map CX ∪X (X ∧ I+)→ CX for spaces which retracts the
cylinder onto the base of the cone. These maps are homotopic to isomorphisms.
As a left adjoint T preserves colimits, hence coproducts. It also commutes with
tensors as cotensors are created inMS . Hence we obtain a map

TCM tTM (TM ⊗A↓AS I)→ TCM.

Applying tTM B gives the map ψ. 2

3.3 Cofibration hypothesis

We are almost ready to state and prove the cofibration hypothesis and recall
the following definition from [36, I.1.].

Definition 3.6. A map L → M in S (or in some category of module spectra
MA) has the homotopy extension property (HEP) if for any solid diagram of
the form

L

��

// L ∧ I+

��

��

M //

,,

M ∧ I+

##H
H

H
H

H

K
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a dashed arrow exists in S (respectively MA). Here the horizontal maps are
induced by the usual inclusion S0 → I+. When a map L → M has the HEP
we will also say that L→M is a HEP-map.

It is clear, that for any S-algebra A and any A-module M , the map ∗ →M has
the HEP. Also inclusions of wedge summands have the HEP in any category
of modules MA as (M1 ∨M2) ∧ I+ ∼= (M1 ∧ I+) ∨ (M2 ∧ I+). There are many
operations that preserve HEP-maps: Compositions and pushforwards of HEP-
maps are HEP-maps and more generally for a sequence of HEP-maps X0 →
X1 → · · · also X0 → colimXi is a HEP-map. Also retracts of HEP-maps have
the HEP. Finally, if L→M is a map of left A-modules that has the HEP and if
N is a right A-module then the adjunctionMS(N∧AL,K) ∼=MA(L,FS(N,K))
shows that N ∧A L → N ∧A M is a HEP-map of S-modules. A less obvious
preservation statement is the following.

Lemma 3.7. Let B be any S-algebra B under A and M any S-module. Then
B → TM t B has the HEP in any of the categories MS ,MA,MAop or MAe

where the coproduct is taken in the category of S-algebras under A.

Proof: Recall that T = TA ◦FAe and consider also its analogue T̃ := TB ◦FBe .
The adjunctions A↓AS(T(X), Y ) ∼= MS(X,Y ) ∼= B ↓AS(T̃(X), Y ) for any
S-module X and S-algebra Y under B show that the solid diagram in A↓AS

A

��

// B

��

��

T(X) //

,,

T̃(X)

!!D
D

D
D

Y

admits a unique extension by the dotted arrow. Hence T̃(X) is isomorphic to
the coproduct TX t B. So in particular TM t B ∼=

∨
n≥0(B ∧M ∧ B)∧B(n).

Hence B → TM t B is the inclusion of a wedge summand in any of the three
categories of modules from the statement. It is hence a HEP-map as already
mentioned after definition 3.6. 2

Recall that a simplicial spectrum is called proper if the canonical maps sKq →
Kq are HEP-maps. Here sKp is defined to be the “union” of the subspectra
sjKp−1 where 0 ≤ j < p. This can be made precise by giving a definition of sKp

in terms of iterated pushout diagrams but we refer the reader to [36, X.2.] for

this. The bar construction βA↓AS∗ (TCM,TM,B) as in definition 3.3 is proper
as all the degeneracies are of the form C → C t TM which are inclusions of
wedge summands, hence HEP-maps by the last lemma. For later reference we
recall that for a proper simplicial spectrum K∗ also the map K0 → |K∗| from
its zeroth space into its realization is a HEP-map (compare [36, VII.3.9,X.2.3]).
This can be seen using the usual filtration Fq|K∗|. We have F0|K∗| ∼= K0 and
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pushout diagrams

(sKq ∧∆q+) ∪ (Kq ∧ ∂∆q+)

��

// Fq−1|K∗|

��
Kq ∧∆q+ // Fq|K∗|

(3.4)

in which the left vertical maps are HEP-maps by [36, X.2.3]. So also the right
vertical maps have the HEP and so does the map X0 → |K∗| = colimFq|K∗|.

Here is our version of the cofibration hypothesis adapted to the category A↓AS .
Recall that the cone CM of an S-module M is defined as the pushout of ∗ ←
M ∼= M ∧ {1}+ →M ∧ I+.

Proposition 3.8. 1. Let M be an S-module. For any pushout diagram

TM

��

// B

��
TCM // D

in A↓AS the right vertical map has the HEP in either of the categories
of S-modules, (left or right) A-modules and Ae-modules.

2. For a sequence of maps of S-algebras under A which have the HEP in the
category A↓AS, the underlying spectrum of their colimit formed in the
category of S-algebras under A is their colimit as a sequence of maps of
spectra.

Proof: We start with proving the first point. Let C be any of the cate-
gories of S-modules, A-modules and Ae-modules. By propositions 3.4 and
3.5 the pushout D is isomorphic to the realization of the bar construction
βA↓AS (TCM,TM,B). Its zeroth term is TCM t B. The right vertical map
from the statement factors as B → TCM t B → βA↓AS (TCM,TM,B) ∼= D
and it suffices to show that the two maps from this factorization have the HEP
in C. For the first map this follows from the last lemma. The second map is
a HEP-map as we just explained before stating the theorem as the simplicial
spectrum β

A↓AS
∗ = β

A↓AS
∗ (TCM,TM,B) is proper in C.

The second point follows immediately from the corresponding statement for
S-algebras [36, VII.3.10]. 2

3.4 Setting up the model structure à la EKMM

In sections 3.1 and 3.3 we established all the necessary properties of the monad
T in order to apply [36, VII.4.7].

Theorem 3.9. The category of S-modules MS creates a model structure on
A↓AS = MS [T]. This model structure is the same as the one established in
proposition 2.9.
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Proof: The first statement follows directly from [36, VII.4.7]. The terminol-
ogy means that the weak equivalences and fibrations are created in MS . This
determines the model structure completely. The same is the case for the model
structure of proposition 2.9: Weak equivalences and fibrations are those maps
that are such in the category AS . But AS as a model category is itself created
byMS . Hence the second statement also holds. 2

We now can say more precisely what the cofibrations are. Recall the pairs
(CSq, Sq) where Sq is a cell S-module of dimension q and C is the cone functor.
In the following definition T may be any monad inMS .

Definition 3.10. ([36, VII.4.11]) A relative cell T-algebra Y under a T-algebra
Y0 is a T-algebra Y = colimYn where Yn+1 is obtained from Yn as the pushout
of a sum of attaching maps TSq → Yn along the coproduct of the natural maps
TSq → TCSq.

To be explicit, the diagrams to be considered are of the form

⊔
TSqi //

��

Yn

��⊔
TCSqi // Yn+1.

(3.5)

Note that by our cofibration hypothesis the right vertical map is not only a
cofibration in A↓AS but also a HEP-map inMS ,MA andMAe .

Due to theorem 3.9 the model structure onMS [T] can be established as in [36].
As a consequence we have the following description of cofibrations.

Proposition 3.11. (cp. [36, VII.4.14] and its proof) A map of T-algebras is
a cofibration in MS [T] if and only if it is a retract of a relative cell T-algebra.
A cofibrant T-algebra is a retract of a cell T-algebra. 2

3.5 Homotopical significance of the smash product
in A↓AS

In this section we finally prove that the smash product of two cofibrant S-
algebras under A represents their derived smash product. Hence we generalize
[36, ThmVII.6.7] which states the same for the case that A is a commutative
S-algebra. Remember our standing assumption that A is a cofibrant S-algebra.
We first show that all the possible ways to define derived smash products are
equivalent. For this consider the following diagram. Note that in order to
distinguish the different roles in which ∧A occurs we write ∧Ae for the product
in the category of Ae-modules, though this is again smashing over A. As there
will be no smash-products over Ae in this section, no confusion should arise.
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MAe ×MAe
V //

∧Ae

��

rMA × lMA
∧A //MS

MAe

U

33gggggggggggggggggggggggggggg

(3.6)

Diagram (3.6) gives rise to several derived smash-products. The next lemma
says that these are basically the same. As usual L(−) and R(−) denote total
left and right derived functors. It is clear that all the possible derived smash
products occuring in the following proposition exist.

Proposition 3.12. 1. The derived smash product for the composite functor

MAe ×MAe
V−→ rMA × lMA

∧A−−→MS

is given by the composite L(∧A)◦R(V ), i.e. there is a natural isomorphism

L(∧A ◦ V ) ∼= L(∧A) ◦R(V ).

2. The derived smash product for the functor U◦∧Ae is given by the composite
R(U) ◦ L(∧Ae), i.e. there is a natural isomorphism

L(U ◦ ∧Ae) ∼= R(U) ◦ L(∧Ae).

In particular the three possible definitions for the derived smash-product DAe ×
DAe → DS coincide.

Proof: Using that V is the right adjoint of a Quillen equivalence one can
check that L(∧A)◦R(V ) has the universal property that makes it a left derived
functor of the functor ∧A ◦ V proving the first point. The second part may be
proved analogously. 2

Corollary 3.13. 1. On two A-bimodules N and M the derived smash prod-
uct DAe × DAe → DS is represented by N ∧A ΓAM where ΓAM is a
cofibrant replacement of M in the category of left A-modules.

2. The derived smash product DAe×DAe → DS lifts to DAe and is represented
by N∧AΓAeM where ΓAeM is a cofibrant replacement of M in the category
of A-bimodules.

Proof: Part one follows from the last proposition and the fact that ∧A is rep-
resented by the point-set-level smash product with one argument cofibrantly
replaced. The same is true for ∧Ae as we will now show. A priori both factors
have to be replaced cofibrantly but we see that weak equivalences N → Ñ of
Ae-modules are preserved by smashing with some cofibrant Ae-moduleM as fol-
lows. First if M = FAeX for some CW-module X, we have M ∧AN ∼= FAX∧N
and the result follows from the corresponding statement for S-modules. Note
that FAX is a cofibrant S-module as A is assumed to be a cofibrant S-algebra.
The general statement then follows from the gluing lemma and passage to col-
imits. A similar argument is carried out in the proof of theorem 3.16 2
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We can see inductively, that there is a derived smash product DAe×· · ·×DAe →
DS that lifts to DAe and is represented by

M1 ∧A Γ[M2 ∧A Γ[· · ·Γ[Mn−1 ∧A ΓMn] · · · ]]

where Γ is either ΓA or ΓAe .

We now define a class of A-bimodules that will turn out to be well behaved
with respect to the derived smash product. Recall that for A = S the class
ES defined in [36, VII.6.4] has this property by theorem [36, VII.6.7]. By [36,
VII.6.5] the class ES contains all cofibrant S-algebras.

Definition 3.14 (Extended cell bimodules). Let A be an associative A-algebra.
Define FA to be the collection of Ae-modules of the form

A ∧S X

where X is any spectrum in ES . Define FA to be the extension of FA being
closed under all finite ∧A-products, wedges, pushouts along HEP-maps and
colimits of countable sequences of HEP-maps and homotopy equivalences where
all these operations are taken in A-bimodules. We call this class the class of
extended cell A-bimodules.

Proposition 3.15. Let A be an associative A-algebra and Y a cell A-unca, i.e.
a cell algebra for the operad T. Then Y is in FA.

Proof: First note that A is in FA as S is in ES . Then by definition Y is the
colimit of Yn as in definition 3.10. All the maps Yn → Yn+1 have the HEP by our
cofibration hypothesis and Y0 = A. So it suffices to show that with Yn also Yn+1

is in FA. In order to see this, let us write B → D for the map Yn → Yn+1 and
we factor this map as B → D0 = TCM tB → |D∗| ∼= D where D∗ is a proper
spectrum as in the proof of proposition 3.8. By the proof of lemma 3.7 its zeroth
term D0 is

∨
n≥0(B ∧ CM ∧ B)∧B(n) ∼= B ∨ (B ∧A

∨
n≥1(A ∧ CM ∧ B)∧A(n)).

Hence D0 is in FA as B is a cofibrant S-algebra by induction hypothesis and
hence is in ES . It remains to show that D is obtained from D0 by taking
a colimit along HEP-maps. This is true as again we have a filtration of the
realization |D∗| and pushouts analogous to those in diagram (3.4). 2

Theorem 3.16. Let A be a cofibrant S-algebra and for an Ae-bimodule M
let γM : ΓM → M be a cell approximation either in the category of (left) A-
modules, e.g. Γ = ΓA or likewise in Ae-modules, e.g. Γ = ΓAe. Then for
M1, . . . ,Mn ∈ FA

M1 ∧A Γ[M2 ∧A Γ[· · ·Γ[Mn−1 ∧A ΓMn] · · · ]]→M1 ∧A · · · ∧AMn (3.7)

is a weak equivalence. In other words: The smash product of modules in FA
represents the derived smash product in DAe.

Corollary 3.17. The smash product of cofibrant S-algebras under A represents
their derived smash product.
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Proof: For cell A-algebras this follows from theorem 3.16 and proposition 3.15.
The general statement follows as every cofibrant S-algebra under A is a retract
of a cell A-algebra and passsing to retracts preserves weak equivalences. 2

Proof of theorem 3.16: As for both ΓA and ΓAe the left hand side of (3.7)
represents the derived smash product, it suffices to prove the proposition for
Γ = ΓA. In order to prove (3.7) first note that the corresponding statement for
commutiative A and Mi ∈ EA holds by [36, VII.6.7, III.3.8] and the 2 out of 3
property

ΓM1 ∧A · · · ∧A ΓMn
' //

' ++VVVVVVVVVVVVVVVVVVV M1 ∧AM2

M1 ∧A Γ[M2 ∧A · · · ∧A ΓMn]

44iiiiiiiiiiiiiiii

.

In other words, the theorem holds for A = S as ES = FS . From this we
can continue as in the proof of [36, VII.6.7.]: First, equation (3.7) holds for
Mi ∈ FA as in this case ΓAMi = A ∧ ΓSNi for certain Ni ∈ ES . Hence
M1∧AΓA[M2∧A · · ·∧AΓAMn] ∼= A∧ΓSN1∧· · ·∧ΓSNn] and now we can apply
the theorem for A = S as A ∈ ES .

Then the statement for general Mi ∈ FA may be proved by induction on the
complexity of formulas of FA. First note that it suffices to consider the case
n = 2. By symmetry and as N ∧A ΓM ' ΓN ∧AM it suffices to prove that the
statment remains true when replacing one of the factors corresponding to the
operations building FA. We will now assume N ∧A ΓMi ' N ∧AMi for N and
Mi in FA. It follows that for any finite set I also N ∧A Γ

∧
IMi ' N ∧A

∧
IMi

as by induction hypothesis
∧
IMi represents the derived smash product and

hence N ∧A Γ
∧
IMi ' N ∧A Γ[M1 ∧A Γ[· · · ]] ' N ∧A

∧
IMi. For wedges this

is immediate as π∗ carries wedges to direct sums.
We come to the step replacing M by some M̃ obtained from M by a pushout
along a HEP-map X → Y . We want to conclude that ΓN ∧A M ' N ∧A M
implies ΓN ∧A M̃ ' N ∧A M̃ . Note that we have a diagram

ΓN ∧A Y
'

��

ΓN ∧A X
HEPoo //

'
��

ΓN ∧AM
'

��
N ∧A Y N ∧A X

HEPoo // N ∧AM

(3.8)

in which the left horizontal maps have the HEP and all vertical maps are weak
equivalences. It is a standard argument also called the gluing lemma that the
map ΓN ∧A M̃ → N ∧A M̃ then also is a weak equivalence. We give a proof for
the convenience of the reader: As HEP-maps induce long exact sequences in
homotopy by [36, IV.1.2.(ii)] we see that the cofibers of the two left horizontal
maps are weakly equivalent. Completing (3.8) to a cube by taking the pushouts
of the top and bottom row yields two more HEP-maps and hence long exact
sequences. Two out of three terms of these sequences are equivalent, one by the
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assumption that ΓN ∧AM ' N ∧AM and the terms coming from the cofibers
are those of the cofibers of the left horizontal maps in (3.8). It follows by the
five lemma that the sequences are equivalent giving ΓN ∧A M̃ ' N ∧A M̃ .
The statement remains true when passing to sequential colimits along HEP-
maps: We have

π∗(ΓN ∧A colimXi) ∼= π∗ colim(ΓN ∧A Xi) ∼= colimπ∗(ΓN ∧A Xi)
∼= colimπ∗(N ∧A Xi) ∼= π∗N ∧A colimXi

as N ∧A (−) is a left adjoint and π∗ commutes with sequential colimits.
Lastly we have to treat with passing to homotopy equivalent objects. For this
note that by [36, p.59] homotopy equivalences are preserved when smashing
with another object. 2

Lemma 3.18. Let A be a cofibrant S-algebra and M ∈ FA. Let ΓM → M
be a cell approximation in the category of left A-modules. Then for any left
A-module X we have

FA(M,X) ' FA(ΓM,X),

i.e. FA(M,X) represents the derived function spectrum.

Proof: Again by induction on the complexity of formulas, one can show that
every spectrum in FA has the homotopy type of a CW -spectrum starting with
the statement from [36, VII.6.6] that this is true for every spectrum in ES .
Hence the cell approximations ΓM → M are homotopy equivalences and the
statement follows. 2



Chapter 4

Galois extensions of
associative S-algebras

John Rognes introduced the notion of Galois extensions for commutative S-
algebras in [75]. In this chapter, we will generalize this notion to extensions of
associative S-algebras. The quintessence of this chapter is that large parts of
Rognes’ theory have analogs for associative S-algebras. We show that there are
lots of examples of Galois extensions of associative S-algebras. The first to be
mentioned are the trivial and matrix extensions. We show that the Eilenberg-
McLane embedding theorem holds whenever the trace of a Galois extension
of associative rings is surjective, see theorem 4.5. In particular, this embeds
all associative Galois extensions of a commutative ring in the world of Galois
extensions of associative S-algebras.
We investigate conditions under which Galois extensions A→ B are preserved
and detected when inducing up along a map of S-algebras A → C so that
we obtain a map C → C ∧A B, see propositions 4.20 and 4.21. In this way,
Galois extensions of the Morava K-theory spectra K(n) or Kn are obtained
from the Lubin-Tate extensions of the K(n)-local sphere. In particular, Kn can
be seen as a Galois extension of K(n) and there is a Galois extension Kn →
Knr
n obtained from the maximal unramified extension En → Enrn . Finally, we

characterize Galois extensions using dualizability and conclude the chapter with
an investigation of the closure property of the spectrum Knr

n .

4.1 Definitions

Recall that for a topological spaceX the unreduced suspension spectrum Σ∞X+

is also denoted S[X] or S ∧ X+. If G is a topological group and B a spec-
trum with left G action, the homotopy fixed point spectrum BhG is defined
as BhG := F (EG+, B)G where EG is the free contractible left G-space. Also
recall that a topological group G is stably dualizable if S[G] is dualizable over
S, see [33, 64, 76]. The notion of dualizability is also recalled in section 4.5.
Every finite discrete group is dualizable so one can keep this special test case in
mind while reading the following. With these reminders we can approach the
definition of a Galois extension of associative S-algebras.

31
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Let A and B be associative S-algebras and η : A → B a map of S-algebras
making B an unca under A (“unital not necessarily central algebra under A”,
see chapters 2 and 3). Let G be a stably dualizable group acting on B from the
left by S-algebra maps under A.
We will require some cofibrancy assumptions that make our definition homotopy
invariant. First, we assume that the S-algebra A is cofibrant as an associative
or commutative S-algebra. Second, we will require that smashing with B over
A represents the derived smash product. If these two requirements are satisfied,
we will say that our data satisfy good cofibrancy assumptions. Of course we have
good cofibrancy assumptions if B is cofibrant in the category of A-uncas (i.e. the
category of associative S-algebras under A) by corollary 3.17. More generally,
we have good cofibrancy assumptions by theorem 3.16 when B is in the class
FA of extended cell A-bimodules as introduced in definition 3.14. Note that we
can always pass to a map Ac → Bc that satisfies good cofibrancy assumptions
as follows. First, replace A cofibrantly in the category of S-algebra providing
Ac. In a second step, replace B cofibrantly in the category of Ac-uncas. As
functorial cofibrant replacements exist in A↓AS , the G-action transfers to the
cofibrant replacement Bc of B. So the standard situation we will consider is that
A is a cofibrant associative S-algebra and A→ B is a cofibration of S-algebras,
i.e. of A-uncas.

Remark 4.1. By lemma 2.10 the group G always acts by maps in the appropriate
category, i.e. if η is central, such that B is a central A-algebra, then G acts
by maps of central A-algebras. If in addition A is commutative, such that B is
an A-algebra in the sense of [36], then G acts by maps of A-algebras and if B
is commutative then G acts by maps of commutative A-algebras. Moreover if
A→ B is a map in AA or CA which is a cofibration in the category of A-uncas
then the map A→ B is a cofibration also in AA or CA by lemma 2.11.

We define the maps
i : A→ BhG

as the adjoint to the G-equivariant map EG+ ∧ A
'−→ A → B first collapsing

EG to a point, and
h : B ∧A B → F (G+, B)

as the right adjoint to B ∧A B ∧G+
B∧Aτ−−−−→ B ∧A G+ ∧B

B∧Aα−−−−→ B ∧A B
µ−→ B

where τ is the twist map and α : G+ ∧ B → B denotes the group action. The
map h is a G-equivariant map of left B-modules and moreover, it is a left B[G]-
module map where the G-action on the source is via the action on the second
B factor and the left G-action on F (G+, B) comes from the right action of
G on itself. The map i is a map of S-algebras under A. The next definition
generalizes [75, 4.3.1].

Definition 4.2 (Galois extensions of associative S-algebras). Let η : A → B
be a map of S-algebras satisfying good cofibrancy assumptions, e.g. A could
be a cofibrant associative S-algebra and A → B a cofibration of S-algebras.
Let G be a stably dualizable group acting on B by maps of S-algebras under
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A. We call A → B a G-Galois extension, if the maps i and h are both weak
equivalences.

We will refer to the fact that i is a weak equivalence as the fixed point condi-
tion and to the fact that h is a weak equivalence as the unramification condition.

There is an E-local version of this definition if A and B are E-local for some
S-module E. One can then ask that the maps i and h formed in the category
MS,E of E-local S-modules are weak equivalences. The construction of the map
h inMS,E includes an additional E-localization of B ∧A B. Hence the E-local
version of a Galois extension amounts to asking that h is an E∗-equivalence. As
for Galois extensions of commutative S-algebras, most of the statements below
have analogs for E-local Galois extensions. However we restrict our presenta-
tion to the global case and feel that this restriction is not too big. To explain
this, note that the main examples of local associative Galois extensions might
occur as extensions from the local commutative Galois extensions presented in
[75], see section 4.6.1. These extensions are K(n)-local for some Morava- K-
theory spectrum K(n). We will obtain associative Galois extensions inducing
along a map into K(n) or some other K(n)-algebra in section 4.6.1. The ex-
tensions obtained in this way will automatically be global and so will be all the
other non-commutative Galois extensions considered in this thesis. This makes
a detailed consideration of local associative Galois extensions irrelevant for this
document.

Due to our cofibrancy assumptions and as the smash-product of cofibrant uncas
over A represents the derived smash-product in DAe by theorem 3.16 we obtain
the following invariance statement.

Lemma 4.3 (Invariance up to changes by weak equivalences). The property of
being a Galois extension is homotopy invariant up to changes of A, B and the
stabilized group Σ∞G+. In more detail: If we replace A by a weakly equivalent Ã
or B by a G-equivariantly weakly equivalent B̃ also satisfying the cofibrancy as-
sumptions above, or G by a stably weakly equivalent group G̃, Galois extensions
are preserved and detected.

Proof: Let us first consider the fixed point condition and replacements by a
weak equivalence B → B̃. As this map is assumed to be G-equivariant there
is a weak equivalence BhG := F (EG+, B)G → F (EG+, B̃)G = B̃hG by [36,
III.6.8]. It is a map under A. So A → BhG is a weak equivalence if and only
if A→ B̃hG is. Of cours an additional replacement by Ã ' A does not change
this condition either.
For the unramification condition, consider two candidates for G-Galois exten-
sions A → B and Ã → B̃ with A

'−→ Ã and B
'−→ B̃. Note that the cofi-

brancy assumptions ensure that both B ∧A B and B̃ ∧ eA B̃ represent the de-
rived smash products by 3.16, so the Künneth spectral sequence shows that



34 CHAPTER 4. GALOIS EXTENSIONS OF ASS. S-ALGEBRAS

B̃ ∧ eA B̃ ' B ∧A B. The commutative square

B ∧A B
h //

'
��

F (G+, B)

'
��

B̃ ∧ eA B̃ eh // F (G+, B̃)

then shows that h is a weak equivalence if and only if so is h̃. The right map
in the diagram is a weak equivalence as G is assumed to be dualizable, hence
topological. For the invariance with respect to changes in the stabilized group
Σ∞G+ see [75, 4.1.4]. 2

4.2 First examples

4.2.1 Trivial extensions

For every cofibrant associative S-algebra A and stably dualizable group G, we
have the trivial G-Galois-extension A→ B where B is a cofibrant replacement
of F (G+, A) in the category A↓AS of associative S-algebras under A. The
map A → B is induced by the unique map G → {e}. It is clear that BhG '
F (EG+, F (G+, A))G ' F (EG+, A) ' A. Also h is a weak equivalence since
it can be written as B ∧A B ' F (G+, A) ∧A F (G+, A) → F (G+, F (G+, A)) '
F (G+, B). The map is a weak equivalence as G is stably dualizable. The
first equivalence holds due to the fact that both smash products represent the
derived smash product by theorem 3.16.

4.2.2 Matrix extensions of S-algebras

For an associative S-algebra A and integers n,m define the matrix S-module
Mn,m(A) as

Mn,m(A) := FS(S ∧m+, A ∧ n+).

where we look at an integer k as the set {1, 2, . . . , k}. As homotopy groups take
wedges and products to direct sums there is an isomorphism π∗(Mn,m(A)) ∼=
Mn,m(π∗(A)). There is a mapMn,m(A) ∧Mm,k(A)→Mn,k(A) defined to be
adjoint to the iterated evaluation

F (m+, A ∧ n+) ∧ F (k+, A ∧m+) ∧ k+
F (m+,A∧n+)∧eval−−−−−−−−−−−−→

F (m+, A ∧ n+) ∧m+ ∧A
eval∧A−−−−→ A ∧A ∧ n+

µA∧n+−−−−→ A ∧ n+.

If m = n this map makes Mn(A) := Mn,n(A) an associative S-algebra [36,
III.6.12,VI.5]. Moreover if A→ B is a map of associative S-algebras then so is
Mn(A)→Mn(B). In the next proposition we assume implicitely thatMn(B)
is cofibrant as anMn(A)-unca, making a cofibrant replacement if necessary.

Proposition 4.4. Let A be an associative S algebra and B a cofibrant A-unca.
Let G be a stably dualizable group that acts on B by maps of associative S-
algebras under A. Then A→ B is a G-Galois extension if and only if so is the
extension Mn(A)→Mn(B) for some (hence every) positive integer n.
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Proof: Define the G-action on Mn(B) by the action on B, i.e. as the adjoint
to

G+ ∧Mn(B) ∧ n+
G+∧eval−−−−−→ G+ ∧B ∧ n+

α∧n+−−−→ B ∧ n+

where α : G+ ∧B → B denotes the group action. Then

Mn(B)hG = F (EG+,Mn(B))G

' F (n+, F (EG+, B ∧ n+)G)
' Mn(BhG)

so Mn(B)hG 'Mn(A) if and only if BhG ' A. It remains to show that

hn : Mn(B) ∧Mn(A)Mn(B) −→ F (G+,Mn(B))

is a weak equivalence if and only if so is h : B ∧A B → F (G+, B). This follows
from the following commutative diagram.

Mn(B) ∧Mn(A)Mn(B) hn //

'
��

F (G+,Mn(B))

'
��

F (n+, n+) ∧B ∧A B h // F (n+, n+) ∧ F (G+, B)

Here, the weak equivalence on the left uses the isomorphism (C ∧B)∧C∧A (C ∧
B) ∼= C ∧B ∧A B for C = F (n+, S ∧ n+) [36, Prop. 3.10.]. 2

4.2.3 The Eilenberg-MacLane embedding

Theorem 4.5 (The Eilenberg-MacLane embedding). Let R → T be a homo-
morphism of rings and let G be a finite group acting on T by homomorphisms
of rings under R. Assume that the trace tr : T → R is surjective. Then R→ T
is a Galois-extension of rings if and only if the induced map HR → HT of
Eilenberg-MacLane spectra is a Galois-extension of associative S-algebras.

Proof: Assume first, that R → T is G-Galois. Then T is projective as a left
and right R-module by lemma 1.3 and hence TorRs (T, T ) = 0 for s 6= 0. We
will now show, that also ExtsR[G](R, T ) vanishes for s 6= 0: For its computation
choose a free resolution of R as left R[G]-module. The resolution is also R-
free. Now note that we have an isomorphism of left R[G]-modules R[G] ∼=∏
GR

∼=
∏
G HomR(R,R) ∼= HomR(

∏
GR,R) ∼= HomR(R[G], R) and hence

HomR[G](R[G], R[G]) ∼= R[G] ∼= HomR(R[G], R). It follows that

ExtsR[G](R,R[G]) = ExtsR(R,R) = 0 for s 6= 0. (4.1)

We then use that T is projective as a left R[G] module by lemma 1.3 under the
assumption that the trace tr : T → R is surjective. From a split map R[G]` → T
one obtains that

ExtsR[G](R, T ) = 0 for s 6= 0 (4.2)
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since this is a retract of ExtsR[G](R,R[G]`) which also vanishes in this range.
The algebraic data implies that the Künneth and the homotopy fixed point
spectral sequence

E2
s,t = TorRs,t(T, T ) =⇒ πs+t(HT ∧HR HT )

E2
s,t = H−s(G;πt(HT )) = Ext−s,−tR[G] (R, T ) =⇒ πs+t(HT hG)

collapse. A reference for this is [36, IV.4], the homotopy fixed point spec-
tral sequence being the universal coefficient spectral sequence converging to
π∗FR[G](R ∧ EG+,HT ). Both spectral sequences are strongly convergent: For
the Künneth spectral sequence this is always the case. The universal coef-
ficient spectral sequence in general only converges conditionally, but the col-
lapsing makes sure that we have strong convergence as well, see e.g. [14,
7]. It follows that HT ∧HR HT ' H(T ⊗R T ) ' H(

∏
G T ) '

∏
GHT and

HR ' H(TG) ' (HT )hG.
Vice versa, assume that HR→ HT is a Galois extension as in definition 4.1. As
the homotopy of HR and HT is concentrated in degree zero we see that the E2-
terms of the spectral sequences from above are concentrated in one line. Hence
we see again that

∏
G T
∼= π∗

∏
GHT

∼= π∗(HT ∧HR HT ) ∼= TorR0 (T ⊗R T ) ∼=
T ⊗R T and R ∼= π0HR ∼= π0(HT hG) ∼= π0H(TG) ∼= TG. 2

The proposition says that the algebraic theory of associative Galois extensions
with finite group G and surjective trace is embedded in the theory of Galois
extensions of associative S-algebras as developed in this thesis. In particular,
this embedding includes all Galois extensions with commutative base ring as in
this case the trace is surjective by lemma 1.3. Moreover, the assumption on the
trace is trivially satisfied if for example the order of G is invertible in R.

4.3 Faithful extensions

Definition 4.6 (Faithful modules). Let A be an associative S-algebra and M
a left A-module. If N ∧AM ' ∗ implies N ' ∗ for any right A-module N then
we call M a (left) faithful A-module. A right module is faithful if it is so as a
left module over the opposite ring.

All finite Galois extensions R→ T of commutative rings are faithfully flat, i.e.
tensoring with T over R preserves and detects exact sequences. However, Galois
extensions of S-algebras need not to be faithful as a counterexample by Ben
Wieland shows (communicated by John Rognes). However for many examples
faithfulness can be shown by hand. E.g. trivial extensions are always faithful
as the retraction A→ F (G+, A)→ A shows that the base ring is contained in
the extension as a direct summand. We continue to examine the situation of
the Eilenberg-MacLane embedding theorem.

Lemma 4.7. Let R→ T be a Galois-extension of rings with finite Galois-group
G and assume that the trace is surjective. Then T is faithful as a right (resp.
left) R-module.
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Proof: Choose c ∈ T such that tr(c) = 1. The composition

R // T
tr(c·−)// R

equals the identity and hence shows that R is a right R-module direct summand
in T . Using tr(−· c) gives the same conclusion for left R-modules. Now assume
that N is a left R-module such that T ⊗R N vanishes. Tensoring the above
sequence with N over R then shows, that N ∼= ∗. 2

Lemma 4.8. If a map of S-algebras A → B is such that B∗ is faithfully flat
as a right (left) A∗-module, then B is faithful as a right (left) A-module. In
particular, if A∗ → B∗ is a finite Galois extension of rings such that the trace
is surjective, then A→ B is faithful.

Proof: Assume B∧AN ' ∗. Since B∗ is flat as right A∗-module, TorA∗s,t (B∗, N∗)
vanishes for s 6= 0. The Künneth spectral sequence

E2
s,t = TorA∗s,t (B∗, N∗) =⇒ πs+t(B ∧A N)

is hence concentrated in one column and collapses. The assumption π∗(B ∧A
N) = 0 hence implies B∗ ⊗A∗ N∗ = TorA∗0 (A∗, N∗) = 0. Since B∗ is assumed to
be faithful as a right A∗-module, it follows that N∗ vanishes. 2

Corollary 4.9. (EM-embedding and faithfulness). Assume that R → T is a
Galois-extension of rings such that the assumption from the embedding theorem
hold. Then both the algebraic and the topological extension are faithful. 2

4.4 Extended equivalences

In this section we will define several maps that play an important role in the
context of Galois extensions. Let A be an associative S-algebra and B an asso-
ciative S-algebra under A. Also let G be a topological group acting on B from
the left by maps of S-algebras under A.

In [75] the twisted group algebra B〈G〉 is defined to be B ∧G+ with a twisted
multiplication given by

B〈G〉 ∧A B〈G〉
B∧∆∧B∧G+−−−−−−−−→ B ∧A G+ ∧G+ ∧B ∧G+

B∧AG+∧α∧G+−−−−−−−−−−→

B ∧A G+ ∧B ∧G+
B∧Aτ∧G+−−−−−−−→ B ∧A B ∧G+ ∧G+

µ∧µ−−→ B〈G〉.

Here α denotes the group action. In symbols, this product is given by

B〈G〉 ∧A B〈G〉 −→ B〈G〉
b〈g〉 ∧A b̃〈g̃〉 7−→ bg(̃b)〈gg̃〉.

B〈G〉 comes with a map

j : B〈G〉 −→ FAop(B,B)
j(b〈g〉)(x) := bg(x).
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Formally j is adjoint to the map

B ∧Aop (B ∧G+) τ−→ (B ∧G+) ∧A B ∼= B ∧A (G+ ∧B) B∧Aα−−−−→ B ∧A B
µ−→ B.

Note that the target of j is the spectrum of right A-module maps. We chose
this definition of j as the map thus defined is a map of associative A-algebras
even if A and B are not commutative. We collect some structural observations
in the next lemma.

Lemma 4.10. Define the multiplication of B〈G〉 as above and left module struc-
tures on FAop(B,B) via left actions on the target. Then j is a map of left B-
and of left A[G]-modules. It is also a map of S-algebras under A with the mul-
tiplication in FAop(B,B) given by composition of functions. Moreover, B〈G〉 is
a central A-bimodule if and only if so is A. 2

There is another twisted algebra structure on B∧G+ and we denote the algebra
thus obtained by BbGc. We define its product by

BbGc ∧A BbGc
B∧τ∧∆−−−−−→ (B ∧A B ∧G+ ∧G+) ∧G+

τ−→

G+ ∧ (B ∧A B ∧G+ ∧G+)
eα∧B∧G+∧G+−−−−−−−−−→ B ∧A B ∧G+ ∧G+

µ∧µ−−→ BbGc

where α̃ is the group action precomposed with the involution g 7→ g−1 on G, so
the map above is

BbGc ∧A BbGc −→ BbGc
bbgc ∧A b̃bg̃c 7−→ g̃−1(b)̃bbgg̃c

in symbols. The algebra BbGc also comes with an analogous map j̃

j̃ : BbGc −→ FA(B,B)op

j̃(bbgc)(x) := g−1(x)b.

Formally j̃ is defined as being the adjoint to

(B ∧A B) ∧G+
τ−→ G+ ∧ (B ∧A B) eα∧AB−−−−→ B ∧A B

µ−→ B.

Lemma 4.11. Define the multiplication on BbGc as above and right module
structures on FA(B,B) via the right actions on the target. Then j̃ is a map
of right B- and of right A[G]-modules. Let the multiplication in FA(B,B) be
given by composition of functions. In symbols the multiplication in FA(B,B)op

is hence given by f ·f̃ = f̃◦f . Then j̃ is a map of S-algebras under A. Moreover,
BbGc is a central A-bimodule if and only if so is A. 2

Lemma 4.12. Let A→ B be a map of S-algebras, let the stably dualizable group
G act on B through A-algebra maps and assume that h : B ∧A B → F (G+, B)
is a weak equivalence. E.g. A→ B could be a G-Galois extension.

1. The right B-module map

h̃ : B ∧A B −→ F (G+, B)
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defined to be adjoint to

G+ ∧B ∧A B
α∧AB−−−−→ B ∧A B

µ−→ B,

is a weak equivalence.

2. For any right B-module M there is a G-equivariant map

hM : M ∧A B → F (G+,M)

which is a weak equivalence.

3. For any left B-module N there is a G-equivariant map

h̃N : B ∧A N → F (G+, N)

which is a weak equivalence.

4. For each (A,B)-bimodule M there is a weak equivalence

jM : M ∧G+ → FAop(B,M).

It is a map of left A-modules and G-equivariant with respect to the right
action of G on itself and the right action on FAop(B,M) defined via the
left action of G on B.

5. The map

j : B〈G〉 −→ FAop(B,B)

is a weak equivalence.

6. For each (B,A)-bimodule N there is a weak equivalence

j̃N : N ∧G+ → FA(B,N).

It is a map of right A-modules and G-equivariant with respect to the right
G-actions defined as in 4.

7. The map

j̃ : BbGc −→ FA(B,B)op

is a weak equivalence.

Proof: Ad 1: The map h̃ is a weak equivalence if and only if h is since there
is a commutative diagram

B ∧A B
h // F (G+, B)

ι

��
B ∧A B

eh // F (G+, B)
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where in symbols ι is the involution on F (G+, B) with ι(f)(g) := g(f(g−1)). It
is strictly defined as being adjoint to

G+ ∧ F (G+, B) ∆∧id−−−→ G+ ∧G+ ∧ F (G+, B) id∧ inv∧ id−−−−−−−→

G+ ∧G+ ∧ F (G+, B)
G+∧eval−−−−−→ G+ ∧B

α−→ B.

Ad 2: Define hM as

M ∧A B ∼= M ∧B B ∧A B
1∧Bh−−−→M ∧B F (G+, B) ν−→ F (G+,M).

The last map ν is a weak equivalence since G is stably dualizable. It then
follows that hM is a weak equivalence since also h is a weak equivalence. The
map hM is G-equivariant with respect to the left G-action on B in the source
and the right action of G on itself on the target as h itself is G-equivariant.
Ad 3: This is proved analogously using the map h̃.
Ad 4: We define jM to be adjoint to the composite

B ∧Aop (M ∧G+) τ−→ (M ∧G+) ∧A B ∼= M ∧A G+ ∧B
M∧Aα−−−−→M ∧A B

µ−→M.

A look at section 4.5 and the adjunction formula (4.3) might be helpful. The
map jM factors in the stable homotopy category as the chain of weak equiva-
lences

M ∧G+
M∧ρ−−−→M ∧DDG+

ν−→ F (DG+,M)
∼=−→

FBop(DG+ ∧B,M)
eh∗−→ FBop(B ∧A B,M)

∼=−→ FAop(B,M).

The factorization is analogous to the one given in [75, 6.1.2]. As further hints
to understand that it represents the map jM we point out that restricted to
M ∧ {e}+ both jM and the factorization correspond to M ∼= FBop(B,M) →
FAop(B,M). Moreover both maps are G-equivariant where the action of G on
FA(B,M) is of course given by the action on B.
Ad 5: The map j is the special case j = jB so it follows from 4.
Ad 6: We define j̃N to be adjoint to the composite

(B ∧A N) ∧G+
τ−→ G+ ∧B ∧A N

α∧AN−−−−→ B ∧A N
µ−→ N.

As above there is a factorization of j̃N in the stable homotopy category as a
chain of weak equivalences, this time given as

N ∧G+
N∧ρ−−−→ N ∧DDG+

ν−→ F (DG+, N)
∼=−→

FB(B ∧DG+, N) h∗−→ FB(B ∧A B,N)
∼=−→ FA(B,N).

Ad 7: The map j̃ is the special case j̃ = j̃B so it follows from 6. 2

Lemma 4.13. Let A→ B be a map of S-algebras, let the stably dualizable group
G act on B through S-algebra maps under A and assume that h : B ∧A B →
F (G+, B) is a weak equivalence. Then for any (A,B)-bimodule M the canonical
map

M ∧A BhG → (M ∧A B)hG
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is a weak equivalence. If B is a faithful central A-module then the map is an
equivalence for any central A-bimodule M .
Analogously BhG ∧A N ' (B ∧A N)hG for any (B,A)-bimodule N and any
central A-bimodule N if B is a faithful central A-module.

Proof: For right B-modules we look at the following composition.

M 'M ∧A BhG // (M ∧A B)hG
hhG

M // F (G+,M)hG

The composition above is M ' F (e+,M) '−→ F (G+,M)hG and so is a weak
equivalence. The last map hhGM is a weak equivalence by lemma 4.12. So by 2
out of 3 also the map in question in the middle is a weak equivalence.
Now assume that B is a faithful central A-module. Then it suffices to check
that B ∧AM ∧ABhG → B ∧A (M ∧AB)hG is a weak equivalence. As M is now
assumed to be central, B ∧A M is an (A,B)-bimodule and hence we already
know that B ∧AM ∧A BhG ' (B ∧AM ∧A B)hG. The equivalence

(B ∧AM ∧A B)hG ' (M ∧A F (G+, B))hG ' (F (G+,M ∧A B))hG ' B ∧AM.

finishes the statements for central M . The statements involving N are proved
similarly using the weak equivalenc h̃N . 2

4.5 Dualizability over associative algebras

In the theory of Galois extensions of commutative S-algebras, dualizability plays
an important role as it replaces the algebraic notion of finite generation. We
will need a canonical map

ν : FA(M,P ) ∧A Z −→ FA(M,P ∧A Z)

and define it shortly. We proceed in analogy to [33, 64] but their presentation
assumes to work in a symmetric monoidal category, i.e. under a commutative
algebra A. We will also allow A to be an associative S-algebra and hence have
to go through the construction in order to see precisely at which statements we
can arrive.

Duality theory is fundamentally based on the adjunction

MR(M ∧R′ N,P ) ∼=MR′(N,FR(M,P )) (4.3)

defined for any (R,R′)-bimoduleM , left R′-moduleN and left R-module P ([36,
III.6.2]). The function module FR(M,P ) is a left R′-module via the right action
of R′ on M . If P happens to be an (R,K)-bimodule, it induces the structure
of an (R′,K)-bimodule on FR(M,P ). We will be most interested in the case
when R = R′ = P = A, M = B is an A-bimodule and N = DAB := FA(B,A).
In this case, the function module FA(B,A) is an A-bimodule itself. Though
we keep the more general notation to better distinguish the different module
structures.
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We now review the construction of the map ν from above in order to make
visible that it extends to bimodules over associative algebras.
We start with the evaluation map

M ∧R′ FR(M,P ) −→ P (4.4)

which is adjoint to the identity on FR(M,P ). It is a map of left R-modules and
if P is an (R,K)-bimodule, the map is one of (R,K)-bimodules as can be seen
by the adjunction

MR∧Kop(M ∧R′ FR(M,P ), P ) ∼=MR′∧Kop(FR(M,P ), FR(M,P )).

We assume that P is an (R,K)-bimodule and smash (4.4) with a left K-module
Z and obtain a map

M ∧R′ FR(M,P ) ∧K Z −→ P ∧K Z. (4.5)

The map ν is defined as the adjoint to (4.5) where R = R′ = K = A. Dualiz-
ability is a condition in case R = R′ = K = P = A and Z = M :

Definition 4.14 (Dualizable bimodules). Let A be an associative S-algebra.
We say that an A-bimodule M is dualizable over A if the canonical map
ν : FA(M,A) ∧AM −→ FA(M,M) is a weak equivalence.

The following proposition says that duality theory makes sense in any closed
monoidal category. The monoidal structure needs not to be symmetric as as-
sumed in [33] and [64]. If A is an associative S-algebra the statements from e.g.
[64, III.1.3.] have the following generalizations.

Proposition 4.15. Let A be an associative S-algebra and M an A-bimodule.

1. If M is dualizable over A the canonical map of A-bimodules

ρ : M → DAopDAM

is a weak equivalence.

2. If M is dualizable over A then the canonical map

ν : FA(M,Y ) ∧A Z −→ FA(M,Y ∧A Z) (4.6)

is a weak equivalence for all A-bimodules Y and left A-modules Z.

3. If M is dualizable over A then DAM := FA(M,A) is dualizable over Aop.

4. If M,Y and Z are A-bimodules then (4.6) is also a weak equivalence if Z
is dualizable over A.

Proof: The canonical map ρ is defined to be the adjoint to the map DAM ∧Aop

M ∼= M ∧ADAM → A where the last map is the evaluation, i.e. adjoint to the
identity on DAM . To prove the first statement, we give an inverse of ρ in the
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stable homotopy category. Note that as M is assumed to be dualizable there is
a weak equivalence FA(M,M) ν←− DAM ∧AM . This gives a map

η : A→ FA(M,M)→ DAM ∧AM (4.7)

in the homotopy category which can be choosen to be A-bilinear.
An inverse of ρ is then given as

DAopDAM ∼= A ∧Aop DAopDAM
η∧Aop id−−−−−→ M ∧Aop DAM ∧Aop DAopDAM

M∧Aopeval−−−−−−−→M.

The proof that this gives an inverse of ρ is left to the reader. One can also
consult [33].
Now let us show that the map ν from the second part of the statement is
a weak equivalence if M is dualizable. Again we construct an inverse in the
stable homotopy category. This inverse is given as

FA(M,Y ∧A Z)
η∧Aid−−−−→ DAM ∧AM ∧A FA(M,Y ∧A Z) eval−−→

DAM ∧A Y ∧A Z
ν∧AZ−−−−→ FA(M,Y ) ∧A Z. (4.8)

In order to prove the third part of the statement it suffices to prove the analogue
of the second statement for the Aop-bimodule DAM . Note that in the proof of
the second part, we used the fact that the map ν in the composition (4.8) was
a weak equivalence only for the construction of the map η : A → DAM ∧AM .
Hence for the proof of the third statement it suffices to find an analogue of this
map, i.e. a map A → DAopDAM ∧Aop DAM so that the proof of the second
statement can be copied. Using (4.7) from above which exists as M is supposed
to be dualizable over A this analogue is given as

A
η // DAM ∧AM ∼= M ∧Aop DAM

ρ // DAopDAM ∧Aop DAM

also using the map ρ from part 1.
We come to the last part of the statement. The parts of the proposition we
have already proved, provide the following chain of equivalences:

FA(M,Y ) ∧A Z ' FA(M,Y ) ∧A DAopDAZ

' DAopDAZ ∧Aop FA(M,Y )
' FAop(DAZ,FA(M,Y ))
' FA(M,FAop(DAZ, Y ))
' FA(M,DAopDAZ ∧Aop Y )
' FA(M,Y ∧A Z)

This proves the last point of the proposition. 2

Following [76] we call a topological group (stably) dualizable when it is dual-
izable as an S-module. A first hint that dualizability might play a role in the
topological theory of Galois extensions comes from the following observations:
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First recall that for every algebraic Galois-extension R → T the extension T
is a finitely generated R-module, see lemma 1.3. This corresponds to the no-
tion of dualizability defined above. Now, topologically we have the following
characterization from [36, III.7.9].

Lemma 4.16. Let A be a commutative S-algebra. Then M is a dualizable A-
module if and only if it is weakly equivalent to a retract of a finite cell A-module,
i.e. if and only if it is semi-finite.

If A is connective this is the case if and only if M is a retract of a finite CW
A-spectrum. In a local category MS,E of E-local S-modules where S 6= E
however, there may be dualizable spectra that are not weakly equivalent to
a retract of a finite cell module. The K(1)-local Galois extension LK(1)S →
JU∧

2 into the complex image-of-J spectrum JU∧
2 is an example for this. The

spectrum JU∧
2 is a dualizable but not a semi-finite LK(1)S-module, see [75,

6.2.2]. Galois extensions of commutative S-algebras are always dualizable by
[75, 6.2.1.] and we will show in section 4.5.2 that this holds for Galois extensions
of associative S-algebras as well.

4.5.1 The norm map

For a spectrum X with left G-action recall the definition of the homotopy orbit
spectrum

XhG := EG+ ∧G X

where EG = B(∗, G,G) is the standard contractible space with free right G-
action given by a bar construction. Also recall the dualizing spectrum

SadG := S[G]hG = F (EG+, S[G])G

formed with respect to the right G–actions [76, 2.5.]. For any stably dualizable
group and any S-module X with left G–action, there is a map

N : (X ∧ SadG)hG −→ XhG

called the norm map ([75, 3.6], [76, ch.5]). We refer the reader to these sources
for details. We just recall for later use that the norm map is a weak equivalece
whenever X is of the form W ∧G+, see [76, 5.2.5].

4.5.2 Associative Galois extensions and dualizability

Proposition 4.17. Let A be an S-algebra and A → B a Galois extension of
S-algebras with Galois group G. Then B is dualizable over A and over Aop.
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Proof: We prove that B is dualizable over Aop with the following diagram
where M is a B-bimodule.

FAop(B,A) ∧Aop M
ν //

i∗
��

FAop(B,A ∧Aop M)

i∗
��

FAop(B,BhG) ∧Aop M
ν //

��

FAop(B,BhG ∧Aop M)

��
FAop(B,BhG) ∧Aop M

��

FAop(B, (B ∧Aop M)hG)

��
FAop(B,B)hG ∧Aop M // FAop(B,B ∧Aop M)hG

(B ∧G+)hG ∧Aop M //

jhG

OO

(B ∧G+ ∧Aop M)hG

(jM∧AB)hG

OO

M ∧A (B ∧G+)hG //

∼=

OO

(M ∧A B ∧G+)hG

∼=

OO

M ∧A (B ∧G+ ∧ SadG)hG
∼= //

M∧AN

OO

(M ∧A B ∧G+ ∧ SadG)hG

N

OO

It is clear that the diagram commutes and that the lower horizontal map is an
isomorphism. We will prove that all the vertical maps are weak equivalences.
The statement then follows from the case M = B. The top vertical maps are
weak equivalences as i : A→ BhG is an equivalence by assumption. The second
top vertical map on the right is an equivalence by lemma 4.13. Then, one level
further below, we have weak equivalences by a general property for homotopy
fixed points that can be checked easily. The maps labeled jhG and (jM∧AB)hG

are weak equivalences by lemma 4.12. The isomorphisms are clear and the norm
maps N are weak equivalences as the spectra in sight are of the form X ∧G+.
The dualizability of B over A can be proved analogously using the maps j̃. 2

Lemma 4.18. Let B be an A-algebra with an action of a topological group G
under A. Let M be dualizable over Aop. Then the natural map

M ∧A BhK → (M ∧A B)hK

is a weak equivalence for any subgroup K of G. Analogously, if N is dualizable
over A then the canonical maps

BhK ∧A N → (B ∧A N)hK

are weak equivalences.
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Proof: As M is supposed to be dualizable over Aop there is a weak equivalence
M → DADAopM by proposition 4.15. We then get a commutative diagram

M ∧A BhK
ρ∧id //

��

DADAopM ∧A BhK

��

ν // FA(DAopM,BhK)

'
��

(M ∧A B)hK
(ρ∧id)hK

// (DADAopM ∧A B)hK νhK
// FA(DAopM,B)hK

in which all the horizontal and hence also the vertical maps are weak equiva-
lences. Again the statements involving N are proved analogously. 2

Corollary 4.19. For any Galois extension A → B of associative S-algebras
any subgroup K of the Galois group, the canonical maps

B ∧A BhK → (B ∧A B)hK

BhK ∧A B → (B ∧A B)hK

are weak equivalences. Here the actions on B ∧A B are on the second factor in
the first line and on the first factor in the second line.

Proof: This follows from lemma 4.18 as B is dualizable over A and over Aop

by proposition 4.17. 2

4.6 More examples

4.6.1 Induced extensions

Given a Galois extension A → B and a map of S-algebras A → C we want to
know if also C → C ∧A B is a Galois extension. In general, the smash product
of two associative algebras over an associative algebra does not even have the
structure of an associative algebra. Moreover, in general C∧AB does not admit
the structure of a right C-module. However, if B and C are not just uncas but
(central) A-algebras, i.e. in AA, the product C ∧A B has more structure, see
lemma 2.8. In particular, C ∧AB then is also an A–algebra and an unca under
C.
For the rest of this section we assume that A is a cofibrant S-algebra and that
B and C are A–algebras and cofibrant as associative S-algebras under A. We
implicitely assume that C ∧A B is cofibrant as an associative S-algebra under
A, making a cofibrant replacement if necessary. Note that under the above
cofibrancy assumptions C ∧A B represents the derived smash product over C
regardless whether a cofibrant replacement was made or not. So there will be
no ambiguity in the sequel. We also assume that B has an action of a dualizable
group G by maps of associative S–algebras under A. The smash product C∧AB
inherits this action of G by S-algebra maps and these maps are under C.
If A→ B is a Galois extension we can ask if C → C ∧AB is a Galois extension
as well. For this, we have to check the fixed point and the unramification
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condition. The latter factors as follows and is always satisfied as the top map
in the next diagram is a weak equivalence:

C ∧A (B ∧A B)

∼=
��

C∧Ah // C ∧A F (G+, B)

'
��

(C ∧A B) ∧C (C ∧A B) // F (G+, C ∧A B)

(4.9)

The fixed point condition needs extra hypothesis and we have listed some suffi-
cient conditions in the next proposition. For the question which hypothesis are
really necessary, see section 5.4 and theorems 5.13 and 5.16.

Proposition 4.20. Let A,B and C be as above and assume that A → B is a
Galois extension for the group G. Then C → C ∧A B is a G-Galois extension
under any of the following conditions:

1. C is dualizable over A or

2. C is an (A,B)-bimodule or

3. B is faithful over A.

in the last case, also C → C ∧A B is faithful as a left C-module.

The proposition has a converse under the condition that C is a faithful A-
module:

Proposition 4.21. Let A,B and C be as above and assume that C is faithful
as an A-module. Let the group G act on B from the left through A-algebra
morphisms such that C → C ∧A B is a G-Galois extension. Then A→ B is a
G-Galois extension if at least one of the following conditions holds:

1. C is dualizable over A or

2. C is an (A,B)-bimodule or

3. B is faithful over A.

Proof of propositions 4.20 and 4.21:
The unramification condition follows from (4.9) so the only thing that remains
to be checked is the fixed-point condition. For this we look at the following
diagram.

C ∧A A
∼= //

C∧Ai
��

C

i
��

C ∧A BhG // (C ∧A B)hG

(4.10)

Under the conditions of proposition 4.20 or 4.21 the bottom map is a weak
equivalence by lemma 4.18 or lemma 4.13 respectively. So if A ' BhG is a weak
equivalence then so is the left map in the diagram and hence so is the map on
the right. This proves proposition 4.20. Conversely, under the hypothesis of
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proposition 4.21 the right vertical map is a weak equivalence. Hence so is the
left and as C is supposed to be a faithful A-module also A → BhG is a weak
equivalence. 2

Corollary 4.22. Any faithful Galois extension of a commutative S-algebra
induces a faithful Galois extension along any map of S-algebras.
A Galois extension of a commutative S-algebra induces a Galois extension along
any dualizable map of S-algebras. 2

Example 4.23. There is a Cp−1-action on p-completed K-theory KUp with
homotopy fixed point spectrum equivalent to the Johnson Wilson spectrum
E(1). In fact E(1)p → KUp is a faithful Cp−1-Galois extension [10, 1.4.15].
The quotient map E(1)p → K(1) = E(1)p/p to Morava-K-theory induces an
extension K(1) → K(1) ∧E(1)p

KUp ' KU/p. We investigate quotient maps
more thoroughly in chapter 7. By corollary 4.22 the map K(1) → KU/p is a
faithful Cp−1-Galois extension of associative S-algebras.

Propositions 4.20 and 4.21 have analogs for local Galois extensions. We only
point out that if the map h in diagram (4.9) is an E∗-equivalence then so is
the bottom map. As a consequence, E-local Galois extensions are preserved
when passing to an induced extension as in proposition 4.20 in the sense that
we obtain again an E-local Galois extension. We will now look at some ex-
tensions induced from certain K(n)-local Galois extensions. We will induce
up along maps into K(n) or some other K(n)-algebra. In particular, the ex-
tensions obtained are automatically maps between K(n)-local spectra. But as
E∗-equivalences between E-local spectra are automatically weak equivalences
inMS , the extensions obtained are automatically global Galois extensions.

With these remarks, we can obain induced Galois extensions from the main
examples of Galois extensions from [75, 5.4]. First fix a prime p and recall the
Morava stabilizer group Sn = Aut(ΓN/Fpn) of automorphisms of the height n
Honda formal group law Γn over Fpn . The extended Morava stabilizer group
Gn is a semi-direct product Gn = Sn o Gal of Sn with the finite Galois group
Gal = Gal(Fpn/Fp) ∼= Z /n. The extended Morava stabilizer group acts on the
coefficient ring π∗(En) = W(Fpn)[[u1, . . . un−1]][u±1] of the n-th p-primary even
periodic Lubin-Tate spectrum En. Here W(−) denotes the ring of Witt vectors.
By the Hopkins-Miller and Goerss-Hopkins theory this action lifts to an action
of Gn on En by maps of commutative S-algebras.
More generally, for the absolute Galois group Gal(Fp/Fp) ∼= Ẑ, the semidirect
product Gnr

n := SnoẐ acts on the commutative S-algebra Enrn with coefficients
π∗(Enrn ) = W(Fp)[[u1, . . . un−1]][u±1]. As expected in [75], the spectrum Enrn
was recently shown to be the separable closure of En in the sense of definition
4.37, see [11]. Section 2 of [11] is also a good reference summarizing two differ-
ent constructions of the spectrum Enrn .

The spectrum En is not a discrete Gn-spectrum which makes it necessary to
give an extended definition of homotopy fixed point spectra. Following Devinatz
and Hopkins [31] we define for every closed subgroup K ⊂ Gn



4.6. MORE EXAMPLES 49

EhKn := LK(n)(colimiE
hUiK
n ) (4.11)

where {Ui} is a descending sequence of open normal subgroups in Gn with⋂
i Ui = {e}. This definition agrees with the usual definition of homotopy fixed

points if K is finite. We refer to [31] and [75] for a discussion of this definition.
In particular we have

EhGn
n ' LK(n)S.

The following theorem taken from [75, 5.4.4] states that the definition of homo-
topy fixed point spectra (4.11) gives rise to a plethora of Galois extensions of
commutative S-algebras. For the notion of pro-Galois extension see [75, 8.1.]
or section 4.8.

Theorem 4.24. (Devinatz-Hopkins)

1. For each pair of closed subgroups H ⊂ K ⊂ Gn with H normal and of
finite index in K, the map EhKn → EhHn is a K(n)-local K/H-Galois
extension.

2. In particular, for each finite subgroup K ⊂ Gn the map EhKn → En is a
K(n)-local K-Galois extension.

3. Likewise, for each open normal subgroup U ⊂ Gn (necessarily of finite
index) the map

LK(n)S → EhUn

is a K(n)-local Gn/U -Galois extension

4. A choice of a descending sequence {Ui}i of open normal subgroups of Gn

with
⋂
i Ui = {e} exhibits

LK(n)S → En

as a K(n)-local pro-Gn-Galois extension.

In particular this theorem gives rise to the following diagram taken from [75,
5.4.6]. Here M is a maximal finite subgroup of Gn which is unique up to
conjugacy if p is odd and n = (p − 1)k with k prime to p or for p = 2 and
n = 2k with k odd by [46]. The fixed point spectra EhMn are then known to
be the n-th higher real K-theory spectra EOn of Hopkins and Miller. In the
diagram groups label faithful Galois or pro-Galois extensions of commutative
S-algebras.
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EhGal
n

Gal //

Ẑ

%%
En

nẐ // Enrn

EOn

M

::uuuuuuuuuu

OO

LK(n)S

OO Gn

CC����������������
Gal //

Ẑ

99

Gnr
n

AA

EhSn
n

nẐ //

Sn

OO

(Enrn )hSn

Sn

OO (4.12)

We also obtain the completed Johnson-Wilson spectra Ê(n) as the homotopy
fixed point spectra EhKn for the group K = F∗pn o Gal. We will come back to
the completed Johnson-Wilson spectra in chapter 7. In the same way as above
we hence obtain the following diagram.

EhGal
n

Gal //

Ẑ

""
En

nẐ // Enrn

Ê(n)

K

==zzzzzzzz

OO
(4.13)

We can now obtain Galois extensions of associative S-algebras from these di-
agrams. First recall the Morava K-theory spectra Kn and K(n) defined for
every prime p. Recall from [75, 5.6.4] that K(n) does not admit the stucture of
a commutative S-algebra. Though K(n) respectively Kn admits the structure
of an associative Ê(n)- respectively En-algebra, e.g. by [4]. So there are central
maps En → Kn and Ê(n) → K(n) of S-algebras. Inducing up along the map
LK(n)S → Kn turns every Galois extension from diagram (4.12) into a Galois
extension under Kn yielding the following diagram.

EhGal
n ∧LK(n)S Kn

Gal //

Ẑ

**
En ∧LK(n)S Kn

nẐ // Enrn ∧LK(n)S Kn

EOn ∧LK(n)S Kn

M
55kkkkkkkkkkkkkk

OO

Kn

OO Gn

;;xxxxxxxxxxxxxxxxxxxxxxxx
Gal //

Ẑ

44

Gnr
n

88

EhSn
n ∧LK(n)S Kn

nẐ //

Sn

OO

(Enrn )hSn ∧LK(n)S Kn

Sn

OO
(4.14)
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An analogous diagram makes sense with Kn replaced by K(n). Inducing up
along the map Ê(n)→ K(n) gives a diagram corresponding to (4.13). We ob-
serve that En∧Ê(n)

K(n) ' Kn. This equivalence follows easily from the theory

of regular quotients as K(n) = Ê(n)/I for the regular ideal I = (p, v1, . . . , vn−1)
in π∗(Ê(n)), see [36] and chapter 7. It makes sense to set Knr

n := Enrn ∧EnKn '
Enrn ∧Ê(n)

K(n). This spectrum has homotopy groups π∗(Enrn )/I and we give
a further justification for the notation Knr

n in section 4.9. We end up with the
following diagram.

EhGal
n ∧

Ê(n)
K(n) Gal // Kn

nẐ // Knr
n

K(n)

K

88qqqqqqqqqqqqq

OO
(4.15)

In particular this exhibits the mapK(n)→ Kn as a K(n)-local Galois extension
for the group K as above. Since every K(n)-module spectrum is K(n)-local,
the K(n) local Galois extensions of K(n) respectively Kn are automatically
global Galois extensions. The next proposition then follows immediately from
corollary 4.22.

Proposition 4.25. The labeled maps in diagrams (4.14) and (4.15) are (pro-)
Galois extensions with respect to the indicated groups. 2

4.6.2 Intermediate algebras: Half a Galois correspondence

In the commutative context, inducing extensions along a map of commutative
S-algebras leads to a proof of one part of a Galois correspondence [75, 7.2.].
The analogous statement holds for a possibly associative Galois extension B of
a commutative S–algebra A. Recall the following definition from [75, 7.2.1].

Definition 4.26 (Allowable subgroup). Let G be a stably dualizable group
and K < G a subgroup. K is said to be an allowable subgroup if

• K is dualizable,

• as a continuous map of spaces the projection G → G/K onto the orbit
space under the action of K admits a section up to homotopy and

• the collapse map G×K EK → G/K induces a stable equivalence S[G×K
EK]→ S[G/K].

In particular every subgroup of a discrete group G is allowable.

Theorem 4.27. Let A be a commutative S-algebra and B a possibly associative
S-algebra such that A → B is a faithful G-Galois extension. let K < G be an
allowable subgroup. Then BhK → B is a faithful K-Galois extension.
If moreover K�G is an allowable normal subgroup then A→ BhK is a faithful
G/K-Galois extension.
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Proof: We just sketch the proof as it is analogous to the proof of [75, 7.2.3.]. For
the first part, it suffices to check that the induced extension B∧ABhK → B∧AB
is a faithful K–Galois extesion. Note that B ∧A BhK ' F (G/K+, B) and
B ∧A B ' F (G+, B) ' F (K+, F (G/K+, B)) as K is an allowable subgroup
of G. In fact the extension B ∧A BhK → B ∧A B corresponds to the trivial
K-Galois extension of F (G/K+, B) and so the claim follows.
For the second part, it suffices to show that B → B ∧A BhK is a faithful G/K-
Galois extension. Again this extension corresponds to the trivial extension
B → F (G/K+, B) from which the claim follows. 2

For more examples obtained by realizing algebraic Galois extensions over a
given commutative S-algebra, see chapter 8.

4.7 Characterizing associative Galois extensions

In the algebraic setting, the fact that a map R → T is a Galois extension can
be expressed in several ways, see e.g. [24, 37]. Some of these characterizations
have been generalized to the commutative topological setting in [75, 6.3]. We
give equivalent characterizations for the associative case.

Proposition 4.28 (Characterization). Let A→ B be a map of associative S-
algebras and let the stably dualizable group G act on B from the left by S-algebra
maps under A. The following are equivalent:

1. A→ B is a G-Galois extension, i.e. the canonical maps i and h are weak
equivaleces.

2. The maps i and j̃ are equivalences and B is dualizable over A.

3. The maps i and j are equivalences and B is dualizable over Aop.

If in addition B is faithful as a right A-module then these statements are also
equivalent to the following:

4. The canonical map h is a weak equivalence and B is faithful as a right
A-module and dualizable over Aop.

If in addition B is faithful as a left A-module then the statements 1.-3. are also
equivalent to the following:

5. The canonical map h is a weak equivalence and B is faithful as a left
A-module and dualizable over A.

Proof: (1) ⇒ (2): This follows from lemma 4.12 and proposition 4.17.
(2) ⇒ (1): We have to show that hM is a weak equivalece in the case M = B.
This is true as in the stable homotopy category hM factors as

M ∧A B ∼= B ∧Aop M
ρ∧AopM−−−−−→ DAopDAB ∧Aop M

ν−→ FAop(DAB,M)
∼= FBop(DAB ∧A B,M) ν∗←− FBop(FA(B,B)op,M)ej∗←− FBop(BbGc,M) ∼= F (G+,M).
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Here, we are first using the canonical map ρ, then that DAB is dualizable over
Aop and that B is dualizable over A. Finally the last map is the one induced
by j̃.
(1) ⇒ (3): Again this follows from lemma 4.12 and proposition 4.17.
(3)⇒ (1): Analogously to the proof of (2)⇒ (1) one can show that h̃ is a weak
equivalence. Then h is a weak equivalence by the proof of lemma 4.12.1.
(1) ⇒ (4): Again, this follows from lemma 4.17.
(4)⇒ (1): We have to show that i is a weak equivalence and by the faithfulness
assumption it suffices to show that B ∧A i is a weak equivalence. This map
factors in the homotopy category as

B ∼= B ∧A A ' B ∧A BhG −→ (B ∧A B)hG hhG

−−→ FA(G+, B)hG ' B.

Here the last map is a weak equivalence as h is assumed to be one and the map
before is a weak equivalence by lemma 4.18.
(1) ⇔ (5) is proved similarly. Recall that h is a weak equivalence if and only if
h̃ is. 2

4.7.1 Preservation and detection statements for induced exten-
sions

The characterizations above may be used to obtain preservation and detection
statements for induced extensions, compare [75]. We first consider the dualiz-
ability property.

Lemma 4.29. Let A be an associative S-algebra and C a central (A,A)-
bimodule.

1. If B is dualizable over A then C ∧A B is dualizable over C.

2. If B and C are central and C is faithful and dualizable over A and C∧AB
is dualizable over C then B is dualizable over A.

Proof: There is a commutative square

FA(B,A) ∧A C ∧A B ν //

ν

��

FA(B,C ∧A B)

∼=

��

FA(B,C) ∧A B
∼=

��
FC(C ∧A B,C) ∧C C ∧A B ν // FC(C ∧A B,C ∧A B).

If B is dualizable over A then the upper horizontal and the left top vertical
maps are weak equivalences by proposition 4.15.2 and hence so is the lower
map which shows part 1. For part 2 note that the dualizability of C ∧A B over
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C provides a diagram

FA(B,A) ∧A B ∧A C
ν∧AC //

∼=
��

FA(B,B) ∧A C

'ν

��

FA(B,A) ∧A C ∧A B

' ν

��
FA(B,C) ∧A B

∼=
��

FA(B,B ∧A C)

∼=
��

FC(C ∧A B,C) ∧C C ∧A B ν // FC(C ∧A B,C ∧A B).

in which the lower map is a weak equivalence as C ∧A B is dualizable over C.
The vertical maps are weak equivalences by proposition 4.15.4 as C is assumed
to be dualizable over A. Hence the upper map is also a weak equivalence and
by faithfulness of C we see that B is dualizable over A. 2

Corollary 4.30. If G is a stably dualizable group, then A[G] is dualizable over
A for any associative S-algebra A. 2

Next, we investigate faithfulness in the context of induced extensions.

Lemma 4.31 (Faithfulness preservation lemma). If B is a right A-module and
M is a left faithful A module, then B ∧AM is a faithful left B-module.

Proof: N ∧B B ∧A M ' ∗ implies N ∧A M ' ∗ and hence N ' ∗ since M is
faithful as a left A-module. 2

Lemma 4.32 (Faithfulness detection lemma). Let C and B be central A-
bimodules, C ∧A B faithful as left C-module and C faithful as left A-module.
Then B is a faithful left A-module.

Proof: Assume N ∧AB ' ∗. Then N ∧AC ∧AB ∼= N ∧AB∧AC ' ∗ as B and
C are central and hence (N ∧A C) ∧C (C ∧A B) ' ∗. As (C ∧A B) is a faithful
left C-module it follows that N ∧A C is contractibel. Hence also N ' ∗ as C is
a faithful left A-module. 2

The next observation summarizes the contents of lemma 4.32 and 4.31.

Corollary 4.33. An extension induced along a central map is faithful if and
only if the original extension is faithful. 2

Also recall the statements from lemma 4.29 that dualizability is preserved by
induced extensions and for central extensions is detected by induced extensions
along faithful and dualizable maps. Together with the characterizations of
Galois extensions from proposition 4.28 this allows to derive the preservation
and detections statements for Galois extensions (propositions 4.20 and 4.21)
again.
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4.8 Pro-Galois extensions

The slightly more general notion of a pro-Galois extension refers to certain
colimits of finite Galois extensions as we now review. Fix a cofibrant associative
S-algebra A and consider a directed system of finite Galois extensions A →
Bα of associative S-algebras Bα with Galois groups Gα. We assume several
coherence properties: For each α ≤ β we assume that Bα → Bβ is a cofibration
of associative S-algebras and Bα ' (Bβ)hGαβ for the kernel Gαβ of a prefered
surjection Gβ → Gα. Hence A → Bα is a sub Galois extension of A → Bβ.
Define B to be the colimit B := colimαBα formed in the category of S-algebras
and let G be the limit G := limαGα.

Definition 4.34 (Pro-Galois extensions of associative S-algebras). In this sit-
uation we define the map A → B to be a pro-Galois extension with Galois
group G.

The fundamental weak equivalences h, h̃, j and j̃ from lemma 4.12 defined
for every Galois extension extend to weak equivalences for pro-Galois exten-
sions in the following way: For each α the weak equivalence hα : Bα ∧A Bα →
FA(Gα+, Bα) provides a weak equivalence hα,B : B ∧A Bα → FA(Gα+, B) by
lemma 4.12.2. The colimit over these gives a weak equivalence

h : B ∧A B −→ FA((G+, B))

where we use the notation FA((G+, B)) := colimα FA(Gα+, B). We have

colimαB ∧A Bα ∼= B ∧A colimαBα ∼= B ∧A B

as smash product commute with sequential colimits in the category of associa-
tive S-algebras. The morphisms jα extend to a morphism

B〈〈G〉〉 := lim
α
B〈Gα〉 −→ FA(B,B).

Let A → B be a pro-Galois extention of associative S-algebras A → B and
A → C a map of associative S-algebras such that for each α, the map C →
C ∧A Bα is again a Gα-Galois extension. The system C → C ∧A Bα again
assembles to a pro-Galois extension C → colimαC ∧A Bα ' C ∧A B. Again
there is an E-local version of pro-Galois extensions introduced in [75, 8.1.]
for extensions of commutative S-algebras. As examples we recall the systems
of K(n)-local (pro-) Galois extensions over LK(n)S and other intermediate S-
algebras into Enrn introduced in section 4.6.1. Starting with these extensions
and inducing extensions along maps as in section 4.6.1 produces associative
pro-Galois extensions in the sense of definition 4.34.

4.9 Separability, connectedness and separable clo-
sure

For every commutative ring R there is a separable extension R that contains
every finite projective connected separable commutative extension of R. The
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ring R is called the separable closure of R and R→ R is a pro-Galois extension
[30].
The picture has been partially generalized to the topological context and we
recall the definitions, partly allowing associative ring spectra as well.

Recall that a ring is connected if it does not split as the product of two non-
trivial rings. Connected rings are also called indecomposable. Recall that a
possibly associative ring is connected if and only if it does not have any non-
trivial central idempotents [59, §21].

Definition 4.35 (Connected associative S-algebras). Let B be an associative
S-algebra. We say that it is connected if it is not equivalent to the product
B1 ×B2 of two non-trivial S-algebras B1 and B2 under B.

Note that the product can likewise be seen as being formed in algebras or
modules as the forgetful functor as a right adjoint commutes with limits.

Lemma 4.36. An associative S-algebra B is connected if and only if π0(B) is
connected as an associative ring, i.e. it does not contain any central idempotents
besides 0 and 1.

Proof: If B is not connected, choose B1 andB2 with Bi 6' ∗ such that B ' B1×
B2. Then the canonical map B1×B2 → B1 and the trivial map B1×B2 → B2

induce a self map B → B. This map is idempotent and is neither trivial nor it
represents 1 in π0(B). We call the idempotent that it represents e and have to
show that it represents a central element in π0(B). For this note that π∗(B1)⊕
π∗(B2) ∼= π∗(B) ∼= [B,B]B ∼= [B1, B1]B ⊕ [B2, B2]B ⊕ [B1, B2]B ⊕ [B2, B1]B.
We have [B1, B1]B ∼= [B1, B1]B1 ∼= π∗(B1) and similarly for B2. The map
π∗(B1)⊕ π∗(B2) ∼= π∗(B1)⊕ π∗(B2)⊕ [B1, B2]B ⊕ [B2, B1]B allows to conclude
that [B1, B2]B ∼= 0. Dealing with non-commutative rings, such a conclusion
may be wrong in general but here it follows as the isomorphism is given by the
canonical inclusion. As π∗(Bi) is a direct summand in π∗(B) we see that the
Künneth spectral sequence

Extπ∗(B)(π∗(B1), π∗(B2)) =⇒ π∗(FB(B1, B2))

collapses and hence gives Homπ∗(B)(π∗(B1), π∗(B2)) ∼= [B1, B2]B ∼= ∗. By [59,
21.6] this means that (1 − e)π∗(B)e ∼= ∗ and by [59, 21.5] it follows that e is
central.
Vice versa if π0(B) is not connected choose a non-trivial central idempotent
e ∈ π0(B)\{0, 1}. Choose B-module maps f0 and f1 representing e and 1 − e
in π0(B) = [B,B]B0 . Form the mapping telescopes B[f−1

i ] and define Bi :=
LB[f−1

i ]B. Localization preserves algebra structures and under the assumption
that e is central we can show that B1 × B2 is equivalent to B. For this, recall
the decomposition B∗ = eB∗e⊕eB∗(1−e)⊕(1−e)B∗e⊕(1−e)B∗(1−e) for any
idempotent e of B∗. We see that (B1)∗ ∼= eB∗e and (B2)∗ ∼= (1 − e)B∗(1 − e).
As eB∗(1− e) and (1− e)B∗e are trivial if and only if e is central, we see that
under the centrality assumption of e we have π∗(B1 ×B2) ∼= B∗. 2



4.9. SEPARABILITY, CONNECTEDNESS AND ... 57

Of course in a commutative ring any idempotent is central and hence our ap-
proach generalizes the corresponding definition and statement for commutative
S-algebras from [75, 10.2]. Recall the following definition from [75, 10.3].

Definition 4.37 (Separably closed commutative S-algebras). A commutative
S-algebra A is separably closed if for every finite commutative G-Galois exten-
sion A → B either B is not connected or G = {e}. A separable closure of a
commutative ring spectrum A is a commutative pro-Galois extension A → A
such that A is separably closed.

In the topological setting only few examples of separably closed commutative
ring spectra are known. John Rognes has shown that the sphere spectrum is
separably closed [75] and Andrew Baker and Birgit Richter have shown that
Enrn is the separable closure of En in the commutative sense [11]. Both proofs
rely on the algebraic property that the coefficients Z respectively (Enrn )∗ do not
have non-trivial connected Galois extensions of commutative rings, i.e. they
are separably closed as commutative rings.
We hesitate to make an analogous definition for associative ring spectra as
this would not generalize the commutative definition but gave something new.
Note that the algebraic closure in the commutative sense above might very
well admit non-trivial associative Galois extensions. Instead of persuing to
find a meaningful definition we investigate the theories Kn directly. Recall
that (Kn)∗ ∼= Fp[u±] and the spectrum Knr

n has coefficients (Knr
n )∗ ∼= Fp[u±].

Also recall from proposition 4.25 and section 4.8 that the pro-Galois extension
En → Enrn induces a pro-Galois extension Kn → Knr

n .

Enrn // Knr
n

En

Ẑ

OO

// Kn

Ẑ

OO

Proposition 4.38. Let p be an odd prime and let B be a Galois extension
of Knr

n with non-trivial Galois group and B∗ commutative. Then B is not
connected. In other words Knr

n is a maximal connected Galois extension of Kn

with commutative coefficients.

The following lemma gives the link to algebra that will allow to prove the last
proposition.

Lemma 4.39. Let K be a ring spectrum such that K∗ is a graded field. Then
every finite topological Galois extension induces an algebraic Galois extension
of associative rings on π∗.

Proof: Let K → B be a Galois extension. As K∗ is a graded field the Künneth
spectral sequence

TorK∗(B∗, B∗) =⇒ π∗(B ∧K B)

collapses and gives π∗(B ∧K B) ∼= B∗ ⊗K∗ B∗. The topological unramification
condition hence gives

B∗ ⊗K∗ B∗ ∼= π∗(B ∧K B) ∼=
∏
G

B∗. (4.16)
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For the fixed point condition note that B∗ as a K∗-module, i.e. as a K∗-vector
space, is finitely generated by the last formula as G is supposed to be finite.
The fixed points B∗ ⊗K∗ BG

∗ are isomorphically mapped onto a subspace of
(
∏
GB∗)

G ∼= B∗. Counting dimensions as in [11] then shows that BG
∗ must be

isomorphic to K∗. 2

Proof of proposition 4.38: Suppose B is a finite Galois extention of Knr
n

such that B∗ is a commutative ring. The coefficients π∗(Knr
n ) ∼= Fp[u±1] are

a graded field so the last lemma applies and says that B∗ is a finite Galois
extension of (Knr

n )∗. As p is assumed to be odd, it follows as in the proof of
[11, 5.1.] that π1(B) = ∗. It then follows that π0(B) is a separable extension
of the field Fp which is separably closed. So by [30, II.2.4]

π0(B) ∼=
∏

Fp.

Hence either G is trivial or B∗ is not connected. In case B∗ is not connected
lemma 4.36 says that B is not connected as an associative S-algebra. 2
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Chapter 5

Hopf-Galois extensions of
associative S-algebras

In this chapter we define the notion of a Hopf-Galois extension for associative S-
algebras generalizing the notion for commutative S-algebras introduced in [75].
Galois extensions A→ B in the sense of definition 4.2 with finite Galois group
give rise to Hopf-Galois extensions as defined below. We investigate under
which conditions Hopf-Galois extensions A → B are preserved or detected
when inducing up along a map of S-algebras A→ C. We obtain necessary and
sufficient conditions, thereby answering a question posed by Rognes. Many of
our results hold for a slightly more general notion of extensions to be defined
which we call coalgebra extension. We give basic examples for Hopf-Galois
extensions. Thom spectra and regular quotients are dealt with in chapters 6
and 7.

5.1 Hopf-Galois extensions of ordinary rings

Let R→ T be an extension of rings. The notion of Galois extensions has been
generalized to situations where one does not necessarily have a group acting on
the extension object T . Instead one requires a Hopf algebra K to coact on T .
This leads to Hopf-Galois extensions. The concept is due to Chase and Sweedler
[25] for extensions of commutative rings and was generalized to extensions of
associative rings by Kreimer and Takeuchi [58]. We work with a Hopf algebra
K over R. Some authors instead work with Hopf algebras K̃ over some field k
but this is included in our framework by setting K := R⊗k K̃. We require the
Hopf algebra K to coact on T under R, meaning that there is a coassociative
and counital morphism β : T → T ⊗R K of algebras under R. In particular we
require T ⊗RK to be an R-algebra which is not automatically the case when R
is not commutative. However this is always the case when K = R⊗k K̃ or when
T and K are central R-algebras regardless whether R is commutative or not.
Recall the definition of the R-module of cofixed points T coK which is defined
as

T coK := {t ∈ T |β(t) = t⊗R 1}.

61
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This is the same as the equalizer of the maps β and T ⊗R η where η : R → K
is the unit map:

T coK // T
β //

T⊗Rη
// T ⊗R K. (5.1)

Definition 5.1 (Hopf-Galois extension of rings). Let R, T and K be as above.
The ring map R→ T then is a Hopf-Galois extension if

1. The unit map R→ T coK is an isomorphism and

2. the canonical map h : T ⊗R T
T⊗Rβ−−−−→ T ⊗R T ⊗R K

µ⊗RK−−−−→ T ⊗R K is an
isomorphism.

There is a lot of recent literature on this subject, see e.g. [26, 21] and the
references therein. We are very brief here and just say the minimum we need
for motivating our topological work.
We just mention that every Galois extension with finite Galois group G provides
a Hopf-Galois extension. As Hopf algebra one simply can take the functional
dual of the group ring HomZ(Z[G], R). This and many more examples can be
found in the literature cited above.

We will develop a theory of Hopf-Galois extensions for associative ring spectra.
When dealing with (possibly associative) extensions of some commutative ring
or ring-spectrum it will turn out that this generalizes the algebraic notion via
an Eilenberg-MacLane embedding theorem as it was the case for honest Galois
extensions. For this we will need the following result which we state from [58,
1.10].

Proposition 5.2. ([58, 1.10]) Let R be a commutative ring and R → T a
Hopf-Galois extension with respect to a K which is finitely generated projective
as an R-module. Then T is faithfully flat as an R-module. 2

This allows to state the cofixed point condition yet in another way. For this we
recall the definition of the Amitsur complex for a ring map R→ T . Recall that
a cosimplicial object C•(T/R) is given by

Cq(T/R) := T⊗R(q+1)

where the structure maps are defined using the unit R → T and the multi-
plication T ⊗R T → T . The Amitsur complex then is the associated cochain
complex.

Proposition 5.3. If R → T is faithfully flat, then the Amitsur complex asso-
ciated with the ring map R→ T is acyclic.

Proof: An argument similar to the following is given in [21, B.0.4] for commu-
tative rings. We check that this argument also applies when R is associative.
As T is faithfully flat over R it suffices to show that T ⊗R Cq(T/R) ⊗R T is
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acyclic. Let us show that this complex is exact in T⊗R(k+2) and choose a cycle
x =

∑
j t0,j ⊗R t1,j ⊗R · · · ⊗R tk+1,j ∈ T⊗R(k+2). Then∑
j

t0,j ⊗R 1⊗Rt1,j ⊗R t2,j ⊗R · · · ⊗R tk+1,j

=
∑
j

t0,j ⊗R t1,j ⊗R 1⊗R t2,j ⊗R · · · ⊗R tk+1,j

−
∑
j

t0,j ⊗R t1,j ⊗R t2,j ⊗R 1⊗R · · · ⊗R tk+1,j

± · · ·

(−1)k+1
∑
j

t0,j ⊗R t1,j ⊗R t2,j ⊗R · · · ⊗R 1⊗R tk+1,j

Multiplying the first two factors we obtain x = (idT ⊗R∂⊗R idT )(
∑

j t0,jt1,j⊗R
· · ·⊗R tk+1,j) where ∂ : T⊗R(k−1) → T⊗R(k) is the boundary map in the cochain
complex associated with C•(T/R). So the cycle x is a boundary which proves
the proposition. 2

Given a Hopf-Galois extension R→ T , the two maps δ0, δ1 : T → T ⊗R T from
the Amitsur complex correspond to the maps β and T ⊗R η from the equalizer
diagram (5.1). So the cofixed points occur as the zeroth cohomology group of
the Amitsur complex and when the extension is faithfully flat, this is the only
non-vanishing Amitsur cohomology group by proposition 5.2. We now turn to
our topological definitions.

5.2 Definitions

5.2.1 Hopf-Algebras in stable homotopy theory

Definition 5.4 (Bialgebras). Let A be an associative S-algebra. We define a
bialgebra H under A to be an A-unca that is also a coalgebra, hence equipped
with a unit η : A → H and an associative multiplication µ : H ∧A H → H,
together with a counit ε : H → A and a coproduct ∆: H → H ∧AH in the cat-
egory of S-algebras under A satisfying the usual coassociativity and counitality
assumptions.

For A = S a bialgebra H with structure maps in the category of commutative
S-algebras was called a Hopf algebra in [75]. In algebra, a Hopf algebra by
definition is a bialgebra with antipode where an antipode is a map λ : H → H
such that µ(H∧Aλ)∆ = ηε = µ(λ∧AH)∆. The antipode condition was dropped
in [75] as this would restrict the number of examples. Although in the examples
we will usually have maps that satisfy the antipode condition up to homotopy
we cannot always strictify these maps to obtain an antipode in the category of
S-algebras under A. So we do not include this condition in our point-set-level
definition. We might call the A-bialgebras defined above A-Hopf algebras when
we agree that in stable homotopy theory the existence of an antipode is usually
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not included in the definition. We will do so and instead always emphasize
when a Hopf algebra has a (homotopy) antipode. In this sense, for A = S
the definition above is the definition of [75] with the difference, that we work
with associative, not commutative S-algebras. Note that in general it is no
longer automatic that H ∧A H is an S-algebra. It is of course an S-algebra if
A is commutative and H is an associative A-algebra or if the map A → H is
central or more generally if H is of the form H = A ∧ H̃ for some S-bialgebra
H̃. In any of our examples we will be in one of these situations. Moreover
the multiplicative structure of the Hopf algebra is not needed for many of the
statements we will make. We can often work with objects of the following type.

Definition 5.5 (Unital coalgebra). Let A be an associative S-algebra. We
define a unital coalgebra H (or coalgebra under A) to be an A-bimodule under A
with a counit ε : H → A and a coassociative, counital comultiplication ∆: H →
H ∧A H in the category of A-bimodules under A.

Here are some examples:

(a) First note that for any (pointed) space X the group ring S[X] := S ∧X+

has the structure of a unital coalgebra. This structure is induced by the
inclusion of the basepoint ∗ → X, the diagonal X → X × X and the
projection X → ∗. Moreover if X is an n-fold loop space, S[X] inherits the
En-operad action from X and for n ≥ 1 we obtain a Hopf algebra in the
sense above, see proposition 6.3.

(b) For a finite group G the functional dual DG+ := F (G+, S) '
∏
G S can

be rigidified to a commutative Hopf algebra under S. Again smashing with
any unca A provides a Hopf-algebra H ' F (G+, S) ∧ A under A which is
equivalent to F (S[G], A) by the dualizability of G.

(c) We can obtain new Hopf algebras from old ones: The smash product of
Hopf algebras under some commutative S-algebra is again a Hopf algebra
under the same commutative S-algebra. And for any Hopf algebra H under
S also A ∧H is a Hopf algebra under A for any S-algebra A.

5.2.2 Coaction of a Hopf-algebra and Hopf-Galois extensions

Definition 5.6. (Coaction) Let A be an associative S-algebra, B an A-unca
and H a Hopf-algebra under A. We say that H coacts on B under A if there
is a map

β : B → B ∧A H

of S-algebras under A, again satisfying coassociativity and counitality. More
generally, H can just be a coalgebra in the category of A-bimodules under
A in which case β is just required to be a coassociative and counital map of
A-bimodules under A.

We will now approach the definition of Hopf-Galois extension and see that this
definition also makes sense in case a unital coalgebra H coacts on some unca B
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under A. In this case, note that we can immediately define the morphism h as

h : B ∧A B
B∧Aβ−−−−→ B ∧A B ∧A H

µ∧AH−−−−→ B ∧A H (5.2)

which is a map of (B,A)-bimodules under A.

Formulating a cofixed point condition in analogy to the algebraic situation needs
a little more work. First note that there is a cosimplicial object, the Hopf-cobar
complex C•

A(H;B) which under A is defined by

CqA(H;B) := B ∧A H ∧A · · · ∧A H︸ ︷︷ ︸
q

with coface maps δ0 := β∧1q, δi := 1i∧A∆∧A1q−i for 0 < i < q and δq := 1q∧η.
The codegeneracies are given by σi := 1i ∧ ε∧ 1q−i. We denote the totalization
of this cosimplicial object as CA(H;B) and have a coaugmentation

i : A→ CA(H;B). (5.3)

We will require some cofibrancy assumptions that make the theory homotopy
invariant. Having a map of S-algebras A→ B and a unital coalgebra H coact-
ing on B under A we will first require that A is cofibrant as an S-algebra.
Second we will require that smashing with B respectively H over A represents
the derived smash product. If these two requirements are satisfied, we will say
that our data satisfy good cofibrancy assumptions. Of course we have good
cofibrancy assumptions if B and H are cofibrant objects in the category of A-
uncas by corollary 3.17 but we have to allow more flexibility here to include the
coalgebra case. Moreover, as we do not have model structures on the category
of comodules or coalgebras, at least we do not know that such structures exist,
it might not be possible to keep the comodule and coalgebra structure when
cofibrantly replacing B respectively H in the category of A-uncas. So even in
the Hopf algebra situation we might not be able to force cofibrancy in this sense
if it is not given anyway. It is therefore worth noting that by theorem 3.16 we
have good cofibrancy assumptions whenever B and H are in the class FA of
extended cell A-bimodules as introduced in definition 3.14.

Under good cofibrancy assumptions, C(H;B) is a good replacement for the
homotopy cofixed points as we will now explain. An investigation of the derived
functor of the cofixed point functor in general model categories based on cobar
constructions and the investigation of Hopf-Galois extensions in this context
has been announced by Kathryn Hess, see [44, 45]. We mentioned that in the
algebraic context the cofixed points are exactly given by the equalizer of the unit
and coaction that correspond to the maps δ0, δ1 : C0 → C1 in the Hopf-cobar
complex. This equalizer is just Hom∆(∗, C•) where ∗ is the constant cosimplicial
object with a point in each degree and it is clear that a homotopy invariant
version should be Hom∆ evaluated at a cofibrant and fibrant replacement, and
this is Hom∆(∆, C•f ) = Tot(C•f ). We will show below that in the situation
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of the next definition C• itself is good enough i.e. Tot(C•) ' Tot(C•f ) has the
correct homotopy type. Here is the basic definition of this chapter:

Definition 5.7 (Hopf-Galois extensions and coalgebra extensions of associative
S-algebras). Let A be a cofibrant S-algebra and H a Hopf algebra that coacts
on B over A as above. Assume that smashing with B respectively H represents
the derived smash product over A, e.g. this is the case when B and H are
cofibrant S-algebras under A. We call B an H-Hopf-Galois extension of A, if
the maps h and i from equations (5.2) and (5.3) are both weak equivalences.
More generally, if H is just a coalgebra coacting on B under A such that the
morphisms h and i are weak equivalences we call A→ B a coalgebra extension.

There is a nice criterion in [75, prop. 12.1.8] for when a map S → B of commu-
tative S-algebras is a Hopf-Galois extension. For a map of S-algebras A → B
define the Amitsur complex to be the cosimplicial object C•(B/A), analogously
defined to the object C•(T/R) from section 5.1, see [75, 8.2.1]. Then define
A∧B := TotC•(B/A) to be the completion of A along B formed in A-modules,
[75, 8.2.1]. This is one example of a G-completion as defined in [17]. More pre-
cisely A∧B is the G-completion of A defined as the totalization of a cosimplicial
resolution of A in the G-model structure on the category of cosimplicial A-
modules (MA)∆ for the class of injective models G = {G|G a left B-module}.
At least for commutative A this completion A∧B is equivalent to Bousfield’s B-
nilpotent completion L̂ABA from [15] understood to be defined in the category
of A-modules. This follows by comparison of [17] with [15, 5.6,5.8], a proof if
A → B is a map of commutative S-algebras is given in [75, 8.2.3]. The proof
applies equally well if B is an associative S-algebra. If A is just in AS we have
to require that A → B is central in order that the nilpotent resolution given
in [75, 8.2.2] is one of A-modules. We will need to compare these completions
only in the case where A is a commutative S-algebra.

Criterion 5.8. Let H coact on B over A as above with appropriate cofibrancy
assumptions. Then B is an H-Hopf-Galois-extension of A if and only if

1. the canonical map h : B ∧A B → B ∧A H is a weak equivalence and

2. the canonical map A→ A∧B is a weak equivalence, i.e. A is complete along
B.

Proof of criterion 5.8: We have to show that Tot(C•(B,H)) defines the
G-completion of A for the class of injective models G as above. In the terminol-
ogy of [17] we can prove the criterion by showing that C•(B,H) defines a weak
G-resolution of A as we will now recall.
First look at the Amitsur complex C•(B/A) defined as Ck(B/A) := B∧Ak+1

with the obvious coface and codegeneracy maps, i.e. given by unit and multipli-
cation maps as in the algebraic case. The Amitsur complex is exactly the triple
resolution for the triple (B ∧A−, η, ν). This is a weak G-resolution of A by [17,
7.4] and by [17, 6.5] weak resolutions can be used to calculate completions.
Now let us show that also C•(B,H) defines a weak G-resolution of A. Note
that there is a cosimplicial weak equivalence C•(B/A) → C•(B,H) defined
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using the map h iteratedly which is a weak equivalence by assumption. The
claim then follows as the resolution C•(B,H) is clearly termwise G-injective (it
suffices that all the terms are B-modules). For commutative S-algebras this
result is stated in [75, 12.1.7,12.1.8]. 2

The criterion and the arguments in its proof particularly show that TotC•(B,H)
has the correct homotopy type as claimed above. Moreover, due to the cofi-
brancy assumptions it is now clear that the definition of Hopf-Galois extension
or coalgebra extension is homotopy invariant. For the unramification condition
this follows analogously to the Galois case, see lemma 4.3. For the completion
condition this follows as the G-completion up to natural equivalence is indepen-
dent of the choice of the G-resolution [17, 5.7.].

The prototypical example of a Hopf-Galois extension of S-algebras is the unit
map S →MU from the sphere spectrum into the complex cobordism spectrum
MU [75, 12]. The Hopf algebra for this extension is the spherical group ring
S[BU ]. The map h : MU ∧ MU → MU ∧ S[BU ] is the Thom-equivalence.
The target of the map i : S → S∧MU := Tot C•(MU/S) is the abutment of the
Bousfield-Kan spectral sequence associated to the cosimplicial commutative S-
algebra C•(MU/S). But this spectral sequence is the Adams-Novikov-spectral
sequence, hence converges to π∗S and i is a weak equivalence as well. We will
generalize this example in chapter 6. It is maybe interesting to note that the
extension S → MU is not thh-étale and hence cannot be a Galois extension
for any group G. Though the Hopf-Galois extension S → MU contains a lot
of information on the infinitely many pro-Galois extensions LK(n)S → En for
each prime p and n ≥ 0. We refer the reader to [75, chapter 12] for more details
on this.

5.3 Some examples

5.3.1 Hopf-Galois extensions from Galois extensions

Let A → B be a map of associative S-algebras and G a finite group acting on
B by maps of associative S-algebras under A. For the case A = S and B a
commutative S-algebra it is stated in [75] that A→ B is a Hopf-Galois extension
if and only if it is a Galois extension. The argument from [75, 12.1.6] carries
over to our more general situation as we now recall. First, H = A ∧ F (G+, S)
is a Hopf-algebra under A in the sense of definition 5.4. The group action
α : G+ ∧ B → B gives a coaction β : B → F (G+, B) ∼= B ∧A H of H on B
under A by adjunction. It is immediate from this definition that the canonical
map B ∧AB → F (G+, B) for the Galois extension (i.e. defined using the group
action) is a weak equivalence if and only if so is the canonical map B ∧A B →
B ∧A H for the Hopf-Galois extension (defined using the coaction of H). The
Hopf cobar complex C•(H;B) is the group cobar complex given in codegree q
by F (Gq+, B) with totalization BhG. So we see that A is complete along B, i.e
A ' TotC•(H;B) if and only if A ' BhG. It follows that A → B is a Galois
extension if and only if it is a Hopf-Galois extension with Hopf algebra and
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coaction defined as above.

5.3.2 Trivial extensions

We call Hopf-Galois extensions A→ H given by the unit map into a Hopf alge-
bra H under A trivial. The Galois, hence Hopf-Galois extensions of S-algebras
A→ F (G+, A) for a finite group G are examples for this. Not every unit map
A → H needs to be a Hopf-Galois extension and the following definition is
important.

Definition 5.9 (Homotopy antipode). Let H be a Hopf algebra under A. We
call a map λ : H → H of A-bimodules such that

µ(H ∧A λ)∆ ' ηε ' µ(λ ∧A H)∆

a homotopy antipode.

If H is a Hopf algebra under A as in definition 5.4 such that A is complete
along H and if H admits a homotopy antipode λ, then A→ H is a Hopf-Galois
extension. In this case, an inverse of h in the homotopy category is given by

H ∧A H
H∧A∆−−−−→ H ∧A H ∧A H

H∧Aλ∧AH−−−−−−−→ H ∧A H ∧A H
µ∧AH−−−−→ H ∧A H.

A diagram proving that this is a left inverse for h is the following:

H ∧H H∧∆ //

H∧∆
��

H ∧H ∧HH∧λ∧H//

H∧H∧∆
��

H ∧H ∧H
µ∧H //

H∧H∧∆
��

H ∧H
H∧∆

��
H ∧H ∧H H∧∆∧H //

H∧ε∧H
��

H(4)
H∧λ∧H∧H // H(4)

µ∧H∧H //

H∧µ∧H
��

H ∧H ∧H
µ∧H

��
H ∧A ∧H

H∧η∧H // H ∧H ∧H
µ∧H // H ∧H

The left vertical and bottom horizontal compositions are both the identity map.
The diagram proving that the map in question is also a right inverse for h is
left to the reader.
Besides trivial Galois extensions, one class of trivial Hopf-Galois extensions is
given by the Hopf algebras A[X] for any loop space X. Taking loop inverses
defines a homotopy antipode. The completion condition A ' A∧A[X] can be
checked directly by an Adams spectral sequence argument, see section 6.2. The
point of view taken in section 6.2 is that S[X] is the Thom spectrum associated
with the trivial map X → BF and this map clearly lifts to BSF , i.e. the Thom
spectrum S[X] is orientable along H Z. We hence conclude that S ' S∧S[X]

(proposition 6.9). The claim A∧A[X] ' A follows by our preservation theorem for
induced extensions (theorem 5.13). The next lemma shows that the completion
condition is always satisfied for the unit map of a Hopf algebra.

Lemma 5.10. Let H be a Hopf algebra under A. Then A is complete along
H, i.e. A ' A∧H .
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Proof: The coaugmented Amitsur complex A→ C•(H/A),

A // H
//// H ∧A H · · ·oo

admits a contraction defined in degree q to be the map σ0 : H∧Aq+1 ε∧AH
q

−−−−→ Hq.
So for the cohomotopy terms πsπt(C•(H/A)) we have

πsπt(C•(H/A)) =
{
πt(A) if s = 0

0 if s > 0.

We hence see that the homotopy sectral sequence

Es,t2 = πsπt(C•(H/A)) =⇒ Tot(C•(H/A)) ' A∧H

[17, 2.9,6,7] collapses which yields A ' A∧H . 2

Proposition 5.11. Assume that H is a Hopf-algebra under A which has a
homotopy antipode. Then A→ H is a Hopf-Galois extension with Hopf algebra
H.

Proof: We have explained above that the existence of a homotopy antipode
implies that the canonical map h is a weak equivalence. The completion condi-
tion holds by lemma 5.10. Hence A→ H is a Hopf-Galois extension by criterion
5.8. 2

5.4 Induced extensions

We saw in lemma 2.8 that for an associative S-algebra A and A-algebras B
and C also B ∧A C is an A-algebra and an unca under B. Moreover, a Hopf
algebra H̃ under A gives rise to a Hopf algebra H := C ∧A H̃ under C if H̃
and C are A-algebras and any unital A-coalgebra D gives rise to a unital C-
coalgebra C ∧A D without further assumptions. If A → B is as above and a
Hopf-Galois extension for some Hopf algebra H̃ it makes hence sense to ask
whether C → C ∧A B is a Hopf-Galois extension for H. We also treat a de-
tection statement. We formulate our results for Hopf-Galois extensions but the
statements have analogs for coalgebra extensions with the same proofs.

For the next statements recall that the completion C∧
C∧AB

of C along C ∧A B
formed in the category of C-modules by definition is TotC•(C ∧A B/C) and
the completion C∧

B of C along B formed in A-modules is Tot(C ∧A C•(B/A)).

Lemma 5.12. Let A be an associative S-algebra and B and C be A-algebras.
Then the completion C∧

C∧AB
formed in the category of C-modules is equivalent

to the completion C∧
B formed in A-modules.

Proof: The triple resolution Γ•MC
(C ∧A B) = C ∧A Γ•MA

(B) by [17, 7.4] is
a weak resolution of C along C ∧A B in C-modules. We show that it is also
a weak resolution of C along B in MA. As all the terms of the resolution
are B-modules by our centrality assumptions, it is clear that the resolution is
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termwise G-injective for the class of B-module spectra G. A sufficient condition
for that we even get a weak resolution as wanted is that the coaugmentation
C → C ∧A Γ•MA

(B) induces a weak equivalence HomMA
(C ∧A Γ•MA

(B); I) →
HomMA

(C; I) for every G-injective I, see [17, 7.2,7.4]. This is the case by [17,
7.3] as a contraction s−1 of this augmented simplicial set is given by s−1f :=
µfΓMA

. 2

Theorem 5.13. (Preservation theorem) Let A→ B be a Hopf-Galois extension
with respect to a Hopf algebra H and let B and C be cofibrant A-algebras under
some associative S-algebra A. Then C → C ∧A B is a Hopf-Galois extension
with Hopf algebra C ∧A H if and only if C is complete along B in the category
of A-modules.

Proof: The canonical maps h for the two extensions in question are related by
hC∧AB/C = C ∧A hB/A. So if hB/A is a weak equivalence then so is hC∧AB/C .
The rest follows from the last lemma. 2

We will apply the following corollary in the next chapter. For a detection
theorem the following property turns out to be crucial.

Corollary 5.14. Let A→ B be a cofibration of cofibrant associative S-algebras
and let a Hopf algebra H coact on B over A such that the canonical map h is
a weak equivalence. Assume that A → B is central and let C be an A-algebra
which is complete along B in the category of A-modules. Then C → C ∧A B is
a Hopf-Galois extension with the Hopf algebra C ∧A H. 2

Definition 5.15. Let M be a left A-module.We say that the completion of M
along B inMA is smashing if M∧

B
∼= A∧B ∧AM .

For example this is the case for all A-modules M if the completion is a smashing
Bousfield localization in the category of A-modules. We can now formulate our
detection theorem.

Theorem 5.16. (Detection theorem) Let B and C be A-algebras under some
associative S-algebra A, let C → C∧AB be a Hopf-Galois extension with respect
to a Hopf algebra C ∧A H and assume that A → C is faithful. Then A → B
is Hopf-Galois with Hopf algebra H if and only if the completion of C along B
formed in A-modules is smashing.

Proof: As hC∧AB/C = C ∧A hB/A and A → C is faithful it follows that hB/A
is a weak equivalence. We have to check whether the completion A∧B of A
along B formed in MA is equivalent to A. By faithfulness this condition ex-
actly asks whether C ' A∧B ∧A C. By assumption and lemma 5.12 we have
C ' C∧

C∧AB
' C∧

B. So C ' A∧B ∧A C if and only if C∧
B ' A∧B ∧A C, i.e. if and

only if the completion is smashing. 2

When working with commutative S-algebras, theorems 5.13 and 5.16 give pre-
cise statements under which conditions Hopf-Galois extensions are preserved
or detected by a basechange along a (faithful) map A → C. By the embed-
ding of Galois theory into Hopf-Galois theory the theorems apply to Galois
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extensions and so answer the question posed in [75, 7.1] which conditions are
actually necessary assumption for preservation and detection statements for
Galois extensions. The following lemma is a nice corroboration.

Lemma 5.17. If M is a dualizable A-module, then the completion of M along
B in MA is smashing.

Proof: We have

M ∧A A∧B ' FAop(DAM,TotC•(B/A))
∼= TotFAop(DAM,C•(B/A)) ' TotM ∧A C•(B/A) 'M∧

B ,

compare [75, 8.2.4]. 2

Moreover comparison with the results about induced extensions from section
4.6.1 provide the following proposition.

Proposition 5.18. Let A→ B be a central Galois extension of S-algebras.

(a) If C is dualizable over A or if C is an (A,B)-bimodule then C is complete
along B in the category of A-modules.

(b) If A→ B is faithful, then any associative A-algebra is complete along B in
the category of A-modules.

Conversely if C → C ∧A B is a Galois extension where G acts on B and C is
central and faithful over A we have the following conclusions:
If C is dualizable over A or C is a right B-module or A → B is faithful then
the completion of C along B formed in A-modules is smashing.

Proof: Follows from comparing theorem 5.13 with proposition 4.20 and 5.16
with proposition 4.21. 2





Chapter 6

Thom spectra

The prototype of a Hopf-Galois extension of commutative S-algebras presented
in [75] is the unit map S → MU from the sphere spectrum into the complex
cobordism spectrum. This spectrum arises as the Thom spectrum Mf associ-
ated to the canonical map f : BU → BF = BGL1S, the classifying space of
stable spherical fibrations or the space of units of S. The Hopf algebra for this
extension is the spherical group ring S[BU ] and the coaction is given by the
Thom diagonal. The canonical map h : MU ∧MU →MU ∧S[BU ] is the Thom
equivalence. The completion condition S ' S∧MU follows from the convergence
of the Adams-Novikov spectral sequence.
Thom spectra associated with maps X → BGL1S have been constructed in [64]
and among experts it has been known for some time that the construction of
Thom spectra works more generally starting with a map X → BGL1R into the
space of units of any E∞-ring spectrum R. The construction of Thom spectra
has recently been generalized and updated in [3]. In particular, Thom spectra
constructions that apply even when R is just an A∞ ring spectrum are given
and orientations are investigated.
In section 6.1 we briefly sketch the construction of Thom spectra using the
category of ∗-monoids [13, 3], a rigidified model of A∞ spaces based on the
linear isometries operad in the style of [36]. If Mf is an R-algebra Thom
spectrum associated with a loop map f : X → BGL1R, the spectrum R[X] is a
Hopf-algebra that coacts on Mf . It also follows from the theory of orientations
that the canonical map h : Mf ∧RMf →Mf ∧RR[X] is a weak equivalence in
this case. The map R→Mf is hence a Hopf-Galois extension if and only if R
is complete along Mf . In general this is a non-empty condition and needs to
be checked. The following theorem answers the question whether R is complete
along Mf in case R = S.

Theorem 6.1. Let X be path connected, f : X → BGL1S = BF a loop map
and let Mf be the associated Thom spectrum. Then S is complete along Mf
if and only if f lifts to BSF , i.e. if and only if Mf is orientable along H Z.
Likewise the map S → Mf is an associative Hopf-Galois extension with Hopf
algebra S[X] and coaction defined by the Thom diagonal if and only if f lifts to
BSF .

In other words, S → Mf is a Hopf-Galois extension if and only if the Mf -

73
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based Adams spectral sequence converges to π∗S. It follows that most of the
classical Thom spectra, e.g. MU,MSU and MSO are Hopf-Galois extensions of
the sphere spectrum, though MO is not. There is also a Hopf-Galois extension
S → H Z associated with a map Ω2S3〈3〉 → BGL1S. Next recall the Thom
spectrum denoted Mξ which is associated with a map j : ΩΣCP∞ → BGL1S
and was investigated in [8]. The unit S → Mξ is a Hopf-Galois extension of
associative S-algebras and Mξ cannot be a commutative S-algebra as it is not
even homotopy commutative.
If f does not lift to BSF we can at least produce Thom spectra after inducing up
along the map S → S∧S Z/2, where S Z/2 denotes the Moore spectrum modulo
2. In this case, completion along S Z/2 is completion along Mf or likewise
localization at S Z/2.

Proposition 6.2. If X is path connected and f : X → BGL1S = BF a loop
map that does not lift to BSF , the induced extension S∧S Z/2 → S∧S Z/2 ∧Mf is
a Hopf-Galois extension with the induced Hopf algebra S∧S Z/2 ∧ S[X].

Examples for maps S →Mf where Mf is a Thom spectrum which is not com-
plete along S are given by the Thom spectra associated with systems of groups
like e.g. Braid groups. It is known that these Thom spectra are wedges of Eilen-
berg McLane spectra H Z/2 and so Mf is not orientable along H Z in this case.

For experts theorem 6.1 may not be surprising and some result in this direction
has already been indicated in [75]. However, we think that the role of the
orientability condition has not been clear so far. Theorem 6.1 follows mainly
by combination of various results from the literature. We review these results
and think that it is worth giving an account based on [3].

6.1 Units, Thom spectra and orientations

6.1.1 Units of ring spectra and Thom spectra

Recall that for an S-algebra R the space of units is defined to consist of those
components of Ω∞R that correspond to units in the ring π0R. In other words,
there is a pullback

GL1R //

��

Ω∞R

��
π0(R)× // π0(R)

in the category of unpointed spaces. Now let us suppose thatR is a commutative
S-algebra. Then GL1R is an infinite loop space. We can hence form the princi-
pal fibration GL1R→ EGL1R→ BGL1R and for every map f : X → BGL1R
the (homotopy) pullback

Pf //

��

EGL1R

��
X

f // BGL1R

(6.1)
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in the category of unpointed spaces. The Thom spectrum associated to the
map f : X → BGL1R is then defined as the derived smash product

Mf := Σ∞
+ Pf ∧LΣ∞+ GL1R R. (6.2)

The classical Thom spectra arise in this way from maps f : X → BGL1S = BF .

If R is just an associative S-algebra, then GL1R is just a group-like A∞ space
and GL1R→ EGL1R→ BGL1R is not a principal fibration. In order to define
Thom spectra one hence needs a replacement of diagram (6.1). One solution
can be given by working in the more rigid category of ∗-modulesM∗. We refer
to [13, 3] for the construction and a more thorough treatment of the properties
of the categoryM∗ but give some indications here. The category of ∗-modules
is constructed in analogy to the category of S-modules MS , just for spaces
instead of spectra. For the construction we have to fix a countably infinite-
dimensional real inner product space U and let L(n) be the n-th space of the
linear isometries operad L, i.e. L(n) = L(Un, U) is the space of linear isometries
Un → U . In particular L(1) = L(U,U) is a topological monoid. Then one first
defines the category of L(1)-spaces which has objects the unpointed spaces X
with an associative and unital action L(1) × X → X. The category of L(1)-
spaces can be equipped with the structure of a model category [13, 4.16] and
has an associative and commutative product given by

X ×L Y := L(2)×L(1)×L(1) X × Y.

The category of ∗-modulesM∗ is the full subcategory of objects for which this
product is unital. It can be equipped with the structure of a monoidal model
category [13, 4.22]. Monoids with respect to the product ×L correspond to A∞
spaces [13, 4.8] and ∗-monoids are just ×L-monoids which are ∗-modules. In
particular, for any associative S-algebra R, the space of units GL1(R) gives rise
to a ∗-monoid in the following way. Note that every space X is a trivial L-space
and ∗ ×L X is a ∗-module. Now by a mild abuse of notation and as in [3] we
set

GL1R = ∗ ×L (GL1R)c

where (GL1R)c is a cofibrant replacement of the A∞ space GL1R in the cate-
gory of ×L-monoids. GL1R thus redefined is a monoid in M∗. The monoidal
structure of the category of ∗-modules then allows to define a refined version
of diagram (6.1). Note that for a monoid G in M∗ we can form the usual
classifying space construction. We define

ELG := |B•(∗, G,G)|M∗

BLG := |B•(∗, G, ∗)|M∗

as realizations of the bar constructions. The generalization of (6.1) is then
given as follows. For a map of ∗-modules f : X → BLGL1R we can take the
pullback

PLf //

��

ELGL1R

��
X

f // BLGL1R
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in the category of right GL1R-modules and define the Thom spectrum as

Mf := Σ∞
+ PLf ∧LΣ∞+ GL1R R (6.3)

[3, section 5]. This generalizes (6.2). Henceforth we will apply the same notation
regardless whether we work in the category of ∗-modules or not, e.g. we will
write Pf also for PLf . Using functorial cofibrant replacements we can make
the Thom spectrum construction into a functor on the category of ∗-modules
over BGL1R to the category of R-modules. Directly from the construction we
see that

P∗ ∼= GL1R,

f ' g ⇒ Pf ' Pg,
P (X ∗−→ BGL1R) ∼= X ×GL1R,

so that
M∗ ∼= R,

f ' g ⇒ Mf 'Mg,

M(X ∗−→ BGL1R) ∼= R ∧ Σ∞
+X = R[X].

Proposition 6.3. Let X be a ∗-monoid or a loop space. Then M(X ∗−→
BGL1R) = R[X] is an associative Hopf algebra under R. If X is a commuta-
tive ∗-monoid or an infinite loop space then R[X] is a commutative Hopf algebra
under R. More generally for any R-algebra Thom spectrum Mf associated with
a map f : X → BGL1R the Hopf algebra R[X] coacts on the associated Thom
spectrum Mf under R.

Proof: By [13, A.1] loop maps over a grouplike ∗-monoid can be rigidified to
maps of ∗-monoids and the analogous statement for n-fold loop maps holds as
well [13, A.2.]. So it suffices to prove the statement for maps of (commutative)
∗-monoids. The structure maps are induced by the corresponding maps on the
level of spaces which are

* //

((QQQQQQQQQQQQQQQ X
∆ //

$$HHHHHHHHH X ×X
µ //

��

X //

zzvvvvvvvvv *

vvmmmmmmmmmmmmmmm

BGL1R

and
X

∆ //

f $$IIIIIIIII X ×X
pr1 //

f×∗
��

X

fzzuuuuuuuuu

BGL1R.

This proves the proposition. 2

If R is a commutative S-algebra (infinite) loop maps f : X → BGL1R give rise
to associative (commutative) R-algebra Thom spectra Mf , see [3]. However if
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R is only associative, Mf is defined as a smash product over the (associative)
S-algebra Σ∞

+GL1R. Smash products over associative S-algebras need not have
the structure of an S-algebra unless centrality conditions hold, compare chapter
2. In particular there is no reason for Mf having the structure of an S-algebra
in this case.

6.1.2 Orientations

Given a map of S-algebras R→ T and a map f : X → BGL1R, we can compare
the Thom spectrum Mf with the one associated with the composite map

g : X
f−→ BGL1R→ BGL1T. (6.4)

In this case, there is an equivalence

Mg 'Mf ∧R T (6.5)

[3]. Moreover, if the composite map g is trivial we get a lift in the following
diagram where B(R, T ) is the pullback in the category of GL1R-modules.

B(R, T ) //

��

EGL1T

��
X

f
//

ea 44iiiiiiiiii
BGL1R // BGL1T

By [3, 5.30] the space of such lifts is equivalent to the space of T -orientations
of Mf . As an example B(S,H Z) = BSF . Given a lift ã as in the diagram,
we can pass to Thom spectra and get a map a : Mg → T which is called the
T -orientation associated with the lift ã.

Theorem 6.4. [3, 5.43] Let Mg be a Thom spectrum associated to a map
g : X → BGL1T and let us be given a T -orientation a : Mg → T . Then the
map

Mg
∆−→Mg ∧R R[X]

a∧RR[X]−−−−−−→ T ∧R R[X]

is a weak equivalence.

6.2 Thom spectra and Hopf-Galois extensions

The next lemma follows immediately.

Proposition 6.5. Let X be path connected and let Mf an R-algebra Thom
spectrum associated to a map f : X → BGL1R. Then the canonical map

h : Mf ∧RMf →Mf ∧R R[X]

is a weak equivalence.
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Proof: Set T = Mf and let g be the composition as in (6.4). Then Mg '
Mf ∧R Mf by (6.5). The multiplication µ : Mf ∧R Mf → Mf is an Mf -
orientation of Mf ∧R Mf , e.g. due to the unit condition by [3, 5.40]. The
canonical map h then is the map from proposition 6.4 for the orientation a = µ.

2

In order to investigate whether a loop map f : X → BGL1R actually gives rise
to a Hopf-Galois extension R → Mf we have to check whether R is complete
along Mf . The answer on this depends on the situation. We will investigate
the case R = S. The following proposition is well known.

Proposition 6.6. Let Mf be a Thom spectrum associated to a loop map
f : X → BGL1S for some path connected space X. Then π0(Mf) is either
Z or Z /2, the former if and only if Mf is orientable along H Z, i.e. if and
only if f lifts to BSF = B(S,H Z).

Proof: As X is path connected, Mf is −1-connected. So if Mf is orientable
along H Z then the Thom equivalence H Z∧Mf ' H Z∧S[X] shows that
π0Mf ∼= Z using the Künneth spectral sequence. Vice versa, if π0Mf ∼= H Z
then an orientation Mf → H Z is given by the map from Mf into the first
stage of its Postnikov tower. As ∗ ' BGL1 Z /2 = EGL1 Z /2, every Thom
spectrum associated with a mapX → BGL1S is orientable alongH Z /2. Again
the Thom isomorphism shows that the 2-torsion part of π0Mf is Z /2. Then
note that the inclusion of the fibre GL1S → P∗ is surjective on π0 and hence
S →Mf is surjective on π0. So π0Mf is cyclic which completes the argument.

2

We will now investigate the completeness condition, i.e. whether S∧Mf is equiv-
alent to S by use of Bousfied’s analysis of the Adams spectral sequence. First,
note that for the construction of the Adams Spectral sequence based on a ring-
spectrum E no commutativity assumptions are needed [1, 15]. So we can work
with the Adams spectral sequence based on the Thom spectrum Mf for any
loop map f . For the convergence result, we state Bousfield’s theorems 6.5 and
6.6 from [15]. Here cR := {r ∈ R : r ⊗ 1 = 1 ⊗ r in R ⊗Z R} is the core of
the ring R. By SG we denote the Moore spectrum associated with the abelian
group G. By YE we denote the Bousfield localization of Y at E and J is a set
of primes.

Theorem 6.7. ([15, 6.5]) Let E be a connective ring spectrum with cπ0E =
Z[J−1], and let Y be a connective sprectrum. Then YE ' L̂SEY and L̂SEY '
YSZ[J−1]. If X is a finite CW-spectrum, then the E∗-Adams spectral sequence
for X and Y is strongly Mittag-Leffler and converges completely to [X, L̂SEY ]∗.

Theorem 6.8. ([15, 6.6]) Let E be a connective ring spectrum with cπ0E =
Z/n for n ≥ 2, and let Y be a connective sprectrum. Then YE ' L̂SEY and
L̂SEY ' YSZ/n. If X is a finite CW-spectrum and if each [X,Y ]m has n-torsion
of bounded order, then the E∗-Adams spectral sequence for X and Y is Mittag-
Leffler and converges completely to [X, L̂SEY ]∗.
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In our case, i.e. for X = Y = S and E = Mf either theorem 6.7 or 6.8 applies
in view of proposition 6.6. The abutment of the Mf -based Adams spectral
sequence hence is SMf = SH Z = S or SMf = SS Z /2 according to the question
whether f lifts over BSF or not. Note again that the G-completion coincides
with Bousfield’s nilpotent completion as explained after criterion 5.8. We obtain
the following proposition.

Proposition 6.9. Let X be a path connected loop-space and f : X → BF a
loop-map. Then S is complete along the Thom spectrum Mf if and only if Mf
is orientable along H Z.

Proof: We have to show, that the unit map S → S∧Mf is a weak equivalence.
This follows from theorem 6.7 together with proposition 6.6 in case f lifts to
BSF . If a loop map f : X → BF does not lift to BSF , then S → Mf is
definitely not an S[X]-Hopf-Galois extension as then by proposition 6.6 and
theorem 6.8 the completion condition is violated as π∗S∧H Z /2 ' Z∧2 ⊗π∗S by
[15, 2.5]. 2

Proof of theorem 6.1: We verify the conditions of the criterion 5.8: The
first condition of criterion 5.8 always holds as was already shown in proposition
6.5. The second condition of criterion 5.8 by proposition 6.9 holds if and only
if Mf is orientable along H Z. 2

In the situation of theorem 6.8 the completion is localization and hence idem-
potent. We hence obtain the following proposition which corresponds to propo-
sition 6.2.

Proposition 6.10. Let X be a path connected loop-space and f : X → BF
be a loop-map, that does not lift to BSF . Then S∧S Z /2 → S∧S Z /2 ∧ Mf is
an S∧S Z /2[X]-Hopf-Galois extension of associative S-algebras in the sense of
definition 5.7.

Proof: Due to proposition 6.5 and corollary 5.14 we only have to check that
S∧S Z /2 is complete along S Z /2 which is obvious since by theorem 6.8 this
completion is localization and hence is idempotent. 2

Examples 6.11. (a) Let G be one of the infinite classical groups U , SU , O,
SO, Sp or Spin. The Thom spectra MG ([64, 13]) are associated with the
canonical infinite loop maps BG→ BGL1S and S →MG is a Hopf-Galois
extension of commutative S-algebras whenever π0(MG) ∼= Z. For G = O
this is not the case as π∗MO is a Z/2-algebra. For all the other G from
the above list however, we have π0(MG) ∼= Z. It is well known that the
cobordism ring π∗(MU) is an integral polynomial ring and π0(MSO) ∼= Z
was calculated in [84]. From this it follows that also MSpin and MSU are
orientable using the morphisms of groups Spin(n)→ SO(n) and SU(n)→
U(n). It follows from theorem 6.1 that MU,MSU,MSO and MSpin are
Hopf-Galois extensions of the sphere spectrum, but MO is not.
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(b) The Eilenberg-McLane spectrum H Z is the Thom spectrum associated to
a loop map Ω2S3〈3〉 → BSF [65, 28, 12]. So S → H Z is a Hopf-Galois
extension by theorem 6.1.

(c) The canonical inclusion CP∞ = BU(1) → BU can be extended to a loop
map j : ΩΣCP∞ → BU . The associated bundle is denoted ξ and the Thom
spectrumMξ is the Thom spectrum associated with the map j : ΩΣCP∞ →
BU , see [8]. The spectrum Mξ is hence an associative S-algebra. So S →
Mξ is a Hopf-Galois extension of associative S-algebras by theorem 6.1. It
was shown in [8] that H∗(ΩΣCP∞) is isomorphic to the (non-commutative)
algebra of non-symmetric functions. Hence also H∗(Mξ) ∼= H∗(ΩΣCP∞)
is not commutative and it follows that Mξ can not be a commutative S-
algebra.

(d) Several Thom spectra arise from systems of groups Gn → O(n). For in-
stance let Gn be the braid group Brn, the symmetric group Σn, the general
linear group GLn(Z) or the n-th group Br(Cn) from the Coxeter group
C-series. There is also a chain of morphisms of groups

Brn −→ Σn −→ GLn(Z) −→ O(n).

Each of the families comes with pairings Gn × Gm → Gn+m providing a
loop map BG∞ → BO → BGL1S [20, 27, 85, 13]. We denote the Thom
spectrum associated with the system {Gn} By MG. It is an associative S-
algebra. By [85] MBr(C) is a wedge of Eilenberg-McLane spectra H Z/2
and it was shown in [27] that MBr is a model for H Z/2. So none of the
Thom spectra MG for G as above is orientable along H Z. By proposition
6.2 we obtain Hopf-Galois extensions S∧S Z/2 → S∧S Z/2 ∧MG.



Chapter 7

Regular Quotients

7.1 Statement of results

In this chapter we will show that under mild hypotheses regular quotients give
rise to Hopf-Galois extensions in a weak sense. Our definition from chapter 5 is
not met exactly as we do not know whether there is a Hopf algebra in the cate-
gory of associative algebras as required by definition 5.7. Though the canonical
morphisms from criterion 5.8 can be defined and are weak equivalences. This
applies to some very famous maps of structured ring spectra including the maps
from the completed Johnson-Wilson theories Ê(n) to the MoravaK(n)-theories,
the maps from the Lubin-Tate spectra En to Kn, and many others. We state
the main theorem before explaining the details.

Theorem 7.1. Let R be an even commutative S-algebra and I = ~x a finite or
infinite regular sequence in R∗. For every xi ∈ I we arbitrarily fix a structure of
an associative R-algebra on R/xi thereby fixing such a structure on R/I. Then
the quotient map R → R/I is a weak Hopf-Galois extension if and only if R∗
is I-adically complete.

When the completion condition from the last theorem is not satisfied one can
hope that an adapted statement holds. Let R̂∗ = (R∗)∧I be the completion of
R∗ along I and let L̂RR/IR be Bousfield’s nilpotent completion of R along R/I
formed in R-modules, see section 7.4.

Theorem 7.2. Under the same assumptions, define R̂ := L̂RR/IR and assume

that R̂∗/I ∼= R∗/I. Then the induced morphism of S-algebras R̂ → R/I is
a weak Hopf-Galois extension. In particular this is the case whenever I is
generated by a finite regular sequence.

Assuming that the algebraic condition holds, the statement says that R→ R/I
respectiveley R̂→ R/I is a weak Hopf-Galois extension for every A∞ structure
on R/I when I = x has length one. However if I is not generated by a single
element, there may be more multiplicative structures than those coming from
multiplications on each R/xi separately. These were called “mixed” multiplica-
tions in [4, 9.1]. The statements then refer to all A∞ structures on R/I which
are not mixed.

81



82 CHAPTER 7. REGULAR QUOTIENTS

If I = x is a regular sequence of length one and x is of degree d, the Hopf
algebra in a weak sense for the extension R→ R/x is given by the square zero
extension R ∨ Σd+1R. We look at this square zero extension as the suspension
spectrum induced from the A∞ space S0∨Sd+1 ∼= Sd+1

+ . The coaction is defined
using the Bockstein map βx : R/x→ Σd+1R/x, see (7.7). This map is a homo-
topy derivation and we will show that it lifts to a strict derivation. Any choice
of such a strict derivation then defines a coaction of R ∨ Σd+1R on R/x under
R and the quotient map R → R/x is weakly Hopf-Galois with respect to any
such coaction. For general finite or infinite sequences I = (x1, x2, . . . ) the weak
Hopf-algebra is just the smash product of the weak Hopf algebras defined for
each xi and similarly for the coactions. The weak Hopf algebras and coactions
for the extensions R̂→ R/I arise in the same way.
This way of constructing the coaction implies that we work with a multiplica-
tive structure Φ on R/I which is obtained from multiplications Φi on R/xi. It
is hence clear that our theorem cannot refer to any of the “mixed products” on
R/I that are not of this form.

Our theorems have the following consequences: Let p be an odd prime and recall
the Johnson-Wilson spectra E(n) with π∗(E(n)) = Z(p)[v1, v2, . . . , vn−1, v

±
n ].

Let v0 = p and I(n) = (v0, . . . , vn−1). The completed Johnson-Wilson spectrum
R := Ê(n) is a commutative S-algebra with homotopy groups

π∗Ê(n) = Z(p)[v1, . . . , vn−1, v
±1
n ]∧I(n).

We obtain the n-th Morava K-theory at p as the regular quotient K(n) =
Ê(n)/I(n) = E(n)/I(n) (see e.g. [48, p.7]). Similarly for R := En, the even
periodic Lubin-Tate-spectrum with

π∗(En) = W(Fpn)[[u1, . . . , un−1]][u±1]

and In = (p, u1, . . . , un−1) we have Kn = En/In. Our theorems imply the
following.

Proposition 7.3. The quotient maps

Ê(n) −→ K(n)
and En −→ Kn

are weak Hopf-Galois extensions.

There are also interesting examples when the ideal I is infinite:

Proposition 7.4. The quotient map

MU −→ H Z

is a weak Hopf-Galois extension.
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Also recall the spectrum L̂MU
K(n)MU from [75, 9.6]. Defining Jn to be the kernel

of the map π∗MU(p) → π∗E(n), the homotopy groups of L̂MU
K(n)MU are given

by π∗MU(p)[v−1
n ]∧In+Jn

. We have the following result:

Proposition 7.5. The quotient map

L̂MU
K(n)MU −→ L̂MU

K(n)MU/Jn (7.1)

is a weak Hopf-Galois extension.

It was assumed in [75] that L̂MU
K(n)MU/Jn equals Ê(n) but this is actually not

true, see lemma 7.16. The composition L̂MU
K(n)MU → L̂MU

K(n)MU/Jn → Ê(n)
plays an important role in John Rognes’ work on Galois extensions as it is part
of a splitting LK(n)S → L̂MU

K(n)MU → Ê(n) → En that relates the chromatic
filtration on S-modules to a chromatic filtration on MU -modules by the maps
L̂MU
K(n)MU → Ê(n)→ En and LK(n)S → En with geometric content: The map

Ê(n)→ En is a K(n)-local Galois extension, LK(n)S → En is a K(n)-local pro-

Galois extension and L̂MU
K(n)MU → Ê(n) is a Henselian map. We think that this

interpretation remains true despite of lemma 7.16 though at the moment we
are not sure whether L̂MU

K(n)MU is really a commutative S-algebra (this would

follow from L̂MU
K(n)MU/Jn = Ê(n)). In this context the interpretation of (7.1)

as a weak Hopf-Galois extension might be of interest.

7.2 Regular quotients revisited

Let R be a commutative S-algebra and x ∈ πdR. We obtain a map

ΣdR ∼= ΣdS ∧R
x∧R // R ∧R

µ // R

of R-modules which we also denote by x. The cofiber of this map in the category
of R-modules is denoted by R/x = R/(x). This gives a diagram

ΣdR
x // R

ρx // R/x
βx // Σd+1R. (7.2)

If x ∈ πd(R) is not a zero-divisor we have π∗(R/x) ∼= R∗/(x), so R/x realizes
the algebraic quotient R∗/(x). More generally, for a sequence I = (x1, x2, . . . )
of elements xi ∈ π∗R define R/I as the smash product

∧
RR/xi. Now suppose

that R is even, i.e. that all odd-dimensional homotopy groups vanish, and
suppose that I is a regular sequence in R∗. By this we mean that multiplication
with xi is injective on R∗/(x1, . . . , xi−1). In particular all the xi are not zero-
divisors and R/I realizes the algebraic quotient R∗/I. Recall from [81] that
R/x and hence also R/I admits a homotopy associative multiplication. There
may be several different multiplications on R/x and on R/I and moreover,
there may also be “mixed” multiplicatons on R/I that are not obtained by
smashing multiplications on the R/xi together. However, independent of the
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fact whether the multiplication is mixed or not, it can be rigidified to a strictly
associative one making R/I an associative R-algebra ([81, 4]). There are a lot
of examples for this construction and regular quotients occur at several places
in the literature, see e.g. [81, 61, 62, 39, 36, 7, 4, 86, 87]. The following is a list
of some spectra and their homotopy groups arising in this context.

π∗(MU) = Z[x1, x2, . . . ]; |xi| = 2i;
π∗(BP ) = Z(p)[v1, v2, . . . ]; |vi| = 2(pi − 1);

π∗(BP 〈n〉) = Z(p)[v1, v2, . . . , vn];
π∗(k(n)) = Fp[vn];
π∗(E(n)) = Z(p)[v1, v2, . . . , vn−1, v

±
n ]; (7.3)

π∗(K(n)) = Fp[v±n ];
π∗(P (n)) = Fp[vn, vn+1, vn+2, . . . ];
π∗(En) = W(Fpn)[[u1, u2, . . . , un−1]][u±]; |ui| = 0; |u| = −2;
π∗(Kn) = Fpn [u±];
π∗(Enrn ) = W(Fp)[[u1, u2, . . . , un−1]][u±];
π∗(Knr

n ) = Fp[u±];

The following calculation was a motivating observation which inspired the
search for theorem 7.1 as we will explain after the statement.

Lemma 7.6. Let R be an even commutative S-algebra, I a regular sequence in
R∗ and R/I a quotient S-algebra as defined above. Then there is an isomor-
phism of groups

π∗(R/I ∧R R/I) ∼= ΛR∗/I(ei : i ≥ 1)

where the ei are elements associated to the xi of degree |ei| = di + 1 := |xi|+ 1.
Here ΛR∗/I denotes the exterior algebra on R∗/I.

This calculation can be found at different places in the literature, e.g. see [7,
5.1]. For us, the lemma serves only as a motivation and the statement can
actually also be derived from the results of this chapter.
A necessary condition for R→ R/I being a (weak) Hopf-Galois extension hence
is that ΛR∗/I(ei : i ≥ 1) equals π∗(R/I ∧R H) for some (weak) Hopf algebra H
under R. This would immediately follow from the existence of a canonical weak
equivalence h : R/I ∧R R/I → R/I ∧RH. If I = x and |x| = d, the square zero
extension R/I ∨Σd+1R/I ∼= R/I ∧R (R∨Rd+1) has the same homotopy groups
as R/I ∧R R/I. We do not know whether R ∨ Rd+1 is a Hopf algebra in the
category of associative R-algebras but it is a coalgebra or a Hopf algebra in a
weak sense to be made precise. As an algebraic analogue note that for every
commutative ring T the square zero extension T ⊕ Σd+1T is the same as the
exterior algebra ΛT (e) = T [e]/e2 generated by an element e of degree d + 1.
This exterior algebra is a Hopf algebra with structure maps ∆(e) := 1⊗e+e⊗1,
ε(e) := 0 and λ(e) := −e. Similarly, for an exterior algebra on a set of genera-
tors we can define a Hopf algebra structure by similar structure maps.
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7.3 Defining the Hopf algebra and the coaction

We make two preparatory statements on smash products of Hopf algebras and
coactions that are rather clear in case we have a smash product with only
finitely many factors. Briefly said, the next two lemmata imply that the case
of a quotient R/x by a single element is a building block for the more general
cases where I has length greater than one.

Lemma 7.7. The smash product over a commutative S-algebra R of two Hopf-
algebras under R is again a Hopf-algebra under R with factorwise defined maps.
More generally, the statement is also true for an infinite smash product

∧
iHi

of Hopf-algebras defined as the colimit of all finite smash-products (all smash
products taken over R).

Proof: It suffices to prove the case R = S. It is easy to check the various identi-
ties, compare [82, III] for the algebraic analog in the finite case. For the infinite
case, set Aj :=

∧j
i=1Hi and use that (colimAj)∧ (colimAj) ∼= colim(Aj ∧RAj)

(e.g. compare [36, p.138]). 2

It will be convenient to have a name for S ∨ Sk that reminds one of a Hopf
algebra and so we write H(S, k) := S ∨ Sk. More generally and according
to the last lemma, for every S-algebra B and every finite or infinite sequence
~k = (k1, k2, . . . ) of non-negative integers, we have Hopf algebras

H(B,~k) := B ∧
∧
i

H(S, ki) = B ∧ (S ∨ Sk1) ∧ · · · ∧ (S ∨ Skn) ∧ · · · . (7.4)

Lemma 7.8. Let R be a commutative S-algebra and let Hi be Hopf algebras
under R that coact on algebras Ri by maps βi : Ri → Ri ∧R Hi. Then the Hopf
algebra

∧
iHi coacts on

∧
iRi.

Proof: Again it suffices to prove the case R = S. For two factors define the
coaction as β : R1 ∧R2 → (R1 ∧H1) ∧ (R2 ∧H2) ∼= R1 ∧R2 ∧H1 ∧H2. This is
clearly a coassociative and counital map under S. By induction, the statement
follows for all finite smash products. For infinite products the statement follows
as above from the isomorphism

colimj

(
j∧
i=1

Ri ∧
j∧
i=1

Hi

)
∼= colimj

(
j∧
i=1

Ri

)
∧ colimj

(
j∧
i=1

Hi

)
.

2

With these preparatory remarks we can come back to regular quotients. The
calculation of π∗(R/x∧RR/x) from lemma 7.6 suggests that for a quotient R/x
generated by one element, we work with the weak Hopf algebra H(R, |x|+ 1).
Now recall that for every sequence I = ~x the quotient R/I is defined to be the
smash product

∧
iR/xi. So by lemma 7.6 and 7.7 the corresponding weak Hopf

algebra can just be the smash product of the weak Hopf algebras defined by the
xi separately. This is the algebra H(R,~k) as defined in (7.4) where ki = |xi|+1.



86 CHAPTER 7. REGULAR QUOTIENTS

Our next aim is to define a coaction ofH(R,~k) onR/I underR, i.e. in particular
a map R/I → R/I ∧R H(R,~k) of S-algebras under R. Such maps should be
looked at as derivations, and we review some definitions and basic results to
continue our investigation with this point of view.

7.3.1 Derivations and coactions

Let R be a commutative S-algebra which serves as our ground ring through-
out this section and let A be an R-algebra. Following Lazarev [61] we define
ΩA to be a cofibrant replacement in MA∧RAop of the homotopy fiber of the
multiplication on A providing a homotopy fiber sequence of R-modules

ΩA → A ∧R A→ A.

We then define the R-module of derivations from A into some A-bimodule M
to be

DerR(A,M) := FA∧RAop(ΩA,M).

Moreover, we call the elements of

Der−kR (A,M) := πk DerR(A,M)

strict derivations from A to M of degree k. The following theorem is very
important for our purposes:

Theorem 7.9. ([61, 2.2]) There is an isomorphism

Der∗R(A,M) ∼= HoA∗R/A(A,A ∨M).

There is a weaker notion of derivations which we define after Strickland [81]. We
call these maps homotopy derivations to distiguish them from the derivations
defined above. We define a homotopy derivation from A to M under R to be a
map Q : A→M of R-(bi)modules that satisfies

Q ◦ µ ' µ ◦ (1 ∧Q+Q ∧ 1) (7.5)

as maps A ∧A→M and where µ is the multiplication on A. Define

DerkR := {Q ∈ [A,ΣkM ]R-bimod|Q is a homotopy derivation}.

Due to theorem 7.9 every strict derivation defines a homotopy derivation by
neglect of structure. So there is a map

Der∗R(A,M) −→ Der∗R(A,M), (7.6)

see also [87, 3.3.]. With these preliminary remarks we can now explain how we
define the coaction of H(R,~k) on R/I under R. By view of lemma 7.8 it suffices
again to define a coaction of H(R, ki) on R/xi under R for each i separately.
We formulate a corollary to theorem 7.9 for this case.

Corollary 7.10. Every strict R-module derivation from R/x to ΣkR/x defines
a coaction of H(R, k) on R/x under R.
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Proof: This follows immediately from theorem 7.9: Given a strict derivation
as in the statement, we choose a map β ∈ AR/(R/x)(R/x,R/x∧RH(R, k)) that
represents it. As β is a map over R/x, it is counital. The counit of the weak
Hopf algebra H(R, k) = R∨ΣkR is defined to be the projection on the first sum-
mand. Moreover, its comultiplication comes from the space level diagonal on
Sk+. So the fact that β is a map over R/x also implies that β is coassociative. 2

We emphasize that the coaction β : R/x→ R/x∨ΣkR/x provides R/x∨ΣkR/x
with the structure of an R/x-algebra. The coaction β is the unit map for this
structure and is in general not the inclusion in the first factor. However the R-
algebra structure on R/x∨ΣkR/x obtained by precomposing with the quotient
map R → R/x → R/x ∨ ΣkR/x is the quotient map followed by the inclusion
in the first factor since β is a map under R.

By corollary 7.10 we have hence reduced the definition of a coaction to finding
strict derivations R/xi → ΣkiR/xi for each i. We achieve this in two steps,
first defining a homotopy derivation and then showing that it lifts to a strict
derivation via the map (7.6). For this, we use the maps from diagram (7.2) and
define the Bockstein maps

βx : R/x
βx−→ ΣkR

Σkρx−−−→ ΣkR/x, (7.7)

again setting k = d+ 1 = |x|+ 1. It is known from [81, prop. 3.14] that these
maps are homotopy derivations with respect to any multiplication on R/x.

Proposition 7.11. The homotopy derivation βx can be lifted to a strict deriva-
tion.

Proof: Recall that I = x, i.e. I is generated by a single element. In [81,
4.16] Strickland constructs a map Der∗R(R/I,R/I) → Hom∗−1

R∗
(I,R∗/I) that

sends the derivation βx ∈ Der∗R(R/I,R/I) to the projection ΣI ' Σd+1R →
Σd+1R/x ' ΣI/I2. The equivalences result from comparisons of cofiber se-
quences. Strickland’s map passes to an isomorphism

Der∗R(R/I,R/I)
∼=−→ Hom∗−1

R∗
(I/I2, I/I2)

and it is clear that the map in HomR∗(I/I2, I/I2) associated to βx is the identity.
It is shown in [87, 4.3] that the homotopy derivation βx (i.e. δ0 in Wüthrich’s
notation) lifts to a strict derivation. 2

We are now ready to define the weak Hopf algebras and coactions needed for
theorem 7.1. We will do this now, prove theorem 7.1 and present some examples.

7.4 Quotients R/I as weak Hopf-Galois extensions of
R

As before let us be given a regular sequence I ⊂ R∗. For every xi ∈ I we fix an
A∞ structure on R/xi thereby also fixing such a structure on R/I.
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Definition 7.12. For I = x let β(x) : R/x→ R/x∧RH(R, k) be a coaction of
H(R, k) on R/x under R defined by (choosing) a lift of the homotopy derivation
βx to a strict derivation as stated in corollary 7.10. If I = ~x let β(I) be the
smash products of the maps β(xi) so that β(I) defines a coaction of H(R,~k)
on R/I under R by lemma 7.8.

Remark 7.13. By construction the coactions are maps of S-algebras under R
with respect to the A∞ structures fixed at the beginning of this section. Al-
though we allowed any of the multiplicative structures on the R/xi there may
be still multiplicative structures on R/I that do not come from multiplications
on the factors R/xi (as long as there is some homotopy in πki+kj+2R/I, see [4,
p.70]). We have not constructed coactions with respect to these mixed multipli-
cations. For this it would be desirable to apply theorem 7.9 directly to A = R/I
equiped with the mixed multiplication. With our method this however is not
possible for sequences I of length at least 2, as the weak Hopf algebra H(R,~k)
is only a square zero extension of R if I is of length one.
Now, as we have constructed weak Hopf algebras and coactions, we can ask
whether the map R → R/I is a weak Hopf-Galois extension in the sense that
the two canonical morphisms from criterion 5.8 are weak equivalences. In other
words we have to show that the canonical map h is a weak equivalence and that
R is complete along R/I.

Lemma 7.14. The canonical map

h(I) : R/I ∧R R/I
1∧Rβ(I)−−−−−→ R/I ∧R R/I ∧R H(R,~k)

µ∧R1−−−→ R/I ∧R H(R,~k)

is a weak equivalence.

Proof: We first prove the lemma for a sequence of length one. So let I =
(x) and consider the following diagram where the vertical maps are cofiber
sequences. The upper left square commutes, as β(x) is a map under R.

R/x ∧R R

R/x∧Rρx

��

∼= // R/x ∧ S

��

∼= // R/x

ι1
��

R/x ∧R R/x

R/x∧Rβx

��

h // R/x ∧H(S, k)

��

∼= // R/x ∨ ΣkR/x

pr2
��

R/x ∧R ΣkR // ΣkR/x ΣkR/x

We have to show that the map h = h(x) := (µ ∧ H(S, k)) ◦ (R/x ∧R β(x)) is
a weak equivalence. We therefore investigate the bottom half of the diagram.
Note that β(x) ' id∨βx as β(x) realizes the homotopy derivation βx. The
bottom square hence extends to the following homotopy commutative diagram.

R/x ∧R R/x

R/x∧Rβx

��

id∧R(id∨βx) // R/x ∧R
(
R/x ∨ ΣkR/x

) µ // R/x ∨ ΣkR/x

pr2

��
R/x ∧R ΣkR // ΣkR/x
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In order to prove that the upper map is a weak equivalence, we will investigate
the lower map. Note that the right vertical map is the projection on the second
summand as can be seen since the right cofiber sequence in the first diagram
splits. Remember that βx is ρx ◦ βx. Hence it follows from the commutativity
of the diagrams, that the lower map is µ ◦ (R/x ∧R Σkρx). But ρx is the R-
algebra unit for R/x, hence the lower horizontal map and thus also h(x) is a
weak equivalence.
In order to prove the lemma for general I, note that the multiplication on R/I
is defined factorwise, H(S,~k) is the product of the H(S, ki) and also β(I) is the
product of the β(xi) up to switch maps τ . Now checking that h(I) up to switch
maps τ is as well the product of the h(xi) completes the proof. 2

One might want to use the weak equivalence h in order to get information
about the homotopy of R/I ∧R R/I. From lemma 7.14 one can easily read off
the additive structure of π∗(R/I ∧R R/I). We hence can obtain lemma 7.6 as
a corollary. But note that h is not an algebra map unless the multiplication on
R/I is commutative. Under the assumption that R/I is homotopy commuta-
tive, one could moreover read off the algebra structure of π∗(R/I ∧R (R/I)op)
which then coincides with the one from π∗H(R;~k) ∼= ΛR∗/I(ei : i ≥ 1), compare
lemma 7.6.

We are now going to attack the criterion’s second point. Recall again that
the completion R∧R/I of R along R/I is equivalent to Bousfield’s R/I-nilpotent

completion L̂RR/IR of R formed in R-modules. Its homotopy groups are the
abutment of the Adams-spectral sequence for R based on R/I constructed in
R-modules and was investigated by Andrew Baker and Andrey Lazarev in [7],
see [7, Thm 2.3] for the convergence statement. For an even commutative S-
algebra R and a regular ideal I, Baker and Lazarev construct an internal I-adic
tower

R/I ← R/I2 ← R/I3 ← · · · (7.8)

that realizes the short exact sequences

0← R∗/(I∗)s ← R∗/(I∗)s+1 ← (I∗)s/(I∗)s+1 ← 0

in homotopy [7, thm. 5.9]. It is shown that the tower is an R/I-nilpotent
resolution of R and hence has homotopy inverse limit weakly equivalent to
L̂RR/IR [7, thm. 6.1, Rem. 2.2]. Furthermore one obtains

π∗R
∧
R/I
∼= L̂RR/IR

∼= lim
s
R∗/(I∗)s

since the maps in the tower are surjective in homotopy and hence the lim1-term
in the Milnor sequence vanishes. The right hand side is usually defined to be
the completion of the ring R∗ along the ideal I∗.

(R∗)∧I∗ := lim
s
R∗/(I∗)s (7.9)
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One says that R∗ is I∗-adically complete if the canonical map R∗ → (R∗)∧I∗ is an
isomorphism. In particular we obtain the following algebraic criterion (compare
[7, 6.3]).

Criterion 7.15. There is an equivalence R ' R∧R/I if and only if R∗ ∼= (R∗)∧I∗.
In particular, if R∗ is I∗-adically complete, the map R→ R∧R/I is a weak equiv-
alence and R is complete along R/I.

Proof: This follows as π∗R∧R/I is the I∗-adical completion (R∗)∧I∗ . 2

Proof of theorem 7.1: Theorem 7.1 now follows from criterion 5.8 together
with lemma 7.14 and criterion 7.15. 2

7.5 Examples I

Let R be a commutative S-algebra and R/I a regular quotient. Due to the
algebraic condition from theorem 7.1 we have to investigate the algebraic com-
pletion (7.9) in order to figure out whether R → R/I is a weak Hopf-Galois
extension. We restrict to situations that are of interest in the topological con-
text. To begin with, assume that R∗ = Z[x1, x2, . . . ] is a polynomial algebra
with finitely or infinitely many generators and I = (x1, x2, . . . ). If all the xi
have degree 0, it is easy to see that

R̂∗ := (R∗)∧I = Z[[x1, x2, . . . ]].

Note that if I is infinitely generated, in general R̂∗/I 6= R∗/I. If |xi| = 0 for
all i an easy example for this is the element

∑∞
i=0 x

i
i ∈ Z[[x1, x2, . . . ]] which is

nonzero in R̂∗/I as the infinite sum is not in I · R̂∗. Note that for this example
it is crucial that all xi are in degree 0. We will use gradings on the xi to exclude
these kinds of examples below. In general, if one wants to obtain R∗/I as a
quotient of R̂∗, one has to quotient out the completed ideal Î that is defined to
be

Î := {(r1, r2, . . . ) ∈ R̂∗ ⊂
∏

R∗/I
s : r1 = 0}

and for which
R̂∗/Î ∼= R∗/I

always holds. Clearly, the condition R̂∗/I ∼= R∗/I hence holds if I · R̂∗ = Î. It
is also easy to see that this is always true whenever I is finite.
If R∗ is a graded ring, it may very well happen, that R̂∗/I = R∗/I even if I is
infinitely generated. For this look at the example

R∗ = MU∗ = Z[x1, x2, . . . ]

with |xi| = 2i. We set I = (x1, x2, . . . ) as before. Then it is easy to see that
πn(MU/Is) = πn(MU) whenever 2s > n as each element in Is has at least
degree 2s. It follows that

MU∧
I 'MU
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and hence also (MU∗)∧I /I ∼= MU∗/I. It follows that MU → H Z is a weak
Hopf-Galois extensions.

Proof of proposition 7.4: Clearly H Z = MU/I for the regular ideal
I = (x1, x2, . . . ). We have just shown that MU∗ is complete along this ideal I.
The lemma then follows from theorem 7.1. 2

Now recall the spectrum L̂MU
K(n)MU with homotopy groups π∗MU(p)[v−1

n ]∧In+Jn

where Jn is the kernel of the map π∗MU(p) → π∗E(n). We can now show that
the map L̂MU

K(n)MU → L̂MU
K(n)MU/Jn is a weak Hopf-Galois extension.

Proof of proposition 7.5: Define R = L̂MU
K(n)MU . The spectrum R is

also given by the completion T∧Jn
where T = MU(p)[v−1

n ]∧In is a commutative
S-algebra. Moreover, R is at least an associative T -algebra as the tower (7.8)
can be realized as a tower of associative T -algebras [87]. The map R → R/Jn
in question is then obtained from the quotient T → T/Jn by inducing up along
the map T → R. It follows that the canonical map h is a weak equivalence. One
can check by hand that R∗ is complete along R∗/Jn, see also [75, 9.6]. Hence
R is complete along R/Jn. It then follows from criterion 5.8 that R → R/I is
a Hopf-Galois extension. 2

At this place we should explain why R/Jn = L̂MU
K(n)MU/Jn is not the same as

Ê(n).

Lemma 7.16. The quotient L̂MU
K(n)MU/Jn is different from Ê(n).

Proof: Set R := π∗L̂
MU
K(n)MU = π∗MU(p)[v−1

n ]∧In+Jn
. The regular ideal Jn

contains the infinitely many elements vk for k > n. The set of these vk (k >
n) decomposes in classes depending on the congruence class of |vkk | modulo
2(pn − 1). At least one of these classes contains infinitely many vk and we let
K be an infinite subset of the integers that indexes one of these classes. For
k > n let αk be the unique integer such that 0 ≤ |v−αk

n vkk | < 2(pn − 1). Then

x :=
∑
k∈K

v−αk
n vkk

is an infinite sum of elements of the same degree and x is an element of R. The
element x is not in Jn as the elements in Jn = Jn · R are the finite sums over∑
jiri where ji ∈ Jn, ri ∈ R. The element x can not be written as such a finite

sum as Jn and hence the infinite sequence of the vk involved is regular. So x is
nonzero in R/Jn. But its image in Ê(n)∗ is zero. 2

A similar construction shows that π∗Ê(n) = Z(p)[v1, . . . , vn−1, v
±1
n ]∧I(n) is dif-

ferent from Z∧p [[v1, . . . , vn−1]][v±1
n ]. The ring W(Fpn)[[u1, u2, . . . , un−1]][u±] =

π∗En however is complete along In. Comparing these two calculations once
again shows that the different gradings of the vk and the uk are responsible and
cause these different behaviours.
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7.6 Quotients R/I as weak Hopf-Galois extensions of
R̂

Let R̂ := L̂RR/IR be Bousfield’s nilpotent completion of R as above. If R is
not complete along R/I we still may be lucky and exhibit the canonical map
R̂ → R/I as a Hopf-Galois extension. Note that Samuel Wüthrich has shown
that the tower (7.8) can be realized as a tower of associative R-algebras [87].
Hence the map R̂ → R/I can be realized as a map of associative R-algebras
as well. We do not know whether R̂ is a commutative S-algebra in general.
However we have the following result.

Proposition 7.17. Assume that R̂∗/I ∼= R∗/I. Then R̂ ' LRR/IR, i.e. Bous-

fied’s nilpotent completion equals localization. In particular, R̂ can then be
realized as a commutative S-algebra.

Proof: For finite I the proposition is exactly [7, Thm 6.3]. Its proof carries
over to our proposition which is just slightly more general. The statement that
R̂ can be realized as a commutative S-algebra follows as localization preserves
commutative S-algebra structures ([36]). 2

Under the assumption that R̂∗/I ∼= R∗/I we can hence go through the quotient
construction starting with R̂ instead of R again, obtaining a map R̂ → R̂/I '
R/I which corresponds to the canonical map R̂ → R/I from the definition of
R̂ as a limit over the R/Is. Moreover, in this situation there are isomorphisms
R̂∗/I

s ∼= R∗/I
s as R̂∗/I ∼= R∗/I implies I · R̂∗ ∼= Î and hence Is ∼= Îs. Theorem

7.2 can hence be derived from theorem 7.1.

Proof of theorem 7.2: By Proposition 7.17, R̂ can then be realized as a
commutative S-algebra. As I is a regular sequence also in R̂ we can apply
theorem 7.1 to the quotient map R̂ → R̂/I. The only thing we have to check
is that R̂∗ is I-adically complete. But by assumption R̂∗/I ∼= R∗/I and hence
(R̂∗)∧I ∼= lims R̂∗/I

s ∼= limsR∗/I
s ∼= R̂∗ as we just explained. For finite se-

quences I we always have R̂∗/I ∼= R∗/I as already mentioned in section 7.5 or
likewise see [7]. This proves the last sentence of the theorem. 2

In view of proposition 7.17 and theorem 7.2 it is interesting to give conditions
under which R̂∗/I ∼= R∗/I. As we mentioned above, this isomorphism always
holds when I is finite. When I is infinite the next proposition gives a sufficient
condition.

Proposition 7.18. Let R∗ be a graded ring concentrated in non negative degrees
(R is connective) and let I = (x1, x2, · · · ) ⊂ R∗ be a (finite or infinite) regular
sequence of elements of positive degree. Assume that for every N > 0 there
are only finiltely many xi such that |xi| ≤ N . Then I · R̂∗ = Î and hence
R̂∗/I = R∗/I.

Proof: We have to show that Î ⊂ I. For this let z = (0, r2, r3, . . . ) ∈ Î. We
can write rs = rs−1 + r̃s with r̃s ∈ Is−1. Set N := |z| and let x1, . . . , xkN

be
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the finitely many elements of I with degree ≤ N . Each r̃s can be written as
r̃s =

∑kN
i=1 xir̃s,i with r̃s,i ∈ Is−2. The elements zi := xi(0, r̃2,i, r̃2,i + r̃3,i, . . . )

are in I · R̂∗ and z =
∑kN

i=1 zi. Hence z ∈ I. This shows I · R̂∗ = Î and hence
R̂∗/I = R∗/I. 2

Proposition 7.19. Let R∗ be a graded ring concentrated in non negative degrees
and let I = (x1, x2, · · · ) ⊂ R∗ be a regular sequence of elements of positive
degree. Assume that for every N > 0 there are only finiltely many xi such that
|xi| ≤ N . Then R̂∗ = (R̂∗)∧I=I· bR∗, i.e. completion of R∗ along I is idempotent.

Proof: We only have to show that R̂∗/Is = R∗/I
s for all s ≥ 1. Proposition

7.18 states that I · R̂∗ = Î and hence R̂∗/Is = R̂∗/Î
s = R∗/I

s. The conclusion
follows. 2

7.7 Examples II

We can now prove that En → Kn and Ê(n) → K(n) are weak Hopf-Galois
extensions.

Proof of proposition 7.3: First, recall that En admits the structure
of a commutative S-algebra by Goerss-Hopkins theory [41]. One can check
that π∗(En) = W(Fpn)[[u1, u2, . . . , un−1]][u±] is In-adically complete where
In = (p, u1, . . . , un−1). Hence En → Kn is a weak Hopf-Galois extension by
theorem 7.1.
The spectrum Ê(n) admits the structure of a commutative S-algebra as follows
e.g. from [75, 5.4.9]. It is complete along the ideal I(n) = (v0, . . . , vn−1) as
π∗Ê(n) = (E(n)∗)∧I(n) and I(n) is finite. Hence Ê(n) → K(n) is a weak Hopf-
Galois extension by theorem 7.1. 2

Examples of regular quotients usually arise as regular quotients of the complex
cobordism spectrum MU or of some localized or periodic version of it. It
is easy to build some examples arising from the spectra listed in (7.3). E.g.
MU∧

I → H Z/p with I = (p, x1, x2, . . . ) is a weak Hopf-Galois extension as
can e.g. be seen using proposition 7.19. We have π∗(MU∧

I ) = Z∧p [x1, x2, . . . ].
However, MU(p) → H Z/p is not Hopf-Galois even not in a weak sense as the
completion condition is violated. The map MU(p) → H Z(p) is a weak Hopf-
Galois extension where we look at H Z(p) as the regular quotient of MU(p) by
the ideal (x1, x2, . . . ). Moreover, this extension factors as

MU(p) → BP → H Z(p) (7.10)

and in fact all three maps are weak Hopf-Galois extensions. In general, if
completeness conditions are satisfied, a regular quotient construction gives rise
to a whole system of weak Hopf-Galois extensions as is stated in the following
theorem.

Theorem 7.20. Let R be an even commutative S-algebra, I+J a regular ideal
in R∗ and let R/I, R/J and R/(I + J) = R/I ∧R R/J be regular quotients.
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Assume that R∗/I is complete with respect to the ideal J = (j1, j2, . . . ). Then
R/I → R/(I+J) is a weak Hopf-Galois extension with respect to the weak Hopf
algebra H(R/I,~k) where ki = |ji|+ 1.

Proof: We look at the map R/I → R/(I + J) = R/I ∧R R/J as an induced
extension. Then the statement follows from corollary 5.14 together with crite-
rion 7.15. 2

The theorem applies to the tower (7.10) and so in particular BP → H Z(p)

is a weak Hopf-Galois extension. As another example we can split the weak
Hopf-Galois extension Ê(n)→ K(n) as the sequence

Ê(n) −→ Ê(n)/p −→ Ê(n)/(p, v0) −→ · · ·

· · · −→ Ê(n)/(p, v0, . . . , vn−1) = K(n)

where all maps and composites of maps in the tower are weak Hopf-Galois ex-
tensions.

Combining results from this and the last chapter, we also have the sequence

S[BU ]︷ ︸︸ ︷
S −→M

H(MU,~k)︷ ︸︸ ︷
U → H Z︸ ︷︷ ︸

S[Ω2S3〈3〉]

which exhibits S → MU → H Z as part of a possible Hopf-Galois tower in
which both (weak) Hopf-Galois extensions arising from Thom spectra and from
regular quotients are involved. We can not say how or if the three Hopf algebras
are related but note that H(MU,~k) 'MU [SU ], at least as modules, as follows
from the cell structure of the space SU . Note that there are algebraic examples
of Hopf-Galois extensions where the Hopf-algebra is not uniquely determined.
So maybe in general one should not expect a too strong relation between the
Hopf-algebras in a tower of extensions.
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Chapter 8

Realizing algebraic extensions

Let A∗ → B∗ be a G-Galois extension of (graded) rings and A an S-algebra
with π∗A ∼= A∗. One can ask whether there is an S-algebra B with an action
of G by maps of S-algebras under A such that A→ B is a Galois extension of
associative S-algebras realizing the extension A∗ → B∗ on homotopy groups.
This question was originally raised by John Rognes. If A is a commutative S-
algebra and B∗ a commutative ring, Baker and Richter gave a positive answer to
this question in [10]. We will show that there is still a positive answer in case B∗
is a possibly associative ring. We keep the assumption that the ground ring A∗
is commutative and moreover that A is a commutative S-algebra, see theorem
8.7. We closely follow [10] and prove theorem 8.7 in several steps. First, we
show in section 8.1 that realizations of B∗ and of the group action exist as a ring
object and as maps in the homotopy category of A-ring spectra. We will then
rigidify these in section 8.2 to objects and actions in the category of associative
A-algebras using obstruction theories that go back to Robinson [73, 74] and
Goerss-Hopkins [41, 40]. In our case, we have to rigidify an A-ring spectrum B
wich is not homotopy commutative but homotopy commutativity is assumed
by both Robinson and Goerss-Hopkins. We show that in our situation the
obstruction theories nevertheless work, respectively we refer to Angeltveit [5]
for this. We also have to vary the original arguments to identify the obstruction
groups using algebraic properties of the Galois extension A∗ → B∗. As an
application, we realize certain cyclic and generalized quaternion algebras as
associative S-algebras.

8.1 Realizing algebraic extensions up to homotopy

Lemma 8.1. Let A be a commutative S-algebra and B∗ a possibly associative
Galois extension of A∗ with finite Galois group G. Then B∗ admits a realization
as an A-bimodule.

Proof: By lemma 1.3, B∗ is a finitely generated projective left A∗-module.
Hence B∗ is a direct summand in a finitely generated free A∗-module. Hence it

97
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is the image of an idempotent self-map

e∗ :
n⊕
i=1

ΣmiA∗ −→
n⊕
i=1

ΣmiA∗

which is a left A∗-module map. Since HomA∗(A∗, A∗) = A∗ = [S,A] = [A,A]A,
we can model the map e by an A-module self-map on a suspension of copies of
A. Iterating this map gives a sequence of left A-modules

n∨
i=1

ΣmiA −→
n∨
i=1

ΣmiA −→
n∨
i=1

ΣmiA · · · .

We call the colimit of this sequence B as its homotopy is the colimit of the
sequence induced in homotopy which is the image of e∗, i.e. B∗. The system is
one of A-modules, so B is a left A-module and hence an A-bimodule as A is
commutative. 2

Proposition 8.2 (weak realization theorem). Let A be a commutative S-algeb-
ra and B∗ a Galois extension of A∗ with finite Galois group G. Then B admits
a homotopy associative and unital multiplication B ∧A B → B. In other words
B∗ admits a realization as an associative A-ring spectrum. Furthermore, there
is an action of G on B by morphisms of A-ring spectra that induces the action
of G on B∗.

Proof: By lemma 8.1 B∗ admits a realization B as an A-bimodule. So we can
form the product B ∧A B and calculate its homotopy as

π∗(B ∧A B) ∼= B∗ ⊗A∗ B∗. (8.1)

This follows from the projectivity of B∗ over A∗ and the Künneth spectral
sequence

TorA∗(B∗, B∗) =⇒ π∗(B ∧A B).

More generally, we find inductively that B⊗A∗n
∗ is also projective as (left and

right) A∗-module (and also as B∗-module) using the splitting as A-bimodules
from the proof of lemma 8.1. So by induction, the Künneth spectral sequence
tells us that

π∗B
∧An ∼= B

⊗A∗n
∗ . (8.2)

We now use the universal coefficient spectral sequence

Ep,q2 = Extp,qA∗(π∗B
∧An, B∗) =⇒ B∗

A(B∧An)

to see that B admits a multiplicative structure. The universal coefficient spec-
tral sequence also collapses and

B−t
A (B∧An) ∼= E0,t

2
∼= Homt

A∗(B
∧An
∗ , B∗) ∼= Homt

A∗(π∗B
⊗A∗n, B∗). (8.3)

In particular, there is a unit map A→ B and the homotopy classes of A-module
maps B∧AB → B are in bijection with the elements in HomA∗(B∗⊗A∗B∗, B∗).
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The multiplication on B∗ is such a map and induces hence a multiplication on
B over A. The bijection between algebraic and derived Hom-sets also proves
that this multiplication is unital and associative up to homotopy. The G-action
can be lifted analogously as [B,B]A ∼= HomA∗(B∗, B∗). 2

Proposition 8.3 (uniqueness). Let A be a commutative S-algebra and G a
finite group acting on the A-ring spectra B and C such that both A∗ → B∗ and
A∗ → C∗ are G-Galois extensions of associative rings. Assume furthermore
that there is a G-equivariant ring isomorphism Φ: B∗ → C∗ under A∗. Then
there is a map of A-ring spectra B → C inducing Φ which is G-equivariant up
to homotopy.

Proof: From the proof of the last proposition we know that the universal
coefficient spectral sequence

ExtA∗(B
⊗A∗n
∗ , C

⊗A∗n
∗ ) =⇒ π∗FA(B∧An, C∧An)

collapses and gives [B∧An, C∧An]A ∼= HomA∗(B
⊗A∗n
∗ , C

⊗A∗n
∗ ). In particular the

isomorphism B∗ → C∗ provides an A-module map B → C. To see that it even
provides a map of A-ring spectra, recall that the set of A∗-algebra maps is given
by the equalizer

HomA∗-alg(B∗, C∗) // HomA∗(B∗, C∗)
// // HomA∗(B∗ ⊗A∗ B∗, C∗).

A similar description exists for the derived Hom-sets which shows that homo-
topy classes of maps of A-ring spectra correspond to A∗-algebra maps from
B∗ to C∗. Analogously, as G is finite, the G-equivariant algebra maps may be
written as an equalizer showing that [B,C]GA−ring ∼= HomA∗-alg(B∗, C∗)G. As
Φ is an element of the latter, it has a realization as stated in the proposition.

2

8.2 Strong realization

We saw in the last section that for a finite Galois extension of rings A∗ → B∗
with A∗ commutative and any commutative S-algebra A with π∗A ∼= A∗ there is
a realizationB ofB∗ as anA-ring spectrum and also theG-action can be realized
by self-A-ring-maps of B. We want to refine these realizations to realizations
in the category of associative A-algebras.
For the A-algebra structure on B this can be done using Robinson’s obstruction
theory in the form presented by Angeltveit [5]. In order to apply Robinson
directly one has to assume that B is a homotopy commutative ring spectrum,
an assumption which is not satisfied if A∗ → B∗ is a non-commutative Galois
extension of a graded commutative ring A∗. To include these cases in our result
we refer to Angeltveit’s extended version of Robinson’s obstruction theory where
homotopy commutativity is not assumed.
For the realization of the G-action we have a similar situation. Knowing that B
is an associative A-algebra we have to examine the space AA(B,B) of A-algebra
self-maps of B. If B was a homotopy commutative A-ring spectrum, this could
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be done by the Goerss-Hopkins-Miller spectral sequence [41, 40, 72]. But again
we want to consider cases where B is not homotopy commutative. We will show
that the approach of Goerss-Hopkins-Miller nevertheless works in case A∗ → B∗
is a possibly non-commutative Galois extension of a commutative ring A∗. For
instance the Goerss-Hopkins spectral sequence exists and collapses, showing
that

πiAA(B,B) ∼=
{

HomA∗-alg(B∗, B∗) if i = 0
0 if i > 0

(8.4)

for cofibrant A-algebras B.

8.2.1 Rigidifying the ring-structure of the Galois extension

Proposition 8.4. Let A be a commutative S-algebra and B an A-ring spec-
trum. Assume that B−t

A (B∧As) ∼= Homt
A∗(B

⊗A∗s
∗ , B∗). Then the obstructions

for refining the ring spectrum structure on B to an A∞-structure under A lie
in HHn,n−3

A∗
(B∗). In particular, if A∗ → B∗ is a finite Galois extension, then

there is an associative A-algebra B realizing B∗.

It was shown in [73, 74] that the obstructions for realizing an A-ring spectrum
B as an associative S-algebra, lie in the Hochschild cohomology HH∗(π∗(B ∧A
B)|B∗, B∗) provided that B is homotopy commutative and certain algebraic
properties are satisfied (these properties are collected under the term “per-
fect universal coefficient formula”; the generalization from S- to A-ring spectra
where A is any commutative S-algebra is just a formality). If one can identify
π∗(B ∧AB) with B∗⊗A∗ B∗ as it is the case for a Galois extension A∗ → B∗ by
(8.1), there is an isomorphism HH∗(π∗(B ∧A B)|B∗, B∗) ∼= HH∗

A∗
(B∗). This

isomorphsm is due to an isomorphism of the defining cochain complexes and
identifies the obstruction groups from proposition 8.4 with those from [73, 74]
in case Robinson’s hypotheses are satisfied as well.

Proof of proposition 8.4: Note that as B is an A-ring spectrum, it comes
with an A3-structure. Analogously to [5] we define Es,t1 := B−t(B∧As). This can
be seen as a graded cosimplicial group [5, 3] and we let E∗,∗

2 be the homology of
the associated graded cochain complex. For n ≥ 4 the obstruction to extending
an An−1-structure on B to an An-structure lies in En,n−3

2 by [5, thm 3.5].
Here, one allows the An−1-structure to vary while fixing the An−2-structure.
By assumption Es,t1

∼= Homt
A∗(B

⊗A∗s
∗ , B∗). The cochain complex associated

with E∗,∗
1 defines Hochschild cohomology so En,n−3

2
∼= HHn,n−3

A∗
(B∗). In case

A∗ → B∗ is a Galois extension this also follows from the remark after the
statement of [5, thm 3.5].
It only remains to prove the last assertion, i.e. the one involving the Galois
extension. We already know by proposition 8.2 that there is a realization of B∗
as an A-ring spectrum B and by (8.3) the identification of B∗(B∧An) with the
given Hom-set holds. It remains to check that the obstructions for refining this
structure vanish. For this it suffices to show that the groups HHn,3−n

A∗
(B∗) are

zero for every n ≥ 3. We outsource this statement to the next lemma. 2
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Lemma 8.5. If A∗ → B∗ is a Galois extension with A∗ commutative then the
Hochschild cohomology groups HHn

A∗
(B∗) vanish for every n ≥ 1.

Proof: As B∗ is A∗-projective (lemma 1.3) it follows that HHn
A∗

(B∗) ∼=
ExtnB∗⊗A∗B

op
∗

(B∗, B∗). The vanishing of ExtnB∗⊗A∗B
op
∗

(B∗, B∗) then follows from
the separability of B∗ over A∗, i.e. from the fact that B∗ is B∗⊗A∗B

op
∗ -projective

(lemma 1.3). 2

8.2.2 Realizing the G-action by maps of associative A-algebras

In order to strictly realize the G-action we will now investigate π∗AA(B;B) un-
der cofibrancy assumptions. This will turn out to be the abutment of a Goerss-
Hopkins spectral sequence [41, 40]. For this we fix a cofibrant commutative
S-algebra A which we consider as our ground ring throughout this section. Let
C be a cofibrant A∞-operad and B a cofibrant C-algebra. Then AlgC(B;B) has
the homotopy type of the derived mapping space mapA∞(B,B) of associative
A-algebra self maps of B. There is a simplicial associative A-algebra C•+1B
and a cosimplicial space Y • given in codegree n by

Y n := AlgC(Cn+1B,B).

The cofibrancy assumptions ensure that |C•+1B| → B and

AlgC(B,B) '−→ AlgC(|C•+1B|, B) ' TotY • (8.5)

are weak equivalences [72, §13,14]. We give some hints how (8.5) can also be
derived from [40], using simplicial algebras over simplicial operads. For this
write C• for C seen as a constant simplicial operad and note that C•+1B is
the resolution of B associated with the triple defined by C. There is hence a
weak equivalence AlgC(B,B) ' Alg|C•|(|C

•+1B|, B). Then there is an adjuc-
tion Alg|C•|(|C

•+1B|, B) ' AlgC•(C
•+1B,B∆) [40, Thm 1.3.2] and again by

adjunction this is Tot(AlgC(C•+1B,B)) = TotY • establishing (8.5).
So in order to get our hands on the space mapA∞(B,B) we can investigate the
homotopy spectral sequence associated with the cosimplicial space Y •. Sup-
pose we have chosen a C-algebra map f : B → B. This gives us a base-point
in TotY • and also base-points Cn+1B → B

f−→ B in all the Y n which we also
denote by f . Vice versa we will see below that in our case every basepoint
in Y 0 that lifts to Tot1 Y • also lifts to a basepoint in TotY •. So we can also
start with a “weak basepoint” f ∈ Tot1 Y •. The homotopy spectral sequence
mentioned then has the form

Es,t2 = πsπt(Y •, f) =⇒ πt−s(TotY •, f). (8.6)

As usual this spectral sequence is concentrated in the range t ≥ s ≥ 0 and has
differentials

dr : Es,tr → Es+r,t+r−1
r .

Note that πt(Y n) is abelian for all t as the Y n are loop spaces. So the co-
homotopy terms Es,t2 = πsπt(Y •, f) are all given as the cohomology of the
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cochain complex associated to the cosimplicial object πt(Y •), see [18, X §7]. In
particular E0,t

2 is an equalizer

E0,t
2

// πtY
0 // // πtY

1

and this holds for all t ≥ 0.

Proposition 8.6. Let A be a commutative S-algebra as above and let A→ B be
a map of S-algebras such that B is cofibrant as an A-algebra and assume that
A∗ → B∗ is a Galois extension. Then the E2-term of the homotopy spectral
sequence (8.6) takes the form

Es,t2
∼=
{

HomA∗-alg(B∗, B∗) if s = t = 0
0 else.

(8.7)

Hence the spectral sequence converges and

πi mapA∞(B,B) ∼=
{

HomA∗-alg(B∗, B∗) if i = 0
0 if i > 0.

(8.8)

Proof: We closely follow the argument of [72, ch. 18] but some changes are
necessary as in our case B is not homotopy commutative. First consider the
case t = s = 0. We have to identify the left term in the equalizer diagram

E0,0
2

// π0Y
0

d0 //

d1
// π0Y

1

with HomA∗-alg(B∗, B∗). Let T = TA∗ be the tensor algebra functor over A∗
given by T (X∗) :=

⊕
n≥0X

⊗A∗n
∗ . Note that there is a commutative diagram

π0AlgC(CX,B) //

∼=
��

HomA∗-alg(TX∗, B∗)

∼=
��

[X,B]A // HomA∗(X∗, B∗)

(8.9)

If X∗ is a projective A∗-module, the lower horizontal map is an isomorphism
as once again follows from the universal coefficient spectral sequence. As A∗ →
B∗ is a Galois extension this is the case for X = B or X = CB (and more
generally for X = CnB) and we can hence identify π0Y

n = π0AlgC(Cn+1B,B)
with HomA∗(π∗(CnB), B∗). As A∗ → B∗ is a Galois extension there is an
isomorphism π∗(CnB) ∼= Tn(B∗) by equation (8.2). We can then identify E0,0

2

with the equalizer of

HomA∗(B∗, B∗)
// // HomA∗(TB∗, B∗)

where the maps send a function f to T (f) followed by the operad action and
to the operad action followed by f . So the equalizer clearly is

E0,0
2
∼= HomA∗-alg(B∗, B∗).
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Now consider the case t > 0. We will first show that

πt(Y n, f) ∼= HomA∗-alg↓B∗(T
•+1B∗, B∗ ⊕B∗+t) (8.10)

where f ∈ AlgC(Cn+1B,B) is a basepoint, B∗⊕B∗+t is a square-zero extension
and the map T •+1B∗ → B∗ is given by π∗f . First note that by adjunction we
have

[St, Y n] = [St,AlgC(Cn+1B,B)] (8.11)
∼= [St, A-mod(CnB,B)]
∼= [∗, A-mod(CnB,BSt

)]
∼= [∗, A-mod(CnB,B ∨ Σ−tB)] (8.12)

The last isomorphism is induced by an equivalence of A-algebras BSt ' B ∨
Σ−tB where B ∨ Σ−tB is considered as a square-zero extension [63, 8.2.]. Re-
stricting to those maps in 8.11 that fix the basepoint of St corresponds to
restricting to those maps in 8.12 that are over B, i.e. to A-mod ↓B(CnB,B ∨
Σ−tB). We conclude that

πt(Y n, f) ∼= [∗, A-mod↓B(CnB,B ∨ Σ−tB)]
∼= π0C-alg↓B(Cn+1B,B ∨ Σ−tB). (8.13)

Analogously to (8.9) there is a commutative diagram

π0AlgC(CX,B ∨ Σ−tB)

∼=
��

// HomA∗-alg(TX∗, B∗ ⊕B∗+t)

∼=
��

[X,B ∨ Σ−tB] // HomA∗(X∗, B∗ ⊕B∗+t)

and again the lower map is an isomorphism forX = CnB. We can hence identify
π0AlgC(Cn+1B,BSt

) with HomA∗-alg(Tn+1B∗, B∗⊕B∗+t). Restricting to those
maps that are over B or B∗ respectively, equation (8.10) then follows from
(8.13). It then follows that Es,t2 = πsπtY

• ∼= Hs HomA∗-alg↓B∗(T
•+1B∗, B∗ ⊕

B∗+t) and

Es,t2
∼= Hs HomA∗-alg↓B∗(T

•+1B∗, B∗ ⊕B∗+t)
∼= Hs DerA∗(T

•+1B∗, B∗+t) (8.14)
∼= DersA∗(B∗, B∗+t).

The last isomorphism holds as DerA∗(T •+1B∗, B∗+t) is the only non-vanishing
column of the E1-term of a spectral sequence computing DersA∗(B∗, B∗+t) as
explained in [72, 18.4,18.5]. This spectral sequence is constructed starting with
the double complex which is T p+q+1B∗ in dimension (p, q) and has Ep,q1 =
DerpA∗(T

q+1B∗, B∗+t). All except the first column of this spectral sequence
vanish as DerpA∗(TB∗,M) ∼= ExtpA∗(B∗,M) which is zero for q ≥ 1 by projectiv-
ity of B∗. This shows the last isomorphism in (8.14). By the same projectivity
argument the terms Es,t2 = DersA∗(B∗, B∗+t) of our initial spectral sequence
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vanish for s > 0. In particular, the vanishing of the terms Es,s−1
s shows that

there are no obstructions to lifting a base-point from Tots−1(Y •) to Tots(Y •)
by [16, 5.2].
For s = 0 the term E0,t

2 by definition is the equalizer

E0,t
2

// πtY
0 // // πtY

1

and by the argument just above we identified πt(Y n, f) with the set of homo-
morphisms HomA∗-alg↓B∗(T

n+1B∗, B∗ ⊕B∗+t). In the same way as we already

showed for E0,0
2 , the equalizer E0,t

2 is hence given by the equalizer of the two
canonical maps

HomA∗(B∗, B∗+t)
// // HomA∗(TB∗, B∗+t).

This equalizer only contains the zero map since the multiplication in B∗+t is
trivial. All in all, the only non-vanishing term in the spectral sequence is E0,0

2

and we find that π0AlgC(B,B) ∼= HomA∗-alg(B∗, B∗) and all the components
are contractible as there are no higher homotopy groups. This proves (8.7)
and the spectral sequence collapses and hence converges to π∗AA(B,B). This
proves (8.8). 2

Theorem 8.7. Let A∗ → B∗ be a G-Galois extension of rings with finite group
G and A∗ commutative. Let A be a cofibrant commutative S-algebra with π∗A =
A∗. Then there exists a cofibrant associative A-algebra B acted on by G by
maps of associative A-algebras. Moreover, A → B is a G-Galois extension
of associative S-algebras realizing the Galois extension A∗ → B∗ on homotopy
groups. 2

Proof: We know by proposition 8.4 that B∗ has a realization as an associative
A-algebra and we choose B to be a cofibrant A-algebra with this property.
Proposition 8.6 applies and the isomorphism

π0(mapA∞(B,B)) ∼= HomA∗-alg(B∗, B∗)

shows that each group element g ∈ G seen as an element in the homomorphism
set HomA∗-alg(B∗, B∗) can be realized by a self map of B in the category of
associative A-algebras. Moreover, again by proposition 8.6 all the components
of mapA∞(B,B) are contractible. This observation is important in order to
make sure that the lifts of the group elements g to A-algebra self-maps of B
can be chosen such that they assemble to an action of the group G at least on
some cofibrant A-algebra weakly equivalent to B. In the language of [31, Def.
3.1] we have an h∞-diagram in the category of associative A-algebras indexed
by our group G seen as a one-element category. In this case the homotopy
G-action can be rigidified to an action by maps of associative A-algebras. We
refer to the proof of the analogous statement for commutative S-algebras which
can be found in [31, 3]. Hence we can choose B to be a cofibrant associative
A-algebra with an action of G by maps of associative A-algebras realizing B∗
with the given G-action.
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It remains to show that A → B is a Galois extension. For the fixed point
condition, the homotopy fixed point spectral sequence shows that

π∗B
hG ∼= HomA∗[G](A∗;B∗) ∼= BG

∗ = A∗.

Here we use the vanishing of the higher Ext-terms as in (4.2). Using the projec-
tivity of B∗ over A∗ then shows that the Künneth spectral sequence converging
to π∗(B ∧A B) collapses and

π∗(B ∧A B) ∼= B∗ ⊗A∗ B∗ ∼= B∗[G] ∼= π∗(B[G]).

This completes the proof. 2

Example 8.8 (cyclic algebras). We can use the results from this chapter to
prove the existence of certain S-algebras that realize cyclic algebras. Assume
that A is a commutative S-algebra with homotopy groups A∗ ∼= R∗[x]/(xn−u)
where u is a unit in R∗. Such commutative S-algebras A exist, e.g. by the
realization theorem for commutative Galois extensions, see [10]. Let T [x, σ, u]
be a cyclic algebra over A∗ which is a Galois extension of A∗, see example
1.8. Then by theorem 8.7 there is an associative S-algebra B with homotopy
groups B∗ ∼= T [x, σ, u] and such that A→ B is a Galois extension of associative
S-algebras.

Example 8.9 (generalized quaternion algebras). Also recall the generalization
of quaternion algebras

R∗ −→ R∗[x, y;u, v]/(xn − u, yn − v, xy = ζnyx) (8.15)

which is a Galois extension and where ζn ∈ R∗ is an n-th primitive root of unity
and u, v are central units in R∗ of degree a multiple of 2n. Assume that there
is is a commutative S-algebra A realizing R∗. Then by theorem 8.7 there is an
associative S-algebra B realizing R∗[x, y;u, v]/(xn − u, yn − v, xy = ζnyx) such
that A→ B is a Galois extension.

To give a concrete example recall the completed Johnson-Wilson spectra Ê(n)
defined at a prime p and choose some integer m such that m and p are coprime.
Then there is a commutative S-algebras A with A∗ ∼= Ê(n)∗[ζm], e.g. by [10].
We write Ê(n)[ζm] for A. Then there is a Galois extension of associative S-
algebras Ê(n)[ζm]→ B with

B∗ ∼= Ê(n)∗[ζm, x, y]/(x
m − 1, ym − 1, xy = ζmyx).

We write Ê(n)[ζm, x, y]/(xm − 1, ym − 1, xy = ζmyx) for B. If m = pi − 1
the unit vn ∈ Ê(n)∗ has degree 2m. Then Ê(n)∗[ζm] → Ê(n)∗[ζm, x, y]/(x

m −
vn, y

m − vn, xy = ζmyx) is a Galois extension and there is an associative S-
algebra Ê(n)[ζm, x, y]/(xm − vn, ym − vn, xy = ζmyx) and a Galois extension

Ê(n)[ζm] −→ Ê(n)[ζm, x, y]/(xm − vn, ym − vn, xy = ζmyx)

of associative S-algebras where the homotopy groups are what the notation
suggests.





Chapter 9

Invertibility, Picard groups
and Morita context

If A→ B is a Galois-extension of commutative rings with finite abelian Galois-
group G then B defines an element in the Picard group Pic(A[G]) of A[G], see
e.g. [42]. The corresponding statement for Galois extensions of commutative
S-algebras has been proved in [10, 75]. We extend these result to associative
Galois extensions with finite abelian Galois group. The first part of this chapter
is purely algebraic and serves as a blueprint for the second part which deals with
the corresponding topological statements. Without assuming that G is abelian
we still can prove that B is an invertible (A[G],HomA[G](B,B)op)-bimodule and
so defines a Morita equivalence. The corresponding topological result holds as
well.

9.1 Invertibility, Picard groups and Morita context
in algebra

9.1.1 Invertible bimodules

Let Λ and ∆ be rings and recall that a (Λ,∆)-bimodule M is invertible if there
is a (∆,Λ)-bimodule N with isomorphisms of bimodules

M ⊗∆ N ∼= Λ; N ⊗Λ M ∼= ∆. (9.1)

In this case, ∆ is necessarily isomorphic to HomΛ(M,M)op as a ring, compare
[71, Thm. 16.14] for this and the following statements. Note that the multipli-
cation in HomΛ(M,M) seen as set of left Λ-module homomorphisms is given
by f · f̃ := f̃ ◦ f . As a ring, ∆ is isomorphic to this Hom-set with the opposite
multiplication and M is a right HomΛ(M,M)op-module via the evaluation map.
There is also an isomorphism N ∼= HomΛ(M,Λ) of (∆,Λ)-bimodules where the
bimodule structure of HomΛ(M,Λ) is given via the structures of its first and
second argument, i.e. N is isomorphic to the Λ-dual of M .
Moreover, the isomorphisms in (9.1) are given by evaluation and the canonical
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map ν respectively,

eval : M ⊗HomΛ(M,M)op HomΛ(M,Λ) −→ Λ (9.2)
ν : HomΛ(M,Λ)⊗Λ M −→ HomΛ(M,M), (9.3)

where [ν(f ⊗Λ m)](m̃) = f(m̃)m. This is a map of HomΛ(M,M)op-bimodules
where the left and right HomΛ(M,M)op-module structures on HomΛ(M,M) are
given via the action on the first and second argument. Clearly (9.2) is a map of
Λ-bimodules. There are criteria, when these maps are isomorphisms as we will
recall now. The next lemma is analogous to [71, Thm. 16.7] and follows together
with [71, Thm. 16.14]. Note that by HomR we always denotes morphisms of
left R-modules whereas in [71] the same denotes right module morphisms. We
choose this presentation as it is better adapted to the topological parts of this
thesis.

Lemma 9.1. The evaluation map (9.2) is an isomorphism if and only if M
is finitely generated projective as a left Λ-module. The map ν from (9.3) is an
isomorphism if and only if Σf∈HomΛ(M,Λ)f(M) = Λ.

The term Σf∈HomΛ(M,Λ)f(M) is called the trace ideal of M . The trace ideal is
isomorphic to Λ if and only if M is a generator of the category of left Λ-modules
by [71, Cor. 15.5]. An M satisfying both conditions from the last lemma is
called a progenerator for the category of left Λ-modules.

9.1.2 Invertible bimodules and Galois extensions

We want to verify the conditions from lemma 9.1 for certain G-Galois exten-
sions A→ B of rings. Hence we set M = B, Λ = A[G], N := HomA[G](B,A[G])
and ∆ := HomA[G](B,B). Recall that if the trace is surjective, the projectiv-
ity condition in the last lemma is satisfied by lemma 1.3. Here is a criterion
implying that B is a generator for the category of left A[G]-modules:

Proposition 9.2. Let A→ B be a Galois–extension of rings with finite Galois
group G. Assume that tr : B → A is surjective. Then

Σf∈HomA[G](B,A[G])f(B) = A[G].

Note that by lemma 4.7 the surjectivity of the trace implies the faithfulness of
the extension A→ B. Moreover, Galois extensions A→ B with A commutative
are always faithful and hence have surjective trace, see lemma 1.3.

Proof of proposition 9.2: As the canonical map h : B ⊗A B → B[G] is an
isomorphism also the map h̃ : B⊗AB → B[G] sending b⊗A b̃ to (g 7→ g(b) · b̃) is
an isomorphism. This is analogous to lemma 4.12.1 in the topological situation.
As tr(B) = A, there is a surjection

tr ◦h̃ : B ⊗A B → B[G]→ A[G] (9.4)

of left A[G]-modules using the G action on the first B factor in the source.
Hence for every b̃ ∈ B we obtain a map in HomA[G](B,A[G]) by precomposing
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tr ◦ h̃ with (−) ⊗A b̃. If b ⊗A b̃ maps to x ∈ A[G], we hence constructed a
morphism in HomA[G](B,A[G]) with x in its image. The surjectivity of (9.4)
hence proves the claim. 2

We obtain the following theorem.

Theorem 9.3. Let A → B be a Galois–extension of rings with finite Galois
group G. Assume that the trace tr : B → A is surjective. Then B is an invertible
(A[G],HomA[G](B,B)op)-bimodule.

Proof: By lemma 9.1 we have to check that B is finitely generated projective
as a left A[G]-module and that the trace ideal of B equals A[G]. The former is
stated in lemma 1.3 and the latter is proposition 9.2. 2

Remark 9.4 (Morita equivalence). Proposition 9.3 can be reformulated as fol-
lows. The (A[G],HomA[G](B,B)op)-bimodule B defines a Morita context such
that A[G] and HomA[G](B,B)op are Morita-equivalent whenever A → B is a
finite Galois extension with surjective trace, compare [71, Cor. 16.9].

9.1.3 Picard groups

If ∆ = Λ, the invertible (Λ,∆)-bimodules define a group Pic(Λ), the Picard
group of Λ. Of course, in the situation of theorem 9.3, the interesting question
is, whether there is an isomorphism of rings HomA[G](B,B)op ∼= A[G]. We have
the following result:

Proposition 9.5. Let A→ B be a Galois-extension of rings with abelian Galois
group G. Then A[G] ∼= HomA[G](B,B)op.

Proof: As in the topological situation (section 4.4) we define a ring BbGc that
is B[G] as an abelian group but with multiplication bbgc · b̃bg̃c := g̃−1(b)̃bbgg̃c.
We can then define a morphism

j̃ : BbGc → HomA(B,B)op (9.5)

mapping bbgc to x 7→ g−1(x) · b. This is a morphism of rings with the multipli-
cation in HomA(B,B) given by f · f̃ := f̃ ◦ f . We show in the next lemma that
j̃ is an isomorphism. Furthermore the map j̃ is G-equivariant: On the source,
consider the G-action on B and on the target the G-action defined by [h.f ](̃b) :=
h(f(h−1(̃b))). Then [h.̃j(b, g)] maps b̃ to h((g−1h−1(̃b) · b)) = hg−1h−1(̃b) · h(b).
This shows that j̃ is G-equivariant if and only if hgh−1 = g for all g, h ∈ G, i.e
if and only if G is abelian.
If G is abelian, the isomorphism j̃ restricts to an isomorphism on G-fixed points
and this is a morphism A[G] = BbGcG → HomA(B,B)G = HomA[G](B,B). 2

Lemma 9.6. If A → B is G-Galois then the map j̃ from equation (9.5) is an
isomorphism.

Proof: As in the proof of lemma 1.3 we choose elements xi, yi ∈ B such that∑
i σ(xi) · yi = δσ,e and also we define left A-module maps ψi : B → A by
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ψi(t) := tr(t · xi). As in the proof of lemma 1.3 we see that∑
i

ψi(b)yi = b (9.6)

for all b ∈ B. We first show that j̃ is onto. For u ∈ HomA(B,B) define
z :=

∑
g,i g(xi) · u(yi)bg−1c ∈ BbGc. Due to equation (9.6) It suffices to show

that j̃(z)(yk) = u(yk) for all k. We calculate:

j̃(z)(yk) = j̃

∑
g,i

g(xi) · u(yi)bg−1c

 (yk)

=
∑
g,i

g(yk)g(xi) · u(yi)

=
∑
i

ψi(yk)u(yi)

= u

(∑
i

ψi(yk)yi

)
= u(yk)

For the injectivity of j̃ note that with v :=
∑
bgbgc ∈ BbGc we have∑

σ,i

σ(xi)[̃j(v)(yi)]bσc =
∑
σ,g,i

σ(xi)g(yi)bgbσc =
∑
g

bgbgc = v

as
∑

i σ(xi)g(yi) = δσ,g. 2

If the Galois group G is abelian we can hence reinterpret theorem 9.3:

Theorem 9.7. Let A → B be a Galois–extension of rings with finite abelian
Galois group G and assume that the trace tr : B → A is surjective. Then B is
an element in the Picard group Pic(A[G]).

Proof: This follows from theorem 9.3 and proposition 9.5. 2

9.2 Invertibility, Picard groups and Morita context
in topology

We come back to topology and present the notions of invertibility and Picard
group in this context. They are defined in the derived category. We will obtain
analogs of theorem 9.3 and 9.7.

9.2.1 Invertible bimodules

Let R, R̂ be associative S-algebras. We say that an (R, R̂)-bimodule M is
invertible if there is an (R̂, R)-bimodule N such that

M ∧LbR N ' R and N ∧LRM ' R̂ (9.7)
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as R- respectively R̂-bimodules. In this case there are retractions D bR(X,Y )→
DR(M ∧LbR X,M ∧LbR Y ) → D bR(N ∧LR M ∧LbR X,N ∧LR M ∧LbR Y ) ∼= D bR(X,Y )
and DR(M ∧LbR X,M ∧LbR Y ) → D bR(X,Y ) → DR(M ∧LbR X,M ∧LbR Y ) so both
M ∧LbR − and N ∧LR − define equivalences of derived categories. We see that N

is equivalent to the derived R-dual F̃R(M,R) := FRR (M,R) of M ,

N ' F̃R(M,R) (9.8)

as D bR(X,N) ∼= DR(M ∧LbRX,M ∧LbR N) ∼= DR(M ∧LbRX,R) ∼= D bR(X, F̃R(M,R))

for any left R̂-module X. We think of F̃R(M ;R) or more generally F̃R(M,Y )
as being represented by FR(M̃, Y ) where M̃ is a cofibrant replacement of M
in the category of left R-modules. Also there is an equivalence F̃R(M,Y ) '
F̃R(M,R) ∧LR Y for every left R-module Y as

D bR(X, F̃R(M,Y )) ∼= DR(M ∧LbR X,Y )
∼= D bR(N ∧LRM ∧LbR X,N ∧LR Y )

∼= D bR(X, F̃R(M,R) ∧LR Y ).

Hence we conclude that R̂ ' N ∧LRM ' F̃R(M,R) ∧LRM ' F̃LR (M,M), i.e.

R̂ ' F̃R(M,M). (9.9)

Analogously to the algebraic situation, the equivalences from equation (9.7)
lead us to look at the morphisms

eval : M̃ ∧L
FR(fM,fM)op

FR(M̃,R) −→ R

and ν : F̃R(M,R) ∧LRM −→ F̃R(M,M)op.

where M̃ is a cofibrant replacement of M in the category of left R-modules.
Analogously to the algebraic situation, the right FR(M̃, M̃)op-module structure
on M̃ is given by evaluation making M̃ and (R,FR(M̃, M̃)op)-bimodule. Then
FR(M̃,R) is an (FR(M̃, M̃)op, R)-bimodule via the right FR(M̃, M̃)op-module
structure on M̃ and the right R-module structure on R.

9.2.2 Invertible bimodules and Galois extensions

In analogy to proposition 9.2 we have the following.

Proposition 9.8. Let A → B be a Galois–extension of associative S-algebras
with finite Galois group G. Assume that A→ B is faithful. Then the canonical
map

ν : FA[G](B,A[G]) ∧LA[G] B −→ FA[G](B,B)op

is a weak equivalence.
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Before proving this proposition we want to note that the function spectra in-
volved actually represent the derived function spectra.

Lemma 9.9. Let A→ B be a faithful Galois extension af associative S-algebras
with finite Galois group G. Let B̃ → B be a cofibrant replacement of B as a
left A[G]-module. Then there are equivalences

FA[G](B,B) −→ FA[G](B̃, B)

FA[G](B,A[G]) −→ FA[G](B̃, A[G]).

Proof: As B is faithful as a left A-module it suffices to check that we obtain
equivalences after smashing with B over A from the right. There is an equiv-
alence FA[G](B̃, B) ∧A B ' B[G] given by FA[G](B̃, B) ∧A B ' FA[G](B̃, B ∧A
B) ' F̃A[G](B̃, B[G]) ' F̃B[G](B ∧A B,B[G]) ' F̃B[G](B[G], B[G]) ' B[G].
Here we are using that B is dualizable as an A-module, the weak equivalence
h̃ : B ∧A B → F (G+, B) ∼= B[G] from lemma 4.12 which is a map of left A[G]-
modules with respect to the action of G on the first factor of B ∧A B and that
B ∧A B represents the derived smash product. Similar equivalences hold for
the other function spectra from the statement. Assembling these equivalences
to commutative diagrams proves the claim. 2

Proof of proposition 9.8: By faithfulness of B as an A-module it suffices
to show that ν ∧A B is a weak equivalence. We have the following diagram.

FA[G](B,A[G]) ∧LA[G] B ∧A B
ν∧AB //

FA[G](B;A[G])∧L
A[G]

eh'
��

FA[G](B,B) ∧A B

ν

��

FA[G](B,A[G]) ∧LA[G] B[G]

'
��

FA[G](B,A[G]) ∧A B

ν

��
FA[G](B,B[G]) FA[G](B,B ∧A B)'

eh∗oo

The vertical maps labeled ν are weak equivalences as B is dualizable as an
A-module. It follows that also the top horizontal map is a weak equivalence
which proves the proposition. 2

Proposition 9.10. Let A→ B be a Galois–extension of associative S-algebras
with finite Galois group G. Assume that A→ B is faithful. Then

eval : B ∧LFA[G](B,B)op FA[G](B,A[G]) −→ A[G]

is a weak equivalence.
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Proof: By assumption, A → B is faithful and B ∧A B ' B[G]. So eval is a
weak equivlance if and only if eval∧LAB, eval∧LA[G]B[G], eval∧LA[G]B ∧A B or
eval∧LA[G]B is a weak equivalence. We will check this for the last map which is

eval∧LA[G]B : B ∧LFA[G](B,B)op FA[G](B,A[G]) ∧LA[G] B −→ B. (9.10)

The map eval∧LA[G]B factors as

B ∧LFA[G](B,B)op FA[G](B,A[G]) ∧LA[G] B
B∧ν−−−→

B ∧LFA[G](B,B)op FA[G](B,B) eval−−→ B (9.11)

where ν is the weak equivalence from proposition 9.8. The evaluation in (9.11) is
clearly an isomorphism and so (9.11) is a weak equivalence. So also eval∧LA[G]B
and hence eval are weak equivalences. 2

Theorem 9.11. Let A → B be a Galois–extension of associative S-algebras
with finite Galois group G. Assume that A → B is faithful. Then B is an
invertible (A[G], FA[G](B,B)op)-bimodule.

Proof: This follows directly from propositions 9.8 and 9.10. 2

Remark 9.12 (Morita equivalence). As a consequence, the derived smash prod-
uct functor B ∧LA[G] − defines an equivalence of the derived categories of left
A[G]- and left FA[G](B,B)-modules. This can be interpreted as a Morita equiv-
alence as in [78].

The main question now is whether we can replace the right FA[G](B,B)op-
module structure on B by a right A[G]-module structure.

9.2.3 Picard groups

For an associative S-algebra R we define Pic(R) to be the collection of weak
equivalence classes of invertible R-bimodules. It follows from [9, Prop. 16] that
Pic(R) is a set and hence an abelian group, the Picard group of R. We will see
that if A → B is a faithful Galois extension with finite abelian Galois group
G then B gives rise to an element in the Picard group Pic(A[G]). Henceforth
we assume that G is abelian. This is necessary in order that an A[G]-bimodule
structure on B is defined.

Lemma 9.13. Let A → B be a faithful Galois extension with finite abelian
Galois group G. Then there is a map

˜̃
j : A[G]→ FA[G](B,B)op (9.12)

which is a weak equivalence of S-algebras.
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Proof: We define the map ˜̃j analogously to the algebraic situation, i.e. being

right adjoint to the module action B ∧ A[G] → B. It is clear that ˜̃j gives a
map of S-algebras, compare lemma 4.11. Since B is faithful as left A-module,
it suffices to check that the map B[G] → FA[G](B,B) ∧A[G] B[G] is a weak
equivalence. This follows as in the proof of lemma 9.9. 2

Theorem 9.14. Let A → B be a Galois–extension of rings with finite Galois
group G. Assume that A → B is faithful and that G is abelian. Then B is an
invertible A[G]-bimodule.

Proof: This follows from propositions 9.8 and 9.10 together with lemma 9.13.
2

We conclude this chapter with some remarks concerning the comparison of fixed
points with homotopy fixed points. Given a space or spectrumX with G-action,
the contraction of EG onto a point provides a comparison map

XG ∼= F (S,X)G −→ F (EG+, X)G = XhG.

For finite G-complexes X it was originally conjectured by Sullivan that this map
is a weak equivalence after p-adic completion. Proofs of the Sullivan conjecture
were given in [67, 68, 22].

Our results allow to compare fixed points and homotopy fixed points of the
spectrum FA(B,B) where A → B is a faithful Galois extension with finite
abelian Galois group.

Proposition 9.15. Let A → B be a faithful Galois extension of S-algebras
with finite abelian Galois group G. Then

FA(B,B)G ' FA(B,B)hG.

In other words: The Sullivan conjecture holds for endomorphism ring spectra
of finite abelian faithful Galois extensions.

Proof: By (9.12) there is a weak equivalence ˜̃j : A[G] → FA[G](B,B) ∼=
FA(B,B)G. Recall that in section 4.4 we introduced a weak equivalence j̃ : BbGc
→ FA(B,B)op. It is G-equivariant with G-actions defined analogously to the
algebraic situation, see the proof of proposition 9.5. In particular we consider
the G-action in the source to be given by the G-action on B. Passing to ho-
motopy fixed points we obtain a weak equivalence (j̃)hG : A[G] ' BbGchG →
FA(B,B)hG. The weak equivalences ˜̃j and (j̃)hG fit into a commutative diagram

A[G]
'

yyssssssssss
'

%%LLLLLLLLLL

FA(B,B)G // FA(B,B)hG

proving the proposition. 2



Chapter 10

Topological Hochschild
homology and Hopf-Galois
extensions

Given a Hopf-Galois extension of commutative S-algebras A → B with Hopf
algebra H and a B-bimodule M we construct an H-bimodule action on M such
that

THHA(B;M) ' THHA(H;M). (10.1)

We present two applications resulting from this equivalence. First, for a commu-
tative Hopf algebra H under A with homotopy antipode we use this bimodule
structure to show that THHA(H;M) 'M ∧A BA(A,H,A) where BA(A,H,A)
denotes the bar construction. More generally

THHA(B;M) 'M ∧A BA(A,H,A) (10.2)

for any Hopf-Galois extension of commutative S-algebras A→ B with respect
to the Hopf algebra H. If B = Mf is a Thom spectrum associated with an
infinite loop map f : X → BGL1A this shows that

THHA(Mf) 'Mf ∧BX+. (10.3)

For A = S the equivalence (10.3) is a theorem due to Blumberg, Cohen and
Schlichtkrull [13, 12]. Note that (10.2) is neither restricted to Thom spectra
nor to the case A = S.
As a second application we establish an equivalence

THHR(B;M) ' THHA(H;M ∧A∧RA A)

where R is a commutative S-algebra mapping to A. Often, the Hopf algebra
H of a Hopf-Galois extension A→ B has the form H = A∧RK for some Hopf
algebra K under R. In this case, the last equivalence takes the form

THHR(B;M) ' THHR(K;M ∧LA∧RA
A).

We obtain a spectral sequence

E2
p,q = Torπ∗(K∧RK)

∗ (K∗, π∗ THHR(A;M)) =⇒ π∗ THHR(B;M)

115
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which under flatness assumptions has E2
p,q
∼= HH∗(K∗;π∗ THHR(A;M)). This

spectral sequence generalizes an algebraic analog constructed by Stefan [80] and
was our initial motivation for pursuing the approach of this chapter.

The completion condition on the extension A→ B is actually not used in this
chapter and the statements in fact hold whenever the canonical map h associ-
ated with a coaction of a Hopf algebra is a weak equivalence of commutative
S-algebras. In particuar this includes all Thom spectra associated with infinite
loop maps, not just oriented ones.

10.1 Connection between the Hochschild homology
of the extension and its Hopf algebra

Lemma 10.1. Let A → B be a map of commutative S-algebras and let H be
a commutative Hopf algebra under A that coacts on B under A. Assume that
the canonical morphism h : B ∧A B → B ∧A H is a weak equivalence. Assume
further that B and H are cofibrant as commutative A-algebras. Then there is
a morphism

Φ: B ∧A H −→ B ∧A B

of commutative B-algebras that is an inverse to h up to homotopy, in particular
Φ is a weak equivalence. Here the B-algebra structures of B ∧A B and B ∧AH
are given by inclusion of B in the first factor.

Proof: First, note that since we deal with a Hopf-Galois extension of commu-
tative S-algebras, the canonical map h is a map of commutative B-algebras.
Then note that there is a pushout diagram

A //

��

B

��
H // B ∧A H

in the category of commutative A-algebras. Hence B → B∧AH is a cofibration
of commutative A-algebras as cofibrations are preserved by base change. This
means that B ∧A H is a cofibrant commutative B-algebra as the category of
commutative B-algebras CB is the category of commutative S-algebras under
B. It follows analogously that B ∧A B is a cofibrant commutative B-algebra.
Also note that all objects in CB are fibrant and recall that a map between fibrant
cofibrant objects is a weak equivalence if and only if it has a homotopy inverse
[35, 4.24]. So we can take Φ: B ∧A H → B ∧A B to be a homotopy inverse of
h in the category of commutative B-algebras. As h is a weak equivalence so is
the map Φ. 2

As a map of B-algebras, Φ is of course a map of B-bimodules. In order to avoid
confusion we point out that the left and right B-module structures coming from
this B-algebra structure are both given via the first B-factor. On B∧AB there
is a different right B-module structure being induced from the action on the
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second B-factor. However, there is no ambiguity about the right (and left)
A-module structures on B ∧A B as we smash over A.

In order to motivate the next step we recall the definition of topological Hoch-
schild homology spectra. For a commutative S-algebra A, an associative A-
algebra B and a B-bimodule M relative A, i.e. a B ∧A Bop-module, there is a
simplicial A-module thhA(B;M)∗ given in degree p by M ∧A B∧Ap with face
and degeneracy maps given by

di =


νr ∧A idp−1 if i = 0
id∧A idi−1 ∧Aµ ∧A idp−i−1 if 1 ≤ i < p
(νl ∧A idp−1) ◦ τ if i = p

and si = id∧A idi ∧Aη∧A idp−i. Here νl and νr denote the left and right module
actions, τ : (M ∧A Bp−1) ∧A B → B ∧A (M ∧A Bp−1) denotes the switch map
and η : A → B is the unit. The topological Hochschild homology spectrum
thhA(B;M) is then defined to be the geometric realization of the simplicial
A-module thhA(B;M)∗

thhA(B;M) := | thhA(B;M)∗|

[36, IX.2]. This definition is sometimes refered to as the algebraic defini-
tion of topological Hochschild homology. In the derived category, topological
Hochschild homology of B with coefficients in M is defined to be

THHA(B;M) := M ∧LB∧ABop B.

If B is cofibrant as an A-algebra and M is a cell B ∧A Bop-module then there
is an equivalence

thhA(B;M) 'M ∧B∧ABop B ' THHA(B;M)

[36, IX.2.5.]. Assuming that B is cofibrant as a commutative A-algebra, a cell
B ∧A Bop-module M represents the derived smash product over A. Now let N
be a B ∧A Bop-module which is equivalent to M and which is also an extended
cell A-module. Then the proper simplicial spectra thhA∗ (B;N) and thhA∗ (B;M)
are degreewise equivalent and it follows that thhA(B;N) ' thhA(B;M). Hence
thhA(B;N) ' THHA(B;N) also holds when N is an extended cell A-module,
e.g. if N = B.

Coming back to our initial situation we would like to compare thhA(B;M) with
thhA(H;M). For this, given a B-bimodule M we need to define an H-bimodule
structure on M . More generally than in lemma 10.1, for every right B-module
M we can define a map

ΦM : M ∧A H →M ∧A B

as the composite

M ∧A H ∼= M ∧B B ∧A H
M∧BΦ // M ∧B B ∧A B ∼= M ∧A B.
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Our notation is such that ΦB = Φ.

Definition 10.2. Let A, B and H be as in lemma 10.1 and let M be a B-
bimodule relative A, i.e. a B∧AB-module. We define an H-bimodule structure
on M by

νr : M ∧A H
ΦM−−→M ∧A B →M and

νl : H ∧AM
τ−→M ∧A H

ΦM−−→M ∧A B
τ−→ B ∧AM →M

where the last maps in each row are given by the right respectively leftB-module
structure on M .

Since Φ is a map of B-algebras it follows that νr and νl define right and left H-
module structures on M and they combine to an H-bimodule structure because
M is a B-bimodule relative A.

Proposition 10.3. Let A, B and H be as in lemma 10.1 and let M be a B-
bimodule relative A which is an extended cell B-module (e.g. M = B). With
the H-bimodule structure on M from definition 10.2 there is a weak equivalence

Φ∗ : thhA(H;M) '−→ thhA(B;M).

The statement also holds when M is a cell B ∧A B-module.

There is also a map

α : H
η−→ B ∧A H

Φ−→ B ∧A B
µ−→ B (10.4)

which is a map of A-algebras. One can also use this map to define an H-
(bi)module structure on a given B-(bi)module M . The right action νr from the
last definition is the one induced by α. However α induces the left module struc-
ture νl only if M is a central B-bimodule. If M is not central as a B-bimodule,
we need the bimodule structure from definition 10.2 to prove proposition 10.3
as will be evident from the proof.

Proof of proposition 10.3:
We will establish a map between the defining simplicial objects, given in degree
n by a weak equivalence M ∧A H∧An → M ∧A B∧An. Both source and target
are proper simplicial spectra by [36, IX.2.8] and so it follows by [36, X.2.4] that
degreewise weak equivalences give an equivalence of geometric realizations.
The maps M ∧A H∧An →M ∧A B∧An can be defined as the composites

M ∧A H∧An ∼= M ∧B (B ∧A H)∧Bn

M∧BΦ∧Bn

−−−−−−−→M ∧B (B ∧A B)∧Bn ∼= M ∧A B∧An.

The map in the middle is a weak equivalence since Φ is a weak equivalence
and all smash factors represent the derived smash product. We have to check
that these maps assemble to a map of simplicial objects, i.e. that these maps
commute with degeneracy and face maps. This is clear for the degeneracies
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since in our case they are all given by unit maps A → H or A → B and Φ is
a map under A. The face maps d0 are given by the right module actions of H
respectively B on M and commutativity follows since the action νr of H on M
is precisely given by the action of B precomposed with the map ΦM . For the
di with maximal index i commutativity follows from the definition of the left
module action νl onM in definition 10.2 and actually this is what motivated this
definition. For the intermediate di commutativity follows by multiplicativity of
Φ. The following diagram gives an example for this.

M ∧B (B ∧A H) ∧B (B ∧A H)

M∧Bµ

��

M∧BΦ∧BΦ // M ∧B (B ∧A B) ∧B (B ∧A B)

M∧Bµ

��
M ∧B (B ∧A H)

M∧BΦ // M ∧B B ∧A B

This completes the proof. 2

By the cofibrancy assumptions in proposition 10.3 the terms M ∧A H∧Ak and
M ∧A B∧Ak represent the derived smash products and so we get weak equiv-
alences THHA(H;M)' thhA(H;M) and THHA(B;M)' thhA(B;M) as in [36,
IX.2.]. So there is at least a zigzag of weak equivalences THHA(H;M) '
THHA(B;M).
The next lemma shows that if M is central as a B-bimodule, this equivalence
is induced by the map α.

Lemma 10.4. Assume that A, B and H are as in lemma 10.1 and M is a
B-bimodule relative A. Assume moreover that M is central as a B-bimodule.
Then the map α induces a map

α∗ : THHA(H;M) '−→ THHA(B;M)

which is also a weak equivalence.

Proof: For the proof we can assume that M is a cell B-module. We will use the
equivalences THHA(H;M) ' thhA(H;M) and THHA(B;M) ' thhA(B;M)
and that α∗ corresponds to the weak equivalence Φ∗ from proposition 10.3.
Since the B-bimodule M is central, the H-bimodule structure on H is induced
by the map α. We first want to mention that the maps α∗ and Φ∗ however do
not coincide on the simplicial level. The following diagram shows why this is
not the case.

ΦM : M ∧A H
∼= // M ∧B B ∧A H

M∧BΦ// M ∧B B ∧A B
∼= // M ∧A B

M ∧A H
η //

M∧Aα ,,YYYYYYYYYYYYYYYYYYYYYYYYYYYYY M ∧A B ∧A H

OO

M∧AΦ// M ∧A B ∧A B

OO

µ∧AB //

M∧Aµ

��

M ∧A B

M ∧A B

Expressing ΦM as in the second line, we see that the difference to M ∧Aα is the
multiplication in the end which is µ∧A B or M ∧A µ respectively. We will now
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show that this difference does not matter on the level of THH. Note that the
map M ∧AB →M ∧B∧ABB equalizes the two maps µ∧AB and M ∧Aµ. There
is hence the following commutative diagram where the vertical compositions
are coequalizers.

M ∧A (H ∧A H) ∧A H

����

Φ(M∧AB∧AB)◦Φ(M∧AB)◦ΦM
//

M∧Aα
∧A3

// M ∧A B ∧A B ∧A B

����
M ∧A H

��

// M ∧A B ∧A B
µ∧AB //
M∧Aµ

// M ∧A B

��
M ∧H∧AH H

(ΦM )∗=α∗ // M ∧B∧AB B

The upper horizontal maps in the diagram induce a map (ΦM )∗ on coequalizers
and the lower horizontal maps in the diagram induce a map α∗. As the lower
right vertical map equalizes µ∧AB and M ∧A µ, the maps Φ∗ and α∗ coincide.
We obtain the following commutative diagram.

thhA(H;M)
Φ∗
'

//

'
��

thhA(B;M)

'
��

THHA(H;M) THHA(B;M)

M ∧LH∧AH
H

α∗ // M ∧LB∧AB
B

Using that M is a cell B-module and B is an extended cell A-module it follows
that the vertical maps in the diagram are weak equivalences, the crucial prop-
erty being thatM∧AX represents the derived smash product for every extended
cell A-module X. It follows from the last diagram that α∗ : THHA(H;M) →
THHA(B;M) is a weak equivalence as well. 2

10.2 Hochschild homology of Hopf algebras with ho-
motopy antipode

Recall from proposition 5.11 that if H is a Hopf algebra under some com-
mutative S-algebra A which has a homotopy antipode λ, then the unit map
A → H is a (trivial) Hopf-Galois extension. Moreover, a homotopy inverse to
the canonical map h in this case is given by the map

Ψ: H ∧A H
H∧A∆−−−−→ H ∧A H ∧A H

H∧Aλ∧AH−−−−−−−→ H ∧A H ∧A H
µ∧AH−−−−→ H ∧A H.

Now let M be a central H-bimodule. Then setting B = H in equation (10.4)
we get a morphism of commutative A-algebras α : H → H. The self map
α : H → H induces a new H-bimodule structure on M . Let us write Mα for
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M regarded as an H-bimodule with this structure. Also note that there is a
homotopy commutative diagram

α : H
η∧AH // H ∧A H

Φ // H ∧A H
µ // H

H
η∧AH // H ∧A H

Ψ // H ∧A H
µ // H

H
ε // A

η // H

(10.5)

The square in the middle of the upper part of the diagram commutes up to
homotopy as both Φ and Ψ are homotopy inverses to the canonical map h. The
lower part of the diagram commutes up to homotopy due to the antipode prop-
erty. Note that the bottom map η ◦ ε is also a map of commutative A-algebras
and so induces yet anotherH-bimodule structure onM . We will writeMε forM
with theH-bimodule structure induced by η◦ε. As the diagram above commutes
up to homotopy there is a weak equivalence THHA(H;Mα) ' THHA(H;Mε)
as follows by a Künneth spectral sequence argument.

In order to proceed, we have to recall the bar construction, see [36, IV.7.]. Let
A be a commutative S-algebra, B an associative A-algebra, M a right and N
a left B-module. We define a simplicial S-module BA∗ (M,B,N) by

BAp (M,B,N) := M ∧A B∧Ap ∧A N,

with face and degeneracy operators

di =


µ ∧A idp−1 ∧A idN if i = 0
idM ∧A idi−1 ∧Aµ ∧A idp−i−1 ∧A idN if 1 ≤ i < p
idM ∧A idp−1 ◦µ if i = p

and si = idM ∧A idi ∧Aη ∧A idp−i ∧A idN .

Theorem 10.5. Let A be a commutative S-algebra and H a commutative Hopf
algebra under A with homotopy antipode. Assume that A is cofibrant as a
commutative S-algebra and H is cofibrant as a commutative A-algebra. Let
M = Mε be an extended cell A-module which we see as a central H-bimodule
via the map ε : H → A. Then

thhA(H,M) 'M ∧A BA(A,H,A). (10.6)

Proof: Comparing the definitions of the simplicial spectra thh∗ and B∗ we
see that thhA∗ (H;Mε) ∼= BA∗ (Mε,H,A) where A is seen as a left H-module
via ε : H → A. Here we are using that also the H-module structures on
Mε are defined via the map ε. Analogously it follows that BA∗ (Mε,H,A) ∼=
Mε ∧A BA∗ (A,H,A). Passing to realizations then gives the stated result. 2
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Proposition 10.6. Let A be a commutative S-algebra and H a commutative
Hopf algebra under A with homotopy antipode. Assume that A is cofibrant as a
commutative S-algebra and H is cofibrant as a commutative A-algebra. Let M
be an H-bimodule relative A which is central and an extended cell A-module.
Then

THHA(H;M) 'M ∧A BA(A,H,A).

In particular there is an equivalence

THHA(H) ' H ∧A BA(A,H,A).

Proof: We can see A→ H as a Hopf-Galois extension and have the following
chain of weak equivalences.

THHA(H,M) ' THHA(H;Mα) lemma 10.4
' THHA(H;Mε) diagram (10.5)
' thhA(H;Mε) M = Mε ext. cell A-module
' M ∧A BA(A,H,A) theorem 10.5

This proves the first equivalence. The second equivalence is just the case M =
H. 2

Theorem 10.7. Let A → B be a Hopf-Galois extension of commutative S-
algebras with Hopf algebra H which has a homotopy antipode. Assume that A
is a cofibrant commutative S-algebra and B and H are cofibrant commutative
A-algebras. Let M be a central B-bimodule relative A which is an extended cell
A-module. Then

THHA(B;M) 'M ∧A BA(A,H,A).

If H is a of the form H = A ∧K then

THHA(B;M) 'M ∧ BS(S,K, S).

Proof: There is the following chain of weak equivalences.

THHA(B;M) ' THHA(H;Mα) lemma 10.4
' M ∧A BA(A,H,A) as in the proof above

This proves the first equivalence and the second in case H = A ∧K is a direct
consequence. 2

In the following corollary we implicitely assume that the usual cofibrancy as-
sumptions are satisfied.

Corollary 10.8. Let Mf be a Thom spectrum associated with an infinite loop
map f : X → BGL1(A). Then

THHA(Mf) 'Mf ∧BX+ (10.7)
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Proof: Recall from chapter 6 that the group ring H := A[X] is a Hopf algebra
with homotopy antipode coacting on Mf such that the canonical map h is a
weak equivalence of commutative A-algebras. It follows as in the last theorem
that there is a weak equivalence THHA(Mf) ' M ∧ BS(S, S[X], S). Then as
the space level and the spectrum level bar constructions commute, e.g. by [36,
X.1.3.], we see that BS(S,Σ∞X,S) ∼= Σ∞ B(∗, X, ∗) = S[BX]. 2

In case A = S the statement was formulated and proven in [13, 12] where
[13] also includes Thom spectra arising from at least 3-fold loop maps X →
BGL1(S). We can not reproduce the result for finite loop maps by our approach
since we used that the canonical morphism h is a morphism of commutative
S-algebras which is only the case when starting with an infinite loop map.
However, none of the references deals with A different from S.

10.3 A spectral sequence converging to the Hoch-
schild homology of a Hopf-Galois extension

So far we have only dealt with topological Hochschild homology relative to the
base spectrum A of a Hopf-Galois extension A → B. We also want to work
relative S and express THHS(B;M) in terms of the topological Hochschild
homology of A and the Hopf algebra H. More generally, let R→ A be a map of
commutative S-algebras mapping a commutative S-algebra R to a Hopf-Galois
extension A → B. The next statement describes the topological Hochschild
homology of B relative R in a different way. We assume that R is a cofibrant
commutative S-algebra, A is a cofibrant commutative R-algebra and B and H
are cofibrant commutative A-algebras.

Theorem 10.9. Let R→ A be a map of commutative S-algebras and let A→ B
be a Hopf-Galois extension with respect to a Hopf algebra H. Assume that the
above cofibrancy hypotheses hold. Let M be a B-bimodule relative R and let
M̃ →M be a cell approximation in the category of B ∧R B-modules. Then

THHR(B;M) ' THHA(H; M̃ ∧A∧RA A). (10.8)

If moreover H is of the form H = A ∧R K for a Hopf algebra K under R then
this equivalence takes the form

THHR(B;M) ' THHR(K; M̃ ∧A∧RA A). (10.9)

Proof: There is the following chain of weak equivalences.

THHR(B;M) ' M̃ ∧B∧RB B M̃ cell B ∧R B-module
∼= M̃ ∧B∧RB (B ∧A B) ∧B∧AB B

' THHA(B; M̃ ∧B∧RB (B ∧A B)) N := M̃ ∧B∧RB (B ∧A B)
' thhA(B; M̃ ∧B∧RB (B ∧A B)) cell B ∧A B-module
' thhA(H; M̃ ∧B∧RB (B ∧A B)) proposition 10.3
' THHA(H; M̃ ∧B∧RB (B ∧A B)) N extended cell A-module
' THHA(H; M̃ ∧A∧RA A)
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The last equivalence is due to isomorphisms

M̃ ∧B∧RB B ∧A B ∼= (B ∧B M̃) ∧B∧RB (B ∧A B)
∼= (B ∧B B) ∧B∧RA (M̃ ∧B B)
∼= (B ∧A A) ∧B∧RA (M̃ ∧A A)
∼= (B ∧B M̃) ∧A∧RA (A ∧A A)
∼= M̃ ∧A∧RA A

where the second and fourth isomorphism is due to a comparison of coequalizer
diagrams, compare with [36, III.3.10.]. This proves (10.8). Equation (10.9) is a
direct consequence. 2

The last theorem allows the construction of spectral sequences.

Theorem 10.10. Let R,A,B,K,M and M̃ be as in theorem 10.9. There is a
spectral sequence

Torπ∗(K∧RK)
∗ (π∗ THHR(A;M),K∗) =⇒ π∗ THHR(B;M).

Proof: This is the usual spectral sequence converging to π∗ THHR(B;M) from
[36, IX.1.6.] and nothing but a Künneth spectral sequence. Here we are using
theorem 10.9 which says that π∗THHR(K; M̃ ∧A∧RA A) ∼= π∗ THHR(B;M).
We are also using that M̃ ∧A∧RAA ' THHR(A;M). To prove this equivalence,
we have to show that M̃ ∧A∧RA A represents the derived smash product. This
follows from our cofibrancy assumptions as the following chain of equivalences
shows. We write Ã for a cell approximation of A in the category of A ∧R A-
modules.

M̃ ∧A∧RA A
∼= M̃ ∧B∧RB (B ∧R B) ∧A∧RA A

∼= M̃ ∧B∧RB (B ∧A A ∧A B)

' M̃ ∧B∧RB (B ∧A Ã ∧A B)
∼= M̃ ∧B∧RB (B ∧R B) ∧A∧RA Ã

∼= M̃ ∧A∧RA Ã

This completes the proof. 2

Under flatness assumptions the spectral sequence simplifies, e.g. to a spectral
sequence

HH∗(K∗;π∗ THHR(A;M)) =⇒ π∗ THHR(B;M).

Moreover, π∗ THHR(A;M) may be given by ordinary Hochschild homology. For
instance, assume that R, A and K are Eilenberg-McLane spectra and A∗ and
K∗ are flat as R∗-modules. Then the spectral sequences specializes to a spectral
sequence of the form

HHR∗
∗ (K∗;HHR∗

∗ (A∗;M∗)) =⇒ π∗ THHR(B;M)

and generalizes the spectral sequence for Hopf-Galois extensions of ordinary
rings from [80].
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Appendix A

A Galois correspondence for
associative ring extensions

The classical Galois correspondence for field extensions has a generalization to
commutative ring theory. In this more general situation, the subgroups of the
Galois group G correspond to the intermediate rings that have the additional
properties of being separable and G-strong [24], [42], see definitions 1.2 and A.4.
In non-commutative ring theory it is not clear how to characterize those inter-
mediate rings that correspond to subgroups of the Galois group in general and
Galois correspondences have only been obtained under additional assumptions.
Ferrero obtains a Galois correspondence in [37]. He supposes some so-called
property (H) which in the commutative case is fulfilled if and only if there are
no nontrivial idempotents, see definition A.2.
The aim of this appendix is to set up a Galois correspondence for Galois exten-
sions R = SG → S of associative rings under the assumptions that the trace
tr : S → R is surjective and that all idempotents of S lie in the center of S.
The intermediate rings corresponding to subgroups of G then are exactly those
which are G-strong and fulfill a certain separability condition, see definition
A.7. This condition equals the usual condition of separability if R and S are
commutative or under the assumptions of the main theorem of [37]. Our main
theorem is hence a generalization of those of [24],[42] and [37].

A.1 A short review

The easy part of a Galois correspondence for ring extensions reads as follows,
see e.g. [37] for a reference including the associative case.

Proposition A.1 ([37] prop. 3.1 p.83).
Let R → S be G-Galois. Then for any subgroup H < G the inclusion T :=
SH → S is an H-Galois extension and H is the subset of G leaving T pointwise
fixed. If tr(S) = R, then T is separable and if H is normal in G, then R → T
is a G/H-Galois extension.

To obtain the converse implication of a main-theorem, Ferrero supposes some
property called (H) in [37].

127
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Definition A.2 (Property (H)). Let µ : S ⊗Z S
op → S be the multiplication.

We say that S verifies (H) if:

z ∈ S ⊗Z S
op, µ(z) = µ(z2) =⇒ µ(z) = 0 or µ(z) = 1.

Obviously, if S verifies (H), it has no idempotents other than 0 or 1. Also for
the converse statement of a Galois theorem, recall the following definitions:

Definition A.3 (strongly distinct morphisms). Let f, g : A → B be two ho-
momorphisms into a ring B. Then f and g are called strongly distinct, if for
every non-zero idempotent e ∈ B there is an a ∈ A such that f(a)e 6= g(a)e.

If B only has the trivial idempotents 0 and 1, then obviously f and g as above
are strongly distinct if and only if they are distinct.

Definition A.4 (G-strong intermediate rings). Let S be a G-Galois extension
of R and T an intermediate ring. Then T is called G-strong if the restrictions
to T of any two elements of G are either equal or strongly distinct as maps from
T to S.

The parts from the main theorems from [24],[42] and [37] which are interesting
for our purposes can be stated as follows:

Theorem A.5 ([24] theorem 2.3).
Let R→ S be a G-Galois extension of commutative rings. Then there is a one
to one correspondence between subgroups of G and R-separable intermediate
rings that are G-strong.

In the non-commutative case of [37] it takes the following form:

Theorem A.6 ([37] theorem 3.3).
Let S be a G-Galois extension of R. If S verifies (H) and tr(S) = R, there is a
one to one correspondence between subgroups of G and R-separable intermediate
rings.

Note that tr(S) = R is always satisfied if R and S are commutative ([24, Lemma
1.6]) and that (H) implies that all intermediate rings are G-strong.

A.2 Galois-separable rings and a Galois correspon-
dence

I want to prove a main theorem under different assumptions. The following
property is important.

Definition A.7 (Galois-separable intermediate rings). Let R → S be a G-
Galois extension T an intermediate ring R ⊂ T ⊂ S. We call T Galois-separable
for the G-Galois extension R → S, if h(S ⊗R T ) ⊂ E := F (G,S) ∼=

∏
G S

satisfies the following separability condition:
There exist elements xi, yi ∈ h(S ⊗R T ) such that

•
∑

i xiyi = 1
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•
∑

i xxi ⊗S yi =
∑

i xi ⊗S yix ∈ E ⊗S E ∀x ∈ h(S ⊗R T ).

In this case, most of the time we will just say that T is Galois-separable, since
the group G and the extension R→ S will be clear from the context.
If h(S⊗RT ) is a subring of E, then T is Galois-separable if and only if h(S⊗RT )
is S-separable. If furthermore h is a morphism of rings this is equivalent to
saying that S⊗R T is S-separable. If R and S are commutative, we obtain even
more:

Lemma A.8.
If R→ S is a G-Galois extension of commutative rings, then an intermediate
ring T is Galois-separable if and only if it is R-separable.

Proof: By the remark preceeding the Lemma, we have to show that T is R-
separable if and only if S ⊗R T is S-separable. It is a standard argument, that
if T is R-separable, then S⊗RT is S-separable; one just can construct elements
witnessing the conclusion.
For the other direction assume that S ⊗R T is S-separable. We then use that
in our situation S is an inverible R[G]-module. Hence by tensoring with an
inverse for S one can obtain as above that R[G]⊗R T is R[G]-separable. This
amounts to saying that the multiplication map R[G]⊗R T ⊗R T → R[G]⊗R T
has a section. Regard R → R[G] as the trivial G-Galois extension and note
that this section is a map of left R[G]-modules. Hence by descent theory (e.g.
[57, II.5.2]) it is induced by a (unique) R-module map s : T → T ⊗R T . The
same is true for the multiplication and the uniqueness property tells us that s
is a section for µ : T ⊗R T → T . Hence T is R-separable. 2

Note that for G-strong rings T the lemma is a corollary of theorem A.5. One
just has to use that S → S ⊗R S is also G-Galois with action on the second
factor. The Lemma is also a corollary if one compares theorem A.11 with
theorem A.5 and their proofs.
The last definition allows us to formulate the following lemma which will be
crucial in the proof of our main theorem. The lemma is an adaption of [24,
lemma 1.2] to the situation for non-commutative rings. Note that in the sit-
uation of the next lemma, h(S ⊗R T ) is contained in the fixed subring EH of
E = F (G,S).

Lemma A.9.
Let R → S be a G-Galois extension. Let T be a Galois-separable intermediate
ring as above and H < G the subgroup of elements of G leaving T pointwise
fixed. Suppose f : EH → S is an S-algebra-morphism and that all idempotents
of S are central. Then there exists an idempotent e ∈ h(S ⊗R T ) ⊂ EH such
that

1. f(e) = 1

2. f(x)e = xe ∀x ∈ h(S ⊗R T )

3. If f1, . . . , fn are homomorphisms from EH to S as above and their restric-
tions to h(S ⊗R T ) are pairwise strongly distinct, then the corresponding
idempotents e1, . . . , en are pairwise orthogonal and fi(ej) = δij.



130 APPENDIX A. A GALOIS CORRESPONDENCE FOR ...

Proof: (compare the proof of [24, 1.2.])
Define e :=

∑
i f(xi)yi ∈ h(S ⊗R T ) for xi, yi as in definition A.7. Then

we have f(e) = f(
∑

i f(xi)yi) =
∑

i f(xi)f(yi) = f(
∑

i xiyi) = f(1) = 1.
By applying f ⊗S id to the second point in definition A.7 we obtain 1 ⊗S
f(x)e = 1⊗S f(x)

∑
i f(xi)yi =

∑
i f(x)f(xi)⊗S yi = (f⊗S id)(

∑
i xxi⊗S yi) =

(f ⊗S id)(
∑

i xi ⊗S yix) = 1 ⊗S
∑

i f(xi)yix = 1 ⊗S ex ∀x ∈ h(S ⊗R T ).
Using that E is S-free, we obtain f(x)e = ex. Hence e is an idempotent
in E. As all the idempotents of E =

∏
G S are in the center of E we ob-

tain f(x)e = ex = xe. To prove the last statement of the lemma use that
fi(x)fi(ej) = fi(xej) = fi(fj(x)ej) = fj(x)fi(ej). Hence since the restric-
tions of the fk to h(S ⊗R T ) are strongly distinct, we obtain fi(ej) = δij and
eiej = fj(ei)ej = dijej . 2

We can now come to the converse part of the Galois correspondence:

Proposition A.10.
Let R → S be G-Galois, assume that all idempotents of S are central and
that the trace tr : S → R is surjective. Let T be a G-strong, Galois-separable
intermediate ring R ⊂ T ⊂ S. Then there exists a subgroup H < G such that
T = SH .

Proof: (compare [24, theorem 2.3])
Define H := {g ∈ G|g(t) = t ∀t ∈ T}. We have to show that SH ⊂ T .
Therefore, let G =

⋃r
i=1 σiH (disjoint union). Then EH is the set of functions

from G to S which are constant on each coset σiH. Define the morphisms of
algebras

fi : EH → S : v 7→ v(σi).

Claim: The fi are strongly distinct as morphisms of left S-modules
fi : h(S ⊗R T )→ S.

Proof of the claim: The σi are strongly distinct as homomorphisms T → S,
hence for all nonzero idempotents e ∈ S, i 6= j, there exists t ∈ T such that
σi(t)e 6= σj(t)e. Therefore fi(h(1⊗R t))e = σi(t)e 6= σj(t)e = fj(h(1⊗R t))e.
Now, since T is supposed to be Galois-separable, we may apply lemma A.9. We
obtain pairwise orthogonal idempotents e1, . . . , er ∈ h(S ⊗R T ) such that

1. ej(σi) = fi(ej) = δi,j

2. fi(x)ei = xei ∀x ∈ EH (sic!)

It follows that the ei form an S-basis of EH , hence h(S ⊗R SH) ⊂ EH ⊂
h(S ⊗R T ). We obtain S ⊗R SH ⊂ S ⊗R T by applying h−1. Then by applying
tr⊗R1, since the trace is surjective and S is R-projective (lemma 1.3), R is an
R-module direct summand in S and we obtain SH ⊂ T . 2

Now we can come to the following main theorem and its proof.

Theorem A.11.
Let R → S be G-Galois and assume that all idempotents of S are central and
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that the trace tr : S → R is surjective. Then there is a correspondence between
subgroups of G and intermediate rings T that are G-strong and Galois-separable.

Proof: Given a ring T as in the theorem, a subgroup H < G is given by
proposition A.10 and its proof.
Let us now be given any subgroup H < G. We have to show, that T := SH is
G-strong and Galois-separable.
First note, that also trH :=

∑
τ∈H is surjective, since if tr(d) = 1 then we

have trH(
∑r

i=1 σi(d)) = tr(d) = 1 with the notation from the last proof. Let
c ∈ S be such that trH(c) = 1, e.g. c :=

∑r
i=1 σi(d). Second, since R → S is

a G-Galois extension, h : S ⊗R S → E is surjective. Hence there are elements
xi, yi ∈ S such that

∑
i xiσ(yi) = δσ,1. We will now argue as in [24, p.23] that

T is G-strong: With ai :=
∑

τ∈H τ(cxi) and bi :=
∑

g∈H g(yi) ∈ T we have∑
i

aiσ(bi) =
∑
i

(
∑
τ∈H

τ(cxi))σ(
∑
g∈H

g(yi))

=
∑
i

∑
τ∈H

∑
g∈H

τ(cxi)σ(g(yi))

=
∑
τ∈H

τ(c
∑
g∈H

∑
i

xiτ
−1σg(yi)) (A.1)

=
∑
τ∈H

τ(c
∑
g∈H

δτ−1σg,1)

=
{ ∑

τ∈H τ(c · 1) = trH(c) = 1 if σ ∈ H∑
τ∈H τ(c · 0) = trH(0) = 0 if σ 6∈ H.

Now for σ, ρ ∈ G which do not coincide on all of T , we have ρ−1σ 6∈ H. Hence
if e ∈ S is an idempotent, such that σ(t)e = ρ(t)e for all t ∈ T , we have
ρ−1σ(t)ρ−1(e) = tρ−1(e), hence

ρ−1(e) =
∑
i

aibiρ
−1(e) =

∑
i

aiρ
−1σ(bi)ρ−1(e) = 0

by equation (A.1) and therefore also e = 0 which shows that T is G-strong.
For the proof that T := SH is Galois-separable, note that equation (A.1) also
shows, that h(S⊗RT ) is all of EH = h((S⊗RS)H). Hence S⊗RSH = (S⊗RS)H .
Now recall the trivial G-Galois extension S → E. As the trace of the trivial
G-Galois extension of S is surjective, we can apply proposition A.1 to obtain
that EH = h((S⊗R S)H) = h(S⊗R SH) is separable. Hence T = SH is Galois-
separable. 2

Here is an example, which is neither covered by the main-theorem of [24], [42]
nor by that of [37]. It also shows, that not every separable intermediate ring is
also Galois-separable.

Example A.12 (Quaternions). Let H be the Hamiltonian quaternions and
recall from example 1.9 that R→ H is aG-Galois extension withG ∼= Z/2×Z/2
generated by

cj : H→ H : r0 + r1i+ r2j + r3k 7→ r0 − r1i+ r2j − r3k
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ci : H→ H : r0 + r1i+ r2j + r3k 7→ r0 + r1i− r2j − r3k.

As H is not commutative, the main-theorem of [24] does not apply and also
that of [37] does not. To see that H does not satisfy (H) consider z := 1

2(1⊗Z
1 + i ⊗Z j). Then z2 = z and µ(z) = µ(z2) = 1

2(1 + k) 6∈ {0, 1}. However the
example fits in the situation of our main-theorem: As a skew-field, H does not
have a non-trivial idempotent and since the order of G is invertible in R, the
trace is surjective.
We can now identify the Galois-separable intermediate rings R[i]/(i2 + 1) ∼=
H<ci>, R[j]/(j2 + 1) ∼= H<cj> and R[k]/(k2 + 1) ∼= H<cicj> corresponding to
the subgroups < ci >,< cj > and < cicj > of G of index 2. But there are other
intermediate rings, for example T := {r1 + r2(i + j + k) ∈ H|r1, r2 ∈ R}. The
ring T is isomorphic to C hence R-separable, but cannot be Galois-separable
for the given extension by theorem A.11.

More examples to which theorem A.11 applies are given by cyclic algebras and
generalized quaternion algebras that are subalgebras of a skew-field extension.
Starting the constructions of these algebras with a Kummer extensions R→ T
we know that the trace is surjective, as the the order of the Galois group is
invertible in R. Moreover, subrings of skew-fileds have only trivial idempotents
so that the hypotheses of theorem A.11 are satisfied.

A.3 Relation to other main theorems

In the commutative case, the trace of a Galois extension R → S is always
surjective and also the assumption that all idempotents of S are central holds
trivially. Lemma A.8 then shows that theorem A.11 specializes to the Galois
correspondence of [24] and [42] in the commutative case. It is a real general-
ization of these theorems, since there are non-commutative rings all of whose
idempotents are central, e.g. skew-fields or any other connected ring.
We want to shead more light on the relationship between “separable” and
“Galois-separable”. In view of propositions A.10 and A.1 a Galois extension
R → S with tr(S) = R and {idempotents of S} ⊂ Center(S) leads to the
following chain of inclusions which maps a ring T to itself:

{Galois-separable, G-strong rings T} � � // {subgroups of G}
E e

ssgggggggggggggggggggg

{separable intermediate rings T}

(A.2)

Hence in this situation every Galois-separable G-strong ring is separable. It
would be interesting to know when exactly “Galois-separable” is the same as
“separable”. This is a difficult question: An answer under settings leading to
diagram (A.2) immediately implies a Galois correspondence, since the answer
tells us also, when the inclusions in diagram (A.2) are in fact bijections. Ex-
ample A.12 shows, that there are separable intermediate rings which are not
Galois-separable.
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Vice versa, having a diagram (A.2) where the inclusions are bijections, we
know of course that “Galois-separable” equals “separable” for G-strong rings.
For instance, assume that tr(S) = R and S verifies (H) i.e. assume the situa-
tion of Ferrero’s main theorem (theorem A.6). In this case, since S then only
has trivial idempotents, every intermediate ring is automatically G-strong and
{idempotents of S} ⊂ Center(S) holds obviously. Hence the assumptions of
our main theorem A.11 are also satisfied and the inclusions in diagram A.2 are
bijections. This shows that “Galois-separable” is also the same as “separable”
for intermediate rings T of a Galois extension R → S if the trace is surjective
and S verifies (H). Hence our main-theorem can also be seen as a generalization
of that of [37].
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[80] D. Ştefan. Hochschild cohomology on Hopf Galois extensions. J. Pure
Appl. Algebra, 103(2):221–233, 1995.

[81] N. P. Strickland. Products on MU -modules. Trans. Amer. Math. Soc.,
351(7):2569–2606, 1999.

[82] M. E. Sweedler. Hopf algebras. Mathematics Lecture Note Series. W. A.
Benjamin, Inc., New York, 1969.

[83] G. Szeto and L. Xue. On splitting rings for Azumaya skew polynomial
rings. Algebra Colloq., 8(1):25–32, 2001.

[84] R. Thom. Quelques propriétés globales des variétés différentiables. Com-
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Zusammenfassung

Ausgehend von der Definition von Galois Erweiterungen für assoziative Ringe
und der entsprechenden Definition für kommutative S-Algebren nach John
Rognes [75], haben wir Galois Erweiterungen von assoziativen S-Algebren defi-
niert. Hierzu haben wir zunächst die Modellstruktur auf der Kategorie der S-
Algebren unter einer gegebenen kofibranten S-Algebra A analog zum Vorgehen
in [36] untersucht. Das Hauptergebnis ist, dass das Smashprodukt von kofi-
branten S-Algebren unter A das derivierte Smashprodukt repräsentiert. Dies
ist wesentlich, um die Homotopieinvarianz unserer Definition von Galois Er-
weiterungen sicher zu stellen.
Wir haben dann Galois Erweiterungen von assoziativen S-Algebren weiter un-
tersucht. Wir zeigen, dass Dualisierbarkeit auch im assoziativen Kontext Sinn
macht, und dass jede Galois Erweiterung B einer assoziativen S-Algebra A
dualisierbar über A und Aop ist. Das konnte benutzt werden, um Galois Er-
weiterungen zu charakterisieren. Wir behandeln viele Beispiele, beginnend mit
den sogenannten trivialen Erweiterungen und Erweiterungen von Matrix S-
Algebren. Wir beweisen ein Eilenberg-MacLane Einbettungstheorem für Galois
Erweiterungen von assoziativen Ringen mit surjektiver Spur, das insbesondere
auf alle assoziativen Galois Erweiterungen von kommutativen Grundringen an-
wendbar ist. Somit ist die algebraische Theorie in diesen Fällen in der topolo-
gischen Theorie enthalten.
Desweiteren haben wir induzierte Erweiterungen untersucht. Hierfür beweisen
wir Entdeckungs- und Erhaltungssätze. Insbesondere liefern die Lubin-Tate Er-
weiterungen aus [75] Galois Erweiterungen von assoziativen S-Algebren durch
Induzieren entlang von Abbildungen in entsprechende Morava-K-Theorie Spek-
tren. Wir erhalten so auch eine pro-Galois Erweiterung Kn → Knr

n = Enrn ∧En

Kn und zeigen, dass das Spektrum Knr
n zumindest an ungeraden Primzahlen

ein separabler Abschluss bezüglich Erweiterungen mit kommutativen Homo-
topiegruppen ist.
In Teil II haben wir den allgemeineren Begriff von Hopf-Galois Erweiterungen
für assoziative S-Algebren definiert. Erneut untersuchen wir induzierte Er-
weiterungen. Die allgemeinere Sichtweise erlaubt es, nicht nur hinreichende son-
dern auch notwendige Bedingungen für die Erhaltung und Erkennung von Hopf-
Galois Erweiterungen zu erhalten, was eine Frage von Rognes beantwortet. Wir
haben uns dann mit Thomspektren und regulären Quotienten beschäftigt. Ana-
log zur Hopf-Galois Erweiterung S →MU war allgemein erwartet worden, dass
Thomspektren zu unendlichen Schleifenabbildungen Hopf-Galois Erweiterungen
sind. Wir konnten diesen Ansatz verallgemeinern und präzisieren. Insbesondere
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liefern Hopf-Galois Erweiterungen zu (endlichen oder unendlichen) Schleifenab-
bildungen in den klassifizierenden Raum BF = BGL1S für stabile sphärische
Faserungen genau dann Hopf-Galois Erweiterungen, wenn das Thomspektrum
orientierbar entlang H Z ist.
In Teil III haben wir drei Anwendungen behandelt. Wir beschäftigten uns
zunächst mit einem Realisierungsproblem und konnten so insbesondere die Exis-
tenz von Ringspektren zeigen, die zyklische und verallgemeinerte Quaternionen-
erweiterungen von bestimmten kommutativen S-Algebren sind.
In einem weiteren Kapitel haben wir gezeigt, dass für treue Galois Erweiter-
ungen A → B von assoziativen S-Algebren das Erweiterungsspektrum B stets
ein invertierbarer (A[G], FA[G](B,B)op)-Bimodul ist. Ist die Galoisgruppe zu-
dem abelsch, so gibt es eine schwache Äquivalenz FA[G](B,B)op ' A[G], sodass
B ein Element in der Picardgruppe Pic(A[G]) definiert.
Im letzten Kapitel haben wir die topologische Hochschildhomologie von Hopf-
Galois Erweiterungen kommutativer S-Algebren untersucht. Für Thomspek-
tren Mf zu einer unendlichen Schleifenabbildung f : X → BGL1S konnten wir
die Äquivalenz THHS(Mf) ' Mf ∧ BX+ [12, 13] erneut beweisen. Ist allge-
meiner A→ B eine Hopf-Galois Erweiterung in Bezug auf eine Hopfalgebra H
mit Homotopieantipode, so gibt es eine Äquivalenz

THHA(B;M) 'M ∧A BA(A,H,A),

wobei BA(A,H,A) die Barkonstruktion bezeichnet. Zum Schluss haben wir
gezeigt, dass es für kommutative Hopf-Galois Erweiterungen unter einer kom-
mutativen S-Algebra R mit Hopfalgebra H = A∧RK eine Spektralsequenz der
Form

E2
p,q = Torπ∗(K∧RK)

∗ (K∗, π∗ THHR(A;M)) =⇒ π∗ THHR(B;M)

gibt.

Der Anhang enthält eine Galoiskorrespondenz für assoziative Ringerweiterun-
gen.



Lebenslauf

Persönliche Daten
Name Fridolin Daniel Pekka Roth, Dipl.-Math., Cellist
Geburtstag und -ort 15.04.1978 in München
Adresse Borgfelder Str. 16, 20537 Hamburg      fridolin.roth@gmail.com
Telefon 040-29885488          mobil: 0179-7755869          Büro: 040-42838-5181
Staatsangehörigkeit deutsch
Familienstand ledig
Eltern Elisabeth Roth-Luginger, Lehrerin für Biologie und Chemie, Diplombiologin

Dr. Hans-Manfred Roth, Dipl. ing. agr. 
Geschwister Anne und Benjamin

Schulzeit
Schulbildung 1984-1988 Besuch der Grundschule an der Stuntzstrasse in München

1988-1997 Besuch des Luitpold-Gymnasiums, München (math.-nat. Zweig)
1997 Abitur 

Zivildienst 1997-1998 bei der Vereinigung für Integrationsförderung in München, vor allem 
Begleitung einer behinderten Studentin im Fremdspracheninstitut der 
Landeshauptstadt München.

Studium und Promotion
Jungstudium Während des Zivildienstes im Fach Violoncello am Richard-Strauss-Konservatorium 

(RSK) in München
Studium WS98 bis SS 01 Musik mit Hauptfach Violoncello am RSK in München 

2001 Abschluss als Staatlich geprüfter Cellist
WS99 bis SS01 Mathematik mit Nebenfach Physik an der TU-München, Vordiplom 
WS01 bis SS02 Mathematik an der Université de Nice, Frankreich, Maîtrise de 

Mathématiques Pures
WS02 bis SS05 Mathematik mit Nebenfach Physik an der Friedrich-Wilhelms-

Universität Bonn. Vertiefung in Topologie und Logik.
2005 Diplom im Fach Mathematik

Diplomarbeit Zur Lusternik-Schnirelmann-Kategorie Euklidischer Konfigurationsräume
Promotion Seit WS 05/06 an der Universität Hamburg. 
Veröffentlichungen On the category of Euclidean Configuration Spaces and associated fibrations, 

Geometry & Topology Monographs 13 (2008) 447-461


