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Zusammenfassung

Das Hauptanliegen dieser Arbeit ist die Einführung von Zeitabhängigkeiten inPHOENIX.
Dieses wurde sowohl für das Strahlungsfeld als auch für die Materie in der SN Ia Modellat-
mosphäre durchgeführt.

Als erstes wurde die Zeitabhängigkeit in der Strahlungstransportgleichung implementiert.
Zwei Diskretisierungsschemata wurden dafür angewendet.Mit Testrechnungen wurde die
korrekte Implementation des Zeitderivats überprüft. Die Zeitskala, die mit der neuen Imple-
mentation berechnet wurde ist vergleichbar mit der eines einfachen analytischen Ansatzes.
Störungen der inneren Randbedingung der Atmosphäre bewegen sich durch die gesamte
Modellatmosphäre. Für den Fall einer sinusförmigen St¨orung im Inneren ergibt sich für die
ganze Atmosphäre eine sinusförmig ändernde Leuchtkraft.

Die nächste Erweiterung ist die Zeitabhängingkeit der Materie, für die ein einfacher hy-
drodynamischer Löser eingebaut wurde. Er berechnet die Energieänderung in einer SN Ia
Atmosphäre und betrachtet dabei die homologe Expansion, den Energietransport sowie die
zusätzliche Energie, die durch Emission vonγ-Strahlung auf Grund des radioaktiven Zer-
falls von56Ni und 56Co entsteht. Testrechnungen für jeden einzelnen Teil der Implementa-
tion wurden durchgeführt. Der Energiezuwachs führt zur Erwärmung der Atmosphäre und
verstärkt die Leuchtkraft, wogegen die adiabatische Expansion die Atmosphäre abkühlt. Der
Energietransport verändert die Temperaturstruktur der Atmosphäre in Richtung des Strah-
lungsgleichgewicht.

Der hydrodynamische Löser wurde zur Berechnung von SN Ia Modelllichtkurven ange-
wendet. Mit der Annahme von LTE in der Atmosphäre wurden Lichtkurven errechnet, die
mit den beobachteten von SN 1999ee und SN 2002bo gut übereinstimmen. Einige Abwei-
chungen ergeben sich jedoch für den Nahinfrarot-Bereich.Um die Lichtkurven weiter zu
verbessern wurden Berechnungen mit unterschiedlicher Energieeinspeisung durchgeführt.
Mit mehr Energieeinspeisung werden die Lichtkurven zu jeder Zeit heller, bei weniger Ener-
gieeinspeisung entsprechend dunkler. Ein Verbesserung der Nahinfrarot-Lichtkurven wurde
jedoch nicht erreicht. Drei verschiedene Explosionsmodelle wurden für die SN Ia Lichtkur-
venberechnungen benutzt. Das Modell der verzögerten Detonation DD 16 kann als richtiges
Explosionsmodell ausgeschlossen werden. Die Lichtkurvensind zu dunkel um die beobach-
teten Lichtkurven zu reproduzieren. Die am besten passendeLichtkurve wurde mit dem W7
Deflagrationsmodell erzielt. Das Modell DD 25 erzielt auch gut passende Lichtkurven.

Es wurde gezeigt, dass Streuung wichtig für die Behandlungdes Strahlungstransports bei
der Berechnung von Modelllichtkurven von SNe Ia ist. Deshalb wurden komplexere NLTE
Modelllichtkurven berechnet. Zuerst wurde dafür die Temperaturstruktur der LTE Berech-
nungen benutzt. Mit der Annahme von NLTE erhält manÄnderungen in den Lichtkurven.
Dabei wurden erhebliche Verbesserungen in der Lichtkurve im I Band erzielt. Weitere Mo-
delle wurden berechnet, bei denen sich die Temperaturstruktur den NLTE Bedingungen an-
passen könnten. Dies erhöht die Berechnungszeit gewaltig. Es wurden jedoch kaum Verbes-
serungen im Vergleich zu den Modellen mit LTE Temperaturstruktur erzielt.
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Abstract

The main topic of this work is the introduction of time dependence intoPHOENIX. This has
been achieved for both the radiation field and the matter in the SN Ia model atmosphere.

First, time dependence in the radiative transfer equation has been implemented. Two
discretization schemes have been used for the implementation of the time derivative. Test
calculations have been performed to confirm the correctnessof the implementations. The
radiation time scale computed with the time dependent radiative transfer is comparable to a
simple analytic approach. Perturbations of the inner boundary condition of the atmosphere
move through the whole atmosphere. For instance, an atmosphere with a sinusoidally vary-
ing inner light bulb leads to an atmosphere where the luminosity varies sinusoidally every-
where.

For the next extension of time dependence for the matter, a simple hydrodynamical solver
has been implemented. It computes the changes in the energy of an SN Ia atmosphere by
considering the homologous expansion, energy transport and the deposition of energy by
γ-ray emission due to the radioactive decay of56Ni and56Co. Test calculations verified that
each part of the solver works correctly. The energy deposition heats the atmosphere and
increases the observed luminosity, whereas the adiabatic expansion cools the atmosphere.
The energy transport always pushes the temperature structure of the atmosphere towards the
radiative equilibrium state.

The hydrodynamical solver has been applied to calculate SN Ia model light curves. With
the assumption of an LTE atmosphere, the model light curves are already in good agreement
with the observed light curves of SN 1999ee and SN 2002bo. Some deviations between
model and observed light curves occur in the near-infrared.In order to improve the model
light curves, a calculation with different energy input hasbeen performed. If more energy
is deposited into the atmosphere the model light curves in all bands become brighter. With
less energy input, fainter model light curves are the result. However, this did not improve
the model light curves in the near-infrared. Three different explosion models have been used
to compute model light curves of SNe Ia. The delayed detonation model DD 16 can be
eliminated as the correct explosion model as it is too faint to reproduce the observed light
curves. The best fits to the observed light curves have been achieved with the W7 deflagration
model, while the DD 25 model also delivers reasonable model light curves.

It has been shown that scattering in the treatment of radiative transfer is important for
the calculation of SN Ia model light curves. Thus, more sophisticated NLTE model light
curves have been calculated. At first, the LTE temperature structures have been used. The
assumption of NLTE changes the model light curves in some bands. Significant improvement
for the I band model light curve has been achieved. Further model light curves where the
temperature structure can adapt to the NLTE conditions havebeen computed. This increased
the computation time dramatically. But no significant improvements compared to the NLTE
light curves with fixed LTE temperature structure have been found.

v





Contents

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Topic of this work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Chapter overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Supernovae 5
2.1 Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Progenitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Explosion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.4 Spectral evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10
2.5 SN Ia in cosmology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.5.1 Light curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.5.2 Dark energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 Modeling atmospheres with PHOENIX 17
3.1 Radiative transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17

3.1.1 Radiation field . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.1.2 Source function . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.1.3 Radiative transfer equation . . . . . . . . . . . . . . . . . . . . .. 19
3.1.4 Λ-operator and OS method . . . . . . . . . . . . . . . . . . . . . . 21
3.1.5 Line transitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.1.6 Continuum transitions . . . . . . . . . . . . . . . . . . . . . . . . 23
3.1.7 Scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2 Modeling atmospheres withPHOENIX . . . . . . . . . . . . . . . . . . . . 24
3.2.1 LTE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.2.2 NLTE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.2.3 Temperature correction . . . . . . . . . . . . . . . . . . . . . . . . 26
3.2.4 Iteration scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4 Time dependent radiative transfer 29
4.1 Time dependent radiative transfer . . . . . . . . . . . . . . . . . .. . . . . 29

4.1.1 First discretization of the time derivative . . . . . . . .. . . . . . . 30
4.1.2 Second discretization of the time derivative . . . . . . .. . . . . . 31
4.1.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.2 Test Calculations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5 Hydrodynamical solver 39
5.1 Hydrodynamical solver . . . . . . . . . . . . . . . . . . . . . . . . . . . .39

vii



Contents

5.1.1 Dynamical models . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.1.2 Gamma ray deposition . . . . . . . . . . . . . . . . . . . . . . . . 40
5.1.3 Absorption and emission . . . . . . . . . . . . . . . . . . . . . . . 43
5.1.4 Expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.1.5 Overall energy change . . . . . . . . . . . . . . . . . . . . . . . . 45
5.1.6 Adaptive time step procedure . . . . . . . . . . . . . . . . . . . . 47
5.1.7 Iteration scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.1.8 First approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.2 Test calculations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .48
5.2.1 Energy transport . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.2.2 Expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.2.3 Energy deposition . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.2.4 Realistic test scenario . . . . . . . . . . . . . . . . . . . . . . . . .55

5.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

6 Modeling SN Ia light curves 57
6.1 Observed SN Ia light curves . . . . . . . . . . . . . . . . . . . . . . . . .57
6.2 Model light curves of SNe Ia . . . . . . . . . . . . . . . . . . . . . . . . .57

6.2.1 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
6.3 Light curves of LTE models . . . . . . . . . . . . . . . . . . . . . . . . . 59

6.3.1 UBVRI light curves . . . . . . . . . . . . . . . . . . . . . . . . . 60
6.3.2 Dynamical models . . . . . . . . . . . . . . . . . . . . . . . . . . 62
6.3.3 Influence of the energy deposition model . . . . . . . . . . . .. . 66
6.3.4 Near-infrared light curves . . . . . . . . . . . . . . . . . . . . . .67
6.3.5 Simple line scattering . . . . . . . . . . . . . . . . . . . . . . . . . 70

6.4 Light curves of NLTE models . . . . . . . . . . . . . . . . . . . . . . . . .73
6.4.1 NLTE light curves with LTE atmosphere structure . . . . .. . . . 73
6.4.2 NLTE atmosphere structures . . . . . . . . . . . . . . . . . . . . . 77

6.5 Spectral evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .80
6.5.1 LTE spectral evolution . . . . . . . . . . . . . . . . . . . . . . . . 80
6.5.2 NLTE spectral evolution . . . . . . . . . . . . . . . . . . . . . . . 80

6.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

7 Conclusions and outlook 83

A Alternative hydrodynamical solver 87
A.1 Test calculations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .89

Bibliography 92

viii



Chapter 1

Introduction

1.1 Motivation

This work was funded by the Deutsche Forschungsgemeinschaft (DFG) via the Collabora-
tive Research Center 676 (Sonderforschungsbereich 676), with the title “Particles, Strings
and the Early Universe - the Structure of Matter and Space-Time”. This project contains
subprojects in the fields of particle physics, string theoryand cosmology. One goal of the
SFB project among others is to investigate the cosmology of our universe. Today, about 96%
of the content of the universe is not understood. Only 4% of the universe consists of the
baryonic matter, which is the matter that can be directly observed because it interacts with
electromagnetic radiation. About 23% of the universe is believed to consist of dark matter.
The effects of dark matter have been observed in galaxy clusters and in rotation curves of
spiral galaxies. Further evidence for the existence of darkmatter have been found by gravi-
tational lensing and the measurement of anisotropies in thecosmic microwave background.
Various candidates for the dark matter have been proposed. This includes new particles
beyond the standard model as for instance supersymmetric particles.

The main content of the universe is the dark energy, which is about 73% of the overall
energy. This phenomenon has been discovered first by distance measurements obtained with
observations of light curves of type Ia supernovae. Observations at high redshift showed a
deviation from the assumed deceleration of the universes expansion. This accelerated ex-
pansion of universe has been discovered independently by Riess et al. (1998) and Perlmutter
et al. (1999). Other confirmations of the existence of dark energy have been achieved. These
are the precise measurements of the microwave background fluctuation by the WMAP mis-
sion (Spergel et al. 2003). The existence of dark energy was also confirmed by X-ray ob-
servations of galaxy clusters (Allen et al. 2004, 2008) and the baryon acoustic oscillation
(Percival et al. 2007).

The role of SNe Ia in cosmology is important. One can use type Ia supernovae to deter-
mine cosmological parameters. Further improvements of themeasurements of the expansion
of the universe are urgently needed. This also includes a better understanding of the physics
going on in an SN Ia event. Although the observed SN Ia light curves have been used to
measure distances, it is not understood what the correct progenitor or explosion mechanism
of an SN Ia event is. The frequently used Phillips relation (Phillips 1993), which has been
used to correct SNe Ia light curves to adapt them to standard candles, is a purely empiri-
cal observational relation. Therefore, it is vital to understand what is going on in an SN Ia
explosion and during the following free expansion phase.
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Chapter 1 Introduction

1.2 Topic of this work

With PHOENIX a lot of work on type Ia supernovae has been performed (Nugentet al.
1995; Hauschildt et al. 1996; Nugent et al. 1997; Lentz et al.1999b,a, 2000, 2001b,a, 2002;
Baron et al. 2003; Bongard et al. 2006; Baron et al. 2006). Forinstance, detailed studies of
spectra around the maximum phase of the optical light curveshave been performed. This also
includes studies where the SN Ia atmosphere is assumed to be in NLTE. Dynamical models
have been used, where model spectra with the atmosphere structure of different explosion
model calculations have been computed. The results of different explosion models can be
used to compared them to observed spectra to determine the correct explosion model of an
SN Ia event.

So far, all investigations withPHOENIX have been performed under the assumption of
time independence for both the radiative transfer and the material in the model atmosphere.
Model spectra have been obtained under the assumption of a stationary atmosphere structure,
which is in radiative equilibrium. In this work, the aim is tointroduce time dependence into
PHOENIX for both the radiative transfer and the material in the atmosphere.

First the spherical symmetric special relativistic radiative transfer equation will be solved
including time dependence. Details of the implementation will be given as two different dis-
cretization methods will be used. Test calculations, whichconfirm that the implementation
is working correctly will be presented.

The other major step is the consideration of a time dependentatmosphere structure. In
this work I will consider this for the case of a type Ia supernova atmosphere. The main goal
is to calculate model light curves of SNe Ia. In order to achieve this, a simple hydrodynami-
cal solver will be implemented intoPHOENIX. This hydrodynamical solver will keep track
of the evolution of the properties of a SN Ia atmosphere and the influences on it. The homol-
ogous expansion, the energy input byγ-ray emission due to radioactive decay of56Ni and
56Co and the energy transport will be implemented in this hydrodynamical solver. Using this
hydrodynamical solver, it is then possible to calculate thewhole evolution of an SN Ia model
atmosphere during the free expansion phase. Model light curves of SNe Ia will be calculated
to learn more about them. For instance, investigations to find the correct explosion model
will be performed. The influences of different parameters ofthe hydrodynamical solver will
be tested. A first goal is the computation of light curves, where the atmosphere is considered
to be in local thermal equilibrium (LTE). The calculated model light curves will be compared
to observed light curves of SN 1999ee and SN 2002bo in different photometric bands. A few
model light curves will be computed, where the atmosphere isnot in LTE. Further, a short
outlook on the spectral evolution will be presented.

1.3 Chapter overview

Chapter 2 gives an overview about the phenomenon supernova.The focus is on type Ia
supernovae. The current status of the search for a progenitor, correct explosion model and
the general properties are discussed. The use of SN Ia light curve observations for the dis-
tance measurements and determination of cosmological parameters is presented. Chapter 3
is describing the physics of modeling atmospheres withPHOENIX including its approach to

2
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the radiative transfer problem. The following chapter 4 covers the time dependent radiative
transfer. The implementation of the time dependence derivative is discussed. Test calcula-
tions are presented that confirm the correct operation of thenew implementations. In chapter
5, a simple hydrodynamical solver is presented. This approach has been implemented into
PHOENIX. Applying the hydrodynamical solver the evolution of an SN Ia atmosphere can
be calculated. With a few test calculations, the new hydrodynamical solver is checked for its
proper operation. This implemented code is then applied to calculate model light curves of
SNe Ia. The results of the model light curve calculations arepresented in chapter 6. First,
LTE light curves of different photometric bands have been computed. The influence of the
energy deposition is checked. Different hydrodynamical explosion models will be used to
determine the correct explosion model. Here, the deflagration model and two delayed deto-
nation models will be tested. To obtain more accurate model light curves, NLTE calculations
have also been performed. This work closes with a summary andoutlook in chapter 7. In
the appendix A, a first unsuccessful approach of a hydrodynamical solver to compute SNe Ia
model light curves is presented in more detail.
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Chapter 2

Supernovae

Throughout history, astronomers observed the appearancesof new stars. Thesestella nova
were luminous events visible to the naked eye. For instance,Chinese astronomers observed
a stella nova in the year 1054. The remnant of this event is still visible today and is now
called the crab nebula. Actually, this observed “supernova” was not the birth of a new star
but rather the death of a massive old star.

This chapter gives an overview about the properties of supernovae with focus on the sub-
type Ia. The current status of the search for the progenitorsis presented. The different pos-
sible explosion models of the SN Ia will be discussed. Observational results such as spectra
and light curves are discussed as well. The important use of SN Ia events for measuring of
cosmological parameters is presented in more detail.

2.1 Classification

A stella nova was defined as an event, where a new star seems to appear in the sky. A few of
these events were considerably brighter than the others. A distinction was made, and the new
class “supernova” (SN) was defined (Zwicky 1938, 1940). Later, a diversity in the spectra of
supernova observations was found and new subclasses were introduced. The classification
of supernovae presented here is hinged on features in the spectrum and the shape of the
SN light curves, see Filippenko (1997) for a detailed overview on the classification and the
typical optical spectra of the different SN types and subtypes. The classification of SNe arose
purely from observations.

Supernovae events are divided into two main classes. These are the types I and II, which
were initially introduced by Minkowski (1941). Supernovaeof the type I have no hydrogen
features in their observed spectra. Therefore, one can identify a type II supernova by hydro-
gen features in the spectrum. There is a further diversity inthe observed spectra and light
curves, so that both types are divided into subtypes. One subtype of the type I is the type Ia,
which is defined by the broad Si II absorption trough around 6150Å in the optical spectrum
during the maximum phase of the optical light curve. In the optical spectrum of an SN Ia,
no helium features are observed. However, the type Ib has moderately strong optical He
features in its spectrum, for instance, at around 5800Å. Silicon features are not observed in
type Ib spectra. The spectrum of a SN Ic shows neither these helium features nor the silicon
absorption trough In figure 2.1, this classification by the spectral features is illustrated.

The spectra of type II supernovae are dominated by the strongHα emission line. The
subtypes of the SNe II can be distinguished by the shape of their light curves (Barbon et al.
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SN

Hno H

Si no Si

He no He

Type Ia Type Ib Type Ic Type II

Core CollapseThermonuclear

Figure 2.1: The different subtypes of SN events can be distinguished by the presence or
absence of spectral features. A SN of the type II has H features, which are not
observed in the spectra of supernova of the type I. The subtypes of SN I are
divided by the presence of Si or He features.

1979; Doggett & Branch 1985). The light curve of the SN II-P has a plateau after the maxi-
mum, while the subtype SN II-L has a linear decline after the maximum. However, there is
a discussion going on about other possible classification schemes (Patat et al. 1994).

Although supernovae are defined as one broad class of objects, there is completely dif-
ferent physics going on in the different types or even subtypes. For instance, the type II
supernovae event is the death of a massive star. An evolved massive main sequence star that
has started silicon burning in its last stage produces an iron core. When this iron core exceeds
the Chandrasekhar mass, it collapses, and the star ends in anSN II explosion. The type II
supernovae as well as the subtypes Ib and Ic are caused by sucha core collapse. However,
the type Ia is caused by a thermonuclear explosion. Supernovae of the type Ia are the topic
of this work. Therefore, the following discussions about progenitors, explosion models and
spectral properties are confined to the type Ia.

2.2 Progenitor

An SN Ia explosion is a very luminous event, which releases anenormous amount of energy.
The explosion itself releases about 1051erg (Khokhlov et al. 1993). The interesting question
is what causes these very bright events. Some progress has been made in the search for
the progenitor, but the exact progenitor of a type Ia supernova explosion is still unknown.

6



2.2 Progenitor

Figure 2.2: The evolution path of a binary star system towards an SN Ia explosion (Brau
2009). The binary system consists of a white dwarf that accretes matter from a
companion star. The white dwarf increases its mass and finally disrupts in an SN
Ia explosion.

Overviews about the progenitor search and possible candidates can be found in Livio (2000)
or Branch et al. (1995).

From observations one can narrow down the candidates for a supernova Ia progenitor.
One remarkable property is the homogeneity in the light curves, spectra and peak absolute
luminosities among the SN Ia observations. This leads to theconclusion that the conditions
at the point of the explosion have to be quite similar in each SN Ia progenitor. Observations
reveal more about the progenitor. As the spectra show no features of hydrogen or helium, the
progenitor has to consist of other elements. The near maximum optical light observed spectra
show features with high velocities (8.000− 30.000 km/s) of intermediate mass elements,
such as Si and Ca. The later spectra show features of iron group elements such as Fe, Co
and Ni. Another observational result is that the SN Ia eventsare not correlated with the
type of their host galaxy. So in conclusion, the progenitor cannot be a massive star like the
progenitor of a SN II event. SN II are mostly observed in earlytype galaxies and H II regions.

The widely accepted idea is that the progenitor of a SN Ia is a white dwarf (WD), which
disrupts in a thermonuclear explosion. As there are no helium features found in the spectrum,
the white dwarf cannot be a He WD. Calculations also show thatan exploding He WD would
produce just Ni and its decay products and fails to produce the intermediate mass elements,
which one can observe in the spectrum (Nomoto & Sugimoto 1977; Woosley et al. 1986). An
O-Mg-Ne WD could be the progenitor, but they are not numerousenough (Livio & Truran
1992). A further indication suggesting they are not the progenitor of a SN Ia is shown by
evolution calculations, which show that O-Mg-Ne white dwarfs probably will not explode
but, instead, form neutron stars (Gutierrez et al. 1996). The last known type of WD, which
could be an SN Ia progenitor candidate, is a C-O WD that consists of carbon and oxygen.
They are numerous enough to produce SN Ia explosions models.So it is very probable that
the progenitor of a type Ia supernova is a C-O WD.

A single star alone cannot be the progenitor of a type Ia supernova. The progenitor has
to accrete matter to reach a stadium where it becomes instable and eventually explodes. If

7
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the WD would be alone, it would just cool down. Another point is that there is no evolution
path known, where a single star leads to a SN Ia explosion. So the SN Ia progenitor is
believed to be a C-O WD in a binary star system. There currently exist two scenarios for the
binary system. In the single degenerate (SD) scenario, a white dwarf has a main sequence
star or giant as a companion in a close orbit. This scenario isillustrated in figure 2.2. The
white dwarf accretes matter from the companion star. Binaryevolution calculations show
that these objects can be candidates for a SN Ia progenitor (see Han & Podsiadlowski (2004)
and Han & Podsiadlowski (2006)). This single degenerated scenario is also the progenitor
of a classical nova (Bode & Evans 1989; Shara 1989). But the classical nova event is a
thermonuclear outbreak on the top of the WD, where the accreted hydrogen is burned (Kraft
1964).

In the double degenerated (DD) scenario, the binary system consists of two white dwarfs.
The total mass exceeds the Chandrasekhar mass, and they alsohave a close orbit. Finally, due
to gravitational radiation, the two WDs start to merge. Binary star evolution calculations have
shown that this scenario is a possible candidate for an SN Ia event (Iben & Tutukov 1984).
In this scenario, the absence of H and He features in the spectrum can also be explained.
Many double WD systems with close orbits have been found (Saffer et al. 1998). But is not
certain, whether these scenario really leads to a supernovaIa explosion. Another possibility
is that the WD cools down and forms a neutron star because of accretion-induced collapse
(Segretain et al. 1997).

A lot of effort has been put in the search for the progenitor. One could learn more about
the progenitor from early observations of SN Ia spectra. Thedetection of hydrogen in an
early spectrum would give a clue about the actual progenitor. In the DD scenario with two
C-O WD, there cannot be hydrogen features in the spectrum. Sothe detection of hydrogen
would lead to the SD scenario. In fact, hydrogen has been detected in early spectra of
SN 2002ic (Hamuy et al. 2003). The authors point out that thisleads to the conclusion that
the progenitor is a SD system, where a AGB star is orbiting theWD. On the other hand, Livio
& Riess (2003) claim that this detection could also lead to the conclusion that the progenitor
is a DD system.

2.3 Explosion

Not only is the progenitor still unknown, but there is also a discussion going on about how the
actual explosion takes place once the progenitor has reached the conditions for ignition. An
overview about the possible explosion mechanisms can be found in Hillebrandt & Niemeyer
(2000). Widely accepted is that a thermonuclear explosion takes place in an SN Ia event. The
thermonuclear explosion as the explosion mechanism was originally proposed by Hoyle &
Fowler (1960). A thermonuclear explosion can explain why SNIa can be found in all types
of galaxies, and the thermonuclear explosion also producesenough56Ni, which is consistent
with observations.

Only little is known about the way of the white dwarf towards explosion. The evolu-
tion towards the ignition of the thermonuclear burning of carbon and oxygen is a complex
physical process. The white dwarf is under the influence of the accretion process from the
companion star, and the thermal structure of the white dwarfon the way to explosion de-
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pends also on the URCA process (Paczynski 1973; Iben 1978, 1982; Barkat & Wheeler
1990; Mochkovitch 1996). This all makes it difficult to perform realistic hydrodynamical
evolution simulations. Therefore, the ignition is a free initial parameter in current explosion
model calculations. There is also a discussion, whether theflame ignition happens at just
one single point (Höflich & Stein 2002) or if there is a multi-spot ignition near the center
(Garcia-Senz & Woosley 1995; Woosley et al. 2004; Wunsch & Woosley 2004; Röpke et al.
2006). It turned out that the choice of the initial flame condition leads to different results in
the explosion modeling.

There are different ways of how the explosion front moves through the envelope. The
detonation is one possible explosion model. The flame front propagates with a velocity
higher than the local speed of sound outwards. In this instant detonation, almost all carbon
and oxygen is burned to iron-peak elements (Arnett 1969; Arnett et al. 1971). Because of
the fact that the flame in the detonation model is moving fast through the WD, it has no time
to expand. In a detonation, a huge amount of nickel is produced, but the detonation fails
to produce intermediate mass elements like Si, Ca and Mg, which are observed in SN Ia
spectra. Hence, the instant detonation alone cannot be the correct explosion model.

Another possible explosion model is the deflagration (Nomoto et al. 1976). The flame
ignites at the center and propagates outwards with a velocity lower than the local speed of
sound. Numerous 1-D calculations have been performed with this approach to the explosion
mechanism (Buchler & Mazurek 1975; Nomoto et al. 1984; Iwamoto et al. 1999; Niemeyer
& Woosley 1997). They all agree that the flame speed is≈ 30% of the local sound speed.
The main difference to the detonation is that in the deflagration case, the WD has time
to expand. Therefore, more intermediate mass elements are produced. One model that is
in good agreement with the observations is the W7 model of Nomoto et al. (1984). The
results of this explosion model have been used to calculate spectra of SN Ia events. Recently,
multidimensional modeling of the deflagration model has been performed (Arnett & Livne
1994a; Khokhlov 1995; Niemeyer & Hillebrandt 1995; Reinecke et al. 1999). In some of
them the flame front did not reach the necessary velocity to disrupt the star. But this all may
be due to problems with the numerical resolution of the models, which is a common problem
in multidimensional hydrodynamical calculations.

Another explosion model was presented by Khokhlov (1991a).The delayed detona-
tion model combines the advantages of the detonation and deflagration model (Woosley &
Weaver 1994). In the explosion, the flame front starts with a deflagration, which then transits
into a detonation. This deflagration to detonation transition (DDT) means that the velocity
of the flame is in the beginning lower than the local sound speed. Starting with a slow ve-
locity of ≈ 1% of the local sound speed, the transition to the detonationoccurs at a density
of ρ ≈ 107gcm−3 as an estimate of Niemeyer & Kerstein (1997) has shown. The flame then
propagates with a higher velocity than the local speed of sound. The advantage is that only a
low velocity is needed in the beginning, giving the WD time toexpand. The later detonation
produces the needed intermediate mass elements before the flame ceases. Numerous of 1-D
simulations have shown that this model is a good assumption for the explosion mechanism.
Good fits to SN Ia spectra and light curves have been achieved (Hoeflich & Khokhlov 1996).
The calculated nucleosynthesis is also in good agreement with the observations (Khokhlov
1991b; Iwamoto et al. 1999).

A variation of the delayed detonation model is the pulsational delayed detonation model
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(Nomoto et al. 1976; Khokhlov 1991b). The explosion starts with a first turbulent deflagra-
tion, but the flame eventually dies. Therefore, the releasedenergy is not enough to unbind
the star. The star then pulses and triggers a detonation uponrecollapse. Studies of this ex-
plosion model have been performed (Hoeflich & Khokhlov 1996;Arnett & Livne 1994b).
The result is that this explosion mechanism could be a possible explanation for subluminous
SN Ia events, because it fails to produce enough amount of56Ni. Khokhlov et al. (1997)
point out that it is more plausible to obtain a DDT after one orseveral pulses than during
the first expansion phase. The first pulse can preheat the fuel, and turbulence is significantly
enhanced during the collapse.

A recently proposed explosion model is the gravitationallyconfined detonation (GCD)
(Plewa et al. 2004; Plewa 2007; Townsley et al. 2007; Meakin et al. 2009). This concept
has been developed with 2D hydrodynamical explosion calculations. The general idea is that
the explosion starts with an ignition at the center of the white dwarf. The deflagration then
moves outwards in form of a hot bubble, which eventually reaches the surface of the white
dwarf. At the surface, the material is gravitationally confined and, therefore, flows around the
white dwarf towards the opposite pole. Here, the colliding flows initiate a detonation, which
disrupts the white dwarf. The GCD can, therefore, be considered as a delayed detonation
model that has a special way of undergoing the deflagration todetonation transition. The
white dwarf is preexpanding because of the first deflagrationphase, which is essential for the
production of intermediate mass elements, which are observed in SN Ia spectra.

The actual explosion lasts only a few seconds. After the explosion is over, the ejected
material is just freely expanding. This would only lead to adiabatically cooling of the at-
mosphere. But on the contrary, the observed light curves show a rise after the explosion is
long over. The reason for that is the production of a huge amount of radioactive elements.
The radioactive decay of nickel and cobalt powers the light curve of an SN Ia (Truran et al.
1967; Colgate & McKee 1969). In the inner part of the atmosphere, about a solar mass of
56Ni is produced during the explosion.56Ni is instable and decays with an half life of 6.077
days to56Co. The56Co then decays to56Fe with an half life of 77.27 days. The isotope56Fe
is stable. The decaying isotopes release a vast amount of energy. This energy is emitted as
gamma ray emission during the decay. This gamma ray emissionis absorbed by the matter
in the ejecta, which leads to the heating of the atmosphere and the increasing luminosity.

2.4 Spectral evolution

During the evolution of a supernova Ia event the spectrum changes (Filippenko 1997). Early
time spectra, observed only a few days after the explosion, show broad spectral features.
These are features of neutral or singly ionized intermediate mass elements such as O, Mg,
Si, S and Ca. Later, features of Fe, Co and Ni emerge.

In figure 2.3, a typical optical spectrum of an SN Ia near the maximum of the optical light
curve is shown. The strongest features are the Si II feature at 6355Å and the Ca II H&K
feature at 3934̊A and 3968Å. In the near infrared emerges another feature of Ca II at a
wavelength of around 9000̊A. More features of intermediate mass elements are observed
for Mg II and S II. There are also features of iron group elements such as Fe II and Co II.
Throughout the evolution of the spectrum, the contributionof iron elements to the spectrum
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Figure 2.3: Spectrum of an SN Ia near maximum light (Kasen 2009). The broad Si II feature
at 6150Å is used to identify a SN as one of the type Ia. Other features of S, Fe
and Mg are also present. The Ca II H&K in the blue as well as the Ca II feature
in the near infrared are typical for an SN Ia.

increases. As the atmosphere expands, it becomes opticallythinner and the elements present
in the deeper parts of the atmosphere contribute to the observed spectrum. After two weeks
after the maximum, the spectrum is dominated by Fe II features. The iron is the decay
product of the radioactive decay of the nickel and is produced in the inner most parts of the
envelope. SN Ia have also been observed in the infrared. A fewspectra in the infrared have
been obtained (Meikle et al. 1996; Benetti et al. 2004; Pignata et al. 2008). In early spectra,
one can observe features of Mg II and Si II, for instance, a Mg II feature can be found at
≈ 1.1µm. In later spectra, two emission features as a blend of Co II, Fe II and Ni II lines
appear at≈ 1.5µm and≈ 1.7µm. Therefore, the evolution from intermediate mass elements
to iron elements is observed in both optical and infrared.

Many observed features show an P Cygni profile. An P Cygni profile occurs in an expand-
ing atmosphere, which is the case for a type Ia supernova. Onecan roughly assign different
features to different expansion velocities. The expansionvelocity of the deeper parts of the
SN Ia atmosphere is slower than the one of the outer parts. In the figure 2.4 the formation of
an P Cygni profile in an expanding atmosphere is illustrated.As the atmosphere is moving

11
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Figure 2.4: Formation of an P Cygni profile (Blondin 2009). The blueshifted absorption
trough emerges from the part of the atmosphere that is movingtowards the ob-
server. The emission peak at the rest wavelength emerges from the emission lobe
at the side of the atmosphere.
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2.5 SN Ia in cosmology

Figure 2.5: SN Ia light curves in different bands based on Branch normal template light
curves given in Nugent et al. (2002).

towards the observer, the absorption trough is blue shifteddue to the Doppler effect. At the
side of the atmosphere an emission feature arises and is visible for the observer at the rest
wavelength. The absorption takes place at a different velocity towards the observer than the
emission. Therefore, the combined P Cygni feature consistsof the blueshifted absorption
feature and overlaps with the emission feature at the rest wavelength.

2.5 SN Ia in cosmology

The first suggestion to use SN Ia to determine cosmological parameters was expressed by
Wilson (1939). Nowadays, type Ia supernovae possess an important role for measurements
on cosmological scales. An overview about their use for cosmology is given in Leibundgut
(2001) and Branch (1998). The SN Ia events can be used as distance indicators. A Hubble
diagram obtained with measurements of distant SN Ia showed first the remarkable result that
the expansion of the universe is accelerating instead of decelerating. This phenomenon is
now called dark energy, and it is also confirmed by other observations like the measurements
of the microwave background by the WMAP mission (Spergel et al. 2003). The existence of
dark energy was also confirmed by X-ray observations of galaxy clusters (Allen et al. 2004,
2008) and the baryon acoustic oscillation (Percival et al. 2007). In this section, the use of
SNe Ia for cosmological measurements is described in more detail.

2.5.1 Light curves

All observations of SN Ia, whether spectra or light curves, show significant similarities. A
few of the SN Ia events show variations in the light curve or spectra. Branch et al. (1993)
gave a definition for normal and peculiar SN Ia. Applying thisclassification scheme, about
85% of the SN Ia events still satisfy the definition of a normalSN Ia event.

The light curves of the normal type Ia supernovae are very similar. They all have a very
steep rise at the beginning. The maximum luminosity is reached about 20 days after the
initial explosion. After the maximum phase, the light curveis declining. Template light
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Figure 2.6: The light curves of SN Ia have similar shapes. A time scale stretch factor can
correct them to one template light curve. Therefore, the absolute magnitude can
be determined and the SN Ia can be used to measure distances oncosmological
scale.

curves of different bands are shown in figure 2.5. As one can see, the maximum of the V
band light curve is later than the one of the U band light curve. In the I band, there is a
second maximum observed between 21 days and 30 days after theB band maximum (Ford
et al. 1993; Lira et al. 1998; Meikle 2000). In the J, H and K band, there is also a second
maximum observed, as one can see on the right hand side of figure 2.5. It is still unclear,
what causes this second maximum in the infrared. Some SN Ia light curve do not show this
second maximum (Filippenko et al. 1992; Turatto et al. 1996,1998).

Despite the fact that there are deviations in the light curves, the question remains, whether
one can still use the SN Ia as standard candles to measure distances. In fact, SN Ia are not
standard candles, but an empirical result is that the light curves still have a similar shape
and can be corrected to standard candles by introducing a correction factor. One approach is
the Philips relation∆m15 (Pskovskii 1977; Phillips 1993). It is defined as the declineof the
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Figure 2.7: Measurements to obtain distances to high z galaxies have been performed by
using SN Ia. The result is that the expansion of the universe is accelerating.
This leads in conclusion to the existence of a phenomenon called dark energy
(Schmidt et al. 1998).

magnitude in 15 days after the maximum in the B band. SN Ia light curves that show a steep
decline have a brighter maximum luminosity, whereas fainter SN Ia have a flatter decline.
Applying this relation, one can determine the absolute luminosity. Templates for light curves
with different shapes and peak luminosity are presented by Hamuy et al. (1996). Another
approach is the stretch factor introduced by Perlmutter et al. (1995, 1997), which normalizes
the apparent peak magnitude. Figure 2.6 shows a plot of different SN Ia light curves that are
corrected to a template light curve. By using this purely empirical, observational fact, every
normal SN Ia light curve can be corrected and used to measure the peak luminosity. With
this uniform peak luminosity, one can measure distances on cosmic scale.

2.5.2 Dark energy

Although they are not perfect standard candles, SN Ia can still be used to accurately measure
distances on cosmological scale. A search for distant SN Ia at higher redshift to determine
cosmological parameters was proposed by Goobar & Perlmutter (1995). The Supernova
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Cosmology Project (Perlmutter et al. 1999) and the High-z Supernova Search (Schmidt et al.
1998) have worked on that topic. They both found the result that the distant SN Ia are fainter
than the local ones. The explanation is that the universe is expanding, and this expansion is
accelerating instead of decelerating. A decelerating universe is the standard expectation, be-
cause the gravitation should slow down the initial expansion. In figure 2.7, the results of the
search for highly redshifted supernovae is presented. The figure shows the observed magni-
tude of SN Ia plotted against the measured redshift. As one can see, the best fit to the data
indicates that the expansion of the universe is accelerating. This phenomenon is called the
dark energy. This remarkable result has also been confirmed by the WMAP mission, which
measured the cosmic microwave background fluctuations (Spergel et al. 2003, 2007). The
cosmological measurements indicate that the universe consists to about 75% of dark energy.
Another 20% is the dark matter, whose real nature again is unknown. Therefore, the known
and observable matter makes up only 5% of the content of the universe. Future missions
need to be launched to find more highly redshifted SN Ia and measure the behavior of the
dark energy more accurately. One of these projects is the joint dark energy mission (JDEM)
(Crotts et al. 2005). The recently launched Planck mission (The Planck Collaboration 2006)
will observe the fluctuations of the cosmic microwave background with higher resolution in
order to learn more about the content and origin of the universe.
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Chapter 3

Modeling atmospheres with PHOENIX

In this chapter, an overview about the modeling of atmospheres in general is presented. The
main obstacle is the solution of the radiative transfer problem. The quantities to describe
the stellar atmosphere and the radiation field are introduced in this chapter. The approach to
solve the radiative transfer equation is presented. The details of the general purpose stellar
atmosphere codePHOENIX are described. One application ofPHOENIX and the focus of
this work is the calculation of SN Ia model atmospheres and their spectra.

3.1 Radiative transfer

This section is about the solution of the radiative transferproblem in the modeling of stellar
and stellar-like atmospheres. There exist a lot of overviews about the radiative transfer prob-
lem. For instance, Rutten (2003) and Mihalas (1970, 1978) give an introduction to radiative
transfer used for the modeling of stellar atmospheres. The basic quantities and equations
needed to solve the radiative transfer problem are introduced and discussed in this section.
The descriptions in this chapter stick closely to the overview of Rutten (2003).

3.1.1 Radiation field

The important quantities to describe the radiation field in astellar atmosphere are introduced
in the following. The specific intensityIν is the proportionality coefficient in the equation,
which is given by

dEν = Iν(~r,~l, t)(~l ·~n)dA dt dν dΩ, (3.1)

where dEν is the amount of energy transported through the area dA, at the location~r, with
~n the normal to dA, between timest andt + dt, in the frequency band betweenν andν +
dν, over the solid angle dΩ around the direction~l. The same equation can be written for
the wavelength dependent specific intensity, where the relation between both the specific
intensities is given byIλ = Iνc/λ 2. The specific intensity is a monochromatic quantity. To
obtain the total specific intensity,Iν has to be integrated over all frequenciesI =

∫

Iνdν.
Another quantity of the radiation field is the mean intensityJν , which is the specific

intensity averaged over all directions and given by

Jν(~r, t) =
1

4π

∫

IνdΩ. (3.2)
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This quantity can be used if only the presence of photons is ofinterest and not their origin.
This is the case if the amount of radiative excitations and ionizations needs to be determined.

The monochromatic flux is the net flow of energy per second through an area at location
~r perpendicular to~n and given by

Fν(~r,~n, t) =

∫

Iν cosθdΩ. (3.3)

The monochromatic flux is a vector and is used to describe the energetics of radiative transfer
through stellar atmospheres. In a one-dimensional stellaratmosphere, the flux can be divided
into fluxes of inwards and outwards in radial direction

Fν(z) = F+
ν (z)−F−

ν (z), (3.4)

with the outward fluxF+
ν (z) and the inward fluxF−

ν (z).
The radiation pressurepν is given by

pν =
1
c

∫

Iν cos2 θdΩ, (3.5)

which is analogous to gas pressure as it is the pressure of thephoton gas.
Introducingµ = cosθ , the first three moments of the specific intensity are

Jν(z) =
1
2

∫ +1

−1
Iν dµ (3.6)

Hν(z) =
1
2

∫ +1

−1
µ Iν dµ (3.7)

Kν(z) =
1
2

∫ +1

−1
µ2 Iν dµ (3.8)

The mean intensityJν has already been introduced. The second moment of the intensity is
called the Eddington flux and is related to the monochromaticflux Fν by Hν = Fν/4π . The
quantityKν is related to the radiation pressure bypν = (4π/c)Kν . Jν andKν are always
positive.

3.1.2 Source function

The material that is present in the stellar atmosphere interacts with the radiation field. Mean-
ing, the local energy of the radiation field or the intensities are changed by this interactions.
An excited atom emits energy in form of a photon when it deexcites. Thus, this photon is
added to the radiation field. The change of the specific intensity is given by

dIν(s) = jν(s)ds, (3.9)

where dIν(s) is the increasing specific intensity along a geometrical path length of ds. The
monochromatic emissivity is represented byjν(s). All these quantities are depending on the
frequency of the radiation.
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The intensity can also change due to absorption or scattering of photons by atoms in the
material. There are different ways to define a monochromaticextinction coefficient. The
monochromatic extinction per particle is defined as

dIν = −σν nIνds, (3.10)

whereσν is the monochromatic extinction coefficient or cross-section andn the absorber
density in particles per cm3. The monochromatic extinction per path lengthχν is defined by

dIν = −χν Iνds, (3.11)

whereχν = σνn is the relation between both extinction coefficients. The monochromatic
extinction coefficientχν is also called opacity. The extinction coefficient includesabsorption
and scattering.

A quantity often used for the description of stellar atmospheres is the optical depthτν . It
is defined by

τν(z0) =

∫ ∞

z0

χνdz. (3.12)

The optical depth is an indication for the observer from which part of the stellar atmosphere
the photons he observes are originating. Again, the opticaldepth depends on the frequency.

The source functionSν is introduced as the quotient of the emissivity and the extinction
coefficient per particle

Sν =
jν
χν

. (3.13)

In fact, the source function is a sum of the emissivity and extinction coefficients at the fre-
quencyν, when multiple process contribute to the local emission andextinction. The source
function is an important quantity used for the description of radiative transfer.

In case of a two level atom including scattering the source function is given by

Sν = (1− εν)Bν + ενJν , (3.14)

whereBν is the Planck-function andεν the probability of photon destruction, which is given
by

εν =
αa

ν
αa

ν +αs
ν
. (3.15)

εν is the amount of absorption of the overall extinction, whichconsists of the scatteringαs
ν

and absorptionαa
ν coefficients.

3.1.3 Radiative transfer equation

The main equation is the radiation transport equation, which is given by

∂ Iν
∂ s

= jν −αν Iν , (3.16)
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wheres is the geometrical path along a ray. This equation can be rewritten for the use in
stellar atmospheres. With the introduced source function and optical depth, it is given by

dIν
dτν

= Sν − Iν . (3.17)

This equations states that photons do not decay spontaneously. The intensity along a ray does
not change unless photons are added to the beam or taken from it. Without such processes,
the intensity stays constant.

The formal solution of the radiation transport equation is for the inward direction given
by

I−ν (τν ,µ) = −

∫ τν

0
Sν(tν)e−(tν−τν )/µdtν/µ, (3.18)

and for the outward direction the formal solution is given by

I+
ν (τν ,µ) =

∫ ∞

τν
Sν(tν)e−(tν−τν )/µdtν/µ. (3.19)

For expanding atmospheres the radiation transport equation becomes more complex.
The spherical symmetric special relativistic radiative transfer equation for expanding atmo-
spheres is given by Mihalas & Mihalas (1984)

γ(1+β µ)
∂ Iν
∂ t

+ γ(µ +β )
∂ Iν
∂ r

+
∂

∂ µ

{

γ(1−µ2)

[

1+β µ
r

− γ2(µ +β )
∂β
∂ r

− γ2(1+β µ)
∂β
∂ t

]

Iν

}

−
∂

∂ν

{

γν
[

β (1−µ2)

r
+ γ2µ(µ +β )

∂β
∂ r

+ γ2µ(1+β µ)
∂β
∂ t

]

Iν

}

+γ
{

2µ +β (3−µ2)

r
+ γ2(1+ µ2 +2β µ)

∂β
∂ r

+ γ2[2µ +β (1+ µ2)
] ∂β

∂ t

}

Iν

= ην −χν Iν ,

(3.20)

whereβ = v/c is the velocity in units of speed of light andγ = (1−β 2)−1/2 the usual local
Lorentz factor. The emissivityην is given by

ην = κνSν +σνJν + ∑
lines

σl(ν)

∫

φlJνdν, (3.21)

whereσl are the line scattering source coefficients andφl the line profile function. See
Hauschildt & Baron (1999) for more details about radiative transfer in expanding atmo-
spheres. This equation is often solved by using the assumption of time-independence
∂ Iν/∂ t = 0 and assuming a monotonic velocity field.
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3.1.4 Λ-operator and OS method

The mean intensityJν is obtained from the source functionSν by the solution of the radiative
transfer equation. Introducing theΛν operator, the radiative transfer equation can be written
as

Jλ = Λλ Sλ . (3.22)

For the case of a two level atom the equation can be written as

J = ΛS, (3.23)

whereJ =
∫

φ(λ )Jλ dλ andΛ =
∫

φ(λ )Λλ dλ with the normalized line profileφ(λ ). The
source function for the simple case of a two-level atom is given byS = (1− ε)J + εB.

The following equations are used for an iteration scheme in order to obtain the solution
of the radiative transfer:

Jnew = ΛSold, Snew = (1− ε)Jnew+ εB. (3.24)

For large optical depths and smallε this iteration scheme converges extremely slowly.
A faster way to obtain a solution for the radiative transfer equation is the operator split-

ting method. For this operator perturbation method (Cannon1973), a new approximate
Λ-operatorΛ∗ is introduced, which is similar to the originalΛ-operator. MeaningΛ can be
written as

Λ = Λ∗ +(Λ−Λ∗). (3.25)

Rewriting equation 3.23, the radiative transfer equation is given by

Jnew = Λ∗Snew+(Λ−Λ∗)Sold. (3.26)

Basing on the new approach, a new iteration scheme is introduced for the simple case of an
two level atom. The following equation for the iteration scheme is then applied:

[1−Λ∗(1− ε)]Jnew = Jfs−Λ∗(1− ε)Jold, (3.27)

whereJfs = ΛSold. This equation is used to obtain the new value forJnew. The next step
is then to obtain the new source functionSnew and go on with the next iteration cycle. The
difference is thatΛ∗ is used instead ofΛ. By using a good choice for theΛ∗-operator compu-
tation time can be saved. The OS-method converges faster than the classicalΛ-iteration. The
choice of a reasonableΛ∗-operator is important. In Hauschildt & Baron (1999), a method to
obtain a reasonableΛ∗-matrix is described.

3.1.5 Line transitions

Line transitions between two levels in an atom can occur by different processes. Here the
bound-bound transitions between a lowerl and upperu energy level of an atom are discussed.
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The first possible line transition is the spontaneous radiative deexcitation. The Einstein
coefficient for spontaneous deexcitation is given by

Aul = transition probability for spontaneous deexcitation

from stateu to statel per second per particle in stateu.
(3.28)

In the absence of other transitions, the mean lifetime of particles in stateu is given by∆t =
1/Aul.

Another line transition is the radiative excitation of an atom. The Einstein coefficient for
this transition is given by

BluJ̄ϕ
ν0

= number of radiative excitations from statel

to stateu per second per particle in statel,
(3.29)

where the indexν0 is defining a specific spectral line of which the extinction profile ϕ(ν −

ν0) is used in the weighting of the angle-averaged exciting radiation field over the spectral
extent of the line

J̄ϕ
ν0

=

∫ ∞

0
Jνϕ(ν −ν0)dν, (3.30)

where
∫

ϕ(ν−ν0)dν = 1. The Einstein coefficient is represented byBlu, which is the number
of radiative excitations from statel to stateu per second per particle in statel,

The induced radiative deexcitation is another possible transition. The Einstein coefficient
is defined by

Bul J̄
χ
ν0

= number of induced radiative deexcitations from stateu

to statel per second per particle in stateu,
(3.31)

which is similarly toBlu but with frequency averaging

J̄χ
ν0 =

1
2

∫ ∞

0

∫ +1

−1
Iν χ(ν −ν0)dµdν =

∫ ∞

0
Jν χ(ν −ν0)dν, (3.32)

in which χ(ν −ν0) is the area-normalized profile shape for induced emission.
A transition between two bound-bound states can also happenby collisional processes,

such as collisional excitation or collisional deexcitation. The Einstein coefficients are given
by

Clu = number of collisional excitations from statel

to stateu per second per particle in statel.
(3.33)

Cul = number of collisional deexcitations from stateu

to statel per second per particle in stateu.
(3.34)

The transition rates are given by

niCi j = niNe

∫ ∞

v0

σi j(u)u f (u)du, (3.35)
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with the electron densityNe, the electron collision cross-sectionσi j(u), the area-normalized
velocity f (u), and the threshold velocityu0 with (1/2)mu2

0 = hν0.
There are relations between the three Einstein coefficients

Blu

Bul
=

gu

gl
,

Aul

Bul
=

2hν3

c2 , (3.36)

and

Cul

Clu
=

gl

gu
eEul/kT , (3.37)

whereEul is the transition energy. These relations are valid for thermal equilibrium.

3.1.6 Continuum transitions

Line transitions can also occur as bound-free transitions.For hydrogen and hydrogen-like
ions the Kramer formula gives the extinction cross-section

σbf
ν = 2,815×1029 Z4

n5ν3gbf for ν ≥ ν0, (3.38)

with n the principal quantum number of the leveli from which the atom or ion is ionized,
Z the ion charge,ν in Hz andgbf the dimensionless Gaunt factor, a quantummechanical
correction factor of order of unity. The cross-section below the thresholdν0 is zero, because
the threshold energy is required minimum.

A last possible transition are the free-free transitions, which haveSν = Bν . The extinction
coefficient per particle is given by

σ ff
ν = 3.7 ·108Ne

Z2

T 1/2ν3
gff , (3.39)

with gff a Gaunt factor of order of unity. There is no threshold frequency.

3.1.7 Scattering

Atoms and photons can undergo an elastic process, which is called scattering. In the elastic
scattering process the energy of the photon is not changed only its direction. This process
is an interaction between material and radiation, but it is uncoupled. The radiation field and
material can therefore have a different temperature.

Thomson scattering is the scattering of photons by free electrons. The cross-section of
the frequency-independent process is given by

σ T
ν = σ T =

8π
3

r2
e = 6,65×1025cm2. (3.40)

For high-energy photons, Thomson scattering is replaced byCompton scattering. Compton
scattering is an inelastic scattering process where the energy of the photon is changed.
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Chapter 3 Modeling atmospheres withPHOENIX

Rayleigh scattering is the scattering of photons withν << ν0 by bound electrons. The
cross-section for this process is given by

σ R
ν ≈ fluσ T

(

ν
ν0

)4

, (3.41)

where the oscillator strengthflu and the frequencyν0 characterize the major bound-bound
“resonance transitions” of the bound electron.

Another scattering process is the line scattering. Here, a photon is absorbed and emit-
ted by an atom. If this occurs in a short time scale of about 10−9s this process looks like
scattering. Thus, this process is called line scattering.

3.2 Modeling atmospheres with PHOENIX

The methods to obtain the solution of the radiative transferequation were given in the previ-
ous section. Now the focus lies on the modeling of stellar atmospheres. In the following the
properties of the assumption of LTE or NLTE for the stellar atmosphere is discussed. The
iteration scheme ofPHOENIX is presented.

3.2.1 LTE

One assumption for the modeling of stellar atmospheres is that the atmosphere is considered
to be in local thermodynamic equilibrium (LTE). This means that a temperature can be as-
signed to a local part of the atmosphere, where the material is treated as in thermodynamic
equilibrium (TE). The collisions control the energy partitioning in the medium more strictly
than that they control the energy partitioning of the radiation. With the assumption of LTE,
the properties of the matter and radiation can be derived easily.

First, the properties of matter in LTE are discussed. The particles of the gas have a thermal
velocity. The distribution of this velocity is described bythe Maxwell distribution, which is
given by

[

n(u)

N
du

]

LTE
=
( m

2πkT

)3/2
4πu2e−(1/2)mu2/kT du, (3.42)

whereN is the total number of particles with massm per volume. The number of particles
with a velocityu is represented byn(u). k is the Boltzmann constant andT the material
temperature. The most probable speed is given byup =

√

2kT/m, and the averaged speed is
given by< u >=

√

3kT/m.
The Boltzmann excitation distribution is given by

[

nr,s

nr,t

]

LTE
=

gr,s

gr,t
e−(χr,s−χr,t)/kT , (3.43)

wherenr,s is the number of atoms per cm3 in level s of ionization stager, χr,s the excitation
energy of levels in stager, measured from the ground level(r,1) of stager. A radiative
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3.2 Modeling atmospheres withPHOENIX

transition has the energy ofχr,s − χr,t = hν between levels(r,s) and(r, t), where levels is
higher than levelt.

The Saha distribution for the population ratio between the ground levels of successive
ionization stages is given by

[

nr+1,1

nr,1

]

LTE
=

1
Ne

2gr+1,1

gr,1

(

2πmekT
h2

)3/2

e−χr/kT , (3.44)

whereNe is the electron density,me the electron mass,nr+1,1 andnr,1 the population densities
of the two ground states of the successive ionization stagesr and r + 1, χr the ionization
energy of stager andgr+1,1 andgr,1 the statistical weights of the two ground levels. The
Planck constant ish.

The Saha-Boltzmann distribution combines the Boltzmann and Saha distribution. The
population ratio between a particular leveli and the ion statec to which it ionizes is given by

[

nc

ni

]

LTE
=

1
Ne

2gc

gi

(

2πmekT
h2

)3/2

e−χci/kT , (3.45)

whereni is the occupation number of leveli andnc is for statec. The ionization energy from
i to c is given byχci. So the occupation number of each atom level is in LTE determined by
the local temperature.

The radiation in LTE can be described by the temperature and the Planck function, which
is given by

Bν(T) =
2hν3

c2

1

ehν/kT −1
=
[

Sl
ν

]

LTE
(3.46)

Hence, for the case of LTE the source function is given by the Planck function if scattering
is neglected.

The integral of the Planck function over all frequencies gives the Stefan-Boltzmann law

B(T) =
∫ ∞

0
Bνdν =

σ
π

T 4. (3.47)

whereσ is the Stefan-Boltzmann constant, which is given by

σ =
2π5k4

15h3c2 = 6,67×10−5ergcm−2K−4s−1. (3.48)

The luminosity is the amount of energy a star radiates per unit time

L = 4πR2σT 4
eff, (3.49)

whereR is the radius of the star. The effective temperatureTeffis introduced here. It is the
temperature of a black body that has the same luminosity per surface area as the star.
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3.2.2 NLTE

In this section the properties of matter, which is not in local thermodynamic equilibrium
is discussed. This is also called nonLTE or NLTE. For the material this means that the
occupation numbers of the levels of an atom are not determined by the Saha-Boltzmann
distribution. But it is assumed that the gas is in statistical equilibrium, which means that
the radiation fields and level populations do not vary in time. The statistical equilibrium
equations are given by

∑
j<i

n j(R ji +C ji)−ni

[

∑
j<i

(

n∗j
n∗i

)

(Ri j +C ji)+ ∑
j>i

(Ri j +Ci j)

]

+∑
j>i

n j

(

n∗i
n∗j

)

(R ji +Ci j) = 0,

(3.50)

with ni the actual nonLTE population of a particular level, andj stepping over all those
levels. The rates by radiation areRi j andR ji, and the rates by collisions areCi j andC ji. n∗i
denotes the LTE population density of the leveli, which is given by

n∗i =
gi

gk
nk

3h3ne

(2πm)3/2(kT )3/2
exp

(

−
Ei −Ek

kT

)

, (3.51)

wherenk is the actual population density of the ground state of the next higher ionization
stage of the same element,gi andgk are the statistical weights of the levelsi andk. The
excitation energy of leveli is Ei and the ionization energy from the ground state to the
corresponding ground state of the next higher ionization stage is given byEk. The absorption
radiative rate coefficients are given by

Ri j =
4π
hc

∫ ∞

0
αi j(λ )Jλ (λ )λdλ , (3.52)

whereas the emission radiative rates are given by

R ji =
4π
hc

∫ ∞

0
αi j(λ )

(

2hc2

λ 5 + Jλ (λ )

)

exp

(

−
hc

kλT

)

λdλ . (3.53)

Ci j andC ji are describing the rates for collisional processes such as collisions of electrons.

3.2.3 Temperature correction

For most stellar atmospheres the assumption of radiative equilibrium is adequate. This means
that the luminosity is constant in all layers of a model atmosphere. To obtain a radiative
equilibrium state of the model atmospherePHOENIX has a temperature correction proce-
dure using an Unsöld-Lucy method (Hauschildt et al. 2003).After each radiative transfer
step the temperature is corrected to obtain a model atmosphere structure that is in radiative
equilibrium. The wavelength-averaged absorption and extinction coefficients are defined as

κP =

(

∫ ∞

0
κλ Bldλ

)

/B (3.54)
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κJ =

(

∫ ∞

0
κλ Jldλ

)

/J (3.55)

χJ =

(

∫ ∞

0
χλ Fldλ

)

/F (3.56)

The temperature correctionδB is given by

δB(r) =
1

κP

[

κJJ −κPB+ Ṡ/(4π)
]

−

[

2(H(τ = 0)−H0(τ = 0))−
1

f qr2

∫ R

r
qr′2χF(H(r′)−H0(r

′))dr′
] (3.57)

This equation has been taken from Hauschildt & Baron (1999).H0(τ) is the target luminosity
at an optical depthτ. The observed luminosityH0(0) is an input parameter. Here,q is a
sphericity factor, which is given by

q =
1
r2 exp

(

∫ r

rcore

3 f −1
r′ f

dr′
)

, (3.58)

wherercore is the inner radius of the atmosphere,R is the total radius,f (τ) = K(τ)/J(τ) the
Eddington factor, andK is the second angular momentum of the mean intensity.Ṡ describes
all additional energy sources such as mechanical energy supplied by winds or nonthermal
ionization due toγ-ray deposition.

3.2.4 Iteration scheme

The figure 3.1 illustrates the iteration scheme ofPHOENIX. The calculation starts with an
initial guess of the temperature, density and pressure structure. The first step is to solve the
hydrostatic or hydrodynamic equations. The line selectionthen selects the needed atomic
lines. For the line list selection, the following databasescan be chosen: APED (APED
2009), CHIANTI (Dere et al. 1997, 2001) and the Kurucz atomicline data (Kurucz & Bell
1995). The next step is the solution of the radiative transfer equation. This is done for
each wavelength point during the wavelength loop. Here the parallel implementation of
PHOENIX (Hauschildt et al. 1997; Baron & Hauschildt 1998; Hauschildt et al. 2001) can be
used to compute the radiative transfer faster by using the advantages of parallel computers.
The operator splitting method is used to obtain the radiative transfer solution. Here the
opacities, source functions and then the intensities are calculated. If NLTE is selected, the
radiative rates are also calculated. With the assumption ofstatistical equilibrium, the rate
equations are then solved in the next step. As a result, the departure coefficients for all
levels of the species in NLTE are updated. In the last step thetemperature correction updates
the temperatures of all layers to obtain a temperature structure, where the atmosphere is
in radiative equilibrium. This iteration process is performed until the correct temperature
structure has been obtained. The result is an atmosphere structure in radiative equilibrium.
One can then solve the radiation field and obtain the spectrumas seen by an observer.
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Figure 3.1: Iteration scheme ofPHOENIX.
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Chapter 4

Time dependent radiative transfer

The approach to solve the radiative transfer problem time independently is in most cases ad-
equate. Nevertheless, it is interesting to solve the time dependent radiative transfer equation
to actually see influences of time dependence and to test the accuracy of the assumption of
time independence. It may also be necessary to solve the radiative transfer time dependently,
if one wants to calculate other time dependent problems as, for instance, the hydrodynamical
evolution of an SN Ia atmosphere. As one goal of this work is the calculation of SN Ia light
curves, the time dependent radiative transfer might be necessary.

In the first section of this chapter, time dependence is introduced into the spherical sym-
metric radiative transfer equation. To achieve this, the radiative transfer equation is extended
and now solved including the time dependent terms. The implementation and the two imple-
mented discretization methods are presented in detail. In the second section, numerous test
calculations confirm that the newly implemented time dependence is producing reasonable
results.

4.1 Time dependent radiative transfer

So far, the radiative transfer is solved by using the time independent radiative transfer equa-
tion. The radiative transfer equation is then equation 3.20, which has been taken from Miha-
las & Mihalas (1984). For an implementation of the time dependence in the radiative transfer
itself, the spherical symmetric special relativistic radiative transfer equation (SSRTE) for ex-
panding atmospheres (Hauschildt & Baron 1999) is extended,so that the additional time
dependent term is given by

γ
c

(1+β µ)
∂ I
∂ t

, (4.1)

whereβ = u
c is the velocity in units of the speed of lightc, andγ = (1− β 2)−1/2 is the

usual local Lorentz factor.I is the intensity,µ is the cosine of the angle between the radial
direction and the propagation vector of the light. Using thenotation of Hauschildt & Baron
(2004), the comoving frame SSRTE with the additional time dependent term is given by

at
∂ I
∂ t

+ar
∂ I
∂ r

+aµ
∂ I
∂ µ

+aλ
∂λ I
∂λ

+4aλ I = η −χI, (4.2)
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whereη is the emissivity andχ is the extinction coefficient. The wavelength is represented
by λ . The coefficient are given by

at =
γ
c

(1+β µ) , (4.3)

ar = γ(µ +β ), (4.4)

aµ = γ(1−µ2)

[

1+β µ
r

− γ2(µ +β )
∂β
∂ r

]

, (4.5)

aλ = γ
[

β (1−µ2)

r
+ γ2µ (µ +β )

∂β
∂ r

]

. (4.6)

The additional time dependent coefficient is represented byat . The other coefficients have
been defined in Hauschildt & Baron (2004), but are given here for convenience. Along the
characteristics, the equation 4.2 has the form (Mihalas 1980)

dIl

ds
+at

∂ I
∂ t

+al
∂λ I
∂λ

= ηl − (χl +4al)Il, (4.7)

where ds is a line element along a characteristic,Il(s) is the specific intensity along the char-
acteristic at points ≥ 0 (s = 0 denotes the beginning of the characteristic). The coefficiental

is defined by

al = γ
[

β (1−µ2)

r
+ γ2µ (µ +β )

∂β
∂ r

]

. (4.8)

In Hauschildt & Baron (2004), two methods for the wavelengthdiscretization are pre-
sented. For the discretization of the time derivative, bothmethods are applied in order to
solve the time dependent SSRTE.

4.1.1 First discretization of the time derivative

For the first discretization, the method as described in Hauschildt & Baron (2004) and
Hauschildt (1992) is used, and the time dependent term has been added to the radiative
transfer equation. Thus, the time as well as the wavelength derivative in the SSRTE are dis-
cretized with a fully implicit method. Here, the focus lies on the discretizations of the time
derivative. All quantities also depend on the wavelength, but for clarity, only the time depen-
dence is written down in the following equations. The discretization of the time dependent
term is given by

∂ I
∂ t

∣

∣

∣

∣

t=t j

=
It j − It j−1

t j − t j−1
, (4.9)

wheret j is the new time. Thus, the SSRTE including the time discretization term can be
written as

dI
ds

+aλ
λlIλl

−λl−1Iλl−1

λl −λl−1
+at

It j − It j−1

t j − t j−1
= ηλl

− (χλl
+4aλ )I, (4.10)
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whereI is the intensity at wavelength pointλl and time pointt j. The optical depth scale
along the ray is redefined as

dτ =

[

χ +aλ

(

4+
λl

λl −λl−1

)

+
at

∆t

]

ds = χ̂ds, (4.11)

where∆t = t j − t j−1 is the time step. Introducing the source functionS = η/χ , the radiative
transfer equation assumes the form

dI
dτ

=
χ
χ̂

(

S +
aλ
χ

λl−1

λl −λl−1
Iλl−1

+
at

χ
1
∆t

It j−1

)

− I ≡ Ŝ− I, (4.12)

whereŜ is the modified source function. Because of the additional time derivative, a mod-
ification of the source function and a new definition of the optical depth scale along a ray
is used. With this redefinition of the optical depth and the source function, one can now
proceed with the formal solution as described in Hauschildt& Baron (2004).

4.1.2 Second discretization of the time derivative

The time derivative has also been implemented into the SSRTEby using the second dis-
cretization method described in Hauschildt & Baron (2004).Thus, equation (4.7) of the
SSRTE in characteristics form, now including the time dependence, is rewritten to

dIl

dτ
+

al

χ̂l

∂λ I
∂λ

+
at

χ̂l

∂ I
∂ t

=
ηl

χ̂l
− I, (4.13)

with

χ̂l = χl +4al (4.14)

and the definition of the comoving frame (CMF) optical depth along a characteristic

dτ = χ̂lds. (4.15)

The equation 4.13 is rewritten to obtain an expression for the formal solution

dI
dτ

= Ŝ+ S̃ + S̆− I, (4.16)

with the newly introduced time dependence source coefficient

S̆ = −
at

χ̂l

∂ I
∂ t

. (4.17)

As defined in Hauschildt & Baron (2004), the other source coefficients are

Ŝ =
χ
χ̂l

S =
ηl

χ̂l
(4.18)
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and

S̃ = −
al

χ̂
∂λ I
∂λ

. (4.19)

Including the new time dependence, the following expression for the formal solution is ob-
tained

Ii,l = Ii−1,l exp(−∆τi−1)+δ Îi,l +δ Ĩi,l +δ Ĭi,l, (4.20)

where the definition of the time derivative is given by

δ Ĭi,l = ᾰi,l S̆i−1,l + β̆i,lS̆i,l. (4.21)

As all quantities of the source function are known, the discretizations of the time derivative
source functions are given by

S̆i−1,t = −
ai−1,t

χ̂i−1,t

(

Ii−1,t

∆t
−

Ii−1,t−1

∆t

)

(4.22)

and

S̆i,t = −
ai,t

χ̂i,t

(

Ii,t

∆t
−

Ii,t−1

∆t

)

. (4.23)

With the new equations (4.16) and (4.17), the formal solution δ Ĭi,l can be written in the form

δ Ĭi,t = ᾰi,t(pi−1,tIi−1,t − pi−1,t−1Ii−1,t−1)+ β̆i,t(pi,tIi,t − pi,t−1Ii,t−1), (4.24)

where the new coefficients are given by

pi−1,t = −
ai−1,t

χ̂i−1,t

1
∆t

= pi−1,t−1 (4.25)

and

pi,t = −
ai,t

χ̂i,t

1
∆t

= pi,t−1. (4.26)

The formal solution then assumes the form

(1− β̃i,l pi,l − β̆i,t pi,t)Ii,l,t =(α̃ pi−1,l + ᾰ pi−1,t +exp(−∆τi−1))Ii−1,l,t

− α̃ pi−1,l−1Ii−1,l−1− ᾰ pi−1,t−1Ii−1,t−1

− β̃ pi,l−1Ii,l−1− β̆ pi,t−1Ii,t−1+δ Ĩ.

(4.27)
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4.1.3 Implementation

Both discretization methods have been implemented into theradiative transfer part of
PHOENIX. Like in Hauschildt & Baron (2004), a factorξ = [0,1] has been introduced.
To solve the time dependent SSRTE with the first discretization method, this factor has to
beξ = 1, for the second discretization method, this factor has to be set toξ = 0. It is also
possible to use a mixed discretization method by varyingξ over the interval[0,1].

To compute time dependent radiative transfer, all the intensities of the time step before
have to be known and, therefore, stored in the memory. Depending on the number of used
wavelength points, this requires a few GB. For instance, a calculation of the time dependent
SSRTE for 25,000 wavelength points needs 4 GB of memory for the storage of the intensities.
But thanks to the parallel implementation ofPHOENIX (Hauschildt et al. 1997; Baron &
Hauschildt 1998), one can reduce the amount of memory required by each process. By using
domain decomposition for the parallelization, the set of all wavelength points is divided into
wavelength clusters. Each process works on a particular wavelength cluster. Thus, each
process only needs to know the intensities of the previous time step of the wavelength points
assigned to its wavelength cluster. This reduces the neededmemory per process by a factor
equal to the number of used wavelength clusters. Therefore,by using parallel calculations,
even high resolution radiative transfer problems can now becomputed time dependently.

4.2 Test Calculations

For the test of the time dependent SSRTE, a static atmospherestructure is used to see the
direct effects of the time dependence of the radiative transfer. That means that the temper-
atures, radii and densities are all constant in time. As thiswork is about SNe Ia, a typical
SN Ia atmosphere structure was used. The used atmosphere structure is in radiative equilib-
rium and was obtained with thePHOENIX temperature correction procedure.

In a first test calculation, the results of the two different discretization methods are compared.
As a time independent atmosphere structure is used, the results of the time dependent radia-
tive transfer equation should be constant in time and shouldnot differ from the results of the
solution of the time independent SSRTE. In a first try, the size of the time step is set to 10−5s.
The time dependent SSRTE is solved with the time independentatmosphere structure. With
this small time step, the results of the time dependent and time independent SSRTE are the
same. The size of the time step is smaller than the radiation time scale. Therefore a huge
number of time steps is needed to see an effect of the time dependent radiative transfer. With
a larger time step of 105s, unexpected fluctuations of the results appear, which are due to the
fact that this used time step is bigger than the radiation time scale of the atmosphere. But
after a few time steps, the flux result goes back to being constant again. This fluctuations
are due to starting the calculation and are nothing physical. The deviation of the resulting
flux from the time independent result is less than 0.5%. By changing the value of the time
step, one can determine the radiation time scale and, therefore, the optimal time step for a
calculation with the time dependent radiative transfer. The result is an optimal time step
of 5 · 103s. An analytical estimate of the radiation time scale is given below. This value
of the time step is used for the other test calculations, where the inner boundary condition
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(a) (b)

Figure 4.1: Results of a test calculation, where the atmosphere has an additional light source
inside, which has been switched on. (a) A surface plot of the luminosity over
layer and time step illustrates that the information of the inner boundary condition
change needs time to move outwards. (b) A plot of the luminosity in different
layers. As one can see, the information is moving through theatmosphere.

is changing. There are also differences between the two discretization methods, which are
about in the same range. That means, the solution of the time dependent radiative transfer
equation for an atmosphere with a constant structure is the same as for the time independent
calculation within an accuracy of 0.5% for long times.

For the next tests, time dependent effects of changes in the radiation field are investigated. To
do that, the inner boundary condition for the radiation (the“light bulb”) is changed to initiate
a perturbation of the radiation field, which then moves through the atmosphere via the time
dependent radiation transport. These tests will be performed for some different perturbations
of the inner boundary condition. Note that the atmosphere structure again stays constant.

For the first of these test calculations, an additional lightsource inside of the atmosphere
is switched on. This inner light bulb has a luminosity, whichis 105 times larger than the
original value of the inner boundary condition. The time step size used for the calculation
is 5·103s. In figure 4.1(a), the results of the time dependent radiative transfer calculation is
shown in a surface plot of the luminosity over layer during the calculated time range. As one
can see, the additional luminosity is moving through the atmosphere, and the luminosity is
increased everywhere in the atmosphere. This process needssome time. In figure 4.1(b), a
plot of the luminosity change in time of a few layers shows this effect clearly. It takes time
before the information about the change of the inner boundary condition arrives at the outer-
most layer. The propagation of the radiation through the atmosphere can also be observed in
figure 4.2, where the luminosity of the atmosphere is shown atdifferent points in time. While
in the first few time steps the additional radiation is only inthe deeper layers, later the whole
atmosphere has relaxed to the new inner boundary condition.In figure 4.3, the luminosity
of the atmosphere after the last computed time step is shown.In this plot, the results of the
two discretization methods are compared. One can see that there are small differences in the
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4.2 Test Calculations

Figure 4.2: Results of an atmosphere, which has an additional light source inside, which is
switching on. The luminosity over layer of a few time steps with ∆t = 5 ·103s is
shown here. The information needs time to get to the outer layers.

Figure 4.3: The luminosity over layer of the last computed time step. Here the two discretiza-
tion methods are compared and there is almost no difference in the resulting lu-
minosities between both methods.
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Figure 4.4: Light curve of an atmosphere, where a small perturbation moves through. The
two plotted light curves of layer 90 were calculated with different time step sizes.
As one can see, the result does not depend on the size of the time step.

luminosities between the two discretization methods. The results of the two discretization
methods are the same within 0.5%.

To check the correctness of the resulting time scale, the time scale of the test calculation is
compared to the radiation diffusion time scale. Assuming a random-walk process, the mean
free path for a photon is given byλp = 1

χ̄ , whereχ̄ is the mean opacity. For a travel distancel,
the timetp a photon needs is given by

tp ≈
1
3

l2

cλp
=

1
3

l2

c
χ̄, (4.28)

wherec is the speed of light (Mihalas & Mihalas 1984). For the mean opacity χ̄ , the Rosse-
land mean is used. The mean opacityχ̄ ranges from 2· 10−21cm−1 in the outer parts to
5 ·10−13 cm−1 in the inner parts of the atmosphere. The distancel is the thickness of each
layer and ranges between 1012cm and 6·1013cm. The overall travel time is the sum of the
travel times of all layer. The result of this calculation is that the diffusion time for a photon
through the whole model atmosphere is about 7·104s. As one can see in figure 4.1(b), the
time scale of the radiative transfer calculation is approximately 40 time steps, which is in
time 2·105s. The assumption of a diffusion through the atmosphere is only valid for opti-
cally thick regions. Another problem is the choice of the correct mean opacity. Considering
this, the estimate of the time scale is adequate.

Another important test is also to check if the results of the time dependent radiative transfer
calculation depends on the size of the time step. This was tested with a model atmosphere
that has a small perturbation of the inner light bulb, which is then moving outwards. This
setup was calculated with two different time steps. In figure4.4, the results of the calculation
with two different time steps are shown. As one can see, the result does not depend on the
size of the time step. The resulting luminosities of both calculations are the same within an
accuracy of 10−5.
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(a) (b)

Figure 4.5: Luminosity of different layers for the case of a rectangular shape perturbation
originating at the inner boundary and moving through the atmosphere. (a) Lumi-
nosity of a few layers over time. As one can see it takes time for the perturbation
to move outwards. The shape of the perturbation is also flattening. (b) Luminos-
ity of the atmosphere at a few time points with∆t = 5 ·103s.

In a further test, the luminosity of the inner light bulb has been increased for a few time
steps. The time dependent radiative transfer has been solved to see how this perturbation
moves through the model atmosphere. In figure 4.5(a), a plot of the luminosity of a few
different layers is shown. One can see that it needs time as the perturbation moves outwards.
The shape of the perturbation is changing during that process. It becomes flatter and broad-
ens. In figure 4.5(b), a plot of the luminosity of the atmosphere at different time steps is
shown, where one can also see how the perturbation is moving outwards through the model
atmosphere.

In a last test, a sinusoidally varying light bulb is put inside of the test model atmosphere.
The period of one sine is 100 time steps. In figure 4.6, a surface plot of the luminosity of
the atmosphere over layer and time step is shown. After a while, the luminosity of the whole
atmosphere varies sinusoidally and steady state is reached. The luminosities in a few dif-
ferent layers are shown in figure 4.7(a). As one can see, the whole atmosphere is varying
as a sine. One can also see a phase shift of the sine because of the time required for the
radiation field to propagate through the model atmosphere. The phase shift is almost a whole
period. The atmosphere has a radius of 5.1 ·1015cm, and the information of the change of
the inner boundary condition needs 100 time steps, which is 5·105s, to get to the outermost
layer. Hence, the information of the inner boundary condition change travels with a velocity
of 34% of the light speed through the atmosphere. As one can also see, the amplitude of the
sine is decreasing as the radiation propagates to the outer parts of the atmosphere. In figure
4.7(b), a plot of the luminosities of the atmosphere at different time steps is shown. Here,
one can see that a certain part of the atmosphere has a lower luminosity than the original one,
as a different part has a higher luminosity at the same time.
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Figure 4.6: This is a surface plot of the luminosity over layer and time step. The light source
inside the atmosphere is varying sinusoidally. As one can see, the luminosity of
the whole atmosphere is sinusoidally varying. There is a phase shift between the
inner light bulb and the emergent flux at the outer layer because the information
needs time to move outwards.

(a) (b)

Figure 4.7: Atmosphere with a sinusoidally varying inner boundary condition. (a) Luminos-
ity of a few layers over time. It takes time for the information to move outwards.
One can see the phase shift from inner to outer radii, which isabout a whole sine.
(b) Luminosity over layer at different time steps, and, therefore, different phases
of the sine with∆t = 5 ·103s
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Chapter 5

Hydrodynamical solver

In this chapter, the approach to calculate SN Ia light curvesis presented. A simple hydrody-
namical solver is implemented into the general purpose stellar atmosphere codePHOENIX
to keep track of the evolution of an SN Ia atmosphere structure during the free expansion
phase. In the hydrodynamical solver, the energy change of the atmosphere per time step is
computed. There are three main aspects that have an influenceon the energy density of the
SN Ia atmosphere. The free expansion changes the densities and radii of the envelope, and
the energy deposition by the gamma ray emission of radioactively decaying elements such
as56Ni powers the light curve. The radiative transfer describesthe transport of the deposited
energy to other parts of the atmosphere. The temperature structure always changes towards
radiative equilibrium.

In the first section, the implementation of the hydrodynamical solver is presented. All
contributions to an energy density change of the atmosphereare discussed in detail. The
method to compute a new temperature structure of the SN Ia atmosphere is presented. This
newly implemented hydrodynamical solver is tested with test calculations, which are pre-
sented in the second section. All components of the new hydrodynamical solver are tested
for their own to check if each part is working correctly. A more realistic test case, where all
contributions to the energy density change are considered,is also discussed.

5.1 Hydrodynamical solver

The details of the hydrodynamical solver implementation are presented in this section. The
main idea is to compute the energy change of the SN Ia model atmosphere during the free ex-
pansion phase. The energy change of the atmosphere is given by equation (96.7) in Mihalas
& Mihalas (1984), which is

ρ
[

de
dt

+ p
d
dt

(

1
ρ

)]

=

∫

(cχE −4πη)+ρε, (5.1)

whereρ is the density andp the pressure of the material,e is the internal energy density
of the material. The quantities relevant for the radiation field areχ , which is the absorption
coefficient,η is the emission coefficient, andE the radiation energy density. All additional
energy sources are put inε, such as the energy deposition by gamma ray emission.

Influencing the atmosphere are the free expansion, the energy deposition by gamma ray
emission due to the radioactive decay of56Ni and56Co and the transport of energy by radi-
ation through the atmosphere. All these effects are described in particular in the following
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subsections. The main idea of the hydrodynamical solver is to keep track of the energy
changes and, therefore, calculate the temperature structure evolution of the atmosphere. In
order to save computation time, an adaptive time step scheme, which determines the optimal
time step size, is also implemented.

5.1.1 Dynamical models

The basis of the approach are the dynamical models, which arealready implemented in
PHOENIX. In the dynamical model mode,PHOENIX solves the radiative transfer for a
given fixed atmosphere structure. This includes a complex density structure as well as
non-homogeneous abundances for each layer of the model atmosphere. The temperature
structure is computed by an iteration process with a temperature correction procedure to ob-
tain a model atmosphere which is in radiative equilibrium. In case of an SN Ia atmosphere
calculation, it is possible to compare synthetic spectra ofdifferent explosion models to ob-
served spectra. For instance, spectra obtained with the deflagration or a delayed detonation
explosion model structure can be compared, and it might be possible to determine the cor-
rect explosion model. Numerous spectra modeling calculations have already been performed
by using the dynamical model mode ofPHOENIX (Nugent et al. 1997; Lentz et al. 2001b;
Baron et al. 2006).

For the new implementation of the hydrodynamical solver, the dynamical model mode is
used as the basis. Using this dynamical model mode, the radiative transfer is solved for the
fixed SN Ia atmosphere structure of the explosion model used.The hydrodynamical solver
then calculates the changes of the atmosphere structure fora certain time step. This includes
new radii, densities and the new temperature structure. Theradiative transfer can then be
calculated with this new atmosphere structure to obtain theresulting radiation field after the
next time step. Thus, the hydrodynamical solver changes theatmosphere structure of the
dynamical model mode time step by time step. Applying this approach, a whole evolution
of an SN Ia atmosphere structure can be calculated. For the atmosphere structure change, all
important influences on the atmosphere structure have to be taken into account. These are
discussed in the following sections.

5.1.2 Gamma ray deposition

The actual thermonuclear burning process of an SN Ia progenitor lasts only a few seconds.
After the explosion is over, the atmosphere is in the free expansion phase, during which the
atmosphere would just cool down. But observations indicatethat something has to cause the
rise of the light curve during the free expansion phase. The maximum in the light curve is
observed around 20 days after the explosion is already over.Indeed, the light curve of an SN
Ia event is powered by an energy release into the atmosphere caused by the radioactive decay
of 56Ni and its also radioactive decay product56Co. Therefore, this energy deposition has
a strong influence on the energy change of the SN Ia atmospherestructure thus the energy
deposition because of the radioactive decay has to be taken into account for the calculation
of the SN Ia atmosphere evolution.

The dynamical model mode ofPHOENIX already includes the abundances of elements
present in an SN Ia atmosphere for each layer, but it so far does not supply the abundances
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of particular isotopes. The results of the explosion model calculation already provide the
abundances of the isotopes that are present in an SN Ia atmosphere. Due to the radioactive
decay, the abundances of56Ni, 56Co and56Fe change during the evolution of the SN Ia
atmosphere. Therefore, the abundances of the isotopes of nickel, cobalt and iron have been
newly implemented intoPHOENIX. It is now possible to keep track of the abundance changes
and the resulting energy deposition by gamma ray emission due to the radioactive decay. The
abundances of the other elements are assumed to do not changeduring the free expansion
phase of an SN Ia event.

In the beginning the SN Ia atmosphere consists, as a result ofthe explosion, of a huge
amount of56Ni, which decays to56Co by electron capture with an half life of 6.077 days. The
56Co then decays by electron capture to56Fe with an half life of 77.27 days. The produced
56Fe is stable and the atmosphere is, therefore, enriched withiron during the evolution of an
SN Ia atmosphere. The abundances of the radioactive isotopes change with an exponential
law of radioactive decay in time, which is in case of the56Ni given by

Ni(t) = Ni(t = 0s) · e
−

t
τNi , (5.2)

where Ni(t) is the amount of56Ni at a point in timet after the explosion, and Ni(t = 0s) is the
initial amount of the nickel isotope 56. The half life is represented byτNi . This exponential
law is the same for the decay of cobalt. But it also has to be taken into account that new
cobalt is produced because of the decay of nickel. Includingboth effects, the abundance of
56Co is given by

Co(t) = Ni(t = 0s) ·
τCo

τNi − τCo

(

e
−

t
τNi − e

−
t

τCo

)

+Co(t = 0s) · e
−

t
τCo , (5.3)

where Co(t) is the amount of56Co at a point in timet, τCo is the half life and Co(t = 0s)
the initial amount of the cobalt isotope 56. The abundance ofthe stable56Fe increases due
to decay of56Co, but it also has to be taken into account the changing abundance of56Co,
because new56Co is produced because of the decay of56Ni. The amount of56Fe is given by

Fe(t) = Ni(t = 0s) ·

(

1+
τCo

τNi − τCo
e
−

t
τCo −

τNi

τNi − τCo
e
−

t
τNi

)

+Co(t = 0s) ·
(

1− e
−

t
τCo

)

+Fe(t = 0s),
(5.4)

where Fe(t) the amount of56Fe at the point in timet, and Fe(t = 0s) is the initial amount.
Applying the equations 5.2, 5.3 and 5.4, all abundances of the SN Ia atmosphere can be
determined for each point in time.

To illustrate the changing abundances, figure 5.1 shows the abundance changes in time of
56Ni, 56Co and56Fe. At t = 0s, the initial abundances for this test case are that only56Co is
present. There exist neither iron nor cobalt in this test scenario. The nickel is then decaying
in time to cobalt, leading to a decreasing nickel abundance.Hence, the cobalt abundance
increases and has its peak at around 25 days, because the produced cobalt eventually decays
to iron. The production of iron takes longer because the halflife of cobalt is higher than the
one of nickel.

The energy deposition due to the gamma ray emission of these isotopes needs to be com-
puted by a radiative transfer solver for theγ-rays. In this work, the gamma ray deposition
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Figure 5.1: Time dependent abundances of56Ni, 56Co and56Fe. The decay of56Ni causes
the abundance of56Co to rise to a peak at around 25 days. The56Co decays to
56Fe, which abundances increases.

42



5.1 Hydrodynamical solver

is solved with the assumption of a gray atmosphere for theγ-rays. Jeffery (1998) did a
detailed study of theγ-ray deposition and pointed out that this is an adequate approach to
calculateγ-ray deposition in SN Ia atmospheres. In the decay of a56Ni nucleus, a gamma
photon is emitted with an energy of 2.136 MeV. The56Co nucleus decays to an56Fe nucleus
and emits a gamma photon, which has an energy of 4.566 MeV. In the decay of56Co about
19% of the energy is released by positrons. The positrons areassumed to be locally trapped.
They annihilate by emitting two photons with an energy of 512keV, which has to be taken
into account for the energy deposition calculation. The opacity is considered to be constant
and a pure absorption opacity, meaning that no scattering isassumed. As in Jeffery (1998),
κγ = 0.06cm2g−1 was chosen as the opacity. The energy deposition into the atmosphere per
time is given by

ε = 4π
χ
ρ

J, (5.5)

whereJ is the mean intensity, which has been obtained by solving thegray radiative transfer
for theγ-rays. Therefore, with help of the gray radiative transfer part ofPHOENIX, an energy
input for every layer of the SN Ia atmosphere is obtained. This obtained energy deposition
has to be taken into account for the calculation of the overall energy change.

5.1.3 Absorption and emission

The last aspect of the SN Ia atmosphere evolution calculation with the hydrodynamical solver
is the determination of the transport of energy by radiationthrough the atmosphere. One
has to solve the complex radiative transfer problem as accurately as possible to obtain the
radiation energy change of the atmosphere. For the time evolution calculation, this term is
important, because it lets the energy move through the atmosphere, distributing the deposited
energy of the gamma ray emission everywhere in the atmosphere. The energy change due to
radiation is part of equation 5.1. The term of the change of the energy density of the material
by the absorption and emission of radiation is given by

Q =
∫

(cχE −4πη) , (5.6)

whereE is the energy of the radiation field,χ is the extinction coefficient andη the emissiv-
ity. This equation can be rewritten to

Q =

∫

χλ (Jλ −Sλ )dλ , (5.7)

with Sλ = ηλ /χλ being the source function,Jλ the mean intensity andλ the wavelength. One
has now to solve the radiative transfer equation to obtain these quantities. This energy change
can be obtained by using the complex radiative transfer partof PHOENIX. The solution of
the detailed radiative transfer solver delivers also the interaction of the radiation with the
material and, therefore, gives the net amount of energy thatis absorbed or emitted by the
gas. The radiative transfer solver is also the time consuming part of the calculation of a
whole SN Ia light curve, as the SSRTE has to be solved for each point in time. The radiative
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Figure 5.2: Density profile of a more complex model (gray line) and one with assuming
homologous expansion (black line) at day 90 (Woosley et al. 2007).

transfer is solved by assuming a non-gray atmosphere with numerous wavelength points. As
the opacity is strongly depending on the wavelength the non-gray approach is essential for
the radiative transfer. About a few thousand wavelength points are used in a typical SN Ia
model atmosphere calculation. By reducing the number of wavelength points, the light curve
calculation can be made faster, but this certainly comes at cost of the accuracy. In case of
an SN Ia atmosphere, the line opacity is very important and has to be taken into account.
Therefore, the atomic lines database of Kurucz & Bell (1995,2006) is used. Even more
computation time for the radiative transfer is needed if an atmosphere in NLTE is assumed.

5.1.4 Expansion

After the explosion is over, the envelope of the SN Ia is expanding. The expansion is as-
sumed to be a homologous expansion, meaning that the expansion velocities of each part
of the atmosphere do not vary in time. However, the energy release by the decay of56Ni
can influence the dynamics of the expansion (Pinto & Eastman 2000). Woosley et al. (2007)
compared a study following this energy release to the results from assuming homologous
expansion. Figure 5.2, which is Figure 2 in their paper, shows the deviation and density
variations can be as large as 10%. However, this is probably an upper limit due to the simple
burning parametrization used in that study. Ultimately, when the deflagration to detonation
transition is understood it will be important to revisit this issue, and replace 1-D calcula-
tions with full 3-D hydrodynamical calculations, that include the effects of clumps as well
as nickel bubble expansion. For now the accuracy of homologous expansion should be ade-
quate, given the other uncertainties in the problem.
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In the dynamical models, each layer has a constant expansionvelocity to simulate a freely
expanding envelope. During the hydrodynamical evolution calculation, the expansion veloc-
ity assigned to a layer stays constant. Therefore, the new radii and density for a new point in
time can be computed quite simply. The new radiusrnew of a layer is determined by

rnew = u ·∆t + rold , (5.8)

for a time step size of∆t, while the layer is expanding with the velocityu. The radius before
the new time step isrold. With the same assumption of homologous expansion, the new
densityρnew of a layer after the new time step is determined by

ρnew = ρold ·

(

rold

rnew

)3

, (5.9)

whereρold is the density of the previous point in time. With the new radii and densities, it
is now possible to calculate the energy change due to the freeexpansion of the atmosphere.
The expansion of the supernova envelope is assumed to be an adiabatic process. Therefore,
the workW done by this process is given by

W = −p
d
dt

(

1
ρ

)

, (5.10)

wherep is the pressure of the material. For a discrete time step, theinternal energy density
change of the atmosphere is given by

W = −p

(

1
ρnew

−
1

ρold

)

. (5.11)

This result represents the change of the internal energy density because of the adiabatic
expansion. As can be seen, the adiabatic expansion decreases the energy density of the
atmosphere. Therefore, the SN Ia envelope cools down.

5.1.5 Overall energy change

The energy changes because of the free adiabatic expansion,the gamma ray emission and
the energy transport have been discussed in detail, and now all the required quantities to
calculate the overall energy density change of the SN Ia atmosphere during a certain time
step are available. The direct change of the energy density of the material considering the
expansion, the absorption and emission of radiation and energy deposition by gamma ray
emission is given by equation (96.7) in Mihalas & Mihalas (1984), which is

ρ
[

de
dt

+ p
d
dt

(

1
ρ

)]

=
∫

(cχE −4πη)+ρε, (5.12)

whereρ is the density andp the pressure of the material,e is the internal energy density
of the material. The quantities relevant for the radiation field areχ , which is the absorption
coefficient,η is the emission coefficient, andE the radiation energy density. All additional
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energy sources are put inε, such as the energy deposition by gamma ray emission. The
energy change in time is given by

de
dt

= −p
d
dt

(

1
ρ

)

+
4π
ρ

∫

χ(J −S)dλ + ε. (5.13)

Rewriting this equation, the new energy densitye2 after a discrete time step∆t can be com-
puted by

e2 = e1− p

(

1
ρ2

−
1
ρ1

)

+
4π
ρ

∆t
∫

χ(J −S)dλ + ε∆t, (5.14)

wheree1 is the energy density of the material at the time step before.Thus, the new energy
density is calculated with an explicit method. All the details of these contributing terms have
been discussed in detail in the previous sections. With the new energy density of the material
being know, it has now to be determined what the new temperature of each layer at the next
time step is.

The internal energy density of the materialetrans, which is the energy of the translating
particles without ionization and excitation, is given by

etrans =
3
2

p
ρ

=
3
2

R
mu

T, (5.15)

with the mean molecular weightmu and the universal gas constantR. T stands for the
temperature of the material. This equation of the energy density could now been used to
determine the new temperature at the next time step point.

During the first phase of the SN Ia atmosphere evolution, the material of the atmosphere
is hot and, therefore, highly ionized. The energy change dueto ionization and excitation
changes of the atoms present in the SN Ia atmosphere cannot beneglected.PHOENIX al-
ready solves the equation of state (EOS), where all the excitation and ionization stages of
the present atoms and molecules are included. Using the EOS,the overall energy density of
the material can be obtained by the sum of the ionization energy eions and the translational
energyetrans

e = etrans + eions. (5.16)

Hence, the energy density change of the material goes into a change of the translational
energy and the ionizational energy, which both depend on thetemperature. Therefore, the
new temperature has to be obtained by an iteration scheme, which is described in the follow-
ing. The matter density at the next point in time is determined by homologous expansion. A
first temperature guess is used, and the EOS is solved to obtain the ionizational energy den-
sity. Combined with the translational energy density, the overall energy density is computed.
This is checked against the target energy density, which hasbeen obtained by equation 5.14.
If the obtained energy density is not correct, a new temperature guess is made. This new
temperature guess is obtained by assuming a linear dependence of the energy density and
temperature. The current temperature guess is iterated to the target energy density. It takes
just 5 to 10 iteration steps to determine the new temperature. If the EOS delivers the cor-
rect target energy density, the new temperature of the next time step has been found. The
accuracy of the energy density iterations is set to 10−5.
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This determination of the new temperature has to be done for every layer. As the calcu-
lation of the new temperature of one layer is independent from the other layers, this calcu-
lation can be easily parallelized. The calculations of the new temperatures of the layers are
distributed among all processes. The EOS has to be solved a few times for each tempera-
ture determination per layer, which can cost a few seconds without using the parallelization.
For the calculation of a whole SN Ia light curve, a few thousand time steps are needed.
Therefore, the parallelized calculation of the new temperatures saves computation time. For
instance, the calculation of all new temperatures for all layers needs about 10s to 15s, if only
one process is used. With a parallel calculation by using 32 processes, the calculation time
can be reduced to under one second.

5.1.6 Adaptive time step procedure

The typical time scale for the hydrodynamical changes in theSN Ia atmosphere will change
during the evolution of the light curve. In order to save computation time, the light curves
have to be calculated with the optimal time step size for eachphase of the light curve evolu-
tion. Therefore, an adaptive time step routine has been implemented to determine the optimal
time step size for the current time step.

The energy change∆e of the energy of the materiale may be approximated by

∆e = x · e = ∆t · (Q+ ε) , (5.17)

where Q is the energy change of the interaction with the radiation, andε is the energy depo-
sition by the gamma ray emission. The energy change due to theexpansion is ignored in this
case. On the one hand, this energy change depends on the new matter density after the time
step, which is unknown because it depends on the size of the time step itself. Furthermore,
the energy change because of the expansion is small comparedto the changes caused by the
energy transport and the energy deposition by gamma rays. The idea of the adaptive time
step procedure is to limit the energy change to a prescribed amount of the energy of the ma-
terial. Thus, rewriting equation 5.17, the time step size∆t for the current time step for each
layer can be obtained by

∆t =
e

Q+ ε
· x, (5.18)

wherex is the introduced limiting energy change factor. The factorx ranges betweenxmin and
xmax, which mark the largest and smallest allowed energy change.These are input parameters
for the adaptive time step procedure. The time step size is calculated for every layer, and the
minimum time step size of all layers is used for the hydrodynamical solver.

Each time the adaptive time step procedure is called, it checks if the energy changes of the
time step before were too big or could have been bigger. If theminimum time step size is in
a different layer, the same value ofx is kept for the next time step. If the minimum is in the
same layer and the sign of the energy change does not change, the previous time step might
have been too small. Thus, the factorx is increased for the following time step. If the sign
changes, the last time step might have been too large, therefore, the factorx is decreased.
This means that for each time step, the allowed energy changeis adapted and the factorx is
updated to get the optimal time step during the whole evolution of the SN Ia atmosphere.
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5.1.7 Iteration scheme

All parts of the hydrodynamical solver have been presented and discussed in detail. The fol-
lowing scheme is applied in order to calculate a new time stepfor the evolution of an SN Ia
atmosphere. For the first time step, a initial structure has to be assumed. The densities, radii
and expansion velocities are given by the used explosion model. For the start, a temperature
structure obtained with thePHOENIX temperature correction procedure can be used. The
first step of each time step calculation is to obtain the solution of the radiative transfer equa-
tion for the given structure to obtain the quantities for thecalculation of the energy change
due to absorption or emission of radiation. In the next step,the energy deposition due to
gamma ray emission from radioactive decay is calculated. This also involves an update of
the abundances of the nickel, cobalt and iron isotope 56. Theadaptive time step procedure
then determines the size of the current time step and updatesthe factorx. With this deter-
mined time step, the homologous expansion is calculated, which leads to a new density and
radius for each layer for the next point in time. All these newquantities are then used to
calculate the new energy density of the material by using theequation 5.14. The energy
density change leads to a new temperature structure of the SNIa atmosphere. With this new
atmosphere structure with new radii, densities and temperatures, the next time step can be
calculated, and a whole evolution of an SN Ia atmosphere structure can be obtained.

5.1.8 First approach

Here, a first unsuccessful approach to the calculation of SN Ia light curves is discussed
briefly. See the appendix A for a more detailed description ofthe alternative hydrodynamical
solver. The main idea was to check the overall energy conservation of the SN Ia model
atmosphere. An overall energy change of the atmosphere is given by equation (96.15) in
Mihalas & Mihalas (1984), which is

D
Dt

E = −
∂

∂Mr

{

4πr2 [u(p+P0)+F0]
}

+ ε, (5.19)

whereF0 is the radiative flux,P0 the radiation pressure andMr the mass inside of a radius
r of a layer. This energy density change includes a change of the material energy density
and the radiation energy density. The main problem of this approach was that only a total
change of the energy density can be determined. This total energy change includes a change
in both material and radiation energy density. This means, atemperature iteration has to be
performed in order to obtain the new temperature structure of the material for the next time
step. This required more computation time than the alternative approach presented in this
work. Test calculations showed that the first approach for the hydrodynamical solver did
work, however the approach presented so far turned out to be more successfully and faster.
Therefore, this first approach was not pursued further.

5.2 Test calculations

All new implemented processes of the simple hydrodynamicalsolver have to be tested. For
the test atmosphere, the atmosphere structure and abundances of the W7 deflagration model
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are used. The atmosphere structure is expanded to a point in time of 10 days after the
explosion. The densities and radii are determined by the free homologous expansion and
can be computed easily. To perform the test calculations, aninitial temperature structure is
obtained with thePHOENIX temperature correction procedure. With this initial atmosphere
structure, the hydrodynamical solver is applied for different test cases. All contributions to
the energy change are tested separately. In the following, all test calculations and the results
obtained are presented.

5.2.1 Energy transport

In this section, the energy transport through the atmosphere is tested. The hydrodynamical
solver is only considering an energy change caused by emission and absorption of radiation,
whereto the result of the radiative transfer equation is needed. All other influences are ne-
glected. As a first test, the initial temperature structure changes if the hydrodynamical solver
is working on the SN Ia atmosphere. As the initial atmospherestructure is already in ra-
diative equilibrium, the hydrodynamical solver should notchange the temperature structure
significantly, because it also pushes the atmosphere towards a radiative equilibrium state.

In figure 5.3, a comparison of the temperature structure of the hydrodynamical solver to
the result of the temperature correction procedure is shown. The differences in the tem-
perature structure are for most layers less than 1%. But as can be seen in figure 5.3, the
temperature differences of the inner layers are clearly higher. These differences arise in the
temperature correction result as it shows a spike in the temperature structure. This may
have been emerged due to the boundary condition in the temperature correction. Hence, the
resulting temperature structure obtained with the hydrodynamical solver is more accurate.
Here, the temperature structure is smooth. In order to obtain an atmosphere in radiative
equilibrium, the energy transport part of the hydrodynamical solver can be used instead of
the temperature correction procedure. The main problem is that about a few hundred time
steps are needed to obtain the resulting atmosphere structure in radiative equilibrium, while
the temperature correction needs fewer iteration steps andis, therefore, significantly faster.

For the next tests, the temperature of the innermost layer ischanged in order to get an en-
ergy perturbation, which moves through the atmosphere via the energy transport. Numerous
different perturbations can be put into the inner part of theatmosphere to test the energy
transport part of the hydrodynamical solver. Whatever the perturbation of the inner bound-
ary condition is, the temperature structure is always expected to relax to the new conditions
and move back to be in radiative equilibrium. A few test caseswith perturbations of the inner
boundary condition are presented in the following.

For the first of these test calculations, the temperature of the innermost layer is increased.
The expectation is that this additional radiation energy ismoving through the atmosphere.
The temperature should increase everywhere, and the atmosphere adapts to the new inner
boundary condition, until it is again in the radiative equilibrium state. In figure 5.4, the re-
sults of this test calculation are presented. A plot of the observed luminosity is shown in
figure 5.4(a). The luminosity is increasing, as the temperature of the atmosphere increases
because of the hotter inner boundary condition. One can alsosee that it takes some time, un-
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Figure 5.3: The temperature structures obtained with the hydrodynamical solver and the
PHOENIX temperature correction are compared in this plot. Both atmospheres
are in radiative equilibrium, and therefore the resulting temperature structures
should be the same. The differences in the temperature are less than 1%, except
for some inner layers.

(a) (b)

Figure 5.4: Result of a test calculation with an atmosphere,where the inner layer is heated.
This additional energy moves through the atmosphere. (a) The increasing ob-
served luminosity of the outer layer is shown. (b) The temperature structure at
different points in time.
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(a) (b)

Figure 5.5: Test calculation with an atmosphere, where the innermost layer is set to a lower
temperature. (a) The decreasing observed luminosity is shown. The cooled in-
ner part of the atmosphere moves through the atmosphere. (b)The temperature
structure on its way to radiative equilibrium is shown here.

til the additional energy gets to the outer part of the atmosphere and is seen by the observer.
The temperature of the atmosphere is increasing everywhere, until the atmosphere is again
in radiative equilibrium. The initial and final temperaturestructure are presented in figure
5.4(b), where the increased temperature structure of the atmosphere that has an increased
temperature as inner boundary condition are compared.

For the next test, the temperature of the innermost layer is set to a significantly lower tem-
perature. This cooler inner condition leads to a cooling of the whole atmosphere, as it moves
back to the radiative equilibrium state. The results of thiscalculation are presented in figure
5.5. The decreasing observed luminosity is shown in figure 5.5(a). Again, it can be seen
that it needs some time before the energy reaches the outer layers of the model atmosphere,
and the atmosphere structure has adapted to the new inner boundary condition. The resulting
cooler atmosphere structure is shown in figure 5.5(b). The atmosphere relaxes to the changed
inner condition and assumes a radiative equilibrium temperature structure.

As the hydrodynamical solver works for changed but then fixedinner condition, now a time
dependent temperature of the innermost layer is considered. Thus, for a last test of the en-
ergy transport, the temperature of the innermost layer is varying as a sine in time. The time
step size is set to a constant value of 2· 10−2s to have a high time resolution for a whole
period of the sine, which takes 400 time steps. Hence, a wholeperiod of the sine needs 8s.
The amplitude of the sine of the inner layer is set to 20% of itsinitial temperature. This
perturbation moves through the whole atmosphere and is expected to make the temperature
of the whole atmosphere varying as a sine. A surface plot of the temperature is shown in
figure 5.6. As can be seen, the temperature of the whole atmosphere is varying periodically.
It again takes time before the information about the sinusoidally varying inner temperature
reaches the outer layers of the model atmosphere. This becomes apparent as a phase shift
in the sine. A plot of the temperature structure at differentpoints in time is shown in figure
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Figure 5.6: The temperature of the innermost layer is varying with a sine in time. This sur-
face plot shows that the whole atmosphere is after some time varying as a sine.
This propagation through the atmosphere needs also some time, which leads to a
phase shift of the sine.

(a) (b)

Figure 5.7: Atmosphere with a sinusoidally varying inner temperature. (a) Temperature
structure of a few points in time. This perturbation moves the through the whole
atmosphere, making it varying as sine everywhere. (b) The temperature of a few
layers vary in time and have a sinusoidally shape.
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Figure 5.8: Luminosity of the sinusoidally varying atmosphere seen by an observer. After
an initial rise, the luminosity is varying with a sine that reflects the sinusoidally
varying temperature structure.

5.7(a). One can see the varying temperatures in time. The temperature of a few layers over
time is plotted in figure 5.7(b). As it can be seen, the temperature of every layer is varying
periodically. The shape is not a sine, but it looks similar. The rising occurs faster than the
decline. The deviation may be due to the radiative transfer.It takes time, until the temper-
ature change has moved through the atmosphere. The phase shift is about 200 time steps.
The varying luminosity is plotted in figure 5.8. As can be seen, the observed luminosity is
varying as a sine, after some initial disturbance.

All the tests indicate that the energy transport part of the hydrodynamical solver works
properly. It moves the temperature structure of an atmosphere towards radiative equilibrium.
If disturbed, the temperature structure also adapts to the changed inner boundary conditions
of the innermost layer. A radiative equilibrium temperature structure obtained with the hy-
drodynamical solver is almost the same as one obtained with the temperature correction
procedure.

5.2.2 Expansion

In a next test calculation, the expansion part of the hydrodynamical solver is checked. Thus,
the only energy change considered is the adiabatic cooling because of the free expansion of
the SN Ia atmosphere. The energy deposition by gamma rays or an energy change because
of the energy transport is disabled. For this test case, the expectation is that the atmosphere
should just cool down, so the temperature of the atmosphere and the observed luminosity
should be decreasing.

In figure 5.9, the results of the free expansion test calculation are presented. The observed
luminosity is plotted in figure 5.9(a). As can be seen, the observed luminosity of the SN
Ia atmosphere is decreasing. The temperature structure of the first and the last time step is
plotted in figure 5.9(b). The adiabatic expansion has cooledthe atmosphere everywhere, and
the new temperature is now significantly lower.

Another way to test if the adiabatic expansion is computed correctly in the hydrodynam-
ical solver is to calculate the entropy change of the atmosphere. As no energy is moving
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(a) (b)

Figure 5.9: Test atmosphere, which is just expanding. (a) The observed luminosity of the
atmosphere. As can be seen, the luminosity is continuously decreasing. (b)
The whole atmosphere is cooling down, as the plot of the temperature structure
shows.

through the atmosphere, the entropy of each layer should be conserved. To be consistent
with the hydrodynamics equations, the entropy is deduced from the first law of thermody-
namics. A change of the entropy during a time step is therefore given by
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where 2 is the index of quantities at the new time and 1 is the one of the old. For the integra-
tion of the temperature and the density term,mu is kept fixed. This is a good approximation,
as it is simpler to solve, and the resulting differences for the entropy are small. With the
setup of a just freely expanding SN Ia atmosphere, the entropy has been computed. Even
for a long time step of 1000s the entropy stays almost constant, the relative change of the
entropy was≈ 10−6 at most.

5.2.3 Energy deposition

To test the energy deposition by the radioactive decay of nickel and cobalt into the atmo-
sphere, a test case is considered, where only this gamma ray emission of the radioactive
decay is calculated with the hydrodynamical solver. The energy change due to free expan-
sion and energy transport is neglected to see the direct effect of the additional energy put into
the atmosphere.

The results of the gamma ray emission calculation with the hydrodynamical solver is
presented in figure 5.10. The observed luminosity over time is shown in figure 5.10(a).
Caused by the energy added to the atmosphere, the luminosityseen by an observer increased.
The figure 5.10(b) shows the temperature structure of the initial and the final atmosphere.
As an be seen, a few layers located in the inner part of the atmosphere have an increased
temperature. In this layers the radioactive isotopes of nickel and cobalt are located. Thus,
the energy is deposited into these layers. Because the energy transport is turned off, this
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(a) (b)

Figure 5.10: For this test calculation an additional energyinput from gamma ray emission is
considered. (a) The observed luminosity over time. Becauseof the additional
energy, the luminosity increases. (b) The initial and resulting temperature struc-
ture. The temperature of some inner layers has been increased significantly.

energy stays in this part of the SN Ia atmosphere. Hence, for the modeling of a realistic
SN Ia atmosphere, the energy transport is needed to distribute the additional energy into the
whole atmosphere.

5.2.4 Realistic test scenario

After all single effects have been tested, now an atmosphere, where all effects are considered
for the hydrodynamical solver is calculated. Again the sameinitial temperature structure is
used. So, the free expansion as well as the energy depositionand energy transport are active
for this computation.

The results of the test calculation are presented in figure 5.11. The observed luminosity
is plotted in figure 5.11(a). The luminosity increases because of the energy input fromγ-
ray emission due to radioactive decay. It takes some time, until the whole atmosphere has
relaxed to this new condition. The atmosphere is then in radiative equilibrium state, and the
luminosity stays constant. The initial and final temperature structure are plotted in figure
5.11(b). The energy input caused by the radioactive decay has increased the temperature
of the whole atmosphere. The atmosphere is heated by theγ-ray emission in the inner part
of the atmosphere. Due to this increasing energy the luminosity of these layers increases
and the heat is radiated away and absorbed by the surroundinglayers. This energy transport
takes care that the deposited energy is moving through the whole atmosphere so that the
temperature increases everywhere and the additional energy from the radioactive decay is
radiated away towards the observer. The atmosphere is then in radiative equilibrium.

This is has been an actual SN Ia atmosphere calculation. The hydrodynamical solver cov-
ers all the effects that influence the atmosphere of the SN Ia event. It moves the temperature
structure towards radiative equilibrium. The hydrodynamical solver can now be applied to
calculate an SN Ia light curve.
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(a) (b)

Figure 5.11: Result of a realistic test scenario. All influences on the atmosphere are consid-
ered. (a) The luminosity increases due to the energy deposition by radioactive
decay. (b) The final and initial temperature structure.

5.3 Conclusions

A hydrodynamical solver has been implemented into the general purpose stellar atmosphere
codePHOENIX. It calculates the energy change in the atmosphere by takinginto account
the homologous expansion, the energy deposition byγ-ray emission and the energy trans-
port through the atmosphere. An adaptive time step procedure has been implemented to
always obtain the optimal time step size for an atmosphere evolution calculation. Applying
this hydrodynamical solver to an SN Ia atmosphere numerous test calculations have been
performed. All the results confirm that each part of the hydrodynamical code is working
as expected. The energy transport changes the temperature structure to get the SN Ia atmo-
sphere to radiative equilibrium. A resulting temperature structure is almost the same as one
obtained with thePHOENIX temperature correction procedure. Due to the energy transport,
the temperature structure is always pushed to radiative equilibrium. Therefore, perturbations
of the innermost layer can move through the atmosphere and the temperature structure of the
whole atmosphere always relaxes to the new condition and moves back to radiative equilib-
rium. For the case of the freely expanding atmosphere, the temperature structure is cooling
down for the whole atmosphere. This can be observed by a decreasing luminosity. The en-
ergy input by radioactive decay increases the energy of the atmosphere, and, therefore, the
temperature structure changes in those layers, where the radioactive isotopes of nickel and
cobalt are present. The observed luminosity is increasing.This all indicates that the hydro-
dynamical solver is working correctly, and it can now be applied to realistic scenarios, where
the calculation of an SN Ia light curve is the main goal.
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Chapter 6

Modeling SN Ia light curves

In this chapter, the hydrodynamical solver that has been implemented into the general pur-
pose atmosphere codePHOENIX is used to calculate theoretical light curves of SN Ia events.
The first section presents the approach to generate an SN Ia model light curve in different
spectral bands that can be used to compare to observed light curves. In the second section,
the model light curves have been computed with the assumption of an atmosphere in LTE.
The atmosphere structures of different explosion models are used to calculate SN Ia light
curves. These are compared to determine which one may be the best explosion model. To
achieve further improvements of the model light curves, some investigation with the assump-
tion of an atmosphere in NLTE have been performed and are presented in section 3. A short
look on the spectral evolution of SN Ia is presented in section 4. This chapter closes with a
conclusion.

6.1 Observed SN Ia light curves

To understand the physics of type Ia supernovae, observations are the key to learn more about
them. Numerous spectra as well as light curves have been obtained, while a few hundred
supernovae are discovered each year. In this work, the focuslies on the modeling of light
curves of type Ia supernovae. Observations provide the facts that have to be reproduced by
theoretical approaches to SN Ia simulations. The simulations will give the understanding of
the physics that is going on in an SN Ia explosion.

The online supernova spectrum archive (SUSPECT) (Richardson et al. 2001, 2002) pro-
vides numerous of observations of different types of supernovae. For this work, the observed
light curves of SN 2002bo and SN 1999ee are used to compare them to the calculations of
model light curves performed in the following. Both SNe Ia have been observed in a few
photometric bands. SN 2002bo has been discovered on March 9 in the galaxy NGC 3190.
Optical and near-infrared spectra have been obtained. It also have been obtained photometric
observations of SN 2002bo in different photometric bands (Benetti et al. 2004). SN 1999ee
has also been observed to take spectra (Hamuy et al. 2002) andlight curves in different
photometric bands (Stritzinger et al. 2002).

6.2 Model light curves of SNe Ia

The new hydrodynamical solver is now applied to SN Ia model atmospheres in order to
obtain model light curves for the whole evolution of an SN Ia envelope during the free
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expansion phase. In this section, the actual scheme to obtain a full light curve evolution of
an SN Ia in different photometric bands is presented. The observed light curves of two SNe
Ia events are presented as well, because they are used to check the model light curves for
accuracy.

6.2.1 Method

The hydrodynamical solver was presented in detail in the previous chapter. It is now applied
to calculate synthetic light curves of SNe Ia. The SN Ia lightcurve evolution is calculated
during the free expansion phase. The actual explosion process is not simulated. Therefore,
for the starting model structure, the results of the explosion calculation of other groups are
used as the input structure. Each layer has a certain expansion velocity, which does not
change during the evolution, because homologous expansionis assumed. The model light
curve calculation starts at a few days after the explosion. In the first few days the SN Ia
envelope is optically thick and compact. Another point is that in the first few days the
observed SN Ia light curves are quite faint and almost no observations of this early phase
have been obtained. Therefore, for the model light curve calculation, it is adequate to start
the light curve calculation a few days after the explosion. The starting structure is given
by the result of the explosion model simulation. The resultsof the explosion model give the
expansion velocities, density structure and the non-homogeneous abundances of all chemical
elements present in the SN Ia envelope. The atmosphere expands for the first few days by
assuming homologous expansion. The radii are determined bythe expansion velocities and
time of expansion. For the first temperature structure guess, the PHOENIX temperature
correction procedure is used to obtain a start temperature structure in radiative equilibrium.

For the computation of an SN Ia model light curve, the hydrodynamical solver works
on the start model atmosphere structure. The atmosphere structure then adapts to the new
conditions caused byγ-ray emission and other hydrodynamical effects. After sometime,
the atmosphere eventually reaches the radiative equilibrium state. A typical time step of a
hydrodynamical change in the model atmosphere is about 0.1s. This is a very small time
step, but with an explicit method it is not possible to obtainbigger time steps. It takes about
500 time steps to reach radiative equilibrium depending in which evolution phase the SN
Ia is. For the later phase after the maximum of the SN Ia light curve, fewer time steps
are needed. This first radiative equilibrium atmosphere structure is now used to calculate a
more detailed spectrum, where more wavelength points are used. This model spectrum is
then used to obtain the first point of the model light curve foreach band by using the filter
functions described below. It certainly would need too muchcomputation time to calculate
a whole light curve evolution by using the typical time stepsof about 0.1s. Therefore, to
obtain the next point of the light curve, big time steps are computed. For these big time
steps, the atmosphere is only expanding. This means that neither energy deposition byγ-
ray emission nor energy transport through the atmosphere isconsidered for the solution
of the hydrodynamical solver. After half a day computed withbig time steps, the whole
hydrodynamical solver works on the atmosphere again and thenext point in the light curve
is achieved after the atmosphere structure moved back to radiative equilibrium. Even with
the use of these big time steps, about 10,000 time steps have to be calculated for a light curve
of 50 days. For the normal model atmosphere calculation inPHOENIX with the temperature
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Figure 6.1: A typical model spectrum of an SN Ia together withthe filter functions for the U,
B, V, R and I band. These are used to determine the brightness in each band for
the model light curves.

correction procedure, the radiative transfer equation hasto be solved about 100 times at
most. Therefore, the computation of a whole SN Ia model lightcurve is very expensive
concerning the computation time, because the solution of the radiative transfer equation has
to be obtained too many times. It takes a huge amount of computation time to calculate even
simple SN Ia model light curves, even when using only a few wavelength points. Basically,
the SN Ia model light curve is a curve consisting of half day points, where the atmosphere
is in radiative equilibrium. During the later phase after maximum of the light curve, the big
time steps have been performed for one or even two days, as thehydrodynamical changes is
the SN Ia atmosphere become smaller.

As described above, a model spectrum is calculated with the obtained atmosphere struc-
ture, which is in radiative equilibrium at each half day point of the light curve. To obtain a
model light curve for different photometric bands, filter functions were used to calculate the
brightness in different bands. In figure 6.1, an SN Ia model spectrum and the used filter func-
tions of the U, B, V, R and I band are shown. These filter functions are described in Hamuy
et al. (1992). With these filter functions, SNe Ia model lightcurves can now be obtained for
these five different photometric bands.

6.3 Light curves of LTE models

For the first calculations of theoretical light curves, the model atmosphere of the SN Ia is
considered to be in LTE. For a first approach to obtain model light curves this is adequate.
Another reason for the assumption of LTE is that model light curve calculations with an
atmosphere treated in NLTE use much more computation time. In order to obtain an SN
Ia model light curve in a reasonable computation time, a model atmosphere in LTE is a
necessary assumption. The method applied to obtain a SN Ia model light curve is described
in the section above. For the model light curve calculationspresented in this section the
following parameters were chosen. The model atmosphere is divided into 128 layers. The
radiative transfer is solved including atomic lines of the Kurucz atomic data line list. The
number of wavelength points used for the solution of the radiative transfer is about 2400.
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Figure 6.2: LTE model light curve of the W7 explosion model inthe V band compared to
two observed SN Ia light curves of SN 1999ee and SN 2002bo.

6.3.1 UBVRI light curves

For the first light curve calculation, the W7 deflagration explosion model is used to obtain
model light curves of SNe Ia in different photometric bands.The first point of the light curve
was calculated at three days after the explosion. The methodto obtain the theoretical light
curves is described in section 6.2.1.

Figure 6.2 shows the LTE SN Ia model light curve of the W7-based explosion model in
the optical V band. The theoretical light curve represents the observed light curves of two
SNe Ia events very accurately. The steep rise of the model light curve beginning at three
days after the explosion is in agreement with the observed light curves. The maximum of
the W7-based model light curve seems to be later than the one of the observed light curves.
At 20 days after the explosion, the model light curve has its maximum, while the maximum
of the observed light curves is around 17 days after the explosion. After the maximum, the
decline of the light curve of the W7-based model represents the observed light curve quite
well. Even up to the later phase at 50 days after the explosion, where the atmosphere gets
significantly thinner, the fit to the observed light curves isquite accurate.

For the other photometric bands, the computed model light curves are also compared to
the observed SN Ia light curves. The theoretical light curvein the ultraviolet U band is
shown in figure 6.3(a). Only an observed light curve of SN 1999ee is available. As can be
seen from this figure, the observational data are scattered.The rise in the beginning as well
as the maximum phase is well represented by the model light curve. However, the decline
of the theoretical light curve seems to be too steep. This same effect is present in the model
light curve of the B band, which is shown in figure 6.3(b). Here, the first days of the model
light curve are too bright compared to both observed SN Ia light curves. The maximum
phase of the model light curve is in good agreement with the observed ones. At day 50, the
model light curve becomes brighter than the observed light curves.
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(a) (b)

Figure 6.3: LTE light curves of the W7 explosion model. (a) Inthe U band the theoretical
light curve has a steeper decline than the observed light curve. (b) The B band
model light curve is to bright during the first few days.

(a) (b)

Figure 6.4: LTE light curves of the W7 explosion model. (a) The theoretical light curve in
the R band seems to rise after a first decline after the maximumphase. (b) For the
I band the model light curve has no distinctive maximum. At 30days after the
explosion the model light curve is way too bright in comparison to the observed
ones.
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In figure 6.4(a), a plot of the model light curve of the R band isshown. The steep rise in
the beginning and the maximum phase of the observed SN Ia light curves is well represented
by the computed model light curve. However, as can be seen from the figure, the theoretical
light curve fit gets worse for the later phase after the maximum. The brightness of the model
light curve seems to rise again at around day 25 after the explosion. Up to day 45, the model
light curve has a second bump, which is not observed in the light curves of SN 1999ee and
SN 2002bo. In the infrared I band, the decline after the maximum phase is missing, as can be
seen from figure 6.4(b). Like in the R band, the rise in the beginning and the maximum are
well represented in the model light curve. However, at the maximum phase, the brightness
of the SN Ia model light curve rises further, which is not seenin the observed light curves
of SN 2002bo and 1999ee. Around day 30, the difference between model and observed light
curve in the I band are about 1 mag. To day 50, the model light curve declines, while the
observed light curves show their second maximum around 40 days after the explosion.

To conclude, in the V band the model light curve represents the observed light curve quite
accurately. For the B band and the U band, this is also the case, despite some deviations dur-
ing the later declining phase, where the model light curves seem to be too faint. Significant
differences between observed and model light curves arise in the R band and definitely in
the infrared I band. Here, the decline after the maximum phase observed in the SNe Ia light
curves is not present in the simulated light curve. In the following, further investigations on
the infrared problem will be performed to find the cause of thedifferences.

6.3.2 Dynamical models

The W7 deflagration explosion model is only one of the possible explosion models which are
considered for an SN Ia event. Other explosion models need tobe calculated and compared
to the W7 deflagration model and the observed light curves to determine the best explosion
model. Therefore, results of hydrodynamical explosion calculations of other groups are used
to calculate model light curves. One possible explosion model is the deflagration model W7
(Nomoto et al. 1984), which has already been used to compute SN Ia model light curves.
Other possible explosion models are the delayed detonationmodels. Two results for these
explosion model calculations are used here to compute SN Ia model light curves. These are
the models DD 16 and DD 25 presented in Höflich et al. (2002). The density structures of the
three used explosion models are shown in figure 6.5(a). At theinner part of the atmosphere,
the densities are almost the same for all three explosion models. At the outer part of the
atmosphere, the density of the W7 deflagration model is significantly lower than the density
of the two delayed detonation models. The density structures of the two delayed detonation
models are quite similar. Between the three explosion models, there are also differences in
the abundances of the elements produced during the explosion. In particular, the amount
of 56Ni, which was produced during the explosion, is different. In figure 6.5(b) the amount
of 56Ni that has been produced during the explosion is shown for all three models. In the
explosion model DD 16 less56Ni is produced than in the models DD 25 and W7. The56Ni
produced in the two delayed detonation models is also present in different layers than in the
deflagration model. The amount of produced56Ni is known to have a strong influence on the
light curves of SNe Ia, because the more56Ni is present the more energy is put into the SN
Ia atmosphere due to radioactive decay of the56Ni and its decay product56Co.
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(a) (b)

Figure 6.5: The atmosphere structure of the three used explosion models. The W7 deflagra-
tion and two delayed detonation models are used for the lightcurve calculations.
(a) Density structure at 20 days after the explosion. (b) Amount of 56Ni present
at the beginning.

Figure 6.6: LTE model light curves of SNe Ia for three different explosion models in the V
band.
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(a) (b)

Figure 6.7: LTE light curves of the three explosion models. (a) In the U band, the DD 16
light curve is too faint. (b) In the B band, the model light curves at the later
phase are to bright.

Using these three explosion models, LTE model light curves were computed with the
hydrodynamical solver. In figure 6.6, the three explosion model light curves in the V band
are presented. The most obvious difference between the model light curves is the peak
absolute magnitude. The DD 16 model is the faintest of the three explosion models. The
DD 25 model is the brightest and the W7 deflagration model is almost as bright as the DD
25 model. The physical reason behind this is the heating of the atmosphere caused by the
γ-ray deposition due to radioactive decay of56Ni and its decay product56Co. The more56Ni
is produced during the explosion the more radioactive decayenergy is present during the
evolution of the SN Ia atmosphere, and the model light curve is brighter at the peak of the
light curve. The DD 16 model atmosphere indeed has only 0.3 solar masses of56Ni, while
the DD 25 and W7 model atmosphere have about 0.6 solar masses of56Ni. This is also
shown in figure 6.5(b), where the amount of56Ni is plotted. Therefore, from the theoretical
light curve computation point of view, the DD 16 explosion model can be ruled out as the
correct explosion model causing these events. It also showsthat the hydrodynamical solver
reproduces the expected behavior considering the energy change caused by the radioactive
decay.

The model light curves of other bands have also been computed. In figure 6.7(a), the
model light curves of the three explosion models in the U bandare presented. The light
curve of the explosion model DD 16 is too faint to reproduce the observed light curve of SN
1999ee. In the model light curve no distinctive maximum is produced. For the first days,
the model light curve of the DD 25 model is brighter than the W7deflagration model light
curve. The decline of the light curve of the DD 25 model after maximum is steeper, and in
the later phase the DD 25 model light curve is too faint compared to the observed light curve
of SN 1999ee. The W7 model light curve is the best fit to the observed light curve. In figure
6.7(b), the model light curves of the three explosion modelsin the B band are shown. Again,
the model light curve of the DD 16 model has no distinctive maximum, and it is also too
faint to reproduce the observed light curves. The DD 25 modelis a bit brighter than the W7
deflagration model, and they both have similar light curve shapes. During the first phase, the
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(a) (b)

Figure 6.8: LTE light curves of the three explosion models. (a) In the R band, the DD 16
light curve is too faint. (b) In the I band, the model light curves at the later phase
are to bright.

model light curve of the DD 25 explosion model is too bright. It does not show the steep
rise in the beginning, which is observed in the two light curves of the SN Ia events. After
the maximum, the light curves of the DD 25 and the W7 model havethe same luminosities.
Again, the W7 model light curve seems to be the best fit to the observed light curves.

The model light curves of the three explosion models in the R band are shown in figure
6.8(a). The light curve of the DD 16 explosion model again is too faint. However, the
differences to the observed light curves are not as huge as inthe other bands presented before.
The model light curve of the DD 25 model shows a similar shape like the W7 deflagration
model. Both light curves have their maximum around 17 days, which is when the observed
light curves have their maximum. During the declining phase, the model light curve of the
DD 25 model shows a deviation from the observed light curves at around 30 days after the
explosion. This is also seen in the W7 deflagration model. In figure 6.8(b), the infrared light
curves in the I band of the three explosion models are shown. All three model light curves
do not reproduce the observed light curves well. The DD 25 andthe W7 model reproduce
at least the steep rise during the first phase of the observed light curves. However, after the
maximum phase, all theoretical light curves show a rise in the brightness, while instead the
observed SN Ia light curves are declining. Even the in the V band too faint DD 16 model
rises to a brightness brighter than the one in the observed light curves. Thus, the use of
a different dynamical model does not improve the fit to the observed light curves in the I
band. Summarized, the DD 16 does not seem to be the correct explosion model of the SN Ia
events. The W7 deflagration model seems to be the best fit to theobserved SN Ia light curves.
However, the DD 25 model is also in reasonable agreement withthe observed light curve. In
the infrared I band, all explosion models show significant deviations from the observed light
curves in the phase after the maximum.
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Figure 6.9: LTE light curve of the W7 model calculated with different energy deposition. In
the V band there arise differences in peak absolute magnitude.

6.3.3 Influence of the energy deposition model

Tests about the influences of the many parameters of the hydrodynamical models are needed
to check wether the effects are reasonable considering the physics of the SN Ia atmosphere.
Here, an investigation is performed that checks how a different amount of energy input into
the model atmosphere leads to differences in the resulting model light curves. Furthermore,
the changes in the energy deposition may improve the theoretical light curves especially
for the I band. For this energy deposition test, the W7 deflagration model is used for the
calculation of the model light curves. The amount of the energy deposition is obtain by
the implemented procedure. This obtained deposition of energy, which is put into the total
energy change, is then changed by an arbitrary test factor. The abundances of56Ni, 56Co and
56Fe are not changed.

In figure 6.9, a plot of SNe Ia model light curves with different energy depositions are
shown. Here, the model light curves in the V band are under investigation. One light curve
is the original model light curve of the W7 model, where the energy deposition has not been
changed. Two light curves one with 80 % and one 120% of the original energy deposition
have been calculated. As can be seen in the figure, the difference in the amount of the de-
posited energy has a direct influence on the maximum brightness of the computed model
light curves. As expected, an SN Ia model light curve, where more energy is put into the
atmosphere, shows a brighter maximum. The model light curve, where less energy is de-
posited into the atmosphere has a fainter maximum. It can also be seen that the overall shape
of the model light curves does not change if a different amount of energy is put into the
atmosphere.

The model light curves of the U band are presented in figure 6.10(a). Again, the different
amount of energy deposition changes the brightness of the model light curves everywhere.
Even the light curve with 120% of the original energy deposition is in the later phase too
faint, as can be seen in comparison to the observed light curves. In figure 6.10(b), the model
light curves of the B band are presented. The model light curve with more energy deposited
into the atmosphere is brighter than the one with less energydeposition. However, the shape
of the model light curves are quite similar. Like in the U band, the light curves at the later
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(a) (b)

Figure 6.10: LTE light curve of the W7 model calculated with different energy deposition.
(a) In the U band there arise differences in peak brightness.(b) In the B band
there are small differences. The fit at the later phase has notimproved.

phase are too faint even the one, which has more energy input into the atmosphere.
The model light curves with different energy depositions inthe R band are shown in figure

6.11(a). Here, the differences between the light curves fordifferent energy depositions are
smaller than for the U, B or V band model light curves. The maximum phase is quite similar
for all three light curves with different energy input. The light curve with more energy
input is brighter than the light curves with less energy input. At the later phases all model
light curves are too bright. However, the light curve with only 80% of the original energy
deposition is at around 40 days as bright as the observed light curves. In the infrared I
band, the model light curves, which are shown in figure 6.11(b), show almost no significant
differences in the brightness with a different factor of energy deposition. All three model
light curves rise after the maximum to a higher brightness than in the observed SN Ia light
curves. Thus, a different energy deposition does not have aninfluence on the I band model
light curves. Therefore, the fit to the observed light curvesin the I band cannot be improved
by using a different amount of energy deposition into the model atmosphere.

To summarize, the energy deposition has an influence on the model light curves. The
model light curve, where more energy is put into the atmosphere, shows are brighter light
curve than one with less energy input. It can also be said thatthe influences for the U, B
and V band are significant, where for the R and the I band the differences become smaller.
This change of energy deposition simulated that a differentamount of56Ni may have been
produced during the explosion. It can also mean that the procedure to obtain the deposited
energy needs improvements. For instances, the assumption of gray radiative transfer for the
γ-rays is not a good approximation.

6.3.4 Near-infrared light curves

As presented in the previous sections, all model light curves in the I band do not represent
the observed SN Ia light curves correctly. During the later phase beginning at 25 days after
the explosion, the deviations between model and observed light curves are quite huge. In this
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(a) (b)

Figure 6.11: LTE light curve of the W7 model calculated with different energy deposition.
(a) In the R band there arise differences in peak brighness. (b) In the I band
there are small differences. The fit at the later phase has notimproved.

section, the focus lies on the modeling of SNe Ia light curvesin the near-infrared beyond the I
band. Light curve observations in the J, H and K band of the twoSNe Ia have been obtained.
Photometric observations in the J and H band of SN 1999ee are presented in Krisciunas et al.
(2004a). For SN 2002bo photometric observations in J, H and Kband have been obtained
(Krisciunas et al. 2004b). The procedure to obtain the modellight curves for the near-infrared
J, H and K band is the same as for the other bands. The W7 deflagration model has been
used to calculate the model light curves under the assumption of an model atmosphere being
in LTE. Filter functions are applied on the computed model spectra to obtain the model light
curves for the infrared bands. A spectrum of an SN Ia model atmosphere is shown in figure
6.12. The used filter function of the J, H and K band are shown aswell. The J band filter is
located between a wavelength of 1.1µm and 1.35µm. As can be seen in the figure, between
1.5µm and 1.8µm is the wavelength range for the H band filter. The K band filteris between
2µm and 2.3µm wavelength.

The model light curve in the J band is shown in figure 6.13(a). The first 25 days of the
observed light curves are well represented by the calculated LTE model light curve. The rise
to the maximum as well as the maximum phase is in good agreement with the observed SN
Ia light curves. The model light curve rises to a second maximum at around 40 days, which
is as bright as the first maximum. This second maximum has not been observed in the light
curves of SN 2002bo and SN 1999ee. Here, the differences between model and observed
light curves are very significant. The LTE model light curve in the H band is shown in figure
6.13(b). Again, the first phase up to day 20 is in good agreement with the observed SN Ia
light curves. The model light curve has a bright maximum at day 35, which is not present in
the observed light curves. Here, the difference between themodel and the observed SN Ia
light curves is almost 1.5 mag.

In figure 6.14, the LTE model light curve in the K band and the observed light curve of
SN 2002bo are shown. No data is available for SN 1999ee for this band. Again, the model
light curve represents the observed light curve for the firstphase quit adequate. At day 25
after the explosion, the model light curve increases its brightness, which is not observed in
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Figure 6.12: An LTE spectrum of the W7 deflagration model in the infrared at day 20 after
the explosion. The filter functions of the J, H and K band are shown.

(a) (b)

Figure 6.13: LTE light curves of the W7 model in the infrared.(a) Model light curve in the J
band. The maximum at 15 days is also in the model light curve. However, in the
model light curve the brightness increases after 25 days after the explosion. (b)
Model light curve in the H band. Huge difference between model and observed
light curve starting at 25 days after the explosion.
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Figure 6.14: LTE light curve of the W7 model in the K band. Onlyobservations of SN
2002bo are available, again the differences starting around day 25 arise.

the light curve of SN 2002bo. Almost 1.5 mag is the differencebetween model and observed
light curve at day 35.

In the I, J, H and K band, the first 20 days of the model light curves are representing the
observed light curves quite accurately. However, the modellight curves show significant
differences compared to the observed SN Ia light curves during the later phase beginning
at around 20 days after the explosion. All calculated model light curves are significantly
too bright during this phase. This indicates that in the whole wavelength range of the near-
infrared, from 0.8µm to 2.3µm, the obtained model spectra are too bright. Therefore, the
differences of the I band model light curve are not only a single problem of this certain band.
In the whole near-infrared, the model light curves are not representing the observed light
curves correctly during the later phase after the maximums.

6.3.5 Simple line scattering

The LTE model curves in the U, B and V band are in quite good agreement with the observed
light curves. However, the model light curves in the R band and the infrared bands have
larger differences compared to the observed SN Ia light curves. One possible explanation is
that the assumption of an atmosphere being in LTE is obviously not correct. Therefore, the
effects of scattering in the radiative transfer on the modellight curves is tested. The source
function for the radiative transfer equation including scattering for a two level atom can be
written as

Sλ = (1− ελ )Jλ + εBλ . (6.1)

The factorελ is the scattering factor. Forεν = 1 only the thermal pool is active and no
scattering is assumed. The source function is then given bySλ = Bλ . This factorεν will
vary over the whole wavelength range. For the calculation with PHOENIX it is possible
to set a wavelength independent factorε. This factor setsελ = ε = constant for the line
scattering over the whole wavelength range. Meaning that scattering is taken into account
for the solution of the radiative transfer equation. To testthe influences of scattering on the
computed model light curves, this factor is now varied. For this purpose, the model light
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Figure 6.15: LTE light curves of the W7 explosion model calculated with different values of
ε in the V band.

(a) (b)

Figure 6.16: LTE light curves of the W7 explosion model calculated with differentε. (a)
Light curves of the U band. (b) A plot of the light curves with differentε in the
B band.

curves of the W7 deflagration model are calculated for an atmosphere that is in LTE but with
different values for the scattering factorε. So far, the used value of the scattering factor for
the computation of all model light curves wasε = 0.8.

In figure 6.15, a plot of model light curves in the V band calculated with different values of
ε is shown. The differences between the model light curves computed withε = 0.8, ε = 0.5
andε = 0.3 are small. The lower the factorε is, the fainter becomes the brightness in model
light curve. Forε = 0.1 the computed model light curve is fainter then the other ones. As
can be seen, the shape of all model light curves still represent the shape of the observed SN
Ia light curves.

In figure 6.16(a), the U band model light curves calculated with different values ofε
are shown. The model light curve calculated withε = 0.3 seems to be the best fit to the
observed SN Ia light curves. It does not show the steep decline after the maximum as seen in
theε = 0.8 model light curve. For the rise of the light curve, the modellight curve calculated
with ε = 0.1 is the best fit to the observed light curves. As can seen from the figure, the model
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(a) (b)

Figure 6.17: LTE light curves of the W7 explosion model calculated with differentε. (a) In
the R band, a smallerε leads to fainter light curves. (b) Huge differences in the
light curves with differentε can be seen in the I band.

light curve forε = 0.1 is not in good agreement with the observed light curves during the
later phase after the maximum. Interesting is that the peak absolute magnitude is almost the
same for all model light curves. The B band model light curvesare plotted in figure 6.16(b).
The maximum peak has about the same brightness forε = 0.3, ε = 0.5 andε = 0.8. The
light curve withε = 0.1 is too faint during the maximum phase and does not representthe
observed light curves during the later phase. For the first days, the model light curve with
ε = 0.1 is the best fit.

In figure 6.17(a), the model light curves of the R band are shown. The influence of a
different value ofε on the model light curves is significant. The model light curves with
lower ε do not show the second rise at day 30. Therefore, for the modeling of SN Ia light
curves in the R band, the scattering factor should beε = 0.5, because it is the best fit to
the observed SN Ia light curves. The model light curve calculated withε = 0.1 is again
too faint. In the infrared I band, the influences of the chosenvalue forε on the model light
curves is even more significant, as can be seen from figure 6.17(b). With a decreasingε the
brightness of the model light curves also decreases. For a value of ε = 0.8, the light curve
does not show a decline after the maximum at 12 days after the explosion. The model light
curves ofε = 0.5 andε = 0.3 do not show a decline either. Here, the brightness after the
maximum stays almost constant. Forε = 0.1 the light curve declines after the maximum but
has a second maximum at 20 days, which has not be seen in the observed light curves of SN
2002bo and SN 1999ee. The model light curve of theε = 0.1 calculation is also very faint.
For the I band, it cannot be said, which value ofε produces the best fitting model light curve
to the observed ones. All computed model light curves show significant differences to the
observed SN Ia light curves.

In this section, different values of the scattering factorε were used to obtain LTE model
light curves of the W7 model for different bands. It can be determined that scattering defi-
nitely has an effect on the calculation of model light curves. For the U, B, V and R band a
smaller value ofε than used so far can improve the fit of the model light curves tothe ob-
served ones. A value betweenε = 0.5 andε = 0.3 seems to give the best fits to the observed
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light curves. It can also be determined that a value ofε = 0.1 is definitely too small as the
computed model light curves are too faint to reproduce the observed light curves. In fact,
the scattering should be treated in a more sophisticated way. The assumption of an SN Ia
atmosphere that is not in LTE is the next step for the computation of model light curves of
SNe Ia that fit the observed light curves more accurately.

6.4 Light curves of NLTE models

The LTE light curves in the V Band and most other bands are in quite good agreement with
observed SN Ia light curves. However, in the near-infrared for the bands I, J, H and K, the
model light curves need improvements especially for the later phase to fit the observations
more accurately. So far, the SN Ia model atmosphere is considered to be in LTE during the
whole evolution time. As the results presented in the section above have shown, scattering
is important for the solution of the radiative transfer. Therefore, in this section the model
light curves are calculated with the assumption of an atmosphere, which is not in LTE. The
computation of model light curves with SN Ia model atmospheres, which are in NLTE, is
difficult, because this needs a huge amount of computation time. At first, model light curves
in NLTE are computed with an LTE temperature structure. Later, more realistic NLTE model
light curves with a temperature structure that adapts to NLTE conditions are computed to
investigate the NLTE effects on the model light curves.

6.4.1 NLTE light curves with LTE atmosphere structure

The first approach to compute NLTE model light curves is to consider the atmosphere to be in
NLTE, but use a fixed LTE temperature structure. For this computation of NLTE model light
curves, the radiative equilibrium LTE temperature structure of the W7 deflagration model is
used. This temperature structure is kept constant and 20 iterations are performed to converge
the NLTE, which is mainly the occupation numbers of the species that are considered for
the NLTE calculation. The following species are consideredfor the calculation in NLTE:
H I, He I, He II, C I-III, O I-III, Ne I, Na I, Mg I-III, Si I-III, S I-III, Ca II,Ti II, Fe I-III
and Co II. These are the species that are most abundant in an SNIa atmosphere and mainly
contribute to the spectrum. The advantage of this approach to an NLTE model light curve
is that no temperature iterations have to be performed. Thisreduces the computation time
significantly, although about 200,000 wavelength points are calculated instead of 2,400 in
case of LTE.

In figure 6.18, the SN Ia model light curve in the V band of an NLTE calculation with
LTE temperature structure is shown. As can be seen from the figure, the NLTE light curve is
fainter than the LTE light curve. During the maximum phase there is about 0.4 mag differ-
ence between both light curves. After the maximum the NLTE model light curve approaches
the LTE light curve and represents the observed light curvesas good as the LTE light curve.
Overall, the NLTE model light curve in the V band does not represent the observed light
curves very accurately. With the assumption of an atmosphere in LTE, a better fit is ob-
tained, although NLTE is more physically accurate.

The NLTE model light curve of the U band is shown in figure 6.19(a). The NLTE light
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Figure 6.18: Model light curves of the W7 explosion model in the V band. The NLTE model
atmosphere has an LTE temperature structure.

(a) (b)

Figure 6.19: Model light curves of the W7 model. The NLTE model atmosphere has an LTE
temperature structure. (a) The light curves of the U band. (b) The light curves
of the B band.
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(a) (b)

Figure 6.20: NLTE and LTE model light curves of the W7 model. The NLTE model atmo-
sphere has an LTE temperature structure. (a) The R band lightcurves. (b) In the
I band the NLTE light curve is an improvement.

curve shows almost no deviations from the LTE light curve. This also means that the assump-
tion of NLTE does not improve the fit to the observed light curve. During the later phase the
steep decline is also present in the NLTE model light curves.Therefore, the assumption of
NLTE does not change the light curve in the U band, if the LTE temperature structure has
been used. In figure 6.19(b), the NLTE model light curve in theB band is shown. The NLTE
model light curve is slightly fainter than the LTE light curve. The shape of the NLTE light
curve seems to be the same as for the LTE light curve. Hence, the NLTE model light curve
is also an accurate fit to the observed light curves.

In figure 6.20(a) the NLTE model light curve of the R band is shown. The brightness of
the NLTE light curve is fainter than the LTE light curve. It also has almost the same shape.
For the phase after 25 days after the explosion, the NLTE model light curve rises again. Here,
the assumption of NLTE does not improve the fit to the observedlight curves of SN 1999ee
and SN 2002bo. The infrared NLTE light curve of the I band is shown in figure 6.20(b).
During the maximum phase, the NLTE light curve is fainter than the LTE light curve. A
distinctive maximum is missing in the NLTE model light curve. For the phase between day
15 and day 25, the NLTE model light curve represents the observed SN Ia light curves very
accurately. Here, a significant improvement compared to theLTE model light curve can
be seen. However, after day 25 the NLTE model light curve starts to rise and becomes too
bright. This is the same problem that already emerged in the LTE light curve.

The use of NLTE for the modeling of SN Ia light curves by the useof an LTE temperature
structure changes the computed results. The NLTE model light curve in the I band has
improved the fit to the observed light curves significantly. For the U and B band there are
almost no differences compared to the LTE model light curves. In the V and R band, the
NLTE model light curves are fainter than the LTE light curves. The presented NLTE light
curves show only the effects that emerge if the LTE temperature structure is used for the
calculation. It needs to be checked, what the differences inthe model light curves occur,
when the temperature structure of the SN Ia atmosphere can adapt to the NLTE conditions.
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(a) (b)

Figure 6.21: NLTE and LTE model light curves of the W7 model. The NLTE model atmo-
sphere has an LTE temperature structure. (a) The J band lightcurves. (b) The
H band light curves.

Figure 6.22: NLTE and LTE model light curves of the W7 explosion model in the K band.
The NLTE model atmosphere has an LTE temperature structure.

Near-infrared NLTE light curves

The NLTE model light curves of the near-infrared range have also been calculated. In figure
6.21(a), the light curves in the J band are shown. The NLTE light curve is fainter throughout
the evolution compared to the LTE light curve. Therefore, the assumption of NLTE lead to
no further improvement in the fit to the observed light curves. The H band NLTE model light
curve is show in figure 6.21(b). Up to day 30 there are almost nodifferences between the
LTE and the NLTE light curve. Later the NLTE light curve is a bit fainter than the LTE light
curve. However, this is no significant improvement towards abetter fit. Small differences of
the NLTE model light curve and the LTE model light curves havebeen achieved as can be
seen in figure 6.22. The NLTE model light curve also does not represent the observed light
curve of SN 2002bo accurately. The second rise in the LTE light curve is also present in the
NLTE light curve.
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Figure 6.23: NLTE and LTE model light curves of the W7 explosion model in the V band.

6.4.2 NLTE atmosphere structures

Here, a more realistic NLTE calculation of the SN Ia model atmosphere evolution is per-
formed. The temperature structure is now changing and adapts to the new conditions of
NLTE. The calculation of an NLTE model light curve takes a huge amount of computation
time. Considerably more wavelength points are needed for the calculation of the solution of
the radiative transfer. And further, for all the species considered in NLTE, the rate equations
have to be solved. Note that a time step in the NLTE calculation is not a real time step. The
rate equation changes the energy of the atmosphere, but thisis not included in the hydro-
dynamical solver. However, it is adequate as the goal is to obtain a temperature structure,
where the atmosphere is in radiative equilibrium.

In a first try to calculate a more realistic NLTE light curve, numerous species up to cal-
cium are considered to be in NLTE. These are the species H I, HeI, He II, C I-III, O I-III,
Ne I, Na I, Mg I-III, Si I-III, S I-III and Ca II. Higher speciesare neglected because they
have more levels, which would increase the computation timesignificantly. Nevertheless,
the computation of an NLTE light curve needs significantly more time than LTE. For this
computation of NLTE model light curves, about 200,000 wavelength points need to be cal-
culated, compared to about 2,400 wavelength points for a pure LTE light curve calculation.
To obtain an NLTE model light curve in a reasonable time, the calculation has been started
at day 10 after the explosion. The main focus is to check if theinfrared light curves during
the later phase can be further improved.

In figure 6.23, the NLTE and LTE light curves of the W7 deflagration model in the V
band are shown. The maximum phase is not well represented by the NLTE model light
curve. The LTE light curve fits the observed light curves better. At day 20 the NLTE and
LTE light curves are almost the same. Compared to the NLTE light curve obtained with the
LTE temperature structure, there are only small differences to the NLTE calculation where
the temperature structure adapts to the NLTE conditions.

The NLTE and LTE model light curves shown in figure 6.24(a) arethe ones for the U
band. The peak brightness of the NLTE light curve is the same as for the LTE light curve.
During the decline after the maximum, the NLTE light curve isbrighter than the LTE light
curve. At day 25 the decline seems to become too steep, like inthe LTE model light curve.
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(a) (b)

Figure 6.24: NLTE and LTE model light curves of the W7 model. (a) The U band light
curves. (b) The B band light curves.

(a) (b)

Figure 6.25: NLTE and LTE model light curve of the W7 model. (a) The R band light curves.
(b) In the I band the NLTE light curve is an improvement.

Compared to the NLTE U band light curve with an LTE temperature structure, there are some
deviations from the LTE light curve. In figure 6.24(b), the B band light curves for the W7
model in NLTE and LTE are shown. Here, the LTE and the NLTE model light curves have
only small differences. The maximum phase is well represented by the NLTE light curve
compared to the observed light curves. A few differences exist compared to the NLTE light
curve with the LTE temperature structure.

The NLTE and LTE model light curves in the R band are shown in figure 6.25(a). The
NLTE light curve has the same shape as the LTE light curve, butthe NLTE light curve is
fainter. At day 25 the NLTE starts to rise again. The effect that the NLTE light curve is
fainter than the LTE light curve has also been observed with the NLTE light curve, which
was calculated with the LTE temperature structure. In figure6.25(b), the I band model light
curves of NLTE and LTE are shown. During the maximum phase, the NLTE light curve is
fainter than the LTE light curve. Between day 15 and day 25 theNLTE model light curve
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Figure 6.26: The LTE and NLTE spectra at day 22 after the explosion. The Ca II feature
located at about 8500̊A shows differences.

represents the observed light curves quite accurately. Here, the use of NLTE improves the fit
to the observed light curves. This improvement has also beenobtained with the NLTE model
light curve calculated with the LTE temperature structure.It can also be seen, at day 25 the
NLTE model light curve starts to rise again. Although the consideration of NLTE improves
the model light curve in the I band, the problem with a rise in brightness after the maximum
remains. The NLTE and LTE model spectra of day 22 after the explosion in the wavelength
range of the Ca II feature in the I band is shown in figure 6.26. The differences of the Ca II
feature located at 8500Å between both light curves are significant. Here, it can be seen why
this leads to the better fit of the NLTE model light curve to theobserved one in the I band.

The NLTE light curve with an NLTE temperature structure shows the same improvements
as the NLTE light curves, where the LTE temperature structure has been used. It seems that
reasonable results can be obtained for the NLTE model light curve calculation if the LTE
temperature structure is used. Concerning the computationtime, this might be an adequate
approach.

The only improvement of the NLTE light curves has been reached in the I band. However, it
still is very much improvable for the later phase beginning around day 25 after the explosion.
The ionization of Fe is important for the infrared light curves and might be causing the
second maximum in the I band light curve (Kasen 2006). Therefore, the species Fe I, Fe II
and Fe III are important to treat them in NLTE. A computation of the evolution of the SN Ia
atmosphere has been calculated with only this species considered in NLTE. The temperature
structure also adapts to the NLTE conditions. As they have a large number of levels, the
computation time increases dramatically. The overall computation time of the model light
curve with the species Fe I-III considered in NLTE was about two months.

The NLTE model light curve in the optical V band is shown in figure 6.27(a). The Fe ions
in NLTE do not change the model light curves significantly. There are only small deviations
from the LTE light curve. The I band NLTE model light curve is shown in figure 6.27(b).
Again, the Fe ions considered in NLTE have almost no influenceon the model light curve.
A small deviation from the LTE model light curve occurs around day 25. However, the
consideration of Fe I-III in NLTE is not necessary, as it seems to have almost no influence
on the model light curves during the phase, which has been calculated.
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(a) (b)

Figure 6.27: Light curves with Fe I-III in NLTE of the W7 explosion model. (a) The V band
there arise no significant differences. (b) I the I band there.

6.5 Spectral evolution

The SN Ia model light curves have been simulated by the calculation of model spectra at
different points in time of the evolution of the SN Ia atmosphere. Here, these spectra are pre-
sented. The spectral evolution of an SN Ia event is also of interest. As the SN Ia atmosphere
evolves, the luminosity changes and different lines and features in the spectrum emerge and
disappear. The spectral evolution of an SN Ia atmosphere in LTE and NLTE is presented in
the following.

6.5.1 LTE spectral evolution

The calculated model spectra of the W7 deflagration model, where the atmosphere is con-
sidered in LTE are used. The spectra have been obtained with the temperature structure that
has been obtained with the hydrodynamical solver.

The spectral evolution of the SN Ia atmosphere in LTE is shownin figure 6.28. In the
ultraviolet wavelength range the flux drops dramatically throughout the whole evolution. In
the blue wavelength range the spectrum of day 20 is brighter than at day 3, and the flux then
drops again to day 50. In the optical wavelength range, the flux increases between day 3 and
day 20. Going on towards day 50, the flux decreases. In the near-infrared, the flux increases
between day 3 and day 20. For day 50 and day 20 the flux is almost the same. One can also
see that different features are observed in the spectra of different days after the explosion.

6.5.2 NLTE spectral evolution

A look on the NLTE spectral evolution is now presented. The NLTE model spectra, where
the LTE temperature structure has been used, are consideredhere. The NLTE spectral evo-
lution is shown in figure 6.29. The overall changes are similar like in the LTE spectral
evolution. In the ultraviolet the flux decreases significantly from day 10 to day 30. In the
optical wavelength range, there are almost no differences in the luminosities between day 10
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Figure 6.28: The LTE spectral evolution of a few days.

Figure 6.29: The NLTE spectral evolution of a few days.
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and day 20. The flux decreases to day 30. In the infrared wavelength range, the flux stays
almost the same for all three model spectra. One can also see that the feature seen in the
model spectra change during the evolution of the atmosphere. The Ca II feature at 8500̊A is
very strong at day 30. Here, the flux is larger than for day 10 orday 20.

The differences to the modeling of spectra that has been performed before withPHOENIX
is that now the temperature structure has been obtained withthe hydrodynamical solver in-
stead of the temperature correction procedure. Therefore,the fits to observed SN Ia spec-
tra can be improved by using the atmosphere structure obtained with the hydrodynamical
solver, because a more accurate atmosphere structure for the correct time after the explosion
can now be used. Model spectra of the early phase as well as late time spectra can be com-
puted. The modeling of detailed NLTE spectra of SN Ia atmosphere with the use of the new
hydrodynamical solver is a point of interest for future work.

6.6 Conclusions

The new hydrodynamical solver has been used to calculate model light curves of SN Ia
events. First, model light curves have been obtained, wherethe atmosphere is considered
to be in LTE. For the optical V band the fit to observed light curves are quite accurate. For
the U, V and R band, the computed LTE model light curves are in reasonable agreement
with the observations of SN 1999ee and SN 2002bo. In the infrared I band the model light
curves after the maximum phase are too bright compared to theobserved light curves. These
differences also occur for the J, H and K band model light curves.

Different dynamical models have been used to calculate model light curves of SNe Ia.
The W7 deflagration model and the delayed detonation model DD25 have light curves that
agree with the observed light curves for the optical bands. The W7 deflagration model seems
to be the best fit to the observed light curves. In the infraredall model light curves are again
too bright. The delayed detonation model DD16 can be ruled out as the correct explosion
model, because all model light curves are too faint and do notshow the shape of the observed
light curves.

The assumption of an atmosphere which is not in LTE is necessary as scattering is im-
portant and has an influence on the model light curves. The NLTE light curves calculated
with the LTE temperature structures showed differences from the LTE light curves. In the
near-infrared I band, the assumption of NLTE reproduces a better fit of the model light curve
to the observed light curves. In the near-infrared the differences to observed light curves are
significant during the later phase. Further investigationswith NLTE light curves have to be
performed in the future.

At day 20 after the explosion, the temperatures even of the outer layers are higher than
4000 K. However, at day 40 the temperatures of the outer layers have dropped below 3000 K.
Molecules can form under these conditions in the SN Ia atmosphere. This has an effect on
the infrared spectra and light curves. Furthermore, the atmosphere becomes thinner and
eventually transparent in the later phase. Hence, for future work, molecular lines need to be
included in the model light curve calculations to check their influences on the SN Ia model
light curves especially in the near-infrared.
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Chapter 7

Conclusions and outlook

The first main topic of this work was the time dependent radiative transfer. The spherical
symmetric special relativistic radiative transfer equation can now be solved including the
time dependence. The implementation has been presented in detail in chapter 4. Two dis-
cretization schemes of the time dependence derivative havebeen applied to implement the
time dependent SSRTE. Both discretization schemes have been successfully applied to cal-
culate time dependent radiative transfer. Calculations with different time step sizes give the
same results for the time dependent radiative transfer equation. Test calculations have been
performed with the new time dependent radiative transfer. The atmosphere structure used for
the tests is time independent. A comparison of the radiativetime scale to a simple analytic
radiative time scale shows a similar result. A perturbationthat origins at the inner bound-
ary of a model atmosphere is moving via the time dependent radiative transfer through the
whole atmosphere. The model atmosphere with a brighter inner light bulb inside adapts to
this condition, but it takes time until the additional radiation emerges at the surface. With a
sinusoidally varying light bulb inside of the atmosphere, the luminosity of the whole atmo-
sphere varies as a sinus eventually. It is now possible to compute the radiative transfer in
model atmospheres including time dependence and all other relativistic effects.

A further time dependence implementation has been performed for the material in the model
atmosphere. A new hydrodynamical solver has been implemented into the general purpose
stellar atmosphere codePHOENIX. The hydrodynamical solver keeps track of the energy
changes in the model atmosphere. It is especially designed to calculate the time evolution
of an SN Ia model atmosphere during the free expansion phase.The SN Ia atmosphere is
assumed to undergo a homologous expansion, and thus the energy change due to this adi-
abatic expansion is considered in the hydrodynamical solver. A procedure to obtain the
energy deposition byγ-ray emissions due to the radioactive decay of56Ni and 56Co is also
implemented in the hydrodynamical solver. The hydrodynamical solver also updates the
abundances of56Ni, 56Co and56Fe. The material of the atmosphere interacts with the radia-
tion field. This is also taken into account as an energy changeof the atmosphere. An adaptive
time step procedure determines the optimal time step size toreduce the overall computation
time needed for a whole evolution calculation.

All parts of the hydrodynamical solver have been tested. Thepure homologous expansion
of the SN Ia atmosphere leads to a cooling of the atmosphere, and a decreasing luminosity
is observed. A check of the entropy shows, that it does not change during a pure adiabatic
expansion process. When the atmosphere is heated by theγ-ray emission of radioactive
elements, the observed luminosity increases. Only the temperature of the parts of the atmo-
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sphere where the energy is deposited is increasing. The transport of this energy is achieved
by the radiative transfer. A temperature structure obtained with the energy transport part
of the hydrodynamical solver is the same within an accuracy of 1% as one obtained with
thePHOENIX temperature correction. If the temperature of the innermost layer has been
changed, the rest of the atmosphere adapts to this new condition pushing the atmosphere
back to radiative equilibrium. A first realistic test, whereall contributions to the SN Ia at-
mosphere are considered in the hydrodynamical solver, shows that the temperature structure
adapts to the new conditions and moves to a radiative equilibrium state.

The hydrodynamical solver has been applied to calculate SNeIa model light curves. First
calculations of model light curves where the atmosphere is considered to be in LTE have
been presented. For that the W7 deflagration model has been used. The LTE model light
curve of the V band represents the observed light curves of SN1999ee and SN 2002bo quite
accurately. In the U band, the decline in the model light curve is too steep. This is also the
case for the B band model light curve. The R band model light curve is representing the
observed light curves quite accurate for the first phase. However, during the later phase, the
model light curve starts to rise again, and the brightness becomes too bright. In the infrared
I band, the model light curve represents the rise and the maximum of the observed light
curves. For the later phase after the maximum, the model light curve rises further, while in
the light curves of SN 1999ee and SN 2002bo a decline is observed. These deviations in the
near-infrared have been further investigated. It turned out that the too bright later phase of
the near-infrared light curves can also be seen in the J, H andK band. The first phase up
to day 25 is well represented in the model light curves. However, during the later phase the
model light curves are too bright.

Different explosion models have been used to calculated SN Ia model light curves. A de-
flagration model W7 and two delayed detonation models DD 16 and DD 25 are the explosion
models used in this work. One result is that model DD 16 can be ruled out as the correct
explosion model. The luminosities in the DD 16 model light curves are too faint in all bands
during the whole evolution of the SN Ia atmosphere. The best fit to the observed light curves
has been obtained with the W7 deflagration model. The delayeddetonation model DD 25 is
also in good agreement with the observed light curves. The model light curves of DD 25 are
brighter than the ones of the W7 deflagration model. The use ofa different explosion model
did not lead to an improvement of the model light curves in thenear-infrared I band.

The amount of energy, which is put into the SN Ia atmosphere bythe γ-ray emission
due to radioactive decay has been changed in order to achievea better fit to the observed
light curves. A model light curve where the energy deposition is 20% higher than in the
original amount has a higher brightness in the U, B, V and R band. With less energy put
into the atmosphere, tested here with 80% of the original amount, the model light curves
are fainter. In the infrared I band, the model light curves with different energy input do not
change significantly. Therefore, with a change of the amountof energy input no better fit to
the observed light curves has been achieved.

The influence of scattering for the solution of the radiativetransfer used for the calculation
of SN Ia model light curves has been investigated. A parameter that stands for the influence
of line scattering in the solution of the radiative transferequation has been changed. The
result is that the consideration of scattering is importantfor the calculation of SN Ia model
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light curves. A different scattering factor can improve themodel light curves. For the near-
infrared model light curves, no better fits have been achieved. The deviations during the later
phase after maximum are present for all calculated factors.

A way where scattering is treated more correctly is the assumption of an NLTE atmo-
sphere. At first, simple NLTE calculations have been performed. The NLTE model light
curves have been calculated with using the LTE temperature structure. Here, significant im-
provements in the I band light curve have been achieved. A decline after the maximum is
now present in the NLTE light curve. Later, the NLTE model light curve starts to rise again.
NLTE model light curve calculations where the temperature structure adapts to the new con-
ditions have also been performed. The result was that the resulting model light curves are
quite similar to the ones with assuming an LTE temperature structure. SN Ia model light
curves with the species Fe I-III in NLTE have been calculated. It seems that these species
have no significant influences on the modeling of SN Ia light curves in the calculated time
evolution phase.

The aim of this work was to show in principle that the new implementation of a hydrody-
namical solver works and achieves reasonable results for the calculation of SN Ia model light
curves. Now, more detailed studies of SN Ia model light curves can be performed. For in-
stance, more different explosion models can be used to calculated the model light curves in
order to determine the correct explosion mechanism for an SNIa event. For this studies it
is also interesting to take a look at the effects in the model light curves by using explosion
models with a different mass of56Ni, because the nickel mass has a direct influence of the
maximum absolute magnitude. With variations of different parameters, it could be tried to
reproduce an individual SN Ia light curve. Peculiar events of SN Ia can also be studied. It is
also possible to search for indications of the physics that lie behind the Philips relation.

For further improvements of the modeling of SN Ia light curves it is inevitable to perform
more detailed NLTE calculations. The main obstacle is the huge amount of computation time
that is needed for an NLTE model light curve calculation. It seems to be necessary to wait
for faster computers, but it is also possible to run single long term calculations. However,
one advantage seems to be that LTE temperature structure canbe used to obtain reasonable
NLTE model light curves. So detailed studies of the NLTE effects of different species at
different points in time during the evolution can be performed.

The hydrodynamical solver can be also be improved as the implemented one is very sim-
ple. For instance, the assumption of homologous expansion is a reasonable but not correct
assumption for SNe Ia atmospheres. Therefore, with a more realistic hydrodynamical solver
it might be possible to obtain better resulting model light curves. As the emission ofγ-rays
is the main influence on the brightness, the energy deposition may have to be implemented
with a more complex procedure. The assumption of gray radiative transfer for theγ-rays
may not be accurate enough. The hydrodynamical solver can also be extended. Other energy
changes or processes can be included to make it applicable toother kinds of atmospheres.
For instance, the evolution of SNe II or variable stars can then be calculated.

A further topic of future work is also the modeling of SN Ia spectra with the hydrodynam-
ical solver. Spectra can now be calculated for the correct evolution phase after the explosion.
This will improve the fits to observed spectra especially forthe early or later phase in the
SN Ia atmosphere evolution. Further, with NLTE calculations it might be possible to obtain
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much better fits.
A detailed study of the near-infrared model light curves andspectra is necessary to im-

prove the model light curves in this wavelength range. In this work, the modeling of SN
Ia light curves in the near-infrared for the later phase has not achieved reasonable fits to
observed light curves. Other groups that calculated SN Ia model light curves with differ-
ent approaches had also difficulties to obtain accurate fits for the near-infrared light curves
(Pinto & Eastman 2000; Blinnikov & Sorokina 2004). A detailed study of the near-infrared
model light curves has already been performed by Kasen (2006). One reason for these de-
viations from observed model light curves may be caused by incomplete atomic line data.
Wrong infrared atomic lines in the data can also cause deviations in the model light curves.
This has to be investigated. Furthermore, a study of the influences of abundance changes
in the atmosphere to the model light curves and spectra can beperformed to improve the
near infrared model light curves. In the later phase of the light curve, the temperatures of
the outer layers of the atmosphere become lower. For instance, at day 40 after the explo-
sion, the temperatures are less than 3000 K. Molecules can form under these conditions, and
molecular lines influence the spectra and light curves in theinfrared. For future work, the
molecular lines need to be included in the model light curve calculations and their effects on
the model spectra need to be studied. As the envelope expandsfurther, the atmosphere be-
comes thinner and eventually transparent. The atmosphere becomes also more transparent to
theγ-rays. Therefore, non-thermal rates influence the matter inthe atmosphere. This needs
to be considered for the modeling of light time spectra and light curves.

Calculations of explosion models show that it is necessary to treat SN Ia as 3D objects.
So a major step to calculate more accurate model spectra and light curves is to compute
3D radiative transfer. ThePHOENIX 3D radiative transfer is in development and is nearly
done. For the modeling of 3D SN Ia light curves, the hydrodynamical solver has to be
implemented in 3D too. The time dependent radiative transfer can also be implemented into
the 3D radiative transfer.
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Appendix A

Alternative hydrodynamical solver

A first unsuccessful approach has been performed in order to implement an alternative hy-
drodynamical solver that has the purpose to calculate SN Ia model light curves. Here, this
approach is presented in some detail. For a description withmore details see Jack et al.
(2009). The main idea is to keep track of the conservation of energy of the gas and radia-
tion together. The change in the energy density of a radiating material is given by equation
(96.15) in Mihalas & Mihalas (1984)

D
Dt

E = −
∂

∂Mr
(Lr +Pr)+ ε, (A.1)

whereE is the total energy density. All quantities are considered in the comoving frame.
Pr is not the pressure, but rather mechanical power on the sphere of a radiusr. Equa-
tion A.1 is only valid to first order in v/c, and thus lacks the full special relativistic accuracy
of PHOENIX. This is adequate for the velocities found in supernovae. The total energy den-
sity of a radiating fluid consists of the sum of the energy density of the material, the energy
density of the radiation field, the kinetic energy density ofthe material, and the gravitational
energy density:

E = Egas +
E0

ρ
+Ekin +Egrav. (A.2)

For supernovae in the free expansion phase, the gravitational energy densityEgrav is negligi-
ble since the potential is small in absolute value with the standard choice of zero at infinity.
Also, homologous expansion is a reasonably good assumptionfor supernovae. With the as-
sumption of homology, the velocity of a given matter elementis then constant as is the kinetic
energy density. Thus, the kinetic energy termDEkin

Dt can be neglected. So for the approach,
only the energy densities of the radiation field and the material have to be considered. For
the material, this includes effects such as an energy deposition due to radioactive decay of
56Ni and56Co in an SN Ia envelope.

The other possible cause of a change in the energy density is the structure term. This term
is given by (Cooperstein et al. 1986)

∂
∂Mr

(Pr +Lr) =
∂

∂Mr

{

4πr2 [u(p+P0)+F0]
}

, (A.3)

wherep is the pressure of the material andP0 the radiation pressure,u the velocity of the
expanding gas, the radiative flux is represented byF0, and the mass inside of the radiusr of a
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layer is given byMr. The radiation pressure is a result of the solution of the detailed radiative
transfer equation and given by

P0 =
4π
c

K, (A.4)

with K the second moment of the radiation field.
The change of the energy density is given by the two quantities

Lr = 4πr2F0 (A.5)

and

Pr = 4πr2u(p+P0) . (A.6)

If the atmosphere is in radiative equilibrium, the structure term is zero and the energy density
stays constant if there is no additional energy source and the atmosphere is not expanding.

All the quantities required for the structure term can be derived from thermodynamics or
the solution of the radiative transfer problem. The energy density of the materialEgas and
the energy density of the radiation fieldE0

ρ are needed. For the latter, the radiative transfer
equation for the radiation field has to be solved to obtain theradiative energy. The radiative
transfer codePHOENIX is used to solve the time-independent radiative transfer equation.
The energy of the radiation field is given by

E0 =
4π
c

J, (A.7)

whereJ is the mean intensity andc the speed of light.
The energy density of the material is given by

Egas =
3
2

p
ρ

=
3
2

R
mu

T, (A.8)

with the mean molecular weighmu and the universal gas constantR. The gas pressure is
represented byp and the density byρ . T stands for the temperature of the gas. The sum of
the radiation and material energy density is then the total energy density

Etotal = Egas +
E0

ρ
. (A.9)

The change in this total energy density is given by equation A.1. So the equation to calculate
the new energy densityEnew is given by

Enew = Eold −
∂

∂Mr
(Lr +Pr)∆t + ε∆t. (A.10)

All the needed equations to calculate a simple light curve have been presented. One
problem for the calculation is that only the change in thetotal energy density for the next
time step can be determined. However, the total energy change is divided into a change in
the gas energy density and the energy density of the radiation field. To obtain the correct
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distribution of the gas and radiative energy, one has to iterate for each time step by solving
the radiative transfer equation to compute the correct new temperature at the next time step.

To get the correct new temperature the following iteration scheme is applied. The error in
the energy density,Eerr is given by

Eerr =
Ecurrent −Etarget

Etarget
. (A.11)

Here,Etarget is the desired new total energy density, which is known from equation A.10,
andEcurrent is the total energy density obtained by equation A.9 with thecurrent temperature
guess and the radiative transfer solution. Tests have shownthat the error is almost linearly
proportional to the temperatureT . Therefore, a new temperature guess can be calculated for
the next iteration step. The new temperature guessTnew is obtained by

Tnew =
EerrTold −Eerrold Tcur

Eerr −Eerrold

, (A.12)

whereTcur andEerr are the current temperature guess and energy error. The variablesTold

andEerrold are the temperature and energy error of the temperature iteration step before. With
the new temperature guess we solve the radiative transfer equation again and check whether
the total energy density is the desired one. It takes approximately four or five iteration steps
to obtain the correct new temperature for a typical time step. The energy density is correct
within an accuracy of 10−5.

A.1 Test calculations

This alternative hydrodynamical solver has been tested with numerous test calculations. It
has been tested with the use of gray time independent radiative transfer. For the test scenar-
ios, the atmosphere is divided into 100 layers. Each part of the solver has been tested for its
own.

As a first test, the time evolution code has been applied to a static atmosphere. The test
atmosphere is not expanding and no energy sources are present. Inside the test atmosphere a
“lightbulb” radiating with a constant luminosity to simulate the internal energy flow from a
star is used. An approximate temperature structure fort = 0s has been assumed and then the
atmosphere evolves towards radiative equilibrium. The atmosphere structure changed until it
reaches steady state and the luminosity is constant in both space and time. The resulting final
temperature structure is identical to the structure for radiative equilibrium computed directly
with thePHOENIX temperature correction procedure.

The luminosity of three different static models is shown figure A.1(a). The atmosphere
model on its way towards radiative equilibrium can be observed. All calculations were
started from the same initial temperature structure. Aftera certain time, the radiative relax-
ation time scale, each atmosphere has the (constant) luminosity of the lightbulb throughout
the configuration.

The next test is to look at time varying atmospheres. As an example an atmosphere with
a sinusoidally varying lightbulb inside is considered. Theluminosity in different layers is
shown in figure A.1(b). The luminosity in each layer is sinusoidal. It takes some time for
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(a) (b)

Figure A.1: Test calculations. (a) Three different light curves for the evolution to a stationary
state. The three models have different luminosities produced by different inner
“lightbulbs”. (b) The result for a sinusoidal varying lightbulb. Shown here is
the luminosity in different layers. The phase shift betweenthe lightbulb and the
emergent flux is roughlyπ .

the radiation to reach the outside boundary of the atmosphere and this results in a phase shift
compared to the lightbulb. The phase shift between the lightbulb and the emergent flux is
roughlyπ .

For the next test, an atmosphere with an internal energy source is considered. The initial
structure is the radiative equilibrium structure of the static model with the lightbulb with
a luminosity of 1031erg/s. A constant energy deposition rate in each layer of themodel
atmosphere is then assumed. The luminosity is expected to increase over time and towards
the outside. Figure A.2(a) shows a plot of the light curve of this test atmosphere. The
luminosity increases in time because of the energy deposition.

Figure A.2(b) shows a plot of the light curve of supernova test atmosphere that is simply
expanding. No energy deposition or energy transport is considered here. As can be seen, the
observed luminosity is decreasing, because the atmosphereis cooling down adiabatically.

Now a setup more closely resembling a real supernova light curve is tested. Therefore,
an initial atmosphere structure is taken and an energy source (radioactive decay) is added
in each layer. The energy source exponentially decreases tosimulate declining activity of
the radioactive species. Figure A.3 shows the plot of the light curve of this test, resulting in
a light curve with a supernova-like shape. A rising part of the light curve at the beginning
because of the energy deposition is seen. After the maximum,the luminosity decreases due
to the ongoing expansion and decreasing energy deposition.Of course this light curve is far
from correct because the assumption of a gray atmosphere is abad assumption for an SN Ia.
But the tests show that the code behaves as expected.

This alternative approach to a hydrodynamical solver showsfor all test cases the expected
behavior. But it has not been further pursuit, as there emerged problems in the implementa-
tion and the use of the detailed radiative transfer. Further, numerous temperature iterations
have to be performed in order to obtain the results for the next time step. As each iteration
step includes a full solution of the radiative transfer, this turned out to cost too much compu-
tation time. Therefore, the approach presented in chapter 5in this work is more efficient.
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(a) (b)

Figure A.2: Test calculations. (a) The light curve of an lightbulb with an additional energy
source. An energy source in each layer causes an increasing luminosity of the
model atmosphere. (b) Light curve of an atmosphere that is just expanding.

Figure A.3: Light curve of an atmosphere that is expanding and has an energy source. It has
the typical shape of a light curve of a SN Ia. The luminosity rises due to the
energy deposition. After the maximum we see the decline resulting from the
expansion.
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