
UNIVERSITÄT HAMBURG

FAKULTÄT WIRTSCHAFTS- UND SOZIALWISSENSCHAFTEN

SCHWERPUNKT OPERATIONS & SUPPLY CHAIN MANAGEMENT

Collaborative Planning in Detailed Scheduling

Der Fakultät Wirtschafts- und Sozialwissenschaften zur Erlangung

des akademischen Grades

Doktor rerum politicarum

vorgelegte

Dissertation

eingereicht im: Juli 2009

von: Dipl.-Wi.-Ing. Jan Benedikt Scheckenbach

geboren am 11. Juni 1980

in Gräfelfing

Erstgutachter: Prof. Dr. Hartmut Stadtler

Zweitgutachter: Prof. Dr. Heinrich Braun

Datum der mündlichen Prüfung: 07.12.2009

Acknowledgements

The author is greatly indebted to many people:

His parents for their unconditional love, constant encouragement and reliability.

Prof. Dr. Hartmut Stadtler and Prof. Dr. Heinrich Braun for their high academic standards, their
expertise, their unwavering support, their motivating ideas and uncountable fruitful discussions.

Prof. Dr. Jürgen Branke and Prof. Dr. Kalyanmoy Deb for their education and inspiration.

The whole SAP SCM Optimization team, in particular to Dr. Christopher Sürie and Thomas En-
gelmann for their professional advice, but also to all others for their loyal support and enrichment
of workaday life.

Tatjana Samsonowa, Carolin Püttmann and Martin Albrecht for sharing the experience of a Eu-
ropean Union–funded research project. Philipp Schardt, Florian Frey and Heiko Walz, who con-
tributed by their hard work, critiques and commitment.

iii

iv

Contents

Mathematical symbols and abbreviations ix

1 Introduction 1

2 Overview of Advanced Planning Systems 5
2.1 Master Planning . 6
2.2 Production Planning and Detailed Scheduling . 7
2.3 SAP SCM APO . 8

3 Collaborative Planning 11
3.1 Definition of Collaborative Planning . 12
3.2 Related topics and state-of-the-art . 14

3.2.1 Hierarchical coordination . 14
3.2.2 Multi-echelon systems and contract theory 15
3.2.3 Auction theory . 19
3.2.4 Bargaining theory . 19
3.2.5 Mathematical-decomposition–related techniques 21
3.2.6 Secure multiparty computation . 27
3.2.7 Metaheuristic-related techniques . 28

3.3 Scope of the thesis . 29

4 The generic DEAL framework 33
4.1 Assumptions and requirements: A practical point of view 33

4.1.1 Nondisclosure of sensitive data . 34
4.1.2 Availability-based instead of cost-based incentive mechanisms 34
4.1.3 Feasibility preservation and multidomain support 35
4.1.4 Support of different local optimization engines 36
4.1.5 Scalability and robustness . 36

4.2 Introduction to Evolutionary Algorithms . 36
4.2.1 Basic definitions . 37
4.2.2 Inspiration from nature . 38

v

vi CONTENTS

4.2.3 A template for Evolutionary Algorithms . 39

4.2.4 Multiobjective Evolutionary Algorithms . 41

4.2.5 Multiobjective Goal Programming . 43

4.3 A brief introduction to DEAL . 44

4.3.1 Message protocol . 47

4.3.2 Communication threads . 48

4.4 Construction of solutions . 48

4.4.1 Individuals connected by threads . 48

4.4.2 Generic construction template . 51

4.5 Evaluation of solutions . 55

4.5.1 Restricting to acceptable solutions . 56

4.5.2 Double ranking . 57

4.5.3 Side payments . 58

4.6 Selection of the mating pool and update of population 59

4.7 Generic message protocol . 60

4.8 Properties of sequential coordination . 61

4.9 Asynchronous coordination . 63

4.10 Parallel coordination . 65

5 The Resource-Constrained Project-Scheduling Problem 69

5.1 The basic problem . 69

5.2 Active, semi-active and nondelay schedules . 72

5.3 Minimum and maximum time lags . 74

5.4 Multiple modes . 75

5.5 Varying capacity and calendars . 76

5.6 Sequence-dependent setup times . 76

5.7 Objective function . 77

5.7.1 Minimize total pseudo-hard lateness . 77

5.7.2 Minimize makespan . 78

5.7.3 Minimize total lateness . 78

5.7.4 Minimize maximum lateness . 78

5.7.5 Minimize total mode cost . 78

5.7.6 Minimize total setup time . 79

5.7.7 Minimize total setup cost . 79

5.7.8 Total objective function . 79

5.8 Further constraints and objectives . 80

5.9 State-of-the-art heuristics to solve the RCPSP . 80

5.9.1 Schedule-generation schemes . 80

5.9.2 X-Pass methods . 81

5.9.3 Metaheuristic approaches . 82

5.9.4 Improvement by right-left-alignment . 84

CONTENTS vii

6 The SAP Detailed Scheduling Optimizer 87

6.1 The Detailed Scheduling solving module . 88

6.1.1 Encoding and decoding . 89

6.1.2 Initialization of population . 99

6.1.3 Mutation and crossover operators . 102

6.1.4 Mutation and crossover probabilities . 106

6.1.5 The evolutionary cycle . 106

6.2 Alignment heuristics . 108

6.2.1 Right-alignment heuristic . 108

6.2.2 Left-alignment heuristic . 109

6.3 Further extensions . 110

7 The customized DEAL framework 111

7.1 The interorganizational problem . 111

7.2 The standard two-tier business case . 115

7.3 Initialization . 116

7.3.1 Upstream planning . 116

7.3.2 Simulation of an existing alignment . 118

7.4 Evaluation . 118

7.5 Construction of solutions . 120

7.6 Coordination example . 122

7.7 Proposal generating operators . 125

7.7.1 Propagation-based mutation operators . 127

7.7.2 Alignment-based mutation operators . 129

7.7.3 Rescheduling-based mutation operators . 133

7.7.4 Crossover operators . 138

7.7.5 An ideal operator . 140

7.8 Self-adaptation of operators . 141

7.8.1 Deterministic self-adaptation . 141

7.8.2 Stochastic self-adaptation . 142

7.9 Reusing previous solutions . 143

7.10 Implementation details . 147

7.10.1 Sequential and asynchronous coordination 149

7.10.2 Parallel coordination . 150

7.10.3 The SAP SCM grid framework . 152

7.10.4 Customized message protocol . 154

7.10.5 The process of parallel coordination . 155

7.11 The three-tier scenario . 158

7.12 Appropriate real-world business cases . 159

viii CONTENTS

8 Computational evaluation 163
8.1 Building blocks defining the complexity of coordination 163

8.1.1 Local properties . 164
8.1.2 Interface properties . 171
8.1.3 Unforeseen events . 171

8.2 Deterministically generated test instances . 172
8.2.1 Test data generation . 172
8.2.2 Test instances . 175
8.2.3 Test program . 183
8.2.4 Test results . 185

8.3 Randomly generated test instances . 213
8.3.1 Test data generation . 214
8.3.2 Test program and test instances . 217
8.3.3 Test results . 218

8.4 Additional tests for the stochastic self-adaption of operators 221
8.4.1 Reducing the set of operators . 221
8.4.2 Additional tests using the reduced set of operators 223

9 Conclusion 227

Appendices

A The simple Production Planning run algorithm 233

B The OEM’s control procedure 239

C The supplier’s control procedure 243

D The controller’s control procedure 247

E Operator list for the deterministic self-adaption 249

F Additional figures 251

G Additional tables 261

List of figures 275

List of tables 281

Bibliography 287

Index 297

Mathematical symbols and abbreviations

Repeatedly used mathematical symbols
|.| cardinality of a set
b.c floor function
d.e ceiling function
x � y “x is better than y” or “x has higher fitness than y”
ar constant capacity of resource r
art time-dependent capacity of resource r
cjm cost of running activity j in mode m
dj duration of activity j as an integral number of periods
djm duration of activity j in mode m
ddj soft-constrained due date of activity j
dd∗j static, non-varying due date of activity j
dlj deadline of j
dl∗j static, non-varying deadlines of activity j
e index of a planning domain
efj propagated, earliest finish date of activity j for infinite capacity
E set of all planning domains
esj propagated, earliest start date of activity j for infinite capacity
fdj finish date of activity j
hlm violation of deadlines of mode m
j, k, l index for the activities
J set of all activities
JS set of setup activities, JS ∈ J
Je set of activities j within the domain e, Je ⊂ J
JeU set of upstream-related activities of domain e, JeU ⊆ Je
JeD set of downstream-related activities of domain e, JeD ⊆ Je
lsj propagated, pseudo-hard latest start date of j for infinite capacity
lfj propagated, pseudo-hard latest finish date of j for infinite capacity
m index of mode, m ∈Mj

mj selected mode of activity j
Mj set of possible modes for activity j
mcm Minimum subsequent mode cost of mode m
ml maximum lateness of a schedule
mlm maximum estimated lateness of mode m
ms makespan of a schedule
msm estimated makespan of mode m

ix

x MATHEMATICAL SYMBOLS AND ABBREVIATIONS

Repeatedly used mathematical symbols
Pj set of activities which immediately precede j
P ej set of predecessors of activity j within domain e
pddj propagated, soft-constrained due date of j
r index for renewable resource type, r ∈ R
rm primary resource of mode m
R set of all renewable resources
Re set of resources r within the domain e
rdj release date of activity j
rd∗j static, non-varying release date of activity j
sdj start date of activity j
Sj set of activities which immediately succeed j
Sej set of successors of activity j within the domain e
slm slack consumption of mode m
scm estimated setup cost increase of mode m
stm estimated setup time increase of mode m
t index for periods, t ∈

[
0, . . . , T

]
T planning interval
T planning horizon, i.e. the end of the planning interval

[
0, . . . , T

]
thl total pseudo-hard lateness of the schedule
tl total lateness of the schedule
tlm total estimated lateness increase of mode m
tmc total mode cost of a schedule
tsc total setup cost of a schedule
tst total setup time of a schedule
twc total weighted cost
ujr constant per-period demand by activity j for resource r
ujmr constant per-period demand by activity j in mode j for resource r
wml weighting of maximum lateness objective
wms weighting of makespan objective
wtl weighting of total lateness objective
wtmc weighting of total mode-cost objective
wtsc weighting of total setup-cost objective
wtst weighting of total setup-time objective
λij minimum time lag between activity i and j
λij maximum time lag between activity i and j
π(x) permutation of activities (∀x, y ∈ [1 . . . |J |] : π(x) = j ∈ J with π(x) 6= π(y) for x 6= y)
π−1(j) inverse permutation (∀j ∈ J : π−1 (π (j)) = j)
ψjk setup cost for changeover from activity j to k
υe(p) high level ranking of solution p
ωe(p) low level ranking of solution p
σjk setup duration for changeover from activity j to k

MATHEMATICAL SYMBOLS AND ABBREVIATIONS xi

Abbreviations
APS Advanced Planning System
BOM Bill-of-Material
CPU Central Processing Unit
CX Component crossover
DEAL Decentralized Evolutionary Algorithm
DS Detailed Scheduling
DTDG Deterministic Test Data Generator
EA Evolutionary Algorithm
FDS Fix delayed activity-sequence
FS Fix sequence of all activities
FWD Forward scheduling
GA Genetic Algorithm
ICL Insert components most left
ICR Insert components randomly
IDD Insert due dates
LA Left-alignment
LX Linear crossover
MLCLSP Multilevel Capacitated Lot-Sizing Problem
MOEA Multi-Objective Evolutionary Algorithm
MRP Material Requirements Planning
PDD Propagate due dates
PP Production Planning
RCPSP Resource-Constrained Project-Scheduling Problem
RA Right-alignment
RC Rearrange activities in connected components
RMD Relax most delayed (upstream-related) release dates
RMP Relax most promising (upstream-related) release dates
RMS Relax minimum slack (upstream-related) release dates
RNB Relax nonbottleneck upstream-related) release dates
rhs right-hand side
RRD Relax all (upstream-related) release dates
RTDG Randomized Test Data Generator
SC Supply Chain
SCM Supply Chain Management
SCP Supply Chain Planning
SGS Schedule-generation scheme
SPP Simple Production Planning
SPPM Simple Production Process Model
SSB Set start-date bounds
TDG Test Data Generator

xii MATHEMATICAL SYMBOLS AND ABBREVIATIONS

CHAPTER 1

Introduction

This thesis presents a decentralized mechanism for aligning detailed schedules of several compa-
nies, being interdependent in form of supplier–manufacturer relationships. In such a relationship,
production processes of the manufacturer cannot start until the suppliers have provided the nec-
essary items. Detailed Scheduling is the task of assigning production activities to scarce resources,
where resulting plans determine activities’ start and finish times down to the second.

In the last decades, Advanced Planning Systems (APS) have been put forward by industry
and academia to solve Supply Chain (SC) planning problems. APS employ Operations Research
techniques that are able to simultaneously consider constraints related to resource-availability,
material flow and time. To cope with the complexity of the planning problems, APS are typically
organized in a hierarchical manner. That is, on a mid-term level so-called Master Planning cen-
trally calculates rough cut plans, i.e. quantities of sourced, produced, transported and distributed
items across the different production sites and distribution centers of a company. Master Plan-
ning relies on aggregated data and generates material quantity targets for subsequent Production
Planning and Detailed Scheduling. The latter two planning methods are then typically applied
separately for each production site. Production Planning is concerned with translating material
quantity targets into concrete production activities, whereas Detailed Scheduling is about com-
puting a good sequence and a feasible resource assignment for the activities. As detailed sched-
ules per plant have to respect superordinated rough cut plans on enterprise level, APS inherently
employ a hierarchical form of coordination.

The problem with the above approach is that it is not applicable to companies that are interde-
pendent on delivered items but legally separate organizations. A superordinated decision-making
process fails because of the missing central entity and the reluctance of SC members to disclose
sensitive data. Typically, a hierarchical coordination requires full visibility of data, such as produc-
tion and holding costs, Bill-of-Materials, and resource availability. However, keeping this data
private is considered vital by most companies. As a remedy, successive planning strategies are
employed today, a typical example is upstream planning. In upstream planning, the more pow-
erful downstream entity calculates its production plan first, generating demand for subsequent
upstream entities. Most of today’s “collaboration” systems, such as vendor-managed inventory,

1

2 CHAPTER 1. INTRODUCTION

are actually implementations of successive planning strategies. From a mathematical perspective
the interorganizational optimization problem is split into separate interdependent subproblems.
The subproblems are then solved sequentially, whereas already-solved subproblems define the
constraints for yet unsolved subproblems. For example, suppose a manufacturer setting up his
production plan according to actual demand and forecasts. By doing this, the manufacturer cre-
ates the demand for his suppliers that have to plan their production accordingly. However, suc-
cessive planning pays no respect to the suppliers’ actual production capacities. Not surprisingly,
successive planning strategies lead to suboptimal results, which often will result in (either) wasted
production capacity, larger safety stocks, decreased service levels and increased production costs.

In recent years, academia (see, for example, Ertogal and Wu, 2000; Fink, 2004; Cachon and
Lariviere, 2005; Kutanoglu and Wu, 2006; Sucky, 2006; Stadtler, 2007a; Dudek, 2007; Dahl and
Derigs, 2008; Walther et al., 2008) has put forward advanced coordination mechanisms that try to
attain the results of hierarchical coordination (or centralized planning) without requiring the par-
ties to exchange sensitive data. Subsuming the different approaches, the term Collaborative Plan-
ning has emerged as a new research area. From a practical perspective, Collaborative Planning
mechanisms have to cope with three difficulties: First, they should support complex operational
planning problems. Second, the exchange of sensitive data must be avoided. Third, the mecha-
nisms are required to be incentive compatible to prevent opportunistically acting partners from
supplying systematically biased input that changes overall results to their advantage. It is very
difficult to consider all three requirements to the fullest. This, and the still-prevailing paradigm
of successive planning have hampered the introduction of Collaborative Planning mechanisms in
practice.

This thesis aims to provide a coordination mechanism that focuses on a collaboration of lim-
ited scope and thus fulfills the above requirements to a degree acceptable for practical implemen-
tations. We restrict our task to coordinating detailed schedules. Being computed only shortly be-
fore execution, badly aligned detailed schedules most obviously demand a coordinated solution.
Scheduling is about finding the right sequence of production activities, which then determines the
activities’ start and finish times. However, we will argue that without coordination each partner
of the SC would choose a different sequence which often leads to bad overall results. In contrast
to prevailing literature, we do not consider side payments transferred from one SC member to
another. Though this decision can prevent the mechanism from finding optimal solutions, it gives
less incentive to supply biased input. Computational results prove that the performance of the
scheme is still of considerable quality. In order to support different kinds of optimization engines,
the coordination scheme employs techniques from Evolutionary Algorithms and will be denoted
Decentralized Evolutionary Algorithm (DEAL) henceforth.

This research makes use of a proprietary SAP optimization tool—the so-called Detailed Schedul-
ing (DS) Optimizer. In turn, a proof-of-concept is provided, proving that the coordination mech-
anism can be successfully applied by SC members using this optimizer.

This work is organized as follows. Chapter 2 gives a brief introduction to APS. In Chapter 3,
the aim of Collaborative Planning is specified in greater detail and an overview of the current
state of the art is given. Chapter 4 presents the general concept of the DEAL framework: the
basic working principles independent of the intradomains’ optimization problems. A common
Detailed Scheduling problem, the so-called Resource-Constrained Project Scheduling Problem
(RCPSP), is defined in Chapter 5. In Chapter 6, SAP’s proprietary tool for solving RCPSPs—the DS
Optimizer—is introduced. Chapter 7 discusses the customized version of the DEAL framework,

3

specifically adapted to the DS Optimizer. In Chapter 8, test instances and the related results are
presented. Finally, Chapter 9 summarizes pro and cons of the mechanism and concludes with
possibilities for future research.

4 CHAPTER 1. INTRODUCTION

CHAPTER 2

Overview of Advanced Planning Systems

The planning and controlling of a Supply Chain (SC) are hard tasks. There are various software
solutions providing a rich set of tools to support decisions in this complex environment. So-called
Enterprise Resource Planning (ERP) systems cover a broad range of functionality, such as Material
Requirements Planning, Accounting, Controlling, Human Resources, Research and Development,
etc. These systems are transaction based and support all relevant business processes, seamlessly
integrated across the SC to enable corporate-wide resource planning based upon a central data
warehouse.

However, complex material and resource related constraints in production, procurement and
distribution lead to planning problems that are beyond the capabilities of an ERP system. For ex-
ample, the task of computing the optimal sequence of orders to be produced on different machines
with limited capacities while respecting material availability and customer demand defines such
a problem. Other examples are the optimal location of distribution and production centers to
reach a set of target customers and the optimal route to deliver items from a distribution center
to several retailers.

To solve such problems, Advanced Planning Systems (APS) have been intensively researched
in recent years and are continuously developed and improved by business software providers
such as SAP. APS consider company-wide trade-offs in the objective function and the tight tem-
poral and capacitive constraints encountered in real-world domains, aiming at the integral plan-
ning of the Supply Chain using Operations Research methods. This requires proper definitions of
alternatives, objectives and constraints for the various planning problems. Note that traditional
Material Requirements Planning, which is implemented in nearly all ERP systems, does not have
any of the above properties: It is restricted to the production and procurement area, does not
optimize and, in most cases, cannot even consider an objective function, and it is a successive
planning system (cf. Fleischmann et al., 2007, p. 84).

To cope with the model’s complexity, the planning problem is typically split up in hierarchi-
cal levels that are solved subsequently by different APS modules. On a long-term planning level,
strategic decisions are encountered, such as the planning of locations for production and distribu-
tion centers. On a mid-term level, cost-optimal plans are derived in a Master Planning procedure.

5

6 CHAPTER 2. OVERVIEW OF ADVANCED PLANNING SYSTEMS

Here, the structure of the supply network is viewed as a fixed constraint in an attempt to opti-
mally load production resources and efficiently use available distribution channels taking current
orders and forecasts as input. Master plans usually rely on aggregated data. These plans have to
be disaggregated to detailed production / scheduling instructions and transportation plans. On
the short-term level, the focus is on finding feasible plans that fulfill the aggregated master plans,
computing detailed production or transportation schedules.

The length of the planning horizon usually decreases when going from strategic to opera-
tional decisions. Commonly, a rolling schedule approach is followed at every level. That is, while
maintaining a longer planning horizon, e.g. to capture seasonal fluctuations, planning results are
only executed for a much shorter time period, the so-called frozen horizon. After a certain period,
plans are re-optimized to include updated demand forecasts, while respecting the results of the
previous frozen horizon and the instructions of the next higher decision level.

Figure 2.1 shows the several software modules belonging to an Advanced Planning System
in the so-called Supply Chain planning matrix. The modules are arranged according to temporal
and functional dimensions.

Figure 2.1: Software modules covering the SCP-Matrix, taken from Meyr et al. (2007b, p. 109).

In the following, the functionality of medium- and short-term planning modules, Master Plan-
ning, Production Planning and Detailed Scheduling, is discussed briefly.

2.1 Master Planning

Rohde and Wagner (2007, p. 159) give the following definition of Master Planning.

Master Planning supports mid-term decisions on the efficient utilization of produc-
tion, transportation and supply capacities, seasonal stock, as well as on the balancing
of supply and demand. . . . The results of Master Planning are targets / instructions for
Production Planning and Detailed Scheduling, Distribution and Transport Planning
as well as Purchasing and Material Requirements Planning.

The aim of Master Planning is to synchronize the flow of materials by optimizing an aggregated
model. The planning horizon is divided into several periods, so-called time buckets. One of the
major characteristics of Master Planning is that the detailed timing of production activities, in-
put requirements and output products is ignored. Instead, cost-optimal quantities of produced,
transported, procured and delivered items are sought for each bucket. It is worth stressing that
typically only deterministic models serve for Master Planning.

2.2. PRODUCTION PLANNING AND DETAILED SCHEDULING 7

The decision situation for Master Planning differs depending on the problem’s characteris-
tic. However, the objective of Master Planning is always to create an optimal plan by balancing
the costs of supply–demand matching and inventories while respecting related capacities and
material-flow balance constraints. Given the customer demand, the following options are evalu-
ated if bottlenecks on production resources occur (cf. Rohde and Wagner, 2007, p. 160).

• Produce in earlier periods while increasing seasonal stocks.

• Produce at alternative sites with higher production and / or transport costs.

• Produce in alternative production modes with higher production costs.

• Buy products from a vendor with higher costs than your own manufacturing costs.

• Work overtime to fulfill the given demand with increased production costs and possibly
additional fixed costs.

For transportation lines, the following alternatives must be taken into consideration.

• Produce and ship earlier while increasing seasonal stock in a distribution center.

• Distribute products using alternative transportation modes with different capacities and
costs.

• Deliver to customers from another distribution center

Master Planning problems are typically described as a mixed integer linear program (MILP). As
already stressed in the introduction, Master Planning requires the aggregation of sensitive data,
such as Bill-of-Materials, production, transport, and holding costs, and capacity profiles. It is thus
only suitable for synchronizing production activities between different sites of the same company;
it is not suitable for coordinating legally separate enterprises.

2.2 Production Planning and Detailed Scheduling

According to Stadtler (2007b, p. 197), Production Planning and Detailed Scheduling aim to gen-
erate detailed production schedules for the shop floor over a relatively short period. The primary
goal is to create feasible schedules that respect the instructions of the Master Planning level. How-
ever, data for Production Planning and Detailed Scheduling is not as aggregated as it is for Master
Planning. Instead, detailed start and end dates of activities are of importance. The master plan sets
the frame for decentralized Production Planning and Detailed Scheduling decisions at the differ-
ent locations. According to Stadtler (2007b, p. 198), the Master Planning directives are usually

• the amount of overtime or additional shifts to be used,

• the availability of input items from upstream units in the Supply Chain at different times,

• purchase agreements concerning input materials from suppliers.

Furthermore, directives will be given by the master plan due to its extended view over the Supply
Chain and the longer planning interval. As directives, we might have

• the amount of seasonal stock of different items to be built up by the end of the planning
horizon (for production units facing a make-to-stock policy),

8 CHAPTER 2. OVERVIEW OF ADVANCED PLANNING SYSTEMS

• given due dates for orders to be delivered to the next downstream unit in the Supply Chain
(which might be a subsequent production stage, a shipper or the final customer).

Due to their combinatorial complexity, Production Planning and Detailed Scheduling problems
are often tackled by heuristics and metaheuristics.

2.3 SAP SCM APO

Within the SCM business suite, SAP offers an Advanced Planning System called APO (“Advanced
Planning and Optimization”). APO is today offered as a planning system on top of SAP’s ERP
system as well as an independent SCM software suite. APO consists of several modules that can
be arranged according to the Supply Chain Planning Matrix (cf. Figure 2.1) using proprietary
names. The planning modules Supply Network Planning (SNP), Deployment, and Production
Planning and Detailed Scheduling (PP/DS) are most relevant for our discussion.

SNP is used to model the entire supply network including all associated constraints. The mod-
ule offers support for the creation of feasible master plans for purchasing, manufacturing, inven-
tory and transportation, and for a close match of supply and demand. The planning horizon is
divided into discrete time buckets to generate quantity-based plans. The main application fields
of the optimizer are source determination, lot sizing and inventory control. On one hand, source de-
termination is concerned with finding the right product mix, deciding which products are to be
produced, transported, procured, stored and distributed in which bucket, in which quantities
and in which plant. On the other hand, the best mix of resources and the best utilization of pro-
duction process models are sought, the so-called technology mix. A production process model
(or a production data structure) extends the concept of a Bill-of-Materials by defining for each
production process a recipe of required input materials, which output materials are produced,
which resources can be used, the related resource utilization and so forth. SNP determines the
periods and locations of production, procurement, storage and transportation. Lot sizing is con-
cerned with the grouping of orders or items into large lots in order to save setup costs. For in-
ventory control, the planning of safety stocks and target days of supply (the time production can
be continued if the flow of input material is interrupted) are supported. Moreover, SNP allows
the consideration of maximum stock-level and shelf-life requirements. Using costs in order to
evaluate the quality of a plan, the optimizer seeks the least-cost plan in terms of total costs. To-
tal costs refer to production, procurement, storage, and transportation costs, costs for increasing
resource capacities (production, storage, transportation, handling) and costs for violating service
level requirements (safety-stock-level violation, late delivery, nondelivery). The SNP optimizer
uses linear-programming (LP) and MILP techniques to solve the optimization problem. SNP of-
fers support for handling large problems up to the size of several million variables and constraints
by providing several problem-decomposition techniques.

According to Dickersbach (2003, p. 151), the idea of SNP is to generate an aggregated, rough-
cut, mid-term production plan to get an overview of the overall capacity requirements, the re-
quirements for key components and to trigger the procurement of components with long delivery
times. SNP-planned orders are either transferred directly to the ERP system or used for further
detailed Production Planning.

After Production Planning decisions have been made, Deployment is used for distribution
planning, where it determines which demands can be fulfilled by existing and firmly planned

2.3. SAP SCM APO 9

supply. If quantities are insufficient to fulfill the demand or the quantities available exceed the
demand, Deployment makes adjustments to the distribution plan created by SNP. However, De-
ployment does not change the production plan. Similar to the SNP optimizer, the Deployment
optimizer bases its decisions on costs defined in the Supply Chain model, such as transportation
and storage costs, costs for increasing resource capacities (storage, transportation, handling) and
costs for violating service-level requirements (safety-stock-level violation, late delivery, nondeliv-
ery). Also Deployment uses linear programming techniques to solve the optimization problem.

The PP/DS module offers functionality for creating orders and for computing production
schedules down to the second. Several Production Planning heuristics exist that allow—similar
to standard Material Requirements Planning—the calculation of net requirements, procurement
quantities, lot sizes and source determination. Production Planning calculates the so-called peg-
ging net, the matching of internal orders. To schedule orders created by Production Planning or
SNP, the Detailed Scheduling Optimizer (henceforth abbreviated as DS Optimizer) performs mul-
tilevel forward and backward scheduling. A detailed introduction to the DS Optimizer is given
in Chapter 6. For more details on other optimizers in SAP SCM APO, the interested reader is
referred to Meyr et al. (2007a) and Dickersbach (2003).

10 CHAPTER 2. OVERVIEW OF ADVANCED PLANNING SYSTEMS

CHAPTER 3

Collaborative Planning

The previous chapter introduced Advanced Planning Systems (APS). The modules of an APS
can typically be structured in the two dimensions, planning horizon and Supply Chain process, cf.
Figure 2.1. The distinct modules tackle the subproblems by providing holistic approaches that
simultaneously consider all relevant constraints, such as capacity and material availability. Coor-
dination is achieved by the inherent hierarchy of the APS modules. That is, company-wide Master
Planning defines requirements for Production Planning and Detailed Scheduling usually applied
separately for each production plant. This type of coordination is also referred to as hierarchical
coordination (cf. Stadtler, 2007a; Schneeweis and Zimmer, 2004; Schneeweis, 2003).

However, hierarchical coordination is no longer applicable for companies that are legally in-
dependent, but interdependent from a materials-flow perspective. Setting up a superordinate
decision-making process fails because the central entity is missing and because the SC mem-
bers are less willing to exchange sensitive data, data that might give other SC members a strate-
gic advantage (e.g., for future negotiations). In particular, data revealing the internal production
structure and the product margin, including Bill of Materials (BOMs), resources capacities and
production and holding costs, is regarded as sensitive. While there exists certain initiatives, such
as Collaborative Planning, Forecasting & Replenishment to exchange less critical demand and
supply data, approaches for truly optimizing and aligning interorganizational production plans
have only very recently received research attention. Nevertheless there is an evident need for
such mechanisms. SCM should tackle the problem of economically supplying the ultimate cus-
tomer with goods by aligning legally separated, but technically interdependent processes, plan-
ning problems and solution techniques of different enterprises. Insufficiently aligned production
and distribution plans between the companies lead to inefficient SCs. Such inefficiencies will grow
with the size of SCs in a world becoming more and more decentralized and specialized. Today’s
monolithic APS assume a single decision maker who grasps “total visibility” of system details
and makes centralized decisions for the entire SC (cf. Nie et al., 2006). Though a central decision
entity with global visibility is actually missing, this paradigm is still present in the minds of the
decision makers, who focus on maximizing their company’s value and not necessarily the value
of the whole SC, neglecting that the two goals are interdependent. Today, the most powerful party

11

12 CHAPTER 3. COLLABORATIVE PLANNING

simply takes the role of the central decision entity and dictates myopically calculated supply and
demand patterns to the other members of the SC. This often-observed form of successive plan-
ning is also referred to as upstream planning if the most downstream SC member is the dictating
entity (cf. Bhatnagar and Chandra, 1993). Upstream planning will typically lead to a suboptimal
allocation of production, inventory and transportation resources. Recent research initiatives indi-
cate that employing decentralized—or distributed—Collaborative Planning techniques in order
to coordinate local plans can give a strategic advantage over upstream planning decision making.
The aim of Collaborative Planning is to compute interorganizational plans with a solution quality
close to the ideal solution a central decision entity could compute, but without exchanging sensi-
tive data. Collaborative Planning focuses not on “fighting to get the largest piece of a pie of fixed
size,” but primarily addresses “how to make the pie bigger” (cf. Fink, 2004, p. 2).

This chapter discusses the state-of-the-art of coordination mechanisms for Collaborative Plan-
ning. According to Stadtler (2007a) we define a coordination scheme (also known as coordina-
tion mechanism) as a procedure for aligning plans of two or more decision making units. When
referring to the chronological sequence of such a procedure, we will also employ the term coor-
dination process. Section 3.1 gives a definition of Collaborative Planning. Section 3.2 provides a
summary of related topics and lists relevant literature. Finally, Section 3.3 defines the scope of the
thesis.

3.1 Definition of Collaborative Planning

We define a planning domain as a given part of an SC and the related planning processes un-
der the control and in the responsibility of one planning organization. Collaborative Planning is
about coordinating plans between separated planning domains. The terms collaboration and coor-
dination are frequently used in literature (cf. Stadtler, 2007a; Kilger and Reuter, 2007; Schneeweis,
2003) in an inconsistent manner. For example, Kilger and Reuter (2007) define Collaborative Plan-
ning as follows.

The idea is to directly connect planning processes, that are local to their planning do-
main in order to exchange the relevant data between the planning domains. The plan-
ning domains collaborate in order to create a common and mutually agreed upon plan.

According to the authors, a collaboration can be material related or service related. In both cases, sup-
plier and manufacturer exchange information about demand for and supply of items. However,
material-related collaboration is based on information exchange about the item itself, whereas
service-related collaboration requires information about how to make the item, to install it, to
transport it and so forth. In general, a collaboration process consists of six phases:

1. The definition of a collaborative relationship, incorporating mutually agreed goals, the re-
lated time horizon, the contribution of each partner and dispute-resolution mechanisms.

2. During local domain planning, the planner takes into account current detailed internal infor-
mation and material or capacity information of adjacent planning domains.

3. By exchanging plans, the partners intend to augment the quality of the plans by exchanging
nonsensitive data of their ERP or Advanced Planning Systems.

4. Negotiation and exception handling deals with aligning and reconciling plans.

3.1. DEFINITION OF COLLABORATIVE PLANNING 13

5. The adjusted plan leads to replenishment, production and purchasing orders to fulfill the
planned goals and is then executed.

6. Eventually, several key performance indicators can be computed during performance mea-
surement, evaluating the quality of the process during an as-is/to-be analysis (Kilger and
Reuter, 2007, cf.).

Schneeweis (2003) distinguishes four different degrees of coordination (Schneeweis, 2003, p.5).
The lowest level is data integration and standardization of information exchange serving as a foun-
dation for system integration. Integration through planning activities tries to coordination the decision
processes of the separate systems. Eventually, integration through leadership activities focuses on the
strategic orientation of the SC.

In practice, several standards already exist, including EDI and RosettaNet, for exchanging
demand and supply data. These standards are often used to enable web-based inventory collab-
oration platforms (system integration). SAP’s Supplier Network Collaboration (formerly known
as Inventory Collaboration Hub) is a typical example of such a platform. Supplier and manufac-
turer agree on upper and lower bounds for stock levels. Exceptions from these levels are reported
by automatically generated alerts. Nevertheless, despite recent efforts to standardize information
exchange, the amount of sensitive data and the coordination of planning activities has remained
limited.

However, today’s monolithic APS require all data and are therefore currently applied only
locally. One of the main problems of this decentralized application is the consideration of inter-
dependencies between multiple exchanged items within an automated exception handling. Today,
holistic models are only used to compute local domain plans, but the triggering of alerts is usually
still based on simple predefined rules. While today’s systems are usually able to detect and report
deviations, they are usually unable to automatically compute alternative proposals for complex
interorganizational planning problems. Thus, the planner receives only limited information on
how to actually resolve a bottleneck. Even worse, the resulting reconciliation efforts might in-
crease with the number of items and the complexity of the planning problems (cf. Kilger and
Reuter, 2007). A manual reconciliation of production plans after a machine breakdown has oc-
curred can be a tedious and time-consuming process, since no partner actually knows the other
side’s planning model.

From a mathematical perspective, the global problem is split up into several, local-domain
subproblems. If a planning domain solves its related subproblem, only limited attention is paid
to adjacent planning domains. As already indicated previously, the most powerful SC member
usually has a leading role, while the others are followers. The leading entity solves it subproblem
first, generating constraints for subsequent planning steps of adjacent followers. Obviously, there
is no guarantee that this proceeding leads to optimal results with respect to the whole SC. For
example, the leader might dictate supply patterns that lead to huge production cost in adjacent
domains by requiring additional overtime to fulfill the proposed demand. It is not surprising that
a leader might be tempted to exercise his power to generate additional profit at the expense of his
followers. However, what counts for the ultimate customer are quality, availability and cost of the
product—not the success of a single enterprise in a multitier SC. In this work, it will be shown that
all parties—leader and followers—can realize additional savings over the successive planning
strategy of upstream planning. In this light, the definition of Stadtler (2007a) for Collaborative
Planning is more appropriate:

14 CHAPTER 3. COLLABORATIVE PLANNING

. . . we define Collaborative Planning as a joint decision making process for aligning
plans of individual SC members with the aim of achieving coordination in light of
information asymmetry.

Information asymmetry is a term stemming from game theory and describes the state where no
SC member possesses all the information or preferences of other SC members. According to the
author, there exist several definitions for SC coordination. The most stringent definition comes from
the contract literature (see also the next section).

A contract coordinates the SC, if (and only if), the set of supply chain optimal actions
is a Nash equilibrium, i.e., no firm has a profitable unilateral deviation from this set.
Here, coordination requires a solution which represents both a (central) SC optimum
as well as a Nash equilibrium (cf. Stadtler, 2007a).

A game-theoretic analysis usually requires restrictive assumptions about the output of the
game, such as the distribution of SC-wide savings that are realized when applying a coordination
mechanism. A softer definition only requires an SC-optimum solution, not a Nash equilibrium.
Other authors speak of coordination, if the initial situation could be at least improved. Certainly,
this definition is most appropriate from a practical perspective. To summarize the above, cur-
rent planning systems are set up in a monolithic way, supporting a holistic treatment of planning
problems within a single planning domain. The holistic consideration of capacity and material
availability constraints is a fundamental progress over Material Requirements Planning. How-
ever, from an interorganizational perspective, unaligned local planning activities contradict the
holistic idea. Thus, as ultimate goal, Collaborative Planning should enable SC partners to act as
one virtual planning organization without requiring them to exchange sensitive data.

3.2 Related topics and state-of-the-art

Coordination mechanisms can be classified by several criteria. Most obviously, the business func-
tion can be used for classification, production, inventory, supply or distribution planning (cf.
Bhatnagar and Chandra, 1993). A more general taxonomy is provided by Whang (1995). Also
Stadtler (2007a) developed a typology including other criteria, such as the number of tiers, the de-
cision models used, the type of information exchange, the objective of coordination and so forth.
We recommend readers the above works if they are interested in ways for classifying coordina-
tion approaches. Here, we will go rather briefly through the different research areas that provide
mechanisms for coordinating decentralized decision units. These areas are outlined below with
their strengths and limitations.

3.2.1 Hierarchical coordination

Schneeweis (2003) provides a comprehensive treatise of distributed decision making. A common
concept in distributed decision making is hierarchical planning (also called hierarchical coordi-
nation). The idea behind this concept has already been discussed in the first two chapters. The
author provides an interesting formalization for hierarchical planning approaches, shown in Fig-
ure 3.1.

Hierarchical planning can be characterized by a top level instructing a base level, such as
Master Planning providing material quantity targets for subsequent Production Planning and

3.2. RELATED TOPICS AND STATE-OF-THE-ART 15

Figure 3.1: Interdependence of hierarchical levels, cf. Schneeweis (2003, p.27) .

Detailed Scheduling. In order to derive purposeful instructions, the top level might anticipate the
base level. For example, Master Planning anticipates Production Planning and Detailed Schedul-
ing by considering aggregated capacities and material quantities within the discrete time buckets.
Formally, the top level anticipates the base level by hypothetically applying different instructions
IN as stimuli to an anticipated base level. These instructions give rise to possible (hypothetical)
reactions and finally one arrives at an optimal instruction IN∗ which is then communicated to
the real base level. The base-level’s reaction RE∗ allows the top level to calibrate its anticipating
function AF further. This function, respectively the anticipated base model can be part of the top
level’s decision problem. For example, Master Planning usually anticipates costs for overtime by
directly implementing additional constraints and objectives. We will denote the data related to
the anticipated base model as anticipating data henceforth. There might exist several feedback
cycles, after which the hierarchical system arrives at a final decision IN∗∗ communicated to the
environment.

The above scheme underlies many different approaches, for example Production Planning,
Principal Agent Theory, SCM or Managerial Accounting. Characteristically only the top level an-
ticipates the base level but not vice versa. Also successive Production Planning strategies, such
as upstream planning, are closely related to hierarchical coordination. In upstream planning,
the downstream domain sets the instructions for adjacent upstream domains. One possibility
to achieve coordination of production activities over several planning domains is to calibrate the
anticipating data of the instructing domain further. Another option is to extend the concept such
that the domains iteratively anticipate each other during several cycles. Most approaches for Col-
laborative Planning presented subsequently employ one of these two ideas.

3.2.2 Multi-echelon systems and contract theory

Several research areas focus on models that allow to derive analytical solutions. A large body of
literature is concerned with multi-echelon systems. Such a system includes several stages (e.g.,
representing production and distribution sites) that are grouped into several echelons (some-
times also called tiers). The body of literature can be divided into two parts. For deterministic,
static systems, the demand is assumed to be certain and the focus is on finding the optimal trade-
off between the holding and fixed-order costs. In contrast, stochastic systems assume a stochastic

16 CHAPTER 3. COLLABORATIVE PLANNING

demand distribution, generally with negligible fixed-order costs; the focus is thus on finding the
optimal trade-off between holding and stock-out costs.

Static multi-echelon systems rely on restrictive assumptions, such as static demand in a singe-
item, single-production-stage scenario. These assumptions allow the analytic derivation of opti-
mal solutions. That is, the computation of economic order quantities and economic production quanti-
ties for fixed costs per ordered lot and inventory-holding costs. Assume a single company choos-
ing its replenishment policy, facing a constant demand rate d for a single product, fixed-order
processing cost B and variable inventory-holding costs of h per unit. In such a simplified model,
the total cost per time unit amounts to

K(x) = B · d
x

+
x

2
· h, (3.1)

where x denotes the order quantity. The economic interpretation of the model is that higher-
order volumes lead to decreased processing costs per item (since B remains constant), but also
to increased holding cost. The optimal quantity x∗ can be computed by setting the first-order
derivative to zero, resulting in

x∗ =

√
2 ·B · d

h
.

Historically, the three main functional areas of the SC (procurement, production and distribu-
tion) have been investigated independently, buffered by large inventory before models for multi-
stage systems had been developed. The principal difference from a single-stage model is that the
analysis seeks not only the optimal trade-offs between order and inventory costs, but also the op-
timal trade-offs between the preferences of the different stages, whereas each stage might be han-
dled by a different planning domain. For example, large orders might be beneficial to suppliers,
because of potential savings in order processing costs, manufacturing setup costs or distribution
costs. However, a manufacturer might prefer more frequent, smaller orders due to high inventory
cost (cf. Bhatnagar and Chandra, 1993). If the manufacturer is the more powerful party, the sup-
plier’s problem is to persuade the manufacturer to change his order policy by making concessions
such as price discounts or compensation payments (sometimes also referred to as side payments).
The models’ restrictive assumptions allow analytical proofs, which makes the field attractive for
many researchers. The number of related publications is impressive. Comprehensive reviews can
be found in the works of Goyal and Gupta (1989) and Thomas and Salhi (1998). However, from
a practical point of view, all studies on static lot-sizing models share a common critique: The as-
sumptions are too strict and the results cannot be carried over to more sophisticated models. In
particular, the models give no advice on how to align several APS under information asymmetry.
Thus, instead of a comprehensive review only some articles are highlighted here to illustrate this
area’s main ideas.

Monahan (1984) provides some theoretical considerations for the quantity discount policy of
a supplier delivering to one manufacturer. While the buyer is rather interested in relatively small
order sizes to keep his inventory costs down, the supplier prefers large order sizes to decrease his
order processing, manufacturing and shipping cost. However, being the more powerful party, the
manufacturer imposes his order policy which leads to an overall suboptimal solution. The author
shows the effects of quantity discounts on the manufacturer’s order policy. Suppliers can realize
these price discount by sharing a part of their related savings. Banerjee (1986) also proposes an
inventory model for an SC consisting of one manufacturer and one supplier. The intradomain

3.2. RELATED TOPICS AND STATE-OF-THE-ART 17

problems of both parties can be expressed by Equation 3.1. While the manufacturer wants to
minimize the sum of fixed and variable costs (e.g., order and holding costs) of his orders, the
supplier aims to minimize fixed and variable production costs (e.g., relating to setup and holding).
The author studies the influence of the model’s parameters and analytically derives the SC-wide
optimal solution, which does not—in most cases—equal the myopic solutions of manufacturer or
supplier. The solution leaves all efficiency gains to the supplier, as he shares—as rational player
under complete information—only the minimum possible part of a saving.

Banerjee et al. (2007) extend the model to coordinate replenishment decisions for interlinked
procurement, production and distribution inventories. The authors assume a scenario of one man-
ufacturer batch producing a single item to be distributed by several retailers, whereas required
input material is ordered from several suppliers. The suppliers are allowed to deliver equal-sized
subbatches at constant frequency to the manufacturer. At each stage of the SC, the decision has
to be made which quantity to order at which frequency. That is, the analysis seeks the optimal
trade-off between continuous inventory-holding cost and the fixed-order cost. The demand and
production rates are assumed to be constant and transportation and handling times are neglected,
as well as production and inventory capacities. Since the manufacturer is assumed to know pro-
duction rates, demand rates, order costs and inventory costs of all stages, a functional expression
of SC-wide costs relating to the order policy can be set up. A difficulty arises because the optimum
value cannot be determined analytically due to the integer batch sizes that make the function non-
differentiable. A heuristic is implemented that searches for a feasible solution in the neighborhood
of the optimal solution of the relaxed problem.

Also, Munson and Rosenblatt (2001) investigate a three-tier SC and related optimal quantity
discounts. Abdul-Jalbar et al. (2007) propose a model to retrieve optimal integer-ratio policies for
one supplier delivering to two manufacturers. Models for one supplier and multiple retailers are
also presented by Chiou et al. (2007), Chen et al. (2001), Lu (1995) and various other authors. The
coordination schemes differ in details, such as the type of quantity discount (continuous or dis-
crete). The above investigations assume complete information. Papers that explicitly deal with
incomplete information include Sucky (2006), Fransoo et al. (2001), and Corbett and de Groote
(2000). Sucky (2006) considers the same setting as Banerjee (1986), where a supplier tries to per-
suade a (more powerful) manufacturer to change the order policy for an additional compensation
payment. Within a bargaining game, the supplier has the chance to announce one take-it-or-leave-
it offer. The author shows that under complete information, the supplier acts like a central planner,
proposing the joint optimal order quantity derived by Banerjee (1986). In the case of incomplete
information, the supplier does not know the cost structure of the buyer. Instead, the buyer’s cost
structure is assumed to be a random variable that takes two realizations with known probability.
Dependent on probabilities and assumed cost structures, Sucky (2006) derives optimal combina-
tions of compensation payments and order policies for rational and risk-neutral players. In the
resulting bargaining game, the supplier offers a “menu of contracts,” one for each possible real-
ization of the buyer’s cost structure. A similar setting is investigated by Corbett and de Groote
(2000). Here, the supplier does not know the manufacturer’s fixed costs, but only a continuous
distribution. Analogous to Sucky (2006), the supplier offers a continuous menu of contracts, con-
sisting of different order-quantity–price combinations.

Stochastic multi-echelon systems are concerned with retrieving the optimal safety stock for
a given service level (relating to stock-out costs). For a single stage facing stochastic demand,
the optimal safety stock is a quantile of the demand distribution. Within multi-echelon systems,

18 CHAPTER 3. COLLABORATIVE PLANNING

the lead times between the stages might also be stochastic. Research dates back to 1960, with the
paper of Clark and Scarf (1960) who derive an exact algorithm for a serial multi-echelon system.
Diks et al. (1996) and van Houtum et al. (1996) give an overview about relevant literature since
then. Usually, the publications employ a centralized decision making paradigm. As an exception,
Fransoo et al. (2001) focus on the noncooperative case. In a two-echelon scenario, they analyze
the distribution of inventory stock for cooperative and noncooperative retailers, each requiring a
certain service level from the manufacturer.

As a main result, multi-echelon systems provide the insight that lower system-wide costs can
be achieved if some planning domains provide transfer payments to create incentives for other
planning domains to accept a coordinated solution. However, restrictive assumptions—such as
unlimited storage capacity, the consideration of a single item, constant demand and the focus on
pure inventory problems (neglecting limited production capacity)—complicate a direct applica-
tion to practical planning problems of an operational type.

Also contract theory focuses on the analytical investigation of the relationship between a sup-
plier and a buyer of a good. Most of the literature in contract theory is about determining optimal
contract parameters given the functional form of a contract. A problem frequently investigated
is the so-called newsvendor problem, where a retailer facing stochastic demand has to order the
desired quantity from the supplier before the selling season. Both parties are assumed to be risk
neutral (i.e., to maximize their expected profit) and to have full information (i.e., each party knows
all costs, parameters and rules). The simplest contract is the price-only or wholesale contract that
specifies a constant per-unit selling price. Cachon (2003) shows that this type of contract does
not coordinate the SC, as the retailer does not order enough inventory to maximize the Supply
Chain’s total profit. Without any incentives to increase his order quantity, the retailer ignores the
impact of his decision on the supplier’s profit. This behavior is a manifestation of a phenomenon
that has been known for a long time as double marginalization, (cf. Spengler, 1950). In a two-tier
SC with two monopolies, a markup occurs at every tier, causing the price for a good to be even
higher than if the firms where vertically integrated in a single monopoly. As a consequence, the
fulfilled demand decreases and the optimal profit cannot be attained.

An investigation of revenue-sharing contracts prevalent in the videocassette rental industry is
provided by Cachon and Lariviere (2005). Under this type of contract a percentage of the profit the
retailer generates is additionally provided from supplier to retailer. This transfer payment creates
an incentive for the retailer to order more videocassettes to better cover the initial peak demand
for a new movie. Cachon (2003) lists several types of additional contracts that coordinate an SC
by sharing supplier’s profit through different forms of transfer payments, namely buyback con-
tracts, quantity-flexibility contracts, sales-rebate contracts and quantity-discount contracts. How-
ever, such advanced types of contracts are more costly to negotiate, lead to higher administrative
costs and might create additional moral hazard problems. Perakis and Roels (2005) measure the
efficiency of price-only contracts for different SC configurations with the “price of anarchy,” the
difference of profits in the coordinated and uncoordinated solution.

Similar to multi-echelon systems, contract theory provides analytical insights that transfer
payments can lead to improved system-wide solutions. However, the prevailing literature con-
stitutes an extreme point by considering very aggregated settings that neglect operational con-
straints.

3.2. RELATED TOPICS AND STATE-OF-THE-ART 19

3.2.3 Auction theory

Auction theory analyzes price-settling mechanisms under pure market conditions. A central deci-
sion entity, the auctioneer, is responsible for determining prices that “clear the market” by finding
the compromise with maximal utility for all participants.

There exist two possibilities for applying an auction mechanism to SC planning. First, the
partners of choice can be determined by an auction. A typical example in logistics is the choice
of third-party logistics providers. However, it is questionable if market conditions really exist
within an SC: Here, the choice for partners is usually a strategic one, binding a manufacturer to
a supplier for a longer time period. According to Stadtler (2007a), pure market conditions only
exist at the boundary of an SC. Second, auction mechanisms can be employed for choosing the
best interorganizational plan out of a set of alternatives. In this regard, auction mechanisms have
been put forward by several authors, in particular for solving scheduling problems. The typical
proceeding is that the auctioneer grasps total visibility of resources and sells resource capacity
to competing bidding agents, representing, for example, different company divisions. Different
mechanisms (in this context also called “auction protocols”) exist for finding the optimal schedule
based on available bids. A comprehensive study of such mechanisms can be found in Wellman
and Walsh (2001). Resource allocation is often interpreted as a combinatorial auction: Each agent
bids on a combination of several resource slots (cf. Fan et al., 2003).

Underlying this is the optimal control problem of a central authority trying to control several
agents in an organization (cf. Kutanoglu and Wu, 2006). The mechanism has to be designed in
such a way that the chosen solution best serves the whole organization. In this regard, an impor-
tant property is incentive compatibility. A mechanism is said to be incentive compatible if all the
players fare best when they truthfully reveal any private information asked for by the mechanism,
i.e. truth-telling is a dominant strategy (cf. Myerson, 1979). These mechanisms are also referred to
as direct revelation mechanisms as they reveal the true valuation of each agent. General insights
were provided independently by Clark (1971) and Groves (1973) in the early seventies; the related
mechanisms are thus also referred to as Clark–Groves mechanisms. Often, incentive compatibility
is achieved by introducing side payments. A common idea is that each player in the auction pays
the opportunity cost that his presence introduces to all the other players.

It should be emphasized that auction mechanisms only focus on the problem of selecting the
optimal production schedule, assuming the agents’ true valuations are considered as private in-
formation. The question of how to construct candidate schedules under information asymmetry
is not addressed.

3.2.4 Bargaining theory

While auction theory is concerned with pure market environments, bargaining theory focuses on
settings with a smaller set of players. Most publications deal with bargaining problems within bi-
lateral monopolies. That is, they provide a game-theoretic analysis for two-player scenarios. For
idealized coordination scenarios within an SC, bargaining theory can also give valuable insights.
Essentially, a proposal on order quantities or delivery times can be interpreted as a good offered
from the supplier to the manufacturer (or vice versa). While each player knows his internal value
of the good, he is assumed to have only limited information (in the form of a probability func-
tion) of his antagonist’s valuation. For such cases of information asymmetry, related publications
analyze the efficiency of equilibrium strategies. Chatterjee and Samuelson (1983) provide such an

20 CHAPTER 3. COLLABORATIVE PLANNING

analysis for a bilateral monopoly. Within a nonrecurring sealed-bid double auction, a buyer and a
seller of an indivisible good simultaneously reveal their offers. If trading takes place (the buyer’s
offer is higher than the seller’s claim) a settlement is computed according to an a priori known
mechanism (e.g. by splitting the difference between both offers equally). Though the seller’s and
buyer’s actual values of the good are assumed to be private knowledge, a probability distribution
of likely values is supposed to be common knowledge; each party knows the probability distribu-
tion of the other party, knows that the other party knows the own distribution, knows that the
other party knows that its distribution is known and so on. Being rational players, buyer and
seller implement “best response strategies,” giving a price offer dependent on the own value and
the counterpart’s probability distribution. This interlinked strategies lead to a Nash equilibrium,
a state where no player can increase his expected profit by unilaterally deviating from his chosen
strategy. The authors investigate the properties of such equilibrium strategies. A main result is
that even if the buyer values the good higher than the seller, a successful sale may be impossible
in the equilibrium strategies. Related contributions have been put forward by Harsanyi and Selten
(1972), Myerson and Satterthwaite (1983), Samuelson (1984), and Radoport and Fuller (1995).

In addition to the sealed-bid double auction, various price settlement mechanisms exist, such
as take-it-or-leave-it offers or the transfer of predefined lump sums. Depending on the mecha-
nism, the bargaining process can be more or less efficient. In bargaining theory, efficiency relates
to the percentage of mutual beneficial agreements that can be actually attained by bargaining
under the employed mechanism.

Bargaining theory provides interesting analytical insights into strategies leading to Nash equi-
libria and the related efficiency of the employed price-settlement mechanisms. However, most
approaches assume the parties’ probability distributions of the value of the good to be public
knowledge. It is questionable if this assumption can be justified for practical purposes. A plan-
ning domain might already have difficulty estimating its own value distribution for future coor-
dination results based on historical data, since the problem’s properties may change frequently
and the number of samples is limited. Radoport et al. (1998) and Feltovich (2000) discuss related
reinforcement-based learning strategies. As auction theory, bargaining theory is not concerned
how the good is created.

Game theory is distinguished from other social sciences by the belief that players act rationally
and have well-defined preferences. However, in practice “anomalies” can be frequently observed
that contradict this belief (cf. Thaler, 1988). One such anomaly is the ultimatum game, where two
players, A and B, have to split up a certain amount of money, say e1. The rules of the game are
as follows: First, player A declares the amount he intends to share with B. Second, B can accept or
reject the proposal. If accepted, each player receives the share defined by A. If rejected, no player
receives anything. The game-theoretic equilibrium strategies for rational players are as follows:
A will claim 99 cents for himself as this is the maximum achievable outcome and B will accept
the offer, since 1 cent is better than nothing. However, experiments with real humans revealed
that low offers from A will be rejected by B. Obviously, B is evaluating A’s offer according to its
perceived fairness, a criterion which is not included in the rational utility function. Interestingly,
the ultimatum game is closely related to coordination mechanisms, where surplus savings have
to be shared between the partners. The notion of fairness hence seems to be an important aspect,
but it seems questionable if fairness can be captured in a functional form.

3.2. RELATED TOPICS AND STATE-OF-THE-ART 21

3.2.5 Mathematical-decomposition–related techniques

The above approaches allow the derivation of analytical proofs for idealized models. However,
in practice, decision makers are confronted with far more complex situations and related models.
According to Fink (2004), there is still a lack of investigations that consider deterministic models
from Operations Management. In particular, the question of how to align plans computed by APS
of different planning domains has come into the focus of research only recently.

Depending on the planning task, intradomain planning problems are often formulated as lin-
ear problems (LP) or mixed-integer linear problems (MILP) and the solution is computed by an
LP/MILP-solver. From a mathematical perspective, the interorganizational problem is composed
by combining the intradomain problems with material-flow-balance equations. Without these
constraints, the subproblems would be independent and could be solved separately. There exist
several mathematical-decomposition techniques that exploit this fact by splitting up the problem
into several slave problems and a master problem to coordinate the slaves. The idea of various au-
thors is to use these mathematical-decomposition techniques to set up a coordination mechanism.
This section deals with such decomposition-related techniques. In the case of hard combinatorial
or nonlinear problems, the solution is typically computed by a heuristic. Later, Section 3.2.7 dis-
cusses coordination mechanisms based on heuristics.

3.2.5.1 Lagrangian relaxation

Lagrangian relaxation was developed to solve large-scale optimization problems more efficiently
by exploiting certain problem properties. The principle idea is to split up the original problem
into several subproblems that can be treated independently with a master problem to steer the
search process. A comprehensive introduction to Lagrangian relaxation can be found in Conejo
et al. (2006) and Williams (1999). Here, the approach is only briefly described.

Decomposable problems have a sparse coefficient matrix, where most of the non-zero coef-
ficients can be ordered into a block-angular structure. As an example—taken from Conejo et al.
(2006, p. 70)—consider the linear programming problem

min
x1,x2,...,xn

n∑
j=1

cjxj (3.2)

s.t.
n∑
j=1

dijxj ≤ fi ∀i = 1, . . . , q (3.3)

n∑
j=1

aijxj = bi ∀i = 1, . . . ,m (3.4)

0 ≤ xj ∀j = 1, . . . , n, (3.5)

where constraints 3.3 have a decomposable structure in e blocks. In the particular case of e = 3,
the problem can be written as

min
x[1], x[2], x[3]

((
C [1]

)T
|
(
C [2]

)T
|
(
C [3]

)T)

x[1]

−−
x[2]

−−
x[3]

 ,

22 CHAPTER 3. COLLABORATIVE PLANNING

where the superindices in brackets refer to partitions, subject to

D[1] | |
−− − −− − −−

| D[2] |
−− − −− − −−

| | D[3]

−− − −− − −−
A[1] | A[2] | A[3]

x[1]

−−
x[2]

−−
x[3]

≤

≤

≤

=

f [1]

−−
f [2]

−−
f [3]

−−
b

.

It is worth mentioning that block-angular structures can be found in many practical problems, see
also Williams (1999) and Conejo et al. (2006). In particular, interorganizational planning problems
have such a structure because of the interdomain material-flow–balance constraints. This con-
straint set is usually referred to as the set of “coupling,” “linking” or “complicating” constraints.

The problem can be decomposed by “dualizing” the coupling constraints. That is, adding
them to the objective function. The problem 3.2–3.5 can be rewritten as

max
λ1,λ2,...,λm

 min
x1,x2,...,xn

n∑
j=1

(
cj −

m∑
i=1

λiaij

)
xj

 (3.6)

s.t.
n∑
j=1

dijxj ≤ fi ∀i = 1, . . . , q (3.7)

0 ≤ xj ∀j = 1, . . . , n, (3.8)

where λ1, λ2, . . . , λm denote the Lagrangian multipliers. The idea of Lagrangian relaxation is to
iteratively solve the inner minimization problem and—based on the results—update the multi-
pliers until the procedure has converged to a satisfying solution. Since the inner problem has a
true block-angular constraint structure, it can be partitioned accordingly and solved separately.
Resulting are several independent slave problems and a master problem for updating the multi-
pliers. Obviously, Lagrangian relaxation is attractive if the inner minimization problems are eas-
ily evaluated for given multipliers. The difference between the objective function value of the
relaxed primal problem for the minimizer and the objective function value of the dual problem
of the maximizer is called the duality gap. For an (intermediate) solution of the dual problem
the associated solution in the primal problem 3.2—3.5 might be infeasible and therefore feasibil-
ity restoring procedures are required. For updating multipliers, subgradient procedures are fre-
quently used (cf. Conejo et al., 2006, p. 195). Here, multipliers are iteratively increased in propor-
tion to their constraint violation in the primal problem. The subgradient procedures are usually
easy to implement, but progress slowly to the optimum in an oscillation fashion requiring many
iterations—a consequence of the nondifferentiability of the dual objective function, see Zhao et al.
(1999) or Van de Panne (1991). Lagrangian relaxation can generally be applied to nonlinear opti-
mization problems. Dantzig–Wolfe decomposition can be regarded as a special application of the
Lagrangian relaxation method for linear optimization problems (cf. Conejo et al., 2006, p. 233).

As already discussed, practical interorganizational planning problems usually have a block-
angular constraint matrix, which makes Lagrangian relaxation attractive as a building block for
coordination mechanisms. The partitioned subproblems can be treated independently and are
solely coordinated over multiplier values. Moreover, the master only needs the information of

3.2. RELATED TOPICS AND STATE-OF-THE-ART 23

realized material flows to update the multipliers, not the information of domain-internal produc-
tion constraints. Hence, Lagrangian relaxation inherently supports scenarios with information
asymmetry. Additionally, multiplier updating algorithms and related proofs on convergence are
already known and can be incorporated. There are several articles in the literature including as-
pects of Lagrangian relaxation to different degrees. The approaches share a common methodol-
ogy:

1. A production planning problem is defined as a mixed-integer linear program.

2. Coupling constraints are identified and dualized. The problem decomposes into subprob-
lems that are handled separately by the local planning systems of the distinct planning
domains.

3. A coordination mechanism for steering the local planning procedures is introduced. Usu-
ally, control over the SC is gained by altering the subproblems’ coefficients (multipliers) of
decision variables. Either a mediator is used to steer the search process centrally, or planning
domains themselves transmit proposals to other planning domains.

4. In some papers, an incentive scheme is defined. Not all planning domains will directly profit
from coordination. Though the coordinated solution employs a better resource utilization
and realizes cost savings over the initial situation (e.g. the result of upstream planning), the
savings might not be distributed fairly and incentives need to be generated for all partners
to take part in a coordination process, such as by transferring compensation payments.

In the following, several related literature findings will be discussed briefly. Thomalla (1998) de-
veloped an algorithm for solving job-shop problems with Lagrangian relaxation. Several orders,
consisting of specific jobs and precedence constraints need to be scheduled on machines with lim-
ited capacities. The primal problem is modeled as an integer programming problem. By dualizing
the finite-capacity constraints, the problem can be decomposed into independent subproblems,
where each subproblem contains the jobs of one order. The Lagrangian multipliers are adapted by
a subgradient procedure. In addition, a heuristic is used to construct feasible plans. The algorithm
was originally developed to efficiently solve job-shop problems with parallel identical machines,
and does not support Collaborative Planning in supplier–manufacturer scenarios. Nonetheless, it
is interesting from an algorithmic perspective.

Kutanoglu and Wu (1999) dualize the finite-capacity constraints of an integer programming
formulation of a job-shop scheduling problem. As in Thomalla (1998), multipliers are iteratively
updated using a subgradient procedure, and a feasibility restoration method is applied to solve
resource conflicts. The authors argue that finding the dual optimal solution of the problem is
equivalent to finding equilibrium prices in an optimal auction design problem, where job-level
subproblems are considered as agents and the subgradient method as auctioneer deciding on
prices for resource usage. The auction is of a combinatorial type as each agent bids on a set of
timeslots on different machines.

Kutanoglu and Wu (2006) investigate a mechanism that combines auction theory with La-
grangian decomposition. In a first phase, several feasible schedules are computed by using the
approach of Kutanoglu and Wu (1999). Then in a second phase, the best solution is chosen in an
auction mechanism. Domains bid by reporting their costs on every schedule, whereas an auction-
eer sells resource capacity. A direct revelation mechanism is established by linking reported costs

24 CHAPTER 3. COLLABORATIVE PLANNING

to subsequent side payments set by the auctioneer, making truth telling a dominant strategy for
each domain.

Other authors use Lagrangian relaxation to decentrally solve master-planning problems. Er-
togal and Wu (2000) consider a multilevel capacitated lot-sizing problem (MLCLSP) as an in-
terorganizational problem. In their quantity-based model, setup and holding cost are be mini-
mized, subject to limited capacity and material-flow–balance equations. The planning domains
are assumed to share no resources, but to be situated in a supplier–manufacturer relationship.
Hence, material-flow–balance equations between the planning domains are relaxed to obtain the
decentral submodels. Apparently, the Lagrangian relaxation approach is not without problems,
as a nonzero duality gap is likely at convergence (cf. Ertogal and Wu, 2000, p. 936). That is, the
mechanism does not terminate in reasonable time with a feasible interorganizational problem. In
general, the subgradient method is notorious for oscillations (cf. Zhao et al., 1999).

Regarding the MLCLSP, the oscillations can be explained easily. Supplied or delivered quan-
tities are determined to a large degree by holding costs and Lagrangian multipliers. As a result,
the material-flow values tend to take either zero or the maximum value possible, as holding costs
are larger or smaller than the Lagrangian multipliers. To counteract the oscillations, Ertogal and
Wu (2000) modify the Lagrangian relaxation approach by considering fairness as an additional
objective. The fairness objective overcomes the above difficulties of slow and oscillating con-
vergence since it introduces target material flow values into the submodels. At the beginning,
demand information is propagated in the network by Bill-of-Material explosions across all plan-
ning domains. Then, each planning domain computes its facility-best solution. For each material-
flow equation, a “fair” (but infeasible) alignment is computed as the mean of the initial myopic
facility-best choices. Deviation from this fair solution is then penalized with a “conflict price”
(the value of a Lagrangian multiplier) in the submodels. A mediator is responsible for reduc-
ing overall inconsistency by updating conflict prices and target material flows. Analogous to the
subgradient procedure, conflict prices are updated proportionally to the deviation of current-to-
target material-flow values. In addition, target material flows are updated according to a fairness
criterion. The facilities that “suffer” more have a greater influence on new target values. Suffering
is measured by the deviation from facility-best solutions. The scheme does not minimize total SC
costs, but searches for a consistent and fair solution. The results are compared with the central
solution, the solution of the interorganizational MLCLSP solved by a fictitious central decision
entity.

Nie et al. (2006) also study the MLCLSP. As above, facility separable subproblems are obtained
by dualizing the interdomain material-flow–balance constraints and propagating the demand by
a Bill-of-Material explosions. The authors extend the standard Lagrangian relaxation approach in
two aspects. First, multipliers are updated by a “surrogate subgradient method,” that works if
only a subset of planning domains report their solutions. Second, a feasibility restoring method
(involving all domains) is applied before multipliers are updated. By doing this, a smoother con-
vergence is achieved, as a comparison with central results indicates.

Walther et al. (2008) explore Lagrangian relaxation to decentrally solve a product recycling
problem. In this model, independent recycling companies cooperate in recycling networks steered
by a focal company. While the focal company focuses on arranging recycling contracts according
to prevailing legislation, the recycling companies are concerned with collecting, recycling and dis-
posing of the material. Since the recycling companies aim to maximize their individual profit, they
do not intend to share cost and capacity information. The authors first set up a linear program

3.2. RELATED TOPICS AND STATE-OF-THE-ART 25

from the interorganizational problem. The objective is to maximize the network profit, consist-
ing of fees for accepting the material and cost for disposal, transportation and recycling. Next to
material-flow–balance and capacity constraints, the recycling network has to obey legal recycling
targets. Dualizing the coupling constraints leads to a company-separable problem. For every sub-
model, multipliers can be directly interpreted as acceptance fees and additional bonus payments.
The focal company is responsible for maximizing the network profit by iteratively updating the
multipliers based on a subgradient procedure. The recycling companies respond with material
quantities they intend to recycle for the given price structures. Global feasibility of the combined
solution is preserved by setting upper bounds for material quantities.

It should be noted that generally there might exist several optimal solutions of a subproblem
for given multiplier values at convergence. Thus, at termination, the master needs not only to
transmit multiplier values but concrete material-flow and resource-usage targets. The organiza-
tional interpretation of mathematical decomposition is that a company has a number of divisions
that share resources and a management unit that determines prices for resource usage. Van de
Panne (1991) argues that the coordination mechanism is not truly decentralized if the manage-
ment unit also has to tell some divisions their optimal solution.

3.2.5.2 Coordination by exchange of primal information

Lagrangian relaxation requires the exchange of such multiplier values as dual information. An-
other possibility is to exchange primal information, target right-hand side (rhs) values for decision
variables included in the complicating constraints. Jeong and Leon (2002) combine Lagrangian
relaxation with agent theory. The primal problem is decomposed into several subproblems by
dualizing the coupling constraints. However, instead of having a global multiplier update rule,
so-called “coupling agents” control the search process. Each coupling agent connects to a limited
number of subproblems. Thus, a net of coupling agents substitutes the central decision entity for
multiplier updating. A related “local” multiplier update rule is presented that requires only the
current solution of some subproblems. A difficulty arises, as a coupling agent or a local plan-
ning domain is not aware of the full set of complicating constraints (the aij in Equation 3.6). As
a remedy, Lagrangian multipliers are locally approximated by Taylor-series expansions. What
is ultimately exchanged can be regarded as primal information: target rhs values for decision
variables included in the complicating constraints and penalty weights for penalizing any devia-
tion from the target values. In Jeong and Leon (2005), the authors discuss an application of their
coordination mechanism to a single-machine scheduling problem. The model decomposes as ca-
pacity constraints are relaxed. For each subproblem, a subset of jobs, connected by precedence
constraints, needs to be scheduled.

A valuable contribution for coordinating MLCLSP models is from Dudek and Stadtler (2005).
The interorganizational model is decomposed by fixing the material flow from a supplier and a
manufacturer to certain values. This is achieved by setting the related rhs values for each plan-
ning domain. The planning domains are assumed to be able to perform additional shifts at extra
expense to fulfill customer demand, such that the problem does not become infeasible, irrespec-
tive of the rhs value. Backlogging is not allowed. At the beginning, upstream planning is used to
compute the initial “supply pattern.” Then the planning domains alternatingly propose supply
quantities and associated cost increases. Each planning domain tries to compute reasonable pro-
posals by approximating its antagonist’s cost changes within the local objective function. This is

26 CHAPTER 3. COLLABORATIVE PLANNING

realized by penalizing the deviation from the currently confirmed supply quantities. Thus, only
effective proposals—that is, supply patterns with the highest trade-off of decrease of internal cost
and increase of approximated “external” cost—are computed. The estimation of penalty weights
is updated on the basis of historical supply patterns and associated cost increases of the antag-
onist. Several measures are implemented to escape local optima. For the studied test instances,
coordinated results are close to the central solution and are a significant improvement over the
initial upstream-planning solution. Planning domains with cost increases are compensated by
domains with cost decreases. The remaining savings are split fairly (see also Dudek, 2007).

Jung et al. (2005) present a coordination mechanism for aligning plans of a manufacturer and
a third-party logistics provider (3PL). The 3PL has control over a network of distribution hubs,
while the manufacturer has multiple production facilities. The 3PL tries to minimize transport,
holding and lost-sales cost and requests items from the manufacturer. Due to limited capacity, the
manufacturer is not able to fulfill all demand of the 3PL in time, so nonfulfillment is penalized
in his objective function. The manufacturer sends back a feasible proposal that serves as input
into the 3PL’s model. The process is continued iteratively until the 3PLs request can be completed
entirely. It can be argued that the manufacturer approximates the 3PL’s model by penalizing non-
fulfillment of supply requests. In contrast to Dudek and Stadtler (2005), neither are compensation
payments transferred, nor are penalty weights updated.

Pibernik and Sucky (2007) investigate a hybrid form between upstream and central planning,
where several firms unite to different planning domains. Within a planning domain, all included
firms reveal their data and a central model is solved. The different planning domains are coor-
dinated by an upstream planning strategy. Pure upstream planning with ununited firms serves
as the initial solution. Cost differences between the coordinated and initial solution are compen-
sated; the remaining savings are distributed in proportion to a company’s share of the total cost.

The above coordination mechanisms combine the mathematical decomposition techniques
with distributed decision making and mathematical programming. In contrast to contract theory
and multi-echelon systems operational constraints are explicitly considered. However, the mech-
anisms share common weak points: First, the coordination mechanisms are specifically adapted
to concrete models and solution techniques. For example, an MLCLSP is used and solutions are
computed using an MILP Solver. In practice, the landscape of problems and optimizers is very
heterogeneous. Not all practical problems are modeled as an MILP and not all solutions are com-
puted by an MILP Solver. If planning domains are not willing to employ an MILP formulation,
major effort would be required to adapt current solution heuristics to deal with Lagrangian mul-
tipliers or new soft constraints. In some cases, new constraints might not be added to the model,
because the underlying heuristics do not support this step.1

Second, the approaches have only been tested for rather small scenarios, in which the local
submodels can be solved to optimality. The effects of degraded solutions on the coordination
mechanism are not entirely clear. Moreover, the coordination mechanism itself may be aborted
prematurely. Mechanisms that do not preserve feasibility are especially likely to block an estimate
of the quality of the feasibility-restored solution in such situations.

Third, the mechanisms do not provide incentives to the planning domains to act truthfully.
In general, we cannot expect the planning domains to act as a real “team,” even though there
certainly is a basic intention to collaborate. A crucial point is that a planning domain’s adherence
to imposed multipliers or penalties cannot be controlled by the other planning domains. Each

1This is also true for the SAP DS Optimizer in the focus of our study. More details are provided in Chapter 7.

3.2. RELATED TOPICS AND STATE-OF-THE-ART 27

planning domain can simply boost their local objective value by lowering penalties or multipliers.
The transfer of compensation payments is an additional aspect that has to be regarded critically,
since reporting higher cost increases immediately leads to receiving a bigger piece of the savings
pie. No measure is presented that prevents partners from cheating on their cost increases.

3.2.6 Secure multiparty computation

The above approaches dealt with the exchange of limited information in guiding an interorgani-
zational search process to optimal solutions. The exchanged information provides each planning
domain with a local approximation of the interorganizational problem. The domains use these
local approximations to iteratively compute solutions that are better from an interorganizational
perspective. Nevertheless, it is not guaranteed that exchanging such information does not reveal
some sensitive data. In fact, opportunistically acting domains can infer sensitive data by system-
atically probing other domains. For example, demanding a single unit of an item one period later
is unlikely to change computed lot sizes in the counterparty’s MLCLSP and the holding costs for
that item can easily be deduced from the difference of reported costs. Thus, even if the mecha-
nisms do not directly require the exchange of sensitive data, they are insecure in protecting these
data.

Security can be defined by means of a trusted mediator (cf. Li and Atallah, 2006). Assume an
idealized mechanism, where each planning domain supplies sensitive information to the trusted
mediator, the mediator solves the global problem and reports back the individual solutions, such
that private data and variables are not disclosed to other parties. A mechanism is said to be se-
cure if any adversary interacting in the real mechanism can do no more harm than in the ideal
scenario. A central trusted mechanism would be able to compute the optimal solution immedi-
ately without providing other domains with probing opportunities. There exist circuit simulation
methods to securely evaluate functions. That is, given a certain function to be common knowl-
edge, an algorithm can be constructed that allows the computation of the result of that function
without revealing supplied input variables.

This idea can be illustrated by a simple example. Assume three parties A, B, and C and each
party holding a stock of items, e.g. A has 3 items, B has 5 items and C has 2 items in stock. Suppose
that the parties aim at computing the sum of items without revealing how much items each single
party has in stock. A secure sum algorithm can be set up as follows. Party A adds a random
number, say 7, to its stock and transmits the sum of 10 to B. B adds its 5 items and transmits the
sum of 15 to C. In turn, C adds 2 and transmits the sum of 17 to A. Eventually, A subtracts the
initial random number and the correct sum of stock, i.e. 10 items, has been computed. However,
no party knows the exact number of items of any other party.

Similar, though more complex, algorithms are available for other algebraic operations and
different number of parties. These algorithms can be regarded as “one-way functions,” functions
that are easy to evaluate but hard to invert (cf. Yao, 1982). In the literature of secure computation,
such algorithms are also called protocols. Protocols compute only on shares of the data. In simple
terms, each protocol takes shares of the input and produces shares of the output (cf. Kerschbaum
and Deitos, 2008). Each partner can encrypt his input with a private key, such that it cannot be
decrypted by other parties without the private key, whereas the function can still be evaluated
despite the encrypted values.

The main disadvantage of secure multiparty computation is that its implementation is very

28 CHAPTER 3. COLLABORATIVE PLANNING

complicated and slow. Moreover, being a sophisticated encryption method, secure multiparty
computation itself is not incentive compatible and does not prevent users from supplying sys-
tematically biased input. Users are typically assumed to be “honest but curious.” Nevertheless,
secure protocols can give a guarantee that supplied data is not disclosed. Several authors have
investigated secure computation techniques applicable to SCM. Li and Atallah (2006) present a
decentralized secure Simplex method for two parties. The global planning problem—represented
as matrix containing objective function, objective value and constraints—is additively split be-
tween the two parties. Pivoting steps of the simplex algorithm are done in a decentralized fash-
ion, ensuring that no party’s partial matrix is revealed to the other party. Instead, only permuted
and encrypted data are exchanged. Kerschbaum and Deitos (2008) extend the protocol to multi-
ple parties and study the computational complexity. Atallah et al. (2003) present secure allocation
protocols that prevent a disclosure of bidders’ sensitive information during auctions.

Leaving aside the complicated computation and the threat of opportunistically acting parties,
secure multiparty computation shares another drawback. Assume the idealized setting, where a
trusted mediator (responsible for a fair distribution of savings) holds the complete model and SC
partners are only providing input. Even under these assumptions we have to face a psychological
problem: if results are below a domain’s expectations there arises need for explanation. What
exactly went wrong? How exactly do they have to calibrate the data in future? In light of such
questions, secure computation is not a solution method easy to comprehend.

3.2.7 Metaheuristic-related techniques

Fink (2004, 2006) investigates a scenario where one supplier delivers to a manufacturer in a just-
in-time sequence. The sequence of delivery influences the quality of the related production plans.
A mediator repeatedly proposes randomized delivery sequences to the planning domains. The
sequence-generating algorithm is assumed to be public knowledge. The planning domains can
accept or reject the proposals. The last delivery sequence accepted by both domains is the final
outcome of the coordination process. To sustain a fair outcome, both planning domains are re-
quired to accept a certain percentage of the proposals. From a myopic perspective, every planning
domain would only accept proposals with better objective function value. However, to fulfill the
acceptance requirements, the planning domains also need to accept worse proposals. The internal
acceptance probabilities are calculated according to a cooling scheme taken from Simulated An-
nealing. Prior to coordination, the planning domains determine appropriate parameters by a trial
run. Summarizing, the coordination mechanism proposed by Fink (2004, 2006) is a special version
of the well-known Simulated Annealing metaheuristic, adapted to fulfill Collaborative Planning
requirements. From a practical perspective, the mechanism comes with a central difficulty, how-
ever. Though proposing purely randomized delivery sequences by a third party can be considered
as a very fair approach, it is highly inefficient for real-world production problems, where evalu-
ating each proposal takes a considerable amount of time due to the size of the problems. For the
above discussed approaches based on mathematical decompositions, such as Dudek and Stadtler
(2005), purposeful proposals were computed by approximating the effects for associated partners.
The mediator of Fink (2004, 2006) has no possibility for such a “problem analysis.”

Dahl and Derigs (2008) present a mechanism for collaboratively solving a vehicle-routing
problem. They assume a scenario where small-sized logistics providers ally in order to gain a
competitive advantage. The basic idea is to buy and resell customer orders from and to allies to

3.3. SCOPE OF THE THESIS 29

be able to compute round tours instead of dedicated tours.2 To compute the tours, each partner
employs a heuristic to solve its pickup and delivery problem. The heuristics are extended in such
a way that available fleets and already computed tours of the allies are taken into account. Each
heuristic may place an order on tours of partners for a compensation payment, determined by a
predefined function considering the increase or decrease of the length of tours. The decentrally
computed results are very close to the central solution. However, the scheme requires a massive
exchange of data, including the location of customers, depots and fleet sizes. It is questionable if
companies will agree to such an exchange in a real-world setting.

3.3 Scope of the thesis

Reviewing the above literature, it becomes clear that the design of coordination schemes generally
comprises three fundamental difficulties. First, the coordination mechanism must support com-
plex planning problems of operational type, including several variables and constraints. In this
regard, it is also important that a (suboptimal) solution should be generated by the mechanism
with computational acceptable effort. Second, the coordination mechanism must not lead to a dis-
closure of sensitive data. Third, the mechanism must be incentive compatible, making truth telling
a dominant strategy, must be perceived as fair and must restrain domains from supplying biased
input. The difficulty lies in equally considering all the three aspects: For example, multi-echelon
systems and contract theory support incentive compatibility and information asymmetry but re-
quire very restrictive assumptions and simplified models. The presented coordination schemes
relating to mathematical decomposition techniques and secure computation are able to deal with
complex models but are not incentive compatible.

In general, side payments are a two-sided sword. For choosing the best interorganizational so-
lution from a set of alternatives, side payments are necessary to ensure incentive compatibility
and to restrain domains from supplying a biased valuation. In simple terms, linking the reporting
of a saving or a cost claim to a subsequent side payment can generate the right incentives for
domains to tell the truth. This works in a setting where the set of alternatives is fixed and known
to all players. However, the situation is different if the reported values are also used for construct-
ing new solutions. Assume a negotiation-based coordination mechanism that requires planning
domains to consecutively report their costs (or savings) for each solution found by the search pro-
cess as, for example, suggested by Dudek (2007). At the time a single negotiation takes place, the
future outcome of the search process is not determined yet, i.e. the final set of alternatives is not
known. Thus, planning domains are tempted to exaggerate their reported costs for receiving a
higher side payment in order reap a good piece of the savings pie (as long they have the possi-
bility for doing so). A possible solution to this problem is to decouple side payments from the
coordination process, either by computing the payment a priori or a posteriori.

Computing the side payment a posteriori by establishing an auction (cf. Section 3.2.3) requires
a set of alternative proposals at the end of the coordination to be known, cf. Kutanoglu and Wu
(1999). In this regard, the coordination mechanism should provide certainty that no party has an
incentive to influence the composition of this set to its advantage. There exist approaches that make it
difficult for the parties to influence the search process. For example in Fink (2004, 2006), solutions
are generated by an independent mediator as discussed in Section 3.2.7. However, we argued

2For an overview about present capabilities of electronic trading platforms for logistic services the interested reader is
referred to Bierwirth et al. (2002).

30 CHAPTER 3. COLLABORATIVE PLANNING

that this search process can not be steered efficiently, as there is no possibility to approximate
the effects for associated partners when solutions are generated. Instead, most approaches rely
on exchanging cost reports, rankings, dual or primal information to enhance the efficiency of the
search process. An exchange of such information might allow a planning domain to influence the
composition of the set of alternatives by supplying biased input.

Assume a search process that fosters solutions having a small sum of reported costs. If a plan-
ning domain reports exaggerated costs, its own objective gets a larger influence. At the end, those
solutions will get explored that have a low weighted sum—solutions that are, ceteris paribus,
close to the locally optimal solution of the exaggerating domain. Obviously, if domains supply
biased input, the true global optimum with maximum saving might not be found by the search
process. This generates an incentive for the domains to tell the truth (by splitting a large pie fairly
each player gets a larger piece than by splitting a small pie unfairly). However, if we assume the
planning problems to be NP-hard, the solution with maximum global saving is not guaranteed
to be found in a reasonable amount of time. In such a case, domains might be tempted to supply
biased input. Assuming limited runtime, a search process can only explore a subset of the search
space—and it is the composition of this subset that matters at the end.

Moreover, in most approaches, the value of each generated alternative is measured as the
difference to the initial solution. However, planning domains are usually not of equal power. A
powerful party might be tempted to create bad initial settings for the weaker parties if there is
the possibility to gain future compensation payments from the weaker parties’ “cost decrease”
through coordination. For example, a (powerful) manufacturer could initially order items very
early, such that huge overtime costs result in the supplier’s domain and additional storage costs
in the manufacturer’s domain, whereas storage costs are assumed to be less than overtime costs.
Now, the coordination mechanism will search for a solution that avoids these costs. In the exam-
ple, it is likely that such a solution will be found (since the costs have been generated by purpose)
and that the coordinated solution will come with a higher cost decrease in the supplier’s domain
than in the manufacturer’s domain. Hence, if savings are split “fairly”, the supplier will have to
compensate the manufacturer. Thus, the manufacturer used his power to generate an additional
margin at the expense of his supplier. Concluding, even if a mechanism was incentive compatible
given a set of assumptions, its application in practice might suffer from a violation of some of
these assumptions.

Computing a payment a priori is like bargaining over a good (cf. Section 3.2.4), where the
good’s value is not known yet. In our case, the good refers to the coordinated solution that is
finally implemented. In order to be able to choose a side payment that is incentive compatible,
at least the distribution of this solution’s value must be assumed to be known. From our point
of view it is a practical challenge to be aware of such a distribution. Bayesian learning for ap-
proximating the distribution could be employed by considering coordinated solutions generated
in previous runs. However, this would require that enough samples are available and that these
samples are not outdated yet. As the underlying production planning problem changes over time,
it might not be appropriate to consider all samples. Still, the above mentioned difficulties remain.
In general, cost reports might be regarded as critical as they allow domains to infer sensitive data.

The aim of this thesis is to combine and to extend existing approaches for practical environ-
ments that come with additional requirements such as limited runtime. While it seems hardly
possible to fulfill the above three requirements to the fullest, the goal is to define a scope in which
Collaborative Planning is applicable to real-world problems. From a practical point of view, short-

3.3. SCOPE OF THE THESIS 31

term bottlenecks in delivery of intermediate goods urgently demand coordination mechanisms.
Hence, the subject of this thesis is the coordination of detailed schedules across company bound-
aries. Computing detailed schedules requires production activities to be allocated to resources in
a multi-item, multi-resource environment where capacity is limited. Because of the combinatorial
complexity and size of the problems, detailed schedules are commonly computed by heuristics or
metaheuristics. For this study, the SAP Detailed Scheduling (DS) Optimizer serves as underlying
base optimization method. An analytical solution as for contract theory, auction theory or inven-
tory systems problems is hardly possible in such a context; we have to rely on computational
evaluations. Moreover, the DS Optimizer is specially adapted to the properties of the intrado-
main problems. Using techniques related to mathematical decomposition in order to solve the
interorganizational problem as discussed in Section 3.2.5 is not seen as a suitable approach in this
regard for the following reasons: First, metaheuristics generally compute suboptimal solutions
which affects the behavior of mathematical decompositions. Second, it is not always possible to
adapt the metaheuristics to include required constraints or penalty factors, since the adaptation
of the problem would annul fundamental properties that are required by the heuristic to work
efficiently. Third, the landscape of solution techniques used in practice is very heterogeneous and
forbids the imposition of Collaborative Planning approaches relying on homogeneous models
and solvers. However, a purely random generation of delivery sequences as proposed by Fink
(2004, 2006) is also regarded as critical, since it provides no possibilities for learning, such as local
problem analysis or approximation of the other planning domain’s objective function. Though
the mechanism will only be verified for a single solver, the SAP DS Optimizer, we will argue that
other solvers and models exhibit similar properties and should be supported as well. A generic
framework is presented in Chapter 4. Concluding, the scope of this thesis is to

• consider complex interorganizational production planning problems that require the appli-
cation of Operations Research methods implemented in today’s APS,

• develop a specific framework for Collaborative Planning that allows the incorporation of
existing intradomain solution techniques without changing their core functionality,

• customize this framework to the SAP DS Optimizer,

• develop a coordination mechanism that does not disclose sensitive data, limits the effects
and possibilities of opportunistic behavior, and is perceived as fair by the involved planning
domains,

• investigate algorithms for calculating purposeful proposals by analyzing a planning do-
main’s local problem and approximating its effects on other planning domains,

• explore possibilities to speed up the coordination by parallelization, and

• to compare the coordinated with uncoordinated results for practically relevant scenarios.

To create a practically acceptable coordination mechanism, side payments will not be ex-
changed. The above discussion already revealed that side payments are a two-sided sword, pos-
sibly providing a security lack or requiring additional restrictive assumptions. A drawback of not
exchanging side payments is that the search space is pruned. Without side payments, interorgani-
zational good solutions might not be contained in the subset of solutions that are acceptable by all
domains. However, according to our computational evaluation presented in Chapter 8, this has

32 CHAPTER 3. COLLABORATIVE PLANNING

only a limited effect; the coordination solutions are still of considerable quality. We believe this
is due to the combinatorial complexity of scheduling problems. For those problem sizes found in
practice, an optimal solution can usually not be generated in reasonable time, even if all data was
available to a single solver.

CHAPTER 4

The generic DEAL framework

We propose a Decentralized Evolutionary Algorithm (DEAL) as a framework allowing planning
domains to jointly construct and evaluate solutions of an interorganizational production planning
problem. No domain has explicit knowledge of the other domains’ constraints, objective functions
or solution methods. Using evolutionary principles a solution is sought that satisfies all domains.
Being actually independent of underlying optimization models and solvers, the framework is
applicable to a wide range of coordination problems. This chapter aims to give a generic outline of
the concept. We start by summarizing requirements for a coordination mechanism from a practical
point of view in Section 4.1. In Section 4.2 Evolutionary Algorithms are introduced. Section 4.3
gives a brief overview of the key ideas of DEAL. Sections 4.4–4.8 discuss several aspects of the
sequential coordination in detail. The sequential coordination is characterized by a single process
that sequentially involves the different planning domains. Inactive domains have to wait for the
output of active domains which leads to an overall waste of available runtime. Extensions to an
asynchronous and parallel coordination are provided in sections 4.9 and 4.10.

4.1 Assumptions and requirements: A practical point of view

In Section 3.2 we already discussed theoretical assumptions and requirements for coordination
mechanisms. The practical application of Operations Research optimization techniques adds an
additional perspective to theoretical considerations. In production planning, optimization has to
cope with large amounts of data and short runtime requirements. Moreover, the data is not al-
ways clean; it might include some discrepancies stemming from the estimation of parameters or
the collection of historical data and forecasts. In general, the objective is not necessarily to find
the global optimum, but a satisfying solution in a reasonable amount of time. Also, with regard
to a coordination mechanism, real-world requirements prohibit a direct implementation of many
theoretical concepts. Extensive interviews with companies and the SAP Solution Management
identified several key practical requirements. These requirements had a major impact in the de-
velopment of the DEAL framework and are presented below.

33

34 CHAPTER 4. THE GENERIC DEAL FRAMEWORK

4.1.1 Nondisclosure of sensitive data

Planning domains are supposed to behave opportunistically and not to be willing to share all
available information to reach a higher coordination level. Even though higher savings could be
obtained, information is not exchanged if it can be misused by the counterparty, such as for de-
manding future price decreases. Not surprisingly, most optimization-related costs and constraints
are considered sensitive data. For example, production costs directly allow the inference of the
product margin. The same is true for holding costs. Considering that one major component of
the inventory holding costs is the cost of capital lockup, counterparties may infer data related
to the cost and internal value of the product. Also, information about capacity utilization can be
misused to negotiate lower prices. Moreover, information about total production and shipping
quantity reveals the competitiveness and the strategic positioning of a company. The above list
is by no means comprehensive, as the available data depends on the controlling systems and op-
timization models in use. The fact that a multidomain coordination involves not only a supplier
and a buyer, but several (potentially competing) suppliers and buyers, also needs to be taken
into account. The danger of internal data being revealed to a competitor adds to the aversion to
data exchange. Most firms will not agree to achieving an additional saving at the cost of a strate-
gic disadvantage (visibility of internal cost rates and constraints). In general, we can say that a
coordination mechanism that exchanges less information will receive better practical approval.

4.1.2 Availability-based instead of cost-based incentive mechanisms

An SC-wide coordinated solution can entail an unfair sharing of savings between the domains.
Some domains might even be worse off than in the initial, uncoordinated setting. Side payments
are commonly transferred in state-of-the-art research to generate incentives for domains to join
a coordination process, as already mentioned in a sections 3.2 and 3.3. Some general remarks
on side payments have already been given there. The interviews revealed that side payments are
hardly acceptable in practice. From a practical perspective, there are several additional arguments
against side payments:

• Although technically possible, there is usually no direct link between a company’s APS and
accounting system (cf. Stadtler, 2005b, p. 585). On the one hand, optimization costs often
have no equivalent in real-world accountancy costs. For example, the task of defining the
penalty for late delivery from an accountancy perspective is very difficult since it requires
quantifying the monetary value of a probably damaged customer relationship. On the other
hand, accountancy costs are not always represented adequately by the mathematical model.
Especially on an operational level, machine-, workforce- and material-related costs are usu-
ally considered as sunk costs. The models aim primarily at seeking schedules that make
optimal use of the available resource. Most often, fictitious coefficients for the diverse objec-
tives are implemented. Based on historical data, the planner tries to adjust the coefficients
until they reflect promising trade-offs of the different objectives. Possibilities for mapping
theses coefficients to accountancy costs are regarded as limited for most practical cases.

• Most practical problems are not solved to optimality. Due to their size, exact methods are
either stopped prematurely or heuristics are applied. Hence, the resulting costs cannot be
considered as deterministic outcome; they must—to a certain degree—be regarded as a ran-
dom variable with unknown, runtime-dependent probability function.

4.1. ASSUMPTIONS AND REQUIREMENTS: A PRACTICAL POINT OF VIEW 35

• Side payments may violate nondisclosure requirements. Domains might not be willing to
negotiate a payment, since it gives—at least to some extent—insight into internal cost struc-
tures and realized profit. Opportunistically acting domains might abuse the coordination
mechanism to gradually probe the cost-structures of other planning domains.

• Already today, the prenegotiation of a frame contract is a very complex and time consum-
ing process. The complexity of the process of setting up a frame contract would increase
dramatically if hypothetical side payments needed to be considered too.

• The generation of value might be asymmetrically distributed across the SC. For example,
upstream domains might generate only a small share of the ultimate product value and
downstream domains add the major part of value. Thus, incurred savings of upstream do-
mains are too little to compensate cost increases of downstream domains. Under such a
setting, negotiating on costs would lead to results similar to plain upstream planning. A
better approach would be if the downstream domain proposes several, from his perspective
equal, alternatives and the upstream domain simply chooses the most suitable one, without
any side payments.

At the current stage side payments are viewed very critically from a practical perspective. It might
be possible to include side payments at a later stage, when the Collaborative Planning paradigm
has experienced broader acceptance. However, such payments should not be the central pillar of
the coordination mechanism. As an incentive mechanism in step with actual practice, we briefly
outline an alternative concept:

• Each domain is allowed to influence the construction of interorganizational solutions in
such a way that its local planning results are acceptable for it.

• Additional savings are not distributed, remaining within the planning domains in which
they occur.

• Instead of focusing on cost, we regard availability as the main objective of the coordination
mechanism. That is, the parties focus on decreasing idle times on machines, excess stock
and delays in the delivery to the ultimate customer rather than on optimizing monetary
values. Employed costs are considered as control costs for steering the solvers but not to be
relevant for accountancy. This shifts the responsibility from the controlling to the logistics
departments. A typical use case is the “restoration” of good production plans after machine
breakdowns.

4.1.3 Feasibility preservation and multidomain support

Intermediate proposals should be feasible (in a mathematical sense), such that human planners
can constantly monitor the solution quality. If the process has reached a satisfying level, it can be
aborted and the best found solution can be put into practice instantly. Theoretical methods based
on Lagrangian relaxation that penalize infeasibilities between local domain plans without pro-
viding a feasibility-restoring mechanism are regarded critically since they make no estimation on
the quality of solutions after feasibility has been restored by a repair mechanism. Today’s Supply
Chains are complex networks of stakeholders. The coordination mechanism should allow sev-
eral domains to work together. A common scenario is that an Original Equipment Manufacturer
(OEM) is dependent on several suppliers, cf. Chapter 7.

36 CHAPTER 4. THE GENERIC DEAL FRAMEWORK

4.1.4 Support of different local optimization engines

Real-world optimization usually requires considerable fine-tuning of parameters and data be-
longing to a company’s specific optimization problem. It is likely that companies would not ac-
cept a coordination mechanism that required a major change of the parameters or even aban-
doned their long-time tested and approved planning system. The risk of exchanging a working,
fine-tuned, intradomain method producing satisfying results with a coordination mechanism of
unknown solution quality is simply too great for many companies. Moreover, companies often
have specific planning problems that cannot be tackled by out-of-the-box solutions. In practice,
the landscape of optimization tools is hence very heterogeneous and several software companies
compete with different versions of different optimization methods with proprietary intrafirm
developments. Finding a real-world setting with homogeneous optimization tools is unlikely.
Hence, the coordination mechanism should rather treat the underlying solver as a black box. As
will be discussed later, most models for production planning share commonalities in their struc-
ture. Our intention is to construct a coordination mechanism that dynamically changes the input
data relating to common model structures but not the solver itself. Different solvers can then be
supported by adapting the interface for changing the data.

4.1.5 Scalability and robustness

As already mentioned, the intrafirm problems are mostly solved by heuristics or exact methods
that are aborted at an early stage, such that the solution quality is degraded—i.e., has not reached
yet its optimal value. Due to limited runtime, an actually better coordinated solution could be
identified as worse and vice versa. The scheme should prove robust to such degraded solutions
and support a graceful degradation. Let us assume that there is certain probability for generating
a (suboptimal) solution in limited time, i.e. the quality of the solution adheres to a certain prob-
ability function. Then it makes sense to generate as many “samples” as possible to minimize the
effect of low-quality outliers and to generate a good solution. Today, computational grids as a
hardware and software infrastructure provide dependable and inexpensive access to high-end
computational capabilities. A coordination mechanism providing possibilities for parallelization
is regarded as an economic possibility for robustly constructing good solutions in acceptable time.

4.2 Introduction to Evolutionary Algorithms

This work employs principles of nature-inspired optimization techniques, in particular Evolu-
tionary Algorithms (EAs). To ease the understanding of the proposed coordination mechanism,
this sections gives a brief introduction to the main principles of evolutionary optimization. These
principles have been adopted from Darwin’s theory of natural evolution (cf. Darwin, 1859) to
computationally solve combinatorial problems. According to Fogel (2000), natural evolution it-
self can be regarded as an optimization process:

Darwin . . . was struck with organs of extreme perfection that have been evolved, one
such example being the image-forming eye Optimization does not imply perfec-
tion, yet evolution can discover highly precise functional solutions to particular prob-
lems posed by an organism’s environment, and even though the mechanisms that
are evolved are often overly elaborate from an engineering perspective, function is

4.2. INTRODUCTION TO EVOLUTIONARY ALGORITHMS 37

the sole quality that is exposed to natural selection, and functionality is what is op-
timized by iterative selection and mutation. It is quite natural, therefore, to seek to
describe evolution in terms of an algorithm that can be used to solve difficult engineer-
ing optimization problems. The classic techniques of gradient descent, deterministic
hill climbing, and purely random search (with no heredity) have been generally un-
satisfactory when applied to nonlinear optimization problems, especially those with
stochastic, temporal or chaotic components. But these are the problems that nature has
seemingly solved so well.

Subsection 4.2.1 gives some basic definitions relating to EAs. In Subsection 4.2.2, analogies
to natural evolution are briefly discussed. Subsection 4.2.3 presents the standard template for
EAs. Finally, issues relating to multiobjective problems and Goal Programming are discussed in
subsections 4.2.4 and 4.2.5.

4.2.1 Basic definitions

This subsection summarizes basic definitions that can usually be found in various books regard-
ing Evolutionary Algorithms (cf. Fogel, 2000; Deb, 2001; Eiben and Smith, 2003; Spears, 2007).
For evolutionary optimization methods, there exist two spaces for representing an optimization
problem’s (suboptimal) solution: the search space and the solution space.

Definition 4.2.1. (solution space) An instance of an optimization problem is a pair (G, g), where
the solution space G is the set of feasible solutions and the objective function g is a mapping
g : G → R.

Definition 4.2.2. (search space) The search space, S, is the set that is searched by an optimization
algorithm. Search space and solution space are connected by a decoding function d : S → W ⊇ G.
The elements of S that are mapped to a solution in G are called feasible, all other elements are
called infeasible. Let f : S → R be the objective function defined on S.

An element x ∈ S is often called a (feasible or infeasible) solution, although strictly speaking,
only the feasible elements are the representations of solutions. Treating the solution and search
spaces separately is a fundamental difference from “classical” optimization techniques, such as
linear programming. The idea is to reduce the combinatorial problem at hand to its core. The
solution itself is often decoded by heuristics according to the choice of core values. The natural
analogy are the genes, which encode different properties of an individual. Having defined search
and solution space, we can say what an optimal solution is, distinguishing between global and
local optimality.

Definition 4.2.3. (global optimality) A globally optimal solution (global optimum) is a solution
x∗ ∈ S such that f(x∗) ≤ f(x) (respectively f(x∗) ≥ f(x) for maximization problems) for all
x ∈ S.

Definition 4.2.4. (neighborhood) Let (S, f) be an instance of an optimization problem. A neigh-
borhood function is a mapping N : S → ℘(S), which defines for each solution x ∈ S a set
N (x) ⊆ S that are in some sense close to x (℘(S) denotes the power set of S). The set N (x) is the
neighborhood of solution x.

Definition 4.2.5. (local optimality) A solution x ∈ S is locally optimal with respect to the neigh-
borhood (x) if f(x) ≤ f(y) (respectively f(x) ≥ f(y) for maximization problems) for all y ∈ N(x).

38 CHAPTER 4. THE GENERIC DEAL FRAMEWORK

4.2.2 Inspiration from nature

EAs are inspired by Darwin’s principle of natural evolution. His theory is based on three funda-
mental observations:

1. Individuals create more offspring than needed for the survival of their race. Nevertheless,
the population size stays more or less constant. Limited resources ultimately prohibit an
infinite growth of the population. Hence, individuals are struggling for survival. Most indi-
viduals die before producing offspring.

2. Two individuals of the same race are never identical in all aspects, differing in minor ways.

3. Skills and properties needed for survival are passed from one generation to the next.

Darwin deduced that only individuals highly adapted to the environment procreate and pass
inherent properties to their offspring (survival of the fittest). Today we know that natural evolu-
tion is based on three principles:

• Mutation is responsible for introducing new gene values.

• Sexual reproduction or crossover combines existing genes into new ones.

• Selection: The fittest, most highly adapted individuals have a larger probability of surviving
and a larger probability of producing offspring.

From a gene perspective, individuals can also be interpreted as vehicles (cf. Dawkins, 1976).
Not only are the individuals struggling for survival. Essentially, the genes themselves are com-
peting against each other by equipping their vehicles with survival strategies and behavioral
rules. EAs try to carry principles of natural evolution over to mathematical optimization prob-
lems. Therefore, notions of biology are often adopted:

• Solutions are considered as individuals.

• The objective value (cost) of a solution relates to an individual’s fitness.

• An individual’s representation in the search space S is called its genotype.

• A solution in the solution space G is denoted as its phenotype.

• EAs work on sets of individuals called populations. An iteration of an EA is a generation.

• New solutions are denoted as children or offspring and are formed out of parents from the
current generation. The offspring are created by using crossover and mutation operators on
the parent generation’s genotypes. Crossover combines the genotypes in a reasonable way,
whereas mutation performs a move in the neighborhood. As the best offspring replace the
worst parents in the population, only the fittest individuals survive.

• Often, a phenotype is back-encoded to its genotype after additionally measures, such as a
local optimization, have been applied (to the phenotype). Such functionality is also denoted
as Lamarckism (in contrast to Darwin, Lamarck believed that also skills acquired during
the lifetime of an individual are inherited by the offspring).

4.2. INTRODUCTION TO EVOLUTIONARY ALGORITHMS 39

As decoding functions not only mathematical functions in the strict sense but various heuris-
tics are often employed. Hence, EAs belong to the class of metaheuristics, allowing to calibrate
the parameters of an underlying base heuristics to the problem at hand. Tuning the general
evolutionary process to a specific problem usually requires an adequate representation, taking
problem-specific knowledge into account when designing the mutation or crossover operators.
This customization to a specific problem is actually the hard part when setting up an EA.

Besides EAs, other metaheuristics exists, such as Variable Neighborhood Search, Simulated
Annealing, Tabu Search and Ant Systems. An overview about the different approaches is pro-
vided by Voß (2001). Voß et al. (1999) give a general definition for metaheuristics:

A metaheuristic is an iterative master process that guides and modifies the operations
of subordinate heuristics to efficiently produce high-quality solutions. It may manip-
ulate a complete (or incomplete) single solution or a collection of solutions at each
iteration. The subordinate heuristics may be high (or low) level procedures, or a sim-
ple local search, or just a construction method. The family of meta-heuristics includes,
but is not limited to, adaptive memory procedures, tabu search, ant systems, greedy
randomized adaptive search, variable neighborhood search, evolutionary methods,
genetic algorithms, scatter search, neural networks, simulated annealing, and their
hybrids.

In literature, there often is no clear distinction between EAs and other metaheuristics, cf. Hertz
and Kobler (2000). Traditionally, EAs comprise Evolutionary Programming, Evolutionary Strate-
gies and Genetic Algorithms, cf. Spears (2007). Evolutionary Programming, developed by Fogel
et al. (1966), commonly uses representations that are tailored to the problem domain, such as real-
valued vectors or ordered lists. It arose from the desire to generate machine intelligence and fo-
cuses only on mutation operators. Evolutionary Strategies were developed by Rechenberg (1973)
and Schwefel (1981), use a real-valued representation and consider mutation as primary operator.
On the contrary, Genetic Algorithms, developed by Holland (1975) use a binary representation
and have a main focus on crossover. Further details on classification and characteristics of Evolu-
tionary Algorithms can also be found in Braun (1997).

4.2.3 A template for Evolutionary Algorithms

Various templates exists in literature that define the basic working principles of an EA (cf. Eiben
and Smith, 2003; Deb, 2001; Spears, 2007; Voß, 2001). These templates differ in the amount of de-
tail and wording, but not in functionality. Algorithm 1 defines our standard template of an EA,
close to the one of Deb (2001). In the beginning, a population P (0) of individuals is initialized.
Initialization can be at random or follow a start heuristic. In the next step, the population is eval-
uated and updated: The individuals are compared by their fitness values; fitter individuals will
survive to the next generation, while others are sorted out during the update operation such that
the population size stays equal. The counter t refers to the current iteration (or generation in EA
terms). It should be highlighted that in our template the task of evaluating a population is not
concerned with computing an individual’s fitness—this is already done during initialization or
the construction step described later. Rather, we refer to the task of comparing individuals, e.g.
by computing a ranking according to fitness values, as evaluation. Other templates do not dis-
tinguish between evaluation and update. However, for this work distinguishing between the two
tasks is necessary for describing the coordination process in the following.

40 CHAPTER 4. THE GENERIC DEAL FRAMEWORK

Algorithm 1: Standard Template of an Evolutionary Algorithm.

t← 01

initialize population: P (0)2

initialize offspring: M ′(0)← ∅3

repeat4

evaluate P (t) ∪M ′(t)5

update: P (t+ 1)← u(P (t) ∪M ′(t))6

t← t+ 17

if termination condition then8

final selection9

else10

select mating pool: M(t)← s(P (t))11

construct offspring: M ′(t)← c(M(t))12

end13

until termination condition ;14

Next, the termination condition is checked. Typically, the algorithm is terminated if a satisfac-
tory fitness level or a time limit has been reached. If terminated, the best or several good solutions
are presented to the decision maker. Otherwise, the set of procreating parents, the so-called mat-
ing pool M(t), is formed by the selection operator. For doing this, probabilities reflecting the in-
dividuals’ fitness are computed and define the chance of an individual being selected as a parent.
Selection is then usually carried out in a probabilistic manner to allow the population to overcome
local optima. Thus, in line with Darwin’s principle, better individuals are selected more often for
subsequent reproduction. Finally, the new offspring are constructed by combining (crossover) and
altering (mutation) the genes from the mating pool’s individuals. Changing the genes can be at
random or done more purposefully by considering heuristic knowledge, such as by implementing
rules of thumb that analyze the current solution. During construction, an individual’s fitness is
also determined. Figure 4.1 illustrates this template graphically and will serve as a cornerstone
for further discussion.

Figure 4.1: Illustration of standard template of an Evolutionary Algorithm.

4.2. INTRODUCTION TO EVOLUTIONARY ALGORITHMS 41

The operators of an EA usually follow stochastic principles and are steered by parameters.
Often, the EAs need to be tuned to a specific problem by a tedious adjustment of these parame-
ters. Under some circumstances, it proves useful to let these parameters themselves be subject to
evolution. With a genotype extended by strategy parameters, an EA can self-adapt to a specific
problem. Note, however, that with an increasing number of strategy parameters, self-adaptation
becomes slower and slower.

EAs differ from other metaheuristics, such as tabu search or simulated annealing, by maintain-
ing a population of individuals. For many problems, a population-based approach offers greater
flexibility in overcoming local optima. In this regard the so-called selection pressure, the intensity
with which bad individuals are eliminated is of importance. The selection pressure is defined by
the way individuals are compared and selection probabilities are computed, the actual selection
mechanism, the way how the population is updated and the population size. A high selection
pressure leads to a fast convergence but comes with a higher risk to get stuck early in a local
optimum.

4.2.4 Multiobjective Evolutionary Algorithms

Most real-world problems have several conflicting objectives. However, most “classical” opti-
mization methods require single-objective problems. Traditionally, there exist four approaches to
deal with conflicting objectives, cf. Domschke and Scholl (2008, pp.56).

• A lexicographic order of objectives is imposed. Then, optimal solutions are generated re-
garding only the most important objective. Within the remaining set of alternatives, it is
searched for optimal solutions regarding only the second important objective. The process
is continued to the last important objective or until only one solution remains.

• Extra objectives are converted to constraints—i.e., their value gets bounded from above or
below—with the risk that these bounds make the problem infeasible.

• An artificial single objective is constructed as the weighted sum of the multiple objectives.

• A goal is defined a priori and it is tried to minimize the distance to this goal. This technique
is denoted as Goal Programming, see also Section 4.2.5.

All approaches require user knowledge of the optimal trade-off between the multiple objectives a
priori to optimization. However, a decision maker is not necessarily aware of this trade-off.

In this regard, Multiobjective Evolutionary Algorithms (MOEAs) propose an entirely different
approach. Instead of combining different objectives using a fixed trade-off, they simultaneously
develop an efficient set of solutions regarding the multiple objectives. Ideally, this set converges to
a discrete approximation of the problem’s Pareto-optimal front. If terminated, these metaheuris-
tics return not one, but a set of non-dominated solution candidates. The user can then choose his
preferred solution a posteriori to optimization.

Figure 4.2 illustrates the relationship between search, solution and objective space for multiob-
jective problems. In the example, the two-dimensional objective space is spanned by the functions
f1 : S → R and f2 : S → R. Fetching ahead a customization to scheduling problems (see Section
5), the solution is illustrated as a Gantt chart. Search, solution and objective space are connected
by decoding and fitness functions. A crucial question is how to compare individuals when no

42 CHAPTER 4. THE GENERIC DEAL FRAMEWORK

Figure 4.2: Illustration of search, solution and objective space for a scheduling problem.

(i) Dominated and nondominated solutions. (ii) Nondominated front.

Figure 4.3: Dominated solutions and nondominated front.

trade-off is specified by the user. Most MOEAs use a special sorting technique to evaluate indi-
viduals. However, they still fit into the general EA template (Figure 4.1). A multiobjective sorting
can be achieved on the basis of the concept of domination. A solution x(k) is said to dominate a
solution x(l) if x(k) is not worse in any objectives than x(l) but better in at least one objective. Put
mathematically, assuming a minimization problem with m objectives,

x(k) � x(l) ⇔ fi(x(l)) ≤ fi(x(k)) ∀i ∈ {1, . . . ,m} and ∃j ∈ {1, . . . ,m} : fj(x(l)) < fj(x(k)),

where �means “is better than”.

Figure 4.3 (i) illustrates this idea with an example. Within the objective space (both objectives
are assumed to be minimized), we can compute several areas for each solution. Taking the in-

4.2. INTRODUCTION TO EVOLUTIONARY ALGORITHMS 43

dividual marked by the black circle as an example, we see that dominated solutions lie in the
upper-right quadrant and are worse in at least one objective. Solutions that are better in both ob-
jectives dominate the current solution and are situated in the lower-left quadrant. Without any
predefined trade-off, we are indifferent to solutions that a better in one but worse in the other
objective.

Using the concept of dominance, one can define what an Pareto-optimal solution is: a solu-
tion not dominated by any other solution in the search space. The entire set of optimal trade-offs
is called Pareto-optimal set, Pareto-optimal front or sometimes efficient set. Many MOEAs ap-
proximate this set by clustering the population into nondominated fronts. As shown by Figure 4.3
(ii), the nondominated front consists of the solutions that are not dominated by any other solution
of the population. The nondominated front can be computed by Algorithm 2 (cf. Deb et al., 2002;
Deb, 2001).

Algorithm 2: Nondominated sorting.

input : n individuals x(1), . . . , x(n)

output: nondominated set P
P ← {x(1)}1

for k = 2 to n do2

l← 03

repeat4

l← l + 15

if x(k) � x(l) then6

P ← P \ {x(l)}7

end8

until x(l) � x(k) or l = |P | ;9

if l = |P | then10

P ← P ∪
{
x(k)

}
11

end12

end13

The second nondominated front can be calculated by removing the elements of the first front
and running the algorithm again. If we repeat this procedure until every individual is assigned
to a nondominated front, we have roughly sorted the whole population. The lower the front an
individual is assigned to, the closer is the distance to the (unknown) Pareto-optimal set. In order
to get a complete sorting, we can evaluate the individuals within one front by a second criteria.
Usually, some diversity measure is introduced here. The idea is to prefer solutions that have more
distant neighbors to solutions that are close to each other. If a diverse population is fostered, the
final nondominated front is assumed to cover a broader region of the objective space. For more
details, the interested reader is referred to Deb et al. (2002); Deb (2001).

4.2.5 Multiobjective Goal Programming

Instead of minimizing or maximizing objective functions directly, Goal Programming attempts to
find one or more solutions that satisfy a number of goals (one for each objective) to the greatest
extent possible. If the goals cannot be satisfied, they should be violated as little as possible. In clas-
sical optimization, the distance (measured by a metric) to the goals is minimized, cf. Domschke

44 CHAPTER 4. THE GENERIC DEAL FRAMEWORK

and Scholl (2008, p.58). That is, for m objectives t1, . . . , tm, the function√√√√ m∑
i=1

(fi(x)− ti)2

is minimized when using the Euclidian distance. Again, it is the task of the user to specify the
distance norm and the goals a priori. MOEAs provide an alternative by considering the goal of
each objective during the sorting procedure. For example, nondominated sorting can be extended
by a conversion operator, 〈.〉, that returns the value of the operand if positive and zero otherwise.
Without loss of generality, assume objective fi(x) ≤ ti as a goal to be included. Now, nondom-
inated sorting is performed with respect to the converted objective 〈ti − fi(x)〉. In other words,
the nondominated sorting only respects yet unsatisfied dimensions. Usually, MOEAs come with
the “curse of dimensionality:” the more dimensions are included, the higher the probability that
a solution is non-dominated in one dimension. Restricting on only necessary dimensions can give
a great speed increase. More details can be found in Deb (1999).

We admit the above introduction to be very brief. However, it explains the main working
principles of Evolutionary Algorithms. These principles are used extensively by DEAL, which is
introduced in the following sections.

4.3 A brief introduction to DEAL

The basic idea of DEAL is to use existing intradomain planning tools for the coordination of
production plans. As discussed previously, the coordination mechanism must not reveal the do-
mains’ optimization models, objective functions and private data (capacities, durations, holding
costs and so forth), and should generate production plans that serve the interests of all planning
domains.

We propose a combination of hierarchical coordination (cf. Section 3.2.1) and Evolutionary
Algorithms. The hierarchical part of the mechanism is characterized by different roles and re-
sponsibilities assigned to the planning domains. One of the planning domains is the leader of
the coordination process, the others are called followers (cf. Schneeweis, 2003, Section 1.1). For
generating an interorganizational solution, the leader sends proposals to every follower. These
proposals contain instructions relating to the dates or quantities of items to be delivered. Follow-
ers implement these instructions by considering them in their optimization model (with certain
limitations to be discussed later). The followers are not aware of each other, but the leader is the
single point of coordination. It is obvious that such a setting requires the Supply Chain to have at
most three tiers with the leader being the only point of coordination on the middle tier connecting
all other entities, see Figures 4.4 (i) and 4.4 (ii).

For generating and implementing instructions, present intradomain models and solution meth-
ods shall be used to the extend possible. Reusing existing functionality allows to keep the cost low
when putting the coordination mechanism into practice. Today’s Advanced Planning Systems al-
ready offer possibilities for each planning domain to take adjacent planning domains into account
by employing soft or hard constraints in the optimization model. For example, customer prefer-
ences are going into the calculus by setting soft-constrained due dates for orders or material quan-
tities. These due dates anticipate the planning problem of the adjacent downstream domains, cf.
Section 3.2.1. Setting a due date earlier signals an increased importance of the related order. Cost

4.3. A BRIEF INTRODUCTION TO DEAL 45

(i) Single point of coordination. (ii) Multiple points of coordination

Figure 4.4: Supply Chain with single and multiple points of coordination.

for violating the due dates anticipate the increase of the downstream domains’ objective values.
Typical examples for hard constraints are release dates or a fixed inflow of required material every
period. They define the earliest possible date production activities can start. Hard constraints do
not allow to anticipate the models of other domains but directly implement their decisions. DEAL
aims at dynamically changing the data of such (hard and soft) constraints by successively send-
ing proposals from the leader to the followers. The parties use their intradomain planning tools
to generate new instructions or to implement the instructions by changing their models’ data.

Using present intradomain optimization models and solvers leads to several peculiarities,
since these models and solvers have not been designed to support an automated coordination.
Although the optimization models contain soft constraints to anticipate other domains and hard
constraints for implementing instructions, these constraints might not be distributed properly
among the domains.

On the one hand, a follower might be able to (either) implement the leader’s proposal by us-
ing soft or hard constraints. Each follower needs to translate the leader’s instructions. Translation
is about mapping the requested delivery dates or quantities to intradomain production activities.
Depending on the follower’s optimization model, this mapping affects soft or hard constraints.
If mapped to soft constraints, a follower is not bound to the leader’s instructions and might only
partly respect them. Later, we will discuss means how followers report the violation of soft con-
straints by sending counterproposals. If the leader’s instructions are mapped to hard constraints,
no feasible solution might exist in the follower’s optimization problem (e.g., if the leader supplies
items too late). In both cases, an instruction may deteriorate other objective values even if the
model remains feasible. A follower might thus not accept the outcome.

On the other hand, the leader might not be able to anticipate a follower. Regarding the interface
to the follower, only hard constraints might exist in the leader’s model. In such a case, DEAL
needs to supplement this functionality. How proposals, counterproposals and interorganizational
solutions are actually generated depends on the used solvers and models. Section 4.4 gives an
outline on a scheme that reduces infeasibilities in most practical settings.

An interorganizational solution can exhibit a poor quality because of several reasons. It might
include infeasibilities, might not be acceptable for all followers or might come with too high val-
ues in the objective function of the leader (assuming a minimization problem). All cases result of
suboptimally set instructions. Not surprisingly, it is a hard task for the leader to find instructions
reflecting the global problem, if only the internal model is known and internal data are visible.

46 CHAPTER 4. THE GENERIC DEAL FRAMEWORK

Figure 4.5: Overview of the DEAL framework for the case with one leader and multiple followers.

The task of generating good instructions is left to an Evolutionary Algorithm that is implemented
in a decentralized fashion. It has the following main characteristics:

• Each planning domain holds its private subpopulation of individuals.

• The genotype of each individual are the instructions sent or received.

• The phenotype is the resulting production plan, consisting of private and public data.

• Each solver is part of a global decoding function, mapping instructions to production plans.
An interorganizational solution is the combination of individuals of the parties’ private sub-
populations. However, sensitive data remains confidential as the individuals themselves are
not exchanged.

• The followers transmit rankings to the leader that reflect acceptability or the violation of
feasibility. The leader combines these rankings to a global fitness value for each interorga-
nizational solution.

• For generating purposeful proposals (containing instructions), the leader analyses previ-
ously generated solutions. New proposals can be derived by changing or combining previ-
ous proposals, similar to mutation and crossover in Evolutionary Algorithms.

The basic search process for a single-leader setting is depicted in Figure 4.5. Compared with
the standard EA template (Figure 4.1), it can be seen that parts of the evolutionary process have

4.3. A BRIEF INTRODUCTION TO DEAL 47

been distributed between the domains. Leader and followers jointly perform the evaluation, up-
date and construction by exchanging messages of different types. Constructing an individual in-
volves the tasks of generating proposals and implementing them as outlined above. More details
on the construction, evaluation and update of individuals will be presented in sections 4.4 - 4.6.
The decision on termination, update and selection is made by the leader. It is worth mentioning
that the followers also have an implicit decision right on the final solution. When terminating, the
leader may only choose among feasible solutions accepted by all followers. If there is no such so-
lution, the SC remains with the initial solution. However, until termination, no follower is aware
if any globally accepted solutions exist. Our hope is that this mechanism restrains SC domains
from acting too opportunistically. Naturally, a rational leader tries to find a setting that is accept-
able to all followers but optimizes his own objective function to the extent possible. In general,
the obtained solution will differ from the optimal central solution, the solution a central decision
unit—with complete visibility—could compute. However, if side payments are excluded, the fol-
lowers define acceptability—leader optimizes scheme seems to be a reasonable alternative.

4.3.1 Message protocol

Automated communication requires the electronic exchange of messages between the domains.
Therefore, the format for the messages and the way of exchanging them must be defined: a mes-
sage protocol. Most researchers do not invest much effort in message protocols (this is true for all
the publications listed in Section 5.9.) Data are simply exchanged between the domains. For most
academic studies this proceeding is sufficient, since the same type of data is iteratively exchanged
several times. Nevertheless, we believe that a few considerations on a message protocol can serve
as a guideline to support a future practical implementation. Moreover, since this work proposes
a population-based approach capable of parallel computation, the need for a message protocol is
more evident than it might be for sequential coordination mechanisms. The principle idea is to
regard each planning domain as a state machine. States are defined by the individuals in the cur-
rent population that have been constructed, evaluated, updated and so forth. Planning domains
repeatedly process their local population of individuals. However, in order to get a congruent
behavior, the global state of the SC needs to be mirrored by every local private population. Follow-
ing the message protocol, the planning domains synchronize their local populations by a steady
message exchange. We regard a message as a structured piece of information with the following
properties

• It has one of several a priori defined commands that are known by all planning domains.

• It has a unique id.

• It can be the reply to a previous message.

• It has exactly one sender and one receiver.

• It consists of several components, containing the data to transmit.

Commands can be, for example, send_ranking, proposal or final_solution. A message
component is a certain type of information relating to a distinct command, for example the due
dates or a ranking. The protocol defines the sequence of commands and which command requires which
components. A more detailed overview of the generic aspects of our proposed message protocol is
presented in Section 4.7.

48 CHAPTER 4. THE GENERIC DEAL FRAMEWORK

4.3.2 Communication threads

We define a communication thread as a message exchange between exactly two planning do-
mains regarding a certain purpose, for example the exchange of a ranking. It will become ap-
parent that constructing individuals or updating the population usually requires more than one
message to synchronize the involved domains. The length of a thread is given by the sequence of
commands defined by the message protocol. That is, a thread starts with an initial request pos-
sibly followed by several consecutive replies. Within a thread, the same two domains constantly
reply to each other; no two succeeding messages of the same thread may be issued by the same
domain. We assume that upon transmission each message is translated by the receiving domain.
Translation means that some components are changed to fit the receiving domain’s specific plan-
ning system. For example, order ids are mapped from the one APS to the other. Translation has
the effect that each domain views the same information from its perspective. When referring to a
message, each domain always refers to its local copy. A thread is restricted to cover the commu-
nication between the leader and exactly one follower. Followers might be competing enterprises,
are not supposed to know each other and are not supposed to communicate directly. As connect-
ing entity, the leader needs to build up separate threads with every follower to communicate the
information he desires. Moreover, preliminary experiments suggest that a message flow involv-
ing more than two domains is hardly traceable. The more entities participate in such a chain of
communication, the larger the risk of errors introduced by the weakest entity. A thread is identi-
fied by its latest message. If, according to the protocol, no further replies are expected to arrive,
we denote a thread as complete, otherwise incomplete.

4.4 Construction of solutions

After having given a brief overview of the concept, we now step further into the details. This
section explains the process of jointly constructing an interorganizational solution from a generic
perspective. We first discuss the relationship between communication threads and individuals in
Subsection 4.4.1 before giving a generic template for constructing a solution in Subsection 4.4.2.

4.4.1 Individuals connected by threads

An Evolutionary Algorithm involves a steady reevaluation of selection probabilities according to
the fitness of individuals. In order to be able to compare the fitness values, each domain needs to
hold its local version of the population in memory. These local populations are steadily synchro-
nized by repeated exchange of messages for constructing, deleting or selecting individuals. In
essence, an individual defines an intradomain decision problem instance and a related solution.
Obviously, not all data defining a problem instance, only relevant constraint settings and the part
of solutions that actually changes, need to be stored in an individual. Instructions are exchanged
by messages contained in communication threads (cf. Section 4.3.2). The leader has the task of
initializing and coordinating the threads between himself and his followers. This way, he can re-
late his individuals to individuals of his followers without explicitly knowing their content. In
general, constructing a new individual affects all followers. However, it is not always necessary
that all followers need to be informed. For some followers, a new individual might not mean
any change with respect to their interface. In such a case, the new individual of the leader is al-

4.4. CONSTRUCTION OF SOLUTIONS 49

ready represented by an individual in the follower’s population. Thus, the leader does not need
to resend an proposal already sent previously. It is more efficient to connect the individual to an
existing communication thread. Vice versa, the follower does not need to recalculate a reply if he
can use a previous computation as a substitute. Thus, linking a new communication thread to an
existing individual saves precious runtime. For multidomain problems, the state of completion of
an individual might depend on the replies of several followers. It will become apparent that we
need to record which followers already replied to a request, which are about to reply soon and
which are awaiting new input. Especially for the asynchronous and parallel ccordination (see sec-
tions 4.9 and 4.10) the need for such a record will become evident. In our implementation, each
of the leader’s individuals connects to exactly one thread for each follower. In other words, the
leader’s individuals themselves serve as compound entities between the distinct communication
threads. Vice versa, each thread includes the information to which individuals it is connected. If a
new message of a follower arrives, the leader updates all individuals affected by it. By doing this,
it is ensured that an individual is always connected to the latest message of the related threads.
The construction of an individual is done in distinct stages. Representing the completeness of an
individual, we can define the following individual states.

• Waiting: Information from another domain is needed before the next construction stage can
be entered.

• Idle: New messages need to be issued by the current planning domain.

• Complete: All threads are complete and all calculations have been done. Regarding this
particular individual, no further messages are expected.

• Deletable: The individual was sorted out of the population. Due to issues related to the
synchronization of domains, deletable individuals can sometimes not be deleted instantly,
but are only marked for deletion. (See also Section 4.10 for further details.)

An example of changing states is illustrated in Figure 4.6, where a leader coordinates two follow-
ers (only the interaction with Follower 1 is depicted in detail). In the example, each communica-
tion thread consists of two messages: A proposal (containing instructions) issued by the leader
and the follower’s counterproposal (reporting the violation of instructions). It is supposed that
the leader needs this information to finish the construction of his individual. From top to bottom,
the negotiation process is illustrated at different points in time. It should be highlighted that the
figure does not depict a flow chart but illustrates the states of the system at different points in
time.

At t = 1, the leader has constructed a new individual, e.g. a tentative production plan that is
promising from the leader’s perspective but might imply delivery dates that are not feasible from
the followers’ perspectives. Thus, the leader must verify the feasibility with each of the followers.
As it is his turn to start the communication, the individual’s state is currently set to idle.

At t = 2, the leader sends a proposal to Follower 1. The proposal contains instructions, such
as due dates, that affect the calculation of production plans of Follower 1. The data are translated;
for example, the leader’s order ids are replaced by order ids of the follower’s system. Thus, the
domains physically hold different messages. Nevertheless, the messages describe the same re-
quest and are identified by the same id. Having received the proposal, Follower 1 constructs a
new individual, connects it to the proposal and sets its state to idle. Also the leader connects his

50 CHAPTER 4. THE GENERIC DEAL FRAMEWORK

Figure 4.6: Example of an individual connecting to different communication threads.

individual to his local version of the proposals (the leader’s and the follower’s individuals are
said to be connected by the communication thread).

At t = 3, the leader sends a similar proposal to Follower 2. As Follower 1 did not reply yet,
the individual is still connected to the proposal issued previously (indicated by a second link to
the proposal). As no further calculations can be done before the followers have replied, the state
of the leader’s individual is changed to waiting. Meanwhile, Follower 1 handles the request, e.g.
by computing a new production plan. Having done that, he transmits a counterproposal to the
leader at t = 4. Upon transmission, the data of the reply is again translated. From Follower 1’s
perspective, the computation is finished and the state of the follower’s individual is set to com-
plete. The thread between the leader and Follower 1 is complete, since no subsequent messages

4.4. CONSTRUCTION OF SOLUTIONS 51

are assumed to pertain to this thread in this example. The leader’s individual is still classified as
waiting since the reply of Follower 2 is missing.

After this message has arrived in t = 5, it is the leader’s turn to continue the calculation,
combining the two counterproposals and recomputing his own production plan. Eventually, the
joint calculation of one individual is finished, and its state is set to complete at t = 6.

This example illustrates a disparity with the classic understanding of Evolutionary Algo-
rithms: Normally, an individual represents a point in the search, solution and objective spaces.
However, within the DEAL framework, an individual also has its own state of completeness. At
each iteration, every domain transforms idle individuals into waiting ones or vice versa. More-
over, instead of one central population, several subpopulations are managed by the different do-
mains. Only some combinations of individuals of the different subpopulations yield a feasible
interorganizational solution. In the following, we will introduce generic processes transforming
waiting to idle or complete individuals. For better legibility, we will omit the illustration of indi-
viduals passed between the processes and the translation of messages. Moreover, only the inter-
action with one follower will be depicted, representing all other followers.

4.4.2 Generic construction template

Constructing an interorganizational solution involves the generation of leader proposals and the
computation of followers reactions. Both steps are highly dependent on used optimization models
and solvers. However, with regard to present APS it is possible to outline a generic construction
template that works with most optimization models and solvers available today. Present models
usually have two commonalities. First, due dates (or related target quantities) are usually consid-
ered as soft constraints. That is, in order to achieve feasible plans, committed dates of delivery to
customers can be violated for additional penalty costs. Especially on a short-term planning level,
violating due dates might be the only available vent for achieving feasible plans. Models on a mid-
term planning level usually also employ possibilities of capacity increase for additional overtime
or storage costs. Second, material availability is usually hard-constrained. That is, on a mid-term
planning level, quantities of material inflow (the number of items to be ordered) have an upper
bound. On a short term-planning level, release dates define the earliest date a production activity
might start.

The above described model structures lead to interdependencies of planning domains that
seem paradox at first glance. From a model perspective, upstream domains anticipate down-
stream domains by employing soft-constrained due dates (or related target quantities). Down-
stream domains consider upstream decisions (e.g., the release dates) as hard constraints. Hence,
in order to achieve interorganizational feasible production plans, downstream planning is the pre-
ferred choice from a model perspective. However, in practice, upstream planning can be observed
most often, i.e. the downstream planning domain is the leading entity, generating instructions for
upstream domains. Very often, several suppliers are delivering to a single manufacturer. In such
a setting, the manufacturer usually has the best overview about future demand and generates
the biggest share of the product value. Hence, the manufacturer most often claims the right for
being the leader and for generating proposals. However, his optimization model does usually
not anticipate the supplier’s production planning model. This fact is historically motivated by
a planning paradigm that favors monolithic customer-oriented models but does not foresee the
possibility of negotiations on the supply side. If we additionally consider wholesalers to be part

52 CHAPTER 4. THE GENERIC DEAL FRAMEWORK

of the coordination process, we have a three tier structure as discussed in Section 4.3, where the
manufacturer represents the leading middle tier delivering to the wholesalers that are responsible
for satisfying the demand of the ultimate customer. Wholesalers are assumed to have a planning
problem regarding the distribution of items (otherwise there would be no need to dynamically
include their domains in the coordination process). Alternatively, we could assume another tier
of manufacturers (having a production planning problem) instead of the wholesalers.

Today, global feasibility is usually preserved by implementing high-level negotiated frame
contracts, limiting the amount of items that can be ordered per period or providing a lower bound
for the earliest date an item can be ordered (e.g., orders must be communicated four weeks before
delivery). However, regarding the global optimization problem, this form of upstream planning
usually leads to suboptimal results, as a frame contract does not substitute the global model.
Moreover, in case of sudden events, such as machine breakdowns, upstream planning has only
limited possibilities to resolve the bottleneck. Since a manufacturer does not anticipate a sup-
plier’s planning problem, the manufacturer generates instructions that might not be manageable
by the supplier.

As already briefly discussed in Section 4.3, DEAL aims at finding instructions that allow all
planning domains to compute improved production plans. However, as calling the solution meth-
ods requires a significant amount of runtime, a random mutation of instructions is not suitable.
As discussed above, upstream domains presently anticipate downstream domains by employing
penalty costs for delayed delivery, but the opposite is usually not true. If we want to reuse present
models and solution methods most efficiently, this has two implications. First, demand must be
propagated in upstream direction. That is, wholesalers should influence the manufacturer’s due
dates (or related target quantities) and the manufacturer should influence the suppliers’ due dates
(or related target quantities). Second, the planning domains should call their solution methods in
a downstream oriented sequence to construct a feasible solution. According to the manufacturers
proposals, the supplier compute new production plans. Because of their soft-constrained models,
there is no guarantee that all instructions are obeyed. Hence, suppliers might send a counter-
proposal (reporting the deviation from the instructions) and the manufacturer has to replan his
production. Eventually, the manufacturer proposes new delivery dates (or related target quanti-
ties) to wholesalers. Summarizing, we recommend the following construction sequence for the
three tier scenario.

1. The manufacturer takes an existing solution from the mating pool and gathers information
on how to improve it from wholesale followers. The wholesalers indicate which changes in
the supply pattern would better match their demand and the manufacturer translates the
information to new anticipating data, e.g. due dates. We will denote instructions send from
wholesalers to manufacturer as guidance henceforth.

2. Using the guidance and analyzing his own problem, the manufacturer devises proposals
for his suppliers, who can then map these proposals to their anticipating data.

3. The supplier use the information to calculate a new solution for their intradomain prob-
lems. They reply with counterproposals representing their decision (the deviation from the
instructions) to the manufacturer.

4. Using these new input values, the manufacturer computes his intradomain solution. Based
on his results, he in turn sends proposals to the wholesalers.

4.4. CONSTRUCTION OF SOLUTIONS 53

5. The wholesalers use the latter proposals as input for their own optimization model, reply
with a confirmation and the interorganizational solution is constructed.

A proposal might come with changes affecting only a subset of followers. In such cases, newly
calculated instructions need not be communicated to all followers. In Chapter 7, we will discuss
the different occurrences of redundant proposals. However, irrespective of the exact definition
of redundancy, we advocate a double-sided check and elimination of redundant proposals. After
having analyzed his local problem, the leader checks for each follower if the new proposal equals
existing proposals. Instead of sending a new redundant proposal, the individual is connected to
the existing communication thread. Similarly, each follower can check an incoming proposal for
redundancy. If a follower identifies a proposal as redundant, he immediately resends the preex-
isting counterproposal or confirmation. This way, computing capacity can be saved. The double
check is necessary since leader and followers can have different models and optimization meth-
ods that induce different definitions of redundancy. Figure 4.7 gives an overview about the whole
construction process, while figures 4.8 - 4.10 refer to the subprocesses of exchanging guidance,
proposals with suppliers and proposals with wholesalers.

Figure 4.7: Overview of the generic construction of an individual.

54 CHAPTER 4. THE GENERIC DEAL FRAMEWORK

Figure 4.8: First part of the generic construction of an individual.

Figure 4.9: Second part of the generic construction of an individual.

Concluding, it should be highlighted that the construction of individuals is a joint process.
Although the manufacturer coordinates the process, the suppliers have implicit decision rights
as the manufacturer’s instructions are mapped to soft constraints in the suppliers’ models. Thus,
suppliers can deviate from instructions that are too costly and reply with a counterproposal. More-
over, all followers are allowed to transmit their preferences to the manufacturer for steering the
search process (see next section). The above outlines the generic construction process. How pro-
posals and counterproposals are actually generated depends on the planning problem and used

4.5. EVALUATION OF SOLUTIONS 55

Figure 4.10: Third part of the generic construction of an individual.

solution methods. A detailed discussion regarding scheduling problems solved by metaheuris-
tics, such as the SAP DS Optimizer, will be presented in Chapter 7.

4.5 Evaluation of solutions

In previous sections, we already highlighted the goal of DEAL: to find an interorganizational
solution that is acceptable to all followers while optimizing the leader’s problem to the extent
possible. To inform the leader about their preferences, followers iteratively transmit information
on how to rank the population’s individuals. The leader combines this information to select the
mating pool and update the population. Figure 4.11 shows the generic process for exchanging the
ranking information. It should be emphasized that only complete individuals can be ranked. In
the current implementation, the leader triggers the evaluation process, since he is aware which
of his individuals are complete. A further difficulty arises from the threads serving as a mid-
dle layer between the leader’s and follower’s private populations. A planning domain does not
know the other domain’s population, instead the ranking must be mapped to existing threads.
As can be seen in the illustration, the leader first collects all threads connected to individuals that
should be ranked. Now, the leader sends to every follower a list with ids pertaining to commu-
nication threads (identified by the latest message) between the two domains. Each follower maps
the thread ids to individuals and calculates the related ranking. He then maps the ranking back
to thread ids and replies to the leader. Having received replies from all followers, the leader again
remaps the rankings to his individuals. On the one hand, the transmitted information should give
the leader an unbiased view of the followers’ situations. On the other hand, no critical informa-
tion should be transmitted. For example, forcing the followers to report their (sensitive) objective

56 CHAPTER 4. THE GENERIC DEAL FRAMEWORK

Figure 4.11: Evaluation of the complete population

values to the leader would not be a practically suitable approach. Instead, we recommend the
exchange of ordinal rankings. In the following, we will give three examples of concrete ranking
schemes that disguise actual objective values.

4.5.1 Restricting to acceptable solutions

A simple case arises if planning domains can configure their intradomain optimization methods
to guarantee the generation of acceptable plans. Dependent on their planning models and solvers,
followers might be always able to deviate from the leader’s instructions (by sending counterpro-
posals) such that the solution is always acceptable from their perspective. Still, a follower can
transmit a ranking to guide the search process. For example, a compact production plan might
be regarded as preferable since it provides a better starting point for future coordination even
though a follower might also accept noncompact production plans. Let the index e denote a plan-
ning domain, and E denote the set of all planning domains, where e = 0 refers to the leader’s
planning domain. Each follower e > 0 transmits an ordinal rank ωe(p) of solution p to the leader
with ωe(p) ∈ N. For a population with size n, we assume the best individual to be ranked with 1,
the worst with m ≤ n and two individuals of equal fitness to share the same rank. Since all fol-
lowers accept all solutions, we consider the leader’s rank ω0(p) to be more important. The leader
only considers the follower suggestions if he is indifferent between solutions. Put mathematically,
the leader applies the following lexicographic comparison between two solutions p and q to sort
his local population.

1. Sort according to the leader’s preference:

p � q ⇔ ω0(p) < ω0(q) (4.1)

4.5. EVALUATION OF SOLUTIONS 57

2. If indifferent (ω0(p) = ω0(q)), sort according to the follower’s preference:

p � q ⇔ (ω0(p) = ω0(q))∧

(∀e ∈ E\ {0} : ωe(p) ≤ ωe(q)) ∧ (∃d ∈ E\ {0} : ωe(p) < ωe(q)) (4.2)

Relation 4.2 describes the nondominated sorting scheme of Multiobjective Evolutionary Algo-
rithms (cf. Section 4.2.4). Since trade-offs between the follower’s rankings are unknown, non-
dominated sorting is a safe way to combine the different subrankings. If followers are of different
importance, the leader might also use a further lexicographic comparison instead of Relation 4.2.

4.5.2 Double ranking

The above ranking scheme can only be applied in special situations where the planning domains
can control their intradomain optimization methods to always produce acceptable solutions. In
general, the cost of a production plan influenced by the leader’s proposal might not be acceptable
for a follower. For example, the leader might request items so early that a follower’s optimization
run delays orders of other customers.

The follower’s cost associated with a solution of the interorganizational problem can be de-
composed into coordination-related and domain-related costs. Coordination-related costs are
penalty costs resulting from the violation of anticipated target values, such as due dates within
the objective function. These costs are mainly for steering the search process. For example, the
sum of lateness with respect to the due dates imposed by the leader are not costs the follower
can claim in an accountancy sense since they only approximate the leader’s costs. Nevertheless,
coordination-related costs are in direct relation to domain-related costs. For example, setting a
due date for a shipment to the leader earlier might result in a solution with higher setup cost
or lateness of other orders of external clients not participating in the coordination process. Con-
cluding, an evaluation of a solution should only be based on domain-related costs (all cost not
related to anticipating data), since only these costs are actually relevant. However, for a follower,
not all domain-related costs are of equal importance. For example, setup times might be consid-
ered within the objective function as a control cost, but what ultimately counts from a short-term
perspective is lateness of production activities relating to external customer orders. Hence, in ad-
dition to the objective function of the local optimization method, a follower might have another
evaluation function representing his preferences regarding the leader’s proposals within the DEAL
framework. A simple, practical evaluation function can be outlined as follows. The function dis-
tinguishes between acceptable and unacceptable solutions. Unacceptable solutions result from a
setting of instructions that leave the follower’s local optimization method too little freedom to
produce acceptable results. In order to be able to construct more suitable proposals in the future,
the leader needs to be informed about the degree of acceptability. We define

υe(p) =

0, if the proposal p is acceptable,

z ∈ N, if the proposal p is not acceptable.

Integer z denotes a ranking of unacceptable solutions. The smaller z, the better the related solu-
tion from the follower’s perspective. In an ordinal second-level ranking, ωe(p), the follower trans-
mits his “optional” preferences on the basis of further domain-related costs not directly linked to

58 CHAPTER 4. THE GENERIC DEAL FRAMEWORK

acceptability. For example, two proposals q and p having a υe(p) = υe(q) = 0 because of low exter-
nal customer lateness can be further distinguished according to incurred setup time. Low setup
times should be preferred, since they offer better starting points for future proposals. Similarly,
the leader has his own evaluation functions, υ0(p) and ω0(p). A global ranking can be constructed
using multiobjective sorting approaches within a lexicographic comparison. To sort the leader’s
population, we apply the following lexicographic comparison between two individuals p and q.

1. Sort according to nondominated solutions regarding the followers’ and leader’s accep-
tance:

p � q ⇔ (∀e ∈ E : υe(p) ≤ υe(q)) ∧ (∃d ∈ E : υe(p) < υe(q)) . (4.3)

2. If indifferent, sort according to the leader’s second-level preference using Equation 4.1.

3. If still indifferent, sort according to the follower’s second-level preference using Equa-
tion 4.2.

Sorting according to Relation 4.3 has three advantages. First, the transmission of ordinal rankings
disguises objective values considered as sensitive by the followers. The leader has only limited
possibilities for probing the followers to infer sensitive data. Although he knows that a solution
is regarded by a follower as better or worse than another solution, he does not know how much
better or worse it is. Second, the dimensionality is reduced. The search process is not driven in
dimensions were solutions are already acceptable by the domains (having a ranking of zero) but
a multiobjective Goal Programming approach, as discussed in Subsection 4.2.5, is implemented
instead. Third, and most important, followers have only limited possibilities for cheating. No fol-
lowers can influence the trade-off between the local objectives by exaggerating his values, as such
a trade-off does not exist in non-dominated sorting. Of course, followers can label actually accept-
able solutions as unacceptable—but that is something they already can do today by reporting that
present delivery dates cannot be maintained. In general, we assume that followers try to comply
to delivery dates to the extent possible, as their status of being a reliable partner depends on it.
Thus, we are tempted to label DEAL as a practically incentive compatible mechanism (however, not
in a mathematical sense).

Again, if followers are of different importance or are even considered to be more important
than the leader, comparisons 4.3, 4.1, and 4.2 can be rearranged to a more nuanced lexicographic
comparison, e.g. prioritizing the rankings of more important followers over less important ones.

4.5.3 Side payments

Theoretically, the exchange of side payments can also be supported by the two-level ranking
mechanism. Assume followers and leader to be able to define a mapping of internal costs to side
payments, υe(p), where

υe(p) =

∞, if the proposal p is not acceptable to domain e,

≥ 0, if the domain wants to be compensated,

< 0, if the domain intends to share a part of his savings with other domains.

For the initial situation, υe is defined to be zero for all domains, for all other solutions it represents
the actual value the domain intends to share or wants to receive. In addition to υe, the followers

4.6. SELECTION OF THE MATING POOL AND UPDATE OF POPULATION 59

transmit a second-level ordinal ranking ωe, reflecting their additional preferences for solutions
having the same side payment (for example, if setup costs do not influence the side payment).
Within the above scheme, the leader can compare two individuals p and q as follows.

1. Prefer high savings:
p � q ⇔

∑
e∈E

υe(p) <
∑
e∈E

υe(q).

2. If indifferent, sort according to the leader’s preference using Equation 4.1.

3. If still indifferent, sort according to the follower’s preference using Equation 4.2.

Of course, the ranking mechanism itself does not solve the problems inherent to the use of side
payments highlighted above. However, if partners agree on side payments, DEAL can be recon-
figured easily to respect this choice.

4.6 Selection of the mating pool and update of population

The evolutionary principle boils down to foster good solutions while eliminating bad ones. This
so-called selection pressure can be observed at three different phases: when individuals are ranked,
when they are selected according to this ranking and when individuals are deleted from the pop-
ulation. Possibilities for decentrally computing subrankings and merging those subrankings to a
global ranking have been discussed in the previous section. Having computed such a ranking,
there exist different options to actually select individuals for the mating pool. One possibility is
so-called tournament selection. Here, a tournaments is played between two1 randomly picked
solutions, and the better solution is chosen and placed in the mating pool. Two other solutions
are picked again and another slot in the mating pool is filled with the better solution. If carried
out systematically, each solution can be made to participate in exactly two tournaments (cf. Deb,
2001). Each solution except the worst one has a certain probability of being selected. This property
allows EAs to surpass local optima by temporarily selecting individuals that are actually worse
but provide a path to improved solutions.

After children have been constructed, the population is reduced to its original size. In the se-
quential coordination, we follow the so called µ + λ approach: from µ parents, λ children are
generated. Then, the best µ out of the combined µ parent and λ child individuals form the next
parent generation. In other words, the worst individuals are deleted deterministically. Popula-
tion updating is straightforward, as illustrated in Figure 4.12. The leader uses the global ranking
constructed previously to decide which individuals are removed from the current population.
Communication threads that are not connected to any undeletable individual are considered to
be deletable threads. Followers receive an update request containing lists of deletable threads that
affect them. Each follower first disconnects these threads from their individuals. After the threads
(respectively, their messages) have been deleted, a confirmation is sent. Subsequently each fol-
lower classifies those complete individuals as deletable that have no thread attached. Upon re-
ceiving the confirmation, the leader starts a similar process. First the threads are disconnected
and deleted, then individuals are marked as deletable. Finally, deletable individuals are deleted if

1Theoretically, also larger tournament sizes are possible but are not used here for the sake of simplicity.

60 CHAPTER 4. THE GENERIC DEAL FRAMEWORK

Figure 4.12: Update of a population within the DEAL framework .

Subprocess Command Reply Leader Follower

Construction &
Initialization

request_guidance guidance x
guidance proposal x

proposal
counterproposal x
confirm_proposal

counterproposal n.a. x
confirm_proposal

Evaluation request_rank rank x
rank n.a. x

Update update confirm_update x
confirm_update n.a. x

Implement final
solution

final_selection n.a. x
terminate n.a. x

Table 4.1: Generic commands, replies and issuers of messages

not longer needed. In the asynchronous coordination discussed in Section 4.9, deletable individ-
uals might still be temporarily needed if the construction of related children is not finished yet.
However, they are not further considered by evaluation and selection.

4.7 Generic message protocol

In summary, we give an overview of the generic commands used by the domains in the DEAL
framework. For better legibility, we classify the commands into construction, evaluation, updating
and final solution implementation commands. Table 4.1 gives an overview of the commands from
a generic perspective, showing the subprocess (cf. Figure 4.5), the initial command, the expected
reply and the domain responsible for sending the message. From a design perspective, a message
can be regarded as a container of components. During the implementation of the prototype, it
turned out that some of the message components can be reused to define the individuals. As an

4.8. PROPERTIES OF SEQUENTIAL COORDINATION 61

Component Purpose Attached to

predeces-
sor

Stores the information on which message
precedes in the current communication
thread.

All replies in a thread:
counterproposal, confirm_-
proposal, rank, confirm_-
update, init_finished and
solution.

parent

Stores the information on which message
or individual is the parent. The informa-
tion is needed for a warm reboot of the
DS Optimizer solving module

All individuals and messages with
command proposal.

children
Opposite to parent component. Needed
to avoid deletion of individuals whose
children are still under construction.

All individuals.

individual
link

Links a construction or solution thread
to an individual. Necessary to determine
the individual’s state (idle or waiting).

Messages with commands
proposal, counterproposal,
confirm_proposal, request_-
solution and solution.

rank Stores the current rank of an individual. All individuals.
ranking
list

Needed for transmitting rankings from
follower to leader. Message with command rank.

deletion
list

Needed for transmitting update instruc-
tion from leader to follower. Message with command update.

Table 4.2: Generic components of the message protocol

individual is constructed, more and more components are added to the individual (or some are
modified) until the construction is completed. In other words, the individual can be regarded as
component containers, too. Components can be further distinguished as generic and customized
components, adapted to a specific optimizer. Table 4.2 gives an overview of generic components.
A complete message protocol for the customized framework is presented in Chapter 7.

4.8 Properties of sequential coordination

The above concepts lead to a sequential coordination. That is, following the generic process de-
picted in Figure 4.5, leader and followers construct generation for generation one individual after
the other until a satisfying quality of the interorganizational solution has been reached. The se-
quential coordination comes with several advantages and disadvantages. An advantage is the
generality of the concept. Most requirements mentioned in Section 4.1 are fulfilled, nondisclosure
of confidential data, no side payments and feasibility of solutions (regarding the generic con-
struction process highlighted in Section 4.4.2). Moreover, the DEAL concept is—at least to some
extent—independent of specific local optimization methods. Knowing the interface of their op-
timization methods, domains might only need to implement an add-on without changing their
model or optimization method.

Some coordination schemes in the literature rely on a mediator. Similarly, the DEAL concept
allows for the incorporation of a mediator, though it is not explicitly used in this work. Using a
mediator offers three advantages. First, decisions on update and selection can be carried forward
to the mediator, who acts in the interest of the whole Supply Chain, trying to equally support
the interests of all domains. Second, confidential data, such as true costs, can be reported to the
mediator who is committed to nondisclosure. Thus, the mediator could provide a more precise
construction and evaluation of individuals. Theoretically, a mediator could substitute the leader

62 CHAPTER 4. THE GENERIC DEAL FRAMEWORK

in coordinating the message-exchange, evaluating, selecting and updating the individuals but
would not have any planning functionality. The former leader would become another follower
computing production plans, sending proposals and rankings. Finally, for multitier SCs, the me-
diator might form the central point of coordination. Nevertheless, from a practical point of view,
it is questionable if a mediator really convinces the domains to disclose their confidential data,
or only introduces another entity, further complicating the process. Moreover, due to the high re-
sponsibility for the coordination result and legal concerns third parties might be difficult to find
to take the mediator’s role. For these reasons, we did not delve much deeper into the mediator
concept, although it will be again briefly mentioned in Chapter 7.

A clear disadvantage is that decoding a genotype of instructions to a feasible interorganiza-
tional solution requires a lot of time as the different local optimization methods are sequentially
applied. Thus, the DEAL framework cannot be regarded as an Evolutionary Algorithm in the
pure sense, which usually requires the evaluation of several thousands individuals. Depending
on problem sizes and available runtime, we are rather allowed 10 to 500 tries of changing instruc-
tions. On the other hand, we probably have to deal with enormous search spaces of instructing
data and underlying NP-hard intradomain problems. Thus, a random mutation of instructions
does not seem feasible; we must rely on heuristic analyzing operators to find promising proposals.
In general, we cannot expect to find the optimal interorganizational solution within a reasonable
time. However, we argue that for most practical settings the underlying local optimization meth-
ods provide an inherent flexibility to compute “good” production plans even though instructions
have only been set in a crude manner. The DEAL concept must rather be seen as a framework that
allows an iterative execution and self-adaptation of heuristics to compute proposals. If the popu-
lation consisted of just one individual and one constructed child, we have a simple hill-climbing
procedure. To further increase the speed of computing and evaluating proposals, two approaches
are imaginable. One approach would be to use so-called metamodels. Based on historical ex-
perience, the leader might be able to estimate a simplified model of his followers’ production
problems. Then, a lot of genotypes could be identified as “bad” in a pre-evaluation run based
on the metamodels. Examples for such approaches can be found in Branke and Schmidt (2005),
Ziegler and Banzhaf (2003), Jin (2002), and Ratle (1998). The quality of such approaches is highly
dependent on the estimated metamodels. If the metamodels are too simple, a bias results, leading
away from actual good regions of the search space. Intuitively, more complex metamodels require
more historical data for parameter estimation. Unfortunately, in Production Planning and De-
tailed Scheduling, most optimization problems have a combinatorial component that complicates
the metamodels. In addition, only little historical data (e.g., past coordination proposals) exist that
are still relevant to the current situation. Moreover, not only the fitness needs to be estimated, but
also functions for calculating counterproposals. Last but not least, an impeded implementation
of such models is intended by the coordination mechanism—it was purposely constructed to limit
possibilities for inferring sensitive data of other domains.

Instead of metamodels, a speed increase was realized by a brute force parallel computation.
A property of the DEAL-concept is that the construction of proposals and counterproposals is
dependent on the related parent solution, but independent of other solutions of the population.
Thus, proposals and counterproposals can be calculated in parallel on different CPUs. This gives a
speed increase up to the order of the number of parallel CPUs used, not considering the overhead
for managing the population. A first step to parallelization is to allow asynchronicity, to allow
the planning domains to start the construction of a new solution before the construction of the

4.9. ASYNCHRONOUS COORDINATION 63

current solution is finished. In the following sections, we will discuss means of extending the
generic concept to the asynchronous and the parallel coordination.

4.9 Asynchronous coordination

Sequential coordination is characterized by periodic idle times. Followers wait for new leader
proposals to counter. Similarly, leaders wait for counterproposal before the construction of in-
dividuals is continued. Though this process provides a good traceability, it wastes a lot of the
available runtime.2 Asynchronous coordination aims to reduce unnecessary idling by allowing
the leader to construct new proposals though followers have not yet replied to the current pro-
posals. Having already invested effort in establishing the message protocol and the concept of
communication threads, the implementation of an asynchronous coordination is straightforward.
Whenever a message is issued, the subprocesses for construction (figures 4.7 - 4.10), evaluation
(Figure 4.11) or update (Figure 4.12) are interrupted, leaving the individual in a waiting state. If
the required messages have arrived the related subprocesses continue.

Algorithm 3 shows the generic asynchronous coordination template for the leader and Al-
gorithm 4 shows the same for each follower. First, all incoming messages are processed com-
pletely and existing communication threads are extended. If applicable, interrupted subprocesses
for update and evaluation are continued. During construction of individuals, the processing of
incoming messages sets “waiting” individuals to “idle.” In the second step, the construction of
the oldest idle individual is continued and its state is either set to “complete” or “waiting” if
additional action from the followers is required. Third, conditions for starting the construction
of new individuals are tested and new rankings are requested if necessary. The three steps are
iteratively continued until the termination condition is met. It should be emphasized that for
asynchronous coordination, the selection of the mating pool is different from that of a standard
EA. In a standard EA, the whole mating pool is selected every generation and all children are
constructed instantly. However, for asynchronous coordination, the term generation is elusive, as
the focus lies on the steady flow of messages and the efficient use of computational power. Wait-
ing until all individuals of a generation have been constructed before starting the new generation
would be counterproductive to a high utilization of computational power. Hence, new individu-
als are constructed whenever the sum of idle and waiting individuals drops below a predefined
threshold. This ensures that enough work remains in the system and runtime is not wasted. If the
threshold is set too low, new individuals are issued too late and domains have nothing to compute
during some time periods, as in the sequential coordination scheme. If set too large, however, too
many individuals are constructed in advance based on the currently available ranking and popu-
lation. In other words, the ranking and population information per child is to some extent already
outdated when the child is actually constructed. For constructing the children, parent individuals
need to be already selected in the mating pool. As the evaluation procedure takes additional time,
a new evaluation process is started if the number of individuals in the mating pool drops below
a certain threshold. When the evaluation is finished, parents are selected in the mating pool until
the threshold is no longer violated. When constructing a new child, the oldest individual of the
mating pool is taken. In some sense, the mating pool can be seen as an additional buffer for stor-
ing selected parents following a first-in, first-out policy.3 Summarizing, two buffers are needed to

2Assuming realistic conditions, where domains do not share a single CPU.
3Obviously, also other policies could be implemented. However, from our point of view it is most appropriate to

64 CHAPTER 4. THE GENERIC DEAL FRAMEWORK

Algorithm 3: Leader’s template for asynchronous coordination
while Not terminated do1

if Termination criterion fulfilled then2

Select and broadcast final solution3

Terminate4

end5

forall Incoming messages from follower do6

Attach message to related communication thread7

if Update confirmation then8

if Update messages from all followers have arrived then9

Finish update procedure10

end11

else12

if Ranking message then13

if The subrankings from all followers have arrived then14

Finish evaluation procedure15

Select new parents to mating pool until queuing size has been reached16

end17

else18

Retrieve individual connected to thread19

Set individual state to idle (if all required messages have arrived)20

end21

end22

end23

if Population contains idle individuals then24

Continue construction of oldest idle individual by requesting guidance, issuing proposals or25

considering counterproposals
Set individual state to waiting / complete (if construction is finished)26

end27

if Number of waiting and idle individuals is below queuing size then28

if Mating pool does not contain enough parents to construct desired size of children then29

if Evaluation procedure finished then30

if Update procedure not started yet then31

Start update procedure32

end33

else34

if Evaluation procedure not started yet then35

Start evaluation procedure36

end37

end38

end39

if Mating pool not empty then40

Take oldest parent from mating pool and construct idle child41

end42

end43

Sleep44

end45

ensure a steady use of solving units. One consists of a certain number of idle and waiting individ-
uals in the OEM’s population, the other of a required number of parents in the mating pool. For
simplicity, the numbers are set to be equal and will be denoted as the queuing size henceforth.
For a queuing size of zero, asynchronous and sequential coordination are very similar. As a future
research topic a self-adaptation of the queueing size seems appropriate. For example, the queuing
size could be dynamically increased until idle times of the leader have decreased to a predefined

consider “old” information first, before it becomes (even more) deprecated.

4.10. PARALLEL COORDINATION 65

Algorithm 4: Follower’s template for asynchronous coordination
while Not terminated do1

forall Incoming messages from leader do2

Attach message to related communication thread3

if Update request then4

Start update procedure5

else6

if Final solution then7

Implement final solution8

Terminate9

else10

if Evaluation request then11

Start evaluation procedure12

else13

if Guidance request then14

Construct guidance and reply15

else16

if Redundant proposal then17

Retrieve individual connected to thread18

Reply according to existing counterproposal / confirmation19

else20

Construct new idle individual21

Connect individual to thread22

end23

end24

end25

end26

end27

end28

if Population contains idle individuals then29

Construct oldest idle individual and send counterproposal / confirmation30

Set individual state to complete31

end32

Sleep33

end34

level. In our computational evaluation (cf. Chapter 8), a fixed queueing size already generated
good results, however.

4.10 Parallel coordination

Parallel coordination is a further extension of asynchronous coordination, motivated by the idea
of speeding up proposal and counterproposal generation. Calling the solution methods for com-
puting production plans is actually the most time-consuming task. Some solution methods might
already provide built-in support for multiple CPUs, but we cannot assume such a feature in gen-
eral. However, even if it is not possible to use several CPUs to compute one production plan, we
can use the computational power to construct production plans in parallel.

How parallelization can be established depends on technical details. As a concrete example,
the SAP Grid Framework is presented later in Section 7.10. On an abstract level, parallelization
is achieved by introducing new solving units, representing additional computational power for
computing an intradomain solution. Leader and followers can delegate the task of calculating a
production plan to a solving unit through an additional message exchange, depicted in Figure

66 CHAPTER 4. THE GENERIC DEAL FRAMEWORK

Figure 4.13: Solving an individual within the parallel DEAL framework .

Algorithm 5: Extension of leader’s / follower’s template to parallel coordination
while Not terminated do1

...2

forall Incoming messages from solving units do3

Attach message to related communication thread4

Retrieve individual connected to thread5

Set individual state to idle6

Mark solving unit as available7

end8

...9

if Population contains idle individuals then10

if Solution from solving unit received then11

Update individual accordingly12

end13

...14

if Solution from solving unit needed then15

if Solving unit is available then16

Issue solution request17

Mark solving unit as unavailable18

Set individual state to waiting19

end20

end21

end22

...23

end24

4.13. Before the solution of the related problem instance has been computed, an individual’s state
is set to “idle.” Available solving units are sought. If a unit can be found, a solving request is

Algorithm 6: Solving unit’s template to parallel coordination
while Not terminated do1

forall Incoming solution requests do2

Compute plan3

Send solution back4

end5

Sleep6

end7

4.10. PARALLEL COORDINATION 67

Figure 4.14: Comparison of sequential, asynchronous and parallel coordination .

issued and the individual’s state changes to “waiting” until the solving unit replies with the cor-
responding solution. Algorithm 5 shows how the leaders’s and followers’s template (algorithms
3 and 4) can be extended. The rest of the templates for leader and follower do not need to be
changed (this is denoted by “. . .” in Algorithm 5). Algorithm 6 shows the template of each solv-
ing unit. Concrete procedures for the DS Optimizer will be discussed in Chapter 7. Figure 4.14
schematically illustrates the time requirements of a coordination process for the sequential, asyn-
chronous and parallel coordination. The top part of Figure 4.14 shows sequential coordination for
constructing six individuals. The leader begins by constructing his part of Individual 1, followed
by Followers 1 and 2. The illustration is idealized, ignoring such details as proposals, counter-
proposals and so on. After Individual 1 is completed, Individuals 2, 3 are constructed. Then, the
population is evaluated and updated. The time required for evaluation and update is depicted by
black boxes and the time for constructing an individual by gray boxes. Subsequently, further indi-
viduals are constructed. The middle of Figure 4.14 shows asynchronous coordination. A speed up
is realized since the followers can run their computations independent of each other and because
the OEM can issue new proposals, before the previous ones have been evaluated. The last part

68 CHAPTER 4. THE GENERIC DEAL FRAMEWORK

illustrates parallel coordination. Let us assume that each domain controls two solving-units, U1
and U2. The task of constructing an individual is schematically split up into two subtasks, one
concerned with managing proposals and counterproposals, one concerned with calculating the
related production plan, the latter being delegated to a solving unit. With regard to asynchronous
coordination, parallel coordination additionally speeds up the coordination process. However, as
more solving units are available, more individuals need to be constructed in “advance” based on
outdated rankings. Together with increasing the communication overhead, this can have a lim-
iting effect on the performance of the parallel coordination. Also, for asynchronous and parallel
computation, the meaning of the term “population” needs to be redefined. Due to time offsets
between construction, evaluation and updates, different kinds of individuals are contained in the
leader’s and followers’ populations. In fact, the domains need to manage four populations: idle
individuals, waiting individuals, complete individuals and deletable individuals. The terms idle,
waiting, complete and deletable refer to an individual’s state, cf. Section 4.4.1.

CHAPTER 5

The Resource-Constrained Project-Scheduling Problem

The Resource-Constrained Project-Scheduling Problem (RCPSP) belongs to the class of NP-hard
problems. Being a generalization of other well-known problems, such as job-shop or flow-shop
problems (cf. Blazewicz et al., 1983; Drexl, 1990; Neumann et al., 2001), the RCPSP has been a focus
of research for several decades. In our experimental study, the RCPSP forms the underlying prob-
lem of a single planning domain, which is assumed to optimize its production plan using the SAP
Detailed Scheduling (DS) Optimizer. We start by formulating the standard version of the RCPSP
in Section 5.1. Afterwards, we extend the standard formulation step by step to capture multiple
modes, minimum and maximum time lags, varying productivity and sequence-dependent setup
times. We conclude this chapter with an overview of present state-of-the-art approaches for solv-
ing the RCPSP. The DS Optimizer is presented in Chapter 6. Tables 5.1, 5.2 and 5.3 list the indices,
data and variables used in this discussion.

5.1 The basic problem

Very briefly, the RCPSP can be described as follows: A single project consists of several, interde-
pendent activities that need to be scheduled, such that

• the earliest release and latest finish dates of the project and its activities,

• the available resource capacity,

• and the precedence relations between the activities are respected.

To be more precise, we introduce the following definitions:

Definition 5.1.1. (planning interval) The planning interval is defined as the discrete time interval
[0, . . . , T] ∈ N0 consisting of several periods with a given period length (e.g., seconds), in which
all activities start and end.

Definition 5.1.2. (activities and resources) An activity j refers to a single production activity
(e.g., the assembly of parts). An activity has a start date sdj ∈ [0, . . . , T] and a duration dj ≥ 0,

69

70 CHAPTER 5. THE RESOURCE-CONSTRAINED PROJECT-SCHEDULING PROBLEM

j, k, l index for the activities, j = 1, . . . , n
J set of all activities
JS set of setup activities, JS ∈ J
m index of mode, m ∈Mj

Mj set of possible modes for activity j
Pj / Sj set of activities which immediately precede / succeed activity j
T planning horizon, i.e. the end of the planning interval

[
0, . . . , T

]
T :=

[
0, . . . , T

]
planning interval

t index for periods, t ∈
[
0, . . . , T

]
r index for renewable resource type, r ∈ R
R set of all renewable resources

Table 5.1: Indices and index sets for the RCPSP

ar constant capacity of resource r
art time-dependent capacity of resource r
cjm cost of running activity j in mode m
dj duration of activity j as an integral number of periods
djm duration of activity j in mode m
ddj soft-constrained due date of activity j
dlj deadline of activity j
efj propagated, earliest finish date of activity j
esj propagated, earliest start date of activity j
lfj propagated, pseudo-hard latest finish date of activity j
lsj propagated, pseudo-hard latest start date of activity j
pddj propagated, soft-constrained due date of activity j
rm primary resource of mode m
rdj release date of activity j
ujr constant per-period demand by activity j for resource r
ujmr constant per-period demand by activity j in mode m for resource r
wtl weighting of total lateness objective
wml weighting of maximum lateness objective
wtst weighting of total setup-time objective
wtsc weighting of total setup-cost objective
wtmc weighting of total mode-cost objective
wms weighting of makespan objective
λij minimum time lag between activity i and j
λij maximum time lag between activity i and j
ψjk setup cost for changeover from activity j to k
σjk setup duration for changeover from activity j to k

Table 5.2: Data for the RCPSP

fdj finish date of activity j
mj selected mode of activity j
sdj start date of activity j
thl total pseudo-hard lateness of the schedule
tl total lateness of the schedule
ml maximum lateness of the schedule
ms makespan of the schedule
tsc total setup cost of the schedule
tst total setup time of the schedule
tmc total mode cost of the schedule
twc total weighted cost

Table 5.3: Variables for the RCPSP

5.1. THE BASIC PROBLEM 71

defining the finish date fdj = sdj + dj . The set of all activities is referred to as J . Moreover,
there exists a set R of renewable resources.1 Each resource r has a constant capacity of ar units
that is renewed every period t. Activities compete for scarce resource capacity; that is, an activity
can only be executed if there is enough capacity available. When executed, an activity r places
a constant resource usage ujr on resource r throughout its duration. The time for executing an
activity is bounded by its release date rdj and its deadline dlj . We can further divide the set of
renewable resources into unary resources and multicapacitated resources. Unary resources only
allow one activity to be scheduled at a specific time, multicapacitated resources can handle several
activities at once.

Definition 5.1.3. (precedence relation) The activities have to be executed in a predefined partial
order, the so-called activity-precedence relation. For convenience, we introduce the sets Pj = {i ∈
J |i is the immediate predecessor of j} and Sj = {i ∈ J |i is the immediate successor of j}.

Definition 5.1.4. (RCPSP) An instance of the RCPSP is given by

• a planning interval [0, . . . , T],

• a set of activities J ,

• a set of renewable resources R,

• a precedence relation given by Pj or Sj for each activity j, respectively,

• the precedence and capacity constraints

sdj ≥ rdj ∀j ∈ J (5.1)

sdj ≥ fdi ∀j ∈ J, i ∈ Pj (5.2)

fdj = sdj + dj ∀j ∈ J (5.3)∑
j∈J| sdj≤t≤fdj

ujr ≤ ar ∀t ∈ [0, . . . , T], r ∈ R (5.4)

fdj ≤ dlj ∀j ∈ J (5.5)

• an objective function that shall be minimized or maximized.

Put verbally, an activity must not start before its release date (Equation 5.1) or before its imme-
diate predecessor has been finished (Equation 5.2). After being started, an activity has a constant
duration until it finishes (Equation 5.3). During execution, activities may use several resources. In
each period, available resource capacity must not be exceeded (Equation 5.4). An activity’s finish
date must lie before its deadline (Equation 5.5).

An assignment of start and finish dates to all activities respecting the constraints 5.1–5.4 is
called a feasible schedule, see also Sprecher et al. (1995). Solving the RCPSP aims to find the
schedule with the optimal objective function value. A classical objective is makespan minimiza-
tion, where the makespan is defined as the time from starting the first activity to finishing the last
activity. Other objectives are introduced in Section 5.7. Generally speaking, we seek to find the
best sequence of activities on the resources for the given objective function while preserving the

1Some problem definitions also include nonrenewable resources (e.g., Kolisch, 1995).

72 CHAPTER 5. THE RESOURCE-CONSTRAINED PROJECT-SCHEDULING PROBLEM

precedence relations and obeying capacity constraints. It should be noted that the activities con-
sidered here are nonpreemptive, i.e. all activities need to be processed in one piece. Furthermore,
we assume all data to be deterministic. Note that equations 5.1–5.5 define a conceptual model, be-
cause the sets {j ∈ J | sdj ≤ t ≤ fdj} in Equation 5.4 are functions of the decision variables sdj and
fdj . For different integer programming formulations of the RCPSP, see Stadtler (2005a), Neumann
et al. (2001) or Klein (2000). Since our focus lies on heuristic solution methods, we omit giving an
integer programming formulation.

If hard-constrained deadlines are set too early, the problem becomes infeasible. It should be
mentioned that the DS Optimizer introduced in the next chapter treats such deadlines as pseudo-
hard constraints. Though the resulting schedule may violate deadlines, it can be at least computed
and help the planner to identify capacity problems. Henceforth, we will denote constraints 5.1–
5.4 as the standard problem (not including the deadlines as constraints). More details are given in
Section 5.7.

Throughout the remainder of this thesis, we assume that enough capacity is available to solve
5.1–5.4. Thus, the computed schedule may violate deadlines but capacity constraints are always
respected. We further assume that T is sufficiently large to compute feasible schedules.2 To ease
the following presentation, the activities are assumed to be numbered following a topological
sorting: i < j if activity i is a predecessor of activity j.

For each activity j, we can calculate lower bounds esj for start dates and upper bounds lfj
for finish dates by performing a so-called forward or a backward pass (see also Klein, 2000).
Starting with es1 = rd1, the forward pass propagates the earliest start and finish dates through
the network by calculating

esj = max {rdj ,max {esi + di|i ∈ Pj}} for j = 1, . . . , |J |, (5.6)

efj = esj + dj , ∀j ∈ J . (5.7)

The backward pass propagates the upper bounds from the end of the horizon backward starting
with lfn = dln:

lfj = min {dlj ,min {lfh − dh|h ∈ Sj}} for j = |J |, . . . , 1, (5.8)

lsj = lfj − dj , ∀j ∈ J . (5.9)

Forward and backward passes allow us to derive tighter bounds for the activities’ start and finish
dates. That is, we can replace 5.1 with esj ≤ sdj ≤ lsj ∀j ∈ J and 5.5 with efj ≤ fdj ≤ lfj ∀j ∈ J .
Using the tighter bounds, subsequently applied scheduling heuristics can work more efficiently.

5.2 Active, semi-active and nondelay schedules

Classification of schedules is part of the basic preparation to tackling the RCPSP. Schedules can
be distinguished as active, semi-active and nondelay schedules. Traditionally, theses concepts
originate from the job-shop literature (cf. Sprecher et al., 1995) and are usually defined rather
informally. For the RCPSP, being a generalization of the job-shop problem, the usual informal

2That is, T ≥
∑|J|

j=1 dj in the “worst case” of a single unary resource.

5.2. ACTIVE, SEMI-ACTIVE AND NONDELAY SCHEDULES 73

definitions can lead to misunderstandings. Thus, we provide more rigorous definitions, adopted
from Sprecher et al. (1995).

Definition 5.2.1. (left shift) A left shift of activity j ∈ J is an operation on a feasible schedule S
that derives a new feasible schedule S∗ such that sd∗j < sdj and sd∗i = sdi, for i ∈ J, i 6= j.

Definition 5.2.2. (one-period left shift) A left shift of activity j ∈ J is called one-period left shift
if sdj − sd∗j = 1.

Definition 5.2.3. (local left shift) A local left shift of activity j ∈ J is a left shift of j obtainable by
one or more successively applied one-period left shifts.

Definition 5.2.4. (global left shift) A global left shift of activity j ∈ J is a left shift that is not
obtainable by a local left shift.

Having defined the above, we can define semi-active and active schedules.

Definition 5.2.5. (semi-active schedule) A semi-active schedule is a feasible schedule where none
of the activities can be locally left shifted.

Definition 5.2.6. (active schedule) An active schedule is a feasible schedule where none of the
activities can be globally left shifted.

Informally spoken, a semi-active schedule is a schedule where no activity can be started earlier
without changing the sequence of activities on the resources. An active schedule is a schedule
where no activity can be started earlier without delaying the start of another activity. Obviously,
all active schedules are also semi-active.

A third classification is possible. In the context of job-shop problems a nondelay schedule is a
schedule where no machine is kept idle at a time when it could begin processing some operation.
We can also give a more general definition of a nondelay schedule: According to Sprecher et al.
(1995), each RCPSP can be uniquely transformed to a unit-time-duration RCPSP (UTDRCPSP),
where each activity j ∈ J is split into dj activities, each of which with a duration one. Thus,
a feasible schedule S of the RCPSP uniquely corresponds to a feasible schedule UTDS of the
UTDRCPSP.

Definition 5.2.7. (nondelay schedule) A feasible schedule S for the RCPSP is called a nondelay
schedule if the corresponding UTDS is active.

Theorem 5.2.8. Let S denote the set of schedules, FES the set of feasible schedules (not violating
constraints 5.1- 5.4), SAS the set of semi-active schedules, AS the set of active schedules and NDS
the set of nondelay schedules. Then the following relations hold (cf. Sprecher et al., 1995).

NDS ⊆ AS ⊆ SAS ⊆ FES ⊆ S

As will become apparent later, different construction methods exist that produce either nonde-
lay, active or semi-active schedules. Interestingly, the objective function determines whether the
optimal schedule can be found within NDS , AS or SAS . We introduce the following definition.

Definition 5.2.9. (regular performance measure) Let fd1 , . . . , fdn be the finish dates of activities
1, . . . , n, respectively. A performance measure is a mapping, Φ : Zn≥0 → R≥0, that assigns each n-
tuple fd1 , . . . , fdn of activities a performance value Φ (fd1 , . . . , fdn). If Φ increases monotonically

74 CHAPTER 5. THE RESOURCE-CONSTRAINED PROJECT-SCHEDULING PROBLEM

with respect to component-wise ordering—mathematically, if Φ(fd1 , . . . , fdn) > Φ(fd∗1 , . . . , fd
∗
n)

implies ∀j ∈ J : fdj ≥ fd∗j and ∃j ∈ J : fdj > fd∗j—and, in addition, minimization is considered,
we denote the performance measure as regular.

Makespan minimization is obviously a regular performance measure. It can easily be seen that
if Φ is regular and a schedule S∗ is obtainable from S by a global or local left shift, then S is dom-
inated by S∗, w.r.t. Φ. Hence, for regular performance measures, the optimal schedule is within
the set of all active schedules. However, as Sprecher et al. (1995) show by a counterexample, the
optimal schedule is not necessarily within the set of all nondelay schedules. Idle times in active
schedules allow resources to wait for more critical activities that are due to be available, and this
can lead to improved finish dates. A more comprehensive classification of performance measures
can be found in Neumann et al. (2001).

The constraints of the standard RCPSP 5.1–5.4 are now gradually extended in the next sections
until the problem underlying the DS Optimizer has been defined.

5.3 Minimum and maximum time lags

Until now, we have assumed that each activity is allowed to start directly after the finishing of
its predecessor. We can generalize this finish-to-start (FS) relation by introducing minimum and
maximum time lags (also called links), λFS

ij , λ
FS

ij ; see Klein (2000), Neumann et al. (2001) and
Schwindt (2005) for a detailed introduction to time lags. A minimum time lag constitutes the
minimum time needed between the finishing of an activity i and the starting of its successor j, the
maximum time lag the maximum allowed time. Moreover, there exist further relation types such
as start-to-finish (λSFij , λ

SF

ij), finish-to-finish (λFFij , λ
FF

ij) and start-to-start (λSSij , λ
SS

ij) relations. To
incorporate these new constraints in the RCPSP formulation, Equation 5.2 needs to be replaced
by:

sdj ≥ fdi + λFS
ij ∀j ∈ J, i ∈ Pj (5.10)

sdj ≥ sdi + λSSij ∀j ∈ J, i ∈ Pj (5.11)

fdj ≥ fdi + λFFij ∀j ∈ J, i ∈ Pj (5.12)

fdj ≥ sdi + λSFij ∀j ∈ J, i ∈ Pj (5.13)

sdj ≤ fdi + λ
FS

ij ∀j ∈ J, i ∈ Pj (5.14)

sdj ≤ sdi + λ
SS

ij ∀j ∈ J, i ∈ Pj (5.15)

fdj ≤ fdi + λ
FF

ij ∀j ∈ J, i ∈ Pj (5.16)

fdj ≤ sdi + λ
SF

ij ∀j ∈ J, i ∈ Pj . (5.17)

By considering the min-links, the earliest start dates can be calculated by a modified forward pass
(cf. Klein, 2000, p.44) as

esj = max
{
rdj ,max

i∈Pj

(
esi + λSSij

)
,max
i∈Pj

(
esi + di + λFS

ij

)
,max
i∈Pj

(
esi + λSFij − dj

)
,

max
i∈Pj

(
esi + di + λFFij − dj

)}
∀j ∈ {1, . . . , |J |} . (5.18)

5.4. MULTIPLE MODES 75

Analogously, the latest finish dates can be calculated by

lfj = min
{
dlj ,min

i∈Sj

(
lfi − λSSij + dj

)
,min
i∈Sj

(
lfi − λFS

ij − dj
)
,

min
i∈Sj

(
lfi + di − λSFij

)
, min
i∈Sj

(
lfi − λFFij

)}
∀j ∈ {|J |, . . . , 1} . (5.19)

Maximum links do not affect earliest start dates and latest finish dates. Instead, they deter-
mine the latest start date and the earliest finish date of an activity. Backward and forward passes
considering max-links can be implemented analogously to 5.18 and 5.19. If max-links and min-
links form part of the problem such simple forward and backward passes are no longer possible
because max-links can outdate previously computed upper and lower bounds, calculated on the
basis of min-links, and vice-versa. Instead, a dynamic programming approach (cf. Schwindt, 2005,
p.13) is applied that processes a set of outdated (or yet unconsidered) activities until this set be-
comes empty. However, for the sake of convenience, we will still speak of forward and backward
passes henceforth, although both terms relate to the same dynamic programming approach in the
case of min- and max-links. We do not go further into the details here, simply assuming that the
deadlines are set in such a way that there exist feasible intervals for earliest and latest start and
finish dates for all activities.

5.4 Multiple modes

A mode is a resource and processing time assignment to an activity. For example a product can
be produced on one of several alternative machines. Put mathematically, each activity j can be
scheduled in a specific mode mj . Each mode m defines the capacity utilization on the primary
resource rm and optionally other secondary resources. Primary resources are the resources of
main interest and have the additional property of varying setup states, which will be explained
later in more detail. We refer to the set of an activity’s possible modes as Mj . To capture multiple
modes, the standard RCPSP 5.1 to 5.4 needs to be extended to

5.1–5.4

mj ∈Mj ∀j ∈ J (5.20)

dj = djmj
∀j ∈ J (5.21)∑

j∈J| sdj≤t≤fdj

ujmjr ≤ ar ∀t ∈ [0, . . . , T], r ∈ R. (5.22)

Moreover, there are often mode compatibility constraints. For example, if the first activity of a
production process was scheduled on a specific line, all subsequent activities have to be sched-
uled on the same line. In these cases, Mj depends on the activity’s predecessors and needs to be
dynamically adapted during scheduling, as will be discussed in Chapter 6.

The backward and forward passes are extended in such a way that the computed upper and
lower bounds relate to the “best combination” of modes (shortest and longest durations). During
backward and forward passes, some modes might also be identified as infeasible in a practical
setting. Their duration might either be too long to meet the required deadlines or their resource
utilization might exceed present resource capacity profiles. Such modes are thus marked as inac-

76 CHAPTER 5. THE RESOURCE-CONSTRAINED PROJECT-SCHEDULING PROBLEM

cessible (removed from the set Mj) when the forward and backward pass is applied.

5.5 Varying capacity and calendars

The complexity of many practical problems has its origin in the time dependence of the resources’
properties. First, capacity may vary over time, and we must ascertain that, during the duration
of an activity, enough capacity is available as expressed by Equation 5.24. Second, productivity
may vary. Imagine a late-night shift, where only half of the workforce is available. This might
influence activities scheduled overnight to take twice as much time as during the day. During
a weekend, productivity might also drop to zero. That is, an activity of 10 hours can be started
before the weekend, where 3 hours of work are finished on Friday and the remaining seven hours
on Monday. Put mathematically, an activity’s gross-duration is a function of its start date, the
net-duration, and the involved resources, as shown in Equation 5.23. The standard RCPSP for-
mulation 5.1–5.3 can be modified to

5.1–5.3, 5.20, 5.21

fdj = sdj +BFD(sdj , djmj , rmj) ∀j ∈ J (5.23)∑
j∈J| sdj≤j≤fdj

ujmjr ≤ art ∀t ∈ [0, . . . , T], r ∈ R\B. (5.24)

When performing backward or forward passes (5.6, 5.7, 5.8, 5.9,5.18,5.19), the gross-duration
rather than the net-duration dj of an activity is taken, if calendars are included. The duration of
an activity is extended by breaks and lower productivity in the time period the activity currently
occupies. Calendars can be different for different resources. For simplicity, only the productiv-
ity and break calendars of one resource (usually the primary resource) are considered for each
mode. Thus, the function BFD calculates the gross finish date for a given start date sdj , a given
net-duration of the selected mode, and the related primary resource. For backward passes, a func-
tion BSD exists analogously calculating the gross start date, given the current finish date, the net
duration and the primary resource. It should be emphasized that calendars do not affect length
of time lags, however.

5.6 Sequence-dependent setup times

In the standard RCPSP formulation 5.1–5.4, it was implicitly assumed that the duration dj of
an activity j reflects its setup and processing time. This assumption makes sense if the setup
times are small compared to the processing times. However, if setup times are considerable large
and if some activities require the same setup, the makespan could be reduced by batching these
activities. Moreover, the duration and cost of a setup could be sequence dependent, its length
might depend on the previous activity scheduled on the same machine. For example, painting a
product white after red can require considerably more cleaning of the equipment than vice versa
(cf. Engelmann, 1998; Kolisch, 1995).

In our RCPSP formulation, sequence-dependent setup times are modeled by setup activities.
Setup activities are like standard activities except for the fact that their net-duration varies, de-
pending on the required setup-state transition. Setup-activities do not stand alone but “prepare”
a resource for an appurtenant standard activity by changing the resource’s setup state to the state

5.7. OBJECTIVE FUNCTION 77

required by the standard activity. Intuitively, the two appurtenant activities need to be scheduled
on the same resource, which can be modeled by a mode-compatibility constraint. We can extend
our formulation by

5.1–5.3, 5.20, 5.23, 5.24

dj = djmj
∀j ∈ J\JS (5.25)

dj = σij ∀j ∈ JS , i ∈ J\JS if rmj
= rmi

and there is no activity

k with rmj = rmi = rmk
and sj ≤ sk ≤ si. (5.26)

Equation 5.26 defines that the length of a setup activity depends on its machine predecessor
on the same primary resource. Moreover, we assume the related primary resources to be unary
resources. In contrast to multicapacity resources, unary resources allow only one activity to be
scheduled at any time:

art ∈ {0, 1} ∀r that are primary resources, t ∈ T (5.27)

ujmr = 1 ∀j ∈ J with r as primary setup resource. (5.28)

We need to make this restriction to have well-defined setup-state transitions, see also Engelmann
(1998). If required, multicapacity setup resources can be included by splitting them up into mul-
tiple unary resources accessible over the modes of the related activities.

5.7 Objective function

Besides minimizing the makespan, other objectives are important. This section lists all objectives
that can be considered in the DS Optimizer. To consider multiple objectives within one objective
function, a weighted sum approach is usually used. That is, for each of the (possibly conflicting)
objectives, a weight is specified a priori and the weighted sum of objectives is then minimized—see
also Section 4.2 for more details on this approach. An exception is the minimization of pseudo-
hard lateness3 (relating to the violation of deadlines), which dominates the weighted sum of other
objectives.

5.7.1 Minimize total pseudo-hard lateness

According to 5.1–5.5, activities’ finish-dates are constrained to be below the pseudo-hard bounds
dlj . However, for the sake of calculating a finite plan, the DS Optimizer is allowed to violate
deadlines. Hence, the most important objective is to reduce this violation. Put mathematically, we
want to

Minimize thl =
∑
j∈J

max {fdj − lfj , sdj − lsj , 0} . (5.29)

Obviously, lateness minimization is a regular performance measure. The minimization of pseudo-
hard lateness dominates as top-priority single objective the weighted sum of the following objec-
tives.

3In literature also the term tardiness is used frequently. In this thesis we will stick to the term lateness as it is used as
standard in the SAP Software.

78 CHAPTER 5. THE RESOURCE-CONSTRAINED PROJECT-SCHEDULING PROBLEM

5.7.2 Minimize makespan

The makespan-minimization objective can be formulated as

Minimize ms = max
j∈J

fdj −min
j∈J

sdj . (5.30)

5.7.3 Minimize total lateness

In addition to deadlines, due dates are modeled as soft constraints (ddj), influencing the weighted
sum of second-priority objectives. Usually, soft-constrained due dates are used to model customer
preferences, whereas deadlines refer to technological constraints. In practice, the lateness between
promised soft-constrained due date and the realized finishing date of production is important
since it measures the service level provided to the customer. The total lateness can be taken into
account by including 5.31 in the objective function.

Minimize tl =
∑
j∈J

max {fdj − ddj , 0} (5.31)

It is worth mentioning that backward passes can be performed not only for deadlines, but also
for the soft-constrained due dates. The proceeding is analogue to deadlines (cf. equations 5.6 , 5.7
and 5.19). For the standard problem, propagated due dates pddj can be computed as

pddj = min {ddj , dlj ,min {pddh − ndh|h ∈ Sj}} ; for j = n, . . . , 1. (5.32)

Propagated due dates are not used as objectives, but rather influence the construction of initial
solutions as will be discussed in Chapter 6.

5.7.4 Minimize maximum lateness

In addition to the total lateness also the maximum lateness is considered to be important. Includ-
ing the minimization of the maximum lateness in the objective function attempts to avoid situa-
tions where a few customers experience extraordinarily huge delay. We can consider maximum
lateness by minimizing

ml = max
{

max
j∈J

(fdj − ddj) , 0
}

. (5.33)

Obviously, the maximum-lateness objective belongs to the class of regular performance measures,
too.

5.7.5 Minimize total mode cost

In the multi-mode case 5.1–5.4 and 5.20–5.22, we can also consider the cost of running an activity
in a specific mode in the objective function. Let cjs be the cost associated with running an activity
in a specific mode. The total mode cost can be optimized by

Minimize tmc =
∑
j∈J

cmj
. (5.34)

Mode costs facilitate the introduction of preferences about the loading of machines.

5.7. OBJECTIVE FUNCTION 79

5.7.6 Minimize total setup time

Sequence-dependent setup times have a direct impact on the makespan of a project. To some
degree, minimizing the makespan requires sequences of activities with small setup times. Past
experience with the DS Optimizer indicates, however, that including setup times as a separate,
additional objective can help to steer the search process in the right direction. Minimizing the
total sum of setup times can be formulated as

Minimize tst =
∑
j∈JS

∑
i∈J\JS

σij · 1(i, j), where (5.35)

1(i, j) =

1 if rmj

= rmi
and there is no activity k with

rmj
= rmi

= rmk
and sj ≤ sk ≤ si

0 otherwise.

(5.36)

Setup times do not belong to the class of regular performance measures. An example can easily
be imagined where a global left shift of an activity leads to unfavorable setup-state transitions
with increased setup times. If setup times are considered within the objective function, the optimal
schedule may not lie within the set of all active schedules, but rather in the set of all semi-active
schedules.

5.7.7 Minimize total setup cost

In addition, cost can be assigned for changing a resource’s setup state:

Minimize tsc =
∑
j∈JS

∑
i∈J\JS

ψij · 1(i, j). (5.37)

As with setup times, setup costs are not a regular performance measure.

5.7.8 Total objective function

Concluding this section, the overall goal is to minimize a weighted sum of different objectives
without violating the bounds for pseudo-hard lateness. Mathematically, the weighted sum of low-
priority objectives can be stated as follows.

twc = wms ·ms+ wtl · tl + wml ·ml + wtst · tst+ wtsc · tsc+ wtmc · tmc (5.38)

To compare two schedules, the following lexicographic sorting is used.

p � q ⇔
(
thl(p) < thl(q)

)
∨
(
thl(p) = thl(q) ∧ twc(p) < twc(q)

)
(5.39)

As we will see, the DS Optimizer uses this relation extensively to rank different schedules that are
consecutively constructed.

80 CHAPTER 5. THE RESOURCE-CONSTRAINED PROJECT-SCHEDULING PROBLEM

5.8 Further constraints and objectives

The DS Optimizer supports other constraints that are not explicitly treated here. They are just
mentioned for the sake of completeness. In practice, activities may exist without any mode or
resource assignment. Moreover, several activities may be fixed at certain positions. Also, an-
other type of calendar, the so-called shift calendar, is supported where activities must start and
end within the same shift. Furthermore, soft-constrained due dates can have different objective
weights assigned: For example, one due date can be considered to be “twice as important” than
another. With regard to the proposed coordination mechanism, we assume all due dates to be
of equal importance in order to stay as generic as possible w.r.t. the underlying optimizer. Our
hope is that the coordination mechanism is applicable to a larger set of optimizers as only a few
requirements have been stated. The DS Optimizer also supports due dates and deadlines for the
start date of an activity, which will be omitted too.

From a business perspective, the related order rather than the activity is relevant. Essentially,
an order comprises several activities belonging to the same production (sub)process. For example,
a setup activity cannot stand alone; it must come in connection with another nonsetup activity.
Orders are closely linked to certain master-data structures, such as production process models,
and are, for example, of importance for calculating lot sizes in previously executed Production
Planning. Except for the alignment heuristics to be presented in Section 6.2, orders play a negligi-
ble role for the DS Optimizer, however.

5.9 State-of-the-art heuristics to solve the RCPSP

This aim of this section is to give an overview of the state-of-the-art heuristics that will be used
to solve the RCPSP. Being an extension of the job-shop problem, the RCPSP belongs to the class
of NP-hard problems (cf. Blazewicz et al., 1983). Searching for an optimal allocation of scarce
resources usually involves two steps (cf. Herroelen et al., 1998): sequencing and scheduling. Se-
quencing concerns the ordering in which the activities have to be performed. Scheduling deals
with the actual placement of the activities by defining which activities are to be performed at
a particular time. For practical problem sizes and runtime requirements, heuristic approaches
are indispensable and form the focus of this thesis (cf. Neumann et al., 2001, p. 110). For an
overview of exact approaches, such as branch-and-bound schemes, the interested reader is re-
ferred to Manne (1960), Blazewicz et al. (1996), Herroelen et al. (1998), Brucker et al. (1999),
Klein (2000), Brucker and Knust (2000), Neumann et al. (2001), and Damay et al. (2007). Com-
prehensive overviews of heuristic approaches are provided by Kolisch (1995), Kolisch and Hart-
mann (1999), Hartmann and Kolisch (2000), Klein (2000), Ponnambalam et al. (2001), Alcaraz and
Maroto (2001), and Kolisch and Hartmann (2006). The following classification has been adopted
from Hartmann and Kolisch (2000), Alcaraz and Maroto (2001), and Kolisch and Hartmann (2006).

5.9.1 Schedule-generation schemes

The basic building block of most heuristics is a so-called schedule-generation scheme (SGS). An
SGS starts from scratch and builds a feasible schedule by iteratively extending a partial schedule.
According to Hartmann and Kolisch (2000) and Kolisch and Hartmann (1999), the two main SGS

5.9. STATE-OF-THE-ART HEURISTICS TO SOLVE THE RCPSP 81

types can be distinguished w.r.t. activity and time incrementation. Serial SGS perform activity
incrementation while parallel SGS perform time incrementation.

5.9.1.1 Serial schedule-generation scheme

For the standard RCPSP 5.1–5.4, the serial SGS consists of |J | stages in each of which an activity
is selected from the eligible set and scheduled at the earliest precedence- and resource-feasible
time. The eligible set comprises all unscheduled activities whose predecessors have already been
completed. Usually, the eligible set contains several candidates and one activity needs to be cho-
sen by some additional rule. In general, the serial SGS creates active schedules (Hartmann and
Kolisch, 2000). Another variant is to presort all unscheduled activities once at the beginning (Hart-
mann, 1998; Engelmann, 1998; Alcaraz and Maroto, 2001; Jozefowska et al., 2001; Hartmann, 2002;
Bouleimen and Lecocq, 2003; Debels and Vanhoucke, 2005), such that the sorted sequence of ac-
tivities already respects the partial order implied by the precedence constraints. This encoding is
also referred to as an activity list. Using an activity list supersedes the computation of the eligible
set.

5.9.1.2 Parallel schedule-generation scheme

The parallel SGS does time incrementation. For each iteration there is a schedule time and a set
of eligible activities. For parallel scheduling an activity is eligible if it can be precedence- and
resource-feasibly started at the current schedule time. Activities are chosen from the eligible set
and started at schedule time until there are no more eligible activities left. Afterwards, the sched-
ule time is incremented. It has been shown by Kolisch (1996) that the parallel SGS produces non-
delay schedules. Thus, for regular objective functions the optimal solution is not necessarily ob-
tainable by parallel SGS.

5.9.2 X-Pass methods

X-Pass methods, also known as priority rules, employ one or both forms of SGS in order to
construct one or more schedules. We distinguish between single-pass methods, which only con-
struct one schedule, and multipass methods (cf. Hartmann, 1998). It should be emphasized that
multipass methods usually do not consider knowledge of previously generated solutions when
constructing a schedule.

A priority rule is employed to select one of the eligible candidates at each stage of the SGS.
A function, v(j), assigns a priority value to each eligible activity. Among all candidates, the one
with the lowest value is chosen (as there is no convention, some authors prefer highest values).
In the case of ties, one or several tie-breaking rules are employed. Typical priority rules are, for
example, minimum processing time (the activity with shortest duration is chosen), maximum
processing time, minimum latest finish date (the activity with earliest propagated due dates is
chosen) or minimum slack time (the activity with smallest interval between earliest start date and
propagated due date is prioritized).

Multipass methods combine single-pass methods in multiple ways. Multipriority rules de-
rive several schedules by using different rules for the same SGS. Eventually the best schedule is
finally chosen. Sampling methods generally make use of one SGS and one priority rule. Different
schedules are constructed by biasing the selection of the priority rule through a random device.

82 CHAPTER 5. THE RESOURCE-CONSTRAINED PROJECT-SCHEDULING PROBLEM

For more details the interested reader is referred to Hartmann (1998), Kolisch (1996) or Kolisch
(1995).

5.9.3 Metaheuristic approaches

Though multipass methods allow the rapid computation of a variety of schedules, they do not
support the learning of effective priority values for the problem at hand. This is the point where
metaheuristics come into play. Due to the combinatorial complexity of the RCPSP, a direct en-
coding, a vector of start dates, cannot be recommended, since the resulting schedules would be
highly infeasible. Instead, metaheuristics are used as learning strategies to calibrate the parame-
ters of the underlying heuristics. With regard to the RCPSP, a very common approach is to encode
the sequence of activities in form of permutations or probabilities and to construct the related
schedule by a serial or parallel SGS. Initialized by standard priority rules, the aim of the meta-
heuristic is then to find the best suited permutation or probability distribution for the problem
at hand. It should be noted that serial or parallel SGS is generally not a bijective function4, i.e.
several encodings are usually mapped to the same schedule. The following encodings dominate
the present literature.

5.9.3.1 Permutation encoding

Mattfeld (1995, p. 74) gives an overview of common encodings in the job-shop literature. For
his own computational analysis, he encodes the priorities of tasks in a permutation, whereas a
job comprises a set of tasks. To ensure feasibility w.r.t. precedence constraints between the tasks,
not the task-number but the job number is used repetitively. For each permutation entry the first
unscheduled task of the indicated job is chosen to be scheduled within a serial SGS. If the set of el-
igible candidates comprises several tasks, the task belonging to the most prioritized job is chosen.
More details on this “permutation with repetition” encoding can also be found in Bierwith (1995).
In Mattfeld and Bierwith (2004), two variants of a permutation-based Genetic Algorithm (GA)
are compared, where the permutations are encoded by either a serial or a parallel SGS to active
or nondelay schedules, respectively. While the set of active schedules always contains an optimal
schedule for regular performance measures, the set of nondelay schedules is usually smaller and
can be explored more quickly. Regarding the RCPSP, Kim et al. (2003) use a permutation encoding
and the serial SGS to construct RCPSP schedules in their GA.

5.9.3.2 Activity-list encoding

As already discussed in Section 5.9.1.1, an alternative to permutation encoding is a presorted
list of activities. Presorted lists have the advantage that activities can be directly scheduled one
after the other, without the need for computing the eligible set. Using activity lists, Bouleimen
and Lecocq (2003) tackle the RCPSP with a simulated annealing method. They define the neigh-
borhood of an activity list as the set of perturbations reachable by insert operations. An insert
operation selects an activity from the list and inserts it at another position between the related
preceding and succeeding activities. This guarantees that the altered activity list does not violate

4In mathematics, a bijective function is a function f that maps a setX to a set Y with the property that, for every y ∈ Y ,
there is exactly one x ∈ X such that f(x) = y. A function f is bijective if and only if its inverse relation f−1 is a function,
too.

5.9. STATE-OF-THE-ART HEURISTICS TO SOLVE THE RCPSP 83

any precedence constraints. For the multi-mode version of the RCPSP, a second encoding is intro-
duced, storing the selected mode for each activity. The neighborhood is then defined by an insert
operation on the activity list and a random change of a selected mode. Once the modes have been
selected, a serial SGS is used as decoding function. A similar representation is used by Jozefowska
et al. (2001). A GA to tackle the multi-mode RCPSP is also presented by Hartmann (2001).

For the standard RCPSP, Alcaraz and Maroto (2001) present a GA that decodes an activity list
by serial scheduling. The focus of their paper is on suitable crossover operators. Also Hindi et al.
(2002) describe a GA relying on activity-list encoding and a serial SGS. Hartmann (2002) not only
encodes the sequence of activities, but also the decision whether to use parallel or serial SGS as
the decoding procedure. While a parallel SGS usually leads to good solutions at the beginning
of an optimization run, it has a weak performance towards the end of the run since optimal or
close-to-optimal schedules may not be contained in the set of nondelay schedules. However, it
is usually impossible to predict which SGS will perform better for an arbitrary instance of the
RCPSP. According to the author, the self-adapting GA outperforms other state-of-the-art meta-
heuristics.

Debels and Vanhoucke (2005) apply a forward and backward serial SGS to obtain left- and
right-aligned schedules, cf. Section 5.9.4. So-called backward serial scheduling constructs a right-
aligned schedule by placing the activities as late as possible, starting with the rightmost activity of
the list. Using two populations—one being decoded by forward serial SGS to left-aligned sched-
ules, the other being decoded by backward serial SGS to right-aligned schedules and crossover
operators with the ability to merge parents of the two different populations to new children—the
authors search for minimum-makespan schedules.

The above approaches restrict neighborhood moves and mutations in such a way, that the
precedence relation between entries of an activity list is not violated. Thus, within the current
list, an activity is never shifted before its predecessors or behind its successors. This restricts the
neighborhood in a nondeterministic and unpleasant way. If, for example, an activity is initially
positioned towards the right end of the list it prunes the possibility of left moves of all its direct
and indirect successors. To be able to shift the successors to the left, the obstructing activity has
to be removed first. However, shifting only the obstructing activity and not its successors might
worsen the fitness, such that this direction is not explored further or with only low probability.
Thus, local optima are artificially introduced by the above neighborhood definition. To overcome
the above difficulties, Fleszar and Hindi (2004) employ another neighborhood definition in a hill-
climbing algorithm using a serial SGS. Neighborhood moves are obtained by shifting one list
entry, j, to another position. The activity list is subsequently repaired by shifting all predecessors
and successors of j until precedence constraints are obeyed.

Being an GA, also the DS Optimizer relies on an activity-list representation, see also Engel-
mann (1998). The algorithm impresses through its variety of genetic operators and its applica-
bility to a wide range of practical problems, including max-links, multi-modes, setup times and
calendars and combines several of the concepts mentioned in this section. A detailed discussion
is presented in Chapter 6.

5.9.3.3 Random-key representation

Other representations encode the decision to select an activity of the eligible set directly. Such
random-key representations assign a number to each activity of the project. Again, both the serial

84 CHAPTER 5. THE RESOURCE-CONSTRAINED PROJECT-SCHEDULING PROBLEM

and parallel SGS can be used to construct the related schedule, whereas the activity with highest
priority is taken from the eligible set. In contrast to the activity-list representation, every random-
key assignment leads to a feasible schedule. Leon and Ramamoorthy (1995) use a parallel SGS
to construct schedules within a local search algorithm and test an EA as well. Naphade et al.
(1997) use a so-called problem-space representation. Basically, they use the min-slack priority
rule to decide which activity to select from the eligible set. The slack is computed as the difference
between latest (static) finish date and the earliest start date (according to the partial schedule):
lfj −maxk∈Pj

fdk (not considering min-links). Instead of priority values, the authors encode per-
turbations of the latest finish dates and apply a local search heuristic. Parallel or serial scheduling
is randomly applied as a decoding function. Valls et al. (2003) employ tabu-search heuristics based
on a topological-order representation. Here, the numbers assigned to activities respect the topo-
logical order implied by the precedence constraints, which is an effective strategy to reduce the
size of the search space. Simulated Annealing based on a random-key representation and a serial
SGS is presented by Cho and Kim (1997). To solve the familiar multiproject RCPSP, Goncalves
et al. (2007) use a parametrized SGS: A maximum allowed delay time assigned to each activity
determines the degree between nondelay and active scheduling. To allow for self-adaptation, the
maximum allowed delay times are also encoded with the priorities.

5.9.3.4 Priority-rule representation

In the priority-rule representation, a solution is represented by a vector with as many positions
as activities in the project. Each position is occupied by a rule from a given set of priority rules.
The i-th rule of the vector is used to decide which activity to schedule at stage i of a serial or
parallel SGS. Hartmann (2002) uses a serial SGS in combination with a GA based on a priority-
rule representation. More examples are listed by Alcaraz and Maroto (2001).

5.9.3.5 Other representations

Other metaheuristics also rely on serial or parallel SGS. For example, Merkle et al. (2002) devel-
oped two ant-colony optimization algorithms, based on the serial and parallel SGS, respectively.
At each stage of the SGS, the activity to be scheduled is randomly selected from the eligible set
on the basis of probabilities stored in a so-called pheromone matrix. The pheromone values are
iteratively updated based on the fitness of previous completed schedules.

5.9.4 Improvement by right-left-alignment

An interesting technique to improve feasible schedules is a right–left-alignment. We define a
right-aligned schedule as a schedule where no activity can be finished later without advanc-
ing some other activity, or violating the constraints, or increasing the objective function. Right-
alignment considers activities from right to left and shifts each activity to the latest feasible date
(global right shift) that does not lead to an increase of the objective function. Vice versa, a left-
aligned schedule is a schedule where no activity can be started earlier without delaying another
activity, or violating the constraints, or increasing the objective function. Left-alignment consid-
ers activities from left to right and shifts each activity to its earliest feasible date (global left shift).
Section 6.2 discusses in detail the related heuristics of the SAP DS Optimizer. We speak of right-

5.9. STATE-OF-THE-ART HEURISTICS TO SOLVE THE RCPSP 85

left-alignment if first a right-alignment is applied to a schedule, followed by a left-alignment.5

By definition, a right-left-alignment cannot deteriorate the objective value. However, applying
right-left-alignments iteratively can lead to more compact schedules and hence better objective
values for many performance measures. Li and Willis (1992) explain the improvements on the
later schedules by an analogy:

Suppose we have a box of wooden blocks of various lengths and sizes. If we turn
the box over a few times, the movement will shift some blocks into alignment with
each other and consequently, the overall volume occupied by all blocks will become
smaller. (p. 275)

The authors developed a heuristic that iteratively reschedules an initial schedule forward and
backward until no further improvement is possible. Instead of a right-alignment based on a series
of global shifts, the authors apply a backward serial SGS, where priorities are determined by the
sequence of the activities of the initial schedule. The resulting schedule may be infeasible as it
reaches into the past. A subsequent left-aligned schedule is derived by a serial forward SGS with
priorities based on the backward schedule and so on.

Valls et al. (2005) considered the right-left-alignment technique as a local-search strategy for
different metaheuristics and were able to show improvements over the standard decoding proce-
dure of applying a serial SGS. Tormos and Lova (2001) combine a sampling method and a serial
SGS with a subsequent right-left-alignment. In Tormos and Lova (2003), the authors enhance this
approach. Right-left-alignment is only applied if the schedule constructed by sampling is better
than the average of solutions generated by sampling so far. Applying a so-called local-constraint
based analysis, Özdamar and Gündüz (1996) use the dynamic time windows given by a forward
SGS to select activities of the eligible set in the subsequent backward SGS and vice versa, which
is slightly different from the right-left-alignment defined by Valls et al. (2005). Also Klein (1998)
combines forward and backward scheduling to increase the performance of standard priority
rules.

We do not claim the above selection of papers to be complete. Our primary intention was
to show that many researchers consider metaheuristics based on serial or parallel SGS, as well as
alignment techniques, to be efficient methods to tackle the RCPSP. For a more detailed review and
numerical comparisons, the interested reader is referred to the works of Hartmann and Kolisch
(2000) and Kolisch and Hartmann (2006).

5This technique is also called forward-backward improvement, cf. Kolisch and Hartmann (2006) or double justification,
cf. Valls et al. (2005). However, in this thesis we will stick to the term right-left-alignment to be able to better differentiate
from related, but different techniques presented later.

86 CHAPTER 5. THE RESOURCE-CONSTRAINED PROJECT-SCHEDULING PROBLEM

CHAPTER 6

The SAP Detailed Scheduling Optimizer

The SAP Detailed Scheduling (DS) Optimizer is a tool for computing detailed schedules on an op-
erational level. Assuming an integrated distribution and production planning scenario (cf. Dick-
ersbach, 2003, Chapter 6), a rough-cut quantity-based plan is calculated first on a Master Planning
level using the SAP Supply Network Planning (SNP) Optimizer, cf. Chapter 2. Essentially, the
SNP Optimizer calculates resource allocation, product mix and distribution for several produc-
tion plants. Based on this first allocation, production plans for each plant are calculated during
a subsequent SAP Production Planning (PP) run. SAP Production Planning extends the common
Material–Requirements–Planning (MRP). Briefly summarized, it provides the following function-
ality. First, several heuristics are available to calculate lot sizes, ranging from simple lot-for-lot
strategies to heuristics supposed to find a good trade-off between fixed and variable costs for lots.
Producing a lot triggers a production activity. Second, PP creates the so-called pegging-net, where
each activity is related to activities producing needed input products. Third, the activities can be
roughly scheduled by some further heuristics. Obviously, it is a very hard task to compute the
pegging-net and the lot sizes and to schedule the resulting activities simultaneously. A strategy
to reduce complexity is to freeze the pegging-net after the PP run. The task is then to find a sat-
isfying sequence of the activities on the resources without changing activity-precedence relations
or violating available capacity—this combinatorial problem belongs to the class of RCPSPs.

The DS Optimizer has been developed to solve large-scale RCPSP instances and relies on a
generic model formulation supporting several RCPSP-related extensions, as described in Chapter
5. The DS Optimizer itself comprises several modules, as depicted in Figure 6.1. The connecting
entity is the so-called context, an accumulation of C++ objects that represents an RCPSP instance
and its solution (assigned modes, start and finish dates) in the memory of the computer. The
context is created by a model generator, which either uses data from the application database,
or—in case of a stand-alone usage of the DS Optimizer—uses text files or hard-coded C++ classes
to generate a context. The model generator not only supports the “downloading” of a problem,
but also allows “uploading” a solved context into the database, or writing the results in text files.

Once a context has been generated it can be passed to several modules. The solving module is
responsible for deriving a solution and modifying the relevant objects of the context accordingly,

87

88 CHAPTER 6. THE SAP DETAILED SCHEDULING OPTIMIZER

Figure 6.1: Main modules of the DS Optimizer.

such as setting the start and release dates or selecting the modes. A Genetic Algorithm (GA) using
a serial SGS as decoding function proved most successful and is nowadays used as the standard.
The algorithm is described in detail in the following sections. Moreover, several heuristics exist
to modify a context, for example by calculating forward or backward passes. Other important
heuristics allow the shifting of activities left or right, similar to the right- and left-alignment pro-
cedures mentioned in Section 5.9.

Last but not least, several top-level metaheuristics complete the portfolio of tools. These meta-
heuristics allow the extraction, modification and backinsertion of subcontexts out of and into
the original context. For example, there exists a time decomposition that sequentially improves a
large context (representing an already feasible solution) by extracting subcontexts of activities cur-
rently located in a certain time window. Each subcontext is then separately passed to the solving
module which tries to improve the isolated problem without violating precedence and capacity
constraints at the boundary to the remaining (global) context. The overall solution is improved
by letting the time window iteratively glide over the set of all activities. As the problem decom-
poses this way, the solution quality usually degrades, but the time for finding a solution can be
quasi-linearized. By adjusting the size of the time window, we can calibrate the trade-off between
solution quality and convergence speed. Such metaheuristics proved to be an efficient means to
efficiently tackle large-scale scheduling problems. However, since they are not used for our com-
putational tests, these top-level metaheuristics won’t be explained in detail.

6.1 The Detailed Scheduling solving module

When it comes to the task of scheduling many activities, methods relying on a serial SGS are
commonly used to construct good schedules in a limited amount of time, as already discussed in
Section 5.9. With respect to capacity constraints, the generated schedules are always feasible (for
reasonable capacity profiles). Due dates might be violated, however. In a practical environment
such plans containing delayed activities are preferred over plans that violate capacity constraints.
The GA underlying the DS Solving module relies on an activity-list representation, cf. Section 5.9.
The activity list is then decoded by a serial SGS. However, max-links and setup times require a

6.1. THE DETAILED SCHEDULING SOLVING MODULE 89

more sophisticated SGS than those described in Section 5.9. This decoding procedure as well as
mutation and crossover operators are the topic of the following subsections. It is worth mention-
ing that the solving module is applied after forward and backward passes computed earliest and
latest start and finish dates esj , lsj , efj and lfj .

6.1.1 Encoding and decoding

In the current implementation, a solution is represented as follows. First, an activity list π de-
termines the sequence of activities to be serially scheduled. Second, a string of integer numbers
suggests which mode to select for each activity. However, the mode suggestion is not definitive.
In fact, an activity might not be “scheduleable” in a suggested mode, if the mode violates latest
finish dates or capacity restrictions. In such cases, the best possible mode is selected by a greedy
heuristic described later. Moreover, it is possible that the encoding suggests no mode at all, which
immediately triggers the greedy heuristic.

Activity lists always represent a feasible order w.r.t. to precedence constraints. Put mathemat-
ically,

∀ k ∈ J : π−1(j) < π−1(k)⇔ j ∈ Pk, (6.1)

where π−1 denotes the inverse list, storing the position of each activity within π. Working with
partially ordered lists has two advantages. On the one hand, we can immediately decode activity
after activity without needing to check if all activity predecessors have already been scheduled.
On the other hand, the actual sequence of activities in the schedule is likely to be closer to the
sequence defined by the list, as it would be to the one defined by a permutation, not respecting
the precedence constraints. Hence, activity lists enable the mutation and crossover operators to
act more “purposefully.” As will become apparent later, an activity list is arbitrarily sorted after
initialization or mutation. There are two ways implemented for “repairing” a list.

• Establish the activity precedence by pulling “too late” activities “earlier,” where the notions
“early” and “late” in this regard refer to the position within the list π. The list is re-sorted
by Function establishPrecedenceByPullFwd on Page 90. The function uses a set U of
eligible activities whose successors are already in correct order. Initially, the set U consists of
activities that don’t have any successors (Line 1). Additionally a set S of already considered
activities is used (Line 2). Iteratively, the repaired permutation πrepaired is filled up from
right to left (Line 3). At every iteration, the activity j∗ ∈ U that is positioned most right
in the current permutation π is taken (Line 4) and inserted into the repaired permutation
πrepaired (Line 5). The sets S and U are updated accordingly (lines 6 and 7). Afterwards,
those predecessors of j∗ whose successors are already included in the repaired permutation
are added to U (lines 8-12). Hence, activities that are not contained in U are pulled forward
in the repaired permutation.

• Establish the activity precedence by pushing “too early” activities “later.” Here the list is re-
sorted as described by Function establishPrecedenceByPushBwd. This function works
analogously to the above function, but in the other way round.

Many mutation operations shift activities only in one direction, which requires exactly one
of the repair procedures to be applied. Otherwise the mutation might be reversed. If there is

90 CHAPTER 6. THE SAP DETAILED SCHEDULING OPTIMIZER

Function establishPrecedenceByPullFwd(π)

input : Permutation π to be repaired
output : Returns repaired permutation πrepaired
U := {j ∈ J |Sj = ∅}1

S := ∅2

for x := |π| to 1 do3

Compute j∗ with π−1(j∗) > π−1(j) ∀j ∈ U4

πrepaired(x) := j∗5

S := S ∪ {j∗}6

U := U\ {j∗}7

forall i ∈ Pj∗ do8

if Si ⊆ S then9

U := U ∪ {i}10

end11

end12

end13

return πrepaired14

Function establishPrecedenceByPushBwd(π)

input : Permutation π to be repaired
output : Returns repaired permutation πrepaired
U := {j ∈ J |Pj = ∅}1

S := ∅2

for x := 1 to |π| do3

Compute j∗ with π−1(j∗) < π−1(j) ∀j ∈ U4

πrepaired(x) := j∗5

S := S ∪ {j∗}6

U := U\ {j∗}7

forall i ∈ Sj∗ do8

if Pi ⊆ S then9

U := U ∪ {i}10

end11

end12

end13

return πrepaired14

no clear direction of mutation, one of the two repair procedures is chosen randomly.1 As already
mentioned in Section 5.9, allowing arbitrary mutations followed by a subsequent re-sorting allows
larger moves within the neighborhood.

6.1.1.1 Scheduling a single activity for a given mode

When building an infinite plan, i.e. without considering capacity constraints, the scheduling of
a single activity is straightforward. In case of minimum finish–start links, the start date of an
activity j can be calculated by sdj = maxk∈Pj

fdk + λFSkj . As capacity constraints do not hold, the

1For generating random variables, a random number generator needs to be implemented. The computer as a deter-
ministic machine can not generate truly random values, but uses a certain function to generate pseudo random numbers.
For the DS solving module and prototypical implementation of the DEAL framework, the so-called Park-Miller random
number generator has been used. Here, a random number xt is computed as xt = xt−1 · g mod n, with n = 231− 1 and
g = 16807. The number xt−1 is called the random seed and x0 is the initial random seed. Drawing a random number
rt ∈ [0.0, 1.0) is simulated by computing rt = xt

n
. It should be emphasized that for the same initial random seed, the

same “probabilistic” choices are computed.

6.1. THE DETAILED SCHEDULING SOLVING MODULE 91

calculation equals the forward pass mentioned in Section 5.1. For other types of min-links, we
can proceed analogously as discussed in Section 5.3. Hence, the time complexity of scheduling
such a simple problem is O(n), for n activities to be scheduled (and if we assume the numbers of
predecessors to be independent of n).

If a problem with infinite capacity contains max-links, the time complexity is a polynomial
function of the number of activities, since one violated max-link can require a recalculation of all
activity predecessors (cf. Neumann et al., 2001, p. 214).

If capacity is limited, not only does the earliest feasible start date according to precedence
constraints need to be computed, but also a feasible slot with sufficient capacity on primary and
secondary resources needs to be searched. For building active schedules not containing max-links
or sequence-dependent setup activities the slot-finding procedure for activity j works as follows:
Starting at the earliest time, tstart = esj , the next date with sufficient capacity on the primary
resource is searched. Having found such a date, we check if the slot length is sufficient, both
on primary and secondary resources. To calculate the required slot length, several factors are of
importance—the activity’s net-duration, the productivity and the break calendar—which eventu-
ally lead to the activity’s gross-duration. For a feasible slot, the available capacity must not drop
below the required resource usage during the gross-duration. Otherwise, tstart is set to the end
of the current, infeasible slot and the next slot is searched. It is clear that the time complexity of
finding a slot depends on the initial capacity profiles, the number of secondary resources, and the
number of gaps at the beginning of the schedule that are of insufficient length.

For determining the net-duration of a setup activity, the current setup state of the primary
resource is of importance, cf. Equation 5.26. In turn, the current setup state is defined by the ac-
tivity scheduled before the current slot. Henceforth, we will denote activities before and after the
current slot as machine predecessors and machine successors. It is important to highlight the dif-
ference to the sets of immediate predecessors Pj and successors Sj of an activity j. While the latter
sets are part of the problem formulation (cf. Equation 5.2), do not relate to resource assignments
and are independent of the generated schedule, machine successors and predecessors relate to
a particular activity (or a slot of interest) with regard to a particular resource and a (partially)
generated schedule.

The above method yields active schedules. If setup times or costs are considered as non-
regular performance measures, the optimal schedule is not necessarily contained within the set of
all active schedules, as discussed in Section 5.7. Under such circumstances, an SGS yielding semi-
active schedules might be preferred. To calculate semi-active schedules it is sufficient to initially
set tstart to the largest finish time of already scheduled activities. As setup times or costs only
occur on primary resources, only those activities of the selected mode’s primary resource need to
be considered. Furthermore, the calculation of tstart needs to be modified only for setup activities.

6.1.1.2 Greedy heuristic for mode selection

As already mentioned, the encoding does not necessarily suggest a mode for every activity. And
even if a mode was suggested it might not be “scheduleable,” if, for example, no slot was found
before the latest finish date. In both cases, the most promising mode is then selected by a greedy
heuristic that compares the results of scheduling the activity in each mode, respectively. During
the heuristic run, the slot finding is not restricted to slots before the latest finish date, instead, the
violation is penalized. From a practical perspective, finding a slot behind this date is preferred to

92 CHAPTER 6. THE SAP DETAILED SCHEDULING OPTIMIZER

Abbreviation Priority Weight Description
hlm 1 n. a. violation of deadlines
msm 2 wms estimated makespan
tlm 2 wtl total estimated lateness increase
mlm 2 wml maximum estimated lateness
stm 2 wtst estimated setup time increase
scm 2 wtsc estimated setup cost increase
mcm 2 wtmc minimum subsequent mode cost
slm 2 0.01 slack consumption

Table 6.1: Figure, priorities and weights for comparing possible modes.

not finding a slot at all. Eventually the schedules are compared by a relation and the best mode
is selected. The relation differs from the standard relation 5.39 and takes into account the current
and subsequent consequences of the mode selection. Because of mode-compatibility constraints,
a selected mode can determine settings for succeeding activities and possibly have a major impact
on the overall objective function. The figures relevant for the comparison and the related priorities
and weights are listed in Table 6.1.

Let j denote the job to be scheduled and S the set of already scheduled activities. The deadline-
violation calculation is straightforward: hlm = max {fdj − lfj , sdj − lsj , 0}. The estimated increases
of setup time and cost, stm and scm, are calculated as the difference when comparing the current
partial schedule before and after the activity of interest was scheduled in mode m. The figures are
an estimate in the sense that—when building active schedules—subsequent planning steps can
schedule activities before j and change the setup state of the resource such that the net-duration
of j changes (if j ∈ JS), see also Subsection 6.1.1.4. The increase of total estimated lateness is cal-
culated as the difference between finish date and propagated due date, tlm = max {fdj − pddj , 0}.
The maximum estimated lateness is set to

mlm = max
k∈S∪{j}

(max {fdk − pddk, 0}) .

The estimated makespan is calculated as

msm = max
k∈S∪{j}

(fdk + ttfkm)− max
k∈S∪{j}

(sdk) ,

where ttfkm stands for “time to finish” and denotes the minimum sum of processing times of the
direct and indirect successors of k, under infinite capacity consideration, but respecting mode-
compatibility constraints for mode m. When analyzing mode-compatibility constraints, the min-
imum sum of mode costs of j and its direct and indirect successors is computed for the chosen
mode, m. “Slack consumption” is another decision criteria. The number is computed as

slj =

1, if fdj ≥ pddj
0, if pddj − esj = 0 or tssj + ttfj + fdj − sdj = 0

ttfjmj
tssjm+fdj−sdj+ttfjm

− pddj−fdj

pddj−esj
, otherwise,

where tssj denotes “time since start” of activity j. Analogously to “time to finish,” “time since
start” is a static number expressing the sum of minimum durations of the direct and indirect
predecessors of j under infinite capacity considerations but respecting mode-compatibility con-

6.1. THE DETAILED SCHEDULING SOLVING MODULE 93

straints. The term
ttfjm

tssjm + fdj − sdj + ttfjm

approximates the relative remaining work, whereas

pddj − fdj

pddj − esj

expresses the relative free slack if j is scheduled in the mode currently investigated. The “slack
consumption” can simply be regarded as a weighted sum of two criteria: A mode leading to short
remaining work should be preferred, as should a mode with a large slack w.r.t. the propagated
due date.

6.1.1.3 Aggregating activities to blocks

Decoding an activity list to a schedule by a serial SGS for problems containing max-links leads
to several difficulties. Already the task of testing whether there is a feasible schedule for a given
RCPSP instance is NP-complete (cf. Neumann et al., 2001). When applying a serial or parallel
SGS, we cannot guarantee that a max-link is preserved until both the preceding and succeed-
ing activities have been scheduled. If a violation occurs, already scheduled activities need to be
rescheduled until all max-links are obeyed. Rescheduling consists of deallocating some activi-
ties and scheduling them in a different way. However, deallocating the preceding activity of a
max-link and scheduling it later can lead to further max-link violations between the activity and
its predecessors. In the worst case, a chain reaction requires all activities of the already existing
schedule to be planned again. In general, we have to decide whether to deallocate an activity itself
or its predecessor to fulfill a max-link. Deallocating a predecessor can lead to incorrect schedules
since no feasible later slot with sufficient capacity might be found to fulfill the max-link. Also the
setup time of the predecessor’s machine successor (cf. Subsection 6.1.1.1 for the definition of the
term machine successor) might increase, such that the remaining schedule might not be feasible,
even without considering the preceding activity. The only activity that can be deallocated safely is
the latest scheduled activity since we know that the previous schedule is already correct. Hence,
in case of a violated max-link, we need to deallocate all activities in reverse order, back to the
violating predecessor, before applying a repair algorithm.

If max-links occur only rarely, it makes sense to build blocks of the related activities and sched-
ule them “together” to keep the time expenditure for rescheduling small instead of allowing ar-
bitrary activity sequences. The above ideas can be summarized to a “block concept” as follows:

• Block building: Single activities connected by max-links are aggregated to blocks. The
precedence constraints of activities outside and inside of a block remain unchanged. We de-
fine a block’s predecessors (successors) as all activities (possibly contained by other blocks)
outside the block that precede (succeed) activities within the block. Now, by summariz-
ing activities to blocks, it might happen that an activity outside the block becomes both,
predecessor and successor of the same block. This ambiguity cannot be handled by serial
scheduling. A solution can be developed by illustrating the problem as a directed graph,
where each node refers to an activity or block, respectively, and each min-link is mapped
to a directed edge from predecessor to successor. Now, for each max-link, an additional
directed edge from successor to predecessor is introduced. For more details on such “activity-

94 CHAPTER 6. THE SAP DETAILED SCHEDULING OPTIMIZER

on-node networks” Neumann et al. (2001) is recommended.

If the graph contains cycles, a topological sorting is not possible. That is, serial schedul-
ing will fail for the current block structure. This fact can be used to build feasible blocks.
Each cycle of a directed graph is contained by a maximal connecting component. Between
the distinct maximal connecting components only acyclic relations exist. Hence, enlarging
blocks to maximal connecting components leads to a block structure that can be handled by
serial scheduling. Blocks built by this method also have minimal size since splitting a block
up would immediately lead to a cycle (cf. Engelmann, 1998). The building of blocks can be
done once during a preprocessing step.

The aggregation of blocks applies only to the activity-list part of the encoding. The remain-
ing part of the encoding, i.e. the string of integer numbers suggesting a mode for each ac-
tivity, is not aggregated, since the activities of a block can still be scheduled in different
modes.

• Block scheduling: Having calculated blocks, there is no need for list entries to further re-
fer to single activities; instead, they refer only to the blocks themselves, decreasing the size
of the list. The serial SGS now subsequently schedules blocks instead of single activities.
Within a block, the activities are (arbitrarily) topologically sorted according to activity prece-
dence and are scheduled by a dynamic programming procedure:

1. Schedule the next activity of the block’s remaining unscheduled activities by finding a
feasible slot for the suggested mode. If no mode was suggested or no slot was found on
the primary and secondary resources of the suggested mode, use the greedy heuristic
to determine the most promising slot. Terminate if all activities of the block have been
scheduled.

2. Check if a max-link to any predecessor (located inside the block) is violated. If there
was no violation go to step one and continue with the next activity.

3. Deallocate all activities that violate any max-link in reverse order until the earliest pre-
decessor belonging to a violated max-link.

4. Increase the earliest feasible start date of this predecessor, such that the max-link is not
violated.

5. All affected activities need to be scheduled again, continue with step 1.

A rigorous algorithmic formulation of the above procedure can be found in Neumann et al. (2001,
Section 2.6.4). For the sake of completeness, it should be mentioned that, in the current implemen-
tation, steps 3 and 4 of the above procedure are enriched by additional forward passes to detect
violations of precedence constraints as early as possible.

The block-building concept has its limitations. If a problem instance contains many max-links,
many and/or large blocks are built. In these cases, the dynamic programming method leads to
backtracking with exponential time complexity. With respect to optimality, it should also be men-
tioned that the building of blocks can obscure the global optimum. For each block, a certain activ-
ity sequence is fixed during the preprocessing. However, to reach the optimum, another sequence
might actually be necessary. Hence, for each possible sequence of every block, the dynamic pro-
gramming procedure would actually need to be called, further increasing the time complexity.

6.1. THE DETAILED SCHEDULING SOLVING MODULE 95

For practical problems not containing too many max-links, the block concept proved to be
a suitable approach. It guarantees that all generated schedules are feasible with respect to the
max-links. As already mentioned, searching for maximally connected components also leads to
minimally sized blocks. In most practical cases containing only a limited number of max-links,
the deterioration of the objective value will be small as only a few small blocks are generated.

6.1.1.4 Scheduling of setup activities

Serially scheduling sequence-dependent setup activities comes with several difficulties. First, on
multicapacitated resources, we would need to determine a setup activity’s machine predecessor
to calculate the required setup state transition. This feature is not supported because a single
setup state for such a resource would be very restrictive. Alternatively, the planner can split up
multicapacity resources into several unary resources, and introduce alternative modes for the
related activities.

Second, between a setup activity and its successor no other activity must be scheduled as
stated by Equation 5.26. However, applying a serial SGS in a straightforward manner can lead
to gaps between setup activities and their successors due to other precedence constraints. As the
gaps cannot be used by the list’s subsequent activities, the idle time would be totally wasted.
Thus, we need to assure that the two activities are scheduled as close together as possible in order
to avoid a waste of resource capacity. As for max-links, we can aggregate each setup activity and
its successor to a single block. If idle times occur between the two activities or setup constraints
of type 5.26 are violated, we reschedule the setup activity, increase the start date and reschedule
the block.2

Third, if an active scheduling policy is pursued, activities may be placed before already sched-
uled setup activities. Thus, a different setup-state transition might be required for the already
scheduled setup activity following on the same resource. That is, its duration needs to be recom-
puted. The slot-finding procedure needs to be extended in this regard. If a promising slot has
been found, the duration of the machine successor needs to be recomputed, which in turn alters
the slot’s length. If the slot is of insufficient capacity, this correction needs to be reversed before
the next slot is sought.

Fourth, in the case of setup activities, the optimal schedule is not necessarily contained in
the set of all active activities. As described above, a semi-active planning is possible, but at the
expense of an increased solution space. As a rule of thumb, a semi-active scheduling policy is
applied if the sum of weights for setup times and setup costs exceeds the sum of the remaining
(regular) performance measures.

6.1.1.5 Serial scheduling example

For simplicity we refer to a list containing blocks and activities simply as the block list henceforth.
A block might contain one or several activities to be scheduled. To explicate the serial scheduling
procedure, we present a concrete example consisting of ten activities to be scheduled. The calen-
dar is shown in Figure 6.2 and the activities to schedule in Figure 6.3. The activities are numbered
j = 1, 2 . . . , 10. For better legibility, additional letters indicate the type of an activity, whereas “J”

2Actually, the rescheduling of activities on primary resources is a simplified description of the current implementation.
To avoid idle times and find suitable slots, several computations are performed to restrict the interval of earliest start and
latest finish dates and to estimate the required slot length. These techniques contribute by saving runtime when building
a schedule. However, a detailed description is beyond the scope of this thesis.

96 CHAPTER 6. THE SAP DETAILED SCHEDULING OPTIMIZER

denotes a standard activity, “MJ” denotes a standard activity with multiple modes (i.e., relating to
alternative machines) and “S” refers to setup activities. The activities are to be placed on two re-
sources, R1 and R2. For simplicity, a mode utilizes only one resource. Black boxes in the calendar
denote breaks. Dashed lines between two activities represent an activity precedence constraint,
for example J4 is predecessor of J6. As mentioned previously, activities and their setup activities
are aggregated to blocks to facilitate scheduling. Max-links do not occur in the example, giving
seven blocks, B1 to B7. As can be seen B1, B4 and B6 consist of a setup activity and a standard
activity, whereas the other blocks each consist of a single standard or multimode activity, respec-
tively.

Figure 6.2: Serial scheduling example—calendar.

Figure 6.3: Serial scheduling example—activities and precedence constraints.

The length of a setup activity depends on the setup state the resource is currently running
on and on the required state of the related standard activity following the setup activity. In the
example, we assume that each activity requires a different state. The underlying setup matrix is
illustrated in Figure 6.4.

Figure 6.4: Serial scheduling example—underlying setup matrix.

In the following, we describe step by step the scheduling of a concrete block list that implies
the following order: B3 → B4 →B1 →B2 →B6 →B5 →B7. Note that this order does not violate
any activity-precedence constraints. That is, the repair procedures of Page 90 have already been
applied. We further assume that the mode of MJ3 is set to resource R2 and that for MJ10 no mode
has been selected yet. All other modes are set to the resources indicated by Figure 6.3. Figure 6.5
shows the result of scheduling the list’s first block, B3. The block consists of just one activity (J4)
to be scheduled on R2. Since no other activity has been planned yet, J4 is scheduled as early as
possible (leftmost in the picture).

Next, the block B4 is scheduled as shown in Figure 6.6. Since B4 consists of two activities, S5
and J6, the dynamic programming approach is applied. The setup activity, S5, is scheduled first

6.1. THE DETAILED SCHEDULING SOLVING MODULE 97

Figure 6.5: Serial scheduling example—scheduling of block B3.

(i) Step 1 (ii) Step 2

(iii) Step 3 (iv) Step 4

Figure 6.6: Serial scheduling example—scheduling of block B4.

to the most left (Step 1). In the second step, J6 is scheduled as early as possible but must not start
before its predecessor J4. Now, in order to avoid the idle time between J6 and S5, J6 is deallocated3

and S5 is shifted to the right (Step 3). After a new scheduling of J6, the dynamic programming
procedure ends and the block is successfully scheduled (Step 4).

(i) Step 1 (ii) Step 2

(iii) Step 3 (iv) Step 4

Figure 6.7: Serial scheduling example—scheduling of block B1.

The scheduling of the next block B1 is depicted in Figure 6.7. First the block’s setup activity,
S1, is scheduled. A possible slot for S1 is found right at the beginning of the schedule prior to S5
(Step 1). Note that the length of S5 increased (cf. Figure 6.6 (iv)), as S1 before S5 implies a different
setup-state transition. However, after scheduling J2 in the second step, a violation of setup con-
straint 5.26 occurs, since J2 is not the machine successor of S1. Both activities are rescheduled, and
the earliest start date of S1 is increased, such that S1 is located after J6. The result of a new slot
finding for S1 is shown in Step 3. Note that the activity is stretched by the duration of the break

3In the current algorithm, a faster method is implemented that does not require the explicit deallocation of J6, instead
calculating feasible slots of S5 and J6 before the block is scheduled. However, for didactic purposes, we illustrated the
slower, simplified version.

98 CHAPTER 6. THE SAP DETAILED SCHEDULING OPTIMIZER

(illustrated by the black box). Moreover, the length correction of S5 is reverted. Searching a slot
for J2 in the next step leads to a feasible schedule (Step 4) and the dynamic programming proce-
dure terminates. The above sequence of steps is a result of the active scheduling policy. Using the
semi-active policy, S1 would immediately be scheduled after J6 (which in this case leads to the
same result).

Figure 6.8: Serial scheduling example—scheduling of block B2.

After B1, block B2 is scheduled according to the encoding. The block consists of just one activ-
ity, MJ3, which is the successor of J2. As per the assumption, the suggested mode referred to R2.
The corresponding schedule is depicted in Figure 6.8.

(i) Step 1

(ii) Step 2

(iii) Step 3

Figure 6.9: Serial scheduling example—scheduling of block B6.

The next block, B6, contains again two activities, the setup activity S8 and its successor, J9.
The single steps of the dynamic programming procedure are illustrated in Figure 6.9. First, S8
is scheduled. The earliest date with sufficient capacity on R1 is the most left. However, after S5
has been modified and the net-duration of S8 has been calculated it becomes apparent that S8
is "too long" to be scheduled before S5 (see the first Gantt chart). Setup activity S5 is reset to its
original duration and the slot-finding procedure then searches the next feasible start date, which is
just after J2 (second Gantt chart). Scheduling J9 immediately after S8, the dynamic programming
procedure terminates.

The scheduling of the next block, B5, is again straightforward. The block contains only a single

6.1. THE DETAILED SCHEDULING SOLVING MODULE 99

activity, J7 to be scheduled on R2. J7 must not start before its activity predecessor, J6, terminates.
Assuming an active scheduling policy, J7 is positioned before MJ3 as shown in Figure 6.10. Note
that for semi-active scheduling, J7 would be placed after MJ3.

Figure 6.10: Serial scheduling example—scheduling of block B5.

(i) Step 1

(ii) Step 2

Figure 6.11: Serial scheduling example—scheduling of block B7 in mode 1.

Finally, the last block B7 is scheduled. B7 consists of only one activity, MJ10. For MJ10, no
mode selection has been suggested by the encoding. Therefore, the best mode has to be selected
by the decoding procedure itself. The greedy heuristic builds for each mode a separate schedule,
eventually choosing the one with the best outcome. The steps of the slot finding procedure for
the first mode are illustrated in 6.11. The scheduling procedure for the second mode is shown in
Figure 6.12. With respect to the makespan and lateness of activity MJ10, the latter schedule proves
best. Since the total setup time stays equal and no deadline is assumed to be violated, the greedy
heuristic eventually chooses the second mode.

6.1.2 Initialization of population

The GA underlying the DS solving module offers different methods to initialize a population of
block lists and mode suggestions. Furthermore, in order to consider results of other heuristics
a backencoding of already existing schedules is supported. The rest of the population is initial-
ized in the following way. First, block lists are sorted according to different sorting criteria. Then,
in a second step, the diversity is increased by further disturbing the sorted populations. Even-
tually, activity lists are repaired before the above SGS is applied. The modes are not initialized;
rather, they are selected automatically using the greedy heuristic. The initialization methods are
described in detail in the following subsections.

100 CHAPTER 6. THE SAP DETAILED SCHEDULING OPTIMIZER

(i) Step 1

(ii) Step 2

(iii) Step 3

Figure 6.12: Serial scheduling example—scheduling of block B7 in mode 2.

6.1.2.1 Backencoding of existing schedules

Before the DS solving module is called, other heuristics may have calculated an initial schedule
or the planner may have set up a solution manually. In many cases, this solution could greatly
improve the search process if it was backencoded to a block list and injected into the initial pop-
ulation. The backencoding procedure considers semi-active planning. That means that applying
the semi-active version of the serial SGS to the backencoded list should result in the original
schedule of interest. If no setup times or costs are included, an active scheduling policy will only
further increase the solution quality. In other words, the schedule of the backencoded list will be
at least as good as the original schedule regarding the objectives makespan, lateness and mode
costs. If the problem contains setup times or costs, the solving module automatically decides if
active or semi-active schedules are to be constructed, as previously covered.

The backencoding of mode selections is obviously trivial. For each activity, we can set the
suggested mode of the encoding to the selected mode of the schedule. Backencoding the current
sequence of activities into a block list can be trickier. First of all, it should be recalled that we
aim at a list that respects activity-precedence constraints by representing a feasible topological
sorting of the related activity-on-node graph. For the standard RCPSP (5.1–5.4), the backencoding
procedure is simple, as the activity list can be sorted according to the start dates of activities in
the schedule. If, however, due to max-links or setup times, activities are aggregated to blocks,
a backencoding cannot be guaranteed for all schedules. A heuristic that tries to backencode a
schedule “as close as possible” can be outlined as follows. (For more details, the interested reader
is referred to Engelmann (1998).) First, a directed “block-on-node” graph is constructed. If an
activity of a block, A, is an activity or machine predecessor of an activity contained by another
block, B, the graph contains a directed edge from A to B. Edges can be categorized in 4 priorities:

6.1. THE DETAILED SCHEDULING SOLVING MODULE 101

1. An edge due to an activity-precedence constraint has the highest priority.

2. If two activities are scheduled subsequently on the same unary resource, and the machine
predecessor is delaying the start of the machine successor (cf. Subsection 6.1.1.1 for the def-
inition of the terms machine predecessor and successor), the corresponding edge has high
priority.

3. An edge for two subsequent activities on the same unary resource, where the machine pre-
decessor is not delaying the start of the successor, has medium priority.

4. An edge for two subsequent activities on multicapacity resources has low priority.

The list entries are now sorted according to the directed graph as follows. The block list is filled
up from left to right. Blocks with an indegree of zero are set at the right end of the initialized list
as it stands at the time, and the related node and edges are deleted in the graph. If no such block
exists, edges with lowest priority are deleted from blocks with minimal indegree. The procedure
terminates if a position has been selected for every block.

6.1.2.2 Initial sorting of block lists

Initializing an activity list is commonly achieved by applying standard priority rules, cf. the works
mentioned in Section 5.9. Also the DS Solving module supports the initial sorting of a list accord-
ing to one of the following three criteria. First, activities can be sorted according to their propa-
gated due dates:

π−1(j) < π−1(k)⇔ pddj < pddk.

This initialization is based on the intuitive idea that activities with an earlier due date should
also be scheduled earlier. If activities are aggregated to blocks, the lowest propagated due date of
activities within the block is taken.

In a similar way, the earliest start dates can be taken into account:

π−1(j) < π−1(k)⇔ esj < esk.

In the case of blocks, the highest start is used as a substitute.
Third, combining the above two criteria activities can be sorted according to their slack:

π−1(j) < π−1(k)⇔ (pddj − esj) < (pddk − esk)

Here, activities with smaller intervals are scheduled first, whereas more “flexible” activities are
scheduled later. In the case of blocks, the same substitutes as above are taken. Finally block lists
can be initialized purely randomly. For the computational test, a population of 60 individuals is
taken, whereas 15 individuals are constructed by the same sorting method.

6.1.2.3 Disturbing methods

The initialized block lists are now disturbed by one of the following two mechanisms. If the prob-
lem contains setup times or costs, the program tries to build campaigns of activities requiring the
same setup state. Scheduling activities requiring the same setup state in a sequence saves setup
times and costs. Intuitively, the size of a campaign is of critical importance. If too small, there

102 CHAPTER 6. THE SAP DETAILED SCHEDULING OPTIMIZER

will only be a negligible decrease of setup times or costs. If too large, more setup-related costs
will be saved, however, at the expense of an undesirable increase in other objective criteria. The
optimal trade-off is highly problem dependent and not obvious. The approach here is to simply
use different search window sizes on the same initial block lists. The construction of campaigns
is achieved by the following heuristic.

1. Set the initial window size to ws = 1.

2. Select the next block list with the same initial sorting. Cluster similar setup activities by the
following subprocedure:

(a) Select the first block of the list.

(b) Search within the next ws list entries for blocks containing setup activities with the
same setup key on the same primary resource. If such a block has been found, insert it
before the window’s leftmost block with a different setup state.

(c) Select the leftmost block of the current window with a different setup state as a new
starting block. Continue with (b) until all blocks of the block list have been considered.

3. Increase the window size by a constant factor. (For the computational tests, 1.8 was used.)

The heuristic is called once for each set of block lists initialized by the same sorting. If the problem
does not contain any setup times or costs, the initialized block lists are disturbed randomly. To
do this, activity/block positions are arbitrary swapped within a gliding window. For the com-
putational tests, the following values have been used. Starting leftmost, the next 16 list entries
are shuffled. Then, the windows is moved by 8 list entries. After a list has been initialized and
disturbed by a combination of the above methods, it is repaired: sorted according to either Func-
tion establishPrecedenceByPullFwd or Function establishPrecedenceByPushBwd (cf.
Page 90) with equal probability.

6.1.3 Mutation and crossover operators

The DS solving module relies on several mutation operators that can be categorized into four basic
principles. First, a list entry can be inserted at another position. Second, an entry can be swapped
with another entry. Third, the block sequence remains unchanged, but modes are altered. Fourth,
not only a single list entry but whole clusters are shifted to different positions. This makes sense
in the case of setup times and costs to keep the disruption of setup campaigns low. The single
mutation operators are explained in the following subsections.

6.1.3.1 Insertion of blocks

We speak of an insert operation if the block sequence remains constant except for the single block
to be inserted at another position. Thus, an insert operation consists of three steps. First a block
to be shifted needs to be identified, either randomly or based on heuristic principles. Second, a
target position is calculated. Third, entries located between the current and the target position are
locally shifted by one to the left or to the right (depending if the target is situated right or left of
the current block) and the block is placed at the target position. The following insert operators are
implemented:

6.1. THE DETAILED SCHEDULING SOLVING MODULE 103

• Random insert on same primary resource: “Wrong” sequences of activities on the resources
are the origin of considerable lateness and large setup costs and times. However, since it is
not clear which sequence leads to the best result, it makes sense to randomly select a block
and insert it before or after other blocks on the same resource. To be more specific, the term
“on the same resource” needs to be clarified. We say two blocks are situated on the same
resource if at least one activity of block 1 has the same primary resource in the suggested
mode as any activity of block 2. If no mode was suggested, the primary resources must be
equal for at least one of all possible modes.

If two such blocks can be identified, we either insert the later one before the earlier one,
or insert the earlier one after the later one. In the first case, the block list needs to be re-
paired subsequently by pulling “too late” blocks forward, by sorting according to Func-
tion establishPrecedenceByPullFwd. In the latter case, we need to push “too early”
blocks backward by applying Function establishPrecedenceByPushBwd. Before the
new genotype is decoded, the mode suggestions of activities of the inserted block are deleted
so that the greedy heuristic will be applied. We illustrate the result of the operator on the ba-
sis of an example: Schedule 6.12 (iii) will be mutated. The original block list of the example
was B3 → B4 →B1 →B2 →B6 →B5 →B7. Assume that B7 is now inserted before B5 so the
new order becomes B3→ B4→B1→B2→B6→B7→B5. The resulting schedule (for which
the greedy heuristic selected the second mode for B7) is shown in Figure 6.13.

Figure 6.13: Serial scheduling example—result of shifting a block on the same resource.

• Random insert across resources: Even if not situated on the same primary resource, shifting
a block before another block can lead to a different schedule if the activities involved run on
similar secondary resources or if there is an indirect influence over other machine successors
or predecessors. This operator randomly selects a block and shifts it to another randomly
chosen target position. The mode suggestions of activities contained by the shifted block are
deleted. Afterwards, the positions of activity predecessors and successors are corrected by
sorting the block list by either Function establishPrecedenceByPullFwd or Function
establishPrecedenceByPushBwd, depending on the direction of the shift. As an exam-
ple, assume that the original block list (see Figure 6.12 (iii)) is altered to B1→ B3→B4→B2
→B6→B7→B5, as B1 is shifted before B3. The resulting schedule is shown in Figure 6.14.

Figure 6.14: Serial scheduling example—result of shifting a block on a different resource.

• Changing critical sequences: The makespan of a schedule equals the length of its critical
path. The length of the critical path in turn contains a fixed and a variable component. The

104 CHAPTER 6. THE SAP DETAILED SCHEDULING OPTIMIZER

fixed component is the sum of the durations and minimal distances implied by the activity-
precedence constraints. The variable component, however, is determined by the sequence
of activities along the critical paths without an activity-precedence relation but succeeding
each other on the same resources.

This operator selects such a sequence, disturbs it and hence tries to reduce the length of the
critical path. In our example (Figure 6.12 (iii)), the critical path is given by the activities J4,
J6, S1, J2, MJ3 and MJ10. On R1, the critical subsequence of machine successors is J6, S1, J2
or blocks B4 and B1, respectively. On R2, blocks B2 and B7 are critical. Now, by choosing
and disturbing the latter sequence—i.e., inserting B7 before B2—we try to reduce the length
of the critical path. The new block list becomes B3→ B4→B1→B7→B2→B6→B5, which
leads to the already discussed schedule shown in Figure 6.14. We use this observation to
emphasize the effects of using a SGS as decoding function. By applying an active or semi-
active scheduling policy, two different block lists can be decoded to the same schedule.

In general, the operator can be described as follows. First, the critical graph is computed
(cf. Engelmann, 1998). Second, succeeding activities on similar resources are identified and
the corresponding blocks are aggregated to critical sets. One of these sets is then chosen
randomly. Finally, with a probability of 0.5, the last block of the chosen set is randomly
inserted at another position of the set and the block list is repaired by pulling “too late”
blocks forward (i.e., sorted according to Function establishPrecedenceByPullFwd).
Otherwise, the first block of the set is inserted at a later position and the block list is repaired
by pushing “too early” blocks later by re-sorting according to Function
establishPrecedenceByPushBwd.

• Shifting delayed block: This operator tries to decrease the maximum and total lateness of a
schedule. A quarter of all blocks is randomly chosen and compared by their lateness. Even-
tually, the block with the most delayed activity is selected and inserted at an arbitrary po-
sition before its current position. Afterwards, the position of its activity predecessors is cor-
rected by sorting the block list according to Function establishPrecedenceByPullFwd:
“too late” predecessors are shifted as well.

6.1.3.2 Swapping of blocks

In contrast to an insert operation, a swap alters the block list by exchanging exactly two list entries.
However, a subsequent repair can cause further changes. The following mutation operators rely
on swap operations.

• Multiple swaps: For our computational tests, this operator randomly selects one block after
the other and swaps each block with another block at a random position. The selection of
blocks continues until a total limit of 100 activities (contained in the selected blocks) has been
reached. Afterwards, the block list is repaired by either pulling “too late” blocks forward or
pushing “too early” blocks later with probability 0.5.

• Disturb: The disturb mutation radically changes a part of the block list. Within a certain
randomly positioned window, the sequence of blocks is randomized and the related mode
suggestions are deleted. For the computational test, a window size of 20 was chosen.

6.1. THE DETAILED SCHEDULING SOLVING MODULE 105

• Reduction of first-priority lateness: Minimizing the violation of deadlines is of first prior-
ity, as defined by the lexicographic sorting 5.39. This operator tries to correct those parts
of a block list that lead to such a lateness by swapping several blocks. With a probabil-
ity of 99%, a block containing such a lateness is swapped with its preceding list entry, if
this does not violate activity-precedence relations. Otherwise the block is inserted at an
arbitrary point before its current position and the list is repaired according to Function
establishPrecedenceByPullFwd. We apply this correction to all blocks leading to a
first-priority lateness. Using this operator sequentially shifts blocks causing such a lateness
to the left, with the ultimate goal to reduce the total first-priority lateness to zero. If dead-
lines are violated, this operator is always applied before the list is subsequently altered by
another (randomly chosen) operator. The full sequence of operators is discussed later in
Subsection 6.1.5.

6.1.3.3 Mode alternation

Another category of mutation operators does not alter the block sequence, but changes the modes
instead. Two mode-alternation operators are implemented.

• Reset modes: All mode suggestions of the activities contained by the blocks within a win-
dow of subsequent blocks are deleted. The position of the window is calculated randomly.
For the computational test, a window size of 50 blocks was used.

• Change mode: This operator randomly selects one multi-mode activity that already has a
mode suggestion. A new mode suggestion is randomly drawn from all possible modes.
If the new mode suggestion equals the old one, the suggestion is deleted and the greedy
heuristic is applied.

6.1.3.4 Campaigns

If the problem contains setup times or costs, it makes sense to aggregate activities with similar
setup keys into campaigns. The following campaign mutation operators are implemented.

• Merge campaigns: This operator builds a larger campaign out of two smaller campaigns.
First, a setup activity is randomly selected. Now, the related campaign, A, is calculated as the
set of all machine successors and predecessors (cf. Subsection 6.1.1.1 for the definition of the
terms machine predecessor and successor) requiring the same setup state on the same pri-
mary resource. Afterwards, another campaign, B, scheduled on the same primary resource
requiring the same setup state is searched. Based on a random drawing B is either searched
to the left or to the right of A. If found, all list entries belonging to the first campaign, A,
are now inserted next to list entries of campaign B. Depending on the search direction, the
list is either repaired by pulling “too late” blocks forward or by pushing “too early” blocks
later. If the new list is decoded to a schedule, both campaigns will be scheduled next to each
other and will thus merge to a single campaign.

• Insert campaign: First, a setup activity is chosen randomly and the related campaign, A, is
computed. Then, all other campaigns (including those with different setup keys) within a
certain window on the same primary resource are calculated. For our computational tests,
the window size was uniformly distributed to include between 5 to 20 of the next left and

106 CHAPTER 6. THE SAP DETAILED SCHEDULING OPTIMIZER

right campaigns, respectively. For all campaigns, the cost differences are calculated that
would result if we insert campaign A before or after each candidate. The candidates are
sorted according to increasing cost difference, and we select the final insert target according
to a geometric distribution. The candidate with the highest saving (or least cost increase)
is chosen with a probability of 80%, the second one with 20% · 80%, the third one with
20% ·20% ·80% and so on. Eventually, after having chosen the target, campaign A is inserted
in the desired position.

6.1.3.5 Linear-order–based crossover

Linear-order–based crossover tries to merge the sequences of two parent encodings. First, two
different crossover points are chosen randomly. The part of the block list before the lower point
and after the higher point are directly copied from the first parent to the child. The same is true for
the suggested modes of the activities contained by the copied blocks. The remaining part of the
child block list is filled up in the order defined by the second parent. The related mode suggestions
are also copied from parent 2. An example with the crossover points 3 and 7 is given below.

Sequence 1 Sequence 2 Sequence 1

Parent 1 B3→ B4→ B1 → B2→ B6→ B5 → B7
Parent 2 B6→ B1→ B2 → B7→ B3→ B4 → B5

Child B3→ B4→ B1 → B6→ B2→ B5 → B7

Linear-order–based crossover preserves the precedence constraints, so a subsequent repairing
of the child is not necessary. In “classical” Evolutionary Algorithms, crossover and mutation are
applied in sequence to the same parent. This is not the case here. The above-presented mutation
operators require problem-specific knowledge which is derived from the phenotype, the actual
schedule. After crossover, the phenotype must be constructed again by the serial SGS, however.
Thus, for each parent individual, either crossover or mutation is applied.

6.1.4 Mutation and crossover probabilities

Mutation and crossover probabilities depend on the problems’ properties. For example, if make-
span minimization is less important, applying the “changing critical sequences” operator will not
necessarily lead to good solutions, since minimal-makespan schedules do not necessarily imply
a decrease in other objectives. For our computational tests, the operators are initialized with base
probabilities as shown in Table 6.2. We speak of a “dominant setup” if the weight of setup-related
objectives exceeds the weight of the remaining objectives: wtst + wtmt ≥ wtl + wml + wms.
Minimizing the makespan becomes dominant if wms is the largest weight among all objective
function weights. The actual mutation and crossover probabilities are normalized values of the
base probabilities.

6.1.5 The evolutionary cycle

This section reviews the phases of the GA (cf. Figure 4.1, Section 4.2) underlying the DS Solving
module.

1. Preprocessing: Before starting the core GA, a preprocessing takes place. Preprocessing in-
volves a forward and a backward pass to compute feasible intervals of start and finish dates

6.1. THE DETAILED SCHEDULING SOLVING MODULE 107

Operator Base Probability
Random insert on same primary resource 0.2

Random insert on across resources 0.2
Changing critical sequences 0.2 if makespan is dominant

0 otherwise
Shifting delayed block 0.1

Multiple swaps 0.2
Disturb 0.2

Reset modes 0.05 if alternative modes are present and
backencoded after the greedy heuristic
0 otherwise

Change mode 0.05 if alternative modes are present
0 otherwise

Merge campaigns 0.2 if setup is dominant
0 otherwise

Insert campaign 0.2 if setup is dominant
0 otherwise

Linear-order–based crossover 1.0
Table 6.2: Mutation base probabilities used for computational tests.

for each activity. According to these intervals, some modes might actually be infeasible. For
example, a mode’s duration might be either too long or too short such that the finish and
start date could not be both in their feasible interval or the mode’s capacity requirements
might exceed the resource availability. Such modes are marked as inaccessible and are not
considered further.

2. Initialization: The population is initialized using the methods described in Section 6.1.2.
The current schedule is backencoded to the first individual. The remaining part is sorted in
equal portions according to the due dates, the earliest start dates or the slack or randomly. If
setup times are included, the setup-clustering method is applied afterwards. Otherwise the
initial block lists are disturbed randomly.

3. Evaluation:

(a) Decoding by serial scheduling: First, all individuals of the population that have not
been decoded so far are decoded to a schedule using the aforementioned serial SGS.

(b) Backencoding of solutions: If the “reset modes” operator was assigned a positive
probability, the modes selected by the greedy heuristic are backencoded to the indi-
viduals. Also, the actual schedule could be backencoded to the block list to further
support Lamarckism (cf. Subsection 4.2.2). However, as backencoding of blocks is a
rather time-intensive procedure for more complicated problems, this option was not
activated for our computational tests.

(c) Computation of rankings: Eventually, the individuals are ordinally ranked according
to Criterion 5.39.

4. Update: Applying a so-called µ + λ selection, the worst individuals out of the combined
parents and offspring are removed, and the remaining form the set of new parents. In ad-
dition, duplicates are filtered out already before the µ + λ selection takes place. A child
is considered to be a duplicate if it has the same objective values as any individual of the

108 CHAPTER 6. THE SAP DETAILED SCHEDULING OPTIMIZER

parent population. Different schedules can have the same objective values, such that the du-
plicate elimination method actually decreases the diversity of the population. An advantage
is that it is a fast method. Checking for true duplicates requires a comparison of the actual
schedules, which is a rather time-consuming task.

5. Check for termination: The GA terminates when it reaches a predefined total runtime.

6. Selection: Parent selection is based on repeated tournaments. In each tournament, two can-
didates from the parent population are randomly chosen and compared according to their
fitness values (cf. Equation 5.39). The fitter parent is then selected into the mating pool.

7. Construction of offspring: Each selected parent is modified and saved as new child as fol-
lows.

(a) Reduction of first-priority lateness: Before the actual mutation, the operator “Reduc-
tion of first-priority lateness” is applied if such a lateness occurs.

(b) Mutation or crossover: To every child, one mutation or crossover operator is applied,
selected according to the probabilities mentioned in Section 6.1.4. The second parent
required for crossover is chosen randomly from the set of all individuals of the mating
pool having a different fitness than the first parent.

(c) Sorting out failed mutations: In some cases an operator might not be successful. For
example, a campaign with the same setup key might not be found to merge. Block lists
of such failed mutations are sorted out immediately.

8. The process continues with Step 3 until termination.

6.2 Alignment heuristics

Besides the solving module, different heuristics exist to modify an RCPSP context. For exam-
ple, one heuristic performs backward and forward passes, propagating due dates and start dates
through the network of activities as already discussed in Chapter 5. In this section, we introduce
two other heuristics. Starting with a feasible solution (i.e., a suboptimal solution of the related
RCPSP), these heuristics shift activities left and right without disturbing the sequence of activities
“too much.” These heuristics are proprietary versions of the right- and left-alignment techniques
mentioned in Section 5.9 and are explained in the following subsections.

6.2.1 Right-alignment heuristic

Earliness as a non-regular performance measure precludes the use of the serial SGS; the optimal
schedule no longer lies within the set of all active schedules (or semi-active schedules for setup
times), but within the set of all feasible schedules. Applying a serial or parallel forward SGS is
obviously not the right approach to construct good schedules with respect to the earliness objec-
tive. Moreover, the set of feasible schedules is usually much larger than the set of all active or
semi-active schedules. Thus, only the lateness plays a role within the objective function of the
DS Optimizer. The schedules constructed by the serial SGS may contain activities with a huge
earliness, which is seen as an undesirable “side effect” of many practical problems.

6.2. ALIGNMENT HEURISTICS 109

The strategy is then to modify the schedule in a subsequent step after optimization in order
to reduce the earliness without causing additional lateness. The right-alignment heuristic itera-
tively applies a series of global right shifts (cf. Definition 5.2.4) as follows.

1. As for the Genetic Algorithm presented in Section 6.1.1, activities are aggregated to blocks.
However, for the alignment heuristics, a block comprises at least all activities of an order.
An order is a combination of activities from a business level perspective (cf. Section 5.8).
If max-links to activities from other blocks exist, the related blocks are merged to a single
block. The choice of the order as the minimal building block is motivated by the preferences
of the users and also by the fact that setup constraints, max-links and mode-compatibility
constraints are usually only used within an order.

2. Within this set of yet unshifted blocks, sort all blocks according to the minimum finish date
of their activities.

3. Try to find the latest slot for the unshifted block with the largest finish date, such that the late-
ness of the current schedule does not increase. The slot-finding procedure follows a dynamic
programming approach similar to the one discussed in Section 6.1.1, with the difference that
it starts with the last activity of the block and that late start dates are preferred. The follow-
ing additional restrictions can be applied optionally. First, the set of feasible modes can be
restricted to the currently selected mode. Otherwise the best mode, leading to the largest
start date is selected for every activity. Second, an upper bound, b, for setup time and cost
increase can be specified. A slot is only feasible if wtst · ∆tst + wtsc · ∆tsc ≤ b, where ∆
denotes the difference between the activity’s new and old position for setup times and cost,
respectively. If no later slot can be found, the activities remain at their current position.

4. Remove the block from the set of unshifted blocks. If there are still blocks to be shifted
continue with 3, otherwise stop.

Applying the above heuristics several times in a row can further improve the earliness, since
gaps created by shifted blocks of the first run can be filled during subsequent runs. The right-
alignment heuristic will be used later in order to create new proposals. For the computational
tests, the following configuration was used.

1. Shift all activities right without changing modes or increasing setup times or costs.

2. Shift all activities right allowing mode changes and arbitrary setup-time or -cost increases.

3. If any block was shifted previously, shift again all activities right, allowing setup-time and
-cost increases but not mode changes.

4. If any block was shifted previously, go to step 3, otherwise stop.

6.2.2 Left-alignment heuristic

Similar to shifting activities to the right, also a left-alignment functionality is provided. It is ob-
vious, however, that the result of serial scheduling using an active-scheduling policy cannot be
improved. If a slot of sufficient capacity had been available, it would have already been chosen
by the DS solving module. Nevertheless, for construction of new proposals the left-alignment
heuristic proved useful as will become apparent later. A changing of modes is not supported and

110 CHAPTER 6. THE SAP DETAILED SCHEDULING OPTIMIZER

a temporary degradation of the objective value is not supported by the current implementation.
Thus, the left-alignment is only applied once.

6.3 Further extensions

For the sake of completeness it should be mentioned that the DS Optimizer as well as the align-
ment heuristics additionally support a deallocation of orders. If activated, whole orders are deal-
located until no due dates are violated. Deallocated orders are penalized in the objective function,
such that the underlying Genetic Algorithm tries to find undelayed schedules with as few deallo-
cated orders as possible. The resulting schedule provides the planner with additional information
on capacity shortages. However, since the goal of the coordination mechanism is to calculate an
interorganizationally feasible schedule, the coordination mechanism does not rely on the deal-
location functionality. For ranking individuals, several further methods are supported, such as
nondominated crowding-distance sorting (cf. Deb, 2001). Moreover, the campaign definitions can
be broadened to activities requiring similar setup states or to setup activities with similarly small
setup times, for example.

CHAPTER 7

The customized DEAL framework

This chapter discusses the customization of the DEAL framework to the SAP Detailed Schedul-
ing (DS) Optimizer and further specifies the coordination mechanisms for planning domains that
intend to coordinate their intradomain Resource-Constrained Project Scheduling Problems (RCP-
SPs). Section 7.1 lists underlying assumptions and defines the interorganizational RCPSP. In Sec-
tion 7.2, we describe the standard two-tier scenario, where several suppliers are delivering to
one Original Equipment Manufacturer (OEM). The remaining sections describe in detail the cus-
tomized steps of DEAL—evaluation, construction and initialization—with regard to the standard
two-tier scenario.

7.1 The interorganizational problem

We assume that each planning domain has its unique set of resources, disjoint from the resource
sets of other domains. The collaboration process remains entirely on an operational planning
level. That is, neither are aggregated quantities of delivered items communicated nor is the peg-
ging net recomputed. An interorganizational solution is constructed by following a successive
planning approach, where each partner applies his DS Optimizer to his intradomain RCPSP. Ac-
tivities between the different planning domains are connected by precedence constraints. That
is, activities of the OEM can only be started after the suppliers’ preceding activities have been
finished. To be more specific, we make the following assumptions.

• There is no cyclic dependency between the domains. Several suppliers are delivering to one
OEM and to other, external customers (not participating in the coordination process), but
not to another supplier. Also, the OEM is only delivering to ultimate customers but not to
any supplier.

• For computing schedules, OEM and suppliers have available the tools presented in the pre-
vious chapters, the solving module of the DS Optimizer, the heuristic for computing back-
ward and forward passes, and the alignment heuristics.

111

112 CHAPTER 7. THE CUSTOMIZED DEAL FRAMEWORK

• Suppliers and OEM are assumed to have unlimited inventory capacity to store intermediate
goods at no cost.

• The activity network is generated during a preprocessing step. That is, the OEM first calcu-
lates his lot sizes, the related number of activities and the pegging net (i.e., the precedence
relations between activities).1 Moreover, initial release and due dates are computed. Orders
are generated and communicated to the suppliers, who in turn proceed with similar calcu-
lations. This way, an interorganizational activity network is computed, where each domain
only knows its part, however.

• There is no intermediate recalculation of the lot sizes (influencing activity durations) or the
pegging net. Thus, the number of activities and the related net-durations remain constant.

• Activity-precedence constraints within a planning domain remain constant during the en-
tire collaboration process. Also, activity precedence between the partners is not altered.

• Resources are not shared by the domains and the available resource capacity remains con-
stant as well. Moreover, mode-resource assignments, activity durations, calendars and so
forth do not change either.

• During the coordination process there is no change of due dates belonging to customers not
taking part in the coordination process. The same is true for release dates related to technical
properties or to suppliers excluded from the collaboration process.

• We assume that no maximum time lag exists between two activities of different planning
domains.

The RCPSP formulation of Chapter 5 is extended by defining additional data, index sets and
superscripts summarized in Table 7.1. For example, the set of all jobs is distributed between dif-

dd∗j static, non-varying due date of activity j
dl∗j static, non-varying deadlines of activity j
e index of a planning domain
E set of all planning domains
Je set of activities j within the domain e, Je ⊂ J
JeU set of upstream-related activities of domain e, JeU ⊆ Je
JeD set of downstream-related activities of domain e, JeD ⊆ Je
Re set of resources r within the domain e
rd∗j static, non-varying release date of activity j
P ej set of predecessors of activity j within domain e
Sej set of successors of activity j within the domain e

Table 7.1: Additional data, index sets and superscripts for the interorganizational RCPSP

ferent planning domains e, i.e.

∀e ∈ E : Je ⊂ J,⋃
e∈E

Je = J,

∀e, f ∈ E, e 6= f : Je ∩ Jf = ∅.
1Algorithms for calculating lot sizes and the pegging net are not subject of this chapter. For an overview of different

approaches, the interested reader is referred to Voß and Woodruff (2006). Moreover, in Chapter 8, a test data generator
simulating the SAP Production Planning functionality is presented.

7.1. THE INTERORGANIZATIONAL PROBLEM 113

The same is true for resources, modes, and so forth.

For downstream domains, release dates are determined by corresponding finish dates of up-
stream domains and static, nonvarying, release dates rd∗j , influenced by technical circumstances
or partners not participating in the coordination process. This dependency of upstream domains
is expressed by including the following equations in a downstream domain’s RCPSP formulation.

rdj = max

{
max

k∈P g
j ,g∈E\{e}

(fdk) , rd∗j

}
∀j ∈ JeU (7.1)

The set of upstream-related activities JeU is defined as the set of all activities with predecessors in
other planning domains: JeU =

{
j ∈ Je|∃i ∈ Jg ∧ i ∈ P gj with g ∈ E\ {e}

}
. A forward pass prop-

agates the earliest start and finish dates through the network of activities.

For downstream planning, the process is straightforward: the upstream domain schedules its
activities first. The derived finish dates form the release dates for activities of adjacent down-
stream domains. After the downstream domains have scheduled their production, a feasible so-
lution of the interorganizational problem has been constructed. For upstream planning, we need
a different process. Since violating due dates is the “vent” for computing feasible schedules, up-
stream domains might not fulfill all proposed dates of the downstream domains. Due dates of
upstream domains belong to anticipating data, since they provide an approximation of the down-
stream domains’ scheduling problems. Thus, it should be the task of the downstream domains to
propose promising due dates. However, in general, the downstream domains are not aware of
the upstream domains’ model formulations. In order to separate the analysis of the local problem
from subsequent translation issues, each downstream domain calculates promising settings for
their upstream-related release dates. These settings will be denoted as proposed dates pd hence-
forth. The upstream domains map these dates to due dates by computing

ddj = min

{
min

k∈Sg
j , g∈E\{e}

(pdk), dd∗j

}
∀j ∈ JeD, (7.2)

where JeD =
{
j ∈ Je|∃i ∈ Jg ∧ i ∈ Sgj with g ∈ E\ {e}

}
denotes the set of downstream-related

activities. Static, non-varying due dates dd∗j pertain to external customers not taking part in the
coordination process. Upstream domains may experience two kinds of lateness for each activity j,
external-related lateness (max{fdj − dd∗j , 0}) and downstream-related lateness (max{max{fdj −
ddj , 0} −max{fdj − dd∗j , 0}, 0}). Naturally, both kinds of lateness should be considered in the up-
stream domain’s objective function. Henceforth, we suppose that an upstream domain considers
external-related lateness to be more important than downstream-related lateness. Coordinating a
plan with downstream domains should not (further) delay delivery to external customers. This
can be achieved during a preprocessing before the DS solving module is called. First, external-
related due dates are converted to pseudo-hard deadlines dlj := min{dl∗j , dd∗j}, whereas static,
non-varying deadlines dl∗j may refer to further technological constraints. Second, we set dd∗j :=∞
for all j ∈ Je. Finally, the due dates ddj are computed using Equation 7.2. This procedure only
applies to upstream domains. Thus, while external-related deadlines are prioritized, the violation
of downstream-related due dates is treated as the standard lateness in the objective function, cf.
Relation 5.39.2

2This form of prioritizing can be regarded as a crude approach. However, it facilitated the development of the pro-
totype. For a real-world application, a finer tradeoff between external- and downstream-related lateness might be more
appropriate.

114 CHAPTER 7. THE CUSTOMIZED DEAL FRAMEWORK

For two-domain upstream planning, we have the following process. The downstream domain
calculates proposed dates for the upstream domain. The upstream domain maps these proposed
dates to due dates as shown by Equation 7.2 (external-related due dates have been set to deadlines
previously). Depending on the weighting of the objective function, the upstream domain “tries”
to fulfill the proposal to the extent possible. However, due to finite capacities and prioritized
deadlines, the upstream domain might not be able to entirely fulfill the proposal. Some activities
might be scheduled earlier and others later. The upstream domain then in turn sends the resulting
finish dates as a counterproposal to the downstream domain. The downstream domain maps the
finish dates to release dates, cf. Equation 7.1. After applying a forward pass, the downstream
domain eventually calculates its own schedule based on the new earliest start and finish dates. In
some sense, upstream planning can be regarded to always involve downstream planning in order
to get feasible schedules for all involved partners. For translating proposals, a planning domain
requires knowledge of which activities of other domains are directly affected by its own activities.
This information is not considered as critical.

Preliminary experiments suggested that converging BOM structures at the boundary between
upstream and downstream domain can lead to performance losses. Situations are imaginable
where several activities of an upstream domain need to be completed before a single activity
of the downstream domain can be started, whereas each of the upstream activities has its own
due date. As the DS Optimizer tries to minimize the total lateness, however, the finish dates of
the upstream domain’s activities are not necessarily aligned and the latest activity determines
the start of the downstream domain’s activity! For the considered set of activities the maximum
rather than the total lateness should be prioritized. This value is not necessarily included in the
objective function, since the overall maximum-lateness objective can pertain to another (even
more delayed) activity. In some sense, the upstream domain does not have the correct view of the
downstream domain’s situation. As a remedy, we introduce artificial activities on the supplier’s
side during a preprocessing procedure. The artificial activities use no resources, have a duration
of zero and directly precede the downstream domain’s activities while succeeding the critical
supplier’s activities. The DS solving module itself is not changed, however.

Figure 7.1 gives an overview of the different dates relevant to a planning domain’s activity j.3

It should be emphasized that parts of the DS Optimizer’s data are treated as variables by DEAL.

Figure 7.1: Overview of the dates set by DEAL and DS Optimizer for a single activity j

3This figure does not include proposed dates pdj as these dates do not directly relate to an activity but influence the
due dates ddj , cf. Equation 7.2.

7.2. THE STANDARD TWO-TIER BUSINESS CASE 115

Dates related to technological constraints or external partners not participating in the coordina-
tion (i.e., rd∗j , dd∗j and dl∗j) form the nonvarying basis of an intradomain RCPSP problem instance.4

The DEAL framework dynamically changes the problem definition by aligning release dates, rdj
and due dates, ddj . Propagated due dates, pddj , and latest start and finish dates, lsj and lfj , are
computed by a backward pass. A forward pass sets the earliest start and finish dates, esj and efj ,
according to the dynamically changing release dates, rdj . The above settings define the problem
instance for the underlying DS Optimizer that computes a solution w.r.t. the updated constraints
and objective function. Eventually the DS Optimizer sets start and finish dates, sdj and fdj , for
each activity. Due to the serial schedule-generation scheme in use, an activity is never scheduled
before its earliest start date. The latest finish date or the (propagated) due date may be violated,
however.

7.2 The standard two-tier business case

In the following, we focus on two-tier business cases, where the OEM takes the leading role. We
suppose that all domains have external customers not taking part in the coordination process and
that the OEM’s and suppliers’ production processes are tightly coupled in the sense of a just-
in-time delivery. Though inventory buffers are assumed to be available at no cost and are not in-
cluded in the RCPSP model formulation, early due dates of external customer orders are assumed
to require the coordination of delivery sequences between the planning domains. According to
discussions with SAP Solution Management, this setting is of major importance. Within the DEAL
framework, the OEM iteratively sends proposed dates to his suppliers who map the proposals to
due dates pertaining to their planning problems, cf. Equation 7.2. The suppliers also have external
customers and will fulfill the OEM’s proposals only as long as their external customers are not
harmed. As already discussed, external customer orders are prioritized by converting the related
due dates to deadlines. Following the convention of Chapter 4, we denote the OEM’s domain with
e = 0 and refer to the suppliers’ domains with e > 0. For a supplier e, an individual is encoded
by downstream-related due dates ddj pertaining to activities that precede activities of the OEM’s
domain; j ∈ JeD.

Downstream-related due dates belong to the class of anticipating data, since they provide
the supplier with a crude approximation of the OEM’s planning problem. Together with other
unvarying constraints and objectives, these due dates define an RCPSP problem instance. The
supplier’s DS Optimizer maps this instance to a solution. The solution part relevant to the OEM
consists of the finish dates, fdj , of activities that precede activities of the OEM’s domain; j ∈ JeD.
All suppliers send their finish dates to the OEM. The OEM maps these finish dates to upstream-
related release dates by applying Equation 7.1. Together with his static constraints, these release
dates define his problem instance, after a forward pass was applied. Applying the DS Optimizer
yields the corresponding solution. Also from the interorganizational perspective, a feasible solu-
tion was created since the connecting constraints (i.e., the OEM’s release dates) were not violated.

4As discussed above, static, non-varying due dates of upstream domains are converted to deadlines in our prototype.
However, this must not be true for the general case.

116 CHAPTER 7. THE CUSTOMIZED DEAL FRAMEWORK

7.3 Initialization

As standard Evolutionary Algorithms do, DEAL requires an initial population. The initial pop-
ulation consists of only one individual (i.e., a feasible interorganizational solution) and is subse-
quently filled up with children until the desired population size has been reached. For the compu-
tational tests, we used two methods to construct the initial individual. Both methods presume that
activities, precedence constraints, and initial release and due dates have already been generated
(as has been discussed when presenting the assumptions in Section 7.1). For the computational
tests, methods for simulating this step will be presented in Chapter 8.

7.3.1 Upstream planning

In the standard initialization, the OEM proposes dates that myopically optimize his intradomain
problem. To do this, all release dates rdj are first set to their static, non-varying values rd∗j . Based
on this relaxed problem, the OEM computes his schedule first. To do this, first a backward and
forward pass is applied to set the bounds for each activity j—the earliest (latest) start dates esj
(lsj), the earliest (latest) finish dates ef j (lf j), and the propagated due dates pddj . Then, the DS
solving module calculates a solution (setting start dates sdj and finish dates fdj) by letting the
underlying GA run for a predefined amount of time. The proposed dates are then derived from
the related right-aligned schedule. The suppliers translate the proposed dates into downstream-
related due dates, solve their own scheduling problem and report the realized finish dates to the
OEM. As previously discussed, the OEM in turn converts these finish dates into upstream-related
release dates and recalculates his schedule.

In the literature, upstream planning often leads to high costs in the suppliers’ domains. For
example, Dudek and Stadtler (2005) assume a Master Planning problem where backlogging is
not allowed but suppliers have to use costly overtime capacity to fulfill a manufacturer’s initial
request. It is worth highlighting that the situation is entirely different for our two-tier business
case with parties relying on the DS Optimizer. As mentioned previously, the DS Optimizer cal-
culates schedules that respect capacity and activity precedence constraints at the cost of lateness.
Additional overtime capacity is usually not explicitly modeled by the RCPSP.5 Thus, the suppli-
ers are not able to guarantee to fulfill the OEM’s initial request. The trivial strategy of proposing
very early dates will usually not lead to satisfying results for the OEM. More important than ab-
solute values are the implied relative priorities of the proposed dates. By transmitting proposed
dates, the OEM indicates to his suppliers which activities are more and which are less important.
However, if the decision on the delivery sequence is myopically made by the OEM, the suppliers’
counterproposals cause lateness in the OEM’s own schedules. Simply put, the suppliers convert
an—on first perception—advantageous sequence of delivery into a sequence that ultimately leads
to lateness for the OEM’s customers. The goal of the customized DEAL framework can be stated
as finding a delivery sequence that causes minimal lateness in the OEM’s domain and can be executed
efficiently by the suppliers.

5It should be noted, however, that there are two ways to implicitly model overtime capacity. First, additional modes
with short duration and higher mode costs can be introduced. However, using modes to model overtime is not regarded
as the standard business case. Second, deallocation of activities allows one to compute schedules without lateness at the
cost of deallocated activities. The planner has then to consider additional means, such as overtime, to fulfill the deallo-
cated customer orders. As mentioned previously, deallocation capabilities of the DS Optimizer have not been used as the
coordination mechanism was defined to aim primary at the construction of interorganizational feasible schedules.

7.3. INITIALIZATION 117

Figure 7.2: Overview of initialization phase of DEAL’s customized version.

118 CHAPTER 7. THE CUSTOMIZED DEAL FRAMEWORK

Figure 7.2 illustrates the above initialization procedure. It substitutes the generic “initial solu-
tion” process of Figure 4.5 in Section 4.3. Two more issues should additionally be highlighted. As
can be seen, forward and backward passes are applied multiple times. For the sake of complete-
ness, it should be mentioned that before reapplying such a method, the dates esj , efj , lsj , lfj and
pddj need to be reset to their unbounded values for all j ∈ Je. Otherwise these bounds would
only get tighter and tighter but not reflect the current (counter-) proposal. In order to simulate an
existing alignment, initial release dates can be precomputed in addition. This issue is discussed
in the following subsection.

7.3.2 Simulation of an existing alignment

In practice, a previously good alignment between OEM and suppliers (e.g., as part of a frame con-
tract) can become outdated by sudden events, such as machine breakdowns. A question worth
investigating is to what extent the DEAL mechanism supports partners reacting to such scenar-
ios. We simulate a good alignment by centrally applying the DS Optimizer to the interorganiza-
tional problem, formulated as a single RCPSP instance. The resulting start dates of activities at
the boundary between OEM and suppliers are set as release dates in the OEM’s initial subprob-
lem. These dates help the initialization procedures of the DS Solving module (cf. Section 6.1.2) to
construct good activity lists at the beginning.

However, capacity shortages or changing external-related due dates are introduced as well
into the separated problem instances. Hence, the precomputed release dates (simulating a good
alignment) don’t fit any more. It is continued with the above described planning procedure—
both methods are in fact upstream planning methods. However, when calculating his upstream
proposal, the OEM has now to respect the centrally computed, outdated, release dates.

7.4 Evaluation

This section is about customizing the generic evaluation schemes presented in Section 4.5 (For a
general overview, how evaluation is embedded in the DEAL framework, see also Section 4.9). We
assume that most individuals are acceptable for the suppliers. On the considered short-term level,
suppliers are supposed to support the OEM’s proposals even though these proposals cause high
setup times or costs, mode costs or makespan within their local planning problems. However, as
already discussed, delivery dates to external customers are considered as deadlines in the current
implementation. Recall that deadlines are considered top-level objectives. For reasonable values
of these bounds, the supplier will thus compute acceptable schedules irrespective of the OEM’s
proposals and a single-ranking scheme as described in Section 4.5.1 would be sufficient. Unfortu-
nately, due to limited runtime or if deadlines were are set to early, a supplier’s local optimization
method might not be able to compute a schedule without any deadline violation. To counteract
such cases, we implemented the double-ranking scheme of Section 4.5.2. The top-level ranking,
υe(p), reflects a supplier’s eweighted sum of total and maximum violation of deadlines (the same
weights as for the standard DS Optimizer total and maximum lateness objective are used). The
second-level ranking, ωe(p), reflects the weighted sum of a suppliers’s makespan, setup times,
setup costs and mode costs. To calculate the sum, the weights of the supplier’s objective function
(cf. Equation 5.39) are used. Standard lateness (i.e., due date violation) is not included, since it

7.4. EVALUATION 119

does not relate to external customers, referring only to due dates imposed by the OEM. As dis-
cussed in Section 4.5, these costs are not accountable by the supplier, as a late delivery actually
harms the OEM. The OEM’s top-level ranking, υe(o), reflects the weighted sum of total and max-
imum lateness. As for the suppliers, the second-level ranking ωe(p) reflects the OEM’s weighted
sum of makespan, setup times, setup costs and mode cost.

Minor changes are applied to the generic scheme of Section 4.5 for eliminating duplicates.
Preliminary experiments suggested that the elimination of duplicates is necessary to ensure a
diverse population and to reduce the risk of premature convergence to a local optimum. Two
different kinds of duplicates might exist from the OEM’s perspective: Individuals that have sim-
ilar upstream-related release dates but might be differently evaluated6 and individuals that are
similarly evaluated but have different upstream-related release dates. According to its duplicate
type, an individual suffers a different degradation of its ranking. If two individuals are equally
evaluated, the older one is preferred, which allows the computation of more promising proposals
(see also Section 7.8). Summarizing, we get the following ranking scheme to sort a population of
complete individuals.

1. Sort according to nondominated solutions regarding suppliers’ and OEM’s acceptance.

p � q ⇔ (∀e ∈ E : υe(p) ≤ υe(q)) ∧ (∃d ∈ E : υe(p) < υe(q))

2. If indifferent, sort according to the OEM’s second-level preferences.

p � q ⇔ ω0(p) < ω0(q)

3. If indifferent, sort according to the suppliers’ second-level preferences.

p � q ⇔ (∀e ∈ E\ {0} : ωe(p) ≤ ωe(q)) ∧ (∃d ∈ E\ {0} : ωe(p) < ωe(q))

4. If indifferent, sort according to the time when an individual was completed.

p � q ⇔ The construction of p was completed earlier

After the population was sorted, a second duplicate check is performed. The OEM traverses
the sorted list of individuals from the best to the worst. For each individual, lower-ranked in-
dividuals are sought with similar upstream-related release dates. If such cases exist, then the
lower-ranked individuals are shifted to the end of the list. After having performed the duplicate
check, the position in the final list expresses the final, joint ranking used by subsequent selection.
To actually choose the mating pool, a tournament selection is carried out, as already explained in
Section 4.5. For parallel and asynchronous coordination, the mating pool is steadily refilled and
new children are constructed to maintain a constant queuing size, as discussed in Section 4.9.

As a possible extension, upper acceptance bounds for different objectives are imaginable. For
example, suppliers might accept only a limited increase of setup time. If above a certain level,
setup time could be considered an unacceptable consumption of resources. Such excess values

6As discussed in Chapter 6, the DS Optimizer’s underlying GA is based on probabilistic decisions. Thus, different
intradomain schedules are generated if the DS solving module is applied multiple times to the same RCPSP instance. In
general, a schedule can only be reproduced if the same random seed was taken.

120 CHAPTER 7. THE CUSTOMIZED DEAL FRAMEWORK

could additionally be considered when calculating the top-level ranking. In such a case, also the
underlying local optimization methods should be adapted accordingly. Regarding the objective
function of the DS Optimizer, such an adaptation was realized quickly. However, new objectives
actually require changes to various mutation operators of the DS Optimizer that are currently de-
signed to minimize the original objective function. Moreover, criteria of the greedy heuristic for
automated mode selection are affected. Changing the related implementation was considered a
major effort beyond the scope of this thesis. The computational results thus build on the aforemen-
tioned assumption that suppliers focus on the reduction of lateness of external customer orders,
but are indifferent to increases in other costs.

7.5 Construction of solutions

The starting point for constructing new proposals is the selected individuals in the mating pool
(the parents). For each parent, a new child is constructed. Construction might require setting up
and solving an intermediate problem. To further distinguish among the problem instances of
parent, intermediate and child, we introduce the additional superscripts (p), (i) and (c). If the
setting is clear, the superscripts are omitted. We first describe the general process of constructing
a solution before going into the details in the subsequent sections. The basic principle underlying
the construction of a child is upstream planning, where the OEM proposes dates close to the
release dates of the parent. To be more specific, the construction of a child requires the following
steps.

1. The OEM computes new proposed dates pd(c)
j for all activities j ∈ J0. To do this, several

operators are available to analyze existing solutions. To compute proposed dates, these op-
erators might require the setup and solution of an intermediate problem (i). The different
operators are presented in Section 7.7.

2. The OEM proposes the dates to all suppliers e ∈ E\ {0}, who calculate the correspond-
ing due dates dd(c)

j ,∀j ∈ Je according to Equation 7.2. It should be emphasized that every
supplier gets a separate proposal (starting a separate communication thread) containing
only those dates that are relevant for his planning domain. The suppliers update the propa-
gated due dates pdd(c)

j by applying a backward pass. As already discussed in Section 4.4.2,
for some suppliers proposed dates might not mean any change to their interface. In this
case, the OEM’s child is reconnected to an existing communication thread. Analogously, the
suppliers perform an additional check for redundancy. A detailed discussion of this topic
follows in Section 7.9.

3. Each supplier calculates a new schedule by applying his DS Optimizer and derives the finish
dates fd(c)

j for activities je ∈ JeD that precede the OEM activities. Each supplier counterpro-
poses his finish dates to the OEM.

4. The OEM maps all finish dates to release dates rd(c)
j using Equation 7.1 and applies a for-

ward pass to calculate earliest start and finish dates esj , ef j for all j ∈ J0.

5. The OEM calculates the child’s schedule by applying the DS Optimizer to the updated
RCPSP instance.

7.5. CONSTRUCTION OF SOLUTIONS 121

Constructing a child can vary in the analysis of the problem instance p and the derivation of
the new proposed dates pd(c)

j . The proposal generating operators are discussed in Section 7.7.
However, steps 2–5 of the above sequence remain the same for all operators. Figure 7.3 illustrates
the above procedure. It is the customized version of the generic construction template shown in
Figure 4.9 of Section 4.4.2.

Figure 7.3: Overview of construction phase OF DEAL’s customized version.

122 CHAPTER 7. THE CUSTOMIZED DEAL FRAMEWORK

7.6 Coordination example

This sections aims at complementing the above discussion by providing a concrete example.7

Assume an OEM who wants to produce two lawnmowers (Mow). A lawnmower consists of five
components: A motor (M), a tank (T), a set of wheels (W), a handle (H) and a chassis (C). The
components are delivered by two suppliers: Supplier Plastic, producing the sets of wheels and
the tanks, and Supplier Steel, producing chassis, motors and handles. When changing from wheel
to tank production, Supplier Plastic needs a sequence-dependent setup (S). In a first production
step, the OEM assembles the chassis and the wheels (CW) and the motor and the tank (MT). Then,
all components are assembled to a lawnmower. In addition to the OEM, Supplier Steel delivers
to another, external, customer by producing an external good (Ext). Figure 7.4 illustrates the ideal
situation.

Figure 7.4: Coordination example—ideal situation.

It can be seen that OEM and Supplier Steel own two resources each, while Supplier Plastic
only handles a single resource. Multiple modes are not present, and each activity requires a sin-
gle resource, as illustrated in the figure. For better legibility, the example consists of 8 periods,
separated by breaks during which production is not possible. Activities either require a full or a
half period length. Dotted lines illustrate the pegging net and vertical arrows the due dates. For
example, the lawnmowers (Mow) shall be finish at the end of periods 5 and 6, respectively. There-
fore, Supplier Plastic needs to finish the production of the tanks (T) at the end of periods 1 and 2
and the production of the wheel-sets (W) at the end of periods 3 and 4, respectively. The sched-
ules of Figure 7.4 have been constructed by upstream planning. That is, the OEM first applies
his DS solving module, and then proposes delivery dates implied by the related right-aligned
schedule, as discussed previously (cf. Figure 7.2). Since the suppliers can fulfill all proposed dates
(respectively the related due dates), there is no need for coordination in this idealized setting.

A need for coordination results if the proposed dates can not be fulfilled by the suppliers.
Figure 7.5 depicts a situation where Supplier Steel cannot produce the motor as promised due
to a machine breakdown during the first two periods. As a consequence, the lawnmowers are
delivered to the ultimate customer too late. For the remainder of this section we assume this to be
the initial situation, generated by the initialization procedure, cf. Figure 7.2.

The machine breakdown can be counteracted by changing the sequence of delivery and pro-
duction. Producing chassis (C) and wheel-sets (W) before before handles (H) and tanks (T) makes
a nondelayed delivery of lawnmowers possible. Figure 7.6 shows the related schedules. However,
even in this small example, it is a hard task to retrieve these sequences manually as each party
has only partial information. On the one hand, the suppliers have no indication to change the

7For didactic purposes, this example bases on an ideal, trivial scheduling problem and was not used for the computa-
tional evaluation.

7.6. COORDINATION EXAMPLE 123

Figure 7.5: Coordination example—initial situation.

Figure 7.6: Coordination example—a possibility to counteract the machine breakdown.

sequence as most due dates are fulfilled in the initial situation (cf. Figure 7.5). Only the delivery
of the motor is delayed, which is unavoidable from the perspective of Supplier Steel. On the other
hand, the OEM is not aware of the suppliers’ resource situation. Moreover, the schedules of Figure
7.6 imply that Supplier Steel needs to delay the delivery of the good relating to the external cus-
tomer (Ext). As assumed in Section 7.1, suppliers are not willing to do this. Additionally, Supplier
Plastic needs to run a longer sequence depending setup activity (S) when switching from tank to
wheel production.

As discussed in Section 7.5, DEAL implements different operators that analyze the OEM’s
current situation in order to generate new proposals. These operators represent different rules-of-
thumb. One of these rules (cf. Subsection 7.7.2.5) works in the following idealized way.

First, all release dates confirmed by the suppliers that match the initially proposed dates are
relaxed in the OEM’s planning problem, i.e. set to the beginning of the planning horizon. Then,
the OEM computes the related left-aligned schedule by applying the left-alignment heuristic pre-
sented in Section 6.2 (also a rescheduling by calling the DS solving module is possible). The gen-
erated schedule is shown in Figure 7.7. Dotted lines of the pegging net are only drawn for nonre-
laxed release dates. It can be seen that the “CW” activities have been placed very early and that
the OEM’s lateness decreases to zero.

Figure 7.7: Coordination example—left-aligned version of the OEM’s relaxed problem.

124 CHAPTER 7. THE CUSTOMIZED DEAL FRAMEWORK

To reduce the earliness, a right-alignment is applied subsequently. As discussed in Section
6.2, the right-alignment heuristics is not allowed to generate additional lateness when shifting
activities to the right. Figure 7.8 shows the related schedule. The OEM uses this schedule for
deriving new proposed dates which are transmitted to the suppliers. The figure also shows the
implied suppliers’ due dates.

Figure 7.8: Coordination example—left-right-aligned version of the OEM’s relaxed problem.

For computing counterproposals, the suppliers reschedule their production according to the
new due dates by calling their DS solving module. In the example, Supplier Plastic can fulfill all
due dates, although this implies are larger sequence depending setup time8 as shown in Figure
7.9.

Figure 7.9: Coordination example—rescheduling of the suppliers.

When rescheduling his production, Supplier Steel prioritizes his external customer due dates
as discussed in Section 7.1. Therefore, not all new due dates imposed by the OEM can be fulfilled.
Thus, the OEM needs to reschedule his production according to the counterproposal of Supplier
Steel (the counterproposals of the two suppliers are aggregated by using Equation 7.1). As can be
seen in Figure 7.10, the delay of lawnmowers can only be partially decreased as a consequence.
However, an improvement that is acceptable by all parties was generated. Comparing the final
schedules (Figure 7.10) with the initial ones (Figure 7.5) we can make the following observations:

1. Regarding their top-level ranking (reflecting the violation of deadlines) the suppliers are
indifferent between the two solutions.

2. The OEM prefers the solution of Figure 7.10, as due dates to external customers are less
violated.

3. Regarding the suppliers’ second-level preferences, the solution relating to Figure 7.5 with
less setup time should be preferred.

8We assume that violating due dates is penalized more than larger setup times in the objective function of Supplier
Plastic.

7.7. PROPOSAL GENERATING OPERATORS 125

Figure 7.10: Coordination example—improved feasible schedule.

According to the ranking scheme of Section 7.4, the parties thus prefer the schedules of Figure
7.10. If the OEM’s lateness was not reduced, the initial situation (Figure 7.5) would have been
preferred as it implies less setup time for Supplier Plastic. If Supplier Steel would have violated
the deadline relating to his external customer (Ext), either because local runtime was short or the
scheduling heuristic does not support a prioritization of deadlines, the initial situation would
have been preferred according as well. Thus, the ranking scheme serves as a safety mechanism
for the suppliers, as it steers the search process in the right direction. Moreover, the OEM may
finally only choose among solutions accepted by all suppliers, as discussed in Chapter 4.

In general, we can not expect that a single operator totally resolves all drawbacks of the initial
due-date-setting. However, by applying several operators iteratively, the initial situation can be
improved gradually, as indicated by our computational tests presented in Chapter 8.

7.7 Proposal generating operators

In the following, we will present operators that enable the OEM to construct new proposals by
analyzing his complete individuals (not being under construction) and the related schedules. The
operators try to derive a promising setting of proposed dates for reducing the lateness incurred
by the OEM’s customers. As discussed above, the suppliers will try to comply with these dates
to the extent possible, but are allowed to deviate from the proposal if necessary. Each operator
follows one of four basic principles:

1. Propagation of lateness: Proposed dates are calculated by propagating the OEM’s lateness
w.r.t. external customers to upstream-related activities by means of backward passes. A de-
tailed discussion follows in Subsection 7.7.1.

2. Left-right-alignment of a partially relaxed problem instance: An intermediate problem
instance is generated by partially relaxing release dates of the parent instance. Lateness
to ultimate customers is then reduced by applying a left–right-alignment (cf. Section 6.2)
to the intermediate problems. The child’s proposed dates are derived from the start dates
of the subsequently right-aligned intermediate problem. These operators are discussed in
Subsection 7.7.2.

3. Rescheduling: An intermediate problem instance is generated as a partially relaxed copy of
the parent instance. By applying the DS Optimizer to the intermediate instance, we search
for better sequences of activities. The child’s proposed dates are derived from the start dates
of the intermediate instance. Subsection 7.7.3 deals with this kind of operators.

126 CHAPTER 7. THE CUSTOMIZED DEAL FRAMEWORK

4. Crossover: Multiple existing individuals are used to derive new proposed dates, more de-
tails are presented in Subsection 7.7.4.

In general, the construction of a child is subject to the following trade-off. If, on the one hand,
the OEM is granted too much freedom to readjust the proposed dates, a solution similar to initial
upstream planning will result. If, on the other hand, possibilities for changing proposed dates
are too limited, the schedules will not change and the evolutionary process will get stuck. Thus,
the fundamental idea is to restrict the OEM to those changes that have a large relative impact on
his objective value with regard to the change of proposed dates. A similar concept also under-
lies the work of Dudek and Stadtler (2005). Here, deviating from the current solution is explicitly
penalized in the objective function of the proposal-issuing planning domain. However, such an
explicit formulation is not possible for the DS Optimizer on the basis of the current schedule gen-
eration scheme (more details on this topic will be presented in Subsection 7.7.5). As a remedy,
several operators have been implemented, representing different “rules of thumb” for calculating
a proposal. These rules of thumb have been developed on the basis of intuition and results of
preliminary experiments. Regarding their performance, there is no guarantee in form of a mathe-
matical proof or formula.

An operator might not always be able to calculate proposed dates that substantially differ from
previous release dates. In such cases another operator is applied to avoid producing redundant
proposals and to keep runtime requirements as low as possible. In addition, a self-adaptation of
operators is supported. More details are given in Section 7.8.

CX Component crossover
FDS Fix delayed activity-sequence

FS Fix sequence of all activities
FWD Forward scheduling

ICL Insert components most left
ICR Insert components randomly
IDD Insert due dates
LA Left-alignment
LX Linear crossover

PDD Propagate due dates
RA Right-alignment
RC Rearrange activities in connected components

RMD Relax most delayed (upstream-related) release dates
RMP Relax most promising (upstream-related) release dates
RMS Relax minimum slack (upstream-related) release dates
RNB Relax nonbottleneck upstream-related) release dates
RRD Relax all (upstream-related) release dates
SSB Set start-date bounds

Table 7.2: Abbreviations of operators’ subprocedures.

For the sake of clarity we will abbreviate the different subprocedures that define an operator.
Table 7.2 presents an overview of used abbreviations. An operator is defined by a sequence of
subprocedures, e.g. FS|PDD means that the sequence of activities is fixed before a propagation
of due dates takes place. The single operators and subprocedures are presented in the following
subsections. For easy reference, an operator’s subprocedure sequence is contained in the heading.
Table 7.3 gives an overview of every subprocedure sequence, the related subsection and the page
number.

7.7. PROPOSAL GENERATING OPERATORS 127

Sequence of subprocedures Subsection Page number
CX 7.7.4.3 140
CX|FWD|LA|RA 7.7.4.3 140
FS|ICL|FWD|RA 7.7.3.2 135
FS|ICR|FWD|RA 7.7.3.2 135
FS|PDD 7.7.1.2 128
FS|RMD|LA|RA 7.7.2.3 131
ICL|FWD|RA 7.7.3.2 135
ICR|FWD|RA 7.7.3.2 135
IDD|FWD|RA 7.7.3.3 136
LX 7.7.4.1 138
LX|FWD|LA|RA 7.7.4.1 138
PDD 7.7.1.1 127
PLX 7.7.4.2 139
PLX|FWD|LA|RA 7.7.4.2 139
RA|FDS|PDD 7.7.1.3 129
RC|FWD|RA 7.7.3.1 134
RMD|LA|RA 7.7.2.2 131
RMS|LA|RA 7.7.2.4 131
RNB|LA|RA 7.7.2.5 132
RMP|LA|RA 7.7.2.6 132
RRD|LA|RA 7.7.2.1 130
SSB|FWD|RA 7.7.3.4 137

Table 7.3: Overview of operator subprocedures, related subsections and page numbers.

7.7.1 Propagation-based mutation operators

A simple approach to calculate new promising release dates is to propagate the lateness through
the activity network by means of backward passes. We implemented three different operators that
rely on the propagation principle.

7.7.1.1 Propagate due dates (PDD)

Propagation of due dates is the most simple operator to achieve a crude alignment between the
OEM’s and the supplier’s schedules. By applying a backward pass (see equations 5.8, 5.9 and
5.32), the OEM calculates propagated due dates pddj and latest finish dates lfj . For the standard
problem 5.1–5.5, we can calculate the required infinite start date isdj of an activity as

isdj = min
{
lf

(p)
j , pdd

(p)
j

}
− dj . (7.3)

The infinite start date denotes the latest possible time an activity has to start to obtain a nonlate
schedule (i.e., a schedule with a total lateness of zero) under infinite capacity. The proposed dates
are then set to these infinite start dates. If calendars are included, the gross-duration rather than
the net-duration needs to be subtracted in Equation 7.3. Recall that the propagation of due dates
works on an infinite basis, it considers neither the current schedule nor capacity constraints.9 The
results are proposed due dates that give the suppliers a very rough view of the OEM’s situation. If

9As propagated due dates are solely dependent on calendars and precedence constraints, they need actually only be
computed once. However, as will become apparent, other operators might change the precedence constraints. To assure
that the propagated due dates match the current precedence constraints, a recomputation is performed whenever neces-
sary. Since the numerical test cases contain no max-links, the computational overhead of this strategy is negligible. For
problem instances containing max-links, a more advanced implementation supporting a backup of already computed
propagated due dates is recommended however.

128 CHAPTER 7. THE CUSTOMIZED DEAL FRAMEWORK

the OEM’s own due dates have been altered due to changing customer preferences, this operator
realigns the network of activities to the new situation, however, without considering capacity. For
most coordination problems, this strategy is too simple, since bottlenecks arise because of limited
capacity. An advantage is that backward passes can usually be computed very quickly.

A further difficulty arises if release dates of OEM activities are not determined by a supplier’s
counterproposal, but by other technological constraints. Considering lateness related to techno-
logical constraints during the backward passes is not useful. Even if the supplier delivered ear-
lier, lateness caused by technological constraints would not change. To reduce the propagation to
lateness actually caused by a supplier, we apply a forward pass that only considers technology-
related release dates rd∗j that are independent of a supplier’s delivery. The forward pass thus cal-
culates the earliest start dates that are invariant to the results of the coordination process. Adding
the activity’s gross-duration to this earliest start date yields the related earliest finish date. If a
due date was set prior to this earliest finish date, a lateness will result, irrespective of a supplier’s
delivery. Such due dates (or deadlines) are then temporarily set to the related earliest finish date,
if applicable. The aforementioned backward pass is then applied after this preprocessing.

7.7.1.2 Fix sequence and propagate due dates (FS|PDD)

One way to roughly consider capacity constraints is to fix the sequence (FS) of activities before
applying the backward pass. Fixing the sequence means introducing artificial finish–start links
with a minimum time lag of zero between activities succeeding each other on similar resources.
For each resource, a list of activities currently scheduled on the resource is computed. Then, for
every activity j of a list, the earliest succeeding activity k contained in the same list is searched,
with fdj ≤ sdk. If such an activity can be found, an artificial link between j and k is introduced.10

Furthermore, unused modes are temporarily removed from the model. Otherwise, forward and
backward passes, which always consider the “best combination” of modes neglecting capacitative
constraints do not work as intended and can lead to inconsistencies.

After the sequence is fixed, a backward pass is applied to calculate the proposed dates. Again,
technological constraints can be considered by a forward pass and a subsequent correction of due
dates. This measure is applied before the sequence is fixed to limit the left shifting of the due
dates. After the proposed dates have been computed, the artificial links are removed.

In general, fixing the sequence comes with two major disadvantages: First, it only provides a
crude approximation of available capacity. Especially for variable-capacity profiles, the proposed
dates are likely to be either too late or too early and do not guarantee a subsequent calculation of
a feasible schedule respecting capacity without lateness. Second, as will become apparent later,
many coordination problems result because of a delivery sequence that does not match the con-
straints of the suppliers and OEM. Obviously, the operator has only limited ability to change the
sequence. Nevertheless, the proposed dates may provide more information to the suppliers than
the infinite propagation of the previous section.

10Obviously, for multi-capacity resources, this strategy does not fix the whole sequence. To do this, minimum time lags
need actually be introduced between an activity and every successor on the same machine, which—for large instances—
generates an significant amount of additional precedence constraints and might slow down forward and backward passes.
Instead, our strategy only introduces new constraints between immediate successors. Hence, on multicapacitated re-
sources not the whole sequence, but only subsequences are fixed. Preliminary experiments suggested that this fixation
is most promising for approximating which release dates should actually be altered to decrease lateness to ultimate cus-
tomers.

7.7. PROPOSAL GENERATING OPERATORS 129

7.7.1.3 Fix delayed sequence and propagate due dates (RA|FDS|PDD)

There exists also a middle way between propagation without fixing any sequence and a propaga-
tion with fixing the complete sequence. The operator also employs a single right-alignment and
works as follows.

1. An intermediate problem instance (i) is constructed as the right-aligned version of the par-
ent (p), using the right-alignment heuristic presented in Section 6.2.

2. Lateness relating to technological constraints is tackled by a forward pass and subsequent
due date correction, as discussed above.

3. Late activities are sorted in order of monotonely decreasing lateness. Only those activities
that contribute to the first α percent of total lateness are regarded as critical. For the re-
maining activities, the due dates are relaxed in the intermediate problem instance. That is,
dd

(i)
j := fdj

(p).

4. A backward pass is applied to propagate the partially relaxed due dates.

5. A set of fixation candidates is computed, consisting of all activities with violated propagated
due dates, pddj < fdj .

6. The sequence is fixed (as with the previous operator), while only activities in the candidate
set are considered.

7. A backward pass is applied to recalculate propagated due dates and infinite start dates.

8. The proposed dates are derived as pd(c)
j = min

{
sd

(i)
j , isd

(i)
j

}
, where isd(i) is the infinite start

date according to the partially fixed schedule (cf. Equation 7.3).

In other words, the operator does the following. It keeps the sequence of nonlate activities and
the sequence of “late” activities that violate the propagated due dates (“fix delayed sequence”,
FDS). However, proposed dates of late activities are set earlier. The parameter α allows further
tuning of the operator.

7.7.2 Alignment-based mutation operators

The above presented propagating operators support the domains in finding a crude alignment
between the schedules. Nevertheless, the infinite treatment of actually finite capacity and the
limited possibilities for changing sequences of delivery dates have a limiting effect. The align-
ment heuristics presented in Section 6.2 can be used as a means to overcome the shortcomings
of pure propagation. Different proposals can be computed by aligning only a subset of activities
(henceforth called the set of activities to align). The remaining activities are fixed at their current
position. To be more precise, a left-right-alignment consists of the following steps.

1. Construct an intermediate problem instance as an exact copy of the parent.

2. Identify the critical set of activities to align by some rules of thumb, to be presented in the
following subsections 7.7.2.1–7.7.2.6.

3. Compute the set of activities to fix. An activity to be fixed is neither within the set of activities
to align nor a direct or indirect successor of such an activity.

130 CHAPTER 7. THE CUSTOMIZED DEAL FRAMEWORK

4. Fix all activities to fix at their current position. The fixing is achieved by temporarily setting
the release date to the currently selected start date rd(i)

j = sd
(p)
j and the deadline to the

currently selected finish date dl(i)j = fd (p)
j .11

5. For all activities to align, relax release dates rd(i)
j . Relaxing the release dates means setting

them to rd∗j , which refers to static technological constraints.

6. Propagate the release date relaxation and the fixing through the network by applying for-
ward and backward passes.

7. Left-align (LA) the schedule w.r.t. to the relaxed release dates. During the left-alignment
lateness usually decreases.

8. Right-align (RA) the schedule in such a way that no new lateness results (cf. Section 6.2).

9. Remove the fixing by setting rd(i)
j = rd

(p)
j and dl(i)j = dl

(p)
j ,∀j ∈ J0. Update the earliest start

dates by a backward pass.

10. Again right-align the schedule to close remaining gaps, cf. Section 6.2.

11. Set the proposed dates to the currently selected start dates: pd(c) = sd(i),∀j ∈ J0
U .

It turned out that the decision of which release dates to relax is crucial. We adopted the following
rules of thumb to work on intermediate problem instances.

7.7.2.1 Relax all upstream-related release dates (RRD|LA|RA)

The most basic approach is to relax all release dates (RRD) related to upstream activities. If
upstream-related release dates are relaxed early enough, a subsequent left-right-alignment will
decrease the lateness caused by suppliers to zero (if static release dates do not lead to problems).
In contrast to fixing the sequence and propagating the due dates (cf. Section 7.7.1.2), the subse-
quent left-right-alignment truly respects the capacity. Moreover, a left-right-alignment can have
a positive effect on the compactness of the schedule, as already mentioned in Section 5.9.4. How-
ever, the sequence of activities is likely to remain constant if many release dates are relaxed. By
keeping the sequence, the operator generates proposed dates that pertain to a low-lateness fea-
sible schedule for the OEM. Suppliers “correct” these dates using their DS Optimizer in the sub-
sequent steps of constructing a solution. The hope is that iteratively relaxing the release dates
followed by left-right-alignment and correction by suppliers can lead to aligned schedules.

Relaxing all upstream-related release dates with a subsequent left-right-alignment is likely
to change the position of most activities, but unlikely to change the sequence of activities on
the resources. For interorganizational problems that require a certain sequence of delivery, this
operator might have limited potential as it keeps most parts of the sequence unchanged. Instead
of focusing on those release dates that actually cause the biggest problems, proposed dates for all
activities are derived. It might be advantageous to focus only on a critical set of release dates. The
following operators implement different definitions of criticality.

11Fixing an activity is not related to fixing the sequence between two activities.

7.7. PROPOSAL GENERATING OPERATORS 131

7.7.2.2 Relax release dates of the most delayed upstream-related activities (RMD|LA|RA)

An activity is either delayed because of its predecessor’s late finish time or because of its re-
source’s limited capacity. Lateness with regard to the computed propagated due date indicates the
amount of lateness for which the current activity or its predecessors are responsible, even though
the related products are not directly delivered to the customer. If the finish date fdj of an activity
j violates its propagated due date pddj and the activity itself is bounded by an upstream-related
release date, it makes sense to request an earlier delivery from the responsible suppliers. This way,
earlier slots on the resources may be found for scheduling the activity and its successors earlier.
Thus, the idea is to compute the critical set of activities as the set of those activities that have an
upstream-related release date and violate their propagated due date. It might be advantageous
to further restrict the critical set to those activities with the highest violation of propagated due
dates (“relax most delayed”, RMD). Summarizing, we apply the following procedure.

1. Propagate due dates and deadlines through the network by performing a backward pass.

2. Sort the set of upstream related activities J0
UP in descending order of propagated due date

violation.

3. Choose the first α percent of the sorted activities as the critical set and continue with the
left-right-alignment procedure as described above.

The parameter α can be seen as a further tuning parameter, defining the trade-off between a
proposal’s locality and innovation potential. It should be noted that the relaxation of most delayed
activity has the tendency to shift delayed activities to the beginning of the planning horizon.
Instead of shifting all activities “a bit” as in the previous procedure, it is likely that only a few
activities are shifted by a large amount.

7.7.2.3 Fix sequence and relax release dates of the most delayed upstream-related activities
(FS|RMD|LA|RA)

The above procedure propagates lateness caused by predecessor constraints to current upstream-
related release dates. However, if the OEM’s production includes many stages, the potential of the
procedure may be limited. A finite capacity of intermediate production stages can lead to delayed
final products, although the propagated due dates of early production stages are respected. In
order to still be able to relate lateness to upstream-related release dates, we fix the sequence (FS)
by introducing artificial finish–start links as already described in Section 7.7.1.2. Then, the process
continues as for the previous operator. A difference with the operator described in Section 7.7.2.1
is that—dependent on the parameter α—not all activities are relaxed. Instead, activities that are
scheduled on resources with relatively small idle times have a higher chance of being realigned.

7.7.2.4 Relax minimum slack of upstream-related release dates (RMS|LA|RA)

This operator does not consider any lateness, but focuses on start dates of activities. Due to the
OEM’s limited resource capacity, not all activities are usually scheduled immediately at their
upstream-related release dates. Instead, some activities are scheduled closer to their upstream-
related release date while others are scheduled not so close. The difference, or slack, between
the start date, sdj , and release date, rdj , can be regarded as an indicator of the importance of

132 CHAPTER 7. THE CUSTOMIZED DEAL FRAMEWORK

that activity. Relaxing activities with minimum slack (RMS) is supposed to lead to a larger delay
reduction than relaxing activities with large slack. It should be emphasized that due to the com-
binatorial nature of the RCPSP, no general relationship of such type exists, however. Concluding,
the operator works as follows.

1. Sort the set J0
UP in order of increasing slack, sd(i)

j − rd
(i)
j .

2. Choose the first α percent of the sorted activities as the critical set and continue with the
left-right-alignment procedure as described above.

Again, α can be used a further tuning parameter.

7.7.2.5 Relax nonbottleneck upstream-related release dates (RNB|LA|RA)

The above operators enable the OEM to derive promising release dates by analyzing a previous
local problem instance and the related local solution. Previous counterproposals, defining the
history of coordination, are not taken into account however. The process can get stuck at a local
optimum, as the OEM proposes similar release dates over and over and suppliers reply always
with similar counterproposals. The effectiveness of proposals can be improved by analyzing pre-
vious counterproposals, with the goal to identify release dates that determine the bottlenecks at a
supplier’s side. One approach is to measure the difference between proposed dates and upstream-
related release dates of the parent solution. We define a job’s amount of correction in the parent
solution, p, as

∆(p)
j = rd

(p)
j − pd

(p)
j ,

whereas rd(p)
j denotes the release date that results from the suppliers counterproposal to the pro-

posed date pd(p)
j when constructing the parent individual. Note that ∆(p)

j can also become neg-
ative if a supplier exceeds the OEM’s requirements. Intuitively, a relaxation of release dates of
activities with a large amount of correction is not promising, as the supplier is apparently not
able to fulfill the resulting proposed dates. Instead, it is a promising strategy to relax only the
nonbottleneck (RNB) release dates, i.e. to restrict the critical set to those activities with a low
∆(p)
j .12 After having sorted all activities with upstream-related release dates in ascending order

of ∆(p)
j , we restrict the critical set to the first α percent of the activities before continuing with the

left-right-alignment procedure as described above.

7.7.2.6 Relax most promising upstream-related release dates (RMP|LA|RA)

Another possibility to estimate trends for setting release dates is to compare previous start dates.
A start date can be regarded as the ultimate result of the OEM’s proposal, suppliers’ optimization
runs and counterproposals, and OEM’s optimization. Let the superscript (pp) denote the parent’s
parent. The difference Λj = sd

(pp)
j − sd(p)

j measures the effect of the previous mutation. If Λj >
0, the activity was started earlier; if Λj < 0, it was started later. If the previous mutation was
successful—solution (p) is better ranked than (pp)—it might be advantageous to shift activities
with Λj > 0 even earlier and activities with Λj < 0 even later in order to follow the historical
trend. Hence, the idea is to relax the most promising release dates (RMP). We adopt the following
proceeding.

12Of course, no general relationship of such type exists, but the operator represents a rule of thumb that might work in
some cases.

7.7. PROPOSAL GENERATING OPERATORS 133

1. Sort all activities of J0
UP according to descending Λj .

2. If solution (p) is better ranked than solution (pp), relax the first α percent of the sorted set of
upstream-related activities. If not, relax the last α percent in order to steer the search process
in the opposite direction. Continue with a left-right-alignment as discussed above.

Again, we can regard α as a further tuning parameter.

7.7.3 Rescheduling-based mutation operators

The above realignmment-based operators have three central advantages: They respect finite ca-
pacity, are fast and keep most parts of the current activity sequence, increasing the effectiveness
of a warm reboot at both the supplier’s and the OEM’s side. However, not altering the sequence
can also become a disadvantage. As will become apparent later, many coordination problems in
scheduling occur because of bad delivery sequence imposed by the OEM on his suppliers or vice
versa. While the above shifting and propagation operators are able to roughly and quickly correct
the mismatching between the planning domains, they are likely to fail in changing the position of
activities in a fine-granular manner.

To enable the OEM to introduce small but important changes in the schedule, a third set of
so-called rescheduling operators has been implemented. Rescheduling operators rely on the idea
of partially relaxing an intermediate problem instance, rescheduling it in forward direction us-
ing the DS Optimizer (FWD) followed by a right-alignment (RA) in order to find new promising
delivery dates. Also for the above alignment-based operators one could argue that, instead of a
left-alignment, a reoptimization of the intermediate relaxed problem instance could be advanta-
geous. Without objecting to this idea in general, the following arguments should be considered. If
the release dates were relaxed in the same manner as described above, set to their static bounds,
a reoptimization would have the effect of scheduling all relaxed activities and their successors
very early. A subsequent right-alignment would be mandatory in order to compute meaningful
proposed dates. Moreover, as the sequence of relaxed and reoptimized activities might not fit the
calendar at the original position, the right-aligned schedule could come with major idle times.
If only a few release dates are relaxed to achieve a limited deviation from the parent solution,
a left-alignment is supposed to bring results similar to those of a reoptimization. Moreover, a
left-right-alignment has the advantage of shorter runtime requirements. Especially when taking
into account that the suppliers alter the OEM’s proposal anyway, a left-right-alignment seems
to be sufficient to find a crude alignment of schedules. We could verify this proceeding during
our computational evaluation, cf. Chapter 8. Only for small test instances including sequence-
dependent setup times, the left-alignment failed. This was due to the current implementation of
the left-alignment heuristic that does not support a temporary increase of setup times, cf. Section
6.2. For such test instances, we additionally tested operators, where the left-alignment (LA) step
was replaced by a forward rescheduling (FWD).

In general, when rescheduling, release dates should not be relaxed completely to their static
bounds rd∗j . A critical point is the estimation of suitable values for the relaxed release dates. If
set too early, a left-right-alignment is supposed to bring similar results in shorter time as argued
above. If set not early enough, the schedule will only change slightly or not at all, wasting runtime.
The following operators try to estimate suitable values for relaxed dates based on the schedule of
the parent individual.

134 CHAPTER 7. THE CUSTOMIZED DEAL FRAMEWORK

7.7.3.1 Rearrange activities of connected components (RC|FWD|RA)

Imagine an undirected activity-on-node graph, where activities define the nodes and precedence
relations the edges. Usually, this graph can be decomposed into several disjunct (weakly) con-
nected components. With regard to production lots, a connected component mirrors the Bill of
Materials on the lot level.13 As mentioned previously, badly aligned activity sequences between
OEM and suppliers lead to idle or setup times and eventually result in late delivery to the ultimate
customer. The OEM should be provided with the functionality to recalculate the sequence. How-
ever, totally unbounded rescheduling would lead to results similar to upstream planning and
even abandon previous rough alignments found by the propagating and shifting operators. Al-
lowing the OEM an intermediate reoptimization within the bounds of an already roughly aligned
superordinate sequence might be an advantageous strategy. One possibility to derive a superor-
dinate sequence uses the information of connected components and works as follows.

1. Generate an intermediate problem instance (i) as an exact copy of the parent (p).

2. Compute the connected components. Reduce the components to those activities that are
dependent on upstream-related release dates, the set J0

UP . This step only needs to be done
once at the beginning of the coordination procedure, as precedence constraints are assumed
to remain unchanged.

3. For each component C ⊆ J0
UP , two numbers are computed. The number

lisC = min
j∈C

(isdj) (7.4)

indicates the latest infinite start date of the component: that is, the date the first activity of
the component has to be started to avoid lateness in the infinite capacity case, cf. Equation
7.3. Again, this number remains unchanged by the coordination procedure and has to be
calculated only once. The number

ess
(p)
C = min

j∈C
(sd(p)

j)

denotes the earliest selected start date of the component.

4. For each component C, the upstream-related release dates of the intermediate instance are
then set to

rd
(i)
j = max

{
ess

(p)
C + isdj − lisC , rd∗j

}
∀j ∈ C. (7.5)

The difference isdj− lisC is the infinite offset of an activity to the first activity of the compo-
nent. From an infinite capacity perspective, placing an activity before its infinite offset will
not lead to reduced lateness.14

5. The OEM reschedules his production by applying his DS Optimizer to the relaxed problem.

13If lots of early production stages serve as input for several subsequent lots, the connected components will rather
mirror BOM set unions.

14Regarding the current implementation, the following caveat should be mentioned. Recall that isdj is computed on
the basis of the infinite capacity, and does not refer to the start date an activity is currently scheduled on. Thus, the infinite
values reflect a calendar structure that is not necessarily valid for the current slot the activity occupies. This can lead
to situations, where Equation 7.5 shifts release dates to the right. To avoid such outcomes, the calculation of isdj and
lisC must actually be done on the basis of an artificial calendar without breaks and full productivity. However, as the
experimental results incorporate calendars only in a noncritical way, this workaround has not been implemented. it is
mentioned only for the sake of completeness. The release dates of all remaining activities are updated by forward passes.

7.7. PROPOSAL GENERATING OPERATORS 135

6. A right-alignment is applied.

7. The proposed dates are derived by the temporarily computed start dates, pd(c)
j = sd

(i)
j .

Simply put, the operator respects a superordinate sequence given by the components. However,
within each component the optimizer is allowed to reschedule activity sequences (we abbreviate
this as “RC”). This can help to solve conflicts caused by release dates that are not in line with
a component’s precedence constraints. For problems containing only one component, no release
date will be relaxed. If none of the intermediate release dates, rd(i)

j , is smaller than in the parent
solution, rd(p)

j , the procedure is aborted before rescheduling.

7.7.3.2 Insert connected components (ICL|FWD|RA, FS|ICL|FWD|RA), ICR|FWD|RA and
FS|ICR|FWD|RA)

Generally, the OEM can create new proposals by selecting one or several components, setting
the release dates of contained activities earlier, rescheduling his production and deriving the pro-
posed dates. The idea of this operator is to allow the OEM to insert a whole component at another
position. Intuitively, relaxing release dates of activities belonging to the same component makes
more sense than for activities belonging to different components. The OEM’s freedom of proposal
generation can be restricted by limiting the number of components and by defining lower bounds
for the relaxed due dates. If too much freedom is granted to the OEM, the generated proposals
will deviate heavily from previous alignments and no improvement will be realized. If too few
components are relaxed, the DS Solving module is not able to compute an improved schedule.
A decision rule on which components to select analyzes the differences between finish dates and
propagated due dates. Lower bounds for release date relaxations are derived based on the current
schedule. The whole procedure works as follows.

1. Compute the connected components and generate an intermediate problem-instance (i) as
an exact copy of the parent (p).

2. Consider lateness caused by technological constraints by a forward pass and subsequent
due date correction, as discussed in Subsection 7.7.1.1.

3. Optionally fix the sequence (FS) of activities in (i) as discussed in Subsection 7.7.1.2.

4. Apply backward passes in order to calculate propagated due dates.

5. For each component C ⊆ J , the maximum difference between finish date and propagated
due date is computed as

mdC = max
j∈C

(
fd (p)

j − pdd(p)
j

)
.

6. Sort the components in descending order of mdC .

7. Reduce the set of components by removing all activities not directly dependent on upstream-
related release dates, J0

U .

8. Relax the release dates of the activities contained in the first bα · nCc components, where
nC is the total number of components and α a further tuning parameter (the symbol b.c
denotes the floor function). The release dates of a component C are always relaxed on the

136 CHAPTER 7. THE CUSTOMIZED DEAL FRAMEWORK

basis of another reference component D. Approaches for selecting the reference component
are presented later. First the minimum start date essC of C is computed as

essC = min
j∈C

sd
(p)
j .

The related activity is denoted by k = arg min
j∈C

sd
(p)
j . A difference ΥCD between C and D is

computed as
ΥCD = max

j∈D| ∃m∈Mj ,o∈Mk,r∈R
with urmj>0∧urok>0

(
max

{
essC − sd(p)

j , 0
})

.

This number measures the maximal difference between of the earliest activity of C and any
activity of D that can be scheduled on at least one similar resource. Obviously, ΥCD ≥ 0
in all cases. Similar to the rearrangement of connected components, the latest infinite start
date, lisC , is computed, cf. Equation 7.4. The release dates of the activities of C are shifted
by the amount ΥCD by computing

rd
(i)
j = max

{
essC + isd

(p)
j − lisC −ΥCD , rd

∗
j

}
,∀j ∈ C.

The release dates of the jobs contained in C are set earlier, whereas the earliest job of C is set
as early as the earliest job of the reference componentD that could be scheduled on a similar
resource. This way we try to bound the release dates of the intermediate problem from
below, such that the DS Optimizer cannot reduce the lateness by simply shifting all activities
earlier but is required to change the sequence. We implemented two ways of retrieving a
reference component.

(a) Out of all components D that could be scheduled on a similar resource and have a
ΥD > 0, one is selected randomly as reference (ICR).

(b) The component D with largest ΥCD is selected as a reference (ICL) .

If no reference component could be found, ΥCD is set to zero. That is, the operator RC|FWD|RA
of Section 7.7.3.1 is applied.

9. The OEM reschedules his production by applying his DS Optimizer to the relaxed problem.

10. A right-alignment is applied.

11. The proposed dates are derived by the temporarily computed start dates, pd(c)
j = sd

(i)
j .

Obviously, if a problem consists only of a few components, the possibilities for this operator
are limited.

7.7.3.3 Reschedule with penalty (IDD|FWD|RA)

This operator is an extension of operator IC|FWD|RA of Subsection 7.7.3.2. To decrease the late-
ness of his production schedule, the OEM should be allowed to reschedule the most critical ac-
tivities. In the previous approach, an activity was regarded as critical if it belongs to a component
with large lateness. However, this criticality definition is actually an arbitrary decision, based on
intuition. An advantageous approach would be to introduce soft constraints in the model for-
mulation that penalize deviations from the parent solution. This favors the computation of small

7.7. PROPOSAL GENERATING OPERATORS 137

changes with a huge intradomain cost decrease. In other words, the decision on which activities
are critical is met by the solution method itself according to the actual problem at hand. As dis-
cussed previously, other academic approaches are based on this idea as well, for example Dudek
and Stadtler (2005).

Unfortunately, the DS solving module’s serial scheduling scheme relies on hard-constrained
release dates and a backward scheduling functionality is not supported so far (more details are
given in Section 7.7.5). Regarding our problem, the model formulation cannot be changed easily;
it would require major efforts in changing the DS Optimizer’s underlying Genetic Algorithm.
A workaround that does not require changes to the current base optimization method, but does
implement a deviation penalty, works as follows:

1. Create an intermediate problem instance (i) as an exact copy of the parent (p).

2. For each activity j ∈ J0
U , calculate a relaxed release date. To do this, the connected compo-

nents are used. The release dates of every component C are shifted by the largest ΥCD to the
left, similar to operator IC|FWD|RA. However, also nonlate components are considered
now.

3. Left-align the problem instance.

4. Perform a backward pass to calculate the propagated due dates.

5. For each activity j ∈ J0
U , an artificial due date is introduced with dd(i)

j = min
{
pdd

(i)
j , fd (i)

j

}
.

6. The intermediate problem instance is rescheduled by applying the DS Optimizer.

7. The artificial due dates are removed again, i.e. dd(i)
j = dd

(p)
j , ∀j ∈ J0

U .

8. A right-alignment is applied.

9. Proposed dates are derived as pd(c)
j = sd

(i)
j , ∀j ∈ J0

U .

On first sight, it seems counterproductive to introduce artificial due dates. However, due dates are
the only possibility to penalize activity shifts in the current DS Optimizer. After the left-alignment
(Step 3), the schedule usually still contains delayed activities or idle times, due to wrong delivery
sequences. The lateness can be reduced if the sequence of activities is altered. The violation of
artificial due dates provides a rough measure of the degree of sequence alteration.

Concluding, our hope is that the operator focuses on changing the most critical sequences, and
that each supplier receives a proposal containing only the most necessary sequence alternations.

7.7.3.4 Reschedule within hard bounds on start dates (SSB|FWD|RA)

Another way to generate new proposals is to allow the OEM to reschedule every activity within
certain bounds.

1. Create an intermediate problem instance as an exact copy of the parent.

2. Set the release dates to rd(i)
j = sd

(p)
j −α ·ml(p), ∀j ∈ J0

U , where ml(p) denotes the maximum
lateness of the parent schedule.

3. Introduce artificial latest start dates, ls(i)
j = sd

(p)
j + α ·ml(p), ∀j ∈ J0

U .

138 CHAPTER 7. THE CUSTOMIZED DEAL FRAMEWORK

4. Apply a forward and a backward pass to propagate the new bounds through the network.

5. Apply the DS Optimizer and find a solution for the intermediate problem.

6. Right-align the intermediate instance.

7. Derive the proposed dates as pd(c)
j = sd

(i)
j , ∀j ∈ J0

U .

Again, α can be regarded as a further tuning parameter. If α = 1, the DS solving module has a lot
of freedom for optimization, but there is actually no need for changing the sequence of activities.
If α→ 0, there is a major need for rescheduling but not enough freedom.

7.7.4 Crossover operators

Inspired by the role of sexual reproduction in the evolution of life, an Evolutionary Algorithm
attempts to combine elements of existing solutions in order to create new solutions. The elements
of existing solutions are combined in a crossover operation, imitating natural crossover of DNA
strands that occurs in reproduction of biological organisms.

Crossover should combine information of parent individuals in a purposeful manner, pre-
serving basic building blocks. Regarding the studied interorganizational scheduling problem, the
sequence of delivery from supplier to OEM determines the solution quality. Combining delivery
sequences from parent individuals is achieved by either taking mean values of parents’ release
dates or randomly choosing the dates from one of two parents.

The calculated values are then either directly communicated to the suppliers as proposed dates
or an intermediate rescheduling and left-right-alignment (FWD|LA|RA) takes place. For the lat-
ter option, the OEM uses his DS Optimizer to calculate an intermediate schedule based on the
combined release dates. The intermediate schedule can come with larger total and maximum late-
ness than both parent schedules because of averaged or randomly picked release dates. Finally,
the related compact schedule is derived by a subsequent left-right-alignment. The proposed dates
are then set to the start dates of the left-right-aligned schedule.

In classic approaches, crossover combines the genotypes of several individuals of the mating
pool in order to generate multiple children. In our approach, we adopted a slightly different vari-
ant because the number of individuals in the mating pool is not constant, fluctuating due to the
asynchronous exchange of messages. There are situations possible in which the mating pool does
not contain the required number of individuals to perform the crossover operation. Moreover, the
mating pool contains multiple copies of the same promising parent and a crossover combining
such copies would not introduce new information in the population.

Instead, a slightly different crossover variant was implemented. To cross an individual p of the
mating pool, a set of candidates is computed consisting of all complete and evaluated individuals
with different release dates. If no candidates could be found (e.g., after initialization), the operator
aborts. Otherwise, two individuals are randomly picked out of the set of candidates and the better
one is finally chosen as the crossover counterpart, q.

7.7.4.1 Linear crossover (LX and LX|FWD|LA|RA)

In the linear crossover procedure, the release dates of the intermediate instance, i, are computed
as

rd
(i)
j =

rd
(p)
j + rd

(q)
j

2
, ∀j ∈ J0

U . (7.6)

7.7. PROPOSAL GENERATING OPERATORS 139

As discussed above, either the averaged release dates are directly proposed to the suppliers or a
rescheduling with subsequent left-right-alignment takes place.

7.7.4.2 Linear crossover of evaluated population (PLX and PLX"|FWD"|LA"|RA)

Instead of taking only two parents, the whole population can be used as basis to compute average
values. Assume a population of n complete individuals that have already been evaluated and not
sorted out by the update operation. The release dates of the intermediate instance are computed
as

rd
(i)
j =

1
n

n∑
p=1

pd
(p)
j . (7.7)

By averaging values of previously proposed dates we might be able to identify trends. Our rea-
soning is as follows. Suppose an idealized situation, where proposed dates are either very early
or very late. Now, if the OEM proposed a similar date for a certain activity for all individuals, we
can argue that there is a high certainty of this date. For example, the activity might be proposed
always very early because it lies on a critical path in the OEM’s activity network or it might be
proposed very late because it is considered as uncritical by the GA. By taking the average, this
promising setting is proposed again.

On the contrary, if an activity exhibits sometimes an early and sometimes a late proposed
dates, the OEM has a rather high flexibility. Proposing averaged dates over such activities grants
the suppliers more freedom in their decision. Naturally, the suppliers cannot commit to all the
averaged dates. When computing the counterproposal they have to decide which activity to delay
and which not.

The proposed dates determine a delivery sequence that seems promising from OEM perspec-
tive. Suppliers have a large incentive to stick to the proposed sequence if there is a large relative
distance between proposed dates. If the distance is rather small, other objectives, such as a setup
time minimization, might get a larger influence and it is more likely that the suppliers will change
the sequence. Under this light, averaging of proposed dates does the following. If the OEM is “cer-
tain” about demanding a delivery very early or very late he will communicate so to the supplier. If
there is a large distance between the due dates in a supplier’s domain the OEM’s proposal implies
a high incentive for sticking to the sequence. Otherwise, the proposed dates will lie “somewhere
in the middle” and the implied incentive for sticking to the sequence might be rather weak, giving
the suppliers more freedom for building better batches or allocating the resources more efficiently.

Of course, in general, proposed dates are neither proposed very early nor very late but are
distributed along the whole planning horizon. Then, the above described effect is enhanced by
a clustering of proposed dates. Figure 7.11 exemplarily illustrates previously proposed dates for

Figure 7.11: Example for crossover of proposed dates

five activities A, B, C, D, E. Vertical lines show the mean values that the OEM will propose to his

140 CHAPTER 7. THE CUSTOMIZED DEAL FRAMEWORK

supplier. Regarding the delivery sequence, the OEM transmits the following preferences to the
supplier: “Most important for me is that A is delivered before E and D. Second, send me B and
C before E and D. If possible, deliver A before B and C. However, I don’t care much if B is sent
before or after C and if E is sent before or after D.” Our hope is that such priorities on preferences
become clearer when taking the average of the population.

Again, instead of directly proposing the averaged values to the suppliers a rescheduling with
subsequent left-right-alignment can take place.

7.7.4.3 Component crossover (CX and CX|FWD|LA|RA)

Instead of calculating the mean of previous dates, we can iterate through the upstream-related
activities and randomly pick between the release dates of two different parents. In order to not
disrupt previous alignments, we restrict the release date of activities belonging to the same com-
ponent to be selected from the same parent. The whole procedure works as follows.

1. Compute the connected components and reduce them to the relevant, upstream-related ac-
tivities (as discussed in Subsection 7.7.3.1).

2. Iterate through the components. For each component, the start dates are set to those of either
the first or the second parent with probability of 0.5.

Again, either the mixed release dates can be directly proposed to the supplier or a rescheduling
with subsequent right-alignment can be applied first.

7.7.5 An ideal operator

As discussed previously, it seems a promising idea to construct new proposals by changing a few
release dates that have a relative large impact on the OEM’s objective function. For this purpose,
the use of a backward schedule generation scheme seems to be the most promising approach.
Backward scheduling first schedules activities with no successor as late as possible, given the due
dates. Predecessors are then added until the schedule is completed. Instead of lateness, the vio-
lation of release dates is a soft constraint and penalized in the objective function. In some sense,
backward scheduling can be imagined as forward scheduling on an inverted timeline. Suppose
a metaheuristic, similar to the DS Optimizer, for backward scheduling would exist. The OEM
could then generate proposals that respect his due dates and violate the upstream-related release
dates of the parent individual as little as possible. For further tuning, some of the due dates could
be relaxed, i.e. set to the computed finish date of the parent individual. Unfortunately, the DS
Optimizer does not support backward planning. An implementation with the same functional-
ity as forward planning is considered as major effort, taking up to several years. Simply invert-
ing the timeline and using forward planning is not possible, since setup-activities would not be
interpreted correctly. Instead, we were interested in opportunities to achieve a coordination of
schedules with simpler means. The operators in use are based on functionality that already exists
(one of the requirements discussed in Section 4.1.4). As computational results are of considerable
quality, we did not pursue the implementation of a backward scheduling DS Optimizer.

In general, it should be emphasized that all operators tend to propose early dates to the sup-
pliers. The operators have been explicitly constructed for the case of all domains using the SAP
DS Optimizer. In most cases, the DS optimizer allows suppliers to construct feasible, acceptable

7.8. SELF-ADAPTATION OF OPERATORS 141

schedules despite the early setting of soft-constrained due dates. Suppliers employing other mod-
els or solution methods are not guaranteed to find acceptable solutions, so operators may need to
be adapted.

Until now we assumed that a supplier is counterproposing the finish dates of the best GA-
individual found for a specific OEM proposal. In general, suppliers could also counterpropose
several alternatives, derived from other GA-individuals. However, each alternative requires an
additional call of the OEM’s DS solving module. Preliminary experiments suggested that it is
more advantageous to generate many proposals than to generate only a few in a very detailed
manner. Hence, we did not investigate this approach further. However, if the OEM possesses
more computational resources than the suppliers, this strategy might suit better.

Another assumption was made for recombining suppliers’ counterproposals. Only counter-
proposals belonging to the same proposal were combined before calculating the OEM’s schedule.
In other words, when constructing an individual, the OEM generates proposals and the suppli-
ers react by sending counterproposals and rankings. In general, it might also be promising to
combine counterproposals that do not relate to the same original proposal—still feasible interor-
ganizational solutions would be computed. Again, this comes with the cost of additional compu-
tational power and might prove useful if the OEM’s computational resources exceed those of the
suppliers. Both aspects might be topics for future research.

7.8 Self-adaptation of operators

The above discussion suggests that the effect of operators is problem and time dependent. At the
beginning of the coordination process, a crude alignment might be achieved by simple propa-
gation operators, but later more sophisticated alignment- or rescheduling-based operators might
yield better results. In general, the user will not be able to specify the correct sequence of opera-
tors a priori. The prototype thus supports a self-adaptation of operators. Based on the history, the
most promising operator is chosen for each selected parent. Two methods were implemented for
choosing the operators, one deterministic and one stochastic.

7.8.1 Deterministic self-adaptation

Deterministic self-adaptation was designed for cases with a limited amount of runtime. We as-
sume that the user already has an approximate idea of a good sequence of operators and can build
up a list of operator specifications. An operator specification consists of the operator name and
possible further settings such as the parameter α. A list of yet untried operator specifications is at-
tached to every individual. If an operator specification was already applied to a parent—because
the parent was selected into the mating pool multiple times—we postpone a reapplication. The
reasoning here is that applying the same operator to the same parent will probably lead to similar
results. Each time an individual is selected as a parent, the related child is constructed using the
list’s first entry. After construction, the entry is removed from the list. The constructed child is ini-
tialized with a complete list specified by the user. If a parent is selected several times, such that its
list contains no further entries, it is reset to the complete list. Maintaining an operator list is only
useful together with an explicit consideration of duplicates, as mentioned in Section 7.4. If parent
and child are of equal fitness because the chosen operator did not bring any improvement, the
sorting method favors the selection of the parent (with the reduced operator list) over the child.

142 CHAPTER 7. THE CUSTOMIZED DEAL FRAMEWORK

As already indicated, the success of operator specifications may be problem and time depen-
dent. The basic idea is to sort the list according to the history of coordination. An operator speci-
fication is considered as successful if child c was better ranked than its parent p, i.e. c � p. Means
for aggregating the rankings of the different parties have already been discussed in Section 7.4.
We define the success of an operator o as

ηo =

1, if c � p

0, otherwise,

if owas used to construct the child. Moreover, the OEM can measure the magnitude of success κo
by comparing the difference between the OEM’s relevant cost of child and parent, the weighted
sum of maximum and total lateness, cf. Section 7.4.

κo =
(
wtl · tl(p) + wml ·ml(p)

)
−
(
wtl · tl(c) + wml ·ml(c)

)
After applying an operator (and receiving the suppliers’ rankings of the child), the OEM updates
the estimated values of future operator success η(o) and magnitude κ(o) by exponential smoothing:

ηo := ξ · η(o) + (1− ξ) · η(o),

κo := ξ · κ(o) + (1− ξ) · κ(o),

where ηo and κo refer to the operator of the current child. Initially, we set ηo = 0.5 and κo = 0.0.
Before constructing a new child, the parent’s operator list is sorted according to the current es-
timation, giving preference to operators with larger estimated success. If the estimated success
is equal, the operator with larger estimated magnitude is preferred. If still no decision could
be made, the preferences of the user, expressed in the order of the initial list are taken into ac-
count. Thus, while at the beginning the user-specified list plays a crucial role, self-adaptation gets
stronger influence as more operators are evaluated.

Obviously, the performance of the deterministic adaptation depends on the initial list. If spec-
ified correctly, some quick wins at the beginning of the coordination process are likely. Determin-
istic adaptation is thus suitable for situations where only a short runtime is available and where
the user already has a priori knowledge about the effectiveness of the operators. For the numerical
tests, ξ was set to 0.8.

7.8.2 Stochastic self-adaptation

Stochastic self-adaptation uses the history of coordination to calculate probabilities used later to
choose the operator. Principles from ant-colony-optimization (ACOs) algorithms have been em-
ployed to calculate operator selection probabilities. In biology, ant colonies are known for finding
the shortest path (the column of ants) between source (e.g., the ant colony) and sink (e.g., some
food), despite an ant’s limited vision. This surprising ability is achieved by a swarm intelligence:
each ant leaves a trail of pheromones on its individual path. As time passes, shorter paths ob-
tain larger quantities of pheromone since ants travel more frequently from source to sink (and
back) than on longer paths. In addition, pheromone evaporates steadily. Each ant decides about
the future direction it takes based on the amount existing pheromones on the way. Eventually the
behavior of the whole colony converges to taking the shortest path. In ACOs, artificial ants build

7.9. REUSING PREVIOUS SOLUTIONS 143

a solution step by step by going through several probabilistic decisions required to construct a
solution (cf. Merkle et al., 2002). In general, ants that find a good solution mark their paths by
putting some amount of pheromone on the edges of the path. The following ants of the next gen-
erations are attracted by the pheromone, so that they search in the solution space near previous
good solutions.

We regard the decision of selecting an operator as a dynamically changing optimization prob-
lem. For each operator o, let τo denote the pheromone value. The probability for choosing operator
o out of the set of all operators O is computed as τo∑

o∈O

τo
.

After an operator has been applied, all pheromone values are decreased by a damping factor
δ. If an operator has been applied successfully (the child is better globally ranked than the parent,
cf. Section 7.4), its pheromone value is increased by the relative improvement of υ0 (the weighted
sum of the OEM’s maximum and total lateness):

τo := τo +
υ0(p)− υ0(c)

υ0(p)
.

For the stochastic self-adaptation, the list of available operators per individual is not decreased
dynamically. For the numerical tests, a damping factor of δ = 0.95 and an initial value of τo = 0.5
have been chosen. Thus, τo > 0,∀o ∈ O throughout the whole coordination process. The damping
is applied to the whole population once an individual is completed, i.e. τo := τo · δ, ∀o ∈ O.

Same principles could be applied to the parameter α of each operator. Due to the limited num-
ber of samples a self-adaption is here regarded critically, however. In the current implementation
α is simply randomly drawn from the interval (0, 1), if needed.

7.9 Reusing previous solutions

When constructing an interorganizational solution, the largest part of the time is used for cal-
culating the intradomain schedules. Most parts of the RCPSP problem instance (e.g., number of
activities, precedence constraints, resource utilization and capacity, calendars and so forth) remain
unaltered. We tried to keep memory and runtime requirements low by exploiting this property in
two ways.

1. Nonvarying parts of the model persist in memory. Instead of iteratively starting the DS
Optimizer, loading the data, executing the solver and writing the solution back, the coor-
dination mechanism is implemented as a separate DS Optimizer module (cf. Figure 6.1) in
our prototype. This avoids time-consuming and unnecessary downloads and uploads of
data from and to the databases. Once the DS Optimizer has been started, the coordination
module takes control of the context, solver and other heuristics until the final solution has
been computed.

2. The time for calculating a solution is considerably reduced by using preexisting solutions
related to previous proposals.

In this section, we shed some light on the latter point: reusing previous solutions. Intuitively,
resolving a bottleneck in production, such as one caused by an unforeseen machine breakdown,
requires the cooperation of several partners. Regarding our standard two-tier business case, sev-
eral suppliers need to be coordinated to establish an aligned flow of intermediate goods to the

144 CHAPTER 7. THE CUSTOMIZED DEAL FRAMEWORK

OEM. Nevertheless, not all suppliers are necessarily affected by an OEM’s proposal. To some
suppliers, a new proposal might not mean any change with respect to their orders. Dynamically
restricting the proposal exchange to those suppliers that are actually affected has the potential to
speed up the whole coordination process. Moreover, in a practical environment, suppliers could
become displeased if forced to recalculate proposals that do not mean any change to already
known solutions.

However, calculating a target set of suppliers before a proposal is constructed is hardly possi-
ble due to the complex relations of activities within an RCPSP instance. From our point of view
a superior approach is to analyze the problem as a whole in order to calculate proposed dates
before checking which supplier is actually affected. The danger of redundancy lurks at several
points during the joint construction of new solutions.

• Applying an operator several times to the same parent individual leads to the same or sim-
ilar children. We already discussed several means for an effective operator selection in the
previous section.

• An intermediate problem might equal a previous intermediate problem. In the current im-
plementation, intermediate problem instances are not checked. Our reasoning here is as fol-
lows: For alignment-based operators, an intermediate check is actually not necessary, since
the alignment heuristics are quite fast. Instead of keeping track of previous intermediate
proposals, we decided to keep memory requirements low by avoiding the additional check.
For rescheduling operators, the outcome of a local optimization is not determined because
of the underlying Genetic Algorithm.

• The proposed dates might have no innovation potential. We define the innovation potential
of a child (c) under construction on the basis of the set of current evaluated, complete and
deletable individuals. If an individual (p) can be found in this set that

– is accepted by all planning domains, i.e. ∀e ∈ E : υe(p) = 0,

– whose release dates are all smaller or equal than the child’s proposed dates, i.e. ∀j ∈
J0
U : pd(c)

j ≥ rd
(p)
j , and

– in case the child’s partial construction involved an intermediate schedule (i) and this
intermediate solution additionally shows no improvement regarding the lateness, i.e.
∃j ∈ J0 with ddj < fd

(p)
j ∨ ddj < fd

(i)
j : fd(i)

j ≥ fd
(p)
j ,

than the child is said to have no innovation potential and the construction is aborted. If an
individual acceptable to all suppliers exists, it is a waste of time to send proposed dates
that are all equal or larger than the upstream-related release dates of the existing individual.
The suppliers can fulfill the proposal without even scheduling their production. Several
mutation operators of the underlying solving module are lateness triggered and will not
work effectively if the suppliers’ downstream-related due dates are not set early enough.
If the other two conditions are met, chances are limited from the OEM’s perspective, that
the proposed dates will lead to improved solutions since individuals with equal or smaller
upstream-related release dates already exist.

After a child has passed the above global check, it is checked for each supplier in a similar
way. If the proposed dates have no innovation potential with regard to each supplier’s in-

7.9. REUSING PREVIOUS SOLUTIONS 145

terface, the individual is connected to a preexisting communication thread and the proposal
is not resent, cf. Section 4.4.2).

• After having received the proposed dates, the suppliers calculate their downstream-related
due dates according to Equation 7.2. Finally, a third redundancy check is performed on the
supplier side. This is necessary as different proposed dates from the OEM might lead to
the same downstream-related due date for the supplier (if the due date is calculated as a
minimum value of several release dates). If a supplier identifies redundant proposals, he
immediately replies with the finish dates of the related existing solution.

It is worth mentioning that due to memory and runtime considerations the complete coordination
history is not checked for redundancy. Only the current complete and deletable population are
checked. Thus, for very small population sizes, already proposed dates may be proposed again if
the related individuals lie too far in the past and have already been deleted.

Moreover, previous solutions can also be reused in a further way. Assume a situation wherein
the OEM has to generate a new solution according to a counterproposal that is—regarding up-
stream related release dates—only slightly different from a known solution. Under such circum-
stances, runtime would be wasted if the existing results were not exploited in constructing the
new schedule. Recall that one GA-individual15 is initialized according to an existing schedule (cf.
Section 6.1.2.1). This back encoding of existing schedules can be exploited for a “warm reboot”
each time the solving module is started. Thus, when initializing the GA-population of the DEAL-
child, the parent schedule is back encoded.

We illustrate this idea by providing a small example. Assume an OEM, who needs to schedule
five single-mode activities (A1,A2,B1,B2,C) on two resources, R1 and R2. The activity A2 is direct
successor of A1 and B2 of B1, respectively. Figure 7.12 shows the parent schedule. It can be seen
that the upstream-related release date rdA1 has been set earlier than the dates rdB1 and rdC . In the
parent schedule, the activities A2, B2, and C finish behind their due dates (indicated by the vertical
arrow). Suppose that the OEM proposes to shift rdB1 and rdC earlier to reduce the lateness and
that the supplier confirms this proposal.

Figure 7.12: Example for back-encoding previous solutions—parent schedule.

Having received the counterproposed release dates (see Figure 7.13), the OEM reschedules his
production. Assume that, for initializing his GA, the activities are sorted according to the new
release dates, cf. Subsection 6.1.2.2. For this sorting, the initial permutation implies the order B1
→C→A1→A2→B2 in our example. Figure 7.13 shows the steps of the OEM’s SGS (generating
active schedules), cf. Section 6.1.1. Although the release dates have been set earlier, the lateness
increases. Obviously, this initialization strategy does not fit.16

15To indicate the difference between individuals used by DEAL and individuals used by the GA of the DS Optimizer’s
solving module, we use the terms DEAL- and GA-individual henceforth. A DEAL-individual is the local representation
of an interorganizational solution. A GA-individual encodes an activity list and a mode selection as discussed in Chapter
6 (strictly speaking, we are focusing on the genotype).

16For the sake of simplicity, we do not consider the other initialization strategies of Section 6.1.2.2 in this example.

146 CHAPTER 7. THE CUSTOMIZED DEAL FRAMEWORK

(i) Two activities scheduled. (ii) Three activities scheduled.

(iii) Four activities scheduled. (iv) All activities scheduled.

Figure 7.13: Example for back-encoding previous solutions—initializing the child schedule ac-
cording to release dates.

Back-encoding the parent schedule can provide a better initialization strategy. In the absence
of max-links and sequence-dependent setup times, back-encoding means to sort the initial pop-
ulation according to the activities’ start dates in the parent schedule, cf. Subsection 6.1.2.1. In our
example, this might imply the order A1→B1→A2→B2→C. The steps of the OEM’s SGS for this
order are shown in Figure 7.14. It can be seen, that the lateness decreases.

(i) Two activities scheduled. (ii) Three activities scheduled.

(iii) Four activities scheduled. (iv) All activities scheduled.

Figure 7.14: Example for back-encoding previous solutions—initializing the child schedule ac-
cording to the parent schedule.

Hence, back-encoding the parent schedule allows to carry over knowledge from previous
DEAL-individuals and can contribute in saving runtime, especially if the problem instances con-
sist of several hundreds activities with multiple modes (which are back-encoded as well, cf. Sec-
tion 6.1.2.1). If the parent’s schedule does not suite the child’s problem instance, other initializa-
tion operators of the underlying GA will still be able to set up an initial GA-population.

If the construction requires solving an intermediate problem, the parent’s schedule is used in
solving the intermediate problem, and the schedule of the intermediate solution is used in solving
the child’s problem. From a computational perspective, a schedule is completely defined by the
activities’ start and finish dates and selected modes, limiting memory requirements for storing a
schedule.

7.10. IMPLEMENTATION DETAILS 147

The same procedure is applied for OEM and supplier. For sequential coordination and a popu-
lation consisting only of one individual, this measure proved to be an efficient means to avoid a re-
computation from scratch and thus to limit local runtime. For parallel coordination or larger pop-
ulation sizes, we implemented additional principles that require a slight change in the DS Solving
module’s implementation. As preliminary experiments suggested, it is a nontrivial task to decide
which DEAL-individual provides the best starting point (if several such individuals exist) before
computing the solution of the child. Instead of focusing only on the parent individual, we use the
information of all existing individuals. Recall that the underlying GA itself is a population-based
approach. The idea was thus to inject all available information into the initial GA-population. The
standard GA initialization methods of Section 6.1.2 have not been altered, however. Instead, addi-
tional GA-individuals were added, leading to an oversized initial GA-population. After the GA’s
first generation, the population shrinks to its standard size, as the worst GA-individuals are sorted
out. The following concept was implemented for storing the additional information. Each DEAL
individual has a list of promising GA individuals. After the GA has completed the construction of
an intermediate solution or a child, the related final GA-individual is taken and added to the list
of each idle, waiting and complete DEAL-individual.17 If a new DEAL-individual is constructed
it inherits the parent’s list. Whenever a DEAL-individual’s schedule is computed, its stored GA-
individuals are added to the initial GA-population when calling the solving module. Adding an
individual to the initial population means that the activity lists and the mode selection of a new
individual is initialized according to a stored activity list and mode suggestions resulting from
a previous call of the DS Solving module.18 This way, even DEAL-individuals that have already
been deleted get a chance to contribute to the construction of a child. Intuitively, the warm reboot
has a larger potential if new DEAL-individuals deviate only moderately from already existing
solutions. A potential drawback is that local optima might have greater influence since they are
inherited between the DEAL-individuals.

In conclusion, reusing previous solutions can be regarded as a way to combine several lo-
cal optimization runs into one global optimization run. From this perspective, the coordination
mechanism can also be regarded as a single optimization run interrupted from time to time to
exchange information to alter the properties of the underlying model.

7.10 Implementation details

Having discussed the properties of the RCPSP problem, the DS Optimizer, the generic DEAL
framework and its customized version, this section supplies various implementation details. The
prototype was implemented in C++ and extends the present DS Optimizer, version 5.1, part of
the SCM Business Suite 2007. As mentioned in Chapter 6, the DS Optimizer can be run as a stan-
dalone executable19 with flat text files, not connected to the SAP GUI or the database (LiveCache).
The prototype builds on this standalone mode. The focus is thus on the functional part of the

17For our computational evaluation, the list consists of 60 entries. If adding a new GA individual violates this bound,
the oldest list entry is removed. In principle, not only the best one but several solutions could be carried over from each
GA run, which opens an interesting topic for future research.

18Carrying over mode suggestions is not always possible. As discussed in Subsection 6.1.5, a preprocessing makes
infeasible modes inaccessible. As release dates change and artificial deadlines or precedence constraints are added by
some operators, the number of accessible modes might differ from DEAL-individual to DEAL-individual. Hence, stored
mode suggestions might not be accessible for some RCPSP instances. In such cases, the related mode suggestions are not
initialized, leaving the choice to the greedy heuristic presented in Subsection 6.1.1.

19In computing, an executable causes a computer to perform indicated tasks according to encoded instructions as op-
posed to a file that only contains data.

148 CHAPTER 7. THE CUSTOMIZED DEAL FRAMEWORK

coordination mechanism and not on issues regarding visualization or database design. During
coordination, there is no upload or download from the database. The source code of the DS Op-
timizer was extended by several classes representing planning domains, interdomain messages
and populations of interorganizational solutions. The object oriented design allowed the imple-
mentation of the coordination process as a single executable. For the sequential coordination, only
one instance of this executable (a so-called process), suffices to simulate the coordination mecha-
nism: planning domains are encapsulated as autonomous objects and communication takes place
by exchanging message objects between the domain objects. Special attention was paid to ensure
that sensitive data was kept private and not accidentally exchanged between the domain objects.
In the parallel coordination, several instances of the executable run as separate processes on the
same or on different machines. An interprocess communication was realized on the basis of SAP
Remote Function Calls (RFC).20 Here, message objects need to be serialized, sent via RFC and
deserialized on the other end.21 The different functionalities were encapsulated in such a way
that only the coding of the “physical” message exchange is different for sequential and parallel
coordination. The planning functionality, methods for managing the population and the creation
and evaluation of proposals are exactly similar for both coordination modes.

The implementation can be briefly explained by considering the (high-level) architecture of
the DS Optimizer (see Figure 6.1, Chapter 6). Each intradomain planning problem is stored as a
separate context. (Recall that a context defines a single RCPSP instance and its related solution,
see Chapter 6.) These contexts can be passed to the solving module or to heuristics and meta-
heuristics. The main working principle of the DEAL framework is to change some of the data of a
context (cf. Figure 7.1) and thus to create new RCPSP instances. Different input dates (e.g., release
dates, due dates) will in general result in different solutions (start dates, finish dates and mode
selections). The rest of the context (activities, precedence constraints, capacity profiles and so on)
does not change however. Hence, in addition to a working context, representing the nonvarying
part of the RCPSP instance, an individual encodes only the varying part of an interorganizational
solution for a planning domain. As highlighted in Chapter 4, each planning domain can be seen
as a state machine that works on a population of individuals. Several classes have been imple-
mented to manage the population for leader and follower. This functionality will henceforth be
subsumed as a domain-control procedure. In general, a domain control procedure is the inner
part of the while loops of Algorithm 3 or Algorithm 4 presented in Section 4.9.

Briefly summarized, a domain control procedure processes incoming messages, manages in-
dividuals and produces output messages. When evaluating or constructing an individual, the
control procedure initializes the working context with the content of an individual before passing
it to the solving module or the heuristics. Messages for synchronizing the local populations are
represented as separate objects in every planning domain. Each partner has a message inbox and
a message outbox. Each message is identified by its id and stores the ids of sender and designated
receiver, cf. Section 4.3.1. A domain control procedure puts messages to send into its outbox and
looks for incoming messages in the inbox. A distributor object without any planning function-
ality handles the exchange of messages. The distributor’s distribution-control procedure first
copies a planning domain’s outbox messages into a temporary storage and then distributes them

20Remote Function Calls are SAP’s proprietary standard of protocols and interfaces for calling functions in other sys-
tems. In general this technology is also known as remote procedure calls.

21In this regard serialization refers to the task of converting an object to a text message transferred from one process to
the other. Deserialization refers to the opposite, the instantiation and initialization of an object according to the received
textual specification.

7.10. IMPLEMENTATION DETAILS 149

into the designated inboxes. In addition, a controller object initializes and monitors the system.
To be able to do this, the controller stores the global context (i.e. the interorganizational RCPSP
instance), but the controller does not intervene in the coordination process and has no planning
functionality at all. Instead, the controller reassembles the domains’ partial context information
that belongs to the same interorganizational solution and checks if this global context is feasible,
such as if all precedence constraints are fulfilled. The feasibility check is performed for every solu-
tion constructed. The checks are performed by a standard module provided by SAP, the so-called
SolutionChecker. The checks slow down the overall process a bit but confirm that the interplay of
C++ objects really works.

A detailed description of the OEM’s control procedure in pseudocode for the customized
DEAL framework is given in Appendix B. The customized control procedure for the supplier
can be found in Appendix C and the controller’s control procedure in Appendix D. The descrip-
tions of control procedures are valid for the asynchronous and parallel coordination and include
additional functionality for debugging by sending local solutions to the controller. Further expla-
nations are provided in the following subsections.

7.10.1 Sequential and asynchronous coordination

Figure 7.15 illustrates the interplay of modules for the sequential and asynchronous coordina-
tion. On a high level, the architecture of the DS Optimizer (Figure 6.1) is extended by a domain-
control module, a message inbox and outbox, a population of DEAL-individuals and a dictionary
of interorganizational precedence constraints, the mapping of activities between the planning do-
mains. Each domain-control procedure successively changes the population, processes inbox mes-
sages, reinitializes the local context, triggers the solving module and produces output messages.
Every domain-control procedure is a sequence of instructions, performing only a limited number
of predefined steps. Hence, a simple means to achieve a sequential coordination is to iteratively
switch between the instructions of the distribution-control and the domain-controls within a sin-
gle process, calling the domain-control procedure of domain A, the distribution-control proce-
dure of controller, the domain-control procedure of domain B, the distribution-control procedure
of controller and so on. A call executes a control procedure once. This approach has the disadvan-
tage of wasting computational power as the control procedures may be called with nothing to do.
A critical point are deadlocks, cases where no planning domain can produce any output since it
is waiting for input from other planning domains. To avoid deadlocks, the procedures have been
designed to be applied to any state of incoming messages and individuals. It is guaranteed that at
least one control procedure can continue computation. A central advantage is that the function-
ality of distributing messages is kept separated from the functionality of calculating proposals.
There is only a single focal distributor taking care of the message exchange. The focal distribu-
tor is also required for technical reasons. An existing grid framework was used to parallelize the
process. This framework does not allow bilateral communication between individual processes.
Instead, slave processes must communicate through a master process. To manage this job, the
focal distributor needs to be placed on the master process (more details can be found in Subsec-
tion 7.10.3). For the sequential coordination, there is no difference between several domains with
separated distribution functionality or a single distributor iteratively managing the distribution
tasks of all the domains.

150 CHAPTER 7. THE CUSTOMIZED DEAL FRAMEWORK

Figure 7.15: Modules of the asynchronous DEAL prototype implementation

7.10.2 Parallel coordination

One of the main advantages of DEAL is the support for parallel computation. As long as the
domains reply to each other’s requests, the actual sequence of replies is irrelevant for the func-
tioning of the mechanism. Simply put, it does not matter how the planning domains compute
their proposals, as long as they do it some way.

There exist numerous possibilities for parallelization. One idea would be to divide the prob-
lems into several parts (e.g., according to the currently selected start dates of activities) and to
coordinate these parts in parallel. Obviously, this would require additional measures to preserve
feasibility. Moreover, a good solution might require shifting activities across the whole planning
horizon and the parallelization would prune important regions of the search space. For these
reasons this idea was not investigated further.

Another possibility is to parallelize the local optimization method, the solving module of the
DS Optimizer. For example, the population of permutations could be split into several islands,
each situated on another process. From time to time, individuals are exchanged between the is-
lands to synchronize the convergence of the whole system (cf. Engelmann, 1998). However, we
cannot expect to successfully parallelize other local optimization methods in a similar way.

Therefore, we implemented a third variant that is supposed to work with most optimization
methods. Recall, that the DEAL process iteratively changes data of a local RCPSP problem. In
fact, several RCPSP instances are generated, each of which can be solved separately. By far the

7.10. IMPLEMENTATION DETAILS 151

Figure 7.16: Modules of the parallel DEAL prototype implementation

most time-consuming task is computing a schedule by calling the optimizer’s solving module.
As indicated in Section 4.10, the idea is hence to send ready-made RCPSP instances to solving
units that only call the solving module and send the results back when finished. The interplay of
modules for the parallel coordination is illustrated in Figure 7.16. As for the sequential and asyn-
chronous coordination, all messages are routed over a focal distributor. If, for example, Domain
A wants to send an instruction to Solving Unit A1, it cannot do so directly. Instead, a message for
the receiver A1 needs to be constructed and placed in the outbox. The distributor will then gather
this message and place it in the designated inbox of A1. As already mentioned, this design was
motivated by properties of the SAP SCM grid framework, explained in the next subsection.

152 CHAPTER 7. THE CUSTOMIZED DEAL FRAMEWORK

7.10.3 The SAP SCM grid framework

The SAP SCM Business Suite contains a grid framework to support parallel computation. A com-
munication between different processes (run on different machines) is achieved by RFCs. Within
this framework a master–slave mechanism was established providing encapsulated functionality
for the optimizers. Using this predefined mechanism, communication between processes can be
programmed conveniently via C++ streams and one need not struggle with the underlying re-
mote function calls. However, communication can only take place between slaves and the master,
not between the slaves directly. For standard intradomain parallelization tasks, this architecture
is sufficient, as the master takes care of administering the overall process and the slaves carry out
predefined jobs.

However, to simulate a parallel coordination, several planning domains need to communicate
with each other and with the solving units. Extending the master–slave mechanism itself to such
a communication was considered a major effort beyond the scope of this thesis. A naive approach
would be to situate all planning-domain objects on the master process and each solving-unit ob-
ject on a several slave process. Here, the communication to solving units would be possible over
RFCs, and the communication between planning domains by exchanging objects within the mas-
ter process. However, this would not parallelize the computation of the planning domains. On the
master process, the domain-control procedures need still to be called sequentially as discussed in
Section 7.10.1! Thus, a different approach was used as illustrated in Figure 7.17. All planning

Figure 7.17: Distribution of modules in the grid-framework

domains and solving units are situated on the slaves, only the controller is on the master. Ad-
ditionally, the master contains a global distributor object. The controller’s control procedure and
the global distributor’s control procedure are called iteratively in the master process,22 as in the

22Alternatively, the controller could be located on a separate process. However, since runtime requirements are small,

7.10. IMPLEMENTATION DETAILS 153

sequential case. The global distributor has the additional information on which domain or solv-
ing unit is on which slave. Next to planning domains or solving units, every slave contains a local
distributor. A slave’s domain or solving unit control and local distributor control procedures are
also called iteratively. Sending an instruction from a planning domain to a solving unit involves
the following. The planning domain places a message into its outbox. The local distributor copies
the message into its temporary storage and tries to find the receiver on the same slave. If a lo-
cal receiver could not be found, the message is forwarded to the global distributor via RFC. The
global distributor again forwards the message to the slave that contains the designated solving
unit via RFC (or to the locally attached controller if he is the designated receiver of the message).
The message is deserialized and temporarily stored by the local distributor on the receiving slave.
Finally, the local distributor puts the message into the inbox of the designated solving unit. Theo-
retically, several planning domains or solving units could be placed on the same slave. However,
to enable a true parallelization, the tests where run with only one domain or solving unit per
slave. Additionally, enough CPU power was ensured, one CPU for each slave.

It is worth highlighting the three layers of communication in the parallel coordination. The
basic physical layer consists of remote function calls in the SAP SCM grid framework, providing
a connection between different processes. The second, intermediate, layer is given by the master–
slave mechanism that provides common communication functionality for C++ executables. The
top layer is defined by the messages exchanged between planning domains and solving units.
As already mentioned, the same top layer is used for sequential, asynchronous and parallel co-
ordination. The sequential coordination, however, does not require the other two layers. In the
parallel coordination, the functionality of each layer is encapsulated, the control procedures do
not “know” whether they are called in a single process or distributed over several processes. For
parallel coordination, the master–slave mechanism must first be started, before the coordination
can take place. A comprehensive overview is given later in Subsection 7.10.5.

With regard to the parallel coordination, several further issues need to be mentioned. As al-
ready mentioned, not all control procedures will have work to do every time they are called. In
order to limit CPU use, the following strategy has been implemented. At every iteration, the mas-
ter or slave process measures the time difference between calling the first control procedure under
its responsibility and finishing the last. If there are no messages to process or idle individuals to
construct, the control procedures terminate fairly quickly and the measured time difference is
much smaller than one second. If applicable, the subprocess pauses additional milliseconds such
that the time between two iterations of control procedure calls takes at least 1 second. Due to
these pauses, transmitting a message from sender to receiver can take several seconds. However,
if there is a constant flow of messages in the system, this per-message delay is negligible.

Another issue is related to a technical detail concerning the interprocess transmission of mes-
sages via RFC. If one process intends to send a message to another process, the latter needs to be
ready. If, for example, the global distributor sends a message to a slave and the related domain-
control is currently calculating a proposal, the master process is held until the local distributor on
the slave has been called to receive the message. During the waiting time, the master cannot re-
ceive further messages. This can lead to a cascade, where a single process forces the whole system
to pause. Obviously, such a system behavior hampers the simulation of a true parallel compu-
tation. As a remedy, the global distributor stores messages temporarily until the slave is ready,
until all control procedures of the current iteration are finished. To indicate its readiness, a slave

the controller was put on the master process to avoid additional RFC calls and to limit the processes count.

154 CHAPTER 7. THE CUSTOMIZED DEAL FRAMEWORK

sends a short command to the master, polling for new messages. The master then forwards all
messages to the slave gathered after the previous poll. If no message arrived, the master replies
with a no_message command and the slave continues its iteration of control procedure calls. In
some sense, the global distributor acts as a thread for each planning domain, buffering incoming
messages until the domain is ready to receive them. To limit communication overhead, the slaves
have to maintain a minimum time between to consecutive polls (set to 1 second for the numerical
test).

Another point to be mentioned relates to the domain-control procedure itself. During a single
iteration of a domain-control, several messages can be computed and placed into the outbox. As
described above, the messages would first be gathered by the (local) distributor and sent to the
master if the domain-control procedure was finished and the distribution-control procedure could
be started. However, calculating a proposal might take several seconds. Hence, it makes sense to
distribute a message as soon as it was placed in the outbox before calculating the next proposal.
This behavior was realized by terminating the domain-control and calling the local distributor
each time a message was issued. Finally, it should be emphasized that the parallel coordination
does not fulfill the definition of a grid in the close sense. For example, Foster and Kesselmann
(1998) define a grid as follows.

A computational grid is a hardware and software infrastructure that provides depend-
able, consistent, pervasive and inexpensive access to high-end computational capabil-
ities.

In the current implementation, an assignment of solving units is fixed and not changeable during
the coordination process. In addition, the local optimization time was set to be similar for all solv-
ing units during the numerical tests. As the OEM has to solve intermediate problem instances, he
gets more solving units assigned than the suppliers. However, the distribution of solving units
was done on the basis of a crude estimation of computational efforts. Moreover, not all local prob-
lems might be of similar complexity. For example, a supplier’s problem might have less activities
than the OEM. A dynamic adaptation of local runtime to actual requirements is a subject of future
research.

Concluding, it can be said that setting up the parallel coordination was a technically challeng-
ing task. Especially, debugging in a parallel environment turned out to be difficult since the origin
of failures in a parallel working system is not intuitively clear. In this regard, using the sequential
mode proved useful for finding and eliminating programming bugs. Another critical point is that
the physical message exchange is not truly decentralized but routed over the master process, as
required by technical conditions. This comes with the danger of the master being a bottleneck,
not being able to redistribute messages at a sufficient rate. However, such an behavior could not
be observed in any of the conducted empirical tests.

7.10.4 Customized message protocol

Sections 4.3 and 4.7 gave an overview of the message protocol from a generic perspective. The
generic protocol was summarized in Table 4.1. Aside from not using the guidance messages,
this protocol is still valid for the scenario of one OEM and several suppliers employing the DS
Optimizer. Additional commands are used to control the initialization and the termination, for
feasibility checking and message exchange in the parallel case. These commands are summarized

7.10. IMPLEMENTATION DETAILS 155

Command Reply Planning domain Controller
start n.a. x
terminated n.a. x
check_feasibility n.a. x

Table 7.4: Additional commands and issuers for initialization, termination, feasibility checking
and parallel message distribution

Command Reply Planning domain Solving unit
request_solution solution x
solution n.a. x

Table 7.5: Additional commands and issuers for message exchange with solving-units

in Table 7.4. Other commands for communicating to solving units are listed in Table 7.5. Both
tables relate to the top layer of messages exchanged between domains and solving units. The con-
troller sends a message with a start command to the OEM if all processes have been set up.
The domain-controls send a terminated back if they have finished all their calculations and the
system of processes can power down. Intermediate feasibility checks are triggered by messages
headed by the check_feasibility command. Planning domains send requests for compu-
tations, messages with request_solution, to the solving units, which reply with solution

messages once the calculation is finished. More details regarding the interplay of domain- and
solving-unit–control procedures can be found in Appendices B and C.

In addition, Table 7.6 lists commands of the intermediate layer, pertaining to the master–slave
mechanism. These commands summarize the above discussion for handling the “physical” mes-
sage exchange between processes. More details are provided in the next subsection. Table 7.7
gives an overview of customized components, their purpose and the individuals and messages
that use this components.

7.10.5 The process of parallel coordination

Concluding the description of implementation details, this subsection reviews the communica-
tion between master and slave processes in the grid framework. Figure 7.18 illustrates the main
sequence of master and slave communication. Initially, all processes start and are initialized per
parameters from a text file. After activating the slaves (command init), the master runs the
model generator module to build the global context. After initialization, the global context is then
split up into the separate subcontexts, where each subcontext represents a planning domain’s
RCPSP problem instance. In some cases, the initial situation is generated by centrally applying

Command Reply Master Slave
init n.a. x
receive_entity n.a. x
start_coordination n.a. x
stop_coordination coordination_stopped x
coordination_stopped n.a. x
receive_messages n.a. x x
ready n.a. x
no_message n.a. x
exit n.a. x

Table 7.6: Additional commands and issuers for instruction between master and slave processes

156 CHAPTER 7. THE CUSTOMIZED DEAL FRAMEWORK

Component Purpose Attached to

start dates Start dates of upstream-related activi-
ties.

Individuals of OEM, messages with
command solution sent by solv-
ing units to OEM.

proposed
dates

Proposed dates from OEM to supplier.
Translated to supplier’s due dates upon
transmission.

Message with command
proposal—sent by OEM.

due dates Proposed due dates from OEM to sup-
plier.

Messages with command
proposal—received by sup-
plier. Messages with command
request_solution sent from sup-
plier to solving unit.

finish
dates

Realized finish dates of supplier’s
downstream-related activities. Trans-
lated to release dates upon transmission
to OEM.

Messages with command
counterproposal sent by sup-
plier. Message with command
solution sent from solving units
to supplier.

release
dates

Upstream-related release dates received
by OEM from supplier.

Messages with command
counterproposal received
by OEM, individuals by OEM,
request_solution messages sent
to solving units.

start dates
of parent

Stores the start dates of the par-
ent individual. Needed by operator
RMP|LA|RA

Individuals of OEM.

finish date
to external

Realized finish dates of downstream-
related activities to external customers.
Needed to quantify costs.

Individuals of supplier and
OEM. Messages with command
solution.

internal
cost Internal cost associated with a solution.

Individuals of supplier and
OEM, messages with command
solution.

latest fea-
sible start
dates

Upper bounds implied by operator
ISB|FWD|RA. Needed for commu-
nicating the bounds to the solving units.

Messages with command
request_solution.

reboot in-
formation

Stores all start and finish dates and se-
lected modes of a solution, needed for
warm reboot.

Messages with commands
request_solution, solution
and check feasibility, all indi-
viduals.

operator
list

Stores a list of available operator speci-
fications for further construction of chil-
dren.

All individuals.

Table 7.7: Customized components of the message protocol

the solving module to the global context prior to splitup. Next, objects representing the planning
domains and solving units are instantiated and initialized with the respective subcontexts and
assigned to the slaves (command receive_entity). In addition, the controller object is instan-
tiated on the master process. At the end of the initialization phase, the domain and solving-unit
objects are distributed to the slaves and the global and local distributors are instantiated.

During coordination, the control procedures exchange messages through the master. The slaves
iteratively poll for new messages by sending the command ready to the master. If the master
process’ global distributor has new messages for a slave, the transmission is started with the com-
mand receive_messages, otherwise the master returns no_message. For sending messages

7.10. IMPLEMENTATION DETAILS 157

Figure 7.18: Processes of the parallel coordination

to the master, also the slave use the command receive_message.

The coordination phase ends if all planning domains have terminated. Further commands
(stop_coordination, coordination_stopped and exit) are exchanged to end the coordi-
nation phase and end the processes in a controlled way.

158 CHAPTER 7. THE CUSTOMIZED DEAL FRAMEWORK

7.11 The three-tier scenario

So far, this chapter has discussed methods for constructing and evaluating solutions in the two-
tier scenario. In such a setting, the construction of solutions essentially follows a two-phase up-
and downstream planning procedure. In the first phase, the OEM sends proposed delivery dates
to his suppliers. In the second phase, the suppliers reply with feasible delivery dates. The ques-
tion of interest is if this coordination scheme can be extended to more than two tiers. Consider
a three-tier SC, consisting of suppliers, OEM and wholesalers with planning functionality. An
extension of the two-tier approach is possible if the OEM represents the single point of coordina-
tion, cf. Figure 4.4 (i). A generic construction template has already been given in Section 4.4.2. The
high-level idea is that the leader asks wholesalers for guidance (i.e., data to construct purposeful
proposals). For the customization of the DS Optimizer, the following proceeding can be outlined.

1. The OEM sends a guidance request to each wholesaler.

2. The wholesalers derive proposed dates to increase their service level using the operators
presented in Section 7.7.

3. The OEM converts the proposed dates to internal due dates by applying Equation 7.2 dis-
cussed in Section 7.1.

4. Based on the updated due dates, the OEM constructs proposed dates using the operators
presented in Section 7.7.

5. As in the two-tier scenario, the suppliers convert the proposed dates to due dates, call the
optimizer to construct a schedule and reply with (feasible) finish dates.

6. The OEM converts the suppliers’ finish dates to release dates. Based on the new release dates
and previously received due dates, he schedules his production by calling the DS Optimizer.
Realized finish dates are in turn submitted to wholesalers.

7. The wholesalers convert the OEM’s finish dates to release dates and schedule their own
production.

8. The OEM collects rankings from all suppliers and wholesalers. A global ranking for further
selecting and updating the population is constructed by the method discussed in Section
7.4.

It should be noted that the wholesalers do not necessarily need to be questioned for guidance
every time the OEM constructs proposals for his suppliers. Probably a less frequent updated
guidance (every 2nd or 3rd round) might suffice. Moreover, for solutions that have already been
accepted by upstream partners additional guidance information might not be necessary at all.

An extension to more than three tiers or several points of coordination is not without prob-
lems. Under the current coordination scheme, several leaders would be required. A major diffi-
culty would be that the leaders need not only to coordinate their followers, but also to synchronize
their activities with each other. This would require major parts of the SC structure to be public
knowledge. However, revealing suppliers and customer contracts (to possibly competing com-
panies) might be regarded as critical disclosure of sensitive data. If revelation of suppliers and
customers is regarded as noncritical, a superordinate mediator might be advantageous for large
SCs with complicated structures. A population-based mechanism is imaginable in which each

7.12. APPROPRIATE REAL-WORLD BUSINESS CASES 159

planning domain sends a delivery date proposal (consisting of proposed start and finish dates
representing a local improvement of the initial schedule) to the mediator. Knowing the struc-
ture of the material flow, the mediator trades off conflicting proposed start and finish dates by,
for example, taking the average. As a fairness criterion those planning domains evaluating the
current solution as bad with regard to the remaining population could get higher influence. The
mediator reports back tentative delivery dates to the planning domains. Now, a global two-phase
upstream and downstream planning takes place. During upstream planning, no item may be
requested prior its tentative delivery date. During downstream planning each planning domain
tries to fulfill the upstream requests to the extent possible. It should be noted, however, that taking
averages of proposed dates possibly contradicts the intention of some of the operators presented
in Section 7.7.

If revelation of suppliers and customers is regarded as critical, another mechanism can be
imagined. Following Dudek (2007), an active subset of the SC, containing only a single point of
coordination (taking the leading role) can be extracted. All inactive planning domains not in-
cluded are handled as “external” suppliers or customers, i.e., the related release dates are not
relaxed during proposal generation and the related due dates are treated as deadlines, cf. Section
7.1. In other words, the planning domains of the active subset aim to eliminate inefficiencies by
using the DEAL framework without invoking passive domains. The idea is then that this active
subset cycles through the whole SC, iteratively excluding active and including inactive planning
domains while maintaining the single point of coordination requirement. The above ideas might be
the starting point for future research.

7.12 Appropriate real-world business cases

Concluding the description of the DEAL framework, it is interesting to examine, which practical
requirements of Section 4.1 are fulfilled. Certainly, exchanging ranks and delivery dates does not
disclose sensitive data. Moreover, since side payments are not exchanged, the focus is on avail-
ability and not on costs which eliminates various problems associated with side payments. An
obvious drawback is that some areas of the search space are pruned; they cannot be reached if
side payments are not exchanged. However, the central question in this regard is if the planning
domains actually intend to reach the global optimum. Section 4.1 lists several facts that contra-
dict this hypothesis. The other requirements are also fulfilled to a large extent. The mechanism
preserves feasibility, allows the coordination of a limited number of domains, supports the black-
box treatment of underlying local optimization engines and, as a population-based approach,
provides possibilities for parallelization.

Though an analytical proof is hardly possible, the customized DEAL framework is intuitively
incentive compatible because no player has anything to lose when participating in the coordi-
nation. Suppose that contingents have been agreed in a frame contract but are outdated due to
unforeseen events, such as a machine breakdown or increased customer demand. Not using the
coordination mechanism, the OEM can optionally claim a contract penalty but cannot fulfill his
service level targets. He is thus interested in employing the coordination mechanism to realize a
potential decrease of late delivery. Also the supplier is interested in participating in the coordina-
tion since he can increase the customer satisfaction of the OEM and possibly avert a contractual
penalty. However, the OEM has no possibility to overexercise his power by forcing the supplier
to obey the proposed delivery dates. Suppliers are always allowed to deviate from the OEM’s

160 CHAPTER 7. THE CUSTOMIZED DEAL FRAMEWORK

proposal in order to fulfill service level agreements with other customers. Being a loyal partner,
the supplier intends to fulfill the OEM’s proposals to the extent possible, however. As under-
lying optimization methods and related data remain unaltered, the costs for implementing the
coordination mechanism seem to be manageable.

Setting up a today’s planning system with a high degree of automation already requires a
huge investment. Licences and IT infrastructure have to be bought, planning processes need to
be adapted, planners need to be trained and data need to be prepared. However, if conflicts occur
across company boundaries, today’s planning systems are still unable to automatically generate
alternative solutions. Regarding the effort companies have already put in their planning systems
it seems rational to further consider a relative small investment in connecting the systems of dif-
ferent companies. This thesis aims at giving a blueprint how such an endeavor could be realized.

Having set up the customized DEAL framework, the planners could let it run overnight and
discuss the results in the next morning. The prioritization of deadlines pertaining to external cus-
tomers (or other local objectives) and the implementation of acceptance bounds for evaluating
solutions automatically allow the planners to define the behavior of the search process a priori.
As proposals, counterproposals and rankings are generated fully automated, there is no necessity
to evaluate each solution manually.23 Since side payments are not computed, DEAL automati-
cally generates only a set of alternatives, and the best alternative found (or several good alter-
natives) are presented to the planners for future consideration. Even if prenegotiated contingents
are sufficient, the coordination mechanism could help to search for more compact plans, releasing
additional production capacity.

Nevertheless, fulfilling practical requirements does not mean that all business cases would
benefit to the same degree from implementing this mechanism. The following list summarizes
several additional aspects for business cases to benefit by implementing the DEAL framework as
well as some pitfalls.

• Supply chains with an equally distributed value creation seem to have a larger incentive for
introducing a coordination mechanism. Consider the case where the OEM creates 99% of the
value (and the associated costs) of the SC. Obviously, in such a setting the OEM will have
greater power than if he only created 50% of the value. From this perspective, the OEM
might be tempted to obstruct the introduction of a coordination scheme. Later numerical
tests suggest, however, that in the end, this paradigm harms the OEM. For example, due to
a machine breakdown, suppliers might simply not be able to fulfill the OEM’s request. In
such cases, the OEM’s production plan gets distorted and it might be difficult to manually
find alternatives.

• For a successful application of the DEAL framework, the OEM’s production policy needs to
allow a certain degree of freedom to produce alternative plans. There exist certain forms of
make-to-order production that simply not “allow” deviations from the optimal sequence. A
typical example is the automotive industry, where suppliers have to fulfill high standards
to attain a just-in-time delivery of assembly parts without any errors.

• The focus should be on coordinating few but “important” items, items that have only a
limited safety stock due to the expenses for storage or capital lockup.

23In analogy, even today no intermediate solution of a local GA is examined manually.

7.12. APPROPRIATE REAL-WORLD BUSINESS CASES 161

• The planning problems need to have a certain complexity to generate a considerable coordi-
nation potential. For example, cases in which many supplier exists, but each supplier only
delivers one kind of item only have a low coordination potential.

• The benefit of a coordination scheme comes with costs for implementation. For some indus-
tries, cheaper “coordination” possibilities might exists. For example, in consumer electron-
ics, other components are usually installed to counteract supply shortages.

162 CHAPTER 7. THE CUSTOMIZED DEAL FRAMEWORK

CHAPTER 8

Computational evaluation

8.1 Building blocks defining the complexity of coordination

Solving an intradomain RCPSP is about finding the right sequence of activities, which then de-
termines the related start and finish times. Also, from an interorganizational perspective, the se-
quence of delivered items is important since it determines the earliest start dates for the OEM
and proposed due dates for the suppliers. There exist several building blocks for interorganiza-
tional conflicts. In general, such conflicts can result if a domain’s local planning properties lead to a
delivery sequence that generates disadvantageous RCPSP instances for other domains. Different
setup costs and times can cause such conflicts. While the schedule of one planning domain may
include only a few minor setup activities, fulfilling the resulting delivery sequence might require
major setup activities in the schedules of other domains. Hence, the setup activities consume re-
source capacities or generate penalties in the objective function (in the form of setup costs) such
that delivery to the ultimate customers is delayed. Also, different activity durations may require a
certain product mix in one planning domain to avoid idle times. However, the resulting delivery
sequence might lead to idle times in other planning domains. Thus, accumulated idle times can
again cause a delayed delivery to the ultimate customer. Last but not least, different mode costs
and durations can also lead to conflicts. In general, the effect of the conflicts can be reduced by
finding a good compromise between the different preferences on the delivery sequence. For ex-
ample, the total lateness might be smaller if all domains experience small setup times than if one
domain experiences very little and the others very large setup times. Next to these local problem
properties, interface properties, such as transports between supplier and manufacturer, can further
deteriorate the outcome. Finally, unforeseen events, such as machine breakdowns, demand action.

Subsections 8.1.1–8.1.3 present a few examples for the above building blocks. The aim is to
present examples that are condensed to those ingredients that make the standard real-world
problems difficult to coordinate. Later discussed test instances are compositions of these building
blocks. If the coordination mechanism works on these test instances, it has a good chance to be
successfully applied to a wide range of real-world problems.

163

164 CHAPTER 8. COMPUTATIONAL EVALUATION

For the computational tests, we assume that the parties generally aim at decreasing the late-
ness of goods delivered to the OEM’s ultimate customer. As discussed in Chapter 7, suppliers are
thus supposed to support the OEM’s proposals even though these proposals cause high setup
times or costs, mode costs or makespan within their local planning problems. However, suppli-
ers are not willing to accept an increased delay of orders to their own (external) customers. On
a short-term level, the idea of fulfilling customer demand in time is in line with the prevailing
practice. In general, however, the ranking scheme can also be adapted to support other objectives
as has been discussed in Section 7.4.

8.1.1 Local properties

In general, conflicts can result if suppliers’ objectives contradict the OEM’s objective. For example,
while the OEM is interested in finding schedules with minimum lateness, his suppliers might fo-
cus on schedules with minimum setup times. Under such circumstances, coordination will likely
turn out to be useless; no matter what proposal the OEM is sending, the suppliers will continue
to prioritize their setup time objectives and the resulting counterproposals will not change sub-
stantially over time. As discussed, we suppose that the suppliers are willing to fulfill the OEM’s
proposals to the extend possible. Hence, even though the suppliers’ objective functions do include
setup time and makespan objectives to steer the search process, total and maximum lateness ob-
jectives are assumed to play a major role. Conflicts between the suppliers and the OEM arise, if
the objectives lead to a bad initial schedules generated by upstream or downstream planning. The
following subsections present several examples for such cases.

8.1.1.1 Conflicting setup times

One source of conflicts is sequence-dependent setup times or costs. For example, we can think of
situations where the supplier wants to group several activities requiring the same setup state of a
resource, whereas the OEM prefers the steady delivery of an unvarying mix of input products.

We illustrate this idea with several small examples. Figure 8.1 depicts the situation: One sup-
plier is delivering three goods A1, A2 and B1 to an OEM. In the figure, the size of the rectangles
relates to the duration of the production activities. Sequence-dependent setup times occur on the
OEM’s resource R3, where producing A3 after B2 needs twice the setup time of B2 after A3. The
supplier is assumed to need a setup on his resource R1, if A1 is followed by A2 or vice versa.
The duration of setup intervals are depicted by the shaded areas in the respective setup matrix.
Precedence relations are shown by arrows. In the example, A1 and A2 need to be finished before
A3 can start, and B1 is a predecessor of B2. The picture shows the most relevant part of data and
will henceforth be denoted as the problem design.

Figure 8.1: Design of setup conflicts—example 1.

8.1. BUILDING BLOCKS DEFINING THE COMPLEXITY OF COORDINATION 165

Figure 8.2: Coordination of setup conflicts—example 1.

Let us assume that an RCPSP instance is generated by taking each of the above activities
two times. Figure 8.2 shows several possibilities to come to a joint solution for such a problem
instance.1 The first two Gantt charts show the independent solution of each partner, the sequences
of activities with minimum lateness2, setup times and makespan if there is no connection to the
other partner. Obviously, these schedules (and the implied delivery sequences) do not match each
other. While the OEM prefers A3, A3, B2, B2 as a production sequence, the supplier’s independent
solution implies B2, A3, B2, A3 as a production sequence for the OEM.

The conflict can be “solved” by one partner taking over the leadership or by finding a compro-
mise. Let us suppose that the OEM dictates the joint initial solution. That is, upstream planning
is applied at the beginning. As discussed in Section 7.3.1, the OEM generates his initial proposed
dates by applying the DS solving module followed by the right-alignment heuristic. Not knowing
the supplier’s scheduling problem, the OEM communicates his preferred delivery sequence (A3,
A3, B2, B2) by proposing related delivery dates. Trying to fulfill the OEM’s desire, the supplier
schedules his production as close as possible to the imposed sequence.3 Sticking to the sequence
requires the supplier to produce A1 and A2 in an alternating fashion on his resource R1. The
alternating production entails setup times that finally lead to an idle time in the OEM’s sched-
ule (between the two A3 activities). It is remarkable that the OEM’s preferred order can cause
idle times at his own resources as soon as it comes to an interplay with the supplier. The still-
in-practice prevailing tenet, “it is the best for the whole SC if the OEM decides and suppliers
execute,” is clearly disproved even by this small example. The last part of Figure 8.2 shows the
zero-lateness solution. The due dates for A3 and B2 have been set such that DEAL can just manage
to achieve zero lateness by generating the depicted schedules. Setting the due dates more right

1For better legibility, the pegging net is only drawn in the problem designs, but not in the Gantt charts henceforth.
2For the supplier, the lateness criterion is not of importance for the independent solution, as due dates have not been

set by the OEM.
3As discussed, we assume that the penalties for total and maximum lateness are a relevant factor in the supplier’s

objective function when calling the DS Optimizer.

166 CHAPTER 8. COMPUTATIONAL EVALUATION

would leave more freedom for different schedules to achieve zero lateness as well, i.e. the need for
coordination would decrease. Setting the due dates more left would just add a constant amount
to the lateness objective that cannot be decreased further. As can be seen, the zero-lateness solu-
tion avoids unnecessary idle times. In contrast to the uncoordinated schedule, the OEM runs the
production out of the sequence of the supplier’s independent solution (not true for the general
case). For the OEM, the larger setup time between B2 and A3 is more than compensated by the
reduction of overall lateness. Moreover, less setup time is wasted at the supplier’s side. It is an
interesting question if and how fast the coordination mechanism will find such allocations that
are against the OEM’s myopic perspective in initial upstream planning.

Figure 8.3: Design for setup conflicts—example 2.

Figure 8.4: Coordination of setup conflicts—example 2.

8.1. BUILDING BLOCKS DEFINING THE COMPLEXITY OF COORDINATION 167

The next example extends the first example to a three-partner scenario, where two suppliers
deliver to one OEM. Figure 8.3 shows the related problem design. The two overlapping resources,
R3 and R4, indicate that activities AC and BD can be scheduled on both resources (i.e., by using
a different mode). Again, delivery sequences of the independent solutions contradict each other
as highlighted in Figure 8.4. If the OEM takes over the leadership and implements upstream
planning as an initial strategy, setup and idle times result. Obviously, the complexity of the co-
ordination task increases if more partners are involved. Problems are imaginable where a single
partner’s scheduling decision forbids the implementation of an overall promising solution. How-
ever, an increased number of partners does not necessarily imply that the coordinated results
get worse. As the number of partners increases, also the intradomain problems get smaller—and
might hence be solved more effectively.

For the above two examples, the need for coordination depends on the initial strategy. In fact,
downstream planning would immediately lead to optimal results. However, the success of such
simple successive planning strategies is not generally guaranteed.

The third example sketches a situation where neither the suppliers nor the OEM know the op-
timal production sequence in the beginning and a zero-lateness solution can only be achieved by
central planning or—hopefully—by the DEAL framework. The problem design of the scenario is
shown in Figure 8.5. Figure 8.6 shows the independent, uncoordinated and coordinated solutions.
The worst initialization strategy is upstream planning. Downstream planning already leads to a
smaller delay to the ultimate customer. However, in the coordinated solution, Supplier 1 and the
OEM need to make mutual concessions with respect to their independent solutions in order to
reach a schedule with less delay.

Similar to setup times, setup cost leads to a certain delivery sequence if included in the ob-
jective function. However, even if the fulfillment of a delivery sequence requires a schedule with
high setup cost, setup activities do not waste resource capacity if setup times are negligible. In the
computational tests, test instances with setup costs were not explicitly tested.

Figure 8.5: Design for setup conflicts—example 3.

168 CHAPTER 8. COMPUTATIONAL EVALUATION

Figure 8.6: Coordination of setup conflicts—example 3.

8.1.1.2 Conflicting activity durations

Another cause for conflicts is different activity durations that imply a certain production sequence
in order to avoid idle times. For every production stage, the activities must be arranged according
to the lead time implied by their preceding activities. However, these sequences can be different
from the perspective of OEM and supplier. This leads to many scattered idle slots if a successive
planning strategy (e.g., upstream planning) is applied. Figure 8.7 exemplifies the cause for such
conflicts for one supplier delivering to one OEM. The intermediate production activities A2 and
B2 require A1 and B1, respectively. Again, the size of the rectangles refers to the activity durations.

The OEM has a certain preference for the sequence of activities on R2 and R3 from his myopic
perspective. The independent optimal schedule is shown by the first Gantt chart in Figure 8.8.
The supplier is initially indifferent about his production sequence. Suppose the OEM’s indepen-
dent solution serves as a cornerstone for the first joint solution. Since the OEM is not aware of the
durations of the supplier’s activities, he dictates a delivery sequence (by transmitting proposed
dates) that ultimately leads to idle times on his own resources. As for setup problems, upstream

Figure 8.7: Design for conflicting activity durations.

8.1. BUILDING BLOCKS DEFINING THE COMPLEXITY OF COORDINATION 169

Figure 8.8: Coordination of conflicting activity durations.

planning can cause more harm than benefit. The last Gantt chart of Figure 8.8 shows the optimal
schedule. This schedule can be realized without forcing any partner to make concessions apart
from changing the order of activities on his resources. Interestingly, no partner knows the optimal
sequence in the beginning. Moreover, all partners can only win, since idle times only decrease
through coordination. However, the chance for building the initial schedule in this optimal se-
quence at random is very small, especially if more activities are considered.

Of course, if the supplier is also delivering to other customers, he is not completely indifferent
to his production sequence. However, depending on the fraction of activities delivered to other
customers, he is indifferent to a smaller or larger set of possible schedules.

8.1.1.3 Conflicting mode durations and cost

Another cause of conflicts is different durations of modes. Figure 8.9 exemplifies the design of an
idealized coordination problem. One supplier is delivering two items A1 and B1, relating to the
OEM’s two succeeding activities, A2 and B2. Each domain has two production resources. Though
the production of the items can be scheduled on each of the two resources, it is preferable to
schedule A1 on R1, B1 on R2, A2 on R3, and B2 on R4, otherwise larger mode durations need to
be taken into account (indicated by the dashed boxes in the figure). Under such conditions, both
partners actually prefer a steady flow of both items. However, we suppose that the resources of
the OEM are not available all the time, as depicted in Figure 8.10 (a lightning bolt is drawn on
slots with zero capacity).

Figure 8.9: Design for mode-duration conflicts.

170 CHAPTER 8. COMPUTATIONAL EVALUATION

Figure 8.10: Coordination for mode durations conflicts.

Under such conditions, the OEM wants to receive first all A items, whereas the supplier still
prefers a steady delivery of both items. The figure shows that both independent solutions lead to
a delay to the ultimate customer if imposed to the other partner during successive planning. It
can be seen that a compromise is again the best result. Also, mode costs influence the structure
of the objective function, leading to certain delivery sequences that are problematic for adjacent
planning domains. For simplicity we did not consider them in the computational tests, however.

8.1.1.4 Summary

Concluding, it can be said that several local properties have an influence on the delivery sequence.
If the local properties of adjacent planning domains are in conflict, initial settings with a con-
siderable coordination potential result. Not surprisingly, local properties can relate to either the
constraints (e.g., precedence constraints, resource capacity or activity durations) or to the objec-
tive function (respectively the related penalty values) of an RCPSP instance. The above examples
are by no means exhaustive; they are intended to give a flavor of the causes of uncoordinated
initial global solutions. It is remarkable that, even though suppliers intend to cooperate, a deliv-
ery sequence imposed by the OEM can harm the OEM in the end by creating unnecessary idle
times, setup times or activity durations in all planning domains. In such cases, coordination is
advantageous for all parties: for the suppliers because they have more resource capacity available
to schedule orders belonging to other customers and for the OEM because of reduced lateness of
activities. It can be argued that—depending on the problem design—a set of advantageous sched-
ules exists that can be explored even without exchanging side payments. Taking into account the
difficulties such payments introduce, these findings underpin our approach of not considering
side payments.

8.1. BUILDING BLOCKS DEFINING THE COMPLEXITY OF COORDINATION 171

For the sake of simplicity, the above examples did not contain any activities belonging to
external customers orders with prioritized deadlines. The test instances presented in sections 8.2
and 8.3 do contain such orders. As the computational tests will show, even in these cases suppliers
have some freedom for rescheduling their production and the initial situation can be improved
greatly.

8.1.2 Interface properties

The above building blocks cause idle times, setup times or larger mode-dependent activity dura-
tions in uncoordinated schedules. These idle times lead to a order delay with respect to ultimate-
customer due-dates and hence result in scenarios with a huge potential for coordination. Proper-
ties of the interface between the partners can even further intensify the chance for and the length
of such uncoordinated idle times. Assume that the supplied products are delivered overnight.
We can model this property by introducing an artificial transport resource on the suppliers side.
The resource has infinite capacity during the night, but no capacity during the day. As a new
sink for each supplier’s final activity a transport activity is introduced in each case. The transport
activities restrict the delivery of products to happen only overnight. Orders that are too late for
the current slot can only be delivered at the next transportation possibility. This discontinuity can
lead to a larger overall makespan, as shown in Figure 8.11. Moreover, the transport activities “dis-
rupt” the coordinated results. The coordination mechanism has to shift delivery dates to give as
little disruption as possible.

Figure 8.11: Illustration of transport slots and implication on overall makespan. The transport of a
good must start at T0 or T1 to be delivered at T1 or T2, respectively.

As with transport slots, the production at the supplier or OEM can be modeled to have non-
preemptive activities. For example, an activity cannot be paused over the weekend, during the
night or must not be performed by two different shifts. Again, the coordination mechanism must
avoid delivery dates for which activities only fit badly between the breaks.

8.1.3 Unforeseen events

From a practical perspective, a common source of conflicts is machine breakdowns. Assume the
case where—due to the breakdown of a machine—a supplier has insufficient capacity to fulfill
all orders of the OEM in time. The task is then to limit the damage, to delay those orders that are
of minor importance to the OEM. The other way round, the OEM might experience a machine
breakdown and need important orders of input products even earlier, whereas less important or-
ders can be delayed. A common problem is that it is not always clear at first sight which orders

172 CHAPTER 8. COMPUTATIONAL EVALUATION

are more or less important because of the complexity of the planning problem and the inter-
dependency of production activities. This has already been illustrated by the conflicting modes
examples, cf. Figures 8.9 and 8.10. When users manually shift those orders earlier that seem to be
important, they might open the floodgates for other bottlenecks that are even more severe than
the initial setting.

As with a change in the capacity profile, preferences of final customers can change. For exam-
ple, customers might ask the OEM to deliver some orders earlier. The question is then how well
the DEAL framework can propagate such changes through the SC. Finally, contingents of prene-
gotiated frame contracts may be outdated, and additionally production capacity is required from
the OEM and his suppliers. In such cases, the DEAL framework should support the planning
domains in jointly allocating resource capacity without delaying present delivery to the ultimate
customer.

8.2 Deterministically generated test instances

The first test data generator (TDG) mimics the main functionality of a SAP module called Pro-
duction Planning (PP). Given material quantity targets, this procedure determines the required
production lots. In order to satisfy ultimate customer demand, the procedure traverses the differ-
ent production stages and constructs replenishment and demand elements according to the BOM
(similar to classical Material Requirements Planning). Related lot sizes are calculated according
to predefined rules, such as the lot-for-lot rule. Moreover, a pegging net between replenishment
and corresponding demand elements is constructed. Afterwards, the pegging net is frozen, which
implies a fixed precedence relation between production activities that produce the material and
those that require it. The production activities are then scheduled by the DS Optimizer, which tries
to find the optimal sequence of the activities on the resources while respecting the precedence re-
lations implied by the frozen pegging net and the capacity restrictions. Briefly summarized, PP
generates an intradomain RCPSP instance out of master data and current demand information.
Hence, the structure of the activity network is not totally random but a repetition of activity prece-
dences, depending on the demand of output items, the BOMs used and the lot-sizing rules. We
will henceforth refer to this generator as deterministic test data generator (DTDG).

8.2.1 Test data generation

In order to generate reproducible test data, a Simplified Production Planning procedure (called
SPP) was implemented. As input, the user can specify the maximum lot size per product as a
standard lot-sizing rule. The SPP algorithm then tries to construct demand and replenishment el-
ements that have exactly this maximum lot size.4 The SPP run does not consider resource capacity
or sequence-dependent setup times, generating, instead, an “infinite” schedule.

Throughout the SPP procedure, the master data (e.g., the BOM for single production steps,
related capacity requirements, maximum lot sizes and duration of modes) remain constant. Es-
sentially, the whole process is triggered by the amount and distribution of the initial demand to
be satisfied. An example of a demand matrix is shown in Table 8.1. The coefficients of the matrix
denote the demand to be distributed per bucket and product. This facilitates the modeling of dif-
ferent seasonal, equal or random demand series for every product. In the current implementation,

4In some situations the lot sizes might be smaller. For example, at the end or beginning of the planning horizon.

8.2. DETERMINISTICALLY GENERATED TEST INSTANCES 173

Bucket I Bucket II Bucket III Bucket IV
Product A 10 15 20 5
Product B 8 10 5 5
Product C 3 2 7 10

Table 8.1: Example of a demand matrix with three products and four buckets.

the DTDG sets the RCPSP due dates at the end of the respective bucket. Before continuing with a
detailed discussion of the DTDG, the relevant master data is presented.

8.2.1.1 Master data

For modeling the master data, several C++ classes are available to the user of the DTDG. For
the sake of simplicity, the DTDG master data has less power of expression than real-world SAP
master data. Thus, the generated RCPSP instances do not demand all the capabilities of the DS
Optimizer. Nevertheless, it is possible to model problem properties leading to previously dis-
cussed interorganizational conflicts. The following list gives an overview of the available C++
classes for modeling master data. In order to distinguish from standard SAP master data we use
the prefix simple.

• A simple resource defines a resource needed for production. Simple resources can be unary
or multicapacitated. Except for breaks (production pauses), varying capacity cannot be mod-
eled. Unary resources can further be distinguished as those with sequence dependent setup
times and those without.

• A simple mode defines the resource required by a production activity and the related ca-
pacity consumption. The name simple mode stems from the fact that such a mode connects
an activity to exactly one resource. Normally, a mode can have one primary and several
secondary resources. For simplicity, secondary resources are not supported by the DTDG.

• A simple link defines an input or output relation between a product and a production
step: how many input products are required or produced by a simple production process
model (see below). Together with the computed pegging net, simple links determine the
precedence constraints in the generated RCPSP instance.

• A simple production process model (SPPM) defines a single production step and an op-
tional setup activity. It serves as compound entity to connect modes, resources, links and
products (see below). Again, the word simple relates to a simplification of actual possibili-
ties in the original SAP procedure, where several production steps can be modeled by one
production process model. If an SPPM is run, it produces replenishment elements according
to the output-link specifications and demand elements according to the input-link specifi-
cations. An activity of the RCPSP model describes a continued use of one SPPM during a
time interval in order to produce the required lot size. Each SPPM can also trigger a separate
setup activity for resources with sequence-dependent setup times.

• A simple product defines an input, intermediate, or output product. Each product has a
maximum lot size and can be assigned as input to different SPPMs but can only be the
output of one single SPPM. The SPP run tries to find pegging assignments such that the
maximum lot size is reached for as many lots as possible.

174 CHAPTER 8. COMPUTATIONAL EVALUATION

• The setup matrix stores the time and costs associated with the transitions from one setup
state to another. To each SPPM, a setup key can be assigned referring to a row and a column
in the setup matrix. Thus, using the setup matrix, the user can define sequence-dependent
setup times and costs.

Figure 8.12 illustrates the relationships between objects of the above classes.

Figure 8.12: Master data for the test-data generator.

8.2.1.2 Generation algorithm

For given master data in the form of objects of the above classes and a demand matrix, the SPP
run works as follows. First, demand elements are constructed according to the maximum lot size
and the demand matrix. Then, a stage-numbering algorithm calculates production-stage num-
bers for each SPPM. The production-stage number of a SPPM equals the maximum number of
predecessor SPPMs, whereas predecessors are determined over product input and output rela-
tions (defined by the simple links and products). Traversing the SPPMs in direction of descending
production-stage numbers, each output product of the current SPPM is checked for yet unsatis-
fied demands. If there are any, several activities, respecting maximum lot sizes, are generated. On
the one hand, information is stored for each activity on the duration required for the respective
SPPM to generate the desired number of replenishment elements to (partly) satisfy the demand.
On the other hand, each activity triggers new demand (according to the SPPM’s required input
products) that has to be covered by preceding productions stages. Demand and replenishment
elements are dynamically grouped by a pegging net. For each demand element, the pegging net
defines the related replenishment elements to cover the demand, leading to a precedence relation
over all activities. Finally, all original and dependent demand is satisfied by a number of activities.
A detailed description of the algorithm, simplePPrun, can be found in Appendix A.

Moreover, the DTDG allows an automated consideration of transport slots. If enabled, it as-
signs a transportation resource to each supplier, that “opens” for transport after a specified time
interval and “closes” one second later. When “open”, capacity is infinite, otherwise zero. Trans-
port activities are modeled to take zero seconds. This allows the introduction of problematic “in-
terrupted” delivery without requiring an adaptation of a scenario’s due dates because of addi-
tional transportation times.

Still, the DTDG creates only one intradomain RCPSP instance that needs to be split up further.
In a supplier–manufacturer relationship, planning domains commonly neither share resources
nor exchange information concerning resource usage as discussed in Chapter 4. Hence, starting
point of splitting up the generated RCPSP instance is an assignment of resources to planning do-
mains. It is important that this resource assignment does not lead to cyclic dependencies between

8.2. DETERMINISTICALLY GENERATED TEST INSTANCES 175

the planning domains (the suppliers are only delivering to the OEM and not vice versa). More-
over, all modes of an activity must relate to resources in the same planning domain. We assume a
feasible resource assignment as further input from the user. For such an assignment, we can split
up the remaining data (activities, release dates, due dates, calendars, and so forth) accordingly.
During this process we can automatically gather the information relating to interorganizational
precedence constraints, i.e. the information on how activities of a planning domain precede or
succeed other activities of adjacent planning domains. This information is needed during the co-
ordination process for translating proposed dates to due dates and finish dates to release dates,
cf. Chapter 7.

8.2.2 Test instances

The building blocks discussed in the previous section were combined into a single benchmark
scenario with structured complexity. This scenario comprises three subscenarios. 13 test instances
were generated by supplying the DTDG with different demand matrices.5 We start by describing
the scenario before discussing the demand matrices.

8.2.2.1 The benchmark scenario

We assume the OEM to be an idealized producer of lawnmowers. Each mower consists of 7 com-
ponents: A chassis, a motor, a tank, a blade, a handle, wheels and a control on the handle to control
the motor. While the OEM assembles the components, several suppliers are responsible for pro-
viding them. Handles, chassis and blades are delivered by a supplier of steel material, henceforth
called “Supplier Steel”. “Supplier Plastic” is responsible for tanks and wheels. Finally, motors
and controls are supplied by “Supplier Motor”. All in all, four different kinds of lawnmowers
(small, medium, large and extra large) are produced in a converging production process. The de-
sign of the scenario is depicted in Figure 8.13. The benchmark scenario can be divided into three
subscenarios concerned with the setup-time, activity-duration and machine-breakdown conflicts
discussed in Section 8.1.

The setup subscenario consists of two parts. The first part covers the assembly of chassis and
motors. Supplier Steel is supposed to use a moulding press for forming the chassis. Two types of
chassis are produced: a large one (lChass) and a small one (sChass). Each type requires a different
setup state of the moulding press. Next to the chassis, two types of motors of different size (sMo-
tor, lMotor) are delivered by Supplier Motor. Again, the production of each motor type requires
its own setup state. Having received the items, the OEM assembles large motors with large chas-
sis (lMlC) and small motors with small chassis (sMsc) on two parallel unary resources. Also this
assembly is subject to sequence-dependent setup times. The resulting setup conflict has already
been discussed in Section 8.1.1, see also Figures 8.3 and 8.4. The second part of the setup sub-
scenario is about producing and assembling handles and controls and is related to the building
block shown in Figures 8.5 and 8.6. Here too, OEM, Supplier Steel and Supplier Motor produce
the goods on unary resources with sequence-dependent setup states.

The breakdown subscenario defines another production subprocess. Suppose that stock of sev-
eral intermediate mowers are at the OEM’s disposal (they are output of another subscenario dis-
cussed later). There exist two variants of intermediate mowers, where handles, controls, blades
and wheels are still missing, however. One variant is a combination of a large motor, a large

5Two more test instances were tested with a reduced set of operators, cf. Section 8.4.

176 CHAPTER 8. COMPUTATIONAL EVALUATION

Figure 8.13: Design for the benchmark scenario. The hatched areas represent the subscenarios
“product mix”, “setup” and “breakdown”. The durations of activities or modes are
not depicted (all activities are drawn in equal length) and setup matrices are not
drawn. For the grinder compound only the preferred modes with shorter duration
are depicted. Each activity of the basic grinder can also be scheduled on the extended
grinder and vice versa.

8.2. DETERMINISTICALLY GENERATED TEST INSTANCES 177

chassis and a large tank (lMlClT) and the other consists of related small components (sMsCsT).
A further assembly with different wheels and blades leads to 4 variants of unfinished mowers:
sTemp_1 is a combination of sMsCsT with a small, standard blade (sStdBlade); mTemp_1 consists
of sMsCsT with a small, extra-sharp blade (sEnhBlade); lTemp_1 combines lMlClT and a large
standard blade (lStdBlade); and xTemp_1 is composed of lMlClT and a large, extra-sharp blade
(lEnhBlade). The blades are delivered by Supplier Steel. In addition, variant xTemp_1 requires a
special set of enhanced wheels (enhWheel), delivered by Supplier Plastic (the other three variants
are supposed to take standard wheels available from stock). The OEM assembles the components
on a multicapacity resource called blade assembly. Supplier Steel owns four resources for pro-
ducing the blades. Two punch presses, one for each size and two grinders for sharpening the
blades, one basic and one extended grinder. Both grinders can be used to produce standard and
extra-sharp blades. However, the basic grinder takes considerably longer to produce extra-sharp
blades than the extended grinder (similar to the mode conflicts shown by Figures 8.9 and 8.10). No
sequence-dependent setup times occur in this subscenario. The potential for coordination arises
as some machines are breaking down. Details on repair times and resulting conflicts are given
later.

In the product mix subscenario, production steps for casting and coating a tank (Supplier Plas-
tic) and assembling it with the motor–chassis components (OEM) are added. However, machine
breakdowns do not occur in this subscenario. The uncoordinated setting has a coordination po-
tential because of conflicting activity durations for producing and assembling the tanks, similar
to the building block relating to Figures 8.7 and 8.8. For an equal distributed demand, the best
sequence is to produce sMsCsT and lMlClT alternatingly. In addition, different mode durations
for sharpening the blades require a subordinated sequence (to produce standard and extra-sharp
blades in parallel). Hence, the optimal solution demands a certain sequence of activities, a certain
product mix.

In addition to delivering to the OEM, Supplier Steel and Supplier Plastic also have exter-
nal customers and related activities (extTank_1, extTank_2, extWheel, lBladeExt and sBladeExt).
As already indicated in Section 7.1, external customers of suppliers are prioritized by model-
ing related delivery dates as deadlines. The OEM’s final assembly (sMower, mMower, lMower,
xMower) connects all subscenarios. Moreover, an additional quality control is introduced here,
requiring another multicapacitated resource. Table 8.2 lists all activity durations. Note that the
maximum lot size was set to 20 items and that each SPPM has an input and output quantity of
one for each item. Related sequence-dependent setup times are summarized in Table 8.3.

8.2.2.2 Generated instances of the setup subscenario

For the setup subscenario, four test instances were generated, a small one, two medium ones and
a large one. The small instance of the setup subscenario consists of 576 activities to be scheduled
in total, with 192 activities in the OEM’s domain and 192 activities in each supplier’s domain,
respectively. At the end of the first day, the following demand q (in lot-sizes of 20 items) shall
be satisfied: q(sMsc) = 24, q(lMlC) = 24, q(sHC1) = 12, q(lHC1) = 12, q(sHC2) = 12, and
q(lHC2) = 12. The demand was chosen such that it can be fulfilled in time; there exists an ideal
solution with zero lateness. According to Table 8.2, each activity producing one lot of sMsC or
lMlC has a duration of 3,300s, respectively. Thus, in total, the production of both goods takes
22 hours on the parallel motor–chassis assembly resources. Since the lead time of the preceding

178 CHAPTER 8. COMPUTATIONAL EVALUATION

Activity Resource Domain Subscenario
Duration per item
(per max. lot size)

sChass chassis moulding * Supplier Steel setup 80 (1,600)
lChass chassis moulding * Supplier Steel setup 80 (1,600)
sMotor motor production * Supplier Motor setup 80 (1,600)
lMotor motor production * Supplier Motor setup 80 (1,600)
sMsC motor–chassis assembly ** OEM setup 165 (3,300)
lMlC motor–chassis assembly ** OEM setup 165 (3,300)
sHandle handle moulding * Supplier Steel setup 80 (1,600)
lHandle handle moulding * Supplier Steel setup 80 (1,600)
Control 1 control production * Supplier Motor setup 80 (1,600)
Control 2 control production * Supplier Motor setup 80 (1,600)
sHC1 handle–control assembly ** OEM setup 160 (3,200)
sHC2 handle–control assembly ** OEM setup 160 (3,200)
lHC1 handle–control assembly ** OEM setup 160 (3,200)
lHC2 handle–control assembly ** OEM setup 160 (3,200)
sTank_1 casting Supplier Plastic product mix 60 (1,200)
lTank_1 casting Supplier Plastic product mix 100 (2,000)
extTank_1 casting Supplier Plastic product mix 80 (1,600)
sTank_2 coating Supplier Plastic product mix 40 (800)
lTank_2 coating Supplier Plastic product mix 120 (2,400)
extTank_2 coating Supplier Plastic product mix 80 (1,600)
sMsCsT_1 tank assembly OEM product mix 120 (2,400)
lMlClT_1 tank assembly OEM product mix 60 (1,200)
sMsCsT_2 tank assembly OEM product mix 120 (2,400)
lMlClT_2 tank assembly OEM product mix 60 (1,200)
sBlade small punch press Supplier Steel breakdown 90 (1,800)
sBladeExt small punch press Supplier Steel breakdown 90 (1,800)
lBlade large punch press Supplier Steel breakdown 90 (1,800)
lBladeExt large punch press Supplier Steel breakdown 90 (1,800)

sStdBlade basic grinder Supplier Steel breakdown 160 (3,200)
extended grinder Supplier Steel breakdown 160 (3,200)

lStdBlade basic grinder Supplier Steel breakdown 160 (3,200)
extended grinder Supplier Steel breakdown 160 (3,200)

sEnhBlade basic grinder Supplier Steel breakdown 260 (5,200)
extended grinder Supplier Steel breakdown 200 (4,000)

lEnhBlade basic grinder Supplier Steel breakdown 260 (5,200)
extended grinder Supplier Steel breakdown 200 (4,000)

enhWheel wheel casting Supplier Plastic breakdown 90 (1,800)
extWheel wheel casting Supplier Plastic breakdown 90 (1,800)
sTemp_1 blade assembly *** OEM breakdown 180 (3,200)
mTemp_1 blade assembly *** OEM breakdown 180 (3,200)
lTemp_1 blade assembly *** OEM breakdown 180 (3,200)
xTemp_1 blade assembly *** OEM breakdown 180 (3,200)
sTemp_2 quality control *** OEM complete 300 (6,000)
mTemp_2 quality control *** OEM complete 360 (7,200)
lTemp_2 quality control *** OEM complete 380 (7,600)
xTemp_2 quality control *** OEM complete 400 (8,000)
sMower final assembly OEM complete 90 (1,800)
mMower final assembly OEM complete 90 (1,800)
lMower final assembly OEM complete 90 (1,800)
xMower final assembly OEM complete 90 (1,800)

Table 8.2: Activity durations for the benchmark scenario. Resources marked with a * indicate setup
resources, ** indicates parallel setup resources and *** indicates multicapacitated non-
setup resources. Duration in seconds. Standard maximum lot size is 20 items.

8.2. DETERMINISTICALLY GENERATED TEST INSTANCES 179

Chassis moulding
sChass lChass

sChass 0 3,200
lChass 3,200 0

Motor production
sMotor lMotor

sMotor 0 3,200
lMotor 3,200 0

Motor–chassis assembly
sMsC lMlC

sMsC 0 2,400
lMlC 2,400 0

Handle moulding
sHandle lHandle

sHandle 0 3,200
lHandle 3,200 0

Control production
Control 1 Control 2

Control 1 0 3,200
Control 2 3,200 0

Handle–control assembly
sHC1 sHC2 lHC1 lHC2

sHC1 0 1,600 1,600 1,600
sHC2 1,600 0 1,600 1,600
lHC1 1,600 1,600 0 1,600
lHC2 1,600 1,600 1,600 0

Table 8.3: Setup matrices for the benchmark scenario, all times in seconds, independent of lot size.

products is 3,200s, 4,000s are left to make the day complete: a setup can easily take place. Similar
calculations can be set up for the suppliers’ resources. If all planning domains schedule their
production with as few setups as possible (cf. Figures 8.4 and 8.6) an undelayed production is
possible.

The medium instance of the setup subscenario is four times the size of the small instance. It
consists of 2,304 activities to be scheduled in total with 768 activities in each domain, respectively.
Again, the demand was chosen such that it can be fulfilled: a solution with zero delay is theoret-
ically possible by construction. Instead of demanding parts of the output every day, all items are
demanded at the end of Day 4, whereas each item is demanded four times the amount of the small
setup instance. It should be noted that the medium instance allows more “freedom” for placing
the setup activities due to the increased planning horizon. Instead of 4,000s, 16,000s are now avail-
able on each resource for placing the setup activities. In fact, a few redundant setup activities do
not immediately imply lateness—in contrast to the small instance. A second medium instance of
the setup subscenario was created where Supplier Steel and Supplier Motor have been merged to
a single planning domain. Our aim here was to study the effects a fragmentation of suppliers can
imply. Demand matrix, capacities and so forth did not change, however.

The large instance is three times the medium instance and 12 times the small instance. It con-
sists of 6,912 activities to be scheduled in total, with 2,304 activities in each domain, respectively.
As for the other instances, schedules with zero lateness are theoretically possible by construction.
The related demand matrix6 is shown in Table 8.4.

6For better legibility, the demand matrices of medium and large instances always span one or two weeks and may
contain a demand of zero in the most right columns.

180 CHAPTER 8. COMPUTATIONAL EVALUATION

Item Demand (in lots a 20 items)
sMsC 0 0 0 96 0 0 0 96 0 0 0 96 0 0
lMlC 0 0 0 96 0 0 0 96 0 0 0 96 0 0
sHC1 0 0 0 48 0 0 0 48 0 0 0 48 0 0
lHC1 0 0 0 48 0 0 0 48 0 0 0 48 0 0
sHC2 0 0 0 48 0 0 0 48 0 0 0 48 0 0
lHC2 0 0 0 48 0 0 0 48 0 0 0 48 0 0

Table 8.4: Biweekly demand matrix for the large instance of the setup subscenario.

8.2.2.3 Generated instances of the product mix subscenario

For the product mix subscenario, six test instances were generated: a small one, four mediums
and a large one. The small instance of the product mix subscenario consisted of 403 activities
in total, where 132 lie in the OEM’s domain, 135 are handled by Supplier Plastic and 136 by
Supplier Steel. At the end of Day 1, the following demand q (in lots of 20 items) needs be satisfied:
q(sTemp_1) = 11, q(mTemp_1) = 11, q(lT emp_1) = 11, q(xTemp_1) = 11, q(sBladeExt) = 24,
q(lBladeExt) = 24, q(extWheel) = 24, q(extTank_2) = 6.

The medium instance of the product mix subscenario is approximately four times the size
of the small instance. At the end of Day 4, the following demand q (in lots of 20 items) needs
to be satisfied: q(sTemp_1) = 47, q(mTemp_1) = 47, q(lT emp_1) = 47, q(xTemp_1) = 47,
q(sBladeExt) = 96, q(lBladeExt) = 96, q(extWheel) = 96, q(extTank_2) = 24. In total, 1,699
activities were generated, where 564 activities lie in the OEM’s domain, Supplier Steel handles
568 activities and Supplier Plastic is responsible for 567 activities. A second medium instance was
generated as an exact copy with Supplier Steel and Supplier Plastic merged to a single domain.
Two more medium instances with a similar number of activities were generated. For the third
instance, additional transport slots were introduced at the interface between the suppliers and
the OEM. Every day at midnight, a single transport from the suppliers to the OEM takes place
(i.e., the transport resource is modeled having infinite capacity for one second). An activity of
transporting has a duration of zero. As the first transport starts at the end of Day 1, reducing the
lateness to zero is not possible because the OEM will experience a delay of at least one day. The
fourth medium instance does not include transport activities, but is based on a much finer grained
demand matrix. Instead of a full delivery after four days, the OEM is supposed to delivery a quar-
ter of the total demand every single day. The related demand matrix can be found in Appendix
G (Table G.1). Here, we wanted to investigate which effect a fine-grained demand distribution
might have on central and coordinated solutions.

The large instance of the product mix subscenario was, regarding the number of activities
and the length of the planning horizon, three times the medium instances and consisted of 5,155
activities in total (OEM: 1,716, Supplier Steel: 1,720, Supplier Plastic: 1,719). The related demand
matrix can be found in Appendix G (Table G.2). As for the setup subscenario, schedules with a
lateness of zero are—by construction—theoretically possible for all instances (excluding the one
with transport slots).

8.2.2.4 Generated instances of the breakdown subscenario

The breakdown subscenario requires further explanation regarding the upstream planning solu-
tion and the coordination potential. Instead of allowing the OEM complete freedom in calculat-
ing his initial local solution, we suppose that a certain frame contract exists limiting the OEM in

8.2. DETERMINISTICALLY GENERATED TEST INSTANCES 181

his initial decision. The general proceeding has already been discussed in Section 7.3.2. To sim-
ulate a frame contract, we first apply the DS Optimizer to the global RCPSP instance and take
the resulting start dates of upstream-related activities as release dates for the OEM’s initial solu-
tion. A coordination potential arises as the planning problem changes—for example, by machine
breakdowns—and the release dates pertaining to the simulated frame contract do not fit any
longer.

As can be seen in Figure 8.13, Supplier Steel has two grinders for sharpening the standard
and the enhanced blades. In general, both grinders can be used for both types of blades. How-
ever, due to different mode durations, the extended grinder is the preferable tool for producing
enhanced blades. Thus, the supplier can save resource capacity by sharpening blades of types
sEnhBlade and lEnhBlade on the extended grinder. This favors a steady production of sEnhBlade
and lEnhBlade on the extended grinder and sStdBlade and lStdBlade on the basic grinder. The
situation has elements of the previously discussed building block of conflicting modes, see also
Figure 8.9.

Figure 8.14: Due dates and ideal production sequence before machine breakdown.

Figure 8.15: Due dates and ideal production sequence after machine breakdown.

182 CHAPTER 8. COMPUTATIONAL EVALUATION

In addition, Supplier Steel and Supplier Plastic produce items for external customers not tak-
ing part in the coordination. In the breakdown subscenario, the deadlines of these external ac-
tivities have been set in such a way that a certain production sequence is required to avoid late
delivery. The due dates and deadlines are shown by arrows and the frame contract’s ideal pro-
duction sequence is shown by boxes in Figure 8.14.7 The planning horizon is divided into five
buckets and the due dates are always set at the end of the related bucket. (For the frame contract,
only the first four buckets are of importance.) It can be seen that Supplier Steel is parallel produc-
ing standard and enhanced blades in the preferable modes in order to save production capacity
and time. Moreover, external unsharpened large and small blades have to be delivered at the end
of Buckets 2 and 4. In addition, Supplier Plastic has to deliver wheels to an external customer at
the end of bucket two. These three aspects determine the production sequence of the OEM: In
the first two buckets, small standard and enhanced blades are assembled alternatingly and in the
last two buckets large standard and enhanced blades are assembled. The DS Optimizer is used
to compute the delivery dates of the frame contract by solving the complete (not yet divided)
RCPSP instance using the due dates of Figure 8.14. Being a metaheuristic, the DS Optimizer does
not guarantee to find the illustrated production sequence. However, the results suggest that the
derived delivery dates cause the problems we intended to study.

Coordination potential arises, as capacity shortages are introduced and due dates to external
customers are changed after the frame contract was computed. In our scenario, we assume that the
small punch press of Supplier Steel is not available in the first day. The supplier was already able
to negotiate a delay of external-related blades, as shown by the changed due dates of lBladeExt
and sBladeExt in Figure 8.15. However, the parallel delivery of standard and enhanced blades
to the OEM cannot be realized as promised. In addition, the OEM’s customer demands 50% of
the sTemp_1 items already at the end of Bucket 2. As setoff, the delivery of 50% of mTemp_1 can
be delayed to the end of Bucket 5. Figure 8.15 shows a production sequence to respond to these
developments. It can be seen that the required production sequence is entirely different from the
initial solution in Figure 8.14.

Item Demand (in lots a 20 items)
sTemp_1 0 0 (24) 0 48 (24) 0 0 0
mTemp_1 0 0 0 48 (24) 0 (24) 0 0
lTemp_1 0 0 0 48 0 0 0
xTemp_1 0 0 0 48 0 0 0
sBladeExt 0 0 0 96 (0) 0 (96) 0 0
lBladeExt 0 96 (0) 0 0 0 (96) 0 0
extWheel 0 96 0 0 0 0 0

Table 8.5: Weekly demand matrix for the medium instance of the breakdown subscenario. Values
in parentheses are the renegotiated demands after the breakdown occurred.

Note that this is not the only possible production sequence. Slight deviations can also lead to
an overall solution with zero lateness. The RCPSP instance provides a certain amount of freedom
for finding an alternative production and delivery sequence under what seems to be realistic
assumptions. However, a new sequence can hardly be found manually, because the delivery of
several highly interdependent items needs to be rearranged concurrently.

Table 8.5 shows the demand matrix that led to the generation of 192 activities in the OEM’s do-
main. Supplier Steel received 576 activities and Supplier Plastic 144 activities, summing up to 912

7Here, a box does not relate to a single production activity but is a high-level visualization of several production
activities of the same type.

8.2. DETERMINISTICALLY GENERATED TEST INSTANCES 183

activities to be scheduled in total. We will denote this instance medium—a small instance does not
exist for the breakdown subscenario. However, two large variants of the breakdown subscenario
have been tested with a total of 2,736 activities. The variants differ in the way demands are set and
the breakdown occurs. In the first variant, the small punch press of Supplier Steel breaks down
for the first three days. The demand matrix (Appendix G, Table G.3) still allows the reschedul-
ing of the production such that no lateness results. In the second variant, the small punch press
breaks down on Days 1, 4, and 8. Though a new demand distribution could be negotiated with
customers (Appendix G, Table G.4), it is impossible to totally reduce the lateness. Here, the task
of DEAL is to reduce the lateness as much as possible.

8.2.2.5 Generated instances of the complete scenario

The large instance generated from the complete scenario comprises 9,792 activities in total (OEM
5,188, Supplier Steel 4,034, Supplier Motor 2,306, and Supplier Plastic 1,728). The demand matrix
can be found in Table 8.6. Again a total lateness of zero is theoretically possible by construction.

Item Demand (in lots a 20 items)
sMower 0 0 0 12 36 0 0 48 0 0 0 48 0 0
mMower 0 0 0 12 36 0 0 48 0 0 0 48 0 0
lMower 0 0 0 12 36 0 0 48 0 0 0 48 0 0
xMower 0 0 0 12 36 0 0 48 0 0 0 48 0 0
extWheel 0 0 0 96 0 0 0 96 0 0 0 96 0 0
sBladeExt 0 0 0 96 0 0 0 96 0 0 0 96 0 0
lBladeExt 0 0 0 96 0 0 0 96 0 0 0 96 0 0
extTank_2 0 0 0 24 0 0 0 24 0 0 0 24 0 0

Table 8.6: Biweekly demand matrix for the large instance of the complete scenario.

8.2.3 Test program

We applied a standard test program to all above described test instances. Because of the depen-
dency of the results on the chosen initial random seed, a single run per test instance does not
suffice. To be statistically more confident, 10 runs with different initial seeds for each coordina-
tion specification and centrally applied DS solving module were evaluated per instance.

First, for each test instance several central runs were performed where we applied the DS
Solving module to each undivided test instance. The resulting central results serve as bench-
marks to evaluate the performance of DEAL (the gap between the central and coordination runs
was measured). Second, different specifications of DEAL were tested multiple times for each gen-
erated instance: a sequential, an asynchronous and two parallel coordination runs (with different
population sizes). The related parameter settings are summarized in Table 8.7. For the complete
instance, suppliers have one solving unit (i.e. an independent CPU for computing solutions, cf.
Section 4.10) less than in the standard specification.

Depending on the size of an instance, different settings for the available runtime were chosen.
For all small instances, central and coordination runs are aborted after 1,800s. During coordina-
tion, the DS solving module is terminated after 13s. This time interval will be denoted as local
runtime henceforth. For the medium instances, these time limits were set to 3,600s and 25s, re-
spectively. Large instances were allowed to run 7,200s and 50s, respectively. For computing the
intermediate schedule needed for the frame contract, the DS Optimizer was run for 250s in the

184 CHAPTER 8. COMPUTATIONAL EVALUATION

Specification
Number of domain

processes
Number of

solving units
Population

size
Queuing

size
Sequential 1 n.a. 1 0
Asynchronous 3 n.a. 1 4
Parallel, pop. size 1 3 Suppliers 3 (2), OEM 4 1 12
Parallel, pop. size 12 3 Suppliers 3 (2), OEM 4 12 12

Table 8.7: Standard specifications for the computational tests. Values in parentheses are valid for
the complete scenario.

medium and 500s in the large breakdown instance. The complete instance was computationally
evaluated with the following time limits: 14,400s overall runtime and 100s for calling the DS
solving module during coordination. For some instances, other time limits for calling the solving
module were evaluated. A detailed discussion is provided later.

Some instances involve suppliers delivering to external customers not taking part in the coor-
dination. As discussed in Section 7.1, the related due dates are prioritized (treated as deadlines)
by DEAL. A difficult question is whether external customer due dates should also be prioritized
in the central runs. On one hand, such a prioritization could accidentally support the central runs
in finding good solutions. On the other hand, the results could worsen as the GA has less free-
dom in exploring the search space. For the sake of completeness, both alternatives have been
computationally evaluated: central hard-constrained runs including a prioritization and central
soft-constrained runs without any deadlines.8

As standard objective weights, we chose the following settings (for instances including setup
times): weight of maximum lateness objective wml = 98.9% (98.8%), weight of total lateness
objective wtl = 1% (1%), weight of makespan objective wms = 0.1% (0.1%), and weight of to-
tal setup-time objective wtst = 0% (0.1%). For simplicity, mode costs and setup costs have not
been considered in the computational tests. It is worth mentioning, that the total lateness of a
schedule is usually much larger than the maximum lateness. As a rule of thumb, it is said to be a
good choice if total and maximum lateness get approximately the same influence in the objective
function. As instances with a size from 500 to 10,000 activities have been generated, a tradeoff
of wml : wtl ≈ 100 : 1 seemed appropriate. Additionally, the makespan was considered with a
very low weight. Preliminary experiments suggested that including the makespan in the objec-
tive function helps to steer the search process. The setup weight of wtst = 0.1% was calibrated
according to results of central and coordination runs, as will be discussed later.

As discussed in Section 7.8, there exist two methods for the self-adaption of operators: a de-
terministic and a stochastic one. For each specification (sequential, asynchronous or parallel with
population size 1 or 12) the deterministic self-adaptation has been tested with a predefined list of
operator specifications. Operators that support a crude alignment were given a higher priority in
the initial list, based on the intuitive idea that crude alignments are more useful at the beginning
of the coordination. The initial list can be found in Appendix E (Table E.1).

Apart from the standard test program, additional tests have been applied to some of the test
instances. These include different local runtime settings, the evaluation of different operator lists
and the evaluation of the different objective weights. The stochastic operator selection has been
tested as well, but only for parallel coordination runs with a population size of 12 and for a
subset of test instances. All results related to the stochastic operator selection are discussed later

8Obviously, the terms hard-constrained and soft-constrained are used to abbreviate the above explanation but should not
be taken in a strict mathematical sense in this chapter.

8.2. DETERMINISTICALLY GENERATED TEST INSTANCES 185

in Section 8.4.

Three computers were available for conducting the computational tests. An Intel Pentium 4
(3.6 GHz, 2 GB memory, 2 cores, Windows XP), an Intel Xeon (3.4 GHz, 8 GB memory, 8 cores,
hyperthreaded, Windows Server 2003) and an AMD Opteron 842 (1.6 GHz, 11.5 GB memory, 4
cores, Windows Server 2003). From the 8 CPUs of the Xeon machine only six were available, the
other two were used by other processes. For the central, sequential and asynchronous coordina-
tion, the Intel Xeon machine was used. In the parallel coordination, all computers are connected
to a grid. The global distributor and all planning domain processes run on the Pentium 4, sharing
the two available CPUs (these processes do not require much computational power and the two
CPUs were not a bottleneck). The solving units are placed on the two other machines. First, the 6
available cores of the Xeon machine are distributed evenly between the planning domains, each
planning domain getting approximately the same number of Xeon CPUs for its solving units. In
a second round, the 4 cores of the Opteron machine are distributed. Hence, planning domains
with more solving units will get more processes of the Opteron machine (which is slower than
the Xeon machine). For each solving unit, one CPU is available.9

8.2.4 Test results

We start by presenting some overall results. A detailed analysis is presented subsequently.

8.2.4.1 Overall results

Summarizing the main results, three fundamental observations can be made. First, the coordina-
tion mechanism was able to significantly improve on the upstream planning solution.10 Second,
the parallel coordination showed a better performance than the asynchronous and the sequential
coordination. Third and most surprisingly, the coordinated results were, in many cases, an im-
provement on the centrally computed solutions. It seems that the DEAL framework as a top-level
metaheuristic was able to introduce new information that steered the overall search process in
the right manner. Adjusting the due dates of the suppliers’ RCPSP instances by an evolutionary
process and repeatedly calling the DS solving modules finally led to the good results. For some in-
stances, the upstream planning solution already achieved an improvement on the centrally com-
puted solutions. By closely examining the schedules, we were able to identify two reasons for
this astonishing result. On one hand, the initialization routines of the centrally applied DS solv-
ing module could not deduce good activity sequences at the beginning in some cases. On the
other hand, precedence constrains between the activities were not “aligned.” That is, for different
resources, activity sequences were often contradicting, leading to idle times.

One might argue that the results presented in the following do not prove the effectiveness of
DEAL but only the ineffectiveness of the DS solving module. This is not true. First of all, it has
to be mentioned that, for NP-hard planning problems, an optimal solution can usually not be

9The scheduling of computational tasks is done by the operating system, however.
10As discussed in Section 7.3, upstream planning is regarded as the standard initialization method of the DEAL frame-

work. The upstream planning solution is actually the first outcome of a coordination process. We also speak of upstream
planning if the OEM’s first schedule is additionally constrained by a simulated frame contract, centrally computed release
dates. To calculate the upstream planning solution in the standard test program, the same time bounds as for calculating
regular proposals have been applied to the DS solving module. Naturally, alternative time bounds are also conceivable. A
brief computational evaluation regarding this particular issue is presented later in the detailed analysis.

186 CHAPTER 8. COMPUTATIONAL EVALUATION

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

<-0.5
<0.0

<0.5
<1.0

<1.5
<2.0

<2.5
<3.0

<3.5
<4.0

<4.5
<5.0

<5.5
<6.0

>6.0

cu
m

ul
at

ed
 fr

eq
ue

nc
y

upstream planning
central, hard-constrained

 0

 0.1

 0.2

 0.3

 0.4

[-1,-0.5]

]-0.5,-0.0]

]0.0,0.5]

]0.5,1.0]

]1.0,1.5]

]1.5,2.0]

]2.0,2.5]

]2.5,3.0]

]3.0,3.5]

]3.5,4.0]

]4.0,4.5]

]4.5,5.0]

]5.0,5.5]

]5.5,6.0]

>6.0

fr
eq

ue
nc

y

upstream planning
central, hard-constrained

Figure 8.16: Relative difference of upstream planning and central, hard-constrained solutions from
central, soft-constrained solutions.

computed in reasonable time.11 Moreover, one has to keep in mind that the DS Optimizer was
constructed to tackle RCPSPs of general type. For evaluating DEAL, we only consider a subset of
all possible scheduling problems: problems, that exhibit regions (planning domains) that are only
interdependent in a noncyclic manner. DEAL can be regarded as a specialized heuristic working
on such problem structures. Hence, by decomposing the central scheduling problem, superior
knowledge over the planning domains becomes available. According to the No Free Lunch Theorem
of computer science, we have to expect that the results of a specialized heuristic are better than
those of a general one.

In the following, we will present some condensed figures that underpin the above claims. It
should be noted that these figures only represent the standard test program (not including the
evaluation of different operators or different objective weights). Figure 8.16 shows a histogram
and cumulated frequencies of the relative differences between the upstream planning and the
central soft-constrained solution. That is, for each upstream solution u belonging to test instance
H , the relative difference

wml ·mlu + wtl · tlu −
∑
c∈H

(wml·mlc+wtl·tlc)
|H|∑

c∈H
(wml·mlc+wtl·tlc)

|H|

was measured, where c denotes a centrally computed result.12 Additionally, the relative differ-

11This also holds for other coordination mechanisms working on such complex planning problems, e.g. the approach
of Dudek (2007).

12It is questionable if an upstream solution can actually be related to the central solution of the same random seed.

8.2. DETERMINISTICALLY GENERATED TEST INSTANCES 187

ences of each hard-constrained central run to average soft-constrained central results were com-
puted analogously and are also depicted in the figure. It can be seen that about 45% of the up-
stream planning solutions are already better than the average central soft-constrained result (the
relative difference is smaller than zero). Obviously, not even being a lower bound for the upstream
planning solutions, the central runs can actually not be taken as a true benchmark for the coor-
dination mechanism. Nevertheless, we use the centrally computed results as another “point of
reference.” For some test instances, the weighted lateness caused by upstream planning is about
five times larger than the average weighted lateness of the related central soft-constrained results.

The figure also shows that hard-constrained central runs (if existent) are better than the soft-
constrained runs in only 20% of the cases. An explanation might be that the prioritization of
deadlines accidently supports the DS Solving module in finding good solutions (more details are
provided later). However, for the majority of cases, hard-constrained central results are much
worse than the average soft-constrained solution of the same instance. Thus, we are on the safer
side when taking the soft-constrained results as a point of reference for subsequent comparisons.
To what degree can upstream planning solutions be improved by the coordination mechanism?
For all runs, we measured the relative difference between the upstream planning solution u and
coordination result of the DEAL framework d, the fraction

wml ·mld + wtl · tld − (wml ·mlu + wtl · tlu)
wml ·mlu + wtl · tlu

.

As zero-lateness solutions are possible by construction for almost all test instances generated by
the DTGD, the best obtainable outcome of coordination is a relative difference of -100%.13

A histogram and cumulated frequencies can be found in Figure 8.17. It can be seen that nearly
all upstream planning solutions were improved. Obviously, coordinated solutions are—in most
cases—significantly better than upstream planning results. A few coordinated results are worse
than the upstream solution. Recall, however, that upstream solutions are not necessarily feasible.
That is, they may violate deadlines of external customers’ orders. In order to achieve feasibility
during coordination, the weighted lateness incurred by OEM activities can increase. This has been
the case for coordinated results that are “worse” than the upstream planning solution.14

Overall, the parallel runs showed better final results than sequential or asynchronous runs.
This is not surprising, since a parallel run has most resources at its disposal. Figure 8.18 compares
parallel and asynchronous results with the sequentially computed results.15 It can be seen that

Alternatively, it could also be related to any other central solution belonging to the same test instance. That is why we
decided to work with average values of central results. The same strategy is followed for comparing outcomes of coordi-
nation runs with central results. For a given random seed, only the final coordinated result can be related to the upstream
planning solution because both are outcomes of the very same computational process!

13In the approach of Dudek and Stadtler (2005), another performance measure, the so-called gap closure is additionally
used. The gap closure is defined as upstream solution−coordinated solution

upstream solution−central solution . For our case this measure is too condensed, as both
numerator and denominator can become negative. However, for most of the deterministically generated test instances the
optimal solution is known to be zero (by construction). Substituting the central result by the optimal solution would lead
to upstream solution−coordinated solution

upstream solution for these instances. In fact, this is the negative value of our relative difference. For the
sake of congruency to other measures we employed the negative relative difference instead of additionally using the gap
closure for those instances, where the optimal solution is known to be zero.

14The violation of deadlines is not explicitly represented in the figure because it occurs so rarely.
15For each parallel run r, the relative difference from the average sequential results s of the same test instance H is

considered, i.e. the number
wml ·mlp + wtl · tlp −

∑
s∈H

(wml·mls+wtl·tls)
|H|∑

s∈H
(wml·mls+wtl·tls)

|H|

is measured. If all sequential runs of an instance achieved a lateness of zero, the instance was not considered. In such

188 CHAPTER 8. COMPUTATIONAL EVALUATION

 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

<-0.9
<-0.8

<-0.7
<-0.6

<-0.5
<-0.4

<-0.3
<-0.2

<-0.1
<-0.0

<0.1
<0.2

<0.3
<0.4

<0.5
<0.6

<0.8
<1.0

<2.0
>2.0

cu
m

ul
at

ed
 fr

eq
ue

nc
y

sequential
asynchronous

parallel, pop. size 1
parallel, pop. size 12

 0

 0.1

 0.2

 0.3

 0.4

 0.5

]-1,-0.9]

]-0.9,-0.8]

]-0.8,-0.7]

]-0.7,-0.6]

]-0.6,-0.5]

]-0.5,-0.4]

]-0.4,-0.3]

]-0.3,-0.2]

]-0.2,-0.1]

]-0.1,-0.0]

]0.0,0.1]

]0.1,0.2]

]0.2,0.3]

]0.3,0.4]

]0.4,0.5]

]0.5,0.6]

]0.6,0.8]

]0.8,1.0]

]1.0,2.0]

>2.0

fr
eq

ue
nc

y

sequential
asynchronous

parallel, pop. size 1
parallel, pop. size 12

Figure 8.17: Relative difference of coordinated to upstream planning solutions.

the asynchronous coordination achieved a better result than the sequential coordination in 75%
of the cases. For both parallel runs, this percentage rises to 97%. Moreover, it can be observed
that the parallel corodination with a population size of 1 is—for some runs—slightly better than
the parallel coordination with a population size of 12. This can be explained by the higher selec-
tion pressure: the lower the number of individuals in a population, the faster the convergence
(although the risk of getting stuck in a local optimum increases). More information on this topic
is provided in the subsequent detailed analysis.

Finally, Figure 8.19 compares central soft-constrained and coordinated runs. Again, the aver-
age weighted lateness of central runs of a test instance was considered for computing the relative
difference.16 It can be seen that the coordinated results are better than the average central, soft-
constrained solution in 90% of the cases.

In above we compared mean values. It is worth investigating whether similar observations can
be made for the deviation of values. For each test instance we calculated the variation coefficient17

for parallel, asynchronous and sequential coordination and compared it with the coefficient of

cases, the parallel and asynchronous runs also achieved zero lateness.
16That is, the number

wml ·mld + wtl · tld −
∑

c∈H
(wml·mlc+wtl·tlc)

|H|∑
c∈H

(wml·mlc+wtl·tlc)
|H|

is computed for each coordination run d and all central runs c belonging to the same test instance H . If all central runs of
an instance achieved a lateness of zero, the instance was not considered. In such cases, the coordination runs also achieved
zero lateness.

17The coefficient of variation is the normalized standard deviation, i.e. the standard deviation divided by the mean of a
sample. For a mean of zero we set the coefficient of variation to zero as well. As mean values between coordination and
central runs deviate heavily it seems more appropriate not to consider the standard deviation but its normalized version.

8.2. DETERMINISTICALLY GENERATED TEST INSTANCES 189

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

<-0.9
<-0.8

<-0.7
<-0.6

<-0.5
<-0.4

<-0.3
<-0.2

<-0.1
<-0.0

<0.1
<0.2

<0.3
<0.4

<0.5
<0.6

<0.8
<1.0

<2.0
>2.0

cu
m

ul
at

ed
 fr

eq
ue

nc
y

asynchronous
parallel, pop. size 1

parallel, pop. size 12

 0

 0.1

 0.2

 0.3

 0.4

]-1,-0.9]

]-0.9,-0.8]

]-0.8,-0.7]

]-0.7,-0.6]

]-0.6,-0.5]

]-0.5,-0.4]

]-0.4,-0.3]

]-0.3,-0.2]

]-0.2,-0.1]

]-0.1,-0.0]

]0.0,0.1]

]0.1,0.2]

]0.2,0.3]

]0.3,0.4]

]0.4,0.5]

]0.5,0.6]

]0.6,0.8]

]0.8,1.0]

]1.0,2.0]

>2.0

fr
eq

ue
nc

y

asynchronous
parallel, pop. size 1

parallel, pop. size 12

Figure 8.18: Relative difference of parallel and asynchronously coordinated to sequentially coor-
dinated solutions.

variation of the central, soft-constrained solution. In average, the coefficient of variations of the
coordination runs are higher than those of the central solutions. However, no clear pattern could
be observed and the situation differs from test instance to test instance. Averaged over all test
instances, the coefficient of variation is 0.3 for the central runs, 0.52 for the sequential runs, 0.55
for the asynchronous runs, 0.36 for the parallel runs with population size 1 and 0.63 for the parallel
runs with population size 12.

Another interesting question is how runtime is distributed in the parallel coordination. Table
8.8 shows the portion of time a process was idle, communicating (i.e., sending and receiving
messages) and computing (i.e., constructing and evaluating messages, updating the population
and so forth). The averages of parallel runs with populations size of 12 over all instances (not
including the complete scenario since it defines a different fraction of solving units to planning
domains) were taken.

Three central observations can be made. First, there is some minimum idle time of approxi-
mately 10% caused by the distribution logic. For example, a planning domain sends a new solving
request to a solving unit only after the previous request is finished, after the unit’s reply was re-
ceived. Since both messages are routed over the local and global distributors, some seconds pass
between sending a reply and receiveing a new request where the solving unit is idle.18

Second, as expected, the solving units do most of the computing, although the OEM spends
some time computing since left- and right-alignments are calculated locally (not outsourced to

18A speed increase could be possible if we allowed the domains to send solving requests even to busy solving units (the
messages would then be buffered by the global distributor).

190 CHAPTER 8. COMPUTATIONAL EVALUATION

 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

<-0.9
<-0.8

<-0.7
<-0.6

<-0.5
<-0.4

<-0.3
<-0.2

<-0.1
<-0.0

<0.1
<0.2

<0.3
<0.4

<0.5
<0.6

<0.8
<1.0

<2.0
>2.0

cu
m

ul
at

ed
 fr

eq
ue

nc
y

sequential
asynchronous

parallel, pop. size 1
parallel, pop. size 12

 0

 0.1

 0.2

 0.3

 0.4

]-1,-0.9]

]-0.9,-0.8]

]-0.8,-0.7]

]-0.7,-0.6]

]-0.6,-0.5]

]-0.5,-0.4]

]-0.4,-0.3]

]-0.3,-0.2]

]-0.2,-0.1]

]-0.1,-0.0]

]0.0,0.1]

]0.1,0.2]

]0.2,0.3]

]0.3,0.4]

]0.4,0.5]

]0.5,0.6]

]0.6,0.8]

]0.8,1.0]

]1.0,2.0]

>2.0

fr
eq

ue
nc

y

sequential
asynchronous

parallel, pop. size 1
parallel, pop. size 12

Figure 8.19: Relative difference of coordinated to central, soft-constrained solutions.

Idle Communicating Computing

OEM
Small 37% 51% 12%
Medium 41% 51% 7%
Large 40% 50% 12%

OEM Solving
Unit

Small 10% 13% 77%
Medium 15% 17% 66%
Large 8% 11% 80%

Supplier
Small 47% 50% 0%
Medium 47% 50% 0%
Large 47% 49% 2%

Supplier Solv-
ing Unit

Small 22% 20% 57%
Medium 31% 27% 40%
Large 23% 21% 55%

Table 8.8: Distribution of runtime for the parallel coordination with population size 12, averaged
over all instances.

a solving unit). It can be observed that a Supplier’s solving unit is on average more idle than
an OEM’s solving unit. This can be explained by the fixed assignments of units to domains (see
Table 8.7 for the detailed specification) before the coordination run. Possibly, runtime could be
used more efficiently if the OEM were assigned more solving units than in the used specification.
Since the coordination results were already of considerable quality, this aspect was not researched
further. In general, a more dynamic allocation of solving units could be a topic for future research.

Third, it can be seen that domains and solving units spend a large amount of their time com-
municating. Several factors might contribute to this communication overhead: the time for send-
ing a message in the grid framework, the time for serializing and deserializing a message and

8.2. DETERMINISTICALLY GENERATED TEST INSTANCES 191

colluding messages. Collusions occur if the global distributor cannot immediately process a local
distributor’s request as it is busy handling another local distributor. Recall that the local distrib-
utors iteratively poll the global distributor for new messages as discussed in Section 7.10. If the
related domain or solving unit is idle, the local distributors poll every second. Many of these
polls conflict with the transfer of “real” messages at the global distributor. Thus, some of actual
idle time is expressed as communication overhead. However, communication is not a real bottle-
neck. This also explains why solving units have less communication overhead than domains since
they are more busy with computational tasks.

Different tasks contribute to the “computing” times in Table 8.8: the construction of propos-
als, evaluation of messages, duplicate elimination, updating the population and so forth. A closer
look reveals that detecting and eliminating redundant individuals or proposals, evaluating and
updating the population together required little runtime (below 1 %). In total, redunancy checks
filtered out about 20% of all proposals. On average, 13% of all constructed OEM individuals were
identified as redundant and eliminated before the related proposals were sent to the suppliers.
For all nonredundant individuals, 5% of proposals could be saved by connecting the individu-
als to preexisting communication threads in the OEM’s domain. Additionally, 4% of all proposals
received by the suppliers were identified as redundant, the suppliers thus resent an existing coun-
terproposal instead of calculating a new one. As coordinated results are of considerable quality,
we believe that our proposed duplicate-elimination strategy does really help in saving runtime.

8.2.4.2 Detailed analysis of the setup instances

We start by looking at the results for the small instance of the setup subscenario. Figure 8.20 shows
a convergence plot of 10 central runs. However, not all objectives are considered. As explained
in Chapter 7, only the maximum and total lateness are considered as important in the DEAL
framework. Thus, only the weighted sum of both values is drawn over the overall runtime of
the central optimization. The following observations can be made: First, the outcome of a run
is highly dependent on the initial random seed. Second, there exist several discrete plateaus of
weighted lateness, whereas a plateau’s height is determined by the number of setup activities. In
general, Evolutionary Algorithms have difficulty coping with plateaus in the fitness landscape.
For the DS solving module, the problem is that many mutation operators lead to similar or worse
fitness (as, for example, the setup is just positioned at another slot). Especially towards the end
of a run, finding a schedule with lower setup times is achieved by chance and is not the result of
evolutionary learning. Third, no run attained the optimum of zero lateness.

The results of sequential coordination with 13s runtime for every local optimization is shown
in Figure 8.21. As mentioned in Section 7.10, the planning domains send messages to the controller
for debugging the coordination process. The controller stores the time when a DEAL-individual
is completed from the OEM’s perspective and its fitness as perceived by the different partners.
Figure 8.21 shows the weighted lateness from the OEM’s perspective, which is, in this instance,
equal to the overall lateness, since suppliers don’t have external customers. It is important to real-
ize that the figure does not depict the convergence of local optimization, showing only the fitness
of the best complete DEAL-individual known so far. As a consequence, the interval between two
steps of a graph is at least 39s, the minimum time needed to sequentially construct an individual
with three partners and 13s local runtime plus additional overhead time. In longer sections with
equal lateness, no improvement could be realized. Moreover, the coordinated runs start later, as

192 CHAPTER 8. COMPUTATIONAL EVALUATION

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 0 200 400 600 800 1000 1200 1400 1600 1800

w
ei

gh
te

d
la

te
ne

ss

runtime

1. run
2. run
3. run
4. run
5. run
6. run
7. run
8. run
9. run

10. run

Figure 8.20: Weighted lateness of 10 different central runs for the small instance of the setup sub-
scenario.

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 0 200 400 600 800 1000 1200 1400 1600 1800

w
ei

gh
te

d
la

te
ne

ss

runtime

1. run
2. run
3. run
4. run
5. run
6. run
7. run
8. run
9. run

10. run

Figure 8.21: Weighted lateness of 10 different runs of sequential coordination, small instance of the
setup subscenario, 13s local runtime, OEM perspective.

8.2. DETERMINISTICALLY GENERATED TEST INSTANCES 193

the initial DEAL-individual needs to be constructed first.
In comparison to Figure 8.20, many of the sequential runs start and end better than the central

runs. An upstream planning superior to central planning seems to be irrational at first thought.
However, recall that the underlying DS solving module is a metaheuristic that does not guaran-
tee optimal results. Instead, results depend on the realization of random variables and the test
instance. If we neglect the random effects, we can still examine in which aspects the test instances
used by central optimization and coordination differ.

First, the coordination is based on three test instances of smaller size and one could argue that
the size of a test instance might have a disproportionate influence on the GA’s solution quality.
Second, the three test instances comprise more due dates than the central test instance. Let us
focus on the GA’s initialization phase, described in Section 6.1.2. Recall that activity lists of GA-
individuals are initially sorted according to propagated due dates, earliest start dates, slack or
purely randomly. After the sorting, rudimentary campaigns are built. Finally, the lists are repaired
by either pulling too late activities forward or by pushing too early activities backward. For the
given instance, due dates, start dates and the slack are equal for all activities located on the same
production stage. Hence, during initialization, there is no information available for sorting the
activities deterministically; lists are only distorted randomly before building the campaigns. The
problem is now that the (random) sequence on one production stage does not necessarily match
the sequence on another production stage. For example, two activities a and b on resource “chas-
sis moulding” are positioned a before b, but their successors a′ and b′ on resource “motor–chassis
assembly” are sorted the other way round b′ before a′. This has two implications: On one hand,
different campaigns might be built for different production stages. On the other hand, preced-
ing activities are not aligned; if drawn on a Gantt chart (see Figure 8.22), precedence constraints
overlap.

What is happening in the DEAL framework during upstream initialization? For the OEM,
the initialization process is similar to central planning, activity lists are a random output. As ex-
plained in Section 7.3, the OEM proposes the start dates of the right-aligned initialized schedule
to his suppliers. Now for a supplier, the proposed due dates for downstream-related activities
do differ and a deterministic sorting according to due dates is possible. In turn, the suppliers’
counterproposals allow an initial sorting according to the release dates in the OEM’s domain.
Consequently, activities between the domains are better aligned than for the central run. This be-
havior is schematically illustrated in Figure 8.23. Apparently, the suppliers’ initialization routines
are also enabled to build better campaigns right from the beginning.

In general, overlapping precedence constraints seem to pose a problem for mutation oper-
ators, since inserting and swapping activities can have no effect. For example, in Figure 8.22,
inserting B (and the predecessors of B) right after A (and the predecessors of A) does not change
the makespan, whereas it does in Figure 8.23. Of course, these overlapping precedence constraints
occur in both runs, but they occur in the coordination run with lower frequency.19

When using the DEAL framework, the alignment between suppliers’ downstream and OEM’s
upstream activities is maintained during the whole coordination. In other words, the DEAL frame-
work introduces additional information (due dates for suppliers) that “helps” the local optimiza-
tion methods to compute better results.

19Setting up a universal measure in this regard is difficult, since the multimode RCPSP sometimes requires overlapping
precedence constraints in order to efficiently use resource slots with sufficient capacity. However, we were able to verify
our claim manually by closely examining the related Gantt charts. A detailed example is provided in the course of this
chapter.

194 CHAPTER 8. COMPUTATIONAL EVALUATION

Figure 8.22: Illustration of overlapping precedence constraints in a central test instance.

Figure 8.23: Illustration of overlapping precedence constraints in two interdependent test in-
stances during coordination.

It should also be emphasized that, instead of a fixed due-date setting as in the central run, the
coordination mechanism tries several, slightly modified, due-date combinations when calling the
local metaheuristics. Good due date combinations are favored in the evolutionary process of the
DEAL framework. The effects can outweigh the drawbacks of separated problems and might—
depending on the test instance—eventually lead to better results.

Instead of comparing single runs, the minimum, the average and the maximum of 10 runs are
considered henceforth. That is, for every time point the minimum, the average or the maximum
of all 10 runs to that time is taken. It is important to note that the minimum value over time does
not relate to a single run, but must rather be seen as the “best composition” of several runs. We
will also consider populations that comprise several individuals, but only the best individual is
considered for the figures. In other words, the average value of 10 runs is the average of the best
found individual of every run at a given point in time.

First of all, a good adjustment of the weight for the setup time was sought (the other weights
are assumed to be fixed by the planner). Figure 8.24 compares the weighted lateness for different
setup weights. It turned out that a setup weight one 10th of the total lateness weight yields the
best results regarding the weighted lateness objective.

A similar comparison was carried out for the sequential runs, see Figure 8.25. Again, a setup
weight one 10th of the total lateness weight yields the best results. However, we can see that the
deviation between the sequential runs is smaller than for the central runs. In other words: the ob-
jective weights of the underlying DS solving module clearly have an effect on the performance of
the coordination mechanism. However, as the DEAL framework imposes an additional ranking,
the effect is less significant than for the central runs. A very high setup weight was also tested,
triggering semi-active planning. The related results are the worst for both central planning and
coordination mechanism. The results are mostly similar if not only the weighted sum of total and
maximum lateness but of all objectives is considered. As an exception, upstream planning us-
ing semi-active scheduling yields the best results. The related figures F.1 and F.2 can be found in

8.2. DETERMINISTICALLY GENERATED TEST INSTANCES 195

 0

 10000

 20000

 30000

 40000

 50000

 0 200 400 600 800 1000 1200 1400 1600 1800

w
ei

gh
te

d
la

te
ne

ss

runtime

central, 1000x total lateness (semi-active)
central, 10x total lateness

central, 1x total lateness
central, 0.1x total lateness

central, 0.01x total lateness

Figure 8.24: Average weighted lateness of 10 central runs with different setup weights.

 0

 10000

 20000

 30000

 40000

 50000

 0 200 400 600 800 1000 1200 1400 1600 1800

w
ei

gh
te

d
la

te
ne

ss

runtime

sequential, 1000x total lateness (semi-active)
sequential, 10x total lateness

sequential, 1x total lateness
sequential, 0.1x total lateness

sequential, 0.01x total lateness

Figure 8.25: Average weighted lateness of 10 sequential runs with different setup weights, 13s local
runtime, deterministic self-adaption.

196 CHAPTER 8. COMPUTATIONAL EVALUATION

Appendix F.

With the best found weight distribution (the one mentioned in Section 8.2.3), parallel, sequen-
tial and asynchronous coordinations are compared with central runs using convergence graphs
in Figure 8.26. The central runs converge quickly on average to a weighted lateness of 7,500, ap-

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 0 200 400 600 800 1000 1200 1400 1600 1800

w
ei

gh
te

d
la

te
ne

ss

runtime

central (0.1x total lateness)
sequential (0.1x total lateness)

asynchronous (0.1x total lateness)
parallel, pop. size 1 (0.1x total lateness)

parallel, pop. size 12 (0.1x total lateness)
parallel, pop. size 12 (10x total lateness)

Figure 8.26: Comparison of weighted lateness for parallel, asynchronous and sequential coordina-
tion and central planning, small instance of the setup subscenario, average of 10 runs
each, deterministic self-adaption, 13s of local runtime.

parently marking a local optimum that cannot be further improved (or only very slowly). As can
be seen in the figure, sequential, asynchronous and parallel coordinations start with almost simi-
lar average initial lateness. On average, the sequential runs outperform central planning but also
get stuck at a weighted lateness of 6,500. Recall, that the sequential coordination is actually a hill
climbing procedure. It tries to improve a single (DEAL) individual by sequentially applying the
different operators. As soon as an improvement is realized, the old individual is discarded.

The asynchronous coordination is apparently not only faster, but even better than the sequen-
tial coordination. Besides the higher computational power, this behavior can be explained by the
inherent “buffering” of individuals. In the standard specification (cf. Table 8.7), the asynchronous
coordination has a queuing size of 4. That is, as soon as less than 4 individuals are in the mat-
ing pool (or uncompleted), a new evaluation (or construction) is started. Hence, even if a better
individual has been found, already started construction processes continue or “old information”
might be contained in the mating pool. This decreases the chance of getting stuck at a local opti-
mum. The effect gets stronger with an increasing queuing size.

The parallel coordination comes with a queuing size of 12, which leads to even better results
even with a population size of one. Larger population sizes allow the storage of even more in-
formation. The figure shows that the parallel coordination with a population size of 12 performs
best, not showing an end of convergence yet. In addition, the convergence graph for a parallel
coordination based on a higher setup weight is plotted. Though the results are worse, the slope of

8.2. DETERMINISTICALLY GENERATED TEST INSTANCES 197

Second priority criteria External lateness
Domain Statistic Makespan Setup time Max Total Weighted

Central
min 89,601 30,400 3,200 8,400 3,251
avg 93,761 33,920 7,360 23,830 7,523
max 97,601 40,000 11,200 51,200 11,596

pa
ra

lle
l,

po
p.

si
ze

12 OEM
min 86,401 (−10%) 14,400 (−23%) 0 (−100%) 0 (−100%) 0 (−100%)
avg 89,601 (−7%) 17,280 (−8%) 3,200 (−67%) 6,240 (−80%) 3,230 (−68%)
max 92,801 (−3%) 20,800 (−11%) 6,400 (−34%) 16,000 (−48%) 6,495 (−35%)

Supplier
Steel

min 80,001 (−8%) 6,400 (−53%) n.a. n.a. n.a.
avg 82,881 (−5%) 9,280 (−33%) n.a. n.a. n.a.
max 89,601 (+3%) 16,000 (+16%) n.a. n.a. n.a.

Supplier
Motor

min 80,001 (−6%) 6,400 (−46%) n.a. n.a. n.a.
avg 83,841 (−2%) 10,240 (−14%) n.a. n.a. n.a.
max 89,601 (+5%) 16,000 (+35%) n.a. n.a. n.a.

pa
ra

lle
l,

po
p.

si
ze

1

OEM
min 88,001 (−8%) 14,400 (−25%) 1,600 (−83%) 3,200 (−89%) 1,615 (−84%)
avg 90,561 (−6%) 17,440 (−8%) 4,160 (−57%) 8,000 (−74%) 4,168 (−57%)
max 92,801 (−3%) 20,800 (+10%) 16,000 (−33%) 6,400 (−47%) 6,495 (−34%)

Supplier
Steel

min 80,001 (−8%) 6,400 (−53%) n.a. n.a. n.a.
avg 83,841 (−4%) 10,240 (−26%) n.a. n.a. n.a.
max 89,601 (+3%) 16,000 (+16%) n.a. n.a. n.a.

Supplier
Motor

min 80,001 (−6%) 6,400 (−46%) n.a. n.a. n.a.
avg 83,841 (−2%) 10,240 (-14% n.a. n.a. n.a.
max 89,601 (+5%) 16,000 (+35%) n.a. n.a. n.a.

as
yn

ch
ro

no
us

OEM
min 89,601 (−7%) 16,000 (−15%) 3,200 (−67%) 4,800 (−84%) 3,216 (−68%)
avg 91,521 (−5%) 19,520 (+3%) 5,120 (−48%) 11,520 (−62%) 5,183 (−48%)
max 92,801 (−3%) 20,800 (+10%) 6,400 (−34%) 16,000 (−47%) 6,495 (−35%)

Supplier
Steel

min 80,001 (−8%) 6,400 (−53%) n.a. n.a. n.a.
avg 85,761 (−2%)) 12,160 (−12%) n.a. n.a. n.a.
max 89,601 (+3%) 16,000 (+16%) n.a. n.a. n.a.

Supplier
Motor

min 80,001 (−6%) 6,400 (−46%) n.a. n.a. n.a.
avg 83,201 (-3% 9,600 (−19%) n.a. n.a. n.a.
max 89,601 (+5%) 16,000 (+35%) n.a. n.a. n.a.

se
qu

en
ti

al

OEM
min 92,801 (−6%) 8,000 (−58%) 4,800 (−55%) 9,600 (−71%) 4,848 (−55%)
avg 93,121 (−4%) 18,400 (−4%) 6,720 (−37%) 18,080 (−45%) 6,382 (−37%)
max 97,601 (+1%) 22,400 (+17%) 11,200 (+6%) 44,800 (+36%) 11,532 (+7%)

Supplier
Steel

min 80,001 (−9%) 6,400 (−56%) n.a. n.a. n.a.
avg 86,401 (−2%) 12,800 (−11%) n.a. n.a. n.a.
max 92,801 (+5%) 19,200 (+33%) n.a. n.a. n.a.

Supplier
Motor

min 80,001 (−7%) 6,400 (−49%) n.a. n.a. n.a.
avg 84,801 (−1%) 11,200 (−10%) n.a. n.a. n.a.
max 92,801 (+8%) 19,200 (+54%) n.a. n.a. n.a.

Table 8.9: Comparison of average (avg), minimum (min) and maximum (max) values of 10 runs
of parallel and sequential coordination with 10 runs of central optimization after 1,800s,
local runtime 13s, small instance of the setup subscenario. The numbers in parantheses
denote the relative difference to the average upstream planning solution

the curve is similar to that of the coordination with adjusted setup weight. The parallel coordina-
tion with bad setup weights beats the sequential coordination with best-adapted setup weights.
Apparently, the parallel coordination is able to counteract poorly adjusted parameters of the base
optimization engines. A comprehensive overview of the results is given in Table 8.9, including
minimum and maximum values and other objectives20 of OEM and suppliers.

The table shows several interesting details. First, the parallel coordination with a population
size of 12 was able to reduce the lateness of external customers’ orders completely to zero. Second,
the random seed has a relatively large impact on the result of the scheme. The worst solution of the
parallel coordination with population size 12 is not better than the best solution of the sequential
coordination. Moreover, depending on the initial seed, the suppliers and the OEM experience
increases or decreases in setup time and makespan. Two exemplary Gantt charts for the central
and coordinated final results (parallel coordination, population size 12) are shown in Figure 8.27.

20Note that the makespan is not additive. That is, msOEM +msSupplierMotor +msSupplierSteel 6= msCentral!

198 CHAPTER 8. COMPUTATIONAL EVALUATION

Fi
gu

re
8.

27
:G

an
tt

ch
ar

ts
of

co
or

di
na

te
d

an
d

ce
nt

ra
lly

co
m

pu
te

d
sc

he
du

le
fo

r
th

e
sm

al
li

ns
ta

nc
e

of
th

e
se

tu
p

su
bs

ce
na

ri
o.

8.2. DETERMINISTICALLY GENERATED TEST INSTANCES 199

Specification Rel. diff. from up-
stream planning

Rel. diff. from cen-
tral solution

No. of called oper-
ators (OEM only)

Parallel, pop. size 12 −68% −57% 261
Parallel, pop. size 1 −57% −44% 324
Asynchronous −48% −31% 78
Sequential −31% −15% 45
Table 8.10: Summary of average values for 10 runs for the small instance of the setup subscenario

after 1,800s, 13s local runtime.

Production activities of the same type are drawn in similar color.21 Both charts exhibit a more
or less similar amount of setup activities (the parallel coordination has two more setups on the
resource “control production”). We observe that the centrally computed schedule is delayed by
about one lHC2 activity. The cause for this delay lies in the larger idle times between the sHC2
activities at the beginning of the schedule. How do these idle times arise? At this location in the
schedule, there is neither a setup required, nor is the number of already scheduled predecessors
too small! However, the problem is that the sequence of predecessors is not in line with the se-
quence of successors (as already discussed previously on page 194). The resulting overlapping
precedence constraints are drawn for 4 activities in each chart. Though parallel coordination also
exhibits such problems, they apparently occur less than in the centrally computed result.

Table 8.10 gives a brief summary of the average results, including the relative difference from
upstream and central planning and the number of tried operators from the OEM’s perspective.
We see that upstream planning results were improved by at least 31% and central planning re-
sults by 15%. Regarding the number of constructed individuals, the following observations can
be made. In the asynchronous coordination, approximately twice as many individuals were con-
structed as in the sequential coordination. However, as the test instance involves three partners,
the asynchronous coordination has the potential of evaluating three times as many individuals.
This potential could not be realized because of the overhead of interprocess communication and
unavoidable idle times.22 Being able to find the “optimum” of zero lateness in some runs (which
leads to a termination of the coordination mechanism), the parallel coordinaton with population
size of 12 requires on average fewer operator calls than the parallel coordination with a popula-
tion size of 1.

Another parameter the user has to specify is the amount of local runtime, the time bound
for calling the DS Optimizer’s GA. On one hand, more runtime granted to the GA generates the
better local results. On the other hand, if local results take more computation time, fewer DEAL-
individuals can be constructed. Thus, the local runtime defines the trade-off between constructed
DEAL-individuals in total and GA-individuals per local run. If we neglect the overhead of mes-
sage exchange and processes not related to constructing DEAL-individuals, the total number of
GA-individuals is obviously independent of the local runtime. In order to exchange more pro-
posals, we need to restrict the local runtime to be short. As the RCPSP is a strong combinatorial
problem, it seems promising to exchange many proposals. Especially if our proposed strategy of

21The following colors have been chosen:

• sChass, sMotor, sMsC, sHandle, Control1 and sHC1 are red,

• lChass, lMotor, lMlC, lHandle, Control2 and sHC2 are olive,

• lHC1 is green, and

• lHC2 is pink.

22Recall that rescheduling-based operators additionally call the DS solving module. During this time, suppliers are idle.

200 CHAPTER 8. COMPUTATIONAL EVALUATION

carrying over GA solutions from previous DEAL-individuals works successfully, the overall so-
lution quality should increase with shorter local runtime. Figure 8.28 shows the average values
for four different local runtimes: 7s, 13s, 25s, and 50s.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 0 200 400 600 800 1000 1200 1400 1600 1800

w
ei

gh
te

d
la

te
ne

ss

runtime

7s local runtime
13s local runtime
25s local runtime
50s local runtime

Figure 8.28: Comparison of weighted lateness for different local runtimes for the parallel coor-
dination with population size 12, small instance of setup subscenario, deterministic
self-adaption.

The 7s and 13s runs lie very close to each other and apparently define a good trade-off between
local optimization and information exchange. The overall coordination process does not profit
from longer local runtimes. It can be seen that runs with 25s and 50s take twice and four times
the time to reach the values of the 13s runs. It is remarkable that the central runs (see Figure 8.26)
take 50 times longer, around 700s, to converge to a local optimum. The graphs exhibit a classical
convergence behavior: a fast decrease of lateness in the beginning that gets slower and slower
towards the end. However, in contrast to classical EAs, we have a dynamic adjustment of local
runtime as a further screw. It might turn out advantageous to employ the following strategy: use
small local runtimes in the beginning to quickly realize a reduction of lateness and increase them
during the course of coordination. For example, we could think of a self-adaption of runtime:
if more than x% of the last proposals were an improvement, reduce local runtime. Otherwise,
increase it. However, this issue is a topic for future research.

As discussed in Section 7.7, three main classes of operators have been developed. Propa-
gating operators apply backward passes for relating lateness to upstream-related release dates.
Alignment-based operators first relax some of the upstream-related release dates and then apply
a left-right-alignment (LA|RA) to derive new proposed dates. Rescheduling operators employ
a reoptimization (FWD) within certain bounds derived from the current schedule.23 Figure 8.29
shows the mean values for coordination runs based only on a subset of operators. Propagating

23For the sake of simplicity, crossover operators involving a rescheduling are considered as rescheduling operators as
well. The remaining crossover operators are considered to belong to the class of propagating operators.

8.2. DETERMINISTICALLY GENERATED TEST INSTANCES 201

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 0 200 400 600 800 1000 1200 1400 1600 1800

w
ei

gh
te

d
la

te
ne

ss

runtime

all operators
propagating operators

alignment-based operators
rescheduling-based operators

hybrid rescheduling-alignment operators

Figure 8.29: Comparison of weighted lateness for different operators for the parallel coordination
with population size 12, small instance of the setup subscenario, deterministic self-
adaption.

operators lead to some improvement at the beginning, but get stuck soon at a weighted lateness
of 6,000. This is in line with our discussion in Section 7.7, where it was argued that propagat-
ing operators provide a fast but crude alignment of schedules. Rescheduling operators show a
good overall performance, from the beginning until the end of a coordination run. Surprisingly,
alignment-based operators get stuck very early. A closer look at the detailed information each
run provides led to the following insight. As the current implementation of the left-alignment
heuristic does not allow a temporary degradation of the objective value, left shifts of activities
were not possible in many cases as they implied an increase of setup times. This led ultimately
to proposed dates that did not differ substantially from the release dates of the parent DEAL-
individual. Such a behavior was unique to the setup subscenario and was not be observed in any
other subscenario.

Interestingly, this poor performance of alignment-based operators can be compensated by the
other operators. This gives rise to the supposition that not all of our operators might be required
to achieve good results. We will explore means to reduce the operator set in Section 8.4. Fig-
ure 8.29 also includes a graph for “all operators” (including propagating, alignment-based and
rescheduling-based operators)—these runs clearly outperform each of the above subsets of op-
erators. To counteract the shortcomings of the alignment-based operators, a fourth set of opera-
tors was tested. It is denoted as hybrid rescheduling–alignment operators. These operators equal
the alignment-based operators, whereas the left–alignment (LA) is replaced by a temporal reop-
timization (FWD, see Section 7.7 for more details on this topic). As can be seen in Figure 8.29
the hybrid operators showed a considerable good performance. For all operator subsets, the de-
terministic self-adaption was used. The related operator lists are derived from Table E.1 with all

202 CHAPTER 8. COMPUTATIONAL EVALUATION

Specification Rel. diff. from up-
stream planning

Rel. diff. from cen-
tral Solution

No. of called oper-
ators (only OEM)

Parallel, pop. size 12 −100% −100% 46
Parallel, pop. size 1 −100% −100% 43
Asynchronous −89% −94% 36
Sequential −97% −98% 29
Table 8.11: Summary of average values for 10 runs for the medium setup subscenario after 3,600s,

25s local runtime, deterministic self-adaption.

unavailable operators removed from the table.24 In the remainder of this section, the standard set-
ting of propagation, alignment-based and rescheduling-based operators was kept for the medium
and large variants, however.

For the medium setup instance, the convergence graphs are shown in Figure 8.30. Both parallel

 0

 5000

 10000

 15000

 20000

 25000

 0 500 1000 1500 2000 2500 3000 3500

w
ei

gh
te

d
la

te
ne

ss

runtime

central
sequential

asynchronous
parallel, pop. size 1

parallel, pop. size 12

Figure 8.30: Comparison of weighted lateness for parallel, asynchronous and sequential coordi-
nation and central run for the medium instance of the setup subscenario, 25s local
runtime, deterministic self-adaption.

runs are able to produce schedules without any late activity even before the overall coordination
time of 3,600s was reached. A population size of 1 is slightly faster, which can be explained by
the higher selection pressure (see Section 4.2).25 The sequential and asynchronous coordination
are on average able to almost reach zero lateness after 3,600s. The centrally applied GA performs
significantly worse. Even an upstream solution is on average better than the central solution after
one hour. Table 8.11 gives a brief overview, a detailed summary of results can found in Appendix
G (Table G.5).

As for the small variant, the coordination is able to better align the activities according to

24For an overview of abbreviations of operator subprocedures see also Table 7.3.
25Examining the distribution of runtime, it became apparent that the mere overhead for managing a larger population,

such as detecting duplicates and redundant proposals, was relatively small and may not be the only reason for perfor-
mance losses.

8.2. DETERMINISTICALLY GENERATED TEST INSTANCES 203

 0

 10000

 20000

 30000

 40000

 50000

 0 500 1000 1500 2000 2500 3000 3500

w
ei

gh
te

d
la

te
ne

ss

runtime

central
sequential

asynchronous
parallel, pop. size 1

parallel, pop. size 12

Figure 8.31: Comparison of weighted lateness for parallel, asynchronous and sequential coordina-
tion and central run for the large instance of the setup subscenario, 50s local runtime,
deterministic self-adaption.

Specification Rel. diff. from up-
stream planning

Rel. diff. from cen-
tral solution

No. of called oper-
ators (only OEM)

Parallel, pop. size 12 −96% −98% 330
Parallel, pop. size 1 −96% −98% 113
Asynchronous −80% −88% 88
Sequential −78% −87% 38
Table 8.12: Summary of average values for 10 runs for the large setup subscenario after 7,200s, 50s

local runtime, deterministic self-adaption.

their precedence constraints (cf. Figures 8.22 and 8.23), which could be manually confirmed by
closely examining the related Gantt charts. Another variation of the medium setup subscenario
was tested, with Supplier Steel and Supplier Motor merged to a single planning domain. Inter-
estingly, the results are very close to the two-supplier scenario, even a slightly bit worse, which
might be explainable by the intuition that test instances of decreased size can be solved more
efficiently by the DS solving module. The related convergence plot can be found in Appendix F
(Figure F.3).

Figure 8.31 shows the convergence graphs for the large setup instance. Again, the coordina-
tion runs outperform the centrally applied DS solving module straight from the beginning. On
average, the parallel coordination performs better than the asynchronous or sequential coordi-
nation. Table 8.12 gives a short overview of the results. More detail can be found in Table G.6 in
Appendix G.

Comparing the small, medium and large instances of the setup subscenario, the observation
can be made that the performance of the coordination mechanism is nearly independent of the
problem size. The average weighted lateness for the parallel run with population size 12 reaches
a final value of 3,230 for the small variant, 0 for the medium variant and 640 for the large vari-

204 CHAPTER 8. COMPUTATIONAL EVALUATION

Specification Rel. diff. from up-
stream planning

Rel. diff. from cen-
tral solution

No. of called oper-
ators (only OEM)

Parallel, pop. size 12 −63% −81% (−81%) 276
Parallel, pop. size 1 −65% −82% (−83%) 285
Asynchronous −57% −79% (−79%) 77
Sequential −55% −77% (−78%) 42
Table 8.13: Summary of average values for 10 runs for the small product mix subscenario after

1,800s, 13s local runtime, deterministic self-adaption. Values in parentheses denote the
difference from the soft-constrained solution.

ant. Results tend to get better as larger instances allow more freedom of restructuring. Similar
behavior can also be observed for other coordination specifications including even the sequential
coordination, although it apparently gets stuck earlier at a local optimum. It is astonishing that
the central runs did not scale as well; the weighted lateness increases with larger problems (the
related average values are 7,253 for the small variant, 9,168 for the medium variant, 23,725 for
the large variant). A different scaling can also be observed for initial upstream (central) solutions,
from 10,056 (15,771) for the small variant over 4,732 (51,224) to 14,839 (76,123) for the large vari-
ant. We can argue that the additional due dates introduced by the coordination mechanism have
a significant effect right from the beginning.

8.2.4.3 Detailed analysis of the product mix instances

The product mix instances differ from the setup instances in two important aspects. First, activity
durations rather than setup times require a certain production and delivery sequence. Second,
suppliers also have commitments to external customers not participating in the coordination. As
explained in Chapter 7, due dates pertaining to such external customers are prioritized by con-
sidering them as deadlines during local optimization. This allows the computation of acceptable
interorganizational solutions without exchanging side payments between the parties involved in
coordination. The interesting question is to what degree this prioritization hampers the calcula-
tion of good interorganizational solutions.

Figure 8.32 shows a significant difference between coordinated and central runs. As discussed
previously, central, soft-constrained runs have also been evaluated. However, both types of cen-
tral runs get stuck at a local optimum very early. Detailed values can be found in Appendix G
(Table G.7) and Table 8.13 provides a brief summary. Even initial upstream planning yields re-
sults that are much better. As for the setup subscenarios we can argue that the artificial due dates
introduced by coordination have a very positive effect.

Since the values are already very good after initialization by upstream planning, there is no
big difference between sequential, asynchronous and parallel coordination, although the parallel
runs are on average slightly better. It should be emphasized that coordination results are such
that no external customer’s deadline was violated.

8.2. DETERMINISTICALLY GENERATED TEST INSTANCES 205

 0

 2
00

0

 4
00

0

 6
00

0

 8
00

0

 1
00

00

 1
20

00

 1
40

00

 1
60

00

 1
80

00

 0
 2

00
 4

00
 6

00
 8

00
 1

00
0

 1
20

0
 1

40
0

 1
60

0
 1

80
0

weighted lateness

ru
nt

im
e

ce
nt

ra
l

ce
nt

ra
l,

so
ft-

co
ns

tr
ai

ne
d

se
qu

en
tia

l
as

yn
ch

ro
no

us
pa

ra
lle

l,
po

p.
 s

iz
e

1
pa

ra
lle

l,
po

p.
 s

iz
e

12

Figure 8.32: Comparison of weighted lateness for parallel, asynchonous and sequential coordina-
tion and central run for the small instance of product mix subscenario.

206 CHAPTER 8. COMPUTATIONAL EVALUATION

Fi
gu

re
8.

33
:G

an
tt

ch
ar

ts
of

so
ft

-a
nd

ha
rd

-c
on

st
ra

in
ed

ce
nt

ra
lly

co
m

pu
te

d
an

d
co

or
di

na
te

d
sc

he
du

le
fo

r
th

e
sm

al
li

ns
ta

nc
e

of
th

e
pr

od
uc

tm
ix

su
bs

ce
na

ri
o.

8.2. DETERMINISTICALLY GENERATED TEST INSTANCES 207

Figure 8.33 shows three related Gantt charts, two centrally computed hard- and soft-con-
strained schedules and one schedule resulting from parallel coordination with population size
12. Again, production activities of the same type are drawn in similar colors.26 Comparing the
centrally computed, soft-constrained schedule with the outcome of parallel coordination, we can
observe that the centrally applied GA has difficulty finding the right sequence on the casting and
coating resources. First, all the small tanks are produced and then all the large tanks. This leads
to idle times on the coating resource that could be avoided if small and large tanks were pro-
duced alternatingly. At the end, these idle times are the cause for lateness. Second, we see that
many enhanced blades are produced on the basic grinder. Although using this grinder implies
a larger activity duration, this mode selection does not directly affect the lateness because the
wrong sequence on the casting and coating resources delays the production anyway. To resolve
this situation, a GA mutation operator would need to select an lTank activity placed between two
other lTank activities and place it between two other sTank activities or vice versa. Moreover, also
the sequence of succeeding or preceding activities and wrong mode selections might need to be
changed such that the lateness really reduces. Otherwise the GA-individual does not survive the
update operation. Apparently the present mutation operators have difficulty achieving all these
tasks at once. We can argue that the situation illustrated by the Gantt chart marks a local optimum.

The parallel coordination is able to find a better allocation of production activities. On one
hand, the already mentioned alignment effect by the additionally introduced due dates in the
suppliers’ subproblems might contribute to this. On the other hand, the different DEAL operators
provide additional information to steer the search process in the right direction.

For the hard-constrained central run, the production of sTemp_1, mTemp_1, lTemp_1 and
xTemp_1 is even more delayed. On the coating resource, the external tanks need to be produced
at the end of the schedule in order to avoid idle times on the tank assembly and subsequent
resources (see the other Gantt charts). Assume a schedule at the beginning of the GA where exter-
nal tanks are placed at the end, but the alternating production of sTank and lTank activities is not
fully established yet. The GA’s mutation operator will hence try to reduce first-priority lateness
and shift external tank activities earlier. However, as just discussed, this move introduces idle
times on other resources. We can argue that a prioritization of external-related activities changes
the fitness landscape, leaving the GA less freedom in finding good activity sequences. Apparently,
this prioritization causes less harm during a coordination run.

As for the small variant of the setup subscenario, different runtimes have been compared for
the parallel coordination with a population size of 12. Again, short local runtimes yielded the
best result. The related convergence plot can be found in the Appendix F (Figure F.4). Moreover,
the performance of different operators was compared. As for the small instance of the setup sub-
scenario, the coordination process gets stuck quickly if only propagating operators are available.
Focusing only on rescheduling-based operators yields good results. The best results are achieved
by alignment-based operators (in contrast to the setup subscenario the required left-alignment
worked without problems). Figure F.5 in Appendix F provides a graphical comparison.

26The following colors have been chosen:

• sBlade, sStdBlade, sTank_1, sTank_2, sMsCsT_1, sMsCsT_2, and sTemp_1 are red,

• lBlade, lStdBlade, lTank_2, lTank_2, lMlClT_1, lMlClT_2, and lTemp_1 are olive,

• extTank_1, extTank_2, sBladeExt_1, sBladeExt_2, and extWheel are gray,

• sEnhBlade, enhWheel, and xTemp_1 are green, and

• lEnhBlade and mTemp_1 are pink.

208 CHAPTER 8. COMPUTATIONAL EVALUATION

Central Sequential
Max:total Max lateness Total Lateness Max lateness Total lateness
100:1 12,160 50,080 2,860 4,200
10:1 11,360 43,380 3,180 4,540
1:1 11,600 45,360 2,200 3,000
1:10 11,200 41,200 2,360 3,200

Table 8.14: Averaged results for different weights for maximum and weighted lateness, 10 runs
each, total runtime 1,800s, local runtime 13s (in case of the sequential coordination).

In addition, we studied the effect of different weights of total and maximum lateness for the
small instance of the product mix subscenario. Table 8.14 shows the average results for 10 runs of
central optimization and sequential coordination with different lateness weights. For the central
runs it seems to be advantageous if the weight for total lateness is set rather high. However, the
sample size is too small for conducting statistical tests. According to SAP Consultancy however,
users are usually more concerned about large deviations from due dates and thus set a huge
maximum lateness weight. Moreover, for larger instances, a high maximum lateness weight seems
to be more justified. Hence, we kept a ratio of 100:1 for maximum to total lateness for all scenarios
of the deterministic test data generator.

For the medium product mix instance, Figure 8.34 graphically compares the average weighted
lateness values for the coordination runs and central results, and Table 8.15 summarizes the re-
lated values. (More detailed information can be found in Table G.8 in Appendix G.)

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 0 500 1000 1500 2000 2500 3000 3500

w
ei

gh
te

d
la

te
ne

ss

runtime

central
central, soft-constrained

sequential
asynchronous

parallel, pop. size 1
parallel, pop. size 12

Figure 8.34: Comparison of weighted lateness for parallel and sequential coordination and central
run for the medium instance of the product mix subscenario.

Several observations can be made. First, the results of the soft-constrained central runs are
much better than those of the hard-constrained central runs but cannot beat those of the upstream
planning solutions (also containing deadlines). However, despite the high quality of upstream
planning solutions, the coordination mechanism is able to quickly improve results even further.

8.2. DETERMINISTICALLY GENERATED TEST INSTANCES 209

Specification Rel. diff. from up-
stream planning

Rel. diff. from cen-
tral solution

No. of called oper-
ators (only OEM)

Parallel, 12 parents −81% −91% (−86%) 307
Parallel, 1 parent −83% −91% (−88%) 339
Asynchronous −70% −88% (−83%) 81
Sequential −78% −88% (−83%) 43

Table 8.15: Summary of average values for 10 runs for the medium product mix subscenario after
3,600s, 25s local runtime, deterministic self-adaption. Values in parentheses denote the
difference from the soft-constrained solution.

Most of the improvement is achieved within the first 500s.

In addition to the standard three-domain scenario, a setting was evaluated where Supplier
Steel and Supplier Plastic were merged to a single supplier. It turned out that the quality of coor-
dinated results was not influenced by this change. The related figure can be found in Appendix F
(Figure F.6).

Moreover, the effect of transport disruptions was evaluated. As discussed in Subsection 8.1.2,
transport resources were introduced at the interface between suppliers and OEM. Every day at
midnight, a single transport from the suppliers to the OEM takes place (i.e., the transport resource
is modeled to have infinite capacity for one second). An activity of transporting has a duration
of zero. Figure F.7 in Appendix F shows a comparison of coordination and central runs. As the
due dates pertaining to ultimate customer orders do not change, but the OEM receives the first
delivery at the end of the first day, we can expect that lateness of each final activity will increase
by at least one day. This increase of lateness can be observed for both central and coordinated
results. However, the coordinated results are still significantly better.

In addition, the instance was evaluated where demand is more frequent (e.g. daily). Table G.1
shows the related demand matrix. Instead of demanding all items at the end of Day 4, part of the
demand has to be satisfied every single day. Several observations can be made. First, the average
weighted lateness at the beginning of central and coordination runs increases. One the one hand,
if due dates are distributed over the planning horizon more lateness can simply be measured
than if everything must be delivered at the end of the horizon. On the other hand, the planning
domains have less freedom in their decisions, e.g. the building of setup campaigns becomes more
difficult. Second, the soft-constrained central runs achieve better results if finer-grained demand
information is available. Apparently the GA-individuals can be evaluated and compared more
precisely in this setting. However, the situation is different for the hard-constrained central runs.
Distributing prioritized demand over the planning horizon seems to change the fitness landscape
for the worse. Surprisingly, the coordinated result do not change. The related convergence plot
can be found in Appendix F (Figure F.8).

Results for the large product mix instance are very similar, demonstrating again the good
scaling properties of the coordination mechanism. Related figures and tables can be found in
Appendix G (Tables G.9 and G.10 and Figure F.9).

8.2.4.4 Detailed analysis of the breakdown instances

Figure 8.35 shows a convergence plot of coordination runs and the centrally applied DS Optimizer
for the medium breakdown instance. The time for computing the intermediate schedule needed
for the frame contract (250 seconds) is not shown in the picture. Table 8.16 summarizes the related
values, more details can be found in Appendix G (Table G.11).

210 CHAPTER 8. COMPUTATIONAL EVALUATION

 0

 10000

 20000

 30000

 40000

 50000

 60000

 500 1000 1500 2000 2500 3000 3500

w
ei

gh
te

d
la

te
ne

ss

runtime

central
central, soft-contrained

sequential
asynchronous

parallel, pop. size 1
parallel, pop. size 12

Figure 8.35: Comparison of weighted lateness for parallel and sequential coordination and central
runs for the medium instance of the breakdown subscenario.

Specification Rel. diff. from up-
stream planning

Rel. diff. from cen-
tral solution

No. of called oper-
ators (OEM only)

Parallel, 12 parents −100% −100% 57
Parallel, 1 parent −100% −100% 44
Asynchronous −100% −100% 17
Sequential −100% −100% 14

Table 8.16: Summary of average values for 10 runs for the medium breakdown subscenario after
3,600s, 25s local runtime, deterministic self-adaption.

It can be seen that the related start dates lead to a high weighted lateness at the beginning of the
coordination runs. All coordination schemes were able to compute a solution with zero lateness,
whereas the parallel coordination schemes were approximately twice as fast as the sequential one.
Though the DS Optimizer was occasionally able to find central solutions with zero lateness, local
optima result in an average performance that is below that of the coordinated scheme, regardless
of considering external-related due dates as hard or soft constraints.

For the first large breakdown instance, the parallel run with a population size of 12 was on
average able to improve the upstream planning solution by 59% and central planning results
by 37%. The related result, Tables G.12 and G.13, and the convergence plot, Figure F.10, can be
found in Appendices G and F, respectively. It is worth mentioning that for this instance, suppliers
were not able to adhere to all the deadlines of activities related to external customer orders in
the upstream planning solution right from the beginning of coordination. Even though deadlines
are prioritized during local optimization, the local runtime was too short to reduce all the related
lateness to zero. During coordination, these undesirable violations of deadlines could gradually
be decreased to zero which underpins the usefulness of the implemented double ranking scheme
(cf. Section 7.4).

The impact of prioritized deadlines is even more dramatic for the second large breakdown

8.2. DETERMINISTICALLY GENERATED TEST INSTANCES 211

instance. Figure 8.36 plots the convergence of weighted lateness for the different runs. More de-
tails can be found in tables G.14 and G.15 in Appendix G. All coordinated runs and the central

 200000

 400000

 600000

 800000

 1e+006

 1.2e+006

 1.4e+006

 1.6e+006

 1.8e+006

 2e+006

 1000 2000 3000 4000 5000 6000 7000

w
ei

gh
te

d
la

te
ne

ss

runtime

central
central, soft-contrained

sequential
asynchronous

parallel, pop. size 1
parallel, pop. size 12

Figure 8.36: Comparison of weighted lateness for parallel and sequential coordination and central
runs for the second large instance of the breakdown subscenario.

hard-constrained run exhibit an increase of weighted lateness at the beginning. This increase is
related to a decrease of prioritized deadline violation not shown in the Figure. Between 1,000
and 1,500s all runs are able to decrease deadline violation to zero, and after that point they work
on decreasing the weighted (unprioritized) lateness. All coordination runs produce better results
than the central, hard-constrained runs. Again, parallel coordination outperforms asynchronous
and sequential coordination. However, central soft-constrained runs are the clear winner for this
instance. This raises the question whether the absolute prioritization of external customer orders
is in general the right means to achieve global acceptability of results. Regarding the current im-
plementation of the DS Optimizer, it is apparently the most convenient approach. However, more
flexible approaches are necessary. For example, we could imagine that deadline-violation was pri-
oritized less at the beginning of coordination to find a good overall solution, that might not yet be
accepted by all domains. Then, in the course of coordination, prioritization could get a growing
influence until the final outcome is globally accepted.

8.2.4.5 Detailed results for the complete scenario

Figure 8.37 compares coordination and central runs for the large instance of the complete scenario.
The related values are summarized in tables G.16 and G.17. There is no huge difference between
hard- and soft-constrained central results. Again, all coordination runs are much better than the
central solution.

There is another, so far uncovered point. Until now, we implicitly assumed that there is only
one way to compute the upstream solution: using the same bounds for local runtime that applied

212 CHAPTER 8. COMPUTATIONAL EVALUATION

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 0 2000 4000 6000 8000 10000 12000 14000

w
ei

gh
te

d
la

te
ne

ss

runtime

central
central, soft-constrained

sequential
asynchronous

parallel, pop. size 1
parallel, pop. size 12

Figure 8.37: Comparison of weighted lateness for parallel and sequential coordination and central
runs for the large instance of the complete scenario.

 0

 200000

 400000

 600000

 800000

 1e+006

25 50 75 100
250

500
750

1000
2500

w
ei

gh
te

d
la

te
ne

ss

local runtime

min/avg/max values

Figure 8.38: Upstream planning results for different total runtimes and the large instance of the
complete scenario.

to proposals and counterproposals. However, the above results show that the amount of local
runtime permitted to the DS solving module has an impact on the coordination results. Might
the same be true for the upstream planning solutions? Perhaps granting a very long or very short
local runtime to upstream planning might dramatically worsen or improve upstream planning
results. If this was the case, which upstream planning solution should be taken as the reference
point? Figure 8.38 compares average upstream planning runs for different local runtimes (10 runs
per setting).

First of all, it should be emphasized that local runtimes apply to planning domains but not to
the overall process. In sequential coordination, a local runtime of 2, 500s implies a total runtime
of 6 ·2, 500s = 15, 000s (twice the OEM and four times the suppliers). The figure shows minimum,
mean and maximum values for each local runtime setting. It can be seen that the minimum values
are approximately equal, however, maximum values deviate heavily. Apparently, local runtimes

8.3. RANDOMLY GENERATED TEST INSTANCES 213

of 50s and 500s support the finding of good upstream solutions, but the outliers could also be just
missing by accident. Overall, no obvious pattern can be observed and the mean values deviate
only slightly. Apparently, the influence of local runtimes during upstream planning is negligible.
In preliminary experiments, similar results could be observed for the other instances, though not
presented here.

8.3 Randomly generated test instances

The TDG of Section 8.2 creates test instances deterministically. This comes with the advantage that
readers can quickly comprehend the underlying business case. A drawback is that all generated
test instances have the characteristics of a flow-shop problem: The generated activity network is
a repetition of BOM structures on the master data level. The critique that the generated instances
consist of only a subset of the RCPSP complexity is justified. Hence, a second randomized test
data generator (RTDG) was implemented (generating random network structures and resource
assignments). The RTDG creates network structures that have more characteristics of job-shop
problems. Before going into the details. we give a brief overview of relevant literature first.

Several randomized TDGs for generating RCPSPs already exist in literature (cf. Demeule-
meester et al., 1993; Kolisch et al., 1992, 1995; Schwindt, 1995; Drexl et al., 2000). Usually, the
construction of test instances follows a two-step procedure. First, several complexity measures
are defined and related target values are set. Then, randomized schedules are generated that ful-
fill the target values. Demeulemeester et al. (1993) argue that for a comprehensive evaluation of
solution methods, not only the parameters of a network (e.g., the durations of activities), but also
the structure and size of benchmarking instances must be altered. From their point of view, a
good TDG is one that supports an unbiased random creation of the network. In their work, they
present two methods for generating dense and nondense networks, respectively. Besides network
parameters, the density is regarded as the most important complexity measure.

For the TDG called progen, Kolisch et al. (1992, 1995) consider activity-on-node networks. As
the name indicates, activities are represented as nodes in such networks and precedence con-
straints as directed arcs. The authors regard three complexity measures as important: the network
complexity, the resource factor and the resource complexity. Exact definitions of these figure will
be given in subsequent subsections. After the user has specified upper and lower bounds for
activities, number of modes per activity, activity durations, number of resources, resource utiliza-
tion and target values for the complexity measures, a test instance is generated. First, activities
and resources are randomly generated according to the specified bounds. Then, some activities
are randomly selected as start and finish activities; these are activities without predecessor or
successor, respectively. All nonstart activities are assigned a random predecessor and all nonend
activities are assigned a random successor. Additional precedence constraints are added until the
network complexity has been reached. Moreover, activity-mode-resource combinations are ran-
domly selected until the desired resource factor has been reached. For the selected combinations,
a positive resource utilization is randomly generated according to the specified bounds. Finally,
the capacities of the resources are set such that the resource strength has been reached.

Schwindt (1995) extends the progen implementation by considering minimum and maximum
time lags. Another extension is provided by Drexl et al. (2000), who include mode compatibility
constraints, minimum time lags, sequence-independent setup times and other constraints.

214 CHAPTER 8. COMPUTATIONAL EVALUATION

8.3.1 Test data generation

Our RTDG bases on the TDG of Kolisch et al. (1992, 1995) which has to be modified to match our
coordination problem. As precedence constraints and resource assignments are randomly gen-
erated, the TDG of Kolisch et al. (1992, 1995) is usually not able to construct multidomain test
instances due to cyclic dependencies between activities or resources, respectively. As an example,
assume a generated network of n = 30 activities, two available resources A and B, one mode
per activity, and one resource-assignment per mode. Assume further that the activities have been
numbered according to a topological sorting respecting the precedence constraints. We can split
up the network into two domains, e.g. one supplier and one OEM, if there are no cyclic depen-
dencies between the domains (otherwise the OEM would also deliver to the supplier, which the
current implementation of DEAL does not support). That is, the first i activities have been as-
signed to Resource A (belonging to the supplier) and the second n − i activities have been as-
signed to Resource B (belonging to the OEM). The chance for generating such a setting randomly
is 0.5i · 0.5n−i. The overall probability is thus

∑29
i=1 0.5i · 0.5n−i = 2, 6 · 10−8. The extremely low

probabilities for finding a suitable test instance is the reason for not considering the available
standard test sets of Kolisch and Sprecher (1996), generated by the TDG of Kolisch et al. (1992,
1995).

The generator was thus modified to produce only noncyclic dependencies between planning
domains. However, only the construction of two-domain scenarios (consisting of one supplier
and one manufacturer) is supported. Moreover, sequence-dependent activities, maximum and
minimum time lags with a distance greater than zero, and varying capacity profiles or calendars
are not considered. As in Kolisch et al. (1992, 1995), the generation consists of four phases: net-
work generation, resource-utilization generation, resource availability generation and due date
generation. With regard to the original work, the construction has been slightly simplified, omit-
ting some input parameters. We first give an introduction to the complexity measures and then
describe the four phases of generating a test instance.

8.3.1.1 Complexity measures

Network complexity, C, is defined as the average number of nonredundant links (minimum time
lags with distance zero) per activity. According to Kolisch et al. (1992, 1995), a link between two
activities is called redundant if there exist other paths (including more than two activities) in the
directed graph connecting the two activities.27 If the activity network does not contain redundant
links, the network complexity can be computed as

C =

∑
j∈J
|Pj |+ |A|+ |Ω|

|J |+ 2
,

where A,Ω ⊂ J denote the set of start and finish activities without predecessors and successors,
respectively.28 Upper and lower bounds for C can be found in Kolisch et al. (1992, 1995).

If the network complexity increases, the problem is usually easier to solve. More time lags
determine to a greater extend the sequence of activities on the resources, decreasing the number

27This definition does not explicitly consider maximum and minimum time lags with a distance greater than zero.
28Kolisch et al. (1992, 1995) include a super-source and a super-sink in their model formulation. Thus, for our formu-

lation, the number of links to super-source (|A|) and -sink (|Ω|) need to be added explicitly in the numerator, and the
denominator is increased by two.

8.3. RANDOMLY GENERATED TEST INSTANCES 215

Jmax(Jmin) Maximal (minimal) number of activities
Amax(Amin) Maximal (minimal) number of start activities without predecessors
Ωmax(Ωmin) Maximal (minimal) number of finish activities without successors
δSupplier Supplier share of the network
δΩ
Supplier Share of finish activities in supplier domain
Smax(Smin) Maximal (minimal) number of successors per activity
Pmax(Pmin) Maximal (minimal) number of predecessors per activity
C∗ target network complexity

Table 8.17: Parameters for generating the network in the RTDG.

of feasible sequences.

Resource factor and resource strength relate to resource scarceness. The resource factor is de-
fined as

RF =
1
|J |

1
|R|

∑
j∈J

1
|Mj |

∑
r∈R

1, if ujrm > 0

0, otherwise,
(8.1)

and relates to the density of the resource-utilization coefficient matrix. The resource strength,RSr,
expresses the average availability of resource r and is defined as

ar = Umin
r +RSr ·

(
Umax
r − Umin

r

)
, (8.2)

where Umax
r and Umin

r denote the maximum and minimum resource utilization. The number Umin
r

is computed as

Umin
r = max

j∈J

(
min
m∈Mj

ujmr

)
. (8.3)

If the constant resource capacity drops below this number, no feasible schedule can be computed.
After having performed a forward pass, the maximum resource utilization is calculated as

Umax
r = max

t∈T

 ∑
j∈J:esj≤t≤efj

ujm∗r

 , (8.4)

where m∗ denotes the mode with shortest duration. For ar = Umax
r ,∀r ∈ R, the schedule relating

to the forward pass (where each activity j starts at efj) is already feasible. In other words, even
if the resource capacity were larger, no better schedule could be computed with respect to the
makespan or lateness criterion. In general it can be said that test instances with a high resource
factor, a low resource strength and a low network complexity are difficult to solve because the
actual sequence of activities becomes more and more important.

8.3.1.2 Network generation

The randomized generation of the network can be controlled by the parameters given in Table
8.17 and consists of four steps.

1. A random number of activities between Jmin and Jmax is generated. Moreover, the sets of
start activities,A, and finish activities, Ω, are randomly selected, such that |A| ∈ [Amin;Amax]
and |Ω| ∈ [Ωmin; Ωmax]. The activities are indexed in an ascending way, j = 1, . . . , |A| for all
start activities and j = |J |−

⌈(
1− δΩ

supplier

)
· |Ω|

⌉
+ 1, . . . , |J | for the OEM’s finish activities.

Later, resource assignment will happen in such a way that the first bδsupplier · |J |c activities

216 CHAPTER 8. COMPUTATIONAL EVALUATION

Mmax(Mmin) Maximal (minimal) number of modes per activity
dmax(dmin) Maximal (minimal) duration of an activity
Rmax(Rmin) Maximal (minimal) number of resources
RMmax Maximal number of resources per mode
umax(umin) Maximal (minimal) resource utilization

Table 8.18: Parameters for generating the resource utilization in the RTDG.

will be in the supplier’s domain. Thus, the set of the supplier’s finish activities, Ωsupplier ⊂ Ω,
is situated in the middle of the whole activity network, with

Ωsupplier =
{
j ∈ J |j ≤ bδsupplier · |J |c ∧ j > bδsupplier · |J |c −

⌊
δΩ
supplier · |Ω|

⌋}
.

2. Beginning with the lowest indexed nonstart activity, each activity is assigned a predecessor
(an activity with lower index) at random. However, no finish activity of any domain must
be chosen as predecessor and the maximal numbers of successors of a preceding activity
must not be violated.

3. Each nonfinish activity with no successor (an activity with higher index) is assigned one.
The assignment has to respect the values Smax(Smin) and Pmax(Pmin). Moreover, per def-
inition, no start activity may be predecessor of another start activity. Direct links between
finish activities are prohibited as well. It has also to be taken care of that only nonredun-
dant links are introduced. It can happen that no candidate can be found with respect to the
above requirements, and even if all successors could be retrieved successfully, the network
complexity might be already above its target value. In such cases the procedure aborts and
restarts with a different random seed.

4. Further nonredundant links are added until the complexity has been reached, respecting the
same requirements as in the previous step. Again, cases are imaginable where the target net-
work complexity has not been reached yet but no further nonredundant links are possible
and the procedure aborts and restarts with a different random seed.

Due to the way the activity network is constructed, no cyclic dependencies exist between the
supplier’s and the OEM’s activities.

8.3.1.3 Resource-utilization generation

In this phase, activity–mode–resource assignments are computed. Table 8.18 lists the related in-
put parameters. At the beginning, the total number of resources, |R|, is randomly drawn from
the interval [Rmin;Rmax] ⊂ {2, 3, . . . ,∞}. Then the supplier gets assigned the first bδsupplier · |J |c
resources and the OEM the remaining ones. Respecting the above decisions, the generation of
activity–mode–resource assignments now consists of two steps for each planning domain, re-
spectively.

1. For each activity j, a random number of modes is drawn between Mmin and Mmax. Then,
for each mode m of each activity j, a duration djm ∈ [dmin; dmax] is randomly drawn, a
primary resource r (belonging to the current planning domain) is randomly selected, and
the related resource utilization ujrm ∈ [umin;umax] is randomly chosen.

8.3. RANDOMLY GENERATED TEST INSTANCES 217

RS Target resource strength
δdd Due date factor

Table 8.19: Parameters for generating the resource availability and due dates in the RTDG.

2. Secondary resources with random resource utilization in [umin;umax] are randomly added
until the desired resource factor (see Equation 8.1) or the maximum number of resources
per mode, RMmax, is reached. If the target resource factor could not be reached, a warning
message is given.

It should be noted that at least one mode with one resource assignment is constructed for each
activity, Mmin, Rmin ≥ 1.

8.3.1.4 Resource availability and due date generation

Having generated activities, precedence constraints, mode durations and resource utilizations,
the resource capacities, ar, are computed. For each resource, r, minimum and maximum utiliza-
tions, Umin

r and Umax
r , are calculated as defined by equations 8.3 and 8.4. Finally, ar is chosen such

that equation 8.1 is approximately fulfilled by computing ar =
⌊
Umin
r +RS ·

(
Umax
r − Umin

r

)⌋
,

where RS is the target resource strength, see also Table 8.19. Finally, due dates are set for each
finish activity j ∈ Ω. For doing this, the maximal horizon T

max
is computed as

T
max

=
∑
j∈J

(
max
m∈Mj

(djm)
)
.

Then each due date is set to

ddj := efj +
⌊
δdd ·

(
T

max − efj
)⌋
,∀j ∈ Ω,

where δdd denotes a predefined due date factor. The earliest finish dates efj , j ∈ J are computed
by an initial forward pass. Finally, the test data is split up according to the generated domain–
resource assignment.

8.3.2 Test program and test instances

For each instance generated with the RTDG, 10 runs of central optimization were compared with
10 runs of parallel coordination and a population size of 12. Since only two domains are present,
we changed the distribution of the 10 CPUs available for the solving units: Six solving units were
assigned to the OEM and four units to the supplier. Moreover, the coordination employs the
stochastic operator self-adaption scheme discussed in Section 7.8. However, the same type of
operators as for the DTDG (cf. Table E.1) are used.

For the full operator set, we tested six RDTG-generated test instances: three small, two medium
and one large.29 Table 8.20 summarizes input parameters for the first small instance. The other two
small instances differ in the parameter δΩ

supplier, which was set to values of 0.3 and 0.7, respectively.
The parameters of the first medium instance can be found in Table 8.21. For the second medium
instance, δΩ

supplier was set to 0.5. Table 8.22 shows the input parameters for generating the large
test instance.

29Two more test instances were tested with a reduced set of operators, cf. Section 8.4.

218 CHAPTER 8. COMPUTATIONAL EVALUATION

Parameter Value Parameter Value Parameter Value

Network
parameters

Jmin, Jmax 200 Amin, Amax 20 Ωmin,Ωmax 20
δSupplier 0.5 δΩ

supplier 0.0 C∗ 1.5
Smin 1 Smax 3
Pmin 1 Pmax 3

Resource
parameters

Mmin 1 Mmax 2 RMmax 3
dmin 10 dmax 1,000 δdd 0.1
Rmin 6 Rmax 6 RS 0.5
umin 1 umax 2

Table 8.20: Parameters for the first small instance of the RTDG.

Parameter Value Parameter Value Parameter Value

Network
parameters

Jmin, Jmax 1,000 Amin, Amax 50 Ωmin,Ωmax 50
δSupplier 0.5 δΩ

supplier 0.0 C∗ 1.5
Smin 1 Smax 4
Pmin 1 Pmax 4

Resource
parameters

Mmin 1 Mmax 3 RMmax 10
dmin 10 dmax 1,000 δdd 0.1
Rmin 20 Rmax 20 RS 0.5
umin 1 umax 2 RF 0.5

Table 8.21: Parameters for the first medium instance of the RTDG.

For the small and medium test instances, the same local runtimes as for the deterministically
generated instances were chosen, respectively. Due to the number of generated modes and in-
volved resources, the large instance required more time as preliminary experiments suggested:
7,200s of total runtime and a limit of 240s for calling the solving module. As fewer activities were
involved, we reduced the weighting for the maximum lateness. The following weights were used:
wml = 90.1% , wtl = 9% , wms = 0.9%.

8.3.3 Test results

As for the deterministically generated instances, coordination always improved the upstream
planning solution. Moreover, for all randomly generated test instances, coordination was also
able to beat hard- and soft-constrained centrally computed results.

Figure 8.39 compares centrally computed and coordinated results for the small instance with
δΩ
supplier = 0.0. We can observe that parallel coordination quickly reduces the lateness of the up-

stream planning solution. On average, coordination also achieves better results than the centrally
applied GA, which apparently gets stuck at a local optimum of 6,500. Detailed results are listed
in Table 8.23. Calling 299 times the operators, DEAL was in average able to decrease the central

Parameter Value Parameter Value Parameter Value

Network
parameters

Jmin, Jmax 5,000 Amin, Amax 500 Ωmin,Ωmax 500
δSupplier 0.5 δΩ

supplier 0.0 C∗ 1.6
Smin 1 Smax 3
Pmin 1 Pmax 3

Resource
parameters

Mmin 1 Mmax 3 RMmax 15
dmin 10 dmax 1,000 δdd 0.2
Rmin 50 Rmax 50 RS 0.2
umin 1 umax 2 RF 0.4

Table 8.22: Parameters for the large instance of the RTDG.

8.3. RANDOMLY GENERATED TEST INSTANCES 219

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 11000

 12000

 0 200 400 600 800 1000 1200 1400 1600 1800

w
ei

gh
te

d
la

te
ne

ss

runtime

central
parallel, pop. size 12

parallel, pop. size 12, from scratch

Figure 8.39: Comparison of weighted lateness of parallel coordination and central runs for the
small randomly generated test instance with δΩ

supplier = 0.0.

Second priority External lateness
Domain Statistic Makespan Max Total Weighted

Central
min 19,802 4,660 18,522 5,920
avg 20,137 4,909 22,406 6,500
max 20,833 5,655 25,582 7,467

st
an

da
rd OEM

min 18,697 (−12%) 3,609 (−41%) 8,899 (−68%) 4,090 (−49%)
avg 19,134 (−9%) 3,984 (−35%) 11,532 (−58%) 4,670 (−42%)
max 19,827 (−6%) 4,743 (−22%) 15,033 (−45%) 5,678 (−29%)

Supplier
min 17,703 (−12%) 0 (±0%) 0 (±0%) 0 (±0%)
avg 18,073 (−10%) 0 (±0%) 0 (±0%) 0 (±0%)
max 18,941 (−6%) 0 (±0%) 0 (±0%) 0 (±0%)

fr
om

sc
ra

tc
h

OEM
min 19,085 (−9%) 4,001 (−34%) 10,568 (−62%) 4,598 (−43%)
avg 19,350 (−8%) 4,258 (−30%) 13,241 (−52%) 5,074 (−37%)
max 19,755 (−6%) 4,671 (−23%) 16,532 (−40%) 5,749 (−29%)

Supplier
min 18,130 (−10%) 0 (±0%) 0 (±0%) 0 (±0%)
avg 18,423 (−8%) 0 (±0%) 0 (±0%) 0 (±0%)
max 18,869 (−6%) 0 (±0%) 0 (±0%) 0 (±0%)

Table 8.23: Comparison of average (avg), minimum (min) and maximum (max) values of 10 runs
of parallel coordination with 10 centrally computed runs after 1,800s, local runtime
13s, full set of operators, small randomly generated instance, δΩ

supplier = 0.0. The num-
bers in parentheses denote the relative difference from the average upstream planning
solution.

solution by 28%. Additionally a parallel coordination was tested, where the possibility to carry
over previous GA-solutions30 when initializing a local optimization was switched off. We will de-
note such a coordination as coordination from scratch. Figure 8.39 and Table 8.23 show that the
coordinaton from scratch has a small decrease in average performance. However, results do not

30As discussed in Section 7.9, carrying over previous solutions was done in two ways: by initializing the first GA-
individual by means of back-encoding an existing schedule of an existing DEAL-solution and by injecting additional
GA-individuals into the initial GA-population.

220 CHAPTER 8. COMPUTATIONAL EVALUATION

differ dramatically for the small instance.

Results are similar if δΩ
supplier is increased to 0.3 or 0.7 respectively. The related figures F.11 and

F.12 and tables G.18 and G.18 can be found in the Appendix. Due to the randomized generation
of modes and resource assignments, it is difficult to figure out why DEAL is able to beat the
centrally computed results. It can be argued that the same causes as for the DTDG will hold:
artificially introduced due dates and information of DEAL operators that contribute to steering
the search process in the right direction. For the medium-sized instance with δΩ

supplier = 0.0 similar
observations can be made, cf. Figure F.13 and Tables G.20 in the Appendix. Given the runtime
settings, DEAL calls in average 410 times an operator for coordinating a medium instance. For
the medium-sized instance with δΩ

supplier = 0.5, we additionally tested the performance of the
coordination from scratch. Results are shown by Figure 8.40 and Table G.21 (in the Appendix).

 60000

 80000

 100000

 120000

 140000

 160000

 180000

 200000

 0 500 1000 1500 2000 2500 3000 3500

w
ei

gh
te

d
la

te
ne

ss

runtime

central
central, soft constrained

parallel, pop. size 12
parallel, pop. size 12, from scratch

Figure 8.40: Comparison of weighted lateness of parallel coordination and central runs for the
medium-sized randomly generated instance with δΩ

supplier = 0.5.

It can be seen that results get significantly worse, if previous results are not carried over for
initializing a new GA-population. Apparently, with a growing problem size the gap between
standard coordination and coordination from scratch gets larger. This can be explained intuitively.
On the one hand, the problem complexity increases. The GA simply takes more time for finding
good solutions. Hence, reusing results has a larger effect if test instances are larger. On the other
hand, larger test instances might provide more flexibility: if activity lists are longer, probability
might increase that at least parts of a previous result can be reused successfully.

Figure 8.41 shows a convergence plot of central computation standard and from scratch co-
ordination for the large randomly generated instance. Related results can be found in Table G.22
in the Appendix. Due to the large local runtime, only few individuals can be constructed during
coordination. In average, the OEM called operators 77 times. The figure shows that in average the

8.4. ADDITIONAL TESTS FOR THE STOCHASTIC SELF-ADAPTION OF OPERATORS 221

 4.5e+006

 5e+006

 5.5e+006

 6e+006

 6.5e+006

 7e+006

 7.5e+006

 8e+006

 8.5e+006

 9e+006

 9.5e+006

 0 1000 2000 3000 4000 5000 6000 7000

w
ei

gh
te

d
la

te
ne

ss

runtime

central
parallel, pop. size 12

parallel, pop. size 12, from scratch

Figure 8.41: Comparison of weighted lateness of parallel coordination and central runs for the
large randomized scenario, δΩ

supplier = 0.0.

coordination process quickly improves the lateness after initialization but gets then gets slower
and slower in finding improved solutions. As for the medium-sized instance, a coordination from
scratch exhibits a significantly worse convergence.

8.4 Additional tests for the stochastic self-adaption of operators

8.4.1 Reducing the set of operators

In Chapter 7, we discussed several operators that enable the OEM to compute new proposals.
Moreover, two self-adaption schemes were presented: a deterministic one relying on an initial
list of operator specifications that is subsequently re-sorted and a stochastic one employing tech-
niques from Ant Colony Optimization. The above sections showed that both schemes are able to
reduce the lateness of the joined schedules during coordination. However, two question remain:
Which self-adaption scheme is advantageous and are all operators actually needed? To tackle the
first question, most of the DTDG instances were solved again using the stochastic self-adaption in
a parallel coordination with a population size of 12. Moreover, we tried to reduce the operator set
using deterministically and randomly generated instances. To do so, the operators were ranked
according to their performance within the stochastic self-adaption in the chosen test instances.
For each operator, performance was measured as the fraction of successful operator applications
(the constructed individual was not classified as redundant and the constructed child achieved
a better global ranking than the parent) over all applications of this operator. Based on the per-
formance information, we derived a reduced set of operators. More details on retrieving this set

222 CHAPTER 8. COMPUTATIONAL EVALUATION

Instance
Deterministic
self-adaption Stochastic self-adaption

Full set Full set Reduced set More reduced set
D

T
D

G

Small setup −53% −48% −24% −37%
Medium setup −100% −100% −100% −100%
Large setup −98% −99% −97% −97%
Small product mix −83% −84% −84% −82%
Medium product mix −87% −87% −84% −83%
Large product mix −79% −71% −66% −65%
Medium breakdown −100% −100% −100% −100%
Large breakdown, 1st variant −13% −8% −8% −7%
Large breakdown, 2nd variant +120% +120% +153% +154%

R
T

D
G

Small, δΩ
supplier = 0.0 n.a. −28% −23% −23%

Small, δΩ
supplier = 0.3 n.a. −35% −27% −26%

Small, δΩ
supplier = 0.7 n.a. −47% +27% +23%

Medium, δΩ
supplier = 0.0 n.a. −56% −58% −55%

Medium, δΩ
supplier = 0.5 n.a. −39% −37% −37%

Large, δΩ
supplier = 0.0 n.a. −45% −45% −42%

Table 8.24: Average relative differences of weighted lateness from central, soft-constrained solu-
tions for different test instances and operator sets.

Ranking DTDG RTDG
Setup instances Product mix & breakdown

instances
1. SSB|FWD|RA (57%) SSB|FWD|RA (85%) PLX (78%)
2. FS|PDD (50%) IDD|FWD|RA (74%) SSB|FWD|RA (73%)
3. IDD|FWD|RA (47%) LX (72%) RA|FDS|PDD (66%)
4. RMD|FWD|RA (41%) RRD|LA|RA (71%) FS|ICR|FWD|RA (60%)
5. RA|FDS|PDD (38%) FS|RMD|LA|RA (67%) IDD|FWD|RA (59%)
6. RRD|FWD|RA (37%) PLX|FWD|LA|RA (66%) RMD|LA|RA (59%)

Table 8.25: The six most successful operators for the stochastic self-adaption and the full operator
set. The values in parentheses denote the operator performance.

and its composition are presented later. After reevaluating the test instances with the reduced
set we were able to reduce the set of operators even further. Table 8.24 gives an overview of the
chosen test instances and the relative deviation of each operator set from the average central, soft-
constrained solution. We can observe that performance on average declines a bit if the operator
set gets smaller, but still is of considerable strength. Moreover, it can be seen, that there is no
large deviation between deterministic and stochastic operator self-adaption for the test instances
generated by the DTDG.

To evaluate the performance of the full operator set, we divided the test instances into three
classes: deterministically generated test instances with setup times, deterministically generated
test instances without setup times and randomly generated test instances. This division was mo-
tivated by the intuition that each class has different characteristics. The previous sections showed
that alignment-based operators perform poorly on instances including setup times. Hence, for in-
stances deterministically generated from the setup subscenario, we replaced all alignment-based
operators with their hybrid versions (performing a reoptimization instead of a left-alignment).
Table 8.25 shows the six best operators31 for each set.32

It can be seen that some operators occur in every class, for example the operators SSB|FWD|RA

31Cf. Table 7.3 for an overview of the abbreviations (for hybrid sorting–alignment operators the left-alignment step (LA)
is replaced by a rescheduling (FWD)).

32Regarding the performance of crossover operators, the following caveat should be mentioned. Crossover combines
a parent individual with other individuals of the population. However, to measure the improvement, only the parent
individual is considered. Hence, if the selected parent is an individual with low fitness, an improvement might have
some natural probability, possibly leading to biased performance values. It is not clear to what degree this effect influ-
ences the performance values. We kept the crossover operators since we believe that combining several individuals of the
population helps in steering the search process in the right direction.

8.4. ADDITIONAL TESTS FOR THE STOCHASTIC SELF-ADAPTION OF OPERATORS 223

Ranking DTDG RTDG
Setup instances Product mix & breakdown

instances
1. SSB|FWD|RA (62%) SSB|FWD|RA (78%) PLX (78%)
2. IDD|FWD|RA (47%) RRD|LA|RA (72%) IDD|FWD|RA (66%)
3. RMD|FWD|RA (40%) IDD|FWD|RA (71%) RRD|LA|RA (60%)

Table 8.26: The three most successful operators for the stochastic self-adaption and the reduced
operator set. The values in parentheses denote the operator performance.

parameter value parameter value parameter value

network
parameters

Jmin, Jmax 1,000 Amin, Amax 500 Ωmin,Ωmax 500
δSupplier 0.5 δΩ

supplier 0.0 C∗ 1.498
Smin 1 Smax 1
Pmin 1 Pmax 1

resource
parameters

Mmin 1 Mmax 1 RMmax 1
dmin 10 dmax 1,000 δdd 0.1
Rmin 2 Rmax 2 RS 0.5
umin 1 umax 2 RF 1.0

Table 8.27: Parameters for the first additional medium-sized scenario of the RTDG.

or IDD|FWD|RA. Other operators seem to work well just for a specific class. We chose the union
of the six best operators for every class as the reduced operator set. This reduced set consisted of
12 operators in total.

Using this reduced operator set, the test instances were again evaluated using the parallel
coordination employing a population size of 12 and the stochastic self-adaption scheme. For these
results, the three best operators for every class are listed in Table 8.26. Again, the union of the three
best operators for every class was chosen as the more reduced operator set, which consists of five
operators in total. Finally, the test instances were again evaluated using the latter set.

Regarding all test classes and the parallel coordination employing this more reduced operator
set and a population size of 12, the operators showed the following performance. Linear crossover
of the whole population without rescheduling (PLX) was able to improve a solution in 66% of all
cases. Rescheduling within hard bounds (SSB|FWD|RA) succeeded in 64% of cases. The perfor-
mance for rescheduling with penality (IDD|FWD|RA) was 61%. Relaxing all activities followed
by a realignment (RRD|LA|RA) was able to improve 48% of the parent solutions. The hybrid
version of relaxing the most delayed activities (RMD|FWD|RA) also had a performance of 48%.

Obviously, we can reduce the operator set further and further. However, since we are evalu-
ating only a nonrepresentative set of test instances, the question arises to what degree this pro-
ceeding is useful. We decided to stop here and recommend the above five operators for future
practical implementations.

8.4.2 Additional tests using the reduced set of operators

Using the more reduced operator set, four medium-sized test instances were additionally eval-
uated. We generated two of them with the RTDG and the other two with the DTDG. Table 8.27
shows the input parameters for the RTDG of the first test instance.

According to the parameters, a test instance with a very simple structure is created. Supplier
and OEM have a single resource each with constant capacity. Activities utilize either the half or
the full capacity. Precedence constraints only exist between the planning domains, but not within
a planning domain. In other words, each OEM activity has exactly one predecessor in the supplier

224 CHAPTER 8. COMPUTATIONAL EVALUATION

domain and each supplier activity has exactly one successor in the OEM domain. By using this
test instance we wanted to investigate the performance of DEAL in environments with only a
few production stages. Figure 8.42 shows the related convergence plot, detailed numbers can be
found in the Appendix (Table G.23).

 1.7e+006

 1.8e+006

 1.9e+006

 2e+006

 2.1e+006

 2.2e+006

 2.3e+006

 2.4e+006

 2.5e+006

 2.6e+006

 0 500 1000 1500 2000 2500 3000 3500

w
ei

gh
te

d
la

te
ne

ss

runtime

central
parallel, pop. size 12

Figure 8.42: Comparison of weighted lateness of parallel coordination and central runs for the first
additional medium-sized randomized scenario, more reduced operator set.

In the figure it can be seen that DEAL shows a slightly better performance (with respect to the
scaling of the y-axis). After 1 hour, the coordination exhibits in average a 14 % lower weighted
lateness than the central solution. We were then interested in investigating if this behaviour
changes if more production stages are added. Other parameters remaining equal, we changed
Amin = Amax = 50 as well as Ωmin = Ωmax = 50. Hence, for 1,000 activities and only a single
allowed predecessor and successor per activity, the generated instance exhibits not only two, but
in average twenty production stages, distributed evenly between the planning domains. Figure
8.43 shows the related convergence plot, detailed numbers can be found in the Appendix (Table
G.24). The values of weighted lateness are smaller, since only the last activity in each connected
component of the activity network is assigned a due date. Again, the parallel coordination out-
performs centrally computed results. This can be regarded as indication that DEAL does not only
scale well with respect to the number of involved activities, but also with respect to the number
of involved production stages.

Until now, calendars have not been considered. Thus, we also tested the behavior of DEAL
for test instances involving calendars. For this purpose, two additional medium-sized instances
of the complete benchmark scenario were generated using the DTDG. We assume that produc-
tion is possible workdays during 6 am to 10 pm but not on the weekends (days 6 and 7). As
discussed in chapters 5 and 7 the breaks are assumed to be preemptive, i.e. the last activities in

8.4. ADDITIONAL TESTS FOR THE STOCHASTIC SELF-ADAPTION OF OPERATORS 225

 340000

 360000

 380000

 400000

 420000

 440000

 460000

 480000

 500000

 520000

 540000

 560000

 0 500 1000 1500 2000 2500 3000 3500

w
ei

gh
te

d
la

te
ne

ss

runtime

central
parallel, pop. size 12

Figure 8.43: Comparison of weighted lateness of parallel coordination and central runs for the
second additional medium-sized randomized scenario, , more reduced operator set.

the productive shift are stretched by the breaks and are continued by the next shift. The related
demand matrices can be found in the Appendix, Table G.25 and Table G.26. Demands are no
longer equally distributed as previously but exhibit irregular patterns. For the first instance, a
transportation resource was additionally modelled, that allowed a transport at midnight every
day. Transportation introduces a nonpreemptive component into the test instance. For both in-
stances, DEAL outperforms hard- and soft-constrained central runs. Related figures can be found
in the Appendix (figures F.14 and F.15 and tables G.27 and G.28). We can regard these results as
an indication that calendars do not hamper the performance of DEAL.

226 CHAPTER 8. COMPUTATIONAL EVALUATION

CHAPTER 9

Conclusion

In this thesis we presented a Decentralized Evolutionary Algorithm (DEAL) for reconciling inter-
dependent detailed schedules of a manufacturer and multiple suppliers. After the introduction in
Chapter 1, Chapter 2 gives an overview about Advanced Planning Systems and their modules. In
Chapter 3, we defined the term Collaborative Planning and reviewed state-of-the-art literature. It
became obvious that for designing a coordination mechanism, three fundamental requirements
have to be considered: Complex planning problems have to be supported, sensitive data must
not be disclosed and incentive compatibility has to be guaranteed, preventing partners from sup-
plying biased input to the mechanism. To ensure the latter, most present approaches rely on side
payments, payments made in an agreement by one or more parties to other parties to induce
them to join the agreement. Though this idea seems to be logical at first sight, side payments
are not without problems. As argued, such payments may - if not properly designed within the
mechanism - provide possibilities for cheating and probing the other partner to infer sensitive
information instead of preventing them from doing so. Thus, we did not integrate such payments
into DEAL, but restricted it to generating solutions that are acceptable to all partners. Naturally, this
decision prunes the search space, possibly making the global optimum unattainable. However, it
is questionable if this is a real drawback. Usually, side payments are hardly deducible from con-
trol costs of objective functions and for many practical problems the optimal solution is usually
not attained anyway. For short-term planning it was argued that it might be rather advantageous
to shift the focus from cash flows in accountancy (optimizing monetary values) to availability in
logistics (optimizing material flow and resource utilization by means of control cost).

It appears to be difficult to consider all of above three requirements to the fullest in general.
Our intention was to focus on a setting of limited scope and to develop a coordination mechanism
that is practically acceptable in such a setting. Practical acceptability adds further requirements:
The mechanism should handle multiple domains, different optimization engines and different
optimization models. It should be scalable to large problems and able to handle degraded, subop-
timal solutions. Moreover, due to the limited time before escalation, short-term scheduling most
urgently demands coordination.

We believe Evolutionary Algorithms to be the logical choice under such conditions. They are

227

228 CHAPTER 9. CONCLUSION

not restricted to a particular type of problem requiring only a black-box fitness computation and
are, as a population-based approach, easy to parallelize. In Chapter 4, we discussed how these
properties can be used for Collaborative Planning. Essentially, the idea is to adjust the data of
underlying planning problems by an evolutionary process, using local optimization engines for
decoding. As only the local data, but not the related optimization models are changed, different
optimization engines can be connected to our framework. For evaluating different proposals, we
disguised sensitive data and limited possibilities for cheating by transmitting only ordinal rank-
ings (reflecting a proposal’s quality) between the partners.

Chapter 6 presents SAP’s tool for short-term production planning, the Detailed Scheduling
(DS) Optimizer. Moreover, the underlying mathematical problem, the Resource-Constrained Pro-
ject Scheduling Problem (RCPSP), which belongs to the class of NP-hard problems, was formu-
lated in Chapter 5. To tackle the problem’s combinatorial complexity, the DS Optimizer itself
employs an Evolutionary Algorithm.

In Chapter 7, a customization of DEAL to the DS Optimizer was presented. First, we clar-
ified how planning domains using the DS Optimizer interact with each other. Essentially, the
domains are interdependent on chosen delivery sequences that determine the constraints of local
optimization problems. These delivery sequences are determined by proposed dates of delivery
transmitted from one planning domain to the other. In particular, DEAL was customized to han-
dle multiple suppliers delivering to one manufacturer. A possible extension to three tiers was
additionally discussed. Second, several operators were presented for analyzing current and past
interorganizational solutions and deriving new promising proposals. Third, further means were
discussed to ensure efficiency of the algorithm: methods to detect and eliminate duplicates and to
support a self-adaption of operators. In fact, DEAL’s customization is a metametaheuristic. The top-
level metaheuristic is concerned with aligning constraints (by calibrating the models’ data) of the
local optimization problems, while the low-level metaheuristic of the DS Optimizer is used to cal-
culate the related detailed schedules. This opens interesting opportunities, for example carrying
over low-level solutions from one constraint setting to the other.

Chapter 8 provides a computational evaluation. We first give examples for typical building
blocks that lead to conflicting delivery sequences, even though planning domains share the same
objectives. Two test data generators (TDGs) were developed. A deterministic one that is a sim-
plified simulation of the standard SAP planning procedure and a randomized one, allowing the
construction of RCPSPs to certain complexity targets. The TDGs also differ in the type of problem
they produce: The deterministic TDG generates problems with a flow-shop characteristic, while
the randomized one generates problem characteristica typical for job-shop problems.

Various degrees of freedom exist to set up the test instances and the test program, such as the
size of problem instances, the amount and distribution of runtime or different population sizes.
Due to the numerous possibilities, we were able to give a first impression about the effectiveness
of DEAL rather than to provide a “complete” computational evaluation. Nevertheless, several
interesting observations can be made.

First, it is worth highlighting that DEAL showed an overall good performance, always im-
proving the upstream planning solution and sometimes even improving centrally computed re-
sults. We argued that several factors contribute to this. Proposed dates of delivery imply certain
tradeoffs in the local optimization problem. Rather than the dates’ absolute values, these tradeoffs
steer the local optimization methods. Hence, a crude alignment of delivery dates by DEAL seems
to be sufficient—the exact setting of delivery dates is done subsequently by the local optimization

229

methods themselves. Moreover, DEAL can be regarded as a decomposition method working on
multidomain problems that exhibit specific properties. For example, there are no cyclic dependen-
cies between the different planning domains. We argued that DEAL makes use of these problem
structures and hence is able to even beat the performance of the centrally applied DS Optimizer.

Second, according to the computational evaluation, DEAL does not require more overall run-
time to achieve the results than the centrally applied DS Optimizer. This is due to the fact that
considerably short local runtimes for computing and evaluating proposals proved to be sufficient.
One feature of DEAL is seen as an essential precondition in this regard: When initializing a lo-
cal optimization, DEAL carries over previous local results pertaining to other proposals. Thus, a
whole coordination run can be regarded as a single optimization process. Whenever a proposal
is exchanged, the process is interrupted and the model data are slightly changed. Shorter local
runtimes hence allow more proposals to be exchanged. Due to the combinatorial complexity of
the RCPSP, a frequent exchange of proposals is advantageous.

Third, DEAL showed a very good scaling. Even for larger problem instances a good coor-
dinated solution was found in reasonable time. Although complexity increases, larger problem
instances usually allow more freedom of rescheduling.

Fourth, it could be observed that larger population sizes lead to better results. This is a com-
mon property of Evolutionary Algorithms: Larger populations have a better chance of overcom-
ing local optima, at the cost of a slower convergence, however. By computing and evaluating
proposals in parallel, DEAL allows larger population sizes without prolonging runtime. As com-
putational power is today available at low costs, the parallel coordination seems to be recom-
mendable.

Fifth, we showed that DEAL is able to successfully tackle complex SC structures with multiple
suppliers that are also delivering to other customers, not taking part in the coordination process.
By using a proper ranking scheme and calibrating the local optimization methods, DEAL works
fully automated, generating only solutions that are acceptable by all involved partners.

Sixth, we were able to reduce the set of operators, leaving only the five high-performance ones.
Last but not least, further complicating problem properties, such as break or transport calendars
do not seem to provide any problem to DEAL.

However, there exist several caveats that should be mentioned as well. First of all, the number
of problem instances used for computational evaluation is limited. Certain problem ingredients,
such as maximum time lags or mode or setup costs have not been considered at all. Though
we tried to simulate the standard SAP planning procedure as realistically as possible, there is no
guarantee that the problem instances exhibit all those properties found in reality. Moreover, DEAL
has only been verified for the DS Optimizer. Though the connection of other optimization tools is
theoretically possible, there is no empirical evidence for the hypothesis that DEAL will actually
work with them. Also the presented operators for constructing proposals are specially adapted
to the DS Optimizer—again, there is no guarantee that they will work if other solution methods
are used. In general, it is difficult to characterize the fitness landscape and operators have been
build on intuition and the on the results of preliminary experiments. Similar uncertainties hold
for three and more tiers. Possibilities for tackling larger supply networks were only discussed
very briefly—again there is no validation that the presented ideas will work.

The computational evaluation is not without problems, as all results are computed by meta-
heuristics. As we have seen, it is hard to define any reference points for evaluating DEAL. Cen-
trally computed results are sometimes better, sometimes worse. For some instances, upstream

230 CHAPTER 9. CONCLUSION

planning results are already better than the central ones. However, the performance of upstream
planning itself is apparently dependent on local runtimes. Moreover, objective weights have a
large influence on all results.

In addition, some of our assumptions are critical: First, costs for buffering intermediate items
delivered from supplier to manufacturer have not been considered at all. However, these costs are
relevant in a practical setting as they lock up capital. Including such holding costs into the calculus
introduces a new objective, possibly hampering the exploration of different delivery sequences.

Moreover, an immediate transportation in zero time at no cost from one plant to the other
is a high abstraction from the real world. In reality, orders to be delivered obviously need to be
grouped together as transportation is costly. Such an intermediate transportation planning will
prolong the coordination and might further distort coordination results.

It should also be noted that the computation of the upstream planning solution does not match
reality. Usually, an initial setting is bound to frame contracts and prenegotiated quantities and not
achieved by calling different scheduling metaheuristics in a certain sequence.

Finally, it should be emphasized that the proposed coordination mechanism must not be re-
garded as a replacement for hierarchical coordination employing Master Planning. Essentially,
Master Planning efficiently allocates quantities over a medium-term planning interval and then
generates the orders for detailed scheduling. DEAL is only able to change the sequence of orders.

Concluding, we believe that DEAL is the right means for resolving short-term bottlenecks. As
only limited time remains until execution, a readjustment of quantities is hardly possible in such
a setting. Moreover, sufficient safety stock or production capacity should usually be available for
most intermediate goods. Only some orders are critical and holding costs should be negligible for
a short time period. We believe that in many real-world cases production plans provide enough
flexibility for a rearrangement. However, due to the interdependency of production activities, a
manual adjustment is a very tedious process. This is the point where DEAL can provide decision
support in facilitating the rearrangement by an automated process. Obviously, this requires that
all partners employ planning tools that support such automation.

Within the thesis, possibilities for further research have occasionally been highlighted. There
are several details that could be improved. For example, a dynamic allocation of runtime—short
local runtimes at the beginning of coordination to exchange many proposals and long runtimes
at the end for a good exploitation—seems very promising. To introduce the concept into practice,
it might also be advantageous to further simplify it. Instead of complex coordination processes,
more simple strategies might already enhance today’s successive planning dramatically. For ex-
ample, it might already be sufficient if a manufacturer proposes several delivery sequences only
once and the suppliers vote for the best one. Finally, an extension to Supply Chains with more
than three tiers provides a challenging future topic.

Appendices

231

APPENDIX A

The simple Production Planning run algorithm

The following tables and algorithms define the procedure for deterministically generating test
instances as discussed in Section 8.2.1.2.

g index of production stage
s index of SPPM
p index of product
P set of all products
Is set of input products for SPPM s
Os set of output products for SPPM s
d index of demand
λ index of replenishment elements
v index of bucket (starting with 1)
V set of all buckets

Table A.1: Additional indexes and index sets of the simple Production Planning algorithm.

Sg set of SPPMs on production stage g
gmax maximum number of production stages
bp maximum lot size of product p
q initial total demand
dpv demand of p in bucket v
Ms set of modes for PPM s
lsm length (duration) if SPPM is executed once in mode m

Table A.2: Additional data of the simple Production Planning algorithm.

233

234 APPENDIX A. THE SIMPLE PRODUCTION PLANNING RUN ALGORITHM

Λd Associated replenishment elements to satisfy demand d
Λp Nonassociated replenishment elements of product p
Λ Set of all replenishment elements
sj SPPM of activity j
zj Numbers of executions of the SPPM relating to activity j
Λ̂j Replenishment elements produced by j
D̂j Demand elements needed by j
tλ Time after which replenishment element λ can be used
qdd (still uncovered) Quantity of demand d
qλ (still available) Quantity of replenishment λ
nps Number of required / produced products if SPPM is run once
Dp Set of demands for product p
tdd Time of demand
pd Product of demand
jd Activity of demand d
jλ Activity of replenishment λ

Table A.3: Additional variables of the simple Production Planning algorithm.

Algorithm 9: simplePPrun(q, T)
input : total initial demand q

length of planning horizon T
J := Λ := ∅1

forall products p ∈ P do2

Λp := ∅3

end4

createDemands (q, T))5

for production stage g = gmax to 0 do6

forall SPPMs s ∈ Sg do7

createReplenishmentElements (s)8

end9

aggregateDemands ()10

createAdditionalPegging ()11

end12

235

Algorithm 10: createDemands(q, T)
input : total initial demand q

length of planning horizon T
local variables: temporal demand x contained in lots with maximum size

temporal demand y contained in other lots
d := 01

forall buckets v ∈ V do2

forall products p ∈ P do3

Dp := ∅4

x := 05

for i := 1 to
⌊
ppv

bp

⌋
do6

d := d+ 17

qdd := bp8

tdd :=
⌊
T · v
|V |

⌋
9

x := x+ bp10

end11

y := dpv − x12

if y > 0 then13

d := d+ 114

qdd := y15

tdd :=
⌊
T · v
|V |

⌋
16

end17

Dp := Dp ∪ {d}18

pd := p19

end20

end21

236 APPENDIX A. THE SIMPLE PRODUCTION PLANNING RUN ALGORITHM

Algorithm 11: createReplenishmentElements(s)
input: s: selected SPPM
forall products p ∈ Os do1

forall demands d ∈ Dp do2

Λd := ∅3

if qdd > 0 then4

j := |J |+ 15

J := J ∪ {j}6

Λ̂j := ∅7

zj := min
{

min
p′∈Is

(
bp′

np′s

)
, min
p′∈Os

(
bp′

np′s

)
,
⌈
qdd

nps

⌉}
8

forall modes m ∈Ms do9

djm := lsm · zj10

end11

/* Setting start and finish dates already creates a crude
schedule, not respecting capacity */

fdj := tdd12

sdj := fdj − min
m∈Mj

(djm)
13

forall products p′ ∈ Os do14

λ := |Λ|+ 115

tλ := fdj16

if p = p’ then17

Λd := Λd ∪ {λ}18

qdp := qdp − za · np′s19

else20

qλ := za · np′s21

Λp′ := Λp′ ∪ {λ}22

end23

Λ := Λ ∪ {λ}24

Λ̂j := Λ̂j ∪ {λ}25

jλ := j26

end27

forall products p′ ∈ Is do28

d :=

(∑
p∈P
|Dp|

)
+ 1

29

pd := p30

tdd = sdj31

qdd := zj · np′s32

Dp′ := Dp′ ∪ {d}33

D̂j := D̂j ∪ {d}34

jd := j35

end36

end37

end38

end39

237

Algorithm 12: aggregateDemands
local variables: Temporary demand sets D∗ and D∗∗

forall products p ∈ P do1

D∗ = Dp2

Sort demand elements in Dp according to ascending dates3

while D∗ 6= ∅ do4

d = earliest element of D∗5

D∗ = D∗\ {d}6

D∗∗ = D∗7

while qdd < bp and D∗∗ 6= ∅ do8

d′ = earliest element of D∗∗9

D∗∗ = D∗∗\ {d′}10

if qdd + qdd′ ≤ bpd
and tdd ≤ tdd′ then11

qdd := qdd + qdd′12

D̂jd′ := D̂jd′\ {d
′}13

Dp := Dp\ {d′}14

D̂jd′ := D̂jd′ ∪ {d}15

end16

end17

end18

end19

Algorithm 13: createAdditionalPegging
local variables: Temporary sets D∗ and Λ∗∗

Temporary quantity x
Sort demand elements according to ascending dates1

Sort replenishment elements according to ascending dates2

forall products p ∈ P do3

Λ∗ := Λp4

D∗ = Dp5

while D∗ 6= ∅ and Λ∗ 6= ∅ do6

d = earliest element of D∗7

D∗ = D∗\ {d}8

while qdd > 0 and Λ∗ 6= ∅ do9

λ = earliest element of Λ∗10

Λ∗ := Λ∗\ {λ}11

if tλ ≤ tdd then12

x := min {qdd, qλ}13

qλ = qλ − x14

qdd = qdd − x15

Λd := Λd ∪ {λ}16

end17

end18

end19

end20

238 APPENDIX A. THE SIMPLE PRODUCTION PLANNING RUN ALGORITHM

Algorithm 14: createRCPSPInstance
local variables: Temporary set of activities J∗

create resources, calendars and setup matrices according to master data1

JS := ∅2

J∗ := J3

forall activities j ∈ J∗ do4

forall modes m ∈Mj do5

create primary resource utilization ujmr according to master data6

end7

Sj := Pj := ∅8

forall d ∈ D̂j do9

forall λ ∈ Λd do10

k := jλ11

Sj := Sj ∪ {}12

Pk := Pk ∪ {j}13

end14

end15

if related SPPM sj has setup activity then16

create new setup activity k17

JS := JS ∪ {k}18

J := J ∪ {k}19

Sk := {j}20

Pj := Pj ∪ {k}21

end22

end23

APPENDIX B

The OEM’s control procedure

The algorithms presented in the following define the OEM’s coordination logic in the customized
DEAL framework, cf. Section 7.10.

Algorithm 15: ControlProcedureOfOEM

ProcessIncomingMessagesOfOEM ()1

PorcessIdleIndividualsOfOEM ()2

if Number of waiting and idle individuals is below queuing size then3

if Mating pool does not contain enough parents to construct desired number of children then4

if Evaluation procedure finished then5

if Update procedure not started yet then6

Determine deletable individuals7

Send appropriate list of pertaining communication threads to each supplier8

end9

else10

if Evaluation procedure not started yet then11

Send request_rank message to each supplier12

end13

end14

end15

if Mating pool not empty then16

Take oldest individual of mating pool17

Construct empty individual as new child and set state to idle18

end19

end20

239

240 APPENDIX B. THE OEM’S CONTROL PROCEDURE

Algorithm 16: ProcessIncomingMessagesOfOEM

if Incoming start message from controller then1

Set up empty initial individual2

if Parallel mode then3

if Free solving unit available then4

Send solving_request to solving unit5

Set individual state to waiting6

Mark solving unit as busy7

end8

else9

Call DS Solving module10

Set individual state to idle11

end12

end13

if Termination criterion fulfilled then14

if Final solution not broadcasted yet then15

Select and broadcast final solution16

end17

if No further idle individuals then18

Send message with terminated to controller19

Terminate20

end21

end22

forall Incoming messages from solving units do23

Attach to related communication thread24

Store solution in individual25

Delete communication thread26

Mark solving unit as available27

Set individual state to idle28

end29

forall Incoming messages from suppliers do30

Update communication thread31

if Command: confirm_update then32

Delete related communication threads33

Delete all individuals that have no threads left and whose children have been con-34

structed
Set state of update procedure to finished if all suppliers have responded35

else36

if Evaluation message then37

Map ranking of threads to individuals38

Set state of evaluation procedure to finished if all suppliers have responded39

Select new parents to mating pool until queuing size has been reached40

else41

Update thread42

If counterproposals of all suppliers have arrived, set individual state to idle43

end44

end45

end46

241

Algorithm 17: ProcessIdleIndividualsOfOEM

if Population contains idle individuals then1

Select oldest idle individual2

if Solution available then3

if Solution pertaining to counterproposal then4

Set state to complete5

Send check_feasibility message containing solution to controller6

else7

Finish construction of proposed dates8

if Proposed dates are redundant then9

Delete solution and reinitialize individual as empty child10

else11

Construct proposal for each supplier with appropriate proposed dates12

forall Suppliers do13

if Proposal is redundant then14

Discard new proposal and add child to existing thread with similar15

proposal
end16

Connect child to new proposal17

Set state to waiting18

end19

end20

end21

else22

if Counterproposals have arrived then23

if Parallel mode then24

if Free solving unit available then25

Send solving_request to solving unit26

Set individual state to waiting27

Mark solving unit as busy28

end29

else30

Call DS Solving module31

end32

else33

Select operator to construct new proposed dates34

Analyze parent individual35

if Operator requires intermediate solution then36

if Parallel mode then37

if Free solving unit available then38

Send solving_request to solving unit39

Set individual state to waiting40

Mark solving unit as busy41

end42

else43

Call DS Solving module44

end45

end46

end47

end48

end49

242 APPENDIX B. THE OEM’S CONTROL PROCEDURE

APPENDIX C

The supplier’s control procedure

The algorithms presented in the following define a supplier’s coordination logic in the customized
DEAL framework, cf. Section 7.10.

243

244 APPENDIX C. THE SUPPLIER’S CONTROL PROCEDURE

Algorithm 18: ControlProcedureOfSupplier

if Termination requested then1

if No further idle individuals then2

Send message with command terminated to controller3

Terminate4

end5

end6

forall Incoming messages from solving units do7

Update communication thread8

Store solution in individual9

Delete communication thread10

Mark solving unit as available11

Set individual state to idle12

end13

forall Incoming messages from OEM do14

if Update request then15

Delete designated communication threads16

Delete all individuals that have no threads left and whose children have been con-17

structed
Send reply message with command: confirm_update18

else19

if Final solution then20

Implement final solution21

Set state to terminated requested22

else23

if Evaluation request then24

Rank all individuals25

Map ranking to communication threads26

Send reply message with ranking27

else28

if Redundant proposal then29

Connect thread to existing individual30

Reply according to existing counterproposal31

else32

Construct new individual33

Connect individual to thread34

Set individual state to idle35

end36

end37

end38

end39

end40

ProcessIdleIndividualsOfSupplier ()41

245

Algorithm 19: ProcessIdleIndividualsOfSupplier

if Population contains idle individuals then1

Select oldest idle individual2

if Proposal received then3

if Parallel mode then4

if Free solving unit available then5

Send solving_request to solving unit6

Set individual state to waiting7

Mark solving unit as busy8

end9

else10

Call DS Solving module11

end12

else13

Send downstream-related finish dates of individual as counterproposal to OEM14

Set individual state to complete15

end16

end17

246 APPENDIX C. THE SUPPLIER’S CONTROL PROCEDURE

APPENDIX D

The controller’s control procedure

The algorithm presented in the following defines the message exchange and debug functionality
in the customized DEAL framework, cf. Section 7.10.

Algorithm 20: ControlProcedureOfController

if Coordination not started yet then1

Send message with start command to OEM;2

else3

forall Incoming messages from planning domains do4

if Domain terminated then5

if All domains termintated then6

if Parallel mode then7

Stop coordination mode and terminate all processes;8

else9

Terminate process;10

end11

end12

else13

Store feasibility_check message in pool;14

if Pool of stored feasibility_checks contains messages belonging to one interor-15

ganizational solution then
Combine partial solutions to central solution;16

Check feasibility of central solution;17

Remove related messages from pool;18

end19

end20

end21

end22

247

248 APPENDIX D. THE CONTROLLER’S CONTROL PROCEDURE

APPENDIX E

Operator list for the deterministic self-adaption

Table E.1 defines the operator list used for the deterministic self-adaption of operators during the
computational evaluation, cf. Chapter 8.

249

250 APPENDIX E. OPERATOR LIST FOR THE DETERMINISTIC SELF-ADAPTION

Initial
position Operator name α

1 FS|PDD n.a.
2 FDS|PDD 1.0
3 PLX n.a.
4 LX n.a.
5 CX n.a.
6 RRD|LA|RA n.a.
7 RNB|LA|RA 0.75
8 RMP|LA|RA 0.75
9 RMD|LA|RA 1.0

10 FS|RMD|LA|RA 1.0
11 RC|FWD|RA n.a.
12 ICR|FWD|RA n.a.
13 FS|ICR|FWD|RA n.a.
14 ICB|FWD|RA 1.0
15 FS|ICB|FWD|RA 1.0
16 SSB|FWD|RA 1.0
17 IDD|FWD|RA 1.0
18 PLX|FWD|LA|RA n.a.
19 LX|FWD|LA|RA n.a.
20 CX|FWD|LA|RA n.a.
21 FDS|PDD 0.75
22 RMS|LA|RA 0.75
23 RNB|LA|RA 0.5
24 RMP|LA|RA 0.5
25 RMD|LA|RA 0.75
26 FS|RMD|LA|RA 0.75
27 ICB|FWD|RA 0.75
28 FS|ICB|FWD|RA 0.75
29 SSB|FWD|RA 0.75
30 IDD|FWD|RA 0.75
31 FDS|PDD 0.5
32 RMS|LA|RA 0.5
33 RNB|LA|RA 0.25
34 RMP|LA|RA 0.25
35 RMD|LA|RA 0.5
36 FS|RMD|LA|RA 0.5
37 ICB|FWD|RA 0.5
38 FS|ICB|FWD|RA 0.5
39 SSB|FWD|RA 0.5
40 IDD|FWD|RA 0.25
41 FDS|PDD 0.25
42 RMS|LA|RA 0.25
43 RMD|LA|RA 0.25
44 FS|RMD|LA|RA 0.25
45 ICB|FWD|RA 0.25
46 FS|ICB|FWD|RA 0.25
47 SSB|FWD|RA 0.25

Table E.1: Standard operator list for the deterministic self-adaption.

APPENDIX F

Additional figures

 5000

 10000

 15000

 20000

 25000

 30000

 0 200 400 600 800 1000 1200 1400 1600 1800

w
ei

gh
te

d
su

m
 o

f s
in

gl
e

ob
je

ct
iv

es

runtime

central, 1000x total lateness (semi-active)
central, 10x total lateness

central, 1x total lateness
central, 0.1x total lateness

central, 0.01x total lateness

Figure F.1: Average weighted sum of objectives of 10 central runs with different setup weights.

251

252 APPENDIX F. ADDITIONAL FIGURES

 5000

 10000

 15000

 20000

 25000

 30000

 0 200 400 600 800 1000 1200 1400 1600 1800

w
ei

gh
te

d
su

m
 o

f s
in

gl
e

ob
je

ct
iv

es

runtime

sequential, 1000x total lateness (semi-active)
sequential, 10x total lateness

sequential, 1x total lateness
sequential, 0.1x total lateness

sequential, 0.01x total lateness

Figure F.2: Average weighted sum of objectives of 10 sequential runs with different setup weights,
13s local runtime, deterministic self-adaption.

 0

 5000

 10000

 15000

 20000

 25000

 0 500 1000 1500 2000 2500 3000 3500

w
ei

gh
te

d
la

te
ne

ss

runtime

central
sequential

asynchronous
parallel, pop. size 1

parallel, pop. size 12

Figure F.3: Comparison of weighted lateness for parallel and sequential coordination and central
run for the medium instance of setup subscenario, two planning domains, 25s local
runtime, deterministic self-adaption.

253

 0

 1
00

0

 2
00

0

 3
00

0

 4
00

0

 5
00

0

 6
00

0

 7
00

0

 8
00

0

 9
00

0

 0
 2

00
 4

00
 6

00
 8

00
 1

00
0

 1
20

0
 1

40
0

 1
60

0
 1

80
0

weighted lateness

ru
nt

im
e

7s
 lo

ca
l r

un
tim

e
13

s
lo

ca
l r

un
tim

e
25

s
lo

ca
l r

un
tim

e
50

s
lo

ca
l r

un
tim

e

Figure F.4: Comparison of weighted lateness for different local runtimes for the parallel coordi-
nation with population size 12 for the small instance of the product mix subscenario.

254 APPENDIX F. ADDITIONAL FIGURES

 0

 1
00

0

 2
00

0

 3
00

0

 4
00

0

 5
00

0

 6
00

0

 7
00

0

 8
00

0

 9
00

0

 0
 2

00
 4

00
 6

00
 8

00
 1

00
0

 1
20

0
 1

40
0

 1
60

0
 1

80
0

weighted lateness

ru
nt

im
e

al
l o

pe
ra

to
rs

pr
op

ag
at

in
g

op
er

at
or

s
al

ig
nm

en
t-

ba
se

d
op

er
at

or
s

re
sc

he
du

lin
g-

ba
se

d
op

er
at

or
s

Figure F.5: Comparison of weighted lateness for different operators for the parallel coordination
with population size 12 for the small instance of the product mix subscenario.

255

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 0 500 1000 1500 2000 2500 3000 3500

w
ei

gh
te

d
la

te
ne

ss

runtime

central
central, soft-constrained

sequential
asynchronous

parallel, pop. size 1
parallel, pop. size 12s

Figure F.6: Comparison of weighted lateness for parallel and sequential coordination and central
run for the medium instance of the product mix subscenario, two-partner case.

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 0 500 1000 1500 2000 2500 3000 3500

w
ei

gh
te

d
la

te
ne

ss

runtime

central
sequential

asynchronous
parallel, pop. size 1

parallel, pop. size 12s

Figure F.7: Comparison of weighted lateness for parallel and sequential coordination and central
run for the medium instance of the product mix subscenario, including transport dis-
ruptions.

256 APPENDIX F. ADDITIONAL FIGURES

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 0 500 1000 1500 2000 2500 3000 3500

w
ei

gh
te

d
la

te
ne

ss

runtime

central
central, soft-constrained

sequential
asynchronous

parallel, pop. size 1
parallel, pop. size 12

Figure F.8: Comparison of weighted lateness for parallel and sequential coordination and central
run for the medium instance with fine-grained demand of the product mix subscenario.

 0

 500000

 1e+006

 1.5e+006

 2e+006

 2.5e+006

 0 500 1000 1500 2000 2500 3000 3500

w
ei

gh
te

d
la

te
ne

ss

runtime

central
central, soft-constrained

sequential
asynchronous

parallel, pop. size 1
parallel, pop. size 12

Figure F.9: Comparison of weighted lateness for parallel and sequential coordination and central
run for the large instance of the product mix subscenario.

257

 200000

 250000

 300000

 350000

 400000

 450000

 500000

 550000

 600000

 650000

 700000

 1000 2000 3000 4000 5000 6000 7000

w
ei

gh
te

d
la

te
ne

ss

runtime

central
central, soft-constrained

sequential
asynchronous

parallel, pop. size 1
parallel, pop. size 12

Figure F.10: Comparison of weighted lateness for parallel and sequential coordination and central
runs for the large instance of the breakdown subscenario.

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 11000

 0 200 400 600 800 1000 1200 1400 1600 1800

w
ei

gh
te

d
la

te
ne

ss

runtime

central
central, soft constrained

parallel, pop. size 12

Figure F.11: Comparison of weighted lateness of parallel coordination and central runs for the
small randomly generated instance with δΩ

supplier = 0.3.

258 APPENDIX F. ADDITIONAL FIGURES

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 11000

 12000

 13000

 0 200 400 600 800 1000 1200 1400 1600 1800

w
ei

gh
te

d
la

te
ne

ss

runtime

central
central, soft constrained

parallel, pop. size 12

Figure F.12: Comparison of weighted lateness of parallel coordination and central runs for the
small randomly generated instance with δΩ

supplier = 0.7.

 60000

 80000

 100000

 120000

 140000

 160000

 180000

 200000

 220000

 240000

 0 500 1000 1500 2000 2500 3000 3500

w
ei

gh
te

d
la

te
ne

ss

runtime

central
parallel, pop. size 12

Figure F.13: Comparison of weighted lateness of parallel coordination and central runs for the
medium randomly generated instance with δΩ

supplier = 0.0.

259

 400000

 500000

 600000

 700000

 800000

 900000

 1e+006

 1.1e+006

 1.2e+006

 1.3e+006

 1.4e+006

 0 500 1000 1500 2000 2500 3000 3500

w
ei

gh
te

d
la

te
ne

ss

runtime

central
central, soft-constrained

parallel, pop. size 12

Figure F.14: Comparison of weighted lateness for parallel and central runs for the first additional
medium instance of the complete scenario .

 400000

 500000

 600000

 700000

 800000

 900000

 1e+006

 1.1e+006

 0 500 1000 1500 2000 2500 3000 3500

w
ei

gh
te

d
la

te
ne

ss

runtime

central
central, soft-constrained

parallel, pop. size 12

Figure F.15: Comparison of weighted lateness for parallel and central runs for the second addi-
tional medium instance of the complete scenario .

260 APPENDIX F. ADDITIONAL FIGURES

APPENDIX G

Additional tables

Item Demand (in lots of 20 items)
sTemp_1 11 12 12 12 0 0 0
mTemp_1 11 12 12 12 0 0 0
lTemp_1 11 12 12 12 0 0 0
xTemp_1 11 12 12 12 0 0 0
sBladeExt 24 24 24 24 0 0 0
lBladeExt 24 24 24 24 0 0 0
extWheel 24 24 24 24 0 0 0
extTank_2 6 6 6 6 0 0 0

Table G.1: Weekly demand matrix for the medium instance of the of the product mix subscenario
with fine-grained demand.

item demand (in lots of 20 items)
sTemp_1 0 0 0 47 0 0 0 48 0 0 0 48 0 0
mTemp_1 0 0 0 47 0 0 0 48 0 0 0 48 0 0
lTemp_1 0 0 0 47 0 0 0 48 0 0 0 48 0 0
xTemp_1 0 0 0 47 0 0 0 48 0 0 0 48 0 0
sBladeExt 0 0 0 96 0 0 0 96 0 0 0 96 0 0
lBladeExt 0 0 0 96 0 0 0 96 0 0 0 96 0 0
extWheel 0 0 0 96 0 0 0 96 0 0 0 96 0 0
extTank_2 0 0 0 24 0 0 0 24 0 0 0 24 0 0

Table G.2: Biweekly demand matrix for the large instance of the product mix subscenario.

item demand (in lots of 20 items)
sTemp_1 0 0 0 0 0 0 (72) 0 0 0 0 144 (72) 0 0 0 0
mTemp_1 0 0 0 0 0 0 0 0 0 0 144 (72) 0 0 0 (72) 0
lTemp_1 0 0 0 0 0 0 0 0 0 0 144 0 0 0 0
xTemp_1 0 0 0 0 0 0 0 0 0 0 144 0 0 0 0
sBladeExt 0 0 0 0 0 0 0 0 0 0 288 (0) 0 0 0 0 (288)
lBladeExt 0 0 0 0 0 288 0 0 0 0 0 0 0 0 0
extWheel 0 0 0 0 0 288 0 0 0 0 0 0 0 0 0

Table G.3: 15-day demand matrix for the first large instance of the breakdown subscenario. Values
in brackets are the renegotiated demands after the breakdown occurred.

261

262 APPENDIX G. ADDITIONAL TABLES

item demand (in lots of 20 items)
sTemp_1 0 0 (24) 0 48 (24) 0 0 (24) 0 48 (24) 0 0 (24) 0 48 (24) 0 0
mTemp_1 0 0 0 48 (24) 0 (24) 0 0 48 (24) 0 (24) 0 0 48 (24) 0 (24) 0
lTemp_1 0 0 0 48 0 0 0 48 0 0 0 48 0 0
xTemp_1 0 0 0 48 0 0 0 48 0 0 0 8 0 0
sBladeExt 0 0 0 96 (0) 0 (96) 0 0 96 (0) 0 (96) 0 0 96 (0) 0 (96) 0
lBladeExt 0 96 (0) 0 0 0 (96) 96 (0) 0 0 0 (96) 96 (0) 0 0 0 (96) 0
extWheel 0 96 0 0 0 96 0 0 0 96 0 0 0 0

Table G.4: 14-day demand matrix for the second large instance of the breakdown subscenario.
Values in brackets are the renegotiated demands after the breakdown occurred.

Second priority criteria External lateness
Domain Statistic Makespan Setup time Max Total Weighted

Central
min 340,801 32,000 0 0 0
avg 353,761 39,680 8,800 45,920 9,168
max 368,001 46,400 22,400 179,200 23,952

Pa
ra

lle
l,

po
p.

si
ze

12 OEM
min 344,001 (−2%) 14,400 (−9%) 0 (−100%) 0 (−100%) 0 (−100%)
avg 345,281 (−1%) 20,000 (+26%) 0 (−100%) 0 (−100%) 0 (−100%)
max 345,601 (−1%) 27,200 (+73%) 0 (−100%) 0 (−100%) 0 (−100%)

Supplier
Steel

min 310,401 (−0%) 6,400 (+1%) n.a. n.a. n.a.
avg 320,321 (±0%) 16,640 (+2%) n.a. n.a. n.a.
max 339,201 (+6%) 38,400 (+135%) n.a. n.a. n.a.

Supplier
Motor

min 310,401 (−7%) 6,400 (−79%) n.a. n.a. n.a.
avg 329,601 (−1%) 26,560 (−12%) n.a. n.a. n.a.
max 339,201 (+1%) 38,400 (+26%) n.a. n.a. n.a.

Pa
ra

lle
l,

po
p.

si
ze

1

OEM
min 344,001 (−2%) 12,800 (−26%) 0 (−100%) 0 (−100%) 0 (−100%)
avg 345,391 (−1%) 16,160 (−6%) 0 (−100%) 0 (−100%) 0 (−100%)
max 345,601 (−1%) 20,800 (+20%) 0 (−100%) 0 (−100%) 0 (−100%)

Supplier
Steel

min 310,401 (−3%) 6,400 (−61%) n.a. n.a. n.a.
avg 319,041 (±0%) 15,040 (−8%) n.a. n.a. n.a.
max 339,201 (+6%) 35,200 (+116%) n.a. n.a. n.a.

Supplier
Motor

min 310,401 (−7%) 6,400 (−79%) n.a. n.a. n.a.
avg 330,561 (−1%) 26,560 (−14%) n.a. n.a. n.a.
max 342,401 (−2%) 38,400 (+25%) n.a. n.a. n.a.

A
sy

nc
hr

on
ou

s OEM
min 344,001 (−2%) 11,200 (−31%) 0 (−100%) 0 (−100%) 0 (−100%)
avg 345,921 (−1%) 14,800 (−9%) 480 (−89%) 800 (−92%) 483 (−89%)
max 348,801 (±0%) 20,800 (+27%) 3,200 (−29%) 6,400 (−37%) 3,232 (−29%)

Supplier
Steel

min 310,401 (−3%) 6,400 (−61%) n.a. n.a. n.a.
avg 319,361 (±0%) 16,000 (−2%) n.a. n.a. n.a.
max 339,201 (+6%) 35,200 (+116%) n.a. n.a. n.a.

Supplier
Motor

min 310,401 (−7%) 6,400 (−79%) n.a. n.a. n.a.
avg 331,841 (−1%) 28,480 (−6%) n.a. n.a. n.a.
max 342,401 (+2%) 38,400 (+26%) n.a. n.a. n.a.

Se
qu

en
ti

al

OEM
min 340,801 (−3%) 11,200 (−33%) 0 (−100%) 0 (−100%) 0 (−100%)
avg 344,961 (−2%) 21,040 (+26%) 160 (−97%) 160 (−99%) 160 (−97%)
max 347,201 (−1%) 46,400 (+179%) 1,600 (−74%) 1,600 (−91%) 1,600 (−74%)

Supplier
Steel

min 310,401 (−4%) 6,400 (−66%) n.a. n.a. n.a.
avg 324,801 (+1%) 21,440 (+16%) n.a. n.a. n.a.
max 339,201 (−5%) 35,200 (+90%) n.a. n.a. n.a.

Supplier
Motor

min 310,401 (−7%) 6,400 (−79%) n.a. n.a. n.a.
avg 327,041 (−2%) 23,680 (−22%) n.a. n.a. n.a.
max 342,401 (+2%) 38,400 (+26%) n.a. n.a. n.a.

Table G.5: Comparison of average (avg), minimum (min) and maximum (max) values of 10 runs
of parallel, asynchronous and sequential coordination with 10 centrally computed runs
after 3,600s, local run time 25s, full set of operators, medium instance of the setup sub-
scenario. The numbers in parentheses denote the relative difference from the average
upstream planning solution.

263

Second priority criteria External lateness
Domain Statistic Makespan Setup time Max Total Weighted

Central
min 1,017,601 112,000 0 0 0
avg 1,022,741 130,800 21,300 266,180 23,725
max 1,032,201 142,400 44,800 723,200 51,517

Pa
ra

lle
l,

po
p.

si
ze

12 OEM
min 1,014,400 (−2%) 39,200 (−46%) 0 (−100%) 0 (−100%) 0 (−100%)
avg 102,760 (−1%) 58,080 (−20%) 480 (−97%) 640 (−99%) 482 (−97%)
max 1,036,800 (±0%) 94,400 (+31%) 3,200 (−77%) 3,200 (−97%) 3,200 (−78%)

Supplier
Steel

min 995,201 (−2%) 102,400 (−11%) n.a. n.a. n.a.
avg 1,009,920 (−1%) 112,960 (−2%) n.a. n.a. n.a.
max 1,020,800 (±0%) 134,400 (+17%) n.a. n.a. n.a.

Supplier
Motor

min 940,801 (−3%) 35,200 (−44%) n.a. n.a. n.a.
avg 971,841 (±0%) 72,320 (+15%) n.a. n.a. n.a.
max 1,014,400 (+5%) 124,800 (+99%) n.a. n.a. n.a.

Pa
ra

lle
l,

po
p.

si
ze

1

OEM
min 1,016,300 (−2%) 42,400 (−45%) 0 (−100%) 0 (−100%) 0 (−100%)
avg 1,027,280 (±0%) 60,000 (−22%) 480 (−97%) 880 (−99%) 483 (−97%)
max 1,035,200 (±0%) 78,400 (+2%) 3,200 (−77%) 6,400 (−93%) 3,232 (−78%)

Supplier
Steel

min 988,801 (−3%) 89,600 (−22%) n.a. n.a. n.a.
avg 1,009,920 (−1%) 115,200 (±0%) n.a. n.a. n.a.
max 1,020,800 (±0%) 140,800 (+23%) n.a. n.a. n.a.

Supplier
Motor

min 937,601 (−3%) 28,800 (−54%) n.a. n.a. n.a.
avg 970,240 (±0%) 76,800 (+22%) n.a. n.a. n.a.
max 1,004,800 (+4%) 137,600 (+119%) n.a. n.a. n.a.

A
sy

nc
hr

on
ou

s OEM
min 1,010,900 (−2%) 36,800 (−55%) 0 (−100%) 0 (−100%) 0 (−100%)
avg 1,030,530 (±0%) 63,040 (−24%) 2,880 (−80%) 7,840 (−91%) 2,929 (−80%)
max 1,036,800 (±0%) 89,600 (+9%) 8,000 (−42%) 28,800 (−68%) 8,206 (−6%)

Supplier
Steel

min 982,401 (−3%) 76,800 (−49%) n.a. n.a. n.a.
avg 1,013,120 (±0%) 115,840 (+2%) n.a. n.a. n.a.
max 1,027,200 (+1%) 134,400 (+18%) n.a. n.a. n.a.

Supplier
Motor

min 937,601 (−3%) 32,000 (−49%) n.a. n.a. n.a.
avg 965,761 (±0%) 65,600 (+5%) n.a. n.a. n.a.
max 998,401 (+3%) 99,200 (+58%) n.a. n.a. n.a.

Se
qu

en
ti

al

OEM
min 1,017,601 (−2%) 40,000 (−46%) 0 (−100%) 0 (−100%) 0 (−100%)
avg 1,031,681 (−0%) 67,200 (−9%) 3,040 (−78%) 7,680 (−91%) 3,086 (−78%)
max 1,036,801 (±0%) 100,800 (+36%) 11,200 (−18%) 36,800 (−58%) 11,453 (−20%)

Supplier
Steel

min 982,401 (−3%) 76,800 (−34%) n.a. n.a. n.a.
avg 1,014,081 (±0%) 115,520 (±0%) n.a. n.a. n.a.
max 1,033,601 (+2%) 153,600 (+32%) n.a. n.a. n.a.

Supplier
Motor

min 944,001 (−2%) 38,400 (−40%) n.a. n.a. n.a.
avg 963,841 (±0%) 60,800 (−5%) n.a. n.a. n.a.
max 992,001 (+3%) 86,400 (+35%) n.a. n.a. n.a.

Table G.6: Comparison of average (avg), minimum (min) and maximum (max) values of 10 runs
of parallel, asynchronous and sequential coordination with 10 centrally computed runs
after 7,200s, local run time 50s, full set of operators, large instance of the setup sub-
scenario. The numbers in parentheses denote the relative difference from the average
upstream planning solution.

264 APPENDIX G. ADDITIONAL TABLES

Second priority criteria External lateness
Domain Statistic Makespan Setup time Max Total Weighted

Central
min 95,601 n.a. 9,200 26,800 9,374
avg 98,561 n.a. 12,160 50,080 12,535
max 104,001 n.a. 17,600 98,000 18,396

Central
soft-
constr.

min 96,801 n.a. 10,400 42,800 10,721
avg 99,241 n.a. 12,480 54,560 12,897
max 100,401 n.a. 14,000 64,000 14,495

Pa
ra

lle
l,

po
p.

si
ze

12 OEM
min 88,401 (−5%) n.a. 2,000 (−68%) 2,200 (−84%) 2,002 (−68%)
avg 88,127 (−4%) n.a. 2,320 (−63%) 3,020 (−78%) 2,327 (−63%)
max 89,601 (−3%) n.a. 3,200 (−49%) 4,000 (−71%) 3,208 (−49%)

Supplier
Steel

min 83,401 (−1%) n.a. 0 (±0%) 0 (±0%) 0 (±0%)
avg 84,001 (−1%) n.a. 0 (±0%) 0 (±0%) 0 (±0%)
max 85,801 (+2%) n.a. 0 (±0%) 0 (±0%) 0 (±0%)

Supplier
Plastic

min 82,801 (+1%) n.a. 0 (±0%) 0 (±0%) 0 (±0%)
avg 83,041 (±0%) n.a. 0 (±0%) 0 (±0%) 0 (±0%)
max 83,601 (±0%) n.a. 0 (±0%) 0 (±0%) 0 (±0%)

Pa
ra

lle
l,

po
p.

si
ze

1

OEM
min 88,401 (−4%) n.a. 2,000 (−67%) 2,000 (−85%) 2,000 (−68%)
avg 88,581 (−4%) n.a. 2,180 (−64%) 2,880 (−79%) 2,187 (−65%)
max 89,601 (−3%) n.a. 3,200 (−48%) 4,400 (−68%) 3,209 (−48%)

Supplier
Steel

min 83,401 (−1%) n.a. 0 (±0%) 0 (±0%) 0 (±0%)
avg 84,041 (−1%) n.a. 0 (±0%) 0 (±0%) 0 (±0%)
max 85,401 (+1%) n.a. 0 (±0%) 0 (±0%) 0 (±0%)

Supplier
Plastic

min 82,401 (−1%) n.a. 0 (±0%) 0 (±0%) 0 (±0%)
avg 83,041 (±0%) n.a. 0 (±0%) 0 (±0%) 0 (±0%)
max 83,601 (±0%) n.a. 0 (±0%) 0 (±0%) 0 (±0%)

A
sy

nc
hr

on
ou

s OEM
min 88,401 (−5%) n.a. 2,000 (−68%) 2,800 (−80%) 2,008 (−68%)
avg 89,801 (−4%) n.a. 2,680 (−57%) 3,880 (−73%) 2,692 (−57%)
max 90,401 (−2%) n.a. 4,000 (−36%) 5,800 (−59%) 4,018 (−36%)

Supplier
Steel

min 83,401 (−1%) n.a. 0 (±0%) 0 (±0%) 0 (±0%)
avg 83,801 (−1%) n.a. 0 (±0%) 0 (±0%) 0 (±0%)
max 85,801 (+2%) n.a. 0 (±0%) 0 (±0%) 0 (±0%)

Supplier
Plastic

min 82,401 (−1%) n.a. 0 (±0%) 0 (±0%) 0 (±0%)
avg 83,041 (−9%) n.a. 0 (±0%) 0 (±0%) 0 (±0%)
max 83,601 (+1%) n.a. 0 (±0%) 0 (±0%) 0 (±0%)

Se
qu

en
ti

al

OEM
min 88,401 (−5%) n.a. 2,000 (−68%) 2,800 (−80%) 2,008 (−68%)
avg 89,261 (−4%) n.a. 2,860 (−54%) 4,200 (−70%) 2,873 (−55%)
max 90,001 (−3%) n.a. 3,600 (−42%) 6,000 (−58%) 3,624 (−43%)

Supplier
Steel

min 82,801 (−2%) n.a. 0 (±0%) 0 (±0%) 0 (±0%)
avg 83,501 (−1%) n.a. 0 (±0%) 0 (±0%) 0 (±0%)
max 85,001 (+1%) n.a. 0 (±0%) 0 (±0%) 0 (±0%)

Supplier
Plastic

min 82,001 (−1%) n.a. 0 (±0%) 0 (±0%) 0 (±0%)
avg 82,641 (−1%) n.a. 0 (±0%) 0 (±0%) 0 (±0%)
max 83,201 (±0%) n.a. 0 (±0%) 0 (±0%) 0 (±0%)

Table G.7: Comparison of average (avg), minimum (min) and maximum (max) values of 10 runs
of parallel and sequential coordination with 10 centrally computed runs after 1,800s,
local runtime 13s, full set of operators, small instance of the product mix subscenario.
The numbers in parentheses denote the relative difference from the average upstream
planning solution.

265

Second priority criteria External lateness
Domain Statistic Makespan Setup time Max Total Weighted

Central
min 399,201 n.a. 53,600 816,000 61,149
avg 425,501 n.a. 79,900 1,853,540 97,461
max 437,201 n.a. 91,600 2,402,400 114,479

Central
soft-
constr.

min 396,801 n.a. 51,200 745,600 58,075
avg 402,681 n.a. 57,080 940,840 65,831
max 408,801 n.a. 63,200 1,140,400 73,865

Pa
ra

lle
l,

po
p.

si
ze

12 OEM
min 353,401 (−8%) n.a. 7,800 (−81%) 21,600 (−96%) 7,941 (−83%)
avg 354,161 (−8%) n.a. 8,560 (−79%) 25,260 (−96%) 8,725 (−81%)
max 354,601 (−8%) n.a. 9,000 (−78%) 27,600 (−95%) 9,174 (−80%)

Supplier
Steel

min 348,601 (−2%) n.a. 0 (±0%) 0 (±0%) 0 (±0%)
avg 349,761 (−2%) n.a. 0 (±0%) 0 (±0%) 0 (±0%)
max 350,601 (−1%) n.a. 0 (±0%) 0 (±0%) 0 (±0%)

Supplier
Plastic

min 342,401 (−3%) n.a. 0 (±0%) 0 (±0%) 0 (±0%)
avg 343,401 (−2%) n.a. 0 (±0%) 0 (±0%) 0 (±0%)
max 345,601 (−2%) n.a. 0 (±0%) 0 (±0%) 0 (±0%)

Pa
ra

lle
l,

po
p.

si
ze

1

OEM
min 352,401 (−10%) n.a. 6,800 (−84%) 17,200 (−97%) 6,903 (−86%)
avg 353,541 (−9%) n.a. 7,940 (−82%) 21,700 (−97%) 8,076 (−84%)
max 354,801 (−9%) n.a. 9,200 (−79%) 26,800 (−96%) 9,374 (−81%)

Supplier
Steel

min 347,001 (−2%) n.a. 0 (±0%) 0 (±0%) 0 (±0%)
avg 348,561 (−2%) n.a. 0 (±0%) 0 (±0%) 0 (±0%)
max 349,801 (−2%) n.a. 0 (±0%) 0 (±0%) 0 (±0%)

Supplier
Plastic

min 342,001 (−3%) n.a. 0 (±0%) 0 (±0%) 0 (±0%)
avg 343,801 (−3%) n.a. 0 (±0%) 0 (±0%) 0 (±0%)
max 345,601 (−2%) n.a. 0 (±0%) 0 (±0%) 0 (±0%)

A
sy

nc
hr

on
ou

s OEM
min 354,401 (−7%) n.a. 8,800 (−74%) 25,600 (−94%) 8,966 (−76%)
avg 356,581 (−6%) n.a. 10,980 (−68%) 40,560 (−90%) 11,272 (−70%)
max 358,401 (−6%) n.a. 12,800 (−63%) 52,000 (−88%) 13,188 (−65%)

Supplier
Steel

min 350,601 (−1%) n.a. 0 (±0%) 0 (±0%) 0 (±0%)
avg 351,521 (−1%) n.a. 0 (±0%) 0 (±0%) 0 (±0%)
max 353,801 (−1%) n.a. 0 (±0%) 0 (±0%) 0 (±0%)

Supplier
Plastic

min 342,401 (−3%) n.a. 0 (±0%) 0 (±0%) 0 (±0%)
avg 345,481 (−2%) n.a. 0 (±0%) 0 (±0%) 0 (±0%)
max 347,601 (−1%) n.a. 0 (±0%) 0 (±0%) 0 (±0%)

Se
qu

en
ti

al

OEM
min 355,601 (−9%) n.a. 10,000 (−77%) 34,800 (−95%) 10,246 (−80%)
avg 356,541 (−9%) n.a. 10,940 (−75%) 39,380 (−94%) 11,221 (−78%)
max 358,401 (−8%) n.a. 12,800 (−71%) 50,000 (−93%) 13,168 (−74%)

Supplier
Steel

min 349,801 (−2%) n.a. 0 (±0%) 0 (±0%) 0 (±0%)
avg 351,381 (−1%) n.a. 0 (±0%) 0 (±0%) 0 (±0%)
max 353,001 (−1%) n.a. 0 (±0%) 0 (±0%) 0 (±0%)

Supplier
Plastic

min 344,001 (−3%) n.a. 0 (±0%) 0 (±0%) 0 (±0%)
avg 345,801 (−2%) n.a. 0 (±0%) 0 (±0%) 0 (±0%)
max 348,001 (−2%) n.a. 0 (±0%) 0 (±0%) 0 (±0%)

Table G.8: Comparison of average (avg), minimum (min) and maximum (max) values of 10 runs of
parallel and sequential coordination with 10 centrally computed runs after 3,600s, local
runtime 25s, full set of operators, medium instance of the product mix subscenario.
The numbers in parentheses denote the relative difference from the average upstream
planning solution.

Specification Rel. diff. to up-
stream planning

Rel. diff. to central
solution

No. of called oper-
ators (only OEM)

Parallel, 12 parents −93% −97% (−78%) 300
Parallel, 1 parent −94% −98% (−82%) 335
Asynchronous −89% −96% (−70%) 101
Sequential −90% −95% (−64%) 39

Table G.9: Summary of average values for 10 runs for the large instance of the product mix subsce-
nario after 7,200s, 50s local runtime, deterministic self-adaption. Values in parentheses
denote the difference from the soft-constrained solution.

266 APPENDIX G. ADDITIONAL TABLES

Second priority criteria External lateness
Domain Statistic Makespan Setup time Max Total Weighted

Central
min 1,177,601 n.a. 261,200 25,989,800 515,938
avg 1,391,381 n.a. 466,420 97,675,660 1,428,887
max 1,601,201 n.a. 892,000 196,231,400 2,826,053

Central
soft-
constr.

min 1,148,801 n.a. 112,000 7,841,600 188,530
avg 1,152,461 n.a. 115,660 8,428,980 197,970
max 1,155,601 n.a. 118,800 8,841,600 205,164

Pa
ra

lle
l,

po
p.

si
ze

12 OEM
min 1,065,800 (−12%) n.a. 29,000 (−91%) 452,600 (−98%) 33,194 (−94%)
avg 1,071,500 (−12%) n.a. 34,700 (−89%) 804,180 (−97%) 42,319 (−93%)
max 1,078,600 (−11%) n.a. 41,800 (−87%) 1,180,400 (−96%) 52,691 (−91%)

Supplier
Steel

min 1,060,200 (−4%) n.a. 0 (±0%) 0 (±0%) 0 (±0%)
avg 1,066,700 (−3%) n.a. 0 (±0%) 0 (±0%) 0 (±0%)
max 1,075,000 (−3%) n.a. 0 (±0%) 0 (±0%) 0 (±0%)

Supplier
Plastic

min 1,037,200 (−9%) n.a. 0 (±0%) 0 (±0%) 0 (±0%)
avg 1,043,480 (−8%) n.a. 0 (±0%) 0 (±0%) 0 (±0%)
max 1,048,800 (−8%) n.a. 0 (±0%) 0 (±0%) 0 (±0%)

Pa
ra

lle
l,

po
p.

si
ze

1

OEM
min 1,060,000 (−13%) n.a. 23,200 (−93%) 347,600 (−99%) 26,411 (−96%)
avg 1,066,660 (−13%) n.a. 29,860 (−91%) 588,000 (−98%) 35,386 (−94%)
max 1,073,800 (−12%) n.a. 37,000 (−88%) 1,020,400 (−97%) 46,737 (−92%)

Supplier
Steel

min 1,056,200 (−4%) n.a. 0 (±0%) 0 (±0%) 0 (±0%)
avg 1,061,420 (−4%) n.a. 0 (±0%) 0 (±0%) 0 (±0%)
max 1,069,800 (−3%) n.a. 0 (±0%) 0 (±0%) 0 (±0%)

Supplier
Plastic

min 1,040,000 (−8%) n.a. 0 (±0%) 0 (±0%) 0 (±0%)
avg 1,043,040 (−8%) n.a. 0 (±0%) 0 (±0%) 0 (±0%)
max 1,046,000 (−8%) n.a. 0 (±0%) 0 (±0%) 0 (±0%)

A
sy

nc
hr

on
ou

s OEM
min 1,071,800 (−12%) n.a. 35,000 (−88%) 792,800 (−97%) 42,808 (−92%)
avg 1,081,400 (−11%) n.a. 44,600 (−85%) 1,512,100 (−94%) 59,130 (−89%)
max 1,087,400 (−10%) n.a. 50,600 (−83%) 2,100,200 (−92%) 70,893 (−87%)

Supplier
Steel

min 1,066,200 (−3%) n.a. 0 (±0%) 0 (±0%) 0 (±0%)
avg 1,075,820 (−3%) n.a. 0 (±0%) 0 (±0%) 0 (±0%)
max 1,083,800 (−2%) n.a. 0 (±0%) 0 (±0%) 0 (±0%)

Supplier
Plastic

min 1,041,200 (−8%) n.a. 0 (±0%) 0 (±0%) 0 (±0%)
avg 1,055,200 (−7%) n.a. 0 (±0%) 0 (±0%) 0 (±0%)
max 1,062,400 (−6%) n.a. 0 (±0%) 0 (±0%) 0 (±0%)

Se
qu

en
ti

al

OEM
min 1,082,201 (−12%) n.a. 45,400 (−87%) 1,423,400 (−96%) 59,043 (−91%)
avg 1,089,261 (−11%) n.a. 52,700 (−85%) 1,937,500 (−94%) 71,361 (−90%)
max 1,092,801 (−11%) n.a. 56,400 (−84%) 2,382,200 (−93%) 79,428 (−88%)

Supplier
Steel

min 1,077,801 (−2%) n.a. 0 (±0%) 0 (±0%) 0 (±0%)
avg 1,084,461 (−2%) n.a. 0 (±0%) 0 (±0%) 0 (±0%)
max 1,088,601 (−2%) n.a. 0 (±0%) 0 (±0%) 0 (±0%)

Supplier
Plastic

min 1,050,001 (−8%) n.a. 0 (±0%) 0 (±0%) 0 (±0%)
avg 1,059,321 (−7%) n.a. 0 (±0%) 0 (±0%) 0 (±0%)
max 1,065,601 (−7%) n.a. 0 (±0%) 0 (±0%) 0 (±0%)

Table G.10: Comparison of average (avg), minimum (min) and maximum (max) values of 10 runs
of parallel and sequential coordination with 10 centrally computed runs after 7,200s,
local runtime 50s, full set of operators, large instance of the product mix subscenario.
The numbers in parentheses denote the relative difference from the average upstream
planning solution.

267

Second priority criteria External lateness
Domain Statistic Makespan Setup time Max Total Weighted

Central
min 432,000 n.a. 0 0 0
avg 432,000 n.a. 14,380 89,095 15,120
max 432,000 n.a. 30,600 275,400 33,024

Central
soft-
constr.

min 432,000 n.a. 0 0 0
avg 432,000 n.a. 11,980 96,396 12,816
max 432,000 n.a. 19,800 217,800 21,760

Pa
ra

lle
l,

po
p.

si
ze

12 OEM
min 389,400 (−8%) n.a. 0 (−100%) 0 (−100%) 0 (−100%)
avg 392,260 (−8%) n.a. 0 (−100%) 0 (−100%) 0 (−100%)
max 395,200 (−7%) n.a. 0 (−100%) 0 (−100%) 0 (−100%)

Supplier
Steel

min 432,000 (±0%) n.a. 0 (±0%) 0 (±0%) 0 (±0%)
avg 432,000 (±0%) n.a. 0 (±0%) 0 (±0%) 0 (±0%)
max 432,000 (±0%) n.a. 0 (±0%) 0 (±0%) 0 (±0%)

Supplier
Plastic

min 259,201 (±0%) n.a. 0 (±0%) 0 (±0%) 0 (±0%)
avg 259,201 (±0%) n.a. 0 (±0%) 0 (±0%) 0 (±0%)
max 259,201 (±0%) n.a. 0 (±0%) 0 (±0%) 0 (±0%)

Pa
ra

lle
l,

po
p.

si
ze

1

OEM
min 388,200 (−9%) n.a. 0 (−100%) 0 (−100%) 0 (−100%)
avg 390,420 (−8%) n.a. 0 (−100%) 0 (−100%) 0 (−100%)
max 394,200 (−7%) n.a. 0 (−100%) 0 (−100%) 0 (−100%)

Supplier
Steel

min 432,000 (±0%) n.a. 0 (±0%) 0 (±0%) 0 (±0%)
avg 432,000 (±0%) n.a. 0 (±0%) 0 (±0%) 0 (±0%)
max 432,000 (±0%) n.a. 0 (±0%) 0 (±0%) 0 (±0%)

Supplier
Plastic

min 259,201 (±0%) n.a. 0 (±0%) 0 (±0%) 0 (±0%)
avg 259,201 (±0%) n.a. 0 (±0%) 0 (±0%) 0 (±0%)
max 259,201 (±0%) n.a. 0 (±0%) 0 (±0%) 0 (±0%)

A
sy

nc
hr

on
ou

s OEM
min 387,400 (−9%) n.a. 0 (−100%) 0 (−100%) 0 (−100%)
avg 391,160 (−8%) n.a. 0 (−100%) 0 (−100%) 0 (−100%)
max 394,400 (−7%) n.a. 0 (−100%) 0 (−100%) 0 (−100%)

Supplier
Steel

min 432,000 (±0%) n.a. 0 (±0%) 0 (±0%) 0 (±0%)
avg 432,000 (±0%) n.a. 0 (±0%) 0 (±0%) 0 (±0%)
max 432,000 (±0%) n.a. 0 (±0%) 0 (±0%) 0 (±0%)

Supplier
Plastic

min 259,201 (±0%) n.a. 0 (±0%) 0 (±0%) 0 (±0%)
avg 259,201 (±0%) n.a. 0 (±0%) 0 (±0%) 0 (±0%)
max 259,201 (±0%) n.a. 0 (±0%) 0 (±0%) 0 (±0%)

Se
qu

en
ti

al

OEM
min 387,200 (−9%) n.a. 0 (−100%) 0 (−100%) 0 (−100%)
avg 390,740 (−8%) n.a. 0 (−100%) 0 (−100%) 0 (−100%)
max 396,200 (−7%) n.a. 0 (−100%) 0 (−100%) 0 (−100%)

Supplier
Steel

min 432,000 (±0%) n.a. 0 (±0%) 0 (±0%) 0 (±0%)
avg 432,000 (±0%) n.a. 0 (±0%) 0 (±0%) 0 (±0%)
max 432,000 (±0%) n.a. 0 (±0%) 0 (±0%) 0 (±0%)

Supplier
Plastic

min 259,201 (±0%) n.a. 0 (±0%) 0 (±0%) 0 (±0%)
avg 259,201 (±0%) n.a. 0 (±0%) 0 (±0%) 0 (±0%)
max 259,201 (±0%) n.a. 0 (±0%) 0 (±0%) 0 (±0%)

Table G.11: Comparison of average (avg), minimum (min) and maximum (max) values of 10
runs of parallel and sequential coordination with 10 centrally computed runs af-
ter 3,600s, local runtime 25s, full set of operators, medium instance of the break-
down subscenario. The numbers in parentheses denote the relative difference from
the (min/avg/max) upstream planning solution.

Specification Rel. diff. to up-
stream planning

Rel. diff. to central,
solution

No. of called oper-
ators (only OEM)

Parallel, 12 parents −59% −37% (−13%) 375
Parallel, 1 parent −58% −37% (−13%) 428
Asynchronous −56% −33% (−7%) 99
Sequential −54% −30% (−4%) 58

Table G.12: Summary of average values for 10 runs for the large instance of the breakdown subsce-
nario, first variant, after 7,200s, 50s local runtime, deterministic self-adaption. Values
in parentheses denote the difference from the soft-constrained solution.

268 APPENDIX G. ADDITIONAL TABLES

Second priority criteria External lateness
Domain Statistic Makespan Setup time Max Total Weighted

Central
min 1,404,600 n.a. 208,000 20,434,800 408,265
avg 1,407,940 n.a. 217,080 21,804,357 430,815
max 1,411,800 n.a. 220,999 22,617,028 442,742

Central
soft-
constr.

min 1,296,000 n.a. 18,999 9,488,900 112,760
avg 1,352,260 n.a. 168,820 14,559,862 311,306
max 1,409,201 n.a. 219,200 22,215,800 436,988

Pa
ra

lle
lt

,p
op

.s
iz

e
12

OEM
min 1,349,400 (−2%) n.a. 152,599 (−58%) 10,857,100 (−63%) 258,584 (−60%)
avg 1,354,840 (−2%) n.a. 157,499 (+57%) 11,569,240 (−61%) 270,486 (−59%)
max 1,364,800 (−1%) n.a. 166,799 (−54%) 12,207,800 (−59%) 285,480 (−56%)

Supplier
Steel

min 1,345,800 (−2%) n.a. 0 (−100%) 0 (−100%) 0 (−100%)
avg 1,351,240 (−2%) n.a. 0 (−100%) 0 (−100%) 0 (−100%)
max 1,361,200 (−1%) n.a. 0 (−100%) 0 (−100%) 0 (−100%)

Supplier
Plastic

min 777,601 (±0%) n.a. 0 (±0%) 0 (±0%) 0 (±0%)
avg 777,601 (±0%) n.a. 0 (±0%) 0 (±0%) 0 (±0%)
max 777,601 (±0%) n.a. 0 (±0%) 0 (±0%) 0 (±0%)

Pa
ra

lle
l,

po
p.

si
ze

1

OEM
min 1,344,200 (−2%) n.a. 148,599 (−59%) 10,329,900 (−65%) 249,404 (−62%)
avg 1,351,880 (−2%) n.a. 159,079 (−56%) 11,532,020 (−61%) 271,683 (−58%)
max 1,366,800 (−1%) n.a. 179,600 (−50%) 13,213,500 (−55%) 303,646 (−52%)

Supplier
Steel

min 1,340,600 (−2%) n.a. 0 (−100%) 0 (−100%) 0 (−100%)
avg 1,348,280 (−2%) n.a. 0 (−100%) 0 (−100%) 0 (−100%)
max 1,363,200 (−1%) n.a. 0 (−100%) 0 (−100%) 0 (−100%)

Supplier
Plastic

min 777,601 (±0%) n.a. 0 (±0%) 0 (±0%) 0 (±0%)
avg 777,601 (±0%) n.a. 0 (±0%) 0 (±0%) 0 (±0%)
max 777,601 (±0%) n.a. 0 (±0%) 0 (±0%) 0 (±0%)

A
sy

nc
hr

on
ou

s OEM
min 1,350,200 (−2%) n.a. 154,599 (−58%) 10,883,400 (−63%) 260,824 (−60%)
avg 1,356,160 (−1%) n.a. 167,439 (−55%) 12,528,270 (−57%) 289,824 (−56%)
max 1,364,600 (−1%) n.a. 216,599 (−41%) 16,858,400 (−43%) 381,369 (−42%)

Supplier
Steel

min 1,346,600 (−2%) n.a. 0 (−100%) 0 (−100%) 0 (−100%)
avg 1,352,560 (−1%) n.a. 0 (−100%) 0 (−100%) 0 (−100%)
max 1,361,000 (−1%) n.a. 0 (−100%) 0 (−100%) 0 (−100%)

Supplier
Plastic

min 777,601 (±0%) n.a. 0 (±0%) 0 (±0%) 0 (±0%)
avg 777,601 (±0%) n.a. 0 (±0%) 0 (±0%) 0 (±0%)
max 777,601 (±0%) n.a. 0 (±0%) 0 (±0%) 0 (±0%)

Se
qu

en
ti

al

OEM
min 1,342,400 (−2%) n.a. 154,799 (−58%) 10,702,252 (−64%) 259,220 (−60%)
avg 13,591,220 (−1%) n.a. 174,800 (−52%) 12,815,254 (−57%) 299,953 (−54%)
max 1,366,001 (−1%) n.a. 232,000 (−37%) 17,406,000 (−41%) 402,040 (−39%)

Supplier
Steel

min 1,338,800 (−2%) n.a. 0 (−100%) 0 (−100%) 0 (−100%)
avg 1,355,520 (−1%) n.a. 0 (−100%) 0 (−100%) 0 (−100%)
max 1,362,401 (−1%) n.a. 0 (−100%) 0 (−100%) 0 (−100%)

Supplier
Plastic

min 777,601 (±0%) n.a. 0 (±0%) 0 (±0%) 0 (±0%)
avg 777,601 (±0%) n.a. 0 (±0%) 0 (±0%) 0 (±0%)
max 777,601 (±0%) n.a. 0 (±0%) 0 (±0%) 0 (±0%)

Table G.13: Comparison of average (avg), minimum (min) and maximum (max) values of 10 runs
of parallel and sequential coordination with 10 centrally computed runs after 7,200s,
local runtime 50s, full set of operators, large instance of the breakdown subscenario,
first variant. The numbers in parentheses denote the relative difference from the aver-
age upstream planning solution.

Specification Rel. diff. to up-
stream planning

Rel. diff. to central
solution

No. of called oper-
ators (only OEM)

Parallel, 12 parents −47% −31% (+120%) 323
Parallel, 1 parent −48% −30% (+120%) 340
Asynchronous −33% −15% (+167%) 93
Sequential −32% −11% (180%) 50

Table G.14: Summary of average values for 10 runs for the large instance of the breakdown sub-
scenario, second variant, after 7,200s, 50s local runtime, deterministic self-adaption.
Values in parentheses denote the difference from the soft-constrained solution.

269

Second priority criteria External lateness
Domain Statistic Makespan Setup time Max Total Weighted

Central
min 1,315,400 n.a. 634,999 46,190,956 1,086,048
avg 1,334,340 n.a. 749,819 58,562,069 1,322,218
max 1,369,400 n.a. 1,000,399 75,003,164 1,733,100

Central
soft-
constr.

min 1,296,000 n.a. 172,799 24,454,655 413,213
avg 1,296,000 n.a. 172,799 24,839,941 417,199
max 1,296,000 n.a. 172,799 25,129,440 419,894

Pa
ra

lle
l,

po
p.

si
ze

12 OEM
min 1,316,400 (−2%) n.a. 370,199 (−65%) 45,406,100 (−32%) 816,099 (−53%)
avg 1,318,500 (−2%) n.a. 442,299 (−58%) 48,349,480 (−28%) 916,628 (−47%)
max 1,323,000 (−2%) n.a. 465,399 (−56%) 52,165,800 (−22%) 977,284 (−43%)

Supplier
Steel

min 1,309,400 (−2%) n.a. 0 (−100%) 0 (−100%) 0 (−100%)
avg 1,314,540 (−2%) n.a. 0 (−100%) 0 (−100%) 0 (−100%)
max 1,319,400 (−2%) n.a. 0 (−100%) 0 (−100%) 0 (−100%)

Supplier
Plastic

min 777,601 (±0%) n.a. 0 (±0%) 0 (±0%) 0 (±0%)
avg 777,601 (±0%) n.a. 0 (±0%) 0 (±0%) 0 (±0%)
max 777,601 (±0%) n.a. 0 (±0%) 0 (±0%) 0 0 (±0%))

Pa
ra

lle
l,

po
p.

si
ze

1

OEM
min 1,312,000 (−2%) n.a. 361,599 (−67%) 47,611,400 (−29%) 829,419 (−53%)
avg 1,318,220 (−2%) n.a. 433,919 (−61%) 49,314,930 (−26%) 917,889 (−48%)
max 1,323,000 (−1%) n.a. 462,199 (−58%) 51,744,400 (−22%) 969,944 (−45%)

Supplier
Steel

min 1,308,400 (−2%), n.a. 0 (−100%) 0 (−100%) 0 (−100%)
avg 1,313,940 (−2%) n.a. 0 (−100%) 0 (−100%) 0 (−100%)
max 1,319,400 (−1%) n.a. 0 (−100%) 0 (−100%) 0 (−100%)

Supplier
Plastic

min 777,601 (±0%) n.a. 0 0 (±0%) 0 0 (±0%) 0 0 (±0%)
avg 777,601 (±0%) n.a. 0 (±0%) 0 (±0%) 0 (±0%)
max 777,601 (±0%) n.a. 0 (±0%) 0 (±0%) 0 (±0%)

A
sy

nc
hr

on
ou

s OEM
min 1,316,200 (−2%) n.a. 452,199 (−57%) 51,259,600 (−21%) 955,243 (−43%)
avg 1,319,260 (−2%) n.a. 577,619 (−44%) 54,832,860 (−16%) 1,114,800 (−33%)
max 1,328,200 (−1%) n.a. 962,599 (−7%) 61,268,400 (−6%) 1,559,686 (−7%)

Supplier
Steel

min 1,309,800 (−2%) n.a. 0 (−100%) 0 (−100%) 0 (−100%)
avg 1,315,060 (−2%) n.a. 0 (−100%) 0 (−100%) 0 (−100%)
max 1,324,600 (−1%) n.a. 0 (−100%) 0 (−100%) 0 (−100%)

Supplier
Plastic

min 777,601 (±0%) n.a. 0 (±0%) 0 (±0%) 0 (±0%)
avg 777,601 (±0%) n.a. 0 (±0%) 0 (±0%) 0 (±0%)
max 777,601 (±0%) n.a. 0 (±0%) 0 (±0%) 0 (±0%)

Se
qu

en
ti

al

OEM
min 1,314,800 (−2%) n.a. 472,599 (−56%) 48,527,551 (−28%) 948,391 (−45%)
avg 1,318,360 (−2%) n.a. 639,939 (−41%) 54,077,421 (−19%) 1,169,024 (−32%)
max 1,322,800 (−2%) n.a. 724,999 (−33%) 59,690,653 (−11%) 1,308,817 (−24%)

Supplier
Steel

min 1,310,200 (−2%) n.a. 0 (−100%) 0 (−100%) 0 (−100%)
avg 1,314,140 (−2%) n.a. 0 (−100%) 0 (−100%) 0 (−100%)
max 1,319,200 (−2%) n.a. 0 (−100%) 0 (−100%) 0 (−100%)

Supplier
Plastic

min 777,601 (±0%) n.a. 0 (±0%) 0 (±0%) 0 (±0%)
avg 777,601 (±0%) n.a. 0 (±0%) 0 (±0%) 0 (±0%)
max 777,601 (±0%) n.a. 0 (±0%) 0 (±0%) 0 (±0%)

Table G.15: Comparison of average (avg), minimum (min) and maximum (max) values of 10 runs
of parallel and sequential coordination with 10 centrally computed runs after 7,200s,
local runtime 50s, full set of operators, large instance of the breakdown subscenario,
second variant. The numbers in parentheses denote the relative difference from the
average upstream planning solution.

Specification Rel. diff. to up-
stream planning

Rel. diff. to central
solution

No. of called oper-
ators (only OEM)

Parallel, 12 parents −99% −100% 1,418
Parallel, 1 parent −98% −99% 1,356
Asynchronous −89% −95% 846
Sequential −91% −94% 322

Table G.16: Summary of average values for 10 runs for the large instance of the complete scenario,
after 14,400s, 100s local runtime, deterministic self-adaption.

270 APPENDIX G. ADDITIONAL TABLES

Second priority criteria External lateness
Domain Statistic Makespan Setup time Max Total Weighted

Central
min 1,242,201 141,600 122,000 10,939,800 254,899
avg 1,271,461 150,080 148,560 13,544,800 281,196
max 1,284,001 165,600 160,800 14,880,800 306,543

Central,
soft-
constr.

min 1,253,601 145,600 130,400 11,326,900 241,256
avg 1,276,161 160,560 152,960 13,947,050 289,535
max 1,287,401 188,000 164,200 15,508,400 316,122

Pa
ra

lle
l,

po
p.

si
ze

12

OEM
min 1,121,600 (−7%) 81,600 (+2%) 0 (−100%) 0 (−100%) 0 (−100%)
avg 1,124,170 (−7%) 24,640 (+55%) 1,340 (−98%) 4,930 (−100%) 1,376 (−99%)
max 1,130,200 (−7%) 161,600 (+101%) 7,000 (−92%) 34,400 (−99%) 7,271 (−94%)

Supplier
Steel

min 1,099,200 (−1%) 153,600 (+16%) 0 (±0%) 0 (±0%) 0 (±0%)
avg 1,103,720 (−1%) 202,560 (+53%) 0 (±0%) 0 (±0%) 0 (±0%)
max 1,109,200 (−1%) 243,200 (+83%) 0 (±0%) 0 (±0%) 0 (±0%)

Supplier
Plastic

min 1,040,800 (−5%) n.a. 0 (±0%) 0 (±0%) 0 (±0%)
avg 1,047,400 (−5%) n.a. 0 (±0%) 0 (±0%) 0 (±0%)
max 1,052,000 (−4%) n.a. 0 (±0%) 0 (±0%) 0 (±0%)

Supplier
Motor

min 1,001,600 (−0%) 112,000 (−22%) 0 (±0%) 0 (±0%) 0 (±0%)
avg 1,014,400 (+1%) 159,680 (+11%) 0 (±0%) 0 (±0%) 0 (±0%)
max 1,030,400 (+3%) 198,400 (+38%) 0 (±0%) 0 (±0%) 0 (±0%)

Pa
ra

lle
l,

po
p.

si
ze

1

OEM
min 1,121,900 (−7%) 59,200 (−30%) 0 (−100%) 0 (−100%) 0 (−100%)
avg 1,125,620 (−7%) 104,400 (+24%) 2,660 (−97%) 9,720 (−100%) 2,730 (−98%)
max 1,135,200 (−6%) 147,200 (+75%) 12,000 (−86%) 50,200 (−99%) 12,378 (−91%)

Supplier
Steel

min 1,098,800 (−1%) 108,800 (−17%) 0 (±0%) 0 (±0%) 0 (±0%)
avg 1,102,900 (−1%) 186,880 (+42%) 0 (±0%) 0 (±0%) 0 (±0%)
max 1,108,400 (−1%) 275,200 (+109%) 0 (±0%) 0 (±0%) 0 (±0%)

Supplier
Plastic

min 1,039,200 (−5%) n.a. 0 (±0%) 0 (±0%) 0 (±0%)
avg 1,046,400 (−5%) n.a. 0 (±0%) 0 (±0%) 0 (±0%)
max 1,059,600 (−3%) n.a. 0 (±0%) 0 (±0%) 0 (±0%)

Supplier
Motor

min 985,601 (−2%) 124,800 (−13%) 0 (±0%) 0 (±0%) 0 (±0%)
avg 1,028,160 (+2%) 190,720 (+33%) 0 (±0%) 0 (±0%) 0 (±0%)
max 1,078,400 (+7%) 281,600 (+96%) 0 (±0%) 0 (±0%) 0 (±0%)

A
sy

nc
hr

on
ou

s

OEM
min 1,122,800 (−7%) 64,800 (−23%) 0 (−100%) 0 (−100%) 0 (−100%)
avg 1,136,920 (−6%) 75,280 (−11%) 13,760 (−85%) 98,880 (−98%) 14,603 (−89%)
max 1,145,900 (−5%) 95,200 (+13%) 22,700 (−75%) 194,300 (−96%) 24,399 (−82%)

Supplier
Steel

min 1,098,200 (−1%) 92,800 (−28%) 0 (±0%) 0 (±0%) 0 (±0%)
avg 1,102,500 (−1%) 122,560 (−5%) 0 (±0%) 0 (±0%) 0 (±0%)
max 1,106,200 (−1%) 166,400 (+29%) 0 (±0%) 0 (±0%) 0 (±0%)

Supplier
Plastic

min 1,046,800 (−5%) n.a. 0 (±0%) 0 (±0%) 0 (±0%)
avg 1,053,880 (−4%) n.a. 0 (±0%) 0 (±0%) 0 (±0%)
max 1,064,400 (−3%) n.a. 0 (±0%) 0 (±0%) 0 (±0%)

Supplier
Motor

min 982,401 (−2%) 86,400 (−38%) 0 (±0%) 0 (±0%) 0 (±0%)
avg 1,000,961 (−0%) 111,040 (−21%) 0 (±0%) 0 (±0%) 0 (±0%)
max 1,020,800 (+2%) 140,800 (±0%) 0 (±0%) 0 (±0%) 0 (±0%)

Se
qu

en
ti

al

OEM
min 1,124,601 (−9%) 64,800 (−4%) 1,400 (−99%) 1,400 (−100%) 1,400 (−99%)
avg 1,139,171 (−7%) 79,280 (+18%) 15,970 (−86%) 205,940 (−98%) 17,851 (−91%)
max 1,154,701 (−6%) 103,200 (+53%) 31,500 (−72%) 699,800 (−92%) 38,117 (−80%)

Supplier
Steel

min 1,095,401 (−2%) 115,200 (−13%) 0 (±0%) 0 (±0%) 0 (±0%)
avg 1,100,081 (−1%) 132,160 (−0%) 0 (±0%) 0 (±0%) 0 (±0%)
max 1,104,401 (−1%) 156,800 (+18%) 0 (±0%) 0 (±0%) 0 (±0%)

Supplier
Plastic

min 1,044,801 (−5%) n.a. 0 (±0%) 0 (±0%) 0 (±0%)
avg 1,052,681 (−5%) n.a. 0 (±0%) 0 (±0%) 0 (±0%)
max 1,062,801 (−4%) n.a. 0 (±0%) 0 (±0%) 0 (±0%)

Supplier
Motor

min 966,401 (−4%) 70,400 (−50%) 0 (±0%) 0 (±0%) 0 (±0%)
avg 1,003,201 (−0%) 121,920 (−13%) 0 (±0%) 0 (±0%) 0 (±0%)
max 1,017,601 (+1%) 160,000 (+14%) 0 (±0%) 0 (±0%) 0 (±0%)

Table G.17: Comparison of average (avg), minimum (min) and maximum (max) values of 10 runs
of parallel and sequential coordination with 10 centrally computed runs after 14,400s,
local run time 100s, full set of operators, large instance of the complete scenario. The
numbers in parentheses denote the relative difference from the average upstream
planning solution.

271

Second priority External lateness
Domain Statistic Makespan Max Total Weighted

Central
min 19,258 3,698 19,633 5,146
avg 19,936 4,378 22,463 6,022
max 20,389 5,106 26,541 7,055

Central
soft-
constr.

min 19,100 3,512 14,635 4,253
avg 19,370 3,796 17,906 5,079
max 19,846 4,258 24,287 6,079

OEM
min 18,024 (−11%) 2,436 (−49%) 6,649 (−75%) 2,819 (−58%)
avg 18,362 (−9%) 2,777 (−42%) 8,760 (−67%) 3,321 (−51%)
max 18,917 (−7%) 3,317 (−30%) 10,991 (−58%) 4,015 (−40%)

Supplier
min 16,744 (−8%) 0 (±0%) 0 (±0%) 0 (±0%)
avg 17,036 (−7%) 0 (±0%) 0 (±0%) 0 (±0%)
max 17,347 (−5%) 0 (±0%) 0 (±0%) 0 (±0%)

Table G.18: Comparison of average (avg), minimum (min) and maximum (max) values of 10 runs
of parallel coordination with 10 centrally computed runs after 1,800s, local runtime
13s, full set of operators, small randomly generated instance, δΩ

supplier = 0.3. The num-
bers in parentheses denote the relative difference from the average upstream planning
solution.

Second priority External lateness
Domain Statistic Makespan Max Total Weighted

Central
min 20,418 4,044 11,088 4,684
avg 21,374 4,957 16,936 6,046
max 21,910 5,536 21,838 7,018

Central
soft-
constr.

min 20,674 4,270 12,082 4,980
avg 21,196 4,750 18,489 5,999
max 21,772 5,398 25,350 7,212

OEM
min 19,090 (−10%) 2,499 (−48%) 4,739 (−75%) 2,703 (−56%)
avg 19,347 (−9%) 2,821 (−41%) 6,998 (−64%) 3,201 (−48%)
max 19,725 (−7%) 3,351 (−30%) 8,642 (−55%) 3,832 (−37%)

Supplier
min 16,532 (−7%) 0 (±0%) 0 (±0%) 0 (±0%)
avg 16,856 (−6%) 0 (±0%) 0 (±0%) 0 (±0%)
max 17,255 (−3%) 0 (±0%) 0 (±0%) 0 (±0%)

Table G.19: Comparison of average (avg), minimum (min) and maximum (max) values of 10 runs
of parallel coordination with 10 centrally computed runs after 1,800s, local runtime
13s, full set of operators, small randomly generated instance, δΩ

supplier = 0.7. The num-
bers in parentheses denote the relative difference from the average upstream planning
solution.

Second priority External lateness
Domain Statistic Makespan Max Total Weighted

Central
min 129,546 58,618 1,210,677 163,350
avg 132,811 62,030 1,300,110 174,583
max 134,900 63,979 1,375,060 183,168

OEM
min 105,907 (−14%) 34,979 (−34%) 432,629 (−55%) 71,129 (−48%)
avg 108,146 (−12%) 37,225 (−29%) 479,337 (−50%) 77,417 (−43%)
max 110,454 (−11%) 39,526 (−25%) 527,028 (−45%) 83,844 (−38%)

Supplier
min 97,571 (−8%) 0 (±0%) 0 (±0%) 0 (±0%)
avg 98,653 (−7%) 0 (±0%) 0 (±0%) 0 (±0%)
max 99,801 (−6%) 0 (±0%) 0 (±0%) 0 (±0%)

Table G.20: Comparison of average (avg), minimum (min) and maximum (max) values of 10 runs
of parallel coordination with 10 centrally computed runs after 3,600s, local runtime
25s, full set of operators, medium randomly generated instance, δΩ

supplier = 0.0. The
numbers in parentheses denote the relative difference from the average upstream
planning solution.

272 APPENDIX G. ADDITIONAL TABLES

Second priority External lateness
Domain Statistic Makespan Max Total Weighted

Central
min 135,495 63,568 733,286 124,451
avg 138,125 66,198 825,467 135,222
max 141,358 69,431 924,049 147,123

Central
soft-
constr.

min 132,144 60,217 612,952 110,467
avg 134,711 62,955 757,358 126,083
max 138,669 66,742 897,644 142,279

st
an

da
rd OEM

min 109,920 (−23%) 37,993 (−47%) 400,859 (−63%) 70,981 (−57%)
avg 111,940 (−22%) 40,013 (−44%) 452,097 (−59%) 77,475 (−53%)
max 113,755 (−20%) 41,828 (−41%) 525,552 (−52%) 85,803 (−48%)

Supplier
min 98,175 (−7%) 0 (±0%) 0 (±0%) 0 (±0%)
avg 99,722 (−5%) 0 (±0%) 0 (±0%) 0 (±0%)
max 100,571 (−5%) 0 (±0%) 0 (±0%) 0 (±0%)

fr
om

sc
ra

tc
h

OEM
min 124,800 (−14%) 53,614 (−26%) 678,223 (−39%) 110,397 (−34%)
avg 126,332 (−13%) 54,932 (−24%) 711,642 (−36%) 114,633 (−31%)
max 127,870 (−11%) 56,158 (−23%) 753,296 (−32%) 119,534 (−28%)

Supplier
min 109,384 (4%) 0 (±0%) 0 (±0%) 0 (±0%)
avg 111,832 (6%) 0 (±0%) 0 (±0%) 0 (±0%)
max 113,871 (8%) 0 (±0%) 0 (±0%) 0 (±0%)

Table G.21: Comparison of average (avg), minimum (min) and maximum (max) values of 10 runs
of parallel coordination with 10 centrally computed runs after 3,600s, local runtime
25s, full set of operators, medium randomly generated instance, δΩ

supplier = 0.5. The
numbers in parentheses denote the relative difference from the average upstream
planning solution.

Second priority External lateness
Domain Statistic Makespan Max Total Weighted

Central
min 727,285 400,799 88,018,488 8,366,043
avg 734,528 408,174 90,550,938 8,602,970
max 739,830 413,428 92,146,245 8,752,775

st
an

da
rd OEM

min 616,159 (−6%) 290,153 (−12%) 46,887,000 (−28%) 4,526,230 (−28%)
avg 631,295 (−4%) 305,334 (−7%) 49,319,060 (−25%) 4,761,127 (−24%)
max 652,075 (−1%) 326,911 (−1%) 52,555,000 (−20%) 5,074,919 (−19%)

Supplier
min 576,209 (±0%) 0 (±0%) 0 (±0%) 0 (±0%)
avg 585,401 (2%) 0 (±0%) 0 (±0%) 0 (±0%)
max 593,519 (3%) 0 (±0%) 0 (±0%) 0 (±0%)

fr
om

sc
ra

tc
h

OEM
min 637,979 (−2%) 314,065 (−4%) 52,381,100 (−21%) 5,047,432 (−20%)
avg 648,988 (−1%) 324,097 (−1%) 54,568,910 (−17%) 5,255,444 (−16%)
max 657,599 (1%) 332,569 (1%) 57,841,400 (−12%) 5,560,645 (−12%)

Supplier
min 585,110 (2%) 0 (±0%) 0 (±0%) 0 (±0%)
avg 592,447 (3%) 0 (±0%) 0 (±0%) 0 (±0%)
max 602,118 (5%) 0 (±0%) 0 (±0%) 0 (±0%)

Table G.22: Comparison of average (avg), minimum (min) and maximum (max) values of 10 runs
of parallel coordination with 10 centrally computed runs after 7,200s, local runtime
240s, full set of operators, small randomly generated instance, δΩ

supplier = 0.0. The
numbers in parantheses denote the relative difference to the average upstream plan-
ning solution:

Second priority External lateness
Domain Statistic Makespan Max Total Weighted

Central
min 203,560 150,482 19,903,251 1,946,188
avg 204,478 151,397 21,105,749 2,056,338
max 206,541 153,427 22,850,640 2,216,810

OEM
min 202,323 (−13%) 149,245 (−17%) 17,755,000 (−31%) 1,749,768 (−30%)
avg 203,219 (−13%) 150,149 (−16%) 17,867,250 (−30%) 1,760,795 (−29%)
max 204,120 (−12%) 151,042 (−16%) 17,976,600 (−30%) 1,771,547 (−29%)

Supplier
min 193,002 (±0%) 0 (±0%) 0 (±0%) 0 (±0%)
avg 193,268 (±0%) 0 (±0%) 0 (±0%) 0 (±0%)
max 193,612 (±0%) 0 (±0%) 0 (±0%) 0 (±0%)

Table G.23: Comparison of average (avg), minimum (min) and maximum (max) values of 10 runs
of parallel coordination with 10 centrally computed runs after 3,600s, local runtime
25s, more reduced set of operators, first additional medium randomly generated in-
stance. The numbers in parentheses denote the relative difference from the average
upstream planning solution.

273

Second priority External lateness
Domain Statistic Makespan Max Total Weighted

Central
min 203,646 139,007 2,632,109 365,653
avg 207,520 142,760 2,792,799 383,673
max 209,785 146,301 2,896,785 369,345

OEM
min 206,345 (−6%) 141,025 (−9%) 2,389,510 (−20%) 345,433 (−17%)
avg 210,211 (−5%) 144,926 (−7%) 2,428,342 (−19%) 352,509 (−15%)
max 212,853 (−4%) 147,533 (−5%) 2,479,120 (−17%) 359,495 (−13%)

Supplier
min 192,394 (−1%) 0 (±0%) 0 (±0%) 0 (±0%)
avg 193,758 (±0%) 0 (±0%) 0 (±0%) 0 (±0%)
max 195,395 (±0%) 0 (±0%) 0 (±0%) 0 (±0%)

Table G.24: Comparison of average (avg), minimum (min) and maximum (max) values of 10 runs
of parallel coordination with 10 centrally computed runs after 3,600s, local runtime
25s, more reduced set of operators, second additional medium randomly generated
instance. The numbers in parentheses denote the relative difference from the average
upstream planning solution.

item demand (in lots a 20 items)
sMower 0 0 0 0 40 0 0 0 0 0 10 40 0 0
mMower 0 0 0 0 30 0 0 0 0 0 0 50 0 0
lMower 0 0 0 0 0 0 0 10 20 20 0 0 0 0
xMower 0 0 0 0 50 0 0 0 0 0 0 30 0 0
extWheel 10 15 10 35 10 0 0 10 15 10 15 10 0 0
sBladeExt 0 30 0 30 30 0 0 0 0 50 0 20 0 0
lBladeExt 10 15 20 15 20 0 0 0 10 10 20 0 0 0
extTank_2 0 0 0 0 40 0 0 0 0 0 0 20 0 0

Table G.25: Biweekly demand matrix for the first additional medium instance of the complete
scenario

item demand (in lots a 20 items)
sMower 0 0 0 0 40 0 0 0 0 0 0 0 0 0
mMower 0 0 0 0 60 0 0 0 0 0 0 0 0 0
lMower 0 0 0 0 0 0 0 0 0 0 0 80 0 0
xMower 0 0 0 0 0 0 0 0 0 0 0 70 0 0
extWheel 0 0 0 0 60 0 0 0 0 0 0 60 0 0
sBladeExt 0 0 0 0 60 0 0 0 0 0 0 60 0 0
lBladeExt 0 0 0 0 60 0 0 0 0 0 0 60 0 0
extTank_2 0 0 0 0 20 0 0 0 0 0 0 20 0 0

Table G.26: Biweekly demand matrix for the second additional medium instance of the complete
scenario

274 APPENDIX G. ADDITIONAL TABLES

Second priority criteria External lateness
Domain Statistic Makespan Setup time Max Total Weighted

Central
min 1,357,602 83,200 322,080 32,320,957 638,901
avg 1,380,379 104,240 369,576 45,246,486 813,902
max 1,397,381 121,600 396,920 56,023,926 947,682

Central,
soft-
constr.

min 1,383,102 86,400 367,801 42,807,434 787,995
avg 1,394,169 114,000 387,811 50,810,745 887,048
max 1,402,202 149,600 403,801 59,680,049 990,695

Pa
ra

lle
l,

po
p.

si
ze

12

OEM
min 1,294,200 (−7%) 110,400 (+11%) 257,401 (−34%) 11,957,600 (−75%) 373,245 (−57%)
avg 1,306,690 (−6%) 144,800 (+46%) 269,891 (−31%) 13,472,050 (−72%) 400,605 (−54%)
max 1,318,200 (−5%) 156,000 (+57%) 281,401 (−28%) 14,238,700 (−71%) 419,592 (−52%)

Supplier
Steel

min 1,253,360 (−1%) 89,600 (−1%) 0 (±0%) 0 (±0%) 0 (±0%)
avg 1,253,360 (−1%) 126,720 (+39%) 0 (±0%) 0 (±0%) 0 (±0%)
max 1,253,360 (−1%) 147,200 (+62%) 0 (±0%) 0 (±0%) 0 (±0%)

Supplier
Plastic

min 1,037,260 (−8%) n.a. 0 (±0%) 0 (±0%) 0 (±0%)
avg 1,037,260 (−8%) n.a. 0 (±0%) 0 (±0%) 0 (±0%)
max 1,037,260 (−8%) n.a. 0 (±0%) 0 (±0%) 0 (±0%)

Supplier
Motor

min 1,037,260 (−8%) 64,000 (−22%) 0 (±0%) 0 (±0%) 0 (±0%)
avg 1,231,750 (+10%) 93,440 (+14%) 0 (±0%) 0 (±0%) 0 (±0%)
max 1,253,360 (+12%) 118,400 (+45%) 0 (±0%) 0 (±0%) 0 (±0%)

Table G.27: Comparison of average (avg), minimum (min) and maximum (max) values of 10 runs
of parallel coordination with 10 centrally computed runs after 3,600s, local run time
25s, full set of operators, first additional medium instance of the complete scenario.
The numbers in parentheses denote the relative difference from the average upstream
planning solution.

Second priority criteria External lateness
Domain Statistic Makespan Setup time Max Total Weighted

Central
min 1,346,702 40,000 404,401 36,137,736 758,196
avg 1,353,008 55,120 408,887 37,629,431 777,407
max 1,359,502 66,400 416,701 39,617,540 804,828

Central,
soft-
constr.

min 1,344,502 45,600 407,401 35,967,146 759,477
avg 1,351,926 60,240 409,051 37,538,779 776,672
max 1,362,302 66,400 411,001 39,341,332 796,450

Pa
ra

lle
l,

po
p.

si
ze

12

OEM
min 1,026,800 (−19%) 33,600 (−46%) 330,601 (−18%) 9,462,640 (−54%) 421,017 (−30%)
avg 1,121,708 (−11%) 68,080 (9%) 346,409 (−14%) 9,886,212 (−52%) 440,862 (−27%)
max 1,220,900 (−3%) 84,000 (+34%) 371,401 (−7%) 10,768,900 (−48%) 474,347 (−21%)

Supplier
Steel

min 950,821 (±0%) 35,200 (−8%) 0 (±0%) 0 (±0%) 0 (±0%)
avg 950,821 (±0%) 59,200 (+55%) 0 (±0%) 0 (±0%) 0 (±0%)
max 950,821 (±0%) 92,800 (+144%) 0 (±0%) 0 (±0%) 0 (±0%)

Supplier
Plastic

min 950,821 (−3%) (%) (%) (%) (%)
avg 952,979 (−3%) (%) (%) (%) (%)
max 972,401 (−1%) n.a. (%) (%) (%)

Supplier
Motor

min (%) (+%) (%) (%) (%)
avg (%) (%) (%) (%) (%)
max (%) (%) (%) (%) (%)

Table G.28: Comparison of average (avg), minimum (min) and maximum (max) values of 10 runs
of parallel coordination with 10 centrally computed runs after 3,600s, local run time
25s, full set of operators, second additional medium instance of the complete scenario.
The numbers in parentheses denote the relative difference from the average upstream
planning solution.

List of figures

2.1 Software modules covering the SCP-Matrix, taken from Meyr et al. (2007b, p. 109). 6

3.1 Interdependence of hierarchical levels, cf. Schneeweis (2003, p.27) 15

4.1 Illustration of standard template of an Evolutionary Algorithm. 40
4.2 Illustration of search, solution and objective space for a scheduling problem. 42
4.3 Dominated solutions and nondominated front. 42
4.4 Supply Chain with single and multiple points of coordination. 45
4.5 Overview of the DEAL framework for the case with one leader and multiple fol-

lowers. 46
4.6 Example of an individual connecting to different communication threads. 50
4.7 Overview of the generic construction of an individual. 53
4.8 First part of the generic construction of an individual. 54
4.9 Second part of the generic construction of an individual. 54
4.10 Third part of the generic construction of an individual. 55
4.11 Evaluation of the complete population . 56
4.12 Update of a population within the DEAL framework 60
4.13 Solving an individual within the parallel DEAL framework 66
4.14 Comparison of sequential, asynchronous and parallel coordination 67

6.1 Main modules of the DS Optimizer. 88
6.2 Serial scheduling example—calendar. 96
6.3 Serial scheduling example—activities and precedence constraints. 96
6.4 Serial scheduling example—underlying setup matrix. 96
6.5 Serial scheduling example—scheduling of block B3. 97
6.6 Serial scheduling example—scheduling of block B4. 97
6.7 Serial scheduling example—scheduling of block B1. 97
6.8 Serial scheduling example—scheduling of block B2. 98
6.9 Serial scheduling example—scheduling of block B6. 98
6.10 Serial scheduling example—scheduling of block B5. 99
6.11 Serial scheduling example—scheduling of block B7 in mode 1. 99

275

276 LIST OF FIGURES

6.12 Serial scheduling example—scheduling of block B7 in mode 2. 100

6.13 Serial scheduling example—result of shifting a block on the same resource. 103

6.14 Serial scheduling example—result of shifting a block on a different resource. . . . 103

7.1 Overview of the dates set by DEAL and DS Optimizer for a single activity j 114

7.2 Overview of initialization phase of DEAL’s customized version. 117

7.3 Overview of construction phase OF DEAL’s customized version. 121

7.4 Coordination example—ideal situation. 122

7.5 Coordination example—initial situation. 123

7.6 Coordination example—a possibility to counteract the machine breakdown. 123

7.7 Coordination example—left-aligned version of the OEM’s relaxed problem. 123

7.8 Coordination example—left-right-aligned version of the OEM’s relaxed problem. . 124

7.9 Coordination example—rescheduling of the suppliers. 124

7.10 Coordination example—improved feasible schedule. 125

7.11 Example for crossover of proposed dates . 139

7.12 Example for back-encoding previous solutions—parent schedule. 145

7.13 Example for back-encoding previous solutions—initializing the child schedule ac-
cording to release dates. 146

7.14 Example for back-encoding previous solutions—initializing the child schedule ac-
cording to the parent schedule. 146

7.15 Modules of the asynchronous DEAL prototype implementation 150

7.16 Modules of the parallel DEAL prototype implementation 151

7.17 Distribution of modules in the grid-framework . 152

7.18 Processes of the parallel coordination . 157

8.1 Design of setup conflicts—example 1. 164

8.2 Coordination of setup conflicts—example 1. 165

8.3 Design for setup conflicts—example 2. 166

8.4 Coordination of setup conflicts—example 2. 166

8.5 Design for setup conflicts—example 3. 167

8.6 Coordination of setup conflicts—example 3. 168

8.7 Design for conflicting activity durations. 168

8.8 Coordination of conflicting activity durations. 169

8.9 Design for mode-duration conflicts. 169

8.10 Coordination for mode durations conflicts. 170

8.11 Illustration of transport slots and implication on overall makespan. The transport
of a good must start at T0 or T1 to be delivered at T1 or T2, respectively. 171

8.12 Master data for the test-data generator. 174

8.13 Design for the benchmark scenario . 176

8.14 Due dates and ideal production sequence before machine breakdown. 181

8.15 Due dates and ideal production sequence after machine breakdown. 181

8.16 Relative difference of upstream planning and central, hard-constrained solutions
from central, soft-constrained solutions. 186

8.17 Relative difference of coordinated to upstream planning solutions. 188

LIST OF FIGURES 277

8.18 Relative difference of parallel and asynchronously coordinated to sequentially co-
ordinated solutions. 189

8.19 Relative difference of coordinated to central, soft-constrained solutions. 190

8.20 Weighted lateness of 10 different central runs for the small instance of the setup
subscenario. 192

8.21 Weighted lateness of 10 different runs of sequential coordination, small instance of
the setup subscenario, 13s local runtime, OEM perspective. 192

8.22 Illustration of overlapping precedence constraints in a central test instance. 194

8.23 Illustration of overlapping precedence constraints in two interdependent test in-
stances during coordination. 194

8.24 Average weighted lateness of 10 central runs with different setup weights. 195

8.25 Average weighted lateness of 10 sequential runs with different setup weights, 13s
local runtime, deterministic self-adaption. 195

8.26 Comparison of weighted lateness for parallel, asynchronous and sequential coor-
dination and central planning, small instance of the setup subscenario, average of
10 runs each, deterministic self-adaption, 13s of local runtime. 196

8.27 Gantt charts of coordinated and centrally computed schedule for the small instance
of the setup subscenario. 198

8.28 Comparison of weighted lateness for different local runtimes for the parallel coor-
dination with population size 12, small instance of setup subscenario, deterministic
self-adaption. 200

8.29 Comparison of weighted lateness for different operators for the parallel coordina-
tion with population size 12, small instance of the setup subscenario, deterministic
self-adaption. 201

8.30 Comparison of weighted lateness for parallel, asynchronous and sequential coordi-
nation and central run for the medium instance of the setup subscenario, 25s local
runtime, deterministic self-adaption. 202

8.31 Comparison of weighted lateness for parallel, asynchronous and sequential coor-
dination and central run for the large instance of the setup subscenario, 50s local
runtime, deterministic self-adaption. 203

8.32 Comparison of weighted lateness for parallel, asynchonous and sequential coordi-
nation and central run for the small instance of product mix subscenario. 205

8.33 Gantt charts of soft- and hard-constrained centrally computed and coordinated
schedule for the small instance of the product mix subscenario. 206

8.34 Comparison of weighted lateness for parallel and sequential coordination and cen-
tral run for the medium instance of the product mix subscenario. 208

8.35 Comparison of weighted lateness for parallel and sequential coordination and cen-
tral runs for the medium instance of the breakdown subscenario. 210

8.36 Comparison of weighted lateness for parallel and sequential coordination and cen-
tral runs for the second large instance of the breakdown subscenario. 211

8.37 Comparison of weighted lateness for parallel and sequential coordination and cen-
tral runs for the large instance of the complete scenario. 212

8.38 Upstream planning results for different total runtimes and the large instance of the
complete scenario. 212

278 LIST OF FIGURES

8.39 Comparison of weighted lateness of parallel coordination and central runs for the
small randomly generated test instance with δΩ

supplier = 0.0. 219

8.40 Comparison of weighted lateness of parallel coordination and central runs for the
medium-sized randomly generated instance with δΩ

supplier = 0.5. 220

8.41 Comparison of weighted lateness of parallel coordination and central runs for the
large randomized scenario, δΩ

supplier = 0.0. 221

8.42 Comparison of weighted lateness of parallel coordination and central runs for the
first additional medium-sized randomized scenario, more reduced operator set. . . 224

8.43 Comparison of weighted lateness of parallel coordination and central runs for the
second additional medium-sized randomized scenario, , more reduced operator set. 225

F.1 Average weighted sum of objectives of 10 central runs with different setup weights. 251

F.2 Average weighted sum of objectives of 10 sequential runs with different setup
weights, 13s local runtime, deterministic self-adaption. 252

F.3 Comparison of weighted lateness for parallel and sequential coordination and cen-
tral run for the medium instance of setup subscenario, two planning domains, 25s
local runtime, deterministic self-adaption. 252

F.4 Comparison of weighted lateness for different local runtimes for the parallel coor-
dination with population size 12 for the small instance of the product mix subsce-
nario. 253

F.5 Comparison of weighted lateness for different operators for the parallel coordina-
tion with population size 12 for the small instance of the product mix subscenario.

. 254

F.6 Comparison of weighted lateness for parallel and sequential coordination and cen-
tral run for the medium instance of the product mix subscenario, two-partner case.

. 255

F.7 Comparison of weighted lateness for parallel and sequential coordination and cen-
tral run for the medium instance of the product mix subscenario, including trans-
port disruptions. 255

F.8 Comparison of weighted lateness for parallel and sequential coordination and cen-
tral run for the medium instance with fine-grained demand of the product mix
subscenario. 256

F.9 Comparison of weighted lateness for parallel and sequential coordination and cen-
tral run for the large instance of the product mix subscenario. 256

F.10 Comparison of weighted lateness for parallel and sequential coordination and cen-
tral runs for the large instance of the breakdown subscenario. 257

F.11 Comparison of weighted lateness of parallel coordination and central runs for the
small randomly generated instance with δΩ

supplier = 0.3. 257

F.12 Comparison of weighted lateness of parallel coordination and central runs for the
small randomly generated instance with δΩ

supplier = 0.7. 258

F.13 Comparison of weighted lateness of parallel coordination and central runs for the
medium randomly generated instance with δΩ

supplier = 0.0. 258

F.14 Comparison of weighted lateness for parallel and central runs for the first addi-
tional medium instance of the complete scenario . 259

LIST OF FIGURES 279

F.15 Comparison of weighted lateness for parallel and central runs for the second addi-
tional medium instance of the complete scenario . 259

280 LIST OF FIGURES

List of tables

4.1 Generic commands, replies and issuers of messages 60
4.2 Generic components of the message protocol . 61

5.1 Indices and index sets for the RCPSP . 70
5.2 Data for the RCPSP . 70
5.3 Variables for the RCPSP . 70

6.1 Figure, priorities and weights for comparing possible modes. 92
6.2 Mutation base probabilities used for computational tests. 107

7.1 Additional data, index sets and superscripts for the interorganizational RCPSP . . 112
7.2 Abbreviations of operators’ subprocedures. 126
7.3 Overview of operator subprocedures, related subsections and page numbers. . . . 127
7.4 Additional commands and issuers for initialization, termination, feasibility check-

ing and parallel message distribution . 155
7.5 Additional commands and issuers for message exchange with solving-units 155
7.6 Additional commands and issuers for instruction between master and slave pro-

cesses . 155
7.7 Customized components of the message protocol 156

8.1 Example of a demand matrix with three products and four buckets. 173
8.2 Activity durations for the benchmark scenario . 178
8.3 Setup matrices for the benchmark scenario, all times in seconds, independent of lot

size. 179
8.4 Biweekly demand matrix for the large instance of the setup subscenario. 180
8.5 Weekly demand matrix for the medium instance of the breakdown subscenario.

Values in parentheses are the renegotiated demands after the breakdown occurred. 182
8.6 Biweekly demand matrix for the large instance of the complete scenario. 183
8.7 Standard specifications for the computational tests 184
8.8 Distribution of runtime for the parallel coordination with population size 12, aver-

aged over all instances. 190

281

282 LIST OF TABLES

8.9 Comparison of average (avg), minimum (min) and maximum (max) values of 10
runs of parallel and sequential coordination with 10 runs of central optimization
after 1,800s, local runtime 13s, small instance of the setup subscenario. The num-
bers in parantheses denote the relative difference to the average upstream planning
solution . 197

8.10 Summary of average values for 10 runs for the small instance of the setup subsce-
nario after 1,800s, 13s local runtime. 199

8.11 Summary of average values for 10 runs for the medium setup subscenario after
3,600s, 25s local runtime, deterministic self-adaption. 202

8.12 Summary of average values for 10 runs for the large setup subscenario after 7,200s,
50s local runtime, deterministic self-adaption. 203

8.13 Summary of average values for 10 runs for the small product mix subscenario after
1,800s, 13s local runtime, deterministic self-adaption. Values in parentheses denote
the difference from the soft-constrained solution. 204

8.14 Averaged results for different weights for maximum and weighted lateness, 10 runs
each, total runtime 1,800s, local runtime 13s (in case of the sequential coordination). 208

8.15 Summary of average values for 10 runs for the medium product mix subscenario
after 3,600s, 25s local runtime, deterministic self-adaption. Values in parentheses
denote the difference from the soft-constrained solution. 209

8.16 Summary of average values for 10 runs for the medium breakdown subscenario
after 3,600s, 25s local runtime, deterministic self-adaption. 210

8.17 Parameters for generating the network in the RTDG. 215

8.18 Parameters for generating the resource utilization in the RTDG. 216

8.19 Parameters for generating the resource availability and due dates in the RTDG. . . 217

8.20 Parameters for the first small instance of the RTDG. 218

8.21 Parameters for the first medium instance of the RTDG. 218

8.22 Parameters for the large instance of the RTDG. 218

8.23 Comparison of average (avg), minimum (min) and maximum (max) values of 10
runs of parallel coordination with 10 centrally computed runs after 1,800s, local
runtime 13s, full set of operators, small randomly generated instance, δΩ

supplier =
0.0. The numbers in parentheses denote the relative difference from the average
upstream planning solution. 219

8.24 Average relative differences of weighted lateness from central, soft-constrained so-
lutions for different test instances and operator sets. 222

8.25 The six most successful operators for the stochastic self-adaption and the full oper-
ator set. The values in parentheses denote the operator performance. 222

8.26 The three most successful operators for the stochastic self-adaption and the re-
duced operator set. The values in parentheses denote the operator performance. . 223

8.27 Parameters for the first additional medium-sized scenario of the RTDG. 223

A.1 Additional indexes and index sets of the simple Production Planning algorithm. . 233

A.2 Additional data of the simple Production Planning algorithm. 233

A.3 Additional variables of the simple Production Planning algorithm. 234

E.1 Standard operator list for the deterministic self-adaption. 250

LIST OF TABLES 283

G.1 Weekly demand matrix for the medium instance of the of the product mix subsce-
nario with fine-grained demand. 261

G.2 Biweekly demand matrix for the large instance of the product mix subscenario. . . 261

G.3 15-day demand matrix for the first large instance of the breakdown subscenario.
Values in brackets are the renegotiated demands after the breakdown occurred. . 261

G.4 14-day demand matrix for the second large instance of the breakdown subscenario.
Values in brackets are the renegotiated demands after the breakdown occurred. . 262

G.5 Comparison of average (avg), minimum (min) and maximum (max) values of 10
runs of parallel, asynchronous and sequential coordination with 10 centrally com-
puted runs after 3,600s, local run time 25s, full set of operators, medium instance of
the setup subscenario. The numbers in parentheses denote the relative difference
from the average upstream planning solution. 262

G.6 Comparison of average (avg), minimum (min) and maximum (max) values of 10
runs of parallel, asynchronous and sequential coordination with 10 centrally com-
puted runs after 7,200s, local run time 50s, full set of operators, large instance of the
setup subscenario. The numbers in parentheses denote the relative difference from
the average upstream planning solution. 263

G.7 Comparison of average (avg), minimum (min) and maximum (max) values of 10
runs of parallel and sequential coordination with 10 centrally computed runs after
1,800s, local runtime 13s, full set of operators, small instance of the product mix
subscenario. The numbers in parentheses denote the relative difference from the
average upstream planning solution. 264

G.8 Comparison of average (avg), minimum (min) and maximum (max) values of 10
runs of parallel and sequential coordination with 10 centrally computed runs after
3,600s, local runtime 25s, full set of operators, medium instance of the product mix
subscenario. The numbers in parentheses denote the relative difference from the
average upstream planning solution. 265

G.9 Summary of average values for 10 runs for the large instance of the product mix
subscenario after 7,200s, 50s local runtime, deterministic self-adaption. Values in
parentheses denote the difference from the soft-constrained solution. 265

G.10 Comparison of average (avg), minimum (min) and maximum (max) values of 10
runs of parallel and sequential coordination with 10 centrally computed runs after
7,200s, local runtime 50s, full set of operators, large instance of the product mix
subscenario. The numbers in parentheses denote the relative difference from the
average upstream planning solution. 266

G.11 Comparison of average (avg), minimum (min) and maximum (max) values of 10
runs of parallel and sequential coordination with 10 centrally computed runs after
3,600s, local runtime 25s, full set of operators, medium instance of the breakdown
subscenario. The numbers in parentheses denote the relative difference from the
(min/avg/max) upstream planning solution. 267

G.12 Summary of average values for 10 runs for the large instance of the breakdown sub-
scenario, first variant, after 7,200s, 50s local runtime, deterministic self-adaption.
Values in parentheses denote the difference from the soft-constrained solution. . . 267

284 LIST OF TABLES

G.13 Comparison of average (avg), minimum (min) and maximum (max) values of 10
runs of parallel and sequential coordination with 10 centrally computed runs after
7,200s, local runtime 50s, full set of operators, large instance of the breakdown sub-
scenario, first variant. The numbers in parentheses denote the relative difference
from the average upstream planning solution. 268

G.14 Summary of average values for 10 runs for the large instance of the breakdown sub-
scenario, second variant, after 7,200s, 50s local runtime, deterministic self-adaption.
Values in parentheses denote the difference from the soft-constrained solution. . . 268

G.15 Comparison of average (avg), minimum (min) and maximum (max) values of 10
runs of parallel and sequential coordination with 10 centrally computed runs after
7,200s, local runtime 50s, full set of operators, large instance of the breakdown sub-
scenario, second variant. The numbers in parentheses denote the relative difference
from the average upstream planning solution. 269

G.16 Summary of average values for 10 runs for the large instance of the complete sce-
nario, after 14,400s, 100s local runtime, deterministic self-adaption. 269

G.17 Comparison of average (avg), minimum (min) and maximum (max) values of 10
runs of parallel and sequential coordination with 10 centrally computed runs after
14,400s, local run time 100s, full set of operators, large instance of the complete sce-
nario. The numbers in parentheses denote the relative difference from the average
upstream planning solution. 270

G.18 Comparison of average (avg), minimum (min) and maximum (max) values of 10
runs of parallel coordination with 10 centrally computed runs after 1,800s, local
runtime 13s, full set of operators, small randomly generated instance, δΩ

supplier =
0.3. The numbers in parentheses denote the relative difference from the average
upstream planning solution. 271

G.19 Comparison of average (avg), minimum (min) and maximum (max) values of 10
runs of parallel coordination with 10 centrally computed runs after 1,800s, local
runtime 13s, full set of operators, small randomly generated instance, δΩ

supplier =
0.7. The numbers in parentheses denote the relative difference from the average
upstream planning solution. 271

G.20 Comparison of average (avg), minimum (min) and maximum (max) values of 10
runs of parallel coordination with 10 centrally computed runs after 3,600s, local
runtime 25s, full set of operators, medium randomly generated instance, δΩ

supplier =
0.0. The numbers in parentheses denote the relative difference from the average
upstream planning solution. 271

G.21 Comparison of average (avg), minimum (min) and maximum (max) values of 10
runs of parallel coordination with 10 centrally computed runs after 3,600s, local
runtime 25s, full set of operators, medium randomly generated instance, δΩ

supplier =
0.5. The numbers in parentheses denote the relative difference from the average
upstream planning solution. 272

G.22 Comparison of average (avg), minimum (min) and maximum (max) values of 10
runs of parallel coordination with 10 centrally computed runs after 7,200s, local
runtime 240s, full set of operators, small randomly generated instance, δΩ

supplier =
0.0. The numbers in parantheses denote the relative difference to the average up-
stream planning solution: . 272

LIST OF TABLES 285

G.23 Comparison of average (avg), minimum (min) and maximum (max) values of 10
runs of parallel coordination with 10 centrally computed runs after 3,600s, local
runtime 25s, more reduced set of operators, first additional medium randomly gen-
erated instance. The numbers in parentheses denote the relative difference from the
average upstream planning solution. 272

G.24 Comparison of average (avg), minimum (min) and maximum (max) values of 10
runs of parallel coordination with 10 centrally computed runs after 3,600s, local
runtime 25s, more reduced set of operators, second additional medium randomly
generated instance. The numbers in parentheses denote the relative difference from
the average upstream planning solution. 273

G.25 Biweekly demand matrix for the first additional medium instance of the complete
scenario . 273

G.26 Biweekly demand matrix for the second additional medium instance of the com-
plete scenario . 273

G.27 Comparison of average (avg), minimum (min) and maximum (max) values of 10
runs of parallel coordination with 10 centrally computed runs after 3,600s, local run
time 25s, full set of operators, first additional medium instance of the complete sce-
nario. The numbers in parentheses denote the relative difference from the average
upstream planning solution. 274

G.28 Comparison of average (avg), minimum (min) and maximum (max) values of 10
runs of parallel coordination with 10 centrally computed runs after 3,600s, local
run time 25s, full set of operators, second additional medium instance of the com-
plete scenario. The numbers in parentheses denote the relative difference from the
average upstream planning solution. 274

286 LIST OF TABLES

Bibliography

Abdul-Jalbar, B., Guiterrez, J. M., and Sicilia, J. (2007): “An integrated inventory model for the
single-vendor two-buyer problem.” International journal of production economics, 108, pp. 246–
258. (Cited on page 17.)

Alcaraz, J. and Maroto, C. (2001): “A Robust Genetic Algorithm for Resource Allocation in Project
Scheduling.” Annals of Operations Research, 102, pp. 83–109. (Cited on pages 80, 81, 83, and 84.)

Atallah, M. J., Deshpande, V., Elmongui, H. G., and Schwarz, L. B. (2003): “Secure Supply-Chain
Protocols.” In “Proceedings of the IEEE International Conference on E-Commerce,” . (Cited on
page 28.)

Banerjee, A. (1986): “A joint economic-lot-size model for purchaser and vendor.” Decision Sciences,
17, no. 3, pp. 292–311. (Cited on pages 16 and 17.)

Banerjee, A., Kim, S. L., and Burton, J. (2007): “Supply chain coordination through effective mulit-
stage inventory linkages in a JIT environment.” International Journal of production economics, 108,
pp. 271–280. (Cited on page 17.)

Bhatnagar, R. and Chandra, P. (1993): “Models for multi-plant coordination.” European Journal of
Operational Research, 67, pp. 141–160. (Cited on pages 12, 14, and 16.)

Bierwirth, C., Schneider, S., and Kopfer, H. (2002): “Elektronische Transportmärkte: Aufgaben, En-
twicklungsstand und Gestaltungsoptionen.” Wirtschaftinformatik, 44, no. 4, pp. 335–344. (Cited
on page 29.)

Bierwith, C. (1995): “A generalized permutation approach to job shop scheduling with genetic
algorithms.” OR Spektrum, 17, pp. 87–92. (Cited on page 82.)

Blazewicz, J., Domschke, W., and Pesch, E. (1996): “The job shop scheduling problem: conven-
tional and new solution techniques.” European Journal of Operational Research, 93, pp. 1–33.
(Cited on page 80.)

Blazewicz, J., Lenstra, J., and Rinnoy Kan, A. H. (1983): “Scheduling projects to resource con-
straints: Classification and complexity.” Discrete Applied Mathematics, 5, pp. 11–24. (Cited on
pages 69 and 80.)

287

288 BIBLIOGRAPHY

Bouleimen, K. and Lecocq, H. (2003): “A new efficient simulated annealing algorithm for the
resource-constrained project scheduling problem and its multiple mode version.” European
Journal of Operational Research, 149, pp. 268–281. (Cited on pages 81 and 82.)

Branke, J. and Schmidt, C. (2005): “Faster convergence by means of fitness estimation.” Soft Com-
puting, 9, pp. 13–20. (Cited on page 62.)

Braun, H. (1997): Neuronale Netze - Optimierung durch Lernen und Evolution. Springer. (Cited on
page 39.)

Brucker, P., Drexl, A., Möhring, R. H., Neumann, K., and Pesch, E. (1999): “Resource-Constrained
Project Scheduling: Notation, Classification, Models and Methods.” European Journal of Opera-
tional Research, 112, no. 1, pp. 3–41. (Cited on page 80.)

Brucker, P. and Knust, S. (2000): “A linear programming and constraint propagation-based lower
bound for the RCPSP.” European Journal of Operational Research, 127, pp. 355–362. (Cited on
page 80.)

Cachon, G. P. (2003): Supply Chain Coordination with Contracts, vol. 11 of Handbooks in Operations Re-
search and Management Science: Supply Chain Management, chap. 6, pp. 229–340. North-Holland.
(Cited on page 18.)

Cachon, G. P. and Lariviere, M. A. (2005): “Supply chain coordination with revenue-sharing con-
tracts: strenghts and limitations.” Management Science, 51, no. 1, pp. 30–44. (Cited on pages 2
and 18.)

Chatterjee, K. and Samuelson, W. (1983): “Bargaining under incomplete information.” Operations
Research, 31, no. 5, pp. 835–851. (Cited on page 19.)

Chen, F., Federgruen, A., and Zheng, Y.-S. (2001): “Coordination mechanisms for a distributed
system with one supplier and multiple retailers.” Management Science, 47, no. 5, pp. 693–708.
(Cited on page 17.)

Chiou, C.-C., Yao, M.-J., and Tsai, J. (2007): “A mutually beneficial coordination mechanism for a
one-supplier multi-retailers supply chain.” International journal of production economics, 108, pp.
314–328. (Cited on page 17.)

Cho, J.-H. and Kim, Y.-D. (1997): “A Simulated Annealing Algorithm for Resource Constrained
Project Scheduling Problems.” The Journal of the Operational Research Society, 48, pp. 736–744.
(Cited on page 84.)

Clark, A. J. and Scarf, H. (1960): “Optimal Policies for a Multi-Echelon Inventory Problem.” Man-
agement Science, 6, no. 4, pp. 475–490. (Cited on page 18.)

Clark, E. (1971): “Multipart pricing of public goods.” Public Choice, 11, pp. 17–33. (Cited on
page 19.)

Conejo, A. J., Castillo, E., Minguez, R., and Garcia-Bertrand, R. (2006): Decomposition Techniques in
Mathematical Programming. Springer, Berlin-Heidelberg. (Cited on pages 21 and 22.)

Corbett, C. J. and de Groote, X. (2000): “A Supplier’s Optimal Quantity Discount Policy Under
Asymmetric Information.” Management Science, 46, no. 3, pp. 444–450. (Cited on page 17.)

BIBLIOGRAPHY 289

Dahl, S. and Derigs, U. (2008): “Planning in Express Carrier Networks: A Simulation Study.” In
“OR Proceedings,” . (Cited on pages 2 and 28.)

Damay, J., Quilliot, A., and Sanlaville, E. (2007): “Linear programming based algorithms for pre-
emptive and non-preemptive RCPSP.” European Journal of Operational Research, 182, pp. 1012–
1022. (Cited on page 80.)

Darwin, C. (1859): The origin of species by means of natural selection. John Murray. (Cited on page 36.)

Dawkins, R. (1976): The selfish gene. Oxford University Press. (Cited on page 38.)

Deb, K. (1999): “Non-Linear Goal Programming using Multi-Objective Genetic Algorithms.” Tech.
Rep. CI-60/98, Dortmund: Department of Computer Science/LS11, University of Dortmund,
Germany. (Cited on page 44.)

Deb, K. (2001): Multi-objective optimization using evolutionary algorithms. Wiley. (Cited on pages 37,
39, 43, 59, and 110.)

Deb, K., Pratap, A., Agarwal, S., and Meyarivan, T. (2002): “A Fast and Elitist Multiobjective Ge-
netic Algorithm: NSGA-II.” IEEE Transactions on Evolutionary Computation, 6, no. 2, pp. 182–197.
(Cited on page 43.)

Debels, D. and Vanhoucke, M. (2005): Computational Science and Its Applications Ű ICCSA 2005,
chap. A Bi-population Based Genetic Algorithm for the Resource-Constrained Project Schedul-
ing Problem, pp. 378–387. Springer, Berlin / Heidelberg. (Cited on pages 81 and 83.)

Demeulemeester, E., Dodin, B., and Herroelen, W. (1993): “A random activity network generator.”
Operations Research, 41, no. 5, pp. 972–980. (Cited on page 213.)

Dickersbach, J. T. (2003): Supply Chain Management with APO. Springer. (Cited on pages 8, 9,
and 87.)

Diks, E. B., de Kok, A. G., and G., L. A. (1996): “Multi-echelon systems: A service measure per-
spective.” European Journal of Operational Research, 95, pp. 241–263. (Cited on page 18.)

Domschke, W. and Scholl, A. (2008): Grundlagen der Betriebswirtschaftslehre. Springer, Berlin Hei-
delberg, 4 edn. (Cited on pages 41 and 43.)

Drexl, A. (1990): “Fließbandaustaktung, Maschinenbelegung und Kapazitätsplanung in Netzw-
erken.” Zeitschrift für Betriebswirtschaft, 60, pp. 53–70. (Cited on page 69.)

Drexl, A., Nissen, R., Patterson, J., and S., F. (2000): “ProGen/πx - An instance generator for
resource-constrained project scheduling problems with partially renewable reseouces and fur-
ther extensions.” European Journal of Operational Research, 125, pp. 59–72. (Cited on page 213.)

Dudek, G. (2007): Collaborative planning in supply chains. A negotiation-based approach. Springer,
Berlin. (Cited on pages 2, 26, 29, 159, and 186.)

Dudek, G. and Stadtler, H. (2005): “Negotiation-based collaborative planning between supply
chain partners.” European Journal of Operational Research, 163, pp. 668–687. (Cited on pages 25,
26, 28, 116, 126, 137, and 187.)

290 BIBLIOGRAPHY

Eiben, A. and Smith, J. (2003): Introduction to Evolutionary Computing. Springer. (Cited on pages 37
and 39.)

Engelmann, T. (1998): Prozessflussoptimierung mit evolutionären Algorithmen. Master’s thesis, In-
stitut für angewandte Informatik und formale Beschreibungsverfahren, Universität Karlsruhe
(TH). (Cited on pages 76, 77, 81, 83, 94, 100, 104, and 150.)

Ertogal, K. and Wu, D. S. (2000): “Auction-theoretic coordination of production planning in the
supply chain.” IIE Transactions, 32, no. 10, pp. 931–940. (Cited on pages 2 and 24.)

Fan, M., Stallaert, J., and Whinston, A. B. (2003): “Decentralized mechanism design for supply
chain organizations using an auction market.” Information Systems Research, Vol. 14, no. 1, pp.
1–22. (Cited on page 19.)

Feltovich, N. (2000): “Reinforcement-based vs. belief-based learning models in experimental
asymmetric-information games.” Econometrica, 68, no. 3, p. 605Ű641. (Cited on page 20.)

Fink, A. (2004): “Supply Chain Coordinaton by Means of Automated Negotiations.” In “Proceed-
ings of the 37th Hawaii International Conference on System Science,” . (Cited on pages 2, 12,
21, 28, 29, and 31.)

Fink, A. (2006): Multiagent based Supply Chain Management, chap. Supply chain coordination by
means of automated negotiations between autonomous agents, pp. 351–372. (Cited on pages 28,
29, and 31.)

Fleischmann, B., Meyr, H., and Wagner, M. (2007): Supply Chain Management and Advanced Plan-
ning, chap. Advanced Planning, pp. 81–106. Springer, 4 edn. (Cited on page 5.)

Fleszar, K. and Hindi, K. S. (2004): “Solving the resource-constrained project scheduling problem
by a variable neighbourhood search.” European Journal of Operational Research, 155, pp. 402–413.
(Cited on page 83.)

Fogel, D. B. (2000): Evolutionary Computation: Advanced Algorithms and Operators, chap. Introduc-
tion to evolutionary computation, pp. 1–3. CRC Press. (Cited on pages 36 and 37.)

Fogel, L., Owens, A., and M., W. (1966): Artificial Intelligence Through Simulated Evoluion. Wiley,
New York. (Cited on page 39.)

Foster, I. and Kesselmann, C. (1998): The Grid: Blueprint for a new computing infrastructure. The
Elsevier series in Grid Computing. Morgan Kaufmann. (Cited on page 154.)

Fransoo, J. C., F., W. M. J., and de Kok, T. G. (2001): “Multi-echelon multi-company inventory
planning with limited information exchange.” The Journal of the Operantional Research Society,
52, pp. 830–838. (Cited on pages 17 and 18.)

Goncalves, J. F., Mendes, J. J. M., and Resende, M. G. C. (2007): “A genetic algorithm for the re-
source constrained multi-project scheduling problem.” European Journal of Operational Research,
InPress. (Cited on page 84.)

Goyal, S. K. and Gupta, Y. P. (1989): “Integrated inventory modelas: The buyer-vendor coordina-
tion.” European Journal of Operational Research, 41, pp. 261–269. (Cited on page 16.)

BIBLIOGRAPHY 291

Groves, T. (1973): “Incentive in teams.” Econometrica, 41, pp. 617–631. (Cited on page 19.)

Harsanyi, J. C. and Selten, R. (1972): “A Generalized Nash Solution for Two-Person Bargaining
Games with Incomplete Information.” Mangement Science, 18, no. 5, pp. 80–106. (Cited on
page 20.)

Hartmann, S. (1998): “A competitive genetic algorithm for resource-constrained project schedul-
ing.” Naval research logistics, 45, no. 7, pp. 733–750. (Cited on pages 81 and 82.)

Hartmann, S. (2001): “Project Scheduling with Multiple Modes.” Annals of Operations Research,
102, pp. 111–135. (Cited on page 83.)

Hartmann, S. (2002): “A Self-Adapting Genetic Algorithm for Project Scheduling under Resource
Constraints.” Naval Research Logistics, 49, pp. 433–448. (Cited on pages 81, 83, and 84.)

Hartmann, S. and Kolisch, R. (2000): “Experimental evaluation of state-of-the-art heuristics for
the resource-constrained project scheduling problem.” European Journal of Operational Research,
127, pp. 394–407. (Cited on pages 80, 81, and 85.)

Herroelen, W., De Reyck, B., and Demeulemeester, E. (1998): “Resource-constrained project
scheduling: a survey of recent developments.” Computers and Operations Research, 25, no. 4,
pp. 279–302. (Cited on page 80.)

Hertz, A. and Kobler, D. (2000): “A framework for the description of evolutionary algorithms.”
European Journal of Operational Research, 126, pp. 1–12. (Cited on page 39.)

Hindi, K. S., Yang, H., and Fleszar, K. (2002): “An Evolutionary Algorithm for Resource-
Constrained Project Scheduling.” IEEE Transactions on Evolutionary Computation, 6, no. 5, pp.
512–518. (Cited on page 83.)

Holland, J. (1975): Adaptation in Natural and Artificial Systems. University of Michigan Press. (Cited
on page 39.)

Jeong, I.-J. and Leon, V. J. (2002): “Decison-making and cooperative ineraction via coupling agents
in organizationally distributed systems.” IIE Transactions, 34, pp. 789–802. (Cited on page 25.)

Jeong, I.-J. and Leon, V. J. (2005): “A single-machine distributed scheduling methodology using
cooperative-interaction via coupling-agents.” IIE Transactions, 37, no. 2, pp. 136–152. (Cited on
page 25.)

Jin, Y. (2002): “A Framework for Evolutionary Optimization With Approximate Fitness Func-
tions.” IEEE Transactions on Evolutionary Computation, 6, no. 5, pp. 481–494. (Cited on page 62.)

Jozefowska, J., Mika, M., Rozycki, R., Waligora, G., and Weglarz, J. (2001): “Simulated Annealing
for Multi-Mode Resource-Constrained Project Scheduling.” Annals of Operations Research, 102,
pp. 137–155. (Cited on pages 81 and 83.)

Jung, H., Frank, C. F., and Jeong, B. (2005): “A production-distribution coordination model for
third party logistics partnership.” In “IEEE International Conference on Automated Science
and Engineering,” . (Cited on page 26.)

Kerschbaum, F. and Deitos, R. J. (2008): “Security against the Business Partner.” In “Proceedings
of the 2008 ACM workshop on Secure web services,” . (Cited on pages 27 and 28.)

292 BIBLIOGRAPHY

Kilger, C. and Reuter, B. (2007): Supply Chain Management and Advanced Planning, chap. Collabo-
rative Planning, pp. 259–278. Springer, 4 edn. (Cited on pages 12 and 13.)

Kim, K. W., Gen, M., and Yamazaki, G. (2003): “A hybrid genetic algorithm with fuzzy logic for
resource-constrained project scheduling.” Applied Soft computing, 2, no. 3, pp. 174–188. (Cited
on page 82.)

Klein, R. (1998): “Bidirectional planning: improving priority rule-based heuristics for scheduling
resource-constrained projects.” European Journal of Operational Research, 127, pp. 619–638. (Cited
on page 85.)

Klein, R. (2000): Scheduling of resource-constrained projects. Kluwer Academics. (Cited on pages 72,
74, and 80.)

Kolisch, R. (1995): Project scheduling under resource constraints: efficient heuristics for several problem
classes. Physica-Verlag, Heidelberg. (Cited on pages 71, 76, 80, and 82.)

Kolisch, R. (1996): “Serial and parallel resource-constrained project scheduling methods revisited:
Theory and computation.” European Journal of Operational Research, 90, pp. 320–333. (Cited on
pages 81 and 82.)

Kolisch, R. and Hartmann, S. (1999): Project Scheduling: Recent models, algorithms and applications,
chap. Heuristic Algorithms for Solving the Resource-Constrained Project-Scheduling Problem:
Classification and Computational Analysis, pp. 147–178. Kluwer, Amsterdam, the Netherlands.
(Cited on page 80.)

Kolisch, R. and Hartmann, S. (2006): “Experimental investigation of heuristics for resource-
constrained project scheduling: An update.” European Journal of Operational Research, 174, pp.
23–37. (Cited on pages 80 and 85.)

Kolisch, R. and Sprecher, A. (1996): “PSPLIB - a project scheduling problem library.” European
Journal of Operational Research, 96, pp. 205–216. (Cited on page 214.)

Kolisch, R., Sprecher, A., and Drexl, A. (1992): “Characterization and Generation of a General
Class of Resource-Constrained Project Scheduling Problems.” Tech. Rep. 301, Insititut für Be-
triebswirtschaftslehre, Universität Kiel, Germany. (Cited on pages 213 and 214.)

Kolisch, R., Sprecher, A., and Drexl, A. (1995): “Characterization and Generation of a General
Class of Resource-Constrained Project Scheduling Problems.” Management Science, 41, pp. 1693–
1703. (Cited on pages 213 and 214.)

Kutanoglu, E. and Wu, S. D. (1999): “On combinatorial auction and Lagrangean relaxation for
distributed resource scheduling.” IIE Transactions, 31, pp. 813–826. (Cited on pages 23 and 29.)

Kutanoglu, E. and Wu, S. D. (2006): “Incentive compatible, collaborative production scheduling
with simple communication among ditributed agents.” International Journal of Production Re-
search, 44, no. 3, pp. 421–446. (Cited on pages 2, 19, and 23.)

Leon, V. J. and Ramamoorthy, B. (1995): “Strength and adaptability of problem space based neigh-
borhoods for resource-constrained scheduling.” OR Spektrum, 17, pp. 173–182. (Cited on
page 84.)

BIBLIOGRAPHY 293

Li, J. and Atallah, M. (2006): “Secure and Private Collaborative Linear Programming.” In “Interna-
tional Conference on Collaborative Computing: Networking, Applications and Worksharing.”,
. (Cited on pages 27 and 28.)

Li, K. Y. and Willis, R. J. (1992): “An iterative scheduling technique for resource-constrained
project scheduling.” European Journal of Operational Research, 65, pp. 370–379. (Cited on page 85.)

Lu, L. (1995): “A one-vendor multi-buyer integrated inventory model.” European Journal of Oper-
ational Research, 81, pp. 312–323. (Cited on page 17.)

Manne, A. S. (1960): “On the Job-Shop Scheduling Problem.” Operations Research, 8, no. 2, pp.
219–223. (Cited on page 80.)

Mattfeld, D. C. (1995): Evolutionary search and the job shop. Springer Verlag. (Cited on page 82.)

Mattfeld, D. C. and Bierwith, C. (2004): “An efficient genetic algorithm for job shop scheduling
with tardiness objective.” European Journal of Operational Research, 155, pp. 616–630. (Cited on
page 82.)

Merkle, D., Middendorf, M., and Schmeck, H. (2002): “Ant colony optimization for resource con-
strained project scheduling.” IEEE Transactions on Evolutionary Computation, 6, no. 4, pp. 333–
346. (Cited on pages 84 and 143.)

Meyr, H., Rhode, J., Wagner, M., and Wetternauer, U. (2007a): Supply Chain Management and Ad-
vanced Planning, chap. Architecture of Selected APS, pp. 341–353. Springer, 4 edn. (Cited on
page 9.)

Meyr, H., Wagner, M., and Rhode, J. (2007b): Supply Chain Management and Advanced Planning,
chap. Structure of Advanced Planning Systems, pp. 109–115. Springer, 4 edn. (Cited on pages 6
and 275.)

Monahan, J. P. (1984): “A quantity discount pricing model to increase vendor profits.” Management
Science, 30, no. 6, pp. 720–726. (Cited on page 16.)

Munson, C. L. and Rosenblatt, M. J. (2001): “Coordinating a three-level supply chain with quantity
discounts.” IIE Transactions, 33, pp. 371–384. (Cited on page 17.)

Myerson, R. B. (1979): “Incentive compatibility.” Econometrica, 47, no. 1, pp. 61–73. (Cited on
page 19.)

Myerson, R. B. and Satterthwaite, M. A. (1983): “Efficient Mechanisms for Bilateral Trading.” Jour-
nal of Economic Theory, 29, pp. 265–281. (Cited on page 20.)

Naphade, K. S., Wu, S. D., and Storer, R. H. (1997): “Problem space search algorithms for resource-
constrained project scheduling.” Annals of Operations Research, 70, pp. 307–326. (Cited on
page 84.)

Neumann, K., Schwindt, C., and Zimmermann, J. (2001): Project Scheduling with Time Windows and
Scarce Resources. Springer. (Cited on pages 69, 72, 74, 80, 91, 93, and 94.)

Nie, L., Xu, X., and Zhan, D. (2006): “Collaborative planning in supply chains by Lagrangian
relaxation.” In “Proceedings of the First International Multi-Symposiums on Computer and
Computational Science,” . (Cited on pages 11 and 24.)

294 BIBLIOGRAPHY

Perakis, G. and Roels, G. (2005): “The price of anarchy in supply chains: quantifying th efficiency
of price-only contracts.” (Cited on page 18.)

Pibernik, R. and Sucky, E. (2007): “An approach to inter-domain master planning in supply
chains.” International journal of production economics, 108, pp. 200–212. (Cited on page 26.)

Ponnambalam, S. G., Aravindan, P., and Rao, P. S. (2001): “Comparative evaluation of genetic
algorithms for job-shop scheduling.” Production Planning & Control, 12, no. 6, pp. 560–574.
(Cited on page 80.)

Radoport, A., Daniel, T. E., and Seale, D. A. (1998): “Reinforcement-based adaptive learning in
asymetric two-person bargaining with incomplete information.” Experimental Economics, 1, pp.
221–253. (Cited on page 20.)

Radoport, A. and Fuller, M. A. (1995): “Bidding strategies in a bilateral monopoly with two-sided
incomplete information.” Journal of Mathematical Psychology, 39, pp. 179–196. (Cited on page 20.)

Ratle, A. (1998): Lecture Notes In Computer Science, chap. Accelerating the convergence of evolu-
tionary algorithms by fitness landscape approximation, pp. 87–96. Springer, Berlin - Heidel-
berg. (Cited on page 62.)

Rechenberg, I. (1973): Evolutionsstrategie: Optimierung technischer Systeme nach Prinzipien der biolo-
gischen Evolution. Frommann-Holzboog, Stuttgart. (Cited on page 39.)

Rohde, J. and Wagner, M. (2007): Supply Chain Management and Advanced Planning, chap. Master
Planning, pp. 159–177. Springer, 4 edn. (Cited on pages 6 and 7.)

Samuelson, W. (1984): “Bargaining under asymmetric information.” Econometrica, 52, no. 4, pp.
995–1005. (Cited on page 20.)

Schneeweis, C. (2003): Distributed Decision Making. Springer. (Cited on pages 11, 12, 13, 14, 15, 44,
and 275.)

Schneeweis, C. and Zimmer, K. (2004): “Hierarchical coordination mechanisms within the supply
chain.” European Journal of Operational Research, 153, pp. 687–703. (Cited on page 11.)

Schwefel, H.-P. (1981): Numerical Optimization for Computer Models. Wiley, Chichester. (Cited on
page 39.)

Schwindt, C. (1995): “Progen/max: a new problem generator for different resource constrained
project scheduling problems with minimal and maximal time lags.” Tech. rep., Fakultät für
Wirtschaftswissenschaften (Fak. f. Wirtschaftswiss.), Institut für Wirtschaftstheorie und Opera-
tions Research (WIOR), Universität Karlsruhe. (Cited on page 213.)

Schwindt, C. (2005): “Resource Allocation in Project Management.” In Burkard, R., Fleischmann,
B., Inderfurth, K., Möhring, R., and Voß, S., editors, “GOR Publications,” Springer. (Cited on
pages 74 and 75.)

Spears, W. (2007): Evolutionary Algorithms. Springer. (Cited on pages 37 and 39.)

Spengler, J. (1950): “Vertical integration and antitrust policy.” Journal of Political Economy, 4, no. 58,
pp. 347–352. (Cited on page 18.)

BIBLIOGRAPHY 295

Sprecher, A., Kolisch, R., and Drexl, A. (1995): “Semi-active, active and non-delay schedules for
the resource-constrained project-scheduling problem.” European Journal of Operational Research,
80, pp. 94–102. (Cited on pages 71, 72, 73, and 74.)

Stadtler, H. (2005a): “Multilevel capacitated lot-sizing problems and resource-constrained project
scheduling: an integrating perspective.” International Journal of Productions Research, 43, no. 24,
pp. 5253–5270. (Cited on page 72.)

Stadtler, H. (2005b): “Supply chain management and advanced planning - basics, overview and
challenges.” European Journal of Operational Research, 163, pp. 575–588. (Cited on page 34.)

Stadtler, H. (2007a): “A framework for collaborative planning and state-of-the-art.” OR Spectrum.
(Cited on pages 2, 11, 12, 13, 14, and 19.)

Stadtler, H. (2007b): Supply Chain Management and Advanced Planning, chap. Production Planning
and Scheduling, pp. 197–214. Springer, 4 edn. (Cited on page 7.)

Sucky, E. (2006): “A bargaining model with asymmetric information for a single supplier-single
buyer problem.” European Journal of Operational Research, 171, pp. 516–533. (Cited on pages 2
and 17.)

Thaler, R. H. (1988): “Anomalies: The Ultimatum Game.” The Journal of Economic Perspective, 2,
no. 4, pp. 195–206. (Cited on page 20.)

Thomalla, C. (1998): Job Shop Scheduling mit Lagrangescher Relaxation. VDI Verlag, Düsseldorf.
(Cited on page 23.)

Thomas, P. R. and Salhi, S. (1998): “A Tabu Search Algorithm for the Resource Constrained Project
Scheduling Problem.” Journal of Heuristics, 4, pp. 123–139. (Cited on page 16.)

Tormos, P. and Lova, A. (2001): “A Competitive Heuristic Solution Technique for Resource-
Constrained Project Scheduling.” Annals of Operations Research, 102, pp. 65–81. (Cited on
page 85.)

Tormos, P. and Lova, A. (2003): “An efficient multi-pass heuristic for project scheduling with con-
strained resources.” International Journal of Production Research, 41, pp. 1071–1086. (Cited on
page 85.)

Valls, V., Ballestin, F., and Quintanilla, S. (2005): “Justification and RCPSP: A technique that pays.”
European Journal of Operational Research, 165, pp. 375–386. (Cited on page 85.)

Valls, V., Quintanilla, S., and Ballestin, F. (2003): “Resource-constrained project scheduling: a crit-
ical activity reordering heuristic.” European Journal of Operational Research, 149, pp. 282–301.
(Cited on page 84.)

Van de Panne, C. (1991): “Decentralizaton for multidivison enterprises.” Operations Research, 39,
no. 5, pp. 786–797. (Cited on pages 22 and 25.)

van Houtum, G. J., Inderfurth, K., and Zijm, W. H. M. (1996): “Materials coordination in stochas-
tic multi-echelon systems.” European Journal of Operational Research, 95, pp. 1–23. (Cited on
page 18.)

296 BIBLIOGRAPHY

Voß, S. (2001): Local Search for Planning and Scheduling, chap. Meta-heuristics: The State of the Art,
pp. 1–23. Springer. (Cited on page 39.)

Voß, S., Martello, S., Osman, I., and Roucairol, C., editors (1999): Meta-Heuristics: Advances and
Trends in Local Search Paradigms for Optimization. Kluwer, Boston. (Cited on page 39.)

Voß, S. and Woodruff, D. (2006): Introduction to Computational Optimization Models for Production
Planning in a Supply Chain. Springer, Berlin Heidelberg. (Cited on page 112.)

Walther, G., Schmid, E., and Spengler, T. S. (2008): “Negotiation based coordination in product
recovery.” Journal of Production Economics, 111, no. 2, pp. 334–350. (Cited on pages 2 and 24.)

Wellman, M. P. and Walsh, W. E. (2001): “Auction protocols for decentralized scheduling.” Games
and Economic Behaviour, 35, pp. 271–303. (Cited on page 19.)

Whang, S. (1995): “Coordination in operations: A taxonomy.” Journal of Operations Management,
12, pp. 413–422. (Cited on page 14.)

Williams, H. P. (1999): Model Building in Mathematical Programming. Wiley, 4 edn. (Cited on
pages 21 and 22.)

Yao, A. (1982): “Protocols for secure computation.” In “Proceedings of the 23rd Annual IEEE
Symposium on Foundations of Computer Science,” . (Cited on page 27.)

Özdamar, L. and Gündüz, U. (1996): “A note on an iterative forward/backward scheduling tech-
nique with reference to a procedure by Li and Willis.” European Journal of Operational Research,
89, pp. 400–407. (Cited on page 85.)

Zhao, X., Luh, P., and Wang, J. (1999): “Surrogate Gradient Algorithm for Lagrangian Relaxation.”
Journal of Optimization Theory and Applications, 100, no. 3, pp. 699–712. (Cited on pages 22
and 24.)

Ziegler, J. and Banzhaf, W. (2003): “Decreasing the Number of Evaluations in Evolutionary Algo-
rithms by Using a Meta-model of the Fitness Function.” In “Proceedings of the 6th European
Conference on Genetic Programming, EUROGP,” . (Cited on page 62.)

Index

activity, 69
block, 93
downstream-related, 113
list, 81
setup, 76, 95
upstream related, 113

Advanced Planning System, 5
alignment

left-, 84, 109
left-right-, 129
right-, 84, 109
right-left-, 85

anticipating data, 15
APO, 8
auction theory, 19

backencoding, 100
bargaining theory, 19
base level, 15
block, see activity, block

calendar, 76
central run, 183

hard-constrained, 184
soft-constrained, 184

children, see EA, children, see DEAL, children
Collaborative Planning, 12
communication thread, 48
context, 87

working, 148
contract theory, 15
coordination

-related costs, 57
asynchronous, 63

from scratch, 219
hierarchical, 11, 14
mechanism, 12
parallel, 65
process, 12
run, 183
scheme, 12
sequential, 61

crossover operator, see EA, crossover operator,
see GA, crossover operator, see DEAL,
crossover operator

CX, 138, 140

deadline, 71
DEAL, 33, 111

children, 59, 119, 120
crossover operator, 126, 138
customized construction, 120
customized evaluation, 118
customized initialization, 116
decoding function, 46
generation, 61, 63
generic construction, 48
generic evaluation, 55
generic selection, 59
genotype, 46
individual, 46, 115

state, 49
mutation operator, 125

alignment-based, 129
propagation-based, 127
rescheduling–alignment, 133, 201
rescheduling-based, 133

297

298 INDEX

operator, see DEAL, crossover operator, see
DEAL, mutation operator

list, 141, 250
more reduced set, 223
reduced set, 223
success, 142

parent, 59, 120
decoding function, see EA, decoding function,

see DEAL, decoding function, see GA,
decoding function

direct revelation mechanism, 19
distribution-control procedure, 148, 247
domain, see planning domain
domain-control procedure, 148, 239, 243
domination, 42
DS solving module, see solving module
due date, 78

propagated, 78
duration, 69

gross-, 76

EA, 36
children, 38
crossover operator, 38
decoding function, 37
fitness, 38
generation, 38
genotype, 38
individual, 38
Lamarckism, 38
local optimality, 37
Multiobjective, 41
mutation operator, 38
neighborhood, 37
nondominated sorting, 43
offspring, 38
parent, 38
phenotype, 38
population, 38
search space, 37
selection operator, 38
selection pressure, 41, 59
solution space, 37

eligible set, 81
Evolutionary Algorithm, see EA

finish date, 71
fitness, see EA, fitness, see DEAL, evaluation, see

GA, evaluation
follower, 44
FS, 128, 131, 135
FS|PDD, 128
FWD, 133

GA, 39, 88, see EA
crossover operator, 102
decoding function, 88
evaluation, 107
mutation operator, 102

gap closure, 187
generation, see EA, generation, see DEAL, gen-

eration
Genetic Algorithm, see GA
genotype, see EA, genotype, see DEAL, geno-

type
Goal Programming, 43
greedy heuristic, 91
grid, 36, 152, 154
guidance, 52

immediate predecessor, 71
immediate successor, 71
incentive compatibility, 19
individual, see EA, individual, see DEAL, indi-

vidual
infinite start date, 127

Lagrangian relaxation, 21
Lamarckism, see EA, Lamarckism
lateness, 78

downstream related, 113
external related, 113

LA|RA, 129
leader, 44
left shift, 73

global, 73
local, 73
one-period, 73

link, see time lag
simple, 173

local optimality, see EA, local optimality
local runtime, 183

INDEX 299

LX, 138

machine predecessor, successor, 91
makespan, 78
master

problem, 21
process, 149

Master Planning, 6
mathematical decomposition, 21
max-link, see time lag
message

inbox, 148
outbox, 148
protocol, 47, 154

metaheuristic, 39
min-link, see time lag
mode, 75

compatibility constraint, 75
cost, 78
simple, 173

MOEA, see EA, Multiobjective
multi-echelon systems, 15
multipass method, 81
multipriority rule, 81
mutation operator, see EA, mutation operator,

see GA, mutation operator, see DEAL,
mutation operator

neighborhood, see EA, neighborhood
net-duration, see duration
nondominated sorting, see EA, nondominated

sorting

OEM, see Original Equipment Manufacturer
offspring, see EA, offspring
operator, see crossover operator, see DEAL, op-

erator, see mutation operator
optimal control problem, 19
order, 80
Original Equipment Manufacturer, 111

parent, see EA, parent, see DEAL, parent
Pareto-optimality, 43
PDD, 127
pegging net, see precedence relation
performance measure, 73

phenotype, see EA, phenotype
planning domain, 12

-related cost, 57
planning interval, 69
PLX, 139
population, see EA, population
precedence relation (constraint), 71
predecessor, see immediate predecessor
priority rule, 81
Production Planning and Detailed Scheduling,

7
production process model, 173
proposal, 44
proposed dates, 113

queuing size, 64

RCPSP, 71
multidomain, 111
multimode, 75

release date, 71
resource, 69

multicapacitated, 71
primary, 75
renewable, 71
secondary, 75
simple, 173
unary, 71
usage, 71

resource-constrained project-scheduling problem,
see RCPSP

sampling method, 81
schedule

active, 72, 73
feasible, 71
generation scheme, see SGS
nondelay, 72, 73
semi-active, 72, 73

search space, see EA, search space
secure multiparty computation, 27
selection operator, see EA, selection operator
selection pressure, see EA, selection pressure
self-adaption, 41, 141

deterministic, 141
stochastic, 142

300 INDEX

sensitive data, 11
sequence-dependent setup cost, 79
sequence-dependent setup time, 76, 79
setup matrix, 174
SGS, 81

parallel, 81
serial, 81, 95

simple product, 173
single-pass method, 81
slave

problem, 21
process, 149

solution space, see EA, solution space
solving module, 88
solving unit, 65, 151, 152
start date, 69
successor, see immediate successor

test data generator
deterministic, 172, 233
randomized, 213

time lag, 74
top level, 14

x-pass method, 81

	Mathematical symbols and abbreviations
	Introduction
	Overview of Advanced Planning Systems
	Master Planning
	Production Planning and Detailed Scheduling
	SAP SCM APO

	Collaborative Planning
	Definition of Collaborative Planning
	Related topics and state-of-the-art
	Hierarchical coordination
	Multi-echelon systems and contract theory
	Auction theory
	Bargaining theory
	Mathematical-decomposition–related techniques
	Lagrangian relaxation
	Coordination by exchange of primal information

	Secure multiparty computation
	Metaheuristic-related techniques

	Scope of the thesis

	The generic DEAL framework
	Assumptions and requirements: A practical point of view
	Nondisclosure of sensitive data
	Availability-based instead of cost-based incentive mechanisms
	Feasibility preservation and multidomain support
	Support of different local optimization engines
	Scalability and robustness

	Introduction to Evolutionary Algorithms
	Basic definitions
	Inspiration from nature
	A template for Evolutionary Algorithms
	Multiobjective Evolutionary Algorithms
	Multiobjective Goal Programming

	A brief introduction to DEAL
	Message protocol
	Communication threads

	Construction of solutions
	Individuals connected by threads
	Generic construction template

	Evaluation of solutions
	Restricting to acceptable solutions
	Double ranking
	Side payments

	Selection of the mating pool and update of population
	Generic message protocol
	Properties of sequential coordination
	Asynchronous coordination
	Parallel coordination

	The Resource-Constrained Project-Scheduling Problem
	The basic problem
	Active, semi-active and nondelay schedules
	Minimum and maximum time lags
	Multiple modes
	Varying capacity and calendars
	Sequence-dependent setup times
	Objective function
	Minimize total pseudo-hard lateness
	Minimize makespan
	Minimize total lateness
	Minimize maximum lateness
	Minimize total mode cost
	Minimize total setup time
	Minimize total setup cost
	Total objective function

	Further constraints and objectives
	State-of-the-art heuristics to solve the RCPSP
	Schedule-generation schemes
	Serial schedule-generation scheme
	Parallel schedule-generation scheme

	X-Pass methods
	Metaheuristic approaches
	Permutation encoding
	Activity-list encoding
	Random-key representation
	Priority-rule representation
	Other representations

	Improvement by right-left-alignment

	The SAP Detailed Scheduling Optimizer
	The Detailed Scheduling solving module
	Encoding and decoding
	Scheduling a single activity for a given mode
	Greedy heuristic for mode selection
	Aggregating activities to blocks
	Scheduling of setup activities
	Serial scheduling example

	Initialization of population
	Backencoding of existing schedules
	Initial sorting of block lists
	Disturbing methods

	Mutation and crossover operators
	Insertion of blocks
	Swapping of blocks
	Mode alternation
	Campaigns
	Linear-order–based crossover

	Mutation and crossover probabilities
	The evolutionary cycle

	Alignment heuristics
	Right-alignment heuristic
	Left-alignment heuristic

	Further extensions

	The customized DEAL framework
	The interorganizational problem
	The standard two-tier business case
	Initialization
	Upstream planning
	Simulation of an existing alignment

	Evaluation
	Construction of solutions
	Coordination example
	Proposal generating operators
	Propagation-based mutation operators
	Propagate due dates (PDD)
	Fix sequence and propagate due dates (FS|PDD)
	Fix delayed sequence and propagate due dates (RA|FDS|PDD)

	Alignment-based mutation operators
	Relax all upstream-related release dates (RRD|LA|RA)
	Relax release dates of the most delayed upstream-related activities (RMD|LA|RA)
	Fix sequence and relax release dates of the most delayed upstream-related activities (FS|RMD|LA|RA)
	Relax minimum slack of upstream-related release dates (RMS|LA|RA)
	Relax nonbottleneck upstream-related release dates (RNB|LA|RA)
	Relax most promising upstream-related release dates (RMP|LA|RA)

	Rescheduling-based mutation operators
	Rearrange activities of connected components (RC|FWD|RA)
	Insert connected components (ICL|FWD|RA, FS|ICL|FWD|RA), ICR|FWD|RA and FS|ICR|FWD|RA)
	Reschedule with penalty (IDD|FWD|RA)
	Reschedule within hard bounds on start dates (SSB|FWD|RA)

	Crossover operators
	Linear crossover (LX and LX|FWD|LA|RA)
	Linear crossover of evaluated population (PLX and PLX"|FWD"|LA"|RA)
	Component crossover (CX and CX|FWD|LA|RA)

	An ideal operator

	Self-adaptation of operators
	Deterministic self-adaptation
	Stochastic self-adaptation

	Reusing previous solutions
	Implementation details
	Sequential and asynchronous coordination
	Parallel coordination
	The SAP SCM grid framework
	Customized message protocol
	The process of parallel coordination

	The three-tier scenario
	Appropriate real-world business cases

	Computational evaluation
	Building blocks defining the complexity of coordination
	Local properties
	Conflicting setup times
	Conflicting activity durations
	Conflicting mode durations and cost
	Summary

	Interface properties
	Unforeseen events

	Deterministically generated test instances
	Test data generation
	Master data
	Generation algorithm

	Test instances
	The benchmark scenario
	Generated instances of the setup subscenario
	Generated instances of the product mix subscenario
	Generated instances of the breakdown subscenario
	Generated instances of the complete scenario

	Test program
	Test results
	Overall results
	Detailed analysis of the setup instances
	Detailed analysis of the product mix instances
	Detailed analysis of the breakdown instances
	Detailed results for the complete scenario

	Randomly generated test instances
	Test data generation
	Complexity measures
	Network generation
	Resource-utilization generation
	Resource availability and due date generation

	Test program and test instances
	Test results

	Additional tests for the stochastic self-adaption of operators
	Reducing the set of operators
	Additional tests using the reduced set of operators

	Conclusion
	The simple Production Planning run algorithm
	The OEM's control procedure
	The supplier's control procedure
	The controller's control procedure
	Operator list for the deterministic self-adaption
	Additional figures
	Additional tables
	List of figures
	List of tables
	Bibliography
	Index

