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Introduction

Vector autoregression (VAR) and structural vector autoregression (SVAR) models have been

employed in macroeconometric analyses ever since Sims (1980) proposed in his seminal pa-

per the VAR approach as a solution to the problems of the simultaneous equations models

(SEMs), which had dominated macroeconometric research and policy analysis up to that

date.1 The VAR framework provides, on the one hand, a convenient forecasting tool without

high costs in terms of model specification and estimation and allows, on the other hand, a

structural analysis of macroeconomic dynamics. SVARs reflect—like the so-called dynamic

stochastic general equilibrium (DSGE) models—the macroeconomic modelling philosophy

that exogenous shocks and their corresponding propagation mechanisms determine the dy-

namics of macroeconomic variables. They are particularly suitable for business cycle analysis,

to which four applications are devoted in this thesis. The SVAR framework allows macroe-

conomists to estimate impulse response functions and variance decompositions with respect

to the structural shocks of an economy. Moreover, counterfactual analyses can be conducted,

where the effects of structural shocks on macroeconomic variables are investigated in iso-

lation from each other. A common practice is to evaluate the convenience of a theoretical

model by comparing its implications with those of a SVAR model, the restrictions on which

are compatible with the theoretical model of interest.

Chapter 1 of this thesis outlines the SVAR framework and establishes a general notation

that is used in the applications of the later chapters. The so-called short-run and long-

run restrictions are described, since these types of restrictions are used for identification in

1Indeed, many macroeconomic research institutes still provide forecasts based on such big models.
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our applications. The structural parameters of interest are estimated by maximising the

corresponding restricted maximum likelihood function in this study. Since three chapters of

this study are devoted to applications on business cycle dynamics, tools of business cycle

analysis in the SVAR context are reviewed as well, before closing Chapter 1 with a discussion

and a review of various issues related to the SVAR methodology.

Chapter 2 motivates the empirical analysis of Chapters 3 and 4. It starts with a review

of the literature on business cycle dynamics in the euro area and closes with a descriptive

analysis of the data set used in the applications of Chapters 3 and 4. The main message of

the literature review is that a multitude of factors affect business cycle synchronisation in

both directions—convergence and divergence—across countries. The theoretical literature

is not clear-cut as to whether more or less synchronised business cycles should emerge as a

byproduct of globalisation and European Monetary Union (EMU) processes. The empirical

literature is also not united: a number of studies report that business cycles have become

more synchronised in the euro area over the course of years, whereas a multitude of studies

do not obtain higher business cycle synchronisation.

Our descriptive analysis of euro area business cycles in Chapter 2 is carried out with

quarterly GDP data spanning the period 1970Q1–2007Q4, which is in contrast with the

majority of studies on this subject that use either annual GDP data or industrial production

data. The GDP of the six largest economies of the euro area—Belgium, Germany, Spain,

France, Italy and the Netherlands—is included in the data set, while other member economies

are discarded since quarterly GDP data is not available for the sample period considered.

We carry out our computations in sub-samples as well as in rolling windows in order to

capture changes that occur in business cycle dynamics over time. We find a generally high

and recently increasing synchronisation of output gaps, in terms of correlations between the

output gap of each member country and the euro area, as well as in terms of the average of

bilateral correlations among the six member countries of the euro area. Another important

observation is the moderation of output gap volatility in the member countries—the so-called
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Great Moderation—in the period preceding the recent macroeconomic turmoil.

The extent and sources of business cycle heterogeneity in the euro area are an important

concern of policy makers. The common monetary policy is optimised with respect to (the

business cycle of) the entire euro area economy. Therefore, it may may have destabilising

effects on the member economies, cycles of which deviate to a large extent from the cycle of

the entire single currency area. A sign of heterogeneity is that correlations of output gaps

across member countries, as well as between each member country and the entire euro area,

are typically not perfect. In order to gain more information on the dynamics of business cycle

heterogeneity of the euro area, we also investigate the dynamics of output gap differentials,

i.e., differentials between the output gap of each member country and the euro area output

gap, in Chapters 3 and 4. An important finding of our descriptive analysis in Chapter 2

is that output gap differentials underwent a moderation as well. This result speaks for a

decreasing heterogeneity in the euro area over time.

Chapters 3 and 4 investigate the properties of business cycle dynamics in the euro area

by employing three different empirical approaches. Both chapters seek to answer three basic

questions given the findings of Chapter 2. First, we are interested in whether member

countries’ output gaps are driven by a common euro area factor in addition to and/or in

isolation from a global factor. The literature is not united in this respect. While Stock and

Watson (2005) write about the emergence of a Euro-zone group among the G7 countries,

for example, Canova, Ciccarelli, and Ortega (2007) find “little support for the idea that

euro cycles are different or that a euro area cycle is emerging in the 1990s.” We compute

variance decompositions to measure the importance of a euro area factor in the output gap

fluctuations of the member countries in an empirical framework, where both global and

euro area shocks (in addition to country-specific shocks) are included as potential sources

of fluctuations. Second, we ask whether differences in terms of shock transmission or rather

exposure to asymmetric shocks are behind the observed heterogeneity of business cycles in

the euro area. Counterfactual correlations of output gaps as well as variance decomposition
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of output (gap) differentials are carried out to answer this question. Third, we explore the

role of two channels in the moderation of output gaps and output gap differentials—changes

in size of shocks vs. changes in shock transmission.

Chapter 3 is devoted to the analysis of euro area business cycle dynamics with conven-

tional SVAR models that comprise global, euro area and country-specific shocks over two

sample-periods as the driving forces of cyclical fluctuations. The empirical framework is a

modified version of the framework in Giannone and Reichlin (2006). Six trivariate SVAR

models comprising the output of the US, the euro area and one of the six member countries

in our sample are estimated to answer the aforementioned questions. Estimations are carried

out in sub-samples as well as in 15-year rolling windows.

While the analysis of Chapter 3 is illuminating on the relationships between individual

member countries and the entire euro area, its empirical approach is vulnerable to two

important critiques, which are addressed in Chapter 4. First, the empirical framework of

Chapter 3 does not include analysis of spillovers of country-specific shocks between pairs of

member countries. A factor-structural VAR (FSVAR) model, which allows identification of

global, euro area and country-specific shocks, is estimated in Chapter 4 in order to deal with

this issue. Country-specific shocks are now allowed to be spilled over among all countries

included in the model. The disadvantage of this model is, however, that the euro area output

is no longer included so that the relationships between individual countries and the entire

euro area cannot be explored.

The second vulnerability of the empirical framework of Chapter 3, which applies to the

FSVAR model as well, is that the break date for splitting the sample into two sub-periods

is chosen somewhat arbitrarily. Rolling window estimations provide more dynamics and are

useful for getting an idea about changing business cycle dynamics over time, yet they may

also lead to biased estimations, in particular, when the break date belongs to but is not

dealt with in a rolling window. Therefore, we also estimate time-varying coefficients SVAR

(TVC-SVAR) models in Chapter 4, which stand for the time-varying coefficients version of
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the fixed-coefficient SVAR models of Chapter 3. Breaks in the data are included naturally

in this type of an empirical framework via time-varying VAR coefficient matrices as well as

time-varying covariance matrices of structural shocks.

The three empirical models employed in the estimations of Chapters 3 and 4 are comple-

mentary to each other. Despite differences across these models, the answers given by them

to the three questions posed above are broadly in line. First, it is found that both global and

euro area shocks play non-negligible roles in output fluctuations. However, it is not clear-cut

whether the share of euro area shocks in output gap variance has increased or decreased in

the euro area recently. Second, business cycle heterogeneity is driven to a large extent by

exposure to asymmetric shocks in the euro area. However, this picture is changing in some

countries recently, while the heterogeneity is becoming weaker. Finally, the moderation of

output and output differential dynamics corresponding to business cycle frequencies is found

to be mainly due to a decline in the size of shocks rather than changes in shock transmission.

The application in Chapter 5 deals with the role of structural common and country-

specific shocks in the business cycle dynamics of the G7 countries. The point of departure

for the investigation is the estimation of country-specific VAR models of the G7 countries

comprising real and nominal variables, which are modified versions of the benchmark model

of Beaudry and Lucke (2009). An important difference to the previous chapters is that the

estimated shocks are given an interpretation based on macroeconomic theory in Chapter 5,

while the interpretation of shocks in Chapters 3 and 4 are based solely on the geographical

origin of shocks. The most recent views on the sources of business cycle fluctuations are

embedded into the SVAR model underlying the analysis. For each G7 country, neutral tech-

nology, news, preference and monetary shocks are estimated. The most important finding is

that neutral technology and news shocks (shocks about future technological developments)

drive the output fluctuations of all G7 countries, whereas smaller roles are attributed to

preference and monetary shocks.

In Chapter 5, we also use maximum likelihood techniques in order to estimate common
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and country-specific factors that drive the structural shocks of the individual countries, as

well as the corresponding dynamic multipliers (the transmission channels of these shocks).

Particular attention is paid to the weight of structural-international common shocks in the

cyclical fluctuations of macroeconomic variables. Again with the exception of Japan, inter-

national news shocks are found to be an important source of output fluctuations, especially

in recent periods. Hence, both the country-specific and international models of Chapter 5

suggest including news shocks in theoretical models as a stochastic source of fluctuations.
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Chapter 1

Structural vector autoregressions

This chapter sets the general framework and notation used throughout the study. It starts by

describing the relationship between reduced-form and structural VARs which is followed by

a discussion of different approaches to identification and estimation of structural parameters.

Subsequently, a review of two techniques that can be employed for business cycle analysis in

the SVAR framework is provided. The chapter closes with the discussion of various issues

on SVAR methodology and remarks.

1.1 VARs and SVARs

1.1.1 Reduced form

A VAR refers to a so-called reduced-form VAR throughout this study. It establishes a

relationship between current and past values of a vector of variables. Let Yt be a vector of K

stationary variables at period t. The subject of interest is the VAR model of order p, which

is given by

Yt = bdt + B1Yt−1 + · · ·+ BpYt−p + ut, (1.1)

where Yt is a K × 1 vector of endogenous variables, b is a K × M coefficient matrix loading

the M × 1 vector of M deterministic terms and/or exogenous variables dt, Bi for i = 1, . . . p

is the ith K × K VAR coefficient matrix, and ut is a K × 1 vector of Gaussian innovations
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with the covariance matrix Σu. The VAR model in (1.1) has the so-called moving average

(MA) representation given by

Yt = fdt +

∞
∑

i=0

φiut−i, (1.2)

where φi for i = 0, 1, . . . stand for K ×K moving average coefficient matrices with φ0 = IK ,

where IK is the K ×K identity matrix, and f = B (1)−1 b with B (1) = IK −B1 − · · · −Bp.

The MA coefficient matrices φi for i > 0 can be computed from the relationships

0 = φi − φi−1B1 − · · · − φ0Bi for i > 0, (1.3)

with Bi = 0 for i > p.1

When Yt comprises K nonstationary variables, this implies that

0 ≤ rk (Π) = r < K, (1.4)

with Π = B (1). Note that r = K would imply stationarity of all variables in (1.1). When

r = 0 (and hence Π = 0), it is appropiate to estimate (1.1) in first differences, i.e.,

∆Yt = bdt + D1∆Yt−1 + · · ·+ Dp−1∆Yt−p+1 + ut (1.5)

with Di = −
∑p

j=i+1 Bj for i = 1, ..., p− 1.2 Simple ordinary least squares (OLS) techniques

can be employed for the estimation of the coefficients in (1.5).

If 0 < r < K holds, the variables are said to be cointegrated, i.e., there are r distinct

linear combinations of them which all follow stationary processes. In such a case, it is

appropriate to rewrite (1.1) as a vector error correction model (VECM) given by

∆Yt = bdt + ΠYt−1 + D1∆Yt−1 + · · ·+ Dp−1∆Yt−p+1 + ut. (1.6)

The coefficient matrices Di for i = 1, . . . , p − 1 in (1.6) can be derived in the same way

as for (1.5) with respect to the representation in (1.1). Although the OLS estimator of the

1See the first chapter in Lütkepohl (2007).
2Note that coefficient matrix B1 of the representation in (1.1) is not included in any of Di for i =

1, . . . , p − 1, but is given by B1 = IK −
∑p

i=2
Bi, since Π = 0 for the system in (1.5).
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coefficients in (1.1) in case of cointegrated variables has asymptotically the same properties as

the maximum likelihood (ML) estimator subject to the constraint (1.4), the ML estimator

is more suitable and widely employed for small sample estimations. Moreover, the ML

approach provides the estimators of the so-called loading and cointegration matrices, α and

β, such that Π = αβ ′, α and β being of order K × r.

The moving average representation corresponding to the VAR model in first-differences

in (1.5) and the VECM in (1.6) is given by

∆Yt = cdt +

∞
∑

i=0

Ciut−i, (1.7)

where Ci for i = 0, 1, . . . stand for K ×K moving average coefficient matrices with C0 = IK ,

and c = D (1)−1 b with D (1) = IK−D1−· · ·−Dp−1 for (1.5), and c = β⊥ (α′

⊥
D (1) β⊥)−1 α′

⊥
b

for (1.6), where α⊥ and β
⊥

are K × (K − r) orthogonal complements such that α′α⊥ =

β ′β
⊥

= 0r×(K−r). The MA coefficient matrices Ci for i > 0 corresponding to (1.5) can be

computed, similar to (1.3), from the relationships

0 = Ci − Ci−1D1 − · · · − C0Di for i > 0, (1.8)

where Di = 0 for i > p−1. The existence of an MA representation (1.7) of (1.6) is not obvious

at first glance. The Granger representation theorem states that an MA representation exists.

The MA coefficient matrices are, however, different than the ones described by (1.8), namely

C0 = I, C1 = C0 (αβ ′ + D1) , (1.9a)

Ci = Ci−1 (I + αβ′ + D1) +

p−1
∑

j=2

Ci−j∆Dj for i > 1, (1.9b)

where C−1 = · · · = C−p+3 = 0.

1.1.2 Structural form

In econometrics, reduced form is a representation of endogenous variables as a function of

exogenous and predetermined variables in a system. Reduced form follows from original

9



structural relationships, which are typically not directly observable. A certain number of

restrictions are usually imposed on relationships among variables and/or shocks for estimat-

ing structural relationships. Equation (1.1) is in reduced form, which could equivalently be

written as

AYt = adt + A1Yt−1 + · · ·ApYt−p + Bεt, (1.10)

with a = Ab, Ai = ABi, and

Aut = Bεt. (1.11)

a and Ai are structural coefficient matrices, while εt demonstrates structural innovations

with the covariance matrix Σε. Moreover, A and B are non-singular matrices. (1.10) is

said to be the structural representation of (1.1) , where the term “structural” refers to the

fact that Ai and εt can (partially or totally) be given a meaningful economic interpretation

depending on the restrictions imposed on A, B and/or Σε. εt comprise structural shocks

that are typically labelled as supply, demand, monetary, fiscal policy, etc. in reference to

macroeconomic theory, while Ai contain the so-called dynamic multipliers that determine

the effects of structural shocks on the variables of the VAR over time.

Note that the error terms in (1.1) stand for linear combinations of the structural innova-

tions following from (1.10). The so-called identification problem is the determination of the

(non-singular) K ×K matrices A and B of structural parameters. Obviously, the knowledge

of A and B is sufficient for computing all structural coefficient matrices and shocks. The coef-

ficient matrices and the residuals in (1.10) can be estimated using one of the well-established

methods.

We write the structural MA representation corresponding to (1.2) and (1.7) as

Yt = fdt +
∞
∑

i=0

Φiεt−i, (1.12)

and

∆Yt = cdt +
∞
∑

i=0

Θiεt−i, (1.13)
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with Φi = φiA
−1B and Θi = CiA

−1B for i ≥ 0, respectively. Moreover, (1.13) can be

rewritten such that

Yt = Y0 + c

t
∑

j=1

dj +

t−1
∑

i=0

Θ∗

i εt−i, (1.14)

with Θ∗

i =
∑i

j=0 Θj. The representations in (1.12) and (1.14) underlie the impulse-response

and variance decomposition computations in the forthcoming chapters of this study.

1.2 Identification

Different strategies have been proposed in the SVAR literature for dealing with the afore-

mentioned identification problem. These differ in particular with respect to how the dynamic

response of variables to structural shocks is modelled. Assumptions on the short-term or

long-term responses of variables to structural shocks lie at the heart of the identification

schemes discussed in the following. Common to almost all identification strategies is the as-

sumption that the structural shocks are orthogonal to each other, i.e., Σε is typically assumed

to be a diagonal matrix. Given (1.11), it thus can be written as

Σε = B−1AΣuA
′B′−1. (1.15)

In practice, Σu is estimated using the estimated residuals of the reduced form. Given that co-

variance matrices are always symmetric, (1.15) provides K (K − 1) /2 restrictions for identi-

fying the elements of A and B. Since there are 2K2 unknowns in A and B, 2K2−K (K − 1) /2

more restrictions are needed for an exact identification.3 These additional restrictions are

typically imposed using implications of macroeconomic theories. Three general strategies

for imposing restrictions have been suggested in the literature. The first is either to model

instantaneous relationships among endogenous variables and/or to model impact effects of

structural shocks on endogenous variables. The second possibility is to impose restrictions

3The number of theoretical restrictions cannot be less than 2K2 − K (K − 1) /2 for identification, while
it is possible to use more than 2K2 − K (K − 1) /2 restrictions. In the latter case, the system is said to be
overidentified.
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on the long-run effects of structural shocks on macroeconomic variables. We use both types

of restrictions in our empirical applications. A third possibility is to restrict the sign of vari-

ables’ responses to structural shocks, which is, however, not applied in this study. Therefore,

we do not describe this latter possibility.

1.2.1 Short-run restrictions

The framework given in (1.10) and (1.11) is called the AB-model. It allows econometricians

to set restrictions on both instantaneous relationships of endogenous variables and impact ef-

fects of shocks on endogenous variables at the same time. An example, where restrictions on

both A and B are imposed, can be found in Blanchard (1989). The author justifies his the-

oretical identification restrictions with a traditional Keynesian model. His main interest lies

in detecting whether the findings from the SVAR support the implications of “traditional”,

i.e. Keynesian, models.

A special case of the AB-model is the A-model, where only the instantaneous relationships

among the endogenous variables are modelled by imposing restrictions on A and setting

B = IK . An example of such an approach can be found in Christiano, Eichenbaum, and

Evans (1999), who review the literature on the response of macroeconomic variables to

monetary policy shocks. The authors assume in their first benchmark model a causal ordering

of variables such that A is lower triangular and the policy variable in the model, the Fed funds

rate, which is assumed to be the policy instrument, is always ordered before and after the

same variables regardless of the orderings of those in their subgroups. Their seven-variable
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model can be summarised by

Yt =































yt

pt

pcomt

fft

trt

nbrt

mt































, A =































∗ 0 0 0 0 0 0

∗ ∗ 0 0 0 0 0

∗ ∗ ∗ 0 0 0 0

∗ ∗ ∗ ∗ 0 0 0

∗ ∗ ∗ ∗ ∗ 0 0

∗ ∗ ∗ ∗ ∗ ∗ 0

∗ ∗ ∗ ∗ ∗ ∗ ∗































and Σε = I7 (1.16)

where yt, pt, pcomt, fft, trt, nbrt and mt stand for the log of real GDP, the log of implicit GDP

deflator, the smoothed change in an index of sensitive commodity prices, the federal funds

rate, the log of total reserves, the log of non-borrowed reserves plus extended credit, and

the log of money supply (either M1 or M2) at period t, respectively. This structure implies

that the monetary authority observes the economic activity variables yt, pt and pcomt before

setting the policy rate, whereas the realisation of trt, nbrt and mt does not take place before

the policy rate is set at each period. Note that other shocks are not given an economic

interpretation in the framework of Christiano, Eichenbaum, and Evans (1999).

The other special case of the AB-model is the B-model, in which innovations in ut are

modelled as a special linear combination of structural innovations, and instantaneous rela-

tionships among endogenous variables are not touched directly by imposing restrictions on

B and setting A = IK . An example of such a model can be found in Evans (1989), where a

bivariate VAR with first-differenced output and unemployment rate is estimated. Formally,

the SVAR can be summarised by

Yt =

[

∆yt

Ut

]

, B =

[

∗ 0

∗ ∗

]

, εt =

[

εd
t

εs
t

]

and Σε = I2. (1.17)

Evans (1989) labels the two shocks in his model output and unemployment shocks (which

we interpret here as demand and supply shocks following Blanchard and Quah (1989)) and

argues that that supply disturbances do not have a contemporaneous effect on output. This

restriction is reflected in the lower-triangular matrix B in (1.17). We estimate B-models in

Chapters 3 and 4 of this study.
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1.2.2 Long-run restrictions

In SVARs with long-run restrictions, the cumulative effect of a certain shock is usually

constrained to bear a certain value, typically zero. This restriction is particularly meaningful

when it is imposed to constrain the impact of a structural shock on the long-run behavior

of a nonstationary variable. A prominent example of long-run restrictions can be found in

Blanchard and Quah (1989). The authors impose such a restriction in a VAR comprising

first-differenced log output and the level of the unemployment rate. Formally, their model

can be summarised by

Yt =

[

∆yt

Ut

]

, Φ (1) =

[

∗ 0

∗ ∗

]

and Σε = I2 (1.18)

where ∆yt and Ut stand for the first-differenced log output and the unemployment rate, and

Φ (1) =
∑

∞

i=0 Φi in terms of (1.12) is the matrix of the long-run multipliers of the shocks.

Blanchard and Quah label the second shock a demand shock (represented by the money-

supply shock in the theoretical model they use to motivate their empirical approach) since it

has no long-run impact on output, and the first shock a supply shock (represented by shocks

to productivity) with a long-run impact on output. This model structure implies that only

supply shocks are behind the non-stationarity of log output.

In another seminal study employing long-run restrictions for identification, King, Plosser,

Stock, and Watson (1991) use the cointegration property to distinguish between the effects

of permanent and transitory structural shocks on the variables of a cointegrated VAR com-

prising only I (1) variables.4 Transitory shocks are defined as the shocks with zero long-run

effects on the variables of a cointegrated VAR. The general model with a cointegration rank

of r can be summarised by

Θ (1) =
[

Θ̃K×(K−r) 0K×r

]

, (1.19)

where Θ (1) =
∑

∞

i=0 Θi in terms of (1.13) is the structural matrix of long-run multipliers, of

4See Chapter 9 in Lütkepohl (2007) for a more general description of SVECMs. Pagan and Pesaran
(2007) also study systems with permanent and transitory shocks.
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which first K−r columns show the long-run effects of the permanent shocks. Such structural

models are usually estimated as a B-model such that

Θ (1) := C (1)B, (1.20)

where C (1) =
∑

∞

i=0 Ci in terms of (1.7) is known to have a rank of K − r for a VAR with

r cointegrating variables.5 In general, when r cointegrating relationships exist, at most r

transitory shocks can be allowed in the system, since more than r transitory shocks would

imply that the cointegration rank must be less than r.

It is known from the Granger representation theorem that the r×K matrix containing the

cointegrating vectors (β′) is orthogonal to the matrix of long-run multipliers: β ′C (1) = 0r×K.

Hence,

β ′Θ (1) = 0r×K (1.21)

according to (1.20). Since Θ (1) has a cointegration of rank K − r, i.e., K − r independent

elements in each of its columns, (1.21) amounts to only r (K − r) restrictions on each row

of Θ (1).

It is seen from (1.19) and (1.20) that the first K − r columns of the matrix B must be

known in order to compute the dynamic multipliers of the permanent shocks. Similarly,

the knowledge of the first K − r rows of the matrix B−1 is necessary for computing the

variances of the permanent shocks. As will be clear in the following, the knowledge of either

the first K − r columns of B or the first K − r rows of B−1 is enough for computing the

other one. Thus, when the interest lies in computing the dynamics related to the permanent

shocks, K (K − r) elements have to be estimated in either B or B−1. When the covariance

matrix of structural shocks (Σε) is a diagonal matrix, this imposes (K − r) ((K − r) − 1) /2

restrictions to this end. Recall from above that r (K − r) additional restrictions come from

the cointegration property of the model. Hence,

K (K − r) −
(K − r) ((K − r) − 1)

2
− r (K − r) =

(K − r) ((K − r) + 1)

2
5See Lütkepohl (2007), p. 252, on the rank of C (1).
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more restrictions are needed for computing the variances and dynamic multipliers of the

permanent shocks. Since B has K2 unknown elements,

K2 −
K (K − 1)

2
− r (K − r) −

(K − r) ((K − r) + 1)

2
=

r (r + 1)

2

more restrictions are needed for identifying the transitory shocks, when the covariance matrix

of structural shocks (Σε) is a diagonal matrix.

King, Plosser, Stock, and Watson (1991) estimate a trivariate model, given by

∆Yt =









∆yt

∆ct

∆it









, Θ (1) =









1 0 0

1 0 0

1 0 0









and Σε =









∗ 0 0

0 ∗ 0

0 0 ∗









(1.22)

where yt, ct and it stand for the logs of output, consumption and investment. The authors

assume (and confirm by applying statistical tests) a cointegration rank of 2 in their model,

which implies a rank of 1 for Θ (1) in (1.22). Obviously, the first shock in the system is

the permanent shock, and the last two shocks are the transitory shocks. The corresponding

cointegration matrix is restricted such that

β′ =

[

1 −1 0

1 0 −1

]

, (1.23)

with which the condition in (1.21) is fulfilled. Note that if, for example, the (1, 1) element of

Θ (1) in (1.22) is set to one, the (1, 2) and (1, 3) elements must also be one. Similarly, when,

for example, (1, 2) and (1, 3) elements of Θ (1) are set to zero in (1.22), the (2, 2) , (3, 2) , (2, 3)

and (3, 3) elements also have to be zero given (1.23). Rewriting (1.20) as

Θ (1)B−1 = C (1) (1.24)

the first row of B−1 is identified. Note that the variance of the only permanent shock, which

is given by the (1, 1) element of Σε, follows from the relationship

Σε = B−1ΣuB
′−1 (1.25)

when the first row of B−1 is known and Σu, the covariance matrix of reduced form error

terms, is estimated. Finally, the first column of B must be available for computing the

16



dynamic multipliers of the permanent structural shocks, Θi for i ≥ 0, where Θi = CiB. It

can be computed by rewriting (1.25) as

BΣε = ΣuB
′−1. (1.26)

Notice that (only) the first column of the matrix on the right-hand-side as well as the (1, 1)

element of the diagonal matrix Σε on the left-hand-side are identified, which gives three

restrictions for the three unknown elements of the first row of B.

1.3 Estimation of structural parameters

The estimation of a structural VAR consists of two steps. The first step is the estimation of

the reduced form, while the second step provides the estimates of the structural parameters.

Since the techniques are rather standard, we do not go into any detail regarding the esti-

mation of the reduced form but refer the reader to Hamilton (1994) and Lütkepohl (2007).

Instead, we focus on the estimation of structural parameters in the following.

Cholesky decomposition can be implemented with both short-run restrictions and long-

run restrictions when a recursive ordering of the variables/shocks in a VAR can be justified

on a theoretical basis. The benchmark A-model of Christiano, Eichenbaum, and Evans

(1999), described above, is an example, where Cholesky decomposition can be implemented

to impose short-run restrictions such that the matrix A is lower triangular. In another

example, Blanchard and Quah (1989) employ the Cholesky decomposition to impose the

restriction that the structural matrix of long-run multipliers Θ (1) is lower triangular in

their VAR model. Finally, Cholesky decomposition can also be employed in a SVECM

framework, as described by King, Plosser, Stock, and Watson (1991) in the appendix to

their study. While these authors are interested in the estimation of permanent structural

shocks only, transitory structural shocks can also be estimated analogously in their system.

The instrumental variables (IV) approach is an alternative to Cholesky decomposition,

but both approaches yield the same result. The approach of Shapiro and Watson (1989) is,
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for example, equivalent to the long-run identification scheme of Gali (1999), which is based

on a Cholesky decomposition.

The maximum likelihood method provides a less restrictive way of estimating the struc-

tural parameters than the Cholesky decomposition or the IV estimation and is employed

in the applications of this thesis. Once the reduced form parameters are estimated, the

concentrated log-likelihood function for a SVAR in AB-form can be written as

ln lc (A, B) = constant +
T

2
ln |A|2 −

T

2
ln
∣

∣B2
∣

∣−
T

2
tr
(

A′B′−1B−1AΣ̂u

)

, (1.27)

where T stands for the number of observations in the sample and Σ̂u for the estimate of Σu.

A and B together have 2K2 parameters, the estimates of which follow from the maximisation

of the log-likelihood function in (1.27) subject to the constraints

Σu = A−1BΣεB
′A−1′ (1.28)

and

vec (A) = RAγA + rA and vec (B) = RBγB + rB, (1.29)

where (1.28) provides K (K − 1) /2 restrictions, and γA and γB are respectively KA-dimensional

and KB-dimensional column vectors containing KA + KB = K (K + 1) /2 free parameters

and 2K2−K (K + 1) /2 restricted parameters. RA and RB are accordingly of order K2×KA

and K2 × KB, respectively, and rA and rB are both K2-dimensional column vectors. This

maximisation problem has analytic solutions only for special cases. Otherwise, numerical

techniques must be applied to find a solution. The scoring algorithm is typically used in the

literature to this end, see, e.g., Chapter 4 in Amisano and Giannini (1997) or Chapter 9 in

Lütkepohl (2007).

1.4 Business cycle analysis with SVARs

Various tools are available for conducting business cycle analysis with SVARs. Since the main

applications of this study deal with the sources of business cycle fluctuations, we review in
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the following two of these tools that are central to the analyses of the forthcoming chapters.

1.4.1 Forecast error variance decomposition

Forecast error variance decomposition (FEVD) is based on the representation Yt in (1.12) or

(1.14).6 We can write the h-step forecast error for that process as

Yt+h − Yt (h) =
h−1
∑

i=0

Θ∗

i εt+h−i, (1.30)

with Yt (h) being the optimal h-step forecast at period t for Yt+h. The total forecast error

variance of the variables in Yt under the aforementioned restrictions and assumptions are

given by the diagonal elements of

E
[

(Yt+h − Yt (h)) (Yt+h − Yt (h))′
]

=

h−1
∑

i=0

Θ∗

i ΣεΘ
∗′

i . (1.31)

When decomposing forecast error variances, it is assumed that the structural innovations do

not exhibit any autocorrelation or correlation among their leads/lags. The contribution of

the kth structural shock to the forecast error variance of the jth variable for a given forecast

horizon is then computed by
h−1
∑

i=0

(

e′jΘ
∗

i ek

)2
σ2

k, (1.32)

where ek is the kth column of the K-order identity matrix, and σk is the standard deviation

of the kth structural shock. Given (1.31) and (1.32) , it is straightforward to compute the

share of a structural shock in the fluctuations of a variable, see the first chapter in Lütkepohl

(2007).

What is done in the literature is to set h such that the computation is made for the

business cycle horizon. This means setting 6 ≤ h ≤ 32, if one works with quarterly data

following the business cycle definition widely used by macroeconomists.

6Our following demonstration is based on (1.14).
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1.4.2 Variance decomposition of filtered processes

Macroeconomists often employ filters to extract the cyclical component of macroeconomic

time series. Statistics of interest such as the second moments of the data are then computed

using the filtered time series. Another common practice is to simulate macroeconomic time

series using a theoretical model, of which structural parameters are calibrated to match

empirical observations. Such artificial data is then filtered using a filter in the same manner

as the real data. Such simulations are carried out for a large number of times, and the

statistics of interest are computed for each realisation. Finally, the mean of the computed

statistics is used as the estimate of the particular statistic by the theoretical model.7 In this

thesis, we apply the same logic to our SVAR models by assuming that they represent the

true process generating the macroeconomic data of interest. However, we do not simulate

our models many times and then filter the artificial data before computing the statistic of

interest, but we apply a filter directly on the process governing the motion of each variable

of our SVAR models.

Two widely-used filters are the ones suggested by Baxter and King (1999) and Christiano

and Fitzgerald (2003).8 Both filters belong to the class of linear filters that eliminate “very

slow-moving (‘trend’) components and very high-frequency (‘irregular’) components while

retaining intermediate (‘business-cycle’) components”, quoting Baxter and King. An im-

portant property of these filters is that they are both approximations of an ideal band-pass

filter following from a frequency-domain analysis, but can be applied in the time domain by

applying moving averages. The cyclical component of a macroeconomic variable, say xt, is

given, for example, by

xc
t =

κ
∑

m=−κ

amxt−m, (1.33)

where ak are moving average weights such that am = a−m and
∑κ

m=−κ am = 0, and xc
t stands

for the cyclical component of xt. Such a filter can be applied to each individual process in

7See, e.g., Prescott (1986).
8We call these BK-filter and CF-filter in the following.
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Yt of, for example, (1.14). Note that each process in Yt is the sum of a deterministic term

and/or an exogenous component and sub-components corresponding to structural shocks.

In the applications of Chapters 3 and 4, the only deterministic term is a constant in the

VAR, and no exogenous variables are included. The BK-filter and the (symmetric) CF-filter

both attribute the constant to the trend component of the process. Hence, the cyclical

component of the ith variable in the VAR consists of only sub-components corresponding to

each structural shock in the VAR,

Y c
j,t ≈

K
∑

k=1

κ
∑

m=−κ

Ψjk,mεk,t−m, (1.34)

where Y c
j,t stands for the cyclical component of the jth variable at period t, Ψjk,m are functions

of Θ∗

jk,m and am, and εk,t−m is the kth structural shock at period t−m.9 Although (1.34) is

an approximation, the quality of the approximation is very good in practice for κ = 60 with

quarterly data. Statistics of interest can be computed based on this formula. The mean of

Y c
j,t is, for example, given by

E
[

Y c
j,t

]

=
K
∑

k=1

κ
∑

m=−κ

Ψjk,mE [εk,t−m] = 0, (1.35)

since E [εk,t−m] = 0. Furthermore, its variance is given by

E
[

(

Y c
j,t

)2
]

=
K
∑

k=1

κ
∑

m=−κ

Ψ2
jk,mσ2

εk
, (1.36)

where σ2
εk

stands for the variance of the shock εk. Note that (1.36) gives the same result as

(i) computing a large number of, say 10000, realisations of Y c
j,t by simulating εk,t−m for the

sample length of interest; (ii) computing the variance of Y c
j,t using each artificial sample of

εk,t−m; and (iii) then taking the mean of the 10000 variances. The variance of Y c
j,t conditional

on the kth structural shock is, similar to (1.36), given by

E
[

(

Y c
jk,t

)2
]

=

κ
∑

m=−κ

Ψ2
jk,mσ2

εk
. (1.37)

9See the appendix to this chapter for the derivation of Ψjk,m coefficients in (1.34).
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Hence,

E
[

(

Y c
jk,t

)2
]

/E
[

(

Y c
j,t

)2
]

(1.38)

is the share of the kth structural shock in the variance of the cyclical variable Y c
j,t.

As we already mentioned above, the BK-filter and the CF-filter, are both approximations

of an ideal band-pass filter following from a frequency-domain analysis. Let the spectral

density matrix of the variables in ∆Yt in (1.13) be given by

SY Y (ω) = Θ
(

e−iω
)−1

Σε

[

Θ
(

e−iω
)−1
]′

, (1.39)

where Θ (L) =
∑

∞

i=0 ΘiL
i, and L being the conventional lag operator.10 Note that SY Y (ω)

corresponds here to first-differenced series. The spectral density of the filtered (level) series,

using the filter f , is then given by the diagonal elements of

Sc
Y Y =

∣

∣

∣

∣

f (eiω)

(1 − eiω)

∣

∣

∣

∣

2

SY Y (ω) , (1.40)

where |f (eiω)|
2
stands for the transfer function of the underlying filter such that |f (eiω)|

2
= 1

for ω1 ≤ ω ≤ ω2 and |f (eiω)|
2

= 0 otherwise. The frequencies, ω1 and ω2 are typically set to

ω1 = 2π
32

and ω2 = 2π
6

so that the filter extracts the components of the data corresponding to

the business cycle periodicities of 6 to 32 quarters and does not include other components of

the data corresponding to higher and lower frequencies. The spectral density of the cyclical

component of Yt conditional on the kth structural shock is similarly given by

Sc
k,Y Y =

∣

∣

∣

∣

f (eiω)

(1 − eiω)

∣

∣

∣

∣

2

Sk,Y Y (ω) , (1.41)

with

Sk,Y Y (ω) = Θ
(

e−iω
)−1

Σεk

[

Θ
(

e−iω
)−1
]′

, (1.42)

where Σεk
is the covariance matrix of the structural shocks, of which kth column remains as

it is and all other columns are set to zero. The variances of Y c
j,t and Y c

jk,t are given by the

10See Hamilton (1994), Chapter 10.
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diagonal elements of

∫ π

−π

∣

∣

∣

∣

f (eiω)

(1 − eiω)

∣

∣

∣

∣

2

SY Y (ω) dω and

∫ π

−π

∣

∣

∣

∣

f (eiω)

(1 − eiω)

∣

∣

∣

∣

2

Sj,Y Y (ω) dω, (1.43)

respectively.11

Note that the variance formulas in (1.43) are equivalent to the formulas in (1.36) and

(1.37), when all correspond to the same filter. We use the latter formulas in the forthcoming

chapters, since their linear structure is easier to follow and allows us to decompose the

channels that led to the moderation in business cycle dynamics.

Filtering is known to have an important impact on the statistical properties of the un-

derlying data. Therefore, it is not surprising that results from FEVD at the business cycle

horizon often deviate from variance decomposition results of filtered processes. In Chapter

2, which serves as a motivation for the analyses of Chapters 3 and 4, we provide a description

of the business cycle dynamics in the euro area based on CF-filtered output.12 Therefore, we

find it appropriate to report findings based on both CF-filtered processes as well as FEVD

findings in Chapters 3 and 4, where we investigate the dynamics of euro area business cycles

by employing three different types of SVARs. We report only FEVD results in Chapter 5 in

order to confine this study to a convenient size.

1.5 Remarks

The SVAR methodology provides a valuable tool for macroeconomic analysis, but SVAR

models are also subject to vulnerabilities as every empirical model is. Before closing this

chapter, we mention some important issues in order to make the reader aware of potential

problems related to the applied methodology.

11See, e.g., Baxter and King (1999). See also Altig, Christiano, Eichenbaum, and Linde (2005a), Altig,
Christiano, Eichenbaum, and Linde (2005b) and Stock and Watson (2005) for examples, where this technique
is used to compute the variance of the cyclical component of data.

12Note that we label CF-filtered output as output gap, the gap between the originial series and its long-run
trend, throughout this study.
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The lack of robustness of results with respect to model specification is an issue that is

sometimes raised in the literature. It should be noted that this critique is not specific to

SVARs and applies to all empirical models. In the VAR context, model specification concerns

in particular decisions on which variables should be included in the VAR, if a variable

transformation is necessary before the estimation is carried out, which lag order should be

chosen, and whether nonstationarity and cointegration exist. We provide robustness analyses

in this study whenever our conclusions may be sensitive to model specification.

Structural VAR models are typically only locally identified, and this only up certain

sign restrictions with respect to the sign of the response of a variable to a certain shock

at some horizon. Christiano, Eichenbaum, and Evans (1999) discuss this issue nicely. The

identification scheme proposed by Uhlig (2005) is based on multiple sign restrictions on

the response of various variables in a VAR at a certain forecast horizon. Examination of

signs of impulse response functions may provide help when uncertainty exists concerning the

specification of a SVAR model. In Chapter 5, we check the sign of the response of labor

productivity and stock prices to news shocks when determining the number of cointegrating

relationships to be included in the SVECM of that chapter. We deal with the discrepancy

between data and macroeconomic theory with respect to the rank of cointegration in our

SVECM by referring to the sign of these impulse response functions.

Lippi and Reichlin (1993), among others, point to the possibility of the existence of

various non-fundamental moving average (MA) representations of a VAR model, which are

compatible with certain macroeconomic theories. The conventional SVAR analysis is based

on the so-called fundamental (Wold) representation, for which the MA polynomial of the

representation has no roots on or inside the unit circle, while there is an infinite number of

non-fundemantal representations that do not fulfill this property. Lippi and Reichlin (1993)

argue that there are economic theories which favor a non-fundemantal representation. In a

reply to Lippi and Reichlin (1993), Blanchard and Quah (1993) acknowledge the problem, but

state that it “is an issue whenever a researcher wishes to give an economic interpretation to
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time series.” There may be dynamics of interest for which non-fundamental representations

can be dismissed, whereas fundamental representations may also be unsuitable for certain

analyses. The way this issue is handled depends on the assumptions of the user. While

non-fundamental representations, as alternatives to the fundamental representation in (1.2)

or (1.7), may represent a further source of lack of robustness, this does not necessarily imply

that results depending on a fundamental representation are less reliable.

Since a SVAR reflects a simplification of the real world, like every model does, whether

it provides a good approximation depends on the properties of the data generation mecha-

nism. SVARs are often employed to test the validity of theoretical models. Altig, Christiano,

Eichenbaum, and Linde (2005a) even make use of impulse response functions stemming from

an estimated SVAR when calibrating their model. The authors calibrate their theoretical

model such that the distance between the theoretical and empirical impulse responses are

minimised according to a statistical measure. In other words, findings based on SVARs are

often treated as stylised facts that the theoretical models should generate. Many econome-

tricians are, however, at best reserved about such exercises and prefer to check the reliability

of SVARs based on artificial data generated using theoretical macroeconomic models. The

common practice in the literature is to compare the “true” dynamic responses of variables

which result from a theoretical model economy with the empirical ones coming from SVARs

that are estimated using artificial data generated by the same theoretical model, see, e.g.,

Cooley and Dwyer (1998), Erceg, Guerrieri, and Gust (2005), Chari, Kehoe, and McGrattan

(2005) and Christiano, Eichenbaum, and Vigfusson (2006). With the exception of Chris-

tiano, Eichenbaum, and Vigfusson (2006), all these studies evaluate SVARs with long-run

restrictions. An important caveat of this literature is that the quality of an SVAR identi-

fication scheme depends a lot on the true data generating process, which is unfortunately

not known in reality. While sampling uncertainty is typically not small, particularly when

long-run restrictions are employed for identification regardless of by which model the artifi-

cial data is generated, Christiano, Eichenbaum, and Vigfusson (2006) find that models with
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short-run restrictions perform quite well in this respect.

The matrix of long-run multipliers can be only imprecisely estimated in a SVAR with

nonstationary variables, a critique which is also related to the findings of the aforementioned

simulation exercises. Faust and Leeper (1997) discuss in one of the relevant studies the

imprecise estimation of long-run effects of shocks, which may lead to badly biased impulse

responses. The problem is related to the difficulty of having a good estimate of the matrix

of long-run multipliers C (1). It occurs since errors corresponding to an infinite number of

coefficients in C (L) are accumulated in C (1). One solution Faust and Leeper suggest is

using further restrictions to guarantee a more reliable inference. The lag order p in finite

order VARs is typically an approximation for an infinite lag order. Faust and Leeper argue

that setting the lag order with the help of simulations can help improve the performance

regarding the problem of large confidence intervals. The authors also propose strengthening

the identification scheme by imposing overidentifying restrictions such that the original re-

striction is stated as a finite-horizon restriction. The issue is relevant only in the application

of Chapter 5 in this thesis. However, the number of long-run restrictions is only two in the

four-variable SVECMs of that chapter, whereas four short-run restrictions are also imposed.

Therefore, the conclusions from the estimations are probably more reliable in comparison to

identification schemes where only long-run restrictions are employed. We use only short-run

restrictions in our applications in Chapters 3 and 4.

Arbitrariness is attributed to SVAR models because of the “atheoretical” restrictions used

for identification. Cooley and Dwyer (1998) distinguish between two types of restrictions in

SVARs. They call the first group of restrictions atheoretical or auxiliary which comprise the

restrictions imposed on the variance-covariance matrix of the structural shocks as well as the

choices related to model specification. The second group of restrictions are theoretical. Coo-

ley and Dwyer (1998) do not particularly favor the substitution of atheoretical restrictions

for theoretical ones, since such a substitution does not result in more robustness according to

their view. Although more theoretical restrictions do also not lead to more robustness, they
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can at least be based on “fully articulated” theoretical models according to these authors. A

critical atheoretical restriction mentioned in their simulation study is that structural innova-

tions are contemporaneously uncorrelated, which applies to the majority of SVAR models in

the literature. Although this is just a theoretical construct, the restriction has at least two

uses for econometricians. First, it allows a healthy impulse response analysis of orthogonal

shocks. Second, it provides a comparable framework for competing SVAR and theoretical

models. Since every theoretical or SVAR model consists of typically different identified (and

sometimes non-identified) structural shocks depending on the model specification, only the

assumption of orthogonality of the structural shocks can guarantee a minimum requirement

for a reasonable comparison of the impulse response functions.

“It is unclear” according to Cooley and Dwyer (1998), “why shocks would be uncorrelated

since monetary shocks may well react to productivity shocks if the Fed pursues activist

policies.” However, this is just a matter of definition. We may well pose the question, why

we should see the reaction of monetary authorities to a technology shock as a monetary

shock. Gali (1999) assumes, for example, in the theoretical model he uses to motivate his

identification scheme that the quantity of money Ms
t evolves according to

Ms
t = Ms

t−1 exp (ξt + γηt) , (1.44)

where ηt is an i.i.d. process that hits the growth rate of the aggregate technology index, i.e.,

the process governing the technology shocks, and ξt is a white noise process and orthogonal to

ηt at all leads and lags.13 Thus, the monetary authority is assumed to respond to technology

shocks systematically when γ 6= 0.

According to Cooley and Dwyer (1998), “conclusions about the importance of technology

and other shocks based on simple SVARs are certainly not invariant to the identifying as-

sumptions and may not be very reliable as vehicles for identifying the relative importance of

shocks”. Although this critique cannot be rejected for SVARs, it must be noted that it applies

to almost every empirical or theoretical model investigating similar questions. Robustness

13This is the equation (9) in Gali. We stick to his notation for easier comparability.
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of empirical results, if available, makes us surely more confident about our conclusions in

an empirical or a theoretical study. If it is not possible to check robustness directly, we can

attribute a certain amount of reliability to our conclusions only when we are sure about the

relevance of the assumptions for the investigated issue in our models.

28



Chapter 2

Business cycle dynamics in the euro
area: review∗

Properties of business cycles in the euro area countries have been the subject of a large

literature since the initiation of the European Monetary Union (EMU) process which led to

using a common currency—the Euro—in meanwhile 16 countries. The subject is interesting

not least because of the fact that common currency and common monetary policy may have

not only positive impacts but also adverse effects on some of the member countries of a

monetary union when their business cycles are not sufficiently synchronised. In particular,

the member countries do not pursue own exchange rate and monetary policies in a monetary

union and may hence lack flexibility when confronted with shocks.1 Since central banks

optimise and set the monetary policy with respect to the business cycle of an entire zone

that shares a common currency, common monetary policy may have destabilizing effects on

member countries, of which business cycles deviate to a large extent from the one of the

entire single currency area. This is why an important concern of the member countries’

policy-makers in the pre-EMU and post-EMU periods has been the extent and sources of

∗The literature review in this chapter is based on Kappler, Sachs, Seymen, van Aarle, and Weyerstrass
(2008), “Study on Economic Integration and Business Cycle Synchronisation” with the reference number
BEPA-01/2007-PO, presented to the European Commission Bureau of European Policy Advisers (BEPA).
Financial support by BEPA is gratefully acknowledged. The descriptive analysis in the chapter is based on
Seymen (2009).

1The optimum currency area theory sets some guidelines on the conditions that should be fulfilled for
a successful monetary union. See Mundell (1961) and McKinnon (1963) for the first contributions to the
theory.
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business cycle heterogeneity in the euro area, a subject that also triggered extensive academic

research.

The driving forces of business cycle fluctuations as well as the extent and sources of

business cycle heterogeneity in the euro area are also at the core of the forthcoming two

chapters of this thesis. The aim of the current chapter is to give the reader an overview

of the literature on international business cycle synchronisation as well as to provide a

description of the business cycle dynamics in the euro area, based on the data set that is

used for the empirical analyses of Chapters 3 and 4. In this context, we often refer to output

gaps, as the measure of the business cycle, which we computed by applying the symmetric

filter suggested by Christiano and Fitzgerald (2003) to this end.

The most popular tool employed in the literature to assess the synchronisation and het-

erogeneity in the euro area countries’ business cycles is the unconditional Pearson correla-

tion.2 It has been shown in many studies that business cycles of the euro area countries are

positively correlated. However, that the correlations are typically not perfect reflects the

fact that there is some heterogeneity involved. Furthermore, macroeconomic theory is not

united about the effects of monetary unions on business cycle synchronisation. While there

are theoretical arguments that suggest higher business cycle synchronisation (and hence less

heterogeneity) follows among member countries due to establishment of a monetary union,

theoretical arguments have also been put forward that monetary unions might lead to a

divergence of the member countries’ business cycles as we discuss below. We review these

arguments and the corresponding empirical findings in this chapter.

In addition to conventional Pearson correlations, we also consider a second measure of

heterogeneity in this study, which is the differential between the euro area business cycle

and the business cycle of a member country. The analysis of differentials brings additional

insights on the extent of business cycle heterogeneity. The ideal case for the members of a

monetary union is clearly that the cycle of the entire euro area and each member country

2See, e.g, Artis and Zhang (1999), Gayer (2007), Afonso and Furceri (2007) and Stock and Watson (2005).
Note that this list is by no means exhaustive.
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overlap exactly. Note, however, that there may be differences between the euro area business

cycle and the cycle of a member country, even when they are perfectly correlated. In reality,

of course, cycles do not move symmetrically around turning points, their amplitude, phase

and other characteristics change over time due to shocks that hit economies. This is why we

do not content only with a correlation analysis of cycles in this study, but also investigate

the driving forces of differentials.

The so-called Great Moderation has been the subject of a large empirical (and theoretical)

literature that covers the sample period, which underlies the descriptive statistics presented

in this chapter as well as the empirical estimation of the following two chapters. It refers to

the decline in volatility of business cycles in industrialised countries after roughly the second

half of the 1980s until a short time ago.3 Note that a moderation in output gaps must

not necessarily imply a moderation of output gap differential. In principle, a moderation

of output gaps can even be accompanied by growing differentials, while a moderation of

output gap differentials would clearly signal decreasing heterogeneity of business cycles. In

this chapter, we present statistics on changing volatility of output gaps and output gap

differentials in the euro area as well. The moderation of output fluctuations is another

subject that we address in the forthcoming two chapters.

In the following, we review the literature on the properties of euro area business cycles,

which is followed by the presentation of some descriptive statistics derived from the data

set that underlies the empirical applications of Chapters 3 and 4. The chapter closes with a

discussion of the research questions that are dealt with in the empirical applications.

3See, e.g, Cabanillas and Ruscher (2008), on the Great Moderation in the euro area.
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2.1 Related literature

Our review starts with a summary of the literature on six potential determinants of busi-

ness cycle synchronisation, which have been the subject of a large literature.4 Those are

trade, being member of currency unions, fiscal policy, sectoral structure and financial mar-

ket integration. We also review the so-called gravity variables that are often included in the

empirical studies on the determinants of business cycle co-movement. The review of the lit-

erature shows that it is not clear-cut whether these factors lead to more or less synchronised

business cycles over time. The second part of the literature review summarises the hitherto

findings on business cycle synchronisation in the euro area.

2.1.1 Determinants of business cycle synchronisation

Trade integration

Trade is one of the major channels through which economic activity is transmitted across

countries. It is therefore seen as a prime candidate variable for driving business cycle synchro-

nisation across countries. Empirical consensus is that there is a strong positive relationship

between trade intensity and business cycle synchronisation. Baxter and Kouparitsas (2005)

and Böwer and Guillemineau (2006), who apply extreme bounds analyses to check the ro-

bustness of a number potential determinants of (positive) business cycle correlations, find

that trade belongs to the class of robust determinants, although the latter authors also re-

port a relative decline in the importance of this factor since the introduction of the euro in

1999.

Theory is, however, not so clear-cut as to whether stronger or weaker correlations of

national cycles should result from tighter trade links between countries. The standard Ri-

cardian or Heckscher-Ohlin arguments would predict, for example, a higher specialisation

of countries due to comparative advantages and economies of scale, when they are engaged

4While this classification is arbitrary, it reflects the factors that have most often been considered in the
related literature.
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in more trade. When a country is highly dependent on a specific industry, being hit by a

sector-specific shock may drive away the output cycle of that country from its trade partners’

cycles, for which that specific industry does not play a major role. However, if demand shocks

predominate or if intra-industry trade accounts for most of trade, cycles can become more

synchronised as countries trade more intensively with each other. Increasing trade would

result in higher output gap correlations also when it induces technological and knowledge

spillovers.

Frankel and Rose (1998) find an economically and statistically strong positive relationship

between bilateral trade intensity and cycle synchronisation. Their finding suggests that

bilateral trade integration is driven mostly by increasing intra-industry, rather than inter-

industry, trade. Similar findings are also reported in, e.g., Gruben, Koo, and Millis (2002),

Calderón, Chong, and Stein (2002) and Imbs (2004). The latter author finds only weak

evidence of trade-induced specialisation affecting cycle synchronisation and shows that the

large share of the measured effect of trade on synchronisation works through intra-industry

trade. This finding is also supported by Akin (2007), who reports a significant increase in

the amount of this kind of trade.

The role of currency unions and monetary integration

The effect of a common currency and monetary integration on the business cycle synchronisa-

tion of the participating nations is ambiguous. Common monetary policy within a currency

union implies, on the one hand, better coordination of response to common shocks. By strip-

ping the participating nations of a means for buffering asymmetric shocks through exchange

rate adjustments, however, monetary union may, on the other hand, exacerbate the busi-

ness cycle differences of the participating nations. Empirical findings mirror this theoretic

ambiguity.

Artis and Zhang (1999) investigate whether the functioning of the Exchange Rate Mech-

anism (ERM) of the European Monetary System has produced similar cycles for its member
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countries and find that a higher degree of synchronisation of business cycles is associated

with lower volatility in exchange rates. Frankel and Rose (2002) find that a currency union

strengthens the bilateral trade between the members and hence contributes to higher synchro-

nisation. However, other studies produce results on the subject that are not in accordance

with these findings. Clark and van Wincoop (2001) and also Baxter and Kouparitsas (2005)

find that similar monetary policy is not among the important determinants of business cycle

correlation. By analysing bilateral growth correlations in a sample of OECD countries, Otto,

Voss, and Willard (2001) come to a similar conclusion. de Haan, Inklaar, and Sleijpen (2002)

find for the US States, German states and 18 OECD countries that although trade seems to

have fostered convergence, stable exchange rates countervail this development: integration

can be both a stabilising and a decoupling factor for synchronisation.

Fiscal policy

An important determinant of business cycle synchronisation, especially in the context of the

European Union, is the coordination of fiscal policy across nations. On the one hand, the

Stability and Growth Pact (SGP) reduces the risk of asymmetric policy shocks by imposing

constraints on national fiscal policies. On the other hand, by obeying the criteria of the SGP,

nations are stripped of the ability to counteract country-specific shocks with, say, expansive

fiscal policies. These two implications of the SGP may have different effects on business

cycle synchronisation in the euro area.

Empirical studies analysing fiscal policy and cycle synchronisation typically measure sim-

ilarities in or coordination of fiscal policies by the differences in ratios of government spending

to GDP and differences in national budget balances. Darvas, Rose, and Szapáry (2005) find

that complementary fiscal policies have a positive effect on synchronisation in a panel of

OECD countries. Morever, output correlation is found to be higher in phases with lower

budget deficits by these authors. The low-budget-deficit requirement of the SGP may sim-

ilarly also have a positive effect on synchronisation. The findings of Akin (2007) also show

34



that output synchronisation is fostered by similar fiscal policies.

Böwer and Guillemineau (2006) find a lower bilateral discrepancy of output fluctuations

to be related to lower differentials of budget deficits in the period from 1980 to 1996, but

not in the later term from 1997 to 2006. Clark and van Wincoop (2001) apply OLS and

IV techniques to a sample of 14 EU countries and find no evidence of either higher or lower

business cycle synchronisation due to more coordinated policies. However, they also conclude

that their finding does not rule out an indirect—trade, for instance—channel through which

institutional similarity could have an effect on business cycle co-movement. To summarise,

the net effect of fiscal policy similarity on business cycle synchronisation can be small since

country-specific fiscal policy can both be a source and a stabiliser of business cycles.

Sectoral structure

Economies with similar industrial structures should respond to common shocks similarly. In

such a case, the similarities of the business cycles depend on the share of common shocks

in the total variation of the countries’ business cycles. If countries have, however, only few

common industries, their business cycles should be less synchronised in the face of common

shocks. By constructing an index that measures the distance between industry structures of

two countries, Otto, Voss, and Willard (2001) investigate whether similar industry structures

are positively correlated with output co-movement. The results do unfortunately not have

statistical significance in their general model with all relevant variables included. Testing for

robustness confirms the fragility of this determinant as an important factor which is in line

with the findings of Baxter and Kouparitsas (2005) and Böwer and Guillemineau (2006).

The striking findings of Imbs (2004) and Garcia-Herrero and Ruiz (2008) point, on the other

hand, to a reduction of bilateral output fluctuation correlations when countries have similar

production structures. All in all, the role of sectoral structure similarity on business cycle

synchronisation is ambigious.
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Financial market integration

Empirical consensus for positive and robust effects of trade openness and integration on the

synchronisation of business cycle activity across countries overwhelms the theoretic ambigu-

ity regarding the direction of these effects. Yet, despite the equally prominent role financial

market integration has played in economic integration between countries, it remains one of

the least researched determinants of business cycle synchronisation in the existing literature.

This can, however, mainly be attributed to methodological problems, rather than lack of

interest in the matter itself. From a theoretical point of view, financial integration, just as

trade integration, induces sectoral specialisation, but the overall effect of trade in assets on

business cycle synchronisation remains ambiguous due to the potentially complex interaction

of its positive and negative effects on cycle comovement.

Imbs (2004), among others, addresses these complex interactions. Strong financial link-

ages between countries can easily propagate financial disturbances and crises of one to the

rest and dampen demand through the income channel and supply through the investment

channel in all affected countries. Several indirect ways also exist, through which financial

integration influences business cycle synchronisation. For example, financial integration pro-

vides an incentive to specialise, since it allows better international risk sharing and insures

countries against their idiosyncratic shocks. Specialisation can, as mentioned above, lead to

less synchronised cycles, since sector-specific idiosyncratic shocks can not easily cross borders

if countries are specialised in different industries. On the other hand, economies exploit their

comparative advantages better through sectoral specialisation and engage in international

trade, which in turn results in a higher degree of business cycle synchronisation.

For researchers, it is a challenge to estimate the direct and indirect effects of financial

market integration simultaneously. A common practice in the existing literature has been to

employ a simultaneous equations approach that uses a three-stage least squares estimation

technique with instrumental variables.5 The advantage of this approach is its ability to

5See, e.g., Imbs (2004, 2006), Akin (2007), and Garcia-Herrero and Ruiz (2008).
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treat a multitude of potential determinants of international business cycle co-movements,

such as trade, sectoral specialisation and financial integration, as endogenous variables, thus

allowing for interdependencies between them and enabling distinction between direct and

indirect effects.

The measurement of the degree of financial integration is another methodological problem

that is often faced in the literature. It is not easy to measure financial integration as, for

example, trade integration. Return spreads in equity and debt markets across countries are

used, for instance, when data on bilateral flows and/or stocks are missing. However, return

spreads are merely crude measures of financial integration, since they may be driven by a

number of idiosyncratic factors rather than low arbitrage opportunities due to a low degree

of integration of financial markets.

Given these problems, it is not surprising that empirical findings on the effects of finan-

cial integration on business cycle synchronisation are ambigious. Imbs (2004) concludes that

despite the unambiguous positive effect of financial integration on sectoral specialisation,

its total effect on cycle synchronisation is significantly positive. This overall positive rela-

tionship is supported by Imbs (2006), who uses bilateral portfolio investment data among

other variables to identify a strong residual effect on cycle synchronisation over and above

indirect channels via goods trade and specialisation. Akin (2007) finds that average global

financial integration of country pairs has a positive but weak effect on cycle synchronisation

of the two countries, with synchronisation increasing for country pairs with high degrees of

financial openness. Bordo and Helbling (2003) argue that their inconclusive results are due

to data problems and do not reject the general idea that financial integration plays a role

in determining synchronisation. Böwer and Guillemineau (2006) fail to qualify the asset

flows among euro area countries as a robust determinant of business cycle synchronisation

in the euro area. Kalemli-Ozcan, Sorensen, and Yosha (2004) focus on the interdependence

of financial integration and sectoral specialisation. Their finding is a negative indirect ef-

fect of financial integration on business cycle synchronisation through increasing sectoral
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specialisation.

To summarise, findings for the literature on the overall effects of financial integration on

business cycle synchronisation are ambigious. Further research, especially employing better

data, is needed to shed more light on the issue.

Gravity variables and other indicators

Gravity variables that characterise “natural” similarities between economies are widely found

to account for correlation of business cycle activity across countries, either by reinforcing

similarities in transmission channels or increasing the susceptibility of these countries to

common economic shocks. Typical gravity variables include common border and language

dummies, geographical distance, relative country size in terms of population or economy, etc.

Otto, Voss, and Willard (2001) identify a number of characteristics that, if shared, might

lead countries to a similar response to economic shocks, such as legal origin, accounting

standards, the extent of structural economic reforms, and the speed of technology adoption.

Common legal origins, identified following the classification of Porta, de Silanes, Shleifer, and

Vishny (1998), can give rise to similarities in economic characteristics by affecting the degree

of financial and institutional integration between countries and their systems of corporate

governance, as well as forms of labour market organisation. Bilateral differences in the

amount of structural economic reforms are calculated using the country index developed by

Lehman Brothers that rates countries on the scale of 0 to 10 on their structural economic

policies. Results of the authors’ estimations that also include common language and border

variables show that, in particular, good accounting standards, similar legal systems, common

language, and openness to new technology are important determinants of bilateral cycle

correlation.

Akin (2007) considers—in addition to standard transmission mechanism variables—membership

in a free trade area (FTA) and finds no statistically significant effect of such membership on

business cycle similarity when similarities in macroeconomic policies are accounted for. She
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therefore concludes that formation of free trade areas does not guarantee higher level of cycle

synchronisation if member countries are not integrated financially or through trade, lack pol-

icy coordination, and have divergent macroeconomic fundamentals. Baxter and Kouparitsas

(2005) find significant but not robust effects both for similarity in export and import baskets

and in factor intensities, while the geographical distance is found to be a robust determinant

of cycle comovement. Böwer and Guillemineau (2006) test the robustness of a broad set of

explanatory variables for business cycle correlation across euro area countries. Difference in

cross-country competitiveness as well as difference in labour market flexibility is found to

be negatively related to business cycle synchronisation according to their findings, but the

latter finding is neither significant nor robust. Finally, while the gravity variable of distance

is significant and has the expected negative sign (i.e., the lower the distance, the higher the

business cycle synchronisation), the gravity variable of relative population does not have a

significant effect on synchronisation.

2.1.2 Business cycle synchronisation in the EU

The introduction of a common currency in the EU and the likely expansion of its membership

has fuelled the political and economic significance of analysing business cycle behaviour

across EU nations. In the substantial literature that has developed in recent years on cycle

synchronisation within the euro area, an important contribution has been made by Artis and

Zhang (1999), who find that the correlation of business activity in the euro area has increased

substantially over time. They conclude that the functioning of the European Exchange Rate

Mechanism (ERM) has produced a group-specific European cycle, which has become more

synchronised with the German cycle and less synchronised with the US cycle. This finding is

challenged by Inklaar and de Haan (2001), who find that correlations of euro area countries

with Germany are higher in the decade preceding the creation of the ERM than in the one

following. Massmann and Mitchell (2004) re-examine these contrasting results to find that

there have been periods of convergence and periods of divergence, with the mean correlation

39



of 12 examined European cycles trending upwards until the mid-1970s then falling to zero

in the mid to late 1980s, supporting the view against a monotone movement towards the

emergence of a distinctly European business cycle.

The literature shows also mixed findings with regard to the effects of the European Mone-

tary Union (EMU) on cycle synchronisation in the euro area, reflecting the general theoretical

ambiguity of the effects of a currency union on cycle synchronisation of its members. While

Afonso and Furceri (2007) find evidence that the introduction of the euro was followed by

substantially more synchronised cycles among the member countries except for Germany,

de Haan, Inklaar, and Sleijpen (2002) do not find a clear evidence that the single currency

has a positive effect on cycle synchronisation. A recent study by Gayer (2007) observes that

the level of synchronisation of euro-area business cycles has been high since the beginning of

the 1990s but did not change with the introduction of the euro in 1999. Using correlation-

based measures of business cycle synchronisation, Gayer (2007) finds no evidence of higher

correlation after the launch of the euro in 1999.

Of substantial empirical interest is also the question as to what extent evolution of cycle

synchronisation in the euro area is attributable to global shocks. Stock and Watson (2005)

find no evidence of rising business cycle synchronisation in the G7 countries from 1960

to 2002, but observe the emergence of a European cycle within the G7. In general , the

literature suggests that synchronisation of business cycles among the industrial countries

has experienced a change during the last three to four decades; however mixed results are

obtained regarding the question of whether country-specific or global impacts gained in

importance.

2.2 Data

The bottom line of the foregoing literature review is that many factors play a role in interna-

tional business cycle dynamics. While trade is a robust determinant of international business
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cycle synchronisation according to a majority of empirical studies, the effect of other factors

seems to be less unambiguous. Moreover, the literature on business cycle synchronisation

is also vulnerable to the wide variety of methods used to extract cycles so that there are

considerable differences in the outcomes and conclusions of the studies on this topic. The

results differ also across countries as groups of countries are quite heterogeneous, and general

conclusions are hard to draw. Another drawback has been the practice to often use Germany

as a reference country instead of using the aggregate euro area business cycle. Finally, many

studies concentrate on industrial production since data on it are often more reliable and

available for a longer time period. On the other hand, a robustness check concerning the

results, using, e.g., GDP data seems desirable since industrial production represents only a

certain fraction of the total economy and conclusions based exclusively on this variable are

potentially biased.

In this sub-section, we turn our attention to descriptive statistics of output gaps and

output gap differentials in the euro area. The output gaps are computed by employing the

asymmetric filter suggested by Christiano and Fitzgerald (2003) in this chapter. This linear

filter brings the advantage that we do not lose observations at both ends of the sample when

we employ it. We specify the filter such that it eliminates the trend and irregular components

of time series that do not correspond to the conventional range of 1.5 to 8 years.6

Our data set contains the real GDP data of only six member countries—Belgium (bel),

Germany (deu), Spain (esp), France (fra), Italy (ita) and the Netherlands (nld)—as well

as the GDP data of the euro area corresponding to the first 12 countries. The data set is

retrieved from Datastream, the original source being the OECD. Some of the other member

countries are discarded from the sample, since they do not have a long enough history to

6We carried out a robustness check with respect to the underlying business cycle definition, since our
conclusions may depend on the definition we choose. See, for example, Canova (1998) who reports that
“stylised facts” of business cycles vary across different filtering methods. Artis, Krolzig, and Toro (2004)
also mention some studies on business cycle synchronisation in the euro area that come to different conclusions
due to disagreement on the used detrending method. Our finding is that results following from CF-filter,
BK-filter, HP-filter and year-on-year growth rates are in line with each other, while results based on quarterly
report are sometimes different. The measure of business cycle is the CF-filter in the benchmark models of
Chapters 3 and 4.
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show an ERM/EMU effect in large parts of our sample. For some others, reliable quarterly

data are not available over the entire sample period we consider, which spans the time from

1970Q1 (the first quarter of 1970) to 2007Q4. Note that this is the data set which underlies

the empirical analyses of Chapters 3 and 4.

We report statistics from two sub-periods, 1970Q1–1990Q2 and 1990Q3–2007Q4, in this

as well as coming chapters on business cycle dynamics in the euro area. Splitting the entire

sample into two sub-periods allows us to capture changes in business cycle dynamics over

time. Although a significant moderation of business cycles can be observed for each country

in the sample, it can be said even without referring to a statistical test that the countries do

not share a common structural break (see Figure 2.1 which shows the output gap of the entire

euro area together with the output gap of each member country). The most important reason

for splitting the sample at 1990Q2 is that it corresponds to the official kick-off of the EMU

process, as suggested by the so-called Delors report—“Report on Economic and Monetary

Union in the European Community” prepared by the “Committee for the Study of Economic

and Monetary Union” headed by the then president of the European Community Jacques

Delors. The report foresaw three stages leading to the euro area, the first of which was

started on July 1, 1990. Note that this period also coincides roughly with the collapse of the

Iron Curtain and a new wave in globalisation. It is also the quarter immediately before the

reunification of Germany, the country with the highest economic weight in the euro area.

Note that other break dates could also have been chosen. Perez, Osborn, and Artis (2006)

split their sample, for example, in 1979, the year of the commencement of the European

Monetary System (EMS). Another candidate is 1984, which many studies date as the start

of the Great Moderation. A later date might also make sense due to the fact that the EMU

process got on its way in a more accelerated pace after the SGP was signed in 1993 or

started to be implemented in 1997. Yet, besides being also arbitrary, all these choices would

imply the length of sub-periods be quite unbalanced. In order to capture the sensitivity

with respect to our choice of the break date, we also present statistics from rolling windows
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Table 2.1: Output gap correlation of member countries with the euro area aggregate

bel deu esp fra ita nld

1970Q1–1990Q2 0.80 0.89 0.53 0.86 0.83 0.77

1990Q3–2007Q4 0.88 0.94 0.81 0.85 0.88 0.76

Abbreviations : bel: Belgium, deu: Germany, esp: Spain, fra: France, ita: Italy, nld: the

Netherlands.

covering 60 quarters from the beginning of the sample until the end in order to capture

changing business cycle dynamics over time throughout this study.

2.2.1 Output gaps

Looking at Figure 2.1, it immediately catches one’s eye that output gaps of member countries

are generally strongly correlated with the output gap of the entire euro area, although

the correlation is typically not perfect. Table 2.1 quantifies this observation. All reported

correlations exceed 0.5 for both sub-periods. The Spanish cycle is related to the euro area

cycle much less in the first sub-period than in the second sub-period. This is not very

surprising given the change Spain underwent in its political system in the 1970s and given

that its EU membership started at a later date than the other five countries considered in this

study. However, following an initial adjustment process after the EU membership in 1986,

Spain seems to have caught up with the core countries of the EU in terms of synchronicity

of its cycle with the entire euro area.

Figure 2.2 shows the output gap correlations of each member country with the output gap

of the entire euro area over 15-year rolling windows. With the exception of the Netherlands,

it is possible to say that correlations are slightly higher in more recent rolling windows. The

correlation of the Dutch output gap with the euro area output gap seems to have decreased

over rolling estimation windows recently. Yet, the most recent correlation coefficient is still

around 0.7 for the relationship between the Netherlands and the euro area.
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Figure 2.1: Output gap of individual countries and euro area

An interesting observation that follows from Figure 2.2 is that the rolling window cor-

relations start to decrease sharply around 1982 for four countries—Belgium, Spain, France

and Italy—and reach the bottom around 1983, after which they gradually catch up to the

end of the sample period. The decline is most severe for the correlation corresponding to

Spain, the cycle of which is virtually uncorrelated with the euro area cycle over some rolling

windows. The decline is less severe for Belgium and France and least severe for the corre-

lation corresponding to Italy. Also striking is the absence of such a pattern for Germany

and the Netherlands. The 15-year rolling window correlations corresponding to Germany

are generally high. Yet, a slight decrease is observable corresponding to rolling windows

after roughly 1987, which may be traced back to the German reunification. The correlations

recover again recently.

The hitherto reported correlations addressed the relationship between the entire euro area

output gap and the output gap of a member country, where the euro area was meant to be
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Figure 2.2: Output gap correlation with the euro area over 15-year rolling windows

the single currency area of the first 12 members. However, we find it useful to compute also

descriptive statistics that correspond to member country pairs. Output data of six individual

countries are included in our sample, which means that we can compute correlations for 15

distinct country pairs. Since it becomes quite cumbersome to report and comment the

relationship between each pair, we compute only the mean and the standard deviation of

these 15 correlations over 15-year rolling windows which can be seen in Figure 2.3. Note that

an increase in the mean correlation is meaningful when it is not accompanied by an increase

in the corresponding standard deviation. The latter condition is fulfilled in our sample

period. The mean correlation is roughly 0.6 in the early rolling windows with a standard

deviation below 0.2. It starts to decrease around 1982, as was the case for Belgium, Spain,

France and Italy in Figure 2.2, reaches the bottom around 1983 and recovers gradually after

this date until finally reaching the highest mean correlations of about 0.7 in most recent

rolling windows, while the standard deviation at the same time gradually decreases to levels

about 0.15. The overall finding is an increase in the business cycle synchronisation of the
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Figure 2.3: Mean and standard deviation of bilateral correlations of 6 euro area member

countries over 15-year rolling windows

six member countries we consider over time.

Table 2.2 reports the standard deviation of output gaps in the euro area in the two sub-

periods. The first and second rows respectively show the standard deviation of the output

gap of the selected countries. Like in Figure 2.1, the volatility of output gaps decreases

in each member country in the second half of the sample, and the standard deviations in

Table 2.2 confirm this result. The third row of Table 2.2 shows the change in volatility, i.e.,

the standard deviation in the second sub-period subtracted by its counterpart in the first

sub-period for each country. The relative decline in output gap volatility is lowest in France,

where the output gap standard deviation in the second sub-period is 0.75 times the standard

deviation in the first sub-period.

Given the previous finding of changing dynamics in terms of correlation over rolling

sample windows, we have also computed the standard deviation of the member countries’

output gaps over 15-year rolling windows, which are illustrated in Figure 2.4. A similarity to

the foregoing findings deserves attention: the standard deviations corresponding to Belgium,

Spain, France and Italy decrease sharply around 1982, reach a lower level roughly about 1983,

and stay roughly constant afterwards. In Germany and the Netherlands, on the other hand,
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Table 2.2: Output gap volatility

bel deu esp fra ita nld

1970Q1–1990Q2 1.12 1.22 1.14 0.80 1.50 1.13

1990Q3–2007Q4 0.73 0.80 0.64 0.60 0.74 0.56

change -0.39 -0.42 -0.50 -0.20 -0.76 -0.57

Notes : The third row shows the difference between the second and first sub-period values

for each country. See Table 2.1 for abbreviations.

a gradual decline over the rolling windows can be observed from the beginning until the end

of the entire sample period.

Overall, the hitherto analysis of output gap correlations points to generally high and

recently increasing correlations in the euro area. Rolling window computations imply that

the business cycle dynamics have changed over time. The change in the statistics over time

motivates our sub-sample and rolling window as well as time-varying coefficient estimations

in Chapters 3 and 4, when investigating the driving forces of output fluctuations, structural

sources of business cycle heterogeneity and the channels that led to the moderation of output

dynamics.

2.2.2 Output gap differentials

We had mentioned in the introduction that investigation of output gap differentials provides

additional valuable information on business cycle heterogeneity in the euro area. Differen-

tials are computed by subtracting the realisation of the cyclical measure—the output gap

computed with the Christiano-Fitzgerald filter—in the euro area from its counterpart in a

member country. Hence, the output gap differential shows what should happen in a member

country so that its business cycle position coincides exactly with the business cycle position

of the entire euro area at a certain time point.

There is no a priori reason for the moderation in output gaps to lead to a decline in output
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Figure 2.4: Standard deviation of output gaps over 15-year rolling windows

gap differential volatility. There can be given hypothetical examples such that the volatility

of output gap differentials are higher or lower than the volatility of the underlying output

gaps. Output gap differentials of the selected member countries are shown in Figure 2.5. The

first observation is that amplitude and shape of differentials differs across countries. So, the

member countries have clearly distinct relationships with the entire euro area.7 Second, the

volatility of an output gap differential is always lower than the volatility of the corresponding

member country’s output gap, which is a byproduct of positive correlations of output gaps.

Finally, output gap differentials also underwent a moderation like output gaps, which speaks

for decreasing heterogeneity among euro area business cycles. The latter observation is

quantified in Table 2.3. Moreover, the standard deviation of output gap differentials over

15-year rolling windows, illustrated in Figure 2.6, also decline most recently. While this

decline is rather gradual in Spain, Italy and the Netherlands, the volatility of output gap

7This assessment is supported by correlations of output gap differentials of the chosen countries, which
are often negative or insignificantly different from zero, and positive in only three cases. We do not further
report these correlations here.
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Figure 2.5: Output gap differentials in the euro area

differentials of Belgium, Germany and France is roughly constant and relatively high over the

rolling windows corresponding to the first half of the entire sample and declines afterwards.

2.3 Remarks and outlook

A prerequisite for a successful monetary union is that the business cycles of its members are

driven by common factors. Therefore, one question of interest in the following chapters is the

Table 2.3: Output gap differential volatility

bel deu esp fra ita nld

1970Q1–1990Q2 0.68 0.57 1.02 0.49 0.88 0.73

1990Q3–2007Q4 0.35 0.31 0.39 0.33 0.35 0.41

relative volatility 0.52 0.54 0.38 0.66 0.40 0.56

Notes : The third row shows the relative difference between the second and first sub-period

values for each country. See Table 2.1 for abbreviations.
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Figure 2.6: Standard deviation of output gap differentials over 15-year rolling windows

extent to which the business cycles of the euro area countries have been driven by common

factors. One should differentiate between global and euro-area-specific common factors when

dealing with this question, since the EMU process has been taking place concurrently with

the globalisation phenomenon, and since both are similarly characterised by features such as a

substantial increase in international capital flows and trade relative to former times, stronger

financial market integration, higher mobility of labor, etc. The presumption of a large body

of macroeconomic theory suggests that both the EMU process and the globalisation should

lead to a stronger integration of the euro area economies. This should imply in turn a higher

synchronisation of the member countries’ business cycles due to the increasing impact of

common factors they are subject to. While our descriptive analysis above points in general

to a high and recently increasing synchronisation of the euro area business cycles, a challenge

is to isolate the effects of the EMU process and the globalisation on these dynamics, which

requires the measurement of a euro area factor in addition to a global factor as a potential

driving force of business cycle fluctuations. We measure both factors with the aid of a
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conventional SVAR model in Chapter 3 and factor-structural VAR (FSVAR) and time-

varying coefficient SVAR (TVC-SVAR) models in Chapter 4. In each of these chapters,

we investigate the role of global and euro area factors in cyclical fluctuations of member

countries’ output by employing variance decompositions.

Another aim of us in the coming chapters is to assess the sources of business cycle

heterogeneity, of which dynamics have been shown to have changed over time in this chapter.

In theory, two extreme situations can be the driving force of business cycle heterogeneity.

On the one hand, countries may be subject to common shocks, but their response to those

shocks may differ substantially. Such a case can be seen as reflection of differences between

countries in terms of economic structure. The term economic structure refers here to the

entire economic environment covering aspects like fiscal policy, natural and human resources,

sectoral structure and specialisation, labor market regulation, etc. On the other hand,

countries may be sharing similar economic structures, but may be hit by asymmetric shocks.

Both mechanisms are likely to play some role in reality, and our analysis helps shed light on

the extent to which these mechanisms explain the observed heterogeneity in the euro area.

We employ two different measures of heterogeneity. The first measure is the simple

correlation coefficient between each member country’s cycle and the entire euro area cycle.

In this context, we compute true and counterfactual correlations. True correlations are

generated when all types of shocks are allowed to take place in an empirical model, while

counterfactual correlations refer to correlations that would have been observed if at least one

source of shocks were set to zero. High and positive counterfactual correlations in the face

of common shocks—global or euro area shocks—are interpreted to be reflective of structural

similarity of an individual country to the entire euro area. The other measure of heterogeneity

is the output gap differential mentioned in this chapter. We employ variance decompositions

in order to detect the driving forces of output gap differential variance corresponding to each

member country.

Our findings in this chapter also document the moderation of output gaps as well as of
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output gap differentials in the euro area. While different explanations of the moderation in

output gap volatility have been suggested in the literature, the concurrence of the decline in

business cycle volatility in many countries makes the question interesting whether it is related

to changes in international factors. Our empirical framework in the coming chapters allows

us to investigate the extent to which the moderation can be attributed to changes related

to global, euro area and country-specific shocks in the euro area. Furthermore, we explore

whether the decline in output gap volatility has its roots in changes in shock propagation

mechanisms or in changes in size of shocks. If the declining size of shocks plays the main

role in this phenomenon, the Great Moderation can be interpreted to be related to good luck

as well as good policy, while a dominant role of changes in shock propagation suggests that

structural changes in economies is the main driving force of the Great Moderation.

To summarise, dynamics of both output gaps and output gap differentials underwent

changes over time in the euro area. While a large literature reviewed in this chapter suggests

that the change could be in one of two directions, i.e., increasing or decreasing synchronisa-

tion of business cycles, our descriptive analysis also pointed to the fact that each member

country has its own peculiar relationship with the entire euro area. In Chapters 3 and 4,

we follow different empirical approaches to investigate how the developments summarised in

this chapter are related to global, euro area and country-specific factors.
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Chapter 3

Business cycle dynamics in the euro
area: SVAR approach∗

In this chapter and the next, we employ three different empirical approaches to address the

issues that have been brought forward in the the previous chapter. As our literature review

points out, applying different methodologies is one of the reasons behind disagreements on

the nature of business cycle dynamics in the euro area. Our results should therefore be

complementary to the existing literature, while handling the issues at hand with the same

data set but three different empirical approaches should give the reader a sense about the

robustness of the findings. In Chapters 3 and 4, we address three basic questions: (i) To

what extent are the business cycles of the euro area countries driven by common (global

and euro area) factors? (ii) What are the extent and sources of heterogeneity in the euro

area in terms of business cycles? (iii) If the moderation of business cycles and business cycle

differentials were statistically significant, which mechanisms led to it in the euro area?

3.1 Econometric methodology

The econometric analysis of this chapter builds on a modified framework of Giannone and

Reichlin (2006), who investigate the level of business cycle heterogeneity with the aid of

∗This chapter is based on a strongly revised version of Seymen (2009). Most of the estimations and
calculations in this chapter are carried out using MATLAB codes written by the author. JMulTi is used for
model specification. The MATLAB code included in the Spatial Econometrics Toolbox of James P. LeSage
is used for the estimation of the structural parameters in the VAR.
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bivariate VAR models comprising the euro area output and the output of a member country

of the euro area. Using an approach similar to that of Stock and Watson (2005), Giannone

and Reichlin distinguish between euro area and country-specific shocks. The euro area shocks

are defined as shocks that affect the entire euro area as well as individual member countries

in the period they occur, while country-specific shocks are labelled as such since they are

spilled over from a certain country of origin to the rest of the euro area with a time lag. An

important methodological handicap of this approach is that it takes into account only two

sources of shocks—euro area and country-specific. However, we want to assess the role of

both global and euro area shocks in business cycle dynamics of the euro area. If global shocks

have indeed a significant explanatory power for the dynamics, a model without global shocks

may suffer from omitted-variables bias. In order to overcome this potential shortcoming, we

augment the bivariate framework of Giannone and Reichlin (2006) with US output following

Giannone and Reichlin (2005, 2006) and Perez, Osborn, and Artis (2006). Three types of

shocks—global, euro area and country-specific shocks—are estimated. Global shocks are

identified as shocks that influence both the output in the US and the euro area, as well as

individual euro area countries, immediately in the period they take place. The euro area

and country-specific shocks are defined in the same manner as described above.

3.1.1 Bivariate models

The first bivariate model of Giannone and Reichlin (2006) follows from a simpler version of

the strategy followed by Stock and Watson (2005). The moving average representation of

the B-model underlying the empirical analysis is given by

[

yEA,t

yi,t

]

=

[

µEA

µi

]

+
∞
∑

j=0

[

Φ11,j Φ12,j

Φ21,j Φ22,j

][

εEA,t

εi,t

]

, (3.1)

where yEA,.t and yi,t stand respectively for the log output of the euro area and country

i at period t, µEA and µi stand for constant terms, Φkl,j is the (k, l) element of the jth

moving average coefficient matrix, and εEA,t and εi,t are defined as euro area and country-i
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shocks, respectively. The crucial identification restriction in this system is that country-

specific shocks affect the euro area aggregate only with a lag of one quarter. Therefore, the

immediate effect of a country-specific shock on the euro area output in the period it occurs

is limited to the population share of the country the shock stems from. Formally,

Φ0 =

[

Φ0,11 piΦ0,22

Φ0,21 Φ0,22

]

, (3.2)

where pi is the population share of country i in the euro area.

Three important differences to the study of Giannone and Reichlin in our application are

that (i) we work with quarterly data (at the cost of losing some countries in the sample) as is

typical in studies dealing with business cycles, while Giannone and Reichlin use annual data;

(ii) we estimate the model also in sub-periods in order to capture potential changes in the size

of shocks as well as their transmission so that changes due to, e.g., the EMU process and the

globalisation as well as the moderation in macroeconomic fluctuations can be addressed; and

(iii) we compare output gaps in the euro area computed with the Christiano-Fitzgerald filter

in line with the descriptive analysis of the previous chapter, while Giannone and Reichlin

concentrate on output level or quarterly growth.

In a similar model to the first one, Giannone and Reichlin (2005, 2006) also investigate

the business cycle relationship between the US and the euro area. The model reads

[

yUS,t

yEA,t

]

=

[

µUS

µEA

]

+

∞
∑

j=0

[

Φ11,j Φ12,j

Φ21,j Φ22,j

][

εUS,t

εEA,t

]

(3.3)

with

Φ0 =

[

Φ0,11 0

Φ0,21 Φ0,22

]

, (3.4)

so that euro area shocks are spilled over to the US after a one-quarter lag, while US shocks

affect both the US and the euro area in the period they occur. Giannone and Reichlin

motivate this type of framework with Granger causality tests (among others). According to

their findings, it is not rejected that the log output growth of the US and the euro area do not

Granger-cause the log output differential (in levels) between the US and the euro area. The
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hypothesis that the output differential does not Granger-cause the US output growth is also

not rejected, whereas the hypothesis that the output differential does not Granger-cause the

euro area output growth is rejected by Granger causality tests. Giannone and Reichlin (2005)

conclude from this picture that “the euro area rate of growth adjusts itself to the US growth

while the US does not respond to shocks specific to the euro area”. Granger-causality tests

based on our sample, of which results we do not report here, are also in accordance with

this picture. Moreover, euro area shocks play virtually no role in US output fluctuations

according to all of our country-specific models. Finally, Perez, Osborn, and Artis (2006)

order the US output before the EU15 output within a similar VAR structure due to “the

important role of the US in the international economy during the postwar period”.

3.1.2 Trivariate model

The bivariate model in (3.1) does not allow us to distinguish between global and euro area

shocks which may bias our results. We find it useful to augment it with another variable—

the US output—in the way the model in (3.3) suggests. This enables us to isolate the effects

of US, euro area and country-specific shocks for each member country. We deem the US

shocks to be standing for global shocks in the following.

The trivariate model we work with is a natural extension of the strategy followed by

Giannone and Reichlin (2006). It combines the aforementioned two models that these authors

work with. Furthermore, the model resembles the model employed by Perez, Osborn, and

Artis (2006), who work with trivariate VARs containing the first-differenced log output of the

US, EU15 and one of the G7 countries except the US. Our innovation is (i) to consider the

euro area instead of the EU15, since the euro area is a more coherent group in terms of being

subject to common policy and is our subject of interest; and (ii) to take into account the

population shares of the member countries in the identification scheme in the way Giannone

and Reichlin (2006) do, which is a more reasonable restriction than the zero restriction used

by Perez, Osborn, and Artis (2006) for the impact of German, French and Italian shocks on
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EU15 output.

The trivariate model is given by
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, (3.5)

which is analogous to (3.1), the only difference being that the US output, the corresponding

coefficients and a US shock, which we assume to represent a global shock, are now a part of

the VAR as well. In this case, the impact effect of shocks on the output of the US, the euro

area and country i is given by

Φ0 =









Φ11,0 0 0

Φ21,0 Φ22,0 piΦ33,0

Φ31,0 Φ32,0 Φ33,0









. (3.6)

The zero entries in the first row of Φ0 imply that euro area and country-specific shocks do

not influence the US economy in the period they occur.

Stock and Watson (2005) and Perez, Osborn, and Artis (2006), among others, estimate

their models in the first difference of log output. This may be, however, problematic in case

log outputs of the countries included in the analysis are cointegrated. Therefore, we estimate

the country-specific models in levels of log output following Giannone and Reichlin (2006).

Note that OLS estimation of cointegrated systems in levels is asymptotically consistent.

Estimating in levels helps us avoiding problems related to model specification with respect

to unit root and cointegration issues.

3.1.3 Output gap generating process

Our empirical results all follow from estimated processes that generate the output gaps of

the US, the euro area and each member country included in our data set, where the output

gap measure is the symmetric CF-filter. We apply the symmetric Christiano-Fitzgerald filter

to each sub-component of each variable in (3.5) as described for Equation (1.34) of Section
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1.4.2. The approximate process generating the output gap of country j for j = US, EA, i,

can be written as

ỹj,t ≈

κ
∑

m=−κ

Ψj,US,mεUS,t+m +

κ
∑

m=−κ

Ψj,EA,mεEA,t+m

κ
∑

m=−κ

Ψj,i,mεi,t+m, (3.7)

where Ψjk,m for k = US, EA, i stand for coefficients of the output gap generating process

of country j, with respect to structural shocks, and εk,t+m stand for shocks at period t +

m. Based on the output gap processes, counterfactual correlations can be computed, and

variance decompositions or decompositions of changes in cyclical dynamics can be carried

out.

3.2 Results from discrete samples

3.2.1 Model specification

Since the output dynamics of each country are unique, we apply conventional information

criteria to determine the optimal number of lags for each country-specific model and test for

cointegration in each country-specific model for each period considered. The results, reported

in Table 3.1 for three different sample periods, differ across country-specific models and over

different periods. For the sake of comparability, we carry out Johansen cointegration tests for

each country-specific model with two lags of variables (in levels), since information criteria

often suggest this lag order. Moreover, the trend in the data is assumed to be orthogonal to

the cointegration relations. Johansen test results in Table 3.1 often point to a cointegration

rank of either zero or one. The only exception to this rule is Spain in the second sub-period.

We have also tested for cointegration in a bivariate model comprising only the output of

the US and the euro area, results of which are not on Table 3.1. While a rank of zero is

rejected for the full sample and the second sub-sample at the 5-percent significance level, it

is rejected at the 10-percent significance level for the first sub-sample.
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Table 3.1: Johansen cointegration rank tests

70Q1–07Q4 70Q1–90Q2 90Q3–07Q4

rank statistic p-value statistic p-value statistic p-value

bel 0 34.22 0.01 32.55 0.02 32.88 0.02

1 14.38 0.07 9.75 0.31 11.36 0.19

deu 0 31.32 0.03 21.40 0.34 20.40 0.41

1 5.38 0.77 4.92 0.82 4.23 0.88

esp 0 30.17 0.05 20.44 0.40 35.73 0.01

1 3.20 0.95 1.96 0.99 16.91 0.03

fra 0 35.84 0.01 36.14 0.01 26.27 0.12

1 11.28 0.20 11.65 0.18 5.95 0.70

ita 0 26.74 0.11 31.91 0.03 29.65 0.05

1 3.20 0.95 13.59 0.09 8.08 0.46

nld 0 26.76 0.11 23.21 0.24 26.38 0.12

1 4.09 0.89 9.54 0.32 4.31 0.87

Notes : Two lags are included in each model. See Table 2.1 for abbreviations.

3.2.2 Comparison of country-specific models

An important drawback of the empirical approach of this chapter is that six different trivari-

ate models are estimated for the same phenomenon—global and euro area shocks and their

dynamic multipliers. In case these differ significantly across the estimated models, the ef-

fects of those shocks on the individual countries can no longer be compared consistently. In

order to get an idea on this issue, we first summarise the correlation among them over the

two sub-periods in Table 3.2. Global shocks of the country-specific models show a higher

correlation than euro area shocks over both sub-periods. However, the euro area shocks’

correlations across the country-specific models are still strong, most of them being above

0.75.

Moreover, the estimated country-specific shocks must be orthogonal to each other. Non-

zero correlations among them would suggest that they are not really country-specific. Most of

the country-specific shock correlations given in the bottom panel of Table 3.2 are statistically

59



Table 3.2: Correlations of estimated shocks

Global shock correlations

Sample: 1970Q1–1990Q2

bel deu esp fra ita

deu 0.91

(0.03)

esp 0.96 0.94

(0.02) (0.02)

fra 0.89 0.94 0.93

(0.03) (0.02) (0.02)

ita 0.91 0.91 0.95 0.88

(0.02) (0.02) (0.01) (0.04)

nld 0.93 0.92 0.96 0.90 0.91

(0.02) (0.02) (0.01) (0.02) (0.02)

Sample: 1990Q3–2007Q4

bel deu esp fra ita

0.96

(0.01)

0.88 0.85

(0.04) (0.04)

0.91 0.91 0.77

(0.02) (0.03) (0.05)

0.96 0.90 0.89 0.88

(0.01) (0.03) (0.03) (0.03)

0.94 0.91 0.84 0.88 0.93

(0.02) (0.03) (0.04) (0.03) (0.02)

Euro area shock correlations

Sample: 1970Q1–1990Q2

bel deu esp fra ita

deu 0.77

(0.06)

esp 0.91 0.80

(0.03) (0.06)

fra 0.84 0.75 0.90

(0.05) (0.06) (0.03)

ita 0.82 0.67 0.80 0.77

(0.05) (0.08) (0.06) (0.06)

nld 0.90 0.77 0.94 0.93 0.82

(0.03) (0.07) (0.02) (0.02) (0.05)

Sample: 1990Q3–2007Q4

bel deu esp fra ita

0.71

(0.07)

0.88 0.78

(0.04) (0.06)

0.90 0.79 0.92

(0.03) (0.07) (0.03)

0.86 0.76 0.81 0.86

(0.05) (0.06) (0.06) (0.04)

0.91 0.79 0.94 0.92 0.88

(0.03) (0.06) (0.02) (0.03) (0.03)

Country-specific shock correlations

Sample: 1970Q1–1990Q2

bel deu esp fra ita

deu -0.24

(0.13)

esp 0.09 -0.19

(0.13) (0.12)

fra 0.04 -0.31 -0.05

(0.11) (0.11) (0.12)

ita 0.09 -0.37 0.02 0.02

(0.12) (0.13) (0.12) (0.13)

nld 0.17 -0.04 0.11 -0.15 0.07

(0.13) (0.13) (0.13) (0.13) (0.12)

Sample: 1990Q3–2007Q4

bel deu esp fra ita

-0.07

(0.15)

0.00 -0.16

(0.12) (0.13)

-0.07 -0.41 0.12

(0.13) (0.17) (0.11)

0.08 -0.37 -0.10 0.15

(0.14) (0.14) (0.13) (0.13)

0.03 0.08 -0.01 -0.16 -0.21

(0.13) (0.14) (0.14) (0.13) (0.15)

Notes : Standard errors in parentheses. See Table 2.1 for abbreviations.60



insignificant. The only exceptions to this rule are the correlations of German-French and

German-Italian shocks in both sub-periods, for which significant negative correlations are

observed.

Next, we show in Figure 3.1 the response of the US and euro area outputs to global and

euro area shocks in the six trivariate models. Again, in the ideal case all impulse response

functions coincide. Unsurprisingly, the ideal case does not hold, but the impulse response

functions of both variables with respect to both shocks are quite similar across the second

sub-period estimations of the country-specific models. However, more discrepancies exist in

the estimations for the first sub-period, particularly with respect to the response of the US

and euro area outputs to euro area shocks.

3.2.3 Driving forces of business cycles

Variance decomposition of output gaps

In this sub-section, we shed light on the role global, euro area and country-specific shocks

play in the cyclical fluctuations of the member countries. A variance decomposition analysis

is employed to this end. The variance of the output gap, var (ỹj,t) for j = US, EA, i, is given

by

var (ỹj,t) =
∑

k

[(

m
∑

m=−κ

Ψ2
jk,m

)

σ2
k

]

, (3.8)

where σk for k = US, EA, i stands for the standard deviation of the global, euro area or

country-specific shock in the corresponding model, which follows from (3.7). Hence, the share

of the structural shock k on the variance of the output cycles of country j for j = US, EA, i

is simply

si
jk =

[(

κ
∑

m=−κ

Ψ2
jk,m

)

σ2
k

]

/
∑

k

[(

m
∑

m=−κ

Ψ2
jk,m

)

σ2
k

]

, (3.9)

which follows from the country-specific trivariate model of country i.

The first panel of Table 3.3 shows the shares of shocks in the output gap variance of the

euro area countries over the full sample period. The importance of adding a global factor
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Figure 3.1: Response of US and euro area output to common shocks in trivariate models
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to the bivariate model becomes clear immediately, since the global shock has a statistically

significant and non-negligible share in each member country considered. Euro area shocks

also have significant and non-negligible shares in Belgium, Germany, France and the Nether-

lands according to the full-sample estimates. Country-specific shocks dominate the output

gap fluctuations of Belgium, Spain and Italy with shares above 0.50, while their share is also

quite high in the other member countries.

In the second and third panels of Table 3.1, the shares of shocks in the output gap

variance of the euro area countries in the two sub-periods of interest are reported. The

estimates corresponding to the first sub-period are generally in line with the full-sample

estimates for Belgium, Spain, Italy and the Netherlands. Some discrepancy is observed,

however, for Germany and France. The first sub-period estimate of the global shock share

is 0.62 for Germany, whereas it is 0.28 according to the full-sample estimation. The point

estimates of the shares of euro area and own shocks is accordingly somewhat lower in the

first sub-sample than in the full sample for this country. A higher estimate of the share

of euro area shocks in the first sub-sample than in the full sample is registered for France,

which is roughly compensated by a lower own-shock estimate in the first sub-period.

The point estimates of the shares of shocks corresponding to the second sub-period differ

from the point estimates corresponding to the full sample period as well as the first sub-

period. Global shocks have only statistically insignificant shares in all member countries

except the Netherlands, whereas they were found to be significant according to the esti-

mations of the other sample periods (except in Spain in the first sub-period). The point

estimates of euro area shocks are either higher in the second sub-period than in the first

sub-period or are in the second sub-period as high as in the first sub-period. They are all

significant at the 5-percent significance level (except for Italy, where the significance is ob-

tained only at the 10-percent level) in the second sub-period, which does not apply to the

full-sample and first sub-period estimates. Country-specific shocks have significant shares in

all member countries except the Netherlands in the second sub-period.
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Table 3.3: Shares of shocks in output gap variance of euro area countries

Sample: 1970Q1–2007Q4

bel deu esp fra ita nld

global shock 0.22 0.28 0.23 0.31 0.25 0.30

(0.09) (0.12) (0.12) (0.12) (0.11) (0.12)

euro area shock 0.24 0.34 0.09 0.32 0.13 0.28

(0.09) (0.09) (0.06) (0.11) (0.08) (0.10)

country shock 0.54 0.37 0.68 0.36 0.61 0.42

(0.11) (0.10) (0.13) (0.12) (0.11) (0.10)

Sample: 1970Q1–1990Q2

bel deu esp fra ita nld

global shock 0.23 0.62 0.29 0.35 0.31 0.29

(0.13) (0.13) (0.18) (0.15) (0.14) (0.15)

euro area shock 0.23 0.20 0.06 0.42 0.13 0.30

(0.12) (0.11) (0.09) (0.14) (0.09) (0.12)

country shock 0.55 0.18 0.65 0.22 0.55 0.42

(0.14) (0.09) (0.18) (0.12) (0.14) (0.13)

Sample: 1990Q3–2007Q4

bel deu esp fra ita nld

global shock 0.18 0.21 0.24 0.21 0.11 0.40

(0.12) (0.14) (0.13) (0.12) (0.13) (0.15)

euro area shock 0.27 0.49 0.41 0.41 0.24 0.41

(0.13) (0.15) (0.16) (0.16) (0.14) (0.16)

country shock 0.55 0.29 0.34 0.38 0.65 0.18

(0.15) (0.15) (0.15) (0.16) (0.16) (0.13)

Change in the share of shocks over time

bel deu esp fra ita nld

global shock -0.04 -0.41 -0.05 -0.15 -0.20 0.12

(0.17) (0.19) (0.23) (0.20) (0.18) (0.21)

euro area shock 0.04 0.30 0.36 -0.01 0.11 0.12

(0.18) (0.19) (0.18) (0.21) (0.17) (0.20)

country shock 0.00 0.11 -0.31 0.16 0.09 -0.23

(0.21) (0.18) (0.25) (0.19) (0.21) (0.18)

Notes : The output gap measure is the CF-filter. The last panel shows the difference

between the estimates of the second and first sub-periods reported in the third and second

panels, respectively. Approximate standard errors, shown in parentheses, are computed by

Monte Carlo simulation. See Table 2.1 for abbreviations.
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We show the change in the share of shocks from the first sub-period to the second sub-

period in the last panel of Table 3.3. The standard errors are in most cases large enough

so that most of the change is found not to be statistically significant. Only the decline in

the share of global shocks in Germany’s output gap variance and the increase in the share

of euro area shocks in Spanish output gaps are significant.

All in all, we find a statistically significant increase in the share of neither global shocks

(due to, e.g., the globalisation) nor euro area shocks (due to, e.g., the EMU process). Fur-

thermore, there is no evidence for a statistically significant decrease in the share of country-

specific shocks in output gap variance of the euro area member countries. This suggests that

output gaps are not being driven more by common factors than country-specific factors in

the more recent sub-period. Yet, euro area shocks are statistically significant in the output

gap fluctuations of all countries in the second sub-period, while they have insignificant and

negligible shares in Italy and Spain in the first sub-period.

Forecast error variance decomposition

Recall from the first chapter that the implications of the output gap variance decomposition

may deviate from the implications of the FEVD due to filtering. Therefore, we also present

the FEVD results in the following. The FEVD estimates for the business cycle horizon,

based on all sample periods, are displayed in Figures 3.2(a) to 3.2(c) as well as for a forecast

horizon of 12 quarters in Table 3.4. The first difference to the previous output gap variance

decomposition estimates is the strikingly higher share of global shocks over the business cycle

horizon from 6 to 32 quarters. This share increases for all member countries with increasing

forecast horizon. Second, the FEVD shares of euro area shocks are never found to be

significant at the 5-percent significance level, while they were often found to be significant by

the output gap variance decomposition. Finally, country-specific shocks are more important

in the output fluctuations of Spain and Italy, especially at short forecast horizons, than in

the other member countries. However, country-specific shock shares in the forecast error
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Figure 3.2: FEVD of output

variance decrease in all countries with increasing forecast horizon.

3.2.4 Heterogeneity

The subject of this sub-section is the driving forces of heterogeneity in the euro area. High

shares of common (global and/or euro area) shocks in the output gap volatility of member

countries contribute to stronger business cycle co-movement only if these shocks lead to

homogeneous dynamics across the member countries. In order to account for the relative

importance of differing shock propagation mechanisms and of exposure to asymmetric shocks

in the existing business cycle heterogeneity within the euro area, two tools are employed.

First, counterfactual correlations are computed in order to see whether common shocks alone

lead to high correlations of entire euro area cycles with individual member countries’ cycles.

Counterfactual correlation analysis gives us hints on the homogeneity of the relationship

of each member country with the entire euro area. Second, we apply the aforementioned
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Figure 3.2: FEVD of output (cont.)
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Table 3.4: FEVD of euro area countries’ output

Sample: 1970Q1–2007Q4

bel deu esp fra ita nld

global shock 0.69 0.43 0.42 0.72 0.43 0.61

(0.12) (0.16) (0.15) (0.12) (0.16) (0.14)

euro area shock 0.14 0.21 0.03 0.15 0.10 0.11

(0.08) (0.12) (0.05) (0.09) (0.08) (0.10)

country shock 0.17 0.36 0.55 0.13 0.47 0.28

(0.08) (0.12) (0.15) (0.07) (0.14) (0.10)

Sample: 1970Q1–1990Q2

bel deu esp fra ita nld

global shock 0.62 0.71 0.51 0.72 0.68 0.64

(0.17) (0.19) (0.21) (0.17) (0.16) (0.15)

euro area shock 0.23 0.12 0.01 0.12 0.17 0.15

(0.14) (0.13) (0.07) (0.12) (0.13) (0.11)

country shock 0.15 0.17 0.48 0.16 0.16 0.20

(0.11) (0.14) (0.20) (0.12) (0.10) (0.11)

Sample: 1990Q3–2007Q4

bel deu esp fra ita nld

global shock 0.73 0.61 0.27 0.67 0.36 0.65

(0.14) (0.16) (0.17) (0.14) (0.16) (0.15)

euro area shock 0.09 0.18 0.19 0.15 0.12 0.13

(0.08) (0.11) (0.12) (0.10) (0.10) (0.10)

country shock 0.17 0.21 0.54 0.18 0.52 0.22

(0.12) (0.12) (0.18) (0.11) (0.16) (0.12)

Change in the share of shocks over time

bel deu esp fra ita nld

global shock 0.11 -0.10 -0.24 -0.05 -0.32 0.01

(0.23) (0.25) (0.28) (0.22) (0.23) (0.22)

euro area shock -0.14 0.06 0.18 0.03 -0.04 -0.02

(0.17) (0.17) (0.15) (0.15) (0.16) (0.14)

country shock 0.02 0.04 0.06 0.02 0.36 0.02

(0.16) (0.18) (0.27) (0.16) (0.18) (0.16)

Notes : Forecast error variance shares are reported for a forecast horizon of 12 quarters.

The last panel shows the difference between the estimates of the second and first sub-periods

reported in the third and second panels, respectively. Approximate standard errors, shown in

parentheses, are computed by Monte Carlo simulation. See Table 2.1 for abbreviations.
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variance decomposition to output gap differentials for estimating the driving forces of them.

Counterfactual correlations

We estimate six different trivariate models. All these models imply that the output gaps of

the US, the euro area and a member country comprise three counterfactual series, i.e., series

that would have been observed had only one of the three structural shocks in the model

taken place. The counterfactual correlations are correlations that are computed between

such series with respect to each one of the shocks. Formally,

corr (ỹm,t, ỹn,t|k) =
cov (ỹm,t, ỹn,t|k)

√

var (ỹm,t|k) var (ỹn,t|k)
, (3.10)

where corr (ỹm,t, ỹn,t|k) stands for the correlation between the output gaps of countries m

and n when only the shock k takes place and the other shocks are set to zero, cov (ỹm,t, ỹn,t|k)

stands for the corresponding covariance, and var (ỹm,t|k) and var (ỹn,t|k) are the variances

of the output gaps of countries m and n conditional on the shock k. Since we are interested

in the relationship between a member country and the entire euro area in our analysis, we

compute counterfactual correlations only between member countries’ and the euro area’s

output gaps with respect to each shock. Note that with the process in (3.7) governing the

motion of output gaps, the covariance of both series is given by

cov (ỹEA,t, ỹi,t|k) =

(

κ
∑

m=−κ

ΨEU,k,mΨi,k,m

)

σ2
k. (3.11)

The corresponding variances can be inserted into (3.10) by modifying the formula in (3.8)

accordingly. The term “counterfactual correlation” refers to the fact that those correlations

correspond to one aspect of reality only. A high (low) counterfactual correlation between

the sub-components of the euro area’s and a member country’s output gaps with respect to

a certain shock implies similar (diverse) shock propagation with respect to that shock over

the business cycle.

Table 3.5 shows the true and counterfactual correlations based on the trivariate models of

the euro area countries in the full sample period as well as the two sub-periods. In all panels,
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the first row contains the true correlations between the output gap of a member country and

the euro area output gap in the corresponding period.1 The second, third and fourth rows

show the counterfactual correlations with respect to global, euro area and country-specific

shocks, respectively. For instance, we would have observed a correlation of 0.40 between the

output gaps of Spain and the euro area if only global shocks had taken place in the period

1970Q1–1990Q2.

In some cases, the true correlation is lower than all reported counterfactual correlations in

both sub-periods. This result is due to the fact that counterfactual correlations are computed

under the assumption that a member country and the euro area are both subject to only one

and the same shock (global, euro area or country-specific of the particular country), while

the true correlations are generated when the series are subject to all shocks, which leads

to a more mixed picture, with the dynamics corresponding to different shocks obviously

counteracting each other in some cases.

The counterfactual correlations with respect to common shocks, i.e., global and euro area

shocks, are generally quite high in both sub-periods for the member countries. Only the

counterfactual correlations of Spain with respect to global shocks are somewhat lower than

other countries’ corresponding correlations in the full sample period and the first sub-period.

It is interesting to note that the counterfactual correlations with respect to country-specific

shocks are in general also quite high.2 Nevertheless, we obtain that each country-specific

shock has a distinct effect on the euro area output. Figure 3.3 shows that the response of the

euro area output to different country-specific shocks varies with respect to the country that

the shock is stemming from. This finding is indeed in accordance with our previous finding,

reported in Table 3.2, that the estimated country-specific shocks are in general roughly

1Note that the reported true correlations in Table 3.5 follow from the estimated business cycle generating
process based on an (almost) ideal band-pass filter and the trivariate SVAR model given by (3.5). These
“true” correlations are slightly different from the ones reported in Chapter 2, which follow from applying
the asymmetric Christiano-Fitzgerald filter to the observed data.

2This is, however, quite a different result from what Giannone and Reichlin (2006) obtain. They report
very low counterfactual correlations with respect to country-specific shocks. Yet, this comes from their choice
of the business cycle measure—the output growth rate—while we use the CF-filter to measure the cycle.

70



Table 3.5: True and counterfactual correlations of output gaps with the euro area

Sample: 1970Q1–2007Q4

bel deu esp fra ita nld

true 0.82 0.84 0.60 0.87 0.85 0.77

(0.06) (0.06) (0.13) (0.05) (0.04) (0.07)

only global shock 0.98 0.93 0.59 1.00 0.98 0.92

(0.05) (0.07) (0.27) (0.03) (0.04) (0.08)

only euro area shock 0.94 0.98 0.87 0.98 0.92 0.99

(0.05) (0.03) (0.22) (0.02) (0.07) (0.03)

only country shock 0.98 0.88 0.98 0.92 0.94 0.70

(0.13) (0.25) (0.20) (0.27) (0.05) (0.41)

Sample: 1970Q1–1990Q2

bel deu esp fra ita nld

true 0.80 0.84 0.47 0.88 0.84 0.83

(0.07) (0.08) (0.21) (0.06) (0.07) (0.08)

only global shock 0.91 0.90 0.40 0.99 0.96 0.94

(0.10) (0.07) (0.35) (0.05) (0.07) (0.11)

only euro area shock 0.81 0.95 0.92 0.94 0.81 1.00

(0.08) (0.09) (0.30) (0.05) (0.14) (0.05)

only country shock 0.99 0.68 0.92 0.60 0.90 0.86

(0.14) (0.34) (0.44) (0.27) (0.10) (0.31)

Sample: 1990Q3–2007Q4

bel deu esp fra ita nld

true 0.87 0.93 0.88 0.91 0.90 0.78

(0.06) (0.06) (0.08) (0.07) (0.05) (0.12)

only global shock 0.87 1.00 0.94 0.97 0.95 0.90

(0.11) (0.05) (0.23) (0.07) (0.10) (0.11)

only euro area shock 0.98 1.00 0.99 0.98 0.97 0.90

(0.06) (0.05) (0.08) (0.06) (0.08) (0.11)

only country shock 0.91 0.82 0.77 0.95 0.91 0.10

(0.08) (0.15) (0.13) (0.16) (0.06) (0.28)

Notes : The output gap measure is the CF-filter. Approximate standard errors, shown in

parentheses, are computed by Monte Carlo simulation. See Table 2.1 for abbreviations.
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Figure 3.3: Response of euro area output to country-specific shocks

orthogonal to each other and suggests that asymmetric shocks are behind the heterogeneity

of output gaps.

As a final check of heterogeneity in terms of co-movement, we compute the correlations

among the historical, i.e. estimated in-sample, component of each member country’s output

gap. We use the estimated coefficients and residuals of the model in (3.5) to this end. We

first compute the historical sub-component of each variable with respect to each shock and

then filter each estimated sub-component with the asymmetric CF-filter. The bilateral cor-

relations of member countries’ historical output gap sub-components corresponding to global

and euro area shocks are in many cases strikingly high, while similar bilateral correlations

corresponding to country-specific shocks are rarely statistically significant (see Table 3.6).

This finding is supportive of our previous conclusion. Hence, in the light of all hitherto dis-

cussed information, our exercise brings us to a similar conclusion as in Giannone and Reichlin

72



(2006) that “asymmetries are explained by idiosyncratic shocks rather than heterogeneous

responses to common shocks” in the euro area.

Driving forces of output (gap) differentials

Next, we carry out variance decompositions of output gap differentials in order to detect

the driving forces of their dynamics. We are interested in finding out whether our previous

finding on heterogeneity is also supported by this type of analysis. Recall from the discussion

in Chapter 2 that there is no a priori reason for the driving force of output gap differentials

to be the same as the driving force of output gaps.

According to Table 3.7, which shows the shares of shocks in the output gap differential

variance of the euro area countries, the driving force of this variance is the own shock for

every member country in all sample periods considered. The impact of global and euro area

shocks is relatively small. Country-specific shocks have in most cases shares above 0.60.

Their share is below 0.50 only in Germany in the first sub-period and in the Netherlands

in the second sub-period. While differences exist between the first and second sub-period

estimates of shares, these are often not statistically significant.

Global shocks deliver a small but significant contribution to the output gap differential

variance of Spain in the full-sample estimation. Euro area shocks have minor but statistically

significant shares in the output gap differential variance of Belgium, Spain, France and Italy

for the same period. Turning to the first sub-period estimates, global shocks contribute

significantly and non-negligibly to the differentials of Belgium, Germany and Spain, whereas

euro area shocks are important for the differentials of Belgium and France. In the second

sub-period, only the shares of country-specific shocks are statistically significant, while global

and euro area shocks do not have a significant contribution to the variance of output gap

differentials (abstracting from the role played by euro area shocks for the differential of the

Netherlands).

Finally, we turn our attention to the FEVD of differentials between the levels of the

73



Table 3.6: Correlations of output gap sub-components

Correlations with respect to global shock

Sample: 1970Q1–1990Q2

bel deu esp fra ita

deu 0.66

(0.05)

esp 0.49 -0.13

(0.05) (0.12)

fra 0.84 0.84 0.29

(0.07) (0.05) (0.10)

ita 0.91 0.54 0.62 0.76

(0.05) (0.05) (0.04) (0.09)

nld 0.80 0.82 0.25 0.89 0.77

(0.12) (0.04) (0.03) (0.07) (0.09)

Sample: 1990Q3–2007Q4

bel deu esp fra ita

0.93

(0.04)

0.73 0.85

(0.18) (0.11)

0.96 0.91 0.73

(0.04) (0.05) (0.21)

0.85 0.95 0.90 0.88

(0.08) (0.03) (0.07) (0.05)

0.96 0.92 0.72 0.97 0.87

(0.03) (0.04) (0.20) (0.03) (0.04)

Correlations with respect to euro area shock

Sample: 1970Q1–1990Q2

bel deu esp fra ita

deu 0.61

(0.18)

esp 0.76 0.79

(0.13) (0.08)

fra 0.37 0.60 0.64

(0.24) (0.11) (0.16)

ita 0.49 0.17 0.40 0.18

(0.16) (0.12) (0.17) (0.27)

nld 0.72 0.90 0.85 0.73 0.41

(0.15) (0.03) (0.12) (0.08) (0.11)

Sample: 1990Q3–2007Q4

bel deu esp fra ita

0.74

(0.15)

0.51 0.70

(0.20) (0.10)

0.79 0.91 0.83

(0.13) (0.05) (0.05)

0.70 0.68 0.21 0.64

(0.11) (0.14) (0.26) (0.15)

0.76 0.86 0.78 0.87 0.51

(0.12) (0.09) (0.07) (0.04) (0.26)

Correlations with respect to country-specific shock

Sample: 1970Q1–1990Q2

bel deu esp fra ita

deu -0.16

(0.18)

esp -0.16 -0.31

(0.26) (0.20)

fra -0.32 -0.47 0.23

(0.24) (0.15) (0.33)

ita 0.38 -0.04 -0.23 0.04

(0.13) (0.16) (0.18) (0.23)

nld 0.16 0.15 -0.25 -0.36 0.16

(0.18) (0.29) (0.34) (0.19) (0.18)

Sample: 1990Q3–2007Q4

bel deu esp fra ita

-0.13

(0.20)

0.19 -0.35

(0.17) (0.24)

0.22 -0.31 0.57

(0.18) (0.31) (0.11)

0.38 0.18 -0.47 0.07

(0.19) (0.35) (0.31) (0.27)

-0.16 -0.12 0.30 -0.22 -0.57

(0.17) (0.31) (0.31) (0.24) (0.24)

Notes : The output gap measure is the asymmetric CF-filter. Approximate standard errors,

shown in parentheses, are computed by Monte Carlo simulation. See Table 2.1 for abbreviations.
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Table 3.7: Shares of shocks in output gap differential variance of euro area countries

Sample: 1970Q1–2007Q4

bel deu esp fra ita nld

global shock 0.03 0.13 0.27 0.03 0.06 0.11

(0.06) (0.09) (0.11) (0.06) (0.07) (0.06)

euro area shock 0.15 0.07 0.15 0.18 0.09 0.02

(0.05) (0.06) (0.08) (0.08) (0.04) (0.05)

country shock 0.82 0.80 0.58 0.79 0.85 0.87

(0.07) (0.10) (0.11) (0.09) (0.08) (0.08)

Sample: 1970Q1–1990Q2

bel deu esp fra ita nld

global shock 0.20 0.39 0.39 0.15 0.10 0.12

(0.11) (0.14) (0.16) (0.13) (0.10) (0.10)

euro area shock 0.22 0.18 0.06 0.23 0.14 0.03

(0.10) (0.12) (0.08) (0.11) (0.10) (0.07)

country shock 0.58 0.44 0.56 0.62 0.76 0.85

(0.13) (0.13) (0.16) (0.15) (0.12) (0.11)

Sample: 1990Q3–2007Q4

bel deu esp fra ita nld

global shock 0.20 0.01 0.17 0.07 0.08 0.22

(0.13) (0.09) (0.12) (0.11) (0.12) (0.13)

euro area shock 0.11 0.02 0.19 0.24 0.08 0.30

(0.10) (0.10) (0.13) (0.14) (0.08) (0.16)

country shock 0.69 0.97 0.64 0.69 0.83 0.47

(0.16) (0.13) (0.14) (0.16) (0.14) (0.15)

Change in the share of shocks over time

bel deu esp fra ita nld

global shock 0.00 -0.38 -0.22 -0.08 -0.01 0.10

(0.18) (0.17) (0.20) (0.17) (0.16) (0.17)

euro area shock -0.11 -0.15 0.13 0.01 -0.06 0.28

(0.14) (0.16) (0.16) (0.18) (0.13) (0.17)

country shock 0.11 0.53 0.08 0.07 0.07 -0.38

(0.21) (0.19) (0.22) (0.22) (0.18) (0.19)

Notes : The output gap measure is the CF-filter. The last panel shows the difference

between the estimates of the second and first sub-periods reported in the third and second

panels, respectively. Approximate standard errors, shown in parentheses, are computed by

Monte Carlo simulation. See Table 2.1 for abbreviations.
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(a) Sample: 1970Q1–2007Q4

Figure 3.4: FEVD of output differential

euro area output and the output of the member countries. The FEVD results, displayed

in Figure 3.4, point to country-specific shocks as the force driving the dynamics of output

level differentials to a large extent at the business cycle horizon. This is particularly evident

in the estimates in Figure 3.4(a) based on the full sample period, with the exception of the

share of euro area shocks in the differential corresponding Spain. Global shocks are of some

(statistically significant) importance for the differentials of Belgium, Germany, France and

Italy in the first sub-period, while their shares are insignificant in the second sub-period.

Euro area shocks have a significant share in the output differential forecast error variance of

Belgium and France in the first sub-period and France and the Netherlands in the second

sub-period.
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(b) Sample: 1970Q1–1990Q2
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(c) Sample:1990Q3–2007Q4

Figure 3.4: FEVD of output differential (cont.)
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3.2.5 The Great Moderation

The descriptive statistics reported in the previous chapter point to changes in business cycle

dynamics of the euro area since the 1970s. Output gap volatility and output gap differential

volatility both became lower after the 1990s. In this section, we report on the statistical

significance of this moderation based on our estimated SVAR models. The moderation may

theoretically result from two fundamental sources: (i) changes in the size of shocks or (ii)

changes in shock transmission. In the following, we first document changes in the size of

shocks and shock transmission. Then, we conduct a different type of decomposition analysis

than before in order to detect the channels that led to the moderation of both output gap

volatility and output gap differential volatility.

Size of shocks

A widely used approach in the SVAR literature is to set the standard deviation of structural

shocks to one. We have also imposed this normalisation in the estimation of our B-models.

However, we cannot compute the impact of the aforementioned first channel on the moder-

ation of output fluctuations when the standard deviations of shocks are set to one. In order

to tackle this problem, we rewrite our estimated B-model, given by

Yt = adt + A1Yt−1 + · · ·ApYt−p + Bεt, (3.12)

as an AB-model,

ÃYt = ãdt + Ã1Yt−1 + · · · ÃpYt−p + B̃εt, (3.13)

by multiplying both sides of (3.12) by Ã, where Ã is a matrix with ones on its diagonal, B̃

is a diagonal matrix, B := Ã−1B̃, and Ai = Ã−1Ãi for i = 1, . . . , p. Note that (3.12) and

(3.13) are equivalent, and the hitherto variance decomposition and counterfactual correlation

computations are not affected by this transformation. That Ã has only ones on its diagonal

amounts to normalising the contemporaneous relationships among the endogenous variables
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of the VAR. The non-zero (unrestricted) diagonal elements of B̃ stand for the standard

deviations of the structural shocks.

The first panel of Table 3.8 shows the estimated standard deviations of global, euro area

and country-specific shocks in each country-specific model over the full sample period, while

the second and third panels show the standard deviation estimates from the sub-periods. The

last panel shows the change in the standard deviation of shocks, i.e., each standard deviation

in the third panel subtracted by the corresponding standard deviation in the second panel.

Thus, a negative figure indicates that the standard deviation of the corresponding shock

has decreased in the second sub-period relative to the first sub-period. Note that the ideal

situation would be that the entries corresponding to global and euro area shocks in the first

and second rows of each panel are exactly the same for each country’s estimated model. This

is, however, not possible with the simple methodology we apply. Yet, the reported values

are generally roughly close to each other. An important exception is the estimate of the

euro area shock standard deviation coming from Germany’s model: these estimates differ

from the estimates of the other country-specific models for all sample periods considered.

Looking at the last panel, two important changes regarding the size of shocks can be read

out. First, the standard deviation of both global and euro area shocks decreased in the

second sub-period relative to the first sub-period. The relative decline is higher in the case

of global shocks, that is, their standard deviation decreased more strongly than the standard

deviation of euro area shocks. Second, the size of country-specific shocks decreased as well

in all countries except Belgium. The decline in France is also relatively weak in comparison

to other member countries in our sample. Note that all reported changes in the last panel

are statistically significant.

Shock transmission

The conventional tool employed by macroeconomists for examining the shock transmission

is the impulse response function. Figures 3.5(a)-3.5(c) show the response of output in the
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Table 3.8: Standard deviation of shocks

Sample: 1970Q1–2007Q4

bel deu esp fra ita nld

global shock 7.63 7.51 7.68 7.49 7.47 7.54

(0.34) (0.35) (0.37) (0.35) (0.33) (0.34)

euro area shock 4.03 2.60 4.00 3.72 3.54 3.97

(0.18) (0.12) (0.19) (0.16) (0.16) (0.18)

country shock 2.97 4.60 5.58 3.06 5.53 8.60

(0.14) (0.26) (0.26) (0.14) (0.28) (0.39)

Sample: 1970Q1–1990Q2

bel deu esp fra ita nld

global shock 9.15 9.07 9.53 8.94 9.07 9.13

(0.66) (0.67) (0.71) (0.62) (0.63) (0.66)

euro area shock 4.50 3.02 4.56 4.07 3.93 4.55

(0.34) (0.21) (0.31) (0.29) (0.27) (0.32)

country shock 1.93 4.73 5.45 3.15 6.10 10.26

(0.14) (0.41) (0.40) (0.23) (0.46) (0.79)

Sample: 1990Q3–2007Q4

bel deu esp fra ita nld

global shock 4.10 3.97 3.61 3.80 4.00 3.93

(0.32) (0.32) (0.27) (0.30) (0.31) (0.31)

euro area shock 2.36 1.63 2.31 2.26 2.18 2.49

(0.19) (0.13) (0.18) (0.18) (0.17) (0.19)

country shock 2.83 3.18 2.83 2.34 3.34 3.37

(0.22) (0.32) (0.23) (0.20) (0.31) (0.27)

Change in standard deviation

bel deu esp fra ita nld

global shock -5.05 -5.10 -5.92 -5.14 -5.07 -5.20

(0.75) (0.75) (0.77) (0.69) (0.70) (0.75)

euro area shock -2.14 -1.40 -2.25 -1.81 -1.74 -2.06

(0.38) (0.25) (0.38) (0.35) (0.32) (0.38)

country shock 0.90 -1.55 -2.62 -0.81 -2.77 -6.89

(0.26) (0.52) (0.46) (0.30) (0.56) (0.83)

Notes : The last panel shows the difference between the estimates of the second and first

sub-periods reported in the third and second panels, respectively. Approximate standard errors,

shown in parentheses, are computed by Monte Carlo simulation. See Table 2.1 for abbreviations.
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euro area countries to a one-unit global, euro area and country-specific shock for the first

(solid) and the second (dashed) sub-periods, respectively. Thus, we can assess whether euro

area economies underwent structural changes over time. For example, if the response to a

certain shock in the second sub-period is lower than in the first sub-period in absolute value,

this implies, everything else equal, that the share of that shock in the variance of output

fluctuations has decreased due to the change in the propagation of the shock. Moreover, we

can also see whether the change is only quantitative, i.e., in the magnitude of the impulse

response, or also qualitative, i.e., in the shape of the impulse response.

In all graphs of Figure 3.5, 0.95 confidence intervals (the area between the dotted lines)

corresponding to the first-sub-period estimates are also added to the graphs, in order to

enable the reader to see whether the change in shock transmission from the first sub-period

to the second sub-period was statistically significant. It is observed that in some but not all

cases the impulse response function of the second sub-period is outside the 0.95 confidence

band. This suggests that important changes occurred in the output dynamics of the euro

area countries over time. However, it is generally hard to draw conclusions from Figures

3.5(a)-3.5(c) that apply to all countries similarly. Every country seems to rather have its

own peculiar story. In the following, we use a tool for assessing the impact of changes in

the magnitude of shocks as well as in their transmission, which encompasses both effects in

a unifying framework.

Moderation of output fluctuations

Moderation of output gaps Quoting Stock and Watson (2005), “the variance of [output

forecast errors] in a given country can change because the magnitude of the shocks impinging

on that economy have changed or because the effects of those shocks have changed.” The

above findings show that both effects are relevant for the euro area economies: on the one

hand, the volatility of global, euro area and country-specific shocks and, on the other hand,

the response of the economies to those shocks underwent changes. In order to compute the
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(a) Response to global shock
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(b) Response to euro area shock

Note: 0.95 confidence intervals correspond to the first sub-period estimates.

Figure 3.5: Impulse response of output in the euro area
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(c) Response to own shock

Figure 3.5: Impulse response of output in the euro area (cont.)

weight of both channels in the Great Moderation observed in each euro area country, we

employ the decomposition suggested by Stock and Watson (2005). We write the variance of

the output gap of a country at period p, with p = 1, 2 corresponding to the first (1970Q1–

1990Q2) and second (1990Q3–2007Q4) sub-periods, as

Vp = Vp1 + Vp2 + Vp3, (3.14)

where Vpk is the variance of output gap at period p with respect to the shock k, i.e., the

variance that would have been observed if only the shock k took place. (3.14) is clearly

analogous to (3.8). Note that the variance Vpk is given by apkσ
2
pk, apk :=

∑κ

m=−κ Ψ2
p,jk,m in

terms of (3.8) being a quadratic term and σ2
pk the variance of the shock k in period p. We

are interested in explaining the change (decline) in the variance of output gap in each euro

area country. The linear structure allows us to write the change in the contribution of the

shock k as

V2k − V1k =

(

a1k + a2k

2

)

(

σ2
2k − σ2

1k

)

+

(

σ2
1k + σ2

2k

2

)

(a2k − a1k) . (3.15)
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The first term on the right-hand side of (3.15) measures the contribution of the change in

the standard deviation of shock k, while the second term measures the contribution of the

change in the propagation of the same shock.

The first box in the upper panel of Table 3.9 shows the absolute change in output gap

variance of the euro area countries from the first to the second sub-period, derived from

the estimated output gap generating process given in (3.7) for each country. The decline

in output gap volatility in terms of point estimates is evident in every euro area country.

However, this decline is not found be statistically significant in any of the member countries.

The left and right boxes of the lower panel in Table 3.9 show the contributions of changes

in shock variance as well as shock propagation to the output gap volatility decline, respec-

tively. A negative (positive) value in these two boxes indicates that the corresponding factor

led to a decline (increase) in the corresponding output gap volatility. We have reported in

Table 3.8 that the magnitude of global and euro area shocks have declined in the second

sub-period. This is reflected in the first two columns (that correspond to global and euro

area shocks) of the left box in the lower panel of Table 3.9 as a positive contribution to the

decline in output gap volatility. In Belgium, changes in the size of own shocks contributed

negatively to the Great Moderation, but the total contribution of the change in shock vari-

ance is positive. Interesting is that the contribution of change in the size of individual shocks

is statistically insignificant in almost all cases, whereas the total contribution of change in

the size of all shocks is significant in all member countries except Belgium. The latter result

suggests that we would have observed a statistically significant decline in the output gap

variance of all member countries except Belgium, if only the size of shocks had changed and

no changes in the shock transmission had occurred.

Positive estimates are in many cases registered for the contribution of the change in shock

propagation to the change in output gap volatility. Note, however, that all estimates in the

right box of the lower panel of Table 3.9 are statistically insignificant. This implies that

this channel—change in shock transmission—could not be attributed a role in the decline of
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Table 3.9: Decomposition of change in output gap variance into change in size of shocks and

change in propagation

Variances Total contribution from shocks

1970–1990 1991–2007 Change World Euro Area Own

bel 1.03 0.58 -0.45 -0.13 -0.08 -0.24

(0.35) (0.23) (0.43) (0.19) (0.19) (0.27)

deu 0.93 0.68 -0.25 -0.44 0.15 0.03

(0.33) (0.31) (0.47) (0.33) (0.20) (0.15)

esp 1.52 0.54 -0.97 -0.31 0.14 -0.80

(0.76) (0.28) (0.80) (0.50) (0.21) (0.47)

fra 0.74 0.51 -0.23 -0.16 -0.10 0.03

(0.30) (0.25) (0.38) (0.22) (0.22) (0.16)

ita 2.06 0.70 -1.36 -0.57 -0.10 -0.69

(0.69) (0.36) (0.79) (0.39) (0.25) (0.54)

nld 1.57 0.51 -1.06 -0.24 -0.26 -0.56

(0.67) (0.27) (0.71) (0.44) (0.30) (0.30)

Contribution of change in shock variance Contribution of change in shock propagation

World Euro Area Own Total World Euro Area Own Total

bel -0.31 -0.29 0.41 -0.19 0.18 0.21 -0.65 -0.26

(0.25) (0.17) (0.20) (0.37) (0.32) (0.28) (0.38) (0.63)

deu -0.54 -0.47 -0.17 -1.18 0.10 0.63 0.20 0.93

(0.38) (0.23) (0.13) (0.53) (0.54) (0.39) (0.23) (0.84)

esp -0.58 -0.36 -0.61 -1.55 0.27 0.49 -0.19 0.58

(0.49) (0.25) (0.26) (0.72) (0.57) (0.40) (0.35) (0.96)

fra -0.35 -0.35 -0.12 -0.81 0.19 0.24 0.15 0.58

(0.23) (0.19) (0.09) (0.36) (0.31) (0.33) (0.19) (0.59)

ita -0.42 -0.28 -0.93 -1.64 -0.14 0.18 0.25 0.28

(0.35) (0.22) (0.39) (0.65) (0.47) (0.36) (0.57) (0.99)

nld -0.64 -0.41 -0.68 -1.73 0.39 0.15 0.12 0.66

(0.39) (0.26) (0.43) (0.79) (0.51) (0.39) (0.49) (1.01)

Notes : Approximate standard errors, shown in parentheses, are computed by Monte Carlo

simulation. See Table 2.1 for abbreviations.
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output gap volatility.

Moderation of output forecast errors Table 3.10, which is analogous to Table 3.9,

shows the change in the variance of 12-quarters-ahead forecast errors over the two sub-

periods. These are computed using a formula analogous to the one in (3.15). In contrast to

the previous estimations corresponding to output gaps, the decline in the 12-quarters-ahead

forecast error variance is strongly significant for all member countries (see the upper left

box of Table 3.10). The main contribution to this volatility decline comes from the decline

in the size of the shocks. In the case of four countries (Belgium, Germany, France and the

Netherlands), the total contribution of the decline in the size of the shocks even exceeds the

change in the variance of the 12-quarters-ahead forecast errors. Hence, the contribution of

change in shock propagation to the forecast error variance moderation is negative in these

countries. In Spain and Italy, the contribution of the same channel is positive but well below

the contribution of the other channel—change in the size of the shocks.

When we turn our attention to the total contribution from shocks, i.e., the sum of their

contribution via both channels, reported in the upper right box of Table 3.10, we see that

global shocks are the main driving force behind the moderation of the forecast errors in

terms of point estimates. However, it should be noted that their contribution is significantly

different from the contribution of euro area and country-specific shocks in the case of France

and Italy only. The total contribution to the output forecast error variance moderation of

euro area shocks is significant in Belgium and Italy only, while the total contribution of

country-specific shocks is significant in Spain, France and the Netherlands.

Moderation of output (gap) differentials

Tables 3.11 and 3.12 are analogous to Tables 3.9 and 3.10, respectively. They show the

decomposition of the change in output gap differential variance and in output differential

forecast error variance into change in the size of shocks and change in shock propagation.
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Table 3.10: Decomposition of change in output forecast error variance into change in size of

shocks and change in propagation

Variances Total contribution from shocks

1970–1990 1991–2007 Change World Euro Area Own

bel 5.31 2.20 -3.11 -1.69 -1.01 -0.41

(1.50) (0.57) (0.81) (0.68) (0.38) (0.25)

deu 6.97 2.11 -4.86 -3.67 -0.44 -0.75

(1.92) (0.58) (1.22) (1.09) (0.40) (0.42)

esp 13.16 2.70 -10.46 -6.00 0.40 -4.86

(3.87) (0.76) (1.69) (1.18) (0.28) (1.18)

fra 5.63 1.51 -4.11 -3.05 -0.45 -0.62

(1.62) (0.41) (0.85) (0.70) (0.32) (0.30)

ita 10.18 1.63 -8.55 -6.31 -1.48 -0.76

(2.69) (0.41) (1.40) (1.19) (0.59) (0.45)

nld 7.96 4.06 -3.90 -2.49 -0.70 -0.72

(2.19) (1.04) (1.41) (1.21) (0.55) (0.35)

Contribution of change in shock variance Contribution of change in shock propagation

World Euro Area Own Total World Euro Area Own Total

bel -4.54 -0.72 0.55 -4.71 2.85 -0.30 -0.96 1.60

(0.57) (0.19) (0.18) (0.64) (0.72) (0.29) (0.32) (0.81)

deu -4.73 -0.75 -0.60 -6.07 1.06 0.31 -0.15 1.22

(0.72) (0.24) (0.20) (0.78) (0.93) (0.36) (0.34) (1.03)

esp -5.07 -0.79 -4.27 -10.13 -0.93 1.20 -0.60 -0.33

(0.70) (0.15) (0.70) (0.97) (0.90) (0.24) (0.84) (1.29)

fra -3.93 -0.50 -0.31 -4.74 0.89 0.05 -0.31 0.63

(0.53) (0.17) (0.11) (0.56) (0.66) (0.27) (0.23) (0.77)

ita -4.00 -0.80 -1.55 -6.35 -2.31 -0.68 0.79 -2.19

(0.62) (0.28) (0.39) (0.78) (0.83) (0.42) (0.50) (1.07)

nld -7.91 -1.06 -4.37 -13.34 5.42 0.36 3.66 9.44

(0.95) (0.26) (0.72) (1.32) (1.22) (0.40) (0.80) (1.66)

Notes : Change in the variance of 12-quarters-ahead forecast error is reported. Approximate

standard errors, shown in parentheses, are computed by Monte Carlo simulation. See Table

2.1 for abbreviations.
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The change in the variance of output gap differentials is not significant for any of the member

countries, as has been the case for the change in the variance of output gaps. Similar also

to the output gap findings, we would have observed a statistically significant change in the

variance of output gap differentials if merely the sizes of the shocks had changed.

A statistically significant moderation is found in the 12-quarters-ahead forecast error

variance of output (level) differentials for Belgium, Spain, France and the Netherlands. The

main contribution to this moderation comes from the shock propagation channel for Belgium,

whereas the moderation is due to the change in the sizes of the shocks in France and the

Netherlands. In Spain, the shares of both channels are close to each other. In Germany and

Italy, the positive contribution of the shock-size channel is way above the total change, while

the shock propagation channel contributes negatively to the decline so that no statistically

significant change is found in the output differential forecast error variance of these two

countries.

3.2.6 Sensitivity of the results

We checked the sensitivity of our findings with respect to a number of factors. Our con-

clusions are generally robust with respect to lower or higher lag orders and other measures

of the business cycle such as the BK-filter or HP-filter. There is, however, some sensitivity

with respect to the period at which the sample is split. As there may be arguments to split

the sample, for example, in the mid-1980s, since the Great Moderation is often dated back

to that time in many studies, there are also arguments to choose a later date, for example

1993Q4, after which the Maastricht Treaty came into effect. We try to find a more com-

prehensive solution to this problem by running regressions over rolling estimation windows,

results of which are presented in the next section.
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Table 3.11: Decomposition of change in output gap differential variance into change in size

of shocks and change in propagation

Variances Total contribution from shocks

1970–1990 1991–2007 Change World Euro Area Own

bel 0.37 0.14 -0.23 -0.05 -0.07 -0.12

(0.13) (0.05) (0.14) (0.05) (0.05) (0.09)

deu 0.28 0.10 -0.19 -0.11 -0.05 -0.03

(0.13) (0.04) (0.13) (0.08) (0.05) (0.05)

esp 1.24 0.13 -1.11 -0.46 -0.04 -0.61

(0.66) (0.05) (0.66) (0.38) (0.10) (0.42)

fra 0.20 0.09 -0.11 -0.02 -0.02 -0.06

(0.07) (0.04) (0.08) (0.04) (0.04) (0.05)

ita 0.69 0.13 -0.55 -0.05 -0.09 -0.41

(0.24) (0.06) (0.25) (0.09) (0.08) (0.19)

nld 0.49 0.21 -0.28 -0.01 0.05 -0.32

(0.13) (0.10) (0.16) (0.07) (0.06) (0.11)

Contribution of change in shock variance Contribution of change in shock propagation

World Euro Area Own Total World Euro Area Own Total

bel -0.09 -0.05 0.15 0.01 0.04 -0.02 -0.26 -0.24

(0.06) (0.03) (0.07) (0.09) (0.08) (0.05) (0.14) (0.18)

deu -0.05 -0.02 -0.09 -0.16 -0.06 -0.03 0.06 -0.03

(0.04) (0.03) (0.04) (0.07) (0.06) (0.05) (0.06) (0.11)

esp -0.27 -0.06 -0.37 -0.70 -0.19 0.02 -0.24 -0.41

(0.19) (0.06) (0.17) (0.30) (0.22) (0.09) (0.26) (0.41)

fra -0.03 -0.04 -0.05 -0.12 0.00 0.02 -0.01 0.01

(0.03) (0.03) (0.02) (0.05) (0.04) (0.05) (0.05) (0.09)

ita -0.05 -0.05 -0.31 -0.41 -0.00 -0.04 -0.10 -0.14

(0.07) (0.04) (0.11) (0.15) (0.09) (0.06) (0.15) (0.22)

nld -0.13 -0.08 -0.59 -0.80 0.11 0.13 0.27 0.52

(0.13) (0.09) (0.21) (0.31) (0.17) (0.13) (0.23) (0.39)

Notes : Approximate standard errors, shown in parentheses, are computed by Monte Carlo

simulation. See Table 2.1 for abbreviations.

89



Table 3.12: Decomposition of change in output differential forecast error variance into change

in size of shocks and change in propagation

Variances Total contribution from shocks

1970–1990 1991–2007 Change World Euro Area Own

bel 0.87 0.28 -0.59 -0.25 -0.15 -0.19

(0.22) (0.07) (0.18) (0.12) (0.06) (0.09)

deu 0.88 0.66 -0.23 -0.19 -0.06 0.02

(0.22) (0.17) (0.19) (0.05) (0.08) (0.16)

esp 4.99 0.41 -4.58 -0.42 -0.73 -3.43

(1.41) (0.10) (0.87) (0.26) (0.36) (0.79)

fra 0.46 0.20 -0.26 -0.11 -0.06 -0.08

(0.11) (0.06) (0.11) (0.06) (0.04) (0.07)

ita 1.32 0.90 -0.43 -0.07 -0.15 -0.21

(0.31) (0.25) (0.32) (0.13) (0.08) (0.27)

nld 2.09 1.26 -0.84 0.14 0.36 -1.33

(0.40) (0.31) (0.37) (0.17) (0.13) (0.30)

Contribution of change in shock variance Contribution of change in shock propagation

World Euro Area Own Total World Euro Area Own Total

bel -0.26 -0.13 0.25 -0.14 0.01 -0.02 -0.44 -0.45

(0.09) (0.04) (0.07) (0.13) (0.13) (0.07) (0.13) (0.21)

deu -0.08 -0.04 -0.56 -0.68 -0.11 -0.02 0.58 0.45

(0.07) (0.05) (0.11) (0.15) (0.09) (0.08) (0.17) (0.22)

esp -0.31 -0.39 -1.79 -2.48 -0.11 -0.34 -1.64 -2.10

(0.16) (0.15) (0.35) (0.40) (0.19) (0.23) (0.48) (0.55)

fra -0.07 -0.07 -0.12 -0.26 -0.05 0.00 0.04 -0.00

(0.04) (0.03) (0.04) (0.06) (0.05) (0.04) (0.07) (0.10)

ita -0.39 -0.09 -1.18 -1.66 0.33 -0.06 0.97 1.23

(0.18) (0.05) (0.24) (0.31) (0.26) (0.07) (0.31) (0.43)

nld -0.70 -0.48 -3.21 -4.39 0.84 0.83 1.88 3.56

(0.26) (0.16) (0.49) (0.64) (0.37) (0.26) (0.50) (0.76)

Notes : Change in the variance of 12-quarters-ahead forecast error is reported. Approximate

standard errors, shown in parentheses, are computed by Monte Carlo simulation. See Table

2.1 for abbreviations.
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3.3 Results from rolling regressions

The hitherto presented results were based on the assumption of a discrete break in the data

in 1990Q2. Changing the break date in the data leads to changes in some of the results,

but our previous conclusions generally hold. However, as mentioned in Chapter 2, each euro

area member country possesses its own peculiarities. In order to capture these peculiarities,

we estimate in this section, following Stock and Watson (2005) and Blanchard and Gali

(2008) among others, SVARs of the kind described by (3.5) for each member country in

rolling windows of 15 years (60 quarters). Hence, the estimation windows cover the periods

1970Q1–1984Q4, 1970Q2–1985Q1, etc., and the last estimation window covers the period

1993Q1–2007Q4. In the forthcoming graphs displaying the results from the rolling window

estimations, each statistic is reported at the quarter that is at the center of the corresponding

estimation window.

Size of shocks

Figure 4.6 illustrates the standard deviations of global, euro area and country-specific shocks.

It can be seen that the standard deviation of global shocks decreases steadily until roughly

the middle of the sample period and stays more or less constant around the same level

afterwards. Thus, the rolling regression estimations show that the moderation of the global

shocks indeed takes place in the first half of the sample period, and the variance is steady

in the second half of the sample period. Therefore, we find in our estimations reported in

Table 3.8 based on a single break that the variance of global shocks has decreased in the

second sub-period. It is harder to recognise from the graphs, but the standard deviation of

euro area shocks is constant roughly in the first half of the sample period, while it decreases

steadily in the second half. In line with the findings reported in Table 3.8, the standard

deviation of the own shocks of Belgium becomes generally higher, while it becomes lower in

the second half of the sample period in all other countries.
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Figure 3.6: Standard deviation of shocks over 15-year rolling windows

Shock transmission

As before, we plot impulse response functions in order to capture changes in shock propaga-

tion over time. Figures 3.7(a)–3.7(c) illustrate three-dimensional shaded surface plots of the

impulse response functions of the euro area countries with respect to global, euro area and

country-specific shocks over rolling regression estimations. In order to facilitate better visual

perception, we display the impulse response of the first quarter for each calendar year. The

first impulse response in the graphs of all three figures is, for example, the impulse response

from the rolling regression corresponding to the estimation window 1970Q1–1984Q4. The

second impulse response is the estimate from the window 1971Q1–1985Q4, etc.

It is clear from all figures that the member countries underwent important changes

throughout the sample period. For instance, output response to global shocks is weak in

France at the beginning of the sample period, but it becomes stronger over time reaching a

peak in the rolling regression the center of which is about 1990 and tapering off after that
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(a) Response to world shock over 15-year rolling windows
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Figure 3.7: Impulse response of output in the euro area
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Figure 3.7: Impulse response of output in the euro area (cont.)

period. However, it is not possible to find general patterns applying to all or a sub-group

of member countries. The responses to euro area shocks are behaving more erratic than

the responses to global shocks, which suggests that member countries’ output dynamics are

more sensitive to small changes in the data set in this regard. It can hence be concluded that

there is a high uncertainty in the estimation of euro area shocks and their dynamic multi-

pliers. Finally, notice the strong response of output to country-specific shocks in Germany

and Spain around 1981–1982. This behavior is observed also in the forthcoming variance

decomposition results.

Variance of output gaps

It is beyond the scope of this study to interpret the changes in the impulse response functions

over each rolling regression, for each country and with respect to each structural shock. It

is clear that each euro area country has its own peculiar history of changing dynamics over

time. We leave further interpretations to the interested reader and turn our attention to
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the changing variance of output gaps in the euro area countries. Figure 3.8(a) shows the

total variance of output gaps in the member countries as well as a decomposition of the

total variance with respect to global, euro area and country-specific shocks in bar graphs.

Note that we truncated the rolling window estimates corresponding roughly to 1980–1982 for

Germany and Spain, due to implausibly high estimated variances for these rolling windows.

In Germany, the output gap variance is lower in the 1970s than in the 1980s, while a gradual

decline is observed after the peak in the rolling window around 1982. The output gap

variance decreases steadily in Spain starting with the rolling window around 1980, reaching

historically low levels most recently.

We have documented before that the variances of output gaps are higher in the first half

of the sample period than in the second half. The rolling regression estimations illustrated

in Figure 3.8(a) generally confirm this conclusion. However, it is not possible to recognise

a country, where the variance of the output gap is roughly constant in the first half of the

sample period and decreases to a lower constant level in the second half of the sample period.

For example, Belgium, Germany, Italy and the Netherlands see important declines in their

output gap variances at the beginning of the sample period, which then stay roughly around

constant levels, abstracting from some erratic behavior in Belgium in rolling windows around

1997, in Italy around 1992 and in Italy and Germany around 1999. A moderation in the

output gap variance of France is less visible: the recent rolling window estimates of output

gap variance are not lower than the ones from the rolling windows around the mid-1980s.

The output gap variance rises steadily in Spain until reaching a peak in the rolling window

around 1992 and tapers off after that period until recently.

Figure 3.8(b) displays relative output gap variance decompositions over rolling regres-

sions, i.e., the percentage shares of shocks in the variances reported in Figure 3.8(a). The

dynamics in this figure are not exactly in accordance with the estimated shares from the

sub-periods in Table 3.3. While the latter estimations give a share of 0.55 to country-specific

shocks in Belgium in both sub-periods, there are many rolling windows where the share of
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(a) Variance of output gap over 15-year rolling windows
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(b) Variance decomposition of output gap over 15-year rolling windows

Figure 3.8: Variance decomposition of output gap
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country-specific shocks in output gap variance is below 0.35. Moreover, euro area shocks

are in some estimation windows attributed higher shares—about 0.40—than the previous

sub-period estimates of about 0.25. The high share of global shocks in the early estimation

windows and the strongly increasing share of euro area shocks in more recent rolling windows

in Germany were suggested by Table 3.3 as by Figure 3.8(a). While the decreasing share of

country-specific shocks in the output gap variance of Spain in the rolling windows centered

in the second half of the whole sample are in line with Table 3.3, the statistically significant

and strong increase in the share of euro area shocks from 0.06 in the first sub-period to 0.41

in the second sub-period is not reflected in the rolling window estimations. The sub-period

estimates in Table 3.3 suggest a significant share for global and euro area shocks in the first

sub-period and for euro area shocks only in the second sub-period in the output gap vari-

ance of France, which is roughly supported by Figure 3.8(b). That country-specific shocks

dominate the Italian output gap fluctuations in both sub-periods, while global shocks are

also significant in the first sub-period in Table 3.3 is also a result that is roughly in line with

the rolling window estimates. Finally, the sub-period estimates of shock shares in the output

gap variance of the Netherlands, the significance of all shocks in the first sub-period and the

significance of only global and euro area shocks in the second sub-period, coincide with the

rolling window estimates as well.

Forecast error variance of output

Figure 3.9(a) shows the evolution of 12-quarters-ahead forecast error variance of output

in the member countries. The moderation in this variance is stronger in Germany, Spain,

France and Italy than in Belgium. A moderation in the Netherlands is even less evident.

The 12-quarters-ahead forecast error variance of output suddenly drops to much lower values

in the rolling windows centered between the mid-1980s and the mid-1990s, whereas it rises

again in more recent windows for that country. Note also that the evolution pattern of the

output gap variance in Figure 3.8(a) is quite distinct from the pattern of the forecast error
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variance in Figure 3.9(a).

The shares of shocks in the 12-quarters-ahead forecast error variance, displayed in Figure

3.9(b), are in line with the previous sub-period results given in Figure 3.2. Global shocks

are the dominant driving force of output forecast error variance in the member countries in

many periods. The most important exception is Spain until the 1990s, where country-specific

shocks dominate the output forecast error volatility. Euro area shocks are of some significant

importance only in Germany in the rolling windows centered roughly between 1987 and 1997

and in Italy in some early rolling windows.

Driving forces of output (gap) differentials

Figures 3.10 and 3.11 are analogous to Figures 4.8 and 4.9, respectively. The former figure

shows the variance of output gap differentials and its decomposition, while the latter shows

the variance of 12-quarters-ahead output differential forecast errors. For both of these het-

erogeneity measures, it can be claimed that their variance is generally lower recently than in

the first half of the full sample period, although the evolution patterns of the measure differ

to a large extent across the countries. The other commonality is that country-specific shocks

are the main driving force of output gap differentials as well as 12-quarters-ahead output

differential forecast errors in many rolling windows, although there are some episodes where

global or euro area shocks have a relatively large share. As noted before, our general finding

suggests that heterogeneity in the euro area in terms of output gaps can be to a large extent

traced back to asymmetric shocks.
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(a) Variance of output 12-quarters-ahead forecast errors over 15-year rolling windows
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(b) Variance decomposition of output forecast errors over 15-year rolling windows

Figure 3.9: Variance decomposition of output forecast errors
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(a) Variance of output gap differential over 15-year rolling windows
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(b) Variance decomposition of output gap differential over 15-year rolling windows

Figure 3.10: Variance decomposition of output gap differential
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(a) Variance of 12-quarters-ahead output differential forecast errors over 15-year rolling windows
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(b) Variance decomposition of output differential forecast errors over 15-year rolling windows

Figure 3.11: Variance decomposition of output differential forecast errors
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3.4 Summary and remarks

In this chapter, we investigated the properties of business cycle dynamics in the euro area

with the aid of structural VAR models. After establishing the statistical properties of the

cyclical fluctuations in the previous chapter, we addressed the three questions posed at the

beginning of the chapter by estimating our SVAR models initially using the full sample.

However, we have also carried out our estimations in sub-samples as well as rolling windows

in order to capture changes that occurred in the business cycle dynamics over time.

The first question we dealt with was the driving forces of output fluctuations. In order

to detect the extent to which euro area countries’ business cycles are driven by common

(global and euro area) factors, we computed decompositions of the output gap variance—

the measure of the output gap being the symmetric CF-filter—as well as decompositions of

the output forecast error variance at the business cycle horizon for each member country.

We found changes in the share of shocks in the output gap variance from the first sub-

period (1970Q1–1990Q2) to the second sub-period (1990Q3–2007Q4), while these changes

were rarely statistically significant. For output gap variance, we found significant shares

of global shocks (except in Spain) and euro area shocks (except in Spain and Italy) in the

first sub-period. However, global shocks had a significant share only in the Netherlands

in the second sub-period, whereas euro area shocks were significant in all countries except

Italy. The country-specific shocks were found to be an important driving force of output gap

fluctuations in all sample periods considered, with the exception of the Netherlands in the

second sub-period.

The forecast error dynamics were found to be different from the output gap dynamics.

Our estimations suggested that global shocks were often the main driving force of output

forecast error variance at the business cycle horizon of up to 32 quarters; they were almost

always playing a statistically significant role even if the point estimate of their share was not

very high in some cases. While country-specific shocks played the dominant role in some

cases (such as Spain in the second sub-period), euro area shocks were not found to be a
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statistically significant driving force of output forecast errors in any of the samples.

The second question we posed at the beginning of this chapter—the extent and sources

of cyclical heterogeneity in the euro area—has been addressed by computing counterfactual

correlations, variance decompositions of output gap differentials as well as FEVD of output

(level) differentials at the business cycle horizon. Although there were occasional exceptions

in some of the discrete sample as well as rolling window estimations, the general finding

was supportive of the previous literature in that asymmetric shocks are the main driving

force behind the existing heterogeneity of macroeconomic fluctuations in the euro area. The

other channel—heterogeneous response to common shocks—was often not found to play a

significant role.

Finally, with respect to the third question we posed at the beginning, we reported sig-

nificant changes in the size of shocks as well as shock transmission from the first sub-period

to the second. However, the point estimates of the change in output gap and output gap

differential variance was always negative, but never statistically significant, while we found a

statistically significant decline in the variance of output as well as output differential forecast

errors. Yet, the common finding for both gaps and both forecast errors was that the first

channel considered—change in the size of shocks—had a significant contribution to a decline

in cyclical volatility, while the other channel—change in shock transmission—contributing

either less or insignificantly. There were even cases where the latter channel was found to

have contributed negatively to the moderation.

Giannone and Reichlin (2006) state in the introduction to their paper that their “ambition

is not structural [...] and this evidence is meant to provide food for thought for a deeper

analysis.” This chapter, relying on a modified version of their empirical model, should also

be seen in the same manner. An important shortcoming of the empirical approach of this

chapter is that spillovers are not modelled among the member countries. While this may

be convenient if spillovers play (virtually) no role in business cycle fluctuations in reality,

and international business cycle dynamics are (virtually) totally due to common shocks, our
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empirical approach may lead to wrong conclusions if there are no common shocks, and only

country-specific shocks are transmitted through a channel such as trade. The next chapter

addresses this critical issue.

Another critical issue is the somehow arbitrarily chosen break date. In the next chapter,

we estimate a time-varying coefficient version of the SVAR of this chapter in order to present

another perspective with respect to this problem. Breaks in the data are included naturally,

when SVAR coefficient matrices as well as covariance matrix of structural shocks are allowed

to vary in each period included in the sample.
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Chapter 4

Business cycle dynamics in the euro
area: two alternative approaches∗

The previous chapter dealt with various issues concerning the business cycle dynamics in

the euro area. The analysis depended on a conventional SVAR approach, with the help of

which global, euro area and country-specific shocks and their transmission mechanisms were

identified. Although the results helped answering the questions posed at the end of Chapter

2, there were several issues left deserving more scrutiny. First, six different trivariate models

were estimated comprising the output of the US, the euro area and the output of one of the

six member countries included in the data set. This implied six different estimations of global

and euro area shocks, which were assumed to be common to all member countries. Although

the estimated global and euro area shocks from each trivariate model were highly correlated

among each other, and the standard deviations of both sorts of shocks were generally similar,

the match of these shocks across different trivariate models was not perfect. It is instructive

to repeat the estimations in an empirical framework that does not suffer from this type of

critique. Second, the trivariate models did not comprehend the bilateral relationships among

further economies included in the sample. It is theoretically possible that some economies

∗Most of the estimations and calculations in this chapter are carried out using MATLAB codes written
by the author. JMulTi is used for the specification of the FSVAR model. The GAUSS codes of Stock and
Watson (2005) have been translated into MATLAB for the estimation of the FSVAR model. The MATLAB
codes of Gali and Gambetti (2009) have been modified for the estimation of the reduced form time-varying
coefficient SVARs. The MATLAB code included in the Spatial Econometrics Toolbox of James P. LeSage is
used for the estimation of the structural parameters in the time-varying coefficients VARs.
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have important spillover effects on others that cannot be captured by the simple empirical

approach employed in the previous chapter. Third, the euro area of the first 12 member

countries did not exist before 1999.1 Output data extrapolated by the OECD via specific

methods for EU12 is harder to measure for quarters before 1999, where the exchange rates

were not fixed across the member countries. An additional problem in this context could be

that quarterly GDP data for countries not included in the data set in the previous chapter’s

estimations are not reliable, and that the EU12 GDP data, which has to be partly based on

such unreliable data, may possess some deficiencies.

In order to address these issues, we estimate a factor-structural VAR (FSVAR) model in

this chapter. While we use the same data set as in the previous chapter, only one model is

estimated for investigating properties of the business cycle dynamics in the euro area. The

model comprises the output of the US, as well as the output of the previously considered

six member countries of the euro area, and discards the output of the entire euro area. It

contains global and euro area factors as well as country-specific shocks as potential driving

forces of countries’ output dynamics. Note that all aforementioned critiques are addressed

with such type of model. Countries are exposed to the “same” global and euro area shocks,

while country-specific shocks can be spilled over across the countries included in the model.

Finally, the model does not comprise the euro area output, and the euro area factor is

extracted only with respect to the six member countries contained in the sample.

The rolling-window estimations of Chapter 3 gave us a sense about the sensitivity of the

results with respect to the specific break date—1990Q2—at which the sample was split into

two parts. In this chapter, we estimate, in addition to the FSVAR model, a time-varying

coefficient (TVC) version of the trivariate SVARs of the previous chapter in order to provide

another perspective with respect to this issue. Since breaks in the data are naturally included

in a TVC framework, the choice of the break date is not an issue for TVC-SVAR models,

whereas the previous criticism on fixed-coefficient SVARs of Chapter 3 also applies to them.

1To be precise, the exchange rates were fixed for among the first 11 members after 1999; Greece joined
them in 2001.
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The questions that we address in this chapter are the same as in the previous one: (i)

To what extent are the business cycles of the euro area countries driven by common (global

and euro area) factors? (ii) What are the extent and sources of heterogeneity in the euro

area in terms of business cycles? (iii) If the moderation of business cycles and business cycle

differentials were statistically significant, which mechanisms led to it in the euro area? Note

that the heterogeneity analysis of the previous chapter was partly based on the output gap

differential between the output gap of each country and the output gap of the entire euro

area. Since the euro area output is not included in the FSVAR model of this chapter, we

check the properties of all possible bilateral differentials of member countries’ business cycles

when examining the dynamics of heterogeneity with that model.

This chapter is structured as follows. The next section presents the FSVAR model

and discusses its specification for our data set. Results for sample periods 1970Q1–1990Q2

and 1990Q3–2007Q4 are provided subsequently. As in the previous chapter, we also discuss

properties of rolling windows estimates in the FSVAR context. Next, trivariate SVAR models

of the type used in Chapter 3 with time-varying coefficients (TVC-SVARs) are discussed.

The findings from this alternative framework are then compared to the findings of the SVAR

and FSVAR approaches. The chapter closes with a summary of the findings on the euro

area business cycle dynamics.

4.1 The factor-structural VAR model

The empirical approach underlying the estimations of this chapter is borrowed from Stock

and Watson (2005). The point of departure is a seven-variable reduced-form VAR that

contains the log output of the seven countries included in the analysis. The only deterministic

term is assumed to be a constant in each equation. The moving-average representation of

the model, which was given by (1.2) in Chapter 1,

yt = µ +
∞
∑

j=0

φjut−j, (4.1)
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is reproduced here for the sake of convenience. We order the variables in (4.1) as

yt =
[

yUS
t ybel

t ydeu
t yesp

t yfra
t yita

t ynld
t

]′

,

i.e., as the log output of the US, Belgium, Germany, Spain, France, Italy and the Netherlands,

respectively.

The identification of international and country-specific shocks follows from a different

procedure than in the case of a conventional SVAR model. Namely, it is assumed that the

error terms ut in (4.1) possess a factor structure given by

ut = Γft + ξt, (4.2)

where ft stands for a k × 1 vector of common factors at period t, Γ is a 7 × k matrix of

loadings, and ξt is a 7 × 1 vector of country-specific (idiosyncratic) shocks. The common

factors and country-specific shocks are assumed to be independent from each other as well

as among each other such that E (ξ′tft) = 0, and their covariance matrices,

E (ftf
′

t) =









σf1
0

. . .

0 σfk









and E (ξtξ
′

t) =









σξ1
0

. . .

0 σξ7









,

are diagonal. Notice that φ0 in (4.1) is a 7×7 identity matrix in this framework. This implies

that the impact effect of international shocks, represented here by the common factors in

ft, is solely determined by the loadings in Γ, while no spillover of country-specific shocks is

allowed to other countries at the impact period. However, country-specific shocks are spilled

over to other countries in the model after the impact period, since φj are neither 7 × 7 zero

matrices nor diagonal matrices for j > 0.2

An issue of concern when estimating the VAR underlying (4.1) is the number of lags

to be included in the estimation. The convention is that each equation has 7p regressors,

2Note that we have also considered to augment our FSVAR model with the euro area output. However,
including the euro area output in this model framework would have the implausible implication that there
are euro-area-specific shocks with a non-zero impact effect on the entire euro area, but no impact effect on
the individual member countries. Moreover, a likelihood ratio test did also not support a common factor
structure for that eight-variable model.
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which would obviously imply a very high number of regressors even for a small p given the

length of the small samples at hand. We follow Stock and Watson (2005) and estimate a

VAR(p1, p2) with GLS techniques, where p1 is the number of lags of own output and p2 is

the number of lags of the other countries’ outputs in each country’s equation in the VAR.

This approach reduces the number of regressors to be estimated drastically. In our sample,

while the AIC chooses a VAR(4, 1) , the BIC favors one of either VAR(4, 1) , VAR(3, 1) or

VAR(2, 1). Therefore, we report results from a VAR(4, 1) estimation.

Another important issue of concern is the number of factors to be included in (4.2). Since

the factor-structural VAR (FSVAR) in (4.2) is overidentified if k > 0, likelihood ratio tests

can be carried out to determine the appropriate number of factors to be included in the

model. Applying the overidentification tests, we obtain that k = 1 is rejected neither for the

full sample nor the first sub-sample, while it is rejected for the second sub-period. k = 2 is

also rejected for the second sub-period when both factors are left unrestricted, whereas it

cannot be rejected when the second factor is not allowed to have an impact effect on the US

output, i.e, Γ (1, 2) = 0. Note that the first and second factors can respectively be labelled

as the global and euro area factors in such a framework, which is in line with the previous

chapter, so that euro area shocks are spilled over to the US with a time lag of one quarter,

while global shocks affect all countries in the model at the impact period.

4.1.1 Results from discrete samples

Our analysis is structured as in the previous chapter. We start with the presentation of results

from the full sample and the sub-samples and investigate the driving forces of fluctuations,

the dynamics of heterogeneity, and the existence and significance of moderation in output

gaps and output gap differentials. Then, we report our findings from rolling regression

estimations.
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Driving forces of business cycles

Variance decomposition of output gaps The FSVAR model contains six spillover

shocks in addition to global, euro area and own shocks of the member countries. We re-

port the shares of these shocks in the output gap variance of the euro area countries in Table

4.1. These shares are computed using the formula in (3.9) adapted to our model frame-

work. The last panel shows the change in the share of shocks from the first to the second

sub-period.

In the first row of all panels in Table 4.1, the total share of global and US spillover

shocks in the output gap variance of the member countries is given. According to full-

sample estimates, these shocks have a significant share in France and Spain only (in the latter

country at 10-percent significance level). Turning to the sub-period estimates, the FSVAR

model attributes a significant share to global plus US shocks in all member countries in the

first sub-period. However, these shares decrease to low and statistically insignificant levels in

the second sub-period. The decline is particularly strong and significant in Germany, France

and Italy.

The second and third rows of the panels in Table 4.1 correspond to the shares of euro

area shocks and spillover shocks from other member countries, respectively. It can be seen

that the sharp decline in the share of global plus US shocks in the second sub-period is often

compensated by increases in the share of common euro area and euro area spillover shocks.

The only exception to this rule is Italy, where the strong decline in the global plus US shocks

share is counterbalanced by the increase in the share of own country-specific shocks. The

share of common euro area shocks in the output gap variance increases significantly (at

least at the 10-percent significance level) in all member countries in the second sub-period

according to the last panel in Table 4.1. Significant increases also occur in the share of

euro area spillover shocks for Belgium and France. Although common euro area and euro

area spillover shocks often have small and insignificant shares in the variance of the member

countries’ output gaps in the full-sample and first sub-period estimates, they account for a
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Table 4.1: Shares of shocks in output gap variance of euro area countries

Sample: 1970Q1–2007Q4

bel deu esp fra ita nld

global + us 0.16 0.14 0.24 0.27 0.12 0.13

(0.10) (0.15) (0.14) (0.14) (0.12) (0.11)

euro area shock 0.16 0.28 0.05 0.26 0.16 0.18

(0.11) (0.10) (0.07) (0.12) (0.09) (0.11)

eu spillover 0.04 0.02 0.13 0.08 0.12 0.09

(0.07) (0.11) (0.09) (0.09) (0.11) (0.08)

country shock 0.64 0.56 0.59 0.39 0.61 0.60

(0.14) (0.06) (0.14) (0.13) (0.10) (0.12)

Sample: 1970Q1–1990Q2

bel deu esp fra ita nld

global + us 0.26 0.66 0.35 0.49 0.47 0.41

(0.10) (0.15) (0.14) (0.14) (0.12) (0.11)

euro area shock 0.01 0.08 0.08 0.02 0.18 0.00

(0.11) (0.10) (0.07) (0.12) (0.09) (0.11)

eu spillover 0.06 0.25 0.18 0.11 0.23 0.09

(0.07) (0.11) (0.09) (0.09) (0.11) (0.08)

country shock 0.66 0.00 0.39 0.38 0.12 0.50

(0.14) (0.06) (0.14) (0.13) (0.10) (0.12)

Sample: 1990Q3–2007Q4

bel deu esp fra ita nld

global + us 0.06 0.08 0.06 0.03 0.06 0.18

(0.10) (0.15) (0.14) (0.14) (0.12) (0.11)

euro area shock 0.30 0.40 0.31 0.28 0.15 0.28

(0.11) (0.10) (0.07) (0.12) (0.09) (0.11)

eu spillover 0.47 0.15 0.31 0.42 0.15 0.22

(0.07) (0.11) (0.09) (0.09) (0.11) (0.08)

country shock 0.16 0.37 0.32 0.27 0.64 0.32

(0.14) (0.06) (0.14) (0.13) (0.10) (0.12)

Change in the share of shocks over time

bel deu esp fra ita nld

global + us -0.20 -0.58 -0.29 -0.46 -0.41 -0.23

(0.17) (0.20) (0.17) (0.18) (0.16) (0.16)

euro area shock 0.29 0.32 0.23 0.26 -0.03 0.28

(0.15) (0.18) (0.14) (0.16) (0.13) (0.15)

eu spillover 0.41 -0.10 0.14 0.31 -0.08 0.13

(0.14) (0.17) (0.15) (0.16) (0.14) (0.15)

country shock -0.50 0.36 -0.08 -0.11 0.52 -0.18

(0.16) (0.14) (0.18) (0.16) (0.18) (0.17)

Notes : The output gap measure is the CF-filter. Approximate standard errors, shown in

parentheses, are computed by Monte Carlo simulation. See Table 2.1 for abbreviations.
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significant portion of output gap volatility in the second sub-period. Except for Italy, the

total share of these shocks is at least 0.50 or higher.

A commonality of the FSVAR findings of this chapter and the SVAR findings of the

previous one is that country-specific shocks have the highest share in the output gap variance

according to the full-sample estimates. This result is more pronounced in the FSVAR case,

where point estimates of the shares of country-specific shocks exceed 0.50 for all member

countries except France. However, it should also be noted that important differences are

observed in the shares of country-specific shocks across the different samples considered.

To summarise, we find that the implied shares of shocks differ to an important degree

across countries with respect to the underlying empirical model. The SVAR model of the

previous chapter and the FSVAR model of this one both corroborate that the shares of euro

area shocks become statistically significant in all member countries in the second sub-period

with the exception of Italy. However, it should also be added that the quantitative estimates

of both models differ to a non-negligible extent. Moreover, the FSVAR model attributes,

with the exceptions of Germany and Italy, significant shares to the spillover shocks from

other member countries in the second sub-period, whereas these types of shocks were absent

in the previous SVAR model.

Forecast error variance decomposition Another common property of the SVAR and

FSVAR models can be found in the implications of FEVD with respect to full-sample and first

sub-period estimates. As shown in Figures 4.1(a) and 4.1(b), the FSVAR model attributes—

just as the SVAR model does—an important share to global (plus US) shocks over the

business cycle horizon. For these two periods, the shares of country-specific shocks are often

higher at shorter forecast horizons, but decrease steadily as the forecast horizon rises. On

the other hand, common euro area or euro area spillover shocks have only negligible shares.

The second sub-period FEVD estimates differ strongly from the other two sample esti-

mates. Shares of common euro area shocks are still often insignificant, but higher in terms
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(a) Sample: 1970Q1–2007Q4

Figure 4.1: FEVD of output

of point estimates than in the other samples. More importantly, euro area spillover shocks

are particularly important for the output fluctuations of particularly Belgium, Spain and

France in the second sub-period. In total, the output fluctuations of the member countries

seem to be much more exposed to euro area dynamics, be it through common shocks or

spillovers of country-specific shocks within the euro area, in the second sub-period. Note

that this finding is in accordance with the output gap variance decomposition findings. Fi-

nally, country-specific shocks seem to matter rather at shorter forecast horizons than at

longer horizons.

Heterogeneity

We investigate the sources of heterogeneity with the two types of tools known from the

previous chapter: counterfactual correlations and variance decompositions.
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(b) Sample: 1970Q1–1990Q2
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(c) Sample:1990Q3–2007Q4

Figure 4.1: FEVD of output (cont.)
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Counterfactual correlations While in the previous chapter the subject of interest was

the correlation between the entire euro area and each individual member country, in this one

we examine the correlation between all possible country pairs due to the lack of the euro area

output in the model. The results are given in Table 4.2 for the full sample period only, since

most of the counterfactual correlations are estimated very imprecisely in the sub-periods due

to the high number of parameters to be estimated with short samples. The upper left panel

of the table shows the true correlations conditional on the estimated FSVAR model, while the

second, third and fourth panels show the counterfactual correlations conditional on global,

euro area and country-specific shocks, respectively. Note that even full-sample estimates

are subject to high standard errors. However, it is possible to observe the same structure

as before: country-specific shocks lead to statistically insignificant bilateral correlations of

member countries’ output gaps, whereas the correlations conditional on common, i.e., global

and euro area shocks, are high and significant.

Variance decompositions In Table 4.3, we report the results from the decomposition

of bilateral output gap differentials. In line with the above findings, we find support for

the view that country-specific (asymmetric) shocks are predominantly behind the observed

heterogeneity of output gaps. The last column of both boxes corresponding to the two sub-

periods in Table 4.3 gives the share of own shocks, i.e., the sum of shares of both relevant

countries’ shocks for each differential. Especially in the second sub-period, with the exception

of the output gap differential between Belgium and Spain, we observe statistically significant

shares of own shocks above 0.50. There are less cases in the first sub-period where the point

estimates of own shock shares are above 0.50, yet own shocks are often the main driving

force of output gap differentials. Common euro area shocks almost never play a significant

role in the output gap differential variances, except the strange result corresponding to the

German/Italian output gap differential, in the variance of which common euro area shocks

have a share of 0.51. Global shocks have almost always insignificant shares in the second
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Table 4.2: True and counterfactual correlations of output gaps in the euro area

True correlations

bel deu esp fra ita

deu 0.36

(0.09)

esp 0.35 0.19

(0.10) (0.14)

fra 0.49 0.39 0.35

(0.09) (0.11) (0.12)

ita 0.30 0.40 0.17 0.40

(0.11) (0.10) (0.15) (0.13)

nld 0.35 0.33 0.21 0.37 0.26

(0.08) (0.11) (0.11) (0.10) (0.11)

Only global shock

bel deu esp fra ita

0.99

(0.19)

0.76 0.80

(0.33) (0.36)

0.98 0.99 0.72

(0.07) (0.18) (0.35)

0.92 0.96 0.91 0.91

(0.25) (0.25) (0.34) (0.27)

0.89 0.88 0.49 0.93 0.71

(0.15) (0.27) (0.36) (0.12) (0.33)

Only euro area shock

bel deu esp fra ita

deu 0.90

(0.25)

esp 0.91 0.89

(0.34) (0.39)

fra 0.94 0.98 0.94

(0.25) (0.22) (0.39)

ita 0.95 0.94 0.98 0.98

(0.25) (0.13) (0.45) (0.22)

nld 0.81 0.98 0.79 0.93 0.85

(0.33) (0.30) (0.37) (0.37) (0.31)

Only country-specific shocks

bel deu esp fra ita

0.05

(0.13)

0.19 -0.07

(0.12) (0.17)

0.19 -0.09 0.13

(0.13) (0.18) (0.16)

0.04 0.13 -0.08 0.08

(0.14) (0.14) (0.16) (0.17)

0.13 0.01 0.09 0.01 0.05

(0.12) (0.14) (0.13) (0.15) (0.13)

Notes : The output gap measure is the CF-filter. Approximate standard errors, shown in

parentheses, are computed by Monte Carlo simulation. See Table 2.1 for abbreviations.
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sub-period, with the exception of the Belgian/Spanish output gap differentials, whereas they

often have small but statistically significant shares in the first sub-period. Note that the full-

sample estimates, which we do not report here, overwhelmingly show large shares for own

shocks in the variances of bilateral output gap differentials.

The forecast error variance decomposition of output differentials at the business cycle

horizon is complementary to the foregoing results. Own shocks, i.e., shocks of the two

countries that are the subject of an output differential, as well as other country-specific

shocks drive the fluctuations of output differentials over the full sample according to Figure

4.2(a). The same applies also to the second sub-period (see Figure 4.2(c)). However, shares

of spillover shocks are estimated to be higher when the second sub-sample underlies the

estimations than when the entire sample is used. Global shocks are of some importance for

the variance of bilateral output differentials according to FEVD as well, as suggested by the

previous output gap differential analysis.
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Table 4.3: Shares of shocks in output gap differential variance of euro area countries

Sample: 1970Q1–1990Q2

global+us eu spillover own

bel/deu 0.36 0.11 0.08 0.44

(0.11) (0.08) (0.06) (0.13)

bel/esp 0.20 0.04 0.05 0.71

(0.09) (0.09) (0.07) (0.13)

bel/fra 0.11 0.00 0.01 0.87

(0.08) (0.11) (0.05) (0.13)

bel/ita 0.19 0.16 0.06 0.60

(0.10) (0.09) (0.06) (0.14)

bel/nld 0.18 0.01 0.03 0.77

(0.08) (0.10) (0.05) (0.12)

deu/esp 0.33 0.15 0.13 0.39

(0.12) (0.11) (0.09) (0.13)

deu/fra 0.29 0.25 0.19 0.28

(0.13) (0.11) (0.10) (0.12)

deu/ita 0.15 0.51 0.08 0.26

(0.14) (0.19) (0.10) (0.20)

deu/nld 0.20 0.07 0.29 0.44

(0.09) (0.08) (0.09) (0.13)

esp/fra 0.22 0.06 0.12 0.61

(0.11) (0.09) (0.09) (0.14)

esp/ita 0.23 0.16 0.16 0.45

(0.10) (0.09) (0.09) (0.12)

esp/nld 0.25 0.10 0.07 0.58

(0.11) (0.10) (0.07) (0.12)

fra/ita 0.17 0.22 0.15 0.45

(0.11) (0.11) (0.11) (0.16)

fra/nld 0.11 0.02 0.06 0.80

(0.10) (0.11) (0.07) (0.17)

ita/nld 0.23 0.18 0.21 0.38

(0.10) (0.12) (0.10) (0.12)

Sample: 1990Q3–2007Q4

global+us eu spillover own

0.06 0.09 0.35 0.51

(0.10) (0.07) (0.12) (0.12)

0.27 0.06 0.29 0.38

(0.11) (0.06) (0.11) (0.13)

0.18 0.06 0.25 0.50

(0.11) (0.06) (0.11) (0.13)

0.10 0.05 0.24 0.62

(0.10) (0.07) (0.11) (0.12)

0.11 0.03 0.33 0.53

(0.09) (0.07) (0.12) (0.11)

0.17 0.02 0.18 0.63

(0.15) (0.09) (0.12) (0.17)

0.13 0.08 0.28 0.51

(0.12) (0.09) (0.13) (0.15)

0.07 0.07 0.08 0.78

(0.11) (0.09) (0.09) (0.15)

0.04 0.11 0.23 0.62

(0.09) (0.11) (0.13) (0.14)

0.05 0.09 0.16 0.70

(0.11) (0.10) (0.10) (0.18)

0.01 0.04 0.11 0.84

(0.11) (0.09) (0.10) (0.15)

0.15 0.07 0.15 0.63

(0.12) (0.10) (0.13) (0.15)

0.02 0.01 0.17 0.80

(0.10) (0.07) (0.10) (0.14)

0.16 0.08 0.25 0.51

(0.11) (0.08) (0.13) (0.13)

0.07 0.07 0.05 0.81

(0.11) (0.07) (0.09) (0.15)

Notes : The output gap measure is the CF-filter. Approximate standard errors, shown in

parentheses, are computed by Monte Carlo simulation. See Table 2.1 for abbreviations.
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(a) Sample: 1970Q1–2007Q4

Figure 4.2: FEVD of output differentials
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(b) Sample: 1970Q1–1990Q2

Figure 4.2: FEVD of output differentials (cont.)
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(c) Sample:1990Q3–2007Q4

Figure 4.2: FEVD of output differentials (cont.)
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Table 4.4: Standard deviation of shocks

global eu us bel deu esp fra ita nld

1970Q1–2007Q4 0.82 0.80 0.20 0.30 0.65 0.55 0.32 0.54 0.89

(0.10) (0.11) (0.19) (0.02) (0.11) (0.05) (0.03) (0.06) (0.07)

1970Q1–1990Q2 1.15 0.56 0.86 0.20 0.12 0.57 0.37 0.40 1.02

(0.16) (0.16) (0.15) (0.03) (0.18) (0.06) (0.07) (0.17) (0.18)

1990Q3–2007Q4 0.40 0.51 0.09 0.26 0.37 0.26 0.24 0.37 0.38

(0.05) (0.06) (0.10) (0.05) (0.07) (0.08) (0.03) (0.04) (0.05)

change -0.75 -0.05 -0.77 0.06 0.26 -0.31 -0.14 -0.03 -0.64

(0.17) (0.17) (0.18) (0.05) (0.19) (0.10) (0.07) (0.17) (0.19)

Notes : The fourth row shows the difference between the third and second rows. Approx-

imate standard errors, shown in parentheses, are computed by Monte Carlo simulation. See

Table 2.1 for abbreviations.

The Great Moderation

Size of shocks and shock transmission In Chapter 3, based on SVAR estimations, we

saw that the size of shocks as well as the shock transmission underwent significant changes

over time. Table 4.4 reports the standard deviation of estimated structural shocks of the

FSVAR model. It is not surprising, given the different structures of the FSVAR model

and the previous SVAR models, that the estimated sizes of shocks from both models as

well as relative changes in the sizes of shocks from the first sub-period to the second differ.

Looking at the full-sample and second sub-period estimates, we see that the size of the

country-specific US shock is the lowest among the different sources of shocks considered and

is highly imprecisely estimated. The decline in the size of the country-specific US shock

seems implausibly high. Robustness checks show that this result is sensitive to the choice of

the sample break date and does not occur in slightly different sub-sample periods. However,

since our other conclusions are not affected by the choice of the break date, we stick to our

benchmark break date of 1990Q2.

The SVAR models predicted a decline in the size of all shocks except the country-specific
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shock of Belgium. Moreover, the changes in the sizes of all shocks were statistically significant

according to those estimates. The picture following from the FSVAR estimation is differ-

ent. The standard deviation of Germany’s country-specific shock, in addition to Belgium’s

country-specific shock, increases according to the FSVAR estimation. However, none of these

increases are significant. Significant declines occur in the standard deviation of the global

shock as well as the country-specific shocks of the US, Spain, France and the Netherlands,

whereas the changes in the size of the common euro area shock and the country-specific

shock of Italy are insignificant.

Changes also occur in the shock transmission from the first sub-period to the second

according to the FSVAR model. As before with the SVAR estimations, every country has

its own peculiar history of these changes, and it is hard to see patterns applying to most

countries. Therefore, we skip reporting these impulse response graphs and turn our attention

directly to the decomposition of changes in the output gaps and output forecast errors along

the lines of Chapter 3.

Moderation of output fluctuations The decomposition of the change in output gap

variance due to changes in the size of shocks and changes in shock transmission is reported

in Table 4.5. Similar to the SVAR findings, the change in output gap variance, given in

the upper left box, is negative in all member countries in terms of point estimates, but

this change is not significant in any of the cases considered. The same is found also with

respect to the contribution of change in the shock propagation (in the lower right box), the

only exception to this rule being Belgium, and with respect to the total contribution from

different shocks (in the upper right box), the contribution of own shocks in Belgium being an

exception again. We have seen in Table 3.9 that the contribution of change in shock variance

to output gap moderation was in total significant in all member countries except Belgium

according to the SVAR model estimates. However, that finding cannot be verified by the

FSVAR model, from which a significant contribution of this channel can be registered only
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for the Netherlands.

When we turn our attention to the change in the volatility of output forecast errors at

the business cycle horizon, however, we obtain significant results for all member countries.

This is reported in the upper left box of Table 4.6. In line with the previous SVAR estimates,

FSVAR findings also suggest that the first channel—changes in the size of the shocks—is the

main driving force behind the moderation of output fluctuations. Yet, differences exist across

both models in terms of the contributions of individual shocks to the moderation. The SVAR

estimates implied that changes in the sizes of all types of shocks contributed significantly

to the moderation of output forecast errors, whereas the main contribution comes from the

decline in the sizes of global and spillover shocks in most cases according to the FSVAR

estimates (see the lower left box of Table 4.6). Similarly, both models generally attribute

negative contributions of the second channel—changes in the transmission of shocks—to the

moderation of output fluctuations. Yet, estimates of these contributions are rarely significant

in the FSVAR case, whereas some significant results were obtained by the SVAR estimations,

as a comparison of Tables 4.6 and 3.10 shows.
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Table 4.5: Decomposition of change in output gap variance into change in size of shocks and

change in propagation

Variances Total contribution from shocks

1970–1990 1991–2007 Change global eu own spillover

bel 1.79 0.72 -1.07 -0.17 0.20 -1.07 -0.03

(0.90) (0.29) (0.94) (0.22) (0.24) (0.37) (0.61)

deu 0.97 0.88 -0.09 -0.30 0.28 0.32 -0.38

(0.30) (0.44) (0.52) (0.18) (0.19) (0.31) (0.17)

esp 1.58 0.83 -0.75 0.02 0.13 -0.36 -0.54

(0.72) (0.44) (0.82) (0.17) (0.21) (0.55) (0.35)

fra 0.65 0.58 -0.07 -0.13 0.15 -0.09 0.01

(0.26) (0.27) (0.37) (0.10) (0.13) (0.23) (0.14)

ita 1.58 0.73 -0.85 -0.33 -0.18 0.27 -0.62

(0.52) (0.32) (0.60) (0.18) (0.19) (0.43) (0.23)

nld 1.26 0.66 -0.60 -0.16 0.18 -0.42 -0.20

(0.38) (0.34) (0.47) (0.15) (0.17) (0.31) (0.22)

Contribution of change in shock variance Contribution of change in shock propagation

global eu own spillover total global eu own spillover total

bel -0.23 -0.02 0.42 -0.71 -0.54 0.06 0.22 -1.49 0.68 -0.53

(0.25) (0.19) (0.39) (0.36) (0.65) (0.30) (0.33) (0.54) (0.77) (1.21)

deu -0.41 -0.04 0.17 -0.40 -0.68 0.10 0.32 0.15 0.02 0.60

(0.36) (0.22) (0.45) (0.15) (0.73) (0.42) (0.32) (0.62) (0.20) (1.11)

esp -0.17 -0.04 -0.76 -0.50 -1.46 0.19 0.16 0.40 -0.04 0.71

(0.33) (0.22) (0.51) (0.37) (0.93) (0.42) (0.32) (0.77) (0.44) (1.35)

fra -0.11 -0.02 -0.19 -0.50 -0.82 -0.02 0.17 0.10 0.50 0.75

(0.18) (0.15) (0.35) (0.11) (0.50) (0.21) (0.21) (0.48) (0.14) (0.73)

ita -0.31 -0.03 -0.05 -0.49 -0.89 -0.01 -0.14 0.32 -0.13 0.04

(0.22) (0.16) (0.41) (0.25) (0.59) (0.24) (0.24) (0.64) (0.23) (0.91)

nld -0.51 -0.02 -0.91 -0.62 -2.07 0.35 0.20 0.50 0.42 1.47

(0.29) (0.18) (0.37) (0.41) (0.81) (0.35) (0.18) (0.54) (0.40) (1.08)

Notes : Approximate standard errors, shown in parentheses, are computed by Monte Carlo

simulation. See Table 2.1 for abbreviations.
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Table 4.6: Decomposition of change in output forecast error variance into change in size of

shocks and change in propagation

Variances Total contribution from shocks

1970–1990 1991–2007 Change global eu own spillover

bel 5.99 2.17 -3.82 -0.92 0.34 -1.21 -2.02

(0.78) (0.31) (1.79) (0.70) (0.33) (1.26) (0.50)

deu 7.88 2.00 -5.88 -2.72 0.16 0.46 -3.78

(1.16) (0.44) (2.33) (1.21) (0.43) (1.58) (0.32)

esp 15.27 3.47 -11.80 -0.00 -0.10 -4.36 -7.33

(1.82) (0.41) (4.38) (1.24) (0.81) (3.21) (1.24)

fra 5.78 1.71 -4.07 -1.57 0.22 -0.63 -2.10

(0.79) (0.18) (1.77) (0.80) (0.34) (1.23) (0.45)

ita 9.97 1.82 -8.15 -3.08 -0.31 0.52 -5.28

(1.24) (0.34) (2.75) (1.38) (0.40) (1.96) (0.38)

nld 6.99 3.63 -3.36 -0.20 0.43 -0.41 -3.19

(0.74) (0.53) (1.85) (0.83) (0.42) (1.38) (0.44)

Contribution of change in shock variance Contribution of change in shock propagation

global eu own spillover total global eu own spillover total

bel -2.18 -0.04 0.49 -4.90 -6.63 1.26 0.37 -1.70 2.87 2.81

(0.59) (0.29) (1.14) (0.32) (1.47) (0.73) (0.43) (1.49) (0.61) (2.13)

deu -3.43 -0.08 0.37 -3.82 -6.96 0.71 0.24 0.09 0.04 1.09

(1.04) (0.31) (1.30) (0.33) (1.96) (1.22) (0.42) (1.71) (0.22) (2.71)

esp -1.33 -0.08 -3.49 -6.56 -11.47 1.33 -0.01 -0.87 -0.77 -0.33

(0.93) (0.45) (1.87) (0.82) (2.49) (1.25) (0.79) (2.99) (0.90) (3.96)

fra -1.42 -0.03 -0.53 -3.46 -5.43 -0.15 0.25 -0.10 1.36 1.36

(0.49) (0.24) (0.78) (0.23) (1.09) (0.64) (0.37) (1.15) (0.33) (1.61)

ita -2.62 -0.05 -0.10 -4.18 -6.95 -0.46 -0.26 0.62 -1.10 -1.20

(0.84) (0.23) (1.12) (0.42) (1.62) (1.05) (0.38) (1.68) (0.33) (2.48)

nld -5.39 -0.05 -3.30 -5.99 -14.72 5.19 0.48 2.89 2.80 11.36

(1.53) (0.41) (1.66) (0.98) (2.83) (1.88) (0.51) (2.08) (1.00) (3.64)

Notes : Change in the variance of 12-quarters-ahead forecast error is reported. Approximate

standard errors, shown in parentheses, are computed by Monte Carlo simulation. See Table

2.1 for abbreviations.

126



Moderation of output (gap) differentials The change in the variances of bilateral

output gap differentials is not found to be significant in any of the cases considered. The

same applies also to the decomposition of changes in output gap differential variances: the

results corresponding to both channels are very often statistically insignificant. Therefore,

we do not document here these statistics and report only statistics corresponding to the

change in bilateral output differential forecast error variance in Table 4.7. Indeed, half of the

changes in bilateral output differential forecast error variance, reported in the upper left box

of Table 4.7, are also insignificant. Yet, the point estimates of most of them are negative.

Changes in the size of shocks deliver an important contribution to the moderation of output

differential forecast errors. The contribution of this channel is statistically significant in 11

of the 15 cases. The contribution of the other channel—changes in shock propagation—to

the moderation of output differential forecast errors is very often statistically insignificant.

Hence, the first channel generally seems to be behind the moderation of these forecast errors

according to the FSVAR estimates. This is in accordance with the previous findings based

on the country-specific SVAR models of Chapter 3.
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Table 4.7: Decomposition of change in output differential forecast error variance

Variances Total contribution from shocks

1970–1990 1991–2007 Change global eu own spillover

bel/deu 2.74 1.49 -1.25 -0.68 -0.26 0.17 -0.47

(0.54) (0.34) (0.87) (0.28) (0.29) (0.43) (0.45)

bel/esp 8.13 0.96 -7.16 -0.41 -0.38 -5.21 -1.17

(1.52) (0.15) (2.38) (0.57) (0.52) (1.14) (1.40)

bel/fra 1.86 0.60 -1.26 -0.00 0.03 -1.34 0.06

(0.51) (0.14) (0.66) (0.13) (0.17) (0.21) (0.52)

bel/ita 2.68 1.70 -0.98 -0.42 -0.27 -0.17 -0.12

(0.48) (0.34) (0.80) (0.24) (0.25) (0.41) (0.45)

bel/nld 3.84 1.79 -2.05 -0.22 0.01 -2.00 0.16

(0.81) (0.34) (1.19) (0.35) (0.35) (0.50) (0.77)

deu/esp 11.71 3.14 -8.57 -1.70 -1.39 -3.43 -2.06

(1.91) (0.73) (3.34) (0.98) (0.99) (1.85) (1.42)

deu/fra 1.68 1.90 0.21 -0.15 -0.32 0.70 -0.01

(0.32) (0.48) (0.77) (0.25) (0.25) (0.44) (0.40)

deu/ita 2.29 2.46 0.16 -0.18 -0.95 1.33 -0.04

(0.46) (0.67) (1.01) (0.36) (0.52) (0.41) (0.68)

deu/nld 3.62 2.70 -0.92 -0.29 0.05 0.31 -0.99

(0.61) (0.56) (1.24) (0.39) (0.38) (0.71) (0.52)

esp/fra 8.28 0.60 -7.68 -0.72 -0.36 -4.60 -1.99

(1.37) (0.10) (2.37) (0.57) (0.58) (1.28) (1.09)

esp/ita 10.07 2.39 -7.69 -1.91 -0.83 -3.65 -1.30

(1.67) (0.40) (2.83) (0.88) (0.76) (1.45) (1.22)

esp/nld 6.58 2.17 -4.41 -0.31 -0.49 -2.60 -1.01

(1.02) (0.46) (1.65) (0.47) (0.49) (0.86) (0.91)

fra/ita 1.96 1.40 -0.57 -0.32 -0.30 0.19 -0.14

(0.32) (0.27) (0.58) (0.21) (0.23) (0.34) (0.33)

fra/nld 3.15 1.74 -1.41 0.31 0.06 -1.77 -0.02

(0.56) (0.36) (0.95) (0.35) (0.34) (0.52) (0.55)

ita/nld 4.51 1.88 -2.63 -0.61 -0.27 -0.52 -1.23

(0.73) (0.41) (1.08) (0.51) (0.37) (0.61) (0.46)

Notes : Change in the variance of 12-quarters-ahead forecast error is reported. Approximate

standard errors, shown in parentheses, are computed by Monte Carlo simulation. See Table

2.1 for abbreviations.
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Table 4.7: Decomposition of change in output differential forecast error variance (cont.)

Contribution of change in shock variance Contribution of change in shock propagation

global eu own spillover total global eu own spillover total

bel/deu -0.39 -0.06 0.65 -1.03 -0.84 -0.29 -0.20 -0.48 0.56 -0.41

(0.48) (0.16) (0.44) (0.31) (0.80) (0.59) (0.32) (0.62) (0.46) (1.32)

bel/esp -0.87 -0.04 -0.89 -1.24 -3.05 0.46 -0.34 -4.31 0.08 -4.12

(0.37) (0.19) (0.62) (0.54) (1.07) (0.50) (0.41) (0.82) (1.27) (1.95)

bel/fra -0.51 -0.00 0.10 -0.62 -1.03 0.51 0.03 -1.44 0.67 -0.23

(0.21) (0.09) (0.26) (0.28) (0.49) (0.25) (0.18) (0.33) (0.52) (0.80)

bel/ita -0.58 -0.04 0.17 -1.84 -2.29 0.16 -0.23 -0.35 1.73 1.31

(0.48) (0.19) (0.78) (0.37) (1.09) (0.58) (0.32) (1.01) (0.43) (1.53)

bel/nld -1.23 -0.01 -2.44 -1.25 -4.93 1.01 0.02 0.44 1.41 2.88

(0.75) (0.22) (0.61) (0.92) (1.66) (0.87) (0.33) (0.86) (1.09) (2.26)

deu/esp -1.50 -0.15 -2.19 -1.17 -5.01 -0.19 -1.24 -1.24 -0.89 -3.56

(1.06) (0.35) (1.29) (0.97) (2.20) (1.38) (0.79) (2.02) (1.23) (3.52)

deu/fra -0.74 -0.06 0.33 -0.68 -1.16 0.59 -0.26 0.37 0.67 1.37

(0.60) (0.14) (0.76) (0.34) (1.13) (0.76) (0.30) (1.03) (0.38) (1.64)

deu/ita -0.53 -0.12 0.16 -0.89 -1.37 0.35 -0.83 1.17 0.85 1.54

(0.70) (0.27) (1.16) (0.72) (1.70) (0.92) (0.57) (1.43) (0.65) (2.40)

deu/nld -0.87 -0.07 -2.30 -1.32 -4.56 0.58 0.12 2.61 0.32 3.64

(0.61) (0.28) (0.78) (0.91) (1.71) (0.77) (0.50) (1.12) (1.12) (2.41)

esp/fra -0.44 -0.04 -2.38 -0.51 -3.36 -0.28 -0.33 -2.23 -1.49 -4.32

(0.29) (0.19) (0.49) (0.52) (0.88) (0.41) (0.44) (1.04) (0.66) (1.75)

esp/ita -0.89 -0.09 -3.39 -0.18 -4.54 -1.02 -0.74 -0.26 -1.12 -3.14

(0.71) (0.35) (0.89) (0.96) (1.64) (0.90) (0.65) (1.48) (0.99) (2.68)

esp/nld -2.00 -0.05 -4.61 -0.35 -7.02 1.69 -0.44 2.01 -0.66 2.60

(1.01) (0.29) (0.54) (1.28) (2.03) (1.21) (0.45) (0.86) (1.39) (2.59)

fra/ita -0.22 -0.03 -0.30 -0.64 -1.18 -0.10 -0.27 0.49 0.50 0.61

(0.35) (0.15) (0.48) (0.35) (0.77) (0.44) (0.27) (0.68) (0.30) (1.10)

fra/nld -2.13 -0.01 -2.49 -1.53 -6.17 2.45 0.08 0.72 1.51 4.76

(0.71) (0.19) (0.64) (0.74) (1.52) (0.89) (0.32) (0.97) (0.72) (2.05)

ita/nld -1.84 -0.06 -1.76 -1.55 -5.20 1.24 -0.21 1.24 0.31 2.58

(0.56) (0.25) (0.68) (0.60) (1.28) (0.70) (0.37) (0.94) (0.60) (1.76)
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4.1.2 Results from rolling regressions

Size of shocks

As a robustness check of the previous results from the two sub-samples and in order to capture

the variations in business cycle dynamics over time, we also generated results from rolling

regressions as in the previous chapter. We illustrate the standard deviation of structural

shocks in Figure 4.3. A recent decline in the size of country-specific shocks is less evident

than in the SVAR case, while the sizes of the global and common euro area shocks decrease

(roughly) gradually from the beginning of the sample onwards. An important reason for our

former assessment is that the patterns of evolution we observe in Figure 4.3 are much more

erratic than what we observed before in Figure 4.6 based on the SVAR model. The FSVAR

rolling window estimates are obviously much more sensitive to minor changes in the data

set than the SVAR estimates are. This is probably due to the fact that we are estimating

more coefficients and parameters in the FSVAR model, for which an estimation window of

60 quarters is too short. The pattern of change in the size of shocks over time differs from

shock to shock and a declining trend is a bit more obvious for shocks of the US, Spain, Italy

and the Netherlands than the shocks of Belgium, Germany and France.

Forecast error variance decomposition of output

Erratic behaviour is also observed with respect to the propagation of shocks across countries,

which we do not display here. This finding points to a high sensitivity of FSVAR estimations:

adding or discarding one observation often leads to jumps in the estimates, which was much

less the case for the SVAR model. In some rolling windows, estimates corresponding to

output gaps are particularly sensitive, their variance being implausibly high. The technical

reason for this is that we use 60 moving-average coefficients when employing the formula in

(1.34) that describes the process governing the motion of filtered data. Thus, there are 121

coefficients governing the motion of each one of k (the number of shocks) sub-components of
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Figure 4.3: Standard deviation of shocks over 15-year rolling windows

Y c
j,t (the filtered variable) in that equation. Computing the variance of each sub-component of

Y c
j,t requires summing up the squares of these 121 quadratic terms multiplied by the variance

of the corresponding shock. When the coefficients have large variances due to estimation

uncertainty resulting from short samples, large terms may result from the formula of the

corresponding variance. The same applies to the forecast error variances at longer horizons

as well, since these are the sum of many quadratic terms.

In order to give the reader an idea about the dimensions of this problem, we show the

absolute forecast error variance of output of the member countries for forecast horizons

of 2, 8 and 12 quarters in Figure 4.4. The reported forecast error variances come from

the rolling window estimates, centers of which are the first quarters of each calendar year

included in our sample. While the evolution of the forecast errors for a horizon of 2 quarters

over the estimation windows shows no erratic behaviour in Figure 4.4(a), an outlier pops

up corresponding to the estimation window with the center at the first quarter of 1988 in

all member countries except Germany, when forecast error variances are computed for a
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forecast horizon of 8 quarters, as displayed in Figure 4.4(b). The outlier becomes much more

distinguishable when the forecast horizon is increased to 12 quarters, see Figure 4.4(c). In

Figure 4.4(d), we discard the outlier corresponding to the estimation window with the center

in the first quarter of 1988 and receive a different picture for the forecast error variance

evolution for a horizon of 12 quarters. It is now possible to deduce a reduction in the

variance of 12-quarters-ahead output forecast errors in all member countries, although other

outliers still exist for Spain, France and the Netherlands in Figure 4.4(d). Note that we are

not reporting all rolling window estimation results in Figure 4.4. There are indeed other

estimation windows for which we observe erratic behavior as well.

As mentioned above, the reason behind these highly sensitive results is the shortness

of the rolling windows. The sensitivity becomes smaller when longer estimation windows

are used, but it may exist even for rolling windows of 25 years, i.e., 100 quarters of data.

Therefore, we do not report further inaccurate and sensitive findings from 15-year rolling

window estimations. Note that an option could be to estimate in longer windows of, say, 25

years, but using such long rolling windows would not allow us to see changes that occurred

after 1990Q2.

We conclude that the FSVAR methodology gives us interesting insights with respect to

the questions we posed at the beginning of Chapter 3, particularly by letting us take account

of spillovers of country-specific shocks in addition to common shocks. However, it should

not be forgotten that the estimates based on the FSVAR model are associated with a higher

parameter uncertainty than the SVAR model of the previous section. Yet, we think it is

useful, as we did in the previous and the current chapters up to this point, to estimate both

types of models to address our subjects of interest.

132



77 82 87 92 97 02
0

1

2

3

4

x 10
−5 Belgium

Year
77 82 87 92 97 02

0

0.5

1

x 10
−4 Germany

Year
77 82 87 92 97 02

0

2

4

6

x 10
−5 Spain

Year

77 82 87 92 97 02
0

2

4

6

x 10
−5 France

Year
77 82 87 92 97 02

0

2

4

6

8

x 10
−5 Italy

Year
77 82 87 92 97 02

0

1

2

x 10
−4 Netherlands

Year

 

 

global euro area spillover own

(a) Forecast error variance of output for h = 2
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(b) Forecast error variance of output for h = 8

Figure 4.4: Forecast error variance of output
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(c) Forecast error variance of output for h = 12
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(d) Forecast error variance of output for h = 12, where the outlier is removed

Figure 4.4: Forecast error variance of output (cont.)
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4.2 The time-varying coefficients SVAR model

Our sub-sample estimations in this and the previous chapters assumed a break in the data

in 1990Q2, the quarter after which the first stage of the EMU process has been started.

However, other plausible break dates also exist as we argued in Chapter 3. While our sub-

sample conclusions generally do not change much when other plausible single break dates are

employed, we also estimated both SVAR and FSVAR models over 15-year rolling windows

in order to present to the reader an alternative perspective on the validity of our conclusions

based on sub-sample estimates with a single break in the data in 1990Q2. In this section, we

apply a more flexible approach to deal with possible breaks in the data, where the coefficients

of the VAR and the parameters of the covariance matrix of shocks are assumed to be time-

varying. Hence, breaks in data are naturally included in the empirical framework.

4.2.1 The model

The model we work with is borrowed from a recently developed literature in Primiceri (2005),

Benati and Mumtaz (2007) and Gali and Gambetti (2009) among others. It is a (modified)

time-varying coefficients (TVC) version of the trivariate model that we considered in Chapter

3.

Recall that we had estimated the SVARs of the previous chapter in levels in order to

be robust with respect to unit root and cointegration issues. It is, however, not possible to

estimate our TVC models in levels with our nonstationary data, since the Bayesian techniques

with which we carry out our TVC estimations require the variables of the estimated model to

be stationary. The Markov-Chain Monte Carlo algorithm used for the TVC-model estimation

rejects each unstable draw of the VAR coefficients and repeats the corresponding draw in

order to enforce the stationarity of the VAR. In case unstable draws occur very often, as

happens when we estimate our VAR model in levels, the algorithm breaks down. One option

to deal with this problem is to estimate the VAR in first-differences, as is done, e.g., by Stock
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and Watson (2005) and Perez, Osborn, and Artis (2006). Such an estimation is problematic,

however, when the variables of the VAR are cointegrated, as mentioned in Chapter 3. The

latter issue may be relevant in our context, since Johansen cointegration tests, the results

of which were reported in Table 3.1 before, often point to a rank of one for our trivariate

models. Therefore, we estimate a TVC-SVECM in this section, the reduced form of which

is given by

∆Yt = µt + αtβ
′Yt−1 + Dt,1∆Yt−1 + · · ·+ Dt,p−1∆Yt−p+1 + ut, (4.3)

where ∆Yt is, as before, a 3×1 vector containing the first-differenced log-output of the US, the

euro area and the member country i for i = bel, deu, esp, fra, ita, nld at period t, µt is a 3×1

vector of constant terms at period t, β ′ is the matrix containing the cointegrating vectors,

αt is the loading of the cointegrating vectors at period t, Dt,j for j = 1, . . . , p − 1 are 3 × 3

coefficient matrices at period t, and ut is a 3× 1 vector of error terms with the time-varying

covariance matrix Σut
. Note that we assume the loadings of the cointegrating vectors to be

time-varying in (4.3), whereas the cointegrating vectors are fixed. In our empirical approach,

we first compute the error correction terms, β ′Yt−1, which follow stationary processes and

use them as an input in the estimation of (4.3). Given the cointegration test results in Table

3.1, we assume a cointegration rank of one for each country-specific model and estimate the

cointegrating vector using the dynamic OLS technique of Stock and Watson (1989). In case

no-cointegration specification is suitable for a country-specific model, the loading vector αt

should contain values close to zero.

Gali and Gambetti (2009) collect the model coefficients in a vector by defining θt =

vec (Dt), where Dt = [µt, αt,Dt,1, . . . , Dt,p−1] , and assume that θt follows the process

θt = θt−1 + ωt, (4.4)

with ωt being “a Gaussian white noise process with zero mean and constant covariance Ω,

and independent of ut at all leads and lags”. Σut
is also redefined as Σut

≡ FtGtF
′

t , Ft being
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a lower triangular matrix with ones on its main diagonal, and Gt is a diagonal matrix. The

below-the-diagonal elements of F−1
t are then collected in the vector γt, and another vector,

σt, contains the diagonal elements of Gt. γt and σt evolve over time according to

γt = γt−1 + ζt (4.5)

and

log σt = log σt−1 + ξt, (4.6)

where ζt and ξt are zero-mean Gaussian processes with constant covariance matrices. The

covariance matrix of ζt is assumed to be block-diagonal, implying that covariances between

coefficients of different equations are zero, and the covariance matrix of ξt is assumed to be

diagonal.

We estimate the coefficients in (4.4) , (4.5) and (4.6) along the lines of Gali and Gambetti

(2009) by using Bayesian techniques.3 Then, the covariance matrix and dynamic multipliers

of global, euro area and country-specific shocks are estimated for each period similar to the

trivariate models of Chapter 3. Formally, the structural form of (4.3) is given by

∆Yt = µt + αtβ
′Yt−1 + Dt,1∆Yt−1 + · · ·+ Dt,p−1∆Yt−p+1 + Btεt, (4.7)

where εt is the 3×1 vector containing orthogonal global, euro area and country-specific shocks

at period t. Bt determines the impact effects of the shocks at period t and is modelled in

the same way as Θ0 in (3.6) of Chapter 3 so that

Bt =









B11,t 0 0

B21,t B22,t piB33,t

B31,t B32,t B33,t









, (4.8)

where pi stands for the population share of country i in the euro area. We transform the

SVECM in (4.7) to the level representation for each period using the formula as described

in Chapter 1 and compute the output gap sub-components using the formula in (1.34). It is

then straightforward to compute variances and variance decompositions for each period as

before in Chapter 3.

3See also the appendix in Primiceri (2005) on the estimation of such a model.
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4.2.2 Results

To calibrate the prior densities of the coefficients, we estimate a VAR with fixed coefficients

using the data of the first eight years in the sample. Therefore, estimates of time-varying

statistics are given from 1978Q1 onwards in the following. As in the case of rolling window

estimations, we first report the evolution of the size of shocks, which is followed by variance

decompositions of output gaps and output gap differentials.

Size of shocks

The evolution of the standard deviation of global, euro area and country-specific shocks is

displayed in Figure 4.5. Note that, as in Chapter 3, six different estimates of global and euro

area shocks exist, which stem from the six different country-specific trivariate models. It can

be seen in Figure 4.5 that the fit of the standard deviation estimates of global shocks is very

good. The standard deviation estimates of euro area shocks of all member countries except

Germany also show a good fit. The evolution of the estimates stemming from the country-

specific model including the German output is quite different from the others. Note that we

have established this type of a discrepancy between Germany’s country-specific model and

the others with the fixed-coefficient SVAR model of Chapter 3 as well (cf. Table 3.8 and

Figure 4.6).

The standard deviations of country-specific shocks evolve differently across the member

countries according to our TVC-SVAR estimates. The standard deviation of the own shocks

of Belgium is generally found to be much higher in recent periods after increasing steadily

during the 1990s. Albeit the evolution pattern of the Belgian shock differs from what we

obtained before conducting rolling window estimations of the fixed-coefficient SVAR and

FSVAR models (cf. Figure 4.6 and Figure 4.3), the TVC-SVAR finding is generally in

accordance with what we found before for this country. The evolution of the Spanish shock’s

standard deviation is also roughly in line with the previous findings: we see an increase in

the size of the shock towards the middle of the full sample period, which than gradually

138



80 85 90 95 00 05
0

0.005

0.01

0.015
global

Year
80 85 90 95 00 05

0

0.005

0.01

0.015
euro area

Year
80 85 90 95 00 05

2

3

4

5

6

x 10
−3

Belgium

Year

80 85 90 95 00 05

0.2

0.4

0.6

0.8
Germany

Year
80 85 90 95 00 05

2

4

6

8

10

12

x 10
−3

Spain

Year
80 85 90 95 00 05

2.7

2.8

2.9

3

x 10
−3

France

Year

80 85 90 95 00 05

3

4

5

6

x 10
−3

Italy

Year
80 85 90 95 00 05

4

6

8

10

12

14

16

x 10
−3

Netherlands

Year

Figure 4.5: Standard deviation of shocks

tapers off and declines recently to levels lower than what we observe at the beginning of

the sample period. While the gradual decline observed for the standard deviations of the

country-specific shocks of Italy and the Netherlands is also in line with our previous findings

based on the fixed-coefficient SVAR and FSVAR models, the standard deviation estimate

of the German shocks shows two spikes around 1990-1991 and 1994, which the SVAR and

FSVAR model estimates did not show. Finally, the standard deviation of the French shock

shows a steady decline since the 1980s, a pattern that had not been observed when estimating

with the previous models.

Variance decompositions of output

In the TVC-SVAR context, we compute the process governing the motion of the output gap

using a TVC version of the process in Equation (3.7) of Chapter 3, which is given by

ỹj,t ≈
κ
∑

m=−κ

Ψj,US,m,tεUS,t+m +
κ
∑

m=−κ

Ψj,EA,m,tεEA,t+m

κ
∑

m=−κ

Ψj,i,m,tεi,t+m, (4.9)
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where Ψjk,m,t for k = US, EA, i stand for coefficients of the output gap process of country-j

output for j = US, EA, i, with respect to structural shocks, and εk,t+m for k = US, EA, i

stand for shocks at period t + m. The only difference between (4.9) and (3.7) is that Ψjk,m,t

are now time-varying and therefore have a time subscript. Hence, using TVC version of the

formulas in (3.8) and (3.9), the variance of the cyclical component of country j’s output,

var (ỹj,t) for j = US, EA, i, is now time-varying and is given by

var (ỹj,t) =
∑

k

[(

m
∑

m=−κ

Ψ2
jk,m,t

)

σ2
k,t

]

, (4.10)

where σk,t for k = US, EA, i stands for the standard deviation of the global, euro area or

country-specific shock in the corresponding country-specific model at period t.

The evolution of the standard deviation of output gaps according to the TVC-SVAR

estimations is displayed in Figure 4.6(a). These also differ from their rolling-window com-

putation counterparts in Figure 3.8(a). While the rolling-window estimates point for most

countries to a gradual decline, or at least (roughly) constant levels in more recent windows,

the TVC-SVAR estimates have a different pattern for Belgium and Spain. The variance of

the Belgian output gap reaches a peak around 2000 following a gradual increase starting

around 1990 and returns to its (low) levels of the mid-1980s towards the end of our sample

period. The volatility of the Spanish output gap decreases sharply from the beginning of the

sample period until the mid-1980, and rises again from there on until a point in the first half

of the 1990s. Afterwards it swiftly declines to historically low levels towards the end of the

sample period. The output gap volatilities of Germany, France, Italy and the Netherlands

decrease, however, steadily from roughly the beginning of the sample period until the latest

period. The only exception to this rule is the small hike in Germany’s output gap volatility

around 1991, possibly due to the German reunification.

Using the expression in (4.10), the share of the structural shock k in the variance of the

output cycles of country j for j = US, EA, i at period t is given by

si
jk,t =

[(

κ
∑

m=−κ

Ψ2
jk,m,t

)

σ2
k,t

]

/
∑

k

[(

m
∑

m=−κ

Ψ2
jk,m,t

)

σ2
k,t

]

, (4.11)

140



80 85 90 95 00 05
0

1

2

3

4

x 10
−4   Belgium  

Year
80 85 90 95 00 05

0

2

4

6
x 10

−3   Germany  

Year
80 85 90 95 00 05

0

0.005

0.01

   Spain   

Year

80 85 90 95 00 05
0

1

2

3

4
x 10

−4   France   

Year
80 85 90 95 00 05

0

2

4

x 10
−4   Italy    

Year
80 85 90 95 00 05

0

1

2

3

x 10
−3 Netherlands

Year

 

 

global euro area own

(a) Variance decomposition of output gap (absolute)
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(b) Variance decomposition of output gap (relative)

Figure 4.6: Variance decomposition of output gap
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(a) 12-quarters-ahead forecast error variance of output
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(b) FEVD of output (relative)

Figure 4.7: FEVD of output
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which follows from the country-specific trivariate model of country i. We display the evolu-

tion of the relative shares of shocks in output gap variance in Figure 4.6(b). The pattern of

evolution of the shares of shocks is generally quite different from what we observed previously

in terms of the rolling-window estimations of the fixed-coefficient SVAR model. However,

TVC-SVAR models attribute non-negligible shares to common shocks in many quarters over

the sample period just as the SVAR model did.

The increase over time in the share of euro area shocks in the Spanish output gap variance

is especially striking. However, it is also not possible to establish a significantly increasing

share of euro area shocks in output gap dynamics after the EMU process has been kicked

off in 1990Q2. In the two biggest euro area economies, Germany and France, the share of

euro area shocks declines to even lower levels after 1999 than before, which is accompanied

by a rise in the share of global shocks in these countries. As such, the TVC-SVAR results

are supportive of the findings in the literature that dynamics peculiar to the euro area exist

and are non-negligible for the member countries, especially for smaller ones. However, these

dynamics did not become more important after the initiation of the EMU process in the

smaller economies and became even somewhat less important in the bigger economies.

Note that the evolution pattern of the output forecast error variance decomposition is

quite similar to the evolution pattern of output gap variance decomposition. Therefore, we

do not further interpret the output forecast error variance decompositions given in Figure

4.7(b). The most important difference between the two results is that the FEVD estimates

emphasise the role of global shocks more and euro area shocks less relative to the output

gap variance decomposition, as it was also the case with the fixed-coefficients SVAR model.

Variance decomposition of output gap differentials

Variance of output gap differentials of Belgium, Spain, Italy and the Netherlands, depicted

in Figure 4.8(a), qualitatively follow a similar pattern to the standard deviation of the corre-

sponding output gaps displayed in Figure 4.6(a). The volatilities of output gap differentials
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are half of or less than the volatilities of the corresponding output gaps, which is a byprod-

uct of the positive correlations between euro area output gap and individual country output

gaps. The sizes of output gap differentials—a measure of heterogeneity—between the output

gap of the entire euro area and the output gaps of the individual countries decline gradually

for all countries. Yet, there is a period—from the mid-1990s to the mid-2000s—during which

the size of the Belgian output gap differential increases strongly and tapers off again towards

the end of the sample period due to country-specific shocks in Belgium.

The relative shares of shocks in the output gap differential variances are displayed in

Figure 4.8(b). Country-specific shocks are attributed very often shares above 0.50 as was

the case with the SVAR and FSVAR models before, implying that these shocks are the main

driving force of output gap differentials. Exceptions to this rule are the high total share of

global and euro area shocks in Belgium until about 1993 as well as relatively high shares of

euro area shocks in the Netherlands after the mid-1990s and in Spain after about 2003.
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(a) Variance decomposition of output gap differential (absolute)
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(b) Variance decomposition of output gap differential (relative)

Figure 4.8: Variance decomposition of output gap differential
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(a) 12-quarters-ahead forecast error variance of output differential
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(b) FEVD output differential (relative)

Figure 4.9: FEVD of output differential
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4.3 Summary and remarks

Our discussion of the business cycle dynamics in the euro area started in Chapter 2 with

a review of the literature, where two main issues were established. First, there is a series

of factors that contribute to the synchronisation of national business cycles. While the es-

tablishment of a currency union is not necessarily found to be leading to more synchronised

business cycles by itself, its byproducts such as an increase in international trade, higher

financial integration and more similar fiscal policies do generally lead to a stronger synchro-

nisation. This makes it possible to speak of international business cycles according to our

literature review. However, a combination of various factors may in total have mixed ef-

fects on synchronisation such that, for example, an increase in international trade or higher

financial integration may not result in more synchronised business cycles. In the case of

the euro area countries, two developments—the globalisation and the EMU process—have

contributed to a bigger role of these factors in macroeconomic developments. However, the

empirical literature on business cycle synchronisation in the euro area is not united as to

whether macroeconomic fluctuations became more synchronised in the euro area recently,

and if they did so, as to whether the higher synchronisation was more due to the globalisation

or the EMU process or both.

Second, industrialised countries’ business cycles underwent a moderation in the two

decades preceding the recent global macroeconomic turmoil. Our analysis in the previ-

ous and current chapters shows that this applies to the output fluctuations of euro area

member countries in our sample. Although the change in output gap variance was seldom

statistically significant, the size of output forecast errors corresponding to business cycle pe-

riodicities were found to have declined significantly. Furthermore, we obtained that output

gap differentials—between each member country and the entire euro area as well as between

all possible couples of member countries—and output differential forecast errors underwent

a moderation, too, although a moderation of output gaps should not necessarily lead to a

moderation of output gap differentials. Although each member country was found to have its
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own peculiar relationship with the entire euro area, we interpret the moderation in output

gap differentials as another sign of increased commonality of euro area business cycles in

more recent times preceding the latest economic crisis.

Given these findings, we investigated three issues related to business cycle dynamics in

the euro area using a fixed-coefficient SVAR approach in Chapter 3 and FSVAR and TVC-

SVAR approaches in Chapter 4. First, instead of asking whether there is a seperate euro

area business cycle (in addition to a global business cycle) explicitly like many other studies,

we explored the share of global and euro area shocks in output fluctuations corresponding

to business cycle frequencies. Variance decompositions were employed to this end. While

the SVAR and TVC-SVAR approaches did not allow spillovers of country-specific shocks

between individual member countries, the FSVAR approach obtained that spillovers from

other euro area countries played a non-negligible role in business cycle fluctuations of the

member countries. Although the quantitative estimates vary to an important degree across

the different empirical approaches and countries, the general implication of all models is that

euro area countries’ output gaps are driven to a large extent by common shocks. The role

of euro area shocks has been found to be more important for the output gap fluctuations

(measured by the CF-filter), while forecast error variance decomposition at business cycle

frequencies hinted more often at a higher share of global shocks—especially when it was

based on SVAR and FSVAR models.

Second, we explored the driving forces of the existing heterogeneity in terms of business

cycles in the euro area. This issue attracted attention from academics and politicians alike,

since, in particular, being subject to a common monetary policy in a monetary union can be

beneficial for the member countries most when their own cycles do not deviate much from the

cycle of the entire monetary union. Two extreme forms of heterogeneity exists: (i) hetero-

geneity because of differing responses to common macroeconomic shocks; (ii) heterogeneity

resulting from exposure to asymmetric shocks which are not shared by other members of

a monetary union. Both counterfactual correlation analysis and variance decomposition of
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output gap differentials pointed to a significant role of country-specific (asymmetric) shocks

in the existing heterogeneity. It should be noted, however, that common shocks sometimes

also had a non-negligible contribution to heterogeneity, although they were rarely dominant

in the estimations we carried out.

Third, we found only weak statistical support for a moderation in output gaps and output

gap differentials. Although point estimates of the change over time in the variance of output

gaps and output gap differentials were negative, these were rarely statistically significant,

possibly due to the short sub-samples at hand. Decline in the forecast error variance of

output level differentials at business cycle periodicities were, on the other hand, usually

found to be significant. We obtained with both SVAR and FSVAR models that changes

in the size of shocks alone, i.e., if there were no changes in shock transmission, would have

led to a statistically significant moderation of output gaps and output gap differentials in

some cases. The same channel was also the main driving force behind the moderation of

output and output differential forecast errors. This finding supports the so-called good luck

hypothesis.
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Chapter 5

Business cycle dynamics of the G7
countries∗

This chapter is devoted to an analysis of the structural sources of business cycle dynamics in

industrialised countries. The term “structural source” refers here to exogenous shocks that

trigger dynamics in economies. In Chapters 3 and 4, the identified shocks were not structural

in the sense that they were not given an economic interpretation related to macroeconomic

theory. Shocks were merely identified with respect to their geographical origin. In this

chapter, we estimate neutral technology, news, preference and monetary shocks as potential

driving forces of macroeconomic fluctuations. The identification of these shocks occurs by

referring to macroeconomic theory.

The first section of this chapter provides a review of the literature on the sources of

business cycle fluctuations. Various types of shocks have been brought forward as important

sources of cyclical fluctuations by the macroeconomic literature that has evolved since the

first half of the 1980s. The primary contribution came from the so-called real business cycle

(RBC) paradigm, the proponents of which claimed that neutral technology shocks were the

dominant driving force behind business cycle fluctuations. The RBC paradigm brought with

itself an important tool for macroeconomic analysis, the so-called dynamic stochastic general

∗This chapter is partly based on Seymen and Kappler (2009). Most of the estimations and calculations
in this chapter are carried out using MATLAB codes written by the author. JMulTi is used for model
specification. The MATLAB code included in the Spatial Econometrics Toolbox of James P. LeSage is
used for the estimation of the structural form. The GAUSS codes of Stock and Watson (2005) have been
translated into MATLAB for the estimation of the common factor model.
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equilibrium (DSGE) model, which has been improved by researchers during the course of

years following the seminal contribution of Kydland and Prescott (1982). While the basic

RBC model (see King, Plosser, and Rebelo (1988a)) comprised only neutral technology

shocks as an exogenous source of fluctuations, it has been modified extensively in various

directions. On the one hand, more sources of shocks have been added to the basic model,

while, on the other hand, models with more variables and macroeconomic mechanisms have

been introduced. Whether technology shocks or—perhaps to state it more properly—shocks

related to technology represent the main driving force of cyclical fluctuations is still an issue

discussed vigorously by economists.

A recent literature emphasised the importance of news shocks—shocks reflecting future

technological improvements—as an important source of macroeconomic fluctuations.1 This

literature is in stark contrast to the findings of another literature initiated by Gali (1999) and

surveyed by Gali and Rabanal (2004), which finds a dominant role for non-technology shocks

in business cycle fluctuations. Our empirical framework presented in the second section of

this chapter is closely related to the benchmark empirical framework of Beaudry and Lucke

(2009). It augments the empirical framework of Gali (1999). The main difference to the

latter model is the inclusion of stock price and nominal interest rate in addition to labor

productivity and hours worked included in the framework of Gali (1999). The inclusion of

these additional variables allows us to distinguish between two different types of technology

shocks—neutral technology and news—as well as to refine the non-technology shocks as

preference and monetary shocks. Another important difference of our model to Gaĺı’s model

is that cointegration is allowed in former case. Note that Gali (1999) provides results for the

G7 group for an early sample, whereas the analysis of Beaudry and Lucke (2009) is carried

out with a recent sample but covers only the US economy. We include all G7 economies in

our analysis using a recent sample.

The third section is devoted to the estimation of country-specific SVECMs, while the

1See, e.g., Beaudry and Portier (2005), Beaudry and Portier (2006), Haertel and Lucke (2008), Schmitt-
Grohe and Uribe (2009) and Beaudry and Lucke (2009).
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fourth section provides an analysis of international linkages within the G7 group. The point

of departure is the estimated country-specific SVECM for each G7 country. An important

contribution of our analysis is the assessment of the extent to which the business cycle

dynamics in the G7 group is driven by structural common shocks, given that a multitude

of studies, which investigate the driving forces of international business cycles, distinguish

between common and country-specific shocks, while such shocks are rarely given an economic

interpretation.2 A common factor framework is imposed on the estimated structural shocks

following from the G7 countries’ SVECMs along the lines of Chapter 4 in order to distinguish

between common (international) and country-specific structural shocks and to investigate the

role of international shocks in output fluctuations of the G7 countries. We follow Chamie,

DeSerres, and Lalonde (1994), Stock and Watson (2005), Xu (2006) and Seymen and Kappler

(2009) in doing this.

The chapter closes with a summary of the main findings and a discussion of further

related issues that cannot be addressed within the given model framework.

5.1 Related literature

We divide our review of the literature on the driving forces of business cycles into two parts.

The first part discusses the literature on the role of technology shocks in cyclical fluctuations.

The dispute on the role of technology shocks in business cycle fluctuations has been going

on since a very long time among macroeconomists. Moreover, two types of technology

shocks—investment-specific technology and news shocks—exist in addition to conventional

neutral technology shocks, which makes the dimensions of the whole discussion even larger.

Therefore, it makes sense to devote an independent sub-section to this issue. The literature

2Stock and Watson (2005) and Canova, Ciccarelli, and Ortega (2007) estimate, for example, common
shocks and country-specific shocks with spillover effects within the G7 group. Perez, Osborn, and Artis
(2006) identify US, EU15 and country-specific shocks. Crucini, Kose, and Otrok (2008) model common
G7, nation-specific and idiosyncratic factors. While following different approaches to identification, none of
these studies pursue a structural identification. Clearly, this list is far from being exhaustive.
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on the role of other shocks is reviewed in the second part.

5.1.1 Technology shocks and business cycles

Neutral technology shocks

The RBC literature starts with the seminal contributions of Kydland and Prescott (1982)

and Long and Plosser (1983).3 Two innovations of this new strand of literature are particu-

larly important for macroeconomists. First, it introduces a new approach to macroeconomic

modelling; models of this class are called DSGE models. Second, it introduces technology

shocks in the form of shocks hitting the total factor productivity, which is itself an ex-

ogenously evolving process. The standard RBC model comprises a production function of

Cobb-Douglas type, which is given by

Yt = AtN
α
t K1−α

t , (5.1)

where Yt, At, Nt, Kt and α stand for output, total factor productivity, labor input, capital

stock and the share of labor in output, respectively. The log total factor productivity is

typically modelled as an AR (1) process given by

log At = γ + ρ log At−1 + εat, (5.2)

where εat is an i.i.d. process and represents a “technology shock”. A common practice in

the early RBC literature is to estimate the parameter ρ in (5.2) and the standard deviation

of εat for a certain sample period, and to simulate the RBC model in order to generate

macroeconomic series of interest such as output, consumption, investment, etc. Then, (par-

ticularly) second moments of such data are computed and compared with reality.4 This

basic one-shock model structure is kept in a number of studies belonging to the early RBC

literature.

3See for a review of the basic RBC model and its various extensions King, Plosser, and Rebelo (1988a)
and King, Plosser, and Rebelo (1988b) inter alia.

4See, e.g., Prescott (1986).
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Since the seminal study of Nelson and Plosser (1982), macroeconomists often assume that

the majority of macroeconomic time series follow unit-root processes. In order to be able

to reproduce this statistical property with theoretical models, the parameter ρ in (5.2) is

typically set to one. Note that this assumption is also in accordance with the widely-accepted

view that long-run movements in macroeconomic data are determined by the production

possibilities and hence the supply side of the economy.

It is not surprising that the (S)VAR literature, which grew concurrently with the RBC

literature after the seminal contribution of Sims (1980), has also shown interest to the issue

of the role of technology shocks in business cycle fluctuations. A prominent early study in

this context is Blanchard and Quah (1989). These authors argue on the basis of a variant of

the model in Fischer (1977), which contains two exogenous unit-root processes—productivity

and money supply—that only shocks to productivity, i.e., technology shocks, have a long-run

impact on output. In line with this model, Blanchard and Quah (1989) employ a long-run

identification scheme in a bivariate SVAR framework consisting of first-differenced log output

and unemployment rate (in level) to identify supply shocks. Formally, their model can be

summarised by

Yt =

[

∆yt

Ut

]

, Φ (1) =

[

∗ 0

∗ ∗

]

, (5.3)

where ∆yt and Ut stand for the first-differenced log output and the unemployment rate (in

level), and Φ (1) shows the matrix of the long-run multipliers of the shocks. Blanchard and

Quah (1989) label the second shock a demand shock (represented by the money supply shock

in the theoretical model) since it has no long-run impact on output, and the first shock a

supply shock (represented by the shocks to productivity) with a long-run impact on output.

The study by King, Plosser, Stock, and Watson (1991) is another important contribution

to the SVAR literature on the role of technology shocks. Based on a VECM, the authors

distinguish between structural shocks with permanent effects and reduced-form shocks with

only transitory effects on the variables of the model. King et al. are interested in the

estimation of structural shocks with permanent effects only and their implications. Those
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are ordered as technology, inflation and real interest rate shocks according to the classification

in their six-variable model, and the (last) three transitory shocks are left without economic

interpretation. Their six-variable model is described by

∆Yt =

























∆yt

∆ct
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, (5.4)

where ∆yt, ∆ct, ∆it, ∆mt − ∆pt, ∆Rt and ∆2pt stand for first-differenced log-output, log-

consumption, log-investment, log-real-balances, nominal interest rate and inflation, Θ (1)

shows the matrix of the long-run multipliers of the shocks. Given that the technology shock

is ordered first in the model, Θ (1) in (5.4) implies that only technology shocks can affect the

level of output in the long run. The six-variable model of King, Plosser, Stock, and Watson

(1991) also has the balanced-growth property of RBC models, i.e., the consumption-output

and investment-output ratios stay constant in the long run when only technology shocks

occur in their model.5

Using a stylised model with monopolistic competition, Gali (1999) argues that it is more

appropriate to consider the long-run effects on labor productivity rather than output for

identifying technology shocks. He gives examples of theoretical models, which allow shocks

other than technology also to have permanent effects on output. Baxter and King (1993)

consider, for instance, the effects of permanent changes in government purchases. Another

example can be found in Shapiro and Watson (1989), who allow both permanent labor-

supply shocks and permanent productivity shocks to affect output in the long run. As a

last example, the sticky-price model with labor market dynamics in Gali (1999) contains

a second stochastic trend, an exogenous random-walk money supply process. Gali shows

that such a framework implies that both technology and money supply can affect output,

5See Chapter 1 for a description of such cointegrated models with permanent and transitory shocks.
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while only technology shocks can affect labor productivity in the long run. Therefore, he

suggests estimating a bivariate model containing labor productivity and hours worked with

the latter implication in order to distinguish between technology and nontechnology shocks.

The bivariate SVAR is given by

∆Yt =

[

∆xt

∆nt

]

, Θ (1) =

[

∗ 0

∗ ∗

]

, (5.5)

with Yt containing the log of labor productivity (xt) and hours worked (nt). The long-run

effect of the second shock on labor productivity is set to zero in the system, which implies,

according to the motivation of Gali (1999), that the first and second shocks should be labelled

technology and non-technology, respectively.

Investment-specific technology shocks

The approach to identification of technology shocks and results of Gali (1999) initiated a

vigorous discussion in the macroeconomic literature.6 An important contribution to this

discussion is the study by Fisher (2006), which suggests that another type of technology

shocks, namely investment-specific technology (IST) shocks, could be an important source of

macroeconomic fluctuations. This idea was first introduced to the literature by Greenwood,

Hercowitz, and Huffman (1988) and further developed in Greenwood, Hercowitz, and Krusell

(1997). Such shocks are embedded into an otherwise standard capital accumulation rule such

that

Kt+1 = (1 − δ) Kt + VtIt, (5.6)

where δ, Vt and It respectively stand for depreciation rate, level of investment-specific tech-

nology and investment. While Vt = 1 holds in standard formulation of capital accumulation

equations, Fisher (2006) suggests it be of the form

log Vt = ν + log Vt−1 + εvt (5.7)

6A review of this literature can be found in Gali and Rabanal (2004).
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where ν is a constant, the log of IST is a random walk with drift, and εvt is an i.i.d. process

and represents an “investment-specific technology shock”.

Greenwood, Hercowitz, and Krusell (1997) find an important role for IST shocks in

growth. In a more recent study, Justiniano, Primiceri, and Tambalotti (2009a) estimate

a model of the US economy comprising several shocks and find IST shocks to be of great

importance for macroeconomic fluctuations at business cycle frequencies. Fisher (2006)

introduces such type of shock into a SVAR model and obtains a dominant role for them in

macroeconomic fluctuations. His SVAR model is a modified version of the bivariate model

in Gali (1999) given in (5.5) and can be summarised by

Yt =









∆pit

∆xt

nt









, Φ (1) =









∗ 0 0

∗ ∗ 0

∗ ∗ ∗









, (5.8)

where pit, xt and nt stand for the log of real investment price, the log of labor productivity

and the log of hours worked.7 The identified structural shocks are ordered (and labelled) as

IST shocks, neutral technology shocks and non-technology shocks.8 Φ (1) in (5.8) shows the

long-run impact of the structural shocks on the variables. While the real price of investment

can be affected by only IST shocks in the long run, Gali’s identification scheme is augmented

by allowing both IST shocks and neutral technology shocks to have a long-run impact on

labor productivity. Note that an important difference between the models of Gali (1999) and

Fisher (2006) is that hours worked enters the VAR of Gali in first difference, whereas Fisher

assumes it to be stationary. Indeed, this seems to be an important driver of the findings in

Fisher (2006) as shown by Gali and Rabanal (2004): when hours worked enters the model

in (5.8), IST shocks are attributed much smaller shares in cyclical fluctuations.9

Schmitt-Grohe and Uribe (2009) estimate a DSGE model containing among others also

IST shocks and obtain a negligible role for these shocks in cyclical fluctuations. An important

7Some additional endogenous variables also enter the SVAR of Fisher (2006), which we skip here for the
ease of presentation.

8The labelling of the latter shock is done by us.
9See also our discussion below on how hours worked should enter such type of VARs.
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feature of their model is that it includes news shocks that we discuss below as an additional

potential source of fluctutions. Justiniano, Primiceri, and Tambalotti (2009b) consider,

in addition to IST shocks (that affect the transformation of consumption into investment

goods), marginal efficiency of investment (MEI) shocks that affect the transformation of

invesment goods into productive capital. The authors find a negligible contribution of IST

shocks in such a framework. Beaudry and Lucke (2009) estimate a SVECM including neutral

technology, IST and news shocks within one framework and also obtain a negligible role for

IST shocks in macroeconomic fluctuations. The studies of both Schmitt-Grohe and Uribe

(2009) and Beaudry and Lucke (2009) at the same time emphasise the importance of news

shocks as the dominant factor behind fluctuations, to which we turn our attention next.

News shocks

Recently, another type of technology shock has been suggested in, among others, Beaudry

and Portier (2004, 2006). These authors argue and present evidence for the view that positive

shocks to stock prices—labelled as news shocks—represent advances in future technology and

are thus another type of supply shock. Beaudry and Portier (2006) motivate their approach

to identification in the SVAR context of news shocks with a New Keynesian model, where the

stock market value of firms is the discounted sum of profits of intermediate good producers.

The technology process is assumed to consist of transitory and permanent components in

this model. The latter component follows a so-called diffusion process given by

Dt =
∞
∑

i=0

diηt−i (5.9)

with

di = 1 − δi, 0 ≤ δ < 1, and d0 = 0

so that the effect of technological innovation η has no immediate effect on the level of tech-

nology, while its effect grows over time, its long-run effect being normalised to one. Forward-

looking variables such as stock prices bear information on future technological developments
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even before these are realised and expand the economy’s production possibilities.

Haertel and Lucke (2008) motivate news shocks with a model taken from Long and

Plosser (1983), which is aggregated to a single sector. However, the production technology is

extended to a multi-period setting. The total factor productivity consists of a random walk

component, ζt, and a stationary component, vt,

log At = ζt−1 + vt, (5.10)

where,

ζt = ζt−1 + η1t, (5.11)

vt = ρvt−1 + η2t, (5.12)

with η1t and η2t being unit-variance white noise innovations. They compute stock prices as

the discounted sum of expected returns to capital, of which productive use extends over many

periods. Thus, the delayed response of total factor productivity to permanent innovations

in this model as well as in Beaudry and Portier (2006) is a key element for the motivation

and identification of news-shocks. This property is embedded to the SVECMs in Beaudry

and Portier (2005), Beaudry and Portier (2006), Haertel and Lucke (2008) and Beaudry and

Lucke (2009). All of these studies find an important role of news shocks in macroeconomic

fluctuations.

5.1.2 Other shocks

The subject of the effects of monetary policy shocks on economic activity has attracted a

lot of interest in the literature, and monetary policy shocks are also a part of the empirical

framework that we use for the analysis of G7 business cycles. Meanwhile, there seems to be a

consensus on the identification of monetary policy shocks. The well-established assumption

for identifying monetary policy shocks is that the monetary authority sees the development of

economic activity within a period (a quarter) before setting the policy (see, e.g., Christiano,
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Eichenbaum, and Evans (1999) and Bagliano and Favero (1998)). The implication of this

assumption is that shocks to monetary policy can affect (most of) the economic activity

only with a time lag. The benchmark model in Christiano, Eichenbaum, and Evans (1999)

contains, for example, seven variables and is restricted by only short-run restrictions that

impose this assumption. The model can be summarised by

Yt =































yt

pt

pcomt

fft

trt

nbrt

mt































, A =































∗ 0 0 0 0 0 0

∗ ∗ 0 0 0 0 0

∗ ∗ ∗ 0 0 0 0

∗ ∗ ∗ ∗ 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗































, (5.13)

where yt, pt, pcomt, fft, trt, nbrt and mt denote the log of real GDP, the log of implicit GDP

deflator, the smoothed change in an index of sensitive commodity prices, the federal funds

rate, the log of total reserves, the log of non-borrowed reserves plus extended credit, and the

log of money supply (either M1 or M2) at period t, respectively. The matrix A in (5.13)

shows the contemporaneous relationships among the variables in this system, where fft is

taken to be the policy instrument. This structure implies that the monetary authority cannot

affect the economic activity variables yt, pt and pcomt through surprise changes in the the

policy rate, whereas trt, nbrt and mt can be affected by surprise changes in the policy at

the impact period. Note that other shocks are not given an economic interpretation in the

framework of Christiano, Eichenbaum, and Evans (1999).

Demand shocks represent another general class of shocks that have often been put forward

in the SVAR literature. As mentioned above, Blanchard and Quah (1989) claim to identify

a demand shock, a shock with no long-run impact on output, with the model summarised

in (5.3). The model they use to motivate their empirical approach implies that shocks to

money supply belong to the class of demand shocks. Gali (1999) also uses money-supply

shocks as an ingredient of the model that he uses as a motivation for his empirical approach.
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Christiano and Eichenbaum (1992) add government consumption shocks to an otherwise

prototypical RBC model in order to enable it to generate a weak correlation between hours

worked and the return to working. As a last example, preference shocks can be seen as real

demand shocks that lead to shifts in marginal utility of consumption, changes in relative

prices, etc. Two examples of such type of shocks can be found in Bencivenga (1992) and

Weder (2006). One of the shocks in our forthcoming SVECMs is labelled preference, whereas

it could possibly also be labelled any demand shock which is orthogonal to different types

of technology and monetary policy shocks.

Note that all hitherto reviewed shocks are related to our empirical analysis in the sub-

sequent sections, and the list of other types of shocks considered in the SVAR literature is

long. While we acknowledge that the list we are providing is far from being exhaustive, we

find it appropriate to confine the discussion to a convenient size. We turn our attention now

to the econometric methodology underlying our forthcoming analysis of business cycles in

the G7.

5.2 Econometric methodology

The model we employ in order to investigate the sources of the G7 countries’ business cycle

fluctuations is a modified version of the model used by Beaudry and Lucke (2009) in the

context of the US economy. Therefore, we first present the model of Beaudry and Lucke,

and then discuss the modification of it in the following.

5.2.1 The model of Beaudry and Lucke (2009)

The business cycle analysis of Beaudry and Lucke (2009) is based on an SVECM of the

B-form,

∆Yt = bdt + ΠYt−1 + D1∆Yt−1 + · · · + Dp−1∆Yt−p+1 + Bεt. (5.14)
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Note that (5.14) is the structural version of the reduced form in (1.6). The same notation

applies here. The model comprises five endogenous variables in the following order: total

factor productivity (tfpt), inverse of relative investment price (pit), stock price index (spt),

activity and federal funds rate (intt). Beaudry and Lucke (2009) estimate various versions of

their model with different activity variables. The activity variable in the benchmark model

is the hours worked (ht), while Beaudry and Lucke substitute it with output, consumption

and investment in other estimations. We focus on the benchmark case in the following.10

Beaudry and Lucke (2009) impose a set of short-run and long-run restrictions together

with the conventional orthogonality restrictions on the covariance matrix of the structural

shocks. The vector of endogeonus variables as well as the corresponding short-run and long-

run restrictions are given by

∆Yt =





















∆tfpt

∆pit

∆spt

∆ht

∆intt





















, B =





















∗ 0 0 0 0

∗ ∗ 0 0 0

∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ 0

∗ ∗ ∗ ∗ ∗





















, Θ (1) =





















∗ ∗ ∗ 0 0

∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗





















, (5.15)

where Θ (1) stands for the matrix of long-run multipliers as described in Chapter 1.

The restrictions in (5.15) that follow from recent macroeconomic literature reviewed

above allow Beaudry and Lucke to identify five shocks, which are ordered as TFP-shock,

IST shock, news shock, preference shock and monetary shock. Hence, the first three shocks

are different sorts of technology shocks. According to (5.15), total factor productivity is

affected by only TFP-shocks in the short-run, and all types of technology shocks are allowed

to have an impact on it in the long run, while preference shocks and monetary shocks

do not have a long-run effect on total factor productivity. Furthermore, news shocks and

preference shocks are restricted not to have contemporaneous effects on the relative price

of investment. Finally, monetary shocks have only delayed effects on three variables—total

factor productivity, relative price of investment and hours worked—in accordance with the

10I thank Bernd Lucke for kindly providing me the data set used by Beaudry and Lucke (2009).
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Figure 5.1: Impulse responses from the original BL model

literature on monetary policy shocks discussed above. Note that stock prices are allowed to

react to surprise innovations to monetary policy at the impact period they occur, which is

plausible.

It is common practise in the SVAR literature to check whether the signs of impulse

response functions coincide with the expectations that follow from theory. Since macroeco-

nomic theory is pretty clear about the long-run effects of positive technology shocks of all

sorts on total factor productivity, we focus here on the response of TFP to a TFP-shock,

an IST-shock and a news shock. Moreover, the expected effects of positive news shocks on

stock prices is also clear-cut. Figure 5.1 displays these impulse responses from the benchmark

model of Beaudry and Lucke (2009). While the effects of different sorts of technology shocks

on TFP differ in the short-run, the long-run effects of all technology shocks is positive, as

expected by the theory. Similarly, positive news shocks have significantly positive short-run

and long-run effects on stock prices.
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5.2.2 A modified version of the Beaudry-Lucke model

It follows from the findings of the five-variable model of Beaudry and Lucke that the inclusion

of the relative price of investment in the SVECM is redundant, at least when the aim is to

explain business cycle fluctuations. The role of IST-shocks in macroeconomic fluctuations

is negligible. Therefore, the authors drop the relative price of investment from their model

and estimate a four-variable SVECM, which is described by

Yt =















tfpt

spt

ht

intt















, B =















∗ 0 0 0

∗ ∗ ∗ ∗

∗ ∗ ∗ 0

∗ ∗ ∗ ∗















, Θ (1) =















∗ ∗ 0 0

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗















. (5.16)

(5.16) is obviously analogous to (5.15). After dropping IST-shocks from the model, the other

shocks have the same order as in the previous model. We introduce one more modification

to this framework and include labor productivity (xt) instead of total factor productivity so

that

Yt =
[

xt spt ht intt

]′

. (5.17)

This modification brings us three advantages for the forthcoming empirical analysis. The

first advantage is practical: total factor productivity is more difficult to calculate due to

the lack of a directly observable quarterly capital stock data. Second, this modification is

a natural extension of the bivariate model advocated by Gali (1999) and allows us direct

comparison with the model of Gali. Third, output is also indirectly included in this type of

a model as the sum of labor productivity and total hours worked.

The disadvantage of substituting total factor productivity with labor productivity in the

model is that labor productivity responds to changes in the capital stock, which cannot

be accounted for by the modified model. In order to check the importance of this issue,

we compare the shocks estimated with the five-variable and four-variable models. Their

correlations are reported in Table 5.1. While IST-shock of the five-variable model is virtually

not correlated with the other shocks of the four-variable models, all other shocks in the
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Table 5.1: Correlations of shocks from four- and five-variable models

TFP IST news pref. mon

TFP 0.81 -0.05 -0.12 -0.04 0.05

(0.03) (0.07) (0.08) (0.07) (0.06)

news 0.13 0.07 0.86 -0.29 -0.30

(0.08) (0.07) (0.02) (0.06) (0.06)

pref. 0.02 0.08 0.32 0.89 0.06

(0.07) (0.07) (0.06) (0.02) (0.07)

mon. 0.00 0.01 0.28 -0.17 0.92

(0.06) (0.07) (0.06) (0.07) (0.01)

Notes : Standard errors in parentheses.

five-variable model are highly correlated with their counterparts in the four-variable model.

Thus, we think it is legitimate to include the labor productivity instead of the total factor

productivity in (5.16) when investigating the macroeconomic fluctuations of the G7 countries

with that model.

5.3 Country-specific models

The findings of Beaudry and Lucke (2009) point to a dominant role of news shocks in US

macroeconomic fluctuations. In the following, we extend their analysis to other G7 countries

by estimating the model summarised by (5.16), where Yt is replaced by (5.17). We include

the US in our estimations as well, since we are interested in investigating the international

linkages in the next section.

5.3.1 Data and model specification

The data set we use has been retrieved from Datastream. The entire sample covers the

period 1971Q1–2006Q4. While we initially report results from the entire sample period in

the following, the literature on the business cycle dynamics of the G7 countries suggests that
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it makes sense to consider estimates from various sub-periods as well.11 For example, Stock

and Watson (2005) split their sample at 1983Q4, which, they argue, is particularly valid for

the US economy, although the authors acknowledge that “when modelled as a single break

the reductions [in business cycle volatility] generally are neither concurrent nor of similar

magnitudes”. Another convenient break date could be 1990Q2, after which the EMU process

has been kicked off along the plan suggested in the Delors report as we discussed in Chapter

2, and which we used in the empirical analysis of the previous two chapters. Moreover,

Stock and Watson (2005), as well as various other studies mentioned therein, point to the

emergence of a cyclically coherent euro area group, which has possibly to do with the EMU

process. Hence, we report results from sub-periods by splitting our sample in 1990Q2. A

practical reason behind this decision is that it splits the sample almost at the middle. Other

break-date candidates, such as 1983Q4, would result in one very short sample given the

number of parameters to be estimated. The four-variable SVECMs of this chapter suffer

even more from estimation uncertainty than the models considered in Chapters 3 and 4,

since there are more coefficients and parameters to estimate in the SVECMs, which should

not be exacerbated further by estimating with short sub-samples such as 1971Q1–1983Q4.

There are three important decisions concerning the specification of the VECMs that

underlie our structural estimation. First, we set the lag order to 4 for each country, since

different information criteria support different lag orders within and across country-specific

models. We find it important to set the lag order to a uniform value for all countries for the

sake of comparison in the forthcoming analysis of international linkages. However, the lag

order choice does not have an important impact on our conclusions.

Second, attention must be paid to the specification of hours worked. Gali (1999) assumes

in his specification that total hours worked is a nonstationary variable, while the majority of

macroeconomic models include hours worked as a stationary variable. However, the latter

property must not necessarily be taken for granted on the basis of macroeconomic theory,

11See also our discussion about the break in the data in Chapter 2 in the context of the euro area business
cycle dynamics.
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since, as Gali (2005) shows, there may be reasons for hours worked to be nonstationary

without changing the balanced-growth property of theoretical models. Chang, Doh, and

Schorfheide (2007) work with a DSGE model, in which hours worked contains a stochastic

trend due to labor-supply shocks which follow a non-stationary process. The importance of

the issue comes from the fact that findings are affected importantly by how hours worked

enter into VAR models. While Gali (1999) obtains a negative contemporaneous response of

hours worked to a technology shock, Christiano, Eichenbaum, and Vigfusson (2004) show

that this finding is not supported when hours worked is assumed to be stationary and enters

the bivariate VAR of Gali (1999) in level. Fisher (2003, 2006) finds that technology shocks,

particulary investment-specific technology shocks, matter for business cycle fluctuations with

hours worked specified to be stationary, whereas Gali and Rabanal (2004) show that this

finding changes when hours worked is taken to be nonstationary and hence enters the esti-

mation in first difference. An important advantage of estimating a VECM with unrestricted

cointegrating relationships is that, as noted by Beaudry and Lucke (2009), “we do not need

to impose any assumptions on the stationarity properties of hours, for if hours were in fact

stationary, one of the cointegrating vectors would give a nonzero weight only to the hours

variable.”

Third, the number of cointegrating relationships must be determined. Beaudry and Lucke

(2009) refer to recent macroeconomic theory to determine the number of stochastic trends in

their SVECM. Their system must be driven by two types of stochastic trends corresponding

to disembodied and investment-specific technological processes according to their argument.

We stick to their assumption in the following and assume a cointegration rank of 3 in our

benchmark model, which implies only one stochastic trend. Note that the second source of

stochastic trend, the investment-specific technological progress, does not exist in the modified

framework presented above. A cointegration rank of 3 generates estimates that are in line

with our conjecture that the response of labor productivity to a positive technology shock is

positive in the short-run as well in the long-run in all G7 countries and over our entire sample
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period as well as sub-periods as displayed in the first column of the three panels of Figure

5.2. Moreover, the interpretation that positive news shocks announce future technological

progress is also supported by the estimated model, see the second column of all panels of

the same figure. Finally, positive news shocks are generally found to have a positive effect

on stock prices, while this rule is partly not valid for the corresponding impulse response

function of France in the entire sample period and in the first sub-period (see the last columns

of Figure 5.2(a) and Figure 5.2(b)) and Japan in the second sub-period (see the last column

of Figure 5.2(c)).

Johansen cointegration tests, of which results are reported in Table 5.2, do unfortunately

not support the same rank of cointegration across countries and time periods. The tests

suggest a cointegration rank of 0, 1 or 2 (at the 5-percent significance level) in different

countries at different periods. The first implication of this result is that differing number

of stochastic trends must be included in the country-specific models, which suggests that

theory-based analyses of these countries’ macroeconomic dynamics must differ from each

other. Second, our theoretical prior of three cointegrating relationships is rejected by the

data. As we show later, our results are sensitive to the choice of the cointegration rank. We

report and discuss the results from country-specific models with a cointegration rank of two

later in this chapter.
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Figure 5.2: Impulse responses from country-specific models
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Figure 5.2: Impulse responses from country-specific models (cont.)
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Figure 5.2: Impulse responses from country-specific models (cont.)
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Table 5.2: Johansen cointegration rank tests

71Q1–06Q4 71Q1–90Q2 90Q3–06Q4

rank statistic p-value statistic p-value statistic p-value

Canada 0 44.50 0.10 52.31 0.02 59.70 0.00

1 24.21 0.20 19.27 0.48 34.92 0.01

2 9.26 0.35 8.21 0.45 14.68 0.06

France 0 66.08 0.00 49.71 0.03 49.39 0.03

1 38.61 0.00 17.36 0.62 28.84 0.06

2 18.61 0.01 9.99 0.29 14.54 0.07

Germany 0 70.14 0.00 62.08 0.00 52.97 0.01

1 31.14 0.03 29.29 0.06 29.52 0.05

2 13.36 0.10 7.66 0.51 11.91 0.16

Italy 0 49.53 0.03 54.51 0.01 49.62 0.03

1 31.23 0.03 19.44 0.47 31.31 0.03

2 17.35 0.02 8.25 0.45 17.65 0.02

Japan 0 57.08 0.00 53.80 0.00 62.13 0.00

1 27.10 0.10 36.37 0.01 13.85 0.85

2 9.28 0.35 6.28 0.67 6.07 0.69

UK 0 53.42 0.01 51.47 0.02 71.53 0.00

1 15.19 0.77 23.12 0.25 30.56 0.04

2 5.70 0.73 4.93 0.81 10.91 0.22

US 0 34.16 0.50 43.20 0.13 48.30 0.04

1 18.40 0.55 20.27 0.42 26.01 0.13

2 7.08 0.58 5.36 0.77 11.21 0.20

Notes : Four lags are included in each model.
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5.3.2 Forecast error variance decomposition

Since we are interested in capturing changing dynamics of business cycles over time, we

report FEVD estimates for the sub-periods mentioned above in addition to entire-sample

estimates. The FEVD of labor productivity, displayed in Figure 5.3, yields results across the

G7 countries that are very similar to what Beaudry and Lucke (2009) report for total factor

productivity of the US: neutral technology shocks, labelled TFP shocks in Figures 5.3 to 5.6,

are an important driving force of labor productivity fluctuations at business cycle horizons.

Moreover, the share of news shocks in the forecast error variance of labor productivity gener-

ally increases with longer forecast horizon similar to the case of the TFP in the five-variable

model of Beaudry and Lucke. This finding is in line with the interpretation that news shocks

contain information about future technological developments. An important exception to

this rule is seen in the estimations for France in the entire sample period as well as the first

sub-period (see Figures 5.3(a) and 5.3(b)). Note that the FEVD of the labor productivity in

Japan in the second sub-period, given in Figure 5.2(c), is in accordance with our conjecture

that the share of news shocks—news about future technological improvement—increases in

longer forecast horizons, although we had reported a negative response of stock prices to a

positive news shock in Japan in the second sub-period in Figure 5.2(c).

The picture is more heterogeneous when it comes to the driving forces of stock price

fluctuations. According to the benchmark model of Beaudry and Lucke (2009), the sole

driving force of US stock price fluctuations is news shocks, while other shocks play a negligible

role. Our finding displayed in Figure 5.4(a) is that news shocks are similarly the main driving

force of stock price fluctuations in the US, while monetary shocks are also of some importance

in the entire sample period. News shocks are clearly dominant in the stock price fluctuations

of Germany and Japan and explain also about half of stock price forecast error variance in

Canada and Italy when the entire sample is used for the estimation. Monetary shocks are

important in Italy and the UK at the business cycle horizon, whereas preference shocks have

a non-negligible share in Canada and the UK over the entire sample period.
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Figure 5.3: FEVD of labor productivity

The FEVD of labor productivity in the entire sample period as well as in the first sub-

period had casts doubt on our interpretation of news shocks as news about future techno-

logical improvements for the French economy. The FEVD of stock prices further strengthen

this doubt: the forecast error variance of stock prices in France is dominated by monetary

shocks with shares far above 0.50 in the estimations based on the entire sample and the first

sub-sample. Furthermore, in Japan in the second sub-period, for which we had reported a

negative response of stock prices to positive news shocks, the share of news shocks is confined

to equal to or less than 0.40. Other than that, news shocks are the main driver of stock price

fluctuations in Figures A.2(a) and A.2(b). TFP, preference and monetary shocks play only

a minor (often insignificant) role.

Hours worked is a variable that is often used as a proxy for capacity utilisation (see,

e.g., Basu, Fernald, and Kimball (2006)), a variable deemed to be closely related to business

cycles. Figure 5.5 shows the FEVD of hours worked in the G7 countries. Like stock prices,
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Figure 5.3: FEVD of labor productivity (cont.)
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Figure 5.4: FEVD of stock prices

the driving forces of hours worked forecast errors also vary across countries. According to the

entire-sample estimates, displayed in Figure 5.5(a), news shocks dominate the fluctuations

of hours worked in France, Japan and the US, while they are also of some importance in

Germany and the UK. Preference shocks are dominant in Canada and Italy and are also

important at some forecast horizons in all other G7 countries when the entire sample is used

for the estimation, whereas the role of TFP and monetary shocks is generally much smaller

and often negligible.

Substantial changes occur in findings when FEVD of hours worked is carried out with sub-

sample data. For example, monetary shocks are non-negligibly important (and sometimes

dominant) for hours worked fluctuations in Canada, Germany, Italy and the UK in the first

sub-period. News shocks explain an important chunk of hours worked variability in France,

Italy, Japan and the US in the first sub-period, while the shares attributed to preference

shocks (in terms of point estimates) are in general relatively lower in the first sub-period

176



5 10 15 20 25 30
0

0.5

1
Canada

Horizon
5 10 15 20 25 30

0

0.5

1
France

Horizon
5 10 15 20 25 30

0

0.5

1
Germany

Horizon

5 10 15 20 25 30
0

0.5

1
Italy

Horizon
5 10 15 20 25 30

0

0.5

1
Japan

Horizon
5 10 15 20 25 30

0

0.5

1
UK

Horizon

5 10 15 20 25 30
0

0.5

1
US

Horizon

 

 

TFP shock
news shock
preference shock
monetary shock

(b) Sample: 1971Q1–1990Q2

5 10 15 20 25 30
0

0.5

1
Canada

Horizon
5 10 15 20 25 30

0

0.5

1
France

Horizon
5 10 15 20 25 30

0

0.5

1
Germany

Horizon

5 10 15 20 25 30
0

0.5

1
Italy

Horizon
5 10 15 20 25 30

0

0.5

1
Japan

Horizon
5 10 15 20 25 30

0

0.5

1
UK

Horizon

5 10 15 20 25 30
0

0.5

1
US

Horizon

 

 

TFP shock
news shock
preference shock
monetary shock

(c) Sample:1990Q3–2006Q4

Figure 5.4: FEVD of stock prices (cont.)
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Figure 5.5: FEVD of hours worked

estimates than in the entire-sample estimates.

The shares attributed to monetary shocks are minor in the second sub-period, while the

shares of TFP shocks become non-negligible in Germany, Italy and the UK. News shocks

dominate the hours worked fluctuations of Japan and the US in the second sub-period as

well and are not unimportant in the other G7 countries with the exception of Italy. Finally,

preference shocks have a large share in France and Italy, while having more moderate but

still important shares in Canada and Germany in the second sub-period.

Finally, we display FEVD graphs for output in Figure 5.6. The commonality in the FEVD

results of output is that technology shocks, i.e. TFP-shocks and news shocks, dominate the

output fluctuations of all G7 countries, particularly in the second sub-period. The role of

preference and monetary shocks in output fluctuations is secondary according to our FEVD

estimates. We observe some importance of preference shocks in Canada in all estimates

displayed in Figure 5.6. These shocks play a role also according to the entire-sample estimates
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Figure 5.5: FEVD of hours worked (cont.)
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Figure 5.6: FEVD of output

for Italy and the UK, and in the second sub-period estimates for France and Italy.

The FEVD analysis shows that important differences exist across the G7 economies in

terms of absorbing exogenous shocks. It is not possible to identify sub-groups of countries

of which macroeconomic variables persistently show similar FEVD patterns across them.

In particular, the existence of English-speaking and euro area groups as suggested by some

studies (see, e.g., Stock and Watson (2005) and the references therein) in terms of their

variables showing similar FEVD patterns cannot be established.
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Figure 5.6: FEVD of output (cont.)
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5.3.3 Robustness: cointegration

Cointegration equations

Cointegration relationships are long-run relationships among variables. Estimation of coin-

tegrated systems are notorious for producing unreliable results when the sample underlying

the estimation is short. In order to detect the importance of this issue for our conclusions,

we have re-estimated our models with sub-period data by imposing on them the coefficients

of the cointegration equations that are estimated using the entire data set, while the co-

efficients of the VECMs corresponding to the first-differenced terms were left unrestricted.

The results of the first sub-period are marginally sensitive to this restriction, the majority

of them being in accordance with the findings reported above. The results of the second

sub-period show more sensitivity. Particularly, the reported shares of shocks in stock prices,

hours worked and output fluctuations are affected. There is a larger role, for example, for

preference shocks in the hours worked fluctuations of Canada, Germany and the UK and a

smaller role in the hours worked fluctuations of France, when entire-sample estimates are

used as the coefficients of the cointegration equations in the VECM. Monetary shocks play a

non-negligible role in the output fluctuations of France and Italy according to our modified

estimation, while these shocks are unimportant according to our previous estimations of the

model. Since most of our other conclusions are, however, the same as before, we present our

new estimates in the appendix for the interested reader.

Cointegration rank

We followed Beaudry and Lucke (2009) when setting the cointegration rank to 3 in our

hitherto estimations, which implies that our country-specific SVECMs contain only one

stochastic trend. This assumption is in line with the theory, which typically assumes that the

total factor productivity follows a unit root process. However, it is often not supported by our

data, as shown before in Table 5.2. We check the implications of assuming a cointegration
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rank of 2 in this sub-section.12 We display the response of labor productivity to a one-

standard-deviation TFP shock and the responses of labor productivity and stock prices to

a one-standard-deviation news shock in Figure 5.7, which is analogous to Figure 5.2. Labor

productivity reacts positively to a positive TFP shock in the short run as well as in the long

run in estimations corresponding to both sub-periods as shown in the first column of all

panels of Figure 5.7.

In the second column of all panels of Figure 5.7, we display the response of labor pro-

ductivity to news shocks. The interpretation of a positive news shock corresponding to

improvements in future technology requires that the long-run response of labor productivity

is positive to such a shock, which is indeed the case in Figure 5.7. Note that whether this

sign restriction holds is trivial, since the SVECM is identified only up to a certain sign re-

striction as discussed at the end of Chapter 1. In case the sign of labor productivity response

is negative in the long run, the sign is changed by multiplying the impulse response function

by minus one and interpreting the underlying shock to be a positive technology shock.

Once we set the sign of the labor productivity response to news shocks such that it can

be interpreted as a positive shock to technology, particularly in the long run, we are bound

by this restriction and cannot alter the sign of other variables’ responses to a “positive” news

shock. Keeping this in mind, our SVECM estimations now imply that the response of stock

prices, shown in the last column of all panels of Figure 5.7, is negative to a positive news

shock in Canada and the UK for the estimations with the entire sample, in Italy in the first

sub-period, and in Italy, Japan, the UK and the US in the second sub-period. Note that a

negative response of stock prices to positive news shocks is theoretically possible. Jaimovich

and Rebelo (2006) argue, for example, that such shocks affect the value of a firm through two

channels: while a news shock increases, on the one hand, the value of a firm’s investment, it

decreases, on the other hand, the value of its existing capital stock. If the latter channel is

12Note that we have also tried out a cointegration rank of one in the country-specific models. It generated
the implausible result that stock prices fluctuations are solely due to monetary shocks in five of the G7
countries (the ones except France and the US). Therefore, we do not report results from that model.
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Figure 5.7: Impulse responses from country-specific models184
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Figure 5.7: Impulse responses from country-specific models (cont.)
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Figure 5.7: Impulse responses from country-specific models (cont.)
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Figure 5.8: FEVD of labor productivity

stronger than the former channel, a news shocks decreases the firm’s value according to the

model of Jaimovich and Rebelo (2006).

Note that a cointegration rank of two gives results that are also in accordance with the

hypothesis that news shocks stand for future technological improvements: the share of news

shocks in the fluctuations of labor productivity increase with increasing forecast horizon

according to the FEVD of labor productivity, displayed in Figure 5.8, from our SVECMs

with two cointegrating equations.13 However, our other results are not totally insensitive

to this choice. For example, the weight of news shocks in the FEVD of output decreases

substantially in France and the US according to the entire-sample estimate of the model

with two cointegrating equations in comparison to the former case with three cointegrating

relationships, cf. Figure 5.9, although the differences between the two models are not so

large for the other G7 countries.

Our hitherto findings may point to one of several possible conclusions. For example, it

13We report only the entire-sample results, but sub-sample results are similar.
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Figure 5.9: FEVD of output

may well be the case that a cointegration rank of two is inappropriate for our SVECMs, and

a cointegration rank of three gives the correct specification of the model. Cointegration tests

are after all notorious for their low power, particularly in short samples, and a cointegration

rank of three is also in line with the assumptions of a class of theoretical models. Another

possibility is that, a cointegration rank of two is correct, i.e., data is driven by more than one

stochastic trend, and theoretical models must be extended or modified in this direction. After

all, whether there are two or three stochastic trends in the theoretical model of, e.g., Fisher

(2006), is not an implication of the model, but an assumption. There is no a priori reason

to reject the hypothesis that monetary shocks or preference shocks do not feed exogenous

processes with a unit root. Gali (1999), for example, assumes in the stylised model he uses

as a motivation for his SVAR identification scheme that money supply is a unit root process.

In this context, more refining of news shocks may be necessary. Schmitt-Grohe and Uribe

(2009) consider, for example, different sources of news shocks corresponding not only to

(stationary and nonstationary) productivity, but also to investment-specific technology and
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government spending. Obviously, other sources of shocks could be added to this list.

5.4 International linkages

As mentioned in the introduction to this chapter, while linkages of the G7 countries’ business

cycles has already been the subject of the macroeconomic literature, most of this literature

does not give an interpretation to estimated shocks that corresponds to macroeconomic

theory. In this section, we tackle this issue by assuming that structural shocks of individual

countries consist of common (international) and country-specific components. The previous

empirical framework of country-specific SVECMs is extended with international shocks, the

role of which in output fluctuations of the G7 countries is assessed.

5.4.1 Data

We focus only on output fluctuations in the following, which is the main subject of inter-

est in the majority of studies on international business cycles. The correlation of output

gaps computed with per capita output data of the G7 countries employing the asymmetric

CF-filter are reported in Table 5.3. Some aspects of this table deserve emphasis. First, the

correlations computed using the entire sample data are positive and statistically significant.

However, differences exist in these correlations when the sample is split. The average corre-

lation is lower in the second sub-period (0.30) than in the first sub-period (0.62). Both of

these findings are in line with the previous literature (see, e.g., Stock and Watson (2005)).

Second, the output gap of Japan is positively correlated with the output gaps of the other

G7 countries in the first sub-period, whereas the picture changes significantly in the second

sub-period where Japanese output gap is generally much less related to the output gaps of

the other G7 members.

The emergence (or existence) of a euro area sub-group within the G7 group in terms of

coherent output gaps can be detected in our data, too. Particularly in the second sub-period,
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Table 5.3: Output gap correlation

Sample: 1971Q1–2006Q4

can fra deu ita jap uk

fra 0.50 1.00

(0.19) (0.00)

deu 0.48 0.59 1.00

(0.14) (0.08) (0.00)

ita 0.50 0.67 0.52 1.00

(0.11) (0.08) (0.15) (0.00)

jap 0.21 0.45 0.60 0.33 1.00

(0.19) (0.14) (0.16) (0.18) (0.00)

uk 0.52 0.72 0.45 0.36 0.49 1.00

(0.17) (0.11) (0.14) (0.12) (0.12) (0.00)

us 0.72 0.56 0.64 0.30 0.50 0.62

(0.10) (0.16) (0.14) (0.12) (0.13) (0.16)

Sample: 1971Q1–1990Q2

can fra deu ita jap uk

fra 0.40 1.00

(0.19) (0.00)

deu 0.78 0.72 1.00

(0.11) (0.09) (0.00)

ita 0.57 0.66 0.60 1.00

(0.17) (0.12) (0.07) (0.00)

jap 0.57 0.63 0.79 0.29 1.00

(0.20) (0.17) (0.10) (0.19) (0.00)

uk 0.43 0.77 0.72 0.29 0.78 1.00

(0.23) (0.12) (0.15) (0.12) (0.12) (0.00)

us 0.77 0.59 0.89 0.38 0.78 0.70

(0.05) (0.20) (0.07) (0.12) (0.10) (0.15)

Sample: 1990Q3–2006Q4

can fra deu ita jap uk

0.62 1.00

(0.19) (0.00)

0.23 0.66 1.00

(0.15) (0.10) (0.00)

0.25 0.68 0.79 1.00

(0.09) (0.15) (0.10) (0.00)

-0.25 0.08 0.41 0.49 1.00

(0.18) (0.25) (0.25) (0.20) (0.00)

0.71 0.34 0.18 0.35 -0.15 1.00

(0.14) (0.25) (0.24) (0.17) (0.21) (0.00)

0.64 0.42 -0.12 -0.11 -0.17 0.29

(0.14) (0.17) (0.20) (0.18) (0.33) (0.33)

Notes : The output gap measure is the CF-filter. Standard errors in parentheses. Abbrevi-

ations : can: Canada, fra: France, deu: Germany, ita: Italy, jap: Japan.
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where the average correlation in the G7 group is much lower than in the first sub-period, the

correlations in the euro area group are roughly at least as high as in the first sub-sample,

while the correlation between each euro area country and other countries is lower than in

the first sub-sample. Moreover, the output gap of each euro area country has the highest

correlation with the output gaps of the other two euro area countries. The emergence (or

existence) of an English-speaking group is, however, less evident. While Canadian output

gap is strongly related to the output gaps of the UK and the US in both sub-periods, the

output gap correlation of the US and the UK is only 0.29 in the second sub-period.

5.4.2 Common factors

The generally positive and significant correlations reported in Table 5.3 suggest that com-

mon (international) shocks play a certain role in business cycle dynamics of the G7 coun-

tries. We follow Chamie, DeSerres, and Lalonde (1994), Xu (2006) and Seymen and Kap-

pler (2009) for modelling common and country-specific components of previously estimated

structural shocks of the G7 countries. The estimated shocks of all countries are collected

in a state-space model, where each country’s structural shocks are assumed to comprise an

unobserved component common to all countries and an unobserved country-specific com-

ponent, which are orthogonal to each other by construction. Formally, the jth block for

j = TFP, news, preference, monetary—with respect to the jth structural shock—of the

measurement equation reads
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...

εj
7,t
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10 · · · αj,κ
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. . .
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αj,1
70 · · · αj,κ
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...

ξj,κ
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+









ξj
1t

...

ξj
7t









, (5.18)

where αj,k
i0 is the loading for the ith country, corresponding to the kth common factor of

the jth structural shock, ξj,k
0t is the kth common factor for the jth structural shock, and

ξj
it for i = 1, . . . , 7 is the country-specific component of the jth structural shock for the ith

country. Hence, αj,k
i0 ξj,k

0t gives the kth common component of the jth structural shock for the ith
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country. Note that there are κ common factors in this framework. Both types of unobservable

components are modelled as white noise errors due to the assumption of no autocorrelation

and no cross-correlation of the structural shocks and their zero-mean property. We also

assume that structural shocks of different countries are not correlated across time. This

condition is necessary for excluding the possibility that future shocks can be estimated. We

estimate the loadings, factors, country-specific shocks and the corresponding variances by

maximising the Gaussian maximum likelihood using the expectations-maximisation (EM)

algorithm following Stock and Watson (2005).

Our empirical strategy is in line with many theoretical international business cycle mod-

els, which connect different economies through exogenous processes. For instance, in a typical

two-country model, both countries are assumed to show a similar structure with different

parameter values. The models considered by Backus, Kehoe, and Kydland (1992) and Bax-

ter and Crucini (1993) provide a good example. The authors assume that two economies are

linked through technology, which is a part of the production function and is modelled as an

exogenous process:

[

log At

log A∗

t

]

=

[

ρA ρA∗

ρ∗

A ρ∗

A∗

][

log At−1

log A∗

t−1

]

+

[

εt

ε∗t

]

, (5.19)

where log At and log A∗

t stand for the log levels of technology in the home and foreign

countries, respectively, ρ and ρ∗ are the coefficients corresponding to the lag of the technology

level in the home and foreign countries, respectively, and εt and ε∗t are the technology shocks

of both countries with a non-zero covariance matrix. It is straightforward to think of a

structure similar to (5.19) for other types of shocks. The factor structure in (5.18) reflects the

view that the correlation between the structural shocks of the individual countries considered

within the framework of (5.19) is due to the common factors.

Recall that we initially estimate country-specific SVECMs, which are not connected to

each other. This amounts to assuming that ρA∗ = ρ∗

A = 0 in terms of our example in (5.19) .

In other words, no spillovers are allowed across the countries in our framework. Hence,
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while common shocks hit all countries at the same time, their transmission on the individual

countries are independent from each other. Our empirical model reflects an environment,

where the coefficients corresponding to the lagged level of exogenous processes, ρA and ρ∗

A∗

are embedded into the structural matrix polynomial Θ (L) in terms of the moving average

representation of our SVECM in (5.14).

We carry out likelihood ratio tests in order to determine the number of factors to be

included in (5.18) for each structural shock estimated with country-specific SVECMs, i.e.,

TFP, news, preference and monetary shocks. We conjecture four different factor structures.

Factor Model I and Factor Model II respectively contain unrestricted one and two factors,

i.e., unrestricted 7 × 1 and 7 × 2 loading matrices in (5.18). Factor Model III comprises

two factors, the first factor being unrestricted for all G7 countries, i.e., a global factor, the

second factor applying only to euro area countries, i.e., a euro area factor. Factor Model

IV consists of two global and one euro area factors. Ordering the G7 countries as Canada,

France, Germany, Italy, Japan, the UK and the US, the factor structure corresponding to

these four specifications is respectively given by
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. (5.20)

The results of tests on the four different factor structures are reported in Table 5.4. The

unrestricted one-factor model is rejected for preference shocks in the first sub-period and for

news shocks in the second sub-period, while the unrestricted two-factor model is rejected

for preference shocks in the first sub-period. However, Factor Model III and Factor Model

IV find support at 5-percent significance level. We stick to Factor Model III specification

in the following when reporting variance decomposition findings. Its main implications are
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Table 5.4: Test of number of common factors

Factor Model I p-values

TFP news pref. mon.

1971Q1–2006Q4 0.26 0.04 0.15 0.03

1971Q1–1990Q3 0.88 0.23 0.03 0.18

1990Q3–2006Q4 0.15 0.04 0.20 0.25

Factor Model II p-values

TFP news pref. mon.

1971Q1–2006Q4 0.58 0.15 0.51 0.28

1971Q1–1990Q3 0.78 0.40 0.03 0.38

1990Q3–2006Q4 0.12 0.82 0.29 0.43

Factor Model III p-values

TFP news pref. mon.

1971Q1–2006Q4 0.16 0.01 0.24 0.01

1971Q1–1990Q3 0.80 0.13 0.06 0.17

1990Q3–2006Q4 0.23 0.24 0.19 0.14

Factor Model IV p-values

TFP news pref. mon.

1971Q1–2006Q4 0.47 0.06 0.85 0.13

1971Q1–1990Q3 0.54 0.20 0.08 0.39

1990Q3–2006Q4 0.60 0.34 0.47 0.20

similar to Factor Model IV specification, while the global factors are attributed a higher

share, particularly in the first sub-period, in output fluctuations by the latter model.

5.4.3 Forecast Error Variance Decomposition

The factor structure in (5.18) can be fed back to the moving average representation of

country-specific SVECMs in (5.14), which allows us to compute FEVD as hitherto done in

this study. Note that each structural shock of each G7 country comprises three components

now: a global component (the first factor), a euro area component (the second factor applying

only to euro area members), and a country-specific component given by ξj
it for i = 1, . . . 7 in

(5.18). Hence, there are altogether 12 different shock sources in our empirical model, 8 of
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which are of international origin.

In Figure 5.10, we show the total FEVD shares of global component of each structural

shock over our two sub-periods. Shocks of global nature become more important in the

second sub-period than in the first sub-period for the output fluctuations of France, Italy

and the US. International shocks play an important role in the fluctuations of Canada and

the UK over both periods, FEVD shares of international shocks become somewhat lower in

the second sub-period. The shares of global shocks is quite low in the output fluctuations of

Japan over both sub-periods. A striking feature of the FEVDs illustrated in Figure 5.10 is

that global news shocks become a non-negligible factor in the output fluctuations of all G7

countries but Japan. This finding suggests that theoretical models investigating international

business cycles could improve their performance in terms of matching the reality by including

news shocks as a stochastic source of fluctuations. Global TFP, preference and monetary

shocks are generally of negligible importance for the output fluctuations of the G7 countries.

Note that this finding is valid also when we assume one or three factors (in the latter case

two global factors and one euro area factor).

In Figure 5.11, we show the total FEVD shares of the euro area factor in the output

fluctuations of the corresponding countries. The share of the euro area factor is higher in the

output fluctuations of France and Italy in the second sub-period than in the first sub-period.

The structural euro area factors that are important for the output cycles of Italy changes

from preference shocks to TFP shocks, albeit it is not possible to claim that these shares

are statistically significant. In the case of Germany, the total share of euro area factors

decreases to virtually zero in the second sub-period from shares above 0.4 in the first sub-

period, whereas the total share of euro area factors is virtually zero in the first sub-period

for the output cycles of France. Recall, however, from Table 5.3 that euro area countries’

cycles are highly correlated in both sub-periods. The latter finding combined with our FEVD

findings in Figure 5.11 implies that euro area countries must be react to global shocks and

euro area shocks in a similar way and that global shocks are, at least partly, an important
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Figure 5.10: FEVD shares of global shocks for output
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Figure 5.11: FEVD shares of euro area shocks for output

driving force of output fluctuations of the euro area countries so that we can observe the

high correlations within the euro group over both sub-periods in Table 5.3.

5.5 Summary and remarks

In this chapter, we carried out an analysis of the G7 countries’ business cycle dynamics. We

started with a review of prominent macroeconomic views on the sources of macroeconomic

fluctuations, which was followed by the presentation of the benchmark SVECM of Beaudry

and Lucke (2009). The latter model has the property of containing competing contemporary

views on the sources of cyclical fluctuations in a unified framework. We modified the basic

model of Beaudry and Lucke to analyse the driving forces of the G7 countries’ business

cycles. Our modification was shown to make little difference to the benchmark model of

Beaudry and Lucke (2009) in the case of the US economy.

An important finding of Beaudry and Lucke (2009) is that news shocks, which reflect

197



information on future developments in technology, are the most important driving force

behind the fluctuations of economic activity, represented by hours worked and output among

others. Although our data set differs from the one of Beaudry and Lucke and, moreover,

we report estimates from two different sub-periods, our findings with respect to these two

variables are broadly in line with the findings of those authors, at least in terms of establishing

the importance of news shocks in the macroeconomic fluctuations of the US economy. With

respect to the output fluctuations of the other G7 countries, we found that, particularly in

our second sub-period that covers the period from 1990Q3–2006Q4, TFP and news shocks

are generally the main driving forces of output fluctuations at business cycle frequencies.

While some studies report the emergence of two cyclically coherent groups of countries—

euro area countries and English-speaking countries—within the G7, we were not able to

establish similar patterns in terms of FEVD of the macroeconomic variables comprised by

the country-specific SVECMs we estimated. This suggests that, in spite of generally high

and positive output gap correlations in the G7 group, structural differences exist across the

countries in terms of absorbing shocks.

We conjectured a factor structure for each type of structural shock included in the

country-specific SVECMs, i.e., neutral technology (TFP), news, preference and monetary

shocks, such that these consist of common and country-specific components for each G7

country. Likelihood ratio tests did not reject the constellation that all types of shocks con-

sist of global, euro area and country-specific components. Hence, the likelihood ratio tests

provide an indirect support for the hypothesis of the emergence or existence of a euro area of

sub-group within the G7. With the exception of Japan in both sub-periods that we consider

and Germany in the latter sub-period, we found that international shocks are an important

source of cyclical fluctuations. While the finding corresponding to Germany might be related

to the adjustment process due to the reunification, and the finding corresponding to Japan

in the second sub-period might be due to the crisis that Japan underwent in the 1990s, the

finding corresponding to Japan in the first sub-period may be due to a misspecification in
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our empirical framework, because Japanese output gap was indeed found to be highly related

to the output gaps of other G7 countries in the first sub-period. Finally, abstracting from

Japan, we found that international news shocks are the most important international source

of fluctuations in the second sub-period, suggesting that theoretical business cycle models

investigating international business cycles must include this type of a shock.

We estimated the country-specific SVECMs under the assumption of a cointegration rank

of three, which implied for our model only one stochastic trend in the data, in line with recent

macroeconomic theory. However, Johansen tests often pointed to a cointegration rank of two

or one. We showed that a cointegration rank of two is also in line with the interpretation

that positive news shocks represent future technological developments. We believe that

this issue must be further investigated in the future. In particular, the model implies two

stochastic trends when the cointegration rank is two. While there is a consensus on what the

first stochastic trend must be, a technology-related process, there may be different potential

candidates for a second trend. One line of research may deal with distinguishing between

different sources of news shocks, as suggested, for example, in a recent study by Schmitt-

Grohe and Uribe (2009). Another possibility could be to check whether estimated TFP

shocks and news shocks do really represent shocks to technological progress by following

a similar strategy to Alexius and Carlsson (2005), who compare the estimated technology

shocks of King, Plosser, Stock, and Watson (1991) and Gali (1999) SVAR models with

technology shocks estimated using production function approaches such as, e.g., in Basu,

Fernald, and Kimball (2006). In particular, given that SVECMs with both two and three

cointegrating relationships usually support the future technology shock interpretation of

news shocks, additional support from comparison with production function residuals could

strengthen the case for one of these options.

As mentioned above, connecting our country-specific SVECMs in the way we do in order

to estimate international shocks yields a misspecification, at least for Japan in the first sub-

period. One source of misspecification could be that we do not allow for bilateral spillovers
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of shocks across countries. If spillovers are, however, an important source of macroeconomic

fluctuations, our model may lead to wrong conclusions. Yet, the problem is that currently no

method exists that allows to model spillovers of shocks stemming from an individual country.

While the global VAR (GVAR) approach, recently introduced to the literature by Pesaran,

Schuermann, and Weiner (2004), provides a tool for estimating interrelationships among a

large number of countries, it may prove hard to be suitable for our subject of interest for

two reasons. First, GVAR models are estimated only in reduced form, and no study that

deals with structural shocks within the GVAR framework exists. Second, even if it were

possible to identify structural shocks in the GVAR framework, the method does not include

global shocks or shocks affecting only a group of countries like the euro area shocks in the

application of this chapter. However, we believe that estimating a structural GVAR model

would still provide another valuable source of assessing the data.

We carried out our estimations over two sub-periods in order to capture changes in

business cycle dynamics over time. While we imposed the same single break date, 1990Q2,

for all G7 countries’ models, we acknowledge that this choice may have an impact on our

conclusions. There were two motivations behind sticking to a single, and in particular to

this, break date. First, we were interested in investigating the emergence or existence of

euro area and English-speaking country sub-groups, and 1990Q2 is a convenient break date

for, at least, the euro area as argued in Chapters 2 to 4. Second, choosing a break date that

applies to all countries was necessary for conducting our analysis of international linkages.

The common break date allowed us to impose our factor structure on all G7 countries over

both sub-periods. It is clear that we could have chosen other break dates, such as 1983Q4

as in Stock and Watson (2005) or 1993Q4 after which the Maastricht treaty came into

force. Yet, a technical problem with both of these proposals is that they would lead to

sub-samples, one of which would be very short, which would lead to less reliable results.

Moreover, the element of arbitrariness in the choice of the break date would still not be

eliminated, since it is known from the literature that break dates chosen based on statistical
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tests typically differ across countries. A solution to this problem could be to estimate models

with time-varying coefficients as suggested recently by, e.g., Primiceri (2005) and Gali and

Gambetti (2009), and done also in Chapter 4 of this study, where change in the parameters

of the models is handled for each quarter in the sample. However, two problems exist

with respect to such an application in our framework. Time-varying coefficients have been

estimated only for stationary VARs in the literature, whereas we estimate VECMs in this

chapter. The methodology would have to be extended such that it can be applied also

with cointegrated VARs. One possibility in this context is to proceed as we did in Chapter

4, by estimating the cointegrating relationships using the full-sample data and then using

the resulting error correction terms in the OLS estimation of VECMs. Second, we could

not impose the international factor structure on the estimated structural shocks any more,

since the statistical properties of the estimated shocks differ over time (over each quarter in

our data set) and we would have only one observation from each country for each quarter.

The implementation of the time-varying VAR strategy in the GVAR framework is also not

possible.

All in all, our findings point to the importance of news shocks as a driving force of

macroeconomic fluctuations, not only for the US, but for other G7 countries too. Moreover,

our analysis of international linkages suggests that news shocks are also an important source

of international business cycle linkages and must therefore be included in theoretical models

working on the topic. While our empirical approach, as every empirical approach, is not

perfect, our discussion above suggests some interesting future research topics on the issues

that were the subject of this chapter.
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Appendix A

Appendix

A.1 Coefficients of a filtered process

This section derives the coefficients in Equation (1.34) of the main text, which shows the

approximate process governing the cyclical component of the jth variable in a SVAR. Let

the macroeconomic data of interest be generated by the process given in Equation (1.14) of

the main text,

Yt = Y0 + ct +

t−1
∑

i=0

Θ∗

i εt−i, (A.1)

with the only deterministic term being a constant so that dj = 1. We can write the process

governing the motion of the jth variable in Yt as

Yj,t = Yj,0 + cjt +

K
∑

k=1

t−1
∑

i=0

Θ∗

jk,iεk,t−i, (A.2)

where Yj,t stands for the jth variable in Yt at period t, cj is the constant term corresponding

to the jth variable in Yt, Θ∗

jk,i is the (j, k) element of the ith coefficient matrix in (A.1), and

εk,t−i is the kth shock at period t − i.

We know from Baxter and King (1999) and Christiano and Fitzgerald (2003) that the

ideal band-pass filter used for extracting the business cycle component of the data is of the

form

xc
t =

κ
∑

m=−κ

amxt−m, (A.3)
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where xt is the process of interest, with κ = ∞, while the ideal band-pass filter is approxi-

mated by setting κ to a finite number in practice. We impose this filter to the process Yj,t

in order to extract the cyclical component of it, Y c
j,t, hence

Y c
j,t =

κ
∑

m=−κ

amYj,t−m for t ≥ κ + 1, (A.4)

which is obtained by substituting xc
t and xt−m with Y c

j,t and Yj,t in (A.3). Note that both

filters we consider, the BK-filter and the CF-filter, are symmetric, i.e., am = a−m and,

∑κ

m=−κ am = 0. These properties imply that the cyclical component of the first two terms

of Yj,t in (A.2) are equal to zero. Hence, the sub-component of Y c
j,t with respect to the kth

structural shock, Y c
jk,t is given by

Y c
jk,t = a−κ

(

Θ∗

jk,0εk,t+κ + Θ∗

jk,1εk,t+κ−1 + · · · + Θ∗

jk,t+κ−1εk,1

)

+a−κ+1

(

Θ∗

jk,0εk,t+κ−1 + Θ∗

jk,1εk,t+κ−2 + · · ·+ Θ∗

jk,t+κ−2εk,1

)

+ · · ·

+aκ

(

Θ∗

jk,0εk,t−κ + Θ∗

jk,1εk,t−κ−1 + · · · + Θ∗

jk,τ+1εk,1

)

(A.5)

for t ≥ κ + 1 and κ < τ < ∞, where τ shows the number of observations that exist before

the period t − κ. Rewriting (A.5) gives

Y c
jk,t =

τ−κ−1
∑

i=1

Ψ−κ−iεt−κ−i + Ψ−κεt−κ + · · · + Ψκεt+κ for t ≥ κ + 1 (A.6)

with

Ψ−κ−i = aκΘ
∗

jk,i + · · · + a−κΘ
∗

jk,i+2κ, for i = 1, . . . , τ − κ − 1

Ψ−κ = aκΘ
∗

0 + · · · + a1Θ
∗

κ−1 + a0Θ
∗

κ + a−1Θ
∗

κ+1 + · · · + a−κΘ
∗

2κ

Ψ−κ+1 = aκ−1Θ
∗

0 + · · · + a1Θ
∗

κ−2 + a0Θ
∗

κ−1 + a−1Θ
∗

κ + · · · + a−κΘ
∗

2κ−1

...

Ψκ = a−κΘ
∗

0.

We approximate (A.6) by

Y c
jk,t ≈ Ψ−κεt−κ + · · ·+ Ψκεt+κ (A.7)
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in our applications. The quality of this approximation depends on the quality of the approx-

imation
τ−κ−1
∑

i=1

Ψ−κ−iεt−κ−i ≈ 0. (A.8)

Note that, for a sufficiently big i, Ψ−κ−iεt−κ−i ≈ 0 is a good approximation due to the fact

that Θ∗

jk,i ≈ Θ∗

jk,i+1 ≈ · · · ≈ Θ∗

jk,i+2κ.
1 While the quality of the approximation may not be

good when i is not sufficiently big, κ = 60 generates for both CF-filter and BK-filters results

that are very close to the one implied by the ideal band-pass filter, see, the application in

Section ??.

Finally,

Y c
j,t =

K
∑

k=1

Y c
jk,t, (A.9)

which implies Equation (1.34) of the main text.

A.2 FEVD of the variables in Chapter 5

Since estimation of cointegrated systems are notorious for producing unreliable results when

the sample underlying the estimation is short, we have re-estimated our models in Chapter 5

with sub-period data by imposing on them the coefficients of the cointegration equations that

are estimated using the entire data set, while the coefficients of the VECMs corresponding to

the first-differenced terms were left unrestricted. The results are provided in the following.

1We know from Chapter 1 that Θ∗

i =
∑i

j=0
Θi. The condition limi→0 Θi = 0, which follows from

the stationarity property of (1.13), implies that limi→0 Θ∗

i < ∞. It follows that Θ∗

i ≈ Θ∗

i−1 is a good
approximation for sufficiently big i. In such a case, a good approximation of Ψ−κ−i is given by

Ψ−κ−i ≈

(

κ
∑

m=−κ

am

)

Θ∗

jk,i,

where Θ∗

jk,i+1
, . . . , Θ∗

jk,i+2κ are substituted by Θ∗

jk,i. Hence,

Ψ−κ−i ≈ 0

is also a good approximation due to
∑κ

m=−κ am = 0.
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Figure A.1: FEVD of labor productivity
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Figure A.2: FEVD of stock prices

218



5 10 15 20 25 30
0

0.5

1
Canada

Horizon
5 10 15 20 25 30

0

0.5

1
France

Horizon
5 10 15 20 25 30

0

0.5

1
Germany

Horizon

5 10 15 20 25 30
0

0.5

1
Italy

Horizon
5 10 15 20 25 30

0

0.5

1
Japan

Horizon
5 10 15 20 25 30

0

0.5

1
UK

Horizon

5 10 15 20 25 30
0

0.5

1
US

Horizon

 

 

TFP shock
news shock
preference shock
monetary shock

(a) Sample: 1971Q1–1990Q2

5 10 15 20 25 30
0

0.5

1
Canada

Horizon
5 10 15 20 25 30

0

0.5

1
France

Horizon
5 10 15 20 25 30

0

0.5

1
Germany

Horizon

5 10 15 20 25 30
0

0.5

1
Italy

Horizon
5 10 15 20 25 30

0

0.5

1
Japan

Horizon
5 10 15 20 25 30

0

0.5

1
UK

Horizon

5 10 15 20 25 30
0

0.5

1
US

Horizon

 

 

TFP shock
news shock
preference shock
monetary shock

(b) Sample:1990Q3–2006Q4

Figure A.3: FEVD of hours worked
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Figure A.4: FEVD of output
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