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ABSTRACT
Joint seismologial and deformation studies are a mighty tool to study the dynamis of mag-mati systems at ative volanoes. While GPS measurements and InSAR are suessfullyapplied at onshore volanoes, the monitoring of submarine volanoes is mostly restrited toisland based or temporary seismologial measurements. We therefor developed a free fall, selfleveling Oean Bottom Tiltmeter (OBT) to observe ground deformation on the sea�oor, usinga two omponent tilt sensor with a resolution of about 15 nrad. The tiltmeter is mounted onthe preexisting Hamburg Oean Bottom Seismometer (OBS) arrier system. It is additionallyequipped with a hydrophone to assess seismi data and an absolute pressure sensor to observeuplift and subsidene.Between June 2006 and Marh 2007, four of these OBT systems were deployed along apro�le over the slopes and on top of the Columbo Submarine Volano. The network wasompleted by four OBSs in the viinity of the seamount and additional seismometers on thesurrounding islands. Columbo is part of the Santorini volani omplex, loated in the enterof the Helleni Volani Ar, Aegean Sea (Greee), approximately 8 km north-east of Thiraisland (Santorini). The volano has attrated attention sine island based monitoring indiatesa high seismiity rate lustering around the seamount and possible rustal deformation. Bothmight represent �uid migration in the subsurfae.Through this 10 months long loal experiment, azimuthal gaps between the islands werelosed and the magnitude threshold of the permanent network was signi�antly dereased.The installation of zero o�set seismi stations on top of the volano enabled us to derivehigh preise depth loations of earthquakes. Purpose of the study was to �nd evidenes forswarm triggers, suh as possibly �uid migration, by preisely reloating the events by meansof multiple events methods. About 4000 events have been manually piked and six earthquakeswarms diretly ourring at Columbo have been analyzed for migration veloities of seismifronts. Four of these swarms were lassi�ed as supposably dike-indued, the two remainingswarms as the expression of inreased hydrothermal ativity. Moment tensor solutions ofstronger earthquakes (MW > 3) were alulated to evidene our �ndings in terms of possiblestress �eld perturbations indued by the postulated triggers.Simultaneously to the seismologial observations, general unrest in terms of noise inreasewas found on the tiltmeters for all earthquake swarms, predominantly oriented radial to theiii



iv ABSTRACTearthquake luster entroid. For one swarm ourring lose to the tiltmeter pro�le, strongnear-�eld terms were observed and suessfully modeled as an asending volume soure. Both�ndings are disussed extensively with respet to a possible linkage between the seismi lusterand the origin of the deformation signals. Further points of disussion are the general tehnialfuntionality of the newly developed OBT as well as additional �ndings like long perioddeformation signals and trends suggesting the uplift of the omplete region between Columboand Santorini.We onlude with a hypothetial model on deformation signals aompanying the asentof a volumetri soure. This hypothesis is based on our preexisting model about the patternof dike-indued earthquake swarms. We show, that the same migration veloities found byseismologial observations an be independently derived by analyzing the hange of the de-formation signal of a propagating volumetri soure. Finally, we evidene that our approahis su�ient to estimate soure depth, asent veloity and a rude soure volume by analyzingspatial and temporal tilt maxima, as well as their amplitudes.
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CHAPTER 1INTRODUCTION
1.1 OutlineThe assessment of volani hazards in populated regions is the main goal of all volanolog-ial disiplines, whereas volano seismology mostly deals with the loation and traing ofmagmati and other volani �uid reservoirs and their migration in the subsurfae, basedon seismologial observations. Therefor, fundamental studies at ative volanoes are as in-dispensable as the monitoring itself, beause they have the potential to improve permanentsurveys and the general knowledge on volani proesses. In ase of the Santorini-ColumboVolani Complex, loated in the Helleni Volani Ar (Aegean Sea, Greee), a dense pop-ulation, inreased by tourists during summer on Santorini and the surrounding islands, and,of muh greater impat in ase of a volani hazard in this region, the possible ut o� ofthe Northern Aegean and thus the Blak Sea (Turkey, Bulgaria, Ukraine et.) from interna-tional sea routes make a duly preparation on a possible eruption neessary. The Columboprojet was a ompletely fundamental researh projet, using data of an amphibian seisminetwork, inluding seismometers on the adjaent islands, Oean-Bottom-Seismometers andnewly developed Oean-Bottom-Tiltmeters to assess submarine deformation data.1.1.1 State of the artMagma propagation at depth, suh as dike asent, is often aompanied by volani earth-quake swarms (e.g. Rubin and Gillard, 1998b; Battaglia et al., 1999). The omplexity of thehypoenter patterns and migration paths has been intensively disussed for several types ofearthquake swarms and today it is known, that despite of magma movement also other ori-gins have to be onsidered as swarm triggers: Tetoni mainshok-aftershok sequenes (e.g.Hauksson et al., 2001) and inreased hydrothermal ativity due to volani unrest (e.g. Lupiet al., 2007).While the separation of purely tetoni earthquake sequenes is relatively simple due totheir hyperboli derease of the event rate predited by Omori's law (Lay and Wallae, 1995),1



2 INTRODUCTIONthe lassi�ation of di�erent types of volani earthquake swarms is rather ompliated. Itis exhaustively disussed in Hensh (2005) for earthquake swarms o�shore North Ieland,by regarding vertial migration veloities and the depth over time pattern (zt-distribution)of these swarms: Supposedly dike-indued earthquake swarms show lear seismiity frontswhih resemble the propagation of loal stress aumulation. A fast migrating front duringthe initial phase of the swarm is disussed to be aused by rak opening and/or degassing.A seond front is supposed to re�et the atual position of the head region of the asendingdike. This bakfront is asending muh slower than the initial front and marks the boundaryto the region below, where seismiity is laking. Result of both fronts is the typial triangularshape of the zt-distribution of this type of earthquake swarm. In opposite to magma induedearthquake swarms, hydrothermally triggered swarms or swarms due to gas propagation aremore sattered and of a less strutured shape. These swarms are supposed to be triggered bythe wide spread unrest of hydrothermal �uids and thus do not show harateristi fronts ofseismiity.Similar studies led to omparable results, e.g. for the Izu (Japan) swarm in 2000 (Ukawaand Tsukahara, 1996) or an earthquake swarm heralding the 2001 Mt. Etna eruption (Patanéet al., 2002), whih are both disussed to be linked to dike asent. In both ases, fast migrationpaths during the initial phase of the swarm and the triangular shape of the zt-distributiondue to a seismi bakfront were observed. Additionally, these swarms ended within a fewdays. Fluid- or gas-indued earthquake swarms have been disussed by e.g. Fisher (2003)or Fisher and Horálek (2003) for a luster in NW-Bohemia (Czeh Republi). These swarmsare omparable with hydrothermally indued lusters, the struture of their zt-distributionis more ompliated, often without lear migration paths and the temporal length of theseswarms is muh longer, partly a week and more.The observation of varying temporal lengths for both types of volani earthquake swarms�ts well with our results of reent studies. A maximum length of 2 d for supposedly dikeindued swarms in ontrast to durations up to a week for hydrothermally triggered swarms is ageneral �nding for swarms o�shore North Ieland (Hensh et al., 2008). Both, magma intrusionand inreased hydrothermal ativity, must be onsidered as possible trigger mehanisms forearthquake swarms measured at Columbo.A seond important expression of magma propagation in shallow depths is loal rustaldeformation. It an be aused diretly by a volume soure, suh as a magma reservoir or an as-ending dike, or by near-�eld terms of shallow volano-tetoni earthquakes. Early approaheson modeling these soures have been done e.g. by Mogi (1958) for a spheri volume soureor Okada (1992) for point and retangular fault soures. With today's tehnial opportuni-ties, InSAR and GPS measurements, large areas and volanoes are suessfully monitored interms of deformation (e.g. Sturkell et al., 2006) and the propagation of more omplex soures,



OUTLINE 3suh as lentiular volumes whih are more omparable with dikes are modeled and observed(e.g. Pollard et al., 1983; Hautmann et al., 2009). While both tehniques, InSAR and GPS,are mighty tools in surveying onshore volanoes, they fail for o�shore observations. Assess-ments of the state of ativity of submarine volanoes is still mainly restrited to seismologialmeasurements, mostly even limited to temporary amphibian networks.Only very few studies takled the �eld of submarine deformation measurements up to now.Already in the late 1980s, Fox (1990) installed absolute pressure sensors at the summit of theaxial volano (entral Juan de Fua Ridge, Pai� Oean) and suessfully measured de�ationafter an ative episode in 1998 in the range of a few meters (Fox, 1999). Tolstoy et al. (1998)developed short- and long-baseline tiltmeters with resolutions of 50 nrad that were deployedas freefall instruments. Those instruments partly worked suessfully in another deploymentat the Juan de Fua Ridge. The most reent approah by Fabian and Villinger (2007) andFabian and Villinger (2008), University of Bremen (Germany), was to study deformationsaused by hydrothermal ativity at the Logathev Vent Field at the southern Mid-AtlantiRidge: A single prototype was suessfully reovered after a long term deployment and provedthe possibility to measure tilt in the range of some µrad on the sea�oor.Restraints of already developed Oean-Bottom-Tiltmeters (OBTs) were their poor resolu-tion for absolute pressure sensors, their limited operating time of only some weeks or in aseof the Bremen OBT the fat that it has to be deployed and reovered by a Remote Operat-ing Vehile (ROV). But the studies ited above have all shown that submarine deformationmeasurements are in priniple possible and that it is worth to advane investigations on this�eld. Thus, we developed a freefall OBT system for longterm deployments (up to 10 months),with theoretial resolutions of 15 nrad for tilt and 1 mm or 0.1 mbar for absolute pressureto measure uplift and subsidene. Additionally, it is equipped with a hydrophone to reordseismi signals. These sensors were mounted on the pre-existing Hamburg Oean-Bottom-Seismometer (OBS) frame.1.1.2 GoalAim of this study is to perform deformation measurements at an ative submarine volano andto study orrelations between possible deformation signals and the ourrene of earthquakeswarms. Columbo was hosen beause of its reent and ontinuous seismi and possiblydeformation ativity, beause of its favorable position between many islands to mount onshoreseismometers and due to the exellent ooperation and data-exhange with our olleagues ofthe EGELADOS projet (Friederih and Meier, 2008), another amphibian network installedparallely in the whole Aegean region (see Ch. 2.1.2). This study solely deals with basi andtehnial aspets of o�shore volano seismology and �rst steps in submarine deformationmeasurements with the new Hamburg OBT system.



4 INTRODUCTIONThe main tehnial innovation of this work was the development of the prototype ofan o�shore deformation sensor and its suessful test in a pilot experiment at a submarinevolano. A basi question was, whether this instrument is in priniple working and apablefor submarine deformation measurements.The most important sienti� innovations of my work despite of tehnial developmentsan be summarized as follows:
• The improvement of our hypothetial models for volani earthquake swarms, whihwere derived from reent studies
• The �rst assessment of moment tensor solutions for earthquakes inluding hydrophonedata of our OBS/OBT system
• The �rst submarine deformation measurement using the preexisting arrier system ofthe Hamburg Oean Bottom Seismometer
• The investigation of 10 months long tilt time series for trends and short period defor-mation signals in a joint analysis with earthquake swarm dataSope and omplexity of the following investigations using the obtained data requiredexhaustive theoreti and methodi works, whih are sorted as three reurrent themes in thesame order as given below (swarm behaviour, soure mehanisms and deformation) for eahhapter, to inrease the readability of the thesis and to allow skipping of spei� setions.From Chapter 4 on, hapters are thus subdivided eah into the main goals of this thesis:
• Classi�ation of earthquake swarms by the parameterization of luster patternand migration veloities, with the bakground to onlude for trigger mehanisms ofearthquake swarms ourring in the Columbo region and to generally a�rm similar�ndings of reent studies in other regions.
• Estimation of foal mehanisms inluding hydrophone data to draw onlusionson the regional stress regime and possible loal perturbations by inverting for the stresstensor. The knowledge of the stress �eld is of great importane for the disussion ofgeometry and orientation of possibly asending dikes.
• Study of aompanying submarine deformation signals and �nding possible in-terrelations to simultaneously ourring seismi ativity is the �nal purpose of the thesis.The objetive is to substantiate previous �ndings, suh as migration veloities of seis-mi lusters, as well as the evaluation of a general approah to measure submarinedeformation signals.



GEOLOGY OF THE EASTERN MEDITERRANEAN 51.2 Geology of the Eastern MediterraneanThe European Mediterranean Sea has been built up by the opening of Pangea during theTriassi rifting about 220-230 Ma ago and the later northwards motion of the Afrian plateaused by the sea-�oor spreading geometry of the North and South Atlanti oean during theCretaeous and Tertiary (Gealey, 1988). Strong redution of the northward motion of theAfrian plate after the ollision with Eurasia 30-35 Ma ago initiated Mediterranean extensionand a southward retreat of the oeani slab that is subduting below the European plate.This retreat is suggested to have aused the formation of several extensional basins within theMediterranean Sea, one of whih is now known as the Aegean Sea, whih has been furtheropened by reent slab rollbak of the Helleni Subdution Zone (Pihon and Angelier,1979; Kahle et al., 1998; Jolivet and Faenna, 2000).1.2.1 Regional settingsFig. 1.1 gives an overview on the regional tetoni settings of the Aegean Sea, positions ofsedimentary ar and volani ar and the �ve volani enters. The Helleni SubdutionZone (HSZ) is the seismially most ative region in Europe (Bohnho� et al., 2006). Dueto slab rollbak, it is a typially extended subdution zone: The onvergent plate boundarybetween the Aegean miroplate and the Afrian plate is plaed in the Lybian Sea, around100-150 km south of the Helleni Ar. The sedimentary ar is loated (from west to east,see Fig. 1.1) between the Peleponessus peninsula, Kythera, Crete and Rhodos (Papazahosand Panagiotopoulos, 1993; Meier et al., 2004). The overall rate of onvergene of the HSZis about 3.5-4 m/a, split into a major ontribution of the Aegean plate with about 3 m/aSW-ward propagation and 0.5-1 m/a N-ward migration of the Afrian plate, the dip angleof the subduting lithosphere is on average 30− 40◦ (Papazahos and Panagiotopoulos, 1993;Knapmeyer, 1999; Jolivet and Faenna, 2000; Bohnho� et al., 2001). Following the sub-duting lithosphere around 150-200 km to the north, it reahes a depth of 100-150 km (e.g.Meier et al., 2004) and the absene of strong earthquakes below 150 km is assumed to belinked to the high temperature of the material in this region (Papazahos and Panagiotopou-los, 1993). Hot material asends from these deep zones and possibly intrudes into the rustalong the frature zones. Extensional faults open the pathways for these magmati intrusions(Papazahos and Panagiotopoulos, 1993; Dimitriadis et al., 2009). This assumption is sup-ported by the ourrene of volanism along the Helleni Volani Ar (HVA) diretly abovethis region, separated into �ve seismovolani lusters (from west to east): Sousaki, Methana,Milos, Santorini and Nysiros.The most prominent and reently most ative one is the Santorini Volani Com-plex (SVC), known due to the globally impating Minoan eruption about 3500-3650 years b.p.
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GEOLOGY OF THE EASTERN MEDITERRANEAN 7

25˚15' 25˚30' 25˚45' 26˚00'

36˚30'

36˚45'

25˚15' 25˚30' 25˚45' 26˚00'

36˚30'

36˚45'

3 nautical miles
0

200

400

600

800

1000

longitude [°]

latitude [°]

de
pt

h 
[m

]

Amorgos

Anafi

Ios

Santorini

Kameni lin
e

(m
inor f

aults
)

(m
inor f

aults
)

Anidros

S
an

to
rin

i −
 

San
to

rin
i −

 C
ol

um
bo

 lin
e

M 7.5

M 6.9

Am
or

go
s 

− 
Fa

ul
t
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found around Anidros island on an elongated axis Santorini-Columbo-Anidros, parallel to theSAF, whih indiates the ourrene of volani ativity along a fault parallel belt and notonly at one spot at Santorini. A very important feature of this volani belt is the ColumboSubmarine Volano (white dot in Fig. 1.2), whih is the fous of this study.

A ross setion derived of re�etion seismi pro�ling is given in Fig. 1.3 (Note: Viewfrom NE!). The SAF is diretly loated SE of the esarpment between Santorini, Anidrosand Amorgos. Lateral tilting of the sediment layers suggest sudden stress releases in form oflarge earthquakes in frequent intervals and underlines the existene of the above mentionedextensional stress regime.
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10 INTRODUCTIONVolano (ISMOSAV, ismosav.santorini.net) is running an onshore GPS network on Santorinithat is permanently installed to measure possible deformation signals. Here shown data(Fig. 1.4) suggests slight uplift of two spots on Thira (main island of Santorini): One spot inthe northeast, lose to Cape Columbo, and possibly another one in the southeast. The overalluplift near Cape Columbo was 15 mm for the period from 1994-2001, while for the same timesubsidene of Thirassia island of about 130 mm was observed. But also for these deformationsignals, no further investigations on short-term behaviour or relation to the seismi ativityhave been been arried out until now.1.3 The Columbo ExperimentTo study the temporal behaviour of volani earthquake lusters, a muh denser network andseismi stations in loser epientral distane, some preferably near zero-o�set, are neessary.Similar experiments at o�shore volanoes (e.g. Hensh et al., 2008) have already shown thatan improvement of the event loation residuals by a fator of 10-20 is possible, one azimuthalgaps around the soure region are losed. Hypoentral depths an be estimated more pre-isely using zero-o�set stations and events are relatively reloated using waveform-orrelationtehniques.We therefor installed a network of 4 Oean-Bottom-Seismometers (OBS) and 4 of thenew OBTs on top of the Columbo Reef and its viinity between 10th of June 2006 and 27thof Marh 2007. Fig. 1.5 shows the bathymetry and the positions of the OBT pro�le overColumbo and the losest OBSs. For a detailed desription of the amphibian network andstation positions see hapter 2. OBTs were additionally equipped with hydrophones to reordseismi signals. Tehnial details of the new Hamburg OBT system are given in hapter 3.The tiltmeter pro�le (Fig. 1.5) was deployed along the third prinipal stress axis σ3, sinepossible intrusions suh as a dike would open along an axis perpendiular to σ3 (Rubin andGillard, 1998a). The smallest deformation wavelength and thus largest tilt gradients are thusexpeted along σ3. Even the shape of the Columbo volano is learly elongated perpendiularto σ3, indiating the predominane of NE-SW orientation of dikes.Parallel to our experiment, the EGELADOS experiment, another amphibian network witha large number of landseismometers and additional 24 OBSs (see hapter 2.1.2), was performedin the omplete Aegean Sea region. In ollaboration with our German, Greek and Turkishpartners, all networks were joint to a large database for several subprojets and thus we hadaess to muh more seismi data of the surrounding islands to omplete our data set.These temporal improvements enabled us to preisely investigate six earthquake swarmsthat ourred during our experiment and investigate their behaviour in terms of possiblemigration paths or repeating patterns of event distributions.
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12overviews on data-proessing steps.All observations are �nally disussed together with modelling approahes and other �nd-ings of all main topis in Chapter 7. Results of ative measurements during the Columbodeployment ruise in June 2006, ative seismi and magneti pro�ling, and additional �nd-ings beside the main topis are taken into aount to disuss our �ndings.



CHAPTER 2DATA ACQUISITION
The Columbo Seamount Oean-Bottom-Seismometer (OBS) and Oean-Bottom-Tiltmeter (OBT)Experiment took plae at and around the Columbo submarine volano between 10th of June2006 and 27th of Marh 2007. The data set is omposed of own OBS/OBT data and passiveseismi data of the amphibian EGELADOS network (see setion 2.1.2), whih overed thewhole Aegean Sea, major Aegean islands and Greek and Turkish mainland in the viinity ofthe Aegean Sea during the same time. We also had aess to data of the permanent networkof the National Observatory of Athens (NOA). Parallel to the deployment of 4 OBSs and4 newly developed OBTs (for tehnial details see hapter 3), 1.500 km of high frequenyre�etion seismi, magneti and gravimetri pro�les were measured.While the installation of onshore stations was organized by the EGELADOS projet part-ners of Bohum, Thessaloniki and Istanbul, the deployment of o�shore stations and ativemeasurements was arried out during three ship ruises:

• 18th - 30th of May 2006: Heraklion (Crete) - Piraeusdeployment of EGELADOS OBSs in the southern Aegean SeaRV Poseidon, ruise P337, hief sientist Prof. Dr. Wolfgang Friederih
• 1st - 12th of June 2006: Piraeus - Piraeusdeployment of Hamburg OBSs/OBTs at Columbo and ative measurementsRV Poseidon, ruise P338, hief sientist PD Dr. Christian Hübsher
• 27th of Marh - 11th of April 2007: Piraeus - Piraeusreovery of EGELADOS and COLUMBO OBSs/OBTs in a joint ruiseRV Aegaeo (Helleni Center of Marine Researh), hief sientist Prof. Dr. TorstenDahmI took part in all three ruises, on the 2nd and 3rd ruise I was responsible for the HamburgOBS/OBT deployment and reovery. This hapter gives an overview on the di�erent legs andmethods of the joint experiments. 13



14 DATA ACQUISITION2.1 Passive measurementsDi�erent types of o�shore seismi and deformation sensors have been deployed around Columboto better analyze seismiity and to get lose enough to potential deformation soures.2.1.1 The Columbo OBS/OBT ExperimentReent studies on the seismiity of the Columbo seamount and the tetoni faults in its viinitywere based on data reorded on islands (e.g. Bohnho� et al., 2006; Dimitriadis et al., 2009).Although the area allowed the installation of dense networks on the surrounding islands, theseexperiments had to deal with large unertainties in loation, espeially depth, of the eventsdue to partly large azimuthal gaps and missing zero-o�set stations. With the deployment ofseismi sensors in the diret viinity of the seamount and even on its top, azimuthal gapsbetween the surrounding islands were losed and the sensitivity of the network, i.e. themagnitude threshold of detetable events signi�antly dereased (see Tab. 2.1):network remarks 3 losest stations automati triggers ML thresholdNOA permanent SANT, APE, AMOE 4 3.5EGELADOS temporary NEAK, ANID, IOSI 800 2.0COLUMBO temporary all OBSs/OBTs 14.000 0.5Table 2.1: List of automati triggers of di�erent networks. The sparse permanent NOA network triggeredonly events above magnitude 3.5. The denser the temporary networks are, the more the number of triggersinreased, while the magnitude threshold sank. For the Columbo network, these were over 14.000 triggers ofwhih around 90% were "real" events and only 10% mistriggers or noise, the threshold ould be dereased to
ML = 0.5.Oean bottom stations were installed as shown in Fig. 2.1: OBSs between the islands ofIos, Anidros and Ana�, between Columbo and Santorini as well as on the bak side of theColumbo aldera towards the Santorini Amorgos Fault. Furthermore, all OBTs were equippedwith hydrophones in order to measure seismi signals. Di�erential Pressure Gauges (DPGs,Sripps Institution of Oeanography, for tehnial details see Cox et al., 1984) to measurelong period relative pressure signals from 60 s up to 5 Hz were mounted on OBSs 50 and 51,i.e. those OBSs losest to the seamount.The Tiltmeter stations were deployed diretly on top of the seamount (see Fig. 2.2), sinerustal deformation due to magmati asent is best reorded loally. The pro�le is designedasymmetri due to unknown depth and size of a possible migrating �uid bath: A deepsoure auses slight deformation of a larger region, while a shallow soure auses strongerdeformation of a muh smaller region. Depth and volume dependenies of the deformationsignal are modeled in Chapter 4.2.2. Furthermore, the OBT pro�le was deployed along theweakest stress axis σ3. The strongest tilt signal ours in the in�exion points of uplift (or
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16 DATA ACQUISITIONpositions, poles and zeros et. is given in Appendix A.The deployment ampaign started on 1st of June 2006 from the harbour of Piraeus withthe German researh vessel RV Poseidon. The �rst week of the expedition was used for ativemeasurements (see hapter 2.2), while OBSs and OBTs were assembled on board. The �naldeployment took plae on the 10th of June.The reovery ruise �nally started on midnight of 26th/27th of Marh 2007 from Piraeuswith the Greek researh vessel RV Aegaeo of the Helleni Center of Marine Researh (HCMR),in ollaboration with the EGELADOS OBS reovery of the RUB. The target area aroundColumbo was reahed during the evening of the 27th. During an overnight reovery, allHamburg OBSs/OBTs ould be reovered within less than 12 hours.Exept for OBT 56, all OBSs/OBTs ould be synhronized with GPS to interpolate theirlok-drift over the omplete data set. All synhronized reorders showed drifts smaller than0.8 s and an average drift of around 0.05 s
month . OBT 56 shut down only 35 days after itsdeployment due to a water leakage in the battery ylinder whih a�eted both, tilt and seismireording as well as the absolute pressure sensor and its logger. All stations were showingunusual strong orrosion damages, suh as rusty srews and ritially orroded releaser hous-ings. The so alled "stainless"-steel of the absolute pressure sensors was partly dissolved sothat water ran into the sensors and destroyed them.Another interesting aspet was, that there was strong lime-aretion on all OBS frames ifthey were deployed above the ritial depth where lime beomes ompletely dissolved in water(the lysoline for arbonate dissolution an be expeted at about 3.500-4.000 m depth aord-ing to Berger, 1973). This aretion was observed for all Hamburg OBSs, OBTs 54 and 57and most EGELADOS OBSs despite of those deployed in the deep-sea trenh south of Crete.But for both OBTs 55 and 56 whih were standing losest to the aldera rim of Columbo,no aretion, but strongest orrosion damages were observed after deployment. This mightindiate an aidi hemial regime due to fumarole ativity inside the aldera.Sine ative levelling of the OBTs was exeuted the �rst time on 11th of June and onere-levelling (every 48 hours) was awaited as well as the passive levelling of the OBSs requiresseveral hours to reah its perfet vertial adjustment, we used data between the 1st of July2006, 00:00 UTC, and 27th of Marh 2007, 12:00 UTC, for proessing. Smooth nonlineartrends on the tiltmeters for the �rst days of data olletion suggested an initial phase ofsinking and setting of the instrument frame of about 3 weeks after deployment. This periodwas not used for data interpretation.All results presented in this thesis orrespond to the time window 1st of July 2006 00:00UTC - 27th of Math 12:00 (269.5 days).
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Figure 2.3: Sienti� rew of the reovery ruise (RV Aegaeo). Researh vessel AEGAEO (HelleniCenter of Marine Researh, Athens) in the harbour of Piraeus (left-hand side photo) and the sienti� rewof the reovery ruise: Upper row, from left to right, Torsten Dahm, Martin Hensh and Sven Winter (allUniversity of Hamburg, UHH), Wolfram Geissler (AWI), Kasper Fisher (Ruhr-University Bohum, RUB),Tunay Taymaz (Istanbul Tehnial University), Reinhard Shrutzky (SEND GmbH), mid row, WolfgangFriederih (RUB), Erik Labahn (KUM Kiel), Mehita Shmidt-Aursh (AWI), front row, Celia Rios (UHH),Domenios Vamvakaris (Aristotle University of Thessaloniki), Andreas Shmidt (RUB).2.1.2 The EGELADOS ExperimentThe EGELADOS experiment ("Exploring theGEodymanis of subduting Lithosphere usingan Amphibian Deployment Of Seismographs", (Friederih and Meier, 2008)) was a passiveseismi experiment in the Helleni Subdution Zone, onduted within the framework ofthe Collaborative Researh Center CRC526 "Rheology of the Earth" at the Ruhr Univer-sity Bohum (RUB), funded by the German Researh Foundation (DFG).The COLUMBO projet is arried out in lose ooperation with EGELADOS, both exper-iments were performed parallel and data is exhanged between all partiipating institutions(see Appendix F). Between autumn 2005 and spring 2007, 51 broadband seismometers of theRUB and the German pool of amphibian seismographs (DEPAS) were mounted in addition tothe existing NOA network on the Aegean islands and the adjaent Greek and Turkish main-land. By the middle of May 2006, the densi�ed network was ompleted with 24 DEPAS OBSsbetween the Aegean islands and south of Crete along the Heleni trenh. The o�shore deploy-ment was also arried out by RV Poseidon, shortly before the Columbo expedition and thereovery was done in ooperation with the Columbo projet with RV Aegaeo (27th of Marh- 11th of April 2007).A station map of EGELADOS is given in Fig. 2.4, a list of stations is given in App. A.1.For our reloation and moment tensor inversion routines, we only used EGELADOS stationsbeing less than 80 km away from Columbo for two reasons: Limited disk spae (the ompleteSEISAN setup for the omplete Columbo network inluding 15 landstations over the ompletetime is about 400 GB) and variations of the veloity model outside the Helleni Volani Ar
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Figure 2.4: The EGELADOS network onsisted of 104 seismi stations, of whih 24 were installedo�shore in the entire Aegean Sea between latitudes 34.5◦N and 38◦N and longitudes 21.5◦E and 29◦E. Inaddition to o�shore stations, the Aegean islands, as well as Greek and Turkish mainland were overed withseismometers.(a 1D model of the Santorini-Columbo volani omplex was used, the regional model forthe Aegean Sea is faster and thus led to di�erenes in piked and alulated traveltime upto 3 s for stations > 200 km away). SEISAN and MTInvers are not able to handle a moredimensional veloity model.2.2 Ative measurementsWhile passive seismi measurements as desribed above deliver an image of present ativity ofthe target area (loation, frequeny and strength of ativity), ative measurements were usedto image the subsurfae (sediment thikness, layers of former eruptions et.). The investigationof the ative data is the task of two diploma students at the Institute of Geophysis at theUniversity of Hamburg and will only be shortly introdued here; already existing results willbe inluded in the disussion of the passive data.
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CHAPTER 3THE NEW HAMBURG OCEAN BOTTOMTILTMETER (OBT)
While ommon tehniques, suh as InSAR or GPS measurements, have already been provento be valuable in monitoring onshore deformation signals due to magmati reharging, bothmethods are not appliable to assess the state of ativity for submarine volanoes or thesubmarine slopes of volani islands. A �rst step towards measuring deformation related tiltof the sea�oor is the development of the Hamburg Oean Bottom Tiltmeter (OBT), whose fourprototypes have been deployed in the pilot-experiment at Columbo. This hapter summarizestehnial details of the OBT and �rst experienes in pratial use.3.1 Tehnial desriptionCore of the new Hamburg OBT is a highly sensitive 2 omponent tiltmeter, manufaturedby Lippmann Geophysikalishe Messgeräte (Germany). Eah omponent of the tiltsensor isa pendulum whih is kept at the zero-position in an eletri �eld. One the instrument istilted, this auses a slight horizontal aeleration (as a small omponent of the gravity) on thependulum. To maintain the pendulum at its zero-position, the instrument adjusts the eletri�eld aordingly. The hange in voltage used to keep the pendulum at its zero-position is themeasured variable to alulate for tilt.The instrument inluding a gimbal system is mounted in a 17" glass sphere whih arealso used for the Hamburg Oean-Bottom-Seismometer (Dahm et al., 2002) and thus an bedeployed using the standard Hamburg OBS-frame. The tiltmeter has a theoretial resolutionof 2 nrad. Reording the data with the SEND Geolon MLS (SEND GmbH Hamburg, Ger-many) with a sampling rate of 50 Hz (18 bits resolution), results in a �nal resolution of about15nrad. The range of the sensor is ±4 mrad (4000 µrad), but the range is extended to severaltens of degrees through mehanially relevelling the sensor platform (external gimbaling, seeFig. 3.1).
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24 THE NEW HAMBURG OCEAN BOTTOM TILTMETER (OBT)Beause this highly sensitive sensor is mounted on a freefall oean bottom instrumentframe, the instrument design alled for ertain requirements:
• A tilt of the terrain of up to 45◦ should be aommodated by the external gimbal system
• The system should level the tiltmeter sensor platform to better than ±50 µrad

• During operation, the sensor is mounted on the bottom of the glass sphere at 3 pointsby gravity, i.e. it stands free on the bottom of the sphereThose requirements were obtained by developing a two phases leveling proess: The exter-nal gimbaling system of made ardani aluminium rings is �xed to the lower half of the glasssphere. A highly sensitive leveling stage of the sensor platform (manufatured by Quante) is�xed below the enter of the external gimbaling's aluminium rings (see Fig. 3.1). The sensorplatform is onneted to the external gimbal system through three nylon strings that arelength ontrolled by a small eletri motor. This allows to lower and raise the sensor platformwith an auray of better than ±5◦. One the platform rests on the bottom of the sphere,the internal leveling devie of Quante levels the sensor down to an auray of about 10 µrad.
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GIMBALLINGFigure 3.1: Sketh and photo of the OBT sensor sphere. A) Sketh of the sensor sphere of the OBT:The internal gimbaling system is hosting the tiltsensor and is hanging in the external ardani gimbaling.Nylon strings enable to mount and unmount the sensor. B) The aluminium rings of the external gimbalingand how they are mounted to the sphere are shown in the upper photo. On top, the steering eletronis arevisible, through the glass sphere, the leveling stage hosting the tiltmeter an be rudely seen. The lower photoshows, how the sensor sphere is mounted on the oean bottom frame (other spheres are for �oatation only).



FIRST EXPERIENCES IN PRACTICAL USE 25One the system is deployed, it an be programmed to rest for a given number of daysbefore the �rst leveling of the system is arried out. Afterwards, the system is releveled on aregular basis (in our ase every 48 hours, sine it was unlear how fast the signals ould reahthe limits of the instrument's dynami range during this pilot experiment). One disadvantageof the system is that tilt steps aused by leveling of the sensor platform (internal and externalgimbaling) are not measured by an independent sensor and have to be estimated and removedfrom data during postproessing.
A) B)

Figure 3.2: Photos of absolute pressure gauge and OBT deployment A) The absolute pressuregauge (vertial ylinder) is mounted at the side of the OBS/OBT-frame. It uses a power supply independentfrom the tiltmeter and MLS data logger, its data a reorded on a separate logger (horizontal ylinder). B)Deployment of the OBT system at Columbo seamount (Santorini island in the bakground). The instrumentsinks to the sea bottom using an anhor-weight (iron rails), it an be reovered by releasing the weight andasending due to its own buoyany. One it reahes the sea surfae, radio beaon and �ash light help to �nd iteven in rough sea or during the night. The batteries and the MLS data logger are stored in the large pressuretubes on the beside of the frame.In addition to the two tilt traes, we also reorded the temperature inside the sphere inorder to detet a possible temperature dependene of the tilt signals. The instrument framealso hosts a OAS-hydrophone to ollet seismi data (lower orner frequeny is fc = 0.3 Hz)and a highly sensitive absolute pressure sensor (see Fig. 3.2) manufatured by Parosienti�to observe possible uplift and subsidene with a resolution of 0.1 mbar = 10 Pa whihorresponds to a vertial displaement of 1 mm.3.2 First experienes in pratial useFollowing subsetions give a short overview what kinds of signals an be measured with theOBT - from its �rst steps in the laboratory to its pilot-deployment in the Aegean Sea.3.2.1 Calibration in the laboratoryThe tiltsensor was alibrated in the laboratory using a tilt-table as shown in Fig 3.3 bysplitting the gravity g into aelerations normal z” and parallel x” to the table.
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Figure 3.3: Tilt-table used for tiltmeter alibration: Raising and lowering the tilt table at one sideusing a mirometer srew auses a tilt α. Gravity g is thus splitted in two omponents normal and parallel tothe table. The table-parallel omponent ats as a horizontal aeleration omponent x” of the gravity g.The alibration itself is relatively simple: By applying a pre-de�ned step dz on a tablewith the length l using a mirometer srew (see Fig. 3.4), the sensor measures a step-like tiltsignal of α = (dz
l ).For eah sensor and eah omponent, several steps of varying size are measured, a onstant

k = α/A [rad/count] with A as the amplitude of measured ounts and α as the tilt angle anbe derived through linear regression.
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(3.1)This value is used from here on to onvert the digitized signal into a tilt signal. Calibrationplots and tables for all used sensors an be found in Appendix C.



FIRST EXPERIENCES IN PRACTICAL USE 273.2.2 Test measurements in the Blak Forest Observatory (BFO)To better understand the �rst data measured outside the laboratory, two OBT systems wereinstalled in the mining shaft of the Blak Forest Observatory (BFO) in southern Germanyfor 4 weeks in Marh/April 2008. The originally planed "huddle-test" to analyze possibledeviations between two sensors that are operating diretly next to eah other failed due to ashut-down of one of the OBT systems due to battery problems. The test was also intendedto see if there were onstrutionally aused deformation signals, suh as e.g. de�etion of theframe. The BFO was hosen beause of low noise onditions inside the mine to better studythe harateristis of the instrument.
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Figure 3.5: Regional earthquake observed at the BFO. Un�ltered rawdata of a loal earthquake atabout 50 km epientral distane was observed on 31st of Marh 2008 during the test measurement at the BFO.A loal seismi earthquake was reorded on 31st of Marh 2008 (Fig. 3.5). Without any�ltering, this event is learly separated from noise and thus proves the funtionality of thetiltmeter for high frequenies. A long period signal measured during the test period of 22 dayswas an exponential dereasing trend or drift. It is unsure whether these strong, but quiklyreduing trends derive from sensor drifts or the omplete tiltmeter setup of the OBS/OBTframe, e.g. due to relaxation of srews or yielding of the underground. A similar drift for theinitial phase has been observed on the 4 OBTs at the Columbo seamount and as a onsequene,the �rst 3 weeks of data were ut o�.
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Figure 3.6: OBT traes of BFO measurement. Traes for both omponents of a tiltmeter running inthe BFO mine. The �rst trae of eah omponent is unproessed. It inludes levelling events (peaks), theseond trae is ut for these events and the trend beomes visible showing an exponential deay.Unfortunately, due to the unexpeted strong initial drift and beause of the relativelyshort test period, we were not able to resolve the week tilt signals aused by solid earth tidesat the BFO. A long period funtionality test on the resolution of tides with periods of about12.5-13 hours is still open.3.2.3 Overview on signals observed at ColumboCompared to o�shore measurements, where noise is indued due to sea waves, urrents andship tra�, noise at the BFO was smaller by a fator of up to 30 (see Fig. 3.7). This e�etis also supported by the oupling of the instrument: While a onrete blok on a fundamentof bedrok is the optimal setup to ouple our OBT frame to the ground, the reality at theseamount looks di�erent. There, the instrument is dropped onto unonsolidated volanideposits (sediments). Coupling to the see�oor is only granted by the anhor weight of 120 kgmounted to the OBT-frame (the weight of the omplete system under water is 20 kg).Similar to the reordings at the BFO, high frequeny earthquake signals are well resolvedon the OBT at Columbo (see Fig. 3.8). Although the upper orner frequeny of the tiltmeteris about 3 Hz, loal events at Columbo with dominant frequenies between 3-10 Hz are stillreorded by the system. Onsets of arriving waves are not as sharp as they are on a seismome-ter, but an be used to pik onset times. Low frequeny earthquake data, as generated byteleseismi events, have been observed very lear by the OBTs (see Fig. 3.9 for the MW = 8.3Kuril islands earthquake, 15th of November 2006). Compared to a STS2 seismometer (station
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50 2000 100 150100 150 2000 50Figure 3.7: Noise omparison: BFO vs. Columbo. Timetraes of 200 s eah for noise in the BFO mineand o�shore at Columbo. Noise amplitudes at Columbo is up to 30 times higher than for the BFO. Further,the noise frequeny seems to be higher at Columbo.IOSI, lower traes), the tiltmeter (upper traes) niely resolves long period seismi signals,here bandpass �ltered between 0.01 − 0.1 Hz to analyze periods below 10 s. Although tele-seismi events were not further investigated in this work, this plot evidenes the suessfulobservation of broadband seismi signals on the sea�oor with our OBT.Fig. 3.10 shows a high frequeny tilt step that ourred simultaneously to the arrival ofS-waves at a small epientral distane. The low frequeny oda of the horizontal omponentsof the seismometers indiate that in fat a tilting of the instrument ourred. These tilt stepsould be interpreted as near-�eld displaement of the earthquake soure, whih was only about1 km away from the losest OBT. Similar high frequeny tilt signals were observed severaltimes over the omplete experiment. They will be disussed in the hapter on soure theory(see hapter 4.2.1), where near-�eld terms are modelled.Further signals of interest are trends or step-like transients lasting over hours and days.These transients are mostly found simultaneously to earthquake swarms and radial to the lus-ter entroid. They are suspeted to be related to tetoni and/or volani ativity. An examplefor suh a signal is given in Fig. 3.11: During a 22 hours long earthquake swarm on 28th ofJuly 2006 at the south-western �ank of Columbo, about 1 km away from OBTs 54 and 55, asatter of the tilt omponent radial to the luster entroid an be observed (tiltmeter traeswere rotated in diretion of the luster entroid to derive a radial and a transversal ompo-nent of tilt). The sensor is �rst tilted away (i.e. it measures subsidene in diretion of thesoure epienter), before a strong signal with a period of around 4 hours and a maximum pos-itive tilt in diretion of the luster is observed. (see modelling in Chapter 4.2 and disussionChapter 7).A last signal of interest are global trends, i.e. trends or possibly drifts of the instrumentover the entire time of the experiment. Although these trends an be easily removed during
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Figure 3.8: Loal earthquake on OBT54 and OBS50. High frequent loal events are deteted on both,the tiltmeter (upper plot, trae 1 is an OAS-hydrophone) and the standart OBS system using a DPG relativepressure gauge (trae 1) and an EP300 seismometer (traes 2-4).proessing, they might shed light on onstrutional de�ienies of our system or sensitivityto temperature hanges. Fig. 3.12 shows both traes of OBT 57 for the omplete time of theColumbo experiment. Trends seem to be varying, whih argues for the superposition of twoor more trends rather than a onstrutional or temperature aused drift. The general trendsobserved on the di�erent tiltmeters are disussed in hapter 6.3.
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Figure 3.9: Teleseismi event on OBTs and STS2. The MW 8.3 Kuril Islands earthquake of 15th ofNovember 2006. Plotted traes are transversal omponent of the tiltmeters (�rst three traes) and of anonshore STS2 seismometer (station IOSI, fourth trae). Tilt traes have been integrated to ompare themwith the veloity traes of the STS2.
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time [s]Figure 3.10: Short period tilt-signals simultaneous to an earthquake of ML ≥ 3). The left handplot shows rawdata, the right hand plot lowpass �ltered data at 1 Hz. On tiltmeters (both lower traes), thisis a stati step that ours rudely parallel to the S- or surfae wave onset.
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FIRST EXPERIENCES IN PRACTICAL USE 33

0

250

500

750

0

250

500

750

196 224 252 280 308 336 364 392 420

-500

-250

0

250

-500

-250

0

250

196 224 252 280 308 336 364 392 420

tilt [µ
rad] til

t [
µ

ra
d]

OBT 57 comp. X1 

comp. X2

time [julian day]

time [julian day]

Figure 3.12: Global trend of OBT 57.Traes X1 and X2 of OBT 57 over the omplete time of the Columbo experiment show varying trends in termsof amplitude, orientation and permanene: While the trend of X1 suddenly inreases around Julian day 340.it slightly dereases on X2.

tides ???

f [Hz]

am
plitude

powerspectrum over 7 days (LP filtered at 0.5Hz)

sea microseismicity

Figure 3.13: Powerspetrum of OBT 54 E omponent at Columbo over 7 days, lowpass �ltered at0.5 Hz. Red arrows indiate frequenies of expeted solid earth tides and miroseismi peaks.



34



CHAPTER 4THEORY OF SEISMIC ANDDEFORMATION SOURCES
This hapter introdues earthquake mehanisms and three types of deformation soures: Thefault soure model as well as two volume soure models, the Mogi model for spheri volumesand the Dike model. Setion 4.2.2 is of great importane for the later following modeling ofa propagating Mogi soure.4.1 Seismi souresVolanotetoni earthquakes at Columbo were all of Magnitude ML ≤ 4.6, maximum spatialfault plane dimensions are smaller than a few hundred meters and radiated energeti waveshave wavelengths from tens of meters to some km. We use the point soure approximationthat is valid for soure dimension smaller than the wavelengths of interest (λmin ≃ 135 m for
fmax = 20 Hz and vS = 2.7 km/s for the shallowest layer).4.1.1 Earthquake mehanismA rupture starts at a nuleation point, the hypoenter, and slips rapidly over a fault surfae.Both veloities, rupture and slip veloity, are in the range of seismi waves whih makes themapable to radiate free waves. The pattern of this radiation is ontrolled by the fault planeorientation whih itself is a result of the lithostati stress regime (a 3D stress elipsoid). Theradiation pattern leads to two possible fault solutions, whih are orthogonal to eah other.From low frequeny wave observations only, it is not possible to distinguish between the atualand the auxiliary fault plane (see Fig. 4.1). A ommon way to illustrate fault plane solutionsis the projetion of P-wave nodal planes onto the lower or bakward foal hemisphere (e.g.Stein and Wysession, 2003; Lay and Wallae, 1995), see Fig. 4.2. The nodal planes representthe possible fault planes, while nodal points indiate pressure axis (P) and tension axis (T)of the strain release tensor. The intersetion point of the potential faults indiates the null35
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Figure 4.1: De�ning parameters of a fault, here oblique thrust faulting, with Φ as the strike, δ as thedip and λ as the rake or slip angle. The resulting foal mehanism is given on the right hand side of the plot.The atual fault plane is marked red. For other foal solution types see Stein and Wysession (2003).axis (B). Priniple axes of the stress tensor are similar, but not neessarily idential to thepriniple axes of the strain release tensor.The geometrial desription of a fault plane is given by the strike (0◦ < Φ < 360◦,azimuth from north), the dip (0◦ < δ < 90◦, angle from horizontal) and the rake or slip angle(−180◦ < λ < 180◦, angle between strike diretion and the slip vetor).Tehniques to determine fault mehanisms are analysis of P-wave polarity and SV-P am-plitude ratios (Snoke et al., 1984), or the inversion for the moment tensor when omparingtheoretial with observed waveforms.Fig. 4.2 gives an overview on single, single ouple and double ouple fores, as well as thenine fore ouples representing the omponents of the seismi moment tensor. A fore ouplean have two forms: Mxy has two fores normal to an o�set d and thus a torque and Mxx asa fore dipole without torque. Slip on a fault is equivalently desribed as the superpositionof either a double ouple like Mxy or Myx or dipoles Mx′x′ and −My′y′ . Eah moment tensoromponent onsists of two opposite fores separated by an o�set. The net fore and net torqueof the moment tensor is zero.Seismi wave radiation due to single fore soures are found for example for land slides.Probably beause of the generation of torques, no geophysial proesses have been found whihare best modeled using single fore ouples (Stein and Wysession, 2003), with one exeption:Earthquakes due to avity ollapses might re�et a torqueless single fore ouple (Mzz, seeFig. 4.2 and Hasegawa et al. (1989)). A pair of fore ouples as shown in Fig. 4.2-A, i.e.a double ouple fore system, is su�ient to give a point soure representation of a shear
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M0 is de�ned as the salar magnitude of the equivalent bodyfores, M0 =

√
∑

Mij

2 [Nm℄ or[dyn·m℄(Jost and Hermann, 1989). The moment magnitude is given with MW = 2
3 log10 M0−

10.73 (Hanks and Kanamori, 1979) for M0 in dyn cm. The moment tensor an be deomposedinto an isotropi and a deviatori omponent using its eigenvalues ei (Jost and Hermann,1989):
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(4.1)
whereas the trae tr = e1+e2+e3

3 is the isotropi omponent of the moment tensor and
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e′1 = ei − tr the eigenvalues of the deviatori omponent. The isotropi omponent isrepresented by 3 orthogonal vetor dipoles and indiates volumetri hanges of the soure(Müller, 2007). The deviatori omponent an be further deomposed into a pure doubleouple and a ompensated linear vetor dipole (CLVD). As it represents a pure shearfrature, the double ouple omponent is of most interest to analyze tetoni earthquakes. Itis de�ned as follows:

Mij = µA(uiνj + ujνi) (4.2)with µ as the shear modulus and A as the fault plane area. ~ν is the normal vetor of thefault, ~u the slip vetor. The term in brakets desribes the moment tensor of a double ouplesoure MDC. Due to the required symmetry of the tensor, ~ν and ~u an be interhangedwithout altering the radiation pattern, whih leads to the ambiguity of the real fault planeand the auxiliary plane. The moment tensor of a pure double ouple soure is then de�nedin the prinipal axis oordinate system as:
MDC = M0








1 0 0

0 −1 0
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(4.3)
The moment tensor of the example in Fig. 4.2 (lower left) is:
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(4.4)
The Tensor of the CLVD omponent, MCLVD (Knopo� and Randall, 1970), is interpretedas a linear vetor dipole ompensated for a volumetri hange:
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︸ ︷︷ ︸
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(4.5)
A harateristi CLVD tensor onsists of two equal eigenvalues and a third one that istwie their negative value. E.g. for volani earthquakes, Cesa et al. (2007) disuss tensileraks due to asending magma dikes.Assuming the DC and CLVD omponents to be aused by the same stress �eld, also P-,T- and Null-axes are the same for both omponents. The full moment tensor M is thereforgiven by (see Jost and Hermann, 1989; Dahm et al., 2004):

M
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= tr








1 0 0

0 1 0

0 0 1








︸ ︷︷ ︸

isotropic

+(e2 − tr)








1 0 0

0 1 0

0 0 −2








︸ ︷︷ ︸

CLV D

+(e1 − e2)








1 0 0

0 −1 0

0 0 0








︸ ︷︷ ︸

DC

(4.6)Solving the isotropi omponent for volani earthquakes is di�ult. Sine most of theColumbo seamount events are assoiated with tetoni earthquakes, we only inverted seismiwaveforms in the far-�eld for their deviatori omponent and its double ouple perentage.i.e. the last term in Eq. 4.6.4.2 Deformation souresThe �lling of a magma hamber, magmati diking, aseismi reep on preexisting faults and/ortetoni events may have aused stati deformation and tilt at Columbo. This setion is onthe theory of the three possible soures of stati deformation that are regarded in this study,i.e.:
• The Fault Soure Model (near-�eld terms of strike-slip-, normal- and reverse-faulting)
• The Volume Soure Model for a spherial volume (Mogi-Model)
• The Volume Soure Model for a dike (lentiular volume)



40 THEORY OF SEISMIC AND DEFORMATION SOURCES4.2.1 The Fault Soure ModelStati ground deformation and tilt in a seismially ative region may be aused by near-�eldterms of the radiated waves of earthquakes. In opposite to ontinuous volume inrease as it isexpeted for loading of a magma reservoir, earthquakes ause sudden and rapid displaementand thus a high frequeny deformation signal. An example for that is given in Fig. 4.3 for a
ML = 3.7 earthquake during a swarm on 28th of July 2006, diretly underneath the volano.Both instruments show their expeted reation during a stati horizontal aeleration: While itis a step on the tiltmeter traes, seismometers start swinging with their lower orner frequenyand quikly beome attenuated. There is no doubt that this deformation signal is de�nitelylinked to the aompanying earthquake, but it might re�et both, near-�eld terms or tiltingof the omplete instrument or its arrier system due to ground vibration.

B)A)
counts

counts

time [s] time [s]Figure 4.3: Example for a high frequeny tilt signal. 4 traes horizontal omponents of seismometers(OBS50 and OBS52, both upper traes) and tiltmeters (OBT55 and OBT57, both lower traes) of a ML = 3.7earthquake on 28th of July 2006, diretly underneath Columbo seamount. A) shows rawdata and B) lowpass�ltered data at 1 Hz. The response of both instruments di�ers: While seismometers start swinging at theirlower orner frequeny, tiltmeters show a stati o�set.Theory and software of the now following modelling orrespond to the work of YoshimitsuOkada, "Internal deformation due to shear and tensile faults in a half spae" (Okada, 1992),developed for a �nite retangular soure. This setion onentrates on the modelling of theminimum seismi moment M0 that is needed to trigger a visible signal on both deformationsensors, tiltmeter and absolute pressure gauge. Theory is shortened to its basis:Fig. 4.4 shows the de�nition of a retangular soure as it was used for modelling. L isde�ned as the length of the fault, W as its width and δ as the dip angle.The initial approah starts with a single fore F in a homogeneous half-spae:At the point of observation (x1, x2, x3), uj
i (x1, x2, x3; ξ1, ξ2, ξ3) is the i-th omponent of thedisplaement aused by the j-th diretion of fore F at its point of ourrene (ξ1, ξ2, ξ3)(Press, 1965).



DEFORMATION SOURCES 41

L

W

δ

U2

U3

strike−slip

dip

tensile

z y

x

−c

U1

Figure 4.4: Retangular soure model. Geometry of �nite retangular soures for strike-slip, dip andtensile faults. (Okada, 1992)Written in equation form:
uj

i (x1, x2, x3) = uj
iA(x1, x2,−x3) − uj

iA(x1, x2, x3)

+uj
iB(x1, x2, x3) + x3u

j
iC(x1, x2, x3) (4.7)The �rst term in equation 4.7, uj

iA(x1, x2,−x3), represents the displaement �eld due to asingle fore at (ξ1, ξ2, ξ3) in an in�nite medium. The seond term, uj
iA(x1, x2, x3), orrespondsto a ontribution of an image soure of F at (ξ1, ξ2,−ξ3) in the same medium. The polarity ofthe image soure is swithed from one to the other omponent, so that the surfae displaementvanishes when both terms are ombined.The third term, uj

iB(x1, x2, x3), and the part uj
iC(x1, x2, x3) of the fourth term are depthdependent. For an observation at the surfae of a half-spae, x3 = 0, the fourth term beomeszero, terms one and two eliminate eah other and the remaining term is uj

iB(x1, x2, x3). Eq.4.7, the fundamental equation for the internal displaement �eld due to a single soure in ahalf-spae onsists of two in�nite medium terms (A), a term related to the surfae deformation(B) and a depth multiplied term (C).To get equations for displaement �elds aused by nuleation points of strain, i.e. adouple-ouple point soure, ξk derivatives of Eq. 4.7 are needed:
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∂uj

i

∂ξk
(x1, x2, x3) =

∂uj
iA

∂ξk
(x1, x2,−x3) −

∂uj
iA

∂ξk
(x1, x2, x3)

+
∂uj

iB

∂ξk
(x1, x2, x3) + x3

∂uj
iC

∂ξk
(x1, x2, x3) (4.8)For pratial use, three typial soures are onsidered, the strike-slip, the dip-slip andthe tensile point soure. For the following equations, soures are plaed at (0, 0,−d) of a

(x, y, z) oordinate system, with −d as the depth, the fault strike is parallel to x and the slipis dextral for −π < δ < 0 and sinistral for 0 < δ < π. The sense of dip slip is normal for
(π/2 < δ < π or − π/2 < δ < 0) and reverse for (0 < δ < π/2 or − π < δ < π/2).A disloation ∆uj(ξ1, ξ2, ξ3) aross a surfae Σ in an isotropi medium auses a disloation�eld ui(x1, x2, x3), whih an be desribed using summation onvention (Steketee, 1958):

ui =
1

F

∫ ∫

Σ
∆uj

[

λδij
∂un

i

∂ξn
+ µ

(

∂uj
i

∂ξk
+

∂uk
i

∂ξj

)]

νkdΣ (4.9)with λ and µ as Lamé parameters and νk as the diretion osine of the normal to thesurfae element dΣ. The displaement �eld ~u an now be synthesized using the displaement�eld due to strain nuleation points, ∂~uj/∂ξk.- Strike-Slip point soure (moment = M0):
~u =

M0

F

[

−
(

∂~u1

∂ξ2
+

∂~u2

∂ξ1

)

sin δ +

(

∂~u1

∂ξ3
+

∂~u3

∂ξ1

)

cos δ

] (4.10)- Dip-Slip point soure (moment = M0):
~u =

M0

F

[(

∂~u2

∂ξ3
+

∂~u3

∂ξ2

)

cos 2δ +

(

∂~u3

∂ξ3
+

∂~u2

∂ξ2

)

sin 2δ

] (4.11)- Tensile point soure (intensity = 2M0 for the uniaxial part and (λ/µ)M0 for the isotropipart):
~u =

M0

F

[

2α − 1

1 − α

∂~un

∂ξn
+ 2

(

∂~u2

∂ξ2
sin2 δ +

∂~u3

∂ξ3
cos2 δ

)

−
(

∂~u2

∂ξ3
+

∂~u3

∂ξ2

)

sin 2δ

](4.12)In a next step, the internal deformation �eld is derived for a �nite retangular soure,introduing fault length L along the fault diretion, width W along the perpendiular diretionof the strike and a disloation ∆d. To derive tilt from the displaement �eld ~u, the derivativeof the vertial displaement uz over distane x, ∂uz/∂x, is alulated. Both steps end inexhaustive tables of equations given in Okada (1992).
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44 THEORY OF SEISMIC AND DEFORMATION SOURCESthe sea�oor. As the shear tration at the sea�oor is zero (shear modulus µ = 0 and Possoin'sratio ν = 0.5 in water), half spae solutions have been applied as a �rst approximation to thesea�oor problem. The aim was to reonstrut the faultplanes of the observed earthquakes andto estimate the minimum seismi moment M0 to ause a signal of 50 nrad on the tiltmetersand 1 mm uplift or subsidene on the absolute pressure gauges. A gridsearh over epientraldistanes and hypoentral depths was performed. All soures were of �nite retangular shape.Absolute displaement and tilt �elds for typial fault types are given in Fig. 4.5. Strongestvertial deformation is found for normal faulting and tensile opening. Even strike-slip faultingauses slight vertial deformation due to volume shift and thus also small tilt signals, butstrongest deformation is found in horizontal diretion for this fault type.
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MW = 2 (Hanks and Kanamori, 1979). For strike-slip faulting, these minimum moments aresigni�antly larger due to the fat that horizontal mass movement indeed auses vertial de-formation due to volume inreases and dereases due to its shift, but of muh lower amplitudethan vertial mass movements do.The most important result is that abrupt tilt steps with amplitudes of some hundreds of
µrads, as observed for stronger earthquakes at Columbo (e.g. Fig. 4.3), an not be explainedby near-�eld terms. The modeling assumes a homogeneous half spae with a Poisson ratio of
0.25 and a shear modulus of 30 GPa (ideal elasti medium). These steps must be the resultof either tilting of the omplete OBT frame or of the sensor within the glass sphere. Sinethis has not been investigated further, abrupt steps observed on the tiltmeters simultaneouslyto earthquakes are not further disussed in this work.



DEFORMATION SOURCES 474.2.2 The Mogi Soure Model for spheri volumesAnother ause of stati deformation and tilt are volumetri soures. The following setionis based on the sriptum "Basis of the volume-soure model and its appliation in volanoseismology" by Erhard Wielandt, University of Stuttgart, Germany (Wielandt, 2001).
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Figure 4.8: Geometry of the Mogi point soure model (spheri volume inrease). Nomenla-ture: a=equivalent radius of volume inrease (∆V = 4

3
πa3), ur=radial displaement, uz=vertial dis-plaement, ux=horizontal displaement, r=distane between soure and observation point, z=soure depth,x=epientral distane. The solid rings mark the radius inrease aused by ∆V in ase of the absene (smallring) and the presene (largest ring) of a possibly preexisting volume V0 (dashed ring). The relative displae-ments ur, uzandux only depend on the volume inrease ∆V and are independent of V0, illustrated by a varyingsize of the soure (solid rings).The Mogi point soure is here de�ned to represent an expansive or explosive spherialsoure, haraterized by the volume of displaed material and ausing a seismi and/or de-formation signal. It an be desribed as a funtion of time or as an absolute value.With ~u(~x(t)) as the time-dependent displaement and σ as the stress tensor, the elastiwave equation is given by:

ρ~̈u = ~∇σ[~u] (4.13)Deomposition of the displaement into rotation- and divergene-free parts, with Φ asthe ompressional- (salar potential) and ~A as the shear-potential (vetor potential), delivers
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~u = ∇Φ + ∇× ~A (4.14)For in�nite homogeneous media, Φ and ~A are unoupled. Thus, a purely radial displae-ment, as it is indued by a spherial volume soure embedded in an elasti medium withP-wave veloity vp, an be desribed by Φ alone:
~u = ∇Φ (4.15)with
Φ(r, t) = −1

r
f(t − r

vp
) (4.16)The ompressional potential is deaying with r−1, the term f(t − r

vp
) desribes the vpdependent time between volume hange of the soure and ourrene of the hanges e�et ata sensor in distane r.This leads to the radial displaement ur that onsists of the sum of near- and far-�eldterms un and uf :

ur = un + uf (4.17)
ur =

1

r2
f(t − r

vp
) +

1

rvp
f ′(t − r

vp
) (4.18)The relation between both terms is given by:

uf =
r

vp
u̇n (4.19)

un =
vp

r

∫ t

−∞

uf (t′)dt′ (4.20)Harmoni time dependene, un = u0e
iωt, leads to

uf =
r

vp
iωun (4.21)and thus with the wavelength λ :=

2πvp

ω to
|uf |
|un|

=
ωr

vp
=

2πr

λ
(4.22)



DEFORMATION SOURCES 49It follows, that the near-�eld term is dominating for r < 1
2πλ. This is insofar important,sine for a quasistati deformation (long period and thus long wavelength radiation), suh asa slowly loading reservoir, only the near-�eld term is relevant. The existene of a far-�eldterm requires the initiation of a free propagating wave. An initialization veloity (here radialexpansion veloity) vi → 0 is slow enough to ause near-�eld terms only.The soure volume V (t) an be derived from the near-�eld term of equation 4.18, with

4πa2 as the point soure strength (equivalent radius a):
V (t) = 4πa2un(a, t) = 4πf(t − a

vp
) (4.23)It follows for the soure funtion f(t) = V (t)/4π. The omplete wave�eld an then bealulated, assuming that the soure volume is known:

ur =
1

4πr2
V (t − r − a

vp
) (4.24)This equation is independent of the total radius of the soure, its pressure and the elastimoduli of the medium, exept for their presene in vp. Apart from the delay a/vp, the soureis the same for eah hoie of a and an be measured at any distane from the soure withinthe near-�eld.With the following slight simpli�ations, a stati solution for the displaement �eld of aspherial volani pressure soure, buried in an elasti half-spae was derived from Eq. 4.24(Mogi, 1958):

• λ = µ

• soure radius muh smaller than depth, a ≪ zWith P as the pressure, this leads to the radial displaement at the free surfae:
ur =

3a3P

4µr2
=

3V

4πr2
(4.25)Obviously, the stati displaement at the free surfae di�ers from that in a fullspaeby nothing else than a onstant fator of 3, atually proven with a �nite element method(Kirhdörfer, 1999).Horizontal and vertial displaement an be derived by:
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ux = ur cos(αinc) = ur ·

x
√

(x2 + z2)
=

3V

4πr2
· x
√

(x2 + z2)
and (4.26)

uz = ur sin(αinc) = ur ·
z

√

(x2 + z2)
=

3V

4πr2
· z
√

(x2 + z2)
(4.27)With ur, uz and ux as the displaement in vertial (z) and horizontal (x) diretions,

T (x, z) = ∂uz

x as the amplitude of tilt, x as the epientral distane and z as the hypoentraldepth, it follows:
T (x, z) =

∂uz

∂x
=

∂ur · sin(α)

∂x

=
3V

4π(x2 + z2)
· z√

x2 + z2
=

9V xz

4π(x2 + z2)5

= 3 · 3V

4πr2
︸ ︷︷ ︸

=ur

· xz

(x2 + z2)3
= 3 · ur ·

z√
x2 + z2

︸ ︷︷ ︸

=sin(α)
︸ ︷︷ ︸

=uz

· x

(x2 + z2)

= 3uz ·
x

(x2 + z2)
=

3uz

x
·
(

x√
x2 + z2

)2

=
3uz

x
· (cos(α))2 =

3uz

x
·
(

ur · cos(α)

ur

)2

=
3uz

xs

(
ux

ur

)2 (4.28)
x and z are known, T is measured or modeled, ur an be derived by the Mogi equation(see Eq. 4.25), ux and uz are alulated of ur and the inidene angle αinc:Fig. 4.9 gives an overview on the distributions vertial uz(x) and horizontal ux(x) dis-plaement, as well as tilt T (x, z). The maximum radial deformation is found diretly abovethe Mogi soure. At this epientral point, the deformation is purely vertial. Thus, horizontaldeformation is zero above the soure and �nds its maximum at the in�exion points of theradial deformation urve. The tilt signal, as it is the derivative of vertial deformation withrespet to the epientral distane, ∂uz/∂x, �nds its maximum at the in�exion points of uz(x)and is zero at (0;0). The absolute tilt signal of a Mogi soure is of irular shape around theepienter of the soure. The absolute amplitude and the distribution on X and Y omponentsof a tiltmeter are given in Fig. 4.10.The volume- and depth-dependenies of deformation due to a Mogi soure an be derived
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uz ∝ 1

r2
sin(αinc) and uz ∝ V sin(αinc) (4.29)Deformation amplitudes depend linear on the soure volume. For the ase of a �xed volumeand a varying depth, strongest deformations are found for shallow depths and are rapidly
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Figure 4.12: Threshold-Volume depending on depth and distane to trigger the OBT. Distributionof the minimum volumina depending on depth and distane of the soure to trigger a visible signal on theHamburg OBT. The threshold is here set to 50 nrad.
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54 THEORY OF SEISMIC AND DEFORMATION SOURCES4.2.3 The Lentiular Volume Soure for dike intrusionsA magmati intrusion, a dike, has a lentiular shape parallel to the �rst prinipal stress axis
σ1 and is opening in diretion of σ3. Its planar shape diretly suggests a more ompliateddeformation �eld than ompared to the Mogi soure, whih also makes it muh more di�ultto model it.Vertial surfae displaement, as modeled for example by Hautmann et al. (2009) for theshallow magmati feeder system of the dome forming eruption of Soufrière Hills, Montserrat,suggests uplift maxima beside the dike in σ3-diretion and not diretly on top of it. As aonsequene, a muh more di�ult deformation pattern an be assumed: E.g. tilt betweenthe epienter of the deformation soure and the atual uplift maximum beomes negativeompared to a Mogi soure, tilt in σ1-diretion remains nearly zero (Pollard et al., 1983;Rubin, 1992).

dike σ3σ3

tilt = 0
max. uplift

tilt

tilt

tilt = 0

Figure 4.14: Deformation due to magmati diking: Maximum uplift is observed beside the top ofthe soure, negative tilt (or tilt away from the soure) ours between the soure entroid and the point ofmaximum uplift. Tetonially, the approahing dike auses to a very loal rift struture.Fig. 4.14 demonstrates, how a shallow volumetri dike soure auses normal faulting andthus relative subsidene on top of the soure, whih ends in negative tilt on lose tiltmeters.The ause is simple: Normal faulting diretly above the approahing dike leads to a loal riftstruture. For repeated dike intrusions, Kühn and Dahm (2008) have shown that ummulating



55intrusions in the same soure region ause an even more ompliated deformation pattern,even uplift above the dike.It is lear that we an not model for suh soures with only three individual measurements.It is introdued to show the omplex reality in opposite to the simple Mogi approah. Tomodel for omplex soures, methods suh as InSAR or ontinuous GPS measurements are stillindispensable, but tehnially limited to onshore volanoes. Only a dense network of OBTsmight enable more omplex modeling in the future.For our further work with the Columbo tiltmeter data, we will on�ne ourselves to thesimple Mogi approah.
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CHAPTER 5METHODS AND RESULTS 1SEISMOLOGICAL ANALYSIS
This hapter summarizes methods and results of the seismologial data analysis. Its �rstsetion desribes event detetion, piking and loation, the seond setion deals with theestimation of fault plane solutions using moment tensor inversion.5.1 Preise relative earthquake reloation5.1.1 SEISAN: Piking and further parameterizationPiking and �rst single event loations, as well as determination of the P-wave polariza-tion to derive preliminary fault plane solutions have been done with SEISAN (Havskovand Ottemöller, 2001), a set of earthquake analysis tools written mostly in FORTRAN andC. SEISAN furthermore allows the estimation of spetral parameters and magnitudes. Allprogram-tools are tied to the same database and thus allows aess of eah tool on eah event(organized by spei� event-IDs).We generated our SEISAN database based on over 14.000 oinidene-triggers found by anin-house developed STA/LTA (short term average / long term average) routine that was runover the hydrophone traes of all Hamburg OBSs/OBTs. This routine uses two data windows,one of 50 samples length, the short term average (STA), one of 500 samples length, the longterm average (LTA). Both windows are moved over the omplete time series, dividing STAthrough LTA for eah step. One a strong hange of this ratio ours while proessing thetimeseries, e.g. the onset of an earthquake, STA inreases faster than LTA due to its shortlength, and the value of STA/LTA exeeds a threshold (in our ase 2.5), whih marks a triggerfor this station at a given time.Triggers on all stations are ompared using an assoiation routine. When at least 3 stationstrigger within a time window of 10 s after the �rst trigger, this is delared a potential eventand a data window around the trigger-time ttrigg of −30 s and +60 s is ut for eah onshore57
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Figure 5.1: Overview: STA/LTA triggered and piked events. The blue urve shows all potentialevents that have been triggered (between 15 and 225 per days), the red urve marks the number of eventsthat have been piked manually with SEISAN. The dashed line indiates the period of the �rst 3 months, forwhih the omplete atalogue was ompiled. For the rest of the experiment, only events during swarms orother interesting periods were piked.and o�shore station. Traes are tied together to one event and this event is then registeredto the SEISAN data base to be piked.Of 14.000 potential events, we manually piked around 4.000, whih are all events of the�rst 3 months (July - September 2006) and most events ourring during earthquake swarmsbetween November 2006 until the end of the experiment in Marh 2007. Fig. 5.1 gives anoverview on the number of triggered events and �nally piked events per day. The number ofmistriggers (noise) was small, but events of too small magnitude have not been piked due tolimited human resoures, whih sometimes leads to pik-rates of only 50% or less for days ofnormal ativity (ompare red and blue line in Fig. 5.1).The typial Columbo event is a high frequeny volanotetoni earthquake (Fig. 5.2) of amagnitude between ML = 0.5 and ML = 4.5 and mainly loated in the diret viinity of theColumbo aldera. P-S traveltime di�erenes are in a range of 1 − 3 s for the losest stationsand dominant frequenies are between 2 − 20 Hz (Fig. A.2).This type of events ours daily at Columbo, with event rates between 15 per day duringperiods of low ativity and up to 225 during earthquake swarms. Partly, they ould notbe analyzed beause waveforms of di�erent events were overlying eah other or weak eventsdisappeared in the oda of the previous event. Fig. 5.3 shows the ativity on OBS 50 duringthe earthquake swarm from 28th of July 2006: Within 7.5 min, over 10 loal events ourred,some of them were so weak that they disappeared in ambient noise.Additionally to P- and S-piks, a polarity reading was given with the P-pik to har-aterize if the �rst onset was positive or negative, and peak-to-peak amplitudes of S-waves



PRECISE RELATIVE EARTHQUAKE RELOCATION 59
hyd (DPG)

OBS 50

Z

N

E

IOSI

N

E

Z P

P

S

S

time [s]

am
plitude [counts]

Figure 5.2: Typial event at Columbo seamount (OBS 50 and IOSI). Loal events like the shown oneon 28th of July 2006 during an earthquake swarm are typial for Columbo. For OBS/OBT stations diretlyat the volano, P-S traveltime di�erenes are 1 − 3 s.were determined. Polarity readings were needed together with the hypoenter loations inorder to estimate preliminary foal solutions (program FOCMEC, Snoke et al., 1984) and toresolve the polarity-ambiguity of moment tensor solutions from amplitude spetra inversion.Amplitudes of S-waves have been used for loal magnitude (ML) estimation together withthe hypoenter loation by using the program HYPO71 (Lee and Lahr, 1975, embedded inthe SEISAN software). The loal magnitude is based on the empirial relation (assuming anarrow band dominant period T, see Lay and Wallae, 1995):
ML = log A + 2.76 log ∆ − 2.48 (5.1)where ∆ is the epientral distane and A is the peak to peak amplitude. We om-pared our magnitudes for strongest events with those of the permanent NOA network (seehttp://www.gein.noa.gr/ ) and found relatively good orrelations: Most of our magnitude esti-mations are slightly higher than those of NOA. Due to the down time of 10 s of the STA/LTAtrigger after eah event detetion and varying noise over the omplete experiment, a lear mag-nitude threshold an not be given. Weakest events that we were able to pik on OBSs/OBTswere of magnitude ML ≥ 0.5.
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PRECISE RELATIVE EARTHQUAKE RELOCATION 615.1.2 Veloity modelThe veloity model has been taken from Dimitriadis et al. (2009). It is based on an onshoreexperiment of the Aristotle University of Thessaloniki (AUTH). The model predits two lowveloity layers. As SEISAN does not allow any veloity derease with depth, it was slightlymodi�ed. Theoretial and �nally applied models are given in Fig. 5.4 and Tab. 5.1.2.
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Figure 5.4: Veloity model for vP and vS, based on Dimitriadis et al. (2009) (blak urves) and how itwas applied in SEISAN and further proessing (red urve for vP and blue urve for vS . Models di�er, sineSEISAN does not allow for low veloity layers.A Wadati diagram was alulated with our piked events, whih predits a slightly smaller
vp/vs ratio than ompared to what our Greek olleagues derived from their island basedtomography experiment (1.78, see Dimitriadis et al., 2009, and Fig. 5.5). But with a ratio of1.77, it is still higher than what would be expeted for ideal elasti media (1.73). This hasalready been disussed by Dimitriadis et al. (2009) being due to the in�uene of a magmareservoir (dereased shear modulus µ) underneath Columbo.The slope trend of the wadati-diagram is (Lay and Wallae (1995))

m =
vP

vS
− 1 (5.2)thus it follows for the ratio of P- and S-wave veloity

vP

vS
= m + 1 (5.3)and with m=0.77 we get vP

vS
=1.77 .



62 METHODS AND RESULTS 1 SEISMOLOGICAL ANALYSISDepth [km℄ vP [km
s ] AUTH vP [km

s ] SEISAN vS [km
s ] AUTH vS [km

s ] SEISAN0 4.85 4.85 2.74 2.741 5.03 5.03 2.84 2.843 5.52 5.52 3.12 3.125 5.69 5.69 3.21 3.227 6.31 6.24 3.56 3.539 6.16 6.24 3.48 3.5311 6.23 6.24 3.52 3.5313 6.27 6.28 3.54 3.5515 6.30 6.28 3.56 3.5517 6.17 6.28 3.48 3.5519 6.32 6.32 3.57 3.5721 (MOHO) 7.02 7.02 3.96 3.9723 7.26 7.40 4.09 4.1825 7.50 7.50 4.21 4.2430 7.60 7.60 4.30 4.29Table 5.1: Veloity models as they were estimated by the Aristotle University of Thessaloniki (AUTH) andas they were applied in SEISAN. Note: The model of the Greek olleagues of the AUTH is a gradient model,while we applied a step-model in SEISAN.
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PRECISE RELATIVE EARTHQUAKE RELOCATION 635.1.3 3 omponent ross orrelationTo preisely reloate earthquakes within a luster, waveform similarities (orrelation oe�-ients) have been alulated: The ross-orrelation funtion Φijk(t) at station k (5.4) repre-sents the orrelation of funtion xik(t) with funtion yjk(t) at the time t. The funtions xik(t)and yjk(t) are waveform time series of the events i and j at station k. Φijk(t) is given with:
Φijk(t) =

∫ +∞

−∞

xik(τ)yjk(τ + t)dτ (5.4)The orrelation oe�ient ccp,s
ijk, whih is the maximum of the normalized funtion Φijk,indiates the similarity of two di�erent seismograms reorded at the same station (Maurerand Deihmann, 1995). For eah station k and eah phase P and S, the orrelation oe�ientis alulated by

ccp,s
ijk =

Φp,s
ijk(τ

p,s
ijk,max)

√

Φiik(0)Φjjk(0)
, (5.5)with

Φp,s
ijk(t) : oe�ient of ross-orrelation of P− and S−Phase of events i and j at station k

Φp,s
iik(t) : oe�ient of auto-orrelation of event i at station k

τp,s
ijk,max : time of maximum of ross-orrelation funtionA three-omponent seismometer delivers three time series for eah event. Calulating theorrelation oe�ient over all three omponents ompensates e�ets due to di�erent azimuthor inidene angle and avoids high orrelation due to random similarity on one omponent.Thus, we alulate the orrelation oe�ient of all three omponents by

ccp,s
ijk(all) =

Φp,s
ijk(τ

p,s
ijk,max)N + Φp,s

ijk(τ
p,s
ijk,max)

E + Φp,s
ijk(τ

p,s
ijk,max)Z

√

(Φ
N(p,s)
iik + Φ

E(p,s)
iik + Φ

Z(p,s)
iik ) · (ΦN(p,s)

jjk + Φ
E(p,s)
jjk + Φ

Z(p,s)
jjk )

. (5.6)The respetive value of the time of maximum ross-orrelation τmax of eah event pair isstored in a time shift matrix and used for relative time orretion of the manually set piks.If the inoming waves have very similar waveforms on all three omponents, ccp,s
ijk(All) isnearly 1. Di�ering time-series have smaller magnitudes of ccp,s

ijk(All).Fig. 5.6 shows time windows that where ut o� the ontinuous data: ±0.5 s for P- and
±1 s for S-phases. Before running the orrelation proess, a bandpass �lter and a osine taperwere applied to the data (see Tab. A.6, App. A.3 for parameters), in order to eliminate noiseoutside the signal frequeny band due to long period oean waves (e.g. Dahm et al., 2005)and high frequeny noise aused by breaking sea waves (e.g. Deane and Stokes, 2002).
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Figure 5.6: Example for time windows ut o� ontinuous dataAbove average high orrelation oe�ients require high similarity of the waveforms of theompared events. This requires that adjaent events are in a maximum distane of the �rstFresnel Zone, i.e. less or equal to λ
4 (Maurer and Deihmann, 1995), where λ is the dominantwavelength of the phase. For high dominant frequenies of about 10 Hz the maximal eventseparation is around 500 m at the utmost.From our experiene, it is impossible to get a orrelation oe�ient of 0, whih would meanno similarities for the omplete timetrae, even if pure noise was analyzed. A orrelation of1 for two similar events not ourring exatly at the same loation has never been observed.Random orrelation leads to orrelation oe�ients of ±0.5 on average. A histogram givingthe number of event pairs versus the orrelation oe�ient (-distribution) shows two normaldistributions (positive and negative) with their maxima around ±0.5 (see Hensh, 2005).While a luster of highly orrelating events should form a seond maximum for high pos-itive orrelation oe�ients, these data should separate from the rest of the -distribution.This separation is improved if all three omponents of eah reord are orrelated as given inEq. 5.6. The three omponent ross-orrelation has been introdued by Hensh (2005) andhas the following three advantages:
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• It redues e�ets of random orrelation on one omponent.
• It is independent of the azimuth and inidene angle and of the polarization of the wave.
• It improves the resolution of an earthquake luster against random noise.One a peak of the luster separated from the distribution of the random noise has beenidenti�ed in the -distribution, a threshold is introdued individually for eah station andeah phase, for whih all matrix-values of ross-orrelation are set to 0 if they were below thethreshold Ts :

ccp,s
ijk =







ccp,s
ijk ccp,s

ijk ≥ Ts

0 otherwise
(5.7)Most literature suggests the usage of a global threshold for all stations and phases (usu-ally hosen between 0.7-0.9 Maurer and Deihmann, 1995). The introdution of individualthresholds for eah station and phase allows the manual hoie of data depending on its qual-ity. -distributions an extremely di�er between several stations. An individual thresholdinreases data quality by suppressing data of noisy stations and an raise data quantity ofstations with better signal-noise ratios. An exhaustive desription of 3 omponent ross-orrelation, data preparation and hoie of thresholds is given in Hensh (2005). Plots andspei� threshold values for eah station and phase are given in App. B.5.1.4 HYPOSAT single event loationThe Columbo submarine volano and the adjaent region around it show strongly varyingveloity strutures (Dimitriadis et al., 2009), but the used loation and reloation routinesonly allow for 1D models (see setion 5.1.2). This leads to station orretions that are even inshort distanes in a range of some tens of a seond. For instane, the S-wave at IOSI on averagearrives 0.41 s earlier than predited by the model, although this station is only about 25 kmaway from Columbo. Fig. 5.7 shows station orretions for all stations and phases that wereused. Strongest orretion values were found for S-waves observed outside the volani beltbetween Santorini and Anidros, i.e. IOSI, ANAF and ASTY. The reason therefor is simple:The used 1D veloity model was derived from data olleted on Santorini and Anidros andthus does not onsider faster S-wave veloities outside the volanially ative belt. For adetailed list of station orretions for all station and phases see Tab. A.1 in App. A.1.A preliminary single-event loation was done using HYPOSAT (Shweitzer, 2001), a pro-gram whih uses arrival times and traveltime di�erenes and solves the equation system in
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 (5.8)With ti as arrival times and dti arrivaltime di�erenes of two phases observed at one sta-tion. We used the diret SEISAN output, i.e. station orretions and hypoenter oordinates(lat, lon, z0 and t0), and alulated hanges of model parameters δto, δlat, δlon and δz0.HYPOSAT o�ers the possibility to inlude a loal and a di�erent global veloity model.We onsidered a very loal veloity model (radius r = 0.1◦ around the volano) aroundColumbo and the IASPEI91 model for the adjaent region. This did not lead to signi�anthanges, but to slightly osillating loations (see also Shweitzer, 2001).Aim of the usage of HYPOSAT was to �nd good loations of earthquake lusters byinluding station orretions. Fig. 5.8 shows the e�et of the HYPOSAT single event loationusing station orretions and traveltime di�erenes in opposite to HYPO71 (single eventloation algorithm implemented in SEISAN) loations. The omplete luster is shifted inESE diretion and single lusters get more separated and strutured. A signi�ant vertialshift has not been found. The found values for the average luster entroid are:
• Unorreted: lat = 25.4936◦ , lon = 36.5301◦

• Correted: lat = 25.4751◦ , lon = 36.5348◦
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68 METHODS AND RESULTS 1 SEISMOLOGICAL ANALYSISthe distane between two earthquakes is small ompared to the paths between the events andthe seismometer, ray paths between the soure region and the station are nearly similar alongalmost the entire path. Master event methods take advantage of this, beause they inlude thearrival time di�erene from two or more events at the same station in the loation approah.The 2nd event is preisely loated against the 1st event and �nally, all events are auratelyloated relative to the luster entroid. A modern routine of this approah was written byWaldhauser and Ellsworth (2000). Time di�erenes determined by ross orrelation have apreision of a few ms. This allows a reloation within some tens of meters of unertaintiesfor the ideal ase.The double di�erene method an be haraterized as a ombination of a Geiger methodand master event reloalization in one ode. The program hypoDD (Waldhauser, 2001) isable to handle both, ordinary absolute travel times as well as di�erential travel times ofross-orrelated data.WithG de�ned as a M×4N matrix (M = number of double-di�erene observations (eitherpiked or ross orrelated data) and N = number of events), the data vetor ~d ontaining
M double-di�erenes, vetor ~m (length 4N (∆x,∆y,∆z,∆τ)) ontaining the hypoentralparameter hanges and the diagonal weighting matrix W (see Tab. 5.2, dimension M × M),all results are summarized byWG~m = W~d . (5.9)The weighting matrix W an be hanged separately for ross orrelation and ataloguedata after a prede�ned number of iterations, whih are hosen within the initial ontrolparameters of hypoDD (see tab. 5.2).IT WPCT WSCT RTCT MDCT WPCC WSCC RTCC MDCC DAMP1-5 1.0 0.8 10 10 0.5 0.1 none ∞ 606-10 1.0 0.8 7 10 0.5 0.5 none ∞ 5011-15 0.8 0.8 3 10 1.0 1.0 none ∞ 45Table 5.2: Initial ontrol parameters of hypoDD (desription below).With:IT = number of iterationsWPCT, WSCT = weighting of atalog data P and SWPCC, WSCC = weighting of ross-orrelation data P and SRT(CT,CC) = residual threshold in [s℄ for atalog and ross-orrelation dataMD(CT,CC) = maximum distane [km℄ between linked pairsDAMP = damping (LSQR)



PRECISE RELATIVE EARTHQUAKE RELOCATION 69Control parameters were initially hosen on the basis of former experiments (e.g. Ieland,see Hensh, 2005) and subsequently re�ned by trial and error. HypoDD o�ers the methods ofSingular Value Deomposition (SVD) to �nd the Generalized Inverse of the oe�ient matrix,with the advantage, that both, model and data resolution matries, are alulated to derivereliable errors. Due to enormous omputing time, the SVD mode is only pratiable for smalllusters, i.e. < 100 events.The LSQR mode of HypoDD allows the reloation of muh larger lusters, but it does notensure to �nd the best minimum and only gives estimated errors. We have run HypoDD inthe LSQR mode to derive reloations of huge swarm lusters and heked them with smallerdatasets in the SVD mode for spatial and temporal errors with the following average results(depending on size and position of the luster relative to the network):
• horizontal error: ± 50 - 300 m
• depth error: ± 70 - 500 m
• soure time error: ± 20-100 ms



70 METHODS AND RESULTS 1 SEISMOLOGICAL ANALYSIS5.2 Moment Tensor InversionMoment tensor solutions of earthquakes are retrieved by the inversion of waveforms and/oramplitude spetra. Syntheti waveform data, i.e. Green's funtions G, are generated usinga step funtion as the soure time funtion. The moment tensor representation is written inmatrix form as:
dn(t) =

6∑

k=1

Gnk(t)Mk (5.10)where dn(t) is the measured ground displaement at reeiver n (e.g. vertial omponent)and Gnk the seismogram at station n that is aused by the moment tensor omponent Mk(Stein and Wysession, 2003). The omplete moment tensor onsists of 6 independent om-ponents (i.e. m11, m12, m13, m23, m22, m33) whih ompose the vetor 6 × 1 matrix M.Strutural e�ets of the earth along the travel path between soure and reeiver are inludedin Gnk(t). Thus, the seismogram at reeiver n is for eah time sample the sum of Green'sfuntions weighted by moment tensor omponents:d = GM (5.11)Or expliitly:
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(5.12)
with d as an (i×n)×1 matrix (n = number of samples) of onatenated seismograms of istations and G as the (i× n)× 6 matrix of Green's funtions. A similar matrix equation anbe derived in frequeny domain. The linear system of equations (eq. 5.12) is overdetermined

(i × n) equations and 6 unknown parameters. It is solved as follows:
~M = (GTG)−1GT ~d = H~d (5.13)



MOMENT TENSOR INVERSION 71with H as the generalized inverse of G. Matrix M is transferred to tensor notation by
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(5.14)
Fig. 5.9 shows the proedure of the omplete moment tensor inversion in form of a stru-togram. The routine is taken of the Diploma thesis of Barbara Hofmann (Hofmann, 2008).We ross heked solution of events of magnitude ML > 3.5 with FOCMEC (Snoke et al.,1984), only using P-wave polarity onstraints. Main purpose of this ross hek was to de-termine the polarity of the moment tensor solution, sine most often only amplitude spetrahave been inverted. For events of magnitude 2−2.5 < ML < 3.5 (depending on data quality),we have only moment tensor solutions, beause not enough polarities ould be retrieved toapply FOCMEC.Hydrophones of all OBSs/OBTs were also inluded in the inversion - with varying suess.The onversion of relative pressure P to vertial ground motion dseafloor was performed a-ording to Tilmann et al. (2008). After the removal of the hydrophone response, traes weremultiplied with

dseafloor = ρvp · P · sinΦ =⇒ ρvpP (for φ = 90◦) (5.15)
= 1000

kg

m3
· 1500 m

s
· PWhere vp is the P-wave veloity, ρ the water density and Φ the inidene angle of theplane wave arriving at the sea�oor. In our ase, we assumed Φ ≃ 90◦. The resulting traeis idential to the ground displaement of a plane P-wave with vertial inidene and animpedane ontrast of zero. Both of these assumptions are not ful�lled exatly, but for nearlyzero o�set stations a nearly vertial inidene an be assumed and also the impedane ontrastfrom a mud to a water layer is lose to zero.Also the weighting of di�erent phases was depending on data quality and for some eventsfound by trial and error based on the residuals of the solutions. We mostly started with aweighting of -1.0 for P phases on Z omponents and 0.25 for the transversal omponent of theS phase as well as the P phases on hydrophones. For ases of too large residuals, hydrophone
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Figure 5.12: Example for a ross heked moment tensor solution. Upper plots: MTInvers solutionon the left hand side, FOCMEC solution on the right hand side (white symbols mark negative, blak positive P-wave polarity, blue lines mark possible fault-/auxiliary-planes). Middle plot: Stability of the solution (rotationaround P-, T- and B-axes). Lower plot: Fits of model and data in mostly frequeny domain. The red urvemarks the Green's funtion (or its amplitude spetrum), the blak and grey shaded urve re�ets the realdata.



76 METHODS AND RESULTS 1 SEISMOLOGICAL ANALYSISfor weak events just like small DC omponents were found for stronger ones.All faultplane solutions found are listed in Tab. 5.3 and a detailed result plot for eahevent an be found in appendix E. In the table, only one fault plane solution is listed, whihdoes not mean that there is any hint that this is the orret fault plane or the auxiliary plane.Fig. 5.13 ompares the average soure mehanisms of our experiment and an independentstudy in the year 2003 by our Greek olleagues of the Aristotle University of Thessaloniki(AUTH). The solution on the left hand side is the average solution of all inverted events ofthe Columbo experiment (UHH, University of Hamburg) derived from averaging the momenttensors (Mav = 1
N

∑N
i=1 Mi), the right hand side shows the average solution as derived froman onshore experiment on the surrounding islands (AUTH, see Dimitriadis et al., 2009).

UHH AUTH

Figure 5.13: Comparison of average foal mehanisms. Left hand side: Double ouple of the averagemoment tensor of the Columbo data (University of Hamburg, UHH). All moment tensors were ross hekedwith P-wave polarity analysis. Right hand side: Average solution of the onshore network of the AristotleUniversity of Thessaloniki (AUTH), estimated using P-wave polarities and amplitude ratio of P and S oda.Both solutions only di�er by a few degrees for eah fault plane angle.The average solutions are:
• UHH: strike = 43◦ ± 40◦, dip = 49◦ ± 17◦, rake = −91◦ ± 33◦(auxiliary plane: strike = 236◦ ± 40◦, dip = 44◦ ± 17◦, rake = −85◦ ± 33◦)
• AUTH: strike = 37◦, dip = 45◦, rake = −107◦(auxiliary plane: strike = 240◦, dip = 47◦, rake = −74◦)(Dimitriadis et al. (2009), residuals unknown)Average solutions are relatively similar, although alulated using di�erent tehniques(AUTH: P-wave polarity readings and P-/S-oda amplitude ratio) and di�erent data sets.



MOMENT TENSOR INVERSION 77
lat. [◦] lon. [◦] z [km] date time strike [◦] dip [◦] rake [◦] Mw DC [%]36.5215 25.4551 9.2 2006.07.28 12:11:14.5 272.01 25.08 -76.77 3.8 7736.5190 25.4403 11.1 2006.07.28 12:24:29.4 270.57 34.65 -52.94 3.9 7336.5080 25.4484 11.1 2006.07.28 12:26:48.0 254.74 41.63 -47.28 3.9 9136.6292 25.6933 9.4 2006.08.24 09:28:25.4 196.83 52.79 -130.92 3.4 7336.5018 25.4797 13.2 2006.09.03 15:34:29.3 210.90 43.46 -85.10 3.6 4036.5358 25.4648 10.7 2006.09.27 01:23:24.4 293.71 5.37 -49.30 3.6 4936.5378 25.5650 6.9 2006.10.11 20:33:21.0 185.86 19.35 -112.31 3.9 6736.5404 25.4941 8.7 2006.10.22 20:48:52.2 267.59 58.14 -54.98 3.7 9536.5423 25.4880 9.0 2006.10.22 20:50:04.2 275.28 62.47 -49.44 3.6 5236.5092 25.4724 8.6 2006.11.11 11:26:45.6 254.33 57.65 -35.74 3.8 9236.5082 25.4818 6.4 2006.11.13 08:04:24.2 184.34 6.90 -105.49 3.8 6536.5088 25.4808 7.1 2006.11.13 08:49:50.7 270.15 19.20 -66.44 4.1 8836.5201 25.4817 7.9 2006.11.14 12:42:33.9 306.60 26.86 -28.82 3.9 8136.5213 25.4848 7.8 2006.11.14 12:45:29.7 197.25 33.03 -146.52 3.7 7336.5358 25.4648 8.5 2006.12.06 10:24:37.9 179.31 51.72 -97.57 3.2 3436.6559 25.5669 8.8 2007.01.10 17:22:16.4 214.96 42.51 -43.37 3.6 7436.5315 25.4676 7.9 2007.02.18 17:23:34.1 260.45 39.72 -26.23 3.8 3036.6109 25.5910 8.4 2007.02.26 13:24:51.1 179.87 29.02 -178.52 3.4 8236.5176 25.4798 8.3 2007.03.01 11:48:25.4 305.04 45.86 -146.70 3.7 6336.5190 25.4731 8.4 2007.03.01 11:48:42.7 328.86 17.42 -144.12 4.1 3536.5230 25.4772 7.9 2007.03.01 11:53:41.2 225.27 52.37 -132.73 3.6 6036.5107 25.4943 7.7 2007.03.01 12:46:15.6 160.12 11.82 -116.32 3.2 8236.4900 25.4176 13.9 2006.07.12 11:50:01.5 224.64 49.51 -54.90 3.1 6236.5097 25.4130 13.8 2006.07.22 11:22:31.5 353.93 80.57 -72.13 3.1 7436.5296 25.4615 8.5 2006.07.28 15:48:22.3 182.75 44.75 -105.94 3.2 1836.6280 25.6949 9.6 2006.08.07 18:47:30.7 240.61 69.91 -59.82 2.9 1936.6747 25.6310 10.6 2006.08.08 03:38:34.5 299.47 37.89 -157.87 2.8 4736.4499 25.5007 10.2 2006.09.26 06:19:49.9 251.07 69.13 -66.06 2.9 5836.5057 25.4799 11.1 2006.09.27 22:48:30.0 189.96 76.97 -111.01 3.0 8536.5373 25.4996 7.9 2006.10.11 09:57:53.9 188.13 88.70 -102.12 2.8 9736.5100 25.4848 8.4 2006.10.16 17:19:05.9 224.93 59.07 -116.29 2.7 3836.5231 25.4522 9.8 2006.11.01 07:33:41.1 248.09 5.56 -87.36 3.2 5536.5045 25.4828 9.0 2006.11.01 22:20:58.0 266.83 66.45 -57.61 3.3 5136.5077 25.4874 8.9 2006.11.01 23:10:48.9 231.16 26.88 -92.04 3.2 3336.5200 25.4726 8.2 2006.11.09 09:13:37.4 202.13 62.53 -91.55 3.4 5136.5019 25.4789 8.8 2006.11.20 02:20:50.5 199.79 81.76 -98.44 3.1 5836.5283 25.4505 7.3 2006.12.06 10:34:06.0 175.88 55.09 -132.41 3.0 7936.5223 25.5004 10.4 2006.12.09 20:23:21.2 279.07 74.28 -54.27 3.2 5736.6149 25.6019 6.6 2007.01.11 16:13:30.9 352.14 33.09 -101.17 2.9 7436.5228 25.5045 8.9 2007.02.18 04:38:30.4 235.43 47.77 -75.98 3.0 4036.6107 25.5914 7.7 2007.02.26 15:45:01.0 223.29 31.31 -62.94 2.9 5536.6096 25.5912 7.3 2007.02.26 15:58:01.8 192.65 25.72 -163.90 2.7 9636.6080 25.5936 7.7 2007.02.26 23:29:43.1 258.77 52.18 -98.23 3.1 8236.6070 25.5910 7.7 2007.02.26 23:34:05.9 296.35 36.84 20.95 3.3 9536.5207 25.4575 9.3 2007.03.01 11:47:03.9 246.56 50.53 -84.42 2.8 33Table 5.3: List of Moment Tensor solutions Events in the upper part of the table have been invertedwith MTI and ross-heked with FOCMEC, events in the lower part of the table are only inverted with MTI,their polarization is estimated based on rossheked solutions. Detailed �t-, mis�t- and foal-mehanism-plotsfor eah event are listed in App. E.



78 METHODS AND RESULTS 1 SEISMOLOGICAL ANALYSIS5.2.2 Stress inversionThe stress tensor was inverted from slip vetor data of our foal mehanisms with the approahof Dahm and Plene�sh (2001), for a detailed desription see Reinhardt (2007). For givenstress vetors [Φk, δk, λk] with k = 1, ...,K with K= number of foal mehanisms, the averagehomogeneous stress tensor in form of its three prinipal stress axes σ1, σ2 and σ3 and its shaperatio R = σ1−σ2

σ1−σ3
= 0.43 ± 0.16 is estimated.

plunge = 81° +/− 3°
356° +/− 201°
azimuth =
P:

P

T
T: azimuth = 119° +/− 3°

plunge = 5° +/− 2°

Figure 5.14: Result plot of stress inversion The stress inversion was started using 10 events with
ML > 3.5 to derive a starting model and then inluding all other events for whih a foal mehanism has beenestimated. Inverse triangles mark P-axes (pressure), blak for eah single event, large and blue for the averageP-axis derived by the stress inversion, inverse triangles mark T-Axes (tension), white for eah single event,large end red for the average T-axis. P-axes satter more than T-axes, whih re�ets the larger stability ofthe σ3 axis (see stabilities of single moment tensor solutions in App. E)Azimuth and plunge angles for all inverted foal mehanisms and the aording averageangles are given in Fig. 5.14. It is obvious, that the T-axes (tension) are more stable than thesattering P-axes (pressure). This is the e�et of the regional extensional stress �eld, where σ3is regionally very stable, but σ1 is unstable due to loal stress perturbations aused by volan-otetoni proesses, possible reativation of existing faults and the generally inhomogeneousstruture at Columbo.The estimated stress tensor �ts well with the entry of the World Stress Map (WSM) for



MOMENT TENSOR INVERSION 79this region. Based on foal mehanisms of the 1956 earthquakes at the Santorini-Amorgos-Fault (Kiratzi and Louvari, 2003), the WSM expets a T-axis of azimuth 335◦ and plunge
5◦ (Heidbah et al., 2008). This orresponds to a horizontal tension axis of 155◦ / 335◦aording to WSM and 119◦ / 299◦ aording to our stress inversion. The di�erene betweenthe azimuth angles of 36◦ an be explained by the eastward bending of the Santorini-AmorgosFault north of Columbo.
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CHAPTER 6METHODS AND RESULTS 2CLUSTER AND DEFORMATIONANALYSIS
In this hapter I summarize my investigation of luster migration during earthquake swarmsand the analysis of deformation data, i.e. tilt and absolute pressure data. In the �rst setionthe determination of di�erent migration veloities is explained and all found veloities ofall swarms during our experiment are listed. The seond setion desribes the analysis ofdeformation data in detail. It inludes the re-orientation of the freefall instruments, theremoval of leveling gaps and a �nal summary of all found tilt and absolute pressure signals.6.1 Analysis of earthquake swarms6.1.1 Estimation of luster migration veloitiesEarthquake swarms beneath Columbo often streth over an extended depth interval, alignedon a vertial plane. When plotting the soure times of the reloated events versus depth(depth-time- or zt-distribution), possible depth migrations of single events, lusters of events(entroids) or of a easing front of events (bakfront) an be identi�ed. We analyzed eventdensities with a spatial grid interval of 20 m and a temporal grid interval of 1

500 of the swarmlength. The grid was smoothed out by overlapping depth-time windows over the three previousand three following intervals.Fig. 6.1 shows the depth-time distribution (A) and its gridded event density (B) of theearthquake swarm on 28th of July 2006 whih ourred at the south-western �ank of Columboseamount. Migration veloities an be estimated from linear approximations of seismi fronts(see Hensh et al., 2008):
• The initial fast front vIF : Visual estimation of the forefront of seismiity. Errorlimits are the maximum and minimum veloity (see dotted lines in Fig. 6.1)81
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Figure 6.1: A) Depth-time distribution of an earthquake swarm on 28th of July 2006 at the south-western�ank of Columbo.B) Event densities in a zt-plot. Slopes of possible linear fronts and bakfronts are marked: v(IF) is delaredas the initial fast front, v(C) as the main luster veloity and v(LB) as the veloity of the bakfront (lowerboundary of the earthquake swarm).
• The veloity of the main luster (entroid) vc : Fitting of time-dependent depthof the lusters to Gaussian urves is used to estimate the entroid migration and itswidth (standard deviation)
• The bakfront veloity (lower boundary of the earthquake swarm) vLB : Crudeestimation of the lower boundary of the seismi ative region in a, event-density- or zt-distribution
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Figure 6.2: Example of entroid depth estimation. The earthquake depth histogram (blak line) of a hosentime window is approximated by Gaussian urves (sampled with grid searh approah, red line: best �t, pinklines: other luster widths). In the example, the depth of the luster is estimated at 1.5 km depth, the averageluster width is found at 240 m (from Hensh, 2005).



ANALYSIS OF EARTHQUAKE SWARMS 83To estimate the entroid (depth) of a luster, histograms (number of event within a �xedtime-window over the depth) were alulated, whih due to the smoothing often have a rudeshape of a normal distribution with a single peak (expeted value µ) and an be �tted to aGaussian urve
f(x) =

a

∆t
· 1

σ
√

2π
e−

1

2
(x−µ

σ
)2 , (6.1)where µ is the depth of the luster entroid, σ the luster width and a/∆t de�nes thestrength (number of events) normalized by the time window. Thus, by minimizing its residu-als, this urve an be �tted to the event histogram and luster widths an be estimated (seeFig. 6.2). If one assumes that all events of a luster ourred only at a single depth and anysatter was aused by depth errors from loation, the width of the luster would give a rudeestimation of the standard deviation of the luster.Handling of this method is partly triky, espeially when lusters are loated temporally orspatially lose to eah other: Parameters like µ or the depth interval of the luster had to bepreisely hosen to �nd a unique minimum. Standard deviation indeed represents residualsof the reloated lusters, but is not alulated orthogonal to the migration path and thusis biased to larger values, espeially for fast asending lusters. Anyway, estimated lusterwidths are in a plausible and expeted range. More examples and details are given in Hensh(2005).The three migration fronts were found for several swarms, espeially for swarms of shortduration (< 2 days). An average veloity was estimated by piking the starting and �naldepth and duration of eah luster.6.1.2 Results for luster migration veloities at ColumboEarthquake swarms run through di�erent phases of ativity. As already disussed in Henshet al. (2008) for earthquake swarms in Ieland, we observed two kinds of earthquake swarms:Swarms of short duration (< 24 h) and swarms of longer duration (> 48 h and up to aweek).At Columbo, 6 earthquake swarms were observed during our experiment (for loations seeFig. 6.11), one additional swarm in the region south-west of Anidros island was also deteted,but was lying too far outside our OBS/OBT network and therefor not investigated in termsof deformation. Of the 6 swarms at Columbo, 4 were lassi�ed as of short duration and 2 oflonger duration. From here on we adapt the following nomenlature for the observed swarms(C for Columbo, A for Anidros, S for short and L for longer duration):



84 METHODS AND RESULTS 2 CLUSTER AND DEFORMATION ANALYSISSwarms of short duration:
• CS-1: 28th - 29th of July 2006south-western �ank of Columbo, 19 hours
• CS-2: 10th - 11th of January 2007north-eastern �ank of Columbo, 22.5 hours
• CS-3: 18th of February 2007eastern �ank of Columbo, main swarm 2.5 hours plus 20 hours unrest
• CS-4: 1st of Marh 2007inside the Columbo aldera, 28 hoursSwarms of longer duration:
• CL-1: 23rd of September - 1st of Otober 2006Columbo aldera, south-eastern, southern and western �anks, 175 hours
• CL-2: 10th of January 2007from Columbo aldera along the volani belt in diretion of Anidros (north-west ofColumbo), 48.5 hoursOther swarms:
• AS-1: 26th of February 2007south-west of Anidros island (12 km north east of Columbo), 11.5 hoursMost short swarms an be subdivided in typial phases of ativity and assoiated migrationveloities:
• Most events our within a �rst phase of strongest ativity. This phase inludes thefastest migration veloities vIF ("initial fast seismiity front") and is typially only afew hours long. At the end of this phase, a seond front haraterized by the "mainluster veloity" vC - in ase it an be deteted - is observed to begin asending in thedeeper part of the luster. vc ≪ vIF and in the range of cm/s.
• Ativity dereases rapidly and is less energeti during the seond phase of the swarm.Most ativity is then onentrated in the enter of the main luster. During this phase,the bakfront of seismiity, haraterized by the "lower boundary veloity" vLB , beomesobservable for most swarms. This veloity is often similar to or slightly faster than vC .



ANALYSIS OF EARTHQUAKE SWARMS 85swarm type ∆z[m] ± 500m ∆t[s] ± 1.800s v[ cms ] σv[
cm
s ]Jul. 28th, 2006 vIF (1) 9.000 12.600 70 ± 30

vIF (2) 10.000 3.600 280 ± 140CS-1 vMC(1) 4.000 14.400 28 ± 5
vMC(2) 6.000 37.800 16 ± 1.5

vLB 5.500 28.800 19 ± 2Sep. 21st - 30th, 2006 vintF (1) -16.500 52.200 -32 ± 2
vintF (2) 12.300 25.200 50 ± 4CL-1 vMC(1) 1.900 396.900 0.5 ± 0.2
vMC(2) 2.000 155.500 1.3 ± 0.3

vLB not observed not observed (vLB = vMC?) -De. 6 - 8th, 2006 vIF not observed not observed - -
vMC(1) -3.200 41.400 -7.8 ± 1.5CL-2 vMC(2) 2.800 66.600 4 ± 0.8
vMC(3) 6.000 79.200 8 ± 2

vLB not observed not observed - -Jan. 9th, 2007 vIF 4.000 5.400 74 ± 3
vMC(1) 2.750 38.900 7.1 ± 1.3CS-2 vMC(2) 1.200 30.200 4.0 ± 1.7

vLB 1.500 14.400 10.4Feb. 18th, 2007 vIF (?) 5.000 7.200 70 ± 15
vMC(1) 1.300 7.200 21 ± 8CS-3 vMC(2) 600 3.600 20 ± 15

vLB not observed not observed - -Mar. 1st, 2007 vIF 6.000 9.000 67 ± 14
vMC(1) 1.800 9.000 20 ± 7CS-4 vMC(2) -1.000 41.400 -2.5 ± 1.3
vLB(1) 3.200 21.600 15 ± 3
vLB(2) 4.500 27.000 17 ± 2Table 6.1: List of all migration veloities vIF= initial fast veloity, (vintF= intern fast veloity forthe CL-1 swarms), vMC= veloity of main luster, vLB= veloity of the zt-distribution's lower boundary,

∆t = duration of migration, ∆z = relative depth range of migration, v = ∆z
∆t

. Residuals of parameters areestimated as ±500 m for depth and ±1.800 s for time. A negative migration veloity means a desent of theluster.
• For some swarms, a third phase of sattered seismiity an be observed. Ourrene ratesderease further and no migration is observed (see e.g. CS-1 swarm at 210.0 Jul. daysand later, Fig. 6.3).For longer lasting swarms and the AS-1 swarm near Anidros island, these phases werenot found. Longer lasting swarms do not show spei� patterns of whih migration veloitiesan diretly be onluded. Although the CL-1 swarm inludes two faster migration paths inthe 2nd half of its duration, there does not seem to be a systemati and repeated pattern.Table 6.1 is an overview of all migration veloities that were observed during the Columboexperiment. Most of the slopes of fronts and bakfronts are positive, whih means that lusters



86 METHODS AND RESULTS 2 CLUSTER AND DEFORMATION ANALYSISare asending. Horizontal or downward migrations are rare and of muh smaller sale (seelatitude and longitude over time plots in App. D), they were not systematially investigated.
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Figure 6.3: Example of migration veloities for both swarm types: Depth-time (zt) distributions ofa short lasting swarm (CS-1) with its typial three types of migration veloities and in omparison a longerlasting swarm (CL-1), that shows 2 fast migration paths, but not as usual during its initial phase, and apossible main luster. All observable veloities, independent whether they were explainable or not, are listedin Tab. 6.1.Two examples, depth-time (zt) distributions for eah type of earthquake swarm, are givenin Fig. 6.3. The short lasting swarm in this example (CS-1) shows the typial three types ofseismiity fronts as desribed above: A fast front during its initial phase and a slower frontand bakfront for the period of about 12 hours.Systemati plots, spatial and temporal distributions of all earthquake swarms are given inAppendix D.



ADDITIONAL FINDINGS 876.2 Additional �ndings6.2.1 Further swarm parametersTab. 6.2 gives an overview on further swarm parameters, suh as orientation of the best�tting plane through the hypoenter distribution and the swarm duration. All investigatedearthquake swarms have best �tting planes striking in NE diretion, i.e. rudely perpendiularto the smallest priniple stress axis σ3.swarm duration [h℄ strike and dip of the best �tting plane [◦]CS-1 19 N62E / 85CS-2 22.5 N41E / 76CS-3 2.5 + 20 N33E / 79CS-4 28 N48E / 51AS-1 11.5 N28E / -74CL-1 175 N60.5E / 59CL-2 48.5 N37E / -79Table 6.2: List of further swarm parameters: Duration of the seismi risis and best �tting planes. Theseparation in two types of swarm, short and longs lasting, is obvious. The best �tting plane was alulatedwith a least squares method searhing the minimum of the distanes to a plane laid through the satteredhypoenter distribution.6.2.2 Magnitude distribution
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Figure 6.5: Time dependene of average (white stars) and maximum (grey stars) magnitudes:There is no obvious relation between intensity and swarm length found.The magnitude distribution over time (Fig. 6.4) for most swarms show their maxima withinthe �rst quarter of the swarm duration. After the maximum, the number of aftershoksdereases slightly, but not as typially predited by Omori's law (∼ 1
t Lay and Wallae,1995) for a mainshok-aftershok sequene, mostly more linear. There also seems to be noorrelation between the maximum magnitude and the swarm duration (Fig. 6.5), what wouldalso be predited for a tetoni sequene following Omori's law.6.2.3 Ativation of adjaent faultsThe possible ativation of adjaent faults was observed for two swarms: The CL-2 swarm oflonger duration and the short CS-4 swarm (Fig. 6.6). While for the CL-2 swarm many eventson a fault west of the luster and possibly even a ringfault south-east of the luster were found,the ativation of the fault west of the CS-4 luster (dotted ring in Fig. 6.6) started suddenlyduring this swarm. The ativity more or less jumped from the main- to this sub-luster.If the swarms were dike-indued, theoretial models of Rubin and Gillard (1998a) preditstress inrease in σ3 diretion. If the former σ3 axes beame the strongest prinipal stressaxis, then the former σ1 would be redued to σ2, former σ2 to σ3. This would result in a �ipof the fault plane solution on the ativated fault from expeted normal faulting to strike slipfaulting is expeted (Roman et al., 2006).When omparing faults found here with foal mehanisms given in the swarm synopsis(App. D), these events were too weak to invert more than a few for a reliable moment tensor.And these few are rather normal faulting events than strike-slip faulting.
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(6.2)The orrelation oe�ient is supposed to derive its maximum, when the rotated data traesare orientated parallel and in phase with those of the referene sensor. An example for the
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Figure 6.7: Correlation oe�ients between OBT 54 and near land stations AMOS, ANAF, ANID and IOSI(see Fig. 2.1). Re-orientation of OBSs/OBTs using surfae wave orrelation. Corret orientation is assumedat the urve's maximum. The urve beomes unstable for small positive and negative orrelation oe�ients,sine a random orrelation an be found for every time series and thus a orrelation of 0 is nearly impossible.distribution of the orrelation oe�ients over the orientation (0◦ − 360◦) is given in Fig. 6.7.Time delays ∆τ between the signals were in the range of a few seonds, orresponding to therelative di�erential epientral distane ∆x and typial surfae wave veloities vsurface.For eah Oean-Bottom-Station, this proedure was performed for the �ve losest onshoreseismometers (AMOS, ANAF, ANID, IOSI and NEAK) and the two strongest teleseismievents that ourred during the experiment [soure: www.gfz-potsdam.de/geofon/℄ :
• 15th of November 2006, 11:14:21 UTC, M = 8.3, 46.51◦N , 153.47◦E, 76 km depth,Kuril Islands (SW of Kamtshatka, Russia)
• 21st of January 2007, 11:27:49 UTC, M = 7.6, 1.16◦N , 126.36◦E, 63 km depth,Northern Molua Sea (NE of Sulawesi, Indonesia)Within the 35 days where OBT56 was running, no teleseismi event generated surfaewaves of su�ient low frequenies to redibly investigate the instrument's orientation.Tab. 6.3 summarizes azimuthal angles, by whih the OBSs/OBTs have to be lokwiserotated for re-orientation. In some ases, we found a phase-reversal of 180◦, but for 6 outof 7 ases, one diretion is dominant (at least 70 % of all found values). For OBS52, resultssatter extremely due to a malfuntion of the instrument's E-omponent. Fig. 6.8 illustrates



ANALYSIS OF DEFORMATION DATA 91OB: AMOS ANAF ANID IOSI NEAK Average50 43◦/41◦ 39◦/(220◦) 36◦/33◦ (216◦)/(215◦) 42◦/41◦ 39◦ ± 4◦51 173◦/171◦ 167◦/174◦ 163◦/162◦ (342)◦/(340)◦ 167◦/173◦ 169◦ ± 4◦52 267◦/291◦ 272◦/(81)◦ (71)◦/(89)◦ 264◦/298◦ (42)◦/336◦ (288◦ ± 25◦)53 (138)◦/339◦ (133)◦/(145)◦ 307◦/334◦ 319◦/333◦ (129)◦/333◦ 328◦ ± 11◦54 24◦/7◦ 20◦/17◦ 17◦/(186◦) 17◦/2◦ 24◦/19◦ 16◦ ± 6◦55 128◦/117◦ 124◦/121◦ 122◦/(290◦) 120◦/113◦ 127◦/131◦ 122◦ ± 5◦57 206◦/195◦ 201◦/198◦ 195◦/(12◦) 198◦/189◦ 204◦/207◦ 199◦ ± 6◦Table 6.3: Angles for whih the azimuth angle of oean bottom stations has to be orreted (lokwiserotation).
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94 METHODS AND RESULTS 2 CLUSTER AND DEFORMATION ANALYSIS6.3.3 Results of tilt measurementsOne the tilt traes are resampled at 0.1 Hz and re-orientated, the observed signals have tobe regarded in three sales:
• short period signals (sudden steps)
• intermediate period tilt transients (hours to days)
• global trends (weeks to months)Short period signalsSudden steps or jumps in the tilt traes have been shown to be learly related to strongand near earthquakes. These steps mostly ourred parallel to the S- or surfae waves. InChapter 4.2 (Soure Theory), the simulation of retangular shear faults, assoiated with thestrongest observed magnitude at Columbo (ML = 4.6), showed that elasti near-�eld stepsould be measured either on our OBTs or on absolute pressure sensors. The amplitude mea-sured for sudden steps is partly that large, that this signal an only be aused by an anelastiloal tilting of the sensor or station, indued by ground shaking. We an not answer whetherthis loal e�et was a tilt of the omplete OBS/OBT frame, or a displaement of the sen-sor platform within the glass sphere, whih would also end in a stati tilt signal. The fatthat a tilt-typial signal has also been found on the seismi sensors of the oean bottom sta-tions suggests, that the omplete frame is displaed and tilted during strong ground motions.Seismometers are mounted in a similar sphere, but passively leveled by being immersed inhigh-visous oil. It is highly unlikely that the seismometer itself gets tilted that quik withinthis oil-bath.Thus, sudden steps of high amplitudes are suggested to be aused by a onstrutionalde�ieny of our OBS arrier system, or by one-sided ompation of the mushy sea�oor. Highfrequent steps will not further be disussed in this work, unless their origin has not beenlari�ed.Intermediate period tilt transientsIntermediate period signals, i.e. deformation signals of a period of hours to a few days, thatour during or slightly before or after an earthquake swarm are prime suspets to be linkedto seismi ativity or its ause. In ase of �uid indued earthquake swarms, orrelation witha possible volume soure, e.g. a dike, is probable.An overview on potential soures, i.e. all earthquake swarms and three other possiblesoures of deformation (aldera, reef and the elevated region between Columbo and Santorini)
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98 METHODS AND RESULTS 2 CLUSTER AND DEFORMATION ANALYSISstation OBT 54 OBT 55 OBT 57entroid ∆x [km] bak azimuth [◦℄ ∆x [km] b. azi. [◦℄ ∆x [km] b. azi. [◦℄CS-1Jul. 28th 1.3 ± 0.1 235 ± 5 1.9 ± 0.1 257 ± 5 4.7 ± 0.1 284 ± 52006CL-1Sep. 23rd - - - - - -- Ot. 1stCL-2Dez. 3.7 ± 0.1 86 ± 5 3.1 ± 0.1 81 ± 5 2.5 ± 0.1 3 ± 56th-8thCS-2Jan. 10th 4.2 ± 0.1 78 ± 5 3.7 ± 0.1 72 ± 5 3.3 ± 0.1 10 ± 52007CS-3 3.6 ± 0.1 87 ± 5 3.0 ± 0.1 81 ± 5 2.4 ± 0.1 0 ± 5Feb. 18thAS-1 15.2 ± 0.1 57 ± 5 15.0 ± 0.1 55 ± 5 14.4 ± 0.1 41 ± 5Feb. 26thCS-4 1.4 ± 0.1 82 ± 5 0.9 ± 0.1 58 ± 5 3.3 ± 0.1 311 ± 5Mar. 1staldera 2.5 ± 0.1 88 ± 5 1.9 ± 0.1 79 ± 5 2.6 ± 0.1 329 ± 5reef 1.4 ± 0.1 117 ± 5 0.7 ± 0.1 122 ± 5 2.8 ± 0.1 296 ± 5swell 3.2 ± 0.1 193 ± 5 3.0 ± 0.1 208 ± 5 4.2 ± 0.1 258 ± 5Table 6.4: List of luster entroids and other possible deformation soures. The epienter distribution of theCL-1 swarm is sattered over a too large region to a average for a entroid. Swarms losest to the deformationsensors are the CS-1, CS-3 and CS-4 swarm.are listed in Tab. 6.5. The table gives an overview on absolute tilt and tilt rate, as well as theorientation of the station to the soure and in omparison the strike angle of the inomingsignal to analyze its possible linkage to the earthquake luster. Espeially for swarms of shortduration (CS-x swarms), stronger tilt signals are observed parallel to the seismi ativity,e.g. Fig. 3.11 in the OBT hapter (Ch. 3) and XY- and trae-plots in App. D. The mostfrequent observations are raised amplitudes of the tilt walk, rudely orientated radial to theearthquake luster entroid, and an inreased general noise on the tiltmeters whih is notinevitably orientated in diretion of the soure. The omparison of the predominant noiseorientation of eah tiltmeter suggests a preferred noise axis for eah sensor that seems to behosen randomly, i.e. not in the spei� diretion of a potential soure. These axes are: Astrike angle of about 20◦ to the north for OBT 54, about 100◦ for OBT 55 and not reallyestimable for OBT 57. It has not been further investigated whether this predominant noiseaxes were aused by shallow loal ativity suh as e.g. fumaroles, or if it was a onstrutionalde�ieny of the OBT.For a few lusters loated very lose to the sensors, signals learly orientated towards the



ANALYSIS OF DEFORMATION DATA 99luster are observed, e.g. on OBT 54 and 55 for the �nal phase of the CS-1 swarm or onOBT 57 for the CS-3 swarm. In all of these ases, the signal suddenly inreases signi�antlyin diretion of the soure entroid, whih marks uplift of the area above the entroid, anddereases again with about the same tilt rates one it has reahed its maximum. Modeling ofthese e�ets is deferred to the disussion.swarm OBT day dur. [h℄ b. azi. [◦] sign. strike [◦] T [µrad] δT/δt [µrad/h]54 1 209.5 16 235 ± 5 21 ± 5 25 ± 1 1.6 ± 0.1CS-1 54 2 210.2 1.5 235 ± 5 201 ± 5 35 ± 1 23.3 ± 0.107/28 54 3 210.25 3.5 235 ± 5 21 ± 5 30 ± 1 8.6 ± 0.12006 55 1 209.45 3 257 ± 5 30 ± 5 7 ± 1 2.3 ± 0.155 2 210.15 3 257 ± 5 274 ± 5 16 ± 1 5.3 ± 0.155 3 210.25 3 257 ± 5 94 ± 5 15 ± 1 5 ± 0.157 1 209.5 end 284 ± 5 14 ± 5 11 ± 1 0.5 ± 0.1CL-1 54 1 268 end - 25 ± 5 29 ± 1 0.13 ± 0.109/23 - 54 2 269 end - 205 ± 5 10 ± 1 0.8 ± 0.110/01 55 1 - - - - - -2006 57 1 268 end - 332 ± 5 35 ± 1 0.16 ± 0.154 1 341.7 6 86 ± 5 20 ± 5 24 ± 1 4 ± 0.1CL-2 54 2 342.0 2 86 ± 5 205 ± 5 16 ± 1 8 ± 0.112/06 - 55 1 340.5 noise 81 ± 5 105 ± 5 10 ± 1 -12/08 55 2 340.5 noise 81 ± 5 285 ± 5 10 ± 1 -2006 55 3 341.6 1 81 ± 5 65 ± 5 2.5 ± 1 2.5 ± 0.157 1 340.5 36 3 ± 5 0 ± 5 8 ± 1 0.2 ± 0.157 2 340.5 end 3 ± 5 270 ± 5 24 ± 1 0.4 ± 0.1CS-2 54 1 375.2 2 78 ± 5 ± 5 7 ± 1 3.5 ± 0.101/10 - 55 1 375.1 8 71 ± 5 ± 5 5 ± 1 0.7 ± 0.101/11 57 1 375.2 1 9 ± 5 23 ± 5 7 ± 1 7 ± 0.12007 57 2 375.6 2 9 ± 5 23 ± 5 7 ± 1 3.5 ± 0.157 3 376.2 2 9 ± 5 23 ± 5 7 ± 1 3.5 ± 0.154 1 414.1 1 87 ± 5 208 ± 5 7 ± 1 7 ± 0.1CS-3 54 2 414.4 3 87 ± 5 28 ± 5 15 ± 1 3 ± 0.102/18 54 3 414.5 22 87 ± 5 29 ± 5 19 ± 1 0.9 ± 0.12007 54 4 414.9 1.5 87 ± 5 29 ± 5 10 ± 1 6.7 ± 0.155 1 414.4 20 81 ± 5 343 ± 5 11 ± 1 0.6 ± 0.157 1 414.4 20 0 ± 5 300 ± 5 11 ± 1 0.6 ± 0.157 2 414.9 2 0 ± 5 30 ± 5 17 ± 1 8.5 ± 0.1CS-4 54 1 425.45 1 82 ± 5 29 ± 5 8 ± 1 8 ± 0.103/01 54 2 425.8 1.5 82 ± 5 29 ± 5 15 ± 1 10 ± 0.12007 55 1 425.55 2 57 ± 5 295 ± 5 10 ± 1 5 ± 0.157 1 trend - 312 ± 5 220 ± 5 6 ± 1 0.3 ± 0.1Table 6.5: List of deformation signals of longer period for all earthquake swarms. Strongest tilt rates areobserved parallel to shortlasting earthquake swarms. But also for longer lasting swarms, an inrease of ativityan be found.In ontrast to periods of inreased seismi ativity, Fig. 6.14 shows the typial signals
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Figure 6.14: Tilt traes for two months of sparse ativity:For two months without inreased ativity and earthquake swarms (August and November 2006), tilt ratesare signi�antly dereased ompared to those during swarms. This �gure is to illustrate the di�erenes evenin terms of noise between seismially more and less ative periods.on the tiltmeters for two months of very sparse ativity (August and November 2006). Theabsolute tilt is between 20 and 80 µrad, whih is equivalent to tilt rates of not more than
0.7 − 2.7 µrad/day or 0.03 − 0.1 µrad/hour ontrary to rates of 0.3 − 30 µrad/hour forshort lasting swarms. Another omparison of tilt amplitudes and the state of ativity is givenat the end of appendix D: 1000 s highpass �ltered tilt traes plotted over the event rate(earthquakes per day) show peaks of the noise amplitudes for days and periods of inreasedativity. However, this e�et ould not be observed for all swarms or sometimes not on allsensors at the same time.Long term trendsFig. 6.15 shows the tilt walk of all 4 OBTs for the omplete time of the experiment (OBT 56shut down after 35 days and is not disussed further). The graph marks the tip of thependulum above the ground over the entire duration of the experiment. A similar plot hasbeen developed to study the longterm development of tilt signals for a �uid injetion at theKTB in Germany (Jahr et al., 2008). Both OBTs losest to the bathymetrially elevated regionbetween the Columbo Reef and Cape Columbo on Santorini (OBT 54 and 55) show tilt rates of



ANALYSIS OF DEFORMATION DATA 101some tens of µrad per month, rudely in diretion of this elevated ridge for the �rst months ofthe experiment, OBT 54 until middle of November 2006. Then, a slight bakshift for another1.5 months is observed for OBT 55 until February 2007, before both stations show a strongtilt transient of up to 200 µrad. It is unlear if the soure of this strong tiltsignal observedon both OBTs has the same origin, beause both strong trends are orientated ompletelydi�erent and their ourrene is temporally separated by weeks (omplete January until endFebruary for OBT 54 and middle of February until end of Marh). OBT 57 that is furthestaway from the elevated ridge and shows at the same time a more or less permanent tilt walkin diretion of the aldera of Columbo. Possibly, it measures slow uplift of the seamount.However, OBT 57 might alternatively be drifting away from Columbo due to sinking of theanhor in downhill diretion.For the remaining time periods, the tilt walks on OBT 54 and 55 orrelate and might beaused by a potential in�ation along the submarine rift between Santorini and Columbo (seered stars in Fig. 6.11 (right panel) for potential enters of in�ation). Periods of tilt trendstowards the rift struture between Columbo and Santorini (Tab. 6.6) are de�nitely worth adisussion and a omparison with �ndings of absolute pressure measurements (OBS 50 on topof this elevated ridge was equiped with an absolute pressure sensor, see Ch. 6.3.4).station start end ∆t [d] T [µrad] rate [µrad/d] strike [◦]OBT 54 2006.07.01 2006.11.10 133 ± 1 270 ± 10 2.0 ± 0.2 175 ± 5OBT 54 2006.11.10 2006.12.25 45 ± 1 160 ± 10 3.6 ± 0.2 22 ± 5OBT 55 2006.07.01 2007.02.20 235 ± 1 520 ± 10 2.2 ± 0.2 137 ± 5OBT 57 2006.07.01 2007.03.27 270 ± 1 850 ± 10 3.2 ± 0.2 320 ± 5Table 6.6: Overview on long period trends6.3.4 Absolute pressure dataOf all deployed absolute pressure sensors (mounted on all OBTs and OBS 50 between Columboand Santorini), only one (OBT 50) was running until the end of the experiment, two (OBT 54and OBT 55) stopped reording shortly before their reovery and absolute pressure sensorsof OBT 56 and OBT 57 shut down during an early stage of the experiment. Thus, absolutepressure data ould only be used of OBS 50, OBT 54 and OBT 55.Fig. 6.16 gives an overview on the used absolute pressure gauges, their position and thedi�erential pressure between di�erent stations. We subtrated data of one station from an-other to get the pressure di�erene and thus the relative uplift or subsidene between both.The resolution of the pressure sensors is about 0.1 mbar, whih orresponds to a vertialdisplaement of 1 mm. Beause the average noise is around ± 1 mbar or ± 1 cm and some
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Figure 6.16: Pressure di�erene traes of OBS 50 in opposite to OBTs 54 and 55 (violet traes)in omparison to the event rate (blak graph). While a diret linkage to the event rate ould not be observed,OBS 50 is obviously asending relative to the OBTs (or the OBTs are desending relative to the OBS).Comparison of both OBTs suggests a small asent of OBT 55. The map shows positions and distanes of thesystems with operating absolute pressure sensors.stat. 1 stat. 2 ∆x [m] ∆P [mbar] ∆z [m] av. tilt [µrad] rate [µrad/day]OBS 50 OBT 54 2.780 4.5 ± 0.5 0.045 ± 0.005 16.2 ± 2 0.054 ± 0.005OBS 50 OBT 55 2.690 5.5 ± 0.5 0.055 ± 0.005 20.4 ± 2 0.068 ± 0.005OBT 55 OBT 54 710 1 ± 0.5 0.01 ± 0.005 14.1 ± 2 0.047 ± 0.005Table 6.7: List of absolute pressure measurements between the three permanently running absolute pressuregauges (OBS 50 on the in�ated region between the Columbo Reef and Cape Columbo on Thira island, as wellas OBTs 54 and 55. OBS 50 seems to asent relative to the OBTs by round about 5 m over the ompletetime of the experiment.and Cape Columbo on Thira. But absolute pressure data in omparison with tilt data haveto be treated with due are: The tiltmeter measures loal tilt variations on a point, while theabsolute pressure sensors measure uplift and subsidene over a long baseline, i.e. regional tilt.The regional tilt an not resolve small wavelengths, i.e. loal deformation. However, liabilityof signals of larger wave lengths is inreased for regional tilt. As Fig. 6.17 illustrates, tiltmetermeasurements on a point lead to the derivative of uplift over distane, ∂uz/∂uh, at exatlythis point. For the extreme ases, this an be a maximum tilt for a tiltmeter in the in�exionpoint of the vertial deformation (OBT 1 in the example Fig.6.17) or a tilt of zero, whenthe tiltmeter is plaed on top of the elevated region (OBT 2 in the example). For a signal
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Figure 6.17: Comparison: Tilt measurement on a point and over distane. Example for ritialposition on the "tilt urve", i.e. the spatial derivative of the uplift signal: OBS 1 is standing in the in�exionpoint of ∂uz/∂x. This makes the tilt signal to beome maximal, the uplift at this position is 1/2 of themaximum uplift whih is measured at OBT 2. But for this point, tilt beomes zero, beause it is the maximumof the uplift urve. An average tilt an be estimated by alulating the average between both tilt signals ofOBT 1 and 2, or by measuring distane and pressure di�erene between both stations.of larger wavelength, tilt measurements at single points an extremely falsify the results tosmaller (OBT 2) and larger (OBT 1) values. This has to be kept in mind when interpretingboth deformation measurements.Compared with global tilt trends, both methods evidene the in�ation of this region in therange of a few cm/year independent from eah other. But short baseline tilt trends suggesta muh higher uplift than it is evidened by absolute pressure observations.



CHAPTER 7DISCUSSION
With the temporary installation of additional land seismometers on the adjaent islandsaround Columbo and the deployment of OBSs and OBTs, azimuthal gaps of the permanentnetwork were suessfully losed. Seismi sensors in the zero-o�set region of the earthquakeluster beneath Columbo and their relative reloation using atalogue and orrelated wave-form data signi�antly improved event loations. Simultaneously, the inreased number ofstations dereased the magnitude threshold for loalized earthquakes down to MW = 0.5.Summarizing, these network improvements led to reloation results with aeptable smallrms-residuals, on average below 100 ms. Reliable moment tensor solutions of reloated eventswith MW > 3 were estimated using a huge amount of data, even hydrophone data of theOBSs/OBTs. Independently, solutions were veri�ed by analyzing P-wave polarization.Both was important to suessfully study the nature of seismiity in the Columbo region,espeially the 6 earthquake swarms that ourred diretly at the volano and another smallswarm loated lose to the seamounts SW of Anidros. Another important result onernedthe veri�ation of the tehnial funtionality of our deformation sensors, that was proved invarious period ranges.7.1 Classi�ation of earthquake swarmsThree types of earthquake swarms have to be taken into aount to lassify sequenes ofseismiity above bakground:

• Tetoni mainshok-aftershok sequenes
• Swarms indued by dike or �uid asent
• Seismi unrest due to inreased hydrothermal ativityTo disriminate tetoni earthquake lusters from volani swarms, their event rate isinvestigated for a possible hyperboli deay, as it is predited by Omori's law for a purely105



106 DISCUSSIONtetoni sequene (Lay and Wallae, 1995). Additionally, tetoni lusters are expeted toour along faults and show fault-typial foal mehanisms (e.g. Hauksson et al., 2001, for atetoni swarm at the San Andreas Fault). The separation based on fault-plane solutions failsat Columbo, sine tetoni earthquakes due to the extensional stress regime at the Santorini-Amorgos Faultzone show the same mehanism (normal faulting) as events at Columbo thatare interpreted to have a volani origin (Dimitriadis et al., 2005). Regarding event ratesover time, lear mainshok-aftershok sequenes an not be observed. Although strongestevent rates were mostly observed during the initial phase of the swarms, they mostly didnot derease hyperbolially. We thus exlude solely tetoni auses for the observed swarms,whih does not mean that �uid-indued regional stress perturbations may not ause tetonisubsequenes aompanying volani swarms.As a volani origin is expeted, both, hydrothermal ativity (e.g. Sigurdsson et al., 2006)and magma asent have to be onsidered as possible swarm triggers at Columbo. Magmaasent is evident from the 1650 eruption (Dominey-Howes et al., 2000) and indiated byreent studies of Dimitriadis et al. (2009).The investigation of hypoenter pattern, migration paths of seismi fronts and durationof swarms has shown to be promising to lassify volani earthquake swarms and to dedueinsights in their auses (Hensh et al., 2008). We have lassi�ed these swarms and will disusstheir parameters ompared to similar swarm events of known origins.A prime suspet is an asending magma dike. Suh a dike might be fed from a shallowrustal reservoir beneath Columbo. Earthquakes beneath the volano luster in a depth rangeof 3− 12 km, and Dimitriadis et al. (2005) suggests a seismi low veloity layer below 15 kmdepth to re�et the main magma reservoir of Columbo. Seismi ativity above this depthis expeted to be linked to magmati intrusions and dike emplaement. This assumptionis supported by magneti observations (Landshulze, 2009, and Fig. 2.7). Strong magnetianomalies of small wavelengths beneath Columbo are interpreted as the expression of solidi�edintrusions at an average depth of about 5 km. Earthquake swarms aused by dike-growth andpropagation are frequently observed prior to volani eruptions (e.g. Battaglia et al. (1999)at Piton de la Fournaise, Patané et al. (2002) at Mt. Etna). Two important observations fordike-indued earthquake swarms have been reently piblished: (1) The duration of the swarmis limited to some hours up to a few days. (2) more than 80 % of the ativity our withinthe initial phase of the swarm (Aoki et al., 1999; Patané et al., 2002, for a swarm o�shoreIzu island (Japan) and at Mt. Etna) and additionally show a typial depth-time distribution(Hensh et al., 2008).Parallel thereto, the ourrene of longer lasting earthquake swarms with a duration ofseveral days up to weeks (> 5 d, Hensh, 2005) and an unstrutured hypoenter pattern (DelPezzo et al., 1984) an be exluded to be aused by dike intrusion only, sine a dike rapidly



CORRELATION OF DEFORMATION SIGNALS AND SHORT LASTING SWARMS 107gets arrested due to buoyany loss aused by solidifying magma one it approahes oolerregions in the rust. A dike needs a ritial length to start buoyany-driven propagation(Dahm, 2000). Thus, the propagation time under ontinuous volume loss is limited.Long lasting swarms are disussed to be linked to inreased hydrothermal ativity (e.g.Fisher, 2003; Biano et al., 2004; Hensh et al., 2008). Their hypoenter distribution doesnot show typial migration paths and fronts of seismiity, as it has been found for short lastingswarms. In the following, I disuss four short lasting swarms (CS-1 - CS-4) and their possibleorrelation with deformation data in more detail. The two long lasting swarms CL-1 andCL-2 are not further disussed.7.2 Correlation of deformation signals and short lasting swarmsAfter shortly introduing our model for earthquake swarms triggered by dike asent, the dis-ussion mainly onentrates on possible orrelations of seismi observations and deformationsignals measured simultaneously.7.2.1 Model for dike-indued earthquake swarmsFig. 7.1 shows the lateral and vertial extension of the CS-1 earthquake swarm of July 2006.Earthquakes loally onentrate in a lentiular shaped luster (2·6 km lateral and 9 km ver-tial). Fault plane solutions show normal faulting rudely in the same strike diretion as thebest �tting plane through the hypoenter distribution (NE-SW) as well as parallel to theorientation of the extensional Santorini-Amorgos Fault.Short lasting and supposably dike-indued earthquake swarms show most of their ativityand fastest upwards migration of hypoenters during their initial phase. Often, the followingphase is haraterized by a seondary luster with muh slower migration veloities (asent)and a more or less sharp bakfront of seismiity at the lower end to a region of lakingearthquakes. This bakfront is also migrating upwards and thus, the typial triangular shapeof the zt-distribution of the hypoenters is visible (see Fig. 7.2, intensively disussed in Hensh,2005). Similar patterns have been desribed for known dike asents in Japan (Aoki et al.,1999), at Piton de la Fournaise (Battaglia et al., 1999), or Mt. Etna (Patané et al., 2002).Based on the �ndings of our previous investigations o�shore North Ieland (Hensh et al.,2008), we derived the following hypothesis for various hypoenter migration veloities thatwere reurrently found in the hypoenter pattern of short lasting swarms (see Fig. 7.2):The beginning of the dike asent is haraterized by the seismially most ative phase.Overritial stress aumulates at the upper tip of the dike and auses a rapidly inreasingdamage zone haraterized by interating miro-raks (Rubin and Gillard, 1998a). This
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Figure 7.1: Result-Plot for swarm CS-1 lose to OBTs 54 and 55. Events luster in a vertialolumn of about 9 km length, the lateral extensions of the luster are about 2 km NW-SE and 6 km NE-SW.A best �tting plane through the hypoenter distribution is found at a strike of 66◦ and a dip of 68◦. Momenttensor solutions alulated for the strongest events show normal faulting with omparable strike angles. Theluster entroid is loated below the outer SW slope of Columbo, lose to OBTs 54 and 55 (see also Fig. 6.12).Equivalent overview plots for eah swarm are given in App. D.system of raks may grow with up to a few tens of entimeters per seond. For Columbo,these initial fast veloities vIF of the seismi forefront were found in the range of
60 − 280 cm

s , on average about 70 cm
s .



CORRELATION OF DEFORMATION SIGNALS AND SHORT LASTING SWARMS 109The atual asent of the �uid or magmati volume is assumed to be muh slower andrepresented by a seond hypoenter front, migrating with a smaller veloity than the damagezone. Modeling predits an aumulation of stress in the omplete head region of a dike,mostly onentrated at its tips (Rubin and Gillard, 1998a,b; Thorwart, 2002), whih explainsmiro-earthquake lustering above the dike and sparsely around its head. Thesemain lusteror main front veloities vMC were found in a range of 4 − 28 cm
s for short lasting swarmsat Columbo, 15 cm

s on average.As mentioned above, further stress aumulation in the omplete head region of the dikeis the result of its harateristi lentiular shape (see Dahm, 2000; Rivalta and Dahm, 2004).Further, Toda et al. (2002) found, that dike-indued stress is proportional to the earthquakerate. This was on�rmed by a reent study of thermally indued miro-raks in a salt mine(Beker et al., 2009). This ould explain a redued seismiity rate behind the seismi front andbelow the thikest part of the dike (Dahm et al., 2009). One its point of maximum lateralextension has passed, stress dereases and seismiity stops at this depth. This veloity of thelower boundary vLB or bakfront veloity gives the zt-distribution its typial triangularshape. Clear values for vLB were only found for the CS-1, CS-2 and CS-4 swarm at Columbo,all in a range of 10−19 cm
s and thus for all three swarms slightly higher than vMC , respetively.The model assumes that the dike looses volume due to magma solidi�ation at the edgeof the dike and disposition of visous �uid in its tail. Furthermore, hanges of its shape dueto further opening of the dike (Rivalta and Dahm, 2004, predited by theory and proven byexperiments) lead to an upwards shift of the point of maximum lateral dike extent. Thisauses a slightly higher veloity vLB ompared to vMC (Fig. 7.2, right plot). Permanentvolume derease leads to a loss of buoyany and �nally arrests the dike.The hypothesis has originally been derived from observations at the Mid-Atlanti Ridge(Hensh et al., 2008) and seems well on�rmed for the short lasting swarms at the ar volanoColumbo. We thus assume that short lasting earthquake swarms at Columbo are mostlyindued by asending magma (or another �uid).Here found migration veloities are slightly higher as they were observed for a dike asentat Piton de la Fournaise in 1998 (Battaglia et al., 1999), at Mt. Etna in 2001 (Patané et al.,2002) or the lateral dike propagation at Kra�a (Ieland) in 1978 (Einarsson and Brandsdóttir,1980). While the shape of the zt-distribution in terms of various seismially ative fronts isomparable in di�erent volani regions, variations of migration veloities might be related todi�erent types of magma and the surrounding rok (density ontrast).For the remaining swarms of short duration at Columbo, CS-3 and AS-1, our observationsdi�er from the model. The CS-3 swarm shows a high seismiity rate at the beginning, inludingfast upwards migration. But the sequene does not ontinue with a seismi main- and abakfront. Their absene may indiate a diretly arrested dike. The AS-1 swarm SW of
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Figure 7.2: Hypothetial model for short lasting earthquake swarms. A) zt-distribution of the CS-1swarm at Columbo. Highest seismiity rate is observed within the initial phase's fast upwards migration paths(seismi forefront), followed slower asending luster (main front), both marked with red dashed lines. Thelower boundary (bakfront) of the triangular zt-distribution is marked by a red dotted line. B) Simpli�edmodel for short lasting swarms (seismially ative region is shaded grey) of upwards propagation of a dikewith ontinuous volume derease due to material loss aused by solidi�ation of magma (Hensh et al., 2008,derived from supposably dike-indued earthquake swarms o�shore North Ieland).Anidros is a sattered luster of events, without any struture or obvious migrations pattern.As this swarm was lying outside our OBS/OBT network and loations have larger errors, itould not be resolved whether this was any other kind of seismi sequene or not.7.2.2 Aompanying deformationNear-�eld terms an only be measured in the diret viinity of their origin. Of the 4 shortlasting swarms at Columbo, only one was loated lose enough to OBTs 54 and 55 to ob-serve lear signals of intermediate period deformation. Both tiltmeters were loated only1315 m (OBT 54) and 1896 m (OBT 55) away from the luster entroid of the CS-1 swarm.Clear signals of deformation transients for the CS-3 swarm were observed with OBT 57 only,so that the CS-3 swarm an not be used for hypothesis testing, unfortunately. However, it isinteresting that tiltmeters situated even further away from the earthquake swarm entroidsfrequently showed intermediate tilt noise on the radial omponent rather than on the transver-sal. This indiates a spatially limited deformation soure (point soure) loated at or lose tothe seismi luster. A orrelation between seismi ativity and the aompanying deformationis thus obvious.Fig. 7.3 ompares seismiity and tilt for the CS-1 swarm and shows unrest on the tiltmeteromponent radial to the luster entroid, starting shortly after the beginning of an earthquakeswarm and ending with a strong tilt pulse during the �nal phase of seismi ativity. The strongpulse-like signal ompletely relaxes one seismiity has ompletely ome to an end. A longer
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112 DISCUSSIONperiod of unrest signals of smaller amplitude is ontinuing and deaying over hours and days.Both signals, general unrest and the strong intermediate period tilt pulse, will be disussedseparately. Finally, a joint model inluding seismologial observations will be presentedGeneral unrestUnrest of the omplete seamount, i.e. inreased noise on tiltmeters standing further awayfrom the earthquake luster entroid, is a systemati observation also for all other earthquakeswarms. It is also found for longer lasting hydrothermally indued swarms. Tab. 6.5, as wellas tilt traes and tilt orientation plots in App. D show, that tilt rates of up to 20 µrad
h wereobserved for strongest tilt signals during earthquake swarms. An average tilt rate duringperiods of unrest is about 3− 10 µrad

h , ompared to periods of low seismi ativity, where tiltrates are less than 0.1 µrad
h (≃ 1−2µrad

day ). Thus, tilt rates during periods of unrest inrease bya fator of 30 and more, even at distanes outside the diret near-�eld of a possible volumetrisoure.Ongoing propagation of a deformation soure initiated by a deep hot reservoir has beendisussed and suessfully modelled for the Campi Flegrei uplift risis 1984 (Bonafede, 1991;De Natale and Pungue, 1993; Battaglia et al., 2006). Triggered by a deep magma intrusion,thermoelasti expansion aused deformation due to �uid overpressure. Same was found foranother uplift sequene at Campi Flegrei in 2000. Biano et al. (2004) found that variationsof the �uid pressure initiated by a deeper intrusion plays the major role for the observeddeformation. Both, heat �ux due to a hydrauli gradient and fast �uid transport along shallowaquifers organized a rapid di�usion of thermal energy and thus deformation (Martini et al.,1984; Bonafede, 1991). Furthermore, Bonafede and Mazzanti (1999) disussed the release ofvolatiles due to di�erentiation of deeper arrested magma as a soure of in�ation above. Bothseem to be reliable approahes to explain the further asent of a volume soure although theinitiating dike has already been arrested in a larger depth.The fored advetion of hot �uids from a deep high-pressure reservoir to a shallow lowpressure and temperature reservoir is a very e�ient soure for ground deformation (Bonafede,1991). The migration veloity of hot �uids and thus the omplete e�et of thermoelastiexpansion along aquifers an be expeted to be faster than heat transport that is only ausedby the propagation of pore �uids due to a hydrauli gradient. This is espeially the aseif the region has been altered by repeated volani events and/or di�use volani degassing.Thus, the inrease of hydrothermal ativity and the rapid onvetion ould ause unrest of theomplete volani system one dike propagation and earthquake swarms have started. Thisis observed in the data. Despite of the strong tilt signals on OBTs 54 and 55 by the end ofthe swarm, a general unrest is observed on all tiltmeters, even on OBT 57. This unrest isstarting already during the initial phase of seismi ativity. While OBTs lose to the swarm



CORRELATION OF DEFORMATION SIGNALS AND SHORT LASTING SWARMS 113entroid show sudden noise inrease, the simultaneous intensi�ation of the existing trend, oran overlying seond trend, is observed on OBT 57 (see Figs. 6.12 and 7.3).The e�ieny of heat onvetion by aquifers has been shown by Martini et al. (1984).Fluids deteted at fumaroles and boiling pools at Campi Flegrei were produed by boiling ofshallow aquifers reeiving a onvetive gaseous in�ow from the underlying magma hamber.And the intensity of hydrothermal ativity is depending on the state of ativity of this deeperreservoir, i.e. inreased for periods following a deep magma intrusion and thus simultaneous touplift sequenes. It is thus indeed possible, that a loal magma intrusion auses fast extendingand widespread thermoelasti deformation and hydrothermal unrest. This explains the nearlyinstantaneous ourrene of deformation signals on tiltmeters loated outside the detetablenear-�eld of the atual intrusion.Strong near-�eld signalsFor various volanoes, harmoni in�ation-de�ation signals were observed instantaneously prioran eruption, e.g. at the Sou�rière Hills volano on Montserrat (Sparks, 2003; Neuberg et al.,2006) or during the Anatahan (Mariana Islands, Pai�) eruption sequene (Pozgay et al.,2005). Additionally, Green and Neuberg (2006) found, that the maximum in�ation, i.e. tiltinrease over time dT
dt , ours simultaneous to or slightly after the maximum event rate. Thisoinides with our �ndings: Strongest tilt is observed one the earthquake ativity has alreadypassed its maximum. But tilt signals on OBTs 54 and 55 reah their maximum with a timeshift of about 1.700 ± 100s (28 : 20 ± 01 : 40 min). Suh a large time shift over a relativedistane of 581 m an not be explained by an in�ating-de�ating soure at a onstant depth.The apparent veloity of the tilt pulse at our stations is about 0.3 m

s and thus far below thetypial veloities of free wave propagation (Lay and Wallae, 1995). Therefor, we exludewave propagation e�ets as explanation for intermediate tilt pulses.The polarization of the tilt signals and the amplitude deay learly indiate a point likedeformation soure. We used a slowly asending point soure as a �rst order model to explainthe signals. A horizontally migrating point soure ould explain time shifts between twomaxima at di�erent stations, but an be exluded for two reasons: (1) We have not found anytendenies for horizontal migration of the earthquake luster, and (2) a horizontally shiftedvolume soure would ause one uplift peak and thus two tilt peaks, one negative, one positive,while passing the tiltmeter. This has not been observed. In ase of a sill intrusion one thedike has reahed a level of neutral buoyany, tilt signals indeed might look similar, but allof the found fault plane solutions show normal faulting and thus evidene vertial migrationonly.The remaining question is, whether a vertially migrating point soure an explain thetime shift of about half an hour, although both stations are loated only 581 m apart. As a



114 DISCUSSIONvery simple approah, we modeled a Mogi soure starting at the initial point of the swarm,i.e. the intersetion of both seismiity fronts. For the CS-1 swarm, this is at 12.5 km depth.As starting time, the soure time of the �rst event of the swarm was used. We let thesoure asend with the estimated veloity of the main seismi luster, 0.16 m
s (see Fig. 7.3).The soure is assumed to ontinue asending, even after the seismi ativity eases, until itreahes the surfae. The resulting urves do predit time shifted maxima for OBTs 54 and 55.Additionally, the theoretial urves niely predit the observed amplitudes at all three stations.A large amplitude at OBT 54, a smaller one at OBT 55 and a hardly visible signal at OBT 57.It is interesting that the urves reah their maxima and tilt dereases to zero before the soureapproahes the surfae.It was shown in Chapter 4.2.2 that the wavelength of the vertial deformation is dependingon the depth of the soure. It follows, that also the maximum of the tilt signal, loated atthe in�exion points of the uplift urve, is shifting towards the soure as it approahes thesurfae. Fig. 7.4 illustrates the depth dependeny of the tilt amplitude. While amplitudesare inreasing exponential for dereasing soure depths, the maximum of the tilt amplitudeontinuously shifts towards the epienter with a onstant apparent veloity cx. We de�nethis maximum as the spatial tilt maximum and cx as the apparent veloity of the spatial tiltmaximum.
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CORRELATION OF DEFORMATION SIGNALS AND SHORT LASTING SWARMS 115and de�ne the tilt signal by T (x, t; z(τ)) (x, t are the sensor oordinates, z(τ) is the soureoordinate). The position of the spatial maximum an then be found by setting the derivativeof T (x, t; z(τ)) (Eq. 4.28) with respet to x to zero:
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∂T (x, t; z(τ))

∂x
= 0 for z = ± 2x (7.3)This means, that the depth of the point soure (spherial soure) is two times larger thanthe epientral distane of the spatial tilt maximum. For a soure asending with the onstantveloity vz it follows, that the position of the spatial tilt maximum is moving with timetowards the epienter with a veloity of cx = 1

2vz.It is important to notie that the tilt amplitudes inrease exponentially as the soureapproahes shallower depths. Thus, the maximum of T (x, t; z(τ) along the x-oordinate isnot the same as the maximum along the z(τ) oordinate. Fig. 7.5 shows amplitudes and theshift of the amplitude maximum for three given epientral distanes and an asending soure(varying soure depth or time). Amplitudes again inrease exponentially for shallower depthsand rapidly derease as soon as the distane x is larger than the epientral distane of themaximum tilt signal.
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116 DISCUSSIONthe soure depth z:
∂T (x, t; z(τ))
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2
(7.5)When the asent veloity vz is known from seismi observations, the derivative of the tiltwith respet of time is:
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2vz
and ∆t =
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2vz
(7.7)We de�ne this maximum as the temporal tilt maximum and the apparent veloity ct ofits soureward migration the apparent veloity of the temporal maximum. As the temporalmaximum is found at a distane x = 2z, we �nd ct = 2vz .Results are summarized in Fig. 7.6: The position of the spatial tilt maximum (green urve)intersets the family of tilt funtions T (x, t; z(τ)) (blue urves) at their respetive maxima(∂T (x, t; z(τ))/∂x = 0, left hand side plot). The temporal tilt maximum observed on atiltmeter at a �xed distane x takes into aount that amplitudes are inreasing exponentiallyand is given by the envelope (red urve) of the family of tilt funtions and is found by setting

∂T (x, t; z(τ))/∂z = 0. The right hand side plot shows the derivative of T (x, t; z(τ)) withrespet of z. Here, the temporal maximum is the intersetion of the maxima (red urve)and the spatial maximum (green urve) the envelope of the family of funtions, based on thesymmetry of T (x, t; z(τ)) (see Eq. 4.28). Using both plots, amplitude estimations an be donefor eah station and transferred to soure depth and time shifts between the stations (dashedlines).Both derived apparent veloities are useful for di�erent types of measurements: The ap-parent veloity of the spatial maximum cx re�ets the atual position of the in�exion pointsof the vertial displaement uz. Depth and asent veloity vz of the soure an be estimatedfrom deformation data suh as ontinuous GPS or InSAR. In our ase, tiltmeter observationsat onstant distanes to the epienter, the apparent veloity of the temporal maximum ct,i.e. the envelope of T (x, t; z(τ)) for varying z, an be used to derive vz. Fig. 7.7 shows tilt
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1

2
ct = vz = 2cx and ct = 4cx (7.8)This simple approah is on�rmed by theoretial simulation. Using a numerial alula-tion, we �nd a time shift ∆t of 1.735 s (28:55 min). This is only 35 s more as found in thedata. The analytial solution using the shift of the temporal tilt maximum with the veloity ctleads to a theoretial time shift of 1815 s (30:15 min), whih is 115 s (1:55 min) longer as datasuggests. Best �tting amplitudes were found for a soure radius of 50 m, that orrespondsto a soure volume of about 520.000 m3. The measured amplitude ratio between OBT 54

(45 ± 5 µrad) and OBT 55 (15 ± 5 µrad) �ts with the modelled ratio (see Fig. 7.8).It is lear that a Mogi soure as well as a onstant veloity are only rude approximations.E.g. Rivalta et al. (2005) have found di�erent asent veloities of a �uid-bath for varyinglayer densities, using gelatine experiments. However, the model shows that vertial migrationof any volume soure an explain the unusual long time shifts ∆t of the temporal maximumtilt peaks on the stations, their amplitudes and the general 'waveform' of the tilt transients.
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CORRELATION OF DEFORMATION SIGNALS AND SHORT LASTING SWARMS 119tilt was already dereasing. Both, seismiity and tilt were interpreted as an expression ofsubsurfae magma movement (Yuan, 1984). Shape and amplitude of the signals show rudesimilarities with ours. If in our ase a magma-dike was growing upwards to the shallowsubsurfae, the absene of earthquake ativity within the uppermost 3 km might re�et astrutural hange. For instane, loose sediments and volani deposits are evident for at leastthe �rst 2 km, based on own ative seismi pro�ling (Ruhnau, 2009). But as there is nothingknown about a submarine eruption or out�ow of magma at Columbo during the earthquakeswarm, a seond model ould be disussed: The seismi ativity itself stopped at about 3 kmdepth. This ould indiate the possible arrest of the dike in this depth. Degassing of anarrested dike is temporary limited due to the drop of gas pressure down to the lithostatipressure (Aoella and Neri, 2009). Furthermore, degassing leads to a signi�ant volume lossof the magma bath, while its mass derease is negligable. The resulting density inreaseleads to a buoyany loss and possibly fores the dike to arrest. The temporal limitation ofdegassing ould explain the fast relaxation of the tilt pulse.7.2.3 Joint hypothetial model for dike-indued earthquake swarmsand aompanying deformation signalsSummarizing, we propose the following hypothesis (Fig. 7.9), whih is based on our preexistingmodel for dike-indued earthquake swarms and the new �ndings. The seismi and volaniunrest is initiated by the emplaement of a magma dike, fed from a shallow rustal reservoir.The dike an asend freely one it has reahed a ritial length. The dike asent is aompaniedby a typially strutured short lasting earthquake swarm, haraterized by a fast upwardspropagating seismi front and a muh slower bak front, whih both form the harateristitriangular shape of the swarm's zt-distribution (see Figs. 7.2 and 7.3). As the bak front issupposed to represent the position of the largest lateral emplaement at the dike's head, weassume its depth by the end of the swarm as the position where the dike omes to rest. Inase of Columbo, this is in a depth range of 3-5 km.E�et 1 (Fig. 7.9): Simultaneous to the onset of the intrusion, hydrothermal ativityand unrest are initiated by the approahing high temperature soure. The relatively shorttime between the swarm onset and a general unrest, also observed on tiltmeters further awayfrom the atual soure suggest e�ient and fast heat transport of hydrothermal �uids alongaquifers and/or altered volani roks with preexisting raks, rather than onvetion of pore�uids with Dary-veloities. Thus, a broad region around the intrusion possibly beomesthermoelastially deformed and ats as a large deformation soure. The larger depth of thisaquifer system auses small tilt amplitudes, but a long wavelength of the tilt signal. Loalnoise on individual tiltmeters might also be explained by the very loal inrease of fumaroleativity and hydrothermal �uid outbursts. Unrest on the tiltmeters alms down within a few
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Effect 1:

end of swarm / after dike arrest
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Figure 7.9: Hypothetial model for deformation signals aompanying short swarms: E�et 1marks the sequene of dike asent. Despite of the disussed seismi ativity, widespread unrest and thermoe-lasti deformation are supposably aused by fast ondution of hydrothermal �uids (red arrows), heated upby the intrusion. E�et 2 marks the sequene where the dike already ame to rest. The temporary vertialrelease of volatiles is suggested to lead to a loal deformation signal above the intrusion.days after the earthquake swarm, as hydrothermal ativity dereases again.E�et 2 (Fig. 7.9): We explained the loal but strong signal at the end of the swarmto be possibly aused by the release of volatiles from the ooling magma bath rather thanstrong vertial onvetion of hydrothermal �uids diretly above the intrusion. Although strongonvetion diretly above the dike might explain a short wavelength signal, the pulse formof the signal is di�ult to understand by assuming onvetive proesses. As disussed forthe general unrest of the volano during and after the intrusion, the ooling phase would bein the range of days up to weeks whih an not explain the limited wavelength of the foundpulse. Instead, the temporary release of gases (further migration of gases), until gas pressurehas dereased again to the lithostati pressure, is possibly su�ient to explain the temporaland spatial limits of the observed signal. One the intrusion omes to rest, volatiles ontinuemigrating upwards by spreading into the supposably fratured rok above. The enrihmentwith gas and possibly also �uids auses volume inrease and further thermoelasti expansionof the a�eted region. While the released volatiles ontinue asending and the gas pressure ofthe dike dereases down to lithostati pressure, strong degassing of the intrusion ends, despiteof some slight release of gases due to magma rystallization. This might be an explanation



GLOBAL TRENDS AND ASEISMIC DEFORMATION SIGNALS 121for a spatially limited soure and thus ould explain its short duration.The degassing volatiles ould be predominantly H2O. 4 − 6 wt% water have been foundfor former eruptions of the Santorini volano (Druitt et al., 1999), and the H2O saturation ofmagma in 3 km depth (approx. 9 · 107 Pa) is at about 3.5− 4 wt% (Dixon, 1997). This ouldexplain the temporary release of a large amount of gas rather than the degassing of CO2 or
SO2.Of ourse this gas migration an not diretly be ompared with a spherial Mogi soure.And data of only three measuring points restrit to a very simple model. But it demonstratestwo important fats:

• The epientral distane of the maximum tilt signal is depth depend and thus time shifts
∆t of maximum tilt between two tiltmeters an be explained by vertial migration of avolume soure only.

• One an intrusion omes to rest, it ativates a spatially limited region above it - sup-posably by the release of volatiles - whih ontinues asending. Although it is no purespherial volume soure, its deformation �eld is rudely equivalent to that of a Mogisoure (here a spheri volume of about 50 m radius).Very loal tilt signals (phase 2) have only been observed on OBTs 54 and 55 for swarmCS-1 and on OBT 57 for CS-3. Regional unrest (phase one) has been found to our parallelto all swarms, even long lasting swarms. However, the present state of this hypothetial modelis learly very speulative and requires further investigations.7.3 Global trends and aseismi deformation signalsReent studies suggest two di�erent magmati reservoirs beneath Santorini aldera and theColumbo submarine volano. One assoiated with the volani enter around the Kameniislands inside the Santorini aldera, and the other assoiated with the region between Columboand Cape Columbo on Thira (Santorini) (Vougioukalakis, 1996; Franalani et al., 2005).Reent and urrent seismi ativity and volani unrest are onentrating on the Columboregion. Only sparse volani and nearly no seismi ativity is presently observed around theKameni islands (Sigurdsson et al., 2006; Dimitriadis et al., 2009, and own observations).Fig. 7.10 shows an ative seismi pro�le (SE to NW) perpendiular to the in�ated regionbetween the Columbo Reef and Cape Columbo. The dimensions of this in�ation are approx.4 km along σ3 and 7-8 km between Thira and Columbo orthogonal to σ3. The region is learlyuplifted by some tens of meters at the maximum. OBS 50 was deployed exatly on top of
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Figure 7.10: Re�etion seismi pro�le over the elevated region between Santorini and Columbo:Raw data of high frequeny re�etion seismi pro�ling. The shot distane is 12.5 m. The uplifted area is lyingbetween shot numbers 900 and 1200, its maximum and the position of OBS 50 are loated at about shotnumber 1050.this elevated area and equipped with an absolute pressure sensor to measure possible upliftor subsidene.Compared to the pressure sensors of OBTs 54 and 55, OBS 50 shows an uplift of 5.5±0.5 cmrelative to OBT 54 and 4.5±0.5 cm relative to OBT 55. These values orrespond to an averagelong baseline tilt rate of 0.045 − 0.07 µrad
day along the 2.7 km baseline between the OBTs andOBS 50. As both OBTs show this trend relative to the OBS and there was nearly no trendfound between both OBTs, this an be regarded as a real signal rather than instrumentaldrifts. Parallel thereto, global tilt trends on OBT 54 and 55 also indiate the slow butontinuous uplift of this region. Both show trends in the range of 2.1 − 2.5 µrad

day for the �rstmonths of the experiment, whih would orrespond to a theoretial uplift of 1.8 m over a2.7 km baseline. These huge di�erenes between both measurements are probably the resultof the di�erent baseline lengths as it is illustrated in Fig. 6.17. The OBT measures tilt on apoint and thus is able to observe signals of very short wavelengths, but also very sensitive forloal e�ets. The estimation of tilt using pressure di�erenes leads to an average tilt over thedistane between both pressure sensors and thus only measures signals of long wavelengths.However, for signals of long wavelength, the measurement of the average tilt along a longbaseline should be preferred to avoid loal e�ets (Tolstoy et al., 1998).Uplift rates observed by absolute pressure measurements also �t with onshore measureddeformation rates using the Santorini GPS network (see Fig. 1.4). Both measurements indi-ate slight and ontinuous uplift of the already elevated area between both volani enters,Santorini and Columbo, in the range of some cm/year. Although sparse seismiity was ob-



POSSIBLE TECHNICAL IMPROVEMENTS OF THE OBT 123served above this in�ated region (see Fig. 5.8), earthquake swarms were absent. No indiationsfor shallower intrusions, suh as swarms, deformation signals of small wavelengths or magnetianomalies, as they were all found at Columbo, have been observed in this area.The long wavelength of the deformation signal and the sparse seismiity suggest a deepand large soure. The observed uplift might be the expression of a deeper magma reservoir(5-10 km orresponding to Dimitriadis et al., 2009) along the Columbo line (as expeted byVougioukalakis, 1996). But as our experiment was optimized on the observation of seismiityand deformation aused by shallow intrusions, speulations about this large sale signal arebeyond the sope of this study.7.4 Possible tehnial improvements of the OBTCoupling of the OBT to the sea�oor remains an open question. The free-fall system oupleswith its anhor weight of 120 kg only. Inluding buoyany of the �otation spheres, the weightof the omplete system under water is 20 kg. Although these 20 kg seem su�ient to keep thesystem stable against moderate underwater urrents, oupling e�ets due to unonsolidatedvolani deposits, on whih the instruments are standing, are unknown, although a good longperiod response predits onsistent oupling of the OBTs relative to eah other. Despite ofpossible subsidene in wet sand and instability of the sediments on the volano's �ank, sub-surfae heterogeneities and topographi e�ets have been shown to in�uene the deformation�eld. Kirhdörfer (1999) used �nite element omputations and a onial model for volanoesto investigate e�ets of topography. The most important result of his study was, that largersurfae displaements an be expeted for the onial model than for the half-spae (Mogimodel). Furthermore, ratios of horizontal and vertial displaement may vary from the Mogimodel, whih leads to slightly impreise depth estimations of the soure. Conerning het-erogeneities of the ground, Wielandt and Forbriger (1999) found, that loally measured tiltmight not represent the regional tilt at all. This means, that loal variations of strain-tiltoupling a�ets the observed tilt. This is an important e�et for our OBT, sine it measurestilt on a point and not along a longer baseline.The e�et is not worth a more detailed disussion, beause we do not know the exatonditions of the OBTs loation on the sea�oor. This is a large disadvantage of a freefallsystem. Although the position is preisely known to a few tens of meters, it is not known howthe instrument was standing and oupling to the sea�oor. Our simple modeling in setion7.2.2 suggests these e�ets to keep within a limit, sine both amplitudes for the signals onOBTs 54 and 55 are rudely �tting to one soure volume. But it an not be shown whatthe absolute e�et of the Columbo topography and loal heterogeneities on the modelledamplitudes is. Amplitudes of omparable observations (e.g. Yuan, 1984, at the Fuego volano)



124are rudely in the same range as ours. But the unertainties mentioned above may lead toimpreise depth and volume estimations.Another problemati point is the orientation of the tilt omponents. The usage of ele-troni as well as mehani ompasses failed due to the disturbane aused by anhor, frameand other metal elements of the omplete OBT system. The appliation of a orrelationmethod to re-orientate the sensor using data of a land seismometer with known orientationwas more or less suessful at Columbo, sine a few onshore seismometers were standing loseenough to derive and ross-hek re-orientation angles for all OBTs. But this tehnique isnot appliable for tilt measurements too far away from the oast, beause global orrelationmaxima are only found for station distanes of < λ
4 (Maurer and Deihmann, 1995), i.e. inase of the used low-frequeny surfae waves with a period of Tmax = 40 s, the distane anbe about 30-50 km at the maximum.A last point is the exponential dereasing drift at the beginning of the experiment. Asthese signals were also found during our test measurements in the Blak Forest Observatory,where the OBT frame was mounted on a onrete blok oupled diretly to the bedrok, thisnonlinear trend is supposed not to re�et subsidene of the instrument due to unonsolidatedsea�oor sediments. One possibility might be the gradual relaxation of internal stresses of theOBT frame, aused by strongly �xed srews and one-sided weight of the battery tubes. Butthis is speulative. As far as it the origin of these trends remains unsure, the �rst 4-6 weeksof the data are unusable.



CHAPTER 8CONCLUSIONS
The newly developed Hamburg Oean Bottom Tiltmeter has suessfully passed its pilotexperiment. Its priniple tehnial funtionality has been proven ontrary to most initialreservations and ritis. Although �rst experienes in pratial use threw up loads of questionsabout onstrutional de�ienies and problemati oupling, we were able to observe tilt signalsof varying wavelengths. Basially, the system is able to measure high frequeny tilt steps dueto near-�eld terms of earthquakes, signals of longer period suh as of an in�ating magmareservoir, as well as trends over weeks and moths. Furthermore, we were able to observehorizontal broadband seismi signals for the �rst time on the sea�oor. Thus, the OBT was anessential ompletion of our amphibian seismi experiment at the Columbo Submarine Volano.Regarding seismologial observations during the experiment, the improved event-stationgeometry and the implementation of our three omponent ross-orrelation approah signif-iantly dereased earthquake loation residuals by a fator of 20-30. Parallel thereto, themagnitude threshold of the omplete network was redued to about MW > 0.5. Improved lo-ation auray and a largely inreased number of suessfully reloated events enabled us topreisely study the lusters' hypoenter distributions on harateristi patterns and migrationpaths. Six major earthquake lusters have been observed during the experiment, of whih fourwere lassi�ed as possibly dike-indued and two as a result of temporary inreased hydrother-mal ativity. Reverse to the suessful lassi�ation of earthquake swarms at Columbo, wefound our preexisting model on swarm triggers well on�rmed.We found an obvious linkage between the seismi ativity and simultaneous tilt observa-tions. In general, noise on the tiltmeters inreased and measured tilt rates rapidly raised bya fator of often 30 and more one an earthquake swarm had started. These signals almeddown slowly over hours and days after the swarm. As this general unrest was rudely po-larized radial to the earthquake lusters, it has been interpreted as an ativity inrease ofhydrothermal systems due to a high temperature intrusion. Reent studies evidened the ad-vetion of hot �uids along hydrothermal aquifers to e�iently spread thermal energy from adeeper heat soure to shallower low temperature reservoirs. Thus, we postulated a large deep125



126volumetri inrease of a broader region above the intrusion to be thermoelastially expanded.This model is su�ient to explain the fast and wide extension of ground deformation.Near-�eld terms of a vertially propagating deformation soure have been observed fortwo earthquake swarms whih ourred lose enough to the tiltmeter pro�le. For one of theseswarms, we were able to model for a migrating volumetri soure, using an asending Mogisoure: The time shift between the tilt maxima on two tiltmeters in lose epientral distaneto the swarm entroid was evidened to represent the soureward shift of the temporal tiltmaximum. Although we ould not �nally lear whether this signals were aused by theongoing asent or by degassing of the dike, we redundantly found the migration veloityon�rmed that was derived from seismologial observations. We ould numerially model forthe exat time shift between both tiltmeters. The model has been proved analytially resultingin depth-dependent funtions for spatial and temporal tilt maxima. Using these funtions,depth and veloity of the asending soure an be estimated. A temporary maximum isobserved for permanent measurements with tiltmeters at �xed epientral distanes. Onshore, aspatial maximum is predited for ontinuous GPS measurements or repeated InSAR snapshotswhen di�erentiating uplift with respet to the epientral distane. Soure volume estimationsderived from tilt amplitudes have to be regarded arefully, sine the modeled Mogi soure isa very basi approximation only.Attendant investigations using di�erent geophysial methods supported these �ndings:Magneti anomalies of small wave lengths beneath Columbo have been suggested as solidi�edintrusions in about 5 km depth. This orrelates with depths where earthquake swarms endedand dikes supposably ame to rest. Results of moment tensor inversions for major earthquakesalso on�rm predominantly vertial propagation of �uids. Fault planes all showed normalfaulting and thus evidened the vertial orientation of the �rst priniple stress axis σ1.Summarizing, we postulate a model for the simultaneous ourrene of seismi swarmsand loal ground deformation: Charateristi hypoenter fronts and their migration veloitiesindiate a dike to have initiated migration towards the surfae. The approahing heat soureauses the immediate inrease of hydrothermal ativity. The fast spread of thermal energyfores expansion of a broader region around the intrusion. This deep and large soure auses adeformation signal of a long wavelength, hydrothermal �uid propagation auses general noiseinrease. Strong, but very loal near �eld terms around the epientral region of the seismiluster evidene the asent of a volume up or lose to the surfae. As magneti anomaliessuggest intrusions to arrest in about 5 km depth, we suppose volatiles released by the magmabath to initiate the temporal limited expansion of the region above the intrusion.This hypothesis remains speulative as far as it has not been proven by further �eld studies.The soure of regional uplift between Santorini and Columbo remains ompletely unsure.



APPENDIX ASENSOR PARAMETERS ANDVELOCITY MODELS
A.1 Seismi stationsName Loation Latitude Longitude Elevation [m℄ NetworkAMOE Amorgos East 36◦ 54.900'N 25◦ 58.728'E 210 EGELADOSAMOS Amorgos North 36◦ 47.736'N 25◦ 46.140'E 52 EGELADOSANAF Ana� 36◦ 21.486'N 25◦ 46.698'E 35 EGELADOSANID Anidros 36◦ 37.506'N 25◦ 41.082'E 179 EGELADOSANPA Antiparos 37◦ 01.938'N 25◦ 04.578'E 41 EGELADOSASTY Astypalaia 36◦ 34.770'N 26◦ 24.684'E 192 EGELADOSFOLE Folegandros 36◦ 37.296'N 24◦ 55.182'E 292 EGELADOSIOSI Ios 36◦ 44.082'N 25◦ 21.708'E 52 EGELADOSMYKO Mykonos 37◦ 28.932'N 25◦ 23.064'E 150 EGELADOSNAXO Naxos 36◦ 58.800'N 25◦ 26.400'E 157 EGELADOSNEAK Nea Kameni 36◦ 24.522'N 25◦ 24.084'E 57 EGELADOSOBS50 SW of Columbo 36◦ 30.000'N 25◦ 27.350'E -287 COLUMBOOBS51 NE of Columbo 36◦ 33.180'N 25◦ 31.220'E -203 COLUMBOOBS52 betw. Anidros and Ana� 36◦ 30.000'N 25◦ 39.000'E -367 COLUMBOOBS53 betw. Ios and Anidros 36◦ 38.500'N 25◦ 30.000'E -401 COLUMBOOBT54 WNW slope of Columbo 36◦ 31.400'N 25◦ 27.600'E -251 COLUMBOOBT55 WNW summit of Columbo 36◦ 31.200'N 25◦ 28.000'E -124 COLUMBOOBT56 ESE summit of Columbo 36◦ 30.750'N 25◦ 28.730'E -106 COLUMBOOBT57 ESE slope of Columbo 36◦ 30.295'N 25◦ 29.995'E -292 COLUMBOPARO Paros East 37◦ 06.900'N 25◦ 10.950'E 72 EGELADOSPARS Paros South 37◦ 01.710'N 25◦ 13.518'E 150 EGELADOSSCHI Shinoussa 36◦ 52.464'N 25◦ 31.080'E 100 EGELADOSTable A.1: List of seismi stations of the EGELADOS and COLUMBO networks, of whih data were usedfor proessing.All stations used for piking and further proessing are listed in Tab. A.1. No stations ofan epientral distane of more the 80 km were used (farest from Columbo is MYKO).
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128 SENSOR PARAMETERS AND VELOCITY MODELSPhase: P [s℄ S [s℄ Phase: P [s℄ S [s℄AMOE +0.02 +0.06 PARO -0.09 +0.09AMOS -0.08 +0.08 PARS 0.00 +0.20ANAF +0.04 +0.28 SCHI -0.02 +0.15ANID -0.03 +0.11 OBS50 -0.08 +0.01ANPA -0.09 +0.05 OBS51 -0.02 +0.03ASTY +0.07 +0.30 OBS52 -0.01 +0.10FOLE 0.00 +0.15 OBS53 -0.20 -0.17IOSI +0.02 +0.41 OBT54 -0.03 +0.09MYKO -0.20 +0.05 OBT55 -0.07 +0.08NAXO -0.15 0.00 OBT56 -0.10 0.00NEAK -0.09 +0.07 OBT57 -0.12 +0.02Table A.2: Station orretions of SEISAN. Given values are average residuals of all P- or S-piks of a station.Positive values stand for theoretial onsets estimated after the given pik, negative values mark estimated onsetbefor the given pik.Station orretions given in Tab. A.2 are estimated of the average SEISAN pik-residualsfor eah P- and S-phase of all stations. With the found values, pik times were orreted andevents were reloated in a single event loation using HYPOSAT. In a seond step, relativereloation using HYPODD was performed using the orreted HYPOSAT single loations.



INSTRUMENTATION 129A.2 Instrumentationstation seismometer tiltmeter hydrophone absolute pressure ommentsAMOE L4-3D - - - okAMOS CMG3 - - - okANAF L4-3D - - - okANID L4-3D - - - noisyANPA CMG3 - - - okASTY STS2 - - - noisyFOLE CMG3 - - - okIOSI STS2 - - - okMYKO STS2 - - - okNAXO L4-3D - - - okNEAK L4-3D - - - extremely noisyOBS50 EP300 - DPG RBR okOBS51 EP300 - DPG - Z weakOBS52 PMD - OAS - E weakOBS53 PMD - OAS - Z out of rangeOBT54 - Lippmann OAS RBR RBR down Marh 2007OBT55 - Lippmann OAS RBR RBR down January 2007OBT56 - Lippmann OAS RBR shut down after 35 daysOBT57 - Lippmann OAS RBR RBR down September 2006PARO L4-3D - - - okPARS L4-3D - - - okSCHI L4-3D - - - noisyTable A.3: List of instrumentation of eah on- and o�shore station.
• seismometers:� STS2: Strekeisen 120se seismometer� CMG3: Guralp 30se seismometer� L4-3D: Lennartz 4se seismometer� PMD: Fore Balaned Broadband Seismometer (manuf. PMD, model EP-105)� EP300: Fore Balaned Broadband Seismometer (manuf. PMD, model EP-300)
• pressure sensors:� DPG: Di�erential Pressure Gauge (SCRIPPS), Period: 0.5-500 s� OAS: Relative pressure sensor� RBR: Absolute pressure sensor
• tilt sensor� Lippmann: 2 omponent tiltmeter



130 SENSOR PARAMETERS AND VELOCITY MODELSnetwork data logger sampling rate [Hz℄ operating institutionCOLUMBO (OBSs/OBTs) Send GEOLON MLS 50 University of HamburgEGELADOS (onshore stations) Earth Data Logger 100 Ruhr University BohumTable A.4: List of all used data loggers and sampling ratesLadstations of the EGELADOS projet were run with Earth Data Loggers (EDL) of theGerman DEPAS Pool for amphibian seismology at a sampling rate of 100 Hz, the HamburgOBSs/OBTs were run with GEOLON Marine Longterm Seismoorders (MLS) at 50 Hz (seeTab A.4).sensor No. of zeros zeros [re, im℄ No. of poles poles [re, im℄ gain (inl. logger)STS2 2 0.0 0.0 2 -0.03674286 -0.03674286 600 counts · s/µm0.0 0.0 -0.03674286 0.03674286L4-3D 2 0.0 0.0 2 -4.65 4.69 190 counts · s/µm0.0 0.0 -4.65 -4.69CMG3 2 0.0 0.0 2 -0.147 0.147 787.2 counts · s/µm0.0 0.0 -0.147 -0.147OAS 1 0.0 0.0 1 -20. 0.0 524.25 counts/PaDPG 3 0.0 0.0 5 -3.29E-02 0.0 463.2 counts/Pa0.0 0.0 -6281.0 0.0 -316.4 0.0-30.3 0.0-0.21 0.0-1377.4 0.0Table A.5: Poles and zeros of seismi sensors as they were used for magnitude estimation and moment tensorinversion.Poles and zeros given in Tab. A.5 are standart values provided by manufaturers. Asshown in App. C.1, poles & zeros provided for PMD are not reliable: Theoretially alulatedsensor responses strongly di�er from their real responses. Of OBSs/OBTs, only hydrophonedata was taken for moment tensor inversion.



BANDPASS FILTERS 131A.3 Bandpass �ltersPhase fL1 [Hz℄ fL2 [Hz℄ fH1 [Hz℄ fH2 [Hz℄ osine taper [%℄P 3 6 15 20 15S 3 6 20 24 10Table A.6: Bandpass Filters applied to seismi data before ross orrelation. Time windows ut o� theontinuous data were bandpass �ltered before ross orrelation with an aausal �lter with the above givenfrequenies.Bandpass �lters given in Tab. A.6 are relatively similar to experienes of other experiments(e.g. North Ieland Experiment (Hensh, 2005)). They were found by analysing the frequenyspetra of the earthquakes (see Figs. A.1 and A.2) and smoothly varied by trial and error to�nd the best orrelation results. The �lter is applied automatially by the COMA orrelationroutine (Reinhardt, 2002) on eah time window for P- and S-phases.Filter e�ets were eliminated by tapering beginning and end of the time windows. ForP-phases, the length of the taper was hosen longer to also redue e�ets due to re�etedwaves from the sea surfae: These PwP waves �ip their phase by 180◦ due to the negativeontrast of impedane at the sea surfae, while their energy keeps nearly stable beause ofa re�etion oe�ient of nearly 1 for the water-air boundary. This an ause above averagehigh negative orrelation oe�ients, whih is even found for shallow stations, where the PwPphase arrives shortly after the P phase (see Appendix B).
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Figure A.1: Powerspetra of STS2 landstation IOSI, A) for an hour of quiesene and B) for an earthquakeswarm with magnitudes between 1 and 4. While the sea miroseismiity has a frequeny of less than 1 Hz,the frequeny domain of the earthquakes is between 2 and 20 Hz.Figs. A.1 and A.2 show powerspetra for on- and o�shore stations for the preeding and theinitial hour of an earthquake swarm on 28th of July 2006. The peak below 1 Hz is aused by sea
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Figure A.2: Powerspetra of EP300/DPG o�shore station OBS50, A) for an hour of quiesene, B) for anearthquake swarm with magnitudes between 1 and 4 and C) for the Di�erential Pressure Gauge (DPG), alsoquiesene and swarm.miroseismiity, the frequeny domain of the events is between 2 and 20 Hz. Although thereis event energy starting from 2 Hz, best �lters were found as shown in Tab. A.6. Most eventsare of small magnitude, lower frequenies only our for higher magnitudes, thus bandpassesstart with 3-6 Hz. Due to strong e�ets of higher frequenies on the ross-orrelation, thesefrequenies are also ut o�.Values given in this subsetion only show �lters used befor ross-orrelating the waveforms.Filters applied while piking were manually hosen ase-dependent by the respetive operator.



APPENDIX BCORRELATION COEFFICIENTS
B.1 Correlation oe�ients of the Columbo ExperimentThe following histograms give an overview of the distributions of orrelation oe�ients.Thresholds (t1 and t2) are given for eah station and eah phase, from whih on data wasused for reloalisation. Green urves show positive, red urves negative orrelation oe�ients.Thresholds (t1) were set on the position from whih on the green urve is obviously dominating,usually at about n(cc−(red)) < 1

2n(cc+
(green)). Another, mostly smaller value (t2), marks theapproximatly end of a normal Gauss urve.
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134 CORRELATION COEFFICIENTSoe�ients (here red) is mirrowed at the y-axis and laid onto the urve of positive orelationoe�ients (here green). Both threshold are then determined by hand, t1 for values where thepositive urve is dominant, t2 for values larger than the estimated end of a symmetri urve.Both matries Mcc(t1) and Mcc(t2) of orrelation values were tested in hypoDD to reloatethe lusters. Additionally, a third and fourth trial was done, where also above average highneagtive values where added to the matries. While we found by trial and error, that athreshold orientated at the theoretial shape of the urve (t2) inludes too many randomlyhigh orrelating event pairs, the best solution was derived by taking threshold t1 and inludingthe negative values, whose absolute value is > t1.Above average high negative orrelation an result of two fators:
• station lose to nodal plane (180◦ �ip of polarisation due to slight shifts of the faultplaneorientation or loation of the event)
• PwP phase for shallow OBSs/OBTs (phase reversal at water surfae, see also App. A.3)Figs. B.2-B.4 show ross orrelation results as well as t1- and t2-values for eah station andeah phase that was used for relative reloation. Sine all lusters, partly spatially separatedby some kilometers, were orrelated all together the green tail is often minimal in ontrast tothe rest of the urve, but still inludes some tens to thousands of eventpairs.
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APPENDIX CINSTRUMENT CALIBRATION
Knowledge about the transfer funtion of seimometers and tiltmeters is absolutely neessaryfor data-interpretation. The investigation of the sensor-response on seismi and tilt signalsaused by known displaement, veloity or aeleration allows the later on interpretation ofdata aused by signals of unknown strength and soure.We used a tilt-table to ause small horizontal aeleration on the sensor by giving slighttilt-steps (see Fig.C.1). While a tiltmeter should show a linear response on inreasing quasi-stati deformation, a seismometer ats as a highpass �lter and thus starts swinging with itslower orner frequeny (the upper orner frequeny is simply given by the Nyquist frequeny,i.e. half of the reorders sampling rate, here fs = 50 Hz, i.e. fNy = 25 Hz).

MASS

g

z"

x" screw
alpha

table length l

step dz

Figure C.1: Setup of tilt-table and sensor. The signal is given with a preise srew that lowers the table-hightat one side. This auses low horizontal aeleration ẍ on the mass.
The omponent of horizontal aeleration ẍ is given with:
ẍ = sinα · gwith α = 2 · arcsin∆z/2

l(l = 585mm, i.e. legnth of the tilt-table).137



138 INSTRUMENT CALIBRATIONC.1 Seismometer alibrationThe expeted output U(ω) for a known aeleration input Ia(ω) is given with:
U(ω) = Iv(ω)Tv(ω) = iωId(ω)Tv(ω) =

Ia(ω)

iω
Tv(ω) (C.1)where ω is the angular frequeny, i the imaginary unit and the indies d, v and a standfor displaement, veloity and aeleration.Equivalent veloity input to an aeleration step is an in�nite ramp with a slope of givenaeleration. The Laplae Transform of suh a slope is proportional to 1

(iω)2
whih shows thatlow frequenies are e�iently exited with a tilt table. While seismometers typially annotmeassure very long period motions and quasi-stati o�sets, they at as highpass �lters. Thus,the response due to a tilt step enables to investigate the transfer funtion at and slightlybelow the orner frequeny of the sensor.

glass sphere

ball−bearing

FIN FIN

SENSOR SENSOR

GIMBALLING

PMD EP300
glass sphere

A) B)

OIL OILFigure C.2: Instrument spheres of PMD and EP300 siesmometers. Whereas the PMD sensor is hanging ata ball-bearing diretly in high visous oil, the EP300 is mounted on a table that has ontat to the oil by �ns.The EP300 is gimballed by hanging in two rings with perpendiular axes.
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∆z[µm] residual σz[µm] ∆α[deg] residual σα[deg] horiz. a. a[m

s2 ] residual σa[
m
s2 ]5 ± 3 0.0005 ± 0.0003 0.00009 ± 0.0000510 ± 3 0.001 ± 0.0003 0.00017 ± 0.0000520 ± 3 0.0019 ± 0.0003 0.00033 ± 0.00005Table C.1: Tilt-steps for seismometer alibration and resulting horizontal aelerations.

C.1.1 PMD sensorCalibration urves for both used PMD sensors are given in Fig.C.3 and Fig.C.4:
NS component:

EW component:

z=10µm
amp=2.28E−19

z=5µm
amp=2.33E−19

z=10µm z=5µm
amp=4.4E−19 amp=2.75E−19

Figure C.3: Theoreti (green) and measured (blak) veloity response urves for PMD sensor s/n 512.Measured resonane frequenies are lower than theoretially predited. Possible reasonstherefor ould be the interation of both, harateristis of the seismometer and the highvisous oil. Also theoretial alulations assume an aeleration step in form of a stati o�set;the tilted oil-system slowly shifts bak to a vertial position and thus dereases the horizontalaelertion. Non-linearity of the ampli�ation fator as observed for PMD 512 may also be
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z=10µm
amp=5.08E−19

z=10µm
amp=3.58E−19

NS component: EW component:

Figure C.4: Theroreti (green) and measured (blak) veloity response urves for PMD sensor s/n 4. Thesame is observed here: The resonane frequeny of the whole OBS system seems to be lower than the instru-ment's theoreti eigenfrequeny.result of systemati errors during the measurements, sine a step of 5 µm is nearly in therange of the step residual.C.1.2 EP300 sensor
NS component: EW component:

z=10µm z=10µm
amp=6,02E−5amp=6,5E−5Figure C.5: Theoreti (green) and measured (blak) veloity response urves for an EP300 seismometer (s/n10535). The resonane frequeny of the oil-system is slightly higher than the theoreti. Osillation keeps onmuh longer than suggested by the theoreti urve.Also the EP300 - oil system has an own harateristi, but here the resonane frequenyof the whole system is slightly higher than for the seismometer itself.C.1.3 ComparisonQuantitative desription (see Fig.C.7):
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EW component:NS component:

z=10µm z=10µm
amp=5.06E−5 amp=4.6E−5

Figure C.6: Theoreti (green) and measured (blak) veloity response urves for an EP300 seismometer (s/n10536). Same here: Slightly higher resonane frequeny of the seismometer in oil and subritial attenuation.
• Theoreti urves show small similarity in terms of period.
• For measured urves (OBS - oil system) the resonane frequeny inreases in oppositeto the theoreti urves for the EP300, for the PMD it dereases
• While for the PMD (instead of period) the measured urves rudely resemble the the-oreti ones, at least in terms of shape, EP300 measurements totally di�er from theory(period and attenuation).

amp(EP300)=1.0
amp(PMD)=11.1

amp(EP300)=1.0
amp(PMD)=1.58E13

Figure C.7: Comparison of theoreti and measured urves of EP300 (blak) and PMD (green) sensors.While there is a rude similarity of theoreti urves (left piture), measured urves di�er (right piture): TheEP300 delivers shorter periods as expeted, the PMD longer periods. Additionally, the EP300 seems to benot well attenuated.The subritial attenuation of the EP300s is supposed to be a fault in onstrution of theseseimometers. To verify that measured resonane frequenies reselmble both, seimometer andoil harateristis, a rude modelling of the shifting veloity of the di�erent sensors throughthe oil with respet to their immersion detphs was done.



142 INSTRUMENT CALIBRATIONFig.C.2 shows, that the PMD sensor is muh deeper immersed in oil than the EP300 (5-8m for the PMD in omparison to 3m for the �ns under the EP300). Also for non-sphereibodies, the Stokes eqaution (C.2) is a rude approximation for the veloity vp of a partile,preonditionned that the Reynoldsnumber Re < 1, whih is the ase for a body in high visousoil (visosity ν = 200.000Ns
m2 ):

vp =
2r2a(ρeff − ρoil)

9ν
(C.2)

ρeff is the efetive density, i.e. the onstant mass o� the whole seimometer redued onits immersed part:
ρeff =

mseis

Veff
=

mseis
3
4πr3

eff

(C.3)with
reff =

rseis + zimmersed

2

2
(C.4)Thus, inreasing the immersion depth has similar e�ets as inreasing the partiles volumewhile keeping the mass stable (density derease). The result of this modelling is the urvein Fig.C.8: Espeially for small immersion depths, the partile veloity derease rapidly forinreasing oil depth. Note, that this is a rude approximation with ideal values. But the e�etdisussed above an thus be veri�ed.
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TILTMETER CALIBRATION 143C.2 Tiltmeter alibrationAll tiltmeters have been alibrated before deployment on the same tilt-table as it was usedfor the seismometers. The tiltmeter itself is a horizontal aelerometer and reats as a ausallowpass �lter on stati (tilt) and dynami (seismi waves) signals. For eah omponent ofeah instrument, several tilt steps of varying size were performed, the individual alibrationurve was estimated by linear regression.
∆z[mm] residual σz[mm] ∆α[deg] residual σα[deg]0.5 ± 0.01 0.0490 ± 0.00011 ± 0.01 0.0979 ± 0.00011.5 ± 0.01 0.1469 ± 0.00012 ± 0.01 0.1959 ± 0.00013 ± 0.01 0.2938 ± 0.0001Table C.2: Tilt-steps for tiltmeter alibration. Given mis�t is the auray of the tilt steps.Mis�ts in the following tables are alulated as an average of the measured values fora given time window before and after the tilt steps. For the alibration urve, they werealulated by linear regression error estimation.The alibration urve is a line through the origin (y = bx + a and a = 0), i.e. for linearregression the following simpli�ed approah was used:

b =
Σn

i=1xiyi

Σn
i=1x

2
i

(C.5)With a standart deviation of:
sb =

√

1

n − 1

Σn
i=1(yi − bxi)2

Σn
i=1x

2
i

(C.6)



144 INSTRUMENT CALIBRATIONTiltmeter OBT54 (sensor no. 1)
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Figure C.9: Calibration measurements of tiltmeter 1: A) raw data with de�ned tilt-steps (see tables C.2and C.3), B) linear regression of alibration data.omp ∆α[deg] start[counts] end[counts] |∆|[counts]K1 0.0490 ± 0.0001 103000 ± 3000 158000 ± 3000 55000 ± 5000K1 0.0979 ± 0.0001 -8000 ± 2000 103000 ± 3000 111000 ± 4000K1 0.0979 ± 0.0001 -62000 ± 4000 -173000 ± 4000 111000 ± 6000K1 0.1959 ± 0.0001 158000 ± 3000 -62000 ± 4000 220000 ± 5000K2 0.1469 ± 0.0001 -6000 ± 2000 -189000 ± 6000 183000 ± 7000K2 0.2938 ± 0.0001 -189000 ± 5000 183000 ± 3000 372000 ± 7000Table C.3: Tilt-steps for tiltmeter 1 (OBT54) and resulting output signal.
• K1: y = 1 130 000 ± 5 000 counts

deg

• K2: y = 1 264 000 ± 7 000 counts
deg
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Figure C.10: Calibration measurements of tiltmeter 1: A) raw data with de�ned tilt-steps (see tables C.2and C.4), B) linear regression of alibration data.omp ∆α[deg] start[counts] end[counts] |∆|[counts]K1 0.1469 ± 0.0001 -7000 ± 900 170000 ± 1000 177000 ± 1500K1 0.1469 ± 0.0001 -188000 ± 2000 -9000 ± 700 179000 ± 2000K1 0.2938 ± 0.0001 170000 ± 1000 -188000 ± 2000 358000 ± 2000K2 0.1469 ± 0.0001 -3000 ± 1000 169000 ± 5000 172000 ± 5000K2 0.1469 ± 0.0001 -176000 ± 4000 -4000 ± 1000 172000 ± 5000K2 0.2938 ± 0.0001 169000 ± 4000 -176000 ± 4000 345000 ± 6000Table C.4: Tilt-steps for tiltmeter 3 (OBT55) and resulting output signal.
• K1: y = 1 220 000 ± 3 000 counts

deg

• K2: y = 1 173 000 ± 5 000 counts
deg
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Figure C.11: Calibration measurements of tiltmeter 1: A) raw data with de�ned tilt-steps (see tables C.2and C.5), B) linear regression of alibration data.omp ∆α[deg] start[counts] end[counts] |∆|[counts]K1 0.0490 ± 0.0001 -163000 ± 1000 -227000 ± 2000 64000 ± 2000K1 0.0979 ± 0.0001 -41000 ± 4000 88000 ± 2000 129000 ± 5000K1 0.0979 ± 0.0001 88000 ± 2000 214000 ± 6000 126000 ± 7000K1 0.1959 ± 0.0001 148000 ± 2000 -107000 ± 2000 255000 ± 3000K1 0.2938 ± 0.0001 214000 ± 6000 -163000 ± 1000 377000 ± 6000K1 0.2938 ± 0.0001 -227000 ± 2000 148000 ± 2000 375000 ± 3000K2 0.0490 ± 0.0001 159000 ± 1000 217000 ± 1000 58000 ± 2000K2 0.0979 ± 0.0001 45000 ± 2000 -71000 ± 4000 116000 ± 5000K2 0.0979 ± 0.0001 -71000 ± 4000 -180000 ± 4000 109000 ± 6000K2 0.0979 ± 0.0001 -13000 ± 1000 105000 ± 2000 118000 ± 3000K2 0.1959 ± 0.0001 217000 ± 1000 -13000 ± 1000 230000 ± 2000K2 0.2938 ± 0.0001 -180000 ± 4000 159000 ± 1000 339000 ± 5000Table C.5: Tilt-steps for tiltmeter 4 (OBT56) and resulting output signal.
• K1: y = 1 285 000 ± 5 000 counts

deg

• K2: y = 1 161 000 ± 8 000 counts
deg
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Figure C.12: Calibration measurements of tiltmeter 1: A) raw data with de�ned tilt-steps (see tables C.2and C.6), B) linear regression of alibration data.omp ∆α[deg] start[counts] end[counts] |∆|[counts]K1 0.0979 ± 0.0001 -114000 ± 3000 -227000 ± 3000 113000 ± 4000K1 0.1959 ± 0.0001 -1000 ± 5000 221000 ± 4000 222000 ± 6000K1 0.2938 ± 0.0001 220000 ± 4000 -114000 ± 3000 334000 ± 5000K1 0.2938 ± 0.0001 -227000 ± 3000 109000 ± 2000 336000 ± 4000K2 0.0979 ± 0.0001 121000 ± 4000 1000 ± 5000 122000 ± 6000K2 0.0979 ± 0.0001 -65000 ± 5000 60000 ± 1000 125000 ± 5000K2 0.1469 ± 0.0001 1000 ± 5000 -187000 ± 5000 188000 ± 7000K2 0.1959 ± 0.0001 183000 ± 6000 -65000 ± 5000 248000 ± 7000K2 0.2938 ± 0.0001 -187000 ± 5000 183000 ± 5000 370000 ± 7000Table C.6: Tilt-steps for tiltmeter 5 (OBT57) and resulting output signal.
• K1: y = 1 139 000 ± 2 000 counts

deg

• K2: y = 1 264 000 ± 6 000 counts
degFinal alibration valueThe average sensitivity used for data proessing is 1.200.000 counts

deg whih orresponds to:
14.5

nrad

count
(C.7)
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APPENDIX DSYNOPSIS OF EARTHQUAKE SWARMS
The following setion summarizes all 7 earthquake swarms between June 2006 and Marh 2007.For eah swarm, parameters suh as luster extension, migration veloities et. are given inan extra text blok, followed by 4 graphis:

• latitude-longitude-, longitude-depth- and latitude-depth-plots inluding best �tting planethrough the earthquake luster, as well as a lat-lon map plot to visualize the luster'sloation and foal-mehanism as far as they are estimated for events during the swarm
• depth-time-, longitude-time and latitude-time-plots to investigate luster migration. Anadditional event-density plot and a depth-time plot of migration pathes omplete theanalysis of all ouring migration veloities of the swarm
• tilt-traes rotated in radial (blak urves) and transversal (grey urves) to the signal'sbak-azimuth, again plotted over the event-density to ompare possible parallels betweenseismiity and deformation signals
• xy-plots of all tiltmeters for the time of eah swarm to observe orientation and amplitudeof the deformation signal. A map plot below informs about loation of the seismiluster, its entroid and the aording deformation signals in form of amplitude-saledarrows for eah tiltmeter
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150 SYNOPSIS OF EARTHQUAKE SWARMSD.1 Swarm on 28th of July 2006 (CS-1)Main luster:- Initial event: July, 28th, 11:00:17.2- Duration: 19 hours- Number of events: 211- Ext.: NW-SE approx. 2 km, NE-SW approx. 6 km, depth approx. 9km (z=3-12km)- Best �tting plane: strike = 66◦, dip = 68◦- Magnitudes: ML(max) = 4.6 / ML(average) = 1.5
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Figure D.1: Swarm CS-1: lat-lon, lat-z, lon-z, map
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Figure D.3: Swarm CS-1: Tilt traeOBT signal no. day dur. [h℄ b. azi. [◦] sign. strike [◦] T [µrad] δT/δt [µrad/h]54 1 209.5 16 235 ± 5 21 ± 5 25 ± 1 1.6 ± 0.154 2 210.2 1.5 235 ± 5 201 ± 5 35 ± 1 23.3 ± 0.154 3 210.25 3.5 235 ± 5 21 ± 5 30 ± 1 8.6 ± 0.155 1 209.45 3 257 ± 5 30 ± 5 7 ± 1 2.3 ± 0.155 2 210.15 3 257 ± 5 274 ± 5 16 ± 1 5.3 ± 0.155 3 210.25 3 257 ± 5 94 ± 5 15 ± 1 5 ± 0.157 1 209.5 end 284 ± 5 14 ± 5 11 ± 1 0.5 ± 0.1Table D.1: Deformation signals of the 28th of July 2006 swarm (CS-1).
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154 SYNOPSIS OF EARTHQUAKE SWARMSD.2 Swarm from 23rd Sept. until 1st of Ot. 2006 (CL-1)Main luster:- Initial event: September 23rd, 00:10:24.9- Duration: 175- Number of events: 286- Extension: NW-SE approx. 3.5 km, NE-SW approx. 8 km, depth approx. 10km (z=5-15km)- Best �tting plane: strike = 60.5◦, dip = 59◦- Magnitudes: ML(max) = 3.9 / ML(average) = 1.4
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Figure D.5: Swarm CL-1: lat-lon, lat-z, lon-z, map
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Figure D.6: Swarm CL-1: zt-distribution
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Figure D.7: Swarm CL-1: Tilt traesOBT signal no. day dur. [h℄ b. azi. [◦] sign. strike [◦] T [µrad] δT/δt [µrad/h]54 1 268 end - 25 ± 5 29 ± 1 0.13 ± 0.154 2 269 end - 205 ± 5 10 ± 1 0.8 ± 0.155 1 - - - - - -57 1 268 end - 332 ± 5 35 ± 1 0.16 ± 0.1Table D.2: Deformation signals of the 23rd of Sept.-1st of Ot. 2006 swarm (CL-1)
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158 SYNOPSIS OF EARTHQUAKE SWARMSD.3 Swarm from 6th until 8th of Deember 2006 (CL-2)Main luster:- Initial event: Deember, 6th, 10:14:46.5- Duration: 48.5 hours- Number of events: 154- Extension: NW-SE approx. 3 km, NE-SW approx. 6 km, depth approx. 8km (z=3-11km)- Best �tting plane: strike = 37◦, dip = −79◦- Magnitudes: ML(max) = 3.9 / ML(average) = 1.7
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Figure D.9: Swarm CL-2: lat-lon, lat-z, lon-z, map
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Figure D.10: Swarm CL-2: zt-distribution
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Figure D.11: Swarm CL-2: Tilt traesOBT signal no. day dur. [h℄ b. azi. [◦] sign. strike [◦] T [µrad] δT/δt [µrad/h]54 1 341.7 6 86 ± 5 20 ± 5 24 ± 1 4 ± 0.154 2 342.0 2 86 ± 5 205 ± 5 16 ± 1 8 ± 0.155 1 340.5 noise 81 ± 5 105 ± 5 10 ± 1 -55 2 340.5 noise 81 ± 5 285 ± 5 10 ± 1 -55 3 341.6 1 81 ± 5 65 ± 5 2.5 ± 1 2.5 ± 0.157 1 340.5 36 3 ± 5 0 ± 5 8 ± 1 0.2 ± 0.157 2 340.5 end 3 ± 5 270 ± 5 24 ± 1 0.4 ± 0.1Table D.3: Deformation signals of the 6th-8th of Deember 2006 swarm (CL-2).
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162 SYNOPSIS OF EARTHQUAKE SWARMSD.4 Swarm on 10th of January 2007 (CS-2)Main luster:- Initial event: January, 10th, 04:15:10.3- Duration: 22.5 hours- Number of events: 128- Ext.: NW-SE approx. 1.5 km, NE-SW approx. 3.5 km, depth approx. 7km (z=3-10km)- Best �tting plane: strike = 41◦, dip = 76◦- Magnitudes: ML(max) = 4.0 / ML(average) = 1.7
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Figure D.13: Swarm CS-2: lat-lon, lat-z, lon-z, map
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Figure D.14: Swarm CS-2: zt-distribution
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Figure D.15: Swarm CS-2: Tilt traesOBT signal no. day dur. [h℄ b. azi. [◦] sign. strike [◦] T [µrad] δT/δt [µrad/h]54 1 375.2 2 78 ± 5 ± 5 7 ± 1 3.5 ± 0.155 1 375.1 8 71 ± 5 ± 5 5 ± 1 0.7 ± 0.157 1 375.2 1 9 ± 5 23 ± 5 7 ± 1 7 ± 0.157 2 375.6 2 9 ± 5 23 ± 5 7 ± 1 3.5 ± 0.157 3 376.2 2 9 ± 5 23 ± 5 7 ± 1 3.5 ± 0.1Table D.4: Deformation signals of the 10th of January 2007 swarm (CS-2).
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Figure D.16: Swarm CS-2: Tilt orientation



166 SYNOPSIS OF EARTHQUAKE SWARMSD.5 Swarm on 18th of February 2007 (CS-3)Main luster:- Initial event: February, 18th, 03:49:22.2- Duration: 2.5 hours- Number of events: 46- Extension: NW-SE approx. 1.5 km, NE-SW approx. 2 km, depth approx. 4km (z=6-10km)- Best �tting plane: strike = 33◦, dip = 79◦- Magnitudes: ML(max) = 3.3 / ML(average) = 1.9

36.5

36.6

la
tit

ud
e[

de
g]

25.4 25.5 25.6

longitude [deg]

0

5

10

15

20

de
pt

h 
[k

m
]

25.4 25.5 25.6

longitude[deg]

36.5

36.6

la
tit

ud
e 

[d
eg

]

0 5 10 15 20

depth [km]

36.5

36.6

la
tit

ud
e[

de
g]

25.4 25.5 25.6

longitude [deg]

2 nautical miles

36.5

36.6

la
tit

ud
e[

de
g]

25.4 25.5 25.6

longitude [deg]

0 200 400

depth [m]

ML<1

1<ML<2

2<ML<3

3<ML<4

4<ML<5

strike = 33° / dip = 79°

MTI

MTI

Figure D.17: Swarm CS-3: lat-lon, lat-z, lon-z, map
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Figure D.18: Swarm CS-3: zt-distribution
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Figure D.19: Swarm CS-3: Tilt traesOBT signal no. day dur. [h℄ b. azi. [◦] sign. strike [◦] T [µrad] δT/δt [µrad/h]54 1 414.1 1 87 ± 5 208 ± 5 7 ± 1 7 ± 0.154 2 414.4 3 87 ± 5 28 ± 5 15 ± 1 3 ± 0.154 3 414.5 22 87 ± 5 29 ± 5 19 ± 1 0.9 ± 0.154 4 414.9 1.5 87 ± 5 29 ± 5 10 ± 1 6.7 ± 0.155 1 414.4 20 81 ± 5 343 ± 5 11 ± 1 0.6 ± 0.157 1 414.4 20 0 ± 5 300 ± 5 11 ± 1 0.6 ± 0.157 2 414.9 2 0 ± 5 30 ± 5 17 ± 1 8.5 ± 0.1Table D.5: Deformation signals of the 18th of February 2007 swarm (CS-3).
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Figure D.20: Swarm CS-3: Tilt orientation



170 SYNOPSIS OF EARTHQUAKE SWARMSD.6 Swarm on 26th of February 2007 (AS-1)Main luster:- Initial event: February, 26th, 03:49:22.2- Duration: 11.5 hours- Number of events: 13- Extension: NW-SE approx. 1 km, NE-SW approx. 2.5 km, depth 3km (z=6.5-9.5km)- Best �tting plane: strike = 28◦, dip = −74◦- Magnitudes: ML(max) = 3.5 / ML(average) = 2.7
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Figure D.21: Swarm AS-1: lat-lon, lat-z, lon-z, map
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Figure D.22: Swarm AS-1: zt-distribution
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174 SYNOPSIS OF EARTHQUAKE SWARMSD.7 Swarm on 1st of Marh 2007 (CS-4)Main luster:- Initial event: Marh, 1st, 11:42:31.8- Duration: 28 hours- Number of events: 252- Extension: NW-SE approx. 2 km, NE-SW approx. 3 km, depth approx. 6km (z=4-10km)- Best �tting plane: strike = 48◦, dip = 51◦- Magnitudes: ML(max) = 4.4 / ML(average) = 1.8

36.5

36.6

la
tit

ud
e[

de
g]

25.4 25.5 25.6

longitude [deg]

0

5

10

15

20

de
pt

h 
[k

m
]

25.4 25.5 25.6

longitude[deg]

36.5

36.6

la
tit

ud
e 

[d
eg

]

0 5 10 15 20

depth [km]

36.5

36.6

la
tit

ud
e[

de
g]

25.4 25.5 25.6

longitude [deg]

2 nautical miles

36.5

36.6

la
tit

ud
e[

de
g]

25.4 25.5 25.6

longitude [deg]

0 200 400

depth [m]

ML<1

1<ML<2

2<ML<3

3<ML<4

4<ML<5

strike = 48° / dip = 51°

MTI MTI MTI MTI

MTI

MTI

Figure D.25: Swarm CS-4: lat-lon, lat-z, lon-z, map
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Figure D.26: Swarm CS-4: zt-distribution
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Figure D.27: Swarm CS-4: Tilt traesOBT signal no. day dur. [h℄ b. azi. [◦] sign. strike [◦] T [µrad] δT/δt [µrad/h]54 1 425.45 1 82 ± 5 29 ± 5 8 ± 1 8 ± 0.154 2 425.8 1.5 82 ± 5 29 ± 5 15 ± 1 10 ± 0.155 1 425.55 2 57 ± 5 295 ± 5 10 ± 1 5 ± 0.157 1 trend - 312 ± 5 220 ± 5 6 ± 1 0.3 ± 0.1Table D.6: Deformation signals of the 1st of Marh 2007 swarm (CS-4).
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Figure D.28: Swarm CS-4: Tilt orientation
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APPENDIX ESYNOPSIS OF FOCAL MECHANISMS
The following setion summarizes all events that were inverted for their moment tensor.Events ML ≥ 3.5 have been ross-heked with FOCMEC (P-wave polarity analysis, Snokeet al., 1984), Events ML < 3.5 have been alulated with both program with the followingriteria:

• FOCMEC: At least 10 polarity readings
• MTI: At least 8 stations of whih at least 6 are onshoreThis led to the result that most events betwen ML 3.0 − 3.4 were only inverted fortheir moment tensor, sine both, the number of stations and the signal-noise ratio, whih isimportant for the determination of P-wave polarity, get redued the weaker the events are.No solutions were found for events ML < 2.5, events between ML 2.5 − 3.0 that wereinvertable are rare.Origin of given parameters:- SEISAN: Azimuthal gap and loal earthquake magnitude ML- HYPODD: Loation, depth and soure time- MTI: Fault planes, moment tensor, seismi moment M0, mis�t, double opuple omponent- Chosen by operator: WeightsResidual (dimensionless):

rm =
Σm

i=1Σ
n
j=1wj(sij − rij)

2

Σm
i=1Σ

n
j=1wj(rij)2

(E.1)With m as the number of traes, n as the number of samples within the inversion window,
wj as the weight applied to trae j, sij as the syntheti and rij as the real data.
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Figure E.1: Foal mehanism of MTInvers and FOCMEC of event 2006.07.28 12:11:14.5
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Figure E.2: Foal mehanism of MTInvers and FOCMEC of event 2006.07.28 12:24:29.4
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Figure E.3: Foal mehanism of MTInvers and FOCMEC of event 2006.07.28 12:26:48.0
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Figure E.4: Foal mehanism of MTInvers and FOCMEC of event 2006.08.24 09:28:25.4
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Gap: 79° ML = 3.6 M(0) = 0.33E+15Nm   MW=3.6
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Figure E.5: Foal mehanism of MTInvers and FOCMEC of event 2006.09.03 15:34:29.3



185
Gap: 80° ML = 3.6	M(0) = 0.27E+15Nm   MW=3.6
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Figure E.6: Foal mehanism of MTInvers and FOCMEC of event 2006.09.27 01:23:24.4
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Gap: 87° ML = 3.7 M(0) = 0.88E+15Nm   Mw = 3.9
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Figure E.7: Foal mehanism of MTInvers and FOCMEC of event 2006.10.11 20:33:21.0
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Gap: 68° ML = 3.8 M(0) = 0.51E+15Nm   Mw = 3.7
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Gap: 78° ML = 3.8 M(0) = 0.30E+15Nm   Mw = 3.6
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Figure E.9: Foal mehanism of MTInvers and FOCMEC of event 2006.10.22 20:50:04.2
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Gap: 61° ML = 3.5 M(0) = 0.63E+15Nm   Mw = 3.8



MTI

0

1

0 1 2 3 4 5 6

freq [Hz]

T-ANID

a
m

p
l/0

.1
4

2
3

 [
µm

s]
  
 

0

1

0 1 2 3 4 5 6

freq [Hz]

T-IOSI

a
m

p
l/0

.1
4

2
3

 [
µm

s]

0

1

0 1 2 3 4 5 6

freq [Hz]

T-ANAF

a
m

p
l/0

.1
4

2
3

 [
µm

s]

0

1

0 1 2 3 4 5 6

freq [Hz]

T-AMOS

a
m

p
l/0

.1
4

2
3

 [
µm

s]

0

1

0 1 2 3 4 5 6

freq [Hz]

T-FOLE

a
m

p
l/0

.1
4

2
3

 [
µm

s]

0

1

0 1 2 3 4 5 6

freq [Hz]

T-NAXO

a
m

p
l/0

.1
4

2
3

 [
µm

s]

0

1

0 1 2 3 4 5 6

freq [Hz]

T-ANPA

a
m

p
l/0

.1
4

2
3

 [
µm

s]

0

1

0 1 2 3 4 5 6

freq [Hz]

T-PARO

a
m

p
l/0

.1
4

2
3

 [
µm

s]

0

1

0 1 2 3 4 5 6

freq [Hz]

Z-ANID

a
m

p
l/0

.2
8

6
2

 [
µm

s]

0

1

0 1 2 3 4 5 6

freq [Hz]

Z-IOSI

a
m

p
l/0

.2
8

6
2

 [
µm

s]

0

1

0 1 2 3 4 5 6

freq [Hz]

Z-ANAF

a
m

p
l/0

.2
8

6
2

 [
µm

s]

0

1

0 1 2 3 4 5 6

freq [Hz]

Z-AMOS

a
m

p
l/0

.2
8

6
2

 [
µm

s]

0

1

0 1 2 3 4 5 6

freq [Hz]

Z-FOLE

a
m

p
l/0

.2
8

6
2

 [
µm

s]

0

1

0 1 2 3 4 5 6

freq [Hz]

Z-NAXO

a
m

p
l/0

.2
8

6
2

 [
µm

s]

0

1

0 1 2 3 4 5 6

freq [Hz]

Z-ANPA

a
m

p
l/0

.2
8

6
2

 [
µm

s]

0

1

0 1 2 3 4 5 6

freq [Hz]

Z-PARO

a
m

p
l/0

.2
8

6
2

 [
µm

s]

Event 2006.11.11 11:26:45.6 lat:36.509245 lon:25.472465 depth:8.6

0.0

0.5

1.0

1.5

m
is

fit

-40 -20 0 20 40

rotation around P-axis [°]

-3.11.8

0.0

0.5

1.0

1.5

m
is

fit

-40 -20 0 20 40

rotation around T-axis [°]

-2.33.0

0.0

0.5

1.0

1.5

m
is

fit

-40 -20 0 20 40

rotation around B-axis [°]

-0.71.3

OBS/OBT: not used

Land: P = 1.00   S = 0.25

Weighting:

m(11) = 0.13
m(22) = 0.40
m(33) = −0.54
m(12) = −0.74
m(13) = 0.34
m(23) = 0.33

moment tensor:

fault planes:
Strike: 254.33°
Dip: 57.65°
Rake: −35.74°

Event: 2006/11/11 11:26:45.6 lat.: 36.509245° lon.: 25.472465° depth: 8.6km
DC = 92%misfit = 0.606E+00

P

T

FOCMEC

Figure E.10: Foal mehanism of MTInvers and FOCMEC of event 2006.11.11 11:26:45.6
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Gap: 104° ML = 3.6 M(0) = 0.60E+15Nm   Mw = 3.8

MTI
FOCMEC SOLUTIONFOCMEC SOLUTIONFOCMEC SOLUTIONFOCMEC SOLUTIONFOCMEC SOLUTION

0.0

0.5

1.0

1.5

m
is

fit

-40 -20 0 20 40

rotation around P-axis [°]

-5.55.9

0.0

0.5

1.0

1.5

m
is

fit

-40 -20 0 20 40

rotation around T-axis [°]

-3.95.6

0.0

0.5

1.0

1.5

m
is

fit

-40 -20 0 20 40

rotation around B-axis [°]

-1.81.0

0

1

0 1 2 3 4 5 6

freq [Hz]

T-ANID

am
pl

/0
.0

89
56

 [µ
m

s]
   

0

1

0 1 2 3 4 5 6

freq [Hz]

T-FOLE

am
pl

/0
.0

89
56

 [µ
m

s]

0

1

0 1 2 3 4 5 6

freq [Hz]

T-AMOE

am
pl

/0
.0

89
56

 [µ
m

s]

0

1

0 1 2 3 4 5 6

freq [Hz]

T-ANPA

am
pl

/0
.0

89
56

 [µ
m

s]

0

1

0 1 2 3 4 5 6

freq [Hz]

T-PARO

am
pl

/0
.0

89
56

 [µ
m

s]

0

1

0 1 2 3 4 5 6

freq [Hz]

Z-OBS50

am
pl

/1
0.

9 
[µ

m
s]

0

1

0 1 2 3 4 5 6

freq [Hz]

Z-OBT55

am
pl

/1
0.

9 
[µ

m
s]

0

1

0 1 2 3 4 5 6

freq [Hz]

Z-OBT54

am
pl

/1
0.

9 
[µ

m
s]

0

1

0 1 2 3 4 5 6

freq [Hz]

Z-OBT57

am
pl

/1
0.

9 
[µ

m
s]

0

1

0 1 2 3 4 5 6

freq [Hz]

Z-OBS51

am
pl

/1
0.

9 
[µ

m
s]

0

1

0 1 2 3 4 5 6

freq [Hz]

Z-OBS53

am
pl

/1
0.

9 
[µ

m
s]

0

1

0 1 2 3 4 5 6

freq [Hz]

Z-OBS52

am
pl

/1
0.

9 
[µ

m
s]

0

1

0 1 2 3 4 5 6

freq [Hz]

Z-ANID

am
pl

/1
0.

9 
[µ

m
s]

0

1

0 1 2 3 4 5 6

freq [Hz]

Z-FOLE

am
pl

/1
0.

9 
[µ

m
s]

0

1

0 1 2 3 4 5 6

freq [Hz]

Z-AMOE

am
pl

/1
0.

9 
[µ

m
s]

0

1

0 1 2 3 4 5 6

freq [Hz]

Z-ANPA

am
pl

/1
0.

9 
[µ

m
s]

0

1

0 1 2 3 4 5 6

freq [Hz]

Z-PARO

am
pl

/1
0.

9 
[µ

m
s]

Event 2006.11.13 08:04:24.2 lat:36.508219 lon:25.481842 depth:6.4

OBS/OBT: P = 0.10

Land: P = 1.00   S = 0.25

Weighting:

m(11) = 0.16
m(22) = 0.16
m(33) = −0.32
m(12) = 0.04
m(13) = −0.34
m(23) = 0.90

moment tensor:

fault planes:
Strike: 184.34°
Dip: 6.90°
Rake: −105.49°

Event: 2006/11/13 08:04:24.2 lat.: 36.508219° lon.: 25.481842° depth: 6.4km
DC = 65%misfit = 0.408E+00

P

T

FOCMEC

Figure E.11: Foal mehanism of MTInvers and FOCMEC of event 2006.11.13 08:04:24.2
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Gap: 80° ML = 4.0 M(0) = 0.15E+16Nm   Mw = 4.1
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Figure E.12: Foal mehanism of MTInvers and FOCMEC of event 2006.11.13 08:49:50.7
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Gap: 61° ML = 4.0 M(0) = 0.78E+15Nm   Mw = 3.9
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Figure E.13: Foal mehanism of MTInvers and FOCMEC of event 2006.11.14 12:42:33.9
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Gap: 81° ML = 3.5 M(0) = 0.72E+14Nm   MW=3.2
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Figure E.15: Foal mehanism of MTInvers and FOCMEC of event 2006.12.06 10:24:37.9
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Gap: 62° ML = 4.0 M(0) = 0.34E+15Nm   Mw = 3.6
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196 SYNOPSIS OF FOCAL MECHANISMS
Gap: 81° ML = 4.5 M(0) = 0.62E+15Nm   Mw = 3.8
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Figure E.17: Foal mehanism of MTInvers and FOCMEC of event 2007.02.18 17:23:34.1
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Gap: 67° ML = 3.5 M(0) = 0.17E+15Nm   Mw = 3.4
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198 SYNOPSIS OF FOCAL MECHANISMS
Gap: 73° ML = 4.1 M(0) = 0.47E+15Nm   Mw = 3.7
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Figure E.19: Foal mehanism of MTInvers and FOCMEC of event 2007.03.01 11:48:25.4
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Gap: 69° ML = 4.4 M(0) = 0.20E+16Nm   Mw = 4.1
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Figure E.20: Foal mehanism of MTInvers and FOCMEC of event 2007.03.01 11:48:42.7
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Gap: 67° ML = 3.5 M(0) = 0.36E+15Nm   Mw = 3.6
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Figure E.21: Foal mehanism of MTInvers and FOCMEC of event 2007.03.01 11:53:41.2
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Gap: 78° ML = 3.5 M(0) = 0.58E+14Nm   Mw = 3.2
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Event 2007.03.01 12:46:15.6 lat:36.510701 lon:25.495341 depth:7.7 OBS/OBT: P = 0.10
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Figure E.22: Foal mehanism of MTInvers and FOCMEC of event 2007.03.01 12:46:15.6



202 SYNOPSIS OF FOCAL MECHANISMSThe following faultplane solutions of events ML < 3.5 have only been inverted with MTI,sine these events are on average too weak to observe 10 or more lear polarity readings to runFOCMEC. Beause the inversion was run in the frequeny domain, given beah balls show themost probable solution (as suggested by the stronger, rossheked foals). The grey-whitebeah balss have not been heked for polarity!
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Figure E.23: Foal mehanisms of events ML < 3.5 (plot 1)
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Figure E.24: Foal mehanisms of events ML < 3.5 (plot 2)
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2006/11/09  09:13:37.4  36.520081°  25.472650°  z=8.2km  Gap: 81°  ML=3.2  Mw=3.4  M0=0.16E+15Nm  misfit=0.567E+00

2006/11/20  02:20:50.5  36.501945°  25.478927°  z=8.8km  Gap: 92°  ML=3.0  Mw=3.1  M0=0.64E+14Nm  misfit=0.658E+00

2006/12/06  10:34:06.0  36.528361°  25.450515°  z=7.3km  Gap: 85°  ML=3.0  Mw=3.0  M0=0.47E+14Nm  misfit=0.547E+00

2006/11/01  23:10:48.9  36.507715°  25.487447°  z=8.9km  Gap: 106°  ML=3.2  Mw=3.2  M0=0.68E+14Nm  misfit=0.551+00

Weights:
land: P = 1.0   S = 0.25
OBS: not used

Weights:
land: P = 1.0   S = 0.25
OBS: P = 0.10

Weights:
land: P = 1.0   S = 0.25

Weights:
land: P = 1.0   S not used
OBS: not used

2006/12/09  20:23:21.2  36.522351°  25.500448°  z=10.4km  Gap: 74°  ML=3.2  Mw=3.1  M0=0.59E+14Nm  misfit=0.531E+00

2007/01/11  16:13:30.9  36.614966°  25.601965°  z=6.6km  Gap: 59°  ML=3.1  Mw=2.9  M0=0.24E+14Nm  misfit=0.297E+00

OBS: P = 0.25

Weights:
land: P = 1.0   S = 0.25
OBS: not used

Weights:
land: P = 1.0   S = 0.25
OBS: not usedFigure E.25: Foal mehanisms of events ML < 3.5 (plot 3)
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2007/02/26  15:45:01.0  36.610742°  25.591420°  z=7.7km  Gap: 66°  ML=3.2  Mw=2.9  M0=0.30E+14Nm  misfit=0.312E+00
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2007/02/26  15:58:01.8  36.609611°  25.591213°  z=7.3km  Gap: 69°  ML=3.0  Mw=2.7  M0=0.12E+14Nm  misfit=0.408E+00
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2007/02/26  23:29:43.1  36.608024°  25.593697°  z=7.7km  Gap: 58°  ML=3.2  Mw=3.1  M0=0.61E+14Nm  misfit=0.474E+00

2007/02/18  04:38:30.4  36.522815°  25.504584°  z=8.9km  Gap: 65°  ML=3.0  Mw=3.0  M0=0.42E+14Nm  misfit=0.661E+00

Weights:
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OBS: not used

Weights:
land: P = 1.0   S = 0.25
OBS: not used

2007/02/26  23:34:05.9  36.607080°  25.591069°  z=7.7km  Gap: 71°  ML=3.2  Mw=3.3  M0=0.98E+14Nm  misfit=0.218E+00

Weights:
land: P = 1.0   S = 0.25
OBS: not used

Weights:
land: P = 1.0   S = 0.25
OBS: not used

2007/03/01  11:47:03.9  36.520744°  25.457583°  z=9.3km  Gap: 81°  ML=3.1  Mw=2.8  M0=0.19E+14Nm  misfit=0.677E+00

Figure E.26: Foal mehanisms of events ML < 3.5 (plot 4)
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