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Abstract

Protein structure prediction is one of the classic problems from computational chemistry.

Experimental methods are the most accurate in protein structure determination but they are

expensive and slow. That makes computational methods (i.e. comparative modeling and

ab initio or de novo modeling) significant. In ab initio methods, one tries to build three-

dimensional protein models from scratch rather than modeling them onto known structures.

There are two aspects to this problem: 1) the score or quasi-energy function and 2) the search

method. Our interest has been the development of quasi-energy functions. These could be

seen as low-resolution special purpose coarse-grain or mesoscopic force fields, but they are

rather different to most approaches. There is no strict physical model and no assumption of

Boltzmann statistics. Instead, there is a mixture of Bayesian probabilities based on normal

and discrete distributions. This has an interesting consequence. If one works with a method

such as Monte Carlo, one can base the acceptance criterion directly on the ratio of calculated

probabilities.

Under a Bayesian framework, the probabilistic descriptions of the most probable set of classes

were found by the classification of 1.5 × 106 protein fragments, each k ≤ 7 residues long.

These fragments were extracted from the known protein structures (with sequence identity

less than 50% to each other) in the Protein Data Bank (PDB). Sequence, structure (φ, ψ

dihedral angles of the backbone) and solvation features of the fragments were modeled by

multi-way discrete, bivariate normal, and simple normal distributions, respectively. An ex-

pectation minimization (EM) algorithm was used to find the most probable set of parameters

for a given set of classes and the most probable set of classes in the fragment data irrespec-

tive of parameters. With the obtained classification, one can calculated the probability of a

protein conformation as a product of the sums of probabilities of its constituent fragments

across all classes. The ratio of these probabilities then allows us to replace the ratio which is

derived from the Boltzmann statistics in traditional Metropolis Monte Carlo methods. The

search method, simulated annealing Monte Carlo, makes three kinds of moves (i.e. biased,

unbiased, and ’controlled’) to explore the conformational space. It has an artificial scheme to

control the smoothness of the distributions.

In initial results, the score function with sequence and structure terms only could produce

protein-like models of the target sequences. Interestingly, these rather less compact models

had good predictions of secondary structures. Incorporation of solvation term into the score

function led to the generation of comparatively compact and sometimes native-like models,

particularly for small targets. Models for relatively large and hard targets could also be gen-

erated with close secondary structure predictions. Secondary structures, particularly beta

sheets, in these models often failed to properly pack themselves in the overall globular confor-

mations. An ad hoc hydrogen bonding term based on an electrostatic model was introduced

to entertain the long-range interactions. It could not make much difference probably due to

its inconsistency with the score function.
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Chapter 1

Introduction

Protein Structure

Proteins are one of the most abundant molecules in all organisms and perform a diverse

set of functions. They play important role for regulation of metabolic activity, catalysis

of biochemical reactions and maintenance of cell membranes and walls for structural

integrity of an organism (Hansmann 2003, Baker 2004). All proteins are hetero-polymer

chains built from 20 types of amino acid by linking them through peptide bonds. Amino

acid residues are characterized by their central alpha carbon (Cα) atoms to which side

chains (R-groups) are attached. The type of amino acid at each position in a chain is

determined by the genetic material of a cell. A single amino acid change can alter shape

and function of protein (Anfinsen et al. 1954).

A strategy to predict three-dimensional structure of a protein from its sequence in-

tends to establish a logical connection between chemical and geometric features of the

main chain and those of its associated side chains (known from the existing protein

structures) to its possible native structure. Geometric features of the peptide bond and

the alpha carbon Cα (in figure 1.1) show a small variation in bond lengths and bond an-

gles. It provides us an opportunity to cease the values of bond lengths and bond angles

at the ideal geometry of the peptide bond by reducing degrees of freedom to a great ex-

tent. Thus, the backbone chain of a protein conformation can be defined completely by

dihedral or torsion angles (φ, ψ, ω) of its peptide units (shown in the second chapter’s

figure 2.1). A dihedral angle is built from four successive atoms and three bonds of the

backbone chain (as illustrated in the second chapter’s figure 2.7).

Due to partial-double-bond character of the peptide bond, in ’trans’ conformations,

the dihedral angle ω mostly stays around 180◦ with a little variation of 10◦ whereas in

’cis’ conformations, it remains 0◦. Occurrence of ’trans’ conformations in the world of

proteins is far more abundant than ’cis’ transformations (DePristo et al. 2003). As a con-

sequence, the dihedral angle ω can also be kept constant at some ideal value along with

bond angles and bond lengths.

Therefore, dihedral angle pairs φ, ψ represent the only degrees of freedom to (re)define

the structural features of a protein structure. Such scheme of conformation definition

with just two dihedral angles φ, ψ may introduce slight errors in those structural fea-
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Figure 1.1: Geometry of peptide bond.

tures which require global definitions.

Most frequently observed secondary structures (i.e. helices and beta sheets) in pro-

tein structures are actually enforced or consolidated by physical hindrance caused by

the steric properties of a protein backbone. The physical size of atoms or the groups

of atoms in a protein backbone allow formation of a limited number of shapes without

any clashes. In this regard, influence of weaker non-covalent interactions, called hy-

drogen bonds, is quite significant in stabilizing these shapes (i.e. secondary structures,

helices and β sheets) and holding the entire structure together. Strength and effect of

hydrogen bonds depend upon the environment. Backbone geometries of helices and β

sheets facilitate in the establishment of systematic and extensible intramolecular hydro-

gen bonding. If these intramolecular hydrogen bonding patterns are not formed, the

folding equilibrium would lead to unfolding by developing intermolecular hydrogen

bonds with the surrounding water (Baldwin and Rose 1999, Petsko and Ringe 2004).

Hydrogen bonds involve electrostatic attractions either between actual charges (Glu-

Lys) or between peptide dipoles (N-H and C=O) to share a proton. Helices involve a

repeated pattern of local hydrogen bonds between i and i+ 3 (in 310 helix) or i+ 4 (in α

helix) residues. In β sheets, these repeated patterns are between distant residues of the

backbone (Fasman 1989).
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Figure 1.2: Ramachandran plot - a survey of high resolution protein structures taken from the

Protein Data Bank (PDB).

Together, steric constraints and hydrogen bonding dictate dihedral angles (φ, ψ) to

land in an even smaller space by reducing conformational space further. The allowed

dihedral space can be viewed by plotting a φ versus ψ plot, called Ramachandran plot

(Ramachandran et al. 1963), from dihedral angles (φ, ψ) of the known protein structures

in the Protein Data Bank (PDB) (Berman et al. 2000). If we look at the Ramachandran

plot (given in figure 1.2), there are two predominantly broader regions: the lower left

represents right-handed α helices, and the upper left represents extended β or pleated

sheets (Creamer et al. 1997). A smaller region on the upper right is of left-handed α

helices. α helices are mostly right-handed with φ and ψ values around −60◦ and −40◦

respectively. Right-handed α helices are preferred over left-handed α helices because of

two reasons: 1) cumulative effect of a moderate energy for each amino acid residue of a

helix, and 2) no collision of Cβ atoms with the following turn (Baldwin and Rose 1999).

Left-hand conformations of helix are commonly observed in the isolated residues, for

instance glycine, with φ and ψ values near 60◦ and 40◦ respectively. In the upper left

region, φ and ψ values of extended β sheets remain around −120◦ and 140◦ respectively.
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Protein Structure Determination

Three-dimensional protein structure determination involves a sequence of preparative

and analytical steps from coding of DNA to optimization of 3D structures (as shown in

figure 1.3). No matter which method is used, many of the preparative and analytical

steps are common and have to be performed in sequence.

The main analytical techniques used for protein structure determination at atomic

level are X-ray crystallography and nuclear magnetic resonance (NMR) spectroscopy.

Both techniques are briefly discussed in the following:
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Figure 1.3: Protein structure determination. Image taken from (Heinemann et al. 2001)

X-ray Crystallography

The history of X-ray crystallography, the most favored and accurate technique, dates

back to 1934 when Bernal and Crowfoot took the first X-ray photograph of a crystalline

globular protein, pepsin (Bernal and Crowfoot 1934). After that revelation, it took about

two and a half decades to make the progress for structure determination of a complete
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protein (Kendrew 1959). Being a mature technique, protein X-ray crystallography has

already been integrated into high-throughput technology.
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Figure 1.4: Structure determination of a molecule by X-ray crystallography. Image taken from

www.wikipedia.org

The steps of isolation, purification, and crystallization of a purified sample at high

concentration (as shown in figure 1.3) are performed to yield a protein crystal of suffi-

cient quality. Protein crystal growth still remains the most time limiting and the least



6 CHAPTER 1. INTRODUCTION

well understood step in protein X-ray crystallography. Once protein crystal has been

grown, then it is exposed to an X-ray beam to get three-dimensional molecular struc-

ture out of it. The exposure of crystal to an X-ray beam results into diffraction patterns.

Diffraction patterns are then processed to yield information about the packing symme-

try and the size of repeating units in that crystal. All the interesting information actually

comes from the pattern of diffraction spots. The ”structure factors” determined from the

spots intensities of diffraction pattern are then used to construct electron density maps.

Three-dimensional molecular structure can be built out of electron density maps by us-

ing protein sequence (Smyth and Martin 2000). Figure 1.4 shows the key steps of X-ray

crystallography.

Nuclear Magnetic Resonance (NMR)

NMR, another experimental method for protein structure determination, was originally

proposed by Harvard (Purcell et al. 1946) and Stanford (Bloch et al. 1946) in late 1945

and later in 1980s was extended by Wüthrich and Ernst (Wüthrich 1986, Oschkinat et al.

1988) for proteins and nucleic acids. NMR has an advantage over X-ray crystallography

in that it is recorded in solution closer to physiological conditions (Wüthrich 2003).

A suitable protein sample is used to perform a set of multidimensional NMR ex-

periments. These experiments generate NMR spectra which are then used to measure

the resonance frequencies of NMR-active spins in a protein. Conformation-dependent

resonance frequencies play a significant role in the derivation of constraints from NMR

experiments (such as Nuclear Overhauser Effect (NOE), scalar coupling, and diploar

coupling data). The derivation of structural constraints and the calculation of struc-

tures are done in an iterative manner and it stops when the majority of experimentally

derived constraints verifies conformations representing the NMR structure. Variation

in the conformation structures reflects the precision of NMR structure determination

(Montelione et al. 2000).

The advantage of NMR is that it avoids the time limiting step of protein crystalliza-

tion. On the other hand, the main disadvantages of NMR are the limitation of protein

size (i.e. 150-200 amino acids) and requirement of relatively soluble proteins (Lesk 2004).

Protein structure determination with experimental methods is considered very reliable

as it provides vital information about the general characteristics of protein structures.

Thereby, the computational biologists can build their prediction methods by relying

on or learning from the detailed information obtained from the experimentally solved

structures (Dodson 2007, Smyth and Martin 2000).
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Viewpoints to Protein Folding

About 50 years ago, it was proposed that the amino acid sequence of a protein con-

tains all the necessary information needed to make it folded into a three-dimensional

structure (Anfinsen et al. 1961, Sela et al. 1957). Nevertheless, the unearthing of funda-

mental principles which govern the folding process of the polypeptide chain of a protein

into a compact three-dimensional structure is still a grand challenge in modern biology

(Dobson 2003).

Figure 1.5: The Anfinsen experiment in protein folding. Image taken from (Horton et al. 2006)

Amazingly, a polypeptide chain of N amino acids takes a very short time of ∼
exp(N2/3) nanoseconds to fold into its native structure by avoiding 2N possible con-

formations. The value of N may range between 50 and 5000 amino acids (Beiner 2007,

Finkelstein et al. 1996). In practice, however, a folding process based on some statisti-

cal principle (i.e. random, unbiased sampling of configurations) would take billions

of years to find native state of a protein of just 100 amino acides (Finkelstein 1997,

Hunter 2006, Zwanzig et al. 1992, Radford 2000). This apparent contradiction between

finite time of folding and infinite possible conformations is called Levinthal’s paradox
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(Levinthal 1969).

Levinthal ’s paradox suggests that there is some mechanism which simplifies the

process of protein folding. Numerous points of view or models about that suspected

mechanism of protein folding have been presented over the last few decades. In the

following, few important ones are discussed briefly.

Anfinsen ’s Hypothesis

According to Anfinsen’s hypothesis, a protein in normal physiological milieu is a sys-

tem with lowest Gibbs free energy and its native structure is determined by the total-

ity of its inter-atomic interactions (i.e. amino acid sequence) under the given environ-

ment. A protein unfolds and loses its activity under the changed environmental con-

ditions but it re-folds and becomes biologically active on return of proper environment

(Anfinsen 1973).

Anfinsen made his point with ribonuclease A (RNaseA), an extracellular enzyme of

124 residues with four disulfide bonds, as his model. Disulfide bonds were reduced, but

after the reductant was removed, protein refolded and regained its activity. This was

interpreted as showing that the primary structure completely determines the tertiary

structure (Horton et al. 2006). Figure 1.5 shows the discussed experiment.

Sequential Model

There are numerous hypotheses about hierarchical or sequential model of protein fold-

ing but the two most popular ones are: the framework model (Anfinsen 1972, Ptitsyn

1 2 3

Unfolded Secondary1structures
Intermediate1compact

state
Native

Figure 1.6: Sequential mechanism of protein folding. Image adapted from (Ptitsyn 1987)

et al. 1972) and the modular assembly model (Ptitsyn and Rashin 1973). According
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to the framework model, protein folding starts with the formation of secondary struc-

tures in an unfolded chain. Whereas the modular assembly model assumes that the

folding process starts with independent folding of separate parts of protein molecule.

However, in both models, secondary structures have a central role in determining the

folding pathway. Together these two models assume that the quasi-independent do-

mains or sub-domains of a protein may fold at different times but each one’s folding

starts with the formation of secondary structures (Ptitsyn 1987).

According to the framework model, protein folding happens in three hypothetical

steps : 1) the formation of secondary structures by local interactions at the fluctuating

regions of the unfolded polypeptide chain, 2) the collapse of secondary structures into

a compact structure due to long-range interactions of side groups with the surrounding

medium, and 3) the re-arrangement of already intermediately compact structures into a

unique native structure. Specific long-range interactions between spatially close amino

acid residues play a key in this re-arrangement (Ptitsyn and Rashin 1975). See figure

1.6.

The important feature of the framework model is the stabilization of folding states

by three different kinds of interactions. In the first step, secondary structures are sta-

bilized by hydrogen bonds, in the second step, intermediately compact structure by

hydrophobic interaction, and in the last and third step, native globular structure by van

der Waals interactions (Ptitsyn 1987).

Unfolded Hydrophobic1collapse
(molten1globule)

Native

Figure 1.7: Hydrophobic collapse. Image redefined from (Radford 2000, Ptitsyn 1987)
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Hydrophobic Collapse

According to hydrophobic collapse model, globular proteins have a ’hydrophobic core’

(consisting of non-polar residues) at the interior of their native structures and most of

the polar or charged residues are situated on the solvent exposed surface. ’Hydrophobic

core’ supposedly leads to structural collapse of the unfolded polypeptide chain of a

protein. The squeezing of hydrophobic side chains from the surrounding solvent is

thought to be a source of energetic stabilization of intermediately compact structures.

The collapsed structure, also called molten globule, represents a partially folded state

and its energy is lower than the unfolded state but higher than that of the native state.

Unlike sequential model, the event of hydrophobic collapse (step 1 of figure 1.7)

happens first and then the formation of secondary structures and medium to long-range

interactions occur in the folding pathway (Radford 2000, Schellman 1955).

Shakhnovich’s Critical Residue Model

Shakhnovich’s model proposes that the transition state of protein folding depends upon

the formation of a specific subset of native structure called protein folding nucleus. Pro-

tein folding nucleus corresponds to the transition state between a structureless compact

intermediate without unique structure and molten globule with elements of a native-

like fold but not to the one between the native state and molten globule. Nucleus growth

is a necessary condition for the subsequent fast folding to the native state. Search for

protein folding nucleus takes a considerable time to overcome a major free energy bar-

rier. See figure 1.8

To test this model, a number of designed sequences were generated and their ran-

dom coils were folded with lattice Monte Carlo simulations. Polypeptide chains were

observed to reach their native conformations through the formation and the growth of

protein folding nuclei (Abkevich et al. 1994).

Protein folding nucleus is a localized sub-structure made of 8 to 40 native contacts

scattered along a protein sequence. That shows, the nucleus contacts are both long-

range as well as short-range (Shakhnovich 1997). Shakhnovich’s model recognizes role

of two kinds of residues: 1) critical residues which make most of the contacts in the

transition state, and 2) those which only form contacts on reaching of the native state.

The mutations of critical residues may affect the stability of the transition state and that

of the folding kinetics. That is why, critical residues are supposed to be evolutionarily

conserved (Shakhnovich et al. 1996). In the subsequent studies, it has also been revealed

that the transition state contains specific interactions which are not found in the native

state. These non-native contacts slow down folding process without affecting the stabil-

ity of the native state. This decoupling of the folding kinetics from the thermodynamics
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Unfolded Nucleation Molten1globule Native

Figure 1.8: Shakhnovich’s model of critical residues. Image adapted from (Radford 2000)

was observed in many proteins (Li et al. 2000).

Protein Structure Prediction

In the recent past, methodological advances in the field of DNA sequencing have led

to a revolutionary growth of sequence databases (Moult 2008). The PDB has only 1%

experimentally determined three-dimensional structures of the millions of known pro-

tein sequences and this percentage is falling fast with the sequencing of new genomes

(Eramian et al. 2008). Figure 1.9 shows the current statistics of the PDB.

The growth of protein structure database is mainly restricted by two factors: 1) ex-

perimental methods for protein structure determination are slow because many of the

steps (shown in figure 1.3) involved in experimental techniques have to be repeated te-

diously in a trial-and-error search of the optimum conditions (Heinemann et al. 2001),

and 2) protein structure determination by experimental methods is quite expensive. On

average, the amount spent on experimental structure determination of a protein ranges

from $250,000 to $300,000 (Service 2005, Lattman 2004). Therefore, it would always be

useful to build models for protein structures even if they were not perfect.

A number of initiatives, like structural genomics, have also been launched to fill the

widening gap where experimentally determined structures are two orders of magnitude

less than the known protein sequences (Chandonia and Brenner 2006, Burley 2000, Bur-

ley et al. 1999). In all such initiatives, computer-based structure prediction methods in

combination with experimental structure determination methods have a significant role

to provide a fast information about the structural and functional properties of proteins.
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Figure 1.9: Yearly growth of total structures in Protein Data Bank (PDB). Image adapted from

(PDB 2009)

Molecular and cell biologists are always waiting for the information generated by these

initiatives (Zhang 2008).

The experimentally determined structures are always ideal and essential for some

typical application, e.g. structure-based drug design. However, protein structure database

cannot be filled rapidly with the missing structures due to the unavoidable experi-

mental difficulties and the cost of structure determination (mentioned above). Three-

dimensional models of proteins generated by computer-based prediction methods also

have a broad range of useful applications.

Protein structure prediction methods produce models of different quality (Moult

2008). The low resolution models are usually used for the recognition of approximate

domain boundaries (Tress et al. 2007) and the assignment of approximate functions

(Nassal et al. 2007). The medium resolution models are important to approximate the

likely sites of protein-protein interaction (Krasley et al. 2006), role of disease-associated

substitutions (Ye et al. 2006), and the likely role of alternative splicing in protein func-

tion (Wang et al. 2005). The applications of high resolution models include molecular
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replacement in X-ray crystallography (Qian et al. 2007), interpretation of disease mu-

tations (Yue and Moult 2006) and identification of orthologous functional relationship

(Murray and Honig 2002).

The existing protein structure prediction methods basically deal with two situations:

1) when the PDB has structures related to a target sequence, how to identify those struc-

tures (especially when the similarity between the target sequence and the PDB struc-

tures is very weak or distant) to build model on them, and 2) when no related structure

is found in the PDB for a target sequence, how to build model for that target from scratch

(Zhang 2008). The methods for these two kinds of structure predictions are categorized

as: comparative protein modeling, and ab initio structure prediction.

Comparative Protein Modeling

Comparative modeling, also known as homology modeling, is a widely used and well

established class of protein structure prediction methods (Kolinski and Gront 2007,

Eramian et al. 2008). Comparative modeling methods take advantage of the structural

information available through already experimentally solved protein structures. The

known protein structures are used as templates to predict the structures of target se-

quences (Sanchez and Sali 1997). Both an efficient modeling algorithm and the presence

of a diverse set of experimentally solved structures in the PDB are equally important

factors for the generation of correct models (Zhang 2008).

A classical comparative modeling approach consists of four steps: 1) identifying the

templates that are related to target sequence, 2) aligning target sequence with the tem-

plates, 3) building a model from the alignment of target sequence with the templates,

and 4) assessing final model using different criteria (Fiser et al. 2002, Zhang 2008, Marti-

Renom et al. 2000, Blundell et al. 1987, Greer 1981, Johnson et al. 1994, Sali and Blundell

1993, Sali 1995, Fiser and Sali 2003, Lushington 2008). Figure 1.10 shows a detailed flow

chart of the steps often used by various comparative modeling methods. The accuracy

of a method solely depends upon the correct identification of templates relevant to a

target sequence because the wrong templates will generate a model full of errors. The

correct identification of templates is impossible unless the alignment between the target

sequence and the template is accurate (Zhang 2008). The existing comparative model-

ing methods can be put into two categories depending upon the alignment methods or

score functions they use to find related templates (Ginalski et al. 2005).

Sequence Similarity Centric Methods

Sequence similarity between target sequence and template structure(s) is precondition

for the success of any comparative modeling method. The pairwise comparison meth-

ods discussed here can basically detect sequence similarities higher than some length-
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Figure 1.10: Comparative modeling flow chart showing standard process (solid) and feed-

back/refinement mechanism (dashed). Diagram was taken from (Lushington 2008)

dependent sequence similarity threshold (Rost 1999, Zhang 2008, Eramian et al. 2008,

Sánchez et al. 2000, Deane and Blundell 2003).

Sequence-Sequence Comparison

Sequence-sequence comparison methods are simple and still popular to find homol-

ogous structures that are closely related to a target sequence. FASTA (Pearson and

Lipman 1988) and BLAST (Altschul et al. 1990, Altschul et al. 1997) are the most widely

used sequence-sequence comparison methods. In addition to a substitution matrix

(Henikoff and Henikoff 1992), they require parameters for defining the penalty for gap

initiation and extension in the alignments. The discrimination between scores for ho-
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mologs and expected random scores is achieved by proper evaluation of the substitution

matrices and alignment parameters.

Sequence-sequence comparison methods, like BLAST, are extremely fast because of

an initial screening of the sequences which have a chance of providing a better align-

ment score. The main disadvantages of such methods are the equal treatment of variable

and conserved positions and inability to detect distant or remote homologs.

Sequence-Profile Comparison

Profile-sequence or sequence-profile comparison methods involve position-specific sub-

stitution matrices (Bork and Gibson 1996) to preferably take the conserved motifs into

account. A profile (N× 20 substitution matrix) is built from the variability in multiple

sequence alignment of the target sequence with closely homologous structures. This

profile carrying information about the family of homologs (than a single sequence) is

then used to score the alignment of any of 20 amino acids to each of N residues of a

protein. The additional computational cost of profile calculation does not make profile-

sequence comparison slower than sequence-sequence comparison because the align-

ment score of two positions is calculated through a lookup in both profile and matrix.

PSI-BLAST (Altschul et al. 1997) is the most popular profile-sequence comparison

method due to its ability to generate multiple sequence alignments and profiles itera-

tively. PSI-BLAST also makes use of an initial screening technique of potential hits to

enhance its speed. PDB-BLAST (Jaroszewski et al. 1998) is a PSI-BLAST based method

which involves two steps: 1) it builds a sequence profile from NCBI non-redundant

database and other protein sources, and 2) the sequence profile is then used to search

the PDB. RPS-BLAST (Marchler-Bauer et al. 2003) is another BLAST-based method for

searching a query sequence against a database of profiles of conserved motifs.

Another related type of comparison methods uses hidden Markov models (HMMs)

to describe the sequence variability in the homolog family by specifying the probability

of occurrence of each of 20 amino acids at each position of a target or query sequence

(Eddy 1998, Karplus et al. 1999, Soding 2005). HHM-based searches are slower due to

the lack of initial screening of a database but more sensitive than those based on PSI-

BLAST.

Profile-Profile Comparison

Instead of making a comparison between a query sequence and the template profile

or the query profile and a template protein, a direct comparison between two profiles

can be made by converting their positional vectors into a score matrix. Profile-profile

comparison methods have been claimed to be more sensitive in detecting similarity

between two families than profile-sequence and sequence-profile comparison methods
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(Rychlewski et al. 2000). ORFeus, a profile comparison tool, has introduced a three-

valued secondary structure information to the position-specific substitution scores (Ginalski

et al. 2003). The calculation of secondary structure is entirely based on the sequence pro-

files. Addition of secondary structure information reportedly improves the sensitivity

towards similarity between protein families.

Threading or Fold Recognition
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Figure 1.11: Protein threading: A) a target sequence whose structure is not known yet and

does not have detectable sequence similarity with the known structures, B) a template library

consisting of a collection of the known structures, C) threading and alignment of the target

sequence to the structures in the template library, D) a set of candidate structures for the target

sequence. Image adapted from (Torda 2005).

Threading or fold recognition methods basically employ sequence to structure align-

ment scoring techniques and are useful to identify the templates of those targets whose
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sequences have no significant similarity to those of templates. The basic premise of

threading methods is that there is are limited number of protein folds in nature (Hubbard

1997, Zaki and Bystroff 2007, Lemer et al. 1995, Chothia 1992, Orengo et al. 1994) and

fold of a target sequence may be similar to that of a known structure either because of

too remote undetectable evolutionary relationship or the two folds have converged to

be similar (Moult 2005)

Successful recognition of related structure(s) through sequence to structure align-

ment ultimately results into a useful model. A typical threading method has three

components (as shown in figure 1.11): 1) a comprehensive and representative library

of templates, 2) an efficient and accurate sequence to structure alignment method, and

3) a score function for the ranking of final templates (Torda 2005).

In existing methods, the sequence to structure alignment is based on dynamic pro-

gramming (Thiele et al. 1999, Taylor and Orengo 1989), Monte Carlo search methods

(Bryant and Lawrence 1993, Bryant and Altschul 1995, Abagyan et al. 1994, Madej et al.

1995), genetic algorithms (Yadgari et al. 1998) or a branch and bound search (Lathrop

and Smith 1996). A score function for sequence to structure alignment may be differ-

ent from the one used in the template’s ranking. Contemporary score functions are

based on structural environment around (Bowie et al. 1991), statistical potentials based

on pairwise interaction between residues (Sippl 1990, Sippl 1995, Jones et al. 1992), and

secondary structures and solvation information (Shi et al. 2001). In hybrid methods,

threading score functions have also been used in combination with multiple sequence

alignments or sequence profiles (Panchenko et al. 2000, Zhou and Zhou 2004, Torda

et al. 2004).

As sequence to structure alignment is an NP-complete multi-minima problem (Lathrop

1994), it usually takes hours of large computational resources to generate alignments of

the target sequence with its templates in a reasonably large library (Yadgari et al. 1998,

Ginalski et al. 2005). Apart from the computational requirements, the energy functions

are also poor in dealing with the energetics of missing or dissimilar details of the align-

ments generated from weakly homologous templates. These energetic errors are more

severe in the ’twilight’ zone where sequence similarity is below 30%. Sometimes, minor

errors in the alignment can spoil energy by seriously damaging the accuracy of models

(Finkelstein 1997).

Recent benchmark studies have shown that only ∼ 50 − 65% of proteins can be as-

signed correct templates by threading methods in the absence of a significant sequence

similarity (Ginalski et al. 2005, Zhang 2008). Threading methods are also accused of not

proposing novel folds because their predictions are entirely based on already known

structures. That is why, ab initio structure prediction methods are important for pre-

diction of both novel as well as weakly homologous folds (Kihara et al. 2002, Hardin

et al. 2002, Skolnick et al. 2000).
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Ab Initio Structure Prediction

Target sequences for which no relationship to the known structures of proteins can

be detected are potentially addressed by ab initio or template-free methods. In ab ini-

tio structure prediction, the structure of a protein in question is not adopted from the

known structure(s) of an evolutionarily related protein(s) but it is rather built from

scratch. These methods are computationally more expensive than template-based meth-

ods.

As physical forces on atoms of a protein sequence push it to fold into a native-

like conformation, the most natural and accurate starting point would be an all-atoms

molecular dynamics simulation (Levitt and Sharon 1988) of protein folding or predic-

tion problem by simulating both protein and the surrounding water (Skolnick and Kolinski

2001). Unfortunately, it is not a way forward due to two reasons: 1) molecular dynamics

simulation with an all-atoms force fields and explicit representation of the surrounding

water molecules is computationally very expensive, and 2) only inadequate potential

functions are available for the current molecular dynamics simulations (Bonneau and

Baker 2001).

A number of ab initio structure prediction methods have been proposed over the last

decades. All methods search for a native-like conformation with lowest free energy and

have three aspects in common: 1) a suitable representation of protein molecule, 2) an

energy or score function, and 3) an efficient search method. In following sections, these

three aspects have been discussed in detail.

Structure Representation Schemes

A protein with N atoms has 3N degrees of freedom and can be represented by 3N

variables. Knowing the bond lengths and the bond angles are almost constant, one

may think to have a dihedral or torsional representation in order to bring the space

complexity threefold down (Xu et al. 2006).

As discussed earlier in section 1.1, the dihedral space can be further reduced by

ignoring the dihedral angle ω (shown in the second chapter’s figure 2.1) and assuming

that the peptide bond is planar and remains almost constant. Thus, the main chain can

be represented with only dihedral angle pairs (φ and ψ). The amino acid side chains

may be represented by pseudo-atoms. Pseudo-atoms are either a weighted average

of the real atoms or a combination of the most commonly observed side-chain angles

called rotamers (Samudrala et al. 1999).

In the Cartesian space, a regular grid of tetrahedral or cubic cells (lattice) can be

used to reduce the search space. Lattice methods are used for the simplification of con-

formations by digitizing them onto lattice. These methods use a very simple one or
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two atoms representation of conformations to perform a fast search through the space.

For smaller proteins, an exhaustive search on all possibly enumerated states can be

performed but, in case of large proteins, special grid-based moves and optimization

techniques are needed to search heuristically through all possible states.

Fragment assembly (Bowie and Eisenberg 1994), another conformational space re-

duction method and one of the most successful techniques in ab initio structure pre-

diction techniques, is an extension of template-based methods but uses rather small

fragments from multiple sources to build three-dimensional models. Fragment assem-

bly does not transfer parent fold but the homology and the knowledge based informa-

tion. Fragments carry information about the geometry (super-secondary, secondary, no

clashes etc.) depending upon their size (Zhang and Skolnick 2004, Jones and McGuffin

2003, Simons et al. 1997). The assembly of fragments happens in two steps: 1) pick-

ing homologous fragments from a fragment library or dihedral angles randomly from

continuous dihedral distributions, and 2) the minimization of conformations formed by

the chosen fragments. With fragment assembly based methods, Monte Carlo simulated

annealing (MCSA) has been used as a heuristic technique to find the energy minima.

The methods which involve fragment assembly to make their conformational search

tractable include: Rosetta (Rohl et al. 2004), SimFold (Fujitsuka et al. 2006), PROFESY

(Lee et al. 2004), FRAGFOLD (Jones 2001), UNDERTAKER (Karplus et al. 2003) and

ABLE (Ishida et al. 2003).

Score Functions

about depend upon the type of problem to be tackled. For example, a homology mod-

eling score function would calculate a score based on the interactions between pairs of

side chains, and side chains with the backbone whereas an ab initio folding or threading

score function would be taking care of the topology of protein conformation (Huang

et al. 2000).

There are two categories of score functions which may be employed by an ab ini-

tio structure prediction method to represent the forces, such as solvation, electrostatic

interactions, van der Waals interactions, etc., which determine the energy of protein

conformation.

Physics-Based Energy Functions

The biologically active native structure of a macromolecule is commonly found at the

lowest free energy minima of its energy landscape (Anfinsen 1973, Edelsbrunner and

Koehl 2005, Chivian et al. 2003, Sohl et al. 1998). In theory, ab initio energies of a molec-

ular system can be determined by the laws of quantum mechanics i.e. Schrödinger’s

equation (Hartree and Blatt 1958, Hohenberg and Kohn 1964). In practice, however,
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only small and simple systems can be solved by quantum mechanical methods. There-

fore, protein molecules cannot be given quantum mechanical treatment due to their

larger size, flexibility, and protein-solvent (Kauzmann 1959, Dill 1990) and higher-order

solvent-solvent interactions in non-uniform polar aqueous environment (Frank and Evans

1945).

Ab initio calculations can be useful for the derivation of empirical physics-based

energies by applying some approximations and simplifications. For instance, quan-

tum mechanical calculations of simple systems can be used to approximate hydro-

gen bond geometries (Morozov et al. 2004). Similarly, electrostatic calculations using

classical point charges and Lennard-Jones potentials can provide the approximation of

protein-solvent polarizability and van der Waals interactions respectively. Molecular

dynamics simulations have made use of such functions to determine the force fields

e.g. CHARMM (Brooks et al. 1983), AMBER (Weiner and Kollman 1981), and ENCAD

(Levitt et al. 1995). The parameterization of these energies is done by fitting to the ex-

perimental data.

Generally, physics-based energies work poorly in protein folding simulations due to

weaknesses in solvent and electrostatic interaction modeling. However, these energies

work adequately for small perturbations around a known native structure and have

been used by coupling with experimental constraints obtained from NMR data to get

accurate structures. PROFESY (Lee et al. 2004), a fragment assembly based structure

prediction method, has reportedly used physics-based energies for prediction of novel

structures.

Knowledge- or Statistics-based Functions

Knowledge-based functions are empirically derived from the properties observed in a

database of already known protein structures (Tanaka and Scheraga 1976, Ngan et al.

2006, Wodak and Rooman 1993, DeBolt and Skolnick 1996, Gilis and Rooman 1996,

Samudrala and Moult 1998, Sun 1993) with assumptions: 1) a free energy function can

describe the behavior of a molecular system, 2) energy approximation is possible by

capturing some aspects of the molecule, and 3) more frequently observable structures

correspond to low-energy states. The last assumption is due to the Boltzmann principle

which states that the probability density and the energies are closely related quanti-

ties (Sippl 1995). Knowledge-based functions are considered useful with the reduced

models particularly for the treatment of less understood hydrophobic effects of protein

thermodynamics (Kocher et al. 1994).

Rosetta (Rohl et al. 2004, Das and Baker 2008), an ab initio structure prediction method,

uses knowledge-based score functions. In Rosetta, a target sequence is treated as a set

of segments and for each segment, 25 structural fragments of 3-9 residues are extracted
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from a database of fragments generated from the known protein structures. Fragment

extraction is made on the basis of a multiple sequence alignment and secondary struc-

ture prediction. Protein conformational space is then searched by randomly inserting

the extracted fragments and scoring the evolving conformation of target sequence by a

knowledge-based function. The score function consists of hydrophobic burial, electro-

static, disulfide bond bias, and sequence-independent secondary structure terms.

Search Methods

In addition to a score function, one also needs a search method which can efficiently

explore the conformational space to find the probable structures of target sequence. As

the number of possible structures increases exponentially with increase in degree of

freedom, the search for native-like structures is computationally an expensive NP-hard

problem (Li et al. 1998, Derreumaux 2000). In the following, we have discussed few

commonly used search methods.

Molecular Dynamics

In molecular dynamics simulations, classical equations of motion are solved to deter-

mine the positions, velocities and accelerations of all the atoms. A system in molecular

dynamics simulations often starts with a conformation described either with Cartesian

or internal coordinates (Edelsbrunner and Koehl 2005). As the system progresses to-

wards the minimum-energy state, it reacts to the forces that atoms exert on each other.

Newton’s or Langrange’s equations depending upon the empirical potential are solved

to calculate the positions and the momenta of atoms and of any surrounding solvent

throughout the specified period of time. Molecular dynamics simulations are time-

consuming and require an extensive computer power to solve equations of motion

(Scheraga et al. 2007, Contact and Hunter 2006).

Besides the issue of accuracies in the description of forces which atoms apply on

each other, the major drawback with molecular dynamics is that when one atom moves

under the influence of other atoms in the system, all the other atoms are also in motion.

That means, the force fields which control atoms are constantly changing and the only

solution is to recalculate the positions of atoms in a very short time slice (on the order

of 10−14s). The need to recalculate forces is considered the main hurdle. In principle, N2

calculations are required for a system consisting of N atoms (from protein and water

both). This constraint makes the simulation of a process, which takes just 1s in nature,

out of reach fro the contemporary computers (Karplus and Petsko 1990, Unger 2004,

Nölting 1999).

Efficient sampling of the accessible states and the kinetic data of transitions between

states of a system are the main strengths of molecular dynamics (Cheatham III and
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Kollman 2000, Karplus and McCammon 2002). At the moment, the only application

of molecular dynamics is either modeling of smaller molecules (Fiser et al. 2000) or

refinement and discrimination of models generated by the ordinary ab initio methods

(Bonneau and Baker 2001).

Genetic Algorithms

Genetic algorithms use gene-based optimization mechanisms (i.e. mutations, cross-

overs and replication of strings) and have been used as search method for ab initio

protein structure prediction (Pedersen and Moult 1995, Karplus et al. 2003, Sun 1993).

Mutations are analogous to the operations within a single search trajectory of a tradi-

tional Monte Carlo procedure. Cross-overs can be thought of as means of information

exchange between trajectories. Genetic algorithms are co-operative search methods and

can be used to develop such protocols where a number of searches can be run in parallel

(Pedersen and Moult 1996)

Many studies have demonstrated superiority of genetic algorithms over Monte Carlo

methods for protein structure prediction, but no method based on naive pure imple-

mentation of genetic algorithms has been able to demonstrate a significant ability to

perform well in real predictions. In fact, genetic algorithms rather improve themselves

on the sampling and convergence of Monte Carlo approaches (Unger 2004).

Monte Carlo Sampling Methods

Monte Carlo methods are powerful numerical techniques with a broad range of appli-

cation in various fields of science. Although the first real use of Monte Carlo methods

as search tool dates back to the second world war, the systematic development hap-

pened in the late 1940s when Fermi, Ulam, von Neumann, Metropolis and others made

use of random number to solve problems in physics (Landau and Binder 2005, Doll

and Freeman 1994). The most frequent use of Monte Carlo methods is the treatment of

analytically intractable multi-dimensional problems, for example, evaluation of difficult

integrals and sampling of complicated probability density functions (Kalos 2007, Binder

and Baumgartner 1997).

Monte Carlo methods allow fast and reliable transformations of a natural process

or its model by sampling its states through stochastic moves and calculating the av-

erage physical or geometric properties (Edelsbrunner and Koehl 2005). For instance,

a molecular dynamics simulation of the same process will take a very long time than

Monte Carlo simulation (Siepmann and Frenkel 1992). To perform faster conforma-

tional search for native-like states or conformations, Monte Carlo methods have been

used extensively in protein folding (Avbelj and Moult 1995, Rey and Skolnick 1991, Hao
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and Scheraga 1994, Yang et al. 2007) and structure prediction (Das and Baker 2008, Si-

mons et al. 2001, Rohl et al. 2004, Fujitsuka et al. 2006, Gibbs et al. 2001, Zhou and

Skolnick 2007, Kolinski 2004) studies.

In Monte Carlo method, we are supposed to estimate certain ”average characteris-

tics” of a complex system by sampling in a desired probability distribution P (x) of that

system (Cappe et al. 2007). The random variable x is called configuration of the sys-

tem (e.g. x may represent three-dimensional structure of a protein conformation) and

the calculations of x are based on the statistical inferences or basic laws of physics and

chemistry (Liu 2001). Mathematically, the average characteristics or state of the system

can be expressed as expectation ḡ for some useful function g of configuration space x

such that

ḡ =

∫

g (x)P (x) dx (1.1)

It is often difficult to compute the expectation value ḡ analytically, therefore the approx-

imation problem is solved indirectly by generating (pseudo-) random samples from the

target probability distribution P . In statistical mechanics, the target probability distri-

bution P is defined by the Boltzmann distribution (or Gibbs distribution)

P (x) =
1

Z
e−E(x)/kBT (1.2)

where x is the configuration of a physical system, E(x) is the energy function, kB is the

Boltzmann constant, T is the system’s temperature and Z is the partition function. The

partition function Z can be written as

Z =
∑

x

e−E(x)/kBT (1.3)

If we are able to generate random samples {xr}N
r=1 with probability distribution

P (x), then the mean of g(x) over samples, also called Monte Carlo estimate, can be

computed such that

ĝ ≡ 1

N

∑

r

g (xr) (1.4)

Practically, the computation of Monte Carlo estimate ĝ is not an easy task because

of two reasons: 1) it is difficult to calculate the partition function Z in order to have a

perfect probability distribution P (x) where the samples come from, and 2) even if the

partition function Z is knowable, the sampling with probability distribution P (x) still

remains a challenge particularly in case of high-dimensional spaces.
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Importance Sampling

When it is not possible to sample from the Boltzmann probability distribution directly

due to the inability to calculate the partition function Z (Trigg 2005), we can scale down

the sampling domain by importance sampling (Metropolis et al. 1953). In order to com-

pute final result, importance sampling focuses on important regions than covering the

entire domain randomly (Doll and Freeman 1994). An importance region is comprised

of a subset {xr}M
r=1 of finite number of configuration states which occur according to

their Boltzmann probability. The subset of states {xr}M
r=1 is generated according to

stochastic principles through random walks in the configurational space x.

The limit properties of M are important to make sure that the states are visited pro-

portional to their Boltzmann factor and also to satisfy detailed-balance condition. De-

tailed balance ensures that the probability of going from some state k to state j is equal

to that of going from state j to state k. In the configurational space of a system, an un-

biased random walk is possible only if any state of the system can be reached from any

other state within a finite number of moves and this property of the system is called

ergodicity (Brasseur 1990).

In order to obtain an unbiased estimate of ḡ, a ratio Pi, also called importance func-

tion, between the probabilities of final state i and initial state i − 1 of the system is

evaluated at each move step of the random walk. If the probabilities p(xi) and p(xi−1)

of states i and i− 1 are given by

p(xi) =
e−E(xi)/kBT

Z
, (1.5)

and

p(xi−1) =
e−E(xi−1)/kBT

Z
, (1.6)

respectively, then the the unknowable denominator Z can be canceled in the ratio Pi of

individual probabilities:

Pi =
p (xi)

p (xi−1)
=

e−E(xi)/kBT

e−E(xi−1)/kBT
(1.7)

In order to compute Pi in equation 1.7, we only need energy difference of the two states

∆E = Ei − Ei−1 (1.8)

So, the equation 1.7 becomes

Pi = exp

(

−∆E

kBT

)

(1.9)



1.7. MONTE CARLO SAMPLING METHODS 25

To decide whether the move is to be accepted or not, a random number ξ is uniformly

generated over the interval (0, 1). If ξ is less than Pi the move is accepted, otherwise the

system remains in the same state xi−1 and the old configuration is retained as a new

state (Landau and Binder 2005, Allen and Tildesley 1989).

Relation to our Work

Although the Boltzmann distribution is the most commonly used in physics and chem-

istry, it is not the only possibility. In section 2.1, we describe a scheme for distributions

based on descriptive statistics. Importance sampling can be used within this frame-

work. Simply, given any arbitrary probability distribution, one can use it as the basis of

sampling method. The advantage is that in a descriptive framework, there is no explicit

energy term. The probability model used in this work is given in section 2.1.2.

A completely different non-Boltzmann probabilistic model P (x) describes the states

of the system. This probabilistic model allows computation of the probability p(xk)

of any state k of the system. In importance sampling, a ratio p(xi)/p(xi−1) of the non-

Boltzmann probabilities can be used to perform search for protein conformations. These

protein conformations would be consistent with the predefined distributions of the non-

Boltzmann probabilistic model P (x). Our sampling scheme has three kinds of move

schemes: 1) totally unbiased, 2) biased, and 3) ’controlled’. The bias in second move

scheme has been fixed appropriately to make the sampling scheme nearly ergodic.





Chapter 2

Monte Carlo with a Probabilistic Function

The representative features of protein conformations (Marqusee et al. 1989, Blanco et al.

1994, Callihan and Logan 1999) (discussed earlier in section 1.1) can be used for their

statistical description. In order to extract descriptors for statistical analysis, a set of

the already known protein structures in the Protein Data Bank (PDB) was taken and

each protein was treated as a set of n-residues fragments. The number of descriptors

associated to each fragment depends upon their features of our interest, for instance

sequence, dihedral angles, etc.

Probabilistic clustering of protein fragments through the chosen descriptors was per-

formed to understand what kind of fragments exist in the world of protein. Technically,

what comes out of this clustering are the probability distributions and the weights of

descriptors. By using the obtained probability distributions and weights, one can deter-

mine the probability of any given conformation by interpreting the probabilities of its

constituent fragments. In Monte Carlo, the ratio of purely probabilistically determined

probabilities of the current conformation xi−1 and the proposed conformations xi allows

us to (have Pj by replacing the right hand side of equation 1.9 and) decide which one of

the two conformations to be preferred. The stated non-Boltzmann descriptive statistics

for our sampling scheme were obtained through Bayesian classification.

In the following, we are going to discuss: first, our score function (in terms of prob-

abilistic framework, attribute models, and the classification model), second, how the

score function was applied to find the distributions of protein conformations by cluster-

ing fragments of the known protein structures in the PDB, third, how simulated Monte

Carlo annealing was uniquely coupled with the score function, and lastly, some signifi-

cant results generated by this scheme of protein structure prediction.

Probabilistic Score Function

Unsupervised classification (Herbrich 2002) based on Bayesian theory was used to dis-

cover the probabilistic descriptions of the most probable set of classes in protein struc-

tures. The parameterized probability distributions of the found classes mimic the pro-

cesses that produce the observed data. Such a probabilistic classification allows a mix-

ture of real and discrete attributes of cases (i.e. protein fragments). To avoid over-fitting
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of data, there is a trade off between the predictive accuracy of classification and com-

plexity of its classes.

A probabilistic classification is not supposed to have any categorical class definitions

by partitioning of data but it rather consists of a set of classes and their probabilities.

Each class is defined by a set of parameters and associated models. Parameters of a class

specify regions in the attribute space where that class dominates at the other classes.

The final set of classes in a classification provides a basis to classify the new cases and

to calculate their probabilities. The best classification is the one which gets least sur-

prised by an unseen case (Cheeseman et al. 1988). In ab initio structure prediction, such

a classification can possibly have encouraging consequences in the predictions of novel

folds.

Bayesian Framework

Bayesian theory (Bayes Rev. 1763) provides a framework to describe degrees of belief,

its consistency and the way it may be affected with change in evidence. The degree

of belief in a proposition is always represented by a single real number less than one

(Cox 1946, Heckerman 1990). To understand it theoretically, let E be some unknown

or possibly known evidence, H be a hypothesis that the system under consideration is

in some particular state. Also consider that the possible sets E and H can be mutually

exclusive and exhaustive. For given E and H , Bayes’ theorem is

P (H|E) =
L (E|H)P (H)

P (E)
. (2.1)

The prior P (H) describes belief without seeing the evidenceE whereas the posterior

P (H|E) is belief after observing the evidence E. L(E|H), the likelihood of H on E, tells

how likely it is to see each possible combination of the evidence E in each possible state

of the system (Howson and Urbach 1991). The likelihood and prior can be used to have

joint probability for E and H

J (EH) ≡ L (E|H)P (H) . (2.2)

According to Bayes’ rule, the beliefs change with change in the evidence and it can

be shown by normalizing the joint probability (Hanson et al. 1991) as

P (H|E) =
J (EH)

∑

H

J (EH)
=

L(E|H)P (H)
∑

H

L (E|H)P (H)
. (2.3)

Let us consider the system we are dealing with is a continuous system, then a dif-

ferential dP (H) and integrals can be used to replace the priors P (H) and sums over
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H respectively. Similarly, the likelihood of continuous evidence E would also be given

by a differential dL (E|H). Consequently, the probability of real evidence ∆E will be a

finite probability:

∆L (E|H) ≈ dL (E|H)
∆E

dE
. (2.4)

In short, given a set of states, the associated likelihood function, the prior expecta-

tions of states, and some relevant evidence are known, Bayes’ rule can be applied to

determine the posterior beliefs about states of the system. Then, these posterior beliefs

can be used to answer further questions of interest (Hanson et al. 1991).

Mathematically, it is not an easy task to implement Bayesian theory in terms of integrals

and sums. In order to make an analysis tractable, possible states of the system can

be described by models on an assumption that the relevant aspects of the system can

easily be represented by those models. A statistical model is supposed to combine a

set of variables, their information and relationship function(s) (Bruyninckx 2002). All

statistical models have specific mathematical formulae and can provide more precise

answers about the likelihood of a particular set of evidences.

Here, we briefly discuss the relevant statistical models before explaining how Bayesian

framework works in practice.

Attribute Models

We use a notation where a set of I cases represents evidence E of a model and each case

has a set K of attributes of size K. The case attribute values are denoted by Xik, where i

and k are indexes over cases and associated attributes respectively.

Multi-way Bernoulli Distribution

A discrete attribute allows only a finite number of possible values l ∈ [1, 2, . . . , L] for

any given instance Xi in space S. Since the model expects only one discrete attribute,

the only parameters are the continuous parameters V = {q1, . . . , qL}. The continuous

parameters are the likelihood values L (Xi|V S) = q(l=Xi) for each possible value of l.

L− 1 free parameters are constrained such that 0 ≤ ql ≤ 1 and
∑

l ql = 1.

“Sufficient statistics” for the model are generated by counting the number of cases

with each possible attribute value Il =
∑

i δXil. There is a prior of form similar to that

of likelihood, therefore it is also referred as (Dirichlet) conjugate prior,
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dP (V |S) ≡ Γ (aL)

Γ (a)L

∏

l

qq−1
l dql. (2.5)

where a is a parameter to parameterize the formula. The parameter a can be assigned

different values to specify different priors.

Normal Distribution

Real-valued attributes represent a small range of the real number line. As scalar at-

tribute values can only be positive, like weight, it is preferred to represent them by their

logarithms (Aitchison and Brown 1957). Real-valued attributes are modeled by the stan-

dard normal distributions. The sufficient statistics include the data mean X̄ = 1
I

∑I
i Xi

and the variance s2 = 1
I

∑

i

(

Xi − X̄
)2

. The continuous parameters V consist of a model

mean µ and standard deviation σ. Given the parameters V and space S, the likelihood

is determined by

dL (Xi|V S) =
1√
2πσ

e−
1
2(

Xi−µ

σ )
2

dxi (2.6)

The parameter values, µ and σ, in the prior are treated independently i.e.

dP (V |S) = dP (µ|S) dP (σ|S) (2.7)

where the priors on µ and σ are flat in the range of the data and log(σ) respectively and

can be written as

P (µ|S) =
1

µmax − µmin

, (2.8)

P (σ|S) = σ−1

[

log
σmax

σmin

]−1

(2.9)

Multiple Attributes

The cases Xi may have multiple attributes k ∈ K. The simplest way to deal with them

is to treat each of them independently by considering it as a separate problem. The

parameter set V consists of sets Vk =
⋃

lk qlk (where
⋃

lk denotes collection across only

some of the cases) or Vk = [µk, σk] depending upon the type of attribute k. The likelihood

and the prior are given by

L (Xi|V S) =
∏

k

L (Xik|VkS) , (2.10)
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and

dP (V |S) =
∏

k

dP (Vk|S) (2.11)

respectively.

Multivariate Normal Distribution

Attributes are not always independent of each other but can also exhibit a correlation.

The multivariate normal distribution is a standard model to assume a correlation be-

tween a set K of real-valued attributes. In the multivariate normal distribution, s2
k and

σ2
k can be replaced by the data covariance matrix Ok and model covariance (symmetric)

matrix Ck respectively. The data covariance matrix Ok is given by

Ok =
1

I

∑

i

(

Xik − X̄k

) (

Xik − X̄k

)T
(2.12)

where
(

Xik − X̄k

)T
is the transpose of

(

Xik − X̄k

)

.

The likelihood of a set of real-valued attributes K is a multivariate normal in K dimen-

sions and is given by

dL (Xi|V S) = dN (Xi, {µk} , {Ck} , K) (2.13)

≡
exp

(

−1
2
(Xik − µk) C−1

k (Xik − µk)
T
)

(2π)
K
2 |Ck|

1
2

∏

k

dxk (2.14)

where (Xik − µk)
T is transpose of (Xik − µk) and |Ck| is absolute value of the corre-

sponding determinant.

Here also, means and covariance are treated independently at all levels by the prior

dP (V |S) = dP ({Ck} |S)
∏

k

(µk|S) (2.15)

The prior on means is a simple product of individual priors (as given in equation

2.8) of all the real-valued attributes. However, the prior on Ck was taken by an inverse

Wishart distribution (Mardia et al. 1979).

dP ({Ck} |S) = dW inv
K ({Ck} | {Gk} , h) (2.16)

≡ |Gk|−
h
2 |Gk|

−h−K−1
2 e−

1
2

PK
k C

inv

k G
inv

k

2
Kh
2 π

K(K−1)
4

K
∏

a

Γ

(

h+ 1 − a

2

)

K
∏

k

dCk (2.17)
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where h = K and Gk = Ok. The chosen h and Gk parameter values make the prior

a ”conjugate” i.e. the mathematical forms of the resultant posterior dP ({Ck}|ES) and

that of the prior are same.

Classification Model

The description of a single class in some space would be the simplest and straight-

forward application of the above models. However, in practice, one would rather

like to model a space S with a mixture of classes. The classical finite mixture model

(Titterington et al. 1985, Everitt and Hand 1981) is one such model which allows us to re-

alize a multi-class space built out of single class models. It involves two kinds of param-

eters: 1) the discrete parameters‘ T = [J, {Tj}] where J is the number of classes, Tj is the

probabilistic model of each class j, and 2) the continuous parameters ~V = [{αj}, {Vj}]
where αj is the weight of class j and Vj denotes the free parameters, for instance mean

and variance or Bernoulli probabilities, of a model for class j. In fact, the classification

parameters T and ~V represent a combination of parameters of each class and those of

the mixture.

Given a set of data E, the finite mixture model under Bayesian framework starts

building a classification with the prior probability distribution dP
(

~V T |S
)

over the clas-

sification parameters where the parameters, J and αj , are treated as arbitrary priors over

integers and a discrete attribute respectively. The prior distribution actually reflects our

(priori) ignorance about the parameters and that ignorance is overcome by updating the

distribution according to the information learned from the data. The posterior proba-

bility distribution of parameters gradually gets better as the priori ignorance goes away.

The end objective of Bayesian classification system is to achieve the most probable set

of classification parameters (~V , T ) for a given number of classes and the most proba-

ble number of classes in the data irrespective of parameters. The obtained classification

parameters are then used to calculate the probabilities of individual cases of being into

each class.

According to the finite mixture model, the likelihood of classification is given by

L
(

Ei|~V TS
)

=
J
∑

j

αjL
(

Ei|~VjTjS
)

(2.18)

where αj is the weight of a class j which gives the probability of any case of being into

the class j, and L
(

Ei|~VjTjS
)

is the class likelihood which describes how the members

of class j are distributed. The likelihood L
(

E|~V TS
)

is mathematically simple but com-

plex enough to give the joint probability
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dJ
(

E~V T |S
)

≡ L
(

E|~V TS
)

dP
(

~V T |S
)

. (2.19)

The joint probability is rugged and has many local maxima. The ruggedness of ~V T

distributions is dealt by breaking the continuous space ~V into small regions R rather

than directly normalizing the joint probability as required by Bayes’ rule. Each region

R supposedly surrounds a sharp peak and no such peak should be spared in an ef-

fort to represent the peaks by R regions. A tireless search is performed to find a best

combination of RT for which the ”marginal” joint

M (ERT |S) ≡
∫

~V ∈R

dJ
(

E~V T |S
)

(2.20)

is as large as possible.

Expectation Maximization (EM)

An EM algorithm (Dempster et al. 1977, Titterington et al. 1985) is used to find local

maxima in regions R of the parameter space ~V . To reach a maxima, EM algorithm starts

with a random seed and estimates the class parameters ~Vj from the weighted sufficient

statistics. Relative likelihood weights

wij =
αjL

(

Ei|~VjTjS
)

L
(

Ei|~V TS
) (2.21)

are calculated from the estimated class parameters. The likelihood weights, which sat-

isfy
∑

j wij = 1, are used to calculate the probability that a case i would belong to a

class j. The new class data and class-weighted sufficient statistics are created from the

likelihood weights wij . These statistics are then substituted into the previous class like-

lihood function L
(

E|~VjTjS
)

to have a weighted likelihood L′
(

E|~VjTjS
)

. The current

estimate of ~V is used to calculate new likelihood weights wij and then the new weights

wij are used to re-estimate ~V . This iteration between two steps stops when they start

predicting each other.

Calculating Probabilities

The (intra-class) probability P (Xi ∈ Cj | ~V , T, S) of observing an instance Xi (indepen-

dent of its attribute vector ~Xi) in class Cj is

P
(

Xi ∈ Cj | ~V , T, S
)

≡ αj (2.22)
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The parameters ~V have a set of probabilities, also called class weights, {α1, . . . , αJ} such

that 0 < αj < 1 and
∑

j αj = 1. The instance attribute vectors ~Xi are distributed

independently and identically with respect to the classes. Given an instance Xi be-

longs to a class Cj , the (inter-class) probability of the instance attribute vector ~Xi is

P
(

~Xi | Xi ∈ Cj, ~Vj, Tj, S
)

. The class probability distribution functions (p.d.f.) ~Vj , Tj

provide a conditional probability which is a product of the distributions modeling con-

ditionally independent attributes k

P
(

~Xi | Xi ∈ Cj, ~Vj, Tj, S
)

=
∏

k

P
(

~Xik | Xi ∈ Cj, ~Vjk, Tjk, S
)

(2.23)

The direct probability that an instance Xi with attribute vector ~Xi is a member of class

Cj is obtained by a combination of the interclass and the intraclass probabilities given

in equations 2.22 and 2.23 respectively:

P
(

~Xi, Xi ∈ Cj | ~Vj, Tj, ~V , T, S
)

= αj

∏

k

P
(

~Xik | Xi ∈ Cj, ~Vjk, Tjk, S
)

(2.24)

The probability of an instance Xi without being worried about its class memberships is

given by

P
(

~Xi | ~V , T, S
)

=
∑

j

(

αj

∏

k

P
(

~Xik | Xi ∈ Cj, ~Vjk, Tjk, S
)

)

(2.25)

and the probability of observing a set or database X of instances is given by

P
(

X | ~V , T, S
)

=
∏

i

[

∑

j

(

αj

∏

k

P
(

~Xik | Xi ∈ Cj, ~Vjk, Tjk, S
)

)]

. (2.26)
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Applying Probabilistic Framework to Proteins

Representation of Protein Conformations

The score function works with a 5-atoms reduced representation of protein conforma-

tions. Each residue of the protein backbone is represented by 5-atoms i.e. N , Cα, Cβ ,

C and O (as shown in figure 2.1). The side chains of protein conformations are consid-

ered only upto Cβ atoms. The Cartesian coordinates of H atom of the NH group are

calculated from those of N atom, preceding C atom and succeeding Cα atom.

R

H

o

H

o

H

H

o

R
H

N C

N

C

N C

.C

.C

.C

.C

%

3
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Figure 2.1: Backbone of a protein conformation. In a Cartesian space, positions of N , H , Cα,

Cβ , C and O atoms of each residue are represented by their x, y and z coordinates whereas in

dihedral space, ω, φ and ψ angles are used to define the geometric shape of the protein backbone.

ω angle mostly remains close to 180o and has little effect on the overall conformation whereas

φ and ψ angles vary and play significant role in the variation of protein conformation. φ and ψ

angles are defined by backbone atoms: (C, N, Cα, C) and (N, Cα, C, N) respectively. See figure

2.7 for the definition of a dihedral angle.

Internally, the score function works with two kinds of conformation representations:
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1) Cartesian coordinates, and 2) internal coordinates. In a Cartesian coordinates based

representation, x, y and z coordinates of N , Cα, Cβ , C and O atoms are used to repre-

sent the geometric shapes of protein conformations. Whereas in an internal coordinates

based representation, bond angles, bond lengths and dihedral angles provide the defi-

nitions of conformations. The characteristic values of bond lengths and bond angles de-

pend upon the types of atoms involved and are usually fixed with very little variation

(as explained in the first chapter). That is why, bond angles and bond lengths of protein

conformations are kept constant in order to improve the computational efficiency by

reducing degrees of freedom (Kavraki 2007, Zhang and Kavraki 2002, Choi 2005).

There is an interplay between the two representations of protein conformations. The

issue is that some terms of the score function are casted in terms of Cartesian coordi-

nates. Whereas internal coordinates are needed for the probability calculation of confor-

mations. The working of this interplay between two representations will be discussed

later in detail.

Data Collection

Protein Data Bank (PDB) (Berman et al. 2000) is a storage of very useful information

in the form of already solved protein structures. It is often used by different structure

prediction methods to make their score functions learn how a protein sequence may

evolve into its native structure. We also trained our score function, which is based on a

probabilistic classification, on commonly seen information (i.e. sequence and structure)

in fragments of the known protein structures (Park and Levitt 1995, Sippl et al. 1992,

Bowie and Eisenberg 1994, Jones 1997, Simons et al. 1997).

To avoid redundant information, a set of protein chains was selected from the PDB

such that no two members had sequence identity more than 50% (Li et al. 2001). All the

chains with less than 40 amino acids and few with unknown sequence were removed

from the list of 50% sequence identity chains. From the remaining chains of protein, each

possible overlapping fragment of length k was extracted. All those fragments which had

any of their bond longer than 2 Å were discarded. The remaining 1.5 × 106 fragments,

each of length k ≤ 7, were assigned their attribute vectors i.e. sequence and structure

(φ, ψ) features (as shown in figure 2.2).

Descriptors and Models

Sequence and structure (φ, ψ) features of protein fragment are the two main descriptors

for which our classification system is supposed to find the probability distributions.

Therefore, the attribute vector of a protein fragment (as shown in figure 2.2) consists

of two sets of information: 1) sequence of the fragment , and 2) dihedral angles (φ, ψ)
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Figure 2.2: (A) Database of protein chains in which no two proteins have sequence identity more

than 50%, (B) 1.5 × 106 overlapping fragments extracted from 50% sequence identity protein

chains and (C) attribute vectors of the fragments shown in (B). Each attribute vector consists of

sequence and structure (φ, ψ) information of the corresponding fragments.
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which define the geometric shape of the fragment. Below, we describe the associated

models of these two descriptors:

Sequence

Each of the k residues in each class was modeled by the multi-way discrete distribution

discussed earlier in section 2.1.2.

Structure

The structural features of protein fragments are extracted from φ and ψ dihedral an-

gles of each of their residues (as illustrated in figures 2.1 and 2.2). For classification, φ

and ψ angles of fragments were shifted into the periods of 0 to 2π and −π/2 to 3π/2

respectively and treated as continuous descriptors. To allow correlations between φ and

ψ angles, they were modeled by the bivariate/multivariate normal distributions of the

form given in equation 2.13, whereXi would be a two-dimensional vector of angle pairs

(φ, ψ) and µk be the corresponding vector of means.

Classification

After the identification of appropriate descriptors and the assignment of relevant mod-

els, a set of classifications, consisting of 150-300 classes, was generated with varying

parameters, e.g. for fragment length n = 4, 5, 6, 7. Finding a better classification is

the most expensive step of our protein structure prediction method. It often takes sev-

eral weeks of intensive computations. In each iteration of EM convergence, the class

memberships of the fragments are computed from the class parameters and the implied

relative likelihoods and then new class members are used for the computation of class

statistics and revision of class parameters. These two steps are performed repeatedly

until the class memberships and the class parameters stop changing.

Once we have a classification after observing 1.5 × 106 protein fragments, it can be

used to make the statistical estimate of unseen (structure) attribute values of those pro-

teins whose structures have not been solved so far.

Sampling Method

Monte Carlo simulated annealing (MCSA) (Kirkpatric et al. 1983) was used as a search

method to find the probable conformational arrangements of a given target sequence.

The concept of simulated annealing is based on the physical fact that melting and sub-

sequent sudden cooling of a metal makes it very brittle. The property of brittleness

shows that the metal structure is trapped in a local minimum energy state making it
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Figure 2.3: Bayesian classification of 1.5×106 protein fragments. It finds probabilistic description

of the most probable set of classes.

so unstable. However, gradual and slow cooling of the metal makes it very tough and

hard to break. The stable structural arrangement of the metal corresponds to the global

energy minimum. Since the prediction of three dimensional protein structure is also a

local minima problem (as shown in figure 2.4), the strategy of simulated annealing is

often applied to tackle it (Chou and Carlacci 1991).

Interestingly, our search method does not rely on Metropolis Monte Carlo which is

often used in molecular simulation techniques to sample over a free energy landscape.

It is rather based on a fundamental statistical Monte Carlo which performs an unusual

probabilistic sampling in a set of predefined distributions generated by the classification

of protein fragments (according to the scheme described in section 2.1.3). Such a search

method is supposed to lead to conformations of a protein sequence which are consistent

with the predefined distributions.

Under this sampling scheme, there is no direct consideration of Boltzmann statistics

in the acceptance criterion. The smoothness of distribution of states xi is controlled

through an artificial temperature described later in the chapter. The sampling scheme
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Figure 2.4: For a given target, the system starts with a randomly generated conformation at high

temperature and is gradually cooled down while making (biased or unbiased) moves. Image

adapted from (Xu et al. 2006)

does not have any kind of ensemble. However, there is a little similarity to the micro-

canonical ensemble (NVE) but the volume (V) is meaningless and energyE(xi) does not

exist at all but probabilities p(xi), where xi denotes the internal coordinates of a protein

conformation at ith state of the conformational space x.

The simulated annealing process consists of N steps of random moves in the confor-

mational space x. The moves xi = (i = 1, 2, · · · , N) are accepted or rejected according

to the Metropolis prescription (Metropolis et al. 1953) given in equation 1.7. The ratio of

the probabilities of the initial conformation xi−1 and the final conformation xi

Pi =
p (xi)

p (xi−1)
(2.27)

is different (from the one in equation 1.7) in a sense that the probabilities p(xi−1) and

p(xi) are not Boltzmann probabilities but purely probabilistic in all aspects. The accep-
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tance criterion can be formulated as

xi =

{

xi, if Pi > 1.0

xi−1, if Pi > ξ

}

(2.28)

where ξ is a random number uniformly distributed over the interval (0, 1). ξ is generated

by a random number generator for N steps. Equation 2.28 shows, if p(xi) > p(xi−1),

Pi > 1.0 is true and hence the final conformation xi will be accepted. Otherwise, xi is

accepted depending upon its probability and the temperature (described in one of the

following paragraphs). The acceptance criterion ensures that both downhill and uphill

moves are allowed.

Calculation of Probabilities

The probability p(xi) of protein conformation xi is calculated according to the equation

2.26. To simplify, let F be the number of overlapping fragments of conformation xi (as

shown in figure 2.5), and J be the number of classes generated by the classification (see

figure 2.3), then the probability p(xi) is given by:

p (xi) =

(

F
∏

f=1

J
∑

j=1

αj|Fseq
f
pj

(

F struct
f

)

)1/F

(2.29)

where αj|Fseq
f

is the weight of a class j given a sequence F seq
f of fragment f , F struct

f rep-

resents structural (φ, ψ) features of a fragment f , and pj(F struct
f ) is the probability of the

structural features of a fragment f .

Probability of Acceptance

For applications such as simulated annealing or iterating self-consistent mean field

methods to convergence, one needs to be able to impose a temperature on a system.

At low temperatures, the system moves towards more probable states. At higher tem-

peratures the distribution between states becomes more even. If we have a Boltzmann

distribution, we control this via the temperature. If we do not have a Boltzmann distri-

bution, we can control the smoothness of the distribution in a more artificial way. One

usually does not have the absolute probability p(xi) of a state xi, but we will have the

relative probabilities of any two states xi and xi−1. This ratio p(xi)/p(xi−1) is the basis

of the acceptance criterion for Monte Carlo.

The best rule for an acceptance probability is to replace p(xi)/p(xi−1) by the same

probability, raised to a power a. For convenience, let this ratio as r = p(xi)/p(xi−1) then
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Figure 2.5: To compute the probability of a given protein conformation of R residues, it is cut

into F = R− Lf overlapping fragments, where Lf is length of each fragment. Then probability

vectors for all the fragments across the set of classes are computed. Finally, the product of sum

of probabilities across all the classes (according to equation 2.29) gives the probability of the

conformation.
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ra =

(

p(xi)

p(xi−1)

) 1
a

(2.30)

As a→ 0, minima and maxima in the probability distribution become more pronounced.

For a > 1, the surface is smoothed as it would be with increased temperature. This idea

can be rationalized by considering two temperatures T2 and a reference temperature

Tref . Then say

ra =
T2

T2 − Tref

(2.31)

and define ∆E = E(xi) − E(xi−1) and in this sign convention,

∆E = −kBT ln

(

p(xi)

p(xi−1)

)

(2.32)

and for a specific temperature T1

∆E = −kBT1ln

(

p(xi)

p(xi−1)

)

= −kBT1lnrT1 (2.33)

If we say rT refers to the population ratio at temperature T , then

rT1

rT2
=

e−∆E/kBT1

e−∆E/kBT2

= exp

(

−∆E

kBT1

− −∆E

kBT2

)

(2.34)

= exp

(

−∆E

kB

(T2 − T1)

T2T1

)

but from equations 2.32,

rT1

rT2
= exp

(

−kBT1lnrT1

kB

(T2 − T1)

T2T1

)

= exp

(

(T2 − T1) lnrT1

T2

)

(2.35)

=
(

rT1
)

(T2−T1)
T2

so
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rT2 = rT1
(

rT1
)

(T1−T2)
T2

=
(

rT1
)1+

(T1−T2)
T2 (2.36)

=
(

rT1
)T1/T2
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Figure 2.6: Probability of acceptance

which has the same effect as equation 2.30. If T2 →∝ the distribution becomes flat and

the probability of acceptance approaches 1. As T2 → 0, moves to only more likely states

are accepted. See figure 2.6. One may note that this is very similar to the method based

on (Tsallis 1988) statistics and used by (Andricioaei and Straub 1996).

Move Sets

Rotation about dihedral angles is the most important internal degree of freedom. The

move set of our search method is based on rotations or changes in one or more dihedral

angles of protein conformation. A dihedral angle is the smallest angle between the

two planes P1 and P2 where each plane is defined by the four consecutive atoms of the

protein backbone. See figure 2.7.
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Figure 2.7: Dihedral angle θ is the smallest angle between two planes P1 and P2. Plane P1 is

defined by N, Cα and C atoms whereas P2 is defined by Cα, C and N.

Interplay of Two Conformation Representations

The interconversion of two representations, the Cartesian coordinates and the internal

coordinates of a protein conformation, is an essential component for the working of

our score function. The internal coordinates (i.e. dihedral angles: φ, ψ) are needed for

the calculation of structural features whereas the Cartesian coordinates are needed for

the visualization of conformations, the calculation of hydrogen bonding energies, and

partly for the computation of solvation features described in chapter 3. A search move,

no matter whether its is biased or un-biased, is made by perturbing dihedral angles at a

randomly selected residue position of a conformation. In order to express the changes

in dihedral angles, one needs to update the Cartesian coordinates of the conformation.

There are three methods to update the Cartesian coordinates of a conformation from

its dihedral angles: the simple rotations, the Denavit-Hartenberg local frames, and the

atom-group local frames (Choi 2005). The simple rotations method applies a sequence

of rotations, each determined by two points and an angle, to update all atom positions.

The order of updates and some bookkeeping of the atom positions is necessary. The

Denavit-Hartenberg local frames method uses local frames at the bonds and a series of

matrix multiplications is applied to update atom positions. There is no bookkeeping in

the Denavit-Hartenberg local frames method but multiple local frames are needed for

bonds which have more than one child. The atom-group local frames method is based
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on the concept of atomgroups. All the connected atoms are considered in one atomgroup

if none of the bonds between them rotates. Only one local frame is required for each

atomgroup regardless of number of children atomgroups (Zhang and Kavraki 2002).

(B)(A)

Figure 2.8: (A) A conformation is represented as a set of rigid fragments in circles where each

fragment consists of a group of atoms connected through non-rotatable bonds and (B) Rooted

tree representation of fragments from (A) where each vertex represents a rigid fragment and

edge a rotatable bond.

In principle, the simple rotations method is a global frame method whereas the other

two are local frame methods. To update specific atoms of a molecule, a local frame

method might outperform the simple rotations method. However, when updating an

entire conformation, there is no significant difference between both methods. In this

work, we have used the improved simple rotations method (Choi 2005).

According to the improved simple rotations method, a protein conformation or molecule

is divided into rigid fragments. A group of atoms connected through the non-rotatable

bonds is considered as a rigid fragment. By choosing one of the fragments as a root,

the entire conformation can be represented as a rooted tree (see figure 2.8). Each rotat-

able bond bi is assigned its parent and child atoms denoted as Pi and Qi respectively.

The rigid motion along the rotatable bonds is a transformation that rotates all the atoms

around a fixed origin while keeping distances between them preserved. Such a motion

can easily be expressed by a rotation followed by a translation.

The transformation to rotate a bond bi by angle Θi, which also rotates all descendants

of Qi by angle θi, is given by:

Mi = [Ri, Qi − Ri (Qi)] (2.37)
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Figure 2.9: (A) Path of rotation consists of child (rigid) fragmentsQ1, Q2 andQ3. (B) Descendant

fragments (atoms) of Q1 are transformed by M1. (C) Descendant atoms of Q2 are transformed

by M2 i.e. Q3 = M2 × M1(Q3)
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Figure 2.10: (A) Protein conformation and a fragment to be inserted into the former at location

marked with red color, (B) φ, ψ dihedral angles of the conformation and those of the fragment,

(C) dihedral angle difference between the fragment and the part of the conformation to be re-

placed with the former, (D) a rooted tree construction of the conformation (in accordance with

the figures 2.8 and 2.9) to apply rotations according to the dihedral angle difference calculated

in (C) and (E) the newly updated conformation after an insertion of the fragment.

where Ri is rotation applied to Qi after translating it to the origin.

Given a sequence of bonds b1, . . . , bi−1, bi for a path from atom Q1 to atom Qi and

a transformation Mk to make rotation about a bond bk by angle Θk, for k = 1, . . . , i,

new position of atom Qi, after rotating about bonds b1, . . . , bi−1 by angles Θ1, . . . ,Θi−1

respectively, is given by: Q′
i = Mi−1 × . . . × M2 × M1(Qi). For illustration, see figure

2.9. The individual rigid motions, for i ≥ 1, can be treated as a single accumulated rigid

motion Ni = Mi × . . . × M2 × M1 or Ni = [Si,Ti] where Si is a rotation and Ti is a

translation. Since there is a common rotation between Mi and Ni−1, therefore the only

required rigid motions for computations are Ni’s and Mi can be ignored. This gives us
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





N1 = M1 if i = 1

Ni = Mi × Ni−1 = [Ri × Si−1,Ri (Ti−1) +Qi − Ri (Qi)] if i > 1

= [Ri × Si−1,Ri (Ti−1 −Qi) +Qi (Qi)]







(2.38)

There are several representations for a rotation: Euler-angle, angle-axis, unit quater-

nion etc. In our implementation, we used quaternion representation of rotation. Unit

quaternion representation of a rotation is q = (q0, qx, qy, qz), where q0 = cos(θ/2) and

(qx, qy, qz) = sin(θ/2)v, θ is rotation angle, and v is the unit vector along rotation axis

(through the origin). After a rotation q, new position p′ of a point p ∈ R3 is given by

b′ = qbq̃, where q̃ = (q0,−qx,−qy,−qz) is the conjugate of q and b = (0, x, y, z) for any

b = (x, y, z) ∈ R3. Multiplication of quaternions gives us corresponding rotation matrix

Q

Q =





2(q2
0 + q2

x) − 1 2(qxqy + q0qz) 2(qxqz + q0qy)

2(qxqy + q0qz) 2(q2
0 + q2

y) − 1 2(qyqz + q0qx)

2(qxqz + q0qy) 2(qyqz + q0qx) 2(q2
0 + q2

z) − 1



 (2.39)

Using quaternions, the equation 2.38 becomes







N1 = M1 =
[

q1, Q1 − q1Q̊1q̃1

]

if i = 1

Ni = Mi × Ni−1 =
[

qisi−1, qi( ˚Ti−1 −Qi)q̃i +Qi

]

if i > 1







(2.40)

where qi and si are unit quaternions to represent Ri and Si respectively.

To predict structure of a target sequence, the simulation starts with a randomly gener-

ated structure at a high temperature (as shown in figures 2.4 and 2.11). Subsequently,

the temperature is gradually lowered to cool the system down. As the temperature of

the system is lowered, the search method makes two kinds of moves: biased, and un-

biased to maximize the probability which corresponds to the minimization of energy in

the traditional Monte Carlo simulations.

Biased Moves

Biased moves were introduced with an intention that the search method could spend

most of the computational time exploring likely regions of the conformational space

by avoiding very unlikely ones. In rigorous Monte Carlo, there is a way to correct

such a bias by making the acceptance criterion harder to accept moves in more prob-

able regions of the conformational space. One can correct this bias by making moves

correspondingly less likely to be accepted.
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Figure 2.11: Given a target sequence, protein structure prediction simulation starts with a ran-

dom conformation. Then, at each search (biased or unbiased) move step, the probabilities

p(xi−1) and p(xi) of old and proposed conformations, respectively, are calculated. If the ratio

of the probabilities Pi is greater than 1.0, the move step is accepted by retaining the new confor-

mation otherwise the acceptability is decided according to the acceptance criterion A.

Biased moves are made by randomly drawing a fragment from a fragment library

that was generated from the known protein structures in the PDB (see figure 2.12). The

drawn fragment is then inserted at a randomly chosen residue position of the current

conformation. The fragment insertion and conformation update procedure is shown

in the figure 2.10. The length of fragments used in biased moves ranges from 1 to 5

residues.
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Figure 2.12: (A) Fragments for unbiased moves are generated by drawing φ, ψ dihedral angles

at random over the interval (-180, 180), and (B) fragment library for biased moves consists of

about ∼ 2 million fragments (of length 1-5 residues) generated from the known proteins in the

PDB.

Statistically Unbiased Moves

Statistically unbiased moves are made by inserting random fragments at randomly cho-

sen residue positions of the current conformation. A random fragment is generated by

picking each pair of (φ, ψ) angles of the fragment randomly over the interval (-180, 180)

as shown in figure 2.12. A simulation run with unbiased moves may take more than

usual computational time to produce native-like conformations of target sequences.
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Results

Method performance was evaluated by predicting the three-dimensional structures of

carefully selected protein sequences. In the following, we have described (sequence)

test set, assessment measures and the results.

Table 2.1: Details of the targets used for the evaluation of prediction method

PDB CASP71 CASP7 No. of Seq 2 DSSP3

ID ID Category Residues (%) Helix(%) Beta6(%)

2GZV T288 TBM4 93 45 13 27

2H40 T309 FM5 76 28 7 26

2HD3 T306 TBM 95 20 9 44

2HE4 T340 TBM 90 58 14 36

2HF1 T348 FM 68 41 14 32

2HFV T349 TBM 75 30 26 16

2HFQ T353 FM 85 25 22 22

2HJJ T358 TBM 87 16 21 27

2IWN T359 TBM 97 44 14 40

2HJ1 T363 TBM 97 19 12 32

Target Sequences:

Protein sequences in the test set were selected from a sequence list released during 7th

biannual competition, also called 7th Community Wide Experiment on the Critical Assess-

ment of Techniques for Protein Structure Prediction (CASP), held in 2007 by the protein

structure prediction center (Center 2007). The CASP sequences, often called targets, are

the sequences of those proteins whose structure are either expected to be solved shortly

or have been solved but not made public yet.

Broadly speaking, there are two kinds of targets released by the CASP organizers:

1) the ones which have high similarity to the sequences of already known structures,

and 2) those which have very low or almost no similarity to the sequences of known

17th Community Wide Experiment on Critical Assessment of Techniques for Protein Structure Prediction
2Sequence identity to the known protein structures
3Database of secondary structure in proteins
4Template-based modeling
5Free modeling
6Beta sheet
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structures. Three-dimensional structures of the former and the latter are essentially

predicted by template-based and free modeling methods respectively.

Test set includes rather smaller targets with size of their sequences ranging from 68

to 97 residues. Sequence similarity of the targets to the known structures is between

16% and 58%. Three out of ten targets are purely free modeling targets whereas the

rest of the targets are supposedly candidates of template-based modeling. Natives of

all the targets have 7% to 26% helices and 16% to 40% beta sheets, according to DSSP

secondary structure assignment (Kabsch and Sander 1983). These details about the data

set are also given the table 2.1.

Prediction Parameters

Temperature, number and type of moves and the size of fragments for the moves are

some of the significant parameters. These parameters influence prediction results to a

great extent. The search method, simulated annealing Monte Carlo, always starts with

an initial randomly generated conformation at a very high temperature i.e. 20.0. The

unit of temperature is not given as it is not a real temperature but an arbitrary tem-

perature. In subsequent move steps, the system cools down slowly while temperature

is gradually lowered to ≈ 0.0. The speed of cooling process mostly depends on the

number of move steps. In our studies, the search method attempted 200, 000 to 500, 000

move steps in predicting structures of different targets. The choice between biased and

unbiased moves (discussed earlier in sections 2.3.3) severely affects the search in con-

formational space. These moves may use fragments of size ranging from 1 to 5 residues.

With different combinations of parameter values i.e. fragment size (1-mer, 2-mer, 3-

mer, 4-mer and 5-mer), varying number of move steps, and biased or unbiased moves,

several simulation runs with different initial random conformations were conducted for

all the targets. Finally, probabilistic scores of the generated conformations allowed us to

select appropriate models of the targets.

Model Assessment

Root mean square deviation (RMSD) score is often used to assess the quality of a model.

RMSD score is an average distance between the backbones of native and model struc-

tures. Our models at this point in time are not as compact as native structures mainly

due to the absence of medium to long-range interactions. This makes evaluations of a

model rather harder using RMSD score only. Therefore, we had to use of other quality

assessment measure such as the radius of gyration and plots between the dihedral an-

gles of native and model structures. The radius of gyration is an indicator of structure

compactness. It is defined as root mean square distance of backbone atoms of a protein

structure from the center of gravity.
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In the following, we describe some of the models and the parameters used to generate

these models.

2HFQ

Model for the target 2HFQ shown at the top left in the figure 2.13 was generated by a

prediction run attempting 200,000 totally unbiased move steps. These unbiased moves

used 3-mer fragments generated by picking their dihedral angles (φ, ψ) randomly. This

lead to a pretty sensible model structure with its dihedral angles closer to those of the

native structure as shown at the bottom right in the figure 2.13.

Table 2.2: The radii of gyration of random, model and native structures of the targets.

Target ID Radius of Gyration (Å)

PDB ID CASP ID Random1 Model Native

2GZV T288 423.5 805.9 369.5

2HD3 T306 532.2 1022.5 420.6

2HF1 T348 231.3 384.5 229.3

2HFQ T353 397.5 502.3 338.2

2HJ1 T363 541.6 447.6 336.3
⋆2HF12 T348 196.9 478.2 229.3

On secondary structure level, two helices and beta strands in 2HFQ model (colored

yellow and green respectively) were predicted quite well. The dihedral angle plot in the

figure 2.13 also demonstrates a convergence from an initially randomness conformation

to the one which is somewhat related to the native structure in terms of distribution of

its dihedral angles. However, 2HFQ model has very large radius of gyration of 502.3

Å which is far from perfect compaction of its native. The radius of gyration of native

structure is equal to 338.2 Å.

2HF1

2HF1 is one of the interesting targets because helix makes only 14% in its native struc-

ture and the rest is either beta sheets or turns.

The same set of parameters given above for target 2HF1 (i.e. 200,000 moves, 3-mer

unbiased fragments) came up with a model for the target 2HF1. Both model and native

1Randomly generated conformation of a target sequence.
2Simulation run involved biased moves.
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Figure 2.13: Target 2HFQ - Top right: native, top left: model, bottom left: superimposition of

native and model structures (colored magenta and cyan respectively), and bottom right: dihe-

dral angles (φ, ψ) of native and model. Radius of gyration: native = 338.2 Å, and model = 502.3

Å. Simulation parameters: 200,000 unbiased move steps using 3-residues fragments.



56 CHAPTER 2. MONTE CARLO WITH A PROBABILISTIC FUNCTION

of 2HF1 are shown at the top in figure 2.14. The overall organization of this model has

a weak similarity to that of the native structure but former is still not very compact.

The radii of gyration model and native are 384.5 Å and 229.3 Å respectively. Secondary

structures of model and native also looks similar except beta sheets colored with ma-

genta color. Likewise, the dihedral angles of model and native plotted at the bottom

right in figure 2.14 relate to each other.

It is worth mentioning that both of the targets (i.e. 2HFQ and 2HF1) whose predicted

models described above have been categorized as free modeling targets by the CASP7

organizers. For free modeling targets, it is very unlikely to produce their models using

contemporary homology or threading methods.

2HD3

2HD3 is a target with 20% sequence similarity to the known structures and helix making

only 9% of its native structure. These two characteristics make it an interesting target for

structure prediction. The predicted model for target 2HD3 (given at the top left of figure

2.15) involved 500,000 attempted moves by the search method. The rest of parameters

are same as those of targets 2HFQ and 2HF1.

In 2HD3 model, the prediction of a single helix and beta sheet strands (colored yel-

low, green and cyan respectively) looks quite accurate. Had the score function had

some terms for medium to long range interaction, the misplaced strands of this model

could have made a proper beta sheets. The extended nature of model structure also

contributed to an increased radius of gyration of 1022.5 Å which is almost twice of that

of native structure i.e. 420.6 Å.

2GZV

2GZV may be ranked as a target of an average difficulty. It has 45% sequence similarity

to the known structure. Helix and beta sheet are 13% and 27% respectively. 2GZV

model (given at the top left in figure 2.16) has all the strands of its beta sheets, and

helices correctly predicted. In this case also, secondary structures of model could not

collapse quite well. As a consequence, the radius of gyration of this model is higher

(i.e. 805.9 Å) than that of native (i.e. 369.5 Å). However, the dihedral angles of model

(given at bottom right in figure 2.16) calculated out of model (secondary structures) are

in agreement with those of native. For this prediction, the search method attempted

200,000 unbiased move steps with 1-mer fragments.
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Figure 2.14: Target 2HF1 - Top right: native, top left: model, bottom left: superimposition of na-

tive and model structures (colored magenta and cyan respectively), and bottom right: dihedral

angles (φ, ψ) of native and model. Radius of gyration: model = 384.5 Å, and native = 229.3 Å.

Simulation parameters: 200,000 unbiased move steps using 3-residues fragments.
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Figure 2.15: Target 2HD3 - Top right: native, top left: model, and bottom :dihedral angles (φ, ψ)

of native and model. Radius of gyration: model = 1022.5 Å, and native = 420.6 Å. Simulation

parameters: 500,000 unbiased move steps using 3-residues fragments.
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Figure 2.16: Target 2GZV - Top right: native, top left: model, bottom left: superimposition of

native and model structures (colored magenta and cyan respectively), and bottom right: dihe-

dral angles (φ, ψ) of native and model. Radius of gyration: model = 805.9 Å, and native = 369.5

Å. Simulation parameters: 200,000 unbiased move steps using 1-residue fragments for moves.
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2HJ1

Model for the target 2HJ1 (given at the top left in figure 2.17) is the most compact struc-

ture among all the models presented before. The radius of gyration for this model is

equal to 447.6 Å. Among secondary structures, only helix (colored yellow) and strands

of beta sheets (colored green and cyan) have correct predictions. Model’s dihedral an-

gles (given at the bottom right in figure 2.17) also show close relationship to those of na-

tive. This model’s prediction involves 200,000 attempted moves with 5-mer fragments

by the search method.

All models discussed earlier were generated through unbiased moves of the search

method’s move set. Biased moves showed very strong biased towards helices. Ev-

ery target whether it was made of helices or beta sheet turned into a helical structure.

Model of 2HF1 target show in figure 2.18 represents an example of such predictions

using biased moves.

In a typical prediction simulation, the probabilistic score of an evolving conformation

continuously improves while the search method makes biased/unbiased moves through

the conformational space. The final (model) conformation often has a probabilistic score

higher than 1.0 (as shown in probability versus annealing temperature plot at the bot-

tom in figures 2.17 and 2.18). The score is higher than 1.0 because the acceptance crite-

rion requires non-normalized probabilities of overlapping fragments of the conforma-

tions.
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Figure 2.17: Target 2HJ1 - Top right: native and top left: model, bottom left: probability of

model structure versus annealing temperature, and bottom right: and bottom right: dihedral

angles (φ, ψ) of native and model. Radius of gyration: model = 447.6 Å, and native = 336.3 Å.

Simulation parameters: 200,000 unbiased move steps using 5-residues fragments.
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Figure 2.18: Target 2HF1 - Top left: model, and top right: dihedral angles of native (shown at

top right of figure 2.14) and model, and bottom: probability of model structure versus annealing

temperature. Radius of gyration: model = 478.2 Å, and native = 229.3 Å. Simulation parameters:

200,000 biased move steps using 1-residue fragments.
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Discussions

In this part of work, an ab initio structure prediction method was set up. It relies on

a score function which is purely probabilistic and has nothing to do with the Boltz-

mann statistics. Previously, this score function has successfully been used for protein

sequence-structure and structure-structure alignment (Schenk et al. 2008) and protein

threading (Torda et al. 2004). Two main terms i.e. sequence and structure of the score

function are entirely dependent on probability distributions generated by Bayesian clas-

sification of protein fragments. The search method, simulated annealing Monte Carlo,

has an acceptance criterion entirely based on the conformational probabilities. Initially,

move set of the search method consisted of two kinds of moves: 1) biased and 2) un-

biased moves. The prediction models presented in the previous section demonstrate

that this purely probabilistic score function with simulated annealing Monte Carlo as a

search method has an ability to build three-dimensional structures of target sequences

from scratch. Although the generated models are not very close to their natives, but they

essentially demonstrate the strengths and the weaknesses of the score function and the

search method.

The most encouraging aspect which one learns from the given results is that the score

function can guide its search method towards states where conformations look like pro-

tein structures. Obviously, the generated models are far from being perfect but they

have good predictions about secondary structures. As the score function is built through

the classifications of N-mer protein fragments of the known structures in a set of classes.

In the found classes, each descriptor has its own distribution and the probability of an

unknown fragment is computed as a mixture of the probabilities of those descriptors

across all classes of the classification. Since each proposed conformation is considered

as a set of overlapping fragments by the score function, it has very good understanding

of the secondary structures through the local interactions of those fragments. The length

of constituent (overlapping) fragments depends upon the length of fragments used for

classification. Different classifications built with 4-mer, 5-mer and 6-mer fragments were

used to generated models for the targets. It was observed that the classifications built

with large fragments produce better models. It is worth mentioning that the compu-

tational cost to build a classification is considerably increased with an increase in the

length of the fragments.

One of the main weaknesses which one can notice from the generated models is lack

of compactness in their structures. Almost all models have extended conformations be-

cause the score function could not guide the search by distinguishing between compact

and less compact states of the system. This behavior was expected to some extent as the
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score function had no mechanism in it to figure out the hydrophobic and hydrophilic

features of the constituent fragments of a protein conformation. The other issue with

the score function has been the the method for (conformation) probability calculation

(see figure 2.5). In this method, probabilities of the adjacent fragments are too much

dependent on each other and the fragments suspectedly are over-influenced by the oc-

currence of their neighbor fragments. Therefore, there was a need to introduce some

new balance methods for probability calculations.

Both incorporation of sovlation feature into the score function (section 3.1) and the

implementation of new probability calculation methods (section 3.2.2) were achieved in

second part of this work described in chapter 3.

The search method, simulated annealing Monte Carlo, has equally important role in

producing the protein-like models of the targets (given in result section). It generates

these models by not taking the Boltzmann statistics into account and relying its accep-

tance criterion entirely on a ratio of the probabilities derived from probabilistic distribu-

tions of the selected descriptors (i.e. sequence and structure). As the score function does

not involve any kind of physics of protein structures directly, the search method has no

real temperature but an artificial scheme to control the smoothness of conformational

states. This scheme has an arbitrary temperature. For the generated models shown in

result section, the search method started with a high temperature of 20.0 and was grad-

ually lowered down to ≈ 0.0 while cooling the system down. The acceptance criterion is

designed in such a way that at high temperature, it has more even distribution of states

and at lower temperature it prefers more probable conformational states.

Both biased and unbiased moves in the search method’s move set were used to make

predictions against all the targets in the data set but only unbiased moves could produce

better prediction models whereas biased moves always end up into helical models (as

shown in figure 2.18). As the helical protein structures are more abundant among the

known protein structures than non-helical ones, this fact provides the reason of bias to-

wards helices (in the fragment library for biased moves and to some extent in Bayesian

classification as well). Therefore, any prediction which starts with an initial random

conformation is quickly pushed to fold into a helical structure by assigning relatively

higher probabilities to the frequently extracted helical fragments from the fragment li-

brary. This kind of behavior is evident from figure 2.18 (at the bottom) where proba-

bilistic score of a random conformation went up quickly after starting few moves by

the search method. The rate at which an initial random conformation gets folded into

a helical structure is also influenced by the size of fragment used by biased moves. The

moves through larger fragments lead more quickly to the helical conformation.

On the search method side, the second part of this work (described chapter 3) was
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set to accomplish two main objective: 1) removal of bias in the fragment library driven

moves to make them nearly ergodic, and 2) the extension of move set so that the con-

formational space could be explored more efficiently with an upgraded score function.





Chapter 3

Introducing Solvation and Hydrogen Bonding

Solvation

Water (solvent) plays an active role in folding, stability and function of protein structure

(Dill 1990, Sharp et al. 1991, Finney 1996, Bogan and Thorn 1998, Hummer et al. 2000,

Covalt et al. 2001, Cheung et al. 2002, Pratt and Pohorille 2002, Harano and Kinoshita

2004). In protein folding, water has a fundamental role in defining hydrophobic attrac-

tions (Kauzmann 1959, Dill 1990) and bringing the hydrophobic residues together (Levy

and Onuchic 2004). Patterns of hydrophobicity exhibited by the residues are given a

special consideration in the prediction of protein structures from their sequence data

(Eisenberg et al. 1984).

The effect of water molecules may be treated explicitly in a detailed microscopic

force field. However, in practice, such a treatment which involves interactions between

solvent and solute in a high dimensional configuration space cannot be realized due to

lack of required computational power (Tadashi et al. 2002, Jaramillo and Wodak 2005,

Sagui and Darden 1999). That is why, models have been developed which incorporate

the influence of solvent implicitly (Edelsbrunner and Koehl 2005). There are two basic

types of implicit solvent models:

1) empirical models in which solvation free energy is assumed as a sum of atom

or group contributions. Individual contributions are functions of either solvent

accessible surface area (Lee and Richards 1971, Eisenberg and McLachlan 1986,

Ooi et al. 1987, Wesson and Eisenberg 1992) or volume of a solvent shell (Gibson

and Scheraga 1967, Kang et al. 1988, Colonna-Cesari and Sander 1990). These

models incorporate only hydrophobic and electrostatic aspects of solvation.

2) continuum electrostatics based models where the solvent and solute interior

are defined by different dielectric constants and the solvation free energy is com-

puted by solving the Poisson-Boltzmann equations (Jaramillo and Wodak 2005).

The continuum electrostatic models also take into account screening effects of in-

teractions between charges.
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As the score functions for protein structure prediction consist of a combination of terms,

for instance terms for sequence, structure, etc., an additional solvation term may be

introduced to make better predictions about native-like structures by improving the

accuracy of medium to long range interactions. The protein molecules contain both

hydrophobic and hydrophilic parts residing at their surface and interior, respectively,

(Kauzmann 1959). The solvation terms are usually based on some knowledge-based

potential functions with main focus on non-polar effect, also referred as hydrophobic

effect, of water (Papoian et al. 2004, Levy and Onuchic 2006, Baker and Sali 2001).

Solvation in Bayesian Framework

In order to incorporate a solvation term into a probabilistic score function, the prelimi-

nary task one would have to do is to figure out a measure of hydrophobic effect. Such

a measure should be simple as well as statistically consistent with the existing terms of

the score function. The quantification of hydrophobic effect by the concept of solvent-

accessible surface (Lee and Richards 1971, Eisenberg and McLachlan 1986) shows that

the hydrophobic atoms (or residues) have lesser accessible area than hydrophilic atoms.

It has also been shown earlier that the number of residues observed in a sphere of cer-

tain radius around a reference residue is related to the exposure of latter to solvent (Melo

et al. 2002).

To introduce solvation in our probabilistic score function, we also wanted to know

whether a measure of solvation we are interested in could be used as an effective sta-

tistical descriptor in Bayesian framework. For that purpose, the solvation effect of 20

residues of protein was averaged out from the known protein structures in PDB. Each

of 20 residues in protein structures was put under solvation spheres of radii: 8, 10, 12

Å by fixing their centers at the Cβ atoms of residues and then counting the number of

neighbor Cβ atoms falling inside each solvation sphere. Figure 3.1 illustrates how sol-

vation spheres of different radii were used to count neighbor Cβ atoms of a residue. The

number of Cβ atoms (except one at the center of solvation sphere) were used to generate

histograms of each of 20 residue types (shown in figures 3.19, 3.20, 3.21 and 3.22).

Histograms of neighbor Cβ atoms of 20 residue types (shown in figures 3.19, 3.20,

3.21 and 3.22) apparently exhibit nearly normal distributions. Means and standard de-

viations over the count of neighbor Cβ atoms (within solvation spheres of radii: 8, 10,

and 12 Å) of all 20 residues are given in table 3.3. According to the statistics given in

table 3.3, hydrophilic residues: Asp, Glu, Asn, Pro, Gln, and Lys have the lowest mean

of neighbor Cβ count inside 10 Å solvation sphere i.e. 8-9 (also see figure 3.19). On the

other hand, mean of Cβ count (within 10 Å solvation sphere) for hydrophobic residues:

Ala, Cys, Phe, Leu, Ile, Met, Val, Trp, and Tyr was recorded to be 13-16 (histograms

given in figures 3.21 and 3.22). Similarly, Gly, Arg, Thr, Ser and His exhibited 10-12
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Figure 3.1: Solvation sphere: the solvation features of each residue of a fragment were taken into

account by counting the number of neighbor Cβ atoms around its own Cβ atom. To determine

a meaningful spread of neighborhood, neighbor Cβ atoms of each of 20 residues (of protein

structures) in the PDB were counted within distances of 8, 10 and 12 Å from their own Cβ atoms.

The solvation spheres, colored green, blue, and magenta, basically represent the cutoff distances

of 8, 10 and 12 Å, respectively. The histograms of the Cβ neighbor counts of 20 residues are

shown in the figures 3.19, 3.20, 3.21, and 3.22. For all 20 residues, means and standard deviations

over the count of neighbor Cβ atoms are given in table 3.3.
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(mean) Cβ neighbors in 10 Å solvation sphere (see histograms in figure 3.20).

Clearly, these findings provide an opportunity to incorporate solvation effect, purely

on statistical basis, into our probabilistic score function.

Data Collection

Again, the solvation enabled score function was trained over fragments of the known

protein structures present in the PDB (Berman et al. 2000) but this time, in addition to se-

quence and structure (φ, ψ), the commonly seen information of fragments also includes

their solvation features. Same 1.5×106 fragments generated from already known protein

structure in the PDB (and described in section 2.2.2) were used to build a new classifi-

cation but this time the attribute vectors of these fragments were assigned an additional

set of values representing the measurement of solvation features of the fragments. See

figure 3.2. The solvation measurement values of an attribute vector are the number of

neighboring Cβ atoms each residue of a fragment has within a solvation sphere of a

certain radius (e.g. 8, 10, 12 Å).

Model

Sequence and structural features of protein were modeled by multi-way discrete and

bivariate Gaussian distributions, respectively, as described in section 2.2.3. Solvation

statistics of 20 residue types (given in figures 3.19, 3.20, 3.21, and 3.22 and table 3.3)

generated under a solvation sphere of 10 Å radius suggest that solvation effect can be

modeled with simple Gaussian distributions of the form given in equation 2.6. In equa-

tion 2.6, xi, µ, and σ are the vectors consisting of solvation values of each residue of a

fragment, mean and standard deviation, respectively.

Re-Classification

A number of classification were built with varying parameters (e.g. different lengths

of overlapping fragments and solvation spheres). Though 10 Å solvation sphere seems

to be appropriate for measurement of solvation features, classifications with solvation

spheres of 8 and 12 Å radii were also built to conduct a comparative analysis of all of

them and to see whether the obtained results are in agreement with the preliminary

statistics (given in figures 3.19, 3.20, 3.21, and 3.22 and table 3.3).

The iterative steps (of class memberships and class parameters calculations) of EM

convergence to build these classification took longer than the one described in section

2.2.4 due to addition of an extra descriptor (about solvation features of protein frag-

ments) to the attribute vectors. The resulted probabilistic classifications (built by ob-

serving sequence, structural and solvation features of 1.5× 106 fragments of the known
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Figure 3.2: (A) A database of protein chains in which no two proteins have sequence identity

of more than 50%, (B) 1.5 × 106 overlapping fragments extracted from 50% sequence identity

protein chains and (C) attribute vectors of the fragments shown in (B). Each attribute vector

consists of sequence, structure (φ, ψ) and solvation information of the corresponding fragments.

The solvation descriptor consists of the number of neighbor Cβ atoms which each residue of a

fragment has within a solvation sphere of a certain radius (e.g. 10 Å).
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Figure 3.3: Bayesian classification of 1.5×106 protein fragments. The fragments are represented

by attribute vectors consisting of sequence, structure (φ, ψ) and solvation information of the

fragments. The classification finds a probabilistic description of the most probable set of classes.

protein structure) allow us to calculate the statistical estimate of structural and solvation

features of protein sequences whose structures have not been solved yet.

Hydrogen Bonding

Theory

Hydrogen bonds (Huggins 1971) are weaker but one of the most important inter-atomic

interactions. In protein folding, hydrogen bond patterns are thought to play an essential

role in the formation of secondary structure elements. An ideal hydrogen bond, both

theoretically and experimentally, is a bond consisting of four atoms: donor heavy atom

(N), the hydrogen (H), the acceptor lone electron pair (O) and the acceptor (C) lie in

the same line (McDonald and Thornton 1994) (as shown in figure 3.4).

In proteins, most of the hydrogen bonds are made between main-chain NH and
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CO. The bonds between main-chain and side chains are of least interest because in our

reduced representation of protein structure the side chains beyond Cβ atoms are not

entertained. In the following, we have described an electrostatic model that was used

in our code to calculate hydrogen bonds of protein conformations.

Electrostatic Model

Two pairs of hydrogen bonding atoms (C,O) and (N,H) have partial charges (+q1, -q1)

and (-q2, +q2), respectively. The electrostatic interaction energy of a bond between the

two pairs of atoms is calculated by

Ehb = q1q2

(

1

r(ON)
+

1

r(CH)
− 1

r(OH)
− 1

r(CN)

)

· f (3.1)

where r(AB) is an inter-atomic distance between atoms A and B, and f is a dimensional

factor to convert energy Ehb into kcal/mol and its value is 332. The values of partial

charges q1 and q2 are 0.42e and 0.20e, respectively. e is the unit electron charge.

O

H

N C
r

�

Figure 3.4: Geometry of hydrogen bond: an ideal hydrogen bond has distance r = 2.9 Å, θ = 0◦,

and electrostatic interaction energy Ehb = -3.0 kcal/mol. Generally, a bond with Ehb = -0.50

kcal/mol is considered a meaningful hydrogen bond. In simple hydrogen bonds, N-O distance

up to r = 5.2 Å and misalignment of up to θ = 63◦ are allowed.

As shown in figure 3.4, energy Ehb is determined by H-N-O angle (θ) and N-O dis-

tance (r). An ideal hydrogen bond with energy Ehb equal to -3.0 kcal/mol corresponds

to distance r = 2.9 Å and θ = 0◦. However, it is justifiable to keep the cutoff energy of

-0.50 kcal/mol (corresponding to θ below 63◦ and distance r equal to 2.5 Å or below 5.2

Å for 0◦ H-N-O alignment) to also take weaker or slightly misalign hydrogen bonds into

consideration (Lifson et al. 1979, Margulis et al. 2002).
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Sampling with Solvation enabled Score Function

Sampling in probabilistic space x after addition of dimensions of solvation is still per-

formed according to Monte Carlo scheme outlined earlier in section 2.3. The N random

moves xi = {i = 1, 2, · · · , N} in space x are accepted or rejected according to Metropolis

criteria (given in equation 2.28). The ratio of probabilities of conformations xi−1 and xi

is given by

Pi =
p (xi)

p (xi−1)
· exp

(

−∆Ehb

kBT

)

w (3.2)

where exp(−∆Ehb/kBT ) is the hydrogen bonding term, ∆Ehb is the hydrogen bond en-

ergy difference, kB is the Boltzmann constant and T is the annealing temperature, and

w is a weighting factor for hydrogen bonding.

Let F be the number of overlapping fragments of conformation xi (as shown in fig-

ure 2.5), and J be the number of classes generated by classification, then in equation 3.2

the probability p(xi) of conformation xi is given by

p (xi) =

(

F
∏

f=1

J
∑

j=1

αj|Fseq
f
pj

(

F struct,solv
f

)

)1/F

(3.3)

where αj|Fseq
f

is the weight of class j given the sequence F seq
f of fragment f , F struct,solv

f

represents structural (φ, ψ) and solvation (neighbor Cβ atoms) features of the fragment

f , and pj(F struct,solv
f ) is the probability of the structural arrangement of fragment f with

sequence F seq
f .

Filtering Hydrogen Bonds

According to the electrostatic model described in section 3.1.2, the straight forward ap-

proach to calculate the hydrogen bond energy of a protein conformation would involve

two steps: 1) evaluation of individual hydrogen bonds of each residue of conforma-

tion with the rest of residues, and 2) then sum of energies of valid hydrogen bonds.

This approach of hydrogen bond energy can possibly introduce structural clashes into

a conformation by the formation of lone or/and random hydrogen bonds between any

two residues of conformation. That is why, we had to take elementary hydrogen bond

patterns into account for the calculation of hydrogen bond energy of protein conforma-

tions.

Our approach to calculate hydrogen bond energy of a protein conformation works

in two stages: In first stage, elementary hydrogen bond patterns, n-turns and bridges,

are identified. An n-turn of type (i, i + n) is a simple hydrogen bond from CO(i) to

NH(i+n) where n = 3, 4, 5 (see figure 3.5). A parallel or anti-parallel bridge, depending
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Figure 3.5: n-turns, elementary hydrogen bond patterns. (A) 3-turn: hydrogen bond fromCO(i)

to NH(i + 3), (B) 4-turn: hydrogen bond from CO(i) to NH(i + 4), and (C) 5-turn: hydrogen

bond from CO(i) to NH(i+ 5).
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Figure 3.6: Bridges, elementary hydrogen bond patterns. (A) parallel bridge: between two

4-residues long non-overlapping parallel stretches, and (B) anti-parallel bridge: between two

4-residues long non-overlapping anti-parallel stretches.

upon basic patterns, is formed between two 3-residues long non-overlapping stretches

as shown in figure 3.6. In second stage, cooperative hydrogen bond patterns, helices,

β-ladders and β-sheets, were defined from the elementary patterns of the first stage. At

least two consecutive n-turns are required to define a minimal helix. The overlaps of

minimal helices are used to defined longer ones. A set of one or more bridges is used

to define a ladder whereas a sheet is defined by one or more ladders connected through

some shared residues (Kabsch and Sander 1983). The total hydrogen bond energy of a

conformation is the sum of energies of those hydrogen bonds which are part of helices

and sheets of that conformation.

Probabilities Calculation Methods

A straight forward method for the probability calculation of a conformation xi proposed

by the search method is to convert conformation xi into F = (R − Lf ) overlapping

fragments where Lf is the length of each fragment and R is the number of residues of

conformation xi, and then to calculate a sum of the probabilities of each fragment across

all the classes of probabilistic classification. The product of F sums gives an overall

probability of the conformation xi. We call this method ’crude’ probability calculation

method. Graphical illustration of this method is depicted in figures 2.5 and 3.7, whereas

its mathematical description is given in equation 3.3.
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Figure 3.7: (A) crude, (B) centered average, (C) average, and (D) simple.

After the extension of probabilistic space by addition of solvation dimensions to it,

the probability of the conformation xi calculated by ’crude’ method is often so differ-

ent from that of xi−1 that it is very unlikely to find native-like conformations of any

protein sequence. This difference is caused by the increased interdependence of neigh-

boring fragments. The insertion of a new fragment at some location of the existing

conformation does not only assigns neighbors to that fragment but the neighbors of

the (existing) neighboring fragments are also changed depending upon the shape of the

new fragment. To deal with this problem, new methods of probability calculation were

introduced: centered-average, average, and simple. While exploration of the conforma-

tional space (for a native-like conformations) by the search method, these methods keep

conformational probabilities (between any two consecutive steps) smooth.

In ’centered-average’ probability calculation method (shown in figure 3.7:B), the

probability of each of F = (R/Lf ) non-overlapping fragments of conformation xi is

calculated by taking an average of the probabilities of two overlapping fragments (gen-

erated earlier in the crude method) in forward direction, two overlapping fragments in

backward direction and the non-overlapping fragment itself. The product of centered-

average probabilities of F fragments gives an overall probability of a conformation.

’Average’ probability (figure 3.7:C) of conformation xi is calculated by dividing it

into F = (R/Lf ) non-overlapping fragments, and determining the probability of each

fragment as an average of the probabilities of overlapping fragments. The correspond-

ing overlapping fragments are generated according to the scheme described in crude

probability calculation method. The probability of a fragment j spanning from residue
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k to residue (k + Lf ) is an average of the probabilities of fragments from residue k to

residue (k + Lf ), from (k + 1) to ((k + 1) + Lf ), · · · , and fragment from residue (k + Lf )

to ((k+Lf )+Lf ). The product of average probabilities of F non-overlapping fragments

gives an overall probability of conformation xi.

Similarly, in ’simple’ probability calculation method (shown in 3.7:D), a conforma-

tion xi is divided into F = (R/Lf ) non-overlap fragments and the overall probability is

simply a product of the probabilities of F non-overlapping fragments alone.

Biased Moves: Liking the Unlikely

Biased search moves described in section 2.3.3 are not completely random because dihe-

dral angles to update conformations are derived from fragments drawn from a library

and that library is generated from fragments of the known protein structures in the

PDB. As a result, dihedral angles of those local structures, for instance helices, which

are more abundant in protein structures are preferred over those of less abundant ones.

In the following, this bias has been fixed to a great extent through a scheme which makes

the acceptance of moves made with the less abundant dihedral angles rather easier than

of those with abundant ones.

Dihedral angles (φ, ψ) of the known protein structures in the PDB can be used to

draw a plot (shown in figure 1.2). The superimposition of an n × n grid on such a plot

allows us to assign a box membership to each dihedral angle pair (φ, ψ) on the plot.

Each box of the grid contains certain number of dihedral angle pairs as its members.

Internally, we have a one-dimensional arrayM , consisting of n×n elements, where each

element of it corresponds to a box of the grid and its value to the number of members

(i.e. dihedral angles) in that box. Another one dimensional array P with the same

number of elements as those of M and each element of P contains probability of having

a dihedral angle pair (φ, ψ) in the corresponding grid box. An array A is used for the

storage of accumulative probabilities. First element of A has probability of first box of

the grid, second has sum of probabilities of first and second box of the grid, . . ., and last

element is sum of probabilities of all boxes of the grid (i.e. 1.0) and it corresponds to

n× nth box. Figure 3.8 illustrates above described steps.

To make a search move, a random number r, uniformly distributed over the interval

(0, 1), is generated and the index i of array A is propagated to the element where its

values is greater than r. The corresponding index j of array P tells about the relevant

box b[j] of the grid and the probability of fragments which belong to the box b. A frag-

ment fj is randomly selected from box b[j] to update dihedral angles of conformation

xi−1 with those of fragment fj . This gives us a new conformation xi.

To adjust the likelihood of acceptance, the probability of box b[j] given by p[j] is

multiplied to the usual probability of acceptance. Hence, the equation 3.2 becomes
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Figure 3.8: (A) Every dihedral (φ, ψ) angle pair of the existing protein structures in PDB has got

a position on φ, ψ plot. The superimposition of an n×n grid on the plot gives a box membership

to each angle pair, (B) part of grid to show that each box of the grids has a certain number of

angle pairs as its members, (C) M is a one-dimensional array of size N = n × n where each

element corresponds to a box of the grid and its value to the number of members that box has,

(D) P is another 1-D array of the same size as that of M and each element of it is probability of

having an angle pair in the corresponding grid box and (E) array A has accumulative probability

where the first element of it has the probability of the first box of the grid, the second has the

sum of the probabilities of the first and the second box of the grid, . . ., and the last element is the

sum of the probabilities of all the boxes of the grid (i.e. 1.0) and it corresponds to n× nth box.
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Pi =
p (xi)

p (xi−1)
· exp

(

−∆Ehb

kBT

)

w · p
(

φfj
, ψfj

)

(3.4)

where p(φfj
, ψfj

) is the probability of dihedral angles of fragment fj .

’Controlled’ moves

The challenges posed to the search method by increased degrees of freedom after in-

corporation of solvation effect into the score function led us to extend move set of the

search method in order to better explore solvation-rich probabilistic space for native-like

conformations of given targets.

When one inserts a (unbiased or biased) fragment into a conformation, maybe at the

inner of the conformation, it does not only change the dihedral angles of that part of

the conformation but adapts solvation features from its environment and also changes

the solvation features (i.e. number of neighbor Cβ atoms) of neighboring fragments.

Without solvation effect, the insertion of a fragment was used to transmit only a smooth

wave-like effect to adjacent fragments, basically because of overlapping character of

probability calculation method. The score function with solvation term additionally

causes a strong turbulent effect to probabilities of the neighboring fragments by chang-

ing their solvation features. Consequently, the overall probability of the conformation

is drastically changed from one move step to another as the simulation proceeds.

To make the effect of a fragment insertion smoother, a new type of search moves,

called ’controlled’ moves, was introduced. In these moves, the dihedral angles (φ, ψ) of

randomly selected residue position of a conformation are not updated through a biased

or unbiased fragment but each of them is rotated up to 3 − 5◦. Direction of rotation

(clockwise or anti-clockwise) is decided by drawing a random number. These moves

cause only a smooth and gradual change in probabilities of the neighboring fragments

of a conformation. Since ’controlled’ move steps are smaller, Monte Carlo simulation,

of course, has to run for a longer period of time to find the probable conformation of

given target sequence.
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Results

Target Sequences

In addition to the target data set used in chapter 2 (table 2.1), some targets from the 8th

biannual CASP competition (CASP8) held in 2008 were also included. Table 3.1 has all

the details of the targets selected from the CASP8 target list. These targets consist of both

template-based or/and free modeling and purely template-based modeling candidates.

Table 3.1: Details of the targets selected from the CASP8 target list.

PDB CASP8 CASP8 No. of Seq1 DSSP2

ID ID Category Residues (%) Helix(%) Beta3(%)

2K3I T437 TBM4 99 36 29 22

3D4R T397 FM5 153 46 04 45

3D3Q T416 FM 332 39 48 10

3DEE T443 FM/TBM 248 42 43 11

3DED T453 TBM 91 45 16 27

2K4N T460 FM 111 25 28 27

3DFD T465 FM 157 0 34 08

2K53 T473 TBM 68 33 61 02

2K5C T476 FM/TBM 108 25 31 12

2K4X T480 TBM 55 38 00 12

2K4V T482 FM 120 30 28 32

3DO9 T496 FM 178 31 48 13

3DOA T510 FM 228 24 26 26

3DUP T513 FM 292 32 28 29

Out of total fourteen CASP8 target, eight targets (3D4R, 3D3Q, 2K4N, 3DFD, 2K4V,

3DO9, 3DOA, and 3DUP) are purely free modeling candidates, four targets (2K3I, 3DED,

2K53, and 2K4X) are template-based modeling candidates, and two targets (3DEE, and

2K5C) are candidates for both template-based and free modeling. The size and sequence

similarity to the know structures of these targets ranges between 55-332 residues and 0-

46%, respectively. According to DSSP secondary structure assignment, native structures

1Sequence similarity to the known protein structures
2Database of secondary structure in proteins
3Beta sheets
4Template-based modeling
5Free modeling
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of these targets have 4-61% and 2-45% of helix and beta sheet, respectively.

In addition to CASP7 and CASP8 targets, data set also includes few non-CASP target

sequences (1AGT, 1FSV, 2HEP, 1ZMQ). These target sequences are rather smaller and

their native structures have both helices (e.g. 1FSV, 2HEP, 1AGT) and beta sheets (e.g.

1ZMQ, 1AGT).

Table 3.2: The radius of gyration of native and model and random structures.

Target ID Radius of Gyration (Å)

PDB ID CASP ID Random1 Model Native

2HF1 T348 252.3 221.0 229.3

2K4X T480 280.7 183.2 284.1

2K53 T473 351.9 243.9 253.6

2K4N 12 T460 1109.8 503.4 634.0

2K4N 2 T460 1010.5 511.4 634.0

2K5C 1 T476 634.7 448.0 375.8

2K5C 2 T476 889.5 612.1 375.8

2K5C 3 T476 1015.2 515.3 375.8

3DFD T465 1815.7 800.5 651.8

1FSV NA 91.6 69.9 75.4

2HEP NA 227.7 129.1 142.2

1AGT NA 257.1 109.1 102.2

Predictions: Non-CASP Targets

1FSV

1FSV is a relatively smaller non-free modeling target. One may call it as an easy target.

Model for this target (shown at the top left of figure 3.9) is pretty close to its native

structure with root mean square distance (RMSD) score equal to 3.514 Å. The radii

of gyration for model and native structure were calculated to be 69.9 Å and 75.4 Å,

respectively. See table 3.2) for radii of gyration. Model ’s lower radius of gyration is an

indication of the over-compactness of its structure.

To generate this model, the search method had to attempt 200,000 biased moves with

3-mer fragments. Hydrogen bond term of the score function remained enabled during

this prediction.

1Randomly generated conformation of a target sequence.
2Model 1
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2HEP

Target 2HEP has a helical hairpin like native structure (as show at the top right in figure

3.10). Model for target 2HEP (given at the top left in figure 3.10) has two of its helices

predicted and placed correctly except a little loop connecting them. The score function

’s tendency toward over-compactness possibly resulted into the overreaching of the two

helices and the misplacement of loop between them. RMSD score calculated between

model and native structures is equal to 4.04 Å. The radii of gyration of model and native

were calculated to be 129.1 Å and 142.2 Å, respectively. Lower value of the radius of

gyration indicates over-compaction of 2HEP model.

For 2HEP model, the search method had to make 500,000 attempted move steps

using 3-mer residues fragments while keeping the hydrogen bond term of the score

function switched on.

1AGT

The two non-CASP targets presented above are mainly helical in their structures. 1AGT

is an interesting target because its structure consists of both helix and beta sheets. Model

for 1AGT (shown at the top left in figure 3.11) has prediction of beta sheets at right place

but these beta sheets are parallel than anti-parallel. The helix could not be prediction

except one turn of it. The formation of beta sheets is significant when the score function

does not have very precise term for long-range interactions. Radius gyration of 1AGT

model (i.e. 109.1 Å) is comparable to that of native (i.e. 102.2 Å). The structural align-

ment of model and native, and dihedral angle plot are shown at the bottom in figure

3.11.

The prediction of 1AGT model involves rather longer simulation run of 1,500,000

attempted move steps by using 1-mer fragments. Hydrogen bond term of the score

function was kept enabled during this prediction.
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Figure 3.9: Target 1FSV - top left: model, top right: native, bottom left: superimposition of

native and model structures (colored magenta and cyan, respectively) with rmsd = 3.514 Å, and

bottom right: dihedral angles of native and model. Radius of gyration: model = 69.9 Å, and

native = 75.4 Å. Simulation parameters: 200,000 biased move steps with 3-mer fragments, and

hydrogen bonding term of the score function was kept enabled.
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Figure 3.10: Target 2HEP - top left: model, top right: native, bottom left: superimposition of

native and model structures (colored magenta and cyan, respectively) with rmsd = 4.04 Å, and

bottom right: dihedral angles of native and model. Radius of gyration: model = 129.1 Å, native

= 142.2 Å. Simulation parameters: 500000 biased move steps using 3-residues fragments, and

hydrogen bonding term of the score function enabled.
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Figure 3.11: Target 1AGT - top left: model, top right: native, bottom left: superimposition of

native and model structures (colored magenta and cyan, respectively), and bottom right: dihe-

dral angles of native and model. Radius of gyration: model = 109.1 Å, and native = 102.2 Å.

Simulation parameters: 1500000 biased move steps using 1-residue fragments, and hydrogen

bonding term of the score function enabled.
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With few predictions on different targets, it was learned that the search with the solva-

tion enabled score function is more effective when 1-mer fragments are used to make

the moves than large fragments. This effect is a direct consequence of an increase in the

degrees of freedom due to the incorporation of an additional descriptor of solvation. On

insertion of a 3-mer or larger fragments, there is a big change in the overall probability of

the conformation due to change in the probabilities of the neighboring fragments. This

change in the probabilities of the neighboring fragments occurs because of the dramatic

change in their sovlation features (depending upon the shape of inserted fragment).

That is why, 1-mer fragments were preferred to produce the following results.

In the following, we describe some models of relatively hard targets. Basically, the

search method used biased and ’controlled’ moves (with 1-mer fragments) to generate

these models and the score function did not take any role of hydrogen bond term into

account.

Predictions: CASP Targets

2HF1

2HF1 is a CASP7 free modeling target. Model predicted for this target (shown at the

top left of figure 3.12) demonstrates the real strengths and weaknesses of the prediction

method. In fact, it has right predictions of a little helical part and of beta sheets. Not

only that but the secondary structures roughly have positioned themselves at the places

where they should be (as show by superimposition of native and model structures at the

bottom right in figure 3.12). The radii of gyration for model and native structures are

221.0 Å and 229.3 Å, respectively. Model reflects a lack of precise long-range interactions

between the strands of beta sheets.

The prediction of 2HF1 model involved 500,000 attempted move steps (with 1-mer frag-

ments) by the search method.

The following results are different from the ones described earlier in terms of move

set of the search method to find the probable 3D conformation of a model. The search

method made use of so called ’controlled’ moves to generated these models. Each of

the simulation runs to generate these models made 500,000 attempted moves.

2K4X

2K4X is a template-based modeling target from CASP8 target list. Its native structure

(given at the top right in figure 3.13) has 0% helix and 12% beta sheet. Model for 2K4X
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Figure 3.12: Target 2HF1 - top left: model, top right: native, bottom left: superimposition of na-

tive and model structures (colored magenta and cyan, respectively), and bottom right: dihedral

angles of native and model. Radius of gyration: model = 221.0 Å, and native = 229.3 Å. Simu-

lation parameters: 500000 biased move steps using 1-residue fragments, and hydrogen bonding

term of the score function was kept disabled.
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(given at the top left in figure 3.13) shows right prediction of a substantial part (colored

green in both native and model at the top in figure 3.13) of it. Particularly, the two beta

sheets roughly positioned themselves at the right place. However, an elongated strand

(colored brown) at one end of 2K4X turned to be a helix in model structure. That is why,

model looks over-compact in terms of the radius of gyration of model (i.e. 183.2 Å).

Whereas the radius of gyration of native structure is 284.1 Å.

Figure 3.13: Target 2K4X - top left: model, top right: native, bottom left: superimposition of

native and model structures (colored magenta and cyan), and bottom right: probabilistic score

versus annealing temperature. Radius of gyration: model = 183.2 Å, and native = 284.1 Å.

Simulation parameters: 500000 ’controlled’ move steps, and hydrogen bonding term of the score

function disabled.
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2K53

is a template-based modeling target from the CASP8 target list. Its native structure

(given at the top right in figure 3.14) has one long and 3 rather short helices.

2K53 model (given at the top left in figure 3.14) has got good prediction and placement

of the longer helix (colored green). Among other three helices, one at the top of other

helices (two making a ’V’ like shape) is roughly close to the one in native structure.

Whereas the prediction of helices which make a ’V’ like shape went wrong.

The radii of gyration of model and native structures are 243.9 Å, and 253.6 Å, respec-

tively.

2K4N

2K4N is CASP8 free modeling target consisting of 111 residues. Native structure of

2K4N has 28% helix and 27% beta sheet (according to DSSP secondary structure as-

signment method). Figure 3.15 (at top) shows two models for 2K4N. Both models have

correct prediction of a helix lying at their right. Among beta sheets, model 1 (at the top

left in figure 3.15) has good prediction of beta sheet lying below two helices whereas

model 2 (at the top right in figure 3.15) went entirely wrong in prediction of this beta

sheet. However, model 2 has one of the helices (hanging down on the left) predicted

correctly but it is rather misplaced. The two long beta strands (colored brown) in both

models went totally wrong.

The dihedral angle plot (at the top in figure 3.17) shows that the angles of both models

are somewhat converged to helix and beta sheet regions. The radii of gyration of model

1, model 2 and native were calculated to be 503.4 Å, 511.4 Å, and 634.0 Å, respectively.

2K5C

2K5C is a CASP8 free modeling target of size 108 residues. Its native structure (at the

bottom right in figure 3.16) has 31% helix and 12% beta sheet.

Figure 3.16 shows three models for 2K5C with some interesting predictions of various

parts of it. Two of the models at the left column in figure 3.16 have close prediction of a

helix and a preceding strand (colored brown) at one end. There is a similar helix (colored

cyan) succeeded by another strand (colored dark red) at the other end of structures. In

this substructure, models at the left column of figure 3.16 have correct prediction of

strand whereas model at the top right went entirely wrong. Models at the top right and

the bottom left in figure 3.16 could predict correctly but this helix is forward shifted in

third model at top left in figure 3.16. Among rest of the structure, a helix (colored green)

has right answer in models on the left column in figure 3.16. Some little perturbations
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Figure 3.14: Target 2K53 - top left: model, top right: native, and bottom: superimposition of

native and model structures (colored magenta and cyan). Radius of gyration: model = 243.9

Å, and native = 253.6 Å. Simulation parameters: 500,000 ’controlled’ move steps, and hydrogen

bonding term of the score function was kept disabled.
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Figure 3.15: Target 2K4N - top left: model 1, top right: model 2, and bottom: native. Radius

of gyration: model1 = 503.4 Å, model2 = 511.4 Å, and native = 634.0 Å. Simulation parameters:

500,000 ’controlled’ move steps, and hydrogen bonding term of the score function was kept

disabled.
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would have led to proper beta sheets (colored cyan and green) in models at the top right

and the bottom left in figure 3.16.

Dihedral angle plot of three models and native are given at the bottom in figure 3.17.

The radii of gyration of model 1 (top left in figure 3.16), model 2 (top right in figure

3.16), model 3 (bottom left in figure 3.16), and native (bottom right in figure 3.16) were

calculated to be 448.0 Å, 612.1 Å, 515.3 Å, and 375.8 Å, respectively.

Figure 3.16: Target 2K5C - top left: model 1, top right: model 2, and bottom left: model 3, and

bottom right: native. Radius of gyration: model1 = 448.0 Å, model2 = 612.1 Å, model3 = 515.3

Å, and native = 375.8 Å. Simulation parameters: 500000 ’controlled’ move steps, and hydrogen

bonding term disabled.
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Figure 3.17: Top: dihedral angles of target 2K4N and two of its models (shown in 3.15), and

bottom: dihedral angles of target 2K5C and three of its models (shown in 3.16).
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3DFD

3DFD is rather large (157-residues) free modeling target from CASP8 target list. Helix

and beta sheet make 34% and 8% of its native structure. No known structure exists with

a sequence slightly similar to that of 3DFD. This makes it a good test for any ab initio

structure prediction method.

Model for 3DFD (given at the top left in figure 3.18) shows that a considerable part (col-

ored cyan) making helices at the one end was predicted correctly. Beta sheets (colored

dark red) are messed up as it has been so due to inability of the score function to recog-

nize long-range interactions precisely.

Dihedral angle plot (given at the bottom in figure 3.18) shows a shift in model angles

to the upper right region out of proportion. These shifted angles might be of broken

beta sheets. The radii of gyration of 3DFD model and the native were calculated to be

800.5 Å and 651 Å, respectively. The different in the radii of gyration clearly reflects

non-compactness of model.

For all the above presented results, the score function used probabilistic classifications

built either on 5- or 6-mer fragments. Solvation descriptor for these classifications was

calculated by using 10 Å solvation sphere.The classifications with 3, 4 and 7 fragments

and 8 or 12 Å solvation spheres could not produce better results.
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Figure 3.18: Target 3DFD - top left: model, top right: native, and bottom: dihedral angles of na-

tive and model. Radius of gyration: model = 800.5 Å, and native = 651 Å. Simulation parameters:

500,000 ’controlled’ move steps, and hydrogen bonding term disabled.
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Table 3.3: From known protein structures in PDB, means and standard deviations of number of

neighbor Cβ atoms calculated within 8 Å, 10 Å and 12 Å radii around Cβ atoms of each of 20

residue types (see figure 3.1).

Residue 8 Å SS1 10 Å SS 12 Å SS

Mean Std. Dev. 2 Mean Std. Dev. Mean Std. Dev.

Ala 6 3 13 7 24 9

Arg 5 3 10 5 20 8

Asn 4 3 10 6 19 10

Asp 4 3 9 5 18 9

Cys 7 3 16 5 27 9

Gln 4 3 10 5 19 9

Glu 4 3 8 5 17 8

Gly 5 4 11 7 21 11

His 5 3 12 6 22 10

Ile 7 3 15 5 28 10

Leu 7 3 14 5 27 9

Lys 4 2 9 5 17 9

Met 6 3 14 6 26 10

Phe 7 3 15 5 27 9

Pro 5 3 10 6 19 10

Ser 5 3 11 6 20 11

Thr 5 3 12 6 22 10

Trp 6 3 14 5 26 9

Tyr 6 3 14 5 25 9

Val 7 3 15 6 28 10

1Solvation sphere
2Standard deviation
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Figure 3.19: Histograms representing the count of neighbor Cβ atoms of the residues: Asp, Glu,

Asn, Pro, Gln, and Lys in PDB. Red, green and blue colored histograms represent the count of

neighboring Cβ atoms within radii of 8, 10 and 12 Å, respectively.
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Figure 3.20: Histograms representing the count of neighbor Cβ atoms of the residues: Arg, Thr,

Ser, and His in PDB. Red, green and blue colored histograms represent the count of neighboring

Cβ atoms within radii of 8, 10 and 12 Å, respectively.
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Figure 3.21: Histograms representing the count of neighbor Cβ atoms of the residues: Gly, Ala,

Cys, Phe, Leu, and Ile in PDB. Red, green and blue colored histograms represent the count of

neighboring Cβ atoms within radii of 8, 10 and 12, Å respectively.
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Figure 3.22: Histograms representing the count of neighbor Cβ atoms of the residues: Met, Val,

Trp, and Try in PDB. Red, green and blue colored histograms represent the count of neighboring

Cβ atoms within radii of 8, 10 and 12 Å, respectively.
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Discussions

In general, the idea of introducing solvation effect into the score function has been help-

ful in the improvement of predictions. It did not only improved the compaction of mod-

els (see table 3.2 and 2.2) but also had a positive effect on the accuracy of the predictions

as a whole. The extended score function with an improved search method could pro-

duce native-like structures for few targets, for example, models for targets like 1FSV,

2HEP and 2HF1. On the other hand, the compactness of models for smaller targets was

improved a lot, for example, models for targets 1FSV, 2HEP, and 2K53. However, mod-

els for the large targets have been relatively less compact probably because of a very

much need but still missing term in the score function for precise long-range interac-

tions.

Model for 2HF1 target (see figure 3.12) perhaps states the true story of how much

progress our method has made so far and what possible improvements could be made

in the future. 2HF1 model (and most of the other models presented in results section)

were generated by using classifications built with 6-mer fragments. In addition to cor-

rect predictions of secondary structures, 2HF1 model has a compact 3D structure with

an overall arrangement of secondary structures similar to that of its native structure.

What is missing is a nice formation of beta sheets. This could have been achieved, if the

score function precisely knew about the long-range interactions between loosely lying

strands of beta sheet. One may ask why the overall arrangement of secondary struc-

tures is not so good in models of rather large size. The reason is our sovlation term

can consider medium-range interactions (in smaller structure) to some extent but the

real long-range interactions between the distant parts of the large structures are beyond

its scope. That ’s why, models of the large targets are not well organized and lack in

compaction too.

As a short term solution to long-range interactions, an ad hoc hydrogen bonding term

based on an electrostatic model (equation 3.2) was introduced. Obviously, this term was

not consistent with other (probabilistic) terms of the score function. The main objective

of hydrogen bond term was to improve the formation of beta sheets and compactness

further by taking hydrogen bonding networks into account. Unfortunately, this effort

has not been very successful in achieving the set goal. There are two reasons of this

failure: 1) hydrogen bonding term was not consistent with the rest of three terms in

the score function (i.e. sequence, structure (φ, ψ), and solvation), and 2) the difficulty

to determinate an appropriate weight factor w (see equation 3.2) for hydrogen bonding

term.
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These findings clearly demonstrate the role which a score function consistent hy-

drogen bonding term can play to make nice predictions. In future, one would need to

introduce such a term which should be statistical in nature and acceptable to the exist-

ing terms of the score function. This could be achieved through a descriptor based on

hydrogen bonding patterns of the fragments to build a Bayesian classification. Such a

descriptor can easily be modeled by one of the existing models in the Bayesian frame-

work.

To address the weakness and meet the challenges posed by the upgraded score function

(after introduction of solvation term), the search method was extended by: 1) adjust-

ment of the bias in the library-driven moves to make it nearly ergodic, 2) introduction

of a third type of moves, called ’controlled’ moves, to the move set, and implementation

of new methods for conformation probability calculation.

As biased moves had a bias towards helices (as demonstrated and described in sec-

tions 2.4 and 2.3.3 and figure 2.18 of chapter 2), this bias was fixed through a scheme

(given in section 3.2.3) to make it nearly ergodic. The new nearly ergodic (formerly

called biased) moves made with 3-mer fragments seemingly worked better particularly

for prediction of small targets, for example, 1FSV and 2HEP. However, in case of large

targets, 3-mer or larger fragments were not found to be suitable for these moves even

after making them nearly ergodic. This reason is insertion of a such fragment into a

large protein conformation does not only replace the dihedral angles and assigns new

neighbors (solvation) to that fragment but it also changes the neighbors (solvation) of

the neighboring fragments. This multi-dimensional effect causes huge turbulence in

the probabilities of the comprising fragments of a protein conformation. On the other

hand, the conformation changes caused by the moves made through short fragments

are smoother and easier to deal with by the score function. In addition to solvation, the

other reason in this extra-ordinary change in the probabilities on insertion of fragments

is the way probabilities of conformations are calculated. Every proposed conformation

is considered as a set of overlapping fragments. This makes the probability of a frag-

ment too dependent on its preceding and succeeding fragments. This was addressed by

implementing three other methods for calculation of probabilities. In fact, these meth-

ods lessen the dependence of the constituent fragments of a conformation.

Due to similar reasons mentioned in case of nearly ergodic (formerly biased) moves,

the unbiased moves made with large fragments do not produce better prediction mod-

els. Even with 1-mer fragments it is hard for the score function to find a probable con-

formation of any target. The property of complete randomness in unbiased moves leads

to strange inconsistent shifts in dihedral angles and consequently to upset in neighbors

(solvation) of comprising fragments of a conformation.
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On realization of the limitations in biased and unbiased moves, a new type of moves,

called ’controlled’ move, was introduced to the move set of the search method. The

main idea behind these moves was to keep probabilistic changes smooth during confor-

mational search. It was achieved by putting some control over the rotations caused by

the change(s) in the dihedral angles. Models presented in section 3.3.3 show that these

moves have had positive effect on the predictions.

In future, one can think of two improvements in the search method:

1. Biased moves should not always rely on drawing of N-mer fragments from a li-

brary randomly and inserting it at random locations in conformations. Such a

scheme actually wastes its time by trying most of the time irrelevant fragments

against some sequence fragment/segment of the conformation. It would be nice

to save search time by selecting homologous fragments and build a target specific

fragment library. Once we have such a library, the search method could make

moves with more probable fragments.

2. Having built a target-specific library of N-mer homologous fragments where N >

1, the next challenge could be how to utilize these fragments during conforma-

tional search by keeping the changes in probabilities smooth and easy for the score

function. One possibility could be to draw a homologous fragment randomly and

update the dihedral angles of the location of insertion through ’controlled’ move

steps. That means, if the difference in the dihedral angles of the fragment and

those of the conformation is (40◦,−40◦), this difference should be filled in by mak-

ing 10 ’controlled’ move steps. If a ’controlled’ move step is rejected in between,

either that rejected move should be retained only or all the preceding (accepted)

moves (related to the drawn fragment) should also be retained.



Chapter 4

Summary - Zusammenfassung

Protein structure prediction has been the most important scientific problem in the field

of computational biology to fill the ever widening gap between protein sequence and

structure databases. Experimental methods for protein structure determination are slow

and expensive. Only 1% structures of the available protein sequences have been solved

experimentally so far. That is why, computational methods to predict three-dimensional

structures of protein sequences are absolutely inevitable. As comparative modeling

methods rely on the known protein structures, the structure prediction of protein se-

quences with low sequence similarity to the known protein structures, also called free

modeling targets, is difficult for these methods. Ab initio structure prediction methods

are specifically designed to build the structures of free modeling targets. Like any ab ini-

tio structure prediction method, there are two aspects of our method: 1) score function,

and 2) search method. Although Monte Carlo is frequently used as a search method

by the prediction methods, we have uniquely used it with a purely probabilistic score

function making no use of Boltzmann statistics.

In first part of this work (described in chapter 2), probabilistic score function based on

sequence to structure compatibility functions (Schenk et al. 2008) (from our previous

work for protein threading (Torda et al. 2004)) was initially used for ab initio structure

prediction. The score function consists of a sequence and a structure term modeled

by multi-way Bernoulli and bivariate Gaussian distributions respectively. A Bayesian

classification of protein fragments (generated from the known protein structures in the

Protein Data Bank (PDB)) was built to have the most probable set of classes in the ob-

served data. The parameterized probabilistic descriptions of the found set of classes

allows us to calculate the probabilities of the proposed conformations of any target se-

quence. Unlike Metropolis Monte Carlo, the acceptance criterion is directly based on the

ratio of conformational probabilities. The working of the score function also involves an

interplay between Cartesian and internal coordinates of protein conformations. Since

we do not have a Boltzmann distribution of conformational states, the smoothness of

the distribution is controlled through an artificial scheme in our simulated annealing

Monte Carlo. There is an arbitrary temperature which ensures that the system moves
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towards more probable states at lower temperature and has more even distribution of

the states at higher temperature. While the temperature is lowered to cool the system

down, the search method makes either biased moves by drawing a fragment from a

fragment library or unbiased moves by picking each of the two dihedral values over

the interval (−π, π) to get to the probable state of the system.

The benchmark results of first part demonstrate: 1) the unusual coupling of Monte

Carlo with an entirely and purely probabilistic score function works and it can generate

protein-like conformations, 2) secondary structures of the target sequences are often

predicted at the right positions, 3) the generated models are not properly compact due

to the absence of solvation term and the long-range interactions in the score function,

and 4) biased moves always lead to straight helical structures for most of the targets. In

short, the performance of the method developed this far was up to the expectations and

good enough to persuade us to improve it further by: 1) addition of solvation and the

long-range interactions to the score function, and 2) extension of move set in order to

better explore the conformational space.

In second part of the work (described in chapter 3), the score function was extended by

incorporating a solvation term. For this term, a solvation sphere was used to measure

the effect of solvation. To calculate solvation effect of a residue, solvation sphere of a cer-

tain radius, for example 10 Å, was fixed on that residue and the neighboring Cβ atoms

within the sphere were calculated. A re-classification of protein fragments was per-

formed to get a new set of classes and their probability distribution parameters. During

re-classification, the third term of solvation was modeled by simple normal distribu-

tion. A hydrogen bonding effect was temporarily introduced through an electrostatic

model. This hydrogen bonding effect in the score function is limited by a weight factor

w. To coup with the increased degrees of freedom after introduction of solvation, the

move set was also improved through bias correction of the biased moves and addition

of ’controlled’ moves. Furthermore, new methods for the calculation of conformational

probability: average, center average, and simple were implemented to reduce very high

interdependency of the constituent fragments of a conformation.

The benchmark results with CASP7, CASP8 and non-CASP targets show a consider-

able improvement over the solvation-less score function in first part of the work. Models

generated for easy non-CASP targets are too close to their native structures, e.g. RMSD

of 1FSV native and its model is 3.5 Å. Models of hard and slightly large CASP7 and

CASP8 targets (generated without inconsistent hydrogen bonding) are rather compact

and sometimes impressive in secondary structure predictions. In future, one would

need to incorporate a (probabilistic) hydrogen bonding term consistent with the score

function. Such term could help in packing and refinement of models by taking their
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long-range interactions into account.
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Proteinstrukturvorhersage ist seit einiger Zeit das wichtigste Problem im Bereich der

Bioinformatik da sich die Schere zwischen verfuegbaren Sequenz-, und Strukturinfor-

mationen immer weiter oeffnet. Experimentelle Methoden zur Strukturbestimmung

von Proteinen sind zeitaufwendig und teuer. Fuer nur 1Proteinsequenzen sind die

Strukturen bekannt. Um das zu aendern sind rechnergestuetzte Methoden zur Vorher-

sage der dreidimensionalen Struktur von Proteinen mit bekannter Sequenz unvermeid-

bar. Weil ”Comparative Modelling” Ansaetze von bekannten Strukturen mit aehnlicher

Sequenz abhaengig sind ist dieses Vorgehen bei Sequenzen ohne bekannte Strukturen

von verwandten Proteinen (sogennannte Free Modeling Targets) nicht praktikabel. Ab-

initio Vorhersagemethoden wurden speziell fuer diese Free Modeling Targets entwick-

elt. Wie alle ab-initio Methoden besteht unser Ansatz aus zwei Teilen: 1.) einer Bewer-

tungsfunktion, und 2.) einer Suchmethode. Obwohl Monte Carlo haeufig als Suchfunk-

tion in der Strukturvorhersage verwendet wird hat unser Ansatz die Besonderheit eine

rein probabilistische Bewertungsfunktion zu verwenden die nicht auf der Boltzmann-

Statistik aufbaut.

Im ersten Teil dieser Arbeit (Kapitel 2) wurde zuerst eine probabilistische Bewertungs-

funktion basierend auf Sequenz-Strukturkompatibilitaet (Schenk et al. 2008)(aus un-

serer Protein Threading Methode(Torda et al. 2004)) fuer ab-initio Vorhersagen ver-

wendet. Die Bewertungsfunktion besteht aus Sequenz- und Strukturtermen die als

Bernoulli- bzw. Gaussverteilungen modelliert wurden. Eine Bayes’sche Klassifizierung

von Proteinfragmenten von bekannten Strukturen aus der Protein-Datenbank (PDB)

wurde erstellt um die wahrscheinlichsten Klassen in dem Datensatz zu finden. Die

probabilistische Beschreibung dieser Klasse erlaubt es uns Wahrscheinlichkeiten von

vorgeschlagenen Konformationen fuer eine gegebene Sequenz zu berechnen. Im Gegen-

satz zu Metropolis Monte Carlo verwendet unser Akzeptanzkriterium das Verhaelt-

nis von Konformationswahrscheinlichkeiten direkt. Die Bewertungsfunktion haengt

ausserdem von dem Wechselspiel zwischen kartesischen und internen Koordinaten der

Proteinkonformationen ab. Weil wir keine Boltzmannverteilung der Konformationen

zur Verfuegung haben, wird die Glaette der Verteilung durch eine kuenstliche Funktion

im ”Simulated Annealing Monte Carlo” gesteuert. Eine Temperaturvariable zwingt das

System bei niedrigen Werten in wahrscheinlichere Zustaende, und deckt bei hoeheren

Werten eine grosse Anzahl von Zustaenden ab. Waehrend das System abgekuehlt wird

macht die Suchmethode entweder voreingenommene Schritte indem ein Fragment aus

einer Bibliothek ausgewaehlt wird, oder unvoreingenommene Schritte indem die bei-

den Torsionswinkel (phi und psi) zufaellig aus dem Intervall (-pi, pi) gewaehlt werden.

Die Ergebnisse des ersten Teils zeigen dass 1.) die ungewoehnliche Verbindung von

Monte Carlo mit einer ausschliesslich probabilistischen Bewertungsfunktion funktion-
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iert und proteinaehnliche Konformationen generiert, 2.) die Sekundaerstruktur haeu-

fig korrekt vorhergesagt wird, 3. die erzeugten Modelle nicht kompakt genug sind da

ein Loesungsmittelterm und ein Term fuer langereichweitige Interaktionen in der Bew-

ertungsfunktion fehlen, und dass voreingenommene Suchschritte bei den meisten Se-

quenzen immer zu geraden helikalen Strukturen fuehren. In der Summe hat die Meth-

ode die Erwartungen erfuellt und weitere Verbesserungen aufgezeigt: 1.) hinzufuegen

eines Loesungsmittelterms und Beruecksichtigung von langen Interaktionen in der Be-

wertungsfunktion und 2.) Erweiterung des Schrittrepertoires der Suchfunktion um den

Konformationsraum besser abzudecken.

Im zweiten Teil der Arbeit (Kapitel 3) wurde die Bewertungsfunktion erweitert. Fuer

den Loesungsmittelterm wurde eine Kugel definiert um Kontakte mit Loesungsmit-

telmolekuelen zu messen. Fuer jede Aminosaeure wurde eine Kugel mit festem Ra-

dius (z.B. 10A) definiert und die C-alpha Atome innerhalb dieses Radius berechnet.

Die Proteinfragmente wurden dann erneut Klassifiziert wobei die Loesungsmittelzu-

gaenglichkeit mit einer Normalverteilung modelliert wurde. Ausserdem wurde vor-

ruebergehend ein Wasserstoffbrueckenterm durch ein elektrostatisches Modell einge-

fuehrt. Der Einfluss der Wasserstoffbruecken wurde durch einen Gewichtungsfaktor

gesteuert. Um mit der erhoehten Auzahl an Freiheitsgraden der Bewertungsfunktion

zurechtzukommen wurde das Schrittrepertoire der Suchfunktion verbessert indem die

voreingenommenen Schritte korrigiert wurden, und ”kontrollierte” Schritte eingefuehrt

wurden. Ausserdem wurden alternative Methoden zur Berechnung von Konforma-

tionswahrscheinlichkeiten implementiert um die Abhaengigkeiten zwischen den Frag-

menten zu reduzieren: ”average”, ”center average” und ”simple”. Die Ergebnisse von

CASP7, CASP8 und non-CASP Targets zeigen eine signifikante Verbesserung gegenue-

ber der Bewertungsfunktion im ersten Teil. Die Modelle die fuer einfache non-CASP

Sequenzen erzeugt werden sind den experimentellen Strukturen sehr aehnlich (RMSD

von Modell zu 1FSV: 3,5A). Modelle von schwierigen und groesseren CASP-sequenzen

sind recht kompakt und manchmal Zeigen beeindruckend exakte Vorhersagen der Sekun-

daerstruktur. In Zukunft sollte ein (probabilistischer) Wasserstoffbrueckenterm entwick-

elt werden der mit der Bewertungsfunktion konsistent ist. Ein solcher Term koennte die

Kompaktheit verbessern und die Modelle verfeinern weil lange Interaktionen berueck-

sichtigt werden.





Safety and Risks

All the research work presented in this manuscript has been purely computational. No

experiments with direct use of chemical or biology material were involved at all. There-

fore, the standard safety and risk measures (often taken care of by chemists or pharma-

cists) are irrelevant.
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