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Abstract

In many physical systems inhomogeneities are present in the form of system boundaries, disorder,
or they are due to the discrete structure of the system. In this thesis the influence of inhomo-
geneities on the decay from metastable states and on the depinning transition in certain driven
dissipative systems is investigated.

First, the thermal and quantum decay of finite linear chains with an overdamped dynamics
are studied. The decay rate is calculated on the basis of the thermodynamic method commonly
known from rate theory. Further, the crossovers between the various metastability regimes that
arise due to the interplay of the relevant energy scales are analyzed.

At high temperatures the escape process mainly occurs via the lowest lying saddle-point
solutions of the chain’s energy functional. It is shown that depending on the coupling strength
these configurations are either uniform or bent. Correspondingly, the thermal regime is divided
into a rigid and an elastic phase. The crossover between these regimes is continuous. Close to
the rigid-to-elastic crossover, the unstable configurations are localized at the boundaries of the
system. In large systems with high energy barriers, the elastic decay takes place via nucleation
in the bulk.

Below a characteristic crossover temperature, quantum tunneling dominates the escape pro-
cess. As in the thermal regime, rigid and elastic phases are found in the quantum regime. In
the rigid quantum regime decay is preferably occurring via unique saddle-point solutions of the
Euclidean action describing the simultaneous tunneling of the chain beads. In the elastic phase
the decay occurs via a non-uniform saddle-point solution where the particles leave the metastable
state one after another. The quantum rigid-to-elastic crossover can be both continuous and
discontinuous. The various regimes are summarized in a decay diagram. The results are dis-
cussed in the context of topological excitations in micro- and nano-structured superconductors
like Josephson junction arrays and layered superconductors with columnar defects.

Finally, the depinning transition of a driven chain-like system in the presence of frustration
and quenched disorder is studied neglecting thermal or quantum fluctuations. This analysis is
motivated by recent transport experiments on artificial vortex-flow channels in superconducting
thin films. Starting with a London description of the vortices, the complexity of the model is
reduced by mapping it onto a generalized Frenkel-Kontorova model and its continuous equivalent,
the Sine-Gordon model. Within this simplified description the depinning transition is studied.

In the absence of disorder, frustration reduces the depinning threshold in the commensurate
phase which nearly vanishes in the incommensurate regime. Depinning of the driven frustrated
chain occurs via unstable configurations that are localized at the boundaries of the sample and
evolve into topological defects which move freely through the entire sample.

In the presence of disorder, topological defects can be also generated in the bulk. Further,
disorder leads to pinning of topological defects. It is found that weak disorder effectively re-
duces the depinning threshold in the commensurate phase, but increases the threshold in the
incommensurate phase.



Kurzfassung

In vielen physikalischen Systemen treten Inhomogenititen in Form von Systemgrenzen, Unord-
nung oder aufgrund der diskreten Struktur der Systeme auf. In dieser Arbeit wird der Einfluss
von Inhomogenititen auf den Zerfall metastabiler Zustinde und den Depinning—Ubergang in be-
stimmten getriebenen dissipativen Systemen untersucht.

Zunachst wird der thermische und quantenmechanische Zerfall endlicher linearer Ketten mit
iiberdampfter Dynamik studiert. Die Zerfallsrate wird mit der aus der Ratentheorie bekannten
thermodynamischen Methode berechnet. Weiterhin werden die I"Jbergéinge zwischen diversen
metastabilen Phasen analysiert, die durch das Wechselspiel der relevanten Energien auftreten.

Bei hohen Temperaturen findet der Zerfallsprozess hauptsachlich iiber Kettenkonfigurationen
statt, die durch die niedrigsten Sattelpunktlosungen des Energiefunktionals beschrieben werden.
Es wird gezeigt, dass diese Konfigurationen in Abhangigkeit der Kopplungsstirke entweder gerade
oder gebogen sind. Dementsprechend ist das thermische Regime in eine steife und eine elastische
Zerfallsphase unterteilt. Der Ubergang zwischen diesen Phasen ist kontinuierlich. Nahe dem
Ubergang vom steifen zum elastischen Zerfall sind die instabilen Konfigurationen an der Sys-
temgrenze lokalisiert. In groflen Systemen mit hohen Energiebarrieren kann der Zerfall durch
Nukleation im Innern der Probe dominiert werden.

Unterhalb einer charakteristischen Ubergangstemperatur dominiert Quantentunneln den Zer-
fallsprozess. Wie im thermischen findet man auch im quantenmechanischen Regime steife und
elastische Phasen. In der steifen quantenmechanischen Phase findet der Zerfall vornehmlich iiber
uniforme Sattelpunktlosungen der Euklidischen Wirkung statt, die das gleichzeitige Tunneln aller
Kettenglieder beschreiben. In der elastischen Phase sind die Sattelpunktlosungen hingegen nicht
uniform und die Teilchen verlassen ihre Falle nacheinander. Der quantenmechanische Ubergang
von steifem zu elastischem Zerfall kann sowohl kontinuierlich als auch diskontinuierlich sein.
Die verschiedenen Phasen sind in einem Zerfallsdiagramm aufgetragen. Die Ergebnisse werden
im Zusammenhang mit metastabilen Zustdnden von topologischen Anregungen in mikro- und
nanostrukturierten Proben wie Josephson-Kontakt-Gittern und geschichteten Supraleitern mit
kolumnaren Defekten diskutiert.

SchlieBlich wird der Depinning-Ubergang einer getricbenen Kette in Anwesenheit von Frus-
tration und statischer Unordnung studiert, wobei thermische oder quantenmechanische Fluktu-
ationen vernachlissigt werden. Diese Analyse ist durch kiirzlich durchgefiihrte Transportmessun-
gen in supraleitenden Filmen mit kunstlichen Wirbelflusskanilen motiviert worden. Ausgehend
von einer London-Beschreibung der Vortizes wird die Komplexitiat des Modells durch Abbildung
auf ein verallgemeinertes Frenkel-Kontorova-Modell und seinem kontinuierlichen Aquivalent, dem
Sine-Gordon-Modell, reduziert. Anhand dieser vereinfachten Beschreibung wird der Depinning-
I"Jbergang studiert.

In Abwesenheit von Unordnung reduziert Frustration in der kommensurablen Phase die
Depinning-Schwelle, die in der inkommensurablen Phase fast vollstandig verschwindet. Das Los-
reiflen einer getriebenen frustrierten Kette findet iiber instabile Zustinde statt, die zunichst an
der Systemgrenze lokalisiert sind und sich dann in topologische Defekte entwickeln, die sich frei
durch die gesamte Probe bewegen.

In ungeordneten Systemen konnen topologische Defekte auch an Schwachstellen im Probenin-
nern entstehen. Schon bei schwacher Unordnung wird dadurch die kritische Kraft in der kommen-
surablen Phase reduziert. Im inkommensurablen Fall erhoht sich die kritische Kraft im Vergleich
zum geordneten System durch eine effektiv hohere Dichte von Haftzentren.
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Chapter 1

Introduction

Driven systems consisting of particles that interact with one another and with their en-
vironment exhibit a variety of complex physical phenomena. Many of these effects arise
from the interplay between the various ingredients present in such systems. For example,
the driving force is promoting motion. On the other hand, the potential energy landscape
produced by the surrounding may lead to barriers that might not be overcome by the
particles, leading to localization. However, thermal and quantum fluctuations may delo-
calize the particles. The situation becomes more complex due to interactions between the
particles and disorder that is present in many systems. Consequently, many phenomena
that arise in these complex systems are either poorly understood or unexplored. In many
cases, one is forced to reduce the complexity of the systems by concentrating on the most
dominant effects in order to achieve at least a partial, but satisfactory description.

A common characteristics of driven systems with potential energy barriers is the ex-
istence of a threshold force above which flow-like motion occurs and below which rare
creep-like events can only be triggered by thermal or quantum fluctuations. In this thesis,
we focus on two interesting aspects occurring in the regime around the threshold. One
topic is the escape from metastable states due to thermal and quantum fluctuations below
the threshold force. The second subject is the depinning transition occurring at and the
dynamical behavior just above the threshold.

A system is in a metastable state when the decay time from this state is large compared
to all other intrinsic time scales. There are numerous examples of processes in physics,
chemistry, biology and engineering where a system rests in a metastable state for a relatively
long period before leaving its trap by traversing an energy barrier [1].

At high temperatures the decay is mainly induced by thermal excitations over the
energy barrier. Cooling the sample, the thermal fluctuations freeze out and quantum
tunneling through the barrier may become relevant. For a single particle trapped in the
local minimum of a potential, the decay scenario has been described in the whole temper-
ature range from thermally activated decay at high temperatures to quantum tunneling
at low temperatures within a thermodynamic method [2-12]. The decay of fields from
a metastable state was introduced in the context of homogeneous nucleation induced by
thermal fluctuations [13-15]. A familiar example for homogeneous nucleation is the spon-
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4 CHAPTER 1. INTRODUCTION

taneous formation of a sufficiently large droplet of liquid in a super-saturated vapor. Once
having exceeded a critical size this droplet rapidly grows and brings about condensation
of the entire sample: the metastable vapor phase decays into the stable liquid phase.

The concept of homogeneous nucleation triggered by thermal [14, 15] or quantum fluc-
tuations [16, 17| is certainly appealing. However, in many condensed matter samples
inhomogeneities are present. Then the interesting question arises, in which systems do
inhomogeneities play a crucial role in the escape process 7

In this thesis we analyze the influence of inhomogeneities from two perspectives. First,
we study the effect of boundaries and discreteness on the thermal and quantum decay from
a metastable state of a many-particle system. Second, we discuss the depinning of such a
system at its boundary or at a weak-pinning site of a randomized potential.

Chapter 2 is devoted to the escape of several elastically coupled degrees of freedom
forming a chain that is initially trapped in a local minimum of the potential energy land-
scape. A chain is an intermediate object between a particle, which is zero-dimensional
and an infinite line, which is one-dimensional. For small chains, the important inhomo-
geneities are the boundaries of the system. However, beyond a certain length the decay
mainly takes place via bulk excitations. Hence, one expects that the decay behavior is
different for chains of various lengths. Further, it is determined by three competing energy
scales: temperature, coupling strength and barrier height of the potential. Thus, there are
several distinct decay regimes. Measuring the decay rate, various crossovers can be ob-
served upon varying the system parameters. These crossovers display some analogies with
equilibrium phase transitions. Accordingly, the crossovers are classified into first-order and
second-order transitions, depending on whether the first or second derivative of the decay
rate becomes discontinuous, respectively [6, 18]. A well-studied example is the crossover
from thermal to quantum decay. Since most to-date-known metastable systems display
second order thermal-to-quantum crossovers, it has become quite popular to search for
experimentally accessible systems that show first-order transitions [18, 19].

The elastic chain can be a model for current-driven discrete Josephson transmission lines
(DJTL) [20]. These parallel-coupled one-dimensional arrays of Josephson junctions (JJ’s)
can be seen as the discrete version of a long JJ. They have gained increasing attention since
the first overdamped flux-flow devices have been built based on low-temperature [21] and
high-temperature superconductors [22]. These days experimentalists start to investigate
the decay of metastable states in long JJ and discrete transmission lines [23]. However, only
a few theoretical results are available for specific limits, concentrating on long underdamped
JJ’s [24-26]. In this thesis we will study various parameter regimes and the crossovers that
occur in the decay of moderately and strongly damped systems. The evaluation of the
decay rate is performed within the framework of the thermodynamic method originally
developed to model thermally activated decay processes [13-15, 27] and later generalized
to the quantum regime [16, 17]. We determine the hitherto unknown decay rate of a
chain of overdamped degrees of freedom trapped in a potential with the shape of a cubic
parabola. The theory is mainly discussed in the context of JJ devices and vortices in
type-II superconductors with columnar defects.

A different topic is considered in Chapter 3, where the depinning transition in driven



systems is studied. Simply spoken, depinning occurs when the driving force is equal to the
pinning force due to the potential energy landscape. The depinning process is influenced by
the presence of inhomogeneities like system boundaries or quenched disorder in the bulk.
Both types of inhomogeneities are considered in Chapter 3. We do not investigate the
effect of thermal or quantum fluctuations which we expect to simply smear the depinning
transition in an extremely narrow parameter regime.

Depinning transitions occur in a variety of physical systems, mainly probed by transport
experiments. Well-studied driven systems, where quenched disorder is dominant, are charge
density waves (CDW’s) submitted to an electric field [28], the two-dimensional electron gas
in a magnetic field which forms a Wigner crystal moving under an applied voltage [29],
magnetic bubbles moving under an applied magnetic field gradient [30, 31|, and current-
driven JJ arrays [32, 33]. Depinning may also be important to understand tribology and
solid friction [34], surface growth of crystals with quenched bulk or substrate disorder, and
domain walls in incommensurate solids [35]. A very prominent example of driven systems
displaying a depinning transition are vortices in dirty type-II superconductors [36]. In the
presence of a transport current the vortices are dragged by a Lorentz force. The interplay
between the elasticity of the vortex lattice and the impurities present in the substrate leads
to a rich phenomenology with many static and dynamic phases. A crucial question in both
the dynamics and the statics is whether — in addition to thermal fluctuations — quenched
disorder produces topological defects in the periodic structure. Whereas in the absence
of topological defects it is sufficient to consider only elastic deformations with depinning
causing elastic flow, the dynamics will be governed by plastic flow, if topological defects
exists.

One expects plastic motion to become important for either strong disorder, high tem-
perature, or near the depinning transition in low dimensions. Indeed, experiments and
numerical simulations give evidence for the existence of plastic motion. The H-T diagram
of type-1I superconductors displays regions of both elastic and plastic flow [37, 38]. Other
experimental observations that have been attributed to plastic flow are the peak effect
[39, 40], unusual broadband noise [41], and steps in the I-V curve [42].

Close to the depinning threshold and in strongly disordered samples, depinning is ob-
served to occur through “plastic channels” between pinned regions. This type of plastic
flow has been found in numerical simulations of a two-dimensional thin film geometry
[43-45]. Above the threshold, the filamentary channels become both denser and broader.
Measurements of the differential resistance of MoGe films display abrupt steps, which could
be interpreted in terms of plastic depinning [46].

To study the plastic depinning of vortices, artificial easy-flow channels have been man-
ufactured [47, 48]. The samples are typically made of type-II superconducting thin films
which consist of a fairly strong pinning layer on top of a weakly pinning base layer. The
artificial vortex flow channels are fabricated by etching away stripes of the stronger pinning
top layer. In the Meissner phase, vortices penetrate the sample. Applying a current perpen-
dicular to the channel direction, the resulting Lorentz force in the direction of the channel
drives the vortices. Since the influence of point-like material defects in the weak pinning
channel is negligible, channel vortices are mainly pinned indirectly via the interaction with
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the stronger pinned vortices in the channel environment. Above a threshold force, plastic
depinning of the vortices inside the channel takes place. In contrast to natural channels,
the depinning threshold force displays interesting oscillations when the externally applied
magnetic field is varied. The position of the threshold force maxima hint at commensura-
bility effects between the vortex lattice in the environment and in the channel [49]. The
magnitude of the depinning force minima and maxima indicate that lattice distortions pro-
duced by quenched disorder in the pinned channel environment is relevant in these samples.
In this thesis, we study the depinning and the dynamical behavior of artificial easy-flow
channels theoretically. Starting from a London description of vortices inside and outside
the channel, we first derive the coefficients of a generalized Frenkel-Kontorova model [50]
for a perfectly ordered vortex lattice. The force-velocity curve of this simple model displays
a drastic decrease of the threshold pinning force when topological defects enter the system
via the system boundaries. However, the experimental data show a smooth variation of the
pinning force as a function of magnetic field. The behavior suggests that disorder in the
channel edges may lead to smoothening of the transition from the topologically ordered to
the defective state. In order to investigate the transition in presence of disorder, we take
into account that the vortex lattice in the channel environment is distorted due to impu-
rities in the superconducting substrate. To determine the characteristic current-voltage or
force-velocity curves, the problem is most conveniently tackled with numerical molecular
dynamics simulations. This method enables us also to nicely visualize how depinning oc-
curs in the topologically ordered and defective regime. It turns out that systems that are
topologically ordered in the static phase depin at the boundary or by generating mobile
defect droplets at weak spots in the random channel potential. In the defective static
phase the pre-existing topological defects are pinned by the random potential. Then the
depinning transition occurs via a release of these defects at the threshold.

The thesis is organized as follows. In Chapter 2, we investigate crossovers in the thermal
and quantum decay of interacting particles in a metastable state. After a short review of
rate theory in Section 2.1 we introduce a model of elastically coupled particles interacting
with their environment in Section 2.2. Their thermally activated escape from a metastable
state is explored in Section 2.3. The quantum statistical decay is investigated in Section
2.4. The subject of Chapter 3 is the depinning transition. After discussing the experiments
that motivated the theoretical study in Section 3.1, we introduce the model in Section 3.2.
Further, in this Section the results concerning the depinning transition are presented. They
are compared to experimental data in Section 3.3, and discussed in Section 3.4. A summary
of the thesis is given in Chapter 4.



Chapter 2

Crossovers in the decay from
metastable states

Imagine a potential with a local minimum which is not the global one. A particle interacting
with a heat bath performs a Brownian motion in the potential landscape. Once the particle
is trapped in the local potential minimum it will need some time before it eventually leaves
the well. The escape can be due to purely classical effects, such that the particle is kicked
out of the well by a thermal fluctuation or it can be due to quantum tunneling through the
energy barrier between the well and its exterior. When the time during which the particle
is localized in the well is large compared to all other intrinsic time scales, the system is said
to be metastable. Important time scales are the correlation time ¢, of the noise generated
by the heat bath, the thermal time h/kgT and the time scales t, = w;' and t, = w;!
associated with the curvature of the potential at the bottom of the well and the saddle
point, respectively. Weak metastability implies that the energy V; to activate the particle
from the bottom of the well to the top of the barrier is by far the largest energy of the
problem. It has to be much larger than the thermal energy, V, > kgT to ensure that
thermal activation is a rare event. On the other hand, V; > hw, guarantees that the well
is deep enough to localize a quantum particle.

The main quantity of interest is the decay rate I', which is the probability per unit time
that the system escapes from its metastable state. A convenient parameterization of the
decay rate

[ ~ Pexp(—A) (2.1)

has been proposed by Van’t Hoff [51] and Arrhenius [52] at the end of the nineteenth
century. The pre-exponential factor P is the attempt frequency of the particle in the well
towards the barrier and A is a dimensionless measure of the strength of the barrier. The
main question we are concerned with in this chapter is how P and A behave as a function
of externally tunable parameters for a system with many degrees of freedom, where the
rate displays transitions between various decay regimes.

One transition is the crossover from thermal to quantum decay. Cooling a sample,
the thermal fluctuations freeze out and below a characteristic temperature 7y thermally

7



8 CHAPTER 2. DECAY FROM METASTABLE STATES: CROSSOVERS

Figure 2.1: The populations n, and np of the two states A and B, respectively, vary
whenever the generalized coordinate s characterizing the state of a system crosses the

dividing surface S at s = 0. Transitions from A to B (B to A) occur at a constant rate
().

assisted quantum tunneling is the main mechanism that leads to decay [2, 6-12]. The
more complex a physical system is, the more parameters can be varied. Hence, one expects
that upon tuning these parameters, the system may be driven through various transitions
marking the borderlines between several distinct parameter regimes. In this chapter we
study the statistical decay of N elastically coupled particles, each of them initially trapped
in a local minimum of the single particle potential. One then has three competing energy
scales that may be altered: the temperature, the energy barrier and the coupling strength.
Accordingly, one expects that in addition to the thermal-to-quantum crossover further
transitions should occur. Indeed, one finds a rigid phase, were the particles behave as a
rigid rod and decay together , as well as an elastic phase, were the particles most probably
decay via a bent configuration. One finds regimes, where boundary effects are important
and others, where the decay occurs via excitations in the bulk. This provides an interesting
model to study the crossovers between the various phases.

The phenomenological model analyzed in this thesis can be applied to a number of
physical systems, however, here we mainly concentrate on crossovers occurring in the decay
of metastable states in JJ devices, where the phenomena are most likely to be observed with
experimental techniques available today. A short discussion in the context of vortices in
artificially structured type-II superconductors is also given. Before we analyze this system
in detail in the next sections, let us give a short introduction to rate theory.
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2.1 Rate theory

Let us consider an ensemble of n systems, n4 in region A and np in region B in the space
of possible states, see Fig. 1. On time scales much larger then the characteristic time scale
ts of microscopic processes, t > t,, let the time evolution of the populations n, and ng be
described by the rate equation

ng = —Iina+T0_ npg, (2.2)

7;LB = F+ nag — r_ ng.

'y and I"_ are the forward and backward rate constant, respectively. In order to relate
the phenomenological equation to a specific physical situation, our goal is to express the
constants I'; and ' in terms of ensemble averages of dynamical observables. The state
of a system may be characterized by a generalized coordinate s, which is a function of the
microscopic degrees of freedom. It is chosen to be positive in A, zero on S, and negative
in B. Hence, the Heavyside function 0(s) is the characteristic function of A, being 1 for
s > 0 and 0 for s < 0.

There are several ways to relate the rates to averages of dynamical variables. Simple
and hence commonly considered situations are the (quasi-) stationary ones. For example,
the rate of decay from the metastable region A can be determined in a quasi-stationary
non-equilibrium situation. Imagine that all the systems are prepared to be in thermal
equilibrium but restricted to region A at t = 0. After a short time ~ t, a quasi-stationary
situation establishes [53-55], where the probability to find systems near a is approximately

given by the equilibrium value and near b is &~ 0. On time scales t; < t K Fjr}f, the decay
rate is then given by
I
ry =—, 2.3
p=at (23)

where I is the total probability flux across a surface S that separates the well (the
metastable region) A from its exterior.

Another possibility is to relate the rate to thermal equilibrium averages of dynamical
observables. The fluctuation-dissipation theorem relates the dynamics of spontaneous fluc-
tuations in equilibrium to the relaxation of a non-equilibrium state towards equilibrium.
From Eq. (2.2) then follows that the equilibrium correlation function (60[s(0)]d0[s(t)])
decays exponentially with time,

(00[s(0)]00]s(t)]) ~ exp[— (T + T )1]. (2.4)

The time derivative of Eq. (2.4) normalized to (§0[s(0)]?) yields the so-called reactive flux.
On intermediate time scales t;, < t <K Fjr}_, the reactive flux is approximately proportional
to the forward rate which then reads,

r _ OEOEO-s]) (25)
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The rate 'y is thus given by the flux §[s(0)]$(0) through s = 0 at time ¢t = 0 averaged over
all systems with s(t) < 0 that ended in state B at time ¢.

In the following we discuss some properties of the forward rate I' (we drop the index
“+” from now on), and motivate crossover scenarios. We first concentrate on the classical
case T' > Tj, then we consider the regimes 17" 2 Ty, and T' < Tj.

2.1.1 Classical rate

In this section we derive the decay rate for multi-dimensional systems in the classical
regime and discuss how crossovers occur. Following Langer’s derivation, we explicitly show
that Kramers’ moderate-to-strong damping result for one-dimensional systems applies also
for the multi-dimensional case if the unstable coordinate is decoupled. Starting from a
generalized Langevin equation with memory friction, this has been shown by Grote and
Hynes within the framework of the molecular rate method [56]. In the Markovian limit,
the equivalent derivation beginning from a Fokker-Planck description is still lacking and
given here. The importance of the result becomes clear since many authors starting from
a Fokker-Planck equation unnecessarily restrict their analysis to the strong damping limit
though the moderate damping regime can be treated without more effort.

We consider a 2N —dimensional phase space P represented by position coordinates
x = (2o, ...,y 1) and conjugate momenta p = (po,...,pn_1). Lhe generalized coordinate
s is a function of phase space variables, s(x, p) with the property s(x,p) = 0 for (x,p) € S.
The ensemble average of a dynamical variable A(x, p) is defined by

_ JdVxdp p(x,p,1)A(x,p)

(2.6)

In the case of thermal equilibrium the canonical distribution normalized to one in the
region A is given by
po(x,p) = Z3" exp[—BH(x,p)], (2.7)

where 3 = (kpT)~" is the inverse temperature, H the Hamiltonian, and Z is the partition
sum for the states in the well,

Zy= (2rh) N / dVzd"p po(x, p). (2.8)
(x,p)cA

Transition state theory in one dimension

The simplest rate theory is the so-called transition state theory (TST) [57]. Let us consider
the simplest case, N = 1. In TST two ad-hoc assumptions are made: first, thermal
equilibrium prevails in the well A. Second, a system will never return to .4 once it has
reached the barrier top at s = 0. The TST rate is thus given by the limit ¢ — 0 of Eq.
(2.5). We choose S by requiring s = x; — x, where x; is the barrier top of the potential
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V(z). Noting that lim; ,o+ 0(x(t) — z5) = 6(p(0)) and & = p/my, where my is the mass of
the particle, we find

Lrsr = (QWh)fl/dpdl" po(z,p) 0(z — fvs)g(p)mi- (2.9)

0
Expanding V'(z) up to second order near the bottom of the well A, x = 0, one obtains
Z4 = kpT/hw,, where mow? = V"(0) is the curvature of the potential at the minimum.

Hence, the classical TST rate is given by

Wq
FTST = gexp(—BVs) (210)

Spatial-diffusion-limited rate in arbitrary dimensions

We now derive the rate in the quasi-stationary case using the flux-over-population method
given by Eq. (2.3). The total flux through S is

I, = (k)N / d¥2dVp 5(5)(Vaps) - J, (2.11)

where V., = (0/0xg,...,0/0xn_1;0/0py, - ..,0/0pn_1) and J(x,p, 1) is the probability
current density at (x,p) in phase space. The population n, in the well A is

na = (20h)~N / d¥zd¥p  p(x, p, 0]s(x, p)]. (2.12)

In order to calculate the classical rate ', one is generally confronted with the problem to
solve the dynamical equations governing the time-dependent evolution of p and J within
the metastable region.

Matters simplify considerably in the quasi-stationary case, where p =~ 0. A stationary
probability flow through S requires sources in the metastable region A and sinks in B.
A stationary state is reached, when the production rate of the sources is equal to the
destruction rate of the sinks. In other words, whenever a system has decayed, it is removed
from the ensemble and replaced by a new metastable one. If on average the systems stay
in the metastable state A for a long time, the stationary distribution p(x, p) is close to the
equilibrium distribution and can be parameterized by

p(x,p) = o(x,p)po(X,P), (2.13)

where o(x, p) takes into account the non-equilibrium effects.

In general, the correction function o has to be determined from the equation of mo-
tion for p. Kramers’ treatment for a Brownian particle in one dimension diffusing over a
parabolic barrier [54] was generalized to higher dimensions, N > 1, by Langer [15]. The
domain of attraction A is separated by a saddle point from lower lying minima of the
potential. The Langevin equation can be conveniently written as a matrix equation for
phase space vectors,

( E ) — _M[V.,H(x,p) — f]. (2.14)
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The fluctuating forces f = (fo, ..., fnv_1;0,...,0) are characterized by the ensemble aver-
ages
(fn) =0, (fm(@) fu(t)) = 2mpyukpT o 00 (t — t'), (2.15)

where m,n < N, m,, are the masses, and -, are the friction coefficients.

The matrix M can be expressed as a sum of a symplectic matrix A describing the
Hamiltonian dynamics of the system in absence of dissipation and a symmetric matrix D
modeling dissipation,

0 I
M_<I D)’ (2.16)
where I = diag(1,...,1) is the N x N unity matrix and the dissipative part is given by
D = diag(movo,...,mn_17v-1). Note that D has dimensions of mass per unit time. A

matrix with mixed units may look a bit awkward at first sight. Here, however, the matrix
M is simply understood as an object to introduce a compact notation. The Hamiltonian
is given by
N1 2
H= —— + V(x). 2.17
X gV 2.17)
Close to the saddle point x,, ps, where sinks and sources are assumed to be absent, the
Klein-Kramers equation for p reads

Bp+ VapJ =0 (2.18)

with
J=-M[(VypH)+kgTVy,lp. (2.19)

The following assumptions are made: Since we consider metastability in the moderate-
to-strong damping regime the particle nearly thermalizes in the well and near the local
minimum at (x,p) = (0,0) the density function is close to the equilibrium one, p(x,p) ~
po(x,p). Hence, 0(0,0) ~ 1. Far beyond the saddle, particles are absorbed by sinks,
p(x,p) ~ 0 implying that o(x, p) ~ 0. Making the ansatz p = op, the equation of motion
for the stationary o reads

[(VupH) — kpTV, )MV, 0 = 0. (2.20)

Near the extrema, we approximate the potential by quadratic forms,

1 1
V(x) ~ §xTVax for x ~ 0, V(x)~ Vs + §XTVSX for x ~ x,. (2.21)

Accordingly, we approximate the Hamiltonian close to the minimum of the well (x,p) =
(0,0) by

H(x,p) ~ %(x, p)E, ( ﬁ ) , (2.22)
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and close to the saddle point (x;,0) as

1
H(x,p) =V, — 5 y' Esy (2.23)

Here we have introduced V, = H(x,,0), y = (x—X,, p), and the transposed y’ of y. With
a quadratic Hamiltonian Eq. (2.20) becomes linear,

Y E;s + kgT'Va,| MV, 40 = 0. (2.24)

Substituting the ansatz o(x, p) = glu(x, p)], into Eq. (2.24), where u(x,p) = u-y is a linear
combination of coordinates and momenta, one obtains an ordinary differential equation for

g7
(y'EM u)g'(u) + kT (u'M u)g"(u) = 0, (2.25)

if the coefficient of ¢’ is a function of u, that is y’E,;M u oc u. This constraint provides

an eigenvalue equation for u,
—E;M u = \u, (2.26)

which has a unique positive solution A\. One can normalize u such that u’E;! u = —1
and A = u”M u. The solution of the resulting equation ug'(u) + kpTg¢"(u) = 0 satisfying
the boundary conditions for p is then given by

g(u) = 2rkgT)~"/? /uoo dx exp (—%) . (2.27)

Substituting o(x,p) = g[u(x, p)] into Eq. (2.19), we obtain the probability current

. kBT 5U2
J =4/ 5, Po eXD <_T> Mu. (2.28)

Inserting J into Eq. (2.11), choosing the dividing surface s(x, p) o u(x, p) and performing
the integrals, one finds that the flux I, is given by

I, i[

:27r

B —1/2
det (kB—TE> H ZLexp (—BV;) . (2.29)

Eq. (2.12) with the approximate Hamiltonian given by Eq. (2.22) yields the population n

in the well,
A —1/2
n = ZZI [det <I@—TEQ>] . (230)

Hence, the classical rate I'qy = I/n is given by

E
L, = A { det[E,]

1/2
R R

| det[E,]]

A { det[V,] }I/QGXP(_WS), (2.31)

27 | [ det[V]]
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The rate has now the desired Arrhenius form as in Eq. (2.1) with the pre-exponential factor
P = )\\/det[Va]/| det[V]|/(27) and the strength of the barrier A = SV;.

Langer defined the free energy of a metastable state in the following way [13]. Deform
a potential with a global minimum such that the minimum becomes a local one. The
corresponding analytical continuation of the free energy, which is well defined for the stable
potential, becomes complex for the metastable situation. The imaginary part evaluated in
steepest descent approximation reads

_ kBT{ det[V,]

1/2
ImF = 5 |det[VS]|} exp (—4Vj) . (2.32)

Analogous to the definition of life times of resonant states in quantum mechanics, he
conjectured that the imaginary part of the free energy should be proportional to the decay
rate of the metastable state [13]. The proportionality constant is given by Eq. (2.31),

Fcl

= 7TkBTIm]-". (2.33)
All one is left with is the determination of the positive eigenvalue X in Eq. (2.26), which can
be done exactly only in special cases. It is interesting to note that Langer applied his quite
general theory valid in the moderate-to-strong-damping regime only to the overdamped
limit v > w, with symmetric friction, 7, = 7, where the solution of Eq. (2.26) becomes
trivial. In the last thirty years, many authors who applied his result, restricted their
analysis to the overdamped case being unaware of the fact that the moderate friction regime
can be treated without much more effort [1]. Though Grote and Hynes [58] were aware
that it should in principle be possible to derive the multidimensional rate for moderate
damping starting from a Fokker-Planck description !, they did not explicitely show how,
and even in the most recent literature unnecessary restrictions are made [59].

Let us now calculate A for the specific case they discussed, namely a system with
a decoupled unstable mode zy. First, we rederive Kramers’ [54] celebrated result for
N = 1. Then we show how to obtain X\ in the multidimensional case that Grote and Hynes
considered, namely a Hamiltonian with a decoupled unstable mode z.

Kramers studied a Brownian particle in one dimension N = 1 interacting with a
potential V' (zy) [54] obeying the Langevin equation (2.14) with a Hamiltonian H =
p2/2mg + V (x4), a white noise fluctuating force f = (fy,0), and a dynamical matrix

M:(O 1 ) (2.34)

I ~yomo

!Grote and Hynes derived a multi-dimensional rate for the case of memory friction starting from a
generalized Langevin equation. Discussing the Markovian limit of their result, they mention in Ref. [58] :
“Since the ordinary LE [Langevin equation] is strictly equivalent to a Fokker-Planck probability description
Eq. (3.21) [their result] must also be the prediction of an uncoupled mode FP [Fokker-Planck] treatment.
Indeed, while Eq. (3.21) is new, it is hardly a surprise since its diffusive limit Eq. (3.20) [overdamped
limit] has been derived a number of times as a multidimensional generalization of a well-known result of
Kramers.”
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Here, v is the friction coefficient and mg the mass of the particle. With w? = V" (0)/mq
and w? = —V"(x,)/mg, the matrices appearing in Eqs. (2.22) and (2.23) read E, =
diag(mow?,my"') and E, = diag(—mew?,mg")), respectively. The positive eigenvalue A
of —E,;M is

%

A=y/14+ — 2.35
ty T (2.35)

We denote the associated eigenvector (vq,vy41). Hence, Kramers’ rate is
I'x =0 I'rsr, (2.36)

where ¢ = A/w; is the transmission factor. Comparing I'x with T'zg7, one notices that the
latter overestimates the true rate since in TST one neglects that particles might re-cross
the barrier. Note that the spatial-diffusion-limited approach presented here breaks down
in the underdamped regime, where the particle does not have enough time to approach
local thermal equilibrium. In the strong damping limit, v > w,, the rate can readily be
calculated to yield o = w,/7, which is consistent with the rate that one obtains starting
with the Smoluchowski equation.

In the multidimensional case with a decoupled unstable mode x(, the Hamiltonian is
given by

N-1 2 2.2
D mwyly | o
H = — V e 1). 2.37
nz_:o an 9 + (xla y UN 1) ( )
The eigenvalue problem for A reads
—mowSZ U1
0 :
—E;Mu = 1 = \u. (2.38)
My 7o UN+1

For a single unstable mode the matrix —E;M has only one positive eigenvalue \. Instead
of calculating the entire spectrum, we only have to determine the positive eigenvalue.
Comparing with the one-dimensional case, we see that u = (v1,0,...,0,u541,0,...,0)
is an eigenvector with a positive eigenvalue A given by Eq. (2.35). Thus, we have shown
that for a system with a decoupled unstable mode zy the moderate-to-strong-damping rate
reads

_ows | det[V,] 12
g = o {m} exp (—AV;). (2.39)

In the overdamped limit, v > ws, the transmission factor reduces to o = w;/7.

Transition state theory for system-plus-reservoir models

The results found with the flux-over-population method can also be derived within the
equilibrium reactive flux equation, which we consider in this section. One aim is to show
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that the equilibrium treatment yields equivalent results, the other is to introduce the
concept of the system-plus-reservoir model [60] in order to take into account dissipation,
which we need later when we treat the quantum regime [3-5].

We start with a Hamiltonian describing a system interacting with a heat bath,

N-1
H = H,(x,p) + > Hy(Xp,Pp;zy). (2.40)

n=0

The system consists of N degrees of freedom with masses m,,, represented by the coordi-

nates x = (zg,...,2y_1) and the momenta p = (po, . ..,pn—_1) with the bare Hamiltonian
NoL 2
Hyxp) = 3 22 4 V(x). 2.41)
= 2my,

Without loss of generality we choose the coordinate system such that the curvature matrix
of the potential evaluated at the saddle point, V as defined in Eq. (2.21), is diagonal.
Each of the degrees of freedom is coupled bilinearly to a bath of M harmonic oscillators
with identical spectrum,

1 ML C, 2
Hb(Xn,Pn;xn:§Z_: ”J+MQQlXJ+MQ2 ] : (2.42)

where X,, = (X,.0,..., Xpa—1) and Py, = (P, ..., Py a—1) are the coordinates and mo-
menta of the harmonic oscillator bath coupled to the n-th degree of freedom, respectively.
C; are the coupling constants between a degree of freedom and the associated bath. Start-
ing with the Hamilton equations and integrating out the bath variables, one finds the
generalized Langevin equations [60],

%V(X) +my, /Ut dt'%(t - t,) i‘n(t,) = fn(t) (243)

Assuming that the total system is initially prepared in thermal equilibrium, the forces
f = (fo,..., fnv_1) become a stationary Gaussian noise of vanishing mean,

Z c, {[ MCQQ (o)] cos(1) + XQJ(O) sin(th)}, (2.44)

J

obeying the fluctuation-dissipation theorem,

(Fu(®) fn () = kBT mnbnmyn(t —1'). (2.45)

The friction kernels 7, (¢) read

Mz: 2 cos(§2;t). (2.46)

J
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With finite M these are quasi-periodic functions in time. A phenomenologically decaying
memory friction, where 7, (t) — 0 as t — 0o, can be modeled by a suitable choice of bath
parameters in equation (2.42) followed by performing a continuum limit for the distribution
of frequencies which densely extends down to zero frequencies.

If the frequency spectrum of the bath is Debye-like and the momentum varies slowly
over time scales of the order of the inverse Debye frequency, the Langevin equation becomes
Markovian.

We have seen in the preceding paragraph that a metastable system with Langevin
dynamics has a decay rate that takes into account friction and that particles may return to
the well once they have crossed the barrier. Multidimensional TST applied to the system-
plus-reservoir model discussed here provides the same result [56]. Near the saddle point
Xg, the total Hamiltonian can be approximated by a quadratic one, see Eq. (2.21). The
curvature matrix of H can be partly diagonalized by transforming the system and bath
coordinates for n = 0 to normal ones, (xy,X¢) — (%o, Xo). The effective frequency wg of
the unstable mode Z,

wé + wR%(wR) = wf, (247)
is reduced compared to the bare barrier frequency w; of xy. Here 4, is the Laplace transform
of 9. Since in the quadratic approximation g is decoupled from the rest of the degrees of
freedom, its energy Ej can be separated from the total (conserved) energy, E = Ey+ E;, .
Noting that the system decays as soon as the energy FEj of the unstable mode is larger
than the barrier energy V5, the rate can be rewritten in energy-phase space as

Ty = / dEyw(Ey). (2.48)
Vs
where dEyw(E)) is the probability per unit time that the unstable mode has an energy in
the interval [E(), EO + dEU],

(i) = [ o 8 B — Holdn )l o, X, P

with Hy = p2/(2my) + Vi — mow%22 /2. In TST, the density function in the well is approx-
imated by the equilibrium one, p =~ py and

Bur [ det[Eg] 1"*
Ey) ~ Ey) = —BEy). 24
() ~ un(E) = { G b exp(-) (2.49
Substituting Eq. (2.49) into Eq. (2.48) we find
/2
_ wr [ det[V,] ! B

In the absence of memory effects, 7o(t) = 2vd(t), the frequency of the unstable mode
reduces to wr = ows and Eq. (2.50) becomes identical to Eq. (2.39). This result is regarded
as a cornerstone in rate theory: Langers spatial-diffusion-limited formula and the TST
rate for a system coupled linearly to a bath of harmonic oscillators yield the same result.
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a) b)

\r) A M)

Figure 2.2: Saddle points V; of the potential energy V' parameterized by the distance r
from the saddle s; along the dividing surface S. (a) A first order crossover occurs, if a
competing saddle sy becomes the lowest one upon tuning an external parameter causing a
discontinuous crossover from ' & 'y, to [ &~ T'y,. (b) A stable mode of V" at s; becomes
unstable upon varying the external parameter leading to a saddle-point bifurcation s; — ss.
The saddle point s, develops continuously leading to a smooth second-order crossover
'y~ Fsl =TIy~ Fsz

Crossovers in the classical decay rate

So far we discussed the classical decay rate for a metastable system with a single saddle
point. In general there might be the possibility that the escape occurs via several saddles.
The escape probability is given by the sum of probabilities over all probable escape paths.
If the saddle nodes are fairly well separated, the total escape rate is approximately the
sum of all saddle-point contributions Iy,

Ta~ > T, (2.51)
J

If there is a saddle point s; with a barrier energy Vj, several orders of kg7 smaller
than the barriers Vi, of the other saddles, it will give the largest contribution to the rate,
whereas the contributions of the higher lying saddles are exponentially suppressed,

To~ Ty, (2.52)

Let us now consider the case where the potential energy landscape changes its shape
upon varying an external parameter. In the simplest case, the height of the lowest lying
barrier V;, is altered and the rate is a simple function of the external parameter. A crossover
to a regime with a different decay behavior occurs, if upon turning the external parameter
a new saddle point s,, with barrier V;_ becomes the lowest one. This is due to the fact
that now the rate achieves the strongest contribution from the saddle s,, and in general
Vs, varies differently than Vj, if the parameter is tuned.
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In Fig. 2.2 cross sections of potential landscapes along the dividing surface S are shown,
which we have chosen such that all saddles are lying on §. The coordinate r denotes the
distance to the saddle point s; and parameterizes the potential energy, Vi(r) = V[x(r)]
with x(r) € S. The initial potential is represented by the solid line, the crossover potential
by the dotted line and the final one by the the dashed line. Initially s; is the energetically
lowest lying saddle and after the crossover has occured, s, has the smallest energy barrier.

The potential evolution shown in Fig. 2.2a leads to a discontinuous crossover from
Lo ~ exp(—fVs,) to Ty ~ exp(—pVs,). The situation is analogous to the development of
the Landau free energy of a system undergoing a first-order phase transition and is hence
called first-order crossover.

Fig. 2.2b depicts a second-order crossover. Here, the lowest saddle point s; is deformed
into two lower lying ones so and the barrier Vi, is smoothly changing to V;,. Consequently,
the crossover from 'y ~ exp(—fV5,) to ' ~¢ exp(—/Vs,) is continuous. Note that before
splitting, the saddle point s; has only one unstable direction. After the saddle-point
bifurcation one of the stable modes of s; has become unstable. Hence, one of the eigenvalues
of the curvature matrix Vy,, which is positive before the saddle-point splitting, vanishes
at the crossover and becomes negative after the bifurcation. Clearly, at the crossover itself
and within a narrow regime around it, the Gaussian approximation that has been made
to obtain Eqs. (2.39) and (2.50) breaks down. However, the divergencies can be cut off by
taking higher order terms than quadratic ones into account in the approximation for the
potential.

2.1.2 Quantum rate

The quantum version of the reactive-flux equation (2.5) reads [61, 62]
~ Re[Tr(po FsP,)]
T T (o Pa)

(2.53)

where py is the equilibrium density operator, ﬁp projects onto states that are scattered
from A to B, P4 is the projector onto metastable states in A, and

Fs = —V.s()0ls(0)]p (2.54)

is the flux-through-surface operator. The dividing surface S is defined by (xs|s(X)|xs) =0
and x|xs) = xs|xs) with xg € S. The dividing surface S is smooth. Introducing the

A

resolvent operator Gt (E) = (E — H +i0%) ', Eq. (2.53) can be brought into the form
Lo = (270) 27! / dE p(E)e P, (2.55)
0

with p(E) being the micro canonical decay probability at total energy E [62],

p(E) = 2h Im {Tr [G*(E)EsP,|} . (2.56)
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If we choose our coordinate system such that xz; is the coordinate of the unstable direction
and take the flat surface s(X) = Ty — x5, where z, is the saddle-point coordinate in the
unstable direction, the projection operator P, reads

Pp = lim en ' (pg)e nHt = Jim e 920 — x40)e W (2.57)

It projects onto outgoing states that have positive momentum or are in B in the infinite
future selecting the decay events.
Quantum transition state theory

The quantum transition state theory (QTST) limit of Eq. (2.53) is then found by replacing
P, — 0(po). For the above chosen surface we have Fs = §(Zo — x;5,0)po/m. With pof(po) =
(Ipo| + Po)/2 one obtains [62]

p(E) = %/dch(xo — 1‘5,0)<X|G+(E)|ﬁ0||x>. (2.58)

This expression can be evaluated in the semiclassical limit using Gutzwiller’s trace formula
[63],

p(E) = gjl(—nn—l exp [— "‘I)F(LE )] i{l {2 sinh %nT(E)wm(E)] }_1 , (2.59)
where
o) = | " rp(r)x(r) (2.60)

denotes the abbreviated action integral along the periodic orbit in imaginary time ¢ =
—i7 of period T(F) that passes through S. The sum over n takes into account multiple
traversals of the periodic orbit. The parameters w,,(F) denote the dynamical stability
frequencies of the periodic orbit at energy E. Expanding the sinh functions, introducing
the energy

N
n=1

left in the unstable mode while traversing the saddle point, and approximating the potential

landscape locally by a parabolic one, Hianggi and Hontscha [64] found

o0

PE)= > {1 expl@(E)} (2.62)

Hence the calculation of p(E) reduces to an evaluation of ®(Ey). For T' > T, one finds

 wgsinh(hBw§/2) T sinh(hBw?/2)
M 9r sin(hBws/2) 11 sinh(hfws /2)

n=1

r

exp(—V;/kgT), (2.63)
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where w? and w; are the dynamical stability frequencies evaluated at the minimum and
the saddle point, respectively.

Below the crossover temperature, 7' < Tp, Eq. (2.59) is dominated by the n = 1 term.
The abbreviated action ®(E) can be evaluated by the method of steepest descent. In this
approximation, only the extremal orbit with the period T(E = Ep) = hf$ and quadratic
fluctuations around it are taken into account. The saddle-point trajectory xp, known as
bounce solution, yields the extremal Euclidean action

SB = SE[XB] = hﬁEB + (I)(EB) = /027r dr {V[XB(T)] + %pB(T)}.(B(T)} . (264)

The rate in the quantum regime then reads
N 1 -1
Ty = Z5'1270T (EB)|7 ] {2 sinh [iT(EB)wm(EB)]} exp(—Sg/h).  (2.65)
m=1

The pre-exponential factor can be related to the eigenvalue spectrum of the second func-
tional derivative of the Euclidean action at the bottom of the well and the saddle point,
respectively,

m  [hB 1/2 det (625 /6%x2) 5 1/2
I L= — d 2 X=Xg _ h 5
' {QWH/‘) bl } [|detl(525E‘/6X2)xx3(T)|] exp(=5p/h).  (266)

where det’ means that the zero eigenvalue has to be omitted. Finally, the rate can be
written in the compact form

2
Fow = - ImF, (2.67)

where the equilibrium free energy is given by
exp(~BF) = [ Dx(r) exp(—Splx, /). (2.68)

Crossovers in the quantum decay rate

In the quantum regime, the extremal of the action Sp plays the same role as the saddle
point of the potential energy V; in the classical regime. In fact, in the high temperature
limit, T > Ty, the bounce action converges to Sg — hV;/kpT.

Analogous to the classical case, one defines first-order and second-order crossovers in the
quantum regime. Crossovers occur, if a new saddle point of the Euclidean action becomes
the lowest one. A first-order crossover is due to a change of the relevant saddle causing a
discontinuity of the rate as a function of an external parameter (see Fig. 2.2, but replace
r — ¢ and Vi(r) — Sg(¢).) If at the saddle a stable mode of the action becomes unstable
upon tuning an external parameter, the saddle point of the action bifurcates. This leads
to a second-order or continuous crossover from one decay regime to the other.
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2.2 Model

2.2.1 Euclidean action

Let us consider a system of N degrees of freedom with a Euclidean action
hp
Sp = /0 dr [K(x) + B(x) + D(x)], (2.69)

where 7 is the imaginary time, x = (zo, ..., xy_1) represents the coordinates of the degrees
of freedom, F is the potential energy, and D models the dissipation. The “kinetic” energy

is given by
N—1 2
m o,
K(x) = 0 ( ) ,
2 =\ 0r
where mg corresponds to the mass of an individual particle. Each of the particles ex-

periences a single-particle potential U(z,), and interacts with the others via spring-like
nearest-neighbor interactions,

N-1 N-1
E(x) = B S (@0 —x0s1)’+ > Ulzy), (2.70)
n=1 n=0
where k is the spring constant. We assume that all the particles are initially situated near
a local minimum of the potential U. The coordinates x, measure the distance of each
particle n from the minimum at x, = 0. Close to x, = 0, the single-particle potential can
be approximated by a cubic parabola,

Ty \ 2 T\ 3
U(z,) =Usp l?,A <—"> —2 (—”) ] : (2.71)
r r
Here A < 1 is a tunable parameter. The constants U and r are the characteristic energy
and length scales, respectively. At x, = rA the single-particle potential has a maximum.
The energy difference between the local minimum and the maximum is Up = U(rA) =
UgpA3. Dissipation is modelled by coupling each particle to a bath of harmonic oscillators
as introduced in Sec. 2.1.1 for the classical case. For an ohmic environment, after tracing
out the bath degrees of freedom, the kernel of the influence action reads [3, 65],

hp
a d 0% Ox sin [hl(T — T')]

D(x) = — - —1In
where 1 = my7 is the phenomenological friction coefficient.

Y

"o Jo 7—87” or

2.2.2 Physical systems
Josephson transmission lines

Among the physical systems that can be described by the action in Eq. (2.69) are current bi-
ased one-dimensional arrays of identical parallelly coupled Josephson junctions, also called
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Figure 2.3: A discrete Josephson transmission line. The relevant degrees of freedom are
the phase differences ¢,, across the junctions.

discrete Josephson transmission lines (DJTL) [20], see Fig. 2.3. Within the framework of
the resistively and capacitively shunted junction (RCSJ) model, the potential energy of a
system of IV identical JJ’s in the presence of a bias current [ is given by

E'2 N-1
V(SOUV":SON 1 = 2chznz:1 — Pn— 1
N-—1 [SO
E 1— n) — 2 2.72
By 3 |1 cos(n) — 77 (2.72)

Here the phase differences across the JJ's are ¢, ..., px_1. The first term in Eq. (2.72)
represents the interaction energy due to the inductances between the loops. Here only the
self-inductances of the loops are taken into account, whereas the mutual inductances are
neglected [66]. Here, E; = (®y/2m)I, is the Josephson energy, I. the critical current of a
single junction, L is the inductance, and ®y = hc/2e is the flux quantum. The second term
represents the tilted washboard potentials of the driven JJ’s that arise due to the relation
between currents and gauge invariant phases across the junctions. If we concentrate on
the experimentally most interesting limit of currents I close to criticality, NI. — I < N1,
the tilted washboard potential can be well approximated by its cubic expansion, and we
can identify E =V [see Egs. (2.70)-(2.72)] with k = E2/LI?, Uy = 4/2E;/3, r = 2V/2,
A =./(1-1I/NI.), and z, = ¢, + rA/2 — x/2. In addition, we can use the particle
picture, if we relate the mass my to the capacitance of a junction by my = C'(®q/27)? and
the friction coefficient to the inverse of the ohmic shunt resistance, n = 1/R. Here, we
consider systems with an overdamped dynamics such that we can neglect the contribution
of the massive term.

Vortices in layered superconductors

Another physical realization of the model described by Eq. (2.69) is a stack of pancake
vortices trapped in a columnar defect, which is artificially introduced in a layered super-
conductor. Both the magnetic field that produces the pancake vortices and the columnar
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Figure 2.4: A stack of “pancakes” produced by a magnetic field B applied perpendicular to
the layers. The pancakes are coupled to each other via magnetic interaction and Josephson
currents. A columnar defect pins the vortex. When a current j is flowing through the
system, a Lorentz force f;, acts on the pancakes, reducing the energy barrier the vortex has
to overcome to escape from the defect.

defect are perpendicular to the superconducting layers; see Fig. 2.4. Once a bias current
Jj = je, flows through the layers perpendicular to the magnetic field pointing in the 2
direction, the pancakes will be driven by the resulting Lorentz force. The corresponding
free energy reads

£ N—-1 ) N—-1
F= b3 (u— w4 Y U — £ w)] (2.73)
n=1 n=0

The displacement of the nth pancake vortex from its equilibrium position in the colum-
nar defect is now given by a two-dimensional vector u, = (U4, tny). The first sum in
Eq. (2.73) models the magnetic and Josephson couplings between the layers by elastic
interactions between pancakes in adjacent layers [67]. Here g, = (g9A2,/A2) In(Agp/Eap) 18
the elastic constant, ¢g = ®2/(4m\yp)? is the vortex self energy per unit length, s is the
interlayer spacing, and &, is the in-plane coherence length. Further, A\. and A, are the
flux-penetration radii in the ab-plane and perpendicular to it, respectively. The second
sum contains the columnar defect pinning potentials U, felt by the single pancakes and
the Lorentz force f; = ®¢ j A e,/c, where e, is the unit vector pointing perpendicular to
the planes. The potential U, is smooth on the length scale £, with a local minimum at
the center of the defect. An upper estimate for the depth of the potential well is given by
Up = degIn(R/&u), where R is the radius of the columnar defect [36] and the parameter
d denotes the superconducting layer thickness.

In the large current limit, A = /1 — j/j. < 1 gives a measure of how close the current
j is to the critical current j.. Then the sum of the pinning and the Lorentz part of the free
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energy is approximately

Nl u 2 u 33 fUpy\2
2 R rR) "2\R

where we have kept only the terms that are of order A®. The terms proportional to
A(tny/R)?* and u? ju,./R?, that are of the order A*, have been neglected. Hence the
displacements in the y direction are essentially decoupled from the displacements in the
x direction. As a consequence, two identical integrals over u, , appear in the enumerator
and in the denominator of the decay rate expression [14, 15], which will cancel each other.
For this reason, we will neglect u,,, in the following. Renaming z,, = u, ,, we obtain Eq.
(2.70) with k = ¢;/s. At low fields and low temperatures, the friction constant is given by
the Bardeen-Stephen expression, n = ®,H,,/p,c*, where H,, is the upper critical magnetic
field, p, is the resistivity in the normal state, and ¢ the speed of light. In most to-date
known type-IT superconductors, the vortex mass is extremely small and inertia terms are
commonly neglected in the equations of motion [36].

2.2.3 Extrema of the Euclidean action

By applying the variational principle to the Euclidean action of the overdamped system,
one finds the equations of motion in imaginary time

m% + VE(x / dT—Cot [hﬁ(T—T)]zo. (2.75)

Their solutions are given by the extremal trajectories, of which the saddle-point solutions
are of special interest, since they lead to the decay of the chain from its metastable state.
At high temperatures, quantum fluctuations play a minor role and the solutions of the
equation of motion are time independent, 0,x = 0. Hence, they are given by the extrema of
the potential, VE(x) = 0. However, below a crossover temperature T, quantum tunneling
becomes relevant for the decay process and the solutions of the equation of motion are a
function of the imaginary time.

A trivial type of saddle-point solution can be readily constructed from physical argu-
ments. Consider the case in which the attractive interaction between the particles is much
larger than the energy barrier. At high temperatures, the strongly coupled particles most
probably are thermally activated over the barrier all at once and the chain basically be-
haves as a rigid rod. In this case the saddle point of the potential E is identical to the
local maximum of the single DOF potential, o = ... = zy_; = rA. If, on the other hand,
the energy barrier is of the order of the interaction strength or even larger, another saddle
point of the potential emerges. Then above a certain barrier height the chain preferably
decays via a kinked saddle-point solution with xy # ... # xy_; that we call elastic. In the
quantum regime, T' < Tj, similar types of saddle points can be found. Since the saddle-
point solutions determine the decay behavior, we find four decay regimes: thermal-rigid,
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thermal-elastic, quantum-rigid, and quantum-elastic. In the following sections, we analyze
the extrema of the Euclidean action which determine the decay in the various regimes.

Crossovers in the decay rate can also be related to the behavior of the pre-exponential
factor. An example is the crossover from boundary- to bulk-excited decay, which is dis-
played by the model considered here and which is discussed in the context of thermal
decay.
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2.3 Thermally activated decay

2.3.1 Crossover from rigid to elastic decay

The thermally activated escape from the local minimum X,;, = (0,...,0) of the potential
proceeds mainly via the saddle-point solutions xg of (2.70). These unstable stationary
solutions satisfy VE(xg) = 0 and their curvature matrix V(xg) with elements

32

02,0, Blx;) (276)

Vnm(xs) -
has at least one negative eigenvalue.

Saddle-point bifurcation

The saddle point x5 = (rA,...,rA), which we call the rigid saddle point (rs), can be
readily identified. In Appendix A we calculate the eigenvalues of a curvature matrix for a
uniform extremal solution. Using Eq. (A.10) we find the eigenvalues for V(x),

6UpA
p = =0+ dwsin® (%) . (2.77)
The lowest eigenvalue pff = —6UpA/r? < 0 indicates that there is at least one unstable
direction. It is the only one, if A is smaller than
2602 L/ W
S i — . 2.78
3Up <2N> (2.78)

However, when A — A,, the eigenvalue p® = 6Ug(A, — A)/r? vanishes. At A = A, the

saddle splits indicating the existence of an elastic saddle-point configuration x.s. Below,
we will show that for A > A, the energy F/(xe) is smaller than F(x,) = NUp. Hence the
elastic saddle-point configuration x¢s instead of the rigid one is the most probable config-
uration that leads to decay. One identifies the energy of the most probable configuration
with the activation energy V,. The saddle-point bifurcation can thus be interpreted as a
crossover between two types of decay: the crossover from a rigid regime (A < A,) with
an activation energy V, = NUjy to an elastic regime (A > A,) with V, = F(xe). The
corresponding decay diagram is shown in Fig. 2.5.

Rigid and elastic saddles

We now calculate the elastic saddle-point solutions. First, we discuss the appearance of
the elastic saddle in the crossover regime for arbitrarily many DOF. The evolution of the
elastic saddle point with increasing A is elucidated by analyzing the exactly solvable case
of three DOF. Far from the crossover, the three-particle result is used to make an ansatz
for the N-particle solutions, which can again be determined perturbatively.
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1
~ /A:A*
<
~ ol o A>A
D v *
o | <
A<A elastic
0 rigid .

Figure 2.5: The decay diagram of a system with a small number of degrees of freedom N.
The solid line and the dots indicate the crossover from rigid to elastic decay at A = A, as
a function of N.

Near the crossover, we expand the elastic solution around the rigid one, X¢5 = X5 + 0x.
Then E is most conveniently represented in the coordinate system of the principal axis of
H (xys). The transformation is achieved by rewriting x as a trigonometric polynomial,

Tn = 1A |qo + \/§]:Zjllqk cos (M)] . (2.79)

Here the coordinates g, are the dimensionless amplitudes of the Fourier modes with a wave
number k that measure the deviations from the minimum solution z™" = 0. In vector
notation they read q = (qo,...,qn_1). We define the dimensionless potential energy,

1
_— )\mm 24 2.80
V(@) = 5 Z (a), (2.80)
where dr? "
min __ KT 2 Q
At = SUA sin <—2N> +2 (2.81)

are the eigenvalues of (0,,,0,)) evaluated at the local minimum q = 0 and N'(q) contains
the cubic terms,

) N-1 N
N(q) = —gqg’ — 2qp Z qi Z (QZk — Q(N-— k))
k=1 k=1
C2v2 X

Z Uk (Gm+k + Gm-k — ©N—m—k) -
m>k=1

3
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Here, we define ¢, = 0 for £ > N — 1. At the rigid saddle q,s the eigenvalues of the
curvature matrix (0y9,)) are given by

4kr? wk
A\ = in? [ — | — 2. 2.82
T au,A <2N> (2:82)

For A < A,, where the saddle-point solution is the rigid one with x, = RA, we have
¢o = 1 and ¢x~o = 0 yielding V(q,s) = 1/3. The second order expansion of V around the
rigid saddle point with q = q,s + q thus reads

1 1 N—-1
V) =<+ > A\ (2.83)
3 24

At the crossover, A\® vanishes and the quadratic approximation of V becomes independent
of q;. Since large fluctuations in ¢; would not contribute to V), this approximation becomes
insufficient within the crossover regime where A®* < 1. Thus, in order to describe the
contributions of fluctuations in ¢; more properly, higher-order terms in ¢; that arise due
to the coupling to the other fluctuation coordinates have to be taken into account. One
estimates that 6%V ~ ¢, 1¢mzs1 ~ @uz1¢i. In comparison, the third-order terms gxgmgn
with m,n # 1 are much smaller and hence can be neglected. Expanding around the rigid
saddle, gqo = 1 + ¢o and ¢, = ¢ for k£ > 0, we approximate the potential energy thus by

1N—1

V=gt 2 Wi -a (2d0 + V2G2) - (2.84)
k=0

1
3
In the following, we define the crossover parameter & = A, /A. At the crossover o = 1. We
have o > 1 in the rigid regime and a < 1 in the elastic one. Within the crossover regime,
—1 < (a—1) < 1. Note that A\}® = 2(a—1). By solving VV = 0, one finds the extrema. In
addition to the extrema already found in the rigid regime, an elastic saddle-point solution
des With a single kink emerges slightly below the crossover, for a S 1,

es (Oé - 1))‘58

qO = )\rs rs ’
/2
(o — Dapap]

P = [ 2.85
N l I +4ANG | (2.85)

es \/§(Oé - 1))‘58
ds ToNrs 1 ars

AP +4Np
g = 0, k> 2,

where A\’ and A\’ are evaluated at the crossover. This elastic solution has a lower activation
energy than the stiff solution,
(a—1)*

V() = V()] ~ % S (2.86)
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where

1 2 1
0= —— | —+ — ) 2.
5 <>\BS + >\Es> >0 (2.87)

Since both V() and its derivative V. (a) are continuous, but V" («)es is discontinuous at
a =1, the crossover from rigid to elastic decay is of second order.

In order to illustrate that in our discrete model, close to the crossover, boundary nucle-
ation is the dominant process leading to decay in the elastic regime, we will study a chain
consisting of three particles, where the saddle-point solutions can be determined exactly.
The parameter o can now take any value in the interval A, < a < oo. After substituting
AR — 2 AR — 9(1 + o) and A" = 2(1 + 3a), the potential reads

2

V(go,q1,¢2) = q5 — gqg —(1+a)g + (1+30)g (2.88)

V2
=200 (47 + 43) = V20207 + 503,

From the extremal condition VIV = 0 we calculate the extrema and find that slightly below
the crossover in the elastic regime, only qes = (¢, ¢5°, ¢5°) with

@ = 1- 2(1 —a), (2.89)
9 1 ) 1/2

i = (B |30-0)- 0= (2.90)

o o= U - @) (2.91)

is a possible elastic saddle-point solution. Energetically, the sign in front of ¢° does not
have any relevance since ¢; appears only quadratically in V. It arises due to the existence
of two degenerate solutions that can mapped into each other by changing the sign of ¢,
which is equivalent to a mirror symmetry transformation. Inserting the solutions for the
elastic saddle qes into V, we can represent the free energy as a function of «,

V(qes) = é(l + 3a — a?). (2.92)

At a = 1 one finds V(qes) = V(qrs). For a > 1, the value of V(qes) is smaller than that
of V(qys). There is a smooth crossover from the rigid q,sto the elastic configuration s,
which becomes the most probable one. To summarize, the activation energy V, = 90U A3V
of a three particle chain is given by

Ve = 3UpA®, (2.93)

S

Ve = Ugp (A +3A2A - AY)

S

in the rigid and elastic regimes, respectively. In order to visualize the most probable config-
uration leading to decay, we represent the saddle-point solution in the original coordinates
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Figure 2.6: The saddle-point solutions z,, of a system with three degrees of freedom as a
function of the barrier parameter A. For A < A, the system escapes rigidly from the local
minimum of the potential via a configuration where all the particles are sitting on top of the
barrier, z,, = ™. At A = A, the saddle splits and the elastic regime is entered for A > A,.
With decreasing increasing A, xq = z§° approaches the minimum, z; = z{® = rA, and the
last particle zo = 25 — r(A + A,) is hanging over the maximum of the single-particle
potential.

Zo,x1, and x5 as a function of the parameter A. We find that, for A > A,,

o= {A +A, - (A7 4284, —342)" 2] , (2.94)
P = rA,, (2.95)
o= L {A + A, + (A7 4204, —322)" 2} . (2.96)

Note that there exists a second solution with the same energy, which can be found by
simply exchanging the indices 0 and 2. The results are displayed in Fig. 2.6 and illustrated
in Fig. 2.7. By increasing the barrier parameter A above A,, the symmetry along the
defect is broken as the elastic saddle-point solution develops. When A is raised further,
particle 0 approaches the potential minimum at x,;, = 0. Particle 1 tries to adjust between
its neighbors. It is dragged towards the minimum by particle 0, but due to the coupling
to particle 2, there will be a finite distance between the particles 1 and 0. On the other
hand, particle 2 has swapped to the other side of the maximum.

Far in the elastic regime, A/A, > N?, we can generalize this picture to arbitrary
N. Making the ansatz xny_1 > xy_o > xy_3 ~ 0 we find the approximate solutions of
VY =0,

% | ~rA+kr?/6Ug, (2.97)
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Figure 2.7: a) Rigid saddle-point solutions. b) Elastic saddle-point solutions.

%, ~ Kkr’/6Up, (2.98)
Tp<n—3 = 0, (2.99)
and the equivalent saddle x,, — xx_1_, with an activation energy
2

V, = UpA® (1 + 25;A> . (2.100)

The activation energy V; is displayed in Fig. 2.8 for N = 2,3,4. Note, that in this limit
the elasticity term xr? < 2UpA and the activation energy resembles that of a single
particle V; ~ UgA? with a renormalized barrier parameter. This means that for large A
the system cannot gain much energy by nucleating at the boundary and bulk excitations

become important. The bulk saddles are particle like excitations at position m with a
double kink,

o~ r A+ kr?/3Ug, (2.101)
o~ kr? 6Up, (2.102)
o~ 0, (2.103)

where |m — n| > 1. They have an activation energy

Vo m Upa® (14 20 (2.104)
s ~UB UBA ) .

which is larger than the activation energy of the elastic boundary saddles. Though ener-
getically not preferable, for N > 1 the decay can occur via bulk saddle-point solutions
if the barrier parameter exceeds a crossover value, A > A,;. The crossover to this new
regime will be discussed in more detail in the next section.

2.3.2 Pre-exponential factor

Having determined the activation energies V;(A) for the different regimes, the remaining
task is to calculate the prefactor P(A) in Eq. (2.1).
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Figure 2.8: The activation energy Vs normalized to the activation energy of a single particle
UgA? as a function of the barrier parameter A for various number of particles N. For
N = 2,3 the results are exact, for N > 3 the activation energy is calculated perturbatively
in the crossover regime A ~ A, and in the limit of large A. For N = 2 the theoretical
result and the experimental data (full dots) for activation energy are taken from Ref. [68].

Far from the crossover: Gaussian approximation

In the Gaussian approximation, the integrals in Eqs. (2.11) and (2.12) are evaluated by
taking into account only the quadratic fluctuations around the saddle point qs,

1 N—-1
Via) = V(@) + 5 > Nilae = a)°, (2.105)
k=0
and the local minimum qiy,
1 N-1 . )
V(@) & V(amin) + 5 20 A — g™, (2.106)
k=0

respectively. According to Eq. (2.31) one thus obtains a prefactor

1 7 ol v [det V(i) |
p_ L 17 ol o) [ det YV (Xnin) 2.107
o7 2 ( T me 2 | Jde Vx| (2.107)
Ly ([ ) (g
24 4 mor? 2 5 | ’

where the sum over the saddle index s takes into account the contributions of equivalent

saddles. Here (A™in)ymin and (AS)uS are the (dimensionless) eigenvalues of the curvature



34 CHAPTER 2. DECAY FROM METASTABLE STATES: CROSSOVERS

matrices V (xmin) and V(x;) evaluated at the local minimum (Qmin)Xmin and the saddles
(gs)xs, respectively. In contrast to a system with translational invariance, in the finite
systems considered here there is no Goldstone mode of the critical nucleus. Hence, well
above and below the crossover, where pj # 0, the evaluation of P is not corrupted by
divergences.

In the rigid regime, we take only the energetically lowest-lying saddle into account, and
the sum over s reduces to a single contribution. With the determinants det V (xy,;,) and
det V(x,5) given in Egs. (A.7) and (A.9) in Appendix A.1, we find

P(A<A,)= % ( Ty (2.108)

2
4 mor? 2

6UsA v lsinh(NQ) tanh(Q/Q)] 12
sin(NQ) tan(Q/2) ’

where Q = 2 arcsinh(w/2) and Q = 2arcsin(@/2) with w = & = /6UgA/kr2. Below the
crossover, two equivalent low-energy saddle-point solutions arise, as was discussed in Sec.
2.3.1. Taking the sum over both saddles yields

v el v [det Vi) 1
P(A>A*)—7T< P 3 iVl (2.109)

In Egs. (A.11) and (A.12) we have estimated the determinant det V(x.5) and the eigenvalue
ug’, respectively, in the limit A > A,. We obtain

P(AS A~ % ( 7 SUsA 1) 14 O(AL/A)]. (2.110)

4 moTZ B 2

As already mentioned in the previous section, for N > 1 a crossover to a regime can
occur, where the decay dominantly occurs via bulk excitations. The number of degrees of
freedom N,,, where the crossover from boundary to bulk nucleation occurs, is found by
comparing the corresponding rates according to Eq. (2.39). In the bulk regime, one has
approximately N equivalent saddles and thus with Eqgs. (A.13) and (A.14) the prefactor
is given by

NN( 72 6UsA

T or

%) 1+ O(A,/A)]. (2.111)

4 mr?

Comparing the rates for boundary and bulk nucleation with V5 given by Eqs. (2.100) and
(2.104), and P given by Eqs. (2.110) and (2.111), respectively, we obtain

- , (2.112)

1/2
A~ [2kBTln(N/2)]

Note, that within our approximations the choice of the system specific parameters N, R, k
and the temperature 7 is restricted to values that meet the constraint A, < 1. If we vary
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Figure 2.9: Scaling property of the prefactor P as a function of A near A,. P/PF, is shown
as a function of the distance ¢ from the crossover. Both P, and €, are system specific
scaling variables.

the number of particles at fixed A, the crossover from bulk to boundary nucleation occurs
at

2A2
Ny, = 2exp [’W ] . (2.113)

Thus, the stiffer the chain, the longer the system has to be such that bulk nucleation is
favored. At high temperatures the crossover occurs in smaller systems than at low ones.

Near the saddle-point bifurcation: Beyond steepest descent

In the crossover regime, where A — A,, the prefactor calculated in the Gaussian approxi-
mation diverges due to the vanishing eigenvalue \; — 0 as P ~ 1/4/);. The divergence can
be regularized by taking into account the third order terms in ¢; in the approximation of
V(q') around the thermal saddle point. Defining e = —\;/2 = 1 —«, the system-dependent
scaling variables

b~ \/f L 3UsANF| 7 [tanh(€/2) sinh(NQ)Y? [ 3UA3 \'/*
T 4 mr? 2

2 47 tan(m/2N) 873 NkpTé

and

__ (8roksT V2
* \3NA3UR ’
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we show in Appendix A.2 that
P(e) = PsF(e/es), (2.114)

where the function F' is found to be

7r\/@eXP(yZ) [1,1/4(3;2) - 11/4(y2)] . A< A,

F(y) =< 87Y41r(1/4), A=A, (2.115)

m/ Y exp(y?) [L;(yQ) + 11 (y2)] . A> A,

\ 4

For large |e/€s| the prefactor given in Eq. (2.114) matches with the Gaussian result. How-
ever, in the crossover regime, where |e¢/es| < 1, the Gaussian prefactor deviates strongly
from Eq. (2.114), as expected, since here the Gaussian approximation becomes invalid.
Since we considered a metastable situation, where kT < UgA?, we have ¢, < 1. Hence,
the crossover regime is extremely narrow, |A — A,| < A,. The function F' = P/P,, which
is shown in Fig. 2.9, reflects two interesting aspects. First, one realizes that the behavior
of the rate is smooth at the crossover. The divergences that occur in the Gaussian approx-
imation are regularized by taking into account higher orders of the fluctuation coordinates.
Second, F' can be regarded as a scaling function, where the constants ¢, and Ps contain the
system-specific parameters. The scaling relation is universal in the sense that it does not
depend on the details of the considered system. Of course, a constraint is that the crossover
must be of second order to guarantee the validity of the perturbative treatment that we
applied. However, we have excluded systems with a single-particle potential that enforce a
first-order transition from the beginning. Note, that Eq. (2.114) was found by taking into
account only the cubic terms of the modes ¢y, ¢, and ¢». These long-wavelength excita-
tions determine the decay process at the crossover, where the discreteness of the system
becomes irrelevant. Hence the result can be applied to continuous systems as well. In fact,
a similar crossover function is found at the second-order transition from thermal to quan-
tum decay of a single particle in a metastable state [11]. Formally, this theory can also be
used to describe a rigid-to-elastic crossover in the thermal decay of an elastic line escaping
from a homogeneous defect, but with periodic instead of open boundary conditions, which
we considered here. Note that the scaling function found in Ref. [11] is different from ours.
One can indeed show that the functional form of the scaling function is influenced by the
symmetry of the system.

2.3.3 Discussions

We studied the thermal decay of a chain of elastically coupled particles from a metastable
state. The metastability arises from each of the particles being trapped in a local minimum
of their single-particle potential. The energy barrier that separates the local minimum
from energetically lower-lying ones can be tuned by a barrier parameter A. At A = 0
the energy barrier vanishes and the metastability ceases to exist. With increasing A,



2.3. THERMALLY ACTIVATED DECAY 37

we find three regimes. For small A, the decay occurs mainly via a rigid configuration,
where all the degrees of freedom leave the trap at once. At A, = 2rr?sin*(7/2N)/3Up a
saddle-point bifurcation occurs, which marks a crossover from rigid to elastic motion. For
A > A, the decay occurs mainly via boundary nucleation. However, at even higher values
1> A > Ay, > A, a crossover to bulk nucleation can take place.

Our main goal was to evaluate the thermal decay rate I';; = Pexp(—V;/kpT) in the
three classical regimes. This involves the calculation of the prefactor P and the activation
energy V. The latter is given by the energy E of the most probable configuration leading
to decay, namely, the lowest-lying saddle-point solution. We solved the problem for N =3
particles exactly. Furthermore, we treated the case of an arbitrary number N of degrees
of freedom perturbatively in the crossover regime and deep in the elastic regime. We have
shown how the system uses its elasticity to lower the activation energy in the elastic regime.
Whereas in the rigid regime the activation barrier is V™ = NUA3, in the elastic regime
near the crossover V7 ~ V(1—Ce?), where e = 1—A, /A and C' ~ 1 is a positive constant
that depends on the details of the potential. Increasing A far from the crossover in the
elastic regime, the particles first escape via nucleation at the boundaries with an activation
energy V& ~ UA3 + kr?A?/2, where the first term arises from the potential energy of
the activated particle and the second term is the elastic energy of the kink that occurs in
the boundary saddle. Due to the imposed free (von Neumann) boundary conditions, this
kind of activation is energetically preferred compared to bulk nucleation with an activation
energy V5 ~ UpA3 + kr?A%. Since the bulk saddle consists of two kinks, twice the elastic
energy is needed to activate a bulk nucleation process. However, in large systems, with
N > 1, bulk nucleation becomes more probable for 1 > A > Ay, = \/2kBTln(N/2)/m"2.
Above A, the many possibilities to excite a particle somewhere in the bulk, which grow
as N in the prefactor P, outnumber the two possibilities of boundary nucleation. At large
A, the elastic interaction between the particles becomes less and less important and the
activation energy approaches the energy UgA? which is needed to excite a single particle
over the barrier independently of the others. To discuss the relevant energy scales, we now
fix all variables except N. The crossover occurs when the number of degrees of freedom
is increased above Ny, = 2exp(kr?A?/2kpT). Hence, when the elastic coupling is weak
and the temperature is high, bulk nucleation already occurs at lower values of Ny,. The
crossover is thus determined by the ratio of elastic energy and thermal energy.

Second, we determined the prefactor P. Far from the rigid-to-elastic crossover, the
calculation of the prefactor P was done in Gaussian approximation both in the rigid and
elastic regimes. Near the crossover, the Gaussian approximation breaks down due to a
diverging integral, which is caused by a vanishing eigenvalue of the curvature matrix. By
taking into account higher orders in the fluctuation coordinates, we remove the divergence
and obtain a smooth behavior of the rate at the crossover. The prefactor of the rate
exhibits a scaling property P/P; = F(e/es). The function F' is universal, but depends
on the symmetries of the model. The scaling parameters P, and ¢ are system-specific
constants.

At the saddle-point bifurcation V5(A), VI(A), P(A), P'(A), and P"(A) are continuous,

S
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whereas V)'(A) is discontinuous. Hence I'y(A) and T',(A) are continuous, but I (A) is
discontinuous. Interpreting V; as a thermodynamic potential, one easily sees the analogy
between the crossover described here and a second-order phase transition. Note that close
to the crossover the discrete structure of the model becomes unimportant, this kind of
crossover can also be also found in continuous systems [24, 25, 69]. The question arises
whether first-order-like transitions could occur also in the thermal decay of elastic chain
systems. As in the crossover from thermal to quantum decay [6, 18] the type of the
crossover depends crucially on the shape of the single-particle potential U(x,). For a cubic
parabola as is discussed in this work, the crossover is of second order. However, one could
imagine other physical systems where the single-particle potential has a form that causes
a first order transition.

The discrete model that we have used here is quite general. In the following we will
discuss the application of the theory to two physical situations, the dynamics of the phases
in DJTL’s and the thermal creep of pancake vortices in layered superconductors with
columnar defects.

DJTL are parallel coupled one dimensional Josephson-junction arrays, and the N de-
grees of freedom in this case are the phase differences across each of the N Josephson
junctions. In current driven DJTL, metastable states occur when the degrees of freedom
are trapped in a local minimum of the tilted washboard potential common to these systems.
For N = 2, the problem reduces to the decay of the phases in a current biased dc SQUID
[68, 70, 71]. Both the rigid decay [72], where the two phases behave as a single one, and
the elastic case [68], where the two phases decay one after another, were experimentally
observed. In the continuous limit, N — oo, the system becomes identical to a long JJ. The
rigid-to-elastic crossover occurs [24, 25] when the junction length L; becomes of the order
of the Josephson length L; ~ wA;. Here we analyzed a model for a DJTL, that provides a
system to study the intermediate case of decay from a metastable state with a finite num-
ber of degrees of freedom. An experimental investigation of the rigid-to-elastic crossover
requires that the current I can be driven through the crossover current I, = N1.(1 — A?).
An orientation for the choice of the system parameters can be obtained by comparison with
the de-SQUID [68, 72], noting that I, — NI, ~ ®2/(N3L*I.). A systematic experimental
study of the rigid-to-elastic crossover as a function of the system parameters L, I., and
N is still lacking and would be highly desirable. A remaining question was, if additional
crossovers occur in systems with a large number of degrees of freedom. In addition to the
rigid-to-elastic crossover due to a saddle-point bifurcation of the potential energy, we find
that in systems with large N a second crossover from boundary to bulk nucleation can take
place. DJTL’s with a large number of degrees of freedom offer the possibility to observe
such a crossover by varying system-specific parameters or the temperature.

Let us now discuss our theory in the context of a single stack of pancake vortices trapped
in a columnar defect in a layered superconductor. In the presence of a current density j
that flows within the layers, the vortices are driven by the resulting Lorentz force. Once
thermally activated from the defect, the pancake stack starts to move through the sample
until it is trapped by another defect. The resulting motion is called thermal vortex creep.
A typical example of a layered system is a high-temperature superconductor (HTSC). A
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HTSC like YBCO is characterized by an anisotropy ratio of penetration depths ./ ~ 7,
and the ratio of the penetration depth to the coherence length is \y;p/&w ~ 100. The
distance between the layers s and their thickness d are s ~ d ~ &, and the defect radius
is R ~ 2£,. In order to observe the transition from rigid to elastic decay experimentally,
the ratio (j. — j«)/je > 0 must be sufficiently large. However, substituting the defect
energy Up ~ degln(R/&y,) and the elastic energy £ /s, with e, = (go/7%) In(Aap/Ews),
into (j. — j«)/je = AZ? one finds that even in systems with low anisotropy and a small
number of layers (j. — j.)/j. < 1072, indicating that the phenomenon could hardly be
observed experimentally in high-T, superconductors since j, is very close to j.. Thus, for
large currents j. — j < j. as considered here, the vortex system turns out to be mainly
in the elastic regime where the layered structure of the material is important. Then, the
activation barrier V; is of the order of the single-particle barrier U (1 — j/j.)%?, which can
be interpreted as a vortex creep induced by the escape of individual pancakes from the
columnar defect [73, 74]. This “decoupling” regime can be also entered from the low-current
half-loop regime j < j., when the width of the bulk critical nucleus becomes of the order of
the layer separation [67]. We find that at low temperatures T the thermal creep is induced
by boundary (surface) nucleation. It would be interesting to investigate experimentally if
the crossover from bulk to surface nucleation might be observed in thin layered samples. In
sum, we calculated analytically the creep rate for coupled particles trapped in a metastable
state and found that an interesting behavior arises from the interplay between elasticity,
pinning, discreteness and finite-size effects.



40 CHAPTER 2. DECAY FROM METASTABLE STATES: CROSSOVERS

2.4 Quantum statistical decay

So far we have discussed the classical regime at rather high temperatures, where the decay
is determined by the extrema of the potential energy and the thermal fluctuations around
them. Lowering the temperature, quantum fluctuations become relevant and one encoun-
ters the following scenario: above the crossover temperature from thermal to quantum
decay, the quantum fluctuations around the time-independent thermal saddle-point solu-
tions lead to an enhancement of the decay rate. The quantum mechanical enhancement
factor is related to the spectrum of the second functional derivatives of the Euclidean action
evaluated at the minimum and the thermal saddlepoint solution, respectively. Lowering the
temperature, the quantum fluctuations become increasingly important. Within a narrow
regime around the crossover temperature, the quantum corrections become exponentially
large. Beyond the crossover temperature, in the quantum tunneling regime, the decay is
dominated by the time-dependent saddle-point solutions of the Euclidean action.

In this section, which was partly published in Ref. [75], we discuss the effects of
quantum fluctuations on the decay rate in the context of overdamped DJTL, which provide
an ideal system for experimental investigations that can be manufactured with present day
techniques. We first show the enhancement due to quantum fluctuations in the thermal
regime. We calculate the crossover temperature from thermal to quantum decay in the
rigid, as well as in the elastic regime. Then, we discuss the saddle-point solutions of the
action as a function of the temperature and the energy barrier height, which in the case
of DJTL or pancake vortices is determined by the bias current. An iterative perturbation
procedure to calculate these extrema close to a saddle-point bifurcation is presented and
applied to evaluate the split-instanton solutions, the elastic quantum saddle-point solutions
of the Euclidean action. The various decay regimes, which are summarized in a diagram
and the corresponding relaxation rates are discussed. Finally, the conclusions are drawn.

2.4.1 Onset of quantum fluctuations

In order to keep the dimensionless notation of the previous section, let us introduce the
Euclidean action in terms of the dimensionless coordinates

S = 9/7r 7Ly, (2.116)

where the dimensionless imaginary time is given by 7 = 277/hf and the Euclidean La-
0 6 0
Lp=m" (—q> +V(q) q/ d~'—1n

grangian is
-7
s .
87' 7'('\/— 87' 111 2

Here g = 3NRURA3/(2rkpT) > 1 is the semiclassical parameter, the dimensionless tem-
perature is given by 0 = mnkgT/[2%ik sin?(7/2N)], and M = 12UgAm/(r?n?) is the dimen-
sionless mass. In this chapter we will discuss the theory in the context of DJTL and it is
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convenient to introduce the dimensionless current J = 1/a?. Note that J = 0 corresponds
to criticality, I = N1..

From Eq. (2.63) one finds that the rate is related to the spectrum of the second func-
tional derivative of the Euclidean action,

W«

__pa@fV1l det«@z>]l/2 )
I = o= II 2t (0L)] exp (—3V;), (2.117)

k=0

where the fluctuation operators QZ and QZ are defined by the second functional derivatives
of Sg at the minimum q,,

A T 0%SE[q,
Qpa?) = [ ar TS g (2.118)
- 5qk
and at the thermal saddlepoint qs,
A T 0%Sk[qs
Qra(7) = / d%'—(;;? ]q(f’), (2.119)
o 2

respectively. The eigenvalues of the operator Q% are given by
2

, 0 0
CAR = i 2ﬁ|n| + MjnZ. (2.120)

For the thermal saddlepoint q, the eigenvalues of Qi read

2
AR =3 +2%|n| +M97n2. (2.121)

The ratio of the determinants appearing in Eq. (2.117) is conveniently expressed in terms
of the eigenvalues “A* and *A%

(2.122)

det(Qg) ﬁ Ay AR {F[l+p1(AZ“”)]F[1+p2(A;Ti”)]}2
2 AL AL L T+ o OPITL + pe(A)] [

)| n=ms

where the products of eigenvalues are rewritten in terms of Gamma functions, and p; » are

the roots JT
J
,01,2()\) = m(

Introducing the quantum correction factor

15 V1= MN). (2.123)

o Nﬂl {F[l + o (AP)T[L + po(Apim)] } , (2.124)

im0 U T4+ e (DI + p2(A})]
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the thermal decay rate in the rigid regime including quantum corrections can thus be
written in terms of the purely classical result,

Ly = Cqchl- (2125)
At high temperatures cg,, simplifies to

7'('2J N-1

Cam = €XP (W I;](A;”i" — A;) + 0071, (2.126)

which is independent of dissipation, since § oc n and M oc 2. In the limit § — 0o, ¢4
becomes unity. In the rigid regime one finds

212]
Com = €XP (%) + Ol (2.127)

2.4.2 Crossover temperature from thermal to quantum decay

Since \j is negative, there exists a characteristic temperature 6y at which *A? vanishes,
6o 62
N +2—=+ M—2 =0. 2.128

Thus, lowering the temperature, ¢y, increases and diverges at

0 = g (,/1 — M) — 1) . (2.129)

_ VI

The overdamped limit reads

0 5 (2.130)
For the rigid regime, where \j* = —2 we find
0o(J <1) =V, (2.131)

and in the elastic regime with A§* & Aj® — 2AT5ALS /(A5 — ALP)

Oo(J21) = VT + (] = V) (2 - m> . (2.132)

The divergence of ¢, at 0y has its origin in the Gaussian treatment of the fluctuations,
which breaks down in the thermal to quantum crossover regime. Taking into account higher
order fluctuation terms in the action in the same manner as presented for the thermal decay,
the divergent terms should be regularized, as was shown for the single particle case [2, 11].
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2.4.3 Instantons

For # < 6y quantum tunneling becomes relevant and the instanton solutions dominate the
decay from metastability. For J > 1, the crossover from thermal to quantum decay is of
second order. A detailed procedure showing how to obtain the saddle-point solutions close
to the thermal-to-quantum crossover was given in Ref. [76] and can be applied to calculate
the quantum elastic solutions. In this paper we will concentrate on the current regime
J < 1, where in addition to the transition from the thermal to the quantum rigid regime
a crossover from the quantum rigid to the quantum elastic phase can take place.

The rigid quantum solution is found by setting g = 0 for £ > 0. In this case the
equations dSg/dqy = 0 with k > 0 are trivially satisfied and the remaining equation for
k = 0 describes the thermally assisted quantum tunneling of a single degree of freedom ¢g.
Its solution is the well-known instanton obtained by Larkin and Ovchinnikov [6]

) (7) = <£>2 - ! (2.133)

0o J1—02/62 cos(7)
(0) ) _

Inserting ¢y’ and ¢,J, = 0 into Eq. (2.116), one obtains the extremal action in the rigid
quantum regime
1/6)°
Ry i I 9.134
3(%)] (2.131)
where Sy = 4rNnAZ.

As for J > 1, nonuniform saddle-point solutions of the action exist in the quantum
regime in a certain parameter range even for J < 1. If the action evaluated at this
extremum is lower than S, the nonuniform configuration is the most probable one leading
to decay from the metastable state via quantum tunneling. Tuning the temperature  at
a fixed bias current, a nonuniform saddle-point solution can develop in two different ways.
One possibility is that a less probable nonuniform configuration, which coexists with the
rigid saddle point above a critical temperature 6;, becomes the lowest-lying saddle point
of the Euclidean action below #;. Then the most probable configuration abruptly changes
from uniform to nonuniform. Since the first derivative of the rate 0yI is discontinuous at 6,
the crossover is of first order. Another scenario is encountered, if at a critical temperature
0y the rigid saddle point bifurcates into new saddle points which have the lowest action.
This crossover, known as instanton splitting, [70, 71] is of second order.

A strategy to determine nonuniform saddle-point solutions for J < 1 is to first search
for a saddle-point splitting and then to verify whether a first-order transition might have
occurred before the bifurcation has taken place. If a first-order transition can be ruled out,
the new bifurcated saddle points have the lowest action. In this case the bifurcation causes
a second-order crossover from a single to a split-instanton regime.

Sqr — SO

Following this idea, we first identify the saddle-point bifurcation, calculate the split
instantons and test whether or not a first-order transition has already occurred.
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2.4.4 Iterative perturbation scheme

In this section we present an iteration scheme to calculate the split-instanton solutions for
J < 1. We start by expanding the coordinates around the single instanton solution,

ar(7) = ¢t (F) + an(7). (2.135)

and rewrite the Euclidean action in terms of the new variables,
T 1 N—-1 N
Se = Sgr +g/ dr b Y @Qrdr + N(Q)| - (2.136)
o k=0

The operators Q; are defined as
~ 1 /  0°Spld”]
T) = — dr — —
Qi) gl Squ(F)oq(7) " )
= (7" — gy ()

0 T, 0q(T") 77
+7r\/j/7rdT o7 cot 5 .

To determine the split instantons, we have to find saddle points of the action with nonzero
Gr- Hence we have to solve the equations of motion,

ON(q)
Oqy,

Qrr = — : (2.137)
which constitute a system of coupled nonlinear differential equations. In general, they
cannot be solved exactly. However, close to the saddle-point bifurcation, the extremal
amplitudes ¢, are small and we can calculate approximate solutions by applying an iterative
perturbation scheme. This leads to a hierarchy of inhomogeneous linear equations,

Qg = F, (2.138)

where 7 denotes the iteration step. In the first iteration ¢ = 1 we take only terms into
account that are linear in g,. The higher-order terms on the right-hand side of Eq. (2.137)
are neglected. Thus, Fk(l) = 0 and Eqgs. (2.138), which have to be solved, are homogeneous.
For ¢ > 1, the amplitudes calculated in the previous iteration are substituted into ON such
that the inhomogeneous terms are given by

ON1a¢~(7)]

(7)) = - o, (2.139)

After each iteration step i, we thus obtain approximate (special) solutions for the ampli-
tudes g by formally inverting Eq. (2.138),

) =Qp'F. (2.140)
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Of course, a straightforward inversion is not possible, if Qk is singular. Below, we will
discuss how to handle equations with a singular operator.

The inversion is most conveniently performed by representing Eq. (2.140) in terms of
the eigenfunctions of the operators Q. which we will determine now. One realizes that the
operators Qg and Qk only differ by a constant term

Qr = Qo + A1 =A™

They trivially commute and have a common set of eigenfunctions t,,. The eigenvalues A
of the operators @)y are related by

k 0 i i
Ap = A, + A = A
It is, therefore, sufficient to concentrate on the eigenvalue problem
QO’Qbm = A?nl/)m,

which was studied by Larkin and Ovchinnikov [7] in the context of single-particle tunneling
with dissipation. They obtained the spectrum

A = -2+ 2q,,
A) = —2a,
A’ =0,

A = 2[1+ (jm[ = 2)0/60),  Im| =2,
where a, = 1/2 + 1/5/4 — 62/6% and showed that the eigenfunctions
wm = Z Om,neini—

have Fourier coefficients of the form

Si(Conn + dmp), 1 >0,
Cmn -

)

4+ (Conn + dmp), +£m >0, n<0,

with d,,,, = 0 for |m| < 2 and |n|+2 > |m| > 2. Note that the v, are even (odd) for
positive (negative) m and the S, are chosen such that the eigenfunctions are normalized,

Wmotom) = [ d7 43,(F) = 1

For m = 0,1 they obtained

Congn = <|n| - %M&) e (2.141)
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with tanh b = 6/6,. In fact, calculating the remaining coefficients for m < —1 and m > 2,
we find that Eq. (2.141) holds for any m with

P ~

_Cm,na |n| < |m| - 2’
n=m+2=0,
G =Y 4 (% +1), n=m-2=0,
2
[ L (1) e, Jn] = m| - 2> 0,

With these results, we now represent Eq. (2.140) in terms of the basis 1), with

(i) — (i)
G = Z Ck,mwma

m=—0oo

FO= S £ o,

m=—0oo

and obtain a special solution in terms of the coefficients
o = i/ Ay AS, £0. (2.142)

If for some k" and m’ the eigenvalue A¥, = 0, the operator Qy, is singular and a unique solu-
tion of Eq. (2.138) cannot be found within the ith iteration. However, after performing all
necessary iterations, the solutions have to be the lowest-lying saddle point of the Euclidean
action. This constraint enables us to determine the so far arbitrary coefficients c,g,),m, by

requiring that the Euclidean action as a function of the coefficients has to be minimal,
5 ({e}) = min

2.4.5 Nonuniform instanton solution

After we have explained in detail how to obtain the approximate solutions, we are now ready
to perform the calculations explicitly. First, we show that the instanton splitting occurs
at @ = a, and then we apply the perturbation scheme to determine the split-instanton
solutions.

Recall that a = (A7 — \™")/2 = 1/+/J. The negative A} indicates that the operator
Qo has an unstable mode, which is responsible for the imaginary part of the free energy
and hence for the finite decay rate of the metastable state. For a > a., the spectrum of
Q. is positive definite. Since Ay — A" > 20, for k > 1 we have AF > 0 and hence all
higher modes g;~¢ are stable. For a < a, the lowest eigenvalue A} of (1 becomes negative,
indicating that the corresponding mode also becomes unstable and that a new saddle point
with a lower Sp exists. Thus at o = «, a split-instanton solution emerges [71].
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To determine the split-instanton solutions for aSa., we now apply the iterative pro-
cedure and solve Eqs. (2.138). In the first iteration F) = 0. According to Eq. (2.142)
most of the coefficients c,(clzn are zero except c(()f),l and c%. The coefficient c(()f),l cannot be
uniquely determined since A°, = 0. However, the corresponding odd eigenfunction ¢_; is
associated to imaginary time translation symmetry and does not contribute to the value

of Sg. We have, therefore, the freedom to choose c(()z,)_l = 0 within this and the following

iterations. At a = a,, where A} = 0, the operator (); becomes singular. Here the instanton
splits since the coefficient ( = cf& of the dangerous mode v, of ()1 can have a finite value
that remains to be determined by minimizing Sg(¢). To lowest order, the split-instanton

solution at o = a. is thus given by

@V (F) = Cho(7),  Gul(F) =0. (2.143)

In analogy with the Landau theory of phase transitions we can interprete Sg as a ther-
modynamic potential and  as an order parameter. A finite  indicates the existence of a
quantum elastic solution.

Using Q1(a) = Q1(a.) + 2(a — o), recalling that Q1 (a.)yy = 0 and inserting the
perturbative result (2.143) into Eq. (2.136), one obtains the split-instanton action up to
terms quadratic in the dangerous mode, Sg(¢) = S, + g(a — a.)(?. However, in order to
be able to minimize the action as a function of ( for a < a., at least the terms quartic in
¢ have to be calculated,

Sp(C) = S + g [(a — ac)¢® + 6¢1] . (2.144)
The case ¢ < 0, which indicates that a first-order transition has occurred will be discussed
later in more detail. For § > 0, the minimal value of Sg is given by [(pnin| = 1/ (e — @) /20
and the extremized action reads
2
a— Qg
Sqe - SE(szn) - Sqr - % (2145)

Note that ( is small close to a. and can be regarded as a perturbation parameter.

In the first iteration we considered corrections to the single instanton solution of the
order . In order to determine 4, the split-instanton solution up to orders of (? has to
be treated. Consequently, we have to perform the second iteration of the perturbation
procedure. The inhomogeneous terms F,C(Z) in Eq. (2.138) are found by substituting (j,(cl)

into Eq. (2.139). For k # 0,2 the F,EZ) = 0, hence Q“,(f) = q,(j), whereas for £ = 0,2 we
obtain F{? = 2¢2(149)? and F{? = v/2¢%(1%)?. The remaining task within this iteration is
to solve the equations

Quiy” = 2C°(to)’,
@3 = V23 (w)*.
Representing (1) in the basis t,,, we obtain

oo

(%)2 = Z amwm-

m=0
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Note that the odd 1), with m < 0 do not appear in the sum, since (¢9)? is an even function.
The coefficients a,, are given by

A, = <'§/)m7 %) =2m Z Cm,nOO,lCO,nJrl-
I,n

For our purposes it will be more than sufficient to consider only the first three coeffi-
cients ag, a; and ay, since a,,/a,+1 < 1 in the entire quantum regime. After tedious but
straightforward calculations, we find

a@ = (%O‘ﬁ%)%}_(%acj%) 03+(%O‘63; %)% (2.146)
Vo [(200+3) 3% — (ae+3) 4]

N (Croer i) & (it 3 + (oo 1) 147
(a5 F - (o 5] [+ DB - (o )]
(504 _|2_1_§;9_0_ Zaz_i_eﬁ)@_i_ Qa:_f_z)ﬁ v

- 4T %) g 2 e 14;2 03 4 e 38 65 . (2.148)
V[ e 3% 2] [ ) B (oo 2) 8]

am ~ 0, m > 2. (2.149)

Note that for § — 6, the coefficients converge to ay — 1/v/27 and a; — 0 for k >

0. Substituting fo,, = 2¢%a, and fo,, = v2(%a,, into Eq. (2.142) we find excellent
(2) )

approximations of the expansion coefficients g, and céZT)n Having determined cj((f and

~§2), the second iteration of the perturbation procedure is completed.

Evaluating Eq. (2.136) with (162),(152) o (2, we obtain the coefficient § of the quartic
term in Sg((),

~(2)
Lo o -2, &
§ = /., d7 1o (7)] (qo + Wk (2.150)
Performing the integral and using the orthogonality of the ,,, we find
> 2 1
6= — 2_:0 a2, (A—O + A—2> : (2.151)

The function §(0/6,) is shown in Fig. 2.10 for N = 2,3 and N — oo. At first it may be
surprising that the curve for N — oo lies in between the curves for N = 2 and N = 3.
The reason is that for N = 2 the mode ¢, does not exist and § = — > a2,/A%. Since
A2 = A +8a,cos?(m/2N) > 0 for N > 2 it is clear that 6(0/60y, N = 2) > §(0/6y, N > 2).
When evaluating Eq. (2.151) for N > 3 one obtains the relation §(0/6y, N) < 6(6/6y, N+1).
In other words, for N > 3 the graphs lie in between the ones for N = 3 and N — oo.
In the limit # — 0 we find § o 6,/0 when taking into account only the leading terms in
Eqgs. (2.146)-(2.148). Hence, ¢g/d in Eq. (2.145) converges to a constant value for § — 0.
With increasing 6 the coefficient § decreases and vanishes at the characteristic temperature
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Figure 2.10: The fourth-order expansion coefficient 0 of the Euclidean action Sg({) =
Syr+g[(a— @) + 6¢* + ¢ as a function of dimensionless temperature /6, for N = 2,3
degrees of freedom and the continuous limit N — oo. In the low-temperature limit ¢ is
positive and diverges as §(#) ~ 1/6. At the tricritical temperature ;. it vanishes, 6(6;.) =0
and becomes negative for § > ;.. The negative § indicates a first-order transition.

0., where Eq. (2.145) looses its validity. At ;. the first-order and second-order transition
lines merge. In analogy to the classical theory of phase transitions it is called tricritical
temperature [70, 71]. Above 6. the parameter § becomes negative, indicating that the
transition from rigid quantum to elastic quantum decay becomes first-order-like. The
values of 6;. are given in Table 2.1 for N = 2,3 and N — oo. Note that 6. is smallest for
N = 3 and increases monotonically with N for N > 3. Recall that 6,. is largest for N = 2
due to the absence of ¢, in a system with only two degrees of freedom.

We now concentrate on the case where 6 < 0. Then in order to find the minimal values
of Si, we have to determine terms of the action o< ¢°,

Su(C) = Spr+ g [(0 = )+ 0¢* +7¢7] (2.152)

which are obtained in the third iteration (i = 3) of the perturbation procedure. For
k # 1,3 one has (j,(f) = (j,(f). Inverting the equations

Qi = (486” + 2v237) o (7),
Qds” = 2V20000(7)35”
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N 2 3 00

Jie 0.8424 | 0.7652 | 0.7938

O 0.8719 | 0.8000 | 0.8275
6" (04e/60) | —2.274 | —1.384 | —1.675
v(0:./6) | 0.4118 | 0.2105 | 0.2698

Table 2.1: Numerical values of the tricritical current .J;. , tricritical temperature 6,., the
derivative of the coefficient of the forth-order term ¢'(6,./6) and the coefficient ~(6,./6o)
of the sixth-order term for various numbers of degrees of freedom N.

numerically and inserting the values into

v = g [ =A@

—§ (‘152))3 - ((152))2 (2(152) - géN,3q§2’> (2.153)
—[a = cwo(®)] [20” + V2] Cun(7)}

we calculate the coefficient y(6/6y). Minimizing Eq. (2.152) with respect to ¢ for & — . <
62/3~, one obtains, in addition to the rigid instanton solution with ¢ = 0, an elastic

instanton solution with
0 3y
2 __

The first-order transition occurs at @ = oy = «, + §?/4y when the nonuniform solution
becomes the global minimum of the action, Sg(¢) = Sg(0) = 0.

Using the perturbation scheme, one could, in principle, determine the split-instanton
solution to arbitrary order in (. For our discussion of the behavior of the decay rate close
to the crossover from the single instanton to the split-instanton regime, the calculation
shown above is sufficient.

2.4.6 Decay diagram and decay rate

In this section, we discuss the various decay regimes which are presented in the decay
diagram (Fig. 2.11). Let us start with the thermal regime 6 > 6y(J), where the decay
occurs via thermal activation. For J < 1, the coupled degrees of freedom behave like a
single degrees of freedom since the coupling energy is large compared to the thermal or the
barrier energy. Then the system is in the rigid thermal regime. Increasing .J, one enters
the elastic thermal decay regime [77] passing the second-order crossover line at J = 1. On
the other hand, starting in the thermal rigid phase and reducing €, quantum fluctuations
become important and at 6y(.J) a second-order crossover from thermal to quantum decay
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guantum
elastic

Figure 2.11: The decay diagram for N = 3 degrees of freedom in terms of the di-
mensionless current J = {3UpA/[2kr? sin?(7/2N)]}? and the dimensionless temperature
0 = mnkpT/[2hksin?(7/2N)], Criticality I = NI, corresponds to .J = 0. Above y(.J)
the system is in the thermal regime, and at J = 1 a second-order crossover from rigid to
elastic thermal decay occurs. At 6y(.J) a second-order crossover from thermal to quantum
decay takes place. The quantum regime # < 6, is again separated into rigid and elastic
decay. For Jy < J < Ji. the crossover from rigid to elastic decay at 65(.J) is of second
order. For J;, < J < 1 the crossover indicated by 60;(.J) is first-order like. Though the
diagram is similar for different N, the temperatures 6,., 0;(.J), and 6y(J > 1) are altered.
For comparison, the dashed curve shows 6y(J > 1) for a dc SQUID (N = 2).

takes place [6]. Two characteristic currents, Jo = 0.3820 and Jy. as given in Table 2.1
become important in the quantum regime. Below .Jy, the system preferably decays via
the single instanton or rigid quantum saddle-point solution. For J > .J; a transition from
the rigid to the elastic quantum decay regime becomes possible. For Jy < J < J;, the
crossover is of second order and is caused by a saddle-point bifurcation of the Euclidean
action occurring at o = a,. The dimensionless crossover temperature is then given by

0, = (J+\/j—1)1/2. (2.155)

For J,. < J < 1, the crossover is of first order. The transition occurs at o = «;. Near 6,
we approximate & &~ 0'(0y./00)[(6 — 0;.)/6o] and find that in this limit the crossover line is
given by /
B 271 290 1/2
0y = O + 5(6r./00) (a0 —ae) '~ (2.156)
The numerical values for v, 6,., and 0'(0;./6y) are given in Table 2.1. Note that since 0,6,
diverges as o — a, the slope of #;(J) is infinite at the tricritical point. For J > 1 the
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transition from the thermal to the quantum elastic region is again of second order. The
crossover temperature is then given by 6y(J > 1) [see Eq. (2.132)]. The decay diagram
of an overdamped JJ array with N = 3 junctions presented here is similar to that of
the dc SQUID with N = 2. Qualitatively, the diagrams exhibit the same features for all
N. The reason is that for J < 1, the transition lines 6y(.J) and 65(.J) are determined
by the long-wavelength modes q(()o) and ¢;, respectively, and hence are independent of N.
However, there is a difference between the diagrams on a quantitative level, since 6., 0;(J)
and 6g(J > 1) are parametrized by N. For example, compared to the dc SQUID, the
first-order transition region is enlarged for N > 2 and is the largest for N = 3.

[t remains to discuss the decay rate I' ~ exp(—Sg/h) in the four regimes. To expo-
nential accuracy, [' is determined by the extremal of the action Sp, which is given by the
Euclidean action Sp evaluated at the relevant saddle-point configuration xs, Sg(J,0) =
Sg[xs]. The behavior of the rate in the thermal regime was discussed in Ref. [77]. Since
the thermal saddle points x;s are independent of imaginary time, Sgp = AV (x;)/T and the
rate reduces to the classical Arrhenius form, I' ~ exp(—V(x4)/T). In the thermal rigid
regime Sp is given by

250V J

Sy = —“i, J < 1. (2.157)
3 0

Realizing that in the thermal regime § = —(2/A)® + 1/A5*)/(27) and recalling that o =

1/+/J, one finds, with the help of Eq. (2.86), the thermal elastic result,

(o — 1)?

Ste:Str_g 48 )

J21. (2.158)
In the rigid quantum regime, the action S, is given by Eq. (2.134). Inserting Eq. (2.154)
into Eq. (2.152) we find the extremal action in the quantum elastic regime for J < 1,

g
Sqe = Sqr — W {96’7(0[ — Oéc) - 2(53

+2[6 — 3y(a — ac)]a/z} , (2.159)

where 6(6/6y) is given by Eq. (2.151) and (0/6) was calculated numerically using Eq.
(2.153). The rates for various currents .J are displayed in Fig. 2.12 as a function of
temperature. For J < .Jy the system is in the rigid regime for all temperatures 6 (see
Fig. 2.11). For #/6, > 1 the thermal rigid result (2.157) applies. In the rigid quantum
regime /6, < 1, in comparison with the purely thermal result, the rate is increased due
to quantum fluctuations according to Eq. (2.134). In the chosen representation S, is
independent of system-specific parameters. Experimentally measured decay rates of rigid
systems should thus collapse onto one curve. For J > Jj tunneling of nonuniform instantons
becomes possible and B = S, is reduced further compared to Sy,. In Fig. 2.12 we displayed
B for a system with N = 3 degrees of freedom. As an example for the behavior of the rate
close to a second-order crossover to the split-instanton regime we chose J = 0.6 < Ji.. The
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0/6,

Figure 2.12: The extremal of the action B as a function of temperature 6 for various
normalized currents .J. The dashed line shows the purely thermal behavior in the rigid
regime. The rigid quantum result is represented by the solid line. The dotted and the
dashed-dotted lines display B of a system with N = 3 degrees of freedom for J = 0.6 and
J = 0.9, respectively. For J = 0.6 a second-order crossover to the split-instanton regime
occurs at 6, = 0.7906,. A first-order crossover takes place for J = 0.9 at ; = 0.9756,. The
inset shows the cusplike shape of B close to 6.

crossover occurs at #, = 0.7906,. For J = 0.9 > J,., the behavior of the rate is different.
The slope of Sy changes abruptly at 6, = 0.9756,, which indicates the occurrence of a
first-order crossover.

2.4.7 Discussions

In the present work, we studied the decay of metastable states in current-driven parallel
coupled one-dimensionsal Josephson-junction arrays at zero voltage in the overdamped
limit. We model this system by N elastically coupled degrees of freedom trapped in
the minimum of the single-particle potential and interacting with a bath of harmonic
oscillators. The escape from the trap can be induced by thermal or quantum fluctuations.
Three energy scales determine the decay behavior of the system; the temperature, the
barrier height of the trap and the interaction between the particles. Accordingly, one finds
four different regimes for the decay rate which we summarized in a decay diagram in Fig.
2.11. To calculate the decay rate we use the thermodynamic method. In the saddle-point
approximation, the decay is then determined by the most probable configurations leading
to an escape from the trap which are given by the saddle points of the Euclidean action. In
the thermal regime the saddle-point solutions are independent of the imaginary time and
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identical to the saddle points of the potential energy [77]. If the interaction between the
degrees of freedom is strong compared to the barrier energy, rigid configurations dominate
the decay. Reducing the bias current, the barrier becomes larger and above a critical value
the system preferably decays via an elastic configuration. On the other hand, starting
in the rigid thermal regime and lowering the temperature, quantum fluctuations become
important and the decay most probably occurs via the rigid quantum saddle-point or
single-instanton solution of the Euclidean action [6]. Inside the quantum region, an elastic
regime can again be entered by increasing the barrier above a critical value. In order to
determine the nonuniform instanton solutions of the quantum elastic regime, we worked out
an iterative perturbation procedure. We performed the calculations close to the crossover
from rigid to elastic quantum decay analytically up to second order and realized the third-
order calculation numerically. We were then able to give quantitative results for the decay
rate including the quantum elastic regime. The behavior of the decay rate is similar for
SQUID’s, DJTL’s, and long JJ’s. In the rigid regime the decay occurs via a saddle point
that is uniform in space and hence, the qualitative nature of thermal or quantum decay
is not sensitive to the number of degrees of freedom. Further, the crossover from rigid to
elastic decay is caused by the excitation of long-wavelength normal modes of the system,
which are equivalent in the three physical systems discussed here.

We want to emphasize that although our conclusions are drawn for overdamped sys-
tems, the reasoning and the procedure also apply for the underdamped case. Indeed, on
a qualitative level, the understanding of the quantum rigid-to-elastic crossover in under-
damped DJTL’s and long JJ’s can be obtained on the basis of the theoretical work on
SQUID’s (Ref. [70]). However, in order to have quantitative results, one has to extend the
theory following the scheme proposed here.

One interesting aspect of the quantum rigid-to-elastic crossover is that depending on
the current, it can be either of first or second order, whereas all other crossovers that we
discussed are of second order. Even more fascinating is the fact that this crossover is an
intrinsic quantum property and can be regarded as one further evidence for macroscopic
quantum tunneling, if measured. Experimental verifications of the predicted enhancement
of the decay rate due to the elastic properties (see Fig. 2.12) are thus highly desirable. An
experimental detection of the first-order-like crossover would be challenging, but seems to
be difficult, because the cusplike behavior of the rate at the crossover is not very pronounced
and occurs in a small current interval. In standard experiments, the rate is obtained from
the switching current histogram. The current intervals of the histogram have to be much
smaller than (1 — Jy.)E%/(2N3L?1.) with J;. < 0.85. Further, the number of events per
interval has to be large in order to resolve the cusplike feature. It would be convenient to
perform the measurements on systems with N = 3 degrees of freedoms since in this case
the first-order region is the largest (see Fig. 2.11).

In sum, we calculated the decay rate of overdamped current-biased one-dimensional
Josephson-junction arrays at zero voltage (including SQUID’s, DJTL’s, and long JJ’s)
analytically and numerically in several distinct decay regimes. An experimental observation
of the predicted enhancement of the decay rate in the elastic quantum regime would give
further evidence for macroscopic quantum tunneling in these systems.



Chapter 3

Plastic depinning transition in
artificial vortex channels

In the last chapter we have studied thermal and quantum escape processes of driven inter-
acting particles from a metastable state. The only way for the particles to leave the trap
is to overcome the energy barrier that hampers their motion. When the drive is increased
up to a certain threshold value, the barrier vanishes and metastability ceases to exist.
This transition from a pinned to a moving state is called depinning transition. Depinning
transitions occur in many physical systems and in various kinds of manners. In systems
consisting of driven particles that interact with one another, the depinning transition be-
comes rather complex when disorder is present and is considered as a fundamental problem
in non-equilibrium statistical mechanics.

A prominent physical system displaying a depinning transition is the vortex lattice in
type-I1 superconductors. One can roughly distinguish between two types, namely elastic
and plastic depinning. Whereas the former takes place via elastic deformations without
destroying the topological order of the vortex lattice, in the latter case topological de-
fects are formed which start to flow at the transition. In the past, a lot of research has
been devoted to elastic depinning [36]. However, plastic depinning became a hot topic
only recently [37, 38, 78]. Plastic depinning occurs in low dimensional samples. In the
particular case of vortices in a two-dimensional (2d) strongly disordered superconductor,
plastic depinning was observed in the form of quasi-1d filaments flowing through a static
environment of pinned vortices [43, 45]. The formation of natural flow channels is typical
for the plastic depinning process.

To obtain a more detailed understanding of the depinning process in disordered super-
conducting films, experimentalists fabricated artificial vortex channels [47, 48]. Investiga-
tions of these devices revealed that the critical current measured as a function of magnetic
field displays oscillations that were not observed in natural channels. These features have
been interpreted qualitatively in terms of commensurability effects between the vortex lat-
tice in the channel and the lattice of the environment neglecting the effect of disorder [49].
In this chapter we study the effect of system boundaries and disorder on the depinning
transition in the flow channels, but neglect thermal or quantum fluctuations that were

%)
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Figure 3.1: Schematic plot of the artificial flow channel geometry. The channels are man-
ufactured by etching away the strongly pinning top layer material (grey area) in stripes of
width w. Applying a magnetic field H generates vortices. In the strong pinning area the
vortices are static. Vortices in the weakly pinning channel are mainly pinned due to the
interaction with the strongly pinned ones in the channel edges (grey area). In presence
of a current density j a Lorentz force f;, acts on the vortices. At the depinning transi-
tion the channel vortices start to flow whereas the strongly pinned vortices in the channel
environment remain static.

studied in the previous chapters. Since the London description of a vortex flow channel
and its static environment is quite complex we were motivated to construct a simplified
one-dimensional model which captures the essential physics of thin artificial vortex flow
channels: we relate the London picture of a channel and its environment to a generalized
disordered Frenkel-Kontorova model [50]. The characteristics of the model are studied
partly analytically, but partly numerically and the above mentioned experimental results
are compared to our theoretical findings.

3.1 Motivation

Let us now give a short overview about artificial vortex channels. A sketch of a typi-
cal device is presented in Fig. 3.1. The devices are manufactured by first absorbing a
thin strongly pinning layer on top of a weakly pinning film and then etching away a few
hundred channels of width w from the top layer. In the experiments cited above, the
strongly pinning material is NbN and the weakly pinning one amorphous Nb3Ge. To mea-
sure the effect of a single vortex lattice plane in the channel, the vortex lattice spacing,
ap = (4/3)/4(®,/B)'/?, is chosen to be of the order of the width w. Here, ag ~ w ~ 100
nm and the distance between the channels is 10 gm. Due to the material steps at the
channel edges screening currents flow along the surface which interact with the vortices in
the channels. As a consequence, the first rows of strongly pinned vortices near the channel
edges are lined up at fairly straight along the channel, such that transversal shifts are
negligible [79, 80]. The first rows along the channel edge opposite to each other have a
distance w + by f.(B/B.2), where by = ag\/3/2 [see Fig. 3.2(a) for f, = 1], f.(B/Bw) ~ 1
expresses the contribution of screening currents [79, 80], and B,y is the upper critical mag-
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Figure 3.2: (a) Easy flow channel environment (shaded) in the absence of disorder. Vortex
positions in the environment are marked by open circles. (b) Immobile vortices (dots) in
the environment in the presence of weak disorder and one row of mobile vortices in the
flow channel.

m,n

netic induction. Though transverse shifts of vortices in the strongly pinning neighborhood
of the channel edge are suppressed due to screening currents, longitudinal displacements
may occur due to thermal fluctuations or due to the presence of impurities in the supercon-
ducting material [see Fig. 3.2(b)]. In the channel pinning due to impurities is very weak.
Below the depinning threshold, vortices in the channel are localized due to the interac-
tion with the vortices in the static environment. In the presence of a current density j, a
Lorentz force f;, acts on the vortices. As long as the vortices are pinned, the supercurrent
is flowing dissipation-less through the sample. At a threshold force f. the channel vortices
depin and start to move. The vortex motion causes dissipation of energy and a voltage
drop occurs across the sample boundaries. Hence, a well-defined critical current density j.
can be determined by measuring the current-voltage characteristics of the sample. Fig. 3.3
shows shear force density data deduced from current-voltage measurements by the Leiden
group [81]. The oscillations in the shear force density Fs as a function of B are related
to the (in)commensurability of the vortex lattice with channel width w. The maxima of
F; occur at integer values of the ration w/by, where the vortex lattice spacing inside the
channel is commensurate with the width of the channel. Compared to these values, F; is
reduced for non-integer w/by. This can qualitatively be explained by the development of
misfit dislocations along the channel edges [47, 48]. To obtain a quantitative description,
let us now investigate a London type model for vortices inside and outside the channel.
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Figure 3.3: The critical shear force density F; versus magnetic field B for a channel sample
with w &~ 330 nm measured by the Leiden group [81]. The indices of the peaks indicate
the number of mobile vortex rows in the channel.

3.2 A model for artificial vortex channels

Starting from a London description of vortices in a type-1I superconductor, we now derive
a simplified 1d model for vortices in an artificial easy-flow channel.

3.2.1 Channel with a perfect vortex lattice in the environment

Let us first consider a row of straight vortices that are aligned along the x—axis at positions
mage;, where m is an integer, ag the distance between adjacent vortices and e, the unit
vector in the z—direction. In a type-II superconductor within London theory the inter-
action energy between two straight vortices of length [ at r and 0 is U(r) = UyKy(r/)),
where Uy = ®31/(872)?). Here \ is the penetration depth, ®, = hc/2e is the flux quantum,
and [ > X the sample thickness. Then the potential energy F?(r) that is felt by a test
vortex at position r = (z,y) interacting with a row of vortices placed at nbye, is

o) = Y U(r — Ro) (3.1)

where we introduced the lattice vectors R,,,, = ([m + n/2]ag, nby) of a hexagonal lattice
with by = v/3aq /2. Fourier transforming and using the Poisson sum rule the latter can be
recast into

Eo(r) = Z cos[qy, (x — nay/2)] /dkyeiky(y—nbo)ﬁ(qw ky), (3.2)

> 2mag

where ¢, = 27v/ay with integer v and the Fourier transform of the potential is given by

~ 27TUO

k)= — 0 .
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Performing the integral over k, leads to

Ep(r) =Y By(ly — nbo|) cosq,(x — nao/2)], (3.4)
where I
By,(y) = o, e ™Y (3.5)

and ¢, = \/q2 + A\ 2.

We construct an easy flow channel by building a two dimensional vortex lattice, but
leaving a region of width w along the r—axis empty (see Fig. 3.2).

If we consider a hexagonal vortex lattice in the channel environment, the potential in
the channel is

WK

Eo(r) = B (r—b/2) + E%, (r + b/2)], (3.6)

n=1

where b = (w — by)e, . Summing over the vortex rows n one finds
Eoe(r) =Y Ay(y) cos (), (3.7)

the Fourier coefficients A, (y) read

2 cosh(q,y)B, (“’;"0)
Au(y) = (_1)Veqf,bo -1

(3.8)

Since the magnetic inductions B used in the experiments cover the entire range up to the
upper critical one By, a more general expression for A, than the London limit that has been
discussed until now is needed. However, the theory presented here can easily be extended
to larger magnetic inductions. First one takes into account the finite diameter of the vortex
core which is of the order £ in the vortex-vortex interaction potential, V' — Up[Ky(r/\) —
Ko(r/€)]. Second, one replaces A — N = \/(1—B/Bx)'? and £ — ¢ = £/(2—2B/B.)'/?
to take into account the reduction of the superconducting order parameter at large magnetic
fields [82]. We then obtain

Ay) wUy(1 — B/Bea) l2 cosh(q.y)e w¥(w=b0)/2 9 cosh(gy)e wy(w—bo)/2
v\Y) = -

T R e
where now ¢, = 1/¢2 + (N)~2 and ¢, = \/¢2 + ({') 2.

3.2.2 Equation of motion

(3.9)

Qg

The overdamped dynamics of a vortex with index m at position r,, inside the channel is
described by

Nty = f €y — VEu(ry,) — Z VU(r,, —r,), (3.10)

n#m
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where f = j®q/c is the magnitude of the Lorentz force that drives the vortices in presence
of a current density j. The viscous drag coefficient 7 is related to the flux flow resistivity
prr by n = B®y/[c*pss(B)]. The sum is taken over the positions n of all other vortices
inside the channel.

In the simplest case the channel width is w ~ by such that only a single vortex row is
inside the channel. Then the motion of the mobile vortices in the y—direction is essentially
guided by the channel potential, whereas the interaction between vortices in the channel
does not contribute significantly to the motion in the y—direction, ng,, ~ —0,E,.(r). How-
ever, the motion in the x-direction is determined by both the interactions between mobile
vortices and the gradient of the channel potential. To simplify matters, we neglect the
motion in the y—direction, ¥, = 0, such that the equation of motion can be simplified to
a one-dimensional one. Further, we restrict our considerations to A 2 aq as in a typical ex-
periment. Then, the amplitudes A, (0) fall off exponentially fast, A, (0) ~ Uy exp(—mv/3v),
and the approximation to consider only the first harmonic ¢ = ¢; = 27/ay of the channel
potential is a good one. Introducing u = 2¢|A4;(0)|, and restricting the interaction between
vortices in the channel to next-neighbor spring-like forces, the equation for the overdamped
longitudinal motion reads

ov

where the potential energy of the vortices in the channel is given by

V= Z { [1 —cos (qrm)] — fom + Z (Trman — Tm — na)Z} : (3.12)

It has the form of a generalized Frenkel-Kontorova model (FKM) [50]. The interactions
between vortices inside the channel are approximated by Hookian springs with spring
constants x,, = (Uy/A\?)K{(na/)), where the double prime denotes the second derivative.
Here, a = ®,/(wB) is the preferred distance of vortices in the channel, which is a function
of the channel width w and the magnetic induction B. This is not to be mixed with the
true average vortex spacing inside the channel which we denote a and which is a function
of a.

The FKM has been intensively studied close to equilibrium, f ~ 0, see Ref. [83]. The
reduced dimensionless elasticity

7r\/§ A
:—annw ->1 (3.13)
together with the winding number Q = a/ag crucially determine the behavior of the

model. For rational  the vortex chain is commensurate with the periodic channel po-
tential whereas for irrational it is in an incommensurate state. The transition from a
commensurate to an incommensurate state is called commensurate-incommensurate tran-
sition (CIT). It is a continuous transition that occurs at finite mismatches y = (a —aq)/ay,
since the creation of discommensurations costs energy.
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Since we are most interested in the regime g > 1, it is convenient to study the model
in the continuum limit. Further, we take into account the finite length of the system and
consider open boundary conditions. Rewriting Eq. 3.12 in terms of the displacements of the
vortices from the lattice positions, u,, = x,, —may and substituting may — x, u,, — u(x),
(Umnan —Um) /(nag) — Opu(x), >, — [ dx/ag, we obtain the continuum equation of motion

ni(z) = —ag 211/([5; = /%8281;(3) — psin [qu(x)] + f + Fx[é(x — L) — 6(x)], (3.14)

where we have introduced k = 2mapug and the last term is an effective surface force that
arises at the open sample boundaries in the presence of frustration. The energy functional

reads
Viu] = ag! /OL I {g (% - ) + g 1 — cos (qu)] — fu} . (3.15)

It can be decomposed into
Vi =Vsqg+ Vy + Vo, (3.16)

where
Vaol] = a" [ d{§ (5) +% 11 cos(au) —fu} (3.17)

is the energy functional of the Sine-Gordon model (SGM),
Vilu] = —ag ' fx [u(L) — u(0)] (3.18)

is the frustration energy due to the mismatch x determined by the values of the displace-
ment field «(0) and u(L) at the boundaries, and V; is an irrelevant offset that is omitted
in the following.

3.2.3 Commensurate-Incommensurate Transition

We now shortly review the CIT. Then we extend the picture to discuss the role of edge bar-
riers for defects in finite systems, which is crucial to understand how discommensurations
penetrate a sample in the absence of thermal or quantum fluctuations.

The extrema of V[u] are found solving the variational problem §V/éu = 0. In the
absence of frustration, y = 0, for f < u uniform static solutions exist. They are the stable
and unstable solutions of the SGM [84]

Usn = agn + q " arcsin(f /) (3.19)

and
(2n+1)ag

Uun = =5~ q arcsin(f/p), (3.20)
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respectively. The non-trivial solutions of the SGM are kinked. In absence of the driving
force f = 0 the one-kink solution centered at x. reads

exp (‘” — x)] , (3.21)

lq

4
“k,n(ﬂﬁ; Te) = Ug, + —arctan
q

where g = ag,/g is the width of the kink. The corresponding anti-kink solution reads
Ugn(T;2.) = Ugpn(—2; —2.). The CIT is a transition that occurs in equilibrium (f = 0)
when it becomes energetically favorable to have a finite density of discommensurations in
the system. Neglecting effects of system boundaries, the mismatch x. at which the CIT
takes place is then quickly found by comparing the energy of the kinked solution with the
energy of the stable homogeneous one Vuy,,] — Vius,] = (4/7)(Fp/q)"/? — kx = 0,

4 2
Xei = = (i) =5~ (3.22)
T \ gk T\/9g

Though at the CIT uy, or u,, have the same energy as u,,, a barrier has to be overcome
in order to make the transition from ws, — Uk, Or Us, — Uy, . In the absence of
fluctuations, as considered here, discommensurations can only enter the system when this
barrier vanishes. In general, the barrier vanishes at a sufficiently strong frustration or
driving force. We therefore define a threshold frustration x.(f), which is a function of the
driving force f. Finite driving forces f > 0 are considered in Section 3.2.4, where depinning
is studied. In the following we investigate how (anti-)kinks enter the system at equilibrium
f =0 and determine the zero-force threshold x.(0).

Let us first determine the energy that is needed to deform a uniform state into a kinked
one. We note that due to frustration kinks can only be created spontaneously at the system
boundaries, z = 0 or x = L. Of course, in the presence of thermal fluctuations, quantum
fluctuations, or quenched disorder, deep in the bulk kinks can in principle be created in
the form kink-anti-kink pairs. However, in the absence of fluctuations as considered here
this is not possible. The reason is that kink-anti-kink pairs cannot gain frustration energy
for a spontaneous kink emergence, since u(0) = u(L) = u,, and hence V,, = 0. Thus,
(anti-)kinks can only enter the system at x = 0 and z = L. In the following we discuss
the penetration of an anti-kink at = 0, having in mind that the same holds for z = L
and for kinks. Note that in a finite system with boundaries at x = 0 and x = L one has
limg, oo Ugn(0;2.) = us,. Hence, a deformation from wu,, to u,, can be achieved by
pushing an anti-kink centered at z. from x, = —oo to x, > 0. The energy of the anti-kink
solution relative to the uniform one as a function of center coordinate z. is then

AV (2.) = Vitgn(z;2.)] — Vits ()]
= ag K {X[Ua,n(o; Te) — Ugn(L;xc)] + /OL de l%] }

Since the tail of the kink falls off exponentially, we can neglect the influence of the boundary
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Figure 3.4: Potential energy of an (anti-)kink AV in units of V; = kKx.;/2 as a function
of the (anti-)kink center z.. Displayed are values close to the system boundary at z = 0
for frustration parameters |x| = x (upper curve) and |x| = x.(0) (lower curve). At
the classical CIT, where |x| = X, an entry barrier has to be overcome with the help of
fluctuations to make a transition from u,, to uj, or u,,. The entry barrier vanishes at
IX| = xc(0) where (anti-)kinks can penetrate the system.

at x = L > ;. For simplicity, we then consider a semi-infinite system, L. — oo, and obtain

K ct 4 c c
X { X exp (?—)] + 1 + tanh <?—>} : (3.23)
d d

——arctan
2
Minimizing AV with respect to z, we find a minimum at

AV (z.) =

T Xci

Teq = lgln (— ”;;“' - ngi - 1) (3.24)
and a maximum at
Teo = lgln (— 7T2>;Ci + 7?42;:2% - 1) . (3.25)
At the frustration - |
X = Xe(0) = —5xai = N (3.26)

the minimum and the maximum merge into a saddle point at . = 0 where the entry
barrier vanishes and an anti-kink flows freely into the system. It is interesting to note that
for x < 0 the minimum of the anti-kink energy relative to the uniform solution is always
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negative, AV (z.;) < 0. This means that in a frustrated system the uniform solution us
is unstable in the presence of a boundary. Instead, the stable solution is a virtual anti-kink
with a center z. localized outside the system at z.; < 0. At the boundary, the chain thus
tries to adapt optimally to the frustration to reduce its energy. For x = —x.(0) one finds
x. = 0, which means that half of the kink is already inside the system and that it can gain
more energy by sliding towards the center of the system. The scenario is the same for an
anti-kink entering the system at x = L. For a kink the description given above is identical
except that y > 0. The kink entry barrier vanishes at x = x.(0).

The picture of the CIT is thus drastically modified in the presence of system boundaries
when there are no physical mechanisms like thermal or quantum fluctuations that are
needed to cross the edge-barrier. In fact, since in the absence of fluctuations a system with
boundaries remains commensurate for |x| < x.(0), we identify the threshold at |x| = x.(0)
with the CIT of a finite, purely mechanical system.

3.2.4 Depinning in the presence of boundaries

In the following we investigate how the chain inside the channel actually depins in presence
of a driving force, f > 0. In the simplest case, for w = by, we have a commensurate state
without frustration, @ = a = ay and x = 0. The chain locks perfectly to the potential and
the threshold depinning force as a function of y is

fe(0) = p. (3.27)

If the system is frustrated, by # w, depinning occurs via mobile discommensurations
which in the SGM are represented by kinks or anti-kinks. As in the equilibrium case, for
finite driving forces discommensurations enter the system when their entry barrier vanishes.
Whether they are mobile or not depends on further barriers that may exist in the bulk.

In the continuous limit as discussed here, the defective state is not pinned. Hence, in the
continuum model the threshold y.(0) indicates the change from a static equilibrium ground
state (us,,) to a mobile one (ug,, or u,,). However, if the discreteness of the chain is taken
into account, Peierls-Nabarro barriers may exist. The Peierls-Nabarro is the energy barrier
that has to be overcome for a translation, x,, = x,,.1. Whereas this barrier is always finite
for rational () , it may vanish in the incommensurate state: if ¢ is lower than a critical
value, g.(a/ap), the incommensurate state is pinned, however, for g > g.(a/ap), the Aubry
transition to a sliding state with truly vanishing critical force takes place [85]. For pinned
defective configurations the Peierls-Nabarro barrier, which determines the corresponding
pinning force fpy, depends on g. Large g > 1 imply that an isolated defect having a size
~ lq extends over several lattice constants. Then, the Peierls-Nabarro barrier is nearly
vanishing [83] and the pinning force is

frn ~ 64m’guexp(—m>\/g). (3.28)

Since fpy < 10~*1 we neglect it in the following.
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Note that an exit barrier exists for a single kink at the other boundary (imagine the
mirror image of the entry barrier as shown in Fig 3.4 at the other end of the system).
However, the exit barrier becomes irrelevant in the presence of further kinks. This can
be easily understood by the following argument. Suppose a kink enters the system, freely
flows to the other end, and then becomes trapped by the exit barrier. Then a second
kink follows and interacts with the first one. If it would move “adiabatically” it would
become trapped by the interaction with the first kink, which mediates the pinning force.
However, the first kink would experience the interaction of the second kink, too. The
resulting interaction force is of the same magnitude as the pinning force, but of opposite
sign. Hence, the total force is zero and the first kink is released. The second becomes
pinned for a while until released by the third and so forth. For non-adiabatically moving
kinks, the successor does not even become pinned by the predecessor, it only lowers its
velocity before the predecessor escapes due to the kink-kink interaction and the successor
becomes pinned at the boundary.

So far we have determined the frustration strength x.(0) above which discommensu-
rations enter the system in the absence of a driving force, f = 0. In the presence of a
driving force f, we can roughly distinguish between the regime above equilibrium thresh-
old, |x| > x.(0), and below equilibrium threshold |x| < x.(0).

Above equilibrium threshold, |x| > x.(0), depending on the sign of x, kinks or anti-kinks
are present in the system, since the entry barrier for discommensurations has vanished.
Neglecting the effects of the Peierls-Nabarro barriers, the threshold force has basically
vanished,

fe=0. (3.29)

For |x| < x.(0) there are no kinks present in the system at equilibrium due to the finite
entry barrier. However, at a sufficiently large driving force, the entry barrier vanishes,
too. Then discommensurations enter the system at one boundary, freely flow through it
and exit at the other boundary. In presence of a force the formation of kinks is similar to
the kink-penetration at equilibrium we discussed in Section 3.2.3. Of course, the extremal
solutions which determine the energy barrier for kink formation are different.

For frustrations close to the equilibrium threshold frustration, x.(0) — |x| < x.(0), the
depinning threshold force is small, f. < p. Let us study the depinning of an anti-kink at
the left boundary x = 0 for negative frustrations, y < 0, in the presence of a small force,
0 < f < p. In the low-force limit, we can neglect the deformation of the anti-kink due to
the force. The energy of the driven anti-kink relative to the uniform solution as a function
of the anti-kink center x, is then

AV (a) D02 — i)+ [ {7 (Rl B Vg
Te) X —|Uan 1 Le) — Uapm i e — TNKR |7 — — JUan\T; T
ap = ’ ap Jo ox ’

If we neglect the presence of the other boundary at x = L, the derivative of the potential
with respect to x. is
d K a a,n O; c a a,n 0; [+

AV () o — 22 Qtonl0:2c) [X+ et ted ’a( E )] L) (330)

s

dx, ao ox, ao
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Figure 3.5: Potential energy of a small amplitude nucleus AVy,, in units of Vi, =
4ia? /15a9ls as a function of the position 4 of the maximum amplitude. Shown are values
close to the system boundary at x = 0 for frustration parameters x = —2v/3x.(f)/5 (upper
curve) and xy = x.(f) (lower curve), where the barrier vanishes.

The anti-kink depins at the left boundary when the maximum slope of the potential at
2. = 0 vanishes. This occurs at the threshold force

o= [1 _ ] : (3.31)

T Xc(0)

which is easy to show realizing that wu,,(0;0) = ao/2, 04,uan(0;0)/0z. = x.(0), and
p = mkx2(0)/(2ap). The same result is found for kink depinning at the other boundary,
x = L, for positive frustration, y > 0.

At low frustration, |x| < x.(0), the depinning threshold f. is close to pu. One thus
has to consider the large force regime, u — f < u, where the lowest energy saddle-point
solution of the SGM wgann(7; xs) = usy + Au(z;z5) has a small amplitude and hence is
called small amplitude nucleus (SAN). It can be calculated by approximating the tilted
cosine potential by a cubic parabola (see in Section 2.2),

(3.32)

Au(z;2,) = a, cosh? V _ xs] ,

2
with center x,, amplitude a, = 3¢~ [2(1 — f/p)]*/?, and width I, = [4[2(1 — f/p)] Y4

Let us now consider the penetration of an anti-kink for y < 0 at the boundary z = 0.
The energy difference AVy,,, = V]usann] — Vusn] as a function of z, < 0 is

4ia? 3Au(0, zs) Au(0, x) 82 5  x  Au(0,z)
A _ SR |28 Ts) g |y - 20T 1 i
Vian () 15al, { [ 2a, + ] [ s Tt 203 xe(f)  as ’
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Figure 3.6: Critical force f. as a function of the mismatch parameter y. Shown are the
numerical integration results (solid line), high force approximation f. — p < p (dashed-
dotted line) and the low force approximation f. < p (dashed line).

where

Xe(f) = ;T\X/g l2 (1 — g)r/{ (3.33)

As shown in Fig. 3.5, the SAN potential AVy,,(xs) has a barrier which vanishes at y =
—Xc(f). This can be seen by analyzing the zeros of the derivative

d Ras OAu(0,z5) | Au(0,xy) Au(0, zy) 12 2 x
—A - —) — 3. (3.34
dzx Vian (25) apls  Ox, { s s 3v/3 xe(f) (3:34)

One zero is given by x; = 0, where the partial derivative 0Au(0, z5)/0xs vanishes. The
others can in principle be found by studying the term in the curly brackets which becomes

zero if )
2
Au 4
[1— ]:—l X ] (3.35)

as I 27 [ xe(f)
However, to find the threshold condition, we do not need to calculate x; explicitely, it is
sufficient to determine Au(0; x5). Equation (3.35) has got at most three roots, depending on
the value of x? > 0. One of the roots is negative, which is no solution, since 0 < Au < a,
[see Eq. (3.32)]. For —x.(f) < x < 0 there are two positive roots, which indicate the
existence of two extrema of AVj,,, a minimum and a maximum. Calculating the extrema

[Au

Qs
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of Eq. (3.35) with respect to Au, one sees that at x = —yx.(f) the positive roots of Eq.
(3.35) become degenerate, which means that the minimum and the maximum merge into
a saddle point of AV,,,. Hence, the entry barrier of the SAN vanishes. At this value,
Au = 2a4/3. Thus, two thirds of a SAN are localized at the left boundary, = 0, but are
unstable against small perturbations. Increasing either y or f depins the SAN which then
evolves into a full anti-kink. Finally, from Au(0;7,) = 2a,/3 we find , = [,In(2 — /3).

To summarize, for low frustrations |x| < x.(0) and for frustrations close to the equi-
librium threshold x.(0) — |x| < X.(0) the threshold force f, is given by

2/3 4/3
o= 357 M<xo
e -] xe(0) = x| < xe(0) (3.36)
[ 0 IX] 2 xc(0).

For completeness, we calculated the threshold force for arbitrary frustration by nu-
merical integration. To calculate the static and dynamic solutions of Eq. (3.14), we use
a standard numerical integration procedure. Starting with a flat initial configuration,
Uy, = 0, we iterate

U (t + 0t) = Uy, (t) + Ot vy (1), (3.37)

with
U (t) = f 4 sin 27wy, (8)] + 27 g[tm41 () + Um—1(t) — 2 (t) + O — O]

where length is measured in units of ag, time in units of ¢y = agn/p, and force in units of
p. The length of the system is M = L/ay. Recalling that the vortex-vortex interaction
energy falls off exponentially fast for distances between vortices larger than A\, we take only
the N = [5\/ao] next neighboring vortices into account in the sum over channel vortices.
The channel has a length of L. At its ends, we apply boundary conditions taking into
account the frustration, x. For a given force, Eq. (3.37) is iterated until a fairly steady
state is reached, [v,,(t+ 0t) —v,,(t)]/6t < 107%. Channel vortices are defined to be static, if
Uy < 1078, The calculated u,,(t) and v,,(t) are recorded for several forces. In addition we
can record the particle trajectories x,(t) to visualize the dynamical behavior of the channel
vortices close to the depinning transition. The numerical results and the analytical limits
for f.(x) are shown in Fig. 3.6.

The numerical integration also allows to determine the velocity averaged over time and
space,

T dt

b= %mz::l/o o i (0), (3.38)

as a function of the force f as shown in Fig. 3.7.
Above x.(0) where the entry barrier has vanished the topological defects move freely
through the sample. The linear force-velocity characteristics resembles to the one of a
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Figure 3.7: Typical f — v curves computed for systems with L = 1000ay and A = ay. The
result for the unfrustrated commensurate case, x = 0 (solid line), is identical to the curve
of a single particle in a sinusoidal potential, v ~ (f — )" with v = 1/2. Frustration lowers
the threshold force f., but does not alter the exponent v in the commensurate regime.
However, in the incommensurate state, |x| > x.(0), the f — v curve becomes linear, v ~ f.
Shown are the f—v characteristics for frustrated systems with y = x.(0) (dash-dot-dotted),
0.7 xc(0) (dash-dotted), and 0.5 x.(0) (dashed).

single free particle with dissipative dynamics, v = f/n. The velocity of the entire chain
is determined by the velocity of the defects that enter the system at the boundary. At
|X| = Xe¢, where the entry barrier for defects has vanished, 9?u(x = 0, L) = 0. This means
that close to the maximum of the sinusoidal potential, where the chain bead spends most
of the time, it effectively behaves like a single particle which is driven by a force f. For
IX| > X a similar argument can be given. At f = 0 the effective force at the system
boundary pushes defects into the channel until their density is so high, that their repulsion
prevents new defects to flow in. Effectively, the chain bead at the boundary reaches an
unstable equilibrium. Driving the system now with a non-zero force f > 0 results in the
same motion for the bead at the boundary as for |y| = x..

For x < x.(0) the entry barrier for the defects becomes relevant and the force-velocity
characteristics shows the behavior typical for quasi-particles with a vanishing saddle-point
barrier with v ~ [f — f.(x)]'/? for f — f.. Finally, in the absence of frustration the
particles depin instantly and v = (f./n)(2f/f. — 2)'/? like a single particle in a sinusoidal
potential.
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Figure 3.8: Depinning force f. as a function of the ratio of channel width and vortex
lattice plane distance, w/by taken from Ref. [49]. The dashed line shows the maximum
shear force f; = puby/w calculated within a continuum approximation for the vortex lattice.
The dots display the oscillations of f. due to transitions from a topologically ordered to a
defective state determined from molecular dynamics simulations of channels with perfect
vortex lattices in the channel edges. The open circles are the shear force data from Ref.
[81] shown in Fig. 3.3.

3.2.5 Preliminary comparison with experimental data

Let us now compare these theoretical findings with experimental and numerical data [49].
Clearly, the generalized Frenkel-Kontorova model predicts a nearly vanishing depinning
force f. =~ 0 in the defective state. In the commensurate state, the depinning threshold
fo is finite, but decreases monotonously with increasing frustration and vanishes at the
CIT, where the critical mismatch is reached, x = x.(0). In the artificial vortex channel
experiments discussed in Section 3.1 one has A ~ 3ao. From Eq. (3.13) we find g ~ 28
and hence Eq. (3.26) yields x.(0) ~ 0.06. Since x = (by/w) — 1, one expects a sharp spike
in the threshold force around the magnetic induction with a vortex lattice plane distance
bp = w.

In Fig. 3.8 data obtained in numerical simulations and in measurements by the Leiden
group are shown [49]. Here, the critical force f. is plotted as a function of w/by. The
dashed curve is the maximum shear force f; = pby/w calculated within a continuum
approximation. The black dots are depinning force data computed in a molecular dynamics
simulation of vortices in channels with a perfect vortex lattice in the channel edges. These
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data show spikes of magnitude f. = ubg/w at integer values of w/by. The peak at w/by =1
corresponds to the scenario described within the Frenkel-Kontorova model in the previous
section. The depinning force at non-integer values of w/by is orders of magnitudes smaller
than for integer values. Similar to the case described above for w/by ~ 1, topological
defects are present in channels of wider non-integer width. There, topological defects
occur in the form of edge dislocations. The dislocations are only weakly pinned due to the
lattice discreteness causing a nearly vanishing depinning force.

The experimental data that were previously shown in Fig. 3.3 are represented by open
circles in Fig. 3.8 for comparison. The maximum shear force f; = Fjagby is normalized
to p. In Fig. 3.8 which is taken from Ref. [49], 11 has been related to the shear modulus,
1 = 2apces/(v/37). The shear modulus of the vortex lattice has been evaluated in the
entire field range by Brandt [86],

Bok? B B \?
=2 _B(1-0.29 ) (1 - ) : 3.39
327 k2 K3 ( By Bes (3.39)

Ce6

where k, k1, and ko are the Ginzburg-Landau and the Maki parameters, the latter for the
dirty limit.

This representation suggests that the position of the maxima in the experimentally
determined f. can be explained in terms of transitions from topologically ordered to de-
fective phases. However, they are lower and of larger width than the “spikes” expected
from the FKM. The simultaneous decrease of the depinning threshold in the topologically
ordered case and the drastic enhancement of the critical force in the defective case can not
be explained solely in terms of thermal or quantum fluctuations: They would lead to an
effective reduction of the pinning barrier in both cases. This motivates us to study the
influence of quenched disorder, which is present in the experimental situation. It is gen-
erally understood, that quenched disorder leads to pinning of vortices [36] or topological
defects of the vortex lattice, which would explain the increased critical force in the defective
state. It remains to understand how disorder leads to a reduction of pinning barriers in
the commensurate regime.

3.2.6 Channel with a distorted vortex lattice in the environment

In a realistic sample the static nature of the channel environment is caused by some sort
of pinning which may distort the vortex lattice. In the following we consider a device,
where the vortices outside the channel are pinned by quenched disorder. The pinning
in the channel environment is strong enough to guarantee that it remains pinned at all
considered current densities whereas inside the channel pinning by quenched disorder is
orders of magnitudes lower and can be entirely neglected. In a typical experiment the
magnetic inductions are so large that the interaction between the vortices is much stronger
than the pinning. Further, we assume that the vortex lattice in the channel environment
is free of dislocations. Then it is natural to treat the vortex lattice in its elastic limit. In
a weakly pinned vortex lattice, distortions of the order of the coherence length & due to
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the disorder occur on average on a length /. in the direction of the magnetic field and on
a length R, transverse to it. Here, we consider two-dimensional collective pinning where
[. > [ such that the approximation of straight vortex lines remains valid.

With quenched disorder in the environment of the channel, the interaction energy of a
single vortex with the vortex row becomes

Eu(r) = YU =Ry —dm,), (3.40)

where d,,,, are the displacements from the ordered positions R,,,. It is convenient to
rewrite the row potential in terms of the vortex density

B (r) = / ErU(r — ') pa ('), (3.41)
where
palr) = 360t — Rypp — o). (3.42)

We introduce a continuous displacement field

dr) =

47?2 Jpz

A’k ey g7 Rmng,, (3.43)

where BZ indicates that the integration is restricted to the first Brillouin zone. Note that
d(R,,,.) = dyn. Further, we define a relabeling field [87],

®(r) =r — d[®(r)] (3.44)
with
®[Rynp + d(Rynn)] = Ry

In terms of these continuous fields, the vortex density reads
pn(r) = det[0;9;] Z S[@(r") — Ryl (3.45)
and the vortex row potential becomes

dk, . )
E,(r) =a,* /dZTIU(I' —r')det[0;D;] D cos[q, (P, (r') — nag/2)] / Q—yelky[‘by(” )=nbo],

™

At first sight, it seems that we have not gained much by performing the above transfor-
mations. However, as one expects, it has similarities with Eq. (3.2) and converges to the
latter in the limit d — 0. In order to derive a simplified one-dimensional model as in the
ordered case, we make use of a few approximations. Since we consider the vortex lattice
to be in the elastic limit,

IV-d| ~¢/R. < 1, (3.46)
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we can approximate det[0;®;] ~ 1 — V - d. Next, since the vortex potential falls off expo-
nentially fast for |r —r’| > ), the channel environment is mainly probed within |r —r'| < A,
where one can estimate |d(r') — d(r)| S A¢/R. using Eq. (3.46). For A{/R, < ay/2 it is
then reasonable to expand the displacements d(r’) in the integral,

- A
d(r) = d(r) + O (;) (3.47)
Here, we have introduced the coarse grained displacement field
d(r) = (21U,) A2 / U (r — r')d(r), (3.48)

which is smooth on the scale A. Up to terms of the order O(A{/R.), we obtain
E,(r) = E°[r — d(r)] (3.49)

for the collectively pinned vortex row potential.

To calculate the effective channel potential for a channel of width w ~ by, we perform
the summation over pinned vortex rows F, as in the ordered case. Further, since the
influence of point-like disorder at the edge is much weaker than the re-ordering due to the
edge currents, we may well take d,(r) = 0. Then, the interaction of a single vortex in the
channel with the disordered environment reads

Ear(r) = X A(y) cos {afo = o]} (3.50)
For the partial derivatives of the channel potential one finds
: AL
0Fa(r) = = qAy)sin{gfr - d:(r)]} + O = (3.51)
OyEgc(r) = ZA’ cos{ J[r —dy(r )]}+(’)<>\§>
Y Rc

As in the perfectly ordered case, we now consider the equation of motion. Substituting
E,. by E4. in Eq. (3.10) and following similar arguments we derive an equation for the lon-
gitudinal motion. Introducing $(x) = ¢d,(z,0) we obtain a generalized phase-disordered
Frenkel-Kontorova model,

V= Z { {1 —coslgum — @(xm)]} — frm+ > %(xmm — Ty — na)Q} : (3.52)
The corresponding energy functional in the continuum limit is then

V[u]:aal/o dx{2<%— >2+§{l—cos[qu—@(x—i—u)]}—fu} (3.53)

and the resulting equation of motion for the displacement fields u(z,t) reads
2.,

nt = f — psinfqu — ¢(x +u)] + na + kx[0(x — L) — 6(z)], (3.54)

02
where 0,d,-terms that are of order O(A¢/R,) have been neglected.
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3.2.7 Depinning in a channel with distorted environment

Up to now, we have not specified the disorder displacement field d,. To gain some basic
understanding, we now consider the effect of a local distortion on the depinning properties.
The field we choose is somewhat academic, but is convenient to understand the effect of a
lattice distortion at the system boundary and in the bulk. The perturbation occurs around

dy(,0) = W(x — 2,) [0(x — 2,) - % | (3.55)

Here, 0(x) is the Heaviside function and W > 0 the distortion parameter. It is convenient
to introduce transformed displacement fields @ = v — ¢~'$. Neglecting terms of the order
(0,1)?¢@'and (p')?0,14, the relevant G-dependent part of the energy functional reads

Via) = Vsgla] + Vi Ja] + Vo[l (3.56)
where . 90 o
%W2%/M£&; (3.57)

In the following, we examine the effect of lattice distortions at the boundaries, z, = 0, L,
and in the bulk, z, = L/2. To gain a basic understanding of the depinning process, we
restrict the analysis to the large system limit, L/2 > [, where the system is so large that
the depinning configurations at the weak spots x, = 0, L, and z, = L/2 do not interact
with each other.

For z, = 0, the lattice is distorted homogeneously in the entire sample and the contri-
bution of the distortion to the energy functional yields

Volil = S fa(n) — (o). (3.59)
)

Physically, the distortion results in an additional frustration of the system, as can be
immediately understood by comparing Eq. (3.58) with Eq. (3.18). This means that for the
threshold force, one can use the results that were found in the absence of the distortion
[see Eq. (3.36)], but the frustration has to be replaced by an effective frustration

w
X=X =5 (3.59)
The result is thus a simple shift of the x — f.-curve. Similarly, for z, = L, the f — x-curve
is shifted,

W
X=X (3.60)

For x, = L/2, in addition to boundary depinning, bulk depinning at z,, can occur. In
large systems, L/2 > [, we can treat the effect of the distortions at the boundaries and
in the bulk separately. At the boundaries, the threshold solution is then approximately
given by the solution in absence of the defect, but with an increased effective frustration
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X + W/2 in the left half and a lowered effective frustration y — /2 in the right half of the
system. The threshold force for boundary depinning is again given by Eq. (3.36) with the
modulus of the frustration replaced by

W
x| — ‘|X| = 7‘- (3.61)

To understand bulk depinning, we first restrict the considerations to x = 0 and then discuss
the behavior in the presence of frustration.

For L/2 > [, we can neglect the influence of the boundaries and treat them as if they
were shifted to £oo. Then, the extremal threshold solution 4, (z;x,) can be constructed
by joining two extremal solutions of Vgi. The matching condition is found from

du(x —¢) _ ou(z +¢)

3.62
Oz oz (3.62)
such that the matching condition for the transformed field ,(z;z,) reads

Oty (v, — £53p)  Olly(Ty +&52,) W (3.63)

o0x oxr

The mirror symmetry requires d,u(z,) = 0, hence 0,%(x, £ ) = FW/2. At the threshold
force f. stable solutions cease to exist. In fact, it can be shown that at f. the stable solution
merges with an unstable one. This occurs, when the maximum of the tongue developing
at x, reaches the maximum of the sinusoidal potential. From 0V /éu = 0 follows that at
the potential maximum the extremal solution has to fulfill d?u(x,) = 0, which holds if
O2u(x, ) — 0 for e — 0.

For weak distortions, |WW/2| < 1/(7,/g), the threshold force for bulk depinning is close
to p and the threshold solution @, = s+ A, can be found by merging two SAN solutions
at z, & x,, where , = [, In(2 + /3),

Au(z; 2 +24) T < T
Au(z;y — 1) T > Ty

Aty (w3 2,) = { (3.64)

The maximum value of the tongue developing at z,, is given by At (z,;z,) = 2a,/3. This
implies

OAUy(zy —e3mp) 205 W

Ox 3V/3l, 27

from which one obtains the bulk depinning threshold force in the presence of weak distor-

tions, /
4/3
fo=n [1 - % (”\g@ W) ] . (3.66)

(3.65)

This formula becomes invalid for 2/(r./g) — |W| < 2/(7,/g). For strong distortions,
\(W| < 2/(m/g), the threshold configuration can be constructed by merging a kink and an
anti-kink

ug(z; ) T < Ty

Uo(T; ) T > Ty (3.67)

s |
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Figure 3.9: Time evolution of the displacements u(z,t) in a system of length L = 1000a,
for y = 0 and W = 0.1. Around the weak spot near x.s ~ 0.6L, particles are unstable.
First, a small tongue is formed, which represents a local variation in the particle density.
Then, a vacancy-interstitial pair is fully developed. Vacancies (kinks) travel to the left,
interstitials (anti-kinks) to the right. Periodically, new tongues are generated initiating
new pair-production processes.

from which one obtains the bulk depinning threshold force in the presence of strong dis-

tortions,
A 4
fo="H (1 - WT\@ W) . (3.68)
m

At W = 2/(m/g) stable saddle-point solutions cease to exist for all f and disorder
induced mobile kink-anti-kink pairs are spontaneously formed even at equilibrium.

After having gained some understanding how pinning occurs at a weak spot in the
bulk for x = 0, let us now consider the frustrated case, |x| > 0, where bulk depinning
competes with boundary depinning. Comparing the bulk depinning threshold fc(W) with
the boundary threshold in presence of the defect, f.(|x| — W/2), we find that for |x| < W
the system depins in the bulk and for |x| > W at one of the boundaries. Note that to
lowest, order, we can apply these results to distortions of this kind that are not necessarily
centered at x, = L/2, as long as [, < z, < L — [, holds.

3.2.8 Depinning in a channel with randomly displaced edge vor-
tices

Opposed to the rather well behaved distortions of the previous paragraph, we now consider
the effect of randomly displaced vortices in the channel edge. We mimic the disorder by
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Figure 3.10: Transient response in a system of size L = 3000ay with y = 0 and W = 0.1.
After the threshold fc is exceeded, particles depin at several weak spots (e.g. x; and ) at
t = t;. The triangular shaped regions in the displacements u(z,t) at ¢t = t3 correspond to
domains of vacancies (positive slope) and interstitials (negative slope). After a time ¢t = t4
only the fronts which are generated at the weakest spot xs with the highest production
rate of vacancy-interstitial pairs survives.

uncorrelated relative displacements [d, (R 11.0) —dz(Ron)]/ao. The latter are independent
identically box-distributed random numbers within the interval [-W/2,W/2],
_ 1 _ _
P (dy) = 7 (0(d, + W/2) = 0(d, — W/2)] . (3.69)
The width of the box distribution W parameterizes the disorder strength. Then, [
and 0, are random functions, which are smooth on the scale A and bounded. Note that
although 0,4 is bounded, ¢ is unbounded. Thus, long range order is lost along the channel
direction. On length scales much larger than ag, the displacement field d,(r) behaves
like a random walk in 1d and the phase-phase correlator scales linearly with the distance,
([8(z) = 2(0)]%) ox .
First we consider the unfrustrated case, x = 0, where each vortex populates a minimum
of the nearly periodic potential. In the following f. denotes the threshold force of a single
channel in the presence of a disordered channel environment. The evolution u(x,t) upon
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a stepwise force increase from f(t = 0) < f, to f. < f(t > 0) < pu is plotted in Fig.
3.9 for L = 1000ag. For f < f., the displacements u(z,t) < ao are small such that
vortices are slightly adjusting to the disorder but remain locked to their potential well:
the channel is topologically ordered. For f > fc the motion starts at a point of minimal
stability where u(x,t) increases locally with time. At this spot kinks of +aq in u(z,1)
are generated corresponding to the nucleation of vacancy-interstitial pairs in the channel.
Thus the critical force f, is identical to the nucleation threshold of a defect pair. The
defects move under the applied force and a new nucleation at the ”weak spot” occurs after
a time ., when the vortices in the neighborhood have moved approximately by ay. The
nucleation process repeats periodically with a rate [y, = t;L.. The vortex row splits up
in two parts: left of the instability vacancies travel to the left and right of the instability
interstitials move to the right. Since the motion of the row is governed by the nucleation
at the weak spot, its velocity is v = agl hyc.

If we again consider a stepwise force increase in a larger system of . = 3000a, we observe
the following (see Fig. 3.10): initially nucleation sites x,, with a nucleation threshold force
fim) and rate T are active. However, when two domains that were generated at weak
spots, let us say z; and zp with rates T'(}), > ['2) "meet”, their defects of opposite sign
annihilate. Due to the higher defect density of domain 2, this region expands at the
cost of domain 1 with the front in between them having a velocity ao(T'2), — T'(1)). This
transient behavior shows that eventually the stationary state for all f < yu is governed by
the nucleation site with the smallest threshold min{ f(™)} forming a domain with maximum
defect density that spans the entire system. What also becomes clear is that depinning in
the topologically ordered channel with weakly perturbed channel edges takes place from
a static solution that is unique up to a global phase of 27r. The depinning considered
here occurs at a saddle-node bifurcation of the energy functional: Below f, all principal
curvatures of the energy functional are positive, indicating a stable solution. At f = f. one
of the principal curvatures becomes zero and negative for f > fc. The dynamics close to
the threshold is governed by the small curvature at the saddle node leading to a non-linear
force-velocity characteristics, v ~ (f — fc)l/z, similar to the single particle result, but with
a reduced threshold force.

In a typical vortex-flow channel experiment one studies samples with a few hundred
channels. Hence, when measuring the current-voltage characteristics, one obtains an aver-
age signal generated by all active channels. The experimentally determined critical current
is usually defined by a finite-voltage criterion, i.e. the depinning transition occurs, when
the smallest measurable voltage is detected. In the literature the corresponding critical
force F, is given by the value, where the disorder ensemble-averaged velocity vanishes,
<U>(f = Fc) = 0.

Let us now study how the critical force F,. of the channel ensemble is related to the
threshold forces f, of the individual channels. For y = 0 we observed that in a channel of
length L the threshold force f, is given by the minimum force at which the first nucleation
of a defect pair takes place. If two systems of length L with thresholds fu1 < f.o are joined,
one obtains a merged system of length 2L with a threshold force fcm ~ fcl- Channels of
length N L can be constructed by merging N channels which are randomly chosen from the
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Figure 3.11: Numerically obtained distribution of threshold forces f, for 10000 channels
with L = 100ag, A = ag, W = 0.1, and x = 0.

ensemble of disordered channels with length L. The longer the channel gets, the smaller
is the threshold force.

With respect to the probability distribution P (f./s) of threshold forces f, in systems
of length L we conclude that the low force tails determine the depinning behavior of the
ensemble. We are thus interested in the statistical properties of the extremal values —
namely the minima — rather than the most probable values of f.. The shape of Pr( fc/ 1)
depends on L: with increasing L the maximum of P ( fo/1), which is the most probable
value of f,/u, approaches the minimum value min{ f,/u} of the ensemble. This can be seen
by studying the probability that channels of the ensemble have depinned, which is given
by the cumulative distribution

foo. -
PL(f/n) = /fl/o dfe Pr(fe/), (3.70)

or by the probability that they remain static, which is given by

PL(f/n) = / df. P(fe/n). (3.71)

Neglecting correlations between the segments of length L, the depinning probability of a
system with length NL is then

PYE(f ) =1 = [PL(f/w]". (3.72)

Hence, as long as PZ > 0, in the limit N — oo the depinning probability PY1 — 1.
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Figure 3.12: Numerically obtained minimum threshold force f, as a function of frustration
x for 100 channels with L = 100ag, A = ag, and W = 0.1.

In the model considered here Pp(f./s) is bounded from above and for W < 2/(m\/9)

from below, 0 < fmm < fC < . The upper bound can be understood from the fact that
for weak disorder, where f, is close to u, weak lattice distortions still act as nucleation
seeds which reduce the threshold slightly below . A finite lower bound f, > 0 exists for
W < 2/(r/g). For weak disorder, W < 2/(m\/g), it is fonin = p[1 — (1/2)(7/3gW/2)*/3],
and for W < 2/(m\/g) it is Fonin =~ 4p(1/7 — /9W/2). This lower bound arises from rare
configurations similar to the ones that were discussed in Section 3.2.7. The existence of a
lower bound is a peculiarity of bound disorder distributions as the box distribution that
is used here. For W > 2/(m,/g) or for unbound disorder distributions there is always a
low, but finite probability that strong local distortions in the channel lead to nucleation of
defects at equilibrium.

In Fig. 3.11 a numerically obtained probability distribution P(f./u) of threshold forces
fc for 10000 channels of length L = 100aq, penetration depth A = ag, disorder strength
W = 0.1, and frustration x = 0 is shown. We find fmm ~ 0.62. The lowest value ~ 0.85
of f. shown in the histogram suggests that in small systems there is an extremely low
probability that values of the order of f,.;, are reached. However, according to our above
discussion, the probability should increase exponentially with the system size, e.g. for
P%(0.85) ~ 107° we have P19%°(0.85) ~ 107*, P%9%0(0.85) ~ 10~ and so forth.

Let us now discuss the depinning scenarios in the presence of frustration, |x| > 0. In
weakly frustrated systems, |x| < /2, nucleation still occurs at a weak spot in the bulk.
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Figure 3.13: Static displacements us(z) in a system of length L = 1000a for x = —x.(0)
in the pinned regime, f < f.. a) Pinned single interstitials (kinks). b) Multiple pinned
kinks at strong pinning sites. c¢) Kink accumulation at the end of the system, = < L, where
in addition to disorder the exit barrier is present.

Hence, the depinning threshold f, should be independent of the frustration y. This can
be indeed observed, see Fig. 3.12: the x — fc—curve has a plateau around y ~ 0, before at
larger values of x depinning takes place via the formation of defects at the boundary as in
the ordered case. The threshold for boundary depinning is affected by lattice distortions at
the sample edge as discussed in Section 3.2.7 resulting in an overall shift of the y — f.-curve
to lower values of y.

For intermediate frustration, 0 < x < x.(0), a defect that entered the sample via the
boundary cannot be pinned by disorder in the bulk. It moves freely to the other boundary,
where it becomes pinned by the exit barrier until being released by the next defect that
enters the channel and then travels freely to the exit.

For frustrations above x.(0) — W/2 bulk pinning becomes possible since the boundary
depinning threshold force becomes lower than the disorder induced pinning forces in the
bulk. In Fig. 3.12 bulk pinning becomes relevant around y ~ 0.8x.(0). Indeed one
can observe pinning of defects and bundles of defects in the numerical simulations in this
regime. In Fig. 3.13 a static state in a system of length L = 1000aq for x = —x.(0) just
below the depinning threshold f < f. is shown. One clearly sees single pinned kinks and
a few multiple-pinned kinks (bundles). At the exit of the system kinks accumulate due to
both bulk pinning and due to pinning at the presence of the exit barrier. When reaching
the depinning threshold, a defect is formed at the entry on the channel and travels until
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Figure 3.14: Time evolution of the displacements u(x,t) in a system of length L = 1000ay
for x = —x.(0) and f > f,. Strong pinning sites are indicated by bars parallel to the time
axis. Here, interstitials (anti-kinks) travel to the right. At strong pinning sites they collide
with pinned kinks. The formerly pinned kinks are released while the previously moving
ones become pinned.

it collides with a defect that is already pinned at a strong pinning site. While the latter
becomes released, the former gets pinned. This scenario repeats until a mobile defect has
reached the channel exit, see Fig. 3.14.

In contrast to the force-velocity curve of single systems, which behave as v ~ (f — f.)”
with v = 1/2, the functional form of the disorder averaged force-velocity curves for finite
systems all show upward curvature for f 2 fc, which corresponds to v > 1, see Fig. 3.15.
A crossover between exponents similar to the transition » = 1/2 — 1 occurring in the
ordered model at x.(0) can not be observed in the disordered case.

Until now we considered the weak disorder limit in agreement with the assumptions
made in order to develop the disordered model. If we increase the disorder parameter W
beyond the initially assumed limits, we can gain some insight into the depinning properties
at large disorder. In Fig. 3.16 minimum threshold forces fc as a function of disorder strength
W for 100 channels with L = 100aq, and A = aq are shown for systems without frustration
X = 0 and for frustrated systems with x = x.(0), where we expect the effect of the
boundaries to become irrelevant. At W = 0.5 the disorder is so strong, that a distinction
between a commensurate and an incommensurate system cannot be made. We speculate
that this indicates a crossover to a depinning transition with true critical behavior as is
reported for sandpile models or the Fukuyma-Lee-Rice model for charge density waves.
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Figure 3.15: Disorder averaged f — v curves computed for systems with L = 100a, and
A = ag. Shown are the f — v characteristics for systems with x = x.(0) (dash-dotted),
X = 0.5 x(0) (dashed), and x = 0 (solid).

3.3 Comparison with Experimental Data

Let us now compare our results with available experimental data [47—49, 88]. In artificial
vortex-flow channels the current-voltage (I-V) characteristics have been measured follow-
ing two different experimental procedures, the increasing-field (IF) measurement and the
decreasing-field (DF) measurement. In the IF measurement, after the sample is zero-field
cooled well below the lower critical temperature of the two superconducting materials, a
finite magnetic field is applied and the [-V curve measured. Then the field is increased and
the next I-V characteristics obtained. This procedure is repeated several times until the
largest achievable magnetic fields are reached. The DF procedure starts with field-cooling
the sample into the Meissner state. Then sets of I-V curves are measured as before, but
for successively decreasing fields.

The I-V characteristics obtained by the two methods differ significantly. The DF data
in Fig. 3.17 display a non-linear behavior V'~ [I — I.(H)]” o« (f — f.)” with v > 1,
where f. oc I.(H) smoothly oscillates with the applied field H, as shown in Fig. 3.3. In
the IF mode (see Fig. 3.18) , below a characteristic current Ir an I-V curve consist of
a fairly linear low-mobility regime, V' ~ [I — I.(H)]” with v ~ 1. Above Ir it becomes
nonlinear with V ~ [I — Ip(H)]**). The exponent vy(H) changes its value at H, from
vr(H < H,) <1tovp(H > H,) > 1. In the IF measurement, oscillations of I, with H are
only observed for H > H,.
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Figure 3.16: Numerically obtained minimum threshold force f, as a function of disorder
strength W for 100 channels with L = 100aq, and A = ag. Upper curve: y = 0, lower curve

X = Xe(0).

It is interesting to note that even when one starts in the IF mode, as soon as H is
decreased one immediately switches to the DF branch of I.(H), see Ref. [47]. Vice versa,
when first performing a DF measurement, I.(H) jumps to the IF curve as soon as H is
increased again. These features are attributed to currents that flow along the material steps
of the channel edges in the IF measurement, but suddenly disappear when the magnetic
field ramp is reversed.

Though the values of v and v have not been determined very accurately in the experi-
ments, we attempt a rough comparison with our theoretical findings for weakly disordered
ensembles, where we observe v > 1 very close to the depinning transition. In commensurate
systems, v = 1/2 and in incommensurate systems v = 1.

The observed v > 1 measured in the DF procedure are comparable to what we see in
the simulations of weakly disordered systems close to the depinning transition. However, in
the experiments, this behavior occurs in a large current interval, whereas in the numerical
simulations it is observed in a small current interval above the depinning transition. We
suspect that due to the absence of channel edge currents in the FD measurements, the
static vortex lattice in the environment is distorted both longitudinally and transversally
to the channel. The transverse displacements lead to strong disorder which we have not
treated. However, one may speculate that the current interval where v > 1 is much larger
compared to the weakly disordered case.

Interestingly, the [-V characteristics of the IF measurements for H < H, have a regime
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Figure 3.17: I-V curves and resistance data obtained by the Leiden group [88] from
decreasing-field measurements.
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Figure 3.18: I-V curves (a) and resistance data (b) obtained from increasing-field measure-
ments [88] . Left figure: H < H,. Right figure: H > H,.
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for I > Iy where vy < 1 resembling the f —v curves of our weakly disordered model in the
commensurate state with » = 1/2. On the other hand, the linear behavior measured for
I < Iy is similar to what is observed in the incommensurate state of our model just above
the small interval around the depinning transition. Comparing the resistance dV'/dI below
and above Ir, one finds that the flux flow resistance Ry for I > Iy is by a factor three
larger than the resistance in the defective low mobility regime R, for I < Iy , Ry ~ 3R,.
This suggests that above I the number of vortex rows moving in the channel has increased
by a factor three. Then the number of vortex rows moving in the channel would be larger
than one above Ir.

In the IF measurements, the edge currents that flow along the channel edges for H < H,
generate a Bean-Livingston barrier for vortices. Besides directing and ordering the static
vortex lattice in the neighborhood of the channel edge they seem to squeeze the mobile
vortices in the channel. This leads to a gradient of the vortex density transverse to the
edge as has been lately observed in magnetic decoration experiments [88]. If several vortex
rows are in the channel, we expect that the frustration of the lattice increases from the
edges to the center of the channel. The inner rows is are thus strongly frustrated with
respect to the rest of the lattice.

A possible depinning scenario for three vortex rows in the channel for H < H, could
be the following. At the low threshold current I, first the inner row depins. Then at the
larger current I7 the outer rows depin. The low threshold I. for the inner row can be
attributed to the strong frustration such that the entry barrier for defects is lowered or
even has vanished. The depinning threshold current I of the outer rows is expected to be
larger, since they are less frustrated. Their depinning leads to the crossover to I-V curves
with downward curvature, v < 1.

At H ~ H, the Bean-Livingston barrier vanishes. For H > H, the transverse order
of vortices along the channel edges vanishes and the effective disorder becomes strong.
Consequently, the I-V curves become similar to the DF results.

3.4 Discussions and Conclusions

In this chapter we have developed a model for artificial vortex-flow channels motivated
by recent experiments [47-49]. We have studied the depinning properties of vortices in
channels of finite length taking into account inhomogeneities such as the sample boundaries
and disorder.

Throughout our analysis, we have neglected the influence of thermal or quantum fluc-
tuations on the depinning process. To see that this is well-justified with respect to the
experiments that have been performed so far, let us estimate the magnitude of both types
of fluctuations in conventional type-II superconductors which have been used to fabricate
the channels. The typical pinning energies of topological lattice defects are larger than the
vortex self energy, which is about 10 eV, whereas the thermal energy is ~ 10~%eV since
the samples are cooled down to < 2K. Hence, only when the resulting energy barriers

~J

are reduced by a factor ~ 107° one can expect to observe thermal creep of vortex lattice
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defects. Since the barrier energy scales as oc (1 —j/j.)%?, the width of the current density
interval around j, at which thermal creep can be observed is Aj S 10735,

To estimate the relevance of quantum creep, we consider the effective Euclidean action
as a function of the current density, S;ff(j). At equilibrium, j = 0, ngf(j =0) ~
Er?/(€2p)(ja/je)'/?, see Ref. [36]. Here the coherence length is & ~ 10 nm, the resistivity
in the normal state is p ~ 1075Qm, the depairing current is j; ~ 10° A/m?, and the
critical current is j, ~ 1054/m2. We find S&/(j = 0)/h ~ 103. For an overdamped
vortex dynamics, which is characteristic for conventional superconductors, S/ (5)/h ~
103(1 — j/je)¥*. Quantum effects become irrelevant for S&//(j) ~ h, hence Aj ~ 107%j,.
Thus, in artificial vortex-flow channels made of conventional superconductors thermal and
quantum fluctuations only become relevant in an extremely narrow interval around the
critical current which has not been resolved in the experiments discussed here. In a first
step, we have therefore entirely neglected fluctuations and have studied a purely classical
mechanical model at zero temperature.

First, we have considered a perfectly ordered vortex lattice in the channel environment,
which effectively produces a periodic potential experienced by the vortices in the channel.
We have studied the overdamped dynamics of a chain of interacting vortices in the effective
channel potential. In our simplified description we have restricted the considerations to
channels with a width of the order of the lattice spacing, w ~ by. We have assumed that
the resulting confinement perpendicular to the channel direction is strong such that the
transverse motion of the vortices in the channel can be neglected. Further, since in all
known channel experiments even for the lowest achievable magnetic inductions A 2 ag
holds, to a very good accuracy only the first harmonic of the periodic potential potential
is kept. These assumptions and restrictions allow to determine the coefficients of a driven
generalized Frenkel-Kontorova model (FKM). For A 2 ay where the typical length of a
topological defect in the channel is much larger than the lattice spacing, Iy > l; > ay,
the dynamics in the channel is conveniently described by the continuum limit of the FKM
known as the driven Sine-Gordon model.

The depinning scenario depends on the frustration parameter x = (a — ag)/ap, which
measures the mismatch between the lattice constant ag of the channel environment and the
preferred lattice spacing in the channel a. In the absence of frustration, x = 0, depinning
occurs via a trivial homogeneous solution when the barrier of the tilted washboard poten-
tial vanishes and the threshold force is given by the amplitude of the sinusoidal channel
pinning force, f. = p. In the presence of frustration, depinning occurs via the formation
of topological defects at one of the sample boundaries. For weak frustration, |x| < x.(0),
we find f. = p{l — (1/2)[v/3 x/x.(0)]*/?}, whereas close to the threshold frustration,
Xe(0) = |x| < xc(0), we obtain fo = (4u/m)[1 = x/xc(0)] and for [x| > x.(0) the depinning
force vanishes, f. = 0. By performing a numerical integration of the equation of motion
we have determined the values of f.(x) in between these limits.

Further, we have numerically calculated the force-velocity curves which correspond to
the current-voltage characteristics of the sample. In the commensurate regime, |x| < x.(0)
we find a characteristics typical to a saddle-point bifurcation scenario, v ~ (f — f.)'/?,
whereas in the incommensurate regime, where the commensurability gap has vanished,
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the response is linear, v ~ f. This behavior is typical for a system with open boundary
conditions, where the density of topological defects is a function of both the frustration x
and the driving force f.

In systems with twisted periodic boundary conditions, where the density of topological
defects is constant, the force-velocity characteristics is different in the incommensurate
regime [49]. One observes a linear low-mobility regime for small driving forces, f < p.
The slope of the linear part is proportional to the density of topological defects in the
system which is fized by the magnitude of the twist at the ends of the system. The slope
of the low-force regime is thus considerably smaller than in the high force regime f > pu.
For f > p the curves show a square-root dependence, v ~ (f — 11)'/? and only in the high
force limit they become linear again. The resulting force-velocity characteristics thus differ
significantly from our results in the incommensurate phase, which is linear for all forces.

We conclude that the boundary conditions strongly affect the force-velocity character-
istics. The reason is that in frustrated systems the presence of (open) boundaries supports
the formation of topological defects which lead to depinning. Further, the entry barriers
at the boundaries determine the rate at which defects enter the sample, thus ruling the
dynamic behavior entirely. The main problem in determining the behavior of vortex-flow
channels is thus to model realistic sample boundaries. Note that other boundary effects
than considered here might modify the picture. For example, the vortex lattice of the
channel environment may be distorted due to the presence of screening currents along the
sample boundary causing a local variation of the frustration. Further, screening currents
may lead to Bean-Livingston barriers for vortices which would increase the energy to form
a defect at the sample edge. However, the conclusion that transport in artificial vortex-flow
channels with a perfectly ordered vortex lattice in the environment is ruled by the entry
barriers at the sample boundary persists even if further boundary effects are taken into
account.

The picture that depinning occurs only via defect formation at the boundaries does
not hold if inhomogeneities are present in the bulk. For example, local distortions of the
vortex lattice in the channel environment caused by quenched disorder may generate weak
spots that support the formation of vacancy-interstitial pairs at sufficiently large driving
force.

To investigate this issue, we have extended the model by accounting for small static
displacements d(r) of the vortices in the channel environment. We assumed the channel
environment to be in the elastic limit, |V -d| ~ {/R. < 1, where £ is the coherence length
measuring the typical displacement within a distance given by the in-plane correlation
length R, for lattice distortions. Further, we assumed that close to the channel edges
A/ R, < ay/2 in order to obtain a local approximation for the displacement fields of the
static vortices close to the channel edge. Since /R, < 1 this approximation should be valid
as long as the penetration depth is not orders of magnitudes larger than the typical vortex
lattice constants. Further, we took only into account longitudinal displacements along
the channel edge. For narrow channels, by ~ w,we then obtained a generalized amplitude
and phase-disordered Frenkel-Kontorova model which in the continuum limit corresponds
to a disordered Sine-Gordon model. Transverse displacements imply modifications of the
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disordered phase and amplitude of the sinusoidal pinning force and to additional pinning
force terms. This issue and its consequences for depinning have not been considered here.

In order to gain a basic understanding, we have first investigated depinning caused by a
specific longitudinal vortex-lattice distortion field along the channel edges. Depending on
their location, these distortions cause additional local frustration of the system modifying
the threshold force for depinning. Distortions at the boundary of the sample affect the
entry barrier for topological defects and cause shifts of the x — f curve along the y-axis.
Local distortions in the bulk are shown to act as nucleation seeds reducing the threshold
force.

Finally, we have studied the effect of small disorder-induced displacements of vortices in
the channel environment. We model disorder by uncorrelated relative displacements which
are represented by random values that are independent identically distributed according
to a box-distribution. In the absence of frustration local lattice distortions in the channel
environment lead to an effective channel potential with weak spots. At the weakest spots
vacancy-interstitial pairs are formed when reaching the depinning threshold force. In the
presence of frustration, a crossover from bulk depinning to boundary depinning occurs
when the entry barrier becomes smaller than the smallest bulk pinning barrier. Increasing
the frustration the entry barrier is decreased until it becomes smaller than the typical
bulk pinning force for kinks due to disorder. Applying a finite driving force that is large
enough to overcome the entry barrier, but smaller than the bulk pinning force, topological
defects enter the channel and become pinned in the bulk. The finite depinning force in
this regime is thus again determined by bulk properties. Increasing the driving force up to
the threshold, topological defects which travel some distance until becoming trapped are
successively introduced. Above the depinning threshold this leads to a jerky motion with
successive depinning and pinning of topological defects.

Realizing that the Frenkel-Kontorova model (FKM) and the sine-Gordon model (SGM)
are equivalent, the question arises, whether the disordered FKM studied here is related to
the Fukuyama-Lee-Rice model (FLRM) [89-92] for charge density waves (CDW’s). This
question is especially interesting with respect to the characteristics of the depinning tran-
sition. The FLRM and simplified versions have been studied both analytically [93-96] and
numerically [97-99], mostly in higher dimensions. The FLRM possesses a phase-disordered
sinusoidal potential where the phases are chosen randomly from an interval [—m, 7]. This
model shows critical behavior for d < 4. Approaching the threshold from below, the criti-
cal state is formed by the release of avalanches characterized by typical sizes that diverge
with a power-law behavior. Above threshold the motion is typically jerky [97] and the
velocity shows a power-law behavior v ~ (f — f.)”, where the exponent v depends on the
dimensionality of the system.

One is tempted to say that vortex flow channels provide a physical realization of the one-
dimensional FLRM. However, we find that the depinning process and the dynamics above
threshold strongly depend on the the type of boundaries at the sample edges, the strength
of the frustration, and the strength and type of disorder. In finite weakly disordered
systems as studied in this work three depinning regimes can be identified. Increasing the
frustration depinning first takes place via defect nucleation at weak spots in the bulk, then
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via defect nucleation at the boundary, and finally by releasing pinned pre-existing defects
when the frustration is so strong that the entry barrier for defects has become irrelevant.

This is indeed very different compared to the FLRM where system boundaries are not
taken into account and the disorder is of a different type. If at all, characteristics of the
FKLM like the avalanching below depinning threshold, the roughness of the critical state
at threshold, and the jerky motion above the depinning threshold resemble to what we
observe in the incommensurate state in the presence of weak disorder. However, to date it
is unclear, whether the behavior of our model observed in numerical simulations at weak
disorder and strong frustration is similar or even equivalent to what is known from the
FLRM. It would be interesting to clarify this issue.

Finally, we compared the theoretical results to available experimental data [47-49, 88].
Sets of current voltage characteristics have been measured in the increasing-field (IF) and
decreasing field (DF) mode. Whereas DF data display properties we can only vaguely
interprete within our model, the low magnetic field IF data shows similar features as our
disordered FKM.

Since the theoretical results are only valid for narrow channels with one mobile row,
weak longitudinal disorder, and since the squeezing effects of channel edge currents where
not taken into account, the interpretation of the available experimental data remains spec-
ulative. It would thus be interesting to extend the model to include these additional
properties.



Chapter 4

Summary

In this thesis certain physical phenomena that emerge due to metastability and depinning
in driven dissipative systems are studied. The two fields of interest, metastability and
depinning are treated in separate and rather self-contained chapters.

First, we study the thermal and quantum decay of harmonically coupled degrees of
freedom from a metastable state. Depending on the coupling strength, finite chains either
behave like a point-like zero-dimensional object or like an elastic line, which is a one-
dimensional manifold. One may then ask: How does the decay rate depend on the effective
dimension of the system? Which decay regimes are encountered when the parameters that
alter the dimension are varied? What types of transitions occur between the decay regimes?
In which physical systems may the effects be observed ?

To answer these questions, we calculate the decay rate using the thermodynamic
method. To shortly introduce this method and give an overview, we first review the cur-
rent state of the art of rate theory. Starting with classical multi-dimensional systems, we
re-derive the spatial-diffusion-limited decay rate in the Markovian limit. Following Langer
[15], one either starts with a Fokker-Planck equation or the equivalent Langevin equation
and ends up with a multi-dimensional generalization of Kramers’ result for one-dimensional
systems [54]. Langer applied his general formula to calculate the rate in the overdamped
limit. Here we show that the range of validity can easily be extended to the moderate-to-
strong damping limit. This possibility has been already noted by Grote and Hynes [58],
but to our knowledge has never been derived explicitely within Langer’s framework.

The thermal decay rate has the Arrhenius form T';; = Pexp(—pV;), where Vj is the
energy of a state most likely leading to decay from metastability and P is a pre-exponential
factor taking into account the contributions of all equivalent states. In general, V; and thus
['.; is a function of macroscopic external parameters that characterize the system under
consideration. Upon tuning the parameters several distinct decay regimes may be entered.
At the boundaries of these regimes the first or second derivative of V; with respect to a
system parameter may become discontinuous. Consequently, the corresponding derivative
of the rate becomes discontinuous. In analogy to classical phase transitions, we define
the crossovers between the decay regimes to be of first (second) order if the first (second)
derivative of the rate becomes discontinuous.
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The thermal decay rate of a harmonic chain trapped in a cubic-parabola potential
undergoes a second order crossover from rigid to elastic decay. In the crossover regime, the
prefactor of the rate P exhibits a universal scaling property. In the rigid regime, the stiffness
of the chain is fairly large compared to the barrier height of the potential, such that the
decay is particle-like (zero-dimensional). Elastic decay occurs when the interaction energy
between the chain beads is much smaller than the barrier height. Then, the escape from
the potential well takes place via line-like (one-dimensional) excitations. A finite chain
with loose ends, energetically prefers to decay via nucleation at the system boundaries.
These “surface” states most likely lead to elastic decay close to the rigid-elastic crossover.
With increasing barrier height a second crossover from boundary to bulk nucleation occurs
when the many possibilities to excite a state in the bulk outnumber the two surface states.

At low temperatures quantum fluctuations become relevant. To determine the low
temperature rate, we apply quantum transition state theory, which is a specific limit of
quantum reactive-flux theory neglecting barrier re-crossings. Within the semiclassical ap-
proximation, the decay rate is then found to have the form I' ~ exp(—Sg/h), where Sp
is the extremal Euclidean action. In the high temperature limit, the rate converges to the
classical one with Sg/h — V;/kpT. Reducing the temperature, quantum fluctuations first
modify the classical pre-exponential factor. These quantum corrections are independent
of dissipation terms. At still lower temperatures, when the thermal fluctuations are of
the order of the quantum fluctuations, a second order crossover from thermal to quantum
decay occurs at the characteristic temperature 7.

For the rigid regime the known single particle results apply. To determine the decay
behavior of a chain of arbitrary length in the elastic regime, we use quantum rate theory.
First, Ty is evaluated close to the rigid-elastic crossover. Then, we calculate approximate
solutions for the most probable chain configurations leading to decay, the non-uniform in-
stantons. The instanton calculations are already non-trivial for a particle or an infinite line.
The reason is that due to the peculiar form of the potential generating metastability one is
confronted with the calculation of non-linear differential equations. Further complications
arise due to an integral term with a non-local kernel when coupling the system to a heat
bath to model dissipation. Whereas some equations arising in the decay problem of a chain
of coupled particles can still be solved in the thermal regime, it is absolutely hopeless to
find exact solutions in the quantum regime. One way to tackle the problem analytically is
to linearize the equations appropriately. We have systematically worked out a perturbation
scheme and have applied it to determine approximate non-uniform instanton solutions.

The extremal action Sp is obtained by evaluating the Euclidean action at the instanton
solution. Analyzing Sg, we determine the crossover line from quantum rigid to quantum
elastic decay. At low temperatures and low barrier height, the crossover is of second order.
Interestingly, at higher temperatures and barrier height, a “tricritical” point exists beyond
which the quantum rigid-to-elastic crossover is of first order. The various decay regimes
are summarized in a decay diagram.

Finally, knowing the extremal action, we compute the decay rate to exponential accu-
racy, I' ~ exp(—Sp/h) in the quantum elastic regime. With this result, the decay rate
of a finite overdamped chain in a weakly metastable state is now determined for all four
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regimes.

We expect that the crossovers discussed here occur in many weakly metastable chain-like
systems in the presence of dissipation. Here, the results are mainly discussed in the context
of two systems, namely current-driven vortices in high temperature superconductors with
columnar defects and one-dimensional current-biased Josephson Junction arrays, so called
discrete Josephson transmission lines. The latter provide an ideal experimental system to
observe the crossovers investigated here.

The last chapter of this thesis is devoted to the depinning transition in driven systems
neglecting thermal or quantum fluctuations. Motivated by recent experiments on artificial
vortex flow channels [47-49] we study the depinning of elastic chains and lines that interact
with their environment.

First, we develop a model for artificial vortex flow channels. Starting from a London
description of straight vortices in a superconductor, we calculate the effective channel
potential produced by a static vortex lattice in the environment. The result, which is
strictly valid only at inductions far below B, is generalized to higher inductions by taking
into account the vortex core and by introducing a field dependent coherence length and
penetration depth. To understand the basic depinning mechanisms, we consider only a
single vortex row in the channel. Further, we simplify the problem by mapping the model
onto a generalized Frenkel-Kontorova model [50] or equivalently, a Sine-Gordon model.
Deriving the coefficients of the Frenkel-Kontorova model, we make use of the fact that in
the experimentally interesting regime the magnetic inductions are so large that the average
vortex spacing is of the order or smaller than the penetration depth. Then, the resulting
channel potential is sinusoidal to a very good approximation. Further, since the vortex-
vortex interactions drop off exponentially on distances larger than the penetration depth,
within the channel only harmonic interactions between a finite number of nearest neighbors
are taken into account. In the continuum Sine-Gordon limit this cut-off is used to obtain
an effective local theory.

After deriving the coefficients of the Frenkel-Kontorova model, we investigate the
Commensurate-Incommensurate transition commonly known to occur in this model at ther-
mal equilibrium. Since our focus is on the depinning problem in the absence of fluctuations,
we modify the theory. We define a “mechanical” Commensurability-Incommensurability
transition. It turns out, that the boundaries of the system play a crucial role if one sup-
poses that the number of static vortices in the strong pinning environment is constant: the
purely mechanical Commensurate-Incommensurate transition occurs, if the entry barrier
for discommensurations at the boundary vanishes.

This concept can be generalized to describe depinning at finite driving forces. The
reason is that the entry barrier for discommensurations is reduced when a driving force is
applied. Depinning takes place when the entry barrier for discommensurations vanishes.
This occurs at frustrations below the zero force threshold frustration at which the mechan-
ical Commensurate-Incommensurate transition occurs. In this regime, the entry barrier is
by far the largest barrier in the system.

Above the zero-force threshold frustration, in the incommensurate regime, the entry
barrier has vanished and discommensurations enter the system until the mutual repulsion
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between the defects prevents new ones to flow in. The extremely small Peierls-Nabarro
barrier which may arise due to the discreteness of the system [83] is not taken into account.

The analytically calculated threshold force is compared with data obtained by the
Leiden group from molecular dynamics simulations of channels with a perfectly ordered
environment and from measurements of the critical current in artificial vortex flow channels
[49, 81, 88]. Unfortunately experimental data for a single vortex row in the channel has not
been available, such that the comparison can only be made on a qualitative level. In the
commensurate regime the experimentally obtained threshold force is reduced whereas in the
incommensurate phase it is considerably enhanced compared to the calculated depinning
force expected for an ordered channel.

The enhancement of the depinning threshold in the incommensurate phase is taken as an
indication that quenched disorder in the channel environment plays an important role. To
investigate the properties in the presence of disorder, weak vortex lattice distortions along
the channel edges are introduced into the model. Weak perturbations are a reasonable
assumption if the pinning energy due to point-like defects in the channel environment is
much smaller than the interaction between the vortices. Further, we assume that lattice
defects are not present in the pinned environment and that along the channel transverse
distortions can be neglected if the material step at the channel edge produces a fairly strong
pinning well. Taking only longitudinal lattice distortions into account we derive an integral
expression for the effective channel potential. This expression is evaluated in the limit of
small and smooth disorder induced lattice displacements. Performing similar derivation
steps as in the perfectly ordered case we end up with a disordered Frenkel-Kontorova
model and its continuous counterpart, the disordered Sine-Gordon model. Similar models
are known from the Charge-Density-Wave studies [89-99]. The main difference to our
model is that the disorder induced variations of the phase are smooth on the scale of a
lattice constant.

To obtain a basic understanding of (de-)pinning in systems with a distorted vortex
lattice environment, we study some simple examples. A similar line of reasoning was
followed by Fukuyama back in the nineteen-seventies when Charge-Density-Wave models
became en vogue [89]. The main difference to the problem treated here is that he was
considering a system close to thermal equilibrium whereas here we are interested in the
depinning behavior far from equilibrium. We identify typical configurations that act as
sources which produce vacancy-interstitial pairs and thus lower the depinning threshold.
These we call weak spots. We find also other configurations that pin the topological defects.
The system is static if all topological defects that enter the system via the boundaries or are
induced at weak spots are trapped by lattice distortions of the pinning type. Depinning
takes place when the density of topological defects becomes larger than the density of
pinning sites. It is thus clear that an enhancement of the depinning threshold can only
occur in systems with a considerable amount of pinning sites formed by lattice distortions
in the channel.

In order to investigate the depinning transition in channels with randomly distorted
edges, we perform numerical simulations. By analyzing the time evolution of the displace-
ment fields, we observe the main features described above: In the absence of frustration,
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depinning occurs via the formation of vacancy-interstitial pairs at weak-spots generated by
the randomly distorted vortex lattice in the channel edge. In the presence of frustration
we find three regimes: At low frustration, the threshold for boundary nucleation is larger
than the threshold for nucleation at weak spots in the bulk. Hence, depinning still occurs
at weak spots. At larger frustration a crossover from bulk to boundary depinning occurs
when the boundary depinning threshold becomes smaller than the weak-spot depinning
threshold. When the frustration is further increased, the entry barrier for defects vanishes.
Defects can enter the system until they become pinned and their mutual repulsion prevents
new defects to flow into the system. Increasing the driving force, defects successively enter
the system. The system depins, when all pinning sites are occupied. Then a new defect
entering the system cannot become pinned and freely moves to the channel exit.

We obtain the force-velocity characteristics, the threshold force as a function of the
frustration, and the threshold force as a function of the disorder for an ensemble of channels
with randomly perturbed channel edges.



Appendix A

Thermal prefactor

A.1 Curvature Matrix: Determinant and eigenvalues

A.1.1 Recurrence relation for the Hessian matrix

As was shown in Sec. 2.3.2, the prefactor P of the thermal decay rate is a function of
the determinant and the eigenvalues of the curvature matrix evaluated at the relative
minimum and the saddle points, respectively, see Eq. (2.107). The curvature or Hessian
matrix Vy with matrix elements V;,,(xo) = 0,0 E(Xo) determines the nature of E at the
extremum xg. If all eigenvalues of V y(xg) are negative (positive), xq is a relative maximum
(minimum). If some of the eigenvalues are positive and some are negative, then x; is a
saddle point. For E(xg) with N > 3, the Hessian matrix reads

REx) —k 0 -+ 0 —bk
P 0
0 :
Vi (x) = .
0 i
—bk 0 -+ 0 —k 0% F(x)

In the case of open boundary conditions b = 0, the diagonal elements are given by

2 | k+U"(z,), n=0N-1
Ok (x) _{ 26+ U"(z,), 0<n<N-—1

In the discussion that follows, we introduce
1+2 -1 0 S 0
-1 24z -1 :
. 2+ ZN—-2 -1
0 v 0 -1 1+ ZN—1
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which is used to calculate both the determinant and the characteristic polynomial of V.
For example, in order to calculate the determinant of the normalized Hessian V y/k for
N > 4, one sets z, = U"(x,)/k. Below, we will derive a recurrence relation, which is used
to determine Dy in some special cases.

By shifting the last column to the first and then lifting the bottom row to the top, one
can rewrite the determinant as

I+2y 0 o --- 0 -1
0 I+2 -1 0 - 0
0 -1
DN:dﬁt . 0 s
0 E AN
-1 0

where the (VN — 2) x (N — 2) matrix Ay_» is given by

24+ 0 e 0
-1 242 -1 :
AN 2= 0 ' 0
: -1 2+ 2y_3 -1
0 0 -1 2+ 2N 2
In the following, we will consider the case where z; = ... = zy_o = z. Note that 2z, and

zZn_1 can be arbitrary.

Expanding Dy, we find with G,, = det A,

Dy = (I+2y-1)[(1+2)Gn_2— Gn_35]
—(1 + Z())GN_g + GN_4. (A2)

Expanding the determinant G, according to the last row of A,, one finds the recursive
relation [100] G, = (2 + 2,,)Gp—1 — G,,—2 that can be rewritten as a difference equation

(Gn — Gn—l) — (Gn—l — Gn_Q) — ZnGn—l =0. (A3)
The initial conditions are given by the determinants (G; and G,

G1 = 2—|—Z,
Gy, = (2+2)>-1. (A.4)

For 2 < N < 4, we can use the recurrence relations for G,,, if we define Gy =1, G_; = 0,
and G_2 = —1.
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A.1.2 Uniform case

The solution of these difference equations is possible for special cases. We now analyze the
uniform case where z = 2y = ... = zy_;. Then Eq. (A.2) simplifies to

DN == (1 + Z)2GN_2 - 2(1 + Z)GN_g + GN_4. (A5)

Determinant at the relative minimum, z > 0

We first discuss the case of the local minimum x = X,,;,, where z = w? > 0. Imposing the
initial conditions given by Eq. (A.4), one obtains a solution [100] of Eq. (A.3),

min _ Sinh(NQ)
Gn= = sinh Q (4.6)
where Q
w
L
sinh
Using Egs. (A.5) and (A.6), we obtain
. . Q
DI — G — 2 tanh (§> sinh(NQ). (A7)

Determinant at the rigid saddle, z < 0

In the same way as for the local minimum, one obtains Dy at the rigid saddle x = x,.; but
now with negative z = —@? < 0. One finds

sin(NQ)
GT‘S - 7
N=t sin €2
where ~
Q o
a2t X A,
sin 5 5 (A.8)
and hence ~
0O -
DYy = 2tan <§> sin(N€) (A.9)
Eigenvalues

The eigenvalues of Vy are found by evaluating the roots of the characteristic polynomial,
det(Vy — pI) = 0. We have again a determinant of the form of Eq. (A.1), but now with
2y = U"(2,,)/k— /K, such that we can define Dy (u) = £ det(Vy —puI). Using Eq. (A.9)
we find that the roots where Dy (p) = 0 are given by Q,,, = mn/N, where m = 0,..., N —1.
Inserting €, into BEq. (A.8) yields &y, = 2sin(,,/2), hence Dy (pin,) = 0 for

1y, = A sin? (%) +U"(20), (A.10)

which are the eigenvalues of V y(xg) for a given uniform extremal solution xq = (o, . . ., Zp).
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A.1.3 Nonuniform case

Approximate solutions for the determinant and the eigenvalues can be obtained deep in
the elastic regime, A/A, > 1.

Elastic boundary saddle (A, > A > A,)

For the elastic boundary saddle-point configurations obtained in Eqgs. (2.97)-(2.99), to
highest order in A/A, one finds that U"(xy) = --- = U"(zn_3) = 6UgA/r?, U'(zy_o) ~
6UpA/1r? — 2k, and U" (zy_1) = —6UA/1r? — 2k.

With z, = U"(x,)/k one obtains for the determinant up to O (AN*Z)

Dy =~ (1+2n-1)(2+ 2nv-2)(1 + 20) G (A.11)

The ratio D" /DS, which is needed to calculate the prefactor in the elastic regime is
found to be

Dy B K12 5
D = 1= tO [(A./A)7].

To calculate the eigenvalues, we set again z, = U"(z,)/k — p/k. The characteristic
polynomial Dy (p) is now up to O(AN~2), given by

Dy(p) ~ (14 2nv-1)(2 + 2n-2) (1 + 20) Gn—3(11)-

Thus, to lowest order in A, we find that the smallest eigenvalue is

es 6UsA
pe' o~ = —kK— TIZ : (A.12)

Elastic bulk saddle (A > Ay;)

For the elastic bulk saddle-point configurations obtained in Egs. (2.101) and (2.102) to
highest order in A/A, one finds for a double kink situated at m, U” (z,,) ~ —6UgA/r*—4k,
U"(pa1) = 6UgA/r? — 4k, and for |n—m| > 1 U"(z,) ~ 6UgA/r*. With z, = U"(z,)/k
and using periodic boundary conditions, the determinant is approximately given by

D% = (24 2mi1) (24 2m) (24 21 ) GRS,

The ratio D"/ Db is

Drun Akr?
— =1 A, /A)?. Al

The characteristic polynomial Dy (x) is now up to O(AY2) given by
Dy (p) = (2 + 2m1) (2 + 2m) (2 + 2m 1) Gv-3(1),

where 2, = U"(x,,)/k—p/k. Thus, to lowest order in A, we find that the smallest eigenvalue
1s

Y o~ = -2k — (A.14)
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A.2 Prefactor in the crossover regime

A.2.1 Rigid regime (ASA,)

For A — A,, both the eigenvalue ;{* and the determinant D’} vanish. Hence the Gaussian
integral containing u}* in Eq. (2.107) diverges, and third-order terms in ¢; have to be
taken into account. In the rigid regime, the third-order expansion of F in ¢; is given by
Eq. (2.84). The contributions to P of all degrees of freedom except ¢; € S are found by
Gaussian integration:

p - L JV—Z+3U3A JARL ) (1A Tase A Y2 (3NUpAS
2 4 mr? 2 12} Ars 2rkpT

% INUAS3
X /_ _dgiexp [—73 (Mgt +in‘)] , (A.15)

2kgT

where D = 276 as defined above in Eq. (2.87) arises during the Gaussian integrations over
¢o and ¢y. In the following we first derive an approximate expression for [] A"/ [Lz A
and then evaluate the remaining integral over ¢.

For the calculation of the product term we use the relation

TLv/ T A = XD /.
n#l

Let us analyze D7 for A}® close to zero. Recall that

B U”(ug) - T e
2 _Z V0 ggin? (—) - =L
w Sin ON

K K

Inserting this expression into Eq. (A.8) in the limit of small p}*, we find

L
N 2gsin(r/N)’

such that, to lowest order in u7?,

sin(NQ) ~ L,
2k sin(7/N)
and B
tan (5 ) ~ tan (1)
a. 5 ~ ta ON .
Hence

pmun I€T2

Q
P = ? h()'hNQ.
Al D INT, cos (2]\7) tan 5 sinh(N(Q2)
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The integration over ¢, yields

o0 3NUg
[ dqlexpl T = (A f+Dq1)]

AP pl:aNUB(X;S)] l3NﬁB(A’;S)2]
a I e = B /4 |\ =2~ |0

_ Al
2\' D P T 16ksTD 16ksTD (4.16)

where K/, is the modified Bessel function. We make the substitution A\7* = —2¢e. After
defining

p_ L \/7_2+3UBA*|)\55| AW AP AN NN A
Por \V 4 mr? 2 1Y) Ars Am?kT D

N (\/12 3ULA. |>\ 5| f)/) [tanh(€2/2) sinh(NQ)]1/2< 3UA? >1/4 (A.17)

47 22 47 tan(m/2N) 8m3NkpTo
and "
4kgT D
Y i T A18
‘ <3NA2UB> (19

which are constants to leading order in €, we obtain the prefactor of the rate for the rigid
region of the crossover regime 60, :,

Py
V2

A.2.2 Elastic regime (AZA,)

In the elastic regime near the crossover, where €20, we expand V(q) around the perturba-
tive elastic saddle-point solution (2.85),

€

o 0 R R R

S

P(e) =

V(@) = V@) + 5V (6) + VO (8,

where V@ and V@ contain the terms of second and third order, respectively, and &, =
qr — q;° are the fluctuations around the elastic saddle point. By introducing the shifted
fluctuation coordinates for m # 1,

: 2¢7°61 Am
gm = gm + 1)\717197
with Ag = =2, Ay = —v/2 and A;»5 = 0, we find, for the quadratic part to leading order
in e,
VO = X+ 3 a2
m#1
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Note that A7? are the dimensionless eigenvalues evaluated at the rigid saddle-point
configuration. Within the crossover regime, to leading order in €, the eigenvalues at the
elastic saddle-point solution A7%; = A%, are independent of €, except A\{* = —2AT* = e.
The higher order contributions to the expansion read

1 A
V= (Z Amgm) & +2Dgi°}
m#1

Transforming the fluctuation coordinates a second time,

~ A A
gm;él = é‘m + )\—n:sé‘%a
51 = & +qf,

we find ) D
~ ~ 2
V(@) = Viae) +5 2 W6 + 5 [6°— )]
m#1

By using (¢¢%)? = —\*/2D = ¢/ D, we evaluate the integrals as in the previous paragraph,
[101]

/O:O d€ exp {_QkZZT [512 - ((JTS)Q]Q}

T )\17‘8 ()\17‘8)2 ()\17‘8)2
_ T T |2 |y, | A0S A.20
22 ‘D { 1/4l16kBTD T 16k, TD (4.20)
« exp |- 7).
16k5TD|

where I/, and I_;/4 are modified Bessel functions. The prefactor of the rate for the elastic
regime AZA, in the crossover region then reads
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