Petrographie und Petrogenese des Eckergneis-Komplexes, Harz

Dissertation

Zur Erlangung des Doktorgrades der Naturwissenschaften im Fachbereich Geowissenschaften der Universität Hamburg

vorgelegt von

Nergui Martin-Gombojav

aus Ulaanbaatar

Hamburg 2003

Gedruckt mit Unterstützung des Deu	tschen Akademischen Austauschdienstes
Als Dissertation angenommen vom F der Universität Hamburg	Fachbereich der Geowissenschaften
auf Grund der Gutachten	von Prof. Dr. R. Vinx
	und Prof. Dr. H. Schleicher
Tag der mündlichen Prüfung:	16.07.2003
Dekan des Fachbereichs Geowissenschaften:	Prof. Dr. H. Schleicher

Kurzfassung

Der Eckergneis ist eine 7 qkm große Scholle, die innerhalb des Rhenoherzynikums der Varisziden liegt. Sie befindet sich im Harz und wird von den ca. 295 Ma alten Graniten des Brockenplutons und dem gleichaltrigen Harzburger Gabbronoritmassiv umrahmt.

Der Eckergneis-Komplex wird petrographisch neu gegliedert in Quarz-Feldspat-Quarz-Cordierit(Pinit)-Feldspat-Granoblastite, Granoblastite. Gneise, Cordierit-Pyroxen-Glimmerschiefer geringmächtige Metavulkanite. Granoblastite. Ouarzite, und polymetamorphe Eckergneis-Komplex unterlag einer amphibolitfaziellen zuerst Dynamometamorphose, die von intensiver duktiler Verformung begleitet wurde. Anschließend erfuhr der Eckergneis eine Aufheizung, die zu einer statischen Umkristallisation der Eckergneis-Gesteine unter granulitfaziellen Bedingungen führte.

Der Eckergneis-Protolith bestand aus karbonatfreien, kompositionell reifen Ablagerungen von Tonsteinen, Sandsteinen und deren Mischungen.

Der Sedimentationscharakter ist hoch refraktär, ebenso das Schwermineralspektrum der Metasedimente.

Das Altersspektrum der Zirkone belegt eine überwiegende Lieferung von Baltica. Die Geochemie und Schwermineralspektren dokumentieren Sedimentation an einem passiven Kontinentalrand.

Der mehrfach hochgradig metamorphosierte Eckergneis-Komplex, isoliert in einem kleinem Areal, kann nur durch Deckentransport in seine heutige Position, d.h. in unmittelbare Nachbarschaft zu kaum metamorphen Sedimentgesteinen gleichen Alters gelangt sein. Wahrscheinlich wurde der bereits metamorphosierte Eckergneis bei der variszischen Orogenese auf rhenoherzynische Sedimentgesteine überschoben.

Vorwort

Die vorliegende Dissertation entstand in der Zeit von 1999 bis 2003 am Mineralogisch-Petrographischen Institut der Universität Hamburg.

Ich bedanke mich herzlich bei

Herrn Prof. R. Vinx für die Überlassung des Themas, für Anregungen und Interesse am Fortgang meiner Arbeit und dafür, dass er mir bei allen Problemen hilfreich zur Seite stand,

Herrn Prof. Schleicher für die Bereitschaft, die vorliegende Arbeit zu begutachten und seine hilfreiche Unterstützung während dieses Studiums,

Dr. Hornberger, Dr. Birk und Mitarbeiterinnen der Referat 423 des Deutschen Akademischen Austauschdienstes für die finanzielle Unterstützung, durch die dieses Studium ermöglicht wurde,

Dr. T. Geisler-Wierwille für die Betreuung der Chemischen Datierung an der EMS und Durchführung der SHRIMP-Analysen an der Curtin University of Technology in Perth/Australien,

Herrn Prof. M. Tarkian für hilfreiche Hinweise und Diskussionen, die mir eine große Hilfe waren,

Herrn Stutz für die großzügige Hilfe bei der Präparation von zahlreichen Dünnschliffen und Schwermineralkonzentraten,

Frau Cornelisen für die Betreuung an der Elektronenstrahl-Mikrosonde und ihre unermüdliche Hilfsbereitschaft,

Herrn Dr. Stütze, Frau Richarz und Frau Thun (Geochemisches Labor des MPI und des GPI der Universität Hamburg) für die hervorragende Betreuung und Hilfe bei RFA-Analytik und der Aufbereitung von Schwermineralkonzentraten.

Herrn Dr. J. Schlüter für das mir zur Verfügung gestellte Material aus dem Eckergneis-Komplex,

Dr. Ulrike Poller (Max-Planck Institut für Chemie, Abteilung Geochemie) für ihre Hilfe bei Aufnahmen von KL-Bildern,

Herrn Surkau (Nationalparkverwaltung Harz) und Herrn Dr. Wegener (Nationalparkverwaltung Hochharz) für die Genehmigungen zur Geländearbeit in den Nationalparken Harz und Hochharz,

Herrn Prof. K. Mengel (Technische Universität, Clausthal) für zahlreiche Hinweise und SEE-Analysen an Metavulkaniten, die an anderer Stelle dargestellt werden sollen,

Des weiteren habe ich allen Mitarbeitern des MPI der Universität Hamburg, insbesondere Herrn Dr. Klaska für ihre Hilfsbereitschaft zu danken.

Einen herzlichen Dank möchte ich für Vera, Peter, Melanie, Isabel, Martin, Reinhard und Carsten für Freundschaft und Kollegialität aussprechen, die mir immer zur Seite standen und geholfen haben.

Meiner Mutter und meinem Mann insbesondere meiner Tochter Binderiya möchte ich für Ihre Unterstützung und Engagement danken.

Inhaltsverzeichnis

1.	Einleitung	1
2.	Der Eckergneis im regionalen Rahmen	2
	2.1. Das Harzkristallin als Teil der Varisziden,	
	insbesondere des Rhenoherzynikums	2
	2.2. Der Eckergneis als Teil des Harzkristallins und	_
	die Problematik seiner geologischen Sonderstellung	5
3.	Gegenwärtiger Kenntnis- bzw. Diskussionsstand	6
4.	Fragestellungen und Zielsetzungen	9
5.	Untersuchungsmethoden	10
6.	Petrographische Gliederung der Gesteine im Eckergneis-Komplex	13
	6.1. Quarz-Feldspat-Granoblastite	16
	6.2. Quarz-Cordierit(Pinit)-Feldspat-Granoblastite	17
	6.3. Gneise	21
	6.4. Cordierit-Pyroxen-Granoblastite	24
	6.5. Quarzite6.6. Glimmerschiefer	29 33
	6.7. Metavulkanite	36
	6.8. Sonstige Gesteine	44
7.	Schwermineraluntersuchungen	49
	7.1. Schwermineralspektren in Metasedimenten	49
	7.1.1. Chromite	50
	7.2. Schwermineralseifen	53
8.	Geochemie der Eckergneis-Gesteine	56
	8.1. Metasedimente	56
	8.2. Metavulkanite	59
9.	Zirkon-Altersbestimmungen	62
	9.1. U-Th-Pb-Datierung mit der Elektronenstrahl-Mikrosonde	66
	9.2. U-Pb-Datierung mit der Ionensonde (SHRIMP)	68
10	Protolithklassifizierung und tektonische Zuordnung des Eckergneis-Komplexes	71
	10.1. Metasedimente	71
	10.2. Metavulkanite	77

11.	Klassifizieru	ng der Sedimentliefergebiete	79
	11.1.1. Chi	romite hische Hinweise auf die Sedimentliefergebiete	79 79 84
12.	Metamorpho	segeschichte des Eckergneis-Komplexes	86
13.	Geotektonisc	he Stellung des Eckergneis-Protolithen	91
14.	Synoptische l	Petrogenese des Eckergneis-Komplexes	97
15.	Ausblick		99
16.	Literaturverz	zeichnis	100
Lebe	enslauf		108
Anh	ang I:	Probenliste mit makroskopischer Beschreibung	
Anh	ang II:	RFA-Daten	
Anh	ang IIIa:	Mikrosondenanalysen der gesteinsbildenden Minerale und deren Mineralformeln	
Anh	ang IIIb:	Mikrosondenanalysen der Chromite	
Anh	ang IV:	SHRIMP-Analysendaten	
Anh	ang V:	Abkürzungen	
Anh	ang VI:	Lageplan der Beprobungspunkte im Eckergneis-Komplex	

1. Einleitung

Der Eckergneis ist eine 7 qkm große Scholle, die innerhalb des Rhenoherzynikums der Varisziden liegt. Sie befindet sich im Harz, und wird von den 295 Ma alten Graniten des Brockenplutons und dem gleichaltrigen Harzburger Gabbronoritmassiv umrahmt. Lithologisch setzt sich der Eckergneis im wesentlichen aus Metapeliten und Metapsammiten zusammen. Untergeordnet treten Metavulkanite auf.

Von HOFFMANN (1829), ZIMMERMANN (1834) und HAUSMANN (1842) wurden die Metamorphite des Eckergneis-Komplexes als eine besondere Art von Hornfels angesehen, während ROEMER (1850) sie als Gneise bezeichnete.

Der "Eckergneis" erhielt seinen Namen von LOSSEN (1889), der die Meinung vertrat, dass dieser Gesteinskomplex "nur als eine echte, im Kontakt mit den Eugraniten stark metamorphosierte paläozoische Sedimentärformation, und zwar als Kulmformation aufgefasst werden kann".

Diese Meinung vertrat auch ERDMANNSDÖRFFER (1909, s. 330), gab aber hierzu folgende Fußnote: "Ich betone dies besonders, weil mir von autoritativer Seite noch vor Kurzem die Vermutung ausgesprochen wurde, der Eckergneis gehöre zum "Kristallinen Grundgebirge". Der Name dieser Autorität lässt sich leider nicht mehr feststellen.

SCHLÜTER (1983) hat den Eckergneis-Komplex petrographisch-petrochemisch bearbeitet und die Druck-Temperatur-Bedingungen der Hauptmetamorphose in der Eckergneisscholle als amphibolitfaziell ermittelt. Außerdem belegte er durch von ihm nachgewiesene fossile Seifen und Kreuzschichtung einen metasedimentären Charakter der entsprechenden Gesteine. Einzelne metabasaltische Amphibolitlagen (Eckertal, Diebesstieg) hat SCHLÜTER (1983) als Ozeanboden-Basalte eingestuft.

Einige Eckergneis-Metavulkanite (Diebesstieg, Sellenberg und Zillierwald) sollten sich nach HAUPT (1996) im Bereich eines Backarc-Beckens gebildet haben.

Im Jahre 1991 wurde eine Probennahme und eine unveröffentlichte Schemakartierung von R. VINX erstellt.

Derzeit vorhandene Altersbestimmungen sind ein von SCHOELL et al. (1973) publiziertes Rb/Sr-Isochronenalter von 379±10 Ma und U-Pb-Datierungen an Zirkonen von BAUMANN et al. (1991). Aus U-Pb-Isotopenuntersuchungen nach BAUMANN et al. (1991) ergab sich ein unteres Schnittpunktalter von 560 Ma und ein oberes Schnittpunktalter um ca. 1.6 Ga. Ein variszisches Alter (295 Ma) wurde von BAUMANN et al. (1991) durch U-Pb-Daten von Titaniten in Metavulkaniten dokumentiert.

MÜLLER & STRAUSS (1985) und FRANZ et al. (1997) sind der Meinung, dass der Eckergneis zuerst eine granulitfazielle Dynamometamorphose durchgemacht hat und anschliessend amphibolitfaziell überprägt wurde. FRANZ et al. (1997) sahen im Eckergneis-Komplex einen Teil prävariszischen Grundgebirges der Ostavalonischen Platte.

Bezüglich des Aufstiegmechanismus des Eckergneis-Komplexes existieren verschiedene Meinungen, die in Kap. 3 erläutert werden.

In der vorliegenden Arbeit wird der Protolith der Eckergneis-Metasedimente klassifiziert und geotektonisch eingeordnet. Eine Charakterisierung der Sedimentliefergebiete des Eckergneis-Komplexes wird ebenfalls vorgenommen. Im Komplex untergeordnet vorkommende Metavulkanit-Lagen werden geochemisch klassifiziert und tektonomagmatisch zugeordnet.

Zur Ermittlung von Sedimentations- und Metamorphosealtern werden neue U-Pb-Altersbestimmungen an Zirkonen referiert.

Ferner wird versucht, Aussagen zur geotektonischen Stellung des Eckergneis-Protolithen zu machen und Hinweise zur Platznahme im Rhenoherzynikum zu erzielen.

2. Der Eckergneis im regionalen Rahmen

2.1. Das Harzkristallin als Teil der Varisziden, insbesondere des Rhenoherzynikums

Das Harzkristallin gehört tektonisch zum Rhenoherzynikum, welches wiederum den nördlichen Teil der Varisziden (Abb. 1) darstellt. Die **Varisziden** sind Teil einer paläozoischen Gebirgskette, die sich von den Appalachen über Marokko/Nordalgerien, West-, Mittel-, und Südeuropa sowie Kleinasien bis zum Ural erstreckt. Die Ausdehnung des Orogens beträgt ca. 1000 km in der Breite und ca. 8000 km in der Länge. Die heutigen Oberflächenvorkommen des variszischen Grundgebirges in Mitteleuropa lassen sich, unter Berücksichtigung ihrer unterschiedlichen geologischen und tektonischen Entwicklung und ihrer Metamorphosegeschichte, nach einem Vorschlag von Kossmat (1927), als einzelne im großen und ganzen E-W verlaufende Zonen zusammenfassen (Abb. 1).

Den Zentralbereich der mitteleuropäischen Varisziden bildet die Moldanubische Zone. Dieser Zone gehören der überwiegende Teil des Böhmischen Massivs, des Schwarzwaldes und der Vogesen an. Sie ist im wesentlichen aus proterozoischen bis variszischen Kristallingesteinen aufgebaut, unter denen auch hochgradige Metamorphite wie Eklogite und Granulite auftreten. Niedrigmetamorphe paläozoische Sedimentserien sind nur in Ausnahmefällen erhalten. Nach Westen bilden das Französische Zentralmassiv und das Armorikanische Massiv die Fortsetzung der Moldanubischen Zone. Östlich grenzt der gleichfalls proterozoische Bruno-Vistulische Block an und ein sich darüber entwickeltes südöstliches Außenvariszikum (Moravo-Silesikum/Sudetikum), aufgebaut aus überwiegend nichtmetamorphen, gefalteten Schichtfolgen des Devons und Karbons (WALTER 1995).

Brabanter

Massiv

Greenst

Ardennan

Roccold

Arde

Abb. 1 Variszische Gebirgszusammenhänge in Mitteleuropa (aus Franke et al. 1989)

des Moldanubikums

Nördlich an die Moldanubische Zone grenzt die Saxothuringische Zone. Der nördlichste Abschnitt dieser Zone wird als Mitteldeutsche Kristallinschwelle bezeichnet. Am Aufbau dieser Zone beteiligen sich außer variszischen Granitoiden auch verschiedengradig metamorphe Sediment- und Vulkanitserien des Jungproterozoikums und Altpaläozoikums. Sie ist hauptsächlich im Odenwald und Spessart sowie im Thüringer Wald bei Ruhla und im Kyffhäuser über Tage aufgeschlossen. In ihrem zentralen und südlichen Teil besteht die Saxothuringische Zone aus gefalteten und teilweise metamorphen Sedimentfolgen und Vulkaniten des Kambriums bis Unterkarbons. Hauptvorkommen ist das Thüringisch-Sächsische Grundgebirge am Nordwestrand des Böhmischen Massivs. Nach Westen ist die Saxothuringische Zone bis in die nördlichen Vogesen und nach Bohrungen bis an den Ostrand des Pariser Beckens zu verfolgen. Ihre östliche Fortsetzung bildet das Lugikum der Lausitz und der Westsudeten (WALTER 1995).

Im Norden erstreckt sich die Rhenoherzynische Zone vom Rheinischen Schiefergebirge im Westen über das Werra-Grauwackengebirge, den Harz und den Flechtinger-Horst bis zum Moravo-Silesikum im Osten (z.B. ENGEL & FRANKE 1983). Die westliche Erstreckung des Rhenoherzynikums nach ENGEL et al. (1983), HOLDER & LEVERIDGE (1986) lässt sich bis nach Süd-Cornwall und Süd-Irland verfolgen und nach DALLMEYER & MARTINEZ-GARCIA (1990) erstreckt es sich bis nach Süd-Portugal.

Der Hauptteil des **Rhenoherzynikums** ist aus Schelfklastika bzw. Prä-Flysch-Serien mit silurischen K-Ar-Abkühlaltern von ca. 440 bis 420 Ma (gemessen an detritischen Muskoviten)

(KÜSTNER 2000) aufgebaut. Diese Schelfablagerungen entstanden am Südrand des Old-Red-Kontinents, durch Abtragungsschutt nördlich gelegener spätkaledonischer Einheiten. Am Aufbau des Rhenoherzynikums sind zudem allochthone Einheiten beteiligt: Die Giessener-Decke (ENGEL et al. 1983), die Südharz-Selke-Decke oder die Ostharz-Decke/Harzgebirge (REICHSTEIN 1965) bestehen hauptsächlich kondensierten Peliten und oberdevonischen aus ersten unterkarbonischen Flyschen. Diese werden von frühdevonischen MOR-Typ-Metabasalten (GROSSER & DORR 1986; PLATEN et al. 1989) überlagert und gelten als der ozeanische Teil des Rhenoherzynischen Beckens, der über die passiven Kontinentalrandsequenzen auf das Vorland überschoben wurde. An Detritus der Flyschen dieser allochthonen Einheiten wurden K-Ar-Abkühlalter von ca. 750 bis 500 Ma gemessen, womit sie Hinweise darauf geben, dass Gondwana (oder ein verwandtes Terran) als Liefergebiet in Frage kommt. Frühvariszischer Detritus der Flysche zeigt K-Ar-Abkühlalter von ca. 390 bis 370 Ma an. Zwischen Ordovizium und Devon gibt es im Rhenoherzynikum keine Indizien für eine Kaledonische Orogenese (KÜSTNER 2000).

Der Harz stellt eine mehrere km herausgehobene Hochscholle dar, die quer zum variszischen Streichen einen etwa 90x30km großen Ausschnitt des Rhenoherzynikums aufgeschloßen ist. Der Harz besitzt eine NE-SW- streichende (erzgebirgische) interne Struktur und eine NW/SE-streichende (herzynische) Kontur. Er lässt sich in drei geologische Großeinheiten gliedern: in den Oberharz, den Mittelharz und den Unterharz (Abb. 2). Als Grenzen zwischen den Einheiten werden ganz allgemein die am Südostrand des Acker-Bruchberg-Zuges verlaufende Hauptüberschiebung (Ober-/Mittelharz) und der Ostrand des Tanner Grauwackenzuges (Mittel-/Unterharz) angenommen (MOHR 1978, WACHENDORF 1986).

Der Oberharz, der westlich des Brockenplutons liegt, enthält den Oberharzer Devonsattel, der im E, S und W von der Clausthaler Kulmfaltenzone umgeben wird. Der Oberharzer Diabaszug, die Söse-Mulde, der Acker-Bruchberg-Zug und Teilbereiche des Brockenplutons gehören zu dieser Einheit. Hier herrscht ein relativ einfacher, NW-vergenter Faltenbau. Unter- und Mittelharz bestehen dagegen aus kompliziert gelagerten, allochthonen Einheiten silurischen und karbonischen Alters. Zum Mittelharz gehören die Sieber-Mulde, Teile des Brockenplutons, die Blankenburger Faltenzone einschließlich des Rambergplutons, der Elbingeröder Komplex und der Tanner Grauwackenzug. Im Südosten ist der Unterharz aus der Harzgeröder Faltenzone, der Südharz- und Selke-Mulde und der Wippraer Zone zusammengesetzt.

Die ältesten Ablagerungen im Harz werden durch Lagen von Tonschiefern und Quarziten des mittleren Ordoviziums in der Wippraer Zone belegt. Das Silur ist ebenfalls in der Wippraer Zone sowie in der Harzgeröder- und der Blankenburger Faltenzone vertreten (Mittel- und Unterharz). Im Devon ist die paläogeographische Situation des Harzes durch seine Zugehörigkeit zur Rhenoherzynischen Zone zwischen dem Old Red-Kontinent im Norden und der sich seit dem Oberems im Süden herausgebildeten Mitteldeutschen Kristallinschwelle gekennzeichnet. Unterdevonische Tonschiefer, Sandsteine, Kalksandsteine und Quarzite im Oberharzer Devonsattel stellen eine von Norden geschüttete Randbildung der rhenoherzynischen Schelfplattform (Old-Red-Kontinent) dar. Das Mitteldevon ist im Harz durch Pelit- und Karbonatgesteine eines in Becken und Schwellen gegliederten pelagischen Ablagerungsraumes (Herzynische Fazies) vertreten. Das Oberdevon wird durch geringmächtige Kalkablagerungen im Oberharz sowie dunkle Tonschiefer mit Flinzkalken und Kieselschiefern im Mittel- und Unterharz repräsentiert. Das Unterkarbon ist, einheitlich über den ganzen Harz, mit der Kulm-Fazies vertreten (Ref. in WACHENDORF 1986, WALTER 1995).

Die Sedimente im Harzgebirge liegen schwach metamorph vor: in der Wippraer Zone wurde eine karbonische (ca. 325 Ma) Deformation unter grünschieferfaziellen Bedingungen (3-6 Kbar/300° C) ermittelt (ONCKEN et al. 1995).

Der Eckergneis liegt im Westharz zwischen dem Harzburger Gabbronoritmassiv und dem Brockenpluton (Abb. 2).

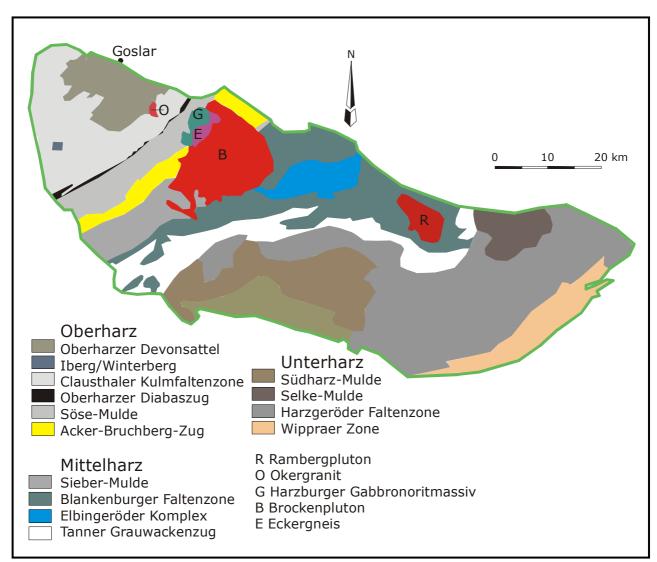


Abb. 2 Tektonische Strukturen und Gliederung des Harzes (nach Mohr 1978, WACHENDORF 1986)

2.2. Der Eckergneis als Teil des Harzkristallins und die Problematik seiner geologischen Sonderstellung

Die Eckergneisscholle wird im Osten und Südosten vom Brockenpluton und im Norden und Nordwesten vom Harzburger Gabbronoritmassiv umgeben.

Das Harzburger Gabbronoritmassiv ist über 6 km NNE-SSW gestreckt und wurde in gleicher Richtung magnetometrisch (BRANDL 1939) über weitere 6 km bis in das obere Siebertal nachgewiesen. Seine Breite ist maximal 3 km. Das Ausgangsmagma des Harzburger Gabbronoritmassivs war olivintholeiitisch, unterlag aber nach der Platznahme einer extremen Fraktionierung, so dass eine Gesteinsserie beginnend mit meist harzburgitischen Peridotiten und Noriten über olivinfreie Gabbronorite bis hin zu wieder olivinführenden Ferrogabbros und leukokraten Differenziaten entstehen konnte (VINX 1982). Zumindest im Südteil des Eckergneises sind stratigraphisch hohe Abschnitte des Harzburger Gabbronoritmassivs in geringer Tiefe großflächig verbreitet. Andererseits taucht der Eckergneis nach E unter die Granite des Brockenplutons ab (VINX 1983).

Der Brockenpluton ist mit ca. 150 qkm Fläche im gegenwärtigen Abschnittniveau die größte der Harzer Intrusionen. Die Intrusion des Brockengranits folgt, zungenartig von SE bis SSE aufsteigend, der synorogen angelegten, flach geneigten Grenzfläche zwischen dem Eckergneis im Liegenden und den unterkarbonischen Dachgesteinen (WACHENDORF 1986).

Bezüglich des Aufstiegsmechanismus der Eckergneisscholle sind verschiedene Ansichten geäußert worden:

Nach Erdmannsdörffer (1909) sollte der Eckergneis als Unterlage des Brockenplutons agieren. Lotze (1933) vertrat die Meinung, dass der Eckergneis nach allen Seiten als gemeinsame Unterlage unter seinem plutonischen Rahmen eintauchen sollte. Nach magnetischen und gravitativen Messungen (Düweke et al. 1976) nimmt die Mächtigkeit der Eckergneisscholle in der Nähe der Kontaktzone von NW nach SE von 200 m bis ca 400 m zu , dagegen verringert sich die Mächtigkeit der Scholle vom Kontaktbereich in NE bis zum Rand der Scholle in SW. Für die Grenzen des Eckergneises zum Gabbro wurde ein allseitig flaches bis mittleres Einfallen der gabbroiden Gesteine unter den Eckergneis festgestellt (SOHN 1956).

Derzeit werden folgende Meinungen über den Aufstiegsmechanismus des Eckergneis-Komplexes diskutiert:

CHATTERJEE et al. (1960), QUADE et al. (1995) und FRANZKE (1996) sahen im Eckergneis einen variszischen Scherkörper aus der Mittelkruste.

BANKWITZ (1995) vertrat die Meinung, dass der Eckergneis eine spätcadomisch-kaledonische Einschuppung bei der Kollision Gondwanas mit Ost-Avalonia sein könnte.

Franzke (2001) ist der Meinung, dass der Eckergneis eine alte Hochlage des Kristallins im Bereich zwischen Diabaszug und dem westlichen Mittelharz darstellt, die im heutigen Ausstrichbereich des Eckergneises erst im Unterkarbon von Sedimenten des Sösetroges zusedimentiert wurde. Die variszische konvergente Tektonik hat seiner Meinung nach zu einer breit gefächerten NW-vergenten Verschuppung des variszischen Stockwerkes im Gebiet zwischen Acker-Bruchberg und Diabaszug und zum gestaffelten Abtauchen des Kristallins geführt.

VINX & SCHLÜTER (1989, 1990, 1991), BAUMANN et al. (1991), FRANZ et al. (1997) äusserten die Ansicht, dass der Eckergneis durch magmatischen Transport im Züge des Aufstiegs der Magmen des Gabbronoritmassivs und Granits des Brockenplutons in seine heutige Position kam.

3. Gegenwärtiger Kenntnis- bzw. Diskussionsstand

In diesem Kapital werden wesentliche Arbeiten am Eckergneis-Komplex zusammengefasst um einen Überblick über den derzeitigen Kenntnis- bzw. Diskussionssand zu erhalten.

Als erste Bearbeiter des Eckergneis-Komplexes sahen LOSSEN (1889) und ERDMANNSDÖRFFER (1909) im Eckergneis gneisartige Hornfelse, die durch die anstehenden Granit- und Gabbrointrusionen kontaktmetamorph aus unterkarbonischen Kulmgesteinen hervorgegangen sein sollten.

ERDMANNSDÖRFFER (1909) hat Quarzite, kulmische Tonschiefer, Kulmgrauwacken und Kalksilikatfelse in den Gebieten am Kleinen und Großen Gierskopf, am Fuhlelohnsbach, unterhalb der Kuxstossklippe, auf dem Weg von der Dreiherrenbrücke nach Scharfenstein und im südlichen Kolför beschrieben (Abb. 3). Im Großen und Kleinen Gierstal wurde von ihm eine Variation von orthopyroxenführend- bis zu fast reinem Quarz-Orthopyroxen-Gestein beschrieben. Hornblende-Plagioklas-Gesteine wurden im Diebesstieg und am Kolför gefunden.

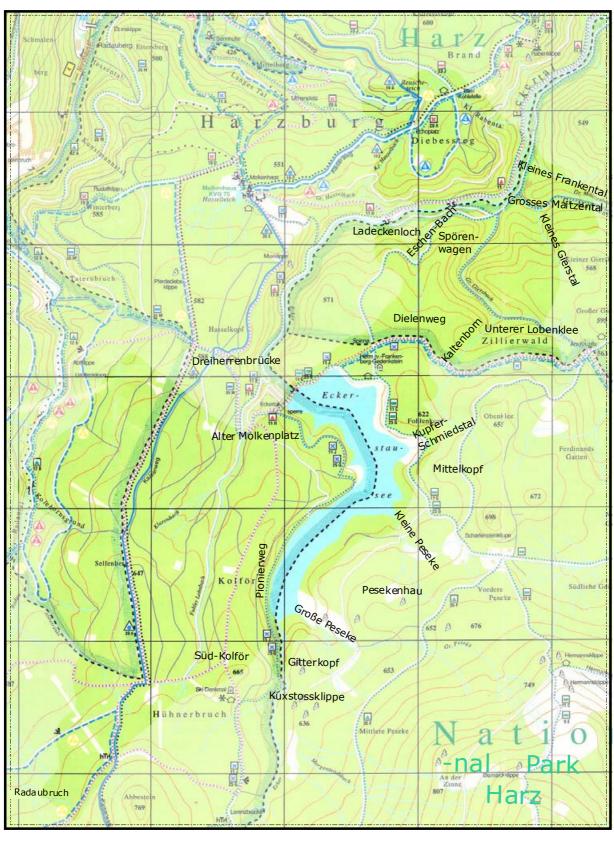
Nach weiteren petrographisch-petrologischen Untersuchungen (SCHLÜTER 1983) wurden die Gesteine des Eckergneises petrographisch in vier ineinander übergehende Hauptgruppen Quarzglimmerschieferhornfelse, Glimmerschieferhornfelse untergliedert: Quarzite, Gneishornfelse. Rund ein Viertel der Eckergneisscholle lag damals auf dem Gebiet der DDR und war somit für eine einheitliche Bearbeitung nicht zugänglich. Nach SCHLÜTER (1983) hat die Hauptmetamorphose unter amphibolitfaziellen Bedingungen stattgefunden. Im Nordteil des Eckergneis-Komplexes auftretende kalifeldspatführende Kinzigite wurden als Produkte metamorpher Mobilisation interpretiert und belegen Druck-Temperatur-Bedingungen von 4 Kbar und 650-700° C. Geringmächtige Einschaltungen dunkler Amphibolite (Eckertal, Diebesstieg) besitzen nach SCHLÜTER (1983) einen tholeiitischen Charakter und wurden von ihm zum Typ der Ozeanboden-Basalte gerechnet. Diese Aussage erfolgte unter Zuhilfenahme Diskriminierungsdiagrammen nach PEARCE (1975), PEARCE & NORRY (1979), BECCALUVA et al. (1979) und SHERVAIS (1982).

SCHLÜTER (1983) wies in Lesesteinproben sedimentäre Merkmale wie fossile Schwermineral-Seifen und Kreuzschichtung nach und belegte damit den metasedimentären Charakter der entsprechenden Gesteine und stellte fest, dass das sedimentäre Material des Eckergneis-Komplexes einem Gebiet kristalliner Gesteine mit sauren Metamorphiten höherer Druck- Temperaturbereiche entstammt. Mafische bis ultramafische Gesteine- wahrscheinlich vom Typ "Layered Intrusions" – sollten ebenfalls im Herkunftsgebiet vorhanden gewesen sein. Er hat den Eckergneis den Interniden der Norddeutsch-Polnischen Kaledoniden zugeordnet.

Nach HAUPT (1996) sollten sich die Eckergneis-Metavulkanite (Diebesstieg, Sellenberg, Zillierwald) im Bereich eines Backarc-Beckens gebildet haben. Sie hat die Klassifizierung der Vulkanite über den direkten Vergleich mit rezenten und subrezenten Referenzlokalitäten (u. a. Marianen-Trog) durchgeführt.

Erste Altersbestimmung an Eckergneis-Gesteinen erfolgte von SCHOELL et al. (1973), der Rb-Sr-Gesamtgesteindatierungen durchführte und ein mitteldevonisches Alter von 379 Ma ermittelte.

Zirkon-U-Pb-Altersbestimmungen von BAUMANN et al. (1991) ergaben ein unteres Schnittpunktalter von 560 Ma und ein oberes Schnittpunktalter um ca. 1.6 Ga. Als Erklärungsmodel wurde angenommen, dass detritische proterozoische Zirkone während der cadomischen Orogenese überprägt wurden. Ein variszisches Alter (295 Ma) wurde von BAUMANN et al. (1991) durch U-Pb-Datierung an Titaniten dokumentiert. Die Platznahme der Intrusionen der Gesteine des Harzburger Gabbronoritmassivs sowie des Brocken- und Oker-Granits erfolgte vor 293-295 Ma. Dies deutet nach ihrer Meinung auf eine gemeinsame geotektonische Ursache des Aufdringens der Magmen hin. Damit verbunden war nach BAUMANN et al. (1991) der Aufstieg der Eckergneisscholle, die jetzt zwischen Harzburger Gabbronoritmassiv und Brockenpluton "eingeklemmt" ist.


Nach MÜLLER & STRAUSS (1985) handelt es sich beim Protolith der Eckergneisscholle um eine siltig-tonige, quarzreiche Sedimentfolge mit gelegentlichen Einlagerungen basischer Tuffite, die prämitteldevonisch abgelagert wurde. Grundlage dieser Alterseinstufung ist die genannte Arbeit von SCHOELL et al. (1973).

MÜLLER & STRAUSS (1985) und FRANZ et al. (1997) haben im Nordteil des Eckergneis-Komplexes Granat-Biotit- und Granat-Cordierit-Schiefer, Granat-Gneise, granoblastische Sillimanit-Granat-Cordierit-Gneise, Amphibolite, Pyribolite und Pyroxengranulite, sowie stellenweise kleine Linsen von diopsid- und amphibolführenden Kalksilikat-Gesteinen beschrieben. MÜLLER & STRAUSS (1985) sowie FRANZ et al. (1997) sahen die älteste nachweisbare metamorphe Prägung im Eckergneis-Komplex mit der Bildung von orthopyroxen-, orthoamphibol-, sillimanit- und cordieritführenden Paragenesen unter granulitfaziellen Bedingungen (Temperaturen von 720-780° C und Drucken zwischen 6.7-8.3 Kbar). Nach FRANZ et al. (1997) sollte eine anschließende Überprägung unter amphibolitfaziellen Bedingungen (Temperaturen von 560-650° C bei Drucken über 5 Kbar) durch die Paragenesen Disthen-Staurolith-Biotit-Muskovit in Metapeliten und Hornblende-Plagioklas- (An₃₈₋₅₁) in Amphiboliten im Eckergneis angezeigt werden.

Das cadomische Alter von 560 Ma (BAUMANN et al. 1991) soll nach Franz et al. (1997) möglicherweise die granulitfazielle Metamorphose im Eckergneis-Komplex dokumentieren. Das unterdevonisches Alter von 379 Ma (SCHOELL et al. 1973) haben diese Autoren als Alter des amphibolitfaziellen Ereignisses interpretiert. Durch Plutonkontakt kam es im Oberkarbon zu einer starken Thermometamorphose mit Temperaturen von 500-550° C, die nach Franz et al. (1997) zur Bildung anatektischer Mobilisate am Intrusivkontakt führte. Als letztes Ereignis kam es zu einer starken hydrothermalen Überprägung. Nach Franz et al. (1997) repräsentiert der Eckergneis einen Teil des prävariszischen Grundgebirges der Ostavalonischen Platte, welche im Verlauf der variszischen Gebirgsbildung durch die Intrusion des Brockengranits und des Harzburger Gabbronoritmassivs in seine heutige Position gelangte. Die Ansichten zum Aufstiegsmechanismus wurden in Kap. 2.2 erläutert.

Diese Zusammenstellung zeigt, dass es sich hier um Meinungsunterschiede bezüglich der metamorphen Ereignisse des Eckergneis-Komplexes als auch deren zeitlicher Einordnung handelt. Auch sein Aufstiegsmechanismus ist umstritten. Es fehlen ebenfalls Studien zur Protolith-, bzw. Sedimentliefergebiet-Klassifizierung des Eckergneis-Komplexes. Über die wenigen Metavulkanit-Vorkommen des Komplexes existieren ebenso voneinander abweichende Meinungen.

Abb. 3 Lokalitätsskizze: die Eckergneisscholle und ihre Umgebung (mit freundlicher Genehmigung des Kommunalverlags Hans Tacken)

Eckergneisscholle

Umgebung

250 m

Freizeitkarte mit Rad- und Wanderwegen, Der Brocken im Nationalpark und seine Umgebung, 3. Auflage

4. Fragestellungen und Zielsetzungen

Aufgabe und Ziel der vorliegenden Arbeit ist es Beiträge zur Genese, Entwicklung und geotektonischen Stellung des Eckergneis-Komplexes zu liefern. Die Fragen, denen deswegen hier nachgegangen wird, sind folgende:

- Wie können die Eckergneis-Gesteine klassifiziert werden?
- Welcher Art war der Protolith der Metasedimente?
- Wo liegt das Herkunftsgebiet der Eckergneis-Metasedimente?
- Wann hat die Sedimentation des Eckergneis-Protolithen stattgefunden?
- In welchem geotektonischen Milieu wurden die Eckergneis-Metasedimente abgelagert?
- Wie können die Eckergneis-Metavulkanite tektonomagmatisch zugeordnet werden?
- In welcher zeitlichen Reihenfolge fanden die verschiedenen metamorphen Ereignisse im Eckergneis-Komplex statt?
 - Wie gelangte der Eckergneis in seine heutige Position im Harzkristallin/ Rhenoherzynikum?

Durch eine flächendeckende Beprobung des gesamten Eckergneis-Komplexes mit Einbeziehung des Bereiches des Unteren Lobenklees, der auf der geologischen Karte 1:25 000 von ERDMANNSDÖRFFER (1927) nicht als dem Eckergneis zugehörig kartiert wurde, wird eine neue petrographische Gliederung der Eckergneis-Metasedimente versucht.

Für die Protolithcharakterisierung des Eckergneis-Komplexes werden die Eckergneis-Metasedimente mit rezenten, nicht metamorphen sedimentären Gesteinsserien z. B. Grauwacken, Ton- und Sand-Abfolgen geochemisch verglichen. Schwermineraluntersuchungen werden dabei miteinbezogen.

Durch Zirkon-Altersdatierungen (ESM und SHRIMP) wird das Sedimentationsalter des Eckergneis-Protolithen eingegrenzt. Die Zirkon-Altersdatierungen werden von TH. GEISLER durchgeführt.

Die tektonomagmatische Einordnung der Metavulkanit-Vorkommen wird in dieser Arbeit durch Multielementenvergleiche der Eckergneis-Metavulkanite mit nicht metamorphen Vulkaniten verschiedener geotektonischer Signifikanz versucht.

Mikroskopische Untersuchungen an Gesteinen aus dem gesamten Eckergneis-Komplex werden zur Ermittlung der metamorphen Entwicklungsgeschichte herangezogen.

5. Untersuchungsmethoden

Geländearbeit: In der Eckergneisscholle gibt es nur wenige gut aufgeschlossene Bereiche: zum einen findet man Aufschlüsse im Nordteil, so im Diebesstieg-Bereich, am Spörenwagen, im Grossen Maitzental, und zum anderen im Südteil auf dem Kamm des Kolför, im südlichen Sellenberg und an der Kleinen Peseke. Auf großen Flächen wurden Lesesteine z.B. im Wurzelwerk von umgekippten Bäumen beprobt. Es wurde eine flächendeckende Erfassung versucht.

Die Lokalität Unterer Lobenklee (Abb. 3) ist auf der geologischen Karte von ERDMANNSDÖRFFER (1927) nicht als zum Eckergneis gehörig, sondern als variszisches Paläozoikum eingetragen worden. Bei der flächenhaften petrographischen Bestandsaufnahme des Unteren Lobenklee konnten keine variszischen Sedimentgesteine bzw. daraus hervorgegangene Hornfelse gefunden werden. Stattdessen gibt es flächenhaft plattig zerfallende, foliierte Metapsammite und Metapelite sowie quarzitische Gesteine, wie sie in weiten Teilen der Eckergneisscholle verbreitet sind. Diese treten auch im äußersten SE-Ziptel des von ERDMANNSDÖRFFER (1927) als Paläozoikum kartierten Gebietes auf. Am Unteren Lobenklee kommen über dieseindeutig granulitfazielle Paragenesen vor.

Insgesamt wurden ca. 200 Gesteinsproben entnommen. Die Probennummern beziehen sich auf die Beprobungspunkte, deren Lage aus Anhang VI zu entnehmen ist. Die Probenliste mit makroskopischer Beschreibung ist im Anhang I eingefügt. Eine petrographische Klassifizierung der Gesteinsgruppen und deren Beschreibungen folgen in Kap.6.

Quarzite und quarzreiche Metapsammite (einschließlich Lesesteine) wurden für Zirkon-Altersdatierungen gezielt beprobt, vor allem, weil in diesen eine bessere Zirkonanreicherung als in Metapeliten erwartet und beobachtet wurde.

Von anderen Bearbeitern des Eckergneis-Komplexes (SCHLÜTER 1983, VINX & SCHLÜTER 1991) wurden für die vorliegende Arbeit zahlreiche Proben freundlicherweise zur Verfügung gestellt. Diese sind teilweise in die Auswertung eingeflossen.

Hellgraue und hellbraune Quarzite, dunkle, gebänderte Metavulkanite, sowie foliierte z.T. gefaltete Glimmerschiefer sind im Gelände relativ einfach zu erkennen. Andere Gesteinstypen lassen sich makroskopisch nur schwer klassifizieren.

Im Nordteil des Eckergneis-Komplexes (Diebesstieg, Spörenwagen, Kleines Gierstal, Kleines Frankental) sind in der Regel massive, nur z.T. gebänderte Gesteine verbreitet, während im Südteil deutlich foliierte, z.T. geschieferte bis mylonitisierte Gesteine dominieren. Im Aufschluss an der Kleinen Peseke, sowie am Ostufer des Eckerstausees wurden granitoide Mobilisate mit bis zu 1 cm großen neugebildeten Plagioklas-Porphyroblasten als Lesestein beprobt. Einzelne kleine Gänge von dunkel- bis olivgrauen massiven Gabbroiden sind am Alten Molkenplatz (Eckertalsperre) und am Südost- sowie Südhang des Diebesstiegs aufgeschlossen, sie sind dem Harzburger Gabbronoritmassiv zuzuordnen.

Gesamtgesteinsanalytik (RFA): 175 Gesteinsproben wurden im gemeinsamen geochemischen Labor des Mineralogisch-Petrographischen Instituts (MPI) und Geologisch-Paläontologischen Instituts und Museums der Universität Hamburg untersucht. Dafür wurde für jede Probe in der Regel ca. 100 g Probenmaterial mit einem Hammer zerkleinert, wobei die Kantenlänge der Bruchstücke ca. 0.5 cm beträgt. Das Aufmahlen erfolgte mit der Scheibenschwingmühle in einem Wolfram-Carbid-Mahlgefäß. Nachdem Bergfeuchte und Glühverlust aus den Gewichtsdifferenzen zwischen luftgetrocknetem, bei 110°C (3-4 Stunden) getrocknetem und bei 1000°C (3 Stunden) geglühtem Probenpulver bestimmt wurde, wurden aus einem Gemisch von 600 mg Probensubstanz und 3600 mg Lithiumtetraborat Schmelztabletten erzeugt.

Diese wurden mit einem Röntgenfluoreszenzspektrometer Philips PW 1408 auf 30 Hauptund Spurenelemente untersucht. Die analysierten Oxide und Elemente sind SiO₂, TiO₂, Al₂O₃, Gesamteisen als Fe₂O₃, MnO, MgO, CaO, Na₂O, K₂O, P₂O₅, Cr, Zn, Rb, Ba, Sr, Ga, Nb, Zr, Y, Th, La, Ce, Nd sowie Co, Sc, V, Cu, Pb und U. Die Ergebnisse sind in Anhang II aufgeführt.

Eine Irrelevanz der Co-Werte in den analysierten Gesteinen wurde durch Kobaltbindung des Wolframcarbids der verwendeten Scheibenschwingmühle (Mahlgefäß) verursacht.

Haupteler	mente	Spurenelemente		Spurenelemente	
Element	[Gew %]	Element	[ppm]	Element	[ppm]
SiO ₂	< 0.01	Cr	<5	Nb	<5
TiO ₂	< 0.01	Ni	<5	Zr	<5
Al_2O_3	< 0.01	Со	15	Υ	<5
Fe ₂ O ₃	< 0.01	V	<5	Th	<5
MnO	< 0.01	Cu	<5	U	<5
MgO	0.01	Pb	<5	La	20
CaO	< 0.01	Zn	<5	Ce	20
Na ₂ O	0.01	Rb	<5	Nd	10
K ₂ O	< 0.01	Ва	10		
P_2O_5	< 0.01	Sr	<5		
SO ₃	< 0.01	Ga	<5		

Tab. 1 RFA-Nachweisgrenzen (Die Angaben sind als Richtwerte anzusehen, da sie auf Durchschnittsanalysen internationaler Standards basieren)

Für **mikroskopische Untersuchungen** wurden insgesamt 81 polierte und 98 abgedeckte Dünnschliffe nach üblichen Standardverfahren im MPI der Universität Hamburg hergestellt. Eine möglichst flächendeckende mikroskopische Bearbeitung war der Grund der Probenauswahl. Dabei wurde versucht, möglichst alle texturellen sowie farblichen Variationen des untersuchten Gebietes einzubeziehen.

Sowohl gesteinsbildende Minerale als auch verschiedene Reaktionsprodukte wurden mit der Elektronenstrahl-Mikrosonde CAMECA Camebax Microbeam des MPI der Universität Hamburg mit drei Wellenlängen-dispersiven Spektrometern untersucht. Die Oxide der Hauptelemente Si, Al, Fe, Ca, K, Na, Mg, Mn, Ti, Cr, S, F Cl und Ni, deren Nachweisgrenzen bei etwa 500-1000 ppm liegen, wurden bestimmt. Als Standards wurden natürliche Minerale verwandt. Die Messungen wurden bei einem Probenstrom von 21,3 nA und einer Beschleunigungsspannung von 20kV durchgeführt. Daraufhin wurden die Analysen zu Mineralformeln umgerechnet. Mit Hilfe des Programms NEWAMPH von YAVUZ (1999) wurden die Mineralformeln der Amphibole berechnet.

Für Schwermineraluntersuchungen wurden 7 Quarzite (Pr. 99-20, 99-38, 0-12, 0-40, 0-47, 0-100, 0-112), ein Quarz-Cordierit(Pinit)-Feldspat-Granoblastit (Pr. 0-82) und ein Quarz-Feldspat-Granoblastit 0-142) (Pr. aufbereitet. Die Durchmesser der untersuchten Schwermineralkörner zwischen 36-200 lagen μm. Zur Herstellung Schwermineralkonzentraten wurden die Gesteinsproben manuell auf Stücke zwischen 0.5-1 cm zerkleinert in kleinen Mengen (ca. 20-30 g) in einer Pulverisette (Quetsche) gemahlen. Um die Schwerminerale schonend zu trennen, wurden die Mahlzeiten auf 15-20 Sek begrenzt. Anschließend wurde das Mahlgut mit einem 0.200-er Sieb abgetrennt, und der verbleibende Rest wurde noch einmal gemahlen. Dann wurde das Mahlgut mit der Vibrationssiebmaschine durchgesiebt.

Die Schwerminerale der Fraktion 36-125 μm und 125-200 μm wurden mittels Scheidetrichtern in reinem Bromoform (CHBr₃, Dichte 2,8-2,9) von den Leichtmineralen getrennt, abfiltriert und mit Aceton sauber nachgespült und im Trockenschrank bei 110° C getrocknet. Nachdem Magnetit mit einem Handmagneten entfernt wurde, wurden Magnet- und Nichtmagnetfraktionen mit dem Magnetscheider "Frantz isodynamic magnetic separator" (FIMS) bei einer Standardeinstellung (Seitenneigung von 20°, Vorwärtsneigung von 30°) getrennt.

Aus der Magnetfraktion wurden Chromit-Körner aussortiert und für jedes Vorkommen wurde ein Anschliff für Mikrosondenanalysen gefertigt. Aus der Nichtmagnetfraktion wurden einzelne Zirkon-Körner unter dem Binokular aussortiert und Streupräparate und verschiedene Anschliffe für Altersbestimmungen mit der Elektronenstrahlmikrosonde und der Ionensonde (Sensitive High-Resolution Ion Microprobe, SHRIMP) angefertigt. Die gewonnenen Zirkon-Körner wurden auf Glassträgern in Araldit-D eingegossen.

Anschließend wurden die Körner auf etwa die Hälfte ihrer Dicke herunter geschliffen. Sie wurden zunächst mit Diamantine-Korundpulver (Fa. Krantz) und abschließend mit einer 0.1µm SiO₂-Suspension (Final, Fa. Wirtz) poliert, gründlich gereinigt, und mit einer ca. 300 Å dicken Schicht von Kohlenstoff im Vakuum beschichtet.

Messungen zur Altersbestimmung erfolgten zunächst mit einer Elektronenstrahl-Mikrosonde CAMECA Camebax Microbeam des MPI unter Anleitung von Dr. Th. GEISLER (Universität Hamburg, jetzt Universität Münster). Vor den Messungen wurden jeweils Kathodolumineszenz-Bilder (KL) gemacht, um Information zur Internstruktur der Zirkone zu bekommen. Die KL-Bilder wurden teilweise an der BGR (Bundesanstalt für Geowissenschaften und Rohstoffe) mit freundlicher Hilfe von Dr. Th. OBERTHÜR und teils am Max-Planck Institut für Chemie, Abteilung Geochemie an einem Hitachi S 450 Rasterelektronenmikroskop mit panchromatischem KL-Detektor von Th. GEISLER erstellt. Die KL-Bilder zur Vorbereitung der Messungen an der Ionensonde konnten am MPI der Universität Hamburg mit einer neuen CAMECA SX-100 Elektronenstrahl-Mikrosonde (EMS) gemacht werden.

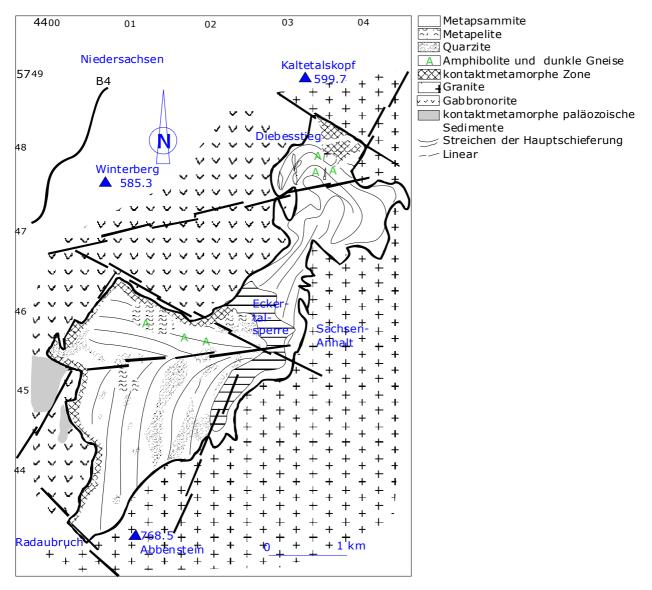
Um die chemische Zusammensetzung einzelner Zirkonbereiche korrigieren zu können, wurden routinemäßig neben Uran, Thorium und Blei die beiden Hauptelemente Zirkonium und Silizium sowie eine Reihe von Neben- und Spurenelementen (Hf, Y, P, Ca, Al, Yb) simultan für ieden einzelnen Messpunkt analysiert. Allgemein geltende analytische Bedingungen sind in Tab. 2 aufgeführt. Die Spektrometer wurden hierfür mit einem TAP-Kristall und zwei PET-Kristallen besetzt. Die Matrixkorrektur erfolgte mit dem PAP-Programm von POUCHOU & PICHOIR (1984).

Die Modellalter der Zirkone wurden mit dem Programm ChemAge von GEISLER (1999) aus den U-, Th- und Pb-Konzentrationen berechnet.

Die Auswertung der chemischen Datierungen mit der **EMS** sowie die Ionensondenmessungen führte Th. GEISLER an der Curtin University of Technology in Perth durch (VINX & GEISLER-WIERWILLE 2002).

Ele	Linie	Kristall	Standard	Untergrundoffset [Å]
me				
nt				
Zr	Lα	PET	ZrO_2	-0.0438 / +0.0438
Si	Κα	TAP	Andradit	-0.1285 / +0.1285
Hf	Μα	TAP	Hf-Metall	-0.5138 / +0.5138
Y	Lα	PET	YAG	-0.0700 / +0.0700
P	Κα	PET	Apatit	-0.2188 / +0.0788
Yb	Μα	TAP	Yb ₂ O ₃	-0.3083 / +0.3083
Er	Μα	TAP	Er ₂ O ₃	-0.3083 / +0.3083
Ca	Κα	PET	Apatit	-0.0438 / +0.0438
Al	Κα	TAP	Al_2O_3	-0.2055 / +0.2055
U	Мβ	PET	UO_2	-0.0700 / +0.0700
Th	Μα	PET	Monazit	-0.0438 / +0.0438
Pb	Μα	PET	Pb-Zn-Silikatglas	-0.0700 / +0.0700

Tab. 2 Allgemein geltende analytische Bedingungen für die Chemische Datierung mit der EMS


6. Petrographische Gliederung des Eckergneis-Komplexes

Wie schon in Kap.3 erwähnt wurde, sind mehrere petrographische und petrologische Arbeiten am Eckergneis-Komplex durchgeführt worden.

Franz et al. (1997) und Müller & Strauss (1985) haben im Eckergneis Metapelite, Metapsammite, Quarzite und melanokrate Gneise klassifiziert (Abb. 5). Sie haben noch Granat-Biotit- und Granat-Cordierit-Schiefer, Granat-Gneise, granoblastische Sillimanit-Granat-Cordierit-Gneise, Amphibolite, Pyribolite und Pyroxengranulite, sowie stellenweise kleine Linsen von diopsid- und amphibolführenden Kalksilikat-Gesteinen beschrieben. Ein Amphibolitvorkommen (Ostufer des Eckerstausees) ist von Franz et al. (1997) bearbeitet worden.

SCHLÜTER (1983) hat Quarzite, Quarzglimmerschieferhornfelse, Glimmerschieferhornfelse und Gneishornfelse unterschieden und einzelne Ortho- und Paraamphibolit-Vorkommen bearbeitet (Kap.3).

Abb. 5 Geologische Karte des Eckergneis-Komplexes nach FRANZ et al. (1997): Streichen der Hauptschieferung im östlichen Teil des Komplexes nach Lotze (1933)

Die in dieser Arbeit versuchte petrographische Neugliederung der Eckergneis-Gesteine wurde in deskriptiver Weise an Gefügen und Mineralbeständen orientiert. Grund für diese neue Klassifizierung ist die Tatsache, dass übliche metamorphe Gesteine wie typische Gneise, Glimmerschiefer und Quarzite in der Eckergneisscholle fehlen. Die Gesteine, die nachfolgend als solche bezeichnet werden, weichen petrographisch von "typischen" Gesteinen mit diesen Namen ab:

"Typische" Gneise als gewöhnlich biotitführende, feldspatreiche Gesteine sind im Eckergneis nicht üblich: gut erhaltene Biotite sind in den Eckergneis-Gneisen oft feinschuppig und beliebig orientiert und weisen auf späte statische Neubildung hin.

In den Eckergneis-Quarziten fehlt die sonst in Quarziten übliche Verzahnung der Quarze, hier bilden die Quarze oft rundliche Körner, die auf eine statische Umkristallisation weisen. Daher gleichen die Eckergneis-Quarzite eher manchen granulitfaziell überprägten quarzreichen Gesteinen, wie z. B. dem "Stronalit" der Ivrea-Zone. Allerdings fehlen dessen Granate.

In den Eckergneis-Glimmerschiefern ist eine statische Überprägung ebenfalls deutlich zu erkennen: Glimmer sind in den die Foliation markierenden dünnen Bändern nicht eingeregelt, sondern feinschuppig und wirrstrahlig angeordnet.

Besonders auffällig sind Gesteine mit ausgeprägten granoblastischen Gefügen, die häufig eine vorangegangene Foliation überlagern. Diese Gesteine werden mit deskriptiven Namen bezeichnet: z.B Quarz-Cordierit (Pinit)-Feldspat-Granoblastite oder Quarz-Cordierit (Pinit)-Granoblastite. Hierzu kommen lokal Gesteine mit symplektitischen Reaktionsgefügen vor, z.B. Cordierit-Andalusit-Symplektite. Die z.T. ungewöhnlichen Gesteinsbezeichnungen reflektieren eine im Eckergneis allgemein übliche abschließende Phase statischer Metamorphose. Eine makroskopisch oft noch dominierende frühere Bänderung bzw. Foliation wird dann durch ein mikroskopisch deutliches granoblastisches Gefüge überlagert.

Die petrographische Spannbreite der Gesteine der Eckergneisscholle kann durch folgende Gruppen erfaßt werden:

- 1. Quarz-Feldspat-Granoblastite
- 2. Quarz-Cordierit(Pinit)-Feldspat-Granoblastite
- 3. Gneise (u.a. Granat-Biotit-Gneise)
- 4. Cordierit-Pyroxen-Granoblastite (u. a. Orthopyroxen-Poikiloblastit)
- 5. Quarzite
- 6. Glimmerschiefer
- 7. Metavulkanite
- 8. Sonstige Gesteine (vereinzelte Sondertypen wie Kinzigite, Cordierit-Andalusit-Symplektite, Quarz-Cordierit(Pinit)-Granoblastite und verschiedene Hornfelse).

Im Bereich des Unteren Lobenklee, der von ERDMANNSDÖRFFER (1927) nicht als zum Eckergneis gehörig kartiert wurde, sind Quarzite, Cordierit-Andalusit-Symplektite, Quarz-Cordierit(Pinit)-Feldspat-Granoblastite und ein Pyroxen-Metabasit beprobt worden.

Die petrographisch klassifizierten Gesteine zeigen tendenziell eine entsprechende chemische Charakteristik (Abb. 74, 75). Durch vielfältige Überlappung der verschiedenen Gesteinsgruppen wird jedoch deutlich, dass die Eckergneis-Gesteine ein Kontinium von Zusammensetzungen bilden (Kap. 8).

Auch petrographisch gehen die Gruppen fließend unter Zunahme des einen oder anderen gesteinsbildenden Minerals ineinander über.

Quarz-Feldspat-Granoblastite sind nur an wenigen Stellen im Südteil des Eckergneis-Komplexes vorhanden. Sie zeigen granoblastisches Gefüge und bestehen hauptsächlich aus Plagioklas-Porphyroblasten, Kalifeldspat, Quarz und Glimmer.

Als Quarz-Cordierit(Pinit)-Feldspat-Granoblastite werden die am weitesten verbreiteten Gesteine im Eckergneis bezeichnet. Sie sind oft foliiert und z.T. zusätzlich gefaltet.

Die Quarz- Cordierit(Pinit)-Feldspat-Granoblastite zeigen ein ausgeprägtes granoblastisches Gefüge und bestehen überwiegend aus Quarz, pinitisiertem Cordierit und Feldspäten.

"Eckergneis-Gneise" kommen im gesamten Gebiet des Eckergneis-Komplexes vor. In diesen Gneisen ist Feldspat-Anteil ca. 20-30 Vol.%. Die Gneise sind meistens foliiert (gebändert), aber in den Bändern sind die Minerale auch hier nicht eingeregelt sondern granoblastisch umkristallisiert. Hauptbestandteile sind allerdings Quarz, Feldspäte und untergeordnet treten Glimmer und Granat auf.

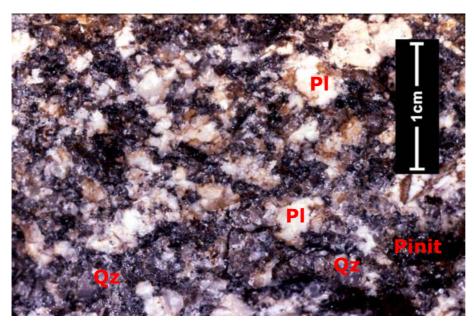
Ein besonderer Typ von Eckergneis-Gesteinen sind auch die Cordierit-Pyroxen-Granoblastite. Sie bestehen überwiegend aus meistens vollständig pinitisiertem Cordierit, neugebildetem Biotit und Quarz. Orthopyroxen bildet Porphyroblasten und Poikiloblasten. Auch für diesen Gesteinstyp ist granoblastisches Gefüge kennzeichnend. Zu dieser Gesteinsgruppe wurde auch ein Orthopyroxen-Poikiloblastit zugeordnet.

Die meisten Quarzite des Eckergneis-Komplexes belegen mit unverzahnten Korngrenzen und weitgehend isometrischen Quarziten, dass nach einer statischen Überprägung keine durchgreifende Deformation mehr stattfand. Oft stecken ehemals detritische Zirkone mitten in den Quarzkörnern und belegen so eine massive metamorphe Neukristallisation. Teilweise sind die Quarzkörner in Feldspäten eingebettet (Abb. 33, 34), was ebenfalls in manchen Quarzlinsen in den anderen Gesteinsarten des Eckergneis-Komplexes zu beobachten ist (Abb. 10). Diese Quarzlinsen (Segregationsquarze) in stark foliierten Eckergneis-Gesteinen gleichen den granoblastischen Quarziten, wie sie z.B. im Zentrum des Nordteils aufgeschlossen sind. Durch Zunahme der Glimmer gehen die Quarzite in Glimmerschiefer und durch Zunahme von Feldspäten in Gneise über. Beim Auftreten von mehr als 5 Vol.% Pinit werden die Quarzite zu den Quarz-Cordierit(Pinit)-Granoblastiten gerechnet.

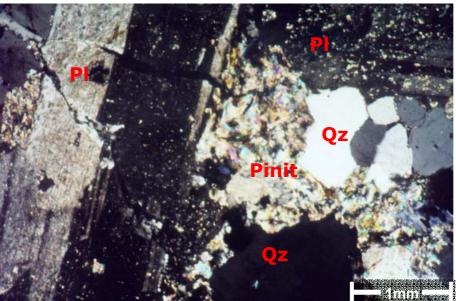
Die für den Eckergneis typischen Glimmerschiefer sind foliiert und bestehen aus einer granoblastischen Quarzmatrix und dünnen Muskovit-Chlorit-Lagen. Die Glimmerschiefer sind feldspatfrei. Das Gefüge typischer Glimmerschiefer ist normalerweise durch eine Einregelung der Minerale in eine ausgeprägte Foliation gekennzeichnet. In den Eckergneis-Glimmerschiefern markieren Muskovit und Chlorit die frühe Foliation, jedoch zeigen sie willkürliche Orientierung und belegen damit ihre späte Bildung. Glimmerschiefer sind ausschliesslich im Südbereich des Eckergneis-Komplexes verbreitet.

Geringe Amphibolitlagen kommen am Diebesstieg, am Ostufer des Eckerstausees, im Mündungsbereich der Kleinen Peseke in den Eckerstausee, am Kolför (Fuhlelohnsbach) und am alten Molkenplatz (Eckertal) vor. Im Unteren Lobenklee wurde ein Pyroxen-Metabasit beprobt, dieser wurde mit den Amphiboliten zusammengefaßt.

Zu den sonstigen Gesteinen gehören vereinzelt auftretende Quarz-Cordierit(Pinit)-Granoblastite, Cordierit-Andalusit-Symplektite und verschiedene Hornfelse. Granitoide wurden am Diebesstieg und am Ostufer des Eckerstausees beprobt. Gabbroide kommen im Eckergneis als Apophysen des Harzburger Gabbronoritmassivs vor.


Im Folgenden werden die einzelnen Gesteinsgruppen beschrieben. Mikrosondenanalysen der Minerale und deren berechneten Mineralformeln sind in Anhang IIIa zu finden.

6.1. Quarz-Feldspat-Granoblastite


Quarz-Feldspat-Granoblastite kommen vereinzelt im Süd-Kolför, an der Kleinen Peseke und im Unteren Lobenklee vor. Sie sind dunkel, grünlich grau bis hellgrau, z.T. olivgrau. Bis zu 1 cm große Plagioklas-Porphyroblasten sind mit bloßem Auge gut erkennbar (Abb. 6).

Quarz-Feldspat-Granoblastite sind nicht foliiert und zeigen ausschließlich grano- bis porphyroblastisches Gefüge. Die Hauptgemengeteile sind Quarz, Plagioklas und Kalifeldspat. Biotit, Chlorit, Hellglimmer, feinkristalline Phyllosilikate und Ilmenit treten in geringen Mengen auf. Zirkon und Rutil bilden kleine, gut gerundete detritische Körner. Titanit und Ilmenit treten akzessorisch auf.

Die Quarzkörner sind nicht undulös und meist auch rundlich, z.T. leicht verzahnt. Sie bilden stellenweise linsenförmige Lagen. Plagioklas zeigt idiomorphe, längliche und meistens leicht- bis mäßig serizitisierte, bis zu 1 cm große Kristalle. Sie enthalten oft kleine Einschlüsse von Quarz, Biotit und Schwermineralen (Abb. 7). Manche Porphyroblasten sind leicht deformiert. Kalifeldspat ist in der Regel stark alteriert und kommt nur als Zwickelfüllung vor. Biotit ist stark bis mäßig chloritisiert und ist z.T. leicht deformiert. Wirrstrahlige Hellglimmer haben sich nach Biotit sekundär gebildet und schließen kleine idiomorphe Rutilkörner ein.

Abb. 6Qz-Feldspat-Granoblastit mit Pl-Porphyroblasten: dunklere Bereiche bestehen überwiegend aus Qz und Feldspäten und ganz dunklehauptsächlich aus Pinit, Pr. 99-51, Kleine Peseke, geschliffene Anschnittfläche

Abb. 7Ab-Porphyroblast
In Qz-Pinit-Matrix,
Qz-Feldspat-Granoblastit,
Pr.99-52, Kleine Peseke
(mit Analysator)

6.2. Quarz-Cordierit (Pinit)-Feldspat-Granoblastite

Quarz-Cordierit(Pinit)-Feldspat-Granoblastite sind in der Eckergneisscholle am weitesten verbreitet. Sie sind vorwiegend oliv- oder gräulich schwarz bis hellgrau, z.T. bräunlich schwarz bis hellbraun. Stellenweise stecken in den Quarz-Cordierit(Pinit)-Feldspat-Granoblastiten blasse, gelblich braune, hell olivgraue oder gräulich orange Lagen (Abb. 8, 9, 10). Quarz-Cordierit(Pinit)-Feldspat-Granoblastite enthalten oft Linsen (mm- bis mehrere cm-groß) von Segregationsquarz (Abb. 9, 10, 11). Die Quarze in manchen Linsen sind in Kalifeldspat eingebettet, was ebenfalls in den Eckergneis-Quarziten oft zu beobachten ist (Abb. 10, 33, 34). Dies bedeutet, dass die Quarzlinsen postdeformativ umkristallisiert sind.

Diese Gesteine sind meistens fein- und mittelkörnig (< 1 mm). Zumeist sind sie foliiert und gebändert: bis zu 2 mm breite, dunkle Bänder wechseln sich mit den helleren ab. Wellige oder wolkige Schlieren sind oft zu beobachten. Teilweise sind diese Gesteine zusätzlich gefaltet.

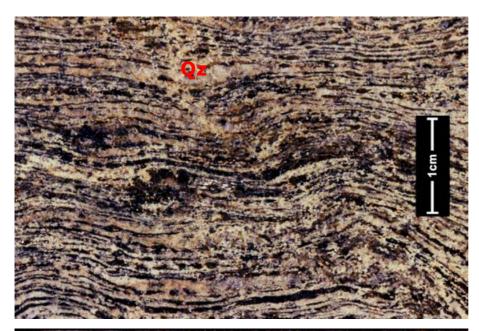
Typische Quarz-Cordierit(Pinit)-Feldspat-Granoblastite des Eckergneis-Komplexes bestehen aus 30-35 % Pinit, 5-20 % Feldspäten, 15-25 % Quarz und 10-20 % Biotit. In geringen Mengen oder als einzelne Körner treten Andalusit, Orthopyroxen, Spinell, Granat, Chlorit und feinkristalline Phyllosilikate auf. Ilmenit, Rutil, Zirkon, Apatit und Pyrit kommen akzessorisch vor. Ein typisches granoblastisches Gefüge in einem unfoliierten Quarz-Cordierit(Pinit)-Feldspat-Granoblastit ist in Abb. 12 zu sehen.

Vereinzelte Proben dieser Gruppe enthalten 25-30% Feldspat und können daher als "granoblastischer Cordierit-Gneis" klassifiziert werden. Sie wurden aber aufgrund ihrer Seltenheit nicht als selbständige Gruppe ausgegliedert. Die Bänderung bzw. Foliation wird mikroskopisch durch Bereiche erkennbar, die unterschiedliche Mineralzusammensetzungen haben: die helleren Bereiche bestehen überwiegend aus Quarz und untergeordnet Feldspäten, die dunkleren- aus vollständig pinitisiertem Cordierit, alterierten Feldspäten und neugebildetem Biotit (Abb. 13).

Manchmal treten Quarzbänder auf, die bis zu 30 Vol.% Hellglimmer enthalten. Diese Bänder markieren eine früh angelegte Bänderung bzw. Foliation, aber innerhalb der Bänder herrscht granoblastisches Gefüge vor (Abb. 13). Aus diesem Grund wurden diese Gesteine nicht als Gneise eingestuft, sondern mit zu den Granoblastiten gerechnet.

Cordierit kommt in zwei Generationen vor: einerseits ältere vollständig pinitisierte, kleine rundliche Kristalle, und andererseits jüngere idiomorphe, längliche, nicht pinitisierte Kristalle. Der gelblich bis grünlich farbige, pinitisierte Cordierit (Abb. 12, 13), meistens reiner Pinit, enthält 41-47% SiO₂, 29-32% Al₂O₃, 6-17% FeO, 2-6% MgO und 2-8% K₂O. Dieser Cordierit kommt eng vergesellschaftet mit neugebildetem Biotit vor.

Nicht pinitisierte längliche und idiomorphe Cordierit-Kristalle (Abb. 15) bilden Züge und tauchen auch neben dem stark pinitisierten Cordierit auf. Chemisch unterscheiden sie sich von den stark pinitisierten durch niedrigere K₂O- und etwas höhere MgO-Gehalte. Stellenweise ist Verzwillingung der Cordierite zu beobachten (Abb. 14).


Biotit tritt ebenfalls in zwei Generationen auf: Leisten von Biotit I sind dunkelbraun, idiomorph, teilweise deformiert und meist in Spaltrissen zu Chlorit und Hellglimmer oder in Phyllosilikate und Eisenoxidhydrate (FeOOH-Phasen) umgewandelt. Biotit II ist nicht alteriert, idiomorph und schließt oft kleinere Ilmenitleisten ein. Biotite kommen sowohl in dunkleren Bereichen mit Pinit als auch in helleren Quarz-Feldspat-Bereichen vor. Plagioklas(An₃₀₋₄₀) ist leicht bis mittelmäßig alteriert. Neugebildete Albitkristalle treten sporadisch auf.

Kalifeldspat bildet Zwickelfüllung und ist meistens stark alteriert. Quarz ist rundlich bis mäßig verzahnt. Andalusit bildet bis zu 1 cm große Poikiloblasten. Um diese Poikiloblasten hat sich Diaspor als Zerfallsprodukt gebildet. In der Cordierit-Matrix kommen stellenweise Hercynit-Symplektite vor. Chlorit hat sich nach Orthopyroxen gebildet. Muskovit ist sekundär entstanden. Phyllosilikate kommen in geringen Mengen als Zwickelfüllung vor, stellenweise bilden sie auch Lagen von wirrstrahligen, kleinen Schuppen. Hypidiomorphe, neugebildete Turmalinkristalle treten vereinzelt auf.

Granat almandinischer Zusammensetzung kommt vereinzelt in Quarz-Cordierit(Pinit)-Feldspat-Granoblastiten vor (nur am Spörenwagen und im südlichen Teil des Kolförs). Dort bildet er große, runde, xenomorphe und von Quarz verdrängte Kristalle. In den Spalten bildeten sich Chlorit und Hellglimmer. Almandin schließt z.T. kleine Rutilkörner und Biotitleisten ein.

Als akzessorische Minerale kommen Zirkon, Apatit, Rutil, Ilmenit und selten Pyrit vor. Zirkon und Rutil sind detritisch. Kleine, idiomorphe Apatitkörner bilden stellenweise perlschnurartige Ansammlungen. Die Opakminerale und Turmalin-Neubildungen treten überwiegend in dunkleren Bereichen auf.

Mit Zunahme des Cordierit(Pinit)- und Senkung des Feldspat-Gehalts gehen die Quarz-Cordierit(Pinit)-Feldspat-Granoblastite in die Quarz-Cordierit(Pinit)-Granoblastite über.

Abb. 8Qz-Crd(Pinit)-Feldspat-Granoblastit mit bräunlich schwarzen, pinitreichen und hellolivgrauen, quarzreichen Bändern als Ausdruck früher Foliation Pr. 0-103, Süd-Kolför, geschliffene Anschnittfläche

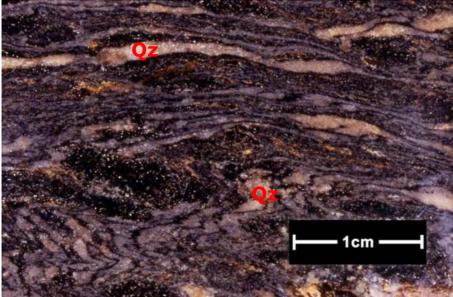


Abb. 9
Olivschwarzer QzCrd(Pinit)-FeldspatGranoblastit mit olivgrauen
(quarzreichen) Schlieren,
zusätzlich gefaltet,
Pr. 99-44B, Ostufer des
Eckerstausees,
geschliffene
Anschnittfläche

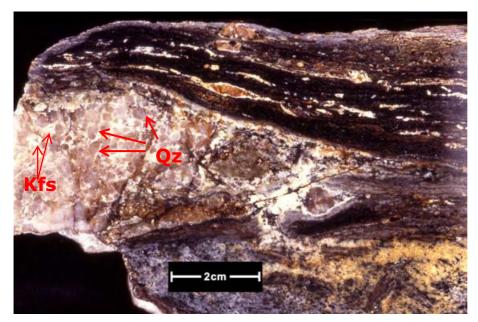
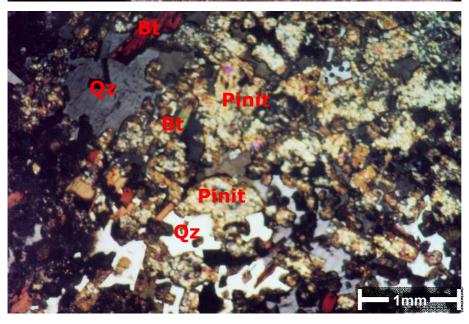



Abb. 10
Gräulich schwarzer
Qz-Crd(Pinit)-FeldspatGranoblastit mit hell
braunen und olivgrauen
Lagen; in
Segregationsquarz-Linsen
ist Qz in Kfs eingebettet,
Pr. 99-9, Diebesstieg,
geschliffene
Anschnittfläche

Abb. 11Dunkel grünlichgrauer
Qz-Crd(Pinit)-FeldspatGranoblastit mit
hellgrauen QzEinschlüssen,
Pr. 0-54,
Grosses Maitzental,
geschliffene
Anschnittfläche

Abb. 12Granoblastisches
Gefüge in Qz-Crd(Pinit)Feldspat-Granoblastit:
idiomorpher Bt,
granoblastischer Qz
und Pinit, Pr. 99-34,
Unterer Lobenklee,
(mit Analysator)

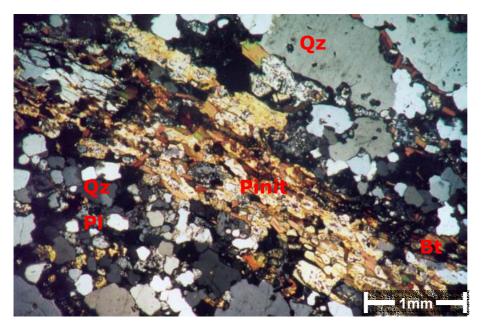
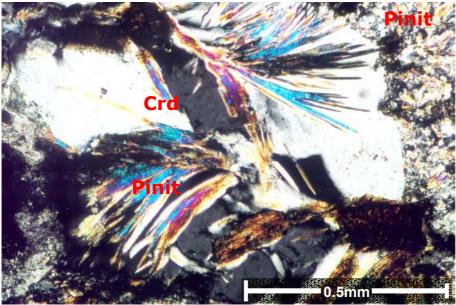
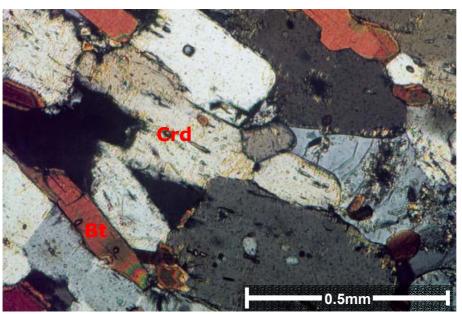




Abb. 13 Bt-Pinit- und Qz-Feldspat-Lagen in Qz-Crd(Pinit)-Feldspat-Granoblastit, Pr. 0-106, Süd-Kolför, (mit Analysator)

Abb. 14Cordieritzwilling mit fortgeschrittener
Pinitisierung in Qz-Crd(Pinit)-Feldspat-Granoblastit,
Pr. 0-4, Spörenwagen, (mit Analysator)

Abb. 15Idiomorphe, längliche Crd-Kristalle, leicht am Rand pinitisiert mit idiomorphen Biotiten in Qz-Crd(Pinit)-Feldspat-Granoblastit, Pr. 0-106, Süd-Kolför, (mit Analysator)

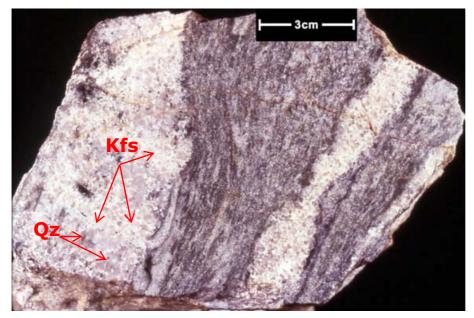
6.3. Gneise

Die Gneise der Eckergneisscholle sind meistens hell- bis dunkelgrau z.T mit grünlicher, bläulicher oder bräunlicher Tönung. Daneben kommen rosagraue, blass orange und gelblich grüne Gneise vor. Zum Teil sind sie gebändert, stellenweise zusätzlich gefaltet. Im Zuge der Bänderung wechseln sich feldspatreiche, dunklere Bänder mit quarzreichen, helleren Bereichen ab. Verschieden große Linsen und Gänge von Segregationsquarz sind häufig zu sehen (Abb. 16). Die Quarze in diesen Linsen sind teilweise in Kalifeldspat eingebettet.

Am Westufer des Eckerstausees wurde ein außergewöhnlicher Gneis beprobt, der Turmalinbänder (<1cm) enthält und zusätzlich gefaltet ist (Abb. 17). Zum Teil bildet Turmalin wirrstrahlige Ansammlungen bis zu 25 Vol.%.

Die Gneise bestehen hauptsächlich aus nicht bis schwach undulösem Quarz und leicht bis mäßig alterierten Feldspäten. Der Quarz ist meistens rundlich, leicht bis mäßig verzahnt. Feldspäte bilden 20-30% des Gesamtvolumens und treten sowohl als idiomorphe Porphyroblasten sowie als Zwickelfüllung auf. Ausnahmen bilden die Proben 0-33 und 0-183, die bis zu 40 Vol.% Feldspat enthalten. In diesen Gneisen bilden stark pigmentierte Feldspäte breite Bänder, die stellenweise Chlorit und Granat enthalten (Abb. 18).

Kalifeldspat ist größtenteils stark alteriert. Albit bildet unalterierte z.T. leicht serizitisierte Kristalle. Biotit I bildet idiomorphe Leisten, die teilweise vollständig chloritisiert und in die Foliation eingeregelt sind. Stellenweise bildet er Bänder, in denen gewöhnlich die akzessorischen Minerale konzentriert sind (Abb. 19). Hellglimmer und büschelige, feinkristalline Phyllosilikate treten eng vergesellschaftet mit Chlorit auf und sind meistens in die Foliation eingeregelt. Teilweise kommen sie als wirrstrahlige Bildungen vor.


Vollständig pinitisierter Cordierit bildet vereinzelte, lagig angeordnete Nester. In manchen Gneisen haben sich abschnittweise radialstrahlige Turmalinaggregate oder auch Turmalin-Chlorit-Nester gebildet, die postdeformativ entstanden sind (Abb. 20). Akzessorisch treten neugebildeter Granat, Zirkon und Apatit auf. Almandin (Alm₈₃₋₈₉) ist zerrissen und oft durch Quarz und Chlorit verdrängt.

Als Gneise wurden außerdem einige Gesteine eingestuft, die außergewöhnlich viel Granat und einzelne Klinopyroxen-Kristalle enthalten (Pr. 0-50, 91-70). Diese kommen vereinzelt am Spörenwagen und im Kleinen Maitzental vor und werden hier als **Granat-Biotit-Gneise** bezeichnet. Sie sind gebändert: dunkelgraue Biotit-Kalifeldspat-Bänder wechseln sich mit helleren, quarzreichen Bereichen ab. Sie bestehen hauptsächlich aus Quarz, Feldspäten, Biotit, Pinit, Granat und Klinopyroxen. Die Quarze sind meistens rund, leicht verzahnt und kaum undulös. Stellenweise sind Plattenquarze zu beobachten. Kalifeldspat ist stark alteriert und bildet Zwickelfüllungen. Plagioklaskristalle haben anorthitische Zusammensetzung (An₉₈).

In der Probe 0-50 ist die Bänderung durch Pinit-Biotit- und in der Probe 91-70 durch Biotit-Chlorit-Lagen markiert (Abb. 21). Biotit ist idiomorph bis hypidiomorph, mäßig bis meist stark chloritisiert. In diesen Bereichen treten auch Granat und Klinopyroxen auf. Granate (Almandin) sind oft perlschnurartig aneinander gereiht, stellenweise sind einzelne elongierte, feinlöcherige Körner (Abb. 22) zu erkennen. Mehrere Almandinkörner wurden auf eine chemische Zonierung hin untersucht, wobei eine leichte Zunahme im FeO-Gehalt vom Kern zum Rand hin festgestellt wurde, während CaO von Kern zum Rand hin abnimmt. Die anderen Element-Gehalte bleiben relativ konstant.

Klinopyroxen kommt ebenfalls in den dunkleren Bereichen vor und hat diopsidischaugitische Zusammensetzung. Hellglimmer und Chlorit haben sich nach Biotit gebildet. Zirkon kommt akzessorisch vor.

Bei Senkung der Feldspat- und Glimmer-Anteile gehen die Gneise in Quarzite über.

Abb. 16Foliierter Gneis mit hellen Qz-Kfs-Bändern: gräuliche, runde Quarzkörner sind in hellen Kfs eingebettet, Pr. 0-30, Spörenwagen, geschliffene Anschnittfläche

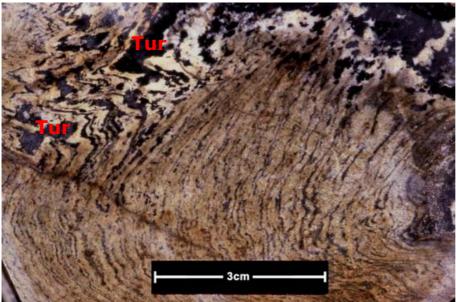


Abb. 17 Gefalteter Gneis mit Tur-Bändern, hellere Bereiche bestehen aus Qz und Feldspäten, Pr. 99-30, Westufer des Eckerstausees, geschliffene Anschnittfläche

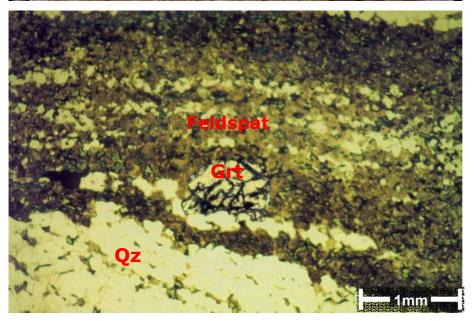
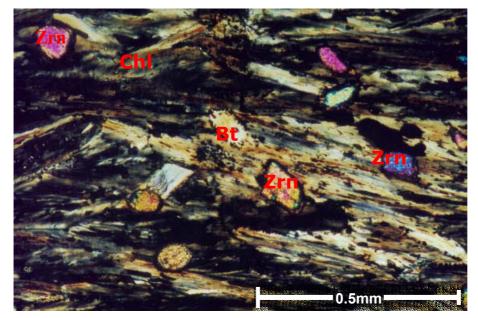
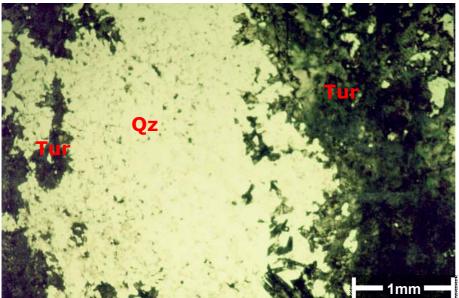
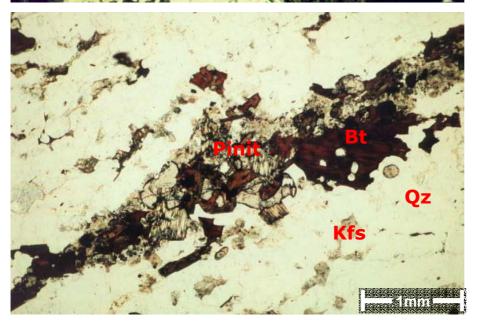


Abb. 18
Granatführende Feldspat-Lage (pigmentiert) in
Gneis, hellere Bereiche bestehen hauptsächlich aus Qz, Pr. 0-183, Eckertalsperre, (ohne Analysator)

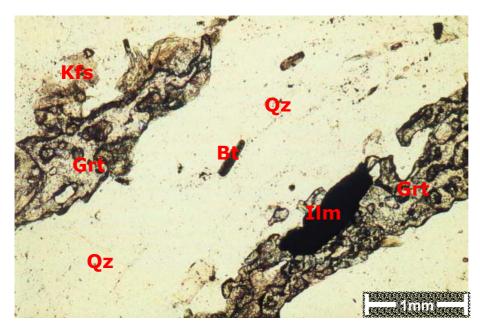

Abb. 19 Zrn-Ansammlung in stark chloritisierten Bt-Lagen in Gneis, Pr. 0-84, Kolebornsgrund/Sellenberg, (mit Analysator)

Abb. 20Tur-Neubildung
(dunkelgrün) in Gneis,
Pr. 99-30, Westufer des
Eckerstausees,
(ohne Analysator)

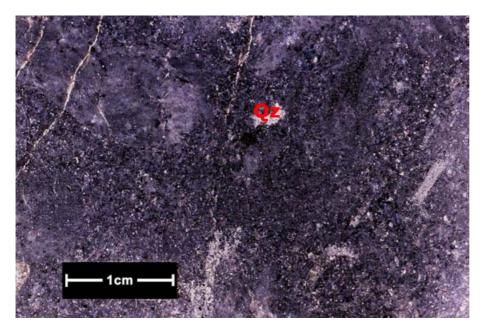
Abb. 21Pinit und idiomorpher Bt bilden Lagen in Gneis und markieren damit die Foliation, Pr. 91-70, Spörenwagen, (ohne Analysator)

Abb. 22 Elongierte, reliktische Granate in Bt-Chl-Lagen in Gneis, Pr. 91-70, Spörenwagen, (ohne Analysator)

6.4. Cordierit-Pyroxen-Granoblastite

Cordierit-Pyroxen-Granoblastite sind am Diebesstieg, am Spörenwagen, im Kleinen Gierstal und im Unteren Lobenklee verbreitet. Diese Gesteine sind massiv, teilweise gebändert. Die frühe Bänderung wird durch granoblastisches Gefüge einer späteren statischen Metamorphose überlagert.

Folgende Mineralparagenesen werden als einzelne Gruppen klassifiziert:


- A. Crd+Bt+Opx+Qz
- B. Crd+Opx +Feldspat+Bt+Qz
- C. Opx+Qz+Pl+Bt+Ilm (Orthopyroxen-Poikiloblastit).

Gruppe A

(Pr. 91-49, 91-59, 99-36 Unterer Lobenklee; 0-6A Spörenwagen, 99-33 Dielenweg)

Diese Cordierit-Pyroxen-Granoblastite sind gräulich- oder olivschwarz bis dunkelgrau und massiv (Abb. 23). Sie zeigen ein granoblastisches Gefüge und bestehen vorwiegend aus Cordierit, Biotit und Quarz. In geringen Mengen enthalten sie Orthopyroxen, Feldspäte, Hellglimmer und selten Chlorit (Abb. 24).

Cordierit ist oft unalteriert (FeO-Gehalt 10 Gew.% und K₂O-Gehalt 0.01 Gew.%), z.T. am Rand leicht pinitisiert und bildet dichte Häufungen einzelner idiomorpher, säuliger Kristalle. Biotitleisten sind beliebig orientiert, manchmal leicht vom Rand chloritisiert oder haben sich in Hellglimmer umgewandelt. Biotit einhält Einschlüsse von Zirkon und Ilmenit. Quarz bildet Zwickelfüllungen. Teilweise bildet der Quarz größere linsenförmige Neubildungen mit eingeschlossenen Orthopyroxen-Porphyroblasten. Orthopyroxen(En₅₀₋₈₀) zeigt verschiedene Alterierungsgrade. Einzelne idiomorphe Kristalle (0.2-1,5 mm) sind unalteriert oder nur wenig am Rand und in den Spaltrissen, wo sich Chlorit und Ilmenit gebildet haben. Teilweise sind die Orthopyroxenkristalle zerlappt (Abb. 25), sie enthalten z.T. kleine Einschlüsse von Cordierit, Biotit und Apatit. Stellenweise ist zu beobachten, dass die großen Orthopyroxenkristalle vollständig von Chlorit und Erzmineralen verdrängt wurden. Die Probe 99-33 (Dielenweg) hat eine ähnliche Mineralzusammensetzung wie Gruppe A, nur alle Minerale sind in der Foliation eingeregelt (Abb. 26).

Abb. 23Massiver dunkelgrauer
Crd-Px-Granoblastit,
Pr. 0-6A, Spörenwagen,
geschliffene
Anschnittfläche

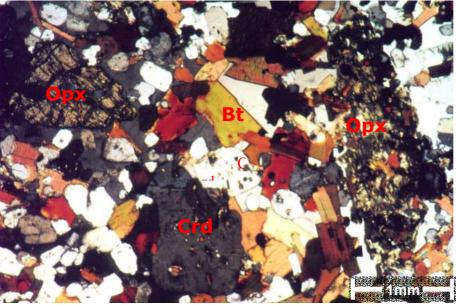
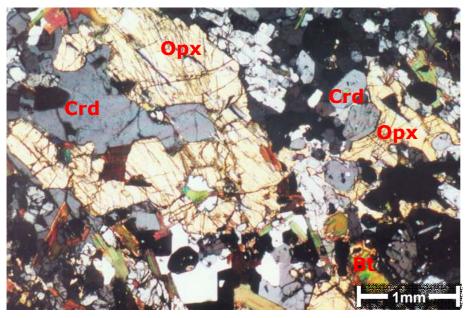
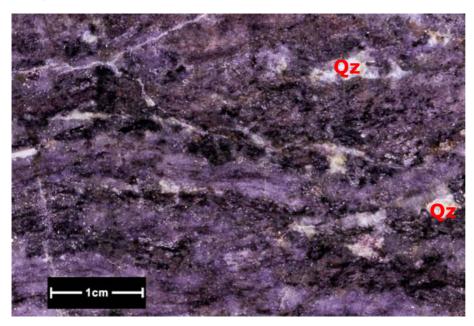




Abb. 24
Alterierte OpxPorphyroblasten in
Crd-Bt-Qz-Matrix,
Crd-Px-Granoblastit,
Pr. 0-6A, Spörenwagen,
(mit Analysator)

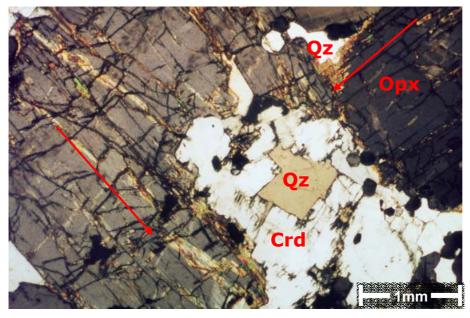
Abb. 25Porphyroblastischer bis poikiloblastischer Opx und körniger Crd in Crd-Px-Granoblastit,
Pr. 91-49, Unterer Lobenklee,
(mit Analysator)

Abb. 26Opx-Porphyroblast in Crd-Bt-Matrix, Crd-Px-Granoblastit Pr. 99-33, Dielenweg, (ohne Analysator)

Gruppe B


(Pr. 99-5 B, C, DS-8, DS-16, DS-18, DS-20 Diebesstieg)

Dieser Cordierit-Pyroxen-Granoblastit ist grobkörnig, dunkelgrau und enthält dunkle, grünlich graue, wolkige Lagen (Abb. 27).


In diesem Gesteinstyp sind Cordierit und Orthopyroxen die Hauptgemengteile. In geringen Mengen kommen Plagioklas, neugebildeter Biotit und Quarz vor. Cordierit bildet idiomorphe, nicht alterierte, z.T. am Rand leicht pinitisierte längliche Kristalle. Orthopyroxen (Fs₄₇₋₅₀) tritt in verschiedenen Formen auf:

- a. bis zu 5 mm große, alterierte Porphyroblasten, die sich z.T. in Chlorit, Phyllosilikate und Ilmenit umgewandelt haben. Sie sind nicht in der Foliation eingeregelt, sondern liegen in verschieden Orientierungen (Abb. 28) als Hinweis aus eine posdeformative Entstehung,
- b. symplektitähnliche Poikiloblasten in Plagioklas, die ebenfalls verschiedene Orientierung zeigen. Sie sind z.T. wirrstrahlig (Abb. 29).

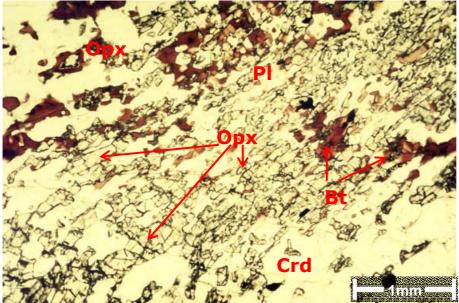

Akzessorisch treten Zirkon, Apatit und Ilmenit auf. Kleine Apatitkristalle sind in Cordieritmasse eingeschlossen. Plagioklas bildet idiomorphe, alterierte Kristalle. Rötlich brauner Biotit kommt in Form hypidiomorpher bis idiomorpher Leisten vor. Häufige Einschlüsse im Biotit sind Quarz, Rutil, Ilmenit und Zirkon.

Abb. 27Crd-Px-Granoblastit mit kleinen quarzreichen Lagen, Pr. 99-5C, Diebesstieg, geschliffene Anschnittfläche

Abb. 28Opx-Porphyroblasten,
verschieden orientiert
(rote Pfeile zeigen die
Richtungen der Spaltbarkeit)
in Crd-Px-Granoblastit,
Pr. 99-5B, Diebesstieg,
(mit Analysator)

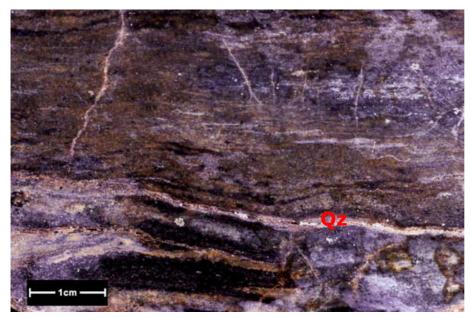


Abb. 29Symplektitähnliche
Opx-Poikiloblasten
in Crd-Px-Granoblastit,
Pr. 99-5B, Diebessteig,
(ohne Analysator)

Gruppe C (Pr. 0-41, 0-42 Kleines Gierstal)

Hierbei handelt es sich um einen Sondertyp, zu dem der Name Orthopyroxen-Poikiloblastit am besten passen würde. Er wurde wegen seiner Seltenheit nicht als eigene Gruppe klassifiziert, sondern den Cordierit-Pyroxen-Granoblastiten zugeordnet. Das Gestein ist dunkelgrau, foliiert und enthält stellenweise hellere Lagen (Abb. 30). Mikroskopisch sind Ungleichgewichstsgefüge wie Poikiloblasten, Entmischungen und symplektitähnliche Bildungen zu beobachten.

Das Gestein besteht aus Orthopyroxen, Quarz, Plagioklas und Biotit. Orthopyroxen (Fs₅₀) bildet große Poikiloblasten, die meisten davon scheinen parallel zur Foliation zu liegen. Bei genauerem Hinsehen zeigt sich jedoch, dass die in der Projektion der Richtung C liegenden Spaltbarkeiten und dazu parallelen säuligen Apophysen innerhalb der Poikliloblasten quer zur Foliation liegen (Abb. 31). Zum Teil scheinen Orthopyroxen-Poikiloblasten von der Foliation "umflossen" zu sein (Abb. 32), aber dabei handelt es sich um eine Spätbildung nach einem anderen prä- bzw. syntektonischen Mineral (evtl. Granat). Stellenweise sind zerlappte Orthopyroxen-Porphyrpblasten zu sehen. Plagioklas(An₄₃₋₅₄) ist unalteriert. Abschnittweise treten Quarz-Biotit-Schichten auf, wo die meisten Orthopyroxen- Poikiloblasten vorkommen. Biotitleisten sind neugebildet und liegen in verschiedenen Richtungen. Sekundär gebildete Muskovitleisten kommen oft vor. Ilmenit und Apatit treten akzessorisch auf.

Abb. 30Dunkelgrauer OpxPoikiloblastit mit dünnen,
hellen, quarzreichen Lagen
in Crd-Px-Granoblastit,
Pr. 0-41, Kleines Gierstal/
Spörenwagen,
geschliffene
Anschnittfläche

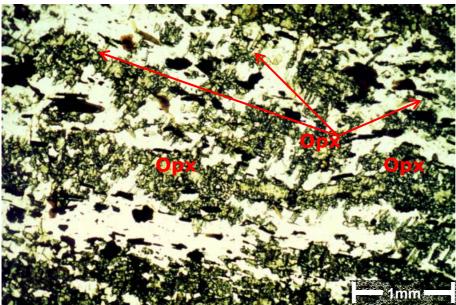


Abb. 31
Opx-Poikiloblasten mit
quer zur Foliation
herauswachsenden
säuligen Apophysen
in Crd-Px-Granoblastit,
Pr. 0-41, Kleines Gierstal/
Spörenwagen,
(ohne Analysator)

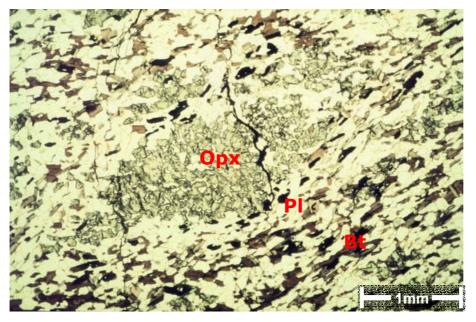


Abb. 32
Opx-Neubildung von der
Foliation "umflossen"
(s. Text) in Crd-PxGranoblastit, Pr. 0-41,
Kleines Gierstal/
Spörenwagen,
(ohne Analysator)

6.5. Quarzite

Quarzite sind im gesamten Eckergneis-Komplex verbreitet. Die Quarzite im Süd-Kolför, sowie am Ost- und Westufer des Eckerstausees sind deutlich gebändert. Die Quarzite im Spörenwagen, im Kleinen Gierstal, Kleinen Maitzental und im Unteren Lobenklee sind granoblastisch und nur z.T. leicht gebändert. In manchen Quarziten sind rundliche Quarzkörner in Kalifeldspat eingebettet (Abb. 33, 34).

Die Quarzite mit Probennummern 0-40 und 0-41A enthalten geringmächtige Schwermineralseifen, die aus Zirkon, Rutil und Chromit bestehen (Kap.7). Die Schwerminerale stecken in der Regel innerhalb der Quarze, was ebenfalls auf eine spätere vollständige Umkristallisation der Quarze hinweist. Mit steigendem Feldspat-Anteil gehen die Quarzite in Gneise und bei einem steigendem Glimmer-Anteil in Glimmerschiefer über.

A. Spörenwagen (Pr. 12 A, B, C)

Die Quarzite am Spörenwagen sind mittelkörnig (< 2mm) und hellbraun. Sie sind nicht foliiert und bestehen aus rundlichen bis leicht verzahnten Quarzkörnern. Plagioklas und Kalifeldspat bilden Zwickelfüllungen und sind stark alteriert. Gebietsweise kommen kleine Pinit-Nester vor. Biotit, Chlorit und Muskovit bilden kleine, wirrstrahlige Leisten zwischen den Quarzkörnern. Schwerminerale in diesen Quarziten sind durch Zirkon, Monazit und Rutil vertreten. Granat und Monazit kommen vereinzelt vor. Zirkon bildet meistens einzelne kleine, gut gerundete, detritische Körner. Daneben kommen idiomorphe, längliche Kristalle vor, die ebenfalls detritisch sind. Rutil bildet isometrische oder längliche, z.T. gut gerundete Körner, die in den Biotitleisten eingeschlossen sind. Chromitkörner sind gut gerundet. Gelegentlich finden sich einzelne zerrissene, detritische Almandinkörner. Monazit ist farblos und gut gerundet.

B. Eckertal-Spörenwagen (Pr. 0-32, 0-34, 0-35, 0-37)

Diese Quarzite sind hellgrau, fein- bis mittelkörnig und leicht gebändert. Teilweise treten Linsen von Segregationsquarze auf. Rundliche Quarzkörner (bis zu 95 Vol.%) sind in alterierte braune Feldspäte eingebettet (Abb. 33, 34). In geringen Mengen kommen Kalifeldspat, Plagioklas und Chloritschuppen vor. Kalifeldspat ist stark alteriert. Plagioklas (Oligoklas) ist mäßig bis stark serizitisiert. Feinkristalline Phyllosilikate bilden kleine Nester in Zwickelfüllungen. Akzessorisch kommen Zirkon, Titanit und Ilmenit vor.

C. Westufer des Eckerstausees (Pr. 99-20 bis 99-20-11)

Diese Quarzite sind foliiert und haben eine hellbraune Farbe. Die Foliation ist durch dünne Pinit-Chlorit-Bänder markiert. Quarz ist kaum undulös und leicht bis mäßig verzahnt. Stellenweise treten Plattenquarze auf (Abb. 35). Selten kommen stark alterierte Feldspäte vor. Als Akzessorien treten Granat und Zirkon auf. Granat bildet gut gerundete, farblose Körner, die teilweise zerrissen und zerbrochen sind.

D. Unterer Lobenklee I (Pr. 99-37, 99-38, 99-39)

Die nach Lesesteinbefund in Metapsammite bis Metapelite eingebetteten Quarzite des Unteren Lobenklee entsprechen den nicht verzahnten Quarziten des Eckergneis-Komplexes: regelmäßig in Quarz eingebettete Schwerminerale und kennzeichnender Chemismus der Chromite (Kap. 7.1.1) sind Belege dafür.

Diese Quarzite sind hellgrau und nicht foliiert. Die Quarzkörner sind tendenziell rundlich, stellenweise leicht verzahnt und nicht undulös. In ganz geringen Mengen kommen Pinit-Nester, mäßig alterierter Kalifeldspat und Chlorit vor. Detritische, farblose und leicht bräunlich- oder grünlich gefärbte Zirkonkörner und dunkelbraune, längliche, detritische Rutil-Körner treten als Akzessorien auf. Chromit bildet gut gerundete, detritische Körner.

E. Unterer Lobenklee II (Pr. 91-52, 91-54)

Diese Quarzite sind hellgrau, fein- bis mittelkörnig (<1mm). Runde, z.T. leicht verzahnte Quarze sind mäßig bis stark undulös. In geringen Mengen (<5 Vol.%) kommen Kalifeldspat (dieser nur als Zwickelfüller), idiomorphe Plagioklaskristalle, Chlorit, feinkristalline Phyllosilikate und Titanit vor. Turmalin tritt als Neubildung auf. Gut gerundete Chromit- und Zirkonkörner kommen akzessorisch vor.

F. Kleines Gierstal (Pr. 0-40, 0-41A)

Probe 0-40 zeigt granoblastisches Gefüge und eine gut erkennbare frühe Foliation. Die Foliation ist durch dünne Biotit-Chlorit-Bänder markiert. In geringen Mengen sind Biotit, Chlorit und Feldspäte vorhanden. Die Quarze sind leicht verzahnt, kaum undulös und stellenweise sind auch längliche (plattigen) Quarze zu beobachten. Biotit ist meistens stark chloritisiert, oft hat sich in seinen Spaltrissen Titanit gebildet. Die chloritisierten Biotite bilden mit Phyllosilikaten dünne Schichten und z.T. kleine Nester. Die Feldspäte sind stark alteriert und treten meistens in den Biotit-Chlorit-Phyllosilikat-Schichten auf. Kleine, gut gerundete, detritische Zirkonkörner kommen gleichmäßig verteilt vor. Dieser Quarzit enthält eine Schwermineralseife, die aus Zirkon, Rutil und Chromit besteht (Kap. 7.2).

Probe 0-41A enthält Feldspäte, Biotit, Chlorit und Phyllosilikate. Quarz bildet granoblastische, rundliche Körner. Leicht serizitisierter Plagioklas und mäßig alterierter Kalifeldspat bilden Zwickelfüllung. Biotit ist meistens vollständig chloritisiert und bildet längliche, teilweise deformierte Leisten in Zwickeln. In seinen Spaltrissen hat sich Ilmenit gebildet. Die Phyllosilikate bilden kleine dünne Schichten und Nester. Eine Schwermineralseife aus Zirkon, Rutil und Chromit ist in diesem Quarzit vorhanden und wird Kap. 7.2 ausführlich beschrieben.

G. Grosses Maitzental (Pr. 0-47)

Dieser Quarzit ist hellbraun, mittelkörnig und besteht aus mäßig- bis stark verzahnten, deutlich undulösen Quarzkörnern. Abschnittweise sind Lagen von rundlichen, kaum undulösen Quarzkörnern zu beobachten. Vollständig serizitisierter Plagioklas, stark alterierter Kalifeldspat und Chloritschuppen bilden Zwickelfüllungen (<10 Vol.%). Chromit, Zirkon, Ilmenit und Rutil kommen akzessorisch vor.

H. Kolför (Pr. 0-112, 0-111, 0-110)

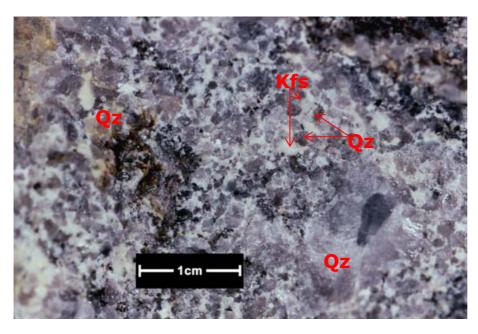
Die hellbraunen, gneisartig gebänderten Quarzite sind fein- bis mittelkörnig. Die Quarze sind leicht verzahnt und kaum undulös. Stark alterierte Feldspäte, Chloritleisten (ehemaliger Biotit) und wirrstrahlige Hellglimmer bilden Zwickelfüllungen.

Detritische, runde, teilweise metamikte Zirkonkörner kommen akzessorisch vor, ebenso detritischer Rutil. Rutil enthält aufgrund von Alteration nur bis zu 93% TiO₂. Granat kommt sporadisch vor.

I. Süd-Kolför (Pr. 0-99, 0-100, 0-101, 0-104 A)

Makroskopisch sind diese Quarzite hellbraun bis bräunlich grau und mittelkörnig. Sie bestehen aus leicht bis mäßig verzahnten nicht undulösen Quarzkörnern. Wenige stark alterierte Feldspäte, Chlorit, Hellglimmer, Pinit-Nester bilden Zwickelfüllungen. Alle Quarzite zeigen granoblastisches Gefüge. Neugebildete Turmaline kommen gelegentlich vor und schließen kleine Körner von Ilmenit ein. Neugebildeter Turmalin tritt ebenfalls als Zwickelfüllung auf. Büschelige feinkristalline Phyllosilikate, Chlorit und wirrstrahlige Hellglimmer haben sich zwischen den Quarzkörnern gebildet. Als Akzessorien treten detritsche, gut gerundete Zirkon- und Rutilkörner auf. Gelegentlich kommt neugebildeter Titanit vor.

J. Kaltenborn (Pr. 91-65)


Dieser Quarzit enthält in geringen Mengen alterierte Feldspäte, Chlorit und Hellglimmer als Zwickelfüllungen. Quarze sind rundlich, z.T. mäßig verzahnt. Apatit bildet stellenweise perlschnurartige Ansammlungen zwischen den Quarzkörnern. Weitere Akzessorien sind nicht vertreten.

K. Kleine Peseke (Pr. 0-116)

Der Quarzit ist hellbraun und leicht gebändert. Quarz ist rundlich ausgebildet und nicht undulös. Einzelne Plagioklaskristalle kommen als Zwickelfüllung vor und sind leicht serizitisiert. Chlorit bildet wirrstrahlige Neubildungen zwischen den Quarz-Körnern. Wirrstrahlige Turmalinneubildungen sind oft zu sehen. Als Akzessorien treten einzelne detritische Zirkonkörner und Erzminerale auf.

L. Dielenweg (Pr. 99-32)

Hier vorkommender brauner, mittelkörniger Quarzit zeigt ein ungewöhnliches Gefüge: nicht undulöse rundliche Quarzkörner sind von vielen kleinen Chlorit- und Phyllosilikatnestern durchsetzt (Abb. 36). Pinit und Chlorit treten als Zwickelfüllung auf. Chromit, Rutil und Zirkon kommen akzessorisch vor.

Abb. 33Olivgrauer Quarzit:
Quarzkörner sind
in Kfs eingebettet,
Pr. 0-34, EckertalSpörenwagen,
geschliffene
Anschnittfläche

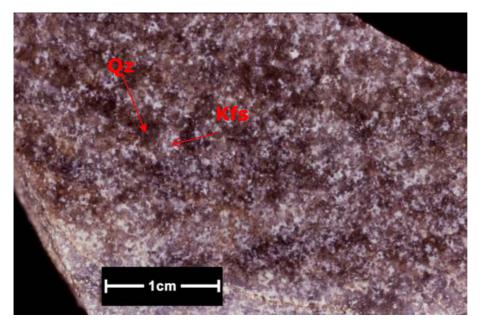
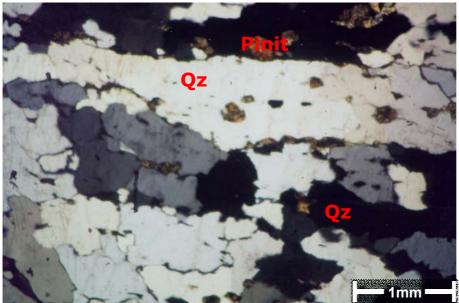
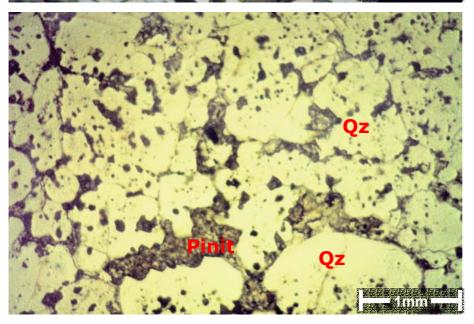
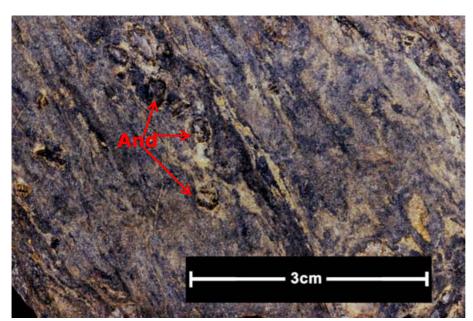




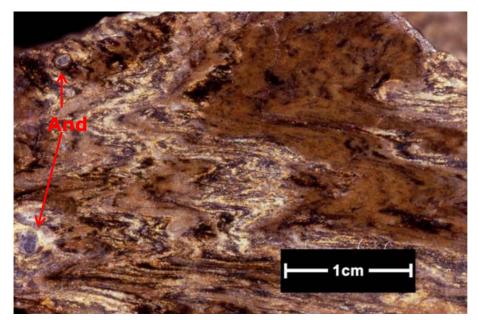
Abb. 34
Hellgrauer Quarzit:
Quarzkörner sind
in Kfs eingebettet,
Pr. 0-37, EckertalSpörenwagen,
geschliffene
Anschnittfläche

Abb. 35Plattenquarz in Quarzit,
Pr. 99-20-2, Westufer
des Eckerstausees,
(mit Analysator)

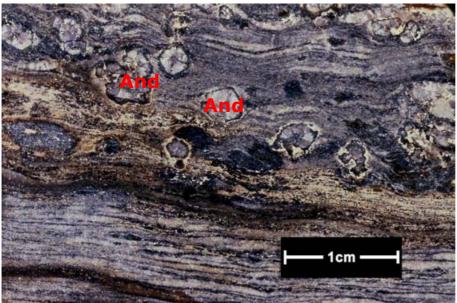
Abb. 36Quarz-Körner durchsetzt mit Chlorit-Nestern,
Quarzit, Pr. 99-32,
Dielenweg,
(ohne Analysator)

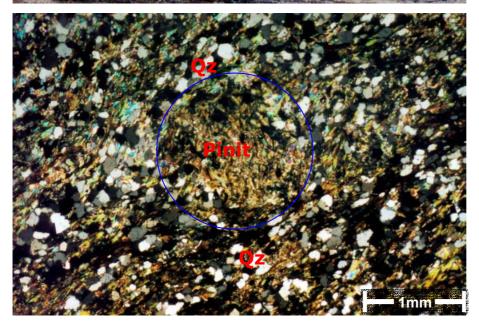

6.6. Glimmerschiefer

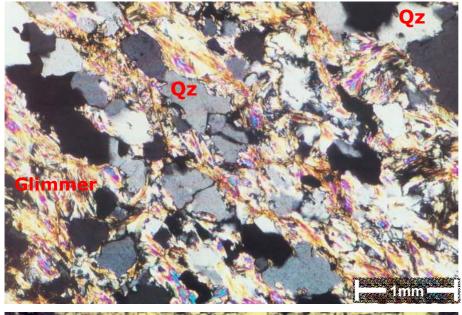
Als Glimmerschiefer eingestufte Gesteine kommen ausschließlich im Südteil des Eckergneis-Komplexes vor (Sellenberg, Kolför, Süd-Kolför, Ostufer des Eckerstausees). Sie sind foliiert und z.T. mylonitisiert. Teilweise sind die Glimmerschiefer zusätzlich gefaltet (Abb. 37, 38). Makroskopisch sind sie dunkelgelblich bis hellbraun, teilweise oliv- oder grünlich grau. Die Hauptminerale sind teilweise mit bloßem Auge erkennbar (Abb. 39). Sehr verbreitet sind Quarzlinsen und –adern, die parallel zu den Schieferungsflächen eingelagert sind.

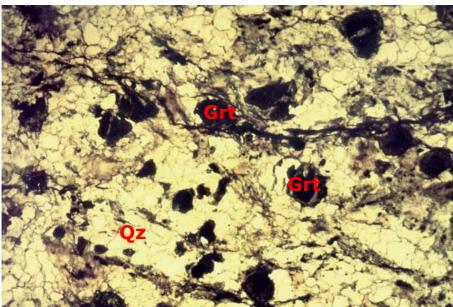

Die für den Eckergneis-Komplex typischen Glimmerschiefer zeigen mikroskopisch durchgängig granoblastisches Gefüge. Sie werden hier jedoch wegen ihrer Muskovit-Chlorit-Lagen, die eine frühe Foliation markieren, als Glimmerschiefer bezeichnet.

Die Glimmerschiefer bestehen aus Quarz und untergeordnet aus Biotit, Hellglimmer (Muskovit und Serizit) und Chlorit. Sie sind feldspatfrei, mit Ausnahme von Proben 0-70, 0-96 und 99-45, die in geringen Mengen Feldspäte enthalten. Andalusit und Cordierit bilden einzelne Porphyroblasten. Pinit-Nester, Granat, feinkristalline Phyllosilikate, Turmalin und Erzminerale wie Chromit, Ilmenit und Eisenoxide treten nur in geringen Mengen auf. Verbreitete Akzessorien sind Zirkon, Rutil, Titanit und Apatit. Mit zunehmendem Quarzgehalt gehen die Glimmerschiefer in glimmerreiche Quarzite über. Der Quarz bildet runde bis leicht verzahnte, nicht undulöse Körner, die kleine Biotit-, Chlorit- oder Erzmineraleinschlüsse enthalten. Biotit ist meistens vollständig chloritisiert. Muskovit-Chlorit-Lagen markieren zwar die Foliation in den Glimmerschiefern, aber in der Regel bestehen sie aus wirrstrahligen Schuppen. In diesen Lagen treten stellenweise rotierter Pinit auf (Abb. 40).


Die divergentstrahligen Hellglimmer sind oft aus Pinit und z.T. aus primär in der Foliation eingeregelten Glimmern hervorgegangen (Abb. 41). Almandin (Alm₅₅₋₇₅) bildet in Glimmerschiefern große, runde und z.T. von Quarz und Biotit verdrängte Kristalle. Almandin bildet teilweise Porphyroblasten mit feinlöcherigem Aufbau (Abb. 42). Turmalin tritt in Pr. 0-86 in Form von wirrstrahligen Porphyroblasten auf. Große Porphyroblasten (<5 mm) von Cordierit, Andalusit und Korund kommen gebietsweise (Abbentränke/Südkolför) vor. Teilweise sind Cordierit-Kristalle rotiert und z.T. von der Foliation umflossen (Abb. 43). Um die Andalusit-Porphyroblasten (Abb. 44) tritt z. T. Diaspor-Korona als Zerfallsprodukt auf. Korund-Neubildung ist gelegentlich zu beobachten. Akzessorisch treten Zirkon, Rutil und Apatit auf.


Abb. 37Dunkelgrauer
Glimmerschiefer mit
hellgrauen Lagen,
stellenweise gefaltet,
Pr. 0-181,
Eckertalsperre,
geschliffene
Anschnittfläche


Abb. 38Dunkelbrauner
Glimmerschiefer
foliiert und gefaltet,
Pr. 91-2, Ostufer
des Eckerstausees,
geschliffene
Anschnittfläche


Abb. 39And-Porphyroblasten in Glimmerschiefer, Pr. AT-15, Süd-Kolför, geschliffene Anschnittfläche

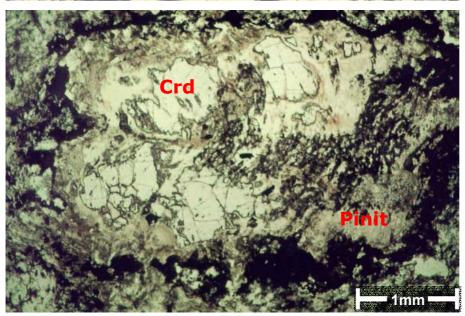

Abb. 40Rotiertes Pinitnest in Glimmerschiefer (blauer Kreis), Pr. 0-86, Kaiserweg, (mit Analysator)

Abb. 41Divergentstrahlige
Glimmer in
Glimmerschiefer,
Pr. 91-2, Ostufer
des Eckerstausees,
(mit Analysator)

Abb. 42. Grt-Relikte in Glimmerschiefer, Pr. 0-21, Kolför, (ohne Analysator)

Abb. 43Rotierter Crd, von der
Foliation "umflossen"
in Glimmerschiefer,
Pr. 0-181, Eckertalsperre,
(ohne Analysator)

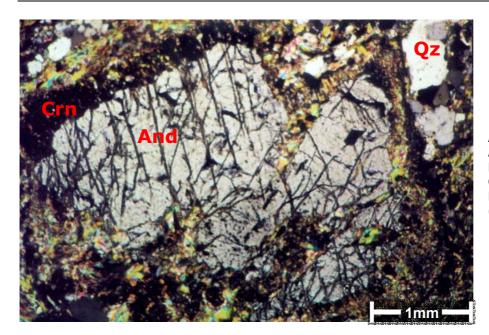


Abb. 44 And-Porphyroblast mit Diaspor-Korona in Glimmerschiefer, Pr. AT-15, Süd-Kolför, (mit Analysator)

6.7. Metavulkanite

Metavulkanit-Vorkommen wurden an folgenden Lokalitäten des Eckergneis-Komplexes beprobt:

- A. Kleine Peseke (Amphibolit)
- B. Kolför (Amphibolit)
- C. Alter Molkenplatz/Eckertal (Amphibolit)
- D. Diebesstieg I (Amphibolit)
- E. Diebesstieg II (Amphibolit)
- F. Diebesstieg III (Amphibolit)
- G. Ostufer des Eckerstausees (Amphibolit)
- H. Kaltenborn (Pyroxen-Metabasit).

Alle Amphibole in den Metavulkaniten wurden mit dem Programm NEWAMPH von YAVUZ (1999) bearbeitet und klassifiziert, die berechneten Formeln sind in Tab. 3 aufgeführt.

A. Kleine Peseke

Mineralparagenese: Apmh+Pl+Cpx+Kfs+Chl (Pr. 99-54A, B: anstehendes Vorkommen) Dieser Amphibolit ist gräulich schwarz und enthält in reichlicher Menge dünne, hellgrüne Lagen (Abb. 45). Sowohl die dunklen Anteile, als auch die hellen Lagen zeigen ein granoblastisches Gefüge. Das Gestein besteht aus 50-60 Vol.% Amphibol (Pargasit), 20-30 Vol.% unalteriertem Plagioklas (Andesin) und 10 Vol.% alteriertem Kalifeldspat. Der Kalifeldspat bildet kleine Linsen, in denen Klinopyroxenkristalle auftreten. Die Klinopyroxene haben augitischhedenbergitische Zusammensetzung. Die hellen Lagen (Abb. 46) bestehen aus 45-50 Vol.% Klinopyroxen, 45-50 Vol.% stark alterierten Feldspäten und einzelnen Pargasitleisten. Stellenweise hat sich Pargasit in türkisgrüne Magnesio-Hornblende umgewandelt. Andesin bildet unalterierte hypidiomorphe Kristalle. Chlorit kommt in geringer Menge als sekundäre Bildung vor. Kleine Titanit- und Ilmenitkörner treten akzessorisch auf.

B. Kolför

Mineralparagenese: Magnesio-Hbl+Opx+Feldspäte (Pr. 0-93)

Dieser Amphibolit ist dunkelgrau, massiv (Abb. 47) und besteht überwiegend aus Magnesio-Hornblende (80-85 Vol.%). Die Hornblende zeigt Pleochroismus von hellrosabraun bis hellgrün und ist beliebig orientiert (Abb. 48). In den Hornblendeleisten sind überall kleine Orthopyroxen-Einschlüsse zu sehen, die quer zur C-Achse der Hornblendleisten wachsen (Abb. 49). Stellenweise sind auch größere, beliebig orientierte Orthopyroxen-Poikiloblasten zu beobachten. Neugebildeter Muskovit kommt als Zwickelfüllung vor und bildet überall kleine Leisten und z.T. Nester (bis zu 15 Vol.%). Alterierter Kalifeldspat bildet ebenfalls Zwickelfüllungen.

C. Alter Molkenplatz /Eckertal

Mineralparagenese: Magnesio-Hbl+ Pl +Cpx +Kfs+Chl+Act

(Pr. EGS-1, 2, 3; bearbeitet von SCHLÜTER (1983): anstehendes Vorkommen)

Die dunkelgrauen bis schwarzen, feinkristallinen Gesteine führen häufig hellgrüne, grobkörnige Einschaltungen in Form dünner, konkordanter Lagen und Linsen oder wolkiger Bereiche. Dunkle, feinkörnige Bereiche dieser Gesteine sind meist einheitlich aufgebaut: braun-grüne Magnesio-Hornblende sowie Andesin stellen die Hauptbestandteile neben Ca-reichem Klinopyroxen. Akzessorisch treten Apatit, Ilmenit, Kupferkies, Magnetkies und wenig Zirkon auf. Als sekundäre Bildung ist Chlorit anzusehen.

In den hellen Gesteinspartien beherrschen große farblose Aktinolith-Kristalle das Bild, die das Porphyroblastensieb für Plagioklas und für Klinopyroxen-Relikte bilden. Neben stark pigmentiertem Albit und Prehnit sind Titanit, Ilmenit/Leukoxen, Apatit und wenig Zirkon in untergeordneten Mengen vorhanden.

Helle Gesteinspartien stellen mit Albit, Prehnit und Aktinolith eine retrograde Mineralassoziation dar, die sich mikroskopisch erkennbar aus der oben genannten dunklen Paragenese entwickelt. Andesin ist in Albit plus Prehnit umgewandelt. Klinopyroxen und Hornblende bilden das Ausgangsmaterial neu gebildeter Aktinolith-Porphyroblasten, wobei sich die ehemalige Ti⁴⁺-Komponente der Hornblende in neugebildetem Titanit niederschlägt. Die dunkle Mineralparagenese ist regionalmetamorph entstanden. Sie wurde während der vom Brockenpluton und Gabbronoritmassiv ausgehenden Kontaktmetamorphose nur wenig verändert (SCHLÜTER 1983).

D. Diebesstieg I

1. Mineralparagenese: Prg+Hd+Act+Pl+Kfs+Chl+Ttn+Hellglimmer+Qz (Pr. 99-7, 8)

Dieser Amphibolit ist grünlich schwarz und enthält grünlich graue Lagen (Abb. 50). Einzelne hellgrüne, linsenförmige Bildungen kommen in den helleren Bereichen vor. Die hellen Bereiche enthalten hauptsächlich Klinopyroxen (45-50 Vol.%) und stark alterierte Feldspäte (45-50 Vol.%). Sie zeigen granoblastisches Gefüge. Der Klinopyroxen hat hedenbergitische Zusammensetzung und bildet rundliche Körner.

Die Zwischenräume sind von mäßig- bis stark alteriertem Feldspat (Or₈₀₋₉₀) ausgefüllt. Zwischen den Pyroxenkörnern kommen teilweise sekundäre Aktinolith-Leisten vor. Der dunkle Bereich besteht aus ca. 80 Vol.% Amphibolen (Amphibol liegt chemisch im Hornblende-Pargasit-Bereich), 5 Vol.% Pyroxen (Hedenbergit und Enstatit) und 5 Vol.% neugebildeten Plagioklaskörnern bytownitischer Zusammensetzung. Chlorit, alterierter Feldspat und Ilmenit bilden ca. 10 Vol.% des Gesteins. Amphibol-Leisten sind mehr oder weniger eingeregelt. Selten tauchen neugebildete Quarzkörner zwischen den Pargasit-Leisten auf. Stellenweise hat sich Pargasit in Fe-Aktinolith umgewandelt. Die kleinen grünen Linsen bestehen überwiegend aus wirrstrahligem Aktinolith. In geringen Mengen tritt hier alterierter Bytownit auf. Neugebildete Titanitkörner und Ilmenit kommen akzessorisch vor.

2. Mineralparagenese: Ed+Act+Pl+Kfs+Aug+Hellglimmer+Chl (Pr. Eg-V)

Makroskopisch ist dieser Amphibolit den dunklen Bereichen der Pr. 99-7 (s. oben.) sehr ähnlich. Der Amphibolit besteht aus 65 Vol.% Amphibolen (Edenit und Pargasit), 20-25 Vol.% Plagioklas, 10 Vol.% Feldspat und 5 Vol.% Hedenbergit. Er zeigt ein nemato-granoblastisches Gefüge. Amphibole bilden kleine, längliche Leisten. Stellenweise haben sich Edenitleisten in Aktinolith umgewandelt.

Dazwischen kommen Hedenbergit-Feldspat-Nester vor (Abb. 51). Feldspäte sind stark alteriert. Sie bilden die Füllung zwischen den Amphibol-Leisten und den Hedenbergitkörnern in den hellen Linsen. Plagioklas (An₂₄₋₅₁) bildet unalterierte, hypidiomorphe Kristalle. Sekundäre Hellglimmer und Chlorit bilden einzelne dünne Bänder.

E. Diebesstieg II

Mineralparagenese: Hbl+Act+Pl+Kfs (Pr. DS-4)

Hornblende und Plagioklas sind die Hauptbestandteile in diesem gebänderten Amphibolit. Die Hornblende ist eingeregelt, stellenweise auch wirrstrahlig. Plagioklas bildet unalterierte, idiomorphe Kristalle. Mäßig- bis stark alterierter Feldspat bildet dunklere Streifen- oder Nester in Hornblende-Lagen.

In den Hornblende-Lagen tauchen teilweise Aktinolith-Nadeln als Sekundärbildung auf. Wirrstrahlige, große Aktinolith-Leisten bilden ebenfalls einzelne dünne Bänder, wo sich wenig Plagioklas und Feldspat-Nester gebildet haben. Stellenweise kommen dünne Chlorit- und Hellglimmer-Linsen vor.

F. Diebesstieg III

1. Mineralparagenese: Opx+Cpx+Hbl+Pl (Pr. DS 19)

Dieser Amphibolit ist durch große Opx- und Klinopyroxen-Poikiloblasten, und z.T. eingeregelte Hornblende-Leisten gneisartig gebändert. Die Bänder zeigen ein granoblastisches Gefüge. Orthopyroxen bildet beliebig orientierte Porphyro- und Poikiloblasten mit erkennbaren "Wachstumszähnen", die auch quer zur Foliation herauswachsen. Gleichzeitig tauchen lagenweise vollständig alterierte Orthopyroxen-Porphyroblasten auf.

Hornblende bildet kleine, hypidiomorphe Kristalle mit brauner Eigenfarbe. In Abb. 52 ist zu sehen, wie sich Hornblende aus Pyroxen gebildet hat. Plagioklas (bis 45 Vol.%) ist kaum alteriert, idiomorph- bis hypidiomorph. Stark alterierte Kalifeldspäte bilden Linsen und Nester. Stellenweise kommen Anhäufungen von neugebildetem Apatit in enger Vergesellschaftung mit Orthopyroxen-Poikiloblasten vor.

2. Mineralparagenese: Pl+Hbl+Act+Opx+Qz (Pr. DS-22)

Dieser Amphibolit zeigt granoblastische Kornformen und besteht aus Plagioklas, Amphibol (Hornblende und Aktinolith), Orthopyroxen und Quarz. In untergeordneten Mengen treten Chlorit, Biotit, Phyllosilikat und Ilmenit auf. Plagioklas bildet xenomorphe Kristalle.

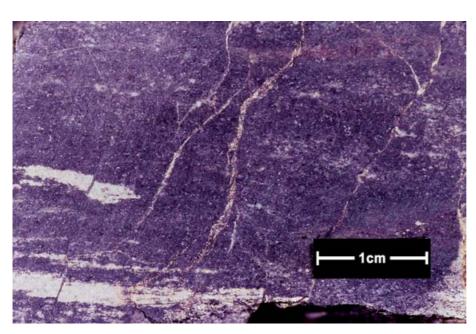
Kalifeldspat ist vollständig alteriert und kommt als Zwischenfüllung vor. Braune Hornblende hat sich meistens in grünen Aktinolith umgewandelt. Feinkristalline Phyllosilikate bilden kleine Nester. Stellenweise hat sich Pyroxen nach Hornblende gebildet.

G. Ostufer des Eckerstausees

Mineralparagenese: Magnesio-Hbl++Pl+Opx+Kfs

(Pr. 99-41, 42, 91-8, 9, 10, 11,12: anstehendes Vorkommen)

Diese Amphibolite zeigen granoblastische Kornformen. Sie bestehen aus 65-70 Vol.% Magnesio-Hornblende und 20 Vol.% Feldspäten. Die Hornblende hat eine braune Eigenfarbe und bildet eingeregelte kleine Leisten. Stellenweise sind rotierte Amphibole zu sehen. Orthopyroxene sind überall als Neubildung in den Amphibol-Kristallen zu sehen. Sie liegen oft quer zur Foliation, z.T. auch parallel und bilden in der Regel große Poikiloblasten (Abb. 53). Die Foliation wird durch granoblastisches Gefüge den Plagioklasen, Quarz und Amphibolen überlagert.


Plagioklas (An₁₀₀) bildet unalterierte, kleine Körner zwischen den Hornblendeleisten. Kalifeldspat ist völlig alteriert und bildet kleine Nester. Stellenweise ist Hornblende leicht chloritisiert. Ilmenit bildet meistens größere Ansammlungen, aber auch einzelne kleine Körner.

H. Kaltenborn

Mineraparagenese: Opx+Aug+Hbl+Pl+Qz (Pr. 91-45)

Hierbei handelt es sich um einen foliierten Pyroxen-Metabasit: die Foliation ist durch dunkle Lagen markiert. Der Pyroxen-Metabasit besteht aus Orthopyroxen, Augit, Hornblende, Plagioklas und Quarz. Orthopyroxen- und Augit-Poikiloblasten sind undeformiert und beliebig zur Foliation orientiert. Dieses deutet ihre postdeformative Entstehung. Orthopyroxen-Augit-Entmischungen (Abb. 54) sind oft zu beobachten. Hornblende ist ebenfalls beliebig zur Foliation orientiert und teilweise in Fe-Aktinolith umgewandelt. Chlorit ist sekundär gebildet. Die helle Matrix besteht überwiegend aus Quarz und wenigem Andesinen (An₇₀). Ilmenit bildet meistens kleine Ansammlungen.

Von Schlüter (1983) wurde ein Para-Amphibolit vom Dielenweg beschrieben. Der Amphibolit besteht aus bis zu zentimetergroßen Amphibolen, zwischen denen dunkelgrüner Spinell und reichlich Apatit erkennbar sind. Der opake Anteil wird von Ilmenit gebildet.

Abb. 45Gräulich schwarzer
Amphibolit mit hellgrünen
Aktinolith-Lagen,
Pr. 99-54A,
Kleine Peseke,
geschliffene
Anschnittfläche

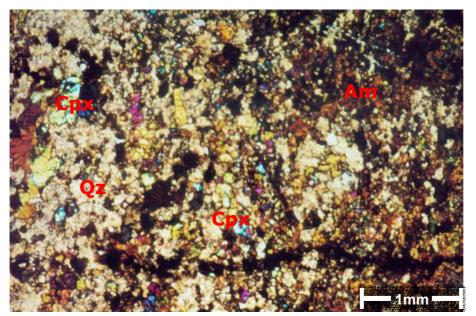


Abb. 46
Magnesio-Hbl- (braun)
und Px-Qz- Bereiche
(hell) in Amphibolit
Pr. 99-54A,
Kleine Peseke,
(mit Analysator)

Abb. 47Massiver, dunkelgrauer
Amphibolit, Pr. 0-93,
Kolför, geschliffene
Anschnittfläche

Abb. 48Wirrstrahlige HblLeisten in Amphibolit,
Pr. 0-93, Kolför,
(mit Analysator)

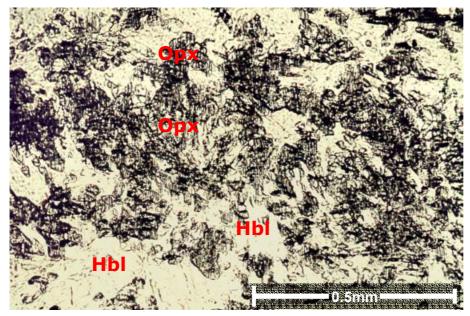
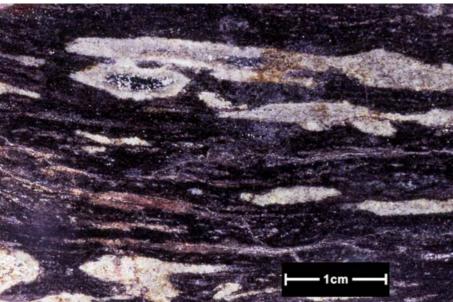



Abb. 49 Opx -Neubildung in Hbl-Masse in Amphibolit, Pr. 0-93, Kolför, (ohne Analysator)

Abb. 50Grünlich schwarzer
Amphibolit mit helleren
Lagen, Pr. 99-7,
Diebesstieg,
geschliffene
Anschnittfläche

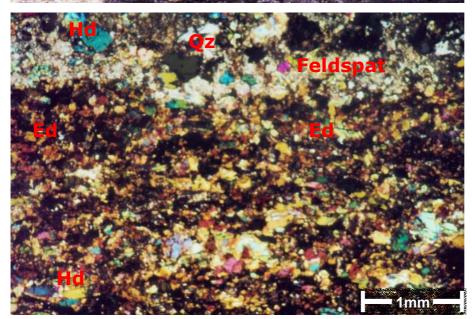


Abb. 51
Ein Band von braunen
Amphibolen und ein heller
Bereich aus Hd, Feldspat
und Qz in Amphibolit,
Pr. Eg-V, Diebesstieg,
(ohne Analysator)

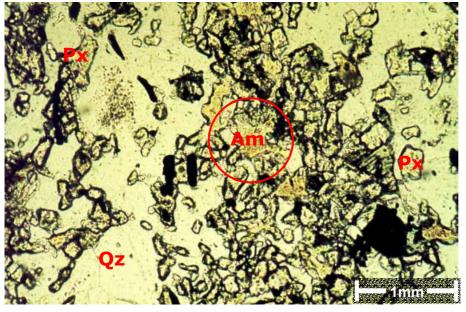


Abb. 52 Rot markiert: Amphibol (braun) wächst nach Pyroxen (farblos): retrograde Reaktion, Amphibolit, Pr. DS-19, Diebesstieg, (ohne Analysator)

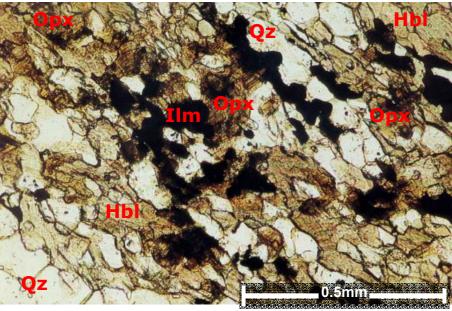


Abb. 53 Neubildung von Opx (dunkelbraun) in Hbl (hellbraun), Amphibolit, Pr. 91-8, Ostufer des Eckerstausees (ohne Analysator)

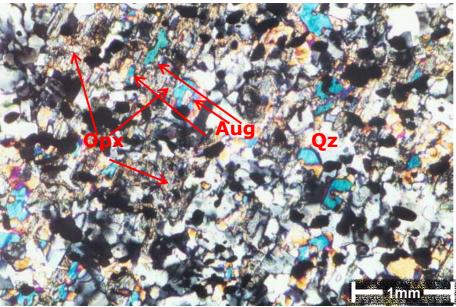


Abb. 54
Opx (grau) und Aug
(blau) zeigen ein
Verwachsungsgefüge,
Px-Metabasit, Pr. 91-45,
Unterer Lobenklee,
(mit Analysator)

Tab. 3 Mit Programm-NEWAMPH (YAVUZ 1999) berechnete Amphibolformeln

					9	aı	• • • • • • • • • • • • • • • • • • • •		•-•	•, .		•••	. ' '				7)	DCI	eci			/\l	יוף	1110	011	<u> </u>								
	51.1	1.63	0.03	0.05	18.2	2.85	11.7	11.7	0.19	0.06	97.5	7.61	0.29	0	0	0.01	0.42	1.85	0.36	0	2.6	1.87	0.05	0.01	15.1	0	0.07	0	1.87	1.87	0.88	4.81	0.58	Aktinolit
91-36	49.9	2.85	0.02	0.11	17.1	2.1	12.2	13.1	0.27	0.09	97.7	7.41	0.5	0	0	0.01	0.41	1.72	0.26	0	2.69	2	0.08	0.02	15.2	0	0.0	0.27	7	7	0.91	4.67	0.61	Magnesiohorn blende
	49.2	31.3	0.01	0	0.78	0.01	0.23	14.6	3	0.08	99.2	6.53	1.47	3.43	0	0	0	0.09	0	0	0.05	7	0.77	0.01	14.4	0	0.79	0.16	2	7	0.98	0.13	0.34	Ferro-Edenit
91-45	52.9	1.88	0.32	0.04	14.2	0.18	0	11.1	0.26	0.1	80.8	8	0	0.38	0.04	0.01	0	2.03	0.03	0	0	7	0.09	0.02	12.6	0	0.11	0.14	7	7	0	2.06	0	Ferro- Aktinolit
5	40.7	14.6	1.84	0	13.7	0.29	12	10.7	2.92	0.14	6.96	80.9	1.92	0.65	0.21	0	0	1.71	0.04	0	2.68	1.71	0.85	0.03	15.9	0.01	98.0	0	1.71	1.72	0.99	4.42	0.61	Pargasit
	48.5	99.5	0.02	0	20.5	0.36	10.7	11.2	0.71	0.14	8.76	7.24	92.0	0.23	0	0	0.3	2.26	0.05	0	2.37	1.8	0.21	0.03	15.2	0	0.23	0	1.8	1.8	86.0	4.67	0.51	Magnesiohorn blende
	40.5	13.9	2.19	0	13.4	0.27	12.6	10.2	2.85	0.17	96.1	60.9	1.91	0.56	0.25	0	0	1.69	0.03	0	2.82	1.65	0.83	0.03	15.9	0.01	98.0	0	1.65	1.65	66.0	4.54	0.63	Pargasit
99-54	40.3	14.2	1.54	0	13.1				2.84		95.7	l					0.15	1.5	0.03	0	2.91	1.66			15.9		98.0	0	99.1	1.66	66.0	4.44	99.0	Pargasit
91-08	44.9	9.49	1.57	0.14	16.5						9.96								0.03	0		1.73			15.5		0.51		1.73	1.76	0.99	4.63	5	Edenit
6	46.9		98.0									ll .					0		0.04						╝		0.33	0	1.72		0.99	4.88	55	Magnesiohorn blende
	49.8	14.1	0.81	_	13.3				2.27								0		0.03					<u> </u>			0.23	0	1.59	7	0.98	3.38	53	Magnesiohorn
	46.6	92.5	_	_	18.1				1.25		- 1		_		_		0.11	2.18			2.67	1.67	_	0.02	- 11).39 (0	. 29.1	1.67) 66.(4.89	55	blende Magnesiohorn
99-41	46	7.12	0.91	0	18.2	_		10.7		_		7.16					0	2.23	0.04						- 11	0.07	_	0	1.68) 86.0	1.77	.53	blende Magnesiohorn
6	49	3.04).27 (0.18		96.7						0.14	2.85		0				0.03 (—⊩) 80.0		1.79	. 79	0.8	4.9	37	blende Ferro-
	51.3	3.54	.15 (0.39		98.4						0.23 (0		1.53		0.02	- 11		0.13 (0	1.53	1.53	0.92	5.11	.61	Aktinolit Magnesiohorn
8-66	51.1	3.33	0.28	0	16.7		12.9				6.76							1.83		0	2.83			0.03 (- 11		0.13 (0	1.8		0.93	4.86	.61	blende
6	43	8.01	2.08	0		0.74					97						0		0.09		2.62				15.7		0.69	_	1.77	_	0.97	4.62	58	Aktinolit
	43.3	11.4	1.81	0	13.8	0.69	12.1		7	0.57							0	1.73	0.09	0	2.7			٠.	15.7		0.65 (0	1.74		0.97	4.52	19	Pargasit
	43 ,	11.4	16.1	0	13.9	0.74			2.04	_	96.5	l					0	1.74	0.09	0	2.71			0.12	- 11	0.03	_	0	1.74	1.77) 26.	1.55	19	Pargasit
	49.4	1.13	0.19	0	21.8	1.9	3.35	=	37		97.3	l				0	90.0	2.72	.24	0	. 89	1.8	=	0.01		0	0.11	0	1.8	8:) 68'	4.86	41	Pargasit Ferro-
2-66	48.9	4.49).17 (0	21.4	2.24	7.2	11.6	0.3							0	0	2.76	0.29	0	. 65	16.1		0.01	2.	0.01		0	1.91	1.93	0.85 (4.7	37	Aktinolit Ferro-
6	44.6	10.9	1.93	0					2.13		98.2	_				0	0	1.82	0.05	0	2.72			0.08		0.06			1.69		0.98	4.59	9.0	Aktinolit
	13.3 4	11.7	2.44	0	14.4	0.36 (6.11		2.3	0.5 (6.41					0	1.79	0.05 (0		1.75					0.68	0) 86.0	4.46	59	Edenit
Eg-V	13.7	Ξ	5.06	0	14.4			10.7	2.16).46	6.96	ı					0	1.79		0	2.71	1.71				0.07		0		1.78		4.54	9.0	Pargasit
E	53.1	3.91	0.36	0.03		0.19			0.45		97.7					0	91.18	0.93		0	4.01	69:1	- 1	0.01	-		0.131 (_	_	1.69		4.96	81	Edenit Magnesiohorn
	6.91	9.01	.48 (0	8.01	0.2	15.3		1.36 (97	l				0	0.13 (1.17 (0.02	0	3.29	1.75		0.02	4.5		0.4				0.99 (4.48	74	blende Magnesiohorn
	2.5.	0.7	.42 (0	[6:01	0.2	14.8	=	1.38	60.0		6.72				0		1.16		0	3.26			0.02	- 11	0	0.41	0	1.74		0.99	4.45	74	blende Magnesiohorn
-93	14.7 2	12.7	0.44	0	11.2	0.2		11.4	1.56	_	95.7								0.02	0	2.94			0.02 (- 11		0.47 (0	1.8		0.99	4.31 4	69	blende Magnesiohorn
ner 0-	7	_			_					_	٠,	Ë		_			_	_			(1				╢									blende
Probennummer 0-93																											K)A	_	~	Va)B	Mg/(Mg+Mn)	(Mg+Fe ²⁺ +Mn)	Mg+Fe	Name
Probe	SiO_2	Al_2O_3	TiO_2	Cr_2O_3	FeO	MnO	MgO	CaO	Na_2O	K_2O	Sum	Si	AIIV	AIVI	Ξ	Ċ	Fe^{3+}	Fe^{2+}	$\text{Mn}^{2^{+}}$	$Mn^{3 \!$	Mg	Са	Na	⊻ 5	Sum	Cat.	(Na+K)A	(Ca)A	(Ca)E	(Ca+Na)B	Mg/(I	(Mg+	Mg/(ľ	Name

6.8. Sonstige Gesteine

A. Kinzigite

SCHLÜTER (1983) hat im Eckergneis zwei Typen von Kinzigiten beschrieben:

Dunkle feinkörnige Kinzigite sind sehr cordieritbetont und führen Quarz wie Kalifeldspat nur in untergeordneten Mengen. Sie zeigen im frischen Zustand eine charakteristische fettglänzende graugrün bis graublau gefärbte Matrix mit einem hohen Anteil von bis zu 2 mm großen roten Granatkristallen. Bei schlecht erhaltenen Proben nimmt Cordierit durch Pinitisierung makroskopisch eine schwarze Färbung an.

Stark voneinander abweichende Mengenverhältnisse gleicher Mineralkomponenten verleihen den verschiedenen Kinzigitproben makroskopisch sehr unterschiedliches Aussehen (Abb. 55, 56). Serizitisierter, häufig idiomorpher Plagioklas und Kalifeldspäte sind neben Quarz und meist völlig pinitisiertem Cordierit die Hauptkomponenten heller Proben, Granat tritt hier in den Hintergrund. Lokal erreichen die genannten Minerale Zentimetergröße. In allen Proben ist neugebildeter idiomorpher Granat stets eng mit Cordierit vergesellschaftet.

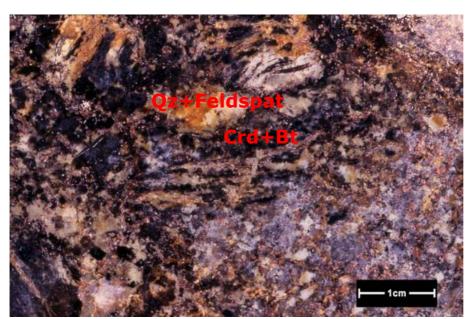


Abb. 55 Kinzigit, Diebesstieg, (Pr. 160 von J. Schlüter (SCHLÜTER 1983), geschliffene Anschnittfläche

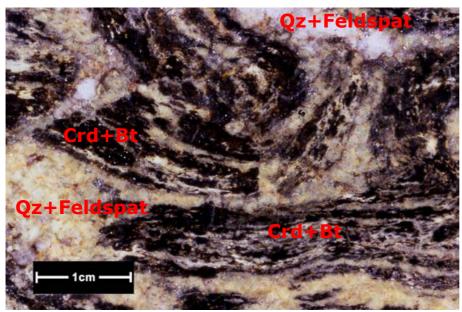


Abb. 56
Ehemaliger Crd-Gneis
mit hellem
kinzigitähnlichem QzFeldspat-Crd-BtMobilisat,
(Pr. 201 von J. Schlüter
(SCHLÜTER 1983),
Diebesstieg,
geschliffene
Anschnittfläche

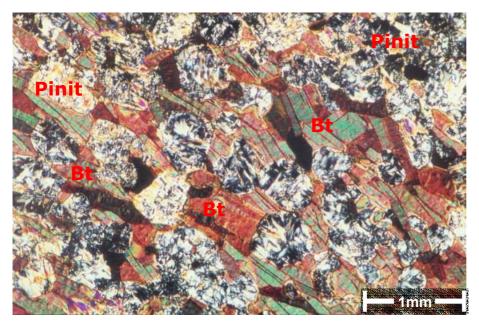
Ilmenitleisten sind die häufigsten opaken Komponenten, zuweilen begleitet von Magnetkies und Kupferkies.

Die Kinzigite enthalten viele auffällig gebänderte Einschlüsse. Die Einschlüsse zeichnen sich durch einen sehr einheitlichen Mineralbestand aus. Wechselnde Lagen von eingeregelten Cordierit-Individuen und zonaren Plagioklasen (An₄₄₋₄₈) prägen das Erscheinungsbild. Cordierit umschließt häufig büschelige Sillimanitaggregate, leistenförmigen Ilmenit wie auch Spinell. Quarz ist äußerst selten zu beobachten, Biotit und Zirkon sind vertreten. Granat, im umgebenden Kinzigit regelmäßig anzutreffen, fehlt hier völlig (SCHLÜTER 1983).

B. Quarz-Cordierit(Pinit)-Granoblastite

Vereinzelte Quarz-Cordierit(Pinit)-Granoblastite sind olivschwarz bis olivgrau, auch hellbräunlich- bis dunkelgrünlich grau, z.T. sind graue oder blass-rosagraue Lagen zu beobachten. Stellenweise sind dünne Gänge und Linsen von Milchquarz enthalten. Die Quarz-Cordierit(Pinit)-Granoblastite sind meistens gebändert bzw. foliiert. Chlorit-Biotit-Lagen markieren die früh angelegte Foliation. Es kommen auch extrem granoblastische, nicht gebänderte Quarz-Cordierit(Pinit)-Granoblastite vor.

Quarz ist schwach undulös, rundlich, leicht bis mäßig verzahnt. Manchmal sind die Quarzkörner stark ausgelängt, allerdings tritt keine erkennbare C-Achsen-Regelung auf. Feldspäte bilden Zwickelfüllungen. Daneben kommen einzelne größere Feldspat-Porphyroblasten in den Chlorit-Biotit-Lagen vor. Diese Porphyroblasten sind mäßig bis stark alteriert.


Biotit I ist mäßig bis vollständig chloritisiert und in der Foliation eingeregelt. Biotit II bildet idiomorphe, unalterierte und beliebig orientierte Leisten. Sekundäre Hellglimmer bilden wirrstrahlige Aggregate und treten in enger Vergesellschaftung mit Chlorit und Biotit auf. Cordierit (jetzt vollständig pinitisiert) bildet lagig angeordnete Nester oder einzelne Bänder mit neugebildetem Biotit (Abb. 57).

Vereinzelte Granat-Körner sind groß, zerlappt und z.T. elongiert. Andalusit bildet Porphyroblasten mit tektonischen Druckschatten. Rund um diese Porphyroblasten bildeten sich Andalusit-Cordierit-Symplektite. In Probe 91-90 hat sich um die Andalusit-Relikte symplektitähnliche Diaspor-Korona gebildet (Abb. 58). In der Pinit-Matrix sind stellenweise grünliche Spinelle zu beobachten. Sporadisch kommt wirrstrahliger Turmalin vor. Akzessorisch treten Zirkon, Apatit und Chromit auf. Ab 8-10 Vol.% Feldspäte gehen die Quarz-Cordierit(Pinit)-Granoblastite in die Quarz-Cordierit(Pinit)-Feldspat-Granoblastite über.

C. Cordierit-Andalusit-Symplektite

Dieser Gesteinstyp (Pr. 91-64 99-35, Unterer Lobenklee) wurde im von ERDMANNSDÖRFFER (1927) als variszische Gesteine kartierten Bereich zum Brockenpluton beprobt (Abb. 3). Die Cordierit-Andalusit-Symplektite sind gräulich schwarz und deutlich foliiert. Sie zeigen ein metamorphes Ungleichgewichtsgefüge- Symplektite aus Cordierit und Andalusit.

Andalusit tritt in zwei verschiedenen Formen auf: als wirrstrahlige Symplektite mit Cordierit und in Form einzelner Porphyroblasten (Abb. 59, 60). Um die Andalusit-Porphyroblasten, in Pinit-Matrix hat sich Diaspor als Zerfallsprodukt gebildet. Cordierit bildet vollständig pinitisierte Nester und stellenweise einzelne Porphyroblasten (Abb. 62). Korund bildet zwei Generationen: neugebildete kleine Körner in den Cordierit-Andalusit-Symplektiten (Abb. 61) und einzelne zerlappte Porphyroblasten, die anscheinend eine frühe Bildung sind. Stellenweise kommt neugebildeter, brauner Spinell (Hercynit) in Form von kleinen hypidiomorphen Körnern. Chlorit ist eine sekundäre Bildung. Wirrstrahliger Muskovit kommt sporadisch vor.

Abb. 57Pinit-Bt-Lage in Qz-Crd(Pinit)-Granoblastit, Pr. 91-25, Ostufer des Eckerstausees, (mit Analysator)

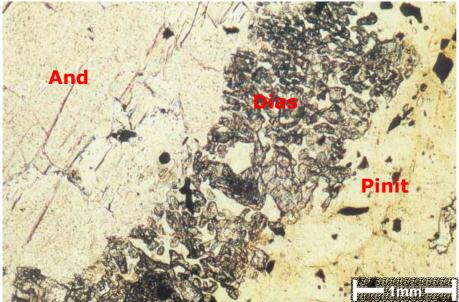


Abb. 58
Symplektitähnliche
Diaspor-Korona um
And-Porphyroblast in
Pinit-Matrix, QzCrd(Pinit)-Granoblastit,
Pr. 91-25, Ostufer des
Eckerstausees,
(ohne Analysator)

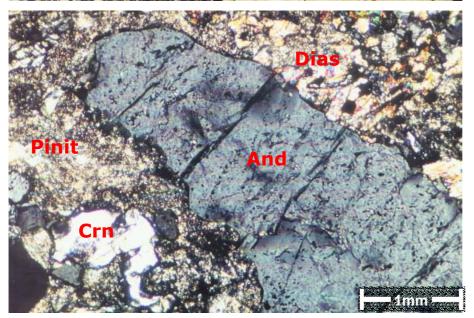


Abb. 59
And-Porphyroblast mit
Crn in Pinit-Matrix,
Cordierit-AndalusitSymplektit,
Pr. 91-64,
Unterer Lobenklee,
(mit Analysator)

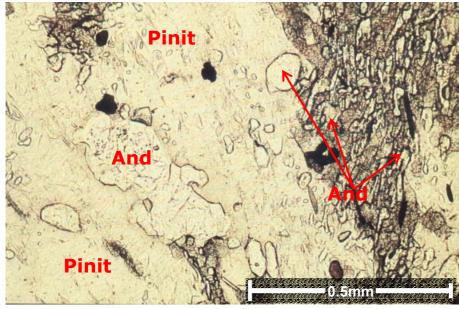
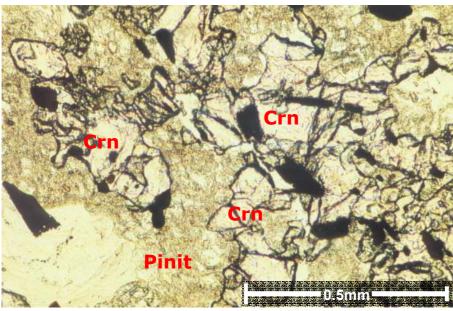



Abb. 60 And-Crd-Symplektite in Pinit-Matrix, Cordierit-Andalusit-Symplektit, Pr. 91-64, Unterer Lobenklee, (ohne Analysator)

Abb. 61Crn-Kristalle in
Cordierit-AndalusitSymplektit, Pr. 91-64,
Unterer Lobenklee,
(ohne Analysator)

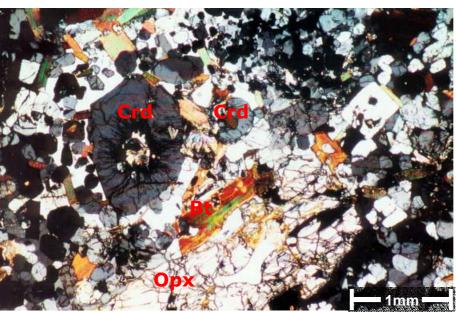
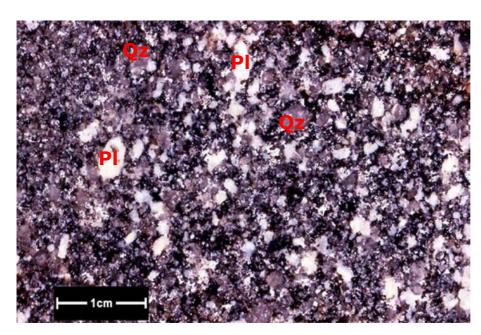



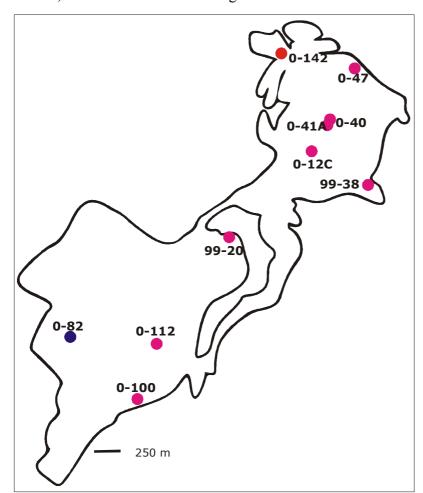
Abb. 62 Crd- und Opx-Porphyroblast in Crd-Bt-Qz-Matrix, Cordierit-Andalusit-Symplektit, Pr. 91-64, Unterer Lobenklee, (ohne Analysator)

D. Granitoide

Granitoide wurden an wenigen Stellen des Eckergneis-Komplexes als Lesesteine beprobt. Sie sind olivgrau z.T. mit hellgrauen Lagen. Sowohl massive als auch porphyrische Granitoide sind vertreten (Abb. 63). Die Quarzkörner sind rund bis mäßig verzahnt und leicht bis stark undulös. Kalifeldspat bildet große Kristalle sowie Zwickelfüllungen. Er ist leicht bis mäßig alteriert. Plagioklas bildet idiomorph- bis hypidiomorphe, längliche, leicht serizitisierte Kristalle. Biotit ist stark chloritisiert und teilweise deutlich deformiert. Hellglimmer, Chlorit und Phyllosilikat sind wirrstrahlig und bilden Zwischenfüllungen.

Abb. 63Granitoid, Ostufer des Eckerstausees, 91-37, geschliffene Anschnittfläche

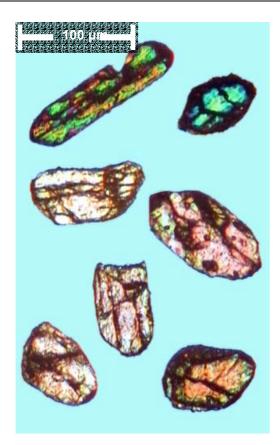
7. Schwermineraluntersuchungen


7.1. Schwermineralspektren in den Metasedimenten

Schwermineraluntersuchungen wurden an 7 Quarziten (Pr. 0-12, 0-40, 0-47, 0-100, 0-112, 99-20, 99-38) und an einem Quarz-Cordierit(Pinit)-Feldspat-Granoblastit (Pr. 0-82) und einem Quarz-Feldspat-Granoblastit (Pr. 0-142) (Abb. 64) vorgenommen. Die metapsammitischen Gesteine wurden wegen ihrer höheren Schwermineralkonzentration ausgewählt gegenüber den metapelitischen Gesteinstypen des Eckergneis-Komplexes. Im Allgemeinen enthalten die Eckergneis-Gesteine ein artenarmes Schwermineralspektrum: Hauptsächlich kommen Zirkon, Rutil, Granat, Chromit und selten Monazit als detritische Akzessorien vor. Turmalin, Ilmenit und Titanit treten als Neubildungen auf.

Detritischer **Zirkon** tritt in verschiedenen Formen (Abb. 65) und Farben auf:

- a. Längliche prismatische Körner: sie sind vermutlich ursprünglich aus Schmelzen kristallisiert (auf Grundlage von KL-Bildern). Niedrigerer Rundungsgrad dieser detritischen Zirkone deutet auf einen kürzeren Transportweg wie auch ein jüngeres Alter hin. Diese Zirkone sind meistens farblos, manchmal auch leicht rosa getönt.
- b. Gerundete detritische Körner: Der Rundungsgrad dieser Zirkone ist unterschiedlich, sie sind länglich bis fast isometrisch. Oft sind kleine Löcher und dicke Risse auf der Oberfläche zu beobachten. Teilweise kommen Zirkone vor, die einen dunklen Kern und hellen Saum haben. Diese Zirkone sind leicht gefärbt, gelbliche, grünliche, bräunliche oder bläuliche Tönung ist oft zu beobachten.


Granat: kommt in den Pr. 0-100, 0-112, 0-12, 99-20 und 99-38 als rundliche, detritische Komponente vor. Die Granatchemie ist in allen Quarziten almandinbetont. Die Granate sind meist farblos, selten ist eine rosa Tönung zu beobachten.

Rutil: kommt fast in allen Quarziten detritisch vor. Die dunkelbraune bis opaken Körner sind sehr gut gerundet. Je nach Alterationsgrad enthält Rutil zwischen 90-99 % TiO₂. In den Schwermineralseifen (Kap. 7.2) steigt der Rutil-Anteil auf bis zu 40 Vol %.

Monazit: Monazit wurde nur in Pr. 0-12 nachgewiesen. Er bildet kleine rundliche Körner mit einer unebenen Oberfläche.

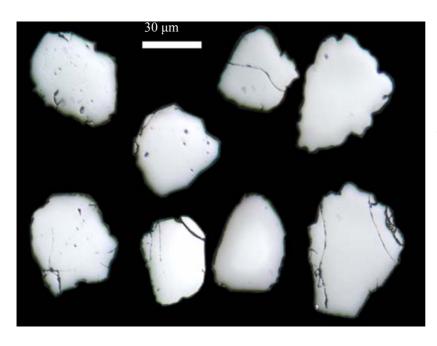
Abb. 64Lageplan der Proben für
Schwermineraluntersuchungen
im Eckergneis-Komplex (Farbe
der Probenpunkte s. Abb. 4)

Abb. 65 Zirkon-Körner aus Quarziten des Eckergneis-Komplexes, Pr. 99-38, Durchlichtaufnahme mit Analysator, (Leitz-ORTHOLUX), Polierter Dünnschliff

7.1.1. Chromite

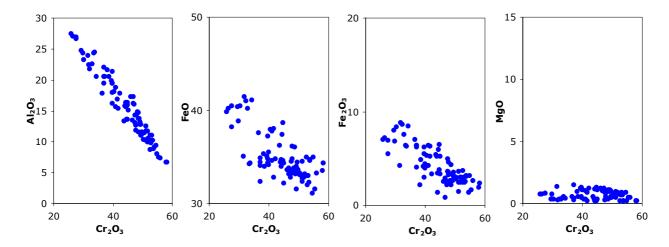
Chromit ist ein dominierendes akzessorisches Mineral in den meisten ultramafischen und in manchen mafischen Gesteinen. Er wird als petrogenetischer Indikator herangezogen (IRVINE 1965, 1967, DICK & BULLEN 1984), da plutonische und vulkanische Komplexe verschiedenen geodynamischen Rahmens signifikante Unterschiede in ihrer Chromit-Zusammensetzung zeigen. Chromit ist wegen großer Verwitterungsbeständigkeit ein Schwermineral, das in Sedimenten und Sedimentgesteinen bei entsprechenden Liefergebieten angereichert sein kann.

In der vorliegenden Arbeit wurden Chromite aus Schwermineralkonzentraten von mehreren Quarziten (Pr. 99-38, 0-12, 0-40, 0-41A, 0-47, 0-100) und aus einem Quarz-Feldspat-Granoblastit (Pr. 0-142) untersucht. Der Chrom-Gehalt in den Eckergneis-Metasedimenten beträgt durchschnittlich 200 ppm. Ein maximaler Chrom-Gehalt von 1512 ppm ist an eine Schwermineralseife gebunden (Pr. 0-40).


Die detritischen Chromite in Eckergneis-Metasedimenten sind opak, gut gerundet und 30-70 µm groß (Abb. 66). Mikroskopisch sehen die Chromite homogen aus: keine randliche Umwandlungen, Entmischungslamellen oder Korrosion sind zu beobachten.

Insgesamt wurden 90 Mikrosondenmessungen an Chromiten durchgeführt. Repräsentative Mikrosondeanalysen der Chromite sind in Tab. 4 dargestellt. Die gesamten Mikrosondenanalysen und Formelberechnungen nach BATEMAN (1945) sind im Anhang IIIb enthalten.

Sowohl die Chromite in den untersuchten Metapsammiten, als auch die in Schwermineralseifen (Pr. 0-40, 0-41A) zeigen ausnahmslos einen ungewöhnlichen Chemismus, da sie extrem Mg-arm sind. Den gleichen Chromitchemismus hatte schon SCHLÜTER (1983) in von ihm untersuchten Schwermineralseifen des Eckergneis-Komplexes festgestellt. Die Verhältnisse zwischen Al₂O₃, FeO, Fe₂O₃ und Cr₂O₃ in Chromiten sind als Diagramme dargestellt (Abb. 67). Die Cr₂O₃-Gehalte schwanken zwischen 26.03-58.36 Gew.%, die Al₂O₃-Gehalte liegen zwischen 6.61-27.45 Gew.% und der MgO-Gehalt ist extrem niedrig und nimmt Werte zwischen 0.18-1.40 Gew.% an.


Der FeO-Gehalt schwankt nicht stark, er bleibt zwischen 31.0-41.47 Gew.%. Die Fe $_2O_3$ -Gehalte bleiben unter 8 Gew.%. Der ZnO-Gehalt beträgt weniger als 1 Gew.%. Mn $^{4+}$, Ti $^{4+}$ und V^{5+} wurden in geringen Mengen nachgewiesen. Beobachtungen zur gegenseitigen Abhängigkeit der einzelnen Elemente auf Röntgenverteilungsbildern zeigen eine sehr deutliche chemische Zonierung für Al, Cr und Fe $_{total}$. Andere Elemente zeigen keine großen Schwankungen in ihren Gehalten.

In Al-reichen Zonen nehmen die Cr-Gehalte stärker ab als die von Eisen, so dass angenommen werden darf, dass eine Anreicherung von Al auf Kosten von Cr erfolgte, während die Konzentration von Fe dabei unverändert blieb (Abb. 68).

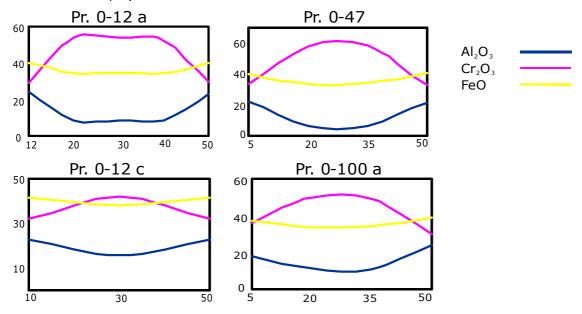


Abb. 66 Chromitkörner der Eckergneis-Metapsammite, Pr.99-36, Auflichtaufnahme, Leitz-ORTHOLUX) Anschliff

Abb. 67 Korrelation Cr_2O_3 vs. Al_2O_3 , FeO, Fe₂O₃ und MgO in untersuchten Chromiten der Eckergneis-Metapsammite: Oxide in [Gew.%]

Abb. 68 Chemische Zonierung in Chromiten der Eckergneis-Metapsammite (Oxide in Gew.% und Messabstand in μm)

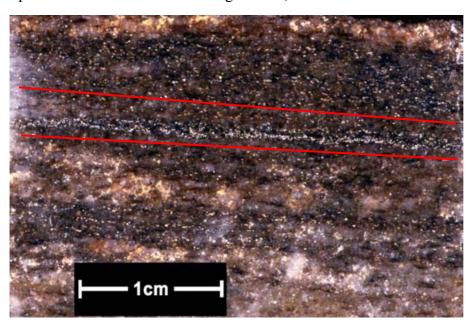
Tab. 4 Repräsentative Mikrosondenanalysen der Chromite in den Eckergneis-Metapsammiten

Oxide	99-38	99-38	0-12	0-12	0-40	0-40	0-47	0-47	0-100	0-100	0-142
SiO_2	0.04	0.03	n.g.	n.g.	n.g.	n.g.	n.g.	0.03	n.g.	0.07	n.g.
TiO_2	0.85	1.01	1.78	0.19	1.42	0.79	0.10	1.89	0.38	2.16	0.89
Al_2O_3	24.31	24.46	20.54	9.05	11.79	12.73	6.61	26.87	7.35	27.07	14.37
Cr_2O_3	33.52	33.81	34.43	53.93	47.90	49.49	57.93	27.61	56.02	26.48	47.95
FeO	34.24	34.31	41.10	34.66	36.17	33.66	33.54	40.42	33.25	40.19	34.74
MnO	0.57	0.57	0.35	0.39	0.39	0.52	0.37	0.52	0.96	1.19	0.44
MgO	0.49	0.55	0.39	0.19	0.52	1.04	0.20	0.80	0.49	0.75	0.95
CaO	0.02	0.00	n.g.	n.g.	n.g.	n.g.	n.g.	0.00	n.g.	0.02	n.g.
Na ₂ O	0.12	0.14	n.g.	n.g.	n.g.	n.g.	n.g.	0.02	n.g.	0.01	n.g.
K_2O	0.00	0.00	n.g.	n.g.	n.g.	n.g.	n.g.	0.01	n.g.	0.00	n.g.
NiO	0.00	0.03	n.g.	n.g.	n.g.	n.g.	n.g.	n.g.	n.g.	n.g.	n.g.
V_2O_5	1.67	1.73	1.16	0.33	0.41	0.27	0.16	0.72	0.22	0.59	0.18
ZnO	4.11	4.07	0.48	0.56	0.38	0.78	0.37	n.g.	0.23		1.02
total	99.96	100.71	100.23	99.30	98.98	99.28	99.29	98.90	98.91	98.55	100.53
Fe_2O_3	4.74	4.66	8.40	3.05	4.59	3.12	1.92	6.70	2.56	7.05	3.49
FeO neu- berechnet	29.51	29.65	32.70	31.61	31.58	30.55	31.62	33.72	30.70	33.15	31.25

7.2. Schwermineralseifen

Im Eckergneis-Nordteil (Kleines Gierstal) wurden zwei Quarzite beprobt, die eine Schwermineralseife enthalten. Außerdem wurde noch von SCHLÜTER (1983) im Süd-Kolför eine Schwermineralseife aus Chromit, Zirkon und untergeordneten Rutil und Disthen beschrieben. Eine weitere Schwermineranreicherung, die ausschließlich aus Granat bestand, wurde von diesem Autor im Eckergneis-Nordteil gefunden.

A. Quarzit-Pr. 0-40 (Kleines Gierstal, Gesteinsbeschreibung in Kap. 6.5)


Eine lagenförmige Schwermineralseife in einer Probe glimmerreichen Quarzits vom Kleinen Gierstal liegt parallel zur Foliation. Diese Schicht ist 2-3 mm dick (Abb. 69, 70) und enthält Zirkon, Rutil, Chromit und Ilmenit. Alle Schwerminerale sind in Matrix von Quarz und Chlorit eingebettet (Abb. 71 A, B). Zirkon kommt in Form von bis zu 150 μm großen, gerundeten Körnern vor, z.T. auch in Form einzelner Bruchstücke. Die Zirkonkörner sind meistens farblos, teilweise zeigt sich grünliche und rosa Tönung.

Der Rutil tritt in verschiedener Form und Farbe auf: einmal bildet er opake, runde, isometrische Körner. Eine andere Form von Rutil ist durchsichtig, hat dunkelbraune Eigenfarbe, teilweise sind schwarze Spaltrisse zu sehen.

Der Chromit ist opak und meistens gut gerundet. Die chemische Zusammensetzung der Chromite in den Seifen Pr. 0-40 sowohl in Pr. 0-41A ist mit denen in anderen Metasedimenten des Eckergneis-Komplexes identisch. Ilmenit kommt gelegentlich als Neubildung vor.

B. Quarzit-Pr. 0-41A (Kleines Gierstal, Gesteinsbeschreibung in Kap. 6.5)

Die Schwermineralseife bildet in diesem Quarzit eine ca. 2 mm dicke Lage mit angereicherten Zirkon, Rutil sowie Chromit (Abb.72, 73). Zirkon bildet gut gerundete, isometrische und teilweise längliche Körner. Sie sind leicht rötlich oder grünlich gefärbt. Stellenweise kommen einzelne kleine Zirkon-Bruchstücke vor. Rutil bildet idiomorphe, leicht gerundete, grünlich und bräunlich gefärbte bis zu 250 µm große Körner. Selten sind dünne Rutil-Nadeln zu beobachten. Stellenweise sind die Rutil-Körner zusammengewachsen und bilden größere, unregelmäßig geformte Rekristallisationsansammlungen. Chromit bildet gut gerundete Körner. Der Chemismus dieser Chromite ist dem in den anderen Quarziten ähnlich. Sporadisch kommen einzelne neugebildete, dunkelrote Hämatitleisten vor.

Abb. 69Schwermineralseife im glimmerreichen Quarzit, Pr. 0-40, Kleines Gierstal, (rot markiert) geschliffene Anschnittfläche

٧.

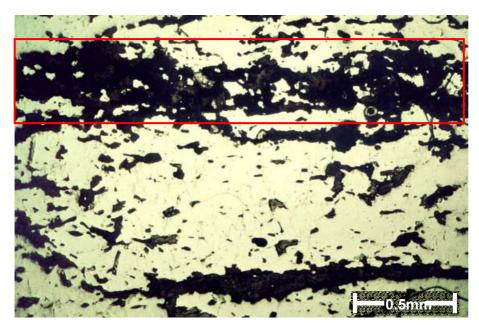


Abb. 70 Schwermineralseife in glimmerreichem Quarzit: rot markiert, Pr. 0-40, Kleines Gierstal, (ohne Analysator)

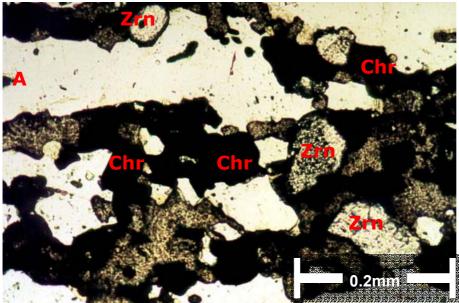
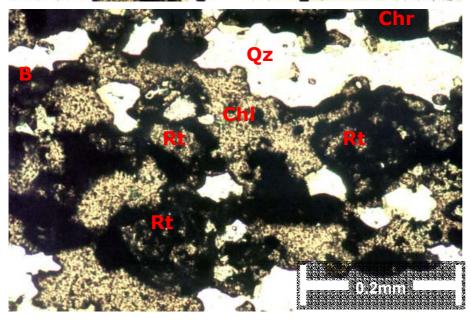



Abb. 71 A,B Zirkon, Rutil und Chromit in glimmerreichem Quarzit, Pr. 0-40, Kleines Gierstal, (ohne Analysator)

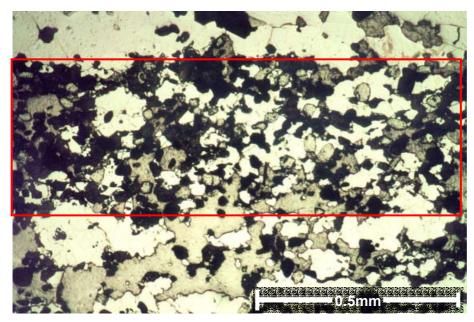


Abb. 72 Schwermineralseife in Quarzit: rot markiert, Pr. 0-41A, Kleines Gierstal, (ohne Analysator)

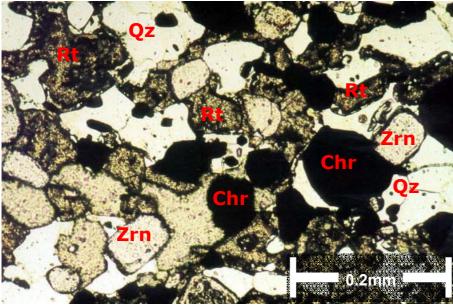


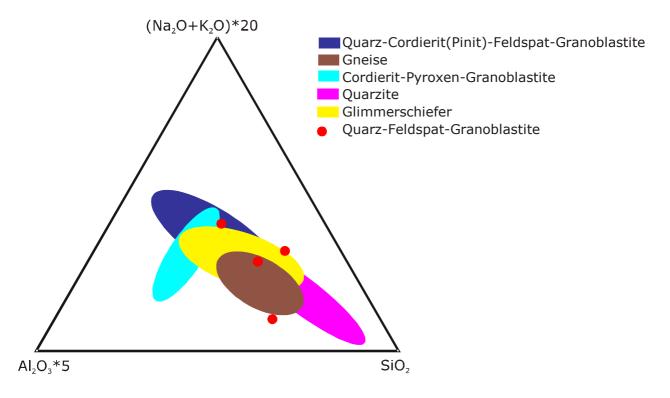
Abb. 73 Detritische Zirkon-, Rutil- und Chromit in Quarz-Matrix, Pr. 0-41A, Kleines Gierstal, (ohne Analysator)

8. Geochemie

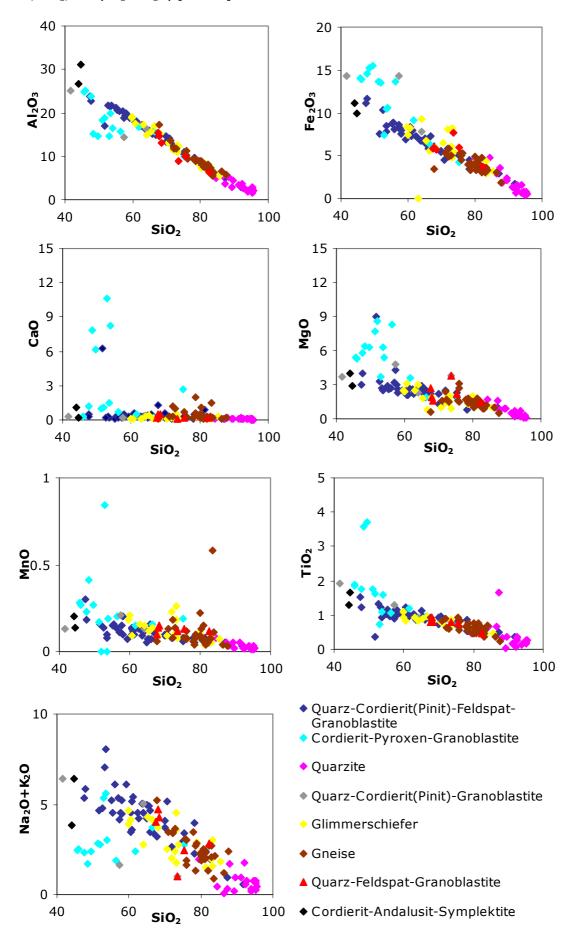
8.1. Metasedimente

Die petrographische Gliederung der Eckergneis-Gesteine (Kap. 6) findet ihre Entsprechung in den chemischen Zusammensetzungen. Fließende Übergänge zwischen den verschiedenen Gesteinsgruppen sind chemisch ebenso wie petrographisch zu beobachten.

In Abb.74 zeigt sich, dass die Grenzen zwischen den klassifizierten Gesteinsgruppen unscharf und überlappend sind, der interne Zusammenhang der einzelnen Gruppen ist jedoch klar erkennbar. Vereinzelte Quarz-Feldspat-Granoblastite konnten geochemisch nicht abgegrenzt werden wegen ihrer weiten Streuung bei gleichzeitig geringer Probenzahl. In diesem Diagramm wurden die sonstigen Gesteine des Eckergneis-Komplexes nicht abgebildet.


In Korrelationsdiagrammen (Abb. 75) sind am deutlichsten die Felder der Quarzite und Cordierit-Pyroxen-Granoblastite separiert. Gneise, Glimmerschiefer und Quarz-Cordierit(Pinit)-Feldspat-Granoblastite bilden in diesen Diagrammen besonders weit überlappende Felder. Cordierit-Andalusit-Symplektite fallen wegen ihrer niedrigsten SiO₂- und höheren Al₂O₃- und Fe₂O₃-Gehalte auf. Die vereinzelten Quarz-Feldspat-Granoblastite liegen mehr oder weniger im Gneis-Feld. Die wenigen Quarz-Cordierit(Pinit)-Granoblastite liegen in Korrelationsdiagrammen breit gestreut vor.

Der Gehalt von Al₂O₃, Fe₂O₃, MgO, MnO und TiO₂ steigert sich in der Reihenfolge: Quarzite--Gneise--Glimmerschiefer--Quarz-Cordierit(Pinit)-Feldspat-Granoblastite--Cordierit-Pyroxen-Granoblastite (Abb. 75). Der SiO₂-Gehalt dagegen sinkt in dieser Richtung.


Der CaO-Gehalt ist in allen Metasedimenten extrem niedrig und bleibt unter 2 Gew.%. Anders sind die Cordierit-Pyroxen-Granoblastite z.T. mit CaO-Gehalt über 11 Gew.%.

Repräsentative Analysen der Gesteinsgruppen sind in Tab. 5 dargestellt. Die vollständigen RFA-Analysen sind im Anhang II aufgeführt.

Abb. 74 Geochemische Klassifizierung der Gesteinsgruppen im Eckergneis-Komplex: Diagramm Al-Alk-Si [Gew. % Oxide]; Cordierit-Andalysit-Symlpektite und Quarz-Cordierit(Pinit)-Granoblastite sind nicht berücksichtigt.

Abb. 75 Korrelationsdiagramme der Eckergneis-Metasedimente: SiO_2 vs. Al_2O_3 , Fe_2O_3 , CaO, MgO, MnO, TiO_2 und (Na_2O+K_2O) [Gew.%]

 Tab.5
 Repräsentative RFA-Analysen der Eckergneis-Metasedimente

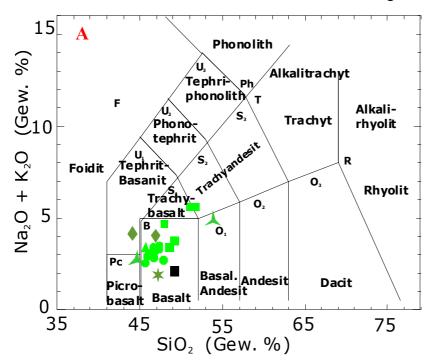
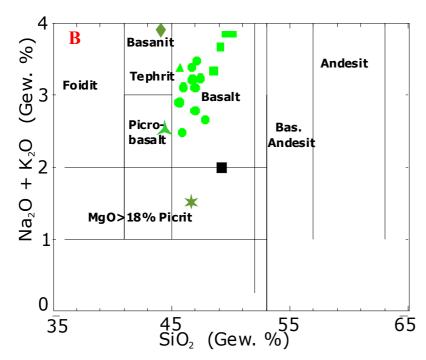
	Qz-Feldspat-		Qz-Crd	Qz-Crd(Pinit)-Feldspat-			eise	Crd	l-Px-	Qua	rzite	Glim	mer-
	Granol	olastite	Gr	anoblast	ite			Grano	blastite			schi	efer
Probe	99-51	0-65	99-34	0-2	0-146	0-33	0-50	99-5B	0-42	99-38	0-37	0-16	0-124
SIO ₂	68.45	81.45	52.58	67.69	78.3	72.11	79.95	56.35	48.48	95.04	88.11	68.12	85.51
TiO ₂	0.8	0.65	1.32	0.87	0.53	0.9	0.48	1.07	3.59	0.26	0.34	0.7	0.45
Al_2O_3	12.97	7.51	21.6	14.67	9.49	12.01	8.6	15.72	15.12	2.23	5.23	12.42	5.61
Fe ₂ O ₃	5.75	3.98	10.27	6.06	3.43	4.91	4.86	13.66	15.18	0.45	1.89	10.01	3.15
MnO	0.15	0.08	0.14	0.1	0.05	0.08	0.22	0.2	0.41	0.01	0.03	0.54	0.07
MgO	1.61	1.38	3.29	2.21	1.57	2.4	1.21	8.31	6.42	0.09	0.77	1.91	1.04
CaO	0.54	0.91	0.18	1.27	0.51	0.27	0.48	0.74	7.87	0.07	0.17	0.22	0.3
Na ₂ O	2.97	1.34	0.35	1.04	1.65	1	1.21	1.19	0.55	0.51	1.19	0	1.62
K ₂ O	1.33	1.07	4.44	2.18	2.31	2.4	0.92	0.72	1.13	0.27	0.49	1.97	0.23
P_2O_5	0.11	0.07	0.07	0.15	0.11	0.11	0.06	0.26	0.47	0.02	0.05	0.15	0.07
H ₂ O	2.39	1.5	4.98	2.73	1.89	2.97	1.74	1.24	1.31	0.46	0.94	3.2	1.47
LOI	2.41	1.67	5.15	3.44	2.02	3.49	2.09	1.32	1.55	0.41	1.14	3.56	1.47
Summe	97.07	99.94	99.22	98.97	99.84	99.16	99.73	99.46	100.53	99.41	99.21	99.24	99.52
Cr	137	524	205	140	96	258	333	15	131	18	185	72	144
Ni	39	35	119	111	17	58	41	57	48	0	14	46	21
Co	36	103	44	58	82	69	83	43	58	147	108	75	106
Sc	12	0	31	0	0	0	0	16	0	0	0	0	0
V	69	60	176	99	53	112	59	182	444	14	29	112	32
Cu	12	7	33	11	0	0	8	7	13	0	1	45	19
Pb	19 89	3 34	6 84	16 95	12 25	13 57	9 38	2 67	20 146	0	0 5	11 35	0 34
Zn S	0.000	0.007	0.003	0.007	0.007	0.009	0.009	0.012	0.018	0.011	0.015	0.016	0.000
K	11041	8882	36858	18097	19176	19923	7637	5977	9380	2241	4068	16354	1909
Rb	65	31	187	130	83	91	42	34	60	14	21	96	15
Ba	222	183	1258	375	518	350	91	198	222	42	35	369	20
Sr	164	60	44	101	64	53	48	138	183	9	22	6	55
Ga	19	12	29	19	10	15	15	19	24	5	6	17	9
Nb	25	15	25	21	15	23	15	13	31	11	9	15	15
Zr	533	332	264	278	328	569	325	277	227	354	239	176	258
Ti	4796	3897	7913	5216	3177	5396	2878	6415	21522	1559	2038	4197	2698
Y	31	30	42	36	21	46	29	27	42	10	19	30	21
Th	24	9	17	14	10	10	6	4	4	0	2	2	10
U	0	1	0	1	3	2	2	1	4	0	0	4	4
La	72	55	69	42	26	48	52	3	14	14	21	38	8
Ce	152	103	119	86	79 42	105	105	4	21	20	50	88	36
Nd	74	39	49	42	42	49	42	13	14	5	25	38	30

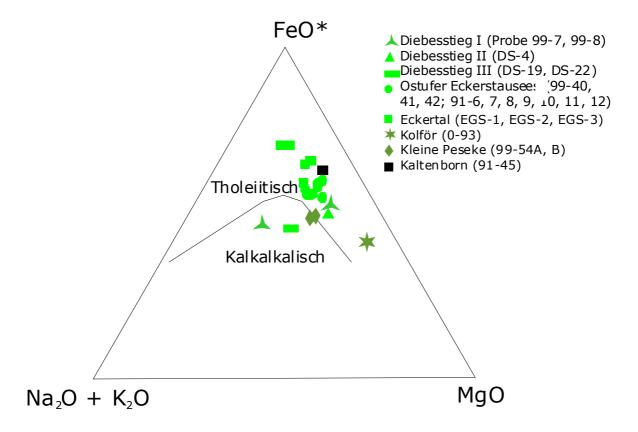
8.2. Metavulkanite

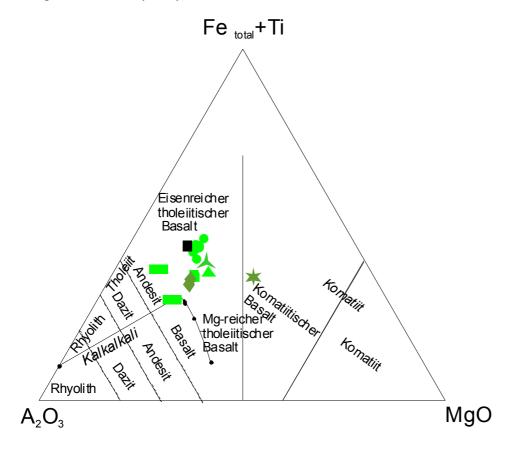
Mittels RFA-Analysen wurden in den Metavulkaniten des Eckergneis-Komplexes ebenso wie in den Metasedimenten 11 Hauptelemente und 21 Spurenelemente bestimmt (Tab. 6).

Nach dem TAS-Klassifizierungsdiagramm der vulkanischen Gesteine von LE MAITRE (1989) liegen die Eckergneis-Metavulkanite zum größten Teil im Basaltfeld mit wenigen Ausnahmen: Amphibolit von der Kleinen Peseke liegt im Tephritbasanit-Feld, Diebesstieg III im Trachybasalt-Feld und zwei Proben von Diebesstieg I liegen im Picrobasalt-Feld und im Feld basaltischer Andesite (Abb. 76).

Im AFM-Diagramm nach IRVINE & BARAGAR (1971) fallen fast alle Metavulkanite in das Feld tholeiitischer Gesteine außer Proben Diebesstieg I und Diebesstieg III (Abb. 77).


Abb. 78 zeigt die Stellung der Eckergneis-Metavulkanite entsprechend der Klassifizierung der vulkanischen Gesteine nach JENSEN (1976). Danach sind die Eckergneis-Metavulkanite zu den eisenreichen tholeiitischen Basalten zuzuordnen.


Abb. 76 A und BPetrochemische Klassifizierung der Metavulkanite des Eckergneis-Komplexes: SiO₂ vs. Na₂O+K₂O nach Le MAITRE (1989)

- ▲ Diebesstieg I (Probe 99-7, 99-8)
- ▲ Diebesstieg II (DS-4)
- ■Diebesstieg III (DS-19, DS-22)
- Ostufer Eckerstausees (99-40, 41, 42; 91-6, 7, 8, 9, 10, 11, 12)
- Eckertal (EGS-1, EGS-2, EGS-3)
- **★** Kolför (0-93)
- ♦ Kleine Peseke (99-54A, B)
- Kaltenborn (91-45)

Abb. 77 Petrochemische Klassifizierung der Metavulkanite des Eckergneis-Komplexes nach IRVINE & BARAGAR (1971)

Abb. 78 Klassifizierung der Eckergneis-Metavulkanite nach Al_2O_3 -, Fe_2O_3 (als Gesamteisen) +TiO₂ und MgO nach Jensen (1976); Probennummern s. Abb. 77.

Tab. 6 Repräsentative RFA-Analysen der Eckergneis-Metavulkanite (kursiv geschriebene RFA-Analysen wurden von R. VINX übernommen): n.g- nicht gemessen;

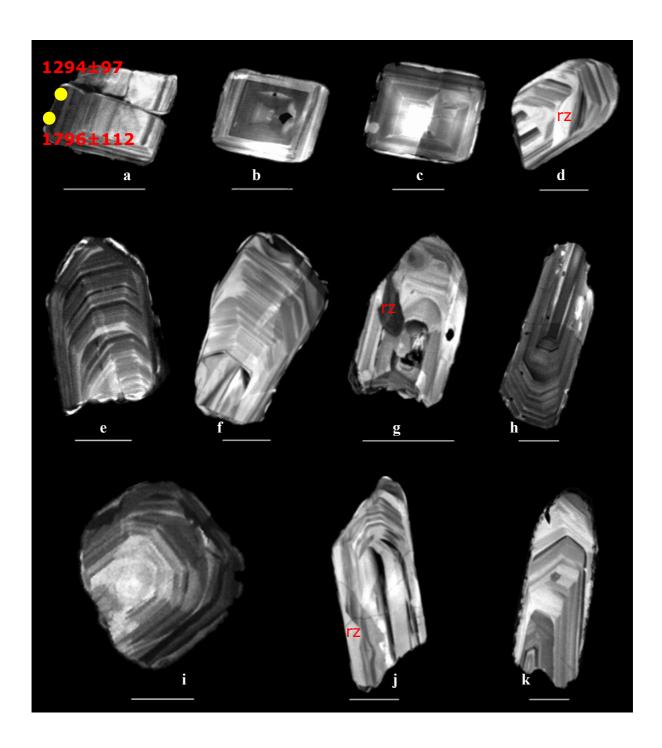
Pr.	99-7	99-8	99-44-1	99-54-A	0-93	DS 4	DS 19	DS 22	EGS 1	91-6	91-45
SIO ₂	44.47	54.03	59	47.02	46.91	45.69	51.45	50.08	47.99	47.15	49.14
TiO ₂	1.2	0.96	1.01	1.39	1.17	1.11	0.98	1.71	1.56	2.78	3.03
Al_2O_3	15.66	17.18	18.75	17.55	11.67	15.55	21.29	18.61	16.60	15.01	15.62
Fe_2O_3	13.69	8.04	7.77	11.78	12.23	13.19	10.73	11.69	11.55	14.11	15.19
MnO	0.68	0.69	0.12	0.31	0.22	0.00	0.00	3.64	3.46	0.22	0.24
MgO	8.2	4.1	2.52	7.15	14.09	9.06	6.66	3.80	7.66	6.36	6.49
CaO	9.37	6.82	0.22	8.19	9.57	9.49	1.06	7.46	6.98	9.80	8.11
Na ₂ O	1.69	1.76	1.18	2.73	0.62	2.51	3.87	3.64	3.46	2.81	1.85
K_2O	0.82	2.98	4.61	1.32	0.89	0.87	1.58	0.19	1.17	0.16	0.12
P_2O_5	0.12	0.15	0.09	0.09	0.07	0.12	0.28	0.28	0.19	0.43	0.45
H_2O	2.05	2.78	4.01	2.18	2.23	0.00	0.00	0.00	0.00	0.00	0.00
LOI	2.24	2.98	4.38	2.18	2.29	0.00	0.00	0.00	0.00	1.16	0.17
Summe	97.95	99.49	99.28	99.71	99.67	97.59	97.90	101.10	100.62	98.83	100.24
Cr	346	125	147	312	858	342	64	428	209	115	131
Ni	194	66	81	146	325	223	62	221	91	58	54
Co	58	42	29	52	94	0	0	6	13	65	54
Sc	38	15	24	42	0	0	0	51	101	34	0
\mathbf{V}	255	126	129	231	198	238	124	271	247	322	349
Cu	34	123	27	24	10	7	5	27	33	28	55
Pb	21	22	40	16	12	13	8	11	41	100	8
Zn	78	49	85	81	81	93	53	45	202	103	128
S	0.007	0.017	0.003	0.012	0.014	0.00	0.00	0.32	0.00	0.01	0.02
K	6807	24738	38269	10958	7388	n.g	n.g	n.g	n.g	n.g	996
Rb	35	130	212	67	34	n.g	n.g	n.g	n.g	6	0
Ba	145	459	638	210	252	99	717	51	101	26	0
Sr	210	215	33	492	133	291	348	213	371	314	509
Ga	20	23	25	19	17	0	0	0	0	17	19
Nb	7	24	16	5	9	4	20	6	13	23	29
Zr	81	198	201	85	81	76	349	162	116	205	235
Ti	7194	5755	6055	8333	7014	n.g	n.g	n.g	n.g	n.g	18165
Y	35	41	38	32	23	28	31	34	28	42	42
Th	5	12	13	0	1	0	8	0	0	5	0
\mathbf{U}	6	5	4	5	4	0	0	0	0	0	0
La	0	46	48	6	8	0	0	0	0	0	18
Ce	9	83	71	2	3	0	0	0	0	48	38
Nd	19	41	25	9	0	0	0	0	0	30	27

9. Zirkon-Altersbestimmungen

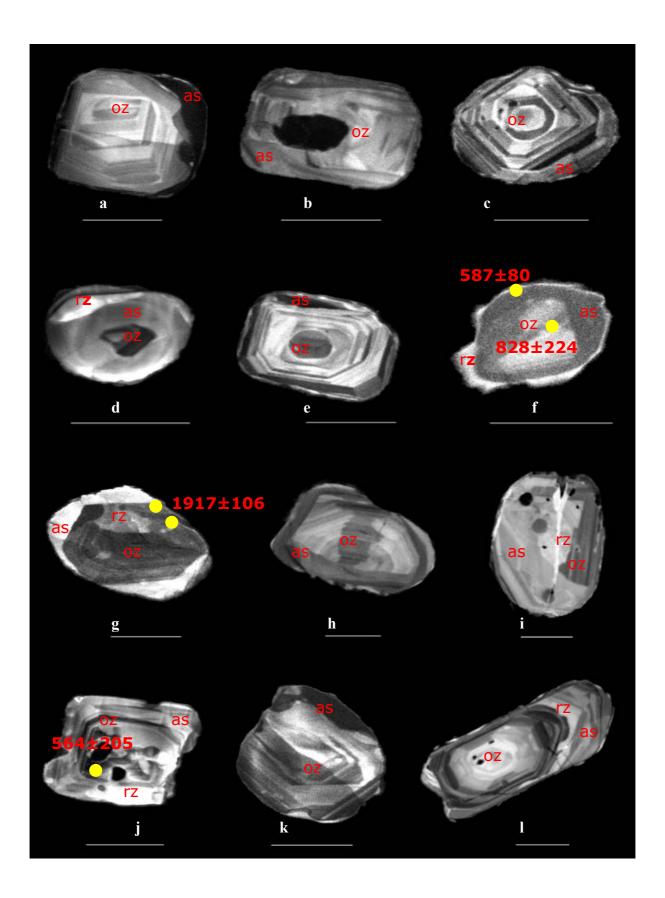
Zirkon ist ein in sauren und intermediären magmatischen sowie in verschiedenen metamorphen Gesteinen weit verbreitetes akzessorisches Mineral. Zirkon ist gewöhnlich primäre magmatische Frühausscheidung, er kann sich aber auch unter metamorphen Bedingungen oder sogar hydrothermal neu bilden. Metamorphe Zirkone bilden eigene Kristalle sowie Ummantelungen um ältere Zirkonkerne. Aufgrund hoher chemischer und mechanischer Resistenz wird Zirkon als hoch refraktäres Schwermineral angereichert.

Zirkone in den Eckergneis-Metasedimenten zeigen unterschiedliche Morphologie: von idiomorphen, länglich-prismatischen Kristallen bis zu gut gerundeten Körnern. Sie sind farblos, z.T. zeigen sie eine leichte Tönung in verschiedenen Farben.

Die Zirkone von 5 Quarzitvorkommen (Pr. 0-12, 0-40, 0-100, 99-20 und 99-38) des Eckergneis-Komplexes wurden für Datierungen mit der EMS und Ionensonde (SHRIMP) eingesetzt.


Informationen über die Internstruktur der Zirkone sind unerlässlich für die Auswertung der Datierungen sowohl mit der EMS wie mit der Ionensonde. Nach ihrer Internstruktur, die in Kathodenlumineszenz-Bildern (KL) erkennbar ist, können drei Typen von Zirkonen im Eckergneis klassifiziert werden.

Zum Typ A gehören idiomorphe, prismatische wie auch gut gerundete Kristalle, die eine euhedrale, oszillierende magmatische Zonierung zeigen (Abb. 79). Die unterschiedlich hellen Bänder (KL-Bilder), die konzentrisch parallel zueinander liegen, werden von wechselnden U-Gehalt verursacht. Dieser kann im allgemeinen zwischen Tausenden bis zu wenigen ppm variieren. Manche Zirkone haben einen schmalen, helleren Außensaum, der zumeist jedoch während des Transports verloren gegangen ist.


Zirkone vom Typ B besitzen oszillierend zonierte, magmatische Kerne, umrahmt von metamorph gewachsenen Säumen. Es können z. T. auch kleine Bruchstücke magmatischer Zirkone vom Typ A mit einem neugewachsenen Mantel umrahmt sein. Die Kerne sind z.T. leicht gerundet, was für erheblichen Transportweg vor der Sedimentation und Metamorphose spricht. Oft ist zwischen dem Kern und äußeren Saum eine Reaktionszone zu beobachten. In einigen Fällen sind die Reaktionszonen durch den äußeren Saum nach innen hindurch gewachsen. Manche Zirkone sind von einer Reaktionszone umrahmt (Abb. 80-f). Die äußeren Manteldomänen verursachen stellenweise eine unregelmäßig gerundete Morphologie des gesamten Zirkons. Meist wird der Übergang vom detritischen Kern zum Mantel durch eine dunklere KL-Zone markiert.

Rein metamorphe Zirkone werden hier als Typ C eingeordnet (Abb. 81). Die nicht zonierten oder sektor- oder kurvigzonierten (Abb. 81-i, m), gerundeten Körner besitzen z.T. einen länglichen hypidiomorphen Habitus. Sehr gut gerundete Körner treten ebenfalls auf.

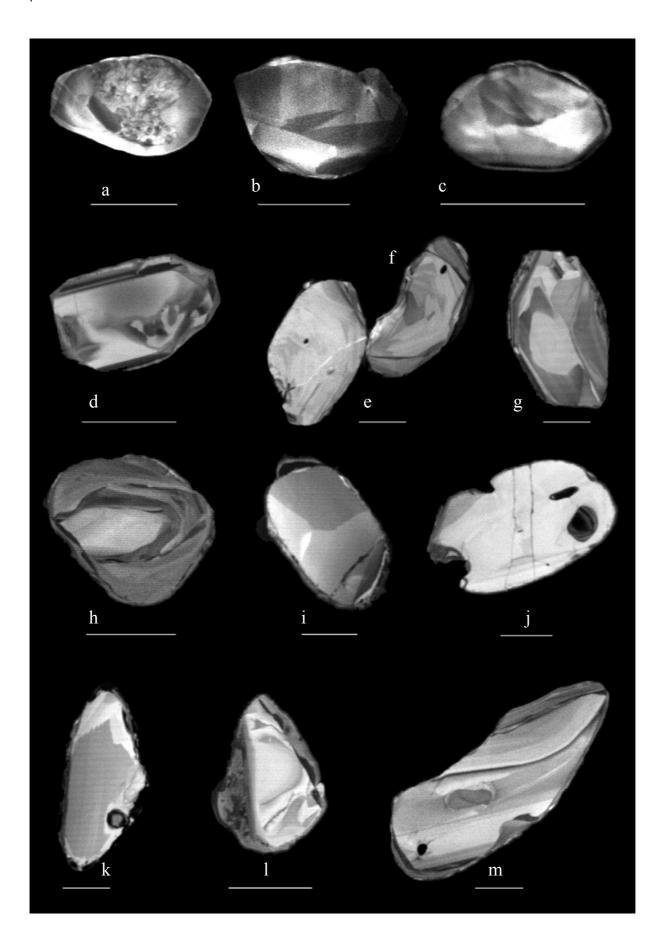
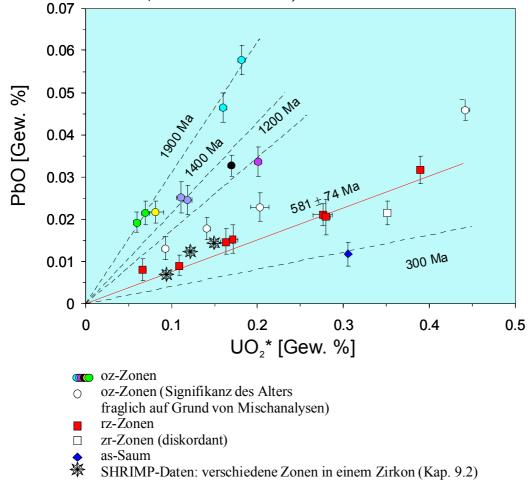

Abb. 79 Typ A: KL-Bilder von einphasigen Zirkonen mit einer magmatisch entstandenen oszillierenden Zonierung; die Skalierungsbalken entsprechen 50 μ m; -mit EMS-Spots (gelbe Punkte) und U-Th-Gesamtblei-Altern in Ma: Probennummern sind in Tab. 7 enthalten; -rz: Reaktionszone

Abb. 80 Typ B: KL-Bilder von zweiphasigen Zirkonen mit einem magmatischen Kern (oz) und einem späten äußeren Saum (as), teilweise ist eine Reaktionszone (rz) zu sehen; EMS-Spots (gelb markiert), U-Th-Gesamtblei-Alter in Ma: Probennummern sind in Tab.7 enthalten; die Skalierungsbalken entsprechen 50 μ m.

Abb. 81 Typ C: KL-Bilder von metamorphen Zirkonen: b, c, f- sektorzoniert; a, d, e, h, k- wolkig oder uneinheitlich zoniert I und m: zoniert und deformiert; die Skalierungsbalken entsprechen 50 μ m.

9.1. U-Th-Pb-Datierung mit der Elektronenstrahl-Mikrosonde

Die detritischen Zirkone von 5 Quarzitvorkommen wurden mit der Elektronenstrahl-Mikrosonde für U-Th-Pb-Datierungen analysiert. Th. GEISLER hat die Messungen betreut und die Daten ausgewertet. Die Beschleunigungsspannung war 20 KeV und der Strahlstrom- ~100 nA. Die Gesamtzählzeiten lagen bei 1000 s, 600 s, und 500 s für Pb, U, und Th.


Ein homogener Zirkon von Sri-Lanka mit 2454 ± 34 ppm U, 810 ± 8 ppm Th, und 213 ± 2 ppm Pb (analysiert mit SHRIMP) wurde als Standard für die U-, Th-, und Pb- Ermittlung verwendet (Analysenverfahren: GEISLER-WIERWILLE 1999 und GEISLER & SCHLEICHER 2000).

Die analytischen Ergebnisse sind in Tab. 7 zusammengefasst. Die Analysenpunkte sind in Abb. 79 und 80 markiert. Von 102 Punkt-Analysen erbrachten nur 22 eine bedeutende Pb-Konzentration (<60 ppm). Metamorphe Zirkone von Typ C konnten wegen ihres niedrigen U-und Th-Gehaltes nicht datiert werden.

Eine einzelne Analyse eines Außensaums erbringt ein U-Th-Gesamtblei-Modellalter von ~300 Ma, das mit einem konkordanten U-Pb Alter von Titanit nach BAUMANN et al. (1991) übereinstimmt. Dieses Alter reflektiert sehr wahrscheinlich kontaktmetamorph verursachte Auflösung und Ausfällung von Zirkon während der Platznahme der Magmen des Harzburger Gabbronoritmassivs und des Brockenplutons. Die ererbte magmatische Komponente (oz) zeigt ein proterozoisches Alter zwischen 1200-1900 Ma.

Die Bedeutung der Punkte zwischen 580 und 1200 Ma (weiße Kreise in Abb. 82) bleibt unklar, da diese Analysen Misch- oder nicht übereinstimmende Alter enthalten konnten (GEISLER et al. 2001).

Abb. 82 Diagramm PbO gegen UO_2^* (UO_2 plus äquivalenter Anteil von ThO_2) für EMS-Analysen von verschiedenen Wachstumszonen detritischer Zirkone (oz-Zonen: oszillierende Zonierung; rz-Zonen: Rekristallisationszonen; as-Saum: Außensaum)

Tab. 7 EMS-Daten von detritischen Zirkonen aus Quarziten des Eckergneis-Komplexes

Proben	Spot	ZrO_2	SiO ₂	HfO ₂	Y_2O_3	P_2O_5	CaO	Al ₂ O ₃	Fe ₂ O ₃	MnO	Er ₂ O ₃	Yb ₂ O ₃	PbO	Err(Pb)	UO ₂
nummer	nummer														_
99-38	Z2-1	66.71	30.57	0.75	0.07	0.05	0.003	0.003	0.124	0.006	0.02	0.0098	0.008	0.0023	0.0589
99-38	Z2-2	66.70	30.87	1.13	0.04	0.03	0.006	0.003	0.134	0.008	0.02	0.0145	0.009	0.0026	0.1047
99-38	Z3-2	65.51	31.86	1.24	0.03	0.02	0.004	0.003	0.149	0.003	0.025	0.0352	0.0178	0.0026	0.1411
99-38	Z13-1	63.99	30.48	2.04	0.26	0.29	0.016	0.003	0.031	0.005	0.067	0.1976	0.0459	0.0025	0.4419
99-38	Z13-3	65.81	30.64	0.73	0.77	0.25	0.009	0.003	0.037	0.008	0.109	0.2179	0.0327	0.0025	0.1294
99-38	Z17-1	66.50	31.38	1.07	0.13	0.09	0.010	0.003	0.024	0.007	0.037	0.0371	0.0147	0.0024	0.1637
99-38	Z18-3	65.71	30.89	1.05	0.20	0.19	0.011	0.014	0.059	0.005	0.044	0.1007	0.0118	0.0028	0.2986
99-38	Z19-2		30.35	0.74			0.546			0.002				0.0026	
99-38	Z22-1		31.29	0.94	0.18		0.003			0.003	0.046	0.1815		0.0026	
99-38	Z23-1		31.16	0.98	0.23		0.005			0.003		0.1215		0.0034	
99-38	Z28-1		31.19	1.13	0.15		0.004		0.053			0.0893		0.0076	
99-38	Z28-2		30.66	1.98	0.08		0.005			0.006		0.0652		0.0034	
99-38	Z36-1		31.11	0.64	0.35		0.003			0.005				0.0034	0.101
99-38	Z37-1		31.49	0.94	0.08		0.004			0.003	0.019	0.0337		0.0039	
99-38	Z37-2		31.88	0.95	0.08		0.009			0.003				0.0034	
99-20	1-Z6-1		31.45	1.26	0.22		0.096			0.013		0.1772		0.0042	
99-20	1-Z6-2		31.69	1.29	0.15		0.021			0.002		0.1381	0.021	0.0032	
0-12	2-Z6-1	66.23		1.72	0.04		0.021		0.007			0.0319		0.0034	
0-12	2-Z6-3		30.91	1.61	0.04		0.012		0.007			0.0347		0.0034	
0-100	5-Z10-1		30.36	0.29	0.20		0.003			0.002			0.0251	0.0037	
0-100	5-Z10-2		30.62	0.28	0.20		0.004			0.002				0.0042	
0-100	5-Z16-3		31.05	1.31	0.07		0.004			0.002				0.003	0.1715
0-100	5-Z5-1		30.33	0.41				0.003				0.2241		0.0028	
α ,	E (II) I	C1 ()	E (EL)				0	(T.T. TPIL)	/D1 T1	*\ T (1 11	7T1 4 T	/TT/TD1 -\$\		F (T)
•	Err(U) 7	ΓhO_2	Err(Th)			Cov		(U,Th)	r(Pb,U	*) Tot	al U/	Th* Er	r(U/Th*)	T	Err(T)
nummer				(Pb,	U)	Cov (Pb,Th	1)								
nummer Z2-1	0.0065	0.0273	0.005	(Pb,	U) 0		0	0	-0.02	221	98.4 (0.0668	0.006	8 828	233
<u>nummer</u> Z2-1 Z2-2	0.0065 0.0095	0.0273 0.0146	0.0050	(Pb.) 6 8	0 0	(Pb,Th	0 0	0 0	-0.02	221 058 9	98.4 (9.08	0.0668	0.006 0.009	8 828 7 587	233 167
nummer Z2-1 Z2-2 Z3-2	0.0065 0.0095 0.0029	0.0273 0.0146 0	0.0050 0.0060 0.002	(Pb,) 6 8 7 1.41	0 0 1E-06	(<u>Pb,Th</u>	0 0 0 06 7	0 0 .29E-07	-0.02 -0.00 0.34	221 058 9 113 9	98.4 (9.08 9.04 (0.0668 0.109 0.1411	0.006 0.009 0.003	8 828 7 587 1 871	233 167 111
nummer Z2-1 Z2-2 Z3-2 Z13-1	0.0065 0.0095 0.0029 0.0043	0.0273 0.0146 0	0.0050 0.0060 0.0022 0.0032	(Pb.) 6 8 7 1.41 2 1.78	0 0 1E-06 8E-06	4.5E- 3.6E-	0 0 0 06 7 06 1.2	0 0 .29E-07 284E-06	-0.02 -0.00 0.34 0.25	221 058 9 413 9 544 9	98.4 (9.08 9.04 (7.87 (0.0668 0.109 0.1411 0.4419	0.006 0.009 0.003 0.004	8 828 7 587 1 871 5 728	233 167 111 36
nummer Z2-1 Z2-2 Z3-2 Z13-1 Z13-3	0.0065 0.0095 0.0029 0.0043 0.0036	0.0273 0.0146 0 0 0.1443	0.0056 0.0066 0.0022 0.0033 0.0036	(Pb,) 6 8 7 1.41 2 1.78 6 5.03	0 0 1E-06 3E-06 7E-06	4.5E- 3.6E- 1.3E-	0 0 0 06 7 06 1.2 06 -1	0 0 .29E-07 284E-06 .65E-06	-0.02 -0.00 0.34 0.25 0.54	221 058 9 113 9 544 9	98.4 (9.08 9.04 (7.87 (8.89 (0.0668 0.109 0.1411 0.4419 0.1694	0.006 0.009 0.003 0.004 0.003	8 828 7 587 1 871 5 728 5 1264	233 167 111 36 74
nummer Z2-1 Z2-2 Z3-2 Z13-1 Z13-3 Z17-1	0.0065 0.0095 0.0029 0.0043 0.0036 0.0033	0.0273 0.0146 0 0 0.1443	0.0050 0.0060 0.0022 0.0032 0.0030 0.0032	(Pb, 66 8 7 1.41 2 1.78 6 5.07 2 2.88	0 0 1E-06 3E-06 7E-06 3E-06	4.5E- 3.6E- 1.3E- -4E-	0 0 0 06 7 06 1.2 06 -1 06 1.3	0 0 .29E-07 284E-06 .65E-06	-0.02 -0.00 0.34 0.25 0.54	221 058 9 113 9 544 9 101 9 027 9	98.4 (9.08 9.04 (7.87 (8.89 (9.47 (0.0668 0.109 0.1411 0.4419 0.1694 0.1637	0.006 0.009 0.003 0.004 0.003	8 828 7 587 1 871 5 728 5 1264 6 636	233 167 111 36 74 96
nummer Z2-1 Z2-2 Z3-2 Z13-1 Z13-3 Z17-1 Z18-3	0.0065 0.0095 0.0029 0.0043 0.0036 0.0033 0.0037	0.0273 0.0146 0 0 0.1443 0 0.0233	0.0056 0.0066 0.002 0.003 0.0036 0.003 0.003	(Pb.) 6 8 7 1.41 2 1.78 6 5.07 2 2.88 1 -7	0 0 1E-06 3E-06 7E-06 3E-06 7E-06	4.5E- 3.6E- 1.3E- -4E-	0 0 0 06 7 06 1.2 06 -1 06 1.3	0 0 .29E-07 284E-06 .65E-06 869E-06	-0.02 -0.00 0.34 0.25 0.54 0.19 -0.62	221 258 9 413 9 401 9 401 9 227 9 236 9	98.4 (9.08 9.04 (7.87 (8.89 (9.47 (9	0.0668 0.109 0.1411 0.4419 0.1694 0.1637 0.3056	0.006 0.009 0.003 0.004 0.003 0.003	8 828 7 587 1 871 5 728 5 1264 6 636 8 283	233 167 111 36 74 96 68
nummer Z2-1 Z2-2 Z3-2 Z13-1 Z13-3 Z17-1 Z18-3 Z19-2	0.0065 0.0095 0.0029 0.0043 0.0036 0.0033 0.0037 0.0092	0.0273 0.0146 0 0 0.1443 0 0.0233 0.0323	0.0050 0.0060 0.0022 0.0033 0.0033 0.0033 0.0033	(Pb.) 6 8 7 1.41 2 1.78 6 5.07 2 2.88 11 -7	0 0 0 1E-06 8E-06 7E-06 8E-06 7E-06	4.5E- 3.6E- 1.3E- -4E-	0 0 0 06 7 06 1.2 06 -1 06 1.3 06 -4	0 0 .29E-07 284E-06 .65E-06 .65E-06 .17E-07	-0.02 -0.00 0.34 0.25 0.54 0.19 -0.62	221 958 9 9113 9 944 9 901 9 927 9 9236 9 9016 9	98.4 (9.08 9.04 (7.87 (6.8.89 (9.47 (9.47 (9.05 (9.47 (9.05 (9.47 (9.05 (9.47 (9.05	0.0668 0.109 0.1411 0.4419 0.1694 0.1637 0.3056 0.0811	0.006 0.009 0.003 0.004 0.003 0.003 0.003	8 828 7 587 1 871 5 728 5 1264 6 636 8 283 7 1672	233 167 111 36 74 96 68 234
nummer Z2-1 Z2-2 Z3-2 Z13-1 Z13-3 Z17-1 Z18-3 Z19-2 Z22-1	0.0065 0.0095 0.0029 0.0043 0.0036 0.0033 0.0037 0.0092 0.0109	0.0273 0.0146 0 0.1443 0 0.0233 0.0323 0.0323	0.0056 0.0066 0.0022 0.0033 0.0036 0.0033 0.0036 0.0096	(Pb, 688	0 0 0 1E-06 3E-06 7E-06 3E-06 0 0	4.5E- 3.6E- 1.3E- -4E- 1.4E-	0 0 0 06 7 06 1.2 06 -1 06 1.3 06 -4	0 0 .29E-07 284E-06 .65E-06 369E-06 .17E-07 0	-0.02 -0.00 0.34 0.25 0.54 0.19 -0.62 -0.00	221 958 9 913 9 9644 9 9010 9 9027 9 9016 9 9024 9	98.4 (9.08 9.04 (7.87 (8.89 (9.47 (9.05 (0.0668 0.109 0.1411 0.4419 0.1694 0.1637 0.3056 0.0811 0.3508	0.006 0.009 0.003 0.004 0.003 0.003 0.003 0.009 0.011	8 828 7 587 1 871 5 728 5 1264 6 636 8 283 7 1672 3 440	233 167 111 36 74 96 68 234 53
nummer Z2-1 Z2-2 Z3-2 Z13-1 Z13-3 Z17-1 Z18-3 Z19-2 Z22-1 Z23-1	0.0065 0.0095 0.0029 0.0043 0.0036 0.0033 0.0037 0.0092 0.0109 0.0044	0.0273 0.0146 0 0 0.1443 0 0.0233 0.0323 0.0323 0.1296	0.0056 0.0066 0.0022 0.0033 0.0033 0.0033 0.0096 0.0096	(Pb, 68 8 7 1.41 2 1.78 6 5.07 2 2.88 8 8 8 3 1.31	0 0 0 1E-06 3E-06 7E-06 3E-06 0 0	4.5E- 3.6E- 1.3E- -4E-	0 0 0 06 7 06 1.2 06 -1 06 -4 0 0 06 -1	0 0 0.29E-07 284E-06 .65E-06 369E-06 .17E-07 0	-0.02 -0.00 0.34 0.25 0.54 0.19 -0.62 -0.00 0.90	221 221 258 9413 944 9401 927 927 9236 9016 9024 9062 9062	98.4 (9.08 9.04 (7.87 (6.88 (6.88 (7.61 (6.88 (6	0.0668 0.109 0.1411 0.4419 0.1637 0.3056 0.0811 0.3508 0.2008	0.006 0.009 0.003 0.004 0.003 0.003 0.003 0.009 0.011 0.003	8 828 7 587 1 871 5 728 5 1264 6 636 8 283 7 1672 3 440 1 1117	233 167 111 36 74 96 68 234 53 87
nummer Z2-1 Z2-2 Z3-2 Z13-1 Z13-3 Z17-1 Z18-3 Z19-2 Z22-1 Z23-1 Z28-1	0.0065 0.0095 0.0029 0.0043 0.0036 0.0033 0.0037 0.0092 0.0109 0.0044 0.01	0.0273 0.0146 0 0.1443 0 0.0233 0.0223 0.1296 0.0174	0.0056 0.0066 0.002 0.0033 0.0033 0.0033 0.0039 0.0099 0.0096 0.0096	(Pb.) 6 8 7 1.41 2 1.78 6 5.07 2 2.88 1 -7 8 8 7	0 0 1E-06 3E-06 7E-06 0 0 1E-05 0	4.5E- 3.6E- 1.3E- -4E- 1.4E-	0 0 0 06 7 06 1.2 06 -1 06 -4 0 0 06 -1	0 0 0 .29E-07 284E-06 .65E-06 369E-06 .17E-07 0 0	-0.02 -0.00 0.34 0.25 0.54 0.19 -0.62 -0.00 0.90 -0.00	221 221 238 944 9644 9027 9027 9016 9024 9062 9099 9	98.4 (9.08 (9.04 (0.04 (0.0668 0.109 0.1411 0.4419 0.1694 0.1637 0.3056 0.0811 0.3508 0.2008 0.203	0.006 0.009 0.003 0.004 0.003 0.003 0.003 0.009 0.011 0.003 0.010	8 828 7 587 1 871 5 728 5 1264 6 636 8 283 7 1672 3 440 1 1117 4 785	233 167 111 36 74 96 68 234 53 87 243
nummer Z2-1 Z2-2 Z3-2 Z13-1 Z13-3 Z17-1 Z18-3 Z19-2 Z22-1 Z23-1 Z28-1 Z28-2	0.0065 0.0095 0.0029 0.0043 0.0036 0.0033 0.0037 0.0092 0.0109 0.0044 0.01	0.0273 0.0146 0 0.1443 0 0.0233 0.0323 0.0223 0.1296 0.0174 0.0155	0.0056 0.0066 0.0022 0.0033 0.0033 0.0033 0.0099 0.0099 0.00999 0.0099	(Pb, 68 8 7 1.41 2 1.78 6 5.07 2 2.88 8 8 8 3 1.31 7 7 3 8.03	0 0 1E-06 3E-06 7E-06 0 0 1E-05 0	4.5E- 3.6E- 1.3E- -4E- 1.4E- -9E- -4E-	0 0 0 06 7 06 1.2 06 -1 06 -4 0 0 0 06 -1 0 0 06 -8	0 0 0.29E-07 284E-06 .65E-06 369E-06 .17E-07 0 .97E-05 0	-0.02 -0.00 0.34 0.25 0.54 0.19 -0.62 -0.00 0.90 -0.00 0.37	221 221 238 944 9644 9644 9627 9636 964 9624 9624 962 962 962 962 962 963 964 964 964 964 964 964 964 964	98.4 (9.08 9.04 (9.08 9.04 (9.08 9.04 (9.08 9.47 (9.08 9.47 (9.08 9.05 (9.08 9.05 (9.08 9.17 9.17 8.38 (9.08 9.17 9.17 9.38 (9.08 9.17 9.38 (9.08 9.17 9.38 (9.08 9.17 9.38 (9.08 9.17 9.38 (9.08 9.17 9.38 (9.08 9.17 9.38 (9.08 9.17 9.38 (9.08 9.17 9.38 (9.08 9.17 9.38 (9.08 9.17 9.38 (9.08 9.17 9.38 (9.08 9.17 9.38 (9.08 9.17 9.38 (9.08 9.17 9.38 (9.08 9.17 9.38 (9.08 9.17 9.38 (9.08 9.17 9.17 9.38 (9.08 9.17 9.17 9.38 (9.08 9.17 9.17 9.38 (9.08 9.17 9.17 9.17 9.38 (9.08 9.17 9.17 9.17 9.38 (9.08 9.17 9.17 9.17 9.38 (9.08 9.17 9.17 9.17 9.38 (9.08 9.17 9.17 9.38 (9.08 9.17 9.17 9.17 9.38 (9.08 9.17 9.17 9.17 9.38 (9.08 9.17 9.17 9.17 9.38 (9.08 9.17 9.17 9.17 9.17 9.17 9.17 9.17 9.17	0.0668 0.109 0.1411 0.4419 0.1694 0.1637 0.3056 0.0811 0.3508 0.2008 0.203 0.2798	0.006 0.009 0.003 0.004 0.003 0.003 0.003 0.009 0.011 0.003 0.010	8 828 7 587 1 871 5 728 5 1264 6 636 8 283 7 1672 3 440 1 1117 4 785 3 525	233 167 111 36 74 96 68 234 53 87 243 79
nummer Z2-1 Z2-2 Z3-2 Z13-1 Z13-3 Z17-1 Z18-3 Z19-2 Z22-1 Z23-1 Z28-1 Z28-2 Z36-1	0.0065 0.0095 0.0029 0.0043 0.0036 0.0033 0.0037 0.0092 0.0109 0.0044 0.01 0.0052 0.0042	0.0273 0.0146 0 0.1443 0 0.0233 0.0223 0.0223 0.1296 0.0174 0.0155 0.1493	0.0056 0.0066 0.0022 0.0033 0.0033 0.0033 0.0099 0.0099 0.0066 0.0099 0.0044	(Pb, 688	U) 0 0 0 1E-06 3E-06 7E-06 3E-06 0 0 1E-05 0 3E-06 3E-06	4.5E- 3.6E- 1.3E- -4E- 1.4E-	0 0 0 06 7 06 1.2 06 -1 06 -4 0 0 06 -1 0 06 -8 06 -4	0 0 0 .29E-07 284E-06 .65E-06 369E-06 .17E-07 0 .97E-05 0 .36E-07	-0.02 -0.00 0.34 0.25 0.54 0.19 -0.62 -0.00 0.90 -0.00 0.37 -0.67	221 221 238 9413 944 9401 927 9236 9016 9024 9024 9099 9773 9762 9762	98.4 (9.08 9.04 (7.87 (6.88 (9.05 (6.88 (6.88 (6.83 (9.17 (8.38 (6.88 (6	0.0668 0.109 0.1411 0.4419 0.1637 0.3056 0.0811 0.3508 0.2008 0.203 0.2798 0.1442	0.006 0.009 0.003 0.004 0.003 0.003 0.009 0.011 0.003 0.010 0.005	8 828 7 587 1 871 5 728 5 1264 6 636 8 283 7 1672 3 440 1 1117 4 785 3 525 6 776	233 167 111 36 74 96 68 234 53 87 243 79 166
nummer Z2-1 Z2-2 Z3-2 Z13-1 Z13-3 Z17-1 Z18-3 Z19-2 Z22-1 Z23-1 Z28-1 Z28-2 Z36-1 Z37-1	0.0065 0.0095 0.0029 0.0043 0.0036 0.0033 0.0037 0.0092 0.0109 0.0044 0.01 0.0052 0.0042 0.0045	0.0273 0.0146 0 0.1443 0 0.0233 0.0223 0.1296 0.0174 0.0155 0.1493 0.0203	0.0056 0.0066 0.002 0.0033 0.0033 0.003 0.0099 0.0096 0.0099 0.0044 0.0044	(Pb, 688	U) 0 0 0 1E-06 3E-06 7E-06 3E-06 0 0 1E-05 0 0 3E-06 3E-06	4.5E- 3.6E- 1.3E- -4E- 1.4E- -9E- -4E- -1E-	0 0 0 06 7 06 1.2 06 -1 06 -4 0 0 -1 0 -8 06 -4	0 0 0 .29E-07 284E-06 .65E-06 369E-06 .17E-07 0 .97E-05 0 .36E-07 .49E-06	-0.02 -0.00 0.34 0.25 0.54 0.19 -0.62 -0.00 0.90 -0.00 0.37 -0.67	221 221 258 944 964 902 902 902 906 909 909 909 909 909 909 909	98.4 (9.08 9.04 (7.87 (6.18 9.05 (6.88 (6.19 9.17 8.38 (6.18 9.23 (6.18 9.18 9.23 (6.18 9.23 (6.18 9.23 (6.18 9.23 (6.18 9.23 (6.18 9.23 (6.18 9.23 (6.18 9.23 (6.18 9.23 (6.18 9.23 (6.18 9.23 (6.18 9.18 9.23 (6.18 9.23 (6.18 9.23 (6.18 9.23 (6.18 9.23 (6.18 9.23 (6.18 9.23 (6.18 9.23 (6.18 9.23 (6.18 9.23 (6.18 9.23 (6.18 9.23 (6.18 9.23 (6.18 9.23 (6.18 9.23 (6.18 9.23 (6.18 9.23 (6.18 9.18 9.23 (6.18 9.23 (6.18 9.23 (6.18 9.18 9.23 (6.18 9.23 (6.18 9.18 9.23 (6.18 9.23 (6.18 9.18 9.23 (6.18 9.18 9.23 (6.18 9.18 9.18 9.23 (6.18 9.18 9.23 (6.18 9.18 9.23 (6.18 9.18 9.23 (6.18 9.18 9.23 (6.18 9.18 9.23 (6.18 9.18 9.23 (6.18 9.18 9.23 (6.18 9.18 9.23 (6.18 9.18 9.23 (6.18 9.18 9.23 (6.18 9.18 9.23 (6.18 9.18 9.23 (6.18 9.18 9.23 (6.18 9.18 9.18 9.23 (6.18 9.18 9.18 9.18 9.23 (6.18 9.18 9.18 9.23 (6.18 9.18 9.18 9.23 (6.18 9.18 9.18 9.18 9.23 (6.18 9.18 9.18 9.18 9.18 9.18 9.23 (6.18 9.18 9.18 9.18 9.18 9.18 9.18 (6.18 9.18 9.18 9.18 9.18 9.18 9.18 9.18 9	0.0668 0.109 0.1411 0.4419 0.1694 0.1637 0.3056 0.0811 0.3508 0.2008 0.2008 0.203 0.2798 0.1442 0.0696	0.006 0.009 0.003 0.004 0.003 0.003 0.003 0.009 0.011 0.003 0.010 0.005 0.004	8 828 7 587 1 871 5 728 5 1264 6 636 8 283 7 1672 3 440 1 1117 4 785 3 525 6 776 8 1880	233 167 111 36 74 96 68 234 53 87 243 79 166 292
nummer Z2-1 Z2-2 Z3-2 Z13-1 Z13-3 Z17-1 Z18-3 Z19-2 Z22-1 Z23-1 Z28-1 Z28-2 Z36-1 Z37-1 Z37-2	0.0065 0.0095 0.0029 0.0043 0.0036 0.0033 0.0037 0.0092 0.0109 0.0044 0.01 0.0052 0.0045 0.0045	0.0273 0.0146 0 0.1443 0 0.0233 0.0223 0.1296 0.0174 0.0155 0.1493 0.0203 0.0203	0.0056 0.0066 0.0022 0.0033 0.0033 0.0033 0.0099 0.0099 0.0066 0.0099 0.0044 0.0044 0.0044	(Pb, 68 8 7 1.41 6 5.07 2 2.88 8 8 8 8 8 8 8 9 -8 9 -8 9 9 3 -2.6	0 0 1E-06 3E-06 7E-06 3E-06 0 1E-05 0 3E-06 3E-06 0	4.5E- 3.6E- 1.3E- -4E- 1.4E- -9E- -4E-	0 0 0 06 7 06 1.2 06 -1 06 1.3 06 -4 0 0 06 -1 0 06 -8 06 -4 0 06 -4	0 0 0 .29E-07 284E-06 .65E-06 369E-06 .17E-07 0 .97E-05 0 .36E-07 .49E-06	-0.02 -0.00 0.34 0.25 0.54 0.19 -0.62 -0.00 0.90 -0.00 0.37 -0.67 -0.03 -0.18	221 221 2358 944 9644 9627 9236 9016 9024 9062 9099 9773 9762 9812 9812 9812 9812 9812 9812 9812 9813 981	98.4 (9.08 9.04 (7.87 (8.89 (9.47 (9.05 (9.17 (9	0.0668 0.109 0.1411 0.4419 0.1694 0.1637 0.3056 0.0811 0.3508 0.2008 0.2008 0.203 0.2798 0.1442 0.0696 0.0592	0.006 0.009 0.003 0.004 0.003 0.003 0.003 0.009 0.011 0.003 0.010 0.005 0.004	8 828 7 587 1 871 5 728 5 1264 6 636 8 283 7 1672 3 440 1 1117 4 785 3 525 6 776 8 1880 2 1954	233 167 111 36 74 96 68 234 53 87 243 79 166 292 310
nummer Z2-1 Z2-2 Z3-2 Z13-1 Z13-3 Z17-1 Z18-3 Z19-2 Z22-1 Z23-1 Z28-1 Z28-2 Z36-1 Z37-1 Z37-2 1-Z6-1	0.0065 0.0095 0.0029 0.0043 0.0036 0.0033 0.0037 0.0092 0.0109 0.0044 0.01 0.0052 0.0042 0.0045 0.0041 0.0055	0.0273 0.0146 0 0.1443 0 0.0233 0.0323 0.0223 0.1296 0.0174 0.0155 0.1493 0.0203 0.0203	0.0056 0.0066 0.0022 0.0033 0.0033 0.0039 0.0099 0.0099 0.0099 0.0044 0.0044 0.0044	(Pb, 688	U) 0 0 0 1E-06 3E-06 7E-06 3E-06 0 0 1E-05 0 0 3E-06 0 0 5E-06	4.5E- 3.6E- 1.3E- -4E- 1.4E- -9E- -4E- -1E-	0 0 0 06 7 06 1.2 06 -1 06 -4 0 06 -8 06 -4 0 06 -1 0 06 -1	0 0 0.29E-07 284E-06 .65E-06 369E-06 .17E-07 0 .97E-05 0 .36E-07 .49E-06 0	-0.02 -0.00 0.34 0.25 0.54 0.19 -0.62 -0.00 0.90 -0.00 0.37 -0.67 -0.03	221 221 2358 944 9644 9644 927 9236 9016 9024 9099 9099 9773 9762 9854 9854 9854 9999 9773 9762	98.4 (9.08 9.04 (9.08 9.04 (9.08 9.47 (9.08 9.47 (9.08 9.47 (9.08 9.05 (9.08 9.47 (9.08 9.47 (9.08 9.47 (9.08 9.23 (9.08 9.08 (9.08 9.23 (9.08 9.08 (9.08 9.23 (9.08 9.08 (9.08 9.23 (9.08	0.0668 0.109 0.1411 0.4419 0.1694 0.1637 0.3056 0.0811 0.3508 0.2008 0.203 0.2798 0.1442 0.0696 0.0592 0.3896	0.006 0.009 0.003 0.004 0.003 0.003 0.009 0.011 0.003 0.010 0.005 0.004 0.004	8 828 7 587 1 871 5 728 5 1264 6 636 8 283 7 1672 3 440 1 1117 4 785 3 525 6 776 8 1880 2 1954 7 580	233 167 111 36 74 96 68 234 53 87 243 79 166 292 310 73
nummer Z2-1 Z2-2 Z3-2 Z13-1 Z13-3 Z17-1 Z18-3 Z19-2 Z22-1 Z23-1 Z28-1 Z28-2 Z36-1 Z37-1 Z37-2 1-Z6-1 1-Z6-2	0.0065 0.0095 0.0029 0.0043 0.0036 0.0033 0.0037 0.0092 0.0109 0.0044 0.01 0.0052 0.0045 0.0045 0.0045	0.0273 0.0146 0 0.1443 0 0.0233 0.0223 0.1296 0.0174 0.0155 0.1493 0.0203 0.0101 0	0.0056 0.0066 0.002 0.0033 0.0033 0.0036 0.0099 0.0066 0.0099 0.0044 0.0044 0.0044 0.0044 0.0044	(Pb, 688	U) 0 0 0 1E-06 3E-06 7E-06 3E-06 0 0 1E-05 0 0 3E-06 0 0 5E-06 0 0	4.5E- 3.6E- 1.3E- -4E- 1.4E- -9E- -4E- -1E-	0 0 0 06 7 06 1.2 06 -1 06 -4 0 06 -4 0 06 -4 0 06 -4 0 06 -1 0 06 -1	0 0 0 .29E-07 284E-06 .65E-06 369E-06 .17E-07 0 .97E-05 0 .36E-07 .49E-06 0	-0.02 -0.00 0.34 0.25 0.54 0.19 -0.62 -0.00 -0.00 0.37 -0.67 -0.03 -0.18	221 221 258 941 9544 9644 9627 9627 962 962 962 962 962 962 962 962	98.4 (9.08 9.04 (7.87 (6.18 9.05 (6.18 (6.18 9.17 8.38 (6.18 9.23 (6.18 9.18 9.23 (6.18 9.23 (6.18 9.23 (6.18 9.23 (6.18 9.23 (6.18 9.23 (6.18 9.23 (6.18 9.23 (6.18 9.23 (6.18 9.23 (6.18 9.23 (6.18 9.23 (6.18 9.23 (6.18 9.23 (6.18 9.23 (6.18 9.23 (6.18 9.23 (6.18 9.18 (6.18 9.23 (6.18 9.18 (6.18 9.23 (6.18 9.18 9.23 (6.18 9.23 (6.18 9.23 (6.18 9.23 (6.18 9.23 (6.18 9.23 (6.18 9.23 (6.18 9.23 (6.18 9.23 (6.18 9.23 (6.18 9.23 (6.18 9.23 (6.18 9.23 (6.18 9.23 (6.18 9.23 (6.18 9.23 (6.18 9.23 (6.18 9.18 9.23 (6.18 9.23 (6.18 9.23 (6.18 9.23 (6.18 9.23 (6.18 9.23 (6.18 9.23 (6.18 9.23 (6.18 9.23 (6.18 9.23 (6.18 9.23 (6.18 9.23 (6.18 9.23 (6.18 9.23 (6.18 9.23 (6.18 9.23 (6.18 9.23 (6.18 9.18 9.23 (6.18 9.23 (6.18 9.23 (6.18 9.23 (6.18 9.23 (6.18 9.23 (6	0.0668 0.109 0.1411 0.4419 0.1694 0.1637 0.3056 0.0811 0.3508 0.2008 0.203 0.2798 0.1442 0.0696 0.0592 0.3896 0.2763	0.006 0.009 0.003 0.004 0.003 0.003 0.003 0.009 0.011 0.003 0.010 0.004 0.004 0.004 0.005 0.004	8 828 7 587 1 871 5 728 5 1264 6 636 8 283 7 1672 3 440 1 1117 4 785 3 525 6 776 8 1880 2 1954 7 580 6 543	233 167 111 36 74 96 68 234 53 87 243 79 166 292 310 73 79
nummer Z2-1 Z2-2 Z3-2 Z13-1 Z13-3 Z17-1 Z18-3 Z19-2 Z22-1 Z23-1 Z28-1 Z28-1 Z28-2 Z36-1 Z37-1 Z37-2 1-Z6-1 1-Z6-2 2-Z6-1	0.0065 0.0095 0.0029 0.0043 0.0036 0.0033 0.0037 0.0092 0.0109 0.0044 0.01 0.0052 0.0045 0.0041 0.0055 0.0045	0.0273 0.0146 0 0.1443 0 0.0233 0.0223 0.1296 0.0174 0.0155 0.1493 0.0203 0.0203 0.0101 0 0	0.0056 0.0066 0.002 0.0033 0.0033 0.0039 0.0099 0.0066 0.0099 0.0044 0.0044 0.0044 0.0044 0.0044	(Pb, 688	U) 0 0 0 1E-06 3E-06 7E-06 3E-06 0 0 1E-05 0 0 3E-06 0 0 6E-06 0 0	4.5E- 3.6E- 1.3E- -4E- 1.4E- -9E- -4E- -1E-	0 0 0 06 7 06 1.2 06 -1 06 -4 0 06 -1 0 06 -8 06 -4 0 0 -4 0 0 -1 0 0 0 -1	0 0 0 .29E-07 284E-06 .65E-06 369E-06 .17E-07 0 .97E-05 0 .36E-07 .49E-06 0	-0.02 -0.00 0.34 0.25 0.54 0.19 -0.62 -0.00 -0.00 0.37 -0.67 -0.03 -0.18	221 221 258 9 9 9 9 9 9 9 9 9 9 9 9 9	98.4 (9.08 9.04 (7.87 (6.18 6.19 (9.05 (6.88 (6.19 6.19 6.19 6.19 (6.19 6.19 6.19 6.19 6.19 (6.19 6.19 6.19 6.19 6.19 (6.19 6.19 6.19 6.19 6.19 (6.19 6.19 6.19 6.19 6.19 6.19 (6.19 6.19 6.19 6.19 6.19 6.19 (6.19 6.19 6.19 6.19 6.19 6.19 6.19 6.19	0.0668 0.109 0.1411 0.4419 0.1694 0.1637 0.3056 0.0811 0.3508 0.2008 0.203 0.2798 0.1442 0.0696 0.0592 0.3896 0.2763 0.1815	0.006 0.009 0.003 0.004 0.003 0.003 0.009 0.011 0.003 0.010 0.005 0.004 0.004 0.004 0.004	8 828 7 587 1 871 5 728 5 1264 6 636 8 283 7 1672 3 440 1 1117 4 785 3 525 6 776 8 1880 2 1954 7 580 6 543 3 1924	233 167 111 36 74 96 68 234 53 87 243 79 166 292 310 73 79 97
nummer Z2-1 Z2-2 Z3-2 Z13-1 Z13-3 Z17-1 Z18-3 Z19-2 Z22-1 Z23-1 Z28-1 Z28-1 Z28-2 Z36-1 Z37-2 1-Z6-1 1-Z6-2 2-Z6-1 2-Z6-3	0.0065 0.0095 0.0029 0.0043 0.0036 0.0033 0.0037 0.0092 0.0109 0.0044 0.01 0.0052 0.0045 0.0041 0.0055 0.0041 0.0039	0.0273 0.0146 0 0.1443 0 0.0233 0.0223 0.1296 0.0174 0.0155 0.1493 0.0203 0.0101 0 0 0.0298	0.0056 0.0066 0.0022 0.0033 0.0033 0.0039 0.0099 0.0066 0.0099 0.0044 0.0044 0.0044 0.0044 0.0044 0.0044 0.0044 0.0044	(Pb, 688	U) 0 0 1E-06 3E-06 7E-06 3E-06 7E-06 0 0 1E-05 0 3E-06 0 0 5E-06 0 0	4.5E- 3.6E- 1.3E- -4E- 1.4E- -9E- -4E- -1E-	0 0 0 06 7 06 1.2 06 -1 06 -4 0 06 -4 0 06 -8 06 -4 0 06 -1 0 06 -1	0 0 0 .29E-07 284E-06 .65E-06 369E-06 .17E-07 0 .97E-05 0 .36E-07 .49E-06 0 0	-0.02 -0.00 0.34 0.25 0.54 0.19 -0.62 -0.00 0.90 -0.00 0.37 -0.67 -0.03 -0.18	221 221 2358 944 9644 9627 9236 9016 9024 9062 9099 9773 962 962 962 963 964 965 966 966 966 966 966 966 966	98.4 (9.08 9.04 (9.08 9.04 (9.08 9.47 (9.08 9.08 (9.08 9.47 (9.08 9.08 9.47 (9.08 9.47 (9.08 9.47 (9.08 9.47 (9.08 9.47 (9.08 9.47 (9.08 9.47 (9.08 9.47 (9.08 9.47 (9.08 9.47 (9.08 9.47 (9.08 9.47 (9.08 9.47 (9.08 9.47 (9.08 9.47 (9.08 9.47 (9.08 9.47 (9.08 9.08 9.47 (9.08 9.47 (9.08 9.47 (9.08 9.47 (9.08 9.47 (9.08 9.47 (9.08 9.47 (9.08 9.47 (9.08 9.47 (9.08 9.47 (9.08 9.47 (9.08 9.47 (9.08 9.47 (9.08 9.47 (9.08 9.47 (9.08 9.47 (9.08 9.47 (9.08 9	0.0668 0.109 0.1411 0.4419 0.1694 0.1637 0.3056 0.0811 0.3508 0.2008 0.203 0.2798 0.1442 0.0696 0.0592 0.3896 0.2763 0.1815 0.1597	0.006 0.009 0.003 0.003 0.003 0.003 0.009 0.011 0.003 0.010 0.005 0.004 0.004 0.004 0.004 0.004 0.004	8 828 7 587 1 871 5 728 5 1264 6 636 8 283 7 1672 3 440 1 1117 4 785 3 525 6 776 8 1880 2 1954 7 580 6 543 3 1924 1 1796	233 167 111 36 74 96 68 234 53 87 243 79 166 292 310 73 79 97
nummer Z2-1 Z2-2 Z3-2 Z13-1 Z13-3 Z17-1 Z18-3 Z19-2 Z22-1 Z23-1 Z28-1 Z28-1 Z28-2 Z36-1 Z37-2 1-Z6-1 1-Z6-2 2-Z6-1 2-Z6-3 5-Z10-1	0.0065 0.0095 0.0029 0.0043 0.0036 0.0033 0.0037 0.0092 0.0109 0.0044 0.01 0.0052 0.0042 0.0045 0.0041 0.0055 0.0045 0.0041 0.0039 0.0046	0.0273 0.0146 0 0.1443 0 0.0233 0.0223 0.1296 0.0174 0.0155 0.1493 0.0203 0.0203 0.0203 0.0203	0.0056 0.0066 0.0022 0.0033 0.0033 0.0039 0.0099 0.0066 0.0099 0.0044 0.0044 0.0044 0.0044 0.0044 0.0044 0.0044	(Pb, 688	U) 0 0 0 1E-06 3E-06 7E-06 3E-06 0 0 1E-05 0 0 3E-06 0 0 0 0 0 0	4.5E- 3.6E- 1.3E- -4E- 1.4E- -9E- -4E- -1E-	0 0 0 06 7 06 1.2 06 -1 06 -4 0 06 -8 06 -4 0 06 -1 0 0 0 0 0	0 0 0 .29E-07 284E-06 .65E-06 369E-06 .17E-07 0 .97E-05 0 .36E-07 .49E-06 0 0 .46E-06	-0.02 -0.00 0.34 0.25 0.54 0.19 -0.62 -0.00 0.90 -0.00 0.37 -0.67 -0.03 -0.01	221 221 2358 9 113 9 644 9 9 9 9 9 9 9 9 9 9 9 9 9	98.4 (9.08 9.04 (9.08 9.04 (9.08 9.05 (9.05 (9.08 9.05 (9.08 9.05 (9.08 9.05 (9.08 9.05 (9.08 9.05 (9.08 9.05 (9.08 9.05 (9.08 9.08	0.0668 0.109 0.1411 0.4419 0.1694 0.1637 0.3056 0.0811 0.3508 0.2008 0.203 0.2798 0.1442 0.0696 0.0592 0.3896 0.2763 0.1815 0.1597 0.1109	0.006 0.009 0.003 0.004 0.003 0.003 0.009 0.011 0.005 0.004 0.004 0.004 0.004 0.004 0.004 0.004	8 828 7 587 1 871 5 728 5 1264 6 636 8 283 7 1672 3 440 1 1117 4 785 3 525 6 776 8 1880 2 1954 7 580 6 543 3 1924 1 1796 9 1453	233 167 111 36 74 96 68 234 53 87 243 79 166 292 310 73 79 97 112 192
nummer Z2-1 Z2-2 Z3-2 Z13-1 Z13-3 Z17-1 Z18-3 Z19-2 Z22-1 Z23-1 Z28-1 Z28-2 Z36-1 Z37-2 1-Z6-1 1-Z6-2 2-Z6-1 2-Z6-3 5-Z10-1 5-Z10-2	0.0065 0.0095 0.0029 0.0043 0.0036 0.0033 0.0037 0.0092 0.0109 0.0044 0.01 0.0052 0.0042 0.0045 0.0041 0.0055 0.0041 0.0039 0.0046 0.0051	0.0273 0.0146 0 0.01443 0 0.0233 0.0223 0.1296 0.0174 0.0155 0.1493 0.0203 0.0203 0.0203 0.0101 0 0 0.0298 0	0.0056 0.0066 0.002 0.0033 0.0033 0.0039 0.0099 0.0066 0.0099 0.0044 0.0044 0.0044 0.0044 0.0045 0.0045 0.0045 0.0045	(Pb, 688	U) 0 0 0 1E-06 3E-06 7E-06 3E-06 0 0 1E-05 0 0 3E-06 0 0 0 0 0 0 0 0 0 0	4.5E- 3.6E- 1.3E- -4E- 1.4E- -9E- -4E- -1E-	0 0 0 06 7 06 1.2 06 -1 06 -4 0 06 -1 0 06 -8 06 -4 0 0 0 -1 0 0 -1 0 0 -1 0 -1 0 -1 0 -1 0	0 0 0 .29E-07 284E-06 .65E-06 369E-06 .17E-07 0 .97E-05 0 .36E-07 .49E-06 0 0 0	-0.02 -0.00 0.34 0.25 0.54 0.19 -0.62 -0.00 -0.00 0.37 -0.67 -0.03 -0.18	221 221 238 944 964 902 927 9236 9016 9024 9062 9099 90773 90762 90999 9099	98.4 (9.08 9.04 (7.87 (6.18 6.19 (9.05 (6.88 (6.19 6.19 6.19 6.19 6.19 6.19 6.19 6.19	0.0668 0.109 0.1411 0.4419 0.1694 0.1637 0.3056 0.0811 0.3508 0.2008 0.203 0.2798 0.1442 0.0696 0.0592 0.3896 0.2763 0.1815 0.1597 0.1109 0.1184	0.006 0.009 0.003 0.003 0.003 0.003 0.003 0.009 0.011 0.003 0.010 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004	8 828 7 587 1 871 5 728 5 1264 6 636 8 283 7 1672 3 440 1 1117 4 785 3 525 6 776 8 1880 2 1954 7 580 6 543 3 1924 1 1796 9 1453 4 1350	233 167 111 36 74 96 68 234 53 87 243 79 166 292 310 73 79 97 112 192 250
nummer Z2-1 Z2-2 Z3-2 Z13-1 Z13-3 Z17-1 Z18-3 Z19-2 Z22-1 Z23-1 Z28-1 Z28-1 Z28-2 Z36-1 Z37-2 1-Z6-1 1-Z6-2 2-Z6-1 2-Z6-3 5-Z10-1	0.0065 0.0095 0.0029 0.0043 0.0036 0.0033 0.0037 0.0092 0.0109 0.0044 0.01 0.0052 0.0042 0.0045 0.0041 0.0055 0.0045 0.0041 0.0039 0.0046	0.0273 0.0146 0 0.1443 0 0.0233 0.0223 0.1296 0.0174 0.0155 0.1493 0.0203 0.0101 0 0 0.0298 0 0.0553 0.0616 0	0.0056 0.0066 0.0022 0.0033 0.0033 0.0039 0.0099 0.0066 0.0099 0.0044 0.0044 0.0044 0.0044 0.0044 0.0045 0.0045 0.0055 0.0066	(Pb, 68 8 7 1.41 6 5.07 2 2.88 8 8 8 8 8 8 8 8 8 9 -8 9 9 8 8 3 4 4 2 2 8 8 -1.9 6	U) 0 0 0 1E-06 3E-06 7E-06 3E-06 0 0 1E-05 0 0 3E-06 0 0 0 0 0 0	4.5E- 3.6E- 1.3E- -4E- 1.4E- -9E- -4E- -1E-	0 0 0 06 7 06 1.2 06 -1 06 -4 0 06 -8 06 -4 0 06 -1 0 0 0 0 0	0 0 0 .29E-07 284E-06 .65E-06 369E-06 .17E-07 0 .97E-05 0 .36E-07 .49E-06 0 0 .46E-06	-0.02 -0.00 0.34 0.25 0.54 0.19 -0.62 -0.00 0.90 -0.00 0.37 -0.67 -0.03 -0.18	221 221 238 944 9644 9627 9236 9016 9024 9062 9099 9099 973 962 973 9762 9762 9773 9762 9773 9762 9773 9775 9	98.4 (9.08 9.04 (7.87 (6.88 9.05 (6.88 (6.88 6.12 (6.9.23 (6.9	0.0668 0.109 0.1411 0.4419 0.1694 0.1637 0.3056 0.0811 0.3508 0.2008 0.203 0.2798 0.1442 0.0696 0.0592 0.3896 0.2763 0.1815 0.1597 0.1109	0.006 0.009 0.003 0.004 0.003 0.003 0.009 0.011 0.005 0.004 0.004 0.004 0.004 0.004 0.004 0.004	8 828 7 587 1 871 5 728 5 1264 6 636 8 283 7 1672 3 440 1 1117 4 785 3 525 6 776 8 1880 2 1954 7 580 6 543 3 1924 1 1796 9 1453 4 1350 7 632	233 167 111 36 74 96 68 234 53 87 243 79 166 292 310 73 79 97 112 192

9.2 U-Pb-Datierung mit der Ionensonde (SHRIMP)

Detritische Zirkone von den auch mit der EMS untersuchten 5 Quarzitvorkommen des Eckergneis-Komplexes wurden ebenfalls mit der Ionensonde datiert. Datierung und Datenauswertung erfolgten von Th. GEISLER. Alle SHRIMP-U-Pb-Daten sind in Anhang IV aufgelistet und in Abb. 83 in ein Konkordia-Diagramm geplottet. Abb. 84 zeigt die Altersverteilung, die sich aus den Daten ergibt, wenn man das Konkordia-Alter nach Ludwig (1998) bzw. in diskordanten Fällen das ²⁰⁷Pb/²⁰⁶Pb-Alter oder das obere Schnittpunktalter der Diskordia verwendet.

Die meisten Zirkone liefern Alter zwischen 900 und 1700 Ma. Diese Alter stammen von im Kathodenlumineszenzbild homogen oder kurvig zoniert erscheinenden Alterations- bzw. Rekristallisationszonen oder –säumen sowie von sektorzonierten Bereichen (Abb. 86).

Drei Zirkone mit Altern zwischen 410 und 436 Ma sowie ein Zirkon mit einem Alter von 566±6 Ma zeigen oszillierende Zonierung sowie eine abgerundete Morphologie (Abb. 86 a, b). Erstes ist typisch für magmatisch gewachsene Zirkone, während letzteres auf einen sedimentären Transport hinweist.

Das konventionelle untere Schnittpunktalter 560 Ma von BAUMANN et al. (1991) konnte nicht bestätigt werden. Es kann als Artefakt einer Mischung der verschiedenen detritischen Zirkongenerationen angesehen werden. Diese Alter wurden jedoch scheinbar durch chemische U-Th-Gesamtblei-Datierungen mit der EMS bestätigt. Die EMS-Messungen stammen aus Alterationsstrukturen (rz-Zonen), die unregelmäßig in den Kern der Zirkone vordringen.

In den in den SHRIMP-Präparaten vorliegenden und mit KL abgebildeten Zirkonen fand sich ein Zirkon (Abb. 86 f) mit Zonen, die breit genug waren, um sie mit der SHRIMP zu messen. An diesem Zirkon wurden drei Analysen durchgeführt und die Ergebnisse zusammen mit den EMS-Daten in das Diagramm PbO gegen UO₂ (Abb. 82-mit Sternen bezeichnet) sowie in das Konkordia-Diagramm (Abb. 85) eingetragen. Es wird deutlich, dass die U- Th- und Pb-Gehalte chemische PbO-UO₂-Verhältnisse liefern, die auf die Isochrone fallen, die durch die EMS-Daten von den rz-Zonen definiert wird (Abb. 82).

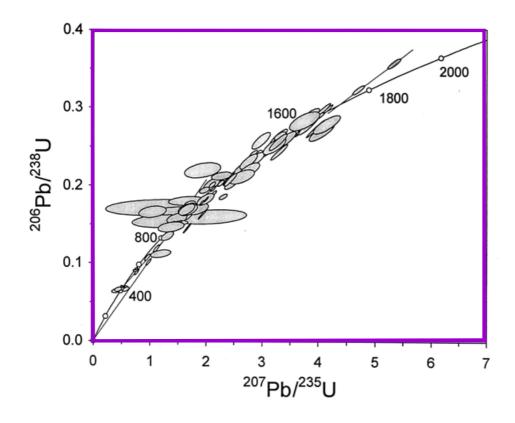
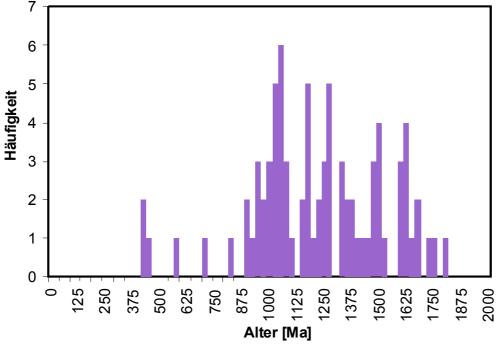



Abb. 83
KonkordiaDiagramm für UPb-Analysen
(SHRIMP):
Diskordias für
Zirkone mit mehr
als einem
diskordanten
Messpunkt sind
ebenfalls
eingezeichnet

Aus dem Konkordia-Diagramm in Abb. 85 wird deutlich, das alle drei Messpunkte inklusive Messpunkt 3 aus dem Kernbereich des Zirkons (Abb. 86-f) diskordante U-Pb-Verhältnisse ergaben, die auf einer Diskordia mit einem unteren und oberen Schnittpunktalter von 440±80 bzw. 961±110 Ma liegen. Dieses Ergebnis zeigt, dass hier das U-Pb-System eines svekonorwegischen, detritischen Zirkons höchst wahrscheinlich durch ein Fluid partiell zurückgesetzt wurde. Die neuen SHRIMP-Daten machen deutlich, dass bei der chemischen U-Th-Pb-Datierung mit der EMS mit Alterations- bzw. Rekristallisationsstrukturen gerechnet werden muss, selbst wenn die Messdaten innerhalb ihrer Fehler auf einer Gerade liegen. Dadurch können solche scheinbaren Alter aufgrund eines partiellen Pb-Verlustes bedeutungslos sein. Die Übereinstimmung zwischen EMS- und SHRIMP-Altern für konkordante Zirkone sowie für die rz-Zonen zeigt hingegen (Abb. 85), dass es sich nicht um analytische Probleme handelt (GEISLER et al. 2002).

Abb. 84Altersspektrum von detritischen Zirkonen aus Quarziten des Eckergneis-Komplexes (hier wurden Konkordia-Alter (SHRIMP), 207 Pb/206 Pb-Alter bzw. obere Schnittpunktalter verwendet)

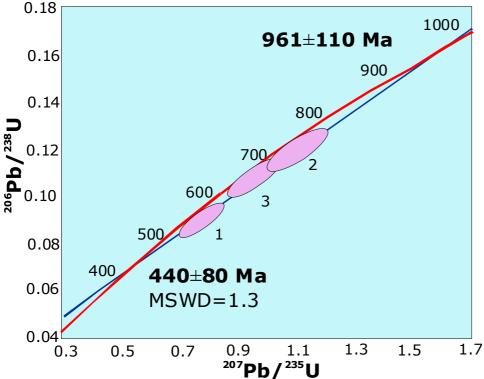
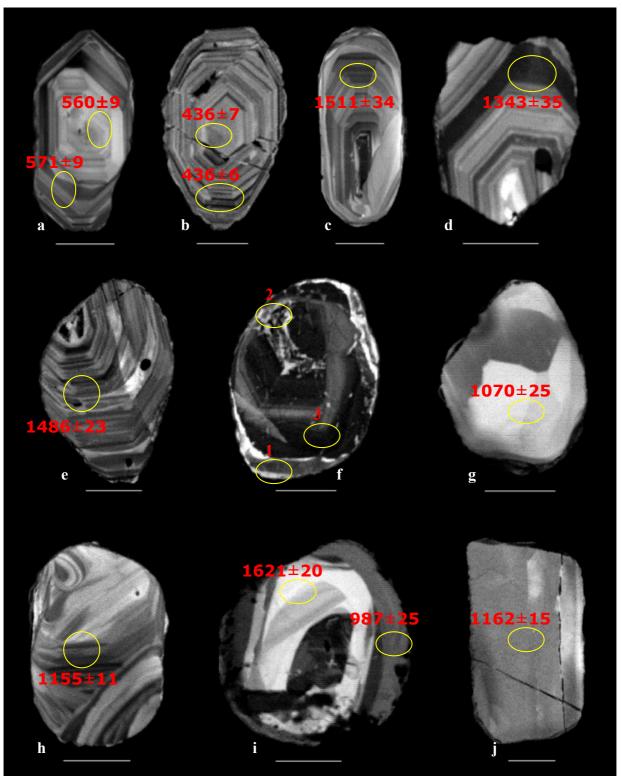



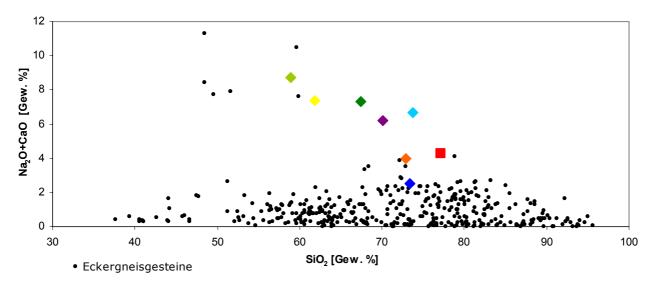
Abb. 85
KonkordiaDiagramm für die drei SHRIMPAnalysen vom
Zirkon 1-Z12, die jeweils durch die 2σ-Fehlerellipse markiert sind,
Messpunkte sind im KL-Bild (Abb. 86 f) gekennzeichnet

Abb. 86 KL-Bilder von repräsentativen, detritischen Zirkonen.

Die SHRIMP-Messpunkte sind durch Ellipsen markiert. Die Alter sind in Ma angegeben, die Skalierungsbalken entsprechen 50 μ m.

in Abb. 86-f (Zirkon 1-Z12) sind nur die Messpunktnummern angegeben, da die Analysen diskordante U/Pb-Alter ergeben haben; (a) 1-Z15; (b) 3-Z2; (c) 1-Z20, (d) 4-Z8; (e) 1-Z4, (f) 1-Z12; (g) 1-Z6; (h) 1-Z5; (i) 4-Z14; (j) 3-Z1.

10. Protolithklassifizierung und tektonische Zuordnung des Eckergneis-Komplexes

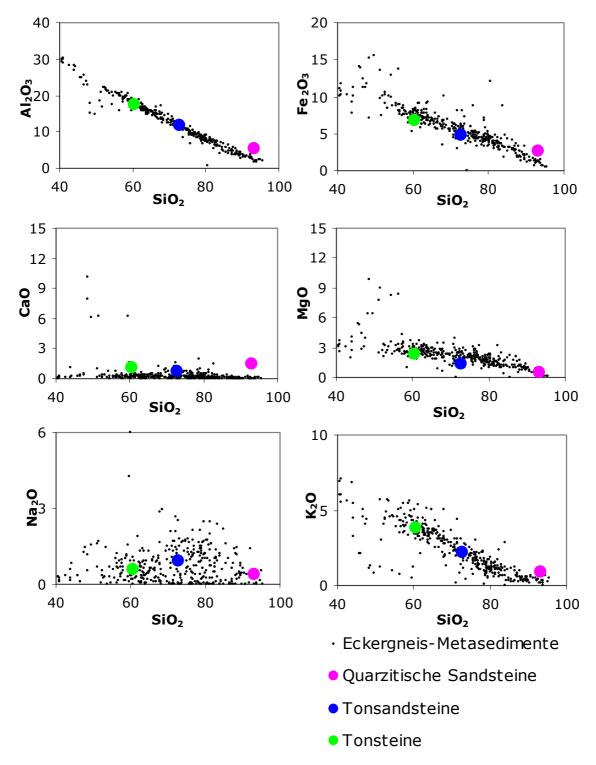

10.1. Metasedimente

Die Eckergneislithologie wird, wie schon der Geländebefund zeigte, von karbonatfreien, pelitisch-psammitischen Sedimenten dominiert. Besonders kennzeichnend sind hohe SiO₂- und Al₂O₃-Gehalte sowie sehr geringe CaO-Gehalte. Dies spricht für eine Protolithzusammensetzung aus ehemaligen Sandsteinen und Tonen.

Zur genaueren Kennzeichnung des Charakters der sedimentären Edukte werden nachfolgend direkte Multielementvergleiche mit relevanten siliziklastischen Sedimentserien unternommen. Vergleiche durch geochemische Diskriminierungsdiagramme nach HERRON (1988) erwiesen sich als inadäquat.

Die Eckergneis-Metasedimente werden in Abb. 87 mit repräsentativen Grauwackenserien verglichen. Dabei ist es deutlich zu sehen, dass die summierenden Gehalte von CaO und Na₂O in den Eckergneis-Gesteinen gegenüber denen der Vergleichsgesteine gering sind. Eine maßgebliche Beteiligung von Plagioklas an der Zusammensetzung der Edukte kann damit ausgeschossen werden.

Abb. 87 Korrelation SiO_2 vs. Na_2O+CaO [Gew.%]: Eckergneis-Gesteine verglichen mit nicht metamorphen Grauwacken und Arkosen. In Abb. 87, 88, 89, 91 und 92 wurden RFA-Daten der Eckergneis-Gesteine von Schlüter (1983) mit einbezogen, (Abkürzung DS*: Durchschnitt)



- ◆ DS* von 7 Grauwacken, North Range Group (Trias), Neuseeland (Boles, 1974)
- ◆ DS von 9 quarzarmen Grauwacken, Taringatura Group (Trias), Neuseeland (Boles, 1974)
- DS von 9 Grauwacken, Gazelle Fm. (Silur) USA (Condie & Snansieng, 1971)
- ◆ DS von 21 quarz-intermediären Grauwacken, Franciscan (Jura-Kreide), USA (Crook, 1974)
- DS von 25 Grauwacken, Harz (Devon-Karbon), Deutschland (Huckenholz, 1962)
- DS von 7 Subgrauwacken, Duzel Fm. (Ordovizium), USA (Condie & Snansieng, 1971)
- ◆ DS von 6 Grauwacken, Greenland Group (Ordovizium), Neuseeland (Nathan, 1976)
- DS von 32 Arkosen, (Devon-Karbon), Rhenoherzynikum (Schulz-Dobrick 1975)

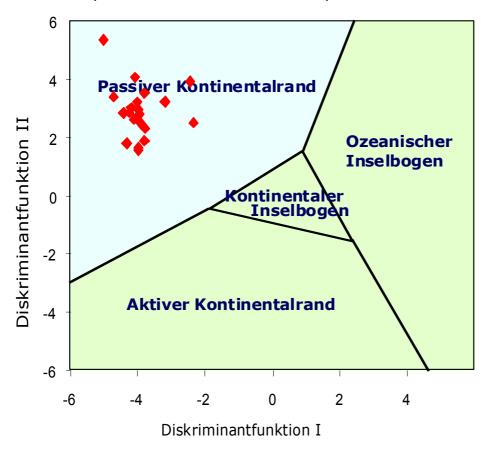
Im Vergleich mit quarzitischen Sandsteinen, Tonsandsteinen und Tonsteinen des Rhenoherzynikums (Analysen von SCHULZ-DOBRICK 1975) lässt sich hingegen eine deutliche chemische Übereinstimmung der Eckergneis-Gesteine erkennen (Abb. 88).

Somit lässt sich der Eckergneis-Protolith als Abfolge kompositionell reifer Sande, Tone und Mischgesteine davon charakterisieren. Die Sedimente waren karbonatfrei.

Abb. 88 Korrelationsdiagramme: Eckergneis-Gesteine verglichen mit verschiedenen Sand- und Tonsteinen des Rhenoherzynikums [Gew.%] (Analysen von Schulz-Dobrick 1975)

Unter zahlreichen Diskriminierungsdiagrammen zur Ermittlung paläotektonischer Milieus von Sedimenten (BHATIA 1983, ROSER & KORSCH 1986, 1988) erwies sich nur das Schema von BHATIA (1983) als sinnvoll.

BHATIA (1983) klassifiziert Sandsteine aus verschiedenen tektonischen Milieus wie passiven Kontinentalrändern (u.a. intrakratonische und Rift-gebundene Gräben), aktiven Kontinentalrändern, ozeanischen Inselbögen und Inselbögen auf Kruste mit kontinentalem Charakter. Diese Klassifizierung basiert auf Diskriminantfunktionen (DF), die aus Hauptelementanalysen von 69 paläozoischen Sandsteinen berechnet wurden:


DF I $(-0.0447 \text{ SiO}_2 - 0.972 \text{ TiO}_2 + 0.008 \text{ Al}_2\text{O}_3 - 0.267 \text{ Fe}_2\text{O}_3 + 0.208 \text{ FeO} - 3.082 \text{ MnO} + 0.140 \text{ MgO} + 0.195 \text{ CaO} + 0.719 \text{ Na}_2\text{O} - 0.032 \text{ K}_2\text{O} + 7.510 \text{ P}_2\text{O}_5 + 0.303) \text{ und}$

DF II $(-0.421SiO_2 + 1.988 TiO_2 - 0.526 Al_2O_3 - 0.551 Fe_2O_3 - 1.610 FeO + 2.720 MnO + 0.881 MgO - 0.907 CaO - 0.177 Na₂O - 1.840 K₂O + 7.244 P₂O₅ + 43.57) Gew.%.$

Nach diesem Diagramm zeigen die Eckergneis-Quarzite Charakteristika von Sedimenten passiver Kontinentalränder (Abb. 89). Sande und Sandsteine aus diesem tektonischen Milieu zeigen kompositionelle Reife durch hohe Gehalte von SiO₂ bei relativ geringen Al₂O₃, TiO₂, Na₂O und CaO. Das Verhältnis K₂O/Na₂O ist in Quarziten dieser Regionen größer als 1. Das Verhältnis K₂O/Na₂O in den Eckergneis-Quarziten beträgt durchschnittlich 3,3.

Quarzite ozeanischer Inselbögen, die überwiegend von kalkalkalischen Magmatiten geliefert werden, zeigen gegenüber Kontinentalrand-Quarziten höhere Werte von TiO_2 , Al_2O_3 , Na_2O und Fe_2O_3 und enthalten weniger SiO_2 und K_2O .

Abb. 89 Diskriminant-Funktion-Diagramm für Sandsteine (BHATIA 1983) Eckergneis-Quarzite sind rot markiert (Diskriminantfunktionen: im Text S.75)

Quarzite reifer Inselbögen mit kontinentaler Affinität werden in besonderem Maße von felsischen vulkanischen Gesteinen bezogen und werden deshalb durch höhere SiO_2 - und K_2O -Gehalte, ein K_2O/Na_2O -Verhältnis von ca. 0.6 und niedrigere Fe_2O_3 +MgO-Gehalte als in Quarziten von ozeanischen Inselbögen gekennzeichnet. An aktiven Kontinentalrändern wird der Quarz der Sandsteine, die später Quarzite werden können, überwiegend durch Hebung und Erosion des oberen kontinentalen Kruste sowie der auflagernden Vulkanite geliefert. Das wird durch höhere SiO_2 - und K_2O -Gehalte reflektiert sowie durch ein K_2O/Na_2O -Verhältnis von ca. 1.

Ähnlich wie die Metasandsteine repräsentieren auch die Metapelite des Eckergneis-Komplexes refraktäres Material, jedoch mit feinkörnigeren Anteilen.

Die Eckergneis-Metasedimente (Abb. 90) sind im Vergleich zu NASC (North American Shale Composite, GROMET et al. 1984) an K₂O und CaO verarmt. Sie sind tendenziell refraktärer als NASC. PAAS (Post-Archean Australian Shales) haben einen sehr ähnlichen Chemismus wie die Eckergneis-Metasedimente.

Im weiteren wurden die Eckergneis-Metasedimente mit zahlreichen Ton-Sandstein-Folgen von verschiedenen tektonischen Milieus geochemisch verglichen. In Abb. 90 zeigt sich eine deutliche chemische Übereinstimmung der Eckergneis-Metasedimente mit einigen Ton-Sandstein-Folgen, die an passiven Kontinentalrändern abgelagert wurden.

Präkambrische und paläozoische kieselige Gesteine der "Iberian Range" (NE Spanien, BAULUZ et al. 2000) bestehen überwiegend aus Quarz, Illit-Glimmer-Phasen und/oder Kaolinit. Als Nebengemengeteile enthalten sie Chlorit, Feldspäte und Karbonate. Die Geochemie dieser Sandsteine ist typisch für ein kratonisches Milieu. Der Chemismus dieser Gesteine stimmt mit dem der Eckergneis-Metasedimente gut überein, abgesehen von vereinzelten Proben der Iberian Range mit etwas erhöhten Fe₂O₃- und K₂O-Gehalten. Der CIA (Chemical Index of Alteration, s. S. 88) dieser Schiefer variiert zwischen 70-85.

Pelitische Granulite der Delhi-Supergroup (meso-neoproterozoisch) im Aravalli Mountain Belt (BISWAL et al. 1998) bestehen aus metasedimentären Gesteinen (metapelitische Granulite, Kalkgranulite und verschiedene Intrusiva), die grünschiefer- bis amphibolitfaziell überprägt worden sind. Die metapelitischen Granulite bestehen aus Cordierit, Spinell, Biotit, Granat, Korund, Zirkon, Sillimanit, Orthopyroxen und Quarz. Der Chemismus dieser Granulite stimmt ebenfalls mit den untersuchten Gesteinen des Eckergneis-Komplexes gut überein. Manche Granulite zeigen allerdings einen etwas niedrigeren Fe₂O₃-Gehalt als die Eckergneis-Metasedimente.

Insgesamt zeigt sich, dass die Eckergneis-Metasedimente geochemische Merkmale von siliziklastischen Gesteinen passiver Kontinentalränder haben.

NECHAEV & ISPHORDING (1993) haben 1000 Schwermineralanalysen an 50 quartären Sedimentproben der Nordsee, des Roten Meeres, des Ost-Chinesischen Meeres und von Vancouver Island durchgeführt. Anhand dieser Untersuchungen konnten bestimmte Assoziationen akzessorischer Minerale als indikatorisch für Kontinentalränder unterschiedlicher tektonischer Milieus definiert werden.

Die Schwermineralzusammensetzung der Eckergneis-Metasedimente aus Zirkon, Rutil, Chromit und vereinzeltem Monazit und Disthen qualifiziert sie als aus einem reifen, passiven Kontinentalrand stammend. Diese stark eingeschränkte Schwermineralassoziation ist typisch für reife Kontinentalränder. Die Herkunftsgebiete unterliegen hier keinen aktiven tektonischmagmatischen Prozessen. In solchen Gebieten sind Sedimente durchweg mehrfach aufgearbeitet worden. Durch intensive chemische Verwitterung werden instabile Minerale zersetzt. Der refraktäre Charakter der Schwermineralspektren der Eckergneis-Metasedimente weist auf besonders reife siliziklastische Sedimente als Edukte hin (Abb. 91).

Abb. 91 zeigt, dass in den Eckergneis-Metapsammiten die für einen aktiven Kontinentalrand charakteristischen Schwerminerale wie z.B. Olivin, Iddingsit, Pyroxene, Hornblende und Epidot fehlen. Abbildung 91 bestätigt ergänzend zu Abb. 89, dass der Eckergneis an einem passiven Kontinentalrand abgelagert wurde.

Zusammenfassend: die Geochemie des Eckergneis-Komplexes weist wie die Lithologie auf eine Protolithzusammensetzung aus Sandsteinen und Tonen. Die geochemischen Eigenschaften der kompositionell reifen Eckergneis-Metasedimente sowie ihre stark refraktären Schwermineralspektren deuten daraufhin, dass sie an einem passiven Kontinentalrand abgelagert wurden.

Abb. 90 Korrelationsdiagramme der Eckergneis-Gesteine, Sandsteine und Tonschiefer der "Iberian Range" und pelitischer Granulite der Delhi-Supergroup sowie NASC, PAAS [Gew. % Oxide]

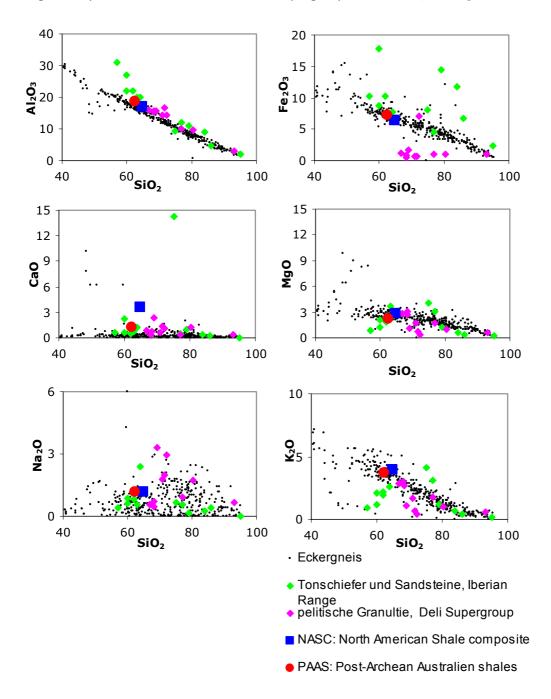
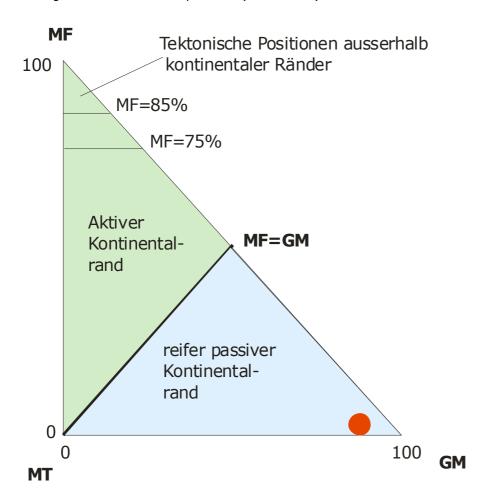
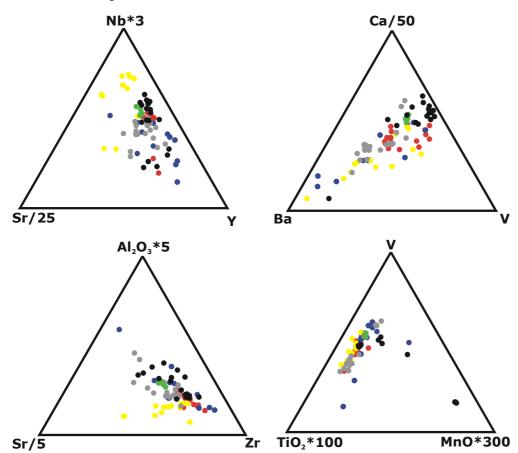



Abb. 91 Schwermineralcharakteristik in Sedimenten verschiedener tektonischer Milieus (NECHAEV & ISPHORDING 1993):

- MF Gesamtgehalt von Olivin, Iddingsit, alle Pyroxene, grün-braune Hornblende;
- MT Gesamtgehalt von Amphibolen, Epidot und Granat;GM Gesamtgehalt von Zirkon, Turmalin, Staurolith. Monazit, Andalusit, Sillimanit und Disthen. Eckergneis-Schwermineralspektrum (roter Punkt)

10.2. Metavulkanite


Die geringmächtigen Metavulkanite im Eckergneis-Komplex sind basaltischer Zusammensetzung und weisen tholeiitischen Charakter auf (Kap. 8.2). Einige davon (Eckertal, Diebesstieg) wurden von SCHLÜTER (1983) bearbeitet und als Ozeanboden-Basalte (OFB) charakterisiert. Nach HAUPT (1996) sollten sich die Metavulkanite (Ostufer des Eckerstausees, Diebesstieg und Sellenberg) im Bereich eines Backarc-Beckens gebildet haben (Kap. 3).

Unter Zuhilfenahme der am häufigsten benutzten Diskriminierungsdiagramme für basaltische vulkanische Gesteine wurde zunächst ein Versuch unternommen, die Eckergneis-Metavulkanite ansatzweise zu klassifizieren. Leider erwiesen sich die Diskriminierungs-Diagramme von PEARCE & CANN (1973), PEARCE & NORRY (1979), SHERVAIS (1982), MULLEN (1983), MESCHEDE (1986) als inadäquat. Die Eckergneis-Metavulkanite konnten also unter Zuhilfenahme dieser Diskriminierungsdiagramme nicht tektonomagmatisch zugeordnet werden, weil sie entweder über alle Diskriminierungsfelder gestreut sind oder ausser der Felder liegen.

Da die Metavulkanite im Eckergneis-Komplex vereinzelte geringmächtige Einschaltungen bilden, ist eine Entsehung als Ozeanboden oder Back Arc wenig plausibel. Es handelt sich um Ganggesteine. Um diese Möglichkeit zu prüfen, werden die untersuchten Metavulkanite nachfolgend mit einigen, nicht metamorphen Ganggesteinen klarer tektonischer Stellung verglichen. Dafür wurden Multielementendiagramme verwendet, die von VINX (1995) für die geschiebekundliche Aussortierung von Gabbroid- und Dolerit-Assoziationen ("Leitseriemethode") entwickelt wurden (Abb. 92 A, B).

Abb. 92 A Vergleich der Eckergneis-Metavulkanite mit einigen nicht metamorphen Ganggesteinen

- NW-Dolerit, intrakontinental (Permokarbon), SW-Schweden
- NW-Schottische Basalte, NW-Highlands Nordatlantik (Tertiär)
- Oslobasalt, intrakontinental (Permokarbon)
- intrakontinentale, proterozoische Diabase, S-Schweden
- intakontinentaler, proterozoischer Kinne-Diabas, S-Schweden
- Eckergneis-Metavulkanite

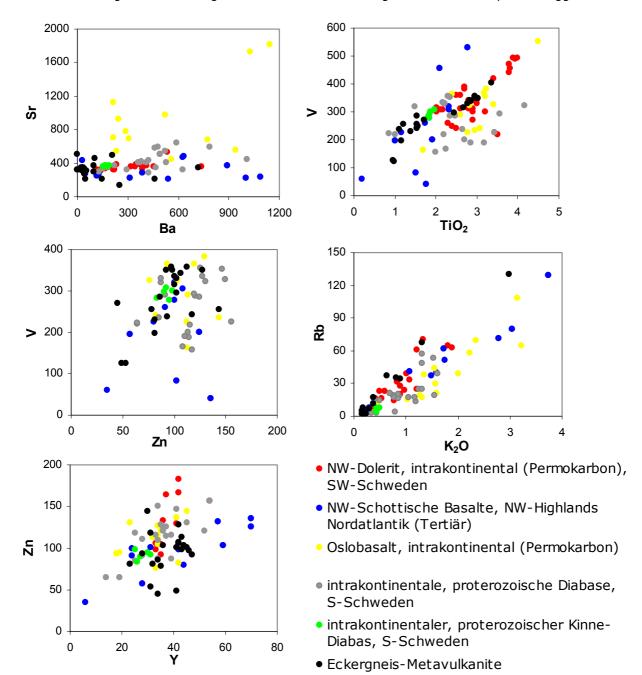


Abb. 92 B Vergleich der Eckergneis-Metavulkanite mit einigen nicht metamorphen Ganggesteinen

Dabei werden Oxide wie Al₂O₃, K₂O, TiO₂ und MnO, Elemente wie Nb, Sr, Ca, Ba, Zr, V, Zn, Rb und Y in verschiedenen Korrelationen verwendet. Die hier verglichenen Analysen sind von R. VINX zur Verfügung gestellt worden. Die Nordwest-Dolerite, schottischen Basalte, Oslobasalte, skandinavischen proterozoischen Diabase und Kinne-Diabas haben sich bei intrakontinentaler anorogen- krustaler Dehnung gebildet. Die verglichenen Ganggesteine konnten nach den üblichen Diskriminierungsdiagrammen ebenfalls nicht sinnvoll zugeordnet werden.

Der Vergleich der verschiedenen Ganggesteine mit den Eckergneis-Metavulkaniten zeigt überwiegende Übereinstimmung, so dass die Eckergneis-Metavulkanite ihre Entstehung anorogener Dehnung verdanken können. Paläorifte, an denen Extension durch Grabenbildung und dazugehöriger Vulkanismus bereits zum Erliegen kamen, befinden sich an allen passiven Kontinentalrändern (EISBACHER 1996).

11. Klassifizierung der Sedimentliefergebiete

11.1. Schwerminerale in den Metasedimenten

Das Schwermineralspektrum in den Eckergneis-Metasedimenten ist hoch refraktär und besteht hauptsächlich aus Zirkon, Chromit, Rutil und vereinzeltem Granat und Monazit.

Zirkon bildet zum einen idiomorphe, prismatische Kristalle, die auf jüngere Alter und kürzeren Transportweg aufweisen (Kap. 7.1). Zum anderen kommen elliptisch gerundete Körner vor. Hoher Rundungsgrad dieser Zirkone weist auf längeren Transportweg und mehrere sedimentäre Zyklen in den Liefergebieten hin.

Chromit kommt fast in allen untersuchten Gesteinen vor und bildet gut gerundete detritische Körner. Sie entstammen mafischen und ultramafischen Gesteinen (Kap. 11.1.1).

Rutil kommt in Form von prismatischen oder abgerollten Körnern mit intensiver braunroter oder gelber Farbe vor. Nach FORCE (1980) stammen detritische Rutile meist aus regionalmetamorphen Gebieten. Rutil kommt in Amphiboliten und Eklogiten vor (DEER et al. 1992). In den Schwermineralseifen im Eckergneis-Komplexes steigt der Rutil-Anteil bis zu 40 Vol %

Rundlicher, z.T. unregelmäßig geformter detritischer Granat (Almandin) weist ebenfalls auf metamorphe Liefergebiete.

Vereinnzelter Monazit tritt in Form von kleinen, rundlichen Körnern gelblicher Farbe auf. Monazit kommt in sauren Magmatiten und in metamorphen Schiefern, Gneisen und Granuliten vor.

Von SCHLÜTER (1983) in einer Schwermineralseife nachgewiesener Disthen weist auf Al₂O₃-reiche Metamorphite höherer Druckbereiche hin.

Die Gesamtauswertung der Schwermineralzusammensetzungen der Eckergneis-Metasedimente spricht für ein kratonisches Liefergebiet mit sauren und intermediären Magmatiten sowie mit mafischen und ultramafischen Gesteinen.

11.1.1. Chromite

Chromspinelle werden als petrogenetische Indikatoren in Hinsicht auf (ehemals) einbettende mafische und ultramafische Gesteine verwendet (IRVINE 1965, 1967).

Chromitlagerstätten sind ganz überwiegend liquidmagmatische Segregationsbildungen. Es gibt sie einerseits in geschichteten, basischen Intrusionen mit z.T. weit aushaltenden Erzflözen (stratiforme Chromiterze bzw. Bushveld-Typ) und andererseits in Ophiolithen, wo die Erzkörper durch Fliessen und Scherung linsen- und sackförmige Gestalt haben (podiforme Chromiterze alpinotyper Peridotite).

Die Chromite dieser beiden Hauptgruppen unterscheiden sich deutlich in ihrer chemischen Zusammensetzung. Stratiforme Chromite liegen als Kumulate in basisch-ultrabasischen Intrusionen. Podiforme Chromiterze liegen in Dunitlinsen der tektonisierten Erdmantelgesteine bzw. in den tiefsten Teilen flach subkrustaler ultramaphischer Kumulate der Ophiolithabfolgen. Ihre Textur und äußere Form wird durch die Lage in der Ophiolithstratigraphie bestimmt, z.T. natürlich auch durch spätere Deformation während und nach der Platznahme der Ophiolithe. Die Chromite podiformer Lagerstätten haben höhere MgO/FeO- und Cr/Fe-Verhältnisse als stratiforme Chromite und enthalten bis 62 Gew.% Al₂O₃, letzteres korreliert positiv mit zunehmend höherer Position in der Ophiolithstratigraphie.

Chromspinelle in Sedimenten sind ausschließlich detritischen Ursprungs (DEGENS. 1968). Dank ihrer chemischen und mechanischen Robustheit werden sie in Sand und verschiedenen Sedimentgesteinen angereichert und können dann Hinweise auf ihre Herkunft liefern.

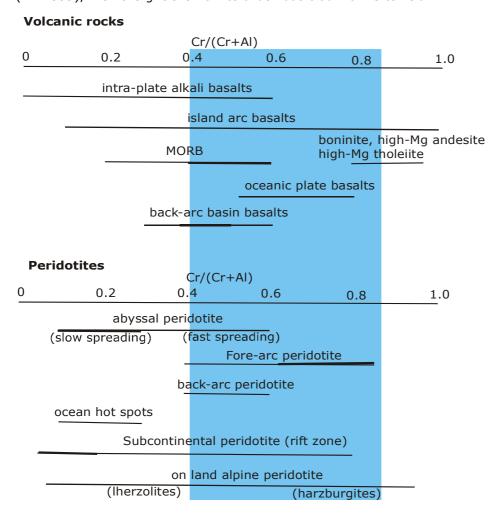
Folgende ultramafische und mafische Gesteine unterschiedlicher tektonischer Milieus können als mögliche Ausgangsgesteine der Chromspinelle in Sedimenten in Betracht gezogen werden:

- 1. Detritische Chromite aus MOR-verwandten Basalten und deren mafischen und ultramafischen Kumulaten können in zwei der folgenden Sedimenttypen gefunden werden:
 - a. Sedimente, die von mittelozeanischen Rücken oder Subduktionszonen in der Tiefsee geliefert wurden.
 - b. Sedimente, die von kontinentalen Regionen geliefert wurden, wo MORB und assoziierte Ultramafitite als Teil obduzierter Ophiolithe von der Oberfläche angeschnitten sind;
- 2. Cr-Al-Spinelle in mafischen Laven kontinentaler Herkunft sind auf seltene Gesteine wie Pikrite, Limburgite und Melilithite (TRÖGER 1969) beschränkt;
- 3. Mafische und ultramafische Kumulate kontinentaler Layered Intrusions;
- 4. andere wichtige Ausgangsgesteine von Chromspinellen sind große Peridotit-, Dunit- und Pyroxenit-Massen, die aus dem Erdmantel stammen als Teile von alpinotypen Ophiolith-Komplexen;
- 5. Verschiedene Typen von Erdmantel-Xenoliten können als Chromspinellträger erwähnt werden, aber sie sind mengenmäßig unbedeutend.

LEE (1999) hat die Cr-Zahl (Cr/Cr+Al) von Chromspinellen in vulkanischen Gesteinen und Peridotiten verschiedener tektonischer Positionen zusammengestellt. Chromite der Eckergneis-Metasedimente nehmen in diesem Diagramm ein breites Feld ein (Abb. 93), was eine eindeutige tektonische Diskriminierung erschwert.

Nach einer Auswertung von Literatur-Daten zum Chromitchemismus und ihrer tektonischen Positionen, ist deutlich geworden, dass Eckergneis-Chromite eine außergewöhnliche chemische Zusammensetzung haben: die untersuchten Chromite haben einen extrem niedrigen MgO-Gehalt, der zwischen 0.18 und 1.40 Gew.% variiert. Dementsprechend ist die Mg-Zahl (Mg/(Mg+Fe²⁺) auch niedrig und beträgt ebenfalls 0.005-0.03. Die Mikrosondenanalysen der Chromite in den Eckergneis-Metapsammiten sind in Anhang IIIb aufgeführt.

In der Regel sind die Chromite mit einem so niedrigen MgO-Gehalt entweder hydrothermal alteriert und haben sich in Ferrochromit umgewandelt (mit Fe₂O₃-Gehalten bis 40 Gew.%), oder sie enthalten Entmischungslamellen, die einen abweichenden Chemismus vom Wirt-Mineral haben. In den Eckergneis-Chromiten bleibt der Fe₂O₃-Gehalt jedoch unter 8,76 Gew.% (durchschnittlich 3%) und es sind auch keine Reaktionsgefüge zu beobachten.


Einen ähnlichen Chemismus zeigen Chromite in einer einzigen Probe (PT-27) in den Metakarbonaten des Oetztal-Stubai-Komplexes (Tirol, Österreich, Mogessie et al. 1988). Die Metakarbonate bilden Linsen und Lagen in einer polymetamorphen Amphibolit-Masse. Der Cr₂O₃-Gehalt variiert zwischen 59 und 61 und FeO_{total}- zwischen 27.6 und 28.2 Gew.%. Der MgO-Gehalt beträgt im Durchschnitt 1.69 Gew.%. Ein anderes Beispiel für Mg-arme Chromspinelle sind Chromite in mafischen Gängen des Wooley Greek Batholith, Klamath Mountains, California. Der Komplex ist zoniert mit einer Abfolge von zwei-Pyroxen-Gabbro (Gabbronorit) bis hin zu Hornblende-Biotit-Graniten. Diese Chromite sind ebenfalls durch einen sehr niedrigen MgO-Gehalt von 0.68-1.13 Gew.% gekennzeichnet. Der FeO_{total}-Gehalt beträgt 48-, Cr₂O₃- variiert zwischen 39.14-41.38 Gew.%. Al₂O₃ bleibt überall unter 7 Gew.% (BARNES 1983). Diese sind die einzigen mir bekannt gewordenen, dokumentierten Chromite, die einen Mg-armen Chemismus wie die Chromite der Eckergneis-Metasedimente haben. In beiden Fällen wurde der auffällige Chemismus nicht erklärt.

Zum Vergleich wurde im Rahmen dieser Arbeit auch das Schwermineralspektrum von Quarziten des Acker-Bruchberg-Zuges (Abb. 1) untersucht. Der Acker-Bruchberg-Zug ist ein 3 bis 4 km breiter und 20 km langer markanter Höhenrücken innerhalb des Rhenoherzynikums, der sich in seiner nordwestlichen Fortsetzung – unterbrochen vom Brockenpluton – östlich Bad Harzburg fortsetzt, hierbei einer Länge von nur 1,5 km und einer Breite von 20 km. Die Sandsteine des Acker-Bruchberg-Zuges bilden eine schmale Faziesscheide (SCHWAN 1967) zwischen dem kalkig-pelitischen Oberdevon des nordwestlichen Oberharzes und dem kieseligpelitischen oder in Flinz-Fazies ausgebildeten Oberdevon des Unterharzes (WACHENDORF 1986).

In den Quarziten des Acker-Bruchberg-Zuges sind die Schwerminerale zwischen den Quarzkörnern verteilt, während in den Eckergneis-Quarziten aufgrund einer granoblastischen Umkristallisation praktisch alle Schwerminerale in Quarz eingeschlossen sind. Der FeO_{total}-Gehalt in diesen Chromiten beträgt 14.5-16.2, der Gehalt an Cr₂O₃- schwankt zwischen 31.8-37.4, und Al₂O₃-Gehalt liegt zwischen 32-38 Gew.%. Der MgO-Gehalt beträgt meistens 14-15.8 Gew.% und ist somit viel höher als in den Eckergneis-Chromiten. Vereinzelte Chromit-Kristalle zeigten jedoch die für die Eckergneis-Chromite signifikante Mg-Armut. Dies deutet darauf hin, dass ein Teil der Chromite in den Acker-Bruchberg-Quarziten die gleiche Herkunft hat, wie die Chromite der Eckergneis-Metasedimente. Die magnesiumreichen Chromite der Acker-Bruchberg-Quarzite stammen wohl von einem anderen Ausgangsgestein.

In Tab. 8 werden einige Chromit-Zusammensetzungen in Verbindung mit ihren tektonischen Milieus zum Vergleich dargestellt (STOWE 1994).

Abb. 93 Cr-Zahl von Chromspinellen in vulkanischen Gesteinen und Peridotiten verschiedener tektonischer Milieus: Die fettmarkierten Bereiche zeigen die an häufigsten vorkommenden Werte an (LEE 1999), Die Eckergneis-Chromite bilden das blau markierte Feld

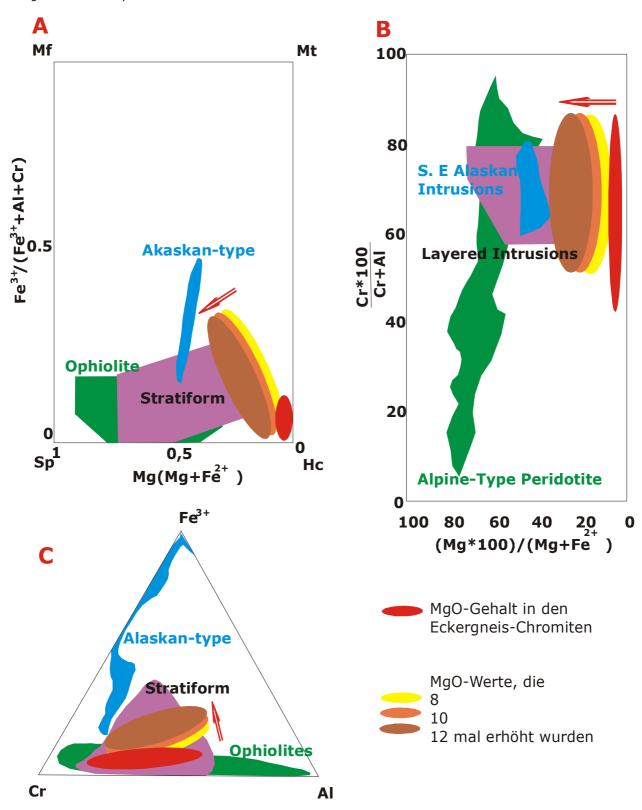
Unter Zuhilfenahme der am häufigsten benutzten Diskriminierungsdiagramme (Abb. 94) lassen sich die Chromite der Eckergneis-Metasedimente tektonisch nicht zuzuordnen, da sie in keines der Diskriminierungsfelder fallen.

Im Diagramm Mg-Zahl (Mg*100/(Mg+Fe²⁺)) vs. Cr-Zahl (Cr*100/(Cr+Al)) liegen die untersuchten Chromite außerhalb der Felder, wegen ihrer niedrigen Mg-Zahl (Abb. 94). Aus demselben Grund können sie ebenfalls nicht nach dem binären Diagramm Mg(Mg+Fe²⁺) vs. Fe³⁺/(Fe³⁺+Al³⁺+Cr³⁺) für detritische Chromite eingestuft werden.

In dem Dreieckdiagramm Cr³+/Fe³+/Al³+ mit Diskriminierungsfeldern für stratiforme, ophiolithische und Alaska-Typ-Lagerstätten lassen sich die Eckergneis-Chromite ebenfalls nicht zuordnen, weil sie in einem Bereich liegen, in dem zwei verschiedene Felder (Stratiform und Ophiolithe) sich überlappen.

Die Elemente Cr³+ und Al³+ verhalten sich mehr als Mg²+ immobil. Es ist weitgehend in Betracht zu ziehen, dass der ursprüngliche Mg²+-Gehalt in den untersuchten Chromiten anfänglich höher gewesen ist und dass die Chromite während einer Metamorphose oder unter hydrothermaler Einwirkung Mg verloren haben. Diese Überlegung war der Grund für eine Kalkulation, wobei der Mg-Gehalt jeweils um 8, 10 und 12 mal erhöht wurden, während die Summen aller anderen Oxide komplementär reduziert wurden. Wie in Abb. 94 B zu sehen ist, wandern die untersuchten Chromite so ins Feld der Layered Intrusions hinein. In Abb. 94 A und C wandern sie ebenfalls in das Feld der Chromite stratiformer Lagerstätten hinein. Layered Intrusions und stratiforme Lagerstätten entsprechen einander.

Dieses lässt vermuten, dass in den Liefergebieten der Metasedimente des Eckergneis-Komplexes eine oder mehrere mafisch-ultramafische Layered Intrusions vorlagen.


Tab. 8 Einige Chromite und ihre indikatorischen Zahlen in Verbindung zu tektonischen Milieus (nach Stowe 1994) einschließlich Eckergneis-Chromiten (blaumarkiert)

Lagerstätten	Assozierte Minerale	Mg-Zahl	Cr-Zahl	Cr/Fe	Fe ³⁺ /Fe ²⁺	Ti ⁴⁺					
Kontinental: Layered Intrusions											
Bushveld	Ol, Px, Pl	0.24058	0.60-0.75	0.95-3.0	0.16-1.12	0.13-1.06					
Great Dyke	Ol	0.36-0.67	0.7-0.8	2.1-3.9	0.14-0.26	0.02-0.13					
Stillwater	Ol, Pl	0.39-0.57	0.6-0.66	1.0-2.1	0.14-0.70	0.02-0.28					
niedrige ursprüngliche	niedrige ursprüngliche Mg-Zahl mit breiter Streuung, niedrige Cr-Zahl-Streuung, veränderliche, hohe										
Fe ³⁺ - und Ti-Gehalte	-					·					
Ophiolithe segregie	rt										
Orhaneli	Ol, Srp	0.45-0.65	0.58-0.85	2.5-4.2	0.08-0.56	0.01-0.04					
Zypern	Ol, Srp	0.47-0.74	0.52-0.84	1.9-3.8	0.02-0.48	0.02-0.04					
Waziristan	OI, Px	0.36-0.68	0.59-0.81	1.6-3.8	0.14-0.29	0.01-0.06					
hohe ursprüngliche Mg-Zahl mit mäßiger Streuung, mäßig bis hohes Cr/(Cr+Al), niedriger Ti ⁴⁺ -Gehalt											
Ophiolithe podiform: Manteltektonite											
Semail, Oman	OI	0.47-0.71	0.11-0.8	0.8-3.9	0.00-0.24	0.01-0.04					
Thetford	OI	0.43-0.64	0.44-0.77	1.3-3.0	0.08-0.36	0.01-0.05					
Neukaledonien	OI, Cpx	0.36-0.72	0.21-0.84	1.4-4.6	0.00-0.46	0.01-0.03					
Pakistan, Zhob	OI, Px	0.58-0.72	0.6-0.8	1.8-3.9	0.26-0.34	0.02-0.04					
hohe ursprüngliche Mg-Zahl mit geringer Streuung, sehr hohes Cr/(Cr+Al), niedriger Ti ⁴⁺ -Gehalt											
Archaische, gebänd	erte Komplexe i	in hochgradi	g metamor	phen Gneis	en						
Akilia, Grönland	Amp, Pl	0.27-0.51	0.59-0.76	0.8-1.6	0.42-0.7	0.03-0.10					
Lemoenfontein	Amp, Srp	0.3-0.65	0.3-0.54	1.2-2.2	0.42-0.54	0.03-0.06					
mäßig bis niedrige ursprüngliche Mg-Zahl mit grosser Streuung, niedrige Cr-Zahl, hohes Fe ³⁺ - und											
niedriger Ti ⁴⁺ -Gehalt											
Archaische, ultrama	fisch-mafische	•									
Selukwe	OI, Px, Srp	0.68-0.78	0.72-0.77	2.7-4.8	0.0-0.25	0.01-0.06					
Bird River	Ol, Px, Srp	0.13-0.43	0.57-0.64		0.04-0.12	0.06-0.22					
mäßig bis hohe ursprüngliche Mg-Zahl mit breiter Streuung, sehr niedrige Cr-Zahl, mäßig bis											
niedriges Fe ³⁺ - und veränderlicher Ti ⁴⁺ -Gehalt											
Eckergneis	detritisch	0.005-0.03	0.38-0.85	0.61-1.66	0.02-0.27	0.00-0.05					

Abb. 94 Chromite in den Eckergneis-Metapsammiten: (Erläuterung zur Kalkulation siehe S.85) **A.** Binäres Diagramm von Fe³⁺/(Fe³⁺+Al+Cr) für detritische Chromite, Diskriminierungsfelder nach COOKENBOO et al. (1997)

- **B.** Spinell-Zusammensetzung in alpinotypen Spinellperidotiten, abyssalen Spinellperidotiten, in "Layered Intrusions" (IRVINE 1967), Süd-Ost Alaska-Intrusionen (IRVINE 1977) und in Boniniten (CAMERON et al. 1980)
- **C.** Verbreitung dreiwertiger Elemente in Chromspinellen; Diskriminierungsfelder nach COOKENBOO et al. (1997);

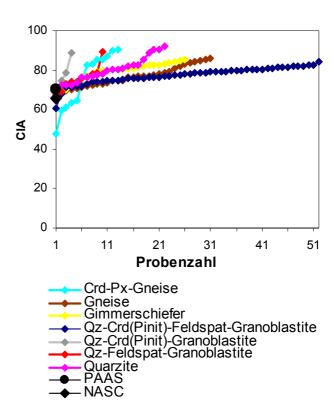
(Alpinetype Spinellperidotiten und Ophiolithe sind nicht identisch, Layered Intrusions und Startiform sind weitgehend identisch)

11.2. Geochemische Hinweise auf die Sedimentliefergebiete

Ein allgemein verwendeter chemischer Index zur Ermittlung des Verwitterungsgrades in Herkunftsbereichen ist der von NESBITT UND YOUNG (1982) vorgeschlagene Chemical Index of Alteration (CIA). Dieser Index kann mit molekularen Anteilen errechnet werden: $CIA=[Al_2O_3/(Al_2O_3+CaO+Na_2O+K_2O)]*100$.

CIA Werte der Eckergneis-Gesteine von 70-90 zeigen, dass ihr Herkunftsbereich eine intensive Verwitterung durchmachte. Im allgemeinen war die Verwitterung in den Herkunftsgebieten der Eckergneis-Gesteine durchgreifender als in denen von PAAS und NASC (Abb. 95).

Ein geochemischer Vergleich einiger Sedimente kratonischer Herkunft (Südafrika) mit Eckergneis-Metasedimenten wurde vorgenommen:


Pelite und Quarzite der Ventersdorp und Transvaal Supergroups bestehen aus Muskovit und Chlorit als Hauptbestandteilen und Quarz, Chloritoid, Pyrophyllit, Illit, Smektit, Kaolinit, Vermikulit und Kalifeldspat. Das Herkunftsgebiet dieser Sedimente bestand zum größten Teil aus Graniten und untergeordnet aus Basalten, Tonaliten und Komatiiten (WRONKIEWICZ & CONDIE 1990).

Sedimente der Pongola Supergroup sind eine gut erhaltene suprakrustale Abfolge. Diese wird in die überwiegend aus Vulkaniten, Quarziten und Peliten bestehende Nsuze Gruppe und eine überlappende Mozaan Gruppe von Quarziten und Peliten untergliedert. Die chemische Zusammensetzung der Pongola-Quarzite ist der von Sandsteinen phanerozoischer, passiver Kontinentalränder und Gegenden, an denen eine Isostatische Hebung stattgefunden hat, sehr ähnlich. Das weist auf Herkunft von einem felsischen, chemisch weitentwickelten Kraton hin (WRONKIEWICZ & CONDIE 1989).

Die beiden Sedimentfolgen zeigen eine gute chemische Übereinstimmung mit den Eckergneis-Metasedimenten (Abb. 96) und das deutet auf eine kratonische Herkunft für die Eckergneis-Metasedimente.

Zusammenfassend:

Die geochemischen Eigenschaften der kompositionell reifen Eckergneis-Metasedimente, als auch ihre stark refraktären Schwermineralspektren weisen auf ein kratonisches Liefergebiet mit sauren und intermediären Magmatiten sowie mit mafischen und ultramafischen Gesteinen hin.

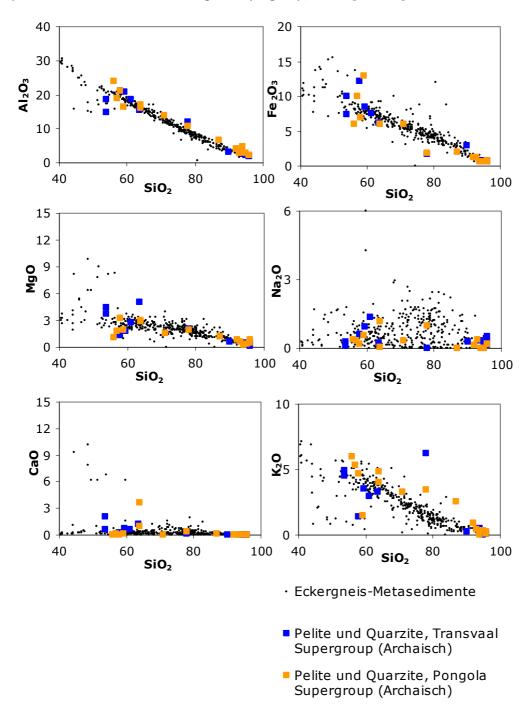


Abb. 95 CIA (Chemical Index of Alteration) der Eckergneis-Gesteine

Die SHRIMP-Daten an detritischen Zirkonen der Eckergneis-Metasedimente liefern überwiegend mittelproterozoische und untergeordnet kaledonische Alter. Diese Altersgruppen stimmen mit der Svekonorwegischen und der Gotischen? und Kaledonischen (410-436 Ma) Phasen im südlichen Fennoskandien überein (z.B. GAAL & GORBATSCHEV 1987, ANDERSSON et al. 2002, JOHANSSON et al. 2001) und weisen damit auf südwest-Baltica als Herkunftsgebiet hin. Es müsste an dieser Stelle erwähnt werden, dass der Begriff "Gotisch" nach LINDT (2002) noch umstritten ist.

Zirkone mit kaledonischen Altern können auch aus Norddeutsch-Polnischen Kaledoniden stammen. Außerdem wurde ein einziges cadomisches Alter (566 Ma) gemessen und weist somit auf eine untergeordnete Detritusbeteiligung eines cadomisch geprägten (Peri-Gondwana) Terrans für den Eckergneis-Protolith hin.

Abb. 96 Korrelationsdiagramme der Eckergneis-Metasedimente im Vergleich mit den Peliten und Quarziten der Transvaal und Pongola Supergroup, Oxide [Gew.%]

12. Metamorphosegeschichte des Eckergneis-Komplexes

Der Eckergneis ist ein polymetamorpher Komplex. SCHLÜTER (1983), MÜLLER & STRAUSS (1985) und FRANZ et al. (1997) haben die metamorphe Entwicklung des Eckergneis-Komplexes untersucht.

Nach Franz et al. (1997) sowie Müller & Strauss (1985) sollte die Hauptmetamorphose im Eckergneis-Komplex unter granulitfaziellen Bedingungen bzw. bei Temperaturen von 720-780° C und Drucken zwischen 6.7-8.3 Kbar stattgefunden haben. Des weiteren wird von diesen Autoren angenommen, dass diese Phase von einer durchgreifenden Deformation begleitet wurde, die zu der Anlage isoklinaler F1-Falten mit flach nach N abtauchenden Faltenachsen führte.

Eine anschließende retrograde amphibolitfazielle (M2) Regionalmetamorphose (560-650°C/ 5 Kbar) hat nach FRANZ et al. (1997) zur Anlage einer S2-Foliation und zur Bildung offener und geschlossener F2-Falten mit E-W-streichenden Faltenachsen geführt. Eine starke Thermometamorphose (M3) führte nach FRANZ et al. (1997) zur Bildung anatektischer Mobilisate am Intrusivkontakt: im Zentrum der Eckergneisscholle wurden von den genannten Autoren für die Thermometamorphose Temperaturen von 500-550° C abgeschätzt und bei einer angenommenen Intrusionstiefe von 3 km für den Brockenpluton für spätere hydrothermale Überprägung (M4) Temperaturen von 340-360° C ermittelt. Bei Letzterer kam es zu einem intensiven Abbau der regional- und thermometamorphen Paragenesen.

SCHLÜTER (1983) dagegen liefert ein anderes Szenario für dem polymetamorphen Eckergneis-Komplex: die Hauptmetamorphose im Eckergneis-Komplex soll nach ihm unter amphibolitfaziellen Bedingungen stattgefunden haben und anschließend soll der Eckergneis eine statische Thermometamorphose durchgemacht haben. Bildungsbedingungen von im Nordteil des Eckergneises auftretenden kalifeldspatführenden Kinzigiten (Abb. 55, 56) wurden von SCHLÜTER (1983) mit 4 Kbar/650°-700° C ermittelt.

Im Rahmen der vorliegenden Arbeit wurden erneut mikroskopische Untersuchungen von einem weiträumiger bezogenen Probenvolumen durchgeführt und so konnte folgende metamorphe Entwicklungsgeschichte des Eckergneis-Komplexes ermittelt werden:

- ♦ Zunächst kam es im Eckergneis-Komplex zu einer regionalen dynamischen Metamorphose unter amphibolitfaziellen Bedingungen,
- ♦ Anschließend hat der Eckergneis eine statische Thermometamorphose durchgemacht, die

zu einer durchgreifenden Umkristallisation der Gesteine geführt hat.

♦ Letztendlich unterlag der Eckergneis durch die Platznahme der benachbarten Plutonite (Harzburger Gabbronoritmassiv und Brockenpluton) einer kontaktmetamorphen Überprägung.

In Abb. 99. wird Verteilung der kritischen Minerale im Eckergneis-Komplex gezeigt.

Die **amphibolitfazielle Dynamometamorphose** ist zum einen dadurch erkennbar, dass die meisten Eckergneis-Gesteine gebändert (8, 9, 10, 16, 30, 50), foliiert und z. T. zusätzlich gefaltet (Abb. 17, 37, 38, 39, 97) sind. Die für amphibolitfazielle Bedingungen charakteristischen Minerale wie Andalusit, Granat, Cordierit zeigen oft Gefügemerkmale wie Rotation oder Druckschatten als Hinweis auf ihre syn- oder prädeformative Natur.

Die Bänderung bzw. Foliation ist makroskopisch gut erkennbar und bildet jeweils variierenden Stoffbestand ab (Abb. 13, 18, 21, 22, 52). Die foliierten, gebänderten, gefalteten und teilweise mylonitisierten Gesteine sind vor allem im Südteil des Eckergneis-Komplexes verbreitet, während im Nordteil öfter massive oder nur z.T bis leicht gebänderte Gesteine vorkommen.

Eine Einregelung der meisten Minerale innerhalb der Foliation ist nicht zu beobachten. Dafür herrscht in den die Foliation markierenden verschiedenen Bändern und dünnen Lagen ein ausgeprägt granoblastisches Gefüge. Dies spricht dafür, dass nach der dynamischen Metamorphose eine durchgreifende Rekristallisation stattfand.

Die in den Eckergneis-Gesteinen verbreiteten Linsen von Segregationsquarzen sind von der Foliation umflossen z.T mitgefaltet. Sie belegen so ihre prä- bzw. syntektonische Natur (Abb. 10). Stellenweise sind die rundlichen Quarzkörner in solchen Linsen in Kalifeldspat eingebettet (Abb. 16), was auch in manchen Quarziten z.B. vom Spörenwagen und vom Kleinen Gierstal (Abb. 33, 34) zu beobachten ist. Dies belegt, dass die Segregationsquarze eine postdeformative Umkristallisation durchmachten und dass sie keiner spätereren Dynamometamorphose unterlagen.

FRANZ et al. (1997) haben im Eckergneis-Komplex folgende Mineralparagenesen beschrieben, welche amphibolitfazielle Bedingungen belegen:

 $\begin{array}{ll} Qz+Pl+Bt+Ms & Qz+Pl+Bt+Ms+Ky+St \\ Qz+Pl+Bt+Ms+Grt+/-Crd & Qz+Pl+Hbl+/-Bt+/-Ilm+/-Ap. \end{array}$

Diese Mineralparagenesen wurden in der vorliegenden Arbeit ebenfalls beschrieben, außer dass Disthen nur in einem Quarz-Cordierit(Pinit)-Feldspat-Granoblastit beobachtet wurde und Staurolith nicht nachgewiesen werden konnte. Die Druck-Temperatur-Bedingungen von 560-650°C/ 5 Kbar der amphibolitfazielle Metamorphose haben FRANZ et al. (1997) durch Amphibol+Plagioklas-Geothermometer nach SPEAR (1981) belegt.

Andalusit, Biotit, Cordierit und Granat als typische amphibolitfazielle Minerale bilden prä- bzw. synkinematische Porphyroblasten und Relikte. Granat kommt in Form idiomorpher, z.T. elongierter Kristalle (Abb. 18, 22, 42) vor und wird von Biotit, z.T. von Chlorit und Quarz verdrängt. Andalusit-Porphyroblasten sind häufig von der sie umgebenden Matrix umflossen (Abb. 39). Manche Andalusit-Porphyroblasten haben eine Diaspor-Korona als Produkt des späteren Zerfalls (Abb. 44, 58, 59, 60). Cordierit bildet elongierte Felder in enger Vergesellschaftung mit neugebildetem Biotit (Abb. 12, 13, 57) und kommt gelegentlich als rotierte Porphyroblasten vor (Abb. 40, 43).

Die vereinzelten Amphibolitvorkommen im Eckergneis-Komplex zeigen folgende Mineralparagenesen:

Amph+Pl+Cpx+Kfs+Chl Ed+Act+Pl+Kfs+Aug+Hellglimmer+Chl Magnesio-Hbl+Opx+Feldspäte Magnesio-Hbl+ Pl+Cpx+Kfs+Chl+Act

Hbl+ Pl+Act+Opx+Qz Hbl+Act+Pl+Kfs Prg+Hd+Act+Pl+Kfs+Chl+Ttn+Hellglimmer+Qz (Kap.6.7).

Nach der amphibolitfaziellen Regionalmetamorphose unterlag der Eckergneis-Komplex einer **hochgradigen statischen Metamorphose**, die zu einer durchgreifenden Umkristallisation unter granulitfaziellen Temperaturen führte.

Folgende Fakten belegen, dass diese statische Thermometamorphose nach der amphibolitfaziellen Regionalmetamorphose stattgefunden hat:

-Ein ausgeprägtes granoblastische Gefüge ist in meisten Eckergneis-Gesteinen (ausgenommen Andalusit-Cordierit-Symplektite) erkennbar, trotz einer mehr oder weniger gut erhaltenen Foliation bzw. Bänderung,

-Die neugebildeten symplektitischen Andalusit-Cordierit-Bildungen, die sich unter granulitfaziellen Bedingungen gebildet haben, wären bei einer weiteren Dynamometamorphose zerstört worden,

-Orthopyroxen-Cordierit-Neubildungen, die sich nach einem syn- oder prädeformativen Mineral (evtl. Granat) gebildet haben (z. B. Abb. 32).

FRANZ et al. (1997), sowie von MÜLLER & STRAUSS (1985) haben im Eckergneis folgende Mineralparagenesen beschrieben, die für granulitfazielle Bedingungen typisch sind:

```
\begin{array}{lll} Qz+Kfs+Pl(An_{25})+Opx+Oam+Bt+/-Ilm & Qz+Kfs+Pl(An_{74})+Opx+Hbl+Bt+/-Ilm & Qz+Kfs+Pl+Opx+Bt+/-Ilm \\ Qz+Kfs+Pl+Crd & Qz+Kfs+Pl+Bt++Grt+Crd \\ Qz+Kfs+Pl+Cpx+Bt+Crd+/-Rt+/-Ap & Qz+Cc+Prg+Cpx+/-Ttn+/-Ap \\ Qz+Kfs+Pl+Opx+Bt+Crd+/-Sil+/-Ap & Kfs+Pl+Bt+Grt+Sil+Crd+/-Hc+/-Qz \\ Kfs+Pl+Opx+Bt+/-Crd+/-Hc+/-Ap & Qz+Pl+Opx+Crd+Bt+/-Grt+/-Rt+/-Ilm \\ \end{array}
```

Diese Mineralparagenesen sind ebenfalls in dieser Arbeit beschrieben worden (Kap. 6), ausser dass Sillimanit nicht nachgewiesen werden konnte.

FRANZ et al. (1997) haben durch das Granat+Orthopyroxen+Plagioklas+Quarz-Geobarometer nach NEWTON & PERKINS (1982), Granat+Orthopyroxen-Geothermometer nach HARLEY (1984) und das Granat+Cordierit-Thermometer nach THOMPSON (1976) Druck-Temperatur-Bedingungen der granulitfaziellen Metamorphose von 720-780° C und 6.7-8.3 Kbar errechnet. Von FRANZ et al. (1997) nur im Nordteil des Eckergneis-Komplexes beschriebene Orthopyroxene liegen ihrer Meinung nach in der Foliation eingeregelt, was eine dynamometamorphe Bildung der letzteren belegen sollte.

Die mikroskopischen Untersuchungen der vorliegenden Arbeit zeigen jedoch, dass diese Orthopyroxene Produkt einer hochgradigen, statischen Thermometamorphose sind:

Die Orthopyroxene bilden Porphyroblasten, Poikliloblasten sowie symplektitähnliche Reaktionsgefüge (Abb. 24, 25, 26, 28, 29, 31, 32). Sie sind meistens unalteriert, wobei manche Porphyroblasten jedoch am Rande eine leichte Alteration durch Bildung von Biotit und Chlorit zeigen. Die Orthopyroxen-Porphyroblasten liegen mit ihren C-Achsen in offenbar beliebigen Richtungen (Abb. 28).

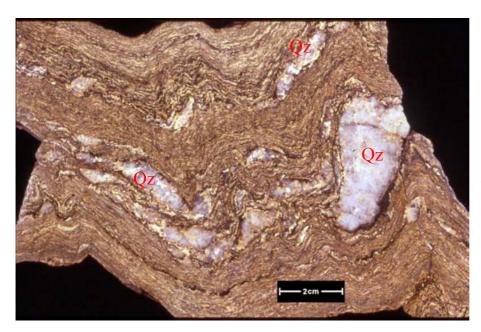
In einigen gebänderten Cordierit-Pyroxen-Granoblastiten scheinen die Orthopyroxen-Porphyro- und -Poikiloblasten in der Foliation eingeregelt zu liegen. Aber wie in Abb. 31 zu sehen ist, liegen die neugebildeten dünnen Orthopyroxen-Apophysen mit ihren C-Achsen oft quer zur Foliation. Diese Bilder zeigen, dass diese Orthopyroxene in den Eckergneis-Gesteinen erst nach der Foliations-Bildung, d.h. nach der vorangegangenen dynamischen Metamorphose entstanden sind und selbst keine Dynamometamorphose mitgemacht haben. Wie in Abb. 32 ebenfalls zu sehen ist, haben sich die Orthopyroxene nach einem syntektonischen Mineral gebildet, dafür spricht ihr symplektitisches Reaktionsgefüge. Orthopyroxene kommen gelegentlich auch in Quarz-Cordierit(Pinit)-Feldspat-Granoblastiten vor.

Wie in Abb. 99 zu sehen ist, kommen Orthopyroxene nicht nur im Nordteil des Eckergneis-Komplexes vor, sondern auch im Süd-Kolför. Dies weist darauf hin, dass der Eckergneis-Komplex als Ganzes der statischen granulitfaziellen Metamorphose unterlag.

Auch die Metavulkanite (Amphibolite) liefern wichtige Hinweise für die zeitliche Reihenfolge der metamorphen Ereignisse im Eckergneis: Abb. 49, 53 zeigen, wie sich der Orthopyroxen neugebildet hat. Auch hiernach ist die statische, granulitfazielle Metamorphose erst nach der amphibolitfaziellen Metamorphose eingetreten.

Im Metabasit (Pr. 91-45) vom Unteren Lobenklee hat sich ein Orthopyroxen-Klinopyroxen-Reaktionsgefüge gebildet, ebenfalls ein Hinweis auf granulitfazielle statische Metamorphose (Abb. 54).

In Cordierit-Andalusit-Symplektiten vom Unteren Lobenklee sind feine symplektitische Bildungen von Andalusit-Cordierit in Pinit-Feldspat-Matrix mit neugebildetem Korund und Andalusit-Porphyroblasten zu beobachten.


Anschließend wurde der Eckergneis-Komplex durch die benachbarten Intrusionen des Harzburger Gabbronoritmassivs und Brockenplutons **kontaktmetamorph** überprägt. Von SCHLÜTER (1983) beschriebene helle grobkörnige Mobilisate (Abb. 98), wie kleine turmalinreiche Aplitgänge, und konkordant zum Eckergneisgefüge eingeschaltete Quarz-Feldspatlagen oder aber schlierig nebulöse Quarz-Feldspataggregate belegen die kontaktmetamorphe Überprägung des Eckergneis-Komplexes.

Von diesem Autor wurden im Nordteil des Eckergneis-Komplexes Mobilisate dioritischer und monzonitischer Natur im Zusammenhang mit Orthoamphiboliten beschrieben, die sich durch die Kontakthitze des Harzburger Gabbronoritmassivs gebildet haben. FRANZ et al. (1997) haben ebenfalls anatektische Mobilisate im Südteil des Eckergneis-Komplexes und im Diebesstieg Bereich als Produkte von Kontakmetamorphose beschrieben.

Das kritische Mineralpaar Cordierit+Biotit belegt Hornblende-Hornfelsfazies für den gesamten Eckergneis-Komplex, die durch die benachbarten Intrusionen verursacht wurde.

Auch die Diaspor-Koronen um die Andalusit-Porphyroblasten sprechen ebenfalls für eine intensive kontaktmetamorphe Überprägung, die offensichtlich durch das unter dem Eckergneis sich befindende Harzburger Gabbronoritmassiv verursacht wurde.

Ein retrograder Ablauf der Kontaktmetamorphose im Eckergneis-Komplex zeigt sich daran, dass der Cordierit überall intensiv pinitisiert, Kalifeldspat stark serizitisiert und Plagioklas ebenfalls teilweise vollständig albitisiert ist. In den Metavulkaniten haben sich Hornblende und Klinopyroxen zu Aktinolith umgewandelt. In manchen Cordierit-Pyroxen-Granoblastiten wurden Pyroxene durch Amphibol ersetzt (Abb. 52).

Abb. 97 Foliation und eine zusätzliche Faltung im Glimmerschiefer mit Quarzlinsen, Pr. von J. SCHLÜTER (SCHLÜTER 1983)

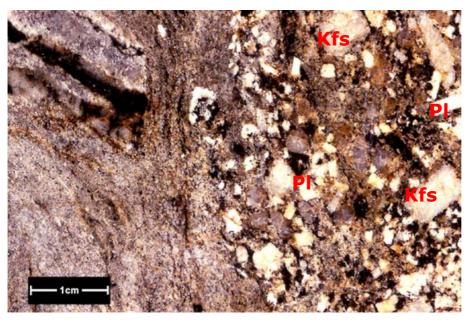
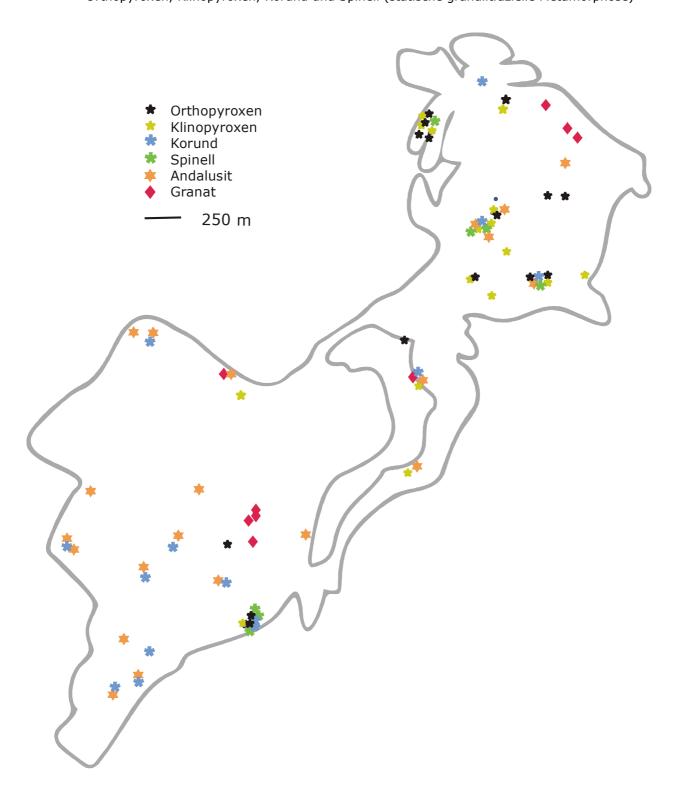



Abb. 98 Stark rekristallisierter variszischer Grauwacken-hornfels mit lokaler Feldspatsprossung, Diebesstieg (Pr. von J. Schlüter (SCHLÜTER 1983), geschliffene Ausschnittfläche

Abb. 99 Verteilung kritischer Minerale im Eckergneis-Komplex unter Einbeziehung von Daten von SCHLÜTER (1983):

- Andalusit, Granat (amphibolitfazielle Metamorphose)

- Orthopyroxen, Klinopyroxen, Korund und Spinell (statische granulitfazielle Metamorphose)

13. Geotektonische Stellung des Eckergneis-Protolithen

Aus geochemischen und sedimentologischen Auswertungsverfahren, die in der vorliegenden Arbeit angewandt wurden, geht hervor, dass das Ausgangsmaterial für den Eckergneis-Komplex aus einem kratonischen Liefergebiet stammt, dessen Abtragungsprodukte an einem passiven Kontinentalrand abgelagert und sedimentiert wurden. Das refraktäre Schwermineralspektrum weist dabei auf intensive chemische Verwitterung und/oder einen langen Transportweg hin. Der Schwermineralanteil besteht zum größten Teil aus Zirkon, Chromit, Rutil mit vereinzeltem Granat und Monazit. Der Eckergneis-Komplex hat eine Protolithzusammensetzung aus Sandsteinen und Tonen.

Die SHRIMP-Analysen an den detritischen Zirkonen der Eckergneis-Metasedimente lieferten überwiegend mittelproterozoische Alter von 1570-1750 und 900-1200 Ma. Es wurden ebenfalls drei silurische Alter von 410-436 Ma gemessen. Diese Altersverteilung weist auf südwest-Baltica als Liefergebiet hin. Die Zirkone mit silurischen Altern können sowohl aus skandinavischen als auch Norddeutsch-Polnischen Kaledoniden stammen. Ein einziges unterkambrisches Alter von 566 Ma weist auf eine mögliche geringe Rolle eines cadomisch geprägten (Gondwana-verwandten) Terrans als Liefergebiet hin (Ost-Avaloniens). Die vereinzelten detritischen Zirkone mit kaledonischen Altern weisen z.T. oszillierende Zonierung auf, die für magmatisch gewachsene Zirkone typisch ist, sowie abgerundete Oberflächen (Abb. 86 b), die für einen sedimentären Transport sprechen. Dies bedeutet, dass das Ausgangsmaterial des Eckergneises nicht vor der Wende Silur/Devon bzw. später als vor 410 Ma abgelagert wurde.

Es handelt sich also beim Eckergneis-Protolith um ein überwiegend aus Baltica stammendes Material, welches nach der kaledonischen Orogenese mit einer geringen Detritusbeteiligung eines Condwana-verwandten Terrans sedimentiert wurde.

Die an detritischen Zirkonen magmatischen Ursprungs festgestellten Alter (kaledonisch bis auf eine einzige Datierung cadomischen Alters) sprechen gegen die bisher gültige Meinung, dass der Eckergneis cadomisch geprägtes Basement (VINX & SCHLÜTER 1989, 1990, 1991, BAUMANN et al. 1991) bzw. einen Teil Ost-Avaloniens (FRANZ et al. 1997) im Rhenoherzynikum darstellen könnte. Gestützt wurde diese Meinung auf U-Pb-Isotopenuntersuchungen von MECKLENBURG (1987), BAUMANN et al. (1991).

Das Bild, von dem derzeit überwiegend ausgegangen wird, ist folgendes: Der Japetus-Ozean trennte im unteren Ordovizium Laurentia von Baltica und Gondwana, während der Tornquist-Ozean Baltica von Gondwana trennte. Zur gleichen Zeit (im unteren Ordovizium) spaltete sich Avalonia von Gondwana ab und wurde spätestens im Silur bei der Schließung des Tornquist Ozeans auf Baltica aufgeschoben, wobei die Norddeutsch-Polnischen Kaledoniden entstanden sind (z. B. Cocks & Fortey 1982, Ziegler 1986, 1990, Franke 1989, 1992, 2000, TAIT et al. 1997, TANNER & MEISSNER 1996, DALZIEL 1997, KATZUNG et al. 1993, GIESE & KÖPPEN 2001). Die Kollision von Baltica/Avalonia mit Laurentia soll nach FRANKE et al. (1995) im unteren Silur, nach TORSVIK et al. (1992) im mittleren Silur und MEISSNER et al. (1994) im oberen Silur bis unteren Devon stattgefunden haben und führte zur Kaledonischen Orogenese. Zwischen Avalonia/Baltica und Armorika entstand der Rheische Ozean (COCKS & FORTEY 1982, SOPER et al. 1992, MEISSNER et al. 1994). Im oberen Silur bis unteren Devon dockte Armorika an Avalonia/Baltica an (TAIT et al. 1997) und leitete damit die Variszische Orogenese ein. Während der Variszischen Orogenese kam es im Karbon zur Kollision von Gondwana und dem Old-Red-Kontinent. Die Subduktion des Rheischen Ozeans wurde somit spätestens im Oberdevon abgeschlossen.

Das geotektonische Modell für das untere Devon, nach der Kollision von Baltica/Laurentia mit cadomischen Terrans (nach SOPER et al. 1987) ist in Abb. 100 dargestellt.

Es existieren auch andere geotektonische Modelle, wie z. B. ein "strike-slip"-Modell von Badham (1982), Neugebauer (1988, 1989). Nach diesem Modell näherten sich die Platten Gondwana, Laurentia und Fennosarmatia (Baltica) im Silur durch Subduktion des Japetus. Im ausgehenden Silur kam es dann zu einer Kontinent-Kontinent Kollision der drei tektonischen Grosseinheiten und bereits im Unterdevon ist der Japetus-Ozean bis auf binnenmeerartige Reste (vergleichbar dem Schwarzen Meer oder dem Mittelmeer) zusammengeschrumpft.

Im weiteren Verlauf der Entwicklung dieser Region bewirkten grosse rechtsseitige Horizontalverschiebungen (strike-slip faults), dass sich die Platten im Oberdevon und Karbon weiter unter Faltenbildung näher kamen, wobei die verbliebenen Becken in den Grenzzonen der einzelnen Platten eliminiert wurden. Gondwana bewegte sich dabei immer mehr in westliche Richtung. Diese Bewegung kam mit dem Ende der Appalachenauffaltung im östlichen Laurentia zur Ruhe. Dieses Modell kommt also, ab dem Devon in Europa, ohne die Annahme der großen Ozeane aus, kleinere Becken mit ozeanischer Kruste gehören jedoch in dieses Bild.

CARLS (2001) lieferte Ergebnisse, welche die Existenz sowohl der "Tornquist-See" als auch des Rheischen-Ozeans (Rheic) bestreiten. Die weite Verbreitung von Flachwasser-Faunen des *dumontianus*-Schelfs während des Pridolium (Silur) auf dem Rhenoherzynikum und fehlende Molasse sprechen gegen die Schließung eines Ozeans ("Tornquist-See") zwischen "Avalonia" und Baltica im Silur oder gar zu Anfang des Devon. Diesem Autor nach stellt das Rhenoherzynikum offenbar ein nicht-ozeanisches Becken mit mächtiger feinklastischer Füllung dar.

GIESE & KÖPPEN (2001) und BOOSE et al. (2001) sind hingegen aufgrund von Detritusuntersuchungen von unterkambrischen, ordovizischen und silurischen Sedimenten aus Bohrungen auf Rügen zu der Schlussfolgerung gekommen, dass im ausgehenden Ordovizium die Schließung des Tornquist Ozeans zur Annäherung und Mischung der Provenienzen von Baltica und Avalonia geführt haben soll. Auch TSCHERNOSTER (2000) vertrat die Meinung, dass die U-Pb-Altersstrukturen detritischer Zirkone aus ordovizischen Grauwacken (Bohrung Rügen-5) auf einen allochthonen, Ost-Avalonischen Deckenkomplex, über dem baltischen Basement hinweisen.

Auf jeden Fall hörte die marine Sedimentation in Bereichen der kaledonischen Orogenese (Laurussia) etwa an der Grenze Silur/Devon auf und wurde vielfach von bunten klastischen Sedimenten abgelöst, die als "Old Red-Sandsteine" zusammengefasst werden. Sie entstanden terrestrisch unter aridem Klima. Der Wechsel zwischen mariner und terrestrischer Sedimentation war eine Folge der Orogenese, welche den Aufstieg der betroffenen Gebiete und damit die Bildung des "Old Red Kontinents" verursachte. Als Hebungsgebiet unterlag der Kontinent vorwiegend der Abtragung (SCHÖNENBERG & NEUGEBAUER 1997). Nach GREILING (1995) dehnte sich die Sedimentation der kaledonischen Molasse offenbar von Norden nach Süden und vom späten Silur bis zum frühen Devon ohne auffällige Unterbrechung über das spätere nördliche Vorland der Varisziden aus und ging in die klastische Sedimentation des passiven Kontinentalrandes des Rhenoherzynikums über. Es handelt sich unter anderem dabei um die devonischen Sedimentablagerungen im Rhenoherzynikum des Harzgebirges, denen der Eckergneis heute als ein polymetamorpher Komplex eingelagert ist.

Im ganzen Rhenoherzynikum sind devonische klastische Schelfsedimente verbreitet, die von kaledonischen Einheiten aus dem Norden geschüttet und am südlichen passiven Rand des Old Red Kontinents (Laurussia) abgelagert wurden (FRANKE 2000).

Unterdevonische Tonschiefer, Sandsteine, Kalksandsteine und Quarzite bilden im Harz einen insgesamt maximal 1000 m mächtigen, schichtweise faunenreichen, sandig- schieferigen, vielfach quarzitischen Schichtenkomplex (Kahleberg-Sandstein), in dem Tufflagen und Kalksandsteine zwischengelagert sind. Die ältesten im Kern des Devonsattels nachgewiesenen Serien gehören ins Oberems/Unterdevon und sind der rheinischen bzw. neritischen Fazies zuzuordnen (WACHENDORF 1986).

Im Rheinischen Schiefergebirge wird die rheinische Fazies durch devonische siliziklastische Ablagerungen von Tonsteinen, Tonsandsteinen und Sandsteinen repräsentiert und weist ebenso auf den Old Red-Kontinent als Liefergebiet hin (LANGENSTRASSEN 1983, HUCKRIEDE et al. 1998, FRANKE 2000).

Schwermineralzusammensetzungen der devonischen Sandsteine des Rhenoherzynikums sind refraktär und bestehen überwiegend aus Zirkonen bei gleichzeitig bemerkenswerter Menge von Chromit. Turmalin, Rutil, Titanit, Kassiterit, Apatit, Korund, Spinell und Brookit sind untergeordnet vertreten (HAVENKAMP et al. 1992). Detritische Zirkone dieser Sedimente weisen eine baltische Altersstruktur auf (HAVENKAMP et al. 1992), was wiederum auf eine weiträumige Sedimentation des baltischen Detritus auf Ost-Avalonia (?) im Anschluss an die kaledonische Kollision hindeutet.

Der Sedimentcharakter und das refraktäre Schwermineralspektrum der devonischen Ablagerungen des Harz-Rhenoherzynikums zeigen Ähnlichkeit mit denen des Eckergneis-Komplexes. Die detritischen Zirkone beider Einheiten weisen baltische Altersstruktur auf.

Jedoch gibt es wichtige Argumente, die ausschließen, dass der Eckergneis einfach zum rhenoherzynischen Sedimentationsraum gehören konnte.

Die detritischen Chromite in den Eckergneis-Metasedimenten zeigen einen besonderen Chemismus (Kap. 7.1.1), der durch einen extrem niedrigen MgO-Gehalt von maximal 1,40 Gew.% gekennzeichnet ist. Diese Chromite stammen vermutlich aus gebänderten (layered) Intrusionen (Abb. 9).

Der Chromitdetritus in den unterdevonischen Sandsteinen wird bei einem MgO-Gehalt von 5.24 bis 13.02 Gew.% Abtragungsprodukten alpinotyper Peridotitkomplexe (HAVENKAMP 1991) zugeordnet. Detritische Chromite in rhenoherzynischen Grauwacken und Sandsteinen des Harz, des Werra-Grauwackengebirges und des Rheinischen Schiefergebirges (Oberes Mitteldevon bis oberes Unterkarbon) weisen mit MgO-Gehalten von 4,5-20,4 Gew.% ebenso auf ein alpinotypes peridotitisches Muttergestein als Ausgangsmaterial hin (GANSSLOSER 1999). Detritische Chromite in sandigen Siltsteinen des Mitteldevons des Bergischen Landes (Rheinisches Schiefergebirge) stammen nach PRESS (1986) aus Peridotite alpinotyper Ophiolithe. Der MgO-Gehalt in diesen Chromiten variiert zwischen 4,52-13,74 Gew.%. Vermutlich sind die detritischen Chromite der devonischen bis karbonischen Ablagerungen im Rhenoherzynikum von denselben Ausgangsgesteinen abzuleiten.

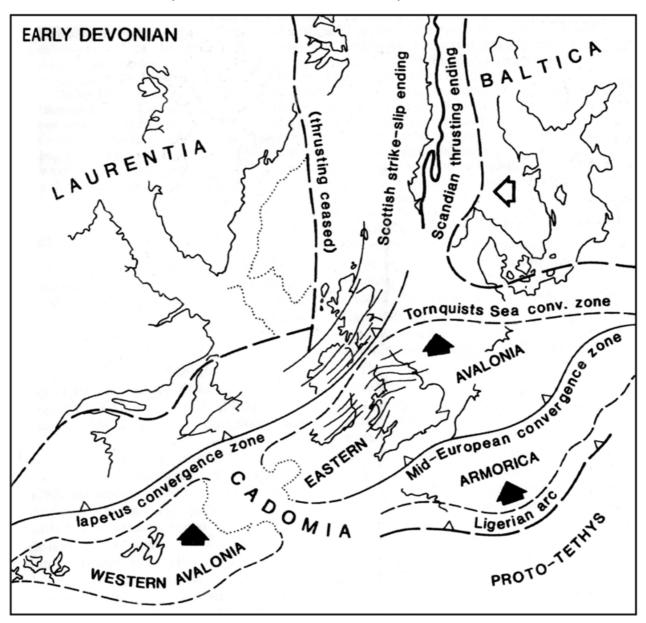
Ein bemerkenswerter Befund sind neben überwiegend Mg-reichen Chromiten vereinzelte detritische Chromite in den Quarziten des Acker-Bruchberg-Zuges welche die für die Eckergneis-Chromite typische MgO-Armut zeigen. In den meisten Chromiten dieser Quarzite ist der MgO-Gehalt ca. 15 Gew.%. Der Acker-Bruchberg-Zug gehört zum Hörre-Acker-System im Rhenoherzynikum. Nach Trautnitz (1980) ist der mehrfach umgelagerte Kammquarzit-Detritus des Acker-Bruchberg-Zuges aus psammitischen Sedimenten (Quarzite, Sandsteine) hervorgegangen und zeigt nach Burghardt (1977), Paech (1973), Homrighausen (1979) eine von Norden nach Süden abnehmende Mächtigkeit, was auf eine Schüttung von Norden aus hinweist. Die Sedimentation des Kammquarzits hat im Unterkarbon stattgefunden (Puttrich 1972, Meyer 1965, Wachendorf 1986).

Ein Teil der detritischen Chromite der Acker-Bruchberg-Quarzite scheint von demselben Ausgangsgestein wie der Chromitdetritus des Eckergneis-Komplexes zu stammen.

Das heisst, dass die Chromite des Eckergneis-Komplexes von einem Liefergebiet bezogen sind, das auch im Karbon Abtragungsprozessen ausgeliefert war und im Detritus der Acker-Bruchberg-Quarzite untergeordnet beteiligt ist. Die Chromite im Acker-Bruchberg-Zug wurden in dem Fall mindestens aus zwei unterschiedlichen Gebieten geliefert.

Noch ein wichtiges Argument dafür, dass die ursprüngliche Position des Eckergneis-Protolithen außerhalb des Rhenoherzynikums lag, ist der drastisch unterschiedliche Metamorphosegrad: die stärkste Metamorphose im Harz bzw. im Rhenoherzynikum fand (Nördliche Phyllitzone) unter grünschieferfaziellen Bedingungen statt (3-6 Kbar/300°C, ONCKEN et al. 1995), während der Eckergneis eine amphibolitfazielle Regionalmetamorphose und anschliessend eine statische Thermometamorphose unter granulitfaziellen Bedingungen durchgemacht hat.

Nach dem Rb-Sr-Gesamtgesteins-Isochronenalter von 379 Ma (SCHOELL et al. 1973), das als das Alter der amphibolitfaziellen Hauptmetamorphose interpretiert wird, soll der Eckergneis schon im Mitteldevon bzw. vor der Sedimentation der wesentlichen Bestandteile des Rhenoherzynikums metamorph überprägt vorgelegen haben. Das maximale Metamorphosealter in Rhenoherzynikum hingegen ist 360 Ma wie Ahrendt et al. (1996) und Marheine (1997) im südlichen Bereich des Harzgeröder Olisthostroms, im Übergangsbereich zur Wippraer Zone festgestellt haben. Die variszische Kollision von Mikroplatten im Grenzbereich der Mitteldeutschen Kristallinzone zur Rhenoherzynischen Zone konnte durch Zirkonalter von 330 Ma in der Wippraer Zone belegt werden (Ahrendt et al. 1996).


Auch dem östlich benachbarten Saxothuringikum bzw. der Mitteldeutsche Kristallinzone kann der Eckergneis nicht zugeordnet werden:

Die Mitteldeutsche Kristallinzone besteht hauptsächlich aus kalkalkalischen Magmatiten (SOMMERMANN 1993, SOMMERMANN et al. 1994, LIPPOLT 1986) und amphibolitfaziellen Metamorphiten bis 9 Kbar (LAUE et al. 1990), wobei in anderen Bereichen dieser Zone Drucke von < 1 bis 5 Kbar bestimmt wurden (ZEH 1996, ONCKEN 1997). Die Abkühlung des heutigen Anschnittes der Mitteldeutschen Kristallinzone fand nach ZEH et al. (1997) etwa vor 330 Ma SHRIMP-Analysen an detritischen Zirkonen in hochgradig metamorphen Metasedimenten dieser Zone liefern Altersgruppen von 550 Ma- 2.06 Ga (wenig 1.0 und 2.4-2.9 Ga Komponente) und weisen damit auf Liefergebiete aus dem Avalonisch-Cadomischen Orogen (45%) sowie aus West-Afrikanischen und/oder "Ost-Amazonischen" Kratonen hin. Die Grenvill- Phase spielt hier eine untergeordnete Rolle (ZEH et al. 2001).

Im saxothuringischen Becken dominieren schwach metamorphe Sedimente und Vulkanite, die in einem kambrischen bis devonischen Rift-Becken abgelagert wurden, das sich zwischen dem Devon und unteren Karbon schloss (FRANKE 1995). Die Thüringische Fazies besteht aus parautochthonen klastischen Sedimenten und vulkanischen Gesteinen (Kambrium-Ordovizium), die am NW' Rand des Saxothuringischen Beckens abgelagert wurden. Im Gegensatz dazu wurden die allochthonen Abfolgen bzw. die Bayerische Fazies an einem aktiven Kontinentalrand abgelagert und anschließend als Akkretionskeil auf die Thüringische Fazies überschoben. Der hangende Teil dieser invers gestapelten Deckeneinheiten besteht aus frühordovizischen MORB-Typ Gesteinen, die vor ca. 395 Ma eklogitfaziell überprägt wurden, und auch aus verschiedenen MP-metamorphen Gesteinen mit an Zirkonen, Hornblenden und Glimmern gemessenen Altern zwischen 380 und 365 Ma (FRANKE et al. 1995).

Bei K-Ar-Datierungen an detritischen Muskoviten in Metsedimenten des Saxothuringikums konnte KÜNSTER (2000) keinen kaledonisch geprägten Detritus nachweisen, was seiner Meinung nach auf eine Barriere zwischen dem Rhenoherzynischen und Saxothuringischen Becken bis in das Unterkarbon hinweist. Neoproterozoische bis kambroordovizische klastische Sedimente des Saxothuringikums wurden nach LINNEMANN & ROMER (2002) von einer alten kratonischen Quelle geliefert. Sie haben ein durchschnittliches Nd T_{DM} Modell-Alter von 1.5-1.9 Ga und so erscheint es nach den genannten Autoren wahrscheinlich, dass das Herkunftsgebiet des Saxothuringikums der Westafrikanische Kraton ist.

Abb. 100 Geotektonisches Modell für das untere Devon nach der Kollision Baltica-Laurentia mit cadomischen Terranen (nach SOPER et al. 1987 in CRAIG 1991)

Der Sedimentcharakter, teilweise auch der Metamorphosegrad im Saxothuringikum weisen deutliche Unterschiede zum Eckergneis-Komplex auf. Die vorwiegend avalonischcadomischen Alter und die untergeordnete Rolle der Grenvill-Phase bei Abwesenheit von kaledonischen Altern in saxothuringischen Sedimenten schliessen zusätzlich eine Verwandtschaft zwischen ihnen und dem Eckergneis-Komplex aus, was allerdings Gondwana bzw. Gondwana-verwandte Terrane ebenfalls betrifft.

Zusammenfassend:

Der Eckergneis-Protolith wurde nach der Wende Silur/Devon an einem passiven Kontinentalrand bei großer Beteiligung von Baltica-bezogenem Detritus sedimentiert. Der Eckergneis-Komplex kann tektonisch weder den zeitgleichen (devonischen) Sedimentablagerungen im Rhenoherzynikum noch dem Saxothuringikum als nächstgeleger tektonischen Einheit zugeordnet werden.

Nach dem meist anerkannten Modell der Schließung des Tornquist-Ozeans (im Ordovizium-Silur?) und der Entstehung der Norddeutsch-Polnischen Kaledoniden lässt sich der Eckergneis-Protholith plattenkinematisch nicht zuzuordnen. Zu den zeitgleichen Sedimentablagerungen am passiven Kontinentalrand des Old Red Kontinents gehört der Eckergneis auch nicht.

Das Abtragungsmaterial Balticas wurde in den Sedimentationsraum des Eckergneis-Protolithen ähnlich intensiv wie in das Rhenoherzynikum geliefert. Die detritischen Chromite des Eckergneis-Komplexes, deren Chemismus sich im heute zugänglichen Teil des Grundgebirges Balticas und im frühen Rhenoherzynikum (Devon) nicht wiederfindet, können aus einem Liefergebiet stammen, das am Aufbau des frühen Rhenoherzynikums nicht beteiligt war, das aber später, wahrscheinlich im Karbon, Detritus für den Acker-Bruchberg-Zug in untergeordneter Menge geliefert hat.

Einzig z. Zt. schlüssiges Szenario zum Ursprung der Eckergneisscholle ist tektonische Platznahme als Teil einer Ferndecke, deren im Eckergneis repräsentierter Protolith offenbar gleichzeitig mit Anteilen des Rhenoherzynikums sedimentiert wurde. Eine ursprünglich jedoch weiter östlich gelegene Position ermöglicht offenbar eine im Rhenoherzynikum nicht erreichte metamorphe Prägung während des obersten Silurs oder Devons noch im Ursprungsraum, die über amphibolitfazielle Metamorphose und Deformation zu statischer granulitfazieller Prägung führte. Der Deckentransport muss zur Zeit der Intrusion des Harzburger Gabbros und des Brockengranits (Oberkarbon) abgeschlossen gewesen sein. Eine durchgreifende Metamorphose oder Deformation während des Deckentransports ist nicht nachweisbar.

14. Synoptische Petrogenese des Eckergneis-Komplexes

Der Eckergneis-Komplex wurde petrographisch in folgende Gesteinsgruppen (neu)gegliedert: Quarz-Feldspat-Granoblastite, Quarz-Cordierit(Pinit)-Feldspat-Granoblastite, Gneise, Cordierit-Pyroxen-Granoblastite, Quarzite und Glimmerschiefer. 7 Amphibolit- und ein Metabasit-Vorkommen wurden bearbeitet. Sondertypen wie Kinzigite, Cordierit-Andalusit-Symplektite, Quarz-Cordierit(Pinit)-Granoblastite sind im Eckergneis vereinzelt vertreten.

Der Eckergneis-Protolith bestand aus karbonatfreien, kompositionell reifen Ablagerungen von Tonsteinen, Sandsteinen und deren Mischungen. Ein refraktäres Schwermineralspektrum aus Zirkon, Rutil und Chromit und deren hoher Rundungsgrad weisen auf einen relativ langen Transportweg oder mehrere sedimentäre Zyklen in den Liefergebieten hin. Zudem zeigen die Eckergneis-Metasedimente einen hohen Verwitterungsgrad für ihren Herkunftsraum an, mit CIA-Werten von 70-85. Diese Befunde deuten auf ein kratonisches Liefergebiet hin, unter Beteiligung mehrfach umgelagerter Sedimentgesteine.

Alter in detritischer Zirkone weisen auf Baltica als Herkunftsgebiet hin, Zirkone kaledonischer Alter können alternativ auch aus den Norddeutsch-Polnischen Kaledoniden stammen. Eine einzige Messung cadomischen Alters (566 Ma) spricht für eine untergeordnete Rolle eines cadomisch geprägten (Gondwana-verwandten) Terrans als Liefergebiet. Die Sedimentation des Eckergneis-Protolithen erfolgte demnach ab Wende Silur/Devon. Nach dem Sedimentcharakter und der Schwermineralzusammensetzung wurde der Eckergneis-Protolith an einem passiven Kontinentalrand abgelagert.

Eine neue chronologische Einordnung der metamorphen Ereignisse im Eckergneis wurde erarbeitet. Verschiedene Autoren vertraten diesbezüglich unterschiedliche Meinungen: MÜLLER & STRAUSS (1985) und FRANZ et al. (1997) äusserten der Ansicht, dass der Eckergneis zuerst eine granulitfazielle (Druck-Temperatur-Bedingungen von 720-780° C und 6.7-8.3 Kbar) und anschliessend eine amphibolitfazielle Dynamometamorphose (560-650°C/ 5 Kbar) durchgemacht haben soll. Nach SCHLÜTER (1983) sollte die Hauptmetamorphose unter amphibolitfaziellen Bedingungen (Abukuma-Typ) stattgefunden haben und anschliessend soll der Eckergneis Komplex eine Aufheizung in tiefen Untergrund (650° und 700° C/4 Kbar) durchgemacht haben.

Aufgrund mikroskopischer Untersuchungen von einem weiträumiger bezogenen Probenvolumen des gesamten Eckergneis-Komplexs kann folgende metamorphe Entwicklung für den Eckergneis aufgestellt werden:

Zuerst war der Eckergneis-Komplex einer amphibolitfaziellen Dynamometamorphose unterworfen, die von intensiver duktiler Verformung begleitet wurde. Hierbei kam es starker Foliation und Faltung. Segregationsquarzgänge, die der Foliation parallel liegen und bei der Verformung mitgefaltet wurden und kritische Minerale wie Andalusit, Granat und Cordierit belegen die amphibolitfazielle Metamorphose.

Anschließend erfuhr der Eckergneis eine Aufheizung, die zu einer statischen Umkristallisation der Eckergneis-Gesteine unter granulitfaziellen Bedingungen führte. Foliationsunabhängige Neubildungen von Orthopyroxenen und stellenweise auftretende symplektitische Gefüge sind Hinweise auf die granulitfazielle, weitgehend statische Metamorphose.

Belege für diese zeitliche Einordnung sind z.B: symplektitähnliche, poikiloblastische Orthopyroxen-Neubildungen, die keiner weiteren Dynamometamorphose unterworfen waren; Orthopyroxen-Neubildungen nach Amphibol in den Metavulkaniten; ausgeprägtes granoblastisches Gefüge in den Bändern und Lagen bei einer makroskopisch gut erhaltenen Foliation und z.T. Faltung.

Wann und unter welchen tektonischen Bedingungen die metamorphen Ereignisse im Eckergneis geschahen, ist schwer nachvollziehbar: nach dem von SCHOELL et al. (1973) ermittelten Rb-Sr-Isochronenalter von 379 Ma soll der Eckergneis im Mitteldevon die amphibolitfazielle Dynamometamorphose erlitten haben. Für die spätere granulitfazielle Thermometamorphose kann noch keine Altersangaben gemacht werden. Die benachbarten ca. 290 Ma alten Intrusionen des Harzburger Gabbronoritmassivs und des Brockenplutons (SCHOELL 1972) verursachten eine kontaktmetamorphe Überprägung des Eckergneises. Dieses Ereignis konnte durch das von BAUMANN et al. (1991) dokumentierte Alter von ca. 295 Ma in einer Titanit-Fraktion aus einer Metavulkanit-Probe des Eckergneis-Komplexes bestätigt werden.

Die heutige Position des in SSW-NNE-Richtung gestreckten, polymetamorphen Eckergneis-Komplexes im Harzkristallin, der eine NE-SW- streichende interne Struktur und eine NW/SE-streichende Kontur besitzt, wird kontrovers diskutiert (Kap. 2.2).

Nach Erdmannsdörffer (1909) sollte der Eckergneis Basis des Brockenplutons sein und nach Lotze (1933) sollte er zu allen Seiten hin unter die randlichen plutonischen Gesteine abtauchen und als gemeinsame Unterlage dieser dienen. Franzke (2001) vertrat die Meinung, dass der Eckergneis eine alte Hochlage des Kristallins im Bereich zwischen Diabaszug und dem westlichen Mittelharz darstellen soll, die im heutigen Ausstrichbereich des Eckergneises erst im Unterkarbon mit Sedimenten des Sösetroges zugeschüttet worden ist.

Gegen diese Ansichten sprechen geophysikalische Untersuchungen von DÜWEKE et al. (1976). Nach diesen Autoren nimmt die Mächtigkeit der Eckergneisscholle in der Nähe der Kontaktzone von NW nach SE von 200 m bis ca. 400 m zu, dagegen verringert sich die Mächtigkeit der Scholle vom Kontaktbereich in NE bis zum Rand der Scholle in SW. Für die Grenzen des Eckergneises zum Gabbro wurde ein allseitig flaches bis mittleres Einfallen der gabbroiden Gesteine unter den Eckergneis-Komplex festgestellt (SOHN 1956).

VINX & SCHLÜTER (1989, 1990, 1991), BAUMANN et al. (1991) und FRANZ et al. (1997) äußerten die Ansicht, dass der Eckergneis durch magmatischen Transport im Zuge des Aufstiegs der Magmen des Gabbronoritmassivs und Granits des Brockenplutons in seine heutige Position gekommen sein soll. Dieses Modell scheint fragwürdig zu sein, schon aufgrund des Größenverhältnisses des Harzburger Gabbronoritmassivs zum Eckergneis-Komplex (s. FRANZKE 2001). Das jüngste gemessene magmatische U-Pb-Zirkonalter von 410 Ma spricht gegen die Ansicht von BANKWITZ (1995), dass der Eckergneis eine spätcadomischkaledonische Einschuppung bei der Kollision Gondwanas mit Ost-Avalonia sein könnte.

In der vorliegenden Arbeit wird die Ansicht vertreten, dass es sich im Eckergneis um Erosionsrest einer tektonischen Decke handelt. Der mehrfach hochgradig metamorphosierte Eckergneis-Komplex, isoliert in einem kleinem Areal, kann nur durch einen Deckentransport in seine heutige Position d.h. in unmittelbare Nachbarschaft zu den kaum metamorphen Sedimentgesteinen gleichen Alters gelangt sein. Wahrscheinlich wurde der Eckergneis der metamorphosierte bei variszischen Orogenese die rhenoherzynischen Sedimentgesteine überschoben. Diese Ansicht wird durch die geophysikalischen Messungen von DÜWEKE et al. (1976) unterstützt.

15. Ausblick

Im Rahmen dieser Arbeit wurde eine Sedimentliefergebiet-Charakterisierung des Eckergneis-Komplexes, eine Protolithcharakterisierung der Metasedimente und Metavulkanite im Eckergneis-Komplex sowie deren tektonische Zuordnung vorgenommen. Durch Zirkon-Altersdatierungen (ESM und SHRIMP) konnte das Sedimentationsalter des Eckergneis-Protolithen eingegrenzt und als überraschend jung eingestuft werden. Die metamorphe Entwicklungsgeschichte des Eckergneises konnte in einer neuen zeitlichen Reihenfolge dargestellt werden. Es wurde eine These für die geotektonische Zuordnung des Eckergneis-Protolithen erarbeitet und der Versuch unternommen seine heutige Position im Rhenoherzynikum zu interpretieren.

Aus den ermittelten Ergebnissen und Befunden ergeben sich neue Aufgaben, die weitere Untersuchungen erfordern.

Die in dieser Arbeit verwendeten SHRIMP-Alter wurden an detritischen Zirkonen in den Metapsammiten des Eckergneis-Komplexes gemessen, da in letzteren eine bessere Schwermineralanreicherung zu erwarten war. Altersbestimmungen an typischen Eckergneis-Metapeliten können evtl. Alter der einzelnen metamorphen Ereignisse ermöglichen.

Die nach geochemischen Eigenschaften und Schwermineraluntersuchungen ermittelte tektonische Zuordnung des Eckergneis-Protolthen sowie die tektonomagmatische Zuordnung der vereinzelt vorkommenden Metavulkanite könnte unter Zuhilfenahme von SEE-Analysen überprüft werden.

16. Literaturverzeichnis

- AHRENDT, H., FRANZKE, H. J., MARHEINE, D., SCHWAB, M. & WEMMER, K., 1996: Zum Alter der Metamorphose in der Wippraer Zone/Harz Ergebnisse von K/Ar-Altersdatierungen an schwachmetamorphen Sedimenten. Zeitschrift der Deutschen Geologischen Gesellschaft 147 (1), 39-56.
- ANDERSSON, J., MÖLLER, C. & JOHANSSON, L., 2002: Zircon geochronology of migmatite gneisses along the Mylonite Zone (S Sweden): a major Sveconorwegian terrane boundary in the Baltic Shield. Precambrian Research 114, 121–147.
- BADHAM, J. P. N., 1982: Strike-slip orogens an explanation for the Hercynides. Journal of the Geological Society, London 139: 493-504
- BANKWITZ, P., 1995: Die Erdkruste der östlichen Rhenoherzynischen Zone im Umfeld des Harzes. Zentralblatt für Geologie und Paläontologie Teil I. 1995. 9/10, 1551-1557.
- BARNES, C. G., 1983: Petrology and Upward Zonation of the Wooley Greek batholith, Klamath Mountains, California. Journal of Petrology 24, 445-537.
- BATEMAN, J. D., 1945: Composition of the Bird River Chromite, Monitoba. American Mineralogist 30, 596-600.
- BAUMANN, A., GRAUERT, B., MECKLENBURG, S. & VINX, R., 1991: Isotopic age determinations of crystalline rocks of the Upper Harz Mountains. Geologische Rundschau 80, 669-690.
- BAULUZ, B., MAYAYO, M. J., FERNANDEZ-
- NIETO, C. & CONZALEZ LOPEZ, J. M., 2000: Geochemistry of Precambrian and Palaeozoic siliciclastic rocks from the Iberian Range (NE Spain): implications for source-area weathering, sorting, provenance, and tectonic setting. Chemical Geology 168, 135-150.
- BECCALUVA, L., OHNENSTETTER, D. & OHNENSTETTER, M., 1979: Geochemical discrimination between ocean-floor and island-arc tholeites application to some ophiolites. Canadian Journal of Earth Sciences 16, 1874-1882.
- Bhatia, M. R., 1983: Plate tectonics and geochemical composition of sandstones. Journal of Geology 91, 611-627.
- BISWAL, K. T., GYANI, K. C., PARTHASARATHY, R. & PANT, D. R., 1998: Implications of the geochemistry of the Pelitic Granulites of the Delhi Supergroup, Aravalli Mountain Belt, NE India. Precambrian Research 87, 75-85.
- BOLES, J. R., 1974: Structure, stratigraphy, and petrology of mainly Triassic rocks, Hokonui Hills, Southland, New Zealand. Journal of Geological Society of Australia 15, 87-102
- BOOSE, J., SCHMIDT, M. & GIESE, U., 2001: Petrographic, cathodoluminescence and fluid inclusion studies as provenance indicators of Early Palaeozoic sediments of Rügen, Germany. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen 222, 191-214.
- Brandl, W., 1939: Erdmagnetische Untersuchungen im Brockenmassiv. Abhandlungen der Preußischen Geologischen Landesanstalt. Neue Folge 188. 82 S. Berlin
- BURCHARDT, I., 1977: Ergebnisse lithologischer und petrographischer Untersuchungen am Ilsenburg- und Gommernquarzit (Dinant). Hallesches Jahrbuch für Geowissenschaften 1, 101-114.
- CAMERON, W. E., NISBET, E. G., DIETRICH, V. J., 1980: Petrographic dissimilarities between ophiolitic and ocean floor basalts. In PANAYIOTOU, A. (eds.): Ophiolites, Proceeding of the International Ophiolite Symposium. Cyprus. 1979. The geological survey of Cyprus, Nicosia, 182-193.
- CARLS, P., 2001: Kritik der Plattenkinematik um das Rhenoherzynikum bis zum frühen Devon. Braunschweiger Geowissenschaftliche Arbeiten 24, 27-108.
- CHATTERJEE, N. D., PLESSMANN, W. & WUNDERLICH, H. G., 1960: Zur Altersstellung des Eckergneises im Harz. Neues Jahrbuch für Geologie und Paläontologie, Monatshefte, 368-379.

- COCKS, L. R. & FORTEY, R. A., 1982: Faunal evidence for oceanic separation in the Palaeozoic of Britain. Journal of the Geological Society, London 139, 465-478.
- CONDIE, K. C. & SNANSIENG, S., 1971: Petrology and geochemistry of the Duzel (Ordovizian) and Gazelle (Silurian) Formations, Northern California. Journal of Sedimentary Petrology 41, 741-751.
- COOKENBOO, H. O., BUSIN, R. M. & WILKS, K. R., 1997: Detrital chromian spinel compositions used to reconstruct the tectonic setting or provenance: Implications for orogeny in the Canadian Cordillers. Journal of Sedimentary Research 67, 116-123.
- CRAIG, G. Y., 1991: Geology of Scotland, 3rd edition. Geological Society of London, 612 pp.
- CROOK, K. A. W., 1974: Lithogenesis and geotectonics: the significance of compositional variations in flysh arenites (greywackes). In DOTT, R. N. & SHAVER, R. N. (eds.): Modern and ancient Geosynclinal Sedimentation. Society of Economic Palaeontologists and Mineralogists Special Publication 19, 304-310.
- Dallmeyer, R. D & Martinez-Garcia, R., 1990: Pre-Mesozoic geology of Iberia. Springer, 416 pp.
- DALZIEL, I. W. D., 1997: Neoproterozoic-Palaeozoic geography and tectonics: Review, hypothesis, environmental speculation. Geological Society of America, Bulletin January 119, 16-41.
- DEGENS, E. T., 1968: Geochemie der Sedimente. Enke. 282 S.
- Der Brocken im Nationalpark Hochharz und seine Umgebung: Freizeitkarte mit Rad- und Wanderwegen, Maßstab 1: 25000, Kommunalverlag Hans Tacken ISBN 3-89641-516-6.
- DICK, H. J. B. & BULLEN, T., 1984: Chromian spinel as a petrogenetic indicator in abyssal und alpine-type peridotites and spatially associated lavas. Contributions to Mineralogy and Petrology 86, 54-76.
- DÜWEKE, M., EHRISMANN, W., KRAHMER, U. & ROSENBACH, O., 1976: Magnetische und gravimetrische Messungen im Kontaktbereich Eckergneis-Gabbro des Harzer Brockenplutons. Geologisches Jahrbuch Reihe E6, 81-108.
- EISBACHER, G. H., (1996): Einführung in die Tektonik. 2. Auflage. 374 S.
- ENGEL, W. & FRANKE, W., 1983: Flysch-sedimentation: ist relations to tectonism in the European Variscides. In MARTIN, H & EDER, F. (eds.): Intracontinental Fold Belts- Case Studies in the Variscan belt of Europe and the Damare orogen in Namibia. Springer, 290-321.
- ENGEL, W., FRANKE, W., GROTE, C., WEBER, K., AHRENDT, H. & EDER, F. W., 1983: Nappe tectonics in the southeastern part of Rheinische Schiefergebirge. In MARTIN, H. & EDER, F. (eds.): Intracontinental Fold Belts- Case Studies in the Variscan belt of Europe and the Damara orogen in Namibia. Springer, 267-287.
- ERDMANNSDÖRFFER, O. H., 1909: Der Eckergneis im Harz. Ein Beitrag zur Kenntnis der Kontaktmetamorphose und der Entstehung kristalliner Schiefer. Jahrbuch der königlichpreußischen geologischen Landsanstalt und Bergakademie zu Berlin 30, 324-338.
- ERDMANNSDÖRFFER, O. H. & SCHRÖDER, H., 1927: Erläuterungen zur geologischen Karte von Preußen, Blatt Badharzburg, 3. Auflage der Preußischen Geologischen Landesamt, Berlin.
- GAAL, G. & GORBATSCHEV, R., 1987: An outline of the precambrian evolution of the Baltic Shield. Precambrian Research 35, 15-52.
- GANSSLOSER, M., 1999: Detrital chromian spinels in Rhenohercynian Greywackes and Sandstones (Givetian-Visean, Variscides, Germany) as indicators of ultramafic source rocks. Geological Magazine 136, 437-451.
- GEISLER, T., 1999: Chemage: a 32 bit Windows program for the calculation of chemical U-Th-total Pb ages and the graphical data presentation. Beiheft zum European Journal of Mineralogy 11, 154.

- GEISLER, T. & SCHLEICHER. H., 2000: Improved U-Th-total Pb dating of zircons by electron microprobe using a new backround modeling method and Ca as a chemical criterion of fluid-indused U-Th-Pb discordance in zircon. Chemical Geology 163, 269-285.
- GEISLER-WIERWILLE. T., 1999: U-Th-Gesamtblei-Datierung von Zirkonen mit Hilfe der Elektronenstrahl-Mikrosonde: Methodik und Anwendungsbeispiele. Ph.D. thesis, University of Hamburg.
- GEISLER, T., NERGUI, G. & VINX, R., 2001: A detrital-zircon provenance study on metasediments of the Ecker Gneiss unit, Harz Mountains, Germany: application of the U-Th-total Pb dating method. Beiheft zum European Journal of Mineralogy 13, 61.
- GEISLER, T., VINX, R., PIDGEON, R. T. & MARTIN, N., 2002: A SHRIMP study on detrital-zircons from quartzites of the Ecker Gneiss unit, Harz Mountains, Germany. Beiheft zum European Journal of Mineralogy 14, 50.
- GIESE, U. & KÖPPEN, S., 2001: Detrital record of Early Palaeozoic and Devonian clastic sediments at the southwestern border of the Fennoskandian Shield provenance signals for a Caledonian geodynamic evolution. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen 222 (1/2), 215-251.
- Greiling, R. O., 1995: Kaledoniden und Baltischer Schild und ihre Beziehung zum Nordrand der Varisziden in Mitteleuropa. Zentralblatt für Geologie und Paläontologie. Teil I 1993 (9/10), 1529-1536.
- GROMET, L. P., DYMEK, R.F., HASKIN, L. A. & KOROTEV, R. L., 1984: The "North American Shale Composite": Its compilation, major and trace element characteristics. Geochimica et Cosmochimica Acta 48, 2469-2482.
- GROSSER, J. & DORR, W., 1986: MOR-Typ-Basalte im östlichen Rheinischen Schiefergebirge. Neues Jahrbuch für Geologie und Paläontologie, Monatshefte 12, 705-722.
- FRANKE, W., 1989: Tectonostratigraphic units in the Variscan belt of Central Europe. Geological Society of America, Special Paper 230, 67-90.
- FRANKE, W., 1992: Phanerozoic structures and events in Central Europe. In Blundell, D., Freeman, R. & Mueller, S. (eds.): A continent released the European geotraverse. Cambridge University Press, Cambridge 164-180.
- Franke, W., 1995: Rhenohercynian foldbelt: autochton and nonmetamorphic nappe units Stratigraphy. In Dallmeyer, R. D., Franke, W. & Weber, K. (eds.): Pre-Permian Geology of Central and Eastern Europe, 33-49.
- FRANKE, W., 2000: The mid-European segment of Variscides: tectonostratigraphic units, terrane boundaries and plate tectonic evolution. In FRANKE, W., HAAK, V., ONCKEN, O. & TANNER, D. (eds.): Orogenic Processes: Quantification and Modelling in the Variscan Belt. Geological Society, London, Special Publication 179, 35-61
- Franke, W., Dallmeyer, R. D. & Weber, K., 1995: Geodynamic Evolution. In Dallmeyer, R. D., Franke, W., Weber, K. (eds.): Pre-Permian Geology of Central and Eastern Europe, 579-593.
- Franz, L., Schuster, A. K. & Strauss, K. W., 1997: Basement Evolution in the Rhenohercynian Segment: Discontinuous Exumation History of the Eckergneis Complex (Harz Mountains, Germany). Chemie der Erde 57, 105-135.
- Franzke, H. J., 1996: Der Eckergneis. In Buchholz, P., Büthe, F., Franzke, H. J., Ganssloser, M., Palmowski, D., Wachendorf, H. & Zellmer, H., Harz-Traverse: Brocken-Komplex-Ilfelder Becken, Exkursion B, Exkursionsführer und Veröffentlichungen der Gesellschaft für Geowissenschaften, 1997. 98-107.
- FRANZKE, H. J., 2001: Die strukturelle Einbindung des Eckergneises zu seinem variszisch geprägtem Umfeld. Braunschweiger Geowissenschaftliche Arbeiten 24, 1-16.
- FORCE, E. R., 1980: The provenance of rutile. Journal of Sedimetary Petrology 50. 485-488.
- HARLEY, S. L., 1984: An experimental study of the partitioning of Fe and Mg between garnet and orthopyroxene. Contributions to Mineralogy and Petrology 86, 359-379

- HAUPT, M., 1996: Petrochemie nichtalterierter und spilitisierter Basaltoide aus dem Südteil des Marianen-Trogs in Hinblick auf die tektonomagmatische Diskriminierung von Vulkaniten in Multielementendiagrammen, Dissertation Universität Hamburg 153 S.
- HAUSMANN, J. L. F., 1842: Über die Bildung des Harzgebirges. Dieterichsche Buchhandlung Göttingen
- HAVENKAMP, J., 1991: Detritusanalyse unterdevonischer Sandsteine des Rheinisch-Ardennischen Schiefergebierges und ihre Bedeutung für die Rekonstruktion der sedimentliefernden Hinterländer. Dissertation Rheinisch-Westfälische Technische Hochschule. Aachen
- HAVENKAMP, J., VON HOEGEN, J., KRAMM, U. & WALTER, R., 1992: Application of U-Pb-system from detrital zircons for palaeogeographic reconstructions a case study from the Rhenohercynian. Geodynamica Acta 5 (1-2), 69-82.
- HERRON, M. M., 1988: Geochemical classification of terrigenous sands and shales from core or log data. Journal of Sedimentary Petrology 58, 820-829.
- HOFFMANN, F., 1829: Über die allgemeinen geognostischen Verhältnisse des nordwestlichen Deutschlands. Archiv für Mineralogie, Geognosie, Bergbeu und Hütten-Kande 1. Bd. 1. 115-154.
- HOLDER, M. & LEVERIDGE, B., 1986: Correlation of the Rhenohercynian Variscides. Journal of the Geological Society, London 143, 141-147.
- HOMRIGHAUSEN, R., 1979: Petrographische Untersuchungen an sandigen Gesteinen der Hörre-Zone. (Rheinische Schiefergebirge, Oberdevon-Unterdevon). Geologische Abhandlungen Hessen 79, 84 S.
- HUCKENHOLZ H. G., 1962: Mineral composition and texture in greywackes from the Harz Mountains (Germany) and in arkoses from the Anvergne (France). Journal of Sedimentary Petrology 33, 914-918.
- HUCKRIEDE, H., AHRENDT, H., FRANKE, W., WEMMER, K. & MEISCHNER, D. (1998): Orogenic processes recorded in Early Carboniferous and Devonian clastic sediments of the Rhenohercynian Zone. Terra Nostra 98/2, 77-79.
- IRVINE, T.N., 1965: Chromium Spinel as a petrogenetic indicator (I). Canadian Journal of Earth Sciences 2, 648-671.
- IRVINE, T.N., 1967: Chromium Spinel as a petrogenetic indicator (II). Canadian Journal of Earth Sciences 4, 71-101.
- IRVINE, T.N., 1977: Origin of chromitite layers in the Muskox intrusion and other stratiform intrusions. Geology 5, 273-277
- IRVINE, T. N. & BARAGAR, W. R. A., 1971: A giude to the chemical classification of the common volcanic rocks. Canadian Journal of Earth Sciences 8, 523-548.
- JENSEN, L. S., 1976: A new cation plot for classifying subalcalic volcanic rocks. Division of Mines Ontario, Miscelleous Paper 66.
- JOHANSSON, L., MÖLLER, C. & SÖDERLUND, U., 2001: Geochronology of eclogite facies metamorphism in the Sveconorwegian Province of SW Sweden. Precambrian Research 106, 261–275.
- KATZUNG, G., GIESE, U., WALTER, R. & WINTERFELD, C., 1993: The Rügen Caledonides, Northeast Germany. Geological Magazine 130, 725-730.
- KOSSMAT, F., 1927: Gliederung der varistischen Gebirgsbaus. Abhandlungen des sächsischen geologischen Landesamtes 1: 1:39
- KÜSTNER, W., 2000: K-Ar-Datierungen an detritischen Muskoviten und Sm-Nd-Modellalter präund synorogener schwach metamorpher Sedimente im Rhenoherzynikum: Grundlegende Daten zur Quantifizierung orogener Prozesse am Beispiel der Varisziden, Dissertation, Göttingen.

- Langenstrassen, F., (1983): Neritic sedimentation of the Lower and Middle Devonian in the Rheinische Schiefergebirge east of the river Rhine. In Martin, H. & Eder, F. W. (eds.): Intracontinental Fold Belts: Case Studies in the Variscan belt of Europe and the Damara orogen in Namibia 43-76. Springer
- LAUE, S., REISCHMANN, T. & EMMERMANN, K. H., 1990: Geochemical variation of granitoid rocks from the NW margin of the Rhinegraben. Beiheft zum European Journal of Mineralogy 2 (1), 156.
- LE MAITRE, R. W., 1989: A Classification of igneous rocks and Glossary of Terms. Blackwell Scientific Publication, Oxford, 193 pp.
- LEE, Y. I., 1999: Geotectonic significance of detrital chromian spinel: a review. Geoscience Journal 3/1, 23-29.
- LINNEMANN, U & ROMER, R. L., 2002: The Cadomian Orogeny in Saxo-Thuringia, Germany: geochemical and Nd–Sr–Pb isotopic characterization of marginal basins with constraints to geotectonic setting and provenance. Tectonophysics 352, 33-64.
- LINDT, A., 2002: The southern part of the Transscandinavian Igneous Belt. Beiheft zum European Journal of Mineralogy 14, 185-217.
- LIPPOLT, H. J., 1986: Nachweis altpaläozoischer Primäralter (Rb-Sr) und karbonischer Abkühlalter
 - (K-Ar) der Muskovit-Biotit-Gneise des Spessarts und der Biotit-Gneise des Böllsteiner Odenwaldes. Geologische Rundschau 73, 569-583.
- LOSSEN, K. A., 1889: Mitteilungen des Herrn K. A. Lossen über die geologische Kartenaufnahme im Harzburger Revier (im Jahre 1888). Jahrbuch der königlichen und preußischen geologischen Landsanstalt für 1888. VIII. XXXV-XLIII.
- LOTZE, F., 1933: Das tektonische Bild des Brockenmassivs. Centralblatt für Mineralogie, Geologie und Paläontologie, Abteilung B, 633-647.
- LUDWIG, K. R., 1998: On the treatment of concordant uranium-lead ages. Geochimica et Cosmochimica Acta 62, No 4. 665-678.
- MARHEINE, D., 1997: Zeitmarken im variszischen Kollisionsbereich des Rhenoherzynikums-Saxothuringikums zwischen Harz und Sachsischen Granulitmassiv - Ergebnisse von K/Ar-Altersbestimmungen. Göttinger Arbeiten zur Geologie und Paläontologie 75, 1-97.
- MECKLENBURG, S., 1987: Geochronologische und isotopengeochemische Untersuchungen an Gesteinen des Brockenintrusionkomplexes, Westharz. Dissertation. Universität Hamburg, 79 S.
- MEISSNER, R., SADOVIAK, P., THOMAS, S. A., BABEL Working Group., 1994: East Avalonia, the third partner in the caledonian collisions: Evidence from deep seismic reflection data. Geologische Rundschau 83, 186-196.
- MESCHEDE, M., 1986: A method of discriminating between different types of mid-ocean ridge basalts and continental tholeites with the Nb-Zr-Y diagram. Chemical Geology 56, 207-218.
- MEYER, K, D., 1965: Stratigraphie und Tektonik des Allerzuges am Nordwestrand des Acker-Bruchberges bei Riefensbeek im Harz. Geologisches Jahrbuch 82, 385-436,
- MOGESSIE, A., PURTSCHELLER, F. & TESSARDI, R., 1988: Chromite and chrome spinel occurences from metacarbonites of the Oetztal-Stubai Complex (northern Tyrol, Austria). Mineralogical Magazine 52, 229-236.
- MOHR, K., 1978: Geologie und Minerallagerstätten des Harzes. 387 S.
- MULLEN, E. D., 1983: Mn/TiO₂/P₂O₅: a minor element discriminant of basaltic rocks of oceanic environments and its implications for petrogenesis. Earth and Planetary Science Letters 62, 53-62.
- MÜLLER, G. & STRAUS, K. W., 1985: Polymetamorphe Entwicklung des Eckergneiskomplexes/Harz. Neues Jahrbuch für Mineralogie. Abhandlungen 152/3, 271-291.

- NATHAN, S., 1976: Geochemistry of Greenland group (Early Ordovician), New Zealand. New Zealand Journal of geology and geophysics 19, 683-706.
- NECHAEV, V. & ISPHORDING, W. C., 1993: Heavy-mineral assemblages of continental margins as indicators of plate-tectonic environments. Journal of Sedimentary Petrology 63, 6. 1110-1117.
- NEUGEBAUER, J., 1988: The Variscan plate tectonic evolution: an improved "Iapetus model". Schweizerische Mineralogische und Petrologische Mitteilungen 68, 313-333.
- NEUGEBAUER, J., 1989: The Iapetus model: a plate tectonic concept for the Variscan belt of Europe. In MATTE, PH. & ZWART, H. J. (eds.): Palaeozoic Plate Tectonics with Emphasis on the European Caledonian and Variscan Belts. Tectonophysics 169, 229-256.
- NEWTON, R, C. & PERKINS, D., 1982: Thermodynamic calibration of geobarometers based on the assemblage garnet-plagioclase-orthopyroxen(clinopyroxen)-quartz. American Mineralogist 67l, 203-222.
- NESBITT, H. W. & YOUNG, G. M., 1982: Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature 299, 715-717.
- ONCKEN, O., 1997: Transformation of a magmatic arc and orogenic root during the oblique collision and it's consequences for the evolution of the European Variscides (Mid-German Crystallin Rise). Geologische Rundschau 86, 2-21.
- ONCKEN, O., FRANZKE, H. J., DITTMAR, U. & KLUGEL, T.,1995: Rhenohercynian foldbelt: metamorphic units structure. In Dallmeyer, R. D., Franke, W. & Weber, K. (eds.): Pre-Permian Geology of Central and Eastern Europe, 108-117.
- PAECH, H, J., 1973: Zur Geologie des Gommern-Quarzites östlich Magdeburg. Zeitschrift für geologische Wissenschaften 1, 815-830. Berlin
- PEARCE, J. A., 1975: Basalt geochemistry used to investigate past tectonoc environments on Cyprus. Tectonophysics 25, 41-67.
- PEARCE, J. A. & CANN, J. R., 1973: Tectonic setting of basic volcanic rocks determined using trace element analyses. Earth and Planetary Science Letters 19, 290-300.
- PEARCE, J. A. & NORRY, M. J., 1979: Petrogenetic implications of Ti, Zr, Y an Nb variations in volcanic rocks. Contributions to Mineralogy and Petrology 69. 33-47.
- PICHOU, J. L & PICHOIR, F., 1984: A new model for quantitative x-ray microanalysis. Part I: Application to the analysis of homogeneous samples. La Recherche Áerospatiale 3, 13-38.
- PLATEN, K., EMMERMANN, R. & FRANKE, W., 1989: Devonian MOR-type metabasalts from the Rhenohercynian Zone in Germany. Abstracts, EUG V: 365. Strasbourg.
- PRESS, S., 1986: Detrital spinels from alpinotype source rocks in middle devonian sediments of the Rhenish Massif. Geologische Rundschau 75/2, 333-340.
- PUTTRICH, I., 1972: Der nördlihce Acker-Bruchberg-Zug, speziell beim Bad Harzburg (Oberharz). Dissertation, Universität Erlangen-Nürnberg, 224 S.
- QUADE, H., SCHMIDT, D., SCHNIBBEN, V., 1995: Strukturelle und texturelle Untersuchungen an Quarziten des Eckergneis-Komplexes, Harz. Zentralblatt für Geologie und Paläontologie Teil I. 9/10, 1385-1399.
- REICHSTEIN, M., 1965: Motive und Probleme erneuerter Deckenbauvorstellungen für den Harz. Geologie 14, 1039-1076.
- ROEMER, F. A., 1850: Beiträge zur geologischen Kenntnis des nordwestlichen Harzgebirges. Palaeontographica 3, 1-67.
- ROSER, B. P & KORSCH, R. J., 1986: Determination of tectonic settings of sandstone-mudstone suites using SiO₂ content and K₂O/Na₂O ratio. Journal of Geology 94, 635-650.
- ROSER, B. P. & KORSCH, R. J., 1988: Provenance signatures of sandstone-mudstone suites determining using discriminant function analyses of major element data. Chemical Geology 67, 119-139.

- SCHLÜTER, J., 1983: Petrographische und geochemische Untersuchungen am Eckergneis, Harz. Dissertation, Universität Hamburg. 80.
- SCHOELL, M., LENZ, H. & HARRE, W., 1973: Das Alter der Hauptmetamorphose des Eckergneises im Harz auf Grund von Rb/Sr-Datierungen. Geologisches Jahrbuch A 9, 89-95.
- SCHOELL, M., 1972: Radiometrische Altersbestimmungen am Brocken-Intrusionskomplex im Harz als Beispiel der Interpretation diskordanter Modellalter. In WENDT, I.: Radiometrische Methoden in der Geochronologie. Clausthaler tektonische Hefte 13, 102-125
- SCHÖNENBERG, R. & NEUGEBAUER, J., 1997: Einführung in die Geologie Europas, 7. Auflage. Rombach Wissenschaft.
- SCHULZ-DOBRICK, B., 1975: Chemischer Stoffbestand variskischer Geosynklinalablagerungen in Rhenoherzynikum. Dissertation. Göttingen.
- SCHWAN, W., 1967: Zur Stratigraphie, Paläographie und Faziesbildung der Hörre-, Gommernund Tanner-Systeme. Erlanger Geologische Abhandlungen 65, 70 S.
- SHERVAIS, J. W., 1982: Ti-V plots and the petrogenesis of modern ophiolitic lavas. Earth and Planetary Science Letters 59, 101-118.
- SOHN, W., 1956: Der Harzburger Gabbro. Geologisches Jahrbuch 72. 117-172.
- SOMMERMANN, A. E., 1993: Zirkonalter aus dem Granit der Bohrung Saar 1. Bericht der Deutschen mineralogischen Gesellschaft 1, 145 S.
- SOMMERMANN, A. E., ANDERLE, H. J. & TODT, W., 1994: Das Alter des Quarzkeratophyrs der Krausaue bei Rüdesheim am Rhein (Bl. 6013 Bingen, Rheinisches Schiefergebirge). Geologisches Jahrbuch Hessen 122, 143-157.
- SOPER, N. J., 1986: The New Granite problem: a geotectonic view. Geological Magazine 123, 227-336.
- SPEAR, F. S., 1981: NaSi=CaAl exxhange equilibrium between plagioclase and amphibole. Contributions to Mineralogy and Petrology 72, 33-41.
- STOWE, C. W., 1987: Evolution of Chromium Ore Fields. Van Nostrand Reinhold Company.
- STOWE, C. W., 1994: Compositions and Tectonic Setting of Chromite Deposits through Time. Economic geology 89, 528-546.
- TAIT, J. A., BACHTADSE, V., FRANKE, W., SOFFEL, H. C., 1997: Geodynamic evolution of the European Variscan fold belt: paleomagnetic and geological constraints. Geologische Rundschau 86, 585-598.
- TANNER, B. & MEISSNER, R., 1996: Caledonian deformation upon southwest Baltica and ist tectonic implications: Alternatives and consequences. Tectonics 15, 803-812.
- THOMPSON, A, B., 1976: Mineral reactions in pelitic rocks: I. Prediction of P-T-X (Fe-Mg) phase relations. American Journal of Science 276, 401-424.
- TORSVIK, T. H., SMETHUST, M. A., VAN DER VOO, R., TRENCH, A., ABRAHAMSEN, N. & HALVORSEN, E., 1992: Baltica. A synopsis of Vendian-Permian palaeomagnetic data and their palaeotectonic implications. Earth Science Reviews 33, 133-152. Amsterdam.
- TRAUTNITZ, H, M., 1980: Zirkonstratigraphie nach vergleichender morphologischer Analyse und statistischen Rechenverfahren dargestellt am Beispiel klastischer Gesteine im Harz. Dissertation Universität Erlangen-Nürnberg, 159 S.
- TRÖGER, W.E., 1969: Optische Bestimmung der gesteinsbildenden Minerale, Teil 2 Textband. Schweizerbart'sche Verlagsbuchhandlung. 822 S.
- TSCHERNOSTER, R., 2000: Isotopengeochemische Untersuchungen am Detritus der Dänisch-Norddeutsch-Polnischen Kaledoniden und deren Vorland. Dissertation Rheinisch-Westfälische Technische Hochschule. Aachen
- VINX, R., 1982: Das Harzburger Gabbromassiv, eine orogenetisch geprägte layered Intrusion. Neues Jahrbuch für Mineralogie. Abhandlungen 144, 1-28.

- VINX, R., 1983: Magmatische Gesteine des Westharzes. Fortschritte der Mineralogie 61, Beiheft 2. 3-10.
- VINX, R., 1995: Hochauflösende Rekonstruktion von Eistransportwegen: Die "Leitseriemethode" (Enhanched-Resolution Reconstruction of Ice Flow Paths: The "Indicator Sequence Method"). Archiv für Geschiebekunde 1 (11), 625-640.
- VINX, R. & SCHLÜTER, J., 1989: Cadomisches Basement im Rhenoherzynikum? Kurzfassungen 5. Rundgespräch "Geodynamik des europäischen Variszikums" 52. Braunschweig
- VINX, R. & SCHLÜTER, J., 1990: Cadomisches Basement im Rhenoherzynikum? Zentralblatt für Geologie und Paläontologie Teil I. 381.
- VINX, R. & SCHLÜTER, J, 1991: Unveröffentlichtes Manuskript: The Ecker Gneis, Harz mountains: Cadomian Basement in the Rhenohercynian Belt of the European Variscides. University Hamburg
- VINX, R. & GEISLER-WIERWILLE, T., 2002: Abschlußbericht (Projekt VI 88/2-1) Herkunfts-, Sedimentations- und postsedimentäre Geschichte von Zirkonen aus dem Eckergneis-Komplex (Harz): U-Pb-Datierungen mit Hilfe der Ionensonde (SHRIMP).
- WACHENDORF, H., 1986: Der Harz variszischer Bau und geodynamische Entwicklung. Geologisches Jahrbuch. A 91, 3-67.
- Walter, R., 1995: Geologie von Mitteleuropa. Schweizerbart'sche Verlagsbuchhandlung. 561
- WRONKIEWICZ, D. J. & CONDIE, K. C., 1989: Geochemistry and provenance of sediments from the Pongola Supergroup, South Africa: Evidence for a 3.0-Ga old continental craton. Geochimica et Cosmochimica Acta 53, 1537-1549.
- WRONKIEWICZ, D. J. & CONDIE, K. C., 1990: Geochemistry and mineralogy of sediments from Ventersdorf and Transvaal Supergroups, South Africa: Cratonic evolution during the early Proterozoic. Geochimica et Cosmochimica Acta 54, 343-354.
- YAVUZ, F., 1999: A revised program for microprobe derived amphibole analyses using IMA rules. Computers & Geosciences 25, 909-927.
- ZEH, A., 1996: Die Druck-Temperatur-Deformations-Entwicklung des Ruhlaer Kristallins (Mitteldeutsche Kristallinzone). Geotektonische Forschungen 86, 212 S.
- ZEH, A., BRÄTZ, H., COSCA, M., TICHOMIROVA, M. & OKRUSCH, M., 1997: Ar³⁹/Ar⁴⁰ und ²⁰⁷Pb/²⁰⁶Pb Datierungen im Ruhlaer Kritallin, Mitteldeutsche Kristallinzone, Terra Nostra 97/5, 212-215
- ZEH, A., BRÄTZ, H., MILLAR, I. L., WILLIAMS, I. S., 2001: A combined zircon SHRIMP and Sm-Nd isotope study of high grade paragneisses from the Mid-German Crystalline Rise: Evidence for Northern Gondwanan and Grenvillian provenance. Journal of the Geological Society 158, no.6. 983-994.
- ZIEGLER P. A., 1986: Geodynamic Model for the Palaeozoic Crustal Consolidation of Western and Central Europe. Tectonophysics 124, 2-4. Amsterdam
- ZIEGLER P. A., 1990: Geological Atlas of Western and Central Europe. 2nd. ed. Shell International Petrolium. The Hague. 239 pp.
- ZIMMERMANN, C., 1834: Das Harzgebirge in besonderer Beziehung auf Natur und Gewerbekunde geschildert. C. W. Leske, Darmstadt.

Lebenslauf

Am 01 April 1968 bin ich als Tochter von Gombojav Naidan und Baasanjav Khandaijav in Ulaanbaatar/Mongolei geboren.

1991 wurde meine Tochter Binderiya Gan-Ayush geboren. Seit 2001 bin ich mit Claude Martin verheiratet.

Nach dem Besuch der Sekundärschule zwischen 1975 und 1985 in Nalaikh/Mongolei habe ich von 1985 bis 1990 mein Diplomstudium an der Staatlichen Universität Lviv/Ukraine abgeschloßen.

Von 1990 bis 1993 arbeitete ich als Mineralogin in der geologischen Expedition, Hövsgöl Aimag/Mongolei. Im Dezember 1992 erkrankte mein erster Ehemann Gan-Ayush Sangidamba, Vater meiner Tochter an Krebs und ist im Januar 1994 gestorben. In dieser Zeit widmete ich mich voll der Pflege meines Mannes.

Zwischen 1994 und 1999 war ich als wissenschaftliche Mitarbeiterin und Assistentin im geologischen Institut der Mongolischen Technischen Universität beschäftigt. Von 1994 und 1996 habe ich mein Magister-Studium in Geochemie, Mineralogie und Petrologie an der Mongolischen Technischen Universität/Ulaanbaatar absolviert und vom Dezember 1996 bis Dezember 1997 eine Fortbildung in Mineralogie für Rohstoffe und Umweltuntersuchungen in der BGR/Deutschland abgeschlossen.

Seit Oktober 1999 beschäftige ich mich mit der vorliegender Arbeit.

Anhang

Anhang I: Probenliste mit makroskopischer Beschreibung

Anhang II: RFA-Daten

Anhang IIIa: Mikrosondenanalysen der gesteinsbildenden

Minerale und deren Mineralformeln

Anhang IIIb: Mikrosondenanalysen der Chromite

Anhang IV: SHRIMP-Analysendaten

Anhang V: Abkürzungen

Anhang VI: Lageplan der Beprobungspunkte im

Eckergneis-Komplex

Anhang I: Probenliste und Makroskopische Beschreibung

Probe	Beschreibung
0-1	Qz-Crd(Pinit)-Feldspat-Granoblastit, dunkelgrau mit olivgrauen Bändern
0-2	Qz-Crd(Pinit)-Feldspat-Granoblastit, olivschwarz, foliiert
0-3	Qz-Crd(Pinit)-Feldspat-Granoblastit, olivschwarz mit olivgrauen Bändern
0-3-A	Qz-Crd(Pinit)-Feldspat-Granoblastit, dunkelgrau
0-3B	Qz-Crd(Pinit)-Feldspat-Granoblastit, dunkelgrau mit olivgrauen Bändern
0-4	Qz-Crd(Pinit)-Feldspat-Granoblastit, schwarze Masse mit olivgrauen Bänder
0-5	Qz-Crd(Pinit)-Feldspat-Granoblastit, dunkelgrau, leicht foliiert
0-6A	Crd-Px-Granoblastit, gräulich schwarz
0-6B	Crd-Px-Granoblastit, schwarz, massiv
0-7	Qz-Crd(Pinit)-Feldspat-Granoblastit, gräulich schwarz, foliiert
0-8	Quarzit, hellgrau
0-9	Qz-Crd(Pinit)-Feldspat-Granoblastit, gräulich schwarz, foliiert
0-10	Qz-Crd(Pinit)-Feldspat-Granoblastit, schwarz, massiv
0-10B	Qz-Crd(Pinit)-Feldspat-Granoblastit, dunkel grünlich grau, foliiert
0-12C	Quarzit, gräulich orange blassrosa, mittelkörnig
0-14	Qz-Crd(Pinit)-Feldspat-Granoblastit, dunkel gelblich braun, foliiert, mit gräulich orangen Lagen
0-15	Gneis, blassrosa grau mit bräunlich grauen Bänder
0-16	Glimmerschiefer, hellbraun, foliiert
0-17	Glimmerschiefer, dunkel gelblich braun, foliiert
0-18	Glimmerschiefer, dunkel gelblich braun, foliiert, dunkelbraun, geschichtet
0-21	Glimmerschiefer, dunkel gelblich braun, foliiert, dunkelbraun, geschichtet
0-22	Glimmerschiefer, dunkel gelblich braun, foliiert, mit dünnen schwarzen Streifen (<0.5mm)
0-23	Glimmerschiefer, dunkel gelblich braun, foliiert, enthält dunkel braune dünne Bänder
0-25	Glimmerschiefer, gräulich braun, feinkörnig, leicht foliiert
0-30	Gneis, mittel bläulich grau mit Qz-Feldspat-Bänder
0-31	Gneis, mittel dunkelgrau, nicht foliiert
0-32	Quarzit, gebändert mit dünnen Feldspat-Bändern und Linsen von Segregationsquarz
0-33	Gneis, dunkel grünlich grau mit dunkel grauen Bändern (<1mm)
0-34	Quarzit, mittelgraue Quarzkörner mit gelblich grauen Kfs eingebettet
0-35	Quarzit, mittel bläulich grau, nicht foliiert
0-37	Quarzit, olivgrau, foliiert
0-38	Qz-Crd(Pinit)-Feldspat-Granoblastit, grau
0-40	Quarzit, olivgrau, leicht foliiert
0-41A	Quarzit, hellgrau, leicht foliiert
0-41	Crd-Px-Granoblastit, dunkel grau, foliiert
0-42	Crd-Px-Granoblastit, dunkel grau, massiv
0-45	Qz-Crd(Pinit)-Feldspat-Granoblastit, olivgrau, mittelkörnig
0-46	Gneis, mittel dunkel graue wolkige Lagen in olivgrauer Masse, gebändert
0-47	Quarzit, olivgrau, nicht foliiert
0-49	Qz-Crd(Pinit)-Feldspat-Granoblastit, mittelgrau mit Milchquarz-Linsen (<1.5mm)
0-50	Gneis, olivgrau, foliiert
0-51	Qz-Crd(Pinit)-Feldspat-Granoblastit, grünlich grau, mit braunen Lagen (<1.5mm)
0-52	Qz-Crd(Pinit)-Feldspat-Granoblastit, bräunlich schwarz, foliiert

Probe	Beschreibung
0-53	Qz-Crd(Pinit)-Feldspat-Granoblastit, olivgrau, nicht foliiert
0-54	Qz-Crd(Pinit)-Feldspat-Granoblastit, dunkel grünlich grau mit hellgrauen Qz-Lagen
0-56	Qz-Crd(Pinit)-Feldspat-Granoblastit, olivgrau, mit hell olivgrauen Lagen
0-57	Qz-Crd(Pinit)-Feldspat-Granoblastit, olivschwarz mit olivgrauen Linsen
0-60	Hornfels, bräunlich grau
0-61	Qz-Crd(Pinit)-Feldspat-Granoblastit, olivschwarz mit grünlich grauen wolkigen Lagen
0-62	Gabbroid, dunkelgrau, massiv
0-63	Hornfels, bräunlich grau
0-65	Qz-Feldspat-Granoblastit, mittelgrau mit olivschwarzen Lagen
0-66	Gabbroid, dunkelgrau, massiv
0-67	Gabbroid, dunkelgrau, massiv
0-70	Glimmerschiefer, dunkel grünlich grau, foliiert, mit dunkel gelblich orangen Lagen
0-71	Glimmerschiefer, dunkel grünlich grau, foliiert
0-72	Glimmerschiefer, dunkel gelblich braun, foliiert, mit gräulich orangen Linsen (<0.8 mm)
0-73	Gneis, blassrosa grau mit mittelgrauen Lagen (<5mm)
0-74	Gneis, duster gelblich braun, foliiert, teilweise mit blass gelblich braunen Lagen (<2mm)
0-75	Gneis, sehr blass orange mit duster gelblich braunen Linsen
0-76	Gneis, dunkel gelblich braun, foliiert
0-78	Gneis, hellgrau
0-78-A	Qz-Crd(Pinit)-Feldspat-Granoblastit, olivschwarz, foliiert
0-80	Glimmerschiefer, duster gelblich braun, foliiert, mit gräulich orangen Streifen (<1mm)
0-81	Gneis, grünlich grau mit grünlich blauen Bänder (<2mm)
0-82	Qz-Crd(Pinit)-Feldspat-Granoblastit, hellgrau
0-83	Gneis, hell bräunlich grau, foliiert
0-84	Gneis, bräunlich grau, foliiert
0-85	Gneis, rosagrau geschichtet, mit großen Quarz- und Feldspat-Körner
0-86	Glimmerschiefer, duster gelblich braun, foliiert
0-87	Glimmerschiefer, hellolivgrau, foliiert, hell braun, stark verwittert
0-88	Glimmerschiefer, olivgrau, foliiert
0-90	Glimmerschiefer, bräunlich blau, hellolivgraue Bänder, stark foliiert
0-92	Gneis, hell bräunlich grau mit olivgrauen Linsen
0-93	Amphibolit, dunkelgrau mit dünnen Quarz-Adern (<0.5mm)
0-94	Quarzit, hellolivgrau, foliiert
0-95	Quarzit, olivgraue Maase mit blass rosagrauen Linsen
0-96	Glimmerschiefer, dunkel gelbbraun, foliiert, mit dunkelgrauen Streifen
0-98	Glimmerschiefer, dunkel gelblich braun, foliiert,, mit Quarz-Linsen (<.5 mm)
0-99	Quarzit, hell bräunlich grau, nicht foliiert
0-99A	Quarzit, hellgrau
0-100	Quarzit, hellgrau
0-101	Quarzit, dunkel gelblich braun, foliiert
0-102	Qz-Crd(Pinit)-Feldspat-Granoblastit, schwarze Bänder (3mm) mit blass gelblich braunen
	Lagen
0-104-A	Quarzit, blass gelblich braun mit sehr blass orangen Lagen (<3mm)
0-105	Qz-Crd(Pinit)-Feldspat-Granoblastit, dunkelgrau

Probe	Beschreibung
0-105-A	Qz-Crd(Pinit)-Feldspat-Granoblastit, dunkelgrau, foliiert
0-105-C	Qz-Crd(Pinit)-Feldspat-Granoblastit, dunkelgrau, foliiert
0-106	Qz-Crd-Feldspat-Granoblastit, olivschwarz, leicht foliiert
0-107	Qz-Crd(Pinit)-Feldspat-Granoblastit, gräulich schwarz
0-110	Quarzit, dunkel gelblich braun, foliiert, mit gräulich orangen Lagen
0-111	Quarzit, bräunlich grau mit blass gelblich braunen Lagen (<3mm)
0-112	Quarzit, hell bräunlich grau, nicht foliiert
0-113	Quarzit, bräunlich grau, nicht foliiert, grobkörnig
0-114	Gneis, gräulich schwarz, foliiert
0-116	Quarzit, hellbraun, gebändert
0-117	Gneis, hellbraun, gebändert
0-118	Gneis, dunkelgrau, feinkörnig
0-119	Gneis, dunkel grünlich grau, foliiert
0-121	Qz-Crd(Pinit)-Feldspat-Granoblastit, dunkel grünlich grau, foliiert
0-122	Glimmerschiefer, bräunlich grau, foliiert
0-124	Glimmerschiefer, olivgrau mit schwarzen Streifen, und gelblich grauen quarzreichen Bändern
0-130	Qz-Crd(Pinit)-Feldspat-Granoblastit, dunkel grünlich grau
0-131	Qz-Crd(Pinit)-Feldspat-Granoblastit, bräunlich schwarz, mit blass olivgrauen Bändern
0-133	Qz-Crd(Pinit)-Feldspat-Granoblastit, dunkel grünlich grau
0-135	Gneis, mittel graue Masse mit hell olivgrauen Lagen
0-136	Qz-Crd(Pinit)-Feldspat-Granoblastit, dunkel grau
0-139	Qz-Crd(Pinit)-Feldspat-Granoblastit, olivschwarz mit olivgrauen Bändern
0-142	Qz-Feldspat-Granoblastit, olivgrau, nicht foliiert
0-143	Qz-Crd(Pinit)-Feldspat-Granoblastit, mit grossen Milchquarzeinschlüssen
0-144	Gneis, hellgrau
0-146	Qz-Crd(Pinit)-Feldspat-Granoblastit, mittelgrau mit dunkelgrauen Streifen
0-153	Qz-Crd(Pinit)-Feldspat-Granoblastit, olivschwarz, gebändert
0-154	Qz-Crd(Pinit)-Feldspat-Granoblastit, olivschwarz mit hellgrauen Bändern
0-155	Gneis, olivgrau, foliiert, mit gräulich schwarzen Streifen
0-176	Gabbroid, dunkelgrau, massiv
0-177-A	Gabbroid, dunkelgrau, massiv
0-177-B	Gabbroid, dunkelgrau, massiv
0-178	Gabbroid, dunkelgrau, massiv
0-179	Gabbroid, dunkelgrau, massiv
0-181 0-183	Glimmerschiefer, dunkel grau mit hellen Schichten
	Gneis, grünlich grau mit Quarz-Adern
0-190 99-1	Qz-Feldspat-Granoblastit, dunkel grünlich grau, foliiert Qz-Crd(Pinit)-Feldspat-Granoblastit, olivgrau mit gelblich grauen Bänder (<1mm)
99-1 99-5-A	Granitoid, grobkörnig, dunkel grau
99-5-A 99-5-B	Crd-Px-Granoblastit, dunkel grau, grobkörnig, foliiert, mit dunkelgrünlich grauen Linsen
99-3-Б 99-5-С	Crd-Px-Granoblastit, grobkörnig, foliiert, dunkel grau, mit dunkelgrünlich grauen Linsen
99-5-D	Crd-Px-Granoblastit, grobkörnig, foliiert, dunkel grau, mit dunkelgrünlich grauen Linsen
99-7	Amphibolit, grünlich schwarz, mit dunkel grünlich grauen Bändern

Probe	Beschreibung
E-V	Amphibolit, grünlich schwarz, mit dunkel grünlich grauen Bändern
99-8	Amphibolit, dunkel grau, foliiert, mit hellolivgrauen Linsen
99-9	Qz-Crd(Pinit)-Feldspat-Granoblastit, gräulich schwarz mit hellbraunen und olivgrauen Lagen
99-10	Qz-Crd(Pinit)-Granoblastit, dunkel grünlich grau mit bräunlich schwarzen Flecken, gebändert
<i>)</i> 10	22 Cru(1 mit) Gramonasti, damen grammin grau mit ordanisch schwarzen 1 recken, geodinach
99-20-2	Quarzit, hell gräulich braun, feinkörnig
99-20-6	Quarzit, hell gräulich braun, feinkörnig
99-20-13	Quarzit, hell gräulich braun, feinkörnig
99-21-1	Gneis, dunkelbraun, gebändert, feinkörnig
99-20-9	Quarzit, hell olivgrau, foliiert
99-30	Gneis, gelblich grün mit dunkelgrauen Turmalin-Bänder, foliiert, gefaltet
99-32	Quarzit, hell braun, mittelkörnig
99-33	Quarzit, hell braun
99-34	Qz-Crd(Pinit)-Feldspat-Granoblastit, bräunlich schwarz, nicht foliiert
99-35	Crd-And-Symplektit, gräulich schwarz, foliiert
99-36	Crd-Px-Granoblastit, dunkel grau mit Milchquarzlinsen
99-38	Quarzit, hell grau, nicht foliiert, hellgrau, mittelkörnig
99-40	Amphibolit, dunkel grau, foliiert
99-41	Amphibolit, dunkel grau, foliiert
99-42	Amphibolit, dunkel grau, foliiert
99-43	Qz-Crd(Pinit)-Feldspat-Granoblastit, olivgrau mit hellgrauen Bändern
99-44-A	Qz-Crd(Pinit)-Feldspat-Granoblastit, olivschwarz mit olivgrauen Bändern
99-44-B	Qz-Crd(Pinit)-Feldspat-Granoblastit, olivschwarz mit olivgrauen Lagen
99-45	Glimmerschiefer, helle und dunkelgraue Bänder
99-46	Qz-Crd(Pinit)-Feldspat-Granoblastit, olivschwarz mit olivgrauen Lagen
99-47	Qz-Crd(Pinit)-Feldspat-Granoblastit, dunkel grünlich grau mit hellgrauen Lagen
99-49	Qz-Crd(Pinit)-Feldspat-Granoblastit, hellgraue und dunkelgraue Bänder
99-51	Qz-Feldspat-Granoblastit, grünlich schwarze Masse mit hellgrauen Pl-Porphyroblasten
99-52	Qz-Feldspat-Granoblastit, grobkörnig, neugebildeter Plagioklas (<8cm)
99-53	Qz-Feldspat-Granoblastit, hellgrau mit großen dunklen Einschlüssen
99-54-A	Amphibolit, gräulich schwarz, nicht foliiert mit hellgrünen Linsen
99-54-B	Amphibolit gräulich schwarz, nicht foliiert, mit hellgrünen Linsen
99-55	Glimmerschiefer hellolivgrau, foliiert
99-56	Glimmerschiefer, olivgrau mit olivschwarzen Lagen
99-57	Glimmerschiefer, hellgrau, foliiert
99-58	Glimmerschiefer, grünlich grau, mit bräunlich grauen Bändern
99-59	Glimmerschiefer, olivgrau, foliiert
99-60	Gneis, mittel hell graue und dunkel grünlich graue Lagen, foliiert
99-61	Glimmerschiefer, olivgrau, foliiert
99-62	Quarzit, hell olivgrau mit grauen Lagen
99-63	Gneis, dunkel grünlich grau, foliiert
99-64	Glimmerschiefer, dunkel gelblich braun, foliiert
99-66	Gneis, gelblich grau, foliiert
DS4	Amphibolit, dunkel grau, leicht foliiert
DS8	Crd-Px-Granoblastit, bräunlich schwarz, leicht foliiert, mittelkörnig

DS16 DS18 Crd-Px-Granoblastit, dunkelgrau, massiv, feinkörnig DS20 Crd-Px-Granoblastit, dunkelgrau, massiv DS22 Amphibolit, dunkel grau, leicht foliiert Crd-Px-Granoblastit, dunkelgrau, massiv Amphibolit, mittel-dunkelgrau, massiv Amphibolit, dunkel grünlich grau, foliiert EGS-2 Amphibolit, dunkel grünlich grau, foliiert GGS-3 Amphibolit, dunkelgrau Glimmerschiefer, bläulich schwarze Lagen, dunkel gelblich braune und sehr blass orange Bänder Amphibolit, dunkelgrau, foliiert Qz-Crd(Pinit)-Granoblastit Qz-Crd(Pinit)-Granoblastit Qz-Crd(Pinit)-Granoblastit, gräulich schwarz mit grünlich grauen, hell olivgrauen Linsen Qz-Crd(Pinit)-Granoblastit, olivschwarz, foliiert, mit hell-olivgrauen Lagen Granitoid, olivschwarz mit mittel hell- bis sehr hellgrauen Lagen Granitoid, olivschwarz mit mittel hell- bis sehr hellgrauen Lagen Granitoid, olivschwarz mit mittel hell- bis sehr hellgrauen Lagen Granitoid, olivschwarz mit mittel hell- bis sehr hellgrauen Lagen Granitoid, olivschwarz mit mittel hell- bis sehr hellgrauen Lagen Granitoid, olivschwarz mit mittel hell- bis sehr hellgrauen Lagen Granitoid, olivschwarz mit mittel hell- bis sehr hellgrauen Lagen Granitoid, olivschwarz, nitmittel prau, foliiert Qz-Crd(Pinit)-Granoblastit, mittelgrau, foliiert Qz-Crd(Pinit)-Granoblastit, dunkelolivgrau, massiv Crd-Px-Granoblastit, dunkelolivgrau, missiv Crd-Px-Granoblastit, dunkelolivgrau, foliiert Quarzit, hell olivgrau, nicht foliiert Quarzit, hell olivgrau mit grossen Quarz-Körner (<4mm) Greis, hellbrau mit dunkelgrauen Bänder Greis, hellbrau mit dunkelgrauen Bänder Greis, hellbrau mit dunkelgrauen Bänder	Probe	Beschreibung
DS19 DS20 Amphibolit, dunkel grau, leicht foliiert Crd-Px-Granoblastit, dunkelgrau, massiv Amphibolit, mittel-dunkelgrau, massiv Amphibolit, dunkelgrau, massiv EGS-1 Amphibolit, dunkelgrau EGS-3 Amphibolit, dunkelgrau EGS-3 Amphibolit, grünlich schwarz, foliiert Glimmerschiefer, blaulich schwarze Lagen, dunkel gelblich braune und sehr blass orange Bänder Amphibolit, dunkelgrau, foliiert Oz-Crd(Pinit)-Granoblastit, gräulich schwarz mit grünlich grauen, hell olivgrauen Linsen Oz-Crd(Pinit)-Granoblastit Oz-Crd(Pinit)-Granoblastit Oz-Crd(Pinit)-Granoblastit, olivschwarz, foliiert, mit hell-olivgrauen Lagen Granitoid, olivschwarz mit mittel hell- bis sehr hellgrauen Lagen Granitoid, olivschwarz mit mittel hell- bis sehr hellgrauen Lagen Granitoid, olivschwarz mit mittel hell- bis sehr hellgrauen Lagen Granitoid, olivschwarz mit mittel hell- bis sehr hellgrauen Lagen Granitoid, olivschwarz mit mittel hell- bis sehr hellgrauen Lagen Granitoid, olivschwarz mit mittel hell- bis sehr hellgrauen Lagen Granitoid, olivschwarz mit mittel hell- bis sehr hellgrauen Lagen Granitoid, olivschwarz mit mittel hell- bis sehr hellgrauen Lagen Granitoid, olivschwarz, mit mittel hell- bis sehr hellgrauen Lagen Granitoid, olivschwarz, mit mittel hell- bis sehr hellgrauen Lagen Granitoid, olivschwarz, deicht foliiert Qu-Crd(Pinit)-Granoblastit, mittelgrau Pyroxen-Metabasit, dunkelgrau, foliiert Quarzit, hell olivgrau, nicht foliiert Quarzit, hell olivgrau, mit mit hell-olivgrau und gräulich schwarzen Lagen Qrd-Px-Granoblastit, dunkel grau Grd-Px-Granoblastit, dunkel grau Grd-Px-Granob	DS16	Crd-Px-Granoblastit, dunkelolivgrau, leicht foliiert, mittelkörnig
DS20 DS22 DS22 DS22 DS22 DS22 DS22 DS22	DS18	Crd-Px-Granoblastit, dunkelgrau, massiv, feinkörnig
DS22 Amphibolit, mittel-dunkelgrau, massiv EGS-1 Amphibolit, dunkel grünlich grau, foliiert EGS-2 Amphibolit, grünlich schwarz, foliiert GIImmerschiefer, bläulich schwarze Lagen, dunkel gelblich braune und sehr blass orange Bänder Amphibolit, dunkelgrau, foliiert Gneis, hellolivgrau, foliiert Amphibolit, dunkelgrau, foliiert Cy-Crd(Pinit)-Feldspat-Granoblastit, gräulich schwarz mit grünlich grauen, hell olivgrauen Linsen Cyz-Crd(Pinit)-Granoblastit Cyz-Crd(Pinit)-Granoblastit Cyz-Crd(Pinit)-Granoblastit, olivschwarz, foliiert, mit hell-olivgrauen Lagen Granitoid, olivschwarz mit mittel hell- bis sehr hellgrauen Lagen Granitoid, olivschwarz mit mittel hell- bis sehr hellgrauen Lagen Granitoid, olivschwarz mit mittel hell- bis sehr hellgrauen Lagen Granitoid, olivschwarz mit mittel hell- bis sehr hellgrauen Lagen Granitoid, olivschwarz mit mittel hell- bis sehr hellgrauen Lagen Granitoid, olivschwarz mit mittel hell- bis sehr hellgrauen Lagen Granitoid, olivschwarz mit mittel hell- bis sehr hellgrauen Lagen Granitoid, olivschwarz mit mittel hell- bis sehr hellgrauen Lagen Granitoid, olivschwarz mit mittel hell- bis sehr hellgrauen Lagen Granitoid, olivschwarz mit mittel hell- bis sehr hellgrauen Lagen Granitoid, olivschwarz mit mittel hell- bis sehr hellgrauen Lagen Granitoid, olivschwarz, leicht foliiert Granitoid, olivschwarz, foliiert Quz-Crd(Pinit)-Granoblastit, mittelgrau Pyroxen-Metabasit, dunkelolivgrau, massiv Crd-Px-Granoblastit, mittelgrau Pyroxen-Metabasit, dunkelolivgrauen Lagen Crd-Px-Granoblastit, dunkel grau Grd-Px-Granoblastit, dunkel grau Grd-	DS19	Amphibolit, dunkel grau, leicht foliiert
EGS-1 EGS-2 EGS-3 Amphibolit, dunkelgrau FGS-2 EGS-3 EGS-3 Amphibolit, grünlich schwarz, foliiert FGS-2 FGS-3 FGS-3 FGS-3 FGS-3 FGS-3 FGS-4 FGS-4 FGS-4 FGS-5 FGS-5 FGS-5 FGS-6 FGS-6 FGS-7 FGS	DS20	Crd-Px-Granoblastit, dunkelgrau, massiv
EGS-2 Amphibolit, dunkelgrau Amphibolit, grünlich schwarz, foliiert Glimmerschiefer, bläulich schwarze Lagen, dunkel gelblich braune und sehr blass orange Bänder Amphibolit, dunkelgrau, foliiert Greis, hellolivgrau, foliiert Qz-Crd(Pinit)-Feldspat-Granoblastit, gräulich schwarz mit grünlich grauen, hell olivgrauen Linsen Qz-Crd(Pinit)-Granoblastit Qz-Crd(Pinit)-Granoblastit, olivschwarz, foliiert, mit hell-olivgrauen Lagen Granitoid, olivschwarz mit mittel hell- bis sehr hellgrauen Lagen Granitoid, olivschwarz mit mittel hell- bis sehr hellgrauen Lagen Granitoid, olivschwarz mit mittel hell- bis sehr hellgrauen Lagen Granitoid, olivschwarz mit mittel hell- bis sehr hellgrauen Lagen Greis, hell orange braune und olivgraue Masse (mittelkörnig (>1 mm)) Qz-Feldspat-Granoblastit, mittelgrau, foliiert Qz-Crd(Pinit)-Granoblastit, mittelgrau Pyroxen-Metabasit, dunkelolivgrau, massiv Crd-Px-Granoblastit, olivschwarz, leicht foliiert Quarzit, hell olivgrau, nicht foliiert Quarzit, hell olivgrau, nicht foliiert Quarzit, dunkel grünlich grau Qz-Feldspat-Granoblastit, dunkel grünlich grau Qz-Feldspat-Granoblastit, dunkel grünlich grau Qz-Feldspat-Granoblastit, dunkel grünlich grau Qz-Feldspat-Granoblastit, dunkel grünlich grau, foliiert Greis, olivgrau, foliiert, mit wenig hell olivgrauen und gräulich schwarzen Lagen Quarzit, hellolivgrau mit grossen Quarz-Körner (<4mm) Gneis, hellgrau mit olivschwarzen Lagen, foliiert (migmatitähnlich)	DS22	Amphibolit, mittel-dunkelgrau, massiv
EGS-3 Amphibolit, grünlich schwarz, foliiert 91-2 Glimmerschiefer, bläulich schwarze Lagen, dunkel gelblich braune und sehr blass orange Bänder 91-7 Amphibolit, dunkelgrau, foliiert 91-8 Amphibolit, dunkelgrau, foliiert 91-9 Amphibolit, dunkelgrau, foliiert 91-10 Amphibolit, dunkelgrau, foliiert 91-11 Amphibolit, dunkelgrau, foliiert 91-12 Amphibolit, dunkelgrau, foliiert 91-13 Amphibolit, dunkelgrau, foliiert 91-14 Gneis, hellolivgrau, foliiert 91-15 Qz-Crd(Pinit)-Feldspat-Granoblastit, gräulich schwarz mit grünlich grauen, hell olivgrauen Linsen 91-25 Qz-Crd(Pinit)-Feldspat-Granoblastit, gräulich schwarz mit prünlich grauen, hell olivgrauen Linsen 91-32 Qz-Crd(Pinit)-Granoblastit, bituelle bis sehr hellgrauen Lagen 91-35 Granitoid, olivschwarz mit mittel hell- bis sehr hellgrauen Lagen 91-36 Crd-Px-Granoblastit, brüunlich grau mit grünlichschwarzen Bänder 91-37 Granitoid, olivschwarz mit mittel hell- bis sehr hellgrauen Lagen 91-38 Gneis, hell orange braune und olivgraue Masse (mittelkörnig (>1 mm)) 91-39 Qz-Feldspat-Granoblastit, mittelgrau, foliiert 91-42 Qz-Crd(Pinit)-Granoblastit, mittelgrau 91-45 Pyroxen-Metabasit, dunkelolivgrau, massiv 91-49 Qrd-Px-Granoblastit, olivschwarz, leicht foliiert 91-54 Quarzit, hell olivgrau, nicht foliiert 91-55 Quarzit, hell grau mit wenigen dunkelgrauen Lagen 91-66 Crd-Px-Granoblastit, dunkel grau 91-67 Quarzit, dunkel grünlich grau 91-68 Quarzit, dunkel grünlich grau 91-79 Quarzit, hellolivgrau mit grossen Quarz-Körner (<4mm) 91-84 Gneis, hellgrau mit olivschwarzen Lagen, foliiert (migmatitähnlich)	EGS-1	Amphibolit, dunkel grünlich grau, foliiert
Glimmerschiefer, bläulich schwarze Lagen, dunkel gelblich braune und sehr blass orange Bänder Amphibolit, dunkelgrau, foliiert Oz-Crd(Pinit)-Feldspat-Granoblastit, gräulich schwarz mit grünlich grauen, hell olivgrauen Linsen Oz-Crd(Pinit)-Granoblastit Oz-Crd(Pinit)-Granoblastit Oz-Crd(Pinit)-Granoblastit, olivschwarz, foliiert, mit hell-olivgrauen Lagen Granitoid, olivschwarz mit mittel hell- bis sehr hellgrauen Lagen Granitoid, olivschwarz mit mittel hell- bis sehr hellgrauen Lagen Gneis, hell orange braune und olivgraue Masse (mittelkörnig (>1 mm)) Oz-Feldspat-Granoblastit, mittelgrau Pyroxen-Metabasit, dunkelolivgrau, massiv Crd-Px-Granoblastit, olivschwarz, leicht foliiert Oz-Crd(Pinit)-Granoblastit, mittelgrau Pyroxen-Metabasit, dunkel grau Crd-Px-Granoblastit, dunkel grau Crd-And-Symplektit, gräulich schwarz, foliiert Quarzit, dunkel grünlich grau Oz-Feldspat-Granoblastit, dunkel grau Crd-And-Symplektit, gräulich schwarz, foliiert Quarzit, dunkel grünlich grau Oz-Feldspat-Granoblastit, dunkel grünlich grau, foliiert Gneis, olivgrau, foliiert, mit wenig hell olivgrauen und gräulich schwarzen Lagen Quarzit, hellolivgrau mit grossen Quarz-Körner (<4mm) Gneis, hellgrau mit olivschwarzen Lagen, foliiert (migmatitähnlich)	EGS-2	Amphibolit, dunkelgrau
Amphibolit, dunkelgrau, foliiert Oz-Crd(Pinit)-Feldspat-Granoblastit, gräulich schwarz mit grünlich grauen, hell olivgrauen Linsen Oz-Crd(Pinit)-Granoblastit Oz-Crd(Pinit)-Granoblastit Oz-Crd(Pinit)-Granoblastit, olivschwarz, foliiert, mit hell-olivgrauen Lagen Granitoid, olivschwarz mit mittel hell- bis sehr hellgrauen Lagen Granitoid, olivschwarz mit mittel hell- bis sehr hellgrauen Lagen Granitoid, olivschwarz mit mittel hell- bis sehr hellgrauen Lagen Granitoid, olivschwarz mit mittel grau mit grünlichschwarzen Bänder Granitoid, olivschwarz mit mittel hell- bis sehr hellgrauen Lagen Greis, hell orange braune und olivgraue Masse (mittelkörnig (>1 mm)) Qz-Feldspat-Granoblastit, mittelgrau Pyroxen-Metabasit, dunkelolivgrau, massiv Crd-Px-Granoblastit, olivschwarz, leicht foliiert Quarzit, hell olivgrau, nicht foliiert Quarzit, hell grau mit wenigen dunkelgrauen Lagen Crd-And-Symplektit, gräulich schwarz, foliiert Quarzit, dunkel grünlich grau Qz-Feldspat-Granoblastit, dunkel grau Crd-And-Symplektit, gräulich schwarz, foliiert Quarzit, dunkel grünlich grau Qz-Feldspat-Granoblastit, dunkel grünlich grau, foliiert Gneis, olivgrau, foliiert, mit wenig hell olivgrauen und gräulich schwarzen Lagen Quarzit, hellolivgrau mit grossen Quarz-Körner (<4mm) Gneis, hellgrau mit olivschwarzen Lagen, foliiert (migmatitähnlich)	EGS-3	Amphibolit, grünlich schwarz, foliiert
91-7 Amphibolit, dunkelgrau, foliiert 91-9 Amphibolit, dunkelgrau, foliiert 91-10 Amphibolit, dunkelgrau, foliiert 91-11 Amphibolit, dunkelgrau, foliiert 91-12 Amphibolit, dunkelgrau, foliiert 91-13 Amphibolit, dunkelgrau, foliiert 91-14 Gneis, hellolivgrau, foliiert 91-15 Qz-Crd(Pinit)-Feldspat-Granoblastit, gräulich schwarz mit grünlich grauen, hell olivgrauen Linsen 91-25 Qz-Crd(Pinit)-Granoblastit, olivschwarz, foliiert, mit hell-olivgrauen Lagen 91-36 Granitoid, olivschwarz mit mittel hell- bis sehr hellgrauen Lagen 91-37 Granitoid, olivschwarz mit mittel hell- bis sehr hellgrauen Lagen 91-38 Gneis, hell orange braune und olivgraue Masse (mittelkörnig (>1 mm)) 91-39 Qz-Feldspat-Granoblastit, mittelgrau, foliiert 91-42 Qz-Crd(Pinit)-Granoblastit, mittelgrau 91-45 Pyroxen-Metabasit, dunkelolivgrau, massiv 91-49 Crd-Px-Granoblastit, olivschwarz, leicht foliiert 91-50 Quarzit, hell olivgrau, nicht foliiert 91-51 Quarzit, hell grau mit wenigen dunkelgrauen Lagen 91-64 Quarzit, dunkel grünlich grau 91-65 Quarzit, dunkel grünlich grau 91-66 Quarzit, dunkel grünlich grau 91-66 Quarzit, dunkel grünlich grau 91-70 Gneis, olivgrau, foliiert, mit wenig hell olivgrauen und gräulich schwarzen Lagen 91-75 Quarzit, hellolivgrau mit grossen Quarz-Körner (<4mm) 91-84 Gneis, hellgrau mit olivschwarzen Lagen, foliiert (migmatitähnlich)	91-2	Glimmerschiefer, bläulich schwarze Lagen, dunkel gelblich braune und sehr blass orange Bänder
91-8 Amphibolit, dunkelgrau, foliiert Amphibolit, dunkelgrau, foliiert 91-10 Amphibolit, dunkelgrau, foliiert 91-11 Amphibolit, dunkelgrau, foliiert 91-12 Amphibolit, dunkelgrau, foliiert 91-13 Gneis, hellolivgrau, foliiert 91-24 Qz-Crd(Pinit)-Feldspat-Granoblastit, gräulich schwarz mit grünlich grauen, hell olivgrauen Linsen 91-25 Qz-Crd(Pinit)-Granoblastit, olivschwarz, foliiert, mit hell-olivgrauen Lagen 91-36 Granitoid, olivschwarz mit mittel hell- bis sehr hellgrauen Lagen 91-37 Granitoid, olivschwarz mit mittel hell- bis sehr hellgrauen Lagen 91-38 Greis, hell orange braune und olivgraue Masse (mittelkörnig (>1 mm)) 91-39 Qz-Feldspat-Granoblastit, mittelgrau, foliiert Qz-Crd(Pinit)-Granoblastit, mittelgrau 91-42 Qz-Crd(Pinit)-Granoblastit, mittelgrau 91-45 Pyroxen-Metabasit, dunkelolivgrau, massiv 91-49 Crd-Px-Granoblastit, olivschwarz, leicht foliiert 91-52 Quarzit, hell olivgrau, nicht foliiert Quarzit, hell grau mit wenigen dunkelgrauen Lagen 91-64 Quarzit, dunkel grünlich grau 91-65 Quarzit, dunkel grünlich grau 91-66 91-70 Gneis, olivgrau, foliiert, mit wenig hell olivgrauen und gräulich schwarzen Lagen 91-75 Quarzit, hellolivgrau mit grossen Quarz-Körner (<4mm) Gneis, hellgrau mit olivschwarzen Lagen, foliiert (migmatitähnlich)	91-6	Amphibolit, dunkelgrau, foliiert
91-9 Amphibolit, dunkelgrau, foliiert 91-10 Amphibolit, dunkelgrau, foliiert 91-11 Amphibolit, dunkelgrau, foliiert 91-12 Amphibolit, dunkelgrau, foliiert 91-14 Gneis, hellolivgrau, foliiert 91-24 Qz-Crd(Pinit)-Feldspat-Granoblastit, gräulich schwarz mit grünlich grauen, hell olivgrauen Linsen 91-25 Qz-Crd(Pinit)-Granoblastit 91-32 Qz-Crd(Pinit)-Granoblastit, olivschwarz, foliiert, mit hell-olivgrauen Lagen 91-35 Granitoid, olivschwarz mit mittel hell- bis sehr hellgrauen Lagen 91-36 Crd-Px-Granoblastit, bräunlich grau mit grünlichschwarzen Bänder 91-37 Granitoid, olivschwarz mit mittel hell- bis sehr hellgrauen Lagen 91-38 Gneis, hell orange braune und olivgraue Masse (mittelkörnig (>1 mm)) 91-39 Qz-Feldspat-Granoblastit, mittelgrau, foliiert 91-42 Qz-Crd(Pinit)-Granoblastit, mittelgrau 91-45 Pyroxen-Metabasit, dunkelolivgrau, massiv 91-49 Crd-Px-Granoblastit, olivschwarz, leicht foliiert 91-52 Quarzit, hell olivgrau, nicht foliiert 91-54 Quarzit, hell grau mit wenigen dunkelgrauen Lagen 91-55 Crd-Px-Granoblastit, gräulich schwarz, foliiert 91-66 Quarzit, dunkel grünlich grau 91-66 Quarzit, dunkel grünlich grau 91-66 Quarzit, dunkel grünlich grau 91-66 Quarzit, hellolivgrau, foliiert, mit wenig hell olivgrauen und gräulich schwarzen Lagen 91-75 Quarzit, hellolivgrau mit grossen Quarz-Körner (<4mm) 91-84 Gneis, hellgrau mit olivschwarzen Lagen, foliiert (migmatitähnlich)	91-7	Amphibolit, dunkelgrau, foliiert
91-10 Amphibolit, dunkelgrau, foliiert 91-11 Amphibolit, dunkelgrau, foliiert 91-12 Amphibolit, dunkelgrau, foliiert 91-14 Gneis, hellolivgrau, foliiert 91-24 Qz-Crd(Pinit)-Feldspat-Granoblastit, gräulich schwarz mit grünlich grauen, hell olivgrauen Linsen 91-25 Qz-Crd(Pinit)-Granoblastit 91-32 Qz-Crd(Pinit)-Granoblastit, olivschwarz, foliiert, mit hell-olivgrauen Lagen 91-35 Granitoid, olivschwarz mit mittel hell- bis sehr hellgrauen Lagen 91-36 Crd-Px-Granoblastit, bräunlich grau mit grünlichschwarzen Bänder 91-37 Granitoid, olivschwarz mit mittel hell- bis sehr hellgrauen Lagen 91-38 Gneis, hell orange braune und olivgraue Masse (mittelkörnig (>1 mm)) 91-39 Qz-Feldspat-Granoblastit, mittelgrau foliiert 91-42 Qz-Crd(Pinit)-Granoblastit, mittelgrau 91-43 Pyroxen-Metabasit, dunkelolivgrau, massiv 91-49 Pyroxen-Metabasit, dunkelolivgrau, massiv 91-49 Crd-Px-Granoblastit, olivschwarz, leicht foliiert 91-52 Quarzit, hell olivgrau, nicht foliiert 91-54 Quarzit, hell grau mit wenigen dunkelgrauen Lagen 91-55 Crd-Px-Granoblastit, dunkel grau 91-66 Quarzit, dunkel grünlich grau 91-66 Quarzit, dunkel grünlich grau 91-66 Qz-Feldspat-Granoblastit, dunkel grünlich grau, foliiert 91-70 Gneis, olivgrau, foliiert, mit wenig hell olivgrauen und gräulich schwarzen Lagen 91-75 Quarzit, hellolivgrau mit grossen Quarz-Körner (<4mm) 91-84 Gneis, hellgrau mit olivschwarzen Lagen, foliiert (migmatitähnlich)	91-8	Amphibolit, dunkelgrau, foliiert
91-11 Amphibolit, dunkelgrau, foliiert 91-12 Amphibolit, dunkelgrau, foliiert 91-14 Gneis, hellolivgrau, foliiert 91-24 Qz-Crd(Pinit)-Feldspat-Granoblastit, gräulich schwarz mit grünlich grauen, hell olivgrauen Linsen 91-25 Qz-Crd(Pinit)-Granoblastit 91-32 Qz-Crd(Pinit)-Granoblastit, olivschwarz, foliiert, mit hell-olivgrauen Lagen 91-35 Granitoid, olivschwarz mit mittel hell- bis sehr hellgrauen Lagen 91-36 Crd-Px-Granoblastit, bräunlich grau mit grünlichschwarzen Bänder 91-37 Granitoid, olivschwarz mit mittel hell- bis sehr hellgrauen Lagen 91-38 Gneis, hell orange braune und olivgraue Masse (mittelkörnig (>1 mm)) 91-39 Qz-Feldspat-Granoblastit, mittelgrau, foliiert 91-42 Qz-Crd(Pinit)-Granoblastit, mittelgrau 91-45 Pyroxen-Metabasit, dunkelolivgrau, massiv 91-49 Crd-Px-Granoblastit, olivschwarz, leicht foliiert 91-52 Quarzit, hell olivgrau, nicht foliiert 91-54 Quarzit, hell grau mit wenigen dunkelgrauen Lagen 91-65 Quarzit, dunkel grünlich grau 91-66 Qz-Feldspat-Granoblastit, dunkel grünlich grau, foliiert 91-60 Quarzit, dunkel grünlich grau 91-61 Quarzit, dunkel grünlich grau 91-62 Quarzit, dunkel grünlich grau 91-63 Quarzit, hellolivgrau mit grossen Quarz-Körner (<4mm) 91-84 Gneis, hellgrau mit olivschwarzen Lagen, foliiert (migmatitähnlich)	91-9	Amphibolit, dunkelgrau, foliiert
91-12 Amphibolit, dunkelgrau, foliiert 91-14 Gneis, hellolivgrau, foliiert 91-24 Qz-Crd(Pinit)-Feldspat-Granoblastit, gräulich schwarz mit grünlich grauen, hell olivgrauen Linsen 91-25 Qz-Crd(Pinit)-Granoblastit 91-32 Qz-Crd(Pinit)-Granoblastit, olivschwarz, foliiert, mit hell-olivgrauen Lagen 91-35 Granitoid, olivschwarz mit mittel hell- bis sehr hellgrauen Lagen 91-36 Crd-Px-Granoblastit, bräunlich grau mit grünlichschwarzen Bänder 91-37 Granitoid, olivschwarz mit mittel hell- bis sehr hellgrauen Lagen 91-38 Gneis, hell orange braune und olivgraue Masse (mittelkörnig (>1 mm)) 91-39 Qz-Feldspat-Granoblastit, mittelgrau, foliiert 91-42 Qz-Crd(Pinit)-Granoblastit, mittelgrau 91-45 Pyroxen-Metabasit, dunkelolivgrau, massiv 91-49 Crd-Px-Granoblastit, olivschwarz, leicht foliiert 91-52 Quarzit, hell olivgrau, nicht foliiert 91-53 Quarzit, hell grau mit wenigen dunkelgrauen Lagen 91-54 Crd-Px-Granoblastit, dunkel grau 91-65 Quarzit, dunkel grünlich grau 91-66 Qz-Feldspat-Granoblastit, dunkel grünlich grau, foliiert 91-69 Quarzit, dunkel grünlich grau 91-60 Qz-Feldspat-Granoblastit, dunkel grünlich grau, foliiert 91-70 Gneis, olivgrau, foliiert, mit wenig hell olivgrauen und gräulich schwarzen Lagen 91-75 Quarzit, hellolivgrau mit grossen Quarz-Körner (<4mm) 91-84 Gneis, hellgrau mit olivschwarzen Lagen, foliiert (migmatitähnlich)	91-10	Amphibolit, dunkelgrau, foliiert
91-14 Gneis, hellolivgrau, foliiert 91-24 Qz-Crd(Pinit)-Feldspat-Granoblastit, gräulich schwarz mit grünlich grauen, hell olivgrauen Linsen 91-25 Qz-Crd(Pinit)-Granoblastit 91-32 Qz-Crd(Pinit)-Granoblastit, olivschwarz, foliiert, mit hell-olivgrauen Lagen 91-33 Granitoid, olivschwarz mit mittel hell- bis sehr hellgrauen Lagen 91-34 Crd-Px-Granoblastit, bräunlich grau mit grünlichschwarzen Bänder 91-37 Granitoid, olivschwarz mit mittel hell- bis sehr hellgrauen Lagen 91-38 Gneis, hell orange braune und olivgraue Masse (mittelkörnig (>1 mm)) 91-39 Qz-Feldspat-Granoblastit, mittelgrau, foliiert 91-42 Qz-Crd(Pinit)-Granoblastit, mittelgrau 91-45 Pyroxen-Metabasit, dunkelolivgrau, massiv 91-49 Crd-Px-Granoblastit, olivschwarz, leicht foliiert 91-52 Quarzit, hell olivgrau, nicht foliiert 91-54 Quarzit, hell grau mit wenigen dunkelgrauen Lagen 91-59 Crd-Px-Granoblastit, dunkel grau 91-64 Crd-And-Symplektit, gräulich schwarz, foliiert 91-65 Quarzit, dunkel grünlich grau 91-66 Qz-Feldspat-Granoblastit, dunkel grünlich grau, foliiert 91-70 Gneis, olivgrau, foliiert, mit wenig hell olivgrauen und gräulich schwarzen Lagen 91-75 Quarzit, hellolivgrau mit grossen Quarz-Körner (<4mm) 91-84 Gneis, hellgrau mit olivschwarzen Lagen, foliiert (migmatitähnlich)	91-11	Amphibolit, dunkelgrau, foliiert
91-24 Qz-Crd(Pinit)-Feldspat-Granoblastit, gräulich schwarz mit grünlich grauen, hell olivgrauen Linsen Qz-Crd(Pinit)-Granoblastit 91-32 Qz-Crd(Pinit)-Granoblastit, olivschwarz, foliiert, mit hell-olivgrauen Lagen 91-33 Granitoid, olivschwarz mit mittel hell- bis sehr hellgrauen Lagen 91-34 Crd-Px-Granoblastit, bräunlich grau mit grünlichschwarzen Bänder 91-37 Granitoid, olivschwarz mit mittel hell- bis sehr hellgrauen Lagen 91-38 Gneis, hell orange braune und olivgraue Masse (mittelkörnig (>1 mm)) 91-39 Qz-Feldspat-Granoblastit, mittelgrau, foliiert 91-42 Qz-Crd(Pinit)-Granoblastit, mittelgrau 91-45 Pyroxen-Metabasit, dunkelolivgrau, massiv 91-49 Crd-Px-Granoblastit, olivschwarz, leicht foliiert 91-52 Quarzit, hell olivgrau, nicht foliiert 91-54 Quarzit, hell grau mit wenigen dunkelgrauen Lagen 91-55 Crd-Px-Granoblastit, dunkel grau 91-66 Crd-And-Symplektit, gräulich schwarz, foliiert 91-65 Quarzit, dunkel grünlich grau 91-66 Qz-Feldspat-Granoblastit, dunkel grünlich grau, foliiert 91-70 Gneis, olivgrau, foliiert, mit wenig hell olivgrauen und gräulich schwarzen Lagen 91-75 Quarzit, hellolivgrau mit grossen Quarz-Körner (<4mm) 91-84 Gneis, hellgrau mit olivschwarzen Lagen, foliiert (migmatitähnlich)	91-12	Amphibolit, dunkelgrau, foliiert
91-25 Qz-Crd(Pinit)-Granoblastit 91-32 Qz-Crd(Pinit)-Granoblastit, olivschwarz, foliiert, mit hell-olivgrauen Lagen 91-35 Granitoid, olivschwarz mit mittel hell- bis sehr hellgrauen Lagen 91-36 Crd-Px-Granoblastit, bräunlich grau mit grünlichschwarzen Bänder 91-37 Granitoid, olivschwarz mit mittel hell- bis sehr hellgrauen Lagen 91-38 Gneis, hell orange braune und olivgraue Masse (mittelkörnig (>1 mm)) 91-39 Qz-Feldspat-Granoblastit, mittelgrau, foliiert 91-42 Qz-Crd(Pinit)-Granoblastit, mittelgrau 91-45 Pyroxen-Metabasit, dunkelolivgrau, massiv 91-49 Crd-Px-Granoblastit, olivschwarz, leicht foliiert 91-52 Quarzit, hell olivgrau, nicht foliiert 91-54 Quarzit, hell grau mit wenigen dunkelgrauen Lagen 91-55 Crd-Px-Granoblastit, dunkel grau 91-64 Crd-And-Symplektit, gräulich schwarz, foliiert 91-65 Quarzit, dunkel grünlich grau 91-66 Qz-Feldspat-Granoblastit, dunkel grünlich grau, foliiert 91-70 Gneis, olivgrau, foliiert, mit wenig hell olivgrauen und gräulich schwarzen Lagen 91-75 Quarzit, hellolivgrau mit grossen Quarz-Körner (<4mm) 91-84 Gneis, hellgrau mit olivschwarzen Lagen, foliiert (migmatitähnlich)	91-14	Gneis, hellolivgrau, foliiert
91-32 Qz-Crd(Pinit)-Granoblastit, olivschwarz, foliiert, mit hell-olivgrauen Lagen 91-35 Granitoid, olivschwarz mit mittel hell- bis sehr hellgrauen Lagen 91-36 Crd-Px-Granoblastit, bräunlich grau mit grünlichschwarzen Bänder 91-37 Granitoid, olivschwarz mit mittel hell- bis sehr hellgrauen Lagen 91-38 Gneis, hell orange braune und olivgraue Masse (mittelkörnig (>1 mm)) 91-39 Qz-Feldspat-Granoblastit, mittelgrau, foliiert 91-42 Qz-Crd(Pinit)-Granoblastit, mittelgrau 91-45 Pyroxen-Metabasit, dunkelolivgrau, massiv 91-49 Crd-Px-Granoblastit, olivschwarz, leicht foliiert 91-52 Quarzit, hell olivgrau, nicht foliiert 91-54 Quarzit, hell grau mit wenigen dunkelgrauen Lagen 91-59 Crd-Px-Granoblastit, dunkel grau 91-64 Crd-And-Symplektit, gräulich schwarz, foliiert 91-65 Quarzit, dunkel grünlich grau 91-66 Qz-Feldspat-Granoblastit, dunkel grünlich grau, foliiert 91-70 Gneis, olivgrau, foliiert, mit wenig hell olivgrauen und gräulich schwarzen Lagen 91-75 Quarzit, hellolivgrau mit grossen Quarz-Körner (<4mm) 91-84 Gneis, hellgrau mit olivschwarzen Lagen, foliiert (migmatitähnlich)	91-24	Qz-Crd(Pinit)-Feldspat-Granoblastit, gräulich schwarz mit grünlich grauen, hell olivgrauen Linsen
91-35 Granitoid, olivschwarz mit mittel hell- bis sehr hellgrauen Lagen 91-36 Crd-Px-Granoblastit, bräunlich grau mit grünlichschwarzen Bänder 91-37 Granitoid, olivschwarz mit mittel hell- bis sehr hellgrauen Lagen 91-38 Gneis, hell orange braune und olivgraue Masse (mittelkörnig (>1 mm)) 91-39 Qz-Feldspat-Granoblastit, mittelgrau, foliiert 91-42 Qz-Crd(Pinit)-Granoblastit, mittelgrau 91-45 Pyroxen-Metabasit, dunkelolivgrau, massiv 91-49 Crd-Px-Granoblastit, olivschwarz, leicht foliiert 91-52 Quarzit, hell olivgrau, nicht foliiert 91-54 Quarzit, hell grau mit wenigen dunkelgrauen Lagen 91-59 Crd-Px-Granoblastit, dunkel grau 91-64 Crd-And-Symplektit, gräulich schwarz, foliiert 91-65 Quarzit, dunkel grünlich grau 91-66 Qz-Feldspat-Granoblastit, dunkel grünlich grau, foliiert 91-70 Gneis, olivgrau, foliiert, mit wenig hell olivgrauen und gräulich schwarzen Lagen 91-75 Quarzit, hellolivgrau mit grossen Quarz-Körner (<4mm) 91-84 Gneis, hellgrau mit olivschwarzen Lagen, foliiert (migmatitähnlich)	91-25	Qz-Crd(Pinit)-Granoblastit
91-36 Crd-Px-Granoblastit, bräunlich grau mit grünlichschwarzen Bänder 91-37 Granitoid, olivschwarz mit mittel hell- bis sehr hellgrauen Lagen 91-38 Gneis, hell orange braune und olivgraue Masse (mittelkörnig (>1 mm)) 91-39 Qz-Feldspat-Granoblastit, mittelgrau, foliiert 91-42 Qz-Crd(Pinit)-Granoblastit, mittelgrau 91-45 Pyroxen-Metabasit, dunkelolivgrau, massiv 91-49 Crd-Px-Granoblastit, olivschwarz, leicht foliiert 91-52 Quarzit, hell olivgrau, nicht foliiert 91-54 Quarzit, hell grau mit wenigen dunkelgrauen Lagen 91-59 Crd-Px-Granoblastit, dunkel grau 91-64 Crd-And-Symplektit, gräulich schwarz, foliiert 91-65 Quarzit, dunkel grünlich grau 91-66 Qz-Feldspat-Granoblastit, dunkel grünlich grau, foliiert 91-70 Gneis, olivgrau, foliiert, mit wenig hell olivgrauen und gräulich schwarzen Lagen 91-75 Quarzit, hellolivgrau mit grossen Quarz-Körner (<4mm) 91-84 Gneis, hellgrau mit olivschwarzen Lagen, foliiert (migmatitähnlich)	91-32	Qz-Crd(Pinit)-Granoblastit, olivschwarz, foliiert, mit hell-olivgrauen Lagen
91-37 Granitoid, olivschwarz mit mittel hell- bis sehr hellgrauen Lagen 91-38 Gneis, hell orange braune und olivgraue Masse (mittelkörnig (>1 mm)) 91-39 Qz-Feldspat-Granoblastit, mittelgrau, foliiert 91-42 Qz-Crd(Pinit)-Granoblastit, mittelgrau 91-45 Pyroxen-Metabasit, dunkelolivgrau, massiv 91-49 Crd-Px-Granoblastit, olivschwarz, leicht foliiert 91-52 Quarzit, hell olivgrau, nicht foliiert 91-54 Quarzit, hell grau mit wenigen dunkelgrauen Lagen 91-59 Crd-Px-Granoblastit, dunkel grau 91-64 Crd-And-Symplektit, gräulich schwarz, foliiert 91-65 Quarzit, dunkel grünlich grau 91-66 Qz-Feldspat-Granoblastit, dunkel grünlich grau, foliiert 91-70 Gneis, olivgrau, foliiert, mit wenig hell olivgrauen und gräulich schwarzen Lagen 91-75 Quarzit, hellolivgrau mit grossen Quarz-Körner (<4mm) 91-84 Gneis, hellgrau mit olivschwarzen Lagen, foliiert (migmatitähnlich)	91-35	Granitoid, olivschwarz mit mittel hell- bis sehr hellgrauen Lagen
91-38 Gneis, hell orange braune und olivgraue Masse (mittelkörnig (>1 mm)) 91-39 Qz-Feldspat-Granoblastit, mittelgrau, foliiert 91-42 Qz-Crd(Pinit)-Granoblastit, mittelgrau 91-45 Pyroxen-Metabasit, dunkelolivgrau, massiv 91-49 Crd-Px-Granoblastit, olivschwarz, leicht foliiert 91-52 Quarzit, hell olivgrau, nicht foliiert 91-54 Quarzit, hell grau mit wenigen dunkelgrauen Lagen 91-59 Crd-Px-Granoblastit, dunkel grau 91-64 Crd-And-Symplektit, gräulich schwarz, foliiert 91-65 Quarzit, dunkel grünlich grau 91-66 Qz-Feldspat-Granoblastit, dunkel grünlich grau, foliiert 91-70 Gneis, olivgrau, foliiert, mit wenig hell olivgrauen und gräulich schwarzen Lagen 91-75 Quarzit, hellolivgrau mit grossen Quarz-Körner (<4mm) 91-84 Gneis, hellgrau mit olivschwarzen Lagen, foliiert (migmatitähnlich)	91-36	Crd-Px-Granoblastit, bräunlich grau mit grünlichschwarzen Bänder
91-39 Qz-Feldspat-Granoblastit, mittelgrau, foliiert 91-42 Qz-Crd(Pinit)-Granoblastit, mittelgrau 91-45 Pyroxen-Metabasit, dunkelolivgrau, massiv 91-49 Crd-Px-Granoblastit, olivschwarz, leicht foliiert 91-52 Quarzit, hell olivgrau, nicht foliiert 91-54 Quarzit, hell grau mit wenigen dunkelgrauen Lagen 91-59 Crd-Px-Granoblastit, dunkel grau 91-64 Crd-And-Symplektit, gräulich schwarz, foliiert 91-65 Quarzit, dunkel grünlich grau 91-66 Qz-Feldspat-Granoblastit, dunkel grünlich grau, foliiert 91-70 Gneis, olivgrau, foliiert, mit wenig hell olivgrauen und gräulich schwarzen Lagen 91-75 Quarzit, hellolivgrau mit grossen Quarz-Körner (<4mm) 91-84 Gneis, hellgrau mit olivschwarzen Lagen, foliiert (migmatitähnlich)	91-37	Granitoid, olivschwarz mit mittel hell- bis sehr hellgrauen Lagen
91-42 Qz-Crd(Pinit)-Granoblastit, mittelgrau 91-45 Pyroxen-Metabasit, dunkelolivgrau, massiv 91-49 Crd-Px-Granoblastit, olivschwarz, leicht foliiert 91-52 Quarzit, hell olivgrau, nicht foliiert 91-54 Quarzit, hell grau mit wenigen dunkelgrauen Lagen 91-59 Crd-Px-Granoblastit, dunkel grau 91-64 Crd-And-Symplektit, gräulich schwarz, foliiert 91-65 Quarzit, dunkel grünlich grau 91-66 Qz-Feldspat-Granoblastit, dunkel grünlich grau, foliiert 91-70 Gneis, olivgrau, foliiert, mit wenig hell olivgrauen und gräulich schwarzen Lagen 91-75 Quarzit, hellolivgrau mit grossen Quarz-Körner (<4mm) 91-84 Gneis, hellgrau mit olivschwarzen Lagen, foliiert (migmatitähnlich)	91-38	Gneis, hell orange braune und olivgraue Masse (mittelkörnig (>1 mm))
91-45 Pyroxen-Metabasit, dunkelolivgrau, massiv 91-49 Crd-Px-Granoblastit, olivschwarz, leicht foliiert 91-52 Quarzit, hell olivgrau, nicht foliiert 91-54 Quarzit, hell grau mit wenigen dunkelgrauen Lagen 91-59 Crd-Px-Granoblastit, dunkel grau 91-64 Crd-And-Symplektit, gräulich schwarz, foliiert 91-65 Quarzit, dunkel grünlich grau 91-66 Qz-Feldspat-Granoblastit, dunkel grünlich grau, foliiert 91-70 Gneis, olivgrau, foliiert, mit wenig hell olivgrauen und gräulich schwarzen Lagen 91-75 Quarzit, hellolivgrau mit grossen Quarz-Körner (<4mm) 91-84 Gneis, hellgrau mit olivschwarzen Lagen, foliiert (migmatitähnlich)	91-39	Qz-Feldspat-Granoblastit, mittelgrau, foliiert
91-49 Crd-Px-Granoblastit, olivschwarz, leicht foliiert 91-52 Quarzit, hell olivgrau, nicht foliiert 91-54 Quarzit, hell grau mit wenigen dunkelgrauen Lagen 91-59 Crd-Px-Granoblastit, dunkel grau 91-64 Crd-And-Symplektit, gräulich schwarz, foliiert 91-65 Quarzit, dunkel grünlich grau 91-66 Qz-Feldspat-Granoblastit, dunkel grünlich grau, foliiert 91-70 Gneis, olivgrau, foliiert, mit wenig hell olivgrauen und gräulich schwarzen Lagen 91-75 Quarzit, hellolivgrau mit grossen Quarz-Körner (<4mm) 91-84 Gneis, hellgrau mit olivschwarzen Lagen, foliiert (migmatitähnlich)	91-42	Qz-Crd(Pinit)-Granoblastit, mittelgrau
91-52 Quarzit, hell olivgrau, nicht foliiert 91-54 Quarzit, hell grau mit wenigen dunkelgrauen Lagen 91-59 Crd-Px-Granoblastit, dunkel grau 91-64 Crd-And-Symplektit, gräulich schwarz, foliiert 91-65 Quarzit, dunkel grünlich grau 91-66 Qz-Feldspat-Granoblastit, dunkel grünlich grau, foliiert 91-70 Gneis, olivgrau, foliiert, mit wenig hell olivgrauen und gräulich schwarzen Lagen 91-75 Quarzit, hellolivgrau mit grossen Quarz-Körner (<4mm) 91-84 Gneis, hellgrau mit olivschwarzen Lagen, foliiert (migmatitähnlich)	91-45	Pyroxen-Metabasit, dunkelolivgrau, massiv
91-54 Quarzit, hell grau mit wenigen dunkelgrauen Lagen 91-59 Crd-Px-Granoblastit, dunkel grau 91-64 Crd-And-Symplektit, gräulich schwarz, foliiert 91-65 Quarzit, dunkel grünlich grau 91-66 Qz-Feldspat-Granoblastit, dunkel grünlich grau, foliiert 91-70 Gneis, olivgrau, foliiert, mit wenig hell olivgrauen und gräulich schwarzen Lagen 91-75 Quarzit, hellolivgrau mit grossen Quarz-Körner (<4mm) 91-84 Gneis, hellgrau mit olivschwarzen Lagen, foliiert (migmatitähnlich)	91-49	Crd-Px-Granoblastit, olivschwarz, leicht foliiert
91-59 Crd-Px-Granoblastit, dunkel grau 91-64 Crd-And-Symplektit, gräulich schwarz, foliiert 91-65 Quarzit, dunkel grünlich grau 91-66 Qz-Feldspat-Granoblastit, dunkel grünlich grau, foliiert 91-70 Gneis, olivgrau, foliiert, mit wenig hell olivgrauen und gräulich schwarzen Lagen 91-75 Quarzit, hellolivgrau mit grossen Quarz-Körner (<4mm) 91-84 Gneis, hellgrau mit olivschwarzen Lagen, foliiert (migmatitähnlich)	91-52	Quarzit, hell olivgrau, nicht foliiert
91-64 Crd-And-Symplektit, gräulich schwarz, foliiert 91-65 Quarzit, dunkel grünlich grau 91-66 Qz-Feldspat-Granoblastit, dunkel grünlich grau, foliiert 91-70 Gneis, olivgrau, foliiert, mit wenig hell olivgrauen und gräulich schwarzen Lagen 91-75 Quarzit, hellolivgrau mit grossen Quarz-Körner (<4mm) 91-84 Gneis, hellgrau mit olivschwarzen Lagen, foliiert (migmatitähnlich)		
91-65 Quarzit, dunkel grünlich grau 91-66 Qz-Feldspat-Granoblastit, dunkel grünlich grau, foliiert 91-70 Gneis, olivgrau, foliiert, mit wenig hell olivgrauen und gräulich schwarzen Lagen 91-75 Quarzit, hellolivgrau mit grossen Quarz-Körner (<4mm) 91-84 Gneis, hellgrau mit olivschwarzen Lagen, foliiert (migmatitähnlich)	91-59	· · · · · · · · · · · · · · · · · · ·
91-66 Qz-Feldspat-Granoblastit, dunkel grünlich grau, foliiert 91-70 Gneis, olivgrau, foliiert, mit wenig hell olivgrauen und gräulich schwarzen Lagen 91-75 Quarzit, hellolivgrau mit grossen Quarz-Körner (<4mm) 91-84 Gneis, hellgrau mit olivschwarzen Lagen, foliiert (migmatitähnlich)		<i>y</i> 1
91-70 Gneis, olivgrau, foliiert, mit wenig hell olivgrauen und gräulich schwarzen Lagen 91-75 Quarzit, hellolivgrau mit grossen Quarz-Körner (<4mm) 91-84 Gneis, hellgrau mit olivschwarzen Lagen, foliiert (migmatitähnlich)	91-65	
91-75 Quarzit, hellolivgrau mit grossen Quarz-Körner (<4mm) 91-84 Gneis, hellgrau mit olivschwarzen Lagen, foliiert (migmatitähnlich)		
91-84 Gneis, hellgrau mit olivschwarzen Lagen, foliiert (migmatitähnlich)		
91-91 Gneis, hellbraun mit dunkelgrauen Bänder	91-84	Gneis, hellgrau mit olivschwarzen Lagen, foliiert (migmatitähnlich)
		,
91-94 Qz-Crd(Pinit)-Feldspat-Granoblastit, olivschwarz, foliiert	91-94	Qz-Crd(Pinit)-Feldspat-Granoblastit, olivschwarz, foliiert

makroskopische Farbeineinstufung nach Munsel-System (Farbskala).

Pr. mit Nr. 91-, DS, EGS und E-V sind von R. Vinx

Anhang II: RFA-Analysen der Eckergneis-Gesteine (Analysen von Pr. mit Nummern 91-, DS, EGS und E-V sind von Vinx übernommen)

Probe	0-1	0-2	0-3	3-A	0-3B	0-4	0-5	0-6A	0-6B	0-7	0-9	0-10
SIO ₂	55.43	67.69	60.71	62.78	60.63	58.08	60.62	45.83	46.03	47.48	57.95	69.98
TiO ₂	1.17	0.87	1.06	1.02	1.22	1.15	0.96	1.9	1.85	1.51	0.99	0.93
Al_2O_3	20.77	14.67	17.77	17.37	18.08	19.35	17.69	24.83	25.03	23.75	19.84	14.71
Fe ₂ O ₃	8.82	6.06	8.39	7.18	7.39	7.96	8.21	14.08	13.91	11.19	7.61	5.42
MnO	0.16	0.1	0.13	0.13	0.1	0.2	0.14	0.28	0.27	0.3	0.1	0.09
MgO	2.6	2.21	2.26	2.18	2.1	2.58	2.47	5.43	5.34	3.02	2.29	1.29
CaO	0.28	1.27	0.21	0.26	0.22	0.26	0.47	0.26	0.26	0.52	0.53	0.15
Na ₂ O	0.58	1.04	0.17	0.67	0.72	0.52	0.37	0.35	0.36	1.28	0.69	0.09
K ₂ O	3.93	2.18	3.44	3.56	3.79	3.95	3.08	2.08	2.14	4.07	4.5	3.65
P_2O_5	0.1	0.15	0.1	0.12	0.13	0.09	0.26	0.14	0.11	0.18	0.33	0.06
H ₂ O	4.32	2.73	4.29	3.54	3.87	4.19	4.43	3.66	3.61	5.25	3.93	2.88
LOI	5.4	3.44	5.36	4.12	4.54	5.09	5.12	3.95	4.05	6.04	4.49	3.42
Summe		98.97	98.53	98.81	98.25	98.33	98.7	98.84	98.91	98.55		99.25
Cr	162	140	160	141	147	163	138	331	304	206	133	143
Ni	152	111	79	65	77	82	86	174	163	130	80	55
Co	39	58	43	55	43	44	45	65	63	43	42	41
Sc	0	0	0	0	0	0	0	0	0	0	0	0
\mathbf{V}	159	99	143	134	147	152	139	261	270	213	133	106
Cu	14	11	9	19	29	16	27	33	26	86	6	9
Pb	27	16	23	9	20	32	19	0	10	14	14	10
Zn	91	95	89	36	42	99	93	145	134	94	45	33
S	0.010	0.007	0.010	0.009	0.010	0.009	0.010	0.018	0.018	0.014	0.009	0.007
K	32624	18097	28556	29553	31462	32790	25568	17267	17765	33786	37356	30300
Rb	165	130	170	129	163	161	161	95	99	179	226	190
Ba	862	375	686	735	760	794	497	688	631	882	678	500
Sr	58	101	32	73	69	48	40	19	21	90	45	20
Ga	29	19	21	25	21	27	23	31	36	33	25	18
Nb	20	21	21	20	24	22	20	33	32	26	20	18
Zr	237	278	237	252	254	251	237	419	359	227	198	290
Ti	7014	5216	6355	6115	7314	6894	5755	11391	11091	9052	5935	5575
Y	40 16	36 14	32 15	36 14	38 15	37 10	36 15	36 23	36 24	43 20	41 7	34 12
Th U	6	14	13 7	14 7	13	10	8	23 7	24 6	20 7	0	5
La	55	42	64	51	56	50	60	86	74	71	34	26
Ce	113	86	119	104	97	104	120	174	145	128	71	56
Nd	52	42	44	44	37	50	49	75	62	57	40	30

TiO ₂ 1.0 Al ₂ O ₃ 18 Fe ₂ O ₃ 6.3 MnO 0.0 MgO 2. CaO 0.3 Na ₂ O 1.3 K ₂ O 4.3 P ₂ O ₅ 0. H ₂ O 3.6 LOI 4.3	0.23 79.5 .04 0.47 8.7 8.85 .84 4.42 .07 0.1 2.5 1.55 .34 0.3 .55 0.22 .53 1.74 .11 0.09 .76 2.11 .55 2.33	0.97 15.65 6.38 0.16 1.88 0.22 0.59 3.12	48.51 0.38 17.71 7.08 0.14 9.81 10.14 1.14 1.28	0.4 7.76 4.03 0.06 1.11 0.12	68.12 0.7 12.42 10.01 0.54 1.91	73.65 0.86 12.26 5.37 0.08 0.93	73.1 0.66 10.88 8.15 0.26	71.9 0.67 11.55 8.05 0.23	66.6 0.97 16.9 5.54 0.14	82.85 0.46 7.46 3.36	70.5 0.81 12.97 6.44	87.72 0.24 5.68 1.79
Al ₂ O ₃ 18 Fe ₂ O ₃ 6.3 MnO 0.4 MgO 2. CaO 0.3 Na ₂ O 1.3 K ₂ O 4.3 P ₂ O ₅ 0. H ₂ O 3.4 LOI 4.3	8.7 8.85 .84 4.42 .07 0.1 2.5 1.55 .34 0.3 .55 0.22 .53 1.74 .11 0.09 .76 2.11	15.65 6.38 0.16 1.88 0.22 0.59 3.12	17.71 7.08 0.14 9.81 10.14 1.14	7.76 4.03 0.06 1.11 0.12	12.42 10.01 0.54 1.91	12.26 5.37 0.08	10.88 8.15	11.55 8.05	16.9 5.54	7.46 3.36	12.97 6.44	5.68 1.79
Fe ₂ O ₃ 6.3 MnO 0.6 MgO 2. CaO 0.3 Na ₂ O 1.3 K ₂ O 4.3 P ₂ O ₅ 0. H ₂ O 3.3 LOI 4.3	.84 4.42 .07 0.1 2.5 1.55 .34 0.3 .55 0.22 .53 1.74 .11 0.09	6.38 0.16 1.88 0.22 0.59 3.12	7.08 0.14 9.81 10.14 1.14	4.03 0.06 1.11 0.12	10.01 0.54 1.91	5.37 0.08	8.15	8.05	5.54	3.36	6.44	1.79
MnO 0.0 MgO 2. CaO 0 Na ₂ O 1 K ₂ O 4 P ₂ O ₅ 0. H ₂ O 3. LOI 4	.07 0.1 2.5 1.55 .34 0.3 .55 0.22 .53 1.74 .11 0.09 .76 2.11	0.16 1.88 0.22 0.59 3.12	0.14 9.81 10.14 1.14	0.06 1.11 0.12	0.54 1.91	0.08						
MgO 2. CaO 0 Na ₂ O 1 K ₂ O 4 P ₂ O ₅ 0. H ₂ O 3 LOI 4	2.5 1.55 .34 0.3 .55 0.22 .53 1.74 .11 0.09 .76 2.11	1.88 0.22 0.59 3.12	9.81 10.14 1.14	1.11 0.12	1.91		0.26	0.23	0 14	0.05	0.00	
CaO 0 Na ₂ O 1 K ₂ O 4 P ₂ O ₅ 0 H ₂ O 3 LOI 4	.34 0.3 .55 0.22 .53 1.74 .11 0.09 .76 2.11	0.22 0.59 3.12	10.14 1.14	0.12		0.03			V. I	0.05	0.09	0.03
Na ₂ O 1 K ₂ O 4 P ₂ O ₅ 0 H ₂ O 3 LOI 4	.55 0.22 .53 1.74 .11 0.09 .76 2.11	0.59 3.12	1.14		0.00	0.55	1.43	1.43	0.81	1.12	1.05	0.55
K₂O 4 P₂O₅ 0. H₂O 3 LOI 4	.53 1.74 .11 0.09 .76 2.11	3.12			0.22	0.07	0.13	0.17	0.07	0.13	0.06	0.2
P ₂ O ₅ 0. H ₂ O 3. LOI 4.	.11 0.09 .76 2.11		1 28	0.04	0	0.04	0	0	0.23	1.01	0.02	1.4
P ₂ O ₅ 0. H ₂ O 3. LOI 4.	.76 2.11	0.12	1.∠0	1.27	1.97	2.71	1.76	2	3.92	0.96	2.52	0.96
LOI 4.:			0.05	0.05	0.15	0.06	0.11	0.13	0.09	0.04	0.11	0.05
LOI 4.:	55 2.33	3.64	2.99	2.19	3.2	3.01	2.94	3.07	3.81	1.95	4.09	0.86
		4.13	3.28	2.74	3.56	3.53	3.37	3.51	4.42	2.2	5.16	0.92
Summe 98.			99.23	99.17		99.04		99.2	99.08	99.39		99.48
Cr 13	33 148	133	532	126	72	122	79	75	93	186	121	65
Ni 6	57 38	74	134	29	46	28	41	41	29	29	42	14
Co 4	40 85	69	52	92	75	67	75	69	55	82	46	131
Sc (0 0	0	0	0	0	0	0	0	0	0	0	0
V 12	23 59	108	174	56	112	92	79	81	121	56	83	28
Cu 6	6 1	17	43	15	45	26	58	90	40	9	18	5
Pb 3	30 0	12	9	0	11	35	3	2	5	12	13	0
Zn 6	50 36	85	45	34	35	15	33	39	36	19	42	13
S 0.0	007 0.009	0.009	0.007	0.009	0.016	0.010	0.014	0.014	0.007	0.007	0.015	0.004
K 376	605 1444	1 25900	10626	10543	16354	22497	14610	16603	32541	7969	20919	7969
Rb 20	07 69	132	63	67	96	131	98	106	179	49	138	31
Ba 56	65 217	481	127	126	369	445	295	338	696	133	487	138
	09 26	47	235	5	6	10	16	17	15	23	21	47
	26 9	20	15	15	17	16	16	15	22	12	13	8
	26 13	21	1	12	15	23	17	18	22	17	14	9
	41 194		31	245	176	442	210	212	244	266	251	153
	235 2818		2278	2398	4197	5156	3957	4017	5815	2758	4856	1439
	35 28	35	12	12	30	33	26	26	25	22	27	17
	10 11	11	0	9	2	9	11 5	8	13	9	11	2
	3 2	3 55	0	4	4	0	5 25	3	3	5 27	2	0
		55 115	10 0	25 45	38 88	48 93	35 66	34 51	44 84	27 51	36 70	16 35
Ce 10 Nd 5	43 33 08 72	113	U	43	00	73	υu	JΙ	A4	1		

Probe	0-31	0-33	0-34	0-37	0-38	0-40	0-41	0-42	0-45	0-46	0-47	0-49	0-50
SIO ₂	75.63	72.11	92.19	88.11	69.91	87.42	49.58	48.48	70.75	71.07	92.59	57.29	79.95
TiO ₂	0.92	0.9	0.07	0.34	0.74	1.65	3.7	3.59	0.97	0.84	0.34	1.12	0.48
Al_2O_3	10.4	12.01	3.61	5.23	13.45	3.63	14.77	15.12	14.05	13.52	2.74	18.74	8.6
Fe ₂ O ₃	5.26	4.91	0.66	1.89	5.58	3.6	15.51	15.18	4.47	5.34	1.28	8.4	4.86
MnO	0.08	0.08	0.02	0.03	0.1	0.05	0.27	0.41	0.1	0.13	0.02	0.11	0.22
MgO	1.62	2.4	0.21	0.77	2.22	1.61	6.34	6.42	1.35	1.64	0.42	4.28	1.21
CaO	0.68	0.27	0.22	0.17	0.57	0.08	6.15	7.87	0.31	0.25	0.09	0.28	0.48
Na ₂ O	1.64	1	1.42	1.19	1.49	0.02	1.56	0.55	2.06	1.08	0.36	0.66	1.21
K ₂ O	1.43	2.4	0.32	0.49	2.62	0.28	0.81	1.13	3.08	2.35	0.39	3.48	0.92
P_2O_5	0.1	0.11	0.09	0.05	0.11	0.05	0.49	0.47	0.08	0.11	0.03	0.11	0.06
H ₂ O	2	2.97	0.42	0.94	2.64	1.58	1.03	1.31	2.31	2.79	0.87	4.69	1.74
LOI	2.14	3.49	0.46	1.14	2.97	1.73	1.56	1.55	2.58	3.07	1	5.12	2.09
Summe	99.76	99.16	99.23	99.21	99.43	99.97	100.21	100.53	99.53	99.12	99.13	99.16	99.73
Cr	475	258	8	185	169	1512	129	131	148	119	127	179	333
Ni	52	58	5	14	58	18	50	48	44	48	6	98	41
Co	90	69	144	108	91	109	66	58	61	41	133	45	83
Sc	0	0	0	0	0	0	0	0	0	0	0	0	0
\mathbf{V}	89	112	12	29	92	45	463	444	99	94	21	163	59
Cu	21	0	0	1	11	5	24	13	11	13	0	6	8
Pb	0	13	0	0	0	0	31	20	36	15	0	4	9
Zn	45	57	0	5	45	70	129	146	47	52	1	53	38
S	0.015	0.009	0.011	0.015	0.009	0.011	0.021	0.018	0.007	0.010	0.006	0.012	0.009
K	11871	19923	2656	4068	21749	2324	6724	9380	25568	19508	3238	28889	7637
Rb	49	91	12	21	105	19	40	60	96	89	17	156	42
Ba	201	350	41	35	278	78	171	222	616	388	4	582	91
Sr	84	53	25	22	44	3	186	183	118	54	5	40	48
Ga	12	15	6	6	19	8	27	24	19	18	5	27	15
Nb	13	23	9	9	18	17	31	31	21	19	9	23	15
Zr Ti	640 5515	569 5306	29 420	239	274 4436	842 9892	238 22182	227	360 5815	287 5036	196	237 6714	325 2878
Y	3313	5396 46	420 12	2038 19	4436 29	9892 34	45	21522 42	35	33	2038 13	6714 46	28/8
Th	13	10	3	2	10	10	6	4	55 6	<i>33</i>	5	40 17	6
U	4	2	2	0	2	3	6	4	0	0	0	4	2
La	38	48	9	21	42	48	14	14	51	34	18	47	52
Ce	103	105	12	50	90	87	33	21	96	73	35	97	105
Nd	56	49	2	25	45	31	27	14	34	37	15	46	42

Probe	0-51	0-52	0-53	0-54	0-56	0-57	0-60	0-62	0-63	0-65	0-66	0-67	0-70
SIO ₂	51.6	65.52	78.18	66.82	57.79	47.79	57.7	53.95	61.35	81.45	51.13	50.72	60.65
TiO ₂	0.35	0.97	0.85	0.95	1.08	1.22	1.08	1.6	0.89	0.65	0.49	0.43	0.84
Al_2O_3	16.9	15.3	9.79	14.86	19.38	22.83	21.61	16.49	18.67	7.51	11.41	18.16	17.64
Fe ₂ O ₃	7.51	6.34	4.46	7.3	8.18	11.66	7.48	10.53	6.3	3.98	7.88	6.32	8.17
MnO	0.16	0.07	0.08	0.11	0.15	0.18	0.08	0.19	0.07	0.08	0.23	0.15	0.09
MgO	8.99	2.18	0.83	2.36	3.04	3.97	1.49	5.4	1.84	1.38	10.91	7.1	3.08
CaO	6.21	0.32	0.13	0.18	0.32	0.32	0.25	8.26	0.3	0.91	14.28	9.44	0.1
Na ₂ O	1.68	0.63	0.09	0.31	0.97	1.44	0.04	2.74	0.84	1.34	0.86	1.88	0
K ₂ O	2.99	4.27	2.16	3.11	3.57	4.38	5.29	0.27	5.43	1.07	0.04	2.61	4.13
P_2O_5	0.04	0.17	0.06	0.09	0.17	0.15	0.17	0.14	0.15	0.07	0.08	0.04	0.12
H ₂ O	2.92	3.34	2.61	3.53	4.51	5.29	4.2	0.71	3.74	1.5	2.72	2.75	4.34
LOI	3.02	4.04	3.11	4.06	5.11	6.05	4.66	0.86	4.16	1.67	3.14	2.94	4.9
Summe	99.35	99.11	99.24	99.62	99.16	99.23	99.39	100.3	99.58	99.94	100	99.6	99.16
Cr	342	144	138	171	146	162	101	117	85	524	423	156	114
Ni	151	69	25	78	76	114	37	19	27	35	187	51	75
Со	65	57	73	57	41	39	26	61	25	103	70	95	45
Sc	0	0	0	0	0	0	0	0	0	0	0	0	0
V	164	115	88	120	148	156	148	259	127	60	221	249	124
Cu	54	6	8	9	3	7	29	7	3	7	20	19	14
Pb	12	40	30	7	36	13	20	14	12	3	146	9	3
Zn	67	61	26	58	78	98	221	89	33	34	212	43	60
S	0.009	0.009	0.007	0.010	0.010	0.014	0.010	0.012	0.007	0.007	0.007	0.005	0.010
K	24821	35447	17931	25817	29636	36360	43914	2241	45076	8882	332	21666	34284
Rb	149	219	103	153	151	211	226	9	252	31	0	121	150
Ba	389	656	247	391	554	563	443	64	617	183	0	320	653
Sr	208	27	8	19	73	55	63	504	58	60	14	213	9
Ga	15	22	15	19	24	30	27	21	23	12	16	17	24
Nb	4	20	21	21	20	25 274	25	13	17	15	4	3	17
Zr	58	258 5915	415	290 5605	211	274	223	181	200	332	92	45 2579	162
Ti Y	2098 19	5815 34	5096 35	5695 29	6475 34	7314 36	6475 45	9592 33	5336 31	3897 30	2938 20	2578 21	5036 32
Th	0	5 4	10	29 15	3 4 12	13	8	33 4	10	30 9	0	0	32 12
U	0	1	5	4	0	7	3	5	2	1	7	1	6
La	10	43	39	43	61	54	60	21	50	55	6	3	52
Ce	13	86	86	89	107	100	114	37	89	103	4	10	102
Nd	6	40	38	40	37	45	52	17	34	39	1	7	42

Probe	0-72	0-74	0-75	0-76	0-78	0-78A	0-80	0-81	0-82	0-83	0-84	0-85	0-86
SIO ₂	83.34	81.19	79.86	76.01	81.95	64.9	68.92	78.64	71.95	83.89	76.12	86.41	64.06
TiO ₂	0.45	0.52	0.47	0.67	0.67	0.89	0.88	0.76	0.91	0.71	0.84	0.36	0.82
Al_2O_3	6.43	8.12	8.94	10.16	7.18	15.85	14.45	9.03	12.61	6.2	9.45	6.44	14.8
Fe ₂ O ₃	4.34	3.92	4.05	5.09	4.73	6.81	6.09	4.17	5.87	3.37	5.29	3.02	9.21
MnO	0.09	0.05	0.09	0.07	0.06	0.05	0.06	0.08	0.08	0.11	0.12	0.04	0.15
MgO	1.2	1.39	1.51	3.07	1.65	2.64	2.34	1.55	2.46	1.17	2.7	1	3
CaO	0.11	0.14	0.37	0.17	0.1	0.36	0.21	0.61	0.14	0.18	0.17	0.09	0.34
Na ₂ O	0.92	0.72	1.21	0	0.25	1.33	0.33	1.11	0.32	1.11	0.56	0	0.01
K ₂ O	0.65	1.26	1.07	1.63	1.05	3.64	3.03	1.6	2.33	1.01	1.35	1.22	2.76
P_2O_5	0.04	0.05	0.08	0.1	0.04	0.11	0.13	0.1	0.09	0.08	0.08	0.05	0.27
H ₂ O	2.17	2.11	1.91	3.06	2.21	3.11	3.25	1.94	3.01	1.81	2.92	1.31	3.82
LOI	2.45	2.48	2.28	3.28	2.28	3.34	3.43	2.1	3.17	2.1	3.29	1.46	4.11
Summe	99.74			100	99.89		99.69		99.77	99.64	99.6	99.94	
Cr	292	270	184	296	431	139	147	291	183	291	392	170	121
Ni	34	34	36	50	40	68	60	43	42	18	62	19	66
Co	92	79	93	60	104	52	49	47	77	87	77	95	42
Sc	0	0	0	0	0	0	0	0	0	0	0	0	0
\mathbf{V}	51	43	57	86	62	106	94	68	91	47	72	41	103
Cu	8	5	23	57	7	4	27	18	13	36	9	14	24
Pb	32	7	55	6	2	52	3	12	57	26	15	4	21
Zn	44	44	162	49	38	273	20	28	94	38	109	39	111
S	0.009	0.007	0.007	0.009	0.010	0.009	0.007	0.007	0.013	0.009	0.010	0.007	0.012
K	5396	10460	8882	13531	8716	30217	25153	13282	19342	8384	11207	10128	22912
Rb	29	52	49	76	41	167	106	71	128	33	60	55	119
Ba	82	218	135	177	180	534	620	309	183	151	159	202	319
Sr	17	27	48	7	11	37	21	60	8	29	15	2	0
Ga	13	13	15	16	10	20	18	12	13	9	16	13	23
Nb Zn	17 256	19 251	12	18	24 624	19	18	24 651	15	23 679	23 543	13	18
Zr Ti	256 2698	351 3117	247 2818	306 4017	634 4017	2725336	296 5276	651 4556	397 5455	678 4256	543 5036	198 2158	230 4916
Y	17	17	23	33	23	35	3270	28	37	48	31	24	34
Th	1	6	2	9	4	10	11	8	13	7	7	4	2
U	0	2	2	7	0	5	1	3	4	5	0	0	0
La	15	24	36	39	18	52	44	45	44	33	48	14	25
Ce	32	59	89	90	54	115	91	111	93	90	115	60	64
Nd	15	30	42	42	31	50	38	53	42	42	57	40	36

Probe	0-87	0-88	0-90	0-92	0-93	0-94	0-95	0-96	0-98	0-99	0-100	0-101	0-104 <i>A</i>
SIO ₂	68.02	72.83	59.84	82.97	46.91	89.6	86.57	65.35	81.23	94.04	92.58	91.27	92.38
TiO ₂	0.89	0.64	0.94	0.35	1.17	0.36	0.66	0.91	0.54	0.18	0.35	0.16	0.28
Al_2O_3	15.19	11.44	19.06	7.2	11.67	4.32	5.37	15.63	8.34	1.78	2.9	3.45	2.99
Fe ₂ O ₃	5.97	6.07	7.4	3.06	12.23	2.06	2.92	6.71	3.8	0.71	0.97	1.36	1.57
MnO	0.09	0.1	0.21	0.08	0.22	0.02	0.04	0.12	0.04	0.02	0.02	0.05	0.03
MgO	1.91	1.9	2.43	0.94	14.09	0.95	1.02	1.8	1.16	0.24	0.39	0.46	0.68
CaO	0.06	0.09	0.13	0.31	9.57	0.06	0.07	0.42	0.06	0.07	0.06	0.07	0.06
Na ₂ O	0.09	0	0.36	1.36	0.62	0.4	0	0.51	0	0.29	0.33	0.41	0.24
K ₂ O	3.6	2.36	4.28	1.35	0.89	0.56	0.96	3.74	1.54	0.03	0.43	0.52	0.34
P_2O_5	0.05	0.1	0.07	0.05	0.07	0.02	0.03	0.14	0.06	0.01	0.01	0.02	0.02
H_2O	3.31	3.47	4.13	1.47	2.23	1.22	1.51	3.65	2.58	0.77	0.98	1.28	1.04
LOI	3.41	4.01	4.48	1.45	2.29	1.13	1.53	4.14	2.65	1.06	1.38	1.38	1.38
Summe	99.18	99	98.85	99.14	99.67	99.57	99.15	98.98	99.35	98.14	99.02	99.05	99.63
Cr	133	78	138	105	858	131	330	142	182	100	291	40	152
Ni	49	34	73	22	325	11	18	53	24	2	7	2	10
Co	55	52	49	92	94	82	99	48	65	156	108	118	140
Sc	0	0	0	0	0	0	0	0	0	0	0	0	0
\mathbf{V}	108	62	136	43	198	29	38	102	55	15	21	23	23
Cu	3	13	28	0	10	0	0	14	19	0	2	3	0
Pb	9	942	92	9	12	0	0	33	0	0	0	0	0
Zn	90	216	211	29	81	15	8	76	33	0	5	9	4
S	0.009	0.010	0.009	0.007	0.014	0.009	0.007	0.010	0.009	0.006	0.009	0.007	0.011
K	29885	19591	35530	11207	7388	4649	7969	31047		249	3570	4317	2822
Rb	132	106	188	52	34	28	48	196	70	6	25	29	16
Ba	633	124	641	288	252	68	99	551	240	5	83	67	16
Sr	3 19	2 20	17 23	59 9	133 17	6 10	2 10	49 21	7 12	4 5	12 6	8 10	2 5
Ga Nb	19	13	20	9 11	9	12	24	19	14	<i>3</i>	8	9	11
Zr	285	230	224	148	81	245	717	250	376	102	333	100	211
Ti	5336	3837	5635	2098	7014	2158	3957	5455	3237	1079	2098	959	1679
Y	29	23	25	17	23	17	17	29	16	12	17	13	17
Th	12	0	15	6	1	10	8	10	10	5	11	9	0
U	3	2	6	0	4	5	0	1	0	1	6	4	0
La	44	16	35	0	8	6	10	45	23	18	21	2	22
Ce Nd	87 41	76 54	78 44	23 33	3	38 23	41 31	96 48	48 26	35 15	38 14	19 19	42 17
1144	71	J ' †	77	33	U	۷3	91	70	۷0	13	14	17	1 /

Al_2O_3 17.69 15.66 16.32 16.7 Fe_2O_3 7.27 5.83 6.81 6.77 MnO 0.12 0.07 0.11 0.09 MgO 2.09 1.9 2.44 2.63 CaO 0.64 0.36 0.33 0.31 Na_2O 0.9 0.95 0.79 1.29 K_2O 4.23 3.68 3.76 3.74 P_2O_5 0.14 0.12 0.11 0.11 H_2O 3.92 3.34 3.15 3.21	0.18 4.34 2.07 0.04 0.81 0.09 0.26 0.56 0.03 1.46 1.48	91.92 0.38 2.97 1.72 0.03 0.45 0.1 0.03 0.52 0.03 1.13	0.67 5 4.73 0.08 1.67 0.09 0.13 0.31 0.03	95.57 0.25 2.12 0.56 0.02 0.15 0.04 0	0.93 17.13 3.46 0.06 0.59 0.11 0.16	82.48 0.59 7.19 3.6 0.05 1.24 0.18 0.8	0.57 11.27 4.51 0.08 1.52 0.26	72.89 0.59 11.89 5.08 0.14 1.55 1.04	72.2 0.64 11.65 5.87 0.18 1.7
Al ₂ O ₃ 17.69 15.66 16.32 16.7 Fe ₂ O ₃ 7.27 5.83 6.81 6.77 MnO 0.12 0.07 0.11 0.09 MgO 2.09 1.9 2.44 2.63 CaO 0.64 0.36 0.33 0.31 Na ₂ O 0.9 0.95 0.79 1.29 K ₂ O 4.23 3.68 3.76 3.74 P ₂ O ₅ 0.14 0.12 0.11 0.11 H ₂ O 3.92 3.34 3.15 3.21 LOI 4.16 3.6 3.42 3.43 Summe 98.84 98.76 98.64 99.32	4.34 2.07 0.04 0.81 0.09 0.26 0.56 0.03 1.46 1.48	2.97 1.72 0.03 0.45 0.1 0.03 0.52 0.03	5 4.73 0.08 1.67 0.09 0.13 0.31 0.03	2.12 0.56 0.02 0.15 0.04	17.13 3.46 0.06 0.59 0.11 0.16	7.19 3.6 0.05 1.24 0.18	11.27 4.51 0.08 1.52 0.26	11.89 5.08 0.14 1.55	11.65 5.87 0.18 1.7
Fe ₂ O ₃ 7.27 5.83 6.81 6.77 MnO 0.12 0.07 0.11 0.09 MgO 2.09 1.9 2.44 2.63 CaO 0.64 0.36 0.33 0.31 Na ₂ O 0.9 0.95 0.79 1.29 K ₂ O 4.23 3.68 3.76 3.74 P ₂ O ₅ 0.14 0.12 0.11 0.11 H ₂ O 3.92 3.34 3.15 3.21 LOI 4.16 3.6 3.42 3.43 Summe 98.84 98.76 98.64 99.32	2.07 0.04 0.81 0.09 0.26 0.56 0.03 1.46 1.48	1.72 0.03 0.45 0.1 0.03 0.52 0.03	4.73 0.08 1.67 0.09 0.13 0.31 0.03	0.56 0.02 0.15 0.04 0	3.46 0.06 0.59 0.11 0.16	3.6 0.05 1.24 0.18	4.51 0.08 1.52 0.26	5.08 0.14 1.55	5.87 0.18 1.7
MnO 0.12 0.07 0.11 0.09 MgO 2.09 1.9 2.44 2.63 CaO 0.64 0.36 0.33 0.31 Na2O 0.9 0.95 0.79 1.29 K2O 4.23 3.68 3.76 3.74 P2O5 0.14 0.12 0.11 0.11 H2O 3.92 3.34 3.15 3.21 LOI 4.16 3.6 3.42 3.43 Summe 98.84 98.76 98.64 99.32	0.04 0.81 0.09 0.26 0.56 0.03 1.46 1.48	0.03 0.45 0.1 0.03 0.52 0.03	0.08 1.67 0.09 0.13 0.31 0.03	0.02 0.15 0.04 0	0.06 0.59 0.11 0.16	0.05 1.24 0.18	0.08 1.52 0.26	0.14 1.55	0.18 1.7
MgO 2.09 1.9 2.44 2.63 CaO 0.64 0.36 0.33 0.31 Na ₂ O 0.9 0.95 0.79 1.29 K_2 O 4.23 3.68 3.76 3.74 P_2 O ₅ 0.14 0.12 0.11 0.11 H_2 O 3.92 3.34 3.15 3.21 LOI 4.16 3.6 3.42 3.43 Summe 98.84 98.76 98.64 99.32	0.81 0.09 0.26 0.56 0.03 1.46 1.48	0.45 0.1 0.03 0.52 0.03	1.67 0.09 0.13 0.31 0.03	0.15 0.04 0	0.59 0.11 0.16	1.24 0.18	1.52 0.26	1.55	1.7
CaO 0.64 0.36 0.33 0.31 Na2O 0.9 0.95 0.79 1.29 K_2O 4.23 3.68 3.76 3.74 P_2O_5 0.14 0.12 0.11 0.11 H_2O 3.92 3.34 3.15 3.21 LOI 4.16 3.6 3.42 3.43 Summe 98.84 98.76 98.64 99.32	0.09 0.26 0.56 0.03 1.46 1.48	0.1 0.03 0.52 0.03	0.09 0.13 0.31 0.03	0.04	0.11 0.16	0.18	0.26		
Na2O 0.9 0.95 0.79 1.29 K_2O 4.23 3.68 3.76 3.74 P_2O_5 0.14 0.12 0.11 0.11 H_2O 3.92 3.34 3.15 3.21 LOI 4.16 3.6 3.42 3.43 Summe 98.84 98.76 98.64 99.32	0.26 0.56 0.03 1.46 1.48	0.03 0.52 0.03	0.13 0.31 0.03	0	0.16			1.04	
K_2O 4.233.683.763.74 P_2O_5 0.140.120.110.11 H_2O 3.923.343.153.21LOI4.163.63.423.43Summe98.8498.7698.6499.32	0.56 0.03 1.46 1.48	0.52 0.03	0.31 0.03			0.8	0.00		1.16
P ₂ O ₅ 0.14 0.12 0.11 0.11 H ₂ O 3.92 3.34 3.15 3.21 LOI 4.16 3.6 3.42 3.43 Summe 98.84 98.76 98.64 99.32 99.32	0.03 1.46 1.48	0.03	0.03	0.47	7.00		0.98	2.5	2.68
H ₂ O 3.92 3.34 3.15 3.21 LOI 4.16 3.6 3.42 3.43 Summe 98.84 98.76 98.64 99.32 9	1.46 1.48				5.08	1.16	2.01	1.17	0.79
H ₂ O 3.92 3.34 3.15 3.21 LOI 4.16 3.6 3.42 3.43 Summe 98.84 98.76 98.64 99.32 9	1.48			0.01	0.11	0.06	0.1	0.14	0.13
LOI 4.16 3.6 3.42 3.43 Summe 98.84 98.76 98.64 99.32 9			2.19	0.81	3.27	1.9	2.5	2.2	2.34
Summe 98.84 98.76 98.64 99.32 9		1.22	2.28	1.05	3.87	2	2.51	2.35	2.65
		99.28	99.32	100	98.71	99.25	99.77	99.19	
Cr 120 120 135 117									
	34	140	307	26	95	362	156	144	150
Ni 75 60 72 64	6	5	29	1	30	32	35	57	81
Co 46 69 47 53	107	132	102	150	37	84	63	58	96
Sc 0 0 0 0	0	0	0	0	0	0	0	0	0
V 115 99 105 105	12	30	41	16	104	62	66	65	71
Cu 41 42 15 0	4	6	1	0	6	12	8	11	12
Pb 25 67 17 22	1	6	1	0	32	6	0	23	27
Zn 60 66 91 77	39	5	36	0	13	34	29	52	68
S 0.009 0.010 0.000 0.009 (0.005	0.005	0.012	0.004	0.003	0.009	0.007	0.009	0.010
K 35115 30549 31213 31047	4649	4317	2573	3902	42171	9630	16686	9713	6558
Rb 226 166 203 185	21	25	17	36	253	62	96	58	46
Ba 600 487 491 484	84	68	20	36	581	102	282	192	79
Sr 73 71 74 86	12	0	0	1	64	31	61	160	169
Ga 21 22 21 22	10	8	10	5	20	15	16	15	15
Nb 18 15 16 17	9	15	26	10	49	20	13	14	15
Zr 206 228 222 212	119	472	852	214	409	456	282	280	272
	1079	2278	4017	1499	5575	3537	3417	3537	3837
Y 34 30 32 29	14	12	21	11	48	23	15	33	33
Th 9 12 11 10	8	5	8	1	14 4	11 7	7	7	9
U 2 1 4 6	2 2	1	0 19	0 14	4 79	7	0 14	2 37	2
La 40 26 45 41 Ce 74 55 73 70	,	15 43	60	14 20	79 164	30 68	14 28		33
Nd 33 33 26 28	26	1 J	()()					75	79

Probe	0-121	0-122	0-124	0-130	0-131	0-133	0-135	0-136	0-139	0-142	0-143	0-144	0-146
SIO ₂	58.91	80.22	85.51	85.06	62.49	74.97	81.49	65.8	53.39	82.43	75.3	77.96	78.3
TiO ₂	1.05	0.75	0.45	0.36	1	0.77	0.76	0.94	1.22	0.48	0.7	0.66	0.53
Al ₂ O ₃	18.7	8.91	5.61	6.68	16.96	10.44	7.54	15.04	21.31	6.29	10.45	9.54	9.49
Fe ₂ O ₃	7.15	3.77	3.15	2.61	7.34	4.33	3.61	6.93	8.5	3.76	4.99	3.93	3.43
MnO	0.11	0.13	0.07	0.05	0.13	0.07	0.04	0.16	0.1	0.12	0.08	0.06	0.05
MgO	2.12	0.96	1.04	1.1	2.59	2.15	1.82	2.67	2.66	1.51	2.31	1.73	1.57
CaO	0.28	0.22	0.3	0.23	0.28	0.26	0.21	0.47	0.34	0.22	0.21	0.19	0.51
Na ₂ O	1.09	0	1.62	2.19	0.52	0.9	1.61	0.93	1.46	0.46	1.26	1.27	1.65
K ₂ O	5.58	1.87	0.23	0.29	4.03	1.99	0.73	2.55	5.6	2.38	2.15	2.22	2.31
P_2O_5	0.14	0.17	0.07	0.06	0.15	0.1	0.07	0.16	0.14	0.12	0.11	0.1	0.11
H ₂ O	3.58	2.33	1.47	1.31	3.91	2.58	1.88	3.77	4.32	1.73	2.5	2.04	1.89
LOI	4.21	2.53	1.47	1.51	4.46	2.95	2.07	4.1	4.9	2.02	2.71	2.26	2.02
Summe			99.52		99.4		99.76		99.04	99.5	100.1	99.7	99.84
Cr	156	194	144	81	145	247	282	185	181	89	122	121	96
Ni	76	20	21	21	72	57	32	77	103	25	35	28	17
Co	42	78	106	63	52	96	96	67	44	106	63	40	82
Sc	0	0	0	0	0	0	0	0	0	0	0	0	0
V	141	67	32	38	123	90	61	110	149	36	72	69	53
Cu	4	7	19	0	2	0	28	11	0	3	2	0	0
Pb	75	13	0	1	13	4	3	18	18	16	20	19	12
Zn	174	29	34	17	163	49	30	97	91	45	38	29	25
S	0.009	0.009	0.000	0.007	0.010	0.011	0.009	0.009	0.009	0.009	0.007	0.013	0.007
K	46321	15523	1909	2407	33454	16520	6060	21168	46487	19757	17848	18429	19176
Rb	265	76	15	16	190	77	22	123	282	90	90	88	83
Ba	1016	456	20	13	614	271	104	467	918	481	233	310	518
Sr	89	18	55	47	44	49	43	50	83	11	11	26	64
Ga	26	14	9	9	19	13	12	22	25	11	18	10	10
Nb	22	20	15	10	20	13	21	18	21	17	20	12	15
Zr	220	544	258	161	242	504	602	308	271	390	408	407	328
Ti	6295	4496	2698	2158	5995	4616	4556	5635	7314	2878	4197	3957	3177
Y	33	25	21	14	35	41	28	35	39	14	17	16	21
Th	10	10	10	5	10	10	11	11	17	10	11	7	10
U	5 52	0	4	0	0	3	4	1	5	2	2	2	3
La	52	46	8	0	43	37	46	41 91	56 120	4	1	7 17	26 70
Ce Nd	110 54	91 38	36 30	31 36	79 40	78 34	112 50	81 41	120 58	19 14	7 14	17 12	79 42
TNU	J4	30	30	30	40	J 4	50	41	20	14	14	14	42

Probe	0-153	0-154	0-155	0-176	0-177 <i>A</i>	0-177 B	0-178	0-179	0-181	0-183	0-190	99-1	99-5A
SIO ₂	65	75.19	81.33	57.84	50.24	50.07	55.54	59.41	59.83	80.91	67.61	61.39	54.34
TiO ₂	1.13	0.78	0.54	1.15	0.95	1.01	0.84	0.99	1.08	0.48	0.8	0.96	1.38
Al_2O_3	15.68	10.92	8.08	16.18	17.32	17.88	16.15	19.2	18.72	7.47	15.34	17.95	17.39
Fe ₂ O ₃	7.07	4.98	3.86	7.36	8.29	8.61	7.23	7.62	8.28	4.5	5.87	7.38	12.86
MnO	0.07	0.06	0.05	0.19	0.13	0.12	0.11	0.12	0.18	0.15	0.1	0.21	0.19
MgO	2.94	1.95	1.52	3.81	4.44	4.23	3.93	3	2.51	1.51	2.75	2.28	8.2
CaO	0.22	0.18	0.23	6.65	11.95	10.72	9.23	0.1	0.07	0.43	0.21	0.19	0.7
Na ₂ O	0.49	0.63	0.9	1.6	0.96	1.02	0.88	0.16	0	1.55	1.09	0.7	0.67
K ₂ O	3.7	2.33	1.14	1.07	3.59	3.36	3.42	4.29	3.91	0.53	2.94	3.95	0.97
P_2O_5	0.06	0.07	0.05	0.11	0.14	0.14	0.13	0.1	0.14	0.08	0.12	0.08	0.3
H ₂ O	3.36	2.57	2.15	2.61	2.18	2.01	1.64	4.65	4.8	1.87	3.21	3.8	1.65
LOI	3.74	2.8	2.17	3.02	2.54	2.12	1.86	4.97	4.92	1.89	3.57	4.25	1.91
Summe	99.72	99.66	99.85	98.57	100.2	99.17	99.1	99.64	99.52	99.48	100	98.89	98.65
Cr	191	157	276	169	146	148	128	158	138	128	147	153	23
Ni	91	48	34	66	78	92	67	84	72	32	60	86	78
Co	54	60	92	50	54	53	66	49	43	100	60	37	51
Sc	0	0	0	0	0	0	0	0	0	0	0	18	6
V	128	89	62	142	134	142	121	132	134	56	98	118	173
Cu	10	10	7	16	27	33	12	10	41	21	3	24	32
Pb	8	9	7	18	25	20	27	25	763	0	5	19	3
Zn	47	30	22	81	98	116	83	70	403	43	65	93	72
S	0.009	0.009	0.007	0.019	0.018	0.055	0.000	0.009	0.010	0.000	0.017	0.003	0.010
K	30715	19342	9463	8882	29802	27892	28390	35613	32458	4400	24406	32790	8052
Rb	158	104	51	54	114	100	115	184	156	29	130	169	49
Ba	801	376	148	236	638	651	480	622	639	61	324	637	237
Sr	42	27	40	319	589	564	494	9	25	75 14	23	57 25	90
Ga Nb	18 21	15 21	14 17	23 19	26 14	29 18	20 18	22 20	29 20	14 14	15 17	25 18	24 16
Zr	352	375	217	396	217	271	201	224	244	228	260	237	296
Ti	6774	4676	3237	6894	5695	6055	5036	5935	6475	2878	4796	5755	8273
Y	40	32	26	27	30	27	29	30	41	22	33	35	29
Th	16	11	10	8	0	0	3	14	1	9	14	10	2
U	3	4	0	0	0	1	6	9	6	2	5	3	0
La	55 124	41	25	57	31	28	24	46	34	9	30	43	0
Ce Nd	124 59	79 32	56 32	119 53	78 45	46 24	72 43	107 54	123 100	28 26	62 28	66 27	0
ING	39	32	32	JJ	43	<i>2</i> 4	43	J 4	100	20	20	21	10

Probe	99-5B	99-5C	99-7	99-8	99-10	99-20	99-21-1	99-30	99-34	99-35	99-36	99-38	99-40
SIO ₂	56.35	51.22	44.47	54.03	59.9	93.85	78.51	71.02	52.58	44.08	61.68	95.04	47.93
TiO ₂	1.07	1.77	1.2	0.96	1.07	0.14	0.54	0.82	1.32	1.28	1.19	0.26	2.98
Al_2O_3	15.72	18.39	15.66	17.18	19.03	2.09	8.8	12.13	21.6	26.77	16.76	2.23	15.19
Fe ₂ O ₃	13.66	13.59	13.69	8.04	5.36	1.56	3.75	5.36	10.27	11.19	9.14	0.45	13.85
MnO	0.2	0.17	0.68	0.69	0.11	0.03	0.04	0.08	0.14	0.2	0.15	0.01	0.23
MgO	8.31	7.75	8.2	4.1	2.43	0.68	1.85	2.95	3.29	4.04	3.64	0.09	6.33
CaO	0.74	1.02	9.37	6.82	1.61	0.05	0.27	0.29	0.18	1.06	0.51	0.07	9.6
Na ₂ O	1.19	1.62	1.69	1.76	5.99	0.06	1.26	1.52	0.35	0.58	0.27	0.51	2.49
K ₂ O	0.72	1.21	0.82	2.98	1.24	0.16	0.09	0.14	4.44	3.23	2.12	0.27	0.16
P_2O_5	0.26	0.38	0.12	0.15	0.25	0.02	0.04	0.05	0.07	0.28	0.18	0.02	0.42
H ₂ O	1.24	1.63	2.05	2.78	1.66	0.94	1.68	2.6	4.98	5.85	3.33	0.46	0.7
LOI	1.32	1.77	2.24	2.98	1.77	1.21	1.76	3.22	5.15	6.03	3.5	0.41	0.77
Summe	99.46	98.75	97.95	99.49	98.65	99.58	96.83	96.96	99.22	98.56	98.97	99.41	99.88
Cr	15	46	346	125	5	62	178	184	205	189	179	18	133
Ni	57	61	194	66	9	9	67	65	119	115	92	0	52
Co	43	49	58	42	33	111	73	48	44	43	54	147	59
Sc	16	28	38	15	6	0	4	0	31	28	21	0	44
V	182	251	255	126	78	20	65	81	176	191	153	14	350
Cu	7	10	34	123	9	5	38	16	33	7	7	0	47
Pb	2	5	21	22	0	0	3	84	6	9	2	0	13
Zn	67	69	78	49	28	2	48	75	84	136	103	0	92
S	0.012	0.010	0.007	0.017	0.000	0.004	0.000	0.015	0.003	0.005	0.012	0.011	0.012
K	5977	10045	6807	24738	10294	1328	747	1162	36858	26813	17599	2241	1328
Rb	34	58	35	130	41	12	5	7	187	158	116	14	5
Ba	198	363	145	459	297	4	2	75	1258	1289	621	42	37
Sr	138	192	210	215	386	4	119	102	44	155	49	9	340
Ga	19	26	20	23	23	6	14	17	29	38	21	5	22
Nb	13	16	7	24	18	9	11	14	25	26	21	11	28
Zr	277	301	81	198	388	103	256	353	264	282	308	354	215
Ti V	6415	10611	7194	5755	6415	839	3237	4916	7913 42	7674 52	7134	1559	17865
Y Th	27 4	35 9	35 5	41 12	53 13	15 2	23 3	35 6	42 17	53 13	39 16	10 0	47 3
U	1	8	6	5	0	2	0	4	0	6	5	0	1
La	3	14	0	46	64	6	13	33	69	67	53	14	14
Ce	4	49	9	83	132	16	45	66	119	123	109	20	29
Nd	13	37	19	41	62	10	35	27	49	50	50	5	23

Probe	99-41	99-42	99-43	99-44-1	99-44-2	99-45	99-46	99-49	99-51	99-52	99-53)9-54 - <i>[</i>
SIO ₂	45.69	47.49	55.14	59	56.1	78.76	57.55	46.67	68.45	67.96	75.4	47.02
TiO ₂	3.36	2.96	1.01	1.01	0.95	0.73	1.5	1.95	0.8	0.93	0.77	1.39
Al_2O_3	14.37	15	21.3	18.75	20.35	8.59	18.28	22.73	12.97	14.68	9.83	17.55
Fe ₂ O ₃	14.69	13.8	8.71	7.77	8.11	3.96	8.7	12.35	5.75	5.92	5.99	11.78
MnO	0.26	0.22	0.15	0.12	0.14	0.07	0.12	0.2	0.15	0.14	0.13	0.31
MgO	6.76	6.51	2.9	2.52	2.73	1.35	3.4	4.45	1.61	1.93	2.25	7.15
CaO	9.96	8.77	0.14	0.22	0.24	0.25	0.17	0.22	0.54	0.48	0.18	8.19
Na ₂ O	2.33	2.84	0.44	1.18	1.02	1.5	0.82	0.08	2.97	2.85	1.4	2.73
K ₂ O	0.18	0.37	4.75	4.61	5.05	1.42	4.71	5.02	1.33	1.86	1.07	1.32
P_2O_5	0.42	0.42	0.08	0.09	0.07	0.13	0.13	0.17	0.11	0.12	0.09	0.09
H ₂ O	0.9	0.93	4.75	4.01	4.14	1.99	4.15	5.56	2.39	2.69	2.59	2.18
LOI	0.98	1.07	4.95	4.38	4.55	1.99	4.24	5.78	2.41	2.69	2.64	2.18
Summe	98.92	99.31	99.37	99.28	98.9	98.75	99.53	99.4	97.07	99.56	99.7	99.71
Cr	129	121	155	147	143	447	249	322	137	181	280	312
Ni	46	52	123	81	95	40	121	167	39	60	67	146
Co	61	54	31	29	37	46	38	38	36	41	59	52
Sc	40	32	20	24	22	5	17	42	12	18	5	42
V	402	357	144	129	142	55	186	243	69	83	88	231
Cu	6	36	91	27	57	5	8	4	12	25	18	24
Pb	12	7	30	40	28	2	7	9	19	20	11	16
Zn	105	97	85	85	98	41	73	110	89	70	67	81
S	0.015	0.012	0.005	0.003	0.010	0.000	0.000	0.003	0.000	0.000	0.010	0.012
K	1494	3071	39431	38269	41922	11788	39099	41673	11041	15440	8882	10958
Rb	8	17	214	212	233	64	234	251	65	89	44	67
Ba	38	57	738	638	715	259	911	1208	222	370	124	210
Sr	310	311	35	33	46	33	16	20	164	131	49 11	492
Ga Nb	27 26	28 28	29 19	25 16	29 19	12 20	25 27	33 34	19 25	20 26	11 16	19 5
Zr	208	204	156	201	164	707	423	495	533	597	347	<i>S</i> 85
Ti	20143	17745	6055	6055	5695	4376	8993	11690	4796	5575	4616	8333
Y	42	46	40	38	37	28	53	51	31	39	29	32
Th	3	9	11	13	14	9	19	23	24	24	9	0
U	2	0	5	4	3	2	8	6	0	5	0	5
La	23	11	47	48	44	34	76	83	72	75	39	6
Ce	46	31	90	71	89	78 24	147	189	152	169	73	2
Nd	28	31	42	25	44	34	59	91	74	76	33	9

Probe)9-54-I	99-55	99-56	99-57	99-58	99-59	99-60	99-61	99-62	99-63	99-64	99-66	DS 4
SIO ₂	44.44	81.33	80.12	83.23	73.25	80.04	83.03	87.22	94.64	78.81	73.09	80.59	45.69
TiO ₂	1.53	0.6	0.55	0.41	0.7	0.6	0.46	0.5	0.19	0.62	0.58	0.58	1.11
Al_2O_3	18.36	7.8	7.36	7.37	11.01	8.09	7.29	5.01	2.28	9.22	12.64	8.15	15.55
Fe ₂ O ₃	12.75	3.57	4.27	2.86	5.37	4.89	3.58	2.89	0.73	3.3	4.8	3.87	13.19
MnO	0.31	0.13	0.11	0.05	0.11	0.07	0.07	0.05	0.01	0.1	0.18	0.08	0.00
MgO	7.91	1.24	2.02	0.94	1.99	2.32	1.27	0.97	0.17	1.36	1.59	1.17	9.06
CaO	7.52	0.6	0.22	0.32	0.46	0.16	0.16	0.11	0.08	1.98	0.48	0.22	9.49
Na ₂ O	3.35	1.98	1.23	2.36	1.77	0.43	1.06	0.2	0.13	2.14	1.5	1.73	2.51
K ₂ O	0.63	0.74	1.13	0.66	2.73	1.16	0.99	0.74	0.65	0.68	2.11	0.8	0.87
P_2O_5	0.1	0.09	0.1	0.06	0.15	0.09	0.05	0.02	0.03	0.09	0.13	0.1	0.12
H ₂ O	2.65	1.21	1.71	1.1	1.88	2.14	1.3	1.16	0.31	0.98	2.68	1.67	0.00
LOI	3	1.3	1.8	1.15	1.97	2.23	1.37	1.16	0.31	0.98	2.72	1.71	0.00
Summe	99.55	99.29	98.82	99.36	99.42	99.99	99.26	98.87	99.22	99.28	99.78	98.96	97.59
Cr	363	263	434	171	174	422	206	302	81	131	114	350	342
Ni	203	33	32	25	73	39	32	18	0	36	49	37	223
Co	65	50	42	63	51	59	62	76	111	64	45	63	0
Sc	43	10	12	9	6	8	1	0	0	8	5	7	0
V	284	53	53	45	51	54	56	35	26	55	63	59	238
Cu	21	35	0	0	17	1	22	0	0	4	22	11	7
Pb	34	5	0	0	25	0	0	0	0	5	39	8	13
Zn	86	37	34	15	68	38	24	31	4	36	85	31	93
S	0.024	0.005	0.005	0.000	0.010	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.00
K	5230	6143	9380	5479	22663	9630	8218	6143	5396	5645	17516	6641	
Rb	37	27	53	30	78	58	39	39	29	28	123	43	
Ba	106	187	230	158	377	99	66	105	108	214	357	117	99
Sr	458	75	26	75	110	11	25	11	6	109	112	49	291
Ga	18	8	12	7	11	10	9	8	5	13	15	8	0
Nb	6	16	18	11	18	15	10	15	6	15	15	13	4
Zr	92	518	487	197	395	365	226	467	109	351	264	321	76
Ti	9172	3597	3297	2458	4197	3597	2758	2998	1139	3717	3477	3477	0
Y	34	21	30	21	24	26	22	12	12	29	29	27	28
Th	$0 \\ 0$	8	5 1	4 0	6 4	2 0	6 2	3 1	0	4 4	5 2	8	$\frac{0}{0}$
U	10	<i>3</i> 42	35	22	4 39	0 17	2 25	20	1 17	31	2 19	25	$0 \\ 0$
La Ce	15	42 77	33 85	47	39 79	41	60	49	34	52	36	56	$0 \\ 0$
Nd	15	28	65 46	21	35	22	33	25	3 4 17	32 24	22	30	$0 \\ 0$

Probe	DS 19	DS 20	DS 22	EGS 1	EGS 2	EGS 3	<i>91-2</i>	91-6	91-7	91-8
SIO ₂	51.45	53.54	50.08	47.99	48.58	49.12	63.02	47.15	46.93	45.90
TiO ₂	0.98	1.10	1.71	1.56	1.54	1.55	0.93	2.78	2.95	2.96
Al_2O_3	21.29	19.95	18.61	16.60	16.23	16.05	17.15	15.01	15.00	15.09
Fe ₂ O ₃	10.73	10.47	11.69	11.55	11.26	11.50	7.36	14.11	14.48	14.54
MnO	0.00	0.00	3.64	3.46	3.24	3.42	0.16	0.22	0.21	0.24
MgO	6.66	6.30	3.80	7.66	7.44	7.23	2.50	6.36	6.15	6.83
CaO	1.06	1.50	7.46	6.98	9.91	9.27	0.12	9.80	9.82	10.01
Na ₂ O	3.87	3.55	3.64	3.46	3.24	3.42	0.34	2.81	3.13	2.94
K ₂ O	1.58	2.03	0.19	1.17	0.09	0.26	3.69	0.16	0.19	0.37
P_2O_5	0.28	0.22	0.28	0.19	0.20	0.20	0.13	0.43	0.48	0.44
H ₂ O	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
LOI	0.00	0.00	0.00	0.00	0.00	0.00	4.18	1.16	0.96	1.26
Summe	97.90	98.66	101.1	100.6	101.7	102.0	95.40	98.83	99.34	99.32
Cr	64	97	428	209	237	252	134	115	125	141
Ni	62	85	221	91	83	80	50	58	36	52
Co	0	0	6	13	14	13	29	65	47	84
Sc	0	0	51	101	30	41	0	34	0	0
V	124	161	271	247	242	255	121	322	351	357
Cu	5	7	27	33	14	27	64	28	9	18
Pb	8	10	11	41	19	44	270	100	9	20
Zn	53	57	45	202	118	144	451	103	98	113
S	0.00	0.00	0.32	0.00	0.00	0.00	0.00	0.01	0.00	0.00
K							30632	0	1577	3071
Rb							157	6	2	11
Ba	717	85	51	101	30	41	577	26	25	51
Sr	348	333	213	371	313	277	13	314	349	314
Ga	0	0	0	0	0	0	34	17	14	21
Nb	20	16	6	13	14	13	17	23	32	26
Zr	349	302	162	116	136	126	235	205	238	221
Ti	0	0	0	0	0	0	5575	0	17685	17745
Y	31	31	34	28	31	30	35	42	43	43
Th	8 0	12	$\frac{\theta}{\theta}$	$\frac{\theta}{\theta}$	$\frac{\theta}{\theta}$	1	0	5	$\frac{\theta}{\theta}$	$\frac{\theta}{\theta}$
U La	$\frac{\theta}{\theta}$	$0 \\ 0$	$0 \\ 0$	$0 \\ 0$	$0 \\ 0$	$0 \\ 0$	2 40	$0 \\ 0$	0 16	0 17
Ce	$0 \\ 0$	$\frac{\theta}{\theta}$	$\frac{\theta}{\theta}$	$\frac{\theta}{\theta}$	$\frac{\theta}{\theta}$	$\frac{\partial}{\partial t}$	68	48	10 44	40
Nd	$\stackrel{o}{0}$	$\stackrel{o}{0}$	$\stackrel{o}{0}$	$0 \\ 0$	$0 \\ 0$	$\stackrel{o}{0}$	39	30	25	21

Probe	91-9	91-10	91-11	91-12	91- 14	91-24	91-25	91-32	91-35	<i>91-36</i>	<i>91-37</i>	<i>91-38</i>
SIO ₂	47.34	48.07	46.94	48.05	82.18	57.15	57.41	64.04	72.49	52.99	70.33	80.43
TiO ₂	2.86	2.82	2.68	2.44	0.55	0.91	1.30	0.92	0.42	0.72	0.76	0.54
Al_2O_3	14.47	14.77	15.29	15.90	8.02	20.32	14.41	16.13	14.46	14.52	13.10	8.30
Fe ₂ O ₃	14.32	13.95	13.44	13.69	3.04	8.62	14.29	7.75	3.23	7.42	6.19	3.36
MnO	0.21	0.23	0.21	0.21	0.05	0.11	0.21	0.13	0.19	0.84	0.14	0.08
MgO	6.40	6.44	6.27	7.15	1.11	3.20	4.79	2.35	1.12	3.66	1.90	1.23
CaO	9.43	10.31	9.91	9.39	0.32	0.16	0.15	0.44	1.33	10.60	0.86	1.10
Na ₂ O	3.20	2.81	2.78	2.59	1.85	0.39	0.00	0.63	3.04	1.03	2.05	1.98
K ₂ O	0.18	0.29	0.24	0.11	0.84	4.96	1.64	4.43	1.54	4.31	2.03	0.39
P_2O_5	0.42	0.44	0.46	0.34	0.11	0.08	0.13	0.15	0.07	0.13	0.12	0.11
H ₂ O	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
LOI	1.15	0.85	0.83	0.65	1.62	4.36	5.26	3.04	1.95	1.68	2.38	1.43
Summe	98.83	100.1	98.22	99.87	98.07	95.90	94.33	96.97	97.89	96.22	97.48	97.52
Cr	122	128	116	95	138	145	198	158	0	94	147	191
Ni	44	47	46	67	39	106	128	87	7	85	46	46
Co	33	74	63	41	32	<i>30</i>	85	28	11	65	18	24
Sc	0	0	0	0	0	0	0	0	0	0	0	0
\mathbf{V}	336	342	315	296	47	147	147	118	33	103	<i>77</i>	49
Cu	0	16	11	1	3	70	28	3	0	82	9	0
Pb	13	18	17	10	4	12	0	12	11	17	14	11
Zn	101	107	101	103	36	85	117	87	33	32	103	32
S	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.04	0.01	0.00
K	1494	2407	1992	913	6973	41174	13614	36775	12784	35779	16852	3238
Rb	4	7	2	0	<i>30</i>	246	93	236	69	177	75	18
Ba	35	42	30	0	130	620	295	813	291	572	418	95
Sr	335	334	342	326	70	31	7	65	299	246	124	119
Ga	<i>15</i>	21	17	15	10	28	25	20	18	17	18	9
Nb	27	25	22	20	9	14	19	17	11 25.4	15	18	8
Zr	214 17146	216 16006	212 16067	185	<i>401</i>	156 5455	418 7703	241 5515	254 2518	169 1316	446 1556	<i>330</i>
Ti Y	17146 41	16906 42	16067 45	14628 36	3297 23	5455 34	7793 35	5515 37	2518 25	4316 36	4556 35	3237 25
Th	41 1	0	43 0	30 3	23 10	20	25	18	23 17	36	25	23 12
U	5	2	$0 \\ 0$	4	0	11	5	7	4	3	4	4
La	17	24	4	8	44	27	76	55	42	29	73	<i>39</i>
Ce	55	50	55	29	47	92	110	95	62	64	134	68
Nd	29	30	29	16	24	<i>3</i> 8	54	44	26	28	69	<i>39</i>

Probe	<i>91-3</i> 9	91-42	91-45	<i>91-49</i>	91-52	<i>91-54</i>	<i>91-59</i>	<i>91-64</i>	91-65	<i>91-66</i>	<i>91-70</i>	<i>91-75</i>	91-91	91-94
SIO ₂	80.24	41.69	<i>4</i> 9.14	47.71	95.16	95.21	75.29	44.66	<i>89.39</i>	73.59	83.45	95.20	<i>81.3</i> 8	61.24
TiO ₂	0.66	1.91	3.03	1.74	0.22	0.19	0.71	1.66	0.04	0.79	0.57	0.17	0.52	0.93
A_2O_3	8.18	25.10	15.62	23.72	2.69	1.69	9.98	31.14	2.88	8.97	5.47	2.91	<i>819</i>	17.94
Fe ₂ O ₃	4.42	14.37	15.19	14.61	0.71	0.60	4.24	9.95	2.36	7.70	3.54	0.85	4.27	7.92
MnO	0.07	0.13	0.24	0.23	0.01	0.01	0.19	0.14	0.05	0.12	0.58	0.03	0.07	0.10
MgO	1.22	3.70	6.49	5.77	0.14	0.27	2.05	2.92	0.93	3.76	0.91	0.21	1.45	2.66
CaO	0.52	0.29	8.11	1.22	0.04	0.04	2.66	0.24	0.06	0.08	<i>1.4</i> 9	0.05	0.16	0.30
Na ₂ O	0.93	0.07	1.85	0.62	0.53	0.03	<i>1.4</i> 8	0.68	0.00	0.00	0.29	0.27	0.49	1.14
K ₂ O	1.05	6.35	0.12	1.73	0.25	0.22	1.27	5.71	0.19	1.00	0.59	0.39	1.17	4.29
P ₂ O ₅	0.09	0.21	0.45	0.22	0.02	0.02	0.10	0.15	0.04	0.09	0.09	0.03	0.12	0.12
ЩO	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
LOI	1.59	6.57	0.17	3.33	0.66	0.73	1.01	4.66	1.25	3.64	1.54	0.69	2.11	3.62
Summe	<i>97.3</i> 8	93.82	100.2	97.57	99.77	<i>98.28</i>	97.97	97.25	95.94	96.10	96.98	100.1	97.82	96.64
Gr	<i>550</i>	271	131	293	3 0	17	134	258	0	193	748	77	172	145
N	44	162	54	188	0	1	66	149	9	66	26	8	36	82
Co	23	35	54	87	29	50	33	53	55	25	<i>37</i>	59	46	10
Sc	0	0	0	0	0	0	0	0	0	0	0	0	0	0
\mathbf{V}	67	267	<i>34</i> 9	228	9	12	88	248	3	72	43	12	60	119
Cu	0	905	55	22	0	0	11	19	3	94	219	0	4	9
Pb	2	19	8	7	0	0	12	16	0	0	5	6	0	5
Zn	<i>36</i>	106	<i>12</i> 8	164	10	9	61	118	13	60	43	14	46	49
S	0.01	0.01	0.02	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
K	8716	52713	996	14361	2075	1826	10543	47400	1577	8301	4898	<i>323</i> 8	9713	35613
Rb	31	<i>391</i>	0	88	11	13	66	275	8	56	27	17	<i>50</i>	205
Ba	128	1806	0	643	13	11	447	1339	18	41	197	16	96	595
Sr	58	32	509	108	6	5	125	97 15	4	2	90	7	12	43
Ga No	8 13	37 31	19 29	<i>39 35</i>	4 4	<i>2 7</i>	14 14	45 33	3 0	13 13	7 9	6 3	11 6	23 16
Zr	458	336	235	<i>368</i>	331	268	293	318	16	425	334	103	351	255
Ti	3957	11450	18165	10431	1319	1139	4256	9952	240	4736	3417	1019	3117	<i>5575</i>
Y	29	51	42	36	12	6	26	66	6	11	29	14	25	40
Th	14	34	0	33	9	8	15	27	9	12	17	8	16	19
U	5	10	0	7	0	0	2	7	1	0	4	4	6	0
La	91	36	18	<i>30</i>	41	<i>2</i> 8	50	0	32	26	82	43	26	27
Ce	111	195	<i>38</i>	141	3	10	60	171	2	8	105	35	46	90
Nd	56	80	27	65	0	6	32	83	4	12	47	14	<i>2</i> 8	45

Anhang IIIa: Mikrosondenanalysen gesteinsbildender Minerale der Eckergneis-Gesteine

Feldspäte:

Probe	0-3	0-3	40	0-30	0-30	0-30	0-31	0-33	0-33	0-33	0-33	040	040	040	040
Mineral	Andesir	AndesinAndesin	Ab	Kfs	Ab	Ab	Ab	Ab	Ab	Kfs	Kfs	Ab	Ab	Kfs	Kfs
SiO_2	59.01	56.45	66.62	65.07	71.63			_			65.74		67.49	47.51	47.51
TiO_2	0.01	0.02	0.01	0.00	0.00	0.01	0.00	0.01	0.01	0.00		0.00	0.01	0.00	0.00
AI_2O_3	25.53	27.22	19.67	22.97	21.06	19.99	21.09	19.28	19.88	19.01	18.61	19.22	19.01	35.03	35.03
FeO	0.07	0.10	0.10	0.09	0.07	0.08	0.03	0.00	0.07	0.01	0.02	80.0	0.03	2.63	2.63
MnO	0.00	0.01	0.01	0.00	0.00	0.01	0.00	0.03	0.00	0.00	0.01	0.01	0.00	0.04	0.04
MgO	0.01	0.00	0.00	0.03	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.41	0.41
Ca0	29.9	8.79	0.37	0.40	0.29	89.0	1.80	0.22	0.15	0.04	0.04	0.14	0.07	80.0	80.0
Na_2O	7.36	6.23	10.99		10.75	11.07	10.20	11.38	11.21	8.50	3.87	11.30	11.15	0.09	60.0
K_2O	0.44	0.35	0.07	1.57	0.28	0.12	0.11	0.03	0.15	3.50	8.14	60.0	0.34	10.70	10.70
Summe	99.10	99.17	97.84	98.37	104.08	98.30	99.24	99.03	99.55	98.69	96.43	97.84	98.11	96.49	96.49
Formel															
Si	2.65	2.55	2.97	2.89	2.99	2.95	2.91	3.00	2.98	3.02	3.03	2.99	3.00	2.28	2.28
Ti	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Al	1.35	1.45	1.04	1.20	1.04	1.05	1.10	1.00	1.03	1.00	1.01	1.01	1.00	1.98	1.98
Fe	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.11	0.11
$\mathbf{M}\mathbf{n}$	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
M_{g}	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.03	0.03
Ca	0.32	0.43	0.02	0.02	0.01	0.03	0.09	0.01		0.00	0.00	0.01	0.00	0.00	0.00
Na	0.64	0.55	0.95	0.71	0.87	96.0	0.87	0.97		0.74	0.35	86.0	96.0	0.01	0.01
K	0.03	0.02	0.00	60.0	0.01	0.01	0.01	0.00		0.20	0.48	0.01	0.02	0.65	0.65
Or	2.55	2.03	0.41	10.88	1.66	69.0	0.62	0.17		21.28	57.93	0.53	1.98	98.14	98.14
Ab	64.93	55.05	97.77	86.79	68.96	96.05	90.55	98.77	01	78.53	41.83	98.77	29.67	1.24	1.24
An	32.52	42.92	1.82	2.33	1.44	3.26	8.83	1.06		0.19	0.24	0.70	0.34	0.62	0.62
	100.0	100.0	100.0	100.0		100.0	100.0	100.0		100.0	100.0	100.0	100.0	100.0	100.0
y=0r	2.55	2.03	0.41	10.88	1.66	69.0	0.62	0.17		21.28	57.93	0.53	1.98	98.14	98.14
=X	33.79	43.94	2.02	7.77		3.60	9.14	1.14		10.83	29.21	96.0	1.34	49.69	49.69

Feldspäte:

Probe	66-7	66-7	8-66	8-66	8-66	Fo-V	Eo-V	Eg-V	Eo-V	Eg-V	99-10	99-41	99-41	99-54A	040
Mineral	Byt	Byt	Lab	Lab	Kfs	Lab	Byt	Lab	Andesin	Kfs	An	An	Kfs	Andesin	Kfs
SiO_2	46.43	43.36	54.51	55.75	61.40	53.63	42.73	53.71	54.79	53.15	43.36	55.12	55.23	58.44	47.51
TiO_2	0.00	0.00	0.00	0.01	0.00	0.00	2.36	0.00	0.00	0.00	0.00	0.02	0.02	0.00	0.00
AI_2O_3	34.03	26.27	26.45	25.32	20.95	29.08	10.35	29.36	28.42	28.40	26.27	29.38	25.94	26.18	35.03
FeO	0.25	1.80	0.50	0.13	0.29	0.17	17.08	0.22	0.22	1.27	1.80	0.17	1.32	90.0	2.63
MnO	0.01	0.12	80.0	0.00	0.07	0.00	0.47	0.03	0.01	0.05	2.14	0.05	0.01	0.01	0.04
MgO	0.01	0.59	0.01	0.01	80.0	0.01	10.94	0.02	0.01	0.32	0.00	5.42	0.35	0.00	0.41
CaO	16.98	20.62	12.20	9.43	2.36	11.30	10.99	11.27	10.15	1.81	20.62	11.00	3.38	7.55	80.0
Na_2O	1.95	0.00	5.67	5.94	3.92	5.18	2.12	5.27	5.83	4.43	0.59	0.00	6.24	7.51	60.0
K_2O	0.00	2.14	0.05	1.06	8.69	0.11	0.51	0.11	0.04	5.87	0.12	0.00	2.88	60.0	10.70
Summe	99.64	94.90	99.47	97.65	97.76	99.48	97.54	86.66	99.47	95.30	94.90	101.16	95.37	99.85	96.49
Formel															
Si	2.14	2.18	2.49	2.58	2.85	2.44	2.24	2.43	2.48	2.53	2.18	2.42	2.61	2.62	2.28
Ţ	0.00	0.00	0.00	0.00	0.00	0.00	0.09	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Al	1.85	1.56	1.43	1.38	1.15	1.56	0.64	1.57	1.52	1.59	1.56	1.52	1.44	1.38	1.98
Fe	0.01	0.08	0.02	0.01	0.01	0.01	0.75	0.01	0.01	0.05	0.08	0.01	0.05	0.00	0.11
Mn	0.00	0.01	0.00	0.00	0.00	0.00	0.02	0.00	0.00	0.00	60.0	0.00	0.00	0.00	0.00
Mg	0.00	0.04	0.00	0.00	0.01	0.00	98.0	0.00	0.00	0.02	0.00	0.35	0.02	0.00	0.03
Ca	0.84	1.11	09.0	0.47	0.12	0.55	0.62	0.55	0.49	0.09	1.11	0.52	0.17	0.36	0.00
\mathbf{Na}	0.17	0.00	0.50	0.53	0.35	0.46	0.22	0.46	0.51	0.41	90.0	0.00	0.57	9.0	0.01
¥	0.00	0.14	0.00	90.0	0.52	0.01	0.03	0.01	0.00	0.36	0.01	0.00	0.17	0.01	9.0
Or	0.01	11.00	0.26	5.89	52.26	0.65	3.97	0.61	0.23	41.56	0.65	0.00	18.94	0.52	98.14
$\mathbf{A}\mathbf{b}$	17.17	0.00	45.56	50.13	35.83	45.05	24.86	45.56	50.84	47.67	4.89	0.00	62.38	63.95	1.24
An	82.81	89.00	54.17	43.98	11.92	54.30	71.18	53.83	48.93	10.76	94.45	100.0	18.67	35.53	0.62
	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
y=0r	0.01	11.00	0.26	5.89	52.26	0.65	3.97	0.61	0.23	41.56	0.65	0.00	18.94	0.52	98.14
=X	82.82	94.50	54.31	46.92	38.05	54.63	73.16	54.13	49.05	31.55	94.78	100.0	28.15	35.79	49.69

Feldspäte:

Probe	040	0.42	046	0-20	0-93	0-93	0-95	66-0	0-105	0-183	0-190	0-190	2-66	7-66
Mineral	Kfs	An	Ab	Ab	An	An	An	Ab	Kfs	Kfs	Al	Ab	Kfs	An
SiO_2	47.51	42.56	67.14	02.99	43.95	43.95	43.95	69.28	62.36	54.41	67.74	68.55	64.21	43.36
TiO_2	0.00	0.03	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.02	0.01	0.00	0.03	0.00
Al_2O_3	35.03	30.85	20.26	19.71	35.23	35.23	35.23	20.10	18.48	26.75	19.37	19.38	19.58	26.27
FeO	2.63	1.58	0.04	0.07	0.32	0.32	0.32	0.00	0.14	0.62	60.0	80.0	0.17	1.80
MnO	0.04	0.05	0.01	0.01	0.00	0.00	0.01	0.01	0.02	0.03	0.00	0.00	0.01	0.12
MgO	0.41	0.02	0.01	0.00	0.00	0.00	0.71	0.00	0.00	0.29	0.04	0.00	0.01	0.59
CaO	80.0	22.13	1.09	0.48	18.86	18.85	18.85	0.07	0.09	2.30	0.22	60.0	0.51	20.62
Na_2O	0.09	1.23	10.88	11.23	0.71	0.71	0.00	11.71	2.33	5.07	11.13	11.38	1.07	0.00
K_2O	10.70	0.02	0.07	60.0	0.01	0.01	0.00	0.01	13.11	4.50	0.10	0.04	13.16	2.14
Summe	96.49	98.46	99.50	98.29	80.66	70.66	99.07	101.19	96.53	93.99	98.70	99.52	98.75	94.90
Formel														
Si	2.28	2.05	2.95	2.97	2.05	2.05	2.05	2.99	2.97	2.60	2.99	3.00	2.97	2.18
Τi	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Al	1.98	1.75	1.05	1.03	1.94	1.94	1.93	1.02	1.04	1.51	1.01	1.00	1.07	1.56
Fe	0.11	90.0	0.00	0.00	0.01	0.01	0.01	0.00	0.01	0.02	0.00	0.00	0.01	0.08
Mn	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01
M_{g}	0.03	0.00	0.00	0.00	0.00	0.00	0.05	0.00	0.00	0.02	0.00	0.00	0.00	0.04
Ca	0.00	1.14	0.05	0.02	0.94	0.94	0.94	0.00	0.00	0.12	0.01	0.00	0.03	1.11
Na	0.01	0.11	0.93	0.97	90.0	90.0	0.00	86.0	0.21	0.47	0.95	0.97	0.10	0.00
×	0.65	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.80	0.27	0.01	0.00	0.78	0.14
0r	98.14	0.09	0.40	0.51	90.0	90.0	0.00	0.04	78.38	31.83	0.58	0.23	86.50	11.00
$\mathbf{A}\mathbf{b}$	1.24	9.12	94.38	97.19	6.38	6.38	0.00	99.64	21.17	54.50	98.34	99.34	10.69	0.00
An	0.62	90.79	5.22	2.30	93.56	93.56	100.0	0.32	0.45	13.66	1.07	0.43	2.82	89.00
	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
y=0r	98.14	60.0	0.40	0.51	90.0	90.0	0.00	0.04	78.38	31.83	0.58	0.23	86.50	11.00
=x	49.69	90.83	5.42	2.55	93.59	93.59	100.0	0.34	39.64	29.58	1.36	0.55	46.06	94.50

Probe	99-54A	99-54	99-54	99-53	99-53	99-53	91-08	91-08	91-08	91-36	91-36	91-36	91-45	91-70
Mineral	Andesin	Kfs	Kfs	Ab	Al	Kfs	Andesin	Andesin	ı Kfs	Kfs	Kfs	Kfs	Byt	An
SiO_2	56.73	43.23	44.27	67.84	68.23	65.03	56.80	55.91	52.20	46.53	63.52	63.69	50.21	38.58
TiO_2	0.00	0.11	0.08	0.00	0.00	0.00	0.00	0.02	0.02	0.00	0.05	0.02	0.01	0.00
Al_2O_3	27.11	32.15	33.15	19.95	19.92	22.99	27.24	27.88	31.21	36.80	18.62	18.60	31.80	31.95
FeO	0.15	99.5	4.07	90.0	0.03	0.12	0.10	0.15	2.61	0.73	0.03	0.11	0.19	1.66
MnO	0.00	0.02	0.00	0.00	0.01	0.00	0.00	0.01	0.03	0.14	0.00	0.00	0.00	0.95
MgO	0.00	2.41	0.77	0.01	0.00	60.0	0.00	0.00	0.47	0.33	0.01	0.00	0.01	0.01
CaO	8.87	0.01	0.02	0.20	0.05	0.14	8.96	9.57	99.0	0.07	0.10	90.0	14.54	22.38
Na_2O	6.61	0.41	0.38	10.56	11.21	9.91	6.21	5.85	0.84	0.17	1.31	0.85	3.23	0.26
K_2O	90.0	9.93	9.94	0.14	80.0	1.49	0.13	0.12	8.23	10.78	14.71	15.04	0.09	0.01
Summe	99.52	93.93	92.68	98.76	99.53	77.66	99.42	99.50	96.26	95.54	98.34	98.37	100.07	95.80
Formel														
Si	2.56	2.18	2.23	2.99	2.99	2.86	2.56	2.52	2.47	2.24	2.97	2.98	2.29	1.93
Ï	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Al	1.44	1.91	1.97	1.04	1.03	1.19	1.45	1.48	1.74	2.08	1.03	1.03	1.71	1.88
Fe	0.01	0.24	0.17	0.00	0.00	0.00	0.00	0.01	0.10	0.03	0.00	0.00	0.01	0.07
Mn	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.04
Mg	0.00	0.18	90.0	0.00	0.00	0.01	0.00	0.00	0.03	0.02	0.00	0.00	0.00	0.00
Ca	0.43	0.00	0.00	0.01	0.00	0.01	0.43	0.46	0.03	0.00	0.00	0.00	0.71	1.20
Na	0.58	0.04	0.04	0.90	0.95	0.85	0.54	0.51	80.0	0.02	0.12	0.08	0.29	0.03
K	0.00	0.64	0.64	0.01	0.00	0.08	0.01	0.01	0.50	99.0	0.88	0.90	0.01	0.00
0r	0.34	94.02	94.36	98.0	0.47	8.94	0.74	69.0	81.82	80.76	87.70	91.84	0.53	0.03
$\mathbf{A}\mathbf{b}$	57.22	5.90	5.48	98.12	99.29	90.36	55.22	52.17	12.67	2.37	11.82	7.86	28.55	2.08
An	42.44	0.08	0.16	1.03	0.24	0.71	44.04	47.14	5.51	0.55	0.48	0.30	70.92	68.76
	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
y=0r	0.34	94.02	94.36	98.0	0.47	8.94	0.74	69.0	81.82	97.08	87.70	91.84	0.53	0.03
=X	42.61	47.09	47.34	1.45	0.48	5.17	44.41	47.48	46.42	49.09	44.33	46.22	71.18	97.91

Probe	0-6a	0-6a	0-6a	0-6a	0-6a	0-6a	0-42	0-42	0-42	0-42	0-42
Mineral	En	En	En	En	En	En	Fs	Fs	Fs	Fs	Fs
SiO ₂	48.22	47.84	46.69	48.24	48.42	36.58	50.80	51.05	50.89	51.42	50.73
TiO ₂	0.11	0.09	0.11	0.10	0.09	0.07	0.10	0.10	0.12	0.10	0.10
Al_2O_3	1.33	1.45	1.80	1.22	1.21	2.15	0.30	0.26	0.32	0.41	0.37
FeO	36.56	36.72	35.81	36.60	36.00	43.16	28.34	29.13	29.00	28.36	28.43
MnO	1.08	1.11	1.15	1.17	1.06	0.75	0.94	1.09	1.02	0.98	0.97
MgO	11.60	11.35		11.58	12.00	6.42		16.39	16.68	17.33	17.28
CaO	0.22	0.22	0.16	0.21	0.17	0.10	1.09	1.09	1.08	0.91	0.96
Na_2O	0.01	0.02	0.01	0.01	0.00	0.01	0.00	0.01	0.00	0.01	0.02
K ₂ O	0.00	0.01	0.01	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.01
Summe	99.1	98.8	97.1	99.1	99.0	89.3	97.8	99.1	99.1	99.5	98.9
Formel	1.06	1.0.5	1 0 1	1.06	1.06	1.50	2 0 0	1 00	1.00	1.00	1.00
Si	1.96	1.95	1.94	1.96	1.96	1.78	2.00	1.99	1.99	1.99	1.98
Ti Al	0.00	0.00	0.00	0.00	$0.00 \\ 0.06$	0.00 0.12	$0.00 \\ 0.01$	$0.00 \\ 0.01$	0.00	$0.00 \\ 0.02$	$0.00 \\ 0.02$
Fe	1.24	1.25	1.24	1.24	1.22	1.75	0.01	0.01	0.01	0.02	0.02
Mn	0.04	0.04	0.04	0.04	0.04	0.03	0.03	0.04	0.03	0.03	0.03
Mg	0.70	0.69	0.70	0.70	0.72	0.46	0.95	0.95	0.97	1.00	1.01
Ca	0.01	0.01	0.01	0.01	0.01	0.01	0.05	0.05	0.05	0.04	0.04
Na	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
K	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4.01	4.01	4.02	4.01	4.01	4.16	3.99	4.00	4.00	4.00	4.01
Fe^{3+}	0.03	0.04	0.05	0.03	0.02	0.46	-0.04	-0.01	0.01	0.00	0.03
Fe^{2+}	1.21	1.21	1.18	1.21	1.19	1.23	0.98	0.96	0.94	0.92	0.90
$Fe^{2+}/$	0.98	0.97	0.96	0.97	0.98	0.73	1.04	1.01	0.99	1.00	0.97
$Fe^{2+}/$	0.63	0.64	0.63	0.63	0.62	0.73	0.51	0.50	0.49	0.48	0.47
W o	0.00	0.00	0.00	0.00	0.00	0.00	0.02	0.02	0.02	0.02	0.02
En	0.64	0.65	0.64	0.64	0.63	0.79	0.49	0.50	0.49	0.48	0.48
Fs	0.35	0.35	0.35	0.35	0.36	0.21	0.49	0.48	0.49	0.50	0.50
Kation Si	4 1.95	4 1.94	4 1.93	4 1.95	4 1.96	4 1.71	4 2.01	4 2.00	4 1.99	4 1.99	4 1.98
Ti	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Al	0.06	0.07	0.09	0.06	0.06	0.12	0.01	0.01	0.01	0.00	0.02
Fe	1.24	1.25	1.24	1.24	1.22	1.69	0.94	0.95	0.95	0.92	0.93
Mn	0.04	0.04	0.04	0.04	0.04	0.03	0.03	0.04	0.03	0.03	0.03
Mg	0.70	0.69	0.70	0.70	0.72	0.45	0.96	0.95	0.97	1.00	1.00
Ca	0.01	0.01	0.01	0.01	0.01	0.01	0.05	0.05	0.05	0.04	0.04
Na	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
K	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Ladura	4	4	4	4	4	4	4 5 0 9	4 5.05	5.05	5 08	5.06
Ladung	4.75	4.73	4.74	4.75	4.77	4.08	5.08	5.05	5.05	5.08	5.06
Fe^{3+}	0.03	0.04	0.05	0.03	0.02	0.46	-0.04	-0.01	0.01	0.00	0.03
Fe^{2+}	1.21	1.21	1.18	1.21	1.19	1.23	0.98	0.96	0.94	0.92	0.90
Ladung	6.00	6.00	6.00	6.00	6.00	6.00	6.00	6.00	6.00	6.00	6.00
Fe^{2+}	0.98	0.97	0.96	0.97	0.98	0.73	1.04	1.01	0.99	1.00	0.97
100*Mg/	35.4	34.8	35.4	35.3	36.6	20.7	49.7	49.1	49.7	51.3	51.1
$(Mg+Fe^{2+}+Mn)$											

Probe	0-42	0-42	0-42	0-93	0-93	0-93	99-5C	99-5C	99-5C	99-5C	99-5D
Mineral	Fs	Fs	Fs	Fs	Pgt	Fs	Fs	Fs	Fs	Fs	Fs
SiO ₂	50.64	50.71	50.40	52.51	51.77	52.01	50.13	50.09	49.33	50.36	49.64
TiO_2	0.09	0.11	0.10	0.07	0.13	0.08	0.09	0.07	0.09	0.15	0.12
Al_2O_3	0.40	0.32	0.53	0.69	3.27	2.01	1.23	1.21	1.29	1.45	1.07
FeO	28.27	30.48	29.78	22.76	16.69	21.49	30.48	30.34	30.43	31.07	32.02
MnO	0.97	1.09	0.94	0.58	0.45	0.44	0.46	0.45	0.48	0.45	0.44
MgO	16.91	16.90	17.28	23.16	19.76	23.46	17.18	17.16	17.07	16.69	16.22
CaO	0.87	1.12	0.75	0.56	5.57	0.72	0.07	0.08	0.07	0.05	0.08
Na_2O	0.01	0.02	0.00	0.01	0.24	0.00	0.01	0.01	0.03	0.02	0.00
K_2O	0.00	0.01	0.00	0.01	0.04	0.02	0.00	0.00	0.00	0.02	0.01
Summe	98.2	100.7	99.8	100.4	97.9	100.2	99.7	99.4	98.8	100.3	99.6
Formel											
Si	1.99	1.96	1.96	1.96	1.95	1.93	1.95	1.95	1.94	1.95	1.95
Ti	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Al	0.02	0.01	0.02	0.03	0.15	0.09	0.06	0.06	0.06	0.07	0.05
Fe	0.93	0.99	0.97	0.71	0.53	0.67	0.99	0.99	1.00	1.01	1.05
Mn	0.03	0.04	0.03	0.02	0.01	0.01	0.02	0.01	0.02	0.01	0.01
Mg	0.99	0.98	1.00	1.29	1.11	1.30	1.00	1.00	1.00	0.96	0.95
Ca	0.04	0.05	0.03	0.02	0.22	0.03	0.00	0.00	0.00	0.00	0.00
N a K	$0.00 \\ 0.00$	$0.00 \\ 0.00$	$0.00 \\ 0.00$	$0.00 \\ 0.00$	0.02	$0.00 \\ 0.00$	$0.00 \\ 0.00$	$0.00 \\ 0.00$	$0.00 \\ 0.00$	$0.00 \\ 0.00$	$0.00 \\ 0.00$
K	4.00	4.03	4.02	4.03	3.99	4.03	4.02	4.02	4.03	4.01	4.02
r 3+											
Fe^{3+}	0.00	0.08	0.07	0.08	-0.04	0.08	0.05	0.05	0.08	0.04	0.07
Fe^{2+}	0.93	0.90	0.89	0.63	0.57	0.59	0.93	0.93	0.91	0.97	0.98
$Fe^{2+}/$	1.00	0.92	0.93	0.89	1.08	0.88	0.95	0.95	0.92	0.96	0.94
$Fe^{2+}/$	0.48	0.48	0.47	0.33	0.34	0.31	0.48	0.48	0.48	0.50	0.51
W o	0.02	0.02	0.02	0.01	0.12	0.01	0.00	0.00	0.00	0.00	0.00
En	0.48	0.50	0.49	0.36	0.29	0.34	0.50	0.50	0.50	0.51	0.53
Fs	0.50	0.48	0.49	0.63	0.59	0.65	0.50	0.50	0.50	0.48	0.47
Kation	4	4	4	4	4	4	4	4	4	4	4
Si	1.99	1.95	1.95	1.94	1.95	1.92	1.94	1.95	1.93	1.95	1.94
Ti	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Al Fe	0.02 0.93	0.01 0.98	0.02 0.96	0.03 0.70	0.15 0.53	0.09 0.66	0.06 0.99	0.06 0.99	0.06 0.99	0.07 1.00	0.05 1.05
Mn	0.93	0.98	0.90	0.70	0.33	0.00	0.99	0.99	0.99	0.01	0.01
Mg	0.03	0.04	1.00	1.28	1.11	1.29	0.02	0.01	0.02	0.01	0.01
Ca	0.04	0.05	0.03	0.02	0.23	0.03	0.00	0.00	0.00	0.00	0.00
Na	0.00	0.00	0.00	0.00	0.02	0.00	0.00	0.00	0.00	0.00	0.00
K	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4	4	4	4	4	4	4	4	4	4	4
Ladung	5.07	4.98	5.00	5.26	5.49	5.30	4.99	4.99	4.96	4.98	4.92
Fe^{3+}	0.00	0.08	0.07	0.08	-0.04	0.08	0.05	0.05	0.08	0.04	0.07
Fe^{2+}	0.93	0.90	0.89	0.63	0.57	0.59	0.93	0.93	0.91	0.97	0.98
Ladung	6.00	6.00	6.00	6.00	6.00	6.00	6.00	6.00	6.00	6.00	6.00
$Fe^{2+}/$			0.93							0.96	
100*Mg/	1.00 50.7	0.92 48.8	50.1	0.89 63.9	1.08 67.2	0.88 65.6	0.95 49.73	0.95 49.82	0.92 49.59		0.94 47.1
$\frac{(Mg+Fe^{2+}+Mn)}{(Mg+Fe^{2+}+Mn)}$	- 3.7		2 3.1	23.7			, , , 5		,		
<u> </u>											

Probe	99-5D	99-7	99-7							
Mineral	Fs	Hd	Hd							
SiO ₂	49.74	50.06	49.93	47.11	49.60	49.92	50.27	50.33	53.27	52.52
TiO ₂	0.11	0.12	0.12	0.12	0.10	0.12	0.12	0.13	0.06	0.04
Al_2O_3	0.98	1.24	1.41	2.28	1.06	1.11	1.15	1.24	0.87	0.40
FeO	31.86	31.14	31.20	30.73	32.13	31.87	31.83	31.28	19.61	9.49
MnO	0.48	0.47	0.53	0.42	0.50	0.46	0.49	0.49	3.04	1.07
MgO	16.11	16.96	17.00	16.46	16.45	16.49	17.00	16.82	14.44	12.82
CaO	0.08	0.06	0.07	0.14	0.08	0.09	0.09	0.06	6.03	23.47
Na_2O	0.02	0.01	0.02	0.02	0.01	0.03	0.03	0.02	0.11	0.07
K_2O	0.01	0.01	0.00	0.03	0.00	0.00	0.00	0.03	0.02	0.01
Summe	99.4	100.1	100.3	97.3	99.9	100.1	101.0	100.4	97.5	99.9
Formel										
Si	1.96	1.95	1.94	1.89	1.94	1.95	1.94	1.95	2.06	1.98
Ti	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
A1	0.05	0.06	0.06	0.11	0.05	0.05	0.05	0.06	0.04	0.02
Fe Mn	1.05 0.02	1.01 0.02	1.01 0.02	1.03	1.05 0.02	1.04 0.02	1.03 0.02	1.01 0.02	0.63 0.10	0.30
M g	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.10	0.03
C a	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.85	0.72
N a	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.01
K	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4.02	4.02	4.03	4.05	4.03	4.02	4.03	4.02	3.92	4.01
Fe^{3+}	0.06	0.06	0.08	0.15	0.09	0.07	0.08	0.06	-0.23	0.03
Fe^{2+}	0.99	0.94	0.93	0.88	0.96	0.96	0.94	0.95	0.88	0.27
$Fe^{2+}/$	0.95	0.94	0.92	0.86	0.92	0.93	0.92	0.95	1.36	0.89
$Fe^{2+}/$	0.51	0.49	0.49	0.47	0.50	0.50	0.49	0.50	0.51	0.27
W o	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.14	0.47
En	0.53	0.51	0.51	0.51	0.53	0.52	0.52	0.51	0.40	0.17
Fs	0.47	0.49	0.49	0.48	0.47	0.48	0.48	0.48	0.46	0.36
Kation	4	4	4	4	4	4	4	4	4	4
Si	1.95	1.94		1.87	1.93	1.94		1.94		1.98
Ti	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Al Fe	0.05 1.04	0.06 1.01	0.06 1.01	0.11 1.02	0.05 1.05	0.05 1.03	0.05 1.02	0.06 1.01	0.04 0.65	0.02
M n	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.03	0.30
M g	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.10	0.03
Ca	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.03	0.72
Na	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.01
K	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4	4	4	4	4	4	4	4	4	4
Ladung	4.93	4.96	4.95	4.91	4.91	4.93	4.94	4.96	5.47	5.69
Fe^{3+}	0.06	0.06	0.08	0.15	0.09	0.07	0.08	0.06	-0.23	0.03
Fe^{2+}	0.99	0.94		0.88	0.96	0.96	0.94	0.95	0.88	0.27
Ladung	6.00	6.00	6.00	6.00	6.00	6.00	6.00	6.00	6.00	6.00
$Fe^{2+}/$	0.95	0.94	0.92	0.86	0.92	0.93	0.92	0.95	1.36	0.89
100*Mg/	0.95 47.0									68.4
•	₹ / .0	70.7	7 0.0	-0. 3	₹1.3	₹ / .0	70.4	70.3	55.1	00.4
$\underline{(Mg+Fe^{2+}+Mn)}$										

Probe	99-7	99-7	99-7	99-8	99-8	99-8	99-8	Eg-V	Eg-V	99-36	99-36
Mineral	Hd	En	Hd	Aug-Hd	Aug-Hd	Aug-Hd	Aug-Hd	Hed	Hd	En	En
SiO ₂	51.24	45.23	51.10	50.83	50.92	51.66	52.49	50.25	49.28	48.88	47.96
TiO_2	0.09	0.01	0.14	0.09	0.11	0.10	0.07	0.10	0.10	0.11	0.11
Al_2O_3	0.61	32.94	0.85	1.11	1.52	0.35	0.35	1.06	1.30	1.25	1.59
FeO	11.62	4.38	12.16	12.28	12.68	11.92	11.32	11.75	11.74	35.76	36.14
MnO	1.18	0.27	1.13	1.56	1.93	1.57	1.52	0.65	0.62	0.86	0.89
MgO	11.87	1.27	11.93	11.31	10.65	12.82	13.23	10.94	10.84	12.25	11.67
CaO	21.98	0.11	22.13	22.11	21.78	20.76	21.04	23.15	23.15	0.20	0.20
Na_2O	0.13	0.20	0.14	0.13	0.12	0.11	0.07	0.17	0.20	0.02	0.00
K_2O	0.01	10.10	0.00	0.00	0.00	0.01	0.01	0.01	0.00	0.00	0.00
Summe	98.7	94.5	99.6	99.4	99.7	99.3	100.1	98.1	97.2	99.3	98.6
Formel											
Si	1.97	1.68	1.96	1.95	1.96	1.98	1.98	1.96	1.94	1.96	1.95
Ti	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Al	0.03	1.44	0.04	0.05	0.07	0.02	0.02	0.05	0.06	0.06	0.08
Fe	0.37	0.14	0.39	0.39	0.41	0.38	0.36	0.38	0.39	1.20	1.23
Mn	0.04	0.01	0.04	0.05	0.06	0.05	0.05	0.02	0.02	0.03	0.03
Mg	0.68	0.07	0.68	0.65	0.61	0.73	0.75	0.63	0.64	0.73	0.71
Ca	0.91	0.00	0.91	0.91	0.90	0.85	0.85	0.97	0.98	0.01	0.01
Na	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.02	0.00	0.00
K	0.00	0.48	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
_ 3+	4.02	3.84	4.03	4.02	4.01	4.02	4.01	4.02	4.04	4.00	4.01
Fe ³⁺	0.05		0.07	0.07	0.03	0.05	0.03	0.07	0.11	0.01	0.02
Fe^{2+}	0.33	0.64	0.31	0.33	0.37	0.33	0.33	0.31	0.28	1.19	1.21
$Fe^{2+}/$	0.88	4.49	0.81	0.83	0.91	0.86	0.92	0.81	0.72	0.99	0.98
$\mathrm{Fe}^{2+}/$	0.32	0.90	0.31	0.33	0.38	0.31	0.31	0.33	0.30	0.62	0.63
Wo	0.45	0.02	0.45	0.45	0.45	0.42	0.43	0.48	0.48	0.00	0.00
En	0.21	0.66	0.21	0.22	0.24	0.21	0.20	0.20	0.20	0.62	0.64
Fs	0.34	0.32	0.34	0.32	0.31	0.36	0.37	0.32	0.31	0.37	0.36
Kation	4	4	4	4	4	4	4	4	4	4	4
Si	1.97		1.94	1.94	1.95	1.97	1.98	1.94		1.96	1.95
Ti	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Al	0.03	1.50	0.04	0.05	0.07	0.02	0.02	0.05	0.06	0.06	0.08
Fe	0.37	0.14	0.39	0.39	0.41	0.38	0.36	0.38	0.38	1.20	1.23
Mn	0.04		0.04	0.05	0.06	0.05	0.05	0.02	0.02	0.03	0.03
Mg Co	0.68 0.90	0.07 0.00	0.68 0.90	0.64	0.61	0.73 0.85	0.74 0.85	0.63 0.96	0.63 0.97	0.73 0.01	0.71 0.01
Ca Na	0.90	0.00	0.90	0.91 0.01	0.89 0.01	0.83	0.83	0.96	0.97	0.01	0.01
Na K	0.01	0.50	0.01	0.01	0.01	0.01	0.01	0.01	0.02	0.00	0.00
K	4	4	4	4	4	4	4	4	4	4	4
Ladung	5.60	6.11	5.58	5.57	5.58	5.59	5.63	5.58	5.56	4.79	4.76
Fe ³⁺	0.05		0.07	0.07	0.03	0.05	0.03	0.07	0.11	0.01	0.02
Fe^{2+}	0.33	0.64	0.31	0.33	0.37	0.33	0.33	0.31	0.28	1.19	1.21
Ladung	6.00	6.00	6.00	6.00	6.00	6.00	6.00	6.00	6.00	6.00	6.00
Fe ²⁺ /	0.88	4.49	0.81	0.83	0.91	0.86	0.92	0.81	0.72	0.99	0.98
100*Mg/	62.3	32.7	61.5	59.3	56.5	62.8	64.7	61.1	61.0	37.3	36.0
$\underline{(Mg+Fe^{2+}+Mn)}$											

Probe	99-36	99-36	99-36	99-36	99-54A	99-54A	99-54A	99-54A	99-54A	91-08	91-08
Mineral	En	En	En	En	Augit	Hd	Hd	Hd	Hd	Pgt	Aug
SiO ₂	47.80	48.72	49.70	48.14		50.44	51.56	51.07	51.45	60.35	
TiO_2	0.13	0.15	0.14	0.15	2.42	0.29	0.25	0.17	0.12	0.06	0.27
Al_2O_3	1.24		1.17	1.30	13.44	1.95	1.01	1.07	0.72	3.44	3.41
FeO	37.33	37.30	36.07	35.65	13.60	13.25	11.67	11.98	12.26	19.23	23.19
MnO	0.79	0.88	0.81	0.92	0.30	0.48	0.46	0.50	0.51	0.27	0.16
MgO	12.48	12.24	12.29	11.88	12.63	10.77	12.41	12.10	11.90	10.45	9.45
CaO	0.21	0.22	0.23	0.21	10.79	22.72	22.61	22.75	22.76	2.78	10.26
Na_2O	0.02	0.00	0.00	0.01	2.79	0.21	0.24	0.19	0.17	0.10	0.15
K_2O	0.00		0.00	0.00	0.19	0.00	0.00	0.01	0.00	0.05	0.10
Summe	100.0	100.9	100.4	98.3	97.8	100.1	100.2	99.8	99.9	96.7	96.3
Formel											
Si	1.93	1.94	1.97	1.96		1.93	1.95	1.95	1.96	2.24	1.97
Ti	0.00	0.00	0.00	0.00		0.01	0.01	0.00	0.00	0.00	0.01
Al	0.06	0.07	0.05	0.06		0.09	0.05	0.05	0.03	0.15	0.16
Fe	1.26 0.03	1.24	1.20 0.03	1.21	0.44	0.42	0.37 0.01	0.38 0.02	0.39	0.60 0.01	0.78
Mn Mg	0.03	0.03 0.73	0.03	0.03 0.72	0.01 0.73	0.02 0.61	0.01	0.02	0.02 0.68	0.01	0.01 0.56
Ca	0.73	0.73	0.73	0.72	0.73	0.01	0.70	0.03	0.03	0.38	0.30
Na	0.00	0.00	0.00	0.00	0.43	0.02	0.02	0.01	0.01	0.01	0.01
K	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00
	4.04	4.02	3.99	4.00	4.13	4.03	4.03	4.03	4.02	3.69	3.94
Fe^{3+}	0.12	0.06	-0.02	0.01	0.37	0.08	0.08	0.09	0.07	-1.01	-0.17
Fe^{2+}	1.13	1.17	1.21	1.20	0.06	0.34	0.29	0.29	0.32	1.65	0.96
Fe ²⁺ /	0.91	0.95	1.01	0.99	0.13	0.82	0.79	0.76	0.81	2.56	1.21
Fe^{2+}	0.60	0.62	0.63	0.62	0.07	0.36	0.29	0.30	0.32	0.74	0.63
Wo	0.00	0.00	0.00	0.00	0.28	0.47	0.46	0.46	0.46	0.09	0.25
En	0.63	0.63	0.62	0.63	0.28	0.22	0.19	0.20	0.20	0.47	0.44
Fs	0.37	0.36	0.37	0.36	0.45	0.31	0.35	0.34	0.34	0.45	0.32
Kation	4	=	4	4	4	•	4	•	=	4	4
Si	1.91	1.93	1.98	1.96							2.00
Ti	0.00		0.00	0.00			0.01	0.00	0.00	0.00	0.01
Al	0.06	0.07	0.05	0.06					0.03	0.16	0.16
Fe Mn	1.25 0.03	1.24 0.03	1.20 0.03	1.21 0.03	0.43 0.01	0.42 0.02	0.37	0.38 0.02	0.39 0.02	0.65 0.01	0.79 0.01
Mg	0.03		0.03	0.03	0.01	0.02	0.01		0.02	0.63	0.57
Ca	0.74	0.72	0.73	0.72	0.70	0.93	0.70	0.03	0.92	0.03	0.45
Na	0.00		0.00	0.00		0.02	0.02		0.01	0.01	0.01
K	0.00		0.00	0.00		0.00			0.00	0.00	0.00
	4		4	4		4			4	4	4
Ladung	4.69	4.73	4.81	4.78	5.39	5.54	5.59	5.58	5.57	5.86	5.30
Fe ³⁺	0.12	0.06	-0.02	0.01	0.37	0.08	0.08	0.09	0.07	-1.01	-0.17
Fe^{2+}	1.13	1.17	1.21	1.20	0.06	0.34	0.29	0.29	0.32	1.65	0.96
Ladung	6.00		6.00	6.00		6.00		6.00	6.00		6.00
Fe^{2+}	0.91	0.95	1.01	0.99	0.13	0.82	0.79	0.76	0.81	2.56	1.21
100*Mg/	36.8		37.3	36.7						48.85	41.9
$(Mg+Fe^{2+}+Mn)$											

Pyroxene:

Probe	91-36	91-36	91-45	91-45	91-45	91-70	91-70	91-70	99-10	99-10	91-59
Mineral	Aug-Hd	Aug-Hd	Aug	Aug	Aug	Aug	Aug	Aug	Fs	Fs	Aug
SiO ₂	51.56	51.48	51.28	49.86	51.65	49.24	49.01	50.42	50.35	50.52	49.51
TiO_2	0.14	0.14	0.14	0.98	0.15	0.08	0.17	0.03	0.09	0.08	0.15
Al_2O_3	0.41	0.69	0.60	4.64	0.49	0.82	0.68	0.13	0.98	0.91	2.42
FeO	11.34	10.16	13.44	15.07	12.96	16.17	17.05	15.44	30.93	31.14	20.16
MnO	2.93	2.15	0.30	0.20	0.30	3.27	4.43	2.57	0.91	0.86	2.32
MgO	13.05	13.11	11.94	13.84	12.12	7.87	7.02	7.69	16.83	16.76	8.49
CaO	19.86	21.49	20.80	11.37	21.50	20.72	19.04	21.90	0.07	0.07	13.22
Na_2O	0.08	0.08	0.12	0.57	0.11	0.10	0.09	0.06	0.01	0.03	0.14
K_2O	0.00	0.00	0.01	0.29	0.00	0.00	0.01	0.00	0.00	0.00	0.12
Summe	99.4	99.3	98.6	96.8	99.3	98.3	97.5	98.2	100.2	100.4	96.5
Formel											
Si	1.97	1.96	1.98	1.92	1.98	1.96	1.98	2.00	1.96	1.96	1.99
Ti	0.00	0.00	0.00	0.03	0.00	0.00	0.01	0.00	0.00	0.00	0.00
A1	0.02	0.03	0.03	0.21	0.02	0.04	0.03	0.01	0.04	0.04	0.11
Fe	0.36	0.32	0.43	0.49	0.42	0.54	0.58	0.51	1.01	1.01	0.68
Mn	0.10 0.74	0.07 0.75	0.01 0.69	0.01 0.79	0.01 0.69	0.11 0.47	0.15 0.42	0.09 0.45	0.03 0.97	0.03 0.97	0.08 0.51
Mg Ca	0.74	0.73	0.86	0.79	0.88	0.47	0.42	0.43	0.97	0.97	0.51
Na	0.01	0.01	0.01	0.47	0.01	0.01	0.01	0.93	0.00	0.00	0.01
K	0.00	0.00	0.01	0.04	0.01	0.01	0.01	0.00	0.00	0.00	0.01
11	4.02	4.02	4.01	3.97	4.01	4.02	4.00	4.00	4.02	4.02	3.96
Fe^{3+}	0.05	0.06	0.03	-0.08	0.03	0.05	0.00	-0.01	0.05	0.05	-0.13
Fe^{2+}	0.31	0.26	0.41	0.57	0.38	0.48	0.57	0.52	0.95	0.95	0.81
$Fe^{2+}/$	0.86	0.81	0.94	1.17	0.92	0.90	0.99	1.02	0.95	0.95	1.19
\hat{Fe}^{2+}	0.29	0.26	0.37	0.42	0.36	0.51	0.57	0.53	0.49	0.50	0.61
Wo	0.40	0.44	0.43	0.27	0.44	0.44	0.42	0.47	0.00	0.00	0.31
En	0.23	0.20	0.22	0.28	0.21	0.32	0.37	0.30	0.51	0.52	0.41
Fs	0.37	0.37	0.35	0.45	0.35	0.23	0.21	0.23	0.48	0.48	0.28
Kation	4	4	4	4	4	4	4	4	4	4	4
Si	1.96	1.95	1.97	1.93	1.97	1.96	1.98	2.00	1.95	1.95	2.01
Ti	0.00	0.00	0.00	0.03	0.00	0.00	0.01	0.00	0.00	0.00	0.00
Al	0.02	0.03	0.03	0.21	0.02	0.04	0.03	0.01	0.04	0.04	0.12
Fe	0.36	0.32	0.43	0.49	0.41	0.54	0.58	0.51	1.00	1.01	0.68
Mn	0.09	0.07	0.01	0.01	0.01	0.11	0.15	0.09	0.03	0.03	0.08
Mg Ca	0.74 0.81	0.74 0.87	0.69 0.86	0.80	0.69 0.88	0.47 0.88	0.42 0.82	0.45 0.93	0.97 0.00	0.96 0.00	0.51 0.57
Na	0.01	0.87	0.80	0.47	0.01	0.01	0.82	0.93	0.00	0.00	0.01
K	0.00	0.00	0.01	0.04	0.01	0.01	0.01	0.00	0.00	0.00	0.01
11	4	4	4	4	4	4	4	4	4	4	4
Ladung	5.61	5.65	5.55	5.55	5.57	5.44	5.42	5.49	4.97	4.97	5.38
Fe^{3+}	0.05	0.06	0.03	-0.08	0.03	0.05	0.00	-0.01	0.05	0.05	-0.13
Fe^{2+}	0.31	0.26	0.41	0.57	0.38	0.48	0.57	0.52	0.95	0.95	0.81
Ladung	6.00	6.00	6.00	6.00	6.00	6.00	6.00	6.00	6.00	6.00	6.00
Fe^{2+}	0.86	0.81	0.94	1.17	0.92	0.90	0.99	1.02	0.95	0.95	1.19
100*Mg/	61.9			61.8	62.0	41.9	36.8			48.27	
$(Mg+Fe^{2+}+Mn)$											

Probe	0-18-R	0-18-K	0-18-K	0-18-K	0-18-K	0-21-K	0-21-R	0-21-K	0-21-K
Mineral	Alm	Alm	Alm	Alm	Alm-Prp	Alm	Alm	Alm	Alm
SiO ₂	38.13	35.78	36.38	35.88	30.23	32.31	35.84	34.01	34.32
TiO_2	0.02	0.01	0.02	0.07	0.01	0.03	0.01	0.09	0.03
Al_2O_3	21.83	20.32	20.73	20.3	22.61	20.15	21.12	20.35	20.64
FeO	32.39	32.42	32.39	28.96	26.59	32.75	34.18	34.42	35.64
MnO	7.79	7.12	7.34	8.11	0.31	4.71	5.98	4.94	5.47
MgO	1.15	1.1	1.12	0.94	8.58	2.81	1.89	2.19	2.03
CaO	2.96	1.68	2.53	4.29	0.32	1.54	1.09	1.29	1
Na_2O	0	0.02	0.01	0.01	0.03	0	0	0	0
K_2O	0	0	0.04	0	0.15	0.01	0.01	0.01	0.02
Summe	104.27	98.45	100.56	98.56	88.83	94.31	100.12	97.3	99.15
Formel									
Si	2.98	2.98	2.97	2.97	2.66	2.82	2.93	2.88	2.87
Ti	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00
Al	2.01	1.99	1.99	1.98	2.35	2.07	2.04	2.03	2.03
Fe	2.12	2.26	2.21	2.01	1.96	2.39	2.34	2.44	2.49
Mn	0.52	0.50	0.51	0.57	0.02	0.35	0.41	0.35	0.39
Mg	0.13	0.14	0.14	0.12	1.13	0.37	0.23	0.28	0.25
Ca	0.25	0.15	0.22	0.38	0.03	0.14	0.10	0.12	0.09
Na	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.00
K	0.00	0.00	0.00	0.00	0.02	0.00	0.00	0.00	0.00
Kation	8.01	8.02	8.04	8.03	8.17	8.14	8.05	8.10	8.12
Fe ³⁺	0.03	0.07	0.12	0.10	0.51	0.42	0.15	0.30	0.35
Fe ²⁺	2.08	2.18	2.08	1.90	1.41	1.93	2.18	2.11	2.10
$Fe^{2+}/(Fe^{2+}+Fe^{3+})$	0.98	0.97	0.95	0.95	0.74	0.82	0.94	0.88	0.86
$Fe^{2\tau}/(Mg+Fe^{2\tau})$	0.94	0.94	0.94	0.94	0.56	0.84	0.90	0.88	0.89
Alm	0.70	0.73	0.71	0.64	0.55	0.70	0.75	0.74	0.75
Spe	0.17	0.17	0.17	0.19	0.01	0.12	0.14	0.12	0.14
Pyr	0.04	0.05	0.05	0.04	0.43	0.13	0.08	0.10	0.09
Gro	0.07	0.01	0.02	0.08	-0.29	-0.18	-0.04	-0.12	-0.15
And	0.02	0.04	0.06	0.05	0.30	0.23	0.08	0.16	0.19
Si	2.98	2.97	2.95	2.96	2.61	2.77	2.91	2.84	2.82
Ti	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00
Al	2.01	1.99	1.98	1.97	2.30	2.04	2.02	2.01	2.00
Fe	2.12	2.25	2.20	2.00	1.92	2.35	2.32	2.41	2.45
Mn	0.52	0.50	0.50	0.57	0.02	0.34	0.41	0.35	0.38
Mg	0.13	0.14	0.14	0.12	1.10	0.36	0.23	0.27	0.25
Ca	0.25	0.15	0.22	0.38	0.03	0.14	0.09	0.12	0.09
Na	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.00
K	0.00	0.00	0.00	0.00	0.02	0.00	0.00	0.00	0.00
Kation	8	8	8	8	8	8	8	8	8
Ladung	9.87	9.71	9.74	9.95	9.83	9.44	9.60	9.44	9.37
Fe3+	0.03	0.07	0.12	0.10	0.51	0.42	0.15	0.30	0.35
Fe2+	2.08	2.18	2.08	1.90	1.41	1.93	2.18	2.11	2.10
Ladung	12.00	12.00	12.00	12.00	12.00	12.00	12.00	12.00	12.00
$Fe^{2\tau}/(Fe^{2\tau}+Fe^{3\tau})$	0.98	0.97	0.95	0.95	0.74	0.82	0.94	0.88	0.86

Probe	0-50-R	0-50-R	0-50-R	0-50-K	0-50-K	0-50-K	0-50-R	0-50-R	0-50-K
Mineral	Alm	Alm	Alm	Alm	Alm	Alm	Alm	Alm	Alm
SiO_2	36.41	36.49	36.44	36.45	35.97	36.74	36.48	36.8	36.3
TiO_2	0.02	0.02	0.02	0.03	0.01	0.02	0	0	0.03
Al_2O_3	20.89	20.89	21.09	20.9	20.87	20.7	21.3	21.39	20.77
FeO	32.96	34.01	33.76	32.24	29.62	31.99	34.29	33.92	34.58
MnO	5.01	3.94	4.05	4.3	4.21	4.04	4.01	5.51	3.66
MgO	2.58	3.03	2.87	2.62	2.22	2.64	2.89	2.51	3
CaO	1.12	1.13	1.4	3.08	5.69	3.1	1.41	1.16	1.47
Na_2O	0	0.04	0	0	0.01	0	0	0.01	0.02
K_2O	0	0	0	0	0	0	0.01	0.01	0
Summe	98.99	99.55	99.63	99.62	98.6	99.23	100.39	101.31	99.83
Formel									
Si	2.98	2.97	2.96	2.96	2.94	2.99	2.95	2.95	2.95
Ti	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Al	2.02	2.00	2.02	2.00	2.01	1.98	2.03	2.02	1.99
Fe	2.26	2.31	2.29	2.19	2.03	2.18	2.32	2.28	2.35
Mn	0.35	0.27	0.28	0.30	0.29	0.28	0.27	0.37	0.25
Mg	0.31	0.37	0.35	0.32	0.27	0.32	0.35	0.30	0.36
Ca	0.10	0.10	0.12	0.27	0.50	0.27	0.12	0.10	0.13
Na	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00
K	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Kation	8.01	8.03	8.03	8.04	8.05	8.02	8.04	8.03	8.05
Fe ³⁺ Fe ²⁺	0.04	0.09	0.08	0.11	0.15	0.05	0.12	0.10	0.15
$Fe^{2+}/(Fe^{2+}+Fe^{3+})$	2.22 0.98	2.21 0.96	2.21 0.97	2.07	1.87	2.12	2.19	2.17 0.95	2.19
$Fe^{2\tau}/(Mg+Fe^{2\tau})$	0.98	0.96	0.97	0.95 0.87	0.93 0.87	$0.97 \\ 0.87$	0.95 0.86	0.93	0.94 0.86
	0.00	0.00	0.00	0.07	0.07	0.07	0.00	0.00	0.00
Alm	0.74	0.75	0.75	0.70	0.64	0.71	0.75	0.74	0.75
Spe	0.12	0.09	0.09	0.10	0.10	0.09	0.09	0.13	0.09
Pyr	0.11	0.12	0.12	0.11	0.09	0.11	0.12	0.10	0.12
Gro	0.02	-0.01	0.00	0.04	0.09	0.06	-0.02	-0.02	-0.03
And	0.02	0.05	0.04	0.06	0.08	0.03	0.06	0.05	0.08
Si	2.98	2.96	2.95	2.95	2.93	2.98	2.93	2.94	2.94
Ti	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Al	2.01	2.00	2.01	1.99	2.00	1.98	2.02	2.02	1.98
Fe	2.25	2.31	2.29	2.18	2.02	2.17	2.31	2.27	2.34
Mn	0.35	0.27	0.28	0.29	0.29	0.28	0.27	0.37	0.25
Mg	0.31	0.37	0.35	0.32	0.27	0.32	0.35	0.30	0.36
Са	0.10	0.10	0.12	0.27	0.50	0.27	0.12	0.10	0.13
Na	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00
K	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Kation	8	8	8	8	8	8	8	8	8
Ladung	9.73	9.65	9.67	9.77	9.91	9.80	9.64	9.68	9.59
Fe3+	0.04	0.09	0.08	0.11	0.15	0.05	0.12	0.10	0.15
Fe2+	2.22	2.21	2.21	2.07	1.87	2.12	2.19	2.17	2.19
Ladung Fe ^{-t} /(Fe ^{-t} +Fe ^t)	12.00	12.00	12.00	12.00	12.00	12.00	12.00	12.00	12.00
re /(re +re)	0.98	0.96	0.97	0.95	0.93	0.97	0.95	0.95	0.94

Probe	0-50-R	0-183-K	0-183-R	0-183	91-70	0-12	0-100	0-100	0-112
Mineral	Alm	Alm	Alm	Alm	Alm	Alm	Alm-Prp	Alm-Prp	Alm
SiO ₂	36.6	37.06	37.15	37.13	36.39	36.16	36.96	37.85	36.45
TiO_2	0.01	0.04	0.07	0.04	0.07	0.02	0.02	0.75	0.03
Al_2O_3	21.43	21.45	21.24	21.33	18.81	20.84	33.54	31.36	21.14
FeO	34.81	30.59	27.93	30.65	14.89	31.84	8.29	8.11	33.16
MnO	3.96	6.09	7.06	6.02	16.86	5.59	0.08	0.02	4.86
MgO	3.05	3.14	2.59	3.28	0.54	3.21	6.44	7.58	3.31
CaO	0.71	2.42	3.97	2.21	8.65	0.66	0.12	0.64	0.4
Na ₂ O	0.01	0	0.02	0	0.01	0.01	2.58	2.42	0.03
K_2O	0	0	0	0	0.00	0	0.03	0.01	0
Summe	100.58	100.79	100.03	100.66	96.227	98.33	88.06	88.74	99.38
Formel	100.00	100.75	100.02	100.00	, 0.22,	70.22	00.00	00.7.	<i>,,,</i> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Si	2.95	2.96	2.98	2.97	3.05	2.97	2.91	2.96	2.96
Ti	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.04	0.00
Al	2.04	2.02	2.01	2.01	1.86	2.02	3.11	2.89	2.03
Fe	2.35	2.04	1.88	2.05	1.05	2.19	0.55	0.53	2.26
Mn	0.27	0.41	0.48	0.41	1.20	0.39	0.01	0.00	0.33
М д	0.37	0.37	0.31	0.39	0.07	0.39	0.76	0.88	0.40
Ca	0.06	0.21	0.34	0.19	0.78	0.06	0.01	0.05	0.03
Na	0.00	0.00	0.00	0.00	0.00	0.00	0.39	0.37	0.00
K	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Kation	8.03	8.02	8.01	8.02	8.01	8.02	7.73	7.73	8.02
Fe ³⁺	0.10	0.07	0.03	0.07	0.03	0.06	-0.83	-0.83	0.07
Fe^{2+}	2.24	1.96	1.85	1.98	1.01	2.12	1.39	1.38	2.18
$Fe^{2+}/(Fe^{2+}+Fe^{3+})$	0.96	0.96	0.99	0.97	0.97	0.97	2.47	2.51	0.97
$\frac{\mathrm{Fe}^{2^{-}}/(\mathrm{Mg}+\mathrm{Fe}^{2^{-}})}{\mathrm{Fe}^{2^{-}}}$	0.86	0.84	0.86	0.83	0.94	0.84	0.65	0.61	0.84
Alm	0.76	0.66	0.62	0.67	0.33	0.72	0.64	0.59	0.74
Spe	0.09	0.14	0.16	0.14	0.39	0.13	0.00	0.00	0.11
Pyr	0.12	0.13	0.10	0.13	0.02	0.13	0.36	0.39	0.14
Gro	-0.03	0.03	0.10	0.03	0.24	-0.01	0.57	0.55	-0.02
And	0.05	0.04	0.01	0.03	0.02	0.03	-0.57	-0.53	0.04
Si	2.94	2.95	2.98	2.96	3.05	2.96	3.01	3.06	2.96
Ti	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.05	0.00
Al	2.03	2.02	2.01	2.01	1.86	2.01	3.22	2.99	2.02
Fe	2.34	2.04	1.87	2.04	1.04	2.18	0.56	0.55	2.25
Mn	0.27	0.41	0.48	0.41	1.20	0.39	0.01	0.00	0.33
Mg	0.36	0.37	0.31	0.39	0.07	0.39	0.78	0.91	0.40
Ca	0.06	0.21	0.34	0.19	0.78	0.06	0.01	0.06	0.03
Na	0.00	0.00	0.00	0.00	0.00	0.00	0.41	0.38	0.00
K	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Kation	8	8	8	8	8	8	8	8	8
Ladung	9.61	9.92	10.11	9.92	10.94	9.79	11.85	11.86	9.72
Fe3+	0.10	0.07	0.03	0.07	0.03	0.06	-0.83	-0.83	0.07
Fe2+	2.24	1.96	1.85	1.98	1.01	2.12	1.39	1.38	2.18
Ladung Fe ²⁺ /(Fe ²⁺ +Fe ³⁺)	12.00 0.96	12.00 0.96	12.00 0.99	12.00 0.97	12.00 0.97	12.00 0.97	12.00 2.47	12.00 2.51	12.00 0.97

Probe	0-112	0-112	99-20	99-20	99-20	99-20	0-53	0-53	0-53	0-105	0-105
Mineral	Alm	Alm	Alm-Prp	Alm-Prp	Alm	Alm	Alm	Alm	Alm	Alm	Alm
SiO ₂	33.05	25.46	37.27	36.45	33.05	25.46	36.24	36.08	36.08	36.33	36.56
TiO_2	0.01	0.02	0.01	0.03	0.01	0.02	0.04	0.04	0.03	0.02	0.02
Al_2O_3	26.93	21.87	21.29	21.14	26.93	21.87	19.23	19.20	18.91	19.66	20.27
FeO	17.96	30.21	33.89	33.16	17.96	30.21	36.39	36.54	36.37	34.10	33.70
MnO	0.36	0.67	4.98	4.86	0.36	0.67	3.03	3.12	3.21	5.50	5.47
MgO	9.63	10.14	3.37	3.31	9.63	10.14	2.10	2.09	2.14	2.87	2.89
CaO	0.01	0.02	0.37	0.40	0.01	0.02	1.29	1.27	1.22	0.88	0.80
Na ₂ O	0.09	0	0.02	0.03	0.09	0.00	0.01	0.00	0.01	0.02	0.00
K_2O	2.16	0.01	0.00	0.00	2.16	0.01	0.00	0.00	0.00	0.00	0.00
Summe	90.20	88.40	101.2	99.37	90.20	88.40	98.33	98.34	97.95	99.36	99.71
Formel											
Si	2.74	2.34	2.98	2.96	2.74	2.34	3.02	3.01	3.02	3.24	3.48
Ti	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Al	2.63	2.37	2.00	2.03	2.63	2.37	1.89	1.89	1.87	2.07	2.28
Fe	1.24	2.32	2.26	2.26	1.24	2.32	2.54	2.55	2.55	2.54	2.68
Mn	0.03	0.05	0.34	0.33	0.02	0.05	0.21	0.22	0.23	0.41	0.44
Mg	1.19	1.39	0.40	0.40	1.19	1.39	0.26	0.26	0.27	0.38	0.41
Ca	0.00	0.00	0.03	0.03	0.00	0.00	0.11	0.11	0.11	0.08	0.08
Na	0.01	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00
K	0.23	0.00	0.00	0.00	0.23	0.00	0.00	0.00	0.00	0.00	0.00
Kation	8.07	8.48	8.02	8.02	8.07	8.48	8.04	8.04	8.04	8.73	9.38
Fe ³⁺ Fe ²⁺	0.20	1.35	0.06	0.07	0.20	1.35	0.11	0.13	0.13	-0.81	-1.86
Fe $Fe^{2+}/(Fe^{2+}+Fe^{3+})$	1.03	0.85	2.20	2.18	1.03	0.84	2.42	2.40	2.40	3.43	4.72
$Fe^{2\tau}/(Fe^{-\tau}Fe^{2\tau})$	0.83 0.46	0.39 0.38	0.97 0.85	0.97	0.83 0.46	0.39	0.96	0.95 0.90	0.95 0.90	1.31 0.90	1.65 0.92
Te /(mg·re)	0.40	0.38	0.83	0.84	0.40	0.38	0.90	0.90	0.90	0.90	0.92
Alm	0.46	0.38	0.74	0.74	0.46	0.38	0.80	0.80	0.80	0.79	0.83
Spe	0.01	0.02	0.11	0.11	0.01	0.02	0.07	0.07	0.08	0.10	0.08
Pyr	0.53	0.59	0.13	0.14	0.53	0.59	0.09	0.09	0.09	0.09	0.08
Gro	-0.14	-0.91	-0.02	-0.02	-0.14	-0.92	-0.02	-0.03	-0.03	0.30	0.50
And	0.14	0.91	0.03	0.04	0.14	0.92	0.05	0.07	0.06	-0.28	-0.49
Si	2.71	2.21	2.97	2.96	2.71	2.21	3.01	2.99	3.01	3.34	3.71
Ti	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Al	2.61	2.24	2.00	2.02	2.61	2.24	1.88	1.88	1.86	2.13	2.43
Fe	1.23	2.19	2.26	2.25	1.23	2.19	2.52	2.54	2.53	2.62	2.86
Mn	0.03	0.05	0.34	0.33	0.02	0.05	0.21	0.22	0.23	0.43	0.47
Mg	1.18	1.31	0.40	0.40	1.18	1.31	0.26	0.26	0.27	0.39	0.44
Ca	0.00	0.00	0.03	0.03	0.00	0.00	0.11	0.11	0.11	0.09	0.09
Na	0.01	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00
K	0.23	0.00	0.00	0.00	0.23	0.00	0.00	0.00	0.00	0.00	0.00
Kation	8	8	8	8	8	8	8	8	8	8	8
Ladung	10.66	9.14	9.71	9.72	10.66	9.14	9.42	9.40	9.40	10.78	12.07
Fe3+	0.20	1.35	0.06	0.07	0.20	1.35	0.11	0.13	0.13	-0.81	-1.86
Fe2+	1.03	0.85	2.20	2.18	1.03	0.84	2.42	2.40	2.40	3.43	4.72
Ladung Fe ²⁺ /(Fe ²⁺ +Fe ³⁺)	12.00	12.00	12.00	12.00	12.00	12.00	12.00	12.00	12.00	13.00	14.00
10 /(10 100)	0.83	0.39	0.97	0.97	0.83	0.39	0.96	0.95	0.95	1.31	1.65

Probe	0-6a	0-6a	0-18	0-21	0-40	0-41A	0-41A	0-42	0-42	0-93
Si	0.00	0.00	0.02	0.08	0.01	0.00	0.00	0.00	0.00	0.00
Al	0.00	0.00	0.12	0.02	0.00	0.00	0.00	0.00	0.00	0.00
Fe	0.71	0.97	1.13	0.00	0.00	0.00	0.00	0.94	0.90	0.84
Ti	1.09	1.01	0.82	0.90	0.98	0.99	0.99	1.02	1.03	1.05

Probe	99-41	99-53	99-54	99-38	99-38	99-38	99-38	99-38	0-112	0-142	0-142	99-5C	99-7
Si	0.00	0.00	0.90	0.00	0.00	0.00	0.00	0.00	0.04	0.00	0.01	0.00	0.00
Al	0.00	0.00	0.07	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.00
Fe	0.94	0.01	0.11	0.00	0.01	0.01	0.00	0.01	0.03	0.00	0.01	0.95	0.76
Ti	1.02	0.99	0.49	1.00	0.99	0.99	0.99	0.99	0.95	1.00	0.98	1.01	1.07

Cordierit

Probe	0-3	0-3	0-6a	0-7	0-7	0-105	0-106	0-106	0-139	0-139	99-10	99-34	99-34	99-36
Si	5.34	4.86	4.93	5.08	5.07	5.00	5.05	4.96	5.16	5.17	4.97	5.31	5.14	5.14
Al	2.77	4.02	3.96	4.15	4.10	4.01	3.87	3.97	4.11	4.08	3.98	4.00	4.03	4.03
Fe	1.71	1.10	0.93	0.59	0.65	0.97	0.93	0.94	0.37	0.44	0.66	0.48	0.58	0.58
K	0.31	0.63	0.00	0.99	0.97	0.63	0.00	0.00	1.19	1.12	0.00	0.83	1.02	1.02
Na	0.46	0.03	0.03	0.04	0.04	0.02	0.03	0.04	0.03	0.03	0.04	0.02	0.03	0.03
Ca	0.03	0.02	0.00	0.01	0.01	0.01	0.00	0.00	0.01	0.01	0.00	0.01	0.01	0.01
Mg	0.99	0.75	1.08	0.42	0.48	0.61	1.07	1.09	0.45	0.45	1.35	0.40	0.50	0.50
Mn	0.01	0.01	0.01	0.00	0.01	0.00	0.01	0.01	0.00	0.00	0.01	0.00	0.00	0.00

Ilmenit

Probe	0-6a	0-6a	0-18	0-40	0-42	0-42	0-47	0-93	99-5C	99-7	99-41	99-54
Si	0.00	0.00	0.02	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.90
Al	0.00	0.00	0.12	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.07
Fe	0.84	0.97	1.13	0.80	0.94	0.90	0.96	0.84	0.95	0.76	0.94	0.11
Ti	1.05	1.01	0.82	1.07	1.02	1.03	1.01	1.05	1.01	1.07	1.02	0.49
Mn	0.00	0.01	0.00	0.07	0.01	0.00	0.01	0.00	0.01	0.09	0.01	0.00

Korund							
Probe	0-6a	0-106	0-105	99-35	99-35	99-35	99-43
Si	0.83	0.07	0.12	0.06	0.05	0.00	0.02
Al	0.66	1.81	1.68	1.83	1.21	2.21	1.93
Fe	0.16	0.07	0.14	0.07	0.01	0.00	0.01
Na	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Mg	0.18	0.03	0.05	0.03	0.01	0.00	0.00
Ti	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Cr	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Mn	0.00	0.00	0.00	0.00	0.00	0.00	0.00

	۱					
_	-	u	u	u	N.	··

Probe	99-35	99-35	99-43	99-43	99-43
Si	0.99	0.97	0.98	0.99	0.97
Al	1.99	2.01	2.01	1.99	2.01
Fe	0.01	0.01	0.01	0.01	0.01
K	0.00	0.00	0.00	0.00	0.00
Ca	0.00	0.00	0.00	0.00	0.00
Ti	0.00	0.00	0.00	0.00	0.00
Cr	0.00	0.00	0.00	0.00	0.00

Turmalin

Probe	0-46	0-99	0-112
Si	4.41	4.21	18.55
Al	4.80	3.45	16.56
Fe	0.00	0.00	0.00
Fe	1.23	2.28	2.81
K	0.00	0.07	0.00
Na	0.36	0.01	0.00
Ca	0.02	0.01	0.00
Mg	0.40	1.93	0.78
Ti	0.04	0.01	0.00
Cr	0.00	0.03	0.00
Mn	0.00	0.03	0.00

Anhang IIIb: Mikrosondenanalysen der Chromite in Eckergneis-Metapsammiten

Oxide	99-38-1	99-38-2	99-38-3	99-38-4	99-38-5	99-38-6	99-38-7	99-38-8	99-38-9	99-38-10
SiO ₂	0.76	0.06	0.01	0.09	0.13	0.03	0.02	0.03	0.04	0.03
TiO_2	0.96	1.10	0.43	1.01	0.62	1.28	1.12	1.01	0.85	1.19
Al_2O_3	21.60	16.30	17.19	12.97	11.69	15.13	20.55	24.46	24.31	18.74
Cr ₂ O ₃	38.27	44.36	46.82	47.49	51.35	45.14	38.60	33.81	33.52	41.03
FeO _{total}	35.32	33.97	33.12	33.39	32.37	34.36	33.95	34.31	34.24	34.57
MnO	0.53	0.76	0.65	0.66	0.57	0.68	0.57	0.57	0.57	0.60
MgO	0.93	0.21	1.07	0.30	0.62	0.35	0.53	0.55	0.49	1.05
CaO	0.01	0.01	0.00	0.02	0.01	0.00	0.00	0.00	0.02	0.01
Na_2O	0.04	0.08	0.01	0.09	0.05	0.04	0.08	0.14	0.12	0.04
K_2O	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
NiO	0.03	0.02	0.03	0.04	0.00	0.01	0.02	0.03	0.00	0.01
V_2O_5	0.00	0.00	0.00	1.14	0.63	1.21	1.02	1.73	1.67	0.15
ZnO	0.00	0.00	0.00	2.71	1.34	2.55	2.99	4.07	4.11	1.69
Summe	98.45	96.88	99.34	99.92	99.37	100.8	99.4	100.7	99.96	99.12
Fe_2O_3	2.17	1.35	0.82	3.79	1.86	4.15	3.72	4.66	4.74	3.63
FeO	33.14	32.62	32.30	29.60	30.51	30.20	30.23	29.65	29.51	30.94
Formel										
Si	0.03	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Ti	0.02	0.03	0.01	0.03	0.02	0.03	0.03	0.03	0.02	0.03
Al	0.86	0.68	0.69	0.54	0.49	0.61	0.82	0.95	0.95	0.75
Cr	1.02	1.24	1.27	1.32	1.43	1.23	1.04	0.88	0.88	1.11
Fe	1.00	1.01	0.95	0.98	0.96	0.99	0.96	0.95	0.95	0.99
Mn	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02
Mg	0.05	0.01	0.05	0.02	0.03	0.02	0.03	0.03	0.02	0.05
Ca	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Na	0.00	0.01	0.00	0.01	0.00	0.00	0.01	0.01	0.01	0.00
K	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Ni V	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
V Zn	0.00	0.00	0.00	0.03 0.07	0.01 0.03	0.03 0.06	0.02 0.08	0.04 0.10	0.04 0.10	0.00 0.04
Summe	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00
Fe ³⁺										
Fe ²⁺	0.02	0.02	0.01	0.02	0.00	0.01	0.02	0.01	0.02	0.07
ге	0.98	0.99	0.94	0.96	0.96	0.98	0.95	0.94	0.94	0.92

Oxide	99-38-11	99-38-12	99-38-13	99-38-14	99-38-15	99-38-16	0-12-1	0-12-1a	0-12-2	0-12-3
SiO ₂	0.07	0.02	0.03	0.02	1.09	0.02	n.g.	n.g.	n.g.	n.g.
TiO_2	1.05	1.37	0.71	1.16	1.03	1.19	0.98	1.78	1.28	1.09
Al_2O_3	20.45	17.86	21.26	20.43	19.35	15.81	11.59	20.54	13.64	18.00
Cr ₂ O ₃	37.15	39.82	39.94	37.23	37.06	44.04	48.78	34.43	44.61	40.48
FeO _{total}	34.38	34.78	34.12	34.85	34.03	34.43	36.02	41.10	37.38	37.92
MnO	0.54	0.64	0.55	0.84	0.61	0.63	0.42	0.35	0.43	0.40
MgO	0.39	0.46	1.05	0.26	0.41	0.37	0.31	0.39	0.29	0.31
CaO	0.02	0.00	0.02	0.01	0.02	0.01	n.g.	n.g.	n.g.	n.g.
Na_2O	0.12	0.04	0.09	0.11	0.10	0.08	n.g.	n.g.	n.g.	n.g.
K_2O	0.00	0.01	0.00	0.01	0.22	0.00	n.g.	n.g.	n.g.	n.g.
NiO	0.04	0.07	0.05	0.05	0.02	0.00	n.g.	n.g.	n.g.	n.g.
V_2O_5	1.57	0.98	0.78	1.41	1.52	1.37	0.58	1.16	1.02	0.54
ZnO	3.52	2.15	2.11	3.33	3.47	2.34	0.36	0.48	0.50	0.55
Summe	99.31	98.21	100.7	99.70	98.93	100.3	99.03	100.23	99.14	99.29
Fe ₂ O ₃	4.90	4.56	3.14	5.04	4.72	4.18	4.33	8.40	5.95	5.29
FeO	29.48	30.21	30.97	29.80	29.31	30.24	31.69	32.70	31.43	32.64
Formel										
Si	0.00	0.00	0.00	0.00	0.04	0.00	0.00	0.00	0.00	0.00
Ti	0.03	0.04	0.02	0.03	0.03	0.03	0.03	0.05	0.03	0.03
Al	0.82	0.73	0.83	0.82	0.78	0.64	0.49	0.83	0.57	0.74
Cr	1.00	1.09	1.05	1.00	1.00	1.20	1.38	0.93	1.25	1.11
Fe	0.98	1.01	0.95	0.99	0.97	0.99	1.08	1.17	1.11	1.10
Mh	0.02	0.02	0.02	0.02	0.02	0.02	0.01	0.01	0.01	0.01
Mg	0.02	0.02	0.05	0.01	0.02	0.02	0.02	0.02	0.02	0.02
Ca	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Na	0.01	0.00	0.01	0.01	0.01	0.01	0.00	0.00	0.00	0.00
K	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00
Ni V	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
v Zn	0.04 0.09	0.02 0.06	0.02 0.05	0.03 0.08	0.03 0.09	0.03 0.06	0.01 0.01	0.03 0.01	0.02 0.01	0.01 0.01
Summe	3.00	3.00	3.00	3.00	3.00	3.00	3.02	3.04	3.04	3.03
Fe ³⁺	0.02	0.03	0.03	0.03	0.00	0.01	- 0.01	0.00	-0.04	0.01
Fe ²⁺										
ге	0.96	0.98	0.92	0.96	0.97	0.99	1.08	1.17	1.15	1.09

Oxide	0-40-4-a	0-40-1	0-40-1-b	0-40-1-c	0-40-1-d	0-40-1-e	0-40-1-f	0-40-2	0-40-3	0-40-5
SiO ₂	n.g.	n.g.	n.g.	n.g.	n.g.	n.g.	n.g.	n.g.	n.g.	n.g.
TiO ₂	0.99	1.05	0.93	1.02	1.04	0.97	1.14	0.36	0.23	0.19
Al_2O_3	13.16	11.40	10.42	10.12	9.94	10.07	12.69	14.78	16.09	16.01
Cr ₂ O ₃	49.33	50.54	51.74	52.66	51.81	52.18	47.91	48.43	46.93	47.26
FeO _{total}	33.92	33.06	33.04	33.01	32.82	33.18	33.28	33.79	33.57	32.84
MnO	0.56	0.52	0.51	0.50	0.52	0.49	0.49	0.48	0.44	0.50
MgO	1.11	0.80	0.79	0.78	0.79	0.74	0.80	0.98	1.16	1.22
CaO	n.g.	n.g.	n.g.	n.g.	n.g.	n.g.	n.g.	n.g.	n.g.	n.g.
Na ₂ O	n.g.	n.g.	n.g.	n.g.	n.g.	n.g.	n.g.	n.g.	n.g.	n.g.
K_2O	n.g.	n.g.	n.g.	n.g.	n.g.	n.g.	n.g.	n.g.	n.g.	n.g.
NiO	n.g.	n.g.	n.g.	n.g.	n.g.	n.g.	n.g.	n.g.	n.g.	n.g.
V_2O_5	0.27	0.27	0.25	0.23	0.22	0.24	0.27	0.14	0.29	0.25
ZnO	0.79	1.11	1.07	1.15	1.07	1.07	1.11	0.81	0.88	0.84
Summe	100.14	98.74	98.74	99.47	98.21	98.93	97.68	99.76	99.59	99.10
Fe_2O_3	3.19	2.94	2.97	2.82	2.98	2.99	3.26	2.52	2.64	2.14
FeO	30.73	30.13	30.08	30.19	29.84	30.19	30.01	31.27	30.93	30.70
Formel										
Si	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Ti	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.01	0.01	0.01
Al	0.54	0.48	0.44	0.43	0.43	0.43	0.54	0.61	0.66	0.66
Cr Ea	1.36	1.44	1.48	1.50	1.49	1.49	1.37	1.33	1.29	1.30
Fe Mn	0.99 0.02	0.99 0.02	1.00 0.02	0.99 0.02	1.00 0.02	1.00 0.01	1.00 0.01	0.98 0.01	0.97 0.01	0.96 0.01
Mg	0.02	0.02	0.02	0.02	0.02	0.01	0.01	0.01	0.01	0.01
Ca	0.00	0.00	0.00	0.04	0.00	0.04	0.04	0.00	0.00	0.00
Na	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
K	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Ni	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
V	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.00	0.01	0.01
Zn	0.02	0.03	0.03	0.03	0.03	0.03	0.03	0.02	0.02	0.02
Summe	3.03	3.04	3.03	3.04	3.03	3.03	3.04	3.02	3.03	3.03
Fe ³⁺	-0.03	-0.07	-0.06	-0.07	-0.06	-0.06	-0.06	-0.02	-0.04	-0.04
Fe^{2+}	1.02	1.06	1.05	1.06	1.05	1.06	1.06	1.00	1.01	1.00

Oxide	0-40-6	0-40-6-a	0-40-7	0-40-8	0-40-9	0-40-10	0-40-12	0-40-13	0-40-13	0-40-14
SiO ₂	n.g.	n.g.	n.g.	n.g.	n.g.	n.g.	0.06	0.02	0.06	0.13
TiO ₂	1.36	1.36	1.05	0.34	0.84	1.01	0.11	1.59	1.27	0.90
Al_2O_3	19.78	19.42	14.21	11.70	13.65	16.30	12.49	17.76	15.66	13.76
Cr_2O_3	39.56	39.99	47.52	51.88	48.94	44.90	51.25	42.33	44.28	48.66
FeO _{total}	35.05	35.53	34.47	32.97	33.19	34.58	32.68	34.78	34.65	33.48
MnO	0.50	0.50	0.52	0.55	0.50	0.50	0.64	0.74	0.67	0.75
MgO	1.19	1.15	0.85	0.90	1.11	1.26	0.93	1.25	1.13	1.08
CaO	n.g.	n.g.	n.g.	n.g.	n.g.	n.g.	0.01	0.01	0.01	0.01
Na_2O	n.g.	n.g.	n.g.	n.g.	n.g.	n.g.	0.02	0.02	0.06	0.03
K_2O	n.g.	n.g.	n.g.	n.g.	n.g.	n.g.	0.01	0.00	0.00	0.00
NiO	n.g.	n.g.	n.g.	n.g.	n.g.	n.g.	n.g.	n.g.	n.g.	n.g.
V_2O_5	0.28	0.28	0.20	0.27	0.25	0.26	0.32	0.40	0.35	0.22
ZnO	1.10	1.09	1.16	0.85	0.78	0.85				
Summe	98.81	99.32	99.99	99.46	99.25	99.66	98.52	98.90	98.14	99.03
Fe_2O_3	4.13	4.43	3.57	2.44	2.58	3.73	1.39	3.19	3.31	2.07
FeO	30.92	31.10	30.91	30.54	30.61	30.85	31.29	31.59	31.34	31.41
Formel										
Si	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Ti	0.04	0.04	0.03	0.01	0.02	0.03	0.00	0.04	0.03	0.02
Al	0.80	0.79	0.59	0.49	0.57	0.67	0.52	0.72	0.64	0.57
Cr	1.08	1.09	1.32	1.46	1.36	1.23	1.43	1.15	1.22	1.34
Fe	1.01	1.02	1.01	0.98	0.98	1.00	0.97	1.00	1.01	0.98
Mn	0.01	0.01	0.02	0.02	0.01	0.01	0.02	0.02	0.02	0.02
Mg	0.06	0.06	0.04	0.05	0.06	0.06	0.05	0.06	0.06	0.06
Ca N-	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Na K	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Ni	0.00	0.00 0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
V	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
v Zn	0.01	0.01	0.03	0.01	0.01	0.01	0.01	0.01	0.01	0.01
Summe	3.03	3.03	3.03	3.03	3.03	3.03	3.00	3.00	3.00	3.00
Fe ³⁺	-0.04	-0.03	-0.04	-0.04	-0.04	-0.02	12.02	0.03	0.05	0.02
Fe ²⁺	1.05	1.05	1.05	1.02	1.02	1.02	-11.05	0.97	0.96	0.95

Oxide	0-40-14	0-40-14	0-47-1	0-47-2	0-47-2-a	0-47-2-b	0-47-2-c	0-47-3	0-47-4	0-47-5
SiO ₂	0.05	0.15	n.g.	n.g.	n.g.	n.g.	n.g.	n.g.	n.g.	0.17
TiO ₂	1.39	1.44	0.43	0.09	0.10	1.80	1.71	1.16	0.05	1.86
Al_2O_3	13.47	19.35	7.97	6.61	6.61	22.49	21.76	13.55	17.26	26.60
Cr ₂ O ₃	46.67	39.84	54.99	58.36	57.93	32.99	32.29	44.90	46.22	27.74
FeO _{total}	33.75	34.28	34.94	34.31	33.54	40.18	40.97	38.66	33.60	38.22
MnO	0.68	0.64	0.34	0.38	0.37	0.34	0.34	0.41	0.45	0.60
MgO	0.99	1.32	0.23	0.21	0.20	0.34	0.34	0.21	1.23	0.84
CaO	0.00	0.00	n.g.	n.g.	n.g.	n.g.	n.g.	n.g.	n.g.	0.01
Na ₂ O	0.02	0.01	n.g.	n.g.	n.g.	n.g.	n.g.	n.g.	n.g.	0.02
K_2O	0.00	0.00	n.g.	n.g.	n.g.	n.g.	n.g.	n.g.	n.g.	0.00
NiO	n.g.	n.g.	n.g.	n.g.						
V_2O_5	0.31	0.37	0.37	0.15	0.16	1.36	1.28	0.77	0.24	0.63
ZnO			0.32	0.40	0.37	0.62	0.63	0.44	0.91	n.g.
Summe	97.33	97.39	99.61	100.51	99.29	100.12	99.33	100.09	99.96	96.69
Fe_2O_3	2.81	2.90	3.17	2.32	1.92	7.53	8.60	6.43	2.48	5.33
FeO	30.94	31.38	31.77	31.99	31.62	32.64	32.37	32.22	31.13	32.89
Formel										
Si	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01
Ti	0.04	0.04	0.01	0.00	0.00	0.05	0.04	0.03	0.00	0.05
Al	0.56	0.79	0.34	0.28	0.28	0.90	0.88	0.56	0.70	1.06
Cr	1.31	1.09	1.57	1.66	1.67	0.89	0.88	1.25	1.26	0.74
Fe	1.00	0.99	1.06	1.03	1.02	1.14	1.17	1.14	0.97	1.08
Mn Ma	0.02	0.02	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.02
Mg Co	0.05 0.00	0.07 0.00	0.01 0.00	0.01 0.00	0.01 0.00	0.02 0.00	0.02 0.00	0.01	0.06 0.00	0.04 0.00
Ca Na	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
K	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Ni	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
V	0.01	0.01	0.01	0.00	0.00	0.03	0.03	0.02	0.01	0.01
Zn	0.00	0.00	0.01	0.01	0.01	0.02	0.02	0.01	0.02	0.00
Summe	3.00	3.00	3.02	3.01	3.01	3.05	3.05	3.03	3.03	3.00
Fe ³⁺	0.03	0.02	0.00	0.01	0.00	-0.06	-0.02	0.02	-0.03	0.06
Fe^{2+}	0.98	0.97	1.05	1.02	1.02	1.20	1.19	1.12	1.00	1.02

Oxide	0-47-5	0-100-1	0-100-2	0-100-3-ε	0-100-3-{	0-100-3-0	0-100-3-0	0-100-4	0-100-5	0-100-6
SiO ₂	0.03	n.g.								
TiO_2	1.89	0.72	1.61	2.01	0.41	0.89	2.02	1.72	0.75	0.78
Al_2O_3	26.87	10.23	13.36	17.85	11.48	10.99	24.30	16.15	11.12	10.38
Cr_2O_3	27.61	51.33	43.72	36.53	49.80	49.56	29.94	39.79	49.66	50.43
FeO _{total}	40.42	34.46	36.24	37.58	33.60	34.38	38.87	37.24	33.65	33.24
MnO	0.52	0.91	0.91	1.21	0.95	0.96	0.94	0.93	0.90	0.93
MgO	0.80	0.50	0.55	0.55	0.49	0.50	0.76	0.57	0.56	0.51
CaO	0.00	n.g.								
Na_2O	0.02	n.g.								
K_2O	0.01	n.g.								
NiO	n.g.									
V_2O_5	0.72	0.27	0.29	0.45	0.21	0.22	0.47	0.51	0.25	0.15
ZnO	n.g.	0.39	0.32	0.65	0.39	0.26	0.49	0.28	0.29	0.29
Summe	98.90	98.83	97.01	96.83	97.32	97.76	97.80	97.20	97.18	96.72
Fe_2O_3	6.70	3.54	5.40	6.96	2.92	3.52	6.79	6.15	3.07	2.78
FeO	33.72	30.92	30.84	30.63	30.68	30.86	32.08	31.09	30.58	30.47
Formel										
Si —	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Ti	0.05	0.02	0.04	0.05	0.01	0.02	0.05	0.05	0.02	0.02
Al	1.05	0.43	0.57	0.75	0.49	0.47	0.97	0.68	0.48	0.45
Cr E-	0.72	1.46	1.24	1.02	1.43	1.41	0.80	1.12	1.42	1.46
Fe Mn	1.12 0.01	1.04 0.03	1.09 0.03	1.11 0.04	1.02 0.03	1.04 0.03	1.10 0.03	1.10 0.03	1.02 0.03	1.02 0.03
Mg	0.01	0.03	0.03	0.04	0.03	0.03	0.03	0.03	0.03	0.03
Ca	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Na	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
K	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Ni	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
V	0.02	0.01	0.01	0.01	0.00	0.01	0.01	0.01	0.01	0.00
Zn	0.00	0.01	0.01	0.02	0.01	0.01	0.01	0.01	0.01	0.01
Summe	3.00	3.02	3.02	3.03	3.02	3.01	3.02	3.02	3.01	3.01
Fe ³⁺	0.09	0.02	0.05	0.04	0.02	0.03	0.04	0.04	0.01	0.02
Fe ²⁺	1.02	1.02	1.04	1.07	1.00	1.01	1.06	1.06	1.01	1.00

Oxide	0-100-7	0-100-7	0-100-15	0-100-15	0-104-5	0-104-5	0-104-5	0-142-1	0-142-1a	0-142-2	0-142-2a
SiO ₂	ng	ng	0.04	0.07	0.21	0.36	0.37	ng	ng	ng	ng
TiO ₂	0.26	0.38	1.94	2.16	1.88	1.72	1.74	0.14	0.57	0.24	0.89
Al_2O_3	7.40	7.35	27.45	27.07	24.44	24.17	23.96	10.97	11.02	14.70	14.37
G_2O_3	55.49	56.02	26.03	26.48	32.16	31.66	31.66	53.13	52.67	48.56	47.95
FeO _{total}	31.55	33.25	39.82	40.19	35.37	35.94	35.04	32.97	33.01	33.65	34.74
MnO	0.95	0.96	1.17	1.19	0.53	0.53	0.58	0.49	0.54	0.50	0.44
MgO	0.48	0.49	0.75	0.75	1.33	1.39	1.37	0.85	0.82	0.97	0.95
CaO	ng	ng	0.01	0.02	0.00	0.00	0.00	ng	ng	ng	ng
Na ₂ O	ng	ng	0.01	0.01	0.03	0.03	0.04	ng	ng	ng	ng
K_2O	ng	ng	0.00	0.00	0.00	0.00	0.00	ng	ng	ng	ng
NiO	ng	ng	ng	ng	ng	ng	ng	ng	ng	ng	ng
V_2O_5	0.21	0.22	0.60	0.59	1.03	0.99	1.01	0.28	0.29	0.13	0.18
ZnO	0.29	0.23						0.91	0.87	0.93	1.02
Summe	96.63	98.91	97.81	98.55	96.99	96.79	95.78	99.73	99.80	99.69	100.53
Fe ₂ O ₃	1.62	2.56	6.83	7.05	3.77	4.47	3.97	2.40	2.40	2.57	3.49
FeO	29.93	30.70	32.99	33.15	31.60	31.47	31.07	30.57	30.61	31.08	31.25
Formel											
Si	0.00	0.00	0.00	0.00	0.01	0.01	0.01	0.00	0.00	0.00	0.00
Ti	0.01	0.01	0.05	0.05	0.05	0.04	0.04	0.00	0.02	0.01	0.02
Al	0.32	0.31	1.08	1.06	0.98	0.97	0.97	0.46	0.46	0.61	0.59
G	1.63	1.61	0.68	0.69	0.86	0.85	0.86	1.50	1.48	1.34	1.32
Fe	0.98	1.01	1.11	1.11	1.00	1.02	1.00	0.98	0.98	0.98	1.01
Mh	0.03	0.03	0.03	0.03	0.02	0.02	0.02	0.01	0.02	0.01	0.01
Mg Co	0.03	0.03	0.04	0.04	0.07	0.07	0.07	0.04	0.04	0.05	0.05
Ca Na	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
K	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Ni	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
V	0.00	0.01	0.00	0.00	0.02	0.02	0.02	0.00	0.00	0.00	0.00
Z n	0.01	0.01	0.00	0.00	0.02	0.00	0.02	0.01	0.02	0.02	0.03
Summe	3.01	3.01	3.00	3.00	3.00	3.00	3.00	3.03	3.03	3.03	3.03
Fe ³⁺	-0.01	0.02	0.10	0.10	-0.01	0.01	-0.01	-0.04	-0.05	-0.02	-0.02
Fe ²⁺	0.99	0.99	1.01	1.01	1.01	1.01	1.01	1.02	1.04	1.00	1.03

Anhang IV: SHRIMP-Analysendaten

U-Pb-Verhältnisse wurden auf Basis der 204Pb-Gehalte und der "Broken-Hill"-Blei-Zusammensetzung korrigiert.

A: Die erste Nummer repräsentiert die Quarzitprobe, gefolgt von der Zirkonnummer und der Nummer für den Messpunkt.

B: Die in dieser Spalte angegebenen Alter wurden für Abb.84. verwendet. Das fett gedruckte Alter repräsentiert das Konkordia-Alter nach Ludwig (1998).

In Fällen, bei denen mehr als eine Analyse pro Zirkongeneration durchgeführt wurde und diese diskordante U-Pb-Verhältnisse liefern, wurde das obere Schnittpunktalter angegeben (kursiv gedruckt).

In den Fällen, wo eine einzelne Analyse diskordante U-Pb-Alter liefert, wurde das Pb-Pb-Alter verwendet. Diese Alter sind normal gedruckt.

spot	Probe	U/ppm	Th/ppm	Th/U	+/-	Pb/ppm	204	zero	206	207/206-4
							counts	counts	counts	
1-Z1-1		128	86	0.67542	0.00281	46	24	10	98519	0.10566
1-Z1-2	99-38	166	62	0.37581	0.00136	62	36	5	124501	0.10834
1-Z12-1	99-38	825	43	0.05199	0.00022	71	67	6	79733	0.06183
1-Z12-2	99-38	1017	86	0.08493	0.00029	118	127	2	157746	0.06749
1-Z12-3	99-38	1196	339	0.28365	0.00071	135	182	6	162440	0.06371
1-Z14-1	99-38	202	78	0.38706	0.00238	31	79	5	38753	0.06957
1-Z15-1	99-38	103	85	0.82843	0.00371	11	19	12	33861	0.05911
1-Z15-2	99-38	216	153	0.70799	0.00212	22	17	8	58274	0.05841
1-Z16-1	99-38	92	62	0.68027	0.00355	19	12	6	48689	0.08941
1-Z18-1	99-38	652	256	0.39204	0.00144	188	57	2	255801	0.09881
1-Z18-2	99-38	350	156	0.44481	0.00219	91	41	4	116070	0.09827
1-Z20-1	99-38	204	122	0.59830	0.00351	61	87	3	71652	0.09542
1-Z2-1	99-38	728	268	0.36786	0.00073	132	26	6	255320	0.07546
1-Z21-1	99-38	195	122	0.62583	0.00407	16	50	4	19332	0.05626
1-Z21-2	99-38	192	120	0.62530	0.00403	15	17	6	18364	0.06160
1-Z25-1	99-38	1079	1038	0.96214	0.00149	270	16	13	767274	0.08290
1-Z26-1	99-38	248	170	0.68686	0.00378	21	94	4	25413	0.04389
1-Z26-2	99-38	242	164	0.68018	0.00368	19	51	7	24239	0.04654
1-Z28-1	99-38	109	84	0.77619	0.00643	35	22	6	42822	0.10933
1-Z29-1	99-38	204	143	0.70380	0.00420	53	67	3	42208	0.08595
1-Z30-1	99-38	395	210	0.53139	0.00219	127	65	3	171078	0.09958
1-Z31-1	99-38	274	155	0.56496	0.00270	76	77	4	72782	0.09176
1-Z32-1	99-38	24	19	0.79059	0.01524	7	52	6	6018	0.09425
1-Z34-1	99-38	1195	430	0.36010	0.00104	127	74	4	97251	0.06910
1-Z34-2	99-38	1076	373	0.34714	0.00096	164	46	3	127136	0.07250
1-Z35-1	99-38	113	66	0.58086	0.00484	24	77	3	28664	0.07275
1-Z36-1	99-38	160	139	0.87147	0.00586	34	83	1	31613	0.06783
1-Z37-1	99-38	350	143	0.40867	0.00177	102	4	2	140120	0.10482
1-Z38-1	99-38	31	32	1.03289	0.01658	12	113	3	10002	0.04688
1-Z39-1	99-38	430	96	0.22270	0.00087	101	141	4	142366	0.08784
1-Z40-1	99-38	236	64	0.27108	0.00147	66	114	7	85664	0.08356
1-Z4-1	99-38	363	213	0.58815	0.00256	103	91	5	139684	0.09332
1-Z41-1	99-38	216	111	0.51475	0.00298	58	139	11	75431	0.08888
1-Z42-1	99-38	163	75	0.45925	0.00259	37	75	5	46940	0.07491
1-Z43-1		160	89	0.55577	0.00363	52	88	14	56180	0.10799
1-Z45-1	99-38	605	103	0.17093	0.00061	165	88	9	182953	0.09876
1-Z5-1		346	125	0.36050	0.00099	70	21	13	234917	0.07824
1-Z6-1	99-38	19	38	1.94785	0.02071	5	15	8	5257	0.06630
	99-38	471	299	0.63409	0.00225	110	80	8	138072	0.07999
2-Z10-1	0-40	1276	417	0.32713	0.00045	225	28	10	727765	0.07431
2-Z1-1	0-40	213	89	0.41889	0.00138	39	35	9	122788	0.06941
2-Z11-1	0-40	160	93	0.58466	0.00207	34	546	21	68141	0.07274
2-Z11-2	0-40	3477	371	0.10665	0.00010	377	884	18	1640667	0.07579

spot	+/-	208/206-4	+/-	206/238-4	+/-	207/235-	+/-	208/232-4	+/-
						4			
1-Z1-1	0.00090	0.18974	0.00201	0.32197	0.00501	4.69080	0.08740	0.09045	0.00174
1-Z1-2	0.00085	0.10874	0.00158	0.35626	0.00545	5.32157	0.09602	0.10308	0.00220
1-Z12-1	0.00137	0.01892	0.00295	0.08891	0.00297	0.75796	0.03207	0.03236	0.00516
1-Z12-2	0.00122	0.01901	0.00265	0.11876	0.00396	1.10505	0.04401	0.02658	0.00381
1-Z12-3	0.00142	0.08363	0.00318	0.10751	0.00358	0.94436	0.03999	0.03170	0.00160
1-Z14-1	0.00392	0.11254	0.00897	0.13534	0.00464	1.29822	0.09026	0.03935	0.00342
1-Z15-1	0.00272	0.26010	0.00671	0.09083	0.00150	0.74028	0.03760	0.02852	0.00088
1-Z15-2	0.00129	0.22033	0.00333	0.09263	0.00144	0.74591	0.02126	0.02883	0.00063
1-Z16-1	0.00168	0.20782	0.00383	0.18607	0.00302	2.29369	0.06040	0.05684	0.00143
1-Z18-1	0.00078	0.10365	0.00159	0.27388	0.00914	3.73152	0.13154	0.07241	0.00267
1-Z18-2	0.00109	0.12714	0.00236	0.24323	0.00818	3.29557	0.12104	0.06952	0.00269
1-Z20-1	0.00226	0.15774	0.00513	0.25899	0.00880	3.40759	0.14905	0.06828	0.00324
1-Z2-1	0.00043	0.10692	0.00082	0.17844	0.00265	1.85651	0.03067	0.05187	0.00087
1-Z21-1	0.00627	0.18798	0.01468	0.06798	0.00239	0.52729	0.06381	0.02042	0.00175
1- <i>Z</i> 21-2	0.00423	0.20889	0.01010	0.06678	0.00233	0.56713	0.04582	0.02231	0.00134
1-Z25-1	0.00024	0.28428	0.00073	0.21244	0.00313	2.42836	0.03725	0.06277	0.00094
1-Z26-1	0.00656	0.19078	0.01528	0.06461	0.00225	0.39095	0.06161	0.01795	0.00157
1- <i>Z</i> 26-2	0.00513	0.18896	0.01209	0.06668	0.00231	0.42793	0.05119	0.01852	0.00135
1- <i>Z</i> 28-1	0.00278	0.23549	0.00646	0.26872	0.00935	4.05077	0.18478	0.08153	0.00368
1- <i>Z</i> 29-1	0.00252	0.19907	0.00589	0.22329	0.00763	2.64606	0.12632	0.06316	0.00288
1-Z30-1	0.00091	0.15524	0.00202	0.29314	0.00981	4.02492	0.14403	0.08564	0.00310
1-Z31-1	0.00162	0.15179	0.00365	0.24708	0.00833	3.12602	0.12482	0.06638	0.00277
1-Z32-1	0.02274	0.31033	0.05301	0.16069	0.00765	2.08815	0.52548	0.06308	0.01125
1-Z34-1	0.00118	0.10982	0.00266	0.10141	0.00339	0.96618	0.03799	0.03093	0.00128
1-Z34-2	0.00081	0.10626	0.00170	0.14848	0.00495	1.48427	0.05406	0.04545	0.00169
1-Z35-1	0.00521	0.17082	0.01207	0.17080	0.00602	1.71331	0.14340	0.05023	0.00399
1-Z36-1	0.00646	0.23561	0.01509	0.15833	0.00554	1.48080	0.15610	0.04281	0.00314
1-Z37-1	0.00063	0.13163	0.00120	0.27306	0.00915	3.94649	0.13722	0.08795	0.00308
1-Z38-1	0.02948	0.26608	0.06862	0.17264	0.00853	1.11579	0.71079	0.04447	0.01170
1-Z39-1	0.00144	0.06556	0.00316	0.22377	0.00748	2.71012	0.10579	0.06587	0.00387
1-Z40-1	0.00219	0.08265	0.00482	0.25799	0.00871	2.97216	0.13439	0.07866	0.00532
1-Z4-1	0.00123	0.16437	0.00280	0.25320	0.00849	3.25787	0.12234	0.07076	0.00268
1-Z41-1	0.00271	0.13732	0.00618	0.23357	0.00793	2.86224	0.13863	0.06231	0.00353
1-Z42-1	0.00318	0.13338	0.00729	0.20230	0.00689	2.08947	0.12039	0.05875	0.00380
1-Z43-1	0.00303	0.16772	0.00688	0.27816	0.00951	4.14160	0.19417	0.08394	0.00452
1-Z45-1	0.00077	0.02982	0.00149	0.27610	0.00920	3.75947	0.13220	0.04816	0.00290
1-Z5-1	0.00053	0.11169	0.00114	0.19661	0.00295	2.12086	0.03656	0.06091	0.00112
1- <i>Z</i> 6-1 1- <i>Z</i> 8-1	0.01050	0.56851	0.02724	0.18048	0.00459	1.64972	0.26970	0.05268	0.00291
1-20-1 2-Z10-1	0.00121	0.18758	0.00279	0.20781	0.00695	2.29197	0.08799	0.06148	0.00226
	0.00024	0.09969	0.00052	0.17431	0.00256	1.78589	0.02757	0.05312	0.00083
2-Z1-1	0.00086	0.11822	0.00195	0.17592	0.00269	1.68359	0.03512	0.04965	0.00113
2-Z11-1 2-Z11-2	0.00515	0.05650	0.01176	0.15205	0.00248	1.52494	0.11373	0.01469	0.00307
Z-Z11-Z	0.00037	0.02621	0.00079	0.11032	0.00161	1.15276	0.01845	0.02711	0.00091

spot	%con	Age6/38-	+/-	Age7/35-	+/-	Age7/6-	+/-	Age8/3	+/-	7f206	+/-	207/206-
	c-4	4		4		4		2-4				8
1-Z1-1	104	1799	24	1766	16	1726	16	1750	32	0.00170	0.00072	0.10712
1-Z1-2	111	1964	26	1872	15	1772	14	1983	40	0.00280	0.00074	0.10838
1-Z12-1	82	549	18	573	19	668	47	644	101	0.01285	0.00059	0.06067
1-Z12-2	85	723	23	756	21	853	38	530	75	0.01712	0.00051	0.07037
1-Z12-3	90	658	21	675	21	732	47	631	31	0.01976	0.00056	0.06528
1-Z14-1	89	818	26	845	40	916	116	780	67	0.03414	0.00116	0.07196
1-Z15-1	98	560	9	563	22	571	100	568	17	0.00384	0.00101	0.05742
1-Z15-2	105	571	8	566	12	545	48	574	12	0.00140	0.00066	0.05781
1-Z16-1	78	1100	16	1210	19	1413	36	1117	27	0.00213	0.00117	0.08643
1-Z18-1	97	1560	46	1578	28	1602	15	1413	50	0.00455	0.00054	0.10274
1-Z18-2	88	1403	42	1480	29	1592	21	1358	51	0.00502	0.00072	0.09951
1-Z20-1	97	1485	45	1506	34	1536	45	1335	61	0.01869	0.00096	0.10296
1- Z2 -1	98	1058	14	1066	11	1081	11	1022	17	0.00090	0.00040	0.07626
1-Z21-1	92	424	14	430	42	463	249	409	35	0.03877	0.00155	0.05947
1-Z21-2	63	417	14	456	30	660	148	446	26	0.01715	0.00138	0.05537
1-Z25-1	98	1242	17	1251	11	1267	6	1230	18	0.00006	0.00024	0.08295
1-Z26-1	0	404	14	335	45	0	28	360	31	0.04523	0.00157	0.05464
1-Z26-2	1133	416	14	362	36	37	234	371	27	0.01999	0.00122	0.05707
1-Z28-1	86	1534	48	1644	37	1788	46	1584	69	0.00798	0.00130	0.10462
1-Z29-1	97	1299	40	1314	35	1337	57	1238	55	0.01839	0.00105	0.09020
1-Z30-1	103	1657	49	1639	29	1616	17	1661	58	0.00575	0.00060	0.09959
1-Z31-1	97	1423	43	1439	31	1462	33	1299	52	0.01192	0.00081	0.09797
1-Z32-1	63	961	42	1145	174	1513	469	1236	214	0.12179	0.00485	0.05858
1-Z34-1	69	623	20	686	20	902	35	616	25	0.01805	0.00056	0.06964
1-Z34-2	89	892	28	924	22	1000	23	898	33	0.00818	0.00055	0.07219
1-Z35-1	101	1016	33	1014	54	1007	146	991	77	0.04171	0.00147	0.07480
1-Z36-1	110	947	31	923	64	863	198	847	61	0.05255	0.00145	0.08077
1-Z37-1	91	1556	46	1623	28	1711	11	1704	57	0.00018	0.00067	0.09951
1-Z38-1	2080	1027	47	761	355	49	1055	879	226	0.21123	0.00443	0.06838
1-Z39-1	94	1302	39	1331	29	1379	32	1289	73	0.01547	0.00064	0.08799
1-Z40-1	115	1480	45	1401	34	1282	51	1530	100	0.01993	0.00091	0.08274
1-Z4-1	97	1455	44	1471	29	1494	25	1382	51	0.00981	0.00065	0.09699
1-Z41-1	97	1353	41	1372	36	1402	59	1222	67	0.02703	0.00093	0.09514
1-Z42-1	111	1188	37	1145	40	1066	85	1154	72	0.02389	0.00106	0.07702
1-Z43-1	90	1582	48	1663	38	1766	51	1629	84	0.02094	0.00119	0.10518
1-Z45-1	98	1572	46	1584	28	1601	15	951	56	0.00517	0.00052	0.10322
1-Z5-1	100	1157	16	1156	12	1153	14	1195	21	0.00051	0.00042	0.07670
1-Z6-1	131	1070	25	989	104	816	336	1038	56	0.00744	0.00251	0.07612
1-Z8-1	102	1217	37	1210	27	1197	30	1206	43	0.00833	0.00066	0.08087
2-Z10-1	99	1036	14	1040	10	1050	7	1046	16	0.00039	0.00023	0.07386
2-Z1-1	115	1045	15	1002	13	911	26	979	22	0.00000	0.00000	0.07201
2-Z11-1	91	912	14	940	46	1007	144	295	61	0.10278	0.00111	0.12238
2-Z11-2	62	675	9	779	9	1089	10	541	18	0.00985	0.00019	0.07817

spot	+/-	206/238-8	+/-	207/235-8	+/-	%conc-	Age6/	+/-	Age7/3	+/-	Age7/
						8	38-8		5-8		6-8
1-Z1-1	0.00061	0.32252	0.00502	4.76330	0.08205	103	1802	24	1778	14	1751
1-Z1-2	0.00077	0.35628	0.00545	5.32401	0.09393	111	1965	26	1873	15	1772
1-Z12-1	0.00060	0.08880	0.00297	0.74282	0.02675	87	548	18	564	16	628
1-Z12-2	0.00052	0.11914	0.00397	1.15592	0.04046	77	726	23	780	19	939
1-Z12-3	0.00067	0.10770	0.00358	0.96930	0.03492	84	659	21	688	18	783
1-Z14-1	0.00157	0.13570	0.00463	1.34640	0.05753	83	820	26	866	25	985
1-Z15-1	0.00190	0.09065	0.00149	0.71766	0.02783	110	559	9	549	16	508
1-Z15-2	0.00120	0.09256	0.00144	0.73787	0.02026	109	571	8	561	12	523
1-Z16-1	0.00160	0.18543	0.00301	2.20983	0.05762	81	1097	16	1184	18	1348
1-Z18-1	0.00047	0.27514	0.00918	3.89748	0.13345	94	1567	46	1613	28	1674
1-Z18-2	0.00088	0.24358	0.00819	3.34202	0.11973	87	1405	42	1491	28	1615
1-Z20-1	0.00131	0.26127	0.00886	3.70879	0.13967	89	1496	45	1573	30	1678
1-Z2-1	0.00035	0.17860	0.00265	1.87787	0.03014	96	1059	14	1073	11	1102
1-Z21-1	0.00260	0.06822	0.00237	0.55940	0.03307	73	425	14	451	22	584
1- <i>Z</i> 21-2	0.00237	0.06632	0.00230	0.50628	0.02955	97	414	14	416	20	427
1-Z25-1	0.00021	0.21245	0.00313	2.42994	0.03705	98	1242	17	1252	11	1268
1-Z26-1	0.00257	0.06537	0.00224	0.49246	0.03032	103	408	14	407	21	397
1-Z26-2	0.00216	0.06746	0.00231	0.53083	0.02875	85	421	14	432	19	494
1-Z28-1	0.00197	0.26724	0.00928	3.85496	0.16015	89	1527	47	1604	34	1708
1-Z29-1	0.00160	0.22438	0.00765	2.79057	0.11264	91	1305	40	1353	30	1430
1-Z30-1	0.00079	0.29314	0.00981	4.02500	0.14222	103	1657	49	1639	29	1616
1-Z31-1	0.00107	0.24885	0.00838	3.36162	0.12337	90	1433	43	1496	29	1586
1-Z32-1	0.00884	0.15434	0.00654	1.24669	0.20160	168	925	37	822	91	552
1-Z34-1	0.00073	0.10148	0.00339	0.97432	0.03528	68	623	20	691	18	918
1-Z34-2	0.00066	0.14843	0.00495	1.47750	0.05262	90	892	28	921	22	991
1-Z35-1	0.00226	0.17119	0.00597	1.76545	0.08633	96	1019	33	1033	32	1063
1-Z36-1	0.00257	0.16066	0.00553	1.78916	0.08898	79	960	31	1042	32	1216
1-Z37-1	0.00079	0.27138	0.00909	3.72348	0.13170	96	1548	46	1576	28	1615
1-Z38-1	0.00940	0.17679	0.00707	1.66691	0.24648	119	1049	39	996	94	880
1-Z39-1	0.00070	0.22380	0.00747	2.71516	0.09582	94	1302	39	1333	26	1382
1-Z40-1	0.00103	0.25775	0.00868	2.94040	0.10984	117	1478	45	1392	28	1263
1-Z4-1	0.00090	0.25427	0.00853	3.40017	0.12203	93	1460	44	1504	28	1567
1-Z41-1	0.00126	0.23526	0.00797	3.08623	0.11684	89 400	1362	42	1429	29	1531
1-Z42-1	0.00145	0.20278	0.00688	2.15341	0.08785	106	1190	37	1166	28	1122
1-Z43-1	0.00155	0.27725	0.00945	4.02088	0.15596	92	1578	48	1638	32	1718
1-Z45-1 1-Z5-1	0.00045	0.27754	0.00925	3.94991	0.13483	94 104	1579 1155	47 16	1624 1141	28 12	1683 1113
1-Z5-1 1-Z6-1	0.00052 0.00850	0.19627 0.18248	0.00295 0.00450	2.07572 1.91532	0.03575 0.22470	104 98	1155 1081	16 25	1141 1086	12 78	1098
1-Z0-1 1-Z8-1	0.00093	0.10240	0.00450	2.31951	0.22470	100	1218	25 37	1218	76 26	1218
2-Z10-1	0.00093	0.2001	0.00095	1.77407	0.00302	100	1035	14	1036	10	1038
2-Z10-1	0.00029	0.17422	0.00250	1.77407 1.75186	0.02777	106	1035	15	1028	11	986
2-Z1-1	0.00049	0.16104	0.00209	2.71728	0.05030	48	963	14	1333	16	1991
2-Z11-1	0.00132	0.10104	0.00230	1.19219	0.03722	5 9	676	9	797	8	1151
Z-Z I I-Z	0.00019	U. I IU0Z	0.00162	1. 192 19	0.01803	 59	0/0	Э	191	O	1011

spot	+/-	207/235-	+/-	206/238-4	+/-	r	Age6/3	+/-	Age7/3	+/-
		4					8-4		5-4	
1-Z1-1	10	4.69080	0.08740	0.32197	0.00501	0.89	1799	24	1766	16
1-Z1-2	13	5.32157	0.09602	0.35626	0.00545	0.90	1964	26	1872	15
1-Z12-1	21	0.75796	0.03207	0.08891	0.00297	0.86	549	18	573	19
1-Z12-2	15	1.10505	0.04401	0.11876	0.00396	0.89	723	23	756	21
1-Z12-3	22	0.94436	0.03999	0.10751	0.00358	0.85	658	21	675	21
1-Z14-1	44	1.29822	0.09026	0.13534	0.00464	0.59	818	26	845	40
1-Z15-1	73	0.74028	0.03760	0.09083	0.00150	0.44	560	9	563	22
1-Z15-2	46	0.74591	0.02126	0.09263	0.00144	0.64	571	8	566	12
1-Z16-1	36	2.29369	0.06040	0.18607	0.00302	0.71	1100	16	1210	19
1-Z18-1	8	3.73152	0.13154	0.27388	0.00914	0.97	1560	46	1578	28
1-Z18-2	16	3.29557	0.12104	0.24323	0.00818	0.95	1403	42	1480	29
1-Z20-1	23	3.40759	0.14905	0.25899	0.00880	0.84	1485	45	1506	34
1-Z2-1	9	1.85651	0.03067	0.17844	0.00265	0.94	1058	14	1066	11
1-Z21-1	95	0.52729	0.06381	0.06798	0.00239	0.41	424	14	430	42
1-Z21-2	96	0.56713	0.04582	0.06678	0.00233	0.54	417	14	456	30
1-Z25-1	5	2.42836	0.03725	0.21244	0.00313	0.98	1242	17	1251	11
1-Z26-1	105	0.39095	0.06161	0.06461	0.00225	0.34	404	14	335	45
1-Z26-2	84	0.42793	0.05119	0.06668	0.00231	0.40	416	14	362	36
1-Z28-1	35	4.05077	0.18478	0.26872	0.00935	0.83	1534	48	1644	37
1-Z29-1	34	2.64606	0.12632	0.22329	0.00763	0.79	1299	40	1314	35
1-Z30-1	15	4.02492	0.14403	0.29314	0.00981	0.97	1657	49	1639	29
1-Z31-1	20	3.12602	0.12482	0.24708	0.00833	0.90	1423	43	1439	31
1-Z32-1	334	2.08815	0.52548	0.16069	0.00765	0.31	961	42	1145	174
1-Z34-1	22	0.96618	0.03799	0.10141	0.00339	0.90	623	20	686	20
1-Z34-2	18	1.48427	0.05406	0.14848	0.00495	0.95	892	28	924	22
1-Z35-1	61	1.71331	0.14340	0.17080	0.00602	0.53	1016	33	1014	54
1-Z36-1	63	1.48080	0.15610	0.15833	0.00554	0.44	947	31	923	64
1-Z37-1	15	3.94649	0.13722	0.27306	0.00915	0.99	1556	46	1623	28
1-Z38-1	287	1.11579	0.71079	0.17264	0.00853	0.20	1027	47	761	355
1-Z39-1	15	2.71012	0.10579	0.22377	0.00748	0.91	1302	39	1331	29
1-Z40-1	24	2.97216	0.13439	0.25799	0.00871	0.82	1480	45	1401	34
1-Z4-1	17	3.25787	0.12234	0.25320	0.00849	0.94	1455	44	1471	29
1-Z41-1	25	2.86224	0.13863	0.23357	0.00793	0.78	1353	41	1372	36
1-Z42-1	38	2.08947	0.12039	0.20230	0.00689	0.68	1188	37	1145	40
1-Z43-1	27	4.14160	0.19417	0.27816	0.00951	0.80	1582	48	1663	38
1-Z45-1	8	3.75947	0.13220	0.27610	0.00920	0.98	1572	46	1584	28
1-Z5-1	14	2.12086	0.03656	0.19661	0.00295	0.92	1157	16	1156	12
1-Z6-1	225	1.64972	0.26970	0.18048	0.00459	0.28	1070	25	989	104
1-Z8-1	23	2.29197	0.08799	0.20781	0.00695	0.92	1217	37	1210	27
2-Z10-1	8	1.78589	0.02757	0.17431	0.00256	0.98	1036	14	1040	10
2-Z1-1	14	1.68359	0.03512	0.17592	0.00269	0.81	1045	15	1002	13
2-Z11-1	22	1.52494	0.11373	0.15205	0.00248	0.34	912	14	940	46
2-Z11-2	5	1.15276	0.01845	0.11032	0.00161	0.95	675	9	779	9

spot	+/-	Age8/3	+/-	Concordia age /	+/-	Remarks
		2-4		other age [Ma]		
1-Z1-1	16	1750	32	1745	14	
1-Z1-2	14	1983	40			
1-Z12-1	47	644	101	961	110	upper intercept discordia
1-Z12-2	38	530	75			
1-Z12-3	47	631	31			
1-Z14-1	116	780	67	820	26	
1-Z15-1	100	568	17	566	6	
1-Z15-2	48	574	12			
1-Z16-1	36	1117	27	1413	36	discordant (Pb-Pb age)
1-Z18-1	15	1413	50	1599	14	
1-Z18-2	21	1358	51			
1-Z20-1	45	1335	61	1511	34	
1-Z2-1	11	1022	17	1073	10	
1-Z21-1	249	409	35	419	10	
1-Z21-2	148	446	26			
1-Z25-1	6	1230	18	1267	6	
1-Z26-1	28	360	31	410	10	
1-Z26-2	234	371	27			
1-Z28-1	46	1584	69	1788	46	discordant (Pb-Pb age)
1-Z29-1	57	1238	55	1311	35	
1-Z30-1	17	1661	58	1620	17	
1-Z31-1	33	1299	52	1448	28	
1-Z32-1	469	1236	214	956	42	
1-Z34-1	35	616	25	902	35	discordant (Pb-Pb age)
1-Z34-2	23	898	33	1000	23	discordant (Pb-Pb age)
1-Z35-1	146	991	77	1016	33	
1-Z36-1	198	847	61	947	31	
1-Z37-1	11	1704	57	1711	11	discordant (Pb-Pb age)
1-Z38-1	1055	879	226	1028	47	
1-Z39-1	32	1289	73	1350	26	
1-Z40-1	51	1530	100	1391	35	
1-Z4-1	25	1382	51	1486	23	
1-Z41-1	59	1222	67	1368	36	
1-Z42-1	85	1154	72	1169	35	
1-Z43-1	51	1629	84	1661	38	
1-Z45-1	15	951	56	1599	14	
1-Z5-1	14	1195	21	1155	11	
1-Z6-1	336	1038	56	1070	25	
1-Z8-1	30	1206	43	1205	25	
2-Z10-1	7	1046	16	1048	6	
2-Z1-1	26	979	22	1045	15	discordant (6/38 age)
2-Z11-1	144	295	61	1029	8	discordant (Pb-Pb age)
2-Z11-2	10	541	18			

spot	Probe	U/ppm	Th/ppm	Th/U	+/-	Pb/ppm	204	zero	206	207/206-4
							counts	counts	counts	
2-Z14-1	0-40	876	204	0.23315	0.00040	162	93	10	521226	0.07888
2-Z15-1	0-40	119	85	0.71145	0.00301	27	13	11	85083	0.08025
2-Z17-1	0-40	103	21	0.20930	0.00194	15	94	4	15088	0.07650
2-Z18-1	0-40	681	145	0.21314	0.00077	115	164	4	180457	0.07607
2-Z19-1	0-40	535	121	0.22606	0.00120	88	1	5	104760	0.08538
2-Z2-1	0-40	166	24	0.14360	0.00062	31	22	8	120891	0.08085
2-Z3-1	0-40	73	42	0.57203	0.00323	21	25	9	60587	0.09229
2-Z4-1	0-40	402	95	0.23760	0.00095	113	195	9	107991	0.09088
2-Z7-1	0-40	42	17	0.40489	0.00308	13	13	11	44682	0.09893
2-Z8-1	0-40	384	21	0.05386	0.00022	94	39	25	307628	0.09115
2-Z9-1	0-40	61	22	0.35901	0.00237	11	21	14	38771	0.06972
3-Z1-1	0-12	131	50	0.38285	0.00175	27	16	10	78254	0.07557
3-Z2-1	0-12	312	235	0.75197	0.00199	25	31	7	59335	0.05069
3-Z2-2	0-12	449	290	0.64410	0.00153	34	16	14	94593	0.05546
3-Z3-1	0-12	69	29	0.41541	0.00239	14	21	8	40279	0.07312
3-Z4-1		27	14	0.53069	0.00534	6	17	9	15468	0.07711
3-Z4-2	0-12	140	75	0.53556	0.00214	36	22	11	114071	0.08519
4-Z14-1	0-100	314	143	0.45458	0.00127	51	34	9	138169	0.07203
4-Z14-2	0-100	70	23	0.33003	0.00200	21	12	7	42967	0.09639
4-Z15-1	0-100	297	99	0.33475	0.00106	53	19	8	159860	0.07509
4-Z2-1	0-100	64	72	1.11907	0.00629	21	13	6	58889	0.09091
4-Z3-1	0-100	137	60	0.43807	0.00304	39	70	2	45785	0.09274
4-Z4-1	0-100	387	147	0.37895	0.00162	107	103	6	117913	0.09283
4-Z7-1	0-100	99	36	0.36548	0.00318	20	81	5	20964	0.07859
4-Z8-1	0-100	178	35	0.19742	0.00138	43	69	7	45500	0.08625
5-Z1-1	99-20	215	86	0.39731	0.00130	66	26	14	157325	0.10073
5-Z1-2	99-20	244	121	0.49452	0.00159	79	17	2	189172	0.10119
5-Z13-1	99-20	124	49	0.39696	0.00293	25	51	4	25912	0.07847
5-Z14-1		462	141	0.30438	0.00071	85	29	12	328262	0.07910
5-Z14-2		445	111	0.24982	0.00062	79	14	11	221530	0.07791
5-Z16-1		29	20	0.68397	0.01000	8	83	6	8923	0.06507
5-Z17-1		115	87	0.75259	0.00568	25	84	1	23392	0.07076
5-Z18-1		1380	415	0.30092	0.00061	205	57	6	207119	0.08246
5-Z2-1	99-20	85	48	0.56323	0.00545	17	39	1	12689	0.04510
5-Z21-1		191	46	0.24255	0.00146	42	54	1	41030	0.08739
5-Z22-1		66	34	0.51160	0.00483	18	58	3	21806	0.06486
5-Z23-1		263	300	1.14055	0.00604	91	81	2	87035	0.09997
5-Z26-1 5-Z28-1		45 1192	4 620	0.09083	0.00150	10	60 120	2	7221	0.05777
		1182	630	0.53344	0.00119	271	120	1	373643	0.08285
5-Z29-1 5-Z30-1		111 157	62 116	0.56282	0.00434	29 26	45 22	5 4	33222	0.09082
5-Z30-1 5-Z31-1		157 110	116	0.73978	0.00550	26 30	22	4	30876	0.06674
5-Z31-1 5-Z4-1		110 150	68 55	0.61407 0.36447	0.00519 0.00278	30 28	94 30	2 4	32731 21761	0.09000 0.07230
5-Z4-1 5-Z5-1	99-20	120	55 43	0.36447	0.00278	20 23	30 55	3	31689	0.07230
5-Z5-1		109	43 76	0.69619	0.00270	23 22	55 87	5 5	18674	0.07041
5-Z7-1	99-20	109 147	76 88	0.69619	0.00545	50	89	5 4	29297	0.06741
5-Z6-1 5-Z9-1		701	00 199	0.39929	0.00430	155	69 194	4 7	143383	0.09613
J- <u>Z</u> 9-1	33-∠ U	<i>1</i> U I	199	U.Z04 ID	0.00098	100	194	1	143363	0.00403

spot	+/-	208/206-4	+/-	206/238-4	+/-	207/235-	+/-	208/232-4	+/-
Spot	,	200/200	,	200/200	,	4	,	200/202	•
2-Z14-1	0.00035	0.07068	0.00073	0.18520	0.00273	2.01431	0.03207	0.05614	0.00102
2-Z15-1	0.00112	0.21945	0.00272	0.20359	0.00318	2.25281	0.04996	0.06280	0.00128
2-Z17-1	0.00851	0.09493	0.01929	0.11193	0.00406	1.18054	0.14309	0.05077	0.01049
2-Z18-1	0.00121	0.06205	0.00268	0.16344	0.00546	1.71417	0.06643	0.04758	0.00260
2-Z19-1	0.00058	0.08630	0.00095	0.16365	0.00551	1.92654	0.06779	0.06247	0.00224
2-Z2-1	0.00088	0.03736	0.00174	0.19060	0.00293	2.12479	0.04236	0.04959	0.00244
2-Z3-1	0.00151	0.17417	0.00345	0.25927	0.00420	3.29925	0.08046	0.07894	0.00207
2-Z4-1	0.00168	0.07038	0.00371	0.26183	0.00876	3.28066	0.13195	0.07755	0.00485
2-Z7-1	0.00196	0.12258	0.00427	0.28162	0.00488	3.84129	0.10719	0.08526	0.00338
2-Z8-1	0.00048	0.01381	0.00082	0.25616	0.00383	3.21949	0.05300	0.06567	0.00401
2-Z9-1	0.00292	0.10471	0.00659	0.17692	0.00300	1.70080	0.08014	0.05160	0.00338
3-Z1-1	0.00118	0.11688	0.00264	0.20153	0.00316	2.09990	0.04934	0.06153	0.00171
3-Z2-1	0.00150	0.23674	0.00391	0.07001	0.00108	0.48927	0.01714	0.02204	0.00050
3-Z2-2	0.00101	0.20436	0.00260	0.07002	0.00106	0.53539	0.01342	0.02222	0.00044
3-Z3-1	0.00225	0.11986	0.00511	0.19449	0.00323	1.96072	0.07209	0.05612	0.00259
3-Z4-1	0.00468	0.15232	0.01068	0.21290	0.00427	2.26340	0.14993	0.06110	0.00450
3-Z4-2	0.00097	0.15892	0.00221	0.24135	0.00373	2.83477	0.05749	0.07162	0.00152
4-Z14-1	0.00087	0.14895	0.00204	0.15258	0.00231	1.51524	0.03108	0.04999	0.00103
4-Z14-2	0.00168	0.09669	0.00349	0.29282	0.00482	3.89162	0.09900	0.08578	0.00345
4-Z15-1	0.00067	0.10142	0.00144	0.17614	0.00266	1.82370	0.03374	0.05337	0.00112
4-Z2-1	0.00155	0.33258	0.00412	0.26424	0.00433	3.31211	0.08316	0.07853	0.00167
4-Z3-1	0.00312	0.12267	0.00704	0.25121	0.00862	3.21233	0.16375	0.07034	0.00473
4-Z4-1	0.00156	0.10642	0.00338	0.25613	0.00859	3.27816	0.12887	0.07193	0.00333
4-Z7-1	0.00563	0.11517	0.01275	0.17012	0.00603	1.84338	0.15455	0.05361	0.00625
4-Z8-1	0.00242	0.04834	0.00530	0.23141	0.00791	2.75193	0.12897	0.05667	0.00652
5-Z1-1	0.00072	0.11729	0.00143	0.28962	0.00439	4.02255	0.07052	0.08550	0.00169
5-Z1-2	0.00055	0.14698	0.00113	0.29814	0.00451	4.15944	0.06945	0.08861	0.00153
5-Z13-1	0.00362	0.11251	0.00812	0.18288	0.00635	1.97880	0.12100	0.05183	0.00417
5-Z14-1	0.00044	0.09001	0.00088	0.18292	0.00272	1.99495	0.03291	0.05409	0.00097
5-Z14-2	0.00050	0.08195	0.00100	0.17804	0.00266	1.91240	0.03247	0.05840	0.00114
5-Z16-1	0.01946	0.16226	0.04472	0.16501	0.00710	1.48050	0.45505	0.03914	0.01093
5-Z17-1	0.00499	0.20927	0.01158	0.17031	0.00598	1.66167	0.13721	0.04736	0.00312
5-Z18-1	0.00061	0.09434	0.00120	0.14549	0.00483	1.65404	0.05774	0.04561	0.00163
5-Z2-1	0.00836	0.10124	0.01918	0.16631	0.00610	1.03424	0.20007	0.02990	0.00578
5-Z21-1	0.00238	0.08755	0.00516	0.20425	0.00695	2.46101	0.11365	0.07373	0.00503
5-Z22-1	0.00797	0.13587	0.01826	0.22073	0.00797	1.97389	0.26116	0.05862	0.00817
5-Z23-1	0.00140	0.31181	0.00349	0.27680	0.00936	3.81520	0.14573	0.07567	0.00273
5-Z26-1	0.01971	-0.03054	0.04476	0.15509	0.00660	1.23541	0.43111	-0.05214	-0.07646
5-Z28-1	0.00056	0.16691	0.00129	0.20965	0.00696	2.39487	0.08307	0.06560	0.00224
5-Z29-1	0.00363	0.18011	0.00823	0.22053	0.00766	2.76152	0.15487	0.07058	0.00409
5-Z30-1	0.00274	0.20239	0.00658	0.14805	0.00514	1.36232	0.07760	0.04050	0.00195
5-Z31-1	0.00507	0.18902	0.01169	0.21187	0.00745	2.62912	0.18409	0.06522	0.00467
5-Z4-1	0.00446	0.10994	0.01016	0.16878	0.00589	1.68249	0.12544	0.05091	0.00504
5-Z5-1	0.00402	0.10448	0.00907	0.16942	0.00587	1.64485	0.11578	0.04898	0.00459
5-Z7-1	0.8800.0	0.19326	0.02032	0.14704	0.00529	1.36658	0.19098	0.04082	0.00455
5-Z8-1	0.00423	0.14126	0.00949	0.28236	0.00982	3.74311	0.22215	0.06655	0.00506
5-Z9-1	0.00127	0.07948	0.00279	0.20808	0.00695	2.42524	0.09277	0.05820	0.00283

spot	%con	Age6/38-	+/-	Age7/35-	+/-	Age7/6-	+/-	Age8/3	+/-	7f206	+/-	207/206-
	c-4	4		4		4		2-4				8
2-Z14-1	94	1095	15	1120	11	1169	9	1104	19	0.00219	0.00027	0.07853
2-Z15-1	99	1195	17	1198	16	1203	27	1231	24	0.00025	0.00076	0.07724
2-Z17-1	62	684	24	792	67	1108	224	1001	202	0.07178	0.00237	0.06308
2-Z18-1	89	976	30	1014	25	1097	32	939	50	0.01417	0.00051	0.07691
2-Z19-1	74	977	31	1090	24	1324	13	1225	43	0.00000	0.00000	0.07746
2-Z2-1	92	1125	16	1157	14	1218	21	978	47	0.00177	0.00060	0.08241
2-Z3-1	101	1486	22	1481	19	1473	31	1536	39	0.00360	0.00089	0.08985
2-Z4-1	104	1499	45	1476	31	1444	35	1510	91	0.02070	0.00069	0.09076
2-Z7-1	100	1600	25	1601	22	1604	37	1654	63	0.00100	0.00114	0.09718
2-Z8-1	101	1470	20	1462	13	1450	10	1286	76	0.00058	0.00039	0.09166
2-Z9-1	114	1050	16	1009	30	920	86	1017	65	0.00000	0.00000	0.07121
3-Z1-1	109	1184	17	1149	16	1084	31	1207	33	0.00130	0.00072	0.07485
3-Z2-1	193	436	7	404	12	227	68	441	10	0.00007	0.00067	0.04957
3-Z2-2	101	436	6	435	9	431	40	444	9	0.00022	0.00053	0.05380
3-Z3-1	113	1146	17	1102	25	1017	62	1104	50	0.00502	0.00100	0.07549
3-Z4-1	111	1244	23	1201	47	1124	121	1199	86	0.00772	0.00183	0.08012
3-Z4-2	106	1394	19	1365	15	1320	22	1398	29	0.00149	0.00064	0.08524
4-Z14-1	93	915	13	937	13	987	25	986	20	0.00569	0.00053	0.06731
4-Z14-2	106	1656	24	1612	21	1555	33	1664	64	0.00175	0.00115	0.09641
4-Z15-1	98	1046	15	1054	12	1071	18	1051	21	0.00107	0.00050	0.07483
4-Z2-1	105	1511	22	1484	20	1445	33	1528	31	0.00209	0.00094	0.08975
4-Z3-1	97	1445	44	1460	39	1483	64	1374	89	0.02379	0.00121	0.09536
4-Z4-1	99	1470	44	1476	31	1484	32	1404	63	0.01321	0.00080	0.09494
4-Z7-1	87	1013	33	1061	55	1162	142	1056	120	0.04345	0.00180	0.07619
4-Z8-1	100	1342	41	1343	35	1344	54	1114	125	0.01642	0.00101	0.09039
5-Z1-1	100	1640	22	1639	14	1638	13	1658	31	0.00106	0.00058	0.10018
5-Z1-2	102	1682	22	1666	14	1646	10	1716	28	0.00107	0.00053	0.10004
5-Z13-1	93	1083	35	1108	41	1159	92	1021	80	0.02183	0.00144	0.08119
5-Z14-1	92	1083	15	1114	11	1175	11	1065	19	0.00081	0.00036	0.07956
5-Z14-2	92	1056	15	1085	11	1144	13	1147	22	0.00026	0.00041	0.07498
5-Z16-1	127	985	39	922	188	777	528	776	213	0.13249	0.00413	0.08464
5-Z17-1	107	1014	33	994	52	951	145	935	60	0.04005	0.00161	0.07880
5-Z18-1	70	876	27	991	22	1256	14	901	31	0.00297	0.00047	0.08052
5-Z2-1	0	992	34	721	100	0	41	595	113	0.01956	0.00218	0.07515
5-Z21-1	88	1198	37	1261	33	1369	52	1438	95	0.01545	0.00118	0.08091
5-Z22-1	167	1286	42	1107	89	770	261	1151	156	0.03328	0.00194	0.07194
5-Z23-1	97	1575	47	1596	31	1623	26	1474	51	0.01088	0.00078	0.10935
5-Z26-1	178	929	37	817	198	521	612	0	320	0.11655	0.00392	0.08123
5-Z28-1	97	1227	37	1241	25	1266	13	1284	43	0.00506	0.00036	0.07940
5-Z29-1	89	1285	40	1345	42	1443	76	1378	77	0.01924	0.00154	0.08477
5-Z30-1	107	890	29	873	33	830	86	803	38	0.00732	0.00112	0.07525
5-Z31-1	87	1239	40	1309	52	1426	108	1277	89	0.04486	0.00155	0.08667
5-Z4-1	101	1005	32	1002	48	994	126	1004	97	0.01873	0.00148	0.07238
5-Z5-1	107	1009	32	988	44	940	117	966	88	0.02363	0.00142	0.07241
5-Z7-1	104	884	30	875	82	850	274	809	88	0.06923	0.00224	0.07561
5-Z8-1	103	1603	49	1581	48	1551	83	1302	96	0.03507	0.00163	0.11058
5-Z9-1	93	1219	37	1250	28	1305	29	1143	54	0.01567	0.00056	0.08658

spot	+/-	206/238-8	+/-	207/235-8	+/-	%conc	- Age6/	+/-	Age7/3	+/-	Age7/
						8	38-8		5-8		6-8
2-Z14-1	0.00031	0.18513	0.00273	2.00445	0.03155	94	1095	15	1117	11	1160
2-Z15-1	0.00118	0.20290	0.00317	2.16091	0.04998	106	1191	17	1169	16	1127
2-Z17-1	0.00305	0.11026	0.00390	0.95888	0.06069	95	674	23	683	31	711
2-Z18-1	0.00058	0.16359	0.00546	1.73474	0.06093	87	977	30	1022	23	1119
2-Z19-1	0.00075	0.16218	0.00546	1.73220	0.06266	86	969	30	1021	23	1133
2-Z2-1	0.00053	0.19094	0.00293	2.16948	0.03770	90	1126	16	1171	12	1255
2-Z3-1	0.00123	0.25854	0.00418	3.20287	0.07201	104	1482	21	1458	17	1422
2-Z4-1	0.00077	0.26179	0.00875	3.27586	0.11630	104	1499	45	1475	28	1441
2-Z7-1	0.00135	0.28106	0.00485	3.76608	0.08838	102	1597	24	1586	19	1571
2-Z8-1	0.00034	0.25631	0.00383	3.23936	0.05126	101	1471	20	1467	12	1460
2-Z9-1	0.00128	0.17722	0.00297	1.74000	0.04539	109	1052	16	1023	17	963
3-Z1-1	0.00091	0.20137	0.00316	2.07828	0.04364	111	1183	17	1142	14	1065
3-Z2-1	0.00131	0.06992	0.00108	0.47795	0.01541	249	436	7	397	11	175
3-Z2-2	0.00094	0.06989	0.00106	0.51851	0.01273	120	436	6	424	9	363
3-Z3-1	0.00130	0.19501	0.00322	2.02982	0.05139	106	1148	17	1126	17	1082
3-Z4-1	0.00246	0.21363	0.00419	2.35990	0.09083	104	1248	22	1231	27	1200
3-Z4-2	0.00088	0.24137	0.00373	2.83687	0.05572	106	1394	19	1365	15	1321
4-Z14-1	0.00074	0.15177	0.00229	1.40861	0.02779	107	911	13	893	12	847
4-Z14-2	0.00126	0.29283	0.00481	3.89274	0.08667	106	1656	24	1612	18	1556
4-Z15-1	0.00061	0.17609	0.00266	1.81673	0.03271	98	1046	15	1052	12	1064
4-Z2-1	0.00190	0.26388	0.00434	3.26531	0.09277	106	1510	22	1473	22	1420
4-Z3-1	0.00153	0.25196	0.00862	3.31269	0.13094	94	1449	44	1484	31	1535
4-Z4-1	0.00091	0.25675	0.00860	3.36088	0.12090	96	1473	44	1495	28	1527
4-Z7-1	0.00227	0.16966	0.00595	1.78237	0.08692	92	1010	33	1039	32	1100
4-Z8-1	0.00107	0.23251	0.00793	2.89769	0.10855	94	1348	41	1381	28	1434
5-Z1-1	0.00064	0.28943	0.00439	3.99767	0.06867	101	1639	22	1634	14	1627
5-Z1-2	0.00066	0.29774	0.00451	4.10683	0.07079	103	1680	22	1656	14	1625
5-Z13-1	0.00176	0.18345	0.00634	2.05353	0.08832	89	1086	35	1133	29	1226
5-Z14-1	0.00042	0.18302	0.00272	2.00773	0.03286	91	1083	15	1118	11	1186
5-Z14-2	0.00046	0.17745	0.00265	1.83456	0.03084	99	1053	14	1058	11	1068
5-Z16-1	0.00648	0.16869	0.00652	1.96863	0.17709	77	1005	36	1105	61	1307
5-Z17-1	0.00251	0.17186	0.00598	1.86725	0.09336	88	1022	33	1070	33	1167
5-Z18-1	0.00052	0.14517	0.00482	1.61170	0.05577	72	874	27	975	22	1210
5-Z2-1	0.00300	0.17195	0.00615	1.78170	0.10127	95	1023	34	1039	37	1073
5-Z21-1	0.00131	0.20274	0.00689	2.26182	0.08906	98	1190	37	1200	28	1219
5-Z22-1	0.00266	0.22248	0.00785	2.20677	0.11964	132	1295	41	1183	38	984
5-Z23-1	0.00067	0.27984	0.00946	4.21904	0.14811	89	1591	48	1678	29	1789
5-Z26-1	0.00491	0.15922	0.00600	1.78328	0.13394	78	952	33	1039	49	1227
5-Z28-1	0.00050	0.20883	0.00693	2.28625	0.07905	103	1223	37	1208	24	1182
5-Z29-1	0.00204	0.21901	0.00757	2.55972	0.11399	97	1277	40	1289	33	1310
5-Z30-1	0.00100	0.14947	0.00517	1.55073	0.05979	84	898	29	951	24	1075
5-Z31-1	0.00231	0.21106	0.00736	2.52228	0.11719	91	1234	39	1278	34	1353
5-Z4-1	0.00192	0.16880	0.00585	1.68448	0.07788	101	1005	32	1003	29	997
5-Z5-1	0.00177	0.16980	0.00585	1.69526	0.07567	101	1011	32	1007	29	997
5-Z7-1	0.00341	0.14840	0.00520	1.54716	0.09356	82	892	29	949	37	1085
5-Z8-1	0.00203	0.28714	0.00992	4.37798	0.18001	90	1627	50	1708	34	1809
5-Z9-1	0.00064	0.20857	0.00696	2.48992	0.08730	90	1221	37	1269	25	1351

spot	+/-	207/235-	+/-	206/238-4	+/-	r	Age6/3	+/-	Age7/3	+/-	Age7/6
		4					8-4		5-4		4
2-Z14-1	8	2.01431	0.03207	0.18520	0.00273	0.96	1095	15	1120	11	1169
2-Z15-1	30	2.25281	0.04996	0.20359	0.00318	0.78	1195	17	1198	16	1203
2-Z17-1	103	1.18054	0.14309	0.11193	0.00406	0.41	684	24	792	67	1108
2-Z18-1	15	1.71417	0.06643	0.16344	0.00546	0.91	976	30	1014	25	1097
2-Z19-1	19	1.92654	0.06779	0.16365	0.00551	0.98	977	31	1090	24	1324
2-Z2-1	13	2.12479	0.04236	0.19060	0.00293	0.84	1125	16	1157	14	1218
2-Z3-1	26	3.29925	0.08046	0.25927	0.00420	0.75	1486	22	1481	19	1473
2-Z4-1	16	3.28066	0.13195	0.26183	0.00876	0.89	1499	45	1476	31	1444
2-Z7-1	26	3.84129	0.10719	0.28162	0.00488	0.71	1600	25	1601	22	1604
2-Z8-1	7	3.21949	0.05300	0.25616	0.00383	0.95	1470	20	1462	13	1450
2-Z9-1	37	1.70080	0.08014	0.17692	0.00300	0.47	1050	16	1009	30	920
3-Z1-1	24	2.09990	0.04934	0.20153	0.00316	0.75	1184	17	1149	16	1084
3-Z2-1	61	0.48927	0.01714	0.07001	0.00108	0.55	436	7	404	12	227
3-Z2-2	39	0.53539	0.01342	0.07002	0.00106	0.70	436	6	435	9	431
3-Z3-1	35	1.96072	0.07209	0.19449	0.00323	0.56	1146	17	1102	25	1017
3-Z4-1	61	2.26340	0.14993	0.21290	0.00427	0.42	1244	23	1201	47	1124
3-Z4-2	20	2.83477	0.05749	0.24135	0.00373	0.83	1394	19	1365	15	1320
4-Z14-1	23	1.51524	0.03108	0.15258	0.00231	0.81	915	13	937	13	987
4-Z14-2	25	3.89162	0.09900	0.29282	0.00482	0.73	1656	24	1612	21	1555
4-Z15-1	16	1.82370	0.03374	0.17614	0.00266	0.88	1046	15	1054	12	1071
4-Z2-1	41	3.31211	0.08316	0.26424	0.00433	0.74	1511	22	1484	20	1445
4-Z3-1	30	3.21233	0.16375	0.25121	0.00862	0.76	1445	44	1460	39	1483
4-Z4-1	18	3.27816	0.12887	0.25613	0.00859	0.91	1470	44	1476	31	1484
4-Z7-1	60	1.84338	0.15455	0.17012	0.00603	0.53	1013	33	1061	55	1162
4-Z8-1	23	2.75193	0.12897	0.23141	0.00791	0.80	1342	41	1343	35	1344
5-Z1-1	12	4.02255	0.07052	0.28962	0.00439	0.92	1640	22	1639	14	1638
5-Z1-2	12	4.15944	0.06945	0.29814	0.00451	0.95	1682	22	1666	14	1646
5-Z13-1	43	1.97880	0.12100	0.18288	0.00635	0.66	1083	35	1108	41	1159
5-Z14-1	10	1.99495	0.03291	0.18292	0.00272	0.94	1083	15	1114	11	1175
5-Z14-2	12	1.91240	0.03247	0.17804	0.00266	0.93	1056	15	1085	11	1144
5-Z16-1	149	1.48050	0.45505	0.16501	0.00710	0.26	985	39	922	188	777
5-Z17-1	63	1.66167	0.13721	0.17031	0.00598	0.53	1014	33	994	52	951
5-Z18-1	13	1.65404	0.05774	0.14549	0.00483	0.98	876	27	991	22	1256
5-Z2-1	80	1.03424	0.20007	0.16631	0.00610	0.31	992	34	721	100	0
5-Z21-1	32	2.46101	0.11365	0.20425	0.00695	0.81	1198	37	1261	33	1369
5-Z22-1	75	1.97389	0.26116	0.22073	0.00797	0.39	1286	42	1107	89	770
5-Z23-1	11	3.81520	0.14573	0.27680	0.00936	0.93	1575	47	1596	31	1623
5-Z26-1	119	1.23541	0.43111	0.15509	0.00660	0.24	929	37	817	198	521
5-Z28-1	13	2.39487	0.08307	0.20965	0.00696	0.98	1227	37	1241	25	1266
5-Z29-1	47	2.76152	0.15487	0.22053	0.00766	0.71	1285	40	1345	42	1443
5-Z30-1	27	1.36232	0.07760	0.14805	0.00514	0.70	890	29	873	33	830
5-Z31-1	51	2.62912	0.18409	0.21187	0.00745	0.60	1239	40	1309	52	1426
5-Z4-1	54	1.68249	0.12544	0.16878	0.00589	0.57	1005	32	1002	48	994
5-Z5-1	50	1.64485	0.11578	0.16942	0.00587	0.59	1009	32	988	44	940
5-Z7-1	91	1.36658	0.19098	0.14704	0.00529	0.37	884	30	875	82	850
5-Z8-1	33	3.74311	0.22215	0.28236	0.00982	0.68	1603	49	1581	48	1551
5-Z9-1	14	2.42524	0.09277	0.20808	0.00695	0.92	1219	37	1250	28	1305

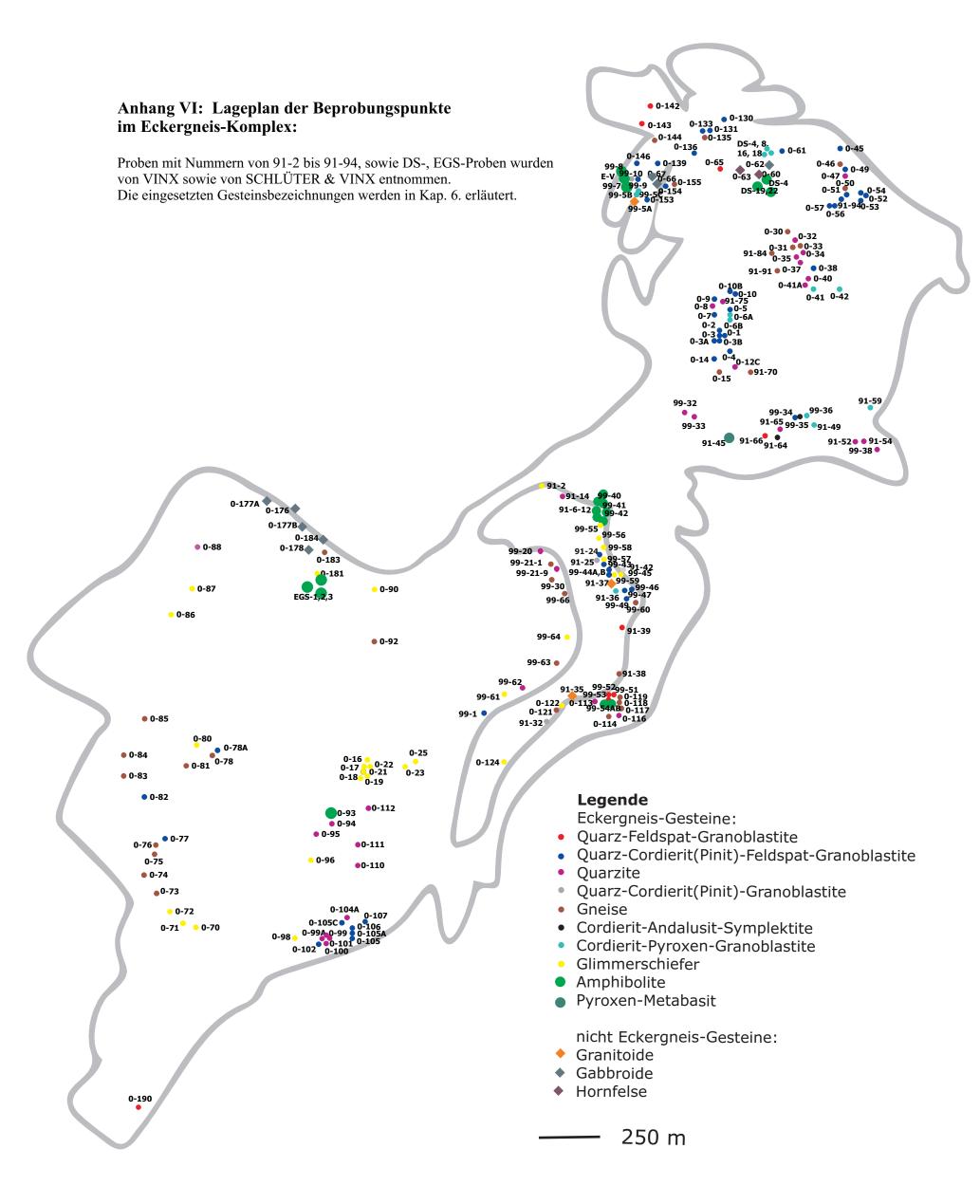
spot	+/-	Age8/3	+/-	Concordia age /	+/-	Remarks
		2-4		other age [Ma]		
2-Z14-1	9	1104	19	1169	9	discordant (Pb-Pb age)
2-Z15-1	27	1231	24	1197	15	
2-Z17-1	224	1001	202	680	23	
2-Z18-1	32	939	50	1031	24	
2-Z19-1	13	1225	43	1324	13	discordant (Pb-Pb age)
2-Z2-1	21	978	47	1218	21	discordant (Pb-Pb age)
2-Z3-1	31	1536	39	1482	19	3 - 7
2-Z4-1	35	1510	91	1464	31	
2-Z7-1	37	1654	63	1601	22	
2-Z8-1	10	1286	76	1454	10	
2-Z9-1	86	1017	65	1047	16	
3-Z1-1	31	1207	33	1162	15	
3-Z2-1	68	441	10	436	5	
3-Z2-2	40	444	9			
3-Z3-1	62	1104	50	1138	17	
3-Z4-1	121	1199	86	1242	22	
3-Z4-2	22	1398	29	1361	15	
4-Z14-1	25	986	20	927	12	
4-Z14-2	33	1664	64	1621	20	
4-Z15-1	18	1051	21	1055	12	
4-Z2-1	33	1528	31	1491	19	
4-Z3-1	64	1374	89	1456	39	
4-Z4-1	32	1404	63	1480	27	
4-Z7-1	142	1056	120	1015	33	
4-Z8-1	54	1114	125	1343	35	
5-Z1-1	13	1658	31	1638	12	
5-Z1-2	10	1716	28	1651	10	
5-Z13-1	92	1021	80	1088	34	
5-Z14-1	11	1065	19	1175	11	discordant (Pb-Pb age)
5-Z14-2	13	1147	22	1144	13	discordant (Pb-Pb age)
5-Z16-1	528	776	213	985	39	
5-Z17-1	145	935	60	1012	33	
5-Z18-1	14	901	31	1256	14	discordant (Pb-Pb age)
5-Z2-1	41	595	113	977	34	
5-Z21-1	52	1438	95	1243	33	
5-Z22-1	261	1151	156	1268	42	
5-Z23-1	26	1474	51	1614	24	
5-Z26-1	612	0	320	930	37	
5-Z28-1	13	1284	43	1263	12	
5-Z29-1	76	1378	77	1308	31	
5-Z30-1	86	803	38	885	28	
5-Z31-1	108	1277	89	1248	39	
5-Z4-1	126	1004	97	1005	32	
5-Z5-1	117	966	88	1005	32	
5-Z7-1	274	809	88	884	30	
5-Z8-1	83	1302	96	1590	44	
5-Z9-1	29	1143	54	1274	27	

Anhang V: Abkürzungen

Abkürzungen, die in dieser Arbeit verwendet wurden: Abkürzungen von Mineralnamen wurden hauptsächlich von BUCHER & FREY (1994) übernommen.

Ab	Albit	Pl	Plagioklas
Abb.	Abbildung	Pr.	Probe
Act	Aktinolith	Prg	Pargasit
Alm	Almandin	Px	Pyroxen
Am	Amphibol	Prp	Pyrop
An	Anorthit	Py	Pyrit
And	Andalusit	Qz	Quarz
Aug	Augit	Rt	Rutil
Bt	Biotit	Ser	Serizit
Byt	Bytownit	Sil	Sillimanit
Cc	Calcit	Spl	Spinell
Chl	Chlorit	St	Staurolith
Chr	Chromit	Ttn	Titanit
Cld	Chloritoid	Tur	Turmalin
Crd	Cordierit	Zrn	Zirkon
X/a1 0/	Value anno mant		

Vol. % Volumenprozent


Crn Korund

Cpx Klinopyroxen
Di Diopsid
Dias Diaspor
Ed Edenit
En Enstatit
Ep Epidot

Fac Ferroaktinolith
Fs Ferrosilit

Gew. % Gewichtsprozent

Grt Granat Hbl Hornblende Hc Herzynit Hedenbergit Hd Hem Hämatit Ilm Ilmenit Kfs K-Feldspat Ky Disthen Lab Labrador Mnz Monazit Ms Muskovit Oam Orthoamphibol Orthopyroxen Opx Pgt **Pigeonit**

