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INTRODUCTION

In 1832 C.F. GauB (cf. [7]) remarked that in Euclids system of axioms there is missing a
description of the concept of “order”. This gap was closed in 1882 by M. Pasch (cf. [32],
§ 1) by introducing the notion “betweenness”, i.e. a ternary relation on the set of all
collinear triples of points obeying certain axioms. D. Hilbert assumed the order axioms
of Pasch in a modified way for his foundation of the Geometry in his “Grundlagen der
Geometrie” (cf. [10]).

In 1949 E. Sperner tried to describe the orderstructure of a geometry by a function the
so called orderfunction. This led to a generalization of the notion order, which Sper-
ner called halforder. While an ordered affine geometry consists always of infinite many
points there are halfordered affine geometries with a finite number of points. Already
in a halfordered geometry one can introduce segments and halflines, and so the concept
of convex subsets. Sperner called an orderfunction convex if all segments are convex
subsets.

The development of the theory of orderfunctions in affine and projective geometries
and their interplay with the corresponding halfordered and ordered algebraic structures
initiated by Sperner [33],[34],[35] was continued by H. Karzel [16],[17],[18], J. Joussen
[12],[13], F. Kalhoff [14],[15] and A. Kreuzer [24],[25],[26],[27]. H.-J. Kroll [29] studied
in 1977 orderfunctions and so ordered and halfordered structures in circle geometries, in
particular in hyperbola structures which contain the Minkowski planes. The hyperbola
structures belong also to the class of chain structures (cf. §1.6).

The aim of this thesis is to introduce concepts of orderfunctions, orders and halforders
in chain structures and to develop their theory, in particular with regard to convexity.
This thesis starts with the very general notion of an I—net (cf. 1.1). Examples of [—nets
can be obtained from affine planes (P, L). If {®,; | i € I} is a set of parallelclasses of
(P, L) then (P, ®;;i € I) is an [—net.

In the following let (P, ®;;i € I) be an I—net. Then for any i, € I, i # j a bi-
nary operation O;; : P x P — P (cf. pag.17) can be defined in a natural way such

that (P, 0;;) becomes a semigroup. A subset M C P will be called joinable (accordin-



gly like in a Minkowski plane) if V X € & := (J,.;®;, | XN M| < 1 and a chain if
VX e€®, [ XNM|=1. The set of all chains will be denoted by €. Each joinable subset
is contained in a maximal joinable subset and each chain is a maximal joinable subset.
For |I| > 3 there are examples of /—nets containing maximal joinable subsets which are
not chains (cf. (1.2.5)). If [I| > 3 then for all X,Y € &, |X| = |V, if |[I| = 2 hence
I ={1,2} then fori € I and X,Y € &,;, |X| = |Y| but if A € &, and B € &, then
|A| = |B| if and only if € # () and then there is a one-to-one correspondence between €
and the symmetric group Sym®; (cf. (1.3.9)). For |I| > 3 it is not so easy to determine
€. Clearly if (P,®;;i € I) is obtained from an affine plane (P, L) and & # L then
L\6 CC.

But in an affine plane (P,, £,) one can define 3—nets (P, &, &y, B3) such that no chain
is contained in a line of £, by fixing a point 0 € P, and two distinct lines Xy, Xo € L,
through 0 and defining:

P:=P,\(X1UXy), & ={LNP|Le L, \{Xi}:L| X;}forie {1,2} and
Gy ={LNP|Lel,\{X,Xo}:0€L}.

If (P,, L,) is an anti-Fano plane then one can associate to each point p € P a chain
[pls consisting of collinear points but p (cf. (1.2.11)), if (P,, L,) satisfies further con-
ditions there is a set &, of conics which are chains of the 3—net (P, &1, &5, &3) such
that (P, &1, By, B3,8,) is even a 4—net (cf. (1.2.10),(1.2.11)). The sets of chains
[Pla :={[pla | p € P} and &, coincide if and only if (P,, L,) is of order 4; in this case
(P, ®1 UGBy U B3 U B,) is the affine plane of order 3.

These examples suggest to consider the following situation: Let (K +, -, <) be an orde-
red or halfordered field, let K, :={A e K| A >0}, P =K, xK,, &, :={(z,K,) |z €
K.}, & :={(K,z) |z e K}, B3:={<m>={(z,mz) |z K} | meK. } It
turns out that (P, &, &, B3) is a 3—net and for K = R the set M := {(z,27") |z € K, }
is a chain, which can be altered to a maximal joinable set M,; but which is not

i—maximal for i € {1,2,3} (cf. (1.2.5)).

From chapter 1.3 on we consider only 2—nets (P, ®, ®,) for which the set € of chains

is not empty. Then there is only one binary operation



O:=0p:P xP = P;(z,y) = z0y := [z]; N [y]2 (cf. page 17)

and a subset S C P is joinable if for all {a,b} € (5) : aOb ¢ S, where (¥) :=
1,29, ..., 2} TP | |{x1,29,...,2,}| = n}, with n € N. If & is any subset of € then
(P, &1, By, R) is called chain structure. Classical chain structures are besides the webs
(i.e. (P,®1,®,, R) is a 3—net) the 2—structures (cf. [22], p.87) characterized by

(I2) For all joinable {a,b} € (}), 3 K € R:a,b € K,

the affine plane characterized by (I2) and

(P) For all K € g, for all p e P\ K there is exactly one L€ R:p€ Land LNK =0,
the hyperbola structures (cf. [22], p.87) characterized by:

(I3) V joinable {a,b,c} € (}) 31 K € R:a,b,c€ K

and the Minkowski planes characterized by (I3) and by

(B) For all K € R, for all k € K and for all p € P\ (K U [k]; U [k]2) there is exactly

one L € K such that p € L and LN K = {k}.

Each chain F € € can serve as a “frame of reference for a coordinate system” since the
restriction

O0:ExE—P;(z,y) — 20y

is a bijection. The generators of &, and &, are represented by the sets aOF and Elq
respectively, with a € F.

On the other hand if E' is a non empty set, F can be imbedded in the 2—net
V(E):=(P:=EXxE, 6 :={(z,E) |z € E}, & :={(FE,z) | = € E})

by identifying F with E' := {(z,z) | x € E}. Then the set € of chains of v(E) is not
empty since E' € €.

Between the binary relations p of E and the subsets of P there is a one-to-one corre-
spondence given by

Clp) ={20y | z,y € E: (z,y) € p}.

In section 1.3 we consider the relations p of E for which the subset C(p) is joinable,
maximal joinable, i—maximal (i = 1,2) or a chain respectively. C(p) is a chain if and
only if p defines a permutations of F.

In section 1.4 there are collected all known facts about chain operations. The set € of all



chains can be provided with a ternary operation 7 such that after fixing a chain F € €,
the binary operation

A-B:=71(AE,B)

turns € in a group (€, -), which proves to be isomorphic to SymE (cf. (1.4.3)). With 7
we can distinguish subsets & of €, hence of chain structures. & is called symmetric or
double symmetric respectively if for all A, B of &, 7(A, B, A) € & or for all A, B,C of
S, 7(A,B,C) € & (cf. 1.5) respectively. If E € & then & is double symmetric if and
only if & is a subgroup of (&,-). Each 2 C € possesses a symmetric closure 2~ and a
double symmetric closure 2A~".

The interplay between subsets of the permutation group Sym£E and the chain structures
R via the map (cf. (1.3.3))

C:SymE — € p— C(p) :=={z0p(z) | z € E}

is studied in 1.6.

Sperner started from the idea that in a geometry (in particular in a plane) each hyper-
plane (line) H splits the set of points in three classes, the points incident with H and
the two “sides” of H. If P and $ denotes the set of points and hyperplanes respectively
he described this fact by a function

h:9xP—{0,1,-1}; (H,p) — H(p)

which assumes exactly then the value 0, if p is incident with H. He called such a func-
tion orderfunction. To each orderfunction h Sperner associated derived orderfunctions
of degree 1 and 2 by:

B9 xPxP—{0,1,-1}; (H,p,q) = (Hp,q) := H(p) - H(q),

B9 xHxPxP—{0,1,-1};(H,J,p,q) — [H, JIp,q] :== H(p) - H(q) - J(p) - J(q)-
The derived orderfunction A’ is characterized by

(O1) Forall H € §, for all z,y,z € P\ H : (H|z,y) - (H|y, 2) = (H|z, 2)

and induces on each line F a betweenness function ¢ if the following hyperplane condi-
tion is satisfied:

(02) Let a,b,c € E and let A,B € $ with ¢ € A,B and a,b ¢ A, B then (A|a,b) =
(Bla,b).



In this case the function

¢€:E¥ :={(c,a,b) € E* | a,b # ¢} = {1,—-1}; (¢, a,b) — (c|a,b) := (Cl|a, b)

where C' is a hyperplane with ¢ € C and a,b ¢ C is welldefined and £ obeys the law:
(Z) For all a,b,c,d € E, a # b,c,d : (alb,c) - (alc,d) = (alb, d).

The second part of this thesis starts with a halfordered set (E,£), i.e. the set E is
provided with a betweenness function &, i.e. & satisfies (Z). Following E.Sperner ([33],
p.128) we associate to & three functions ke, 3¢ (cf. p.55) and the separation function 7¢
(cf. p.57). If E is a line of a halfordered affine plane (P,, L,, h) and & induced by h then
¢ satisfies (R1) (cf. p.57). But in general this condition is not valid and this leads to
the concept “related halforders”; halforders & which satisfy (R1) are called selfrelated
and these are characterized by the statement that k¢ is a constant function (cf. (2.1.1)).
Therefore according to Sperner the selfrelated halforders decompose in harmonic and
anharmonic ones depending whether kK = —1 or k; = 1. & defines an order if 3¢ is
constant assuming the value 1. This implies that £ is harmonic. But there are harmonic
halforders which are not orders. An harmonic halforder £ is an order if and only if (F, &)
is convex (cf. (2.2.1)).

Two betweenness functions §; and &, of E are called equivalent if 7;, = 7¢, and they are
called related if for all distinct a, b, ¢,d € E, 7¢ (a, b, ¢,d) = 7¢,(c, d, a, b). All betweenness
functions of F which are related to a fixed one form an equivalence class; in particular if £
is selfrelated then the equivalence class of & consists of selfrelated betweenness functions.
& and & are equivalent if and only if there exists a valuation 5 : E — {1,—1};2+— =
such that for a,b,c € E,a # b,c, &(a,b,¢) = &i5(a,b,¢) := & (a,b,c) - b-¢ and then
ke, = ke, (cf. (2.4.2)).

The question whether an anharmonic halfordered set (E, &) can be convex is discussed
in (2.2.2).

Sperner showed that between the halforders of a desarguesian affine geometry and the
subgroups D of index 2 in the multiplicative group K* of the corresponding field (K, +, -)
there is a one-to-one correspondence. If moreover D is a semigroup with respect to “+”
then D is a positive domain and by “a < b< b—a € D”, K becomes an ordered field
(K, +,-,<).
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If we set
1 if AeD

1 if A¢D
and ¢ : K¥ — {1,—-1}; (a,b,c) — sgn(b— a) - sgn(c — a) then (K, &) is a halfordered set

sgn: K* = {1,-1}; A — sgn) :=

and moreover the translations a™ : K — K;x — a + x for a € K are automorphisms of
(K,&). In 2.3 we generalize this fact by replacing the translations by a “locally transitive
permutation set” (E,X;0) and the subgroup D by a “semidomain”. Here it turns out
that X is contained in the automorphism group Aut(E, &) of (E,€) and that if (E, X;0)
is a locally transitive permutation set and ¥ C Aut(E,&) then Aut(E,&) acts transi-
tively on E (cf. (2.3.2)).

The separation function 7 derived from a halforder £ satisfies two laws (Z); and (Z),
(cf. § 2.4), which are used to introduce the general notion “separation function”.

In (2.4.3) there is answered the question when a separation function 7 can be derived
from a betweenness function £. This condition is satisfied if 7 is selfrelated. According
to the concept “ordered projective geometry”, (E, ) is called ordered if for all distinct
a,b,c,d € E exactly one of the values 7(a,b,c,d),7(b,c,a,d),7(c,a,b,d) is equal —1.
(E, ) is ordered if and only if there are betweenness functions & which are orders with
T = 7¢ (cf. (2.4.5),(2.4.6)). From this fact follows: If (E, ) is a halfordered set then
there is a valuation 3 such that £z is an order if and only if (F, 7¢) is ordered.

In 2.4.1 we determine for a given order (F, £) the valuations § such that (F, &) is again
an order.

In section 2.5 we consider the set C' := {(a,d;b,¢c) € ((})) | (alb,c) = —(d|b,c) = 1},
where ((7)) :== {(z,y,2,t) € E* | {z,y,2,t} € ()} and the subset C := {(a, d;b,c) €
C" | (alb,d) = 1} whose elements are called conver quadrupels. Then (FE,£) is cal-
led trivially convexr or separation free if C' = () and conver if C = C' # . If
one looks at two open segments |a,c[ and |b,d| with b €]a,c[ and ¢ €]b,d|, then one
has the impression that d is a point of the halfline cf)c. This picture leads to the
definition of the sets D' := {(a,b : ¢,d) € ((¥)) | (c|d,b) = (blc,a) = —1} and
D = {(a,b : ¢,d) € D' | (alb,d) = (d|a,c) = 1} and we call (E,&) D-conver, if

D = D'. The connections between these different convexity concepts, also in the case
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of halfordered field, are examinated. Moreover a subsection is dedicated to the study of
the concept of the 7—convexity.

In the last section of chapter 2 the definition of a halfordered permutation set is given.

Chapter 3 is dedicated to the question
“What shall we understand under the notion “halfordered net” and “halfordered chain
structure”?”
If we consider the attempts for an axiomatization of the classical absolute geometry we
find with respect to order two basic starting points, the betweenness relation on the set
of collinear point-triples (M. Pasch [32]) and the splittings of the set of points by lines
or planes. This last idea we find already in D. Hilberts lecture notes of the years from
1891 to 1899 and then mainly in the mentioned publications of E. Sperner. From the
so called axiom of Pasch it follows for the Euclidean geometry that the betweenness
relations £ is invariant against parallel perspectivities and if we extend the Euclidean
Geometry to the projective one then the associated separation relation 7¢ is invariant
against central perspectivities. This led to the following notions of halfordered affine
and halfordered projective spaces (cf. [19], pages 239-240 and pages 232-233). Let (P, L)
be an affine (projective) space, let P¥ (P*) be the set of all collinear tripels (a, b, ¢)
(collinear quadrupels (a, b, ¢, d)) of points with a # b, ¢ (a,b # ¢,d) and let
£:P¥ = {1,-1}; (2,9, 2) = (z[y, 2)
(r:PY = {1,-1}; (z,y, z,u) = [z, y|z, u])
be a function such that for collinear point sets the condition (Z) ((T)) (cf. § 2.1) is
satisfied and the function £ (7) is invariant against parallel (central) perspectivities then
(P, L&) ((P,L,7)) is called a halfordered affine (projective) space.
If we start from Sperners approach (P, $3, h) where (P, §) is an affine (projective) space,
if  is the induced betweenness function then (P, 9,&) ((P, 9, 7¢)) is a halfordered affine
(projective) space. Sperner showed vice versa that to a halfordered affine (projective)
space there exists always an orderfunction h of (P, $) such that h induces & (7).
Here in our case of a net (P, 1, &,) or a chain structure (P, &, &,, K) we follow these

two approaches and we have to decide how to replace the notion “collinear”.
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A point set which is located on a common generator will still be called collinear and a
point set which is located on a chain of the chain structure cochainic. Moreover we need
compatibility conditions with respect to distinguished maps.

From the 2—net (P, &1, B,) there are comming two types of perspectivities, one along
direction 1 the other along direction 2; they are given by: If {i,5} = {1,2} and
A,B € ;U R then

[A—%B]:A—)B;ar—) [a]; N B.

From the chains K, L € K there are comming the maps II{\,JL and K (cf. p.41 and
p.44).
In order to copy the definition of a halfordered affine plane we have to consider in our
net (P, 1, B,) the set P39 of all collinear tripels (a, b, c) with a # b, ¢ hence
P39 = {(a,b,c) € P> | a#b,cATie{1,2}:[a]; = [b]; = [c]s}
and if even a chain structure is given also the set
P38 = {(a,b,c) eP3 |a#bcAIK € R:a,bce K}
of cochainic point tripels.
Then we have to assume that there is given a map & : P3¢ — {1, —1} such that for each
generator G € &; U &, the restriction g is a betweenness function of G (cf. (Z1),,
p.102) and that & is invariant with respect to the two types of perspectivities (cf. (Z2),,
p.102). This is already the definition of a halfordered 2—net (P, &1, B9; &), a definition
which is not yet very satisfactory. For if G, H € &; U &, are two generators then the
two halfordered sets (G, v ) and (H,{ ) are isomorphic if G and H are of the same
type but this must not be true if G and H are of different types.
For a halfordered 2—net (P, &1, Bo; &) we can state:
Let G € &, and H € &, then (G, ¢ g ) and (H,§ ;) are isomorphic if and only if € # )
and there is a K € € such that:
V (a,b,c) € P? : (alb, ¢) = (K(a)|K(b), K(c)).
This leads us to the definition of a halfordered chain structure (P, &1, B9, &; &) (cf. §
3.1) and here the function £ can be extended to a function £ which is also defined on all

point tripels which are cochainic with respect to K (cf. § 3.2). Then for each K € &,
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(K, a k%) is a halfordered set.

If £ € & is fixed and € := {C € € |0 € Aut(P,£)} "=? C(Aut(E,E ) “Z”
{{z0a(z) |z € E} |a € Aut(E,aEy)} and if R~ denotes the closure of ! with respect
to the ternary operation (€, 7) (cf. p.45) then 8 C R~ C € and with (P, &, &, &;§)
also (P, By, By, R™;€) and (P, By, By, €; €) are halfordered chain structures (cf. (3.1.7)).
Moreover if A - B := 7(A, E, B) then € and £~ are subgroups of (€,-) and (g, ) is
isomorphic to (Aut(E,flEy),o) (cf. (4.1.3)).

In order to follow the second approach we start from a 2—net (P, &, B2) with € # (),
fix a chain F € K and assume that E splits the points of P not incident with E in two
parts, i.e. that there is given a function
E;: (P\E)x (P\E)—{1,-1};(a,b) — E4(a,b) with E;(a,b) - Es(b,c) = Es(a,c) for
a,b,ce P\ E.

A vparticular class of splittings are the selfrelated ones characterized by FEg(a,b) =
Ey(E(a), E(b)) for a,b € P\ E (cf. Def. 3.3.1).

To each splitting (P, &1, &, E;) of (P, &1, ;) by a chain F there correspond two bet-
weenness functions &, &, of E defined by & (a,b,c) := Es(a0b,a0c) and &.(a,b,c) =
E¢(bOa, cOa) (cf. (3.3.1)) which are related and which are equal (hence selfrelated) if
and only if E; is selfrelated.

On the other hand if & and & are related betweenness functions of E then & and
&, define exactly one splitting E; = E,(&1,&) of P by E such that & = &/(F;) and
& = & (Es) (cf. (3.3.2)). Moreover if Ey is selfrelated then & := £(E) is harmonic or
anharmonic if for z € P\ E, E,(z, E(z)) = —1 or = 1 respectively.

Each halforder ¢ of E can be induced by two binary relations “ < ” on F characterized
by
() Va,b€ E,a#b: eithera < borb<a,
such that: If we set
1 if a<b

alb) = ,
(al?) -1 if b<a
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then &(a, b, c) = (alb, c) := (al|b) - (a|c).

11

To such a relation “ <” there corresponds the subset

D :=C(<):={20y | z,y € E: z < y} with the property:
(D2)3IEe€¢:P=DUEUE(D) is a disjoint union.

A subset D of P satisfying (D2) will be called E-domain.

Also if E; is a harmonic splitting of P by E and d € P\ E then D := {z € P\
E | Es(z,d) = 1} is an E-domain.

Each E-domain D defines by “a <p b :< a0b € D” a binary relation on E satisfying
() (and we have C(<p) = D) and by

1 if x,y € D or x,yEE’(D)

E(D)(z,y) = , ~ ~ ,
-1 if ze€eD,ye E(D) or z€ E(D),y€ D

a splitting of P by E.

If an E-domain D has the property

(1)Va,be D withaObg DUE :b0a € DUE

or

(2)Va,be D withaObe E:b0a € DUE

or

(3) Va,b€ D with a0b € E : b0a € D

respectively then the corresponding splitting is called weakly conver or conver or strongly
conver respectively and D is called a positive domain if

(D1) Va,be D with a0b ¢ D : b0a € D.

We show that for an F-domain D and the corresponding relation “ < 7 the state-
ments “¢(Fs(D)) is an order of E”, “ < is a total order relation on E”, “D :=
C(<) is a positive domain” and “E4(D) is a strongly convex splitting” are equivalent
(cf. (3.4.5),(3.4.6), (3.6.2),(3.6.3)). Moreover under the assumption that £ is selfrela-
ted, “€ is D—convex” and “the splitting F4(£) is weakly convex” are equivalent (cf.
(3.3.2), (3.4.3)).

In section 4.1 the close relations between halfordered chain structures and halforde-
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red permutation sets are stated in two main theorems (cf. (4.1.1) and (4.1.2)).

In section 4.2 the connection between halfordered chain structures and splitting by
chains is investigated : For any p € P let p; := [p]1 N E, ps := [p|]a N E hence p = p;Ops
and let

P3g — {1’ _1}
n: (a’ b’ C) . (a‘b’ C) _ Es(bDCL]_; CDal) lf [CL]Q = [b]2 = [0]2
E(a:0b, a0¢) if [aly =[]y = [cs

then (P, &1, B9;7) is a halfordered 2—net which can be extended to a halfordered chain
structure (P, &1, B9, K; n) if and only if (F, &) and (E,&,) are isomorphic. In this case,
E € ¢, (cf. p.13) if and only if Ej is selfrelated (cf. (4.2.2)).

If (P,®,®,, R;€) is a halfordered chain structure then to each K € €, there corre-
sponds a selfrelated splitting K(§) (cf. (4.2.1)).

In the last section of chapter 4 the automorphism groups of splittings and positive do-

mains of a 2—net are studied, the main results are given in (4.3.3),(4.3.4) and (4.3.5).

I cordially want to thank Prof. Dr. Dr. h. c¢. Helmut Karzel for the suggestion for
the topic of this thesis and his outstanding care during the work. Moreover I want to
thank Prof. Dr. Alexander Kreuzer for his support at the University of Hamburg and
the research group of Geometry at the Catholic University of Brescia who gave me the
opportunity to make this instructive experience in Germany. Other people who I want

to express my gratitude are Wernt, my family and all my friends.
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1 Nets, chains and permutations
1.0 NOTATIONS

If A, B are non empty sets let M (A, B) be the set of all maps from A into B and let
Bij(A,B) :={f € M(A, B) | f is bijective }. For A = B we set M(A) := M (A, A) and
SymA := Bij(A, A).

If A, B are subsets of a group (G, -) then we call A normal with respect to B if:

VbeB: b-A-bt= A

If P is a non empty set let J := {a € SymP | o® =id}, J* := J\ {id} (= set of all
involutions) and (¥) := {{z1, 22, ..., zn} C P | {21, 22, ... T }| = n}, with n € N.
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1.1 I-NETS AND THEIR AUTOMORPHISM GROUPS

Let P be a set and let & be a subset of the power set of P; the elements of P and &
will be called points and generators respectively. The pair (P, ®) is called an [—net if

there is a partition & = | J,.; ®; of & such that V X € & : | X| > 2 and the following

el
two conditions are valid:
(N1) For each point z € P and each i € I there is exactly one generator G € &; with
x € G; this generator will be denoted by [z];.

(N2) Any two generators of distinct classes &; # &; intersect in exactly one point.

In the following let (P, ®) be an [—net, which we will also denote by (P, ®;;i € I).
If [I| > 2 we can form by (N1) and (N2) for each pair (i,5) € I?, with 7 # j, the

following operation:

O PxP — P
) @) o~ 20gyi=lalinil
For || = 2:
[x]
1
X
X0y y [y],

12

FIGURE 1.1.
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(1.1.1) For (P,®;i € I) let |I| > 2, 4,5 € I withi # j, 0 € P be fized and X :=
[0];,Y :=[0];. Then:
(1) The map:

XxY —» P

Xy ° ’

(z,y) — 0y

O

18 a bijection.
2)Viel, YG,He ®;: |G|=|H| and |P| =|X|-|Y|.
(3) If [I| >3 thenVY G,H € & : |G| = |H| and |P| =|G|%.

Proof. (1) If we consider the map:

P — XxY
(2 ;
z — ([zinX,[z];,NY)

we have Oijixxy ©P = 1dp and @ o Oijixwy = 1dxxy, hence Oijixwy 1S 2 bijection.

(2) Let 4,5 € I, with ¢ # j, and G, H € &;; since the map:

G — H

r — [z;NH ’

is a bijection, we obtain |G| = |H|. Moreover by (1) |P| = |X|- |Y].

(3) Let G,H € &, with G € &, and H € &;, and let k € I\ {3, j}; then the map:

k G — H
[G—)H] ’
x = [zlgNH

is a bijection, hence |G| = |H|. Moreover by (2) we have: |P| = |G[%. O

Definition 1.1.1 Let ® C ‘B(P). Then a permutation o € SymP is called an auto-
morphism of the structure (P, D) if for all X € PB(P) we have:

XeDsoX)eD.

If Aut(P,D) denotes the set of all automorphisms of (P, D) then (Aut(P,®),0) is a
group.
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Remark. In the case

(a) (P,®) := (P, L) is an incidence space or

(b) (P,®) := (P, ®;;i € I)is an I—net, with |I| € N, we have:

if foroc € SymP andV X € D: o(X) €D, thenalsoV X € D: o7 1(X) € D.

Proof. (a) Let X € £ and z,y € X, with x # y. Then 07 '(z) # 0~ '(y) and there is
exactly one Y € £ with o !(z),07*(y) € Y. Then z,y € 6(Y) € £ and so (V) = X
this implies 0 1(X) =Y € L.

(b) For p € P let &(p) :={X € & | p € X}, then |&(p)| = |I|. If X € &,z € X and
i € I then by assumption there is exactly one j € I with o([c™(2)];) = [z]; € &(=).
Since X € &(z) and since |I] is finite there is exactly one k € I with o([o™!(z)]x) = X.
But then 0 }(X) = [0 1(2)]; € .0

We set T := Aut(P, & := ., 8,), T := Aut(P,&ziecl):={oeT |Viel, VX ¢
®;:0(X)e®;}andforeachi€ I[,T;:={yeT |VzeP:[y(x)=][z];}. Then:

(1.1.2) Let o €T, X € &; and 0(X) € &;, then 0(8;) = &; and :

VzeP:o(z])=lox);.

Proof. Let X, Y € &;, with X #Y, 2z € X andy € Y ; then X = [z]; and YV = [y);
and X NY = (. Suppose o(X) = o([z];) = [o(2)]; and o(Y) = o([yl:) = [0(y)]k, with
k# 55 then 0 = o(0) = (X 1Y) = 0(X) N 0(¥) = [o(a)]; N oy} # 0 which is a

contradiction. Hence k = 5. O

Remark. By (1.1.2) to each o € T there corresponds a permutation o/ € SymI defined
by o([z];) = [0()]s ;) and this map

!

I:{F — SymlI

g o

is a homomorphism with the kernel T since (700 (2)](reay (i) = (T00)([2];) = T(0([2]s)) =
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7([o(z)]o i) = [T 0 0(2)]7(or(i))- Consequently (T oo) =100, ie.:
(1.1.3) T «T.
(1.1.4) T; < T.

Proof. Let 7i,7,7 € Ty; then V 2 € P we have [z]; = [v1(2)]; = [72 0 11 (2));, i.e.
o €T and o] = (@) = @) ie. 1 € Th.0

(1.1.5) Let I = {1,2} and T := T\F+. Then:

()Vie{1,2},T,<T".

2 Vxel VzeP:x(al)=x@) and x([z]2) = [x(@)]-

(3) If there are X € &y, Y € &, with | X| = |Y|, i.e. if there exists a bijectionm : X — Y,
then the map:

P:XD12Y — P:Xmlgy

(z01y)  +— 7 (y)Opr(z)

is an involution withy €T and T = T {id, v} is a semidirect product.

Proof. (1) If o € T; then o'(i) = 4, so o' = id; because |I| = 2 and hence o € "

(3) Let x € X,y € Y; then we have: y?(z0yy) = y(7 ! (y)Oom(x)) =

7 (7 (2))0Oem (7 (y)) = 202y, hence 7 is an involution. Moreover, since [z]; =
{201y | y € Y}, we obtain: y([z]1) = {y(20wy) |y € Y} = {77 (y)Dnr(z) | y €
Y} = XOpr(z) = [7(2)], hence y e T\ T

Nowlet 0 € T;if o € T we can write 0 = 0 oid. If 0 ¢ T then coy:=7 €T and
we can write 0 = 7oy ! =707, hence I =T o {id,7}. Since T < T, {id, 7} < T and
r'n {id,~v} = {id} we obtain: T = T x {id,~}.0

Remark. If for each i € I we set f: ={y € T |V 2 e P:[y(x); =[z];} then we

observe:
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for I ={1,2}: T, = f;r (in fact let j € I\ {i},7 € T; and = € P; then v([z];) # [y(z)]:
implies y([z];) = [v(z)];, ie. y €T");

for |I| >2: T; # f;L (in fact if for example I = {1,2, 3} we can find elements of T'; which
are not in f;r: let P := {a,b,c,d}, & := {{a,d},{b,c}}, & := {{d,c},{a,b}}, &3 :=
{{a,c},{d,b}} (cf. figure 1.2), let v € T with y(a) = a, y(c) = ¢, v(b) = d, v(d) = b.
Then v € Ty but v & T'5 since v([d];) = [0]o.

a b y: a—= a
b—= d
cC—= ¢
d—= b

d

FIGURE 1.2.
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1.2 JOINABLE SUBSETS OF AN I-NET AND CHAINS
A subset M C P is called joinable if

VXed: IMNX|<L

Let 9 be the set of all joinable subsets M of our I-net (P, &;;i € I).

121)(a)VMeMVILCM:LeM
(b)VAeMMA) :={M e M| AC M} is inductively ordered with respect to “ C ”.
(c) Each M € M(A) is contained in a mazimal joinable subset M' of IM(A).

Proof.(b) Let K C MM(A) be totally ordered in (9(A), C), let L :=[J R and let X € &.
Suppose ai,as € LN X. Then there are K, Ky € K with a; € K;,a, € K, and, since R
is totally ordered, let for istance Ky C K, i.e. aq,a; € Ko N X. Since K, is joinable,
ie. |[KyN X| <1 we obtain a; = ay. This shows L € 9M(A) and K C L for all K € R.

(c) Since (b) is true, by Zorn’s Lemma each M € 9t(A) is contained in a maximal

joinable subset M' € M(A).O
Let 9., be the set of all maximal joinable subsets of 9.

(1.2.2) Let Ac M,z € P\ A; then:

(1) Au{z}eMe Viel: [z;NA=0.

(2) AeMpw &V eP,Jiel: [z;NA#D.

B)If|I| =2, A€ Mpaw and X € & with A N X =0, thenVz € X : [x] N A # 0.

LI we

Proof. (2) “<«< 7 Let y € P\ A arbitrary; then 3ie I : 0 # [y,NA=7
consider AU {y} we have (AU {y}) N [yl: = {v, 7}, hence |[(AU{y}) N[y];| = 2 and this

implies that A € IM,,,05-

LTf the intersection of two sets A, B consists of a single element p, we will write instead of ANB = {p}

also AN B =p.
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“ =7 This is a consequence of (1).0

A subset C of P is called a chain if the following condition (N3) is satisfied:

(N3) Every element X of & :=J,.; ®; intersects C in exactly one point.

icl
Let € be the set of all chains.

(1.2.3) (1) € C Mz
2)VC,Dec,Vi,jel, withi# j, the map

CxD — P
("2 ;
(z,y) +— 204y

15 a bijection.

(3) Aut(P, M) = Aut(P, Mypar) = Aut(P, 8) C Aut(P, €).

Proof. (3) (a) “ Aut(P, M) C Aut(P, Mynaz) ”-

Let a € Aut(P, M) and let M € M,,4,. Then a(M) € M. Suppose a(M) & M4,
i.e. there is a M' € M with a(M) C M' and a(M) # M'. Since Aut(P,9M) is a group,
we obtain M C a™'(M') € M and M # o '(M'), i.e. M is not maximal which is a
contradiction. Consequently Aut(P, M) C Aut(P, Myaz)-

(0) « Aut(P, Mypaz) C Aut(P, &) 7.

Let a,b € P, with a # b, such that [a]; = [b];, with i € I, and let v € Aut(P, Momag)- Sup-
pose [y(a)]; # [y()]; for all j € I then {y(a),v(b)} € M. By (1.2.1)(c) 3 C € M0z :
v(a),v(b) € C and so, if we apply 7' € Aut(P, Mnq4z), We obtain a,b € v~ (C), where
7 HC) € Mz C M. Hence {a,b} € M which contradicts a # b and [a]; = [b];.
Therefore there is an j € I such that [y(a)]; = [y()];, i.e. v € Aut(P, ®).

(c) « Aut(P, &) C Aut(P,IM) .

Let v € Aut(P, ®), M € 9M; then by definition we have: VX € & : [X N M| < 1. Since
Y(XNM)=~vX)Ny(M) and v(X) € & we obtain |y(X)Ny(M)| < 1,ie. y(M) e M.
(d) “ Aut(P,®) C Aut(P, <) ”.
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Let o € Aut(P,®), C € € and X € &. Then o *(X) € &, hence C N a '(X) =: {p},
and so a(C)NX =a(CN a (X)) = {a(p)} shows that a(C) € €.0

A set A € M is called i—mazimal if i € I and [A]; ;= |J{[a]; | a € A} = P. We denote
by 9; the set of all i—maximal subsets of (P, ®;;i € I), with ¢ € I.

(1.2.4) Let A € 9N, then:

(1) A is i—mazimal = A € Mz

(2) AeC€s Viel: A isi—mazimal

(3) I ={1,2} and A € M0, = F 1 € {1,2} : A is i—mazimal.

Proof. (3) Let [A], # P, ie. 3 X € &, : X NA = (. Hence by (1.2.2.2)
VizeX:[z]iNA#0Dthus [A]; =P, ie. Ais 1—maximal.O

If |I| > 3 there are examples of maximal joinable sets which are not i—maximal for all
1 € 1. We have:

(1.2.5) Let (P, 1, Bq,&3) be a 3—net such that the set € of all chains is not empty,
and let C € € be fized. For a,b € C with a # b let O := Oyp,c := [a0bl3 N C and
Cop = (CU{aOb}) \ {a,b,c}. Then Cyy is a mazimal joinable set but not 1— nor 2—

nor 3—mazximal.

Proof. (1) C,j is not 1—maximal; in fact V z € P

0 if  x €[, [ch
[z]y N Cop = ab  if x € [a]; ;
[z],N C if =z & [a,[b]1,[ch
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(2) Cyp is not 2—maximal; in fact V z € P

0 if € als,]c]o
[z]o N Cqp = adb  if z € [b]2 ;
[z], N C if x ¢ [a]s,[b]2, [c]2

(3) Cap is not 3—maximal; in fact V z € P

@ if x € [CL]3, [b]3
[z]3 N Cup = adb  if x € [aOb]3
[z, C if x ¢ [a]s, [b]s, [aD0]5

Now let z € P\ Cyp. We have to show : 3 X € & : | X N (ChpU{z})| > 2.

If x & [a], [b]1, [c]1 (x & [a]z, [b]2, [c]2) then [z]; N (CapU{z}) ([x]aN(CapU{z})) consists
of the two distinct points z and [z]; N C (z and [z], N C). Since aOb € C, it remains
to consider the cases:

(1) ifz € {aOc,a} : [z]s N (Cop U{z}) = {z,a0b};

(2) if z € {b,cOb} : [z]o N (Cop U {z}) = {z, aDb};

B)ifz=c:[z]sN(Cop U {z}) = {z,a0b};

{z,a0b} if [aObl3 = [bOal3

4) if x =b0a : |z|3N (CopUz}) = ;
W PR V=Y o wlaney i (aot, # pod)

(5) if z € {bOc, cOa} : [z]s N (Cop U {z}) = {x,[z]s N C}.O

One can obtain some examples of 3—nets (P, B, By, &3) with € # () in the following

way:

1) Projective embeddable examples: let (P, L) be a projective plane, for p € P let
L(p):={LeL|peL}andforz,y € P,z # yletT,y := L(x)NL(y). Let {a1,as,a3} €
(7) be fixed, A, := a5, a5, Ay = a3, a1, A3 = a1, as, let P := P\ (A, U Ay U Ay),
Lp={Lp:=LNP|LeL:LNP#0}and & :={LNP|LeL(a;): LNP #D}
for i € {1,2,3}. Then Net(a;,as,a3) := (P, &1, By, B3) is a 3—net; in fact:
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(N1) let x € P and i € {1,2,3} then [z]; = @5,z \ {a;, i} € &;, with [; :=a@;;zN A;, is

the uniquely determined generator.

(N2) For 7 € {1,2,3} let X; = L; \ {ai,li} € ®i; with L; € E(al) \ {Al,Ag,Ag} and
L =LA If {i,5,k} = {1,2,3} then L;,L;, Ay have no point in common
and so z := L; N L; is a single point with z # a;,a,a3 hence z € P and so

We consider € := {C € 27 |V X € 6, UB,UB; : |[C N X| = 1} the set of
chains of the 3—net (P, &, B9, ;). Clearly &; U B, U &3 C Lp \ €. Therefore let
Le L\ (L(a)UL(az)UL(az)) and [; := LN A;, then Lp := LNP € Lp.

If {a1,ay,a3} are not collinear then a; ¢ A;, hence X; = a;,1; \ {a;,l;} € &; and
LpN X; =0, hence Lp & €.

If {a1, as, a3} are collinear then (P, Lp) is an affine plane and L meets each generator

X € &; UGy U B3 in exactly one point. This gives the result:

(1.2.6) If {ay,as,as} are not collinear then LpNE =0, if {ay, as, as} are collinear then
Lp\ (G UG, UB;) CC.

In order to determine € in the case that {ay, as, as} are not collinear we introduce the

following definitions:

Definition 1.2.1 Let C C P. Then p € P is called a node or n-point of C if:

(n1) p¢C,
n2) VX eL(p):|XNnC|=1,

and a quadratic-point or g-point if instead:
(ql) pe C,

(@2) VX eL(p): | XNC| <2,

(@3) {X e L(p) [ [XNC]=1} < 1.
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We denote with N(C) (and we call N(C) the nucleus of C) resp. Q(C) the set of all
n-points resp. g-points of C. If (P, L) has order ¢ and N(C) # () then |C| = ¢ + 1. If
Q(C) # 0 then |C| < g+ 2. Moreover we have:

(1.2.7) If |Q(C)| > 2 then |N(C)| < 1.

Proof. Let ¢1, ¢ € Q(C) with ¢; # ¢o. If n € N(C) then X; := 7, ¢ are lines such that
X; € L(g;), | X;NC| =1and X; # X,. By definition of g-point there is at most one
line in £(g;) with this property. This implies N(C) = {n}.O

(1.2.8) Let C C P, {q1.¢2} € (?%), n € N(C) and let (P, &, By, B3) :=Net(q1, g2, 7).
If € denotes the set of all chains of (P, &1, Bs, &3) then C \ {q1,¢} € €.

Proof. For {i,j} = {1,2} let G € &;. Then there is a [; € ©,¢; \ {n,q;} such that
G = ¢, 1;\{q,1;}. Since n € N(C) we have |m,¢;NC| = 1 by (n2), hence |g;, ;N C| =2
by (q2) and (g3), i.e. |GN(C\ {q1,92})] = 1. Now let G € &3, i.e. there is a
Is € G, % \{q1, @2} with G = n,l3\ {n,l3} and I3 € C by (q2). By (n2) there is exactly
one point x € P with n,l3 N C = {z}, where 2 # ¢1,q,. Since I3 ¢ C and n ¢ C by

(n1), GN(C\{q1,}) = {x}.O

(1.2.9) Let {a,as,a3} € (?) with a1, as, a3 not collinear and let (P, B, &y, B3) :=
Net(a1, as,a3). Moreover let € the set of all chains of (P, &1, 89, 83), C° € € and
C:=C° U{ay,a2}. Then ay,az € Q(C) and az € N(C).

Proof. For A, := Gy, a3 and Ay := ag, a3 we have (for 1 € {1,2}) A, N C° = () thus
A;NC = {as} and A, NC = {a1}. For X; € L(a;) \ {A1, A2, A3}, with 7 € {1,2} and
Az := ay, ag, we have X;\{a;, [;} € &;, with [; := X;NA;, thus [(X;\{a;,;})NC° = 1 and
therefore | X;NC| = 2 and A3NC = {a,a2}. Soay,as € Q(C). Let Y € L(az)\{A1, As}.
Then Y\ {a3,l3} € &3, with I3 := A3NY, a1,a2 € Y and |(Y \ {as,l3}) N C°| = 1. This
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implies |Y NC| =1, s0 a3 € N(C).O
By applying (1.2.8) we obtain the following examples:

(1.2.10) Let (K,+,-) be a commutative field of char 2 with K* :== K \ {0} = K@® :=
{2? | z € K*} and (P, L) the projective plane over (K,+,-) hence P := (K®)*/K* =
{K*(zg,21,%2) | (To,71,m2) € K3\ {(0,0,0)}}. Then the equation z% + z122 = 0 de-
fines a conic C where ey := K*(1,0,0) is the nucleus, thus N(C) = {eq} (in fact:
charK = 2 implies that V X € L(ey) : X NC| < 1 and K* = K® implies that
VX € L(e): |XNC|=1) and QIC) = C. Therefore for any {a1,a2} € (5) (for
instance a; = e, := K*(0,1,0) and ay = ey := K*(0,0,1)) the set C° := C \ {a1,as} is

a chain in the 3—net Net(eg, a1, as).

Theorems (1.2.8) and (1.2.9) suggest to consider the affine plane (P,, £,) where P, :=
P\Asand L, := {LNP, | L € L\{A3}}. Weset 0:= a3, X;:= Ay)\ {a1} and
Xy := Ay \{az}. Then X, Xy € L,, P =P, \ (X1 UXy) and for p € P, [pls = (p ||
X))\ X, [pla = (p || X2) \ Xo, [pls=0,p\ {0}.

X

I [p],

P
N
o

FIGURE 1.3.
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By (1.2.6) if A € £, with A not parallel to X, Xy and 0 ¢ A then Ap := A\ (X; U X))
is not in € but Ap is a maximal joinable set if (P,, L,) is a Fano plane 2. In fact: let
r:=ANX, y:=ANX,, z:=[z]aN[y], and let t € P\ Ap. If t € P\ [z]; then
(Ap U {t}) N [tla = {t, Ap N [t]o} consists of two distinct points, if ¢ € [z]s \ {2z, 2}
then (Ap U {t}) N[ty = {t,Ap N [t]:} are two distinct points and if ¢ = z then
(Ap U{th N[ty = {t, Ap N [t]s} with Ap N [t]; # 0 and t # Ap N [t]3 if (Pe, La) s
a Fano plane. If (P,, £,) is an anti-Fano plane then Ap N[z]3 = 0 and Ap U {2z} € €.
Thus (1) of the following theorem is proved:

(1.2.11) Let (P,, L,) be an affine anti-Fano plane, let {0,e1,e2} € (%) non collinear,
X; = 0,e;, 1 € {1,2} and let Net,(0;e,€) := (P, B, By, &3) be the 3—net defined
by P =P, \ (X1 UXy), & :={GNP|Ge LN\{Xi}: G| Xi} fori e {1,2}
and 83 = {GNP |G e L, \{X1,X2} :0€ G}. Foranyp € P, i € {1,2} let
pri= XN (p || X2), 32 = Xo 01 (p | X1) ond [ple = {p} UPrzs \ {ps,pa} and let
[Pls:={[p|a | p € P}. Then:

1) [P]s is contained in the set € of all chains of the Net,(0;eq,es).
2)Vpg€ePp#q:plinlgh=0«& Fie{1,2,3}:[pl =g}

3) For p,q € P with [pl; # [q]; for all i € {1,2,3} : 1 < |[pla N [g]4] < 3.

4) If (P,, L) is a Pappus plane (cf. [23], pag.20) and if (K,+,-) is the commutati-
ve coordinate field of characteristic 2 such that 0 = (0,0),e; = (1,0) and e; = (0,1)

(
(
(
(

then each conic with nucleus 0 passing through the infinite points of X1 and Xs is given
by an equation of the form x, - x5 = a where a € K* := K \ {0}. For a € K* let
Co :={(21,22) € Py | 1 -22 = a} and let &4 :={C, | a € K*} then:

(i) “C,eCe KO =K and “C,NCy=0< a#b".

(ii) If K& = K* then (P, ®,, By, B3, &) is a 4—net.

(i) B, =[Pls & |K|=4 & Va,be K*:[(a,b)]s = Cyop.

(iv) If |K| = 4 then € = &4 = [Py and (P, ®1 U &y U &3 U By) is the affine plane of

2A quadrupel (a, b, c,d) € (Z") consisting of non collinear points are called a parallelogram if a,b || c,d
and b,c || d,a. Let £ be the set of all parallelograms of (P, L,). Then the affine plane (P,, £,) is
called Fano planeif V¥ (a,b,c,d) €7: @,enb,d # 0, anti-Fano planeif V¥ (a,b,c,d) €7: a@,enb,d = 0.
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order 3.

Proof. (2) Since (P,,L,) is an anti-Fano plane we have: V p € P : 0,p || P1, P2,

with 0,p # p1,pz. Now let {p,q} € (7;) then pr,pz # @i, - If p1,p2 | @, @ then
PP NG, ¢ = 0 and 0,p || 0,9 hence 0,p = 0,q, i.e. [p|s = [g]s and 0,p NP1, P2 =
0, 0,pNG, g = 0. This tell us [plsN[gla = 0. I D, 2 | @1, @ let {r} =D, P2 NG, G-
If r € X; for one i € {1,2} then r =p; = ¢, and so pr,p2 NG, NP =0, [pl; = [d;
where {7, 7} = {1,2}, p ¢ @1, ¢ and ¢ & P1,p; implying [pls N [gla = 0. If r & X; U X,
hence 7 € P then 7 € [pla N [gls, [pli # [ghi, [pl> # [gl2 and [p]s # [g]s since O,p ||
@ a | 0,q

(3) By the proof of (2), [plsN[gls = ((r; P2\ {p1, p2}) U{p}) N (@1, % \ {a1, 2}) U{q}) =

e

{r} if p¢q@, @& and ¢ ¢pi,P>
{r,p} if peq, @ and q¢Di,pm
{ra} if p¢T,@ and qEP P
L {rpq} if peEq,® and ¢ €D

(4) (i) The statement “ K®? = K* = (C, € €” is a consequence of (1.2.8) and (1.2.10).
Let b € K* be given. Then (b,a) € P and by definition of &3 the set G3 := {(z1,12) €
P |b-z9 =a-x} is the generator of type 3 through the point (b, a). If C, € € then by
(N3) [C,NG3|=1,ie. 22 =a-b-a"' =b has a solution and this implies K® = K*.
(ii) By (i), ®4 C €, i.e. each generator of &; U &, U B3 intersects each element of &,
in exactly one point, and again by (i), any two different elements of &4 have an empty
intersection. If p = (p1,p2) € P hence pi,ps # 0 then p € Cp,.,, € B4. Therefore
(P, &1, 8y, B3, &,) is a 4—net.

(iii) Let (a,b) € P. Since [(a, )]s := {(a,5)} U(q,0), (0,5)\ {(a,0), (0,5)}, (a,0),(0,5)\
{(a,0),(0,0)} :={(z,b-at  (z+a)) |z € K*\{a}}, Cup:={(21,22) EP | 31 - 79 =
a-b}, (a,b) € Cup and for z € K*\ {a},

1

(z,b-a7" - (x+a)) €Cop & z-[b-a ' (z+a)]=ab & (b-2°+b-a-2)-a' =ab &

2 i=g-q~ !
’+a-z4+a*=0 & (2) +g+1=0 vy, 70 y¥+y+1=0.
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Therefore we have: V a,b € K* : [(a,0)]s CCup & Vye K*\{1}: 9’ +y+1=0&
|K| = 4. Since |Cyp| = |K*| = |[(a, b)]4| we obtain: [(a,b)]s = Cup & |K| = 4.

(iv) By (iii), C1, Ca, Cay1 € €. Since |€(P, 1, By, B3) U B3| < |€(P, &1, B,)| implies
C(P, 1, B, B5)| < |€(P, 61, 65)| — |85 "2 31 — 3 = 3 we have € = &..

By (ii), (P, &1, &y, B3, B,) is a 4—net. Let L := &; U By U &3 U B,4; we prove that the
two axioms for an affine plane:

(A1) V {p,q} € (7;), i Lel:pqgel,

(A2)Vpe P,V L, €L, withp& Ly, 3, Ly € L\ {L,} with p € Ly and L; N Ly = 0,
are satisfied. Let {p,q} € (7;) Then we have to consider the following two cases:
case a): 34 € {1,2,3} such that [p]; = [g];- Then [p]; € L and p,q € [pl;. By (N2) [p];
is the only one.

case b): Vi € {1,2,3} : [pli # [gli. Then by (iii) [pls = [g]s and so [pls € L with
p,q € [pls- By (N2) [ps is the only one. Therefore (A1) is satisfied.

Now let [z]; € L with i € {1,2,3,4} and p € P \ [z];. Then by (N1) 3; [p]; € L and by
(N2) [pl;iN[z]; =0, i.e. (A2) issatisfied. SinceV L € L : |L| = 3 we obtain the thesis.O

2) Let (K +,-, <) be an ordered field, let Kt := {z € K | > 0} and let

P =K' x K,

& :={(z,K") | z e KT},

&, :={(K*,y) |y e K*},

&3 :={<m>={(z,mz) |z € K} | meKt}

then (P, &1, &y, B3) is a 3—net. In fact: let (zo,y0) € P. Then (zo, K), (K, yo) and
< yo 75" > are the three uniquely determined generators through the point (g, o), i.e.
(IN1) is satisfied. Moreover if z,y, m > 0 then (z,K*) N (Kt,y) = {(z,y)} € P,

<m > N(z,Kt) = {(z,mz)} € P and <m > NK*H,y) = {(m y,y)} € P, i.e. (N2)

is satisfied.

Now let M := {(z,z7') | + € K} with K = R. Then M is a chain (in fact if
z,y,m > 0 then (z,R")NM = {(z,z7")} € P, R",y) "M = {(y',y)} € P and
<m>nNM = {(ym ' y/m)} € P)and by (1.2.5) for a,b € M with a # b, M,



32 1. Nets, chains and permutations

is a maximal joinable set but not i-maximal for all 7 € {1,2,3}. In the case where

a=(2,1),b=(3,2) we obtain the following figure:

FIGURE 1.4.

We can obtain 3—nets with € # () also if we consider the weaker structure (K, K, ) of a
halfordered field. Let (K, +,-) be a field and let K* := K\ {0}. A subgroup K, of index
2 of K* is called a halforder (and (K, K, ) a halfordered field).
Then if (K, K} ) is a halfordered field, the structure (P, &, &4, &3) defined by:
P =Ky x Ky,
& :={(z,Ky) | z € K },
&, = {(Ky,y) |y eK; },
Gy :={<m>={(z,mz) |z €K} | meK,},
is a 3—net. We recall the following properties about halforders of a field:
(1) fK® :={\? | e K*} # K* then (K?,.) < (K,,").
(43) If [K* : K®)] = 2 then K® is the only not trivial halforder of (K, +,).
K :K?P]=2 & 2#0
K =K® & 2=0
Therefore if we consider the 3—net constructed in the case of a halfordered field (K, K, )

(i73) If |K| € N then
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we obtain: M := {(z,r7) | + € K, } is a chain & [K* : K?] = 2 and (-1 ¢ K® or

—1=1). In fact if z,m € K, then always (z, K, )NM = {(z,z7 ")} e P, (K,,z)NM =

{(z7!,z)} € P since with z € K, also z7! € Ky but | < m > NM| =1 if and only if

the two conditions:

(c1) <m >NM # () < the equation m = =2 has at least a solution & K, ¢ K? <
[K* : K®)] <2,

(c2) [ <m>NM|<1& (K, = 2¢dK)or-1=1 & -1¢K?»or -1=1,

are satisfied, ie. VG € &3 : |[GNM| =1« [K* : K?] =2and (-1 ¢ K? or

charK = 2).

Remarks. Let (K, +,-) be a field. Then we can consider the following cases:

1) charK = 0. The field C does not satisfy (c2) since —1 = i> € C» and Q does not

satisfy (c1) since 2 ¢ Q® U (—1)Q®. But the real field R satisfies both conditions

(c1) and (c2) since R* = R® U (—1)R®.

2) charK = 2. Then —1 = 1 and so (c2) is satisfied. If |K| = ¢ € N then K* = K® and

so for all finite fields K of char 2 the set M, above defined, is a chain. If | K| = co then we

can consider K := Q(Zs[z]) the quotient field of the polynomial ring Zs|z| over Z,. For

this field the condition (c1) is not satisfied since z ¢ K® and 23 + 1 ¢ K® U (2)K®.

3) charK = p, with p an odd prime integer. Then —1 # 1. If |K| = p", with n € N then

(c1) is always satisfied and (c2) is satisfied, i.e. —1 ¢ K® | if and only if p” = 3 mod 4

(cf. [9],Th.82 ). If |K| = oo then we can consider the quotient field K := Q(Z,[z]) and

as in the case of characteristic 2 the condition (c1) is not valid.
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1.3 CHAINS AND BIJECTIONS

In this section let (P, &1, B,) be a 2—net, let O := O;5 and as before let M, € be the
set of all joinable subsets, chains of (P, &;, &) respectively.

(1.3.1) For f € M(®,®s) the subset C(f) == {X N f(X) | X € &} of P has the
following properties:

1) VGed : |[GNC(f) =1.

(2) fis injective =V HE By : [HNC(f)| <1 & C(f)eMe C(f) € M.

(3) fis surjective < ¥V H € &, : HOC(f) = P.

(4) f is bijective < C(f) € €.

Proof. (1) GNC(f) ={GNnf(G)} = |GNC(f)|=1.

(2) Since HNC(f) = {X N f(X) | f(X) = H} we have the first equivalence; the second
and the third equivalence follow by (1).

(3) Let h € H and x := XN f(X) € C(f). Then [z], = f(X), hence hOx = [h];N[z]s =
[h]y N f(X). Consequently HOC(f) = {[h1 N f(X) | h € H, X € &;}. Now let p € P.
Then A’ := [p]; N H exists, [h']; = [p]; and so p = [A']; N [p]a. Therefore HOC(f) = P
if and only if for each Y € &, there exists a X € &, with f(X) =Y.

(4) Let X € &1, Y € &,. If C(f) € My then | X NC(f)] =1and Y NC(f)| < 1.
If P = HOC(f) then by (3) there is a Z € &, with f(Z) = Y, hence § £ Y N Z =
ZNf(Z) e YNC(f). Therefore C(f) € My and P = HOC(f) imply C(f) € €, and so
(4) is a consequence of (2) and (3).0

(1.3.2) Let M be a subset of P with the property:
VGe® : |GNM|=1.

Then

61 — @2
O'(M):{
X = [XNM];
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is a map with M = C(o(M)).

Proof. By our assumption we have M = U{GN M | G € &;} and by definition:
Clo(M)) ={XN(M)X)| Xe&}={XNXNM) | Xed&}={XNM|Xc¢c

| XNM|=1

&} = M.O

From now on we assume € # (). Then each chain £ € € can serve as a “frame of

reference for a coordinate system”; the map:

ExFE — P=FEOE

(z,y) — 20y
is a bijection. If p € P, then x := [p|; N E and y := [p]s N E are the “coordinates” of
p, p = z0y, and [p|; = z0F = pOF and [p], = EOy = EOp are the two generators
through p. On the other hand:
each non empty set E determines a 2—net v(F) such that E can be considered as a
chain of v(E): let P:=E X E, & :={{z} x E |z € E},&y :={E x{y} | y € E};
then v(E) := (P, 81, B,) is a 2 — net and if we identify each = € F with (z,z) hence E
with {(z,z) | z € E} then E is a chain. The point p = (x,y) € P can be represented in
the form p = (z,z)0(y,y) = z0y.

(1.3.3) The set € of all chains of (P, ®1,Bs) is in a one-to-one correspondence to the
symmetric group SymkE by the following maps:

o SymE — ¢
v = C()=A{(z()) |z € E}={209(z) |z € E}
and
< — SymkE
o . FEF — FE ’
K — og:

z = m((z,E)NK)

where my : P — E;x = (21, 22) +— Ts.
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Clearly if v € SymFE then for any x € E we have:

(00 C(z) = (0 o{t,(®) [t € E})(z) = m((z, B) N {{t,7() | t € E}) =
mo(x,y(x)) = y(x) hence 0 o C' = idgympr and if A € € then for any z € E:

Cooy(z) =C(me((z, E) N A)) = (z, (m(z, E) N A)), hence C(o4) = A.

Now let E € € be fixed and let

_ {P:EDE S P
E:

Oy — yOx '

Then E € SymP N J* and Ejg, € Bij(61,8,), Es, € Bij(®s, &,).

(1.3.4) Between the three sets of maps M (&1, B2), M (&) and M(E) there is a natural
one-to-one correspondence depending on the choice of E € €. If f € M(&q,®,) then
E‘% of € M(&y) and fg: E — E;z— f([z])) N E € M(E),

if g € M(®,) then Ejg, 0 g € M(&,,8,) and gy : E — E;z — g([z],) N E € M(E),
and if h € M(FE) then hy : &1 — &1; X — [A(X N E)]; € M(&;) and hyp : &; —
Go; X = [W(X NE)]y € M(B1,,).

Definition 1.3.1 If f € M(&;,®,) then C(f) :={X N f(X) | X € &},
if g € M(®,) then Cy(g) := C(Ejs, 0 g)
and if h € M(E) then Cg(h) := C(hi2) = {z0h(z) | € £} is called the graph of f, g

and h respectively.

By (1.3.1) holds:

(1.83.5) If f € M(FE) and N := Cg(f) then:
(HVXed : [ XNN|=1

(2) fis injective & N € M < N € M;.
(3) fis suriective < VY € &y : YON = P.
(4) f € SymE & N €¢.
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Proof. (1) Let z := X N E. Then X NN = {z0Of(z)}.
(2) Let 2,y € E, with £ # y. Then 20f(z) # yOf(y) and
z0f(z),y0f(y) € NN [z0f(2)]: < f(z) = f(y)

the equivalences.
(3) Since [N], = EOf(E) = {z0f(y) | =,y € E} we have: [Nl =P < f(E)=FE.
(4) By (2) and (3) follows: f € SymE < N is l-maximal and [N]; =P < N € ¢€.0

Hence together with (1) we have

Definition 1.3.2 For each M € 9\ {0} let M; := (MOE)NE, M, := (EOM)NE and

M1 — MQ
op(M): { ;
X — [[.’E]lﬂM]gﬂE

if M e ﬁﬁl (1e M1 = E) let
6 — (6]
o(M) : { ' 2

and o(M) = Ejg, o o(M).

(1.3.6) Let M € M\ {0} and f := ox(M). Then:

(1) fis a bijection and M = {x0Of(z) | © € M }.

(2) My =FE & M is 1—mazimal.

(3) My =FE < M is 2—mazimal.

(4)f€SymE & Med.

(5) f can be extended to a permutation f € SymE < there is a chain C € € with M C C.
(6) The two equivalent statements of (5) are valid if one of the following three conditions

15 satisfied:

(i) My = My (then C := (E'\ M) U M 1is such a chain);

(ii) My N My =0 (then C == (E\ (My U My)) U M U E(M) € ¢(M));

(i) M| € N (if C := My \ My = {c1,...,¢4}, D == My \ My = {dy,....,d,} and
g:C — Djcivsd; then f : E — E with f(z) ==z ifx ¢ (M, U M,), f(z) = f(x) if
v € My and f(z) = g(z) if v € C is such an extension with f € SymE).
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Proof. (1) For the map

MQ—) E

U R T

we have: f~'(My) = My, f~ o f =idyy,, fo f~' =idy,, hence f is a bijection.

Since for each p € P, [p]; = pOE and [plo = EOp we have M; = {m; :=[m]; N E | m €
M} and so m = miOmy = m;0f(my). This shows M = {z0f(z) | = € M;} and
moreover [M]; = [M;];, for i € {1,2}.

(2), (3) By definition M € 9 is i-maximal if P = [M]; = [M;];. But this is equivalent
with M, = E.

(4) By (2) and (3) the statement (4) is a consequence of (1.3.5).

(5) “="7 Let f € SymE with f,, = f and let C:= {zOf(z) | z € E}. By (4) C e €
and M = {z0f(z) | z € My} C C.

“<"” Now let C € € with M C C. Then the map

= E — FE
| 2 » [ghnClLNnE

is contained in SymE and f,, = f.

(6) () If C := (E\M;)UM we have C € €and M C C. Infactlet X € &;. f XNM =0
then X N M; = and so X N C = X N E consists of a single point. If p:= X N M # ()
let a:=[ply N E and b:= [p]a N E. Then a,b € M; = M, and so X N C = {p}. Now let
YeEBG UYNM=0then YNMy =0 andso |[YNC|=|YNE|=1.Ifq:=YNM#0
and if c:=[gl1 N E, d:=[q]aN E then ¢,d € My = M, and so Y N C = {q}.

(i) Let C :== (E\ (M; UMy))UMUE(M), X € & and Y € &,. We have:
XNM#0 & XNM #0and XNEM) #0 < XnNM # 0. Since
M; N My = () this shows | X NC| = 1. In the same way Y N M # 0 < Y N M, # 0 and
YNEM)#0 & YNM #0, hence |[Y NC| =1.

(iii) Let By := B\ (M; UM,). Then E = Ey U M; U C = Ey U M, U D and by
definition of f, f g, = idg,, fia, = f with f(My) = M, and f, = g with f(C) = D,

Therefore these restrictions are bijections and so
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T if x€E
h(z) =19 fz) if =€ M
g '(z) if z€D

is also a bijection with ko f = idg. Consequently f € SymE with Y‘Ml = f.0O.

Remark. In the finite case we obtain M., = € by (1.3.6)(5) and (6) (i77). In the infini-
te case we have € C M, ., but € # M, ... In fact the graphs gr(f) := {z0f(z) |z € E}
of all injective maps f : E — E are contained in 9., but ¢gr(f) is a chain if and on-

lyif f € SymE. Forexampleif E =N, f: N — N;z — 2z is injective but not surjective.

Now we obtain the following supplement of (1.2.3.3):
(1.3.7) Let (P,®;;1 € I) be an I-net with |I| > 2 and € # 0; then Aut(P,€) =
Aut(P, ®).

Proof. Let 0 € Aut(P, €). Suppose there are xz,y € P, with z # y, i € I with [z]; = [y];
and [o(z)]; # [o(y)]; for all j € I. Then M := {o(z),o(y)} € M and by (1.3.6)(5) and
(6) (ii7) there isa C € €: M C C. Since o € Aut(P, ), hence o ' € Aut(P, €); so we
have {z,y} C 07!(C) € € C M which contradicts [z]; = [y];. O

From (1.3.1), (1.3.5) and (1.3.6) follows:

(1.3.8) Let f € M(®1,85),9 € M(B;) and h € M(E) and N € IMM,. Then:
(1)

(2) C(f) e € or Cr(g) € € or Cr(h) € € < f or g or h is bijective respectively.

(3) o(N), or(N) and oz(N) are injective maps with o(N) € M(&,,8,), og(N) €
M (&) and o;(N) € M(E).

C(f) € My or Cg(g) € My or Cg(h) € My < f or g or h is injective respectively.

(1.3.9) Let E € €. Then the maps
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o Sym®,; — ¢
E : ~ ~
v = Cp(7) =C(Ee, 07) = {XNEory(X) | X € &}

and

¢ — Sym®,
(’51 — @1
X — E(XNA])

O :

A — og(A)= sz oo(A): {

are bijections with o o Cg = tdgyme, and Cg o og = ide.
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1.4 CHAIN OPERATIONS

In a 2—net (P, &1, &) with € # () we associate to any pair (A, B) of chains the following
maps:

the two perspectivities for i € {1, 2},

A% B]:A— Biar [a,N B

and the permutations

— P — P
A,B . )
{ z = [[z]i N Als N [[z]s N Bl

AB (x)

FIGURE 1.5.

TRONE g
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(ATB);x)

FIGURE 1.6.

and

B, " F .

We recall that P has the representation P = AOB = {a0b | a € A,b € B}.

(1.4.1) If A,B,C, D € € then:
(1) A,B: P = AOB — P = BOA; a0b s b0a.
(2)Vae€e A Vbe B:

—~—

A,B((a),) = [alo, A, B([B]s) = [b]:.

¢x¢ —» T
/Qb : —_ N
(A,B) — A/B
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1$ a bijection.
—_ N

()VyeT:v0A4,Boy™' =~(A),7(B).
(8) 4,B(C) € ¢.

Proof. (1) Let x = aOb, with a € A,b € B, then [z]; = [a]; and [z], = [b]s and so
A,B(z) = [lal: N Al 0 [[b} N Bl = [a]2 N [l = bTa.
(2) Since [a]; = OB, [a], = BOa, [b; = bOA and [b], = AOb we have by (1):

A, B(la],) = BOa = [d],

and
A, B([b]s) = bOA = [B];.

(3) By (1) follows (;1—,\§)_1 = B,Aand so 4, B € SymP. If z = a0b € FizA, B with
a € A,b € B then by (1) alb = A, B(aOb) = bla hence a = b and so FizA, B = ANB.
Now let X € &1,Y € &3, := XNAand b:=Y NB. Then X = [a];,Y = [b], and
by (2), 4, B(X) = 4, B([a],) = [a], € &, and A, B(Y) = A, B([t],) = [t} € &,. This
shows :4‘,\—5 el .

(4) Leta€ Aand b:=[a]sNB=[A 2 Bl(a) then a = a0b and by (1), Z,\_E(a) =b.
(5) Let z € P,a = [z]1NA, c:= [z]iNC, b := [z]oNB,d := [z]oND. Then z = a0b = ¢Od
hence Z,\E(:v) = ba and 6’—,\1/)(:16) = dOc. Consequently:

A, B(z)=C,D(z) & bOa=ddc < [b); = [d]; and [a]; = [c], i.e. b=d and a = ¢
since [b]s = [z]o = [d]2 and [a]; = [z]; = [¢];. This shows (5).

(6) By (3) and (5) ¢ is an injection. Now let « € T be given. We set A :=
{XNnaX) | X € &}and B:={YNnaY) | Y € &}. We claim that A,B € €.
For G € &; we have by definition GN A = G N a(G) and since a(G) € B, (by
a € T) the set G N a(Q) is a single point, hence |G N A| = 1. If H € &, then
HNA=«a '(H)NH is also a single point. Thus A € € and in the same way B € €. By
definition of A (B) and by (2) we have for a € A (b € B): «([a]:) = [a]2 = ﬁ([a]l)
and a([b]y) = [b]; = A, B([b]»), hence, if = a0b = [a]; N [b], € P with a € A,b € B
then A, B(z) = A, B([al1) N 4, B([t]:) = a([a})) N ([t]:) = a(aDb) = o).

(7) For all z € P we have:
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yoA, Boyl(z) =70 71?5/(7:/1(06)) =v([vy '@ n Al N [[y (x)]2 N Bh) = [[z N
(A N [zl N v(B)]1 = v(A4),7(B)(z), where y(A),y(B) € € by (1.2.3.3).
(8) If X € & U®, then B, A(X) € & U, by (2) hence 1 = |B,A(X)nC| &

X N4, B(C)| and so A, B(C) € €. O
For each A € €let A:= A, Aand € :={C | C € €}. From (1.4.1) we obtain:

(1.4.2) The map:

¢ — r
(O ~
C - yCC)=C
is an injection which maps € onto the set of all involutions of T and moreover we have
forallA B,Cec:

5)VX € : A4 B(X)=A(X) andVY € &,: 4, B(Y) = B(Y).

Proof. By (1.4.1.6) “¢)” is a bijection from € x € onto I' and by (1.4.1.3), since
(4,B)! = Z\E G4 4= B, “4y” is a bijection from € onto T' N J*.

(1) FizAd < pizA, 4 "2Y Ana= A

(2) Since by (1.4.1.3) A €T we have the thesis by (1.4.1.7) .

(3) Since with A, B,C € T also Ao BoC €T and since “4h,” is a bijection from €
onto I' N J* we have the thesis.

(4) Let @ € A and b := BN [a];. Then [a]; = [b]; and by (1.4.1.2) we have: A([a];) =

[a], = B([b];) = [b]> and so a = b, i.e. A= B. In the same way we obtain:

g|q52 :§|Q§2 < A=B.
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(5) Let X € &1, Y € &y, a:= ANX and b:= BNY; then by (1.4.1.2) we have:

—_——

AB(X) =A,B((a]) = [a]> = 4, A([a]:) = A(X)

and

A B(Y) = A,B(]bly) = bl = B, B([b]) = B(Y). D

By (1.4.1.8) 7: € - ¢; (A, B,C) — Z,\(/?(B) is a ternary operation with 7(A, A, B) =
7(B, A, A) = B (by (1.4.1.4)) and moreover:

(1.4.3) Let E € € be fized. Then:

(1) (€,-) with A- B:=7(A,E,B) = Z,\E(E) is a group.

(2) The groups (SymkE, o) and (&,-) are isomorphic and graph : SymE — €,y — 7 :=
{z0v(x) | x € E} is an isomorphism with graph™ : € — SymE;A— A: E — E;z
[z N Al NE.

(3) For the map o : € — Sym®; (defined in (1.3.9)) we have the representation:

¢ — Sym®,
OF ~ ~ .
A~ Fo A|Q§1
Proof. (1),(2) It is enough to show that the function graph is a homomorphism. Let

a,B € SymE. Then: a-8 = {[[z].na:N[[z}N B, | z € B} = {8~}(z)0a(z) | z €
F} = {20(a0 )(@) | 2 € B} = aop.

(3) Since V X € &, : A(X) = [X N A],, we obtain the thesis by (1.3.9).0

(1.4.4) Let A,B,C € ¢, D:=A,B(C), X € &, andY € &,. Then:
— —~— —_— — —~— P — —
(C,B)y =B,A0A,C, (C,B)y,=A,BoC,A, (C,B),(C)=(C,B)(C) =B.
( + — —

and (A, B)1(X) = X, (A, B)s(Y) = Y.
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Proof. (1) Let z € P and a € A, ¢ € C such that z := aOc and let b := [¢]; N B. Then:
def.

(C?B)l(l‘) = (Ca‘)B)l(GDC) ="laly N{[[c]a N Cli N By = [a]s N [[c]y N Blz = [a]1 N [b]z =
a0 "2V BIAGOG) = B, A(cOa) “EY B Ao A,C(a0c) = B, Ao A, C(a).

A

o~

. C

C
X C
B
cB o P
FIGURE 1.7.

—

In the same way (C, B), = A BoC,Aand by (14.1.4) (C, B):(C) = B, Ao 4,0(C) =
B, A(4) = B and (C, B)2(C) = 4, B0 C, A(C) = 4, B(4) = B.

(2) By (1) and (1.4.13) (4, B)1, (A, B), € TF and for all z € X we have (4, B), (z) € X
by definition of ( ,B) Now let y € X be arbitrary and let T = [y]; N [[[y] N B]: N Als.
Then we have (A, B), () =y, hence (A,‘)B)1 (X) = X. In the same way (A,‘>B)2 (V)=
Y.

(3) Let a € Aand ¢ :=[a)y N C, d :=[a]aN D, b:=[c]s N B. Then ¢ = a0b and so
z/ﬁl,xé(c) = b0a € D. From this we obtain d = bOa, hence a = ¢Od, b = ddc and so
C,D(a) = b, i.e. C,D(A) = B.
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4) Letz€eP, c:=[z|yNC, a:=[z]yNA, b:=][c|]sN B, d:=[a]aND. Then we have
— — o~
(C, B), () = b0z and (A, D), () = dOz. Since D = A, B(C) we have [b]; = [d]; and
e —
s (C, B, (x) = b0z = dO =(4, D), ()

A D
a
d
B
y b
C (C.B) () = (A.D) (x)

FIGURE 1.8.

(5) Let x € P, b:= [x]QﬂB c:=[z]oNC, a:=[c]yNA, d:=1[b]y " D. Then we have
(C, A), (z) = z0a and (B D), (:c) = z0Od. Since D = A B(C) we have [a]y = [d]2 and

—

s0 (C, A), (z) = #0a = 20d =(B, D), (x).
A CcH=BDK® |
a D
B
C X b
C
FIGURE 1.9.
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CASE |I| =3

In the case I = {1,2,3} we have a 3—net (P, &, &y, ;) and if € # () we can associate
to any chain C € € the following maps:

~ J P = P
e o= [@incln(z;n ol

where 4,7 € I, with 7 # j.
We observe that if |I| = 2 then 51-]- =C.

For example if 1 = 2, j = 3 we have

~—
C23 (x)
FIGURE 1.10.

We define also €;; :={C €2” |[VX €&, U&,;:|CNX|=1}
Let v € Ty \f+ (cf. sec. 1.1) then:
1. ’7|®2 = ’id@2;
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2.V X e = yX) € &s;

3.VY e®; = y(Y) € 6.

Moreover if A € &, and B := y(A) € &3 then V X € &, : y(X) = [[X N B]o N A3 and
Fiz(y) € €13. In fact let X € &y; then y(X) € &3 and @ # X N~y (X) € Fix(y) implies
|X N Fiz(y)| = 1. In the same way we have |Y N Fiz(y)| =1, VY € &s.

X Y (X)
B
a
Y (a)
A
FIGURE 1.11.

Remark. If I ={1,2,3} and {i,5,h} € (g) thenVx e P,VCeCC:

Cji o Chi([z]n) = Cij o Can([z]n) = [[z]n N C1;.
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1.5 CLOSURE OPERATIONS

In this section let (P, &1, B,) be a 2—net with € # (). By (1.4.1) if A, B € € then A B

and A are automorphisms of (P, &, U &,) contained in the coset T of T .

Definition 1.5.1 A subset & C € is called symmetric if VA,B € & : 7(A,B,A) =
A(B) € &; double symmetric if VA, B,C € & : 7(A, B,C) = A,C(B) € &.

Clearly each double symmetric subset & is also symmetric, and the set of all symmetric
and double symmetric subsets is closed with respect to the intersection. This allows us to
define the two closure operations: if 2 is an arbitrary subset of € and if €g ( €5g) denotes
the set of all symmetric (double symmetric) subsets of € let A~ := ({6 C &5 | A C &}
(&A™~ = ({6 C €ss | A C &}) be the smallest symmetric (double symmetric) subset

of € containing .

(1.5.1) For A C € andn € N let %y = A, == A, Apyy == {X (V) | X,V € A,} and
= AN Y Wipn KYSA S RO, and A~ = Uy ey Bl and

X(X) =X, with X € € and definition 1.5.1 we have:

(x) VneN: ACA, C Ay C A,

Jpen An C A~

3 € U, en &n, thus there are n,m € N with A € 2,, B € %,,. By () we
m < n,ie. A, B € A,. Then A(B), B(A) € Apyy C U,y and this
Jnen &n is symmetric, hence A~ C |J,cnyAn- In the same way we obtain

!

E,\_)Z' we have:

A= {X(V) | X,Y €A} C{X,Y(2) | X,Y, Z € A} = 2
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and by induction we obtain 2, C 2!, for all n € N. This shows, with the first part,
ACA~ cA.O

Let A:={A | Ac U} and 9%:={A B | 4, B e}
From (1.4.1) we obtain:

(1.5.2) Let A C €. Then:
HA=2A" < ilisnormalinil, i.e.Va,ﬁEﬁ:aoﬁanﬁ.
2)A=A" & ﬁlisnormalina, i.e.‘v’aeﬂ, VBENQT:BoaOB_IeiL

Proof()LetABEQlthenA() 022 AoBode '& AB) e
(2) Let A, B,C € %; then B, 0(4) "&7 B,coA”o(ET(/J)—l e "E B o) euD

(1.5.3) Let ACT NJ* and let by : € 5T N J*C s C. Then:
(1) A is normal in A & 5 (A) is symmetric.
(2) A is normal in (Y5 ' (A)) & ;' (A) is double symmetric.

Proof. (1) By (1.4.2) the map 1y is a bijection, then by (1.5.2.1) we have the thesis.
(2) By (1.4.2) the map vy is a bijection, then by (1.5.2.2) we have the thesis.O

Now we consider the relations between € and Sym®; via the maps op und Cg (cf.

(1.3.9)).

(1.5.4) Let E € A C €. Then:
A=A~ & op(A) =: A C Sym®, satisfies:V o, € A:aof loa €A

Proof. Let A, B,C € 2. Then by (1.4.3.3) a := og(A) = Eo Ajg,, f := op(B) =
Eoé‘@l, v:=0g(C) = E06|Q51 and o (A(B)) = onf('\?)w (1.4.22) EvoBoA|Q51 _
aoBoFEoFEoAg, =aof toa. Hence: A(B) € A < aof 'owa € A and this proves
the thesis.O0
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1.6 CHAIN STRUCTURES

A quadruple (P, &1, 89, R) is called a chain net or a chain structure if (P, 1, B,) is a

2—net and K is a non empty subset of €.

Definition 1.6.1 A chain structure (P, &1, 2, ) such that K is symmetric is called a

symmetric chain structure.
In the following let (P, &1, &5, K) be a chain net and let F € K be fixed. Then:

(1.6.1) The following statements are equivalent:
(1)VABef: A, B(E)€ &, ie & (E)CA&
(2) op(R) is a semigroup.

B)Va€ER:aoEoa™l € R

Proof. (1) & (2). By (1.4.3.3) we have og(R) = {Eofq@l | K € R}. Nowlet A,B € 8

then op(A) o op(B) = EoAoEo §|®1 (1425) 5 ;C-é oFo mwl (14.1.7)

EoAB(E)e, €0p(8) & A B(E) €&

(1) & (3). Let a:= 1/4?_5 € &. Then aoEoa™ 4L (E) )

a(B) e *'EY a(B) € &0

(1.6.2) The following statements are equivalent:
(1)V A€ &: E(A) € &, i.e. E(R) C &

2) o5(8) = (o5(R) ",

(3) EoRo E = &.

Proof. (1) < (2). Let A € R Then:
(0(A)) (14.3.3)
E(A) € &.

~ (142) = (1422) = ~ ~ _ ~ . -S>
(1) & (3). E(R) CR & E(R) =" FofRoFE C Rimplies R C F o Ko F since
EoFE =id.O

—_~—

(EoA)g, = AoEjs, = EoEoAoEjs, 2% EoE(A), € 0p(8) &

s
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(1.6. 3) The following statements are equivalent:

(1) & (E) C & and E(R) C &
(2) R is double symmetric.

(3) op(R) < Sym@l

(4) R is normal in 7.

Proof. (1) < (3). By (1.6.1.1),(1.6.1.2) and (1.6.2.1), (1.6.2.2) follows the equivalence
of (1) and (3).

(QL\/<:> (4). Now let A,B,C € K. By (1.4.1.3),(1.4.1.6) and (1.4.1.7) we have
A, B(C) = A, BoCo(A, B)"'and so by (1.4.2), 4, B(C) € & < A, BoCo(4,B)"! € &.
This shows the equivalence of (2 ( ) and (4).

(4) = (1).Let Ac Rand vy € 'R. Since also E € & we have E ENﬁN /(\E_’/) (42D voFEo
=1 € Rby (4) hence 7(E) € &by (1.4.2), i.e. R (E) C Rand B(A) “2? BodoF € &
by (4) hence E(A) € & by (1.4.2), i.e. E’(,E)E/ﬁ Hence (4) implies (1).

(3) = (2). Let A,B,C € & Then A,B(C)q, "=~ A,BoCo(4B), ="
jﬁl?ﬁo Co ﬁ\ﬁl (1429 Z6Co §|Q51. Since o () is a group and E o E = id we obtain
EoAoCoBg, =0p(Ad)oCoEoFEoDBjg =or(A)o(0s(C))™" oor(B) € ou(R).
Cgl\sgluently there is a D € & with Eo Ao C o E‘@l = og(D) = Eo ﬁ‘@l and so

Z,\E(C)‘Q51 =AoCo E‘Qil = l~)|,51. By (1.4.2.4) this gives us Z,\E(C) =De R ie Ris

double symmetric.O

(1.6.4) The following statements are equivalent:
(1) R is symmetric.
(2) or(R) has the property: V o, B € or(R) : ao ' oa € og(R).

(3) R is normal in R.

Proof. (1) & (2). Let « —E0A|Q51 andﬂ EoB‘@l,then aofloa=EoAoBoEo

~ 1422

EoA, = EoAoBoAs, 27 Eo 0A(B) s, and so: aofloa € o(R) « A(B) € &.
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Hence (1) and (2) are equivalent.
(1) & (3). Let A, B € & Then the statement “A(B) € & < A(B) 2% AoBoA €
& 7 shows the equivalence of (1) and (3).0
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2 Halfordered sets, semidomains and convexity
2.0 NOTATIONS

Let F be a set of points, with |E| > 4, F* := {(a,b,c¢) € E* | a # b,c} and let SymFE
be the set of all permutations of E. If E' = {1,2,...,n} we write S,, := Sym{1,2,...,n}.
Let
EY = {1,-1}

(a,b,¢) — (alb,c)
be a map such that the axiom
(Z) Ya,be,de E, a+#b,c,d: (alb,c) - (alc,d) = (alb,d)
is satisfied. Then the function £ is called a betweenness function or a halforder of E
and the pair (E, ) a halfordered set. A halforder £ of F is called trivial if V (a,b,c) €
E?¥ : (alb,c) = 1. We observe that by (Z) for each halforder the following property is
satisfied:

VY (a,b,¢) € E¥ : (alb, ¢) = (ale, b).

To the halforder & we associate the functions

e &) - {1,-1}
{a,b,c} +— (alb,c)- (ble,a)- (c|a,b)
and
(%) — Nu {0}

35 : .
{a/la a27a/3} — % . |{U € S3 | (ag(1)|aa(2), a/o.(?,)) — —1}|

If moreover
(Z0) the function 3 is constant =1
then the halforder ¢ is called an order and the pair (E, &) an ordered set.
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— — =

For all a,b € E, with a # b, the sets a,b:= {z € E | (a|b,z) = 1}, a,b = {z €

E | (alb,x) = —1} are called halflines of E and the set |a,b] := {z € E | (z|a,b) = -1}

an open segment of E.

— —  — —

We observe if ¥ € a,b then a,b=a,b’; in fact we have: (a|b,b') = 1 and x € a,b (i.e.

—

(alb,x) = 1) 1mphes 1= (a\b b’) (alb,z) = (alb/,z), and so we obtain z € a,b'. In the
S

same way if ¢ € q, b then a, b —a, ¢; in fact we have: (alb,c) = —land z € a,b (i.e.

(alb,z) = —1) implies 1 = (—1) - (1) = (alb, ¢) - (alb, z) = (alc,z) and so z € a, c.

Definition 2.0.1 Let K C E; then a function
(E\K) x (E\K) — {1,-1}
(a,b) —  K(a,b)
is called a splitting of E by K if the following condition
(S1) Va,b,ce F\ K : Ks(a,b) - Ks(b,c) = K4(a,c),
is satisfied. A splitting K, of E by K is called trivial if V (a,b) € (E\ K) x (E'\ K) :
K(a,b) =

Definition 2.0.2 A subset A C F is called converif V a,b € A : |a,b] C A.

A halfordered set (E,¢) is called conver if V a,b € E,a # b : c:;) is convex, i.e.

(CO) (alb,¢) =1 and (z|b,c) = =1 = (alb,z) =1

and trivially convez if V {a,b,c,d} € (%) : (alc,d) = (ble, d).

If the condition (CO0) is satisfied for a fixed a € E, then (FE, ) is called convez in a.

If (E,€) is a halfordered set, we set:
Aut(E,€) := {y € SymE |V (a,b,c) € E* : (alb, ¢) = (v(a) (), 7(c))}-

We call the elements of the group Aut(E, &) the betweenness preserving permutations of

the halfordered set (E, ).

If ¥ C SymkF is fixed we define V a,b € E :

[a —=0b:={ceX :0(a) =0}
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2.1 RELATED HALFORDERS

To each halfordered set (E, &) we associate a “separation function” :

EY .= {(a,b,c,d) € E* | a,b# ¢, d} — {1,-1}
(a,b, ¢, d) — [a,ble,d] := (alc,d) - (ble,d)

Tg:

which has by (Z) the following property:
(T) V (a,b,c,d), (a,b,d,e) € E¥ :

[a,blc,d] - [a, b|d, e] = [a,b|c, €].

Each function 7 : E* — {1, —1} which satisfies (T) is called a separation function.
The set T'(E) of all separation functions forms a commutative group of exponent 2: let

71, T be separation functions of E, (a,b,c,d) € E* then
(11 - 12)(a,b,c,d) = la,blc,d]; - [a,b|c, d]s-

Two halforders & and &, of E are called related, denoted by &; rel &, if:
(R)V (a,b,c,d) € E* : [a,blc,d]; = [c, d|a, bs;

a halforder & of E is called selfrelated if & rel &, i.e. if

(R1) For all (a,b,c,d) € E* : [a,b|c,d] = [c, d|a, b]

is satisfied.
Remark. The relation “rel ” is symmetric, i.e. if & rel & then also & rel &.

(2.1.1) For a halfordered set (E &), with |E| > 4, the following statements are equiva-
lent:

(1) The function ke is constant.
(2) & is selfrelated.
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Proof. V {a,b,c,d} € (ff) we have:
ke({a,c,d}) = ke({b, ¢, d}) & 1 = (ale,d) - (¢|d, a) - (d|a, c) - (blc,d) - (c|d,b) - (d]b, c) @
(ale,d) - (cla,b) - (d|a,b) - (ble,d) < [a,ble,d] = [c,d|a,b]. O

Remark. If (E, ) is a halfordered set then each point 0 € E defines a splitting

0. - (E\{0}) x (E\{0}) — {1,-1}
(a,b) —  (0|a,b)

of E by 0.

Now let {0,1,00} € (?) be fixed and let (a,b,c) € E¥. If £ rel ¢ we obtain:
(1) (alb,c) = [b,c|0,a] - (0]b, c)’, if b,c # 0.

(2) (alb,0) =1[0,b|1,a] - (1]b,0),if b # 1,a # 0.

(3) (115,01 2 (1]0, 00)' - (1|00, b ¥ (1]0, 00)" - [0, b0, 1] - (0[b, 00, if b # 1, 0.

N I

Hence from (2) and (3):
(4) (alb,0) = 1[0,b|1,a] - [00,b]0,1] - (0]b, 00)" - (1]0, c0)’ @ (0|1, a) - (b|0,a) - (c0|0,1) -
(0]b, 00)" - (110, 0)', if a, b # 0.

The equations (1) and (4) show that &' is completely determined by &, the splitting in

0 derived from &' and the value (1]0,00)". Moreover we have:

(2.1.2) If (E,¢) is a halfordered set, {0,1,00} € (?) fized, 0, a splitting of E by 0 and
e € {1,—1} then the function &' (£,05,€) = &' defined by

/

E¥ = {1,-1}
( [b, ¢|0, a] - 04(b, c), if  bc#0
é-,: < (O|1,a)(b|0,a)(oo\0, 1)'05(1),00)'6, if b#0,c=0

(a,b,c) — (alb,c)' =<
(0[1,a) - (c|0,a) - (00]0,1) - 05(c,00) - €, if b=0,c#0

\ \ 1 /[zf b=c=0
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s a halforder related to &.
Each halforder related to & is completely determined by the data &, a splitting O, of E by

0 and a value € € {1, —1}, and this is a one-to-one correspondence.

Proof. ¢ is a halforder; in fact (alb, c)’ = (alc, b)’ and
a) if a = 0 then &' = 05 and so (Z) is satisfied by (S1);
b) if a # 0 then:
bl)ifb=c=0o0rc=d=0,
(al0,0)" - (a]0,d) =1-(a|0,d) = (a|0,d)" or
(a|b,0)" - (al0,0)" = (alb,0)" - 1 = (alb, 0)".

b2) if c=0and b,d # 0,

(alb,0)' - (al0,d)" :=

(0[1,a) - (b0, ) - (00[0,1) - 04(b, 00) - € - (0|1, a) - (|0, a) - (c0]0, 1) - 0,(d, 00) - € ‘=

(50, ) - (d]0, a) - 04(b, d) = [b, d|0, a] - 0,(b, d) =: (alb,d)"

b3) if c# 0 and b=d =0,
(al0,¢)" - (alc,0)' =1 = (a|0,0)".
bd) if b,c # 0 and d =0,

(a|b’ C)I ) (a‘ca O), =
(b]0, @) - (c]0, a) - 0,(b,¢) - (0[1,0) - (€]0, 0) - (00[0,1) - 0,(c, 00) - ¢ =
(b\O,a) . (0|1’a) . (OO‘O, 1) . Os(b, OO) pa— (a\b, 0)/_

b5) if b, ¢,d # 0,

(alb,e)' - (ale,d) =
(b0, a) - (c|0, @) - 0,(b, c) - ([0, a) - (d|0,a) - 0,(c, d) (1)

(410, @) - (d]0, a) - 05(b, d) = (alb, ).
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Now we want to prove: & rel &, i.e. (R) is satisfied. If a = b or ¢ = d, the value of
[a,b|c,d]" and [a, b|c,d] is = 1. Therefore let a # b and ¢ # d

case 1. a = 0.

(Olc,d)’ - (blc, d) :=
0s(c, d) - (|0, b) - (d|0,b) - 05(c,d) = (c|0,b) - (d]0, b).
case 2. c = 0.
(a[0, d)' - (8]0, d)’ := (d]0,a) - (0]1,a) - (c0[0, 1) - 0,(d, 00) - e
(d]0,b) - (011,6) - (9]0, 1) - 0(d, 00) - € Z (d]a, ) - (0], b).
case 3. a,b,c,d # 0.
(ale,d)' - (Ble, )’ =
(c]0,a) - (d|0,a) - 0s(c, d) - (c|0,b) - (d|0,b) - 0s(c, d) @ (cla,b) - (d|a,b). O

Remark. If £, & are two halforders of a non empty set E such that & rel & and & is

selfrelated, then also &; is selfrelated.
(2.1.3) Every order & is selfrelated.
Proof. By (Z0), k¢ = —1 hence by (2.1.1)  rel £&. O

(2.1.4) Let E be a non empty set and let &, & be two halforders of E and ke, , ke, the
corresponding functions. Then:

(1) If & rel & then ke, = ke, .

(2) If ke, = ke, then ¥V {a,b,c,d} € (¥):

[CL, b|C, d]l ) [C, d|aa b]l = [CL, b|C, d]Q : [C: d‘a’a b]2

Proof. (1) Let {a,b,c,d} € (%) then :

ke ({a,,¢}) = (alb, )1 - (bla, o)s - (cla, )y 2
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(alb, d); - (ald, ©):1 - (ble, )y - (b|d, )y - (c|a, )y - (c|d, b)y =
[aa C|ba d]l : [aa b|C, d]l : [ba c|a, d]l “ g e [da b|CL, 0]2 : [C, d|aa b]2 : [CL, d|b: 0]2 dgf.
(d|a, c)s - (Bla, )2 - (cla, b)a - (d|a, b)s - (alb, c)s - (d]b, ), Z

(bla, c)2 - (cla, b)s - (alb, c)2 =: ke, ({a, b, c}).

[a, blc, ], == (alc, )y - (ble, d); =
ke, ({a, ¢, d}) - (cld, @)1 - (d|c, a)y - ke, (10, ¢, d}) - (clb, d)s - (dlb, ), "~z P
ke,({a, ¢, d}) - ke, ({b, ¢, d}) - (cla, b)1 - (d]a, b), =
(ale, d)s - (cla, )2 - (dla, ¢)s - (ble, )z - (clb, d)s - (d|b, )2 - [c, dla, bl 2

[CL, b|C, d]Q ' (C‘CI,, b)2 : (d|a7 b)2 : [C, d‘a’a b]l = [CL, b‘C, d]Q ) [Ca d|a7 b]Q ) [Ca d|aa b]l U

Remark. There are halforders & and & of E such that ke, = k¢, but & is not related
to &. In fact already in the smallest possible set F := {a,b,c,d} we can find two such

halforders &, & if we take for instance &, = 1 and for & :
(dla, c)2 = (ble, d)2 = (alb, c)2 = (bla, c)2 = 1,
(alc,d)y = (cla, d)s = (c|b,d)2 = (d|b, ) = —1.

Then V {z,y,2} € (}) : ka({z,v,2}) = ke,({z,y,2}) = 1 but 1 = [a,blc,d]; #
[c,d|a, bl = —1.
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2.2 SELFRELATED HALFORDERS

Let E # 0 and let £ be a selfrelated halforder. By (2.1.1) k¢ is a constant function.
Following E. Sperner [33] we call the halforder & harmonic if ke = —1 and anharmonic

if k¢ = 1. Clearly in the harmonic case, 35((2)) C {1,3}, in the anharmonic case,
3¢((%))  {0,2} and ¢ is an order iff 3¢((%)) = {1}.

(2.2.1) For |E| > 4 the statements are equivalent:
(1) (E,€) is an ordered set.

(2) (E,£) is harmonic and convez.

Proof. (1) = (2). The function ¢ is an order iff 3¢((})) = {1} and this implies k¢ = —1,
i.e. £ is harmonic. Now we prove that (F, &) is convex:

let {a, b} € (f), cE o:;) and d €]c, b[; we have to show: (a|b,d) = 1. Since ¢ € cﬁ), by de-
finition (alb, c) = 1 and since ke = —1, (bla, c) - (cla,b) = —1, i.e. (¥) (bla,c) = —(c|a,b).
Since d €]c, b , i.e. (d|b,c) = —1 and since ke = —1, (x*) (blc,d) = (c|d,b) = 1. (), (xx)
and (Z) imply (bla,d) = —(c|a,d). If (bla,d) = —1 then (a|b,d) = 1, if (c|a,d) = —1,
then (alc,d) =1 and so (alb,d) = (a|b,¢) - (alc,d) =1-1=1.

(2) = (1). Since (E, &) is harmonic, we have 3¢({z,y, 2}) € {1,3} for all {z,y, 2} € (}).
Let us assume there are {a,b,c} € (]:f) with 3¢({a,b,c}) = 3 and let d € E'\ {a,b,c}.
Then —1 = (a|b,c) = (a|b,d) - (a|d, ¢) and so for instance (a|b,d) = 1 and (a|d,c) = —1.
If (c|b,d) = —1 then the convexity implies (a|b,c) = 1 contradicting 3¢({a, b, c}) = 3.
Hence (c|b,d) = 1, and since £ is harmonic we have : (b|c,d) = —(d|b, ¢).

case 1. (blc,d) = —(d|c,b) = 1.

Then (alc,d) = —1 and the convexity imply (b|a,c) = 1 contradicting 3¢({a, b, c}) = 3.
case 2. (ble,d) = —1 and (d|c,b) = 1.

Here (alb,c) = —1 and (d|b,c¢) = 1 imply (d|a,c) = 1. Since (alc,d) = —1 we have
(cla,d) =1 (£ is harmonic !) and so (c|b,d) = (c|a,d) - (c|a,b) = 1-(—=1) = —1 which
contradicts (c|b,d) = 1. O
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Now we consider the case (E, ) in which £ is anharmonic hence k¢ = 1 but not trivial.
Then there are three distinct elements a,b,¢ € E with (alb,c¢) = (bla,¢) = —1 and
(cla,b) = 1. If E = {a,b,c} then c,a is the only halfline which contains two points
namely a, b. Since |a,b] =0, (E,&) is convex. Therefore we may assume |E| > 4. Here

we restrict ourself on the case |E| = 4, hence E = {a, b, ¢, d}.

Possible cases
1. (d|a,b,c) =13 . Then:
a) If (E, ) is convex then:

(1) (alb,d) = (bla,d) = —1 and (a|c,d) = (ble,d) = 1.

(2) (c|a,b,d) =1.
Proof. (1) If (alb,d) = 1 then (a|c,d) = (alb,d) - (al]b,c) = 1-(—1) = —1 and, since
(dla,c) =1 and ke =1, (c|a,d) = —1. Then (c|b,d) = (c|a,b) - (c|a,d) =1-(-1) = —1.
(alb,d) = 1 and (c|b,d) = —1 implies (a|b,c) = 1 by (CO0) contradicting (alb,c) = —1.
Therefore (a|b,d) = —1 and (a|c,d) = (a|b,c) - (a|b,d) = (—1) - (—1) = 1 and since our
assumptions are symmetric in a, b also (bla,d) = —1 and (blc,d) = 1.
(2) (d|a,c) = (ale,d) =1 (cf. (1)) and ke = 1 imply (c|a,d) = 1 and since (c|a,b) =1
we have (c|a,b,d) = 1. O
b) If (alb,d) = 1 then: (alc,d) = (alb,c) - (a|b,d) = (-1) -1 = =1, (bla,d) =
ke - (alb,d) - (dla,b) =1-1-1=1, (ble,d) = (bla, c) - (bla,d) = (=1)-1= -1, (cla,d) =
ke - (alc,d) - (d|la,c) =1-(—1)-1=—1 and (c|b,d) = (c|a,d) - (c|la,d) =1-(—1) = —1.

2. (dla,b) =1, (d|a,c) = (d|b,c) = —1
a) (c|a,d) =1, hence (c|a,b,d) = 1. Then:

(1) (alb,d) = (bla,d) =1 and (ale,d) = (ble,d) = —1.
Proof. (d|a,c) = —1,(cla,d) = 1 and k¢ = 1 imply (ale,d) = —1 and (alb,d) =
(alb,c) - (ale,d) = (—1) - (—=1) = 1. Still the assumptions are symmetric in a,b and so
all is proved.O
b) (c|a,d) = —1 hence (c|b,d) = (c|a, b) - (cla,d) =1-(—1) = —1. Then:

3(dla,b,c) =1:& (d|a,b) = (d|a,c) = 1.
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(1) (alb,d) = (bla,d) = —1 and (a|c,d) = (blc,d) = 1.
Proof. (d|a,c —1,(cla,d) = —1 and k¢ = 1 imply (alc,d) = 1 and (alb,d) =

) =
(alb,c) - (a|e,d) = (—=1) -1 = —1. Again the assumptions are symmetric in ¢ and b. O

3.(dla,c) = —(d|a,b) = 1 (and so (d|b,c) = —1 and (a|b,d) = —(bla,d) by ke = 1). *
Then:

(1) (E,&) is not convex.
Proof. (d|a,c) =1, (bla,c) = —1 and (CO) imply (d|a,b) = 1, a contradiction.O
a) If (alb,d) = —(bla,d) =1 then:

(2) (ale,d) = -1, (ble,d) = 1, (cla,d) = (c|b,d) = —1.
Proof. (a|b,d) =1, (bla,d) = -1 = (a|c,d) = (a|b,d) - (a]b,c) =1-(—1) = —1 and
(ble,d) = (bla,c)- (bla,d) = (—1)-(—1) =1; (d|a,c) =1, (al]c,d) = —1 and k¢ = 1 imply
(cla,d) =—1.0
b) If (bla,d) = —(a|b,d) = 1 then:

(3) (ale,d) =1, (ble,d) = -1, (¢|a,d) = (c|b,d) = 1.
Proof. (alb,d) = —1, (bla,d) =1 = (a|c,d) = (alb,d) - (a]b,c¢) = (—1) - (—1) =1 and
(ble,d) = (bla,c) - (bla,d) = (—1) -1 = —1; (dla,c) = 1,(alc,d) =1 and ke = 1 imply
(cla,d) =1 and (¢|b,d) = (c|a,b) - (c|a,d) =1-1=1. 0

We have proved:

(2.2.2) Let ({a,b,c}, &) be a halfordered set with (alb, c¢) = (bla,c) = —1 and (c|a,b) =1
and let E = {a,b,c,d}. Then there are the following possibilities of anharmonic exten-
stons of €& onto E:
1. (dla,b,c) =1
a) (cla,b,d) =1, (alb,d) = (bla,d) = —1, (alc,d) = (ble,d) =1

(a converx case)
b) (c|a,d) = (c|b,d) = —1, (alb,d) = (bla,d) = 1, (a|c,d) = (ble,d) = —1

(a non convez case)

4The assumption (d|b,c) = 1, (d|a,b) = (d|a,c) = —1 yields isomorphic examples.
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2. (dla,b) =1, (d|a,c) = (d|b,c) = —1
a) (cla,b,d) =1, (alb,d) = (bla,d) = 1, (alc,d) = (blc,d) = -
(a trivially convex case)

) (C|U, d) = (C|b d) =-1 (a|b7 d) = (b‘a’a d) = -1, (a|ca d) = (b|C: d) =1
a trivially convex case)

(
3. (dla,c) = 1,(d|a,b) = (d|b,c) = —1
a) (alb,d) =1, (bla,d) = —1, (ale,d) = —1, (ble,d) = 1, (c|a, d) = (c|b,d) = —
(a non convez case)
b) (alb,d) = —1, (bla,d) = 1, (ale,d) = 1, (ble,d) = —1, (c|a,d) = (c|b,d) =1
(a non conver case)
4. (d|b,c) =1, (d|a, b) = (d]a,c) = —1
a) (alb,d) =1, (bla,d) = -1, (ale,d) = —1, (ble,d) = 1, (c|a, d) = (c[b,d) =1
(a non convez case)
b) (alb,d) = —1, (bla,d) = 1, (al|e,d) = 1, (ble,d) = —1, (c|a,d) = (c|b,d) = —

(a non conver case)
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2.3 SEMIDOMAINS AND HALFORDERED SETS

Let (E,X;0) be a locally transitive permutation set (i.e. E # (), ¥ C SymFE, 0 € E
and X(0) = E), fora € Elet [0 — a] := {0 € £ | 0(0) = a} and let A =<
{yloaoB|a, BEX, v€[0— aoB(0)]} > be the structure group of (E,3;0). Then
a subset P C F is called a semidomain of (F,;0) if the two conditions:

(P1)ogprP

(P2)Vde Ay :6(P)=Pord§(P)=P_:=FE\ (PU{0})

are satisfied.

(2.3.1) Let (E,&) be a halfordered set such that Aut(E, &) acts transitively on E and
let 0,1 € E be two distinct points. Then (E,%;0), with ¥ := Aut(E,§), is a locally

H
transitive permutation set and P :=0,1 is a semidomain of (E,%;0).

Proof. We have 0 ¢ O,—i by definition and since in our case Ay < Aut(E,&)y := {v €
— — - —
Aut(E, &) | v(0) = 0} we have to prove: for all § € Ay :§(0,1) =6(0),6(1)=0,(1)=0, 1
— — = —
or 6(0,1) =0,1 . If z € 0,1 we obtain:
1 = (0]1,2) = (0/8(1),8(z)) & (0/1,8(1)) - (0[(x),1). Hence if (0]1,6(1)) = 1 then
(01, 8(z)) = 1, i.e. 6(0,1) =0,1 and if (0[1,6(1)) = —1 then (0|1,8(z)) = —1, i.e.

—

— —
§(0,1) =0,1 . Thus 0,1 is a semidomain of (F,;0). O

(2.3.2) Let (E,%;0) be a locally transitive permutation set and let P C E be a semido-
main of (F,3;0). We set:

E\{0} — {1,-1}
E=¢p: 1 if z€eP
x = e(x) =
-1 if z¢P
and
EY {1,-1}

Ep:

Y

(a,b,¢) — (alb,c):=e(a'(D)) (e (c))
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where o € [0 — a].
Then (E,&p) is a halfordered set, with ¥ C Aut(E,&p).

Proof. From the definition of a semidomain follows (cf. (P2)) :
(x)Va,ye E\{0},Vd € Ag:e(x)-e(y) =e(0(x)) -€(6(y))-

With (x) we show that £p is welldefined. Let o,y € [0 — a] and w € [0 — 0], then

lowow € Agandso aj'oca=dow™! =:§ € A,

§:=aj'caow € Ay, w=w"
ie. ayl = 8, o a~!. Therefore e(a' (b)) - e(a~(c)) 2 £(8, 0 a1 (b)) - £(61 0 a~'(¢)) =
e(ar'(b) - e(ar(c)).

Now we have to prove (Z): let a,b,c,d € E,a # b,c,d then (a|b, c)- (alc,d) := e(a™'(b))-
e(at(c) - e(a(c)) - e(a (d)) := (alb,d), where o € [0 — a]. Hence (F,&p) is a
halfordered set.

Finally let 3 € ¥ and (a,b,c) € E¥ be given. Let o € [0 = a] and v € [0 — 5 o a(0)].
Then 6 :=vy 'oBoa € Ay and so :

(B(a)|B(b), B(c)) = (B o a(0)|B o ala™ (b)), Boala(c) =

e(y {(Boaoa () e(y (Boaoa(e) L eBoa(h)-e(doa(e) ¥

e(a™t(d)) -e(a”(c)) = (alb,c). O

(2.3.3) (1) Let (E,&) be a halfordered set such that Aut(E,§) acts transitively on E, let
0,1 € E, with0# 1 and let P ZO,_i be the corresponding semidomain (cf. (2.3.1)) of
(B, Aut(E,£);0). If £p, is the halforder of E corresponding to Pe according to (2.3.2)
then § = &p,.

(2) Conversely let (E,%;0) be a locally transitive permutation set, P a semidomain of
(E,%;0),1 € P,&p the associated halforder of E and Py, the semidomain of (E, Aut(E, &p);
0). Then P, = P.
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Proof. (1) We have P; =0, 1:= {z € E\ {0} | (0|1,z) = 1} and

E:=¢ep, : EN{0} — {L,-1}
. P - T — 5(x) = (O|1,£L‘)f

I

hence for (a,b,c) € E*, a € [0 — a]:
£p(a,,0) = (alb, O)gy, = (07 (1)) - £(a™1(c)) = (0[1, 07 (B))¢ - (0[1, 07 () 2

00~ (), a4 (0)e = (alb, e
since a € Aut(E,§). Hence £ = &p,.
(2) Let z € E\{0} and let w € [0 — 0]. Then w = w™lowow € Ay, hence w(P) € {P, P_}
and z € P, & 1= (0]1,2)e, = ep(w }(1)) - ep(w (z)) & (%) ep(w (1)) =
ep(w™i(x)).
Firstly we assume w(P) = P. Then: 1 € w(P) & w (1) € P & 1=¢p(w (1)) ®
ep(wt(z)) & wilz)eP & zew(P)="P.
Now let w(P) = P_. Then:
1¢dwP) & wl(l)gPs —1=cp(w (1)) © ep(wi(z)) © wlz)¢gP & x¢
wP)=P. & ze€P. O

(2.3.4) Let P be a semidomain of the locally transitive permutation set (F,3;0), let
SymEpppy = {0 € SymE : o(P) = P and o(P-) = P_ or o(P) = P_ and
o(P.) = P} and letT := {0 € SymEpp ) |Va € X, Vo € [0 = oo a0)]
a'oocoa € SymEpp y}. Then Aut(E,&p) =< S,T >, where &p is the halforder
associated to P (cf. (2.3.2)).

Proof. By (2.3.2) we have : ¥ C Aut(E,&p). Let (a,b,¢) € E¥ andlet o € T, € [0 —
a] and a; € [0 = o(a)]; then (alb, )¢, = e(a™(B)) - e(a(c)) "= L= @y
£() “L T e(ar oooa (V) e(ar ogoa(d)) = e(ar oooaoa (b)) (ai ogoaca 1(c)) =
(o(a)|o(b),o(c))ep, hence T' C Aut(E,Ep). This implies < X, T >< Aut(E, &p).

Now let v € Aut(E,&p) with v(0) = 0; then for all (a,b,c) € E¥ : (alb,c)ep =
(7(a)ly(b), ¥(¢))ep and if a = 0, we obtain (0b, ¢)e, = ep(b) - £p(c) = (0[7(b),V(c))er =
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ep(v(b)) - ep(7y(c)) and this implies v € SymEpp_ 3. If @ € ¥ and oy € [0 — v 0 a(0)]
then o' oyoa € Aut(E,&p) and a;' oy o a(0) = 0. So we have, as before,
aj foyoa € SymE(pp._y,i.e. v € . Moreover if o € Aut(E,&p), a :=0(0),a € [0 — al,
then v := o' oo € Aut(E,£p) and y(0) = 0, hence v € T' (as we have proved above)
and so 0o =aoy € Xol, ie. Aut(E,&p) << X, ['>. 0O

Remark. We observe that we can find functions o € SymEpp_y such that o(0) = 0
but o € Aut(E,£p). For example if we consider:

E = 7s,

S o= {17, -1+, 2%, 3+, 0%},

then (E,X;0) is a locally transitive permutation set;

P:={1,-1}, P_:={3,2} and Ag = {id} since Zs is a group. If we set:
0:0—-0,2—2,3—=3, 1— -1, —1—1,

then we have:

(1] —1,2) & (0/3,1) = =1 and (c(1)|o(=1),0(2)) = (=1/1,2) " (0/2,3) = 1 and so
o & Aut(E,&p).
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2.4 RELATED HALFORDERS AND VALUATIONS

Let (E,&) be a halfordered set with |E| > 4. Like in sec. 2.1 we associate to £ the

function:
e BY — {1,-1}; (a,b, ¢c,d) — [a,blc,d] := (a|c, d) - (b|c, d).

Then by (Z) 7¢ satisfies the conditions:

(Z): V (a,b,c,d), (a,b,d,e) € E* : [a,blc,d] - [a,bld, e] = [a,b|c, €];

(Z), V (a,b,d,e), (b,c,d,e) € E* : [a,bld, €] - [b,c|d,e] = [a,c|d,e]

Each function 7 : EY — {1, -1} which satisfies (Z); and (Z), is called a separation

function of E.5

Now let 7 be a separation function, ((¥)) := {(a,b,¢,d) € E* | {a,b,c,d} € (})} and
let

kr o (%)) = {1,-1}; (a,b,¢,d) = [a,ble, d] - [b, c|a, d] - [c, alb, d],

kr 2 (%)) = {1,-1}; (a,b,¢,d) = [a,ble, d] - [a, c|b, d] - [a, d|b, c].

Remark. For all z € E with (a,b,¢,7) € ((})) and (z,b,¢,d) € ((})) the values
k- (a,b,c,z) and k, (z,b,c,d) are constant and these values do not change if the ele-

ments a, b, c and b, ¢, d are permuted respectively.

(2.4.1) If ¢ is a halforder of E and T := 7¢ the corresponding separation function then
T satisfies (besides (Z), and (Z),) the condition:
(T)*V (a,b,¢,d) € ((})) : k. (a,b,¢,d) = ky,(d, a,b, c) = ke({a, b, c}).

Proof. Let (a,b,c,d) € ((})). Then k&, (a,b,c,d) := [a,blc,d] - [b,c|a,d] - [c, alb, d] =
(ale,d) - (ble,d) - (bla,d) - (c|a, d) - (c|b,d) - (alb,d) 2 (alb, ) - (bla, ) - (cla,b) 2 (d]b,c) -

=1

(alb, c)-(d|a,c)-(bla,c)-(d|a,b)-(c|a,b) =" [d,alb,c]-[d,b|a,c]-[d,c|a,b] =: k;(d,a,b,c).O

5This definition of a separation function is stronger as in sec. 2.1 where only (Z); was claimed.
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We denote the halforder (and the separation) function which is constant = 1 by 1. Two
halforders & and & of E are called equivalent, denoted by & = &, if the corresponding
separation functions 7¢, and 7¢, are equal.

A function 8 : E — {1,—1};x — T which maps each z € F on one of the values 1 or

—1 is called a valuation. If B is a valuation and £ a halforder of F then also
€: EY = {1,-1};(a,b,¢) — (alb,c)e - b-C
is a halforder of E. In fact V (a,b,¢), (a,c,d) € E* :
£5(a,b,0) - €5(a, ¢, d) = (alb, )¢ -2 - (ale, d)e -7 4 2 (alp, d)e - - d = E5(a, b, d),

i.e. &3 satisfies (Z).

In sec. 2.1 two halforders & and & of E were called related, denoted by & rel &, if
Y (a,b,c,d) € EY : [a,b|c,d]; = [c,d|a, bl and a halforder ¢ selfrelated if & rel €. Here
we call a separation function 7 selfrelated if V (a,b,c,d) € E* : [a,b|c,d] = [c, d|a, D).

We have the following

(2.4.2) Let &1, & be two halforders of E. Then:
(1) If & ~ & then ke, = ke, and : & is selfrelated & &5 is selfrelated.
(2) & = & & there is a valuation 5 with & = &p.

Proof. (1) Let (a,b,c,d) € ((})) then by (2.4.1):
ke, ({a,b,}) = n, (a,b,¢,d) = by, (0,0, ¢,d) = g, ({a,b,c}).
(2) “ = " Let {0,1,00} € (%) be fixed; then V = € E \ {1} we set B(z) = T :=

(110, ), - (1|0, 7)¢,, and B(1) =T := (00|1,0)¢, - (001, 0)s,. We prove: V (z,y,2) € E¥ :

gl(xayaz) = ($|y, 2)52 : y Z.
1. case: y,z#1:

_ _ )
(x‘y’z)ﬁz ‘Y zi= (x|y,z)§2 ’ (1|0,Z/)§1 : (1|0’y)§2 : (1|0>Z)§1 : (1|0’Z)§2 =
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&8
('ﬂya Z)ﬁz : (1|ya Z)él ’ (1|y7 2)62 =" (m‘ya 2)61 : (1|y, Z)él : (Hy’ 2)61 = (x‘y’z)él'

2.case: y=1,z2#1,00 (or z=1,y #1,00) : (z|1,2)g, - 1-Z :=

18
(.7)|1,Z)§2 : (OO|1: 0)&1 : (OO|1’0)§2 : (1|0,Z)§1 ’ (1|072)§2 =’

()
(x‘laz)& : (oo\l, 0)61 : (00‘1’0)52 : (OO‘O’Z)& ’ (OO|O’Z)€2 =

&6
(‘T‘laz)& : (00‘1,2)51 : (OO|1,Z)§2 =" ($|1’Z)§1 : (OO|15Z)§1 : (OO|1’Z)§1 = ($|1’Z)§1'

3.case: y=1l,z=o00 (or z =1,y = 0) andx#O:(:r|1,oo)§2-T-%(:)

(33‘0, 1)52 ’ (‘T‘O: 00)52 : (00‘170)51 : (OO|1,0)§2 ’ (1‘07 OO)&'

&1réo
(1|0’ OO)EQ = ($|0, 1)'51 : (OO|0, 1)51 : (.TlO,OO)gI : (1|O’OO)§1 : (OO|1’O)§1'

N

(1‘0, 00)61 = (33‘1:00)61'
4. case: y=1,z2=00,z =0 (or y =00,z =1, =0):
(0|1,OO)§2 -1-50= (0|1,OO)§2 : (00‘1’0)51 : (00‘110)52 : (1|05 00)61 : (1|05 00)62 =

(L)A€~
k§1 ({Oa 1’ OO}) ’ (0‘1: 00)61 : k§2({0, 1’ OO}) = (0|1a 00)61-

5. case: y =z = 1:
(=1, 1)62 1-I=1= (=1, 1)61'

“<7V (a,b,c,d) € B :
[CL, b‘C, d]& = (a"ca d)§2 ) (b‘ca d)§2 =
(ale, d)fz -c-d- (le, d)fz e-d = (ale, d)fl - (ble, d)€1 =: [a, b, d]&:

i.e. 62 ~ 51. O

In particular if £ ~ 1 then there is a valuation 3 with § = 1g.

A separation function 7 : E* — {1, -1} is called an order if V {a, b, c,d} € (E) exactly

one of the values
[a, blc, d], [a, c|d, b], [a, d|b, ]
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is equal —1. Then the pair (F,7) is called an ordered set.

(2.4.3) Let T be a separation function of a set E with |E| > 4 and let {0,1,00} € (?)
be fixed. Then:

(1) Each of the functions f; : E \ {0,1,00} — {1,-1}, with i € {1,2}, fi(z) :=
ks (00,1,0,2) and fo(x) := k., (x,00,1,0) is constant =: ;.

(2) If y1 = 9 =: 7y then there is exactly one halforder £ = £(7;0,1,00) of E with
l.7=17¢

2.Vz,y€ E\{oo}: (0lz,y)=1

3. (0[1,00) = 1

and & has the form

() (100, 0) =~

(%) (alb,c) := [o0,alb, ], if b,c # 0o

(i13) (aloo, c) == - [a, 1|0, 00] - [00,al0, ], if a # 0, ¢ # oo

(iv) (0]oo, €) == [00, 01, ¢], if ¢ # o0

(

v) (a]oo, o0) := 1.

Proof. (1) By definition, fi(z) - fi(y) = [00, 1|0, ] - [1, 0]oo, z] - [0, 00|1, 2] - [00, 1|0, 9] -
(2), (Z), —

[1a 0|OO, y] ) [Oa OO|1, y] - [OO, ].|.73, y] ) [1a 0|‘7’l1 y] ) [Oa OO|.T, y] - [OO’ 0|.7), y] : [01 OO|$, y] =1

In the same way fo(z) - fo(y) = 1.

(2) Let & be a halforder satisfying the conditions 1.,2. and 3.. Since |E| > 4 there is an

u € E\{0,1,00} and so

(6) (1|00, 0)  (ufoc, 0) - fu, 1|00, 0] “=" (ufoc, 0) -y - u,0[1, 0] - [u, 00[0, 1]

1.

v - (u]oo, 0) - (u]1,00) - (0]1,00) - (|0, 1) - (00]0,1) =L * 5 - (00]0,1) Z 4.

Now let (a,b,c) € E¥. Then 1.,2. and 3. imply:
(17) for b, c # oo :
(alb,e) = (alb, ) - (colb, ¢) = [0, alb,

(#13) for a # 0,c # 0o, b= 00 :

(aloo, &) Z (a)0, ¢)-(al oo, 0) ©

(if) A 1.

[007 (1,|0, c]-[a, 1‘00, 0](1|OO, 0) = ’y-[a, 1|OO, 0][007 CL|0, C]a
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(iv) for ¢ # o0 (a = 0,b= c0)

(0]00,¢) & (0[1,00) - (0]1, ¢)

3. A (i

)00, 0/1, .

Consequently £ is uniquely determined by these data.

It remains to show that if £ is given by these data, £ is a halforder satisfying 1.,2. and
3.. Let (a,b,¢), (a,c,d) € E¥ :

case 1: b,c,d # oo : by (i)

(alb, c) - (ale, d) = o0, alb, ] - [00, ale, d] 2 [0, alb, d] =: (a]b, d);
case 2: a # 0;b, ¢ # 0o;d = oo: by (i7) and (i47)
(alb, ) - (ale, 00) = [00, alb, ] - 7 - [a, 1]00, 0] - 00, a0, ] 2"

7 - [a,1}oo, 0] - [00, alb, 0] =: (alb, 00);
case 3: a # 0;b,d # oo;c = oo: by (i)
(alb, 00) - (aloo, d) = v - [a, 1|00, 0] - [00, |0, 8] - 7 - [a, 1|00, 0] - [o0, a|0, d] 2
[00, alb, d] =: (alb, d);

case 4: a = 0;b,d # oc;c = oo: by (iv)

(0[b, 50) - (0]oo, d) = [00, 0]1, 8] - [00, 0]1, d] 2 [0, 0/b, d] =: (0[b, d):
case 5: a = 0;b = 00;¢,d # oo: by (i7) and (iv)

(0[oo, ¢) - (0le, d) = [00, 0|1, ¢] - [00,0¢, d] 2 [00,0[1, d] =: (0]cc, d).
Hence € is a halforder.
By (iv) and (Z);, (0|1,00) = 1 and by (i7) (co|z,y) = [00,00|z,y]. But (Z), implies
[a,ald,e] =1 for all (a,d,e) € E*. Therefore ¢ has the properties 2. and 3..

In order to prove: T = ¢, let (a,b,c,d) € E¥: we have to consider the following cases:

a) ¢,d # oo :

re(a,b,c,d) := (ale,d) - (ble, d) = [o0, ale, d] - [oo, ble, ] 2 [a,ble, di;
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b) a,b# 0,¢c = 00,d # oc:

T‘ﬁ(a" b, oo, d) = (CI,‘OO, d) (b‘OO, d) = [(J,, 1|05 OO] ) [OO, 0,|0, d] ’y[b, 1|0a OO] ) [OO, b|0, d] (Z__)T

Z),

[, b0, 00] - [a, b/0, d] 2" [a, bld, oc;

c)c,d=00:
Te(a, b, 00, 00) := (a|oo, 00) - (bjoo, 00) :=1-1 =1 = [a, bjoo, oo
d)a=b=0,c=00,d # oc:
7¢(0,0, 00, d) := (0|oo, d) - (0]co,d) =1 = [0, 0]|co, d];
e) a#0,b=0,c=o00,d# 00,1 (we substitute ):

7¢(a, 0,00, d) := (aloo, d) - (000, d) := 7 - [a, 1|0, 00] - [0, a|0, d] - [50,0[1, d] Z'

[0, 110, d] - [1,0]00, d] - [0, 00[1, d] - [a, 1]0, 00] - [0, a0, d] - [oo, 0|1, d] 2

[1,a/0, d] - [1, [0, o] - [1, 0]oo, d] 2" [1, aloc, d] - [1, 0]oc, d] 2 [a, O]cc, d];

fYa#0,6=0,c=o00,d=1:

7e(a,0,00,1) = (a]oo, 1) - (0]o0, 1) == - [a, 1]0,00] - [00, al0, 1] - 1 *=" [, 0]c0, 1. O
Remark. If the hypotheses of (2.4.3) are satisfied then

1. If 7 is selfrelated then by (2.1.1) vy = yo =7y =k, = k.

2. The following statements are equivalent:

(1) The functions k,, and k,, are constant.

(2) T is selfrelated.

In fact V (a,b,c,d) € ((ff))
k;(a,b,c,d) = k. (c,d,a,b) & 1=]a,blc,d|-[a,c|b,d]-[a,d|b,c]-[c,dla,b]-[c ald,b]-
2.4.3)

[c, bla, d] (¢4 (ale,d) - (ble, d) - (alb,d) - (c|b, d) - (alb, c) - (d|b, ¢) - (c|a, ) - (d|a, b) - (c|d, b) -
(ald,b) - (c|a,d) - (bla,d) = (a|b,d) - (bla, c) - (d|a,c) - (c|b,d) < [a,c|b,d] = [b,d|a,c|
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(2.4.4) Let T be a separation function on a set E with |E| > 4. If T is an order then T

15 selfrelated.

Proof. Let {a,b,0,00} € ({f) Since 7 is an order exactly one of the values [00, 0]a, b], 00, a|
b, 0], [00,b|0,a] and [a, b|0, 00, [a, 0o, b], [a, co|b, 0] is equal —1 respectively.

If [00, alb, 0] = —1 then [oo, 0|a, b] = 00, b|0, a] = [a, b|0, o] = [a, 0|co,b] = 1 and so we
have the thesis.

If [00,alb,0] = 1 we may assume [00,0|a,b] = —1. Then [00,b/0,a] = 1. Sup-
pose [a,b|0,00] = 1, then, since 7 is an order, [b,0|a,00] = —1. This contradicts
[00,0|a,b] = —1. Thus 7 is selfrelated.O]

(2.4.5) (1) If a separation function T is an order of E then each corresponding between-
ness function & := &(1;0,1,00) (¢f. (2.4.3)) is an order of E.

(2) If (E,€) is an ordered set, then the separation function T := T¢ is an order.

Proof. (1) By (2.4.4) 7 is selfrelated and so the constants 7,7y, of (2.4.3.1) are equal.
Therefore by (2.4.3.2) £ := £(7;0,1,00) is a halforder of E. Let {a,b,c} € (?) If
a,b,c # oo then

(alb, c) = o0, alb, ], (bla,c) = [o0,bla,c], (c|la,b) = [0, c|a, b]

and since 7 is an order exactly one of these three values equals —1 and therefore v = —1.
If a,b # 0 and ¢ = oo then (oo|a,b) = [00,00|a,b] = 1 by (Z),, and since vy =
-1, (aloo,b) = —[a, 1]0, 0] - [oc, a|0, b] and (b|oo, a) = —[b, 1|0, 00| - [00, b|0, a).

Now (a|0o, b) - (b|oo, a) = [a, b|0, 00] - [00, |0, 8] - [00, b]0, a] “=* [00,0]a, b] - [00, /0, 8] -
[00,0]0,a] =k, = v = —1, i.e. exactly one of the values (o0|a,b), (a|oo,b), (bco, a)
equals —1.

If a = 0 then again

(00]0,b) = [00, 20|0,b] = 1, (0]oo, b) = [0, 0|1, b] and

(b]oo, 0) = - [b,1]0, 00] - [0, 5|0, 0] = —[b, 1|0, 00] “Z* [0, 00|1, 1].

Hence £ is an order of E.

2) Now let , e an ordered set and let ya,0,c,d; € then
Now let (E,£) b dered dl bc,d} € (%) th
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la,b|c,d] = (a|c,d) - (ble,d), [a,c|b,d] = (alb,d) - (c|b,d), [a,d|b,c] = (a|b,c) - (d|b,c)
and exactly one of the values (b|c, d), (c|b, d), (d|b, c) is —1, for instance (b|c,d) = —1.
Then [a,blc,d] = —(ale,d), [a,c|b,d] = (alb,d) and [a, d|b, c] = (a|b, c) = (alc,d)-(a|b, d).
If (alc,d) = —1 then [a,b|c,d] =1 and [a, d|b, ¢] = (a]b, c) = —(alb,d) = —]a, ¢|b, d].

If (alc,d) = 1 then [a,b|c,d] = —1 and [a, c|b, d] = (alb, d) = (a|b, ¢) = [a, d|b, c]. Suppo-
se (a|b,c) = (alb,d) = —1 then (b|a,c) = (bla,d) = 1; hence (b|c,d) = (bla,c) - (bla,d) =
1-1=1, contradicting (b|c,d) = —1.0

By (2.4.2),(2.4.3) and (2.4.5) follows

(2.4.6) Let (E,&) be a halfordered set. There is a valuation § : E — {1,-1};2 — T
such that the function &g : E¥ — {1,—1}; (a, b,¢) — (alb, c)¢ b+ is an order if and only
if (B, T¢) is an ordered set.

Remarks. There are pairs (&, &) of equivalent halforders (i.e. & ~ &) of a set E such
that:

1. & is an order and & is not an order.

2. & is selfrelated, convex but not an order and &; is not convex.

3. & is convex but not selfrelated and &, is not convex.

4. There are no particular relations between 3¢, and 3g,.

This shows that for halforders £ and the corresponding separation functions 7¢ we have
the following diagram:

§ order = ¢ order # & order,

(i.e. there are halforders £ which are not orders but where 7¢ is an order).

Proof. Let E = {a,b,c,d} and let 3 be the valuation given by @ :=¢:=d := —b:= 1.

1. An order & on E is completely determined by (b|a, ¢)¢, := (c|b, d)¢, := —1 (implying
(bla,d)e, = (cla,d)g, = —1) and & := & is not an order.

2. If & is defined by (d|a,b,c)e, = 1, (cla,b,d)e, = 1, (alb,d)e = (bla,d)e, :=
—1, (ale,d)g, = (blc,d)e, =1, then (cf. (2.2.2) 1.a)) & is selfrelated, convex but not an
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order and &, := &3 is not convex since (cla, d)s, = —(bla,d)¢, =1 but (c|b,d)e, = —1.
3. Let & be defined by (alb,c,d)e, = (cla,b,d)e, = (d|a,b,¢c)e, = (ble,d)e; = 1 and
(bla, c)e; = (bla,d)e, = —1, then & is not selfrelated ([a, c|b, d], =1 = —[b,d|a, c]¢,) but
convex and & = &5 is not convex (1 = (d|a, c)e, = —(bla, c)¢, and (d|b, c)e, = —1).0

2.4.1 ORDERS AND VALUATIONS

Let (E,€) be an ordered set and let V' be the set of all valuations of F; then V is a
group with respect to the following operation: V £1, s € V : (B1 - B2)(2) := b1(z) - B2(x).
Now we consider the set V; of all valuations § : E — {1,—1};x — T such that if & is
an order of E then the functions & : E¥ — {1,—1}; (a,b,¢) = (alb,c)¢ - b - € are orders
of E. We start from the case E := {a, b, c}. Then up to isomorphisms there is only one
order which let be given by (bla,c) = —1, (a|b,c) = (c|a,b) =1 and so we can construct

8 valuations:

Br| Pa| Bs | Pa| Bs | Bs | Br| Ps

We observe that 8; € V\Vi < fBi(a) = Bi(c) = —Bi(b), therefore V' \ Vi = {B4, Bs} ; we
remark moreover that V] is not a group because if we consider the product of 83 and 37

we obtain S5 ¢ V;. If instead we compose (5, - 5 we obtain [, € V.

Definition 2.4.1 Two halforders &, &, of E, with |E| = n, are isomorphicif 3o € S, :
§1=¢&o00.
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A linearly ordered set (E, <) can be described in the form (E, o) where « is the function

E? :={(a,b) € E?> |a # b} — {1,-1}
o 1 if a<b
(a, ) s (alp) = s
—1 if b<a

If |[E| =n € N then E has n! total orders a. To each such order « there corresponds an

order betweenness function:

. ) RS {1,-1}
“\ @he) = (@b =)o)

On the other hand if ¢ : E¥ + {1,—1} is an order betweenness function then there
are exactly two total orders aj,ay of E such that & = &,, = &,, and moreover for
(a,b) € E?, oq(a,b) = —as(a,b) (cf. [23],(13.3)).

Consequently a finite set £ with n := |E| can be provided with exactly % order bet-
= {a,b,c,d}
there are 12 orders £ of F which are all isomorphic and one & of them is defined by
(alb, c) = (alb,d) = (c|a,d) = (c|b,d) = —1.

weenness functions and all these orders are isomorphic. Hence for FE

There are 2* possible valuations (we denote with V' the set of all valuations) :

Bay| 1 |-1| 1| 1] 1 |=-1]-1|=1
By | 1| 1 | =111 |=-1|1]1
Bley| 1] 1|1 |—-1]1]1]|-1|1
Byl 1|1 |1 |1 ]|=1]1]1][=1
/39 /310 /Bll 512 /813 /814 /315 /316
Bl | 1 |1 |1 |-1|-1|-1]1]-1
B | =1 1| 1 |=1| 1 |-1|-1]|-1
Ble)| -1 1 |—-1|-1|-1] 1 |-1]-1
Bd)| 1 |=1|=1|1 |-1]-1|-1]|-1
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As before we denote by V; the set of all valuations (; of E such that the functions
¢ E¥ — {1,-1};(a,b,c) = (alb,c)e - Bi(b) - Bi(c) are orders of E. Then we have
Vi = {B1, Bs, Bs, B6, B11, P12, P13, Bie}- Since fBs - B = P14 € V1, the set Vi is not a group.
For the elements of V' \ V} we obtain 87 - Bs = 11 € Vi, Bia- P15 = Br € V \ V1. So also
V'\ V1 is not a group. If we look for the set V5 of all valuations §; of E such that for
each order ¢ of E the functions & : E* — {1,—1}; (a,b,¢) = (alb, c)¢ - Bi(b) - Bi(c) is an
order of E we obtain V, = {1, 516} and this is a group.

For the general case we introduce two new definitions: let & : E* — {1,—1} be an
order and let 8 : E — {1, —1} be a valuation. Then & and 3 are called not compatible
if 3 {a,b,c} € () with (bla,c) = —1 and B(a) = B(c) = —B(b); otherwise £ and S are
called compatible. Moreover let &g : B3 — {1, —1} with &(a, b, c) == (alb, c) - B(b) - B(c)
(cf. p.71). Then:

(2.4.7) If € is an order of E and (8 is a valuation of E then:

the function & is an order & £ and B are compatible.

Proof. Let {a,b,c} € () with (bla,c) = —1, hence (alb,c) = (cla,b) = 1. We re-
strict our considerations onto {a,b,c}. If 5 =1 or § = —1 then £ = £ and f is
compatible with . Let 8 # 1,—1 and let 8(b) = 1 then we may assume [(a) = —1
and obtain (bla,c)e, = B(c), (alb,c)eg;, = B(c), (cla,b)g; = —1. Hence: &g is an order
< B(c) =1« fis compatible with &.

If 3(b) = —1 we may assume $(a) = 1 and obtain (bla,c)e;, = —f(c), (alb,c)e, =

—pB(c), (cla,b)g, = —1. Thus: &g is an order < fB(c) = —1 < [ is compatible with §.0

From (2.4.7) follows:

(2.4.8) If € is an order of a finite set E then there are 2 - |E| valuations B of E such
that &g is an order.

Proof. Since all orders of a finite set are isomorphic we may assume F = Z, =

{1,2,...,n} and if a,b,c € E then : (bla,c) = -1 & a<b<corc<b<a. Let B,



2.4 Related halforders and valuations 81

be the set of all compatible valuations of Z,, and for & < n and iy,... i € {1,—1} let
B;, i, be the set of all compatible valuations 3 with 5(I) = ¢, for [ € {1,... ,k}. Then
B;, ..i, = 0 if there are a,b,c € {1,...,k} with a < b < ¢ and i, = i, = —ip and so
B,=B;;1UB_;_ 1 1UB;;_1UB_;;; UB_1_1; UB;_;_; if n > 3. Each of the four last
sets consists of exactly one valuation g3 : for m € Z, \ {1,2,3} we have S(m) = £(3).
For the two first sets we have if n > 3 : By;; = Byi11 U Biyi1 with Biyp1 = {Bi1-1}
where f111_1(m) = —1 for all m € Z, \ {1,2,3}, B_.y_ 11 =B_1_1-1-1UB_1_1_1; with
B-1-1-11(m) =1 for all m € Z, \ {1,2,3,4}. This gives us the result |Bs| =6 = 2- 3,
B)/=4+2-2=8=2-4and

(x)ifn>4: |B,| =442+ |Bi| + |Boi—1-1-1]-

For m € N let B,,.1 :== Bl_:,'_l’ By = Bi/,;ll, By = Bl_:,'_i_l’ B, =

B_1..._11; then for each m with 3 < m < n, Bni = By U Bpi,—1, Bp.(-1) =
——

B(m41)-(-1) U B (—1)1 With | By, —1| = |Bm.(—1),1| = 1. Hence:

(%) Vm € Nwith 4 <m < n:|Bp1| = |[Bumti)1| + 1 and |Bp.—1)| = [Bmtr)(-n| + 1.
Since |By.1| = |Bp.(-1)| = 1 one obtains from (s%) [By1| = (n—4)+1 =n—3 = |By(1)|.
Thus by (%) |By|=6+2-(n—3)=2-n.0



82 2. Halfordered sets, semidomains and convexity

2.5 CONVEX QUADRUPLES

Let (E,&) be a halfordered set and let 7¢ be the corresponding separation function;
(a,b;c,d) € ((§)) is called a conver quadruple if (alb,c,d) =1 and (blc,d) = —1. Let C
be the set of all convex quadruples and C’ := {(a, b;c,d) € ((%)) | (ale,d) = —(ble,d) =
1}. M CElet C(M):=M*NC and C'(M) := M*NC".

Remarks. C C C'. If (a,b;¢,d) € C' then [a,b|c,d] = —1 and if (a,b;¢,d) € C then
(a,b;d,c) € C.

A subset A C E is called halfbounded if there is an element s € E \ A with (s|A) =1,
ie. Va,be A: (s|a,b)=1.

a € E is called end(point) if 3b € E : [a,b] = E, exceptional(point) ifV z,y,z € E\ {a}
with z #y, 2 : [a,z]y, 2] = 1. {a,b} € (¥) are called neighbour(point)s if |a, b[= 0.

A halforder £ is called separationfree if one of the equivalent conditions is satisfied:

(a) 7¢ is constant = 1;

(b) C" =0, ie. (E &) is trivially conver;

(©) B = {{a,b} € (5) | Ja, b # 0 A [a,b] # B} = &

(

d)Va € E, ais exceptional.

Proof. (a) & (b). Let (a, b; ¢,d) € C'; then by defintion (a|c,d)-(b|c,d) = [a, blc,d] = —1
and so 7¢ is not constant = 1.

(a) & (c). Suppose E? # (. Then 3 {a,b} € (§) :]a,b[ # 0 and [a,b] # E, i.e.
de,de (E\{;’b}) : (¢|la,b) = —(d|a,b) = 1. This implies : [c,d|a,b] = —1 and so 7¢ is not
constant =1. Vice versa let {z,y,a,b} € (}) : 7¢(z,y,a,b) = (z]a,d) - (y|a,b) = —1. If
(z|a, b) = —(y|a,b) = 1 (in the same way if (y|a,b) = —(z|a,b) = 1) then {a,b} € E?".
(a) & (d). Let @ € E such that 3 z,y,2z € E \ {a} with z # y,z and [a,z|y, 2] = —1.
Then 7¢ is not constant = 1. Vice versa let (a,,y,2) € E* : 7¢(a,2,y,2) = —1. Then

a € E is not exceptional.O

From now on we assume that 7¢ is not constant. Then by Definition 2.0.2 (E,¢) is
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convex if C' = C. We recall (cf. (2.2.1)) that the statements “(E,¢) is an order set”

and “(E, &) is convex and harmonic” are equivalent.®

Let C, := {(a,b;¢,d) € C | (a,¢;b,d) ¢ C and (a,d;b,c) € C} be the set of all regular
convez quadruples and C; := {(a,b;c,d) € C | (a,c;b,d) € C or (a,d;b,c) € C} the set

of all irreqular convexr quadruples.

Now we assume moreover that (E, &) is selfrelated, i.e. V {a,b,c,d} € (149) : [a, ble, d] =
[c,d|a,b]. Then (a,b;c,d) € C" implies —1 = [a,b|c,d] = (c|a,b) - (d|a,b). Therefore
exactly one of the values (c|a, b), (d|a,b) is = 1 and we can order the elements of C’ such
that (d|a,b) = 1. Let C' := {(a,b;¢,d) € C' | (d|a,b) = 1} and if (a,b;c,d) € C' then
(d|a,c) = (d|b,c) by (d|a,b) =1 and therefore there is the decomposition of C’ by

C'" :={(a,b;¢c,d) € C" | (d|a,b,c) =1}

and

C'"™ = {(a,b;c,d) € C" | (d|a,c) = (d]b,c) = —1}.

We set C := C'NC, CT:=C+NC, C~ :=C~NC (then C=C*+*UC),C, :=C, N
C’ and Cz = Cz ncC.

Now let F := {a,b,c,d} € (}). If (a,b;¢c,d) € C, then (alb,c,d) = 1,(blc,d) =
—1,(c|b,d) = (d|b,c¢) = 1 and (d|a,b) = 1 hence (d|a,b,c) = 1 and 3¢({b,c,d}) =1
implying k¢ = —1 and C,(F) C C*(F). (alb,d) = (d|a,b) = 1 and k¢ = —1 gives
(bla,d) = —1 hence 3¢({a,b,d}) = 1. (ald,c) = (d|a,c) =1 = —k¢ gives 3¢({a,d,c}) =
1. Finally (b|a,c) = (bla,d) - (blc,d) = (=1) - (=1) =1 and (alb,c) = 1 = —k¢ implies
(cla,b) = —1 and 3¢({a,b,c}) = 1. We have proved the first part of:

(2.5.1) Let (E,€) be a selfrelated halfordered set, (a,b;c,d) € C, and F := {a,b,c,d}
then:
1. (E,€) is harmonic, the pair (F, & r) is an ordered set and C(F) = {(a,b; ¢, d), (d, ¢;b,a)}.

6 A selfrelated halforder ¢ is called harmonic if k¢ = —1 and anharmonic if ke = 1.
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2. If C' = C, then (E,£) is an ordered set.

3. If C = C, # 0 then (FE,&) is an ordered set or there are three points {u,v,w}
with 3¢({u,v,w}) = 3 which are not halfbounded (and then all 3—sets {z,y, 2z} with
3¢({z,y,z}) = 3 are not halfbounded).

Proof. 2. By 1., (F, §) is harmonic, and C' = C, implies that (F, §) is convex. Conse-
quently by (2.2.1) (E,£) is an ordered set.

3. By 1., (E,€) is harmonic. If (F,&) is not ordered then there are {u,v,w} with
(u|v, w) = (v|u,w) = (w|u,v) = —1. If {u, v, w} is halfbounded by ¢, hence (t|u,v,w) =
1 then (t,u;v,w), (t,v;u,w), (t,w;u,v) € C, ie. (t,u;v,w) ¢ C, contradicting C' =
C,.0

Now let (a,b;c,d) €Cf :=C;n C'* hence (alb,c,d) = 1, (ble,d) = —1, (d|c,b,a) = 1
and so (c|b,d) = —1. Therefore 3:({b,c,d}) = 2 implying kr = 1 (i.e. (E,§) is an-
harmonic) and so (a,¢;b,d) € C; and 3¢({a,b,d}) = 3¢({a,c,d}) = 0. Now (c|a,b) =
(c|b,d) - (c|d,a) = (—1) -1 = —1 and (alb,¢) = k¢ = 1 implies (bla,c) = —1, ie.
(d,b;c,a) € C*. Then (alb,c) = 1 = k¢ implies (c|a, b) = —1 hence (d, ¢;b,a) €CT and
so (d, b;c,a), (d, c;b,a) €C;. Together one has:

C'(F) = C(F) = Cf(F) = {(a,b;¢,d),(a,¢;b,d), (d, ¢;b,a), (d,b;c,a)} and (F,§,) is
the convex anharmonic halfordered set of four elements with 3¢({a, b, c}) = 3¢({b, ¢, d}) =
2 and 3¢({a,c,d}) = 3¢({a,b,d}) =0 (cf. (2.2.2) 1.a)).

Finally let (a,b;c,d) € C; = C; N C'~ thus (alb,c,d) = 1, (ble,d) = (d|a,c) =
(d|b,c) = —1. This implies ke = (blc,d) - (c|b,d) - (d|b,c) = (—1) - (c|[b,d) - (—1) =
(c|b,d) = (c|a,d) - (alc,d) - (d|a,c) = (cla,d) - 1-(=1) = —(cla,d) = (c|a,b) =
(c|b,d) - (cla,d) = ke - (—ke) = —1. Now ke = (alb, ¢) - (blc, a) - (c|a,b) =1+ (blc,a) - (—1)
hence (b|c,a) = —k¢ and (bla,d) = (—k¢)- (blc,d) = (—ke) - (—1) = ke. Together we have
ke = (bla,d) = —(bla, c) = (c|b,d) = —(c|a, d).

Cases ke = —1 = 3e({a,b,e}) = 3e({a,e.d}) = 3e({arbyd}) = 1, 3e({be,d}) = 3,
C(F) ={(a,b;c,d), (a,d;b,c),(a,c;d,b)} = C;(F) and C'(F)\ C(F) = {(d, ¢;b,a), (c, b;
d,a),(b,d;c,a)}.
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Case: ke =1 = 3¢({a,b,c}) = 3¢({a,c,d}) = 3¢({b,c,d}) = 2, 3¢({a,b,d}) = 0,
C(F) ={(a,b;c,d), (a,d;c,b)} and C'(F)\ C(F) = {(b,c;d,a), (d,c;b,a)} (cf. (2.2.2) 1.
b)).

We have proved the following

(2.5.2) Let (E,€&) be a selfrelated halfordered set, F :={a,b,c,d} and (a,b;c,d) € C;.
1. If ke = —1 and (d|a,c) = (d|b,c) = —1, i.e. (a,b;c,d) € C~, then 3¢({a,b,c}) =
Je({a, ¢, d}) = 3¢({a,b,d}) = 1, 3¢({b, ¢, d}) = 3, C(F) = {(a,b;¢,d), (a,d; b, ¢), (a, ¢; d,
b)} =C; (F) and C'(F)\ C(F) = {(d,c;b,a),(c,b;d,a), (b,d;c,a)}.

2. If ke = 1 and (d|a,b,c) = 1, i.e. (a,b;c,d) € C'F, then C'(F) = C(F) = Cf (F) =
{(a,b;¢c,d), (a,c;b,d), (d,c;b,a),(d,b;c,a)} and (F,&p) is the convex anharmonic hal-
fordered set of four elements with 3¢({a,b,c}) = 3¢({b,c,d}) = 2 and 3¢({a,c,d}) =
3¢({a,b,d}) = 0.

3. If ke = 1 and (d|a,c) = (d|b,c) = —1, i.e. (a,b;¢c,d) € C~, then 3¢({a,b,c}) =
Je({a,c,d}) = 3¢({b, ¢, d}) = 2, 3¢({a,b,d}) = 0, C(F) = {(a,b;¢,d), (a,d; ¢, b)} and
C'(F)\ C(F) ={(b,¢;d,a), (d, c;b,a)}.

2.5.1 WEAK CONVEXITY

Let D' := {(c,a : b,d) € ((%)) | (alb,c) = (bla,d) = =1} and D = {(c,a : b,d) €
D' | (c|a,d) = (d|b,c) = 1}. We observe that if (¢,a : b,d) € D' then (d,b: a,c) € D'.

(E,¢§) is called D-convez if D' = D.
(2.5.3) A set E := {a,b,c,d} of four elements has up to isomorphisms two selfrelated
halforders with D' = D and C" # C, one harmonic with |C'| = 12 and |C| = 6 and one

anharmonic with |C'| = 8 and |C| = 4.

Proof. C C C', with C # C', implies C' # (). Since £ has to be selfrelated we have to
look for a quadruple (d, b;a,c) € C'\ C, hence a quadruple with (d|a,c) =1, (bla,c) =
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—1, (c|b,d) =1 and (d|a,b) = (d|b,c) = —1.

Then (alb, d) = (c|b,d) - (bla, c) - (d|a,c) =1-(=1) -1 = —1 and so:
(i) (alb, ¢) = —(alc, d)

(i) (bla,d) = —(b|c,d)

(iii) (c|a, b) = (c|a, d)

ke = —1 (harmonic case): (d|a,b) = (alb,d) = —1 implies (bla,d) = —1 and by
(i) (ble,d) =1.

If (alb,c¢) = —1 then (d,b: a,c) € D'\ D, a contradiction to D' = D. Hence (a|b,c) =1
and (alc,d) = —1. (alb,c) = 1 and (bla,c) = —1 imply (by k¢ = —1), 1 = (c|a,b) @
(c|a,d). By this data a harmonic halforder £ with D = D' is completely determined and
one obtains: D = D' ={(c,b: a,d),(c,a: d,b),(c,d: b,a),(d,a:b,c),(bd:a,c)/(ab:
d,c)}, C'={(a,d;b,c), (c,d;a,b),(cb;a,d), (b a;c,d), (ca;b,d),(d,b;a,c),(a,d;c,b),
(c,d;b,a), (c,b;d,a), (b,a;d,c), (c,a;d,b),(d, b;c,a)},C = {(c,d;a,b), (cb;a,d), (c a;b,d),
(¢,d;b,a),(c,b;d,a),(c,a;d,b)} and moreover T = -1, ie. V{z,y,2,u} € (E) :

() *

[z, y|z,u] = —1.

ke = 1 (anharmonic case): (d|a,b) = (a|b,d) = —1 implies here (b|a,d) = 1 and so by
(i7), (blc,d) = —1.

If (c|a,b) = —1 then (a,c : b,d) € D'\ D (since (d|a,b) = —1), a contradiction to
D" = D. Hence (cla,b) = 1 and by (i), (cla,d) = 1. (d|a,c) = (cla,d) = ke =1
imply (alc,d) = 1 and by (i), (a|b,c) = —1. Here (E,¢) is an anharmonic halfor-
dered set with D = D' = {(¢,b : d,a),(c,b : a,d),(a,d : b,c),(d,a : be)}, C' =
{(c,a;b,d), (¢c,a;d,b), (c,d;a,b),(c,d;b,a),(a,b;c d), (a,b;d,c),(d,b;a,c),(db;c a)}and
C ={(c,a;b,d), (c,a;d,b), (c,d;a,b), (c,d;b,a)}. O

Now let (E,&) be selfrelated with k¢ = 1 and convex, i.e. C = C” and let {a,b,c,d} €
(%), with (a,b : ¢,d) € D' (hence (bla,c) = (c[b,d) = —1). Then (d|a,c) = —(bla,c) -
(dla,c) = —=I[b,d|a,c] = —la,clb,d] = —(a|b,d) - (c|b,d) = (a|b,d). Hence if (d|a,c) =
(alb,d) =1 then (a,b: ¢,d) € D.
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If (d|a,c) = (a|b,d) = —1 then besides

() (bla,d) = —(blc,d),
(i) (cla, b) = —(cla, d), we have
(i43) (alb, ¢) = —(ale, d),
() (d|a,b) = —(dlb, c).

We discuss the two cases:

a) (cla,b) = 1. Then (cla,d) = —1 by (ii) and since k¢ = 1, (alc,d) ‘= —(alb,c) = 1.
Suppose (d|a,b) = —1, i.e. (¢,d;a,b) € C'; then C' = C implies (c|a,d) = 1. Thus
(dla,b) = 1 and (d|b,c) = —1 by (iv). (a|b,d) = —1, (d|a,b) = 1 and k¢ = 1 gives
(ble,d) = —(bla,d) = 1. Then §{ap.cay = L{aped}-

b) (cla,b) = —1. Then (c|a,d) = 1 by (4) and since k¢ = 1 we obtain (a|b,c) =
—(ale,d) = 1. If (bla,d) = —1 then (c,b;a,d) € C' hence (cla,b) = 1 by C = C" a
contradiction to (c|la,b) = —1. Hence 1 = (bla,d) = —(b|c,d) by (i). This together
with k¢ = 1 and (c|b,d) = —1 gives (d|b,c¢) = —(d|a,b) = 1. Then also in this case
El{abed) R L{apbed)-

We have proved the result:

(2.5.4) Let (E,€) be selfrelated with ke = 1, conver and let (a,b : ¢,d) € D'. If
(a,b:c,d) & D then ({a,b, c,d}, {{ap.cay) @5 trivially conver.

(2.5.5) Let (E,&) be selfrelated with ke = —1 and convex. Then (E, ) is ordered and
D=D.

Proof. By (2.2.1) € is an order. Let (c,a : b,d) € D'; then by definition (a|b,c) =
(bla,d) = —1. Since £ is an order (c|a,b) = (bla,¢) = 1 and by (Z) we obtain
(ble,d) = —1 Since £ is an order (d|b,¢) = (c|b,d) = 1 and by (Z) (c|la,d) = 1 This
implies (¢,a: b,d) € D. O
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(2.5.6) Let (E, &) be selfrelated, with C = C" and D = D' # (. For each (a,b: ¢,d) € D
we have:

(1) (alb, c,d) = (d|a, b, c) =1, (bla,c) = (c|b,d) = —1, (bla, d) = (c|a,d) and (b|c,d) =
(cla, b).

(2) If (bla,d) = (cla,d) = —1 then (b|c,d) = (c|a,b) =1 and & induces an order on
{a,b,c,d}.

(3) If (bla,d) = (cla,d) = 1 then (blc,d) = (cla,b) = —1,k¢ =1 and V {z,y,z} € (§) :
3¢l 0, 2)) © 0,2},

Proof. (1) If (a,b : ¢,d) € D then by definition of D (alb,d) = (dla,c) = 1 =
—(bla,¢) = —(c|b,d) and this implies (d,b;a,c), (a,c;b,d) € C' = C. Then by defi-
nition of C (a|b,c,d) = 1 = (d|a,b,c). Moreover (bla,d) - (c|a,d) = [b,cl|a,d] ¢t
[a,d|b, c] = (a|b,c) - (d|b,c) = 1 implies (b|a,d) = (c|a,d) and since (bla,c) = (c|b, d),we
obtain by (Z) (blc,d) = (c|a,b). O

(2.5.7) A set E = {a,b,c,d,e} of five elements has two selfrelated halforders with
C =0C'D =Dk =1 and (a,b : ¢,d) € D, namely (alb,c,d,e) = (d|a,b,c,e) =
(ela,b,c,d) = (bla,d,e) = (c|a,d,e) = —(bla,c) = —(b|c,e) = —(c|a,b) = —(c|b,e) =1
and (alb,c,d,e) = (d|a,b,c,e) = (bla,d) = (blc,e) = (c|a,d) = (c|b,e) = (e|a,d) =
(e|b, c) = —(bla,c) = —(b|d,e) = —(c|b,d) = —(c|a, e) = —(e|a,b) = —(e|a,c) = 1.

Proof. By (2.5.6.1) we have 1 = (al|b,c,d) = (d|a,b,c) = —(bla,c) = —(c|b,d). The
assumption ke = 1 implies by (2.5.6.2) and (2.5.6.3), (bla,d) = (c|a,d) = 1 and
(ble,d) = (c|a,b) = —1. Moreover (ale,d) = (dle,a) = 1; for (ale,d) = —1 implies
(ale,c) = —(ale,d) = —1, ie. (e,a: ¢,b) € D' = D. Thus by (2.5.6.1), (e|a,b,c) =
(bla, c,e) = (ale,b) = (cle,b) = 1, (alc,b) = (c|e,a) = —1 and (ale, c) = (c|a,b) = —1,
a contradiction to (a|c,b) = 1. Together (alb,c,d,e) = (d|a,b,c,e) = 1. By (ale,b) =1
and ke =1, (bla, e) = (e|a, b); therefore we have to consider the following two cases:

1. case (bla,e) = (e|a,b) = 1. By (Z) we obtain (b|c, e) = (bla,e)-(bla,c) =1-(—-1) = —1
and so (d,c: b,e) € D' implying (e|b,c,d) = 1 and (c|d,e) = (b|d,e) = 1 by (2.5.6.3).
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Hence (e|a, b, c,d) =1 and (c|e, b) = (c|b,d) - (c|le,d) = (=1) -1 = —1.

2. case (bla,e) = (e|a,b) = —1. Then (b|c,e) = (bla,e) - (bla,c) = (—=1) - (—=1) =1 and
since (clb,d) = —1, —(e|b,d) = (c|b,d) - (e|b,d) =T (ble,c) - (dle,c) = 1-1 = 1,
ie. (elb,d) = —1. Now (d|b,e) = 1 and k; = 1 implies (ble,d) = —1. Then
(ela,d) = (elb,d) - (e|a,b) = (=1) - (=1) = 1. Since (alc,e) = 1 = (ble,c) we ha-
ve by ke = 1 (ela,c) = (c|a,e),(e|b,c) = (c|b,e) and from (ela,b) = —1 = (c|a,b)
we obtain (ela,c) = —(elb,c), (cla,e) = —(c|b,e). If (e|a,c) = —(e|b,c) = 1 then
(a,b : e,c) € D' = D and so (c|la,b,e) = 1 contradicting (c|a,b) = —1. Therefore
(ela,c) = =1. O

2.5.2 CONVEX QUADRUPLES IN A HALFORDERED FIELD

We begin with a supplement of sec. 2.3. Let P be a semidomain of the locally transitive
permutation set (F,X;0) and £p the associated halforder (cf. (2.3.2)). For n € N and
T C Aut(E,&p) let (T") := {(a1, ..., ) € T™ | [{1(0), ..., @, (0),0} =n + 1} and let

((Aut(E,&p))%)" — {1, -1}
k: (o, 8,7) = k(e, 8,7) =e(a7! 0 4(0)) - e(~ 0 a(0)) - (87" 0 7(0))- -
e(yt 0 B(0))-e(v™ 0 a(0)) - (™t 0 7(0))

P is called T-selfrelated if the restriction kjrsy is constant, and selfrelated if P is
Y. —selfrelated.

(2.5.8) (Theorem) (1) If there is a ® C Aut(E,&p) with ®(0) = E such that P is
b —selfrelated then for each T C Aut(E,&p), P is T—selfrelated.

(2) &p is selfrelated < P is selfrelated.

(3) If there is a® C Aut(E,&p) with ®(0) = E and a map w : (9?)' — SymFEpp y; (o, B)
> Wa,g With wa,g 0 B o a(0) = a0 B(0) and e(wa,z 0 87 07(0)) - &(wa,y 07 0 5(0))
is constant for all (o, B,7) € (D3)' then P is selfrelated.
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(4) If Aut(E,&p) =< %,T > (cf. (2.3.4)) acts 2—transitively © on E and if there is a
¢ C Aut(E,&p) with ®(0) = E, a1 € ' and a map w : ' — SymEpp_y; a — w, with
wq 0 H0) = a(0) and e(w, o 77! 0 @(0)) - e(wq © @™ 0 7(0)) is constant for all « € P’
then P is selfrelated.

(5) If there is a ® C Aut(E,&p) with ®(0) = E and e(a! o B(0)) - e(87! o a(0)) is
constant = &g for all (o, B) € (®?) then P is selfrelated ( k(c, 8,7) = €3 = &p)-

Proof. (1) Clearly for each 7" C ®, P is T—selfrelated. Therefore it is enough to
discuss the case T = Aut(E,&p). Let (o, f,v) € (Aut(FE,£p)®) and o/, B,y € @
with o/(0) = «(0), 8'(0) = 5(0), 7' (0) = v(0) (possible since ®(0) = FE). Then
k(o 8,7) “Z7 (0(0)1(0), 7(0)) - (B(0)[7(0), 0(0)) - (+(0)](0), B(0)) = (e, B, ).

(2) Let {a,b,c} € (?) and let «, 3,7 E E with a(0) = a, 8(0) = b, v(0) = c. Then
ke({a,b,c}) = (alb, ) - (ble, @) - (cla, b) “Z” k(o B,7).

(3) Let (v, 8,7) € (®*)". Then by assumption (87 1o7(0))-e(8 o (0)) = e(wqa 08 Lo
7(0)) -e(a™" 0 3(0)) and e(y~" 0 8(0)) - (v _1004(0))—8(%707 °(0))-e(a™" 07(0))
and therefore k(a, 3,7) = e(wa,ps 0 B 07(0)) - e(way 07 ' 0 5(0)).

(4) Let {z,y,2} € (?) Since Aut(FE,&p) is 2—transitive there is a ¢ € Aut(FE,&p)

with ¢¥(z) = 0, ¥(y) = 7(0) and ke({z,y, 2}) = ke({0,7(0),%(2)}). Let @ € & with
a(0) = ¥(2). Then ke({z,y,2}) = (0|7(0), a(0)) - (0]7~" 0 a(0), 777(0)) - (0]a~'(0), 2" o
7(0)) = (0[7(0), (0)) - (Olwr 0 77" 0 (0),7(0)) - (0]cx(0),wq 0 @~ 07(0)) = (Olw, 077" 0

a(0),wa0oa o 7(0)) =e(w, o7 0 (0)) - e(we 0 ™t o 7(0)).0

(2.3.2

In the following let (K,+,-) be a field. For a € K let a™ : K — K;z + a+ z and
a*: K — K;z+—a-x. Then Aff(K,+,):={aTob* |a€e K,be K*:=K\{0}}isa
subgroup of SymK, called the affine group of the field K and Af f(K,+,-) acts sharply

2—transitively on K. In fact if ay, as, b1, by are elements of K, with a; # ao, b1 # bo,

"A subgroup A of the symmetric group SymK of a set K acts (sharply) 2—transitively on K if for
any two pairs (ai,as), (b1, bs) of K2, with a1 # a2 and b; # bs, there exists (exactly) one g € A such
that g(a;) = b;, with ¢ € {1,2}.
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then (since K is a field) there exists exactly the element

9:2(61'52—51‘G2)+o(b1—b2

a; — Qg ay — G

). € Aff(Ka+’ )

such that g(a;) = b;, with ¢ € {1,2}. From this follows that (K,3 := Aff(K,+,-);0)
is a locally transitive permutation set (cf. sec. 2.3) and since ¥ is a group the structure
group Ag consists of the elements of K* * := {a* | a € K\ {0}} and so (Ag,0) = (K*,-).
If o : (K*,-) = ({1,-1},-) is a homomorphism, then (K, +,-;0) is called a halfordered
field.

Now we assume that ¢ is an epimorphism. Then P := ¢ !(1) is a subgroup of (K*,-)
of index 2 and 0 ¢ P. Therefore for each a* € Ay we obtain either a*(P) =a-P =P
or a*(P) =a-P = K*\ P= P_. This shows that P is a semidomain of (K,3;0) and
with (2.3.2) and (2.5.8) we have proved Sperner’s theorem:

(2.5.9) (Sperner) Let (K,+,+;0) be a halfordered field and let

K {1,-1}

€ :
(a,b,¢) — (alb,c)e, ==0((b—a)-(c—a)) =0c(b—a)-o(c—a)

Then (K,&,) is a selfrelated halfordered set with ke = o(—1) and Aff(K,+,-) <
Aut(K, &,).

Now we like to determine the sets C',C’,C,C of (K, &,). Clearly if v € Aut(K,&,) and

(u, 23y, 2) € C' then (v(u),v(2);7(y),7(2)) € C" and since §:= ((y —u)™")" o (—u)* €
AfF(K,+,") < Aut(K, &) (cf. (2.5.9)) we have for {u,z,y,2} € (¥):

(u,z;9,2) €C' & (0,(y—u)t-(z—u);l,(y—u)"-(z—u))eC.

Therefore it is enough to determine the elements a,b € K \ {0,1}, with (0,qa;1,b) € C'.
We prove:

(2.5.10) (Theorem) Let (K, +, -; o) be a non trivially halfordered field, i.e. P = o~ '(1) #
K~ let (K,§) = (K,&,;) be the corresponding selfrelated halfordered set and let a,b €
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K\ {0,1}, with a # b. Then:

(1) (0,a;1,0) e C'" = o(b)=0(b—a)=1A o(1 —a)=-1.

(2) (0,a;1,0) e C& o(a) =0(b) =0(b—a)=1A o(l —a) =—1.

B)C=C'& Va,be K\{0,1}, a #bwitho(b) =0(b—a)=1= —0(1—a):0(a) = 1.
(4)

(5)

4) (1,0;a,b) € C' < o(a) = —0(b) A gla—1)=0(b—1).
5)C=C" & Va,be K\{0,1}, a # b witho(a) = —o(b) ando(a — 1) =o(b—1):
=o(=1).
—1)=1then: a) C #C".
b) D£D'.
(7) If o(—1) = —1 and C = C" then (K, +,;0) is an ordered field.
(8) If o(—1) = =1 and D = D' then (K, +,-;0) is either an ordered field or the prime
field Zs with (1) =1 and o(—1) = —1.

Proof. (1) (0,a;1,b) € C' =& (0|]1,0)¢, = (b|0,a)e, = —(a|l,b)e, =1, & o(b) =
(0]1,b)e, =1, o(b)-0(b—a) = (b]0,a), =1 and 6(1—a)-o(b—a) = (0|1 —a,b—a)e, =
(a|]l,b)e, = -1 & o(b) =0(b—a)=1and o(1 —a) = —1.

(2) (0,a;1,0) e C & o(b)=0(b—a)=1=—-0(1—a)A 1=(0]|1,a), =o0o(a).

(

(

3) This statement is a consequence of (1) and (2).

4) (1,0;a,0) € C" & (1la,b)e, = —(0la,b)e, = 1 & o(a—1) = o(b—1) and
o(a) = —o(b).

(5) (1,0;a,b) €e C < o(a—1) =0(b—1), o(a) = —o(b) (by (4)) and 1 = (1|0, a,b)e, =
(0| -1,a—1,b—1),ie o(-1)=0(a—1) =0(b—1).

(6) a) Let us assume C' = C'". Since o(—1) = 1 we have by (5):

(5"YVa,be K\{0,1} witha # b, 0(a—1)=0(b—1) and o(a) = —o(b) : o(a—1) = 1.

If weset c:=a—1, d:=b—1then ¢,d € K\ {0,1},c # d,0(c) = o(d),o(c+1) =
—o(d+1) and (5') can be expressed by

(5")Va,be K\{0,1} witha #b, o(a) =0(b) and o(a+1) = —c(b+1) : o(a) = 1.
From (5”) we obtain:

(5") Va,b € K\ {0,1} with a # b, 0(a) =0(b) = -1 = o(a+1)=0(b+1).

Now let P := {x € K* | o(z) = 1} and N := {x € K* | o(z) = —1}. If there is
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ace NN(P—-1), ie o(c) = —1 and o(c+ 1) = 1) then by (5"), N+ 1 C P.

Since ¢ is a homomorphism this gives us N- P+ P = N+ P C P-P = P and

¢c-N+c-P=P+NCc-P=N,andso() # N+ P C NN P = (), a contradiction.

Consequently NN (P —-1) =0,ie. (N+1)NP =0, ie. N+1C N. This implies

N+P=(N+1)-PCN-P=Nandforne N, P=n-NDn-(N+P)=P+N.

Hence again ) # N + P C N N P = () the same contradiction. Therefore C # C".

(7) Let a,b € P hence (0|a,b) = 1. We have only to show a + b € P. By (2.5.9) and

(2.2.1) &, is an order. Since o(—b) = o(—1)-0(b) = (-1)-1 = -1, —b € N and so

(0|b, —b) = —1. Suppose (a|0,—b) = —1 then (since &, is an order and (0|a,b) = 1)

1 = (0la,—b) = (0|a,—b) - (0|a,b) = (0]b,—b) = —1, a contradiction. Therefore

(a|0,—b) = 1 and since (—1)*,a™ € Aut(K,&,) (cf. (2.5.9)), 1 = (—al0,b) = (0|a,a+ ),

ie. o(a+b) =0(a),ie a+beP.

(8) and (6) b) Now we study the case D = D"

(a,0:1,b) € D' < (0]a,1) = (1]0,0) = -1 < o(a) =0(1 —b) = —1;

(a,0:1,b) € D < o(a) =0(l—=b)=—-1 A 1=(al0,b) =0(—a)-o(b—a) = (b1,a) =

oc(1=0b)-0(a—b) & o(a)=0(1-0b)=—-1=0c(a—0b).

Therefore: D=D" < Va,be K\{0,1}, a#b:0(a)=0(1—-b)=-1 = o(a—0b) =

—1.

We put ¢:=1—b (so ¢ # 0, 1) and obtain:

D=D & “a,ce K\{0,1}, witha # 1 —c,0(a) =0(c) = -1 :o(a+c—1) =

-1 & Ya,ce Nywitha+c—1#0:a+c—1€N" &N+ N-1CNU{0} &

N+NcC (N+1)U{1}.

If N # (0 and ny € N then:

D=D& P+PC(P+ny)U{n} & P+P—-NCPU{0}

We discuss the cases:

1. -1 € N. Then 2:=1+41 # 0 and (we put ng = —1) :

D=D & P+P+1Cc PU{0} & P+ P+ P C PU{0}. Firstly we assume

P+ P+ P c PU{0} and char(K) # 3. Since K@ := {)\? |\ € K*} C P we have

1,22 =4€ Pandsod4+1+1=6¢€ Pand1+1+1=3¢€ P hence :g e P.
b b

Ifa,bEPthen%EPandsoa+b=a+§ 5 €P+P+PCPU{0}. a+tb=0
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implies b = —a hence —1 = a-(—a) ' =a-b ' € P contradicting —1 € N. Therefore
P+ PcCP,ie. (K,+,-;0) is an ordered field.

Now let P+ P+ P C PU{0} and charK = 3. Then 1€ P and -1 =141 € N imply
—1+P c PU{0} hence P-(—1+P) = —P+P = N+P C PU{0} and (—1)-(N+P) =
N+ P c —PU{0} = NU{0}. Consequently N+ P C (PU{0})n (N U{0}) = {0}
implying P = {1}, N = {—1}, i.e. K = Zs.

2.—1€ P.Then 0=1—1¢€ (P +mng) U{ng} hence 0 € P + ngy, i.e. —ny € P and so
no = (—1) - (—np) € P, a contradiction.O

2.5.3 T—CONVEXITY

A separation function 7 : E¥ — {1, -1} is called 7—convez if ¥ (a, b, c,d), (a,e,c,d) €
EY.

la,blc,d] = 1A [a,e|lc,d] = -1 = Ja,ble,c] =1,
trivially 7—convex if T = 1.

Remarks. 1. If 7 is not selfrelated we can introduce “by dualisation” a second concept

of T—convexity by: V (a,b,c,d), (a,b,c,e) € E*:
[a,blc,d] = 1A [a,blc,e] = —1 = [a,e|c,d] = 1.

But these concepts are equivalent, for suppose that (F, 7) is 7—convex in the first sense
but not in the second, then there are (a, b, ¢, d), (a, b, c,e) € E* such that (i) [a, b|c, d] =
1, () [a,blc,e] = —1 and (éit) [a,e|c,d] = —1. But by the 7—convexity in the first
sense, (7) and (i77) we have [a, b|c, e] = 1 contradicting ().

2. If |E| = 4 then a separation function 7 is always 7—convex.

(2.5.11) If (E,T) is an order then T is T—convex and selfrelated.
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Proof. By (2.4.4) 7 is selfrelated. Let (a,b,c,d),(a,e,c,d) € E* with [a,b|c,d] =
1,[a, elc,d] = —1. Then, since 7 is an order, [a, d|e, c] = 1 and so [b, e|c, d] @ [a,blc, d] -
[a,¢le,d] = 1-(—1) = —1 hence [b,d|e,d] = 1 and [a,ble,c] 2" [a,d|e, ] - [b,d|e,d] =
1-1=1.0

Vice versa:

(2.5.12) Let (E,T) be selfrelated (then by (2.1.1) and (2.4.3) k; := k,, = k., is constant
equal either 1 or —1) and 7—convex and let |E| > 5. Then:
a) k, =1 = 7 is not necessarily trivially T— convex.

b) k, = —1 = 7 is an order.

Proof. a) Let E = {a,b, ¢, d, e} and let £ be the betweenness function given by (b|a, ¢,d, e) =
(cla,b,d,e) = (e|a,b,c,d) = (al|b,c,e) = (d|b,c,e) = —(alb,d) = —(d|a,b) = 1. Then
Sym{a,d}, Sym{b, c,e} < Aut(E,§). For the corresponding separation function 7 := 7¢
we have by (2.4.1) k, = k¢ and the 7—convexity can be translated in the condition:

(7_) v (.’,E]_,.TQ,.’L',?,,CC;L), (xl,xs,x3,$4) € E4I :
($1|$3,$4) = ($2|$3,$4) = —($5|$3,3J4) = (561\333,355) = (352\353,535)-

By definition follows for {z,y, 2} € (}) :

(z|ly,2) = -1 & {z,y} ={a,d} or {z,2} = {a,d}.

This shows k, = k¢ = 1 and that the assumptions of (7) are only verified if {zs5, 23} =
{a,d} or {z5,24} = {a,d}. By Sym{a,d}, Sym{b,c,e} < Aut(E,{) we may assume
x5 = a,r3 = d,xy = b,xy = c¢,z5 = e. But then (z1|z3,z5) = (c|d,a) = 1 and
(xo|z3,25) = (e|d,a) = 1.

b) k, = —1 implies that V (a,b,c,d) € ((})) : [a,blc,d] = [a,c|b,d] = [a,d|b,c] = —1 or
exactly one of the values [a, blc, d], [a, c|b, d], [a, d|b, c] is equal —1. Let us assume there

are (x,y,2,t) € ((]f)) :

(%) [z,y|z,t] = [z, 2|y, t] = [z, t]y, 2] = —1
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and let w € E '\ {z,y,2,t}. Then —1 = [z,y|2,t] = [z,y|z,w] - [z,y|t,w] and so for

instance [z,y|z,w] = 1 and [z, y|t,w] = —1. If [z, ¢|z,w] = —1 then the 7—convexity
implies [z, y|z,t] = 1, a contradiction. Hence [z,t|z, w] = 1 and since k, = —1 we have
sz, 2|t w] = =[x, wlt, 2].

case 1: [z, z|t,w] = —[z,w|t,z] = 1.

Then [z,y|t,w] = —1 and the T—convexity imply [z, z|y,t] = 1, a contradiction to (x).

case 2: [x,z[t,w] = —1 and [z, w|t, 2] = 1.

Here [z,y|z,t] = —1 and [z, w|2,t] = 1 imply [z, w|y,t] = 1. Since [z, y|t,w] = —1 we

have [z, tly,w] =1 (k, = —=1!) and so [z, t|lw, 2] = [z, t|y, w] - [z, t|ly, 2] =1-(=1) = -1

which contradicts [z, t|w, z] = 1.0

Remark. One can find examples of not selfrelated 7—convex sets (E, 7¢):

let E := {a,b,c,d,e} and let (alb,c,d,e)®= (c|a,b,d,e) = (d|a,b,c,e) = (e|a,b,c,d) =
(bla,c) = (b|d,e) = —(bla,d) = 1. Here 7¢ is T—convex because V (z,y,2,t) € EY, if
z,y # b then [z, y|z,t] = 1. Moreover 7¢ is not selfrelated: in fact [a, b|c, d] = —[c, d|a, b].

There are halfordered convex sets (E, £) (not selfrelated) such that (E, 7¢) is not 7—convex:
let E := {a,b,c,d,e} and let (alb,c,e) = (bla,d,e) = (c|a,b,d,e) = (d|a,b,c,e) =
(ela, b, c,d) = —(a|b,d) = —(bla,c) = 1. Then (E, &) is convex. In fact: since (c|a, b, d, e) =
(dla, b, c,e) = (e|a,b,c,d) = 1 we have only to check the cases (b|d,e) = —(ald,e) =1
and (alc,e) = —(blc,e) = 1. Since (bla,d) = (alb,c) = 1 (E,§) is convex but not
T—convex, because [a,b|c,d] = —[a,e|c,d] = 1 and [a, ble,c] = —1, and not selfrelated,

because [a, e|b, d] = —[b, d|a, €].

On the other hand there are examples of not selfrelated halfordered sets (E, &) such
that (E,7¢) is T—convex but (E,§) is not convex: let E = {a,b,c,d,e} and (alb,e) =
(ale,d) = (bla,d,e) = (cla,d,e) = (dla,e) = (d|b,c) = (e|a,c,d) = —(alb,c) =
—(bla,¢) = —(c|a,b) = —(d|b,a) = —(ela,b) = 1. Then (E,£) is not convex becau-
se (ale,d) = —(ble,d) = 1 and (alb,c¢) = —1 and not selfrelated because [a,b|c,d] =

8(alb, c,d,e) := (alb,c) = (ale,d) = (a|d,e) = 1.
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—[e,d|a,b]. (E,Te)is T—convex: since |a,b] = {c,d, e}, ]a,c[= {b,d},]a,d[=0,]a,e[= 0,
16,¢c] = {a,e}, 1b,d] = {a,c,e}, |b,e] = {c,d}, |c,d] = {b}, |c, e[ = {a,b,d}, |d, e[ = {a}
and since the assumptions of (7) are only verified for ||zs,24[| = 1 or = 2 and the
hypothesis is satisfied for ||zs,z5[|, ||z4, 5[] = 0 or = 3 we have only to check the 5
cases where {3, x4}, {3, x5}, {x4, 25} & M := {{a,b},{a,d},{a, e}, {b,d}, {c,e}}:

1. {z3, 24} ={a,c} = {z1,20} ={b,d},z5 = e and so {z3,25} € M or {z4,25} € M.
2. {x3, x4} = {b,c} = {x1,22} = {a,e}, x5 = d and so {x3, x5} € M or {x4,x5} € M.
3. {x3, x4} = {b,e} := {x1,22} = {c,d}, x5 = a and so {3,725} € M or {xy, x5} € M.
4. {z3, 24} = {c,d} := {z1,22} = {e,a}, x5 =b and so {z3,25} € M or {z4,25} € M.
5. {xs,z4} = {d,e} := {x1,22} = {b,c}, x5 = a and so {z3,25} € M or {z4,25} € M.

Definition 2.5.1 Let (E,£) be a halfordered set and let M C E. An element a € E is
called bound of M ifV z,y € M : (a|z,y) = 1.

(2.5.13) Let (E,&) a halfordered set and let (E,T¢) T— convex. If for every four points

there is a bound then also (E,£) is conver.

Proof. Let {a,b,c,d} € (%) : (ale,d) = 1 and (ble,d) = —1. Then there is a bound
oo € E\ {a,b,c,d} : (o0|a,b) = (o¢|a,c) = (oo|a,d) = 1. Since [00,alc,d] = 1 and
[00,blc, d] = —1 and 7¢ is T—convex we have [00, a|b, ¢] = 1 and this implies (alb, ¢) = 1,

ie. (E,&) is convex.O

Now let (E, &) be a selfrelated convex halfordered set. Then there is the harmonic and

the anharmonic case.

harmonic case: by definition the function k¢ is constant = —1. We have the following
diagram: ks = —1 and £ convex (2(%1) & order (2'4:'2'2) T¢ order (2'5'11)(%2'5'12) Te is
T—COnvex.

anharmonic case: for aset £ = {a,b, c,d, e} with five elements there are halforders such

that:

a) (E,§) is convex, anharmonic and 7¢ is 7—convex:
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let (alb,c,d,e) = (d|a,b,c,e) = (e|la,b,c,d) = (bla,d,e) = (cla,d,e) = —(bla,c) =
—(c|la,b) = 1. Since a,d,e are bounds (resp. of {b,c,d,e},{a,b,c, e} and {a,b,c,d})
and (bc) € Aut(E,€) it is enough to check the convexity in the point b: but since
I:éz {c}, l:c;: {a,d, e} and a, d, e are bounds, the assumptions for the convexity in b are
not satisfied. The function k; is clearly = 1. Moreover < Sym{a,d,e} U Sym{b,c} ><
Aut(E,7) and la, d[ =]a, e] =|d, e[ =]b,c[ =0, ]a, b =]b,d][ =]b, e[ = {c}, Ja, [ =]¢,d] =
le, e[ = {b}. Therefore it is enough to consider the case {x3,z4} = {a,b} implying x5 = ¢
and {z1,z2} = {d, e}. But then (z|z3,z5) = (d|a,c) = 1 = (xq|z3,25) = (€|a, ).

b) (E,&) is convex, anharmonic and not 7 —convex:

let (bla,c,d,e) = (alb,c) = (ale,c) = (c|b,a) = (c|b,d) = (d|b,c) = (d|e,c) = (e|b,d) =
—(alb,d) = —(cle,a) = —(d|b,a) = —(e|b,c) = —(e|a,c) = 1. The function k¢ = 1 and
7 is not T—convex: in fact [e,alc,d] = 1 and [e, blc,d] = —1 but [e,alb,c] = —1. (E, &)
is convex: since (ad),(ce) € Aut(F,&) we have only to consider the cases (c|b,d) =
—(alb,d) =1, (ble,d) = —(alc,d) = 1, (bla,e) = —(cla,e) = 1 and (alb,e) = —(c|b,e) =
1. Since (c|a, b) = (bla,c) = (alc,b) =1 we have the convexity.

c) (E,€§) is not convex, anharmonic and 7¢—convex:

let (a|b, c,e) = (c|b,d,e) = (bla,d) = (ble,c) = (d|a,c) = (d|e,b) = (e|a,d) = (e]b,c) =
—(ale,d) = —(cle,a) = —(bla,c) = —(d|a,b) = —(e|a,b) = 1. The function k¢ = 1
and since |a,b] = {c,d,e}, la,c[ = {b,e}, |a,d[ = {c}, ]a,e[ = {¢,b,d}, |b,c[ = {d},
1b,d][ = {a,e}, |be] = 0, |e,d] = {a,b,e}, |c,e[ = {d}, |d, e[ = {a,b} as before (cf.
example before the Definition 2.5.1) for the 7—convexity we have only to check the 6
cases where {z3, x4}, {3, x5}, {24, 25} € N := {{a, b}, {a,e},{b, e}, {c,d}}:

Azs, x4} ={a,c} = {1,722} = {b,e}, 25 =d and so {z3,25} € N or {z4,25} € N.
Axs, x4} ={a,d} := {z1,22} ={b,e},z5 = cand so {z3,25} € N or {x4,25} € N.
Awxs, s} =4b,¢} = {1,122} ={a,e},r5 = d and so {x3,25} € N or {x4, 25} € N.
Azs,xa} =4b,d} = {x1,22} = {a,e},z5 = c and so {z3,25} € N or {z4,25} € N.
Azs, x4} ={c,e} = {z1,22} = {a,b}, 25 = d and so {z3,25} € N or {x4,25} € N.
Azs, x4} ={d, e} = {z1,22} = {a,b}, 25 = c and so {z3,25} € N or {z4,25} € N.
Moreover (E,§) is not convex because (c|b,d) = —(a|b,d) =1 and (c|a,b) = —1.

S Ot s W N~

d) (E,¢§) is not convex, anharmonic and not 7e—convex:
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let (d|a,b,c,e) = (alb,e) = (alc,d) = (bla,c,e) = (c|a,d,e) = (e|a,b) = (e|e,d) =
—(alb,¢) = —(bla,d) = —(c|a,b) = —(e|a,c) = 1. (E,§) is not convex because (alc,d) =
—(ble,d) = 1 and (a|b,c) = —1 and not 7—convex because [b,e|a,d] = —[b, cla,d] = 1
and [b, e|a, c] = —1. Also here the function £, is = 1.

Remark. One can find examples of not convex, anharmonic and 7¢—convex sets (E, &)
with |E| = 6. For this purpose we start from example c¢) which we enlarge by one
element f and extend £ as follows: (bla, f) = (cla, f) = (d|a, f) = (e|a, f) = (f|a,d) =
(f|b,c,e) =1 and (alb, f) = (f]a,b) = —1. Then k¢ has still the value 1 and since |a, b] =
{c.dye, f}, Ja, o] = {b.e, f}, la,d[ = {c}, la,e] = {b,c,d, [}, Ja, /[ = 0, |b,c[ = {d},
1b,d] = {a,e, [}, b,e[ = 0, ]b, f[ = {a,c,d, e} , Je,d[ = {a,be, [}, Je. e[ = {d}, Je, f[ =
{a,b,e} , |d,e[ = {a,b, f}, ]d, f[ = {c}, le, f| = {a, b, c,d} for the T—convexity we have
only to check the 8 cases where {x3, 24}, {x3,25}, {24, 25} € R := {{qa,b},{q,¢e},{qa, f},
{b,e},{b, f}.{c,d}, {e, f}}:

Axs, x4} ={a,c} = {x1,22} C{b,e, f}, x5 =d and so {z3,25} € R or {z4,25} € R.
Axs, x4} ={a,d} ;= {x1,22} C{bye, f}, x5 = cand so {z3,25} € R or {z4,25} € R.
Axs, xa} ={b,c} = {z1,22} C{a,e, f}, 25 =d and so {z3,25} € R or {z4,25} € R.
Axs, x4} =4{b,d} := {x1,22} C{a,e, f}, 25 =cand so {z3,25} € R or {z4,25} € R.
Axs, x4} ={c, e} = {x1,22} T {a,b, f}, x5 =d and so {z3,25} € R or {z4,25} € R.
Axs,za} =A{c, f} = {x1, 22} C{a,b,e}, x5 =d and so {z3,25} € R or {z4,25} € R.
Axs, x4} ={d, e} := {1,220} C{a,b, f}, x5 = c and so {z3,25} € R or {x4,25} € R.
8.{z3, 24} ={d, f} == {x1,22} C{a,b,e}, x5 = c and so {z3,25} € R or {z4,25} € R.

N O Ot ks W N =
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2.6 HALFORDERED PERMUTATION SETS

In the following let E # ) be a fixed set and let 3(E) be the set of all halforders of F.
Then (cf. [34]):

(2.6.1) X(F) is a commutative group of exponent 2 with respect to the operation:
for & € S(E) ;i € {1,2} and (a,b,c) € E¥ let &(a, b, c) = (alb, c);; then let
& - &(a, b, c) = (alb, ¢)1 - (alb, ¢)s.

Proof. Let (a,b,c), (a,b,d) € E¥, then & - &(a,b,¢) - &1 -&(a, b, d) = (alb, )y - (alb, c)s -
(alb, d)1-(alb, d), @ (ale,d)q-(ale, d)e = &1-&2(a, ¢, d), i.e. (Z) is satisfied for &;-&,. Moreo-
ver by definition of £ € X(F), every element £ is an involution, hence £ ! = £ € X(E).O

For 0 € SymE and n € N let 0, : E™ — E™; (21, ..., %) — (0(x1), ..., 0(x,)). Then we

have:

(2.6.2) Let 0 € SymE, I' C SymE, £ € 3(F) and A C X(F) and let
foo:=Eooy: BY — {1,-1};(a,b,¢) — (a(a)|o(b),a(c)).
Then:
(1) €00 € X(E) and the map
Co: B(E) = L(E);E = oo,

is an automorphism of the group (X(E),-).

(2) Fizg(D):={€ € X(E) |[Vy el : oy =&} is a subgroup of (X(E),-).

(3) The stabilizer (SymE)4 := {0 € SymE |V € A: oo = &} is a subgroup of
SymkE.

(4) T C (SymE)pigyry and A C Fizs((SymE),).

Proof. (1) V (a,b,c), (a,c,d) € E* we have oo (a,b,¢)-Eoo(a,c,d) = (o(a)|o(b),o(c))-
(0(a)|o(c),o(d)) 2 (o(a)|o(h),o(d)) = € 0 o(a,b,d), i.e. € oo satisfies (Z). Moreover
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V £,& € B(E), V (a,b,c) € E¥ | (& -&)oo(a,bc) = (& - &)(o(a),o(b),o(c)) =
(o(a)|o(b),o(c))r - (o(a)|o(b),o(c))s = (& 00) - (& 00)(a, b, ¢), hence (, is an automor-
phism of the group (X(E), ).

(2) V €1, & € Fizy(T) and ¥y € T we have (& -&)oy 2 (€107)- (€207) 2L ¢ g,
hence Fiz3(T') < (X(E),-).

(3) V 01,00 € (SymE) 4, V £ € A we have £o (01 0 09) = £ 009 =&, hence (SymE) 4 is
a subgroup of SymFE.O

Definition 2.6.1 If (F, ) is a halfordered set and I' C Aut(E,§), then (E, T, ) is called

a halfordered permutation set.
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3 Halfordered chain structures, splittings and convexity

3.1 HALFORDERED NETS AND HALFORDERED CHAIN STRUCTU-
RES

Definition 3.1.1 Let (P, &, &5, K) be a chain structure,
P = {(a,b,c) € P¥ | Fi € {1,2} : [a]; = [B; = [c]i}

and

PR = {(a,b,c) e P’ | I K € R:a,b,c € K}.

Let
£: P — {1,-1}; (a, b, ¢) — (alb, )

be a map such that:

(Z1), V G € 6, U By, (G,{gv) is a halfordered set;

(Z2),V j€{1,2},VG,L€®&;,Y (a,bc) € G¥ifi € {1,2}\ {5}, then
(alb,¢) = (lals N L | [bl: N L, []; N L);

(ZC), V K € &Y (a,b,c) € P : (alb,c) = (K (a)|K(b), K(c)).

Then (P, &1, &y, R; &) is called a halfordered chain structure.

Definition 3.1.2 Let (P, &, ;) a 2—net and let £ : P — {1,-1};(a,b,c) — (alb,c)
be a map such that the two conditions (Z1), and (Z2), are satisfied. Then (P, &, &,; )
is called a halfordered 2—net.

Now let (P, B, B9, R;€) be a halfordered chain structure. Let Aut(P,§) = {vy €
SymP | ¥(a,b,c) € P* : (v(a), 7(b),¥(c)) € P* and (alb, c) = (v(a)|v(b),¥(c))} be the

group of all betweenness preserving permutations.

Remark. We recall that € := {C'|C € €} c T (cf. (1.4.2)). Therefore if (a, b, ¢) € P

then (C(a),C(b),C (c)) € P* for all C € €.
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From this definition follows:

(3.1.1) (1) Aut(P,€) <T.
(2) If (P, ®1,85:€) is a halfordered 2—net and ) # K C € then (P, &1, 8y, &) is a
halfordered chain structure if and only if?i C Aut(P,§).

Proof. (2) Let (a,b,c) € P39 and K € & Then (K(a), K(b),K(c)) € P¥ by K € T
(cf. (1.4.1.3)) and so (alb, c) = (K (a)|K(b), K(c)) is equivalent with K € Aut(P,£).0

¢ induces on &; and on &, resp. a halforder & and & respectively: let A € &5 and
B € &, be fixed; then let

‘- (CHE {1,-1}
Ul (XY, 2) = (X]Y,2)e = (XNA|YNAZNA)

and

‘- (CHE {1,-1}
) (Y, 2) & (X|Y.Z)e, = (XNB|YNB,ZNB)

A consequence of (3.1.1) is the following:

(3.1.2) Let € := {C € €| C € Aut(P,€)}, then (P, &1, ®y, E; &) is a (the greatest)
halfordered chain structure with & C €.

By (3.1.1.1) we can define:

Aut(P, &)t := Aut(P,&)NT ",
Aut(P, &) == Aut(P,&)NT .

By (Z2), we have:
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(3.1.3) The definition of the halfordered sets (&1,&1) and (&, &) does not depend on
the choice of A € &5 and B € &,.

(3.1.4) Aut(P, &), < Aut(1,&1).

Proof. Let o € Aut(P,&)*, (X1, X5, X3) € &%V € &, and y; := X; NY. Then
X, = [yl o(X:) = [a(y)]i, a(ys) € a(Y) € 8, and so (X1|X2, Xa)e, L (y1]y2, ys)e =
(a(yn)la(e), a(ys)e < (ay)]il[a(w)]i [as)])e = ((X1)|a(X2), a(Xs))e, - Hence

o), € AUt(@l, 51).|:|

(3.1.5) Let € # 0, then:
(1) VKEe Qf,
Ko, : 6 = & X = K(X)

is an isomorphism between (&1,&1) and (Bq, &), hence (B1,&1) and (&y, &) are isomor-
phic.
(2) {4,B | A, B € €} = Aut(P,£)” andV a € Aut(P,€),

Q@ - 6 — 62, X = O!(X)

is an isomorphism between (&1,&1) and (Ga,&,).

(3) Let Bl € AUt(@l,fl), K e Q:g, ﬁg = IA{|Q’51 e} 51 e} l?|@2 and

5. P — P
"z~ Bi([z]1) N Ba([x]2) ’

then ﬂ € AUt(P7£)+ and 5\61 = /Bla B\@z = ﬂ?-
(4) Aut(P, f)‘—gl = Aut(@l, 61)

Proof. (1) Let K € &, (X1, Xy, X3) € &, and k € K. If we set k; := X; N K, 2; :=

X;N[k]; and y; = K(X;)N[k]; then K ([k],) = [k]; and so K (z;) = y; and K (X;) = [yi]>.
ZC

By definition of & and (3.1.2) we have (X1|X2, X3)e, = (21|22, 23)¢ “2 (Y1]y2,ys)e =

([yl]QHy?]?’ [y3]2)§2 = (I?(Xl)u?(XQ)’I? (X3))§2' Hencea since (IA{J|€51)_1 = I?\ﬁza I?|(’51 1s
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an isomorphism between (&1,&;) and (&, o).

(2) Let o € Aut(P,8)™, (z1, T, v3) € P39 and z} = a(z;). By (1.4.1.6) 3, (A, B) € €2
a=AB. If [21]1 = [z2]1 = [x3] then [#}], = [2b)y = [24]s, [#/]: = [B(x:)]: and so by
(Z2),, (a4|75,75) = (B(x1)|B(w2), B(ws)). Hence (z1]wy,x3) = (a}|ah, 73) & B € &
If [21)o = [z2] = [z3]s then [z1]s = [A(x:)]2 and so (z1|zs, 33) = (@) |z}, ) < A€ Ce.
Let K € &, hence K € Aut(P, &)~ (cf. (1.4.1.3) and (3.1.2)). Then Koa € Aut(P,§)*,
hence by (3.1.4) 8 := K o e, € Aut(®1,&) and so by (1), ¢e, = I~{|Q51 o f is an
isomorphism from (&1,&;) onto (B9, &s).

(3) By (1), B> € Aut(s,&) and by the definition of 3, 8 € T'. Now let X € &, and
r € X, hence X = [z]; and so B(X) = 5;(X), i.e. fis;, = Bi-

Now let (a,b,c) € P? and for instance Y := [a]s = [b]s = [c]o- Then (alb,c) =
([a][[0]1, [c]1)e, and

(B(a)|B(1), B())e = (Bi(fah) N BoaW)IB([b]) N Bo(Y), Billch) N BalY))e =

= (Ba([a) 1B (1), Br ([e))es "B ([alu [, [e)e, = (alb, ).

This shows 3 € Aut(P,§)™".
(4) This statement is a consequence of (3.1.4) and (3).0

(3.1.6) If 8 # 0 then (P, &1, B, R; &) is completely determined by the halfordered set
(617 61)

Proof. Let G € 8, U &, and (a,b,¢c) € G¥. If G € B, then (alb, c)e = ([al1|[b]1, [c]1)e,,
if G € &, we choose a K € & and then (alb, ¢)e = (K ([a]2)| K ([b]2), K([c]2))e, .0

(3.1.7) Let (P, ®1,89, R; &) be a halfordered chain structure, let R~ be the symmetric
and R~ the double symmetric closure of R (cf. section 1.5). Then:

(1) RC R~ C &~ C €.

(2) (P, &1, B9, 87:€), (P, B, By, R E) (besides (P, &1, Bq, € &) ¢f. (3.1.2)), are hal-

fordered chain structures.
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Proof. (1) Since R~ C &~ (cf. (1.5.1)) and 8] = R C € let K € £~ \ K. By (1.5.1)
there is an n € N with K ¢ & Wg asstimelRen there are A, B,C £ &

'K = A,B(C) and by (1.4.1.3) and (1.4.1.7), K = A, Bo C 0 B, A. By (3.1.5.2),

i,é,ﬂ € Aut(P,€)” hence K€ Aut(P,&)~, ie. K € €.

3y (1) and by (3.1.1.2), each of the quintuples (P, &1, &9, 87 &) and (P, &1, &y, K™

a halfordered chain structure. O
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3.2 EXTENSION OF ¢ ONTO P38

Let (P, B, ®s, R;€) be a halfordered chain structure. We will extend the halforder £
onto P3%. By (Z2) ¢ the perspectivities in the two directions given by &; and &, preserve
the betweenness relation. Since we want this property kept we define the extension &
by:
:, { PR (1,-1)
| @be) = (alb, o) = (lah| B, [e)e

By axiom (ZC), we have (a|b, c)z = ([al2|[b]2; [c]2)¢,-

Then the following axioms are satisfied:

(Z1) VX € 6, UG, UR, (X, E|X3:) is a halfordered set.

(Z2)VG,Le & UGB, UR, V (a,b,c) € G¥, Vi, j € {1,2} with i # j:
(a) if G, L € &;:

(alb, c)g = ([a]; N LI[b]; N L, [c]; N L)g ;
(b)if G, L € &

(alb, ¢)g = ([al: N L|[bli N L, [c]: N L)g ;
(c)itGeR Le®, (orGe®,;, LEeR):

(alb, €)¢ = (lal; N LI]; 0 L, [d; N L.

The axiom:

(ZC)V K € &, V (a,b,c) € P> U P¥:
(alb, c)g = (K (a)| K(b), K())g,

makes sense only if K is symmetric. In this case (ZC) is satisfied; in fact:
(3.15.1)

(alb, )¢ = ([ahBl (e =" (K(lal)|K (b)), K ([e]1)es = (K (a)| K (B), K(c))g.
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Definition 3.2.1 Let (P, ®;, &5, K) be a symmetric chain structure, let
P399R = {(a,b,c) eP¥ |TLEe B UG UR: a,b,ce L}

and let
5 . ’P3‘qUﬁ — {15 _1}7 (maya Z) = ($|y,Z)

be a function such that the axioms (Z1),(Z2) and (ZC) are satisfied. Then (P, &1, &, R;

€) is called a halfordered symmetric chain structure.

By (3.1.7) and this extension process we have the result:

(3.2.1) Let (P, 1,89, R;E) be a halfordered chain structure, let £, " and £" be the
extension of & onto the symmetric set of chains K~, K™~ and & respectively; then
(P, 81,89, 8 E"), (P,61, 85, 8 E") and (P, &1, G, € &™) are halfordered symme-

tric chain structures.
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3.3 HALFORDERS AND SPLITTING BY A CHAIN

In this section let E be a non empty set and let v(F) := (P, &1, &5, €) be the corre-
sponding greatest chain structure (where P := E x E, &, :={{z} x E |z € E}, &4 :=
{Ex{y}|lye E}and €:={C €2” |VX € 6,U&;y: [CNX| =1} # 0). The elements
of P, &, U®, and € will be called points, generators and chains respectively. The triple
(P, &, ®,), called 2—net, has the two properties (N1) and (IN2) (cf. sec. 1.1) :

We will use the operation O := Oy, (cf. sec. 1.1).

(3.3.1) Let K be a splitting of P by K € € and let § = &(K) and & = &.(K) be the
two maps defined by :

K = {1,-1}
& e
(a,b,¢) — (alb,c); := Ks(aOb, aOc)
and
‘. K = {1,-1}

(a,b,c) +— (alb,c), := Ks(bOa, cOa) .

Then & and &, are halforders of K and & rel &,.
Proof. We have to show that the two functions £ and &, satisfy the condition (Z).
&) v (a,b,¢), (a,c,d) € K*:

(alb, ©); - (ale, d); := K (ab, alc) - K,(aDe, a0d)

Ks(an, aDd) = (a|b’ d)l7
57") V (a: ba C)a (G,, C, d) € Ksl :

(alb,c), - (ale, d), := Ks(bOa, cOa) - Ks(cOa, dOa) (3D

K,(b0a, d0a) =: (alb, d),.
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Now we prove that the condition (R) is valid, i.e. & rel &, :
Y (a,b,¢,d) € K* we have :

la, ble, ], == (ale, d); - (Ble, d); == K,(aOe, a0d) - K, (b0c, b0d) &

K(aOc, bOc) - K4(bOc, a0d) - K(bOe, a0d) - K¢(aOd, b0d) =

K;(aOc, b0c) - K;(a0d, bOd) =: (cla, b), - (d|a, b), =: [¢, d|a, b],. O

Remark. There are halforders & and &, (derived by a splitting K by a chain K) such
that & rel &., & rel &, & rel & and & # &,

(bla,c); = (bla,d); = (c|a,d), = (dla,c); = —(alb,c); = —(alb,d); = —(cla,b); =
—(d|a,b); = 1 and & = 1. In fact [a,b|c,d]; = [a,c|b,d]; = [a,d|c, b, = [d,bla,c|, =
b, cla,d]; = [c,d|a,b]; =1, i.e. & rel & . Since ¢, = 1 we have &, rel & and this implies
& rel &.

(3.3.2) Let (P, ®1,®,, €) be a chain structure with |G| > 4, let K € € and forp € P
let p; := KNpl; (hence p = p10ps). Moreover let &, &y, € be halforders of K, where &1, &,
are related. Then:

(1) Forz,y e P\ K and 0 € K\ {z1,y1} let

K(z,y)o := (21]0,22)1 - (41]0,92)1 - (0]z1, y1)2

then K(z,y)o = K(z,y)y for 0,0 € K\ {z1,y1} (we set K(z,y) == K(z,y)o where
0 € K\ {z1,y1}) and the function

K := K(§1,&) : (P\K) x (P\K) = {1, -1} (z,y) = K(z,y)

is a splitting of P by K with §(K;) = & and &.(K;) = &.

(2) Let {0,1,00} € (13{) be fized and for x € P\ K let

K(z) =

(210, z2) - (0[1, z1) for z1 #0 .
(0]oo, z3) - (o0|1,0) - (1]0,00) = (0|1, z2) - ke({0,1,00}) for z; =0

Then the function
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Ky = Ky(&) : (P\K) x (P\ K) = {1,~1}; (2,9) = K(2) - K(y)
is a splitting of P by K with &(K,(§)) = £ and & (K(§)) = &£'(&,04,€) where ¥V a,b €
K\ {0} : 05(a, b) := (0|a,b) and e = (1|0,00) (cf. (2.1.2)).

(3) The splitting K defined in (2) is independent of the choice of the elements{0,1,00} €
(13() if and only if € is selfrelated.

Proof. (1) K(z,y)o - K(z,y)o = (21]0,0")1 - (y1]0,0")1 - [0, 0|21, p1]e, =

[21,91]0, 0, - [0, 0|21, y1]e, hence K(z,y)o = K(z,y)o-

We observe that by definition, K(z,y) = K(y, z).

Now let z,y,2 € P\ K. Since |K| = |&;| > 4 there is an element 0 € P\ {z1,y1, 21}
and hence:

Ki(,9) Ku(y,2) = (1]0,22)1- (0110, 0)1 - 011, 32)2- (5110, 32)1 - (21]0, 21 Oy, 2)2 2
(1]0,22)1 - (0|21, 21)2 - (21]0, 22)1 =: K,(z, 2).

Now let (a,b,¢) € K¥; then (alb, ¢); := K,(a0b,a0c) := (a|0,b); - (a|0,¢); - (0]a,a)s
(alb, ¢), and (alb, c), := K,(bOa,cOa) := (b]0,a); - (c|0,a); - (0], c); ™ 2 = (0[b, c)s -
(alb, c)a - (0]b, ¢)a = (alb, ¢)a-

(2) For z,y,z € P\ K : Ks(z,y) - K(y,2) = K(z) - K(y) - K(y) - K(2) = K,(z, 2), ie.
K (&) is a splitting of P by K.

For (a,b,c) € K% with b # c:

@)

(alb, ¢) = K,(a0b,a0c) = K (abb) - K (alc) =

(al0,b) - (0la, 1) - (al0, ¢) - (0]a, 1) & (alb, ¢) if a#0
(0]00,b) - (00]0,1) - (1]0, 00) - (0|00, €) - (00]0,1) - (1]0,00) Z (0[b,¢) if a=0

hence &(K(§)) = € and by (2.1.2),
(alb, ¢), = K,s(bOa, cOa) = K(bOa) - K(cOa) =

(3]0, a) - (0]b,1) - (c|0,a) - (0lc, 1) Z b, ¢|0, ale - (0b, ¢) = (alb,¢)' if b,c#0 |
(6]0,a) - (0[b,1) - (0]oo, a) - (00]0,1) - (10, c0) if ¢c=0#b

Since by (Z), (0/1,b) - (0|co,a) = (0|1,a) - (0]oc,b) we have also (alb,0), = (a|0,b), =
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alb,0)' thus &.(K,(£)) = £'(&, 04, (1]0,00)).
3) Let {0,1,00},{0,1",00'} € (I?f) and let x = 2109,y = y10ys € P\ K; then:
a) 0=10": by (Z) we obtain:

—~ o~

K(z)-K'(z) = (0/1,17) if 2,40
(0]1,1") - ke({0,1,00}) - ke({0,1,00'}) if 2, =0 )

therefore
K(z)- - K'(z) - K(y) - K'(y) =

1 if z,11#0 or x=y =0
kﬁ({oﬁlaoo})'kﬁ({oallaool}) if x17507y1:0 or $1:0,y17é0 '

b) 0 # 0" : by (Z) we obtain:

(a:l\0,0') . (0|1,$1) . (0’|1’,$1) if T 7£ 0, 0’
K@) K'(2) =4 ke({0,1,00}) - (00, 1) - (0')0,1) if @y =0
ke({0',1",00"}) - (0]0', 1) - (0']0,1") if 21 =0

Therefore again by (Z):
K(z)  K'(z)- K(y) - K'(y) =

[371,21/1‘0,0’] ) [0a0,|x15y1] if Z1, Y1 #O: OI
kf({o’ 1a OO}) : kf({oa 0’,.@1}) if T 7é Oa 0,1 v = 0
ke ({07, 17,00'}) - ke ({0,0, 2, }) if @1 #0,0,50 =0
\ kf({oa L OO}) ) kf({ola 11, OO,}) if 1,91 € {Oa 0,}

This shows: K(z) - K(y) = K'(z) - K'(y) < £ is selfrelated.O

In the chain structure (P, &1, B,, €) we associate to any chain A € € the following map
(cf. section 1.4):

i. P — P
)z o~ [ehnAbn(and
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A(X)

FIGURE 3.1.

Remark. If a,b € A € € then : A(a0b) = b0a. (OO)

(3.3.3) Let K, be a splitting of P by K € €, a € P\ K, P* ::K—,)E:: {z €
P\K | K,(@,7) =1}, P~ := (K,a)" = {T € P\ K | K,(a@,%) = -1} and let & and
& be the two associated halforders of K (cf. (3.3.1)). Then the following statements are
equivalent:

(1) & =&, (then & ==& =&, is selfrelated and (by (2.1.1)) k¢ is a constant function).
(2) K € Aut(P,{P*,P}).

(3) VT =x,0x9 € P\ K, with 1,75 € K and 0 € K \ {z1, 12},

K, (T, K(Z)) = (21]0, 22) - (z2]0, 1) - (0|21, 72) = ke({0, 21, 22}) = constant.

(4) V {a,b,c} € (13() : ke({a,b, c}) = constant.

Proof. (2) = (1). Let (a,b,c) € K¥. Then
(alb, o) = K. (b, a0c) ‘=’
K,(K(bOa), K (cOa)) @ K, (bOa, cOa) =: (alb, ¢),.

(1) = (2). Let 7,5 € P\ K and z; := KN[Z);, y; :== KN[y];, then T = 21029,y = y; Oy
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and if I # Yo,

o s1
K(Z,7) = Ks(210zg, y1Oys) (3

K (21029, 10ys) « Ky(210ys, y10ys) = (1|22, Y2)1 * (Y2|21, y1)r

and

=~ ~ ., OO S1
(K@), K@) 'L K, (2200, p.0p;) =

Ky (zo0x1, yoOx1) « K (y2021, y20u1) = (21|22, y2)r + (Y2|21, y1)i-

If 2y # y1 then K,(Z,7) = (zalz1,41)r - (v1]@2, 1) and K, (K (T), K(7)) = (@)1, y1); -
(1|72, yo)-r-

Since (1) is valid, K,(z,7) = K,(K (), K(7)).

If 1 = yo and y; = x5 then K((7,7) = K(z10x9,2,0z,) and KS(I?(T),I?@)) ()
K,(220z1, z10a5), hence K,(T,7) = K,(K (), K (7).

(3) & (2). By (S1) we have Va,be P\ K:

and so

Ks(aa 5) ) KS(K(E)’ K(b)) = Ks(aa I?(a)) ) Ks(Ba K(b))
By this formula we obtain that the two statements (3) and (2) are equivalent.

(3) = (4). Let a,b,c # 0 then k¢({a, b, c}) = ke({a, b,0}) - ke({b,¢,0}) - ke({c, a,0}). O

Definition 3.3.1 A splitting K of P by K € € is called selfrelated if one of the three

equivalent statements of (3.3.3) is valid.
Now we can formulate the following main result:

(3.3.4) Let K € € be a chain of a chain structure (P, ®1, 84, ), let Xy (K) be the set
of all selfrelated halforders of K and let Sse5(K) be the set of all selfrelated splittings of
P by K. Then there is exactly one bijection
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®: Eself(I() — Sself(K);f = Ks = Qp(é-)
such thatV a,b,c,d,0 € K,a #b,c #d,0# a,b:

(alb,d) - (d|a,c) if a#d
K (aOb,c0d) = $ (c|d,b) - (bla,¢) if  c#b
ke({a,b,0}) if a=d,b=c

and V¥ (a,b,c) € K¥ : (alb,c) = K,(aOb, aOc).

In the section 3.1 we introduced the notion of a halfordered chain structure (P, &, &,, ;
€), that means that £ is a non empty subset of the set € of all chains and & : P39 —
{1, -1} a function defined on the set P3¢ := {(a,b,c) € P* | 3i € {1,2}: [a]; = [b); =
[c]i} such that the axioms (Z1),, (Z2), and (ZC), are satisfied. Then

(3.3.5) Let (P, B, 5, R; ) be a halfordered chain structure, a € P and i € {1,2} fized
and let j € {1,2} \ {i}. For each K € R let

!

K = {1,-1}
¢kt (@y,2) = (=l 0lali [ [yl; Nlali, [2]; N [ali)e = (aBz|aBy, aDz)e =
(z0alyOa, z0a).

Then (K, &k) is a halfordered set isomorphic to ([ali, &) (cf. (Z1)y) which is inde-
pendent of the choice of a € P (cf. (Z2),) and of i (cf. (ZC),).

Definition 3.3.2 The halforder £k defined in (3.3.5) on K is called the induced halfor-
der. (P, ®1,Bq, &;€) is called selfrelated if one (and then all) halfordered set (G, §|G3/),
with G € &1 U B,, is selfrelated.
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3.4 CONVEXITY FOR SPLITTING

In this section let E be a non empty set and let v(E) := (P, &1, &y, €) be the corre-

sponding greatest chain structure (cf. sec. 3.3).

A splitting K, by a chain K € € is called harmonic or anharmonic resp. if V a,b €
K,a # b: K (aOb,b0a) = —1 or = 1 respectively. By (3.3.3) each selfrelated splitting is

either harmonic or anharmonic and each harmonic or anharmonic splitting is selfrelated.

(3.4.1) A splitting K, by a chain is harmonic if and only if V a,b € P\ K with a0b € K
and Ky(a,b) =1:b0a ¢ K.

Proof. “ = 7 Let a,b € P\ K such that ¢ := a0b € K and K,(a,b) = 1. If
d := b0a € K, then a = cOd, b = dOc, 1 = K,(a,b) = K(cOd,dOc) and so K
is not harmonic.

“«<7”Leta,b € K, witha # band let ¢ := a0b,d := bOa. Then ¢,d € P\K, cOd =a €
K and dOc = b € K. Thus our condition implies K;(c,d) = —1, i.e. K is harmonic.O

In the following let K be a splitting by a chain K. Then Kj is called

weakly convez if ¥V a,b € P\ K with a0b,b0a ¢ K, Ks(a,b) =1 and K,(a,a0b) = —1:
K(a,b0a) =1 (and so K,(b,b0a) = 1).

bl a a

b ab

FIGURE 3.2.

convex if V a,b € P\ K with a0b € K, b0a ¢ K and K,(a,b) =1 : K,(a,b0a) = 1.



3.4 Convexity for splitting 117

b a a
K
b adb
FIGURE 3.3.

strongly conver if ¥V a,b € P\ K with a0b € K and K(a,b) = 1 : b0a ¢ K and
K(a,b0a) = 1.

(3.4.2) (1) If K is strongly convez then K is conver.

(2) If K, is convex then K is weakly conver.

Proof. (1) follows directly from the definitions.

(2) Let a,b € P\ K with a0b,00a ¢ K and K (a,b) = —K,(a,adb) = 1 and let
c:=[aliN K. Then aO(b0c) = ¢ € K and e, (bOc)da = b0a ¢ K. If K (a,b0c) =1
then by the convexity K (a,b0a) = 1. Therefore let K¢(a,b0c) = —1 and let o' :=
a0b, O’ := bOc. Then K (d',V) = Ks(a,d') - Ks(a,b') = (=1)-(=1) = 1, 0OV =
(a0b)3(b0Oc¢) = aOc = ¢ € K and b'0a’ = (bOc)O(a0b) = b ¢ K, hence by the convexi-
ty 1 = Ky(a',0'0a") = K,(a0b, b). But —1 = (—1)-1 = K,(a,a0b)-K(aOb, b) = K,(a,b)
contradicts K(a,b) = 1. Thus K,(a,b0c) is equal 1 and so K,(a,b0a) = 1.0

C

addb=a’

FIGURE 3.4.
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(3.4.3) Let & and &, be the two halforders of K corresponding with K, (cf. (3.3.1)).
Then:
(1) The following statements are equivalent:

(i) K is convez

(ii) ¥V {a,b,c} € (§), (alb,c) = (cla,b), = (alb,c) =1

(iii) ¥ {a,b,c} € (%), (alb,c)y = =1 = (cla,b), = (bla,c), =1
(2) K, is weakly conver < Y {a,b,c,d} € (§) with (a|b, d); = (d|a,c), = —1: (bla, ), =
1 and also (c|b,d), = 1.
(3) If & = &, then : K is weakly conver & (K, &) is D-conver.

Proof. (1) Let {a,b,c} € (13() such that 1 = K(a0b, bOc) 30 K, (aOb, a0c)-K(aOc, bOc)

C2U alb, )i - (cla, b)y, ie. (alb,¢) = (c|a,b). Since K,(bOe,alc) = (c|a, b), we have:

K is convex < (alb, ¢); = (c|a,b), implies (a|b, c); = 1.

adl c bOc /K
C

adb b

Ja

FIGURE 3.5.

(2) Let a,b,c,d € K such that o' := a0b, V' := cOd, ¢'00 = a0Od, ¥'Oad' = cOb ¢ K.
Then a # b # ¢ # d # a, K (d',V') = K, (aOb,a0d) - K (aOd,cOd) = (alb,d), -
(dla, ¢)p, Ks(a',a'0b) = Ky(aOb,aOd) = (alb,d), and K,(a',b'0a') = K,(aOb, cOb)
(bla, ¢),. Therefore:

Ky(d',V) = —K,(d',a'0b) =1 & (alb,d), = (d|a,c), = =1 = {a,b,c,d} € ()

and this implies the equivalence.
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cOb adb =a’ =

b’= cOod ar d
a
/e
FIGURE 3.6.

K

(3) “ =7 Let (¢,a : b,d) € D'. Then by definition (a|b,c); = (bla,d), = —1 and by
(2) we obtain (cla,d), = (d|b,c); = 1. So (¢,a : b,d) € D and this implies : (K, &) is
D—convex.

“«<7” By D= D' and (2) we have the thesis.O

(3.4.4) For a halfordered set (E, &) the following conditions are equivalent:

(1) V {a,b,c} € () : (alb,c) = (bla,c) = (alb,c) =1

(2) V{a,b,c} € (?) : (alb,c) = =1 = (bla,c) = (cla,b) =1

)V {ab.c} € (%) : 3e{ab.c}) € {0,1)

If (E,€&) is selfrelated and one of the equivalent conditions (1), (2), (3) is satisfied then

(E, &) is ordered or trivial.

Proof. Let (E,&) be selfrelated (i.e. k¢ is constant (by (2.1.1))) and the equivalent
conditions satisfied. Then k¢ constant and (3) imply either 3, = 0,i.e. £ =1, or 3¢ =1,

i.e. £ is an order. O

As before in the chain structure (P, &1, B4, €) we associate to any chain A € € the map

A (cf. sec. 3.3).
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(3.4.5) Let K be a convez splitting of P by K € €, with |K| > 4, a € P\K , P* ::I?d::
H

FeP\K|K,@n) =1}, P i= (K0 = {7 €P\K | K,@,7) = 1} and &, &

the corresponding halforders of K. If K € Aut(P,{P*,P~}) then& =& =&, and £ is

trivial or an order of K.

Proof. By (3.3.3) we have £ := & = &, and so by (3.3.1) £ is selfrelated. By (3.4.3.1)
and (3.4.4) : K, is convex & V {a,b,c} € (§) : 3¢({a,b,c}) C {0,1}. Hence by (3.4.4)

we have the result. O

(3.4.6) A splitting K, of P by K € € is strongly convez if and only if K is convez, not
trivial and K € Aut(P, {P*,P}).

Proof. “ =7 Let K be strongly convex. Then K is convex by (3.4.2.1) and harmonic
by (3.4.1). Therefore K, is selfrelated not trivial and so K € Aut(P,{P*+,P~}) by
(3.3.3).

“ <7 By (34.5) £ =& =& and £ is an order of K and so by (3.3.3.3) we have
K,(z,K(z)) = —1forallz € P\ K.

Now let a,b € P\ K with ¢ := a0b € K and K,(a,b) = 1. Assume d := b0a € K, then
a = ¢0d, b = dOc, hence b = K (a), and so K,(a,b) = K,(a, K(a)) = —1 a contradiction.
Consequently d = bOa ¢ K and by the convexity K;(a,b0a) = 1. O

Remark. There are examples of convex but not selfrelated splittings K, with & # &,
where even & and &, are selfrelated.

Case: K ={a,b,c}.

If we set (alb,c); := (bla,c); := —1 then by convexity (cf. (3.4.3.1)) we have to put
(cla,b), := (bla,c); := (alb,c), := 1, hence &, ., = 1 and this implies k¢, = 1. By
(3.3.1) and (2.1.4.1) we have to reach k¢, = kg, thus (c|a,b); := 1. Then & #&,.

Case: K ={a,b,c,d}.

Since we are looking for an example with & # & we may assume that & is not tri-
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vial, i.e. 3 (a,b,c) € K*¥ : (alb,c); = —1 and by (3.4.3.1) we have to set (b|a,c), :=
(cla,b), := 1. Since —1 = (alb,c); = (a|b,d); - (a|d,c); we may put (alb,d); := —1
and (a|d,c); = 1 and by (3.4.3.1) we have to define (b|a,d), := (d|a,b), := 1. Then
(bla, c,d), = 1. Moreover since & has to be related with & we have to set (b|c,d), :=
(ale,d); - (c|a, b), - (d|a,b), =1-1-1=1. If we define (b|a,c); := —1 then by (3.4.3.1)
we have to set (alb,c), := 1 and so {a,b,c} € T, = {{a,b,c} € (%) | (alb,c), =
(bla,c), = (c|a,b), = 1}. By (2.1.4) the equation 1 = k¢, ({a,b,c}) = ke ({a,b,¢}) =
(alb, c); - (ble,a); - (¢la,b); = (=1) - (=1) - (c|a, b); has to be satisfied, hence (c|a, b); :=
Since (blc, d); = —(bla, ¢); = 1 we have to put (b|a,d); := —1, so by (3.4.3.1) (al|b,d), :=
1. Then {a,b,d} € T, and as before we have to set (d|a,b); := 1. Till now &
and & are determined except for (c,a,d), (c,b,d),(d,a,c),(d,b,c). Since (c|a,b); =
(cla,b), = (d|a,b); = (d|a,b), = 1 we have to observe (c|a,d); = (c|b,d);, (c|a,d), =
(c|b,d),, (d|a,c), = (d|b,c);, (d|a,c), = (d|b,c), and —(c|a,d); = (bla,d), - (c|a,d), =
(alb, ¢), - (d|b,c)r = (d|b, ), hence (d|a,c), = (d|b,¢), = —(c|la,d); = —(c|b,d); and
(cla,d), = (bla,d), - (c|a,d), = (a|b, c); - (d|b, c); = —(d|b, c); hence (c|b,d), = (c|a,d), =
—(d|b, ¢); = —(d|a, ¢);. Therefore if we set (c|b, d), := —1, (c|b, d), := —1 then (d|a,c); =
(dla, c), = 1 and so (d|a, b, c), = (d|a,b,c), = 1.

—_
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3.5 SPLITTINGS AND VALUATIONS

In this section let E be a non empty set.
There are the following relations between splittings and valuations:
a) Let §: E — {1,—1};a — @ be a valuation. For any subset K C E the following

function:
K.(8) - E\KxFE\K — {1,—1}__
(a,b) — Kg(a,b):=a-b

is a splitting of F by K called the corresponding splitting. In fact:
VabceE\K:Kyab) Kibc):=a-b-b-¢=a-¢=: K,(a,c),

i.e. the condition (S1) is satisfied.

Vice versa: Let K, be a splitting of E by K where K C E and let e € E'\ K be fixed.
Then the following function:
E — {1,-1}
B = B(Ks,e) : K(e,a) if a¢g K
a — B(Ks)(a)= .
-1 it ae K

is a valuation with K (8(Ks,e)) = K,: for if z,y € E\ K then K (5(K,,e))(z,y) =

B(K,, €)(2) - BKy e)(y) = Ky(e,7) - Kyle,y) 2 Ky (x,y).

Remark. If ¢’ € E\ (KU{e}) and ' := (K, ¢') thenVa & K : 5(a)-f'(a) = K(e, €),
ie. f=por f=-p4".

b) Let 81,82 : E — {1, —1} be two valuations and for i € {1,2} let

E\KxE\K — {1,-1}
(a,b) = Bi(a) - Bi(b)
be the corresponding splittings of E by K. When are the two splittings K,(/5;) and
K,(Bs) equal?

K (/Bz) :
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KS(Bl) = KS(ﬂZ) =
v (a,b) € E\K X E\K : ﬂl(a) . 51(])) = ﬁz(a) ﬁz(b) =
Bi(a) - Ba(a) = Bi(b) - B2(b) & (B1- B2)(a) = (Br- B2)(b) &

B 52\E\K = const. < /81|E\K = ﬂ2|E\K or 51\E\K = _BQ\E\K'

Now let K and L be splittings of E by the subsets K, L C E and let e,e’ € E\ (KUL).
Then:

case 1. If e = ¢ then V 2z € E\ (K UL) : B(Ks,e)(x) = B(Ls,e)(x) = V z,y €
E\(KUL): Ki(z,y) = Ls(z,y).
case 2. If e#¢ ande” € E\ (KUL) thenVz e E\ (KUL):

B(K,e)(x) = B(Ls,e')(z) & K (e",x)-K(e, ") = Kq(e,x) = Ly(e',2) = Lg(e", x)-Ls(e', €").

a) If Ks(e,e") = Ls(e',€") thenV z,y € E\ (KUL), Ks(e" z) = Ls(e", x)
and K,(e",y) = Ls(e”,y) and by (S1) we obtain K(z,y) = Ls(z,y).
b) If K(e,e") = —Ls(e,€") then in the same way we have K,(z,y) =

Ly(z,y), a contradiction.
So in both cases we obtain V z,y € E'\ (K UL) : Ks(z,y) = Ls(x, y).

c) Let v(E) := (P, B, &y, €) be a chain structure (cf. sec. 3.3), let K € € be a chain
and let 8 : P — {1,—1};a — @ be a valuation. Then K () is a splitting of P by K
(cf. a) ).

Which properties has the splitting K(5)?

By (3.3.1) K4(p) induces the two halforders

‘- K {1,-1}
" (@b - K,(8)(a0b, alc) = B(adib) - B(alc)
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and
. K¥Y = {1,-1}
o { (a,b,¢) = K,(8)(b0a,c0a) = f(b0a) - f(cDa)
on K. By (3.3.3) and definition 3.3.1 K,(5) is selfrelated iff &.(K(8)) = &(Ks(5))
hence if V (a, b, c) € K*:

B(adb) - f(aOc) = B(b0a) - f(cOa).

Since ba = K(aOb),c0a = K(aOc) we obtain : K,(8) selfrelated < Vz € P\ K :

B(z) = B(K(z)) or Vo € P\ K : B(z) = —B(K(z)).
Moreover if the valuation J satisfies the following condition: V a,b € P\ K with a00b € K
and B(a) - 8(b) =1:b0a ¢ K and B(a) - 8(b0a) = 1 then by sec. 3.4 (p.117) K,(B) is

strongly convex. So by (3.4.5) K (f) induces an order £ =& =&, on K.
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3.6 POSITIVE DOMAINS IN CHAIN STRUCTURES

Let (P, ®1,®,) be a 2— net such that € # (. A subset Pt C P is called positive domain
of (P, B, ®,) if the following two conditions are satisfied:

(D1) V a,b € Pt with aOb ¢ P* : b0a € PT

(D2)3 K e €¢:P =P UK UK(P) is a disjoint union (K is called the correspon-
ding chain of P1).

(3.6.1) If P* is a positive domain of (P, &1, ®s) and K is the corresponding chain of
P then also K (P*) is a positive domain of (P, &y, &,) and K the corresponding chain.

Proof. Since K is an involutory antiautomorphism of (P, 0), K (P*) satisfies (D2). If
z,y € K(P*) with 20y ¢ K(P*) then K (z), K(y) € P* and K (z0y) = K (y)0K (z) ¢
P+ hence by (D1) (for P+), K(z)0K (y) = K(yOz) € P* implying yOz € K(P*). O

(3.6.2) If P is a positive domain of (P, ®1,®s) and K the corresponding chain let:
fora,be K:a<b<s aObe P,

P\K — {1,-1}
Kp+ : 1 g e P
P x = Kp+(z)= voo -
-1 if ze K(PT)

and K,(Pt) : (P\K)x (P\K) = {1,-1}; (z,y) = K,(P*)(z,y) := Kp+(z) - Kp+(y).
Then:

(1) (K, <) is a totally ordered set.

(2) Ks(P™) is a strongly convez splitting.

(3) &(K(PT)) is an order of K and moreover ¥V {a,b,c} € (I?f) c(bla, ¢y =-1a<
b<corc<b<a.

Proof. (1) Let {a,b,c} € (I?f) Then a0b ¢ K and either a0b € P* (and so b0a =

K(adb) ¢ P*) or aOb ¢ P* (and so bOa = K(aOb) € P*). Hence either a < b or
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b < a. Assume a < b and b < ¢, i.e. a0b,b0c € P*. Then (b0c)O(a0b) = b € K hence
b ¢ Pt and so by (D1), (a0b)0(b0c) = aOc € PT, i.e. a < c.

(2) Let a,b € P\ K with a0b € K and 1 = K,(P")(a,b) = Kp+(a) - Kp+(b) hence
either a,b € Pt or a,b € K(PT). By (3.6.1) we may assume a,b € P'. Since
a0b € K, hence a0b ¢ P, by (D1), bOa € P* and therefore b0a ¢ K (by (D2)) and
K,(P*)(a,b0a) = Kp+(a) - Kp+(bOa) =1-1=1.

(3) From (2), (3.4.5) and (3.4.6) follows that & (K(P")) is an order. By (3.3.1), (bla,c); =
K, (PT)(b0a,b0c) = Kp+(b0a) - Kp+ (b0c) = —1 < (b0a € Pt and bOc € K(PT))
or (bOa € K(P*) and bOc € PT) & (b<aand ¢ < b (since cOb = K(bOc) € PT)) or
(a<band b<¢). O

(3.6.3) Let (P, ®1,8,) be a 2—net, with € # 0, let K € € be a chain furnished with
a total order “ < 7. Then PT := {a0b | a,b € K : a < b} is a positive domain of
(P, &1, &) with the corresponding chain K.

Proof. Let a0b, cOd € P+ and (a0b)0(cOd) = a0d ¢ PT hence a < b,c < dand a £ d
i.e. a=dord<a. Then ¢ <d<a<bthus c<band so (cOd)O0(a0b) = (cOb) € PT.
Moreover if p € P\ K and p; := [p]; N K, then p = p;0Opy and p; # ps. Thus either
p1 < po (and so p € P*) or pp < pr and so K (p) = K (piOps) = p.0p; € PF. O

Definition 3.6.1 Let P be a positive domain of a 2—net (P, &, &) and (K, <) the
corresponding ordered chain (cf. (3.6.2)). For i € {1,2} a point p € P+ is called i-rand
point if [p]; C PT UK.

Then we have the following:

(3.6.4) Let Pt be a positive domain of a 2—net (P, 1, B) and (K, <) the correspon-
ding ordered chain (cf. (3.6.2)). Then:
(1) P contains a 1—rand point < (K, <) has a smallest element.

(2) P contains a 2—rand point < (K, <) has a greatest element.
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(3) If p is a 1— (or a 2— )rand point then [p)y N K ([p]a N K ) is the smallest (greatest)
element of (K, <).

(4) If a (b) is the smallest (greatest) element of (K, <) then [a]; \ {a} ([b]2 \ {b}) is the
set of all 1— (2—)rand points of Pt and, if both a and b exist, then aOb is the only one
1— and 2—rand point of PT.

Proof. (1) “= " and (3). Let p € P* such that [pjy C KUP?T. Then a:=[p)NK € K
and V z € K \ {a} we have a0z ¢ K and a0z € oO(K \ {a}) = [p]; \ {a} C P* hence
a < z. In the dual way one proves (2) “=".

(1) “< 7 and (4). Let a € K be the smallest element of (K, <). Then V z € K \ {a} :
o <z % a0z € P and this implies aO(K \ {a}) = [a]; \ {a} € P* (In the dual
way one proves (2) “ <« 7). Therefore V p € [a]; \ {a} : [p]1 C PT UK and so p € P,
i.e. [a]; \ {a} is the set of 1—randpoints of (K, <). Moreover if a resp. b is the smallest
resp. greatest element of (K, <) then ([a]; \ {a}) N ([b]aN{b}) = aOb is the only one 1—
and 2—randpoint of P*.0



128 4. Relations between half. chain str., half. permutation sets and ...

4 Relations between halfordered chain structures, halfordered
permutation sets and splittings by chains

4.1 HALFORDERED CHAIN STRUCTURES AND HALFORDERED PER-
MUTATION SETS

(4.1.1) Let (P, &1, &y, R; £) be a halfordered chain structure and let E € R be fized, then
the following triples are halfordered permutation sets:

(1) (&1,01(R), &) (cf. (1.4.3) and section 3.1).

(2) (B1,08(R),&) andV «, B € op(RY): aofloa € op(R”) (cf (1.5.4)).

(3) (B1,0(R77), &) and og(R™™) is a group (cf. (1.6.3.3)).

(4) (81,08(¢),&) and op(&e) = Aut(®1,&).

G
9

Proof. Since £ C R~ C 8™~ C &, (cf. (3.1.7.1)), hence og(R) C 0g(R™) C 0g(R™™) C
op (&) := {Eoéwl | C e €} (cf. (1.4.3)), E, C € Aut(P,€) by (3.1.1.2) and so EoC €
Aut(P, €)*, we have E o 5|Q51 € Aut(&4,&) by (3.1.4). Therefore op(€¢) C Aut(&4,&)
proves that the four triples are halfordered permutation sets. The statements (2),(3)

and (4) are consequences of (1.5.4), (1.6.3.3) and (3.1.5.4) respectively.O

By (4.1.1) we see that to each halfordered chain structure (P, &, &,, &; &) there cor-
responds a halfordered permutation set (&;,T',&) and that the set of permutations
[' C Aut(®1,&;) has certain additional properties if 8 is symmetric, double symmetric
or R = .

Now we start with a halfordered permutation set (F,I',n) (with I' C Aut(E,n)). Let
v(E) := (P, B, B,) be the corresponding 2—net, let R := C(T') := {C(v) | v € T}, whe-
re C(7) := {(z,v(z)) | z € E} (cf. (1.3.3)), and for a = (a1, a2), b = (b1, b2), ¢ = (c1, c2),
with (a, b, c) € P39, we set:

by, ; — b, =
(alb, )¢ :={ (albrscr)y if ar=b2=cy .

(a2|b2,02)n Zf a1 = b1 =C1
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Then v(E,n) := (P, By, By; ) satisfies the axioms (Z1), and (Z2),, and (&;,&;) and
(B9, &) are isomorphic to (E,n).
For o € SymE, K := C(0) and z = (z1,7,) € P we obtain K(z) = (67 (22), o(z1))

-1
G(x,)
S
/ E
X1
X 5 X K
C (X)) .
/ K (x)
o (Xz) Vot
FIGURE 4.1.
hence

(K(a)|K (b), K(c))e ==
(o(a1)|o(b1),o(c1))y, if o Nax)=07'(b) =07 ) & az=by=cy
{ (0 Ha)lo H(ba), 0 Hea))y if  olm) =olb)=0(cr) & a=b=c
Hence K € Aut(P,£) with K = C(o) if and only if 0 € Aut(E,n). Moreover for
a,f € SymE, A := C(a),B := C(B) and y = (y1,y2) € P we obtain m(y) =
(871 (y2), a(y1)), hence
(4, B(a)| A, B(b), A, B(c) ¢ :=
(a(ar)|e(br), a(c1))y if Bag) =67 (b)) =B c2) & aa=by=cy
{ (B (@) 87 (02), B (e2))y if  alm)=a(b) =oala) & a=b=c
Hence A, B € Aut(P,€) with A = C(a), B = C(B) if and only if o, 8 € Aut(E,n). We

have proved the main theorem:
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(4.1.2) Let (E,n) be a halfordered set, let v(E,n) := (P, &1, &9; &) be the corresponding
halfordered 2—net and R := C(Aut(E,n)). Then R = & and (P, B, &y, R;§) is a ma-
zimal halfordered chain structure (which is symmetric) with (&1,&) = (E,n).

(4.1.3) Let (P, &1, 89, R;E) be a mazimal halfordered chain structure (obtained as in
(4.1.2)) and for all A,B € € let A- B :=1(A, E,B) (cf. p.45). Then €¢ and K™~ are
subgroups of (€,-) and (&, -) is isomorphic to (Aut(E,ang), o) (cf. §3.2).

Proof. By (4.1.2) €& = {C € ¢ |C € Aut(P,£)} = C(Aut(E,€ zv)) and by (1.4.3.2)
the function C : SymE — € er1C(a) := {z0ca(z) | x € E} is an isomorphism
between the groups (SymFE, o) and (&, -). Since Aut(FE, E|E31) is a subgroup of (SymE, o),
¢ = C(Aut(E, E|E31) is a subgroup of (<, -) and (Aut(E, E‘ng), o) is isomorphic to (&g, -).
By definition of “double symmetric”, £ is closed with respect to the binary operation
“.”_ Now let A € 8~~. Then by definition of 7, A™* (143 E(A) and since £~ is double

symmetric we have E(A) = E/TE(A) € 8~~, i.e. R~ is a subgroup of (¢, -).0
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4.2 HALFORDERED CHAIN STRUCTURES AND SPLITTINGS BY CHAINS

Let (P, ®;, B5) be a 2—net and let K, be a splitting of P by a chain K € €. Then for
i € {1,2} the function

Qj?’ - {17_1}
§Z(Ks) : { ’
(A> B> C) = (A‘B’ C)Ks i KS([G']J' N B> [a]j n C)

where a :== KNAand j € {1,2}\{¢} is a halforder of the set ;. Thusifb:= KNB,c:=
KNC and (4,B,C) € &% then (4|B,0)k, , = K,(bDa, cOa) and if (4, B,C) € &3
then (A|B,C)k, , = Ks(aOb, aOc).

Definition 4.2.1 Two splittings K, L; of P by chains are called i—compatible, © €

There is the following connection between halfordered chain structures and splittings:

(4.2.1) Let (P, ®1, B9, R;&) be a halfordered chain structure, let K € ! and {0,1,00} €
(13() be fized, let £k be the induced halforder of K according to (3.3.5) (hence £k : K% —
{1,—-1};(a,b,¢) — (alb,c)¢, = (aladb,alc)¢) and let Ky := K (£k;{0,1,00}) be the
splitting of P by K depending on {0,1,00} according to (3.3.2.2) (hence Ks(z,y) =
K(z) - K(y) where K(z) = (21]0,22)ex - (0|1, 21)¢, for x1 # 0, K(z) := (0|1, 22)¢, -
ke ({0,1,00}) for 1 =0 and z; := [z]; N K). Then:

()Y (a,b,¢) € K¥ : (a]b, ¢); := K,(aOb, aOc) = (alb, ¢)¢, = (a|adb, aOc)s = (a[bOa, cDa);
(cf. (3.3.1)).

2) V {a,b,c} € (%) : (alb,c), = K,(bOa,cOa) = K(bOa) - K(cOa) = (alb, c)¢, -
k§K({a" b, C}) ’ kSK({Oa b, C}) = (a\bDa, CDG)E ) k‘fK({a’7 b, C}) ) kéK({O’ b, C}) if by # 0,
(CL|O,C),~ = (G‘O,C)gK ) ka ({aaoa C}) ) ka ({07 1’00}) = (CL|ODCL, CDG)E ) k&K ({a,O,c}) )
kiK({Oa L, OO})

(3) The following statements are equivalent:

(1) € is selfrelated.
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(17) &k is selfrelated.

(114) K, is selfrelated.

(4) If & 1is selfrelated then:

(1) The splitting K, := K4(Ex; {0,1,00}) is independent of the choice of {0,1,00} € (13{)
(by (3.3.2.3)).

(1) ¥ (a,b,¢) € K¥ : (alb,c); = (alb,c), = (alb,c)¢, = (aladb,aOc)e = (a|bOa, cOa),
(by (3.3.3) and Def. 3.3.1).

(13) V K, L € R the splittings K, :== K(£k) and Ls := Lg(&) are 1— and 2—compatible.

Proof. (1) and the first part of (2) are a consequence of the definitions, so let {a, b, c} €
(5). Ifb,c # 0 then (alb, ¢)¢y ke ({a, b, c}) ke, ({0, b, c}) = (bla, €)ge-(cla, b)e,-(0]b, €)e-
(3]0, ) -(c]0, D). 2 (8]0, @), -(c]0, @)e - (011, B)e- (011, e - ) K (bDa)- K (cTa), if
b =0 then (|0, ¢)¢, ke ({a, 0, ¢}) ke ({0,1,00}) = (0la, €)¢xe+(c|0, )¢ ke, ({0, 1, 00}) =
(01, )¢ - (01, a)ey. - (€]0, @)e, - ki ({0, 1, 00}) “E K (00a) - K (cTa).

(3) By (3.3.5) and Def. 3.3.2, (i) and (m) are equivalent, and by (3.3.3) and Def. 3.3.1,

(#7) and (i77) are equivalent.

(4) (iii) Let (A,B,C) € &Y anda:= ANK,a':= ANLb:=BNK,)':=BNL,c:=
CNK,d:=CnNL. Ifi=1 then

(A|B,C)Ks L= Ks(bl:la, CDLL) (_3) (a\b, C)r (4):(z'i)

(Z2)9 11t [N !
(a|bOa, cOa)e =" (a'|b'0d’, ¢Oa’)e = (A|B,C)y, ,-

If 7 = 2 then

©) (Z2),
(A|B,C)k, , = Ky(aOb, aOc) = (alaOb,alc)s =

(@']a'0V, d'0c)e L L (a'0V, a'0¢) = (A|B, C)y, ,.
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K L

B b . ab adb'

/b'
C anoc

/c c'ladc

FIGURE 4.2.

O

(4.2.2) Let (P, ®1,,) be a 2—net such that € # 0, let K be a splitting of P by a chain
K € ¢, let § = &(Ks) and & = &.(K) be the corresponding halforders of K according
to (3.3.1). For each p € P let p; := [p]; N K and let

P - {1,-1}

mﬁdk+ma@?{wwwmifwbﬂ%=Mz

(azlba,c2)i if [aly = [bly = [c]y

Then:

(1) (P, &1, B, {K};€) satisfies the azioms (Z1), and (Z2),.

(2) (P,&1,89,{K};€) is a halfordered chain structure (i.e. (ZC), is satisfied) if and
only if K, is selfrelated.

Proof. (2) Let (a,b,c) € P39, with [a], = [b] = [c]o. Then (alb,c) := (a1|b1, 1), and
(K (a)|K(b), K(c)) := (a1]b1, ¢1);. By definition 3.3.1 this shows the equivalence in (2). O

Remark. The halfordered chain structure (P, &1, 8,9, {K};£(K)) obtained from a sel-
frelated splitting via (4.2.2) is symmetric and also double symmetric (cf. sec. 3.1) since
R = {K} consists of a single chain and this implies {K} = {K}~ = {K}™™ C & :=
{C e |C e Aut(P,§)} (cf. (3.1.2)). Hence u(P, B, 6y, K,) = (P, &y, By, € £) is
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the greatest halfordered chain structure with K € €, and for each L € &,

L exen - {1,-1)
S (@8 = Lfab) = (akl Z(ah). Z(01) - (B8] lals b))

is a selfrelated splitting of P by L and u(P, &1, B2, L) = u(P, &1, B, K;) (cf. sec. 3.1).
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4.3 AUTOMORPHISMS OF SPLITTINGS AND POSITIVE DOMAINS

Definition 4.3.1 Let P,P' #(, E C P and E' C P'. If E, resp. E! is a splitting of P
resp. P’ by E resp. E’ then a bijection ¢ : P — P’ is called an isomorphism between
the splittings Eg and E., if o(F) = E' and if V a,b € P\ E:

E(a,b) = Ei(¢(a), o (b)).

If P =P and E; = E! then ¢ is called an automorphism. Let Aut(P, E;) be the group
of all these automorphisms.

Two splittings E, of P and E’ of P’ are called isomorph if such an isomorphism exists.
g s

Now we consider the case P = P’ and we assume that (P, &, &,, €) is a chain structure.
Let E; be a splitting of P by a chain E € €. By Aut(P, ) = Aut(P,&; U &,) (cf.
(1.3.7)) if ¢ € Aut(P,®; U &y) then ¢(F) =: K, € € and if we set V o', b € P\ K, :

(Kp)s(a', V) := Es(¢™(d), 7 ()

then (K,), is a splitting of P by K, and ¢ is an isomorphism between these two split-
tings Es and (K,)s.

We set AUt(P, @1 U @2, Es) = AUt(P, @1 U 62) N Aut(P, Es)

We have:

(4.3.1) Let (P, ®1,B5) be a 2-net and T',T defined as in section 1.1. Then:
a)a €T & ae Aut(P,0)

b) aelT & a€ Antiaut(P,D).

Proof. a) “=" Let a,b € P. Then:

o(am) = a(fal: N [Bl2) °Z " [a(@)]s N [a(B)]z = a(a)Ta(b).

“«< 7 Let a € P. Then, since [a]; = aOP and [a] = POa, we have:
a(ah) *“"™" a(a)3a(P) = [a(a)]; and
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a€Aut(P,0)

alalz) =" a(P)Bafa) = [a(a)],-

b) “=" Let a,b € P. Th_eP:

a(ath) = of[ah N [B) *S [o(@)]o N [a(B)]: = a(b)Oa(a).

“<« 7 Let a € P. Then, since [a]; = aOP and [a], = POa, we have:
a(fal2) “"E " a(P)Da(a) = [a(a)]; and

o((al) *"E " a(a)Da(P) = [a(a)],. O
By (4.3.1) we obtain:

(4.3.2) Let (P, &4, 8,, &) be a chain structure, A, B € € and v € Bij(A, B).

(1) The following extensions

. | P=404 - P=5oB
’)/ :
Oy = (z)0y(y)

and
| =404 - P=pBOB
v
Oy = y(y)Oy(x)

are elements of T and T such that vt(A) = B,y (A) = B.
(2) If 0 € Aut(P,®1 U &y) and A € €. Then:

a) If o € T then o = (o1a)"

b) Ifo €T then o = (o14) .

We define (Bij (A, B))* := {1* | 7 € Bij(A, B)}, (Bij(4, B)~ = {r~ | € Bij(4, B)}.
Then if £ € €, Aut(P,®, U &y, E) = (SymE)" U (SymE)~ (by (4.3.2.2)).

(4.3.3) Let (P, 1, B4, €) be a chain structure, E; a selfrelated splitting of P by a chain
E € € and & = &(FE) the associated selfrelated halforder of E according to (3.3.1).
Then: Aut(P,®; U By, E,) = Aut(E, &) U Aut(E, ).
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Proof. Let o € Aut(P, &, U &,, F,) and (a,b,c) € E¥. Then (a|b, ¢) = F,(a0b,alc) =
Ey(o(abb), o(alc)) =

{ Ey(0(a)00(b), o(a)0o(c) if 0T

o Eséelf.aaab,ac’
Es(a(b)ma(a),a(c)ljo'(a,)) if oeT } ( ()| () ())

hence ojp € Aut(E,§) and so (o5)" = o if 0 € T and (o) = o ifc € T by
(4.3.2.2). Consequently Aut(P,®; U By, E;) C Aut(E,&)" U Aut(E,€) .

Now let 0 € Aut(E,€), a,b € P\ E and for i € {1,2},a; := [a]; N E,b; := [b; N E.
If a0b,b0a € E then E(a) = b, E(c7(a)) = o7 (b) and E(c~(a)) = o~ (b) hence by
(3.3.3) ke = E4(a,b) = Es(c7(a),0"(b)) = Es(0 (a),o (b)). If for instance b0a ¢ E
then a = a,;0as, b0a = by0ay, b = b;0by

a14

b,
bz
/ )
%)
/ bOa a
FIGURE 4.3.

and so F,(a,b) = F,(a,b0a) - Es(bOa, b) = (az|bi,a1) - (bi|ag, be) =

(o(az)la(br), o(ar)) -
Es(o(a1)B0(as), 0(b1)0o(az)) - )

Ey(0(a1)00(a2),0(b1)00 (be)) = Es(0™ (a), 0"
Es(a(az)B0(a1), 0(az)00 (b)) - )
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ie. 0,07 € Aut(P,®,U By, E,). O

(4.3.4) Let E # 0, let v(F) = (P,81,,) be the corresponding 2—net, let E, be
a selfrelated splitting of P by E and let £ := &(E;) be the corresponding selfrelated
halforder of E according to (3.3.1). Moreover for each p € P let p; := [p]; N E. Then
Aut(E;) := Aut(P, 1 U By, E,) g = Aut(E,£(Ey)) and if

P39 - {1,-1}

|

(a1|b1, c1)er,y if lala = [bl2 = [cl2

a,b,c alb,c) :=
( ) = o) (a2b2, c2)e(m,) if  [ali = (Bl =[]y

and & := C(Aut(E,)) then (P, ®1,8,, & &) is a selfrelated halfordered chain structure
such that ¥ A, B € R the corresponding splittings As := @(£4) and Bs := ¢(&g) (cf.
(3.3.4) ) are selfrelated and 1— and 2— compatible (cf. Definition 4.2.1).

Proof. By (4.3.3) Aut(E,) = Aut(E,£(E,)). By (4.1.2) (P, &1, By, &;€) is a maximal
halfordered chain structure which is (by definition of £) selfrelated if and only if £(E,)
is selfrelated. The selfrelated halforder € induces on each chain K € £ a selfrelated hal-
forder & (cf. (3.3.5) and Def. 3.3.2) and so by (3.3.4) we obtain a selfrelated splitting
K, = ¢(€k) and by (4.2.1)(iv) V A, B € R the splittings A, := ¢(£4) and By := ¢(&p)

are 1— and 2—compatible. O

Definition 4.3.2 A quadruple (P, &1, &,, K;) is called splitting chain structure if (P, &1,
&,) is a 2—net and R, is a set of selfrelated splittings by chains K € & C € # () which

are all 1— and 2— compatible.
By (4.3.4) we obtain the following
(4.3.5) If K, is a selfrelated splitting of P by a chain K then there ezists a greatest

splitting chain structure (P, &1, &9, R;) with K € R.

Finally:



4.3 Automorphisms of splittings and positive domains 139

(4.3.6) Let Pt be the positive domain of a 2—net (P, &1, 8,), K the corresponding
chain, Aut(P, &1 UB,, PT) := {0 € Aut(P,&1UBs) | o(PT) =Pt} the automorphism
group of the positive domain P* and let “ < 7 the associated order of K according to
(3.6.2). Then:

(1) Vo€ Aut(P,61UB,, PT) : 0(K) = K and 0|k is an isoton or antiton permutation
of (K,<) resp. if o € T oroel respectively.

(2) If 7 is an isoton resp. antiton permutation of (K, <) then 7+, Ko7~ € Aut(P,®;U
Gy, PHYNT resp. 7, K o1t € Aut(P,®; UGy, PH)NT .

(3) Let 0 € Aut(P, &, UGy, PT), ifo € T then 0|k s an isoton permutation of (K, <)
and (ox)" =0, ifc €T then ok is an antiton permutation of (K, <) and (ox)” = 0.

(4) If |P| is finite then |Aut(P, &, UGy, PH)| = 2 and Aut(P, &, UG, PH)NT = {id}.

Proof. (1) Let 0 € Aut(P,8; U &,9,PT), a € K and assume o(a) ¢ K. Then
o(a) € K(P) and if a; := [0(a)};NK fori € {1,2} then a; # ay and o(a) = a;0ay. This
implies a;0a; = K(a;0as) = K(o(a)) € P*+. Since also o € Aut(P,®; U &, P+)
we have o '(as0a;) € PY, 0 Ya;) € PT and 0 '(a;) € 0 !([o(a)];) = [0 ' (o(a))]; =
[a]; with 0='(a;) # a implying 0~'(a;) € K(P*) and a = o~(a;)00"(as). Sin-
ce a ¢ K(P+) we obtain by (3.6.1) 0 (as)Jo(a1) € K(P*). If 0 € T  then
o0 (az)00 ay) = 0~ Y(as0a;) € K(PT) contradicting o (ax0a;y) € PT. If ¢ € T
then o (a2)00 (a1) = 0 *(a10az) = 0 *(0(a)) = a € K N K(P*) = 0 also a contra-
diction. Therefore o(K) = K and o)k is a permutation of K. Now let a,b € K with
a < b hence a0b € P*. Since o(P*) = P* we obtain :

ox(a)0ok(b) € PT ifo € T by (4.3.1a)

o(aOb) =
(o) ox(b)0ok(a) e P* ifoel by (4.3.1b)

and so by definition of “ < : ox(a) < ok (b) if 0 € T and ox(b) <ok(a)ifocel .
Therefore o/ is an isoton or antiton permutation of (K, <) resp. if o € Tiorocel
respectively.

(2) By (4.32.1) 77 €T, 7~ €T and by (1.4.2) K € T. We prove: 7+(P*) = P+
and 77 (PT) = P*. Let z := a0b € P* with a,b € K then a < b, 77 (a) = 77 (a) =
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,77(b) = 77(b) = 7(b) € K and 7(a) < 7(b) or 7(b) < 7(a) resp. hence 77 (z) =
O7(b) € P* and 7~ (z) = 7(b)O7(a) € K(P*) or 7+ (z) = 7(a)07(b) € K(P*+) and
T (x) 7(b)O7(a) € P* respectively.

(3) By (1) and (2).

(4) By (3) we have Aut(P,&; U &y, PT) = {0 € ' | ok is an isoton permutation of
(K,<)}U{oeT| 0|k is an antiton permutation of (K, <)} and since (K, <) is a finite
ordered set we may assume K = {aq,as,...,a,} with a; < a;41, Vi€ {1,... ,n—1}.
Case 1: let o be isoton. We show:

(%) If p is an isoton permutation of K then p(a;) = a.

Assume p(ay) # a;. Then a; < p(ay) and 3 a; € {ag,... ,a,} : p(a;) = a;. This implies
pla;) = a1 < p(ay) and since p is an isoton permutation of (K, <) we obtain a; < as, a
contradiction. Thus p(a;) = a; and so p({as, ... ,an}) = {as,... ,an}, i.e. pK\{ay} is an
isoton permutation of K \ {a;}. From (x) follows p(K \ {a:}) = K\ {a1}, i.e. px\{a}
is an isoton permutation of K \ {a;} and so by (x), p(az) = ay and since K is a finite
set we obtain p = id, i.e. o = id.

Case 2: let 0k be antiton. The function

{(a1an)(azan-1) - - - (amaniy)} if n is even

{(ara,)(azan_1) - - (a 1Gn )} if n is odd

is an antiton permutation of (K, <), so 0/x ow is an isoton permutation of (K, <) and

by the case 1 we have ojx ow =1id, i.e. ojx = w.O
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AXIOMS

(A1) VY {p,q} € (}), 31 LeL:p,q€ L.

(A2)VpeP VL €L, withpeg Ly, 3y Ly e L\ {L;} withp € Ly and L1 N Ly = 0.

(B) For all K € R, for all k € K and for all p € P\ (K U [k]; U [k]2) there is exactly
one L € K such that p € L and LN K = {k}.

(CO) (alb,c) =1 and (z|b,c) = =1 = (alb,z) =1.

(D1) V a,b € Pt with aOb ¢ P+ : bOa € PT.

(D2) 3K e¢:P =Pt UK UK(P") is a disjoint union.

(I2) For all joinable {a,b} € (1), 31 K € R:4a,b € K.

(n1) p ¢ C.

n2)VXeLl(p:|XNnC|l=1.

(N1) For each point z € P and each i € I there is exactly one generator G € &; with
z € G.

(IN2) Any two generators of distinct classes &; # &; intersect in exactly one point.

(N3) Every element X of & :=J,.,

(O1) Forall H € §, for all z,y,z € P\ H : (H|z,y) - (H|y, 2) = (H|z, 2).

(02) Let a,b,c € E, a,b# cand let A, B € $ with c € A, B and a,b ¢ A, B then
(Ala, b) = (Bla,b).

(P) For all K € &, for all p € P\ K there is exactly one L€ R:p€ Land LNK = ).

(P1)0¢ P.

(P2)Vde Ay :§(P)=Pord(P)=P_:=F\ (PU{0}).

(al) peC.

(@2) VX eL(p):|XNnC| <2

(@3) {X e L(p) [ [XNCl=1} <1.

(R)V (a,b,c,d) € E* : [a,b|c,d], = [c,d|a, b]s.

(R1) For all (a,b,¢,d) € E* : [a,blc,d] = [c, d|a, b].

(S1) Va,b,ce F\ K : (Ksla,b) - (Kb, c) = (Ks|a,c).

(T)V (a,b,c,d), (a,b,d,e) € EY : [a,blc,d] - [a,b|d, e] = [a, b|c, €].

(T)*V (a,b,¢,d) € ((Y)) : kr, (a,b, ¢, d) = ks, (d, a, b, c) = ke({a, b, c}).

®; intersects C' in exactly one point.
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(Z) ¥ (a,5,6), (a,c,d) € B : (alb, o) - (ale, ) = (al, d).

(Z0) V {a,b,c} € () exactly one of the values (alb, ¢), (blc, a), (c|a,b) is equal —1.

(Z1), V G € 61U By, (G, &) is a halfordered set.

(Z2), V j € {1,2},V G,L € &,,¥Y (a,b,c) € G* if i € {1,2}\ {j}, then (alb,c) =
([alin L | [b; N L,[c]; N L).

(ZC),V K € &,V (a,b,c) € P* : (alb,c) = (K (a)|K(b), K(c)).

(Z1) VX € 6, UG, U R, (X, E|X3:) is a halfordered set.

(Z2)V G, L € 6, UG, UR, V (a,b,c) € G :
(a) if G,L € &; : (alb,c)g = ([al; N L[[b]; N L, [c]; N L)g, where 4,5 € {1,2} and
L F 3
(b)if G,L € &: (ald,c)z = ([al; N L|[b]; N L, [c]; N L)g, where 7 € {1, 2};
(c)if Ge R, Le®, (orGe &, LeRK): (a|b,c)g= ([al; N L[[b]; N L,[c]; N L)g,
where 4, j € {1,2} and i # j.

(ZC)V K € &, ¥ (a,b,¢) € PPRUPY: (alb, c)g = (K (a)| K (b), K(c))z.

(Z): V (a,b,c,d), (a,b,d,e) € E* : [a,b|c,d] - [a,bld, e] = [a,b|c, €]

(Z), V (a,b,d,e), (b,c,d,e) € E* :[a,bld, €] - [b,c|d,e] = [a,c|d, €]
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P39 102 weakly convex splitting 116

Pk 102
3¢ 55

quadratic-point 26

regular convex quadruple 83

related halforders o7

semidomain 66
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ABSTRACT

In 1949 E. Sperner [33],[34] generalized by his “orderfunction in a geometry” the concept
“ordered” to “halfordered affine or projective geometry”. If (K,t) is the ternary ring
coordinatizing an affine plane then there is a one-to-one correspondence between the
halforders 7 of the plane and the betweenness functions £ of K which turn (K,t) in a
halfordered ternary ring (K, t,§).

In 1981 H. Karzel and H.-J. Kroll [21] introduced the notions “I—net” and “I—chain
net” in particular 2—net (P, &, ®,) and 2—chain net (P, &, &5, R), also called chain
structure (affine planes can be considered as particular chain structures). If € denotes
the set of all chains of a 2—net (P, &, &,) then there is a ternary operation 7 : € — ¢
such that for a fixed E € €, (€, ) with A-B := 7(A, E, B) is a group which is isomorphic
to the symmetric group SymFE.

The aim of this thesis is to introduce concepts of orderfunction, order and halforder
in chain structures, to develop their theory and to relate them with “one dimensional”
orderstructures which are given for instance on the points of a chain E.

It will be shown: If (P, &, &4, R;7n) is a halfordered chain structure then the halforder
7 induces on each chain £ € K a betweenness function & and with E a splitting FEj
of P (i.e. a partition of P \ F into two parts). Between the splittings E; of P by E
and the betweenness functions £ on F there is a bijective connection. If o denotes the
isomorphism from SymE onto (€,-) and Aut(E,§) the permutations of E preserving
€, then 8 C € = a(Aut(E,&)) < (€,-) and n can be extended to a halforder 7 of
(P, &1, G4, &) such that (P, &, &, R; 1) appears as a substructure of the envelopping
(maximal) halfordered chain structure (P, &;, &, € 7).

In this frame the interplay between properties (like related, selfrelated, harmonic, an-
harmonic, convex or order) of halfordered sets (E,¢), halfordered chain structures
(P, ®1, B2, R; 1) and splittings by a chain (P, &y, Bq; E,) is studied.

In this way halfordered algebraic structures like halfordered or ordered loops, groups or

fields can be lifted to halfordered or ordered envelopping chain structures.
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ZUSAMMENFASSUNG

1949 verallgemeinerte E. Sperner [33],[34] durch seine ,,Ordnungsfunktion einer Geometrie*
den Begriff ,,angeordnete Geometrie® zu ,halbgeordnete affine oder projektive Geometrie®.
Ist (K, t) der terniire Ring, der eine affine Ebene koordinatisiert, so gibt es eine eineindeu-
tige Beziehung zwischen den Halbordnungen 1 der Ebene und den Zwischenfunktionen
¢ von K. Dadurch wird (K,t) ein halbgeordneter ternirer Ring (K, t,£).

H. Karzel und H.-J. Kroll [21] fithrten 1981 die Begriffe ,,/—net“ und ,, /—chain net“ ein.
Besondere Beachtung erfuhren dabei die 2—Netze (P, ®;,®,) und die 2—chain nets
(P, &1, 85, R), welche auch Kettenstrukturen genannt werden. Affine Ebenen konnen
als besondere Kettenstrukturen angesehen werden. Bezeichnet € die Menge aller Ketten
eines 2—Netzes (P, &, &,), dann gibt es eine ternire Operation 7 : € — €, so dass fiir
ein ausgezeichnetes E € € durch A- B := 7(A, E, B) eine Gruppenstruktur definiert ist,
welche zur Symmetrischen Gruppe SymFE isomorph ist.

Ziel dieser Dissertation ist die Begriffe Ordnungsfunktion, Anordnung und Halbordnung
in Kettenstrukturen einzufiihren, ihre Theorie zu entwickeln und sie mit eindimensio-
nalen Ordnungsstrukturen, zum Beispiel gegeben durch die Punkte einer Kette, zu ver-
binden.

Es wird gezeigt werden, dass wenn (P, &, &, ;) eine halbgeordnete Kettenstruktur
ist, die Halbordnung 7 auf jeder Kette £ € £ eine Zwischenfunktion ¢ induziert und
durch F eine Seiteneinteilung F; von P gegeben ist (also eine Zerlegung von P \ F in
zwei Teile). Es gibt einen bijektiven Zusammenhang zwischen den Zwischenfunktionen &
auf F und den Seiteneinteilungen F,, die durch E auf P induziert werden. Bezeichnet o
den Isomorphismus von SymFE nach (€, ) und Aut(FE, &) die Permutationen von E, die
¢ erhalten, dann ist R C € := a(Aut(E,§)) < (€,-) und n kann auf eine Halbordnung
7 von (P, By, By, &) ausgedehnt werden, wodurch (P, &, &, R, 1) zur Unterstruktur
einer maximalen halbgeordneten Kettenstruktur (P, &;, &, €, 7) wird.

In diesem Zusammenhang werden die Beziehungen zwischen Eigenschaften von halbge-
ordneten Mengen (E, £), halbgeordneten Kettenstrukturen (P, &1, &, K; 1) und Seiten-
einteilungen durch eine Kette (P, &1, &,; E;) untersucht.



150 Zusammenfassung

Auf diese Weise konnen halbgeordnete algebraische Strukturen wie halbgeordnete oder
angeordnete Loops, Gruppen oder Korper zu halbgeordneten oder angeordneten Ket-

tenstrukturen angehoben werden.
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