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Abstract

This dissertation studies the empirical relevance of R&D based growth theories. In pre-
vious research on this topic, investigators have typically employed the Solow residual
approach to study the impact of knowledge and spillovers on productivity. Yet, relying
on the assumptions of perfect competition and constant returns to scale, this framework 1s
not in line with R&D based growth theory, which implies that knowledge creation as the
driving force of economic growth is inextricably linked to market power and economies
of scale. In this study, a cost function and factor demand system is employed to in-
vestigate the empirical relevance of R&D based growth theory with a new version of
the OECD STAN dataset covering two-digit manufacturing industry data from Canada,
France, Germany, Italy, Japan and the US. In contrast to the conventional Solow resid-
ual, this framework allows the researcher to investigate economies of scale, market power
and the role of knowledge creation and spillovers for productivity growth in an integrated
approach. The empirical investigation reveals that in line with R&D based growth the-
ories, there are indeed economies of scale and mark-ups in nearly all of the investigated
industries. Excess returns to R&D are found in four relatively R&D-intensive sectors. In
addition to this, knowledge spillovers enhance productivity growth in many industries.
International intra-industry spillovers seem to be the most important source of knowl-
edge externalites. R&D intensity is low and there is little or no productivity growth in
the few industries where no significant impact of R&D can be found. In all the other
cases, knowledge variables are found to explain a good part of the observed productivity
growth and they are a source of economies of scale, as theory would suggest. In contrast
to competing growth theories, R&D based models imply that mark-ups, economies of
scale and a productivity enhancing role of knowledge variables should be found in the
data. The empirical investigation in this dissertation suggests, that R&D based growth
models seem to pass this empirical test very well.
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Chapter 1

Introduction

Between 1870 and 1980 real GDP per capita rose sevenfold in the US, eightfold in West
Germany and sixteenfold in Japan (Maddison 1982). Technical change and innovation
have been at the heart of this impressive increase in material well-being. Not only are
more goods and services available on average for each person in industrialized countries,
but entirely new products and production processes have been developed. A century ago
satellite communication, personal computers or jet airplanes would have been inconceiv-
able.

Most of the last decade has been marked by impressive output and productivity
growth, especially in the Unites States. This is often traced to the productive use of
entirely new information and communication technologies, most notably the Internet.
Frequently labeled as the "New FEconomy” this development is viewed by many as a
technological revolution. The emergence of new information and communication tech-
nologies underlines the role of technological change as an engine of productivity and
output growth.

These casual observations suggest that innovation is an important determinant of
economic development. This conjecture is reflected in economic theory, as technological
change lies at the heart of the growth process in the vast majority of models. Yet, in the

neoclassical theory (Solow 1956, Cass 1965, Koopmans 1965), the paradigm of economic
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growth theory in the 1960s and the 1970s, productivity growth is exogenous. Thus,
technological change, which allows capital and output per worker to grow continuously
over the long run, remains unexplained. A growing dissatisfaction with this aspect of the
neoclassical theory has led a number of researchers to reconsider the investigation of the
growth process in an attempt to explain long-run economic growth endogenously. These
attempts have gone many different ways, including the introduction of economies of scale
due to spillover externalities (Romer 1986), of human capital (Rebelo 1991), or both
(Lucas 1988). In these models, knowledge creation and technological change are either
the unintentional side effect of the production of a conventional product, e.g. physical
or human capital, or they are not important for growth at all (Rebelo 1991, Jones &
Manuelli 1990).

This dissertation is devoted to an empirical investigation of research and development
(R&D) based endogenous growth models that aim to explain technological change and
productivity growth as the result of intentional investments in R&D (Romer 1990, Gross-
man & Helpman 1991, Aghion & Howitt 1992). While many of these models encompass
some type of externalities associated with knowledge creation, all of them rely upon the
assumption that investments in research and development occur as a response to market
incentives, much in the way as investments in physical capital.

When investigating these theories empirically, most researchers choose a Hall/Solow
residual approach to study the impact of knowledge and spillovers on productivity growth
(Coe & Helpman 1995, Keller 2001). Yet, stemming from Solow’s (1956) growth model,
this framework relies on the assumptions of constant returns to scale and perfect com-
petition, while increasing returns and market power are essential features of R&D based
models of economic growth.

As emphasized by Romer (1990), recognizing the non-rivalrous nature of knowledge
necessarily links it with economies of scale and imperfect competition. The development
of an idea, such as the design of a new car or a patent for a new medicine, may require

huge initial costs. Yet, once it has been created, the idea can be used over and over
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again with zero or trivial additional costs. In this sense, knowledge creation is analogous
to incurring a fixed cost. Knowledge is a non-rivalrous good, because at a technological
level nothing precludes the simultaneous use of an idea in many different production
processes. While returns to scale in rival factors should be constant by a standard
replication argument, this does not hold for non-rival knowledge, precisely because it
does not have to be replicated. Thus, returns to scale in all factors including knowledge
should be increasing. Fuler’s theorem implies that with increasing returns not all factors
can be paid their marginal product. So if knowledge creation is assumed to depend on
economic decisions, as in the R&D based growth models, then there must be at least
some market power so that resources devoted to it can be recompensed.

The inextricable link between economies of scale and imperfect competition with
market driven knowledge creation in R&D based models of economic growth has been
much overlooked in empirical work investigating these theories. The Solow residual is a
biased measure of productivity growth when the assumptions of constant returns to scale
and perfect competition do not hold. A few researchers ”correct” the Solow residual
to account at least for the presence of imperfect competition (Keller 2001). Beyond
concerns regarding biases of the Solow residual, however, theory suggests that it may
be very revealing to study the role of knowledge and the presence of market power and
economies of scale explicitly in an integrated approach.

In this study a cost function and factor demand system is employed to investigate the
empirical relevance of R&D based growth theories. In contrast to the popular Hall/Solow
residual approach, the appropriateness of productivity growth measures derived from this
empirical model does not hinge on perfect competition and constant returns to scale.
What is more, it provides a framework to investigate all of the more relevant features of
R&D based models of economic growth in an integrated approach.

A new version of the OECD STAN dataset (OECD 20004a) covering two-digit man-
ufacturing industry data from Canada, France, Germany, Italy, Japan and the US is

employed to investigate economies of scale, market-power and the role of knowledge cre-
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ation and spillovers for productivity growth. Both domestic and international knowledge
spillovers are considered. While all of these features have been investigated before in
an isolated fashion, to the best of my knowledge there is no research investigating all of
them simultaneously to study potential links between them.

FEarlier versions of the STAN dataset have been used before to investigate mark-ups
(Beccarello 1996) and the role of knowledge (Keller 2001, Griffith, Redding & van Reenen
2000). However, these studies sufler from the problem that constant price material input
data was not available in prior versions of the STAN database. Therefore, authors were
previously confined to using value-added data. Yet, according to R&D based models of
economic growth, technological change embodied in intermediate inputs will always be
associated with market-power. Basu & Fernald (1995) and Basu & Fernald (1997) have
shown that using value added data is very likely to bias results concerning estimates of
economies of scale and externalities, if the material inputs are not produced in competitive
markets. Therefore, value-added is not the ideal output concept for empirical work that
investigates R&D based models of economic growth.

A number of these models emphasize the importance of trade as a channel for knowl-
edge spillovers (Grossman & Helpman 1991, Rivera-Batiz & Romer 1991). The attrac-
tiveness of the international dataset employed in this study lies in the possibility to
investigate the presence of these externalities. Drawing on work by Keller (2001) three
different potential spillover sources are considered: domestic inter-industry spillovers,
international intra-industry spillovers and international inter-industry spillovers. While
Keller pools all industries and countries for his estimations, each industry is pooled in-
dividually across countries and investigated separately in this dissertation. The results
reveal important differences between industries, which have not been taken into account
in Keller’s study. The finding of heterogeneity also suggests that it is very revealing to dif-
ferentiate between industries, rather than estimating international knowledge spillovers
with country data, an approach pioneered by Coe & Helpman (1995), which has found

many followers.
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In contrast to some earlier research that simultaneously studies the impact of R&D
investments on the productivity of the investor as well as different types of externali-
ties associated with it (Keller 2001, Verspagen 1997), multicollinearity problems between
different spillover variables are carefully taken into account in this dissertation and con-
clusions are drawn with caution. As it turns out, different R&D variables are highly
collinear. This casts some doubts on results of earlier studies that consider a number
of different spillover variables without taking multicollinearity problems into account.
Nevertheless it can be concluded from the results in this study that international intra-
industry spillovers seem to be the most important source of externalities.

The study is organized as follows. Chapter 2 provides an overview over economic
growth theory with an emphasis on R&D based models of economic growth to provide
a theoretical foundation for the empirical investigation. Chapter 3 discusses the empiri-
cal model. Outlining its advantages over more popular frameworks it also discusses the
specifics of the data employed in the empirical investigation. Estimates of productivity
growth, mark-ups and economies of scale are presented in Chapter 4, which also con-
fronts the results with prior investigations. Chapter 5 outlines the modelling strategy for
spillover variables and discusses the empirical results concerning the role of knowledge
and its externalities as an engine of productivity growth and as a source of economies of

scale. Chapter 6 concludes.
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Chapter 2

Growth Theory

2.1 The Neoclassical Growth Model

Sustained growth of per capita macroeconomic variables, such as the aggregate capital
stock, output and consumption is a well established empirical regularity. In the long run,
the growth rate of these variables seems to be roughly constant. This pattern is captured
by the neoclassical growth model (Solow 1956). Relying on the assumption of competitive
markets and a constant returns to scale production function, the model implies a stable
balanced growth path equilibrium, where all per capita variables grow at the rate of
technological progress. The basic features of this model can readily be demonstrated
assuming that a large number of firms produces good Y with capital, K, and labor, L,
according to a constant returns to scale technology, Y = F(K, AL), which complies with

the Inada conditions *. An example would be the Cobb-Douglas production function:

Y = K*(AL)"® (2.1)

IThe Inada conditions require that the marginal product of each factor goes to zero, as the factor
input goes to infinity and vice versa: limg o Fx (K, AL) = o0;limy, o FL,(K,AL) = o0

limg oo Fr(K,AL) = 0;limg .o FrL(K,AL) =0;

where Fx, denotes the first derivative of the production function F' with respect to factor X;.

16



A is an exogenous technology parameter, which is assumed to grow at a constant rate
v4. It can be thought of as the technological knowledge in the economy which is a
completely non-rival and non-excludable good in this model. Every firm in the economy
uses the same A in its production. Because of the constant returns to scale property
of the production function, output can be described in terms of the actions of a single
price-taking firm.

In the Cass-Koopmans version of the Solow model (Cass 1965, Koopmans 1965) the
savings decision is derived from the utility maximization of an infinitely lived agent.
Life-time utility, U, is given by

00 -0 _
U:/ O eaa— (2.2)
0

1—0

where ¢ denotes per capita consumption, ¢ denotes time, o0 > 0 is a parameter deter-
mining the intertemporal elasticity of substitution, and p is the rate of time preference.
Agents receive wage income on inelastically supplied labor, L, and rental income on their
capital which they rent to firms. Maximization of lifetime utility (2.2) subject to the

intertemporal per capita budget constraint, k=w+rk— ¢, implies

=—(r—p) (2.3)

A lower case variable 2z is the per capita version of its upper case equivalent z = % and a

dot on a variable denotes its derivative with respect to time. w is the real wage rate and
7 1s the real interest rate. For simplicity, the economy’s population L is assumed to be

constant, but population growth can easily be incorporated into the model. Firms’ profit

K

=) 1 =6, where 6 is the depreciation

maximization implies that r = Fix (K, AL)—6 = of
rate of capital. Because of the constant returns to scale characteristic of the production
function, Fix (K, AL) depends only on capital in efficiency units, A—KL. This follows from the
rule that the partial derivative of a function that is homogeneous of degree one must be

homogeneous of degree zero, which is readily verified with the Cobb-Douglas production
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function as an example. The Inada conditions imply that F (K, AL) converges to zero
with continuous growth of per capita capital, if the economy’s stock of knowledge, A, is
constant. With a constant rate of time preference the right hand side of equation (2.3)
converges to a negative constant, —‘STT’J, so there is no scope for continuous growth. Thus,
exogenous growth in A is needed to offset the effect of diminishing returns to capital.

With constant exogenous productivity growth, -4, per capita capital grows at the
same rate as A on a balanced growth path and 7 is constant. Taking account of the
constant returns to scale characteristic of the production function, it readily follows
that per capita output grows at that same rate. By the economy’s budget constraint
output must equal the sum of consumption and investment in physical capital, I. Taking
account the capital accumulation equation, K=1-6K , it can be derived from this that
consumption also grows at the rate of technological progress. Because of the constancy
of population, per capita variables grow at the same rate as their counterparts in levels.

Continuous and roughly constant growth of per capita macroeconomic variables, such
as consumption, output and the capital stock, is a well established empirical regularity.
This is captured very well by the neoclassical growth model with exogenous productivity
growth. The drawback of this model is that it does not explain technological change as
captured by 7y, which, however, is the ultimate source of growth.

This is why in the mid-1980s economists led by Romer (1986) reassessed growth
theory, trying to explain continuous growth endogenously. These attempts have gone

many different ways. Some of the models of endogenous growth are discussed in the

following sections.

2.2 Growth due to Externalities

The reason why an exogenous source of growth is needed is that in a neoclassical produc-
tion function returns to capital are diminishing. The problem with exogenous productiv-

ity growth is that there is every reason to believe that the economy’s stock of knowledge
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should depend on economic decisions at least as much as the capital stock. It is therefore
desirable to explain the evolvement of A as a result of market incentives.

The main problem facing attempts to endogenize A is the difficulty to deal with
increasing returns in a dynamic general equilibrium framework, because endogenizing A
is not compatible with a competitive equilibrium. To see this, consider a more general
production function F/(A, X), where X = (Xj,..., Xyv) is a vector of rival inputs, such as
labor and capital in the model above. Returns to scale in rival factors should be constant
by a standard replication argument, while they should be increasing in the rival factors
and knowledge together, as outlined in the introduction.

With a homogeneous, constant returns to scale production function increasing all non-
rival factors by a constant factor m increases output by that same factor F(A,mX) =
mF (A, X). Euler’s theorem can be derived by differentiating both sides with respect to
m and evaluating at m =1 : >, g—QXZ- = F(A,X). It is obvious from this, that in a
competitive equilibrium, where factors are paid their marginal products, revenue is just
enough to recompense the non-rival inputs. If a firm had to recompense A as well, it
would incur losses. It is compelling to believe that technological knowledge is accumulated
deliberately as a result of market incentives. Yet, in a competitive equilibrium firms
cannot recompense any resources devoted to knowledge accumulation.

An approach to maintain a competitive equilibrium, while explaining the evolvement
of A within the model has been developed by Romer (1986) and Lucas (1988), who
model the accumulation of knowledge as an unintentional side-effect of investments in
different kinds of capital. In his paper that revived growth theory in the 1980s, Romer
(1986) employs Arrow’s (1962) setup to eliminate the tendency for diminishing returns
by assuming that knowledge creation is a side product of investment in physical capital.
Learning how to use new machines, workers create knowledge that allows them to produce
more efficiently. As in the Solow-Cass-Koopmans model, technological knowledge is a
non-rival production input. Once new knowledge is created, it immediately spills over to

the entire economy.
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The main ideas of the model can be presented with a simple Cobb-Douglas production
function similar as in (2.1). The production function of firm i is ¥; = F(K;, AL;) =
K#(AL;)'™. Firms operate in a competitive environment and the private factors, capital
and labor, earn their marginal product. Since knowledge creation is assumed to be a side
effect of investments in physical capital, the technology factor, A, is now a function of the
overall capital-labor-ratio: A = b%, where b is a constant, K = ) . K; is the aggregate
physical capital stock and L = > . L; is the aggregate labor supply. Taking this into

account, the individual production function becomes Y; = Kf‘(b% L)'~ Firms take the

overall capital-labor ratio as given. Competitive pricing results in

o<

Y;
r+é=a—,w=(1—a)— 2.4
Hw=(-a) 24
where r 4 ¢ is the user cost of capital and w is the real wage rate as above. Equation
(2.4) implies that if all firms face the same factor prices and the same technology, they
will hire factors at the same proportions. Writing the individual production functions as

Y, = (f—;)a(b%)lfo‘l}i, they can be aggregated to yield
Y =b K (2.5)

Since the constant b'~“ is represented by an A in most formulations of this model, they
are often called AK—models.

To verify quickly that this allows for continuous growth, note that maximization of
(2.2) with respect to the representative consumers budget constraint still results in the

Fuler equation (2.3). The interest rate r = g—}é —6= a(f—j)o‘fl(b%)lfo‘ —§=ax*xbl*=§
is independent of capital. As long as a*b'~® > p-+6, this allows for a growth path where
all per capita variables grow at a constant positive rate.

Rather than assuming that technological growth is an unintentional side effect of

investments in physical capital, Lucas (1988) assumes in effect that it is proportional

to the production of human capital. He introduces a human capital externality, which
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raises the productivity of all factors. This can be interpreted as being analogous to
Romer’s assumption that knowledge creation occurs due to spillovers associated with
physical capital accumulation. While spillovers in the Romer-model are due to learning-
by-investments, they come from interaction of smart people in Lucas’ formulation.

In the Lucas-model it is not raw labor, but human capital, H, that is important for
the production of output: Y; = ASK#(H;)'~®. In this model version, the accumulation
of knowledge is assumed to be an unintentional side effect of the production of human
capital A = bH. Aggregate human capital is taken as given by the individual firms. By
the same argument as above, all firms will hire human and physical capital at the same
proportions and thus individual production functions can be easily aggregated.

To obtain a simplified one-sector version of the Lucas-Model, let’s assume that human
capital can be produced in the same manner as physical capital by foregoing one unit of
consumption, H = Iy — 6H, where I; denotes investment in human capital. Since the
cost of accumulating one unit of physical capital is the same as accumulating one unit

of human capital, competition will ensure that the marginal products of K and H must

the same: (A)a K Y{(H)1"® = (A)" (1 — o) K®H *. This equation implies that the ratio

of physical to human capital is constant in equilibrium, % = 7%, and so is the rate of

return to both types of capital. The aggregate production function can be written as

1 —
Y = F(K,AL) = Y = bf(—— )5t s (2.6)

«

If there is no non-rival knowledge in the economy (¢ = 0), then the final production
function is of the AK-type: Y = (1?70‘)(170‘)[( . Broadening the definition of capital, so
that it encompasses both physical and human capital, it is possible to obtain a model of
endogenous growth even without any technological progress.

Returning to the idea that knowledge is accumulated as a side effect of human capital
production (¢ > 0), it turns out that it is possible to construct a model of endogenous
growth with economies of scale at the aggregate level, while maintaining the perfect

competition framework. Since knowledge creation occurs as a side effect of the accu-
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mulation of a rival factor, resources devoted to it do not have to be recompensed sepa-
rately. As long as increasing returns are due to spillovers only, while individual firms are
faced with technologies that are constant returns to scale in their choice variables, the
competitive equilibrium framework does not have to be abandoned to obtain an endoge-
nous growth model. To see that Romer’s ideas can be used to construct a model with
increasing returns, as well, just reformulate the individual firm’s production function
as Y; = ASKX(L;)'"® Assuming that knowledge evolves in fixed proportions to aggre-
gate rather than average capital, A = bK, the resulting aggregate production function,
Y = KoL s clearly subject to economies of scale.

An alternative approach to explain growth endogenously is to build a competitive
equilibrium model and dismiss the notion that technological change lies at the heart
of economic growth, in order to obtain a model without increasing returns. Rebelo
(1991) and Jones & Manuelli (1990) have uncovered sets of assumptions that result in
endogenous growth with constant returns without a role for technological change. Jones
& Manuelli (1990) show that what is important is to bound the marginal productivity
of capital away from zero. It is clear from the Fuler equation (2.3) that as long as the
limit of the marginal product of capital exceeds p + 6, ongoing growth of per capita
consumption is possible, without a need for A to grow as well in order to offset growth
of per capita capital.

Rebelo (1991) studies a multi-sector model and stresses the assumption that there is
a set of capital goods, such as human and physical capital, which can be produced with-
out non-reproducible factors (such as land). Together with some regularity conditions,
this leads to models of the AK-variety where unceasing growth can take place without
exogenous increases in productivity or externalities.

While it is interesting to learn about the conditions for endogenous growth, it may not
be desirable to dismiss the assumption that it is technological change due to knowledge
accumulation which lies at the heart of economic growth.

If intentional accumulation of non-rival knowledge as a result of market incentives
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is deemed important for economic growth, market-power has to be introduced into the
model. Theories that rely on this notion of technological change have been pioneered by

Romer (1990) and Aghion & Howitt (1992).

2.3 R&D based Models of Endogenous Growth

2.3.1 Increasing Varieties
Increasing Varieties of Non-durable Intermediate Inputs

To explain the evolvement of the stock of knowledge endogenously, one metaphor for
technological change that has been used extensively is to interpret A as the range of
varieties of intermediate or consumption goods. R&D effort results in the development
of new goods and thus an increase in A. Technological advancements are thus equivalent
to increasing specialization in these models.

Technological change can be associated with consumption goods, material inputs or
capital goods. For empirical research it is important to note that in reality technological
change is likely to be associated with all of these goods at the same time. In theoretical
models, however, nothing much but complexity is gained when modelling all of these
phenomena together. Therefore, in what follows models in which technological change is
associated with material inputs, capital or consumption goods respectively are presented
separately.

In a simple version of an increasing varieties model a la Romer (1990) a final goods
sector produces a homogenous output good, Y, using labor, Ly, and a variety of inter-
mediate goods, x;, where i indexes the variants of the good. In the simplest case, the

technology is Cobb-Douglas:
A
y = bo / 2 di (2.7)
0

where 0 < o < 1. A is the "range” of intermediate goods currently available. The

final goods sector is competitive and firms choose labor input and the amount of each
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intermediate good, x;, to maximize profits. The final goods producers maximize profits,
Lifo‘ fOA xidi —why — fOA p;x;di, which yields a demand curve for the intermediate good

7

pi = oLy ‘! (2.8)

The intermediate goods sector is composed of an infinite number of local monopolists on
the interval [0, A]. They can either be thought of as developing patents themselves or as
purchasing them from an R&D sector at price P4. Once they have obtained a patent
for good i, they can produce the intermediate good at a constant marginal cost of 1
unit of output per unit of intermediate good. This implies that consumption goods and
intermediate goods are produced with the same technology. It is appropriate to think
of resources as going directly into the intermediate good production. The somewhat
artificial step of producing final output first is introduced for analytical tractability.

Let’s first assume that the intermediate good is non-durable. Solving the profit max-
imization problem, max,,p;x; — x; , while taking account of the demand function for the
intermediate good (2.8), it turns out that the monopolist charges a mark-up of price over
marginal cost.

p; = (2.9)

1
o
This price setting equation readily implies that prices for all intermediate goods are the
same. In the steady state, a constant fraction of the labor force, L, will be devoted
to final output production. From the demand for intermediate inputs (2.8) it can be
inferred that the quantity produced for each variety is the same: xz; = x. Profits are
equaltom™ =pr—x = 1?70‘37 Note that mark-up-pricing is necessary for the intermediate
goods producers to cover the fixed cost of purchasing or developing a patent for good 1.

Since there is free entry into both the R&D and the intermediate goods sector, the net

present value of profits to be gained as a result of the production of intermediate goods
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will equal the market price of patents, Py = ftoo e Il T(S)dSW(T)dT. Differentiating with
respect to time and noting that prices of patents are constant in equilibrium, as will be

argued more precisely below, yields
rPy=m (2.10)

At each point in time the instantaneous profit from producing the intermediate good
must cover the interest cost of the original investment in the design.

The sum of all intermediate goods equals the economy wide use of material inputs:
M = fOA x;di. Since each intermediate goods firm produces the same amount of z, this
relation can also be expressed as Az = M. Therefore, the aggregate production function

for the final output good can be written as:

Y = (ALy)' *M* (2.11)

Holding A constant, returns to scale of the production function of final output are con-
stant in labor and material inputs. However, there are increasing returns in the rival
factors and knowledge together.

In Romer’s (1990) version of the model, the number of new patents is proportional

to labor devoted to research and development:
A= (L,A (2.12)

The total amount of labor to be divided between the final goods sector and the R&D
sector, L = Lo+ Ly, 1s assumed to be constant. It may seem more compelling to interpret
L, similarly as in the original Romer-model, not as simple labor, but as the human capital
of well-trained individuals. According to this specification of the knowledge production
function, the production of new ideas requires only human capital, but no intermediate

inputs. The idea behind this is that the production of new ideas is especially human
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capital intensive.

This specification implies that the number of patents grows at the rate v, = (L 4. The
total amount of intermediate inputs will also grow at that same rate because M = Az,
and x is constant. It is then obvious from the final production function that final output
per capita will grow at the rate of technological progress.

Arbitrage in the labor market ensures that the wage to be earned and thus the
marginal product of labor will be the same in the R&D sector and in final goods produc-
tion:

Py(A=(1—-a)L,"Az® =w (2.13)

Dividing both sides of (2.13) by A it becomes obvious that P, is constant, as assumed
above.

Again, households maximize lifetime utility (2.2) with respect to their budget con-
straint. The accumulable assets in this economy are the patents for new products. From
equation (2.10) it follows that the return on investments in assets equals the interest rate
r. Utility maximization thus results in the familiar Fuler equation (2.3).

Final output equals the sum of consumption and material inputs: Y = C'4+ Ax. Divid-
ing by the range of intermediate inputs, it turns out that % is a constant in equilibrium,
because both % and z are constant. So consumption also grows at the rate of techno-
logical progress as all other variables. Combining the labor market arbitrage condition,
(2.13), with condition (2.10) the demand for intermediate goods (2.8) and the pricing
equation (2.9) yields a relation for the amount of labor used in final goods production
Ly=L—-L,= CLa Inserting this into the Fuler equation and combining with the growth
rate of the number varieties of intermediate goods, it turns out that the common growth
rate of the variables in this model is

alL —p
o+«

VA= (2.14)

The growth rate is thus increasing in the productivity of research labor ¢ and in the size
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of the economy, L. It is decreasing in the rate of time preference, implying that thriftier

societies should grow faster.

Increasing Varieties of Intermediate Capital Inputs

Alternatively, it is possible to interpret the intermediate goods as durable, as in the
original Romer model or as in Jones (1995a) and Rivera-Batiz & Romer (1991). To
decentralize a competitive equilibrium with intermediate capital inputs one possibility is
to think of households as accumulating raw capital. This can be captured by the familiar
accounting equation, K=Y — C, which measures investment in capital as the amount
of foregone consumption. Households rent out raw capital at the competitive rental rate
to intermediate goods monopolists, who transform it one by one into complex capital
services of variety i. Intermediate goods producers rent the capital services to final goods
producers at the monopolistic rental rate, p;. Capital is assumed not to depreciate for
simplicity. The constant marginal cost of the intermediate goods production therefore
equals the competitive rental rate r. The maximization problem of intermediate goods
producers thus results in the pricing equation p = ~. As in the non-durable intermediate
goods version they charge a mark-up of price over marginal cost of i

The sum of all intermediate goods now equals the economy’s overall capital stock
K = fOA x;di, which can be expressed as K = Az, because both the price and the
quantity of intermediate inputs is constant as before. The aggregate production function

for the final output can now be written as:

Y = (ALy)' *K* (2.15)

This reduced form production function is completely equivalent to the production func-
tion of the Solow model (2.1). In this model version, households accumulate two different
types of assets, physical capital, K, and patents. It follows from equation (2.10), that
both yield returns that are equal to the risk-free rate r. Thus, the utility maximization

problem results in the usual Euler equation (2.3). Using completely analogous arguments
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as before, it is not difficult to verify that the divide of labor between research and final
production remains the same as in the non-durable goods version of the model and so
does the expression for the final growth rate (2.14). Again, per capita output, the num-
ber of intermediate inputs, per capita capital and per capita consumption all grow at the

same rate.

Increasing Varieties of Consumer Goods

A version of the increasing varieties model in which technological change occurs in the
consumption good sector has been formulated by Grossman & Helpman (1991). In this
model housecholds maximize lifetime utility as in (2.2). Rather than representing a single
homogeneous consumption good, though, ¢ is interpreted as an index of an infinite number

of varieties of consumption goods, z;, that are distributed over the interval [0, A].
A 1
c= {/ ridi}e 0 <e <1 (2.16)
0

c reflects the consumers’ taste for diversity. Combining the first order conditions of the

1
utility maximization problem for two different varieties yields = = %:, where p; is the
J J

price of variety 7. Multiplying both sides of the equation by x;, taking integrals over all
1

Bpf !
Apzisl, where
e d

E = fOA pjr;dj is the total amount of consumption expenditure. Again consumption

varieties 7 and rearranging yields the demand function for variety 7 : x; =

goods producers develop their variety themselves or they buy patents for it at price Py,
so that they can act as monopolists. The production technology of the intermediate
goods is particularly simple, one unit of labor yielding one unit of variety x;. Solving
the consumption good producers’ maximization problem, while taking into account the
consumers’ demand for variety ¢ yields the pricing equation
w

B

pi = (2.17)
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Again, the monopolists charge a mark-up of price over marginal cost, which allows them
to cover their research and development costs. The price for consumption goods is con-
stant and the same for each variety: p; = p. Because the different varieties enter the
utility function symmetrically, this implies that the quantity demanded of each consump-
tion good is the same as well, so the total amount of consumption X = fOA x;di can be

written as X = Az. The quantity of intermediate goods can then be formulated as

New varieties of the consumption good are invented according to the same knowledge
production function as in the Romer model, (2.12).

The total amount of labor employed in consumption goods production equals L. = X ,
which is constant in equilibrium. Taking account of (2.18) and the production function
of ideas (2.12), it turns out that labor market resource constraint can be written as
L= % + VTA. Thus % is constant in equilibrium and the quantity consumed of each variety
declines at the same rate as the number of varieties increases. Because the amount of
resources devoted to production in this economy does not grow, physical output cannot
grow either. What does grow is the utility derived from consumption. This can be
seen when inserting (2.18) into the consumption index and rearranging, which yields

1—

c = A=

E%. The consumption index is increasing in the number of varieties and so
is utility. Thus income grows steadily in terms of its command over utility, although

output remains constant in a physical sense.

2.3.2 Increasing Product Quality

As an alternative metaphor for technological change, Aghion & Howitt (1992) assume
that research and development increases the quality of intermediate inputs. Innovations
improve upon older technologies which are replaced as higher-quality variants are de-

veloped. In the spirit of Schumpeter, this theory thus entails an element of creative
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destruction. As in the increasing varieties models discussed before, technological change
manifested in quality improvements can be associated with different types of goods.
Grossman & Helpman (Grossman & Helpman (1991), chapter 4) have developed a model
where increasing quality is associated with consumption goods. In Aghion & Howitt’s
(1992) original model of increasing product quality, technological change is associated
with non-durable intermediate inputs. In this section, a version of their model is pre-
sented in which increasing product quality is associated with capital goods.

In this extended multi-sector version of their original model Aghion & Howitt (1998a)
assume that consumption goods as well as investments in physical and R&D capital are

produced with the same technology
1
Y=C+I1+1%= Llo‘/ Azl di (2.19)
0

where L is the constant amount of labor and x; the amount of intermediate capital
services . There is a continuum of intermediate goods, indexed on the unit interval [0, 1].
The parameter A; represents the productivity of the latest generation of intermediate
good 1.

Fach intermediate sector is monopolized, similar as in the model above, by the holder
of a patent to the latest generation of that good. As local monopolists firms sell capital
services of variety i to the competitive final goods producers, so the demand function
for intermediate goods equals its marginal product in final production. As in the model
discussed above, the intermediate capital services are assumed to be produced with a
specified number of units of raw capital. Producing an amount x; of intermediate capital
services requires A;z; units of capital. This specification assumes that because of increas-
ing complexity more productive types of intermediate inputs require a larger amount of
resources per unit of production.

As in the models discussed before, intermediate goods producers charge a mark-up of
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price over marginal cost.
TAZ'

«

pi = (2.20)

The profit maximizing supply is z; = (é)ﬁl}, so all sectors produce the same constant
amount of capital inputs x; = x. Let A denote the average productivity across all sectors:
A= fol A,di. Each sector uses A;x; units of the capital stock to produce its capital
services, so there is a total capital stock, K = fol A;x;di, which can be expressed as
K = Az. Substituting this into (2.19) yields a reduced form production function, which

is equivalent to the production function of the Solow model
Y =C+I1+1%=K*AL)'" (2.21)

An innovator who succeeds in improving the quality of an intermediate capital good
1 replaces the incumbent and monopolizes this sector until the next innovator arrives.
In this model version, there is a different research sector for each intermediate good.
Firms in each research sector compete to discover the next generation of that particular
good. Innovators are assumed to build on the leading edge technology A™®*, increasing
it by a fixed amount . When this happens, the productivity parameter A; in this sector
jumps discontinuously to the new leading edge technology parameter. Fach discovery is
implementable in the innovator’s chosen sector only, but by adding to the general knowl-
edge of the society it allows the next innovator to discover a slightly better technology.
There are intersectoral spillovers, because innovators in each sector have free access to
the technological knowledge embodied in the leading edge technology and are thus able
to improve upon it, even when innovating in a different sector. A™** represents the state
of technology in the economy.

Innovations are assumed to be governed by a Poisson process with an arrival rate

if* where it = A{ix is the productivity adjusted level of research and v is a constant.
Thus an ever-increasing research level is needed to keep innovations at the same rate.

The idea behind this is that as technology advances, it becomes more complex, and thus
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more resources are needed to improve upon it.
To develop an equation for productivity growth in the increasing varieties model,
remember that each innovation raises the leading edge parameter by a factor . The

expected number of innovations at each point in time equals the Poisson arrival rate i’

Amax
Amax

Together this implies = if'Iny. At any point in time there will be a distribution of
technology parameters, A;, ranging from 0 to A™** across the sectors of the economy. This
distribution shifts to the right over time as innovating sectors move up to A™**, which

itself increases due to technological progress. It is shown in appendix B that the long-run

distribution of relative productivity a; = Aﬁgx will always be given by the distribution
function H(a) = aﬁ,O < a < 1, no matter what happens to the absolute size of

productivity parameters. Because of this constant distribution, the average productivity

parameter, A, grows at the same rate as the leading edge technology.

ya =it iny (2.22)

In this model, ideas are produced with the same technology as final output using both
labor/human capital and capital. This is in sharp contrast to Romer’s (1990) specifi-
cation of the knowledge production function (2.12), where the only input to research
and development is human capital. While it seems convincing to assume that research
and development is human capital intensive, the assumption that no physical capital is
required is less obvious. Most researchers use computers and many different kinds of
laboratory equipment. A one sector version of the increasing varieties model where ideas
are produced with the same technology as final output has been explored by Rivera-Batiz
& Romer (1991). They refer to this specification as the lab equipment model.

Aghion & Howitt’s (1992) basic model of increasing product quality assumes that
labor is the only input to R&D. Thus either of the two alternative specifications of the
knowledge production function can be used both in the increasing varieties and in the
increasing quality model of R&D based growth. Note that the lab equipment version of

the knowledge production function provides a rationale to measure knowledge with the
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research and development capital stock. As %' = 91 1n vy in the Aghion & Howitt (1998a)
model, the number of new ideas can be expressed as A= HI. Let a® denote the constant
ratio of the average to the leading-edge productivity a® = ﬁ. Then ¢ = ¢¥(In~y)a® is
a constant governing the productivity of the research and development input into the
knowledge production process. The knowledge production function in Rivera-Batiz &

Romer (1991) is completely equivalent. Assuming for simplicity that knowledge does not

depreciate and integrating the knowledge production function yields

A= ¢/0t I%(7)dr = R (2.23)

where R is the economy’s R&D capital stock. Inserting this into the production func-
tion (2.21), it turns out that output is a function of labor, physical and R&D capital.
The production function exhibits increasing returns in the rival factors and knowledge
together.

In the steady state the growth rate in (2.22) is constant, so investments in R&D grow
at the same rate as the leading edge technology. Since K = Az and z is constant, the
capital stock grows at the same rate. It is then apparent from the production function
(2.21) that total output grows at that same rate as well. Capital is assumed not to
depreciate for simplicity, so I = K. Dividing by K and recognizing that the growth rate
of capital is constant in the steady state it follows that investments in physical capital
also grow at the same rate as average productivity. It can then be concluded from the
economy’s resource constraint Y = C + I + I'* that consumption grows at the rate of
technological change as the other variables.

As there is free entry in the intermediate goods sector, the price of a patent equals
the net present value of the expected profits to be earned by each intermediate capital
goods firm before a new innovator arrives in that sector. The probability of not being
replaced before period 7 equals e " and operating profits of a firm that innovated at

time ¢ are 7(t) = (1 — oz)olefo‘/;:O‘A(t)maX with k = z = %. So the price of a patent for

 (1—a)aLl- ok A(fymax
- il

this firm’s product equals P4 () . Increasing investments in R&D by
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one unit raises research costs by 1 and expected revenues by PAdiﬁ- Because there is

free entry into the research sector this implies

(1—a)aL! *k®
ikt 4+ r

1=1q (2.24)

As in the increasing varieties model, both types of assets, physical capital and patents,

2 Thus, the utility maximization problem results in the usual

yield the risk free rate r.
Fuler equation (2.3). Together with the zero-profit condition for research and (2.22), this
implies that the equilibrium growth rate for output, capital, consumption and produc-
tivity will be

oln~y

Ya= m(d)(l — oz)olefo‘l;:O‘ —p) (2.25)

Similarly as the increasing varieties models, growth is higher in thriftier societies, as the
equilibrium growth rate decreases in the rate of time preference. An increase in the arrival
rate parameter 1) both increases and decreases the marginal cost of investments in R&D.
On the one hand, R&D is more likely to result in a successful invention if v is higher,
on the other hand the probability of being replaced next period increases. As apparent
in (2.25), the first effect dominates. There is the same scale effect as in the increasing
varieties model, as the economy’s growth rate increases in the number of people in the
economy.

This scale effect inherent in all of the R&D based growth models discussed so far is

not without problems, as will be discussed in the next section.

2Since there is a continuum of sectors with independent rate of creative destruction, the return to a
patent just equals the risk-free rate.
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2.4 The Problem of Scale Effects

The source of the scale effect in the increasing varieties models discussed before is the
knowledge production function (2.12). As the population increases, so does the amount
of labor devoted to R&D. According to the knowledge production function, this results in
an increase of productivity growth and thus an increase of the common growth rate of all
major macroeconomic variables in the model. Jones (1995b) shows that this is strongly at
odds with the empirical evidence. The size of the labor force in advanced economies has
grown dramatically over the past decades, but average growth rates have been relatively
constant or have even declined. The direct evidence against the knowledge production
function (2.12) is equally compelling. While the number of scientists and engineers
engaged in R&D has grown continuously in industrialized countries in the post-war era,
total factor productivity (TEFP) - if anything - has been declining,

To get rid of this counterfactual scale effect, while maintaining the basic features of
R&D based growth models, Jones (1995a) reconsiders the intertemporal spillover in the
knowledge production function (2.12) in Romer’s (1990) model. It may seem plausible to
assume that at least some part of previously accumulated knowledge is freely available
to researchers helping them to develop ever more complex ideas. Yet, it is rather difficult
to argue why this intertemporal spillover should be linear as in (2.12). At the same
time linearity is necessary to ensure unceasing growth. Taking a closer look at the
arbitrage equation (2.13) it turns out that if the knowledge production function were
some concave function in A, rather than being linear, the marginal product of labor
in the research sector would decrease as A grows, dragging labor out of research and
ultimately bringing growth to a halt. Thus, unceasing growth is possible only because of
the specific functional form that is assumed for the knowledge production function.

Jones (1995a) generalizes the knowledge production function (2.12) by further speci-
fying the average research productivity (. Individual researchers take ( as given, so that
from an individual standpoint, the production function of knowledge is the same as in

(2.12). From a society’s standpoint, however, the productivity of R&D, ¢, can be further

35



specified, as it may vary with the amount of R&D expenditures and the existing stock

of ideas: ( = Lz’“*lA‘pkfl. Thus, the knowledge production function becomes:
A= L} A#» (2.26)

Ar < 1 captures congestion externalities. An increase in R&D effort induces duplication
which reduces the average productivity of R&D. This is sometimes called a stepping on
toes effect. ¢, # 0 allows for intertemporal knowledge spillovers which may be positive
or negative, depending on whether there are diminishing technological opportunities or
whether the development of new ideas becomes easier as researchers can build on more
and more existing knowledge. All the other elements of Romer’s (1990) model remain
the same.

In this model version, it is necessary to assume population growth, in order to be able
to explain unceasing growth of per capita variables within the model. Let n denote the
exogenous rate of population growth. Dividing (2.26) by A, differentiating with respect
to time, and observing that the growth rate of A is constant in the steady state, it turns

out that the steady state growth rate of the stock of knowledge is equal to

A
1= (2.27)

On a balanced growth path all per capita variables grow at the same rate as the number
of varieties of intermediate goods, which is the metaphor for technological change in this
model. Thus, in this revised version of an increasing varieties model, the economy’s
growth rate depends on the growth rate of population rather than on its level. Clearly,
this 1s more in line with the empirical evidence than the basic increasing varieties model,
although its essential features are maintained. Knowledge creation is a result of deliberate
investments in R&D responding to market incentives. Innovative firms have to charge a
mark-up of price over marginal cost to cover the fixed costs of knowledge creation. The

reduced form aggregate production function (2.15) remains the same as in the Romer
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model, so there are increasing returns to scale in rival factors and knowledge together.

In models in which innovations are assumed to be produced with both capital and
labor as in Aghion & Howitt (1998a) and Rivera-Batiz & Romer (1991) the scale effect
is less apparent from the knowledge production function itself. In the lab equipment
version of the knowledge production function, there is no intertemporal spillover. The
number of innovations is proportional to investments in R&D, which thus have to grow
at the same rate as the stock of knowledge to guarantee a constant growth rate of new
ideas. Yet, there still is a scale effect as apparent in the equation for the equilibrium
growth rate (2.25). An increase in L, the size of the economy, increases the total rent
to be captured by successful innovators. This should increase the equilibrium amount of
resources devoted to innovative activity, which in turn increases the equilibrium growth
rate of the economy. In fact, this is the mechanism in which the size of the population, L,
influences the equilibrium growth rate in the Aghion & Howitt (1998a) model described
above. The intermediate goods producers’ operating profit is proportional to the size of
the economy’s population and so is the marginal product of increasing resources devoted
to R&D, while the marginal cost is constant. For the research arbitrage condition (2.24)
to continue to hold, either the interest rate, r, or the amount of productivity adjusted
resources devoted to research, i, or both have to increase when the population increases.
The Fuler equation (2.3) and (2.22) imply that both effects will lead to an increase in the
equilibrium growth rate.> The mechanism leading to a scale effect in the Rivera-Batiz &
Romer (1991) model is very similar.

Attempts by Young (1998) and Aghion & Howitt (1998b), chapter 3, and others
to eliminate this scale effect are based on the idea that a rise in the profitability of

innovative activity due to the exploitation of scale effects may result in an increased

3Tt can be verified that both the interest rate and the Poisson arrival rate 9i% increase. The interest
rate is pinned down by the equilibrium demand for intermediate capital services r = ket
Obviously, it increases with the size of the population. The research arbitrage condition implies that
it = P(l — oz)ole’O‘I;:O‘ —a?k> 1LY Inan equilibrium with positive investments in R&D, the first
term of the right hand side of the equation has to be greater than the second term. As a direct result of
this ¢i® increases in the size of the population as well.
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variety of differentiated solutions to similar problems. A higher number of technologies
(e.g. an increase is the number and types of cars) raises the utility of the consumers.
Yet, if continued improvement of an increasing variety of technologies requires increased
research input, because it has to be spread over more sectors, a rise in the scale of the
market could increase the equilibrium quantity of R&D without increasing the economy’s
growth rate.

To see how this effect operates, let’s modify the production function of the Aghion &
Howitt (1998a) model

Q
Y=C+I1+I%=0"2Q*" [ Aaxldi (2.28)
0
where () is the range of varieties that have been invented. The average productivity of the
economy is now defined as A = % fOQ A,di. As in the basic model each sector will supply

the same amount of intermediate capital services, which must be the capital intensity per

K
AQ)

sector, k= for the capital market to clear. This implies exactly the same aggregate
production function as in the basic model (2.21) in which the number of intermediate
sectors has no effect.

Horizontal innovations are assumed to occur through serendipitous imitations, so
nobody spends any resources on this. Every person in the economy has the same Poisson
arrival rate, 1,, for innovations, so the number of varieties evolves according to Q= W, L.

The number of workers per sector will converge to a constant | = £ = 2 where n is

Q i
again the population growth rate.*
The growth of knowledge depends only on vertical innovations which arrive with the
same arrival rate as before. It is assumed that the rate by which innovations increase
the economy’s stock of knowledge, % In 7y, is inversely related to the number of sectors in

the economy. This captures the idea that each vertical innovation represents a smaller

proportional increase to the overall stock of knowledge as sectors become more specialized

4From Q =1,L and L = nL it follows that the differential equation driving [ is l=nl— winQ, which

converges asymptotically to the constant value I = wi
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due to increases in varieties. The productivity growth rate is thus

Z‘R

7A=¢lez¢5le (2.29)

where i = %. As the population grows in this model version, the productivity
growth rate is also the common growth rate of all per capita variables, while the level
of output consumption and capital grows at the sum of the population and productivity
growth rates.

The demand function facing each monopolist has to be modified in that the labor force

per sector I enters it where aggregate labor force used to. Thus, the research arbitrage

(1—a)ad! ~ >k

condition becomes 1 = 9 .

. Since [ is proportional to n, this implies that the
equilibrium growth rate depends on the population growth rate rather than on its level.

The scale effect implied by the first round of R&D based growth models is clearly
at odds with the empirical evidence. Yet, there are several ways to eliminate this scale
effect, while preserving the important features of R&D based models, namely the notion
that knowledge creation results from market incentives. The next section discusses, how

the presented theory is used to structure the empirical investigation in the following

chapters.

2.5 Implications for Empirical Research

From the preceding discussion it is clear that technological change can be associated
with consumption goods, material inputs or capital goods in R&D based growth models.
As stressed before, in reality technological change is likely to be associated with all
of these goods at the same time. The production function used in empirical research
should include both material inputs and capital as factor inputs to allow for technical
change to be associated with either one of them. As technological change embodied in
intermediate inputs will always be associated with market-power, value-added is not the

ideal output concept for empirical work that investigates R&D based models of economic
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growth. Basu & Fernald (1995) and Basu & Fernald (1997) have shown that using value
added data 1s very likely to bias results concerning estimates of economies of scale and
externalities, if material inputs are not produced in competitive markets. This will be
discussed in more detail in the next chapter.

Regardless of the metaphor that is used for technological change and of the type of
good with which it is associated, the basic predictions of R&D based growth models are
always the same. There is imperfect competition in innovative markets, because somehow
firms have to recover the fixed costs of knowledge creation. R&D capital stocks enter the
aggregate production function as an additional production factor, because knowledge is
embodied in intermediate inputs.

When thinking about industry data, it seems reasonable to assume that each industry
engages in several if not all of the activities described in R&D based growth models.
Many industries produce consumption goods, capital goods and material inputs. At the
same time, they perform R&D to develop new or improved products or more efficient
production processes.

R&D based models of economic growth imply several forms of knowledge spillovers.
Purchasing material inputs or capital goods from other industries, each industry may
take advantage of embodied technological advancements developed elsewhere. Industries
can thus enjoy knowledge spillovers through trade, because they do not have to develop
this new or improved variety themselves. A second, disembodied spillover associated with
the knowledge production process is inherent both in the increasing qualities version of
R&D based growth models and in the knowledge production function (2.12). Innovators
can take advantage of technological advancements made before, because they have free
access to the existing technological knowledge of the economy and are thus able to build
upon them.

For empirical purposes, it is preferable to choose a more general production function
than the Cobb-Douglas functional form. A general production technology for industry

i, which encompasses the more relevant features of R&D based growth models, could be
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represented as

Industry 7 produces its output, Y;, using labor, L;, material inputs, M;, and its physical
capital stock, K;. Technological progress due to innovations developed in industry 7 are
captured by its R&D capital stock, R;. Other industries’ knowledge capital stocks may
enter the production function, because they are embodied in intermediate capital or non-
durable inputs that are used in the production process. At the same time, there may
be spillovers associated with the knowledge production process, so that other industries’
knowledge stocks increase technological change in industry 7. The time trend ¢ captures
any technological progress due to factors that are exogenous to the model, such as better
organization or a change in government regulations.

Fach industry that actually conducts research and development, should be expected
to charge a mark-up of price over marginal cost to cover the fixed cost associated with
knowledge creation. Mark-ups may be expected to be higher in industries where the
R&D-intensity, as measured by the ratio of R&D expenditures to output, is relatively
high. However, market-power and the size of mark-ups can be related to many other
things than a patent or technological knowledge that can effectively be hidden from other
producers. Market-power may be due to monopoly rights granted by the government or
the level of protection from international trade. Moreover, the size of the mark-up also
depends on the price elasticity of market demand.

Economies of scale may be observed in industries conducting research and develop-
ment because of the fixed cost associated with knowledge creation. In the aggregate
production functions (2.21), (2.15) and (2.11) there are economies of scale in rival fac-
tors and R&D together. R&D from other industries, which is embodied in intermediate
goods, may constitute an external source of economies of scale.

If neither economies of scale nor mark-ups nor any impact of R&D on output and
productivity growth can be found in the empirical investigation, this would be clear

evidence in favor of the Solow growth model. The source of productivity growth would
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then remain unclear as in the model. If instead, economies of scale are found, but no
mark-ups, this would suggest that Romer’s (1986) and Tucas’s (1988) models of growth
are empirically relevant in that there seem to be increasing returns due to spillovers.
Only if mark-ups, economies of scale and a positive impact of R&D on productivity are
found together, this would imply that the basic features of R&D based growth models
are supported by the data. Such a finding would be strong evidence in favor of the notion

that market-driven knowledge creation lies at the heart of the economic growth process.

42



Chapter 3

Empirical Framework and Data

3.1 Alternative Frameworks for Growth Empirics

3.1.1 The Hall/Solow Residual Approach

The Solow residual is a particularly popular framework to assess the impact of research
and development on productivity. To understand its characteristics, consider a general
production function Y = F(X,?), where Y is output, X = (X1, Xs,..., Xv) is a vector
of inputs and ¢ is time. Total differentiation with respect to time, division by Y and

rearrangement of terms yields an expression for the primal productivity measure g =

1 OF(X.1) .
F(Xt) ot
. IF(X,t) «
IR s e (3.1)
Y , Y X; '

7

In growth accounting studies input factors are usually confined to capital and labor.

Perfect competition is assumed, in which case marginal products can be measured by the

corresponding real factor prices % = ]]j;, where F; is the nominal price of factor X;

i 3_FX’L

and Py is the price of the output good. Factor i’s partial productiona elasticity, 8ng ,
OF x.

can thus be measured with the factor’s share in income, s; = ?jgj : 8Xg = 5;. Based
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on this assumption total factor productivity growth can then be calculated as:
Y X;
G _ - i
SR" = v EZ lei (3.2)

This is often called the Solow residual. Since partial production elasticities sum to one

__PrK
“Pyyv

under constant returns to scale, the production elasticity of capital, ¥ is measured

as a residual, 1 — s. In this case, the Solow residual corresponds to:

SR = — — “;—(1—32); (3.3)

If only the competitive final goods’ sector is considered R&D based growth models provide
a rationale to employ a conventional Solow residual framework to assess their empirical
validity (this argument is made by Barro (1999)). In both the increasing varieties and
the increasing quality models presented in the previous chapter, the profit maximization
condition of the final goods producers with the production function (2.7) and (2.19)
respectively can be expressed as w = (1 — a)%. This implies that the partial production
elasticity of labor, 1 — «, is indeed equal to the labor share of income.

Given that all intermediate capital goods are produced at the same quantity, x, the
profit maximization condition for capital goods (2.8) can be expressed as are D09 =
p. This can be reformulated as oz% = p, given that K = Az as outlined in chapter 2. This
expression shows that in the final goods market the partial production elasticity of capital
services, as well, is correctly measured by the capital income share despite the monopoly
pricing in the intermediate capital goods market. The Solow residual corresponds to

SRU:;—(l—a)E— —=(1-a)

= (3.4)

~
=]
AN

This can easily be derived from the aggregate production function for the final output
(2.15) or (2.21). The Solow residual therefore measures part of the endogenous expansion

of varieties, (1 — a)%, the other part being incorporated in capital input growth oz%' =
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oz(%' + %) Based on the lab equipment version of the knowledge production function
growth in A can be measured with growth in the R&D capital stock as apparent in (2.23).
This suggests, that it should be possible to trace the productivity growth measured by
the Solow residual to deliberate research and development effort.

At first sight, it looks as though the popular Hall/Solow residual had a sound the-
oretical foundation as a framework to test endogenous growth theories. However, this
approach is subject to several empirical and theoretical problems when taking a closer
look. This derivation of the Solow residual from R&D based models of growth assumes
that a competitive final sector, where the goods associated with technological change are
merely used, can indeed be separated from those sectors where they are invented and
produced. Only if this abstraction could be taken literally in reality and in the very
special case where capital inputs alone are associated with technical change, will this
derivation of the Solow residual framework from R&D based models of growth be valid.

Yet, in reality it is more likely that technological change is associated with consump-
tion goods, capital goods and material inputs at the same time. Wherever research and
development is performed to invent new goods and/or improve their quality, market
power should be expected to be present and the equality of factor income shares with
partial production elasticities is not a valid assumption. In a theoretical model it may be
a permissible simplification to assume that technological change is confined to one spe-
cific type of good. Yet, in empirical work it cannot be excluded for any type of good or
any market that it is associated with technological change due to knowledge creation. It
follows from this that a measure for productivity growth should be robust to the presence
of market power by all means.

An important implication from this reasoning is that using value-added to measure
productivity growth can be highly problematic, as nothing guarantees that technological
change due to research and development effort may not be associated with material

inputs. As work by Basu and Fernald has shown (Basu & Fernald 1995, Basu & Fernald

1997), estimates of returns to scale, mark-ups and externalities may be biased when
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I This occurs, as soon as the market for material inputs is

value-added data is used.
not completely competitive. Constructing value-added measures, researchers attempt
in some way to subtract from gross output the productive contribution of intermediate
goods, hoping to obtain a measure of net output which only depends on labor and
capital. This, however, will be possible only when the assumptions of constant returns
to scale and perfect competition hold. Otherwise, the value-added measure still depends
on material inputs. Estimates obtained with value-added data may then be seriously
biased. Since R&D based models of growth imply that the market for material inputs
will be characterized by non-competitive behavior should these goods be associated with
technological change, the use of value added data seems questionable.

If endogenous growth theory is right in assuming that innovations as a result of
research and development are important in the production of some goods or production
processes, then measurement of production elasticities with income shares is flawed.

To see how violation of the perfect competition assumption will bias the Solow resid-

ual, note that when market power is present, the optimization condition for factor X;

becomes % = U ]f;, where p denotes the mark-up of price over marginal cost. Thus
‘ OF .
production elasticities are equal to 8ng = ps; and the correct measure for productivity
growth is ‘ ‘
Y X;
== — Si— 3.5
9=~ Z X (3.5)

which does not equal the Solow residual (3.2), unless p equals 1. In the traditional growth
accounting exercise, the weights for factor input growth are too small when market power
is present. The Solow residual overestimates productivity growth.

A second bias of the Solow residual as a measure of productivity growth may arise,
when returns to scale are not constant. According to the endogenous growth models
presented in section 2.2, there may be non-constant returns to scale in rival factors if

knowledge is accumulated in fixed proportions to one of them. R&D based models of

ITheir argument is derived in more detail in appendix C
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growth imply increasing returns in rival factors and knowledge together. Moreover there
are increasing returns in all sectors that purchase patents or perform R&D themselves to
develop new or improved goods due to the fixed costs associated with knowledge creation.
Euler’s theorem implies that the production elasticities of a homogenous production
function sum to the rate of returns to scale, A. In the case of constant returns to scale A
equals 1, as does the sum of the factor input shares. However, when economies of scale
are increasing, A will be larger than 1 and factor income shares thus underestimate the
factors’ output elasticities. As suggested in the value-added example above, researchers
typically measure the capital income share as a residual to avoid the difficult measurement
of the user cost of capital. Clearly, this underestimates the appropriate weight for capital
if economies of scale are present, as the sum of production elasticities will be larger than
1.

Overall, the popular Solow residual, which involves the measurement of production
elasticities as income shares assuming that these sum to 1, is in many ways not an
appropriate framework to investigate endogenous growth theory. FEconomies of scale are
essential building blocks of models with increasing returns due to externalities and of
R&D based growth models, while market power is important in the latter type of models
in addition to this. Both features are closely linked to research and development effort.
Since the Solow residual is biased when the assumptions of constant returns to scale and
perfect competition are violated, it is preferable to use a framework which allows for
increasing returns and market-power.

Note that the Solow residual framework can be used to estimate mark-ups and in-
creasing returns to scale. To see this, consider a production function Y = F(K, L, M, t),
where output, Y, depends on capital, K, material inputs, M, and labor, L. t denotes

OF R

X; ) .
time. As outlined above, elasticities will be equal to 8ng = ps; fori = L, M, K, if mar-

ket power is present. Moreover, the partial production elasticities may sum to a number
A different from one, when returns to scale are not constant. So the partial production

elasticity of capital may be measured as usx = A — pusy — psg. The traditional Solow
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residual for gross output calculated under the assumptions of perfect competition and

constant returns to scale data then measures:

M K
SEM = g™ + (1 — Dlsm(y; — %

==

S N LN Y

where g is the primal productivity growth measure for a gross output production func-

. aF . OF . aF .
Y _ ali_ saMm _ KK
Y F L F M F K-

tion gM = The mark-up and the rate of returns to scale
thus become estimable parameters.

Including the R&D capital stock as an additional factor of production at the right
hand side of equation (3.6) it would be possible to study mark-ups, economies of scale and
the impact of R&D on productivity in a corrected Solow residual framework. For some
reason, however, the vast majority of researchers use the conventional Solow residual
when estimating the impact of knowledge variables on productivity growth, although
R&D based growth models clearly imply that the empirical framework should allow for
market power and non-constant returns to scale.

The cost function and factor demand model used in this study to empirically investi-
gate important building blocks of endogenous growth theory has some definite advantages
even over the corrected version of the Solow residual (3.6). While the latter is of very
limited generality, a flexible functional form can be used for the cost function estimation
which is much more general as far as substitutability of factors of production is concerned.
When constructing the Solow residual, most researchers assume that factor shares are
constant over time. This implies an underlying Cobb-Douglas production function, which
may lack sufficient generality, restricting for example the elasticity of substitution among
production factors to unity.

Of course, it would be an option to estimate a flexible production function, allowing
for both market power and economies of scale, while obtaining estimates of the rate of
returns to scale and possibly of the impact of R&D on the production of output. It
should be emphasized that this approach would be completely equivalent to estimating a

cost function. It is, of course, equally permissible. What is important from the point of
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view of economic theory is to use a productivity growth measure that, unlike the conven-
tional Solow residual, encompasses market power and economies of scale. One attractive
feature of the cost function and factor demand system employed in this dissertation is
a particularly elegant possibility to estimate mark-ups within the system. Moreover, in
contrast to the Solow residual, the cost function and factor demand model readily en-
compasses varying capacity utilization. This possibility proves very useful as will become
apparent in the presentation of empirical results in chapter 4. The next section develops
some duality theory to show that with a cost function and factor demand model it is

possible to study most of the more relevant features of R&D based growth models.

3.1.2 The Cost Function Approach

Consider the general production function F(X,t). It is a well-known result of duality
theory that there will be a cost function that describes the technology in the exact same
manner (for a text-book presentation see Mas-Colell, Whinston & Green (1995)). Given
a positive vector of N input prices P = (P, ...., Py), the cost function C that is dual to

the production function can be defined as

Cp, Y, t)= n}}n{P/X F(X)2Y, X 20} (3.7)

where Y denotes output. It can be shown that C satisfies a number of regularity con-
ditions. It is a positive function 7) C () 2 0, non-decreasing in output, linearly homo-
geneous, 1) C (mP,Y 1) = mC (P,Y,t), where m is a constant, and concave in prices,
so that the N by N matrix of second derivatives, V%;PCN' (P,Y,t), will be negative semi-
definite, provided that C is twice continuously differentiable (see Mas-Colell et al. (1995),
chapter 5).

Moreover, if C is differentiable, Shephard’s Lemma implies that factor demand func-
tions can be directly derived from it through differentiation: VpC (PY 1) = X(P,t),

where X (P, t) is a vector of factor demand. For empirical work, this is one of the attrac-
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tive features of the dual approach. Since the cost function is derived from optimization
behavior, it is based on sound microfoundations. Moreover, factor demands can be de-
rived from the cost function and estimated in a system along with it to increase efficiency.
Thereby, they are treated as endogenous variables. This is certainly more appropriate
than in the production function approach where input factors appear as independent
variables. Nonetheless, it should be noted that endogeneity problems are not entirely
solved in the cost function approach, since output is endogenous, being a function of
capital, labor and material inputs.

The primal rate of returns to scale is defined as the increase in output due to a

proportional increase in all inputs, which equals

8FX
A= .
ZFXt (3:8)

according to Euler’s theorem. To see that the primal and the dual measure of the rate of
returns to scale coincide, remember the cost minimization condition, F; = p 5; , Where
f7 1s the Lagrangian multiplier of the minimization problem. The latter is the shadow
value of relaxing the minimization constraint in the optimum: p; = g—g. Inserting these
two expressions into 3.8, it is possible to prove that A equals the inverse of the cost
elasticity with respect to output €4, = 90 the dual measure of the rate of returns to

oy’

scale:

Loy, X PX, 1
_Z _Zaélz— (3.9)
WY €CN‘Y
The last equality holds, since C = > BX.

The primal and dual measures of productivity growth are also closely linked. Total

differentiation of the cost function with respect to time and division by C yields, after

cC_ . Y PX; Py ) . _ _8mC :
some rearrangement of terms, &~ fovy T EZ =t + e, where —g5, = or 18 the
dual measure of productivity growth. Since C' = >, P, X;, the growth rate of costs can
also be expressed as % => %% + >, %&. Combining the two expressions for
k2

the growth rate of costs yields: —egs, = 5CYY > FiXi X X Multlplymg numerator and
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denominator of the weights for factor input growth in equation (3.1) with the Lagrangian

multiplier of the cost minimization problem p;, using F;, = /LL% and p; = 2 and

oYy

rearranging shows that the primal measure of productivity growth can be written as:

g = % — i > %% Primal and dual measure are therefore related as
-
g=——< (3.10)
coy

If some factors of production are fixed in the short run due to adjustment costs, vari-
able input demand and thus costs will not depend on the price of these inputs, but on
their quantities. The quasi-fix inputs cannot be adjusted to changes of their prices and

therefore the variable factors will not be affected either. Short-run total costs are then
defined as
C=G(P,Y, Xp, 1) + > PuiXyi (3.11)

where Xy, is a vector of quasi-fix inputs, £, includes only prices of variable inputs and £y
prices of quasi-fixed inputs. Cost are minimized and long-run optimum will be attained
when Z; = P; holds for all quasi-fix inputs, where Z;; = —% 1s the shadow value of
factor Xy;. If this is higher than its market price due to short-run fixities, then it would
pay to use more of the input. Capacity is overutilized. If the market price is higher than
the shadow value, in turn, there is excess capacity. Notice that a specification where
some factors are modeled as quasi-fix contains the equilibrium model as a special case.
Measures for technological change and economies of scale can be derived in a manner
analogous to the equilibrium case. Note that the optimization problem for the short-run

cost function involves minimizing variable costs subject to a production function which

is a function of both variable and quasi-fix input factors:
G(P,,Y, Xy, t) = n}(in{P;XU F(X,, X, 1) 2V, X 20} (3.12)

Using a completely analogous argument as above it follows that the rate of returns to
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scale in variable factors equals the inverse of the elasticity of variable cost with respect
to output.
To understand how the dual counterpart of the primal rate of returns to scale in

variable and quasi-fix factors can be derived, note that

dlnG _ an ax Xkj (3.13)
Xy Y, AKXy '

(Caves, Christensen & Swanson 1981). Some steps are required to show that this result

s true: G _ Bk 5% M e last step follows from the first
1s true: = 2 = = € last ste OlIOWS Irom e 11Trs
dln Xp,; G i PoiXei  pLy; a?(F Xo; p

order condition of the cost minimization problem Wlth quasi-fix factors, p} denoting the
Lagrangian multiplier of the minimization problem for variable costs. From the envelope
theorem, it follows that % = —Uisx- 9 This last step establishes the result. Let gy
denote the elasticity of variable costs Wlth respect to output and egx,; the elasticity with
respect to the jth quasi-fix input. It now follows that the overall rate of returns to scale

to variable and quasi-fix factors can be derived from the cost function as:

_ ZZ 3X Xoi + ZJ DXy X’W o 1—- Zj EG Xy, (3.14)
Moy = F() - coy :

Lau (1978) has shown that standard cost function properties are maintained for the
variable cost function. Most importantly, Shephard’s Lemma still holds for the variable
inputs. Regularity conditions require that the cost function be decreasing and convex in
the quasi-fix inputs, implying that Vx, v, G(F,, Y, X, 1) should be a positive-semidefinite
matrix.

Essentially, to model variable cost functions empirically, prices of quasi-fix inputs only
have to be replaced by the corresponding quantities. Since capital is often believed to be
fix in the short-run, many researchers in the productivity literature specify variable cost
functions (Morrison 1988, Kwon & Park 1995). This framework is often referred to as a

dynamic factor demand model. It offers an abundance of possibilities of modelling off-
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equilibrium dynamics. Adjustment costs may be specified, for example, to derive Euler
equations from the cost minimization problem to be estimated along with the factor
demand system. An overview over the underlying theory and the applied literature is
provided in Nadiri & Prucha (1999).

The cost function may also include behavioral or environmental variables, such as the
degree of learning of the firm or externalities, as outlined in McFadden (1978a). In that
case, the cost function is the specified as é'(P, Y, S,t), or possibly G(P,, Y, Xy, S,t), where
S is a vector of M environmental variables. This possibility is exploited by researchers
who employ the cost function approach to investigate the role of R&D externalities
(Bernstein & Nadiri 1988, Bernstein & Yan 1997, Morrison Paul & Siegel 1997), or
of public infrastructure (Mamuneas & Nadiri 1994, Lynde & Richmond 1992). The
characteristics of (2.30) are very well encompassed by a suitable cost function which
includes other industries’ R&D capital stocks as external variables.

To derive the rate of returns to scale in internal and external factors, it can be

established with an analogous argument as above that the elasticity of the variable

IdInG
Oln S

cost function with respect to the mth external factor is equal to egg, =
oF
—=>#——._ It thus follows that the rate of returns to scale in private and external

OF OF OF
2 Bx,; it ax,; XkitLm G5 Sm
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F(Xo, X1,50) )

can be derived from a cost function as

1= iEexy — D m Easn

Eqy

g (3.15)

Hence, it is straightforward to derive measures of productivity growth and returns to
scale from an estimated cost function that accounts for both varying capacity utilization
and externalities.

Note that the definition of the cost function and the derived elasticities to measure
economies of scale and productivity growth do not rely on competitive markets at any
point. The cost function approach is thus a suitable framework to explore the building

blocks of typical growth models. In order to explicitly measure the size of mark-ups,
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the profit maximization condition, Py = ug—g, can be appended to the factor demand
system, where g is the mark-up of price over marginal cost. g may either be estimated
as a constant or it can be further modeled and estimated as a time-variable function of
other parameters.

The cost function and factor demand model readily encompasses all of the more im-
portant features of endogenous growth theory. While allowing for both non-competitive
behavior and non-constant returns to scale, the impact of knowledge variables on costs
can be assessed, and its implication for the overall rate of returns to scale can be quan-
tified. Because of these attractive features, a cost function approach will be used as an
empirical framework in this study. Before presenting the exact empirical model, some
theory concerning flexible functional forms will be developed in the next section, which

should help to assess the generality of the framework chosen in this study.

3.2 The Empirical Model

3.2.1 The Theory of Flexible Functional Forms

The following reasoning draws heavily on Diewert & Wales (1987). Let C (P Y, t) be
some cost function with N variable inputs, so P = (P, ..., Pxv). As outlined above, Cr
has to be linearly homogeneous and concave in input prices in order to be a valid cost
function .

Let Pt >> 0y, YY" >0 and t* > 0 and let Ct be twice continuously differentiable
with respect to its N 42 arguments at (Pt Yt ¢1). In that case, the linear homogeneity
property of Ctin P together with Fuler’s Theorem on homogeneous functions imply the

following N + 3 restrictions on the first and second derivatives of C'*:

PIVRCHPT Y T = CHPT YT ) (3.16)
PVEL,CHPT YY) = of (3.17)
PIVIL.CHPY YT ) = vyCH (Pt Yyt (3.18)
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PIVECHPY YT ) = v.CH(Pt Yt ) (3.19)

where VpCF (Pt Y1 tT) denotes the column vector of first order partial derivatives of
Ct with respect to the components of P and V%PCN'J“(PJ“, Y+ t*) denotes the N by N
matrix of second order partial derivatives of Ct with respect to the components of P.
Vi, CHPT YT t1) and V2,CH(PT,Y " 1) denote second order cross derivatives.

The assumption that Ct is twice continuously differentiable together with Young’s

theorem in calculus imply the following (N + 2)(N + 1)/2 symmetry restrictions.

viCH Pt vyt et = (VPO (Pt Yyt eh)” (3.20)

where [VQCN'J“ (P, YT tT)]" is the transpose of VQCN'J“(PJ“, Y+ 1), which in turn denotes
the N +2 by N +2 matrix of second order partial derivatives of C't with respect to all its
N +2 arguments. A functional form for a cost function is defined as flexible when it ”could
provide a second order approximation of an arbitrary twice continuously differentiable
cost function C' that satisfies the homogeneity in prices property” (Diewert (1974), page
113). Thus the flexibility property requires that a candidate functional form of some cost
function C at the point (P, YT, t*) can satisfy the following 1 + (N + 2) + (N + 2)?

conditions:

cpPt Yyt ety = CHpt vt (3.21)

vOPH Yttty = vCHPt, YT th) and
VIC(PT YT 1) = V2CH(P Yt )

In other words, the value of the cost function, the N + 2 first derivatives and the (N + 2)?
second derivatives coincide at point (P, Yt ¢1). Imposing homogeneity in prices on the
candidate function C involves the N+3+(N+2)*(N+1)/2 restrictions (3.16)-(3.20). This

reduces the number of free parameters. It thus follows that in order to be flexible C' must
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contain at least 1+ N +2+(N+2)2—N+3+(N+2)(N+1)/2 = N(N+1)/2+2N +3 free
parameters. Notice that this analysis readily carries over to the case of a variable cost
function. Just replace factor prices with the quantities of the quasi-fix factors.

A cost function with three inputs would therefore require 15 free parameters in or-
der to qualify as a flexible functional form. With time series data sets over, say, 20-30
years this may preclude estimation due to a lack of degrees of freedom or computational
difficulties in many cases. Thus it may often be desirable to sacrifice some flexibility.
Establishing some criteria to choose appropriate functional forms, Fuss, McFadden &
Mundlak (1978) point out that parsimony in parameters may be advantageous to avoid
problems of multicollinearity. Moreover, it is desirable that the results of the empiri-
cal investigation be easy to interpret. Excessively parameter-rich functional forms may
contain economically implausible implications which are hidden at first sight.

Flexibility in prices may often be a desirable property to allow for arbitrary substi-
tution properties among different factors of production rather than imposing unitary or
constant elasticity of substitution. On the other hand, it may well be sufficient to leave
the first derivatives of the factor demands with respect to the sources of productivity
growth unconstrained, so that C' can satisfy V%DtCN'(PJ“,YJ“,tJ“) = V%;tCN'J“(PJ“,YJ“,tJ“),
while second order derivatives with respect to ¢ and cross derivatives with other variables
could be set to zero. As an example, Diewert & Wales (1992) define a technological
progress flexible functional form which is not fully flexible with respect to the trend
variable, as its second derivative is set to zero.

This discussion should provide some guidance to judge where reasonable generality is
achieved in the empirical implementation, where it is sacrificed and on what grounds. It
should be noted, however, that flexible functional forms are of course not confined to cost
functions. In principle, studies based on a primal approach could be based on a more
general production function than the Cobb-Douglas form. For some reason, however,
researchers who choose the primal approach often rely on the Cobb-Douglas form, while

empirical researchers who choose a cost function prefer more flexible functional forms.
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3.2.2 The McFadden Cost Function

A number of flexible functional forms have been developed and used in the literature
(for an extensive overview, see Morrison (1993)). One of the most popular is certainly
the translog cost function. Its convenience lies primarily in its logarithmic form which
implies that elasticities derived from it are linear in parameters. It may be interpreted
as a Taylor series approximation to an arbitrary functional form.

One attractive feature of the translog functional form is the fact that it encompasses
the Cobb-Douglas cost function as a special case, which is the dual to the Cobb-Douglas
production function. Whether or not it is appropriate to use the latter in empirical
research, as is frequently done, may be tested formally when a translog cost function is
estimated.

In practice, the translog form often poses many problems, however. It is a common
problem that estimated cost functions of a flexible form violate regularity conditions
(Diewert & Wales (1987)). In this respect, the translog functional form is a particularly
complicated case. Because of the logarithmic form, second order derivatives depend on
shares and prices. Therefore, they have to be checked for each period and industry.

In fact, a glance at empirical studies that employ the translog functional form reveals
that most researchers have to struggle with curvature conditions. Bernstein & Nadiri
(1988) have to retreat to a truncated translog form without squared terms to resolve the
problem of violated concavity conditions. For some industries in his sample, Mamuneas
(1999) has to set several second order price parameters to zero to avoid that his estimated
cost function violates concavity restrictions. In principle, imposition of global concavity
is possible for the translog cost function, but that removes most of its flexibility (Diewert
& Wales 1987).

To tackle problems concerning the concavity restrictions, an alternative functional
form will be used on which global curvature conditions can be imposed much more easily
than in the translog case. The symmetric generalized McFadden functional form was

originally introduced into the literature by Diewert & Wales (1987) as a slight general-
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ization of a functional form proposed by McFadden (19780). The form has been extended
by other authors to include fixed inputs (Rask 1995), or external factors (Bernstein &
Yan 1997, Bernstein & Mohnen 1998). The following specification is chosen in this study:

C = g(P)*Y‘I‘Zbii*Pi*Y‘I‘Zbi*Pi‘I‘Zbit*Pi*t*Y (3.22)

+bRY(Z&i*Pi) *R*Y—I—stj(Zéi*Pi) * S

z 7 z

where g(P) = %(P éip ). P is a N-dimensional vector containing the prices, S a symmetric
matrix with elements (s;;), and § a N-dimensional vector of constants selected by the
researcher. For identification purposes, N additional restrictions have to be imposed on
Sy ;8ij = 0. Note, that the cost function is homogeneous in prices by construction.

In this study, the cost function includes three different prices, namely the wage rate,
Pr, the price of material inputs, Py, and the user cost of physical capital, Px, so i =
L K, M.

The development of R&D projects takes a long time and is subject to many uncer-
tainties. Thus, it seems reasonable to believe that R&D may not be adjusted optimally
in each period. This calls for modelling the R&D capital stock, R, as quasi-fix. However,
although (3.22) looks like a variable cost function with R&D as a quasi-fix factor, the in-
terpretation in the empirical investigation presented here is different due to the specifics
of the data construction. The rival input factors, labor, capital and material inputs,
are not corrected for the inclusion of R&D costs. Therefore, by does not measure the
impact of the R&D capital stock on variable non-R&D costs. It measures the impact on
total costs including R&D. This can be interpreted as an excess return to R&D as will

be argued more precisely in section 3.3.2. It should also be noted that because of this,

the R&D capital stock does not have to comply with the usual regularity conditions for
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quasi-fix factors.

Three different spillover variables are considered as external factors, namely spillovers
from other domestic industries, Sy, spillovers from the same industry in other countries,
Sts, and spillovers from the other industries in foreign countries, Sg,, so j = d, fs, fo.
Note that the form is flexible with respect to prices, income and the time trend, but
not with respect to R&D and the spillover variables. Flexibility with respect to R&D
capital stocks is sacrificed to avoid both excessive complexity and, what is more, problems
concerning multicollinearity, which arise because the time trend and all of the R&D
capital stocks involved in the estimation are highly collinear.

In principle, the parameters &, Bi,’yi,&i,éi could be estimated, setting b;, byy, by,
bry, bs; to 1. However, to preserve degrees of freedom, &i,@,’yi,&i,éi are set equal
to 0;, the corresponding element in 0. b, byy, by, bry, bg; are then parameters to be
estimated. Note that the functional form is still flexible with respect to prices of rival
factors and the time trend after this simplification. The criterion established in the last
section requires N(N +1)/2 + 2N + 3 free parameters for a flexible cost function with N
factors of production and a time trend, but no external variables. N(N +1)/2+ 2N + 3
is 15 in the case of three factor inputs. Letting R&D and spillover variables aside, the
cost function contains exactly 15 free parameters after preselecting ¢;, Bi, Yis &i, él

The choice of 8 is completely arbitrary. Different researchers have experimented with
many different values, including a value of one for all elements of #. In this study, the
elements of 6 are set equal to the sample midpoint of the ratio of the corresponding input
value to costs.

As Diewert & Wales (1987) point out, the cost function will be concave in prices if and
only if S is negative semi-definite. Concavity can be imposed using a technique developed
by Wiley, Schmidt & Bramble (1973). According to this approach, S is constrained to
be equal to S = —Z7 , Where Z is a lower triangular matrix. The need for at least N

restrictions on S remains. Row sums may be chosen to equal 0 as above.
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Factor demand equations can again be derived using Shephard’s lemma.

in D) ; Pr b
Ek Ox Py (Zk ekpk)

—I—bRyei * R+Y + Z ijei * Sj

J

X

fori =L, K,M and k = L, K, M. Profit maximization implies P = ug—g, where g is
the mark-up of price over marginal cost. In the case of the McFadden cost function the

exact specification for this equation is:

Py o= p{g(P)+ ) bux Pty byx Byt (3.24)

k k k

The mark-up g is then a parameter to be estimated. Clearly, it is only identified when
estimating the price equation along with the cost function and factor demand system
imposing cross equation restrictions. Measures for the rate of returns to scale, the rate
of technical progress and cost elasticities with respect to the different capital stocks can
easily be derived from the estimated cost function.

Many studies that use the factor demand framework exploit the possibility to model
some factors as quasi-fix, often both physical and R&D capital. Adjustment costs are
in many cases modeled explicitly. To accommodate possible short-run deviations from
equilibrium in this study an error correction form is chosen instead. This framework
allows for temporary deviations from optimal adjustment of all factors of production,
even those which are not modelled as being quasi-fix. At the same time, there is no need
to model adjustment costs explicitly.

Moreover, the error correction form is apt to handle residual autocorrelation. This

problem is frequently encountered when estimating factor demand systems. The error
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correction form is therefore a particularly attractive way to encompass deviations from

equilibrium, since as a side-effect, it also tackles econometric problems that are otherwise

difficult to handle.

3.2.3 The Error Correction Form

The motivation for the use of an error correction form is the observation that the actual
factor demand may not be optimal in each period, because for some reason adjustment
to optimum may be costly.

A very general way to model this phenomenon is outlined in Anderson & Blundell
(1982). The error correction mechanism can be derived from a general autoregressive
distributed lag model. Let X, denote the vector of actual factor inputs at time ¢, which
is three-dimensional in the case of a variable cost function with R&D capital as a quasi-
fix input and physical capital, material inputs and labor as variable inputs. X[ is the
vector of equilibrium factor inputs when all variable factors are optimally adjusted. For
illustrative purposes, a single lag in the adjustment process is assumed, although the

derivation can easily be extended to longer lag structures:
Xy =A X+ B, X |+ D, X (3.25)

In equilibrivm X, = X7, X = X}, and X; = Xy, A, + B, + D, = I must
hold, where I is the identity matrix. Thus the mechanism can be represented in error

correction form as

AX, = A, AXF +T(X, 1 — X7 ) (3.26)

where I' = —(A, + B,). Note that the elements in X, are combinations of equilibrium
parameters and independent variables as apparent in (3.23). The error correction model
therefore requires regressing the first differences of actual factor inputs on the lagged
factor inputs as well as first differences and lags of independent variables. In the most

general form of the error correction model, the estimated parameters of lagged differences

61



of prices, income and R&D variables are linear combinations of the elements in A, and
the equilibrium parameters. The error correction terms, in turn, are linear combinations
of the elements in A, and B,.

If the autoregressive distributed lag model has a longer lag structure, the error correc-

tion form may also include lagged differences of the actual factor inputs. More specifically:

AX =) AgAX] +T(X 10— X7 )+ Y B AX j + e (3.27)
j j
where w,; is a vector of error terms and F,; is a parameter matrix. In the empirical
investigation presented below, the matrices I' as well as A;; and F,; are assumed to be
diagonal for all lags j. This is done for the sake of simplicity and to preserve degrees of
freedom.

While there is no economic theory underlying the short-run off-equilibrium dynamics
in (3.27), the equilibrium factor inputs X} can be derived from a cost function applying
Shephard’s lemma. It is assumed that the cost function can also be represented in an
error correction form, which can be derived from an autoregressive distributed lag model

in an analogous fashion as above.

AC, = 6500 4+ 7.(Crot = Chp) + > 6, AC; + wy (3.28)
- :

j
C, denotes actual or observed cost at time period t and CN't* denotes equilibrium costs as
specified in (3.22). 7, is the error correction parameter and w,, is an error term. The
6.;8 are the parameters for the lagged differences of equilibrium costs and the ¢.;s for
the lagged differences of actual costs. Accordingly, the error correction representation for

the price equation can be represented as:

APy = 85 ,AP i+ vy (Prey — Pig 1) + D 6viAPrij +wyy (3.29)
j J

J

The system (3.27)-(3.29) can then be estimated imposing cross-equation restrictions on
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equilibrium factor shares, X ;, lagged equilibrium prices, P}”}(Fl), and lagged equilibrium
costs, CN'(*FI), as well as cross equation restrictions among lagged differences of these
equilibrium variables. Measures for rate of returns to scale, the rate of technological
progress and cost elasticities for the R&D variables can be derived from the estimated
equilibrium function as outlined in section 3.1.2.

Not only is the error correction model attractive because it allows for deviations from
equilibrium without a need to model the adjustment process explicitly, it is also apt
to tackle the problem of autocorrelation in the residuals. This is frequently encoun-
tered when estimating factor demand systems. Some researchers recur to the traditional
Cochrane-Orcutt method to correct for autocorrelation (Nadiri & Nandi 1999). However,
as Mizon (1995) shows, a more general specification, such as the error correction form is
preferable, since the Cochrane-Orcutt autocorrelation correction imposes common factor
restrictions. If invalid, these may bias estimation results.

The next section presents the data used in the empirical investigation.

3.3 The Data

3.3.1 Prices, Output and Inputs

The cost function is estimated with annual two-digit manufacturing industries data of six
major OECD countries: USA, Canada, Japan, Germany, France and Italy. An industry
list 1s provided in the data appendix.

Output, factor inputs and the corresponding price data mostly stem from the OECD
STAN database. Earlier versions of this dataset have been used before to investigate
mark-ups (Beccarello 1996) and the role of knowledge (Keller 2001, Griffith et al. 2000).
However, these studies suffer from the problem that earlier versions of this database do
not include gross output in constant prices. Therefore, authors were previously confined
to using value-added data. The novel feature of the new STAN database used in this study
is the availability of gross output and material inputs. The new STAN database offers
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for the first time the possibility to study production structure and the role of knowledge
for productivity with a detailed international industry data set that is not subject to
biases associated with the omission of material inputs. Since R&D based growth theory
implies that potential biases associated with the omission of material inputs are likely to
materialize, this new feature of the STAN database is a definite advantage over earlier
versions.

In the STAN database, German data is available for the unified country only which
reduces the sample period to 1991-1998. Since this is not enough for reliable estimation,
data for West-German manufacturing industries gathered by the Deutsches Institut fiir
Wirtschaftsforschung (DIW) is used instead (Gorzig, Schintke & Schmidt 2000).

Output is gross output in 1995 prices. Table 3.1 shows the relative size of each
country in terms of its share in aggregate manufacturing gross output and in aggregate
R&D capital of all countries. The table also displays aggregate manufacturing R&D
capital growth. Both in terms of its share in output as in R&D, the US is the biggest

economy followed by Japan and Germany.

Table 3.1: Relative Size of Manufacturing Sectors in Terms of Output and R&D Capital
Country  Share in R&D Capital Share in Output R&D Capital Growth

Canada 1.53 4.50 5.81
France 6.98 8.24 3.65
Germany 12.99 12.20 3.37
Ttaly 294 9.57 5.03
Japan 20.11 21.98 6.73
US 55.45 43.51 3.06

(Average Percentage over 1982-1998)

However, the US share in aggregate R&D capital of all countries is significantly higher
than its share in aggregate output. Italy and Canada, on the other hand, are smaller in
terms of R&D than in terms of output, while the relative size of the remaining countries
is approximately the same regardless of the indicator.

This indicates that different R&D intensities, that is ratios of R&D to output, prevail

in these countries. However, the manufacturing R&D capital stock grew relatively fast on
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average in Canada and Italy, where R&D intensity is lower than in other countries, while
the slowest growth occurred in the relatively R&D intensive manufacturing industries of
the US.

Prices for gross output and value-added are calculated as the ratio of the nominal
output series to its constant price counterpart. 1995 is the baseyear. Material inputs are
measured as the difference between gross output and value added. The material inputs
price is the ratio of nominal material inputs to the same series in 1995 prices.

The labor input variable is measured as total employment, and the wage rate is the
ratio of labor compensation to the number of employees. This assumes implicitly that
the self-employed receive the same wage rate as the employees. All prices are normalized
to 1 in 1995. Consequently, the labor input variable is multiplied by the wage rate of the
baseyear, so that the product of labor input and the wage rate equals labor compensation.

Net capital stocks are available for the US, Italy and France. For Canada, Germany
and Japan, they are calculated with the perpetual inventory method. All constant price
variables are converted to US dollars using 1995 purchasing power parities. The user cost
of capital is calculated as Px = wg (r + 6), where wg is the investment price deflator, r
is the real interest rate and ¢ is the depreciation rate of physical capital.

The sample period is 1980-1998. However, the data is not always complete. For Italian
industries, no data is available for the time before 1982. Canadian data is complete only
up until 1996. Japanese data is available only for a few relatively aggregate industries.

A detailed description of data sources and variable construction is provided in the

data appendix.

3.3.2 R&D and Productivity

Due to data limitations it is not possible to correct labor, material inputs and capital
for R&D expenditures to avoid double counting, To understand what this implies for the
interpretation of the estimated effect of R&D, consider a simple Cobb-Douglas production
function Y = AL*KPMSR¢. Now, the labor variable may include R&D expenditures,
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because some of the staff works in research and development. Likewise, some of the
material inputs just as well as machinery and equipment are used in the process of
acquiring new knowledge. Thus, each of the three ”traditional” factors of production
includes some R&D expenditure.

Note that there is good reason to treat expenditures on R&D labor, capital or material
inputs as a special case. New knowledge has a positive impact on output not only
today. Some of it will be maintained and enhance productivity in the future. Therefore,
there is good reason to subtract R&D expenditures from the traditional factors and
construct a stock variable. In that case a, [ and ( measure the production elasticities
of traditional factors only, while & measures the full impact of R&D. Results have to
be interpreted a little differently when labor, capital and material inputs still include
their R&D components. & will be positive only if knowledge is indeed different from the
traditional production factors, in that for example the work of R&D personnel has a
stronger and/or longer lasting effect on output than simple production labor. In that
sense £ can be interpreted as an excess return to R&D capital.

An analogous argument can be raised for a cost function. It is important to note
that with double-counting a negative effect of R&D on costs is a stronger result than
finding regularity conditions fulfilled. It means that R&D reduces costs including R&D
expenditures. If this is the case, it is certainly safe to conclude that investment in
knowledge-creation enhances productivity.

For later comparison with the dual measure of productivity growth, Table 3.2 presents
average productivity growth for each industry in the sample as measured by the Solow

residual. It is calculated as a discrete time version of (3.2):

SR, = d(log(Vy)) — 5red(log(Ls)) — 5xed(log(Ky)) — Sared(log(M,)) (3.30)

where ¢ is a time index, d(-), is the first difference operator, d(7;) = 7, — Z; 1. 5; is
the time ¢ average of the income share of factor i over two consecutive years: §; =

%(sit + 8i¢-1y). The total factor productivity is thus constructed as a Divisia index,
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Table 3.2: Average Growth of Total Factor Productivity; 1980-1998; in per cent

%ﬂ% Canada France Germany Italy Japan US
Food -0.21 -0.39 0.33 0.30 -1.21  -0.05
Textiles 0.41 0.47 0.22 0.81 - 0.96
Wood 0.55 - 0.64 1.7 - -
Publishing -0.63 0.42 0.50 0.72 - -
Chemicals 0.94 - 0.80 1.36 - 1.19
Plastics 0.56 - 0.44 0.21 - 1.42
Mineral Prod. -0.10 1.09 0.03 0.81 - 1.16
Metals 0.50 0.70 0.77 1.14 -0.02 0.71
Machinery -0.31 0.76 0.82 0.69 0.13 -
Elect. & Opt. Eq. | 1.45 1.75 0.67 1.36  2.13 -
Transport 0.26 0.58 0.34 0.83 -0.17  0.57
Man N.E.C. -0.13 0.26 0.30 043 - -

which is a correct approximation to a translog cost function. This encompasses more
flexibility than calculating the weights as the average weight over the sample period,
which implicitly implies a Cobb-Douglas cost function.

Overall, productivity growth measured with the Solow residual is rather small. It
rarely exceeds 1%. Only in the electrical and optical equipment industry in Japan does
it exceed 2%. In general, the Solow residual is highest in the chemical industry and in
electrical and optical equipment. It is lowest in the food and tobacco industry, where
the average over the sample period is negative for France, Japan, Canada and the US.
Negative productivity growth is observed in a number of Canadian industries in addition
to this, including the paper and publishing industry, mineral products, the machinery
industry and manufacturing n.e.c.. The same holds for the Japanese transport as well
as the basic and fabricated metals industry. Negative productivity growth, implying
technological regress, is certainly hard to interpret from an economic point of view.

As endogenous growth theory suggests that there is a link between R&D activity,
mark-ups and economies of scale, it is useful at this point to take a look at the R&D
data used in this study. The lab equipment version of R&D based growth models implies

that knowledge stocks can be measured with R&D capital stocks, as apparent in equation
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(2.23). Yet, it is generally agreed upon that research and development expenditures are
an imperfect measure for innovations, because they are an input rather than an output of
the knowledge production process. Not all of the research and development expenditures
will be equally successful in generating innovations. However, as innovations are not
directly observed, R&D expenditures are widely used as a proxy. It is hoped that by the
law of large numbers innovations will on average be proportional to R&D expenditures.
Output measures of the innovation process, such as patent counts, are generally not
deemed superior. Firstly, many innovations are not patented and, secondly, patents will
generally not be of equal quality. The value of patents may differ sharply. Although this
is also true for R&D investments, the law of large numbers is more likely to alleviate this
problem in the case of R&D expenditures than in the case of patents, mainly because
the propensity to patent differs for different kinds of innovations.

R&D investment data provided in the OECD’s ANBERD database (OECD 1999) is
used to construct R&D capital stocks. This data covers all intramural business enterprise
R&D expenditure. The R&D capital stocks are compiled applying the perpetual inven-
tory method to the R&D investment data. The investment series are deflated with the
respective country’s GDP-Deflator. The depreciation rate ¢, is assumed to be 12% which
coincides with Nadiri & Prucha’s (1993) estimate of the R&D capital stock depreciation
rate for the US total manufacturing sector. All R&D capital stocks are converted to US
Dollars using 1995 purchasing power parities.

Since the relative size of countries in terms of output and in terms of R&D differs
considerably in some cases, it seems to be the case that R&D intensities vary across
countries, as argued in the previous section. To get a more detailed picture, Table 3.3
displays R&D-intensity by industry as measured by the ratio of R&D expenditures to
gross output over the period 1980-1998. US and Japanese industries tend to be a little
more R&D intensive than those of other countries, while R&D intensity is remarkably low
in Italian industries. Overall, the same industry groups tend to be the most R&D inten-

sive across countries, namely chemicals, electrical and optical equipment and transport
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Table 3.3: Average Ratio of R&D to Output; 1980-1998; in per cent

gﬁiﬁ% Canada France Germany Italy Japan US
Food 0.16 0.22 0.18 0.07  0.57 0.32
Textiles 0.30 0.21 0.32 0.01 0.54 0.19
Wood 0.13 0.11 0.18 0.03 - 0.31
Publishing 0.30 0.10 0.18 0.02 0.31 0.38
Chemicals 1.60 3.58 4.66 2.14  4.84 4.50
Plastics 0.31 1.68 1.01 0.55 6.03 1.08
Mineral Prod. 0.21 0.68 0.85 0.08 1.89 1.04
Metals 0.46 0.57 0.85 0.26  0.99 0.58
Machinery 1.03 1.37 2.22 0.50 1.85 1.57
Elect. & Opt. Eq. 7.55 6.86 6.36 3.29 598 8.92
Transport 1.16 4.97 4.60 3.84 272 8.25
Man N.E.C. 0.51 0.26 0.51 0.03 - -

equipment. Only the Canadian chemical industry is not very R&D intensive.

Especially in the case of the electrical and optical equipment and the chemical industry
relatively high R&D intensity and relatively high productivity growth seem to coincide.
However, the Solow residual used to measure TEFP growth displayed in Table 3.2 is biased
upward 1f market power and economies of scale prevail, as should be the case according
to R&D based growth theories. Therefore the productivity growth measure derived from
the cost function and factor demand model discussed in section 3.2.2 is presented in the
next section. This framework does not impose any restrictions as far as competitiveness
and returns to scale are concerned. At the same time, the factor demand model is used
to obtain estimates of mark-ups and economies of scale to assess how important it is

empirically to choose a framework which is robust to the presence of mark-ups and/or

economies of scale.
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Chapter 4

Productivity, Mark-Ups and

Economies of Scale

4.1 Estimation Method

Productivity growth lies at the heart of the growth process according to most models
of economic growth. If market power and economies of scale are present as R&D based
models of economic growth suggest, it is of crucial importance to measure productivity
growth within a framework that is robust to the presence of economies of scale and
market power, such as the cost function and factor demand system described in equations
(3.22)-(3.24). To concentrate on the empirical importance of mark-ups and economies of
scale and on the implications for the measurement of productivity growth, this system is
estimated without including R&D capital stocks and spillover variables as a first step.
It is sensible to suspect that there may be important differences between, say, the food
industry and the chemical industry in each country. At the same time, the production
structure of the chemical industry is very likely to be similar in different industrialized
countries. Therefore, each industry is pooled across countries. The cost function is then
estimated industry by industry. Unfortunately, complete data for all of the six countries

is available only for a few rather aggregate industries. The cost functions for the more
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disaggregate industries are estimated each with only a subset of the countries.

The system (3.22)-(3.24) is first estimated directly with Seemingly Unrelated Regres-
sions (SUR). The size of the industries sometimes differs significantly across countries.
To make the assumption of homoscedasticity more plausible the factors of production
and output are normalized by dividing them with the industry’s sample average of out-
put. The parameters 07,0 and 0, are set equal to the average of the ratio of the
corresponding factor to costs. Results are reported in appendix A.1.

Since the production of output is a function of capital, labor and material inputs, it
can hardly be regarded as exogenous. Thus an instrumental variable estimation technique
would be preferable. Variables such as output, labor, capital and material inputs typically
display strong autocorrelation. The same goes for the price variables. In this sense,
lagged arguments of the cost function are valid instruments. However, both Durbin-
Watson statistics reported in appendix A.1 and Ljung-Box Q-statistics (not reported)
indicate that there is strong autocorrelation in the residuals. If output is suspected
to be correlated with contemporaneous error terms, which in turn are autocorrelated,
then there is no reason to assume that lagged output is uncorrelated with subsequent
error terms. Thus, since only bad instruments are available, uninstrumented estimation
techniques are preferred, although they may be subject to an endogenous variable bias.

The autocorrelation in the residuals may well be interpreted as evidence that the
equilibrium model, which assumes that all factors are adjusted optimally at all times,
is not appropriate. The error correction model allows for very general off-equilibrium
dynamics. At the same time it is suitable to overcome the problem of autocorrelation
in the residuals. Estimation results obtained with the error correction framework are
reported in appendix A.2. It is assumed for simplicity that the matrices A,;, E,; and T’
in the factor demand system (3.27) are diagonal. Although this is a strong assumption,
including off-diagonal elements in the estimation usually results in insignificant estimates,
so the simplifying assumption seems appropriate. The length of the lag structure is

decided by the data in the sense that additional lags are included until Ljung-Box Q-
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Statistics cannot detect any more autocorrelation in the residuals.

It seems natural to assume that once the problem of autocorrelation is solved, in-
strumental variable estimation can be applied. However, with the error correction form
including first differences of all dependent and independent variables another problem
arises. While output, inputs and prices in levels are all strongly autocorrelated, this is
not true for the first differences of these variables. The correlation of the differenced
variables with their own lags are extremely small, regardless of whether the lags are in
differences or in levels. Thus, at least for the differences in the error correction equations
no valid instruments are available.

As research on the properties of instrumental variable estimators in small sample
shows (Nelson & Startz 1990), the instrumental variable bias may in fact be worse than
the OLS bias when the instruments are only weakly correlated with the instrumented
variables. Staiger & Stock (1997) point out that the instrumental variable estimator has
to be treated with caution when first stage F-statistics are below 10. For the differenced
variables, the first stage F-statistic is almost invariably below 2. For this reason, SUR
is the preferred estimation method for the cost function in the error correction form.
Unfortunately, the endogeneity problem remains unsolved. While many authors who
investigate dynamic factor demand models use three-stage least squares or other instru-
mental variable methods, their data is very likely subject to the same problems discussed
here. Most authors simply do not seem to consider problems concerning residual auto-
correlation and the validity of the instruments they use.

Country-industry specific effects are captured by estimating the constants of the fac-
tor demand equations by, by, and bg and the mark-up p with industry-country-dummies.
All other parameters are assumed to be the same across industries in different countries.
For some industries the estimation in levels imply a Hessian matrix, S, that has one
eigenvalue slightly larger than zero, thus violating regularity conditions. However, im-
posing concavity changes parameter estimates only very little. It is not tested whether

the positive eigenvalues are significant, because the problem disappears completely when
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the error correction specification is applied. Accounting for short-run deviations from
equilibrium results in estimates which imply a concave cost function without any excep-
tion. It is thus concluded that the positive eigenvalues implied by some of the direct
estimates, if anything, are a result of specification error. In what follows, the discussion
is based solely on results obtained with the error correction form. However, it should be
noted that the similarity of the direct and the error correction estimates underlines the
robustness of the results.

Although Durbin-Watson statistics are reported in the tables, they are not valid test-
statistics when lagged dependent variables enter the estimation equation. Therefore,
Ljung-Box Q-statistics are used to decide how many lags have to be included to remove
the autocorrelation structure in the residuals. It is interesting to note that while for
the material inputs demand one lag is often enough, it is not rare that up to three lags
have to be included in the capital inputs equation to obtain residuals that look like
white noise. This supports the view that material inputs can be adjusted rather quickly,
while adjustment costs for capital seem to be high and thus adjustment to changes in
exogenous variables is slow. The labor demand equation also requires a number of lags
in most cases. This suggests that the common specification in dynamic factor demand
models, where capital is assumed to be quasi-fix, but labor and material inputs are
variable, may not be adequate. The generality of the error correction model, which allows
for short-run deviations from equilibrium for all factors of production, thus appears as
a definite advantage over dynamic factor demand models, where the researcher has to
decide beforehand which factors of production are variable and which are not.

To test whether unit roots in the data may cause problems, Im, Pesaran & Shin’s
(1995) test for heterogenous panels is applied to the variables entering the cost function.
This test is based on the t-statistic of Dickey-Fuller tests averaged over all cross sections.
Im et al. (1995) show that their panel unit root test substantially increases the power of
the conventional Dickey-Fuller test, while allowing for heterogeneity in that the estimated

coeflicients as well as residual serial correlation are allowed to differ across groups. The
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test is conducted with a panel including all of the 56 cross-sections (12 industries with
a differing number of countries up to 6) for which data is complete. To take account of
autocorrelation in the residuals augmented Dickey-Fuller tests with one lagged difference
are performed for each variable in levels. Since all variables are trending a trend term

is included in all of the regressions. The t-bar statistics are reported in Table 4.1 The

Table 4.1: Im-Pesaran-Shin-Test for a Unit Root in Heterogeneous Panels
K L M Y Pr, Py Py Py
-3.342% 281 247 244 -2.01 -2.18  -2.99* -2.69**
Table shows average T-Statistic of an Augmented Dickey-Fuller Test with 1 Lag
Critical Values (Im et al. (1995), Table 4): -2.46 (1%); -2.38 (5%); —2.33 (10%)
**Null Hypothesis of a Unit Root can be rejected at a 1% Level of Significance

*Null Hypothesis of a Unit Root can be rejected at a 5% Level of Significance

critical values for the t-bar statistics containing a trend with 20 time periods and 50
cross sections reported in Im et al.’s (1995) Table 4 are -2.46 (1%), -2.38 (5%) and -2.33
(10%). This setup is closest to the panel investigated in this study with 56 cross sections
and 19 time periods. As can be seen in Table 4.1, the null hypothesis that all cross
sections contain a unit root can be rejected at a 1% level of significance for all variables
but the wage rate and the user cost of capital. For the latter two variables the null
hypothesis cannot be rejected even at a 10% level of significance. However, Im et al.’s
(1995) Monte Carlo simulations reveal that the power of their test, although higher than
for the Dickey-Fuller test for single times series, is very low especially with short panels
as the one investigated in this study. While the possibility that some of the variables
may contain a unit root cannot be completely dismissed, it may just as well be the case
that all of the variables are trend stationary. The statistical tools available at present
to test for unit roots in short panels do not seem to be powerful enough to draw any
unequivocal conclusions.

Since the possibility of unit roots governing the time series properties of some of the
variables cannot be completely dismissed, it is useful to take a look at the error corrections

terms which are all significantly negative and thus indicate reversion to equilibrium.
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Indeed, the majority of error correction terms are significant enough to pass the Banerjee,
Dolado & Mestre (1996) test for cointegration. This cannot be viewed as an exact
cointegration test for the cost function and factor demand system estimated in this
study, because it is designed for single-equation frameworks without the complicated
multiplicative terms of independent variables which appear in cost functions of the flexible
functional form. Nevertheless, the test can serve as a guideline to judge whether the
estimated cost and factor demand functions can be viewed as cointegrating relationships

should some of the variables be non-stationary.

Table 4.2: T-Statistics of the Error Correction Terms

‘ Industry Cost Labor  Capital Mat. Inputs. Price
Food -3.775  -5.903  -3.532  -6.402 -5.403
Textiles -3.639 -7.522  -4.107  -5.218 -3.270
Wood -3.628 -3.916  -3.797  -2.674 -5.967
Publishing -4.317 -4.195 -3.066  -4.188 -6.616
Chemicals -6.934 -4.626 -4.055  -8.418 -4.530
Rubber -6.547 -7.672  -5.239  -7.297 -3.638
Mineral Prod. -2.448 -7.789 5108  -3.165 -4.798
Metals -4.896 -6.583 -4.713 -3.874 -5.991
Machinery -4.935 -6.860 -5.314  -5.953 -1.462
Elect. & Opt Eq. -6.044 -7.718 -3.144  -5.205 -5.993
Transport -5.113  -6.248  -4.355  -6.258 -3.928
Man., N.E.C. -9.489 -10.460 -4.768  -11.211 -2.269

T-statistic of the EC- term for the Cost Function,
the Factor Demands and the Price Equation

The test is based on the conventional t-statistics for the error correction term. If it is
large enough in absolute value, the null hypothesis of no cointegration can be rejected.
The critical values for a sample size of fifty with five independent variables are -4.6
for the 5% significance level, -4.19 for the 10% significance level and -3.53 for the 25%
significance level. Unfortunately, critical values for estimation equations involving more
than five independent variables are not reported in Banerjee et al.’s (1996) paper. The
t-statistics for the error correction terms of the estimated cost, factor demand and price

functions are reported in Table 4.2. The majority of the statistics exceed the 5%-critical

75



value. In most industries the error correction term for one of the equations - in some
cases for two - is not significant enough to reject the null hypothesis of no cointegration
at a 10% significance level. However, the t-statistics of the remaining error correction
terms often exceed the 5-percent critical value by far. Since all of the equations in the
factor demand system are derived from the same cost function, it is certainly permissible
to argue that if statistical tests suggest that the majority of the equations in the system
are cointegrating relationships, it follows from theory that all equations in the system
must be cointegrating relationships. The only industry which looks critical is the wood
industry, where four out of five error correction terms are not significant enough to reject
the null hypothesis of no cointegration. Again it has to be kept in mind that this test as
well has low power against the alternative.

Since the McFadden form is a second order approximation to a completely general
cost function and factor demand system, theory clearly implies that it should be possible
to fit the data to such a system. While it would be easier to analyze unit root and
cointegration problems with a simpler functional form, it is highly questionable based on
statistical tests whether unit roots are present at all. Moreover, the available statistical
evidence points towards unit root problems being under control, should they be present at
all. The cost function framework employed in this study has many advantages, including
its generality and the possibility to accommodate varying capacity utilization. Since it is
extremely hard to analyze unit roots in short panels in any case, economic theory should
be emphasized more strongly as a basis for the analysis than unit root econometrics.
Therefore, the advantages of the cost function and factor demand system are deemed
more important than the disadvantage that unit root problems are particularly difficult

to handle in this framework, should they be present.
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4.2 Productivity Growth

In the majority of growth models discussed in chapter 2, technological change is the
driving force of economic growth. Therefore, it is useful to start the investigation taking
a look at the productivity growth measure derived from the cost function estimation. It
is particularly interesting to compare this measure with the Solow residual, because this
is a first stepping stone to distinguish whether endogenous theory is better supported
by the data than the neoclassical theory. The Solow residual is biased upwards as a
productivity growth measure, if economies of scale and/or market power are present
Therefore, the dual measure, which does not hinge on the assumptions of competitive
markets and constant returns to scale, should be systematically smaller than the Solow
residual, if endogenous growth theory is relevant. In contrast, the primal and dual
measure of productivity growth should be equal if the neoclassical model explains the
growth process well.

The average productivity growth as estimated by the cost elasticity with respect to the
trend term is negative in five industries as can be verified in Table 4.3. Standard errors
of the elasticity computed with the delta method (Greene (1997), chapter 6) indicate
that this is significant, implying the presence of technological regress, which is certainly
hard to interpret economically. Productivity growth is indistinguishable from zero in the
non-metallic mineral products industry. Only in the electrical and optical equipment
industry is it as high as 1% per annum. Significantly positive productivity growth can be
found only in this industry, in basic and fabricated metals and in the textiles industry.

However, in most industries a majority of the parameters associated with the trend
term is insignificant as can be verified in appendix A.2. This holds especially for the
squared trend term, which is extremely small in all industries and in most cases insignif-
icant. The electrical and optical equipment industry is the only case, where all the trend
parameters are significant. While it is a priori desirable to chose a very general specifi-
cation of productivity growth as in the cost function (3.22), the insignificance of many

of the trend-term parameters suggests that an easier specification may be preferable.
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Table 4.3: Average Productivity Growth; 1980-1998; Flexible Specification

‘ Industry Us Italy Japan Germany Canada France ‘
Food -0.52  -045 -0.5 -0.49 -0.60 -0.52
(0.15) (0.14) (0.16) (0.14) (0.17) (0.15)
Textiles 0.68 0.65 - 0.63 0.68 0.63
(0.11) (0.11) - (0.11) (0.12) (0.11)
Wood - -0.51 - -0.51 -0.57 -
- (0.17) - (0.18) (0.19)
Publishing - -0.95 - -1.06 -1.22 -1.12
- (0.35) - (0.32) (0.37) (0.32)
Chemicals 0.07 0.11 - 0.07 0.001 -
(0.13) (0.12) - (0.12) (0.15) -
Plastics -0.38  -0.32 - -0.45 -0.53 -
(0.14) (0.15) - (0.16) (0.18) -
Mineral Prod. 0.04 0.02 - 0.01 0.03 -
(0.14) (0.13) - (0.15) (0.16) -
Metals 0.36 0.35 0.29 0.33 0.38 0.034
(0.12) (0.12) (0.12) (0.12) (0.046)  (0.012)
Machinery - 0.33 0.33 0.36 0.47 0.37
- (0.20) (0.21) (0.23) (0.24) (0.22)
Elect.& Opt Eq. - 1.01 1.00 1.00 1.12 0.96
- (0.21) (0.22) (0.21) (0.23) (0.32)
Transport 0.10 0.10 0.10 0.13 0.19 0.14
(0.17) (0.16) (0.16) (0.17) (0.05) (0.18)
Man. N.E.C. - -0.31 - -0.46 -0.69 -0.64
- (0.11) (0.13) (0.16) (0.15)

(Standard Errors in Parentheses)

Therefore, the cost function is reestimated setting all trend parameters but b; to zero.
This is done for all industries but electrical and optical equipment, where the flexible
specification of productivity growth seems to be appropriate. The resulting estimate of
productivity growth is presented in Table 4.4. Results seem a lot more convincing than
with the flexible specification. While the estimates are still well below 1 percent in all of
the investigated industries, they are now significant in almost all of the industries where
the estimate of average productivity growth is positive. Only in the food industry is the
estimate still significantly negative. The negative estimate in the wood and the paper

and publishing industry is now insignificant, while estimated productivity growth even
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becomes significantly positive in manufacturing n.e.c.

Table 4.4: Average Productivity Growth; 1980-1998; Simple Specification I**

‘ Industry Us Italy Japan Germany Canada France ‘
Food -0.23  -0.22  -0.25  -0.22 -0.24 -0.22
(0.11) (0.11) (0.12) (0.11) (0.12) (0.11)
Textilest 0.68 0.65 - 0.64 0.66 0.63
(0.09) (0.09) - (0.09) (0.09) (0.09)
Wood - -0.08 - -0.09 -0.09 -
- (0.16) - (0.18) (0.18) -
Publishing - -0.20 - -0.21 -0.22 -0.20
- (0.31) - (0.32) (0.33) (0.31)
Chemicals 0.43 0.40 - 0.40 0.45 -
(0.11) (0.99) - (0.09) (0.11) -
Mineral Prod. 0.32 0.29 - 0.32 0.34 0.32
(0.16) (0.14) - (0.16) (0.17)  (0.16)
Metals 0.21 0.21 0.20 0.21 0.22 0.22
(0.09) (0.09) (0.09) (0.09) (0.09) (0.09)
Machinery - 0.31 0.33 0.34 0.35 0.32
- (0.20) (0.21) (0.22) (0.22) (0.21)
Transport 0.28 0.27 0.26 0.28 0.30 0.29
(0.17) (0.16) (0.16) (0.17) (0.18) (0.18)
Man N.E.C. - 0.26 - 0.27 0.29 0.31
- (0.12) - (0.12) (0.13) (0.14)

**Only by measures the impact of the trend term
(Standard Errors in Parentheses)
by, not set to zero

Results are not reported for the rubber and plastics product industry, as the simple
specification results in a violation of concavity conditions. This also holds for the textiles
industry. In this case, it is enough to allow not only b; but also b, to be different from
zero to obtain estimates that comply with regularity restrictions. As can be verified in
appendix A.2, this is the only trend term parameter that is significant in the cost function
estimation with the flexible specification of productivity growth. Both b; and by are
significantly negative, when all the other insignificant trend term parameters are set to
zero. Therefore, this seems to be an appropriate specification for the textiles industry.

Indeed, comparing Tables 4.3 and 4.4 it turns out that the productivity estimate hardly
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changes when the insignificant trend term parameters are set to zero.

For a number of industries, Table 4.5 reports average productivity growth estimates
obtained with a specification where by, by and by, are estimated, while b; is set to
zero. 'This is deemed suitable as an alternative specification for those industries where
b 1s insignificant, while by, by and bgy or at least two of them are significant in the
estimation with the fully flexible trend term specification.

The estimated productivity growth for the machinery industry is slightly lower than
before, but it is estimated more accurately, standard errors being lower than in the
specification in which only b; measures the influence of the trend term. In the basic and
fabricated metal industry, neither the size of the estimate nor the standard errors change
much. In the transport equipment industry, the estimate of the average productivity
growth is negative with this alternative specification, although insignificant. In all of these
industries, by, bx: and by are significant without exception. by is barely significant at
a 10%-percent significance level, but it is included in the estimation for the paper and
publishing industry. In contrast, only by and by are significant in the estimation for
the wood and the chemical industry, so b;; is set to zero.

With the alternative simple trend term specification, the estimated productivity
growth is lower but still significantly positive for the chemical industry. Unfortunately,
it is again significantly negative for the wood industry and the paper and publishing
industry in all countries. Estimates are not reported for industries, where only one out
of the three remaining trend term parameters is significant (food and other non-metallic
mineral products), or where this specification results in estimates which do no comply
with concavity restrictions (manufacturing industries n.e.c.).

Both of the two simpler specifications of the trend term yield significantly positive
estimates for all industries for which the productivity growth estimate is positive but
insignificant with the flexible specification. Yet, the finding of technological regress can-
not be completely dismissed for the five industries, which display significantly negative

productivity growth in the estimation with the fully flexible trend term specification.
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Table 4.5: Average Productivity Growth; 1980-1998; Simple Specification IT**

‘ Industry®™  US Ttaly Japan Germany Canada France
Wood - -0.46 - -0.44 -0.52 -
- (0.11) - (0.12) (0.13) -
Publishing - -0.30 - -0.36 -0.34 -0.40
- (0.13) - (0.12) (0.15) (0.13)
Chemicals 0.17 0.17 - 0.15 0.17 -
(0.007) (0.006) - (0.006) (0.007) -
Plastics -0.13 -0.01 - -0.18 -0.15 -
(0.09) (0.10) - (0.10) (0.10) -
Metals 0.29 0.27 0.21 0.25 0.30 0.26
(0.05)  (0.07) (0.06) (0.07) (0.07) (0.07)
Machinery - 0.31 0.27 0.29 0.35 0.28
- (0.13)  (0.14) (0.15) (0.14) (0.14)
Transport -0.16 -0.11 -0.15  -0.13 -0.15 -0.16
(0.10)  (0.10)  (0.10) (0.10) (0.11) (0.10)

(Standard Errors in Parentheses)
**Only brt, bare and bg; measure the impact of the trend term

Results are mixed for the wood and the paper and publishing industries, as the negative
estimate is insignificant in the first specification with only &, but significant with the
alternative simple specification.

While a negative estimate of productivity growth is by no means uncommon in cost
function estimations (see for example Kwon & Park (1995)), it is certainly hard to in-
terpret. One explanation could be that the labor, capital and material inputs variables
include R&D expenditures in this dissertation as well as in many other studies. Pro-
ductivity growth is equivalent to downward shifts of the cost function. Clearly, it would
be desirable to measure downward shifts of - non-R&D - production costs, which R&D
based growth theories would attribute to technological change due to innovations. R&D
expenditures should not be included in the measure of production costs, because they
are investments in technological change rather than the result of it according to these
theories. Yet, production costs do include R&D expenditures because of data limitations.
Thus the downward shifts of the cost function measured by the trend term is very likely

to understate technological change in the production of manufacturing output, because
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increased R&D effort of course raises R&D costs, even if it results in lower production
costs due to successful innovations.

Rather than interpreting the negative productivity growth estimates for some indus-
tries as technological regress, it seems more convincing to conclude that technological
progress as a result of R&D activity in these industries is very small. In fact, no R&D
variable has a significant impact on the costs of production in the food, wood or pa-
per and publishing industry, as will be discussed in the next chapter. The same holds
for manufacturing n.e.c.. In the rubber and plastics industry only some international
intra-industry knowledge spillovers can be found. Due to double counting, the small
productivity gains that may be there are probably underestimated. On top of this, there
may be a deterioration of framework conditions in these industries which compensates
any technological change due to innovations that may be present.

It certainly seems useful to give up some flexibility concerning the productivity growth
specification. With the exception of the electrical and optical equipment industry, where
the flexible specification seems to work well, only a few of the trend term parameters are
significant in all of the investigated industries. In what follows, the presented results are
based on the estimation with the fully flexible specification of the trend term only for
electrical and optical equipment. Instead, the specification with b, bx¢ and by is chosen
for all industries considered in Table 4.5. This can very well be justified based on the
results obtained with the fully flexible specification, since b; is insignificant for all of these
industries, while often two or more of the parameters by, bxs and by are significant, at
least in the industries where the estimated average productivity growth is positive. The
alternative specification, where only b, measures the impact of the trend term is chosen
for non-metallic mineral products and the food industry, because in each case only one
of the trend term parameters by, bgt and by is significant. In manufacturing n.e.c.,
the specification with only b, is chosen because the alternative simple specification yields
estimates which do not comply with the concavity restrictions.

A more difficult case is the chemical industry, because estimated productivity growth
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Figure 4-1: Productivity Growth: TFP vs. Dual Measure; Elect. and Opt. Eq.
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changes somewhat depending on the specification. However, Ljung-Box Q-statistics in-
dicate first order serial correlation in the specification where only b; measures the impact
of the trend term, so the specification with bg; and bz 1s chosen instead. While esti-
mated productivity growth is somewhat lower with the alternative specification, none of
the other estimates changes noticeably. Results with the preferred trend term specifica-
tion for each industry are presented in appendix A.3. All of the results presented in the
following sections are based on these estimates.

Regardless of the specification of the trend term, estimated productivity growth is
by all means very small for all of the investigated industries. As outlined in chapter 3,
R&D based models of growth imply that the Solow residual is likely to overstate the real
productivity growth, because both economies of scale and mark-ups cause an upward

bias of this productivity growth measure. On these grounds, it is to be expected that the
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dual measure should be smaller than the Solow residual if R&D based growth theories
are relevant. In fact, comparing Tables 4.3 to 4.5 with Table 3.2 in chapter 3, it turns
out that the average dual measure is decisively lower than the total factor productivity
growth measure for almost all industries and countries. The only exception is the textiles
industry where the dual measure is bigger than the Solow residual for the Canada, France
and Germany. In the German electrical and optical equipment industry the dual measure
is bigger than the Solow residual, as well.

To get a clearer image of the time series properties of the primal and dual productivity
growth measures over time, Figures 4-1 and 4-2 plot total factor productivity and the
dual productivity growth measure along with a 95%-confidence interval for the electrical
and optical equipment industry and for the chemical industry as two examples. In the
electrical and optical equipment industry, the difference between average TFP and the
average dual measure of productivity growth is relatively small. As can be seen in Figure
4-1, the Solow residual is smaller than the dual measure in all countries during several
subperiods due to particularly high cyclical variation in the primal productivity growth
measure. This also holds for the chemical industry, although the Solow residual is quite
a bit higher than the dual productivity measure during most subperiods in this industry.

In both industries the Solow residual has a strong cyclical component, while the dual
measure of productivity growth is much smoother. The cyclical component of the primal
measure may very well be a figment of unobserved cyclical variation in the utilization of
labor and capital. The capital stock and employment as a measure of labor input are
likely to underestimate the use of these factors in booms and overestimate it in slumps,
because they measure capacity rather than actual factor utilization. Clearly, this creates
a spurious cyclical component in the primal measure of productivity. Hours would be
preferable as a measure for labor input to capture the cyclical variation of the use of this
factor, but unfortunately only employment is available. As far as capital is concerned, it
is highly difficult to measure the actual use of capital services rather than the production

capacity that is measured with the capital stock. Capacity utilization measures to correct
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Figure 4-2: Productivity Growth: TFP vs. Dual Measure; Chemical Industry
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the capital stock are seldom available, especially on more disaggregate data levels, and
in many cases their reliability may be questionable (Shapiro 1989).

FEvidence that the primal TFP measure presented in this chapter is likely to contain
a spurious cyclical element is provided by Paquet & Roubidoux (2001). They are able
to adjust their capital stock series with a newly available aggregate capacity utilization
measure when measuring total factor productivity with aggregate Canadian data. Com-
paring the Solow residual, which is unadjusted for varying capacity utilization, with the

adjusted measure, it turns out that the latter is lot less volatile, containing fewer data
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points that indicate technology decline.

There is considerable evidence that in addition to concerns regarding the assump-
tions of constant returns to scale and perfect competition, the data should by all means
somehow be adjusted for varying capacity utilization, if the Solow residual is used as a
measure of productivity growth. In contrast, the error correction form used to estimate
the cost function does accommodate changes in capacity utilization, because it encom-
passes short-run deviations from equilibrium. This results in much smoother estimates
of productivity growth. With the cost function estimation it seems to be possible to
avold adding spurious cyclical variation to the productivity growth measure. Since it
is in most cases extremely difficult to adjust the data for varying capacity utilization,
the possibility to accommodate short-run deviations from equilibrium within the cost
function approach is an additional reason why this framework appears more suitable to
investigate the determinants of productivity growth.

In the next sections it is investigated whether the estimation results imply the presence
of economies of scale and market power. This might be responsible for the fact that total
factor productivity growth is systematically higher than the dual measure of productivity
growth.

4.3 Economies of Scale

By a standard replication argument, returns to scale should in general be expected to
be constant in the rival factors capital, labor and material inputs. Based on the growth
theories with increasing returns due to externalities presented in section 2.2, economies of
scale in the rival factors could be increasing instead, if non-rival knowledge is accumulated
as a side effect of the production of some of the rival goods, such as physical capital in
Romer’s (1986) or human capital in Lucas’s (1988) model. Since the two-digit industry
level is already fairly aggregate, it should be possible to detect some economies of scale,

if these models are relevant.
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Table 4.6 displays the implied average rate of returns to scale over the sample pe-
riod along with standard errors calculated with the delta method. The estimates imply

increasing returns to scale for nearly all of the industries.

Table 4.6: Average Rate of Returns to Scale; 1980-1998

Industry Us Italy Japan  Germany Canada France ‘
Food 1.083 1.188 1.043 1.162 1.046 1.152
(0.057) (0.067) (0.054) (0.062) (0.055)  (0.062)
Textiles 1.144 1.175 - 1.133 1.131 1.130
(0.030) (0.032) - (0.029) (0.029)  (0.028)
Wood - 1.266 - 1.183 1.138 -
- (0.090) - (0.075) (0.073) -
Publishing - 1.217 - 1.145 1.110 1.169
- (0.065) - (0.059) (0.055)  (0.064)
Chemicals 1.129 1.214 - 1.186 1.136 -
(0.030) (0.030) - (0.028) (0.030) -
Plastics 1.261 1.178 - 1.166 1.177 -
(0.055) (0.039) - (0.038) (0.039) -
Mineral Prod. 1.327 1.483 - 1.332 1.282 1.317
(0.078) (0.083) - (0.071) (0.067)  (0.067)
Metals 1.217 1.240 1.229 1.198 1.210 1.180
(0.048) (0.050) (0.048) (0.045) (0.047)  (0.043)
Machinery - 1.292 1.188 1.134 1.174 1.212
- (0.051) (0.046) (0.040) (0.042)  (0.040)
Elect. & Opt Eq. - 1.187 1.122 1.167 1.214 1.096
- (0.037) (0.032) (0.036) (0.042)  (0.032)
Transport 1.184 1.277 1.271 1.206 1.177 1.217
(0.048) (0.055) (0.055) (0.048) (0.045)  (0.048)
Man. N.E.C. - 1.201 - 1.145 1.121 0.962
- (0.035) - (0.036) (0.032)  (0.028)

(Standard Errors in Parentheses)

Only in the Japanese and the Canadian food industries and in manufacturing indus-
tries n.e.c. in France is the estimated average rate of returns to scale not significantly
different from one. In general, the size of the estimates is very uniform. The average rate
of returns to scale varies between 1.1 and 1.3 for almost all of the investigated industries.
Figure 4-3 plots the rate of returns to scale for the food industry along with the 95%-

confidence interval for the estimated elasticity. This includes 1 in Japan and Canada
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over the whole sample period, so the hypothesis of constant returns to scale cannot be
rejected for these two countries. For all other countries even the lower bound of the

confidence interval is bigger than one over the entire sample period.

Figure 4-3: Economies of Scale in the Food Industry
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To visualize an alternative example of an industry with relatively high economies of
scale, Figure 4-4 displays the implied rate of returns to scale for the transport equipment
industry, where even the lower bound of the 95-%-confidence interval is well above 1.1 for
all countries. More so than in the food industry the rate of returns to scale seems to have
quite a pronounced cyclical component. The plot of the time series looks as if there was
a slight downward trend in the transport equipment industry of Canada and Germany,
while the rate of returns to scale seems to be upward trending in the food industry. These
seeming trends should be attributed to the short sample period. It would certainly be
very surprising if there was a long-run trend in the rate of returns to scale.

While growth models with externalities can accommodate economies of scale in rival

factors, because knowledge is accumulated in direct proportion to one of them, R&D
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based growth theories suggest in principle that returns to rival factors should be constant.
However, theory does suggest that there may be economies of scale even if only the
rival factors are considered, because there are fixed costs associated with investments in
R&D. Moreover, returns to scale are increasing in rival factors and knowledge together.
Based on the latter argument, it may seem surprising to detect economies of scale in a
cost function estimation where R&D capital stocks have not been included. However,
as pointed out in the data description, it is not possible to correct labor, capital and
material inputs for the inclusion of R&D capital stocks. Therefore, it is very likely that
at least some of the effect of R&D on overall economies of scale is captured by the cost

elasticity with respect to output.

Figure 4-4: Economies of Scale in the Transport Equipment Industry
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Since knowledge is the source of economies of scale according to R&D based growth
models, it would be interesting to see whether it is possible to detect a relationship
between knowledge variables and the estimated rate of returns to scale. As the size of

the average rate of returns to scale is very uniform across industries, it is hardly possible
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to detect such a relationship by mere inspection of Table 4.6. Most industries displaying
relatively high economies of scale are also relatively R&D-intensive, while R&D-intensity
is low in manufacturing not elsewhere classified, the food and the textiles industry, where
returns to scale are close to constant. On the other hand, the highly R&D-intensive
chemical and electrical and optical equipment industries hold middle positions when it
comes to economies of scale.

To get a clearer image whether economies of scale might be related to R&D, the
estimated excess returns to scale, the rate of returns to scale minus one, is regressed first
on R&D-intensity and then on the R&D-capital stock in a pooled regression with fixed
industry effects. To avoid heterogeneity due to different size, the R&D capital stocks are

introduced into the regression as indices taking a value of one in 1995.

Table 4.7: Results of Panel Regression of Returns to Scale on different R&D Variables
SEit = ilt?lo —I— bRI * RD}/” —I— ’U,ZI-;?JO ‘ SEZt = ilt%o —I— bKRRit ‘I— ugo

brr 2453 (0.316) bxr  0.024 (0.006)
R 0.827 R? 0813
DW 0.141 DW. 0.143

(Standard Errors in Parentheses)

In Tables 4.7, 4.8 and 4.9 SE;; = %it — 1 denotes the excess returns to scale, RDY;
is the R&D-intensity, R; the R&D capital stock, fft is an industry specific constant
and ugt is an error term for 7 = Rlo, Ro, Rlec, Rec. i is an industry index and %
is a time index. Both the estimated parameter of the R&D-intensity and of the R&D
capital stock are positive and significant However, the Durbin Watson statistic indicates
strong autocorrelation in the residuals, so the estimated standard errors are likely to be
severely distorted. Moreover, since the rate of returns to scale is a function of the prices,
output and input data, the parameter estimates may primarily capture a common cyclical
component in the data, while it is of course the long-run relationship between knowledge
creation and economies of scale that is interesting in the present context. Since the

investigated time span is rather short, it is by no means easy to uncover this. However,

estimating the relationship between economies of scale in an error correction model may
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be more appropriate, because this framework helps deal with the autocorrelation and it
is more likely to capture a long-run relationship between the variables.

Table 4.8 reports results of the estimated relation between returns to scale and R&D-
intensity. Differences turn out to be significant up to lag two. The coeflicient v5; is the
error correction term, while hr; = —% measures the implied long-run relationship be-
tween the R&D-intensity and the estimated rate of returns to scale. Again, the equation
is estimated with industry-country fixed effects, while all slope coefficients are assumed
to be the same across all industries and countries. The implied parameter measuring the
long-run relationship between R&D-intensity and economies of scale is hy; =3.467. It is

significant and in a reasonably similar range as the corresponding parameter estimated

with OLS.

Table 4.8:  Relation between R&D Intensity and Economies of Scale; Error Correction Form

ASEy = fE* + v SEy 1 +brr* RDYy | + Zj dri;ASEy ; + Zj eri; AR j + uiie

YRI bri €RI0 €Rrn ERI2 drrt drro R? D.W. t.stat.
-0.107  0.371 0.65 -0.709 -0.531 0.251 -0.162 0.465 1.895 -8.885
(0.012) (0.127) (0.21) (0.204) (0.202) (0.30) 0.030)

(Standard Errors in Parentheses)

The t-statistic of the error correction term, denoted “t.stat.” in Table 4.8 is highly
significant indicating reversion to equilibrium. Similar results emerge when estimating
the relationship between the R&D capital stock and the rate of returns to scale in the error
correction form. Results of this estimation are reported in Table 4.9. The implied long-
run parameter measuring the relationship between the R&D capital stock and economies
of scale 1s 0.065. It is significant and positive and not too far from the parameter obtained
with the direct estimation of this relationship. The t-statistic of the error correction term
is again highly significant.

Overall the estimation results indicate that there seems to be some positive relation-
ship between economies of scale and knowledge variables, so R&D activity may be a
source of economies of scale as suggested by R&D based models of growth. Yet, the

results should not be overvalued. The estimation of the relationship between economies
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of scale and R&D-variables is of course completely ad hoc. The exercise is simply meant
to uncover whether it is possible to detect any positive relationship at all. This ap-
proach seems useful from a pragmatic point of view, because it is difficult to distinguish
an unequivocal relationship just by inspecting the estimated average rate of returns to
scale summarized in Table 4.6 taking into account the industries’ R&D-intensities. It is
true that, since the input data is not corrected for the inclusion of R&D, and because
of the fixed cost associated with R&D investments, the cost elasticity with respect to
output should be expected to capture at least part of the economies to scale that can
be traced to R&D. Nevertheless, results should be treated with caution, because theory
does not provide any guidance as to how strong the relationship between R&D variables

and economies of scale should be and what precise form it should take.

Table 4.9: Relation between R&D Capital and Economies of Scale; Error Correction Form

ASEy = [  +vpSEy 1 +bpRy_1 + Z,- dp;ASEy_j + Z,- eriARy_ ;4 uc”

Tr bR €Ro €R1 €R2 de dR2 R2 D.W. t.stat.
-0.109  0.007  -0.014  0.031 -0.008  0.214  -0.190 0.417 1.884 -9.090
(0.012) (0.002) (0.015) (0.017) (0.0016) (0.030) (0.030)

(Standard Errors in Parentheses)

The important bottomline from the point of view of growth theory is that significant
economies of scale are found in all of the investigated industries. This empirical result
supports the endogenous growth theories discussed in chapter 2. According to Romer’s
(1986) and Lucas’s (1988) models with externalities, the aggregate production function
may display increasing returns to scale, because productive knowledge is accumulated
as a side effect of investments in physical or human capital. In R&D based models of
growth, knowledge created as a result of investments in R&D is the source of economies
of scale. Although some ad hoc regressions of the time series measuring the rate of
returns to scale on different R&D variables reveal that there does seem to be a positive
relationship, these results should be interpreted with caution, because these regressions
are not well structured by theory. The safest conclusion that can be drawn from the

results is that there is indeed considerable evidence of the presence of economies of scale.
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In this sense the results support endogenous growth theories as opposed to neoclassical
growth theory, which is unambiguously based on a constant returns to scale technology.

A way to distinguish whether the results support R&D based growth theories rather
than models with increasing returns due to externalities is to take a look at what the
results imply concerning the presence of market-power. While the externality models are
based on the assumption of competitive markets, R&D based growth models have to rely

on market power to explain knowledge creation as a response to market incentives.

4.4 Market Power

R&D based models of economic growth suggest that each industry which conducts re-
search and development should be able to charge a mark-up of price over marginal cost
to cover the fixed cost associated with knowledge creation. In fact, estimated mark-ups
are significantly bigger than one in all industries but rubber and plastics products, where
the hypothesis of competitive pricing cannot be rejected at the 5%-significance level for
the US and Italy. This can be verified in Table 4.10.

Based on theory mark-ups may be expected to be higher in industries where the R&D-
intensity is relatively high, because these industries bear higher fixed costs in relation to
their output. For this reason, one might expect a positive relationship between R&D-
intensity and the size of the mark-up. Yet, for most industries estimated mark-ups vary
between 1.2 and 1.3. This seems to be rather uniform, whether or not the industries are
R&D-intensive.

Figure 4-5 plots the estimated mark-ups against the average R&D-intensities of the
different industries. It certainly does not look as if there was any relationship. In fact,
the fitted regression line stemming from an ordinary least squares regression of mark-ups
on average R&D-intensities can be seen to be a straight line in Figure 4-5.

However, market-power and the size of mark-ups can be related to many other things

than a patent or technological knowledge that can effectively be hidden from other pro-
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Table 4.10: Estimates of the Mark-up of Price over Marginal Cost

Industry Us Italy Japan  Germany Canada France ‘
Food 1.259 1.279 1.240 1.237 1.254 1.245
(0.074) (0.074) (0.072) (0.070) (0.076)  (0.073)
Textiles 1.207 1.239 - 1.199 1.219 1.185
(0.026) (0.029) (0.026) (0.028)  (0.027)
Wood - 1.398 - 1.285 1.366 -
- (0.075) - (0.069) (0.072) -
Publishing - 1.415 - 1.408 1.231 1.403
- (0.080) - (0.079) (0.070)  (0.079)
Chemicals 1.252 1.277 - 1.279 1.252 -
(0.033) (0.034) - (0.032) (0.034) -
Plastics 1.048 1.148 - 1.185 1.181 -
(0.151) (0.086) - (0.078) (0.080) -
Mineral Prod. 1.376 1.400 - 1.377 1.372 1.361
(0.062) (0.067) - (0.059) (0.061)  (0.059)
Metals 1.261 1.273 1.285 1.296 1.240 1.252
(0.037) (0.038) (0.036) (0.037) (0.038)  (0.036)
Machinery - 1.406 1.267 1.367 1.382 1.288
- (0.135) (0.066) (0.126) (0.149)  (0.074)
Elect. & Opt. Eq. - 1.347 1.209 1.350 1.382 1.240
- (0.051) (0.037) (0.044) (0.050)  (0.040)
Transport 1.225 1.251 1.256 1.262 1.232 1.231
(0.033) (0.039) (0.031) (0.033) (0.036)  (0.033)
Man., N.E.C. - 1.250 - 1.212 1.227 1.126
- (0.052) (0.049) (0.053)  (0.040)

(Standard Errors in Parentheses)

ducers. It may be due to monopoly rights granted by the government or the level of
protection from international trade. Moreover, the size of the mark-up also depends on
the price elasticity of market demand, which is unrelated to market-power. These fac-
tors may obscure the relationship between R&D-intensity and the size of mark-ups in
some industries. To capture this possibility, it is tested whether industry dummies are
significant in the regression of mark-ups on R&D.

As it turns out, dummies are significant for the wood and the publishing and print-
ing industry, where mark-ups are remarkably high, while the R&D-intensity is very low

compared with other industries. The rubber and plastics industry dummy is also signif-
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Figure 4-5: Mark-ups and Average R&D-Intensity; 1980-1998
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icant, as well as the dummy of other non-metallic mineral products and the machinery
industry. The first industry has the lowest mark-ups of all industries, while mark-ups
are particularly high in the latter two industries. The significance of country dummies
is tested as well. Only the dummy for Italy is significant. Since the R&D-intensity in
Italian industries is remarkably low compared with other countries, this is not very sur-
prising. Table 4.11 presents the results of a regression of mark-ups on R&D-intensity
with all significant dummies included in the estimation.

by is a constant, brpy is the coefficient of the R&D-intensity and the d;s denote the
dummies, where the suffix I stands for Italy, while the numbers denote ISIC industry
codes which are explained in the data appendix. When all significant industry and

country dummies are included in the regression, the coefficient of R&D-intensity becomes
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Table 4.11: Regression of Mark-ups on R&D-Intensity
bo brp1 dog day dos dog dog dy R?
1227  0.007 0107 0.125 -0.103 0.137 0.096 0043  0.692
(0.011)  (0.003) (0.020) (0.025) (0.025) (0.023) (0.022) (0.008)

(Standard Errors in Parentheses)

positive and significant. Hence, there is some, albeit weak, evidence in favor of the notion,
that a high amount of R&D activity is associated with higher mark-ups, although this
relationship seems to be obscured by other factors influencing the size of mark-ups in a
number of industries.

It seems intuitive to assume that high mark-ups should be observed in industries
where a lot of R&D is performed, because the fixed cost associated with knowledge
creation are high. Yet, the only clear implication from R&D based growth models is that
some positive mark-ups should exist in all industries that perform R&D. This is clearly
supported by the data, as mark-ups are positive in nearly all of the investigated industries.
This result is clear evidence in favor of R&D based models of growth, distinguishing it
from alternative growth theories.

Overall the results reported so far support endogenous growth theory, particularly
R&D based models. The presence of mark-ups and economies of scale is confirmed for
nearly all of the investigated industries. There is also some - although rather weak -
evidence, that both mark-ups and economies of scale are linked to the amount of R&D

activity. The next section explores how these findings compare to earlier results.

4.5 Comparison with the Existing Literature

Although earlier studies typically did not aim at investigating mark-ups, economies of
scale and the role of knowledge in an integrated approach to study the relationship
between these features, many researchers have investigated either mark-ups or economies
of scale separately.

One of the earliest and most prominent examples of a test for market-power in the
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Solow residual framework is Hall’s (1988) analysis. e regresses the share-weighted factor
income growth on output growth to estimate the inverse of the mark-up with two-stage
least squares. Estimated mark-ups are substantial for most industries, ranging between
1.86 in the services sector and 3.8 in trade. In an estimation with further industry
detail, most estimates of the mark-ups range between 1.5 and 3. A caveat applies to
these results, though, as Hall does not include material inputs in his regression, using
value added rather than gross output as his output measure. This is likely to result in
an upward bias of the estimated mark-up as he shows in his paper. This suspicion is
confirmed in Domowitz, Hubbard & Petersen’s (1988) study who use highly disaggregated
US manufacturing gross output data to verify Hall’s result. The estimated size of the
mark-up is much smaller than in Hall’'s study, varying between 1.38 in the primary
metals industry and 2.05 in the publishing and printing industry. Most estimates are
considerably below 2.

Beccarello (1996) uses an earlier version of the STAN database to investigate mark-
ups in OECD industries. His mark-up estimates vary in a wider range and are generally
higher than the estimates presented in the previous section. The average of the industry
mark-up across countries ranges from 1.07 in Germany to 1.89 in Japan. Many estimates
for individual industries are well above 2. The difference in results can easily be explained
as Beccarello employs an earlier version of the STAN database, which forces him to use
value-added data. As outlined before, this is likely to cause an upward bias in the
estimates.

It is a general observation that mark-up estimates are higher and vary more when
value-added data is used. This phenomenon is also revealed when comparing Roeger’s
(1995) and Oliveira Martins, Pilat & Scarpetta’s (1996) results, who make use of the
nominal version of the Solow residual to develop a framework that allows them to estimate
without instruments. This is an advantage, because appropriate instruments are very
difficult to find. Roeger, who uses Hall’s value-added dataset, finds mark-ups varying

between 1.3 and 3.14 in different industries, although most estimates are below 2. Oliveira
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Martins, Pilat & Scarpetta’s estimates obtained with nominal OECD industry gross
output data are lower, varying between 1.03 and 1.8.

Classifying the industries in their sample with respect to relative establishment size
and R&D intensity, Oliveira Martins, Pilat & Scarpetta find that mark-ups tend to be
higher in industries with low average establishment size. Within the group of low and
high average establishment size respectively, mark-ups tend to be higher in industries
with high R&D-intensity. This result, of course, is particularly interesting from the
point of view of endogenous growth theory which predicts that market-power should be
associated with R&D activity.

The only study that does not unequivocally point towards positive mark-ups is Paquet
& Roubidoux’s (2001) investigation with aggregate Canadian data. They obtain an
estimate of p that is significantly larger than 1 with unadjusted data. Yet, while the
point estimate is still 1.377 when the capital stock series is adjusted for varying capacity
utilization, the estimate is so imprecise that the hypothesis of constant returns cannot be
rejected. It should be noted, however, that the authors estimate a value added version
of (3.6) conjecturing - similar to Hall (1988) - that returns to scale are constant, so that
the last term in the equation disappears. Yet, it is very likely that increasing returns
and market power come together. First, market power is necessary in order not to incur
losses with an increasing returns to scale technology. Secondly, fixed costs and other
sources of increasing returns are likely candidates to prevent factors from earning their
marginal products.

When using the dual framework to estimate mark-ups, researchers often append an

inverse output demand function to their factor demand system. The mark-up in the

1
l+epy

& Nadiri (1996b), Nadiri & Nandi (1999), Morrison (1990) and Kwon & Park (1995)),

profit maximization condition is then calculated as p = (see for example Kim

where €py denotes the price elasticity of market demand. In all of these studies mark-
ups are found to be positive. However, this approach implicitly assumes a monopolistic

market-structure. To avoid this, Bernstein & Mohnen (1991) develop a cost function and
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factor demand system which allows them to estimate the market elasticity of demand
and the conjectural elasticity of oligopolistic firms jointly. The conjectural elasticity is
the percentage change of market output due to a one percent change of firm i's output.
Applying their model to three Canadian industries the authors find significant mark-ups
ranging from 1.2 in the chemical industry to 1.8 in the electrical machinery industry.

Alternatively, some authors estimate only the mark-up, and not the price elasticity
of market demand, using a specification similar to the one used in this study. Flaig
& Steiner (1990) model their mark-up term in a quite general way to allow for both a
trend and cyclical variation. The estimates obtained with German industry data are
fairly stable over time. The average estimate of the mark-up ranges between 1.05 in the
food industry and 1.498 in the chemical products industry. Mamuneas (1999) estimates
mark-ups for US high-tech industries that are conjectured to be constant. His estimates
imply mark-ups that range between 1.01 for chemical products and 2.69 in the electrical
industry.

In general, estimates obtained within the primal and the dual approach respectively
do not seem to differ much. The crucial factor when estimating mark-ups appears to
be the definition of output. It can be shown that the use of value-added data biases
results upwards. In fact, estimates obtained with gross output data are generally lower
than those obtained with value-added data. Regardless of the output definition used
in prior investigations, mark-up estimates obtained in this study are in general more
homogeneous and lower. Mostly ranging around 1.2 and being well below 1.5 for every
industry, they seem in fact much more realistic than many estimates presented before.
This encouraging finding could be due to the empirical framework, which allows both
for considerable flexibility as far as the functional form is concerned and for very general
short-term deviations from equilibrium.

From the point of view of R&D based growth theories, the important bottom-line
is that the presence of market-power in most industries is a very robust result in the

empirical literature. Mark-ups that are significantly greater than one are found with
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many different datasets and estimation methods.

As far as economies of scale are concerned, the finding of moderately increasing returns
to scale is a very common result of work based on the cost function approach. Studies with
results in a similar range as those presented in the previous section include Flaig & Steiner
(1993), Kwon & Park (1995), Mamuneas (1999), Kim & Nadiri (19960), Morrison Paul
& Siegel (1997), Morrison Paul & Siegel (1999) and Nadiri & Nandi (1999). In contrast,
results obtained with the Solow residual approach are much more mixed and controversial.

Using an extension of his framework to investigate mark-ups, Hall (1990) finds sig-
nificant increasing returns to scale in all industries he investigates. His estimates are
particularly high. Only for three out of 23 industries is the estimate below 1.3. In 13
cases it 1s above 2. Hall’s method, however, has been criticized, because he estimates
the inverse of the rate of returns to scale rather than estimating it directly. Bartelsmann
(1995) points out that the estimate of the inverse of a parameter is not equal to the in-
verse of its estimate, and that this problem cannot be overcome by instrumental variable
estimation. Using Hall’s data, he finds that the direct estimate of rate of returns to scale
is much smaller than its size implied by the estimate of its inverse.

Basu and Fernald also question Hall’s choice of instruments as being only weakly
correlated with the explanatory variables. Arguing that Hall’ s instruments are not only
weak but even bad, in the sense that they are correlated with the errors, Basu and Fernald
conclude that the result of large increasing returns to scale is due to a considerable bias.
Employing value-added data similar to Hall’s, they even find evidence of decreasing
returns to scale in the average manufacturing industry. A similar result is obtained with
gross output data.

In fact, it is not uncommon in studies based on the primal approach to find constant
or even decreasing returns to scale. The difficulty of obtaining convincing estimates of
the rate of returns to scale in production function estimations is related to a well known
puzzle: Capital often appears to play no role in production function estimations. This

finding has been stressed by Lucas (1970) and Bernanke & Parkinson (1991), among oth-
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ers. Although their studies differ with respect to data sets, sample periods and estimation
methods, they all arrive at the same conclusion: capital enters the estimated production
function either with the wrong sign or not at all. This result, which is certainly not com-
patible with theory by any means, also implies a downward bias in the estimated rate of
returns to scale, since this is measured by the sum of the factors’ production elasticities.

Implausible estimates obtained with the Solow residual approach are often attributed
to a failure to account for varying capacity utilization. Burnside, Fichenbaum & Rebelo
(1995) try to overcome this problem by correcting the capital input data for cyclical vari-
ation. With different US gross output data sets and instruments, their results uniformly
imply constant returns to scale. Burnside (1996) finds similar results across different
data and instrument sets. While finding increasing returns with unadjusted data, Pa-
quet & Roubidoux (2001) obtain a point estimate of the rate of returns to scale that is
even smaller than one after adjusting their capital stock series with a capacity utilization
measure, although they cannot reject the hypothesis of constant returns.

With aggregate US data Basu & Fernald (1997) find evidence for increasing returns,
while they find even decreasing returns with industry data. This is similar to the results
of Caballero & Lyons (1992) who find a higher rate of returns to scale with aggregate
US data than with industry data. Caballero and Lyons interpret this as evidence for
productive spillovers or ”thick-market” externalities. They suspect an external source of
economies of scale. In fact, when including aggregate production in the regression they
find a positive impact on industry output which they view as a confirmation for their
interpretation. In their work on European industries (Caballero & Liyons 1990), they use
aggregate input growth rather than output growth to account for productive spillovers.
The estimate of their spillover variable is positive and significant for most industries.

However, Basu & Fernald (1995) argue that this evidence for productive spillovers is
due to specification error, namely the omission of material inputs. They show theoreti-
cally that material inputs influence value added directly when market power is present.

This is true, because income shares, which are used to deduct material inputs from gross
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output to obtain value added, do not measure the productive contribution of material
inputs correctly, when prices do not equal marginal costs. Since both input and output
growth may proxy material inputs, the evidence for productive spillovers might be due
to an omitted variable bias.!

Basu & Fernald (1997) show that aggregation may bias the estimate of the rate of
returns to scale in either direction. This is viewed as an explanation why the estimate of
the rate of returns to scale differs sometimes depending on the level of aggregation and
for the - theoretically puzzling, but empirically not uncommon - finding of decreasing
returns to scale at the industry level.

Nevertheless, Bartelsman, Caballero & Lyons (1994) find evidence for productive ex-
ternalities with US gross output data at the four-digit level. Most of their estimates imply
moderate internal increasing returns to scale. Using the same dataset, Morrison Paul &
Siegel (1997) confirm evidence for both internal and external economies of scale with
a dynamic cost function framework including material inputs and allowing for varying
capacity utilization or quasi-fixity of some of the factors. Since the data used in these two
studies is quite disaggregate and does include material inputs, Basu & Fernald’s (1995)
critique is hardly applicable. Overall, there seems to be at least some reliable evidence
in favor of slightly increasing returns to scale due to internal and possibly to external
returns to scale.

Results on economies of scale obtained within the primal approach are much more
contradictory and debated than those obtained with cost function estimations. Yet, it
is not difficult to argue that results obtained with a cost function are likely to be more
reliable. First, most of the production function estimations and the construction of the
Solow residual in studies discussed in this section are based on the Cobb-Douglas function.
In contrast, the cost function studies typically rely on flexible functional forms, which are
much more general. Moreover, a number of researchers who use the Hall /Solow residual

framework attempt to correct their data for factors such as varying capital utilization

ITheir argument is presented in more detail in appendix C
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(Basu 1996, Burnside 1996) and labor hoarding (Burnside, Fichenbaum & Rebelo 1993),
because a failure to account for this is frequently believed to bias results. The dual
framework, in contrast, readily encompasses varying capacity utilization without a need
to recur to correction of the data. In fact, the possibility to model slow adjustment of
the capital stock to equilibrium is exploited in all of the dual studies presented in this
section.

The difficulty to estimate production elasticities and thus economies of scale correctly
is also revealed by the observation, that the estimated output elasticity of physical capital
tends to be lower in studies that stress the time-dimension rather than the cross-section
dimension of the data. Both Mairesse & Sassenou (1991) and Nadiri (1993) point to this
fact in their overview articles discussing studies that try to assess the impact of R&D
on productivity. Mairesse & Sassenou (1991) attribute this phenomenon to collinearity
of both physical and R&D capital with a time trend. Moreover, they point out that
biases due to random measurement errors or omission of variables capturing short-term
adjustments to business-cycles are likely to be stronger in time-series than in cross-section
data. There seem to be a number of reasons why estimates of the production elasticity
of capital may be suspected to be downward biased in a primal framework. Of course,
an estimate of the output elasticity of physical capital which is biased downward directly
results in a downward bias of the estimated rate of returns to scale.

Taking the numerous problems associated with the primal approach into consider-
ation, there is enough reason to conclude that overall the existing empirical literature

points towards slightly increasing returns to scale.

4.6 Implications for Growth Theory and Empirics

So far, the Solow residual has been highly popular in empirical work on R&D based
growth models. Yet, relying on the assumptions of perfect competition and constant

returns to scale, it may not be the best framework to investigate the role of knowledge
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for economic growth, since R&D based models of growth imply the presence of economies
of scale and market power. In that case, the Solow residual is biased upward as a measure
of productivity growth.

Results presented in this chapter indeed suggest the presence of both economies of
scale and market power. This implies that endogenous growth theory seems to be empiri-
cally more relevant than the neoclassical growth model which relies on constant returns to
scale and perfect competition. While economies of scale may be interpreted as evidence
in favor of growth models with externalities or R&D based growth models, market power
is a building block of the latter class of growth theories alone. There is also some evidence
that both mark-ups and economies of scale are linked to the amount of R&D activity
an industry performs. However, although these results are certainly interesting from the
point of view of R&D based growth models, they are derived from ad hoc regressions
based on very little theory, so they should be interpreted with some caution.

As theory would suggest in the presence of market power and economies of scale, the
dual measure of productivity growth derived from the cost function and factor demand
system estimation implies slower technological change than the Solow residual, which is
upward biased when the assumptions of perfect competition and constant returns to scale
do not hold. Another interesting result of this chapter is that total factor productivity
as measured by the Solow residual displays much higher cyclical variation than the dual
measure of productivity growth, which is rather smooth. This characteristic of the primal
measure of productivity growth is likely to be a figment of unobserved cyclical variation in
factor utilization. In contrast to the Solow residual, the factor demand system in the error
correction form does account for varying capacity utilization allowing for very general
deviations from equilibrium in the short run. The possibility to derive a productivity
growth measure that does not suffer from a spurious cyclical component appears as a
definite advantage over the primal approach.

The results concerning the presence of market power and economies of scale also seem

to fit well into the existing literature. In many respects, the estimates presented in this
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chapter seem more reliable than many of the results presented before. The size of the
mark-up estimates is lower and in effect more realistic than in many earlier studies. This
may very well be due to the empirical framework chosen in this study, which is both
flexible, as far as the functional form is concerned, and allows for very general forms of
varying capacity utilization. A failure to account for unobserved variation in capacity
utilization may also be one among many other reasons why prior studies investigating
economies of scale based on production function estimations or the Solow residual come
up with so many conflicting results, while estimates based on the cost function approach
unanimously suggest the presence of economies of scale.

Overall, the framework used in this study seems to resolve many of the problems
associated with the Solow residual framework. Since it also opens the possibility to
investigate all of the more relevant features of R&D based growth models in an integrated
approach, it appears a particularly well suited framework to investigate this type of
theories. Suggesting the presence of market power and economies of scale, the empirical
evidence presented in this chapter is very much in favor of R&D based growth theories.
At the same time, both the theory presented in the second chapter and the empirical
evidence call for a framework to estimate productivity growth that does not hinge on the
assumptions of constant returns to scale and perfect competition when investigating the

impact of R&D on technical change.
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Chapter 5

The Role of Knowledge

5.1 R&D Capital and Productivity

According to R&D based models of growth, research and development is the driving force
of technological change. Productivity growth is proportional to the resources devoted to
R&D both in the lab equipment specification and in version (2.12) of the knowledge
production function. As outlined in the presentation of the theoretical models, the lab
equipment version of the knowledge production function is a little more realistic, assuming
that both capital and labor are inputs to the knowledge production process. In contrast,
in the knowledge production process described in (2.12) labor - frequently interpreted as
human capital - is the only production input. The lab equipment version of the knowledge
production process is the rationale to assume that an industry’s stock of knowledge A
should be proportional to its R&D capital stock, as apparent in equation (2.23). In what
follows, the term "own R&D” is used to describe the effect of each industry’s research
and development effort on its productivity as opposed to R&D spillovers from other
industries.

Technological change, that is growth in A, is reflected in downward shifts of the
cost function. Any technological change is attributed to knowledge production in R&D
based models of growth. Thus the impact of R&D on costs is expected to be negative,
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and there should be no role for the trend term to explain downward shifts of the cost
function once R&D capital stocks are accounted for in the estimation. In reality, there
may be sources of technological change other than innovations, such as organizational
changes or changes in government policy, some of which may even have adverse effects
on productivity growth.

If R&D capital stocks are not included in the estimation, as in the previous chapter,
it is hoped that the trend term captures both the productivity growth that is due to
R&D and technological change stemming from other sources. As soon as R&D capital
stocks are included in the estimation, they should capture that part of productivity that
is a result of market driven knowledge creation, while the trend should measure only
productivity growth that is due to other sources.

In the present context at least two problems are likely to arise when trying to measure
and source technological change correctly. One is that the trend term and R&D capital
stocks are highly collinear. Therefore, it will be very difficult to get precise estimates
of their respective impact on costs and to attribute the observed technological change
correctly to R&D and non-R&D sources. The other problem has already been discussed
in section 4.2. Tt is related to the double-counting due to the fact that it is not possible to
correct the rival factors of production for the inclusion of R&D. Therefore, the estimated
impact of R&D capital on costs is likely to underestimate technological change reflected
in decreases of non-R&D production costs due to innovations, because what is really
measured are decreases in total costs including R&D.

Keeping this problem in mind, the system (3.22)-(3.24) in the error correction form is
estimated again, this time including each industry’s R&D capital stock in the estimation,
to see whether at least some productivity enhancing effect can be detected. Considering
the previous discussion it is not very surprising that a significant impact of the R&D
capital stock on costs can be found only in a handful of industries. As can be verified
in appendix A.4 the estimated impact of R&D is clearly significant in the transport

equipment and in the machinery industry, while it is just significant at the 5% level of
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significance in the electrical and optical equipment industry. In the basic and fabricated
metals industry it is only barely significant even at the 10% level of significance. It is
significantly positive in the manufacturing industries n.e.c. and - at a 10% level of sig-
nificance - in the wood industry. Yet, in both cases the inclusion of the R&D capital
stocks in the cost function estimation results in parameter estimates that violate concav-
ity restrictions. Therefore, the results are not deemed reliable and are not presented in
appendix A.4. In all of the other industries, no significant impact of R&D can be found.

The finding that there is no significant impact of R&D on costs in half of the industries
does not imply that R&D has no impact at all. It simply means that there is no excess
return to R&D in these industries. The impact of R&D-labor on output, as an example,
is not significantly higher than the impact of ordinary production labor. When instead
R&D is significant, this implies that the impact of R&D on output is above normal.
There are excess returns to R&D. This may occur because investment in R&D leads to
innovations which enhance the efficiency of the production process in significant ways.
A complementary interpretation is that there may be intra-industry spillovers between
the firms in the investigated industry. Both interpretations are very much in the spirit
of endogenous growth theory.

Elementary economic reasoning suggests that investment in R&D should be high
where its return is high. Therefore, it does not come as a surprise that almost all
the industries that earn an excess return on R&D are relatively R&D-intensive. The
chemicals industry is the only R&D-intensive industry where the impact is insignificant.

It is indeed a general finding that including R&D in the cost function lowers the
productivity growth that is captured by the trend term. This can be verified in Table
5.1, which reports the average productivity growth implied by the estimation without
knowledge variables,—scr, and with own R&D, —8%P | respectively.

Only in the basic and fabricated metals industry is this effect very small. The drop
in productivity growth estimated by the trend term is more noticeable in the electri-

cal and optical equipment industry. In the machinery industry estimated productivity
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Table 5.1: Influence of R&D Capital Stocks on the Productivity Growth Estimate

Industry ™ R&D Us Italy Japan Germany Canada France ‘
Metals —sor 029 027 021 0.25 0.30 0.26
(0.05) (0.07) (0.06) (0.07) (0.07)  (0.07)

—eBED 0252 023 017 021 0.26 0.22

(0.07)  (0.07) (0.07) (0.08) (0.08)  (0.08)

Machinery —cor 0.31 027  0.29 0.35 0.28
(0.13) (0.14) (015) 0.14)  (0.14)

—eB&D -0.06 -0.12  -0.11 -0.04  -0.10

(0.16) (0.16) (0.17) (0.17)  (0.16)

Elect. &Optical Eq. —eeor - 1.01 1.00 1.00 1.12 0.96
(0.21)  (0.22) (0.21) (0.23)  (0.32)

—gB&D | 0.69 062  0.73 0.76 0.66

(0.28)  (0.30) (0.29) (0.32)  (0.32)

Transport —&cr -0.16  -0.11  -0.15 -0.13 -0.15 -0.16
(0.10)  (0.10) (0.10) (0.10) 0.11)  (0.10)

—eB&D 035  -028 -0.33  -0.32 -0.35 -0.35

(0.12) (0.11) (0.12) (0.12) 0.12)  (0.13)

—ecor - Average Productivity Growth in the Estimation without R&D
—5%&«[) : Average Productivity Growth in the Estimation with R&D
(Standard Errors in Parentheses)

becomes negative and insignificant once excess returns to R&D are accounted for. In
the transport equipment industry taking account of excess returns to R&D results in a
significantly negative estimate of productivity growth that is captured by the trend term,
suggesting that non-R&D sources of technological change possibly have adverse effects
on productivity growth.

The impact of R&D is insignificant in all the industries where productivity growth is
estimated to be negative when R&D is not included in the estimation. These observations
suggest that excess returns to R&D can indeed explain a good part of the observed
productivity growth. When R&D is not included in the estimation, the unspecific trend
term seems to pick some of its impact. This finding supports the viewpoint of endogenous
growth theory that technological change is a result of deliberate investments in research
and development.

Table 5.2 shows the costs elasticities with respect to R&D for the industries where the
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impact of R&D is significant. Note that this elasticity is considerably higher in absolute
value than the cost elasticity with respect to the time trend in the estimation without
R&D.! This suggests that while the time trend seems to pick up some of the effect of
R&D on productivity growth when R&D capital stocks are not included in the regression,

it may not capture all of it.

Table 5.2: Average Cost Elasticities with Respect to R&D Capital

Industry R&D US Ttaly Japan  Germany Canada France ‘
Metals gcr  -0.020 -0.007 -0.031 -0.029 -0.013 -0.017
(0.006) (0.004) (0.019) (0.017) (0.008)  (0.010)
Machinery ECcR - -0.029 -0.126 -0.174 -0.070 -0.101
- (0.006) (0.028) (0.038) (0.016)  (0.022)
Elect. & Opt. Eq. ecr - -0.029  -0.054 -0.070 -0.051 -0.073
- (0.015) (0.028) (0.037) (0.027)  (0.038)
Transport gcr  -0.092  -0.035 -0.026 -0.044 -0.010 -0.052
(0.038) (0.015) (0.011) (0.019) (0.004)  (0.022)

gor : Cost Hlasticity w.r.t. R&D
(Standard Errors in Parentheses)

According to R&D based models of economic growth, knowledge is the source of
economies of scale. When R&D is not included in the estimation the cost elasticity
with respect to output may pick up some of the effect of R&D on overall returns to
scale. A similar idea is implicit in Morrison Paul & Siegel’s (1997) interpretation of
their results of a cost function estimation for US manufacturing industries. They find
that their estimate of the rate of returns to scale measured with the inverse of the cost
elasticity with respect to output decreases when R&D is included in the estimation. This
is interpreted as evidence that at least some of the observed economies of scale can be
traced to knowledge as R&D based models of economic growth would suggest.

Such a systematic decrease of the estimated rate of returns to scale after the inclusion
of R&D capital stocks is not found in this study, as can be verified quickly comparing

Tables 5.3 and 4.6. The latter reports the rate of return to rival factors, %, derived

IThe cost elasticity with respect to the time trend in tables 4.3 to 4.5 is multiplied by 100, to obtain
productivity growth in percent.
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from the cost function estimation with R&D capital. It is a little bit higher than in the
estimation without R&D in some industries and a little bit lower in others, but overall
the estimate 1s hardly changed. It does not seem to be the case that the estimate of
the rate of returns to scale picks up that part of the scale effect of R&D that is due to
excess returns when R&D is not accounted for in the estimation. Yet, in industries with
an excess return to R&D the rate of returns to scale is higher than this, because the
impact of R&D on output is stronger than the output elasticities of labor, capital and
material inputs suggest. Table 5.3 also reports the measure of the rate of return, n,;,

which includes the effect of excess returns to R&D.

Table 5.3: Internal FEconomies of Scale with and without R&D

Industry R&D US Ttaly Japan  Germany Canada France

Metals SCIY 1.208 1.215 1.253 1.214 1.192 1.171
(0.048) (0.050) (0.053) (0.048) (0.047)  (0.043)

Ny 1.227 1.222 1.282 1.241 1.204 1.188
(0.049) (0.049) (0.061) (0.055) (0.046)  (0.044)

Machinery ECIY - 1.150 1.243 1.266 1.136 1.231
- (0.041) (0.053) (0.058) (0.039)  (0.040)

Myf - 1.178 1.364 1.429 1.205 1.327
- (0.038) (0.065) (0.082) (0.039) (0.169)

Elect. & Opt. Eq. scly - 1132 1.118  1.178 1.194  1.118
- (0.045) (0.034) (0.040) (0.044)  (0.036)

Ny - 1.160 1.171 1.246 1.248 1.191
- (0.037) (0.043) (0.058) (0.049)  (0.060)

Transport scly 1.292 1.279 1.255 1.228 1.126 1.254
(0.076) (0.055) (0.053) (0.051) (0.043)  (0.054)

Ny 1.378 1.311 1.280 1.270 1.136 1.304
(0.102) (0.057) (0.053) (0.058) (0.042)  (0.063)

(Standard Errors in Parentheses)

In most cases taking into account the excess return to R&D raises the measured rate
of returns to scale only by a relatively moderate amount. One exception to this rule is
the machinery industry, where the difference between % and 7, is quite substantial for
Germany.

Overall, these results are in line with R&D based models of growth. In some partic-
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ularly R&D-intensive industries returns to investments in knowledge creation are found
to be above normal. These excess returns to R&D seem to explain a part of the observed
productivity growth and in line with the theory they are a source of increasing returns.

The R&D based models presented in chapter 2 not only imply that each industry’s
R&D effort should enhance its own productivity. Knowledge may also spill over to other
industries and have a beneficial effect on their productivity growth. The following sections
therefore examine whether knowledge spillovers can be found in the OECD industries

investigated in this dissertation.

5.2 Modelling Spillovers

5.2.1 Alternative Strategies

The R&D based models of growth presented in chapter 2 suggest that innovations as
a result of research and development effort in each industry 7 enhance its productivity
growth. Moreover, industry 7 may benefit from knowledge created in other industries that
spills over through trade in intermediate inputs which embody technological change.
As suggested in equation (2.30), this can be modelled empirically by including other
industries’ R&D capital stocks as an input in the production function of industry i. By
the duality of the cost and the production function describing a production technology
the R&D capital stocks from external sources would also appear in the industry’s cost
function as external variables. Additionally, a trend variable may be included in the cost
or production function to capture sources of productivity growth that are exogenous to
the model, such as government regulation or changes in organization.

Ideally, the impact of each different source of productivity growth should be esti-
mated separately to assess its relative importance. The cost or production function of an
industry ¢ would than include its own R&D capital stock and that of all other industries.
Especially when working with many cross-sections, though, degrees of freedom may not

be the only limit to the inclusion of all potential spillover sources as a separate variable.
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Since R&D capital stocks are typically trended, these variables are more often than not
highly collinear. Due to this multicollinearity problem, it will be more than difficult to
pin down the magnitude of the individual impacts of different R&D capital stocks and
the time trend on costs or productivity.

Basant & Fikkert (1996) report their problems when trying to include spillover vari-
ables along with own R&D and time dummies in their estimation equation of a production
function for Indian industries. Whenever they include time dummies, this lowers the sta-
tistical significance of the R&D variables dramatically. In their overview article about
studies concerning the impact of R&D on productivity Mairesse & Sassenou (1991) con-
firm that most researchers encounter severe problems with multicollinearity when trying
to investigate R&D and other sources of productivity growth in an integrated approach.

The high degree of multicollinearity may well be the reason why many researchers
consider only some combination of variables that capture sources of productivity, rather
than all of them together. Mohnen, Nadiri & Prucha (1986) include only own R&D,
Nadiri & Prucha (1996) and Nadiri & Nandi (1999) combine own R&D and a trend
term, Bernstein & Nadiri (1988), Bernstein & Yan (1997) and Bernstein & Mohnen
(1998) investigate own R&D and international spillovers jointly, without including a
trend. Morrison Paul & Siegel (1999), in turn, investigate the impact of R&D spillovers
and a trend term without own R&D.

Clearly, multicollinearity will not only make it difficult to differentiate between the
impact of own R&D, R&D spillovers and the trend term. It is even more difficult to assess
the relative importance of different spillover sources. The final production function (2.30)
suggests to take account of each industry’s R&D capital stock as a separate variable. Of
course, this will most certainly aggravate multicollinearity problems. Bernstein & Nadiri
(1988) are one of the very few examples of a study that succeeds in estimating spillovers
from several different industries individually with data from some US high-tech industries.
It goes without saying that this approach becomes more and more difficult the larger the

number of industries included in the sample.
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In most studies, R&D capital stocks from outside industries or countries are aggre-
gated to somehow measure a joint spillover effect. As an example, Morrison Paul &
Siegel (1999) estimate a cost function with US industry data at the two-digit Standard
Industrial Classification (SIC) level. They include R&D at one level of aggregation higher
to capture the external nature of some of the knowledge production.

Alternatively, researchers aggregate the R&D capital stocks with weights which are
intended to capture a specific transmission mechanism for knowledge spillovers. As out-
lined above, knowledge embodied in new or improved products may spill over through
trade. Country-level studies that intend to stress this technological transfer mechanism
often use import shares to weight R&D capital stocks that originated in other countries.
A prominent example for this approach is the study by Coe & Helpman (1995). Kim
& Nadiri (1996a) use the same approach within a cost function {ramework with OECD
country level data, while Keller (2001) constructs import shares at the industry level.

To capture technological transfer through trade between different industries in one
country, input-output coeflicients are used in many studies. Terleckyj (1974) as well as
Nadiri & Wolff (1993) and - in the more recent literature - Keller (2001) use this method
to stress R&D spillovers due to customer-supplier relations.

It should be noted, however, that technology may also flow from the upstream to
the downstream industry. Mansfield (1984) points to evidence that the supplier may also
benefit from research and development conducted by the costumer. Moreover, technology
may spill over through many other channels than trade. Therefore, alternative weighting
schemes have been used in the literature to capture different spillover channels. Lichten-
berg & van Pottelsberghe de la Potterie (1996), for example, rely both on trade and on
foreign direct investment to construct weights.

Scherer (1984) creates a technology flow matrix by determining the industry of origin
and the industry of use for US patents. Branstetter (2001) relies on foreign patenting.
Jafle (1986) constructs measures of technological closeness. According to this approach,

the weights should be proportional to the similarity in the firm’s patent portfolio. The
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firms are positioned in the ”technological space” through vectors containing the distribu-
tion of patents over different classes. Technological closeness between two firms is then
measured as the uncentered correlation of those vectors.

At the industry level a technology flow matrix based on technological closeness, known
as the Yale concordance, has been developed by Evenson, Putnam & Kortum (1989).
Vectors containing probabilities that industries use patents from a particular patent class
are employed to locate industries in the technology space. The Yale concordance has been
used by Keller (2001) and Los & Verspagen (2000) to construct weights for their spillover
variables.

Patents and innovations are indicators of the technology status of industries or firms.
Since spillovers due to technological proximity are likely to occur on a purely intellectual
level, externalities that are captured using patent data may be viewed as being of the
disembodied kind. In contrast, spillovers that are captured using trade or input-output
data are embodied in goods.

While none of the weighting schemes discussed above is superior, in that they simply
stress different transmission channels, each has its own shortcomings. The use of patent
data requires the drastic assumption that the value of patents does not differ for various
producers, within and across countries and over time.

On the other hand, Keller (1998) repeats Coe & Helpman’s (1995) regressions with a
spillover variable whose weights are randomly generated. Finding even larger spillovers
than Coe and Helpman, he concludes that their shares may not be appropriate to capture
knowledge spillovers that occur due to international trade. His technique to generate
trade shares is criticized by Coe & Hoffmaister (1999) for not being random in contrast to
what Keller claims. Using random trade shares generated with an alternative technique,
they find no significant impact on productivity. Nevertheless, Keller’s study appears to
show that the Coe and Helpman results are not dependent on having found weights that
capture the spillover channel correctly. Since there are many ways for knowledge to spill

over, a perfect strategy to mirror spillover channels empirically does not exist.
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Although it is by no means easy to tackle the problem of multicollinearity between
R&D capital stocks, spillover variables and the trend term, each of these variables cap-
tures a different aspect of technological change. Estimates may actually pick up some
combined effects from all of these, if some variables that source technological growth are
omitted. It is therefore desirable to try and find a way to cope with the problem of
multicollinearity to untangle the different sources of productivity growth.

However, with a large number of cross-sections, it is impossible to estimate the impact
of each knowledge stock from other industries individually. The next section outlines an
aggregation approach for spillover variables in a multi-country, multi-industry setting.

The proposed weighting scheme draws heavily on Keller (2001).

5.2.2 Spillovers in a Multi-Country Multi-Industry Setting

To reduce the number of collinear variables to be included in the estimation, this study
will focus on three different spillover sources: Each industry may benefit from spillovers
of other industries in the same country, from international intra-industry spillovers and
from inter-industry spillovers.

The weighting schemes used for aggregating the R&D capital stocks focuses on cap-
turing trade as a spillover channel. This is in line with the models presented in chapter 2
which provide a theory on how knowledge may spill over through trade of input factors
between different sectors.

To capture spillovers from other industries in the same country, input-output coeffi-
cients are used to weight their R&D capital stocks. Hence, the domestic spillover variable

for industry 4 in country k is constructed as

I

where w;; denotes the input-output coeflicients of intermediate goods flowing from indus-

try ¢ to industry j. More specifically, w;; is industry j’s sales to industry i as a percentage
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of industry j’s total sales to the entire economy.

Stressing trade as a transmission channel at the international level involves using im-
port shares as weights. These are conceptually equivalent to the input-output coefficients
that capture domestic trade relations.

Let mygy; be the bilateral import share of country k from country v for goods from
industry 7. For a given country k and sector 7 the effect of R&D conducted in the same

sector in foreign countries is then:

SF="> " mpui Ry (5.2)
vk

Using 5.2 to calculate the intra-industry spillover variable, it is implicitly assumed that
country k’s import share of goods from country v that can be assigned to industry i
captures the channel of intra-industry spillovers appropriately, although, of course, not
all imports from industry ¢ abroad will go to that same industry. Some US imports from
Japan’s fabricated metal industry may go to the transport industry rather than to the
US fabricated metal industry. From a theoretical point of view, it would be desirable to
have a more precise breakdown of industries that actually receive goods from industry .
Empirically, assigning imports to industries according to the type of good that is traded
is the best that one can do. To the best of my knowledge, international trade data that
contains information about buying and selling industries does not exist.

Industry i can also benefit from R&D that is conducted in foreign sectors m # j. This
is referred to as inter-industry spillovers. To construct weights, input-output matrices for
imports are used. For each industry the matrices display the use of intermediate inputs
which are produced in foreign countries.

For a specific country k let v,,; denote the share of industry #'s imports of intermedi-

ates from the m industry. S ’; ’ may then be defined as:

SI;Z = vaz‘sﬁn (5.3)
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This aggregation scheme reduces the number of spillover effects to be estimated to three.
It thus preserves degrees of freedom and alleviates multicollinearity problems.

The weights for the domestic spillover variable, w;;, are measured with input-output
coefficients. Input-output tables measuring domestic intermediate goods flows for each
of the countries in the sample are provided by the OECD (OECD 1995).

Since in the model spillovers can be associated with trade in capital goods, it may
seem desirable to use capital goods flow matrices to construct the weights. Although the
OFECD does provide input-output matrices for capital goods, these are very incomplete.
Therefore, intermediate goods flow matrices are used instead.

Qualitatively, matrices are quite similar across countries. Not surprisingly, for exam-
ple, both the fabricated metal industry and the machinery industry retrieve the bulk of
their intermediate inputs from the basic metal industry, as does the transport equipment
industry. In general, the food and tobacco industries do not provide a large quantity of
intermediate inputs for other manufacturing industries. Quantitatively, however, there
are important differences between the input-output coefficients of France and Germany
and the remaining countries, especially for fabricated metal products. This indicates that
accuracy 1s gained, when using input-output data from each individual country rather

than assuming that input-output structures can be approximated well with data from

the US only, as in Keller (2001).

Table 5.4: Average Import Shares in Transport Equipment; 1980-97; in per cent

to

Canada USA Japan France Germany Italy

from

Canada 0 42.04 1.15 0.41 0.91 2.38
USA 86.53 0 59.47  9.66 18.26 8.14
Japan 9.59 41.73 0 6.36 25.12 3.22
France 1.46 3.26 487 0 37.29 33.02
Germany 2.18 11.32 32,19 66.37 0 56.38
Ttaly 0.24 1.65  2.34 17.19 18.42 0

The intra-industry spillover variables are constructed using import shares as weights.

These are conceptually equivalent to the input-output coefficients capturing domestic
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trade relations. The import shares are constructed drawing on Feenstra’s (2000) data of
import flows over the period 1980-1997. Time-invariant import-shares are constructed
averaging the import-shares over 1980-1997. As an example, the bilateral import share
matrix for transport equipment is shown in Table 5.4.

Average import shares over all industries are shown in Table 5.5. As can be seen
in these tables, import shares are different across world regions. They are certainly
related to geography. While Canada and Japan receive most of their imports from the
US, European countries trade more among each other and tend to receive their largest
import share from Germany. The US receive most of their imports from Canada and

Japan, while their biggest Furopean trade partner is Germany.

Table 5.5: Average Bilateral Import Shares over all Industries; 1980-1997; in per cent
to

Canada USA Japan France Germany Italy

from

Canada 0 39.33 8.17 1.67 2.55 2.26
USA 84.98 0 66.18  14.37 19.40 15.21
Japan 6.48 33.51 0 6.95 13.92 5.50
France 2.79 7.32  5.71 0 33.03 30.77
Germany 2.95 11.04 13.38 47.15 0 46.25
Ttaly 0.28 8.79  6.55 29.85 31.09 0

Import input-output matrices provided by the OFECD are used to construct weights
for the inter-industry spillover variable. The coefficients are calculated in a manner
completely analogous to the input-output coefficients for the domestic spillover variable.
Again, there are some similar patterns across countries, but significant quantitative dif-
ferences remain, so constructing weights individually for each country is advantageous.
A more detailed description of the construction of spillover weights is provided in the
data appendix.

The next section presents estimation results concerning the impact of spillover vari-

ables on the costs of production.

119



5.3 Spillovers in OECD Industries

According to R&D based models of growth, R&D may not only enhance productivity
growth in the firm that invests in it. Other economic agents can benefit from this invest-
ment through knowledge spillovers. There are essentially two different types of spillover
channels implicit in the models described in chapter 2. First, industry ¢ may benefit from
innovations developed elsewhere, because they are embodied in intermediate capital or
material inputs that it buys from other industries. Thus, it does not have to invent these
new or improved products itself to benefit from the innovation. These type of spillovers
are very well modelled with the weighting scheme described in the previous section.

Both the Aghion & Howitt (1998a) model and the Romer (1990) model imply that
there may be disembodied spillovers associated with the knowledge production process
in addition to this. Industries aspiring to develop innovations may benefit from research
and development conducted before in other industries, because this allows them to build
on previously developed knowledge. More precisely, new ideas may be exchanged e.g.
at scientific conferences, due to the movement of engineers between different industries
and /or countries or because foreign direct investment allows research and development
personnel in the country, where the investment is made, to build on knowledge created in
the investor’s country. One could certainly think of many other channels for disembodied
spillovers.

Even though trade related weights are chosen to construct spillover variables, it is
hoped that these would also capture at least some of the disembodied spillovers associated
with the knowledge production process, should that be of empirical importance. Since
an ideal weighting scheme does not exist, one among the many possibilities has to be
chosen arbitrarily. The models presented in chapter 2 provide clear guidance as to how
to weight spillovers embodied in intermediate inputs, while it is difficult to derive a
weighting scheme for disembodied spillovers. Therefore, trade weights are chosen in this
study.

To see whether it is possible to pin down knowledge externalities empirically, the
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spillover variables described in the previous section are included in the cost function as
external factors. From a theoretical point of view it is certainly desirable to include
the three different spillover variables simultaneously to pin down their individual impact.
This would ensure that an individual spillover variable does not pick up the impact of an-
other variable that was excluded. Unfortunately, this approach proves infeasible because
of multicollinearity between the different spillover variables. As more and more R&D
variables are included in the estimation, estimates change sometimes dramatically and
standard errors rise. Therefore, an alternative strategy is pursued. The impact of each
spillover variable is investigated individually. It is then tested whether the result, that
the impact is significant, is robust to excluding own R&D and the trend term from the
regression and to employing a more flexible trend term specification. Estimation results
with spillover variables that prove to have a significant impact on costs are reported in
appendix A.5, if this result is robust in the sense just defined.

In four industries, food, wood, publishing and printing and manufacturing not else-
where classified, none of the spillover variables has a significant impact. Since ”exoge-
nous” technological change is negative in the estimation without R&D variables for the
three industries mentioned first, this result is not surprising. There just is no produc-
tivity growth to be explained, at least in the sample period considered here. In the
manufacturing industries not elsewhere classified, in turn, there is some positive produc-
tivity growth, which however seems to have a different source than investment in R&D
or knowledge spillovers.

As an overall picture, knowledge created in the same industry abroad seems to be the
most important source of spillovers. If a significant impact of any of the spillover variables
can be found at all, the intra-industry spillover variable is among it for almost all the
industries. The only exception is the non-metallic mineral products industry, where only
domestic spillovers have a significant impact. Consequently, the specification with own
R&D and domestic spillovers is reported for non-metallic mineral products in appendix

A.5. For all other industries the intra-industry spillover variable is chosen instead. If
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both the R&D variable and the intra-industry spillover variable are significant, both are
included in the estimation. If, instead, only the spillover variable is significant, it is
included alone. This is the case for the chemical and the rubber and plastics industry.

In the textiles industry and in the chemical industry international inter-industry
spillovers also have a significantly negative impact on costs. This finding is robust to
the exclusion of own R&D and the trend term. The well-known signs of multicollinear-
ity appear, however, when both international spillover variables are included together:
the estimated impact changes and standard errors rise dramatically. It is impossible to
pin down empirically which one of the two variables is really relevant and what is their
relative importance. The estimation results with the intra-industry spillover variable
are reported for two reasons. First, the fact that it is significant in so many industries
suggests that it is the most important among the spillover sources considered here. Sec-
ond, it is somewhat implausible that an industry should benefit from knowledge created
in foreign industries other than itself, while knowledge created in those same industries
located at home has no impact on its productivity. Therefore, the estimated impact of
the intra-industry spillover is deemed more reliable.

Moreover, in the textiles industry the impact of own R&D becomes significant along
with the spillover variable, as soon as the trend term is excluded from the estimation.
Since productivity growth estimated with the trend term is significant even after the
inclusion of knowledge variables in the estimation, appendix A.5 reports results of the
specification with the trend term parameters by, and b; and the intra-industry spillovers,
but without its own R&D capital stock.

International intra- and inter-industry spillovers are also significant in the electrical
and optical equipment industry, as long as own R&D is not included in the estimation.
Since, these results are not robust in the sense defined above, they are not reported.
However, it should be noted that for this industry it is not only hard to distinguish the
influence of different spillover sources. It is also difficult, if not impossible, to differentiate

between the influence of the industry’s own R&D investments and spillovers.
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The difficulty to choose the right sources of productivity growth for the industries
discussed in the previous paragraphs is certainly a symptom of the more general problem
that different multicollinear variables are conjectured to enter the estimation equation.

In such a case it is very difficult to decide empirically, which variable is relevant in reality.

Table 5.6: Influence of Spillover Variables on the Productivity Growth Estimates

‘ Industry Prod. US Ttaly Japan Germany Canada France ‘
Textiles —cor  0.68 0.65 - 0.64 0.66 0.63
(0.09)  (0.09) (0.09) (0.09) (0.09)
—525{;5 0.54 0.52 0.51 0.52 (0.50)
(0.09)  (0.09) (0.10) (0.09) (0.10)
Chemicals —ecor 0.17 0.17 - 0.15 0.17 -
(0.01)  (0.06) (0.01) (0.01)
—525{;5 0.08 0.09 0.08 0.08 0.10
(0.07)  (0.07) (0.06) (0.08) (0.10)
Plastics —ecor  -0.13 -0.01 - -0.18 -0.15
(0.09)  (0.10) (0.10) (0.10)
—eefe 022 -0.18 -0.29 -0.25
(0.10)  (0.11) (0.11) (0.10)
Mineral Prod. —gop  0.32 0.29 - 0.32 0.34 0.32
(0.16)  (0.14) (0.16) (0.17) (0.16)
—52?% -0.0001  -0.0002 -0.0001 -0.0001
(0.002) (0.002) (0.002) (0.002)
Metals —cor  0.29 0.27 0.21 0.25 0.30 0.26
(0.05)  (0.07)  (0.06) (0.07) (0.07) (0.07)
—525{;5 0.28 0.27 0.20 0.24 0.28 0.24
(0.08)  (0.07)  (0.07) (0.07) (0.27) (0.07)
Machinery —cor 0.31 0.27 0.29 0.35 0.28
(0.13)  (0.14) (015) (0.14) (0.14)
—525{;5 -0.64 -0.70  -0.74 -0.64 -0.66
(0.19)  (0.19) (0.20) (0.19) (0.18)

(Standard Errors in Parentheses)

As R&D based growth theory would suggest, the spillover variables apparently explain
a portion of the observed productivity growth. Table 5.6 reports productivity growth es-
timates obtained with and without spillover variables included in the estimation. —52?%5

is the cost elasticity with respect to the trend term obtained from the estimation includ-
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ing intra-industry spillovers, while —52?% is obtained from the estimation including the

domestic spillover variable. This spillover variable is significant only in the cost function
for the mineral products industry.

Including spillover variables lowers the dual measure of technological change in all
of the investigated industries. The only exception is the basic and fabricated metals
industry, where the implied productivity growth decreases only slightly, even if both the
industry’s own R&D capital stock and the significant intra-industry spillover variable are
included in the estimation.

The decrease is also quite small in the textiles industry, where significantly positive
productivity growth is still estimated even after the inclusion of the spillover variable
into the estimation equation. This suggests that there seem to be other sources than
knowledge creation as a result of research and development effort that are important for
productivity growth in this industry.

In the chemicals industry the small but significant productivity growth that is mea-
sured when estimating the cost function without R&D variables becomes even smaller
and insignificant once the intra-industry spillover variable is included in the estimation.
Likewise, in the mineral products industry even the point estimate of productivity growth
is virtually zero once the domestic spillover variable is included in the estimation, while
it is significantly positive when R&D variables are not included. In these two industries,
the trend term seems to capture productivity growth due to knowledge spillovers when
these are not explicitly taken into account.

In the machinery industry the productivity growth estimate measured with the trend
term even becomes significantly negative once both the industry’s own R&D effort and
international intra-industry spillovers are accounted for. This is an indication that sources
of technological change other than knowledge creation, such as organizational changes
or government policies, have adverse effects on productivity growth. This also seems
to hold for the rubber and plastics industry, where estimated productivity growth is

negative but insignificant in the estimation without R&D variables. With intra-industry
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Table 5.7: Average Cost Elasticities with Respect to Spillover Variables

Industry R&D US Italy Japan  Germany Canada France ‘
Textiles Ecsps  -0.005  -0.010 - -0.010 -0.127 -0.010
(0.001) (0.003) (0.001) (0.041)  (0.004)
Chemicals Ecsps  -0.003  -0.023 - -0.013 -0.128 —0.180
(0.001) (0.007) (0.004) (0.039)  (0.066)
Plastics Ecsps  -0.005  -0.021 - -0.016 -0.184 -
(0.002) (0.011) - (0.008) (0.093) -
Mineral Prod. eqgg -0.162  -0.026 -0.125 -0.037 -0.099
(0.067) (0.011) (0.053) (0.016)  (0.041)
Metals cor  -0.027  -0.001 -0.041 -0.038 -0.017 -0.022
(0.012) (0.004) (0.019) (0.018) (0.008)  (0.010)
Eosfs  -0.027  -0.088  -0.065 -0.062 -0.500 -0.117
(0.013) (0.026) (0.020) (0.018) (0.145)  (0.035)
Machinery ECcrR - -0.035 -0.154 -0.215 -0.085 -0.120
- (0.007) (0.09)  (0.041) (0.016)  (0.023)
ECsfs - -0.033  -0.015 -0.014 -0.325 -0.054
- (0.010) (0.005) (0.004) (0.099) (0.016)

Ecsps: Cost Elasticity w.r.t. the Intra-Industry Spillover Variable
£osq: Cost Elasticity w.r.t. the Domestic Spillover Variable
(Standard Errors in Parentheses)

spillovers included in the estimation, the estimate of technological regress rises enough
in absolute value so that it becomes significantly negative.

Overall these results seem to suggest that in line with the R&D based theories of
growth presented in chapter 2 market driven knowledge creation can account for most
of the observed productivity growth. While results differ considerably across industries,
both excess returns to investments in R&D and spillovers from other industries are found
to explain some of the technological change that is measured when R&D variables are not
accounted for in the estimation. Since productivity growth estimated with the trend term
becomes insignificant or even negative in the majority of industries, it can be concluded
that sources of technological change other than innovations more often than not seem to
have adverse effects on R&D.

In all of the industries where spillovers are found to have a significant impact on costs

this effect is found to be negative. This can be verified in Table 5.7, which reports
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average cost elasticities with respect to own R&D and with respect to the spillover
variable. ecr denotes the cost elasticity with respect to the industry’s own R&D capital
stock, £¢sps 1s the cost elasticity with respect to the international intra-industry variable,
while £¢gq denotes the cost elasticity with respect to the domestic inter-industry spillover
variable.

Since the impact of R&D and spillover variables is negative, these variables shift
the cost function downwards, implying that they are a source of technological progress,
as R&D based models of growth would suggest. Similar as the cost elasticities with
respect to the industries’ own R&D capital stocks, the elasticities with respect to spillover
variables tend to be larger in absolute value than the productivity growth estimated with
the trend term in the estimation without R&D variables. As discussed in section 5.1,
this seems to suggest that the trend term picks up some of the productivity growth due
to knowledge creation, but not all of it, when R&D variables are not accounted for in
the estimation. This also fits into the interpretation outlined before, that some of the
sources of technological change other than innovations seem to have adverse effects on
productivity growth.

It is a somewhat relieving finding that in spite of the multicollinearity between dif-
ferent R&D variables, including spillover variables in the estimation hardly seems to
change the cost elasticity with respect to R&D in most industries. This can be verified
comparing Tables 5.7 and 5.2.

R&D based models of growth suggest that the economy’s stock of knowledge is a
source of increasing returns. This may apply to knowledge created in the industry where
it contributes to economies of scale as well as to spillovers. To assess the importance of
this effect in the investigated industries, the rate of returns to scale including the effect
of excess returns to the industries’” own R&D capital as well as the effect of spillovers is
reported in Table 5.8. n captures both internal and external economies of scale which
are due to spillovers. For those industries for which no significant impact of spillover

variables could be found 7 of course equals 7, in Table 5.3
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Table 5.8: Average Economies of Scale in Rival Factors, R&D Capital and Spillovers

‘ Industry R&D US Italy Japan  Germany Canada France ‘
Textiles n 1.160 1.195 - 1.148 1.295 1.152
(0.031) (0.033) - (0.031) (0.064)  (0.030)
Chemicals n 1.122 1.232 - 1.196 1.302 -
(0.030) (0.032) - (0.029) (0.062) -
Plastics 7 1.276 1.210 - 1.191 1.410 -
(0.046) (0.042) - (0.041) (0.127) -
Mineral Prod. 7 1.584 1.498 - 1.499 1.327 1.449
(0.138) (0.081) - (0.107) (0.069)  (0.092)
Metals 7 1.240 1.315 1.379 1.328 1.816 1.327
(0.053) (0.069) (0.073) (0.066) (0.212)  (0.074)
Machinery n - 1.196 1.436 1.505 1.602 1.386
- (0.041) (0.070) (0.091) (0.138)  (0.055)
Elect. &Opt. Eq. 7 - 1.160 1.171 1.246 1.248 1.191
- (0.037) (0.040) (0.058) (0.049)  (0.060)
Transport 7 1.378 1.311 1.280 1.270 1.136 1.304
(0.102) (0.057) (0.053) (0.058) (0.042)  (0.063)

(Standard Errors in Parentheses)

As in the estimation with own R&D, the estimated internal rate of returns to scale
is quite robust to the inclusion of further knowledge variables. Only in the chemical
industry does it decrease somewhat. This is also the reason why 7 is slightly lower than
the estimate of internal economies of scale presented in Table 4.6 for the US chemical
industry. Since this effect is observed for only one industry it does not seem wise to
draw any conclusions from this. Rather, the inverse of the cost elasticity with respect
to output seems to capture the internal rate of returns to scale quite accurately in most
industries, whether or not knowledge variables are included in the estimation.

However, overall returns to scale in traditional factors, own R&D and knowledge
spillovers are higher than internal economies of scale alone for almost all industries and
countries. For some industries, most notably non-metallic mineral products, the machin-
ery industry and to some extent the basic and fabricated metal industry, the difference is
substantial. In the first two industries, internal and external economies of scale together

imply a rate of returns to scale that is close to 1.5 and higher in many countries In
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accordance with the theoretical model, the empirical results imply that knowledge is a
source of economies of scale.

Overall, the results presented in this section and in section 5.1 are very much in
line with the R&D based models of growth presented in the second chapter. FEither
the industries’ own R&D capital stocks or spillovers or both are found to be sources
of productivity growth in the majority of the investigated industries. These knowledge
variables cause downward shifts of the industries’ cost functions. Since productivity
growth estimated with the trend term decreases once knowledge variables are included
in the estimation, it can be concluded that the trend term picks up some of the effect
of R&D as long as it is not accounted for explicitly in the estimation. As R&D based
models of growth would suggest, both the industries’ own R&D capital stocks and/or
spillovers from other industries are shown to be a source of economies of scale.

At the same time, the results presented in this chapter suggest that it is very revealing
to choose a more disaggregate estimation level and to differentiate between industries.
The estimated impact of the different industries’ research and development activity for
their own technological advancements as well for productivity growth in other sectors
differs considerably across industries. In fact, in a number of industries neither significant
productivity gains nor any role for knowledge as a driving force for them can be found.
On the contrary, there seem to be effects other than knowledge creation and innovations
that adversely affect the industries’ productivity.

It is also important to note that different knowledge variables and the trend are
highly collinear, so that it is extremely difficult to get precise estimates of the impact of
different sources of technological change and to assess their relative importance. Yet, the
results presented in this section are carefully checked for their robustness. For this reason
they can be considered quite reliable. Most notably it seems safe enough to draw the
conclusion that for the industries investigated in this study, international intra-industry
spillovers seem to be most important among the three different spillover sources that are

taken into account.
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The next section describes how the results presented in this chapter compare with

existing results concerning the impact of R&D and spillovers on productivity.

5.4 Knowledge and Productivity - Existing Results

Coe & Helpman’s (1995) investigation is one of the earliest and most prominent country-
level studies explicitly aimed at testing the empirical relevance of endogenous growth
models. The authors regress the domestic and foreign trade weighted R&D capital stocks
on the log of total factor productivity using trade shares to weight the spillover variable.
With a panel of 22 advanced economies over 1971-1990, they find that R&D is indeed
shared across national borders. Both domestic and foreign import-share-weighted R&D

capital stocks are found to foster total factor productivity.

Table 5.9: Estimates of Output Elasticities of R&D Capital at the Country Level

Study CRS and PC  Direct Indirect Sample Obs.
imposed* Elasticity FElasticity Period

Coe & Helpman (1995) yes 0.078- 0.03- 1971 440
0.234 0.15 -90

Engelbrecht (1997) yes 0.055- 0.061- 1971 315
0.072 0.087 -85

Kao, Chiang & Chen (1999) yes 0.091 0.044 1971 440
(0.02) (0.03) -90

Lichtenberg & yes 0.017 0.044 1971- 440

Pottelsberghe (1996) (0.008) (0.005) 90

*CRS: Constant Returns to Scale; PC: Perfect Competition
(Standard Errors in Parentheses)

The Coe and Helpman study has led a number of researchers to extend the frame-
work, using essentially the same data. FEngelbrecht (1997) adds human capital to the
Coe-Helpman specification. While identifying an important role of human capital as an
additional engine of productivity growth, he confirms Coe & Helpman’s (1995) results
concerning the impact of R&D on productivity. To account more appropriately for unit

roots in the data Kao et al. (1999) repeat Coe & Helpman’s (1995) investigation using
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Dynamic OLS and Fully-Modified OLS. The authors confirm the qualitative result that
both domestic R&D and international spillovers have an important impact on produc-
tivity. Lichtenberg & van Pottelsberghe de la Potterie (1996) find that the trade-share
weighted spillover variable becomes insignificant, once an additional FDI-weighted vari-
able is included in the estimation. While this could be interpreted as a sign that F'DI is
more important as a channel of productivity spillovers than trade, it is much more likely
to be simply a problem of multicollinearity. Given that the spillover variables differ only
in their weights, they are more than likely to be highly collinear.

Hoping to gain further insight into different spillover sources, Keller (2001) con-
structs a domestic spillover variable, an international intra-industry and an inter-industry
spillover variable using the weighting scheme described in section 5.2.2. Table 5.10 re-
ports estimation results of the specification with input-output weights with all of the
spillover variables included in the estimation. The reported indirect elasticity concerns
the domestic spillover variable. The estimates vary largely depending on which spillover
variables he includes, and standard errors rise as more and more R&D variables enter the
estimation equation. While Keller’s results do confirm that R&D matters as an engine
of productivity growth, care should be taken when drawing conclusions from the relative
size of estimated R&D parameters. Because of the multicollinearity problem, it seems
rather unlikely that it is possible to precisely pin down the relative effect of different

spillover variables.

Table 5.10: Estimates of Output Elasticities of R&D Capital at the Industry Level

Study CRS and Direct Indirect Sample Obs.
PC imposed® Elasticity Elasticity Period
Keller (2001) CRS: yes 1970- 2288
PC: no 0.607 0.571 91
(0.119) (0.558)
Verspagen (1997) no 0.077 0.095 1972- 5852

(0.009) (0.011) 92
*CRS: Constant Returns to Scale; PC: Perfect Competition
(Standard Errors in Parentheses)
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Using an earlier version of the STAN database Keller is confined to value-added data,
which is likely to cause problems, when the market for material inputs is not competitive
as discussed extensively in section 3.1.1 and in appendix C. In the light of the empirical
results of this dissertation, it may also appear problematic that Keller assumes the impact
of R&D and knowledge variables to be the same across all industries. Results presented
in the previous section suggest that there are important differences between industries. In
fact, in some of the industries none of the knowledge variables seem to have a significant
impact at all.

With a similar international industry dataset from the OECD, Verspagen (1997)
estimates a Cobb-Douglas production function augmented with own R&D capital stocks
and domestic as well as an international spillover variables. Generally, both the industry’s
own R&D variable as well as the spillover variables have a significantly positive impact
in most specifications. There is an interesting difference between the ”within”-estimates,
stressing the time dimension of the panel, and the ”between”-estimates, which stress
the cross section dimension instead. The rate of returns to scale in all private factors
including R&D, which is implied by the ”within”-estimates is significantly smaller than
one in most cases. In contrast, it is bigger than one, although not significantly, in most
estimations for which the between-estimator is applied. This is primarily due to the
fact, that the estimated elasticity of physical capital is systematically lower, when the
within-estimator is applied. A similar phenomenon is observed in Los & Verspagen’s
(2000) study with US firm level data. This is in line with Mairesse & Sassenou’s (1991)
and Nadiri’s (1993) observation discussed before, that the estimated elasticity of physical
and R&D capital tend to be lower in time series than in cross section estimations.

As an alternative to the TEP regression in levels, estimating the impact of R&D on
productivity in growth rates is also popular in the applied literature. In these studies it
is common to use the ratio of R&D expenditures over output as an explanatory variable.
The coefficient is often interpreted as the rate of return to R&D (Jones & Williams 1998).

Most industry studies that aim at measuring the rate of return to R&D directly, con-
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Table 5.11:  Estimates of the Rate of Return of R&D at the Industry Level

Study CRS and Direct Rates Indirect Rates Sample Obs.
PC Imposed® of Return of Return Period
uUs
Terleckyj (1980) 0.25 0.82 1948 20
(0.08) (0.21) .66
Sveiskauskas (1981) yes 0.171 1959 144
(0.559) .69
Scherer (1982) CRS: yes 0.29 0.74 1973- 87
PC: 1o (0.144) (0.301) 78
Griliches & Mairesse (1983) PC: no 0.23 CSDtt 60
CRS: yes (0.12)
Japan yes 0.255 0.8 Ccsptt 50
Goto & Suzuki (1989) (0.140) (0.417)
France
Griliches & Mairesse (1983) PC: no 0.33 CsSDtt 60
CRS: yes (0.14)
International
Grifffith, Redding ves 0.207-0.446 1970 2478
& van Reenen (2000) (0.170)-(0.178) -92

*CRS=Constant Returns to Scale; PC=Perfect Competition
t+(CSD:Cross-Section Data; (Standard Errors in Parentheses)

firm the result that knowledge has a significantly positive effect on productivity growth.
As can be verified with a glance at Table 5.11, in most cases even the size of the different
estimates is quite close to each other, although sample periods, estimation techniques,
investigated countries, the definition and measurement of output and inputs and the
weighting scheme for the spillover variables differ widely among the studies.

In addition to estimating the direct effect of R&D on productivity, Griffith et al.
(2000) also try to asses whether R&D enhances the absorptive capacity of an industry. To
this end, they develop a technology gap variable measuring each industry’s productivity
relative to that of the technology leader. To capture the role of knowledge creation
as an enhancement of absorptive capacity they interact the ratio of R&D expenditures

to output with this technology gap term and introduce this as an explanatory variable
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into their estimation equation. Their result that R&D has a significant direct effect
on productivity and enhances productivity catch-up with the technology leader remains
robust to several adjustments to TFP, such as allowing for mark-ups and varying capacity

utilization or accounting for heterogeneity of skills in the labor force.

Table 5.12: Estimates of Elasticities with respect to R&D at the Firm Level

Study CRS and Direct Indirect Sample Obs.
PC imposed Elasticity Elasticity Period

Us

Schankerman (1981) no 0.232 CsDtt 101
(0.029) 1963

Griliches (1986) no 0.126 1972 491
(0.019) ospt

Branstetter (2001) no 0.362 0.831 CsSDHt 209
(0.130)  (0.443)  1983-89

Los & Verspagen (2000) no 0.0073 0.432 1974- 2475
(0.027)  (0.061) 1993

Hall & Mairesse (1996) no 0.039 1985- 2210
(0.048) 89

Japan

Branstetter (2001) no 0.013 0.703 CSDH 205
(0.049)  (0.346)  1983-89

France

Hall & Mairesse (1996) no -0.138 1985- 1905

(0.044) 89
*CRS=Constant Returns to Scale; PC=Perfect Competition
T+ (OSD:Cross-Section Data; (Standard Errors in Parentheses)

To show that a positive impact of R&D and spillovers on productivity has also been
found in several firm level studies for different countries, different data sets and different
sample periods Table 5.12 displays some representative results. An overview over firm
level studies is provided in Mairesse & Sassenou (1991).

Irom the point of view of this dissertation Schankerman’s (1981) results are particu-
larly interesting. Adjusting his data for double-counting, the author is able to show that
a failure to do so results indeed in downward biased estimates.

In conflict with the theory they investigate, many researchers employing the primal
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approach to estimate the impact of knowledge on productivity impose constant returns
to scale and perfect competition. While the investigation of the role of knowledge in the
primal approach typically relies on the Cobb-Douglas function, functional forms chosen
in cost function studies are much more general. Moreover, most researchers who employ a
dual approach typically exploit the possibility to allow for varying capacity utilization and
economies of scale. For this reason, the cost function framework seems more appropriate
than the more limited Solow residual framework.

Bernstein & Nadiri (1988) estimate a translog cost function system to explore spillovers
among five US high-tech industries. Rather than precalculating weights to construct an
aggregate spillover variable, the impact of each R&D capital stock from other industries
is estimated individually. Bénte (1997) replicates this study with German data. Like
Bernstein and Nadiri he is able to find spillover relations between some, but not all of
the industries.

Morrison Paul & Siegel (1997) estimate a generalized Leontief cost function for US
two-digit manufacturing industries. R&D, information technology and human capital
are introduced as external factors at a higher aggregation level to capture their external
nature. All of the external capital factors are found to be productivity enhancing. Cost

elasticities with respect to R&D capital stocks are also summarized in Table 5.13.

Table 5.13: Cost Elasticities with Respect to R&D Capital

Study Direct Indirect Sample  Obs.
Elasticity Elasticity Period
Bernstein & Nadiri (1988) -0.059 - 0.208 1958-81 24 each
Bonte (1996) 20.56-1.93  1972-89 18 each
Kim & Nadiri (1996a) 20.015 - 0.043  -0.007 - 0.059 1964-91 196
Kim & Nadiri (1996b) -0.091 1974-90 51
Morrison Paul & Siegel (1997) -0.02-0.294  1958-89 450 ind.
Bernstein & Yan (1997) -0.001 - 0.866 1962-88 60 each
Mamuneas (1999) -0.105 - 0.508 1949-91 43 each

Bernstein & Mohnen (1998) investigate the effect of own R&D and of bilateral

spillovers for the US and Japanese R&D-intensive industries, which are aggregated into
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one. The authors find spillovers from the US to Japan, but not the other way around.
The cost function also includes a significant trend term. This implies that own R&D
and spillovers between these two countries only do not fully explain all of the observed
productivity growth.

Nadiri and Kim use a translog function to estimate the role of economies of scale,
mark-ups and the impact of private R&D (Kim & Nadiri 19960) for the manufacturing
sectors of Japan, Korea and the US. In a second study (Kim & Nadiri 1996a) they
investigate the role of private R&D and spillovers with manufacturing sector data for the
7 countries, imposing constant returns to scale and perfect competition. Thus, while
the two studies together encompass all the relevant features of endogenous growth theory,
they are investigated separately.

Bernstein & Yan (1997) estimate domestic and bilateral inter-industry spillovers for
Canadian and Japanese industries. The data is pooled across countries and estimated
industry by industry. International spillovers from Canada to Japan are found for all
industries, but chemical products. Yet, spillovers from Japan to Canada are significant
in electrical products, food and beverages and primary metals only. Domestic spillovers
reduce costs in four out of ten Canadian, and in eight out of ten Japanese industries.

Overall the prediction of R&D based models of growth that knowledge is a driving
force of productivity growth is a very well established empirical result. A positive influ-
ence of both own R&D and knowledge spillovers on productivity growth has been found
both in the primal and in the dual framework, with many different data sets, different
levels of data aggregation, for different time periods and different countries, with many
alternative estimation methods and different definitions of the spillover variables.

If anything, the result that R&D is productivity enhancing appears more unambiguous
in the previous literature than in this dissertation. While for a number of industries no
significant impact of any of the knowledge variables can be found, such phenomena are
reported only in a few studies conducted before. This may well be due to the fact

that only some researchers actually differentiate between different countries, industries
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or firms. Yet, the empirical results of this dissertation and some other studies, such as
Bernstein & Mohnen (1998) and Bernstein & Nadiri (1988), suggest that it can be very
revealing to allow for heterogeneity. Of course this approach is not without its limits,
because there may not be enough observations to estimate a different parameter for each
cross section. Yet, the problem should be kept in mind when interpreting empirical
results.

Another problem that is carefully taken into account in this dissertation, but often
not in the previous literature, is the multicollinearity between different knowledge vari-
ables and the trend term. Researchers who enter several knowledge variables into their
estimation equation usually present their results as if both the sign of their parameter
estimates as well as their size was very reliable. Some researchers, such as Keller (2001),
even draw conclusions about the relative importance of different spillover variables. Given
the finding discussed in the previous section, that results often change dramatically when
entering additional knowledge variables, any study trying to source productivity growth
precisely should be treated with caution.

Studies employing the primal approach are frequently based on the Solow residual
framework relying on the assumptions of constant returns to scale and perfect compe-
tition. Some researchers, such as Keller (2001), use cost shares as weights to allow for
market power. A few others estimate the production elasticities, an approach that allows
for both market power and economies of scale. Cost function studies generally encom-
pass these important features of R&D based growth theory. Yet, none of the studies
discussed in this section aims at estimating mark-ups, economies of scale and the impact
of knowledge in an integrated approach. In fact, to the best of my knowledge such an

attempt has not been made before.
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Chapter 6

Conclusions

The Solow residual framework, which relies on the assumptions of constant returns to
scale and prefect competition, is highly popular among empirical researchers investigat-
ing R&D based models of growth. Yet, theory calls for a framework that encompasses
market power and non-constant returns to scale when investigating these models. In the
theoretical part of this dissertation it is shown that economies of scale and market-power
are inextricably linked to knowledge as an engine of productivity growth, if innovations
are assumed to be created as a result of market incentives. In consequence, all R&D
based growth models encompass market power and economies of scale in the aggregate
production function.

The Solow residual is an appropriate measure of productivity growth, if the neoclassi-
cal growth model is chosen as a theoretical background, because this theory does indeed
rely on the assumptions of perfect competition and constant returns to scale. In contrast,
according to endogenous growth models with externalities, there may be economies of
scale as a result of the spillovers, although these models still allow for a perfect com-
petition equilibrium. R&D based models of growth imply that market power has to be
present, so that innovators can recover their costs of knowledge creation. These models,
unlike any other growth theory, predict that market power, economies of scale and a pro-

ductivity enhancing role for knowledge should be found in the data. Thus, investigating
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these phenomena empirically provides a possibility to judge the relevance of R&D based
growth models in comparison with competing theories.

It is shown in the third chapter of the dissertation that the Solow residual is a bi-
ased measure of productivity growth when the assumptions of perfect competition and
constant returns do not hold. In contrast, the cost function framework chosen in this dis-
sertation readily encompasses economies of scale and market-power. This characteristic
makes it a much more suitable framework to study R&D based growth theory empiri-
cally. Based on the theory it may not only be desirable to choose a productivity growth
measure that is unbiased in the presence of market power and economies of scale. Since
these features distinguish R&D based models from other growth theories, it appears de-
sirable to test whether they can indeed be found in the data. The cost function and factor
demand model chosen in this dissertation provides a framework to estimate mark-ups,
the rate of returns to scale and the impact of knowledge in an integrated approach and
to study possible links between these features.

An empirical investigation with a new international industry data set from the OECD
reveals, in fact, the presence of both market-power and economies of scale in all of the
investigated industries. Thus, both theoretical reasoning and empirical results suggest
that the popular Solow residual framework is not appropriate to investigate the role of
knowledge for economic growth, because it is biased upwards as a measure of productiv-
ity growth. A comparison of the Solow residual with the productivity growth measure
obtained from the cost function estimation reveals, in fact, that the latter is much lower
for all of the investigated industries.

Moreover, the Solow residual displays a strong cyclical component, while the dual
productivity growth measure is very smooth. This is likely to be due to the fact that
the error correction framework chosen for the cost function estimation encompasses very
general short run deviations from equilibrium or in other words varying capacity utiliza-
tion. The Solow residual, in contrast, assumes that equilibrium is attained at all times.

Especially the capital stock is much more likely to measure capacity, rather than actual
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use of capital services, which would thus be underestimated in booms and overestimated
in slumps adding a spurious cyclical component to the productivity growth measure. For
this reason it seems to be a definite advantage of the empirical framework chosen in this
study that it accounts appropriately for varying capacity utilization.

The finding of economies of scale alone would support different classes of endogenous
growth theories, including models with increasing returns due to externalities. Yet, mar-
ket power and economies of scale together clearly favor R&D based growth models over
competing theories. Of course, this is not a proof that R&D based growth theories are
right, because market-power and economies of scale may well be due to other factors
than the mechanisms described in those models. Yet the finding that mark-ups are pos-
itive and that returns to scale are increasing does imply that among competing growth
theories the data fits R&D based models best.

Some ad hoc regressions reveal that the estimated size of mark-ups and of the rate
of returns to scale seem to be related to the amount of R&D activity that the industries
perform. This could be interpreted as further evidence in favor of R&D based growth
theory. Yet, the regressions are based on very little theory, so any conclusions drawn
from them should be very cautious.

Both theory and the econometric results suggest that the cost function framework is
much more suitable to investigate the impact of R&D on productivity, because mark-ups
and economies of scale are likely to bias the Solow residual as a productivity growth
measure. Moreover, it seems to be important to account for varying capacity utilization.
Therefore the cost function in the error correction form is used to estimate the impact
of knowledge variables on the costs of production and on productivity.

According to R&D based growth theories, investments in research and development
may not only enhance the productivity of the investor, but knowledge may also spill over
to other producers, because it is embodied in intermediate inputs traded among different
industries. Moreover there may be disembodied spillovers because researchers in one

industry can build on knowledge that has been previously created elsewhere. Therefore,
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the impact of the industries’ own R&D capital stock is investigated. In addition to
this, externalities from three different sources are considered: domestic spillovers from
other industries, international intra-industry spillovers and international inter-industry
spillovers.

A significant impact of the industries’” R&D capital stock on their own productivity
is found only in four relatively R&D-intensive industries. Yet, because labor, material
inputs and the capital stocks are not corrected for the inclusion of R&D expenditures,
the estimated impact of R&D capital on costs measures excess returns to R&D rather
than the full impact of knowledge on productivity. Excess returns to R&D could be inter-
preted as intra-industry spillovers. Alternatively, it may be concluded that knowledge is
particularly productive in these industries, having a much stronger and /or longer lasting
effect than the rival factors of production.

Spillovers are found to enhance productivity in six industries, two of which also benefit
from excess returns to R&D. Only in four out of twelve industries no significant impact
of any of the knowledge variables can be found at all. In three of these the dual measure
of productivity growth is negative. So it simply seems to be the case that there is little
technological change to be explained with innovative activity in these industries, at least
over the investigated sample period. R&D-intensity is particularly low in all of the four
industries where no significant impact of knowledge variables can be found. It is thus not
too surprising that there should not be a very important role for knowledge variables in
these industries.

The productivity growth measured with the trend term is found to decrease in all
industries, once knowledge variables with a significant impact are included in the esti-
mation. In most cases it becomes insignificant or even significantly negative, indicating
that sources of technological change other than innovations, such as government policies
or organizational changes, may even have adverse effects on productivity growth. In any
case, this finding suggests that knowledge creation does indeed explain a good part of

the observed productivity growth, as theory suggests.
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According to R&D based growth models, there should be economies of scale in rival
factors and knowledge together. In accordance with this prediction, the knowledge vari-
ables are found to be a source of economies of scale in all industries where they have a
significant impact.

While it is a well established result of this study that spillovers matter in many
industries, it also turns out that attributing them to a specific source is highly difficult.
Because of strong multicollinearity among all of the different knowledge variables and
the trend term it is hardly possible to decide which are really the sources of productivity
growth. It is even more difficult to asses their relative importance precisely, if more than
one knowledge variable is found to be significant. Therefore, careful robustness checks are
performed. Although the multicollinearity problem is strong, it seems safe to conclude
from the results that international intra-industry spillovers are the most important source
of externalities in the investigated industries.

The econometric results imply important differences among the different industries.
Both the estimated productivity growth and the impact of different knowledge variables
are found to vary considerably across industries. The results confirm both the theory and
earlier empirical findings in that in many industries investments in R&D seem to both
enhance the productivity of the investor and spill over to ease technological advancements
elsewhere. At the same time, the results imply that much of the prior research has
not taken multicollinearity problems into account appropriately, nor did it allow for
heterogeneity as much as the available data would have allowed for. Yet, both issues
seem to be very important. Because both problems can be solved only imperfectly, it
does not seem wise to draw strong conclusions from any empirical results that involve
R&D capital stocks. The qualitative result that knowledge seems to be important for
productivity growth is well established. Any stronger conclusion, such as the exact size
of the impact and the relative importance of different sources of knowledge externalities,
should always be treated with caution.

The link between market power, economies of scale and market driven innovative ac-
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tivity as a source of productivity growth, which is implied by R&D based growth theories,
has been much overlooked in the empirical literature. Yet these features are necessarily
interrelated, once it is agreed upon that innovations as a response to market incentives
are at the heart of economic growth. Therefore, it is pervasive to investigate simultane-
ously whether market power, economies of scale and a productivity enhancing role for
knowledge can be found in the data. The empirical investigation in this dissertation

suggests, that R&D based growth models seem to pass this empirical test very well.
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Appendix A

Estimation Results

A.1 Direct Results

The meaning of the parameters is described in section 3.2.2. Those parameters that are
estimated with country dummies, namely the constants of the factor demand equations,
by, bx and by, and the mark-up, p, are reported with an additional index denoting the
country. US stands for the US, [ for Italy, JP for Japan, D for Germany, C' for Canada
and I for Irance. R%s and the Durbin Watson Statistic, D.W., are reported separately
for the cost function, the three factor demand equations, labor, capital and material

inputs and the price equation.
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Table A.1: Estimation Results for the Food and Beverages Industry (15-16)

SLL SKK SLK brr brk bara
-0.129 -1.496  0.432 0.354 -1.120 1.165
(0.027) (0.323) (0.079) (0.047) (0.279) (0.118)
brus brr brsp brp brc brr
0.050 0.088 0.102 0.032 0.071 0.096
(0.016) (0.016) (0.017) (0.017) (0.016) (0.017)
bxus bir bxsp bk p bkc bk r
0.108 0.200 0.155 0.205 0.059 0.227
(0.059) (0.060) (0.063) (0.063) (0.058) (0.062)
buus bur byap bup by bur
0.012 0.040 -0.108  0.069 -0.019 -0.019
(0.017) (0.016) (0.017) (0.017) (0.017) (0.017)
br brct bare by byy byt
0.0005 0.008 0.009 -0.003 -0.062 -0.002
(0.0005) (0.001) (0.001) (0.006) (0.014) (0.4*10’4)
Hus Hr Hip Hp Ho Hr
1.237 1.267 1.204 1.232 1.233 1.216
(0.044) (0.044) (0.042) (0.043) (0.045) (0.043)

Cost Labor  Capital Material Price

R? 0.990 0.861 0.912 0.985 0.977
D.W. 0.386 0.174 0.215 0.756 0.381
Obs. 107 107 107 107 107

(Standard Errors in Parentheses)
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Table A.2: Estimation Results for the Textiles Industry (17-19)

SLL SKK SLK brr brx barm
-0.504 -2.078 0.923 0.789 -1.474 1.046
(0.047) (0.250) (0.095) (0.053) (0.208) (0.087)

brus brr brip brp brc brr
0.047 0.035 - -0.003 0.068 0.041
(0.012)  (0.012) - -0.003 (0.012) (0.012)
brus brr brip brp bre brr
0.256 0.0356 - 0.418 0.181 0.247
(0.028)  (0.028) - (0.027)  (0.029) (0.028)
buus bur barp bup buc bur
0.046 0.035 - 0.048 0.003 0.018
(0.019)  (0.018) - (0.018)  (0.019) )0.018)
brr brr bart by byy by
-0.007 -0.008  0.001 -0.0009  -0.03 5%¥107°
(0.0007) (0.002) (0.0007) (0.0004) (0.007) (2*¥10°°)
Hus Hr Hip Hp Hco Hr
1.219 1.224 - 1.213 1.211 1.175
(0.017)  (0.018) - (0.018)  (0.017) (0.018)
Cost Labor Capital Material Price
R? 0.994 0.979 0.951 0.908 0.985
D.W. 0.470 0.572 0.321 0.266 0.342
Obs. 88 88 88 88 88

(Standard Errors in Parentheses)
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Table A.3: Estimation Results for the Wood Industry (20)

SLL SKK SLK brr brx barm
-0.135 0.125 0.011 0.135 0.080 0.676
(0.060) (0.349) (0.137) (0.069) (0.289) (0.099)

brus brr brsp brp bre brr
- 0.242 - 0.169 0.181 -

- (0.020) - (0.021) (0.021) -
brus brr brsp brp bre bir
- 1.021 - 0.575 0.345 -

- (0.050) - (0.051) (0.053) -
byvs  bur byusp  bup brue bur
- -0.045 - -0.052  -0.048 -

- (0.027) - (0.028) (0.027) -
brr brr bt by byy byt

-0.001  0.004  -0.001 -0.006 -0.034  -0.002
(0.001) (0.002) (0.001) (0.001) (0.015)  (6%10%)

Hus Hr Hip Hp Ho Hr

- 1.327 - 1.239 1.263

- (0.062) - (0.060) (0.059)
Cost Labor  Capital Material Price

R? 0.990 0.841 0.980 0.958 0.977

D.W. 0.528 0.288 0.273 0.388 0.809

Obs. 52 52 52 52 52

(Standard Errors in Parentheses)
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Table A.4: Estimation Results for the Paper and Publishing Industry (21-22)

SLL SKK SLK brr brx barm
-0.012 0.769 -0.168 0.093 0.550 0.424
(0.065) (0.085) (0.151) (0.072) (0.314) (0.102)

brus brr brsp brp bre brr

- 0.173 - 0.158 0.147 0.206
- (0.012) - (0.013)  (0.013) (0.013)
brus brr brsp bip brc brr

- 0.333 - 0.555 0.439 0.339
- (0.047) - (0.051)  (0.051) (0.051)
bryus bur bysp  bup brc bur

- -0.025 - -0.067 -0.135 -0.067
- (0.014) - (0.015)  (0.015) (0.015)
brr brr bt by byy byt

0.001  0.019 0003 -0.002 -0.030  -4*10"°
(0.0009) (0.002) (0.001) (0.0008) (0.012)  (6¥10 %)

Hus Hr Hip Hp Ho Hr

- 1.321 - 1.293 1.162 1.286

- (0.041) - (0.039)  (0.037) (0.039)
Cost Labor  Capital Material Price

R? 0.995 0.854 0.919 0.990 0.981

D.W. 0.417 0.363 0.336 0.670 0.874

Obs. 69 69 69 69 69

(Standard Errors in Parentheses)
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Table A.5: Estimation Results for the Chemical Industry (24)

SLL SKK SLK brr brk barm
-0.114 -0.614 0.150 0.082 -0.670 0.909
(0.040) (0.233) (0.089) (0.050) (0.195) (0.077)

brus brr brip brp brc brr
0.184 0.166 - 0.191 0.139 -
(0.016)  (0.015) - (0.016) (0.016) -
brus br1 brip brp brc brr
0.584 0.666 - 0.596 0.672 -
(0.059)  (0.060) - (0.063) (0.058) -
buus burr busp  bup burc bur
-0.089 0.018 - -0.004  -0.060 -
(0.030)  (0.029) - (0.030) (0.030) -
brr brr bt by byy by
-0.001 0.011 -0.0003 -0.004  0.047 -0.0001
(0.0009) (0.003) (0.001) (0.001) (0.020) (5%107?)
Hus Hr Hip Hp Ho Hr
1.182 1.216 - 1.201 1.184 -
(0.057)  (0.058) - (0.058) (0.057) -

Cost Labor  Capital Material Price
R? 0.993 0.886 0.783 0.960 0.984
D.W. 0.561 0.354 0.348 0.492 0.772
Obs. 70 70 70 70 70

(Standard Errors in Parentheses)
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Table A.6: Estimation Results for Rubber and Plastics Products (25)

SLL SKK SLK brr brx barm
-0.202 -0.237 0.323 0.448 -0.204 0.540
(0.079) (0.493) (0.193) (0.092) (0.383) (0.120)

bLUS bLI bLJP bLD bLC bLF
0.092 0021 - 0070 0079 -
(0.013) (0.013) - (0.013)  (0.013) -
brus bir bxsp bk p bkc bk r
0.334 0513 - 0481 0337 -
(0.032) (0.038) - (0.036)  (0.030) -
buus barr barrp barp bae bar
0.054  0.009 - 0.035  -0.006 -
(0.017)  (0.017) - (0.017)  (0.017) -
bLT bKT bMt bt bYY btt

0.002 0.012  0.006  -0.0005 -0.069  -8%10°°
(0.001) (0.002) (0.001) (0.001) (0.012)  (5%10°°)

Hus Hr Hip Hp Ho Hr
1.404 1.303 - 1.361 1.340 -
(0.045) (0.041) - (0.043) (0.043) -
Cost Labor  Capital Material Price
R? 0.998 0.948 0.973 0.992 0.974
D.W. 0.672 0.549 0.429 0.505 0.429
Obs. 70 70 70 70 70

(Standard Errors in Parentheses)
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Table A.7: Estimation Results for Other Non-Metallic Mineral Products (26)

SLL SKK SLK brr brx barm
-0.726 -1.769 1.084 0.792 -1.393 0.744
(0.077) (0.343) (0.143) (0.072) (0.308) (0.105)
brus brr brsp brp bre brr
0.138 0.102 - 0.079 0.095 0.117
(0.034) (0.014) - (0.014) (0.014) (0.014)
brus bir1 brip brp brc brr
0.560 0.722 - 0.550 0.544 0.544
(0.044) (0.044) - (0.445) (0.046) (0.046)
byus barr barrp byvp bare byr
0.040 0.062 - 0.008 0.020 0.018
(0.017) (0.017) - (0.018) (0.017) (0.017)
brr b bare by byy by

0.004  -0.009  -0.0001 -0.002  -0.007  0.0001
(0.0007)  (0.0002) (0.0008) (0.0005) (0.010)  (4*10°?)

Hus Hr Hip Hp Ho Hr
1.292 1.321 - 1.271 1.259 1.270
(0.036)  (0.037) - (0.036)  (0.036) (0.036)
Cost Labor Capital Material Price
R? 0.987 0.920 0.920 0.929 0.977
D.W. 0.697 0.591 0.554 0.650 0.543
Obs. 88 88 88 88 88

(Standard Errors in Parentheses)

162



Table A.8: Estimation Results for the Basic and Fabricated Metals Industries (27-28)

SLL SKK SLK brr brx barm
-0.276 0.216 0.314 0.400 0.399 0.293
(0.056) (0.385) (0.142) (0.076) (0.374) (0.116)
brus brr brsp brp bro brr
0.160 0.153 0.093 0.169 0.121 0.177
(0.014 (0.013) (0.013) (0.013) (0.014) (0.013)
brus brr brip brxp brc brr
0.487 0.574 0.851 0.616 0.304 0.451
(0.061) (0.058) (0.058) (0.058) (0.066) (0.062)

buus bur brrsp byp bruc bur
0.009 0028 0034  -0.027  0.066  -0.009
(0.015)  (0.014) (0.014)  (0.014)  (0.015)  (0.015)
bLT bKT bMt bt bYY btt

-0.003  -0.004 0.0006 -0.002  0.008  4*10 *
(0.0006) (0.002) (0.0006) (0.0005) (0.008)  (3*10%)

Hus B Hip [235) Ho Hr
1.256 1.266 1.256 1.269 1.252 1.247

(0.027)  (0.027) (0.025)  (0.026)  (0.027) (0.026)
Cost Labor Capital Material Price

R? 0.995 0.864 0.898 0.971 0.992
D.W. 0.881 0.374 0.377 0.591 0.747
Obs. 107 107 107 107 107

(Standard Errors in Parentheses)
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Table A.9: Estimation Results for the Machinery Industry (29)

SLL SKK SLK brr brk barm
-0.339 -0.015 0.224 0.359 0.217 0.480
(0.071) (0.340) (0.146) (0.077) (0.263) (0.099)
brus brr brsp brp bre brr

- 0.093 0.094 0.118 0.113 0.147

- (0.018) (0.018) (0.018) (0.018) (0.018)
brus brr brip brp brc brr

- 0.266 0.227 0.093 -0.014 0.140

- (0.044) (0.047) (0.048) (0.045) (0.046)
byus barr barrp by bare byr

- 0.058 0.022 0.021 -0.025 0.048
- (0.014) (0.015) (0.015) (0.014) (0.014)
brr brr bt by byy by
-0.001 -0.001 0.001 -0.001 -0.034 0.0002
(0.001) (0.002) (0.001) (0.001) (0.010) (0.00)
Hus Hr Hip Hp Ho Hr

- 1.324 1.323 1.246 1.267 1.361

- (0.032) (0.031) (0.029) (0.031) (0.032)

Cost Labor  Capital Material Price

R? 0.990 0.748 0.853 0.974 0.968
D.W. 0.464 0.276 0.214 0.447 0.301
Obs. 89 89 89 89 89

(Standard Errors in Parentheses)
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Table A.10: Estimation Results for the Electrical and Optical Equipment Industry (30-33)

SLL SKK SLK brr brx barm
0.449 2.478 -0.934 -0.040 2.11 -0.072
(0.097) (0.466) (0.08) (0.099) (0.354) (0.106)
brus brr brsp brp bro brr

- 0.136 0159  0.146  0.098  0.199
- (0.0132) (0.015) (0.013)  (0.013)  (0.014)

brus brr brsp bip brc brr

- 0.280 0.130 0.333 -0.139 0.179
- (0.039)  (0.042) (0.039)  (0.041) (0.041)
bxus buus bysp  bup brc bur

- 0.046 0067 0.009  0.156  0.016
- (0.049)  (0.009) (0.010)  (0.010)  (0.010)

brr br bart by byy by
-0.015 0.016 0.003 0.004 -0.055 2%10°°
(0.001) (0.003)  (0.001) (0.0009) (0.008)  (6*¥1079)
Hus Hr Hip Hp Ho Hr

- 1.563 1706  1.641  1.625 1.546
- (0.047)  (0.046) (0.049)  (0.050)  (0.044)

Cost Labor  Capital Material Price
R? 0.995 0.834 0.936 0.931 0.976
D.W. 0.612 0.538 0.286 0.733 0.399
Obs. 89 89 89 89 89

(Standard Errors in Parentheses)
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Table A.11: Estimation Results for the Transport Equipment Industry (34-35)

SLL SKK SLK brr brx barm
-0.1512 0.466 0.072 0.246 0.369 0.431
(0.060) (0.618) (0.178) (0.082) (0.480) (0.192)
brus brr brsp brp bro brr
0.171 0.146 0.121 0.114 0.065 0.089
(0.013) (0.012) (0.013) (0.013) (0.012) (0.013)
brus brr brip bk p bre brr
0.242 0.478 0.425 0.373 0.145 0.268
(0.046) (0.046) (0.054) (0.048) (0.043) (0.026)
byus barr barrp barp bye byr
-0.059 -0.015 -0.011 -0.031 0.029 0.036
(0.012) (0.011) (0.012) (0.012) (0.011) (0.012)
brr brr bare by byy by
-0.004 0.011 0.002 0.0007 -0.023 6*107°
(0.0008) (0.002) (0.001) (0.0006) (0.007) (4*10’5)
Hus Hr Hip Hp Ho Hr
1.211 1.248 1.263 1.263 1.263 1.230
(0.021) (0.022) (0.022) (0.022) (0.022) (0.022)

Cost Labor  Capital Material Price

R? 0.997 0.877 0.904 0.989 0.984
D.W. 0.858 0.375 0.399 0.588 0.324
Obs. 107 107 107 107 107

(Standard Errors in Parentheses)
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Table A.12: Estimation Results for Manufacturing Industries N.E.C., Recycling (36-37)

SLL SKK SLK brr brx barm
-0.608 -0.630 0.550 0.494 -0.332 0.665
(0.066) (0.312) (0.137) (0.065) (0.226) (0.071)

brus brr brip brp brc brr

- 0.067 - 0.074 0.162 0.096

- (0.015) - (0.014)  (0.015) (0.014)

brus brr brip brp bre brr

- 0.374 - 0.202 0.079 0.396

- (0.033) - (0.032)  (0.028) (0.031)

buus bur barp bup buc bur

- -0.016 - -0.042 -0.124 -0.130

- (0.015) - (0.015)  (0.015) (0.015)

brr brr bart by byy by

0.004 0.001 0.002 -0.002 -0.020 -0.0003

(0.0008) (0.001) (0.0008) (0.0004) (0.008) (4%¥10°?)

Hus Hr Hip Hp Hco Hr

- 1.139 - 1.107 1.104 1.079

- (0.026) - (0.025)  (0.025) (0.024)
Cost Labor Capital Material Price

R? 0.994 0.912 0.984 0.982 0.990

D.W. 0.661 0.595 0.640 0.941 0.869

Obs. 70 70 70 70 70

(Standard Errors in Parentheses)
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A.2 Results of the Error Correction Form

As outlined in the previous section, the meaning of most parameters is described in
section 3.2.2. The ~y,s denote the error correction terms for i = C, L, M, K| Y, where C
stands for the cost function, L for labor, K for capital, M for material inputs and Y for
the price equation. The a;s denote parameters for lagged differences of optimal costs,
factor demands and prices respectively, while ¢;s are parameters for lagged differences
of their actual counterparts. Numbers following a or ¢ indicate how many times the
difference is lagged. "t.stat.” denotes the t-statistic of the error correction term for each
equation entering the cost function and factor demand system and ”Obs.” denotes the

number of observations.
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Table A.13: Estimation Results for the Food and Beverages Industry (15-16)

SLL SKK SLK brr brk bara
-0.146 -1.017  0.296 0.284 -0.126 0.240
(0.054) (0.370) (0.131) (0.087) (0.348) (0.112)
brus brr brsp brp brc brr
0.021 0.061 0.085 0.002 0.041 0.061
(0.021) (0.021) (0.021) (0.021) (0.021) (0.022)
brus by bxsp bxp bxc bxr
-0.356 -0.156  -0.063  -0.249 -0.394 -0.115
(0.170) (0.164) (0.157) (0.174) (0.165) (0.162)

bMUS bMI bMJP bMD bMC bMF
0.063  0.082  -0.047 0.131  0.022  -0.0003
(0.030)  (0.032) (0.031) (0.030) (0.030)  (7*10°®)
brt bxt bart by byy by

0.001 0.0009  0.009 -0.0002 -0.067 1*10°¢
(0.0007) (0.003) (0.002) (0.001) (0.015) (6¥1077)
Hus Hr Hyp Hp Mo 123
1.282 1.303 1.279 1.285 1.260 1.272
(0.070)  (0.072) (0.070) (0.071) (0.079) (0.070)
alqs aly, alx aly aly aly
0.976 0.739 0.072 1.151 0.992 1.151
(0.015)  (0.131) (0.035) (0.052) (0.071) (0.052)
CL2L ClL ClK Cly 62[( 62y
-0.159 0.085 0.899 0.065 -0.403 0.073
(0.058)  (0.040) (0.086) (0.036) (0.087) (0.035)
Yo YL Tr Ym Ty

-0.077 -0.121  -0.032  -0.126  -0.211

(0.020)  (0.020) (0.009) (0.020) (0.039)

Cost Labor: Capital Material Price

R? 0.875 0.429 0.800 0.708 0.880
D.W. 2.382 1.844 1.686 2.324 1.911
t.stat. -3.775  -5.903  -3.532  -6.402 -5.403
Obs. 93 93 93 93 93

(Standard Errors in Parentheses)
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Table A.14: Estimation Results for the Textiles Industry (17-19)

SLL SKK SLK brr brx barm
-0.162 -0.161 0.087 0.301 0.214 0.666
(0.068) (0.265) (0.123) (0.070) (0.242) (0.081)

brus brr brsp brp brc brr
0.119  0.099 - 0.047 0145  0.109
(0.019) (0.019) - (0.018)  (0.019)  (0.018)
bKUS bKI bKJP bKD bKC bKF
0.005  0.167 - 0.113  -0.050  0.035
(0.111)  (0.105) - (0.120)  (0.106)  (0.105)
bMUS bMI bMJP bMD bMC bMF
0.014  0.041 - 0.062  -0.008  0.020
(0.026) (0.026) - (0.023)  (0.025)  (0.024)
br brt bart by byy bt

0.007 -0.001  0.0007 -0.002 -0.001  5*¥10°°
(0.001) (0.002) (0.002) (0.001) (0.008)  (7*10°®)

Hus Hr Hyp Hp He HF
1.190 1.215 - 1.188 1.210 1.182
(0.031) (0.038) - (0.030)  (0.031)  (0.030)
alc CL1L alK CL1M aly CLQC
0.939 0.849 0.108 1.015 0.844 -0.165
(0.010) (0.040) (0.043) (0.030) (0.048)  (0.046)
CL2L CL2K CL2M Clc ClL ClK

0.008 0.073 -0.214  0.211 0.176 0.579
(0.055) (0.042) (0.049) (0.047) (0.076)  (0.064)
cly cly Yo 7L Tk Tm
0.190 0.230 -0.080  -0.161  -0.045 -0.109
(0.045) (0.042) (0.022) (0.021) (0.011)  (0.021)

Yo
-0.140
(0.043)
Cost Labor  Capital Material Price
R? 0.976 0.771 0.829 0.949 0.935

D.W. 2.277 2.180 1.650 1.880 2.395
t.-stat  -3.639  -7.522 4107  -5.218 -3.270
Obs. 82 82 82 82 82

(Standard Errors in Parentheses)
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Table A.15: Estimation Results for the Wood Industry (20)

SLL SKK SLK brr brk barm
-0.028 -0.430 0.095 0.043 0.368 0.701
(0.020) (0.350)  (0.083) (0.028) (0.322)  (0.130)
brus brr brip brp bre brr
- 0.185 - 0.170 0.194 -
- (0.030) - (0.023) (0.024) -
bxus bir brsp bxp bxc bxr
- 0.249 - -0.013 -0.068 -
- (0.198) - (0.037) (0.041) -
buus br1 busp  bup brc bur
- -0.036 - -0.052 0.0003 -
- (0.042) - (0.043) (0.038) -
br brct bart by byy bet
-5%107°  -0.008 0.005 0.0005 -0.006  -2*¥10°7
(3*107%)  (0.005)  (0.001) (0.001) (0.009)  (1*10°?)
Hus Hr Hyp Hp Mo 123
- 1.423 - 1.310 1.393 -
- (0.076) - (0.070) (0.074) -
alqs aly, alx aly aly aly
1.182 13.972 0.050 1.155 1.222 1.461
(0.055) (15.420) (0.034) (0.058) (0.135)  (0.166)
a2k cle cly, cly cly Yo
0.102 0.071 0.289 0.683 0.291 -0.115
(0.044) (0.012)  (0.050) (0.092) (0.067) (0.032)
YL Tk Y Ty
-0.074 -0.060 -0.115  -0.555
(0.019) (0.022)  (0.030) (0.093)

Cost Labor  Material Capital Price
R? 0.964 0.871 0.948 0.700 0.800
t.-stat. -3.628 -3.916  -3.797 -2.674  -5.967
D.W. 2.204 2.395 2.006 1.689 2.020
Obs. 48 48 48 48 48

(Standard Errors in Parentheses)
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Table A.16: Estimation Results for the Paper and Publishing Industry (21-22)

SLL SKK SLK brr brx barm
-0.013 -0.036 -0.009 0.138 -0.091 0.704
(0.030) (0.156) (0.064) (0.050) (0.118) (0.061)

bLUS bLI bLJP bLD bLC bLF

- 0134 - 0.117 0118  0.161
- (0.030) - (0.031)  (0.029)  (0.033)
bKUS bKI bKJP bKD bKC bKF

- 0134 - 0.323 0303  0.150

- (0.089) - (0.086)  (0.081)  (0.083)
buus b brasp byp bruc bur

- 0.104 - 0.149  -0.211  -0.136
- (0.041) - (0.038)  (0.037)  (0.039)
br brt bart by byy bt

0.002  0.021 0010 0002 -0.067  -0.0004
(0.002) (0.003) (0.002) (0.002) (0.014)  (1*10°%)

Hus Hr Hyp Hp He HF

- 1.392 - 1.376 1.216 1.369

- (0.071) - (0.069)  (0.062)  (0.069)
alc CL1L alK CL1M aly CLQC
1.066 0.800 0.579 1.098 1.397 -0.117
(0.033) (0.233) (0.421) (0.065) (0.094)  (0.072)
CL2L CL2K CL2Y Clc ClL ClK

0.567 1.338 -0.922  0.175 0.181 0.961
(0.241) (0.624) (0.168) (0.065) (0.078)  (0.099)
cly 2 Yo Tk 7L Tm
0.760 -0.281  -0.112 -0.125  -0.196 -0.154
(0.118) (0.121) (0.026) (0.041) (0.047)  (0.037)

Ty
-0.638
(0.096)
Cost Labor  Capital Material Price
R? 0.980 0.730 0.803 0.907 0.932

D.W. 2.045 1.498 2.407 2.016 2.509
t.stat. -4.317  -4.195 -3.066  -4.188 -6.616
Obs. 58 58 58 58 58

(Standard Deviations in Parentheses)
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Table A.17: Estimation Results for the Chemical Industry (24)

SLL SKK SLK brr brx barm
-0.052 -0.097 0.046 0.064 -0.019 0.739
(0.017) (0.078) (0.031) (0.024) (0.079) (0.038)

brus brr brsp brp brc brr
0.189  0.167 - 0191 0139 -
(0.017)  (0.017) - (0.017)  (0.016) -
bKUS bKI bKJP bKD bKC bKF
0549  0.625 - 0581  0.607 -
(0.033)  (0.035) - (0.032) (0.033) -
byus b brasp barp bruc bur
0131 -0.047 - 0.057 -0.109 -
(0.024) (0.022) - (0.022) (0.024) -

brt brt bart by byy bit

0.0007 0.012  0.006  -0.003  -0.0006  -0.0003
(0.001) (0.003) (0.002) (0.001) (0.016)  (0.0001)

Hus Hr Hyp Hp He HF
1.242 1.257 - 1.263 1.239 -
(0.026) (0.035) - (0.034) (0.035) -

alc CL1L alK CL1M aly CLQC
1.001 0.765 2.385 1.005 1.142 -0.471
(0.011) (0.138) (0.680) (0.014) (0.063)  (0.053)
CLQC CL2L CL2M CL2Y Clc ClL

-0.470  0.367 -0.451  -0.175  0.489 0.353
(0.053) (0.171) (0.053) (0.123) (0.052) (0.054)
cly clas cly c2r c2x Yo
0.717 0.440 0.186 -0.090  -0.146 -0.183
(0.085) (0.048) (0.105) (0.037) (0.087) (0.026)
YL Tr Ym Ty

-0.155  -0.174  -0.202  -0.370

(0.034) (0.043) (0.024) (0.082)

Cost Labor  Capital Material Price
R? 0.936 0.419 0.725 0.885 0.868
D.W. 2.505 1.723 1.703 2.407 1.990
t.stat.  -6.934 -4.626 -4.055 -8418 -4.530
Obs. 60 60 60 60 60

(Standard Errors in Parentheses)
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Table A.18: Estimation Results for Rubber and Plastics Products (25)

SLL SKK SLK brr brk barm
-0.209 -0.948 0.414 0.410 -0.479 0.658
(0.081) (0.374) (0.161) (0.083) (0.302) (0.094)

brus bri brsp brp bre brr
0.100  0.025 - 0.075 0.087 -
(0.017) (0.017) - (0.017) (0.017) -

bxus  bkr bksp  bkp bkc brr
0.098 0299 - 0.235 0.130 -
(0.072) (0.071) - (0.072) (0.069) -
buvs  bur bysp bup buc bur
0.112  0.100 - 0.045 0.044 -
(0.025) (0.024) - (0.025) (0.025) -

br bkt bare be byy bt
0.0005 0.006  0.013  -0.001  0.002 -0.0004
(0.002) (0.005) (0.313) (0.003) (0.010)  (0.0001)
Hus Hr Hip Hp Ho Hr
1.099 1.167 - 1.181 1.174 -
(0.102) (0.084) - (0.078) (0.080) -

alc CL1L alK CL1M aly CLQC

0.997 0.775 -0.015  1.175 -0.103 -0.175
(0.013)  (0.063) (0.054) (0.035) (0.028)  (0.048)
CL2M CL2Y Clc ClL ClK ClM
-0.291  0.250 0.185 0.189 0.516 0.195
(0.064) (0.051) (0.047) (0.040) (0.069)  (0.044)
Yo YL YK Y Ty

-0.233  -0.351  -0.164 -0.239  -0.103

(0.036) (0.046) (0.031) (0.033) (0.028)

Cost Labor  Capital Material Price
R? 0.955 0.728 0.693 0.889 0.901
D.W. 2.165 1.919 1.729 2.092 1.886
t.stat.  -6.547  -7.672 -5.239  -7.297 -3.638
Obs. 64 64 64 64 64

(Standard Errors in Parentheses)
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Table A.19: Estimation Results for Other Non-Metallic Mineral Products (26)

SLL SKK SLK brr brx barm
-0.232 -1.060 0.398 0.397 -0.379 0.637
(0.095) (0.295) (0.154) (0.086) (0.311) (0.080)

bLUS bLI bLJP bLD bLC bLF
0.142 0100 - 0.069  0.103  0.109
(0.018)  (0.020) - (0.020)  (0.019)  (0.020)
bKUS bKI bKJP bKD bKC bKF
0.032 0240 - 0222  -0.012  0.034
(0.135)  (0.128) - (0.131)  (0.140)  (0.130)
bMUS bMI bMJP bMD bMC bMF
0.065  0.167 - 0.107  0.062  0.098
(0.040)  (0.038) - (0.033)  (0.033)  (0.029)
brt bxt bast by byy byt

0.006 -0.002 0.0004 0.003 0020  3*10°°
(0.001) (0.003) (0.001) (0.001) (0.009)  (7*10°®)

Hus Hr Hip H“p Ho Hr
1.577 1.649 - 1.572 1.555 1.562
(0.076) (0.084) - (0.077)  (0.076) (0.077)
alc CL1L alK CL1M aly CL2L

1.063 0.837 0.053 1.399 0.854 0.127
(0.050) (0.068) (0.033) (0.119) (0.090) (0.026)
cle cly cly 2k 2y Yo
0.048 0.595 0.444 -0.108  -0.227 -0.049
(0.008) (0.073) (0.066) (0.076) (0.061) (0.020)
7L Tr Tm Ty

-0.171  -0.118  -0.062  -0.229

(0.022) (0.023) (0.020) (0.048)

Cost Labor  Capital Material Price
R? 0.904 0.757 0.665 0.898 0.845
D.W. 2.248 1.780 1.812 2.398 1.605
t.stat. -2.448 -7.789  -5.108  -3.165 -4.798
Obs. 77 77 7 77 77

(Standard Errors in Parentheses)
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Table A.20: Estimation Results for Basic and Fabricated Metals (27-28)
SLL SKK SLK brr brk bara
-0.089 -0.455 0.161 0.220 0.216 0.703
(0.060) (0.307) (0.127)  (0.080) (0.335)  (0.091)
brus brr brsp brp bro brr
0.170 0.144 0.112 0.168 0.136 0.136
(0.024)  (0.024) (0.025)  (0.024) (0.025)  (0.025)
brus brr brp brxp brc brr
0.057 0.083 0.553 0.104 -0.052 0.034
(0.161) (0.164) (0.169)  (0.166) (0.161)  (0.166)
byuvs  bur byap barp byre bar
0.022 0.059 0.044 0.015 0.063 0.006
(0.024) (0.024) (0.023) (0.024) (0.025)  (0.024)
brs brt bare by byy b
-0.003 -0.005 0.0008 -0.001 0.012 1%1076
(0.001) (0.003) (0.0001) (0.001) (0.008)  (1*10°%)
Hus Hr Hyp Hp Mo 123
1.252 1.264 1.274 1..284 1.242 1.187
(0.040) (0.041) (0.040)  (0.041) (0.040)  (0.053)

alqs aly, alx aly aly a2q
1.015 0.840 -0.002 1.205 1.187 -0.235
(0.018) (0.133) (0.026)  (0.044) (0.053)  (0.049)
CL2L CL2K CL2M CL2Y Clc ClL

0.276 0.061 -0.329 -0.049  0.246 0.198
(0.097) (0.033) (0.061)  (0.028) (0.047) (0.045)
cly clas cly 2y c2y ye
0.872 0.205 0.340 -0.344  -0.049 -0.135
(0.080) (0.047) (0.088)  (0.077) (0.028) (0.028)
YL Tr Ym Ty

-0.156  -0.046  -0.088 -0.444

(0.024) (0.001) (0.023)  (0.074)

Cost Labor Capital Material Price
R? 0.973 0.767 0.815 0.938 0.957
D.W. 2.318 1.657 1.583 2.496 1.916
t.stat. -4.896  -6.583 -4.713  -3.874 -5.991
Obs. 92 92 92 92 92

(Standard Errors in Parentheses)
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Table A.21:

Estimation Results for the Machinery Industry (29)

SLL SKK SLK brr bxk barm
-0.272  -0.918  0.449 0.487 -0.043 0.690
(0.083) (0.267) (0.144) (0.084) (0.245) (0.066)
brus brr brsp brp brc brr
- 0.090 0.123 0.109 0.130 0.117
- (0.027) (0.026) (0.025) (0.028) (0.026)
brus brr brip brp brc brr
- -0.072  -0.007 -0.402  -0.300 -0.211
- (0.105) (0.103) (0.118) (0.102) (0.108)
buvs  bur bysp  bup burc bur
- 0.152 0.036 0.051 0.052 0.091
- (0.034) (0.030) (0.029) (0.028) (0.023)
brt bxt bart by byy by
-0.009  -0.012 -0.003  0.002 0.0003 0.0003
(0.002) (0.003) (0.002) (0.003) (0.007) (0.008)
Hus Hr Hip Hp Ho Hr
- 1.479 1. 344 1.439 1.460 1.366
- (0.191) (0.098) (0.184) (0.209) (0.099)
alqs aly, alx aly aly a2q
0.973 0.765 0.046 1.181 0.862 -0.261
(0.021) (0.061) (0.014) (0.050) (0.082) (0.034)
CL2M Clc ClL ClK Cly 62[(
-0.359  0.299 0.267 0.609 0.226 -0.150
(0.056) (0.034) (0.030) (0.100) (0.059) (0.088)
e YL YK Y Ty
-0.078  -0.102  -0.054 -0.095  -0.050
(0.016) (0.015) (0.010) (0.016) (0.034)

Cost Labor  Capital Material Price
R? 0.964 0.837 0.821 0.955 0.830
D.W. 2.081 1.919 1.561 2.275 1.980
t.stat. -4.935 -6.860 -5.314  -5.953 -1.462
Obs. 78 78 78 78 78

(Standard Errors in Parentheses)
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Table A.22: Estimation Results for the Electrical and Optical Equipment Industry (30-33)

SLL SKK SLK brr brk bar
-0.052  -0.049 0.041 0.320 0.134 0.873
(0.041) (0.161) (0.072) (0.050) (0.124) (0.054)
brus brr brsp brp brc brr

- 0.143 0.138 0.150 0.096 0.174
- (0.020) (0.020) (0.020) (0.020) (0.021)
brus by brp bk p bxc bk r

- 0.474 0.324 0.504 0.113 0.309

- (0.076) (0.074) (0.069) (0.061) (0.070)
byvs — bur brasp barp bruc bur

- -0.151  -0.130  -0.175  -0.040 -0.190
- (0.024) (0.021) (0.023) (0.022) (0.020)
br brt bart by byy byt
-0.014 -0.008 -0.015 0.007 -0.032 0.0005
(0.002) (0.003) (0.003) (0.003) (0.012) (0.0001)
Hus Hr Hyp Hp He HF

- 1.347 1.209 1.350 1.382 1.240
- (0.051) (0.037) (0.044) (0.050) (0.040)
ale aly, aly aly a2q a2y,
0.978 0.922 1.002 0.699 -0.372 -0.131
(0.016) (0.074) (0.026) (0.060) (0.049) (0.074)
CL2K CL2M CL2Y Clc ClL ClK
0.655 -0.378  -0.169  0.373 0.338 0.824
(0.425) (0.055) (0.083) (0.050) (0.047) (0.085)
clas cly c2r c2x 2y Yo
0.334 0.327 0.046 -0.104  -0.168 -0.121
(0.055) (0.093) (0.017) (0.078) (0.058) (0.020)
YL Tr Ym Ty

-0.180  -0.029 -0.111 -0.184

(0.023) (0.009) (0.021) (0.031)

Cost Labor  Capital Material Price
R? 0.938 0.742 0.803 0.932 0.911
D.W. 1.645 1.786 1.684 1.797 1.944
t.stat. -6.044 -7.718 -3.144  -5.205 -5.993
Obs. 76 76 76 76 76

(Standard Errors in Parentheses)
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Table A.23: Estimation Results for the Transport Equipment Industry (34-35)

SLL SKK SLK brr brx barn
-0.152  -0.700  0.252 0.299 -0.162 0.844
(0.064) (0.403) (0.403) (0.081) (0.323) (0.118)
brus brr brsp brLp brc brr
0.167 0.113 0.127 0.110 0.060 0.058
(0.021) (0.019) (0.020) (0.020) (0.021) (0.019)
brus brr brsp brp brc brr
-0.041  0.323 0.382 0.237 0.006 0.073
(0.103) (0.095) (0.104) (0.097) (0.093) (0.099)
bryus bur brsp byp brue bur
-0.010  0.055 0.046 0.025 0.068 0.089
(0.025) (0.025) (0.025) (0.025) (0.022) (0.022)
brt bxt bart by byy by
-0.006  0.002 -0.004  0.0005 -0.013 0.003
(0.001) (0.003) (0.002) (0.001) (0.007) (0.001)
Hus Hr Hip Hp Ho Hr
1.233 1.280 1.254 1.275 1.246 1.239
(0.038) (0.044) (0.035) (0.038) (0.040) (0.038)
alc CL1L alK CL1M aly CL2L
0.984 0.683 0.011 1.124 0.800 0.130
(0.017) (0.084) (0.026) (0.032) (0.064) (0.050)

CL2Y ClL ClK ClM Cly 62[(
-0.180  0.053 0.675 -0.016 0.343 -0.258
(0.097) (0.029) (0.081) (0.007) (0.081)  (0.070)
Yo YL Tk Y Ty

0109  -0.137 -0.053 -0.133  -0.162
(0.021) (0.021) (0.012) (0.021) (0.041)

Cost Labor  Capital Material Price
R? 0.957 0.719 0.688 0.956 0.853
D.W. 2.123 1.656 1.779 2.215 2.173
t.stat.  -5.113  -6.258  -4.355  -6.258 -3.928
Obs. 94 94 94 94 94

(Standard Errors of Parentheses)
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Table A.24: Estimation Results for Manufacturing Industries N.E.C., Recycling (36-37)

SLL SKK SLK brr brx barm
-0.156 -0.123 0.033 0.190 0.039 0.639
(0.068) (0.311) (0.129) (0.065) (0.227) (0.084)

bLUS bLI bLJP bLD bLC bLF

- 0.065 - 0.070  0.180 0.114

- (0.019) - (0.018)  (0.018)  (0.019)
brus bir bxsp bk p bkc bk r

- 0.304 - 0.127  0.008 0.300

- (0.059) - (0.061)  (0.055)  (0.061)
buus barr barsp barp bae bar

- 0011 - 0.030 -0.110  -0.123
- (0.025) - (0.025)  (0.024)  (0.023)
br brct bart by byy bet

0.006  0.013  0.018  -0.0007 -0.022  -0.0009
(0.016) (0.003) (0.002) (0.002) (0.014)  (0.001)

Hus Hr Hip Hp Hco Hr

- 1.245 - 1.199 1.254 1.167
- (0.053) - (0.043)  (0.063)  (0.038)
alc CL1L alK CL1M aly CLQC
0.959 0.897 0.085 1.015 0.839 -0.135
(0.010) (0.043) (0.066) (0.018) (0.064)  (0.033)
CL2K CL2M CL2Y Clc ClL ClM

0.220 0151 -0.325 0180  0.156  0.163
(0.110) (0.040) (0.101) (0.036) (0.029)  (0.034)
cly — ye VL VK T Ty
0.356  -0.275 -0.273  -0.097 -0.202  -0.143
(0.104) (0.029) (0.026) (0.020) (0.026)  (0.062)

Cost Labor  Capital Material Price
R? 0.953 0.738 0.707 0.911 0.738
D.W. 1.823 1.718 1.738 1.953 1.718
t.stat.  -9.489  -10.460 -4.743  -11.211  -2.297
Obs. 62 62 62 62 62

(Standard Errors in Parentheses)
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A.3 Results with Simple Trend Term Specification

Table A.25: Estimation Results for the Food and Beverages Industry (15-16)

SLL SKK SLK brr brx barm brus
-0.156 -0.913 0.291 0.291 -0.306 0.985 0.015
(0.046) (0.338) (0.115) (0.081) (0.354) (0.113) (0.022)

bLI bLJP bLD bLC bLF bKUS bKI
0.059  0.078  -0.004 0.036 0054  -0.124 0.061
(0.023) (0.022) (0.023) (0.022) (0.023)  (0.132) (0.132)
bxip bxp bre bxr baus barr barsp

0.129 -0.011  -0.167 0.101 0.007 0.029 -0.107
(0.135) (0.135) (0.130) (0.135) (0.029) (0.030) (0.030)
barp brrc bur by byy Hus K
0.072 -0.033  -0.04 0.002 -0.042 1.258 1.279
(0.029) (0.029) (0.030) (0.001) (0.018) (0.075) (0.078)
Hip Hp Ho Hr ale aly, alg
1.240 1.237 1.254 1.245 0.962 0.722 0.089
(0.072) (0.070) (0.076) (0.073) (0.012) (0.111) (0.047)
ala aly aly a2y, cly cly cly
1.074 0.878 1.074 -0.165  0.097 0.874 0.071
(0.025) (0.056) (0.025) (0.057) (0.042) (0.084) (0.037)
2k 2y Yo 7L Tk Tm Ty
-0.371  0.028 -0.095  -0.122  -0.039 -0.146  -0.118
(0.085) (0.035) (0.021) (0.022) (0.010) (0.022) (0.026)

Cost Labor: Capital Material Price
R? 0.876 0.414 0.795 0.717 0.871
D.W. 2.341 1.793 1.616 2.320 2.030
t.stat. -4.418 -5.455 -3.910  -6.540 -4.571
Obs. 93 93 93 93 93

(Standard Errors in Parentheses)
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Table A.26

: Estimation Results for the Textiles Industry (17-19)

SLL SKK SLK brr bxk barm
-0.178  -0.140  0.071 0.276 0.196 0.703
(0.049) (0.243) (0.094) (0.053) (0.232) (0.081)
brus brr brip brp brc brr
0.124 0.101 - 0.049 0.149 0.110
(0.019) (0.018) - (0.017)  (0.017) (0.016)
brus brr brip brp brc brr
0.032 0.193 - 0.140 -0.024 0.060
(0.106) (0.101) - (0.115)  (0.103) (0.101)
buvs  bur byisp  bup bue bur
-0.002  0.026 - 0.048 -0.025 0.004
(0.025) (0.025) - (0.022)  (0.024) (0.023)
br bt bt by byy but
-0.005 - - -0.002  -0.017 -
(0.001) - - (0.001) (0.008) -
Hus Hr Hyp Hp He 123
1.207 1.239 - 1.199 1.219 1.185
(0.027) (0.029) - (0.026)  (0.028) (0.027)
alqs aly, alx aly aly a2q
0.933 0.876 0.116 0.988 0.808 -0.167
(0.010) (0.037) (0.049) (0.025) (0.044) (0.046)
CL2L CL2K CL2M Clc ClL ClK
-0.010  0.081 -0.207  0.217 0.177 0.566
(0.055) (0.049) (0.047) (0.047) (0.046) (0.064)
cly cly Yo 7L Tk Tm
0.196 0.189 -0.077  -0.163  -0.047 -0.108
(0.045) (0.040) (0.022) (0.020) (0.011) (0.021)
Yo
-0.077
(0.022)

Cost Labor  Capital Material Price
R? 0.976 0.771 0.829 0.949 0.935
D.W. 2.277 2.180 1.650 1.880 2.395
t.-stat  -3.487  -7.986 -4.301  -5.205 -4.373
Obs. 82 82 82 82 82

(Standard Errors in Parentheses)
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Table A.27: Estimation Results for the Wood Industry (20)

SLL SKK SLK brr brx barm
-0.034  -0.549 0.119 0.054 0.268 0.756
(0.020) (0.368) (0.090) (0.028) (0.322) (0.131)

brus bri brsp brp brc brr
- 0.190 - 0.175 0.200 -

- (0.027) - (0.021)  (0.022) -
bxkus bk brsp bkp brc bir
- 0.284 - -0.234 -0.082 -

- (0.189) - (0.160)  (0.171) -
buvs  bui bvusp  bup buc bur
- -0.046 - -0.025 0.083 -

- (0.041) - (0.036)  (0.039) -
b bkt bare be byy bt

- -0.008 0.005 - -0.010 -

- (0.004)  (0.001) - (0.010) -
Hus Hr Hyp Hp Mo 123
- 1.398 - 1.285 1.366 -

- (0.075) - (0.069)  (0.072) -
alc CL1L alK CL1M aly alK

1.167 10.619 0.056 1.102 1.429 0.056
(0.055) (10.221) (0.036) (0.084) (0.160)  (0.036)
a2k cle cly, cly cly Yo
0.101 0.071 0.288 0.699 0.296 -0.118
(0.044) (0.012)  (0.048) (0.094) (0.067) (0.032)
7L Tr T Ty

-0.074  -0.071 -0.108  -0.550

(0.019) (0.024)  (0.028) (0.093)

Cost Labor  Material Capital Price
R? 0.964 0.871 0.948 0.700 0.799
t.-stat. -3.628 -3.882  -3.880 -2.989  -5.929
D.W. 2.174 2.414 1.993 1.758 2.040
Obs. 48 48 48 48 48

(Standard Errors in Parentheses)
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Table A.28: Estimation Results for the Paper and Publishing Industry (21-22)

SLL SKK SLK brr brk bara
-0.010  -0.043  0.007 0.240 -0.018 0.628
(0.018) (0.083) (0.030) (0.048) (0.086) (0.056)
brus brr brip brp brc brr
- 0.086 - 0.063 0.082 0.102
- (0.037) - (0.039) (0.036) (0.041)
brus brr brip brp brc brr
- 0.096 - 0.296 0.267 0.115
- (0.117) - (0.110)  (0.111)  (0.111)
buuvs  bur bysp  bup bue bur
- -0.017 - -0.064  -0.124 -0.055
- (0.042) - (0.039) (0.037) (0.040)
br bt bt by byy but
-0.004  0.008 0.005 - -0.058 -
(0.001) (0.005) (0.001) - (0.013) -
Hus Hr Hyp Hp Mo HF
- 1.415 - 1.407 1.231 1.403
- (0.079) - (0.079)  (0.069) (0.079)
alqs aly, alx aly aly a2q
1.109 0.572 1.465 1.247 1.522 -0.162
(0.047) (0.152) (1.509) (0.097) (0.115) (0.078)
CL2L CL2K CL2Y Clc ClL ClK
0.322 3.205 -0.962  0.202 0.153 1.003
(0.129) (3.225) (0.185) (0.068) (0.072) (0.102)
cly 2k Yo Tk 7L Tm
0.713 -0.273  -0.054 -0.114  -0.106 -0.115
(0.114) (0.120) (0.022) (0.036) (0.036) (0.039)
Ty
-0.571
(0.085)

Cost Labor  Capital Material Price
R? 0.978 0.696 0.795 0.911 0.924
D.W. 2.082 1.411 2.511 2.104 2.382
t.stat.  -2.448 -2.953  -3.143  -2.959 -6.703
Obs. 58 58 58 58 58

(Standard Deviations in Parentheses)
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Table A.29: Estimation Results for the Chemical Industry (24)

SLL SKK SLK brr brx barm
-0.049 -0.060 0.035 0.084 -0.164 0.677
(0.018) (0.082) (0.034) (0.030) (0.080) (0.033)

brus brr brsp brp bre brr
0.166 0.148 - 0.171 0.118 -
(0.019) (0.019) - (0.020) (0.018) -
bxus brr bxsp bxp bxc bxr
0.583 0.665 - 0.616 0.642 -
(0.032) (0.032) - (0.031)  (0.030) -
buvs  bur bysp  bup bue bur
-0.093  -0.016 - -0.024  -0.070 -
(0.024) (0.022) - (0.022)  (0.023) -

br brct bart by byy bet
-0.002  0.004 - - 0.034 -
(0.006) (0.002) - - (0.013) -

Hus Hr Hyp Hp Mo HF
1.253 1.277 - 1.280 1.252 -
(0.033) (0.034) - (0.033) (0.034) -

alqs aly, alx aly aly a2q
1.002 0.643 2.352 1.028 1.143 -0.482
(0.011) (0.119) (1.196) (0.017) (0.065) (0.053)
CLQC CL2L CL2M CL2Y Clc ClL

-0.482  0.238 -0.463  -0.051  0.496 0.367
(0.053) (0.103) (0.054) (0.127) (0.052) (0.053)
cly clas cly c2r 2y Yo
0.694 0.438 0.070 -0.079  -0.108 -0.177
(0.088) (0.049) (0.106) (0.034) (0.089) (0.025)
YL Tr Ym Ty

-0.1564  -0.196 -0.183  -0.342

(0.033) (0.043) (0.024) (0.081)

Cost Labor  Capital Material Price
R? 0.933 0.406 0.709 0.881 0.849
D.W. 2.392 1.637 1.611 2.360 1.870
t.stat.  -7.207  -4.720 -4.553  -7.669 -4.218
Obs. 60 60 60 60 60

(Standard Errors in Parentheses)
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Table A.30: Estimation Results for Rubber and Plastics Products (25)

SLL SKK SLK brr brx barm
-0.144 -0.744 0.302 0.419 -0.239 0.636
(0.081) (0.369) (0.163) (0.083) (0.325) (0.089)

brus brr brip brp brc brr
0.065 -0.012 - 0.038 0.053 -
(0.015) (0.016) - (0.015) (0.014) -
brus brr brsp bip brc bir
0.058 0.271 - 0.198 0.086 -
(0.042) (0.034) - (0.042) (0.043) -
buvs  bur bysp  bup brc bur
0.137 0.118 - 0.068 0.068 -
(0.021) (0.020) - (0.021) (0.020) -

br brct bart be byy bet
-0.005 - 0.006 - 0.002 -
(0.001) - (0.001) - (0.010) -

Hus Hr Hip Hp Ho Hr
1.048 1.147 - 1.186 1.181 -
(0.151) (0.087) - (0.078) (0.080) -

alqs aly, alx ala aly a2q
1.002 0.690 -0.001  1.243 1.123 -0.178
(0.014) (0.048) (0.046) (0.034) (0.062) (0.050)
CL2M Clc ClL ClK ClM Cly

-0.336  0.187 0.193 0.520 0.211 0.163
(0.068) (0.048) (0.041) (0.070) (0.045) (0.043)
Yo YL T VM Ty

-0.241  -0.392  -0.139 -0.262 -0.064

(0.034) (0.047) (0.027) (0.032) (0.043)

Cost Labor  Capital Material Price
R? 0.952 0.726 0.678 0.884 0.893
D.W. 2.032 1.760 1.697 2.028 2.069
t.stat.  -7.070  -8.356  -5.180  -8.081 -2.001
Obs. 64 64 64 64 64

(Standard Errors in Parentheses)
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Table A.31: Estimation Results for Other Non-Metallic Mineral Products (26)

SLL SKK SLK brr brk barm
-0.393 -0.964 0.503 0.419 -0.294 0.602
(0.067) (0.294) (0.125) (0.073) (0.316) (0.095)

brus bri brsp brp bre brr
0.160  0.121 - 0.090 0.125 0.127
(0.018) (0.019) - (0.018)  (0.018)  (0.019)
bxus bk bksp  bkp bkc brr
0.077 0293 - 0.287 0.040 0.084
(0.135) (0.128) - (0.131) (0.138)  (0.130)
buvs  bur busp bup buc bur
0.117  0.233 - 0.159 0.118 0.140
(0.040) (0.039) - (0.036) (0.036)  (0.032)
br bkt bare be byy bt

- - - -0.003  0.014 -

- - - (0.001) (0.009) -

Hus Hr Hip Hp Ho Hr
1.376  1.400 - 1.377 1.372 1.361
(0.062) (0.067) - (0.059) (0.061)  (0.059)
alc CL1L alK CL1M aly CL2L

0.959 0.864 0.045 1.179 0.856 0.091
(0.025) (0.067) (0.034) (0.052) (0.082) (0.027)
cle cly cly 2k 2y Yo
0.038 0.568 0.511 -0.107  -0.158 -0.080
(0.008) (0.075) (0.071) (0.078) (0.062) (0.026)
YL Tk Y Ty
-0.179  -0.132  -0.081  -0.229
(0.024) (0.025) (0.024) (0.048)

Cost Labor  Capital Material Price
R? 0.904 0.757 0.665 0.898 0.845
D.W. 2.248 1.780 1.812 2.398 1.605
t.stat.  -3.014 -7.516  -5.209  -3.402 -2.768
Obs. 77 7 77 7 77

(Standard Errors in Parentheses)
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Table A.32: Estimation Results for Basic and Fabricated Metals (27-28)
SLL SKK SLK brr brx barm
-0.102 -0.489 0.187 0.242 0.168 0.690
(0.063) (0.316) (0.132)  (0.081) (0.343)  (0.089)
brus brr brsp brp bro brr
0.159 0.133 0.102 0.157 0.125 0.165
(0.022) (0.022) (0.023)  (0.022) (0.023)  (0.023)
brus b1 brp bxp brc brr
0.072 0.097 0.561 0.121 -0.039 0.048
(0.158)  (0.160) (0.165)  (0.163) (0.158)  (0.163)
byvs  bur barsp byp bare bar
0.026 0.064 0.049 0.021 0.067 0.010
(0.024) (0.024) (0.022)  (0.023) (0.024)  (0.023)

bre bxt bare be byy bt
-0.003  -0.005  0.0009 - 0.013 -
(0.001) (0.003) (0.0001) - (0.008) -
Hus Hr Hyp Hp He HF

1.261 1274  1.285  1.296  1.240 1.252
(0.037) (0.038) (0.036)  (0.037) (0.038)  (0.038)

alqs aly, alx ala aly a2q
1.018 0.806 -0.002 1.217 1.201 -0.236
(0.016) (0.121) (0.026)  (0.040) (0.050)  (0.049)
CL2L CL2K CL2M CL2Y Clc ClL

0.255 0.064 -0.336 -0.341  0.246 0.197
(0.089) (0.034) (0.059)  (0.111) (0.047) (0.045)
cly clas cly c2x 2y ye
0.868 0.337 0.345 -0.343  -0.049 -0.133
(0.080) (0.059) (0.087)  (0.076) (0.027) (0.026)
YL Tr Ym Ty

-0.160  -0.048  -0.097 -0.451

(0.023) (0.010) (0.022)  (0.072)

Cost Labor Capital Material Price
R? 0.973 0.767 0.814 0.938 0.957
D.W. 2.313 1.655 1.575 2.501 1.916
t.stat. -5.119  -6.872 -4.726  -4.423 -6.240
Obs. 92 92 92 92 92

(Standard Errors in Parentheses)
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Table A.33:

Estimation Results for the Machinery Industry (29)

SLL SKK SLK brr bxk barm
-0.313  -1.082  0.528 0.498 -0.188 0.700
(0.084) (0.266) (0.144) (0.084) (0.246) (0.067)
brus brr brsp brp brc brr
- 0.089 0.128 0.111 0.128 0.118
- (0.022) (0.022) (0.021) (0.023) (0.022)
brus brr brip brp brc brr
- -0.062 0.014  -0.386  -0.277 -0.193
- (0.104) (0.101) (0.117) (0.101) (0.106)
buvs  bur bysp  bup burc bur
- 0.156 0.041 0.060 0.065 0.093
- (0.029) (0.027) (0.024) (0.024) (0.020)
brt bxt bart by byy by
-0.004  -0.010 -0.002 - 0.002 -
(0.002) (0.003) (0.001) - (0.008) -
Hus Hr Hip Hp Ho Hr
- 1.406 1. 267 1.367 1.382 1.288
- (0.135) (0.066) (0.126) (0.150) (0.074)
alqs aly, alx aly aly a2q
0.977 0.790 0.049 1.176 0.857 -0.244
(0.019) (0.063) (0.014) (0.048) (0.080) (0.035)
CL2M Clc ClL ClK Cly 62[(
-0.329  0.288 0.251 0.593 0.218 -0.150
(0.057) (0.036) (0.031) (0.101) (0.057) (0.089)
e YL YK Y Ty
-0.076  -0.100 -0.056  -0.093  -0.050
(0.016) (0.015) (0.010) (0.016) (0.036)

Cost Labor  Capital Material Price
R? 0.965 0.833 0.819 0.955 0.825
D.W. 2.033 1.923 1.549 2.263 1.951
t.stat. -4.814 -6.738 -5.296  -5.936 -1.417
Obs. 78 78 78 78 78

(Standard Errors in Parentheses)
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Table A.34: Estimation Results for the Electrical and Optical Equipment Industry (30-33)

SLL SKK SLK brr brk bar
-0.052  -0.049 0.041 0.320 0.134 0.873
(0.041) (0.161) (0.072) (0.050) (0.124) (0.054)
brus brr brsp brp brc brr

- 0.143 0.138 0.150 0.096 0.174
- (0.020) (0.020) (0.020) (0.020) (0.021)
brus by brp bk p bxc bk r

- 0.474 0.324 0.504 0.113 0.309

- (0.076) (0.074) (0.069) (0.061) (0.070)
byvs — bur brasp barp bruc bur

- -0.151  -0.130  -0.175  -0.040 -0.190
- (0.024) (0.021) (0.023) (0.022) (0.020)
br brt bart by byy byt
-0.014 -0.008 -0.015 0.007 -0.032 0.0005
(0.002) (0.003) (0.003) (0.003) (0.012) (0.0001)
Hus Hr Hyp Hp He HF

- 1.347 1.209 1.350 1.382 1.240
- (0.051) (0.037) (0.044) (0.050) (0.040)
ale aly, aly aly a2q a2y,
0.978 0.922 1.002 0.699 -0.372 -0.131
(0.016) (0.074) (0.026) (0.060) (0.049) (0.074)
CL2K CL2M CL2Y Clc ClL ClK
0.655 -0.378  -0.169  0.373 0.338 0.824
(0.425) (0.055) (0.083) (0.050) (0.047) (0.085)
clas cly c2r c2x 2y Yo
0.334 0.327 0.046 -0.104  -0.168 -0.121
(0.055) (0.093) (0.017) (0.078) (0.058) (0.020)
YL Tr Ym Ty

-0.180  -0.029 -0.111 -0.184

(0.023) (0.009) (0.021) (0.031)

Cost Labor  Capital Material Price
R? 0.938 0.742 0.803 0.932 0.911
D.W. 1.645 1.786 1.684 1.797 1.944
t.stat. -6.044 -7.718 -3.144  -5.205 -5.993
Obs. 76 76 76 76 76

(Standard Errors in Parentheses)
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Table A.35: Estimation Results for the Transport Equipment Industry (34-35)

SLL SKK SLK brr brk barm
-0.137 -0.678 0.227 0.266 -0.206 0.810
(0.060) (0.390) (0.135) (0.074) (0.313) (0.117)
brus brr brsp brp bre brr
0.169 0.113 0.125 0.109 0.059 0.063
(0.016) (0.016) (0.016) (0.016) (0.016) (0.016)
brus brr brip brp brc brr
-0.010 0.341 0.385 0.261 0.039 0.104
(0.095) (0.091) (0.096) (0.091) (0.087) (0.092)
byus barr barrp by bare byr
-0.009 0.051 0.048 0.014 0.061 0.087
(0.026) (0.023) (0.024) (0.025) (0.021) (0.022)

br bkt bare be byy bt
-0.003  0.005 -0.004 - -0.013 -
(0.001) (0.003) (0.001) - (0.007) -
Hus Hr Hip Hp Ho Hr

1.225 1.251 1.256 1.262 1.233 1.231
(0.033) (0.039) (0.031) (0.033) (0.036) (0.033)
alqs aly, alx aly aly a2,
0.990 0.688 0.007 1.124 0.804 0.142
(0.014) (0.077) (0.028) (0.029) (0.065) (0.053)

CL2Y ClL ClK ClM Cly 62[(
-0.152  0.045 0.668 -0.019 0.381 -0.259
(0.099) (0.029) (0.082) (0.007) (0.083)  (0.072)
Yo YL Tk Y Ty

0120 -0.154 -0.059 -0.131  -0.145
(0.022) (0.022) (0.012) (0.022)  (0.040)

Cost Labor  Capital Material Price
R? 0.958 0.717 0.689 0.958 0.852
D.W. 2.284 1.614 1.766 2.284 2.263
t.stat.  -5.334  -7.103 -4.741  -5.891 -3.589
Obs. 94 94 94 94 94

(Standard Errors of Parentheses)
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Table A.36: Estimation Results for Manufacturing Industries N.E.C., Recycling (36-37)

SLL SKK SLK brr brk barm
-0.171 -0.076 0.045 0.227 -0.072 0.736
(0.036) (0.100) (0.044) (0.032) (0.101) (0.048)

brus brr brsp brLp brc brr

- 0.085 - 0.064 0.180 0.079

- (0.022) - (0.022) (0.018) (0.020)
brus brr brsp brp brc brr

- 0.379 - 0.230 0.235 0.543
- (0.129) - (0.124)  (0.097) (0.108)
byvs  bur busp  bup brue bur

- 0.041 - 0.031 -0.115 -0.165
- (0.027) - (0.031) (0.026) (0.023)
br brct bart by byy bet

- - - -0.002  -0.022 -

- - - (0.001) (0.012) -

Hus Hr Hip Hp Ho Hr

- 1.250 - 1.212 1.227 1.126
- (0.052) - (0.049)  (0.053) (0.040)
alqs aly, alx aly aly a2q
0.950 0.885 -0.518  0.947 0.844 -0.137
(0.027) (0.070) (0.521) (0.044) (0.065) (0.036)
CL2K CL2M CL2Y Clc ClL ClM

1626 -0.146  -0.309 0.187  0.156  0.163
(1.523) (0.043) (0.091) (0.039) (0.034)  (0.039)

cly e VL VK T Ty
0.371  -0.047 0101 -0.020 -0.057  -0.141

(0.085) (0.015) (0.014) (0.001) (0.019) (0.055)
Cost Labor  Capital Material Price

R? 0.937 0.711 0.696 0.889 0.776
D.W. 1.710 1.570 1.898 2.168 1.889
t.stat.  -3.012  -7.004 -2.219  -3.019 —2.548
Obs. 62 62 62 62 62

(Standard Errors in Parentheses)
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A.4 Results with R&D

Table A.37: Estimation Results for Basic and Fabricated Metals (27-28)

SLL SKK SLK brr brk barm brus
-0.110 -0.546 0.209 0.267 0.187 0.699 0.152
(0.064) (0.321) (0.135) (0.084) (0.349) (0.089) (0.023)
brr brsp brp bro brr brus brr
0.123 0.102 0.156 0.116 0.158 0.014 0.031
(0.022) -(0.023) (0.023) (0.023) (0.023) (0.163) (0.168)
brp brxp brc brr byus barr byrp
0.512 0.067 0.099 -0.013 0.035 0.066 0.071
(0.170) (0.169) (0.164) (0.169) (0.024) (0.024) (0.024)
barp bare bur bry bit bare byy
0.040 0.073 0.018 -0.003 -0.006 0.001 0.014
(0.024) (0.024) (0.023) (0.001) (0.003) (0.001) (0.008)
bry Hus Hr Hp Ho Hr ale
-0.354 1.254 1.246 1.306 1.310 1.221 1.018
(0.215) (0.037) (0.039) (0.040) (0.040) (0.038) (0.017)

CL1L alK alM aly CL2L CLQC CL2K
0.784 -0.003 1.241 1.218 0.234 -0.232  0.052
(0.111) (0.025) (0.044) (0.053) (0.082) (0.049) (0.030)
a2 a2y cle cly, cly 2y clas
-0.346  -0.332 0.241 -0.199  0.836 -0.318  0.210
(0.060) (0.112)  (0.047) (0.045) (0.080) (0.075) (0.046)
cly 2y Yo YL YK Y Ty

0.337 -0.052 -0.124  -0.160  -0.048 -0.097  -0.404

(0.086) (0.027)  (0.025) (0.023) (0.010) (0.021) (0.071)
Cost Labor  Capital Material Price

R? 0.973 0.761 0.810 0.940 0.955

D.W. 2.259 1.646 1.509 2.491 1.895

t.stat.  -5.059 -6.974  -4.784  -4.589 -5.666

Obs. 92 92 92 92 92

(Standard Errors in Parentheses)
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Table A.38

: Estimation Results for the Machinery Industry (29)

SLL SKK SLK brr bxk barm
-0.327  -1.018  0.524 0.502 -0.054 0.692
(0.084) (0.251) (0.142) (0.082) (0.223) (0.061)
brus brr brsp brp brc brr
- 0.066 0.145 0.148 0.123 0.130
- (0.022) (0.021) (0.021) (0.022) (0.020)
brus brr brip brp brc brr
- -0.135  -0.0001 -0.420  -0.330 -0.235
- (0.097) (0.099) (0.108) (0.095) (0.101)
burus bur buip bup burc bur
- 0.110 0.086 0.140 0.073 0.122
- (0.031) (0.027) (0.027) (0.024) (0.019)
bre bxt bast by byy by
-0.002  -0.008 -0.006 - -0.004 -
(0.001) (0.003) (0.001) - (0.007) -
Hus Hr Hip Hp Ho Hr
- 1.105 1.321 1.424 1.198 1.284
- (0.082) (0.058) (0.081) (0.065) (0.058)
alec aly, alx aly aly a2q
0.973 0.823 0.043 1.178 0.930 -0.199
(0.021) (0.059) (0.013) (0.045) (0.080) (0.035)
CL2M Clc ClL ClK Cly 62[(
-0.252  0.243 0.220 0.610 0.213 -0.186
(0.056) (0.035) (0.030) (0.102) (0.054) (0.090)
e YL YK Ym Ty bry
-0.079  -0.102 -0.049 -0.084 -0.075 -0.890
(0.015) (0.013) (0.001) (0.016) (0.041) (0.190)
Cost Labor  Capital Material Price
R? 0.963 0.813 0.824 0.956 0.827
D.W. 1.879 1.774 1.603 2.210 2.00
t.stat.  -5.236  -6.828  -5.285  -5.233 -1.854
Obs. 78 78 78 78 78

(Standard Errors in Parentheses)
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Table A.39: Estimation Results for the Electrical and Optical Equipment Industry (30-33)

SLL SKK SLK brr brk bar
-0.048  -0.058  0.043 0.340 0.176 0.871
(0.049) (0.199) (0.089) (0.056) (0.156) (0.063)
brus brr brsp brp bre brr

- 0.123 0.132 0.145 0.088 0.173
- (0.022) (0.020) (0.020) (0.020) (0.020)
brus bir bxsp bxp bxc b F

- 0.453 0.329 0.491 0.096 0.319

- (0.082) (0.086) (0.074) (0.067) (0.080)
buuvs  bur buip bavp bue bur

- -0.170  -0.127 -0.158  -0.037 -0.171
- (0.028) (0.021) (0.024) (0.022) (0.020)
br brt bart by byy byt
-0.013  -0.007 -0.012 0.007 -0.032 0.0004
(0.002) (0.003) (0.004) (0.002) (0.012) (0.0003)
Hus Hr Hyp Hp He HF

- 1.283 1.208 1.360 1.366 1.258
- (0.056) (0.038) (0.047) (0.051) (0.044)
ale aly, aly aly a2q a2y,
0.981 0.889 1.017 0.713 -0.348 -0.129
(0.016) (0.066) (0.027) (0.060) (0.048) (0.059)
CL2K CL2M CL2Y Clc ClL ClK
0.458 -0.354  -0.161  0.348 0.322 0.806
(0.311) (0.056) (0.085) (0.050) (0.047) (0.087)
clas cly c2r c2x 2y Yo
0.309 0.307 0.040 -0..091  -0.171 -0.131
(0.054) (0.092) (0.018) (0.079) (0.057) (0.021)
7L Tk Tm Ty bry

-0.184 -0.029 -0.117 -0.196  -0.120

(0.025) (0.009) (0.023) (0.032) (0.061)

Cost Labor  Capital Material Price
R? 0.938 0.736 0.800 0.933 0.913
D.W. 1.599 1.764 1.657 1.760 2.007
t.stat. —6.240 -7.412 -3.041  -5.168 -6.157
Obs. 76 76 76 76 76

(Standard Errors in Parentheses)
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Table A.40: Estimation Results for the Transport Equipment Industry (34-35)

SLL SKK SLK brr brk barm
-0.163 -0.815 0.285 0.306 -0.319 0.845
(0.062) (0.388) (0.138) (0.075) (0.313) (0.115)
brus brr brsp brp bre brr
0.180 0.109 0.117 0.108 0.044 0.064
(0.017) (0.015) (0.015) (0.015) (0.016) (0.016)
brus brr brip brp brc brr
-0.020 0.337 0.368 0.264 0.028 0.115
(0.089) (0.084) (0.087) (0.085) (0.080) (0.086)
byus barr barrp by bare byr
0.047 0.054 0.046 0.029 0.040 0.107
(0.032) (0.022) (0.023) (0.024) (0.023) (0.022)

br bkt bare be byy bt
-0.003  0.006 0.005 - -0.014 -
(0.001) (0.003) (0.001) - (0.007) -
Hus Hr Hip Hp Ho Hr

1.328 1.251 1.245 1.283 1.186 1.266
(0.058) (0.039) (0.030) (0.035) (0.039) (0.037)
alqs aly, alx aly aly a2,
0.990 0.666 0.003 1.129 0.822 0.121
(0.013) (0.068) (0.029) (0.028) (0.065) (0.048)

CL2Y ClL ClK ClM Cly 62[(
-0.126  0.048 0.653 -0.016 0.353 -0.250
(0.098) (0.029) (0.082) (0.007) (0.083)  (0.071)
Yo VL Yk Ym Ty bry

0133 -0.165 -0.064 -0.144  -0.146  -0.128
(0.022) (0.021) (0.012) (0.021) (0.039)  (0.054)

Cost Labor  Capital Material Price
R? 0.961 0.713 0.688 0.959 0.854
D.W. 2.120 1.604 1.751 2.226 2.249
t.stat.  -5.9256  -7.726  -5.164  -6.883 -3.769
Obs. 94 94 94 94 94

(Standard Errors of Parentheses)
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A.5 Results with Spillover Variables

Table A.41: Estimation Results for the Textiles Industry (17-19)

SLL SKK SLK brr bxk barm brus
-0.156  -0.133  0.040 0.252 0.165 0.726 0.130
(0.050) (0.234) (0.094) (0.055) (0.229) (0.081) (0.018)
brr brp bre brr brus brr brp
0.105 0.051 0.190 0.115 0.056 0.232 0.155
(0.018) (0.017) (0.022) (0.016) (0.118) (0.112) (0.132)
bxc b F buvs  bur by p buc bur
0.080 0.108 -0.012  0.019 0.043 0.049 -0.002
(0.118) (0.112) (0.025) (0.025) (0.022) (0.035) (0.023)
Hus Hr Hp Hco Hr alo alg
1.220 1.253 1.210 1.227 1.198 0.934 0.891
(0.028) (0.030) (0.025) (0.029) (0.028) (0.010) (0.041)
alK alM aly CLQC CL2L CL2K CL2M
0.136 0.978 0.813 -0.170  -0.011 0.096 -0.205
(0.068) (0.026) (0.044) (0.045) (0.056) (0.063) (0.045)
cle cly cly clas cly Yo YL
0.221 0.169 0.594 0.199 0.188 -0.060  -0.149
(0.046) (0.045) (0.067) (0.044) (0.040) (0.021) (0.018)
Tr T Ty br by bsfs byy
-0.036  -0.097 -0.184 -0.005  -0.0003 -0.873 -0.019
(0.010) (0.019) (0.045) (0.001) (0.001) (0.284) (0.008)
Cost Labor  Capital Material Price
R? 0.976 0.757 0.832 0.948 0.938
D.W. 2.297 2.048 1.692 1.966 2.310
t.-stat  -2.896  -8.095 -3.518  -4.982 -4.120
Obs. 82 82 82 82 82

(Standard Errors in Parentheses)
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Table A.42: Estimation Results for the Chemical Industry (24)

SLL SKK SLK brr brk barns
-0.068  -0.089 0.050 0.103 -0.196 0.704
(0.026) (0.138) (0.055) (0.037) (0.125) (0.043)

brus brr brip brp bre brr
0151 0137 - 0.159 0.133 -
(0.020) (0.020) - (0.020) (0.021) -
brkus  bkr bgsp  bkp brc brr
0.589  0.686 - 0.629 0.746 -
(0.038) (0.038) - (0.037) (0.044) -
buus b bvusp  bup buve bur
-0.103  -0.011 - -0.025  0.011 -
(0.024) (0.022) - (0.021) (0.032) -
bt bit bart be byy bet
0.002  -0.006 - - -0.0004 -
(0.001) (0.002) - - (0.016) -
Hus Hr Hip Hp Hco Hr
1247 1.270 - 1.276 1.238 -
(0.032) (0.033) - (0.032) (0.034) -
alc CL1L alK CL1M aly CL2L

0.995 0.555 1.356 1.027 1.162 0.352
(0.010) (0.095) (0.578) (0.017) (0.064) (0.053)
a2 a2y cle cly cly clas
-0.434  -0.094 0.471 0.352 0.628 0.414
(0.053) (0.125) (0.052) (0.053) (0.086) (0.048)
cly c2r 2k 3 c3r Yo
0.101 0.352 0.628 -0.105  -0.114 -0.175
(0.103) (0.053) (0.086) (0.083) (0.035) (0.029)
YL TK Ym Ty bsys

-0.142  -0.204 -0.184 -0.346  -0.029

(0.031) (0.043) (0.027) (0.078) (0.009)

Cost Labor  Capital Material Price
R? 0.934 0.373 0.718 0.885 0.850
D.W. 2.388 2417 1.615 2417 1.828
t.stat.  -6.266  -4.5630  -4.749  -6.788 -4.447
Obs. 60 60 60 60 60
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Table A.43: Estimation Results for Rubber and Plastics Products (25)

SLL SKK SLK brr brx barm
-0.164 -0.841 0.348 0.438 -0.314 0.641
(0.078) (0.362) (0.157) (0.081) (0.318) (0.088)

brus brr brip brp brc brr
0.069 -0.004 - 0.044 0.101 -
(0.014) (0.016) - (0.015) (0.027) -
brus brr brsp bip brc bir
0.057 0.272 - 0.200 0.170 -
(0.040) (0.033) - (0.041) (0.058) -
buvs  bur bysp  bup brc bur
0.143 0.133 - 0.081 0.182 -
(0.021) (0.021) - (0.022) (0.061) -

br brct bart be byy bet
-0.004 - 0.006 - -0.002 -
(0.001) - (0.001) - (0.010) -

Hus Hr Hip Hp Ho Hr
0.977 1.113 - 1.146 1.173 -
(0.203) (0.110) - (0.106) (0.096) -

alqs aly, alx ala aly a2q
1.006 0.698 -0.015  1.294 1.133 -0.165
(0.013) (0.048) (0.045) (0.032) (0.062) (0.050)
CL2M CL2Y Clc ClL ClK ClM

-0.325  0.163  0.173  0.177 0.502 0.202
(0.069) (0.044) (0.049) (0.040) (0.069)  (0.045)
Yo YL YK Y Ty bsys
-0.237  -0.395  -0.145 -0.259  -0.055 -0.132
(0.034) (0.048) (0.027) (0.033) (0.029)  (0.067)

Cost Labor  Capital Material Price
R? 0.952 0.721 0.687 0.885 0.893
D.W. 2.085 1.683 1.695 2.115 2.074
t.stat. -6.944  -8.288  -5.451  -7.955 -1.880
Obs. 64 64 64 64 64

(Standard Errors in Parentheses)
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Table A.44: Estimation Results for Other Non-Metallic Mineral Products Industry (26)

SLL SKK SLK brr brk barm
-0.397 -0.941 0.502 0.421 -0.307 0.589
(0.063) (0.280) (0.119) (0.069) (0.295) (0.089)

brus bri brsp brp bre brr
0.206  0.115 - 0.121 0.125 0.149
(0.025) (0.018) - (0.021) (0.017)  (0.020)
bxus bk bksp  bkp bkc brr
0.199 0318 - 0.383 0.082 0.157
(0.121) (0.111) - (0.116) (0.120)  (0.114)
buvs  bur busp bup buc bur
0.210  0.214 - 0.206 0.117 0.174
(0.052) (0.037) - (0.040) (0.034)  (0.034)
br bkt bare be byy bt

- - - 0.0001  0.015 -

- - - (0.002) (0.010) -

Hus Hr Hip Hp Ho Hr
1.380  1.410 - 1.386 1.388 1.370
(0.062) (0.069) - (0.058) (0.061)  (0.059)
alc CL1L alK CL1M aly CL2L

0.968 0.863 0.052 1.184 0.858 0.092
(0.022) (0.062) (0.036) (0.046) (0.082) (0.028)
cle cly cly 2k 2y Yo
0.043 0.544 0.501 -0.079  -0.153 -0.097
(0.008) (0.074) (0.071) (0.078) (0.063) (0.030)
YL YK Y Ty bsa

-0.192  -0.146 -0.096 -0.102  -1.100

(0.026) (0.026) (0.026) (0.041) (0.045)

Cost Labor  Capital Material Price
R? 0.915 0.784 0.745 0.879 0.877
D.W. 2.495 2.152 1.780 2477 2.162
t.stat.  -3.247  -7.415  -5.707  -3.673 -2.462
Obs. 77 7 77 7 77

(standrad Errors in Parentheses)
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Table A.45: Estimation Results for Basic and Fabricated Metals (27-28)
SLL SKK SLK brr brk bar
-0.110 -0.464 0.196 0.293 0.226 0.674
(0.067) (0.335) (0.141) (0.081) (0.337)  (0.091)
brus brr brip brp bro brr
0.139 0.129 0.105 0.156 0.242 0.176
(0.020) (0.021) (0.020) (0.020) (0.043)  (0.023)
brus brr brp bxp brc brr
0.035 0.120 0.571 0.150 0.219 0.070
(0.153) (0.156) (0.159) (0.158) (0.185)  (0.160)
byvs  bur barsp byp bare bur
0.058 0.133 0.137 0.098 0.416 0.108
(0.025) (0.028) (0.028) (0.025) (0.092)  (0.031)

bre brt bare be byy bt
-0.004  -0.004  0.001 - 0.016 -
(0.001) (0.003) (0.001) - (0.008) -
Hus Hr Hyp Hp He HF

1.213 1200 1.276  1.278  1.181 1.206
(0.034)  (0.036) (0.038) (0.037) (0.035)  (0.034)

alqs aly, alx ala aly a2q
0.990 0.693 -0.0009 1.214 1.192 -0.198
(0.014) (0.068) (0.026) (0.041) (0.052)  (0.046)
CL2L CL2K CL2M CL2Y Clc ClL

0.205 0.048 -0.344  -0.327  0.205 0.177
(0.063) (0.031) (0.056) (0.106) (0.046) (0.043)
cly clas cly c2x 2y ye
0.765 0.204 0.340 -0.263  -0.052 -0.100
(0.023) (0.043) (0.083) (0.071) (0.027) (0.021)
7L Tk Tm Ty bry bs s
-0.161  -0.055 -0.108 -0.392  -0.486 -1.189
(0.023) (0.011) (0.021) (0.068) (0.226) (0.325)

Cost Labor  Capital Material Price
R? 0.973 0.767 0.800 0.942 0.952
D.W. 2.172 1.655 1.387 2.423 1.886
t.stat. -4.688 -6.998 -4.933  -5.079 -5.760
Obs. 92 92 92 92 92

(Standard Errors in Parentheses)
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Table A.46:

Estimation Results for the Machinery Industry (29)

SLL SKK SLK brr bxk barm
-0.292  -0.834  0.449 0.474 0.074 0.617
(0.082) (0.251) (0.139) (0.080) (0.214) (0.060)
brus brr brip brp brc brr
- 0.051 0.133 0.133 0.216 0.137
- (0.021) (0.020) (0.020) (0.038) (0.022)
brus brr brip brp brc brr
- -0.128  -0.010 -0.410  -0.243 -0.226
- (0.087) (0.096) (0.097) (0.093) (0.093)
buvs  bur byisp  bup bue bur
- 0.105 0.097 0.142 0.248 0.168
- (0.030) (0.024) (0.024) (0.056) (0.020)
br bt bt by byy but
-0.001  -0.006 -0.008 - -0.0005 -
(0.001) (0.003) (0.001) - (0.006) -
Hus Hr Hyp Hp He 123
- 1.036 1.359 1.442 1.153 1.300
- (0.085) (0.057) (0.068) (0.058) (0.059)
alqs aly, alx aly aly a2q
0.993 0.809 0.038 1.219 1.021 -0.177
(0.017) (0.060) (0.013) (0.047) (0.082) (0.048)
CL2M Clc ClL ClK Cly 62[(
-0.224  0.213 0.199 0.651 0.164 -0.179
(0.064) (0.048) (0.045) (0.102) (0.092) (0.096)
e Vi Vi Y Yy bry
-0.087  -0.120 -0.045 -0.101  -0.093 -1.058
(0.016) (0.017) (0.010) (0.018) (0.039) (0.186)
bes
-0.112
(0.033)

Cost Labor  Capital Material Price
R? 0.960 0.806 0.828 0.957 0.826
D.W. 1.854 1.665 1.674 2.285 1.940
t.stat.  -5.305  -7.201  -4.485  -5.583 -2.401
Obs. 78 78 78 78 78

(Standard Errors in Parentheses)
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Appendix B

Distribution of Relative

Productivity

The following proof can be found in Aghion & Howitt (1998b), chapter 3. It shows
that the distribution of relative productivity parameters in the Aghion & Howitt (1998a)
model remains constant over time.

U(.,t) is the cumulative distribution of the absolute productivity parameters A across
sectors at any arbitrarily given date ¢. Pick any A > 0 that was the leading edge parameter
at some date £y > 0 and define ®(t) = V(A,¢). Then

D(to) =1 (B.1)

because at time tg no sector has a productivity parameter larger than the leading edge

parameter A, and
dd(to)
dt

— —®(t)i" for all t > £ (B.2)

After tp the rate at which the mass of sectors behind A falls is the overall flow of innova-
tions occurring in sectors currently behind A. There are ®(t) such sectors, each innovating

with a Poisson arrival rate ¥i®. Together (B.1) and (B.2) define a differential equation
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that ®(¢) must obey. This is uniquely solved as
(I)(t) —e ¥ ftto i (s)ds (B3>

also because dAdrzax (t) = A™>(1)yi" (1) Iny, and A = A™(1o)

Ama.x(t) — Aew]n'thtO Z‘R(S)ds (B4>

Together the last two equations imply

B0 = ()™ (8.5

®(t) is the fraction of sectors at time ¢ for which the relative productivity is smaller than
a = A%X(t)' Equation (B.5) establishes that this fraction is indeed given by H(a) = av
at date t, if a is the relative productivity at ¢ of any sector that innovated on or after

date 0. If ¢ is large enough, this will include almost all values a € [0, 1].
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Appendix C

Value Added with Imperfect

Competition

Basu & Fernald’s (1995) argument that using value added data may bias estimation
results concerning economies of scale and spillovers is based on the assumption that the
value added measure is derived from gross output as a Divisia index, as in the data
prepared by Jorgenson, Fraumeni & Gollop (1987) and extended in subsequent years.
Yet, the analysis readily carries over to value added obtained with double deflation, the
most commonly used method to obtain a current price value added measure. This will
be shown further below.
When a Divisia index is used to construct a value added measure, value added Y*¢ is
implicitly defined as ‘ ‘ ‘
Y yvd M

v = (1-— SM)YM + SM 7 (C.1)

where s;; is the income share of material inputs. This equation can be rearranged to

give ' '
Yvd Y M
=Y My (C.2)

Yvd 1—8M

In order to show that the rate of returns to scale estimates is likely to be biased when value

added data is used, it is useful to derive the most frequently used estimation equation
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to estimate the rate of returns to scale in the primal framework. Remember that the
rate of returns to scale equals A = p(sy, + sy + sx) when both economies of scale and

mark-ups are present in a gross output production function. Multiplying both sides of

P X
Pr L+ P K+ Py M2

this equation with factor 7's cost share ¢; = it turns out that Ac; = ps;.
Therefore, taking into account the derivation of equation (3.5), it can be quickly verified
that the relation of output and input growth rates can be written as

y M

= = A C.3

=t (€3)
where g—ﬁ = (CL—% + CK%' + CM%) denotes the cost share weighted factor input growth.

Substituting this into (C.2) yields

yvd M1l —cu) 7 Aea — sM_M g
Yvd_ 1_3M Zvd 1_3M M 1_3M

(C.4)

where 2% — _cL_ L cx K

) ) oM. o
71 = il T otk S the value added equivalent of Zz. Since A¢; = ps;

Yl AL —ep) £
Yvi 1 — sy Zvd

1—8MM 1_3M

+(p—1) (C.5)

This equation implies that, unless mark-ups are 1, value added will depend directly on
material input growth. Value added is computed from gross output by substracting the
contribution of material inputs assuming that their production elasticity equals their
income share. Yet, this will not be the case in the presence of market power. This
is likely to cause an omitted variable bias, if value added growth is regressed on cost
share weighted factor input growth to estimate the rate of returns to scale A. The second
misspecification is that the coefficient of % will not in general equal the true rate of
returns to scale, unless there is perfect competition, so that sp; = cpr. Otherwise the
divisor will be too large, causing a downward bias in the estimated rate of returns to
scale.

Caballero & Lyons (1990) and Caballero & Lyons (1992) employ industry value added
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T — Mot M2y 4 Mg here 4 |
vod = 0+ 175 + Ao %4s + &4, where 47 is an aggregate

data to estimate an equation like
activity measure, such as aggregate input or aggregate output, while the variables with
index 7 are industry variables. g; is an error term. % is included in the estimation
equation to capture productive spillovers. Yet, Basu & Fernald (1995) argue that these
are likely to proxy the omitted material inputs growth. Thus, the finding of positive
productive spillovers may be nothing but a figment of specification error.

To see that the analysis carries over to value added measures obtained with double

deflation, observe that double-deflated value added equals

Y=Y - M (C.6)

where Y'Y is constant price value added, Y is constant price gross output and M is
constant price material inputs. The right hand side variables are deflated each with their
own price index, which is why the method is called double deflation. Differentiating this

equation, diving by Y and rearranging yields

R S
—=e—-—(——= C.7
Yo YV 1-m, ( M Y) (C7)
where m, = % is the constant price share of material inputs in gross output. The

difference between the Divisia index and the double deflated index used to construct
value added is the weights used to substract material inputs growth from output growth.
Constant price weights are used in the double deflation method, whereas the Divisia
index 1is calculated with current price weights. To compare the two measures, it is useful
to rewrite equation (C.2) as

yvd oy sy MY
VATV T Ty MY (C8)

Combining (C.7) and (C.8), the growth rate of double deflated output can be rewritten
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as
yv o oy my Py M Y
— = 1- (= -= :
Ve o yv o (1—my)(1— suy) Py)(M v (C9)

where the second term on the right hand side represents the double deflation bias. This
disappears in two cases: When gross output always grows at the same rate as material
inputs, and if the price of output, F-, and the price of material inputs, Py, is always the
same (Bruno & Sachs 1985).

Irom (C.9) it should be clear that double deflated value added growth is subject to
the same biases as the Divisia index, potentially with a double deflation bias in addition

to this.
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Appendix D

The Data

The OECD STAN database provides input and output data for industries in OECD
member countries. The newest version (OECD 20000), based on the ISIC, Rev. 3 industry
classification includes several service sectors in addition to manufacturing industries.

Although sometimes incomplete, the new STAN edition improves upon earlier versions
in many aspects. It provides volume measures of gross fixed capital formation and capital
stocks for some countries. In the older version only gross fixed capital formation in current
prices was available. Very importantly, the newer version includes a volume measure of
gross output, while no gross output deflator was available before. With both gross output
and value added in constant prices at hand a measure of material inputs in constant prices
can be constructed as the difference between the two output measures.

The sample of countries in this study includes Canada, France, Germany, Italy, Japan
and the US. The data is taken from the STAN database for all countries but Germany.
Although the new STAN database does include some service sectors, this study focuses
on manufacturing sectors, because this is where the bulk of research and development is
performed. Table D.1 gives an overview over the ISIC, Rev. 3 industry classification on
which the new STAN database relies.

Output: Prices of gross output and value added are calculated as the ratio of the

nominal output series to their volume index. 1995 values are normalized to one. Constant
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Table D.1: The ISIC, Rev. 3 Industry Classification
ISIC-Code | Industry

15-16 Food Products, Beverages and Tobacco

17-19 Textiles, Textile Products, Leather and Footwear
20 Wood and Products of Wood and Cork

21-22 Pulp, Paper, Publishing and Printing

23-25 Chemical, Rubber, Plastics and Fuel Products
23 Coke, Refined Petroleum Products And Nuclear Fuel
24 Chemicals and Chemical Products

25 Rubber and Plastics Products

26 Other Non-Metallic Mineral Products

27 Basic Metals

28 Fabricated Metal Products

27-28 Basic Metals and Fabricated Metal Products
29-33 Machinery and Equipment

29 Machinery and Equipment N.E.C.

30-33 Electrical and Optical Equipment

30 Office, Accounting and Computing Machinery

31 Electrical Machinery and Apparatus N.E.C

32 Radio, Television and Communication Equipment
33 Medical, Precision and Optical Instruments
34-35 Transport Equipment

34 Motor Vehicles, Trailers and Semi-Trailers

35 Other Transport Euipment

36-37 Manufacturing N.E.C., Recycling

price output series are then calculated by dividing the current price series with this
deflator.

For Canada a volume index for gross output is not available in the STAN database.
Industrial product price indices provided by Statistics Canada are used instead as de-
flators for gross output. The deflators are converted to ISIC, Rev. 3 with a conversion
scheme provided by the OECD. When the deflators have to be aggregated to match
industry groups, gross output shares are used as weights.

Value added and gross output volume indices are not available for years earlier than
1991 for many French industries. To estimate the missing data it is assumed that the

lacking price indices grew at the same rate as the corresponding price index of the man-
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ufacturing sector.

Material Inputs: Material inputs are measured as the difference between gross
output and value added. The ratio of the difference of the current price series to the
constant price series is the price of material inputs.

Labor Input: When available total employment at full time equivalents is used as
a measure of labor income. However, full time equivalents are available for France, Italy
and the US only. The simple total employment measure has to be used for Japan, Canada
and Germany. The wage rate is calculated as labor compensation divided by the number
of employees. It is normalized to one in 1995. Labor compensation is adjusted for the
labor income of the self-employed assuming that the wage rate of the self-employed is
the same as for the employees. The labor input variable is multiplied by the wage rate
of the base year, so that the product of the normalized wage rate and labor input equals
labor compensation.

In the case of France employment at full time equivalents is not available for several
industries before 1990. For the chemical industry (ISIC 24) and the rubber and plastics
industry (ISIC 25) the number of employees as a percentage of employees of the industry
group 23-25 is almost exactly the same as the corresponding percentage of total employ-
ment after 1990. Therefore, the number of employees is estimated assuming that this
holds also in the years before. That is, the number of employees in each industry is cal-
culated as the number of employees of industry group 23-25 multiplied by the industry’s
share in total employment of the aggregate industry group 23-25.

For industries 27 to 33 the number of employees is estimated making use of information
contained in the number of employees of those industries as a percentage of employees in
the entire manufacturing sector after 1990. In some industries the level of this percentage
is slightly different from the corresponding percentage of total employment after 1990,
while the movement of the percentages is completely parallel. To correct for the difference
in levels, the estimated share of employees of these industries before 1990 is calculated

as the industry’s share of total employment in manufacturing employment minus the
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average difference between the employees’ share and the share of total employment of
the industry after 1990.

For Canada, the number of employees for industries 27-33 is not available. These
series are estimated assuming that the number of employees as a percentage of total
employment is the same in each of these industries as in the aggregate industry group
27-33.

Capital: In the STAN database net capital stocks are available for Italy only. As the
OFECD does not provide capital stocks for the US, net capital stocks from the Bureau of
Economic Analysis are used. For France net capital stocks at a fairly aggregate level are
obtained from the French National Statistical Office, INSEE. The STAN database does
contain gross capital stocks for France, Italy, Canada and Japan. For Japan, Canada

and Germany, I construct net capital stock series using the perpetual inventory method.

Kiy1y = L+ (1 — 6) Ky (D.1)

where I;; is industry i's period t investment in physical capital at constant prices, K is
the physical capital stock and ¢ is the depreciation rate of physical capital. Assuming
a constant growth rate of investments, as well as constant depreciation rates for both
gross and net capital stocks it can be shown after solving the difference equation (D.1),
that the ratio of net capital stock to gross capital stock will converge to a constant.
In fact, in the case of France and Italy, where both gross and net capital stocks are at
hand, the ratios are close to constant, between 0.52 and 0.62 depending on the industry.
For the construction of net capital stocks for Japan, France and Germany, I assume a
starting value for the net capital stock that equals 55% of the gross capital stock for the
corresponding year. The depreciation rate is assumed to equal 9%.

For Canada, investment at constant prices is provided in the STAN database, so the
net capital stocks can easily be computed using (D.1). This is trickier in the case of
Japan, for which current price investment is not provided in the STAN database. Since

investment at constant prices is provided as an index, with a value of 100 in 1995, the
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level of investment in prices of 1995 is unknown. Assuming a depreciation rate of 4% for
the gross capital stock, it turns out that for each industry an artificial investment series
deduced with the help of (D.1), as [;; = K41y — (1 — 6) Kyt has almost exactly the same
shape as the volume index of investment provided in the STAN database. Therefore, the
level of the investment series is chosen by setting the 1995 value of the STAN volume
index equal to the investment series calculated from the gross capital stock series as
explained above and multiplying all other observations with the same constant.

German data is taken from a different database provided by the Deutsches Institut
fiir Wirtschaftsforschung (DIW) described below, which includes no investment data
at all. Investment data is taken from an older version of the STAN database instead,
which provides current price gross fixed capital formation (OECD 1998). The investment
price deflator is calculated as the ratio of current to constant price investment in the
manufacturing sector which I obtain from the Statistisches Bundesamt. It should be
noted that the investment series thus deflated match very well the movement of an
investment series obtained from the gross capital stock series as I;; = K1 — Ky + 6 Ky,
with ¢ assumed to equal 4%. Since the STAN series only reaches 1994, T augment the
series using D.1 to deduce investment series from the gross capital stock after 1994. For
0 I use the average depreciation rate from 1980-1994 that results when assuming that the
gross capital stocks of the DIW were calculated with the STAN-98-investment series.

The user cost of capital is calculated as px = wi(p+6) , where w is the investment
price deflator, p is the real interest rate and ¢ is the depreciation rate. For Canada,
France, Italy and the US gross capital formation data is provided in the STAN database,
so implicit investment price deflators can be calculated from these series. For Japan,
there are no investment price deflators by industry. Instead, gross capital formation
series in current and constant prices for the entire Japanese economy are taken from the
OECD National Accounts to construct an implicit price deflator. It is assumed to be the
same in each industry.

Gross capital formation series for the West-German manufacturing sector are taken
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from the Statistisches Bundesamt to construct investment price deflators for German
industries. The data is augmented with series for unified Germany in the nineties.

The real interest rate is defined as the average of the difference between the long-term
government bond yield taken from the IMFE’s International Financial Statistics and the
inflation rate. The inflation rate is calculated from GDP deflators. For the US the GDP
deflator is constructed with GDP series from the Bureau of Economic Analysis. For Italy
and Japan the data is taken from the OECD National Accounts. The implicit GDP price
deflator is directly taken from the OFK.CD national accounts for Canada. German GDP
data is taken from the OECD National Accounts as well. West-German data lacking,
the German GDP deflator has to be calculated with data for the unified country for the
nineties. The series calculated with data from the OECD National Accounts is augmented
with a deflator calculated with GDP series taken from the Statistisches Bundesamt for
1998. For France the GDP deflator is taken from the French National Statistical Office,
INSEE.

German data: Data for Germany is available for the unified country only which
obviously reduces the sample period to 1991-1998. Since this is not enough for reliable
estimation, data for West-German manufacturing industries gathered by the Deutsches
Institut fiir Wirtschaftsforschung (DIW) is used instead (Gorzig et al. 2000). The DIW
has converted data from the Federal Statistical Office’s monthly reports from the old
German WZ79 classification to ISIC, Rev. 3 to obtain the series. Unlike in the na-
tional accounts firms that are legally one company but produce different products may
be assigned to different industries in the monthly reports. Therefore, there are some dif-
ferences to national accounts data, but the available variables should serve as reasonable
proxies.

Gross output not being available, it has to be proxied by the turnover variable pro-
vided by the DIW. Value added at 1995 prices is evaluated at factor costs. Total em-
ployment is used as the measure for labor input, while gross capital stocks at 1995 prices

serve as the capital input measure. Labor compensation includes the employee’s, but not
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the employer’s contribution to social security.

Neither a deflator for value added nor for gross output is available through the DIW.
A value-added deflator is constructed by converting the ratio of current to constant price
value-added from the old STAN database from the ISIC, Rev. 2 industry classification
to ISIC, Rev. 3 using an approximate conversion scheme provided by the OECD. When
several ISIC, Rev. 2 industries have to be aggregated to match an ISIC, Rev. 3 industry,
shares in the constant price value-added of the aggregate industry are used as weights.
The data is augmented with series from the German Federal Statistical Office for the
unified country.

A gross output deflator not being available through the OECD), producer price indices
from the Federal Statistical Office are used instead. Since each industry might addition-
ally produce goods other than its main product, it would be desirable to combine the
corresponding price indices, weighting them with data from output tables. However,
a comparison of the "raw” prices with weighted indices from Bénte (1997) shows that
they are very similar. Their correlation after detrending by regressing each series on a
constant and a trend is higher than 0.99 for all series but one, for which it is 0.98. With
this justification unweighted producer price indices are used instead.

Unfortunately, the conversion from the German WZ79 industry classification to ISIC,
Rev. 2 is rather crude, as the conversion scheme provided by the Federal Statistical
Office only indicates whether a particular WZ70 industry enters into a particular ISIC,
Rev. 2 industry without providing a percentage. Therefore, the price index of some
WZ79-industries are included into the price indices of several different ISIC, Rev. 2
industries. Due to the lack of gross output at constant prices, shares in current price
gross output of the aggregate industry are used as weights. The data is augmented with
gross output deflators implicit in gross output data for unified Germany provided by the
Federal Statistical Office.

For Germany only total employment is available, so the number of self-employed

has to be estimated. This is done by using the average share of the self-employed in
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total employment as apparent in the STAN data for all of Germany based on ISIC,
Rev. 3. Assuming that this percentage was approximately the same in West-Germany
even before 1991 and that it was constant over time, the share can be used to calculate
the number of self-employed with the total employment series provided by the DIW.
Although these may seem to be arbitrary assumptions, it turns out that the TFP growth
measure changes only slightly when the labor share is corrected for the estimated income
of the self-employed. Moreover, although data from the Federal Statistical Office has
not been used, because for many industries the conversion from WZ79 to ISIC3 seems
too rough, the estimate described above proves to be quite close for those industries for
which there is a one-to-one match.

The German data does not include the recycling industry. Data from industry 36
is assumed to be a reasonable proxy for 36-37, since the recycling industry is typically
rather small.

Research and Development Data A convenient feature of the STAN databases
both old and new is that they are completely compatible with the OECD ANBERD
and ANSRE databases (OECD 1999) which cover intramural business expenditure on
research and development and R&D personnel respectively. The research and develop-
ment expenditure data based on the ISIC, Rev. 3 industry classification is available for
the time span 1987-1996/7 only. However, at least the series for manufacturing indus-
tries can be expanded with data on research and development expenditure based on the
ISIC, Rev. 2 industry classification which covers 1970-1997. Using a conversion scheme
provided by the OECD it turns out that the ISIC, Rev. 2 series match the ISIC, Rev. 3
series one-to-one for most industries and countries. The ANBERD 2000 database is used
to expand the series to 1998 (OECD 2000qa). It should be noted that the Italian data
provided by the OECD includes extramural R&D expenditure while every other country
reports intramural R&D expenditure only.

R&D capital stocks are calculated using the perpetual inventory method:
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where I is period t research and development expenditure in industry i,and Ry is the
R&D capital stock of industry 4 in period ¢. The investment series are deflated with the

respective country’s GDP-Deflator and the depreciation rate 8, is assumed to be 12%.

The initial capital stock is calculated as 7 = 7 ;fIEéT where g% is the average growth rate
of R&D-expenditures over the sample period.

While the conversion of R&D data in ISIC, Rev. 2 proves to be a perfect match to
ISIC, Rev. 3 data in most cases, occasional difficulties have to be overcome for some
industries. Separate R&D data for the US wood industry is not available in the Anberd
2000 data based on ISIC, Rev. 3. Instead, data for the wood and the paper and publishing
and printing industry is reported as an aggregate. Disaggregated data for two industries
is estimated by converting the ANBERD 1999 data based on ISIC, Rev. 2 with an OECD
conversion scheme to ISIC, Rev. 3. The 1997 value for the paper and publishing industry
is calculated as the R&D investment of the aggregate industry as apparent in the ISIC,
Rev. 3 data of ANBERD 2000 minus the average difference between the R&D investment
in this industry aggregate and the R&D investment of the paper and publishing industry
in previous years. The R&D investment in the wood industry for this year is the residual.

Converting Japanese ISIC, Rev. 2 data for industry group 36-37, it turns out that
the converted R&D investment is much higher than the data provided directly in ISIC,
Rev. 3. This is certainly due to the fact, that the OECD conversion scheme is only
approximate. The converted series is corrected with its average difference over 1987-1993
to the corresponding R&D investment series provided in ANBERD data based on ISIC,
Rev. 3 to obtain data for the years before 1987.

For Germany ANBERD data based on ISIC, Rev. 3 (ANBERD 3) is available for the
unified country only, while ANBERD data based on ISIC, Rev. 2 (ANBERD 2) for West-
Germany and unified Germany can be compared for 1991 to 1993. It should be noted that

only a small fraction of Germany’s research and development is conducted in the Fast-
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German Linder, although the percentage has increased some from 3.78 % in 1991 to 5.99
% in 1997 (Stifterverband fiir die deutsche Wissenschaft 1999). In principle, the difference
between data for Germany and West-German data could be neglected, and ANBERD
3 data could be used to approximate the R&D investment of West-German industries.
Not only does the size of Fast-German R&D investment seem to be negligeable, but it is
also very difficult to assign research and development expenditures to a specific German
region. In fact, when comparing West-German and German data provided in ANBERD
2, it turns out that the West-German R&D investment is higher for several industries
according to the data, in the case of the food industry in 1994 this difference even
amounts to more than 20%. Therefore, it does not seem useful to use the information
contained in this data to correct the R&D expenditure of later years for the inclusion of
Fast-German R&D. Rather, ANBERD 3 data from ANBERD 1999 and ANBERD 2000
for each industry is corrected with the percentage difference of East- and West-German
R&D as evidenced in the Stifterverband fiir die deutsche Wissenschalt’s (1999) data.
Since the Stifterverband collects data for odd years only, I use linear interpolation to
estimate percentage differences for 1994 and 1996. I assume that the growth rate of the
percentage difference is the same in 1998 as it was in 1997 to obtain an estimate for 1998.

Spillover Variables: For the construction of weights for the domestic spillover
variable, input-output tables measuring intermediate goods flows for each of the coun-
tries in the sample are provided by the OECD (OECD 1995). In addition to total inter-
mediate goods flows, tables with imported intermediate goods and domestically traded
goods only are available. Input-output tables for domestic goods flows are employed to
calculate the weights. The OECD tables are based on ISIC, Rev. 2 so they have to
be converted to match the R&D capital stocks. This is done using a conversion scheme
provided by the OECD.

The OECD does not currently update its input-output tables, so the tables are never
more recent than 1991. Germany provides data for 1986, 1988 and 1991, Canada for
1981, 1986, 1990, France and Japan for 1980, 1985 and 1990, and the US for 1982, 1985
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and 1990, while for Italy an input-output table for 1985 only is available. For each
of these countries, input-output coefficients for all of these years are constructed. The
average of the coefficients in the three different years is used to calculate w,;. When
available, input-output tables in constant prices are used. However, for Italy and the US
input-output tables are available in current prices only.

The diagonal of each input-output coefficient matrix is set to zero, since each in-
dustry’s R&D capital stock enters its cost function as a separate variable. Therefore,
it should not be included additionally in the domestic spillover variable. In the case of
Germany, the radio, television and communication equipment industry is lacking in the
input-output tables. Due to a lack of a better alternative to tackle this problem, it is
assumed that no spillovers stem from this industry.

Since some industries are aggregated in the empirical analysis due to data limitations,
the corresponding spillover variables have to be aggregated as well. This is done by
weighting each spillover variable with the ratio of material inputs used in this industry
to material inputs of the aggregate industry. These weights take account of the relative
size of inter-industry trade as a transmission channel for each industry to be aggregated.

Intra-Industry Spillovers: The import shares are constructed drawing on Feen-
stra’s (2000) data of import flows over the period 1980-1997. This database is based on
the Standard International Trade Classification (SITC) of the United Nations. It quan-
tifies imports of different kinds of goods. However, it is possible to assign each type of
good to a particular industry. In fact, the Feenstra database also includes tables based
on the US Standard Industry Classification. A conversion scheme provided by the OECD
is used to convert this data to ISIC, Rev. 3.

Time-invariant import-shares are constructed averaging the import-shares over 1980-
1997.

Inter-Industry Spillovers: Import input-output matrices provided by the OECD
(OECD 1995) are used to construct weights for the inter-industry spillover variable.

The coefficients are calculated in a manner completely analogous to the input-output
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coeflicients for the domestic spillover variable. Time-invariant coefficients are obtained
by averaging over all years in the sample period 1980-1998, for which input-output tables
are available. Data availability is the same as for the domestic spillover variable. Again,
input-output tables in current prices have to be used for Italy and the US. The diagonal

of each input-output coefficient matrix is set to zero to avoid double-counting.
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08/94 Vordiplom, Universitéit Passau
06/91 Abitur, Otto-Hahn Gymnasium, Springe

FORSCHUNGSINTERESSEN
Quantitative Makroskonomie, Okonometrie

AUSLANDSAUFENTHALTE
09/00-03/01 Visiting Scholar an der New York University, USA; DAAD-Stipendiatin

08/93 Praktikantin in einer Anwaltskanzlei in Mexiko Stadt

09/91-03/92  Austauschstudentin, Kalamazoo College, Michigan, USA
LEHRTATIGKEIT /FORSCHUNGSASSISTENZ
04/99-heute  Universitdt Hamburg; Institut fiir Wachstum und Konjunktur

08/97-03/99 Universitdt Freiburg; Inst. zur Frforschung der Wirtschaftlichen Entwicklung
SPRACH- UND COMPUTERKENNTNISSE

Englisch, Franzosisch, Spanisch und Italienisch flieflend in Wort und Schrift
Grundkenntnisse in Portugiesisch

Programmiererfahrung in Gauss

Anwendererfahrung in Eviews, TSP, Scientific Workplace und MS Office
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